repository_name
stringlengths 7
107
| function_path
stringlengths 4
190
| function_identifier
stringlengths 1
236
| language
stringclasses 1
value | function
stringlengths 9
647k
| docstring
stringlengths 5
488k
| function_url
stringlengths 71
285
| context
stringlengths 0
2.51M
| license
stringclasses 5
values |
---|---|---|---|---|---|---|---|---|
spamexperts/orangeassassin | oa/context.py | GlobalContext.unload_plugin | python | def unload_plugin(self, name):
if name not in self.plugins:
raise oa.errors.PluginLoadError("Plugin %s not loaded." % name)
plugin = self.plugins[name]
for rule in plugin.eval_rules:
self.eval_rules.pop(rule, None)
for rule_type in plugin.cmds or ():
self.cmds.pop(rule_type, None)
self.pop_plugin_data(name)
del self.plugins[name] | Unload the specified plugin and remove any data stored in this
context. | https://github.com/spamexperts/orangeassassin/blob/9d0d4bd3ef7d09bf2da195280730f790f1229458/oa/context.py#L239-L253 | from builtins import dict
from builtins import object
import timeit
import sys
try:
import importlib.machinery
except ImportError:
pass
import re
import os
import imp
import getpass
import logging
import functools
import importlib
import collections
import oa.conf
import oa.errors
import oa.networks
import oa.rules.base
import oa.plugins.base
import oa.plugins.pyzor
import oa.dns_interface
import oa.regex
DSN_SERVER_RE = oa.regex.Regex(r"""
^\[?
([0-9.]+| # IPv4
[0-9a-f:]+) # IPv6
\]?
(?:
: # A port is following the address
([0-9]+) # The port
)?$
""", re.I | re.S | re.M | re.X)
class _Context(object):
def __init__(self):
self.plugin_data = collections.defaultdict(dict)
self.log = logging.getLogger("oa-logger")
def __getstate__(self):
odict = self.__dict__.copy()
if "RelayCountryPlugin" in odict["plugin_data"]:
del odict["plugin_data"]["RelayCountryPlugin"]["ipv4"]
del odict["plugin_data"]["RelayCountryPlugin"]["ipv6"]
odict["plugins_to_import"] = []
for plugin_name, plugin in odict["plugins"].copy().items():
if plugin.path_to_plugin is None:
continue
del odict["plugins"][plugin_name]
odict["plugins_to_import"].append(plugin.path_to_plugin)
for rule in plugin.eval_rules:
del odict["eval_rules"][rule]
return odict
def __setstate__(self, d):
self.__dict__.update(d)
for name, path in d.get("plugins_to_import", None) or ():
self.load_plugin(name, path)
def set_plugin_data(self, plugin_name, key, value):
self.plugin_data[plugin_name][key] = value
def get_plugin_data(self, plugin_name, key=None):
if key is None:
return self.plugin_data[plugin_name]
return self.plugin_data[plugin_name][key]
def del_plugin_data(self, plugin_name, key=None):
if key is None:
del self.plugin_data[plugin_name]
else:
del self.plugin_data[plugin_name][key]
def pop_plugin_data(self, plugin_name, key=None):
if key is None:
return self.plugin_data.pop(plugin_name, None)
return self.plugin_data[plugin_name].pop(key, None)
def _callback_chain(func):
@functools.wraps(func)
def wrapped_func(*args, **kwargs):
try:
func(*args, **kwargs)
except oa.errors.InhibitCallbacks:
return True
return False
return wrapped_func
class GlobalContext(_Context):
def __init__(self, paranoid=False, ignore_unknown=True, lazy_mode=True):
super(GlobalContext, self).__init__()
self.plugins = dict()
self.paranoid = paranoid
self.lazy_mode = lazy_mode
self.ignore_unknown = ignore_unknown
self.eval_rules = dict()
self.cmds = dict()
self.dns = oa.dns_interface.DNSInterface()
self.networks = oa.networks.NetworkList()
self.conf = oa.conf.PADConf(self)
self.username = getpass.getuser()
def err(self, *args, **kwargs):
if self.paranoid:
self.log.error(*args, **kwargs)
elif not self.ignore_unknown:
self.log.warn(*args, **kwargs)
else:
self.log.debug(*args, **kwargs)
def load_plugin(self, name, path=None):
self.log.debug("Loading plugin %s from %s", name, path)
class_name = name.rsplit(".", 1)[-1]
if class_name in self.plugins:
self.log.warning("Redefining plugin %s.", class_name)
self.unload_plugin(class_name)
if path is None:
module_name, class_name = name.rsplit(".", 1)
try:
module = importlib.import_module(module_name)
except ImportError as e:
raise oa.errors.PluginLoadError("Unable to load %s: %s" %
(module_name, e))
elif sys.version_info[0] == 3 and sys.version_info[1] > 2:
module = self._load_module_py3(path)
else:
module = self._load_module_py2(path)
plugin_class = getattr(module, class_name)
if plugin_class is None:
raise oa.errors.PluginLoadError("Missing plugin %s in %s" %
(class_name, path))
if not issubclass(plugin_class, oa.plugins.base.BasePlugin):
raise oa.errors.PluginLoadError("%s is not a subclass of "
"BasePlugin" % class_name)
plugin = plugin_class(self)
self._load_cmds(plugin, class_name)
self._load_eval_rules(plugin, class_name)
self.log.info("Plugin %s loaded", name)
if path is not None:
plugin.path_to_plugin = (name, path)
self.plugins[class_name] = plugin
def _load_eval_rules(self, plugin, class_name):
for rule in plugin.eval_rules:
self.log.debug("Registering eval rule: %s.%s", class_name, rule)
if rule in self.eval_rules:
self.log.warning("Redefining eval rule: %s", rule)
eval_rule = getattr(plugin, rule)
if eval_rule is None:
raise oa.errors.PluginLoadError("Undefined eval rule %s in "
"%s" % (rule, class_name))
self.eval_rules[rule] = eval_rule
def _load_cmds(self, plugin, class_name):
if not plugin.cmds:
return
for rule_type, rule_class in plugin.cmds.items():
self.log.debug("Registering CMD rule: %s.%s", class_name,
rule_type)
if rule_type in self.cmds:
self.log.warning("Redefining CMD rule: %s", rule_type)
if not issubclass(rule_class, oa.rules.base.BaseRule):
raise oa.errors.PluginLoadError("%s is not a subclass of "
"BasePlugin" % class_name)
self.cmds[rule_type] = rule_class | Apache License 2.0 |
schemathesis/schemathesis | src/schemathesis/specs/openapi/serialization.py | deep_object | python | def deep_object(item: Generated, name: str) -> None:
generated = item.pop(name)
if generated:
item.update({f"{name}[{key}]": value for key, value in force_dict(generated).items()})
else:
item[name] = "" | Serialize an object with `deepObject` style.
id={"role": "admin", "firstName": "Alex"} => id[role]=admin&id[firstName]=Alex | https://github.com/schemathesis/schemathesis/blob/b3d0faaaf484574006624c2f23759a612d1ffb5e/src/schemathesis/specs/openapi/serialization.py#L205-L214 | import json
from typing import Any, Callable, Dict, Generator, List, Optional, Tuple, Union
from ...utils import compose
Generated = Dict[str, Any]
Definition = Dict[str, Any]
DefinitionList = List[Definition]
MapFunction = Callable[[Generated], Generated]
def make_serializer(
func: Callable[[DefinitionList], Generator[Optional[Callable], None, None]]
) -> Callable[[DefinitionList], Optional[Callable]]:
def _wrapper(definitions: DefinitionList) -> Optional[Callable]:
conversions = list(func(definitions))
if conversions:
return compose(*[conv for conv in conversions if conv is not None])
return None
return _wrapper
def _serialize_openapi3(definitions: DefinitionList) -> Generator[Optional[Callable], None, None]:
for definition in definitions:
name = definition["name"]
if "content" in definition:
options = iter(definition["content"].keys())
media_type = next(options, None)
if media_type == "application/json":
yield to_json(name)
else:
style = definition.get("style")
explode = definition.get("explode")
type_ = definition.get("schema", {}).get("type")
if definition["in"] == "path":
yield from _serialize_path_openapi3(name, type_, style, explode)
elif definition["in"] == "query":
yield from _serialize_query_openapi3(name, type_, style, explode)
elif definition["in"] == "header":
yield from _serialize_header_openapi3(name, type_, explode)
elif definition["in"] == "cookie":
yield from _serialize_cookie_openapi3(name, type_, explode)
def _serialize_path_openapi3(
name: str, type_: str, style: Optional[str], explode: Optional[bool]
) -> Generator[Optional[Callable], None, None]:
if style == "simple":
if type_ == "object":
if explode is False:
yield comma_delimited_object(name)
if explode is True:
yield delimited_object(name)
if type_ == "array":
yield delimited(name, delimiter=",")
if style == "label":
if type_ == "object":
yield label_object(name, explode=explode)
elif type_ == "array":
yield label_array(name, explode=explode)
else:
yield label_primitive(name)
if style == "matrix":
if type_ == "object":
yield matrix_object(name, explode=explode)
elif type_ == "array":
yield matrix_array(name, explode=explode)
else:
yield matrix_primitive(name)
def _serialize_query_openapi3(
name: str, type_: str, style: Optional[str], explode: Optional[bool]
) -> Generator[Optional[Callable], None, None]:
if type_ == "object":
if style == "deepObject":
yield deep_object(name)
if style is None or style == "form":
if explode is False:
yield comma_delimited_object(name)
if explode is True:
yield extracted_object(name)
elif type_ == "array" and explode is False:
if style == "pipeDelimited":
yield delimited(name, delimiter="|")
if style == "spaceDelimited":
yield delimited(name, delimiter=" ")
if style is None or style == "form":
yield delimited(name, delimiter=",")
def _serialize_header_openapi3(
name: str, type_: str, explode: Optional[bool]
) -> Generator[Optional[Callable], None, None]:
yield to_string(name)
if type_ == "array":
yield delimited(name, delimiter=",")
if type_ == "object":
if explode is False:
yield comma_delimited_object(name)
if explode is True:
yield delimited_object(name)
def _serialize_cookie_openapi3(
name: str, type_: str, explode: Optional[bool]
) -> Generator[Optional[Callable], None, None]:
yield to_string(name)
if explode and type_ in ("array", "object"):
yield nothing(name)
if explode is False:
if type_ == "array":
yield delimited(name, delimiter=",")
if type_ == "object":
yield comma_delimited_object(name)
def _serialize_swagger2(definitions: DefinitionList) -> Generator[Optional[Callable], None, None]:
for definition in definitions:
name = definition["name"]
collection_format = definition.get("collectionFormat", "csv")
type_ = definition.get("type")
if definition["in"] == "header":
yield to_string(name)
if type_ in ("array", "object"):
if collection_format == "csv":
yield delimited(name, delimiter=",")
if collection_format == "ssv":
yield delimited(name, delimiter=" ")
if collection_format == "tsv":
yield delimited(name, delimiter="\t")
if collection_format == "pipes":
yield delimited(name, delimiter="|")
serialize_openapi3_parameters = make_serializer(_serialize_openapi3)
serialize_swagger2_parameters = make_serializer(_serialize_swagger2)
def conversion(func: Callable[..., None]) -> Callable:
def _wrapper(name: str, **kwargs: Any) -> MapFunction:
def _map(item: Generated) -> Generated:
if name in (item or {}):
func(item, name, **kwargs)
return item
return _map
return _wrapper
def make_delimited(data: Optional[Dict[str, Any]], delimiter: str = ",") -> str:
return delimiter.join(f"{key}={value}" for key, value in force_dict(data or {}).items())
def force_iterable(value: Any) -> Union[List, Tuple]:
if isinstance(value, (tuple, list)):
return value
return [value]
def force_dict(value: Any) -> Dict:
if isinstance(value, dict):
return value
return {"": value}
@conversion
def to_json(item: Generated, name: str) -> None:
item[name] = json.dumps(item[name])
@conversion
def delimited(item: Generated, name: str, delimiter: str) -> None:
item[name] = delimiter.join(map(str, force_iterable(item[name] or ())))
@conversion | MIT License |
vowpalwabbit/coba | coba/encodings.py | StringEncoder.fit | python | def fit(self, values: Sequence[Any]) -> 'StringEncoder':
if self.is_fit:
raise Exception("This encoder has already been fit.")
return StringEncoder(is_fit=True) | Determine how to encode from given training data.
Args:
values: A collection of values to use for determining the encoding.
Returns:
An Encoder that has been fit.
Remarks:
See the base class for more information. | https://github.com/vowpalwabbit/coba/blob/ed5ba88eaf2a90f4113c37032e62c958d11350ab/coba/encodings.py#L96-L112 | import sys
import json
import collections
from numbers import Number
from itertools import product
from abc import ABC, abstractmethod
from typing import Iterator, Sequence, Generic, TypeVar, Any, Dict, Tuple, Union
_T_out = TypeVar('_T_out', bound=Any, covariant=True)
class Encoder(Generic[_T_out], ABC):
@property
@abstractmethod
def is_fit(self) -> bool:
...
@abstractmethod
def fit(self, values: Sequence[Any]) -> 'Encoder':
...
@abstractmethod
def encode(self, values: Sequence[Any]) -> Sequence[_T_out]:
...
def fit_encode(self, values: Sequence[Any]) -> Sequence[_T_out]:
if self.is_fit:
return self.encode(values)
else:
return self.fit(values).encode(values)
class StringEncoder(Encoder[str]):
def __init__(self, is_fit = True) -> None:
self._is_fit = is_fit
@property
def is_fit(self) -> bool:
return self._is_fit | BSD 3-Clause New or Revised License |
thefoundryvisionmongers/nuke-ml-server | Models/baseModel.py | BaseModel.get_buttons | python | def get_buttons(self):
btn = {}
if hasattr(self, 'buttons'):
for button in self.buttons:
value = getattr(self, button)
assert type(value) in [bool], 'Broadcasted buttons need to be bool.'
btn[button] = value
return btn | Return the defined buttons of the model.
To expose buttons in Nuke, self.buttons has to be filled with attribute names. | https://github.com/thefoundryvisionmongers/nuke-ml-server/blob/5dd4d04cd673c60de8093c600d6c54016fca92d6/Models/baseModel.py#L68-L79 | import sys
if sys.version_info.major > 2:
unicode = str
import numpy as np
class BaseModel(object):
def __init__(self):
self.name = 'Base model'
self.options = ()
self.buttons = ()
self.inputs = {'input': 3}
self.outputs = {'output': 3}
pass
def inference(self, *inputs):
raise NotImplementedError
def get_options(self):
opt = {}
if hasattr(self, 'options'):
for option in self.options:
value = getattr(self, option)
if isinstance(value, unicode):
value = str(value)
assert type(value) in [bool, int, float, str], 'Broadcasted options need to be one of bool, int, float, str.'
opt[option] = value
return opt
def set_options(self, optionsDict):
for name, value in optionsDict.items():
setattr(self, name, value) | Apache License 2.0 |
perfectbark/latex2docx | plasTeX/ConfigManager/__init__.py | ConfigManager.get_opt | python | def get_opt(self, section, option):
optionstring = self[section][option].strip()
if (optionstring[0] == '\'' and optionstring[-1] == '\'') or (optionstring[0] == '\"' and optionstring[-1] == '\"'):
optionstring = optionstring[1:-1]
return optionstring | Return the option with leading and trailing quotes removed | https://github.com/perfectbark/latex2docx/blob/e32f9dcc59cce7bea4e7b114687b2300c623d8c0/plasTeX/ConfigManager/__init__.py#L900-L906 | import sys, string, re, urllib, copy, types, os
from plasTeX.dictutils import ordereddict
from UserList import UserList
from UserDict import UserDict
from textwrap import wrap
__all__ = ['ConfigManager','BooleanOption','IntegerOption','CompoundOption',
'MultiOption','GenericOption','FloatOption','StringOption',
'InputFileOption','OutputFileOption','InputDirectoryOption',
'OutputDirectoryOption','CountedOption',
'BooleanArgument','IntegerArgument','CompoundArgument',
'MultiArgument','GenericArgument','FloatArgument','StringArgument',
'InputFileArgument','OutputFileArgument','InputDirectoryArgument',
'OutputDirectoryArgument','CountedArgument',
'BUILTIN','CODE','REGISTRY','CONFIG','CONFIGFILE','ENVIRON',
'ENVIRONMENT','COMMANDLINE','ALL','DEFAULTSECT',
'ON','OFF','TRUE','FALSE','YES','NO','CommandLineManager',
'GetoptError','ConfigError','NoOptionError']
DEFAULTSECT = "DEFAULT"
MAX_INTERPOLATION_DEPTH = 10
ON = TRUE = YES = 1
OFF = FALSE = NO = 0
TERMINAL_WIDTH = 76
MAX_NAME_WIDTH_RATIO = 0.25
PREPAD = 2
GUTTER = 4
BUILTIN = 2
CODE = 4
REGISTRY = 8
CONFIG = CONFIGFILE = 16
ENVIRON = ENVIRONMENT = 32
COMMANDLINE = 64
ALL = 0xffffff
class Error(Exception):
def __init__(self, msg=''):
self.msg = msg
Exception.__init__(self, msg)
def __str__(self):
return self.msg
__repr__ = __str__
class GetoptError(Error):
def __init__(self, msg, opt):
self.msg = msg
self.opt = opt
Exception.__init__(self, msg, opt)
def __str__(self):
return self.msg
__repr__ = __str__
class RequiresArgument(GetoptError):
class MandatoryOption(GetoptError):
class UnspecifiedArgument(GetoptError):
class UnrecognizedArgument(GetoptError):
class NonUniquePrefix(GetoptError):
class UnknownCompoundGroup(GetoptError):
def __init__(self, msg=''):
GetoptError.__init__(self, msg, '')
class ConfigError(Error):
class NoSectionError(ConfigError):
def __init__(self, section):
ConfigError.__init__(self, 'No section: %s' % section)
self.section = section
class DuplicateSectionError(ConfigError):
def __init__(self, section):
ConfigError.__init__(self, "Section %s already exists" % section)
self.section = section
class InvalidOptionError(GetoptError, ConfigError):
def __init__(self, option, value, msg='', type=''):
if type: type += ' '
if not msg:
msg="Invalid value for %soption `%s'" % (type, option)
ConfigError.__init__(self, msg+': %s' % value)
self.option = option
self.value = value
class NoOptionError(ConfigError):
def __init__(self, option, section):
ConfigError.__init__(self, "No option `%s' in section: %s" %
(option, section))
self.option = option
self.section = section
class InterpolationError(ConfigError):
def __init__(self, reference, option, section, rawval):
ConfigError.__init__(self,
"Bad value substitution:\n"
"\tsection: [%s]\n"
"\toption : %s\n"
"\tkey : %s\n"
"\trawval : %s\n"
% (section, option, reference, rawval))
self.reference = reference
self.option = option
self.section = section
class InterpolationDepthError(ConfigError):
def __init__(self, option, section, rawval):
ConfigError.__init__(self,
"Value interpolation too deeply recursive:\n"
"\tsection: [%s]\n"
"\toption : %s\n"
"\trawval : %s\n"
% (section, option, rawval))
self.option = option
self.section = section
class ParsingError(ConfigError):
def __init__(self, filename):
ConfigError.__init__(self, 'File contains parsing errors: %s' % filename)
self.filename = filename
self.errors = []
def append(self, lineno, line):
self.errors.append((lineno, line))
self.msg = self.msg + '\n\t[line %2d]: %s' % (lineno, line)
class TooFewValues(GetoptError):
def __init__(self, msg):
GetoptError.__init__(self, msg, '')
class TooManyValues(GetoptError):
def __init__(self, msg):
GetoptError.__init__(self, msg, '')
class MissingSectionHeaderError(ParsingError):
def __init__(self, filename, lineno, line):
ConfigError.__init__(
self,
'File contains no section headers.\nfile: %s, line: %d\n%s' %
(filename, lineno, line))
self.filename = filename
self.lineno = lineno
self.line = line
class ConfigSection(UserDict, object):
def __init__(self, name, data={}):
UserDict.__init__(self, data)
self.name = name
self.parent = None
def copy(self):
newcopy = self.__class__(self.name)
for key, value in vars(self).items():
if key == 'data': continue
setattr(newcopy, key, value)
for key, value in self.data.items():
newcopy.data[key] = value.copy()
return newcopy
def setParent(self, parent):
self.parent = parent
def defaults(self):
return self.parent.defaults()
def __getitem__(self, key):
return self.get(key)
def set(self, option, value, source=BUILTIN):
typemap = {str:StringOption, int:IntegerOption,
float:FloatOption, list:MultiOption, tuple:MultiOption}
if self.data.has_key(option):
if self.data[option].source <= source:
self.data[option].source = source
self.data[option].setValue(value)
else:
if isinstance(value, GenericOption):
value.setParent(self)
value.name = str(option)
self.data[option] = value
elif type(value) in typemap.keys():
for key, opttype in typemap.items():
if isinstance(value, key):
if type(value) == str and str(value).lower().strip() in ['on','off','true','false','yes','no']:
opttype = BooleanOption
self.data[option] = opttype(name=option, source=source)
self.data[option].setParent(self)
self.data[option].name = str(option)
self.data[option].setValue(value)
break
else:
raise TypeError, 'Could not find valid option type for "%s"' % value
def __setitem__(self, key, value):
self.set(key, value, source=BUILTIN)
def getint(self, option):
return int(self[option])
def getfloat(self, option):
return float(self[option])
def getboolean(self, option):
v = self[option]
val = int(v)
if val not in (0, 1):
raise ValueError, 'Not a boolean: %s' % v
return val
def get(self, option, raw=0, vars={}):
value = self.getraw(option, vars)
if raw or value == None: return value
if type(value) in [list, tuple]:
strings = [s for s in value
if isinstance(s,str) and s.find('%(')+1]
if not strings: return value
elif not(isinstance(value,str)) or value.find("%(") < 0:
return value
var_dict = self.defaults().data.copy()
var_dict.update(self.data)
var_dict.update(vars)
if type(value) in [list, tuple]:
new_values = []
for i in value:
new_values.append(self.interpolate(option, var_dict, i))
return new_values
else:
return self.interpolate(option, var_dict, value)
def interpolate(self, option, vars, rawval):
value = rawval
depth = 0
while depth < MAX_INTERPOLATION_DEPTH:
depth = depth + 1
if value.find("%(") >= 0:
try:
value = value % vars
except KeyError, key:
raise InterpolationError(key, option, self.name, rawval)
else:
break
if value.find("%(") >= 0:
raise InterpolationDepthError(option, self.name, rawval)
return value
def getraw(self, option, vars={}):
if vars.has_key(option):
return vars[option].getValue()
if self.has_key(option):
return self.data[option].getValue()
defaults = self.defaults()
if defaults.has_key(option):
return defaults.data[option].getValue()
raise NoOptionError(option, self.name)
def to_string(self, source=COMMANDLINE):
s = ''
keys = self.keys()
keys.sort()
for key in keys:
if source & self.data[key].source:
raw = self.getraw(key)
option = self.data[key]
if isinstance(option, MultiOption) and raw == []: continue
if raw == None: continue
comment = ''
if option.summary: comment = option.summary
if option.description: comment = option.description
if comment:
comment = comment.strip() % option.names()
comment = comment.split('\n')
s += '\n; %s\n' % '\n; '.join(comment)
value = str(option).replace('\n', '\n ')
if value.find('\n') + 1: value = '\n ' + value
s += "%s %s %s\n" % (key, ConfigManager.OPTIONSEP, value)
return s
def __str__(self):
return self.to_string()
def __repr__(self):
return self.to_string(ALL)
class ConfigManager(UserDict, object):
SECTCRE = re.compile(
r'\['
r'(?P<header>[^]]+)'
r'\]'
)
OPTCRE = re.compile(
r'(?P<option>[]\-[\w_.*,(){}]+)'
r'[ \t]*(?P<vi>[:=])[ \t]*'
r'(?P<value>.*)$'
)
OPTIONSEP = '='
short_prefix = '-'
long_prefix = '--'
def __init__(self, defaults={}):
UserDict.__init__(self)
self[DEFAULTSECT] = ConfigSection(DEFAULTSECT, defaults)
self.strict = 1
self._categories = {}
self.unrecognized = []
def copy(self):
newcopy = self.__class__()
for key, value in vars(self).items():
if key == 'data': continue
setattr(newcopy, key, value)
for key, value in self.data.items():
newcopy.data[key] = value.copy()
return newcopy
def set_prefixes(cls, arg1, arg2=None):
if arg1 == arg2 == None:
raise ValueError, 'Short and long prefixes cannot both be None.'
if arg2 is None:
cls.long_prefix = arg1
cls.short_prefix = None
else:
cls.long_prefix = arg2
cls.short_prefix = arg1
set_prefixes = classmethod(set_prefixes)
def add_help_on_option(self, category=None):
self[DEFAULTSECT]['__help_on__'] = MultiOption(
""" Display help on listed option names """,
options = '%shelp-on' % self.long_prefix[0],
category = category,
callback = self.usage_on,
)
def remove_help_on_option(self):
try: del self[DEFAULTSECT]['__help_on__']
except: pass
def add_category(self, key, title):
self._categories[key] = title
return key
def get_category(self, key):
if type(key) not in [list, tuple]:
key = [key]
if not key:
return ''
return self._categories[key[0]]
def categories(self):
return self._categories
def set_strict(self, bool=1):
self.strict = not(not(bool))
def defaults(self):
return self[DEFAULTSECT]
def sections(self):
return self.keys()
def add_section(self, section):
if self.has_key(section): return self[section]
self[section] = ConfigSection(section)
return self[section]
def has_section(self, section):
return section in self.keys()
def options(self, section):
if self.has_key(section):
return self[section].keys()
else:
raise NoSectionError(section)
def read(self, filenames):
if type(filenames) in [type(''), type(u'')]:
filenames = [filenames]
for filename in filenames:
try:
if filename.startswith('~'):
filename = os.path.expanduser(filename)
fp = urllib.urlopen(filename)
except (OSError, IOError):
continue
self.__read(fp, filename)
fp.close()
return self
def readfp(self, fp, filename=None):
if filename is None:
try:
filename = fp.name
except AttributeError:
filename = '<???>'
self.__read(fp, filename)
return self
def get(self, section, option, raw=0, vars={}):
return self[section].get(option, raw, vars)
def set(self, section, option, value, source=BUILTIN):
if not section or section == DEFAULTSECT:
sectdict = self[DEFAULTSECT]
else:
try:
sectdict = self[section]
except KeyError:
raise NoSectionError(section)
sectdict.set(option, value, source)
def __setitem__(self, key, value):
if isinstance(value, ConfigSection):
self.data[key] = value
self.data[key].setParent(self)
else:
self.data[key] = ConfigSection(str(key))
self.data[key].setParent(self)
def __getitem__(self, key):
if self.data.has_key(key):
return self.data[key]
if self.data[DEFAULTSECT].has_key(key):
return self.data[DEFAULTSECT][key]
raise NoSectionError(key)
def getint(self, section, option):
return self[section].getint(option)
def getfloat(self, section, option):
return self[section].getfloat(option)
def getboolean(self, section, option):
return self[section].get(option)
def getraw(self, section, option):
return self[section].getraw(option)
def has_option(self, section, option):
if not section:
section=DEFAULTSECT
elif not self.has_key(section):
return 0
else:
return self[section].has_key(option)
def write(self, fp):
fp.write(str(self))
def __str__(self):
return self.to_string()
def __repr__(self):
return self.to_string(source=COMMANDLINE|CONFIGFILE|CODE|BUILTIN|REGISTRY|ENVIRONMENT)
def to_string(self, source=COMMANDLINE|CONFIGFILE):
if source & BUILTIN: func = repr
else: func = str
s = ''
keys = [x for x in self.keys() if x != DEFAULTSECT]
keys.sort()
if self[DEFAULTSECT]:
keys.insert(0, DEFAULTSECT)
for section in keys:
content = func(self[section]).strip()
if content:
s += "[%s]\n%s\n\n" % (section, content)
return s
def remove_option(self, section, option):
if not section or section == DEFAULTSECT:
sectdict = self[DEFAULTSECT]
else:
try:
sectdict = self[section]
except KeyError:
raise NoSectionError(section)
try:
del sectdict[option]
return 1
except KeyError:
return 0
def remove_section(self, section):
if self.has_key(section):
del self[section]
return 1
else:
return 0
def __read(self, fp, fpname):
cursect = None
optname = None
lineno = 0
e = None
while 1:
line = fp.readline()
if not line:
break
lineno = lineno + 1
if line.strip() == '' or line[0] in '#;':
continue
if line.split()[0].lower() == 'rem' and line[0] in "rR":
continue
if line[0] in ' \t' and cursect is not None and optname:
value = line.strip()
if value and cursect.data[optname].source == CONFIGFILE:
cursect.data[optname] += "%s" % value
else:
mo = self.SECTCRE.match(line)
if mo:
sectname = mo.group('header')
if self.has_key(sectname):
cursect = self[sectname]
else:
cursect = ConfigSection(sectname)
self[sectname] = cursect
optname = None
elif cursect is None:
raise MissingSectionHeaderError(fpname, lineno, `line`)
else:
mo = self.OPTCRE.match(line)
if mo:
optname, vi, optval = mo.group('option', 'vi', 'value')
if vi in ('=', ':') and ';' in optval:
pos = optval.find(';')
if pos and optval[pos-1] in string.whitespace:
optval = optval[:pos]
optval = optval.strip()
if optval == '""':
optval = ''
try:
cursect.set(optname, optval, source=CONFIGFILE)
cursect.data[optname].file = fpname
except:
print "Problem occurred in section '%s' while reading file %s." % (cursect.name, fpname)
raise
else:
if not e:
e = ParsingError(fpname)
e.append(lineno, `line`)
if e:
raise e
def get_default_option(self, option):
try:
return self[DEFAULTSECT][option]
except KeyError:
raise NoOptionError(option, DEFAULTSECT) | MIT License |
spiderclub/haipproxy | haipproxy/client/py_cli.py | ProxyFetcher._refresh_periodically | python | def _refresh_periodically(self):
while True:
if len(self.pool) < int(2 * self.min_pool_size):
self.get_proxies()
time.sleep(0.2) | refresh self.pool periodically, checking rate is 10 times/second | https://github.com/spiderclub/haipproxy/blob/ab30ccf4b1d78e9304c27830006cc5800fe41bb3/haipproxy/client/py_cli.py#L180-L185 | import time
import threading
from ..utils import get_redis_conn
from ..config.rules import (
SCORE_MAPS, TTL_MAPS,
SPEED_MAPS)
from ..config.settings import (
TTL_VALIDATED_RESOURCE, LONGEST_RESPONSE_TIME,
LOWEST_SCORE, LOWEST_TOTAL_PROXIES,
DATA_ALL)
from .core import IPFetcherMixin
__all__ = ['ProxyFetcher']
lock = threading.RLock()
class Strategy:
strategy = None
def check(self, strategy):
return self.strategy == strategy
def get_proxies_by_stragery(self, pool):
raise NotImplementedError
def process_feedback(self, pool, res, proxy, **kwargs):
raise NotImplementedError
class RobinStrategy(Strategy):
def __init__(self):
super().__init__()
self.strategy = 'robin'
def get_proxies_by_stragery(self, pool):
if not pool:
return None
proxy = pool.pop(0)
pool.append(proxy)
return proxy
def process_feedback(self, pool, res, proxy, **kwargs):
if res == 'failure':
if pool[-1] == proxy:
with lock:
if pool[-1] == proxy:
pool.pop()
return
class GreedyStrategy(Strategy):
def __init__(self):
self.strategy = 'greedy'
def get_proxies_by_stragery(self, pool):
if not pool:
return None
return pool[0]
def process_feedback(self, pool, res, proxy, **kwargs):
if res == 'failure':
if pool[0] == proxy:
with lock:
if pool[0] == proxy:
pool.pop(0)
return
expected_time = kwargs.get('expected')
real_time = kwargs.get('real')
if expected_time * 1000 < real_time:
pool.pop(0)
pool.append(proxy)
class ProxyFetcher(IPFetcherMixin):
def __init__(self, usage, strategy='robin', fast_response=5,
score_map=SCORE_MAPS, ttl_map=TTL_MAPS, speed_map=SPEED_MAPS,
longest_response_time=LONGEST_RESPONSE_TIME, lowest_score=LOWEST_SCORE,
ttl_validated_resource=TTL_VALIDATED_RESOURCE, min_pool_size=LOWEST_TOTAL_PROXIES,
all_data=DATA_ALL, redis_args=None):
if usage not in score_map.keys():
usage = 'https'
score_queue = score_map.get(usage)
ttl_queue = ttl_map.get(usage)
speed_queue = speed_map.get(usage)
super().__init__(score_queue, ttl_queue, speed_queue, longest_response_time,
lowest_score, ttl_validated_resource, min_pool_size)
self.strategy = strategy
self.pool = list()
self.min_pool_size = min_pool_size
self.fast_response = fast_response
self.all_data = all_data
self.handlers = [RobinStrategy(), GreedyStrategy()]
if isinstance(redis_args, dict):
self.conn = get_redis_conn(**redis_args)
else:
self.conn = get_redis_conn()
t = threading.Thread(target=self._refresh_periodically)
t.setDaemon(True)
t.start()
def get_proxy(self):
proxy = None
self.refresh()
for handler in self.handlers:
if handler.strategy == self.strategy:
proxy = handler.get_proxies_by_stragery(self.pool)
return proxy
def get_proxies(self):
proxies = self.get_available_proxies(self.conn)
print('{} proxies have been fetched'.format(len(proxies)))
self.pool.extend(proxies)
return self.pool
def proxy_feedback(self, res, proxy, response_time=None):
for handler in self.handlers:
if handler.strategy == self.strategy:
handler.process_feedback(self.pool, res,
proxy, real=response_time,
expected=self.fast_response)
def refresh(self):
if len(self.pool) < self.min_pool_size:
self.get_proxies()
def delete_proxy(self, proxy):
pipe = self.conn.pipeline()
pipe.srem(self.all_data, proxy)
pipe.zrem(self.score_queue, proxy)
pipe.zrem(self.speed_queue, proxy)
pipe.zrem(self.ttl_queue, proxy)
pipe.execute() | MIT License |
williamsysu/textgan-pytorch | instructor/oracle_data/evogan_instructor.py | EvoGANInstructor.evolve_generator_population | python | def evolve_generator_population(self, evo_g_step):
self.prepare_eval_real_data()
best_score = np.zeros(cfg.n_parent)
best_fit = []
best_child = []
best_child_opt = []
best_fake_samples = []
selected_mutation = []
with torch.no_grad():
real_samples = F.one_hot(self.oracle_data.random_batch()['target'], cfg.vocab_size).float()
if cfg.CUDA:
real_samples = real_samples.cuda()
self.d_out_real = self.dis(real_samples)
for i, (parent, parent_opt) in enumerate(zip(self.parents, self.parent_adv_opts)):
self.load_gen(parent, parent_opt)
self.prepare_eval_fake_data()
Fq, Fd, score = self.evaluation(cfg.eval_type)
best_score[i] = score
best_fit.append([Fq, Fd, score])
best_child.append(copy.deepcopy(self.gen.state_dict()))
best_child_opt.append(copy.deepcopy(self.gen_adv_opt.state_dict()))
best_fake_samples.append(self.eval_fake_samples)
target_idx = random.randint(0, len(self.parents) - 1)
for j, criterionG in enumerate(self.G_criterion):
self.load_gen(self.parents[target_idx], self.parent_adv_opts[target_idx])
self.variation(evo_g_step, criterionG)
self.prepare_eval_fake_data()
Fq, Fd, score = self.evaluation(cfg.eval_type)
fit_com = score - best_score
if max(fit_com) > 0:
id_replace = np.where(fit_com == max(fit_com))[0][0]
best_score[id_replace] = score
best_fit[id_replace] = [Fq, Fd, score]
best_child[id_replace] = copy.deepcopy(self.gen.state_dict())
best_child_opt[id_replace] = copy.deepcopy(self.gen_adv_opt.state_dict())
best_fake_samples[id_replace] = self.eval_fake_samples
selected_mutation.append(criterionG.loss_mode)
self.parents = copy.deepcopy(best_child)
self.parent_adv_opts = copy.deepcopy(best_child_opt)
self.best_fake_samples = torch.cat(best_fake_samples, dim=0)
return best_score, np.array(best_fit), selected_mutation | 1. randomly choose a parent from population;
2. variation;
3. evaluate all parents and child, choose the best | https://github.com/williamsysu/textgan-pytorch/blob/891635af6845edfee382de147faa4fc00c7e90eb/instructor/oracle_data/evogan_instructor.py#L293-L354 | import copy
import numpy as np
import os
import random
import torch
import torch.nn.functional as F
import torch.optim as optim
from tqdm import tqdm
import config as cfg
from instructor.oracle_data.instructor import BasicInstructor
from metrics.nll import NLL
from models.EvoGAN_D import EvoGAN_D
from models.EvoGAN_G import EvoGAN_G
from utils.data_loader import GenDataIter
from utils.gan_loss import GANLoss
from utils.helpers import get_fixed_temperature, get_losses, create_oracle
class EvoGANInstructor(BasicInstructor):
def __init__(self, opt):
super(EvoGANInstructor, self).__init__(opt)
self.gen = EvoGAN_G(cfg.mem_slots, cfg.num_heads, cfg.head_size, cfg.gen_embed_dim, cfg.gen_hidden_dim,
cfg.vocab_size, cfg.max_seq_len, cfg.padding_idx, gpu=cfg.CUDA)
self.parents = [EvoGAN_G(cfg.mem_slots, cfg.num_heads, cfg.head_size, cfg.gen_embed_dim, cfg.gen_hidden_dim,
cfg.vocab_size, cfg.max_seq_len, cfg.padding_idx, gpu=cfg.CUDA).state_dict()
for _ in range(cfg.n_parent)]
self.dis = EvoGAN_D(cfg.dis_embed_dim, cfg.max_seq_len, cfg.num_rep, cfg.vocab_size,
cfg.padding_idx, gpu=cfg.CUDA)
self.init_model()
self.gen_opt = optim.Adam(self.gen.parameters(), lr=cfg.gen_lr)
self.gen_adv_opt = optim.Adam(self.gen.parameters(), lr=cfg.gen_adv_lr)
self.dis_opt = optim.Adam(self.dis.parameters(), lr=cfg.dis_lr)
self.parent_mle_opts = [copy.deepcopy(self.gen_opt.state_dict())
for _ in range(cfg.n_parent)]
self.parent_adv_opts = [copy.deepcopy(self.gen_adv_opt.state_dict())
for _ in range(cfg.n_parent)]
self.G_criterion = [GANLoss(loss_mode, 'G', cfg.d_type, CUDA=cfg.CUDA) for loss_mode in cfg.mu_type.split()]
self.D_criterion = GANLoss(cfg.loss_type, 'D', cfg.d_type, CUDA=cfg.CUDA)
def init_model(self):
if cfg.oracle_pretrain:
if not os.path.exists(cfg.oracle_state_dict_path):
create_oracle()
self.oracle.load_state_dict(torch.load(cfg.oracle_state_dict_path, map_location='cuda:%d' % cfg.device))
if cfg.dis_pretrain:
self.log.info(
'Load pretrained discriminator: {}'.format(cfg.pretrained_dis_path))
self.dis.load_state_dict(torch.load(cfg.pretrained_dis_path, map_location='cuda:{}'.format(cfg.device)))
if cfg.gen_pretrain:
for i in range(cfg.n_parent):
self.log.info('Load MLE pretrained generator gen: {}'.format(cfg.pretrained_gen_path + '%d' % i))
self.parents[i] = torch.load(cfg.pretrained_gen_path + '%d' % 0, map_location='cpu')
if cfg.CUDA:
self.oracle = self.oracle.cuda()
self.gen = self.gen.cuda()
if cfg.multi_gpu:
self.dis = torch.nn.parallel.DataParallel(self.dis, device_ids=cfg.devices)
self.dis = self.dis.cuda()
def load_gen(self, parent, parent_opt, mle=False):
self.gen.load_state_dict(copy.deepcopy(parent))
if mle:
self.gen_opt.load_state_dict(copy.deepcopy(parent_opt))
self.gen_opt.zero_grad()
else:
self.gen_adv_opt.load_state_dict(copy.deepcopy(parent_opt))
self.gen_adv_opt.zero_grad()
def _run(self):
if not cfg.gen_pretrain:
for i, (parent, parent_opt) in enumerate(zip(self.parents, self.parent_mle_opts)):
self.log.info('Starting Generator-{} MLE Training...'.format(i))
self.load_gen(parent, parent_opt, mle=True)
self.pretrain_generator(cfg.MLE_train_epoch)
self.parents[i] = copy.deepcopy(self.gen.state_dict())
if cfg.if_save and not cfg.if_test:
torch.save(self.gen.state_dict(), cfg.pretrained_gen_path + '%d' % i)
self.log.info('Save pre-trained generator: {}'.format(cfg.pretrained_gen_path + '%d' % i))
self.log.info('Starting Adversarial Training...')
progress = tqdm(range(cfg.ADV_train_epoch))
for adv_epoch in progress:
if cfg.temperature == 1:
score, fit_score, select_mu = self.evolve_generator(cfg.ADV_g_step)
else:
score, fit_score, select_mu = self.evolve_generator_with_temp(adv_epoch, cfg.ADV_g_step)
d_loss = self.evolve_discriminator(cfg.ADV_d_step)
best_id = int(np.argmax(score))
progress.set_description('mu: %s, d_loss = %.4f, temp = %.4f' % (
' '.join(select_mu), d_loss, self.parents[best_id]['temperature'].item()))
if adv_epoch % cfg.adv_log_step == 0 or adv_epoch == cfg.ADV_train_epoch - 1:
best_id = int(np.argmax(score))
self.load_gen(self.parents[best_id], self.parent_adv_opts[best_id])
self.log.info('[ADV] epoch %d: temp = %.4f, d_loss = %.4f, %s' % (
adv_epoch, self.gen.temperature.item(), d_loss, self.cal_metrics(fmt_str=True)))
if cfg.if_save and not cfg.if_test:
self._save('ADV', adv_epoch)
def _test(self):
print('>>> Begin test...')
self._run()
pass
def pretrain_generator(self, epochs):
for epoch in range(epochs):
self.sig.update()
if self.sig.pre_sig:
pre_loss = self.train_gen_epoch(self.gen, self.oracle_data.loader, self.mle_criterion, self.gen_opt)
if epoch % cfg.pre_log_step == 0 or epoch == epochs - 1:
self.log.info(
'[MLE-GEN] epoch %d : pre_loss = %.4f, %s' % (epoch, pre_loss, self.cal_metrics(fmt_str=True)))
if cfg.if_save and not cfg.if_test:
self._save('MLE', epoch)
else:
self.log.info('>>> Stop by pre signal, skip to adversarial training...')
break
def evolve_generator(self, evo_g_step):
self.prepare_eval_real_data()
best_score = np.zeros(cfg.n_parent)
best_fit = []
best_child = []
best_child_opt = []
best_fake_samples = []
selected_mutation = []
count = 0
with torch.no_grad():
real_samples = F.one_hot(self.oracle_data.random_batch()['target'], cfg.vocab_size).float()
if cfg.CUDA:
real_samples = real_samples.cuda()
self.d_out_real = self.dis(real_samples)
for i, (parent, parent_opt) in enumerate(zip(self.parents, self.parent_adv_opts)):
for j, criterionG in enumerate(self.G_criterion):
self.load_gen(parent, parent_opt)
self.variation(evo_g_step, criterionG)
self.prepare_eval_fake_data()
Fq, Fd, score = self.evaluation(cfg.eval_type)
if count < cfg.n_parent:
best_score[count] = score
best_fit.append([Fq, Fd, score])
best_child.append(copy.deepcopy(self.gen.state_dict()))
best_child_opt.append(copy.deepcopy(self.gen_adv_opt.state_dict()))
best_fake_samples.append(self.eval_fake_samples)
selected_mutation.append(criterionG.loss_mode)
else:
fit_com = score - best_score
if max(fit_com) > 0:
id_replace = np.where(fit_com == max(fit_com))[0][0]
best_score[id_replace] = score
best_fit[id_replace] = [Fq, Fd, score]
best_child[id_replace] = copy.deepcopy(self.gen.state_dict())
best_child_opt[id_replace] = copy.deepcopy(self.gen_adv_opt.state_dict())
best_fake_samples[id_replace] = self.eval_fake_samples
selected_mutation[id_replace] = criterionG.loss_mode
count += 1
self.parents = copy.deepcopy(best_child)
self.parent_adv_opts = copy.deepcopy(best_child_opt)
self.best_fake_samples = torch.cat(best_fake_samples, dim=0)
return best_score, np.array(best_fit), selected_mutation
def evolve_generator_with_temp(self, cur_adv_step, evo_g_step):
self.prepare_eval_real_data()
best_score = np.zeros(cfg.n_parent)
best_fit = []
best_child = []
best_child_opt = []
best_fake_samples = []
selected_mutation = []
count = 0
with torch.no_grad():
real_samples = F.one_hot(self.oracle_data.random_batch()['target'], cfg.vocab_size).float()
if cfg.CUDA:
real_samples = real_samples.cuda()
self.d_out_real = self.dis(real_samples)
for i, (parent, parent_opt) in enumerate(zip(self.parents, self.parent_adv_opts)):
for j, criterionG in enumerate(self.G_criterion):
all_temp = self.get_evo_temp(cur_adv_step)
temp_score = float('-inf')
temp_fit = None
temp_child = None
temp_child_opt = None
temp_fake_samples = None
for temp in all_temp:
self.load_gen(parent, parent_opt)
self.gen.temperature.data = temp
self.variation(evo_g_step, criterionG)
self.prepare_eval_fake_data()
_, _, t_score = self.evaluation('Ra')
loss_Fq, loss_Fd, loss_score = self.evaluation(cfg.eval_type)
if t_score > temp_score:
temp_score = loss_score
temp_fit = [loss_Fq, loss_Fd, loss_score]
temp_child = copy.deepcopy(self.gen.state_dict())
temp_child_opt = copy.deepcopy(self.gen_adv_opt.state_dict())
temp_fake_samples = copy.deepcopy(self.eval_fake_samples)
if count < cfg.n_parent:
best_score[count] = temp_score
best_fit.append(temp_fit)
best_child.append(temp_child)
best_child_opt.append(temp_child_opt)
best_fake_samples.append(temp_fake_samples)
selected_mutation.append(criterionG.loss_mode)
else:
fit_com = temp_score - best_score
if max(fit_com) > 0:
id_replace = np.where(fit_com == max(fit_com))[0][0]
best_score[id_replace] = temp_score
best_fit[id_replace] = temp_fit
best_child[id_replace] = temp_child
best_child_opt[id_replace] = temp_child_opt
best_fake_samples[id_replace] = temp_fake_samples
selected_mutation[id_replace] = criterionG.loss_mode
count += 1
self.parents = copy.deepcopy(best_child)
self.parent_adv_opts = copy.deepcopy(best_child_opt)
self.best_fake_samples = torch.cat(best_fake_samples, dim=0)
return best_score, np.array(best_fit), selected_mutation | MIT License |
wind-river/crypto-detector | cryptodetector/rpm.py | _Stream._init_write_gz | python | def _init_write_gz(self):
self.cmp = self.zlib.compressobj(9, self.zlib.DEFLATED,
-self.zlib.MAX_WBITS,
self.zlib.DEF_MEM_LEVEL,
0)
timestamp = struct.pack("<L", int(time.time()))
self.__write("\037\213\010\010%s\002\377" % timestamp)
if self.name.endswith(".gz"):
self.name = self.name[:-3]
self.__write(self.name + NUL) | Initialize for writing with gzip compression. | https://github.com/wind-river/crypto-detector/blob/d6156a818f57826e520ca117cc3baed55f51483c/cryptodetector/rpm.py#L290-L301 | import sys
import os
import io
import shutil
import stat
import errno
import time
import struct
import copy
import gzip
import bz2
import lzma
from functools import cmp_to_key
from cryptodetector.exceptions import ExtractError, ReadError, CompressionError, StreamError, InvalidRPM, CryptoDetectorError
try:
import grp as GRP, pwd as PWD
except ImportError:
GRP = PWD = None
MAGIC_NEWC = 0x070701
TRAILER_NAME = "TRAILER!!!"
WORDSIZE = 4
NUL = b"\0"
BLOCKSIZE = 512
HEADERSIZE_SVR4 = 110
S_IFLNK = 0o120000
S_IFREG = 0o100000
S_IFBLK = 0o060000
S_IFDIR = 0o040000
S_IFCHR = 0o020000
S_IFIFO = 0o010000
TSUID = 0o4000
TSGID = 0o2000
TSVTX = 0o1000
TUREAD = 0o400
TUWRITE = 0o200
TUEXEC = 0o100
TGREAD = 0o040
TGWRITE = 0o020
TGEXEC = 0o010
TOREAD = 0o004
TOWRITE = 0o002
TOEXEC = 0o001
def copyfileobj(src, dst, length=None):
if length == 0:
return
if length is None:
shutil.copyfileobj(src, dst)
return
bufsize = 16 * 1024
blocks, remainder = divmod(length, bufsize)
for _ in range(blocks):
buf = src.read(bufsize)
if len(buf) < bufsize:
raise IOError("end of file reached")
dst.write(buf)
if remainder != 0:
buf = src.read(remainder)
if len(buf) < remainder:
raise IOError("end of file reached")
dst.write(buf)
return
FILEMODE_TABLE = (
((S_IFLNK, "l"),
(S_IFREG, "-"),
(S_IFBLK, "b"),
(S_IFDIR, "d"),
(S_IFCHR, "c"),
(S_IFIFO, "p")),
((TUREAD, "r"),),
((TUWRITE, "w"),),
((TUEXEC|TSUID, "s"),
(TSUID, "S"),
(TUEXEC, "x")),
((TGREAD, "r"),),
((TGWRITE, "w"),),
((TGEXEC|TSGID, "s"),
(TSGID, "S"),
(TGEXEC, "x")),
((TOREAD, "r"),),
((TOWRITE, "w"),),
((TOEXEC|TSVTX, "t"),
(TSVTX, "T"),
(TOEXEC, "x"))
)
def filemode(mode):
perm = []
for table in FILEMODE_TABLE:
for bit, char in table:
if mode & bit == bit:
perm.append(char)
break
else:
perm.append("-")
return "".join(perm)
def normpath(path):
if os.sep != "/":
return os.path.normpath(path).replace(os.sep, "/")
else:
return os.path.normpath(path)
class _LowLevelFile(object):
def __init__(self, name, mode):
mode = {
"r": os.O_RDONLY,
"w": os.O_WRONLY | os.O_CREAT | os.O_TRUNC,
}[mode]
if not hasattr(os, "O_BINARY"):
os.O_BINARY = 0
mode |= os.O_BINARY
self.fd = os.open(name, mode)
def close(self):
os.close(self.fd)
def read(self, size):
return os.read(self.fd, size)
def write(self, s):
os.write(self.fd, s)
class _Stream(object):
def __init__(self, name, mode, comptype, fileobj, bufsize):
self._extfileobj = True
if fileobj is None:
fileobj = _LowLevelFile(name, mode)
self._extfileobj = False
if comptype == '*':
fileobj = _StreamProxy(fileobj)
comptype = fileobj.getcomptype()
self.name = name or ""
self.mode = mode
self.comptype = comptype
self.fileobj = fileobj
self.bufsize = bufsize
self.buf = ""
self.pos = 0
self.closed = False
if comptype == "gz":
try:
import zlib
except ImportError:
raise CompressionError("zlib module is not available")
self.zlib = zlib
self.crc = zlib.crc32("")
if mode == "r":
self._init_read_gz()
else:
self._init_write_gz()
if comptype == "bz2":
try:
import bz2
except ImportError:
raise CompressionError("bz2 module is not available")
if mode == "r":
self.dbuf = ""
self.cmp = bz2.BZ2Decompressor()
else:
self.cmp = bz2.BZ2Compressor()
if comptype == "xz":
try:
import lzma
except ImportError:
raise CompressionError("lzma module is not available")
if mode == "r":
self.dbuf = ""
self.cmp = lzma.LZMADecompressor()
else:
self.cmp = lzma.LZMACompressor()
def __del__(self):
if hasattr(self, "closed") and not self.closed:
self.close() | Apache License 2.0 |
eric3911/mini_ssd | object_detection/core/model.py | DetectionModel.postprocess | python | def postprocess(self, prediction_dict, true_image_shapes, **params):
pass | Convert predicted output tensors to final detections.
Outputs adhere to the following conventions:
* Classes are integers in [0, num_classes); background classes are removed
and the first non-background class is mapped to 0. If the model produces
class-agnostic detections, then no output is produced for classes.
* Boxes are to be interpreted as being in [y_min, x_min, y_max, x_max]
format and normalized relative to the image window.
* `num_detections` is provided for settings where detections are padded to a
fixed number of boxes.
* We do not specifically assume any kind of probabilistic interpretation
of the scores --- the only important thing is their relative ordering.
Thus implementations of the postprocess function are free to output
logits, probabilities, calibrated probabilities, or anything else.
Args:
prediction_dict: a dictionary holding prediction tensors.
true_image_shapes: int32 tensor of shape [batch, 3] where each row is
of the form [height, width, channels] indicating the shapes
of true images in the resized images, as resized images can be padded
with zeros.
**params: Additional keyword arguments for specific implementations of
DetectionModel.
Returns:
detections: a dictionary containing the following fields
detection_boxes: [batch, max_detections, 4]
detection_scores: [batch, max_detections]
detection_classes: [batch, max_detections]
(If a model is producing class-agnostic detections, this field may be
missing)
instance_masks: [batch, max_detections, image_height, image_width]
(optional)
keypoints: [batch, max_detections, num_keypoints, 2] (optional)
num_detections: [batch] | https://github.com/eric3911/mini_ssd/blob/6fb6e1bce3ab6e4adb832b37e78325803c7424b6/object_detection/core/model.py#L176-L213 | from abc import ABCMeta
from abc import abstractmethod
from object_detection.core import standard_fields as fields
class DetectionModel(object):
__metaclass__ = ABCMeta
def __init__(self, num_classes):
self._num_classes = num_classes
self._groundtruth_lists = {}
@property
def num_classes(self):
return self._num_classes
def groundtruth_lists(self, field):
if field not in self._groundtruth_lists:
raise RuntimeError('Groundtruth tensor %s has not been provided', field)
return self._groundtruth_lists[field]
def groundtruth_has_field(self, field):
return field in self._groundtruth_lists
@abstractmethod
def preprocess(self, inputs):
pass
@abstractmethod
def predict(self, preprocessed_inputs, true_image_shapes):
pass
@abstractmethod | MIT License |
arx-game/arxcode | server/conf/lockfuncs.py | practitioner | python | def practitioner(accessing_obj, accessed_obj, *args, **kwargs):
mage = Practitioner.practitioner_for_character(accessing_obj)
if not mage:
return False
return mage.eyes_open | Checks if the accessing_obj has a magical Practitioner record. | https://github.com/arx-game/arxcode/blob/5299f1f75c4ee5ee19e1a26195aa24832f7ca817/server/conf/lockfuncs.py#L254-L262 | from world.dominion.models import Organization, Member
from world.magic.models import Practitioner
def rank(accessing_obj, accessed_obj, *args, **kwargs):
if not args:
return False
if accessing_obj.player_ob:
accessing_obj = accessing_obj.player_ob
if hasattr(accessing_obj, "dbobj"):
accessing_obj = accessing_obj.dbobj
try:
rank_num = int(args[0])
except ValueError:
if len(args) == 1:
return organization(accessing_obj, accessed_obj, *args, **kwargs)
args = args[::-1]
try:
rank_num = int(args[0])
except (ValueError, TypeError):
print("Malformed lock 'rank' in %s." % accessed_obj)
return False
if len(args) == 1:
org_obj = accessed_obj
else:
try:
org_obj = Organization.objects.get(name__iexact=args[1])
except Organization.DoesNotExist:
return False
try:
member = accessing_obj.Dominion.memberships.get(
organization=org_obj, deguilded=False
)
return member.rank <= rank_num
except (AttributeError, Member.DoesNotExist):
return False
def organization(accessing_obj, accessed_obj, *args, **kwargs):
if not args:
return False
try:
if accessing_obj.player_ob:
accessing_obj = accessing_obj.player_ob
except AttributeError:
pass
if hasattr(accessing_obj, "dbobj"):
accessing_obj = accessing_obj.dbobj
try:
org_obj = Organization.objects.get(name__iexact=args[0])
except Organization.DoesNotExist:
return False
try:
accessing_obj.Dominion.memberships.get(organization=org_obj, deguilded=False)
return True
except (AttributeError, Member.DoesNotExist):
return False
org = organization
def ability(accessing_obj, accessed_obj, *args, **kwargs):
if not args:
return False
if len(args) == 1:
if args[0] == "all":
return True
name = accessed_obj.ability
val = int(args[0])
else:
name = args[0]
val = int(args[1])
if name == "all":
from world.traits.models import Trait
ability_list = Trait.get_valid_ability_names(Trait.CRAFTING)
else:
ability_list = name.split(",")
for ability_name in ability_list:
ability_name = ability_name.lower().strip()
try:
pab = accessing_obj.traits.get_ability_value(ability_name)
except AttributeError:
return False
if pab >= val:
return True
return False
def skill(accessing_obj, accessed_obj, *args, **kwargs):
if not args:
return False
if len(args) == 1:
if args[0] == "all":
return True
name = accessed_obj.skill
val = int(args[0])
else:
name = args[0]
val = int(args[1])
if name == "all":
from world.traits.models import Trait
skill_list = Trait.get_valid_skill_names(Trait.CRAFTING)
else:
skill_list = name.split(",")
if accessing_obj.char_ob:
accessing_obj = accessing_obj.char_ob
for skill_name in skill_list:
skill_name = skill_name.lower().strip()
try:
pab = accessing_obj.traits.get_skill_value(skill_name)
if pab >= val:
return True
except AttributeError:
return False
return False
def roomkey(accessing_obj, accessed_obj, *args, **kwargs):
if not args:
return False
roomid = int(args[0])
try:
return accessing_obj.item_data.has_key_by_id(roomid)
except AttributeError:
return False
def chestkey(accessing_obj, accessed_obj, *args, **kwargs):
return roomkey(accessing_obj, accessed_obj, *args, **kwargs)
def cattr(accessing_obj, accessed_obj, *args, **kwargs):
from evennia.locks.lockfuncs import attr
try:
if accessing_obj.player_ob:
return attr(accessing_obj, accessed_obj, *args, **kwargs)
char_ob = accessing_obj.char_ob
return attr(char_ob, accessed_obj, *args, **kwargs)
except Exception:
return False
def decorator(accessing_obj, accessed_obj, *args, **kwargs):
obj = accessed_obj.location or accessed_obj
try:
if accessing_obj in obj.homeowners:
return True
return accessing_obj in obj.decorators
except (AttributeError, ValueError, TypeError):
return False
decorators = decorator | MIT License |
z-x-yang/gct | TensorFlow/preprocessing.py | train_image | python | def train_image(image_buffer,
height,
width,
bbox,
batch_position,
resize_method,
distortions,
scope=None,
summary_verbosity=0,
distort_color_in_yiq=False,
fuse_decode_and_crop=False):
with tf.name_scope(scope or 'distort_image'):
sample_distorted_bounding_box = tf.image.sample_distorted_bounding_box(
tf.image.extract_jpeg_shape(image_buffer),
bounding_boxes=bbox,
min_object_covered=0.1,
aspect_ratio_range=[0.75, 1.33],
area_range=[0.05, 1.0],
max_attempts=100,
use_image_if_no_bounding_boxes=True)
bbox_begin, bbox_size, distort_bbox = sample_distorted_bounding_box
if summary_verbosity >= 3:
image = tf.image.decode_jpeg(image_buffer, channels=3,
dct_method='INTEGER_FAST')
image = tf.image.convert_image_dtype(image, dtype=tf.float32)
image_with_distorted_box = tf.image.draw_bounding_boxes(
tf.expand_dims(image, 0), distort_bbox)
tf.summary.image(
'images_with_distorted_bounding_box',
image_with_distorted_box)
if fuse_decode_and_crop:
offset_y, offset_x, _ = tf.unstack(bbox_begin)
target_height, target_width, _ = tf.unstack(bbox_size)
crop_window = tf.stack([offset_y, offset_x, target_height, target_width])
image = tf.image.decode_and_crop_jpeg(
image_buffer, crop_window, channels=3)
else:
image = tf.image.decode_jpeg(image_buffer, channels=3,
dct_method='INTEGER_FAST')
image = tf.slice(image, bbox_begin, bbox_size)
distorted_image = tf.image.random_flip_left_right(image)
image_resize_method = get_image_resize_method(resize_method, batch_position)
distorted_image = tf.image.resize_images(
distorted_image, [height, width],
image_resize_method,
align_corners=False)
distorted_image.set_shape([height, width, 3])
if summary_verbosity >= 3:
tf.summary.image('cropped_resized_maybe_flipped_image',
tf.expand_dims(distorted_image, 0))
if distortions:
distorted_image = tf.cast(distorted_image, dtype=tf.float32)
distorted_image /= 255.
distorted_image = distort_color(distorted_image, batch_position,
distort_color_in_yiq=distort_color_in_yiq)
distorted_image *= 255
if summary_verbosity >= 3:
tf.summary.image(
'final_distorted_image',
tf.expand_dims(distorted_image, 0))
return distorted_image | Distort one image for training a network.
Distorting images provides a useful technique for augmenting the data
set during training in order to make the network invariant to aspects
of the image that do not effect the label.
Args:
image_buffer: scalar string Tensor representing the raw JPEG image buffer.
height: integer
width: integer
bbox: 3-D float Tensor of bounding boxes arranged [1, num_boxes, coords]
where each coordinate is [0, 1) and the coordinates are arranged
as [ymin, xmin, ymax, xmax].
batch_position: position of the image in a batch, which affects how images
are distorted and resized. NOTE: this argument can be an integer or a
tensor
resize_method: round_robin, nearest, bilinear, bicubic, or area.
distortions: If true, apply full distortions for image colors.
scope: Optional scope for op_scope.
summary_verbosity: Verbosity level for summary ops. Pass 0 to disable both
summaries and checkpoints.
distort_color_in_yiq: distort color of input images in YIQ space.
fuse_decode_and_crop: fuse the decode/crop operation.
Returns:
3-D float Tensor of distorted image used for training. | https://github.com/z-x-yang/gct/blob/68983edd87f8cfbe709b1b51214c69eb9c81abd7/TensorFlow/preprocessing.py#L262-L371 | import math
from six.moves import xrange
import tensorflow as tf
from tensorflow.contrib.image.python.ops import distort_image_ops
from tensorflow.python.layers import utils
from tensorflow.python.ops import data_flow_ops
import cnn_util
import data_utils
def parse_example_proto(example_serialized):
feature_map = {
'image/encoded': tf.FixedLenFeature([], dtype=tf.string,
default_value=''),
'image/class/label': tf.FixedLenFeature([1], dtype=tf.int64,
default_value=-1),
'image/class/text': tf.FixedLenFeature([], dtype=tf.string,
default_value=''),
}
sparse_float32 = tf.VarLenFeature(dtype=tf.float32)
feature_map.update(
{k: sparse_float32 for k in ['image/object/bbox/xmin',
'image/object/bbox/ymin',
'image/object/bbox/xmax',
'image/object/bbox/ymax']})
features = tf.parse_single_example(example_serialized, feature_map)
label = tf.cast(features['image/class/label'], dtype=tf.int32)
xmin = tf.expand_dims(features['image/object/bbox/xmin'].values, 0)
ymin = tf.expand_dims(features['image/object/bbox/ymin'].values, 0)
xmax = tf.expand_dims(features['image/object/bbox/xmax'].values, 0)
ymax = tf.expand_dims(features['image/object/bbox/ymax'].values, 0)
bbox = tf.concat([ymin, xmin, ymax, xmax], 0)
bbox = tf.expand_dims(bbox, 0)
bbox = tf.transpose(bbox, [0, 2, 1])
return features['image/encoded'], label, bbox, features['image/class/text']
_RESIZE_METHOD_MAP = {
'nearest': tf.image.ResizeMethod.NEAREST_NEIGHBOR,
'bilinear': tf.image.ResizeMethod.BILINEAR,
'bicubic': tf.image.ResizeMethod.BICUBIC,
'area': tf.image.ResizeMethod.AREA
}
def get_image_resize_method(resize_method, batch_position=0):
if resize_method != 'round_robin':
return _RESIZE_METHOD_MAP[resize_method]
resize_methods = list(_RESIZE_METHOD_MAP.values())
def lookup(index):
return resize_methods[index]
def resize_method_0():
return utils.smart_cond(batch_position % len(resize_methods) == 0,
lambda: lookup(0), resize_method_1)
def resize_method_1():
return utils.smart_cond(batch_position % len(resize_methods) == 1,
lambda: lookup(1), resize_method_2)
def resize_method_2():
return utils.smart_cond(batch_position % len(resize_methods) == 2,
lambda: lookup(2), lambda: lookup(3))
return resize_method_0()
def decode_jpeg(image_buffer, scope=None):
with tf.name_scope(scope or 'decode_jpeg'):
image = tf.image.decode_jpeg(image_buffer, channels=3,
fancy_upscaling=False,
dct_method='INTEGER_FAST')
return image
def normalized_image(images):
images = tf.multiply(images, 1. / 127.5)
return tf.subtract(images, 1.0)
def eval_image(image,
height,
width,
batch_position,
resize_method,
summary_verbosity=0):
with tf.name_scope('eval_image'):
if summary_verbosity >= 3:
tf.summary.image(
'original_image', tf.expand_dims(image, 0))
shape = tf.shape(image)
image_height = shape[0]
image_width = shape[1]
image_height_float = tf.cast(image_height, tf.float32)
image_width_float = tf.cast(image_width, tf.float32)
scale_factor = 1.15
max_ratio = tf.maximum(height / image_height_float,
width / image_width_float)
resize_height = tf.cast(image_height_float * max_ratio * scale_factor,
tf.int32)
resize_width = tf.cast(image_width_float * max_ratio * scale_factor,
tf.int32)
image_resize_method = get_image_resize_method(resize_method, batch_position)
distorted_image = tf.image.resize_images(image,
[resize_height, resize_width],
image_resize_method,
align_corners=False)
total_crop_height = (resize_height - height)
crop_top = total_crop_height // 2
total_crop_width = (resize_width - width)
crop_left = total_crop_width // 2
distorted_image = tf.slice(distorted_image, [crop_top, crop_left, 0],
[height, width, 3])
distorted_image.set_shape([height, width, 3])
if summary_verbosity >= 3:
tf.summary.image(
'cropped_resized_image', tf.expand_dims(distorted_image, 0))
image = distorted_image
return image | MIT License |
datadotworld/data.world-py | datadotworld/client/_swagger/models/paginated_metadata_resource_results.py | PaginatedMetadataResourceResults.__eq__ | python | def __eq__(self, other):
if not isinstance(other, PaginatedMetadataResourceResults):
return False
return self.__dict__ == other.__dict__ | Returns true if both objects are equal | https://github.com/datadotworld/data.world-py/blob/7e5f474b655f4f0c88cc6862353e4d52c0e0bb31/datadotworld/client/_swagger/models/paginated_metadata_resource_results.py#L166-L173 | from pprint import pformat
from six import iteritems
import re
class PaginatedMetadataResourceResults(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'count': 'int',
'records': 'list[MetadataResourceDto]',
'next_page_token': 'str'
}
attribute_map = {
'count': 'count',
'records': 'records',
'next_page_token': 'nextPageToken'
}
def __init__(self, count=None, records=None, next_page_token=None):
self._count = None
self._records = None
self._next_page_token = None
self.count = count
self.records = records
if next_page_token is not None:
self.next_page_token = next_page_token
@property
def count(self):
return self._count
@count.setter
def count(self, count):
if count is None:
raise ValueError("Invalid value for `count`, must not be `None`")
if count is not None and count < 0:
raise ValueError("Invalid value for `count`, must be a value greater than or equal to `0`")
self._count = count
@property
def records(self):
return self._records
@records.setter
def records(self, records):
if records is None:
raise ValueError("Invalid value for `records`, must not be `None`")
self._records = records
@property
def next_page_token(self):
return self._next_page_token
@next_page_token.setter
def next_page_token(self, next_page_token):
self._next_page_token = next_page_token
def to_dict(self):
result = {}
for attr, _ in iteritems(self.swagger_types):
value = getattr(self, attr)
if isinstance(value, list):
result[attr] = list(map(
lambda x: x.to_dict() if hasattr(x, "to_dict") else x,
value
))
elif hasattr(value, "to_dict"):
result[attr] = value.to_dict()
elif isinstance(value, dict):
result[attr] = dict(map(
lambda item: (item[0], item[1].to_dict())
if hasattr(item[1], "to_dict") else item,
value.items()
))
else:
result[attr] = value
return result
def to_str(self):
return pformat(self.to_dict())
def __repr__(self):
return self.to_str() | Apache License 2.0 |
databand-ai/dbnd | modules/dbnd/src/dbnd/_vendor_package/google/protobuf/internal/test_util.py | ExpectAllFieldsAndExtensionsInOrder | python | def ExpectAllFieldsAndExtensionsInOrder(serialized):
my_extension_int = unittest_pb2.my_extension_int
my_extension_string = unittest_pb2.my_extension_string
expected_strings = []
message = unittest_pb2.TestFieldOrderings()
message.my_int = 1
expected_strings.append(message.SerializeToString())
message.Clear()
message.Extensions[my_extension_int] = 23
expected_strings.append(message.SerializeToString())
message.Clear()
message.my_string = 'foo'
expected_strings.append(message.SerializeToString())
message.Clear()
message.Extensions[my_extension_string] = 'bar'
expected_strings.append(message.SerializeToString())
message.Clear()
message.my_float = 1.0
expected_strings.append(message.SerializeToString())
message.Clear()
expected = b''.join(expected_strings)
if expected != serialized:
raise ValueError('Expected %r, found %r' % (expected, serialized)) | Ensures that serialized is the serialization we expect for a message
filled with SetAllFieldsAndExtensions(). (Specifically, ensures that the
serialization is in canonical, tag-number order). | https://github.com/databand-ai/dbnd/blob/ec0076f9a142b20e2f7afd886ed1a18683c553ec/modules/dbnd/src/dbnd/_vendor_package/google/protobuf/internal/test_util.py#L378-L405 | __author__ = '[email protected] (Will Robinson)'
import numbers
import operator
import os.path
from google.protobuf import unittest_import_pb2
from google.protobuf import unittest_pb2
try:
long
except NameError:
long = int
def IsProto2(message):
return message.DESCRIPTOR.syntax == "proto2"
def SetAllNonLazyFields(message):
message.optional_int32 = 101
message.optional_int64 = 102
message.optional_uint32 = 103
message.optional_uint64 = 104
message.optional_sint32 = 105
message.optional_sint64 = 106
message.optional_fixed32 = 107
message.optional_fixed64 = 108
message.optional_sfixed32 = 109
message.optional_sfixed64 = 110
message.optional_float = 111
message.optional_double = 112
message.optional_bool = True
message.optional_string = u'115'
message.optional_bytes = b'116'
if IsProto2(message):
message.optionalgroup.a = 117
message.optional_nested_message.bb = 118
message.optional_foreign_message.c = 119
message.optional_import_message.d = 120
message.optional_public_import_message.e = 126
message.optional_nested_enum = unittest_pb2.TestAllTypes.BAZ
message.optional_foreign_enum = unittest_pb2.FOREIGN_BAZ
if IsProto2(message):
message.optional_import_enum = unittest_import_pb2.IMPORT_BAZ
message.optional_string_piece = u'124'
message.optional_cord = u'125'
message.repeated_int32.append(201)
message.repeated_int64.append(202)
message.repeated_uint32.append(203)
message.repeated_uint64.append(204)
message.repeated_sint32.append(205)
message.repeated_sint64.append(206)
message.repeated_fixed32.append(207)
message.repeated_fixed64.append(208)
message.repeated_sfixed32.append(209)
message.repeated_sfixed64.append(210)
message.repeated_float.append(211)
message.repeated_double.append(212)
message.repeated_bool.append(True)
message.repeated_string.append(u'215')
message.repeated_bytes.append(b'216')
if IsProto2(message):
message.repeatedgroup.add().a = 217
message.repeated_nested_message.add().bb = 218
message.repeated_foreign_message.add().c = 219
message.repeated_import_message.add().d = 220
message.repeated_lazy_message.add().bb = 227
message.repeated_nested_enum.append(unittest_pb2.TestAllTypes.BAR)
message.repeated_foreign_enum.append(unittest_pb2.FOREIGN_BAR)
if IsProto2(message):
message.repeated_import_enum.append(unittest_import_pb2.IMPORT_BAR)
message.repeated_string_piece.append(u'224')
message.repeated_cord.append(u'225')
message.repeated_int32.append(0)
message.repeated_int64.append(0)
message.repeated_uint32.append(0)
message.repeated_uint64.append(0)
message.repeated_sint32.append(0)
message.repeated_sint64.append(0)
message.repeated_fixed32.append(0)
message.repeated_fixed64.append(0)
message.repeated_sfixed32.append(0)
message.repeated_sfixed64.append(0)
message.repeated_float.append(0)
message.repeated_double.append(0)
message.repeated_bool.append(True)
message.repeated_string.append(u'0')
message.repeated_bytes.append(b'0')
message.repeated_int32[1] = 301
message.repeated_int64[1] = 302
message.repeated_uint32[1] = 303
message.repeated_uint64[1] = 304
message.repeated_sint32[1] = 305
message.repeated_sint64[1] = 306
message.repeated_fixed32[1] = 307
message.repeated_fixed64[1] = 308
message.repeated_sfixed32[1] = 309
message.repeated_sfixed64[1] = 310
message.repeated_float[1] = 311
message.repeated_double[1] = 312
message.repeated_bool[1] = False
message.repeated_string[1] = u'315'
message.repeated_bytes[1] = b'316'
if IsProto2(message):
message.repeatedgroup.add().a = 317
message.repeated_nested_message.add().bb = 318
message.repeated_foreign_message.add().c = 319
message.repeated_import_message.add().d = 320
message.repeated_lazy_message.add().bb = 327
message.repeated_nested_enum.append(unittest_pb2.TestAllTypes.BAR)
message.repeated_nested_enum[1] = unittest_pb2.TestAllTypes.BAZ
message.repeated_foreign_enum.append(unittest_pb2.FOREIGN_BAZ)
if IsProto2(message):
message.repeated_import_enum.append(unittest_import_pb2.IMPORT_BAZ)
message.repeated_string_piece.append(u'324')
message.repeated_cord.append(u'325')
if IsProto2(message):
message.default_int32 = 401
message.default_int64 = 402
message.default_uint32 = 403
message.default_uint64 = 404
message.default_sint32 = 405
message.default_sint64 = 406
message.default_fixed32 = 407
message.default_fixed64 = 408
message.default_sfixed32 = 409
message.default_sfixed64 = 410
message.default_float = 411
message.default_double = 412
message.default_bool = False
message.default_string = '415'
message.default_bytes = b'416'
message.default_nested_enum = unittest_pb2.TestAllTypes.FOO
message.default_foreign_enum = unittest_pb2.FOREIGN_FOO
message.default_import_enum = unittest_import_pb2.IMPORT_FOO
message.default_string_piece = '424'
message.default_cord = '425'
message.oneof_uint32 = 601
message.oneof_nested_message.bb = 602
message.oneof_string = '603'
message.oneof_bytes = b'604'
def SetAllFields(message):
SetAllNonLazyFields(message)
message.optional_lazy_message.bb = 127
def SetAllExtensions(message):
extensions = message.Extensions
pb2 = unittest_pb2
import_pb2 = unittest_import_pb2
extensions[pb2.optional_int32_extension] = 101
extensions[pb2.optional_int64_extension] = 102
extensions[pb2.optional_uint32_extension] = 103
extensions[pb2.optional_uint64_extension] = 104
extensions[pb2.optional_sint32_extension] = 105
extensions[pb2.optional_sint64_extension] = 106
extensions[pb2.optional_fixed32_extension] = 107
extensions[pb2.optional_fixed64_extension] = 108
extensions[pb2.optional_sfixed32_extension] = 109
extensions[pb2.optional_sfixed64_extension] = 110
extensions[pb2.optional_float_extension] = 111
extensions[pb2.optional_double_extension] = 112
extensions[pb2.optional_bool_extension] = True
extensions[pb2.optional_string_extension] = u'115'
extensions[pb2.optional_bytes_extension] = b'116'
extensions[pb2.optionalgroup_extension].a = 117
extensions[pb2.optional_nested_message_extension].bb = 118
extensions[pb2.optional_foreign_message_extension].c = 119
extensions[pb2.optional_import_message_extension].d = 120
extensions[pb2.optional_public_import_message_extension].e = 126
extensions[pb2.optional_lazy_message_extension].bb = 127
extensions[pb2.optional_nested_enum_extension] = pb2.TestAllTypes.BAZ
extensions[pb2.optional_nested_enum_extension] = pb2.TestAllTypes.BAZ
extensions[pb2.optional_foreign_enum_extension] = pb2.FOREIGN_BAZ
extensions[pb2.optional_import_enum_extension] = import_pb2.IMPORT_BAZ
extensions[pb2.optional_string_piece_extension] = u'124'
extensions[pb2.optional_cord_extension] = u'125'
extensions[pb2.repeated_int32_extension].append(201)
extensions[pb2.repeated_int64_extension].append(202)
extensions[pb2.repeated_uint32_extension].append(203)
extensions[pb2.repeated_uint64_extension].append(204)
extensions[pb2.repeated_sint32_extension].append(205)
extensions[pb2.repeated_sint64_extension].append(206)
extensions[pb2.repeated_fixed32_extension].append(207)
extensions[pb2.repeated_fixed64_extension].append(208)
extensions[pb2.repeated_sfixed32_extension].append(209)
extensions[pb2.repeated_sfixed64_extension].append(210)
extensions[pb2.repeated_float_extension].append(211)
extensions[pb2.repeated_double_extension].append(212)
extensions[pb2.repeated_bool_extension].append(True)
extensions[pb2.repeated_string_extension].append(u'215')
extensions[pb2.repeated_bytes_extension].append(b'216')
extensions[pb2.repeatedgroup_extension].add().a = 217
extensions[pb2.repeated_nested_message_extension].add().bb = 218
extensions[pb2.repeated_foreign_message_extension].add().c = 219
extensions[pb2.repeated_import_message_extension].add().d = 220
extensions[pb2.repeated_lazy_message_extension].add().bb = 227
extensions[pb2.repeated_nested_enum_extension].append(pb2.TestAllTypes.BAR)
extensions[pb2.repeated_foreign_enum_extension].append(pb2.FOREIGN_BAR)
extensions[pb2.repeated_import_enum_extension].append(import_pb2.IMPORT_BAR)
extensions[pb2.repeated_string_piece_extension].append(u'224')
extensions[pb2.repeated_cord_extension].append(u'225')
extensions[pb2.repeated_int32_extension].append(301)
extensions[pb2.repeated_int64_extension].append(302)
extensions[pb2.repeated_uint32_extension].append(303)
extensions[pb2.repeated_uint64_extension].append(304)
extensions[pb2.repeated_sint32_extension].append(305)
extensions[pb2.repeated_sint64_extension].append(306)
extensions[pb2.repeated_fixed32_extension].append(307)
extensions[pb2.repeated_fixed64_extension].append(308)
extensions[pb2.repeated_sfixed32_extension].append(309)
extensions[pb2.repeated_sfixed64_extension].append(310)
extensions[pb2.repeated_float_extension].append(311)
extensions[pb2.repeated_double_extension].append(312)
extensions[pb2.repeated_bool_extension].append(False)
extensions[pb2.repeated_string_extension].append(u'315')
extensions[pb2.repeated_bytes_extension].append(b'316')
extensions[pb2.repeatedgroup_extension].add().a = 317
extensions[pb2.repeated_nested_message_extension].add().bb = 318
extensions[pb2.repeated_foreign_message_extension].add().c = 319
extensions[pb2.repeated_import_message_extension].add().d = 320
extensions[pb2.repeated_lazy_message_extension].add().bb = 327
extensions[pb2.repeated_nested_enum_extension].append(pb2.TestAllTypes.BAZ)
extensions[pb2.repeated_foreign_enum_extension].append(pb2.FOREIGN_BAZ)
extensions[pb2.repeated_import_enum_extension].append(import_pb2.IMPORT_BAZ)
extensions[pb2.repeated_string_piece_extension].append(u'324')
extensions[pb2.repeated_cord_extension].append(u'325')
extensions[pb2.default_int32_extension] = 401
extensions[pb2.default_int64_extension] = 402
extensions[pb2.default_uint32_extension] = 403
extensions[pb2.default_uint64_extension] = 404
extensions[pb2.default_sint32_extension] = 405
extensions[pb2.default_sint64_extension] = 406
extensions[pb2.default_fixed32_extension] = 407
extensions[pb2.default_fixed64_extension] = 408
extensions[pb2.default_sfixed32_extension] = 409
extensions[pb2.default_sfixed64_extension] = 410
extensions[pb2.default_float_extension] = 411
extensions[pb2.default_double_extension] = 412
extensions[pb2.default_bool_extension] = False
extensions[pb2.default_string_extension] = u'415'
extensions[pb2.default_bytes_extension] = b'416'
extensions[pb2.default_nested_enum_extension] = pb2.TestAllTypes.FOO
extensions[pb2.default_foreign_enum_extension] = pb2.FOREIGN_FOO
extensions[pb2.default_import_enum_extension] = import_pb2.IMPORT_FOO
extensions[pb2.default_string_piece_extension] = u'424'
extensions[pb2.default_cord_extension] = '425'
extensions[pb2.oneof_uint32_extension] = 601
extensions[pb2.oneof_nested_message_extension].bb = 602
extensions[pb2.oneof_string_extension] = u'603'
extensions[pb2.oneof_bytes_extension] = b'604'
def SetAllFieldsAndExtensions(message):
message.my_int = 1
message.my_string = 'foo'
message.my_float = 1.0
message.Extensions[unittest_pb2.my_extension_int] = 23
message.Extensions[unittest_pb2.my_extension_string] = 'bar' | Apache License 2.0 |
bungnoid/gltools | utils/mathUtils.py | distributeValue | python | def distributeValue(samples,spacing=1.0,rangeStart=0.0,rangeEnd=1.0):
vList = [rangeStart]
vDist = abs(rangeEnd - rangeStart)
unit = 1.0
factor = 1.0
for i in range(samples-2):
unit += factor * spacing
factor *= spacing
unit = vDist/unit
totalUnit = unit
for i in range(samples-2):
multFactor = totalUnit/vDist
vList.append(rangeStart-((rangeStart - rangeEnd) * multFactor))
unit *= spacing
totalUnit += unit
vList.append(rangeEnd)
return vList | Returns a list of values distributed between a start and end range
@param samples: Number of values to sample across the value range
@type samples: int
@param spacing: Incremental scale for each sample distance
@type spacing: float
@param rangeStart: Minimum value in the sample range
@type rangeStart: float
@param rangeEnd: Maximum value in the sample range
@type rangeEnd: float | https://github.com/bungnoid/gltools/blob/8ff0899de43784a18bd4543285655e68e28fb5e5/utils/mathUtils.py#L144-L180 | import maya.cmds as mc
import maya.OpenMaya as OpenMaya
def isEqual(x,y,tolerance=0.00001):
return abs(x-y) < tolerance
def mag(vector=(0,0,0)):
return OpenMaya.MVector(vector[0],vector[1],vector[2]).length()
def normalizeVector(vector=(0,0,0)):
normal = OpenMaya.MVector(vector[0],vector[1],vector[2]).normal()
return (normal.x,normal.y,normal.z)
def dotProduct(vector1=(0.0,0.0,0.0),vector2=(0.0,0.0,0.0)):
vec1 = OpenMaya.MVector(vector1[0],vector1[1],vector1[2])
vec2 = OpenMaya.MVector(vector2[0],vector2[1],vector2[2])
return vec1 * vec2
def distanceBetween(point1=[0.0,0.0,0.0],point2=[0.0,0.0,0.0]):
pnt1 = OpenMaya.MPoint(point1[0],point1[1],point1[2],1.0)
pnt2 = OpenMaya.MPoint(point2[0],point2[1],point2[2],1.0)
return OpenMaya.MVector(pnt1-pnt2).length()
def offsetVector(point1=(0.0,0.0,0.0),point2=(0.0,0.0,0.0)):
pnt1 = OpenMaya.MPoint(point1[0],point1[1],point1[2],1.0)
pnt2 = OpenMaya.MPoint(point2[0],point2[1],point2[2],1.0)
vec = pnt2 - pnt1
return (vec.x,vec.y,vec.z)
def crossProduct(vector1=(0.0,0.0,0.0),vector2=(0.0,0.0,0.0)):
vec1 = OpenMaya.MVector(vector1[0],vector1[1],vector1[2])
vec2 = OpenMaya.MVector(vector2[0],vector2[1],vector2[2])
crossProduct = vec1 ^ vec2
return (crossProduct.x,crossProduct.y,crossProduct.z)
def averagePosition(pos1=(0.0,0.0,0.0),pos2=(0.0,0.0,0.0),weight=0.5):
return (pos1[0]+((pos2[0]-pos1[0])*weight),pos1[1]+((pos2[1]-pos1[1])*weight),pos1[2]+((pos2[2]-pos1[2])*weight))
def closestPointOnLine(pt,lineA,lineB,clampSegment=False):
ptOffset = offsetVector(lineA,pt)
lineOffset = offsetVector(lineA,lineB)
dot = dotProduct(ptOffset,lineOffset)
if clampSegment:
if dot < 0.0: return lineA
if dot > 1.0: return lineB
return [lineA[0]+(lineOffset[0]*dot),lineA[1]+(lineOffset[1]*dot),lineA[2]+(lineOffset[2]*dot)]
def smoothStep(value,rangeStart=0.0,rangeEnd=1.0,smooth=1.0):
rangeVal = rangeEnd - rangeStart
nValue = value / rangeVal
sValue = pow(nValue,2) * (3-(nValue*2))
sValue = nValue + ((sValue-nValue)*smooth)
value = rangeStart + (rangeVal * sValue)
return value | MIT License |
openstack/vitrage | vitrage/tests/base.py | BaseTest.assert_timestamp_equal | python | def assert_timestamp_equal(self, first, second, msg=None):
return self.assertAlmostEqual(timeutils.delta_seconds(first, second),
0.0,
places=5, msg=msg) | Checks that two timestamps are equals.
This relies on assertAlmostEqual to avoid rounding problem, and only
checks up the first microsecond values. | https://github.com/openstack/vitrage/blob/95b33dbf39b040e23915882a2879c87aec239ca9/vitrage/tests/base.py#L76-L85 | import logging
import os
from oslo_config import cfg
from oslo_config import fixture as config_fixture
from oslo_utils import timeutils
from oslotest import base
import sys
from testtools import matchers
from testtools.matchers import HasLength
from vitrage.common import config
CONF = cfg.CONF
IsEmpty = lambda: HasLength(0)
class BaseTest(base.BaseTestCase):
def conf_reregister_opts(self, opts, group=None):
self.conf.reset()
if group in self.conf:
for opt in opts:
self.conf.unregister_opt(opt, group=group)
self.conf.register_opts(opts, group=group)
def unregister_opts():
self.conf.reset()
for opt in opts:
self.conf.unregister_opt(opt, group=group)
self.addCleanup(unregister_opts)
def setUp(self):
super(BaseTest, self).setUp()
self.cfg_fixture = self.useFixture(
config_fixture.Config(CONF))
config.parse_config([])
logging.disable(logging.CRITICAL)
self.conf = self.cfg_fixture.conf
def config(self, **kw):
self.cfg_fixture.config(**kw)
def assert_list_equal(self, l1, l2, message=None):
if tuple(sys.version_info)[0:2] < (2, 7):
self.assertEqual(l1, l2, message)
else:
super(BaseTest, self).assertListEqual(l1, l2, message)
def assert_dict_equal(self, d1, d2, message=None):
if tuple(sys.version_info)[0:2] < (2, 7):
self.assertEqual(d1, d2)
else:
super(BaseTest, self).assertDictEqual(d1, d2, message) | Apache License 2.0 |
ambitioninc/django-entity-event | entity_event/models.py | Unsubscription.__str__ | python | def __str__(self):
s = '{entity} from {source} by {medium}'
entity = self.entity.__str__()
source = self.source.__str__()
medium = self.medium.__str__()
return s.format(entity=entity, source=source, medium=medium) | Readable representation of ``Unsubscription`` objects. | https://github.com/ambitioninc/django-entity-event/blob/5b48bbe2fa3c80cbac01a62768df269635a1e36a/entity_event/models.py#L769-L777 | from collections import defaultdict
from datetime import datetime
from operator import or_
from six.moves import reduce
from cached_property import cached_property
from django.contrib.postgres.fields import JSONField
from django.core.serializers.json import DjangoJSONEncoder
from django.db import models, transaction
from django.db.models import Q
from django.db.models.query import QuerySet
from django.template.loader import render_to_string
from django.template import Context, Template
from entity.models import Entity, EntityRelationship
from entity_event.context_serializer import DefaultContextSerializer
class Medium(models.Model):
name = models.CharField(max_length=256, unique=True)
display_name = models.CharField(max_length=256)
description = models.TextField()
time_created = models.DateTimeField(auto_now_add=True)
rendering_style = models.ForeignKey('entity_event.RenderingStyle', null=True, on_delete=models.CASCADE)
additional_context = JSONField(null=True, default=None, encoder=DjangoJSONEncoder)
def __str__(self):
return self.display_name
@transaction.atomic
def events(self, **event_filters):
events = self.get_filtered_events(**event_filters)
subscriptions = Subscription.objects.cache_related().filter(
medium=self
)
subscription_q_objects = [
Q(
eventactor__entity__in=self.followed_by(sub.subscribed_entities()),
source_id=sub.source_id
)
for sub in subscriptions if sub.only_following
]
subscription_q_objects.append(
Q(source_id__in=[
sub.source_id
for sub in subscriptions if not sub.only_following
])
)
events = events.cache_related().filter(reduce(or_, subscription_q_objects))
return events
@transaction.atomic
def entity_events(self, entity, **event_filters):
events = self.get_filtered_events(**event_filters)
subscriptions = Subscription.objects.filter(medium=self)
subscriptions = self.subset_subscriptions(subscriptions, entity)
subscription_q_objects = [
Q(
eventactor__entity__in=self.followed_by(entity),
source_id=sub.source_id
)
for sub in subscriptions if sub.only_following
]
subscription_q_objects.append(
Q(source_id__in=[sub.source_id for sub in subscriptions if not sub.only_following])
)
return [
event for event in events.filter(reduce(or_, subscription_q_objects))
if self.filter_source_targets_by_unsubscription(event.source_id, [entity])
]
@transaction.atomic
def events_targets(self, entity_kind=None, **event_filters):
events = self.get_filtered_events(**event_filters)
subscriptions = Subscription.objects.filter(medium=self).select_related('entity')
subscribed_cache = {}
for sub in subscriptions:
subscribed_cache[sub.id] = sub.subscribed_entities()
event_pairs = []
for event in events:
targets = []
for sub in subscriptions:
if event.source_id != sub.source_id:
continue
subscribed = subscribed_cache[sub.id]
if sub.only_following:
potential_targets = self.followers_of(
event.eventactor_set.values_list('entity__id', flat=True)
)
subscription_targets = list(Entity.objects.filter(
Q(id__in=subscribed),
Q(id__in=potential_targets)
))
else:
subscription_targets = list(subscribed)
targets.extend(subscription_targets)
targets = self.filter_source_targets_by_unsubscription(event.source_id, targets)
if entity_kind:
targets = [t for t in targets if t.entity_kind == entity_kind]
if targets:
event_pairs.append((event, targets))
return event_pairs
def subset_subscriptions(self, subscriptions, entity=None):
if entity is None:
return subscriptions
super_entities = EntityRelationship.objects.filter(
sub_entity=entity).values_list('super_entity')
subscriptions = subscriptions.filter(
Q(entity=entity, sub_entity_kind=None) |
Q(entity__in=super_entities, sub_entity_kind=entity.entity_kind)
)
return subscriptions
@cached_property
def unsubscriptions(self):
unsubscriptions = defaultdict(list)
for unsub in Unsubscription.objects.filter(medium=self).values('entity', 'source'):
unsubscriptions[unsub['source']].append(unsub['entity'])
return unsubscriptions
def filter_source_targets_by_unsubscription(self, source_id, targets):
unsubscriptions = self.unsubscriptions
return [t for t in targets if t.id not in unsubscriptions[source_id]]
def get_filtered_events_queryset(self, start_time, end_time, seen, include_expired, actor, queryset=None):
if queryset is None:
queryset = Event.objects
queryset = queryset.annotate(
event_seen_medium=models.FilteredRelation(
'eventseen',
condition=Q(eventseen__medium=self)
)
)
now = datetime.utcnow()
filters = []
if start_time is not None:
filters.append(Q(time__gte=start_time))
if end_time is not None:
filters.append(Q(time__lte=end_time))
if not include_expired:
filters.append(Q(time_expires__gte=now))
if seen is True:
filters.append(Q(eventseen__medium=self))
elif seen is False:
filters.append(Q(event_seen_medium__id__isnull=True))
if actor is not None:
filters.append(Q(eventactor__entity=actor))
return queryset.filter(*filters)
def get_filtered_events(
self,
start_time=None,
end_time=None,
seen=None,
mark_seen=False,
include_expired=False,
actor=None
):
events = self.get_filtered_events_queryset(
start_time=start_time,
end_time=end_time,
seen=seen,
include_expired=include_expired,
actor=actor,
queryset=Event.objects
)
if seen is False and mark_seen:
events = Event.objects.filter(id__in=list(events.values_list('id', flat=True)))
events.mark_seen(self)
return events
def followed_by(self, entities):
if isinstance(entities, Entity):
entities = Entity.objects.filter(id=entities.id)
super_entities = EntityRelationship.objects.filter(
sub_entity__in=entities).values_list('super_entity')
followed_by = Entity.objects.filter(
Q(id__in=entities) | Q(id__in=super_entities))
return followed_by
def followers_of(self, entities):
if isinstance(entities, Entity):
entities = Entity.objects.filter(id=entities.id)
sub_entities = EntityRelationship.objects.filter(
super_entity__in=entities).values_list('sub_entity')
followers_of = Entity.objects.filter(
Q(id__in=entities) | Q(id__in=sub_entities))
return followers_of
def render(self, events):
from entity_event import context_loader
context_loader.load_contexts_and_renderers(events, [self])
return {e: e.render(self) for e in events}
class Source(models.Model):
name = models.CharField(max_length=256, unique=True)
display_name = models.CharField(max_length=256)
description = models.TextField()
group = models.ForeignKey('entity_event.SourceGroup', on_delete=models.CASCADE)
def __str__(self):
return self.display_name
class SourceGroup(models.Model):
name = models.CharField(max_length=256, unique=True)
display_name = models.CharField(max_length=256)
description = models.TextField()
def __str__(self):
return self.display_name
class Unsubscription(models.Model):
entity = models.ForeignKey('entity.Entity', on_delete=models.CASCADE)
medium = models.ForeignKey('entity_event.Medium', on_delete=models.CASCADE)
source = models.ForeignKey('entity_event.Source', on_delete=models.CASCADE) | MIT License |
cap-ntu/ml-model-ci | modelci/persistence/service_.py | save | python | def save(model_in: MLModel):
if _collection.count_documents(
filter=model_in.dict(
use_enum_values=True,
include={'architecture', 'framework', 'engine', 'version', 'task', 'dataset'}
),
limit=1
):
raise ServiceException(
f'Model with primary keys architecture={model_in.architecture}, '
f'framework={model_in.framework}, engine={model_in.engine}, version={model_in.version},'
f'task={model_in.task}, and dataset={model_in.dataset} has exists.'
)
weight_id = _fs.put(bytes(model_in.weight), filename=model_in.weight.filename)
model = MLModel(**model_in.dict(exclude={'weight'}), weight=weight_id)
model.id = _collection.insert_one(model.dict(exclude_none=True, by_alias=True, use_enum_values=True)).inserted_id
return model | Register a model into ModelDB and GridFS. `model.id` should be set as `None`, otherwise, the function will
raise a `ValueError`.
Args:
model_in (MLModelIn): model object to be registered
Return:
MLModel: Saved ML model object.
Raises:
BadRequestValueException: If `model.id` is not None.
ServiceException: If model has exists with the same primary keys (name, framework, engine and version). | https://github.com/cap-ntu/ml-model-ci/blob/f77635e469477b640a5c2d9b7ad3fe13374ce59e/modelci/persistence/service_.py#L27-L59 | from typing import List
import gridfs
from bson import ObjectId
from fastapi.encoders import jsonable_encoder
from modelci.config import db_settings
from modelci.experimental.mongo_client import MongoClient
from modelci.hub.profile_ import Profiler
from modelci.persistence.exceptions import ServiceException
from modelci.types.models.mlmodel import MLModel, ModelUpdateSchema
_db = MongoClient()[db_settings.mongo_db]
_collection = _db['model_d_o']
_fs = gridfs.GridFS(_db) | Apache License 2.0 |
nervanasystems/neon | neon/transforms/cost.py | MeanSquared.__init__ | python | def __init__(self):
self.func = lambda y, t: self.be.mean(self.be.square(y - t), axis=0) / 2.
self.funcgrad = lambda y, t: (y - t) / y.shape[0] | Define the cost function and its gradient as lambda functions. | https://github.com/nervanasystems/neon/blob/8c3fb8a93b4a89303467b25817c60536542d08bd/neon/transforms/cost.py#L198-L203 | from __future__ import division
from builtins import str
from neon import NervanaObject
import numpy as np
from collections import Counter
from neon import logger as neon_logger
class Cost(NervanaObject):
def __call__(self, y, t):
return self.func(y, t)
def bprop(self, y, t):
return self.funcgrad(y, t)
class CrossEntropyBinary(Cost):
def __init__(self, scale=1):
self.scale = scale
def __call__(self, y, t):
assert y.shape == t.shape, "CrossEntropy requires network output shape to match targets"
return self.be.sum(self.be.safelog(1 - y) * (t - 1) - self.be.safelog(y) * t, axis=0)
def bprop(self, y, t):
return self.scale * (y - t)
class CrossEntropyMulti(Cost):
def __init__(self, scale=1, usebits=False):
super(CrossEntropyMulti, self).__init__()
self.usebits = usebits
self.scale = scale
self.logscale = np.float(1. / np.log(2.0) if usebits else 1.)
def __call__(self, y, t):
if y.shape != t.shape:
raise ValueError((
"CrossEntropy requires network output shape to match "
"targets. Network output shape was {} and targets shape "
"was {}"
).format(y.shape, t.shape))
return (self.be.sum(-t * self.logscale * self.be.safelog(y), axis=0))
def bprop(self, y, t):
return self.logscale * self.scale * (y - t)
class SumSquared(Cost):
def __init__(self):
self.func = lambda y, t: self.be.sum(self.be.square(y - t), axis=0) / 2.
self.funcgrad = lambda y, t: (y - t)
class MeanSquared(Cost): | Apache License 2.0 |
aspose-words-cloud/aspose-words-cloud-python | asposewordscloud/models/html_fixed_save_options_data.py | HtmlFixedSaveOptionsData.update_last_saved_time_property | python | def update_last_saved_time_property(self):
return self._update_last_saved_time_property | Gets the update_last_saved_time_property of this HtmlFixedSaveOptionsData. # noqa: E501
Gets or sets a value indicating whether the Aspose.Words.Properties.BuiltInDocumentProperties.LastSavedTime property is updated before saving. # noqa: E501
:return: The update_last_saved_time_property of this HtmlFixedSaveOptionsData. # noqa: E501
:rtype: bool | https://github.com/aspose-words-cloud/aspose-words-cloud-python/blob/abf8fccfed40aa2b09c6cdcaf3f2723e1f412d85/asposewordscloud/models/html_fixed_save_options_data.py#L510-L518 | import pprint
import re
import datetime
import six
import json
class HtmlFixedSaveOptionsData(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'allow_embedding_post_script_fonts': 'bool',
'custom_time_zone_info_data': 'TimeZoneInfoData',
'dml3_d_effects_rendering_mode': 'str',
'dml_effects_rendering_mode': 'str',
'dml_rendering_mode': 'str',
'file_name': 'str',
'flat_opc_xml_mapping_only': 'bool',
'iml_rendering_mode': 'str',
'save_format': 'str',
'update_created_time_property': 'bool',
'update_fields': 'bool',
'update_last_printed_property': 'bool',
'update_last_saved_time_property': 'bool',
'update_sdt_content': 'bool',
'zip_output': 'bool',
'color_mode': 'str',
'jpeg_quality': 'int',
'metafile_rendering_options': 'MetafileRenderingOptionsData',
'numeral_format': 'str',
'optimize_output': 'bool',
'page_count': 'int',
'page_index': 'int',
'css_class_names_prefix': 'str',
'encoding': 'str',
'export_embedded_css': 'bool',
'export_embedded_fonts': 'bool',
'export_embedded_images': 'bool',
'export_form_fields': 'bool',
'font_format': 'str',
'page_horizontal_alignment': 'str',
'page_margins': 'float',
'resources_folder': 'str',
'resources_folder_alias': 'str',
'save_font_face_css_separately': 'bool',
'show_page_border': 'bool',
'use_target_machine_fonts': 'bool'
}
attribute_map = {
'allow_embedding_post_script_fonts': 'AllowEmbeddingPostScriptFonts',
'custom_time_zone_info_data': 'CustomTimeZoneInfoData',
'dml3_d_effects_rendering_mode': 'Dml3DEffectsRenderingMode',
'dml_effects_rendering_mode': 'DmlEffectsRenderingMode',
'dml_rendering_mode': 'DmlRenderingMode',
'file_name': 'FileName',
'flat_opc_xml_mapping_only': 'FlatOpcXmlMappingOnly',
'iml_rendering_mode': 'ImlRenderingMode',
'save_format': 'SaveFormat',
'update_created_time_property': 'UpdateCreatedTimeProperty',
'update_fields': 'UpdateFields',
'update_last_printed_property': 'UpdateLastPrintedProperty',
'update_last_saved_time_property': 'UpdateLastSavedTimeProperty',
'update_sdt_content': 'UpdateSdtContent',
'zip_output': 'ZipOutput',
'color_mode': 'ColorMode',
'jpeg_quality': 'JpegQuality',
'metafile_rendering_options': 'MetafileRenderingOptions',
'numeral_format': 'NumeralFormat',
'optimize_output': 'OptimizeOutput',
'page_count': 'PageCount',
'page_index': 'PageIndex',
'css_class_names_prefix': 'CssClassNamesPrefix',
'encoding': 'Encoding',
'export_embedded_css': 'ExportEmbeddedCss',
'export_embedded_fonts': 'ExportEmbeddedFonts',
'export_embedded_images': 'ExportEmbeddedImages',
'export_form_fields': 'ExportFormFields',
'font_format': 'FontFormat',
'page_horizontal_alignment': 'PageHorizontalAlignment',
'page_margins': 'PageMargins',
'resources_folder': 'ResourcesFolder',
'resources_folder_alias': 'ResourcesFolderAlias',
'save_font_face_css_separately': 'SaveFontFaceCssSeparately',
'show_page_border': 'ShowPageBorder',
'use_target_machine_fonts': 'UseTargetMachineFonts'
}
def __init__(self, allow_embedding_post_script_fonts=None, custom_time_zone_info_data=None, dml3_d_effects_rendering_mode=None, dml_effects_rendering_mode=None, dml_rendering_mode=None, file_name=None, flat_opc_xml_mapping_only=None, iml_rendering_mode=None, save_format=None, update_created_time_property=None, update_fields=None, update_last_printed_property=None, update_last_saved_time_property=None, update_sdt_content=None, zip_output=None, color_mode=None, jpeg_quality=None, metafile_rendering_options=None, numeral_format=None, optimize_output=None, page_count=None, page_index=None, css_class_names_prefix=None, encoding=None, export_embedded_css=None, export_embedded_fonts=None, export_embedded_images=None, export_form_fields=None, font_format=None, page_horizontal_alignment=None, page_margins=None, resources_folder=None, resources_folder_alias=None, save_font_face_css_separately=None, show_page_border=None, use_target_machine_fonts=None):
self._allow_embedding_post_script_fonts = None
self._custom_time_zone_info_data = None
self._dml3_d_effects_rendering_mode = None
self._dml_effects_rendering_mode = None
self._dml_rendering_mode = None
self._file_name = None
self._flat_opc_xml_mapping_only = None
self._iml_rendering_mode = None
self._save_format = None
self._update_created_time_property = None
self._update_fields = None
self._update_last_printed_property = None
self._update_last_saved_time_property = None
self._update_sdt_content = None
self._zip_output = None
self._color_mode = None
self._jpeg_quality = None
self._metafile_rendering_options = None
self._numeral_format = None
self._optimize_output = None
self._page_count = None
self._page_index = None
self._css_class_names_prefix = None
self._encoding = None
self._export_embedded_css = None
self._export_embedded_fonts = None
self._export_embedded_images = None
self._export_form_fields = None
self._font_format = None
self._page_horizontal_alignment = None
self._page_margins = None
self._resources_folder = None
self._resources_folder_alias = None
self._save_font_face_css_separately = None
self._show_page_border = None
self._use_target_machine_fonts = None
self.discriminator = None
if allow_embedding_post_script_fonts is not None:
self.allow_embedding_post_script_fonts = allow_embedding_post_script_fonts
if custom_time_zone_info_data is not None:
self.custom_time_zone_info_data = custom_time_zone_info_data
if dml3_d_effects_rendering_mode is not None:
self.dml3_d_effects_rendering_mode = dml3_d_effects_rendering_mode
if dml_effects_rendering_mode is not None:
self.dml_effects_rendering_mode = dml_effects_rendering_mode
if dml_rendering_mode is not None:
self.dml_rendering_mode = dml_rendering_mode
if file_name is not None:
self.file_name = file_name
if flat_opc_xml_mapping_only is not None:
self.flat_opc_xml_mapping_only = flat_opc_xml_mapping_only
if iml_rendering_mode is not None:
self.iml_rendering_mode = iml_rendering_mode
if save_format is not None:
self.save_format = save_format
if update_created_time_property is not None:
self.update_created_time_property = update_created_time_property
if update_fields is not None:
self.update_fields = update_fields
if update_last_printed_property is not None:
self.update_last_printed_property = update_last_printed_property
if update_last_saved_time_property is not None:
self.update_last_saved_time_property = update_last_saved_time_property
if update_sdt_content is not None:
self.update_sdt_content = update_sdt_content
if zip_output is not None:
self.zip_output = zip_output
if color_mode is not None:
self.color_mode = color_mode
if jpeg_quality is not None:
self.jpeg_quality = jpeg_quality
if metafile_rendering_options is not None:
self.metafile_rendering_options = metafile_rendering_options
if numeral_format is not None:
self.numeral_format = numeral_format
if optimize_output is not None:
self.optimize_output = optimize_output
if page_count is not None:
self.page_count = page_count
if page_index is not None:
self.page_index = page_index
if css_class_names_prefix is not None:
self.css_class_names_prefix = css_class_names_prefix
if encoding is not None:
self.encoding = encoding
if export_embedded_css is not None:
self.export_embedded_css = export_embedded_css
if export_embedded_fonts is not None:
self.export_embedded_fonts = export_embedded_fonts
if export_embedded_images is not None:
self.export_embedded_images = export_embedded_images
if export_form_fields is not None:
self.export_form_fields = export_form_fields
if font_format is not None:
self.font_format = font_format
if page_horizontal_alignment is not None:
self.page_horizontal_alignment = page_horizontal_alignment
if page_margins is not None:
self.page_margins = page_margins
if resources_folder is not None:
self.resources_folder = resources_folder
if resources_folder_alias is not None:
self.resources_folder_alias = resources_folder_alias
if save_font_face_css_separately is not None:
self.save_font_face_css_separately = save_font_face_css_separately
if show_page_border is not None:
self.show_page_border = show_page_border
if use_target_machine_fonts is not None:
self.use_target_machine_fonts = use_target_machine_fonts
@property
def allow_embedding_post_script_fonts(self):
return self._allow_embedding_post_script_fonts
@allow_embedding_post_script_fonts.setter
def allow_embedding_post_script_fonts(self, allow_embedding_post_script_fonts):
self._allow_embedding_post_script_fonts = allow_embedding_post_script_fonts
@property
def custom_time_zone_info_data(self):
return self._custom_time_zone_info_data
@custom_time_zone_info_data.setter
def custom_time_zone_info_data(self, custom_time_zone_info_data):
self._custom_time_zone_info_data = custom_time_zone_info_data
@property
def dml3_d_effects_rendering_mode(self):
return self._dml3_d_effects_rendering_mode
@dml3_d_effects_rendering_mode.setter
def dml3_d_effects_rendering_mode(self, dml3_d_effects_rendering_mode):
allowed_values = ["Basic", "Advanced"]
if not dml3_d_effects_rendering_mode.isdigit():
if dml3_d_effects_rendering_mode not in allowed_values:
raise ValueError(
"Invalid value for `dml3_d_effects_rendering_mode` ({0}), must be one of {1}"
.format(dml3_d_effects_rendering_mode, allowed_values))
self._dml3_d_effects_rendering_mode = dml3_d_effects_rendering_mode
else:
self._dml3_d_effects_rendering_mode = allowed_values[int(dml3_d_effects_rendering_mode) if six.PY3 else long(dml3_d_effects_rendering_mode)]
@property
def dml_effects_rendering_mode(self):
return self._dml_effects_rendering_mode
@dml_effects_rendering_mode.setter
def dml_effects_rendering_mode(self, dml_effects_rendering_mode):
self._dml_effects_rendering_mode = dml_effects_rendering_mode
@property
def dml_rendering_mode(self):
return self._dml_rendering_mode
@dml_rendering_mode.setter
def dml_rendering_mode(self, dml_rendering_mode):
self._dml_rendering_mode = dml_rendering_mode
@property
def file_name(self):
return self._file_name
@file_name.setter
def file_name(self, file_name):
self._file_name = file_name
@property
def flat_opc_xml_mapping_only(self):
return self._flat_opc_xml_mapping_only
@flat_opc_xml_mapping_only.setter
def flat_opc_xml_mapping_only(self, flat_opc_xml_mapping_only):
self._flat_opc_xml_mapping_only = flat_opc_xml_mapping_only
@property
def iml_rendering_mode(self):
return self._iml_rendering_mode
@iml_rendering_mode.setter
def iml_rendering_mode(self, iml_rendering_mode):
self._iml_rendering_mode = iml_rendering_mode
@property
def save_format(self):
return self._save_format
@save_format.setter
def save_format(self, save_format):
self._save_format = save_format
@property
def update_created_time_property(self):
return self._update_created_time_property
@update_created_time_property.setter
def update_created_time_property(self, update_created_time_property):
self._update_created_time_property = update_created_time_property
@property
def update_fields(self):
return self._update_fields
@update_fields.setter
def update_fields(self, update_fields):
self._update_fields = update_fields
@property
def update_last_printed_property(self):
return self._update_last_printed_property
@update_last_printed_property.setter
def update_last_printed_property(self, update_last_printed_property):
self._update_last_printed_property = update_last_printed_property
@property | MIT License |
diptochakrabarty/flask-online-store | venv/lib/python3.6/site-packages/alembic/ddl/impl.py | DefaultImpl.requires_recreate_in_batch | python | def requires_recreate_in_batch(self, batch_op):
return False | Return True if the given :class:`.BatchOperationsImpl`
would need the table to be recreated and copied in order to
proceed.
Normally, only returns True on SQLite when operations other
than add_column are present. | https://github.com/diptochakrabarty/flask-online-store/blob/74db206565aee1920a508d009a4b866d9a848c6a/venv/lib/python3.6/site-packages/alembic/ddl/impl.py#L84-L93 | from collections import namedtuple
import re
from sqlalchemy import cast
from sqlalchemy import schema
from sqlalchemy import text
from . import base
from .. import util
from ..util import sqla_compat
from ..util.compat import string_types
from ..util.compat import text_type
from ..util.compat import with_metaclass
class ImplMeta(type):
def __init__(cls, classname, bases, dict_):
newtype = type.__init__(cls, classname, bases, dict_)
if "__dialect__" in dict_:
_impls[dict_["__dialect__"]] = cls
return newtype
_impls = {}
Params = namedtuple("Params", ["token0", "tokens", "args", "kwargs"])
class DefaultImpl(with_metaclass(ImplMeta)):
__dialect__ = "default"
transactional_ddl = False
command_terminator = ";"
type_synonyms = ({"NUMERIC", "DECIMAL"},)
type_arg_extract = ()
def __init__(
self,
dialect,
connection,
as_sql,
transactional_ddl,
output_buffer,
context_opts,
):
self.dialect = dialect
self.connection = connection
self.as_sql = as_sql
self.literal_binds = context_opts.get("literal_binds", False)
self.output_buffer = output_buffer
self.memo = {}
self.context_opts = context_opts
if transactional_ddl is not None:
self.transactional_ddl = transactional_ddl
if self.literal_binds:
if not self.as_sql:
raise util.CommandError(
"Can't use literal_binds setting without as_sql mode"
)
@classmethod
def get_by_dialect(cls, dialect):
return _impls[dialect.name]
def static_output(self, text):
self.output_buffer.write(text_type(text + "\n\n"))
self.output_buffer.flush() | MIT License |
lyft/cartography | cartography/intel/azure/sql.py | _load_server_dns_aliases | python | def _load_server_dns_aliases(
neo4j_session: neo4j.Session, dns_aliases: List[Dict], update_tag: int,
) -> None:
ingest_dns_aliases = """
UNWIND {dns_aliases_list} as dns_alias
MERGE (alias:AzureServerDNSAlias{id: dns_alias.id})
ON CREATE SET alias.firstseen = timestamp()
SET alias.name = dns_alias.name,
alias.dnsrecord = dns_alias.azure_dns_record,
alias.lastupdated = {azure_update_tag}
WITH alias, dns_alias
MATCH (s:AzureSQLServer{id: dns_alias.server_id})
MERGE (s)-[r:USED_BY]->(alias)
ON CREATE SET r.firstseen = timestamp()
SET r.lastupdated = {azure_update_tag}
"""
neo4j_session.run(
ingest_dns_aliases,
dns_aliases_list=dns_aliases,
azure_update_tag=update_tag,
) | Ingest the DNS Alias details into neo4j. | https://github.com/lyft/cartography/blob/e45803027b209322db286f363540eb058a831d1e/cartography/intel/azure/sql.py#L385-L409 | import logging
from typing import Any
from typing import Dict
from typing import Generator
from typing import List
from typing import Tuple
import neo4j
from azure.core.exceptions import ClientAuthenticationError
from azure.core.exceptions import HttpResponseError
from azure.core.exceptions import ResourceNotFoundError
from azure.mgmt.sql import SqlManagementClient
from azure.mgmt.sql.models import SecurityAlertPolicyName
from azure.mgmt.sql.models import TransparentDataEncryptionName
from msrestazure.azure_exceptions import CloudError
from .util.credentials import Credentials
from cartography.util import run_cleanup_job
from cartography.util import timeit
logger = logging.getLogger(__name__)
@timeit
def get_client(credentials: Credentials, subscription_id: str) -> SqlManagementClient:
client = SqlManagementClient(credentials, subscription_id)
return client
@timeit
def get_server_list(credentials: Credentials, subscription_id: str) -> List[Dict]:
try:
client = get_client(credentials, subscription_id)
server_list = list(map(lambda x: x.as_dict(), client.servers.list()))
except ClientAuthenticationError as e:
logger.warning(f"Client Authentication Error while retrieving servers - {e}")
return []
except ResourceNotFoundError as e:
logger.warning(f"Server resource not found error - {e}")
return []
except HttpResponseError as e:
logger.warning(f"Error while retrieving servers - {e}")
return []
for server in server_list:
x = server['id'].split('/')
server['resourceGroup'] = x[x.index('resourceGroups') + 1]
return server_list
@timeit
def load_server_data(
neo4j_session: neo4j.Session, subscription_id: str, server_list: List[Dict],
azure_update_tag: int,
) -> None:
ingest_server = """
UNWIND {server_list} as server
MERGE (s:AzureSQLServer{id: server.id})
ON CREATE SET s.firstseen = timestamp(),
s.resourcegroup = server.resourceGroup, s.location = server.location
SET s.lastupdated = {azure_update_tag},
s.name = server.name,
s.kind = server.kind,
s.state = server.state,
s.version = server.version
WITH s
MATCH (owner:AzureSubscription{id: {AZURE_SUBSCRIPTION_ID}})
MERGE (owner)-[r:RESOURCE]->(s)
ON CREATE SET r.firstseen = timestamp()
SET r.lastupdated = {azure_update_tag}
"""
neo4j_session.run(
ingest_server,
server_list=server_list,
AZURE_SUBSCRIPTION_ID=subscription_id,
azure_update_tag=azure_update_tag,
)
@timeit
def sync_server_details(
neo4j_session: neo4j.Session, credentials: Credentials, subscription_id: str,
server_list: List[Dict], sync_tag: int,
) -> None:
details = get_server_details(credentials, subscription_id, server_list)
load_server_details(neo4j_session, credentials, subscription_id, details, sync_tag)
@timeit
def get_server_details(
credentials: Credentials, subscription_id: str, server_list: List[Dict],
) -> Generator[Any, Any, Any]:
for server in server_list:
dns_alias = get_dns_aliases(credentials, subscription_id, server)
ad_admins = get_ad_admins(credentials, subscription_id, server)
r_databases = get_recoverable_databases(credentials, subscription_id, server)
rd_databases = get_restorable_dropped_databases(credentials, subscription_id, server)
fgs = get_failover_groups(credentials, subscription_id, server)
elastic_pools = get_elastic_pools(credentials, subscription_id, server)
databases = get_databases(credentials, subscription_id, server)
yield server['id'], server['name'], server[
'resourceGroup'
], dns_alias, ad_admins, r_databases, rd_databases, fgs, elastic_pools, databases
@timeit
def get_dns_aliases(credentials: Credentials, subscription_id: str, server: Dict) -> List[Dict]:
try:
client = get_client(credentials, subscription_id)
dns_aliases = list(
map(
lambda x: x.as_dict(),
client.server_dns_aliases.list_by_server(server['resourceGroup'], server['name']),
),
)
except ClientAuthenticationError as e:
logger.warning(f"Client Authentication Error while retrieving DNS Aliases - {e}")
return []
except ResourceNotFoundError as e:
logger.warning(f"DNS Alias resource not found error - {e}")
return []
except HttpResponseError as e:
logger.warning(f"Error while retrieving Azure Server DNS Aliases - {e}")
return []
return dns_aliases
@timeit
def get_ad_admins(credentials: Credentials, subscription_id: str, server: Dict) -> List[Dict]:
try:
client = get_client(credentials, subscription_id)
ad_admins = list(
map(
lambda x: x.as_dict(),
client.server_azure_ad_administrators.list_by_server(
server['resourceGroup'],
server['name'],
),
),
)
except ClientAuthenticationError as e:
logger.warning(f"Client Authentication Error while retrieving Azure AD Administrators - {e}")
return []
except ResourceNotFoundError as e:
logger.warning(f"Azure AD Administrators resource not found error - {e}")
return []
except HttpResponseError as e:
logger.warning(f"Error while retrieving server azure AD Administrators - {e}")
return []
return ad_admins
@timeit
def get_recoverable_databases(credentials: Credentials, subscription_id: str, server: Dict) -> List[Dict]:
try:
client = get_client(credentials, subscription_id)
recoverable_databases = list(
map(
lambda x: x.as_dict(),
client.recoverable_databases.list_by_server(
server['resourceGroup'],
server['name'],
),
),
)
except CloudError:
return []
except ClientAuthenticationError as e:
logger.warning(f"Client Authentication Error while retrieving recoverable databases - {e}")
return []
except ResourceNotFoundError as e:
logger.warning(f"Recoverable databases resource not found error - {e}")
return []
except HttpResponseError as e:
logger.warning(f"Error while retrieving recoverable databases - {e}")
return []
return recoverable_databases
@timeit
def get_restorable_dropped_databases(credentials: Credentials, subscription_id: str, server: Dict) -> List[Dict]:
try:
client = get_client(credentials, subscription_id)
restorable_dropped_databases = list(
map(
lambda x: x.as_dict(),
client.restorable_dropped_databases.list_by_server(
server['resourceGroup'], server['name'],
),
),
)
except ClientAuthenticationError as e:
logger.warning(f"Client Authentication Error while retrieving Restorable Dropped Databases - {e}")
return []
except ResourceNotFoundError as e:
logger.warning(f"Restorable Dropped Databases resource not found error - {e}")
return []
except HttpResponseError as e:
logger.warning(f"Error while retrieving restorable dropped databases - {e}")
return []
return restorable_dropped_databases
@timeit
def get_failover_groups(credentials: Credentials, subscription_id: str, server: Dict) -> List[Dict]:
try:
client = get_client(credentials, subscription_id)
failover_groups = list(
map(lambda x: x.as_dict(), client.failover_groups.list_by_server(server['resourceGroup'], server['name'])),
)
except ClientAuthenticationError as e:
logger.warning(f"Client Authentication Error while retrieving Failover groups - {e}")
return []
except ResourceNotFoundError as e:
logger.warning(f"Failover groups resource not found error - {e}")
return []
except HttpResponseError as e:
logger.warning(f"Error while retrieving failover groups - {e}")
return []
return failover_groups
@timeit
def get_elastic_pools(credentials: Credentials, subscription_id: str, server: Dict) -> List[Dict]:
try:
client = get_client(credentials, subscription_id)
elastic_pools = list(
map(lambda x: x.as_dict(), client.elastic_pools.list_by_server(server['resourceGroup'], server['name'])),
)
except ClientAuthenticationError as e:
logger.warning(f"Client Authentication Error while retrieving Elastic Pools - {e}")
return []
except ResourceNotFoundError as e:
logger.warning(f"Elastic Pools resource not found error - {e}")
return []
except HttpResponseError as e:
logger.warning(f"Error while retrieving elastic pools - {e}")
return []
return elastic_pools
@timeit
def get_databases(credentials: Credentials, subscription_id: str, server: Dict) -> List[Dict]:
try:
client = get_client(credentials, subscription_id)
databases = list(
map(lambda x: x.as_dict(), client.databases.list_by_server(server['resourceGroup'], server['name'])),
)
except ClientAuthenticationError as e:
logger.warning(f"Client Authentication Error while retrieving SQL databases - {e}")
return []
except ResourceNotFoundError as e:
logger.warning(f"SQL databases resource not found error - {e}")
return []
except HttpResponseError as e:
logger.warning(f"Error while retrieving databases - {e}")
return []
return databases
@timeit
def load_server_details(
neo4j_session: neo4j.Session, credentials: Credentials, subscription_id: str,
details: List[Tuple[Any, Any, Any, Any, Any, Any, Any, Any, Any, Any]], update_tag: int,
) -> None:
dns_aliases = []
ad_admins = []
recoverable_databases = []
restorable_dropped_databases = []
failover_groups = []
elastic_pools = []
databases = []
for server_id, name, rg, dns_alias, ad_admin, r_database, rd_database, fg, elastic_pool, database in details:
if len(dns_alias) > 0:
for alias in dns_alias:
alias['server_name'] = name
alias['server_id'] = server_id
dns_aliases.append(alias)
if len(ad_admin) > 0:
for admin in ad_admin:
admin['server_name'] = name
admin['server_id'] = server_id
ad_admins.append(admin)
if len(r_database) > 0:
for rdb in r_database:
rdb['server_name'] = name
rdb['server_id'] = server_id
recoverable_databases.append(rdb)
if len(rd_database) > 0:
for rddb in rd_database:
rddb['server_name'] = name
rddb['server_id'] = server_id
restorable_dropped_databases.append(rddb)
if len(fg) > 0:
for group in fg:
group['server_name'] = name
group['server_id'] = server_id
failover_groups.append(group)
if len(elastic_pool) > 0:
for pool in elastic_pool:
pool['server_name'] = name
pool['server_id'] = server_id
elastic_pools.append(pool)
if len(database) > 0:
for db in database:
db['server_name'] = name
db['server_id'] = server_id
db['resource_group_name'] = rg
databases.append(db)
_load_server_dns_aliases(neo4j_session, dns_aliases, update_tag)
_load_server_ad_admins(neo4j_session, ad_admins, update_tag)
_load_recoverable_databases(neo4j_session, recoverable_databases, update_tag)
_load_restorable_dropped_databases(neo4j_session, restorable_dropped_databases, update_tag)
_load_failover_groups(neo4j_session, failover_groups, update_tag)
_load_elastic_pools(neo4j_session, elastic_pools, update_tag)
_load_databases(neo4j_session, databases, update_tag)
sync_database_details(neo4j_session, credentials, subscription_id, databases, update_tag)
@timeit | Apache License 2.0 |
onsdigital/eq-survey-runner | app/jinja_filters.py | format_date_range_no_repeated_month_year | python | def format_date_range_no_repeated_month_year(context, start_date, end_date, date_format='d MMMM yyyy'):
start_datetime = convert_to_datetime(start_date)
end_datetime = convert_to_datetime(end_date)
first_date_format = date_format
if start_datetime.year == end_datetime.year:
first_date_format = date_format.replace('yyyy', '')
if start_datetime.month == end_datetime.month:
first_date_format = first_date_format.replace('MMMM', '')
first_date_format = first_date_format.replace(' ', ' ').strip()
if not first_date_format:
first_date_format = date_format
output = flask_babel.gettext('%(from_date)s to %(to_date)s',
from_date=format_date_custom(context, start_date, first_date_format),
to_date=format_date_custom(context, end_date, date_format))
return mark_safe(context, output) | Format a date range, ensuring months and years are not repeated.
If the dates are in the same year, the first year (YYYY) will be removed.
If the dates are in the same month and year, the first year (YYYY) and month will be removed.
e.g. Friday 1 to Sunday 3 October
or Thursday 30 September to Sunday 3 October
Assumptions:
- The date format uses space as a seperator
- The date format can have leading and trailing whitespace stripped
:param (jinja2.nodes.EvalContext) context: Evaluation context.
:param (str) start_date : The date format that should be used for output. MMMM, YYYY will be removed if necessary
:param (str) end_date: The date format that should be used for output. MMMM, YYYY will be removed if necessary
:param (str) date_format: The date format that should be used for output. MMMM, YYYY will be removed if necessary
:returns (str): The formatted range. | https://github.com/onsdigital/eq-survey-runner/blob/17c2e6d09a7f23ec1891521c68477ed7a3043b4f/app/jinja_filters.py#L250-L292 | import re
import string
from datetime import datetime
import flask
import flask_babel
from babel import units, numbers
from dateutil import relativedelta, tz
from jinja2 import Markup, contextfunction, escape, evalcontextfilter, evalcontextfunction, Undefined
from jinja2.exceptions import UndefinedError
from app.questionnaire.rules import convert_to_datetime
blueprint = flask.Blueprint('filters', __name__)
@blueprint.app_template_filter()
def format_number(value):
if value or value == 0:
return numbers.format_decimal(value, locale=flask_babel.get_locale())
return ''
@evalcontextfunction
def format_currency(context, value, currency='GBP'):
currency_value = get_formatted_currency(value, currency)
result = "<span class='date'>{currency_value}</span>".format(currency_value=currency_value)
return mark_safe(context, result)
def get_formatted_currency(value, currency='GBP'):
if value or value == 0:
return numbers.format_currency(number=value, currency=currency, locale=flask_babel.get_locale())
return ''
@blueprint.app_template_filter()
def get_currency_symbol(currency='GBP'):
return numbers.get_currency_symbol(currency, locale=flask_babel.get_locale())
@blueprint.app_template_filter()
def format_percentage(value):
return '{}%'.format(value)
@blueprint.app_template_filter()
def format_address_list(first_address=None, second_address=None):
if all(isinstance(field, Undefined) for field in first_address) or all(field == '' for field in first_address):
address = second_address
else:
address = first_address
address_list = concatenated_list(list_items=address, delimiter='<br />')
if not address_list:
raise Exception('No valid address passed to format_address_list filter')
return address_list
def format_unit(unit, value, length='short'):
return units.format_unit(value=value, measurement_unit=unit, length=length, locale=flask_babel.get_locale())
def format_unit_input_label(unit, unit_length='short'):
if unit_length == 'long':
return units.format_unit(value=2, measurement_unit=unit, length=unit_length, locale=flask_babel.get_locale()).replace('2 ', '')
return units.format_unit(value='', measurement_unit=unit, length=unit_length, locale=flask_babel.get_locale()).strip()
def format_duration(value):
parts = []
if 'years' in value and (value['years'] > 0 or len(value) == 1):
parts.append(flask_babel.ngettext('%(num)s year', '%(num)s years', value['years']))
if 'months' in value and (value['months'] > 0 or len(value) == 1 or ('years' in value and value['years'] == 0)):
parts.append(flask_babel.ngettext('%(num)s month', '%(num)s months', value['months']))
return ' '.join(parts)
def as_london_tz(value):
return value.replace(tzinfo=tz.gettz('UTC')).astimezone(tz.gettz('Europe/London'))
@evalcontextfilter
@blueprint.app_template_filter()
def format_multilined_string(context, value):
escaped_value = escape(value)
new_line_regex = r'(?:\r\n|\r|\n)+'
value_with_line_break_tag = re.sub(new_line_regex, '<br>', escaped_value)
result = '{}'.format(value_with_line_break_tag)
return mark_safe(context, result)
@evalcontextfunction
@blueprint.app_template_filter()
def get_current_date(context):
now = as_london_tz(datetime.utcnow()).strftime('%-d %B %Y')
result = "<span class='date'>{date}</span>".format(date=now)
return mark_safe(context, result)
@evalcontextfilter
@blueprint.app_template_filter()
def format_date(context, value):
value = value[0] if isinstance(value, list) else value
if not isinstance(value, str):
return value
date_format = 'd MMMM yyyy'
if value and re.match(r'\d{4}-\d{2}$', value):
date_format = 'MMMM yyyy'
if value and re.match(r'\d{4}$', value):
date_format = 'yyyy'
date_to_format = convert_to_datetime(value).date()
result = "<span class='date'>{date}</span>".format(
date=flask_babel.format_date(date_to_format, format=date_format))
return mark_safe(context, result)
@evalcontextfilter
@blueprint.app_template_filter()
def format_date_custom(context, value, date_format='EEEE d MMMM yyyy'):
london_date = datetime.strptime(value, '%Y-%m-%d')
result = "<span class='date'>{date}</span>".format(date=flask_babel.format_datetime(london_date,
format=date_format))
return mark_safe(context, result)
@evalcontextfilter
@blueprint.app_template_filter()
def format_datetime(context, value):
london_date_time = datetime.strptime(value, '%Y-%m-%dT%H:%M:%S.%f')
london_date = london_date_time.date()
formatted_date = flask_babel.format_date(london_date, format='d MMMM yyyy')
formatted_time = flask_babel.format_time(london_date_time, format='HH:mm')
result = "<span class='date'>{date}</span>".format(
date=flask_babel.gettext('%(date)s at %(time)s', date=formatted_date, time=formatted_time),
)
return mark_safe(context, result)
@evalcontextfunction
@blueprint.app_template_filter()
def format_conditional_date(context, *dates):
first_valid_date = _get_first_non_empty_item(dates)
return format_date(context, first_valid_date)
@blueprint.app_template_filter()
def calculate_offset_from_weekday_in_last_whole_week(input_datetime, offset, day_of_week='MO'):
if input_datetime:
parsed_datetime = datetime.strptime(input_datetime.split('T')[0], '%Y-%m-%d')
else:
parsed_datetime = datetime.utcnow()
offset_days = offset.get('days', 0)
offset_weeks = offset.get('weeks', 0)
offset_years = offset.get('years', 0)
offset = relativedelta.relativedelta(days=offset_days, weeks=offset_weeks, years=offset_years)
weekdays = ('MO', 'TU', 'WE', 'TH', 'FR', 'SA', 'SU')
try:
day_of_week_index = weekdays.index(day_of_week)
except ValueError:
raise Exception('Invalid day of week passed to calculate_offset_from_weekday_in_last_whole_week')
day_of_week_offset = relativedelta.relativedelta(days=(-parsed_datetime.weekday() - (7 - day_of_week_index)))
day_of_last_week = parsed_datetime + day_of_week_offset
offset_output = day_of_last_week + offset
return datetime.strftime(offset_output, '%Y-%m-%d')
@blueprint.app_template_filter()
def calculate_years_difference(from_str, to_str):
if from_str is None or to_str is None:
raise Exception('Valid date(s) not passed to calculate_years_difference filter')
to_date = datetime.now() if to_str == 'now' else convert_to_datetime(to_str)
from_date = convert_to_datetime(from_str)
difference = relativedelta.relativedelta(to_date, from_date)
year_string = flask_babel.ngettext('%(num)s year', '%(num)s years', difference.years)
return year_string
@evalcontextfunction
def format_date_range(context, start_date, end_date=None):
if end_date:
result = flask_babel.gettext('%(from_date)s to %(to_date)s',
from_date=format_date(context, start_date),
to_date=format_date(context, end_date))
else:
result = format_date(context, start_date)
return mark_safe(context, result)
@evalcontextfunction | MIT License |
pypa/pipenv | pipenv/vendor/jinja2/bccache.py | BytecodeCache.get_source_checksum | python | def get_source_checksum(self, source: str) -> str:
return sha1(source.encode("utf-8")).hexdigest() | Returns a checksum for the source. | https://github.com/pypa/pipenv/blob/9378cb515189d11841a4de49a5ac3c01fca509ec/pipenv/vendor/jinja2/bccache.py#L161-L163 | import errno
import fnmatch
import marshal
import os
import pickle
import stat
import sys
import tempfile
import typing as t
from hashlib import sha1
from io import BytesIO
from types import CodeType
if t.TYPE_CHECKING:
import typing_extensions as te
from .environment import Environment
class _MemcachedClient(te.Protocol):
def get(self, key: str) -> bytes:
...
def set(self, key: str, value: bytes, timeout: t.Optional[int] = None) -> None:
...
bc_version = 5
bc_magic = (
b"j2"
+ pickle.dumps(bc_version, 2)
+ pickle.dumps((sys.version_info[0] << 24) | sys.version_info[1], 2)
)
class Bucket:
def __init__(self, environment: "Environment", key: str, checksum: str) -> None:
self.environment = environment
self.key = key
self.checksum = checksum
self.reset()
def reset(self) -> None:
self.code: t.Optional[CodeType] = None
def load_bytecode(self, f: t.BinaryIO) -> None:
magic = f.read(len(bc_magic))
if magic != bc_magic:
self.reset()
return
checksum = pickle.load(f)
if self.checksum != checksum:
self.reset()
return
try:
self.code = marshal.load(f)
except (EOFError, ValueError, TypeError):
self.reset()
return
def write_bytecode(self, f: t.BinaryIO) -> None:
if self.code is None:
raise TypeError("can't write empty bucket")
f.write(bc_magic)
pickle.dump(self.checksum, f, 2)
marshal.dump(self.code, f)
def bytecode_from_string(self, string: bytes) -> None:
self.load_bytecode(BytesIO(string))
def bytecode_to_string(self) -> bytes:
out = BytesIO()
self.write_bytecode(out)
return out.getvalue()
class BytecodeCache:
def load_bytecode(self, bucket: Bucket) -> None:
raise NotImplementedError()
def dump_bytecode(self, bucket: Bucket) -> None:
raise NotImplementedError()
def clear(self) -> None:
def get_cache_key(
self, name: str, filename: t.Optional[t.Union[str]] = None
) -> str:
hash = sha1(name.encode("utf-8"))
if filename is not None:
hash.update(f"|{filename}".encode("utf-8"))
return hash.hexdigest() | MIT License |
mrloghmani/rcfusion | code/imgaug/imgaug.py | imresize_single_image | python | def imresize_single_image(image, sizes, interpolation=None):
grayscale = False
if image.ndim == 2:
grayscale = True
image = image[:, :, np.newaxis]
assert len(image.shape) == 3, image.shape
rs = imresize_many_images(image[np.newaxis, :, :, :], sizes, interpolation=interpolation)
if grayscale:
return np.squeeze(rs[0, :, :, 0])
else:
return rs[0, ...] | Resizes a single image.
Parameters
----------
image : (H,W,C) ndarray or (H,W) ndarray
Array of the image to resize.
Expected to usually be of dtype uint8.
sizes : iterable of two ints
See `imresize_many_images()`.
interpolation : None or string or int, optional(default=None)
See `imresize_many_images()`.
Returns
-------
out : (H',W',C) ndarray or (H',W') ndarray
The resized image. | https://github.com/mrloghmani/rcfusion/blob/0849b7bc43c76d4ce6538ca4c3a8a7ec6f6c9c08/code/imgaug/imgaug.py#L525-L556 | from __future__ import print_function, division, absolute_import
from abc import ABCMeta, abstractmethod
import random
import numpy as np
import copy
import numbers
import cv2
import math
from scipy import misc, ndimage
import multiprocessing
import threading
import sys
import six
import six.moves as sm
import os
from skimage import draw
if sys.version_info[0] == 2:
import cPickle as pickle
from Queue import Empty as QueueEmpty
elif sys.version_info[0] == 3:
import pickle
from queue import Empty as QueueEmpty
xrange = range
ALL = "ALL"
QUOKKA_FP = os.path.join(
os.path.dirname(os.path.abspath(__file__)),
"quokka.jpg"
)
DEFAULT_FONT_FP = os.path.join(
os.path.dirname(os.path.abspath(__file__)),
"DejaVuSans.ttf"
)
CURRENT_RANDOM_STATE = np.random.RandomState(42)
def is_np_array(val):
return isinstance(val, np.ndarray)
def is_single_integer(val):
return isinstance(val, numbers.Integral)
def is_single_float(val):
return isinstance(val, numbers.Real) and not is_single_integer(val)
def is_single_number(val):
return is_single_integer(val) or is_single_float(val)
def is_iterable(val):
return isinstance(val, (tuple, list))
def is_string(val):
return isinstance(val, six.string_types)
def is_integer_array(val):
return is_np_array(val) and issubclass(val.dtype.type, np.integer)
def is_callable(val):
if sys.version_info[0] == 3 and sys.version_info[1] <= 2:
return hasattr(val, '__call__')
else:
return callable(val)
def seed(seedval):
CURRENT_RANDOM_STATE.seed(seedval)
def current_random_state():
return CURRENT_RANDOM_STATE
def new_random_state(seed=None, fully_random=False):
if seed is None:
if not fully_random:
seed = CURRENT_RANDOM_STATE.randint(0, 10**6, 1)[0]
return np.random.RandomState(seed)
def dummy_random_state():
return np.random.RandomState(1)
def copy_random_state(random_state, force_copy=False):
if random_state == np.random and not force_copy:
return random_state
else:
rs_copy = dummy_random_state()
orig_state = random_state.get_state()
rs_copy.set_state(orig_state)
return rs_copy
def derive_random_state(random_state):
return derive_random_states(random_state, n=1)[0]
def derive_random_states(random_state, n=1):
seed = random_state.randint(0, 10**6, 1)[0]
return [ia.new_random_state(seed+i) for i in sm.xrange(n)]
def forward_random_state(random_state):
random_state.uniform()
def quokka(size=None):
img = ndimage.imread(QUOKKA_FP, mode="RGB")
if size is not None:
img = misc.imresize(img, size)
return img
def quokka_square(size=None):
img = ndimage.imread(QUOKKA_FP, mode="RGB")
img = img[0:643, 0:643]
if size is not None:
img = misc.imresize(img, size)
return img
def angle_between_vectors(v1, v2):
v1_u = v1 / np.linalg.norm(v1)
v2_u = v2 / np.linalg.norm(v2)
return np.arccos(np.clip(np.dot(v1_u, v2_u), -1.0, 1.0))
def draw_text(img, y, x, text, color=[0, 255, 0], size=25):
from PIL import Image, ImageDraw, ImageFont
assert img.dtype in [np.uint8, np.float32]
input_dtype = img.dtype
if img.dtype == np.float32:
img = img.astype(np.uint8)
is_float32 = False
for i in range(len(color)):
val = color[i]
if isinstance(val, float):
val = int(val * 255)
val = np.clip(val, 0, 255)
color[i] = val
shape = img.shape
img = Image.fromarray(img)
font = ImageFont.truetype(DEFAULT_FONT_FP, size)
context = ImageDraw.Draw(img)
context.text((x, y), text, fill=tuple(color), font=font)
img_np = np.asarray(img)
img_np.setflags(write=True)
if img_np.dtype != input_dtype:
img_np = img_np.astype(input_dtype)
return img_np
def imresize_many_images(images, sizes=None, interpolation=None):
s = images.shape
assert len(s) == 4, s
nb_images = s[0]
im_height, im_width = s[1], s[2]
nb_channels = s[3]
height, width = sizes[0], sizes[1]
if height == im_height and width == im_width:
return np.copy(images)
ip = interpolation
assert ip is None or ip in ["nearest", "linear", "area", "cubic", cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_AREA, cv2.INTER_CUBIC]
if ip is None:
if height > im_height or width > im_width:
ip = cv2.INTER_AREA
else:
ip = cv2.INTER_LINEAR
elif ip in ["nearest", cv2.INTER_NEAREST]:
ip = cv2.INTER_NEAREST
elif ip in ["linear", cv2.INTER_LINEAR]:
ip = cv2.INTER_LINEAR
elif ip in ["area", cv2.INTER_AREA]:
ip = cv2.INTER_AREA
elif ip in ["cubic", cv2.INTER_CUBIC]:
ip = cv2.INTER_CUBIC
else:
raise Exception("Invalid interpolation order")
result = np.zeros((nb_images, height, width, nb_channels), dtype=np.uint8)
for img_idx in sm.xrange(nb_images):
result_img = cv2.resize(images[img_idx], (width, height), interpolation=ip)
if len(result_img.shape) == 2:
result_img = result_img[:, :, np.newaxis]
result[img_idx] = result_img
return result | MIT License |
olitheolix/aiokubernetes | aiokubernetes/models/v1beta1_network_policy_ingress_rule.py | V1beta1NetworkPolicyIngressRule.ports | python | def ports(self, ports):
self._ports = ports | Sets the ports of this V1beta1NetworkPolicyIngressRule.
List of ports which should be made accessible on the pods selected for this rule. Each item in this list is combined using a logical OR. If this field is empty or missing, this rule matches all ports (traffic not restricted by port). If this field is present and contains at least one item, then this rule allows traffic only if the traffic matches at least one port in the list. # noqa: E501
:param ports: The ports of this V1beta1NetworkPolicyIngressRule. # noqa: E501
:type: list[V1beta1NetworkPolicyPort] | https://github.com/olitheolix/aiokubernetes/blob/266718b210dff2a9b2212183261ea89adf89115e/aiokubernetes/models/v1beta1_network_policy_ingress_rule.py#L92-L101 | import pprint
import re
from aiokubernetes.models.v1beta1_network_policy_peer import V1beta1NetworkPolicyPeer
from aiokubernetes.models.v1beta1_network_policy_port import V1beta1NetworkPolicyPort
class V1beta1NetworkPolicyIngressRule(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'_from': 'list[V1beta1NetworkPolicyPeer]',
'ports': 'list[V1beta1NetworkPolicyPort]'
}
attribute_map = {
'_from': 'from',
'ports': 'ports'
}
def __init__(self, _from=None, ports=None):
self.__from = None
self._ports = None
self.discriminator = None
if _from is not None:
self._from = _from
if ports is not None:
self.ports = ports
@property
def _from(self):
return self.__from
@_from.setter
def _from(self, _from):
self.__from = _from
@property
def ports(self):
return self._ports
@ports.setter | Apache License 2.0 |
bigmlcom/bigmler | bigmler/command.py | get_log_reversed | python | def get_log_reversed(file_name, stack_level):
lines_list = tail(open(file_name, "r"), window=(stack_level + 1))
return lines_list[0].decode(u.BIGML_SYS_ENCODING) | Reads the line of a log file that has the chosen stack_level | https://github.com/bigmlcom/bigmler/blob/91973ca1e752954302bf26bb22aa6874dc34ce69/bigmler/command.py#L76-L81 | import os
import shlex
import shutil
from bigml.multivote import PLURALITY
import bigmler.processing.args as a
import bigmler.utils as u
from bigmler.defaults import DEFAULTS_FILE
from bigmler.defaults import get_user_defaults
from bigmler.prediction import MAX_MODELS
from bigmler.parser import create_parser
COMMAND_LOG = ".bigmler"
DIRS_LOG = ".bigmler_dir_stack"
SESSIONS_LOG = "bigmler_sessions"
CONNECTION_OPTIONS = ["--username", "--api-key", "--org-project"]
def tail(file_handler, window=1):
bufsiz = 1024
file_handler.seek(0, 2)
file_bytes = file_handler.tell()
size = window + 1
block = -1
data = []
while size > 0 and file_bytes > 0:
if (file_bytes - bufsiz) > 0:
file_handler.seek(block * bufsiz, 2)
new_data = [file_handler.read(bufsiz)]
new_data.extend(data)
data = new_data
else:
file_handler.seek(0, 0)
data.append(file_handler.read(file_bytes))
lines_found = data[0].count('\n')
size -= lines_found
file_bytes -= bufsiz
block -= 1
return ''.join(data).splitlines()[-window:] | Apache License 2.0 |
chaffelson/whoville | whoville/cloudbreak/models/stack_v2_request.py | StackV2Request.tags | python | def tags(self):
return self._tags | Gets the tags of this StackV2Request.
stack related tags
:return: The tags of this StackV2Request.
:rtype: Tags | https://github.com/chaffelson/whoville/blob/f71fda629c9fd50d0a482120165ea5abcc754522/whoville/cloudbreak/models/stack_v2_request.py#L316-L324 | from pprint import pformat
from six import iteritems
import re
class StackV2Request(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'general': 'GeneralSettings',
'placement': 'PlacementSettings',
'platform_variant': 'str',
'ambari_version': 'str',
'hdp_version': 'str',
'parameters': 'dict(str, object)',
'inputs': 'dict(str, object)',
'custom_domain': 'CustomDomainSettings',
'tags': 'Tags',
'instance_groups': 'list[InstanceGroupsV2]',
'failure_policy': 'FailurePolicyRequest',
'stack_authentication': 'StackAuthentication',
'network': 'NetworkV2Request',
'image_settings': 'ImageSettings',
'flex_id': 'int',
'cluster': 'ClusterV2Request',
'gateway_port': 'int'
}
attribute_map = {
'general': 'general',
'placement': 'placement',
'platform_variant': 'platformVariant',
'ambari_version': 'ambariVersion',
'hdp_version': 'hdpVersion',
'parameters': 'parameters',
'inputs': 'inputs',
'custom_domain': 'customDomain',
'tags': 'tags',
'instance_groups': 'instanceGroups',
'failure_policy': 'failurePolicy',
'stack_authentication': 'stackAuthentication',
'network': 'network',
'image_settings': 'imageSettings',
'flex_id': 'flexId',
'cluster': 'cluster',
'gateway_port': 'gatewayPort'
}
def __init__(self, general=None, placement=None, platform_variant=None, ambari_version=None, hdp_version=None, parameters=None, inputs=None, custom_domain=None, tags=None, instance_groups=None, failure_policy=None, stack_authentication=None, network=None, image_settings=None, flex_id=None, cluster=None, gateway_port=None):
self._general = None
self._placement = None
self._platform_variant = None
self._ambari_version = None
self._hdp_version = None
self._parameters = None
self._inputs = None
self._custom_domain = None
self._tags = None
self._instance_groups = None
self._failure_policy = None
self._stack_authentication = None
self._network = None
self._image_settings = None
self._flex_id = None
self._cluster = None
self._gateway_port = None
self.general = general
if placement is not None:
self.placement = placement
if platform_variant is not None:
self.platform_variant = platform_variant
if ambari_version is not None:
self.ambari_version = ambari_version
if hdp_version is not None:
self.hdp_version = hdp_version
if parameters is not None:
self.parameters = parameters
if inputs is not None:
self.inputs = inputs
if custom_domain is not None:
self.custom_domain = custom_domain
if tags is not None:
self.tags = tags
self.instance_groups = instance_groups
if failure_policy is not None:
self.failure_policy = failure_policy
if stack_authentication is not None:
self.stack_authentication = stack_authentication
if network is not None:
self.network = network
if image_settings is not None:
self.image_settings = image_settings
if flex_id is not None:
self.flex_id = flex_id
if cluster is not None:
self.cluster = cluster
if gateway_port is not None:
self.gateway_port = gateway_port
@property
def general(self):
return self._general
@general.setter
def general(self, general):
if general is None:
raise ValueError("Invalid value for `general`, must not be `None`")
self._general = general
@property
def placement(self):
return self._placement
@placement.setter
def placement(self, placement):
self._placement = placement
@property
def platform_variant(self):
return self._platform_variant
@platform_variant.setter
def platform_variant(self, platform_variant):
self._platform_variant = platform_variant
@property
def ambari_version(self):
return self._ambari_version
@ambari_version.setter
def ambari_version(self, ambari_version):
self._ambari_version = ambari_version
@property
def hdp_version(self):
return self._hdp_version
@hdp_version.setter
def hdp_version(self, hdp_version):
self._hdp_version = hdp_version
@property
def parameters(self):
return self._parameters
@parameters.setter
def parameters(self, parameters):
self._parameters = parameters
@property
def inputs(self):
return self._inputs
@inputs.setter
def inputs(self, inputs):
self._inputs = inputs
@property
def custom_domain(self):
return self._custom_domain
@custom_domain.setter
def custom_domain(self, custom_domain):
self._custom_domain = custom_domain
@property | Apache License 2.0 |
samuel-buteau/universal-battery-database | cycling/models.py | Cycle.get_temperature | python | def get_temperature(self):
return float(self.cycling_file.database_file.valid_metadata.temperature) | Really important that this only be called when the file is known to be valid!!! | https://github.com/samuel-buteau/universal-battery-database/blob/55e64db74eb05cd9f0541a243bb540c0deba7d60/cycling/models.py#L409-L413 | from django.db import models
import base64
import numpy
import pickle
import datetime
from django.db.models import Q, Max, Min
import matplotlib.pyplot as plt
import filename_database.models
from io import BytesIO
from Key import Key
import plot_constants
CHARGE = 'chg'
DISCHARGE = 'dchg'
POLARITIES = [(CHARGE, 'CHARGE'), (DISCHARGE, 'DISCHARGE')]
def id_dict_from_id_list(id_list):
n = len(id_list)
id_dict = {}
for i in range(n):
id_dict[id_list[i]] = i
return id_dict
def get_files_for_cell_id(cell_id):
return CyclingFile.objects.filter(
database_file__deprecated = False
).filter(database_file__valid_metadata__cell_id = cell_id)
def clamp(a, x, b):
x = min(x, b)
x = max(x, a)
return x
def make_voltage_grid(min_v, max_v, n_samples, my_cell_ids):
if n_samples < 2:
n_samples = 2
all_cycs = Cycle.objects.filter(
discharge_group__cell_id__in = my_cell_ids, valid_cycle = True,
)
my_max = max(
all_cycs.aggregate(Max("chg_maximum_voltage"))[
"chg_maximum_voltage__max"
],
all_cycs.aggregate(Max("dchg_maximum_voltage"))[
"dchg_maximum_voltage__max"
]
)
my_min = min(
all_cycs.aggregate(Min("chg_minimum_voltage"))[
"chg_minimum_voltage__min"
],
all_cycs.aggregate(Min("dchg_minimum_voltage"))[
"dchg_minimum_voltage__min"
]
)
my_max = clamp(min_v, my_max, max_v)
my_min = clamp(min_v, my_min, max_v)
delta = (my_max - my_min) / float(n_samples - 1)
return numpy.array([my_min + delta * float(i) for i in range(n_samples)])
def make_current_grid(min_c, max_c, n_samples, my_cell_ids):
if n_samples < 2:
n_samples = 2
all_cycs = Cycle.objects.filter(
discharge_group__cell_id__in = my_cell_ids, valid_cycle = True,
)
my_max = max(
abs(
all_cycs.aggregate(Max("chg_maximum_current"))[
"chg_maximum_current__max"
]
),
abs(
all_cycs.aggregate(Max("dchg_maximum_current"))[
"dchg_maximum_current__max"
]
)
)
my_min = min(
abs(all_cycs.aggregate(Min("chg_minimum_current"))[
"chg_minimum_current__min"
]),
abs(all_cycs.aggregate(Min("dchg_minimum_current"))[
"dchg_minimum_current__min"
])
)
my_max = clamp(min_c, my_max, max_c)
my_min = clamp(min_c, my_min, max_c)
my_max = current_to_log_current(my_max)
my_min = current_to_log_current(my_min)
delta = (my_max - my_min) / float(n_samples - 1.)
return numpy.array([my_min + delta * float(i) for i in range(n_samples)])
def current_to_log_current(current):
return numpy.log(abs(current) + 1e-5)
def make_sign_grid():
return numpy.array([1., -1.])
def make_temperature_grid(min_t, max_t, n_samples, my_cell_ids):
if n_samples < 2:
n_samples = 2
my_files = CyclingFile.objects.filter(
database_file__deprecated = False
).filter(database_file__valid_metadata__cell_id__in = my_cell_ids)
my_max = my_files.aggregate(
Max("database_file__valid_metadata__temperature")
)["database_file__valid_metadata__temperature__max"]
my_min = my_files.aggregate(
Min("database_file__valid_metadata__temperature")
)["database_file__valid_metadata__temperature__min"]
my_max = clamp(min_t, my_max, max_t)
if my_max < 55.:
my_max = 55.
my_min = clamp(min_t, my_min, max_t)
if my_min > 20.:
my_min = 20.
delta = (my_max - my_min) / float(n_samples - 1)
return numpy.array([my_min + delta * float(i) for i in range(n_samples)])
def compute_from_database(
cell_id, lower_cycle = None, upper_cycle = None, valid = True,
):
files_cell_id = CyclingFile.objects.filter(
database_file__deprecated = False,
database_file__valid_metadata__cell_id = cell_id,
).order_by("database_file__last_modified")
polarity = DISCHARGE
groups = {}
for cycle_group in get_discharge_groups_from_cell_id(cell_id):
q_curves = []
for f in files_cell_id:
offset_cycle = f.database_file.valid_metadata.start_cycle
filters = Q(valid_cycle = valid) & Q(cycling_file = f)
if not (lower_cycle is None and upper_cycle is None):
filters = filters & Q(
cycle_number__range = (
lower_cycle - offset_cycle, upper_cycle - offset_cycle,
),
)
if polarity == DISCHARGE:
filters = Q(discharge_group = cycle_group) & filters
elif polarity == CHARGE:
filters = Q(charge_group = cycle_group) & filters
cycles = Cycle.objects.filter(filters)
if cycles.exists():
q_curves += list([
(
float(cyc.cycle_number + offset_cycle),
-cyc.dchg_total_capacity,
)
for cyc in cycles.order_by("cycle_number")
])
if len(q_curves) > 0:
groups[(
cycle_group.constant_rate, cycle_group.end_rate_prev,
cycle_group.end_rate, cycle_group.end_voltage,
cycle_group.end_voltage_prev, cycle_group.polarity,
)] = numpy.array(
q_curves,
dtype = [
(Key.N, 'f4'),
("last_cc_capacity", 'f4'),
],
)
return groups
def make_file_legends_and_vertical(
ax, cell_id, lower_cycle = None, upper_cycle = None, show_invalid = False,
vertical_barriers = None, list_all_options = None, leg1 = None,
):
files_cell_id = CyclingFile.objects.filter(
database_file__deprecated = False,
database_file__valid_metadata__cell_id = cell_id,
).order_by("database_file__last_modified")
file_leg = []
if len(files_cell_id) >= 1:
for f_i, f in enumerate(files_cell_id):
offset_cycle = f.database_file.valid_metadata.start_cycle
if show_invalid:
min_cycle = offset_cycle + Cycle.objects.filter(
cycling_file = f
).aggregate(Min("cycle_number"))["cycle_number__min"]
max_cycle = offset_cycle + Cycle.objects.filter(
cycling_file = f
).aggregate(Max("cycle_number"))["cycle_number__max"]
else:
min_cycle = offset_cycle + Cycle.objects.filter(
cycling_file = f, valid_cycle = True,
).aggregate(Min("cycle_number"))["cycle_number__min"]
max_cycle = offset_cycle + Cycle.objects.filter(
cycling_file = f, valid_cycle = True,
).aggregate(Max("cycle_number"))["cycle_number__max"]
if lower_cycle is not None:
if min_cycle < lower_cycle:
min_cycle = lower_cycle - .5
if min_cycle > upper_cycle:
continue
if upper_cycle is not None:
if max_cycle > upper_cycle:
max_cycle = upper_cycle + .5
if max_cycle < lower_cycle:
continue
bla = plt.axvspan(
min_cycle, max_cycle, ymin = .05 * (1 + f_i),
ymax = .05 * (2 + f_i),
facecolor = plot_constants.COLORS[f_i],
alpha = 0.1
)
file_leg.append(
(
bla,
"File {} Last Modif: {}-{}-{}. Size: {}KB".format(
f_i,
f.database_file.last_modified.year,
f.database_file.last_modified.month,
f.database_file.last_modified.day,
int(f.database_file.filesize / 1024),
),
)
)
if vertical_barriers is not None:
for index_set_i in range(len(vertical_barriers) + 1):
col = ["1.", ".1"][index_set_i % 2]
if index_set_i == 0 and len(vertical_barriers) > 0:
min_x, max_x = (lower_cycle - 0.5, vertical_barriers[0])
elif index_set_i == 0 and len(vertical_barriers) == 0:
min_x, max_x = (lower_cycle - 0.5, upper_cycle + 0.5)
elif index_set_i == len(vertical_barriers):
min_x, max_x = (vertical_barriers[-1], upper_cycle + 0.5)
else:
min_x, max_x = (
vertical_barriers[index_set_i - 1],
vertical_barriers[index_set_i],
)
print(min_x, max_x)
ax.axvspan(min_x, max_x, facecolor = col, alpha = 0.1)
plt.text(
0.9 * min_x + .1 * max_x,
.99 * ax.get_ylim()[0] + .01 * ax.get_ylim()[1],
list_all_options[index_set_i],
size = 18,
)
for index_set_i in range(len(list_all_options) - 1):
plt.axvline(
x = vertical_barriers[index_set_i],
color = "k", linestyle = "--",
)
ax.tick_params(
direction = "in", length = 7, width = 2, labelsize = 11,
bottom = True, top = True, left = True, right = True,
)
if len(file_leg) > 0:
if list_all_options is None:
loc = "lower left"
else:
loc = "upper left"
ax.legend([x[0] for x in file_leg], [x[1] for x in file_leg], loc = loc)
ax.add_artist(leg1)
def get_byte_image(fig, dpi):
buf = BytesIO()
plt.savefig(buf, format = "png", dpi = dpi)
image_base64 = base64.b64encode(
buf.getvalue()
).decode("utf-8").replace("\n", "")
buf.close()
plt.close(fig)
return image_base64
def get_discharge_groups_from_cell_id(cell_id):
return list(
CycleGroup.objects.filter(
cell_id = cell_id, polarity = DISCHARGE,
).order_by("constant_rate")
)
class CyclingFile(models.Model):
database_file = models.OneToOneField(
filename_database.models.DatabaseFile, on_delete = models.CASCADE,
)
import_time = models.DateTimeField(default = datetime.datetime(1970, 1, 1))
process_time = models.DateTimeField(default = datetime.datetime(1970, 1, 1))
def get_cycles_array(self, fil = Q()):
return numpy.array(
[
(
cyc.id,
cyc.cycle_number,
cyc.chg_total_capacity,
cyc.chg_average_voltage,
cyc.chg_minimum_voltage,
cyc.chg_maximum_voltage,
cyc.chg_average_current_by_capacity,
cyc.chg_average_current_by_voltage,
cyc.chg_minimum_current,
cyc.chg_maximum_current,
cyc.chg_duration,
cyc.dchg_total_capacity,
cyc.dchg_average_voltage,
cyc.dchg_minimum_voltage,
cyc.dchg_maximum_voltage,
cyc.dchg_average_current_by_capacity,
cyc.dchg_average_current_by_voltage,
cyc.dchg_minimum_current,
cyc.dchg_maximum_current,
cyc.dchg_duration,
)
for cyc in self.cycle_set.filter(fil).order_by("cycle_number")
],
dtype = [
("id", int),
("cycle_number", int),
("chg_total_capacity", float),
("chg_average_voltage", float),
("chg_minimum_voltage", float),
("chg_maximum_voltage", float),
("chg_average_current_by_capacity", float),
("chg_average_current_by_voltage", float),
("chg_minimum_current", float),
("chg_maximum_current", float),
("chg_duration", float),
("dchg_total_capacity", float),
("dchg_average_voltage", float),
("dchg_minimum_voltage", float),
("dchg_maximum_voltage", float),
("dchg_average_current_by_capacity", float),
("dchg_average_current_by_voltage", float),
("dchg_minimum_current", float),
("dchg_maximum_current", float),
("dchg_duration", float),
]
)
class CycleGroup(models.Model):
cell_id = models.IntegerField()
constant_rate = models.FloatField()
end_rate = models.FloatField()
end_rate_prev = models.FloatField()
end_voltage = models.FloatField()
end_voltage_prev = models.FloatField()
polarity = models.CharField(
max_length = 4, choices = POLARITIES, blank = True,
)
class Cycle(models.Model):
cycling_file = models.ForeignKey(CyclingFile, on_delete = models.CASCADE)
cycle_number = models.IntegerField()
def get_offset_cycle(self):
return self.cycle_number + float(
self.cycling_file.database_file.valid_metadata.start_cycle
) | Apache License 2.0 |
pantsbuild/pex | pex/third_party/__init__.py | install | python | def install(root=None, expose=None):
VendorImporter.install_vendored(prefix=import_prefix(), root=root, expose=expose) | Installs the default :class:`VendorImporter` for PEX vendored code.
Any distributions listed in ``expose`` will also be exposed for direct import; ie:
``install(expose=['setuptools'])`` would make both ``setuptools`` and ``wheel`` available for
import via ``from pex.third_party import setuptools, wheel``, but only ``setuptools`` could be
directly imported via ``import setuptools``.
NB: Even when exposed, vendored code is not the same as the same un-vendored code and will
properly fail type-tests against un-vendored types. For example, in an interpreter that has
``setuptools`` installed in its site-packages:
>>> from pkg_resources import Requirement
>>> orig_req = Requirement.parse('wheel==0.31.1')
>>> from pex import third_party
>>> third_party.install(expose=['setuptools'])
>>> import sys
>>> sys.modules.pop('pkg_resources')
<module 'pkg_resources' from '/home/jsirois/dev/pantsbuild/jsirois-pex/.tox/py27-repl/lib/python2.7/site-packages/pkg_resources/__init__.pyc'> # noqa
>>> from pkg_resources import Requirement
>>> new_req = Requirement.parse('wheel==0.31.1')
>>> new_req == orig_req
False
>>> new_req == Requirement.parse('wheel==0.31.1')
True
>>> type(orig_req)
<class 'pkg_resources.Requirement'>
>>> type(new_req)
<class 'pex.vendor._vendored.setuptools.pkg_resources.Requirement'>
>>> from pex.third_party.pkg_resources import Requirement as PrefixedRequirement
>>> new_req == PrefixedRequirement.parse('wheel==0.31.1')
True
>>> sys.modules.pop('pkg_resources')
<module 'pex.vendor._vendored.setuptools.pkg_resources' from 'pex/vendor/_vendored/setuptools/pkg_resources/__init__.pyc'> # noqa
>>> sys.modules.pop('pex.third_party.pkg_resources')
<module 'pex.vendor._vendored.setuptools.pkg_resources' from 'pex/vendor/_vendored/setuptools/pkg_resources/__init__.pyc'> # noqa
>>>
:param expose: A list of vendored distribution names to expose directly on the ``sys.path``.
:type expose: list of str
:raise: :class:`ValueError` if any distributions to expose cannot be found. | https://github.com/pantsbuild/pex/blob/a2eb72e4f627ce0630cd120b5411b2fda7974ce9/pex/third_party/__init__.py#L423-L465 | from __future__ import absolute_import
import contextlib
import importlib
import os
import re
import shutil
import sys
import zipfile
from collections import OrderedDict, namedtuple
from contextlib import closing
def _tracer():
from pex.tracer import TRACER
return TRACER
class _Loader(namedtuple("_Loader", ["module_name", "vendor_module_name"])):
def load_module(self, fullname):
assert fullname in (
self.module_name,
self.vendor_module_name,
), "{} got an unexpected module {}".format(self, fullname)
vendored_module = importlib.import_module(self.vendor_module_name)
sys.modules[fullname] = vendored_module
_tracer().log("{} imported via {}".format(fullname, self), V=9)
return vendored_module
def unload(self):
for mod in (self.module_name, self.vendor_module_name):
if mod in sys.modules:
sys.modules.pop(mod)
_tracer().log("un-imported {}".format(mod), V=9)
submod_prefix = mod + "."
for submod in sorted(m for m in sys.modules.keys() if m.startswith(submod_prefix)):
sys.modules.pop(submod)
_tracer().log("un-imported {}".format(submod), V=9)
class _Importable(namedtuple("_Importable", ["module", "is_pkg", "path", "prefix"])):
_exposed = False
def expose(self):
self._exposed = True
importlib.import_module(self.module)
_tracer().log("Exposed {}".format(self), V=3)
def loader_for(self, fullname):
if fullname.startswith(self.prefix + "."):
target = fullname[len(self.prefix + ".") :]
else:
if not self._exposed:
return None
target = fullname
if target == self.module or self.is_pkg and target.startswith(self.module + "."):
vendor_path = os.path.join(self.path, *target.split("."))
vendor_module_name = vendor_path.replace(os.sep, ".")
return _Loader(fullname, vendor_module_name)
class _DirIterator(namedtuple("_DirIterator", ["rootdir"])):
def iter_root_modules(self, relpath):
for entry in self._iter_root(relpath):
if os.path.isfile(entry):
name, ext = os.path.splitext(os.path.basename(entry))
if ext == ".py" and name != "__init__":
yield name
def iter_root_packages(self, relpath):
for entry in self._iter_root(relpath):
if os.path.isfile(os.path.join(entry, "__init__.py")):
yield os.path.basename(entry)
def _iter_root(self, relpath):
root = os.path.join(self.rootdir, relpath)
if not os.path.isdir(root):
return
for entry in os.listdir(root):
yield os.path.join(root, entry)
class _ZipIterator(namedtuple("_ZipIterator", ["zipfile_path", "prefix"])):
@classmethod
def containing(cls, root):
prefix = ""
path = root
while path:
if zipfile.is_zipfile(path):
return cls(zipfile_path=path, prefix="{}/".format(prefix) if prefix else "")
path_base = os.path.basename(path)
prefix = "{}/{}".format(path_base, prefix) if prefix else path_base
path = os.path.dirname(path)
raise ValueError("Could not find the zip file housing {}".format(root))
def iter_root_modules(self, relpath):
for package in self._filter_names(relpath, r"(?P<module>[^/]+)\.py", "module"):
if package != "__init__":
yield package
def iter_root_packages(self, relpath):
for package in self._filter_names(relpath, r"(?P<package>[^/]+)/__init__\.py", "package"):
yield package
def _filter_names(self, relpath, pattern, group):
relpath_pat = "" if not relpath else "{}/".format(relpath.replace(os.sep, "/"))
pat = re.compile(r"^{}{}{}$".format(self.prefix, relpath_pat, pattern))
with contextlib.closing(zipfile.ZipFile(self.zipfile_path)) as zf:
for name in zf.namelist():
match = pat.match(name)
if match:
yield match.group(group)
class VendorImporter(object):
@staticmethod
def _abs_root(root=None):
from pex import vendor
return os.path.abspath(root or vendor.VendorSpec.ROOT)
@classmethod
def _iter_importables(cls, root, path_items, prefix):
module_iterator = (
_DirIterator(root) if os.path.isdir(root) else _ZipIterator.containing(root)
)
for path_item in path_items:
for module_name in module_iterator.iter_root_modules(path_item):
yield _Importable(module=module_name, is_pkg=False, path=path_item, prefix=prefix)
for package_name in module_iterator.iter_root_packages(path_item):
yield _Importable(module=package_name, is_pkg=True, path=path_item, prefix=prefix)
@classmethod
def _iter_all_installed_vendor_importers(cls):
for importer in sys.meta_path:
if isinstance(importer, cls):
yield importer
@classmethod
def _iter_installed_vendor_importers(cls, prefix, root, path_items):
for importer in cls._iter_all_installed_vendor_importers():
if importer._importables and importer._importables[0].prefix == prefix:
if importer._root == root:
if {importable.path for importable in importer._importables} == set(path_items):
yield importer
@classmethod
def install_vendored(cls, prefix, root=None, expose=None):
from pex import vendor
root = cls._abs_root(root)
vendored_path_items = [spec.relpath for spec in vendor.iter_vendor_specs()]
installed = list(cls._iter_installed_vendor_importers(prefix, root, vendored_path_items))
assert (
len(installed) <= 1
), "Unexpected extra importers installed for vendored code:\n\t{}".format(
"\n\t".join(map(str, installed))
)
if installed:
vendor_importer = installed[0]
else:
vendor_importer = cls.install(
uninstallable=True, prefix=prefix, path_items=vendored_path_items, root=root
)
if expose:
exposed_paths = []
for path in cls.expose(expose, root):
sys.path.insert(0, path)
exposed_paths.append(os.path.relpath(path, root))
vendor_importer._expose(exposed_paths)
@classmethod
def expose(cls, dists, root=None):
from pex import vendor
root = cls._abs_root(root)
def iter_available():
yield "pex", root
for spec in vendor.iter_vendor_specs():
yield spec.key, spec.relpath
path_by_key = OrderedDict(
(key, relpath) for key, relpath in iter_available() if key in dists
)
unexposed = set(dists) - set(path_by_key.keys())
if unexposed:
raise ValueError(
"The following vendored dists are not available to expose: {}".format(
", ".join(sorted(unexposed))
)
)
exposed_paths = path_by_key.values()
for exposed_path in exposed_paths:
yield os.path.join(root, exposed_path)
@classmethod
def install(cls, uninstallable, prefix, path_items, root=None):
root = cls._abs_root(root)
importables = tuple(cls._iter_importables(root=root, path_items=path_items, prefix=prefix))
vendor_importer = cls(root=root, importables=importables, uninstallable=uninstallable)
sys.meta_path.insert(0, vendor_importer)
_tracer().log("Installed {}".format(vendor_importer), V=3)
return vendor_importer
@classmethod
def uninstall_all(cls):
for vendor_importer in cls._iter_all_installed_vendor_importers():
vendor_importer.uninstall()
def __init__(self, root, importables, uninstallable=True):
self._root = root
self._importables = importables
self._uninstallable = uninstallable
self._loaders = []
def uninstall(self):
if not self._uninstallable:
_tracer().log("Not uninstalling {}".format(self), V=9)
return
if self in sys.meta_path:
sys.meta_path.remove(self)
maybe_exposed = frozenset(
os.path.join(self._root, importable.path) for importable in self._importables
)
sys.path[:] = [path_item for path_item in sys.path if path_item not in maybe_exposed]
for loader in self._loaders:
loader.unload()
_tracer().log("Uninstalled {}".format(self), V=3)
def find_module(self, fullname, path=None):
for importable in self._importables:
loader = importable.loader_for(fullname)
if loader is not None:
self._loaders.append(loader)
return loader
return None
def _expose(self, paths):
for importable in self._importables:
if importable.path in paths:
importable.expose()
def __repr__(self):
return "{classname}(root={root!r}, importables={importables!r})".format(
classname=self.__class__.__name__, root=self._root, importables=self._importables
)
class IsolationResult(namedtuple("IsolatedPex", ["pex_hash", "chroot_path"])):
_ISOLATED = None
def isolated():
global _ISOLATED
if _ISOLATED is None:
from pex import vendor
from pex.common import atomic_directory, is_pyc_temporary_file
from pex.util import CacheHelper
from pex.variables import ENV
from pex.third_party.pkg_resources import resource_isdir, resource_listdir, resource_stream
module = "pex"
vendor_lockfiles = tuple(
os.path.join(os.path.relpath(vendor_spec.relpath, module), "constraints.txt")
for vendor_spec in vendor.iter_vendor_specs()
)
def recursive_copy(srcdir, dstdir):
os.mkdir(dstdir)
for entry_name in resource_listdir(module, srcdir):
if not entry_name:
continue
src_entry = "{}/{}".format(srcdir, entry_name) if srcdir else entry_name
dst_entry = os.path.join(dstdir, entry_name)
if resource_isdir(module, src_entry):
if os.path.basename(src_entry) == "__pycache__":
continue
recursive_copy(src_entry, dst_entry)
elif (
not entry_name.endswith(".pyc")
and not is_pyc_temporary_file(entry_name)
and src_entry not in vendor_lockfiles
):
with open(dst_entry, "wb") as fp:
with closing(resource_stream(module, src_entry)) as resource:
shutil.copyfileobj(resource, fp)
pex_path = os.path.join(vendor.VendorSpec.ROOT, "pex")
with _tracer().timed("Hashing pex"):
assert os.path.isdir(pex_path), (
"Expected the `pex` module to be available via an installed distribution or "
"else via an installed or loose PEX. Loaded the `pex` module from {} and argv0 is "
"{}.".format(pex_path, sys.argv[0])
)
dir_hash = CacheHelper.dir_hash(pex_path)
isolated_dir = os.path.join(ENV.PEX_ROOT, "isolated", dir_hash)
with _tracer().timed("Isolating pex"):
with atomic_directory(isolated_dir, exclusive=True) as chroot:
if not chroot.is_finalized:
with _tracer().timed("Extracting pex to {}".format(isolated_dir)):
recursive_copy("", os.path.join(chroot.work_dir, "pex"))
_ISOLATED = IsolationResult(pex_hash=dir_hash, chroot_path=isolated_dir)
return _ISOLATED
def uninstall():
VendorImporter.uninstall_all()
def import_prefix():
return __name__ | Apache License 2.0 |
ali5h/rules_pip | third_party/py/click/decorators.py | password_option | python | def password_option(*param_decls, **attrs):
def decorator(f):
attrs.setdefault("prompt", True)
attrs.setdefault("confirmation_prompt", True)
attrs.setdefault("hide_input", True)
return option(*(param_decls or ("--password",)), **attrs)(f)
return decorator | Shortcut for password prompts.
This is equivalent to decorating a function with :func:`option` with
the following parameters::
@click.command()
@click.option('--password', prompt=True, confirmation_prompt=True,
hide_input=True)
def changeadmin(password):
pass | https://github.com/ali5h/rules_pip/blob/fb02cb7bf5c03bc8cd4269679e4aea2e1839b501/third_party/py/click/decorators.py#L231-L250 | import inspect
import sys
from functools import update_wrapper
from ._compat import iteritems
from ._unicodefun import _check_for_unicode_literals
from .core import Argument
from .core import Command
from .core import Group
from .core import Option
from .globals import get_current_context
from .utils import echo
def pass_context(f):
def new_func(*args, **kwargs):
return f(get_current_context(), *args, **kwargs)
return update_wrapper(new_func, f)
def pass_obj(f):
def new_func(*args, **kwargs):
return f(get_current_context().obj, *args, **kwargs)
return update_wrapper(new_func, f)
def make_pass_decorator(object_type, ensure=False):
def decorator(f):
def new_func(*args, **kwargs):
ctx = get_current_context()
if ensure:
obj = ctx.ensure_object(object_type)
else:
obj = ctx.find_object(object_type)
if obj is None:
raise RuntimeError(
"Managed to invoke callback without a context"
" object of type '{}' existing".format(object_type.__name__)
)
return ctx.invoke(f, obj, *args, **kwargs)
return update_wrapper(new_func, f)
return decorator
def _make_command(f, name, attrs, cls):
if isinstance(f, Command):
raise TypeError("Attempted to convert a callback into a command twice.")
try:
params = f.__click_params__
params.reverse()
del f.__click_params__
except AttributeError:
params = []
help = attrs.get("help")
if help is None:
help = inspect.getdoc(f)
if isinstance(help, bytes):
help = help.decode("utf-8")
else:
help = inspect.cleandoc(help)
attrs["help"] = help
_check_for_unicode_literals()
return cls(
name=name or f.__name__.lower().replace("_", "-"),
callback=f,
params=params,
**attrs
)
def command(name=None, cls=None, **attrs):
if cls is None:
cls = Command
def decorator(f):
cmd = _make_command(f, name, attrs, cls)
cmd.__doc__ = f.__doc__
return cmd
return decorator
def group(name=None, **attrs):
attrs.setdefault("cls", Group)
return command(name, **attrs)
def _param_memo(f, param):
if isinstance(f, Command):
f.params.append(param)
else:
if not hasattr(f, "__click_params__"):
f.__click_params__ = []
f.__click_params__.append(param)
def argument(*param_decls, **attrs):
def decorator(f):
ArgumentClass = attrs.pop("cls", Argument)
_param_memo(f, ArgumentClass(param_decls, **attrs))
return f
return decorator
def option(*param_decls, **attrs):
def decorator(f):
option_attrs = attrs.copy()
if "help" in option_attrs:
option_attrs["help"] = inspect.cleandoc(option_attrs["help"])
OptionClass = option_attrs.pop("cls", Option)
_param_memo(f, OptionClass(param_decls, **option_attrs))
return f
return decorator
def confirmation_option(*param_decls, **attrs):
def decorator(f):
def callback(ctx, param, value):
if not value:
ctx.abort()
attrs.setdefault("is_flag", True)
attrs.setdefault("callback", callback)
attrs.setdefault("expose_value", False)
attrs.setdefault("prompt", "Do you want to continue?")
attrs.setdefault("help", "Confirm the action without prompting.")
return option(*(param_decls or ("--yes",)), **attrs)(f)
return decorator | MIT License |
suomichain/suomi-core | consensus/fastpow/core/suomi_poet/poet_consensus/poet_settings_view.py | PoetSettingsView.signup_commit_maximum_delay | python | def signup_commit_maximum_delay(self):
if self._signup_commit_maximum_delay is None:
self._signup_commit_maximum_delay = self._get_config_setting(
name='suomi.poet.signup_commit_maximum_delay',
value_type=int,
default_value=PoetSettingsView.
_SIGNUP_COMMIT_MAXIMUM_DELAY_,
validate_function=lambda value: value >= 0)
return self._signup_commit_maximum_delay | Return the signup commit maximum delay if config setting exists and
is valid, otherwise return the default.
The signup commit maximum delay is the maximum allowed number of blocks
between the head of the block chain when the signup information was
created and subsequent validator registry transaction was submitted and
when said transaction was committed to the blockchain. For example, if
the signup commit maximum delay is one and the signup information's
containing validator registry transaction was created/submitted when
the blockchain head was block number 100, then the validator registry
transaction must have been committed either in block 101 (i.e., zero
blocks between 100 and 101) or block 102 (i.e., one block between 100
and 102). | https://github.com/suomichain/suomi-core/blob/dada0499ddc2b4b4a5d9a975de5af63b87ded9d2/consensus/fastpow/core/suomi_poet/poet_consensus/poet_settings_view.py#L230-L254 | import math
import logging
from suomi_validator.state.settings_view import SettingsView
LOGGER = logging.getLogger(__name__)
class PoetSettingsView(object):
_BLOCK_CLAIM_DELAY_ = 1
_ENCLAVE_MODULE_NAME_ = 'suomi_poet_simulator.poet_enclave_simulator.poet_enclave_simulator'
_INITIAL_WAIT_TIME_ = 3000.0
_KEY_BLOCK_CLAIM_LIMIT_ = 250
_POPULATION_ESTIMATE_SAMPLE_SIZE_ = 50
_REGISTRATION_RETRY_DELAY_ = 10
_SIGNUP_COMMIT_MAXIMUM_DELAY_ = 10
_TARGET_WAIT_TIME_ = 20.0
_ZTEST_MAXIMUM_WIN_DEVIATION_ = 3.075
_ZTEST_MINIMUM_WIN_COUNT_ = 3
def __init__(self, state_view):
self._settings_view = SettingsView(state_view)
self._block_claim_delay = None
self._enclave_module_name = None
self._initial_wait_time = None
self._key_block_claim_limit = None
self._population_estimate_sample_size = None
self._registration_retry_delay = None
self._signup_commit_maximum_delay = None
self._target_wait_time = None
self._ztest_maximum_win_deviation = None
self._ztest_minimum_win_count = None
def _get_config_setting(self,
name,
value_type,
default_value,
validate_function=None):
try:
value = self._settings_view.get_setting(
key=name,
default_value=default_value,
value_type=value_type)
if validate_function is not None:
if not validate_function(value):
raise ValueError(
'Value ({}) for {} is not valid'.format(
value,
name))
except ValueError:
value = default_value
return value
@property
def block_claim_delay(self):
if self._block_claim_delay is None:
self._block_claim_delay = self._get_config_setting(
name='suomi.poet.block_claim_delay',
value_type=int,
default_value=PoetSettingsView._BLOCK_CLAIM_DELAY_,
validate_function=lambda value: value >= 0)
return self._block_claim_delay
@property
def enclave_module_name(self):
if self._enclave_module_name is None:
self._enclave_module_name = self._get_config_setting(
name='suomi.poet.enclave_module_name',
value_type=str,
default_value=PoetSettingsView._ENCLAVE_MODULE_NAME_,
validate_function=lambda value: value)
return self._enclave_module_name
@property
def initial_wait_time(self):
if self._initial_wait_time is None:
self._initial_wait_time = self._get_config_setting(
name='suomi.poet.initial_wait_time',
value_type=float,
default_value=PoetSettingsView._INITIAL_WAIT_TIME_,
validate_function=lambda value:
math.isfinite(value) and value >= 0)
return self._initial_wait_time
@property
def key_block_claim_limit(self):
if self._key_block_claim_limit is None:
self._key_block_claim_limit = self._get_config_setting(
name='suomi.poet.key_block_claim_limit',
value_type=int,
default_value=PoetSettingsView._KEY_BLOCK_CLAIM_LIMIT_,
validate_function=lambda value: value > 0)
return self._key_block_claim_limit
@property
def population_estimate_sample_size(self):
if self._population_estimate_sample_size is None:
self._population_estimate_sample_size = self._get_config_setting(
name='suomi.poet.population_estimate_sample_size',
value_type=int,
default_value=PoetSettingsView.
_POPULATION_ESTIMATE_SAMPLE_SIZE_,
validate_function=lambda value: value > 0)
return self._population_estimate_sample_size
@property
def registration_retry_delay(self):
if self._registration_retry_delay is None:
self._registration_retry_delay = self._get_config_setting(
name='suomi.poet._registration_retry_delay',
value_type=int,
default_value=PoetSettingsView.
_REGISTRATION_RETRY_DELAY_,
validate_function=lambda value: value > 1)
return self._registration_retry_delay
@property | Apache License 2.0 |
morganstanley/testplan | testplan/parser.py | TestplanParser.process_args | python | def process_args(self, namespace):
args = dict(**vars(namespace))
filter_args = filtering.parse_filter_args(
parsed_args=args, arg_names=("tags", "tags_all", "patterns")
)
if filter_args:
args["test_filter"] = filter_args
if args.get("shuffle"):
args["test_sorter"] = ordering.ShuffleSorter(
seed=args["shuffle_seed"], shuffle_type=args["shuffle"]
)
if args["verbose"] or args["debug"]:
args["stdout_style"] = styles.Style(
styles.StyleEnum.ASSERTION_DETAIL,
styles.StyleEnum.ASSERTION_DETAIL,
)
if args["debug"]:
args["logger_level"] = logger.DEBUG
elif args["verbose"]:
args["logger_level"] = logger.INFO
if args["list"] and not args["test_lister"]:
args["test_lister"] = listing.NameLister()
return args | Override this method to add extra argument processing logic.
Can be used for interdependent argument processing.
Testplan will use the result dictionary
to initialize the configuration. | https://github.com/morganstanley/testplan/blob/8cb6a0ed0682698b2d6af82382fbb66d8d9e3ff7/testplan/parser.py#L330-L371 | import argparse
import copy
import sys
from testplan.common.utils import logger
from testplan import defaults
from testplan.report.testing import styles, ReportTagsAction
from testplan.testing import listing, filtering, ordering
class HelpParser(argparse.ArgumentParser):
def error(self, message):
error_header = "=" * 30 + " ERROR " + "=" * 30
error_ctx = [
"\n",
error_header,
"\n",
"\n",
message,
"\n",
"=" * len(error_header),
"\n",
]
self.print_help()
sys.stderr.writelines(error_ctx)
sys.exit(2)
class TestplanParser(object):
def __init__(self, name, default_options):
self.cmd_line = copy.copy(sys.argv)
self.name = name
self._default_options = default_options
def add_arguments(self, parser):
pass
def generate_parser(self):
epilog = ""
parser = HelpParser(
"Test Plan ({})".format(self.name),
epilog,
formatter_class=argparse.RawTextHelpFormatter,
)
parser.add_argument(
"--list",
action="store_true",
default=False,
help="Shortcut for `--info name`.",
)
parser.add_argument(
"--info",
dest="test_lister",
metavar="TEST_INFO",
**listing.listing_registry.to_arg().get_parser_context(
default=self._default_options["test_lister"]
)
)
general_group = parser.add_argument_group("General")
general_group.add_argument(
"--runpath",
type=str,
metavar="PATH",
default=self._default_options["runpath"],
help="Path under which all temp files and logs will be created.",
)
general_group.add_argument(
"--timeout",
metavar="TIMEOUT",
default=self._default_options["timeout"],
type=int,
help="Timeout value in seconds to kill Testplan and all child "
"processes, default to 14400s(4h), set to 0 to disable.",
)
general_group.add_argument(
"-i",
"--interactive",
dest="interactive_port",
nargs="?",
default=self._default_options["interactive_port"],
const=defaults.WEB_SERVER_PORT,
type=int,
help="Enable interactive mode. A port may be specified, otherwise "
"the port defaults to {}.".format(defaults.WEB_SERVER_PORT),
)
filter_group = parser.add_argument_group("Filtering")
filter_group.add_argument(
"--patterns",
action=filtering.PatternAction,
default=[],
nargs="+",
metavar="TEST_FILTER",
type=str,
help="""\
Test filter, supports glob notation & multiple arguments.
--pattern <Multitest Name>
--pattern <Multitest Name 1> <Multitest Name 2>
--pattern <Multitest Name 1> --pattern <Multitest Name 2>
--pattern <Multitest Name>:<Suite Name>
--pattern <Multitest Name>:<Suite Name>:<Testcase name>
--pattern <Multitest Name>:*:<Testcase name>
--pattern *:<Suite Name>:<Testcase name>""",
)
filter_group.add_argument(
"--tags",
action=filtering.TagsAction,
default=[],
nargs="+",
metavar="TEST_FILTER",
help="""\
Test filter, runs tests that match ANY of the given tags.
--tags <tag_name_1> --tags <tag_name 2>
--tags <tag_name_1> <tag_category_1>=<tag_name_2>""",
)
filter_group.add_argument(
"--tags-all",
action=filtering.TagsAllAction,
default=[],
nargs="+",
metavar="TEST_FILTER",
help="""\
Test filter, runs tests that match ALL of the given tags.
--tags-all <tag_name_1> --tags <tag_name 2>
--tags-all <tag_name_1> <tag_category_1>=<tag_name_2>""",
)
ordering_group = parser.add_argument_group("Ordering")
ordering_group.add_argument(
"--shuffle",
nargs="+",
type=str,
default=self._default_options["shuffle"],
choices=[enm.value for enm in ordering.SortType],
help="Shuffle execution order",
)
ordering_group.add_argument(
"--shuffle-seed",
metavar="SEED",
type=float,
default=self._default_options["shuffle_seed"],
help="Seed shuffle with a specific value, useful to "
"reproduce a particular order.",
)
report_group = parser.add_argument_group("Reporting")
report_group.add_argument(
"--stdout-style",
**styles.StyleArg.get_parser_context(
default=self._default_options["stdout_style"]
)
)
report_group.add_argument(
"--pdf",
dest="pdf_path",
default=self._default_options["pdf_path"],
metavar="PATH",
help="Path for PDF report.",
)
report_group.add_argument(
"--json",
dest="json_path",
default=self._default_options["json_path"],
metavar="PATH",
help="Path for JSON report.",
)
report_group.add_argument(
"--xml",
dest="xml_dir",
default=self._default_options["xml_dir"],
metavar="DIRECTORY",
help="Directory path for XML reports.",
)
report_group.add_argument(
"--http",
dest="http_url",
default=self._default_options["http_url"],
metavar="URL",
help="Web URL for posting report.",
)
report_group.add_argument(
"--report-dir",
default=self._default_options["report_dir"],
metavar="PATH",
help="Target directory for tag filtered report output.",
)
report_group.add_argument(
"--pdf-style",
**styles.StyleArg.get_parser_context(
default=self._default_options["pdf_style"]
)
)
report_group.add_argument(
"-v",
"--verbose",
action="store_true",
default=self._default_options["verbose"],
help="Enable verbose mode that will also set the stdout-style "
'option to "detailed".',
)
report_group.add_argument(
"-d",
"--debug",
action="store_true",
default=self._default_options["debug"],
help="Enable debug mode.",
)
report_group.add_argument(
"-b",
"--browse",
action="store_true",
default=self._default_options["browse"],
help="Automatically open report to browse. Must be specified "
'with "--ui" to open it locally, or upload it to a web server '
"with a customized exporter which has a `report_url`, or there "
"will be nothing to open.",
)
report_group.add_argument(
"-u",
"--ui",
dest="ui_port",
nargs="?",
default=self._default_options["ui_port"],
const=defaults.WEB_SERVER_PORT,
type=int,
help="Start the web server to view the Testplan UI. A port can be "
"specified, otherwise defaults to {}. A JSON report will be "
"saved locally.".format(self._default_options["ui_port"]),
)
report_group.add_argument(
"--report-tags",
nargs="+",
action=ReportTagsAction,
default=self._default_options["report_tags"],
metavar="REPORT_FILTER",
help="""\
Report filter, generates a separate report (PDF by default)
that match ANY of the given tags.
--report-tags <tag_name_1> --report-tags <tag_name 2>
--report-tags <tag_name_1> <tag_category_1>=<tag_name_2>""",
)
report_group.add_argument(
"--report-tags-all",
nargs="+",
action=ReportTagsAction,
default=self._default_options["report_tags_all"],
metavar="REPORT_FILTER",
help="""\
Report filter, generates a separate report (PDF by default)
that match ALL of the given tags.
--report-tags-all <tag_name_1> --report-tags-all <tag_name 2>
--report-tags-all <tag_name_1> <tag_category_1>=<tag_name_2>""",
)
report_group.add_argument(
"--file-log-level",
choices=LogLevelAction.LEVELS.keys(),
default=self._default_options["file_log_level"],
action=LogLevelAction,
help="Specify log level for file logs. Set to None to disable "
"file logging.",
)
report_group.add_argument(
"--label",
default=None,
help="Label the test report with the given name, "
'useful to categorize or classify similar reports (aka "run-id").',
)
self.add_arguments(parser)
return parser
def parse_args(self):
return self.generate_parser().parse_args() | Apache License 2.0 |
theislab/scvelo | scvelo/core/_arithmetic.py | prod_sum | python | def prod_sum(
a1: Union[ndarray, spmatrix], a2: Union[ndarray, spmatrix], axis: Optional[int]
) -> ndarray:
if issparse(a1):
return a1.multiply(a2).sum(axis=axis).A1
elif axis == 0:
return np.einsum("ij, ij -> j", a1, a2) if a1.ndim > 1 else (a1 * a2).sum()
elif axis == 1:
return np.einsum("ij, ij -> i", a1, a2) if a1.ndim > 1 else (a1 * a2).sum() | Take sum of product of two arrays along given axis.
Arguments
---------
a1
First array.
a2
Second array.
axis
Axis along which to sum elements. If `None`, all elements will be summed.
Defaults to `None`.
Returns
-------
ndarray
Sum of product of arrays along given axis. | https://github.com/theislab/scvelo/blob/1805ab4a72d3f34496f0ef246500a159f619d3a2/scvelo/core/_arithmetic.py#L52-L78 | import warnings
from typing import Optional, Union
import numpy as np
from numpy import ndarray
from scipy.sparse import issparse, spmatrix
def clipped_log(x: ndarray, lb: float = 0, ub: float = 1, eps: float = 1e-6) -> ndarray:
return np.log(np.clip(x, lb + eps, ub - eps))
def invert(x: ndarray) -> ndarray:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
x_inv = 1 / x * (x != 0)
return x_inv | BSD 3-Clause New or Revised License |
unofficial-memsource/memsource-cli-client | memsource_cli/models/workflow_step_reference.py | WorkflowStepReference.id | python | def id(self):
return self._id | Gets the id of this WorkflowStepReference. # noqa: E501
:return: The id of this WorkflowStepReference. # noqa: E501
:rtype: str | https://github.com/unofficial-memsource/memsource-cli-client/blob/a6639506b74e95476da87f4375953448b76ea90c/memsource_cli/models/workflow_step_reference.py#L82-L89 | import pprint
import re
import six
class WorkflowStepReference(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'name': 'str',
'id': 'str',
'order': 'int'
}
attribute_map = {
'name': 'name',
'id': 'id',
'order': 'order'
}
def __init__(self, name=None, id=None, order=None):
self._name = None
self._id = None
self._order = None
self.discriminator = None
if name is not None:
self.name = name
if id is not None:
self.id = id
if order is not None:
self.order = order
@property
def name(self):
return self._name
@name.setter
def name(self, name):
self._name = name
@property | Apache License 2.0 |
lvapeab/nmt-keras | demo-web/sample_server.py | NMTSampler.generate_sample | python | def generate_sample(self, source_sentence, validated_prefix=None, max_N=5, isle_indices=None,
filtered_idx2word=None, unk_indices=None, unk_words=None):
logger.log(2, 'Beam size: %d' % (self.params_prediction['beam_size']))
generate_sample_start_time = time.time()
if unk_indices is None:
unk_indices = []
if unk_words is None:
unk_words = []
tokenization_start_time = time.time()
tokenized_input = self.general_tokenize_f(source_sentence, escape=False)
tokenized_input = self.model_tokenize_f(tokenized_input)
tokenization_end_time = time.time()
logger.log(2, 'tokenization time: %.6f' % (tokenization_end_time - tokenization_start_time))
parse_input_start_time = time.time()
src_seq = self.dataset.loadText([tokenized_input],
vocabularies=self.dataset.vocabulary[self.params['INPUTS_IDS_DATASET'][0]],
max_len=self.params['MAX_INPUT_TEXT_LEN'],
offset=0,
fill=self.dataset.fill_text[self.params['INPUTS_IDS_DATASET'][0]],
pad_on_batch=self.dataset.pad_on_batch[self.params['INPUTS_IDS_DATASET'][0]],
words_so_far=False,
loading_X=True)[0][0]
parse_input_end_time = time.time()
logger.log(2, 'parse_input time: %.6f' % (parse_input_end_time - parse_input_start_time))
fixed_words_user = OrderedDict()
unk_words_dict = OrderedDict()
if validated_prefix is not None:
next_correction = validated_prefix[-1]
if next_correction == self.eos_symbol:
return validated_prefix[:-1].decode('utf-8')
prefix_tokenization_start_time = time.time()
tokenized_validated_prefix = self.general_tokenize_f(validated_prefix, escape=False)
tokenized_validated_prefix = self.model_tokenize_f(tokenized_validated_prefix)
prefix_tokenization_end_time = time.time()
logger.log(2, 'prefix_tokenization time: %.6f' % (prefix_tokenization_end_time - prefix_tokenization_start_time))
word_validation_start_time = time.time()
for pos, word in enumerate(tokenized_validated_prefix.split()):
fixed_words_user[pos] = self.word2index_y.get(word, self.unk_id)
if self.word2index_y.get(word) is None:
unk_words_dict[pos] = word
word_validation_end_time = time.time()
logger.log(2, 'word_validation time: %.6f' % (word_validation_end_time - word_validation_start_time))
constrain_search_start_time = time.time()
last_user_word_pos = list(fixed_words_user.keys())[-1]
if next_correction != u' ':
last_user_word = tokenized_validated_prefix.split()[-1]
filtered_idx2word = dict((self.word2index_y[candidate_word], candidate_word)
for candidate_word in self.word2index_y if candidate_word[:len(last_user_word)] == last_user_word)
if filtered_idx2word != dict():
del fixed_words_user[last_user_word_pos]
if last_user_word_pos in list(unk_words_dict.keys()):
del unk_words_dict[last_user_word_pos]
else:
filtered_idx2word = dict()
constrain_search_end_time = time.time()
logger.log(2, 'constrain_search_end_time time: %.6f' % (constrain_search_end_time - constrain_search_start_time))
sample_beam_search_start_time = time.time()
trans_indices, costs, alphas = self.interactive_beam_searcher.sample_beam_search_interactive(src_seq,
fixed_words=copy.copy(fixed_words_user),
max_N=max_N,
isles=isle_indices,
valid_next_words=filtered_idx2word,
idx2word=self.index2word_y)
sample_beam_search_end_time = time.time()
logger.log(2, 'sample_beam_search time: %.6f' % (sample_beam_search_end_time - sample_beam_search_start_time))
if self.params_prediction['pos_unk']:
alphas = [alphas]
sources = [tokenized_input]
heuristic = self.params_prediction['heuristic']
else:
alphas = None
heuristic = None
sources = None
decoding_predictions_start_time = time.time()
hypothesis = decode_predictions_beam_search([trans_indices],
self.index2word_y,
alphas=alphas,
x_text=sources,
heuristic=heuristic,
mapping=self.mapping,
pad_sequences=True,
verbose=0)[0]
decoding_predictions_end_time = time.time()
logger.log(2, 'decoding_predictions time: %.6f' % (decoding_predictions_end_time - decoding_predictions_start_time))
unk_management_start_time = time.time()
unk_indices = list(unk_words_dict)
unk_words = list(unk_words_dict.values())
if len(unk_indices) > 0:
hypothesis = hypothesis.split()
if len(hypothesis) < len(unk_indices):
for i, index in enumerate(range(0, len(hypothesis))):
hypothesis[index] = unk_words[unk_indices[i]]
for ii in range(i + 1, len(unk_words)):
hypothesis.append(unk_words[ii])
else:
for i, index in enumerate(unk_indices):
if index < len(hypothesis):
hypothesis[index] = unk_words[i]
else:
hypothesis.append(unk_words[i])
hypothesis = u' '.join(hypothesis)
unk_management_end_time = time.time()
logger.log(2, 'unk_management time: %.6f' % (unk_management_end_time - unk_management_start_time))
hypothesis_detokenization_start_time = time.time()
hypothesis = self.model_detokenize_f(hypothesis)
hypothesis = self.general_detokenize_f(hypothesis, unescape=False)
hypothesis_detokenization_end_time = time.time()
logger.log(2, 'hypothesis_detokenization time: %.6f' % (hypothesis_detokenization_end_time - hypothesis_detokenization_start_time))
generate_sample_end_time = time.time()
logger.log(2, 'generate_sample time: %.6f' % (generate_sample_end_time - generate_sample_start_time))
return hypothesis | Generate sample via constrained search. Options labeled with <<isles>> are untested
and likely require some modifications to correctly work.
:param source_sentence: Source sentence.
:param validated_prefix: Prefix to keep in the output.
:param max_N: Maximum number of words to generate between validated segments. <<isles>>
:param isle_indices: Indices of the validated segments. <<isles>>
:param filtered_idx2word: List of candidate words to be the next one to generate (after generating fixed_words).
:param unk_indices: Positions of the unknown words.
:param unk_words: Unknown words.
:return: | https://github.com/lvapeab/nmt-keras/blob/865613dd5d23eb87674b602e690f1df9d61cfee8/demo-web/sample_server.py#L207-L350 | from __future__ import print_function
import argparse
import ast
import logging
import time
import sys
import os
import copy
from http.server import HTTPServer, BaseHTTPRequestHandler
import urllib
from collections import OrderedDict
sys.path.append(os.path.dirname(os.path.realpath(__file__)) + '/../')
from keras_wrapper.model_ensemble import InteractiveBeamSearchSampler
from keras_wrapper.cnn_model import loadModel, updateModel
from keras_wrapper.dataset import loadDataset
from keras_wrapper.extra.isles_utils import *
from keras_wrapper.extra.read_write import pkl2dict
from keras_wrapper.online_trainer import OnlineTrainer
from keras_wrapper.utils import decode_predictions_beam_search
from nmt_keras.model_zoo import TranslationModel
from utils.utils import update_parameters
from config_online import load_parameters as load_parameters_online
from config import load_parameters
logger = logging.getLogger(__name__)
class NMTHandler(BaseHTTPRequestHandler):
def do_GET(self):
do_GET_start_time = time.time()
args = self.path.split('?')[1]
args = args.split('&')
source_sentence = None
validated_prefix = None
learn = False
beam_size = 6
length_norm = 0.
coverage_norm = 0.
alpha_norm = 1.
args_processing_start_time = time.time()
print (args)
for aa in args:
cc = aa.split('=')
if cc[0] == 'source':
source_sentence = urllib.parse.unquote_plus(cc[1])
if cc[0] == 'prefix':
validated_prefix = cc[1]
validated_prefix = urllib.parse.unquote_plus(validated_prefix)
if cc[0] == 'learn':
learn = cc[1]
learn = urllib.parse.unquote_plus(learn)
learn = eval(learn)
if cc[0] == 'beam_size':
beam_size = cc[1]
beam_size = urllib.parse.unquote_plus(beam_size)
beam_size = int(beam_size)
self.server.sampler.params_prediction['beam_size'] = beam_size
if cc[0] == 'length_norm':
length_norm = cc[1]
length_norm = urllib.parse.unquote_plus(length_norm)
length_norm = float(length_norm)
self.server.sampler.params_prediction['length_norm_factor'] = length_norm
if cc[0] == 'coverage_norm':
coverage_norm = cc[1]
coverage_norm = urllib.parse.unquote_plus(coverage_norm)
coverage_norm = float(coverage_norm)
self.server.sampler.params_prediction['coverage_norm_factor'] = coverage_norm
if cc[0] == 'alpha_norm':
alpha_norm = cc[1]
alpha_norm = urllib.parse.unquote_plus(alpha_norm)
alpha_norm = float(alpha_norm)
self.server.sampler.params_prediction['alpha_factor'] = alpha_norm
if source_sentence is None:
self.send_response(400)
return
source_sentence = urllib.parse.unquote_plus(source_sentence)
args_processing_end_time = time.time()
logger.log(2, 'args_processing time: %.6f' % (args_processing_end_time - args_processing_start_time))
generate_sample_start_time = time.time()
if learn and validated_prefix is not None and source_sentence is not None:
self.server.sampler.learn_from_sample(source_sentence, validated_prefix)
self.send_response(200)
else:
hypothesis = self.server.sampler.generate_sample(source_sentence, validated_prefix=validated_prefix)
response = hypothesis + u'\n'
generate_sample_end_time = time.time()
logger.log(2, 'args_processing time: %.6f' % (generate_sample_end_time - generate_sample_start_time))
send_response_start_time = time.time()
self.send_response(200)
self.send_header("Content-type", "text/html")
self.end_headers()
self.wfile.write(response.encode('utf-8'))
send_response_end_time = time.time()
logger.log(2, 'send_response time: %.6f' % (send_response_end_time - send_response_start_time))
do_GET_end_time = time.time()
logger.log(2, 'do_GET time: %.6f' % (do_GET_end_time - do_GET_start_time))
def parse_args():
parser = argparse.ArgumentParser("Interactive neural machine translation server.")
parser.add_argument("-ds", "--dataset", required=True, help="Dataset instance")
parser.add_argument("-v", "--verbose", required=False, default=0, type=int, help="Verbosity level")
parser.add_argument("-c", "--config", required=False, help="Config pkl for loading the model configuration. "
"If not specified, hyperparameters "
"are read from config.py")
parser.add_argument("-m", "--models", nargs="+", required=True, help="Path to the models")
parser.add_argument("-ch", "--changes", nargs="*", help="Changes to the config. Following the syntax Key=Value",
default="")
parser.add_argument("-o", "--online",
action='store_true', default=False, required=False,
help="Online training mode after postedition. ")
parser.add_argument("-a", "--address", help="Server address", type=str, default='')
parser.add_argument("-p", "--port", help="Port to use", type=int, default=6542)
parser.add_argument("-l", "--logging-level", help="Logging level: \t 0: Only info messages."
"\t 1: Debug messages."
"\t 2: Time monitoring messages.", type=int, default=0)
parser.add_argument("-eos", "--eos-symbol", help="End-of-sentence symbol", type=str, default='/')
return parser.parse_args()
class NMTSampler:
def __init__(self, models, dataset, params, params_prediction, params_training, model_tokenize_f, model_detokenize_f, general_tokenize_f,
general_detokenize_f, mapping=None, word2index_x=None, word2index_y=None, index2word_y=None,
excluded_words=None, unk_id=1, eos_symbol='/', online=False, verbose=0):
self.models = models
self.dataset = dataset
self.params = params
self.params_prediction = params_prediction
self.params_training = params_training
self.model_tokenize_f = model_tokenize_f
self.model_detokenize_f = model_detokenize_f
self.general_tokenize_f = general_tokenize_f
self.general_detokenize_f = general_detokenize_f
self.mapping = mapping
self.excluded_words = excluded_words
self.verbose = verbose
self.eos_symbol = eos_symbol
self.word2index_x = word2index_x if word2index_x is not None else dataset.vocabulary[params_prediction['INPUTS_IDS_DATASET'][0]]['words2idx']
self.index2word_y = index2word_y if index2word_y is not None else dataset.vocabulary[params_prediction['OUTPUTS_IDS_DATASET'][0]]['idx2words']
self.word2index_y = word2index_y if word2index_y is not None else dataset.vocabulary[params_prediction['OUTPUTS_IDS_DATASET'][0]]['words2idx']
self.unk_id = unk_id
self.interactive_beam_searcher = InteractiveBeamSearchSampler(self.models,
self.dataset,
self.params_prediction,
excluded_words=self.excluded_words,
verbose=self.verbose)
logger.info('Compiling sampler...')
self.generate_sample('i')
logger.info('Done.')
self.online = online
if self.online:
self.online_trainer = OnlineTrainer(self.models, self.dataset, None,
None,
params_training,
verbose=self.verbose)
for i, nmt_model in enumerate(self.models):
logger.info('Compiling model %d...' % i)
nmt_model.model._make_train_function()
logger.info('Done.')
else:
self.online_trainer = None | MIT License |
fogleman/minecraft | main.py | Model.add_block | python | def add_block(self, position, texture, immediate=True):
if position in self.world:
self.remove_block(position, immediate)
self.world[position] = texture
self.sectors.setdefault(sectorize(position), []).append(position)
if immediate:
if self.exposed(position):
self.show_block(position)
self.check_neighbors(position) | Add a block with the given `texture` and `position` to the world.
Parameters
----------
position : tuple of len 3
The (x, y, z) position of the block to add.
texture : list of len 3
The coordinates of the texture squares. Use `tex_coords()` to
generate.
immediate : bool
Whether or not to draw the block immediately. | https://github.com/fogleman/minecraft/blob/65c759c1f43798278e13f6c1a0e038aeeac77656/main.py#L233-L254 | from __future__ import division
import sys
import math
import random
import time
from collections import deque
from pyglet import image
from pyglet.gl import *
from pyglet.graphics import TextureGroup
from pyglet.window import key, mouse
TICKS_PER_SEC = 60
SECTOR_SIZE = 16
WALKING_SPEED = 5
FLYING_SPEED = 15
GRAVITY = 20.0
MAX_JUMP_HEIGHT = 1.0
JUMP_SPEED = math.sqrt(2 * GRAVITY * MAX_JUMP_HEIGHT)
TERMINAL_VELOCITY = 50
PLAYER_HEIGHT = 2
if sys.version_info[0] >= 3:
xrange = range
def cube_vertices(x, y, z, n):
return [
x-n,y+n,z-n, x-n,y+n,z+n, x+n,y+n,z+n, x+n,y+n,z-n,
x-n,y-n,z-n, x+n,y-n,z-n, x+n,y-n,z+n, x-n,y-n,z+n,
x-n,y-n,z-n, x-n,y-n,z+n, x-n,y+n,z+n, x-n,y+n,z-n,
x+n,y-n,z+n, x+n,y-n,z-n, x+n,y+n,z-n, x+n,y+n,z+n,
x-n,y-n,z+n, x+n,y-n,z+n, x+n,y+n,z+n, x-n,y+n,z+n,
x+n,y-n,z-n, x-n,y-n,z-n, x-n,y+n,z-n, x+n,y+n,z-n,
]
def tex_coord(x, y, n=4):
m = 1.0 / n
dx = x * m
dy = y * m
return dx, dy, dx + m, dy, dx + m, dy + m, dx, dy + m
def tex_coords(top, bottom, side):
top = tex_coord(*top)
bottom = tex_coord(*bottom)
side = tex_coord(*side)
result = []
result.extend(top)
result.extend(bottom)
result.extend(side * 4)
return result
TEXTURE_PATH = 'texture.png'
GRASS = tex_coords((1, 0), (0, 1), (0, 0))
SAND = tex_coords((1, 1), (1, 1), (1, 1))
BRICK = tex_coords((2, 0), (2, 0), (2, 0))
STONE = tex_coords((2, 1), (2, 1), (2, 1))
FACES = [
( 0, 1, 0),
( 0,-1, 0),
(-1, 0, 0),
( 1, 0, 0),
( 0, 0, 1),
( 0, 0,-1),
]
def normalize(position):
x, y, z = position
x, y, z = (int(round(x)), int(round(y)), int(round(z)))
return (x, y, z)
def sectorize(position):
x, y, z = normalize(position)
x, y, z = x // SECTOR_SIZE, y // SECTOR_SIZE, z // SECTOR_SIZE
return (x, 0, z)
class Model(object):
def __init__(self):
self.batch = pyglet.graphics.Batch()
self.group = TextureGroup(image.load(TEXTURE_PATH).get_texture())
self.world = {}
self.shown = {}
self._shown = {}
self.sectors = {}
self.queue = deque()
self._initialize()
def _initialize(self):
n = 80
s = 1
y = 0
for x in xrange(-n, n + 1, s):
for z in xrange(-n, n + 1, s):
self.add_block((x, y - 2, z), GRASS, immediate=False)
self.add_block((x, y - 3, z), STONE, immediate=False)
if x in (-n, n) or z in (-n, n):
for dy in xrange(-2, 3):
self.add_block((x, y + dy, z), STONE, immediate=False)
o = n - 10
for _ in xrange(120):
a = random.randint(-o, o)
b = random.randint(-o, o)
c = -1
h = random.randint(1, 6)
s = random.randint(4, 8)
d = 1
t = random.choice([GRASS, SAND, BRICK])
for y in xrange(c, c + h):
for x in xrange(a - s, a + s + 1):
for z in xrange(b - s, b + s + 1):
if (x - a) ** 2 + (z - b) ** 2 > (s + 1) ** 2:
continue
if (x - 0) ** 2 + (z - 0) ** 2 < 5 ** 2:
continue
self.add_block((x, y, z), t, immediate=False)
s -= d
def hit_test(self, position, vector, max_distance=8):
m = 8
x, y, z = position
dx, dy, dz = vector
previous = None
for _ in xrange(max_distance * m):
key = normalize((x, y, z))
if key != previous and key in self.world:
return key, previous
previous = key
x, y, z = x + dx / m, y + dy / m, z + dz / m
return None, None
def exposed(self, position):
x, y, z = position
for dx, dy, dz in FACES:
if (x + dx, y + dy, z + dz) not in self.world:
return True
return False | MIT License |
explosion/spacy | spacy/cli/_util.py | upload_file | python | def upload_file(src: Path, dest: Union[str, "Pathy"]) -> None:
import smart_open
dest = str(dest)
with smart_open.open(dest, mode="wb") as output_file:
with src.open(mode="rb") as input_file:
output_file.write(input_file.read()) | Upload a file.
src (Path): The source path.
url (str): The destination URL to upload to. | https://github.com/explosion/spacy/blob/4da2af4e0e522496f9418ae3721262f7e8254050/spacy/cli/_util.py#L334-L345 | from typing import Dict, Any, Union, List, Optional, Tuple, Iterable
from typing import TYPE_CHECKING, overload
import sys
import shutil
from pathlib import Path
from wasabi import msg, Printer
import srsly
import hashlib
import typer
from click import NoSuchOption
from click.parser import split_arg_string
from typer.main import get_command
from contextlib import contextmanager
from thinc.api import Config, ConfigValidationError, require_gpu
from thinc.util import has_cupy, gpu_is_available
from configparser import InterpolationError
import os
from ..compat import Literal
from ..schemas import ProjectConfigSchema, validate
from ..util import import_file, run_command, make_tempdir, registry, logger
from ..util import is_compatible_version, SimpleFrozenDict, ENV_VARS
from .. import about
if TYPE_CHECKING:
from pathy import Pathy
SDIST_SUFFIX = ".tar.gz"
WHEEL_SUFFIX = "-py3-none-any.whl"
PROJECT_FILE = "project.yml"
PROJECT_LOCK = "project.lock"
COMMAND = "python -m spacy"
NAME = "spacy"
HELP = """spaCy Command-line Interface
DOCS: https://spacy.io/api/cli
"""
PROJECT_HELP = f"""Command-line interface for spaCy projects and templates.
You'd typically start by cloning a project template to a local directory and
fetching its assets like datasets etc. See the project's {PROJECT_FILE} for the
available commands.
"""
DEBUG_HELP = """Suite of helpful commands for debugging and profiling. Includes
commands to check and validate your config files, training and evaluation data,
and custom model implementations.
"""
INIT_HELP = """Commands for initializing configs and pipeline packages."""
Arg = typer.Argument
Opt = typer.Option
app = typer.Typer(name=NAME, help=HELP)
project_cli = typer.Typer(name="project", help=PROJECT_HELP, no_args_is_help=True)
debug_cli = typer.Typer(name="debug", help=DEBUG_HELP, no_args_is_help=True)
init_cli = typer.Typer(name="init", help=INIT_HELP, no_args_is_help=True)
app.add_typer(project_cli)
app.add_typer(debug_cli)
app.add_typer(init_cli)
def setup_cli() -> None:
registry.cli.get_all()
command = get_command(app)
command(prog_name=COMMAND)
def parse_config_overrides(
args: List[str], env_var: Optional[str] = ENV_VARS.CONFIG_OVERRIDES
) -> Dict[str, Any]:
env_string = os.environ.get(env_var, "") if env_var else ""
env_overrides = _parse_overrides(split_arg_string(env_string))
cli_overrides = _parse_overrides(args, is_cli=True)
if cli_overrides:
keys = [k for k in cli_overrides if k not in env_overrides]
logger.debug(f"Config overrides from CLI: {keys}")
if env_overrides:
logger.debug(f"Config overrides from env variables: {list(env_overrides)}")
return {**cli_overrides, **env_overrides}
def _parse_overrides(args: List[str], is_cli: bool = False) -> Dict[str, Any]:
result = {}
while args:
opt = args.pop(0)
err = f"Invalid config override '{opt}'"
if opt.startswith("--"):
orig_opt = opt
opt = opt.replace("--", "")
if "." not in opt:
if is_cli:
raise NoSuchOption(orig_opt)
else:
msg.fail(f"{err}: can't override top-level sections", exits=1)
if "=" in opt:
opt, value = opt.split("=", 1)
opt = opt.replace("-", "_")
else:
if not args or args[0].startswith("--"):
value = "true"
else:
value = args.pop(0)
result[opt] = _parse_override(value)
else:
msg.fail(f"{err}: name should start with --", exits=1)
return result
def _parse_override(value: Any) -> Any:
try:
return srsly.json_loads(value)
except ValueError:
return str(value)
def load_project_config(
path: Path, interpolate: bool = True, overrides: Dict[str, Any] = SimpleFrozenDict()
) -> Dict[str, Any]:
config_path = path / PROJECT_FILE
if not config_path.exists():
msg.fail(f"Can't find {PROJECT_FILE}", config_path, exits=1)
invalid_err = f"Invalid {PROJECT_FILE}. Double-check that the YAML is correct."
try:
config = srsly.read_yaml(config_path)
except ValueError as e:
msg.fail(invalid_err, e, exits=1)
errors = validate(ProjectConfigSchema, config)
if errors:
msg.fail(invalid_err)
print("\n".join(errors))
sys.exit(1)
validate_project_version(config)
validate_project_commands(config)
for subdir in config.get("directories", []):
dir_path = path / subdir
if not dir_path.exists():
dir_path.mkdir(parents=True)
if interpolate:
err = f"{PROJECT_FILE} validation error"
with show_validation_error(title=err, hint_fill=False):
config = substitute_project_variables(config, overrides)
return config
def substitute_project_variables(
config: Dict[str, Any],
overrides: Dict[str, Any] = SimpleFrozenDict(),
key: str = "vars",
env_key: str = "env",
) -> Dict[str, Any]:
config.setdefault(key, {})
config.setdefault(env_key, {})
for config_var, env_var in config[env_key].items():
config[env_key][config_var] = _parse_override(os.environ.get(env_var, ""))
cfg = Config({"project": config, key: config[key], env_key: config[env_key]})
cfg = Config().from_str(cfg.to_str(), overrides=overrides)
interpolated = cfg.interpolate()
return dict(interpolated["project"])
def validate_project_version(config: Dict[str, Any]) -> None:
spacy_version = config.get("spacy_version", None)
if spacy_version and not is_compatible_version(about.__version__, spacy_version):
err = (
f"The {PROJECT_FILE} specifies a spaCy version range ({spacy_version}) "
f"that's not compatible with the version of spaCy you're running "
f"({about.__version__}). You can edit version requirement in the "
f"{PROJECT_FILE} to load it, but the project may not run as expected."
)
msg.fail(err, exits=1)
def validate_project_commands(config: Dict[str, Any]) -> None:
command_names = [cmd["name"] for cmd in config.get("commands", [])]
workflows = config.get("workflows", {})
duplicates = set([cmd for cmd in command_names if command_names.count(cmd) > 1])
if duplicates:
err = f"Duplicate commands defined in {PROJECT_FILE}: {', '.join(duplicates)}"
msg.fail(err, exits=1)
for workflow_name, workflow_steps in workflows.items():
if workflow_name in command_names:
err = f"Can't use workflow name '{workflow_name}': name already exists as a command"
msg.fail(err, exits=1)
for step in workflow_steps:
if step not in command_names:
msg.fail(
f"Unknown command specified in workflow '{workflow_name}': {step}",
f"Workflows can only refer to commands defined in the 'commands' "
f"section of the {PROJECT_FILE}.",
exits=1,
)
def get_hash(data, exclude: Iterable[str] = tuple()) -> str:
if isinstance(data, dict):
data = {k: v for k, v in data.items() if k not in exclude}
data_str = srsly.json_dumps(data, sort_keys=True).encode("utf8")
return hashlib.md5(data_str).hexdigest()
def get_checksum(path: Union[Path, str]) -> str:
path = Path(path)
if not (path.is_file() or path.is_dir()):
msg.fail(f"Can't get checksum for {path}: not a file or directory", exits=1)
if path.is_file():
return hashlib.md5(Path(path).read_bytes()).hexdigest()
else:
dir_checksum = hashlib.md5()
for sub_file in sorted(fp for fp in path.rglob("*") if fp.is_file()):
dir_checksum.update(sub_file.read_bytes())
return dir_checksum.hexdigest()
@contextmanager
def show_validation_error(
file_path: Optional[Union[str, Path]] = None,
*,
title: Optional[str] = None,
desc: str = "",
show_config: Optional[bool] = None,
hint_fill: bool = True,
):
try:
yield
except ConfigValidationError as e:
title = title if title is not None else e.title
if e.desc:
desc = f"{e.desc}" if not desc else f"{e.desc}\n\n{desc}"
err = e.from_error(e, title="", desc=desc, show_config=show_config)
msg.fail(title)
print(err.text.strip())
if hint_fill and "value_error.missing" in err.error_types:
config_path = (
file_path
if file_path is not None and str(file_path) != "-"
else "config.cfg"
)
msg.text(
"If your config contains missing values, you can run the 'init "
"fill-config' command to fill in all the defaults, if possible:",
spaced=True,
)
print(f"{COMMAND} init fill-config {config_path} {config_path} \n")
sys.exit(1)
except InterpolationError as e:
msg.fail("Config validation error", e, exits=1)
def import_code(code_path: Optional[Union[Path, str]]) -> None:
if code_path is not None:
if not Path(code_path).exists():
msg.fail("Path to Python code not found", code_path, exits=1)
try:
import_file("python_code", code_path)
except Exception as e:
msg.fail(f"Couldn't load Python code: {code_path}", e, exits=1) | MIT License |
pegase745/sqlalchemy-datatables | datatables/search_methods.py | parse_query_value | python | def parse_query_value(combined_value):
split = len(combined_value) - len(combined_value.lstrip("<>="))
operator = combined_value[:split]
if operator == "":
operator = "="
try:
operator_func = search_operators[operator]
except KeyError:
raise ValueError(
"Numeric query should start with operator, choose from %s"
% ", ".join(search_operators.keys())
)
value = combined_value[split:].strip()
return operator_func, value | Parse value in form of '>value' to a lambda and a value. | https://github.com/pegase745/sqlalchemy-datatables/blob/e0af01f347e35eb063ed826e7e6f7ec699d9c5ef/datatables/search_methods.py#L18-L32 | import datetime
import logging
from dateutil.parser import parse as date_parse
from sqlalchemy import Text
logger = logging.getLogger(__name__)
search_operators = {
"=": lambda expr, value: expr == value,
">": lambda expr, value: expr > value,
">=": lambda expr, value: expr >= value,
"<": lambda expr, value: expr < value,
"<=": lambda expr, value: expr <= value,
} | MIT License |
bioconda/bioconda-utils | bioconda_utils/bot/views.py | auth_github | python | async def auth_github(request):
if 'error' in request.query:
logger.error(request.query)
web.HTTPUnauthorized(body="Encountered an error. ")
session = await get_session(request)
nexturl = request.query.get('next') or '/'
baseurl = BOT_BASEURL + "/auth/github?next=" + nexturl
try:
ghappapi = request.app['ghappapi']
ghapi = await ghappapi.oauth_github_user(baseurl, session, request.query)
if ghapi.username:
await remember(request, web.HTTPFound(nexturl), ghapi.token)
return web.HTTPFound(nexturl)
except web.HTTPFound:
raise
except Exception as exc:
logger.exception("failed to auth")
return web.HTTPUnauthorized(body="Could not authenticate your Github account") | View for signing in with Github
Currently the only authentication method (and probably will remain so).
This will redirect to Github to allow OAUTH authentication if
necessary. | https://github.com/bioconda/bioconda-utils/blob/df49b2169672255d5937b181cb86fbe08f7ebaaa/bioconda_utils/bot/views.py#L231-L257 | import logging
from aiohttp import web
from aiohttp_session import get_session
from aiohttp_security import check_authorized, forget, permits, remember, authorized_userid
from aiohttp_jinja2 import template, render_template
from .events import event_routes
from ..githubhandler import Event
from ..circleci import SlackMessage
from .worker import capp
from .config import APP_SECRET, BOT_BASEURL
from .commands import command_routes
logger = logging.getLogger(__name__)
web_routes = web.RouteTableDef()
navigation_bar = []
def add_to_navbar(title):
def wrapper(func):
route = web_routes[-1]
navigation_bar.append((route.path, route.kwargs['name'], title))
return func
return wrapper
async def check_permission(request, permission, context=None):
await check_authorized(request)
allowed = await permits(request, permission, context)
if not allowed:
request['permission_required'] = permission
raise web.HTTPForbidden()
@web_routes.post('/_gh')
async def github_webhook_dispatch(request):
try:
body = await request.read()
secret = APP_SECRET
if secret == "IGNORE":
logger.error("IGNORING WEBHOOK SECRET (DEBUG MODE)")
secret = None
event = Event.from_http(request.headers, body, secret=secret)
if event.event == "ping":
return web.Response(status=200)
installation = event.get('installation/id')
to_user = event.get('repository/owner/login', None)
to_repo = event.get('repository/name', None)
action = event.get('action', None)
action_msg = '/' + action if action else ''
logger.info("Received GH Event '%s%s' (%s) for %s (%s/%s)",
event.event, action_msg,
event.delivery_id,
installation, to_user, to_repo)
ghapi = await request.app['ghappapi'].get_github_api(
dry_run=False, installation=installation, to_user=to_user, to_repo=to_repo
)
try:
await event_routes.dispatch(event, ghapi)
logger.info("Event '%s%s' (%s) done", event.event, action_msg, event.delivery_id)
except Exception:
logger.exception("Failed to dispatch %s", event.delivery_id)
request.app['gh_rate_limit'] = ghapi.rate_limit
return web.Response(status=200)
except Exception:
logger.exception("Failure in webhook dispatch")
return web.Response(status=500)
@web_routes.post('/hooks/circleci')
async def generic_circleci_dispatch(request):
try:
body = await request.read()
msg = SlackMessage(request.headers, body)
logger.info("Got data from Circle: %s", msg)
return web.Response(status=200)
except Exception:
logger.exception("Failure in circle webhook dispatch")
return web.Response(status=500)
@web_routes.post('/hooks/{source}')
async def generic_webhook_dispatch(request):
try:
source = request.match_info['source']
body = await request.read()
logger.error("Got generic webhook for %s", source)
logger.error(" Data: %s", body)
return web.Response(status=200)
except Exception:
logger.exception("Failure in generic webhook dispatch")
return web.Response(status=500)
@add_to_navbar(title="Home")
@web_routes.get("/", name="home")
@template('bot_index.html')
async def show_index(_request):
return {}
@add_to_navbar(title="Status")
@web_routes.get("/status", name="status")
@template("bot_status.html")
async def show_status(request):
await check_permission(request, 'bioconda')
worker_status = capp.control.inspect(timeout=0.1)
if not worker_status:
return {
'error': 'Could not get worker status'
}
alive = worker_status.ping()
if not alive:
return {
'error': 'No workers found'
}
return {
'workers': {
worker: {
'active': worker_status.active(worker),
'reserved': worker_status.reserved(worker),
}
for worker in sorted(alive.keys())
}
}
@web_routes.get('/logout', name="logout")
async def logout(request):
await check_authorized(request)
nexturl = request.query.get('next', '/')
response = web.HTTPFound(nexturl)
await forget(request, response)
return response
@web_routes.get('/login')
async def login(request):
return web.HTTPFound('/auth/github')
@web_routes.get('/auth/github', name="login") | MIT License |
cn-uofbasel/picn | PiCN/LayerStack/LayerStack.py | LayerStack.start_all | python | def start_all(self):
self.__started = True
[l.start_process() for l in self.layers] | Utility function to start all LayerProcesses managed by the LayerStack. | https://github.com/cn-uofbasel/picn/blob/64ed40242657238e9f1d522d5873173f0b93a30e/PiCN/LayerStack/LayerStack.py#L95-L100 | import multiprocessing
from typing import List
from PiCN.Processes import LayerProcess
class LayerStack(object):
def __init__(self, layers: List[LayerProcess]):
self.layers: List[LayerProcess] = []
self.queues: List[multiprocessing.Queue] = []
self._queue_to_higher = multiprocessing.Queue()
self._queue_from_higher = multiprocessing.Queue()
self._queue_to_lower = multiprocessing.Queue()
self._queue_from_lower = multiprocessing.Queue()
self.__started = False
if len(layers) == 0:
raise ValueError('Can\'t have an empty LayerStack')
for i in range(len(layers) - 1):
upper = layers[i]
lower = layers[i + 1]
q_to_upper = multiprocessing.Queue()
q_to_lower = multiprocessing.Queue()
upper.queue_to_lower = q_to_lower
upper.queue_from_lower = q_to_upper
lower.queue_to_higher = q_to_upper
lower.queue_from_higher = q_to_lower
self.layers.append(upper)
self.queues.append(q_to_upper)
self.queues.append(q_to_lower)
self.layers.append(layers[len(layers)-1])
self.layers[0].queue_to_higher = self.queue_to_higher
self.layers[0].queue_from_higher = self.queue_from_higher
self.layers[len(self.layers)-1].queue_to_lower = self.queue_to_lower
self.layers[len(self.layers)-1].queue_from_lower = self.queue_from_lower
def insert(self, layer: LayerProcess, on_top_of: LayerProcess = None, below_of: LayerProcess = None):
if self.__started:
raise multiprocessing.ProcessError('LayerStack should not be changed after its processes were started.')
if layer is None:
raise TypeError('Layer is None.')
if (on_top_of is None) == (below_of is None):
raise TypeError('Needs either on_top_of xor below_of')
insert_above: bool = on_top_of is not None
ref_layer = on_top_of if insert_above else below_of
for i in range(len(self.layers)):
if self.layers[i] == ref_layer:
if insert_above:
self.__insert(layer, i)
else:
self.__insert(layer, i + 1)
return
raise ValueError('Reference layer is not in the layer stack.')
def close_all(self):
[q.close() for q in self.queues]
self._queue_to_higher.close()
self._queue_from_higher.close()
self._queue_to_lower.close()
self._queue_from_lower.close() | BSD 3-Clause New or Revised License |
vincentstimper/normalizing-flows | normflow/distributions.py | ImagePrior.__init__ | python | def __init__(self, image, x_range=[-3, 3], y_range=[-3, 3], eps=1.e-10):
super().__init__()
image_ = np.flip(image, 0).transpose() + eps
self.image_cpu = torch.tensor(image_ / np.max(image_))
self.image_size_cpu = self.image_cpu.size()
self.x_range = torch.tensor(x_range)
self.y_range = torch.tensor(y_range)
self.register_buffer('image', self.image_cpu)
self.register_buffer('image_size', torch.tensor(self.image_size_cpu).unsqueeze(0))
self.register_buffer('density', torch.log(self.image_cpu / torch.sum(self.image_cpu)))
self.register_buffer('scale', torch.tensor([[self.x_range[1] - self.x_range[0],
self.y_range[1] - self.y_range[0]]]))
self.register_buffer('shift', torch.tensor([[self.x_range[0], self.y_range[0]]])) | Constructor
:param image: image as np matrix
:param x_range: x range to position image at
:param y_range: y range to position image at
:param eps: small value to add to image to avoid log(0) problems | https://github.com/vincentstimper/normalizing-flows/blob/8ee48560a864ac9821c9ea5fef8104c7d8c5b038/normflow/distributions.py#L691-L711 | import torch
import torch.nn as nn
import numpy as np
from . import flows
class BaseDistribution(nn.Module):
def __init__(self):
super().__init__()
def forward(self, num_samples=1):
raise NotImplementedError
def log_prob(self, z):
raise NotImplementedError
class DiagGaussian(BaseDistribution):
def __init__(self, shape, trainable=True):
super().__init__()
if isinstance(shape, int):
shape = (shape,)
self.shape = shape
self.n_dim = len(shape)
self.d = np.prod(shape)
if trainable:
self.loc = nn.Parameter(torch.zeros(1, *self.shape))
self.log_scale = nn.Parameter(torch.zeros(1, *self.shape))
else:
self.register_buffer("loc", torch.zeros(1, *self.shape))
self.register_buffer("log_scale", torch.zeros(1, *self.shape))
self.temperature = None
def forward(self, num_samples=1):
eps = torch.randn((num_samples,) + self.shape, dtype=self.loc.dtype,
device=self.loc.device)
if self.temperature is None:
log_scale = self.log_scale
else:
log_scale = self.log_scale + np.log(self.temperature)
z = self.loc + torch.exp(log_scale) * eps
log_p = - 0.5 * self.d * np.log(2 * np.pi) - torch.sum(log_scale + 0.5 * torch.pow(eps, 2), list(range(1, self.n_dim + 1)))
return z, log_p
def log_prob(self, z):
if self.temperature is None:
log_scale = self.log_scale
else:
log_scale = self.log_scale + np.log(self.temperature)
log_p = - 0.5 * self.d * np.log(2 * np.pi) - torch.sum(log_scale + 0.5 * torch.pow((z - self.loc) / torch.exp(log_scale), 2),
list(range(1, self.n_dim + 1)))
return log_p
class ClassCondDiagGaussian(BaseDistribution):
def __init__(self, shape, num_classes):
super().__init__()
if isinstance(shape, int):
shape = (shape,)
self.shape = shape
self.n_dim = len(shape)
self.perm = [self.n_dim] + list(range(self.n_dim))
self.d = np.prod(shape)
self.num_classes = num_classes
self.loc = nn.Parameter(torch.zeros(*self.shape, num_classes))
self.log_scale = nn.Parameter(torch.zeros(*self.shape, num_classes))
self.temperature = None
def forward(self, num_samples=1, y=None):
if y is not None:
num_samples = len(y)
else:
y = torch.randint(self.num_classes, (num_samples,), device=self.loc.device)
if y.dim() == 1:
y_onehot = torch.zeros((self.num_classes, num_samples), dtype=self.loc.dtype,
device=self.loc.device)
y_onehot.scatter_(0, y[None], 1)
y = y_onehot
else:
y = y.t()
eps = torch.randn((num_samples,) + self.shape, dtype=self.loc.dtype,
device=self.loc.device)
loc = (self.loc @ y).permute(*self.perm)
log_scale = (self.log_scale @ y).permute(*self.perm)
if self.temperature is not None:
log_scale = np.log(self.temperature) + log_scale
z = loc + torch.exp(log_scale) * eps
log_p = - 0.5 * self.d * np.log(2 * np.pi) - torch.sum(log_scale + 0.5 * torch.pow(eps, 2), list(range(1, self.n_dim + 1)))
return z, log_p
def log_prob(self, z, y):
if y.dim() == 1:
y_onehot = torch.zeros((self.num_classes, len(y)), dtype=self.loc.dtype,
device=self.loc.device)
y_onehot.scatter_(0, y[None], 1)
y = y_onehot
else:
y = y.t()
loc = (self.loc @ y).permute(*self.perm)
log_scale = (self.log_scale @ y).permute(*self.perm)
if self.temperature is not None:
log_scale = np.log(self.temperature) + log_scale
log_p = - 0.5 * self.d * np.log(2 * np.pi) - torch.sum(log_scale + 0.5 * torch.pow((z - loc) / torch.exp(log_scale), 2),
list(range(1, self.n_dim + 1)))
return log_p
class GlowBase(BaseDistribution):
def __init__(self, shape, num_classes=None, logscale_factor=3.):
super().__init__()
if isinstance(shape, int):
shape = (shape,)
self.shape = shape
self.n_dim = len(shape)
self.num_pix = np.prod(shape[1:])
self.d = np.prod(shape)
self.sum_dim = list(range(1, self.n_dim + 1))
self.num_classes = num_classes
self.class_cond = num_classes is not None
self.logscale_factor = logscale_factor
self.loc = nn.Parameter(torch.zeros(1, self.shape[0], *((self.n_dim - 1) * [1])))
self.loc_logs = nn.Parameter(torch.zeros(1, self.shape[0],
*((self.n_dim - 1) * [1])))
self.log_scale = nn.Parameter(torch.zeros(1, self.shape[0],
*((self.n_dim - 1) * [1])))
self.log_scale_logs = nn.Parameter(torch.zeros(1, self.shape[0],
*((self.n_dim - 1) * [1])))
if self.class_cond:
self.loc_cc = nn.Parameter(torch.zeros(self.num_classes, self.shape[0]))
self.log_scale_cc = nn.Parameter(torch.zeros(self.num_classes, self.shape[0]))
self.temperature = None
def forward(self, num_samples=1, y=None):
loc = self.loc * torch.exp(self.loc_logs * self.logscale_factor)
log_scale = self.log_scale * torch.exp(self.log_scale_logs * self.logscale_factor)
if self.class_cond:
if y is not None:
num_samples = len(y)
else:
y = torch.randint(self.num_classes, (num_samples,), device=self.loc.device)
if y.dim() == 1:
y_onehot = torch.zeros((len(y), self.num_classes), dtype=self.loc.dtype,
device=self.loc.device)
y_onehot.scatter_(1, y[:, None], 1)
y = y_onehot
loc = loc + (y @ self.loc_cc).view(y.size(0), self.shape[0],
*((self.n_dim - 1) * [1]))
log_scale = log_scale + (y @ self.log_scale_cc).view(y.size(0), self.shape[0],
*((self.n_dim - 1) * [1]))
if self.temperature is not None:
log_scale = log_scale + np.log(self.temperature)
eps = torch.randn((num_samples,) + self.shape, dtype=self.loc.dtype,
device=self.loc.device)
z = loc + torch.exp(log_scale) * eps
log_p = - 0.5 * self.d * np.log(2 * np.pi) - self.num_pix * torch.sum(log_scale, dim=self.sum_dim) - 0.5 * torch.sum(torch.pow(eps, 2), dim=self.sum_dim)
return z, log_p
def log_prob(self, z, y=None):
loc = self.loc * torch.exp(self.loc_logs * self.logscale_factor)
log_scale = self.log_scale * torch.exp(self.log_scale_logs * self.logscale_factor)
if self.class_cond:
if y.dim() == 1:
y_onehot = torch.zeros((len(y), self.num_classes), dtype=self.loc.dtype,
device=self.loc.device)
y_onehot.scatter_(1, y[:, None], 1)
y = y_onehot
loc = loc + (y @ self.loc_cc).view(y.size(0), self.shape[0],
*((self.n_dim - 1) * [1]))
log_scale = log_scale + (y @ self.log_scale_cc).view(y.size(0), self.shape[0],
*((self.n_dim - 1) * [1]))
if self.temperature is not None:
log_scale = log_scale + np.log(self.temperature)
log_p = - 0.5 * self.d * np.log(2 * np.pi) - self.num_pix * torch.sum(log_scale, dim=self.sum_dim) - 0.5 * torch.sum(torch.pow((z - loc) / torch.exp(log_scale), 2),
dim=self.sum_dim)
return log_p
class AffineGaussian(BaseDistribution):
def __init__(self, shape, affine_shape, num_classes=None):
super().__init__()
self.shape = shape
self.n_dim = len(shape)
self.d = np.prod(shape)
self.sum_dim = list(range(1, self.n_dim + 1))
self.affine_shape = affine_shape
self.num_classes = num_classes
self.class_cond = num_classes is not None
if self.class_cond:
self.transform = flows.CCAffineConst(self.affine_shape, self.num_classes)
else:
self.transform = flows.AffineConstFlow(self.affine_shape)
self.temperature = None
def forward(self, num_samples=1, y=None):
dtype = self.transform.s.dtype
device = self.transform.s.device
if self.class_cond:
if y is not None:
num_samples = len(y)
else:
y = torch.randint(self.num_classes, (num_samples,), device=device)
if y.dim() == 1:
y_onehot = torch.zeros((len(y), self.num_classes), dtype=dtype, device=device)
y_onehot.scatter_(1, y[:, None], 1)
y = y_onehot
if self.temperature is not None:
log_scale = np.log(self.temperature)
else:
log_scale = 0.
eps = torch.randn((num_samples,) + self.shape, dtype=dtype, device=device)
z = np.exp(log_scale) * eps
log_p = - 0.5 * self.d * np.log(2 * np.pi) - self.d * log_scale - 0.5 * torch.sum(torch.pow(eps, 2), dim=self.sum_dim)
if self.class_cond:
z, log_det = self.transform(z, y)
else:
z, log_det = self.transform(z)
log_p -= log_det
return z, log_p
def log_prob(self, z, y=None):
if self.class_cond:
if y.dim() == 1:
y_onehot = torch.zeros((len(y), self.num_classes),
dtype=self.transform.s.dtype,
device=self.transform.s.device)
y_onehot.scatter_(1, y[:, None], 1)
y = y_onehot
if self.temperature is not None:
log_scale = np.log(self.temperature)
else:
log_scale = 0.
if self.class_cond:
z, log_p = self.transform.inverse(z, y)
else:
z, log_p = self.transform.inverse(z)
z = z / np.exp(log_scale)
log_p = log_p - self.d * log_scale - 0.5 * self.d * np.log(2 * np.pi) - 0.5 * torch.sum(torch.pow(z, 2), dim=self.sum_dim)
return log_p
class GaussianMixture(BaseDistribution):
def __init__(self, n_modes, dim, loc=None, scale=None, weights=None, trainable=True):
super().__init__()
self.n_modes = n_modes
self.dim = dim
if loc is None:
loc = np.random.randn(self.n_modes, self.dim)
loc = np.array(loc)[None, ...]
if scale is None:
scale = np.ones((self.n_modes, self.dim))
scale = np.array(scale)[None, ...]
if weights is None:
weights = np.ones(self.n_modes)
weights = np.array(weights)[None, ...]
weights /= weights.sum(1)
if trainable:
self.loc = nn.Parameter(torch.tensor(1. * loc))
self.log_scale = nn.Parameter(torch.tensor(np.log(1. * scale)))
self.weight_scores = nn.Parameter(torch.tensor(np.log(1. * weights)))
else:
self.register_buffer("loc", torch.tensor(1. * loc))
self.register_buffer("log_scale", torch.tensor(np.log(1. * scale)))
self.register_buffer("weight_scores", torch.tensor(np.log(1. * weights)))
def forward(self, num_samples=1):
mode_ind = torch.randint(high=self.n_modes, size=(num_samples,))
mode_1h = torch.zeros((num_samples, self.n_modes), dtype=torch.int64)
mode_1h.scatter_(1, mode_ind[:, None], 1)
mode_1h = mode_1h[..., None]
weights = torch.softmax(self.weight_scores, 1)
eps = torch.randn(num_samples, self.dim, dtype=self.loc.dtype, device=self.loc.device)
scale_sample = torch.sum(torch.exp(self.log_scale) * mode_1h, 1)
loc_sample = torch.sum(self.loc * mode_1h, 1)
z = eps * scale_sample + loc_sample
log_p = - 0.5 * self.dim * np.log(2 * np.pi) + torch.log(weights) - 0.5 * torch.sum(torch.pow(eps, 2), 1, keepdim=True) - torch.sum(self.log_scale, 2)
log_p = torch.logsumexp(log_p, 1)
return z, log_p
def log_prob(self, z):
weights = torch.softmax(self.weight_scores, 1)
eps = (z[:, None, :] - self.loc) / torch.exp(self.log_scale)
log_p = - 0.5 * self.dim * np.log(2 * np.pi) + torch.log(weights) - 0.5 * torch.sum(torch.pow(eps, 2), 2) - torch.sum(self.log_scale, 2)
log_p = torch.logsumexp(log_p, 1)
return log_p
class GaussianPCA(BaseDistribution):
def __init__(self, dim, latent_dim=None, sigma=0.1):
super().__init__()
self.dim = dim
if latent_dim is None:
self.latent_dim = dim
else:
self.latent_dim = latent_dim
self.loc = nn.Parameter(torch.zeros(1, dim))
self.W = nn.Parameter(torch.randn(latent_dim, dim))
self.log_sigma = nn.Parameter(torch.tensor(np.log(sigma)))
def forward(self, num_samples=1):
eps = torch.randn(num_samples, self.latent_dim, dtype=self.loc.dtype,
device=self.loc.device)
z_ = torch.matmul(eps, self.W)
z = z_ + self.loc
Sig = torch.matmul(self.W.T, self.W) + torch.exp(self.log_sigma * 2) * torch.eye(self.dim, dtype=self.loc.dtype, device=self.loc.device)
log_p = self.dim / 2 * np.log(2 * np.pi) - 0.5 * torch.det(Sig) - 0.5 * torch.sum(z_ * torch.matmul(z_, torch.inverse(Sig)), 1)
return z, log_p
def log_prob(self, z):
z_ = z - self.loc
Sig = torch.matmul(self.W.T, self.W) + torch.exp(self.log_sigma * 2) * torch.eye(self.dim, dtype=self.loc.dtype, device=self.loc.device)
log_p = self.dim / 2 * np.log(2 * np.pi) - 0.5 * torch.det(Sig) - 0.5 * torch.sum(z_ * torch.matmul(z_, torch.inverse(Sig)), 1)
return log_p
class BaseEncoder(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x, num_samples=1):
raise NotImplementedError
def log_prob(self, z, x):
raise NotImplementedError
class Dirac(BaseEncoder):
def __init__(self):
super().__init__()
def forward(self, x, num_samples=1):
z = x.unsqueeze(1).repeat(1, num_samples, 1)
log_p = torch.zeros(z.size()[0:2])
return z, log_p
def log_prob(self, z, x):
log_p = torch.zeros(z.size()[0:2])
return log_p
class Uniform(BaseEncoder):
def __init__(self, zmin=0.0, zmax=1.0):
super().__init__()
self.zmin = zmin
self.zmax = zmax
self.log_p = -torch.log(zmax-zmin)
def forward(self, x, num_samples=1):
z = x.unsqueeze(1).repeat(1, num_samples, 1).uniform_(min=self.zmin, max=self.zmax)
log_p = torch.zeros(z.size()[0:2]).fill_(self.log_p)
return z, log_p
def log_prob(self, z, x):
log_p = torch.zeros(z.size()[0:2]).fill_(self.log_p)
return log_p
class ConstDiagGaussian(BaseEncoder):
def __init__(self, loc, scale):
super().__init__()
self.d = len(loc)
if not torch.is_tensor(loc):
loc = torch.tensor(loc).float()
if not torch.is_tensor(scale):
scale = torch.tensor(scale).float()
self.loc = nn.Parameter(loc.reshape((1, 1, self.d)))
self.scale = nn.Parameter(scale)
def forward(self, x=None, num_samples=1):
if x is not None:
batch_size = len(x)
else:
batch_size = 1
eps = torch.randn((batch_size, num_samples, self.d), device=x.device)
z = self.loc + self.scale * eps
log_p = - 0.5 * self.d * np.log(2 * np.pi) - torch.sum(torch.log(self.scale) + 0.5 * torch.pow(eps, 2), 2)
return z, log_p
def log_prob(self, z, x):
if z.dim() == 1:
z = z.unsqueeze(0)
if z.dim() == 2:
z = z.unsqueeze(0)
log_p = - 0.5 * self.d * np.log(2 * np.pi) - torch.sum(torch.log(self.scale) + 0.5 * ((z - self.loc) / self.scale) ** 2, 2)
return log_p
class NNDiagGaussian(BaseEncoder):
def __init__(self, net):
super().__init__()
self.net = net
def forward(self, x, num_samples=1):
batch_size = len(x)
mean_std = self.net(x)
n_hidden = mean_std.size()[1] // 2
mean = mean_std[:, :n_hidden, ...].unsqueeze(1)
std = torch.exp(0.5 * mean_std[:, n_hidden:(2 * n_hidden), ...].unsqueeze(1))
eps = torch.randn((batch_size, num_samples) + tuple(mean.size()[2:]), device=x.device)
z = mean + std * eps
log_p = - 0.5 * torch.prod(torch.tensor(z.size()[2:])) * np.log(2 * np.pi) - torch.sum(torch.log(std) + 0.5 * torch.pow(eps, 2), list(range(2, z.dim())))
return z, log_p
def log_prob(self, z, x):
if z.dim() == 1:
z = z.unsqueeze(0)
if z.dim() == 2:
z = z.unsqueeze(0)
mean_std = self.net(x)
n_hidden = mean_std.size()[1] // 2
mean = mean_std[:, :n_hidden, ...].unsqueeze(1)
var = torch.exp(mean_std[:, n_hidden:(2 * n_hidden), ...].unsqueeze(1))
log_p = - 0.5 * torch.prod(torch.tensor(z.size()[2:])) * np.log(2 * np.pi) - 0.5 * torch.sum(torch.log(var) + (z - mean) ** 2 / var, 2)
return log_p
class Decoder(nn.Module):
def __init__(self):
super().__init__()
def forward(self, z):
raise NotImplementedError
def log_prob(self, x, z):
raise NotImplementedError
class NNDiagGaussianDecoder(Decoder):
def __init__(self, net):
super().__init__()
self.net = net
def forward(self, z):
z_size = z.size()
mean_std = self.net(z.view(-1, *z_size[2:])).view(z_size)
n_hidden = mean_std.size()[2] // 2
mean = mean_std[:, :, :n_hidden, ...]
std = torch.exp(0.5 * mean_std[:, :, n_hidden:(2 * n_hidden), ...])
return mean, std
def log_prob(self, x, z):
mean_std = self.net(z.view(-1, *z.size()[2:])).view(*z.size()[:2], x.size(1) * 2, *x.size()[3:])
n_hidden = mean_std.size()[2] // 2
mean = mean_std[:, :, :n_hidden, ...]
var = torch.exp(mean_std[:, :, n_hidden:(2 * n_hidden), ...])
log_p = - 0.5 * torch.prod(torch.tensor(z.size()[2:])) * np.log(2 * np.pi) - 0.5 * torch.sum(torch.log(var) + (x.unsqueeze(1) - mean) ** 2 / var, list(range(2, z.dim())))
return log_p
class NNBernoulliDecoder(Decoder):
def __init__(self, net):
super().__init__()
self.net = net
def forward(self, z):
mean = torch.sigmoid(self.net(z))
return mean
def log_prob(self, x, z):
score = self.net(z)
x = x.unsqueeze(1)
x = x.repeat(1, z.size()[0] // x.size()[0], *((x.dim() - 2) * [1])).view(-1, *x.size()[2:])
log_sig = lambda a: -torch.relu(-a) - torch.log(1 + torch.exp(-torch.abs(a)))
log_p = torch.sum(x * log_sig(score) + (1 - x) * log_sig(-score), list(range(1, x.dim())))
return log_p
class PriorDistribution:
def __init__(self):
raise NotImplementedError
def log_prob(self, z):
raise NotImplementedError
class ImagePrior(nn.Module): | MIT License |
ianmiell/shutit | shutit_threads.py | managing_thread_main_simple | python | def managing_thread_main_simple():
import shutit_global
last_msg = ''
while True:
printed_anything = False
if shutit_global.shutit_global_object.log_trace_when_idle and time.time() - shutit_global.shutit_global_object.last_log_time > 10:
this_msg = ''
this_header = ''
for thread_id, stack in sys._current_frames().items():
if thread_id == threading.current_thread().ident:
continue
printed_thread_started = False
for filename, lineno, name, line in traceback.extract_stack(stack):
if not printed_anything:
printed_anything = True
this_header += '\n='*80 + '\n'
this_header += 'STACK TRACES PRINTED ON IDLE: THREAD_ID: ' + str(thread_id) + ' at ' + time.strftime('%c') + '\n'
this_header += '='*80 + '\n'
if not printed_thread_started:
printed_thread_started = True
this_msg += '%s:%d:%s' % (filename, lineno, name) + '\n'
if line:
this_msg += ' %s' % (line,) + '\n'
if printed_anything:
this_msg += '='*80 + '\n'
this_msg += 'STACK TRACES DONE\n'
this_msg += '='*80 + '\n'
if this_msg != last_msg:
print(this_header + this_msg)
last_msg = this_msg
time.sleep(5) | Simpler thread to track whether main thread has been quiet for long enough
that a thread dump should be printed. | https://github.com/ianmiell/shutit/blob/509e273584408f01d216b5cc80058c03fe6654f4/shutit_threads.py#L138-L172 | import itertools
import time
import threading
import traceback
import sys
import os
from curtsies.input import Input
tracker_setup = False
def gather_module_paths():
import shutit_global
shutit_global_object = shutit_global.shutit_global_object
owd = shutit_global_object.owd
shutit_module_paths = set()
for shutit_object in shutit_global.shutit_global_object.shutit_objects:
shutit_module_paths = shutit_module_paths.union(set(shutit_object.host['shutit_module_path']))
if '.' in shutit_module_paths:
shutit_module_paths.remove('.')
shutit_module_paths.add(owd)
for path in shutit_module_paths:
if path[0] != '/':
shutit_module_paths.remove(path)
shutit_module_paths.add(owd + '/' + path)
return shutit_module_paths
def managing_thread_main():
import shutit_global
from shutit_global import SessionPaneLine
shutit_global.shutit_global_object.global_thread_lock.acquire()
shutit_module_paths = gather_module_paths()
shutit_global.shutit_global_object.global_thread_lock.release()
shutit_global.shutit_global_object.stacktrace_lines_arr = [SessionPaneLine('',time.time(),'log'),]
last_code = []
draw_type = 'default'
zoom_state = None
while True:
with Input() as input_generator:
input_char = input_generator.send(0.001)
if input_char == 'r':
shutit_global.shutit_global_object.lower_pane_rotate_count += 1
elif input_char == '1':
if zoom_state == 1:
draw_type = 'default'
zoom_state = None
else:
draw_type = 'zoomed1'
zoom_state = 1
elif input_char == '2':
if zoom_state == 2:
draw_type = 'default'
zoom_state = None
else:
draw_type = 'zoomed2'
zoom_state = 2
elif input_char == '3':
if zoom_state == 3:
draw_type = 'default'
zoom_state = None
else:
draw_type = 'zoomed3'
zoom_state = 3
elif input_char == '4':
if zoom_state == 4:
draw_type = 'default'
zoom_state = None
else:
draw_type = 'zoomed4'
zoom_state = 4
elif input_char == 'q':
draw_type = 'clearscreen'
shutit_global.shutit_global_object.pane_manager.draw_screen(draw_type=draw_type)
os.system('reset')
os._exit(1)
if shutit_global.shutit_global_object.ispy3:
if not shutit_global.shutit_global_object.global_thread_lock.acquire(blocking=False):
time.sleep(0.01)
continue
else:
if not shutit_global.shutit_global_object.global_thread_lock.acquire(False):
time.sleep(0.01)
continue
code = []
for thread_id, stack in sys._current_frames().items():
if thread_id == threading.current_thread().ident:
continue
for filename, lineno, name, line in traceback.extract_stack(stack):
for shutit_module_path in shutit_module_paths:
if filename.find(shutit_module_path) == 0:
if len(shutit_global.shutit_global_object.stacktrace_lines_arr) == 0 or shutit_global.shutit_global_object.stacktrace_lines_arr[-1] != line:
linearrow = '===> ' + str(line)
code.append('_' * 80)
code.append('=> %s:%d:%s' % (filename, lineno, name))
code.append('%s' % (linearrow,))
from_lineno = lineno - 5
if from_lineno < 0:
from_lineno = 0
to_lineno = 10
else:
to_lineno = lineno + 5
lineno_count = from_lineno
with open(filename, "r") as f:
for line in itertools.islice(f, from_lineno, to_lineno):
line = line.replace('\t',' ')
lineno_count += 1
if lineno_count == lineno:
code.append('***' + str(lineno_count) + '> ' + line.rstrip())
else:
code.append('===' + str(lineno_count) + '> ' + line.rstrip())
code.append('_' * 80)
if code != last_code:
for line in code:
shutit_global.shutit_global_object.stacktrace_lines_arr.append(SessionPaneLine(line,time.time(),'log'))
last_code = code
shutit_global.shutit_global_object.pane_manager.draw_screen(draw_type=draw_type)
shutit_global.shutit_global_object.global_thread_lock.release() | MIT License |
pawamoy/aria2p | src/aria2p/client.py | Client.get_params | python | def get_params(*args: Any) -> list:
return [_ for _ in args if _ is not None] | Build the list of parameters.
This method simply removes the `None` values from the given arguments.
Arguments:
*args: List of parameters.
Returns:
A new list, with `None` values filtered out. | https://github.com/pawamoy/aria2p/blob/6cdc9a1ef5ed0413fffa3be4885f4b5325177660/src/aria2p/client.py#L424-L436 | import json
from typing import Any, Callable, List, Optional, Union
import requests
import websocket
from loguru import logger
from aria2p.types import CallsType, Multicalls2Type
from aria2p.utils import SignalHandler
DEFAULT_ID = -1
DEFAULT_HOST = "http://localhost"
DEFAULT_PORT = 6800
DEFAULT_TIMEOUT: float = 60.0
JSONRPC_PARSER_ERROR = -32700
JSONRPC_INVALID_REQUEST = -32600
JSONRPC_METHOD_NOT_FOUND = -32601
JSONRPC_INVALID_PARAMS = -32602
JSONRPC_INTERNAL_ERROR = -32603
JSONRPC_CODES = {
JSONRPC_PARSER_ERROR: "Invalid JSON was received by the server.",
JSONRPC_INVALID_REQUEST: "The JSON sent is not a valid Request object.",
JSONRPC_METHOD_NOT_FOUND: "The method does not exist / is not available.",
JSONRPC_INVALID_PARAMS: "Invalid method parameter(s).",
JSONRPC_INTERNAL_ERROR: "Internal JSON-RPC error.",
}
NOTIFICATION_START = "aria2.onDownloadStart"
NOTIFICATION_PAUSE = "aria2.onDownloadPause"
NOTIFICATION_STOP = "aria2.onDownloadStop"
NOTIFICATION_COMPLETE = "aria2.onDownloadComplete"
NOTIFICATION_ERROR = "aria2.onDownloadError"
NOTIFICATION_BT_COMPLETE = "aria2.onBtDownloadComplete"
NOTIFICATION_TYPES = [
NOTIFICATION_START,
NOTIFICATION_PAUSE,
NOTIFICATION_STOP,
NOTIFICATION_COMPLETE,
NOTIFICATION_ERROR,
NOTIFICATION_BT_COMPLETE,
]
CallReturnType = Union[dict, list, str, int]
class ClientException(Exception):
def __init__(self, code: int, message: str) -> None:
super().__init__()
if code in JSONRPC_CODES:
message = f"{JSONRPC_CODES[code]}\n{message}"
self.code = code
self.message = message
def __str__(self):
return self.message
def __bool__(self):
return False
class Client:
ADD_URI = "aria2.addUri"
ADD_TORRENT = "aria2.addTorrent"
ADD_METALINK = "aria2.addMetalink"
REMOVE = "aria2.remove"
FORCE_REMOVE = "aria2.forceRemove"
PAUSE = "aria2.pause"
PAUSE_ALL = "aria2.pauseAll"
FORCE_PAUSE = "aria2.forcePause"
FORCE_PAUSE_ALL = "aria2.forcePauseAll"
UNPAUSE = "aria2.unpause"
UNPAUSE_ALL = "aria2.unpauseAll"
TELL_STATUS = "aria2.tellStatus"
GET_URIS = "aria2.getUris"
GET_FILES = "aria2.getFiles"
GET_PEERS = "aria2.getPeers"
GET_SERVERS = "aria2.getServers"
TELL_ACTIVE = "aria2.tellActive"
TELL_WAITING = "aria2.tellWaiting"
TELL_STOPPED = "aria2.tellStopped"
CHANGE_POSITION = "aria2.changePosition"
CHANGE_URI = "aria2.changeUri"
GET_OPTION = "aria2.getOption"
CHANGE_OPTION = "aria2.changeOption"
GET_GLOBAL_OPTION = "aria2.getGlobalOption"
CHANGE_GLOBAL_OPTION = "aria2.changeGlobalOption"
GET_GLOBAL_STAT = "aria2.getGlobalStat"
PURGE_DOWNLOAD_RESULT = "aria2.purgeDownloadResult"
REMOVE_DOWNLOAD_RESULT = "aria2.removeDownloadResult"
GET_VERSION = "aria2.getVersion"
GET_SESSION_INFO = "aria2.getSessionInfo"
SHUTDOWN = "aria2.shutdown"
FORCE_SHUTDOWN = "aria2.forceShutdown"
SAVE_SESSION = "aria2.saveSession"
MULTICALL = "system.multicall"
LIST_METHODS = "system.listMethods"
LIST_NOTIFICATIONS = "system.listNotifications"
METHODS = [
ADD_URI,
ADD_TORRENT,
ADD_METALINK,
REMOVE,
FORCE_REMOVE,
PAUSE,
PAUSE_ALL,
FORCE_PAUSE,
FORCE_PAUSE_ALL,
UNPAUSE,
UNPAUSE_ALL,
TELL_STATUS,
GET_URIS,
GET_FILES,
GET_PEERS,
GET_SERVERS,
TELL_ACTIVE,
TELL_WAITING,
TELL_STOPPED,
CHANGE_POSITION,
CHANGE_URI,
GET_OPTION,
CHANGE_OPTION,
GET_GLOBAL_OPTION,
CHANGE_GLOBAL_OPTION,
GET_GLOBAL_STAT,
PURGE_DOWNLOAD_RESULT,
REMOVE_DOWNLOAD_RESULT,
GET_VERSION,
GET_SESSION_INFO,
SHUTDOWN,
FORCE_SHUTDOWN,
SAVE_SESSION,
MULTICALL,
LIST_METHODS,
LIST_NOTIFICATIONS,
]
def __init__(
self,
host: str = DEFAULT_HOST,
port: int = DEFAULT_PORT,
secret: str = "",
timeout: float = DEFAULT_TIMEOUT,
) -> None:
host = host.rstrip("/")
self.host = host
self.port = port
self.secret = secret
self.timeout = timeout
self.listening = False
def __str__(self):
return self.server
def __repr__(self):
return f"Client(host='{self.host}', port={self.port}, secret='********')"
@property
def server(self) -> str:
return f"{self.host}:{self.port}/jsonrpc"
@property
def ws_server(self) -> str:
return f"ws{self.host[4:]}:{self.port}/jsonrpc"
def call(
self,
method: str,
params: List[Any] = None,
msg_id: Union[int, str] = None,
insert_secret: bool = True,
) -> CallReturnType:
params = self.get_params(*(params or []))
if insert_secret and self.secret:
if method.startswith("aria2."):
params.insert(0, f"token:{self.secret}")
elif method == self.MULTICALL:
for param in params[0]:
param["params"].insert(0, f"token:{self.secret}")
payload: str = self.get_payload(method, params, msg_id=msg_id)
return self.res_or_raise(self.post(payload))
def batch_call(
self,
calls: CallsType,
insert_secret: bool = True,
) -> List[CallReturnType]:
payloads = []
for method, params, msg_id in calls:
params = self.get_params(*params)
if insert_secret and self.secret and method.startswith("aria2."):
params.insert(0, f"token:{self.secret}")
payloads.append(self.get_payload(method, params, msg_id, as_json=False))
payload: str = json.dumps(payloads)
responses = self.post(payload)
return [self.res_or_raise(resp) for resp in responses]
def multicall2(self, calls: Multicalls2Type, insert_secret: bool = True) -> CallReturnType:
multicall_params = []
for method, params in calls:
params = self.get_params(*params)
if insert_secret and self.secret and method.startswith("aria2."):
params.insert(0, f"token:{self.secret}")
multicall_params.append({"methodName": method, "params": params})
payload: str = self.get_payload(self.MULTICALL, [multicall_params])
return self.res_or_raise(self.post(payload))
def post(self, payload: str) -> dict:
return requests.post(self.server, data=payload, timeout=self.timeout).json()
@staticmethod
def response_as_exception(response: dict) -> ClientException:
return ClientException(response["error"]["code"], response["error"]["message"])
@staticmethod
def res_or_raise(response: dict) -> CallReturnType:
if "error" in response:
raise Client.response_as_exception(response)
return response["result"]
@staticmethod
def get_payload(
method,
params: List[Any] = None,
msg_id: Union[int, str] = None,
as_json: bool = True,
) -> Union[str, dict]:
payload = {"jsonrpc": "2.0", "method": method}
if msg_id is not None:
payload["id"] = msg_id
else:
payload["id"] = DEFAULT_ID
if params:
payload["params"] = params
return json.dumps(payload) if as_json else payload
@staticmethod | ISC License |
unishared/videonotes | lib/evernote/edam/notestore/NoteStore.py | Iface.listTagsByNotebook | python | def listTagsByNotebook(self, authenticationToken, notebookGuid):
pass | Returns a list of the tags that are applied to at least one note within
the provided notebook. If the notebook is public, the authenticationToken
may be ignored.
@param notebookGuid
the GUID of the notebook to use to find tags
@throws EDAMNotFoundException <ul>
<li> "Notebook.guid" - notebook not found by GUID
</li>
</ul>
Parameters:
- authenticationToken
- notebookGuid | https://github.com/unishared/videonotes/blob/803cdd97b90823fb17f50dd55999aa7d1fec6c3a/lib/evernote/edam/notestore/NoteStore.py#L370-L388 | from thrift.Thrift import TType, TMessageType, TException, TApplicationException
from ttypes import *
from thrift.Thrift import TProcessor
from thrift.transport import TTransport
from thrift.protocol import TBinaryProtocol, TProtocol
try:
from thrift.protocol import fastbinary
except:
fastbinary = None
class Iface(object):
def getSyncState(self, authenticationToken):
pass
def getSyncStateWithMetrics(self, authenticationToken, clientMetrics):
pass
def getSyncChunk(self, authenticationToken, afterUSN, maxEntries, fullSyncOnly):
pass
def getFilteredSyncChunk(self, authenticationToken, afterUSN, maxEntries, filter):
pass
def getLinkedNotebookSyncState(self, authenticationToken, linkedNotebook):
pass
def getLinkedNotebookSyncChunk(self, authenticationToken, linkedNotebook, afterUSN, maxEntries, fullSyncOnly):
pass
def listNotebooks(self, authenticationToken):
pass
def getNotebook(self, authenticationToken, guid):
pass
def getDefaultNotebook(self, authenticationToken):
pass
def createNotebook(self, authenticationToken, notebook):
pass
def updateNotebook(self, authenticationToken, notebook):
pass
def expungeNotebook(self, authenticationToken, guid):
pass
def listTags(self, authenticationToken):
pass | MIT License |
reliaqualassociates/ramstk | src/ramstk/views/gtk3/widgets/baseview.py | RAMSTKModuleView.__init__ | python | def __init__(
self, configuration: RAMSTKUserConfiguration, logger: RAMSTKLogManager
) -> None:
super().__init__(configuration, logger)
self._dic_icons["insert_part"] = (
self.RAMSTK_USER_CONFIGURATION.RAMSTK_ICON_DIR + "/32x32/insert_part.png"
)
self._dic_key_index: Dict[str, int] = {}
self._lst_callbacks.insert(0, super().do_request_insert_sibling)
self._lst_callbacks.insert(1, super().do_request_delete)
self._lst_icons.insert(0, "add")
self._lst_icons.insert(1, "remove") | Initialize the RAMSTKModuleView meta-class.
:param configuration: the RAMSTKUserConfiguration class instance.
:param logger: the RAMSTKLogManager class instance. | https://github.com/reliaqualassociates/ramstk/blob/ffec5a107424914cf0026c6dfe26369c221f79f9/src/ramstk/views/gtk3/widgets/baseview.py#L770-L798 | import locale
from typing import Any, Dict, List, Tuple
import treelib
from pubsub import pub
from ramstk.configuration import RAMSTKUserConfiguration
from ramstk.logger import RAMSTKLogManager
from ramstk.views.gtk3 import Gdk, Gtk, _
from .button import do_make_buttonbox
from .dialog import RAMSTKMessageDialog
from .label import RAMSTKLabel
from .panel import RAMSTKPanel
from .treeview import RAMSTKTreeView
class RAMSTKBaseView(Gtk.HBox):
_pixbuf: bool = False
dic_tab_position = {
"left": Gtk.PositionType.LEFT,
"right": Gtk.PositionType.RIGHT,
"top": Gtk.PositionType.TOP,
"bottom": Gtk.PositionType.BOTTOM,
}
RAMSTK_USER_CONFIGURATION: RAMSTKUserConfiguration = None
def __init__(
self, configuration: RAMSTKUserConfiguration, logger: RAMSTKLogManager
) -> None:
super().__init__()
self.RAMSTK_USER_CONFIGURATION = configuration
self.RAMSTK_LOGGER = logger
self.RAMSTK_LOGGER.do_create_logger(
__name__, self.RAMSTK_USER_CONFIGURATION.RAMSTK_LOGLEVEL, to_tty=False
)
self._dic_icons: Dict[str, str] = self.__set_icons()
self._lst_callbacks: List[object] = [
self.do_request_update,
self.do_request_update_all,
]
self._lst_icons: List[str] = [
"save",
"save-all",
]
self._lst_mnu_labels: List[str] = [
_("Save"),
_("Save All"),
]
self._lst_tooltips: List[str] = []
self._lst_handler_id: List[int] = []
self._lst_layouts: List[str] = [
"allocation",
"failure_definition",
"fmea",
"function",
"hardware",
"hazard",
"incident",
"pof",
"requirement",
"revision",
"similar_item",
"software",
"stakeholder",
"testing",
"validation",
]
self._img_tab: Gtk.Image = Gtk.Image()
self._mission_time: float = float(self.RAMSTK_USER_CONFIGURATION.RAMSTK_MTIME)
self._notebook: Gtk.Notebook = Gtk.Notebook()
self._parent_id: int = 0
self._pnlPanel: RAMSTKPanel = RAMSTKPanel()
self._record_id: int = -1
self._revision_id: int = 0
self._tree_loaded: bool = False
self.fmt: str = (
"{0:0." + str(self.RAMSTK_USER_CONFIGURATION.RAMSTK_DEC_PLACES) + "G}"
)
self.hbx_tab_label: Gtk.HBox = Gtk.HBox()
try:
locale.setlocale(
locale.LC_ALL, self.RAMSTK_USER_CONFIGURATION.RAMSTK_LOCALE
)
except locale.Error as _error:
locale.setlocale(locale.LC_ALL, "")
self.RAMSTK_LOGGER.do_log_exception(__name__, _error)
pub.subscribe(self.do_set_cursor_active, "request_set_cursor_active")
pub.subscribe(self.do_set_cursor_active, f"succeed_update_{self._tag}")
pub.subscribe(self.do_set_cursor_active, f"succeed_calculate_{self._tag}")
pub.subscribe(self.do_set_cursor_active, "succeed_update_all")
pub.subscribe(self.do_set_cursor_active_on_fail, f"fail_delete_{self._tag}")
pub.subscribe(self.do_set_cursor_active_on_fail, f"fail_insert_{self._tag}")
pub.subscribe(self.do_set_cursor_active_on_fail, f"fail_update_{self._tag}")
pub.subscribe(self.on_select_revision, "selected_revision")
def do_embed_treeview_panel(self) -> None:
_fmt_file = (
self.RAMSTK_USER_CONFIGURATION.RAMSTK_CONF_DIR
+ "/layouts/"
+ self.RAMSTK_USER_CONFIGURATION.RAMSTK_FORMAT_FILE[self._tag]
)
try:
_bg_color = self.RAMSTK_USER_CONFIGURATION.RAMSTK_COLORS[self._tag + "bg"]
_fg_color = self.RAMSTK_USER_CONFIGURATION.RAMSTK_COLORS[self._tag + "fg"]
except KeyError:
_bg_color = "#FFFFFF"
_fg_color = "#000000"
self._pnlPanel.do_make_treeview(
bg_color=_bg_color, fg_color=_fg_color, fmt_file=_fmt_file
)
self.pack_end(self._pnlPanel, True, True, 0)
self.show_all()
def do_make_layout(self) -> None:
self.make_tab_label(tablabel=self._tablabel, tooltip=self._tabtooltip)
self.make_toolbuttons(
icons=self._lst_icons,
tooltips=self._lst_tooltips,
callbacks=self._lst_callbacks,
)
def do_make_layout_lr(self) -> Gtk.HPaned:
self.do_make_layout()
_hpaned: Gtk.HPaned = Gtk.HPaned()
self.pack_start(_hpaned, True, True, 0)
return _hpaned
def do_make_layout_lrr(self) -> Tuple[Gtk.HPaned, Gtk.VPaned]:
self.do_make_layout()
_hpaned: Gtk.HPaned = Gtk.HPaned()
_vpaned_right: Gtk.VPaned = Gtk.VPaned()
_hpaned.pack2(_vpaned_right, True, True)
self.pack_start(_hpaned, True, True, 0)
return _hpaned, _vpaned_right
def do_make_layout_llr(self) -> Tuple[Gtk.HPaned, Gtk.VPaned]:
self.do_make_layout()
_hpaned: Gtk.HPaned = Gtk.HPaned()
_vpaned_left: Gtk.VPaned = Gtk.VPaned()
_hpaned.pack1(_vpaned_left, True, True)
self.pack_start(_hpaned, True, True, 0)
return _hpaned, _vpaned_left
def do_make_layout_llrr(self) -> Tuple[Gtk.VPaned, Gtk.VPaned]:
self.do_make_layout()
_hpaned: Gtk.HPaned = Gtk.HPaned()
_vpaned_left: Gtk.VPaned = Gtk.VPaned()
_vpaned_right: Gtk.VPaned = Gtk.VPaned()
_hpaned.pack1(_vpaned_left, True, True)
_hpaned.pack2(_vpaned_right, True, True)
self.pack_start(_hpaned, True, True, 0)
return _vpaned_left, _vpaned_right
def do_raise_dialog(self, **kwargs: Any) -> RAMSTKMessageDialog:
_debug_msg = kwargs.get("debug_msg", "")
_parent = kwargs.get("parent", None)
_dialog = RAMSTKMessageDialog(parent=_parent)
self.RAMSTK_LOGGER.do_log_debug(__name__, _debug_msg)
return _dialog
def do_request_delete(self, __button: Gtk.ToolButton) -> None:
_parent = self.get_parent().get_parent().get_parent().get_parent().get_parent()
_prompt = _(
"You are about to delete {1} {0} and all "
"data associated with it. Is this really what "
"you want to do?"
).format(self._record_id, self._tag.title())
_dialog = RAMSTKMessageDialog(parent=_parent)
_dialog.do_set_message(_prompt)
_dialog.do_set_message_type("question")
if _dialog.do_run() == Gtk.ResponseType.YES:
self.do_set_cursor_busy()
pub.sendMessage(
f"request_delete_{self._tag}",
node_id=self._record_id,
)
_dialog.do_destroy()
def do_request_insert(self, **kwargs: Any) -> None:
_sibling = kwargs.get("sibling", True)
self.do_set_cursor_busy()
if _sibling:
pub.sendMessage(
f"request_insert_{self._tag.lower()}",
parent_id=self._parent_id,
)
else:
pub.sendMessage(
f"request_insert_{self._tag.lower()}",
parent_id=self._record_id,
)
def do_request_insert_child(self, __button: Gtk.ToolButton) -> Any:
return self.do_request_insert(sibling=False)
def do_request_insert_sibling(self, __button: Gtk.ToolButton) -> Any:
return self.do_request_insert(sibling=True)
def do_request_update(self, __button: Gtk.ToolButton) -> None:
self.do_set_cursor_busy()
pub.sendMessage(f"request_update_{self._tag}", node_id=self._record_id)
def do_request_update_all(self, __button: Gtk.ToolButton) -> None:
self.do_set_cursor_busy()
pub.sendMessage(f"request_update_all_{self._tag}s")
def do_set_cursor(self, cursor: Gdk.CursorType) -> None:
try:
self.get_parent_window().set_cursor(Gdk.Cursor.new(cursor))
Gdk.flush()
except AttributeError:
pass
def do_set_cursor_active(self, tree: treelib.Tree = "") -> None:
self.do_set_cursor(Gdk.CursorType.LEFT_PTR)
def do_set_cursor_active_on_fail(self, error_message: str = "") -> None:
self.do_set_cursor(Gdk.CursorType.LEFT_PTR)
def do_set_cursor_busy(self) -> None:
self.do_set_cursor(Gdk.CursorType.WATCH)
def make_tab_label(self, **kwargs: Dict[str, Any]) -> None:
try:
self._img_tab.set_from_file(self._dic_icons["tab"])
self.hbx_tab_label.pack_start(self._img_tab, True, True, 0)
except KeyError:
pass
_label: RAMSTKLabel = RAMSTKLabel(self._tablabel)
_label.do_set_properties(
height=30,
width=-1,
justify=Gtk.Justification.CENTER,
tooltip=self._tabtooltip,
)
self.hbx_tab_label.pack_end(_label, True, True, 0)
self.hbx_tab_label.show_all()
def make_toolbuttons(self, **kwargs: Dict[str, Any]) -> None:
_scrolledwindow = Gtk.ScrolledWindow()
_scrolledwindow.set_policy(Gtk.PolicyType.NEVER, Gtk.PolicyType.AUTOMATIC)
_scrolledwindow.add_with_viewport(do_make_buttonbox(self, **kwargs))
self.pack_start(_scrolledwindow, False, False, 0)
def on_button_press(self, treeview: RAMSTKTreeView, event: Gdk.EventButton) -> None:
treeview.handler_block(treeview.dic_handler_id["button-press"])
if event.button == 3:
_menu = Gtk.Menu()
_menu.popup_at_pointer(event)
for _idx, __ in enumerate(self._lst_icons):
_menu_item = Gtk.ImageMenuItem()
_image = Gtk.Image()
_image.set_from_file(self._dic_icons[self._lst_icons[_idx]])
_menu_item.set_label(self._lst_mnu_labels[_idx])
_menu_item.set_image(_image)
_menu_item.set_property("use_underline", True)
_menu_item.connect(
"activate",
self._lst_callbacks[_idx],
self.RAMSTK_USER_CONFIGURATION,
)
_menu_item.show()
_menu.append(_menu_item)
treeview.handler_unblock(treeview.dic_handler_id["button-press"])
def on_insert(self, node_id: int = 0, tree: treelib.Tree = "") -> None:
_data = tree.get_node(node_id).data[self._tag].get_attributes()
self._pnlPanel.on_insert(_data)
def on_select_revision(self, attributes: Dict[str, Any]) -> None:
self._revision_id = attributes["revision_id"]
def __set_icons(self) -> Dict[str, str]:
return {
"action": self.RAMSTK_USER_CONFIGURATION.RAMSTK_ICON_DIR
+ "/32x32/action.png",
"add": self.RAMSTK_USER_CONFIGURATION.RAMSTK_ICON_DIR + "/32x32/add.png",
"assembly": self.RAMSTK_USER_CONFIGURATION.RAMSTK_ICON_DIR
+ "/32x32/assembly.png",
"calculate": self.RAMSTK_USER_CONFIGURATION.RAMSTK_ICON_DIR
+ "/32x32/calculate.png",
"calculate_all": self.RAMSTK_USER_CONFIGURATION.RAMSTK_ICON_DIR
+ "/32x32/calculate-all.png",
"cancel": self.RAMSTK_USER_CONFIGURATION.RAMSTK_ICON_DIR
+ "/32x32/cancel.png",
"cause": self.RAMSTK_USER_CONFIGURATION.RAMSTK_ICON_DIR
+ "/32x32/cause.png",
"complete": self.RAMSTK_USER_CONFIGURATION.RAMSTK_ICON_DIR
+ "/32x32/complete.png",
"control": self.RAMSTK_USER_CONFIGURATION.RAMSTK_ICON_DIR
+ "/32x32/control.png",
"chart": self.RAMSTK_USER_CONFIGURATION.RAMSTK_ICON_DIR
+ "/32x32/charts.png",
"edit": self.RAMSTK_USER_CONFIGURATION.RAMSTK_ICON_DIR + "/32x32/edit.png",
"environment": self.RAMSTK_USER_CONFIGURATION.RAMSTK_ICON_DIR
+ "/32x32/environment.png",
"error": self.RAMSTK_USER_CONFIGURATION.RAMSTK_ICON_DIR
+ "/32x32/error.png",
"export": self.RAMSTK_USER_CONFIGURATION.RAMSTK_ICON_DIR
+ "/32x32/export.png",
"important": self.RAMSTK_USER_CONFIGURATION.RAMSTK_ICON_DIR
+ "/32x32/important.png",
"insert_child": self.RAMSTK_USER_CONFIGURATION.RAMSTK_ICON_DIR
+ "/32x32/insert_child.png",
"insert_sibling": self.RAMSTK_USER_CONFIGURATION.RAMSTK_ICON_DIR
+ "/32x32/insert_sibling.png",
"mechanism": self.RAMSTK_USER_CONFIGURATION.RAMSTK_ICON_DIR
+ "/32x32/mechanism.png",
"mission": self.RAMSTK_USER_CONFIGURATION.RAMSTK_ICON_DIR
+ "/32x32/mission.png",
"mode": self.RAMSTK_USER_CONFIGURATION.RAMSTK_ICON_DIR + "/32x32/mode.png",
"none": self.RAMSTK_USER_CONFIGURATION.RAMSTK_ICON_DIR + "/32x32/none.png",
"opload": self.RAMSTK_USER_CONFIGURATION.RAMSTK_ICON_DIR
+ "/32x32/load.png",
"opstress": self.RAMSTK_USER_CONFIGURATION.RAMSTK_ICON_DIR
+ "/32x32/stress.png",
"part": self.RAMSTK_USER_CONFIGURATION.RAMSTK_ICON_DIR + "/32x32/part.png",
"partial": self.RAMSTK_USER_CONFIGURATION.RAMSTK_ICON_DIR
+ "/32x32/partial.png",
"phase": self.RAMSTK_USER_CONFIGURATION.RAMSTK_ICON_DIR
+ "/32x32/phase.png",
"plot": self.RAMSTK_USER_CONFIGURATION.RAMSTK_ICON_DIR
+ "/32x32/charts.png",
"question": self.RAMSTK_USER_CONFIGURATION.RAMSTK_ICON_DIR
+ "/32x32/question.png",
"refresh-view": self.RAMSTK_USER_CONFIGURATION.RAMSTK_ICON_DIR
+ "/32x32/view-refresh.png",
"remove": self.RAMSTK_USER_CONFIGURATION.RAMSTK_ICON_DIR
+ "/32x32/remove.png",
"rollup": self.RAMSTK_USER_CONFIGURATION.RAMSTK_ICON_DIR
+ "/32x32/rollup.png",
"reports": self.RAMSTK_USER_CONFIGURATION.RAMSTK_ICON_DIR
+ "/32x32/reports.png",
"save": self.RAMSTK_USER_CONFIGURATION.RAMSTK_ICON_DIR + "/32x32/save.png",
"save-all": self.RAMSTK_USER_CONFIGURATION.RAMSTK_ICON_DIR
+ "/32x32/save-all.png",
"save-layout": self.RAMSTK_USER_CONFIGURATION.RAMSTK_ICON_DIR
+ "/32x32/save-layout.png",
"testmethod": self.RAMSTK_USER_CONFIGURATION.RAMSTK_ICON_DIR
+ "/32x32/method.png",
"warning": self.RAMSTK_USER_CONFIGURATION.RAMSTK_ICON_DIR
+ "/32x32/warning.png",
}
class RAMSTKListView(RAMSTKBaseView):
def __init__(
self, configuration: RAMSTKUserConfiguration, logger: RAMSTKLogManager
) -> None:
super().__init__(configuration, logger)
self._lst_callbacks.insert(0, super().do_request_insert_sibling)
self._lst_icons.insert(0, "add")
self.tab_label: Gtk.Label = Gtk.Label()
def do_request_update_all(self, __button: Gtk.ToolButton) -> None:
super().do_set_cursor_busy()
pub.sendMessage(f"request_update_all_{self._tag}s")
def make_ui(self) -> None:
super().do_make_layout()
super().do_embed_treeview_panel()
class RAMSTKModuleView(RAMSTKBaseView): | BSD 3-Clause New or Revised License |
simoncozens/fontfeatures | fontFeatures/ttLib/FontFeatures.py | makeTable | python | def makeTable(self, tag, font):
table = getattr(otTables, tag, None)()
table.Version = 0x00010000
table.ScriptList = otTables.ScriptList()
table.ScriptList.ScriptRecord = []
table.FeatureList = otTables.FeatureList()
table.FeatureList.FeatureRecord = []
table.LookupList = otTables.LookupList()
stage_map = separate_by_stage(arrangeByScripts(self), tag[1:].lower())
stage_routines = [x for x in self.routines if x.stage == tag[1:].lower() ]
buildersset = [ x.toOTLookup(font, self) for x in stage_routines ]
lookups = []
builderlist = []
for builders in buildersset:
for builder in builders:
builder.lookup_index = len(lookups)
builderlist.append(builder)
lookups.append(builder.build())
table.LookupList.Lookup = lookups
feature_indices = {}
required_feature_indices = {}
scripts = {}
sortFeatureTag = lambda f: (f[0][2], f[0][1], f[0][0], f[1])
for key, lookups in sorted(stage_map.items(), key=sortFeatureTag):
feature_tag, script, lang = key
lookup_indices = tuple([builderlist.index(x.routine.__builder) for x in lookups ])
size_feature = tag == "GPOS" and feature_tag == "size"
if len(lookup_indices) == 0 and not size_feature:
continue
feature_key = (feature_tag, lookup_indices)
feature_index = feature_indices.get(feature_key)
if feature_index is None:
feature_index = len(table.FeatureList.FeatureRecord)
frec = otTables.FeatureRecord()
frec.FeatureTag = feature_tag
frec.Feature = otTables.Feature()
frec.Feature.LookupListIndex = list(lookup_indices)
frec.Feature.LookupCount = len(lookup_indices)
table.FeatureList.FeatureRecord.append(frec)
feature_indices[feature_key] = feature_index
scripts.setdefault(script, {}).setdefault(lang, []).append(feature_index)
for script, lang_features in sorted(scripts.items()):
srec = otTables.ScriptRecord()
srec.ScriptTag = script
srec.Script = otTables.Script()
srec.Script.DefaultLangSys = None
srec.Script.LangSysRecord = []
for lang, feature_indices in sorted(lang_features.items()):
langrec = otTables.LangSysRecord()
langrec.LangSys = otTables.LangSys()
langrec.LangSys.LookupOrder = None
langrec.LangSys.ReqFeatureIndex = 0xFFFF
langrec.LangSys.FeatureIndex = [i for i in feature_indices ]
langrec.LangSys.FeatureCount = len(langrec.LangSys.FeatureIndex)
if lang == "dflt":
srec.Script.DefaultLangSys = langrec.LangSys
else:
langrec.LangSysTag = lang
srec.Script.LangSysRecord.append(langrec)
srec.Script.LangSysCount = len(srec.Script.LangSysRecord)
table.ScriptList.ScriptRecord.append(srec)
table.ScriptList.ScriptCount = len(table.ScriptList.ScriptRecord)
table.FeatureList.FeatureCount = len(table.FeatureList.FeatureRecord)
table.LookupList.LookupCount = len(table.LookupList.Lookup)
return table | Compiles a binary GSUB/GPOS table. | https://github.com/simoncozens/fontfeatures/blob/2c3a04b461c319b0a07baf02647f0c51bf5c2394/fontFeatures/ttLib/FontFeatures.py#L182-L263 | import copy
from fontTools.ttLib.tables import otBase, otTables
from fontTools.ttLib import newTable
from collections import OrderedDict
import itertools
from fontTools.varLib.varStore import OnlineVarStoreBuilder
def buildBinaryFeatures(self, font, axes=[]):
self.resolveAllRoutines()
reorderRoutines(self)
for r in self.routines:
self.partitionRoutine(r, lambda rule: rule.lookup_type())
if axes:
self.varstorebuilder = OnlineVarStoreBuilder([ax.tag for ax in axes])
self.axes = axes
buildGDEF(self, font)
buildGPOSGSUB(self, font)
if axes:
store = self.varstorebuilder.finish()
if store.VarData:
font["GDEF"].table.Version = 0x00010003
font["GDEF"].table.VarStore = store
varidx_map = store.optimize()
font["GDEF"].table.remap_device_varidxes(varidx_map)
if 'GPOS' in font:
font['GPOS'].table.remap_device_varidxes(varidx_map)
def reorderRoutines(self):
newroutines = []
i = 0
while i < len(self.routines):
r = self.routines[i]
if r in newroutines:
i = i + 1
continue
for dep in r.dependencies:
if dep not in newroutines:
newroutines.append(dep)
newroutines.append(r)
i = i + 1
self.routines = newroutines
def buildGDEF(self, font):
gdef = otTables.GDEF()
gdef.GlyphClassDef = _buildGDEFGlyphClassDef(self)
gdef.Version = 0x00010000
if any(
(
gdef.GlyphClassDef,
)
):
font["GDEF"] = newTable("GDEF")
font["GDEF"].table = gdef
classnames = ["", "base", "ligature", "mark", "component"]
def _buildGDEFGlyphClassDef(self):
classes = {}
for g, c in self.glyphclasses.items():
classes[g] = classnames.index(c)
if classes:
result = otTables.GlyphClassDef()
result.classDefs = classes
return result
else:
return None
def buildGPOSGSUB(self, font):
for tag in ["GSUB", "GPOS"]:
table = makeTable(self, tag, font)
fontTable = font[tag] = newTable(tag)
fontTable.table = table
def arrangeByScripts(self):
for r in self.routines:
if any(rule.languages for rule in r.rules):
self.partitionRoutine(r, lambda rule: tuple(rule.languages or []))
for r in self.routines:
if not r.rules:
continue
r.languages = r.rules[0].languages
if r.languages:
for ix,langpair in enumerate(r.languages):
if langpair[1] == "*":
r.languages[ix] = (langpair[0], "dflt")
if langpair[0] == "*":
r.languages[ix] = ("DFLT", langpair[1])
else:
r.languages = [("DFLT", "dflt")]
self.hoist_languages()
script_lang_pairs = []
for script in self.scripts_and_languages.keys():
if not (script, "dflt") in script_lang_pairs:
script_lang_pairs.append((script, "dflt"))
for lang in self.scripts_and_languages[script]:
script_lang_pairs.append((script, lang))
the_big_map = OrderedDict()
def put_in_map(tag, script, lang, routine):
key = (tag, script, lang)
if key not in the_big_map:
the_big_map[key] = []
if routine not in the_big_map[key]:
the_big_map[key].append(routine)
def put_in_map_with_default(tag, script, lang, routine):
put_in_map(tag, script, lang, routine)
for script2, lang2 in script_lang_pairs:
if script == "DFLT" and lang == "dflt":
put_in_map(tag, script2, lang2, routine)
elif script == script2 and lang == "dflt":
put_in_map(tag, script2, lang2, routine)
for tag, routinereferences in self.features.items():
for r in routinereferences:
for script, lang in r.routine.languages:
put_in_map_with_default(tag, script, lang, r)
return the_big_map
def separate_by_stage(the_big_map, stage):
stage_map = OrderedDict()
for k,v in the_big_map.items():
v = [r for r in v if r.stage == stage]
if v:
stage_map[k] = v
return stage_map | BSD 3-Clause New or Revised License |
negrinho/deep_architect | dev/hyperband/common.py | History.load | python | def load():
pass | Load from json file | https://github.com/negrinho/deep_architect/blob/3427c5d45b0cbdc9c2fe1f4e5213f6961ef41749/dev/hyperband/common.py#L162-L164 | class HyperBand:
def __init__(self):
if type(self) == HyperBand:
raise Exception("Can't instantiate Abstract Class; must define a subclass")
def get_hyperparameter_configuration(self, n):
raise NotImplementedError("Need to be defined by users")
def run_then_return_val_loss(self, t, r):
raise NotImplementedError("Need to be defined by users")
def top_k(self, T, P, k):
raise NotImplementedError("Need to be defined by users")
def get_best_performance(self, L, T, best_so_far):
raise NotImplementedError("Need to be defined by users")
def evaluate(self, R, eta = 3):
s_max = int(math.floor(math.log(R, eta)))
B = (s_max + 1) * R
max_perf = None
self.total_resources = 0
self.total_configs = 0
for s in xrange(s_max, -1, -1):
n = int(math.ceil(float(B) * (eta**s) / (float(R) * (s+1))))
r = R * (eta**(-s))
T = self.get_hyperparameter_configuration(n)
self.total_configs += n
for i in xrange(s+1):
if len(T) == 0:
return max_perf
n_i = int(math.floor(n * (eta ** (-i))))
r_i = int(math.floor(r * (eta ** i)))
L = [self.run_then_return_val_loss(t, r_i) for t in T]
k = int(math.floor(float(n_i) / eta))
if (k == 0): break
T = self.top_k(T, L, k)
self.total_resources += len(T) * r_i
max_perf = self.get_best_performance(L, T, max_perf)
return max_perf
class History:
def __init__(self):
self.brackets = dict()
self.total_configurations = 0
self.total_resources = 0
self.best_configuration = None
self.best_performance = None
def record_successiveHalving(self, bracket_id, configs, performances, resource):
assert(len(configs) == len(performances))
if bracket_id not in self.brackets:
self.brackets[bracket_id] = dict()
for (config, performance) in zip(configs, performances):
self.brackets[config][resource] = performance
def record_best_of_bracket(self, bracket_id, configs, performances):
assert(bracket_id in self.brackets)
assert(len(configs) == len(performances) == 1)
self.brackets[bracket_id]["best_config"] = (configs[0], performances[0])
def record_best_config(self, best_config, best_perf):
self.best_configuration = best_config
self.best_performance = best_perf
def convert_to_graph_hyperband_ready(self, metric, resource):
data = {'configuration': [], metric: [], resource:[]}
for bracket in self.brackets:
config, performance = self.brackets[bracket]
history = performance[1]
config_id = config
n = len(history[metric])
data['configuration'] += [config_id for _ in range(n)]
data[metric] += history[metric]
data[resource] += history[resource]
return data
def convert_a_bracket_to_graph_ready(self, bracket_id, metric, resource):
data = {'configuration': [], metric: [], resource:[]}
config, performance = self.brackets[bracket_id]
history = performance[1]
config_id = config
n = len(history[metric])
data['configuration'] += [config_id for _ in range(n)]
data[metric] += history[metric]
data[resource] += history[resource]
return data
def get_all_bracket_IDs(self):
pass
def save():
pass | MIT License |
jdcloud-api/jdcloud-sdk-python | jdcloud_sdk/services/cdn/apis/CreateDomainRequest.py | CreateDomainParameters.setMinFileSize | python | def setMinFileSize(self, minFileSize):
self.minFileSize = minFileSize | :param minFileSize: (Optional) | https://github.com/jdcloud-api/jdcloud-sdk-python/blob/ff70b25bb9c4397e80bc2e4fefe1db1c637d8c2f/jdcloud_sdk/services/cdn/apis/CreateDomainRequest.py#L94-L98 | from jdcloud_sdk.core.jdcloudrequest import JDCloudRequest
class CreateDomainRequest(JDCloudRequest):
def __init__(self, parameters, header=None, version="v1"):
super(CreateDomainRequest, self).__init__(
'/domain/{domain}', 'POST', header, version)
self.parameters = parameters
class CreateDomainParameters(object):
def __init__(self, domain, ):
self.domain = domain
self.sourceType = None
self.cdnType = None
self.backSourceType = None
self.dailyBandWidth = None
self.quaility = None
self.maxFileSize = None
self.minFileSize = None
self.sumFileSize = None
self.avgFileSize = None
self.defaultSourceHost = None
self.httpType = None
self.ipSource = None
self.domainSource = None
self.ossSource = None
self.accelerateRegion = None
self.tempInstId = None
def setSourceType(self, sourceType):
self.sourceType = sourceType
def setCdnType(self, cdnType):
self.cdnType = cdnType
def setBackSourceType(self, backSourceType):
self.backSourceType = backSourceType
def setDailyBandWidth(self, dailyBandWidth):
self.dailyBandWidth = dailyBandWidth
def setQuaility(self, quaility):
self.quaility = quaility
def setMaxFileSize(self, maxFileSize):
self.maxFileSize = maxFileSize | Apache License 2.0 |
gugarosa/opytimizer | opytimizer/math/general.py | kmeans | python | def kmeans(x, n_clusters=1, max_iterations=100, tol=1e-4):
n_samples, n_variables, n_dimensions = x.shape[0], x.shape[1], x.shape[2]
centroids = np.zeros((n_clusters, n_variables, n_dimensions))
labels = np.zeros(n_samples)
for i in range(n_clusters):
idx = r.generate_integer_random_number(0, n_samples)
centroids[i] = x[idx]
for _ in range(max_iterations):
dists = np.squeeze(np.array([np.linalg.norm(x - c, axis=1) for c in centroids]))
updated_labels = np.squeeze(np.array(np.argmin(dists, axis=0)))
ratio = np.sum(labels != updated_labels) / n_samples
if ratio <= tol:
break
labels = updated_labels
for i in range(n_clusters):
centroid_samples = x[labels == i]
if centroid_samples.shape[0] > 0:
centroids[i] = np.mean(centroid_samples, axis=0)
return labels | Performs the K-Means clustering over the input data.
Args:
x (np.array): Input array with a shape equal to (n_samples, n_variables, n_dimensions).
n_clusters (int): Number of clusters.
max_iterations (int): Maximum number of clustering iterations.
tol (float): Tolerance value to stop the clustering.
Returns:
An array holding the assigned cluster per input sample. | https://github.com/gugarosa/opytimizer/blob/09e5485b9e30eca622ad404e85c22de0c42c8abd/opytimizer/math/general.py#L28-L79 | from itertools import islice
import numpy as np
import opytimizer.math.random as r
def euclidean_distance(x, y):
distance = np.linalg.norm(x - y)
return distance | Apache License 2.0 |
r-arcgis/r-bridge-install | rtools/utils.py | mkdtemp | python | def mkdtemp(suffix='', prefix='tmp', parent_dir=None):
path = tempfile.mkdtemp(suffix, prefix, parent_dir)
try:
yield str(path)
finally:
shutil.rmtree(path, ignore_errors=True) | A contextlib based wrapper for tempfile.mkdtemp. | https://github.com/r-arcgis/r-bridge-install/blob/18ebc2edb84655f6bc67b1f462d58162329f1fcd/rtools/utils.py#L36-L42 | from __future__ import unicode_literals
import contextlib
import os
import shutil
import sys
import tempfile
import textwrap
def platform():
platform = None
if sys.maxsize > 2**32:
platform = 'x64'
else:
platform = 'i386'
return platform
def dedent(text, ending='\r\n'):
text = text.replace('\n', ending)
return textwrap.dedent(text)
def versiontuple(v):
res = None
if v is not None:
res = tuple(map(int, (v.split("."))))
return res
@contextlib.contextmanager | Apache License 2.0 |
trusted-ai/adversarial-robustness-toolbox | art/attacks/extraction/knockoff_nets.py | KnockoffNets.extract | python | def extract(self, x: np.ndarray, y: Optional[np.ndarray] = None, **kwargs) -> "CLASSIFIER_TYPE":
if self.sampling_strategy == "random" and y is not None:
logger.warning("This attack with random sampling strategy does not use the provided label y.")
if self.sampling_strategy == "adaptive" and y is None:
raise ValueError("This attack with adaptive sampling strategy needs label y.")
if x.shape[0] < self.nb_stolen:
logger.warning(
"The size of the source input is smaller than the expected number of queries submitted "
"to the victim classifier."
)
thieved_classifier = kwargs.get("thieved_classifier")
if thieved_classifier is None or not isinstance(thieved_classifier, ClassifierMixin):
raise ValueError("A thieved classifier is needed.")
if self.sampling_strategy == "random":
thieved_classifier = self._random_extraction(x, thieved_classifier)
else:
thieved_classifier = self._adaptive_extraction(x, y, thieved_classifier)
return thieved_classifier | Extract a thieved classifier.
:param x: An array with the source input to the victim classifier.
:param y: Target values (class labels) one-hot-encoded of shape (nb_samples, nb_classes) or indices of shape
`(nb_samples,)`.
:param thieved_classifier: A thieved classifier to be stolen.
:return: The stolen classifier. | https://github.com/trusted-ai/adversarial-robustness-toolbox/blob/564f46f99b3cb0406fe3570919b8e71a4c5bba9d/art/attacks/extraction/knockoff_nets.py#L100-L136 | from __future__ import absolute_import, division, print_function, unicode_literals
import logging
from typing import Optional, TYPE_CHECKING
import numpy as np
from tqdm.auto import trange
from art.config import ART_NUMPY_DTYPE
from art.attacks.attack import ExtractionAttack
from art.estimators.estimator import BaseEstimator
from art.estimators.classification.classifier import ClassifierMixin
from art.utils import to_categorical
if TYPE_CHECKING:
from art.utils import CLASSIFIER_TYPE
logger = logging.getLogger(__name__)
class KnockoffNets(ExtractionAttack):
attack_params = ExtractionAttack.attack_params + [
"batch_size_fit",
"batch_size_query",
"nb_epochs",
"nb_stolen",
"sampling_strategy",
"reward",
"verbose",
"use_probability",
]
_estimator_requirements = (BaseEstimator, ClassifierMixin)
def __init__(
self,
classifier: "CLASSIFIER_TYPE",
batch_size_fit: int = 1,
batch_size_query: int = 1,
nb_epochs: int = 10,
nb_stolen: int = 1,
sampling_strategy: str = "random",
reward: str = "all",
verbose: bool = True,
use_probability: bool = False,
) -> None:
super().__init__(estimator=classifier)
self.batch_size_fit = batch_size_fit
self.batch_size_query = batch_size_query
self.nb_epochs = nb_epochs
self.nb_stolen = nb_stolen
self.sampling_strategy = sampling_strategy
self.reward = reward
self.verbose = verbose
self.use_probability = use_probability
self._check_params() | MIT License |
duointeractive/media-nommer | media_nommer/core/storage_backends/s3.py | S3Backend._get_aws_s3_connection | python | def _get_aws_s3_connection(cls, access_key, secret_access_key):
return boto.connect_s3(access_key, secret_access_key) | Lazy-loading of the S3 boto connection. Refer to this instead of
referencing self._aws_s3_connection directly.
:param str access_key: The AWS_ Access Key needed to get to the
file in question.
:param str secret_access_key: The AWS_ Secret Access Key needed to get
to the file in question.
:rtype: :py:class:`boto.s3.connection.Connection`
:returns: A boto connection to Amazon's S3 interface. | https://github.com/duointeractive/media-nommer/blob/ba8095748582934ab44f6972210381b074bd9d14/media_nommer/core/storage_backends/s3.py#L16-L28 | import boto
from media_nommer.utils import logger
from media_nommer.utils.uri_parsing import get_values_from_media_uri
from media_nommer.core.storage_backends.exceptions import InfileNotFoundException
from media_nommer.core.storage_backends.base_backend import BaseStorageBackend
class S3Backend(BaseStorageBackend):
@classmethod | BSD 3-Clause New or Revised License |
alteryx/evalml | evalml/pipelines/components/transformers/preprocessing/delayed_feature_transformer.py | DelayedFeatureTransformer.transform | python | def transform(self, X, y=None):
if X is None:
X = pd.DataFrame()
X_ww = infer_feature_types(X)
X_ww = X_ww.ww.copy()
categorical_columns = self._get_categorical_columns(X_ww)
original_features = list(X_ww.columns)
if self.delay_features and len(X) > 0:
X_categorical = self._encode_X_while_preserving_index(
X_ww[categorical_columns]
)
for col_name in X_ww:
col = X_ww[col_name]
if col_name in categorical_columns:
col = X_categorical[col_name]
for t in range(self.start_delay, self.start_delay + self.max_delay + 1):
X_ww.ww[f"{col_name}_delay_{t}"] = col.shift(t)
if self.delay_target and y is not None:
y = infer_feature_types(y)
if type(y.ww.logical_type) == logical_types.Categorical:
y = self._encode_y_while_preserving_index(y)
for t in range(self.start_delay, self.start_delay + self.max_delay + 1):
X_ww.ww[self.target_colname_prefix.format(t)] = y.shift(t)
return X_ww.ww.drop(original_features) | Computes the delayed features for all features in X and y.
For each feature in X, it will add a column to the output dataframe for each
delay in the (inclusive) range [1, max_delay]. The values of each delayed feature are simply the original
feature shifted forward in time by the delay amount. For example, a delay of 3 units means that the feature
value at row n will be taken from the n-3rd row of that feature
If y is not None, it will also compute the delayed values for the target variable.
Args:
X (pd.DataFrame or None): Data to transform. None is expected when only the target variable is being used.
y (pd.Series, or None): Target.
Returns:
pd.DataFrame: Transformed X. | https://github.com/alteryx/evalml/blob/12ea29f4cb62948566804f624d37442c2e5aeeea/evalml/pipelines/components/transformers/preprocessing/delayed_feature_transformer.py#L94-L135 | import pandas as pd
from sklearn.preprocessing import LabelEncoder, OrdinalEncoder
from woodwork import logical_types
from evalml.pipelines.components.transformers.transformer import Transformer
from evalml.utils import infer_feature_types
class DelayedFeatureTransformer(Transformer):
name = "Delayed Feature Transformer"
hyperparameter_ranges = {}
needs_fitting = False
target_colname_prefix = "target_delay_{}"
def __init__(
self,
date_index=None,
max_delay=2,
gap=0,
forecast_horizon=1,
delay_features=True,
delay_target=True,
random_seed=0,
**kwargs,
):
self.date_index = date_index
self.max_delay = max_delay
self.delay_features = delay_features
self.delay_target = delay_target
self.forecast_horizon = forecast_horizon
self.gap = gap
self.start_delay = self.forecast_horizon + self.gap
parameters = {
"date_index": date_index,
"max_delay": max_delay,
"delay_target": delay_target,
"delay_features": delay_features,
"forecast_horizon": forecast_horizon,
"gap": gap,
}
parameters.update(kwargs)
super().__init__(parameters=parameters, random_seed=random_seed)
def fit(self, X, y=None):
return self
@staticmethod
def _encode_y_while_preserving_index(y):
y_encoded = LabelEncoder().fit_transform(y)
y = pd.Series(y_encoded, index=y.index)
return y
@staticmethod
def _get_categorical_columns(X):
return list(X.ww.select(["categorical"], return_schema=True).columns)
@staticmethod
def _encode_X_while_preserving_index(X_categorical):
return pd.DataFrame(
OrdinalEncoder().fit_transform(X_categorical),
columns=X_categorical.columns,
index=X_categorical.index,
) | BSD 3-Clause New or Revised License |
sammchardy/python-binance-chain | binance_chain/node_rpc/http.py | HttpRpcClient.get_validators | python | def get_validators(self):
return self._request('validators') | Get the validator set at the given block height. If no height is provided, it will fetch the
current validator set.
https://binance-chain.github.io/api-reference/node-rpc.html#validators | https://github.com/sammchardy/python-binance-chain/blob/19d7d639cc912a27ec86831338c2a2dc96289d50/binance_chain/node_rpc/http.py#L218-L225 | import asyncio
import itertools
from typing import Optional, Dict
import requests
import aiohttp
import ujson
from binance_chain.exceptions import BinanceChainRPCException, BinanceChainRequestException
from binance_chain.constants import RpcBroadcastRequestType
from binance_chain.messages import Msg
from binance_chain.node_rpc.request import RpcRequest
requests.models.json = ujson
class BaseHttpRpcClient:
id_generator = itertools.count(1)
def __init__(self, endpoint_url, requests_params: Optional[Dict] = None):
self._endpoint_url = endpoint_url
self._requests_params = requests_params
self.session = self._init_session()
def _init_session(self):
session = requests.session()
session.headers.update(self._get_headers())
return session
def _get_rpc_request(self, path, **kwargs) -> str:
rpc_request = RpcRequest(path, next(self.id_generator), kwargs.get('data', None))
return str(rpc_request)
def _get_headers(self):
return {
'Accept': 'application/json',
'Content-Type': 'application/json',
'User-Agent': 'python-binance-chain',
}
def request_kwargs(self, method, **kwargs):
kwargs['timeout'] = 10
if self._requests_params:
kwargs.update(self._requests_params)
kwargs['data'] = kwargs.get('data', {})
kwargs['headers'] = kwargs.get('headers', {})
if kwargs['data'] and method == 'get':
kwargs['params'] = kwargs['data']
del(kwargs['data'])
if method == 'post':
kwargs['headers']['content-type'] = 'text/plain'
return kwargs
class HttpRpcClient(BaseHttpRpcClient):
def _request(self, path, **kwargs):
rpc_request = self._get_rpc_request(path, **kwargs)
response = self.session.post(self._endpoint_url, data=rpc_request.encode(), headers=self._get_headers())
return self._handle_response(response)
def _request_session(self, path, params=None):
kwargs = {
'params': params,
'headers': self._get_headers()
}
response = self.session.get(f"{self._endpoint_url}/{path}", **kwargs)
return self._handle_session_response(response)
@staticmethod
def _handle_response(response):
try:
res = response.json()
if 'error' in res and res['error']:
raise BinanceChainRPCException(response)
if 'result' in res:
res = res['result']
return res
except ValueError:
raise BinanceChainRequestException('Invalid Response: %s' % response.text)
@staticmethod
def _handle_session_response(response):
if not str(response.status_code).startswith('2'):
raise BinanceChainRPCException(response)
try:
res = response.json()
if 'code' in res and res['code'] != "200000":
raise BinanceChainRPCException(response)
if 'success' in res and not res['success']:
raise BinanceChainRPCException(response)
if 'result' in res:
res = res['result']
return res
except ValueError:
raise BinanceChainRequestException('Invalid Response: %s' % response.text)
def get_path_list(self):
res = self._request(self._endpoint_url, method="get")
return res.content
def get_abci_info(self):
return self._request('abci_info')
def get_consensus_state(self):
return self._request('consensus_state')
def dump_consensus_state(self):
return self._request('dump_consensus_state')
def get_genesis(self):
return self._request('genesis')
def get_net_info(self):
return self._request('net_info')
def get_num_unconfirmed_txs(self):
return self._request('num_unconfirmed_txs')
def get_status(self):
return self._request('status')
def get_health(self):
return self._request('health')
def get_unconfirmed_txs(self):
return self._request('unconfirmed_txs') | MIT License |
quizlet/abracadabra | abra/stats.py | cohens_d_sample_size | python | def cohens_d_sample_size(
delta,
alpha,
power,
statistic,
std_control,
std_variation=None,
sample_size_ratio=1.
):
SUPPORTED_STATISTICS = ('t', 'z')
effect_size = cohens_d(delta, std_control, std_variation)
if statistic in SUPPORTED_STATISTICS:
power_func = "{}t_ind_solve_power".format(statistic)
N1 = int(
eval(power_func)(
effect_size,
alpha=alpha,
power=power,
ratio=sample_size_ratio
)
)
N2 = int(N1 * sample_size_ratio)
return [N1, N2]
else:
raise ValueError("Unknown statistic, must be either {!r}".format(SUPPORTED_STATISTICS)) | Calculate sample size required to observe a significantly reliable difference
between groups a and b. Assumes Cohen's d definition of effect size and an
enrollment ratio of 1.0 between groups a and b by default.
Parameters
----------
std_control : float
An estiamte of the expected sample standard deviation of control
group
nobs_control : int
The number of control observations.
std_variation : float
An estimate of the expected sample standard deviation of variation
group. If not provided, we assume homogenous variances for the
two groups.
Returns
-------
sample_sizes : list[int]
The estiamated sample sizes for the control and variation treatments
Example
-------
# Get estimate of sample size required to observe a significant difference between
# two binomial distributions that differ by .01 in mean probability
prob_control = .49
std_control = (prob_control * (1 - prob_control))**.5 # Binomial std
prob_variation = std_variation = .50
delta = prob_variation - prob_control
print(
cohens_d_sample_size(
delta=delta,
alpha=.05,
power=.8,
statistic='z',
std_control=std_control,
std_variation=std_variation
)
)
# [39236, 39236]
References
----------
Cohen, J. (1988). Statistical power analysis for the behavioral sciences
(2nd ed.). Hillsdale, NJ: Lawrence Earlbaum Associates. | https://github.com/quizlet/abracadabra/blob/eda599bd02f14b96efdc521f53132d93c9100ede/abra/stats.py#L181-L255 | from abra.config import DEFAULT_ALPHA, logger
from abra.mixin import InitRepr
from statsmodels.stats.api import DescrStatsW, CompareMeans
from statsmodels.distributions.empirical_distribution import ECDF
from statsmodels.stats.power import tt_ind_solve_power, zt_ind_solve_power
from statsmodels.stats.proportion import proportions_ztest, binom_test
from scipy.stats import norm
from scipy import optimize
from pandas import DataFrame
import numpy as np
CORRECTIONS = {'b': 'bonferroni', 's': 'sidak', 'bh': 'fdr_bh'}
def bonferroni(alpha_orig, p_values):
return alpha_orig / len(p_values)
def sidak(alpha_orig, p_values):
return 1. - (1. - alpha_orig) ** (1. / len(p_values))
def fdr_bh(fdr, p_values):
n_tests = len(p_values)
def p_i(i):
return i * fdr / n_tests
p_sorted = np.sort(np.asarray(p_values))
significant_idx = [i for i, val in enumerate(p_sorted, 1) if val <= p_i(i)]
rank = np.max(significant_idx) if significant_idx else 1
return p_i(rank)
def estimate_experiment_sample_sizes(
delta,
statistic='z',
alpha=.05,
power=.8,
*args, **kwargs
):
if statistic in ('t', 'z'):
return cohens_d_sample_size(delta, alpha, power, statistic, *args, **kwargs)
elif statistic == 'rates_ratio':
return ratio_sample_size(alpha, power, delta, *args, **kwargs)
else:
raise ValueError("Unknown statistic")
def cohens_d(delta, std_control, std_variation=None):
std_variation = std_variation if std_variation else std_control
std_pooled = np.sqrt((std_control ** 2 + std_variation ** 2) / 2.)
return delta / std_pooled | MIT License |
jahjajaka/afternoon_cleaner | object_detection/model_lib_v2_test.py | _get_config_kwarg_overrides | python | def _get_config_kwarg_overrides():
data_path = _get_data_path()
label_map_path = _get_labelmap_path()
return {
'train_input_path': data_path,
'eval_input_path': data_path,
'label_map_path': label_map_path
} | Returns overrides to the configs that insert the correct local paths. | https://github.com/jahjajaka/afternoon_cleaner/blob/590bdf58a216cbc6cfc47ef8f49d7af3df3703b7/object_detection/model_lib_v2_test.py#L53-L61 | from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import tensorflow as tf
from object_detection import model_hparams
from object_detection import model_lib_v2
from object_detection.utils import config_util
MODEL_NAME_FOR_TEST = 'ssd_mobilenet_v2_pets_keras'
def _get_data_path():
return os.path.join(tf.resource_loader.get_data_files_path(), 'test_data',
'pets_examples.record')
def get_pipeline_config_path(model_name):
return os.path.join(tf.resource_loader.get_data_files_path(), 'samples',
'configs', model_name + '.config')
def _get_labelmap_path():
return os.path.join(tf.resource_loader.get_data_files_path(), 'data',
'pet_label_map.pbtxt') | MIT License |
wq2012/spectralcluster | spectralcluster/autotune.py | AutoTune.__init__ | python | def __init__(self,
p_percentile_min=0.60,
p_percentile_max=0.95,
init_search_step=0.01,
search_level=1):
self.p_percentile_min = p_percentile_min
self.p_percentile_max = p_percentile_max
self.search_step = init_search_step
self.search_level = search_level | Initialization of the autotune arguments.
Args:
p_percentile_min: minimum value of p_percentile
p_percentile_max: maximum value of p_percentile
init_search_step: initial search step size for auto-tuning
search_level: hierarchical search level for auto-tuning | https://github.com/wq2012/spectralcluster/blob/98f13872154cf296936be98cbdfa208f5a45dd87/spectralcluster/autotune.py#L17-L33 | import numpy as np
MIN_SEARCH_STEP = 1e-04
class AutoTune: | Apache License 2.0 |
ialbert/biostar-central | biostar/forum/auth.py | valid_awards | python | def valid_awards(user):
valid = []
for award in awards.ALL_AWARDS:
targets = award.get_awards(user)
for target in targets:
post = target if isinstance(target, Post) else None
date = post.lastedit_date if post else user.profile.last_login
badge = Badge.objects.filter(name=award.name).first()
valid.append((user, badge, date, post))
return valid | Return list of valid awards for a given user | https://github.com/ialbert/biostar-central/blob/5326eec6badb4c272e13042f3e983b0e30103287/biostar/forum/auth.py#L409-L428 | import hashlib
import logging
import re
import urllib.parse as urlparse
from datetime import timedelta
from difflib import Differ, SequenceMatcher, HtmlDiff, unified_diff
import bs4
from django.contrib import messages
from django.contrib.auth import get_user_model
from django.core.cache import cache
from django.db import transaction
from django.db.models import F, Q
from django.template import loader
from django.utils.safestring import mark_safe
from django.conf import settings
from biostar.accounts.const import MESSAGE_COUNT
from biostar.accounts.models import Message
from biostar.planet.models import BlogPost, Blog
from biostar.accounts.models import Profile
from biostar.utils.helpers import get_ip
from . import util, awards
from .const import *
from .models import Post, Vote, Subscription, Badge, delete_post_cache, Log, SharedLink, Diff
User = get_user_model()
logger = logging.getLogger("engine")
def get_votes(user, root):
store = {
Vote.BOOKMARK: set(),
Vote.UP: set()
}
if user.is_authenticated:
votes = Vote.objects.filter(post__root=root, author=user).values_list("type", "post__id")
for vote_type, post_id, in votes:
store.setdefault(vote_type, set()).add(post_id)
return store
def convert_html():
return
def delete_cache(prefix, user):
key = f"{prefix}-{user.pk}"
if cache.get(key):
cache.delete(key)
logger.debug(f'deleted {key} from cache')
return
import datetime
ICONS = ["monsterid", "robohash", "wavatar", "retro"]
def gravatar_url(email, style='mp', size=80, force=None):
global ICONS
hash_num = hashlib.md5(email).hexdigest()
now = datetime.datetime.now()
if now.month == 4 and now.day == 1:
index = now.hour % len(ICONS)
style = ICONS[index]
force = True
data = dict(s=str(size), d=style)
url = "https://secure.gravatar.com/avatar/%s?" % hash_num
if force:
data['f'] = 'y'
url += urlparse.urlencode(data)
return url
def encode_email(email, key):
return
def decode_email(email):
return
def gravatar(user, size=80):
if not user or user.is_anonymous:
email = '[email protected]'.encode('utf8')
return gravatar_url(email=email)
email = user.email if user.is_authenticated else ''
email = email.encode('utf8', errors="ignore")
if user.is_anonymous or not user.profile.is_valid:
email = '[email protected]'.encode('utf8')
style = "monsterid"
return gravatar_url(email=email, style=style, size=size, force=True)
if user.profile.user_icon != Profile.DEFAULT_ICON:
style = user.profile.user_icon
return gravatar_url(email=email, style=style, size=size, force=True)
if user.profile.is_moderator:
style = "robohash"
elif user.profile.score > 100:
style = "retro"
elif user.profile.score > 0:
style = "identicon"
else:
style = "mp"
return gravatar_url(email=email, style=style, size=size)
def walk_down_thread(parent, collect=set()):
if (parent is None) or (parent.parent is None) or (parent.root is None):
return collect
children = Post.objects.filter(parent=parent).exclude(uid=parent.uid)
for child in children:
collect.add(child)
walk_down_thread(parent=child, collect=collect)
return collect
def create_post_from_json(**json_data):
post_uid = json_data['id']
post = Post.objects.filter(uid=post_uid).first()
if post:
post.content = json_data['']
post.lastedit_date = json_data['lastedit_date']
post.creation_date = json_data['creation_date']
return
def create_post(author, title, content, request=None, root=None, parent=None, ptype=Post.QUESTION, tag_val="",
nodups=True):
post = Post.objects.filter(content=content, author=author).order_by('-creation_date').first()
frame = 60
delta = (util.now() - post.creation_date).seconds if post else frame
if nodups and delta < frame:
if request:
messages.warning(request, "Post with this content was created recently.")
return post
post = Post.objects.create(title=title, content=content, root=root, parent=parent,
type=ptype, tag_val=tag_val, author=author)
delete_cache(MYPOSTS, author)
return post
def diff_ratio(text1, text2):
s = SequenceMatcher(lambda char: re.match(r'\w+', char), text1, text2)
return round(s.ratio(), 5)
def create_diff(text, post, user):
if not post:
return
ratio = diff_ratio(text1=text, text2=post.content)
if ratio == 1:
return
content = post.content.splitlines()
text = text.splitlines()
diff = unified_diff(content, text)
diff = [f"{line}\n" if not line.endswith('\n') else line for line in diff]
diff = ''.join(diff)
dobj = Diff.objects.filter(post=post, author=post.author).first()
frame = 60 * 10
delta = (util.now() - dobj.created).seconds if dobj else frame
if delta >= frame or user != post.author:
dobj = Diff.objects.create(diff=diff, post=post, author=user)
post.has_diff = True
if user != post.author:
db_logger(user=user, action=Log.EDIT, text=f'edited post', target=post.author, post=post)
Post.objects.filter(pk=post.pk).update(has_diff=post.has_diff)
return dobj
def merge_profiles(main, alias):
Post.objects.filter(author=alias).update(author=main)
Post.objects.filter(lastedit_user=alias).update(lastedit_user=main)
Message.objects.filter(sender=alias).update(sender=main)
Message.objects.filter(recipient=alias).update(recipient=main)
older = (alias.profile.date_joined < main.profile.date_joined)
if alias.profile.is_moderator or alias.profile.high_rep or older:
return
alias.delete()
return
def create_subscription(post, user, sub_type=None, update=False):
subs = Subscription.objects.filter(post=post.root, user=user)
sub = subs.first()
default = Subscription.TYPE_MAP.get(user.profile.message_prefs,
Subscription.LOCAL_MESSAGE)
empty = sub_type is None
sub_type = None if empty else sub_type
sub_type = sub_type or default
if sub and update:
sub.type = sub_type
sub.save()
else:
subs.delete()
Subscription.objects.create(post=post.root, user=user, type=sub_type)
subs_count = Subscription.objects.filter(post=post.root).exclude(type=Subscription.NO_MESSAGES).count()
Post.objects.filter(pk=post.root.pk).update(subs_count=subs_count)
delete_cache(FOLLOWING, user)
def is_suspended(user):
if user.is_authenticated and user.profile.state in (Profile.BANNED, Profile.SUSPENDED, Profile.SPAMMER):
return True
return False
def post_tree(user, root):
query = Post.objects.valid_posts(u=user, root=root).exclude(pk=root.id)
if user.is_anonymous or not user.profile.is_moderator:
query = query.exclude(Q(status=Post.DELETED) | Q(spam=Post.SPAM))
query = query.select_related("lastedit_user__profile", "author__profile", "root__author__profile")
thread = query.order_by("type", "-accept_count", "-vote_count", "creation_date")
votes = get_votes(user=user, root=root)
bookmarks, upvotes = votes[Vote.BOOKMARK], votes[Vote.UP]
comment_tree = dict()
def decorate(post):
if post.is_comment:
comment_tree.setdefault(post.parent_id, []).append(post)
post.has_bookmark = int(post.id in bookmarks)
post.has_upvote = int(post.id in upvotes)
if user.is_authenticated:
post.can_accept = not post.is_toplevel and (user == post.root.author or user.profile.is_moderator)
post.can_moderate = user.profile.is_moderator
post.is_editable = (user == post.author or user.profile.is_moderator)
else:
post.can_accept = False
post.is_editable = False
post.can_moderate = False
return post
thread = list(map(decorate, thread))
root = decorate(root)
answers = [p for p in thread if p.type == Post.ANSWER]
return root, comment_tree, answers, thread | MIT License |
sibirrer/lenstronomy | lenstronomy/Analysis/kinematics_api.py | KinematicsAPI.__init__ | python | def __init__(self, z_lens, z_source, kwargs_model, kwargs_aperture, kwargs_seeing, anisotropy_model, cosmo=None,
lens_model_kinematics_bool=None, light_model_kinematics_bool=None, multi_observations=False,
kwargs_numerics_galkin=None, analytic_kinematics=False, Hernquist_approx=False, MGE_light=False,
MGE_mass=False, kwargs_mge_light=None, kwargs_mge_mass=None, sampling_number=1000,
num_kin_sampling=1000, num_psf_sampling=100):
self.z_d = z_lens
self.z_s = z_source
self._kwargs_aperture_kin = kwargs_aperture
self._kwargs_psf_kin = kwargs_seeing
self.lensCosmo = LensCosmo(z_lens, z_source, cosmo=cosmo)
self.LensModel, self.SourceModel, self.LensLightModel, self.PointSource, extinction_class = class_creator.create_class_instances(
all_models=True, **kwargs_model)
self._lensLightProfile = LightProfileAnalysis(light_model=self.LensLightModel)
self._lensMassProfile = LensProfileAnalysis(lens_model=self.LensModel)
self._lens_light_model_list = self.LensLightModel.profile_type_list
self._lens_model_list = self.LensModel.lens_model_list
self._kwargs_cosmo = {'d_d': self.lensCosmo.dd, 'd_s': self.lensCosmo.ds, 'd_ds': self.lensCosmo.dds}
self._lens_model_kinematics_bool = lens_model_kinematics_bool
self._light_model_kinematics_bool = light_model_kinematics_bool
self._sampling_number = sampling_number
self._num_kin_sampling = num_kin_sampling
self._num_psf_sampling = num_psf_sampling
if kwargs_mge_mass is None:
self._kwargs_mge_mass = {'n_comp': 20}
else :
self._kwargs_mge_mass = kwargs_mge_mass
if kwargs_mge_light is None:
self._kwargs_mge_light = {'grid_spacing': 0.01, 'grid_num': 100, 'n_comp': 20, 'center_x': None,
'center_y': None}
else:
self._kwargs_mge_light = kwargs_mge_light
if kwargs_numerics_galkin is None:
kwargs_numerics_galkin = {'interpol_grid_num': 1000,
'log_integration': True,
'max_integrate': 100,
'min_integrate': 0.001}
self._kwargs_numerics_kin = kwargs_numerics_galkin
self._anisotropy_model = anisotropy_model
self._analytic_kinematics = analytic_kinematics
self._Hernquist_approx = Hernquist_approx
self._MGE_light = MGE_light
self._MGE_mass = MGE_mass
self._multi_observations = multi_observations | :param z_lens: redshift of lens
:param z_source: redshift of source
:param kwargs_model: model keyword arguments, needs 'lens_model_list', 'lens_light_model_list'
:param kwargs_aperture: spectroscopic aperture keyword arguments, see lenstronomy.Galkin.aperture for options
:param kwargs_seeing: seeing condition of spectroscopic observation, corresponds to kwargs_psf in the GalKin module specified in lenstronomy.GalKin.psf
:param cosmo: astropy.cosmology instance, if None then will be set to the default cosmology
:param lens_model_kinematics_bool: bool list of length of the lens model. Only takes a subset of all the models
as part of the kinematics computation (can be used to ignore substructure, shear etc that do not describe the
main deflector potential
:param light_model_kinematics_bool: bool list of length of the light model. Only takes a subset of all the models
as part of the kinematics computation (can be used to ignore light components that do not describe the main
deflector
:param multi_observations: bool, if True uses multi-observation to predict a set of different observations with
the GalkinMultiObservation() class. kwargs_aperture and kwargs_seeing require to be lists of the individual
observations.
:param anisotropy_model: type of stellar anisotropy model. See details in MamonLokasAnisotropy() class of lenstronomy.GalKin.anisotropy
:param analytic_kinematics: boolean, if True, used the analytic JAM modeling for a power-law profile on top of a Hernquist light profile
ATTENTION: This may not be accurate for your specific problem!
:param Hernquist_approx: bool, if True, uses a Hernquist light profile matched to the half light radius of the deflector light profile to compute the kinematics
:param MGE_light: bool, if true performs the MGE for the light distribution
:param MGE_mass: bool, if true performs the MGE for the mass distribution
:param kwargs_numerics_galkin: numerical settings for the integrated line-of-sight velocity dispersion
:param kwargs_mge_mass: keyword arguments that go into the MGE decomposition routine
:param kwargs_mge_light: keyword arguments that go into the MGE decomposition routine
:param sampling_number: int, number of spectral rendering to compute the light weighted integrated LOS
dispersion within the aperture. This keyword should be chosen high enough to result in converged results within the tolerance.
:param num_kin_sampling: number of kinematic renderings on a total IFU
:param num_psf_sampling: number of PSF displacements for each kinematic rendering on the IFU | https://github.com/sibirrer/lenstronomy/blob/e6d0e179a98ecb0c4db25cdf7cfb73e83c6aeded/lenstronomy/Analysis/kinematics_api.py#L22-L97 | __author__ = 'sibirrer'
import numpy as np
import copy
from lenstronomy.GalKin.galkin_multiobservation import GalkinMultiObservation
from lenstronomy.GalKin.galkin import Galkin
from lenstronomy.Cosmo.lens_cosmo import LensCosmo
from lenstronomy.Util import class_creator
from lenstronomy.Analysis.lens_profile import LensProfileAnalysis
from lenstronomy.Analysis.light_profile import LightProfileAnalysis
import lenstronomy.Util.multi_gauss_expansion as mge
__all__ = ['KinematicsAPI']
class KinematicsAPI(object): | MIT License |
hackatbrown/2015.hackatbrown.org | hack-at-brown-2015/cssutils/tests/test_properties.py | PropertiesTestCase._check | python | def _check(self, name, keys):
notvalid = self._allvalues()
for value in self._valuesofkeys(keys):
if name == debug:
print '+True?', Property(name, value).valid, value
self.assertEqual(True, Property(name, value).valid)
if value in notvalid:
notvalid.remove(value)
for value in notvalid:
if name == debug:
print '-False?', Property(name, value).valid, value
self.assertEqual(False, Property(name, value).valid) | Check each value in values if for property name p.name==exp. | https://github.com/hackatbrown/2015.hackatbrown.org/blob/6e6e10b010421228deb562909a1c8bb4272b759f/hack-at-brown-2015/cssutils/tests/test_properties.py#L98-L113 | __version__ = '$Id: test_property.py 1529 2008-11-30 15:12:01Z cthedot $'
import copy
import xml.dom
import basetest
import cssutils
from cssutils.css.property import Property
debug = False
class PropertiesTestCase(basetest.BaseTestCase):
def setUp(self):
V = {
'0': ('0', '-0'),
'NUMBER': ('0', '-0', '100.1', '-100.1'),
'PERCENTAGE': ('0%', '-0%', '100.1%', '-100.1%'),
'EM': '1.2em',
'EX': '1.2ex',
'PX': '1.2px',
'CM': '1.2cm',
'MM': '1.2mm',
'IN': '1.2in',
'PT': '1.2pt',
'PC': '1.2pc',
'ANGLES': ('1deg', '1rad', '1grad'),
'TIMES': ('1s', '1ms'),
'FREQUENCIES': ('1hz', '1khz'),
'DIMENSION': ('1dimension', '1_dimension', '1dimension2'),
'STRING': ('"string"', "'STRING'"),
'URI': ('url(x)', 'URL("x")', "url(')')"),
'IDENT': ('ident', 'IDENT', '_IDENT', '_2', 'i-2'),
'ATTR': ('attr(x)'),
'RECT': ('rect(1,2,3,4)'),
'CLIP': ('rect(1,2,3,4)'),
'FUNCTION': (),
'HEX3': '#123',
'HEX6': '#123abc',
'RGB': 'rgb(1,2,3)',
'RGB100': 'rgb(1%,2%,100%)',
'RGBA': 'rgba(1,2,3, 1)',
'RGBA100': 'rgba(1%,2%,100%, 0)',
'HSL': 'hsl(1,2%,3%)',
'HSLA': 'hsla(1,2%,3%, 1.0)'
}
def expanded(*keys):
r = []
for k in keys:
if isinstance(V[k], basestring):
r.append(V[k])
else:
r.extend(list(V[k]))
return r
self.V = V
self.ALL = list(self._valuesofkeys(V.keys()))
self.V['LENGTHS'] = expanded('0', 'EM', 'EX', 'PX', 'CM', 'MM', 'IN', 'PT', 'PC')
self.V['COLORS'] = expanded('HEX3', 'HEX6', 'RGB', 'RGB100')
self.V['COLORS3'] = expanded('RGBA', 'RGBA100', 'HSL', 'HSLA')
def _allvalues(self):
return copy.copy(self.ALL)
def _valuesofkeys(self, keys):
done = []
for key in keys:
if isinstance(key, list):
for v in key:
yield v
else:
v = self.V[key]
if isinstance(v, basestring):
if v not in done:
done.append(v)
yield v
else:
for value in v:
if value not in done:
done.append(value)
yield value | MIT License |
borgwardtlab/wwl | src/wwl/wwl.py | pairwise_wasserstein_distance | python | def pairwise_wasserstein_distance(X, node_features = None, num_iterations=3, sinkhorn=False, enforce_continuous=False):
categorical = True
if enforce_continuous:
print('Enforce continous flag is on, using CONTINUOUS propagation scheme.')
categorical = False
elif node_features is not None:
print('Continuous node features provided, using CONTINUOUS propagation scheme.')
categorical = False
else:
for g in X:
if not 'label' in g.vs.attribute_names():
print('No label attributed to graphs, use degree instead and use CONTINUOUS propagation scheme.')
categorical = False
break
if categorical:
print('Categorically-labelled graphs, using CATEGORICAL propagation scheme.')
if categorical:
es = WeisfeilerLehman()
node_representations = es.fit_transform(X, num_iterations=num_iterations)
else:
es = ContinuousWeisfeilerLehman()
node_representations = es.fit_transform(X, node_features=node_features, num_iterations=num_iterations)
pairwise_distances = _compute_wasserstein_distance(node_representations, sinkhorn=sinkhorn,
categorical=categorical, sinkhorn_lambda=1e-2)
return pairwise_distances | Pairwise computation of the Wasserstein distance between embeddings of the
graphs in X.
args:
X (List[ig.graphs]): List of graphs
node_features (array): Array containing the node features for continuously attributed graphs
num_iterations (int): Number of iterations for the propagation scheme
sinkhorn (bool): Indicates whether sinkhorn approximation should be used | https://github.com/borgwardtlab/wwl/blob/96ed6d3e877b4fdedcd4253079da52f697efaecc/src/wwl/wwl.py#L44-L82 | from .propagation_scheme import WeisfeilerLehman, ContinuousWeisfeilerLehman
from sklearn.metrics.pairwise import laplacian_kernel
import ot
import numpy as np
def _compute_wasserstein_distance(label_sequences, sinkhorn=False,
categorical=False, sinkhorn_lambda=1e-2):
n = len(label_sequences)
M = np.zeros((n,n))
for graph_index_1, graph_1 in enumerate(label_sequences):
labels_1 = label_sequences[graph_index_1]
for graph_index_2, graph_2 in enumerate(label_sequences[graph_index_1:]):
labels_2 = label_sequences[graph_index_2 + graph_index_1]
ground_distance = 'hamming' if categorical else 'euclidean'
costs = ot.dist(labels_1, labels_2, metric=ground_distance)
if sinkhorn:
mat = ot.sinkhorn(np.ones(len(labels_1))/len(labels_1),
np.ones(len(labels_2))/len(labels_2), costs, sinkhorn_lambda,
numItermax=50)
M[graph_index_1, graph_index_2 + graph_index_1] = np.sum(np.multiply(mat, costs))
else:
M[graph_index_1, graph_index_2 + graph_index_1] = ot.emd2([], [], costs)
M = (M + M.T)
return M | BSD 3-Clause New or Revised License |
nuagenetworks/vspk-examples | python/shared_domain_vports_acl_analytics.py | get_args | python | def get_args():
parser = argparse.ArgumentParser(description="Tool to gather statistics on domains, zones, subnets or vports within a certain time frame.")
parser.add_argument('-d', '--debug', required=False, help='Enable debug output', dest='debug', action='store_true')
parser.add_argument('-j', '--json', required=False, help='Print as JSON, not as a table', dest='json_output', action='store_true')
parser.add_argument('-l', '--log-file', required=False, help='File to log to (default = stdout)', dest='logfile', type=str)
parser.add_argument('-E', '--nuage-enterprise', required=True, help='The enterprise with which to connect to the Nuage VSD/SDK host', dest='nuage_enterprise', type=str)
parser.add_argument('-H', '--nuage-host', required=True, help='The Nuage VSD/SDK endpoint to connect to', dest='nuage_host', type=str)
parser.add_argument('-P', '--nuage-port', required=False, help='The Nuage VSD/SDK server port to connect to (default = 8443)', dest='nuage_port', type=int, default=8443)
parser.add_argument('-p', '--nuage-password', required=False, help='The password with which to connect to the Nuage VSD/SDK host. If not specified, the user is prompted at runtime for a password', dest='nuage_password', type=str)
parser.add_argument('-u', '--nuage-user', required=True, help='The username with which to connect to the Nuage VSD/SDK host', dest='nuage_username', type=str)
parser.add_argument('-v', '--verbose', required=False, help='Enable verbose output', dest='verbose', action='store_true')
args = parser.parse_args()
return args | Supports the command-line arguments listed below. | https://github.com/nuagenetworks/vspk-examples/blob/825d9bd6093b5ed19419ca15898085ae85731657/python/shared_domain_vports_acl_analytics.py#L224-L240 | from __future__ import print_function
from builtins import str
import argparse
import getpass
import json
import logging
from prettytable import PrettyTable
from vspk import v6 as vsdk
ether_types = {
'0x0800': 'IPv4',
'0x0806': 'ARP',
'0x0842': 'Wake-on-LAN',
'0x22F3': 'IETF TRILL',
'0x6003': 'DECnet Phase IV',
'0x8035': 'RARP',
'0x809B': 'AppleTalk ',
'0x80F3': 'AARP',
'0x8100': '802.1Q and 802.1aq',
'0x8137': 'IPX',
'0x8204': 'QNX Qnet',
'0x86DD': 'IPv6',
'0x8808': 'Ethernet flow control',
'0x8819': 'CobraNet',
'0x8847': 'MPLS unicast',
'0x8848': 'MPLS multicast',
'0x8863': 'PPPoE Discovery Stage',
'0x8864': 'PPPoE Session Stage',
'0x8870': 'Jumbo Frames (proposed)',
'0x887B': 'HomePlug 1.0 MME',
'0x888E': 'EAP over LAN (IEEE 802.1X)',
'0x8892': 'PROFINET Protocol',
'0x889A': 'HyperSCSI (SCSI over Ethernet)',
'0x88A2': 'ATA over Ethernet',
'0x88A4': 'EtherCAT Protocol',
'0x88A8': 'Provider Bridging (IEEE 802.1ad) ',
'0x88AB': 'Ethernet Powerlink',
'0x88CC': 'LLDP',
'0x88CD': 'SERCOS III',
'0x88E1': 'HomePlug AV MME',
'0x88E3': 'Media Redundancy Protocol (IEC62439-2)',
'0x88E5': 'MAC security (IEEE 802.1AE)',
'0x88E7': 'Provider Backbone Bridges (PBB) (IEEE 802.1ah)',
'0x88F7': 'Precision Time Protocol (PTP) over Ethernet (IEEE 1588)',
'0x8902': 'IEEE 802.1ag Connectivity Fault Management (CFM) Protocol ',
'0x8906': 'FCoE',
'0x8914': 'FCoE Initialization Protocol',
'0x8915': 'RoCE',
'0x891D': 'TTE',
'0x892F': 'HSR',
'0x9000': 'Ethernet Configuration Testing Protocol'
}
protocols = {
'0': 'HOPOPT',
'1': 'ICMP',
'2': 'IGMP',
'3': 'GGP',
'4': 'IPv4',
'5': 'ST',
'6': 'TCP',
'7': 'CBT',
'8': 'EGP',
'9': 'IGP',
'10': 'BBN-RCC-MON',
'11': 'NVP-II',
'12': 'PUP',
'13': 'ARGUS',
'14': 'EMCON',
'15': 'XNET',
'16': 'CHAOS',
'17': 'UDP',
'18': 'MUX',
'19': 'DCN-MEAS',
'20': 'HMP',
'21': 'PRM',
'22': 'XNS-IDP',
'23': 'TRUNK-1',
'24': 'TRUNK-2',
'25': 'LEAF-1',
'26': 'LEAF-2',
'27': 'RDP',
'28': 'IRTP',
'29': 'ISO-TP4',
'30': 'NETBLT',
'31': 'MFE-NSP',
'32': 'MERIT-INP',
'33': 'DCCP',
'34': '3PC',
'35': 'IDPR',
'36': 'XTP',
'37': 'DDP',
'38': 'IDPR-CMTP',
'39': 'TP++',
'40': 'IL',
'41': 'IPv6',
'42': 'SDRP',
'43': 'IPv6-Route',
'44': 'IPv6-Frag',
'45': 'IDRP',
'46': 'RSVP',
'47': 'GRE',
'48': 'DSR',
'49': 'BNA',
'50': 'ESP',
'51': 'AH',
'52': 'I-NLSP',
'53': 'SWIPE',
'54': 'NARP',
'55': 'MOBILE',
'56': 'TLSP',
'57': 'SKIP',
'58': 'IPv6-ICMP',
'59': 'IPv6-NoNxt',
'60': 'IPv6-Opts',
'62': 'CFTP',
'64': 'SAT-EXPAK',
'65': 'KRYPTOLAN',
'66': 'RVD',
'67': 'IPPC',
'69': 'SAT-MON',
'70': 'VISA',
'71': 'IPCV',
'72': 'CPNX',
'73': 'CPHB',
'74': 'WSN',
'75': 'PVP',
'76': 'BR-SAT-MON',
'77': 'SUN-ND',
'78': 'WB-MON',
'79': 'WB-EXPAK',
'80': 'ISO-IP',
'81': 'VMTP',
'82': 'SECURE-VMTP',
'83': 'VINES',
'84': 'IPTM',
'85': 'NSFNET-IGP',
'86': 'DGP',
'87': 'TCF',
'88': 'EIGRP',
'89': 'OSPFIGP',
'90': 'Sprite-RPC',
'91': 'LARP',
'92': 'MTP',
'93': 'AX.25',
'94': 'IPIP',
'95': 'MICP',
'96': 'SCC-SP',
'97': 'ETHERIP',
'98': 'ENCAP',
'100': 'GMTP',
'101': 'IFMP',
'102': 'PNNI',
'103': 'PIM',
'104': 'ARIS',
'105': 'SCPS',
'106': 'QNX',
'107': 'A/N',
'108': 'IPComp',
'109': 'SNP',
'110': 'Compaq-Peer',
'111': 'IPX-in-IP',
'112': 'VRRP',
'113': 'PGM',
'115': 'L2TP',
'116': 'DDX',
'117': 'IATP',
'118': 'STP',
'119': 'SRP',
'120': 'UTI',
'121': 'SMP',
'122': 'SM',
'123': 'PTP',
'124': 'ISIS over IPv4',
'125': 'FIRE',
'126': 'CRTP',
'127': 'CRUDP',
'128': 'SSCOPMCE',
'129': 'IPLT',
'130': 'SPS',
'131': 'PIPE',
'132': 'SCTP',
'133': 'FC',
'134': 'RSVP-E2E-IGNORE',
'135': 'Mobility Header',
'136': 'UDPLite',
'137': 'MPLS-in-IP',
'138': 'manet',
'139': 'HIP',
'140': 'Shim6',
'141': 'WESP',
'142': 'ROHC',
'255': 'Reserved'
}
configuration = {}
logger = None
output_parser = None | BSD 3-Clause New or Revised License |
kriaga/health-checker | HealthChecker/venv/Lib/site-packages/nltk/sem/hole.py | HoleSemantics._sanity_check_plugging | python | def _sanity_check_plugging(self, plugging, node, ancestors):
if node in self.holes:
ancestors = [node] + ancestors
label = plugging[node]
else:
label = node
assert label in self.labels
for c in self.constraints:
if c.lhs == label:
assert c.rhs in ancestors
args = self.fragments[label][1]
for arg in args:
if self.is_node(arg):
self._sanity_check_plugging(plugging, arg, [label] + ancestors) | Make sure that a given plugging is legal. We recursively go through
each node and make sure that no constraints are violated.
We also check that all holes have been filled. | https://github.com/kriaga/health-checker/blob/3d9ce933f131bcbb897103b0f509cc45393cae4a/HealthChecker/venv/Lib/site-packages/nltk/sem/hole.py#L252-L270 | from __future__ import print_function, unicode_literals
from functools import reduce
from six import itervalues
from nltk import compat
from nltk.parse import load_parser
from nltk.sem.skolemize import skolemize
from nltk.sem.logic import (AllExpression, AndExpression, ApplicationExpression,
ExistsExpression, IffExpression, ImpExpression,
LambdaExpression, NegatedExpression, OrExpression)
class Constants(object):
ALL = 'ALL'
EXISTS = 'EXISTS'
NOT = 'NOT'
AND = 'AND'
OR = 'OR'
IMP = 'IMP'
IFF = 'IFF'
PRED = 'PRED'
LEQ = 'LEQ'
HOLE = 'HOLE'
LABEL = 'LABEL'
MAP = {ALL: lambda v, e: AllExpression(v.variable, e),
EXISTS: lambda v, e: ExistsExpression(v.variable, e),
NOT: NegatedExpression,
AND: AndExpression,
OR: OrExpression,
IMP: ImpExpression,
IFF: IffExpression,
PRED: ApplicationExpression}
class HoleSemantics(object):
def __init__(self, usr):
self.holes = set()
self.labels = set()
self.fragments = {}
self.constraints = set()
self._break_down(usr)
self.top_most_labels = self._find_top_most_labels()
self.top_hole = self._find_top_hole()
def is_node(self, x):
return x in (self.labels | self.holes)
def _break_down(self, usr):
if isinstance(usr, AndExpression):
self._break_down(usr.first)
self._break_down(usr.second)
elif isinstance(usr, ApplicationExpression):
func, args = usr.uncurry()
if func.variable.name == Constants.LEQ:
self.constraints.add(Constraint(args[0], args[1]))
elif func.variable.name == Constants.HOLE:
self.holes.add(args[0])
elif func.variable.name == Constants.LABEL:
self.labels.add(args[0])
else:
label = args[0]
assert label not in self.fragments
self.fragments[label] = (func, args[1:])
else:
raise ValueError(usr.label())
def _find_top_nodes(self, node_list):
top_nodes = node_list.copy()
for f in itervalues(self.fragments):
args = f[1]
for arg in args:
if arg in node_list:
top_nodes.discard(arg)
return top_nodes
def _find_top_most_labels(self):
return self._find_top_nodes(self.labels)
def _find_top_hole(self):
top_holes = self._find_top_nodes(self.holes)
assert len(top_holes) == 1
return top_holes.pop()
def pluggings(self):
record = []
self._plug_nodes([(self.top_hole, [])], self.top_most_labels, {}, record)
return record
def _plug_nodes(self, queue, potential_labels, plug_acc, record):
if queue != []:
(node, ancestors) = queue[0]
if node in self.holes:
self._plug_hole(node, ancestors, queue[1:], potential_labels, plug_acc, record)
else:
assert node in self.labels
args = self.fragments[node][1]
head = [(a, ancestors) for a in args if self.is_node(a)]
self._plug_nodes(head + queue[1:], potential_labels, plug_acc, record)
else:
raise Exception('queue empty')
def _plug_hole(self, hole, ancestors0, queue, potential_labels0,
plug_acc0, record):
assert hole not in ancestors0
ancestors = [hole] + ancestors0
for l in potential_labels0:
if self._violates_constraints(l, ancestors):
continue
plug_acc = plug_acc0.copy()
plug_acc[hole] = l
potential_labels = potential_labels0.copy()
potential_labels.remove(l)
if len(potential_labels) == 0:
self._sanity_check_plugging(plug_acc, self.top_hole, [])
record.append(plug_acc)
else:
self._plug_nodes(queue + [(l, ancestors)], potential_labels, plug_acc, record)
def _violates_constraints(self, label, ancestors):
for c in self.constraints:
if c.lhs == label:
if c.rhs not in ancestors:
return True
return False | MIT License |
shonenada/flask-rbac | flask_rbac/model.py | RoleMixin.get_name | python | def get_name(self):
return self.name | Return the name of this role | https://github.com/shonenada/flask-rbac/blob/8271dd451b94ee0903e27018f0d085ed44bc509d/flask_rbac/model.py#L18-L20 | class RoleMixin(object):
roles = {}
def __init__(self, name=None):
self.name = name
if not hasattr(self.__class__, 'parents'):
self.parents = set()
if not hasattr(self.__class__, 'children'):
self.children = set()
RoleMixin.roles[name] = self | MIT License |
cohesity/management-sdk-python | cohesity_management_sdk/models/nimble_protection_source.py | NimbleProtectionSource.from_dictionary | python | def from_dictionary(cls,
dictionary):
if dictionary is None:
return None
name = dictionary.get('name')
storage_array = cohesity_management_sdk.models.san_storage_array.SanStorageArray.from_dictionary(dictionary.get('storageArray')) if dictionary.get('storageArray') else None
mtype = dictionary.get('type')
volume = cohesity_management_sdk.models.san_volume.SanVolume.from_dictionary(dictionary.get('volume')) if dictionary.get('volume') else None
return cls(name,
storage_array,
mtype,
volume) | Creates an instance of this model from a dictionary
Args:
dictionary (dictionary): A dictionary representation of the object as
obtained from the deserialization of the server's response. The keys
MUST match property names in the API description.
Returns:
object: An instance of this structure class. | https://github.com/cohesity/management-sdk-python/blob/1c085d5a10f5f1a87b700e7ad1fc1dcabda41ae5/cohesity_management_sdk/models/nimble_protection_source.py#L49-L75 | import cohesity_management_sdk.models.san_storage_array
import cohesity_management_sdk.models.san_volume
class NimbleProtectionSource(object):
_names = {
"name":'name',
"storage_array":'storageArray',
"mtype":'type',
"volume":'volume'
}
def __init__(self,
name=None,
storage_array=None,
mtype=None,
volume=None):
self.name = name
self.storage_array = storage_array
self.mtype = mtype
self.volume = volume
@classmethod | Apache License 2.0 |
tehmaze/natural | natural/file.py | accessed | python | def accessed(filename):
if isinstance(filename, file):
filename = filename.name
return duration(os.stat(filename)[stat.ST_ATIME]) | Retrieve how long ago a file has been accessed.
:param filename: name of the file
>>> print accessed(__file__) # doctest: +SKIP
just now | https://github.com/tehmaze/natural/blob/4d41ed6708965420ad884339e0e9ca5f089b2202/natural/file.py#L7-L19 | from natural.date import duration
from natural.size import filesize
import os
import stat | MIT License |
ibm/watson-assistant-workbench | ci/test_utils.py | BaseTestCaseCapture.t_fun_noExceptionAndErrMessage | python | def t_fun_noExceptionAndErrMessage(self, function, message, args=[], kwargs={}):
return self.t_fun_noExceptionAndMessage(function, BaseTestCaseCapture.MessageType.ERR, message, args, kwargs) | (Generic) Runs function with given arguments and tchecks that no exception was raised and error message | https://github.com/ibm/watson-assistant-workbench/blob/fa055d7324645af9a3601c9cf625ce81cebc8aed/ci/test_utils.py#L133-L135 | import os
import shutil
import traceback
import pytest
class BaseTestCaseCapture(object):
dialogSchemaPath = '../data_spec/dialog_schema.xml'
captured = None
logs = None
class MessageType(object):
OUT = 0
ERR = 1
LOG = 2
def t_missingRequiredArgs(self, args=[], kwargs={}):
return self.t_fun_missingRequiredArgs(self.callfunc, args, kwargs)
def t_fun_missingRequiredArgs(self, function, args=[], kwargs={}):
return self.t_fun_exitCodeAndErrMessage(function, 2, 'the following arguments are required', args, kwargs)
def t_unrecognizedArgs(self, args=[], kwargs={}):
return self.t_fun_unrecognizedArgs(self.callfunc, args, kwargs)
def t_fun_unrecognizedArgs(self, function, args=[], kwargs={}):
return self.t_fun_exitCodeAndErrMessage(function, 2, 'unrecognized arguments', args, kwargs)
def t_exitCode(self, exitCode, args=[], kwargs={}):
return self.t_fun_exitCode(self.callfunc, exitCode, args, kwargs)
def t_fun_exitCode(self, function, exitCode, args=[], kwargs={}):
return self.t_fun_exitCodeAndMessage(function, exitCode, None, None, args, kwargs)
def t_exitCodeAndOutMessage(self, exitCode, message, args=[], kwargs={}):
return self.t_fun_exitCodeAndOutMessage(self.callfunc, exitCode, message, args, kwargs)
def t_fun_exitCodeAndOutMessage(self, function, exitCode, message, args=[], kwargs={}):
return self.t_fun_exitCodeAndMessage(function, exitCode, BaseTestCaseCapture.MessageType.OUT, message, args, kwargs)
def t_exitCodeAndErrMessage(self, exitCode, errMessage, args=[], kwargs={}):
return self.t_fun_exitCodeAndErrMessage(self.callfunc, exitCode, errMessage, args, kwargs)
def t_fun_exitCodeAndErrMessage(self, function, exitCode, errMessage, args=[], kwargs={}):
return self.t_fun_exitCodeAndMessage(function, exitCode, BaseTestCaseCapture.MessageType.ERR, errMessage, args, kwargs)
def t_exitCodeAndLogMessage(self, exitCode, message, args=[], kwargs={}):
return self.t_fun_exitCodeAndLogMessage(self.callfunc, exitCode, message, args, kwargs)
def t_fun_exitCodeAndLogMessage(self, function, exitCode, message, args=[], kwargs={}):
return self.t_fun_exitCodeAndMessage(function, exitCode, BaseTestCaseCapture.MessageType.LOG, message, args, kwargs)
def t_exitCodeAndMessage(self, function, exitCode, messageType, message, args=[], kwargs={}):
return self.t_fun_exitCodeAndMessage(self.callfunc, exitCode, messageType, message, args, kwargs)
def t_fun_exitCodeAndMessage(self, function, exitCode, messageType, message, args=[], kwargs={}):
return self.t_fun_generic(function, SystemExit, str(exitCode), messageType, message, args, kwargs)
def t_raiseException(self, exceptionType, exceptionValue, args=[], kwargs={}):
return self.t_fun_raiseException(self.callfunc, exceptionType, exceptionValue, args, kwargs)
def t_fun_raiseException(self, function, exceptionType, exceptionValue, args=[], kwargs={}):
return self.t_fun_generic(function, exceptionType, exceptionValue, None, None, args, kwargs)
def t_noException(self, args=[], kwargs={}):
return self.t_fun_noException(self.callfunc, args, kwargs)
def t_fun_noException(self, function, args=[], kwargs={}):
return self.t_fun_noExceptionAndMessage(function, None, None, args, kwargs)
def t_noExceptionAndOutMessage(self, message, args=[], kwargs={}):
return self.t_fun_noExceptionAndOutMessage(self.callfunc, message, args, kwargs)
def t_fun_noExceptionAndOutMessage(self, function, message, args=[], kwargs={}):
return self.t_fun_noExceptionAndMessage(function, BaseTestCaseCapture.MessageType.OUT, message, args, kwargs)
def t_noExceptionAndErrMessage(self, message, args=[], kwargs={}):
return self.t_fun_noExceptionAndErrMessage(self.callfunc, message, args, kwargs) | Apache License 2.0 |
pytest-dev/pytest-bdd | pytest_bdd/parser.py | Step.__str__ | python | def __str__(self):
return f'{self.type.capitalize()} "{self.name}"' | Full step name including the type. | https://github.com/pytest-dev/pytest-bdd/blob/583910d88d1488ec139f75ebc026a06173389980/pytest_bdd/parser.py#L350-L352 | import os.path
import re
import textwrap
import typing
from collections import OrderedDict
from . import exceptions, types
SPLIT_LINE_RE = re.compile(r"(?<!\\)\|")
STEP_PARAM_RE = re.compile(r"<(.+?)>")
COMMENT_RE = re.compile(r"(^|(?<=\s))#")
STEP_PREFIXES = [
("Feature: ", types.FEATURE),
("Scenario Outline: ", types.SCENARIO_OUTLINE),
("Examples: Vertical", types.EXAMPLES_VERTICAL),
("Examples:", types.EXAMPLES),
("Scenario: ", types.SCENARIO),
("Background:", types.BACKGROUND),
("Given ", types.GIVEN),
("When ", types.WHEN),
("Then ", types.THEN),
("@", types.TAG),
("And ", None),
("But ", None),
]
def split_line(line):
return [cell.replace("\\|", "|").strip() for cell in SPLIT_LINE_RE.split(line)[1:-1]]
def parse_line(line):
for prefix, _ in STEP_PREFIXES:
if line.startswith(prefix):
return prefix.strip(), line[len(prefix) :].strip()
return "", line
def strip_comments(line):
res = COMMENT_RE.search(line)
if res:
line = line[: res.start()]
return line.strip()
def get_step_type(line):
for prefix, _type in STEP_PREFIXES:
if line.startswith(prefix):
return _type
def parse_feature(basedir: str, filename: str, encoding: str = "utf-8") -> "Feature":
abs_filename = os.path.abspath(os.path.join(basedir, filename))
rel_filename = os.path.join(os.path.basename(basedir), filename)
feature = Feature(
scenarios=OrderedDict(),
filename=abs_filename,
rel_filename=rel_filename,
line_number=1,
name=None,
tags=set(),
examples=Examples(),
background=None,
description="",
)
scenario: typing.Optional[ScenarioTemplate] = None
mode = None
prev_mode = None
description: typing.List[str] = []
step = None
multiline_step = False
prev_line = None
with open(abs_filename, encoding=encoding) as f:
content = f.read()
for line_number, line in enumerate(content.splitlines(), start=1):
unindented_line = line.lstrip()
line_indent = len(line) - len(unindented_line)
if step and (step.indent < line_indent or ((not unindented_line) and multiline_step)):
multiline_step = True
step.add_line(line)
continue
else:
step = None
multiline_step = False
stripped_line = line.strip()
clean_line = strip_comments(line)
if not clean_line and (not prev_mode or prev_mode not in types.FEATURE):
continue
mode = get_step_type(clean_line) or mode
allowed_prev_mode = (types.BACKGROUND, types.GIVEN, types.WHEN)
if not scenario and prev_mode not in allowed_prev_mode and mode in types.STEP_TYPES:
raise exceptions.FeatureError(
"Step definition outside of a Scenario or a Background", line_number, clean_line, filename
)
if mode == types.FEATURE:
if prev_mode is None or prev_mode == types.TAG:
_, feature.name = parse_line(clean_line)
feature.line_number = line_number
feature.tags = get_tags(prev_line)
elif prev_mode == types.FEATURE:
description.append(clean_line)
else:
raise exceptions.FeatureError(
"Multiple features are not allowed in a single feature file",
line_number,
clean_line,
filename,
)
prev_mode = mode
keyword, parsed_line = parse_line(clean_line)
if mode in [types.SCENARIO, types.SCENARIO_OUTLINE]:
tags = get_tags(prev_line)
feature.scenarios[parsed_line] = scenario = ScenarioTemplate(
feature=feature, name=parsed_line, line_number=line_number, tags=tags
)
elif mode == types.BACKGROUND:
feature.background = Background(feature=feature, line_number=line_number)
elif mode == types.EXAMPLES:
mode = types.EXAMPLES_HEADERS
(scenario or feature).examples.line_number = line_number
elif mode == types.EXAMPLES_VERTICAL:
mode = types.EXAMPLE_LINE_VERTICAL
(scenario or feature).examples.line_number = line_number
elif mode == types.EXAMPLES_HEADERS:
(scenario or feature).examples.set_param_names([l for l in split_line(parsed_line) if l])
mode = types.EXAMPLE_LINE
elif mode == types.EXAMPLE_LINE:
(scenario or feature).examples.add_example([l for l in split_line(stripped_line)])
elif mode == types.EXAMPLE_LINE_VERTICAL:
param_line_parts = [l for l in split_line(stripped_line)]
try:
(scenario or feature).examples.add_example_row(param_line_parts[0], param_line_parts[1:])
except exceptions.ExamplesNotValidError as exc:
if scenario:
raise exceptions.FeatureError(
f"Scenario has not valid examples. {exc.args[0]}",
line_number,
clean_line,
filename,
)
else:
raise exceptions.FeatureError(
f"Feature has not valid examples. {exc.args[0]}",
line_number,
clean_line,
filename,
)
elif mode and mode not in (types.FEATURE, types.TAG):
step = Step(name=parsed_line, type=mode, indent=line_indent, line_number=line_number, keyword=keyword)
if feature.background and not scenario:
target = feature.background
else:
target = scenario
target.add_step(step)
prev_line = clean_line
feature.description = "\n".join(description).strip()
return feature
class Feature:
def __init__(self, scenarios, filename, rel_filename, name, tags, examples, background, line_number, description):
self.scenarios: typing.Dict[str, ScenarioTemplate] = scenarios
self.rel_filename = rel_filename
self.filename = filename
self.tags = tags
self.examples = examples
self.name = name
self.line_number = line_number
self.description = description
self.background = background
class ScenarioTemplate:
def __init__(self, feature: Feature, name: str, line_number: int, tags=None):
self.feature = feature
self.name = name
self._steps: typing.List[Step] = []
self.examples = Examples()
self.line_number = line_number
self.tags = tags or set()
def add_step(self, step):
step.scenario = self
self._steps.append(step)
@property
def steps(self):
background = self.feature.background
return (background.steps if background else []) + self._steps
def render(self, context: typing.Mapping[str, typing.Any]) -> "Scenario":
steps = [
Step(
name=templated_step.render(context),
type=templated_step.type,
indent=templated_step.indent,
line_number=templated_step.line_number,
keyword=templated_step.keyword,
)
for templated_step in self.steps
]
return Scenario(feature=self.feature, name=self.name, line_number=self.line_number, steps=steps, tags=self.tags)
def validate(self):
params = frozenset(sum((list(step.params) for step in self.steps), []))
example_params = set(self.examples.example_params + self.feature.examples.example_params)
if params and example_params and params != example_params:
raise exceptions.ScenarioExamplesNotValidError(
"""Scenario "{}" in the feature "{}" has not valid examples. """
"""Set of step parameters {} should match set of example values {}.""".format(
self.name, self.feature.filename, sorted(params), sorted(example_params)
)
)
class Scenario:
def __init__(self, feature: Feature, name: str, line_number: int, steps: "typing.List[Step]", tags=None):
self.feature = feature
self.name = name
self.steps = steps
self.line_number = line_number
self.tags = tags or set()
self.failed = False
class Step:
def __init__(self, name, type, indent, line_number, keyword):
self.name = name
self.keyword = keyword
self.lines = []
self.indent = indent
self.type = type
self.line_number = line_number
self.failed = False
self.start = 0
self.stop = 0
self.scenario = None
self.background = None
def add_line(self, line):
self.lines.append(line)
@property
def name(self):
multilines_content = textwrap.dedent("\n".join(self.lines)) if self.lines else ""
multilines_content = re.sub(
pattern=r'^"""\n(?P<content>.*)\n"""$',
repl=r"\g<content>",
string=multilines_content,
flags=re.DOTALL,
)
lines = [self._name] + [multilines_content]
return "\n".join(lines).strip()
@name.setter
def name(self, value):
self._name = value | MIT License |
ddorn/gui | GUI/base.py | BaseWidget.unfocus | python | def unfocus(self):
self._focus = False | Takes back the focus from the widget. | https://github.com/ddorn/gui/blob/e1fcb5286d24e0995f280d5180222e51895c368c/GUI/base.py#L157-L159 | import pygame
from GUI.locals import CENTER, TOPLEFT, TOPRIGHT, MIDTOP, MIDLEFT, MIDRIGHT, BOTTOMRIGHT, MIDBOTTOM, BOTTOMLEFT
from pygame.event import EventType
class BaseWidget(pygame.Rect):
def __init__(self, pos, size, anchor=CENTER):
self.__verify(pos)
self.__verify(size)
super().__init__((0, 0), (0, 0))
self._anchor = anchor
self._pos = pos
self._size = size
self._focus = False
self.clicked = False
def __str__(self):
return repr(self)
def __repr__(self):
return '<BaseWidget({}, {})>'.format(self.topleft, self.size)
def __contains__(self, item):
return self.left <= item[0] <= self.right and self.top <= item[1] <= self.bottom
def __getattribute__(self, item):
if item in "x y top left bottom right topleft bottomleft topright bottomright midtop midleft midbottom " "midright center centerx centery".split():
self.__update()
if item in "width height w h".split():
self.__update()
return super(BaseWidget, self).__getattribute__(item)
def __setattr__(self, key, value):
if key in (TOPLEFT, BOTTOMLEFT, TOPRIGHT, BOTTOMRIGHT, MIDTOP, MIDLEFT, MIDBOTTOM, MIDRIGHT, CENTER):
self.anchor = key
self.pos = value
elif key in ('width', 'height', 'w', 'h'):
raise AttributeError("Can't set the attribute")
elif key in ('x', 'y', 'top', 'left', 'bottom', 'right', 'centerx', 'centery'):
raise AttributeError("Can't set the attribute")
else:
super(BaseWidget, self).__setattr__(key, value)
def __update(self):
width, height = self.size
super(BaseWidget, self).__setattr__("width", width)
super(BaseWidget, self).__setattr__("height", height)
super(BaseWidget, self).__setattr__(self.anchor, self.pos)
@staticmethod
def __verify(pos_or_size):
if not callable(pos_or_size):
assert isinstance(pos_or_size, tuple)
assert len(pos_or_size) == 2
assert isinstance(pos_or_size[0], int)
assert isinstance(pos_or_size[1], int)
def as_rect(self):
return self.pos, self.size
@property
def pos(self):
if callable(self._pos):
return self._pos()
return self._pos
@pos.setter
def pos(self, value):
if not callable(value):
if not isinstance(value, tuple):
raise TypeError("The pos must be a callable that returns 2-tuples or a 2-tuple")
if len(value) != 2:
raise ValueError("The pos must be a callable that returns 2-tuples or a 2-tuple")
self._pos = value
@property
def size(self):
if callable(self._size):
return self._size()
return self._size
@size.setter
def size(self, value):
if not callable(value):
if not isinstance(value, tuple):
raise TypeError("The size must be a callable that returns 2-tuples or a 2-tuple")
if len(value) != 2:
raise ValueError("The size must be a callable that returns 2-tuples or a 2-tuple")
self._size = value
@property
def anchor(self):
if callable(self._anchor):
return self._anchor()
return self._anchor
@anchor.setter
def anchor(self, value):
if not callable(value):
if value not in (TOPLEFT, TOPRIGHT, MIDTOP, MIDLEFT, MIDRIGHT, CENTER, BOTTOMRIGHT, MIDBOTTOM, BOTTOMLEFT):
raise ValueError
self._anchor = value
def focus(self):
self._focus = True | MIT License |
rwl/muntjac | muntjac/addon/colorpicker/color_picker.py | ColorPicker.setSwatchesVisibility | python | def setSwatchesVisibility(self, visible):
if not visible and not self.hsvVisible and not self.rgbVisible:
raise ValueError('Cannot hide all tabs.')
self.swatchesVisible = visible
if self._window is not None:
self._window.setSwatchesTabVisible(visible) | Set the visibility of the Swatches Tab
@param visible:
The visibility | https://github.com/rwl/muntjac/blob/8db97712edd81b4d25deaaa48587d2a08010f2c8/muntjac/addon/colorpicker/color_picker.py#L303-L314 | from muntjac.addon.colorpicker.color import Color
from muntjac.ui.abstract_component import AbstractComponent
from muntjac.ui.window import ICloseListener
from muntjac.addon.colorpicker.color_change_event import ColorChangeEvent
from muntjac.addon.colorpicker.color_selector import IColorSelector
class IColorChangeListener(object):
def colorChanged(self, event):
raise NotImplementedError
_COLOR_CHANGE_METHOD = getattr(IColorChangeListener, 'colorChanged')
class ColorPicker(AbstractComponent, ICloseListener, IColorSelector,
IColorChangeListener):
CLIENT_WIDGET = None
TYPE_MAPPING = 'com.vaadin.addon.colorpicker.ColorPicker'
def __init__(self, caption='Colors', initialColor=None):
self.buttonStyle = str(ButtonStyle.BUTTON_NORMAL)
self.popupStyle = PopupStyle.POPUP_NORMAL
self.buttonCaption = ''
self._window = None
self._parent_window = None
self._popupStatus = False
self._positionX = 0
self._positionY = 0
self.rgbVisible = True
self.hsvVisible = True
self.swatchesVisible = True
self.historyVisible = True
self.textfieldVisible = True
if initialColor is None:
initialColor = Color(0, 0, 0)
self.color = initialColor
self.caption = caption
super(ColorPicker, self).__init__()
def setColor(self, color):
self.color = color
if self._window is not None:
self._window.setColor(color)
self.requestRepaint()
def getColor(self):
return self.color
def setPosition(self, x, y):
self._positionX = x
self._positionY = y
if self._window is not None:
self._window.setPositionX(x)
self._window.setPositionY(y)
def addListener(self, listener, iface=None):
if (isinstance(listener, IColorChangeListener) and
(iface is None or issubclass(iface, IColorChangeListener))):
self.registerListener(ColorChangeEvent, listener,
_COLOR_CHANGE_METHOD)
super(ColorPicker, self).addListener(listener, iface)
def addCallback(self, callback, eventType=None, *args):
if eventType is None:
eventType = callback._eventType
if issubclass(eventType, ColorChangeEvent):
self.registerCallback(ColorChangeEvent, callback, None, *args)
else:
super(ColorPicker, self).addCallback(callback, eventType, *args)
def removeListener(self, listener, iface=None):
if (isinstance(listener, IColorChangeListener) and
(iface is None or issubclass(iface, IColorChangeListener))):
self.withdrawListener(ColorChangeEvent, listener)
super(ColorPicker, self).removeListener(listener, iface)
def removeCallback(self, callback, eventType=None):
if eventType is None:
eventType = callback._eventType
if issubclass(eventType, ColorChangeEvent):
self.withdrawCallback(ColorChangeEvent, callback)
else:
super(ColorPicker, self).removeCallback(callback, eventType)
def paintContent(self, target):
target.addAttribute('red', '%.2x' % self.color.getRed())
target.addAttribute('green', '%.2x' % self.color.getGreen())
target.addAttribute('blue', '%.2x' % self.color.getBlue())
target.addAttribute('alpha', self.color.getAlpha())
target.addAttribute('popup', self._popupStatus)
target.addAttribute('btnstyle', self.buttonStyle)
target.addAttribute('btncaption', self.buttonCaption)
def changeVariables(self, source, variables):
if 'popup' in variables:
openPopup = variables['popup']
if openPopup and not self.isReadOnly():
if self._parent_window is None:
self._parent_window = self.getWindow()
if self._parent_window.getParent() is not None:
self._parent_window = self._parent_window.getParent()
if self._window is None:
from muntjac.addon.colorpicker.color_picker_popup import ColorPickerPopup
self._window = ColorPickerPopup(self.color)
self._window.setCaption(self.caption)
self._window.setRGBTabVisible(self.rgbVisible)
self._window.setHSVTabVisible(self.hsvVisible)
self._window.setSwatchesTabVisible(self.swatchesVisible)
self._window.setHistoryVisible(self.historyVisible)
self._window.setPreviewVisible(self.textfieldVisible)
self._window.setImmediate(True)
self._window.addListener(self, ICloseListener)
self._window.addListener(self, IColorChangeListener)
self._window.getHistory().setColor(self.color)
self._parent_window.addWindow(self._window)
self._window.setVisible(True)
self._window.setPositionX(self._positionX)
self._window.setPositionY(self._positionY)
else:
self._window.setRGBTabVisible(self.rgbVisible)
self._window.setHSVTabVisible(self.hsvVisible)
self._window.setSwatchesTabVisible(self.swatchesVisible)
self._window.setHistoryVisible(self.historyVisible)
self._window.setPreviewVisible(self.textfieldVisible)
self._window.setColor(self.color)
self._window.getHistory().setColor(self.color)
self._window.setVisible(True)
self._parent_window.addWindow(self._window)
elif self._window is not None:
self._window.setVisible(False)
self._parent_window.removeWindow(self._window)
def windowClose(self, e):
if e.getWindow() == self._window:
self._popupStatus = False
self.requestRepaint()
def colorChanged(self, event):
self.color = event.getColor()
self.fireColorChanged()
def fireColorChanged(self):
self.fireEvent(ColorChangeEvent(self, self.color))
def setButtonStyle(self, style):
self.buttonStyle = str(style)
def setPopupStyle(self, style):
self.popupStyle = style
if style == self.POPUP_NORMAL:
self.setRGBVisibility(True)
self.setHSVVisibility(True)
self.setSwatchesVisibility(True)
self.setHistoryVisibility(True)
self.setTextfieldVisibility(True)
elif style == self.POPUP_SIMPLE:
self.setRGBVisibility(False)
self.setHSVVisibility(False)
self.setSwatchesVisibility(True)
self.setHistoryVisibility(False)
self.setTextfieldVisibility(False)
def setButtonCaption(self, caption):
self.buttonCaption = '' if caption is None else caption
def setRGBVisibility(self, visible):
if not visible and not self.hsvVisible and not self.swatchesVisible:
raise ValueError('Cannot hide all tabs.')
self.rgbVisible = visible
if self._window is not None:
self._window.setRGBTabVisible(visible)
def setHSVVisibility(self, visible):
if not visible and not self.rgbVisible and not self.swatchesVisible:
raise ValueError('Cannot hide all tabs.')
self.hsvVisible = visible
if self._window is not None:
self._window.setHSVTabVisible(visible) | Apache License 2.0 |
simonmeister/motion-rcnn | object_detection/core/target_assigner.py | TargetAssigner.__init__ | python | def __init__(self, similarity_calc, matcher, box_coder,
positive_class_weight=1.0, negative_class_weight=1.0,
unmatched_cls_target=None):
if not isinstance(similarity_calc, sim_calc.RegionSimilarityCalculator):
raise ValueError('similarity_calc must be a RegionSimilarityCalculator')
if not isinstance(matcher, mat.Matcher):
raise ValueError('matcher must be a Matcher')
if not isinstance(box_coder, bcoder.BoxCoder):
raise ValueError('box_coder must be a BoxCoder')
self._similarity_calc = similarity_calc
self._matcher = matcher
self._box_coder = box_coder
self._positive_class_weight = positive_class_weight
self._negative_class_weight = negative_class_weight
if unmatched_cls_target is None:
self._unmatched_cls_target = tf.constant([0], tf.float32)
else:
self._unmatched_cls_target = unmatched_cls_target | Construct Multibox Target Assigner.
Args:
similarity_calc: a RegionSimilarityCalculator
matcher: an object_detection.core.Matcher used to match groundtruth to
anchors.
box_coder: an object_detection.core.BoxCoder used to encode matching
groundtruth boxes with respect to anchors.
positive_class_weight: classification weight to be associated to positive
anchors (default: 1.0)
negative_class_weight: classification weight to be associated to negative
anchors (default: 1.0)
unmatched_cls_target: a float32 tensor with shape [d_1, d_2, ..., d_k]
which is consistent with the classification target for each
anchor (and can be empty for scalar targets). This shape must thus be
compatible with the groundtruth labels that are passed to the "assign"
function (which have shape [num_gt_boxes, d_1, d_2, ..., d_k]).
If set to None, unmatched_cls_target is set to be [0] for each anchor.
Raises:
ValueError: if similarity_calc is not a RegionSimilarityCalculator or
if matcher is not a Matcher or if box_coder is not a BoxCoder | https://github.com/simonmeister/motion-rcnn/blob/f8883d2328cf9be5b781c1a555b0eef1dda62e18/object_detection/core/target_assigner.py#L52-L92 | import tensorflow as tf
import numpy as np
import cv2
from object_detection.box_coders import faster_rcnn_box_coder
from object_detection.box_coders import mean_stddev_box_coder
from object_detection.core import box_coder as bcoder
from object_detection.core import box_list
from object_detection.core import box_list_ops
from object_detection.core import matcher as mat
from object_detection.core import region_similarity_calculator as sim_calc
from object_detection.matchers import argmax_matcher
from object_detection.matchers import bipartite_matcher
class TargetAssigner(object): | MIT License |
kngwyu/rainy | rainy/net/actor_critic.py | policy_init | python | def policy_init(gain: float = 0.01) -> Initializer:
return Initializer(weight_init=orthogonal(gain)) | Use small value for policy layer to make policy entroy larger | https://github.com/kngwyu/rainy/blob/535f8f49d9efe0324a8480d0165ab1b35d83dc19/rainy/net/actor_critic.py#L187-L189 | from abc import ABC, abstractmethod
from typing import List, Optional, Sequence, Tuple, Type
import numpy as np
from torch import Tensor, nn
from ..prelude import ArrayLike
from ..utils import Device
from .block import CNNBody, FCBody, LinearHead, NetworkBlock, ResNetBody
from .init import Initializer, orthogonal
from .policy import CategoricalDist, Policy, PolicyDist
from .prelude import NetFn
from .recurrent import DummyRnn, RnnBlock, RnnState
class ActorCriticNet(nn.Module, ABC):
state_dim: Sequence[int]
action_dim: int
recurrent_body: RnnBlock
@property
def is_recurrent(self) -> bool:
return not isinstance(self.recurrent_body, DummyRnn)
@abstractmethod
def policy(
self,
states: ArrayLike,
rnns: Optional[RnnState] = None,
masks: Optional[Tensor] = None,
) -> Tuple[Policy, RnnState]:
pass
@abstractmethod
def value(
self,
states: ArrayLike,
rnns: Optional[RnnState] = None,
masks: Optional[Tensor] = None,
) -> Tensor:
pass
@abstractmethod
def forward(
self,
states: ArrayLike,
rnns: Optional[RnnState] = None,
masks: Optional[Tensor] = None,
) -> Tuple[Policy, Tensor, RnnState]:
pass
class SeparatedACNet(nn.Module, ABC):
def __init__(
self,
actor_body: NetworkBlock,
critic_body: NetworkBlock,
policy_dist: PolicyDist,
device: Device = Device(),
init: Initializer = Initializer(),
) -> None:
super().__init__()
self.device = device
self.actor = nn.Sequential(
actor_body,
LinearHead(actor_body.output_dim, policy_dist.input_dim, init=init),
)
self.critic = nn.Sequential(
critic_body, LinearHead(critic_body.output_dim, 1, init=init)
)
self.policy_dist = policy_dist
self.recurrent_body = DummyRnn()
self.to(device.unwrapped)
self.state_dim = self.actor[0].input_dim
self.action_dim = self.actor[1].output_dim
@property
def is_recurrent(self) -> bool:
return False
def policy(
self,
states: ArrayLike,
_rnns: Optional[RnnState] = None,
_masks: Optional[Tensor] = None,
) -> Tuple[Policy, RnnState]:
s = self.device.tensor(states)
return self.policy_dist(self.actor(s)), self.recurrent_body.DUMMY_STATE
def value(
self,
states: ArrayLike,
_rnns: Optional[RnnState] = None,
_masks: Optional[Tensor] = None,
) -> Tensor:
s = self.device.tensor(states)
return self.critic(s).squeeze_()
def forward(
self,
states: ArrayLike,
_rnns: Optional[RnnState] = None,
_masks: Optional[Tensor] = None,
) -> Tuple[Policy, Tensor, RnnState]:
s = self.device.tensor(states)
policy = self.policy_dist(self.actor(s))
value = self.critic(s).squeeze_()
return policy, value, self.recurrent_body.DUMMY_STATE
class SharedACNet(ActorCriticNet):
def __init__(
self,
body: NetworkBlock,
actor_head: NetworkBlock,
critic_head: NetworkBlock,
policy_dist: PolicyDist,
recurrent_body: RnnBlock = DummyRnn(),
device: Device = Device(),
) -> None:
assert body.output_dim == np.prod(
actor_head.input_dim
), "body output and action_head input must have a same dimention"
assert body.output_dim == np.prod(
critic_head.input_dim
), "body output and action_head input must have a same dimention"
super().__init__()
self.device = device
self.body = body
self.actor_head = actor_head
self.critic_head = critic_head
self.policy_dist = policy_dist
self.recurrent_body = recurrent_body
self.to(device.unwrapped)
self.state_dim = self.body.input_dim
self.action_dim = self.actor_head.output_dim
def _features(
self,
states: ArrayLike,
rnns: Optional[RnnState] = None,
masks: Optional[Tensor] = None,
) -> Tuple[Tensor, RnnState]:
res = self.body(self.device.tensor(states))
if rnns is None:
rnns = self.recurrent_body.initial_state(res.size(0), self.device)
res = self.recurrent_body(res, rnns, masks)
return res
def policy(
self,
states: ArrayLike,
rnns: Optional[RnnState] = None,
masks: Optional[Tensor] = None,
) -> Tuple[Policy, RnnState]:
features, rnn_next = self._features(states, rnns, masks)
return self.policy_dist(self.actor_head(features)), rnn_next
def value(
self,
states: ArrayLike,
rnns: Optional[RnnState] = None,
masks: Optional[Tensor] = None,
) -> Tensor:
features = self._features(states, rnns, masks)[0]
return self.critic_head(features).squeeze_()
def forward(
self,
states: ArrayLike,
rnns: Optional[RnnState] = None,
masks: Optional[Tensor] = None,
) -> Tuple[Policy, Tensor, RnnState]:
features, rnn_next = self._features(states, rnns, masks)
policy, value = self.actor_head(features), self.critic_head(features)
return self.policy_dist(policy), value.squeeze_(), rnn_next | Apache License 2.0 |
bitmovin/bitmovin-api-sdk-python | bitmovin_api_sdk/models/analytics_median_query_request.py | AnalyticsMedianQueryRequest.to_dict | python | def to_dict(self):
result = {}
if hasattr(super(AnalyticsMedianQueryRequest, self), "to_dict"):
result = super(AnalyticsMedianQueryRequest, self).to_dict()
return result | Returns the model properties as a dict | https://github.com/bitmovin/bitmovin-api-sdk-python/blob/79dd938804197151af7cbe5501c7ec1d97872c15/bitmovin_api_sdk/models/analytics_median_query_request.py#L14-L20 | from six import string_types, iteritems
from bitmovin_api_sdk.common.poscheck import poscheck_model
from bitmovin_api_sdk.models.analytics_attribute import AnalyticsAttribute
from bitmovin_api_sdk.models.analytics_interval import AnalyticsInterval
from bitmovin_api_sdk.models.analytics_query_request import AnalyticsQueryRequest
import pprint
class AnalyticsMedianQueryRequest(AnalyticsQueryRequest): | MIT License |
square/connect-python-sdk | squareconnect/models/catalog_object.py | CatalogObject.item_option_value_data | python | def item_option_value_data(self, item_option_value_data):
self._item_option_value_data = item_option_value_data | Sets the item_option_value_data of this CatalogObject.
Structured data for a [CatalogItemOptionValue](#type-catalogitemoptionvalue), set for CatalogObjects of type `ITEM_OPTION_VAL`.
:param item_option_value_data: The item_option_value_data of this CatalogObject.
:type: CatalogItemOptionValue | https://github.com/square/connect-python-sdk/blob/e00e2889b2dd2c55048219cbe64db79962a68633/squareconnect/models/catalog_object.py#L664-L673 | from pprint import pformat
from six import iteritems
import re
class CatalogObject(object):
def __init__(self, type=None, id=None, updated_at=None, version=None, is_deleted=None, catalog_v1_ids=None, present_at_all_locations=None, present_at_location_ids=None, absent_at_location_ids=None, image_id=None, item_data=None, category_data=None, item_variation_data=None, tax_data=None, discount_data=None, modifier_list_data=None, modifier_data=None, time_period_data=None, product_set_data=None, pricing_rule_data=None, image_data=None, measurement_unit_data=None, item_option_data=None, item_option_value_data=None):
self.swagger_types = {
'type': 'str',
'id': 'str',
'updated_at': 'str',
'version': 'int',
'is_deleted': 'bool',
'catalog_v1_ids': 'list[CatalogV1Id]',
'present_at_all_locations': 'bool',
'present_at_location_ids': 'list[str]',
'absent_at_location_ids': 'list[str]',
'image_id': 'str',
'item_data': 'CatalogItem',
'category_data': 'CatalogCategory',
'item_variation_data': 'CatalogItemVariation',
'tax_data': 'CatalogTax',
'discount_data': 'CatalogDiscount',
'modifier_list_data': 'CatalogModifierList',
'modifier_data': 'CatalogModifier',
'time_period_data': 'CatalogTimePeriod',
'product_set_data': 'CatalogProductSet',
'pricing_rule_data': 'CatalogPricingRule',
'image_data': 'CatalogImage',
'measurement_unit_data': 'CatalogMeasurementUnit',
'item_option_data': 'CatalogItemOption',
'item_option_value_data': 'CatalogItemOptionValue'
}
self.attribute_map = {
'type': 'type',
'id': 'id',
'updated_at': 'updated_at',
'version': 'version',
'is_deleted': 'is_deleted',
'catalog_v1_ids': 'catalog_v1_ids',
'present_at_all_locations': 'present_at_all_locations',
'present_at_location_ids': 'present_at_location_ids',
'absent_at_location_ids': 'absent_at_location_ids',
'image_id': 'image_id',
'item_data': 'item_data',
'category_data': 'category_data',
'item_variation_data': 'item_variation_data',
'tax_data': 'tax_data',
'discount_data': 'discount_data',
'modifier_list_data': 'modifier_list_data',
'modifier_data': 'modifier_data',
'time_period_data': 'time_period_data',
'product_set_data': 'product_set_data',
'pricing_rule_data': 'pricing_rule_data',
'image_data': 'image_data',
'measurement_unit_data': 'measurement_unit_data',
'item_option_data': 'item_option_data',
'item_option_value_data': 'item_option_value_data'
}
self._type = type
self._id = id
self._updated_at = updated_at
self._version = version
self._is_deleted = is_deleted
self._catalog_v1_ids = catalog_v1_ids
self._present_at_all_locations = present_at_all_locations
self._present_at_location_ids = present_at_location_ids
self._absent_at_location_ids = absent_at_location_ids
self._image_id = image_id
self._item_data = item_data
self._category_data = category_data
self._item_variation_data = item_variation_data
self._tax_data = tax_data
self._discount_data = discount_data
self._modifier_list_data = modifier_list_data
self._modifier_data = modifier_data
self._time_period_data = time_period_data
self._product_set_data = product_set_data
self._pricing_rule_data = pricing_rule_data
self._image_data = image_data
self._measurement_unit_data = measurement_unit_data
self._item_option_data = item_option_data
self._item_option_value_data = item_option_value_data
@property
def type(self):
return self._type
@type.setter
def type(self, type):
self._type = type
@property
def id(self):
return self._id
@id.setter
def id(self, id):
if id is None:
raise ValueError("Invalid value for `id`, must not be `None`")
if len(id) < 1:
raise ValueError("Invalid value for `id`, length must be greater than or equal to `1`")
self._id = id
@property
def updated_at(self):
return self._updated_at
@updated_at.setter
def updated_at(self, updated_at):
self._updated_at = updated_at
@property
def version(self):
return self._version
@version.setter
def version(self, version):
self._version = version
@property
def is_deleted(self):
return self._is_deleted
@is_deleted.setter
def is_deleted(self, is_deleted):
self._is_deleted = is_deleted
@property
def catalog_v1_ids(self):
return self._catalog_v1_ids
@catalog_v1_ids.setter
def catalog_v1_ids(self, catalog_v1_ids):
self._catalog_v1_ids = catalog_v1_ids
@property
def present_at_all_locations(self):
return self._present_at_all_locations
@present_at_all_locations.setter
def present_at_all_locations(self, present_at_all_locations):
self._present_at_all_locations = present_at_all_locations
@property
def present_at_location_ids(self):
return self._present_at_location_ids
@present_at_location_ids.setter
def present_at_location_ids(self, present_at_location_ids):
self._present_at_location_ids = present_at_location_ids
@property
def absent_at_location_ids(self):
return self._absent_at_location_ids
@absent_at_location_ids.setter
def absent_at_location_ids(self, absent_at_location_ids):
self._absent_at_location_ids = absent_at_location_ids
@property
def image_id(self):
return self._image_id
@image_id.setter
def image_id(self, image_id):
self._image_id = image_id
@property
def item_data(self):
return self._item_data
@item_data.setter
def item_data(self, item_data):
self._item_data = item_data
@property
def category_data(self):
return self._category_data
@category_data.setter
def category_data(self, category_data):
self._category_data = category_data
@property
def item_variation_data(self):
return self._item_variation_data
@item_variation_data.setter
def item_variation_data(self, item_variation_data):
self._item_variation_data = item_variation_data
@property
def tax_data(self):
return self._tax_data
@tax_data.setter
def tax_data(self, tax_data):
self._tax_data = tax_data
@property
def discount_data(self):
return self._discount_data
@discount_data.setter
def discount_data(self, discount_data):
self._discount_data = discount_data
@property
def modifier_list_data(self):
return self._modifier_list_data
@modifier_list_data.setter
def modifier_list_data(self, modifier_list_data):
self._modifier_list_data = modifier_list_data
@property
def modifier_data(self):
return self._modifier_data
@modifier_data.setter
def modifier_data(self, modifier_data):
self._modifier_data = modifier_data
@property
def time_period_data(self):
return self._time_period_data
@time_period_data.setter
def time_period_data(self, time_period_data):
self._time_period_data = time_period_data
@property
def product_set_data(self):
return self._product_set_data
@product_set_data.setter
def product_set_data(self, product_set_data):
self._product_set_data = product_set_data
@property
def pricing_rule_data(self):
return self._pricing_rule_data
@pricing_rule_data.setter
def pricing_rule_data(self, pricing_rule_data):
self._pricing_rule_data = pricing_rule_data
@property
def image_data(self):
return self._image_data
@image_data.setter
def image_data(self, image_data):
self._image_data = image_data
@property
def measurement_unit_data(self):
return self._measurement_unit_data
@measurement_unit_data.setter
def measurement_unit_data(self, measurement_unit_data):
self._measurement_unit_data = measurement_unit_data
@property
def item_option_data(self):
return self._item_option_data
@item_option_data.setter
def item_option_data(self, item_option_data):
self._item_option_data = item_option_data
@property
def item_option_value_data(self):
return self._item_option_value_data
@item_option_value_data.setter | Apache License 2.0 |
ucopacme/aws-orgs | awsorgs/utils.py | get_logger | python | def get_logger(args):
log_level = logging.INFO
if args['--debug']:
log_level = logging.DEBUG
if args['--quiet']:
log_level = logging.CRITICAL
log_format = '%(name)s: %(levelname)-9s%(message)s'
if args['report']:
log_format = '%(message)s'
if args['--debug'] == 1:
log_format = '%(name)s: %(levelname)-9s%(funcName)s(): %(message)s'
if (not args['--exec'] and not args['report']):
log_format = '[dryrun] %s' % log_format
if not args['--debug'] == 2:
logging.getLogger('botocore').propagate = False
logging.getLogger('boto3').propagate = False
logging.basicConfig(stream=sys.stdout, format=log_format, level=log_level)
log = logging.getLogger(__name__)
return log | Setup logging.basicConfig from args.
Return logging.Logger object. | https://github.com/ucopacme/aws-orgs/blob/441e22de53de7fa462aa5c1be3dd471902942eca/awsorgs/utils.py#L101-L125 | import os
import sys
import re
import pkg_resources
import difflib
import threading
try:
import queue
except ImportError:
import Queue as queue
import boto3
from botocore.exceptions import ClientError
import yaml
import logging
S3_BUCKET_PREFIX = 'awsorgs'
S3_OBJECT_KEY = 'deployed_accounts.yaml'
def get_s3_bucket_name(prefix=S3_BUCKET_PREFIX):
sts_client = boto3.client('sts')
account_id = sts_client.get_caller_identity()['Account']
return '-'.join([prefix, account_id])
def lookup(dlist, lkey, lvalue, rkey=None):
items = [d for d in dlist
if lkey in d
and d[lkey] == lvalue]
if not items:
return None
if len(items) > 1:
raise RuntimeError(
"Data Error: lkey: {}, lvalue: {} - lookup matches multiple items in dlist".format(lkey, lvalue)
)
if rkey:
if rkey in items[0]:
return items[0][rkey]
return None
return items[0]
def search_spec(spec, search_key, recurse_key):
value = []
if search_key in spec and spec[search_key]:
if isinstance(spec[search_key], str):
value.append(spec[search_key])
else:
value += spec[search_key]
if recurse_key in spec and spec[recurse_key]:
for child_spec in spec[recurse_key]:
value += search_spec(child_spec, search_key, recurse_key)
return sorted(value)
def ensure_absent(spec):
if 'Ensure' in spec and spec['Ensure'] == 'absent': return True
return False
def munge_path(default_path, spec):
if 'Path' in spec and spec['Path']:
if spec['Path'][0] == '/':
if spec['Path'][-1] != '/':
return spec['Path'] + '/'
return spec['Path']
return "/%s/%s/" % (default_path, spec['Path'])
return "/%s/" % default_path | MIT License |
yuhaocheng/pyanomaly | pyanomaly/core/utils.py | multi_obj_grid_crop | python | def multi_obj_grid_crop(bottom, bbox, object_size=(64,64)):
bottom = bottom.repeat(bbox.size(0), 1, 1, 1)
rois = bbox.detach()
batch_size = bottom.size(0)
D = bottom.size(1)
H = bottom.size(2)
W = bottom.size(3)
roi_per_batch = int(rois.size(0) / batch_size)
x1 = bbox[:, 0::4]
y1 = bbox[:, 1::4]
x2 = bbox[:, 2::4]
y2 = bbox[:, 3::4]
height = bottom.size(2)
width = bottom.size(3)
zero = rois.new_zeros(bbox.size(0), 1)
theta = torch.cat([ (x2 - x1) / (width - 1),
zero,
(x1 + x2 - width + 1) / (width - 1),
zero,
(y2 - y1) / (height - 1),
(y1 + y2 - height + 1) / (height - 1)], 1).view(-1, 2, 3)
grid = F.affine_grid(theta, torch.Size((rois.size(0), 1, object_size[0], object_size[1])))
bottom = bottom.view(1, batch_size, D, H, W).contiguous().expand(roi_per_batch, batch_size, D, H, W).contiguous().view(-1, D, H, W)
crops = F.grid_sample(bottom, grid)
return crops, grid | [ x2-x1 x1 + x2 - W + 1 ]
[ ----- 0 --------------- ]
[ W - 1 W - 1 ]
[ ]
[ y2-y1 y1 + y2 - H + 1 ]
[ 0 ----- --------------- ]
[ H - 1 H - 1 ] | https://github.com/yuhaocheng/pyanomaly/blob/718feab80c081f5c415c9f9b923408a890f08836/pyanomaly/core/utils.py#L133-L184 | import torch
import os
import pickle
from scipy.ndimage import gaussian_filter1d
import torch.nn.functional as F
import torchvision.transforms.functional as tf
from tsnecuda import TSNE
from pyanomaly.utils import flow2img
from collections import OrderedDict
import matplotlib.pyplot as plt
class AverageMeter(object):
def __init__(self, name='default'):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
self.name = name
def get_name(self):
return self.name
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count if self.count != 0 else 0
class ParamSet(object):
def __init__(self, name='default', **kwargs):
self.param_names = list(kwargs.keys())
self.name = name
self.param = OrderedDict(kwargs)
def get_name(self):
return self.name
def get_params_names(self):
return self.param_names
def modelparallel(model):
if isinstance(model, OrderedDict):
print('The model is a OrderedDict')
elif isinstance(model, torch.nn.Module):
print('The model is a nn.Module')
else:
raise Exception('Not support the model')
def modeldist(model):
assert torch.distributed.is_initialized(), 'Not init the dist'
if isinstance(model, OrderedDict):
print('The model is OrderedDict')
elif isinstance(model, torch.nn.Module):
print('The model is nn.Module')
else:
raise Exception('Not support the model')
def grid_crop(bottom, bbox, object_size=(64,64)):
rois = bbox.detach()
batch_size = bottom.size(0)
D = bottom.size(1)
H = bottom.size(2)
W = bottom.size(3)
roi_per_batch = int(rois.size(0) / batch_size)
x1 = bbox[:, 0::4]
y1 = bbox[:, 1::4]
x2 = bbox[:, 2::4]
y2 = bbox[:, 3::4]
height = bottom.size(2)
width = bottom.size(3)
zero = rois.new_zeros(bbox.size(0), 1)
theta = torch.cat([ (x2 - x1) / (width - 1),
zero,
(x1 + x2 - width + 1) / (width - 1),
zero,
(y2 - y1) / (height - 1),
(y1 + y2 - height + 1) / (height - 1)], 1).view(-1, 2, 3)
grid = F.affine_grid(theta, torch.Size((rois.size(0), 1, object_size[0], object_size[1])))
bottom = bottom.view(1, batch_size, D, H, W).contiguous().expand(roi_per_batch, batch_size, D, H, W).contiguous().view(-1, D, H, W)
crops = F.grid_sample(bottom, grid)
return crops, grid | Apache License 2.0 |
iranathan/robloxapi | robloxapi/group.py | Group.exile | python | async def exile(self, user_id: int) -> int:
r = await self.request.request(url=f'https://groups.roblox.com/v1/groups/{self.id}/users/{user_id}', method='DELETE')
return r.status_code | Exiles a user from the group.
:param user_id: The users id
:return: StatusCode | https://github.com/iranathan/robloxapi/blob/ab218f749afefb630f7472ce6d396369fd995ca4/robloxapi/group.py#L60-L67 | import json
import logging
import re
import asyncio
from typing import List, Tuple
from bs4 import BeautifulSoup
from .utils.errors import RoleError, NotFound
from .utils.classes import Role, Shout, WallPost, Action
from .joinrequest import JoinRequest
from .groupmember import GroupMember
from .user import User
from .auth import Auth, Captcha
class Group:
def __init__(self, request, group_id, group_name, description, member_count, shout, owner_id=None, owner_username=None):
self.request = request
self.id = group_id
self.name = group_name
self.description = description
if owner_id and owner_username:
self.owner = User(self.request, owner_id, owner_username)
self.member_count = member_count
self.shout = shout
async def pay(self, user_id: int, amount: int) -> int:
data = json.dumps({
"PayoutType": "FixedAmount",
"Recipients": [
{
"recipientId": user_id,
"recipientType": "User",
"amount": amount
}
]
})
r = await self.request.request(url=f'https://groups.roblox.com/v1/groups/{self.id}/payouts', data=data, method="POST")
return r.status_code | MIT License |
deepanshs/mrsimulator | src/mrsimulator/signal_processing/_base.py | Operation._get_dv_indexes | python | def _get_dv_indexes(indexes, n):
if indexes is None:
return np.arange(n)
if isinstance(indexes, int):
return [indexes]
if isinstance(indexes, (list, tuple)):
return np.asarray(indexes) | Return a list of dependent variable indexes.
Args:
indexes: An interger, list of integers, or None indicating the dv indexes.
n: Total number of dependent variables in the CSDM object. | https://github.com/deepanshs/mrsimulator/blob/9ab8a5edfa66434301b9d79da0c01a294e173704/src/mrsimulator/signal_processing/_base.py#L33-L45 | from sys import modules
from typing import ClassVar
import numpy as np
from mrsimulator.utils.parseable import Parseable
__author__ = "Maxwell C. Venetos"
__email__ = "[email protected]"
class Operation(Parseable):
module_name: ClassVar[str] = None
@property
def function(self):
return self.__class__.__name__
def json(self) -> dict:
my_dict = super().json()
my_dict["function"] = self.function
if hasattr(self, "type"):
my_dict["type"] = self.type
return my_dict
@staticmethod | BSD 3-Clause New or Revised License |
wavefronthq/python-client | wavefront_api_client/models/raw_timeseries.py | RawTimeseries.points | python | def points(self):
return self._points | Gets the points of this RawTimeseries. # noqa: E501
:return: The points of this RawTimeseries. # noqa: E501
:rtype: list[Point] | https://github.com/wavefronthq/python-client/blob/e410ce0dd8a2334e995456f4f3d44e0f04664a3a/wavefront_api_client/models/raw_timeseries.py#L60-L67 | import pprint
import re
import six
from wavefront_api_client.configuration import Configuration
class RawTimeseries(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'points': 'list[Point]',
'tags': 'dict(str, str)'
}
attribute_map = {
'points': 'points',
'tags': 'tags'
}
def __init__(self, points=None, tags=None, _configuration=None):
if _configuration is None:
_configuration = Configuration()
self._configuration = _configuration
self._points = None
self._tags = None
self.discriminator = None
self.points = points
if tags is not None:
self.tags = tags
@property | Apache License 2.0 |
psss/tmt | tmt/steps/provision/__init__.py | Guest.push | python | def push(self, source=None, destination=None, options=None):
if options is None:
options = "-Rrz --links --safe-links --delete".split()
if destination is None:
destination = "/"
if source is None:
source = self.parent.plan.workdir
self.debug(f"Push workdir to guest '{self.guest}'.")
else:
self.debug(f"Copy '{source}' to '{destination}' on the guest.")
self._check_rsync()
try:
self.run(
["rsync"] + options
+ ["-e", self._ssh_command(join=True)]
+ [source, f"{self._ssh_guest()}:{destination}"],
shell=False)
except tmt.utils.RunError:
self.fail(
f"Failed to push workdir to the guest. This usually means "
f"login as '{self.user}' to the test machine does not work.")
raise | Push files to the guest
By default the whole plan workdir is synced to the same location
on the guest. Use the 'source' and 'destination' to sync custom
location and the 'options' parametr to modify default options
which are '-Rrz --links --safe-links --delete'. | https://github.com/psss/tmt/blob/1cd284946155eced0c6522fa42e327ab22683d0d/tmt/steps/provision/__init__.py#L441-L473 | import os
import random
import re
import shlex
import string
import time
import click
import fmf
import tmt
CONNECTION_TIMEOUT = 60 * 4
SSH_INITIAL_WAIT_TIME = 5
class Provision(tmt.steps.Step):
how = 'virtual'
def __init__(self, data, plan):
super().__init__(data, plan)
self._guests = []
self._guest_data = {}
def load(self, extra_keys=None):
extra_keys = extra_keys or []
super().load(extra_keys)
try:
self._guest_data = tmt.utils.yaml_to_dict(self.read('guests.yaml'))
except tmt.utils.FileError:
self.debug('Provisioned guests not found.', level=2)
def save(self, data=None):
data = data or {}
super().save(data)
try:
guests = dict(
[(guest.name, guest.save()) for guest in self.guests()])
self.write('guests.yaml', tmt.utils.dict_to_yaml(guests))
except tmt.utils.FileError:
self.debug('Failed to save provisioned guests.')
def wake(self):
super().wake()
for data in self.data:
plugin = ProvisionPlugin.delegate(self, data)
self._plugins.append(plugin)
plugin.wake(data=self._guest_data.get(plugin.name))
if plugin.guest():
self._guests.append(plugin.guest())
if self.status() == 'done':
self.debug(
'Provision wake up complete (already done before).', level=2)
else:
self.status('todo')
self.save()
def show(self):
for data in self.data:
ProvisionPlugin.delegate(self, data).show()
def summary(self):
guests = fmf.utils.listed(self.guests(), 'guest')
self.info('summary', f'{guests} provisioned', 'green', shift=1)
for guest in self.guests():
if guest.name != tmt.utils.DEFAULT_NAME:
self.verbose(guest.name, color='red', shift=2)
def go(self):
super().go()
if self.status() == 'done':
self.info('status', 'done', 'green', shift=1)
self.summary()
self.actions()
return
self._guests = []
save = True
try:
for plugin in self.plugins():
try:
plugin.go()
if isinstance(plugin, ProvisionPlugin):
plugin.guest().details()
finally:
if isinstance(plugin, ProvisionPlugin):
self._guests.append(plugin.guest())
self.summary()
self.status('done')
except SystemExit as error:
save = False
raise error
finally:
if save:
self.save()
def guests(self):
return self._guests
def requires(self):
requires = set()
for plugin in self.plugins(classes=ProvisionPlugin):
requires.update(plugin.requires())
return list(requires)
class ProvisionPlugin(tmt.steps.Plugin):
how = 'virtual'
_supported_methods = []
@classmethod
def base_command(cls, method_class=None, usage=None):
if method_class:
usage = Provision.usage(method_overview=usage)
@click.command(cls=method_class, help=usage)
@click.pass_context
@click.option(
'-h', '--how', metavar='METHOD',
help='Use specified method for provisioning.')
def provision(context, **kwargs):
context.obj.steps.add('provision')
Provision._save_context(context)
return provision
def wake(self, options=None, data=None):
super().wake(options)
def guest(self):
raise NotImplementedError
def requires(self):
return Guest.requires()
@classmethod
def clean_images(cls, clean, dry):
class Guest(tmt.utils.Common):
_keys = ['guest', 'port', 'user', 'key', 'password']
def __init__(self, data, name=None, parent=None):
super().__init__(parent, name)
self.load(data)
def _random_name(self, prefix='', length=16):
min_random_part = max(5, length - len(prefix))
name = prefix + ''.join(
random.choices(string.ascii_letters, k=min_random_part))
return name[-length:]
def _ssh_guest(self):
return f'{self.user}@{self.guest}'
def _ssh_options(self, join=False):
options = [
'-oStrictHostKeyChecking=no',
'-oUserKnownHostsFile=/dev/null',
]
if self.key or self.password:
options.extend(['-oIdentitiesOnly=yes'])
if self.port:
options.extend(['-p', str(self.port)])
if self.key:
keys = self.key if isinstance(self.key, list) else [self.key]
for key in keys:
options.extend(['-i', shlex.quote(key) if join else key])
if self.password:
options.extend(['-oPasswordAuthentication=yes'])
return ' '.join(options) if join else options
def _ssh_command(self, join=False):
command = []
if self.password:
password = shlex.quote(self.password) if join else self.password
command.extend(["sshpass", "-p", password])
command.append("ssh")
if join:
return " ".join(command) + " " + self._ssh_options(join=True)
else:
return command + self._ssh_options()
def load(self, data):
for key in self._keys:
setattr(self, key, data.get(key))
def save(self):
data = dict()
for key in self._keys:
value = getattr(self, key)
if value is not None:
data[key] = value
return data
def wake(self):
self.debug(f"Doing nothing to wake up guest '{self.guest}'.")
def start(self):
self.debug(f"Doing nothing to start guest '{self.guest}'.")
def details(self):
if self.opt('dry'):
return
try:
distro = self.execute('cat /etc/os-release')[0].strip()
distro = re.search('PRETTY_NAME="(.*)"', distro).group(1)
except (tmt.utils.RunError, AttributeError):
try:
distro = self.execute('cat /etc/lsb-release')[0].strip()
distro = re.search(
'DISTRIB_DESCRIPTION="(.*)"', distro).group(1)
except (tmt.utils.RunError, AttributeError):
try:
distro = self.execute('cat /etc/redhat-release')[0].strip()
except (tmt.utils.RunError, AttributeError):
distro = None
if distro is not None and 'Please login as the user' in distro:
raise tmt.utils.GeneralError(
f'Login to the guest failed.\n{distro}')
if distro:
self.info('distro', distro, 'green')
kernel = self.execute('uname -r')[0].strip()
self.verbose('kernel', kernel, 'green')
def _ansible_verbosity(self):
if self.opt('debug') < 3:
return ''
else:
return ' -' + (self.opt('debug') - 2) * 'v'
def _ansible_summary(self, output):
if not output:
return
keys = 'ok changed unreachable failed skipped rescued ignored'.split()
for key in keys:
matched = re.search(rf'^.*\s:\s.*{key}=(\d+).*$', output, re.M)
if matched and int(matched.group(1)) > 0:
tasks = fmf.utils.listed(matched.group(1), 'task')
self.verbose(key, tasks, 'green')
def _ansible_playbook_path(self, playbook):
self.debug(f"Applying playbook '{playbook}' on guest '{self.guest}'.")
playbook = os.path.join(self.parent.plan.my_run.tree.root, playbook)
self.debug(f"Playbook full path: '{playbook}'", level=2)
return playbook
def _export_environment(self, execute_environment=None):
environment = dict()
environment.update(execute_environment or dict())
environment.update(self.parent.plan.environment)
if not environment:
return ''
return 'export {}; '.format(
' '.join(tmt.utils.shell_variables(environment)))
def ansible(self, playbook):
playbook = self._ansible_playbook_path(playbook)
stdout, stderr = self.run(
f'{self._export_environment()}'
f'stty cols {tmt.utils.OUTPUT_WIDTH}; ansible-playbook '
f'--ssh-common-args="{self._ssh_options(join=True)}" '
f'{self._ansible_verbosity()} -i {self._ssh_guest()}, {playbook}',
cwd=self.parent.plan.worktree)
self._ansible_summary(stdout)
def execute(self, command, **kwargs):
environment = self._export_environment(kwargs.get('env', dict()))
directory = kwargs.get('cwd') or ''
if directory:
directory = f"cd '{directory}'; "
interactive = ['-t'] if kwargs.get('interactive') else []
if isinstance(command, (list, tuple)):
command = ' '.join(command)
self.debug(f"Execute command '{command}' on guest '{self.guest}'.")
command = (
self._ssh_command() + interactive + [self._ssh_guest()] +
[f'{environment}{directory}{command}'])
return self.run(command, shell=False, **kwargs) | MIT License |
deep500/deep500 | deep500/datasets/ucf101.py | download_ucf101_and_get_file_paths | python | def download_ucf101_and_get_file_paths(folder='', split='01'):
base_url = "https://www.crcv.ucf.edu/data/UCF101/"
filenames = [('ucf101', 'UCF101.rar'),
('ucf101_split','UCF101TrainTestSplits-RecognitionTask.zip')]
sub_folder = '/ucf101'
local_files = real_download(base_url, filenames, sub_folder, output_dir=folder)
files = unrar(local_files['ucf101'])
zip = zipfile.ZipFile(local_files['ucf101_split'])
path = os.path.dirname(os.path.abspath(local_files['ucf101']))+'/UCF-101/'
train_files = []
with zip.open('ucfTrainTestlist/trainlist{}.txt'.format(split)) as file_split:
for line in file_split:
file = path + bytes.decode(line.split()[0])
if file in files:
train_files.append(file)
test_files = []
with zip.open('ucfTrainTestlist/testlist{}.txt'.format(split)) as file_split:
for line in file_split:
file = path + bytes.decode(line.strip())
if file in files:
test_files.append(file)
label_list = {}
with zip.open('ucfTrainTestlist/classInd.txt') as labels:
for line in labels:
line = bytes.decode(line.strip())
label = line.split()[1]
idx = int(line.split()[0]) - 1
label_list[label] = idx
return train_files, test_files, label_list | Download ucf101 from University of Central Florida
The archive contains the videos of different action classes
:return: paths to different files | https://github.com/deep500/deep500/blob/34e93a46dea17513ac705bb4392b3514fa9d87c6/deep500/datasets/ucf101.py#L24-L63 | import zipfile
import os
import PIL.Image
from typing import List, Tuple, Dict
import numpy as np
from deep500.utils.download import real_download, unrar
from deep500.lv2.dataset import FileListDataset
from deep500.utils.onnx_interop.losses import SoftmaxCrossEntropy
try:
import av
except (ImportError, ModuleNotFoundError) as ex:
av = None
def ucf101_shape():
return (101, None, 3, 240, 320)
def ucf101_loss():
return SoftmaxCrossEntropy | BSD 3-Clause New or Revised License |
dcramer/selenium-saucelabs-python | saucelabs/selenium/__init__.py | selenium.go_back | python | def go_back(self):
self.do_command("goBack", []) | Simulates the user clicking the "back" button on their browser. | https://github.com/dcramer/selenium-saucelabs-python/blob/d964b18a8b93ec7693838eb3146a7d11bc13df90/saucelabs/selenium/__init__.py#L1000-L1005 | __docformat__ = "restructuredtext en"
import httplib
import urllib
class selenium:
def __init__(self, host, port, browserStartCommand, browserURL):
self.host = host
self.port = port
self.browserStartCommand = browserStartCommand
self.browserURL = browserURL
self.sessionId = None
self.extensionJs = ""
def setExtensionJs(self, extensionJs):
self.extensionJs = extensionJs
def start(self):
result = self.get_string("getNewBrowserSession", [self.browserStartCommand, self.browserURL, self.extensionJs])
try:
self.sessionId = result
except ValueError:
raise Exception, result
def stop(self):
self.do_command("testComplete", [])
self.sessionId = None
def do_command(self, verb, args):
conn = httplib.HTTPConnection(self.host, self.port)
body = u'cmd=' + urllib.quote_plus(unicode(verb).encode('utf-8'))
for i in range(len(args)):
body += '&' + unicode(i+1) + '=' + urllib.quote_plus(unicode(args[i]).encode('utf-8'))
if (None != self.sessionId):
body += "&sessionId=" + unicode(self.sessionId)
headers = {"Content-Type": "application/x-www-form-urlencoded; charset=utf-8"}
conn.request("POST", "/selenium-server/driver/", body, headers)
response = conn.getresponse()
data = unicode(response.read(), "UTF-8")
result = response.reason
if (not data.startswith('OK')):
raise Exception, data
return data
def get_string(self, verb, args):
result = self.do_command(verb, args)
return result[3:]
def get_string_array(self, verb, args):
csv = self.get_string(verb, args)
token = ""
tokens = []
escape = False
for i in range(len(csv)):
letter = csv[i]
if (escape):
token = token + letter
escape = False
continue
if (letter == '\\'):
escape = True
elif (letter == ','):
tokens.append(token)
token = ""
else:
token = token + letter
tokens.append(token)
return tokens
def get_number(self, verb, args):
return self.get_string(verb, args)
def get_number_array(self, verb, args):
return self.get_string_array(verb, args)
def get_boolean(self, verb, args):
boolstr = self.get_string(verb, args)
if ("true" == boolstr):
return True
if ("false" == boolstr):
return False
raise ValueError, "result is neither 'true' nor 'false': " + boolstr
def get_boolean_array(self, verb, args):
boolarr = self.get_string_array(verb, args)
for i in range(len(boolarr)):
if ("true" == boolarr[i]):
boolarr[i] = True
continue
if ("false" == boolarr[i]):
boolarr[i] = False
continue
raise ValueError, "result is neither 'true' nor 'false': " + boolarr[i]
return boolarr
def click(self,locator):
self.do_command("click", [locator,])
def double_click(self,locator):
self.do_command("doubleClick", [locator,])
def context_menu(self,locator):
self.do_command("contextMenu", [locator,])
def click_at(self,locator,coordString):
self.do_command("clickAt", [locator,coordString,])
def double_click_at(self,locator,coordString):
self.do_command("doubleClickAt", [locator,coordString,])
def context_menu_at(self,locator,coordString):
self.do_command("contextMenuAt", [locator,coordString,])
def fire_event(self,locator,eventName):
self.do_command("fireEvent", [locator,eventName,])
def focus(self,locator):
self.do_command("focus", [locator,])
def key_press(self,locator,keySequence):
self.do_command("keyPress", [locator,keySequence,])
def shift_key_down(self):
self.do_command("shiftKeyDown", [])
def shift_key_up(self):
self.do_command("shiftKeyUp", [])
def meta_key_down(self):
self.do_command("metaKeyDown", [])
def meta_key_up(self):
self.do_command("metaKeyUp", [])
def alt_key_down(self):
self.do_command("altKeyDown", [])
def alt_key_up(self):
self.do_command("altKeyUp", [])
def control_key_down(self):
self.do_command("controlKeyDown", [])
def control_key_up(self):
self.do_command("controlKeyUp", [])
def key_down(self,locator,keySequence):
self.do_command("keyDown", [locator,keySequence,])
def key_up(self,locator,keySequence):
self.do_command("keyUp", [locator,keySequence,])
def mouse_over(self,locator):
self.do_command("mouseOver", [locator,])
def mouse_out(self,locator):
self.do_command("mouseOut", [locator,])
def mouse_down(self,locator):
self.do_command("mouseDown", [locator,])
def mouse_down_right(self,locator):
self.do_command("mouseDownRight", [locator,])
def mouse_down_at(self,locator,coordString):
self.do_command("mouseDownAt", [locator,coordString,])
def mouse_down_right_at(self,locator,coordString):
self.do_command("mouseDownRightAt", [locator,coordString,])
def mouse_up(self,locator):
self.do_command("mouseUp", [locator,])
def mouse_up_right(self,locator):
self.do_command("mouseUpRight", [locator,])
def mouse_up_at(self,locator,coordString):
self.do_command("mouseUpAt", [locator,coordString,])
def mouse_up_right_at(self,locator,coordString):
self.do_command("mouseUpRightAt", [locator,coordString,])
def mouse_move(self,locator):
self.do_command("mouseMove", [locator,])
def mouse_move_at(self,locator,coordString):
self.do_command("mouseMoveAt", [locator,coordString,])
def type(self,locator,value):
self.do_command("type", [locator,value,])
def type_keys(self,locator,value):
self.do_command("typeKeys", [locator,value,])
def set_speed(self,value):
self.do_command("setSpeed", [value,])
def get_speed(self):
return self.get_string("getSpeed", [])
def check(self,locator):
self.do_command("check", [locator,])
def uncheck(self,locator):
self.do_command("uncheck", [locator,])
def select(self,selectLocator,optionLocator):
self.do_command("select", [selectLocator,optionLocator,])
def add_selection(self,locator,optionLocator):
self.do_command("addSelection", [locator,optionLocator,])
def remove_selection(self,locator,optionLocator):
self.do_command("removeSelection", [locator,optionLocator,])
def remove_all_selections(self,locator):
self.do_command("removeAllSelections", [locator,])
def submit(self,formLocator):
self.do_command("submit", [formLocator,])
def open(self,url):
self.do_command("open", [url,])
def open_window(self,url,windowID):
self.do_command("openWindow", [url,windowID,])
def select_window(self,windowID):
self.do_command("selectWindow", [windowID,])
def select_pop_up(self,windowID):
self.do_command("selectPopUp", [windowID,])
def deselect_pop_up(self):
self.do_command("deselectPopUp", [])
def select_frame(self,locator):
self.do_command("selectFrame", [locator,])
def get_whether_this_frame_match_frame_expression(self,currentFrameString,target):
return self.get_boolean("getWhetherThisFrameMatchFrameExpression", [currentFrameString,target,])
def get_whether_this_window_match_window_expression(self,currentWindowString,target):
return self.get_boolean("getWhetherThisWindowMatchWindowExpression", [currentWindowString,target,])
def wait_for_pop_up(self,windowID,timeout):
self.do_command("waitForPopUp", [windowID,timeout,])
def choose_cancel_on_next_confirmation(self):
self.do_command("chooseCancelOnNextConfirmation", [])
def choose_ok_on_next_confirmation(self):
self.do_command("chooseOkOnNextConfirmation", [])
def answer_on_next_prompt(self,answer):
self.do_command("answerOnNextPrompt", [answer,]) | Apache License 2.0 |
openstack/networking-powervm | networking_powervm/plugins/ibm/agent/powervm/agent_base.py | BasePVMNeutronAgent.is_hao_event | python | def is_hao_event(self, evt):
return False | Determines if an Event warrants a heal_and_optimize.
:param evt: A pypowervm.wrappers.event.Event wrapper to inspect.
:return: True if heal_and_optimize should be invoked as a result of
this event; False otherwise. | https://github.com/openstack/networking-powervm/blob/a00fc731b14bd3ef953fe4cffdc74c8e441c0e13/networking_powervm/plugins/ibm/agent/powervm/agent_base.py#L229-L236 | import abc
import time
import eventlet
from neutron.agent import rpc as agent_rpc
from neutron.conf.agent import common as a_config
from neutron_lib.agent import topics
from neutron_lib import constants as q_const
from neutron_lib import context as ctx
from oslo_config import cfg
from oslo_log import log as logging
from oslo_service import loopingcall
from pypowervm import adapter as pvm_adpt
from pypowervm.helpers import log_helper as log_hlp
from pypowervm.helpers import vios_busy as vio_hlp
from pypowervm.tasks import partition as pvm_par
from pypowervm.wrappers import event as pvm_evt
from pypowervm.wrappers import managed_system as pvm_ms
from networking_powervm._i18n import _
from networking_powervm.plugins.ibm.agent.powervm import prov_req as preq
from networking_powervm.plugins.ibm.agent.powervm import utils
eventlet.monkey_patch()
LOG = logging.getLogger(__name__)
agent_opts = [
cfg.IntOpt('exception_interval', default=5,
help=_("The number of seconds agent will wait between "
"polling when exception is caught")),
cfg.IntOpt('heal_and_optimize_interval', default=1800,
help=_('The number of seconds the agent should wait between '
'heal/optimize intervals.')),
]
cfg.CONF.register_opts(agent_opts, "AGENT")
a_config.register_agent_state_opts_helper(cfg.CONF)
a_config.register_root_helper(cfg.CONF)
ACONF = cfg.CONF.AGENT
FULL_REFETCH_EVENTS = (
pvm_evt.EventType.CACHE_CLEARED, pvm_evt.EventType.MISSING_EVENTS,
pvm_evt.EventType.NEW_CLIENT)
SINGLE_OBJ_EVENTS = (
pvm_evt.EventType.INVALID_URI, pvm_evt.EventType.ADD_URI,
pvm_evt.EventType.MODIFY_URI, pvm_evt.EventType.HIDDEN_URI,
pvm_evt.EventType.VISIBLE_URI, pvm_evt.EventType.CUSTOM_CLIENT_EVENT,
pvm_evt.EventType.DELETE_URI)
class PVMPluginApi(agent_rpc.PluginApi):
pass
class VIFEventHandler(pvm_adpt.WrapperEventHandler):
def __init__(self, agent):
self.agent = agent
self.adapter = self.agent.adapter
self.just_started = True
def _refetch_all(self, prov_req_set):
lpar_vifs = utils.list_vifs(self.adapter, self.agent.vif_wrapper_class)
prov_reqs = preq.ProvisionRequest.for_wrappers(self.agent, lpar_vifs,
preq.PLUG)
rms = {req for req in prov_req_set if req.action == preq.PLUG}
LOG.debug("Removing all existing plug requests: %s", rms)
prov_req_set -= rms
LOG.debug("Adding new wrapper-based plug requests: %s",
[str(prov_req) for prov_req in prov_reqs])
prov_req_set |= set(prov_reqs)
def _process_event(self, event, prov_req_set):
prov_req = preq.ProvisionRequest.for_event(self.agent, event)
if prov_req is None:
return False
rms = {prq for prq in prov_req_set if prq == prov_req}
LOG.debug("Consolidating - removing requests: %s",
[str(rm_preq) for rm_preq in rms])
prov_req_set -= rms
LOG.debug("Adding new event-based request: %s", str(prov_req))
prov_req_set.add(prov_req)
def process(self, events):
prov_req_set = set()
do_heal = False
for event in events:
if event.etype in FULL_REFETCH_EVENTS:
if not self.just_started:
self._refetch_all(prov_req_set)
elif event.etype in SINGLE_OBJ_EVENTS:
self._process_event(event, prov_req_set)
if self.agent.is_hao_event(event):
LOG.info("Received heal-and-optimize event: %s", str(event))
do_heal = True
self.just_started = False
if do_heal:
self.agent.heal_and_optimize()
self.agent.provision_devices(prov_req_set)
class BasePVMNeutronAgent(object):
RPC_API_VERSION = '1.1'
@abc.abstractproperty
def agent_id(self):
raise NotImplementedError()
@abc.abstractproperty
def agent_binary_name(self):
raise NotImplementedError()
@abc.abstractproperty
def agent_type(self):
raise NotImplementedError()
@abc.abstractproperty
def vif_type(self):
raise NotImplementedError()
@abc.abstractproperty
def vif_wrapper_class(self):
raise NotImplementedError()
@abc.abstractmethod
def parse_bridge_mappings(self):
raise NotImplementedError()
@abc.abstractmethod
def heal_and_optimize(self):
raise NotImplementedError() | Apache License 2.0 |
klen/aioauth-client | aioauth_client/__init__.py | OAuth2Client.__init__ | python | def __init__(self, client_id: str, client_secret: str, base_url: str = None,
authorize_url: str = None, access_token: str = None, access_token_url: str = None,
access_token_key: str = None, transport: httpx.AsyncClient = None,
logger: logging.Logger = None, **params):
super().__init__(base_url, authorize_url, access_token_key,
access_token_url, transport, logger)
self.access_token = access_token
self.client_id = client_id
self.client_secret = client_secret
self.params = params | Initialize the client. | https://github.com/klen/aioauth-client/blob/008195a8787f92318b7d49fabe5d0fcc0ba279ee/aioauth_client/__init__.py#L290-L301 | from __future__ import annotations
import typing as t
import base64
import hmac
import logging
import time
from hashlib import sha1
from random import SystemRandom
from urllib.parse import parse_qsl, quote, urlencode, urljoin, urlsplit
import httpx
__version__ = "0.27.2"
__project__ = "aioauth-client"
__author__ = "Kirill Klenov <[email protected]>"
__license__ = "MIT"
RANDOM = SystemRandom().random
class OAuthException(RuntimeError):
pass
class User:
__slots__ = 'id', 'email', 'first_name', 'last_name', 'username', 'picture', 'link', 'locale', 'city', 'country', 'gender'
def __init__(self, **info):
for attr in self.__slots__:
setattr(self, attr, info.get(attr))
class Signature(object):
name: str = ''
@staticmethod
def _escape(s: str) -> str:
return quote(s, safe=b'~')
def sign(self, consumer_secret: str, method: str, url: str, oauth_token_secret: str = None,
**params):
raise NotImplementedError('Shouldnt be called.')
class HmacSha1Signature(Signature):
name = 'HMAC-SHA1'
def sign(self, consumer_secret: str, method: str, url: str, oauth_token_secret: str = None,
escape: bool = False, **params) -> str:
if escape:
query = [(self._escape(k), self._escape(v)) for k, v in params.items()]
query_string = '&'.join(['%s=%s' % item for item in sorted(query)])
else:
query_string = urlencode(params)
signature = "&".join(map(self._escape, (method.upper(), url, query_string)))
key = self._escape(consumer_secret) + "&"
if oauth_token_secret:
key += self._escape(oauth_token_secret)
hashed = hmac.new(key.encode(), signature.encode(), sha1)
return base64.b64encode(hashed.digest()).decode()
class ClientRegistry(type):
clients: t.Dict[str, t.Type[Client]] = {}
def __new__(mcs, name, bases, params):
cls = super().__new__(mcs, name, bases, params)
mcs.clients[cls.name] = cls
return cls
class Client(object, metaclass=ClientRegistry):
name: str = ''
base_url: str = ''
user_info_url: str = ''
access_token_key: str = 'access_token'
shared_key: str = 'oauth_verifier'
access_token_url: str = ''
authorize_url: str = ''
def __init__(self, base_url: str = None, authorize_url: str = None,
access_token_key: str = None, access_token_url: str = None,
transport: httpx.AsyncClient = None, logger: logging.Logger = None):
self.base_url = base_url or self.base_url
self.authorize_url = authorize_url or self.authorize_url
self.access_token_key = access_token_key or self.access_token_key
self.access_token_url = access_token_url or self.access_token_url
self.logger = logger or logging.getLogger('OAuth: %s' % self.name)
self.transport = transport
def _get_url(self, url: str) -> str:
if self.base_url and not url.startswith(('http://', 'https://')):
return urljoin(self.base_url, url)
return url
def __str__(self) -> str:
return f"{ self.name.title() } {self.base_url}"
def __repr__(self):
return f"<{self}>"
async def _request(self, method: str, url: str, raise_for_status: bool = False,
**options) -> t.Union[t.Dict, str]:
transport = self.transport or httpx.AsyncClient()
async with transport as client:
response = await client.request(method, url, **options)
if raise_for_status and response.status_code >= 300:
raise OAuthException(str(response))
self.logger.debug("Request %s: %s %r", method, url, options)
if 'json' in response.headers.get('CONTENT-TYPE'):
return response.json()
return dict(parse_qsl(response.text)) or response.text
def request(self, method: str, url: str, params: t.Dict = None,
headers: t.Dict = None, **options):
raise NotImplementedError('Shouldnt be called.')
async def user_info(self, **options) -> t.Tuple[User, t.Any]:
if not self.user_info_url:
raise NotImplementedError(
'The provider doesnt support user_info method.')
data = await self.request('GET', self.user_info_url, raise_for_status=True, **options)
user = User(**dict(self.user_parse(data)))
return user, data
@staticmethod
def user_parse(data: t.Any) -> t.Generator[t.Tuple[str, t.Any], None, None]:
yield 'id', None
def get_authorize_url(self, **params) -> str:
return self.authorize_url
async def get_access_token(self, *args, **kwargs) -> t.Tuple[str, t.Any]:
raise NotImplementedError
class OAuth1Client(Client):
name = 'oauth1'
access_token_key = 'oauth_token'
version = '1.0'
escape = False
request_token_url: str = ''
def __init__(self, consumer_key: str, consumer_secret: str, base_url: str = None,
authorize_url: str = None, oauth_token: str = None,
oauth_token_secret: str = None, request_token_url: str = None,
access_token_url: str = None, access_token_key: str = None,
transport: httpx.AsyncClient = None, logger: logging.Logger = None,
signature: Signature = None, **params):
super().__init__(base_url, authorize_url, access_token_key,
access_token_url, transport, logger)
self.oauth_token = oauth_token
self.oauth_token_secret = oauth_token_secret
self.consumer_key = consumer_key
self.consumer_secret = consumer_secret
self.request_token_url = request_token_url or self.request_token_url
self.params = params
self.signature = signature or HmacSha1Signature()
def get_authorize_url(self, request_token: str = None, **params) -> str:
params.update({'oauth_token': request_token or self.oauth_token})
params.update(self.params)
return self.authorize_url + '?' + urlencode(params)
def request(self, method: str, url: str, params: t.Dict = None,
headers: t.Dict = None, **options) -> t.Awaitable[t.Union[t.Dict, str]]:
oparams = {
'oauth_consumer_key': self.consumer_key,
'oauth_nonce': sha1(str(RANDOM()).encode('ascii')).hexdigest(),
'oauth_signature_method': self.signature.name,
'oauth_timestamp': str(int(time.time())),
'oauth_version': self.version,
}
oparams.update(params or {})
if self.oauth_token:
oparams['oauth_token'] = self.oauth_token
url = self._get_url(url)
if urlsplit(url).query:
raise ValueError(
'Request parameters should be in the "params" parameter, '
'not inlined in the URL')
oparams['oauth_signature'] = self.signature.sign(
self.consumer_secret, method, url,
oauth_token_secret=self.oauth_token_secret, escape=self.escape, **oparams)
self.logger.debug("%s %s", url, oparams)
return self._request(method, url, params=oparams, headers=headers, **options)
async def get_request_token(self, **params) -> t.Tuple[str, t.Any]:
params = dict(self.params, **params)
data = await self.request(
'GET', self.request_token_url, raise_for_status=True, params=params)
if not isinstance(data, dict):
return '', data
self.oauth_token = data.get('oauth_token') or ''
self.oauth_token_secret = data.get('oauth_token_secret')
return self.oauth_token, data
async def get_access_token(self, oauth_verifier, request_token=None,
headers=None, **params) -> t.Tuple[str, t.Any]:
if not isinstance(oauth_verifier, str) and self.shared_key in oauth_verifier:
oauth_verifier = oauth_verifier[self.shared_key]
if request_token and self.oauth_token != request_token:
raise OAuthException(
'Failed to obtain OAuth 1.0 access token. '
'Request token is invalid')
data = await self.request(
'POST', self.access_token_url, raise_for_status=True, headers=headers,
params={'oauth_verifier': oauth_verifier, 'oauth_token': request_token})
if isinstance(data, str):
raise OAuthException(
'Failed to obtain OAuth 1.0 access token. '
f"Invalid data: {data}")
self.oauth_token = data.get('oauth_token') or ''
self.oauth_token_secret = data.get('oauth_token_secret')
return self.oauth_token, data
class OAuth2Client(Client):
name = 'oauth2'
shared_key = 'code' | MIT License |
bitmovin/bitmovin-api-sdk-python | bitmovin_api_sdk/models/cea708_caption_input_stream.py | Cea708CaptionInputStream.to_dict | python | def to_dict(self):
result = {}
if hasattr(super(Cea708CaptionInputStream, self), "to_dict"):
result = super(Cea708CaptionInputStream, self).to_dict()
for attr, _ in six.iteritems(self.openapi_types):
value = getattr(self, attr)
if value is None:
continue
if isinstance(value, list):
if len(value) == 0:
continue
result[self.attribute_map.get(attr)] = [y.value if isinstance(y, Enum) else y for y in [x.to_dict() if hasattr(x, "to_dict") else x for x in value]]
elif hasattr(value, "to_dict"):
result[self.attribute_map.get(attr)] = value.to_dict()
elif isinstance(value, Enum):
result[self.attribute_map.get(attr)] = value.value
elif isinstance(value, dict):
result[self.attribute_map.get(attr)] = {k: (v.to_dict() if hasattr(v, "to_dict") else v) for (k, v) in value.items()}
else:
result[self.attribute_map.get(attr)] = value
return result | Returns the model properties as a dict | https://github.com/bitmovin/bitmovin-api-sdk-python/blob/79dd938804197151af7cbe5501c7ec1d97872c15/bitmovin_api_sdk/models/cea708_caption_input_stream.py#L154-L177 | from enum import Enum
from six import string_types, iteritems
from bitmovin_api_sdk.common.poscheck import poscheck_model
from bitmovin_api_sdk.models.input_stream import InputStream
import pprint
import six
class Cea708CaptionInputStream(InputStream):
@poscheck_model
def __init__(self,
id_=None,
name=None,
description=None,
created_at=None,
modified_at=None,
custom_data=None,
input_id=None,
input_path=None,
channel=None):
super(Cea708CaptionInputStream, self).__init__(id_=id_, name=name, description=description, created_at=created_at, modified_at=modified_at, custom_data=custom_data)
self._input_id = None
self._input_path = None
self._channel = None
self.discriminator = None
if input_id is not None:
self.input_id = input_id
if input_path is not None:
self.input_path = input_path
if channel is not None:
self.channel = channel
@property
def openapi_types(self):
types = {}
if hasattr(super(Cea708CaptionInputStream, self), 'openapi_types'):
types = getattr(super(Cea708CaptionInputStream, self), 'openapi_types')
types.update({
'input_id': 'string_types',
'input_path': 'string_types',
'channel': 'int'
})
return types
@property
def attribute_map(self):
attributes = {}
if hasattr(super(Cea708CaptionInputStream, self), 'attribute_map'):
attributes = getattr(super(Cea708CaptionInputStream, self), 'attribute_map')
attributes.update({
'input_id': 'inputId',
'input_path': 'inputPath',
'channel': 'channel'
})
return attributes
@property
def input_id(self):
return self._input_id
@input_id.setter
def input_id(self, input_id):
if input_id is not None:
if not isinstance(input_id, string_types):
raise TypeError("Invalid type for `input_id`, type has to be `string_types`")
self._input_id = input_id
@property
def input_path(self):
return self._input_path
@input_path.setter
def input_path(self, input_path):
if input_path is not None:
if not isinstance(input_path, string_types):
raise TypeError("Invalid type for `input_path`, type has to be `string_types`")
self._input_path = input_path
@property
def channel(self):
return self._channel
@channel.setter
def channel(self, channel):
if channel is not None:
if not isinstance(channel, int):
raise TypeError("Invalid type for `channel`, type has to be `int`")
self._channel = channel | MIT License |
microsoft/botbuilder-python | libraries/botbuilder-ai/botbuilder/ai/qna/utils/generate_answer_utils.py | GenerateAnswerUtils.__init__ | python | def __init__(
self,
telemetry_client: Union[BotTelemetryClient, NullTelemetryClient],
endpoint: QnAMakerEndpoint,
options: QnAMakerOptions,
http_client: ClientSession,
):
self._telemetry_client = telemetry_client
self._endpoint = endpoint
self.options = (
options if isinstance(options, QnAMakerOptions) else QnAMakerOptions()
)
self._validate_options(self.options)
self._http_client = http_client | Parameters:
-----------
telemetry_client: Telemetry client.
endpoint: QnA Maker endpoint details.
options: QnA Maker options to configure the instance.
http_client: HTTP client. | https://github.com/microsoft/botbuilder-python/blob/41211de2d7854e27aca8e3d1eccb24352be7e915/libraries/botbuilder-ai/botbuilder/ai/qna/utils/generate_answer_utils.py#L36-L63 | from copy import copy
from typing import Any, List, Union
import json
import requests
from aiohttp import ClientResponse, ClientSession
from botbuilder.core import BotTelemetryClient, NullTelemetryClient, TurnContext
from botbuilder.schema import Activity
from .http_request_utils import HttpRequestUtils
from ..qnamaker_endpoint import QnAMakerEndpoint
from ..qnamaker_options import QnAMakerOptions
from ..models import (
GenerateAnswerRequestBody,
QnAMakerTraceInfo,
QueryResult,
QueryResults,
)
QNAMAKER_TRACE_NAME = "QnAMaker"
QNAMAKER_TRACE_LABEL = "QnAMaker Trace"
QNAMAKER_TRACE_TYPE = "https://www.qnamaker.ai/schemas/trace"
class GenerateAnswerUtils: | MIT License |
h2r/pomdp-py | pomdp_problems/tag/models/observation_model.py | TagObservationModel.sample | python | def sample(self, next_state, action):
if next_state.robot_position == next_state.target_position:
return TagObservation(next_state.target_position)
else:
return TagObservation(None) | There is no stochaisticity in the observation model | https://github.com/h2r/pomdp-py/blob/5c1837c38676eb53442af238cbec4115f3b17f28/pomdp_problems/tag/models/observation_model.py#L25-L30 | import pomdp_py
from pomdp_problems.tag.domain.observation import *
import pomdp_problems.tag.constants as constants
class TagObservationModel(pomdp_py.ObservationModel):
def probability(self, observation, next_state, action, **kwargs):
if next_state.robot_position == next_state.target_position:
if observation.target_position is None:
return constants.EPSILON
else:
if observation.target_position == next_state.target_position:
return 1.0 - constants.EPSILON
else:
return constants.EPSILON
else:
if observation.target_position is None:
return 1.0 - constants.EPSILON
else:
return constants.EPSILON | MIT License |
google/personfinder | app/user_agents.py | prefer_sjis_charset | python | def prefer_sjis_charset(request):
user_agent = request.headers.get('User-Agent')
return user_agent and SJIS_PREFERRED_USER_AGENT_RE.match(user_agent) | Returns True if Shift_JIS charset should be used for the user agent. | https://github.com/google/personfinder/blob/475f4c0ce916036d39bae2d480cde07126550875/app/user_agents.py#L42-L45 | import re
JP_TIER2_MOBILE_USER_AGENT_RE = re.compile(
r'^(KDDI|DoCoMo|SoftBank|J-PHONE|Vodafone)')
SJIS_PREFERRED_USER_AGENT_RE = re.compile(r'^KDDI')
def is_jp_tier2_mobile_phone(request):
user_agent = request.headers.get('User-Agent')
return user_agent and JP_TIER2_MOBILE_USER_AGENT_RE.match(user_agent)
def prefer_lite_ui(request):
user_agent = request.META.get('HTTP_USER_AGENT', None)
return user_agent and JP_TIER2_MOBILE_USER_AGENT_RE.match(user_agent) | Apache License 2.0 |
quay/quay | buildman/manager/executor.py | BuilderExecutor.minimum_retry_threshold | python | def minimum_retry_threshold(self):
return self.executor_config.get("MINIMUM_RETRY_THRESHOLD", 0) | Returns the minimum number of retries required for this executor to be used or 0 if none. | https://github.com/quay/quay/blob/f50f37a393fa2273234f8ac0aa9f34a03a77a731/buildman/manager/executor.py#L156-L160 | import datetime
import hashlib
import io
import json
import logging
import os
import socket
import subprocess
import threading
import time
import uuid
from functools import partial, wraps, lru_cache
import boto3
import botocore
import cachetools.func
import requests
from jinja2 import FileSystemLoader, Environment
from prometheus_client import Histogram
import release
from _init import ROOT_DIR, OVERRIDE_CONFIG_DIRECTORY
from app import app
from buildman.container_cloud_config import CloudConfigContext
from buildman.server import SECURE_GRPC_SERVER_PORT
logger = logging.getLogger(__name__)
ONE_HOUR = 60 * 60
_TAG_RETRY_COUNT = 3
_TAG_RETRY_SLEEP = 2
ENV = Environment(loader=FileSystemLoader(os.path.join(ROOT_DIR, "buildman/templates")))
CloudConfigContext().populate_jinja_environment(ENV)
TEMPLATE = ENV.get_template("cloudconfig.json")
build_start_duration = Histogram(
"quay_build_start_duration_seconds",
"seconds taken for a executor to start executing a queued build",
labelnames=["executor"],
)
def observe(metric, *labels):
def decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
trigger_time = time.time()
rv = func(*args, **kwargs)
metric.labels(*labels).observe(time.time() - trigger_time)
return rv
return wrapper
return decorator
def persist_for_debugging(func):
@wraps(func)
def wrapper(self, *args, **kwargs):
if self.executor_config.get("DEBUG", False):
logger.debug("Executor %s DEBUG set, not calling 'stop_builder()'", self.name)
return
return func(self, *args, **kwargs)
return wrapper
class ExecutorException(Exception):
pass
class BuilderExecutor(object):
def __init__(self, executor_config, registry_hostname, manager_hostname):
self.executor_config = executor_config
self.registry_hostname = registry_hostname
self.manager_hostname = manager_hostname
@property
def name(self):
return self.executor_config.get("NAME") or self.__class__.__name__
@property
def setup_time(self):
return self.executor_config.get("SETUP_TIME")
def start_builder(self, token, build_uuid):
raise NotImplementedError
def stop_builder(self, builder_id):
raise NotImplementedError
@property
def running_builders_count(self):
raise NotImplementedError
def allowed_for_namespace(self, namespace):
namespace_whitelist = self.executor_config.get("NAMESPACE_WHITELIST")
if namespace_whitelist is not None and namespace in namespace_whitelist:
return True
staged_rollout = self.executor_config.get("STAGED_ROLLOUT")
if staged_rollout is not None:
bucket = int(hashlib.sha256(namespace.encode("utf-8")).hexdigest()[-2:], 16)
return bucket < (256 * staged_rollout)
return staged_rollout is None and namespace_whitelist is None
@property | Apache License 2.0 |
staggerpkg/stagger | stagger/fileutil.py | replace_chunk | python | def replace_chunk(filename, offset, length, chunk, in_place=True, max_mem=5):
with suppress_interrupt():
_replace_chunk(filename, offset, length, chunk, in_place, max_mem) | Replace length bytes of data with chunk, starting at offset.
Any KeyboardInterrupts arriving while replace_chunk is runnning
are deferred until the operation is complete.
If in_place is true, the operation works directly on the original
file; this is fast and works on files that are already open, but
an error or interrupt may lead to corrupt file contents.
If in_place is false, the function prepares a copy first, then
renames it back over the original file. This method is slower,
but it prevents corruption on systems with atomic renames (UNIX),
and reduces the window of vulnerability elsewhere (Windows).
If there is no need to move data that is not being replaced, then we use
the direct method irrespective of in_place. (In this case an interrupt
may only corrupt the chunk being replaced.) | https://github.com/staggerpkg/stagger/blob/6530db14afc5d7d8a4599b7f3b26158fb367d786/stagger/fileutil.py#L83-L102 | import io
import os.path
import shutil
import tempfile
import signal
from contextlib import contextmanager
def xread(file, length):
data = file.read(length)
if len(data) != length:
raise EOFError
return data
@contextmanager
def opened(filename, mode):
if isinstance(filename, str):
file = open(filename, mode)
try:
yield file
finally:
if not file.closed:
file.close()
else:
yield filename
@contextmanager
def suppress_interrupt():
interrupted = False
def sigint_handler(signum, frame):
nonlocal interrupted
interrupted = True
s = signal.signal(signal.SIGINT, sigint_handler)
try:
yield None
finally:
signal.signal(signal.SIGINT, s)
if interrupted:
raise KeyboardInterrupt() | BSD 2-Clause Simplified License |
veekun/pokedex | scripts/add-oras-locations.py | make_identifier | python | def make_identifier(name):
if isinstance(name, bytes):
identifier = name.decode('utf-8')
else:
identifier = name
identifier = identifier.lower()
identifier = identifier.replace(u'+', u' plus ')
identifier = re.sub(u'[ _–]+', u'-', identifier)
identifier = re.sub(u"['./;’(),:]", u'', identifier)
identifier = identifier.replace(u'é', u'e')
if identifier == '???':
identifier = 'inside-of-truck'
if not identifier.replace(u"-", u"").isalnum():
raise ValueError(identifier)
return identifier | Make a string safe to use as an identifier.
Valid characters are lowercase alphanumerics and "-". This function may
raise ValueError if it can't come up with a suitable identifier.
This function is useful for scripts which add things with names. | https://github.com/veekun/pokedex/blob/cc483e1877f22b8c19ac27ec0ff5fafd09c5cd5b/scripts/add-oras-locations.py#L11-L34 | import os
import re
import io | MIT License |
mrmitch/realdebrid-cli | rdcli/RDWorker.py | RDWorker.unrestrict | python | def unrestrict(self, link, password=''):
opener = build_opener(HTTPCookieProcessor(self.cookies))
response = opener.open(self._endpoint % 'unrestrict.php?%s' % urlencode({'link': link, 'password': password}))
resp = load(response)
opener.close()
if resp['error'] == 0:
info = resp['generated_links'][0]
return info[2], info[0].replace('/', '_')
else:
raise UnrestrictionError(resp['message'].encode('utf-8'), resp['error']) | Unrestrict a download URL. Returns tuple of the unrestricted URL and the filename.
:param link: url to unrestrict
:param password: password to use for the unrestriction
:return: :raise: | https://github.com/mrmitch/realdebrid-cli/blob/da84d28a64c213d7c16d5d014ce119cb12c87271/rdcli/RDWorker.py#L97-L113 | from cookielib import MozillaCookieJar
from json import load
from urllib import urlencode
from urllib2 import build_opener, HTTPCookieProcessor
from os import path
class RDError(Exception):
DEFAULT_CODE = -100
def __init__(self, message, code=DEFAULT_CODE):
self.message = message
self.code = code
def __str__(self):
return '[Error %i] %s' % (self.code, self.message)
class UnrestrictionError(RDError):
DEDICATED_SERVER = 3
UNSUPPORTED = 4
UPGRADE_NEEDED = 2
NO_SERVER = 9
UNAVAILABLE = 11
@classmethod
def fixable_errors(cls):
return cls.UPGRADE_NEEDED, cls.NO_SERVER, cls.DEDICATED_SERVER
class LoginError(RDError):
MISSING_INFO = -1
BAD_CREDENTIALS = 1
TOO_MANY_ATTEMPTS = 3
class RDWorker:
_endpoint = 'http://www.real-debrid.com/ajax/%s'
def __init__(self, cookie_file):
self._cookie_file = cookie_file
self.cookies = MozillaCookieJar(self._cookie_file)
def login(self, username, password_hash):
if path.isfile(self._cookie_file):
self.cookies.load(self._cookie_file)
for cookie in self.cookies:
if cookie.name == 'auth' and not cookie.is_expired():
return
opener = build_opener(HTTPCookieProcessor(self.cookies))
try:
response = opener.open(self._endpoint % 'login.php?%s' % urlencode({'user': username, 'pass': password_hash}))
resp = load(response)
opener.close()
if resp['error'] == 0:
self.cookies.save(self._cookie_file)
else:
raise LoginError(resp['message'].encode('utf-8'), resp['error'])
except Exception as e:
raise Exception('Login failed: %s' % str(e)) | MIT License |
packtpublishing/python-object-oriented-programming-cookbook | Chapter02/C02R06_PassingStateinConstruction.py | Person.__str__ | python | def __str__(self):
return (
'<%s [%s] given_name=%s family_name=%s>' %
(
self.__class__.__name__, hex(id(self)),
self.given_name, self.family_name,
)
) | Returns a string representation of the object | https://github.com/packtpublishing/python-object-oriented-programming-cookbook/blob/4840b0ee9e155c8ed664886c0aad20d44d48dac2/Chapter02/C02R06_PassingStateinConstruction.py#L21-L29 | class Person:
def __init__(self,
given_name:str, family_name:str,
birth_date:(str,None)=None, email_address:(str,None)=None
):
self.given_name = given_name
self.family_name = family_name
self.birth_date = birth_date
self.email_address = email_address | MIT License |
hubblestack/hubble | tests/support/mock.py | MockFH.writelines_calls | python | def writelines_calls(self):
return [x[1][0] for x in self.writelines.mock_calls] | Return a list of all calls to the .writelines() mock | https://github.com/hubblestack/hubble/blob/804eb29321f16ae36ce1e4a53f5c3e7bbcda1d0a/tests/support/mock.py#L155-L159 | import collections
import copy
import errno
import fnmatch
import sys
import hubblestack.utils.stringutils
try:
from unittest.mock import (
Mock,
MagicMock,
patch,
sentinel,
DEFAULT,
create_autospec,
FILTER_DIR,
NonCallableMock,
NonCallableMagicMock,
PropertyMock,
__version__
)
NO_MOCK = False
NO_MOCK_REASON = ''
mock_version = []
for __part in __version__.split('.'):
try:
mock_version.append(int(__part))
except ValueError:
mock_version.append(__part)
mock_version = tuple(mock_version)
except ImportError as exc:
NO_MOCK = True
NO_MOCK_REASON = 'mock python module is unavailable'
mock_version = (0, 0, 0)
class MagicMock(object):
__name__ = str('{0}.fakemock').format(__name__)
def __init__(self, *args, **kwargs):
pass
def dict(self, *args, **kwargs):
return self
def multiple(self, *args, **kwargs):
return self
def __call__(self, *args, **kwargs):
return self
from unittest.mock import patch
Mock = MagicMock
patch = patch
sentinel = object()
DEFAULT = object()
create_autospec = MagicMock()
FILTER_DIR = True
NonCallableMock = MagicMock()
NonCallableMagicMock = MagicMock()
mock_open = object()
PropertyMock = object()
call = tuple
ANY = object()
if NO_MOCK is False:
try:
from unittest.mock import call, ANY
except ImportError:
NO_MOCK = True
NO_MOCK_REASON = 'you need to upgrade your mock version to >= 0.8.0'
class MockFH(object):
def __init__(self, filename, read_data, *args, **kwargs):
self.filename = filename
self.read_data = read_data
try:
self.mode = args[0]
except IndexError:
self.mode = kwargs.get('mode', 'r')
self.binary_mode = 'b' in self.mode
self.read_mode = any(x in self.mode for x in ('r', '+'))
self.write_mode = any(x in self.mode for x in ('w', 'a', '+'))
self.empty_string = b'' if self.binary_mode else ''
self.call = MockCall(filename, *args, **kwargs)
self.read_data_iter = self._iterate_read_data(read_data)
self.read = Mock(side_effect=self._read)
self.readlines = Mock(side_effect=self._readlines)
self.readline = Mock(side_effect=self._readline)
self.write = Mock(side_effect=self._write)
self.writelines = Mock(side_effect=self._writelines)
self.close = Mock()
self.seek = Mock()
self.__loc = 0
self.__read_data_ok = False
def _iterate_read_data(self, read_data):
newline = b'\n' if isinstance(read_data, bytes) else '\n'
read_data = [line + newline for line in read_data.split(newline)]
if read_data[-1] == newline:
read_data = read_data[:-1]
else:
read_data[-1] = read_data[-1][:-1]
for line in read_data:
yield line
@property
def write_calls(self):
return [x[1][0] for x in self.write.mock_calls]
@property | Apache License 2.0 |
takos22/codingame | codingame/client/base.py | BaseClient.get_codingamer | python | def get_codingamer(
self, codingamer: typing.Union[str, int]
) -> "CodinGamer": | |maybe_coro|
Get a :class:`~codingame.CodinGamer` from their public handle, their ID
or from their pseudo.
.. note::
``codingamer`` can be the public handle, the ID or the pseudo.
Using the public handle or the ID is reccomended because it won't
change even if the codingamer changes their pseudo.
The public handle is a 39 character long hexadecimal string that
is unique to the CodinGamer and identifies them.
Regex of a public handle: ``[0-9a-f]{32}[0-9]{7}``
The ID is a 7 number long integer.
Parameters
-----------
codingamer: :class:`str` or :class:`int`
The CodinGamer's public handle, ID or pseudo.
Raises
------
:exc:`~codingame.CodinGamerNotFound`
The CodinGamer with the given public handle, ID or pseudo
isn't found.
Returns
--------
:class:`~codingame.CodinGamer`
The requested CodinGamer.
.. versionadded:: 0.1
.. versionchanged:: 0.2
Renamed ``Client.codingamer()`` to
:meth:`~codingame.Client.get_codingamer`.
.. versionchanged:: 0.3.3
Add searching with CodinGamer pseudo.
.. versionchanged:: 0.3.5
Add searching with CodinGamer ID. | https://github.com/takos22/codingame/blob/0332c294783a8be1a0c044615ed75d60237e499c/codingame/client/base.py#L123-L169 | import typing
from abc import ABC, abstractmethod
from ..state import ConnectionState
if typing.TYPE_CHECKING:
from ..clash_of_code import ClashOfCode
from ..codingamer import CodinGamer
from ..leaderboard import (
ChallengeLeaderboard,
GlobalLeaderboard,
PuzzleLeaderboard,
)
from ..notification import Notification
__all__ = ("BaseClient",)
class BaseClient(ABC):
def __init_subclass__(cls, doc_prefix: str = "", **kwargs):
super().__init_subclass__(**kwargs)
doc_prefix = doc_prefix.strip() + "\n\n" * (len(doc_prefix) > 0)
prefix = "|maybe_coro|\n\n"
for name, method in cls.__dict__.items():
if not callable(method):
continue
if name.startswith("__"):
continue
if method.__doc__ is None:
method.__doc__ = getattr(cls.__base__, name).__doc__
method.__doc__ = doc_prefix + (
method.__doc__[len(prefix) :]
if method.__doc__.startswith(prefix)
else method.__doc__
)
def __init__(self, is_async: bool = False):
self._state = ConnectionState(is_async)
def __enter__(self):
if self.is_async:
raise TypeError(
"Asynchronous client must be used in an asynchronous "
"context manager (async with) not in a synchronous one (with)."
)
return self
def __exit__(self, *_):
self.close()
async def __aenter__(self):
if not self.is_async:
raise TypeError(
"Synchronous client must be used in a synchronous context"
"manager (with) not in an asynchronous one (async with)."
)
return self
async def __aexit__(self, *_):
await self.close()
def close(self):
self._state.http.close()
@property
def is_async(self) -> bool:
return self._state.is_async
@property
def logged_in(self) -> bool:
return self._state.logged_in
@property
def codingamer(self) -> typing.Optional["CodinGamer"]:
return self._state.codingamer
@abstractmethod
def login(self, email: str, password: str) -> "CodinGamer":
@abstractmethod | MIT License |
googleapis/python-tasks | google/cloud/tasks_v2beta3/services/cloud_tasks/transports/grpc_asyncio.py | CloudTasksGrpcAsyncIOTransport.set_iam_policy | python | def set_iam_policy(
self,
) -> Callable[[iam_policy_pb2.SetIamPolicyRequest], Awaitable[policy_pb2.Policy]]:
if "set_iam_policy" not in self._stubs:
self._stubs["set_iam_policy"] = self.grpc_channel.unary_unary(
"/google.cloud.tasks.v2beta3.CloudTasks/SetIamPolicy",
request_serializer=iam_policy_pb2.SetIamPolicyRequest.SerializeToString,
response_deserializer=policy_pb2.Policy.FromString,
)
return self._stubs["set_iam_policy"] | r"""Return a callable for the set iam policy method over gRPC.
Sets the access control policy for a
[Queue][google.cloud.tasks.v2beta3.Queue]. Replaces any existing
policy.
Note: The Cloud Console does not check queue-level IAM
permissions yet. Project-level permissions are required to use
the Cloud Console.
Authorization requires the following `Google
IAM <https://cloud.google.com/iam>`__ permission on the
specified resource parent:
- ``cloudtasks.queues.setIamPolicy``
Returns:
Callable[[~.SetIamPolicyRequest],
Awaitable[~.Policy]]:
A function that, when called, will call the underlying RPC
on the server. | https://github.com/googleapis/python-tasks/blob/8bebdfc7b6520a2485e618ff7dee665c211c041a/google/cloud/tasks_v2beta3/services/cloud_tasks/transports/grpc_asyncio.py#L545-L580 | import warnings
from typing import Awaitable, Callable, Dict, Optional, Sequence, Tuple, Union
from google.api_core import gapic_v1
from google.api_core import grpc_helpers_async
from google.auth import credentials as ga_credentials
from google.auth.transport.grpc import SslCredentials
import packaging.version
import grpc
from grpc.experimental import aio
from google.cloud.tasks_v2beta3.types import cloudtasks
from google.cloud.tasks_v2beta3.types import queue
from google.cloud.tasks_v2beta3.types import queue as gct_queue
from google.cloud.tasks_v2beta3.types import task
from google.cloud.tasks_v2beta3.types import task as gct_task
from google.iam.v1 import iam_policy_pb2
from google.iam.v1 import policy_pb2
from google.protobuf import empty_pb2
from .base import CloudTasksTransport, DEFAULT_CLIENT_INFO
from .grpc import CloudTasksGrpcTransport
class CloudTasksGrpcAsyncIOTransport(CloudTasksTransport):
_grpc_channel: aio.Channel
_stubs: Dict[str, Callable] = {}
@classmethod
def create_channel(
cls,
host: str = "cloudtasks.googleapis.com",
credentials: ga_credentials.Credentials = None,
credentials_file: Optional[str] = None,
scopes: Optional[Sequence[str]] = None,
quota_project_id: Optional[str] = None,
**kwargs,
) -> aio.Channel:
return grpc_helpers_async.create_channel(
host,
credentials=credentials,
credentials_file=credentials_file,
quota_project_id=quota_project_id,
default_scopes=cls.AUTH_SCOPES,
scopes=scopes,
default_host=cls.DEFAULT_HOST,
**kwargs,
)
def __init__(
self,
*,
host: str = "cloudtasks.googleapis.com",
credentials: ga_credentials.Credentials = None,
credentials_file: Optional[str] = None,
scopes: Optional[Sequence[str]] = None,
channel: aio.Channel = None,
api_mtls_endpoint: str = None,
client_cert_source: Callable[[], Tuple[bytes, bytes]] = None,
ssl_channel_credentials: grpc.ChannelCredentials = None,
client_cert_source_for_mtls: Callable[[], Tuple[bytes, bytes]] = None,
quota_project_id=None,
client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO,
always_use_jwt_access: Optional[bool] = False,
) -> None:
self._grpc_channel = None
self._ssl_channel_credentials = ssl_channel_credentials
self._stubs: Dict[str, Callable] = {}
if api_mtls_endpoint:
warnings.warn("api_mtls_endpoint is deprecated", DeprecationWarning)
if client_cert_source:
warnings.warn("client_cert_source is deprecated", DeprecationWarning)
if channel:
credentials = False
self._grpc_channel = channel
self._ssl_channel_credentials = None
else:
if api_mtls_endpoint:
host = api_mtls_endpoint
if client_cert_source:
cert, key = client_cert_source()
self._ssl_channel_credentials = grpc.ssl_channel_credentials(
certificate_chain=cert, private_key=key
)
else:
self._ssl_channel_credentials = SslCredentials().ssl_credentials
else:
if client_cert_source_for_mtls and not ssl_channel_credentials:
cert, key = client_cert_source_for_mtls()
self._ssl_channel_credentials = grpc.ssl_channel_credentials(
certificate_chain=cert, private_key=key
)
super().__init__(
host=host,
credentials=credentials,
credentials_file=credentials_file,
scopes=scopes,
quota_project_id=quota_project_id,
client_info=client_info,
always_use_jwt_access=always_use_jwt_access,
)
if not self._grpc_channel:
self._grpc_channel = type(self).create_channel(
self._host,
credentials=self._credentials,
credentials_file=credentials_file,
scopes=self._scopes,
ssl_credentials=self._ssl_channel_credentials,
quota_project_id=quota_project_id,
options=[
("grpc.max_send_message_length", -1),
("grpc.max_receive_message_length", -1),
],
)
self._prep_wrapped_messages(client_info)
@property
def grpc_channel(self) -> aio.Channel:
return self._grpc_channel
@property
def list_queues(
self,
) -> Callable[
[cloudtasks.ListQueuesRequest], Awaitable[cloudtasks.ListQueuesResponse]
]:
if "list_queues" not in self._stubs:
self._stubs["list_queues"] = self.grpc_channel.unary_unary(
"/google.cloud.tasks.v2beta3.CloudTasks/ListQueues",
request_serializer=cloudtasks.ListQueuesRequest.serialize,
response_deserializer=cloudtasks.ListQueuesResponse.deserialize,
)
return self._stubs["list_queues"]
@property
def get_queue(
self,
) -> Callable[[cloudtasks.GetQueueRequest], Awaitable[queue.Queue]]:
if "get_queue" not in self._stubs:
self._stubs["get_queue"] = self.grpc_channel.unary_unary(
"/google.cloud.tasks.v2beta3.CloudTasks/GetQueue",
request_serializer=cloudtasks.GetQueueRequest.serialize,
response_deserializer=queue.Queue.deserialize,
)
return self._stubs["get_queue"]
@property
def create_queue(
self,
) -> Callable[[cloudtasks.CreateQueueRequest], Awaitable[gct_queue.Queue]]:
if "create_queue" not in self._stubs:
self._stubs["create_queue"] = self.grpc_channel.unary_unary(
"/google.cloud.tasks.v2beta3.CloudTasks/CreateQueue",
request_serializer=cloudtasks.CreateQueueRequest.serialize,
response_deserializer=gct_queue.Queue.deserialize,
)
return self._stubs["create_queue"]
@property
def update_queue(
self,
) -> Callable[[cloudtasks.UpdateQueueRequest], Awaitable[gct_queue.Queue]]:
if "update_queue" not in self._stubs:
self._stubs["update_queue"] = self.grpc_channel.unary_unary(
"/google.cloud.tasks.v2beta3.CloudTasks/UpdateQueue",
request_serializer=cloudtasks.UpdateQueueRequest.serialize,
response_deserializer=gct_queue.Queue.deserialize,
)
return self._stubs["update_queue"]
@property
def delete_queue(
self,
) -> Callable[[cloudtasks.DeleteQueueRequest], Awaitable[empty_pb2.Empty]]:
if "delete_queue" not in self._stubs:
self._stubs["delete_queue"] = self.grpc_channel.unary_unary(
"/google.cloud.tasks.v2beta3.CloudTasks/DeleteQueue",
request_serializer=cloudtasks.DeleteQueueRequest.serialize,
response_deserializer=empty_pb2.Empty.FromString,
)
return self._stubs["delete_queue"]
@property
def purge_queue(
self,
) -> Callable[[cloudtasks.PurgeQueueRequest], Awaitable[queue.Queue]]:
if "purge_queue" not in self._stubs:
self._stubs["purge_queue"] = self.grpc_channel.unary_unary(
"/google.cloud.tasks.v2beta3.CloudTasks/PurgeQueue",
request_serializer=cloudtasks.PurgeQueueRequest.serialize,
response_deserializer=queue.Queue.deserialize,
)
return self._stubs["purge_queue"]
@property
def pause_queue(
self,
) -> Callable[[cloudtasks.PauseQueueRequest], Awaitable[queue.Queue]]:
if "pause_queue" not in self._stubs:
self._stubs["pause_queue"] = self.grpc_channel.unary_unary(
"/google.cloud.tasks.v2beta3.CloudTasks/PauseQueue",
request_serializer=cloudtasks.PauseQueueRequest.serialize,
response_deserializer=queue.Queue.deserialize,
)
return self._stubs["pause_queue"]
@property
def resume_queue(
self,
) -> Callable[[cloudtasks.ResumeQueueRequest], Awaitable[queue.Queue]]:
if "resume_queue" not in self._stubs:
self._stubs["resume_queue"] = self.grpc_channel.unary_unary(
"/google.cloud.tasks.v2beta3.CloudTasks/ResumeQueue",
request_serializer=cloudtasks.ResumeQueueRequest.serialize,
response_deserializer=queue.Queue.deserialize,
)
return self._stubs["resume_queue"]
@property
def get_iam_policy(
self,
) -> Callable[[iam_policy_pb2.GetIamPolicyRequest], Awaitable[policy_pb2.Policy]]:
if "get_iam_policy" not in self._stubs:
self._stubs["get_iam_policy"] = self.grpc_channel.unary_unary(
"/google.cloud.tasks.v2beta3.CloudTasks/GetIamPolicy",
request_serializer=iam_policy_pb2.GetIamPolicyRequest.SerializeToString,
response_deserializer=policy_pb2.Policy.FromString,
)
return self._stubs["get_iam_policy"]
@property | Apache License 2.0 |
cloudant/python-cloudant | src/cloudant/feed.py | Feed.__iter__ | python | def __iter__(self):
return self | Makes this object an iterator. | https://github.com/cloudant/python-cloudant/blob/3bb26d75fa255802a5f308bbf9cff1ba3b34439b/src/cloudant/feed.py#L137-L141 | import json
from ._2to3 import iteritems_, next_, unicode_, STRTYPE, NONETYPE
from .error import CloudantArgumentError, CloudantFeedException
from ._common_util import ANY_ARG, ANY_TYPE, feed_arg_types, TYPE_CONVERTERS
class Feed(object):
def __init__(self, source, raw_data=False, **options):
self._r_session = source.r_session
self._raw_data = raw_data
self._options = options
self._source = source.__class__.__name__
if self._source == 'CouchDB':
self._url = '/'.join([source.server_url, '_db_updates'])
self._options['feed'] = self._options.get('feed', 'longpoll')
self._options['heartbeat'] = self._options.get('heartbeat', True)
elif self._source == 'Cloudant':
self._url = '/'.join([source.server_url, '_db_updates'])
else:
self._url = '/'.join([source.database_url, '_changes'])
self._chunk_size = self._options.pop('chunk_size', 512)
self._resp = None
self._lines = None
self._last_seq = None
self._stop = False
@property
def last_seq(self):
return self._last_seq
def stop(self):
self._stop = True
def _start(self):
params = self._translate(self._options)
self._resp = self._r_session.get(self._url, params=params, stream=True)
self._resp.raise_for_status()
self._lines = self._resp.iter_lines(self._chunk_size)
def _translate(self, options):
translation = dict()
for key, val in iteritems_(options):
self._validate(key, val, feed_arg_types(self._source))
try:
if isinstance(val, STRTYPE):
translation[key] = val
elif not isinstance(val, NONETYPE):
arg_converter = TYPE_CONVERTERS.get(type(val), json.dumps)
translation[key] = arg_converter(val)
except Exception as ex:
raise CloudantArgumentError(115, key, ex)
return translation
def _validate(self, key, val, arg_types):
if key in arg_types:
arg_type = arg_types[key]
else:
if ANY_ARG not in arg_types:
raise CloudantArgumentError(116, key)
arg_type = arg_types[ANY_ARG]
if arg_type == ANY_TYPE:
return
if (not isinstance(val, arg_type) or
(isinstance(val, bool) and int in arg_type)):
raise CloudantArgumentError(117, key, arg_type)
if isinstance(val, int) and val < 0 and not isinstance(val, bool):
raise CloudantArgumentError(118, key, val)
if key == 'feed':
valid_vals = ('continuous', 'normal', 'longpoll')
if self._source == 'CouchDB':
valid_vals = ('continuous', 'longpoll')
if val not in valid_vals:
raise CloudantArgumentError(119, val, valid_vals)
if key == 'style' and val not in ('main_only', 'all_docs'):
raise CloudantArgumentError(120, val) | Apache License 2.0 |
pimoroni/unicornhatmini-python | examples/simon.py | Game.start | python | def start(self):
self._lives = self._starting_lives
self._level = self._starting_level
self._compare = []
self._sequence = [random.choice([R, G, B, Y])] * (self._level + 1)
self._current_playback_step = 0
self._set_mode('play_pattern') | Start the game.
Sets the level to the starting level and builds a long-enough sequence to begin. | https://github.com/pimoroni/unicornhatmini-python/blob/ec52b016b7449b754eb30f0b7731f0ce70d18084/examples/simon.py#L276-L287 | import time
import math
import random
import colorsys
from gpiozero import Button
from unicornhatmini import UnicornHATMini
unicornhatmini = UnicornHATMini()
unicornhatmini.set_brightness(0.5)
digits_5x3 = [
0b111111000111111,
0b100011111100001,
0b101111010111101,
0b101011010111111,
0b111000010011111,
0b111011010110111,
0b111111010100111,
0b100001000011111,
0b111111010111111,
0b111001010011111
]
R = 0
G = 1
B = 2
Y = 3
class Display():
def __init__(self, output_device):
self._output = output_device
self._width, self._height = self._output.get_shape()
self._br_red = 0
self._br_green = 0
self._br_blue = 0
self._br_yellow = 0
self._level = 0
self.red = (255, 0, 0)
self.green = (0, 255, 0)
self.blue = (0, 0, 255)
self.yellow = (255, 255, 0)
self._digit_left = None
self._digit_right = None
self._digit_left_br = 1.0
self._digit_right_br = 1.0
self._digit_left_color = (128, 128, 128)
self._digit_right_color = (128, 128, 128)
def _draw_light(self, brightness, x, y, r, g, b):
r, g, b = [int(c * brightness) for c in (r, g, b)]
self._draw_rect(x, y, 3, 3, r, g, b)
def _draw_rect(self, x, y, w, h, r, g, b):
for ry in range(h):
for rx in range(w):
self._output.set_pixel(x + rx, y + ry, r, g, b)
def _draw_digit(self, digit, x, y, r, g, b):
digit = digits_5x3[digit]
cols = [
(digit >> 10) & 0b11111,
(digit >> 5) & 0b11111,
(digit) & 0b11111
]
for dx in range(3):
col = cols[dx]
for dy in range(5):
if col & (1 << (4 - dy)):
self._output.set_pixel(x + dx, y + dy, r, g, b)
def clear(self):
self._output.clear()
def update(self):
self._draw_light(self._br_red, 0, 0, *self.red)
self._draw_light(self._br_blue, 0, self._height - 3, *self.green)
self._draw_light(self._br_green, self._width - 3, 0, *self.blue)
self._draw_light(self._br_yellow, self._width - 3, self._height - 3, *self.yellow)
if self._digit_left is not None:
r, g, b = [int(c * self._digit_left_br) for c in self._digit_left_color]
self._draw_digit(self._digit_left, 5, 1, r, g, b)
if self._digit_right is not None:
r, g, b = [int(c * self._digit_right_br) for c in self._digit_right_color]
self._draw_digit(self._digit_right, 9, 1, r, g, b)
self._output.show()
def set_light_brightness(self, red, green, blue, yellow):
self._br_red = red
self._br_green = green
self._br_blue = blue
self._br_yellow = yellow
def set_digits(self, left, right):
self._digit_left = left
self._digit_right = right
def set_digit_brightness(self, left, right):
self._digit_left_br = left
self._digit_right_br = right
def set_digit_color(self, left, right):
self._digit_left_color = left
self._digit_right_color = right
class Game():
def __init__(self, display, starting_lives=3, starting_level=0, mode='attract'):
self._starting_lives = starting_lives
self._starting_level = starting_level
self._mode = mode
self._display = display
self._level = 0
self._lives = 0
self._sequence = []
self._compare = []
self._current_playback_step = 0
self._current_mode_start = 0
self._button_map = {'a': R, 'b': B, 'x': G, 'y': Y}
def update(self):
self._display.clear()
getattr(self, "_{}".format(self._mode))(time.time())
self._display.update()
def _set_mode(self, mode):
self._mode = mode
self._current_mode_start = time.time()
def _attract(self, time):
self._display.set_digits(5, 1)
self._display.set_light_brightness(
self._pulse(time / 2),
self._pulse((time + 0.25) / 2),
self._pulse((time + 0.5) / 2),
self._pulse((time + 0.75) / 2)
)
self._display.set_digit_brightness(
self._pulse(time),
self._pulse(time)
)
self._display.set_digit_color(
self._hue(time / 10),
self._hue(time / 10 + 1)
)
def _play_pattern(self, time):
self._display_level((255, 0, 0))
br = [0, 0, 0, 0]
color = self._sequence[self._current_playback_step]
br[color] = self._pulse(time - self._current_mode_start)
self._display.set_light_brightness(*br)
if time - self._current_mode_start > (self._current_playback_step + 1):
self._current_playback_step += 1
if self._current_playback_step >= len(self._sequence):
self._current_playback_step = 0
self._set_mode('wait_for_input')
def _flash_lives(self, time):
fake_lives = self._lives
if time - self._current_mode_start < 1.5:
fake_lives += 1
self._display.set_digits(int(fake_lives / 10), fake_lives % 10)
self._display.set_digit_brightness(
self._pulse(time),
self._pulse(time)
)
self._display.set_digit_color((255, 0, 0), (255, 0, 0))
if time - self._current_mode_start > 3.0:
if self._lives > 0:
self._set_mode('play_pattern')
else:
self._set_mode('you_lose')
def _you_win(self, time):
self._display_level()
self._display.set_light_brightness(
self._pulse(time),
self._pulse(time),
self._pulse(time),
self._pulse(time)
)
def _you_lose(self, time):
self._display.set_digits(0, 0)
self._display.set_digit_brightness(
self._pulse(time),
self._pulse(time)
)
self._display.set_digit_color((255, 0, 0), (255, 0, 0))
if time - self._current_mode_start > 20.0:
self._set_mode('attract')
def _wait_for_input(self, time):
self._display_level()
if self._compare == self._sequence[:len(self._compare)]:
if len(self._compare) == len(self._sequence):
self.next_level()
else:
self._compare = []
self._lives -= 1
self._set_mode('flash_lives')
def _display_level(self, color=(255, 255, 255)):
self._display.set_digit_brightness(0.5, 0.5)
self._display.set_digit_color(color, color)
self._display.set_digits(
int(self._level / 10.0),
self._level % 10
)
def _pulse(self, time):
return (math.sin(time * 2 * math.pi - (math.pi / 2)) + 1) / 2.0
def _hue(self, h):
return tuple([int(c * 255) for c in colorsys.hsv_to_rgb(h, 1.0, 1.0)]) | MIT License |
distributedsystemsgroup/zoe | zoe_lib/state/execution.py | Execution.set_error | python | def set_error(self):
self._status = self.ERROR_STATUS
self.time_end = datetime.datetime.utcnow()
self.sql_manager.executions.update(self.id, status=self._status, time_end=self.time_end) | The scheduler encountered an error starting or running the execution. | https://github.com/distributedsystemsgroup/zoe/blob/c8e0c908af1954a8b41d0f6de23d08589564f0ab/zoe_lib/state/execution.py#L170-L174 | import datetime
import logging
import functools
import psycopg2
try:
from kazoo.client import KazooClient
except ImportError:
KazooClient = None
from zoe_lib.state.base import BaseRecord, BaseTable
import zoe_lib.config
log = logging.getLogger(__name__)
class Execution(BaseRecord):
SUBMIT_STATUS = "submitted"
QUEUED_STATUS = "queued"
STARTING_STATUS = "starting"
ERROR_STATUS = "error"
RUNNING_STATUS = "running"
CLEANING_UP_STATUS = "cleaning up"
TERMINATED_STATUS = "terminated"
def __init__(self, d, sql_manager):
super().__init__(d, sql_manager)
self.user_id = d['user_id']
self.name = d['name']
self.description = d['description']
if isinstance(d['time_submit'], datetime.datetime):
self.time_submit = d['time_submit']
else:
self.time_submit = datetime.datetime.utcfromtimestamp(d['time_submit'])
if isinstance(d['time_submit'], datetime.datetime):
self.time_start = d['time_start']
else:
self.time_start = datetime.datetime.utcfromtimestamp(d['time_start'])
if isinstance(d['time_submit'], datetime.datetime):
self.time_end = d['time_end']
else:
self.time_submit = datetime.datetime.utcfromtimestamp(d['time_start'])
self._status = d['status']
self.error_message = d['error_message']
if d['size'] is not None:
self.size = float(d['size'])
else:
try:
self.size = self.description['size']
except KeyError:
self.size = self.description['priority']
self.app_name = self.description['name']
def serialize(self):
return {
'id': self.id,
'user_id': self.user_id,
'name': self.name,
'description': self.description,
'time_submit': (self.time_submit - datetime.datetime(1970, 1, 1)) / datetime.timedelta(seconds=1),
'time_start': None if self.time_start is None else (self.time_start - datetime.datetime(1970, 1, 1)) / datetime.timedelta(seconds=1),
'time_end': None if self.time_end is None else (self.time_end - datetime.datetime(1970, 1, 1)) / datetime.timedelta(seconds=1),
'status': self._status,
'error_message': self.error_message,
'services': [s.id for s in self.services],
'size': self.size
}
def __eq__(self, other):
return self.id == other.id
def set_queued(self):
self._status = self.QUEUED_STATUS
self.sql_manager.executions.update(self.id, status=self._status)
def set_starting(self):
self._status = self.STARTING_STATUS
self.sql_manager.executions.update(self.id, status=self._status)
def set_running(self):
self._status = self.RUNNING_STATUS
self.time_start = datetime.datetime.utcnow()
self.sql_manager.executions.update(self.id, status=self._status, time_start=self.time_start)
if zoe_lib.config.get_conf().traefik_zk_ips is not None:
zk_cli = KazooClient(hosts=zoe_lib.config.get_conf().traefik_zk_ips)
zk_cli.start()
for service in self.services:
for port in service.ports:
if port.enable_proxy:
format_args = {
"ip_port": port.external_ip + ":" + str(port.external_port),
"proxy_path": '{}/{}'.format(zoe_lib.config.get_conf().traefik_base_url, port.proxy_key())
}
endpoint = port.url_template.format(**format_args).encode('utf-8')
traefik_name = 'zoe_exec_{}_{}'.format(self.id, port.id)
zk_cli.create('/traefik/backends/{}/servers/server/url'.format(traefik_name), endpoint, makepath=True)
zk_cli.create('/traefik/frontends/{}/routes/path/rule'.format(traefik_name), 'PathPrefix:{}/{}'.format(zoe_lib.config.get_conf().traefik_base_url, port.proxy_key()).encode('utf-8'), makepath=True)
zk_cli.create('/traefik/frontends/{}/backend'.format(traefik_name), traefik_name.encode('utf-8'), makepath=True)
zk_cli.create('/traefik/alias')
zk_cli.delete('/traefik/alias')
zk_cli.stop()
def set_cleaning_up(self):
self._status = self.CLEANING_UP_STATUS
self.sql_manager.executions.update(self.id, status=self._status)
if zoe_lib.config.get_conf().traefik_zk_ips is not None:
zk_cli = KazooClient(hosts=zoe_lib.config.get_conf().traefik_zk_ips)
zk_cli.start()
for service in self.services:
for port in service.ports:
if port.enable_proxy:
traefik_name = 'zoe_exec_{}_{}'.format(self.id, port.id)
zk_cli.delete('/traefik/backends/{}'.format(traefik_name), recursive=True)
zk_cli.delete('/traefik/frontends/{}'.format(traefik_name), recursive=True)
zk_cli.create('/traefik/alias')
zk_cli.delete('/traefik/alias')
zk_cli.stop()
def set_terminated(self, reason=None):
self._status = self.TERMINATED_STATUS
self.time_end = datetime.datetime.utcnow()
if reason is not None:
self.sql_manager.executions.update(self.id, status=self._status, time_end=self.time_end, error_message=reason)
else:
self.sql_manager.executions.update(self.id, status=self._status, time_end=self.time_end) | Apache License 2.0 |
peercoin/peercoin_rpc | peercoin_rpc/peercoin_rpc.py | Client.getblockchaininfo | python | def getblockchaininfo(self):
return self.req("getblockchaininfo") | return getblockchaininfo from peercoind | https://github.com/peercoin/peercoin_rpc/blob/d79b66523ecbc79eea4d9651f1dfe81da4112632/peercoin_rpc/peercoin_rpc.py#L118-L120 | __copyright__ = "Copyright 2019, The Peerchemist"
__license__ = "MIT"
__email__ = "[email protected]"
import requests
import json
import os
class Client:
def __init__(
self,
testnet=False,
username=None,
password=None,
ip=None,
port=None,
directory=None,
):
if not ip:
self.ip = "localhost"
else:
self.ip = ip
if not username and not password:
if not directory:
try:
self.username, self.password = (
self.userpass()
)
except:
self.username, self.password = self.userpass(
dir="peercoin"
)
else:
self.username, self.password = self.userpass(
dir=directory
)
else:
self.username = username
self.password = password
if testnet is True:
self.testnet = True
self.port = 9904
self.url = "http://{0}:{1}".format(self.ip, self.port)
else:
self.testnet = False
self.port = 9902
self.url = "http://{0}:{1}".format(self.ip, self.port)
if port is not None:
self.port = port
self.url = "http://{0}:{1}".format(self.ip, self.port)
self.session = requests.Session()
self.session.auth = (self.username, self.password)
self.session.headers.update({"content-type": "application/json"})
def userpass(self, dir="ppcoin"):
source = os.path.expanduser("~/.{0}/{0}.conf").format(dir)
dest = open(source, "r")
with dest as conf:
for line in conf:
if line.startswith("rpcuser"):
username = line.split("=")[1].strip()
if line.startswith("rpcpassword"):
password = line.split("=")[1].strip()
return username, password
def req(self, method, params=()):
response = self.session.post(
self.url,
data=json.dumps({"method": method, "params": params, "jsonrpc": "1.1"}),
).json()
if response["error"] is not None:
return response["error"]
else:
return response["result"]
def batch(self, reqs):
batch_data = []
for req_id, req in enumerate(reqs):
batch_data.append(
{"method": req[0], "params": req[1], "jsonrpc": "2.0", "id": req_id}
)
data = json.dumps(batch_data)
response = self.session.post(self.url, data=data).json()
return response | MIT License |
Subsets and Splits