repository_name
stringlengths 7
107
| function_path
stringlengths 4
190
| function_identifier
stringlengths 1
236
| language
stringclasses 1
value | function
stringlengths 9
647k
| docstring
stringlengths 5
488k
| function_url
stringlengths 71
285
| context
stringlengths 0
2.51M
| license
stringclasses 5
values |
---|---|---|---|---|---|---|---|---|
fangshi1991/zipline_chstock | zipline/pipeline/engine.py | SimplePipelineEngine._mask_and_dates_for_term | python | def _mask_and_dates_for_term(self, term, workspace, graph, dates):
mask = term.mask
offset = graph.extra_rows[mask] - graph.extra_rows[term]
return workspace[mask][offset:], dates[offset:] | Load mask and mask row labels for term. | https://github.com/fangshi1991/zipline_chstock/blob/7911642780fa57f92e1705b9c0acaeb837b3d98f/zipline/pipeline/engine.py#L240-L246 | from abc import (
ABCMeta,
abstractmethod,
)
from uuid import uuid4
from six import (
iteritems,
with_metaclass,
)
from numpy import array
from pandas import (
DataFrame,
date_range,
MultiIndex,
)
from toolz import groupby, juxt
from toolz.curried.operator import getitem
from zipline.lib.adjusted_array import ensure_ndarray
from zipline.errors import NoFurtherDataError
from zipline.utils.numpy_utils import repeat_first_axis, repeat_last_axis
from zipline.utils.pandas_utils import explode
from .term import AssetExists, LoadableTerm
class PipelineEngine(with_metaclass(ABCMeta)):
@abstractmethod
def run_pipeline(self, pipeline, start_date, end_date):
raise NotImplementedError("run_pipeline")
class NoOpPipelineEngine(PipelineEngine):
def run_pipeline(self, pipeline, start_date, end_date):
return DataFrame(
index=MultiIndex.from_product(
[date_range(start=start_date, end=end_date, freq='D'), ()],
),
columns=sorted(pipeline.columns.keys()),
)
class SimplePipelineEngine(object):
__slots__ = (
'_get_loader',
'_calendar',
'_finder',
'_root_mask_term',
'__weakref__',
)
def __init__(self, get_loader, calendar, asset_finder):
self._get_loader = get_loader
self._calendar = calendar
self._finder = asset_finder
self._root_mask_term = AssetExists()
def run_pipeline(self, pipeline, start_date, end_date):
if end_date < start_date:
raise ValueError(
"start_date must be before or equal to end_date \n"
"start_date=%s, end_date=%s" % (start_date, end_date)
)
screen_name = uuid4().hex
graph = pipeline.to_graph(screen_name, self._root_mask_term)
extra_rows = graph.extra_rows[self._root_mask_term]
root_mask = self._compute_root_mask(start_date, end_date, extra_rows)
dates, assets, root_mask_values = explode(root_mask)
outputs = self.compute_chunk(
graph,
dates,
assets,
initial_workspace={self._root_mask_term: root_mask_values},
)
out_dates = dates[extra_rows:]
screen_values = outputs.pop(screen_name)
return self._to_narrow(outputs, screen_values, out_dates, assets)
def _compute_root_mask(self, start_date, end_date, extra_rows):
calendar = self._calendar
finder = self._finder
start_idx, end_idx = self._calendar.slice_locs(start_date, end_date)
if start_idx < extra_rows:
raise NoFurtherDataError(
msg="Insufficient data to compute Pipeline mask: "
"start date was %s, "
"earliest known date was %s, "
"and %d extra rows were requested." % (
start_date, calendar[0], extra_rows,
),
)
lifetimes = finder.lifetimes(
calendar[start_idx - extra_rows:end_idx],
include_start_date=False
)
assert lifetimes.index[extra_rows] == start_date
assert lifetimes.index[-1] == end_date
if not lifetimes.columns.unique:
columns = lifetimes.columns
duplicated = columns[columns.duplicated()].unique()
raise AssertionError("Duplicated sids: %d" % duplicated)
existed = lifetimes.iloc[extra_rows:].any()
ret = lifetimes.loc[:, existed]
shape = ret.shape
assert shape[0] * shape[1] != 0, 'root mask cannot be empty'
return ret | Apache License 2.0 |
olitheolix/aiokubernetes | aiokubernetes/models/v1_stateful_set_condition.py | V1StatefulSetCondition.__init__ | python | def __init__(self, last_transition_time=None, message=None, reason=None, status=None, type=None):
self._last_transition_time = None
self._message = None
self._reason = None
self._status = None
self._type = None
self.discriminator = None
if last_transition_time is not None:
self.last_transition_time = last_transition_time
if message is not None:
self.message = message
if reason is not None:
self.reason = reason
self.status = status
self.type = type | V1StatefulSetCondition - a model defined in Swagger | https://github.com/olitheolix/aiokubernetes/blob/266718b210dff2a9b2212183261ea89adf89115e/aiokubernetes/models/v1_stateful_set_condition.py#L48-L65 | import pprint
import re
class V1StatefulSetCondition(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'last_transition_time': 'datetime',
'message': 'str',
'reason': 'str',
'status': 'str',
'type': 'str'
}
attribute_map = {
'last_transition_time': 'lastTransitionTime',
'message': 'message',
'reason': 'reason',
'status': 'status',
'type': 'type'
} | Apache License 2.0 |
gobot1234/steam.py | steam/abc.py | BaseUser.favourite_badge | python | async def favourite_badge(self) -> FavouriteBadge | None:
badge = await self._state.fetch_user_favourite_badge(self.id64)
if not badge.has_favorite_badge:
return
return FavouriteBadge(
id=UserBadge.try_value(badge.badgeid),
item_id=badge.communityitemid,
type=badge.item_type,
border_colour=badge.border_color,
game=StatefulGame(self._state, id=badge.appid) if badge.appid else None,
level=badge.level,
) | The user's favourite badge | https://github.com/gobot1234/steam.py/blob/73fcb94eeba7d0d318252b899af80516efc17b0a/steam/abc.py#L583-L596 | from __future__ import annotations
import abc
import asyncio
import re
from collections.abc import Coroutine
from datetime import datetime
from typing import TYPE_CHECKING, Any, TypeVar
import attr
from typing_extensions import Final, Protocol, TypedDict, runtime_checkable
from .badge import FavouriteBadge, UserBadges
from .comment import Comment
from .enums import *
from .errors import WSException
from .game import Game, StatefulGame, UserGame, WishlistGame
from .iterators import AsyncIterator, CommentsIterator
from .models import URL, Ban
from .profile import *
from .trade import Inventory
from .utils import (
_INVITE_HEX,
_INVITE_MAPPING,
InstanceType,
Intable,
TypeType,
UniverseType,
cached_slot_property,
id64_from_url,
make_id64,
)
if TYPE_CHECKING:
from _typeshed import Self
from aiohttp import ClientSession
from .clan import Clan
from .group import Group
from .http import StrOrURL
from .image import Image
from .message import Authors
from .protobufs.chat import Mentions
from .state import ConnectionState
from .user import User
__all__ = (
"SteamID",
"Message",
"Channel",
)
C = TypeVar("C", bound="Commentable")
M_co = TypeVar("M_co", bound="Message", covariant=True)
class UserDict(TypedDict):
steamid: str
personaname: str
primaryclanid: str
profileurl: str
realname: str
communityvisibilitystate: int
profilestate: int
commentpermission: int
personastate: int
personastateflags: int
avatar: str
avatarmedium: str
avatarfull: str
avatarhash: str
loccountrycode: str
locstatecode: int
loccityid: int
gameid: str
gameextrainfo: str
timecreated: int
lastlogoff: int
last_logon: int
last_seen_online: int
class SteamID(metaclass=abc.ABCMeta):
__slots__ = ("__BASE",)
def __init__(
self,
id: Intable = 0,
type: TypeType | None = None,
universe: UniverseType | None = None,
instance: InstanceType | None = None,
):
self.__BASE: Final = make_id64(id, type, universe, instance)
def __int__(self) -> int:
return self.__BASE
def __eq__(self, other: Any) -> bool:
try:
return self.__BASE == int(other)
except (TypeError, ValueError):
return NotImplemented
def __str__(self) -> str:
return str(self.__BASE)
def __hash__(self) -> int:
return hash(self.__BASE)
def __repr__(self) -> str:
return f"SteamID(id={self.id}, type={self.type}, universe={self.universe}, instance={self.instance})"
@property
def instance(self) -> int:
return (self.__BASE >> 32) & 0xFFFFF
@property
def type(self) -> Type:
return Type((self.__BASE >> 52) & 0xF)
@property
def universe(self) -> Universe:
return Universe((self.__BASE >> 56) & 0xFF)
@property
def id64(self) -> int:
return self.__BASE
@property
def id(self) -> int:
return self.__BASE & 0xFFFFFFFF
@property
def id2(self) -> str:
return f"STEAM_{self.universe.value}:{self.id % 2}:{self.id >> 1}"
@property
def id2_zero(self) -> str:
return self.id2.replace("_1", "_0")
@property
def id3(self) -> str:
type_char = TypeChar(self.type).name
instance = None
if self.type in (Type.AnonGameServer, Type.Multiseat):
instance = self.instance
elif self.type == Type.Individual:
if self.instance != 1:
instance = self.instance
elif self.type == Type.Chat:
if self.instance & InstanceFlag.Clan:
type_char = "c"
elif self.instance & InstanceFlag.Lobby:
type_char = "L"
else:
type_char = "T"
parts = [type_char, str(self.universe.value), str(self.id)]
if instance is not None:
parts.append(str(instance))
return f"[{':'.join(parts)}]"
@property
def invite_code(self) -> str | None:
if self.type == Type.Individual and self.is_valid():
invite_code = re.sub(f"[{_INVITE_HEX}]", lambda x: _INVITE_MAPPING[x.group()], f"{self.id:x}")
split_idx = len(invite_code) // 2
return invite_code if split_idx == 0 else f"{invite_code[:split_idx]}-{invite_code[split_idx:]}"
@property
def invite_url(self) -> str | None:
code = self.invite_code
return f"https://s.team/p/{code}" if code else None
@property
def community_url(self) -> str | None:
suffix = {
Type.Individual: "profiles",
Type.Clan: "gid",
}
try:
return f"https://steamcommunity.com/{suffix[self.type]}/{self.id64}"
except KeyError:
return None
def is_valid(self) -> bool:
if self.type == Type.Invalid or self.type >= Type.Max:
return False
if self.universe == Universe.Invalid or self.universe >= Universe.Max:
return False
if self.type == Type.Individual and (self.id == 0 or self.instance > 4):
return False
if self.type == Type.Clan and (self.id == 0 or self.instance != 0):
return False
if self.type == Type.GameServer and self.id == 0:
return False
if self.type == Type.AnonGameServer and self.id == 0 and self.instance == 0:
return False
return True
@staticmethod
async def from_url(url: StrOrURL, session: ClientSession | None = None) -> SteamID | None:
id64 = await id64_from_url(url, session)
return SteamID(id64) if id64 else None
class Commentable(Protocol):
__slots__ = ()
_state: ConnectionState
@property
@abc.abstractmethod
def _commentable_kwargs(self) -> dict[str, Any]:
raise NotImplementedError
async def comment(self: Self, content: str, *, subscribe: bool = True) -> Comment[Self]:
return await self._state.post_comment(self, content, subscribe)
def comments(
self: Self,
oldest_first: bool = False,
limit: int | None = None,
before: datetime | None = None,
after: datetime | None = None,
) -> CommentsIterator[Self]:
return CommentsIterator(
oldest_first=oldest_first, owner=self, state=self._state, limit=limit, before=before, after=after
)
class BaseUser(SteamID, Commentable):
__slots__ = (
"name",
"game",
"state",
"flags",
"country",
"primary_clan",
"trade_url",
"real_name",
"avatar_url",
"last_seen_online",
"created_at",
"last_logoff",
"last_logon",
"privacy_state",
"community_url",
"_is_commentable",
"_setup_profile",
"_level",
"_state",
)
def __init__(self, state: ConnectionState, data: UserDict):
super().__init__(data["steamid"])
self._state = state
self.name: str
self.real_name: str | None = None
self.community_url: str | None = None
self.avatar_url: str | None = None
self.primary_clan: Clan | None = None
self.country: str | None = None
self.created_at: datetime | None = None
self.last_logoff: datetime | None = None
self.last_logon: datetime | None = None
self.last_seen_online: datetime | None = None
self.game: StatefulGame | None = None
self.state: PersonaState | None = None
self.flags: PersonaStateFlag | None = None
self.privacy_state: CommunityVisibilityState | None = None
self._update(data)
def _update(self, data: UserDict) -> None:
self.name = data["personaname"]
self.real_name = data.get("realname") or self.real_name
self.community_url = data.get("profileurl") or super().community_url
self.avatar_url = data.get("avatarfull") or self.avatar_url
self.trade_url = URL.COMMUNITY / f"tradeoffer/new/?partner={self.id}"
from .clan import Clan
self.primary_clan = (
Clan(self._state, data["primaryclanid"]) if "primaryclanid" in data else self.primary_clan
)
self.country = data.get("loccountrycode") or self.country
self.created_at = datetime.utcfromtimestamp(data["timecreated"]) if "timecreated" in data else self.created_at
self.last_logoff = datetime.utcfromtimestamp(data["lastlogoff"]) if "lastlogoff" in data else self.last_logoff
self.last_logon = datetime.utcfromtimestamp(data["last_logon"]) if "last_logon" in data else self.last_logon
self.last_seen_online = (
datetime.utcfromtimestamp(data["last_seen_online"]) if "last_seen_online" in data else self.last_seen_online
)
self.game = (
StatefulGame(self._state, name=data["gameextrainfo"], id=data["gameid"]) if "gameid" in data else self.game
)
self.state = PersonaState.try_value(data.get("personastate", 0)) or self.state
self.flags = PersonaStateFlag.try_value(data.get("personastateflags", 0)) or self.flags
self.privacy_state = CommunityVisibilityState.try_value(data.get("communityvisibilitystate", 0))
self._is_commentable = bool(data.get("commentpermission"))
self._setup_profile = bool(data.get("profilestate"))
def __repr__(self) -> str:
attrs = ("name", "state", "id", "type", "universe", "instance")
resolved = [f"{attr}={getattr(self, attr)!r}" for attr in attrs]
return f"<{self.__class__.__name__} {' '.join(resolved)}>"
def __str__(self) -> str:
return self.name
def __del__(self):
self._state._users.pop(self.id64, None)
@property
def _commentable_kwargs(self) -> dict[str, Any]:
return {
"id64": self.id64,
"thread_type": 10,
}
@property
def mention(self) -> str:
return f"[mention={self.id}]@{self.name}[/mention]"
async def inventory(self, game: Game) -> Inventory:
resp = await self._state.http.get_user_inventory(self.id64, game.id, game.context_id)
return Inventory(state=self._state, data=resp, owner=self, game=game)
async def friends(self) -> list[User]:
friends = await self._state.http.get_friends(self.id64)
return [self._state._store_user(friend) for friend in friends]
async def games(self) -> list[UserGame]:
data = await self._state.http.get_user_games(self.id64)
games = data["response"].get("games", [])
return [UserGame(self._state, game) for game in games]
async def clans(self) -> list[Clan]:
clans = []
async def getter(gid: int) -> None:
try:
clan = await self._state.client.fetch_clan(gid)
except WSException as exc:
if exc.code == Result.RateLimitExceeded:
await asyncio.sleep(20)
return await getter(gid)
raise
else:
clans.append(clan)
resp = await self._state.http.get_user_clans(self.id64)
for clan in resp["response"]["groups"]:
await getter(int(clan["gid"]))
return clans
async def bans(self) -> Ban:
resp = await self._state.http.get_user_bans(self.id64)
resp = resp["players"][0]
resp["EconomyBan"] = resp["EconomyBan"] != "none"
return Ban(data=resp)
async def badges(self) -> UserBadges:
resp = await self._state.http.get_user_badges(self.id64)
return UserBadges(self._state, data=resp["response"])
async def level(self) -> int:
if self._state.http.api_key is not None:
resp = await self._state.http.get_user_level(self.id64)
return resp["response"]["player_level"]
return self._level
async def wishlist(self) -> list[WishlistGame]:
data = await self._state.http.get_wishlist(self.id64)
return [WishlistGame(self._state, id=id, data=game_info) for id, game_info in data.items()] | MIT License |
albertogeniola/merossiot | meross_iot/utilities/limiter.py | RateLimitChecker.__init__ | python | def __init__(self,
global_burst_rate: int = 6,
global_time_window: timedelta = timedelta(seconds=1),
global_tokens_per_interval: int = 2,
device_burst_rate: int = 1,
device_time_window: timedelta = timedelta(seconds=1),
device_tokens_per_interval: int = 1,
device_max_command_queue: int = 5):
self._global_limiter = TokenBucketRateLimiterWithBackoff(window_interval=global_time_window,
tokens_per_interval=global_tokens_per_interval,
max_burst_size=global_burst_rate,
backoff_logic=ExponentialBackoff(
start_backoff_seconds=0.5,
max_backoff_seconds=10
))
self._devices_limiters = {}
self._device_burst_rate = device_burst_rate
self._device_time_window = device_time_window
self._device_tokens_per_interval = device_tokens_per_interval
self._max_command_queue = device_max_command_queue
self._current_command_queue_size = {} | Constructor
:param global_burst_rate: Global burst rate, max number of commands that can be executed within the global_time_window
:param global_time_window: Time window in seconds that is used to aggregate the API counting
:param global_tokens_per_interval: Number of calls allowed within the time interval at run time (globally)
:param device_burst_rate: Per device burst rate, max number of commands that can be executed on a specific device within he device_time_window
:param device_time_window: Time window in seconds that is used to aggregate the API counting for a given device
:param device_tokens_per_interval: Number of calls allowed within the time interval at run time (per device)
:param device_max_command_queue: Maximum number of commands that can be delayed for a given device, after which commands are dropped | https://github.com/albertogeniola/merossiot/blob/4522d6822edbc7dfc454bd3b278e006565d842ff/meross_iot/utilities/limiter.py#L158-L190 | from abc import ABC, abstractmethod
from datetime import timedelta
from enum import Enum
from time import time
import logging
from typing import Dict, Tuple
from meross_iot.model.enums import Namespace
_LIMITER = logging.getLogger("meross_iot.manager.apilimiter")
class BackoffLogic(ABC):
@abstractmethod
def reset(self) -> None:
pass
@abstractmethod
def wait_interval(self) -> float:
pass
class ExponentialBackoff(BackoffLogic):
def __init__(self, start_backoff_seconds: float, max_backoff_seconds: float):
self._baseline = start_backoff_seconds
self._cap = max_backoff_seconds
self._failures = 0
def wait_interval(self) -> float:
current = min(self._baseline * pow(2, self._failures), self._cap)
self._failures += 1
return current
def reset(self) -> None:
self._failures = 0
class TokenBucketRateLimiterWithBackoff(object):
def __init__(self,
window_interval: timedelta,
tokens_per_interval: int,
max_burst_size: int,
backoff_logic: BackoffLogic):
self._window_interval_seconds = window_interval.total_seconds()
self._tokens_per_interval = tokens_per_interval
self._max_burst = max_burst_size
self._backoff_logic = backoff_logic
self._limit_hits_in_window = 0
self._current_window_end = time() - self._window_interval_seconds
self._remaining_tokens = 0
def update_tokens(self):
return self._add_tokens()
def _add_tokens(self):
now = time()
if now < self._current_window_end:
return
n_intervals = (now - self._current_window_end) // self._window_interval_seconds + 1
n_tokens = n_intervals * self._tokens_per_interval
self._remaining_tokens = min(self._remaining_tokens + n_tokens, self._max_burst)
self._current_window_end = now + self._window_interval_seconds
self._limit_hits_in_window = 0
@property
def current_over_limit_hits(self) -> int:
self._add_tokens()
return self._limit_hits_in_window
@property
def over_limit_percentace(self):
self._add_tokens()
return (self._limit_hits_in_window / self._max_burst) * 100
@property
def current_window_hitrate(self) -> int:
self._add_tokens()
return self._max_burst - self._remaining_tokens
@property
def current_window_capacity(self):
self._add_tokens()
return (self._limit_hits_in_window / self._max_burst) * 100
def check_limit_reached(self) -> Tuple[bool, float]:
self._add_tokens()
if self._remaining_tokens > 0:
self._remaining_tokens -= 1
self._backoff_logic.reset()
return False, 0
self._limit_hits_in_window += 1
wait_interval = self._backoff_logic.wait_interval()
return True, wait_interval
class RateLimitResult(Enum):
NotLimited = 0,
GlobalLimitReached = 1,
PerDeviceLimitReached = 2
class RateLimitResultStrategy(Enum):
PerformCall = 0,
DelayCall = 1,
DropCall = 2
class RateLimitChecker(object): | MIT License |
ngageoint/sarpy | sarpy/io/phase_history/cphd1_elements/Dwell.py | DwellType.NumCODTimes | python | def NumCODTimes(self):
if self.CODTimes is None:
return 0
else:
return len(self.CODTimes) | int: The number of cod time polynomial elements. | https://github.com/ngageoint/sarpy/blob/91405721a7e6ffe7c76dd7b143915fee4bee1e82/sarpy/io/phase_history/cphd1_elements/Dwell.py#L125-L133 | __classification__ = "UNCLASSIFIED"
__author__ = "Thomas McCullough"
from typing import List
from sarpy.io.xml.base import Serializable
from sarpy.io.xml.descriptors import StringDescriptor, SerializableDescriptor, SerializableListDescriptor
from sarpy.io.complex.sicd_elements.blocks import Poly2DType
from .base import DEFAULT_STRICT
class CODTimeType(Serializable):
_fields = ('Identifier', 'CODTimePoly')
_required = _fields
Identifier = StringDescriptor(
'Identifier', _required, strict=DEFAULT_STRICT,
docstring='String that uniquely identifies this COD Time '
'polynomial.')
CODTimePoly = SerializableDescriptor(
'CODTimePoly', Poly2DType, _required, strict=DEFAULT_STRICT,
docstring='The polynomial.')
def __init__(self, Identifier=None, CODTimePoly=None, **kwargs):
if '_xml_ns' in kwargs:
self._xml_ns = kwargs['_xml_ns']
if '_xml_ns_key' in kwargs:
self._xml_ns_key = kwargs['_xml_ns_key']
self.Identifier = Identifier
self.CODTimePoly = CODTimePoly
super(CODTimeType, self).__init__(**kwargs)
class DwellTimeType(Serializable):
_fields = ('Identifier', 'DwellTimePoly')
_required = _fields
Identifier = StringDescriptor(
'Identifier', _required, strict=DEFAULT_STRICT,
docstring='String that uniquely identifies this Dwell Time '
'polynomial.')
DwellTimePoly = SerializableDescriptor(
'DwellTimePoly', Poly2DType, _required, strict=DEFAULT_STRICT,
docstring='The polynomial.')
def __init__(self, Identifier=None, DwellTimePoly=None, **kwargs):
if '_xml_ns' in kwargs:
self._xml_ns = kwargs['_xml_ns']
if '_xml_ns_key' in kwargs:
self._xml_ns_key = kwargs['_xml_ns_key']
self.Identifier = Identifier
self.DwellTimePoly = DwellTimePoly
super(DwellTimeType, self).__init__(**kwargs)
class DwellType(Serializable):
_fields = ('NumCODTimes', 'CODTimes', 'NumDwellTimes', 'DwellTimes')
_required = ('CODTimes', 'DwellTimes')
_collections_tags = {
'CODTimes': {'array': False, 'child_tag': 'CODTime'},
'DwellTimes': {'array': False, 'child_tag': 'DwellTime'}}
CODTimes = SerializableListDescriptor(
'CODTimes', CODTimeType, _collections_tags, _required, strict=DEFAULT_STRICT,
docstring='The Center of Dwell (COD) time polynomials.')
DwellTimes = SerializableListDescriptor(
'DwellTimes', DwellTimeType, _collections_tags, _required, strict=DEFAULT_STRICT,
docstring='The dwell time polynomials.')
def __init__(self, CODTimes=None, DwellTimes=None, **kwargs):
if '_xml_ns' in kwargs:
self._xml_ns = kwargs['_xml_ns']
if '_xml_ns_key' in kwargs:
self._xml_ns_key = kwargs['_xml_ns_key']
self.CODTimes = CODTimes
self.DwellTimes = DwellTimes
super(DwellType, self).__init__(**kwargs)
@property | MIT License |
galarzaa90/tibia.py | tibiapy/abc.py | BaseNews.url | python | def url(self):
return self.get_url(self.id) | :class:`str`: The URL to the Tibia.com page of the news entry. | https://github.com/galarzaa90/tibia.py/blob/babcb1648fb99bf5ac0fd0162b38244cbcd21b9d/tibiapy/abc.py#L449-L451 | from __future__ import annotations
import abc
import datetime
import enum
import json
from collections import OrderedDict
from typing import Callable, TYPE_CHECKING
from tibiapy.utils import get_tibia_url
if TYPE_CHECKING:
from tibiapy import PvpType, WorldLocation
class Serializable:
_serializable_properties = ()
@classmethod
def __slots_inherited__(cls):
slots = []
for base in cls.__bases__:
try:
slots.extend(base.__slots_inherited__())
except AttributeError:
continue
slots.extend(getattr(cls, "__slots__", []))
slots.extend(getattr(cls, "_serializable_properties", []))
return tuple(OrderedDict.fromkeys(slots))
def keys(self):
return list(self.__slots_inherited__())
def __getitem__(self, item):
if item in self.keys():
try:
return getattr(self, item)
except AttributeError:
return None
else:
raise KeyError(item)
def __setitem__(self, key, value):
if key in self.keys():
setattr(self, key, value)
else:
raise KeyError(key)
@staticmethod
def _try_dict(obj):
try:
if isinstance(obj, datetime.datetime):
return obj.isoformat()
if isinstance(obj, datetime.timedelta):
return int(obj.total_seconds())
if isinstance(obj, enum.Flag):
return [str(i) for i in obj]
if isinstance(obj, enum.Enum):
return str(obj)
return {k: v for k, v in dict(obj).items() if v is not None}
except TypeError:
return str(obj)
def to_json(self, *, indent=None, sort_keys=False):
return json.dumps({k: v for k, v in dict(self).items() if v is not None}, indent=indent, sort_keys=sort_keys,
default=self._try_dict)
class BaseAnnouncement(metaclass=abc.ABCMeta):
announcement_id: int
__slots__ = (
"announcement_id",
)
def __eq__(self, other):
if isinstance(other, self.__class__):
return other.announcement_id == self.announcement_id
return False
@property
def url(self):
return self.get_url(self.announcement_id)
@classmethod
def get_url(cls, announcement_id):
return get_tibia_url("forum", None, action="announcement", announcementid=announcement_id)
class BaseBoard(metaclass=abc.ABCMeta):
__slots__ = (
"board_id",
)
def __eq__(self, o: object) -> bool:
if isinstance(o, self.__class__):
return self.board_id == o.board_id
return False
def __repr__(self):
return f"<{self.__class__.__name__} board_id={self.board_id!r}>"
@property
def url(self):
return self.get_url(self.board_id)
@classmethod
def get_url(cls, board_id, page=1, age=30):
return get_tibia_url("forum", None, action="board", boardid=board_id, pagenumber=page, threadage=age)
@classmethod
def get_world_boards_url(cls):
return get_tibia_url("forum", "worldboards")
@classmethod
def get_trade_boards_url(cls):
return get_tibia_url("forum", "tradeboards")
@classmethod
def get_community_boards_url(cls):
return get_tibia_url("forum", "communityboards")
@classmethod
def get_support_boards_url(cls):
return get_tibia_url("forum", "supportboards")
class BaseCharacter(metaclass=abc.ABCMeta):
__slots__ = (
"name",
)
def __eq__(self, o: object) -> bool:
if isinstance(o, self.__class__):
return self.name.lower() == o.name.lower()
return False
def __repr__(self):
return f"<{self.__class__.__name__} name={self.name!r}>"
@property
def url(self):
return self.get_url(self.name)
@classmethod
def get_url(cls, name):
return get_tibia_url("community", "characters", name=name)
class BaseGuild(metaclass=abc.ABCMeta):
__slots__ = (
"name",
)
def __repr__(self):
return f"<{self.__class__.__name__} name={self.name!r}>"
def __eq__(self, other):
if isinstance(other, self.__class__):
return self.name == other.name
return False
@property
def url(self):
return self.get_url(self.name)
@property
def url_wars(self):
return self.get_url_wars(self.name)
@classmethod
def get_url(cls, name):
return get_tibia_url("community", "guilds", page="view", GuildName=name)
@classmethod
def get_url_wars(cls, name):
return get_tibia_url("community", "guilds", page="guildwars", action="view", GuildName=name)
class BaseHouse(metaclass=abc.ABCMeta):
__slots__ = (
"name",
)
def __repr__(self):
return f"<{self.__class__.__name__} name={self.name!r}>"
def __eq__(self, o: object) -> bool:
if isinstance(o, self.__class__):
return self.name.lower() == o.name.lower()
return False
@classmethod
def get_url(cls, house_id, world):
return get_tibia_url("community", "houses", page="view", houseid=house_id, world=world)
class BaseNews(metaclass=abc.ABCMeta):
__slots__ = (
"id",
)
def __eq__(self, o: object) -> bool:
if isinstance(o, self.__class__):
return self.id == o.id
return False
@property | Apache License 2.0 |
demisto/demisto-sdk | demisto_sdk/commands/common/hook_validations/script.py | ScriptValidator._get_arg_to_required_dict | python | def _get_arg_to_required_dict(cls, script_json):
arg_to_required = {}
args = script_json.get('args', [])
for arg in args:
arg_to_required[arg.get('name')] = arg.get('required', False)
return arg_to_required | Get a dictionary arg name to its required status.
Args:
script_json (dict): Dictionary of the examined script.
Returns:
dict. arg name to its required status. | https://github.com/demisto/demisto-sdk/blob/8d8767c2dfec77b67c35f4e1022e30ed2893e864/demisto_sdk/commands/common/hook_validations/script.py#L94-L107 | import os
import re
from typing import Optional
from demisto_sdk.commands.common.constants import (API_MODULES_PACK,
DEPRECATED_REGEXES,
PYTHON_SUBTYPES, TYPE_PWSH)
from demisto_sdk.commands.common.errors import Errors
from demisto_sdk.commands.common.hook_validations.content_entity_validator import ContentEntityValidator
from demisto_sdk.commands.common.hook_validations.docker import DockerImageValidator
from demisto_sdk.commands.common.tools import (
get_core_pack_list, get_file_version_suffix_if_exists, get_files_in_dir,
get_pack_name, server_version_compare)
class ScriptValidator(ContentEntityValidator):
def is_valid_version(self) -> bool:
if self.current_file.get('commonfields', {}).get('version') != self.DEFAULT_VERSION:
error_message, error_code = Errors.wrong_version()
if self.handle_error(error_message, error_code, file_path=self.file_path,
suggested_fix=Errors.suggest_fix(self.file_path)):
return False
return True
@classmethod
def _is_sub_set(cls, supposed_bigger_list, supposed_smaller_list):
for check_item in supposed_smaller_list:
if check_item not in supposed_bigger_list:
return False
return True
def is_backward_compatible(self):
if not self.old_file:
return True
is_breaking_backwards = [
self.is_context_path_changed(),
self.is_added_required_args(),
self.is_arg_changed(),
self.is_there_duplicates_args(),
self.is_changed_subtype()
]
if self.file_path == 'Scripts/SaneDocReport/SaneDocReport.yml':
return not any(is_breaking_backwards[1:])
return not any(is_breaking_backwards)
def is_valid_file(self, validate_rn=True):
is_script_valid = all([
super().is_valid_file(validate_rn),
self.is_valid_subtype(),
self.is_id_equals_name(),
self.is_docker_image_valid(),
self.is_valid_pwsh(),
self.is_valid_script_file_path(),
self.is_there_separators_in_names(),
self.name_not_contain_the_type()
])
if not self.old_file:
is_script_valid = all([
is_script_valid,
self.is_valid_name()
])
core_packs_list = get_core_pack_list()
pack = get_pack_name(self.file_path)
is_core = True if pack in core_packs_list else False
if is_core:
is_script_valid = all([
is_script_valid,
self.no_incident_in_core_pack()
])
return is_script_valid
@classmethod | MIT License |
thesadru/animethemes-dl | animethemes_dl/parsers/dldata.py | get_formatter | python | def get_formatter(**kwargs) -> Dict[str,str]:
formatter = {}
for t,d in kwargs.items():
for k,v in d.items():
if (not isinstance(v,(list,dict,bool)) and
not k.endswith('ated_at')
):
formatter[t+'_'+k] = v
formatter['video_filetype'] = 'webm'
formatter['anime_filename'] = formatter['video_filename'].split('-')[0]
return formatter | Generates a formatter dict used for formatting filenames.
Takes in kwargs of Dict[str,Any].
Does not keep lists, dicts and bools.
Automatically filters out` .endswith('ated_at')` for animethemes-dl.
Also adds `{video_filetype:webm,anime_filename:...}`. | https://github.com/thesadru/animethemes-dl/blob/059afa407d4e07e7420a2e08cc6019b51ced7770/animethemes_dl/parsers/dldata.py#L88-L107 | import logging
import re
import string
from os import PathLike
from os.path import join, realpath, splitext
from typing import Dict, List, Optional, Tuple
from ..models import (AnimeListSite, AnimeThemeAnime, AnimeThemeEntry,
AnimeThemeTheme, AnimeThemeVideo, DownloadData)
from ..options import OPTIONS
from .parser import get_animethemes
from .utils import Measure
logger = logging.getLogger('animethemes-dl')
FILENAME_BAD = set('#%&{}\\<>*?/$!\'":@+`|')
FILENAME_BANNED = set('<>:"/\\|?*')
FILENAME_ALLOWEDASCII = set(string.printable).difference(FILENAME_BANNED)
FEATURED_RE = re.compile(r"""^
(.*?) # song name
(?:
\ \(?feat\.\ (
[\w\ ]+ # artist name
(?:\([\w\ ]+\))? # artists second name
)\)?
|
\(([\w\ ]+)\) # comment enclosed in "()"
(?:\ (.+))? # after comment details
)?
$""",re.VERBOSE)
def is_entry_wanted(entry: AnimeThemeEntry) -> bool:
for k in ('spoiler','nsfw'):
v = OPTIONS['filter'][k]
if v is not None and entry[k] ^ v:
return False
return True
def is_video_wanted(video: AnimeThemeVideo) -> bool:
for k in ('nc','subbed','lyrics','uncen'):
v = OPTIONS['filter'][k]
if v is not None and video[k] ^ v:
return False
if video['resolution'] < OPTIONS['filter']['resolution']:
return False
if OPTIONS['filter']['source'] is not None and video['source'] != OPTIONS['filter']['source']:
return False
if OPTIONS['filter']['overlap'] is not None and video['overlap'] not in OPTIONS['filter']['overlap']:
return False
return True
def get_amount_episodes(episodes: str) -> int:
a = 0
for ep in episodes.split(', '):
if '-' in ep:
start,end = ep.split('-')
a += int(end)-int(start)
else:
a += int(ep)
return a
def strip_illegal_chars(filename: str) -> str:
if OPTIONS['download']['ascii']:
return ''.join(i for i in filename if i in FILENAME_ALLOWEDASCII)
else:
return ''.join(i for i in filename if i not in FILENAME_BANNED) | MIT License |
magenta/ddsp | ddsp/core.py | safe_log | python | def safe_log(x, eps=1e-5):
safe_x = tf.where(x <= eps, eps, x)
return tf.math.log(safe_x) | Avoid taking the log of a non-positive number. | https://github.com/magenta/ddsp/blob/56266e9c255019df050a3c20255caa2beaa912ac/ddsp/core.py#L179-L182 | import collections
import copy
from typing import Any, Dict, Optional, Sequence, Text, TypeVar
import gin
import numpy as np
from scipy import fftpack
import tensorflow.compat.v2 as tf
Number = TypeVar('Number', int, float, np.ndarray, tf.Tensor)
def tf_float32(x):
if isinstance(x, tf.Tensor):
return tf.cast(x, dtype=tf.float32)
else:
return tf.convert_to_tensor(x, tf.float32)
def make_iterable(x):
if x is None:
return []
elif isinstance(x, (np.ndarray, tf.Tensor)):
return [x]
else:
return x if isinstance(x, collections.Iterable) else [x]
def to_dict(x, keys):
if isinstance(x, dict):
return x
else:
x = make_iterable(x)
if len(keys) != len(x):
raise ValueError(f'Keys: {keys} must be the same length as {x}')
return dict(zip(keys, x))
def copy_if_tf_function(x):
return copy.copy(x) if not tf.executing_eagerly() else x
def nested_keys(nested_dict: Dict[Text, Any],
delimiter: Text = '/',
prefix: Text = '') -> Sequence[Text]:
keys = []
for k, v in nested_dict.items():
key = k if not prefix else f'{prefix}{delimiter}{k}'
if not isinstance(v, dict):
keys.append(key)
else:
dict_keys = nested_keys(v, prefix=key)
keys += dict_keys
return keys
def nested_lookup(nested_key: Text,
nested_dict: Dict[Text, Any],
delimiter: Text = '/') -> tf.Tensor:
keys = nested_key.split(delimiter)
value = nested_dict
for key in keys:
try:
value = value[key]
except KeyError:
raise KeyError(f'Key \'{key}\' as a part of nested key \'{nested_key}\' '
'not found during nested dictionary lookup, out of '
f'available keys: {nested_keys(nested_dict)}')
return value
def leaf_key(nested_key: Text,
delimiter: Text = '/') -> tf.Tensor:
keys = nested_key.split(delimiter)
return keys[-1]
def map_shape(x: Dict[Text, tf.Tensor]) -> Dict[Text, Sequence[int]]:
return tf.nest.map_structure(lambda t: list(tf.shape(t).numpy()), x)
def pad_axis(x, padding=(0, 0), axis=0, **pad_kwargs):
n_end_dims = len(x.shape) - axis - 1
n_end_dims *= n_end_dims > 0
paddings = [[0, 0]] * axis + [list(padding)] + [[0, 0]] * n_end_dims
return tf.pad(x, paddings, **pad_kwargs)
def safe_divide(numerator, denominator, eps=1e-7):
safe_denominator = tf.where(denominator == 0.0, eps, denominator)
return numerator / safe_denominator | Apache License 2.0 |
usi-systems/p4benchmark | p4gen/p4template.py | control | python | def control(fwd_tbl, applies):
d = { 'fwd_tbl' : fwd_tbl, 'applies': applies }
return read_template('template/controls/ingress.txt', d) | This method returns the apply statement and apply forward_table used in the control flow
:param tbl_name: the name of the table
:type tbl_name: str
:param applies: the apply statement for other table
:type applies: str
:returns: str -- the code in plain text
:raises: None | https://github.com/usi-systems/p4benchmark/blob/e1b22c106c3458f757a362f57027670cee286c47/p4gen/p4template.py#L170-L183 | from string import Template
from pkg_resources import resource_string
def read_template(filename, binding={}):
src = Template(resource_string(__name__, filename))
return src.substitute(binding)
def p4_define():
p4_define = read_template('template/define.txt')
return p4_define
def ethernet_header():
return read_template('template/headers/ethernet.txt')
def ethernet():
ethernet_hdr = read_template('template/headers/ethernet.txt')
parse_eth = read_template('template/parsers/parse_ethernet.txt')
return (ethernet_hdr + parse_eth)
def ipv4(checksum=False):
ipv4_hdr = read_template('template/headers/ipv4.txt')
if checksum:
parse_ipv4 = read_template('template/parsers/parse_ipv4_checksum.txt')
else:
parse_ipv4 = read_template('template/parsers/parse_ipv4.txt')
return (ipv4_hdr + parse_ipv4)
def tcp():
tcp_hdr = read_template('template/headers/tcp.txt')
parse_tcp = read_template('template/parsers/parse_tcp.txt')
return (tcp_hdr + parse_tcp)
def nop_action():
return read_template('template/actions/nop.txt')
def forward_table():
d = { 'tbl_name': 'forward_table' }
return read_template('template/tables/forward_table.txt', d)
def add_table_no_match(tbl_name, actions='_nop;', tbl_size=1):
binding = {'tbl_name': tbl_name, 'actions': actions, 'tbl_size': tbl_size}
return read_template('template/tables/table_no_match.txt', binding)
def add_default_rule(tbl_name, default_action):
binding = {'tbl_name': tbl_name, 'default_action': default_action}
return read_template('template/commands/default_action.txt', binding)
def add_table(tbl_name, matches='', actions='', tbl_size=1):
binding = {
'tbl_name': tbl_name,
'matches' : matches,
'actions' : actions,
'tbl_size': tbl_size}
return read_template('template/tables/table.txt', binding)
def apply_table(tbl_name):
return read_template('template/controls/apply_table.txt', {'tbl_name': tbl_name}) | Apache License 2.0 |
huychau/drf-registration | drf_registration/api/register.py | ActivateView.get | python | def get(self, request, uidb64, token):
user = get_user_from_uid(uidb64)
if user and activation_token.check_token(user, token):
set_user_verified(user)
send_email_welcome(user)
if drfr_settings.USER_ACTIVATE_SUCCESS_TEMPLATE:
return render(request, drfr_settings.USER_ACTIVATE_SUCCESS_TEMPLATE)
return HttpResponse(_('Your account has been activate successfully.'))
if drfr_settings.USER_ACTIVATE_FAILED_TEMPLATE:
return render(request, drfr_settings.USER_ACTIVATE_FAILED_TEMPLATE)
return HttpResponse(
_('Either the provided activation token is invalid or this account has already been activated.')
) | Override to get the activation uid and token
Args:
request (object): Request object
uidb64 (string): The uid
token (string): The user token | https://github.com/huychau/drf-registration/blob/5327a3373306280f4e114a181b02ecc177cf602f/drf_registration/api/register.py#L91-L117 | from django.contrib.auth import password_validation
from django.http import HttpResponse
from django.shortcuts import render
from django.utils.translation import gettext as _
from django.views import View
from rest_framework import status
from rest_framework.generics import CreateAPIView
from rest_framework.response import Response
from rest_framework.views import APIView
from drf_registration.settings import drfr_settings
from drf_registration.tokens import activation_token
from drf_registration.utils.common import import_string, import_string_list
from drf_registration.utils.domain import get_current_domain
from drf_registration.utils.email import send_verify_email, send_email_welcome
from drf_registration.utils.users import (
get_user_profile_data,
get_user_serializer,
has_user_activate_token,
has_user_verify_code,
set_user_verified,
get_user_from_uid,
)
class RegisterSerializer(get_user_serializer()):
def validate_password(self, value):
password_validation.validate_password(value, self.instance)
return value
def create(self, validated_data):
user = super().create(validated_data)
user.set_password(validated_data['password'])
user_verified = not (has_user_activate_token() or has_user_verify_code())
set_user_verified(user, user_verified)
user.save()
return user
class RegisterView(CreateAPIView):
permission_classes = import_string_list(drfr_settings.REGISTER_PERMISSION_CLASSES)
serializer_class = import_string(drfr_settings.REGISTER_SERIALIZER)
def create(self, request, *args, **kwargs):
serializer = self.serializer_class(data=request.data)
serializer.is_valid(raise_exception=True)
user = serializer.save()
data = get_user_profile_data(user)
domain = get_current_domain(request)
if has_user_activate_token() or has_user_verify_code():
send_verify_email(user, domain)
else:
send_email_welcome(user)
return Response(data, status=status.HTTP_201_CREATED)
class VerifyView(APIView):
class ActivateView(View): | MIT License |
miyuchina/mistletoe | mistletoe/base_renderer.py | BaseRenderer.render_raw_text | python | def render_raw_text(self, token):
return token.content | Default render method for RawText. Simply return token.content. | https://github.com/miyuchina/mistletoe/blob/c6cfd1a615cd4907ab37c2e653fade7613fe979a/mistletoe/base_renderer.py#L141-L145 | import re
import sys
from mistletoe import block_token, span_token
class BaseRenderer(object):
_parse_name = re.compile(r"([A-Z][a-z]+|[A-Z]+(?![a-z]))")
def __init__(self, *extras):
self.render_map = {
'Strong': self.render_strong,
'Emphasis': self.render_emphasis,
'InlineCode': self.render_inline_code,
'RawText': self.render_raw_text,
'Strikethrough': self.render_strikethrough,
'Image': self.render_image,
'Link': self.render_link,
'AutoLink': self.render_auto_link,
'EscapeSequence': self.render_escape_sequence,
'Heading': self.render_heading,
'SetextHeading': self.render_heading,
'Quote': self.render_quote,
'Paragraph': self.render_paragraph,
'CodeFence': self.render_block_code,
'BlockCode': self.render_block_code,
'List': self.render_list,
'ListItem': self.render_list_item,
'Table': self.render_table,
'TableRow': self.render_table_row,
'TableCell': self.render_table_cell,
'ThematicBreak': self.render_thematic_break,
'LineBreak': self.render_line_break,
'Document': self.render_document,
}
self._extras = extras
for token in extras:
if issubclass(token, span_token.SpanToken):
token_module = span_token
else:
token_module = block_token
token_module.add_token(token)
render_func = getattr(self, self._cls_to_func(token.__name__))
self.render_map[token.__name__] = render_func
self.footnotes = {}
def render(self, token):
return self.render_map[token.__class__.__name__](token)
def render_inner(self, token):
return ''.join(map(self.render, token.children))
def __enter__(self):
return self
def __exit__(self, exception_type, exception_val, traceback):
block_token.reset_tokens()
span_token.reset_tokens()
@classmethod
def _cls_to_func(cls, cls_name):
snake = '_'.join(map(str.lower, cls._parse_name.findall(cls_name)))
return 'render_{}'.format(snake)
@staticmethod
def _tokens_from_module(module):
return [getattr(module, name) for name in module.__all__] | MIT License |
surfriderfoundationeurope/mot | src/mot/object_detection/modeling/model_fpn.py | fpn_map_rois_to_levels | python | def fpn_map_rois_to_levels(boxes):
sqrtarea = tf.sqrt(tf_area(boxes))
level = tf.cast(tf.floor(
4 + tf.log(sqrtarea * (1. / 224) + 1e-6) * (1.0 / np.log(2))), tf.int32)
level_ids = [
tf.where(level <= 2),
tf.where(tf.equal(level, 3)),
tf.where(tf.equal(level, 4)),
tf.where(level >= 5)]
level_ids = [tf.reshape(x, [-1], name='roi_level{}_id'.format(i + 2))
for i, x in enumerate(level_ids)]
num_in_levels = [tf.size(x, name='num_roi_level{}'.format(i + 2))
for i, x in enumerate(level_ids)]
add_moving_summary(*num_in_levels)
level_boxes = [tf.gather(boxes, ids) for ids in level_ids]
return level_ids, level_boxes | Assign boxes to level 2~5.
Args:
boxes (nx4):
Returns:
[tf.Tensor]: 4 tensors for level 2-5. Each tensor is a vector of indices of boxes in its level.
[tf.Tensor]: 4 tensors, the gathered boxes in each level.
Be careful that the returned tensor could be empty. | https://github.com/surfriderfoundationeurope/mot/blob/3434955863767736486bdd45caf33656b594face/src/mot/object_detection/modeling/model_fpn.py#L72-L102 | import itertools
import numpy as np
import tensorflow as tf
from tensorpack.models import Conv2D, FixedUnPooling, MaxPooling, layer_register
from tensorpack.tfutils.argscope import argscope
from tensorpack.tfutils.scope_utils import under_name_scope
from tensorpack.tfutils.summary import add_moving_summary
from tensorpack.tfutils.tower import get_current_tower_context
from tensorpack.utils.argtools import memoized
from mot.object_detection.config import config as cfg
from mot.object_detection.utils.box_ops import area as tf_area
from mot.object_detection.modeling.backbone import GroupNorm
from mot.object_detection.modeling.model_box import roi_align
from mot.object_detection.modeling.model_rpn import generate_rpn_proposals, rpn_losses, get_all_anchors
@layer_register(log_shape=True)
def fpn_model(features):
assert len(features) == 4, features
num_channel = cfg.FPN.NUM_CHANNEL
use_gn = cfg.FPN.NORM == 'GN'
def upsample2x(name, x):
try:
resize = tf.compat.v2.image.resize_images
with tf.name_scope(name):
shp2d = tf.shape(x)[2:]
x = tf.transpose(x, [0, 2, 3, 1])
x = resize(x, shp2d * 2, 'nearest')
x = tf.transpose(x, [0, 3, 1, 2])
return x
except AttributeError:
return FixedUnPooling(
name, x, 2, unpool_mat=np.ones((2, 2), dtype='float32'),
data_format='channels_first')
with argscope(Conv2D, data_format='channels_first',
activation=tf.identity, use_bias=True,
kernel_initializer=tf.variance_scaling_initializer(scale=1.)):
lat_2345 = [Conv2D('lateral_1x1_c{}'.format(i + 2), c, num_channel, 1)
for i, c in enumerate(features)]
if use_gn:
lat_2345 = [GroupNorm('gn_c{}'.format(i + 2), c) for i, c in enumerate(lat_2345)]
lat_sum_5432 = []
for idx, lat in enumerate(lat_2345[::-1]):
if idx == 0:
lat_sum_5432.append(lat)
else:
lat = lat + upsample2x('upsample_lat{}'.format(6 - idx), lat_sum_5432[-1])
lat_sum_5432.append(lat)
p2345 = [Conv2D('posthoc_3x3_p{}'.format(i + 2), c, num_channel, 3)
for i, c in enumerate(lat_sum_5432[::-1])]
if use_gn:
p2345 = [GroupNorm('gn_p{}'.format(i + 2), c) for i, c in enumerate(p2345)]
p6 = MaxPooling('maxpool_p6', p2345[-1], pool_size=1, strides=2, data_format='channels_first', padding='VALID')
return p2345 + [p6]
@under_name_scope() | MIT License |
rhyssiyan/der-classil.pytorch | inclearn/convnet/resnet.py | resnet50 | python | def resnet50(pretrained=False, **kwargs):
model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet50']))
return model | Constructs a ResNet-50 model. | https://github.com/rhyssiyan/der-classil.pytorch/blob/d711034c550bcac40a6ec7dfa1c65a79589efe93/inclearn/convnet/resnet.py#L215-L222 | import torch.nn as nn
import torch.utils.model_zoo as model_zoo
from torch.nn import functional as F
__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152']
model_urls = {
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
}
def conv3x3(in_planes, out_planes, stride=1):
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
def conv1x1(in_planes, out_planes, stride=1):
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None, remove_last_relu=False):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
self.remove_last_relu = remove_last_relu
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
if not self.remove_last_relu:
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = conv1x1(inplanes, planes)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = conv3x3(planes, planes, stride)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = conv1x1(planes, planes * self.expansion)
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self,
block,
layers,
nf=64,
zero_init_residual=True,
dataset='cifar',
start_class=0,
remove_last_relu=False):
super(ResNet, self).__init__()
self.remove_last_relu = remove_last_relu
self.inplanes = nf
if 'cifar' in dataset:
self.conv1 = nn.Sequential(nn.Conv2d(3, nf, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(nf), nn.ReLU(inplace=True))
elif 'imagenet' in dataset:
if start_class == 0:
self.conv1 = nn.Sequential(
nn.Conv2d(3, nf, kernel_size=7, stride=2, padding=3, bias=False),
nn.BatchNorm2d(nf),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
)
else:
self.conv1 = nn.Sequential(
nn.Conv2d(3, nf, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(nf),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
)
self.layer1 = self._make_layer(block, 1 * nf, layers[0])
self.layer2 = self._make_layer(block, 2 * nf, layers[1], stride=2)
self.layer3 = self._make_layer(block, 4 * nf, layers[2], stride=2)
self.layer4 = self._make_layer(block, 8 * nf, layers[3], stride=2, remove_last_relu=remove_last_relu)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.out_dim = 8 * nf * block.expansion
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
if zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck):
nn.init.constant_(m.bn3.weight, 0)
elif isinstance(m, BasicBlock):
nn.init.constant_(m.bn2.weight, 0)
def _make_layer(self, block, planes, blocks, remove_last_relu=False, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
if remove_last_relu:
for i in range(1, blocks - 1):
layers.append(block(self.inplanes, planes))
layers.append(block(self.inplanes, planes, remove_last_relu=True))
else:
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def reset_bn(self):
for m in self.modules():
if isinstance(m, nn.BatchNorm2d):
m.reset_running_stats()
def forward(self, x):
x = self.conv1(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
return x
def resnet18(pretrained=False, **kwargs):
model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet18']))
return model
def resnet34(pretrained=False, **kwargs):
model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet34']))
return model | MIT License |
marcelm/xopen | src/xopen/__init__.py | PipedCompressionReader.__init__ | python | def __init__(
self,
path,
program_args: List[str],
mode: str = "r",
threads_flag: Optional[str] = None,
threads: Optional[int] = None,
):
if mode not in ('r', 'rt', 'rb'):
raise ValueError("Mode is '{}', but it must be 'r', 'rt' or 'rb'".format(mode))
self._program_args = program_args
program_args = program_args + ['-cd', path]
if threads_flag is not None:
if threads is None:
threads = 1
program_args += [f"{threads_flag}{threads}"]
self._threads = threads
self.process = Popen(program_args, stdout=PIPE, stderr=PIPE)
self.name = path
assert self.process.stdout is not None
_set_pipe_size_to_max(self.process.stdout.fileno())
self._mode = mode
if 'b' not in mode:
self._file: IO = io.TextIOWrapper(self.process.stdout)
else:
self._file = self.process.stdout
self.closed = False
self._wait_for_output_or_process_exit()
self._raise_if_error() | Raise an OSError when pigz could not be found. | https://github.com/marcelm/xopen/blob/793018655f41642a9037129338ce6ae8db289feb/src/xopen/__init__.py#L260-L300 | __all__ = [
"xopen",
"PipedGzipReader",
"PipedGzipWriter",
"PipedIGzipReader",
"PipedIGzipWriter",
"PipedPigzReader",
"PipedPigzWriter",
"PipedPBzip2Reader",
"PipedPBzip2Writer",
"PipedPythonIsalReader",
"PipedPythonIsalWriter",
"__version__",
]
import gzip
import sys
import io
import os
import bz2
import lzma
import stat
import signal
import pathlib
import subprocess
import tempfile
import time
from abc import ABC, abstractmethod
from subprocess import Popen, PIPE, DEVNULL
from typing import Optional, TextIO, AnyStr, IO, List, Set
from ._version import version as __version__
try:
from isal import igzip, isal_zlib
except ImportError:
igzip = None
isal_zlib = None
try:
import fcntl
if not hasattr(fcntl, "F_SETPIPE_SZ") and sys.platform == "linux":
setattr(fcntl, "F_SETPIPE_SZ", 1031)
except ImportError:
fcntl = None
_MAX_PIPE_SIZE_PATH = pathlib.Path("/proc/sys/fs/pipe-max-size")
try:
_MAX_PIPE_SIZE = int(_MAX_PIPE_SIZE_PATH.read_text())
except OSError:
_MAX_PIPE_SIZE = None
def _available_cpu_count() -> int:
try:
return len(os.sched_getaffinity(0))
except AttributeError:
pass
import re
try:
with open('/proc/self/status') as f:
status = f.read()
m = re.search(r'(?m)^Cpus_allowed:\s*(.*)$', status)
if m:
res = bin(int(m.group(1).replace(',', ''), 16)).count('1')
if res > 0:
return res
except OSError:
pass
try:
import multiprocessing
return multiprocessing.cpu_count()
except (ImportError, NotImplementedError):
return 1
def _set_pipe_size_to_max(fd: int) -> None:
if not hasattr(fcntl, "F_SETPIPE_SZ") or not _MAX_PIPE_SIZE:
return
try:
fcntl.fcntl(fd, fcntl.F_SETPIPE_SZ, _MAX_PIPE_SIZE)
except OSError:
pass
def _can_read_concatenated_gz(program: str) -> bool:
fd, temp_path = tempfile.mkstemp(suffix=".gz", prefix="xopen.")
try:
with open(temp_path, "wb") as temp_file:
temp_file.write(gzip.compress(b"AB") + gzip.compress(b"CD"))
try:
result = subprocess.run([program, "-c", "-d", temp_path],
check=True, stderr=PIPE, stdout=PIPE)
return result.stdout == b"ABCD"
except subprocess.CalledProcessError:
return False
finally:
os.close(fd)
os.remove(temp_path)
class Closing(ABC):
def __enter__(self):
return self
def __exit__(self, *exc_info):
self.close()
def __del__(self):
try:
self.close()
except Exception:
pass
@abstractmethod
def close(self):
class PipedCompressionWriter(Closing):
def __init__(self, path, program_args: List[str], mode='wt',
compresslevel: Optional[int] = None,
threads_flag: Optional[str] = None,
threads: Optional[int] = None):
if mode not in ('w', 'wt', 'wb', 'a', 'at', 'ab'):
raise ValueError(
"Mode is '{}', but it must be 'w', 'wt', 'wb', 'a', 'at' or 'ab'".format(mode))
self.outfile = open(path, mode)
self.closed: bool = False
self.name: str = path
self._mode: str = mode
self._program_args: List[str] = program_args
self._threads_flag: Optional[str] = threads_flag
if threads is None:
threads = min(_available_cpu_count(), 4)
self._threads = threads
try:
self.process = self._open_process(
mode, compresslevel, threads, self.outfile)
except OSError:
self.outfile.close()
raise
assert self.process.stdin is not None
_set_pipe_size_to_max(self.process.stdin.fileno())
if 'b' not in mode:
self._file = io.TextIOWrapper(self.process.stdin)
else:
self._file = self.process.stdin
def __repr__(self):
return "{}('{}', mode='{}', program='{}', threads={})".format(
self.__class__.__name__,
self.name,
self._mode,
" ".join(self._program_args),
self._threads,
)
def _open_process(
self, mode: str, compresslevel: Optional[int], threads: int, outfile: TextIO,
) -> Popen:
program_args: List[str] = self._program_args[:]
if threads != 0 and self._threads_flag is not None:
program_args += [f"{self._threads_flag}{threads}"]
extra_args = []
if 'w' in mode and compresslevel is not None:
extra_args += ['-' + str(compresslevel)]
kwargs = dict(stdin=PIPE, stdout=outfile, stderr=DEVNULL)
if sys.platform != 'win32':
kwargs['close_fds'] = True
process = Popen(program_args + extra_args, **kwargs)
return process
def write(self, arg: AnyStr) -> None:
self._file.write(arg)
def close(self) -> None:
if self.closed:
return
self.closed = True
self._file.close()
retcode = self.process.wait()
self.outfile.close()
if retcode != 0:
raise OSError(
"Output {} process terminated with exit code {}".format(
" ".join(self._program_args), retcode))
def __iter__(self):
return self
def __next__(self):
raise io.UnsupportedOperation('not readable')
class PipedCompressionReader(Closing):
_allowed_exit_code: Optional[int] = -signal.SIGTERM
_allowed_exit_message: Optional[bytes] = None | MIT License |
fichtefoll/filehistory | file_history.py | FileHistory.__init__ | python | def __init__(self):
self.__load_settings()
self.__load_history()
self.__clear_context()
if self.DELETE_ALL_ON_STARTUP:
sublime.set_timeout_async(lambda: self.delete_all_history(), 0)
elif self.CLEANUP_ON_STARTUP:
sublime.set_timeout_async(lambda: self.clean_history(False), 0) | Class to manage the file-access history | https://github.com/fichtefoll/filehistory/blob/afb0fdeaeb21ee5dd87b384c2fafabd7d206319f/file_history.py#L33-L42 | import os
import hashlib
import json
import time
import re
import shutil
import glob
from textwrap import dedent
import sublime
import sublime_plugin
class Singleton(type):
_instance = None
def __call__(cls, *args, **kwargs):
if not cls._instance:
cls._instance = super(Singleton, cls).__call__(*args, **kwargs)
return cls._instance
class FileHistory(metaclass=Singleton):
SETTINGS_CALLBACK_KEY = 'FileHistory-reload'
PRINT_DEBUG = False
SETTINGS_FILE = 'FileHistory.sublime-settings'
INDENT_SIZE = 2
DEFAULT_TIMESTAMP_FORMAT = '%Y-%m-%d @ %H:%M:%S'
OLD_DEFAULT_TIMESTAMP_FORMAT = '%Y-%m-%d %H:%M:%S' | MIT License |
datastax/python-driver | tests/unit/test_types.py | DateRangeDeserializationTests._deserialize_date_range | python | def _deserialize_date_range(self, truncate_kwargs, precision,
round_up_truncated_upper_value, increment_loop_variable):
def truncate_date(number):
dt = datetime.datetime.fromtimestamp(number / 1000.0, tz=utc_timezone)
dt = dt.replace(**truncate_kwargs)
return round((dt - self.epoch).total_seconds() * 1000.0)
for i in range(1000):
lower_value = increment_loop_variable(self.starting_lower_value, i)
upper_value = increment_loop_variable(self.starting_upper_value, i)
dr = DateRange(DateRangeBound(lower_value, precision),
DateRangeBound(upper_value, precision))
self.assertEqual(truncate_date(lower_value), dr.lower_bound.milliseconds)
upper_value = round_up_truncated_upper_value(truncate_date(upper_value))
self.assertEqual(upper_value, dr.upper_bound.milliseconds) | This functions iterates over several DateRange objects determined by
lower_value upper_value which are given as a value that represents seconds since the epoch.
We want to make sure the lower_value is correctly rounded down and the upper value is correctly rounded up.
In the case of rounding down we verify that the rounded down value
has the appropriate fields set to the minimum they could possible have. That is
1 for months, 1 for days, 0 for hours, 0 for minutes, 0 for seconds, 0 for microseconds.
We use the generic function truncate_date which depends on truncate_kwargs for this
In the case of rounding up we verify that the rounded up value has the appropriate fields set
to the maximum they could possible have. This is calculated by round_up_truncated_upper_value
which input is the truncated value from before. It is passed as an argument as the way
of calculating this is is different for every precision.
:param truncate_kwargs: determine what values to truncate in truncate_date
:param precision: :class:`~util.DateRangePrecision`
:param round_up_truncated_upper_value: this is a function that gets a truncated date and
returns a new date with some fields set to the maximum possible value
:param increment_loop_variable: this is a function that given a starting value and the iteration
value returns a new date to serve as lower_bound/upper_bound. We need this because the value by which
dates are incremented depends on if the precision is seconds, minutes, hours, days and months
:return: | https://github.com/datastax/python-driver/blob/12a8adce943fe37a05ad6580e8bd302b65c2d93a/tests/unit/test_types.py#L766-L816 | try:
import unittest2 as unittest
except ImportError:
import unittest
import datetime
import tempfile
import time
from binascii import unhexlify
import six
import cassandra
from cassandra import util
from cassandra.cqltypes import (
CassandraType, DateRangeType, DateType, DecimalType,
EmptyValue, LongType, SetType, UTF8Type,
cql_typename, int8_pack, int64_pack, lookup_casstype,
lookup_casstype_simple, parse_casstype_args,
int32_pack, Int32Type, ListType, MapType
)
from cassandra.encoder import cql_quote
from cassandra.pool import Host
from cassandra.metadata import Token
from cassandra.policies import ConvictionPolicy, SimpleConvictionPolicy
from cassandra.protocol import (
read_inet, read_longstring, read_string,
read_stringmap, write_inet, write_longstring,
write_string, write_stringmap
)
from cassandra.query import named_tuple_factory
from cassandra.util import (
OPEN_BOUND, Date, DateRange, DateRangeBound,
DateRangePrecision, Time, ms_timestamp_from_datetime,
datetime_from_timestamp
)
from tests.unit.util import check_sequence_consistency
class TypeTests(unittest.TestCase):
def test_lookup_casstype_simple(self):
self.assertEqual(lookup_casstype_simple('AsciiType'), cassandra.cqltypes.AsciiType)
self.assertEqual(lookup_casstype_simple('LongType'), cassandra.cqltypes.LongType)
self.assertEqual(lookup_casstype_simple('BytesType'), cassandra.cqltypes.BytesType)
self.assertEqual(lookup_casstype_simple('BooleanType'), cassandra.cqltypes.BooleanType)
self.assertEqual(lookup_casstype_simple('CounterColumnType'), cassandra.cqltypes.CounterColumnType)
self.assertEqual(lookup_casstype_simple('DecimalType'), cassandra.cqltypes.DecimalType)
self.assertEqual(lookup_casstype_simple('DoubleType'), cassandra.cqltypes.DoubleType)
self.assertEqual(lookup_casstype_simple('FloatType'), cassandra.cqltypes.FloatType)
self.assertEqual(lookup_casstype_simple('InetAddressType'), cassandra.cqltypes.InetAddressType)
self.assertEqual(lookup_casstype_simple('Int32Type'), cassandra.cqltypes.Int32Type)
self.assertEqual(lookup_casstype_simple('UTF8Type'), cassandra.cqltypes.UTF8Type)
self.assertEqual(lookup_casstype_simple('DateType'), cassandra.cqltypes.DateType)
self.assertEqual(lookup_casstype_simple('SimpleDateType'), cassandra.cqltypes.SimpleDateType)
self.assertEqual(lookup_casstype_simple('ByteType'), cassandra.cqltypes.ByteType)
self.assertEqual(lookup_casstype_simple('ShortType'), cassandra.cqltypes.ShortType)
self.assertEqual(lookup_casstype_simple('TimeUUIDType'), cassandra.cqltypes.TimeUUIDType)
self.assertEqual(lookup_casstype_simple('TimeType'), cassandra.cqltypes.TimeType)
self.assertEqual(lookup_casstype_simple('UUIDType'), cassandra.cqltypes.UUIDType)
self.assertEqual(lookup_casstype_simple('IntegerType'), cassandra.cqltypes.IntegerType)
self.assertEqual(lookup_casstype_simple('MapType'), cassandra.cqltypes.MapType)
self.assertEqual(lookup_casstype_simple('ListType'), cassandra.cqltypes.ListType)
self.assertEqual(lookup_casstype_simple('SetType'), cassandra.cqltypes.SetType)
self.assertEqual(lookup_casstype_simple('CompositeType'), cassandra.cqltypes.CompositeType)
self.assertEqual(lookup_casstype_simple('ColumnToCollectionType'), cassandra.cqltypes.ColumnToCollectionType)
self.assertEqual(lookup_casstype_simple('ReversedType'), cassandra.cqltypes.ReversedType)
self.assertEqual(lookup_casstype_simple('DurationType'), cassandra.cqltypes.DurationType)
self.assertEqual(lookup_casstype_simple('DateRangeType'), cassandra.cqltypes.DateRangeType)
self.assertEqual(str(lookup_casstype_simple('unknown')), str(cassandra.cqltypes.mkUnrecognizedType('unknown')))
def test_lookup_casstype(self):
self.assertEqual(lookup_casstype('AsciiType'), cassandra.cqltypes.AsciiType)
self.assertEqual(lookup_casstype('LongType'), cassandra.cqltypes.LongType)
self.assertEqual(lookup_casstype('BytesType'), cassandra.cqltypes.BytesType)
self.assertEqual(lookup_casstype('BooleanType'), cassandra.cqltypes.BooleanType)
self.assertEqual(lookup_casstype('CounterColumnType'), cassandra.cqltypes.CounterColumnType)
self.assertEqual(lookup_casstype('DateType'), cassandra.cqltypes.DateType)
self.assertEqual(lookup_casstype('DecimalType'), cassandra.cqltypes.DecimalType)
self.assertEqual(lookup_casstype('DoubleType'), cassandra.cqltypes.DoubleType)
self.assertEqual(lookup_casstype('FloatType'), cassandra.cqltypes.FloatType)
self.assertEqual(lookup_casstype('InetAddressType'), cassandra.cqltypes.InetAddressType)
self.assertEqual(lookup_casstype('Int32Type'), cassandra.cqltypes.Int32Type)
self.assertEqual(lookup_casstype('UTF8Type'), cassandra.cqltypes.UTF8Type)
self.assertEqual(lookup_casstype('DateType'), cassandra.cqltypes.DateType)
self.assertEqual(lookup_casstype('TimeType'), cassandra.cqltypes.TimeType)
self.assertEqual(lookup_casstype('ByteType'), cassandra.cqltypes.ByteType)
self.assertEqual(lookup_casstype('ShortType'), cassandra.cqltypes.ShortType)
self.assertEqual(lookup_casstype('TimeUUIDType'), cassandra.cqltypes.TimeUUIDType)
self.assertEqual(lookup_casstype('UUIDType'), cassandra.cqltypes.UUIDType)
self.assertEqual(lookup_casstype('IntegerType'), cassandra.cqltypes.IntegerType)
self.assertEqual(lookup_casstype('MapType'), cassandra.cqltypes.MapType)
self.assertEqual(lookup_casstype('ListType'), cassandra.cqltypes.ListType)
self.assertEqual(lookup_casstype('SetType'), cassandra.cqltypes.SetType)
self.assertEqual(lookup_casstype('CompositeType'), cassandra.cqltypes.CompositeType)
self.assertEqual(lookup_casstype('ColumnToCollectionType'), cassandra.cqltypes.ColumnToCollectionType)
self.assertEqual(lookup_casstype('ReversedType'), cassandra.cqltypes.ReversedType)
self.assertEqual(lookup_casstype('DurationType'), cassandra.cqltypes.DurationType)
self.assertEqual(lookup_casstype('DateRangeType'), cassandra.cqltypes.DateRangeType)
self.assertEqual(str(lookup_casstype('unknown')), str(cassandra.cqltypes.mkUnrecognizedType('unknown')))
self.assertRaises(ValueError, lookup_casstype, 'AsciiType~')
def test_casstype_parameterized(self):
self.assertEqual(LongType.cass_parameterized_type_with(()), 'LongType')
self.assertEqual(LongType.cass_parameterized_type_with((), full=True), 'org.apache.cassandra.db.marshal.LongType')
self.assertEqual(SetType.cass_parameterized_type_with([DecimalType], full=True), 'org.apache.cassandra.db.marshal.SetType(org.apache.cassandra.db.marshal.DecimalType)')
self.assertEqual(LongType.cql_parameterized_type(), 'bigint')
subtypes = (cassandra.cqltypes.UTF8Type, cassandra.cqltypes.UTF8Type)
self.assertEqual('map<text, text>',
cassandra.cqltypes.MapType.apply_parameters(subtypes).cql_parameterized_type())
def test_datetype_from_string(self):
for format in cassandra.cqltypes.cql_timestamp_formats:
date_string = str(datetime.datetime.now().strftime(format))
cassandra.cqltypes.DateType.interpret_datestring(date_string)
def test_cql_typename(self):
self.assertEqual(cql_typename('DateType'), 'timestamp')
self.assertEqual(cql_typename('org.apache.cassandra.db.marshal.ListType(IntegerType)'), 'list<varint>')
def test_named_tuple_colname_substitution(self):
colnames = ("func(abc)", "[applied]", "func(func(abc))", "foo_bar", "foo_bar_")
rows = [(1, 2, 3, 4, 5)]
result = named_tuple_factory(colnames, rows)[0]
self.assertEqual(result[0], result.func_abc)
self.assertEqual(result[1], result.applied)
self.assertEqual(result[2], result.func_func_abc)
self.assertEqual(result[3], result.foo_bar)
self.assertEqual(result[4], result.foo_bar_)
def test_parse_casstype_args(self):
class FooType(CassandraType):
typename = 'org.apache.cassandra.db.marshal.FooType'
def __init__(self, subtypes, names):
self.subtypes = subtypes
self.names = names
@classmethod
def apply_parameters(cls, subtypes, names):
return cls(subtypes, [unhexlify(six.b(name)) if name is not None else name for name in names])
class BarType(FooType):
typename = 'org.apache.cassandra.db.marshal.BarType'
ctype = parse_casstype_args(''.join((
'org.apache.cassandra.db.marshal.FooType(',
'63697479:org.apache.cassandra.db.marshal.UTF8Type,',
'BarType(61646472657373:org.apache.cassandra.db.marshal.UTF8Type),',
'7a6970:org.apache.cassandra.db.marshal.UTF8Type',
')')))
self.assertEqual(FooType, ctype.__class__)
self.assertEqual(UTF8Type, ctype.subtypes[0])
self.assertIsInstance(ctype.subtypes[1], BarType)
self.assertEqual([UTF8Type], ctype.subtypes[1].subtypes)
self.assertEqual([b"address"], ctype.subtypes[1].names)
self.assertEqual(UTF8Type, ctype.subtypes[2])
self.assertEqual([b'city', None, b'zip'], ctype.names)
def test_empty_value(self):
self.assertEqual(str(EmptyValue()), 'EMPTY')
def test_datetype(self):
now_time_seconds = time.time()
now_datetime = datetime.datetime.utcfromtimestamp(now_time_seconds)
now_timestamp = now_time_seconds * 1e3
self.assertEqual(DateType.serialize(now_datetime, 0), DateType.serialize(now_timestamp, 0))
expected = 0
self.assertEqual(DateType.deserialize(int64_pack(1000 * expected), 0), datetime.datetime.utcfromtimestamp(expected))
expected = 2 ** 33
self.assertEqual(DateType.deserialize(int64_pack(1000 * expected), 0), datetime.datetime(2242, 3, 16, 12, 56, 32))
expected = -770172256
self.assertEqual(DateType.deserialize(int64_pack(1000 * expected), 0), datetime.datetime(1945, 8, 5, 23, 15, 44))
expected = 1424817268.274
self.assertEqual(DateType.deserialize(int64_pack(int(1000 * expected)), 0), datetime.datetime(2015, 2, 24, 22, 34, 28, 274000))
expected = 2177403010.123
self.assertEqual(DateType.deserialize(int64_pack(int(1000 * expected)), 0), datetime.datetime(2038, 12, 31, 10, 10, 10, 123000))
def test_collection_null_support(self):
int_list = ListType.apply_parameters([Int32Type])
value = (
int32_pack(2) +
int32_pack(-1) +
int32_pack(4) +
int32_pack(42)
)
self.assertEqual(
[None, 42],
int_list.deserialize(value, 3)
)
set_list = SetType.apply_parameters([Int32Type])
self.assertEqual(
{None, 42},
set(set_list.deserialize(value, 3))
)
value = (
int32_pack(2) +
int32_pack(4) +
int32_pack(42) +
int32_pack(-1) +
int32_pack(-1) +
int32_pack(4) +
int32_pack(42)
)
map_list = MapType.apply_parameters([Int32Type, Int32Type])
self.assertEqual(
[(42, None), (None, 42)],
map_list.deserialize(value, 3)._items
)
def test_write_read_string(self):
with tempfile.TemporaryFile() as f:
value = u'test'
write_string(f, value)
f.seek(0)
self.assertEqual(read_string(f), value)
def test_write_read_longstring(self):
with tempfile.TemporaryFile() as f:
value = u'test'
write_longstring(f, value)
f.seek(0)
self.assertEqual(read_longstring(f), value)
def test_write_read_stringmap(self):
with tempfile.TemporaryFile() as f:
value = {'key': 'value'}
write_stringmap(f, value)
f.seek(0)
self.assertEqual(read_stringmap(f), value)
def test_write_read_inet(self):
with tempfile.TemporaryFile() as f:
value = ('192.168.1.1', 9042)
write_inet(f, value)
f.seek(0)
self.assertEqual(read_inet(f), value)
with tempfile.TemporaryFile() as f:
value = ('2001:db8:0:f101::1', 9042)
write_inet(f, value)
f.seek(0)
self.assertEqual(read_inet(f), value)
def test_cql_quote(self):
self.assertEqual(cql_quote(u'test'), "'test'")
self.assertEqual(cql_quote('test'), "'test'")
self.assertEqual(cql_quote(0), '0')
ZERO = datetime.timedelta(0)
class UTC(datetime.tzinfo):
def utcoffset(self, dt):
return ZERO
def tzname(self, dt):
return "UTC"
def dst(self, dt):
return ZERO
try:
utc_timezone = datetime.timezone.utc
except AttributeError:
utc_timezone = UTC()
class DateRangeTypeTests(unittest.TestCase):
dt = datetime.datetime(1990, 2, 3, 13, 58, 45, 777777)
timestamp = 1485963732404
def test_month_rounding_creation_failure(self):
feb_stamp = ms_timestamp_from_datetime(
datetime.datetime(2018, 2, 25, 18, 59, 59, 0)
)
dr = DateRange(OPEN_BOUND,
DateRangeBound(feb_stamp, DateRangePrecision.MONTH))
dt = datetime_from_timestamp(dr.upper_bound.milliseconds / 1000)
self.assertEqual(dt.day, 28)
feb_stamp_leap_year = ms_timestamp_from_datetime(
datetime.datetime(2016, 2, 25, 18, 59, 59, 0)
)
dr = DateRange(OPEN_BOUND,
DateRangeBound(feb_stamp_leap_year, DateRangePrecision.MONTH))
dt = datetime_from_timestamp(dr.upper_bound.milliseconds / 1000)
self.assertEqual(dt.day, 29)
def test_decode_precision(self):
self.assertEqual(DateRangeType._decode_precision(6), 'MILLISECOND')
def test_decode_precision_error(self):
with self.assertRaises(ValueError):
DateRangeType._decode_precision(-1)
def test_encode_precision(self):
self.assertEqual(DateRangeType._encode_precision('SECOND'), 5)
def test_encode_precision_error(self):
with self.assertRaises(ValueError):
DateRangeType._encode_precision('INVALID')
def test_deserialize_single_value(self):
serialized = (int8_pack(0) +
int64_pack(self.timestamp) +
int8_pack(3))
self.assertEqual(
DateRangeType.deserialize(serialized, 5),
util.DateRange(value=util.DateRangeBound(
value=datetime.datetime(2017, 2, 1, 15, 42, 12, 404000),
precision='HOUR')
)
)
def test_deserialize_closed_range(self):
serialized = (int8_pack(1) +
int64_pack(self.timestamp) +
int8_pack(2) +
int64_pack(self.timestamp) +
int8_pack(6))
self.assertEqual(
DateRangeType.deserialize(serialized, 5),
util.DateRange(
lower_bound=util.DateRangeBound(
value=datetime.datetime(2017, 2, 1, 0, 0),
precision='DAY'
),
upper_bound=util.DateRangeBound(
value=datetime.datetime(2017, 2, 1, 15, 42, 12, 404000),
precision='MILLISECOND'
)
)
)
def test_deserialize_open_high(self):
serialized = (int8_pack(2) +
int64_pack(self.timestamp) +
int8_pack(3))
deserialized = DateRangeType.deserialize(serialized, 5)
self.assertEqual(
deserialized,
util.DateRange(
lower_bound=util.DateRangeBound(
value=datetime.datetime(2017, 2, 1, 15, 0),
precision='HOUR'
),
upper_bound=util.OPEN_BOUND
)
)
def test_deserialize_open_low(self):
serialized = (int8_pack(3) +
int64_pack(self.timestamp) +
int8_pack(4))
deserialized = DateRangeType.deserialize(serialized, 5)
self.assertEqual(
deserialized,
util.DateRange(
lower_bound=util.OPEN_BOUND,
upper_bound=util.DateRangeBound(
value=datetime.datetime(2017, 2, 1, 15, 42, 20, 1000),
precision='MINUTE'
)
)
)
def test_deserialize_single_open(self):
self.assertEqual(
util.DateRange(value=util.OPEN_BOUND),
DateRangeType.deserialize(int8_pack(5), 5)
)
def test_serialize_single_value(self):
serialized = (int8_pack(0) +
int64_pack(self.timestamp) +
int8_pack(5))
deserialized = DateRangeType.deserialize(serialized, 5)
self.assertEqual(
deserialized,
util.DateRange(
value=util.DateRangeBound(
value=datetime.datetime(2017, 2, 1, 15, 42, 12),
precision='SECOND'
)
)
)
def test_serialize_closed_range(self):
serialized = (int8_pack(1) +
int64_pack(self.timestamp) +
int8_pack(5) +
int64_pack(self.timestamp) +
int8_pack(0))
deserialized = DateRangeType.deserialize(serialized, 5)
self.assertEqual(
deserialized,
util.DateRange(
lower_bound=util.DateRangeBound(
value=datetime.datetime(2017, 2, 1, 15, 42, 12),
precision='SECOND'
),
upper_bound=util.DateRangeBound(
value=datetime.datetime(2017, 12, 31),
precision='YEAR'
)
)
)
def test_serialize_open_high(self):
serialized = (int8_pack(2) +
int64_pack(self.timestamp) +
int8_pack(2))
deserialized = DateRangeType.deserialize(serialized, 5)
self.assertEqual(
deserialized,
util.DateRange(
lower_bound=util.DateRangeBound(
value=datetime.datetime(2017, 2, 1),
precision='DAY'
),
upper_bound=util.OPEN_BOUND
)
)
def test_serialize_open_low(self):
serialized = (int8_pack(2) +
int64_pack(self.timestamp) +
int8_pack(3))
deserialized = DateRangeType.deserialize(serialized, 5)
self.assertEqual(
deserialized,
util.DateRange(
lower_bound=util.DateRangeBound(
value=datetime.datetime(2017, 2, 1, 15),
precision='HOUR'
),
upper_bound=util.OPEN_BOUND
)
)
def test_deserialize_both_open(self):
serialized = (int8_pack(4))
deserialized = DateRangeType.deserialize(serialized, 5)
self.assertEqual(
deserialized,
util.DateRange(
lower_bound=util.OPEN_BOUND,
upper_bound=util.OPEN_BOUND
)
)
def test_serialize_single_open(self):
serialized = DateRangeType.serialize(util.DateRange(
value=util.OPEN_BOUND,
), 5)
self.assertEqual(int8_pack(5), serialized)
def test_serialize_both_open(self):
serialized = DateRangeType.serialize(util.DateRange(
lower_bound=util.OPEN_BOUND,
upper_bound=util.OPEN_BOUND
), 5)
self.assertEqual(int8_pack(4), serialized)
def test_failure_to_serialize_no_value_object(self):
self.assertRaises(ValueError, DateRangeType.serialize, object(), 5)
def test_failure_to_serialize_no_bounds_object(self):
class no_bounds_object(object):
value = lower_bound = None
self.assertRaises(ValueError, DateRangeType.serialize, no_bounds_object, 5)
def test_serialized_value_round_trip(self):
vals = [six.b('\x01\x00\x00\x01%\xe9a\xf9\xd1\x06\x00\x00\x01v\xbb>o\xff\x00'),
six.b('\x01\x00\x00\x00\xdcm\x03-\xd1\x06\x00\x00\x01v\xbb>o\xff\x00')]
for serialized in vals:
self.assertEqual(
serialized,
DateRangeType.serialize(DateRangeType.deserialize(serialized, 0), 0)
)
def test_serialize_zero_datetime(self):
DateRangeType.serialize(util.DateRange(
lower_bound=(datetime.datetime(1970, 1, 1), 'YEAR'),
upper_bound=(datetime.datetime(1970, 1, 1), 'YEAR')
), 5)
def test_deserialize_zero_datetime(self):
DateRangeType.deserialize(
(int8_pack(1) +
int64_pack(0) + int8_pack(0) +
int64_pack(0) + int8_pack(0)),
5
)
class DateRangeDeserializationTests(unittest.TestCase):
starting_lower_value = 1514744108923
starting_upper_value = 2148761288922
epoch = datetime.datetime(1970, 1, 1, tzinfo=utc_timezone)
def test_deserialize_date_range_milliseconds(self):
for i in range(1000):
lower_value = self.starting_lower_value + i
upper_value = self.starting_upper_value + i
dr = DateRange(DateRangeBound(lower_value, DateRangePrecision.MILLISECOND),
DateRangeBound(upper_value, DateRangePrecision.MILLISECOND))
self.assertEqual(lower_value, dr.lower_bound.milliseconds)
self.assertEqual(upper_value, dr.upper_bound.milliseconds)
def test_deserialize_date_range_seconds(self):
def truncate_last_figures(number, n=3):
return int(str(number)[:-n] + '0' * n)
for i in range(1000):
lower_value = self.starting_lower_value + i * 900
upper_value = self.starting_upper_value + i * 900
dr = DateRange(DateRangeBound(lower_value, DateRangePrecision.SECOND),
DateRangeBound(upper_value, DateRangePrecision.SECOND))
self.assertEqual(truncate_last_figures(lower_value), dr.lower_bound.milliseconds)
upper_value = truncate_last_figures(upper_value) + 999
self.assertEqual(upper_value, dr.upper_bound.milliseconds)
def test_deserialize_date_range_minutes(self):
self._deserialize_date_range({"second": 0, "microsecond": 0},
DateRangePrecision.MINUTE,
lambda x: x + 59 * 1000 + 999,
lambda original_value, i: original_value + i * 900 * 50)
def test_deserialize_date_range_hours(self):
self._deserialize_date_range({"minute": 0, "second": 0, "microsecond": 0},
DateRangePrecision.HOUR,
lambda x: x +
59 * 60 * 1000 +
59 * 1000 +
999,
lambda original_value, i: original_value + i * 900 * 50 * 60)
def test_deserialize_date_range_day(self):
self._deserialize_date_range({"hour": 0, "minute": 0, "second": 0, "microsecond": 0},
DateRangePrecision.DAY,
lambda x: x +
23 * 60 * 60 * 1000 +
59 * 60 * 1000 +
59 * 1000 +
999,
lambda original_value, i: original_value + i * 900 * 50 * 60 * 24)
@unittest.skip("This is currently failig, see PYTHON-912")
def test_deserialize_date_range_month(self):
def get_upper_bound(seconds):
dt = datetime.datetime.fromtimestamp(seconds / 1000.0, tz=utc_timezone)
dt = dt + datetime.timedelta(days=32)
dt = dt.replace(day=1) - datetime.timedelta(microseconds=1)
return int((dt - self.epoch).total_seconds() * 1000)
self._deserialize_date_range({"day": 1, "hour": 0, "minute": 0, "second": 0, "microsecond": 0},
DateRangePrecision.MONTH,
get_upper_bound,
lambda original_value, i: original_value + i * 900 * 50 * 60 * 24 * 30)
def test_deserialize_date_range_year(self):
def get_upper_bound(seconds):
dt = datetime.datetime.fromtimestamp(seconds / 1000.0, tz=utc_timezone)
dt = dt + datetime.timedelta(days=370)
dt = dt.replace(day=1) - datetime.timedelta(microseconds=1)
diff = time.mktime(dt.timetuple()) - time.mktime(self.epoch.timetuple())
return diff * 1000 + 999
self._deserialize_date_range({"month": 1, "day": 1, "hour": 0, "minute": 0, "second": 0, "microsecond": 0},
DateRangePrecision.YEAR,
get_upper_bound,
lambda original_value, i: original_value + i * 900 * 50 * 60 * 24 * 30 * 12 * 7) | Apache License 2.0 |
tylerbutler/engineer | engineer/plugins/core.py | JinjaEnvironmentPlugin.get_globals | python | def get_globals(cls):
return cls.globals | If required, subclasses can override this method to return a dict of functions to add to the Jinja
environment globally. The default implementation simply
returns :attr:`~engineer.plugins.JinjaEnvironmentPlugin.globals`. | https://github.com/tylerbutler/engineer/blob/1fdcae512a828ea681be8c469f6863b974260614/engineer/plugins/core.py#L307-L313 | import logging
__author__ = 'Tyler Butler <[email protected]>'
def find_plugins(entrypoint):
try:
import pkg_resources
except ImportError:
pkg_resources = None
if pkg_resources is None:
return
for entrypoint in pkg_resources.iter_entry_points(entrypoint):
yield entrypoint.name, entrypoint.load()
def load_plugins():
from engineer.plugins import bundled
for name, module in find_plugins('engineer.plugins'):
pass
def get_all_plugin_types():
return ThemeProvider, PostProcessor, CommandPlugin, JinjaEnvironmentPlugin
class PluginMount(type):
def __init__(cls, name, bases, attrs):
if not hasattr(cls, 'plugins'):
cls.plugins = []
else:
cls.plugins.append(cls)
class PluginMixin(object):
@classmethod
def get_name(cls):
return '.'.join([cls.__module__, cls.__name__])
@classmethod
def get_logger(cls):
return logging.getLogger(cls.get_name())
@classmethod
def handle_settings(cls, config_dict, settings):
return config_dict
class ThemeProvider(PluginMixin):
__metaclass__ = PluginMount
paths = ()
class PostProcessor(PluginMixin):
__metaclass__ = PluginMount
@classmethod
def preprocess(cls, post, metadata):
return post, metadata
@classmethod
def postprocess(cls, post):
return post
class CommandPlugin(PluginMixin):
__metaclass__ = PluginMount
@classmethod
def active(cls):
return True
@classmethod
def add_command(cls, subparser, main_parser, common_parser):
raise NotImplementedError()
class JinjaEnvironmentPlugin(PluginMixin):
__metaclass__ = PluginMount
filters = {}
globals = {}
@classmethod
def _add_filters(cls, jinja_env):
logger = cls.get_logger()
filters = cls.get_filters()
for filter_name, filter_function in filters.iteritems():
if filter_name in jinja_env.filters:
logger.warning("Jinja filter name conflict. "
"A plugin is trying to add a filter with a name that conflicts with an existing filter. "
"Filter name: %s" % filter_name)
else:
jinja_env.filters[filter_name] = filter_function
logger.debug("Registered Jinja filter: %s" % filter_name)
@classmethod
def _add_globals(cls, jinja_env):
logger = cls.get_logger()
global_list = cls.get_globals()
for global_name, the_global in global_list.iteritems():
if global_name in jinja_env.globals:
logger.warning("Jinja global name conflict. "
"A plugin is trying to add a global with a name that conflicts with an existing global. "
"Global name: %s" % global_name)
else:
jinja_env.globals[global_name] = the_global
logger.debug("Registered Jinja global: %s" % global_name)
@classmethod
def update_environment(cls, jinja_env):
cls._add_filters(jinja_env)
cls._add_globals(jinja_env)
@classmethod
def get_filters(cls):
return cls.filters
@classmethod | MIT License |
openschc/openschc | src/stats/statsct.py | Statsct.initialize | python | def initialize(init_time=None):
dprint('Init statsct module')
if init_time is None:
init_time = time.time()
Statsct.results['init_time'] = init_time
Statsct.results['packet_list'] = []
Statsct.sender_packets['packet_list'] = []
Statsct.receiver_packets['packet_list'] = []
Statsct.src_id = None
Statsct.dst_id = None
Statsct.device_rule = dict()
Statsct.gw_rule = dict()
Statsct.gw_rule['fragSender'] = []
Statsct.channel_occupancy = 0
Statsct.goodput = 0
Statsct.total_delay = 0
Statsct.reliability = 0
Statsct.total_packet_send = dict()
Statsct.msg_type = ""
Statsct.packet_info = dict()
Statsct.last_msg_type = ""
Statsct.succ_packets = 0
Statsct.fail_packets = 0
Statsct.total_data_send = 0
Statsct.msg_type_queue = []
Statsct.channel_occupancy_sender = 0
Statsct.channel_occupancy_receiver = 0 | Class to initializa the static class
creates the file to write and the instance of the class | https://github.com/openschc/openschc/blob/7b0c165a27936d8f2732a90844a00c5ade23eea5/src/stats/statsct.py#L75-L103 | try:
from ucollections import defaultdict
except ImportError:
from collections import defaultdict
try:
from ucollections import OrderedDict
except ImportError:
from collections import OrderedDict
try:
import utime as time
except ImportError:
import time
import sys
from .toa_calculator import get_toa
import frag_msg
from gen_utils import dprint, dpprint
sys.path.append("..")
from gen_base_import import *
from gen_utils import dprint, dpprint
SCHC_FRAG = "SCHC_FRAG"
SCHC_ACK_OK = "SCHC_ACK_OK"
SCHC_ACK_KO = "SCHC_ACK_KO"
SCHC_SENDER_ABORT = "SCHC_SENDER_ABORT"
SCHC_RECEIVER_ABORT = "SCHC_RECEIVER_ABORT"
SCHC_ALL_1 = "SCHC_ALL_1"
class Statsct(object):
src_id = None
dst_id = None
results = OrderedDict()
sender_packets = OrderedDict()
receiver_packets = OrderedDict()
SF = 8
dc = 1
device_rule = dict()
gw_rule = dict()
channel_occupancy = 0
goodput = 0
total_delay = 0
reliability = 0
packet_info = dict()
total_packet_send = dict()
total_data_send = 0
msg_type = ""
packet_length = 0
succ_packets = 0
fail_packets = 0
last_msg_type = ''
msg_type_queue = []
channel_occupancy_sender = 0
channel_occupancy_receiver = 0
background_traffic = None
position = None
current_time = None
@staticmethod | MIT License |
morgan-stanley/treadmill | lib/python/treadmill/yamlwrapper.py | _repr_none | python | def _repr_none(dumper, _data):
return dumper.represent_scalar(u'tag:yaml.org,2002:null', '~') | Fix yaml None representation (use ~). | https://github.com/morgan-stanley/treadmill/blob/f18267c665baf6def4374d21170198f63ff1cde4/lib/python/treadmill/yamlwrapper.py#L56-L59 | from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import six
import yaml
from yaml import YAMLError
try:
from yaml import CSafeLoader as Loader
from yaml import CSafeDumper as Dumper
except ImportError:
from yaml import SafeLoader as Loader
from yaml import SafeDumper as Dumper
def _repr_bytes(dumper, data):
unicode_data = data.decode()
return _repr_unicode(dumper, unicode_data)
def _repr_unicode(dumper, data):
if u'\n' in data:
return dumper.represent_scalar(u'tag:yaml.org,2002:str', data,
style='|')
else:
return dumper.represent_scalar(u'tag:yaml.org,2002:str', data)
if six.PY2:
yaml.add_representer(str, _repr_bytes)
yaml.add_representer(unicode, _repr_unicode)
else:
yaml.add_representer(str, _repr_unicode)
def _repr_tuple(dumper, data):
return dumper.represent_list(list(data))
yaml.add_representer(tuple, _repr_tuple) | Apache License 2.0 |
annoviko/pyclustering | pyclustering/cluster/cure.py | cure.__process_by_python | python | def __process_by_python(self):
self.__create_queue()
self.__create_kdtree()
while len(self.__queue) > self.__number_cluster:
cluster1 = self.__queue[0]
cluster2 = cluster1.closest
self.__queue.remove(cluster1)
self.__queue.remove(cluster2)
self.__delete_represented_points(cluster1)
self.__delete_represented_points(cluster2)
merged_cluster = self.__merge_clusters(cluster1, cluster2)
self.__insert_represented_points(merged_cluster)
cluster_relocation_requests = []
if len(self.__queue) > 0:
merged_cluster.closest = self.__queue[0]
merged_cluster.distance = self.__cluster_distance(merged_cluster, merged_cluster.closest)
for item in self.__queue:
distance = self.__cluster_distance(merged_cluster, item)
if distance < merged_cluster.distance:
merged_cluster.closest = item
merged_cluster.distance = distance
if (item.closest is cluster1) or (item.closest is cluster2):
if item.distance < distance:
(item.closest, item.distance) = self.__closest_cluster(item, distance)
if item.closest is None:
item.closest = merged_cluster
item.distance = distance
else:
item.closest = merged_cluster
item.distance = distance
cluster_relocation_requests.append(item)
self.__insert_cluster(merged_cluster)
for item in cluster_relocation_requests:
self.__relocate_cluster(item)
self.__clusters = [cure_cluster_unit.indexes for cure_cluster_unit in self.__queue]
self.__representors = [cure_cluster_unit.rep for cure_cluster_unit in self.__queue]
self.__means = [cure_cluster_unit.mean for cure_cluster_unit in self.__queue] | !
@brief Performs cluster analysis using python code. | https://github.com/annoviko/pyclustering/blob/bf4f51a472622292627ec8c294eb205585e50f52/pyclustering/cluster/cure.py#L165-L230 | import numpy
from pyclustering.cluster.encoder import type_encoding
from pyclustering.utils import euclidean_distance_square
from pyclustering.container.kdtree import kdtree
from pyclustering.core.wrapper import ccore_library
import pyclustering.core.cure_wrapper as wrapper
class cure_cluster:
def __init__(self, point, index):
self.points = [ ]
self.indexes = -1
self.mean = None
self.rep = [ ]
if point is not None:
self.points = [ point ]
self.indexes = [ index ]
self.mean = point
self.rep = [ point ]
self.closest = None
self.distance = float('inf')
def __repr__(self):
return "%s, %s" % (self.distance, self.points)
class cure:
def __init__(self, data, number_cluster, number_represent_points = 5, compression = 0.5, ccore = True):
self.__pointer_data = self.__prepare_data_points(data)
self.__clusters = None
self.__representors = None
self.__means = None
self.__number_cluster = number_cluster
self.__number_represent_points = number_represent_points
self.__compression = compression
self.__ccore = ccore
if self.__ccore:
self.__ccore = ccore_library.workable()
self.__validate_arguments()
def process(self):
if self.__ccore is True:
self.__process_by_ccore()
else:
self.__process_by_python()
return self
def __process_by_ccore(self):
cure_data_pointer = wrapper.cure_algorithm(self.__pointer_data, self.__number_cluster,
self.__number_represent_points, self.__compression)
self.__clusters = wrapper.cure_get_clusters(cure_data_pointer)
self.__representors = wrapper.cure_get_representors(cure_data_pointer)
self.__means = wrapper.cure_get_means(cure_data_pointer)
wrapper.cure_data_destroy(cure_data_pointer) | BSD 3-Clause New or Revised License |
ucy-linc-lab/fogify | connectors/materialized_connectors/DockerBasedConnectors.py | SwarmConnector.down | python | def down(self, timeout=60):
try:
subprocess.check_output(['docker', 'stack', 'rm', 'fogify'])
except Exception as e:
print(e)
finished = False
for i in range(int(timeout / 5)):
sleep(5)
if self.count_services() == 0:
finished = True
break
if not finished: raise Exception("The deployment is not down") | Undeploys a running infrastructure
:param timeout: The duration that the system will wait until it raises exception | https://github.com/ucy-linc-lab/fogify/blob/80dee9e2079ef45c49a6cd6629a3bf0b31461afb/connectors/materialized_connectors/DockerBasedConnectors.py#L347-L364 | import copy
import json
import logging
import os
import socket
import subprocess
from time import sleep
import docker
from flask_api import exceptions
from utils.host_info import HostInfo
from FogifyModel.base import Node, FogifyModel
from connectors.base import BasicConnector
class CommonDockerSuperclass(BasicConnector):
def __init__(self,
model: FogifyModel = None,
path=os.getcwd() + os.environ['UPLOAD_FOLDER'] if 'UPLOAD_FOLDER' in os.environ else "",
frequency=int(os.environ['CPU_FREQ']) if 'CPU_FREQ' in os.environ else 2400,
cpu_oversubscription=
int(os.environ[
'CPU_OVERSUBSCRIPTION_PERCENTAGE']) if 'CPU_OVERSUBSCRIPTION_PERCENTAGE' in os.environ else 0,
ram_oversubscription=
int(os.environ[
'RAM_OVERSUBSCRIPTION_PERCENTAGE']) if 'RAM_OVERSUBSCRIPTION_PERCENTAGE' in os.environ else 0,
node_name=os.environ['MANAGER_NAME'] if 'MANAGER_NAME' in os.environ else 'localhost',
host_ip=os.environ['HOST_IP'] if 'HOST_IP' in os.environ else None
):
self.model = model
self.frequency = frequency
self.path = path
self.file = "fogified-swarm.yaml"
self.cpu_oversubscription = cpu_oversubscription
self.ram_oversubscription = ram_oversubscription
self.node_name = node_name
self.host_ip = host_ip
@classmethod
def check_status(cls, *_args, **_kwargs):
CurrentClass = cls
def decorator(func):
def wrapper(*args, **kwargs):
options = ['available', 'running']
if not len(_args) > 0:
raise exceptions.APIException('You have to select at least one option:' + str(options))
option = str(_args[0])
if option not in options:
raise exceptions.APIException('You have to select an option from:' + str(options))
if option == 'available':
if int(CurrentClass.count_services(status=None)) < 1:
return func(*args, **kwargs)
raise exceptions.APIException('The system has a deployed instance.')
if option == 'running':
if int(CurrentClass.count_services(status=None)) > 0:
return func(*args, **kwargs)
raise exceptions.APIException('The system is available.')
return wrapper
return decorator
def generate_files(self):
res = {'version': '3.7'}
res['networks'] = {i.name: {'external': True} for i in self.model.networks}
res['services'] = {}
for blueprint in self.model.topology:
if blueprint.service not in self.model.services:
raise Exception("Model error: There is no service with name %s" % blueprint.service)
service = copy.deepcopy(self.model.services[blueprint.service])
if 'networks' not in service:
service['networks'] = {}
else:
service['networks'] = {i: {} for i in service['networks']}
for network in blueprint.networks:
if type(network) == str:
res['networks'][network] = {'external': True}
service['networks'][network] = {}
elif type(network) == dict and 'name' in network:
res['networks'][network['name']] = {'external': True}
service['networks'][network['name']] = {}
temp_node = self.model.node_object(blueprint.node)
service['deploy'] = self.node_representation(temp_node)
service['deploy']['replicas'] = blueprint.replicas
res['services'][blueprint.service_name] = service
return res
def node_representation(self, node: Node):
real_specs = list({"node.labels." + i for i in node.get_specifications()})
res = {"placement": {"constraints": real_specs if len(real_specs) > 0 else []}}
if "node.labels.main_cluster_node!=True" in real_specs: return res
if "node.labels.main_cluster_node==False" in real_specs: return res
res["placement"]["constraints"].append("node.labels.main_cluster_node==True")
caps = self.__node_capabilities(node)
res['resources'] = {
'limits': {
'cpus': "{0:.1f}".format(caps['upper_cpu_bound']),
'memory': str(caps['upper_memory_bound']) + "G"
},
'reservations': {
'cpus': "{0:.1f}".format(caps['lower_cpu_bound']),
'memory': str(caps['lower_memory_bound']) + "G"
}
}
return res
def count_networks(self):
count = subprocess.getoutput('docker network ls | grep fogify | wc -l')
return int(count) if count.isnumeric() else -1
def __node_capabilities(self, node: Node):
memory = node.get_memory_value_in_gb()
lower_memory_bound = memory - memory * self.ram_oversubscription / 100
cpu = node.get_processor_cores() * node.get_processor_clock_speed() / self.frequency
lower_cpu_bound = cpu - cpu * self.cpu_oversubscription / 100
return {
'upper_cpu_bound': cpu,
'lower_cpu_bound': lower_cpu_bound,
'upper_memory_bound': memory,
'lower_memory_bound': lower_memory_bound
}
def inject_labels(self, labels={}, **kwargs):
pass
def get_container_ips(self, container_id):
nets = json.loads(
subprocess.getoutput("docker inspect --format '{{json .NetworkSettings.Networks}}' %s" % container_id))
return {network: nets[network]['IPAddress'] for network in nets}
def get_host_data_path(self, container_id):
try:
return subprocess.getoutput("docker inspect --format='{{.GraphDriver.Data.MergedDir}}' %s" % container_id)
except Exception:
logging.error("The system did not find the host's docker disk space (that is used for user-defined metrics).",
exc_info=True)
return None
class DockerComposeConnector(CommonDockerSuperclass):
@classmethod
def count_services(cls, service_name: str = None, status: str = "Running") -> int:
com = "docker ps --format '{{.Names}}' | grep fogify_"
if service_name: com += ' | grep fogify_' + str(service_name)
res = subprocess.getoutput(com + ' | wc -l')
if len(res) > 0 and res.split(" ")[-1].isnumeric():
return int(res.split(" ")[-1])
return 0
def deploy(self, timeout=60):
count = self.model.service_count()
subprocess.check_output(
['docker-compose', '-f', self.path + self.file, '-p', 'fogify', '--compatibility', 'up', '-d'])
if count is None: return
finished = False
for i in range(int(timeout / 5)):
sleep(5)
finished = self.count_services() == count
if finished: return
if not finished:
raise Exception("The process does not finish")
def scale(self, service, instances):
return subprocess.getoutput(
'docker-compose -f ' + self.path + self.file + ' -p fogify --compatibility up --scale ' + service + "=" + str(
instances) + " -d"
)
def get_all_instances(self):
try:
rows = subprocess.getoutput("""docker ps --format '{{.Names}}'""").split("\n")
node_name = self.node_name
fin_res = {node_name: []}
for name in rows:
if name.startswith("fogify_"):
fin_res[node_name].append(name)
return fin_res
except Exception:
logging.error("The connector could not return the docker instances.",
exc_info=True)
return {}
def down(self, timeout=60):
try:
subprocess.check_output( ['docker-compose', '-f', self.path + self.file, '-p', 'fogify', 'down', '--remove-orphans'] )
except Exception as e:
logging.error("The undeploy failed. Please undeploy the stack manually (e.g. docker stop $(docker ps -q) )",
exc_info=True)
finished = False
for i in range(int(timeout / 5)):
sleep(5)
finished = self.count_services() == 0
if finished: return
if not finished:
logging.error("The services did not removed yet. Please check the issue manually.",
exc_info=True)
def get_nodes(self):
name = os.environ['MANAGER_NAME'] if 'MANAGER_NAME' in os.environ else 'localhost'
return {name: socket.gethostbyname(name)}
def create_network(self, network):
com = ['docker', 'network', 'create', '-d', 'bridge', '--attachable', network['name']]
subprocess.check_output(com)
@classmethod
def return_deployment(cls):
client = docker.from_env()
containers = client.containers.list()
res = {}
for container in containers:
if container.name.startswith('fogify_'):
service = container.attrs['Config']['Labels']["com.docker.compose.service"]
if service not in res: res[service] = []
res[service].append(container.name)
return res
@classmethod
def event_attr_to_information(cls, event):
attrs = event['Actor']['Attributes']
service_name, container_id, container_name = None, None, None
if 'com.docker.compose.project' in attrs and attrs['com.docker.compose.project'] == 'fogify':
client = docker.from_env()
container_id = event['id']
service_name = attrs['com.docker.compose.service']
container = client.containers.get(container_id)
container_name = container.attrs['Name'].replace("/", "")
client.close()
return dict(
service_name=service_name,
container_id=container_id,
container_name=container_name
)
@classmethod
def instance_name(cls, alias: str) -> str:
if alias.startswith("fogify_"):
return alias[len("fogify_"):]
else:
return alias
def get_running_container_processing(self, service):
try:
com = "docker inspect fogify_%s --format '{{.HostConfig.NanoCPUs}}'" % service
return int(subprocess.getoutput(com)) / 1000000000
except Exception as ex:
print(ex)
return None
def get_container_ip_for_network(self, container_id, network):
nets = self.get_container_ips(container_id)
if network not in nets: return None
return nets[network]
def get_ips_for_service(self, service):
res = {}
if not service.startswith("fogify_"): service = "fogify_" + service
com = """docker ps --format '{ "{{ .Names }}": "{{.ID}}" }' | grep %s""" % service
name_id_pairs = subprocess.getoutput(com).split("\n")
containers = []
for name_id_pair in name_id_pairs:
try:
containers.append(json.loads(name_id_pair))
except Exception as ex:
logging.warning('The service %s returns invalid Container-ip %s' % (service, name_id_pair))
for container in containers:
for name in container:
for net, ip in self.get_container_ips(container[name]).items():
if net not in res: res[net] = []
res[net].append(ip)
return res
class SwarmConnector(CommonDockerSuperclass):
def scale(self, service, instances):
client = docker.from_env()
for instance_service in client.services.list():
is_fogifyed = instance_service.name.startswith("fogify_")
contains_service_name = str(instance_service.name).find(service) > -1
if is_fogifyed and contains_service_name:
return instance_service.scale(instances)
def get_running_container_processing(self, service):
try:
com = "docker service inspect fogify_%s --format '{{.Spec.TaskTemplate.Resources.Limits.NanoCPUs}}'" % service
return int(subprocess.getoutput(com))/1000000000
except Exception as ex:
print(ex)
return None
def get_all_instances(self):
try:
name_node_pairs = [json.loads(s) for s in subprocess.getoutput(
"""docker stack ps -f "desired-state=running" --format '{ "{{.Name}}": "{{.Node}}" }' fogify""").split(
"\n")]
res = {}
for pair in name_node_pairs:
for name, node in pair.items():
if node not in res: res[node] = []
res[node].append(name)
return res
except Exception:
return {}
@classmethod
def count_services(cls, service_name: str = None, status: str = "Running"):
com = 'docker stack ps fogify'
if status: com += ' | grep ' + status
if service_name: com += ' | grep ' + service_name
res = subprocess.getoutput(com + ' | wc -l')
if len(res) > 0 and res.split(" ")[-1].isnumeric():
return int(res.split(" ")[-1])
return 0 | Apache License 2.0 |
samschott/maestral | src/maestral/utils/__init__.py | chunks | python | def chunks(lst: list, n: int, consume: bool = False) -> Iterator[list]:
if consume:
while lst:
chunk = lst[0:n]
del lst[0:n]
yield chunk
else:
for i in range(0, len(lst), n):
yield lst[i : i + n] | Partitions an iterable into chunks of length ``n``.
:param lst: Iterable to partition.
:param n: Chunk size.
:param consume: If True, the list will be consumed (emptied) during the iteration.
This can be used to free memory in case of large lists.
:returns: Iterator over chunks. | https://github.com/samschott/maestral/blob/a0cd0ebbfecae65d71337fc35a54d1f3fab7ab5a/src/maestral/utils/__init__.py#L35-L53 | import os
from types import TracebackType
from packaging.version import Version
from typing import Iterator, TypeVar, Optional, Iterable, Tuple, Type
_N = TypeVar("_N", float, int)
ExecInfoType = Tuple[Type[BaseException], BaseException, Optional[TracebackType]]
def natural_size(num: float, unit: str = "B", sep: bool = True) -> str:
sep_char = " " if sep else ""
for prefix in ("", "K", "M", "G"):
if abs(num) < 1000.0:
return f"{num:3.1f}{sep_char}{prefix}{unit}"
num /= 1000.0
prefix = "T"
return f"{num:.1f}{sep_char}{prefix}{unit}" | MIT License |
hpe-container-platform-community/hpecp-python-library | hpecp/k8s_cluster.py | K8sClusterHostConfig.to_dict | python | def to_dict(self):
return {"node": self.node, "role": self.role} | Returns a dict representation of the object.
Returns
-------
dict
Example
-------
>>> .to_dict()
{
'node': '/api/v2/worker/k8shost/12',
'role': 'master'
} | https://github.com/hpe-container-platform-community/hpecp-python-library/blob/625fb25c99698a2203b394ef39a253e2b4f0d7c9/hpecp/k8s_cluster.py#L241-L256 | from __future__ import absolute_import
import re
from distutils.version import LooseVersion
from enum import Enum
from requests.structures import CaseInsensitiveDict
from .base_resource import AbstractResource, AbstractWaitableResourceController
try:
basestring
except NameError:
basestring = str
class K8sClusterStatus(Enum):
ready = 1
creating = 2
updating = 3
upgrading = 4
deleting = 5
error = 6
warning = 7
class K8sCluster(AbstractResource):
all_fields = [
"id",
"name",
"description",
"k8s_version",
"addons",
"created_by_user_id",
"created_by_user_name",
"created_time",
"k8shosts_config",
"admin_kube_config",
"dashboard_token",
"api_endpoint_access",
"dashboard_endpoint_access",
"cert_data",
"status",
"status_message",
"_links",
]
default_display_fields = [
"id",
"name",
"description",
"k8s_version",
"status",
]
@property
def name(self):
return self.json["label"]["name"]
@property
def description(self):
return self.json["label"]["description"]
@property
def k8s_version(self):
return self.json["k8s_version"]
@property
def addons(self):
if "addons" in self.json:
return self.json["addons"]
else:
return ""
@property
def created_by_user_id(self):
return self.json["created_by_user_id"]
@property
def created_by_user_name(self):
return self.json["created_by_user_name"]
@property
def created_time(self):
return self.json["created_time"]
@property
def k8shosts_config(self):
return self.json["k8shosts_config"]
@property
def admin_kube_config(self):
if "admin_kube_config" in self.json:
return self.json["admin_kube_config"]
else:
return ""
@property
def dashboard_token(self):
if "dashboard_token" in self.json:
return self.json["dashboard_token"]
else:
return ""
@property
def api_endpoint_access(self):
if "api_endpoint_access" in self.json:
return self.json["api_endpoint_access"]
else:
return ""
@property
def dashboard_endpoint_access(self):
if "dashboard_endpoint_access" in self.json:
return self.json["dashboard_endpoint_access"]
else:
return ""
@property
def cert_data(self):
try:
return self.json["cert_data"]
except KeyError:
return None
@property
def status(self):
return self.json["status"]
@property
def status_message(self):
if "status_message" in self.json:
return self.json["status_message"]
else:
return ""
class K8sClusterHostConfig:
@classmethod
def create_from_list(cls, noderole):
assert (
len(noderole) == 2
), "'noderole' list must have two values [ node, role ]"
return K8sClusterHostConfig(node=noderole[0], role=noderole[1])
def __init__(self, node, role):
assert isinstance(node, basestring), "'node' must be an string"
assert re.match(
r"\/api\/v2\/worker\/k8shost\/[0-9]+", node
), "'node' must have format '/api/v2/worker/k8shost/[0-9]+'"
assert role in [
"master",
"worker",
], "'role' must one of ['master, worker']"
self.node = node
self.role = role | MIT License |
team-ocean/veros | veros/tools/setup.py | interpolate | python | def interpolate(coords, var, interp_coords, missing_value=None, fill=True, kind="linear"):
if len(coords) != len(interp_coords) or len(coords) != var.ndim:
raise ValueError("Dimensions of coordinates and values do not match")
if missing_value is not None:
invalid_mask = npx.isclose(var, missing_value)
var = npx.where(invalid_mask, npx.nan, var)
if var.ndim > 1 and coords[0].ndim == 1:
interp_grid = npx.rollaxis(npx.array(npx.meshgrid(*interp_coords, indexing="ij")), 0, len(interp_coords) + 1)
else:
interp_grid = interp_coords
coords = [onp.array(c) for c in coords]
var = scipy.interpolate.interpn(
coords, onp.array(var), interp_grid, bounds_error=False, fill_value=npx.nan, method=kind
)
var = npx.asarray(var)
if fill:
var = fill_holes(var)
return var | Interpolate globally defined data to a different (regular) grid.
Arguments:
coords: Tuple of coordinate arrays for each dimension.
var (:obj:`ndarray` of dim (nx1, ..., nxd)): Variable data to interpolate.
interp_coords: Tuple of coordinate arrays to interpolate to.
missing_value (optional): Value denoting cells of missing data in ``var``.
Is replaced by `NaN` before interpolating. Defaults to `None`, which means
no replacement is taking place.
fill (bool, optional): Whether `NaN` values should be replaced by the nearest
finite value after interpolating. Defaults to ``True``.
kind (str, optional): Order of interpolation. Supported are `nearest` and
`linear` (default).
Returns:
:obj:`ndarray` containing the interpolated values on the grid spanned by
``interp_coords``. | https://github.com/team-ocean/veros/blob/db4bbf20118d4608cf0dd1f571d5274a4b3f012a/veros/tools/setup.py#L8-L49 | from veros.core.operators import numpy as npx
import numpy as onp
import scipy.interpolate
import scipy.spatial | MIT License |
jyveapp/django-pgclone | pgclone/database.py | get_url | python | def get_url(db_config):
return (
f'postgresql://{db_config["USER"]}:{db_config["PASSWORD"]}'
f'@{db_config["HOST"]}:{db_config["PORT"]}/{db_config["NAME"]}'
) | Convert a database dictionary config to a url | https://github.com/jyveapp/django-pgclone/blob/89b26372201e50393cb6a0b0dbb2bbc707d01c22/pgclone/database.py#L30-L35 | import copy
from django.conf import settings
def get_default_config():
return copy.deepcopy(settings.DATABASES['default'])
def make_config(db_name):
for db in settings.DATABASES.values():
if db.get('NAME') == db_name:
raise RuntimeError(
f'pgclone cannot use temporary database named "{db_name}"'
' since it is already configured in settings.DATABASES.'
)
db_config = get_default_config()
db_config['NAME'] = db_name
return db_config | BSD 3-Clause New or Revised License |
azure/azure-devops-cli-extension | azure-devops/azext_devops/devops_sdk/v5_1/tfvc/tfvc_client.py | TfvcClient.get_labels | python | def get_labels(self, request_data, project=None, top=None, skip=None):
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'str')
query_parameters = {}
if request_data is not None:
if request_data.label_scope is not None:
query_parameters['requestData.labelScope'] = request_data.label_scope
if request_data.name is not None:
query_parameters['requestData.name'] = request_data.name
if request_data.owner is not None:
query_parameters['requestData.owner'] = request_data.owner
if request_data.item_label_filter is not None:
query_parameters['requestData.itemLabelFilter'] = request_data.item_label_filter
if request_data.max_item_count is not None:
query_parameters['requestData.maxItemCount'] = request_data.max_item_count
if request_data.include_links is not None:
query_parameters['requestData.includeLinks'] = request_data.include_links
if top is not None:
query_parameters['$top'] = self._serialize.query('top', top, 'int')
if skip is not None:
query_parameters['$skip'] = self._serialize.query('skip', skip, 'int')
response = self._send(http_method='GET',
location_id='a5d9bd7f-b661-4d0e-b9be-d9c16affae54',
version='5.1',
route_values=route_values,
query_parameters=query_parameters)
return self._deserialize('[TfvcLabelRef]', self._unwrap_collection(response)) | GetLabels.
Get a collection of shallow label references.
:param :class:`<TfvcLabelRequestData> <azure.devops.v5_1.tfvc.models.TfvcLabelRequestData>` request_data: labelScope, name, owner, and itemLabelFilter
:param str project: Project ID or project name
:param int top: Max number of labels to return
:param int skip: Number of labels to skip
:rtype: [TfvcLabelRef] | https://github.com/azure/azure-devops-cli-extension/blob/5f33f7d81a9c2d2990044fbd9ffa6b535cbda528/azure-devops/azext_devops/devops_sdk/v5_1/tfvc/tfvc_client.py#L628-L663 |
from msrest import Serializer, Deserializer
from ...client import Client
from . import models
class TfvcClient(Client):
def __init__(self, base_url=None, creds=None):
super(TfvcClient, self).__init__(base_url, creds)
client_models = {k: v for k, v in models.__dict__.items() if isinstance(v, type)}
self._serialize = Serializer(client_models)
self._deserialize = Deserializer(client_models)
resource_area_identifier = '8aa40520-446d-40e6-89f6-9c9f9ce44c48'
def get_branch(self, path, project=None, include_parent=None, include_children=None):
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'str')
query_parameters = {}
if path is not None:
query_parameters['path'] = self._serialize.query('path', path, 'str')
if include_parent is not None:
query_parameters['includeParent'] = self._serialize.query('include_parent', include_parent, 'bool')
if include_children is not None:
query_parameters['includeChildren'] = self._serialize.query('include_children', include_children, 'bool')
response = self._send(http_method='GET',
location_id='bc1f417e-239d-42e7-85e1-76e80cb2d6eb',
version='5.1',
route_values=route_values,
query_parameters=query_parameters)
return self._deserialize('TfvcBranch', response)
def get_branches(self, project=None, include_parent=None, include_children=None, include_deleted=None, include_links=None):
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'str')
query_parameters = {}
if include_parent is not None:
query_parameters['includeParent'] = self._serialize.query('include_parent', include_parent, 'bool')
if include_children is not None:
query_parameters['includeChildren'] = self._serialize.query('include_children', include_children, 'bool')
if include_deleted is not None:
query_parameters['includeDeleted'] = self._serialize.query('include_deleted', include_deleted, 'bool')
if include_links is not None:
query_parameters['includeLinks'] = self._serialize.query('include_links', include_links, 'bool')
response = self._send(http_method='GET',
location_id='bc1f417e-239d-42e7-85e1-76e80cb2d6eb',
version='5.1',
route_values=route_values,
query_parameters=query_parameters)
return self._deserialize('[TfvcBranch]', self._unwrap_collection(response))
def get_branch_refs(self, scope_path, project=None, include_deleted=None, include_links=None):
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'str')
query_parameters = {}
if scope_path is not None:
query_parameters['scopePath'] = self._serialize.query('scope_path', scope_path, 'str')
if include_deleted is not None:
query_parameters['includeDeleted'] = self._serialize.query('include_deleted', include_deleted, 'bool')
if include_links is not None:
query_parameters['includeLinks'] = self._serialize.query('include_links', include_links, 'bool')
response = self._send(http_method='GET',
location_id='bc1f417e-239d-42e7-85e1-76e80cb2d6eb',
version='5.1',
route_values=route_values,
query_parameters=query_parameters)
return self._deserialize('[TfvcBranchRef]', self._unwrap_collection(response))
def get_changeset_changes(self, id=None, skip=None, top=None, continuation_token=None):
route_values = {}
if id is not None:
route_values['id'] = self._serialize.url('id', id, 'int')
query_parameters = {}
if skip is not None:
query_parameters['$skip'] = self._serialize.query('skip', skip, 'int')
if top is not None:
query_parameters['$top'] = self._serialize.query('top', top, 'int')
if continuation_token is not None:
query_parameters['continuationToken'] = self._serialize.query('continuation_token', continuation_token, 'str')
response = self._send(http_method='GET',
location_id='f32b86f2-15b9-4fe6-81b1-6f8938617ee5',
version='5.1',
route_values=route_values,
query_parameters=query_parameters)
response_value = self._deserialize('[TfvcChange]', self._unwrap_collection(response))
continuation_token = self._get_continuation_token(response)
return self.GetChangesetChangesResponseValue(response_value, continuation_token)
class GetChangesetChangesResponseValue(object):
def __init__(self, value, continuation_token):
self.value = value
self.continuation_token = continuation_token
def create_changeset(self, changeset, project=None):
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'str')
content = self._serialize.body(changeset, 'TfvcChangeset')
response = self._send(http_method='POST',
location_id='0bc8f0a4-6bfb-42a9-ba84-139da7b99c49',
version='5.1',
route_values=route_values,
content=content)
return self._deserialize('TfvcChangesetRef', response)
def get_changeset(self, id, project=None, max_change_count=None, include_details=None, include_work_items=None, max_comment_length=None, include_source_rename=None, skip=None, top=None, orderby=None, search_criteria=None):
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'str')
if id is not None:
route_values['id'] = self._serialize.url('id', id, 'int')
query_parameters = {}
if max_change_count is not None:
query_parameters['maxChangeCount'] = self._serialize.query('max_change_count', max_change_count, 'int')
if include_details is not None:
query_parameters['includeDetails'] = self._serialize.query('include_details', include_details, 'bool')
if include_work_items is not None:
query_parameters['includeWorkItems'] = self._serialize.query('include_work_items', include_work_items, 'bool')
if max_comment_length is not None:
query_parameters['maxCommentLength'] = self._serialize.query('max_comment_length', max_comment_length, 'int')
if include_source_rename is not None:
query_parameters['includeSourceRename'] = self._serialize.query('include_source_rename', include_source_rename, 'bool')
if skip is not None:
query_parameters['$skip'] = self._serialize.query('skip', skip, 'int')
if top is not None:
query_parameters['$top'] = self._serialize.query('top', top, 'int')
if orderby is not None:
query_parameters['$orderby'] = self._serialize.query('orderby', orderby, 'str')
if search_criteria is not None:
if search_criteria.item_path is not None:
query_parameters['searchCriteria.itemPath'] = search_criteria.item_path
if search_criteria.author is not None:
query_parameters['searchCriteria.author'] = search_criteria.author
if search_criteria.from_date is not None:
query_parameters['searchCriteria.fromDate'] = search_criteria.from_date
if search_criteria.to_date is not None:
query_parameters['searchCriteria.toDate'] = search_criteria.to_date
if search_criteria.from_id is not None:
query_parameters['searchCriteria.fromId'] = search_criteria.from_id
if search_criteria.to_id is not None:
query_parameters['searchCriteria.toId'] = search_criteria.to_id
if search_criteria.follow_renames is not None:
query_parameters['searchCriteria.followRenames'] = search_criteria.follow_renames
if search_criteria.include_links is not None:
query_parameters['searchCriteria.includeLinks'] = search_criteria.include_links
if search_criteria.mappings is not None:
query_parameters['searchCriteria.mappings'] = search_criteria.mappings
response = self._send(http_method='GET',
location_id='0bc8f0a4-6bfb-42a9-ba84-139da7b99c49',
version='5.1',
route_values=route_values,
query_parameters=query_parameters)
return self._deserialize('TfvcChangeset', response)
def get_changesets(self, project=None, max_comment_length=None, skip=None, top=None, orderby=None, search_criteria=None):
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'str')
query_parameters = {}
if max_comment_length is not None:
query_parameters['maxCommentLength'] = self._serialize.query('max_comment_length', max_comment_length, 'int')
if skip is not None:
query_parameters['$skip'] = self._serialize.query('skip', skip, 'int')
if top is not None:
query_parameters['$top'] = self._serialize.query('top', top, 'int')
if orderby is not None:
query_parameters['$orderby'] = self._serialize.query('orderby', orderby, 'str')
if search_criteria is not None:
if search_criteria.item_path is not None:
query_parameters['searchCriteria.itemPath'] = search_criteria.item_path
if search_criteria.author is not None:
query_parameters['searchCriteria.author'] = search_criteria.author
if search_criteria.from_date is not None:
query_parameters['searchCriteria.fromDate'] = search_criteria.from_date
if search_criteria.to_date is not None:
query_parameters['searchCriteria.toDate'] = search_criteria.to_date
if search_criteria.from_id is not None:
query_parameters['searchCriteria.fromId'] = search_criteria.from_id
if search_criteria.to_id is not None:
query_parameters['searchCriteria.toId'] = search_criteria.to_id
if search_criteria.follow_renames is not None:
query_parameters['searchCriteria.followRenames'] = search_criteria.follow_renames
if search_criteria.include_links is not None:
query_parameters['searchCriteria.includeLinks'] = search_criteria.include_links
if search_criteria.mappings is not None:
query_parameters['searchCriteria.mappings'] = search_criteria.mappings
response = self._send(http_method='GET',
location_id='0bc8f0a4-6bfb-42a9-ba84-139da7b99c49',
version='5.1',
route_values=route_values,
query_parameters=query_parameters)
return self._deserialize('[TfvcChangesetRef]', self._unwrap_collection(response))
def get_batched_changesets(self, changesets_request_data):
content = self._serialize.body(changesets_request_data, 'TfvcChangesetsRequestData')
response = self._send(http_method='POST',
location_id='b7e7c173-803c-4fea-9ec8-31ee35c5502a',
version='5.1',
content=content)
return self._deserialize('[TfvcChangesetRef]', self._unwrap_collection(response))
def get_changeset_work_items(self, id=None):
route_values = {}
if id is not None:
route_values['id'] = self._serialize.url('id', id, 'int')
response = self._send(http_method='GET',
location_id='64ae0bea-1d71-47c9-a9e5-fe73f5ea0ff4',
version='5.1',
route_values=route_values)
return self._deserialize('[AssociatedWorkItem]', self._unwrap_collection(response))
def get_items_batch(self, item_request_data, project=None):
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'str')
content = self._serialize.body(item_request_data, 'TfvcItemRequestData')
response = self._send(http_method='POST',
location_id='fe6f827b-5f64-480f-b8af-1eca3b80e833',
version='5.1',
route_values=route_values,
content=content)
return self._deserialize('[[TfvcItem]]', self._unwrap_collection(response))
def get_items_batch_zip(self, item_request_data, project=None, **kwargs):
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'str')
content = self._serialize.body(item_request_data, 'TfvcItemRequestData')
response = self._send(http_method='POST',
location_id='fe6f827b-5f64-480f-b8af-1eca3b80e833',
version='5.1',
route_values=route_values,
content=content,
accept_media_type='application/zip')
if "callback" in kwargs:
callback = kwargs["callback"]
else:
callback = None
return self._client.stream_download(response, callback=callback)
def get_item(self, path, project=None, file_name=None, download=None, scope_path=None, recursion_level=None, version_descriptor=None, include_content=None):
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'str')
query_parameters = {}
if path is not None:
query_parameters['path'] = self._serialize.query('path', path, 'str')
if file_name is not None:
query_parameters['fileName'] = self._serialize.query('file_name', file_name, 'str')
if download is not None:
query_parameters['download'] = self._serialize.query('download', download, 'bool')
if scope_path is not None:
query_parameters['scopePath'] = self._serialize.query('scope_path', scope_path, 'str')
if recursion_level is not None:
query_parameters['recursionLevel'] = self._serialize.query('recursion_level', recursion_level, 'str')
if version_descriptor is not None:
if version_descriptor.version_option is not None:
query_parameters['versionDescriptor.versionOption'] = version_descriptor.version_option
if version_descriptor.version_type is not None:
query_parameters['versionDescriptor.versionType'] = version_descriptor.version_type
if version_descriptor.version is not None:
query_parameters['versionDescriptor.version'] = version_descriptor.version
if include_content is not None:
query_parameters['includeContent'] = self._serialize.query('include_content', include_content, 'bool')
response = self._send(http_method='GET',
location_id='ba9fc436-9a38-4578-89d6-e4f3241f5040',
version='5.1',
route_values=route_values,
query_parameters=query_parameters)
return self._deserialize('TfvcItem', response)
def get_item_content(self, path, project=None, file_name=None, download=None, scope_path=None, recursion_level=None, version_descriptor=None, include_content=None, **kwargs):
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'str')
query_parameters = {}
if path is not None:
query_parameters['path'] = self._serialize.query('path', path, 'str')
if file_name is not None:
query_parameters['fileName'] = self._serialize.query('file_name', file_name, 'str')
if download is not None:
query_parameters['download'] = self._serialize.query('download', download, 'bool')
if scope_path is not None:
query_parameters['scopePath'] = self._serialize.query('scope_path', scope_path, 'str')
if recursion_level is not None:
query_parameters['recursionLevel'] = self._serialize.query('recursion_level', recursion_level, 'str')
if version_descriptor is not None:
if version_descriptor.version_option is not None:
query_parameters['versionDescriptor.versionOption'] = version_descriptor.version_option
if version_descriptor.version_type is not None:
query_parameters['versionDescriptor.versionType'] = version_descriptor.version_type
if version_descriptor.version is not None:
query_parameters['versionDescriptor.version'] = version_descriptor.version
if include_content is not None:
query_parameters['includeContent'] = self._serialize.query('include_content', include_content, 'bool')
response = self._send(http_method='GET',
location_id='ba9fc436-9a38-4578-89d6-e4f3241f5040',
version='5.1',
route_values=route_values,
query_parameters=query_parameters,
accept_media_type='application/octet-stream')
if "callback" in kwargs:
callback = kwargs["callback"]
else:
callback = None
return self._client.stream_download(response, callback=callback)
def get_items(self, project=None, scope_path=None, recursion_level=None, include_links=None, version_descriptor=None):
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'str')
query_parameters = {}
if scope_path is not None:
query_parameters['scopePath'] = self._serialize.query('scope_path', scope_path, 'str')
if recursion_level is not None:
query_parameters['recursionLevel'] = self._serialize.query('recursion_level', recursion_level, 'str')
if include_links is not None:
query_parameters['includeLinks'] = self._serialize.query('include_links', include_links, 'bool')
if version_descriptor is not None:
if version_descriptor.version_option is not None:
query_parameters['versionDescriptor.versionOption'] = version_descriptor.version_option
if version_descriptor.version_type is not None:
query_parameters['versionDescriptor.versionType'] = version_descriptor.version_type
if version_descriptor.version is not None:
query_parameters['versionDescriptor.version'] = version_descriptor.version
response = self._send(http_method='GET',
location_id='ba9fc436-9a38-4578-89d6-e4f3241f5040',
version='5.1',
route_values=route_values,
query_parameters=query_parameters)
return self._deserialize('[TfvcItem]', self._unwrap_collection(response))
def get_item_text(self, path, project=None, file_name=None, download=None, scope_path=None, recursion_level=None, version_descriptor=None, include_content=None, **kwargs):
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'str')
query_parameters = {}
if path is not None:
query_parameters['path'] = self._serialize.query('path', path, 'str')
if file_name is not None:
query_parameters['fileName'] = self._serialize.query('file_name', file_name, 'str')
if download is not None:
query_parameters['download'] = self._serialize.query('download', download, 'bool')
if scope_path is not None:
query_parameters['scopePath'] = self._serialize.query('scope_path', scope_path, 'str')
if recursion_level is not None:
query_parameters['recursionLevel'] = self._serialize.query('recursion_level', recursion_level, 'str')
if version_descriptor is not None:
if version_descriptor.version_option is not None:
query_parameters['versionDescriptor.versionOption'] = version_descriptor.version_option
if version_descriptor.version_type is not None:
query_parameters['versionDescriptor.versionType'] = version_descriptor.version_type
if version_descriptor.version is not None:
query_parameters['versionDescriptor.version'] = version_descriptor.version
if include_content is not None:
query_parameters['includeContent'] = self._serialize.query('include_content', include_content, 'bool')
response = self._send(http_method='GET',
location_id='ba9fc436-9a38-4578-89d6-e4f3241f5040',
version='5.1',
route_values=route_values,
query_parameters=query_parameters,
accept_media_type='text/plain')
if "callback" in kwargs:
callback = kwargs["callback"]
else:
callback = None
return self._client.stream_download(response, callback=callback)
def get_item_zip(self, path, project=None, file_name=None, download=None, scope_path=None, recursion_level=None, version_descriptor=None, include_content=None, **kwargs):
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'str')
query_parameters = {}
if path is not None:
query_parameters['path'] = self._serialize.query('path', path, 'str')
if file_name is not None:
query_parameters['fileName'] = self._serialize.query('file_name', file_name, 'str')
if download is not None:
query_parameters['download'] = self._serialize.query('download', download, 'bool')
if scope_path is not None:
query_parameters['scopePath'] = self._serialize.query('scope_path', scope_path, 'str')
if recursion_level is not None:
query_parameters['recursionLevel'] = self._serialize.query('recursion_level', recursion_level, 'str')
if version_descriptor is not None:
if version_descriptor.version_option is not None:
query_parameters['versionDescriptor.versionOption'] = version_descriptor.version_option
if version_descriptor.version_type is not None:
query_parameters['versionDescriptor.versionType'] = version_descriptor.version_type
if version_descriptor.version is not None:
query_parameters['versionDescriptor.version'] = version_descriptor.version
if include_content is not None:
query_parameters['includeContent'] = self._serialize.query('include_content', include_content, 'bool')
response = self._send(http_method='GET',
location_id='ba9fc436-9a38-4578-89d6-e4f3241f5040',
version='5.1',
route_values=route_values,
query_parameters=query_parameters,
accept_media_type='application/zip')
if "callback" in kwargs:
callback = kwargs["callback"]
else:
callback = None
return self._client.stream_download(response, callback=callback)
def get_label_items(self, label_id, top=None, skip=None):
route_values = {}
if label_id is not None:
route_values['labelId'] = self._serialize.url('label_id', label_id, 'str')
query_parameters = {}
if top is not None:
query_parameters['$top'] = self._serialize.query('top', top, 'int')
if skip is not None:
query_parameters['$skip'] = self._serialize.query('skip', skip, 'int')
response = self._send(http_method='GET',
location_id='06166e34-de17-4b60-8cd1-23182a346fda',
version='5.1',
route_values=route_values,
query_parameters=query_parameters)
return self._deserialize('[TfvcItem]', self._unwrap_collection(response))
def get_label(self, label_id, request_data, project=None):
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'str')
if label_id is not None:
route_values['labelId'] = self._serialize.url('label_id', label_id, 'str')
query_parameters = {}
if request_data is not None:
if request_data.label_scope is not None:
query_parameters['requestData.labelScope'] = request_data.label_scope
if request_data.name is not None:
query_parameters['requestData.name'] = request_data.name
if request_data.owner is not None:
query_parameters['requestData.owner'] = request_data.owner
if request_data.item_label_filter is not None:
query_parameters['requestData.itemLabelFilter'] = request_data.item_label_filter
if request_data.max_item_count is not None:
query_parameters['requestData.maxItemCount'] = request_data.max_item_count
if request_data.include_links is not None:
query_parameters['requestData.includeLinks'] = request_data.include_links
response = self._send(http_method='GET',
location_id='a5d9bd7f-b661-4d0e-b9be-d9c16affae54',
version='5.1',
route_values=route_values,
query_parameters=query_parameters)
return self._deserialize('TfvcLabel', response) | MIT License |
deanmalmgren/flo | flo/tasks/graph.py | TaskGraph._run_helper | python | def _run_helper(self, starting_tasks, do_run_func, mock_run):
self.logger.info(self.duration_message(starting_tasks))
for task in self.iter_tasks(starting_tasks):
if do_run_func(task):
if mock_run:
task.mock_run()
else:
try:
task.timed_run()
except (KeyboardInterrupt, ShellError), error:
self.save_state(
override_resource_states={task.name: ''},
)
sys.exit(getattr(error, 'exit_code', 1))
if not mock_run:
self.save_state() | This is a convenience method that is used to slightly modify the
behavior of running a workflow depending on the circumstances. | https://github.com/deanmalmgren/flo/blob/40ba3ce29a03cecb74bf809e40061e5e5c9d6a6b/flo/tasks/graph.py#L368-L386 | import sys
import os
import time
import csv
import collections
import datetime
import glob
from distutils.util import strtobool
import json
import networkx as nx
from ..exceptions import NonUniqueTask, ShellError, CommandLineException
from .. import colors
from .. import shell
from .. import resources
from .. import logger
from .task import Task
class TaskGraph(object):
internals_path = ".flo"
state_path = os.path.join(internals_path, "state.csv")
duration_path = os.path.join(internals_path, "duration.csv")
log_path = os.path.join(internals_path, "flo.log")
archive_dir = os.path.join(internals_path, "archive")
def __init__(self, config_path, task_kwargs_list):
self.task_list = []
self.task_dict = {}
self.config_path = config_path
self.root_directory = os.path.dirname(config_path)
directory = os.path.dirname(self.abs_state_path)
if not os.path.exists(directory):
os.makedirs(directory)
if not os.path.exists(self.abs_archive_dir):
os.makedirs(self.abs_archive_dir)
self.resource_dict = {}
self.task_durations = {}
self.logger = logger.configure(self)
self.successful = False
for task_kwargs in task_kwargs_list:
task = Task(self, **task_kwargs)
self._link_dependencies()
self._load_state()
nx_graph = self.get_networkx_graph(task_id_only=True)
if not nx.is_directed_acyclic_graph(nx_graph):
msg = "This task graph has the following dependency cycles:\n\n"
cycles = nx.simple_cycles(nx_graph)
for cycle in cycles:
msg += ' %s\n' % cycle[0]
for task_id in cycle[1:]:
msg += ' -> %s\n' % task_id
raise CommandLineException(msg)
def iter_tasks(self, tasks=None):
source_tasks = tasks or self.get_source_tasks()
distances = {}
horizon = list(source_tasks)
done, horizon_set = set(), set(source_tasks)
source_tasks = set(source_tasks)
while horizon:
found = False
for task in horizon:
if (
task in source_tasks or
not task.upstream_tasks.difference(done)
):
found = True
break
if not found:
raise Exception("NOT FOUND %s" % ([t.id for t in horizon], ))
if task in source_tasks:
distance = 0
else:
distance = max(map(distances.get, task.upstream_tasks)) + 1
distances[task] = distance
horizon.remove(task)
horizon_set.discard(task)
done.add(task)
for downstream_task in task.downstream_tasks.difference(done):
if downstream_task not in horizon_set:
horizon.append(downstream_task)
horizon_set.add(downstream_task)
decorated_list = []
for task, distance in distances.iteritems():
decorated_list.append((
distance, self.task_list.index(task), task,
))
decorated_list.sort()
for distance, index, task in decorated_list:
yield task
def get_source_tasks(self):
source_tasks = []
for task in self.task_list:
if not task.upstream_tasks:
source_tasks.append(task)
return source_tasks
def get_sink_tasks(self):
sink_tasks = []
for task in self.task_list:
if not task.downstream_tasks:
sink_tasks.append(task)
return sink_tasks
def get_out_of_sync_tasks(self):
out_of_sync_tasks = []
for task in self.iter_tasks():
if not task.in_sync():
out_of_sync_tasks.append(task)
return out_of_sync_tasks
def add(self, task):
self.task_list.append(task)
if task.creates in self.task_dict:
raise NonUniqueTask(
"task `creates` '%s' is not unique" % task.creates
)
self.task_dict[task.creates] = task
def remove_node_substituting_dependencies(self, task_id):
task = self.task_dict.pop(task_id)
self.task_list.remove(task)
if task_id in self.task_durations:
self.task_durations.pop(task_id)
task.disconnect_resources()
task.substitute_dependencies()
del task
def subgraph_needed_for(self, start_at, end_at):
assert start_at or end_at, "one of {start_at,end_at} must be a task id"
start, end = map(self.task_dict.get, [start_at, end_at])
if None in [start, end]:
graph = self.get_networkx_graph()
if start:
task_subset = nx.descendants(graph, start)
task_subset.add(start)
elif end:
task_subset = nx.ancestors(graph, end)
task_subset.add(end)
elif start == end:
task_subset = set([start])
else:
graph = self.get_networkx_graph()
task_subset = set()
for path in nx.all_simple_paths(graph, start, end):
task_subset.update(path)
tasks_kwargs_list = [task.yaml_data for task in self.task_list
if task in task_subset]
subgraph = TaskGraph(self.config_path, tasks_kwargs_list)
return subgraph
def get_networkx_graph(self, task_id_only=False):
graph = nx.DiGraph()
if task_id_only:
graph.add_nodes_from([task.id for task in self.task_list])
for node in self.task_list:
for child in node.downstream_tasks:
graph.add_edge(node.id, child.id)
else:
graph.add_nodes_from(self.task_list)
for node in graph:
for child in node.downstream_tasks:
graph.add_edge(node, child)
return graph
def _dereference_alias_helper(self, name):
if name is None:
return None
for task in self.task_list:
if task.alias == name:
return task.creates
def _dereference_depends_aliases(self):
for task in self.task_list:
if isinstance(task.depends, (list, tuple)):
for i, d in enumerate(task.depends):
dd = self._dereference_alias_helper(d)
if dd is not None:
task.depends[i] = dd
else:
dd = self._dereference_alias_helper(task.depends)
if dd is not None:
task.depends = dd
def _link_dependencies(self):
for task in self.task_list:
for resource in task.depends_resources:
if isinstance(resource.creates_task, Task):
task.add_task_dependency(resource.creates_task)
def get_user_clean_confirmation(self, task_list=None,
include_internals=False):
self.logger.info(colors.red(
"Please confirm that you want to delete the following files:"
))
time.sleep(0.5)
task_list = task_list or self.task_list
if include_internals:
self.logger.info(green(self.internals_path))
for task in task_list:
self.logger.info(task.creates_message())
yesno = raw_input(colors.red("Delete aforementioned files? [Y/n] "))
if yesno == '':
yesno = 'y'
return strtobool(yesno)
def clean(self, task_list=None, include_internals=False):
if os.path.exists(self.abs_state_path) and task_list is None:
os.remove(self.abs_state_path)
if include_internals:
shell.run(self.root_directory, "rm -rf %s" % self.internals_path)
self.logger.info(
"removed %s" % colors.green(self.internals_path)
)
task_list = task_list or self.task_list
for task in task_list:
task.clean()
def status_json(self):
result = {"nodes": [], "links": []}
node_index = {}
for i, task in enumerate(self.iter_tasks()):
node_index[task] = i
result["nodes"].append({
"task_id": task.id,
"duration": self.task_durations.get(task.id, None),
"in_sync": task.in_sync(),
})
for task in node_index:
for child in task.downstream_tasks:
result["links"].append({
"source": node_index[task],
"target": node_index[child],
})
return json.dumps(result)
def duration_string(self, duration):
if duration < 10 * 60:
return "%.2f" % (duration) + " s"
elif duration < 2 * 60 * 60:
return "%.2f" % (duration / 60) + " m"
elif duration < 2 * 60 * 60 * 24:
return "%.2f" % (duration / 60 / 60) + " h"
else:
return "%.2f" % (duration / 60 / 60 / 24) + " d"
def duration_message(self, tasks, color=colors.blue):
if tasks is None:
tasks = list(self.iter_tasks())
if len(tasks) == 0:
return "No tasks are out of sync in this workflow (%s)" % (
os.path.relpath(self.config_path, os.getcwd())
)
min_duration = 0.0
for task in tasks:
min_duration += self.task_durations.get(task.id, 0.0)
max_duration, n_unknown, n_tasks = 0.0, 0, 0
for task in self.iter_tasks(tasks):
n_tasks += 1
try:
max_duration += self.task_durations[task.id]
except KeyError:
n_unknown += 1
msg = ''
if n_unknown > 0:
msg += "There are %d new tasks with unknown durations.\n" % (
n_unknown,
)
if len(tasks) == n_tasks:
msg += "The remaining %d tasks need to be executed,\n" % n_tasks
else:
msg += "The remaining %d to %d tasks need to be executed,\n" % (
len(tasks),
n_tasks,
)
if max_duration == min_duration == 0.0:
msg += "which will take an indeterminate amount of time."
elif max_duration == min_duration:
msg += "which will take approximately %s." % (
self.duration_string(min_duration),
)
else:
msg += "which will take between %s and %s." % (
self.duration_string(min_duration),
self.duration_string(max_duration),
)
if color:
msg = color(msg)
return msg | MIT License |
2ndwatch/cloudendure-python | cloudendure/cloudendure_api/models/cloud_endure_subnet.py | CloudEndureSubnet.__init__ | python | def __init__(self, subnet_id=None, network_id=None, name=None):
self._subnet_id = None
self._network_id = None
self._name = None
self.discriminator = None
if subnet_id is not None:
self.subnet_id = subnet_id
if network_id is not None:
self.network_id = network_id
if name is not None:
self.name = name | CloudEndureSubnet - a model defined in Swagger | https://github.com/2ndwatch/cloudendure-python/blob/f81d1be1422b7c19adedb06c584803eaaa811919/cloudendure/cloudendure_api/models/cloud_endure_subnet.py#L36-L47 | import pprint
import re
import six
class CloudEndureSubnet:
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {"subnet_id": "str", "network_id": "str", "name": "str"}
attribute_map = {"subnet_id": "subnetId", "network_id": "networkId", "name": "name"} | MIT License |
maximtrp/ranger-archives | compress.py | compress.tab | python | def tab(self, tabnum):
extension = ['.7z', '.zip', '.tar.gz', '.tar.bz2', '.tar.xz']
return ['compress ' + os.path.basename(self.fm.thisdir.path) + ext for ext in extension] | Complete with current folder name | https://github.com/maximtrp/ranger-archives/blob/f19bdd4190997f29bad52a5584d6490a988fbfda/compress.py#L53-L57 | import os.path
from re import search
from ranger.api.commands import Command
from ranger.core.loader import CommandLoader
from .archives_utils import parse_escape_args, get_compression_command
class compress(Command):
def execute(self):
cwd = self.fm.thisdir
marked_files = cwd.get_selection()
files_num = len(marked_files)
if not marked_files:
return
filenames = [os.path.relpath(f.path, cwd.path) for f in marked_files]
flags = parse_escape_args(self.line.strip())[1:]
archive_name = None
if flags:
flags_last = flags.pop()
if search(r".*?\.\w+", flags_last) is None:
flags += [flags_last]
else:
archive_name = flags_last
if not archive_name:
archive_name = os.path.basename(self.fm.thisdir.path) + '.zip'
command = get_compression_command(archive_name, flags, filenames)
files_num_str = f'{files_num} objects' if files_num > 1 else '1 object'
descr = f"Compressing {files_num_str} -> " + os.path.basename(archive_name)
obj = CommandLoader(args=command, descr=descr, read=True)
def refresh(_):
_cwd = self.fm.get_directory(cwd.path)
_cwd.load_content()
obj.signal_bind('after', refresh)
self.fm.loader.add(obj) | MIT License |
docusign/docusign-python-client | docusign_esign/models/tab_account_settings.py | TabAccountSettings.note_tabs_enabled | python | def note_tabs_enabled(self, note_tabs_enabled):
self._note_tabs_enabled = note_tabs_enabled | Sets the note_tabs_enabled of this TabAccountSettings.
# noqa: E501
:param note_tabs_enabled: The note_tabs_enabled of this TabAccountSettings. # noqa: E501
:type: str | https://github.com/docusign/docusign-python-client/blob/c6aeafff0d046fa6c10a398be83ba9e24b05d4ea/docusign_esign/models/tab_account_settings.py#L626-L635 | import pprint
import re
import six
from docusign_esign.client.configuration import Configuration
class TabAccountSettings(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'allow_tab_order': 'str',
'allow_tab_order_metadata': 'SettingsMetadata',
'approve_decline_tabs_enabled': 'str',
'approve_decline_tabs_metadata': 'SettingsMetadata',
'calculated_fields_enabled': 'str',
'calculated_fields_metadata': 'SettingsMetadata',
'checkbox_tabs_enabled': 'str',
'check_box_tabs_metadata': 'SettingsMetadata',
'data_field_regex_enabled': 'str',
'data_field_regex_metadata': 'SettingsMetadata',
'data_field_size_enabled': 'str',
'data_field_size_metadata': 'SettingsMetadata',
'draw_tabs_enabled': 'str',
'draw_tabs_metadata': 'SettingsMetadata',
'first_last_email_tabs_enabled': 'str',
'first_last_email_tabs_metadata': 'SettingsMetadata',
'list_tabs_enabled': 'str',
'list_tabs_metadata': 'SettingsMetadata',
'note_tabs_enabled': 'str',
'note_tabs_metadata': 'SettingsMetadata',
'prefill_tabs_enabled': 'str',
'prefill_tabs_metadata': 'SettingsMetadata',
'radio_tabs_enabled': 'str',
'radio_tabs_metadata': 'SettingsMetadata',
'saving_custom_tabs_enabled': 'str',
'saving_custom_tabs_metadata': 'SettingsMetadata',
'sender_to_change_tab_assignments_enabled': 'str',
'sender_to_change_tab_assignments_metadata': 'SettingsMetadata',
'shared_custom_tabs_enabled': 'str',
'shared_custom_tabs_metadata': 'SettingsMetadata',
'tab_data_label_enabled': 'str',
'tab_data_label_metadata': 'SettingsMetadata',
'tab_location_enabled': 'str',
'tab_location_metadata': 'SettingsMetadata',
'tab_locking_enabled': 'str',
'tab_locking_metadata': 'SettingsMetadata',
'tab_scale_enabled': 'str',
'tab_scale_metadata': 'SettingsMetadata',
'tab_text_formatting_enabled': 'str',
'tab_text_formatting_metadata': 'SettingsMetadata',
'text_tabs_enabled': 'str',
'text_tabs_metadata': 'SettingsMetadata'
}
attribute_map = {
'allow_tab_order': 'allowTabOrder',
'allow_tab_order_metadata': 'allowTabOrderMetadata',
'approve_decline_tabs_enabled': 'approveDeclineTabsEnabled',
'approve_decline_tabs_metadata': 'approveDeclineTabsMetadata',
'calculated_fields_enabled': 'calculatedFieldsEnabled',
'calculated_fields_metadata': 'calculatedFieldsMetadata',
'checkbox_tabs_enabled': 'checkboxTabsEnabled',
'check_box_tabs_metadata': 'checkBoxTabsMetadata',
'data_field_regex_enabled': 'dataFieldRegexEnabled',
'data_field_regex_metadata': 'dataFieldRegexMetadata',
'data_field_size_enabled': 'dataFieldSizeEnabled',
'data_field_size_metadata': 'dataFieldSizeMetadata',
'draw_tabs_enabled': 'drawTabsEnabled',
'draw_tabs_metadata': 'drawTabsMetadata',
'first_last_email_tabs_enabled': 'firstLastEmailTabsEnabled',
'first_last_email_tabs_metadata': 'firstLastEmailTabsMetadata',
'list_tabs_enabled': 'listTabsEnabled',
'list_tabs_metadata': 'listTabsMetadata',
'note_tabs_enabled': 'noteTabsEnabled',
'note_tabs_metadata': 'noteTabsMetadata',
'prefill_tabs_enabled': 'prefillTabsEnabled',
'prefill_tabs_metadata': 'prefillTabsMetadata',
'radio_tabs_enabled': 'radioTabsEnabled',
'radio_tabs_metadata': 'radioTabsMetadata',
'saving_custom_tabs_enabled': 'savingCustomTabsEnabled',
'saving_custom_tabs_metadata': 'savingCustomTabsMetadata',
'sender_to_change_tab_assignments_enabled': 'senderToChangeTabAssignmentsEnabled',
'sender_to_change_tab_assignments_metadata': 'senderToChangeTabAssignmentsMetadata',
'shared_custom_tabs_enabled': 'sharedCustomTabsEnabled',
'shared_custom_tabs_metadata': 'sharedCustomTabsMetadata',
'tab_data_label_enabled': 'tabDataLabelEnabled',
'tab_data_label_metadata': 'tabDataLabelMetadata',
'tab_location_enabled': 'tabLocationEnabled',
'tab_location_metadata': 'tabLocationMetadata',
'tab_locking_enabled': 'tabLockingEnabled',
'tab_locking_metadata': 'tabLockingMetadata',
'tab_scale_enabled': 'tabScaleEnabled',
'tab_scale_metadata': 'tabScaleMetadata',
'tab_text_formatting_enabled': 'tabTextFormattingEnabled',
'tab_text_formatting_metadata': 'tabTextFormattingMetadata',
'text_tabs_enabled': 'textTabsEnabled',
'text_tabs_metadata': 'textTabsMetadata'
}
def __init__(self, _configuration=None, **kwargs):
if _configuration is None:
_configuration = Configuration()
self._configuration = _configuration
self._allow_tab_order = None
self._allow_tab_order_metadata = None
self._approve_decline_tabs_enabled = None
self._approve_decline_tabs_metadata = None
self._calculated_fields_enabled = None
self._calculated_fields_metadata = None
self._checkbox_tabs_enabled = None
self._check_box_tabs_metadata = None
self._data_field_regex_enabled = None
self._data_field_regex_metadata = None
self._data_field_size_enabled = None
self._data_field_size_metadata = None
self._draw_tabs_enabled = None
self._draw_tabs_metadata = None
self._first_last_email_tabs_enabled = None
self._first_last_email_tabs_metadata = None
self._list_tabs_enabled = None
self._list_tabs_metadata = None
self._note_tabs_enabled = None
self._note_tabs_metadata = None
self._prefill_tabs_enabled = None
self._prefill_tabs_metadata = None
self._radio_tabs_enabled = None
self._radio_tabs_metadata = None
self._saving_custom_tabs_enabled = None
self._saving_custom_tabs_metadata = None
self._sender_to_change_tab_assignments_enabled = None
self._sender_to_change_tab_assignments_metadata = None
self._shared_custom_tabs_enabled = None
self._shared_custom_tabs_metadata = None
self._tab_data_label_enabled = None
self._tab_data_label_metadata = None
self._tab_location_enabled = None
self._tab_location_metadata = None
self._tab_locking_enabled = None
self._tab_locking_metadata = None
self._tab_scale_enabled = None
self._tab_scale_metadata = None
self._tab_text_formatting_enabled = None
self._tab_text_formatting_metadata = None
self._text_tabs_enabled = None
self._text_tabs_metadata = None
self.discriminator = None
setattr(self, "_{}".format('allow_tab_order'), kwargs.get('allow_tab_order', None))
setattr(self, "_{}".format('allow_tab_order_metadata'), kwargs.get('allow_tab_order_metadata', None))
setattr(self, "_{}".format('approve_decline_tabs_enabled'), kwargs.get('approve_decline_tabs_enabled', None))
setattr(self, "_{}".format('approve_decline_tabs_metadata'), kwargs.get('approve_decline_tabs_metadata', None))
setattr(self, "_{}".format('calculated_fields_enabled'), kwargs.get('calculated_fields_enabled', None))
setattr(self, "_{}".format('calculated_fields_metadata'), kwargs.get('calculated_fields_metadata', None))
setattr(self, "_{}".format('checkbox_tabs_enabled'), kwargs.get('checkbox_tabs_enabled', None))
setattr(self, "_{}".format('check_box_tabs_metadata'), kwargs.get('check_box_tabs_metadata', None))
setattr(self, "_{}".format('data_field_regex_enabled'), kwargs.get('data_field_regex_enabled', None))
setattr(self, "_{}".format('data_field_regex_metadata'), kwargs.get('data_field_regex_metadata', None))
setattr(self, "_{}".format('data_field_size_enabled'), kwargs.get('data_field_size_enabled', None))
setattr(self, "_{}".format('data_field_size_metadata'), kwargs.get('data_field_size_metadata', None))
setattr(self, "_{}".format('draw_tabs_enabled'), kwargs.get('draw_tabs_enabled', None))
setattr(self, "_{}".format('draw_tabs_metadata'), kwargs.get('draw_tabs_metadata', None))
setattr(self, "_{}".format('first_last_email_tabs_enabled'), kwargs.get('first_last_email_tabs_enabled', None))
setattr(self, "_{}".format('first_last_email_tabs_metadata'), kwargs.get('first_last_email_tabs_metadata', None))
setattr(self, "_{}".format('list_tabs_enabled'), kwargs.get('list_tabs_enabled', None))
setattr(self, "_{}".format('list_tabs_metadata'), kwargs.get('list_tabs_metadata', None))
setattr(self, "_{}".format('note_tabs_enabled'), kwargs.get('note_tabs_enabled', None))
setattr(self, "_{}".format('note_tabs_metadata'), kwargs.get('note_tabs_metadata', None))
setattr(self, "_{}".format('prefill_tabs_enabled'), kwargs.get('prefill_tabs_enabled', None))
setattr(self, "_{}".format('prefill_tabs_metadata'), kwargs.get('prefill_tabs_metadata', None))
setattr(self, "_{}".format('radio_tabs_enabled'), kwargs.get('radio_tabs_enabled', None))
setattr(self, "_{}".format('radio_tabs_metadata'), kwargs.get('radio_tabs_metadata', None))
setattr(self, "_{}".format('saving_custom_tabs_enabled'), kwargs.get('saving_custom_tabs_enabled', None))
setattr(self, "_{}".format('saving_custom_tabs_metadata'), kwargs.get('saving_custom_tabs_metadata', None))
setattr(self, "_{}".format('sender_to_change_tab_assignments_enabled'), kwargs.get('sender_to_change_tab_assignments_enabled', None))
setattr(self, "_{}".format('sender_to_change_tab_assignments_metadata'), kwargs.get('sender_to_change_tab_assignments_metadata', None))
setattr(self, "_{}".format('shared_custom_tabs_enabled'), kwargs.get('shared_custom_tabs_enabled', None))
setattr(self, "_{}".format('shared_custom_tabs_metadata'), kwargs.get('shared_custom_tabs_metadata', None))
setattr(self, "_{}".format('tab_data_label_enabled'), kwargs.get('tab_data_label_enabled', None))
setattr(self, "_{}".format('tab_data_label_metadata'), kwargs.get('tab_data_label_metadata', None))
setattr(self, "_{}".format('tab_location_enabled'), kwargs.get('tab_location_enabled', None))
setattr(self, "_{}".format('tab_location_metadata'), kwargs.get('tab_location_metadata', None))
setattr(self, "_{}".format('tab_locking_enabled'), kwargs.get('tab_locking_enabled', None))
setattr(self, "_{}".format('tab_locking_metadata'), kwargs.get('tab_locking_metadata', None))
setattr(self, "_{}".format('tab_scale_enabled'), kwargs.get('tab_scale_enabled', None))
setattr(self, "_{}".format('tab_scale_metadata'), kwargs.get('tab_scale_metadata', None))
setattr(self, "_{}".format('tab_text_formatting_enabled'), kwargs.get('tab_text_formatting_enabled', None))
setattr(self, "_{}".format('tab_text_formatting_metadata'), kwargs.get('tab_text_formatting_metadata', None))
setattr(self, "_{}".format('text_tabs_enabled'), kwargs.get('text_tabs_enabled', None))
setattr(self, "_{}".format('text_tabs_metadata'), kwargs.get('text_tabs_metadata', None))
@property
def allow_tab_order(self):
return self._allow_tab_order
@allow_tab_order.setter
def allow_tab_order(self, allow_tab_order):
self._allow_tab_order = allow_tab_order
@property
def allow_tab_order_metadata(self):
return self._allow_tab_order_metadata
@allow_tab_order_metadata.setter
def allow_tab_order_metadata(self, allow_tab_order_metadata):
self._allow_tab_order_metadata = allow_tab_order_metadata
@property
def approve_decline_tabs_enabled(self):
return self._approve_decline_tabs_enabled
@approve_decline_tabs_enabled.setter
def approve_decline_tabs_enabled(self, approve_decline_tabs_enabled):
self._approve_decline_tabs_enabled = approve_decline_tabs_enabled
@property
def approve_decline_tabs_metadata(self):
return self._approve_decline_tabs_metadata
@approve_decline_tabs_metadata.setter
def approve_decline_tabs_metadata(self, approve_decline_tabs_metadata):
self._approve_decline_tabs_metadata = approve_decline_tabs_metadata
@property
def calculated_fields_enabled(self):
return self._calculated_fields_enabled
@calculated_fields_enabled.setter
def calculated_fields_enabled(self, calculated_fields_enabled):
self._calculated_fields_enabled = calculated_fields_enabled
@property
def calculated_fields_metadata(self):
return self._calculated_fields_metadata
@calculated_fields_metadata.setter
def calculated_fields_metadata(self, calculated_fields_metadata):
self._calculated_fields_metadata = calculated_fields_metadata
@property
def checkbox_tabs_enabled(self):
return self._checkbox_tabs_enabled
@checkbox_tabs_enabled.setter
def checkbox_tabs_enabled(self, checkbox_tabs_enabled):
self._checkbox_tabs_enabled = checkbox_tabs_enabled
@property
def check_box_tabs_metadata(self):
return self._check_box_tabs_metadata
@check_box_tabs_metadata.setter
def check_box_tabs_metadata(self, check_box_tabs_metadata):
self._check_box_tabs_metadata = check_box_tabs_metadata
@property
def data_field_regex_enabled(self):
return self._data_field_regex_enabled
@data_field_regex_enabled.setter
def data_field_regex_enabled(self, data_field_regex_enabled):
self._data_field_regex_enabled = data_field_regex_enabled
@property
def data_field_regex_metadata(self):
return self._data_field_regex_metadata
@data_field_regex_metadata.setter
def data_field_regex_metadata(self, data_field_regex_metadata):
self._data_field_regex_metadata = data_field_regex_metadata
@property
def data_field_size_enabled(self):
return self._data_field_size_enabled
@data_field_size_enabled.setter
def data_field_size_enabled(self, data_field_size_enabled):
self._data_field_size_enabled = data_field_size_enabled
@property
def data_field_size_metadata(self):
return self._data_field_size_metadata
@data_field_size_metadata.setter
def data_field_size_metadata(self, data_field_size_metadata):
self._data_field_size_metadata = data_field_size_metadata
@property
def draw_tabs_enabled(self):
return self._draw_tabs_enabled
@draw_tabs_enabled.setter
def draw_tabs_enabled(self, draw_tabs_enabled):
self._draw_tabs_enabled = draw_tabs_enabled
@property
def draw_tabs_metadata(self):
return self._draw_tabs_metadata
@draw_tabs_metadata.setter
def draw_tabs_metadata(self, draw_tabs_metadata):
self._draw_tabs_metadata = draw_tabs_metadata
@property
def first_last_email_tabs_enabled(self):
return self._first_last_email_tabs_enabled
@first_last_email_tabs_enabled.setter
def first_last_email_tabs_enabled(self, first_last_email_tabs_enabled):
self._first_last_email_tabs_enabled = first_last_email_tabs_enabled
@property
def first_last_email_tabs_metadata(self):
return self._first_last_email_tabs_metadata
@first_last_email_tabs_metadata.setter
def first_last_email_tabs_metadata(self, first_last_email_tabs_metadata):
self._first_last_email_tabs_metadata = first_last_email_tabs_metadata
@property
def list_tabs_enabled(self):
return self._list_tabs_enabled
@list_tabs_enabled.setter
def list_tabs_enabled(self, list_tabs_enabled):
self._list_tabs_enabled = list_tabs_enabled
@property
def list_tabs_metadata(self):
return self._list_tabs_metadata
@list_tabs_metadata.setter
def list_tabs_metadata(self, list_tabs_metadata):
self._list_tabs_metadata = list_tabs_metadata
@property
def note_tabs_enabled(self):
return self._note_tabs_enabled
@note_tabs_enabled.setter | MIT License |
cleverhans-lab/cleverhans | cleverhans_v3.1.0/cleverhans/attack_bundling.py | AttackGoal.print_progress | python | def print_progress(self, criteria, run_counts):
print("Working on a " + self.__class__.__name__ + " goal.") | Prints a progress message about how much has been done toward the goal.
:param criteria: dict, of the format returned by get_criteria
:param run_counts: dict mapping each AttackConfig to a numpy array
specifying how many times it has been run for each example | https://github.com/cleverhans-lab/cleverhans/blob/4aed4be702be5ce13d5017b8a3c6a2cdc4fc0009/cleverhans_v3.1.0/cleverhans/attack_bundling.py#L694-L701 | import copy
import logging
import time
import numpy as np
import six
from six.moves import range
import tensorflow as tf
from cleverhans.attacks import Noise
from cleverhans.attacks import ProjectedGradientDescent
from cleverhans.attacks import SPSA
from cleverhans.evaluation import correctness_and_confidence
from cleverhans.evaluation import batch_eval_multi_worker, run_attack
from cleverhans.model import Model
from cleverhans import serial
from cleverhans.utils import create_logger, deep_copy, safe_zip
from cleverhans.utils_tf import infer_devices
from cleverhans.confidence_report import ConfidenceReport
from cleverhans.confidence_report import ConfidenceReportEntry
from cleverhans.confidence_report import print_stats
_logger = create_logger("attack_bundling")
_logger.setLevel(logging.INFO)
devices = infer_devices()
num_devices = len(devices)
DEFAULT_EXAMPLES_PER_DEVICE = 128
BATCH_SIZE = DEFAULT_EXAMPLES_PER_DEVICE * num_devices
REPORT_TIME_INTERVAL = 60
def single_run_max_confidence_recipe(
sess,
model,
x,
y,
nb_classes,
eps,
clip_min,
clip_max,
eps_iter,
nb_iter,
report_path,
batch_size=BATCH_SIZE,
eps_iter_small=None,
):
noise_attack = Noise(model, sess)
pgd_attack = ProjectedGradientDescent(model, sess)
threat_params = {"eps": eps, "clip_min": clip_min, "clip_max": clip_max}
noise_attack_config = AttackConfig(noise_attack, threat_params, "noise")
attack_configs = [noise_attack_config]
pgd_attack_configs = []
pgd_params = copy.copy(threat_params)
pgd_params["eps_iter"] = eps_iter
pgd_params["nb_iter"] = nb_iter
assert batch_size % num_devices == 0
dev_batch_size = batch_size // num_devices
ones = tf.ones(dev_batch_size, tf.int32)
expensive_pgd = []
if eps_iter_small is None:
eps_iter_small = eps_iter / 25.0
for cls in range(nb_classes):
cls_params = copy.copy(pgd_params)
cls_params["y_target"] = tf.to_float(tf.one_hot(ones * cls, nb_classes))
cls_attack_config = AttackConfig(pgd_attack, cls_params, "pgd_" + str(cls))
pgd_attack_configs.append(cls_attack_config)
expensive_params = copy.copy(cls_params)
expensive_params["eps_iter"] = eps_iter_small
expensive_params["nb_iter"] *= 25.0
expensive_config = AttackConfig(
pgd_attack, expensive_params, "expensive_pgd_" + str(cls)
)
expensive_pgd.append(expensive_config)
attack_configs = [noise_attack_config] + pgd_attack_configs + expensive_pgd
new_work_goal = {config: 1 for config in attack_configs}
goals = [MaxConfidence(t=1.0, new_work_goal=new_work_goal)]
bundle_attacks(
sess,
model,
x,
y,
attack_configs,
goals,
report_path,
attack_batch_size=batch_size,
eval_batch_size=batch_size,
)
def basic_max_confidence_recipe(
sess,
model,
x,
y,
nb_classes,
eps,
clip_min,
clip_max,
eps_iter,
nb_iter,
report_path,
batch_size=BATCH_SIZE,
eps_iter_small=None,
):
noise_attack = Noise(model, sess)
pgd_attack = ProjectedGradientDescent(model, sess)
threat_params = {"eps": eps, "clip_min": clip_min, "clip_max": clip_max}
noise_attack_config = AttackConfig(noise_attack, threat_params)
attack_configs = [noise_attack_config]
pgd_attack_configs = []
pgd_params = copy.copy(threat_params)
pgd_params["eps_iter"] = eps_iter
pgd_params["nb_iter"] = nb_iter
assert batch_size % num_devices == 0
dev_batch_size = batch_size // num_devices
ones = tf.ones(dev_batch_size, tf.int32)
expensive_pgd = []
if eps_iter_small is None:
eps_iter_small = eps_iter / 25.0
for cls in range(nb_classes):
cls_params = copy.copy(pgd_params)
cls_params["y_target"] = tf.to_float(tf.one_hot(ones * cls, nb_classes))
cls_attack_config = AttackConfig(pgd_attack, cls_params, "pgd_" + str(cls))
pgd_attack_configs.append(cls_attack_config)
expensive_params = copy.copy(cls_params)
expensive_params["eps_iter"] = eps_iter_small
expensive_params["nb_iter"] *= 25.0
expensive_config = AttackConfig(
pgd_attack, expensive_params, "expensive_pgd_" + str(cls)
)
expensive_pgd.append(expensive_config)
attack_configs = [noise_attack_config] + pgd_attack_configs + expensive_pgd
new_work_goal = {config: 5 for config in attack_configs}
pgd_work_goal = {config: 5 for config in pgd_attack_configs}
goals = [
Misclassify(new_work_goal={noise_attack_config: 50}),
Misclassify(new_work_goal=pgd_work_goal),
MaxConfidence(t=0.5, new_work_goal=new_work_goal),
MaxConfidence(t=0.75, new_work_goal=new_work_goal),
MaxConfidence(t=0.875, new_work_goal=new_work_goal),
MaxConfidence(t=0.9375, new_work_goal=new_work_goal),
MaxConfidence(t=0.96875, new_work_goal=new_work_goal),
MaxConfidence(t=0.984375, new_work_goal=new_work_goal),
MaxConfidence(t=1.0),
]
bundle_attacks(sess, model, x, y, attack_configs, goals, report_path)
def fixed_max_confidence_recipe(
sess,
model,
x,
y,
nb_classes,
eps,
clip_min,
clip_max,
eps_iter,
nb_iter,
report_path,
batch_size=BATCH_SIZE,
eps_iter_small=None,
):
noise_attack = Noise(model, sess)
pgd_attack = ProjectedGradientDescent(model, sess)
threat_params = {"eps": eps, "clip_min": clip_min, "clip_max": clip_max}
noise_attack_config = AttackConfig(noise_attack, threat_params)
attack_configs = [noise_attack_config]
pgd_attack_configs = []
pgd_params = copy.copy(threat_params)
pgd_params["eps_iter"] = eps_iter
pgd_params["nb_iter"] = nb_iter
assert batch_size % num_devices == 0
dev_batch_size = batch_size // num_devices
ones = tf.ones(dev_batch_size, tf.int32)
if eps_iter_small is None:
eps_iter_small = eps_iter / 25.0
expensive_pgd = []
for cls in range(nb_classes):
cls_params = copy.copy(pgd_params)
cls_params["y_target"] = tf.to_float(tf.one_hot(ones * cls, nb_classes))
cls_attack_config = AttackConfig(pgd_attack, cls_params, "pgd_" + str(cls))
pgd_attack_configs.append(cls_attack_config)
expensive_params = copy.copy(cls_params)
expensive_params["eps_iter"] = eps_iter_small
expensive_params["nb_iter"] *= 25.0
expensive_config = AttackConfig(
pgd_attack, expensive_params, "expensive_pgd_" + str(cls)
)
expensive_pgd.append(expensive_config)
attack_configs = [noise_attack_config] + pgd_attack_configs + expensive_pgd
new_work_goal = {config: 5 for config in attack_configs}
pgd_work_goal = {config: 5 for config in pgd_attack_configs}
goals = [
Misclassify(new_work_goal={noise_attack_config: 50}),
Misclassify(new_work_goal=pgd_work_goal),
MaxConfidence(t=0.5, new_work_goal=new_work_goal),
MaxConfidence(t=0.75, new_work_goal=new_work_goal),
MaxConfidence(t=0.875, new_work_goal=new_work_goal),
MaxConfidence(t=0.9375, new_work_goal=new_work_goal),
MaxConfidence(t=0.96875, new_work_goal=new_work_goal),
MaxConfidence(t=0.984375, new_work_goal=new_work_goal),
MaxConfidence(t=1.0, new_work_goal=new_work_goal),
]
bundle_attacks(sess, model, x, y, attack_configs, goals, report_path)
def random_search_max_confidence_recipe(
sess,
model,
x,
y,
eps,
clip_min,
clip_max,
report_path,
batch_size=BATCH_SIZE,
num_noise_points=10000,
):
noise_attack = Noise(model, sess)
threat_params = {"eps": eps, "clip_min": clip_min, "clip_max": clip_max}
noise_attack_config = AttackConfig(noise_attack, threat_params)
attack_configs = [noise_attack_config]
assert batch_size % num_devices == 0
new_work_goal = {noise_attack_config: num_noise_points}
goals = [MaxConfidence(t=1.0, new_work_goal=new_work_goal)]
bundle_attacks(sess, model, x, y, attack_configs, goals, report_path)
class AttackConfig(object):
def __init__(self, attack, params=None, name=None, pass_y=False):
self.attack = attack
self.params = params
self.name = name
if params is not None:
assert isinstance(params, dict)
for key in params:
assert isinstance(key, six.string_types), type(key)
self.pass_y = pass_y
def __str__(self):
if self.name is not None:
return self.name
return "AttackConfig(" + str(self.attack) + ", " + str(self.params) + ")"
def __repr__(self):
return self.__str__()
def bundle_attacks(
sess,
model,
x,
y,
attack_configs,
goals,
report_path,
attack_batch_size=BATCH_SIZE,
eval_batch_size=BATCH_SIZE,
):
assert isinstance(sess, tf.Session)
assert isinstance(model, Model)
assert all(
isinstance(attack_config, AttackConfig) for attack_config in attack_configs
)
assert all(isinstance(goal, AttackGoal) for goal in goals)
assert isinstance(report_path, six.string_types)
if x.shape[0] != y.shape[0]:
raise ValueError("Number of input examples does not match number of labels")
run_counts = {}
for attack_config in attack_configs:
run_counts[attack_config] = np.zeros(x.shape[0], dtype=np.int64)
_logger.info("Running on clean data to initialize the report...")
packed = correctness_and_confidence(
sess, model, x, y, batch_size=eval_batch_size, devices=devices
)
_logger.info("...done")
correctness, confidence = packed
_logger.info("Accuracy: " + str(correctness.mean()))
report = ConfidenceReport()
report["clean"] = ConfidenceReportEntry(correctness, confidence)
adv_x = x.copy()
for goal in goals:
bundle_attacks_with_goal(
sess,
model,
x,
y,
adv_x,
attack_configs,
run_counts,
goal,
report,
report_path,
attack_batch_size=attack_batch_size,
eval_batch_size=eval_batch_size,
)
return adv_x, run_counts
def bundle_attacks_with_goal(
sess,
model,
x,
y,
adv_x,
attack_configs,
run_counts,
goal,
report,
report_path,
attack_batch_size=BATCH_SIZE,
eval_batch_size=BATCH_SIZE,
):
goal.start(run_counts)
_logger.info("Running criteria for new goal...")
criteria = goal.get_criteria(sess, model, adv_x, y, batch_size=eval_batch_size)
assert "correctness" in criteria
_logger.info("Accuracy: " + str(criteria["correctness"].mean()))
assert "confidence" in criteria
while not goal.is_satisfied(criteria, run_counts):
run_batch_with_goal(
sess,
model,
x,
y,
adv_x,
criteria,
attack_configs,
run_counts,
goal,
report,
report_path,
attack_batch_size=attack_batch_size,
)
report.completed = True
save(criteria, report, report_path, adv_x)
def run_batch_with_goal(
sess,
model,
x,
y,
adv_x_val,
criteria,
attack_configs,
run_counts,
goal,
report,
report_path,
attack_batch_size=BATCH_SIZE,
):
attack_config = goal.get_attack_config(attack_configs, run_counts, criteria)
idxs = goal.request_examples(attack_config, criteria, run_counts, attack_batch_size)
x_batch = x[idxs]
assert x_batch.shape[0] == attack_batch_size
y_batch = y[idxs]
assert y_batch.shape[0] == attack_batch_size
adv_x_batch = run_attack(
sess,
model,
x_batch,
y_batch,
attack_config.attack,
attack_config.params,
attack_batch_size,
devices,
pass_y=attack_config.pass_y,
)
criteria_batch = goal.get_criteria(
sess, model, adv_x_batch, y_batch, batch_size=min(attack_batch_size, BATCH_SIZE)
)
cur_run_counts = run_counts[attack_config]
for batch_idx, orig_idx in enumerate(idxs):
cur_run_counts[orig_idx] += 1
should_copy = goal.new_wins(criteria, orig_idx, criteria_batch, batch_idx)
if should_copy:
adv_x_val[orig_idx] = adv_x_batch[batch_idx]
for key in criteria:
criteria[key][orig_idx] = criteria_batch[key][batch_idx]
assert np.allclose(y[orig_idx], y_batch[batch_idx])
report["bundled"] = ConfidenceReportEntry(
criteria["correctness"], criteria["confidence"]
)
should_save = False
new_time = time.time()
if hasattr(report, "time"):
if new_time - report.time > REPORT_TIME_INTERVAL:
should_save = True
else:
should_save = True
if should_save:
report.time = new_time
goal.print_progress(criteria, run_counts)
save(criteria, report, report_path, adv_x_val)
def save(criteria, report, report_path, adv_x_val):
print_stats(criteria["correctness"], criteria["confidence"], "bundled")
print("Saving to " + report_path)
serial.save(report_path, report)
assert report_path.endswith(".joblib")
adv_x_path = report_path[: -len(".joblib")] + "_adv.npy"
np.save(adv_x_path, adv_x_val)
class AttackGoal(object):
def start(self, run_counts):
def get_criteria(self, sess, model, advx, y, batch_size=BATCH_SIZE):
names, factory = self.extra_criteria()
factory = _CriteriaFactory(model, factory)
results = batch_eval_multi_worker(
sess, factory, [advx, y], batch_size=batch_size, devices=devices
)
names = ["correctness", "confidence"] + names
out = dict(safe_zip(names, results))
return out
def extra_criteria(self):
return [], None
def request_examples(self, attack_config, criteria, run_counts, batch_size):
raise NotImplementedError(
str(type(self)) + "needs to implement request_examples"
)
def is_satisfied(self, criteria, run_counts):
raise NotImplementedError(str(type(self)) + " needs to implement is_satisfied.") | MIT License |
plusmultiply/mprm | datasets/Scannet_subcloud.py | ScannetDataset.load_evaluation_points | python | def load_evaluation_points(self, file_path):
mesh_path = file_path.split('/')
mesh_path[-2] = mesh_path[-2][:-6] + 'meshes'
mesh_path = '/'.join(mesh_path)
vertex_data, faces = read_ply(mesh_path[:-4] + '_mesh.ply', triangular_mesh=True)
return np.vstack((vertex_data['x'], vertex_data['y'], vertex_data['z'])).T | Load points (from test or validation split) on which the metrics should be evaluated | https://github.com/plusmultiply/mprm/blob/9783dc179f0bfca8ca7316b638269769f11027aa/datasets/Scannet_subcloud.py#L982-L992 | import json
import os
import tensorflow as tf
import numpy as np
import time
import pickle
from sklearn.neighbors import KDTree
from utils.ply import read_ply, write_ply
from utils.mesh import rasterize_mesh
from os import makedirs, listdir
from os.path import exists, join, isfile, isdir
from datasets.common import Dataset
import cpp_wrappers.cpp_subsampling.grid_subsampling as cpp_subsampling
def grid_subsampling(points, features=None, labels=None, sampleDl=0.1, verbose=0):
if (features is None) and (labels is None):
return cpp_subsampling.compute(points, sampleDl=sampleDl, verbose=verbose)
elif (labels is None):
return cpp_subsampling.compute(points, features=features, sampleDl=sampleDl, verbose=verbose)
elif (features is None):
return cpp_subsampling.compute(points, classes=labels, sampleDl=sampleDl, verbose=verbose)
else:
return cpp_subsampling.compute(points, features=features, classes=labels, sampleDl=sampleDl, verbose=verbose)
class ScannetDataset(Dataset):
def __init__(self, input_threads=8, load_test=False):
Dataset.__init__(self, 'Scannet')
self.label_to_names = {0: 'unclassified',
1: 'wall',
2: 'floor',
3: 'cabinet',
4: 'bed',
5: 'chair',
6: 'sofa',
7: 'table',
8: 'door',
9: 'window',
10: 'bookshelf',
11: 'picture',
12: 'counter',
14: 'desk',
16: 'curtain',
24: 'refridgerator',
28: 'shower curtain',
33: 'toilet',
34: 'sink',
36: 'bathtub',
39: 'otherfurniture'}
self.init_labels()
self.ignored_labels = np.sort([0])
self.network_model = 'cloud_segmentation'
self.num_threads = input_threads
self.path = ''
self.train_path = join(self.path, 'training_points')
self.test_path = join(self.path, 'test_points')
self.validation_clouds = np.loadtxt(join(self.path, 'scannetv2_val.txt'), dtype=np.str)
self.validation_split = 1
self.training_split = 0
self.all_splits = []
self.load_test = load_test
def prepare_pointcloud_ply(self):
print('\nPreparing ply files')
t0 = time.time()
paths = [join(self.path, 'scans'), join(self.path, 'scans_test')]
new_paths = [self.train_path, self.test_path]
mesh_paths = [join(self.path, 'training_meshes'), join(self.path, 'test_meshes')]
label_files = join(self.path, 'scannetv2-labels.combined.tsv')
with open(label_files, 'r') as f:
lines = f.readlines()
names1 = [line.split('\t')[1] for line in lines[1:]]
IDs = [int(line.split('\t')[4]) for line in lines[1:]]
annot_to_nyuID = {n: id for n, id in zip(names1, IDs)}
for path, new_path, mesh_path in zip(paths, new_paths, mesh_paths):
if not exists(new_path):
makedirs(new_path)
if not exists(mesh_path):
makedirs(mesh_path)
scenes = np.sort([f for f in listdir(path)])
N = len(scenes)
for i, scene in enumerate(scenes):
if exists(join(new_path, scene + '.ply')):
continue
t1 = time.time()
vertex_data, faces = read_ply(join(path, scene, scene + '_vh_clean_2.ply'), triangular_mesh=True)
vertices = np.vstack((vertex_data['x'], vertex_data['y'], vertex_data['z'])).T
vertices_colors = np.vstack((vertex_data['red'], vertex_data['green'], vertex_data['blue'])).T
vertices_labels = np.zeros(vertices.shape[0], dtype=np.int32)
if new_path == self.train_path:
with open(join(path, scene, scene + '_vh_clean_2.0.010000.segs.json'), 'r') as f:
segmentations = json.load(f)
segIndices = np.array(segmentations['segIndices'])
with open(join(path, scene, scene + '_vh_clean.aggregation.json'), 'r') as f:
aggregation = json.load(f)
for segGroup in aggregation['segGroups']:
c_name = segGroup['label']
if c_name in names1:
nyuID = annot_to_nyuID[c_name]
if nyuID in self.label_values:
for segment in segGroup['segments']:
vertices_labels[segIndices == segment] = nyuID
write_ply(join(mesh_path, scene + '_mesh.ply'),
[vertices, vertices_colors, vertices_labels],
['x', 'y', 'z', 'red', 'green', 'blue', 'class'],
triangular_faces=faces)
else:
write_ply(join(mesh_path, scene + '_mesh.ply'),
[vertices, vertices_colors],
['x', 'y', 'z', 'red', 'green', 'blue'],
triangular_faces=faces)
points, associated_vert_inds = rasterize_mesh(vertices, faces, 0.003)
sub_points, sub_vert_inds = grid_subsampling(points, labels=associated_vert_inds, sampleDl=0.01)
sub_colors = vertices_colors[sub_vert_inds.ravel(), :]
if new_path == self.train_path:
sub_labels = vertices_labels[sub_vert_inds.ravel()]
write_ply(join(new_path, scene + '.ply'),
[sub_points, sub_colors, sub_labels, sub_vert_inds],
['x', 'y', 'z', 'red', 'green', 'blue', 'class', 'vert_ind'])
else:
write_ply(join(new_path, scene + '.ply'),
[sub_points, sub_colors, sub_vert_inds],
['x', 'y', 'z', 'red', 'green', 'blue', 'vert_ind'])
print('{:s} {:.1f} sec / {:.1f}%'.format(scene,
time.time() - t1,
100 * i / N))
print('Done in {:.1f}s'.format(time.time() - t0))
def load_subsampled_clouds(self, subsampling_parameter):
if 0 < subsampling_parameter <= 0.01:
raise ValueError('subsampling_parameter too low (should be over 1 cm')
tree_path = join(self.path, 'input_{:.3f}'.format(subsampling_parameter))
if not exists(tree_path):
makedirs(tree_path)
self.train_files = np.sort([join(self.train_path, f) for f in listdir(self.train_path) if f[-4:] == '.ply'])
self.test_files = np.sort([join(self.test_path, f) for f in listdir(self.test_path) if f[-4:] == '.ply'])
files = np.hstack((self.train_files, self.test_files))
self.input_trees = {'training': [], 'validation': [], 'test': []}
self.input_colors = {'training': [], 'validation': [], 'test': []}
self.input_vert_inds = {'training': [], 'validation': [], 'test': []}
self.input_labels = {'training': [], 'validation': []}
N = len(files)
progress_n = 30
fmt_str = '[{:<' + str(progress_n) + '}] {:5.1f}%'
print('\nPreparing KDTree for all scenes, subsampled at {:.3f}'.format(subsampling_parameter))
for i, file_path in enumerate(files):
t0 = time.time()
cloud_name = file_path.split('/')[-1][:-4]
cloud_folder = file_path.split('/')[-2]
if 'train' in cloud_folder:
if cloud_name in self.validation_clouds:
self.all_splits += [1]
cloud_split = 'validation'
else:
self.all_splits += [0]
cloud_split = 'training'
else:
cloud_split = 'test'
if (cloud_split != 'test' and self.load_test) or (cloud_split == 'test' and not self.load_test):
continue
KDTree_file = join(tree_path, '{:s}_KDTree.pkl'.format(cloud_name))
sub_ply_file = join(tree_path, '{:s}.ply'.format(cloud_name))
if isfile(KDTree_file):
data = read_ply(sub_ply_file)
sub_colors = np.vstack((data['red'], data['green'], data['blue'])).T
sub_vert_inds = data['vert_ind']
if cloud_split == 'test':
sub_labels = None
else:
sub_labels = data['class']
with open(KDTree_file, 'rb') as f:
search_tree = pickle.load(f)
else:
data = read_ply(file_path)
points = np.vstack((data['x'], data['y'], data['z'])).T
colors = np.vstack((data['red'], data['green'], data['blue'])).T
if cloud_split == 'test':
int_features = data['vert_ind']
else:
int_features = np.vstack((data['vert_ind'], data['class'])).T
sub_points, sub_colors, sub_int_features = grid_subsampling(points,
features=colors,
labels=int_features,
sampleDl=subsampling_parameter)
sub_colors = sub_colors / 255
if cloud_split == 'test':
sub_vert_inds = np.squeeze(sub_int_features)
sub_labels = None
else:
sub_vert_inds = sub_int_features[:, 0]
sub_labels = sub_int_features[:, 1]
search_tree = KDTree(sub_points, leaf_size=50)
with open(KDTree_file, 'wb') as f:
pickle.dump(search_tree, f)
if cloud_split == 'test':
write_ply(sub_ply_file,
[sub_points, sub_colors, sub_vert_inds],
['x', 'y', 'z', 'red', 'green', 'blue', 'vert_ind'])
else:
write_ply(sub_ply_file,
[sub_points, sub_colors, sub_labels, sub_vert_inds],
['x', 'y', 'z', 'red', 'green', 'blue', 'class', 'vert_ind'])
self.input_trees[cloud_split] += [search_tree]
self.input_colors[cloud_split] += [sub_colors]
self.input_vert_inds[cloud_split] += [sub_vert_inds]
if cloud_split in ['training', 'validation']:
self.input_labels[cloud_split] += [sub_labels]
print('', end='\r')
print(fmt_str.format('#' * ((i * progress_n) // N), 100 * i / N), end='', flush=True)
self.input_trees['validation'] = self.input_trees['training']
self.input_colors['validation'] = self.input_colors['training']
self.input_vert_inds['validation'] = self.input_colors['training']
self.input_labels['validation'] = self.input_labels['training']
self.num_training = len(self.input_trees['training'])
self.num_validation = len(self.input_trees['validation'])
self.num_test = len(self.input_trees['test'])
print('number of training sample:', self.num_training)
print('number of validation sample:', self.num_validation)
print('number of test sample:', self.num_test)
self.validation_proj = []
self.validation_labels = []
self.test_proj = []
self.test_labels = []
i_val = 0
i_test = 0
N = self.num_validation + self.num_test
print('', end='\r')
print(fmt_str.format('#' * progress_n, 100), flush=True)
print('\nPreparing reprojection indices for validation and test')
for i, file_path in enumerate(files):
cloud_name = file_path.split('/')[-1][:-4]
cloud_folder = file_path.split('/')[-2]
if (not self.load_test) and 'train' in cloud_folder and cloud_name not in self.validation_clouds:
proj_file = join(tree_path, '{:s}_proj_train.pkl'.format(cloud_name))
if isfile(proj_file):
with open(proj_file, 'rb') as f:
proj_inds, labels = pickle.load(f)
else:
tree_path = join(self.path, 'input_{:.3f}'.format(subsampling_parameter))
data = read_ply(join(tree_path, '{:s}.ply'.format(cloud_name)))
vertices = np.vstack((data['x'], data['y'], data['z'])).T
labels = data['class']
proj_inds = np.squeeze(self.input_trees['validation'][i_val].query(vertices, return_distance=False))
proj_inds = proj_inds.astype(np.int32)
with open(proj_file, 'wb') as f:
pickle.dump([proj_inds, labels], f)
self.validation_proj += [proj_inds]
self.validation_labels += [labels]
i_val += 1
if self.load_test and 'test' in cloud_folder:
proj_file = join(tree_path, '{:s}_proj.pkl'.format(cloud_name))
if isfile(proj_file):
with open(proj_file, 'rb') as f:
proj_inds, labels = pickle.load(f)
else:
mesh_path = file_path.split('/')
mesh_path[-2] = 'test_meshes'
mesh_path = '/'.join(mesh_path)
vertex_data, faces = read_ply(mesh_path[:-4] + '_mesh.ply', triangular_mesh=True)
vertices = np.vstack((vertex_data['x'], vertex_data['y'], vertex_data['z'])).T
labels = np.zeros(vertices.shape[0], dtype=np.int32)
proj_inds = np.squeeze(self.input_trees['test'][i_test].query(vertices, return_distance=False))
proj_inds = proj_inds.astype(np.int32)
with open(proj_file, 'wb') as f:
pickle.dump([proj_inds, labels], f)
self.test_proj += [proj_inds]
self.test_labels += [labels]
i_test += 1
print('', end='\r')
print(fmt_str.format('#' * (((i_val + i_test) * progress_n) // N), 100 * (i_val + i_test) / N),
end='',
flush=True)
print('\n')
return
def get_batch_gen(self, split, config):
if split == 'training':
epoch_n = config.epoch_steps * config.batch_num
random_pick_n = None
elif split == 'validation':
epoch_n = config.validation_size * config.batch_num
elif split == 'test':
epoch_n = config.validation_size * config.batch_num
elif split == 'ERF':
epoch_n = 1000000
self.batch_limit = 1
np.random.seed(42)
else:
raise ValueError('Split argument in data generator should be "training", "validation" or "test"')
if not hasattr(self, 'potentials'):
self.potentials = {}
self.min_potentials = {}
if not hasattr(self, 'anchors'):
self.anchors = []
def get_anchors(points):
n_anchors = []
x_max = points[:, 0].max()
x_min = points[:, 0].min()
y_max = points[:, 1].max()
y_min = points[:, 1].min()
z_max = points[:, 2].max()
z_min = points[:, 2].min()
x_step = np.floor((x_max - x_min) / config.in_radius) + 1
y_step = np.floor((y_max - y_min) / config.in_radius) + 1
z_step = np.floor((z_max - z_min) / config.in_radius) + 1
x_num = np.linspace(x_min, x_max, x_step)
y_num = np.linspace(y_min, y_max, y_step)
z_num = np.linspace(z_min, z_max, z_step)
for x in x_num:
for y in y_num:
for z in z_num:
n_anchors.append([x, y, z])
return np.array(n_anchors)
if split == 'training':
self.anchors = []
self.potentials[split] = []
self.min_potentials[split] = []
data_split = split
if split == 'ERF':
data_split = 'test'
if split == 'training':
for i, tree in enumerate(self.input_trees[data_split]):
points = np.array(tree.data)
anchor = get_anchors(points)
self.anchors += [anchor]
self.potentials[split] += [np.random.rand(len(anchor)) * 1e-3]
self.min_potentials[split] += [float(np.min(self.potentials[split][-1]))]
print(len(self.anchors))
print(len(self.potentials[split]))
print(len(self.min_potentials[split]))
else:
for i, tree in enumerate(self.input_trees[data_split]):
self.potentials[split] += [np.random.rand(tree.data.shape[0]) * 1e-3]
self.min_potentials[split] += [float(np.min(self.potentials[split][-1]))]
def get_random_epoch_inds():
all_epoch_inds = np.zeros((2, 0), dtype=np.int32)
for cloud_ind, cloud_labels in enumerate(self.input_labels[split]):
epoch_indices = np.empty((0,), dtype=np.int32)
for label_ind, label in enumerate(self.label_values):
if label not in self.ignored_labels:
label_indices = np.where(np.equal(cloud_labels, label))[0]
if len(label_indices) <= random_pick_n:
epoch_indices = np.hstack((epoch_indices, label_indices))
elif len(label_indices) < 50 * random_pick_n:
new_randoms = np.random.choice(label_indices, size=random_pick_n, replace=False)
epoch_indices = np.hstack((epoch_indices, new_randoms.astype(np.int32)))
else:
rand_inds = []
while len(rand_inds) < random_pick_n:
rand_inds = np.unique(np.random.choice(label_indices, size=5 * random_pick_n, replace=True))
epoch_indices = np.hstack((epoch_indices, rand_inds[:random_pick_n].astype(np.int32)))
epoch_indices = np.vstack((np.full(epoch_indices.shape, cloud_ind, dtype=np.int32), epoch_indices))
all_epoch_inds = np.hstack((all_epoch_inds, epoch_indices))
return all_epoch_inds
def random_balanced_gen():
if split == 'training':
all_epoch_inds = get_random_epoch_inds()
elif split == 'validation':
all_epoch_inds = get_random_epoch_inds()
else:
raise ValueError('generator to be defined for test split.')
p_list = []
c_list = []
pl_list = []
pi_list = []
ci_list = []
cl_list = []
cla_list = []
batch_n = 0
for i, rand_i in enumerate(np.random.permutation(all_epoch_inds.shape[1])):
cloud_ind = all_epoch_inds[0, rand_i]
point_ind = all_epoch_inds[1, rand_i]
points = np.array(self.input_trees[split][cloud_ind].data, copy=False)
center_point = points[point_ind, :].reshape(1, -1)
noise = np.random.normal(scale=config.in_radius/10, size=center_point.shape)
pick_point = center_point + noise.astype(center_point.dtype)
input_inds = self.input_trees[split][cloud_ind].query_radius(pick_point,
r=config.in_radius)[0]
n = input_inds.shape[0]
if n > self.batch_limit:
input_inds = np.random.choice(input_inds, size=int(self.batch_limit)-1, replace=False)
n = input_inds.shape[0]
input_points = (points[input_inds] - pick_point).astype(np.float32)
input_colors = self.input_colors[split][cloud_ind][input_inds]
input_labels = self.input_labels[split][cloud_ind][input_inds]
input_labels = np.array([self.label_to_idx[l] for l in input_labels])
cloud_labels_idx = np.unique(input_labels)
cloud_labels = np.zeros((1, config.num_classes))
cloud_labels[0][cloud_labels_idx] = 1
cloud_labels_all = np.ones((len(input_labels), config.num_classes))
cloud_labels_all = cloud_labels_all * cloud_labels
if batch_n + n > self.batch_limit and batch_n > 0:
yield (np.concatenate(p_list, axis=0),
np.concatenate(c_list, axis=0),
np.concatenate(pl_list, axis=0),
np.array([tp.shape[0] for tp in p_list]),
np.concatenate(pi_list, axis=0),
np.array(ci_list, dtype=np.int32),
np.concatenate(cl_list, axis=0),
np.concatenate(cla_list, axis=0))
p_list = []
c_list = []
pl_list = []
pi_list = []
ci_list = []
cl_list = []
cla_list = []
batch_n = 0
if n > 0:
p_list += [input_points]
c_list += [np.hstack((input_colors, input_points + pick_point))]
pl_list += [input_labels]
pi_list += [input_inds]
ci_list += [cloud_ind]
cl_list += [cloud_labels]
cla_list += [cloud_labels_all]
batch_n += n
if batch_n > 0:
yield (np.concatenate(p_list, axis=0),
np.concatenate(c_list, axis=0),
np.concatenate(pl_list, axis=0),
np.array([tp.shape[0] for tp in p_list]),
np.concatenate(pi_list, axis=0),
np.array(ci_list, dtype=np.int32),
np.concatenate(cl_list, axis=0),
np.concatenate(cla_list, axis=0)
)
def spatially_regular_gen():
p_list = []
c_list = []
pl_list = []
pi_list = []
ci_list = []
cl_list = []
cla_list = []
batch_n = 0
for i in range(epoch_n):
cloud_ind = int(np.argmin(self.min_potentials[split]))
point_ind = np.argmin(self.potentials[split][cloud_ind])
points = np.array(self.input_trees[data_split][cloud_ind].data, copy=False)
if split=='training':
center_point = self.anchors[cloud_ind][point_ind].reshape(1, -1)
else:
center_point = points[point_ind, :].reshape(1, -1)
if split != 'ERF':
noise = np.random.normal(scale=config.in_radius/10, size=center_point.shape)
pick_point = center_point + noise.astype(center_point.dtype)
else:
pick_point = center_point
input_inds = self.input_trees[data_split][cloud_ind].query_radius(pick_point,
r=config.in_radius)[0]
n = input_inds.shape[0]
if n == 0:
self.potentials[split][cloud_ind][point_ind] += 1
self.min_potentials[split][cloud_ind] = float(np.min(self.potentials[split][cloud_ind]))
continue
if split != 'ERF':
dists = np.sum(np.square((points[input_inds] - pick_point).astype(np.float32)), axis=1)
tukeys = np.square(1 - dists / np.square(config.in_radius))
tukeys[dists > np.square(config.in_radius)] = 0
if split != 'training':
self.potentials[split][cloud_ind][input_inds] += tukeys
self.min_potentials[split][cloud_ind] = float(np.min(self.potentials[split][cloud_ind]))
else:
self.potentials[split][cloud_ind][point_ind] += 0.01
self.min_potentials[split][cloud_ind] = float(np.min(self.potentials[split][cloud_ind]))
if n > self.batch_limit:
input_inds = np.random.choice(input_inds, size=int(self.batch_limit)-1, replace=False)
n = input_inds.shape[0]
input_points = (points[input_inds] - pick_point).astype(np.float32)
input_colors = self.input_colors[data_split][cloud_ind][input_inds]
if split in ['test', 'ERF']:
input_labels = np.zeros(input_points.shape[0])
else:
input_labels = self.input_labels[data_split][cloud_ind][input_inds]
input_labels = np.array([self.label_to_idx[l] for l in input_labels])
cloud_labels_idx = np.unique(input_labels)
cloud_labels_idx = cloud_labels_idx[cloud_labels_idx!=0].astype('int32')
cloud_labels = np.zeros((1, config.num_classes))
cloud_labels[0][cloud_labels_idx-1] = 1
cloud_labels_all = np.ones((len(input_labels), config.num_classes))
cloud_labels_all = cloud_labels_all * cloud_labels
if batch_n + n > self.batch_limit and batch_n > 0:
yield (np.concatenate(p_list, axis=0),
np.concatenate(c_list, axis=0),
np.concatenate(pl_list, axis=0),
np.array([tp.shape[0] for tp in p_list]),
np.concatenate(pi_list, axis=0),
np.array(ci_list, dtype=np.int32),
np.concatenate(cl_list, axis=0),
np.concatenate(cla_list, axis=0))
p_list = []
c_list = []
pl_list = []
pi_list = []
ci_list = []
cl_list = []
cla_list = []
batch_n = 0
if n > 0:
p_list += [input_points]
c_list += [np.hstack((input_colors, input_points + pick_point))]
pl_list += [input_labels]
pi_list += [input_inds]
ci_list += [cloud_ind]
cl_list += [cloud_labels]
cla_list += [cloud_labels_all]
batch_n += n
if batch_n > 0:
yield (np.concatenate(p_list, axis=0),
np.concatenate(c_list, axis=0),
np.concatenate(pl_list, axis=0),
np.array([tp.shape[0] for tp in p_list]),
np.concatenate(pi_list, axis=0),
np.array(ci_list, dtype=np.int32),
np.concatenate(cl_list, axis=0),
np.concatenate(cla_list, axis=0))
if split == 'training':
gen_func = spatially_regular_gen
elif split == 'validation':
gen_func = spatially_regular_gen
elif split in ['test', 'ERF']:
gen_func = spatially_regular_gen
else:
raise ValueError('Split argument in data generator should be "training", "validation" or "test"')
gen_types = (tf.float32, tf.float32, tf.int32, tf.int32, tf.int32, tf.int32, tf.float32, tf.float32)
gen_shapes = ([None, 3], [None, 6], [None], [None], [None], [None], [None, 20], [None, 20])
return gen_func, gen_types, gen_shapes
def get_tf_mapping(self, config):
def tf_map(stacked_points, stacked_colors, point_labels, stacks_lengths, point_inds, cloud_inds, cloud_labels, cloud_labels_all):
batch_inds = self.tf_get_batch_inds(stacks_lengths)
stacked_points, scales, rots = self.tf_augment_input(stacked_points,
batch_inds,
config)
stacked_features = tf.ones((tf.shape(stacked_points)[0], 1), dtype=tf.float32)
stacked_original_coordinates = stacked_colors[:, 3:]
stacked_colors = stacked_colors[:, :3]
if config.in_features_dim in [4, 5]:
num_batches = batch_inds[-1] + 1
s = tf.cast(tf.less(tf.random_uniform((num_batches,)), config.augment_color), tf.float32)
stacked_s = tf.gather(s, batch_inds)
stacked_colors = stacked_colors * tf.expand_dims(stacked_s, axis=1)
if config.in_features_dim == 1:
pass
elif config.in_features_dim == 2:
stacked_features = tf.concat((stacked_features, stacked_original_coordinates[:, 2:]), axis=1)
elif config.in_features_dim == 3:
stacked_features = stacked_colors
elif config.in_features_dim == 4:
stacked_features = tf.concat((stacked_features, stacked_colors), axis=1)
elif config.in_features_dim == 5:
stacked_features = tf.concat((stacked_features, stacked_colors, stacked_original_coordinates[:, 2:]), axis=1)
elif config.in_features_dim == 7:
stacked_features = tf.concat((stacked_features, stacked_colors, stacked_points), axis=1)
else:
raise ValueError('Only accepted input dimensions are 1, 3, 4 and 7 (without and with rgb/xyz)')
input_list = self.tf_segmentation_attention_inputs(config,
stacked_points,
stacked_features,
point_labels,
stacks_lengths,
batch_inds)
input_list += [scales, rots]
input_list += [point_inds, cloud_inds]
input_list += [cloud_labels]
input_list += [batch_inds]
input_list += [cloud_labels_all]
input_list += [stacks_lengths]
return input_list
return tf_map | MIT License |
escorciav/deep-action-proposals | daps/model.py | forward_pass | python | def forward_pass(network, input_data):
l_pred_var, y_pred_var = lasagne.layers.get_output(network, input_data,
deterministic=True)
loc = l_pred_var.eval().reshape((-1, 2))
return loc, y_pred_var.eval() | Forward pass input_data over network | https://github.com/escorciav/deep-action-proposals/blob/c14f512febc1abd0ec40bd3188a83e4ee3913535/daps/model.py#L77-L83 | import lasagne
import numpy as np
import theano.tensor as T
from daps.c3d_encoder import Feature
from daps.utils.segment import format as segment_format
EPSILON = 10e-8
def build_lstm(input_var=None, seq_length=256, depth=2, width=512,
input_size=4096, grad_clip=100, forget_bias=5.0):
network = lasagne.layers.InputLayer(shape=(None, seq_length, input_size),
input_var=input_var)
nonlin = lasagne.nonlinearities.tanh
gate = lasagne.layers.Gate
for _ in range(depth):
network = lasagne.layers.LSTMLayer(
network, width, grad_clipping=grad_clip, nonlinearity=nonlin,
forgetgate=gate(b=lasagne.init.Constant(forget_bias)))
network = lasagne.layers.SliceLayer(network, -1, 1)
return network
def build_mlp(input_var=None, depth=2, width=1024, drop_input=.2,
drop_hidden=.5, input_size=4096):
network = lasagne.layers.InputLayer(shape=(None, input_size),
input_var=input_var)
if drop_input:
network = lasagne.layers.dropout(network, p=drop_input)
nonlin = lasagne.nonlinearities.rectify
for _ in range(depth):
network = lasagne.layers.DenseLayer(
network, width, nonlinearity=nonlin)
if drop_hidden:
network = lasagne.layers.dropout(network, p=drop_hidden)
return network
def build_model(model_prm=None, input_var=None, input_size=4096,
grad_clip=100, forget_bias=1.0):
if model_prm.startswith('mlp:'):
user_prm = model_prm.split(':', 1)[1].split(',')
n_outputs, depth, width, drop_in, drop_hid = user_prm
network = build_mlp(input_var, int(depth), int(width), float(drop_in),
input_size=input_size)
elif model_prm.startswith('lstm:'):
user_prm = model_prm.split(':', 1)[1].split(',')
n_outputs, seq_length, width, depth = user_prm
network = build_lstm(input_var, int(seq_length), int(depth),
int(width), input_size=input_size,
grad_clip=grad_clip, forget_bias=forget_bias)
else:
raise ValueError("Unrecognized model type " + model_prm)
nonlin, n_outputs = lasagne.nonlinearities.sigmoid, int(n_outputs)
localization = lasagne.layers.DenseLayer(network, n_outputs * 2)
conf = lasagne.layers.DenseLayer(network, n_outputs, nonlinearity=nonlin)
return localization, conf | MIT License |
tresamigossd/smv | src/main/python/smv/smvappinfo.py | SmvAppInfo._common_prefix | python | def _common_prefix(self, fqn_list):
if not fqn_list: return ''
parsed = [s.split(".") for s in fqn_list]
s1 = min(parsed)
s2 = max(parsed)
for i, c in enumerate(s1):
if c != s2[i]:
return ".".join(s1[:i])
return ".".join(s1) | Given a list of fqns, return the longest common prefix | https://github.com/tresamigossd/smv/blob/e12257b5b07113d805e7fdd8de41cbcf72120ed7/src/main/python/smv/smvappinfo.py#L41-L54 | from smv.utils import scala_seq_to_list
import json
from smv.modulesvisitor import ModulesVisitor
class SmvAppInfo(object):
def __init__(self, smvApp):
self.smvApp = smvApp
self.dsm = smvApp.dsm
self.stages = smvApp.stages()
def _graph(self):
nodes = self.dsm.allDataSets()
edges = []
for ds in nodes:
from_ds = ds.resolvedRequiresDS
edges.extend([(n, ds) for n in from_ds if n in nodes])
return (nodes, edges) | Apache License 2.0 |
vforgione/logging2 | logging2/loggers.py | Logger.warning | python | def warning(self, message: str, **context) -> None:
self._log(message=message, level=LogLevel.warning, **context) | Calls each registered ``Handler``'s ``write`` method to produce a warning log entry.
:param message: the user message to be written
:param context: additional key-value pairs to override template context during interpolation | https://github.com/vforgione/logging2/blob/9d620c14d9b5f67e3dc285082330296cf1ecbfcd/logging2/loggers.py#L134-L140 | import inspect
import os
import re
import sys
import traceback
from datetime import datetime, tzinfo
from datetime import timezone as _tz
from typing import Callable, Dict, Iterable, List, Optional, Set, Union
from logging2 import LogRegister
from logging2.handlers.abc import Handler
from logging2.handlers.streaming import StdOutHandler
from logging2.levels import LogLevel
class Logger:
TEMPLATE_KEYS_REGEX = re.compile("\{(?P<key>\w+)\}")
BASE_TEMPLATE_KEYS = {
"timestamp",
"level",
"name",
"message",
"source",
"line",
"function",
"process",
}
DEFAULT_TEMPLATE: str = "{timestamp} {level} {name}: {message}"
DEFAULT_TIMEZONE: tzinfo = _tz.utc
DEFAULT_HANDLER_CLASS: type = StdOutHandler
DEFAULT_LOG_LEVEL: LogLevel = LogLevel.info
def __init__(
self,
name: str,
template: Optional[str] = None,
ensure_new_line: Optional[bool] = True,
timezone: Optional[tzinfo] = None,
additional_context: Optional[Dict[str, Union[object, Callable]]] = None,
handler: Optional[Handler] = None,
handlers: Optional[Iterable[Handler]] = None,
level: Optional[LogLevel] = None,
):
if name not in LogRegister:
self.name: str = name
self.ensure_new_line: bool = ensure_new_line
self.timezone: tzinfo = timezone or self.DEFAULT_TIMEZONE
self.additional_context: Optional[
Dict[str, Union[object, Callable]]
] = additional_context or {}
self._level: LogLevel = level
self._template: str = None
self._keys: Set[str] = None
self._setup_template(template=template or self.DEFAULT_TEMPLATE)
self._handlers: Dict[str, Handler] = {}
if handler:
self.add_handler(handler)
if handlers:
for handler in handlers:
self.add_handler(handler)
LogRegister.register_logger(self)
else:
registered = LogRegister.get_logger(name=name)
self.__dict__ = registered.__dict__
@property
def template(self) -> str:
return self._template
@template.setter
def template(self, new_template: str) -> None:
self._setup_template(template=new_template)
@property
def keys(self) -> Set[str]:
return self._keys
@property
def handlers(self) -> List[Handler]:
return [handler for handler in self._handlers.values()]
def add_handler(self, handler: Handler) -> None:
name = handler.name
if name not in self._handlers:
self._handlers[name] = handler
def remove_handler(self, name: str) -> None:
if name in self._handlers:
del self._handlers[name]
def debug(self, message: str, **context) -> None:
self._log(message=message, level=LogLevel.debug, **context)
def info(self, message: str, **context) -> None:
self._log(message=message, level=LogLevel.info, **context) | MIT License |
genialis/resolwe | resolwe/test_helpers/test_runner.py | _manager_setup | python | def _manager_setup():
if TESTING_CONTEXT.get("manager_reset", False):
return
TESTING_CONTEXT["manager_reset"] = True
state.update_constants()
manager.drain_messages() | Execute setup operations common to serial and parallel testing.
This mostly means state cleanup, such as resetting database
connections and clearing the shared state. | https://github.com/genialis/resolwe/blob/dc8a70979ae9722e6c60ae0e3935c6542c637f48/resolwe/test_helpers/test_runner.py#L67-L77 | import asyncio
import contextlib
import errno
import logging
import os
import re
import shutil
import subprocess
import sys
from pathlib import Path
from unittest.mock import patch
import yaml
import zmq
import zmq.asyncio
from channels.db import database_sync_to_async
from django.conf import settings
from django.core.management.base import CommandError
from django.test import override_settings
from django.test.runner import DiscoverRunner, ParallelTestSuite, RemoteTestRunner
from django.utils.crypto import get_random_string
import resolwe.test.testcases.setting_overrides as resolwe_settings
from resolwe.flow.finders import get_finders
from resolwe.flow.management.commands.prepare_runtime import Command as PrepareRuntime
from resolwe.flow.managers import listener, manager, state
from resolwe.storage.connectors import connectors
from resolwe.test.utils import generate_process_tag
logger = logging.getLogger(__name__)
SPAWN_PROCESS_REGEX = re.compile(
r'run\s+\{.*?["\']process["\']\s*:\s*["\'](.+?)["\'].*?\}'
)
TESTING_CONTEXT = {
"is_testing": False,
}
class TestingContext:
def __enter__(self):
TESTING_CONTEXT["is_testing"] = True
def __exit__(self, *args, **kwargs):
TESTING_CONTEXT["is_testing"] = False
return False | Apache License 2.0 |
googleads/google-ads-python | google/ads/googleads/v8/services/services/domain_category_service/transports/grpc.py | DomainCategoryServiceGrpcTransport.get_domain_category | python | def get_domain_category(
self,
) -> Callable[
[domain_category_service.GetDomainCategoryRequest],
domain_category.DomainCategory,
]:
if "get_domain_category" not in self._stubs:
self._stubs["get_domain_category"] = self.grpc_channel.unary_unary(
"/google.ads.googleads.v8.services.DomainCategoryService/GetDomainCategory",
request_serializer=domain_category_service.GetDomainCategoryRequest.serialize,
response_deserializer=domain_category.DomainCategory.deserialize,
)
return self._stubs["get_domain_category"] | r"""Return a callable for the get domain category method over gRPC.
Returns the requested domain category.
List of thrown errors: `AuthenticationError <>`__
`AuthorizationError <>`__ `HeaderError <>`__
`InternalError <>`__ `QuotaError <>`__ `RequestError <>`__
Returns:
Callable[[~.GetDomainCategoryRequest],
~.DomainCategory]:
A function that, when called, will call the underlying RPC
on the server. | https://github.com/googleads/google-ads-python/blob/6794993e146abcfe21292677144c66cb546446bc/google/ads/googleads/v8/services/services/domain_category_service/transports/grpc.py#L213-L243 | import warnings
from typing import Callable, Dict, Optional, Sequence, Tuple
from google.api_core import grpc_helpers
from google.api_core import gapic_v1
import google.auth
from google.auth import credentials as ga_credentials
from google.auth.transport.grpc import SslCredentials
import grpc
from google.ads.googleads.v8.resources.types import domain_category
from google.ads.googleads.v8.services.types import domain_category_service
from .base import DomainCategoryServiceTransport, DEFAULT_CLIENT_INFO
class DomainCategoryServiceGrpcTransport(DomainCategoryServiceTransport):
def __init__(
self,
*,
host: str = "googleads.googleapis.com",
credentials: ga_credentials.Credentials = None,
credentials_file: str = None,
scopes: Sequence[str] = None,
channel: grpc.Channel = None,
api_mtls_endpoint: str = None,
client_cert_source: Callable[[], Tuple[bytes, bytes]] = None,
ssl_channel_credentials: grpc.ChannelCredentials = None,
quota_project_id: Optional[str] = None,
client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO,
) -> None:
self._ssl_channel_credentials = ssl_channel_credentials
if channel:
credentials = False
self._grpc_channel = channel
self._ssl_channel_credentials = None
elif api_mtls_endpoint:
warnings.warn(
"api_mtls_endpoint and client_cert_source are deprecated",
DeprecationWarning,
)
host = (
api_mtls_endpoint
if ":" in api_mtls_endpoint
else api_mtls_endpoint + ":443"
)
if credentials is None:
credentials, _ = google.auth.default(
scopes=self.AUTH_SCOPES, quota_project_id=quota_project_id
)
if client_cert_source:
cert, key = client_cert_source()
ssl_credentials = grpc.ssl_channel_credentials(
certificate_chain=cert, private_key=key
)
else:
ssl_credentials = SslCredentials().ssl_credentials
self._grpc_channel = type(self).create_channel(
host,
credentials=credentials,
credentials_file=credentials_file,
ssl_credentials=ssl_credentials,
scopes=scopes or self.AUTH_SCOPES,
quota_project_id=quota_project_id,
options=[
("grpc.max_send_message_length", -1),
("grpc.max_receive_message_length", -1),
],
)
self._ssl_channel_credentials = ssl_credentials
else:
host = host if ":" in host else host + ":443"
if credentials is None:
credentials, _ = google.auth.default(scopes=self.AUTH_SCOPES)
self._grpc_channel = type(self).create_channel(
host,
credentials=credentials,
ssl_credentials=ssl_channel_credentials,
scopes=self.AUTH_SCOPES,
options=[
("grpc.max_send_message_length", -1),
("grpc.max_receive_message_length", -1),
],
)
self._stubs = {}
super().__init__(
host=host, credentials=credentials, client_info=client_info,
)
@classmethod
def create_channel(
cls,
host: str = "googleads.googleapis.com",
credentials: ga_credentials.Credentials = None,
scopes: Optional[Sequence[str]] = None,
**kwargs,
) -> grpc.Channel:
return grpc_helpers.create_channel(
host,
credentials=credentials,
scopes=scopes or cls.AUTH_SCOPES,
**kwargs,
)
@property
def grpc_channel(self) -> grpc.Channel:
return self._grpc_channel
@property | Apache License 2.0 |
commvault/cvpysdk | cvpysdk/activitycontrol.py | ActivityControl.is_enabled | python | def is_enabled(self, activity_type):
self._get_activity_control_status()
for each_activity in self._activity_control_properties_list:
if int(each_activity['activityType']) == self._activity_type_dict[activity_type]:
self._reEnableTime = each_activity['reEnableTime']
self._noSchedEnable = each_activity['noSchedEnable']
self._reenableTimeZone = each_activity['reenableTimeZone']
return each_activity['enabled']
o_str = 'Failed to find activity type:"{0}" in the response'.format(
activity_type)
raise SDKException('Client', '102', o_str) | Returns True/False based on the enabled flag and also sets
other relevant properties for a given activity type.
Args:
activity_type (str) -- Activity Type to be Enabled or Disabled
Values:
"ALL ACTIVITY",
"DATA MANAGEMENT",
"DATA RECOVERY",
"DATA AGING",
"AUX COPY",
"DATA VERIFICATION",
"DDB ACTIVITY",
"SCHEDULER",
"OFFLINE CONTENT INDEXING", | https://github.com/commvault/cvpysdk/blob/66df30e6e31d619812b7756cb4f7e130b220a08f/cvpysdk/activitycontrol.py#L233-L261 | from __future__ import absolute_import
from __future__ import unicode_literals
from .exception import SDKException
class ActivityControl(object):
def __init__(self, commcell_object):
self._commcell_object = commcell_object
self._activity_type_dict = {
"ALL ACTIVITY": 128,
"DATA MANAGEMENT": 1,
"DATA RECOVERY": 2,
"DATA AGING": 16,
"AUX COPY": 4,
"DATA VERIFICATION": 8192,
"DDB ACTIVITY": 512,
"SCHEDULER": 256,
"OFFLINE CONTENT INDEXING": 1024,
}
self._get_activity_control_status()
def __repr__(self):
representation_string = 'ActivityControl class instance'
return representation_string
def _request_json_(self, activity_type, enable_time):
request_json = {
"commCellInfo": {
"commCellActivityControlInfo": {
"activityControlOptions": [
{
"activityType": self._activity_type_dict[activity_type],
"enableAfterADelay": True,
"enableActivityType": False,
"dateTime": {
"time": enable_time}}]}}}
return request_json
def set(self, activity_type, action):
set_request = self._commcell_object._services['SET_ACTIVITY_CONTROL'] % (
str(self._activity_type_dict[activity_type]), str(action))
flag, response = self._commcell_object._cvpysdk_object.make_request(
'POST', set_request
)
if flag:
if response.json():
error_code = str(response.json()['errorCode'])
if error_code == '0':
self._get_activity_control_status()
return
else:
raise SDKException(
'CVPySDK', '102', response.json()['errorMessage'])
else:
raise SDKException('Response', '102')
else:
response_string = self._commcell_object._update_response_(
response.text)
raise SDKException('Response', '101', response_string)
def enable_after_delay(self, activity_type, enable_time):
request_json = self._request_json_(activity_type, enable_time)
set_request = self._commcell_object._services['SET_COMMCELL_PROPERTIES']
flag, response = self._commcell_object._cvpysdk_object.make_request(
'PUT', set_request, request_json
)
if flag:
if response.json() and 'response' in response.json():
error_code = response.json()['response'][0]['errorCode']
if error_code == 0:
self._get_activity_control_status()
return
elif 'errorMessage' in response.json()['response'][0]:
error_message = response.json(
)['response'][0]['errorMessage']
o_str = 'Failed to enable activity control \
after a delay\nError: "{0}"'.format(
error_message)
raise SDKException('CVPySDK', '102', o_str)
else:
raise SDKException('Response', '102')
else:
response_string = self._commcell_object._update_response_(
response.text)
raise SDKException('Response', '101', response_string)
def _get_activity_control_status(self):
get_request = self._commcell_object._services['GET_ACTIVITY_CONTROL']
flag, response = self._commcell_object._cvpysdk_object.make_request(
'GET', get_request
)
if flag:
if response.json() and 'acObjects' in response.json():
self._activity_control_properties_list = response.json()[
'acObjects']
else:
raise SDKException('Response', '102')
else:
response_string = self._commcell_object._update_response_(
response.text)
raise SDKException('Response', '101', response_string) | Apache License 2.0 |
leonjza/hogar | hogar/Plugins/Learn/main.py | commands | python | def commands ():
return ['learn', 'forget', 'show'] | Commands
In the case of text plugins, returns the commands
that this plugin should trigger for. For other
message types, a empty list should be returned.
--
@return list | https://github.com/leonjza/hogar/blob/a8cf4b6a6b508e5e86d26dd5cbd55add560d26a5/hogar/Plugins/Learn/main.py#L60-L72 | from hogar.Models.LearnKey import LearnKey
from hogar.Models.LearnValue import LearnValue
from hogar.Utils.StringUtils import ignore_case_replace
import peewee
import logging
logger = logging.getLogger(__name__)
def enabled ():
return True
def applicable_types ():
return ['text'] | MIT License |
openstack/cinder | cinder/api/api_utils.py | validate_integer | python | def validate_integer(value, name, min_value=None, max_value=None):
try:
value = strutils.validate_integer(value, name, min_value, max_value)
return value
except ValueError as e:
raise webob.exc.HTTPBadRequest(explanation=str(e)) | Make sure that value is a valid integer, potentially within range.
:param value: the value of the integer
:param name: the name of the integer
:param min_length: the min_length of the integer
:param max_length: the max_length of the integer
:returns: integer | https://github.com/openstack/cinder/blob/4558e4b53a7e41dc1263417a4824f39bb6fd30e1/cinder/api/api_utils.py#L128-L141 | from keystoneauth1 import exceptions as ks_exc
from keystoneauth1 import identity
from keystoneauth1 import loading as ka_loading
from keystoneclient import client
from oslo_config import cfg
from oslo_log import log as logging
from oslo_utils import strutils
import webob
from webob import exc
from cinder import exception
from cinder.i18n import _
CONF = cfg.CONF
CONF.import_group('keystone_authtoken',
'keystonemiddleware.auth_token.__init__')
LOG = logging.getLogger(__name__)
def _parse_is_public(is_public):
if is_public is None:
return True
elif is_none_string(is_public):
return None
else:
try:
return strutils.bool_from_string(is_public, strict=True)
except ValueError:
msg = _('Invalid is_public filter [%s]') % is_public
raise exc.HTTPBadRequest(explanation=msg)
def is_none_string(val):
if not isinstance(val, str):
return False
return val.lower() == 'none'
def remove_invalid_filter_options(context, filters,
allowed_search_options):
if context.is_admin:
return
unknown_options = [opt for opt in filters
if opt not in allowed_search_options]
bad_options = ", ".join(unknown_options)
LOG.debug("Removing options '%s' from query.", bad_options)
for opt in unknown_options:
del filters[opt]
_visible_admin_metadata_keys = ['readonly', 'attached_mode']
def add_visible_admin_metadata(volume):
visible_admin_meta = {}
if volume.get('volume_admin_metadata'):
if isinstance(volume['volume_admin_metadata'], dict):
volume_admin_metadata = volume['volume_admin_metadata']
for key in volume_admin_metadata:
if key in _visible_admin_metadata_keys:
visible_admin_meta[key] = volume_admin_metadata[key]
else:
for item in volume['volume_admin_metadata']:
if item['key'] in _visible_admin_metadata_keys:
visible_admin_meta[item['key']] = item['value']
elif (volume.get('admin_metadata') and
isinstance(volume.get('admin_metadata'), dict)):
for key in _visible_admin_metadata_keys:
if key in volume['admin_metadata'].keys():
visible_admin_meta[key] = volume['admin_metadata'][key]
if not visible_admin_meta:
return
if volume.get('volume_metadata'):
orig_meta = list(volume.get('volume_metadata'))
for item in orig_meta:
if item['key'] in visible_admin_meta.keys():
item['value'] = visible_admin_meta.pop(item['key'])
for key, value in visible_admin_meta.items():
orig_meta.append({'key': key, 'value': value})
volume['volume_metadata'] = orig_meta
elif (volume.get('metadata') and
isinstance(volume.get('metadata'), dict)):
volume['metadata'].update(visible_admin_meta)
else:
volume['metadata'] = visible_admin_meta | Apache License 2.0 |
osmr/imgclsmob | pytorch/pytorchcv/models/sepreresnet_cifar.py | sepreresnet542bn_svhn | python | def sepreresnet542bn_svhn(num_classes=10, **kwargs):
return get_sepreresnet_cifar(num_classes=num_classes, blocks=542, bottleneck=True,
model_name="sepreresnet542bn_svhn", **kwargs) | SE-PreResNet-542(BN) model for SVHN from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507.
Parameters:
----------
num_classes : int, default 10
Number of classification num_classes.
pretrained : bool, default False
Whether to load the pretrained weights for model.
root : str, default '~/.torch/models'
Location for keeping the model parameters. | https://github.com/osmr/imgclsmob/blob/ea5f784eea865ce830f3f97c5c1d1f6491d9cbb2/pytorch/pytorchcv/models/sepreresnet_cifar.py#L443-L457 | __all__ = ['CIFARSEPreResNet', 'sepreresnet20_cifar10', 'sepreresnet20_cifar100', 'sepreresnet20_svhn',
'sepreresnet56_cifar10', 'sepreresnet56_cifar100', 'sepreresnet56_svhn',
'sepreresnet110_cifar10', 'sepreresnet110_cifar100', 'sepreresnet110_svhn',
'sepreresnet164bn_cifar10', 'sepreresnet164bn_cifar100', 'sepreresnet164bn_svhn',
'sepreresnet272bn_cifar10', 'sepreresnet272bn_cifar100', 'sepreresnet272bn_svhn',
'sepreresnet542bn_cifar10', 'sepreresnet542bn_cifar100', 'sepreresnet542bn_svhn',
'sepreresnet1001_cifar10', 'sepreresnet1001_cifar100', 'sepreresnet1001_svhn',
'sepreresnet1202_cifar10', 'sepreresnet1202_cifar100', 'sepreresnet1202_svhn']
import os
import torch.nn as nn
import torch.nn.init as init
from .common import conv3x3_block
from .sepreresnet import SEPreResUnit
class CIFARSEPreResNet(nn.Module):
def __init__(self,
channels,
init_block_channels,
bottleneck,
in_channels=3,
in_size=(32, 32),
num_classes=10):
super(CIFARSEPreResNet, self).__init__()
self.in_size = in_size
self.num_classes = num_classes
self.features = nn.Sequential()
self.features.add_module("init_block", conv3x3_block(
in_channels=in_channels,
out_channels=init_block_channels))
in_channels = init_block_channels
for i, channels_per_stage in enumerate(channels):
stage = nn.Sequential()
for j, out_channels in enumerate(channels_per_stage):
stride = 2 if (j == 0) and (i != 0) else 1
stage.add_module("unit{}".format(j + 1), SEPreResUnit(
in_channels=in_channels,
out_channels=out_channels,
stride=stride,
bottleneck=bottleneck,
conv1_stride=False))
in_channels = out_channels
self.features.add_module("stage{}".format(i + 1), stage)
self.features.add_module("final_pool", nn.AvgPool2d(
kernel_size=8,
stride=1))
self.output = nn.Linear(
in_features=in_channels,
out_features=num_classes)
self._init_params()
def _init_params(self):
for name, module in self.named_modules():
if isinstance(module, nn.Conv2d):
init.kaiming_uniform_(module.weight)
if module.bias is not None:
init.constant_(module.bias, 0)
def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), -1)
x = self.output(x)
return x
def get_sepreresnet_cifar(num_classes,
blocks,
bottleneck,
model_name=None,
pretrained=False,
root=os.path.join("~", ".torch", "models"),
**kwargs):
assert (num_classes in [10, 100])
if bottleneck:
assert ((blocks - 2) % 9 == 0)
layers = [(blocks - 2) // 9] * 3
else:
assert ((blocks - 2) % 6 == 0)
layers = [(blocks - 2) // 6] * 3
channels_per_layers = [16, 32, 64]
init_block_channels = 16
channels = [[ci] * li for (ci, li) in zip(channels_per_layers, layers)]
if bottleneck:
channels = [[cij * 4 for cij in ci] for ci in channels]
net = CIFARSEPreResNet(
channels=channels,
init_block_channels=init_block_channels,
bottleneck=bottleneck,
num_classes=num_classes,
**kwargs)
if pretrained:
if (model_name is None) or (not model_name):
raise ValueError("Parameter `model_name` should be properly initialized for loading pretrained model.")
from .model_store import download_model
download_model(
net=net,
model_name=model_name,
local_model_store_dir_path=root)
return net
def sepreresnet20_cifar10(num_classes=10, **kwargs):
return get_sepreresnet_cifar(num_classes=num_classes, blocks=20, bottleneck=False,
model_name="sepreresnet20_cifar10", **kwargs)
def sepreresnet20_cifar100(num_classes=100, **kwargs):
return get_sepreresnet_cifar(num_classes=num_classes, blocks=20, bottleneck=False,
model_name="sepreresnet20_cifar100", **kwargs)
def sepreresnet20_svhn(num_classes=10, **kwargs):
return get_sepreresnet_cifar(num_classes=num_classes, blocks=20, bottleneck=False, model_name="sepreresnet20_svhn",
**kwargs)
def sepreresnet56_cifar10(num_classes=10, **kwargs):
return get_sepreresnet_cifar(num_classes=num_classes, blocks=56, bottleneck=False,
model_name="sepreresnet56_cifar10", **kwargs)
def sepreresnet56_cifar100(num_classes=100, **kwargs):
return get_sepreresnet_cifar(num_classes=num_classes, blocks=56, bottleneck=False,
model_name="sepreresnet56_cifar100", **kwargs)
def sepreresnet56_svhn(num_classes=10, **kwargs):
return get_sepreresnet_cifar(num_classes=num_classes, blocks=56, bottleneck=False, model_name="sepreresnet56_svhn",
**kwargs)
def sepreresnet110_cifar10(num_classes=10, **kwargs):
return get_sepreresnet_cifar(num_classes=num_classes, blocks=110, bottleneck=False,
model_name="sepreresnet110_cifar10", **kwargs)
def sepreresnet110_cifar100(num_classes=100, **kwargs):
return get_sepreresnet_cifar(num_classes=num_classes, blocks=110, bottleneck=False,
model_name="sepreresnet110_cifar100", **kwargs)
def sepreresnet110_svhn(num_classes=10, **kwargs):
return get_sepreresnet_cifar(num_classes=num_classes, blocks=110, bottleneck=False,
model_name="sepreresnet110_svhn", **kwargs)
def sepreresnet164bn_cifar10(num_classes=10, **kwargs):
return get_sepreresnet_cifar(num_classes=num_classes, blocks=164, bottleneck=True,
model_name="sepreresnet164bn_cifar10", **kwargs)
def sepreresnet164bn_cifar100(num_classes=100, **kwargs):
return get_sepreresnet_cifar(num_classes=num_classes, blocks=164, bottleneck=True,
model_name="sepreresnet164bn_cifar100", **kwargs)
def sepreresnet164bn_svhn(num_classes=10, **kwargs):
return get_sepreresnet_cifar(num_classes=num_classes, blocks=164, bottleneck=True,
model_name="sepreresnet164bn_svhn", **kwargs)
def sepreresnet272bn_cifar10(num_classes=10, **kwargs):
return get_sepreresnet_cifar(num_classes=num_classes, blocks=272, bottleneck=True,
model_name="sepreresnet272bn_cifar10", **kwargs)
def sepreresnet272bn_cifar100(num_classes=100, **kwargs):
return get_sepreresnet_cifar(num_classes=num_classes, blocks=272, bottleneck=True,
model_name="sepreresnet272bn_cifar100", **kwargs)
def sepreresnet272bn_svhn(num_classes=10, **kwargs):
return get_sepreresnet_cifar(num_classes=num_classes, blocks=272, bottleneck=True,
model_name="sepreresnet272bn_svhn", **kwargs)
def sepreresnet542bn_cifar10(num_classes=10, **kwargs):
return get_sepreresnet_cifar(num_classes=num_classes, blocks=542, bottleneck=True,
model_name="sepreresnet542bn_cifar10", **kwargs)
def sepreresnet542bn_cifar100(num_classes=100, **kwargs):
return get_sepreresnet_cifar(num_classes=num_classes, blocks=542, bottleneck=True,
model_name="sepreresnet542bn_cifar100", **kwargs) | MIT License |
fish-quant/big-fish | bigfish/classification/input_preparation.py | _get_centrosome_distance_map | python | def _get_centrosome_distance_map(centrosome_coord, cell_mask):
if centrosome_coord.size == 3:
centrosome_coord_2d = centrosome_coord[1:]
else:
centrosome_coord_2d = centrosome_coord.copy()
mask_centrosome = np.zeros_like(cell_mask)
mask_centrosome[centrosome_coord_2d[:, 0],
centrosome_coord_2d[:, 1]] = True
distance_map = ndi.distance_transform_edt(~mask_centrosome)
distance_map[cell_mask == 0] = 0
distance_map = distance_map.astype(np.float32)
return distance_map | Build distance map from a centrosome localisation.
Parameters
----------
centrosome_coord : np.ndarray, np.int64
Coordinates of the detected centrosome with shape (nb_elements, 3) or
(nb_elements, 2). One coordinate per dimension (zyx or yx dimensions).
cell_mask : np.ndarray, bool
Binary surface of the cell with shape (y, x).
Returns
-------
distance_map : np.ndarray, np.float32
Distance map from the centrosome with shape (y, x). | https://github.com/fish-quant/big-fish/blob/5512b6e3274872793ef4365a6dc423c72add91f9/bigfish/classification/input_preparation.py#L288-L320 | import numpy as np
from scipy import ndimage as ndi
import bigfish.stack as stack
from skimage.measure import regionprops
def prepare_extracted_data(cell_mask, nuc_mask=None, ndim=None, rna_coord=None,
centrosome_coord=None):
stack.check_parameter(ndim=(int, type(None)))
if rna_coord is not None and ndim is None:
raise ValueError("'ndim' should be specified (2 or 3).")
stack.check_array(cell_mask, ndim=2,
dtype=[np.uint8, np.uint16, np.int64, bool])
cell_mask = cell_mask.astype(bool)
if nuc_mask is not None:
stack.check_array(nuc_mask, ndim=2,
dtype=[np.uint8, np.uint16, np.int64, bool])
nuc_mask = nuc_mask.astype(bool)
if rna_coord is not None:
stack.check_array(rna_coord, ndim=2, dtype=np.int64)
if centrosome_coord is not None:
stack.check_array(centrosome_coord, ndim=2, dtype=np.int64)
distance_cell = ndi.distance_transform_edt(cell_mask)
distance_cell = distance_cell.astype(np.float32)
distance_cell_normalized = distance_cell / distance_cell.max()
centroid_cell = _get_centroid_surface(cell_mask)
distance_centroid_cell = _get_centroid_distance_map(centroid_cell,
cell_mask)
if nuc_mask is not None:
cell_mask_out_nuc = cell_mask.copy()
cell_mask_out_nuc[nuc_mask] = False
distance_nuc_ = ndi.distance_transform_edt(~nuc_mask)
distance_nuc = cell_mask * distance_nuc_
distance_nuc = distance_nuc.astype(np.float32)
distance_nuc_normalized = distance_nuc / distance_nuc.max()
centroid_nuc = _get_centroid_surface(nuc_mask)
distance_centroid_nuc = _get_centroid_distance_map(centroid_nuc,
cell_mask)
else:
cell_mask_out_nuc = None
distance_nuc = None
distance_nuc_normalized = None
centroid_nuc = None
distance_centroid_nuc = None
if rna_coord is not None:
if len(rna_coord) == 0:
centroid_rna = np.array([0] * ndim, dtype=np.int64)
else:
centroid_rna = _get_centroid_rna(rna_coord, ndim)
distance_centroid_rna = _get_centroid_distance_map(
centroid_rna, cell_mask)
if nuc_mask is not None:
mask_rna_in_nuc = nuc_mask[rna_coord[:, ndim - 2],
rna_coord[:, ndim - 1]]
rna_coord_out_nuc = rna_coord[~mask_rna_in_nuc]
if len(rna_coord_out_nuc) == 0:
centroid_rna_out_nuc = np.array([0] * ndim, dtype=np.int64)
else:
centroid_rna_out_nuc = _get_centroid_rna(rna_coord_out_nuc,
ndim)
distance_centroid_rna_out_nuc = _get_centroid_distance_map(
centroid_rna_out_nuc, cell_mask)
else:
rna_coord_out_nuc = None
centroid_rna_out_nuc = None
distance_centroid_rna_out_nuc = None
else:
centroid_rna = None
distance_centroid_rna = None
rna_coord_out_nuc = None
centroid_rna_out_nuc = None
distance_centroid_rna_out_nuc = None
if centrosome_coord is not None:
if len(centrosome_coord) == 0:
distance_centrosome = distance_cell.copy()
else:
distance_centrosome = _get_centrosome_distance_map(
centrosome_coord, cell_mask)
else:
distance_centrosome = None
prepared_inputs = (cell_mask,
distance_cell, distance_cell_normalized,
centroid_cell, distance_centroid_cell,
nuc_mask, cell_mask_out_nuc,
distance_nuc, distance_nuc_normalized,
centroid_nuc, distance_centroid_nuc,
rna_coord_out_nuc,
centroid_rna, distance_centroid_rna,
centroid_rna_out_nuc, distance_centroid_rna_out_nuc,
distance_centrosome)
return prepared_inputs
def _get_centroid_surface(mask):
region = regionprops(mask.astype(np.uint8))[0]
centroid = np.array(region.centroid, dtype=np.int64)
return centroid
def _get_centroid_rna(rna_coord, ndim):
centroid_rna = np.mean(rna_coord[:, :ndim], axis=0, dtype=np.int64)
return centroid_rna
def _get_centroid_distance_map(centroid, cell_mask):
if centroid.size == 3:
centroid_2d = centroid[1:]
else:
centroid_2d = centroid.copy()
mask_centroid = np.zeros_like(cell_mask)
mask_centroid[centroid_2d[0], centroid_2d[1]] = True
distance_map = ndi.distance_transform_edt(~mask_centroid)
distance_map[cell_mask == 0] = 0
distance_map = distance_map.astype(np.float32)
return distance_map | BSD 3-Clause New or Revised License |
docusign/docusign-python-client | docusign_esign/models/bulk_sending_list_summary.py | BulkSendingListSummary.__eq__ | python | def __eq__(self, other):
if not isinstance(other, BulkSendingListSummary):
return False
return self.to_dict() == other.to_dict() | Returns true if both objects are equal | https://github.com/docusign/docusign-python-client/blob/c6aeafff0d046fa6c10a398be83ba9e24b05d4ea/docusign_esign/models/bulk_sending_list_summary.py#L193-L198 | import pprint
import re
import six
from docusign_esign.client.configuration import Configuration
class BulkSendingListSummary(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'bulk_send_list_id': 'str',
'created_by_user': 'str',
'created_date': 'str',
'name': 'str'
}
attribute_map = {
'bulk_send_list_id': 'bulkSendListId',
'created_by_user': 'createdByUser',
'created_date': 'createdDate',
'name': 'name'
}
def __init__(self, _configuration=None, **kwargs):
if _configuration is None:
_configuration = Configuration()
self._configuration = _configuration
self._bulk_send_list_id = None
self._created_by_user = None
self._created_date = None
self._name = None
self.discriminator = None
setattr(self, "_{}".format('bulk_send_list_id'), kwargs.get('bulk_send_list_id', None))
setattr(self, "_{}".format('created_by_user'), kwargs.get('created_by_user', None))
setattr(self, "_{}".format('created_date'), kwargs.get('created_date', None))
setattr(self, "_{}".format('name'), kwargs.get('name', None))
@property
def bulk_send_list_id(self):
return self._bulk_send_list_id
@bulk_send_list_id.setter
def bulk_send_list_id(self, bulk_send_list_id):
self._bulk_send_list_id = bulk_send_list_id
@property
def created_by_user(self):
return self._created_by_user
@created_by_user.setter
def created_by_user(self, created_by_user):
self._created_by_user = created_by_user
@property
def created_date(self):
return self._created_date
@created_date.setter
def created_date(self, created_date):
self._created_date = created_date
@property
def name(self):
return self._name
@name.setter
def name(self, name):
self._name = name
def to_dict(self):
result = {}
for attr, _ in six.iteritems(self.swagger_types):
value = getattr(self, attr)
if isinstance(value, list):
result[attr] = list(map(
lambda x: x.to_dict() if hasattr(x, "to_dict") else x,
value
))
elif hasattr(value, "to_dict"):
result[attr] = value.to_dict()
elif isinstance(value, dict):
result[attr] = dict(map(
lambda item: (item[0], item[1].to_dict())
if hasattr(item[1], "to_dict") else item,
value.items()
))
else:
result[attr] = value
if issubclass(BulkSendingListSummary, dict):
for key, value in self.items():
result[key] = value
return result
def to_str(self):
return pprint.pformat(self.to_dict())
def __repr__(self):
return self.to_str() | MIT License |
rlworkgroup/garage | src/garage/torch/modules/multi_headed_mlp_module.py | MultiHeadedMLPModule._check_parameter_for_output_layer | python | def _check_parameter_for_output_layer(cls, var_name, var, n_heads):
if isinstance(var, (list, tuple)):
if len(var) == 1:
return list(var) * n_heads
if len(var) == n_heads:
return var
msg = ('{} should be either an integer or a collection of length '
'n_heads ({}), but {} provided.')
raise ValueError(msg.format(var_name, n_heads, var))
return [copy.deepcopy(var) for _ in range(n_heads)] | Check input parameters for output layer are valid.
Args:
var_name (str): variable name
var (any): variable to be checked
n_heads (int): number of head
Returns:
list: list of variables (length of n_heads)
Raises:
ValueError: if the variable is a list but length of the variable
is not equal to n_heads | https://github.com/rlworkgroup/garage/blob/3a578852c392cecde5b7c9786aa182d74f6df1d4/src/garage/torch/modules/multi_headed_mlp_module.py#L109-L133 | import copy
import torch
import torch.nn as nn
from garage.torch import NonLinearity
class MultiHeadedMLPModule(nn.Module):
def __init__(self,
n_heads,
input_dim,
output_dims,
hidden_sizes,
hidden_nonlinearity=torch.relu,
hidden_w_init=nn.init.xavier_normal_,
hidden_b_init=nn.init.zeros_,
output_nonlinearities=None,
output_w_inits=nn.init.xavier_normal_,
output_b_inits=nn.init.zeros_,
layer_normalization=False):
super().__init__()
self._layers = nn.ModuleList()
output_dims = self._check_parameter_for_output_layer(
'output_dims', output_dims, n_heads)
output_w_inits = self._check_parameter_for_output_layer(
'output_w_inits', output_w_inits, n_heads)
output_b_inits = self._check_parameter_for_output_layer(
'output_b_inits', output_b_inits, n_heads)
output_nonlinearities = self._check_parameter_for_output_layer(
'output_nonlinearities', output_nonlinearities, n_heads)
self._layers = nn.ModuleList()
prev_size = input_dim
for size in hidden_sizes:
hidden_layers = nn.Sequential()
if layer_normalization:
hidden_layers.add_module('layer_normalization',
nn.LayerNorm(prev_size))
linear_layer = nn.Linear(prev_size, size)
hidden_w_init(linear_layer.weight)
hidden_b_init(linear_layer.bias)
hidden_layers.add_module('linear', linear_layer)
if hidden_nonlinearity:
hidden_layers.add_module('non_linearity',
NonLinearity(hidden_nonlinearity))
self._layers.append(hidden_layers)
prev_size = size
self._output_layers = nn.ModuleList()
for i in range(n_heads):
output_layer = nn.Sequential()
linear_layer = nn.Linear(prev_size, output_dims[i])
output_w_inits[i](linear_layer.weight)
output_b_inits[i](linear_layer.bias)
output_layer.add_module('linear', linear_layer)
if output_nonlinearities[i]:
output_layer.add_module('non_linearity',
NonLinearity(output_nonlinearities[i]))
self._output_layers.append(output_layer)
@classmethod | MIT License |
docusign/docusign-python-client | docusign_esign/models/commission_county.py | CommissionCounty.anchor_tab_processor_version_metadata | python | def anchor_tab_processor_version_metadata(self, anchor_tab_processor_version_metadata):
self._anchor_tab_processor_version_metadata = anchor_tab_processor_version_metadata | Sets the anchor_tab_processor_version_metadata of this CommissionCounty.
:param anchor_tab_processor_version_metadata: The anchor_tab_processor_version_metadata of this CommissionCounty. # noqa: E501
:type: PropertyMetadata | https://github.com/docusign/docusign-python-client/blob/c6aeafff0d046fa6c10a398be83ba9e24b05d4ea/docusign_esign/models/commission_county.py#L748-L756 | import pprint
import re
import six
from docusign_esign.client.configuration import Configuration
class CommissionCounty(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'anchor_allow_white_space_in_characters': 'str',
'anchor_allow_white_space_in_characters_metadata': 'PropertyMetadata',
'anchor_case_sensitive': 'str',
'anchor_case_sensitive_metadata': 'PropertyMetadata',
'anchor_horizontal_alignment': 'str',
'anchor_horizontal_alignment_metadata': 'PropertyMetadata',
'anchor_ignore_if_not_present': 'str',
'anchor_ignore_if_not_present_metadata': 'PropertyMetadata',
'anchor_match_whole_word': 'str',
'anchor_match_whole_word_metadata': 'PropertyMetadata',
'anchor_string': 'str',
'anchor_string_metadata': 'PropertyMetadata',
'anchor_tab_processor_version': 'str',
'anchor_tab_processor_version_metadata': 'PropertyMetadata',
'anchor_units': 'str',
'anchor_units_metadata': 'PropertyMetadata',
'anchor_x_offset': 'str',
'anchor_x_offset_metadata': 'PropertyMetadata',
'anchor_y_offset': 'str',
'anchor_y_offset_metadata': 'PropertyMetadata',
'bold': 'str',
'bold_metadata': 'PropertyMetadata',
'conceal_value_on_document': 'str',
'conceal_value_on_document_metadata': 'PropertyMetadata',
'conditional_parent_label': 'str',
'conditional_parent_label_metadata': 'PropertyMetadata',
'conditional_parent_value': 'str',
'conditional_parent_value_metadata': 'PropertyMetadata',
'custom_tab_id': 'str',
'custom_tab_id_metadata': 'PropertyMetadata',
'disable_auto_size': 'str',
'disable_auto_size_metadata': 'PropertyMetadata',
'document_id': 'str',
'document_id_metadata': 'PropertyMetadata',
'error_details': 'ErrorDetails',
'font': 'str',
'font_color': 'str',
'font_color_metadata': 'PropertyMetadata',
'font_metadata': 'PropertyMetadata',
'font_size': 'str',
'font_size_metadata': 'PropertyMetadata',
'form_order': 'str',
'form_order_metadata': 'PropertyMetadata',
'form_page_label': 'str',
'form_page_label_metadata': 'PropertyMetadata',
'form_page_number': 'str',
'form_page_number_metadata': 'PropertyMetadata',
'height': 'str',
'height_metadata': 'PropertyMetadata',
'italic': 'str',
'italic_metadata': 'PropertyMetadata',
'locale_policy': 'LocalePolicyTab',
'locked': 'str',
'locked_metadata': 'PropertyMetadata',
'max_length': 'str',
'max_length_metadata': 'PropertyMetadata',
'merge_field': 'MergeField',
'merge_field_xml': 'str',
'name': 'str',
'name_metadata': 'PropertyMetadata',
'original_value': 'str',
'original_value_metadata': 'PropertyMetadata',
'page_number': 'str',
'page_number_metadata': 'PropertyMetadata',
'recipient_id': 'str',
'recipient_id_guid': 'str',
'recipient_id_guid_metadata': 'PropertyMetadata',
'recipient_id_metadata': 'PropertyMetadata',
'required': 'str',
'required_metadata': 'PropertyMetadata',
'smart_contract_information': 'SmartContractInformation',
'source': 'str',
'status': 'str',
'status_metadata': 'PropertyMetadata',
'tab_group_labels': 'list[str]',
'tab_group_labels_metadata': 'PropertyMetadata',
'tab_id': 'str',
'tab_id_metadata': 'PropertyMetadata',
'tab_label': 'str',
'tab_label_metadata': 'PropertyMetadata',
'tab_order': 'str',
'tab_order_metadata': 'PropertyMetadata',
'tab_type': 'str',
'tab_type_metadata': 'PropertyMetadata',
'template_locked': 'str',
'template_locked_metadata': 'PropertyMetadata',
'template_required': 'str',
'template_required_metadata': 'PropertyMetadata',
'tooltip': 'str',
'tool_tip_metadata': 'PropertyMetadata',
'underline': 'str',
'underline_metadata': 'PropertyMetadata',
'value': 'str',
'value_metadata': 'PropertyMetadata',
'width': 'str',
'width_metadata': 'PropertyMetadata',
'x_position': 'str',
'x_position_metadata': 'PropertyMetadata',
'y_position': 'str',
'y_position_metadata': 'PropertyMetadata'
}
attribute_map = {
'anchor_allow_white_space_in_characters': 'anchorAllowWhiteSpaceInCharacters',
'anchor_allow_white_space_in_characters_metadata': 'anchorAllowWhiteSpaceInCharactersMetadata',
'anchor_case_sensitive': 'anchorCaseSensitive',
'anchor_case_sensitive_metadata': 'anchorCaseSensitiveMetadata',
'anchor_horizontal_alignment': 'anchorHorizontalAlignment',
'anchor_horizontal_alignment_metadata': 'anchorHorizontalAlignmentMetadata',
'anchor_ignore_if_not_present': 'anchorIgnoreIfNotPresent',
'anchor_ignore_if_not_present_metadata': 'anchorIgnoreIfNotPresentMetadata',
'anchor_match_whole_word': 'anchorMatchWholeWord',
'anchor_match_whole_word_metadata': 'anchorMatchWholeWordMetadata',
'anchor_string': 'anchorString',
'anchor_string_metadata': 'anchorStringMetadata',
'anchor_tab_processor_version': 'anchorTabProcessorVersion',
'anchor_tab_processor_version_metadata': 'anchorTabProcessorVersionMetadata',
'anchor_units': 'anchorUnits',
'anchor_units_metadata': 'anchorUnitsMetadata',
'anchor_x_offset': 'anchorXOffset',
'anchor_x_offset_metadata': 'anchorXOffsetMetadata',
'anchor_y_offset': 'anchorYOffset',
'anchor_y_offset_metadata': 'anchorYOffsetMetadata',
'bold': 'bold',
'bold_metadata': 'boldMetadata',
'conceal_value_on_document': 'concealValueOnDocument',
'conceal_value_on_document_metadata': 'concealValueOnDocumentMetadata',
'conditional_parent_label': 'conditionalParentLabel',
'conditional_parent_label_metadata': 'conditionalParentLabelMetadata',
'conditional_parent_value': 'conditionalParentValue',
'conditional_parent_value_metadata': 'conditionalParentValueMetadata',
'custom_tab_id': 'customTabId',
'custom_tab_id_metadata': 'customTabIdMetadata',
'disable_auto_size': 'disableAutoSize',
'disable_auto_size_metadata': 'disableAutoSizeMetadata',
'document_id': 'documentId',
'document_id_metadata': 'documentIdMetadata',
'error_details': 'errorDetails',
'font': 'font',
'font_color': 'fontColor',
'font_color_metadata': 'fontColorMetadata',
'font_metadata': 'fontMetadata',
'font_size': 'fontSize',
'font_size_metadata': 'fontSizeMetadata',
'form_order': 'formOrder',
'form_order_metadata': 'formOrderMetadata',
'form_page_label': 'formPageLabel',
'form_page_label_metadata': 'formPageLabelMetadata',
'form_page_number': 'formPageNumber',
'form_page_number_metadata': 'formPageNumberMetadata',
'height': 'height',
'height_metadata': 'heightMetadata',
'italic': 'italic',
'italic_metadata': 'italicMetadata',
'locale_policy': 'localePolicy',
'locked': 'locked',
'locked_metadata': 'lockedMetadata',
'max_length': 'maxLength',
'max_length_metadata': 'maxLengthMetadata',
'merge_field': 'mergeField',
'merge_field_xml': 'mergeFieldXml',
'name': 'name',
'name_metadata': 'nameMetadata',
'original_value': 'originalValue',
'original_value_metadata': 'originalValueMetadata',
'page_number': 'pageNumber',
'page_number_metadata': 'pageNumberMetadata',
'recipient_id': 'recipientId',
'recipient_id_guid': 'recipientIdGuid',
'recipient_id_guid_metadata': 'recipientIdGuidMetadata',
'recipient_id_metadata': 'recipientIdMetadata',
'required': 'required',
'required_metadata': 'requiredMetadata',
'smart_contract_information': 'smartContractInformation',
'source': 'source',
'status': 'status',
'status_metadata': 'statusMetadata',
'tab_group_labels': 'tabGroupLabels',
'tab_group_labels_metadata': 'tabGroupLabelsMetadata',
'tab_id': 'tabId',
'tab_id_metadata': 'tabIdMetadata',
'tab_label': 'tabLabel',
'tab_label_metadata': 'tabLabelMetadata',
'tab_order': 'tabOrder',
'tab_order_metadata': 'tabOrderMetadata',
'tab_type': 'tabType',
'tab_type_metadata': 'tabTypeMetadata',
'template_locked': 'templateLocked',
'template_locked_metadata': 'templateLockedMetadata',
'template_required': 'templateRequired',
'template_required_metadata': 'templateRequiredMetadata',
'tooltip': 'tooltip',
'tool_tip_metadata': 'toolTipMetadata',
'underline': 'underline',
'underline_metadata': 'underlineMetadata',
'value': 'value',
'value_metadata': 'valueMetadata',
'width': 'width',
'width_metadata': 'widthMetadata',
'x_position': 'xPosition',
'x_position_metadata': 'xPositionMetadata',
'y_position': 'yPosition',
'y_position_metadata': 'yPositionMetadata'
}
def __init__(self, _configuration=None, **kwargs):
if _configuration is None:
_configuration = Configuration()
self._configuration = _configuration
self._anchor_allow_white_space_in_characters = None
self._anchor_allow_white_space_in_characters_metadata = None
self._anchor_case_sensitive = None
self._anchor_case_sensitive_metadata = None
self._anchor_horizontal_alignment = None
self._anchor_horizontal_alignment_metadata = None
self._anchor_ignore_if_not_present = None
self._anchor_ignore_if_not_present_metadata = None
self._anchor_match_whole_word = None
self._anchor_match_whole_word_metadata = None
self._anchor_string = None
self._anchor_string_metadata = None
self._anchor_tab_processor_version = None
self._anchor_tab_processor_version_metadata = None
self._anchor_units = None
self._anchor_units_metadata = None
self._anchor_x_offset = None
self._anchor_x_offset_metadata = None
self._anchor_y_offset = None
self._anchor_y_offset_metadata = None
self._bold = None
self._bold_metadata = None
self._conceal_value_on_document = None
self._conceal_value_on_document_metadata = None
self._conditional_parent_label = None
self._conditional_parent_label_metadata = None
self._conditional_parent_value = None
self._conditional_parent_value_metadata = None
self._custom_tab_id = None
self._custom_tab_id_metadata = None
self._disable_auto_size = None
self._disable_auto_size_metadata = None
self._document_id = None
self._document_id_metadata = None
self._error_details = None
self._font = None
self._font_color = None
self._font_color_metadata = None
self._font_metadata = None
self._font_size = None
self._font_size_metadata = None
self._form_order = None
self._form_order_metadata = None
self._form_page_label = None
self._form_page_label_metadata = None
self._form_page_number = None
self._form_page_number_metadata = None
self._height = None
self._height_metadata = None
self._italic = None
self._italic_metadata = None
self._locale_policy = None
self._locked = None
self._locked_metadata = None
self._max_length = None
self._max_length_metadata = None
self._merge_field = None
self._merge_field_xml = None
self._name = None
self._name_metadata = None
self._original_value = None
self._original_value_metadata = None
self._page_number = None
self._page_number_metadata = None
self._recipient_id = None
self._recipient_id_guid = None
self._recipient_id_guid_metadata = None
self._recipient_id_metadata = None
self._required = None
self._required_metadata = None
self._smart_contract_information = None
self._source = None
self._status = None
self._status_metadata = None
self._tab_group_labels = None
self._tab_group_labels_metadata = None
self._tab_id = None
self._tab_id_metadata = None
self._tab_label = None
self._tab_label_metadata = None
self._tab_order = None
self._tab_order_metadata = None
self._tab_type = None
self._tab_type_metadata = None
self._template_locked = None
self._template_locked_metadata = None
self._template_required = None
self._template_required_metadata = None
self._tooltip = None
self._tool_tip_metadata = None
self._underline = None
self._underline_metadata = None
self._value = None
self._value_metadata = None
self._width = None
self._width_metadata = None
self._x_position = None
self._x_position_metadata = None
self._y_position = None
self._y_position_metadata = None
self.discriminator = None
setattr(self, "_{}".format('anchor_allow_white_space_in_characters'), kwargs.get('anchor_allow_white_space_in_characters', None))
setattr(self, "_{}".format('anchor_allow_white_space_in_characters_metadata'), kwargs.get('anchor_allow_white_space_in_characters_metadata', None))
setattr(self, "_{}".format('anchor_case_sensitive'), kwargs.get('anchor_case_sensitive', None))
setattr(self, "_{}".format('anchor_case_sensitive_metadata'), kwargs.get('anchor_case_sensitive_metadata', None))
setattr(self, "_{}".format('anchor_horizontal_alignment'), kwargs.get('anchor_horizontal_alignment', None))
setattr(self, "_{}".format('anchor_horizontal_alignment_metadata'), kwargs.get('anchor_horizontal_alignment_metadata', None))
setattr(self, "_{}".format('anchor_ignore_if_not_present'), kwargs.get('anchor_ignore_if_not_present', None))
setattr(self, "_{}".format('anchor_ignore_if_not_present_metadata'), kwargs.get('anchor_ignore_if_not_present_metadata', None))
setattr(self, "_{}".format('anchor_match_whole_word'), kwargs.get('anchor_match_whole_word', None))
setattr(self, "_{}".format('anchor_match_whole_word_metadata'), kwargs.get('anchor_match_whole_word_metadata', None))
setattr(self, "_{}".format('anchor_string'), kwargs.get('anchor_string', None))
setattr(self, "_{}".format('anchor_string_metadata'), kwargs.get('anchor_string_metadata', None))
setattr(self, "_{}".format('anchor_tab_processor_version'), kwargs.get('anchor_tab_processor_version', None))
setattr(self, "_{}".format('anchor_tab_processor_version_metadata'), kwargs.get('anchor_tab_processor_version_metadata', None))
setattr(self, "_{}".format('anchor_units'), kwargs.get('anchor_units', None))
setattr(self, "_{}".format('anchor_units_metadata'), kwargs.get('anchor_units_metadata', None))
setattr(self, "_{}".format('anchor_x_offset'), kwargs.get('anchor_x_offset', None))
setattr(self, "_{}".format('anchor_x_offset_metadata'), kwargs.get('anchor_x_offset_metadata', None))
setattr(self, "_{}".format('anchor_y_offset'), kwargs.get('anchor_y_offset', None))
setattr(self, "_{}".format('anchor_y_offset_metadata'), kwargs.get('anchor_y_offset_metadata', None))
setattr(self, "_{}".format('bold'), kwargs.get('bold', None))
setattr(self, "_{}".format('bold_metadata'), kwargs.get('bold_metadata', None))
setattr(self, "_{}".format('conceal_value_on_document'), kwargs.get('conceal_value_on_document', None))
setattr(self, "_{}".format('conceal_value_on_document_metadata'), kwargs.get('conceal_value_on_document_metadata', None))
setattr(self, "_{}".format('conditional_parent_label'), kwargs.get('conditional_parent_label', None))
setattr(self, "_{}".format('conditional_parent_label_metadata'), kwargs.get('conditional_parent_label_metadata', None))
setattr(self, "_{}".format('conditional_parent_value'), kwargs.get('conditional_parent_value', None))
setattr(self, "_{}".format('conditional_parent_value_metadata'), kwargs.get('conditional_parent_value_metadata', None))
setattr(self, "_{}".format('custom_tab_id'), kwargs.get('custom_tab_id', None))
setattr(self, "_{}".format('custom_tab_id_metadata'), kwargs.get('custom_tab_id_metadata', None))
setattr(self, "_{}".format('disable_auto_size'), kwargs.get('disable_auto_size', None))
setattr(self, "_{}".format('disable_auto_size_metadata'), kwargs.get('disable_auto_size_metadata', None))
setattr(self, "_{}".format('document_id'), kwargs.get('document_id', None))
setattr(self, "_{}".format('document_id_metadata'), kwargs.get('document_id_metadata', None))
setattr(self, "_{}".format('error_details'), kwargs.get('error_details', None))
setattr(self, "_{}".format('font'), kwargs.get('font', None))
setattr(self, "_{}".format('font_color'), kwargs.get('font_color', None))
setattr(self, "_{}".format('font_color_metadata'), kwargs.get('font_color_metadata', None))
setattr(self, "_{}".format('font_metadata'), kwargs.get('font_metadata', None))
setattr(self, "_{}".format('font_size'), kwargs.get('font_size', None))
setattr(self, "_{}".format('font_size_metadata'), kwargs.get('font_size_metadata', None))
setattr(self, "_{}".format('form_order'), kwargs.get('form_order', None))
setattr(self, "_{}".format('form_order_metadata'), kwargs.get('form_order_metadata', None))
setattr(self, "_{}".format('form_page_label'), kwargs.get('form_page_label', None))
setattr(self, "_{}".format('form_page_label_metadata'), kwargs.get('form_page_label_metadata', None))
setattr(self, "_{}".format('form_page_number'), kwargs.get('form_page_number', None))
setattr(self, "_{}".format('form_page_number_metadata'), kwargs.get('form_page_number_metadata', None))
setattr(self, "_{}".format('height'), kwargs.get('height', None))
setattr(self, "_{}".format('height_metadata'), kwargs.get('height_metadata', None))
setattr(self, "_{}".format('italic'), kwargs.get('italic', None))
setattr(self, "_{}".format('italic_metadata'), kwargs.get('italic_metadata', None))
setattr(self, "_{}".format('locale_policy'), kwargs.get('locale_policy', None))
setattr(self, "_{}".format('locked'), kwargs.get('locked', None))
setattr(self, "_{}".format('locked_metadata'), kwargs.get('locked_metadata', None))
setattr(self, "_{}".format('max_length'), kwargs.get('max_length', None))
setattr(self, "_{}".format('max_length_metadata'), kwargs.get('max_length_metadata', None))
setattr(self, "_{}".format('merge_field'), kwargs.get('merge_field', None))
setattr(self, "_{}".format('merge_field_xml'), kwargs.get('merge_field_xml', None))
setattr(self, "_{}".format('name'), kwargs.get('name', None))
setattr(self, "_{}".format('name_metadata'), kwargs.get('name_metadata', None))
setattr(self, "_{}".format('original_value'), kwargs.get('original_value', None))
setattr(self, "_{}".format('original_value_metadata'), kwargs.get('original_value_metadata', None))
setattr(self, "_{}".format('page_number'), kwargs.get('page_number', None))
setattr(self, "_{}".format('page_number_metadata'), kwargs.get('page_number_metadata', None))
setattr(self, "_{}".format('recipient_id'), kwargs.get('recipient_id', None))
setattr(self, "_{}".format('recipient_id_guid'), kwargs.get('recipient_id_guid', None))
setattr(self, "_{}".format('recipient_id_guid_metadata'), kwargs.get('recipient_id_guid_metadata', None))
setattr(self, "_{}".format('recipient_id_metadata'), kwargs.get('recipient_id_metadata', None))
setattr(self, "_{}".format('required'), kwargs.get('required', None))
setattr(self, "_{}".format('required_metadata'), kwargs.get('required_metadata', None))
setattr(self, "_{}".format('smart_contract_information'), kwargs.get('smart_contract_information', None))
setattr(self, "_{}".format('source'), kwargs.get('source', None))
setattr(self, "_{}".format('status'), kwargs.get('status', None))
setattr(self, "_{}".format('status_metadata'), kwargs.get('status_metadata', None))
setattr(self, "_{}".format('tab_group_labels'), kwargs.get('tab_group_labels', None))
setattr(self, "_{}".format('tab_group_labels_metadata'), kwargs.get('tab_group_labels_metadata', None))
setattr(self, "_{}".format('tab_id'), kwargs.get('tab_id', None))
setattr(self, "_{}".format('tab_id_metadata'), kwargs.get('tab_id_metadata', None))
setattr(self, "_{}".format('tab_label'), kwargs.get('tab_label', None))
setattr(self, "_{}".format('tab_label_metadata'), kwargs.get('tab_label_metadata', None))
setattr(self, "_{}".format('tab_order'), kwargs.get('tab_order', None))
setattr(self, "_{}".format('tab_order_metadata'), kwargs.get('tab_order_metadata', None))
setattr(self, "_{}".format('tab_type'), kwargs.get('tab_type', None))
setattr(self, "_{}".format('tab_type_metadata'), kwargs.get('tab_type_metadata', None))
setattr(self, "_{}".format('template_locked'), kwargs.get('template_locked', None))
setattr(self, "_{}".format('template_locked_metadata'), kwargs.get('template_locked_metadata', None))
setattr(self, "_{}".format('template_required'), kwargs.get('template_required', None))
setattr(self, "_{}".format('template_required_metadata'), kwargs.get('template_required_metadata', None))
setattr(self, "_{}".format('tooltip'), kwargs.get('tooltip', None))
setattr(self, "_{}".format('tool_tip_metadata'), kwargs.get('tool_tip_metadata', None))
setattr(self, "_{}".format('underline'), kwargs.get('underline', None))
setattr(self, "_{}".format('underline_metadata'), kwargs.get('underline_metadata', None))
setattr(self, "_{}".format('value'), kwargs.get('value', None))
setattr(self, "_{}".format('value_metadata'), kwargs.get('value_metadata', None))
setattr(self, "_{}".format('width'), kwargs.get('width', None))
setattr(self, "_{}".format('width_metadata'), kwargs.get('width_metadata', None))
setattr(self, "_{}".format('x_position'), kwargs.get('x_position', None))
setattr(self, "_{}".format('x_position_metadata'), kwargs.get('x_position_metadata', None))
setattr(self, "_{}".format('y_position'), kwargs.get('y_position', None))
setattr(self, "_{}".format('y_position_metadata'), kwargs.get('y_position_metadata', None))
@property
def anchor_allow_white_space_in_characters(self):
return self._anchor_allow_white_space_in_characters
@anchor_allow_white_space_in_characters.setter
def anchor_allow_white_space_in_characters(self, anchor_allow_white_space_in_characters):
self._anchor_allow_white_space_in_characters = anchor_allow_white_space_in_characters
@property
def anchor_allow_white_space_in_characters_metadata(self):
return self._anchor_allow_white_space_in_characters_metadata
@anchor_allow_white_space_in_characters_metadata.setter
def anchor_allow_white_space_in_characters_metadata(self, anchor_allow_white_space_in_characters_metadata):
self._anchor_allow_white_space_in_characters_metadata = anchor_allow_white_space_in_characters_metadata
@property
def anchor_case_sensitive(self):
return self._anchor_case_sensitive
@anchor_case_sensitive.setter
def anchor_case_sensitive(self, anchor_case_sensitive):
self._anchor_case_sensitive = anchor_case_sensitive
@property
def anchor_case_sensitive_metadata(self):
return self._anchor_case_sensitive_metadata
@anchor_case_sensitive_metadata.setter
def anchor_case_sensitive_metadata(self, anchor_case_sensitive_metadata):
self._anchor_case_sensitive_metadata = anchor_case_sensitive_metadata
@property
def anchor_horizontal_alignment(self):
return self._anchor_horizontal_alignment
@anchor_horizontal_alignment.setter
def anchor_horizontal_alignment(self, anchor_horizontal_alignment):
self._anchor_horizontal_alignment = anchor_horizontal_alignment
@property
def anchor_horizontal_alignment_metadata(self):
return self._anchor_horizontal_alignment_metadata
@anchor_horizontal_alignment_metadata.setter
def anchor_horizontal_alignment_metadata(self, anchor_horizontal_alignment_metadata):
self._anchor_horizontal_alignment_metadata = anchor_horizontal_alignment_metadata
@property
def anchor_ignore_if_not_present(self):
return self._anchor_ignore_if_not_present
@anchor_ignore_if_not_present.setter
def anchor_ignore_if_not_present(self, anchor_ignore_if_not_present):
self._anchor_ignore_if_not_present = anchor_ignore_if_not_present
@property
def anchor_ignore_if_not_present_metadata(self):
return self._anchor_ignore_if_not_present_metadata
@anchor_ignore_if_not_present_metadata.setter
def anchor_ignore_if_not_present_metadata(self, anchor_ignore_if_not_present_metadata):
self._anchor_ignore_if_not_present_metadata = anchor_ignore_if_not_present_metadata
@property
def anchor_match_whole_word(self):
return self._anchor_match_whole_word
@anchor_match_whole_word.setter
def anchor_match_whole_word(self, anchor_match_whole_word):
self._anchor_match_whole_word = anchor_match_whole_word
@property
def anchor_match_whole_word_metadata(self):
return self._anchor_match_whole_word_metadata
@anchor_match_whole_word_metadata.setter
def anchor_match_whole_word_metadata(self, anchor_match_whole_word_metadata):
self._anchor_match_whole_word_metadata = anchor_match_whole_word_metadata
@property
def anchor_string(self):
return self._anchor_string
@anchor_string.setter
def anchor_string(self, anchor_string):
self._anchor_string = anchor_string
@property
def anchor_string_metadata(self):
return self._anchor_string_metadata
@anchor_string_metadata.setter
def anchor_string_metadata(self, anchor_string_metadata):
self._anchor_string_metadata = anchor_string_metadata
@property
def anchor_tab_processor_version(self):
return self._anchor_tab_processor_version
@anchor_tab_processor_version.setter
def anchor_tab_processor_version(self, anchor_tab_processor_version):
self._anchor_tab_processor_version = anchor_tab_processor_version
@property
def anchor_tab_processor_version_metadata(self):
return self._anchor_tab_processor_version_metadata
@anchor_tab_processor_version_metadata.setter | MIT License |
red-hat-storage/ocs-ci | ocs_ci/ocs/resources/bucketclass.py | bucket_class_factory | python | def bucket_class_factory(
request, mcg_obj, backingstore_factory, namespace_store_factory
):
interfaces = {
"oc": mcg_obj.oc_create_bucketclass,
"cli": mcg_obj.cli_create_bucketclass,
}
created_bucket_classes = []
def _create_bucket_class(bucket_class_dict):
if "interface" in bucket_class_dict:
interface = bucket_class_dict["interface"]
if interface.lower() not in interfaces.keys():
raise RuntimeError(
f"Invalid interface type received: {interface}. "
f'available types: {", ".join(interfaces)}'
)
else:
interface = "OC"
namespace_policy = {}
backingstores = None
namespacestores = None
placement_policy = None
if "namespace_policy_dict" in bucket_class_dict:
if "namespacestore_dict" in bucket_class_dict["namespace_policy_dict"]:
nss_dict = bucket_class_dict["namespace_policy_dict"][
"namespacestore_dict"
]
namespacestores = namespace_store_factory(interface, nss_dict)
namespace_policy["type"] = bucket_class_dict["namespace_policy_dict"][
"type"
]
if namespace_policy["type"] == "Cache":
namespace_policy["cache"] = {
"hubResource": namespacestores[0].name,
"caching": {
"ttl": bucket_class_dict["namespace_policy_dict"]["ttl"]
},
}
else:
namespace_policy["read_resources"] = [
nss.name for nss in namespacestores
]
namespace_policy["write_resource"] = namespacestores[0].name
elif "namespacestores" in bucket_class_dict["namespace_policy_dict"]:
namespacestores = bucket_class_dict["namespace_policy_dict"][
"namespacestores"
]
namespace_policy["type"] = bucket_class_dict["namespace_policy_dict"][
"type"
]
if namespace_policy["type"] == "Cache":
namespace_policy["cache"] = {
"hubResource": namespacestores[0].name,
"caching": {
"ttl": bucket_class_dict["namespace_policy_dict"]["ttl"]
},
}
else:
namespace_policy["read_resources"] = [
nss.name for nss in namespacestores
]
namespace_policy["write_resource"] = namespacestores[0].name
elif "backingstore_dict" in bucket_class_dict:
backingstores = [
backingstore
for backingstore in backingstore_factory(
interface, bucket_class_dict["backingstore_dict"]
)
]
else:
backingstores = [
BackingStore(constants.DEFAULT_NOOBAA_BACKINGSTORE, method="oc")
]
if "placement_policy" in bucket_class_dict:
placement_policy = bucket_class_dict["placement_policy"]
else:
placement_policy = "Spread"
bucket_class_name = create_unique_resource_name(
resource_description="bucketclass", resource_type=interface.lower()
)
interfaces[interface.lower()](
name=bucket_class_name,
backingstores=backingstores,
placement=placement_policy,
namespace_policy=namespace_policy,
)
bucket_class_object = BucketClass(
bucket_class_name,
backingstores,
namespacestores,
placement_policy,
namespace_policy,
)
created_bucket_classes.append(bucket_class_object)
return bucket_class_object
def bucket_class_cleanup():
for bucket_class in created_bucket_classes:
try:
bucket_class.delete()
except CommandFailed as e:
if "NotFound" in str(e):
log.warning(f"{bucket_class.name} could not be found in cleanup")
else:
raise
request.addfinalizer(bucket_class_cleanup)
return _create_bucket_class | Create a bucket class factory. Calling this fixture creates a new custom bucket class.
For a custom backingstore(s), provide the 'backingstore_dict' parameter.
Args:
request (object): Pytest built-in fixture
mcg_obj (MCG): An MCG object containing the MCG S3 connection credentials
backingstore_factory: Factory for backing store creation | https://github.com/red-hat-storage/ocs-ci/blob/81bc3dd3c2bccbf875ffa8fa5fa2eb0ac9d52b7e/ocs_ci/ocs/resources/bucketclass.py#L41-L199 | import logging
from ocs_ci.ocs import constants
from ocs_ci.ocs.resources.backingstore import BackingStore
from ocs_ci.ocs.exceptions import CommandFailed
from ocs_ci.framework import config
from ocs_ci.ocs.ocp import OCP
from ocs_ci.helpers.helpers import create_unique_resource_name
log = logging.getLogger(__name__)
class BucketClass:
def __init__(
self, name, backingstores, namespacestores, placement_policy, namespace_policy
):
self.name = name
self.backingstores = backingstores
self.namespacestores = namespacestores
self.placement_policy = placement_policy
self.namespace_policy = namespace_policy
def delete(self):
log.info(f"Cleaning up bucket class {self.name}")
OCP(namespace=config.ENV_DATA["cluster_namespace"]).exec_oc_cmd(
command=f"delete bucketclass {self.name}", out_yaml_format=False
)
log.info(f"Verifying whether bucket class {self.name} exists after deletion") | MIT License |
csyben/pyro-nn | pyronn/ct_reconstruction/geometry/geometry_fan_2d.py | GeometryFan2D.set_trajectory | python | def set_trajectory(self, central_ray_vectors):
self.central_ray_vectors = np.array(central_ray_vectors, self.np_dtype) | Sets the member central_ray_vectors.
Args:
central_ray_vectors: np.array defining the trajectory central_ray_vectors. | https://github.com/csyben/pyro-nn/blob/726b62b57d7093ff0f3e675e66d976d989eebc0a/pyronn/ct_reconstruction/geometry/geometry_fan_2d.py#L38-L44 | import numpy as np
from .geometry_base import GeometryBase
class GeometryFan2D(GeometryBase):
def __init__(self,
volume_shape, volume_spacing,
detector_shape, detector_spacing,
number_of_projections, angular_range,
source_detector_distance, source_isocenter_distance):
super().__init__(volume_shape, volume_spacing,
[detector_shape], [detector_spacing],
number_of_projections, angular_range,
source_detector_distance, source_isocenter_distance)
self.fan_angle = np.arctan(((self.detector_shape[0] - 1) / 2.0 * self.detector_spacing[0]) / self.source_detector_distance) | Apache License 2.0 |
anymesh/anymesh-python | example/urwid/graphics.py | PythonLogo.__init__ | python | def __init__(self):
blu = AttrSpec('light blue', 'default')
yel = AttrSpec('yellow', 'default')
width = 17
self._canvas = Text([
(blu, " ______\n"),
(blu, " _|_o__ |"), (yel, "__\n"),
(blu, " | _____|"), (yel, " |\n"),
(blu, " |__| "), (yel, "______|\n"),
(yel, " |____o_|")]).render((width,)) | Create canvas containing an ASCII version of the Python
Logo and store it. | https://github.com/anymesh/anymesh-python/blob/017b7808f2fbdc765604488d325678c28be438c0/example/urwid/graphics.py#L884-L897 | from urwid.util import decompose_tagmarkup, get_encoding_mode
from urwid.canvas import CompositeCanvas, CanvasJoin, TextCanvas, CanvasCombine, SolidCanvas
from urwid.widget import WidgetMeta, Widget, BOX, FIXED, FLOW, nocache_widget_render, nocache_widget_render_instance, fixed_size, WidgetWrap, Divider, SolidFill, Text, CENTER, CLIP
from urwid.container import Pile, Columns
from urwid.display_common import AttrSpec
from urwid.decoration import WidgetDecoration
class BigText(Widget):
_sizing = frozenset([FIXED])
def __init__(self, markup, font):
self.set_font(font)
self.set_text(markup)
def set_text(self, markup):
self.text, self.attrib = decompose_tagmarkup(markup)
self._invalidate()
def get_text(self):
return self.text, self.attrib
def set_font(self, font):
self.font = font
self._invalidate()
def pack(self, size=None, focus=False):
rows = self.font.height
cols = 0
for c in self.text:
cols += self.font.char_width(c)
return cols, rows
def render(self, size, focus=False):
fixed_size(size)
a = None
ai = ak = 0
o = []
rows = self.font.height
attrib = self.attrib + [(None, len(self.text))]
for ch in self.text:
if not ak:
a, ak = attrib[ai]
ai += 1
ak -= 1
width = self.font.char_width(ch)
if not width:
continue
c = self.font.render(ch)
if a is not None:
c = CompositeCanvas(c)
c.fill_attr(a)
o.append((c, None, False, width))
if o:
canv = CanvasJoin(o)
else:
canv = TextCanvas([""] * rows, maxcol=0,
check_width=False)
canv = CompositeCanvas(canv)
canv.set_depends([])
return canv
class LineBox(WidgetDecoration, WidgetWrap):
def __init__(self, original_widget, title="",
tlcorner=u'┌', tline=u'─', lline=u'│',
trcorner=u'┐', blcorner=u'└', rline=u'│',
bline=u'─', brcorner=u'┘'):
tline, bline = Divider(tline), Divider(bline)
lline, rline = SolidFill(lline), SolidFill(rline)
tlcorner, trcorner = Text(tlcorner), Text(trcorner)
blcorner, brcorner = Text(blcorner), Text(brcorner)
self.title_widget = Text(self.format_title(title))
self.tline_widget = Columns([
tline,
('flow', self.title_widget),
tline,
])
top = Columns([
('fixed', 1, tlcorner),
self.tline_widget,
('fixed', 1, trcorner)
])
middle = Columns([
('fixed', 1, lline),
original_widget,
('fixed', 1, rline),
], box_columns=[0, 2], focus_column=1)
bottom = Columns([
('fixed', 1, blcorner), bline, ('fixed', 1, brcorner)
])
pile = Pile([('flow', top), middle, ('flow', bottom)], focus_item=1)
WidgetDecoration.__init__(self, original_widget)
WidgetWrap.__init__(self, pile)
def format_title(self, text):
if len(text) > 0:
return " %s " % text
else:
return ""
def set_title(self, text):
self.title_widget.set_text(self.format_title(text))
self.tline_widget._invalidate()
class BarGraphMeta(WidgetMeta):
def __init__(cls, name, bases, d):
super(BarGraphMeta, cls).__init__(name, bases, d)
if "get_data" in d:
cls.render = nocache_widget_render(cls)
cls._get_data = cls.get_data
cls.get_data = property(
lambda self: self._get_data,
nocache_bargraph_get_data)
def nocache_bargraph_get_data(self, get_data_fn):
self.render = nocache_widget_render_instance(self)
self._get_data = get_data_fn
class BarGraphError(Exception):
pass
class BarGraph(Widget):
__metaclass__ = BarGraphMeta
_sizing = frozenset([BOX])
ignore_focus = True
eighths = u' ▁▂▃▄▅▆▇'
hlines = u'_⎺⎻─⎼⎽'
def __init__(self, attlist, hatt=None, satt=None):
self.set_segment_attributes(attlist, hatt, satt)
self.set_data([], 1, None)
self.set_bar_width(None)
def set_segment_attributes(self, attlist, hatt=None, satt=None):
self.attr = []
self.char = []
if len(attlist) < 2:
raise BarGraphError("attlist must include at least background and seg1: %r" % (attlist,))
assert len(attlist) >= 2, 'must at least specify bg and fg!'
for a in attlist:
if type(a) != tuple:
self.attr.append(a)
self.char.append(' ')
else:
attr, ch = a
self.attr.append(attr)
self.char.append(ch)
self.hatt = []
if hatt is None:
hatt = [self.attr[0]]
elif type(hatt) != list:
hatt = [hatt]
self.hatt = hatt
if satt is None:
satt = {}
for i in satt.items():
try:
(fg, bg), attr = i
except ValueError:
raise BarGraphError("satt not in (fg,bg:attr) form: %r" % (i,))
if type(fg) != int or fg >= len(attlist):
raise BarGraphError("fg not valid integer: %r" % (fg,))
if type(bg) != int or bg >= len(attlist):
raise BarGraphError("bg not valid integer: %r" % (fg,))
if fg <= bg:
raise BarGraphError("fg (%s) not > bg (%s)" % (fg, bg))
self.satt = satt
def set_data(self, bardata, top, hlines=None):
if hlines is not None:
hlines = hlines[:]
hlines.sort()
self.data = bardata, top, hlines
self._invalidate()
def _get_data(self, size):
(maxcol, maxrow) = size
bardata, top, hlines = self.data
widths = self.calculate_bar_widths((maxcol, maxrow), bardata)
if len(bardata) > len(widths):
return bardata[:len(widths)], top, hlines
return bardata, top, hlines
def set_bar_width(self, width):
assert width is None or width > 0
self.bar_width = width
self._invalidate()
def calculate_bar_widths(self, size, bardata):
(maxcol, maxrow) = size
if self.bar_width is not None:
return [self.bar_width] * min(
len(bardata), maxcol / self.bar_width)
if len(bardata) >= maxcol:
return [1] * maxcol
widths = []
grow = maxcol
remain = len(bardata)
for row in bardata:
w = int(float(grow) / remain + 0.5)
widths.append(w)
grow -= w
remain -= 1
return widths
def selectable(self):
return False
def use_smoothed(self):
return self.satt and get_encoding_mode() == "utf8"
def calculate_display(self, size):
(maxcol, maxrow) = size
bardata, top, hlines = self.get_data((maxcol, maxrow))
widths = self.calculate_bar_widths((maxcol, maxrow), bardata)
if self.use_smoothed():
disp = calculate_bargraph_display(bardata, top, widths,
maxrow * 8)
disp = self.smooth_display(disp)
else:
disp = calculate_bargraph_display(bardata, top, widths,
maxrow)
if hlines:
disp = self.hlines_display(disp, top, hlines, maxrow)
return disp
def hlines_display(self, disp, top, hlines, maxrow):
if self.use_smoothed():
shiftr = 0
r = [(0.2, 1),
(0.4, 2),
(0.6, 3),
(0.8, 4),
(1.0, 5), ]
else:
shiftr = 0.5
r = [(1.0, 0), ]
rhl = []
for h in hlines:
rh = float(top - h) * maxrow / top - shiftr
if rh < 0:
continue
rhl.append(rh)
hrows = []
last_i = -1
for rh in rhl:
i = int(rh)
if i == last_i:
continue
f = rh - i
for spl, chnum in r:
if f < spl:
hrows.append((i, chnum))
break
last_i = i
def fill_row(row, chnum):
rout = []
for bar_type, width in row:
if (type(bar_type) == int and
len(self.hatt) > bar_type):
rout.append(((bar_type, chnum), width))
continue
rout.append((bar_type, width))
return rout
o = []
k = 0
rnum = 0
for y_count, row in disp:
if k >= len(hrows):
o.append((y_count, row))
continue
end_block = rnum + y_count
while k < len(hrows) and hrows[k][0] < end_block:
i, chnum = hrows[k]
if i - rnum > 0:
o.append((i - rnum, row))
o.append((1, fill_row(row, chnum)))
rnum = i + 1
k += 1
if rnum < end_block:
o.append((end_block - rnum, row))
rnum = end_block
return o
def smooth_display(self, disp):
o = []
r = 0
def seg_combine((bt1, w1), (bt2, w2)):
if (bt1, w1) == (bt2, w2):
return (bt1, w1), None, None
wmin = min(w1, w2)
l1 = l2 = None
if w1 > w2:
l1 = (bt1, w1 - w2)
elif w2 > w1:
l2 = (bt2, w2 - w1)
if type(bt1) == tuple:
return (bt1, wmin), l1, l2
if (bt2, bt1) not in self.satt:
if r < 4:
return (bt2, wmin), l1, l2
return (bt1, wmin), l1, l2
return ((bt2, bt1, 8 - r), wmin), l1, l2
def row_combine_last(count, row):
o_count, o_row = o[-1]
row = row[:]
o_row = o_row[:]
l = []
while row:
(bt, w), l1, l2 = seg_combine(
o_row.pop(0), row.pop(0))
if l and l[-1][0] == bt:
l[-1] = (bt, l[-1][1] + w)
else:
l.append((bt, w))
if l1:
o_row = [l1] + o_row
if l2:
row = [l2] + row
assert not o_row
o[-1] = (o_count + count, l)
for y_count, row in disp:
if r:
count = min(8 - r, y_count)
row_combine_last(count, row)
y_count -= count
r += count
r = r % 8
if not y_count:
continue
assert r == 0
if y_count > 7:
o.append((y_count // 8 * 8, row))
y_count = y_count % 8
if not y_count:
continue
o.append((y_count, row))
r = y_count
return [(y // 8, row) for (y, row) in o]
def render(self, size, focus=False):
(maxcol, maxrow) = size
disp = self.calculate_display((maxcol, maxrow))
combinelist = []
for y_count, row in disp:
l = []
for bar_type, width in row:
if type(bar_type) == tuple:
if len(bar_type) == 3:
fg, bg, k = bar_type
a = self.satt[(fg, bg)]
t = self.eighths[k] * width
else:
bg, k = bar_type
a = self.hatt[bg]
t = self.hlines[k] * width
else:
a = self.attr[bar_type]
t = self.char[bar_type] * width
l.append((a, t))
c = Text(l).render((maxcol,))
assert c.rows() == 1, "Invalid characters in BarGraph!"
combinelist += [(c, None, False)] * y_count
canv = CanvasCombine(combinelist)
return canv
def calculate_bargraph_display(bardata, top, bar_widths, maxrow):
assert len(bardata) == len(bar_widths)
maxcol = sum(bar_widths)
rows = [None] * maxrow
def add_segment(seg_num, col, row, width, rows=rows):
if rows[row]:
last_seg, last_col, last_end = rows[row][-1]
if last_end > col:
if last_col >= col:
del rows[row][-1]
else:
rows[row][-1] = (last_seg,
last_col, col)
elif last_seg == seg_num and last_end == col:
rows[row][-1] = (last_seg, last_col,
last_end + width)
return
elif rows[row] is None:
rows[row] = []
rows[row].append((seg_num, col, col + width))
col = 0
barnum = 0
for bar in bardata:
width = bar_widths[barnum]
if width < 1:
continue
tallest = maxrow
segments = scale_bar_values(bar, top, maxrow)
for k in range(len(bar) - 1, -1, -1):
s = segments[k]
if s >= maxrow:
continue
if s < 0:
s = 0
if s < tallest:
tallest = s
add_segment(k + 1, col, s, width)
col += width
barnum += 1
rowsets = []
y_count = 0
last = [(0, maxcol)]
for r in rows:
if r is None:
y_count = y_count + 1
continue
if y_count:
rowsets.append((y_count, last))
y_count = 0
i = 0
la, ln = last[i]
c = 0
o = []
for seg_num, start, end in r:
while start > c + ln:
o.append((la, ln))
i += 1
c += ln
la, ln = last[i]
if la == seg_num:
o.append((la, end - c))
else:
if start - c > 0:
o.append((la, start - c))
o.append((seg_num, end - start))
if end == maxcol:
i = len(last)
break
while end >= c + ln:
i += 1
c += ln
la, ln = last[i]
if la != seg_num:
ln = c + ln - end
c = end
continue
oa, on = o[-1]
on += c + ln - end
o[-1] = oa, on
i += 1
c += ln
if c == maxcol:
break
assert i < len(last), repr((on, maxcol))
la, ln = last[i]
if i < len(last):
o += [(la, ln)] + last[i + 1:]
last = o
y_count += 1
if y_count:
rowsets.append((y_count, last))
return rowsets
class GraphVScale(Widget):
_sizing = frozenset([BOX])
def __init__(self, labels, top):
self.set_scale(labels, top)
def set_scale(self, labels, top):
labels = labels[:]
labels.sort()
labels.reverse()
self.pos = []
self.txt = []
for y, markup in labels:
self.pos.append(y)
self.txt.append(Text(markup))
self.top = top
def selectable(self):
return False
def render(self, size, focus=False):
(maxcol, maxrow) = size
pl = scale_bar_values(self.pos, self.top, maxrow)
combinelist = []
rows = 0
for p, t in zip(pl, self.txt):
p -= 1
if p >= maxrow:
break
if p < rows:
continue
c = t.render((maxcol,))
if p > rows:
run = p - rows
c = CompositeCanvas(c)
c.pad_trim_top_bottom(run, 0)
rows += c.rows()
combinelist.append((c, None, False))
if not combinelist:
return SolidCanvas(" ", size[0], size[1])
c = CanvasCombine(combinelist)
if maxrow - rows:
c.pad_trim_top_bottom(0, maxrow - rows)
return c
def scale_bar_values( bar, top, maxrow ):
return [maxrow - int(float(v) * maxrow / top + 0.5) for v in bar]
class ProgressBar(Widget):
_sizing = frozenset([FLOW])
eighths = u' ▏▎▍▌▋▊▉'
text_align = CENTER
def __init__(self, normal, complete, current=0, done=100, satt=None):
self.normal = normal
self.complete = complete
self._current = current
self._done = done
self.satt = satt
def set_completion(self, current):
self._current = current
self._invalidate()
current = property(lambda self: self._current, set_completion)
def _set_done(self, done):
self._done = done
self._invalidate()
done = property(lambda self: self._done, _set_done)
def rows(self, size, focus=False):
return 1
def get_text(self):
percent = min(100, max(0, int(self.current * 100 / self.done)))
return str(percent) + " %"
def render(self, size, focus=False):
(maxcol,) = size
txt = Text(self.get_text(), self.text_align, CLIP)
c = txt.render((maxcol,))
cf = float(self.current) * maxcol / self.done
ccol = int(cf)
cs = 0
if self.satt is not None:
cs = int((cf - ccol) * 8)
if ccol < 0 or (ccol == 0 and cs == 0):
c._attr = [[(self.normal, maxcol)]]
elif ccol >= maxcol:
c._attr = [[(self.complete, maxcol)]]
elif cs and c._text[0][ccol] == " ":
t = c._text[0]
cenc = self.eighths[cs].encode("utf-8")
c._text[0] = t[:ccol] + cenc + t[ccol + 1:]
a = []
if ccol > 0:
a.append((self.complete, ccol))
a.append((self.satt, len(cenc)))
if maxcol - ccol - 1 > 0:
a.append((self.normal, maxcol - ccol - 1))
c._attr = [a]
c._cs = [[(None, len(c._text[0]))]]
else:
c._attr = [[(self.complete, ccol),
(self.normal, maxcol - ccol)]]
return c
class PythonLogo(Widget):
_sizing = frozenset([FIXED]) | MIT License |
deepmind/acme | acme/utils/loggers/terminal.py | serialize | python | def serialize(values: base.LoggingData) -> str:
return ' | '.join(f'{_format_key(k)} = {_format_value(v)}'
for k, v in sorted(values.items())) | Converts `values` to a pretty-printed string.
This takes a dictionary `values` whose keys are strings and returns
a formatted string such that each [key, value] pair is separated by ' = ' and
each entry is separated by ' | '. The keys are sorted alphabetically to ensure
a consistent order, and snake case is split into words.
For example:
values = {'a': 1, 'b' = 2.33333333, 'c': 'hello', 'big_value': 10}
# Returns 'A = 1 | B = 2.333 | Big Value = 10 | C = hello'
values_string = serialize(values)
Args:
values: A dictionary with string keys.
Returns:
A formatted string. | https://github.com/deepmind/acme/blob/39232315e1761219bcc98e7a4ecdd308a42b00e4/acme/utils/loggers/terminal.py#L38-L59 | import logging
import time
from typing import Any, Callable
from acme.utils.loggers import base
import numpy as np
def _format_key(key: str) -> str:
return key.replace('_', ' ').title()
def _format_value(value: Any) -> str:
value = base.to_numpy(value)
if isinstance(value, (float, np.number)):
return f'{value:0.3f}'
return f'{value}' | Apache License 2.0 |
dopefishh/pympi | pympi/Praat.py | TextGrid.get_tier | python | def get_tier(self, name_num):
return self.tiers[name_num - 1] if isinstance(name_num, int) else [i for i in self.tiers if i.name == name_num][0] | Gives a tier, when multiple tiers exist with that name only the
first is returned.
:param name_num: Name or number of the tier to return.
:type name_num: int or str
:returns: The tier.
:raises IndexError: If the tier doesn't exist. | https://github.com/dopefishh/pympi/blob/c17292c21dacb747a20fc1069450792b52c8a6f8/pympi/Praat.py#L175-L185 | import codecs
import re
import struct
VERSION = '1.70.2'
class TextGrid:
def __init__(self, file_path=None, xmin=0, xmax=None, codec='utf-8'):
self.tiers = []
self.codec = codec
if not file_path:
if xmax is None:
raise Exception('No xmax specified')
self.tier_num = 0
self.xmin = xmin
self.xmax = xmax
else:
with open(file_path, 'rb') as f:
self.from_file(f, codec)
def from_file(self, ifile, codec='ascii'):
if ifile.read(12) == b'ooBinaryFile':
def bin2str(ifile):
textlen = struct.unpack('>h', ifile.read(2))[0]
if textlen >= 0:
return ifile.read(textlen).decode('ascii')
elif textlen == -1:
textlen = struct.unpack('>h', ifile.read(2))[0]
data = ifile.read(textlen*2)
charlist = (data[i:i+2] for i in range(0, len(data), 2))
return ''.join(
chr(struct.unpack('>h', i)[0]) for i in charlist)
ifile.read(ord(ifile.read(1)))
self.xmin = struct.unpack('>d', ifile.read(8))[0]
self.xmax = struct.unpack('>d', ifile.read(8))[0]
ifile.read(1)
self.tier_num = struct.unpack('>i', ifile.read(4))[0]
for i in range(self.tier_num):
tier_type = ifile.read(ord(ifile.read(1))).decode('ascii')
name = bin2str(ifile)
tier = Tier(0, 0, name=name, tier_type=tier_type)
self.tiers.append(tier)
tier.xmin = struct.unpack('>d', ifile.read(8))[0]
tier.xmax = struct.unpack('>d', ifile.read(8))[0]
nint = struct.unpack('>i', ifile.read(4))[0]
for i in range(nint):
x1 = struct.unpack('>d', ifile.read(8))[0]
if tier.tier_type == 'IntervalTier':
x2 = struct.unpack('>d', ifile.read(8))[0]
text = bin2str(ifile)
if tier.tier_type == 'IntervalTier':
tier.intervals.append((x1, x2, text))
elif tier.tier_type == 'TextTier':
tier.intervals.append((x1, text))
else:
raise Exception('Tiertype does not exist.')
else:
def nn(ifile, pat):
line = next(ifile).decode(codec)
return pat.search(line).group(1)
regfloat = re.compile(r'([\d.]+)\s*$', flags=re.UNICODE)
regint = re.compile(r'([\d]+)\s*$', flags=re.UNICODE)
regstr = re.compile(r'"(.*)"\s*$', flags=re.UNICODE)
next(ifile), next(ifile), next(ifile)
self.xmin = float(nn(ifile, regfloat))
self.xmax = float(nn(ifile, regfloat))
line = next(ifile)
short = line.strip() == b'<exists>'
self.tier_num = int(nn(ifile, regint))
not short and next(ifile)
for i in range(self.tier_num):
not short and next(ifile)
tier_type = nn(ifile, regstr)
name = nn(ifile, regstr)
tier = Tier(0, 0, name=name, tier_type=tier_type)
self.tiers.append(tier)
tier.xmin = float(nn(ifile, regfloat))
tier.xmax = float(nn(ifile, regfloat))
for i in range(int(nn(ifile, regint))):
not short and next(ifile)
x1 = float(nn(ifile, regfloat))
if tier.tier_type == 'IntervalTier':
x2 = float(nn(ifile, regfloat))
t = nn(ifile, regstr)
tier.intervals.append((x1, x2, t))
elif tier.tier_type == 'TextTier':
t = nn(ifile, regstr)
tier.intervals.append((x1, t))
def sort_tiers(self, key=lambda x: x.name):
self.tiers.sort(key=key)
def add_tier(self, name, tier_type='IntervalTier', number=None):
if number is None:
number = 1 if not self.tiers else len(self.tiers)+1
elif number < 1 or number > len(self.tiers):
raise ValueError('Number not in [1..{}]'.format(len(self.tiers)))
elif tier_type not in Tier.P_TIERS:
raise ValueError('tier_type has to be in {}'.format(Tier.P_TIERS))
self.tiers.insert(number-1,
Tier(self.xmin, self.xmax, name, tier_type))
return self.tiers[number-1]
def remove_tier(self, name_num):
if isinstance(name_num, int):
del(self.tiers[name_num-1])
else:
self.tiers = [i for i in self.tiers if i.name != name_num] | MIT License |
krassowski/nbpipeline | nbpipeline/rules.py | NotebookRule.__init__ | python | def __init__(
self, *args, notebook,
diff=True,
deduce_io=True,
deduce_io_from_data_vault=True,
execute=True,
**kwargs
):
super().__init__(*args, **kwargs)
self.todos = []
self.notebook = notebook
self.absolute_notebook_path = Path(notebook).absolute()
self.generate_diff = diff
self.diff = None
self.text_diff = None
self.fidelity = None
self.images = []
self.headers = []
self.status = None
self.execute = execute
from datetime import datetime, timedelta
month_ago = (datetime.today() - timedelta(days=30)).timestamp()
self.changes = run_command(f'git rev-list --max-age {month_ago} HEAD --count {self.notebook}')
if deduce_io:
self.deduce_io_from_tags()
if deduce_io_from_data_vault:
self.deduce_io_from_data_vault() | Rule for Jupyter Notebooks
Args:
deduce_io: whether to automatically deduce inputs and outputs from the code cells tagged "inputs" and "outputs";
local variables defined in the cell will be evaluated and used as inputs or outputs.
If you want to generate paths with a helper function for brevity, assign a dict of {variable: path}
to `__inputs__`/`__outputs__` in the tagged cell using `io.create_paths()` helper.
diff: whether to generate diffs against the current state of the notebook
deduce_io_from_data_vault: whether to deduce the inputs and outputs from `data_vault` magics
(`%vault store` and `%vault import`), see https://github.com/krassowski/data-vault
execute: if False, the notebook will note be run; useful to include final "leaf" notebooks
which may take too long to run, but are not essential to the overall results | https://github.com/krassowski/nbpipeline/blob/c2337db2b19767b2cdfcc9bf019e2bf687bb4423/nbpipeline/rules.py#L247-L289 | import json
import pickle
import re
from copy import copy, deepcopy
from functools import lru_cache
from json import JSONDecodeError
from os import system, walk, sep
from abc import ABC, abstractmethod
from pathlib import Path
import time
from subprocess import check_output
from tempfile import NamedTemporaryFile
from warnings import warn
from .utils import subset_dict_preserving_order, run_command, nice_time
class no_quotes(str):
def __repr__(self):
original = super().__repr__()
return original[1:-1]
class Rule(ABC):
cache_dir: Path
tmp_dir: Path
is_setup = False
rules = {}
def __init__(self, name, **kwargs):
assert name not in self.rules
self.name = name
self.execution_time = None
self.rules[name] = self
extra_kwargs = set(kwargs) - {'output', 'input', 'group', 'parameters'}
if extra_kwargs:
raise Exception(f'Unrecognized keyword arguments to {self.__class__.__name__}: {extra_kwargs}')
self.arguments = subset_dict_preserving_order(
kwargs,
{'input', 'output', 'parameters'}
)
self.group = kwargs.get('group', None)
self.outputs = {}
self.inputs = {}
self.parameters = {}
if 'output' in kwargs:
output = kwargs['output']
self.outputs = output if isinstance(output, dict) else {'': output}
if 'input' in kwargs:
input = kwargs['input']
self.inputs = input if isinstance(input, dict) else {'': input}
if 'parameters' in kwargs:
self.parameters = kwargs['parameters']
@property
def has_inputs(self):
return len(self.inputs) != 0
@property
def has_outputs(self):
return len(self.outputs) != 0
@abstractmethod
def run(self, use_cache: bool) -> int:
if not self.is_setup:
raise ValueError('Please set up the rules class settings with Rule.setup() first!')
@classmethod
def setup(cls, cache_dir: Path, tmp_dir: Path):
cls.cache_dir = Path(cache_dir)
cls.tmp_dir = Path(tmp_dir)
cls.is_setup = True
@abstractmethod
def to_json(self):
pass
def __repr__(self):
fragments = [repr(self.name)]
if self.group:
fragments.append(f'({self.group})')
if self.has_inputs or self.has_outputs:
fragments.append('with')
if self.has_inputs:
fragments.append(f'{len(self.inputs)} inputs')
if self.has_inputs and self.has_outputs:
fragments.append('and')
if self.has_outputs:
fragments.append(f'{len(self.outputs)} outputs')
fragments = ' '.join(fragments)
return f'<{self.__class__.__name__} {fragments}>'
class Group:
groups = {}
def __init__(self, id: str, name: str, color='#cccccc', parent=None):
assert name not in self.groups
self.name = name
self.id = id
self.color = color
self.groups[id] = self
self.parent = parent
def to_json(self):
return {
'label': self.name,
'id': self.id,
'color': self.color,
'parent': self.parent
}
class ShellRule(Rule):
def __init__(self, name, command, **kwargs):
super().__init__(self, name, **kwargs)
self.command = command
def serialize(self, arguments_group):
if isinstance(arguments_group, dict):
return ' '.join(
(
(
('-' + key if len(key) == 1 else '--' + key)
+
' '
)
if len(key) else
''
) + (
repr(value)
)
for key, value in arguments_group.items()
)
else:
return repr(arguments_group)
@property
def serialized_arguments(self):
return ' '.join({
self.serialize(arguments_group)
for arguments_group in self.arguments.values()
})
def run(self, use_cache=False) -> int:
super().run(use_cache)
start_time = time.time()
status = system(f'{self.command} {self.serialized_arguments}')
self.execution_time = time.time() - start_time
return status
def to_json(self):
return {
'name': self.command,
'arguments': self.serialized_arguments,
'execution_time': self.execution_time,
'type': 'shell'
}
def expand_run_magics(notebook):
out_notebook = copy(notebook)
new_cells = []
for cell in notebook['cells']:
if cell['cell_type'] != 'code':
new_cells.append(cell)
continue
if any(line.startswith('%run') for line in cell['source']):
other_code = []
for line in cell['source']:
if line.startswith('%run'):
if other_code:
split_cell = copy(cell)
split_cell['source'] = other_code
new_cells.append(split_cell)
other_code = []
to_include = line[5:].strip()
with open(to_include) as o:
nb_run = json.load(o)
new_cells.extend(nb_run['cells'])
else:
other_code.append(line)
if other_code:
split_cell = copy(cell)
split_cell['source'] = other_code
new_cells.append(split_cell)
else:
new_cells.append(cell)
out_notebook['cells'] = new_cells
return out_notebook
class NotebookRule(Rule):
options: None
@property
def output_nb_dir(self) -> Path:
return self.tmp_dir / 'out'
@property
def reference_nb_dir(self) -> Path:
return self.tmp_dir / 'ref'
@property
def stripped_nb_dir(self) -> Path:
return self.tmp_dir / 'stripped' | MIT License |
seldonio/alibi | alibi/utils/distributed.py | DistributedExplainer.actor_index | python | def actor_index(self) -> int:
return self._actor_index | Returns the index of the actor for which state is returned. | https://github.com/seldonio/alibi/blob/ef757b9579f85ef2e3dfc7088211969616ee3fdb/alibi/utils/distributed.py#L550-L554 | import copy
import logging
import numpy as np
from functools import partial
from scipy import sparse
from typing import Any, Dict, Generator, List, Optional, Tuple, Union
logger = logging.getLogger(__name__)
def check_ray() -> bool:
import importlib
spec = importlib.util.find_spec('ray')
if spec:
return True
return False
RAY_INSTALLED = check_ray()
class ActorPool(object):
if RAY_INSTALLED:
import ray
ray = ray
def __init__(self, actors):
self._idle_actors = list(actors)
self._future_to_actor = {}
self._index_to_future = {}
self._next_task_index = 0
self._next_return_index = 0
self._pending_submits = []
def map(self, fn, values, chunksize=1):
values = self._chunk(values, chunksize=chunksize)
for v in values:
self.submit(fn, v)
while self.has_next():
yield self.get_next()
def map_unordered(self, fn, values, chunksize=1):
values = self._chunk(values, chunksize=chunksize)
for v in values:
self.submit(fn, v)
while self.has_next():
yield self.get_next_unordered()
def submit(self, fn, value):
if self._idle_actors:
actor = self._idle_actors.pop()
future = fn(actor, value)
self._future_to_actor[future] = (self._next_task_index, actor)
self._index_to_future[self._next_task_index] = future
self._next_task_index += 1
else:
self._pending_submits.append((fn, value))
def has_next(self):
return bool(self._future_to_actor)
def get_next(self, timeout=None):
if not self.has_next():
raise StopIteration("No more results to get")
if self._next_return_index >= self._next_task_index:
raise ValueError("It is not allowed to call get_next() after "
"get_next_unordered().")
future = self._index_to_future[self._next_return_index]
if timeout is not None:
res, _ = self.ray.wait([future], timeout=timeout)
if not res:
raise TimeoutError("Timed out waiting for result")
del self._index_to_future[self._next_return_index]
self._next_return_index += 1
i, a = self._future_to_actor.pop(future)
self._return_actor(a)
return self.ray.get(future)
def get_next_unordered(self, timeout=None):
if not self.has_next():
raise StopIteration("No more results to get")
res, _ = self.ray.wait(
list(self._future_to_actor), num_returns=1, timeout=timeout)
if res:
[future] = res
else:
raise TimeoutError("Timed out waiting for result")
i, a = self._future_to_actor.pop(future)
self._return_actor(a)
del self._index_to_future[i]
self._next_return_index = max(self._next_return_index, i + 1)
return self.ray.get(future)
def _return_actor(self, actor):
self._idle_actors.append(actor)
if self._pending_submits:
self.submit(*self._pending_submits.pop(0))
@staticmethod
def _chunk(values: list, chunksize: int) -> Generator[List, None, None]:
for i in range(0, len(values), chunksize):
yield values[i:i + chunksize]
def batch(X: np.ndarray, batch_size: Optional[int] = None, n_batches: int = 4) -> List[np.ndarray]:
n_records = X.shape[0]
if isinstance(X, sparse.spmatrix):
logger.warning("Batching function received sparse matrix input. Converting to dense matrix first...")
X = X.toarray()
if batch_size:
n_batches = n_records // batch_size
if n_records % batch_size != 0:
n_batches += 1
slices = [batch_size * i for i in range(1, n_batches)]
batches = np.array_split(X, slices)
else:
batches = np.array_split(X, n_batches)
return batches
def default_target_fcn(actor: Any, instances: tuple, kwargs: Optional[Dict] = None):
if kwargs is None:
kwargs = {}
return actor.get_explanation.remote(instances, **kwargs)
def concatenate_minibatches(minibatch_results: Union[List[np.ndarray], List[List[np.ndarray]]]) -> Union[np.ndarray, List[np.ndarray]]:
if isinstance(minibatch_results[0], np.ndarray):
return np.concatenate(minibatch_results, axis=0)
elif isinstance(minibatch_results[0], list) and isinstance(minibatch_results[0][0], np.ndarray):
return _array_list_concatenator(minibatch_results)
else:
raise TypeError(
"Minibatch concatenation function is defined only for List[np.ndarray] and List[List[np.ndarray]]"
)
def _array_list_concatenator(minibatch_results: List[List[np.ndarray]]) -> List[np.ndarray]:
n_classes = len(minibatch_results[0])
to_concatenate = [list(zip(*minibatch_results))[idx] for idx in range(n_classes)]
concatenated = [np.concatenate(arrays, axis=0) for arrays in to_concatenate]
return concatenated
def invert_permutation(p: list) -> np.ndarray:
s = np.empty_like(p)
s[p] = np.arange(len(p))
return s
def order_result(unordered_result: Generator[Tuple[int, Any], None, None]) -> List:
result_order, results = list(zip(*[(idx, res) for idx, res in unordered_result]))
orig_order = invert_permutation(list(result_order))
ordered_result = [results[idx] for idx in orig_order]
return ordered_result
class ResourceError(Exception):
pass
class DistributedExplainer:
if RAY_INSTALLED:
import ray
ray = ray
def __init__(self,
distributed_opts: Dict[str, Any],
explainer_type: Any,
explainer_init_args: Tuple,
explainer_init_kwargs: dict,
concatenate_results: bool = True,
return_generator: bool = False):
if not RAY_INSTALLED:
raise ModuleNotFoundError("Module requires ray to be installed. pip install alibi[ray] ")
self.n_processes = distributed_opts['n_cpus']
self.batch_size = distributed_opts['batch_size']
self.return_generator = return_generator
self.concatenate_results = concatenate_results
algorithm = distributed_opts.get('algorithm', 'default')
if 'algorithm' == 'default':
logger.warning(
"No algorithm specified in distributed option, default target function will be selected."
)
self.target_fcn = default_target_fcn
self.concatenate = None
if concatenate_results:
self.concatenate = concatenate_minibatches
if f"{algorithm}_target_fcn" in globals():
self.target_fcn = globals()[f"{algorithm}_target_fcn"]
if not DistributedExplainer.ray.is_initialized():
logger.info(f"Initialising ray on {self.n_processes} processes!")
DistributedExplainer.ray.init(num_cpus=self.n_processes)
self.pool = self.create_parallel_pool(
explainer_type,
explainer_init_args,
explainer_init_kwargs
)
self._actor_index = 0
def __getattr__(self, item: str) -> Any:
if self._actor_index > self.n_processes - 1:
raise ValueError(f"Index of actor should be less than or equal to {self.n_processes - 1}!")
actor = self.pool._idle_actors[self._actor_index]
return DistributedExplainer.ray.get(actor.return_attribute.remote(item))
@property | Apache License 2.0 |
mikidown/mikidown | mikidown/mikiwindow.py | MikiWindow.updateRecentViewedNotes | python | def updateRecentViewedNotes(self):
self.viewedList.clear()
self.viewedListActions = []
viewedNotes = self.settings.recentViewedNotes()
existedNotes = []
i = 0
for f in viewedNotes:
if self.notesTree.pageExists(f):
existedNotes.append(f)
names = f.split('/')
if self.altPressed and i in range(1, 10):
action = self.act(names[-1], self.openFunction(f),
'Alt+'+str(i), True, ViewedNoteIcon(i), 'Alt+'+str(i))
else:
action = self.act(names[-1], self.openFunction(f),
None, True)
self.viewedListActions.append(action)
i += 1
if not self.altPressed:
self.settings.updateRecentViewedNotes(existedNotes)
for action in self.viewedListActions:
self.viewedList.addAction(action)
if len(self.viewedListActions):
self.viewedListActions[0].setChecked(True) | Switching notes will trigger this.
When Alt pressed, show note number. | https://github.com/mikidown/mikidown/blob/70568eff44e4b8bc718dcdf35f81a31baebb9b74/mikidown/mikiwindow.py#L973-L1003 | import os
import shutil
import re
from threading import Thread
from PyQt5.QtCore import Qt
from PyQt5 import QtCore, QtGui, QtWidgets, QtWebKitWidgets, QtPrintSupport
from whoosh.index import create_in, open_dir
from whoosh.qparser import QueryParser, RegexPlugin
from whoosh.writing import AsyncWriter
import mikidown.mikidown_rc
from .slashpleter import SlashPleter
from .config import __appname__, __version__
from .mikibook import NotebookListDialog, NotebookSettingsDialog, Mikibook, MikidownCfgDialog
from .mikitree import MikiTree, TocTree
from .mikiedit import MikiEdit
from .mikiview import MikiView
from .mikisearch import MikiSearch
from .mikitemplate import ManageTemplatesDialog
from .attachment import AttachmentView
from .highlighter import MikiHighlighter
from .findreplacedialog import FindReplaceDialog
from .utils import Event, LineEditDialog, ViewedNoteIcon, parseHeaders, parseTitle, METADATA_CHECKER, JSCRIPT_TPL
class MikiSepNote(QtWidgets.QDockWidget):
def __init__(self, settings, name, filename, plain_text=False, parent=None):
super().__init__(parent=parent)
splitty = QtWidgets.QSplitter(self)
self.setWidget(splitty)
self.setWindowTitle(os.path.basename(name))
self.setFloating(True)
self.setAttribute(Qt.WA_DeleteOnClose)
self.plain_text = plain_text
self.notePath = settings.notePath
fh = QtCore.QFile(filename)
try:
if not fh.open(QtCore.QIODevice.ReadOnly):
raise IOError(fh.errorString())
except IOError as e:
QtWidgets.QMessageBox.warning(self, self.tr("Read Error"),
self.tr("Failed to open %s: %s") % (filename, e))
finally:
if fh is not None:
notestream = QtCore.QTextStream(fh)
notestream.setCodec("UTF-8")
noteBody = notestream.readAll()
fh.close()
self.tocw = TocTree(self)
splitty.addWidget(self.tocw)
strip_math_for_header_parsing = False
strip_fence_for_header_parsing = False
self.tocw.itemClicked.connect(self.tocNavigate)
if 'asciimathml' in settings.extensions:
stuff=JSCRIPT_TPL.format(settings.mathjax)
strip_math_for_header_parsing = True
else:
stuff=''
if 'fenced_code' in settings.extensions or 'extra' in settings.extensions:
strip_fence_for_header_parsing = True
if plain_text:
note_view = QtWidgets.QPlainTextEdit(self)
qfnt = QtGui.QFont()
qfnt.setFamily('monospace')
note_view.setFont(qfnt)
note_view.setPlainText(noteBody)
else:
note_view = QtWebKitWidgets.QWebView(self)
note_view.setHtml(settings.md.reset().convert(noteBody)+stuff)
note_view.page().setLinkDelegationPolicy(QtWebKitWidgets.QWebPage.DelegateAllLinks)
note_view.linkClicked.connect(self.linkClicked)
note_view.settings().setUserStyleSheetUrl(
QtCore.QUrl('file://'+self.parent().settings.cssfile))
self.note_view = note_view
splitty.addWidget(note_view)
self.tocw.updateToc(os.path.basename(name),
parseHeaders(noteBody, strip_fenced_block=strip_fence_for_header_parsing,
strip_ascii_math=strip_math_for_header_parsing))
def tocNavigate(self, current):
if current is None:
return
pos = int(current.text(1))
if self.plain_text:
self.note_view.moveCursor(QtGui.QTextCursor.End)
cur = self.note_view.textCursor()
cur.setPosition(pos, QtGui.QTextCursor.MoveAnchor)
self.note_view.setTextCursor(cur)
else:
self.note_view.page().mainFrame().scrollToAnchor(current.text(2))
def findItemByAnchor(self, anchor):
return self.tocw.findItems(anchor, Qt.MatchExactly|Qt.MatchRecursive, column=2)
def linkClicked(self, qurl):
name = qurl.toString()
http = re.compile('https?://')
if http.match(name):
QtGui.QDesktopServices.openUrl(qurl)
return
name = name.replace('file://', '')
name = name.replace(self.notePath, '').split('#')
item = self.parent().notesTree.pageToItem(name[0])
if not item or item == self.parent().notesTree.currentItem():
return
else:
if self.plain_text:
if len(name) == 2:
self.parent().newPlainTextNoteDisplay(item, anchor=name[1])
else:
self.parent().newPlainTextNoteDisplay(item)
else:
if len(name) == 2:
self.parent().newNoteDisplay(item, anchor=name[1])
else:
self.parent().newNoteDisplay(item)
class MikiWindow(QtWidgets.QMainWindow):
postInit = Event()
postClose = Event()
def __init__(self, settings, parent=None):
super(MikiWindow, self).__init__(parent)
self.tray = None
self.alwaysClose = False
self.setObjectName("mikiWindow")
self.settings = settings
self.notePath = settings.notePath
self.lockPath = os.path.join(settings.notebookPath, '.mikidown_lock')
print("Path: ", self.lockPath)
print("existst: ", os.path.exists(self.lockPath))
if not os.path.exists(self.lockPath):
self.lockPathFH = os.open(self.lockPath, os.O_CREAT | os.O_EXCL | os.O_RDWR)
self.notesTree = MikiTree(self)
self.quickNoteNav = QtWidgets.QLineEdit()
self.notesTab = QtWidgets.QWidget()
self.completer = SlashPleter()
self.completer.setModel(self.notesTree.model())
self.quickNoteNav.setCompleter(self.completer)
self.notesTree.setObjectName("notesTree")
self.initTree(self.notePath, self.notesTree)
self.notesTree.sortItems(0, Qt.AscendingOrder)
self.ix = None
self.setupWhoosh()
self.viewedList = QtWidgets.QToolBar(self.tr('Recently Viewed'), self)
self.viewedList.setIconSize(QtCore.QSize(16, 16))
self.viewedList.setToolButtonStyle(Qt.ToolButtonTextBesideIcon)
self.viewedListActions = []
self.noteSplitter = QtWidgets.QSplitter(Qt.Horizontal)
self.dockIndex = QtWidgets.QDockWidget(self.tr("Index"))
self.dockSearch = QtWidgets.QDockWidget(self.tr("Search"))
self.searchEdit = QtWidgets.QLineEdit()
self.searchView = MikiSearch(self)
self.searchTab = QtWidgets.QWidget()
self.dockToc = QtWidgets.QDockWidget(self.tr("TOC"))
self.tocTree = TocTree()
self.dockAttachment = QtWidgets.QDockWidget(self.tr("Attachment"))
self.attachmentView = AttachmentView(self)
self.notesEdit = MikiEdit(self)
self.notesEdit.setObjectName(self.tr("notesEdit"))
self.loadHighlighter()
self.notesView = MikiView(self)
self.findBar = QtWidgets.QToolBar(self.tr('Find'), self)
self.findBar.setFixedHeight(30)
self.findEdit = QtWidgets.QLineEdit(self.findBar)
self.checkBox = QtWidgets.QCheckBox(self.tr('Match case'), self.findBar)
self.statusBar = QtWidgets.QStatusBar(self)
self.statusLabel = QtWidgets.QLabel(self)
self.altPressed = False
self.actions = dict()
self.setupActions()
self.setupMainWindow()
if self.settings.version < __version__ or Mikibook.settings.value("version", defaultValue="0") < __version__:
self.changelogHelp()
self.settings.qsettings.setValue("version", __version__)
Mikibook.settings.setValue("version", __version__)
self.postInit(self)
def loadHighlighter(self):
fnt = Mikibook.settings.value('editorFont', defaultValue=None)
fntsize = Mikibook.settings.value('editorFontSize', type=int, defaultValue=12)
header_scales_font = Mikibook.settings.value('headerScaleFont', type=bool, defaultValue=True)
if fnt is not None:
self.notesEdit.setFontFamily(fnt)
self.notesEdit.setFontPointSize(fntsize)
h = MikiHighlighter(parent=self.notesEdit, scale_font_sizes=header_scales_font)
tw = Mikibook.settings.value('tabWidth', type=int, defaultValue=4)
qfm = QtGui.QFontMetrics(h.patterns[0][1].font())
self.notesEdit.setTabStopWidth(tw * qfm.width(' '))
def setupActions(self):
actTabIndex = self.act(self.tr('Switch to Index Tab'),
lambda: self.raiseDock(self.dockIndex), self.tr('Ctrl+Shift+I'))
actTabSearch = self.act(self.tr('Switch to Search Tab'),
lambda: self.raiseDock(self.dockSearch), self.tr('Ctrl+Shift+F'))
self.addAction(actTabIndex)
self.addAction(actTabSearch)
actionNewPage = self.act(self.tr('&New Page...'),
self.notesTree.newPage, QtGui.QKeySequence.New)
self.actions.update(newPage=actionNewPage)
actionNewSubpage = self.act(self.tr('New Sub&page...'),
self.notesTree.newSubpage, self.tr('Ctrl+Shift+N'))
self.actions.update(newSubpage=actionNewSubpage)
actionImportPage = self.act(self.tr('&Import Page...'), self.importPage)
self.actions.update(importPage=actionImportPage)
actionNBSettings = self.act(self.tr('Notebook Set&tings...'), self.notebookSettings)
self.actions.update(NBSettings=actionNBSettings)
actionNBTemplates = self.act(self.tr('Notebook Temp&lates...'), self.notebookTemplates)
self.actions.update(NBTemplates=actionNBTemplates)
actionMDSettings = self.act(self.tr('&Mikidown Settings...'), self.mikidownSettings)
self.actions.update(MDSettings=actionMDSettings)
actionOpenNotebook = self.act(self.tr('&Open Notebook...'),
self.openNotebook, QtGui.QKeySequence.Open)
self.actions.update(openNotebook=actionOpenNotebook)
actionReIndex = self.act(self.tr('Re-index'), self.reIndex)
self.actions.update(reIndex=actionReIndex)
actionSave = self.act(self.tr('&Save'),
self.saveCurrentNote, QtGui.QKeySequence.Save)
actionSave.setEnabled(False)
self.actions.update(save=actionSave)
actionSaveAs = self.act(self.tr('Save &As...'),
self.saveNoteAs, QtGui.QKeySequence.SaveAs)
self.actions.update(saveAs=actionSaveAs)
actionHtml = self.act(self.tr('to &HTML'), self.notesEdit.saveAsHtml)
self.actions.update(html=actionHtml)
actionPrint = self.act(self.tr('&Print'),
self.printNote, QtGui.QKeySequence.Print)
self.actions.update(print_=actionPrint)
actionRenamePage = self.act(self.tr('&Rename Page...'),
self.notesTree.renamePage, 'F2')
self.actions.update(renamePage=actionRenamePage)
actionDelPage = self.act(self.tr('&Delete Page'),
self.notesTree.delPageWrapper, QtGui.QKeySequence.Delete)
self.actions.update(delPage=actionDelPage)
actionQuit = self.act(self.tr('&Quit'), self.forceClose, QtGui.QKeySequence.Quit)
actionQuit.setMenuRole(QtWidgets.QAction.QuitRole)
self.actions.update(quit=actionQuit)
actionUndo = self.act(self.tr('&Undo'),
lambda: self.notesEdit.undo(), QtGui.QKeySequence.Undo)
actionUndo.setEnabled(False)
self.notesEdit.undoAvailable.connect(actionUndo.setEnabled)
self.actions.update(undo=actionUndo)
actionRedo = self.act(self.tr('&Redo'),
lambda: self.notesEdit.redo(), QtGui.QKeySequence.Redo)
actionRedo.setEnabled(False)
self.notesEdit.redoAvailable.connect(actionRedo.setEnabled)
self.actions.update(redo=actionRedo)
actionFindText = self.act(self.tr('&Find Text'),
self.findBar.setVisible, QtGui.QKeySequence.Find, True)
self.actions.update(findText=actionFindText)
actionFindRepl = self.act(self.tr('Find and Replace'),
FindReplaceDialog(self.notesEdit).open, QtGui.QKeySequence.Replace)
self.actions.update(findRepl=actionFindRepl)
actionFind = self.act(self.tr('Next'),
self.findText, QtGui.QKeySequence.FindNext)
self.actions.update(find=actionFind)
actionFindPrev = self.act(self.tr('Previous'),
lambda: self.findText(back=True), QtGui.QKeySequence.FindPrevious)
self.actions.update(findPrev=actionFindPrev)
actionSortLines = self.act(self.tr('&Sort Lines'), self.sortLines)
self.actions.update(sortLines=actionSortLines)
actionQuickNav = self.act(self.tr("&Quick Open Note"),
self.quickNoteNav.setFocus, self.tr('Ctrl+G'))
self.addAction(actionQuickNav)
actionInsertImage = self.act(self.tr('&Insert Attachment'),
self.notesEdit.insertAttachmentWrapper, self.tr('Ctrl+I'))
actionInsertImage.setEnabled(False)
self.actions.update(insertImage=actionInsertImage)
QtGui.QIcon.setThemeName(Mikibook.settings.value('iconTheme', QtGui.QIcon.themeName()))
actionEdit = self.act(self.tr('Edit'), self.edit, self.tr('Ctrl+E'),
True, QtGui.QIcon.fromTheme('document-edit'), self.tr('Edit mode (Ctrl+E)'))
self.actions.update(edit=actionEdit)
actionSplit = self.act(self.tr('Split'), self.liveView, self.tr('Ctrl+R'),
True, QtGui.QIcon.fromTheme('view-split-left-right'), self.tr('Split mode (Ctrl+R)'))
self.actions.update(split=actionSplit)
actionFlipEditAndView = self.act(self.tr('Flip Edit and View'),
self.flipEditAndView)
actionFlipEditAndView.setEnabled(False)
self.actions.update(flipEditAndView=actionFlipEditAndView)
actionReadme = self.act(self.tr('README'), self.readmeHelp)
self.actions.update(readme=actionReadme)
actionChangelog = self.act(self.tr('Changelog'), self.changelogHelp)
self.actions.update(changelog=actionChangelog)
actionAboutQt = self.act(self.tr('About Qt'), QtWidgets.qApp.aboutQt)
self.actions.update(aboutQt=actionAboutQt)
def setupMainWindow(self):
self.resize(800, 600)
screen = QtWidgets.QDesktopWidget().screenGeometry()
size = self.geometry()
self.move((
screen.width()-size.width())/2, (screen.height()-size.height())/2)
self.setWindowTitle(
'{} - {}'.format(self.settings.notebookName, __appname__))
self.viewedList.setFixedHeight(25)
self.noteSplitter.addWidget(self.notesEdit)
self.noteSplitter.addWidget(self.notesView)
mainSplitter = QtWidgets.QSplitter(Qt.Vertical)
mainSplitter.setChildrenCollapsible(False)
mainSplitter.addWidget(self.viewedList)
mainSplitter.addWidget(self.noteSplitter)
mainSplitter.addWidget(self.findBar)
self.setCentralWidget(mainSplitter)
self.searchEdit.returnPressed.connect(self.searchNote)
self.quickNoteNav.returnPressed.connect(self.openFuncWrapper)
searchLayout = QtWidgets.QVBoxLayout()
searchLayout.addWidget(self.searchEdit)
searchLayout.addWidget(self.searchView)
self.searchTab.setLayout(searchLayout)
indexLayout = QtWidgets.QVBoxLayout(self.notesTab)
indexLayout.addWidget(self.quickNoteNav)
indexLayout.addWidget(self.notesTree)
self.dockIndex.setObjectName("Index")
self.dockIndex.setWidget(self.notesTab)
self.dockSearch.setObjectName("Search")
self.dockSearch.setWidget(self.searchTab)
self.dockToc.setObjectName("TOC")
self.dockToc.setWidget(self.tocTree)
self.dockAttachment.setObjectName("Attachment")
self.dockAttachment.setWidget(self.attachmentView)
self.setDockOptions(QtWidgets.QMainWindow.VerticalTabs)
self.addDockWidget(Qt.LeftDockWidgetArea, self.dockIndex)
self.addDockWidget(Qt.LeftDockWidgetArea, self.dockSearch)
self.addDockWidget(Qt.LeftDockWidgetArea, self.dockToc)
self.addDockWidget(Qt.LeftDockWidgetArea, self.dockAttachment)
self.tabifyDockWidget(self.dockIndex, self.dockSearch)
self.tabifyDockWidget(self.dockSearch, self.dockToc)
self.tabifyDockWidget(self.dockToc, self.dockAttachment)
self.setTabPosition(Qt.LeftDockWidgetArea, QtWidgets.QTabWidget.North)
self.dockIndex.raise_()
menuBar = QtWidgets.QMenuBar(self)
self.setMenuBar(menuBar)
menuFile = menuBar.addMenu(self.tr('&File'))
menuEdit = menuBar.addMenu(self.tr('&Edit'))
menuView = menuBar.addMenu(self.tr('&View'))
menuHelp = menuBar.addMenu(self.tr('&Help'))
menuFile.addAction(self.actions['newPage'])
menuFile.addAction(self.actions['newSubpage'])
menuFile.addAction(self.actions['NBSettings'])
menuFile.addAction(self.actions['NBTemplates'])
menuFile.addAction(self.actions['MDSettings'])
menuFile.addAction(self.actions['importPage'])
menuFile.addAction(self.actions['openNotebook'])
menuFile.addAction(self.actions['reIndex'])
menuFile.addSeparator()
menuFile.addAction(self.actions['save'])
menuFile.addAction(self.actions['saveAs'])
menuFile.addAction(self.actions['print_'])
menuExport = menuFile.addMenu(self.tr('&Export'))
menuExport.addAction(self.actions['html'])
menuFile.addSeparator()
menuFile.addAction(self.actions['renamePage'])
menuFile.addAction(self.actions['delPage'])
menuFile.addSeparator()
menuFile.addAction(self.actions['quit'])
menuEdit.addAction(self.actions['undo'])
menuEdit.addAction(self.actions['redo'])
menuEdit.addAction(self.actions['findText'])
menuEdit.addAction(self.actions['findRepl'])
menuEdit.addSeparator()
menuEdit.addAction(self.actions['sortLines'])
menuEdit.addAction(self.actions['insertImage'])
menuView.addAction(self.actions['edit'])
menuView.addAction(self.actions['split'])
menuView.addAction(self.actions['flipEditAndView'])
menuShowHide = menuView.addMenu(self.tr('Show/Hide'))
menuShowHide.addAction(self.dockIndex.toggleViewAction())
menuShowHide.addAction(self.dockSearch.toggleViewAction())
menuShowHide.addAction(self.dockToc.toggleViewAction())
menuShowHide.addAction(self.dockAttachment.toggleViewAction())
menuHelp.addAction(self.actions['readme'])
menuHelp.addAction(self.actions['changelog'])
menuHelp.addAction(self.actions['aboutQt'])
toolBar = QtWidgets.QToolBar(self.tr("toolbar"), self)
toolBar.setObjectName("toolbar")
toolBar.setToolButtonStyle(Qt.ToolButtonTextBesideIcon)
self.addToolBar(Qt.TopToolBarArea, toolBar)
toolBar.addAction(self.actions['edit'])
toolBar.addAction(self.actions['split'])
self.findEdit.returnPressed.connect(self.findText)
self.findBar.addWidget(self.findEdit)
self.findBar.addWidget(self.checkBox)
self.findBar.addAction(self.actions['findPrev'])
self.findBar.addAction(self.actions['find'])
self.findBar.setVisible(False)
self.findBar.visibilityChanged.connect(self.findBarVisibilityChanged)
self.setStatusBar(self.statusBar)
self.statusBar.addWidget(self.statusLabel, 1)
self.notesTree.currentItemChanged.connect(
self.currentItemChangedWrapper)
self.notesTree.nvwCallback = self.newNoteDisplay
self.notesTree.nvwtCallback = self.newPlainTextNoteDisplay
self.tocTree.itemClicked.connect(self.tocNavigate)
self.notesEdit.textChanged.connect(self.noteEditted)
self.notesEdit.document(
).modificationChanged.connect(self.modificationChanged)
self.updateRecentViewedNotes()
notes = self.settings.recentViewedNotes()
if len(notes) != 0:
item = self.notesTree.pageToItem(notes[0])
self.notesTree.setCurrentItem(item)
def newNoteDisplay(self, item, anchor=None):
msn = MikiSepNote(self.settings, item.text(0), self.notesTree.itemToFile(item), plain_text=False, parent=self)
if anchor:
msn.note_view.page().mainFrame().scrollToAnchor(anchor)
msn.show()
def newPlainTextNoteDisplay(self, item, anchor=None):
msn = MikiSepNote(self.settings, item.text(0), self.notesTree.itemToFile(item), plain_text=True, parent=self)
if anchor:
item = msn.findItemByAnchor(anchor)[0]
msn.tocNavigate(item)
msn.show()
def openFuncWrapper(self):
self.openFunction(self.quickNoteNav.text())()
def setupWhoosh(self):
indexdir = self.settings.indexdir
try:
self.ix = open_dir(indexdir)
except:
QtCore.QDir().mkpath(indexdir)
self.ix = create_in(indexdir, self.settings.schema)
p = Thread(target=self.whoosh_index, args=())
p.start()
def restore(self):
if self.settings.geometry:
self.restoreGeometry(self.settings.geometry)
if self.settings.windowstate:
self.restoreState(self.settings.windowstate)
def initTree(self, notePath, parent):
if not QtCore.QDir(notePath).exists():
return
notebookDir = QtCore.QDir(notePath)
notesList = notebookDir.entryInfoList(['*.md', '*.mkd', '*.markdown'],
QtCore.QDir.NoFilter,
QtCore.QDir.Name|QtCore.QDir.IgnoreCase)
nl = [note.completeBaseName() for note in notesList]
noduplicate = list(set(nl))
for name in noduplicate:
item = QtWidgets.QTreeWidgetItem(parent, [name])
path = notePath + '/' + name
self.initTree(path, item)
def updateToc(self):
root = self.notesTree.currentPage()
strip_math_for_header_parsing = False
strip_fence_for_header_parsing = False
if 'asciimathml' in self.settings.extensions:
strip_math_for_header_parsing = True
if 'fenced_code' in self.settings.extensions or 'extra' in self.settings.extensions:
strip_fence_for_header_parsing = True
self.tocTree.updateToc(root, parseHeaders(self.notesEdit.toPlainText(),
strip_fenced_block=strip_fence_for_header_parsing,
strip_ascii_math=strip_math_for_header_parsing))
def updateAttachmentView(self):
item = self.notesTree.currentItem()
path = self.notesTree.itemToAttachmentDir(item)
self.attachmentView.model.setRootPath(path)
index = self.attachmentView.model.index(path)
self.attachmentView.setRootIndex(index)
def openFile(self, filename):
fh = QtCore.QFile(filename)
try:
if not fh.open(QtCore.QIODevice.ReadOnly):
raise IOError(fh.errorString())
except IOError as e:
QtWidgets.QMessageBox.warning(self, self.tr('Read Error'),
self.tr('Failed to open %s: %s') % (filename, e))
finally:
if fh is not None:
notestream = QtCore.QTextStream(fh)
notestream.setCodec("UTF-8")
noteBody = notestream.readAll()
fh.close()
self.notesEdit.setPlainText(noteBody)
self.notesView.scrollPosition = QtCore.QPoint(0, 0)
self.notesEdit.document().setModified(False)
self.notesView.updateView()
self.setCurrentNote()
self.updateRecentViewedNotes()
def currentItemChangedWrapper(self, current, previous):
if current is None:
return
prev = self.notesTree.itemToPage(previous)
if self.notesTree.pageExists(prev):
self.saveNote(previous)
currentFile = self.notesTree.itemToFile(current)
self.openFile(currentFile)
self.updateAttachmentView()
def tocNavigate(self, current):
if current is None:
return
pos = int(current.text(1))
link = "file://" + self.notePath + "/#" + current.text(2)
self.notesEdit.moveCursor(QtGui.QTextCursor.End)
cur = self.notesEdit.textCursor()
cur.setPosition(pos, QtGui.QTextCursor.MoveAnchor)
self.notesEdit.setTextCursor(cur)
self.notesView.load(QtCore.QUrl(link))
def switchNote(self, num):
if num < len(self.viewedListActions):
self.viewedListActions[num].trigger()
def saveCurrentNote(self):
item = self.notesTree.currentItem()
self.saveNote(item)
def saveNote(self, item):
if self.notesEdit.document().isModified():
self.notesEdit.document().setModified(False)
else:
return
self.notesEdit.save(item)
def saveNoteAs(self):
self.saveCurrentNote()
fileName = QtWidgets.QFileDialog.getSaveFileName(self, self.tr('Save as'), '',
'(*.md *.mkd *.markdown);;'+self.tr('All files(*)'))
if fileName == '':
return
if not QtCore.QFileInfo(fileName).suffix():
fileName += '.md'
fh = QtCore.QFile(fileName)
fh.open(QtCore.QIODevice.WriteOnly)
savestream = QtCore.QTextStream(fh)
savestream.setCodec("UTF-8")
savestream << self.notesEdit.toPlainText()
fh.close()
def printNote(self):
printer = QtPrintSupport.QPrinter(QtPrintSupport.QPrinter.HighResolution)
printer.setCreator(__appname__ + ' ' + __version__)
printer.setDocName(self.notesTree.currentItem().text(0))
printdialog = QtPrintSupport.QPrintDialog(printer, self)
if printdialog.exec() == QtWidgets.QDialog.Accepted:
self.notesView.print_(printer)
def noteEditted(self):
self.updateToc()
self.notesView.updateLiveView()
def modificationChanged(self, changed):
self.actions['save'].setEnabled(changed)
name = self.notesTree.currentPage()
self.statusBar.clearMessage()
if changed:
self.statusLabel.setText(name + '*')
else:
self.statusLabel.setText(name)
def importPage(self):
filename = QtWidgets.QFileDialog.getOpenFileName(
self, self.tr('Import file'), '',
'(*.md *.mkd *.markdown *.txt);;'+self.tr('All files(*)'))
if filename == '':
return
self.importPageCore(filename)
def importPageCore(self, filename):
fh = QtCore.QFile(filename)
fh.open(QtCore.QIODevice.ReadOnly)
filestream = QtCore.QTextStream(fh)
filestream.setCodec("UTF-8")
fileBody = filestream.readAll()
fh.close()
page = QtCore.QFileInfo(filename).completeBaseName()
fh = QtCore.QFile(self.notesTree.pageToFile(page))
if fh.exists():
QtWidgets.QMessageBox.warning(self, self.tr("Import Error"),
self.tr("Page already exists: %s") % page)
dialog = LineEditDialog(self.notePath, self)
if dialog.exec_():
page = dialog.editor.text()
fh.close()
fh = QtCore.QFile(self.notesTree.pageToFile(page))
else:
return
fh.open(QtCore.QIODevice.WriteOnly)
savestream = QtCore.QTextStream(fh)
savestream.setCodec("UTF-8")
savestream << fileBody
fh.close()
item = QtWidgets.QTreeWidgetItem(self.notesTree, [page])
self.notesTree.sortItems(0, Qt.AscendingOrder)
self.notesTree.setCurrentItem(item)
def openNotebook(self):
dialog = NotebookListDialog(self)
if dialog.exec_():
pass
def notebookSettings(self):
dialog = NotebookSettingsDialog(self)
if dialog.exec_():
pass
def notebookTemplates(self):
dialog = ManageTemplatesDialog(self.settings, parent=self)
if dialog.exec_():
pass
def mikidownSettings(self):
dialog = MikidownCfgDialog(self)
if dialog.exec_():
pass
def reIndex(self):
shutil.rmtree(self.settings.indexdir)
self.setupWhoosh()
def act(self, name, trig, shortcut=None, checkable=False,
icon=None, tooltip=None):
if icon:
action = QtWidgets.QAction(icon, name, self)
else:
action = QtWidgets.QAction(name, self)
if shortcut:
action.setShortcut(QtGui.QKeySequence(shortcut))
action.setCheckable(checkable)
if tooltip:
action.setToolTip(tooltip)
action.triggered.connect(trig)
return action
def edit(self, viewmode):
if self.actions['split'].isChecked():
self.actions['split'].setChecked(False)
self.notesView.setVisible(not viewmode)
self.notesEdit.setVisible(viewmode)
if viewmode:
self.notesEdit.setFocus()
else:
self.notesView.setFocus()
self.saveCurrentNote()
self.actions['insertImage'].setEnabled(viewmode)
self.notesView.updateView()
def liveView(self, viewmode):
self.actions['split'].setChecked(viewmode)
sizes = self.noteSplitter.sizes()
if self.actions['edit'].isChecked():
self.actions['edit'].setChecked(False)
self.notesView.setVisible(viewmode)
splitSize = [sizes[0]*0.45, sizes[0]*0.55]
else:
self.notesEdit.setVisible(viewmode)
splitSize = [sizes[1]*0.45, sizes[1]*0.55]
if viewmode:
self.notesEdit.setFocus()
else:
self.notesView.setFocus()
self.actions['flipEditAndView'].setEnabled(viewmode)
self.actions['insertImage'].setEnabled(viewmode)
self.noteSplitter.setSizes(splitSize)
self.saveCurrentNote()
self.notesView.updateView()
def findBarVisibilityChanged(self, visible):
self.actions['findText'].setChecked(visible)
if visible:
self.findEdit.setFocus(Qt.ShortcutFocusReason)
def findText(self, back=False):
flags = 0
if back:
flags = QtGui.QTextDocument.FindBackward
if self.checkBox.isChecked():
flags = flags | QtGui.QTextDocument.FindCaseSensitively
text = self.findEdit.text()
if not self.findMain(text, flags):
if text in self.notesEdit.toPlainText():
cursor = self.notesEdit.textCursor()
if back:
cursor.movePosition(QtGui.QTextCursor.End)
else:
cursor.movePosition(QtGui.QTextCursor.Start)
self.notesEdit.setTextCursor(cursor)
self.findMain(text, flags)
def findMain(self, text, flags):
viewFlags = QtWebKitWidgets.QWebPage.FindFlags(
flags) | QtWebKitWidgets.QWebPage.FindWrapsAroundDocument
if flags:
self.notesView.findText(text, viewFlags)
return self.notesEdit.find(text, flags)
else:
self.notesView.findText(text)
return self.notesEdit.find(text)
def sortLines(self):
cursor = self.notesEdit.textCursor()
start = cursor.selectionStart()
end = cursor.selectionEnd()
cursor.setPosition(start)
cursor.movePosition(QtGui.QTextCursor.StartOfLine)
cursor.setPosition(end, mode=QtGui.QTextCursor.KeepAnchor)
cursor.movePosition(QtGui.QTextCursor.EndOfLine, mode=QtGui.QTextCursor.KeepAnchor)
text = cursor.selectedText()
lines = text.split('\u2029')
sortedLines = sorted(lines)
cursor.insertText('\n'.join(sortedLines))
def notesEditInFocus(self, e):
if e.gotFocus:
self.actions['insertImage'].setEnabled(True)
def searchNote(self):
pattern = self.searchEdit.text()
if not pattern:
return
results = []
print("Searching using", pattern)
with self.ix.searcher() as searcher:
matches = []
queryp = QueryParser("content", self.ix.schema)
queryp.add_plugin(RegexPlugin(expr=r'r"(?P<text>[^"\\]*(\\.[^"\\]*)*)"'))
query = queryp.parse(pattern)
ms = searcher.search(query, limit=None)
for m in ms:
matches.append(m)
for r in matches:
title = r['title']
path = r['path']
term = r.highlights("content")
results.append([title, path, term])
html = ""
for title, path, hi in results:
html += ("<p><a href='" + path + "'>" + title +
"</a><br/><span class='path'>" +
path + "</span><br/>" + hi + "</p>")
self.searchView.setHtml(html)
print("Finished searching", pattern)
def whoosh_index(self):
it = QtWidgets.QTreeWidgetItemIterator(
self.notesTree, QtWidgets.QTreeWidgetItemIterator.All)
print("Starting complete indexing.")
writer = AsyncWriter(self.ix)
while it.value():
treeItem = it.value()
name = self.notesTree.itemToPage(treeItem)
path = os.path.join(self.notesTree.pageToFile(name)).replace(os.sep, '/')
print(path)
fileobj = open(path, 'r', encoding='utf-8')
content = fileobj.read()
fileobj.close()
if METADATA_CHECKER.match(content) and 'meta' in self.settings.extensions:
no_metadata_content = METADATA_CHECKER.sub("", content, count=1).lstrip()
self.settings.md.reset().convert(content)
writer.update_document(
path=name, title=parseTitle(content, name), content=no_metadata_content,
tags=','.join(self.settings.md.Meta.get('tags', [])).strip())
else:
writer.add_document(path=name, title=parseTitle(content, name), content=content, tags='')
it += 1
writer.commit()
print("Finished completely reindexing.")
def listItemChanged(self, row):
if row != -1:
item = self.searchList.currentItem().data(Qt.UserRole)
self.notesTree.setCurrentItem(item)
flags = QtWebKitWidgets.QWebPage.HighlightAllOccurrences
self.notesView.findText(self.searchEdit.text(), flags)
def setCurrentNote(self):
item = self.notesTree.currentItem()
name = self.notesTree.itemToPage(item)
notes = self.settings.recentViewedNotes()
for f in notes:
if f == name:
notes.remove(f)
notes.insert(0, name)
recent_notes_n = Mikibook.settings.value('recentNotesNumber',type=int, defaultValue=20)
if len(notes) > recent_notes_n:
del notes[recent_notes_n:]
self.settings.updateRecentViewedNotes(notes) | MIT License |
jobovy/galpy | galpy/util/leung_dop853.py | dense_output | python | def dense_output(t_current, t_old, h_current, rcont):
s = (t_current - t_old) / h_current
s1 = 1.0 - s
return rcont[0] + s * (rcont[1] + s1 * (
rcont[2] + s * (rcont[3] + s1 * (rcont[4] + s * (rcont[5] + s1 * (rcont[6] + s * rcont[7])))))) | Dense output function, basically extrapolatin | https://github.com/jobovy/galpy/blob/0470fa3e990f44319e9340497f669699d1bf1008/galpy/util/leung_dop853.py#L239-L248 | import numpy
c2 = 0.526001519587677318785587544488e-1
c3 = 0.789002279381515978178381316732e-1
c4 = 0.118350341907227396726757197510
c5 = 0.281649658092772603273242802490
c6 = 0.333333333333333333333333333333
c7 = 0.25
c8 = 0.307692307692307692307692307692
c9 = 0.651282051282051282051282051282
c10 = 0.6
c11 = 0.857142857142857142857142857142
c12 = 1
c13 = 1
c14 = 0.1
c15 = 0.2
c16 = 0.777777777777777777777777777778
a21 = 5.26001519587677318785587544488e-2
a31 = 1.97250569845378994544595329183e-2
a32 = 5.91751709536136983633785987549e-2
a41 = 2.95875854768068491816892993775e-2
a43 = 8.87627564304205475450678981324e-2
a51 = 2.41365134159266685502369798665e-1
a53 = -8.84549479328286085344864962717e-1
a54 = 9.24834003261792003115737966543e-1
a61 = 3.7037037037037037037037037037e-2
a64 = 1.70828608729473871279604482173e-1
a65 = 1.25467687566822425016691814123e-1
a71 = 3.7109375e-2
a74 = 1.70252211019544039314978060272e-1
a75 = 6.02165389804559606850219397283e-2
a76 = -1.7578125e-2
a81 = 3.70920001185047927108779319836e-2
a84 = 1.70383925712239993810214054705e-1
a85 = 1.07262030446373284651809199168e-1
a86 = -1.53194377486244017527936158236e-2
a87 = 8.27378916381402288758473766002e-3
a91 = 6.24110958716075717114429577812e-1
a94 = -3.36089262944694129406857109825e0
a95 = -8.68219346841726006818189891453e-1
a96 = 2.75920996994467083049415600797e1
a97 = 2.01540675504778934086186788979e1
a98 = -4.34898841810699588477366255144e1
a101 = 4.77662536438264365890433908527e-1
a104 = -2.48811461997166764192642586468e0
a105 = -5.90290826836842996371446475743e-1
a106 = 2.12300514481811942347288949897e1
a107 = 1.52792336328824235832596922938e1
a108 = -3.32882109689848629194453265587e1
a109 = -2.03312017085086261358222928593e-2
a111 = -9.3714243008598732571704021658e-1
a114 = 5.18637242884406370830023853209e0
a115 = 1.09143734899672957818500254654e0
a116 = -8.14978701074692612513997267357e0
a117 = -1.85200656599969598641566180701e1
a118 = 2.27394870993505042818970056734e1
a119 = 2.49360555267965238987089396762e0
a1110 = -3.0467644718982195003823669022e0
a121 = 2.27331014751653820792359768449e0
a124 = -1.05344954667372501984066689879e1
a125 = -2.00087205822486249909675718444e0
a126 = -1.79589318631187989172765950534e1
a127 = 2.79488845294199600508499808837e1
a128 = -2.85899827713502369474065508674e0
a129 = -8.87285693353062954433549289258e0
a1210 = 1.23605671757943030647266201528e1
a1211 = 6.43392746015763530355970484046e-1
a141 = 5.61675022830479523392909219681e-2
a147 = 2.53500210216624811088794765333e-1
a148 = -2.46239037470802489917441475441e-1
a149 = -1.24191423263816360469010140626e-1
a1410 = 1.5329179827876569731206322685e-1
a1411 = 8.20105229563468988491666602057e-3
a1412 = 7.56789766054569976138603589584e-3
a1413 = -8.298e-3
a151 = 3.18346481635021405060768473261e-2
a156 = 2.83009096723667755288322961402e-2
a157 = 5.35419883074385676223797384372e-2
a158 = -5.49237485713909884646569340306e-2
a1511 = -1.08347328697249322858509316994e-4
a1512 = 3.82571090835658412954920192323e-4
a1513 = -3.40465008687404560802977114492e-4
a1514 = 1.41312443674632500278074618366e-1
a161 = -4.28896301583791923408573538692e-1
a166 = -4.69762141536116384314449447206e0
a167 = 7.68342119606259904184240953878e0
a168 = 4.06898981839711007970213554331e0
a169 = 3.56727187455281109270669543021e-1
a1613 = -1.39902416515901462129418009734e-3
a1614 = 2.9475147891527723389556272149e0
a1615 = -9.15095847217987001081870187138e0
b1 = 5.42937341165687622380535766363e-2
b6 = 4.45031289275240888144113950566
b7 = 1.89151789931450038304281599044
b8 = -5.8012039600105847814672114227
b9 = 3.1116436695781989440891606237e-1
b10 = -1.52160949662516078556178806805e-1
b11 = 2.01365400804030348374776537501e-1
b12 = 4.47106157277725905176885569043e-2
bhh1 = 0.244094488188976377952755905512
bhh2 = 0.733846688281611857341361741547
bhh3 = 0.220588235294117647058823529412e-1
d41 = -0.84289382761090128651353491142e+1
d46 = 0.56671495351937776962531783590
d47 = -0.30689499459498916912797304727e+1
d48 = 0.23846676565120698287728149680e+1
d49 = 0.21170345824450282767155149946e+1
d410 = -0.87139158377797299206789907490
d411 = 0.22404374302607882758541771650e+1
d412 = 0.63157877876946881815570249290
d413 = -0.88990336451333310820698117400e-1
d414 = 0.18148505520854727256656404962e+2
d415 = -0.91946323924783554000451984436e+1
d416 = -0.44360363875948939664310572000e+1
d51 = 0.10427508642579134603413151009e+2
d56 = 0.24228349177525818288430175319e+3
d57 = 0.16520045171727028198505394887e+3
d58 = -0.37454675472269020279518312152e+3
d59 = -0.22113666853125306036270938578e+2
d510 = 0.77334326684722638389603898808e+1
d511 = -0.30674084731089398182061213626e+2
d512 = -0.93321305264302278729567221706e+1
d513 = 0.15697238121770843886131091075e+2
d514 = -0.31139403219565177677282850411e+2
d515 = -0.93529243588444783865713862664e+1
d516 = 0.35816841486394083752465898540e+2
d61 = 0.19985053242002433820987653617e+2
d66 = -0.38703730874935176555105901742e+3
d67 = -0.18917813819516756882830838328e+3
d68 = 0.52780815920542364900561016686e+3
d69 = -0.11573902539959630126141871134e+2
d610 = 0.68812326946963000169666922661e+1
d611 = -0.10006050966910838403183860980e+1
d612 = 0.77771377980534432092869265740
d613 = -0.27782057523535084065932004339e+1
d614 = -0.60196695231264120758267380846e+2
d615 = 0.84320405506677161018159903784e+2
d616 = 0.11992291136182789328035130030e+2
d71 = -0.25693933462703749003312586129e+2
d76 = -0.15418974869023643374053993627e+3
d77 = -0.23152937917604549567536039109e+3
d78 = 0.35763911791061412378285349910e+3
d79 = 0.93405324183624310003907691704e+2
d710 = -0.37458323136451633156875139351e+2
d711 = 0.10409964950896230045147246184e+3
d712 = 0.29840293426660503123344363579e+2
d713 = -0.43533456590011143754432175058e+2
d714 = 0.96324553959188282948394950600e+2
d715 = -0.39177261675615439165231486172e+2
d716 = -0.14972683625798562581422125276e+3
er1 = 0.1312004499419488073250102996e-1
er6 = -0.1225156446376204440720569753e+1
er7 = -0.4957589496572501915214079952
er8 = 0.1664377182454986536961530415e+1
er9 = -0.3503288487499736816886487290
er10 = 0.3341791187130174790297318841
er11 = 0.8192320648511571246570742613e-1
er12 = -0.2235530786388629525884427845e-1
unsigned_int_max = numpy.iinfo(numpy.int32).max
uround = numpy.finfo(numpy.float).eps
def custom_sign(a, b):
return numpy.fabs(a) if b > 0.0 else -numpy.fabs(a)
def hinit(func, x, t, pos_neg, f0, iord, hmax, rtol, atol, args):
sk = atol + rtol * numpy.fabs(x)
dnf = numpy.sum(numpy.square(f0 / sk), axis=0)
dny = numpy.sum(numpy.square(x / sk), axis=0)
h = numpy.sqrt(dny / dnf) * 0.01
h = numpy.min([h, numpy.fabs(hmax)])
h = custom_sign(h, pos_neg)
xx1 = x + h * f0
f1 = numpy.array(func(xx1, t[0] + h, *args))
der2 = numpy.sum(numpy.square((f1 - f0) / sk), axis=0)
der2 = numpy.sqrt(der2) / h
der12 = numpy.max([numpy.fabs(der2), numpy.sqrt(dnf)])
h1 = numpy.power(0.01 / der12, 1.0 / iord)
h = numpy.min([100.0 * numpy.fabs(h), numpy.min([numpy.fabs(h1), numpy.fabs(hmax)])])
return custom_sign(h, pos_neg), f0, f1, xx1 | BSD 3-Clause New or Revised License |
tensorflow/fold | tensorflow_fold/loom/loom.py | Weaver.named_tensor | python | def named_tensor(self, name):
return self._tensor_name_to_result[name] | Return a LoomResult which stands in for the named Tensor input. | https://github.com/tensorflow/fold/blob/0e7ca14832a14a5f2009d4e0424783a80e7d7a2c/tensorflow_fold/loom/loom.py#L929-L931 | from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import abc
import collections
import functools
import numbers
import re
import numpy as np
import six
from six.moves import xrange
import tensorflow as tf
from tensorflow_fold.loom import deserializing_weaver_op
from tensorflow_fold.loom import loom_pb2
from tensorflow_fold.loom import pywrapweaver
TENSOR_IDX_T = tf.int32
_TypeShape = collections.namedtuple('TypeShape', ['dtype', 'shape', 'tag'])
@functools.total_ordering
class TypeShape(_TypeShape):
def __new__(cls, dtype=None, shape=None, tag='', tensor=None):
if tensor is not None:
if dtype is not None:
raise TypeError('Specify only one of tensor and dtype.')
if shape is not None:
raise TypeError('Specify only one of tensor and shape.')
dtype = tensor.dtype
shape = tensor.get_shape().as_list()
elif not (isinstance(dtype, tf.DType) or
isinstance(dtype, six.string_types)):
raise TypeError('%r is not a tf.DType or string' % (dtype,))
dtype = tf.as_dtype(dtype).base_dtype.name
if not all(isinstance(s, numbers.Integral) and s >= 0 for s in shape):
raise TypeError('shape must be non-negative integers: %s' % shape)
shape = tuple(int(s) for s in shape)
if not isinstance(tag, six.string_types):
raise TypeError('A TypeShape tag must be a string; type of %r is %s' %
(tag, type(tag)))
return _TypeShape.__new__(cls, dtype, shape, tag)
@property
def dtype_enum(self):
return tf.as_dtype(self.dtype).as_datatype_enum
def tensor_flow_name(self):
tag = re.sub(r'\W+', '', self.tag)
if tag: tag = '_'+tag
return '%s_%s%s' % (self.dtype, '_'.join(str(x) for x in self.shape), tag)
def __str__(self):
return 'TypeShape{dtype:%s shape:%s tag:"%s"}' % (
self.dtype, self.shape, self.tag)
@six.add_metaclass(abc.ABCMeta)
class LoomOp(object):
def __init__(self, input_type_shapes, output_type_shapes):
if not input_type_shapes:
raise TypeError('Every LoomOp must have at least one input.')
if not output_type_shapes:
raise TypeError('Every LoomOp must have at least one output.')
if not all(isinstance(ts, TypeShape) for ts in input_type_shapes):
raise TypeError('All of input_type_shapes must be TypeShapes.')
if not all(isinstance(ts, TypeShape) for ts in output_type_shapes):
raise TypeError('All of output_type_shapes must be TypeShapes.')
self._input_type_shapes = input_type_shapes
self._output_type_shapes = output_type_shapes
@property
def input_type_shapes(self):
return self._input_type_shapes
@property
def output_type_shapes(self):
return self._output_type_shapes
@abc.abstractmethod
def instantiate_batch(self, inputs):
_ = inputs
raise NotImplementedError(
'LoomOp needs a definition for instantiate_batch.')
class PassThroughLoomOp(LoomOp):
def __init__(self, type_shape):
super(PassThroughLoomOp, self).__init__([type_shape], [type_shape])
def instantiate_batch(self, inputs):
return inputs
class Loom(object):
def __init__(self, max_depth=None, named_tensors=None, named_ops=None,
batch_inputs=None, extra_type_shapes=None, dry_run=False,
parallel_iterations=None, back_prop=None, swap_memory=None,
direct_feed_dict=False, loom_input_tensor=None, weaver_op=None):
if named_ops is None:
raise TypeError('named_ops is a mandatory argument.')
if max_depth is None: max_depth = -1
self._max_depth = max_depth
if named_tensors is None: named_tensors = {}
if batch_inputs is None: batch_inputs = {}
if parallel_iterations is None: parallel_iterations = 10
if back_prop is None: back_prop = True
if swap_memory is None: swap_memory = False
self._batch_inputs = batch_inputs
self._dry_run = dry_run
self._parallel_iterations = parallel_iterations
self._back_prop = back_prop
self._swap_memory = swap_memory
self._direct_feed_dict = direct_feed_dict
if direct_feed_dict:
if loom_input_tensor is not None:
raise TypeError(
'direct_feed_dict and loom_input_tensor are incompatible.')
if weaver_op is not None:
raise TypeError('direct_feed_dict and weaver_op are incompatible.')
if not direct_feed_dict:
if weaver_op is None:
if loom_input_tensor is None:
loom_input_tensor = tf.placeholder(
'string', name='LoomInput')
def weaver_from_input_tensor(**kwargs):
return deserializing_weaver_op.deserializing_weaver(
self._loom_input_tensor, **kwargs)
weaver_op = weaver_from_input_tensor
else:
if loom_input_tensor is not None:
raise TypeError('You can specify at most one of loom_input_tensor '
'or weaver_op.')
self._loom_input_tensor = loom_input_tensor
self._weaver_op = weaver_op
self._setup_type_shapes(named_ops, extra_type_shapes)
self._setup_named_tensors(named_tensors)
self._setup_loom_ops(named_ops)
self._setup_metadata()
self._setup_network()
def _setup_type_shapes(self, named_ops, extra_type_shapes):
type_shape_set = set()
for op in six.itervalues(named_ops):
type_shape_set.update(op.input_type_shapes)
type_shape_set.update(op.output_type_shapes)
if extra_type_shapes is not None:
type_shape_set.update(extra_type_shapes)
self._type_shapes = sorted(type_shape_set)
non_empty_tags = set()
for ts in self._type_shapes:
if ts.tag:
if ts.tag in non_empty_tags:
raise TypeError('Tags on tagged TypeShapes must be unique; '
'%s occured more than once.' % (ts.tag,))
else:
non_empty_tags.add(ts.tag)
self._type_shape_to_idx = {ts: idx for idx, ts in
enumerate(self._type_shapes)}
def _setup_named_tensors(self, named_tensors):
self._ts_idx_to_named_tensors = [[] for _ in self._type_shapes]
self._ts_idx_to_tensor_names = [[] for _ in self._type_shapes]
for name, tensor in sorted(six.iteritems(named_tensors)):
if isinstance(tensor, tuple):
tensor, tag = tensor
ts = TypeShape(tensor=tensor, tag=tag)
else:
ts = TypeShape(tensor=tensor)
ts_idx = self._type_shape_to_idx[ts]
self._ts_idx_to_named_tensors[ts_idx].append(tensor)
self._ts_idx_to_tensor_names[ts_idx].append(name)
def _pass_through_name(self, ts):
return '_pass_through_' + ts.tensor_flow_name()
def _setup_loom_ops(self, named_ops):
pass_through_ops = [PassThroughLoomOp(ts) for ts in self._type_shapes]
non_passthrough_op_names = sorted(six.iterkeys(named_ops))
self._loom_op_names = (
[self._pass_through_name(ts) for ts in self._type_shapes] +
non_passthrough_op_names)
self._loom_ops = (
pass_through_ops + [named_ops[k] for k in non_passthrough_op_names])
self._loom_total_args = sum(
len(op.input_type_shapes) for op in self._loom_ops)
self._loom_op_name_to_idx = {
name: idx for idx, name in enumerate(self._loom_op_names)}
def _setup_metadata(self):
loom_metadata = loom_pb2.LoomMetadata()
loom_metadata.max_depth = self._max_depth
for ts, tensor_names in zip(
self._type_shapes, self._ts_idx_to_tensor_names):
type_shape_metadata = loom_metadata.type_shape_metadata.add()
type_shape_metadata.dtype = ts.dtype_enum
type_shape_metadata.shape.extend(ts.shape)
type_shape_metadata.tag = ts.tag
type_shape_metadata.name = str(ts)
type_shape_metadata.tensor_names.extend(tensor_names)
type_shape_metadata.is_batch_input = (
(ts in self._batch_inputs) or self._direct_feed_dict)
for op_name, op in zip(self._loom_op_names, self._loom_ops):
op_metadata = loom_metadata.op_metadata.add()
op_metadata.name = op_name
op_metadata.input_ts_idx.extend(
self._type_shape_to_idx[ts] for ts in op.input_type_shapes)
op_metadata.output_ts_idx.extend(
self._type_shape_to_idx[ts] for ts in op.output_type_shapes)
self._loom_metadata_str = (
loom_metadata.SerializeToString())
def _setup_network(self):
if self._dry_run:
self._output = [tf.constant(np.zeros((1,)+ts.shape, dtype=ts.dtype))
for ts in self._type_shapes]
return
if self._direct_feed_dict:
self._arg_wiring_concat = tf.placeholder(
TENSOR_IDX_T, name='arg_wiring_concat')
self._arg_wiring_slice_starts = tf.placeholder(
TENSOR_IDX_T, name='arg_wiring_slice_starts')
self._arg_wiring_slice_sizes = tf.placeholder(
TENSOR_IDX_T, name='arg_wiring_slice_sizes')
self._output_wirings = [
tf.placeholder(TENSOR_IDX_T, name='output_wirings_%d' % ts_idx)
for ts_idx in xrange(len(self._type_shapes))]
self._constants = [
tf.placeholder(ts.dtype, name='constants_%d' % ts_idx)
for ts_idx, ts in enumerate(self._type_shapes)]
else:
(self._arg_wiring_concat,
self._arg_wiring_slice_starts,
self._arg_wiring_slice_sizes,
self._output_wirings,
self._constants) = self._weaver_op(
metadata=self._loom_metadata_str,
constant_types=[tf.as_dtype(ts.dtype) for ts in self._type_shapes],
num_type_shapes=len(self._type_shapes))
inputs = self._constants
for ts_idx, ts in enumerate(self._type_shapes):
if ts in self._batch_inputs:
inputs[ts_idx] = self._batch_inputs[ts]
state = []
for inputs_tensor, named_tensors in (
zip(inputs, self._ts_idx_to_named_tensors)):
if not named_tensors:
state.append(inputs_tensor)
else:
state.append(tf.concat([tf.stack(named_tensors), inputs_tensor], 0))
if self._max_depth == -1:
current_max_depth = (
tf.size(self._arg_wiring_slice_starts) // self._loom_total_args)
def loop_conditional(depth, *unused_state):
return tf.less_equal(depth, current_max_depth)
def loop_body(depth, *state):
new_depth = tf.add(depth, 1, name='increment_depth')
new_state = self._construct_loom_layer(depth, state)
return [new_depth] + new_state
initial_depth = tf.constant(1, name='initial_depth')
state = tf.while_loop(loop_conditional, loop_body,
[initial_depth] + state,
parallel_iterations=self._parallel_iterations,
back_prop=self._back_prop,
swap_memory=self._swap_memory)[1:]
else:
for depth in xrange(1, self._max_depth+1):
with tf.name_scope('loom_depth_%03d' % depth):
state = self._construct_loom_layer(depth, state)
with tf.name_scope('output_gathers'):
self._output = [
tf.gather(s, w, name=self._type_shapes[ts_idx].tensor_flow_name())
for ts_idx, (s, w) in enumerate(zip(state, self._output_wirings))]
for type_shape, output in zip(self._type_shapes, self._output):
output.set_shape((None,) + type_shape.shape)
def _construct_loom_layer(self, depth, state):
new_state_segments = [[] for _ in state]
start_wire_pos = (depth - 1) * self._loom_total_args
wire_pos_offset = 0
for op_idx, op in enumerate(self._loom_ops):
with tf.name_scope(self._loom_op_names[op_idx]):
arg_inputs = []
for arg_idx, arg_ts in enumerate(op.input_type_shapes):
with tf.name_scope('arg_%d' % arg_idx):
wire_pos = start_wire_pos + wire_pos_offset
wire_pos_offset += 1
slice_start = tf.slice(
self._arg_wiring_slice_starts, [wire_pos], [1])
slice_size = tf.slice(
self._arg_wiring_slice_sizes, [wire_pos], [1])
arg_wiring = tf.slice(
self._arg_wiring_concat, slice_start, slice_size)
arg_ts_idx = self._type_shape_to_idx[arg_ts]
arg_input = tf.gather(state[arg_ts_idx], arg_wiring)
arg_input.set_shape((None,) + arg_ts.shape)
arg_inputs.append(arg_input)
op_outputs = op.instantiate_batch(arg_inputs)
for output_idx, (output, output_ts) in enumerate(
zip(op_outputs, op.output_type_shapes)):
if not isinstance(output, tf.Tensor):
raise TypeError('Op %s returns non-Tensor output %r' %
(self._loom_op_names[op_idx], output))
try:
output.set_shape((None,) + output_ts.shape)
except ValueError as e:
raise ValueError('Op %s output %d: %s' % (
self._loom_op_names[op_idx], output_idx, e))
if output.dtype.base_dtype.name != output_ts.dtype:
raise ValueError('Op %s output %d: expected dtype %s got %s' % (
self._loom_op_names[op_idx], output_idx,
output_ts.dtype, output.dtype.base_dtype.name))
output_ts_idx = self._type_shape_to_idx[output_ts]
new_state_segments[output_ts_idx].append(output)
with tf.name_scope('concat'):
return [
tf.concat(
s, 0, name=self._type_shapes[ts_idx].tensor_flow_name())
for ts_idx, s in enumerate(new_state_segments)
]
def output_tensor(self, type_shape):
return self._output[self._type_shape_to_idx[type_shape]]
@property
def input_tensor(self):
if self._direct_feed_dict:
raise TypeError('This loom has direct_feed_dict set, '
'so it has no input tensor')
return self._loom_input_tensor
@property
def type_shapes(self):
return self._type_shapes
def make_weaver(self):
return Weaver(self)
def deserialize_weaver(self, serialized_weaver):
deserialized = self.make_weaver()
deserialized._deserialize(serialized_weaver)
return deserialized
class Weaver(object):
def __init__(self, loom):
if not isinstance(loom, Loom):
raise TypeError('A weaver must be passed a Loom on construction.')
self._loom = loom
self._weaver = pywrapweaver.Weaver(self._loom._loom_metadata_str)
if self._weaver.error_string():
raise AssertionError('Failed to create weaver: ',
self._weaver.error_string())
self._constants = [[] for _ in self._loom._type_shapes]
self._tensor_name_to_result = {}
for ts_idx, names in enumerate(self._loom._ts_idx_to_tensor_names):
for name_idx, name in enumerate(names):
named_tensor = self._weaver.GetNamedTensor(ts_idx, name_idx)
if named_tensor == -1:
raise AssertionError(
'Failed to GetNamedTensor in Weaver wrapper for %s error: %s.' %
(name, self._weaver.error_string()))
self._tensor_name_to_result[name] = named_tensor
for name, result in six.iteritems(self._tensor_name_to_result):
self._safe_set_attr(name, result)
for op_idx, op_name in enumerate(self._loom._loom_op_names):
self._safe_set_attr(op_name,
functools.partial(self._call_op_sugar, op_idx))
def _safe_set_attr(self, name, value):
if hasattr(self, name):
print('Warning: op or named tensor has the same name as a Weaver',
'attribute:', name)
else:
setattr(self, name, value)
def _call_op_sugar(self, op_idx, *args):
if not all(isinstance(a, six.integer_types) for a in args):
raise TypeError('All args passed to call_op must be integers '
'(LoomResult ids.) Did you forget to call constant?')
result = self._weaver.CallOp(op_idx, args)
if not result:
raise AssertionError('Weaver op call failed: %s' %
self._weaver.error_string())
if len(result) == 1:
return result[0]
return result
def _deserialize(self, weaver_message_str):
if not self._weaver.Deserialize(weaver_message_str):
raise AssertionError(
'Weaver Deserialization failed: %s' % self._weaver.error_string())
def serialize(self):
serialization = self._weaver.Serialize()
if not serialization:
raise AssertionError(
'Weaver Serialization failed: %s' % self._weaver.error_string())
return serialization
@property
def deepest(self):
return self._weaver.Deepest()
def depth(self, result):
depth = self._weaver.Depth(result)
if depth == -1:
raise AssertionError('Invalid LoomResult ID passed to depth.')
return depth
def get_type_shape(self, result):
ts_idx = self._weaver.GetTypeShape(result)
if ts_idx == -1:
raise AssertionError('Invalid LoomResult ID passed to get_type_shape.')
return self._loom._type_shapes[ts_idx] | Apache License 2.0 |
mpi4jax/mpi4jax | mpi4jax/_src/collective_ops/sendrecv.py | sendrecv | python | def sendrecv(
sendbuf,
recvbuf,
source,
dest,
*,
sendtag=0,
recvtag=_MPI.ANY_TAG,
comm=None,
status=None,
token=None,
):
if token is None:
token = create_token(sendbuf)
if comm is None:
comm = get_default_comm()
comm = wrap_as_hashable(comm)
if status is not None:
status = wrap_as_hashable(status)
return tuple(
mpi_sendrecv_p.bind(
sendbuf,
recvbuf,
token,
source=source,
dest=dest,
sendtag=sendtag,
recvtag=recvtag,
comm=comm,
status=status,
_must_transpose=False,
)
) | Perform a sendrecv operation.
.. warning::
Unlike mpi4py's sendrecv, this returns a *new* array with the received data.
Arguments:
sendbuf: Array or scalar input to send.
recvbuf: Array or scalar input with the correct shape and dtype. This can
contain arbitrary data and will not be overwritten.
source (int): Rank of the source MPI process.
dest (int): Rank of the destination MPI process.
sendtag (int): Tag of this message for sending.
recvtag (int): Tag of this message for receiving.
comm (mpi4py.MPI.Comm): The MPI communicator to use (defaults to
a clone of :obj:`COMM_WORLD`).
status (mpi4py.MPI.Status): Status object, can be used for introspection.
token (Token): XLA token to use to ensure correct execution order.
If not given, a new token is generated.
Returns:
Tuple[DeviceArray, Token]:
- Received data.
- A new, modified token, that depends on this operation. | https://github.com/mpi4jax/mpi4jax/blob/e3ed6f00a5552099f260c6b1f68588917461403b/mpi4jax/_src/collective_ops/sendrecv.py#L40-L102 | import numpy as _np
from mpi4py import MPI as _MPI
from jax import abstract_arrays, core
from jax.core import Primitive
from jax.interpreters import ad, xla, batching
from jax.lax import create_token
from jax.lib import xla_client
from ..utils import (
HashableMPIType,
default_primitive_impl,
to_dtype_handle,
to_mpi_handle,
to_mpi_ptr,
unpack_hashable,
wrap_as_hashable,
xla_constant_intc,
xla_constant_uintptr,
)
from ..decorators import translation_rule_cpu, translation_rule_gpu
from ..validation import enforce_types
from ..comm import get_default_comm
mpi_sendrecv_p = Primitive("sendrecv_mpi")
mpi_sendrecv_impl = default_primitive_impl(mpi_sendrecv_p)
@enforce_types(
source=_np.integer,
dest=_np.integer,
sendtag=_np.integer,
recvtag=_np.integer,
comm=(type(None), _MPI.Intracomm, HashableMPIType),
status=(type(None), _MPI.Status, HashableMPIType),
token=(type(None), xla.Token, core.Tracer),
) | MIT License |
netmanaiops/logclass | decorators.py | print_step | python | def print_step(func):
@functools.wraps(func)
def wrapper_print_name(*args, **kwargs):
print(f"Calling {func.__qualname__}")
value = func(*args, **kwargs)
return value
return wrapper_print_name | Print the function signature and return value | https://github.com/netmanaiops/logclass/blob/62c1c9c61294625bdb3d99dc01b6adc7b735c4ab/decorators.py#L19-L26 | import functools
def debug(func):
@functools.wraps(func)
def wrapper_debug(*args, **kwargs):
args_repr = [repr(a) for a in args]
kwargs_repr = [f"{k}={v!r}" for k, v in kwargs.items()]
signature = ", ".join(args_repr + kwargs_repr)
print(f"Calling {func.__name__}({signature})")
value = func(*args, **kwargs)
print(f"{func.__name__!r} returned {value!r}")
return value
return wrapper_debug | MIT License |
shunichi09/pythonlinearnonlinearcontrol | PythonLinearNonlinearControl/envs/cartpole.py | CartPoleEnv.step | python | def step(self, u):
if self.config["input_lower_bound"] is not None:
u = np.clip(u,
self.config["input_lower_bound"],
self.config["input_upper_bound"])
d_x0 = self.curr_x[1]
d_x1 = (u[0] + self.config["mp"] * np.sin(self.curr_x[2])
* (self.config["l"] * (self.curr_x[3]**2)
+ self.config["g"] * np.cos(self.curr_x[2]))) / (self.config["mc"] + self.config["mp"]
* (np.sin(self.curr_x[2])**2))
d_x2 = self.curr_x[3]
d_x3 = (-u[0] * np.cos(self.curr_x[2])
- self.config["mp"] * self.config["l"] * (self.curr_x[3]**2)
* np.cos(self.curr_x[2]) * np.sin(self.curr_x[2])
- (self.config["mc"] + self.config["mp"]) * self.config["g"]
* np.sin(self.curr_x[2])) / (self.config["l"] * (self.config["mc"] + self.config["mp"]
* (np.sin(self.curr_x[2])**2)))
next_x = self.curr_x + np.array([d_x0, d_x1, d_x2, d_x3]) * self.config["dt"]
costs = 0.
costs += 0.1 * np.sum(u**2)
costs += 6. * self.curr_x[0]**2 + 12. * (np.cos(self.curr_x[2]) + 1.)**2 + 0.1 * self.curr_x[1]**2 + 0.1 * self.curr_x[3]**2
self.history_x.append(next_x.flatten())
self.history_g_x.append(self.g_x.flatten())
self.curr_x = next_x.flatten().copy()
self.step_count += 1
return next_x.flatten(), costs, self.step_count > self.config["max_step"], {"goal_state": self.g_x} | step environments
Args:
u (numpy.ndarray) : input, shape(input_size, )
Returns:
next_x (numpy.ndarray): next state, shape(state_size, )
cost (float): costs
done (bool): end the simulation or not
info (dict): information | https://github.com/shunichi09/pythonlinearnonlinearcontrol/blob/eb0bf0c78251e372a9db9fa6a888583a11d0ee12/PythonLinearNonlinearControl/envs/cartpole.py#L60-L120 | import numpy as np
from matplotlib.axes import Axes
from .env import Env
from ..plotters.plot_objs import square
class CartPoleEnv(Env):
def __init__(self):
self.config = {"state_size": 4,
"input_size": 1,
"dt": 0.02,
"max_step": 500,
"input_lower_bound": [-3.],
"input_upper_bound": [3.],
"mp": 0.2,
"mc": 1.,
"l": 0.5,
"g": 9.81,
"cart_size": (0.15, 0.1),
}
super(CartPoleEnv, self).__init__(self.config)
def reset(self, init_x=None):
self.step_count = 0
theta = np.random.randn(1)
self.curr_x = np.array([0., 0., theta[0], 0.])
if init_x is not None:
self.curr_x = init_x
self.g_x = np.array([0., 0., -np.pi, 0.])
self.history_x = []
self.history_g_x = []
return self.curr_x, {"goal_state": self.g_x} | MIT License |
readthedocs/readthedocs.org | readthedocs/doc_builder/base.py | BaseBuilder.run | python | def run(self, *args, **kwargs):
return self.build_env.run(*args, **kwargs) | Proxy run to build environment. | https://github.com/readthedocs/readthedocs.org/blob/2cff8376f0ef8f25ae6d8763bdbec86f47e33ab9/readthedocs/doc_builder/base.py#L142-L144 | import logging
import os
import shutil
from functools import wraps
from readthedocs.projects.models import Feature
log = logging.getLogger(__name__)
def restoring_chdir(fn):
@wraps(fn)
def decorator(*args, **kw):
try:
path = os.getcwd()
return fn(*args, **kw)
finally:
os.chdir(path)
return decorator
class BaseBuilder:
_force = False
ignore_patterns = []
old_artifact_path = None
def __init__(self, build_env, python_env, force=False):
self.build_env = build_env
self.python_env = python_env
self.version = build_env.version
self.project = build_env.project
self.config = python_env.config if python_env else None
self._force = force
self.project_path = self.project.checkout_path(self.version.slug)
self.target = self.project.artifact_path(
version=self.version.slug,
type_=self.type,
)
def get_final_doctype(self):
return self.config.doctype
def force(self, **__):
log.info('Forcing a build')
self._force = True
def append_conf(self):
pass
def build(self):
raise NotImplementedError
def move(self, **__):
if os.path.exists(self.old_artifact_path):
if os.path.exists(self.target):
shutil.rmtree(self.target)
log.info('Copying %s on the local filesystem', self.type)
log.debug('Ignoring patterns %s', self.ignore_patterns)
shutil.copytree(
self.old_artifact_path,
self.target,
ignore=shutil.ignore_patterns(*self.ignore_patterns),
)
else:
log.warning('Not moving docs, because the build dir is unknown.')
def clean(self, **__):
if os.path.exists(self.old_artifact_path):
shutil.rmtree(self.old_artifact_path)
log.info('Removing old artifact path: %s', self.old_artifact_path)
def docs_dir(self, docs_dir=None, **__):
if docs_dir:
return docs_dir
for doc_dir_name in ['docs', 'doc', 'Doc', 'book']:
possible_path = os.path.join(self.project_path, doc_dir_name)
if os.path.exists(possible_path):
return possible_path
return self.project_path
def create_index(self, extension='md', **__):
docs_dir = self.docs_dir()
index_filename = os.path.join(
docs_dir,
'index.{ext}'.format(ext=extension),
)
if not os.path.exists(index_filename):
readme_filename = os.path.join(
docs_dir,
'README.{ext}'.format(ext=extension),
)
if os.path.exists(readme_filename):
return 'README'
if not self.project.has_feature(Feature.DONT_CREATE_INDEX):
index_text = """
Welcome to Read the Docs
------------------------
This is an autogenerated index file.
Please create an ``index.{ext}`` or ``README.{ext}`` file with your own content
under the root (or ``/docs``) directory in your repository.
If you want to use another markup, choose a different builder in your settings.
Check out our `Getting Started Guide
<https://docs.readthedocs.io/en/latest/getting_started.html>`_ to become more
familiar with Read the Docs.
"""
with open(index_filename, 'w+') as index_file:
index_file.write(index_text.format(dir=docs_dir, ext=extension))
return 'index' | MIT License |
ganeti/ganeti | lib/storage/container.py | _LvmBase._RunListCommand | python | def _RunListCommand(args):
result = utils.RunCmd(args)
if result.failed:
raise errors.StorageError("Failed to run %r, command output: %s" %
(args[0], result.output))
return result.stdout | Run LVM command. | https://github.com/ganeti/ganeti/blob/4d21019c72cba4d746f5d17ca22098f4c7682e9c/lib/storage/container.py#L314-L324 | import logging
from ganeti import errors
from ganeti import constants
from ganeti import utils
def _ParseSize(value):
return int(round(float(value), 0))
class _Base(object):
def List(self, name, fields):
raise NotImplementedError()
def Modify(self, name, changes):
if changes:
raise errors.ProgrammerError("Unable to modify the following"
"fields: %r" % (list(changes), ))
def Execute(self, name, op):
raise NotImplementedError()
class FileStorage(_Base):
def __init__(self, paths):
super(FileStorage, self).__init__()
self._paths = paths
def List(self, name, fields):
rows = []
if name is None:
paths = self._paths
else:
paths = [name]
for path in paths:
rows.append(self._ListInner(path, fields))
return rows
@staticmethod
def _ListInner(path, fields):
values = []
if constants.SF_USED in fields:
dirsize = utils.CalculateDirectorySize(path)
else:
dirsize = None
if constants.SF_FREE in fields or constants.SF_SIZE in fields:
fsstats = utils.GetFilesystemStats(path)
else:
fsstats = None
for field_name in fields:
if field_name == constants.SF_NAME:
values.append(path)
elif field_name == constants.SF_USED:
values.append(dirsize)
elif field_name == constants.SF_FREE:
values.append(fsstats[1])
elif field_name == constants.SF_SIZE:
values.append(fsstats[0])
elif field_name == constants.SF_ALLOCATABLE:
values.append(True)
else:
raise errors.StorageError("Unknown field: %r" % field_name)
return values
class _LvmBase(_Base):
LIST_SEP = "|"
LIST_COMMAND = None
LIST_FIELDS = None
def List(self, name, wanted_field_names):
lvm_fields = self._GetLvmFields(self.LIST_FIELDS, wanted_field_names)
cmd_args = self._BuildListCommand(self.LIST_COMMAND, self.LIST_SEP,
lvm_fields, name)
cmd_result = self._RunListCommand(cmd_args)
return self._BuildList(self._SplitList(cmd_result, self.LIST_SEP,
len(lvm_fields)),
self.LIST_FIELDS,
wanted_field_names,
lvm_fields)
@staticmethod
def _GetLvmFields(fields_def, wanted_field_names):
field_to_idx = dict([(field_name, idx)
for (idx, (field_name, _, _)) in
enumerate(fields_def)])
lvm_fields = []
for field_name in wanted_field_names:
try:
idx = field_to_idx[field_name]
except IndexError:
raise errors.StorageError("Unknown field: %r" % field_name)
(_, lvm_names, _) = fields_def[idx]
lvm_fields.extend(lvm_names)
return utils.UniqueSequence(lvm_fields)
@classmethod
def _BuildList(cls, cmd_result, fields_def, wanted_field_names, lvm_fields):
lvm_name_to_idx = dict([(lvm_name, idx)
for (idx, lvm_name) in enumerate(lvm_fields)])
field_to_idx = dict([(field_name, idx)
for (idx, (field_name, _, _)) in
enumerate(fields_def)])
data = []
for raw_data in cmd_result:
row = []
for field_name in wanted_field_names:
(_, lvm_names, mapper) = fields_def[field_to_idx[field_name]]
values = [raw_data[lvm_name_to_idx[i]] for i in lvm_names]
if callable(mapper):
val = mapper(*values)
elif len(values) == 1:
assert mapper is None, ("Invalid mapper value (neither callable"
" nor None) for one-element fields")
val = values[0]
else:
assert not values, "LVM storage has multi-fields without a function"
val = mapper
row.append(val)
data.append(row)
return data
@staticmethod
def _BuildListCommand(cmd, sep, options, name):
args = [cmd,
"--noheadings", "--units=m", "--nosuffix",
"--separator", sep,
"--options", ",".join(options)]
if name is not None:
args.append(name)
return args
@staticmethod | BSD 2-Clause Simplified License |
flapjax/flapjack-cogs | blizzard/blizzard.py | Blizzard.battletag | python | async def battletag(self, ctx):
pass | Change your battletag settings. | https://github.com/flapjax/flapjack-cogs/blob/8a1a20f86fec36f60899dbbf91f2f77eee191786/blizzard/blizzard.py#L199-L201 | import asyncio
import re
from copy import copy
from numbers import Number
import aiohttp
import bleach
import discord
from bs4 import BeautifulSoup
from redbot.core import Config, checks, commands
from discord.ext.commands import formatter
class Blizzard(commands.Cog):
default_global_settings = {
"notes_format": "paged",
"notes_timeout": 60
}
def __init__(self, bot: commands.Bot):
self.bot = bot
self.conf = Config.get_conf(self, identifier=62869734)
self.conf.register_global(
**self.default_global_settings
)
self.session = aiohttp.ClientSession()
self.base_url = 'https://us.battle.net/connect/en/app/'
self.product_url = '/patch-notes?productType='
self.wowtoken_url = 'http://wowtokenprices.com'
self.patch_urls = {
'hearthstone': 'https://us.battle.net/hearthstone/en/blog/',
'overwatch': 'https://playoverwatch.com/en-us/game/patch-notes/pc/',
'starcraft2': 'https://us.battle.net/sc2/en/game/patch-notes/',
'warcraft': 'https://us.battle.net/wow/en/game/patch-notes/',
'diablo3': 'https://us.battle.net/d3/en/game/patch-notes/',
'hots': 'https://us.battle.net/heroes/en/blog/'
}
self.header = {"User-Agent": "flapjackcogs/1.0"}
self.patch_header = {'User-Agent': 'Battle.net/1.0.8.4217'}
self.abbr = {
'hearthstone': 'wtcg',
'overwatch': 'Pro',
'starcraft2': 'sc2',
'warcraft': 'WoW',
'diablo3': 'd3',
'hots': 'heroes'
}
self.thumbs = {
'hearthstone': 'http://i.imgur.com/uK0AlGb.png',
'overwatch': 'https://i.imgur.com/YZ4w2ey.png',
'starcraft2': 'https://i.imgur.com/ErDVIMO.png',
'warcraft': 'https://i.imgur.com/nrGZdB7.png',
'diablo3': 'https://i.imgur.com/5WYDHHZ.png',
'hots': 'https://i.imgur.com/NSMkOsA.png'
}
self.emoji = {
"next": "\N{BLACK RIGHTWARDS ARROW}",
"back": "\N{LEFTWARDS BLACK ARROW}",
"no": "\N{CROSS MARK}"
}
self.expired_embed = discord.Embed(title="This menu has exipred due "
"to inactivity.")
def cog_unload(self):
self.bot.loop.create_task(self.session.close())
async def red_delete_data_for_user(self, **kwargs):
return
async def show_menu(self, ctx, message, messages, page):
if message:
await message.edit(content=messages[page])
return message
else:
return await ctx.send(messages[page])
async def _info_menu(self, ctx, messages, **kwargs):
page = kwargs.get("page", 0)
timeout = kwargs.get("timeout", 60)
emoji = kwargs.get("emoji", self.emoji)
message = kwargs.get("message", None)
choices = len(messages)
reactions_needed = True if message is None else False
message = await self.show_menu(ctx, message, messages, page)
if reactions_needed:
await message.add_reaction(str(emoji['back']))
await message.add_reaction(str(emoji['no']))
await message.add_reaction(str(emoji['next']))
def check(r, u):
return r.message.id == message.id and u == ctx.message.author
try:
(r, u) = await self.bot.wait_for('reaction_add', check=check, timeout=timeout)
except asyncio.TimeoutError:
return [None, message]
reacts = {v: k for k, v in emoji.items()}
react = reacts[r.emoji]
if react == "next":
page += 1
elif react == "back":
page -= 1
elif react == "no":
return ["no", message]
if page < 0:
page = choices - 1
if page == choices:
page = 0
try:
await message.remove_reaction(emoji[react], u)
except discord.errors.Forbidden:
await ctx.send('I require the "manage messages" permission '
'to make these menus work.')
return ["no", message]
return await self._info_menu(
ctx, messages,
page=page,
timeout=timeout,
emoji=emoji,
message=message)
def dictgrab(self, my_dict, *keys):
temp_dict = copy(my_dict)
for key in keys:
temp_dict = temp_dict.get(key)
if temp_dict is None:
return '-'
if isinstance(temp_dict, Number):
return str(round(temp_dict))
else:
return '-'
@commands.group(name="blizzard")
async def blizzard(self, ctx):
pass
@blizzard.command(name="apikey")
@checks.is_owner()
async def _apikey_blizzard(self, ctx, key: str):
await self.conf.apikey.set(key)
await ctx.send('API key set.')
@blizzard.command(name="noteformat")
@checks.is_owner()
async def _noteformat_blizzard(self, ctx, form: str):
accept = ['paged', 'full', 'embed']
if form in accept:
await self.conf.notes_format.set(form)
await ctx.send("Patch notes format set to `{}`.".format(form))
else:
await ctx.send("`{}` is not a valid format. Please choose "
"`{}`, `{}`, or `{}`.".format(form, accept[0],
accept[1], accept[2]))
@blizzard.command(name="notetimeout")
@checks.is_owner()
async def _notetimeout_blizzard(self, ctx, timeout: int):
min_max = (5, 3600)
if min_max[0] <= timeout <= min_max[1]:
await self.conf.notes_timeout.set(timeout)
await ctx.send("Timeout period set to `{} sec`.".format(timeout))
else:
await ctx.send("Please choose a duration between "
"{} and {} seconds.".format(min_max[0], min_max[1]))
@commands.group(name="battletag") | MIT License |
project-rig/nengo_spinnaker | nengo_spinnaker/operators/lif.py | EnsembleLIF.make_vertices | python | def make_vertices(self, model, n_steps):
params = model.params[self.ensemble]
self.regions = ens_regions = dict()
incoming = model.get_signals_to_object(self)
assert EnsembleInputPort.neurons not in incoming
incoming_modulatory = {port: signal
for (port, signal) in iteritems(incoming)
if isinstance(port, LearningRule)}
(ens_regions[Regions.input_filters],
ens_regions[Regions.input_routing]) = make_filter_regions(
incoming[InputPort.standard], model.dt, True,
model.keyspaces.filter_routing_tag,
width=self.ensemble.size_in
)
(ens_regions[Regions.inhibition_filters],
ens_regions[Regions.inhibition_routing]) = make_filter_regions(
incoming[EnsembleInputPort.global_inhibition], model.dt, True,
model.keyspaces.filter_routing_tag, width=1
)
outgoing = model.get_signals_from_object(self)
assert EnsembleOutputPort.neurons not in outgoing
if OutputPort.standard in outgoing:
decoders, output_keys = get_decoders_and_keys(outgoing[OutputPort.standard], True)
else:
decoders = np.array([])
output_keys = list()
size_out = decoders.shape[0]
ens_regions[Regions.decoders] = regions.MatrixRegion(
tp.np_to_fix(decoders / model.dt),
sliced_dimension=regions.MatrixPartitioning.rows)
ens_regions[Regions.keys] = regions.KeyspacesRegion(
output_keys,
fields=[regions.KeyField({'cluster': 'cluster'})],
partitioned_by_atom=True
)
encoders_with_gain = params.scaled_encoders
size_in = encoders_with_gain.shape[1]
ens_regions[Regions.filtered_activity] = FilteredActivityRegion(model.dt)
ens_regions[Regions.pes] = PESRegion(self.ensemble.n_neurons)
mod_filters = list()
mod_keyspace_routes = list()
learnt_decoders = np.array([])
learnt_output_keys = list()
for sig, t_params in outgoing[EnsembleOutputPort.learnt]:
l_rule = t_params.learning_rule
l_rule_type = t_params.learning_rule.learning_rule_type
if isinstance(l_rule_type, PES):
if l_rule in incoming_modulatory:
e = incoming_modulatory[l_rule]
error_filter_index = len(mod_filters)
decoder_start = learnt_decoders.shape[0]
rule_decoders, rule_output_keys = get_decoders_and_keys([(sig, t_params)], False)
if decoder_start == 0:
learnt_decoders = rule_decoders
else:
learnt_decoders = np.vstack(
(learnt_decoders, rule_decoders))
decoder_stop = learnt_decoders.shape[0]
learnt_output_keys.extend(rule_output_keys)
mod_filters, mod_keyspace_routes = add_filters(
mod_filters, mod_keyspace_routes, e, minimise=False)
activity_filter_index = -1
ens_regions[Regions.pes].learning_rules.append(
PESLearningRule(
learning_rate=l_rule_type.learning_rate / model.dt,
error_filter_index=error_filter_index,
decoder_start=decoder_start,
decoder_stop=decoder_stop,
activity_filter_index=activity_filter_index))
else:
raise ValueError(
"Ensemble %s has outgoing connection with PES "
"learning, but no corresponding modulatory "
"connection" % self.ensemble.label
)
else:
raise NotImplementedError(
"SpiNNaker does not support %s learning rule."
% l_rule_type
)
size_learnt_out = learnt_decoders.shape[0]
ens_regions[Regions.learnt_decoders] = regions.MatrixRegion(
tp.np_to_fix(learnt_decoders / model.dt),
sliced_dimension=regions.MatrixPartitioning.rows)
ens_regions[Regions.learnt_keys] = regions.KeyspacesRegion(
learnt_output_keys,
fields=[regions.KeyField({'cluster': 'cluster'})],
partitioned_by_atom=True
)
ens_regions[Regions.voja] = VojaRegion(1.0 / self.ensemble.radius)
learnt_encoder_filters = list()
learnt_encoder_routes = list()
for sig, t_params in incoming[EnsembleInputPort.learnt]:
l_rule = t_params.learning_rule
l_rule_type = t_params.learning_rule.learning_rule_type
if isinstance(l_rule_type, Voja):
if l_rule in incoming_modulatory:
l = incoming_modulatory[l_rule]
learn_sig_filter_index = len(mod_filters)
mod_filters, mod_keyspace_routes = add_filters(
mod_filters, mod_keyspace_routes, l, minimise=False)
else:
learn_sig_filter_index = -1
decoded_input_filter_index = len(learnt_encoder_filters)
encoder_offset = encoders_with_gain.shape[1]
base_encoders = encoders_with_gain[:, :self.ensemble.size_in]
encoders_with_gain = np.hstack((encoders_with_gain,
base_encoders))
learnt_encoder_filters, learnt_encoder_routes = add_filters(
learnt_encoder_filters, learnt_encoder_routes,
[(sig, t_params)], minimise=False)
activity_filter_index = -1
ens_regions[Regions.voja].learning_rules.append(
VojaLearningRule(
learning_rate=l_rule_type.learning_rate,
learning_signal_filter_index=learn_sig_filter_index,
encoder_offset=encoder_offset,
decoded_input_filter_index=decoded_input_filter_index,
activity_filter_index=activity_filter_index))
else:
raise NotImplementedError(
"SpiNNaker does not support %s learning rule."
% l_rule_type
)
ens_regions[Regions.encoders] = regions.MatrixRegion(
tp.np_to_fix(encoders_with_gain),
sliced_dimension=regions.MatrixPartitioning.rows)
tiled_direct_input = np.tile(
self.direct_input,
encoders_with_gain.shape[1] // self.ensemble.size_in)
bias_with_di = params.bias + np.dot(encoders_with_gain,
tiled_direct_input)
assert bias_with_di.ndim == 1
ens_regions[Regions.bias] = regions.MatrixRegion(
tp.np_to_fix(bias_with_di),
sliced_dimension=regions.MatrixPartitioning.rows)
ens_regions[Regions.gain] = regions.MatrixRegion(
tp.np_to_fix(params.gain),
sliced_dimension=regions.MatrixPartitioning.rows)
ens_regions[Regions.modulatory_filters] = FilterRegion(mod_filters, model.dt)
ens_regions[Regions.modulatory_routing] = FilterRoutingRegion(mod_keyspace_routes,
model.keyspaces.filter_routing_tag)
ens_regions[Regions.learnt_encoder_filters] = FilterRegion(learnt_encoder_filters, model.dt)
ens_regions[Regions.learnt_encoder_routing] = FilterRoutingRegion(learnt_encoder_routes,
model.keyspaces.filter_routing_tag)
ens_regions[Regions.population_length] = regions.ListRegion("I")
n_learnt_input_signals = len(learnt_encoder_filters)
ens_regions[Regions.ensemble] = EnsembleRegion(
model.machine_timestep, self.ensemble.size_in,
encoders_with_gain.shape[1], n_learnt_input_signals)
ens_regions[Regions.neuron] = LIFRegion(
model.dt, self.ensemble.neuron_type.tau_rc,
self.ensemble.neuron_type.tau_ref
)
n_profiler_samples = 0
self.profiled = getconfig(model.config, self.ensemble, "profile",
False)
if self.profiled:
n_profiler_samples = getconfig(model.config, self.ensemble,
"profile_num_samples")
if n_profiler_samples is None:
n_profiler_samples = (len(EnsembleSlice.profiler_tag_names) *
n_steps * 2)
ens_regions[Regions.profiler] = regions.Profiler(n_profiler_samples)
ens_regions[Regions.ensemble].n_profiler_samples = n_profiler_samples
for probe in self.local_probes:
if probe.attr in ("output", "spikes"):
self.record_spikes = True
elif probe.attr == "voltage":
self.record_voltages = True
elif probe.attr == "scaled_encoders":
self.record_encoders = True
else:
raise NotImplementedError(
"Cannot probe {} on Ensembles".format(probe.attr)
)
ens_regions[Regions.ensemble].record_spikes = self.record_spikes
ens_regions[Regions.ensemble].record_voltages = self.record_voltages
ens_regions[Regions.ensemble].record_encoders = self.record_encoders
self.learnt_enc_dims = (encoders_with_gain.shape[1] -
self.ensemble.size_in)
ens_regions[Regions.spike_recording] = regions.SpikeRecordingRegion(n_steps if self.record_spikes
else 0)
ens_regions[Regions.voltage_recording] = regions.VoltageRecordingRegion(n_steps if self.record_voltages
else 0)
ens_regions[Regions.encoder_recording] = regions.EncoderRecordingRegion(n_steps if self.record_encoders
else 0, self.learnt_enc_dims)
cycles = 200 * model.machine_timestep
cpu_constraint = partition.Constraint(cycles, 0.4)
dtcm_constraint = partition.Constraint(56*2**10, 0.75)
cluster_usage = ClusterResourceUsage(
size_in, size_out, size_learnt_out
)
partition_constraints = {dtcm_constraint: cluster_usage.dtcm_usage,
cpu_constraint: cluster_usage.cpu_usage}
self.clusters = list()
vertices = list()
constraints = list()
for sl in partition.partition(slice(0, self.ensemble.n_neurons),
partition_constraints):
cluster = EnsembleCluster(sl, self.ensemble.size_in,
encoders_with_gain.shape[1], size_out,
size_learnt_out, n_learnt_input_signals,
ens_regions)
self.clusters.append(cluster)
cluster_vertices = cluster.make_vertices(cycles)
vertices.extend(cluster_vertices)
constraints.append(SameChipConstraint(cluster_vertices))
return netlistspec(vertices, self.load_to_machine,
after_simulation_function=self.after_simulation,
constraints=constraints) | Construct the data which can be loaded into the memory of a
SpiNNaker machine. | https://github.com/project-rig/nengo_spinnaker/blob/8afde11ee265c070e7003f25d3c06f5138ec3b05/nengo_spinnaker/operators/lif.py#L86-L450 | import collections
import enum
import itertools
import math
from nengo.base import ObjView
from nengo.connection import LearningRule
from nengo.learning_rules import PES, Voja
import numpy as np
from rig.place_and_route import Cores, SDRAM
from rig.place_and_route.constraints import SameChipConstraint
from six import iteritems, itervalues
import struct
from nengo_spinnaker.builder.netlist import netlistspec
from nengo_spinnaker.builder.ports import (
EnsembleInputPort, EnsembleOutputPort, InputPort, OutputPort
)
from nengo_spinnaker.regions.filters import (FilterRegion, FilterRoutingRegion,
add_filters, make_filter_regions)
from nengo_spinnaker.regions.utils import Args
from .. import regions
from nengo_spinnaker.netlist import Vertex
from nengo_spinnaker import partition
from nengo_spinnaker.utils.application import get_application
from nengo_spinnaker.utils.config import getconfig
from nengo_spinnaker.utils import type_casts as tp
from nengo_spinnaker.utils import neurons as neuron_utils
class Regions(enum.IntEnum):
ensemble = 1
neuron = 2
encoders = 3
bias = 4
gain = 5
decoders = 6
learnt_decoders = 7
keys = 8
learnt_keys = 9
population_length = 10
input_filters = 11
input_routing = 12
inhibition_filters = 13
inhibition_routing = 14
modulatory_filters = 15
modulatory_routing = 16
learnt_encoder_filters = 17
learnt_encoder_routing = 18
pes = 19
voja = 20
filtered_activity = 21
profiler = 22
spike_recording = 23
voltage_recording = 24
encoder_recording = 25
RoutingRegions = (Regions.input_routing,
Regions.inhibition_routing,
Regions.modulatory_routing,
Regions.learnt_encoder_routing)
class EnsembleLIF(object):
def __init__(self, ensemble):
self.ensemble = ensemble
self.direct_input = np.zeros(ensemble.size_in)
self.local_probes = list()
self.profiled = False
self.record_spikes = False
self.record_voltages = False
self.record_encoders = False | MIT License |
neuralensemble/python-neo | neo/io/klustakwikio.py | FilenameParser.read_filenames | python | def read_filenames(self, typestring='fet'):
all_filenames = glob.glob(os.path.join(self.dirname, '*'))
d = {}
for v in all_filenames:
split_fn = os.path.split(v)[1]
m = glob.re.search((r'^(\w+)\.%s\.(\d+)$' % typestring), split_fn)
if m is not None:
if self.basename is None:
self.basename = m.group(1)
if self.basename == m.group(1):
tetn = int(m.group(2))
d[tetn] = v
return d | Returns filenames in the data directory matching the type.
Generally, `typestring` is one of the following:
'fet', 'clu', 'spk', 'res'
Returns a dict {group_number: filename}, e.g.:
{ 0: 'basename.fet.0',
1: 'basename.fet.1',
2: 'basename.fet.2'}
'basename' can be any string not containing whitespace.
Only filenames that begin with "basename.typestring." and end with
a sequence of digits are valid. The digits are converted to an integer
and used as the group number. | https://github.com/neuralensemble/python-neo/blob/889060c022a56b9c3122afee68cbd5d83e4abe78/neo/io/klustakwikio.py#L426-L464 | import glob
import logging
import os.path
import shutil
import numpy as np
try:
import matplotlib.mlab as mlab
except ImportError as err:
HAVE_MLAB = False
MLAB_ERR = err
else:
HAVE_MLAB = True
MLAB_ERR = None
from neo.io.baseio import BaseIO
from neo.core import Block, Segment, Group, SpikeTrain
class KlustaKwikIO(BaseIO):
is_readable = True
is_writable = True
supported_objects = [Block, SpikeTrain]
readable_objects = [Block]
writeable_objects = [Block]
has_header = False
is_streameable = False
read_params = {}
write_params = {}
name = 'KlustaKwik'
extensions = ['fet', 'clu', 'res', 'spk']
mode = 'file'
def __init__(self, filename, sampling_rate=30000.):
if not HAVE_MLAB:
raise MLAB_ERR
BaseIO.__init__(self)
self.filename, self.basename = os.path.split(os.path.abspath(filename))
self.sampling_rate = float(sampling_rate)
if not os.path.isdir(self.filename):
raise ValueError("filename must be a directory")
self._fp = FilenameParser(dirname=self.filename, basename=self.basename)
def read_block(self, lazy=False):
assert not lazy, 'Do not support lazy'
block = Block()
self._fetfiles = self._fp.read_filenames('fet')
self._clufiles = self._fp.read_filenames('clu')
if len(self._fetfiles) == 0:
return block
seg = Segment(name='seg0', index=0, file_origin=self.filename)
block.segments.append(seg)
self.spiketrains = dict()
for group in sorted(self._fetfiles.keys()):
fetfile = self._fetfiles[group]
spks, features = self._load_spike_times(fetfile)
if group in self._clufiles:
clufile = self._clufiles[group]
uids = self._load_unit_id(clufile)
else:
uids = np.zeros(spks.shape, dtype=np.int32)
if len(spks) != len(uids):
raise ValueError("lengths of fet and clu files are different")
unique_unit_ids = np.unique(uids)
for unit_id in sorted(unique_unit_ids):
u = Group(name=('unit %d from group %d' % (unit_id, group)),
index=unit_id, group=group)
st = SpikeTrain(
times=spks[uids == unit_id] / self.sampling_rate,
units='sec', t_start=0.0,
t_stop=spks.max() / self.sampling_rate,
name=('unit %d from group %d' % (unit_id, group)))
st.annotations['cluster'] = unit_id
st.annotations['group'] = group
if len(features) != 0:
st.annotations['waveform_features'] = features
u.add(st)
seg.spiketrains.append(st)
block.create_many_to_one_relationship()
return block
def _load_spike_times(self, fetfilename):
with open(fetfilename, mode='r') as f:
nbFeatures = int(f.readline().strip())
names = ['fet%d' % n for n in range(nbFeatures)]
names.append('spike_time')
data = np.recfromtxt(fetfilename, names=names, skip_header=1, delimiter=' ')
features = np.array([data['fet%d' % n] for n in range(nbFeatures)])
return data['spike_time'], features.transpose()
def _load_unit_id(self, clufilename):
with open(clufilename, mode='r') as f:
nbClusters = int(f.readline().strip())
cluster_names = f.readlines()
try:
cluster_ids = [int(name) for name in cluster_names]
except ValueError:
raise ValueError(
"Could not convert cluster name to integer in %s" % clufilename)
cluster_ids = np.array(cluster_ids, dtype=np.int32)
if len(np.unique(cluster_ids)) != nbClusters:
logging.warning("warning: I got %d clusters instead of %d in %s" % (
len(np.unique(cluster_ids)), nbClusters, clufilename))
return cluster_ids
def write_block(self, block):
if self.basename is None:
logging.warning("warning: no basename provided, using `basename`")
self.basename = 'basename'
self._make_all_file_handles(block)
self._group2features = {}
for seg in block.segments:
for st in seg.spiketrains:
group = self.st2group(st)
fetfilehandle = self._fetfilehandles[group]
clufilehandle = self._clufilehandles[group]
cluster = self.st2cluster(st)
try:
sr = st.annotations['sampling_rate']
except KeyError:
sr = self.sampling_rate
spike_times_in_samples = np.rint(
np.array(st) * sr).astype(np.int64)
try:
all_features = st.annotations['waveform_features']
except KeyError:
all_features = [
[] for _ in range(len(spike_times_in_samples))]
all_features = np.asarray(all_features)
if all_features.ndim != 2:
raise ValueError("waveform features should be 2d array")
try:
n_features = self._group2features[group]
except KeyError:
n_features = all_features.shape[1]
self._group2features[group] = n_features
fetfilehandle.write("%d\n" % n_features)
if n_features != all_features.shape[1]:
raise ValueError("inconsistent number of features: " +
"supposed to be %d but I got %d" %
(n_features, all_features.shape[1]))
for stt, features in zip(spike_times_in_samples, all_features):
for val in features:
fetfilehandle.write(str(val))
fetfilehandle.write(" ")
fetfilehandle.write("%d\n" % stt)
clufilehandle.write("%d\n" % cluster)
self._close_all_files()
def st2group(self, st):
try:
return st.annotations['group']
except KeyError:
return 0
def st2cluster(self, st):
try:
return st.annotations['cluster']
except KeyError:
return 0
def _make_all_file_handles(self, block):
group2clusters = {}
for seg in block.segments:
for st in seg.spiketrains:
group = self.st2group(st)
cluster = self.st2cluster(st)
if group in group2clusters:
if cluster not in group2clusters[group]:
group2clusters[group].append(cluster)
else:
group2clusters[group] = [cluster]
self._fetfilehandles, self._clufilehandles = {}, {}
for group, clusters in group2clusters.items():
self._new_group(group, nbClusters=len(clusters))
def _new_group(self, id_group, nbClusters):
fetfilename = os.path.join(self.filename,
self.basename + ('.fet.%d' % id_group))
clufilename = os.path.join(self.filename,
self.basename + ('.clu.%d' % id_group))
if os.path.exists(fetfilename):
shutil.copyfile(fetfilename, fetfilename + '~')
if os.path.exists(clufilename):
shutil.copyfile(clufilename, clufilename + '~')
self._fetfilehandles[id_group] = open(fetfilename, mode='w')
self._clufilehandles[id_group] = open(clufilename, mode='w')
self._clufilehandles[id_group].write("%d\n" % nbClusters)
def _close_all_files(self):
for val in self._fetfilehandles.values():
val.close()
for val in self._clufilehandles.values():
val.close()
class FilenameParser:
def __init__(self, dirname, basename=None):
self.dirname = os.path.normpath(dirname)
self.basename = basename
if not os.path.isdir(self.dirname):
raise ValueError("filename must be a directory") | BSD 3-Clause New or Revised License |
paddlepaddle/paddle | python/paddle/fluid/contrib/mixed_precision/fp16_utils.py | fp16_guard | python | def fp16_guard():
with framework.name_scope(prefix=_fp16_guard_pattern):
yield | As for the pure fp16 training, if users set `use_fp16_guard` to True,
only those ops created in the context manager `fp16_guard` will be
transformed as float16 type.
Examples:
.. code-block:: python
import numpy as np
import paddle
import paddle.nn.functional as F
paddle.enable_static()
data = paddle.static.data(name='X', shape=[None, 1, 28, 28], dtype='float32')
conv2d = paddle.static.nn.conv2d(input=data, num_filters=6, filter_size=3)
with paddle.static.amp.fp16_guard():
bn = paddle.static.nn.batch_norm(input=conv2d, act="relu")
pool = F.max_pool2d(bn, kernel_size=2, stride=2)
hidden = paddle.static.nn.fc(pool, size=10)
loss = paddle.mean(hidden) | https://github.com/paddlepaddle/paddle/blob/056b87414880e0520bb4560fc40d5b62db9c5175/python/paddle/fluid/contrib/mixed_precision/fp16_utils.py#L334-L357 | from __future__ import print_function
from ... import core
from ... import framework
from ... import layers
from ... import global_scope
from ...log_helper import get_logger
from ...wrapped_decorator import signature_safe_contextmanager
from .fp16_lists import AutoMixedPrecisionLists
import collections
import logging
import numpy as np
__all__ = ["fp16_guard", "cast_model_to_fp16", "cast_parameters_to_fp16"]
_logger = get_logger(
__name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')
_valid_types = [
core.VarDesc.VarType.LOD_TENSOR, core.VarDesc.VarType.SELECTED_ROWS,
core.VarDesc.VarType.LOD_TENSOR_ARRAY
]
_fp16_guard_pattern = "__use_fp16__"
def _rename_arg(op, old_name, new_name):
op_desc = op.desc
if isinstance(op_desc, tuple):
op_desc = op_desc[0]
op_desc._rename_input(old_name, new_name)
op_desc._rename_output(old_name, new_name)
def _rename_op_input(program, op_var_rename_map, origin_ops, keep_fp32_ops):
for block in program.blocks:
ops = block.ops
block_id = block.idx
for op in ops:
if op not in origin_ops or op in keep_fp32_ops:
continue
for name in op.input_arg_names:
if name in op_var_rename_map[block_id]:
op._rename_input(name, op_var_rename_map[block_id][name])
def _dtype_to_str(dtype):
if dtype == core.VarDesc.VarType.FP16:
return 'fp16'
else:
return 'fp32'
def _keep_fp32_input(op, in_name):
op_type = op.type
if op_type in ['batch_norm', 'layer_norm']:
return in_name != 'X'
if op_type == 'fused_bn_add_activation':
return in_name not in {'X', 'Z'}
if op_type == 'resnet_unit':
return in_name not in {'X', 'FilterX', 'Z', 'FilterZ'}
return False
def _keep_fp32_output(op, out_name):
op_type = op.type
if op_type in ['batch_norm', 'fused_bn_add_activation', 'layer_norm']:
return out_name != 'Y'
if op_type == 'resnet_unit':
return out_name not in {'Y', 'ConvX', 'ConvZ'}
return False
def _insert_cast_op(block, op, idx, src_dtype, dest_dtype):
num_cast_ops = 0
for in_name in op.input_names:
if src_dtype == core.VarDesc.VarType.FP32 and _keep_fp32_input(op,
in_name):
continue
for in_var_name in op.input(in_name):
in_var = block._find_var_recursive(in_var_name)
if in_var.type not in _valid_types or in_var.dtype == dest_dtype:
continue
if in_var.dtype == src_dtype:
cast_name = in_var.name + '.cast_' + _dtype_to_str(dest_dtype)
out_var = block.vars.get(cast_name)
if out_var is None or out_var.dtype != dest_dtype:
op_device = op.attr('op_device')
if src_dtype == core.VarDesc.VarType.FP32 and in_var.stop_gradient:
prev_op = None
if in_var.op is op:
prev_op = find_true_prev_op(block.ops, op,
in_var_name)
elif in_var.op is not None:
prev_op = in_var.op
prev_op_device = None
if prev_op is not None:
prev_op_device = prev_op.attr('op_device')
if prev_op_device is not None and 'all' in prev_op_device:
op_device = prev_op_device
out_var = block.create_var(
name=cast_name,
dtype=dest_dtype,
persistable=False,
stop_gradient=in_var.stop_gradient)
block._insert_op_without_sync(
idx,
type="cast",
inputs={"X": in_var},
outputs={"Out": out_var},
attrs={
"in_dtype": in_var.dtype,
"out_dtype": out_var.dtype,
"op_device": op_device
})
num_cast_ops += 1
_rename_arg(op, in_var.name, out_var.name)
else:
if op.has_attr('in_dtype'):
op._set_attr('in_dtype', dest_dtype)
if src_dtype == core.VarDesc.VarType.FP32 and dest_dtype == core.VarDesc.VarType.FP16:
for out_name in op.output_names:
if _keep_fp32_output(op, out_name):
continue
for out_var_name in op.output(out_name):
out_var = block.var(out_var_name)
if out_var.type not in _valid_types:
continue
if out_var.dtype == core.VarDesc.VarType.FP32:
out_var.desc.set_dtype(core.VarDesc.VarType.FP16)
if op.has_attr('out_dtype'):
op._set_attr('out_dtype', core.VarDesc.VarType.FP16)
return num_cast_ops
def _insert_cast_post_op(block, op, idx, src_dtype, dest_dtype, target_name,
op_var_rename_map):
num_cast_ops = 0
target_var = block.var(target_name)
if target_var.type not in _valid_types or target_var.dtype == dest_dtype:
return num_cast_ops
assert target_var.dtype == src_dtype, "The real dtype({}) is not equal to the src dtype({})".format(
_dtype_to_str(target_var.dtype), _dtype_to_str(src_dtype))
cast_name = target_var.name + '.cast_' + _dtype_to_str(dest_dtype)
cast_var = block.vars.get(cast_name)
if cast_var is None or cast_var.dtype != dest_dtype:
cast_var = block.create_var(
name=cast_name,
dtype=dest_dtype,
persistable=False,
stop_gradient=target_var.stop_gradient)
block._insert_op(
idx,
type="cast",
inputs={"X": target_var},
outputs={"Out": cast_var},
attrs={
"in_dtype": target_var.dtype,
"out_dtype": cast_var.dtype,
"op_device": op.attr("op_device")
})
num_cast_ops += 1
op_var_rename_map[block.idx][target_var.name] = cast_var.name
return num_cast_ops
def find_true_prev_op(ops, cur_op, var_name):
prev_op = []
for op in ops:
if op == cur_op:
break
for out_name in op.output_names:
for out_var_name in op.output(out_name):
if out_var_name == var_name:
prev_op.append(op)
if prev_op:
if not len(prev_op) == 1:
raise ValueError("There must be only one previous op "
"that outputs {0} variable".format(var_name))
else:
return prev_op[0]
return None
def find_true_post_op(ops, cur_op, var_name, search_all=False):
post_op = []
if search_all:
idx = -1
else:
for idx, op in enumerate(ops):
if op == cur_op:
break
for i in range(idx + 1, len(ops)):
op = ops[i]
for in_name in op.input_names:
for in_var_name in op.input(in_name):
if in_var_name == var_name:
post_op.append(op)
return post_op
def find_op_index(block_desc, cur_op_desc):
for idx in range(block_desc.op_size()):
if cur_op_desc == block_desc.op(idx):
return idx
return -1
def _is_in_black_varnames(op, amp_lists):
for in_name in op.input_arg_names:
if in_name in amp_lists.black_varnames:
return True
for out_name in op.output_arg_names:
if out_name in amp_lists.black_varnames:
return True
return False
def _need_keep_fp32(op, unsupported_op_list, use_fp16_guard):
if op.type in unsupported_op_list:
return True
in_out_arg_names = []
in_out_arg_names.extend(list(op.input_arg_names))
in_out_arg_names.extend(list(op.output_arg_names))
for name in in_out_arg_names:
if "learning_rate" in name:
return True
if use_fp16_guard:
if op.has_attr("op_namescope") and (_fp16_guard_pattern in op.attr("op_namescope")):
return False
else:
return True
else:
return False
@signature_safe_contextmanager | Apache License 2.0 |
mklan/nx-rom-market | lib/python3.5/enum.py | EnumMeta.__call__ | python | def __call__(cls, value, names=None, *, module=None, qualname=None, type=None, start=1):
if names is None:
return cls.__new__(cls, value)
return cls._create_(value, names, module=module, qualname=qualname, type=type, start=start) | Either returns an existing member, or creates a new enum class.
This method is used both when an enum class is given a value to match
to an enumeration member (i.e. Color(3)) and for the functional API
(i.e. Color = Enum('Color', names='red green blue')).
When used for the functional API:
`value` will be the name of the new class.
`names` should be either a string of white-space/comma delimited names
(values will start at `start`), or an iterator/mapping of name, value pairs.
`module` should be set to the module this class is being created in;
if it is not set, an attempt to find that module will be made, but if
it fails the class will not be picklable.
`qualname` should be set to the actual location this class can be found
at in its module; by default it is set to the global scope. If this is
not correct, unpickling will fail in some circumstances.
`type`, if set, will be mixed in as the first base class. | https://github.com/mklan/nx-rom-market/blob/33613d2177b63df9e0568038ffdf1dd91ad334d8/lib/python3.5/enum.py#L215-L243 | import sys
from collections import OrderedDict
from types import MappingProxyType, DynamicClassAttribute
__all__ = ['Enum', 'IntEnum', 'unique']
def _is_descriptor(obj):
return (
hasattr(obj, '__get__') or
hasattr(obj, '__set__') or
hasattr(obj, '__delete__'))
def _is_dunder(name):
return (name[:2] == name[-2:] == '__' and
name[2:3] != '_' and
name[-3:-2] != '_' and
len(name) > 4)
def _is_sunder(name):
return (name[0] == name[-1] == '_' and
name[1:2] != '_' and
name[-2:-1] != '_' and
len(name) > 2)
def _make_class_unpicklable(cls):
def _break_on_call_reduce(self, proto):
raise TypeError('%r cannot be pickled' % self)
cls.__reduce_ex__ = _break_on_call_reduce
cls.__module__ = '<unknown>'
class _EnumDict(dict):
def __init__(self):
super().__init__()
self._member_names = []
def __setitem__(self, key, value):
if _is_sunder(key):
raise ValueError('_names_ are reserved for future Enum use')
elif _is_dunder(key):
pass
elif key in self._member_names:
raise TypeError('Attempted to reuse key: %r' % key)
elif not _is_descriptor(value):
if key in self:
raise TypeError('Key already defined as: %r' % self[key])
self._member_names.append(key)
super().__setitem__(key, value)
Enum = None
class EnumMeta(type):
@classmethod
def __prepare__(metacls, cls, bases):
return _EnumDict()
def __new__(metacls, cls, bases, classdict):
member_type, first_enum = metacls._get_mixins_(bases)
__new__, save_new, use_args = metacls._find_new_(classdict, member_type,
first_enum)
members = {k: classdict[k] for k in classdict._member_names}
for name in classdict._member_names:
del classdict[name]
invalid_names = set(members) & {'mro', }
if invalid_names:
raise ValueError('Invalid enum member name: {0}'.format(
','.join(invalid_names)))
if '__doc__' not in classdict:
classdict['__doc__'] = 'An enumeration.'
enum_class = super().__new__(metacls, cls, bases, classdict)
enum_class._member_names_ = []
enum_class._member_map_ = OrderedDict()
enum_class._member_type_ = member_type
base_attributes = {a for b in enum_class.mro() for a in b.__dict__}
enum_class._value2member_map_ = {}
if '__reduce_ex__' not in classdict:
if member_type is not object:
methods = ('__getnewargs_ex__', '__getnewargs__',
'__reduce_ex__', '__reduce__')
if not any(m in member_type.__dict__ for m in methods):
_make_class_unpicklable(enum_class)
for member_name in classdict._member_names:
value = members[member_name]
if not isinstance(value, tuple):
args = (value, )
else:
args = value
if member_type is tuple:
args = (args, )
if not use_args:
enum_member = __new__(enum_class)
if not hasattr(enum_member, '_value_'):
enum_member._value_ = value
else:
enum_member = __new__(enum_class, *args)
if not hasattr(enum_member, '_value_'):
enum_member._value_ = member_type(*args)
value = enum_member._value_
enum_member._name_ = member_name
enum_member.__objclass__ = enum_class
enum_member.__init__(*args)
for name, canonical_member in enum_class._member_map_.items():
if canonical_member._value_ == enum_member._value_:
enum_member = canonical_member
break
else:
enum_class._member_names_.append(member_name)
if member_name not in base_attributes:
setattr(enum_class, member_name, enum_member)
enum_class._member_map_[member_name] = enum_member
try:
enum_class._value2member_map_[value] = enum_member
except TypeError:
pass
for name in ('__repr__', '__str__', '__format__', '__reduce_ex__'):
class_method = getattr(enum_class, name)
obj_method = getattr(member_type, name, None)
enum_method = getattr(first_enum, name, None)
if obj_method is not None and obj_method is class_method:
setattr(enum_class, name, enum_method)
if Enum is not None:
if save_new:
enum_class.__new_member__ = __new__
enum_class.__new__ = Enum.__new__
return enum_class
def __bool__(self):
return True | MIT License |
michaelaquilina/python-tools | lib/jedi/api/classes.py | Completion.description | python | def description(self):
if self._definition is None:
return ''
t = self.type
if t == 'statement' or t == 'import':
desc = self._definition.get_code()
else:
desc = '.'.join(unicode(p) for p in self._path())
line = '' if self.in_builtin_module else '@%s' % self.line
return '%s: %s%s' % (t, desc, line) | Provide a description of the completion object. | https://github.com/michaelaquilina/python-tools/blob/2fbee20f9ce286ba55050adafcea8bb43c0922b3/lib/jedi/api/classes.py#L421-L432 | import warnings
from itertools import chain
import re
from jedi._compatibility import unicode, use_metaclass
from jedi import settings
from jedi import common
from jedi.parser import tree
from jedi.evaluate.cache import memoize_default, CachedMetaClass
from jedi.evaluate import representation as er
from jedi.evaluate import iterable
from jedi.evaluate import imports
from jedi.evaluate import compiled
from jedi.api import keywords
from jedi.evaluate.finder import filter_definition_names
def defined_names(evaluator, scope):
dct = scope.names_dict
names = list(chain.from_iterable(dct.values()))
names = filter_definition_names(names, scope)
return [Definition(evaluator, d) for d in sorted(names, key=lambda s: s.start_pos)]
class BaseDefinition(object):
_mapping = {
'posixpath': 'os.path',
'riscospath': 'os.path',
'ntpath': 'os.path',
'os2emxpath': 'os.path',
'macpath': 'os.path',
'genericpath': 'os.path',
'posix': 'os',
'_io': 'io',
'_functools': 'functools',
'_sqlite3': 'sqlite3',
'__builtin__': '',
'builtins': '',
}
_tuple_mapping = dict((tuple(k.split('.')), v) for (k, v) in {
'argparse._ActionsContainer': 'argparse.ArgumentParser',
'_sre.SRE_Match': 're.MatchObject',
'_sre.SRE_Pattern': 're.RegexObject',
}.items())
def __init__(self, evaluator, name):
self._evaluator = evaluator
self._name = name
self._definition = evaluator.wrap(self._name.get_definition())
self.is_keyword = isinstance(self._definition, keywords.Keyword)
self._module = name.get_parent_until()
if self.in_builtin_module():
self.module_path = None
else:
self.module_path = self._module.path
@property
def name(self):
return unicode(self._name)
@property
def start_pos(self):
warnings.warn("Use line/column instead.", DeprecationWarning)
return self._name.start_pos
@property
def type(self):
stripped = self._definition
if isinstance(stripped, er.InstanceElement):
stripped = stripped.var
if isinstance(stripped, compiled.CompiledObject):
return stripped.api_type()
elif isinstance(stripped, iterable.Array):
return 'instance'
elif isinstance(stripped, tree.Import):
return 'import'
string = type(stripped).__name__.lower().replace('wrapper', '')
if string == 'exprstmt':
return 'statement'
else:
return string
def _path(self):
path = []
par = self._definition
while par is not None:
if isinstance(par, tree.Import):
path += imports.ImportWrapper(self._evaluator, self._name).import_path
break
try:
name = par.name
except AttributeError:
pass
else:
if isinstance(par, er.ModuleWrapper):
path[0:0] = par.py__name__().split('.')
break
else:
path.insert(0, unicode(name))
par = par.parent
return path
@property
def module_name(self):
return str(self._module.name)
def in_builtin_module(self):
return isinstance(self._module, compiled.CompiledObject)
@property
def line(self):
if self.in_builtin_module():
return None
return self._name.start_pos[0]
@property
def column(self):
if self.in_builtin_module():
return None
return self._name.start_pos[1]
def docstring(self, raw=False):
if raw:
return _Help(self._definition).raw()
else:
return _Help(self._definition).full()
@property
def doc(self):
warnings.warn("Use docstring() instead.", DeprecationWarning)
return self.docstring()
@property
def raw_doc(self):
warnings.warn("Use docstring() instead.", DeprecationWarning)
return self.docstring(raw=True)
@property
def description(self):
return unicode(self._name)
@property
def full_name(self):
path = [unicode(p) for p in self._path()]
if not path:
return None
with common.ignored(KeyError):
path[0] = self._mapping[path[0]]
for key, repl in self._tuple_mapping.items():
if tuple(path[:len(key)]) == key:
path = [repl] + path[len(key):]
return '.'.join(path if path[0] else path[1:])
def goto_assignments(self):
defs = self._evaluator.goto(self._name)
return [Definition(self._evaluator, d) for d in defs]
@memoize_default()
def _follow_statements_imports(self):
if self._definition.isinstance(tree.ExprStmt):
return self._evaluator.eval_statement(self._definition)
elif self._definition.isinstance(tree.Import):
return imports.ImportWrapper(self._evaluator, self._name).follow()
else:
return [self._definition]
@property
@memoize_default()
def params(self):
followed = self._follow_statements_imports()
if not followed or not hasattr(followed[0], 'py__call__'):
raise AttributeError()
followed = followed[0]
if followed.type == 'funcdef':
if isinstance(followed, er.InstanceElement):
params = followed.params[1:]
else:
params = followed.params
elif followed.isinstance(er.compiled.CompiledObject):
params = followed.params
else:
try:
sub = followed.get_subscope_by_name('__init__')
params = sub.params[1:]
except KeyError:
return []
return [_Param(self._evaluator, p.name) for p in params]
def parent(self):
scope = self._definition.get_parent_scope()
scope = self._evaluator.wrap(scope)
return Definition(self._evaluator, scope.name)
def __repr__(self):
return "<%s %s>" % (type(self).__name__, self.description)
class Completion(BaseDefinition):
def __init__(self, evaluator, name, needs_dot, like_name_length):
super(Completion, self).__init__(evaluator, name)
self._needs_dot = needs_dot
self._like_name_length = like_name_length
self._same_name_completions = []
def _complete(self, like_name):
dot = '.' if self._needs_dot else ''
append = ''
if settings.add_bracket_after_function and self.type == 'Function':
append = '('
if settings.add_dot_after_module:
if isinstance(self._definition, tree.Module):
append += '.'
if isinstance(self._definition, tree.Param):
append += '='
name = str(self._name)
if like_name:
name = name[self._like_name_length:]
return dot + name + append
@property
def complete(self):
return self._complete(True)
@property
def name_with_symbols(self):
return self._complete(False)
@property | MIT License |
tensorflow/transform | tensorflow_transform/graph_context.py | TFGraphContext.get_module_to_export | python | def get_module_to_export(cls) -> Optional[tf.Module]:
return cls._get_current_state().module_to_export | Retrieves the value of module_to_export.
None if called outside a TFGraphContext scope.
Returns:
A tf.Module object | https://github.com/tensorflow/transform/blob/6349d7f6d847cb8979f31b9b315981d79ffba3e5/tensorflow_transform/graph_context.py#L121-L129 | import os
import threading
from typing import Any, Dict, Optional
import tensorflow as tf
from tfx_bsl.types import tfx_namedtuple
class TFGraphContext:
class _State(
tfx_namedtuple.namedtuple('_State', [
'module_to_export',
'temp_dir',
'evaluated_replacements',
])):
@classmethod
def make_empty(cls):
return cls(*(None,) * len(cls._fields))
_TEMP_SUBDIR = 'analyzer_temporary_assets'
_thread_local = threading.local()
def __init__(self,
module_to_export: tf.Module,
temp_dir: Optional[str] = None,
evaluated_replacements: Optional[Dict[str, Any]] = None):
self._module_to_export = module_to_export
self._temp_dir = temp_dir
self._evaluated_replacements = evaluated_replacements
def __enter__(self):
assert getattr(self._thread_local, 'current_state', None) is None
self._thread_local.current_state = self._State(
module_to_export=self._module_to_export,
temp_dir=self._temp_dir,
evaluated_replacements=self._evaluated_replacements)
def __exit__(self, *exn_info):
self._thread_local.current_state = None
@property
def module_to_export(self):
return self._module_to_export
@classmethod
def _get_current_state(cls) -> 'TFGraphContext._State':
if hasattr(cls._thread_local, 'current_state'):
return cls._thread_local.current_state
return cls._State.make_empty()
@classmethod
def get_or_create_temp_dir(cls) -> Optional[str]:
current_state = cls._get_current_state()
if current_state.temp_dir is None:
return None
if not current_state.temp_dir:
raise ValueError('A temp dir was requested, but empty temp_dir was set. '
'Use the TFGraphContext context manager.')
result = os.path.join(current_state.temp_dir, cls._TEMP_SUBDIR)
tf.io.gfile.makedirs(result)
return result
@classmethod
def get_evaluated_replacements(cls) -> Optional[Dict[str, Any]]:
return cls._get_current_state().evaluated_replacements
@classmethod | Apache License 2.0 |
verashira/tspnet | fairseq/models/transformer_from_sign.py | TransformerEncoderSign.upgrade_state_dict_named | python | def upgrade_state_dict_named(self, state_dict, name):
if isinstance(self.embed_positions, SinusoidalPositionalEmbedding):
weights_key = '{}.embed_positions.weights'.format(name)
if weights_key in state_dict:
logger.info('deleting {0}'.format(weights_key))
del state_dict[weights_key]
state_dict['{}.embed_positions._float_tensor'.format(name)] = torch.FloatTensor(1)
for i in range(len(self.layers)):
self.layers[i].upgrade_state_dict_named(state_dict, "{}.layers.{}".format(name, i))
version_key = '{}.version'.format(name)
if utils.item(state_dict.get(version_key, torch.Tensor([1]))[0]) < 2:
self.layer_norm = None
self.normalize = False
state_dict[version_key] = torch.Tensor([1])
return state_dict | Upgrade a (possibly old) state dict for new versions of fairseq. | https://github.com/verashira/tspnet/blob/ee454165dcc61cdbbff19565364e2221727ed2b8/fairseq/models/transformer_from_sign.py#L434-L452 | from collections import namedtuple
import logging
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from fairseq import options, utils
from fairseq.models import (
FairseqEncoder,
FairseqIncrementalDecoder,
FairseqEncoderDecoderModel,
register_model,
register_model_architecture,
FairseqDecoder)
from fairseq.modules import (
AdaptiveSoftmax,
LayerNorm,
PositionalEmbedding,
SinusoidalPositionalEmbedding,
TransformerDecoderLayer,
TransformerEncoderLayer,
)
import random
DEFAULT_MAX_SOURCE_POSITIONS = 1024
DEFAULT_MAX_TARGET_POSITIONS = 1024
logger = logging.getLogger(__name__)
@register_model('transformer_sign')
class TransformerModel(FairseqEncoderDecoderModel):
@classmethod
def hub_models(cls):
def moses_subword(path):
return {
'path': path,
'tokenizer': 'moses',
'bpe': 'subword_nmt',
}
def moses_fastbpe(path):
return {
'path': path,
'tokenizer': 'moses',
'bpe': 'fastbpe',
}
return {
'transformer.wmt14.en-fr': moses_subword(
'https://dl.fbaipublicfiles.com/fairseq/models/wmt14.en-fr.joined-dict.transformer.tar.bz2'),
'transformer.wmt16.en-de': 'https://dl.fbaipublicfiles.com/fairseq/models/wmt16.en-de.joined-dict.transformer.tar.bz2',
'transformer.wmt18.en-de': moses_subword(
'https://dl.fbaipublicfiles.com/fairseq/models/wmt18.en-de.ensemble.tar.gz'),
'transformer.wmt19.en-de': moses_fastbpe(
'https://dl.fbaipublicfiles.com/fairseq/models/wmt19.en-de.joined-dict.ensemble.tar.gz'),
'transformer.wmt19.en-ru': moses_fastbpe(
'https://dl.fbaipublicfiles.com/fairseq/models/wmt19.en-ru.ensemble.tar.gz'),
'transformer.wmt19.de-en': moses_fastbpe(
'https://dl.fbaipublicfiles.com/fairseq/models/wmt19.de-en.joined-dict.ensemble.tar.gz'),
'transformer.wmt19.ru-en': moses_fastbpe(
'https://dl.fbaipublicfiles.com/fairseq/models/wmt19.ru-en.ensemble.tar.gz'),
'transformer.wmt19.en-de.single_model': moses_fastbpe(
'https://dl.fbaipublicfiles.com/fairseq/models/wmt19.en-de.joined-dict.single_model.tar.gz'),
'transformer.wmt19.en-ru.single_model': moses_fastbpe(
'https://dl.fbaipublicfiles.com/fairseq/models/wmt19.en-ru.single_model.tar.gz'),
'transformer.wmt19.de-en.single_model': moses_fastbpe(
'https://dl.fbaipublicfiles.com/fairseq/models/wmt19.de-en.joined-dict.single_model.tar.gz'),
'transformer.wmt19.ru-en.single_model': moses_fastbpe(
'https://dl.fbaipublicfiles.com/fairseq/models/wmt19.ru-en.single_model.tar.gz'),
}
def __init__(self, args, encoder, decoder):
super().__init__(encoder, decoder)
self.args = args
@staticmethod
def add_args(parser):
parser.add_argument('--activation-fn',
choices=utils.get_available_activation_fns(),
help='activation function to use')
parser.add_argument('--dropout', type=float, metavar='D',
help='dropout probability')
parser.add_argument('--attention-dropout', type=float, metavar='D',
help='dropout probability for attention weights')
parser.add_argument('--activation-dropout', '--relu-dropout', type=float, metavar='D',
help='dropout probability after activation in FFN.')
parser.add_argument('--encoder-embed-path', type=str, metavar='STR',
help='path to pre-trained encoder embedding')
parser.add_argument('--encoder-embed-dim', type=int, metavar='N',
help='encoder embedding dimension')
parser.add_argument('--encoder-ffn-embed-dim', type=int, metavar='N',
help='encoder embedding dimension for FFN')
parser.add_argument('--encoder-layers', type=int, metavar='N',
help='num encoder layers')
parser.add_argument('--encoder-attention-heads', type=int, metavar='N',
help='num encoder attention heads')
parser.add_argument('--encoder-normalize-before', action='store_true',
help='apply layernorm before each encoder block')
parser.add_argument('--encoder-learned-pos', action='store_true',
help='use learned positional embeddings in the encoder')
parser.add_argument('--decoder-embed-path', type=str, metavar='STR',
help='path to pre-trained decoder embedding')
parser.add_argument('--decoder-embed-dim', type=int, metavar='N',
help='decoder embedding dimension')
parser.add_argument('--decoder-ffn-embed-dim', type=int, metavar='N',
help='decoder embedding dimension for FFN')
parser.add_argument('--decoder-layers', type=int, metavar='N',
help='num decoder layers')
parser.add_argument('--decoder-attention-heads', type=int, metavar='N',
help='num decoder attention heads')
parser.add_argument('--decoder-learned-pos', action='store_true',
help='use learned positional embeddings in the decoder')
parser.add_argument('--decoder-normalize-before', action='store_true',
help='apply layernorm before each decoder block')
parser.add_argument('--share-decoder-input-output-embed', action='store_true',
help='share decoder input and output embeddings')
parser.add_argument('--share-all-embeddings', action='store_true',
help='share encoder, decoder and output embeddings'
' (requires shared dictionary and embed dim)')
parser.add_argument('--no-token-positional-embeddings', default=False, action='store_true',
help='if set, disables positional embeddings (outside self attention)')
parser.add_argument('--adaptive-softmax-cutoff', metavar='EXPR',
help='comma separated list of adaptive softmax cutoff points. '
'Must be used with adaptive_loss criterion'),
parser.add_argument('--adaptive-softmax-dropout', type=float, metavar='D',
help='sets adaptive softmax dropout for the tail projections')
parser.add_argument('--no-cross-attention', default=False, action='store_true',
help='do not perform cross-attention')
parser.add_argument('--cross-self-attention', default=False, action='store_true',
help='perform cross+self-attention')
parser.add_argument('--layer-wise-attention', default=False, action='store_true',
help='perform layer-wise attention (cross-attention or cross+self-attention)')
parser.add_argument('--encoder-layerdrop', type=float, metavar='D', default=0,
help='LayerDrop probability for encoder')
parser.add_argument('--decoder-layerdrop', type=float, metavar='D', default=0,
help='LayerDrop probability for decoder')
parser.add_argument('--encoder-layers-to-keep', default=None,
help='which layers to *keep* when pruning as a comma-separated list')
parser.add_argument('--decoder-layers-to-keep', default=None,
help='which layers to *keep* when pruning as a comma-separated list')
parser.add_argument('--layernorm-embedding', action='store_true',
help='add layernorm to embedding')
parser.add_argument('--no-scale-embedding', action='store_true',
help='if True, dont scale embeddings')
parser.add_argument('--src-embed-dim', type=int, metavar='N',
help='source input feature dimension')
parser.add_argument('--early-proj', action='store_true',
help='if True, apply a linear layer on the input embedding before feeding into encoder.')
@classmethod
def build_model(cls, args, task):
base_architecture(args)
if args.encoder_layers_to_keep:
args.encoder_layers = len(args.encoder_layers_to_keep.split(","))
if args.decoder_layers_to_keep:
args.decoder_layers = len(args.decoder_layers_to_keep.split(","))
if getattr(args, 'max_source_positions', None) is None:
args.max_source_positions = DEFAULT_MAX_SOURCE_POSITIONS
if getattr(args, 'max_target_positions', None) is None:
args.max_target_positions = DEFAULT_MAX_TARGET_POSITIONS
tgt_dict = task.target_dictionary
def build_embedding(dictionary, embed_dim, path=None):
num_embeddings = len(dictionary)
padding_idx = dictionary.pad()
emb = Embedding(num_embeddings, embed_dim, padding_idx)
if path:
embed_dict = utils.parse_embedding(path)
utils.load_embedding(embed_dict, dictionary, emb)
logging.info('Loaded pretrained embeddings from {}'.format(path))
return emb
decoder_embed_tokens = build_embedding(
tgt_dict, args.decoder_embed_dim, args.decoder_embed_path
)
encoder = cls.build_encoder(args)
decoder = cls.build_decoder(args, tgt_dict, decoder_embed_tokens)
return cls(args, encoder, decoder)
@classmethod
def build_encoder(cls, args):
return TransformerEncoderSign(args)
@classmethod
def build_decoder(cls, args, tgt_dict, embed_tokens):
return TransformerDecoder(
args,
tgt_dict,
embed_tokens,
no_encoder_attn=getattr(args, 'no_cross_attention', False),
)
EncoderOut = namedtuple('TransformerEncoderOut', [
'encoder_out',
'encoder_padding_mask',
'encoder_embedding',
'encoder_states',
])
class TransformerEncoderSign(FairseqEncoder):
def __init__(self, args):
super().__init__(dict())
self.register_buffer('version', torch.Tensor([3]))
self.dropout = args.dropout
self.encoder_layerdrop = args.encoder_layerdrop
embed_dim = args.encoder_embed_dim
self.max_source_positions = args.max_source_positions
self.embed_scale = 1.0 if args.no_scale_embedding else math.sqrt(embed_dim)
self.embed_positions = PositionalEmbedding(
args.max_source_positions, embed_dim, padding_idx=0,
learned=args.encoder_learned_pos,
) if not args.no_token_positional_embeddings else None
self.layer_wise_attention = getattr(args, 'layer_wise_attention', False)
self.early_proj = args.early_proj
if self.early_proj:
self.inp_fc = Linear(args.src_embed_dim, embed_dim)
self.layers = nn.ModuleList([])
self.layers.extend([
TransformerEncoderLayer(args)
for i in range(args.encoder_layers)
])
if args.encoder_normalize_before:
self.layer_norm = LayerNorm(embed_dim)
else:
self.layer_norm = None
if getattr(args, 'layernorm_embedding', False):
self.layernorm_embedding = LayerNorm(embed_dim)
else:
self.layernorm_embedding = None
def forward_embedding(self, src_embed, pseudo_src_tokens):
x = embed = self.embed_scale * src_embed
if self.embed_positions is not None:
x = embed + self.embed_positions(pseudo_src_tokens)
if self.layernorm_embedding:
x = self.layernorm_embedding(x)
x = F.dropout(x, p=self.dropout, training=self.training)
return x, embed
def forward(self, src_tokens, src_lengths, cls_input=None, return_all_hiddens=False, **kwargs):
if self.layer_wise_attention:
return_all_hiddens = True
if self.early_proj:
src_tokens = self.inp_fc(src_tokens)
encoder_padding_mask = kwargs['encoder_padding_mask']
A = kwargs['adjacent_matrix']
As = kwargs['candidate_matrices']
encoder_states = [] if return_all_hiddens else None
x_lvls, encoder_padding_mask_lvls = [], []
for src_token_lv, encoder_padding_mask_lv in zip(src_tokens, encoder_padding_mask):
pseudo_src_tokens_lv = 1 - encoder_padding_mask_lv.int()
x_lv, encoder_embedding_lv = self.forward_embedding(src_embed=src_token_lv, pseudo_src_tokens=pseudo_src_tokens_lv)
x_lvls.append(x_lv)
encoder_padding_mask_lvls.append(encoder_padding_mask_lv)
x = torch.cat(x_lvls, dim=1)
x = x.transpose(0, 1)
encoder_padding_mask = torch.cat(encoder_padding_mask_lvls, dim=1)
reverse_link = 1 - A
for layer in self.layers:
dropout_probability = random.uniform(0, 1)
if not self.training or (dropout_probability > self.encoder_layerdrop):
x = layer(x,
encoder_padding_mask=encoder_padding_mask,
attn_mask=reverse_link,
)
if return_all_hiddens:
encoder_states.append(x)
x = x[:src_tokens[0].shape[1]]
encoder_embedding = x.transpose(0, 1)
encoder_padding_mask = encoder_padding_mask_lvls[0]
if self.layer_norm:
x = self.layer_norm(x)
if return_all_hiddens:
encoder_states[-1] = x
return EncoderOut(
encoder_out=x,
encoder_padding_mask=encoder_padding_mask,
encoder_embedding=encoder_embedding,
encoder_states=encoder_states,
)
def reorder_encoder_out(self, encoder_out, new_order):
if encoder_out.encoder_out is not None:
encoder_out = encoder_out._replace(
encoder_out=encoder_out.encoder_out.index_select(1, new_order)
)
if encoder_out.encoder_padding_mask is not None:
encoder_out = encoder_out._replace(
encoder_padding_mask=encoder_out.encoder_padding_mask.index_select(0, new_order)
)
if encoder_out.encoder_embedding is not None:
encoder_out = encoder_out._replace(
encoder_embedding=encoder_out.encoder_embedding.index_select(0, new_order)
)
if encoder_out.encoder_states is not None:
for idx, state in enumerate(encoder_out.encoder_states):
encoder_out.encoder_states[idx] = state.index_select(1, new_order)
return encoder_out
def max_positions(self):
if self.embed_positions is None:
return self.max_source_positions
return min(self.max_source_positions, self.embed_positions.max_positions)
def buffered_future_mask(self, tensor):
dim = tensor.size(0)
if not hasattr(self, '_future_mask') or self._future_mask is None or self._future_mask.device != tensor.device:
self._future_mask = torch.triu(utils.fill_with_neg_inf(tensor.new(dim, dim)), 1)
if self._future_mask.size(0) < dim:
self._future_mask = torch.triu(utils.fill_with_neg_inf(self._future_mask.resize_(dim, dim)), 1)
return self._future_mask[:dim, :dim] | MIT License |
drexly/openhgsenti | lib/django/contrib/gis/gdal/prototypes/geom.py | pnt_func | python | def pnt_func(f):
return double_output(f, [c_void_p, c_int]) | For accessing point information. | https://github.com/drexly/openhgsenti/blob/d7806f58c81127d32091d9875a99ac13aef94a8a/lib/django/contrib/gis/gdal/prototypes/geom.py#L21-L23 | from ctypes import POINTER, c_char_p, c_double, c_int, c_void_p
from django.contrib.gis.gdal.envelope import OGREnvelope
from django.contrib.gis.gdal.libgdal import lgdal
from django.contrib.gis.gdal.prototypes.errcheck import check_envelope
from django.contrib.gis.gdal.prototypes.generation import (
const_string_output, double_output, geom_output, int_output, srs_output,
string_output, void_output,
)
def env_func(f, argtypes):
f.argtypes = argtypes
f.restype = None
f.errcheck = check_envelope
return f | Apache License 2.0 |
swd-bits-goa/swd_django | swd/main/models.py | VacationDatesFill.check_start_end_dates_in_range | python | def check_start_end_dates_in_range(self, dateTimeStart, dateTimeEnd):
first_cond = self.check_date_in_range(dateTimeStart) and self.check_date_in_range(dateTimeEnd)
return first_cond and dateTimeStart < dateTimeEnd | Checks whether both start and end date time objects are in range
and start date less than end date
params:
dateTimeStart, dateTimeEnd: datetime object | https://github.com/swd-bits-goa/swd_django/blob/1fafb657f0a7cb7f7ac66bde789eeb336f8df065/swd/main/models.py#L580-L590 | from django.db import models
from django.contrib.auth.models import User
import os
import hashlib
import re
from django.utils import timezone
from datetime import datetime
from datetime import date
try:
from tools.dev_info import SALT_IMG as SALT
except ModuleNotFoundError:
SALT = '1234567890'
MESS_CHOICES = (
('A','Dining Hall A'),
('C','Dining Hall C'),
('D','Dining Hall D'))
CONSENT_CHOICES = (
('Letter', 'Letter'),
('Fax', 'Fax'),
('Email', 'Email')
)
BONAFIDE_REASON_CHOICES = (
('Bank Loan', 'Bank Loan'),
('Passport', 'Passport'),
('Other', 'Other'))
BONAFIDE_STATUS_CHOICES = (
('Approved', 'Approved'),
('Pending', 'Pending'),
('Rejected', 'Rejected')
)
BRANCH = {
'A1': 'B.E. Chemical Engineering',
'A3': 'B.E. Electrical and Electronics Engineering',
'A4': 'B.E. Mechanical Engineering',
'A7': 'B.E. Computer Science',
'A8': 'B.E. Electronics and Instrumentation Engineering',
'B1': 'M.Sc. Biology',
'B2': 'M.Sc. Chemistry',
'B3': 'M.Sc. Economics',
'B4': 'M.Sc. Mathematics',
'B5': 'M.Sc. Physics',
'AA': 'B.E. Electronics and Communication Engineering',
'PH': 'PhD.',
'H1': 'M.E. Computer Science',
}
ME = {
'H101':'M.E. Chemical',
'H103':'M.E. Computer Science',
'H112':'M.E. Software Systems',
'H123':'M.E. Microelectronics',
'H129':'M.E. biotechnology',
'H140':'M.E. Embedded Systems',
'H141':'M.E. Design Engineering',
'H106':'M.E. Mechanical',
'H151':'M.E. Sanitation Science, Technology and Management',
'H152':'M.Phil. In Liberal Studies',
}
YEARNAMES = {
1: 'first',
2: 'second',
3: 'third',
4: 'fourth',
5: 'fifth',
6: 'sixth',
7: 'seventh',
8: 'eighth',
9: 'ninth',
}
STUDENT_STATUS = (
('Student', 'Student'),
('Thesis', 'Thesis'),
('PS2', 'PS2'),
('Graduate', 'Graduate'))
HOSTELS = (
('AH1', 'AH1'),
('AH2', 'AH2'),
('AH3', 'AH3'),
('AH4', 'AH4'),
('AH5', 'AH5'),
('AH6', 'AH6'),
('AH7', 'AH7'),
('AH8', 'AH8'),
('AH9', 'AH9'),
('CH1', 'CH1'),
('CH2', 'CH2'),
('CH3', 'CH3'),
('CH4', 'CH4'),
('CH5', 'CH5'),
('CH6', 'CH6'),
('CH7', 'CH7'),
('DH1', 'DH1'),
('DH2', 'DH2'),
('DH3', 'DH3'),
('DH4', 'DH4'),
)
class Warden(models.Model):
user = models.OneToOneField(User, on_delete=models.CASCADE)
name = models.CharField(max_length=50, null=True, blank=True)
chamber = models.CharField(max_length=15, null=True, blank=True)
residence = models.CharField(max_length=10, null=True, blank=True)
phone_off = models.CharField(max_length=15, null=True, blank=True)
phone_res = models.CharField(max_length=15, null=True, blank=True)
email = models.EmailField(null=True, blank=True)
hostel = models.CharField(max_length=5, choices=HOSTELS, null=True, blank=True)
def __str__(self):
return self.hostel + ' ' + self.name + ' ' + self.email + ' ' + self.chamber
class HostelSuperintendent(models.Model):
user = models.ForeignKey(User, on_delete=models.CASCADE)
name = models.CharField(max_length=50, null=True, blank=True)
email = models.EmailField(null=True, blank=True)
hostel = models.TextField(null=True, blank=True)
chamber = models.CharField(max_length = 10, null=True, blank=True)
office_ph = models.CharField(max_length = 12, null = True, blank=True)
residence_ph = models.CharField(max_length = 12, null = True, blank=True)
chamber = models.CharField(max_length=15, null=True, blank=True)
phone_off = models.CharField(max_length=15, null=True, blank=True)
phone_res = models.CharField(max_length=15, null=True, blank=True)
def __str__(self):
return self.hostel + ' ' + self.name + ' ' + self.email
class Staff(models.Model):
user = models.OneToOneField(User, on_delete=models.CASCADE)
name = models.CharField(max_length=50)
staffType = models.CharField(max_length=20)
phone = models.CharField(max_length=15)
def __str__(self):
return self.staffType + ' ' + self.name
class Student(models.Model):
def hash_upload(instance, filename):
ext = filename.split('.')[-1]
tempname = (SALT+instance.bitsId).encode('utf-8')
return '{}.{}'.format(hashlib.md5(tempname).hexdigest(), ext)
user = models.OneToOneField(User, on_delete=models.CASCADE)
name = models.CharField(max_length=50)
bitsId = models.CharField(max_length=15)
gender = models.CharField(max_length=1, blank=True)
bDay = models.DateField(blank=True, null=True)
profile_picture=models.FileField(upload_to=hash_upload, blank=True, null=True)
phone = models.CharField(max_length=15, blank=True, null=True)
email = models.EmailField(blank=True, null=True)
address = models.TextField(blank=True, null=True)
bloodGroup = models.CharField(max_length=10, blank=True, null=True)
cgpa = models.FloatField(blank=True, null=True)
admit = models.DateField(blank=True, null=True)
parentName = models.CharField(max_length=50, blank=True, null=True)
parentPhone = models.CharField(max_length=20, blank=True, null=True)
parentEmail = models.CharField(max_length=50, blank=True, null=True)
bank_account_no = models.CharField(max_length=30, blank=True, null=True)
def nophd(self):
return re.match(r"^20\d{2}(PHX[PF]|PH\d{2})\d{3,4}G$", self.bitsId, flags=re.IGNORECASE)
def __str__(self):
return self.bitsId + ' (' + self.name + ')'
def render_parentPhone(self):
if self.parentPhone:
s = self.parentPhone
for wild in ['/', ',']:
s = (s).split(wild)
if len(s) > 1:
s = ' / '.join(s)
else:
s = s[0]
return s
else:
return ''
def change_cgpa(self, new_cg):
if ((new_cg > 0.0) and (new_cg <= 10.0)):
self.cgpa = new_cg
self.save()
return True
else:
return False
class DayScholar(models.Model):
student = models.OneToOneField('Student', on_delete = models.CASCADE)
def __str__(self):
return self.student.bitsId + ' (' + self.student.name + ')'
class HostelPS(models.Model):
student = models.OneToOneField('Student', on_delete = models.CASCADE, related_name='hostelps')
acadstudent = models.BooleanField()
status = models.CharField(max_length=10, choices=STUDENT_STATUS)
psStation = models.TextField(null=True, blank=True)
hostel = models.TextField(null=True, blank=True)
room = models.CharField(max_length = 7, null=True, blank=True)
def __str__(self):
return self.student.bitsId + ' (' + self.student.name + ')'
def save(self, *args, **kwargs):
if self.acadstudent == True:
self.status = 'Student'
super(HostelPS, self).save(*args, **kwargs)
class CSA(models.Model):
student = models.OneToOneField('Student', on_delete = models.CASCADE)
title = models.CharField(max_length=20)
email = models.EmailField()
pic = models.ImageField(blank=True, null=True)
priority=models.IntegerField(blank=True, null=True)
def __str__(self):
return self.title + ' ' + self.student.name + ' ' + self.email
class MessOption(models.Model):
student = models.ForeignKey('Student', on_delete = models.CASCADE)
monthYear = models.DateField()
mess = models.CharField(max_length=1, choices=MESS_CHOICES)
def __str__(self):
return self.mess + ' ' + self.student.bitsId
class Bonafide(models.Model):
student = models.ForeignKey('Student', on_delete = models.CASCADE)
reason = models.CharField(max_length=20, choices=BONAFIDE_REASON_CHOICES)
otherReason = models.TextField(null=True, blank=True)
reqDate = models.DateField()
printed = models.BooleanField(default=0, blank=True)
status = models.CharField(max_length=20, choices=BONAFIDE_STATUS_CHOICES, default= 'Pending')
text = models.TextField(default='', blank=True)
rejectedReason = models.TextField(default='', blank=True)
def createText(self):
gender = "Mr. " if self.student.gender.lower() == 'm' else "Ms. "
pronoun = "He " if gender=="Mr. " else "She "
firstDeg=self.student.bitsId[4:6]
secondDeg=self.student.bitsId[6:8]
res=HostelPS.objects.get(student=self.student)
branch = BRANCH[firstDeg]
if secondDeg != 'PS' and firstDeg != 'H1' and firstDeg != 'PH':
branch = branch +' and '+ BRANCH[secondDeg]
if firstDeg == 'H1':
branch = ME[self.student.bitsId[4:8]]
yearNum=self.reqDate.year-int(self.student.bitsId[0:4]) + 1
if(self.reqDate.month <8):
yearNum=yearNum-1
yearName=YEARNAMES[yearNum]
date_admit = res.student.admit.strftime('%d/%m/%Y')
today = date.today()
if (today.month<8):
year = today.year - 1
else:
year = today.year
reason = self.otherReason if self.reason.lower()=='other' else self.reason
if(res.status == "Student"):
return ''' This is to certify that <i style="font-family: Monotype Corsiva">''' + gender + self.student.name.upper() + '''</i>, ID No. <i style="font-family: Monotype Corsiva">''' + self.student.bitsId + '''</i> is a bonafide student of '''+ yearName + ''' year class. ''' + pronoun+ ''' was admitted to the institute on ''' + str(date_admit) + ''', for pursuing the <i style="font-family: Monotype Corsiva">'''+ branch + '''</i> programme of studies. ''' +pronoun+'''is residing in the Hostel <i style="font-family: Monotype Corsiva">'''+res.hostel+'''-'''+res.room+'''</i> of this institute. Date of joining the current academic session is 1 August '''+str(year)+'''.<br> This certificate is issued for the purpose of applying for ''' + reason + '''.'''
elif(res.status == "Thesis" or res.status == "PS2"):
return ''' This is to certify that <i>''' + gender + self.student.name.upper() + '''</i>, ID No. <i>''' + self.student.bitsId + '''</i> is a bonafide student of '''+ yearName + ''' year class. ''' + pronoun +''' was admitted to the Institute on ''' + str(date_admit) + ''', for pursuing the <i>'''+ branch +'''</i> programme of studies. '''+ pronoun+ ''' is pursuing <i>''' + res.status + '''</i> at <i>'''+ res.psStation +'''</i> as a part of the academic requirement of BITS-Pilani, Deemed University.<br>This certificate is issued for the purpose of applying for ''' + reason + '''.'''
else:
return 'Bonafide is invalid for Graduate students'
def save(self, *args, **kwargs):
if self.text == '':
self.text = self.createText()
super(Bonafide, self).save(*args, **kwargs)
def __str__(self):
return self.student.bitsId + ' (' + self.student.name + ') ' + self.reason
class Leave(models.Model):
student = models.ForeignKey('Student', on_delete = models.CASCADE)
dateTimeStart = models.DateTimeField()
dateTimeEnd = models.DateTimeField()
reason = models.TextField()
consent = models.CharField(max_length=10, choices=CONSENT_CHOICES)
corrAddress = models.TextField()
corrPhone = models.CharField(max_length=15)
approvedBy = models.ForeignKey('Warden', blank=True, null=True, on_delete="PROTECT")
approved = models.BooleanField(default=0, blank=True)
disapproved = models.BooleanField(default=0, blank=True)
inprocess = models.BooleanField(default=1, blank=True)
comment = models.TextField(default='', blank=True)
def __str__(self):
return self.student.bitsId + ' '+ self.student.name + ' ' + str(self.id)
class DayPass(models.Model):
def document_path(instance, filename):
ext = filename.split('.')[-1]
tempname = (SALT+instance.student.bitsId+str(datetime)).encode('utf-8')
return 'documents/{}.{}'.format(
hashlib.md5(tempname).hexdigest(), ext)
student = models.ForeignKey('Student', on_delete = models.CASCADE)
reason = models.TextField()
dateTime = models.DateTimeField(null=True, blank=False)
inTime = models.DateTimeField(null=True, blank=False)
corrAddress = models.TextField()
approvedBy = models.ForeignKey('HostelSuperintendent', blank=True, null=True, on_delete="PROTECT")
approved = models.BooleanField(default=0, blank=True)
disapproved = models.BooleanField(default=0, blank=True)
inprocess = models.BooleanField(default=1, blank=True)
comment = models.TextField()
document = models.FileField(upload_to=document_path, null=True, blank=True)
def __str__(self):
return self.student.bitsId + ' (' + self.student.name + ')'
class LateComer(models.Model):
student = models.ForeignKey('Student', on_delete = models.CASCADE)
dateTime = models.DateTimeField()
def __str__(self):
return self.student.bitsId + ' (' + self.student.name + ')'
class InOut(models.Model):
student = models.ForeignKey('Student', on_delete = models.CASCADE)
place = models.CharField(max_length=20)
outDateTime = models.DateTimeField()
inDateTime = models.DateTimeField()
onCampus = models.BooleanField()
onLeave = models.BooleanField()
def __str__(self):
return self.student.bitsId + ' (' + self.student.name + ')'
class Disco(models.Model):
student = models.ForeignKey('Student', on_delete = models.CASCADE)
dateOfViolation = models.DateField(blank = True, null = True)
subject = models.TextField()
action = models.TextField()
def __str__(self):
return self.student.bitsId + ' (' + self.student.name + ')'
class MessOptionOpen(models.Model):
monthYear = models.DateField()
dateOpen = models.DateField()
dateClose = models.DateField()
def __str__(self):
return str(self.monthYear.month) + ' Open: ' + str(self.dateOpen) + ' Close: ' + str(self.dateClose)
class Transaction(models.Model):
student = models.ForeignKey('Student', on_delete = models.CASCADE)
timestamp = models.DateTimeField(auto_now=True)
def __str__(self):
return self.timestamp + ' ' + student.user
class MessBill(models.Model):
month = models.DateField()
amount = models.FloatField()
rebate = models.FloatField()
class Meta:
get_latest_by = "month"
def __str__(self):
return str(self.month) + ' ' + str(self.amount) + ' ' + str(self.rebate)
class TeeAdd(models.Model):
title = models.CharField(max_length=30)
desc = models.TextField()
pic = models.ImageField(blank=True, null=True)
price = models.FloatField()
nick_price = models.FloatField(blank = True, null = True)
nick = models.BooleanField(blank=True)
colors = models.CharField(max_length=100, blank=True, null=True)
sizes = models.CharField(max_length=100, blank=True, null=True)
available = models.BooleanField(default=False)
def __str__(self):
return self.title + ' - Rs.' + str(self.price)
class ItemAdd(models.Model):
title = models.CharField(max_length=30)
desc = models.TextField()
pic = models.ImageField(blank=True, null=True)
price = models.FloatField()
available = models.BooleanField(default=False)
def __str__(self):
return self.title + ' - Rs.' + str(self.price)
class TeeBuy(models.Model):
student = models.ForeignKey('Student', on_delete = models.CASCADE)
tee = models.ForeignKey('TeeAdd', on_delete = models.CASCADE)
qty = models.IntegerField()
nick = models.CharField(max_length=100, blank=True, null=True)
color = models.CharField(max_length=10, blank=True, null=True)
size = models.CharField(max_length=10, blank=True, null=True)
created = models.DateTimeField(auto_now_add=True)
totamt = models.FloatField()
def __str__(self):
return self.student.bitsId + ' ' + self.tee.title
def save(self, *args, **kwargs):
if self.nick == "":
self.totamt = float(self.qty) * float(self.tee.price)
else:
self.totamt = float(self.qty) * float(self.tee.nick_price)
super(TeeBuy, self).save(*args, **kwargs)
class ItemBuy(models.Model):
student = models.ForeignKey('Student', on_delete = models.CASCADE)
item = models.ForeignKey('ItemAdd', on_delete = models.CASCADE)
created = models.DateTimeField(auto_now_add=True)
def __str__(self):
return self.student.bitsId + ' ' + self.item.title
class DueCategory(models.Model):
name = models.CharField(max_length=100)
description = models.CharField(max_length=500)
def __str__(self):
return "Due category with name {} and description '{}'".format(self.name, self.description)
class Due(models.Model):
student = models.ForeignKey(Student, on_delete=models.CASCADE)
amount = models.FloatField()
due_category = models.ForeignKey(DueCategory, on_delete=models.CASCADE)
description = models.CharField(max_length=500)
date_added = models.DateField()
class Meta:
verbose_name_plural = "Dues"
def __str__(self):
return self.student.bitsId + "'s due entry with amount " + str(self.amount)
class DuesPublished(models.Model):
date_published = models.DateTimeField(auto_now_add=True)
def __str__(self):
return str(self.date_published)
class FileAdd(models.Model):
file = models.FileField()
link = models.CharField(max_length=200, blank=True, null=True, editable = False, default='/')
def __str__(self):
return self.link
def save(self, *args, **kwargs):
self.link = '/media/' + self.file.name
super().save(*args, **kwargs)
class Notice(models.Model):
date = models.DateField(editable=False)
title = models.CharField(max_length=100)
desc = models.TextField()
file = models.ForeignKey(FileAdd, on_delete=models.CASCADE, null=True, blank=True)
def __str__(self):
return self.desc
def save(self, *args, **kwargs):
self.date = timezone.now()
super().save(*args, **kwargs)
class Document(models.Model):
title = models.CharField(max_length=100)
file = models.ForeignKey(FileAdd, on_delete=models.CASCADE, null=True, blank=True)
def __str__(self):
return self.title
class AntiRagging(models.Model):
title = models.CharField(max_length=100)
link = models.CharField(max_length=100)
def __str__(self):
return self.title
class VacationDatesFill(models.Model):
description = models.CharField(max_length=50)
dateOpen = models.DateField(
help_text="Students can start filling details from this date (inclusive)")
dateClose = models.DateField(
help_text="Students can fill details only before this date (inclusive)")
allowDateAfter = models.DateTimeField(
help_text="Allowed Vacation Dates start from this date (inclusive)")
allowDateBefore = models.DateTimeField(
help_text="Allowed Vacation Dates end before this (inclusive)")
messOption = models.ForeignKey(
MessOptionOpen,
on_delete=models.CASCADE,
default=None,
help_text="Mess Option for the months near corresponding Vacation")
class Meta:
verbose_name = "Vacation Dates Option"
verbose_name_plural = "Vacation Dates Option"
def __str__(self):
return str(self.description) + ' Open: ' + str(self.dateOpen) + ' Close: ' + str(self.dateClose)
def check_student_valid(self, student):
leaves_count = Leave.objects.filter(
student=student,
dateTimeStart__gte=self.allowDateAfter,
dateTimeEnd__lte=self.allowDateBefore
).count()
if leaves_count == 0:
return True
else:
return False
def create_vacation(self, student, dateTimeStart, dateTimeEnd):
try:
leave = Leave(student=student, reason=self.description)
leave.dateTimeStart = dateTimeStart
leave.dateTimeEnd = dateTimeEnd
leave.approved = True
leave.disapproved = False
leave.inprocess = False
leave.comment = "Vacation"
leave.save()
return True, leave
except Exception as e:
return False, str(e)
def check_date_in_range(self, date):
if date.date() <= self.allowDateBefore.date() and date.date() >= self.allowDateAfter.date():
return True
else:
return False | MIT License |
yfauser/planespotter | app-server/app/lib/python2.7/site-packages/click/termui.py | echo_via_pager | python | def echo_via_pager(text, color=None):
color = resolve_color_default(color)
if not isinstance(text, string_types):
text = text_type(text)
from ._termui_impl import pager
return pager(text + '\n', color) | This function takes a text and shows it via an environment specific
pager on stdout.
.. versionchanged:: 3.0
Added the `color` flag.
:param text: the text to page.
:param color: controls if the pager supports ANSI colors or not. The
default is autodetection. | https://github.com/yfauser/planespotter/blob/d400216502b6b5592a4889eb9fa277b2ddb75f9b/app-server/app/lib/python2.7/site-packages/click/termui.py#L198-L213 | import os
import sys
import struct
from ._compat import raw_input, text_type, string_types, isatty, strip_ansi, get_winterm_size, DEFAULT_COLUMNS, WIN
from .utils import echo
from .exceptions import Abort, UsageError
from .types import convert_type
from .globals import resolve_color_default
visible_prompt_func = raw_input
_ansi_colors = ('black', 'red', 'green', 'yellow', 'blue', 'magenta',
'cyan', 'white', 'reset')
_ansi_reset_all = '\033[0m'
def hidden_prompt_func(prompt):
import getpass
return getpass.getpass(prompt)
def _build_prompt(text, suffix, show_default=False, default=None):
prompt = text
if default is not None and show_default:
prompt = '%s [%s]' % (prompt, default)
return prompt + suffix
def prompt(text, default=None, hide_input=False,
confirmation_prompt=False, type=None,
value_proc=None, prompt_suffix=': ',
show_default=True, err=False):
result = None
def prompt_func(text):
f = hide_input and hidden_prompt_func or visible_prompt_func
try:
echo(text, nl=False, err=err)
return f('')
except (KeyboardInterrupt, EOFError):
if hide_input:
echo(None, err=err)
raise Abort()
if value_proc is None:
value_proc = convert_type(type, default)
prompt = _build_prompt(text, prompt_suffix, show_default, default)
while 1:
while 1:
value = prompt_func(prompt)
if value:
break
elif default is not None:
return default
try:
result = value_proc(value)
except UsageError as e:
echo('Error: %s' % e.message, err=err)
continue
if not confirmation_prompt:
return result
while 1:
value2 = prompt_func('Repeat for confirmation: ')
if value2:
break
if value == value2:
return result
echo('Error: the two entered values do not match', err=err)
def confirm(text, default=False, abort=False, prompt_suffix=': ',
show_default=True, err=False):
prompt = _build_prompt(text, prompt_suffix, show_default,
default and 'Y/n' or 'y/N')
while 1:
try:
echo(prompt, nl=False, err=err)
value = visible_prompt_func('').lower().strip()
except (KeyboardInterrupt, EOFError):
raise Abort()
if value in ('y', 'yes'):
rv = True
elif value in ('n', 'no'):
rv = False
elif value == '':
rv = default
else:
echo('Error: invalid input', err=err)
continue
break
if abort and not rv:
raise Abort()
return rv
def get_terminal_size():
if sys.version_info >= (3, 3):
import shutil
shutil_get_terminal_size = getattr(shutil, 'get_terminal_size', None)
if shutil_get_terminal_size:
sz = shutil_get_terminal_size()
return sz.columns, sz.lines
if get_winterm_size is not None:
return get_winterm_size()
def ioctl_gwinsz(fd):
try:
import fcntl
import termios
cr = struct.unpack(
'hh', fcntl.ioctl(fd, termios.TIOCGWINSZ, '1234'))
except Exception:
return
return cr
cr = ioctl_gwinsz(0) or ioctl_gwinsz(1) or ioctl_gwinsz(2)
if not cr:
try:
fd = os.open(os.ctermid(), os.O_RDONLY)
try:
cr = ioctl_gwinsz(fd)
finally:
os.close(fd)
except Exception:
pass
if not cr or not cr[0] or not cr[1]:
cr = (os.environ.get('LINES', 25),
os.environ.get('COLUMNS', DEFAULT_COLUMNS))
return int(cr[1]), int(cr[0]) | MIT License |
tuturto/pyherc | src/pyherc/test/builders/item.py | ItemBuilder.with_required_ammunition_type | python | def with_required_ammunition_type(self, ammunition_type):
if self.weapon_data is None:
self.weapon_data = WeaponData()
self.weapon_data.ammunition_type = ammunition_type
return self | Configure type of ammunition this weapon requires
:param ammunition_type: type of ammunition this weapon requires
:type ammunition_type: string | https://github.com/tuturto/pyherc/blob/4e7c72a4d80d335f7d3c48cecac96cd7105acac4/src/pyherc/test/builders/item.py#L135-L145 | from pyherc.data import Item
from pyherc.data.effects import EffectsCollection
from pyherc.data.item import (AmmunitionData, ArmourData, WeaponData,
TrapData, BootsData)
class ItemBuilder():
def __init__(self):
super().__init__()
self.name = 'prototype'
self.appearance = ''
self.effect_handles = []
self.effects = []
self.location = ()
self.icon = 0
self.weapon_data = None
self.armour_data = None
self.ammunition_data = None
self.trap_data = None
self.boots_data = None
self.tags = []
def with_name(self, name):
self.name = name
return self
def with_appearance(self, appearance):
self.appearance = appearance
return self
def with_effect_handle(self, handle):
if hasattr(handle, 'build'):
self.effect_handles.append(handle.build())
else:
self.effect_handles.append(handle)
return self
def with_effect(self, effect):
if hasattr(effect, 'build'):
self.effects.append(effect.build())
else:
self.effects.append(effect)
return self
def with_location(self, location):
self.location = location
return self
def with_icon(self, icon):
self.icon = icon
return self
def with_damage(self, damage, damage_type):
if self.weapon_data is None:
self.weapon_data = WeaponData()
self.weapon_data.damage.append((damage, damage_type))
return self | MIT License |
oscaar/oscaar | oscaar/dataBank.py | dataBank.outOfTransit | python | def outOfTransit(self):
return (self.getTimes() < self.ingress) + (self.getTimes() > self.egress) | Boolean array where `True` are the times in `getTimes()` that are
before ingress or after egress.
Returns
-------
List of bools | https://github.com/oscaar/oscaar/blob/5c953570d870c8b855ee388436aa360bde70869a/oscaar/dataBank.py#L436-L446 | import numpy as np
import pyfits
from matplotlib import pyplot as plt
from scipy import optimize
from glob import glob
import os
import re
import oscaar
import mathMethods
import sys
import systematics
oscaarpath = os.path.dirname(os.path.abspath(oscaar.__file__))
oscaarpathplus = os.path.join(oscaarpath,'extras')
class dataBank:
def __init__(self, initParFilePath=None):
self.dict = {}
self.parseInit(initParFilePath)
self.flatPath = self.dict["flatPath"]
self.rawRegionsList = self.dict["regPaths"]
self.ingress = self.dict["ingress"]
self.egress = self.dict["egress"]
self.apertureRadii = self.dict["apertureRadius"]
self.trackingZoom = self.dict["trackingZoom"]
self.ccdGain = self.dict["ccdGain"]
self.trackPlots = self.dict["trackPlots"]
self.photPlots = self.dict["photPlots"]
self.smoothConst = self.dict ["smoothConst"]
self.darksPath = self.dict["darksPath"]
self.imagesPaths = self.dict["imagesPaths"]
self.timeKeyword = self.dict["timeKeyword"]
if self.timeKeyword == 'JD':
self.convertToJD = lambda x: x
elif self.timeKeyword == 'DATE-OBS':
self.convertToJD = mathMethods.ut2jdSplitAtT
if not hasattr(sys, 'real_prefix'):
self.masterFlat = np.ones_like(pyfits.getdata(self.imagesPaths[0]))
elif self.flatPath != '':
self.masterFlat = pyfits.getdata(self.flatPath)
self.masterFlatPath = self.flatPath
elif self.flatPath == '':
self.masterFlat = np.ones_like(pyfits.getdata(self.imagesPaths[0]))
self.allStarsDict = {}
self.regionsFileList, self.regionsFITSrefsList = self.parseRawRegionsList(self.rawRegionsList)
init_x_list,init_y_list = self.parseRegionsFile(self.regionsFileList[0])
zeroArray = np.zeros_like(self.imagesPaths,dtype=np.float32)
self.times = np.zeros_like(self.imagesPaths,dtype=np.float64)
self.keys = []
self.targetKey = '000'
Nradii = len(self.apertureRadii)
for i in range(0,len(init_x_list)):
self.allStarsDict[str(i).zfill(3)] = {'x-pos':np.copy(zeroArray), 'y-pos':np.copy(zeroArray), 'rawFlux':[np.copy(zeroArray) for j in range(Nradii)], 'rawError':[np.copy(zeroArray) for j in range(Nradii)],'flag':False, 'scaledFlux':[np.copy(zeroArray) for j in range(Nradii)], 'scaledError':[np.copy(zeroArray) for j in range(Nradii)], 'chisq':np.zeros_like(self.apertureRadii)}
self.allStarsDict[str(i).zfill(3)]['x-pos'][0] = init_x_list[i]
self.allStarsDict[str(i).zfill(3)]['y-pos'][0] = init_y_list[i]
self.keys.append(str(i).zfill(3))
def getDict(self):
return self.allStarsDict
def getMeanDarkFrame(self):
if type(self.darksPath) == str and self.darksPath == "":
return np.zeros_like(pyfits.getdata(self.imagesPaths[0]))
else:
return systematics.meanDarkFrame(self.darksPath)
def centroidInitialGuess(self,expNumber,star):
if expNumber == 0:
est_x = self.allStarsDict[star]['x-pos'][0]
est_y = self.allStarsDict[star]['y-pos'][0]
elif self.imagesPaths[expNumber] in self.regionsFITSrefsList:
refIndex = self.regionsFITSrefsList.index(self.imagesPaths[expNumber])
init_x_list, init_y_list = self.parseRegionsFile(self.regionsFileList[refIndex])
est_x = init_x_list[int(star)]
est_y = init_y_list[int(star)]
else:
est_x = self.allStarsDict[star]['x-pos'][expNumber-1]
est_y = self.allStarsDict[star]['y-pos'][expNumber-1]
return est_x, est_y
def storeCentroid(self,star,exposureNumber,xCentroid,yCentroid):
self.allStarsDict[star]['x-pos'][exposureNumber] = xCentroid
self.allStarsDict[star]['y-pos'][exposureNumber] = yCentroid
def storeFlux(self,star,exposureNumber,rawFlux,rawError):
self.allStarsDict[star]['rawFlux'][exposureNumber] = rawFlux
self.allStarsDict[star]['rawError'][exposureNumber] = rawError
def storeFluxes(self,star,exposureNumber,rawFluxes,rawErrors):
for apertureRadiusIndex in range(len(self.apertureRadii)):
self.allStarsDict[star]['rawFlux'][apertureRadiusIndex][exposureNumber] = rawFluxes[apertureRadiusIndex]
self.allStarsDict[star]['rawError'][apertureRadiusIndex][exposureNumber] = rawErrors[apertureRadiusIndex]
def getPaths(self):
return self.imagesPaths
def getFluxes(self,star):
return self.allStarsDict[star]['rawFlux']
def getErrors(self,star):
return self.allStarsDict[star]['rawError']
def storeTime(self,expNumber):
timeStamp = pyfits.getheader(self.getPaths()[expNumber])[self.timeKeyword]
self.times[expNumber] = self.convertToJD(timeStamp)
def getTimes(self):
return self.times
def getFlag(self,star):
return self.allStarsDict[star]['flag']
def getAllFlags(self):
flags = []
for star in self.allStarsDict:
flags.append(self.allStarsDict[star]['flag'])
self.flags = flags
return flags
def setFlag(self,star,setting):
self.allStarsDict[star]['flag'] = setting
def getKeys(self):
return self.keys
def scaleFluxes(self):
for star in self.allStarsDict:
if star != self.targetKey:
self.allStarsDict[star]['scaledFlux'], m = mathMethods.regressionScale(self.getFluxes(star),self.getFluxes(self.targetKey),self.getTimes(),self.ingress,self.egress,returncoeffs=True)
print m
self.allStarsDict[star]['scaledError'] = np.abs(m)*self.getErrors(star)
if star == self.targetKey:
self.allStarsDict[star]['scaledFlux'] = self.allStarsDict[star]['rawFlux']
self.allStarsDict[star]['scaledError'] = self.allStarsDict[star]['rawError']
def getFluxes_multirad(self,star,apertureRadiusIndex):
return self.allStarsDict[star]['rawFlux'][apertureRadiusIndex]
def getErrors_multirad(self,star,apertureRadiusIndex):
return self.allStarsDict[star]['rawError'][apertureRadiusIndex]
def scaleFluxes_multirad(self):
for star in self.allStarsDict:
for apertureRadiusIndex in range(len(self.apertureRadii)):
if star != self.targetKey:
print self.getFluxes_multirad(star,apertureRadiusIndex)[0]
self.allStarsDict[star]['scaledFlux'][apertureRadiusIndex], m = mathMethods.regressionScale(self.getFluxes_multirad(star,apertureRadiusIndex),self.getFluxes_multirad(self.targetKey,apertureRadiusIndex),self.getTimes(),self.ingress,self.egress,returncoeffs=True)
self.allStarsDict[star]['scaledError'][apertureRadiusIndex] = np.abs(m)*self.getErrors_multirad(star,apertureRadiusIndex)
if star == self.targetKey:
self.allStarsDict[star]['scaledFlux'][apertureRadiusIndex] = self.allStarsDict[star]['rawFlux'][apertureRadiusIndex]
self.allStarsDict[star]['scaledError'][apertureRadiusIndex] = self.allStarsDict[star]['rawError'][apertureRadiusIndex]
def getScaledFluxes(self,star):
return np.array(self.allStarsDict[star]['scaledFlux'])
def getScaledErrors(self,star):
return np.array(self.allStarsDict[star]['scaledError'])
def getScaledFluxes_multirad(self,star,apertureRadiusIndex):
return np.array(self.allStarsDict[star]['scaledFlux'][apertureRadiusIndex])
def getScaledErrors_multirad(self,star,apertureRadiusIndex):
return np.array(self.allStarsDict[star]['scaledError'][apertureRadiusIndex])
def calcChiSq(self):
for star in self.allStarsDict:
self.allStarsDict[star]['chisq'] = mathMethods.chiSquared(self.getFluxes(self.targetKey),self.getFluxes(star))
chisq = []
for star in self.allStarsDict:
chisq.append(self.allStarsDict[star]['chisq'])
self.chisq = np.array(chisq)
self.meanChisq = np.mean(chisq)
self.stdChisq = np.std(chisq)
def calcChiSq_multirad(self,apertureRadiusIndex):
for star in self.allStarsDict:
print self.getFluxes_multirad(self.targetKey,apertureRadiusIndex),self.getFluxes_multirad(star,apertureRadiusIndex)
self.allStarsDict[star]['chisq'][apertureRadiusIndex] = mathMethods.chiSquared(self.getFluxes_multirad(self.targetKey,apertureRadiusIndex),self.getFluxes_multirad(star,apertureRadiusIndex))
chisq = []
for star in self.allStarsDict:
chisq.append(self.allStarsDict[star]['chisq'][apertureRadiusIndex])
self.chisq = np.array(chisq)
self.meanChisq = np.mean(chisq)
self.stdChisq = np.std(chisq)
def calcMeanComparison_multirad(self,ccdGain=1):
self.meanComparisonStars = []
self.meanComparisonStarErrors = []
self.comparisonStarWeights = []
for apertureRadiusIndex in range(len(self.apertureRadii)):
chisq = []
for star in self.allStarsDict: chisq.append(self.allStarsDict[star]['chisq'])
chisq = np.array(chisq)
if (chisq==0).all(): self.calcChiSq_multirad(apertureRadiusIndex)
numCompStars = len(self.allStarsDict) - 1
targetFullLength = len(self.getScaledFluxes_multirad(self.targetKey,apertureRadiusIndex))
print "Aperture rad:", apertureRadiusIndex
print "Target raw flux:",self.getFluxes_multirad(self.targetKey,apertureRadiusIndex)
print "Target scaled flux:",self.getScaledFluxes_multirad(self.targetKey,apertureRadiusIndex)
target = self.getFluxes_multirad(self.targetKey,apertureRadiusIndex)[self.outOfTransit()]
compStars = np.zeros([targetFullLength,numCompStars])
compStarsOOT = np.zeros([len(target),numCompStars])
compErrors = np.copy(compStars)
columnCounter = 0
acceptedCompStarKeys = []
compStarKeys = []
for star in self.allStarsDict:
if star != self.targetKey and (np.abs(self.meanChisq - self.allStarsDict[star]['chisq']) < 2*self.stdChisq).any():
compStars[:,columnCounter] = self.getScaledFluxes_multirad(star,apertureRadiusIndex).astype(np.float64)
compStarsOOT[:,columnCounter] = self.getScaledFluxes_multirad(star,apertureRadiusIndex)[self.outOfTransit()].astype(np.float64)
compErrors[:,columnCounter] = self.getScaledErrors_multirad(star,apertureRadiusIndex).astype(np.float64)
compStarKeys.append(int(star))
columnCounter += 1
elif star != self.targetKey and (np.abs(self.meanChisq - self.allStarsDict[star]['chisq']) > 2*self.stdChisq):
print 'Star '+str(star)+' excluded from regression'
compStarKeys.append(int(star))
columnCounter += 1
initP = np.zeros([numCompStars])+ 1./numCompStars
def errfunc(p,target):
if all(p >=0.0): return np.dot(p,compStarsOOT.T) - target
bestFitP = optimize.leastsq(errfunc,initP[:],args=(target.astype(np.float64)),maxfev=10000000,epsfcn=np.finfo(np.float32).eps)[0]
print '\nBest fit regression coefficients:',bestFitP
print 'Default weight:',1./numCompStars
self.comparisonStarWeights_i = np.vstack([compStarKeys,bestFitP])
self.meanComparisonStar = np.dot(bestFitP,compStars.T)
self.meanComparisonStarError = np.sqrt(np.dot(bestFitP**2,compErrors.T**2))
self.meanComparisonStars.append(self.meanComparisonStar)
self.meanComparisonStarErrors.append(self.meanComparisonStarError)
self.comparisonStarWeights.append(self.comparisonStarWeights_i)
return self.meanComparisonStars, self.meanComparisonStarErrors
def getAllChiSq(self):
return self.chisq | MIT License |
derfies/panda3d-editor | src/pandaEditor/game/nodes/manager.py | Manager.get_type_string | python | def get_type_string(self, comp):
if hasattr(comp.__class__, 'cType'):
return comp.cType
type_str = type(comp).__name__
if type_str == 'NodePath':
type_str = comp.node().get_tag(TAG_NODE_TYPE)
if not type_str:
type_str = type(comp.node()).__name__
return type_str | Return the type of the component as a string. Components are
identified in the following method (in order):
- If the component has the class variable 'cType' then this string
will be used as the type.
- Use the component's type's name as the type.
- If this is 'NodePath' then look for a overriding tag on the node
for the type.
- If this tag is missing, use the NodePath's node as the type. | https://github.com/derfies/panda3d-editor/blob/a50939bd4bfa5c22d27a9ddee090717e8d95f404/src/pandaEditor/game/nodes/manager.py#L115-L135 | from game.nodes.actor import Actor
from game.nodes.base import Base
from game.nodes.bullet import (
BulletBoxShape,
BulletCapsuleShape,
BulletDebugNode,
BulletPlaneShape,
BulletRigidBodyNode,
BulletSphereShape,
BulletWorld,
)
from game.nodes.camera import Camera
from game.nodes.collision import (
CollisionBox,
CollisionCapsule,
CollisionInvSphere,
CollisionNode,
CollisionRay,
CollisionSphere,
)
from game.nodes.constants import TAG_NODE_TYPE
from game.nodes.fog import Fog
from game.nodes.lensnode import LensNode
from game.nodes.lights import (
AmbientLight,
DirectionalLight,
PointLight,
Spotlight
)
from game.nodes.modelnode import ModelNode
from game.nodes.modelroot import ModelRoot
from game.nodes.nodepath import NodePath
from game.nodes.nongraphobject import NonGraphObject
from game.nodes.pandanode import PandaNode
from game.nodes.particleeffect import ParticleEffect
from game.nodes.sceneroot import SceneRoot
from game.nodes.showbasedefaults import (
Aspect2d,
BaseCam,
BaseCamera,
Cam2d,
Camera2d,
Pixel2d,
Render,
Render2d,
)
from game.nodes.texture import Texture
class Manager:
def __init__(self):
self.wrappers = {
'Actor': Actor,
'AmbientLight': AmbientLight,
'Aspect2d': Aspect2d,
'Base': Base,
'BaseCam': BaseCam,
'BaseCamera': BaseCamera,
'BulletBoxShape': BulletBoxShape,
'BulletCapsuleShape': BulletCapsuleShape,
'BulletDebugNode': BulletDebugNode,
'BulletPlaneShape': BulletPlaneShape,
'BulletSphereShape': BulletSphereShape,
'BulletRigidBodyNode': BulletRigidBodyNode,
'BulletWorld': BulletWorld,
'Cam2d': Cam2d,
'Camera': Camera,
'Camera2d': Camera2d,
'CollisionBox': CollisionBox,
'CollisionCapsule': CollisionCapsule,
'CollisionInvSphere': CollisionInvSphere,
'CollisionNode': CollisionNode,
'CollisionRay': CollisionRay,
'CollisionSphere': CollisionSphere,
'DirectionalLight': DirectionalLight,
'Fog': Fog,
'LensNode': LensNode,
'ModelNode': ModelNode,
'ModelRoot': ModelRoot,
'NodePath': NodePath,
'NonGraphObject': NonGraphObject,
'PandaNode': PandaNode,
'ParticleEffect': ParticleEffect,
'Pixel2d': Pixel2d,
'PointLight': PointLight,
'Render': Render,
'Render2d': Render2d,
'SceneRoot': SceneRoot,
'Spotlight': Spotlight,
'Texture': Texture,
}
def wrap(self, obj):
comp_cls = self.get_wrapper(obj)
if comp_cls is not None:
return comp_cls(obj)
else:
comp_cls = self.get_default_wrapper(obj)
return comp_cls(obj)
def get_wrapper(self, obj):
type_ = self.get_type_string(obj)
return self.wrappers.get(type_)
def get_component_by_name(self, c_type):
return self.wrappers.get(c_type) | MIT License |
sony/nnabla | python/src/nnabla/backward_function/r_div_scalar.py | r_div_scalar_backward | python | def r_div_scalar_backward(inputs, val=1):
dy = inputs[0]
x0 = inputs[1]
dx0 = - dy * val / x0 ** 2
return dx0 | Args:
inputs (list of nn.Variable): Incomming grads/inputs to/of the forward function.
kwargs (dict of arguments): Dictionary of the corresponding function arguments.
Return:
list of Variable: Return the gradients wrt inputs of the corresponding function. | https://github.com/sony/nnabla/blob/fef9b6bca02a002de880a13f3196df14369445f4/python/src/nnabla/backward_function/r_div_scalar.py#L16-L28 | Apache License 2.0 |
|
cihai/cihai | cihai/config.py | Configurator.write | python | def write(self, **updates):
if updates:
self._data.update(**updates)
pass | If no delta is created from DEFAULT, it not write.
If file doesn't exist, it will create. | https://github.com/cihai/cihai/blob/650e865655c0c0b15f39a44a8b24d69761acbb11/cihai/config.py#L112-L120 | import os
from appdirs import AppDirs
from ._compat import string_types
def expand_config(d, dirs):
context = {
'user_cache_dir': dirs.user_cache_dir,
'user_config_dir': dirs.user_config_dir,
'user_data_dir': dirs.user_data_dir,
'user_log_dir': dirs.user_log_dir,
'site_config_dir': dirs.site_config_dir,
'site_data_dir': dirs.site_data_dir,
}
for k, v in d.items():
if isinstance(v, dict):
expand_config(v, dirs)
if isinstance(v, string_types):
d[k] = os.path.expanduser(os.path.expandvars(d[k]))
d[k] = d[k].format(**context)
class Configurator(object):
def __init__(self, namespace=''):
self.dirs = AppDirs("cihai", "cihai team")
self.namespace = namespace
def get_names(self):
pass
@property
def file(self):
return
def read(self):
return
def get_delta(self, **updates):
pass | MIT License |
jest-community/jest-pytest | src/__tests__/integration/home-assistant/homeassistant/components/lock/verisure.py | VerisureDoorlock.available | python | def available(self):
return hub.get_first(
"$.doorLockStatusList[?(@.deviceLabel=='%s')]",
self._device_label) is not None | Return True if entity is available. | https://github.com/jest-community/jest-pytest/blob/b197b0b31e3ca5c411202d97583cbd2d2b0b92e9/src/__tests__/integration/home-assistant/homeassistant/components/lock/verisure.py#L56-L60 | import logging
from time import sleep
from time import time
from homeassistant.components.verisure import HUB as hub
from homeassistant.components.verisure import (CONF_LOCKS, CONF_CODE_DIGITS)
from homeassistant.components.lock import LockDevice
from homeassistant.const import (
ATTR_CODE, STATE_LOCKED, STATE_UNKNOWN, STATE_UNLOCKED)
_LOGGER = logging.getLogger(__name__)
def setup_platform(hass, config, add_devices, discovery_info=None):
locks = []
if int(hub.config.get(CONF_LOCKS, 1)):
hub.update_overview()
locks.extend([
VerisureDoorlock(device_label)
for device_label in hub.get(
"$.doorLockStatusList[*].deviceLabel")])
add_devices(locks)
class VerisureDoorlock(LockDevice):
def __init__(self, device_label):
self._device_label = device_label
self._state = STATE_UNKNOWN
self._digits = hub.config.get(CONF_CODE_DIGITS)
self._changed_by = None
self._change_timestamp = 0
@property
def name(self):
return hub.get_first(
"$.doorLockStatusList[?(@.deviceLabel=='%s')].area",
self._device_label)
@property
def state(self):
return self._state
@property | MIT License |
tyohei/chainerkfac | chainerkfac/communicators/pure_nccl_communicator.py | PureNcclCommunicator.all_gather_v_arrays | python | def all_gather_v_arrays(self, arrays, stream=None, debug=False):
if stream is None:
stream = chainer.cuda.Stream.null
local_rank = self.rank
self._init_comms()
nccl_comm = self.nccl_comm
nelems = _get_divideable_nelems(nccl_comm, _utility.get_nelems(arrays))
needs_sync = False
nbytes = nelems * self._agv_comm_dtype.itemsize
needs_sync |= _utility.assign(self.gpu_buf_a, nbytes)
needs_sync |= _utility.assign(self.gpu_buf_b, nbytes)
if needs_sync:
stream.synchronize()
chainer.cuda.Stream.null.synchronize()
if self._agv_memset_kernel is None:
self._agv_memset_kernel = _get_memset_kernel(self._agv_comm_dtype)
self._agv_memset_kernel(
self.gpu_buf_a.array(nelems, dtype=self._agv_comm_dtype),
stream=stream)
target = local_rank
self._pack_arrays_to_buffer(arrays, self.gpu_buf_a,
self._agv_comm_dtype, target, stream,
debug)
sendbuf = self.gpu_buf_a.ptr()
recvbuf = self.gpu_buf_b.ptr()
nccl_dtype = _get_nccl_dtype(self._agv_comm_dtype)
nccl_comm.allReduce(sendbuf, recvbuf, nelems, nccl_dtype,
nccl.NCCL_SUM, stream.ptr)
divisor = 1
target = -1
self._unpack_arrays_from_buffer(arrays, self.gpu_buf_b,
self._agv_comm_dtype, target, divisor,
stream, debug) | Executes All-Gather-V.
0. memset: gbuf_A <- (zero)
1. pack: gbuf_A <- arrays
2. send: .... <- gbuf_A
3. recv: gbuf_B <- ....
4. unpack: arrays <- gbuf_B | https://github.com/tyohei/chainerkfac/blob/99e88396268e8b7d099fdb6bbf54e309e98293c8/chainerkfac/communicators/pure_nccl_communicator.py#L150-L218 | import math
import cupy
import numpy as np
import chainer
from chainermn.communicators import _communication_utility
from chainermn.communicators import _memory_utility
from chainermn import nccl
from chainerkfac.communicators import _utility
from chainerkfac.communicators import base
class PureNcclCommunicator(base.KfacCommunicatorBase):
def __init__(self, mpi_comm):
super(PureNcclCommunicator, self).__init__(mpi_comm)
self.nccl_comm = None
self.gpu_buf_a = _memory_utility.DeviceMemory()
self.gpu_buf_b = _memory_utility.DeviceMemory()
self._rsv_comm_dtype = np.dtype(np.float32)
self._agv_comm_dtype = np.dtype(np.float32)
self._rsv_memset_kernel = None
self._agv_memset_kernel = None
self._ainfo = None
def _init_comms(self):
if self.nccl_comm is not None:
return
self.nccl_comm = _communication_utility.init_nccl_comm(self.mpi_comm)
def reduce_scatter_v_arrays(self, arrays, stream=None, debug=False):
if stream is None:
stream = chainer.cuda.Stream.null
self._init_comms()
nccl_comm = self.nccl_comm
local_rank = self.rank
nelems = _utility.get_nelems(arrays)
needs_sync = False
nbytes = nelems * self._rsv_comm_dtype.itemsize
needs_sync |= _utility.assign(self.gpu_buf_a, nbytes)
needs_sync |= _utility.assign(self.gpu_buf_b, nbytes)
if needs_sync:
stream.synchronize()
chainer.cuda.Stream.null.synchronize()
target = -1
self._pack_arrays_to_buffer(arrays, self.gpu_buf_a,
self._rsv_comm_dtype, target,
stream, debug)
sendbuf = self.gpu_buf_a.ptr()
recvbuf = self.gpu_buf_b.ptr()
nccl_dtype = _get_nccl_dtype(self._rsv_comm_dtype)
nccl_comm.allReduce(sendbuf, recvbuf, nelems, nccl_dtype,
nccl.NCCL_SUM, stream.ptr)
divisor = self.size
target = local_rank
self._unpack_arrays_from_buffer(arrays, self.gpu_buf_b,
self._rsv_comm_dtype, target,
divisor, stream, debug)
def _pack_arrays_to_buffer(self, arrays, gpu_buf, buf_dtype, target,
stream, debug=False):
self._ainfo = _ArraysInfo(arrays)
ainfo = self._ainfo
if debug and self.rank == 0:
ainfo.show()
n_arrays = ainfo.n_arrays
buf_dtype = _get_nccl_dtype(buf_dtype)
total_threads = ainfo.size_total
n_threads = 128
n_blocks = (total_threads + n_threads - 1) // n_threads
_cupy_batched_pack_arrays()(
(n_blocks,), (n_threads,),
(gpu_buf.memory.ptr, buf_dtype, ainfo.buf_size_csum,
ainfo.dptr, ainfo.dtype, ainfo.size_csum,
ainfo.triangle_size,
ainfo.rank, target,
total_threads, n_arrays), stream=stream)
def _unpack_arrays_from_buffer(self, arrays, gpu_buf, buf_dtype, target,
divisor, stream, debug=False):
if self._ainfo is None:
self._ainfo = _ArraysInfo(arrays)
ainfo = self._ainfo
if debug and self.rank == 0:
ainfo.show()
n_arrays = ainfo.n_arrays
buf_dtype = _get_nccl_dtype(buf_dtype)
total_threads = ainfo.size_total
n_threads = 128
n_blocks = (total_threads + n_threads - 1) // n_threads
_cupy_batched_unpack_arrays()(
(n_blocks,), (n_threads,),
(ainfo.dptr, ainfo.dtype, ainfo.size_csum,
gpu_buf.memory.ptr, buf_dtype, ainfo.buf_size_csum,
ainfo.triangle_size,
ainfo.rank, target, divisor,
total_threads, n_arrays), stream=stream)
self._ainfo = None | MIT License |
mabuchilab/qnet | src/qnet/algebra/core/circuit_algebra.py | SLH.space | python | def space(self):
args_spaces = (self.S.space, self.L.space, self.H.space)
return ProductSpace.create(*args_spaces) | Total Hilbert space | https://github.com/mabuchilab/qnet/blob/cc20d26dad78691d34c67173e5cd67dcac94208a/src/qnet/algebra/core/circuit_algebra.py#L368-L371 | import os
import re
from abc import ABCMeta, abstractmethod
from collections import OrderedDict
from functools import reduce
import numpy as np
import sympy
from sympy import I
from sympy import Matrix as SympyMatrix
from sympy import symbols, sympify
from .abstract_algebra import (
Expression, Operation, substitute, )
from .algebraic_properties import (
assoc, check_cdims, filter_neutral, filter_cid, match_replace,
match_replace_binary)
from .exceptions import (
AlgebraError, BasisNotSetError, CannotConvertToSLH,
CannotEliminateAutomatically, CannotVisualize, IncompatibleBlockStructures,
WrongCDimError)
from .hilbert_space_algebra import LocalSpace, ProductSpace
from .matrix_algebra import (
Matrix, block_matrix, identity_matrix, permutation_matrix,
vstackm, zerosm)
from .operator_algebra import (
IdentityOperator, LocalProjector, LocalSigma, Operator,
OperatorPlus, OperatorSymbol, ScalarTimesOperator, ZeroOperator, adjoint,
get_coeffs)
from ...utils.permutations import (
BadPermutationError, block_perm_and_perms_within_blocks, check_permutation,
full_block_perm, invert_permutation, permutation_to_block_permutations, )
from ...utils.singleton import Singleton, singleton_object
__all__ = [
'CPermutation', 'CircuitSymbol', 'Concatenation', 'Feedback',
'Circuit', 'SLH', 'SeriesInverse', 'SeriesProduct', 'FB',
'circuit_identity', 'eval_adiabatic_limit',
'extract_channel', 'getABCD', 'map_channels', 'move_drive_to_H',
'pad_with_identity', 'prepare_adiabatic_limit',
'try_adiabatic_elimination', 'CIdentity', 'CircuitZero', 'Component', ]
__private__ = []
class Circuit(metaclass=ABCMeta):
@property
@abstractmethod
def cdim(self) -> int:
raise NotImplementedError(self.__class__.__name__)
@property
def block_structure(self) -> tuple:
return self._block_structure
@property
def _block_structure(self) -> tuple:
return tuple((self.cdim, ))
def index_in_block(self, channel_index: int) -> int:
if channel_index < 0 or channel_index >= self.cdim:
raise ValueError()
struct = self.block_structure
if len(struct) == 1:
return channel_index, 0
i = 1
while sum(struct[:i]) <= channel_index and i < self.cdim:
i += 1
block_index = i - 1
index_in_block = channel_index - sum(struct[:block_index])
return index_in_block, block_index
def get_blocks(self, block_structure=None):
if block_structure is None:
block_structure = self.block_structure
try:
return self._get_blocks(block_structure)
except IncompatibleBlockStructures as e:
raise e
def _get_blocks(self, block_structure):
if block_structure == self.block_structure:
return (self, )
raise IncompatibleBlockStructures("Requested incompatible block "
"structure %s" % (block_structure,))
def series_inverse(self) -> 'Circuit':
return self._series_inverse()
def _series_inverse(self) -> 'Circuit':
return SeriesInverse.create(self)
def feedback(self, *, out_port=None, in_port=None):
if out_port is None:
out_port = self.cdim - 1
if in_port is None:
in_port = self.cdim - 1
return self._feedback(out_port=out_port, in_port=in_port)
def _feedback(self, *, out_port: int, in_port: int) -> 'Circuit':
return Feedback.create(self, out_port=out_port, in_port=in_port)
def show(self):
from IPython.display import Image, display
fname = self.render()
display(Image(filename=fname))
def render(self, fname=''):
import qnet.visualization.circuit_pyx as circuit_visualization
from tempfile import gettempdir
from time import time, sleep
if not fname:
tmp_dir = gettempdir()
fname = os.path.join(tmp_dir, "tmp_{}.png".format(hash(time)))
if circuit_visualization.draw_circuit(self, fname):
done = False
for k in range(20):
if os.path.exists(fname):
done = True
break
else:
sleep(.5)
if done:
return fname
raise CannotVisualize()
def creduce(self) -> 'Circuit':
return self._creduce()
@abstractmethod
def _creduce(self) -> 'Circuit':
return self
def toSLH(self) -> 'SLH':
return self._toSLH()
@abstractmethod
def _toSLH(self) -> 'SLH':
raise NotImplementedError(self.__class__.__name__)
def coherent_input(self, *input_amps) -> 'Circuit':
return self._coherent_input(*input_amps)
def _coherent_input(self, *input_amps) -> 'Circuit':
n_inputs = len(input_amps)
if n_inputs != self.cdim:
raise WrongCDimError()
from qnet.algebra.library.circuit_components import (
CoherentDriveCC as Displace_cc)
if n_inputs == 1:
concat_displacements = Displace_cc(displacement=input_amps[0])
else:
displacements = [
Displace_cc(displacement=amp) if amp != 0
else circuit_identity(1)
for amp in input_amps]
concat_displacements = Concatenation(*displacements)
return self << concat_displacements
def __lshift__(self, other):
if isinstance(other, Circuit):
return SeriesProduct.create(self, other)
return NotImplemented
def __add__(self, other):
if isinstance(other, Circuit):
return Concatenation.create(self, other)
return NotImplemented
class SLH(Circuit, Expression):
def __init__(self, S, L, H):
if not isinstance(S, Matrix):
S = Matrix(S)
if not isinstance(L, Matrix):
L = Matrix(L)
if S.shape[0] != L.shape[0]:
raise ValueError('S and L misaligned: S = {!r}, L = {!r}'
.format(S, L))
if L.shape[1] != 1:
raise ValueError(("L has wrong shape %s. L must be a column vector "
"of operators (shape n × 1)") % str(L.shape))
if not all(isinstance(s, Operator) for s in S.matrix.ravel()):
S = S * IdentityOperator
if not all(isinstance(l, Operator) for l in L.matrix.ravel()):
L = L * IdentityOperator
if not isinstance(H, Operator):
H = H * IdentityOperator
self.S = S
self.L = L
self.H = H
super().__init__(S, L, H)
@property
def args(self):
return self.S, self.L, self.H
@property
def Ls(self):
return list(self.L.matrix[:, 0])
@property
def cdim(self):
return self.S.shape[0]
def _creduce(self):
return self
@property | MIT License |
nrel/floris | floris/tools/optimization/scipy/power_density_1D.py | PowerDensityOptimization1D.optimize | python | def optimize(self):
print("=====================================================")
print("Optimizing turbine layout...")
print("Number of parameters to optimize = ", len(self.x0))
print("=====================================================")
opt_vars_norm = self._optimize()
print("Optimization complete!")
opt_locs = [
self._unnorm(valx, self.bndx_min, self.bndx_max)
for valx in opt_vars_norm[0 : self.nturbs]
]
opt_yaw = [
self._unnorm(yaw, self.yaw_min, self.yaw_max)
for yaw in opt_vars_norm[self.nturbs :]
]
return [opt_locs, opt_yaw] | This method finds the optimized layout of wind turbines for power
production given the provided frequencies of occurance of wind
conditions (wind speed, direction).
Returns:
opt_locs (iterable): A list of the optimized x, y locations of each
turbine (m). | https://github.com/nrel/floris/blob/ef4934ec7feb7afd2615772d364a1eaa28db93e9/floris/tools/optimization/scipy/power_density_1D.py#L218-L247 | import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import minimize
from .optimization import Optimization
class PowerDensityOptimization1D(Optimization):
def __init__(
self,
fi,
wd,
ws,
freq,
AEP_initial,
x0=None,
bnds=None,
min_dist=None,
opt_method="SLSQP",
opt_options=None,
):
super().__init__(fi)
self.epsilon = np.finfo(float).eps
self.counter = 0
if opt_options is None:
self.opt_options = {"maxiter": 100, "disp": True, "iprint": 2, "ftol": 1e-9}
self.reinitialize_opt(
wd=wd,
ws=ws,
freq=freq,
AEP_initial=AEP_initial,
x0=x0,
bnds=bnds,
min_dist=min_dist,
opt_method=opt_method,
opt_options=opt_options,
)
def _PowDens_opt(self, optVars):
locs = optVars[0 : self.nturbs]
locs_unnorm = [
self._unnorm(valx, self.bndx_min, self.bndx_max) for valx in locs
]
turb_controls = [
optVars[self.nturbs + i * self.nturbs : 2 * self.nturbs + i * self.nturbs]
for i in range(len(self.wd))
]
turb_controls_unnorm = [
self._unnorm(yaw, self.yaw_min, self.yaw_max) for yaw in turb_controls
]
self._change_coordinates(locs_unnorm)
for i, turbine in enumerate(self.fi.floris.farm.turbine_map.turbines):
turbine.yaw_angle = turb_controls_unnorm[0][i]
layout_dist = self._avg_dist(locs)
return layout_dist / self.layout_dist_initial
def _avg_dist(self, locs):
dist = []
for i in range(len(locs) - 1):
dist.append(locs[i + 1] - locs[i])
return np.mean(dist)
def _change_coordinates(self, locs):
layout_x = locs
layout_y = [coord.x2 for coord in self.fi.floris.farm.turbine_map.coords]
layout_array = [layout_x, layout_y]
self.fi.reinitialize_flow_field(layout_array=layout_array)
def _set_opt_bounds(self):
self.bnds = [
(0.0, 0.0),
(0.083333, 0.25),
(0.166667, 0.5),
(0.25, 0.75),
(0.33333, 1.0),
(0.0, 1.0),
(0.0, 1.0),
(0.0, 1.0),
(0.0, 1.0),
(0.0, 1.0),
]
def _AEP_single_wd(self, wd, ws):
self.fi.reinitialize_flow_field(wind_direction=wd, wind_speed=ws)
self.fi.calculate_wake()
turb_powers = [turbine.power for turbine in self.fi.floris.farm.turbines]
return np.sum(turb_powers) * self.freq[0] * 8760
def _AEP_constraint(self, optVars):
locs = optVars[0 : self.nturbs]
locs_unnorm = [
self._unnorm(valx, self.bndx_min, self.bndx_max) for valx in locs
]
turb_controls = [
optVars[self.nturbs + i * self.nturbs : 2 * self.nturbs + i * self.nturbs]
for i in range(len(self.wd))
]
turb_controls_unnorm = [
self._unnorm(yaw, self.yaw_min, self.yaw_max) for yaw in turb_controls
]
for i, turbine in enumerate(self.fi.floris.farm.turbine_map.turbines):
turbine.yaw_angle = turb_controls_unnorm[0][i]
self._change_coordinates(locs_unnorm)
return (
self._AEP_single_wd(self.wd[0], self.ws[0]) / self.AEP_initial - 1
) * 1000000.0
def _space_constraint(self, x_in, min_dist):
x = np.nan_to_num(x_in[0 : self.nturbs])
y = np.nan_to_num(x_in[self.nturbs :])
dist = [
np.sqrt((x[i] - x[j]) ** 2 + (y[i] - y[j]) ** 2)
for i in range(self.nturbs)
for j in range(self.nturbs)
if i != j
]
return np.min(dist) - self._norm(min_dist, self.bndx_min, self.bndx_max)
def _generate_constraints(self):
tmp1 = {
"type": "ineq",
"fun": lambda x, *args: self._space_constraint(x, self.min_dist),
"args": (self.min_dist,),
}
tmp2 = {"type": "ineq", "fun": lambda x, *args: self._AEP_constraint(x)}
self.cons = [tmp1, tmp2]
def _optimize(self):
self.residual_plant = minimize(
self._PowDens_opt,
self.x0,
method=self.opt_method,
bounds=self.bnds,
constraints=self.cons,
options=self.opt_options,
)
opt_results = self.residual_plant.x
return opt_results | Apache License 2.0 |
dtuwindenergy/pywake | py_wake/examples/data/iea37/iea37_aepcalc.py | calcAEP | python | def calcAEP(turb_coords, wind_freq, wind_speed, wind_dir,
turb_diam, turb_ci, turb_co, rated_ws, rated_pwr):
num_bins = len(wind_freq)
pwr_produced = np.zeros(num_bins)
for i in range(num_bins):
pwr_produced[i] = DirPower(turb_coords, wind_dir[i], wind_speed,
turb_diam, turb_ci, turb_co,
rated_ws, rated_pwr)
hrs_per_year = 365. * 24.
AEP = hrs_per_year * (wind_freq * pwr_produced)
AEP /= 1.E6
return AEP | Calculate the wind farm AEP. | https://github.com/dtuwindenergy/pywake/blob/ab02a41b5b4ebe7d17877e265ae64d2902324298/py_wake/examples/data/iea37/iea37_aepcalc.py#L116-L135 | from __future__ import print_function
import numpy as np
import yaml
from math import radians as DegToRad
coordinate = np.dtype([('x', 'f8'), ('y', 'f8')])
def WindFrame(turb_coords, wind_dir_deg):
wind_dir_deg = 270. - wind_dir_deg
wind_dir_rad = DegToRad(wind_dir_deg)
cos_dir = np.cos(-wind_dir_rad)
sin_dir = np.sin(-wind_dir_rad)
frame_coords = np.recarray(turb_coords.shape, coordinate)
frame_coords.x = (turb_coords.x * cos_dir) - (turb_coords.y * sin_dir)
frame_coords.y = (turb_coords.x * sin_dir) + (turb_coords.y * cos_dir)
return frame_coords
def GaussianWake(frame_coords, turb_diam):
num_turb = len(frame_coords)
CT = 4.0 * 1. / 3. * (1.0 - 1. / 3.)
k = 0.0324555
loss = np.zeros(num_turb)
for i in range(num_turb):
loss_array = np.zeros(num_turb)
for j in range(num_turb):
x = frame_coords.x[i] - frame_coords.x[j]
y = frame_coords.y[i] - frame_coords.y[j]
if x > 0.:
sigma = k * x + turb_diam / np.sqrt(8.)
exponent = -0.5 * (y / sigma)**2
radical = 1. - CT / (8. * sigma**2 / turb_diam**2)
loss_array[j] = (1. - np.sqrt(radical)) * np.exp(exponent)
loss[i] = np.sqrt(np.sum(loss_array**2))
return loss
def DirPower(turb_coords, wind_dir_deg, wind_speed,
turb_diam, turb_ci, turb_co, rated_ws, rated_pwr):
num_turb = len(turb_coords)
frame_coords = WindFrame(turb_coords, wind_dir_deg)
loss = GaussianWake(frame_coords, turb_diam)
wind_speed_eff = wind_speed * (1. - loss)
turb_pwr = np.zeros(num_turb)
for n in range(num_turb):
if ((turb_ci <= wind_speed_eff[n]) and
(wind_speed_eff[n] < rated_ws)):
turb_pwr[n] = rated_pwr * ((wind_speed_eff[n] - turb_ci) /
(rated_ws - turb_ci))**3
elif ((rated_ws <= wind_speed_eff[n]) and
(wind_speed_eff[n] < turb_co)):
turb_pwr[n] = rated_pwr
pwrDir = np.sum(turb_pwr)
return pwrDir | MIT License |
lobocv/crashreporter | crashreporter/tools.py | analyze_traceback | python | def analyze_traceback(tb, inspection_level=None, limit=None):
info = []
tb_level = tb
extracted_tb = traceback.extract_tb(tb, limit=limit)
for ii, (filepath, line, module, code) in enumerate(extracted_tb):
func_source, func_lineno = inspect.getsourcelines(tb_level.tb_frame)
d = {"File": filepath,
"Error Line Number": line,
"Module": module,
"Error Line": code,
"Module Line Number": func_lineno,
"Custom Inspection": {},
"Source Code": ''}
if inspection_level is None or len(extracted_tb) - ii <= inspection_level:
d['Source Code'] = ''.join(func_source)
d['Local Variables'] = get_local_references(tb_level)
d['Object Variables'] = get_object_references(tb_level, d['Source Code'])
tb_level = getattr(tb_level, 'tb_next', None)
info.append(d)
return info | Extract trace back information into a list of dictionaries.
:param tb: traceback
:return: list of dicts containing filepath, line, module, code, traceback level and source code for tracebacks | https://github.com/lobocv/crashreporter/blob/a5bbb3f37977dc64bc865dfedafc365fd5469ef8/crashreporter/tools.py#L155-L183 | __author__ = 'calvin'
import inspect
import logging
import re
import traceback
from types import FunctionType, MethodType, ModuleType, BuiltinMethodType, BuiltinFunctionType
try:
import numpy as np
_NUMPY_INSTALLED = True
except ImportError:
_NUMPY_INSTALLED = False
obj_ref_regex = re.compile("[A-z]+[0-9]*\.(?:[A-z]+[0-9]*\.?)+(?!\')(?:\[(?:\'|\").*(?:\'|\")\])*(?:\.[A-z]+[0-9]*)*")
dict_lookup_regex = re.compile("(?<=\[)(?:\'|\")([^\'\"]*)(?:\'|\")(?=\])")
_repr = repr
def repr(object):
try:
return _repr(object)
except Exception as e:
logging.error(e)
return 'String Representation not found'
def string_variable_lookup(tb, s):
refs = []
dot_refs = s.split('.')
DOT_LOOKUP = 0
DICT_LOOKUP = 1
for ii, ref in enumerate(dot_refs):
dict_refs = dict_lookup_regex.findall(ref)
if dict_refs:
bracket = ref.index('[')
refs.append((DOT_LOOKUP, ref[:bracket]))
refs.extend([(DICT_LOOKUP, t) for t in dict_refs])
else:
refs.append((DOT_LOOKUP, ref))
scope = tb.tb_frame.f_locals.get(refs[0][1], ValueError)
if scope is ValueError:
return scope
for lookup, ref in refs[1:]:
try:
if lookup == DOT_LOOKUP:
scope = getattr(scope, ref, ValueError)
else:
scope = scope.get(ref, ValueError)
except Exception as e:
logging.error(e)
scope = ValueError
if scope is ValueError:
return scope
elif isinstance(scope, (FunctionType, MethodType, ModuleType, BuiltinMethodType, BuiltinFunctionType)):
return ValueError
return scope
def get_object_references(tb, source, max_string_length=1000):
global obj_ref_regex
referenced_attr = set()
for line in source.split('\n'):
referenced_attr.update(set(re.findall(obj_ref_regex, line)))
referenced_attr = sorted(referenced_attr)
info = []
for attr in referenced_attr:
v = string_variable_lookup(tb, attr)
if v is not ValueError:
ref_string = format_reference(v, max_string_length=max_string_length)
info.append((attr, ref_string))
return info
def get_local_references(tb, max_string_length=1000):
if 'self' in tb.tb_frame.f_locals:
_locals = [('self', repr(tb.tb_frame.f_locals['self']))]
else:
_locals = []
for k, v in tb.tb_frame.f_locals.iteritems():
if k == 'self':
continue
try:
vstr = format_reference(v, max_string_length=max_string_length)
_locals.append((k, vstr))
except TypeError:
pass
return _locals
def format_reference(ref, max_string_length=1000):
_pass = lambda *args: None
_numpy_info = ('dtype', 'shape', 'size', 'min', 'max')
additionals = []
if _NUMPY_INSTALLED and isinstance(ref, np.ndarray):
for np_attr in _numpy_info:
np_value = getattr(ref, np_attr, None)
if np_value is not None:
if inspect.isbuiltin(np_value):
try:
np_value = np_value()
except Exception as e:
logging.error(e)
continue
additionals.append((np_attr, np_value))
elif isinstance(ref, (list, tuple, set, dict)):
length = getattr(ref, '__len__', _pass)()
if length is not None:
additionals.append(('length', length))
if additionals:
vstr = ', '.join(['%s: %s' % a for a in additionals] + [repr(ref)])
else:
vstr = repr(ref)
if len(vstr) > max_string_length:
vstr = vstr[:max_string_length] + ' ...'
return vstr | MIT License |
online-ml/river | river/base/classifier.py | Classifier.predict_one | python | def predict_one(self, x: dict) -> base.typing.ClfTarget:
y_pred = self.predict_proba_one(x)
if y_pred:
return max(y_pred, key=y_pred.get)
return None | Predict the label of a set of features `x`.
Parameters
----------
x
A dictionary of features.
Returns
-------
The predicted label. | https://github.com/online-ml/river/blob/842f7c5be5574e62a3aab0b46d996eb5f1d73beb/river/base/classifier.py#L53-L72 | import abc
import typing
import pandas as pd
from river import base
from . import estimator
class Classifier(estimator.Estimator):
@abc.abstractmethod
def learn_one(self, x: dict, y: base.typing.ClfTarget, **kwargs) -> "Classifier":
def predict_proba_one(self, x: dict) -> typing.Dict[base.typing.ClfTarget, float]:
raise NotImplementedError | BSD 3-Clause New or Revised License |
catalyst-team/catalyst | catalyst/contrib/nn/criterion/wing.py | WingLoss.forward | python | def forward(self, outputs: torch.Tensor, targets: torch.Tensor) -> torch.Tensor:
loss = self.loss_fn(outputs, targets)
return loss | Args:
@TODO: Docs. Contribution is welcome. | https://github.com/catalyst-team/catalyst/blob/a6fc305eaddc499c17584824794fa8d006072842/catalyst/contrib/nn/criterion/wing.py#L71-L77 | from functools import partial
import math
import torch
from torch import nn
def wing_loss(
outputs: torch.Tensor,
targets: torch.Tensor,
width: int = 5,
curvature: float = 0.5,
reduction: str = "mean",
) -> torch.Tensor:
diff_abs = (targets - outputs).abs()
loss = diff_abs.clone()
idx_smaller = diff_abs < width
idx_bigger = diff_abs >= width
loss[idx_smaller] = width * torch.log(1 + diff_abs[idx_smaller] / curvature)
c = width - width * math.log(1 + width / curvature)
loss[idx_bigger] = loss[idx_bigger] - c
if reduction == "sum":
loss = loss.sum()
if reduction == "mean":
loss = loss.mean()
return loss
class WingLoss(nn.Module):
def __init__(self, width: int = 5, curvature: float = 0.5, reduction: str = "mean"):
super().__init__()
self.loss_fn = partial(wing_loss, width=width, curvature=curvature, reduction=reduction) | Apache License 2.0 |
brain-research/data-linter | linters.py | DuplicateExampleDetector._lint | python | def _lint(self, examples):
feature_names = sorted(f.name for f in self._stats.features)
tuplize = utils.example_tuplizer(feature_names, denan=True)
duplicates = (
examples
| 'Tuplize' >> beam.Map(lambda x: (tuplize(x), x))
| 'CollectDuplicates' >> beam.GroupByKey()
| 'ExamplesToList' >> beam.Map(
lambda (example_tuple, examples): (example_tuple, list(examples)))
| 'FilterDuplicates' >> beam.Filter(
lambda (_, examples): len(examples) > 1))
samples = (
duplicates
| 'TakeExamples' >> beam.Map(lambda (_, examples): examples[0])
| 'Sample' >> beam.combiners.Sample.FixedSizeGlobally(
self.N_LINT_SAMPLES)
| 'ToSample' >> beam.Map(
lambda x: lint_result_pb2.LintSample(examples=x)))
n_duplicates = (
duplicates
| 'CountDuplicates' >> beam.Map(lambda (_, examples): len(examples))
| 'ExcessCounts' >> beam.Map(lambda x: x - 1)
| 'Total' >> beam.CombineGlobally(sum))
return (
examples.pipeline
| 'SyncSideInputs' >> beam.Create([None])
| 'ToResult' >> beam.Map(self._to_result,
beam.pvalue.AsSingleton(n_duplicates),
beam.pvalue.AsSingleton(samples))) | Returns the `PTransform` for the DuplicateExampleDetector linter.
Args:
examples: A `PTransform` that yields a `PCollection` of `tf.Example`s.
Returns:
A `PTransform` that yields a `LintResult` of the format
warnings: [num_duplicates]
lint_sample: [ features: [sample duplicates...] ] | https://github.com/brain-research/data-linter/blob/ef62043ae1a2022d48b3c1e83171cfd500a11524/linters.py#L713-L756 | from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import datetime
import itertools
import re
import apache_beam as beam
import dateutil.parser
import numpy as np
import scipy.stats
import six
import lint_result_pb2
import data_linter_utils as utils
class LintDetector(beam.PTransform):
N_LINT_SAMPLES = 2
def should_run(self):
return True
def __eq__(self, other):
return isinstance(other, type(self))
@classmethod
def _make_result(cls, **kwargs):
return lint_result_pb2.LintResult(linter_name=cls.__name__, **kwargs)
def _lint(self, examples):
raise NotImplementedError()
def expand(self, examples):
result = self._lint(examples)
if not isinstance(result,
(beam.pvalue.PCollection, beam.transforms.PTransform)):
result_pcoll = beam.Create([result] if result else [])
result = examples.pipeline | 'Materialize' >> result_pcoll
return result | 'PairWithName' >> beam.Map(
lambda r: (type(self).__name__, r))
class DateTimeAsStringDetector(LintDetector):
_NEAR_FUTURE_YEAR = datetime.datetime.today().year + 100
_EPOCH_YEAR = 1970
@classmethod
def _string_is_datetime(cls, maybe_dt):
try:
dateutil.parser.parse(maybe_dt)
try:
float_dt = float(maybe_dt)
if float_dt > 1e8:
return True
elif float_dt >= cls._EPOCH_YEAR and float_dt <= cls._NEAR_FUTURE_YEAR:
return True
return False
except ValueError:
return True
except (ValueError, OverflowError):
return False
def __init__(self, stats):
super(DateTimeAsStringDetector, self).__init__()
self._stats = stats
def should_run(self):
return bool(utils.get_string_features(self._stats))
def _lint(self, examples):
result = self._make_result()
string_features = utils.get_string_features(self._stats)
lint_samples = collections.defaultdict(set)
for feature in self._stats.features:
if feature.name not in string_features:
continue
str_stats = feature.string_stats
n_samples = str_stats.common_stats.num_non_missing
if n_samples == 0:
continue
num_date_parsable = 0
for bucket in str_stats.rank_histogram.buckets:
if self._string_is_datetime(bucket.label):
num_date_parsable += bucket.sample_count
samples = lint_samples[feature.name]
if len(samples) < self.N_LINT_SAMPLES:
samples.add(bucket.label)
if num_date_parsable / n_samples > 0.5:
result.warnings.append(feature.name)
result.lint_samples.add(strings=lint_samples[feature.name])
return result
class TokenizableStringDetector(LintDetector):
def __init__(self, stats, length_threshold=30,
enum_threshold=20):
super(TokenizableStringDetector, self).__init__()
self._stats = stats
self._length_threshold = length_threshold
self._enum_threshold = enum_threshold
def should_run(self):
return bool(utils.get_string_features(self._stats))
def _lint(self, examples):
result = self._make_result()
string_features = utils.get_string_features(self._stats)
for feature in self._stats.features:
if feature.name not in string_features:
continue
str_stats = feature.string_stats
if (str_stats.avg_length > self._length_threshold and
str_stats.unique > self._enum_threshold):
result.warnings.append(feature.name)
samples = [bucket.label for bucket in str_stats.rank_histogram.buckets
if len(bucket.label) > self._length_threshold]
result.lint_samples.add(strings=samples[:self.N_LINT_SAMPLES])
return result
class ZipCodeAsNumberDetector(LintDetector):
_ZIP_RE = re.compile(r'([\W_]|\b)zip(code|[\W_]|\b)')
def __init__(self, stats):
super(ZipCodeAsNumberDetector, self).__init__()
self._stats = stats
def should_run(self):
return bool(utils.get_numeric_features(self._stats))
def _lint(self, examples):
result = self._make_result()
numeric_features = utils.get_numeric_features(self._stats)
for feature in self._stats.features:
if (feature.name in numeric_features and
self._ZIP_RE.search(feature.name.lower())):
result.warnings.append(feature.name)
return result
class NumberAsStringDetector(LintDetector):
def __init__(self, stats, non_num_tol=0.5):
super(NumberAsStringDetector, self).__init__()
self._stats = stats
self._non_num_tol = non_num_tol
def should_run(self):
return bool(utils.get_string_features(self._stats))
def _lint(self, examples):
result = self._make_result()
string_features = utils.get_string_features(self._stats)
lint_samples = collections.defaultdict(set)
for feature in self._stats.features:
if feature.name not in string_features:
continue
str_stats = feature.string_stats
n_samples = str_stats.common_stats.num_non_missing
if n_samples == 0:
continue
num_numeric = 0
for bucket in str_stats.rank_histogram.buckets:
try:
nums_only = re.sub(r'\D', '', bucket.label)
if len(nums_only) / len(bucket.label) >= 1 - self._non_num_tol:
num_numeric += bucket.sample_count
samples = lint_samples[feature.name]
if len(samples) < self.N_LINT_SAMPLES:
samples.add(bucket.label)
except (ValueError, ZeroDivisionError):
pass
if num_numeric / n_samples > 0.5:
result.warnings.append(feature.name)
result.lint_samples.add(strings=lint_samples[feature.name])
return result
class NonNormalNumericFeatureDetector(LintDetector):
IGNORE_FEATURE_NAMES = {'lat', 'lon', 'latitude', 'longitude', 'id'}
_TYPICAL_STATS_ID = '_typical_'
WARNING_FMT = '{}:{}'
def __init__(self, stats, max_deviance=2, trim_proportion=0.1):
super(NonNormalNumericFeatureDetector, self).__init__()
self._stats = stats
self._max_deviance = max_deviance
self._trim_proportion = trim_proportion
def should_run(self):
return any(feature_name.lower() not in self.IGNORE_FEATURE_NAMES
for feature_name in utils.get_numeric_features(self._stats))
def _get_trimmed_stats(self, values):
values.sort()
trimmed_values = scipy.stats.trimboth(values, self._trim_proportion)
return trimmed_values.mean(), trimmed_values.std()
def _lint(self, examples):
result = self._make_result()
numeric_features = utils.get_numeric_features(self._stats)
numeric_feature_stats = []
feature_means = []
feature_std_devs = []
for feature_stats in self._stats.features:
if (feature_stats.name not in numeric_features
or feature_stats.name in self.IGNORE_FEATURE_NAMES):
continue
numeric_feature_stats.append(feature_stats)
num_stats = feature_stats.num_stats
feature_means.append(num_stats.mean)
feature_std_devs.append(num_stats.std_dev)
means_trimmed_mean, means_trimmed_std = self._get_trimmed_stats(
feature_means)
std_devs_trimmed_mean, std_devs_trimmed_std = self._get_trimmed_stats(
feature_std_devs)
typical_stats = lint_result_pb2.Statistics(
id=self._TYPICAL_STATS_ID,
mean=means_trimmed_mean, std_dev=std_devs_trimmed_mean)
result.lint_samples.add(stats=[typical_stats])
for feature_stats in numeric_feature_stats:
num_stats = feature_stats.num_stats
mean_deviance = utils.get_zscore(
num_stats.mean, means_trimmed_mean, means_trimmed_std)
std_dev_deviance = utils.get_zscore(
num_stats.std_dev, std_devs_trimmed_mean, std_devs_trimmed_std)
warnings = []
if mean_deviance > self._max_deviance:
warnings.append('mean')
if std_dev_deviance > self._max_deviance:
warnings.append('std_dev')
if warnings:
result.warnings.append(
self.WARNING_FMT.format(feature_stats.name, ','.join(warnings)))
result.lint_samples.add(stats=[lint_result_pb2.Statistics(
id=feature_stats.name,
mean=num_stats.mean, std_dev=num_stats.std_dev,
min=num_stats.min, max=num_stats.max)])
return result
class UniqueValueCountsDetector(LintDetector):
@property
def _counted_features(self):
raise NotImplementedError()
@property
def _count_transformer(self):
raise NotImplementedError()
def _check_feature(self, feature_w_val_counts):
raise NotImplementedError()
def should_run(self):
return bool(self._counted_features)
def _flatten_feature_vals(self, feature_vals):
feature, vals = feature_vals
return [(feature, v) for v in vals]
def _shift_key(self, feature_val_w_counts):
(feature, val), counts = feature_val_w_counts
return feature, (val, counts)
def _val_counts_as_dict(self, feature_val_counts):
feature, val_counts = feature_val_counts
return feature, dict(val_counts)
def _to_result(self, warning_samples):
if warning_samples:
warnings, samples = zip(*warning_samples)
return self._make_result(warnings=warnings, lint_samples=samples)
def _lint(self, examples):
feature_val_w_counts = (
examples
| 'Tuplize' >> beam.FlatMap(
utils.example_tuplizer(self._counted_features))
| 'FlattenFeatureVals' >> beam.FlatMap(self._flatten_feature_vals)
| 'CountFeatureVals' >> beam.combiners.Count.PerElement())
if hasattr(self, '_count_transformer'):
feature_val_w_counts |= 'TransformCounts' >> self._count_transformer
return (
feature_val_w_counts
| 'PairValWithCount' >> beam.Map(self._shift_key)
| 'GroupByFeature' >> beam.GroupByKey()
| 'ValCountsToDict' >> beam.Map(self._val_counts_as_dict)
| 'GenResults' >> beam.Map(self._check_feature)
| 'DropUnwarned' >> beam.Filter(bool)
| 'AsList' >> beam.combiners.ToList()
| 'ToResult' >> beam.Map(self._to_result))
class EnumDetector(UniqueValueCountsDetector):
N_LINT_SAMPLES = 4
def __init__(self, stats, enum_threshold=20, ignore_strings=True):
super(EnumDetector, self).__init__()
self._stats = stats
self._enum_threshold = enum_threshold
self._ignore_strings = ignore_strings
self._numeric_features = utils.get_numeric_features(self._stats)
@property
def _counted_features(self):
checked_features = self._numeric_features
if not self._ignore_strings:
checked_features.update(utils.get_string_features(self._stats))
return checked_features
def _check_feature(self, feature_w_val_counts):
feature, counts = feature_w_val_counts
if len(counts) >= self._enum_threshold:
return None
samp_vals = itertools.islice(iter(counts), self.N_LINT_SAMPLES)
if feature not in self._numeric_features:
samp_strs = [six.text_type(s).encode('utf8') for s in samp_vals]
samples = lint_result_pb2.LintSample(strings=samp_strs)
else:
samples = lint_result_pb2.LintSample(nums=samp_vals)
return feature, samples
class IntAsFloatDetector(UniqueValueCountsDetector):
def __init__(self, stats, int_threshold=0.95):
super(IntAsFloatDetector, self).__init__()
self._stats = stats
self._int_threshold = int_threshold
@property
def _counted_features(self):
return utils.get_float_features(self._stats)
@property
def _count_transformer(self):
return (
'DropNaN' >> beam.Filter(lambda (f_v, _): not np.isnan(f_v[1]))
| 'IsIntegral' >> beam.Map(
lambda (f_v, c): ((f_v[0], f_v[1] % 1 == 0), c))
| 'Count' >> beam.CombinePerKey(sum))
def _check_feature(self, feature_w_intp_counts):
feature, intp_counts = feature_w_intp_counts
num_present = sum(six.itervalues(intp_counts))
int_count = intp_counts.get(True, 0)
if int_count / num_present >= self._int_threshold:
sample = lint_result_pb2.LintSample(nums=[num_present, int_count])
return feature, sample
return None
class UncommonSignDetector(UniqueValueCountsDetector):
_SIGN_TO_STR = {1: 'positive', -1: 'negative', 0: 'zero'}
def __init__(self, stats, domain_freq_threshold=0.05):
super(UncommonSignDetector, self).__init__()
self._stats = stats
self._domain_freq_threshold = domain_freq_threshold
@property
def _counted_features(self):
return utils.get_numeric_features(self._stats)
@property
def _count_transformer(self):
return (
'ToSigns' >> beam.Map(
lambda (f_v, _): (f_v[0], np.sign(f_v[1])))
| 'CountSigns' >> beam.combiners.Count.PerElement())
def _check_feature(self, feature_sign_counts):
feature_name, sign_counts = feature_sign_counts
num_stats = next(stats for stats in self._stats.features
if stats.name == feature_name).num_stats
n_unique = sum(six.itervalues(sign_counts))
uncommon_sign_counts = {}
for sign, count in six.iteritems(sign_counts):
if sign == 0:
count = num_stats.num_zeros
elif sign == float('nan'):
common_stats = num_stats.common_stats
count = common_stats.tot_num_values - common_stats.num_non_missing
sign_freq = count / n_unique
if sign_freq > 0 and sign_freq <= self._domain_freq_threshold:
uncommon_sign_counts[sign] = count
if uncommon_sign_counts:
sample = lint_result_pb2.LintSample(nums=[n_unique])
for sign, count in six.iteritems(uncommon_sign_counts):
sample.strings.append(self._SIGN_TO_STR.get(sign, str(sign)))
sample.nums.append(count)
return feature_name, sample
return None
class DuplicateExampleDetector(LintDetector):
N_LINT_SAMPLES = 10
def __init__(self, stats):
super(DuplicateExampleDetector, self).__init__()
self._stats = stats
def _to_result(self, _, n_duplicates, samples):
warning = [str(n_duplicates)] if n_duplicates else []
return self._make_result(warnings=warning, lint_samples=[samples]) | Apache License 2.0 |
diofant/diofant | diofant/core/mul.py | _unevaluated_Mul | python | def _unevaluated_Mul(*args):
args = list(args)
newargs = []
ncargs = []
co = S.One
while args:
a = args.pop()
if a.is_Mul:
c, nc = a.args_cnc()
args.extend(c)
if nc:
ncargs.append(Mul._from_args(nc))
elif a.is_Number:
co *= a
else:
newargs.append(a)
newargs.sort(key=default_sort_key)
if co is not S.One:
newargs.insert(0, co)
if ncargs:
newargs.append(Mul._from_args(ncargs))
return Mul._from_args(newargs) | Return a well-formed unevaluated Mul: Numbers are collected and
put in slot 0, any arguments that are Muls will be flattened, and args
are sorted. Use this when args have changed but you still want to return
an unevaluated Mul.
Examples
========
>>> a = _unevaluated_Mul(*[Float(3.0), x, Integer(2)])
>>> a.args[0]
6.00000000000000
>>> a.args[1]
x
Two unevaluated Muls with the same arguments will
always compare as equal during testing:
>>> m = _unevaluated_Mul(sqrt(2), sqrt(3))
>>> m == _unevaluated_Mul(sqrt(3), sqrt(2))
True
>>> u = Mul(sqrt(3), sqrt(2), evaluate=False)
>>> m == _unevaluated_Mul(u)
True
>>> m == Mul(*m.args)
False | https://github.com/diofant/diofant/blob/05c50552b0e0533f1dbf2ec05e65b6c45b7e2c11/diofant/core/mul.py#L27-L75 | from collections import defaultdict
from ..utilities import default_sort_key
from .basic import Basic
from .cache import cacheit
from .logic import _fuzzy_group, fuzzy_and
from .operations import AssocOp
from .singleton import S
from .sympify import sympify
class NC_Marker:
is_Order = False
is_Mul = False
is_Number = False
is_Poly = False
is_commutative = False | BSD 3-Clause New or Revised License |
google-research/federated | reconstruction/movielens/movielens_dataset.py | create_user_split_np_arrays | python | def create_user_split_np_arrays(
ratings_df: pd.DataFrame,
max_examples_per_user: Optional[int] = None,
train_fraction: float = 0.8,
val_fraction: float = 0.1,
) -> Tuple[ServerDataArray, ServerDataArray, ServerDataArray]:
num_users = len(set(ratings_df.UserID))
all_user_examples = []
for user_id in range(num_users):
all_user_examples.append(
get_user_examples(ratings_df, user_id, max_examples_per_user))
np.random.seed(NP_RANDOM_SEED)
np.random.shuffle(all_user_examples)
train_idx = int(len(all_user_examples) * train_fraction)
val_idx = int(len(all_user_examples) * (train_fraction + val_fraction))
train_user_examples = all_user_examples[:train_idx]
val_user_examples = all_user_examples[train_idx:val_idx]
test_user_examples = all_user_examples[val_idx:]
def get_users_movies_ratings(user_examples):
users = []
movies = []
ratings = []
for user in user_examples:
for example in user:
users.append(example[0])
movies.append(example[1])
ratings.append(example[2])
users = np.array(users, dtype=np.int64)
movies = np.array(movies, dtype=np.int64)
ratings = np.array(ratings, dtype=np.float32)
users = np.reshape(users, [np.shape(users)[0], 1])
movies = np.reshape(movies, [np.shape(movies)[0], 1])
ratings = np.reshape(ratings, [np.shape(ratings)[0], 1])
return (users, movies, ratings)
train_users_movies_ratings = get_users_movies_ratings(train_user_examples)
val_users_movies_ratings = get_users_movies_ratings(val_user_examples)
test_users_movies_ratings = get_users_movies_ratings(test_user_examples)
return (train_users_movies_ratings, val_users_movies_ratings,
test_users_movies_ratings) | Creates arrays for train/val/test user data for server-side evaluation.
Loads a server-side version of the MovieLens dataset that contains ratings
from users partitioned into train/val/test populations. Note that
unlike `create_tf_datasets` and `create_tf_dataset_for_user`, the output data
does not generate batches (batching can be later applied during the call to
`model.fit`).
This produces datasets for user with server-side Keras where the split is
by users, so train/val/test sets contain disjoint users. For standard
server evaluation, this is expected to perform less well since the user
embeddings for users seen at val/test time will not be trained. If splitting
within users (so each user's data is split into train/val/test) is desired,
see `split_ratings_df` and `create_merged_np_arrays`.
For each of train/val/test, produces
(merged_users, merged_movies, merged_ratings), which can be used for
training of a model produced by `get_matrix_factorization_model()` from
models.py by calling
`model.fit([merged_users, merged_movies], merged_ratings, ...)`.
Args:
ratings_df: a pandas DataFrame with ratings data, as returned by
`load_movielens_data` or `split_ratings_df` (if using train/test split
data is desired).
max_examples_per_user: if not None, limit the number of rating examples for
each user to this many examples.
train_fraction: the approximate fraction of users to allocate to training
data.
val_fraction: the approximate fraction of users to allocate to val data.
Remaining users not allocated to train and val (if any) are allocated to
test.
Returns:
A 3-tuple of 3-tuples:
((train_users, train_movies, train_ratings),
(val_users, val_movies, val_ratings),
(test_users, test_movies, test_ratings)).
For each of train/val/test, the tuple contains:
users: a np.ndarray with type np.int64 and shape (num_examples, 1)
containing UserIDs. The order of entries corresponds to the order of
the examples: users[i] is the UserID for example i.
movies: a np.ndarray with type np.int64 and shape (num_examples, 1)
containing MovieIDs. The order of entries corresponds to the order of
the examples: movies[i] is the MovieID for example i.
ratings: a np.ndarray with type np.float32 and shape
(num_examples, 1) containing Ratings. The order of entries corresponds
to the order of the examples: ratings[i] is the Rating for
example i. | https://github.com/google-research/federated/blob/909953fa8945cfac01328e0a6d878e1dc0376c3c/reconstruction/movielens/movielens_dataset.py#L467-L569 | import collections
import io
import os
from typing import Any, List, Optional, Tuple
import zipfile
import numpy as np
import pandas as pd
import requests
import tensorflow as tf
MOVIELENS_1M_URL = "http://files.grouplens.org/datasets/movielens/ml-1m.zip"
DEFAULT_DATA_DIRECTORY = "/tmp"
NP_RANDOM_SEED = 42
ServerDataArray = Tuple[np.ndarray, np.ndarray, np.ndarray]
def download_and_extract_data(url: str = MOVIELENS_1M_URL,
data_directory: str = DEFAULT_DATA_DIRECTORY):
r = requests.get(url)
z = zipfile.ZipFile(io.BytesIO(r.content))
z.extractall(path=data_directory)
def load_movielens_data(
data_directory: str = DEFAULT_DATA_DIRECTORY,
normalize_ratings: bool = True
) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
ratings_df = pd.read_csv(
os.path.join(data_directory, "ml-1m", "ratings.dat"),
sep="::",
names=["UserID", "MovieID", "Rating", "Timestamp"])
movies_df = pd.read_csv(
os.path.join(data_directory, "ml-1m", "movies.dat"),
sep="::",
names=["MovieID", "Title", "Genres"])
users_df = pd.read_csv(
os.path.join(data_directory, "ml-1m", "users.dat"),
sep="::",
names=["UserID", "Gender", "Age", "Occupation", "Zip-code"])
movie_mapping = {
old_movie: new_movie for new_movie, old_movie in enumerate(
ratings_df.MovieID.astype("category").cat.categories)
}
user_mapping = {
old_user: new_user for new_user, old_user in enumerate(
ratings_df.UserID.astype("category").cat.categories)
}
ratings_df.MovieID = ratings_df.MovieID.map(movie_mapping)
ratings_df.UserID = ratings_df.UserID.map(user_mapping)
movies_df.MovieID = movies_df.MovieID.map(movie_mapping)
users_df.UserID = users_df.UserID.map(user_mapping)
movies_df = movies_df[pd.notnull(movies_df.MovieID)]
users_df = users_df[pd.notnull(users_df.UserID)]
if normalize_ratings:
ratings_df.Rating = (ratings_df.Rating - 3) / 2
return ratings_df, movies_df, users_df
def split_ratings_df(
ratings_df: pd.DataFrame,
train_fraction: float = 0.8,
val_fraction: float = 0.1
) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
if train_fraction + val_fraction > 1:
raise ValueError(
"train_fraction and val_fraction can't sum to greater than 1, got {}"
"and {}.".format(train_fraction, val_fraction))
ranks_per_user = ratings_df.groupby("UserID")["Timestamp"].rank(
method="first")
counts_per_user = ratings_df["UserID"].map(
ratings_df.groupby("UserID")["Timestamp"].apply(len))
normalized_ranks_per_user = ranks_per_user / counts_per_user
train_mask = normalized_ranks_per_user <= train_fraction
val_mask = ((normalized_ranks_per_user <=
(train_fraction + val_fraction)) & ~train_mask)
test_mask = ~train_mask & ~val_mask
train_ratings_df = ratings_df[train_mask]
val_ratings_df = ratings_df[val_mask]
test_ratings_df = ratings_df[test_mask]
return train_ratings_df, val_ratings_df, test_ratings_df
def get_user_examples(ratings_df: pd.DataFrame,
user_id: int,
max_examples_per_user: Optional[int] = None) -> List[Any]:
user_subset = ratings_df[ratings_df.UserID == user_id]
user_examples = [(user_subset.UserID.iloc[i], user_subset.MovieID.iloc[i],
user_subset.Rating.iloc[i])
for i in range(user_subset.shape[0])]
np.random.seed(NP_RANDOM_SEED)
np.random.shuffle(user_examples)
if max_examples_per_user is not None:
user_examples = user_examples[:max_examples_per_user]
return user_examples
def create_tf_dataset_for_user(ratings_df: pd.DataFrame,
user_id: int,
personal_model: bool = False,
batch_size: int = 1,
max_examples_per_user: Optional[int] = None,
num_local_epochs: int = 1) -> tf.data.Dataset:
def rating_batch_map_fn(rating_batch):
if personal_model:
return collections.OrderedDict([
("x", tf.cast(rating_batch[:, 1:2], tf.int64)),
("y", tf.cast(rating_batch[:, 2:3], tf.float32))
])
return collections.OrderedDict([
("x", (tf.cast(rating_batch[:, 0:1],
tf.int64), tf.cast(rating_batch[:, 1:2], tf.int64))),
("y", tf.cast(rating_batch[:, 2:3], tf.float32))
])
user_examples = get_user_examples(ratings_df, user_id, max_examples_per_user)
tf_dataset = tf.data.Dataset.from_tensor_slices(user_examples)
return tf_dataset.batch(batch_size).map(
rating_batch_map_fn,
num_parallel_calls=tf.data.experimental.AUTOTUNE).repeat(num_local_epochs)
def create_tf_datasets(ratings_df: pd.DataFrame,
personal_model: bool = False,
batch_size: int = 1,
max_examples_per_user: Optional[int] = None,
num_local_epochs: int = 1) -> List[tf.data.Dataset]:
num_users = len(set(ratings_df.UserID))
tf_datasets = [
create_tf_dataset_for_user(ratings_df, i, personal_model, batch_size,
max_examples_per_user, num_local_epochs)
for i in range(num_users)
]
return tf_datasets
def split_tf_datasets(
tf_datasets: List[tf.data.Dataset],
train_fraction: float = 0.8,
val_fraction: float = 0.1,
) -> Tuple[List[tf.data.Dataset], List[tf.data.Dataset], List[tf.data.Dataset]]:
if train_fraction + val_fraction > 1:
raise ValueError(
"train_fraction and val_fraction can't sum to greater than 1, got {}"
"and {}.".format(train_fraction, val_fraction))
np.random.seed(NP_RANDOM_SEED)
np.random.shuffle(tf_datasets)
train_idx = int(len(tf_datasets) * train_fraction)
val_idx = int(len(tf_datasets) * (train_fraction + val_fraction))
return (tf_datasets[:train_idx], tf_datasets[train_idx:val_idx],
tf_datasets[val_idx:])
def create_merged_np_arrays(
ratings_df: pd.DataFrame,
max_examples_per_user: Optional[int] = None,
shuffle_across_users: bool = True) -> ServerDataArray:
num_users = len(set(ratings_df.UserID))
merged_examples = []
for user_id in range(num_users):
user_examples = get_user_examples(ratings_df, user_id,
max_examples_per_user)
merged_examples += user_examples
if shuffle_across_users:
np.random.seed(NP_RANDOM_SEED)
np.random.shuffle(merged_examples)
merged_users = np.array([[x[0]] for x in merged_examples], dtype=np.int64)
merged_movies = np.array([[x[1]] for x in merged_examples], dtype=np.int64)
merged_ratings = np.array([[x[2]] for x in merged_examples], dtype=np.float32)
return merged_users, merged_movies, merged_ratings | Apache License 2.0 |
adafruit/adafruit_circuitpython_esp32spi | adafruit_esp32spi/PWMOut.py | PWMOut._is_deinited | python | def _is_deinited(self):
if self._pwm_pin is None:
raise ValueError(
"PWMOut Object has been deinitialized and can no longer "
"be used. Create a new PWMOut object."
) | Checks if PWMOut object has been previously de-initalized | https://github.com/adafruit/adafruit_circuitpython_esp32spi/blob/7b048134c49c6fb45b33fab4534114b8a89e4d29/adafruit_esp32spi/PWMOut.py#L53-L59 | class PWMOut:
ESP32_PWM_PINS = set(
[0, 1, 2, 4, 5, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 25, 26, 27, 32, 33]
)
def __init__(
self, esp, pwm_pin, *, frequency=500, duty_cycle=0, variable_frequency=False
):
if pwm_pin in self.ESP32_PWM_PINS:
self._pwm_pin = pwm_pin
else:
raise AttributeError("Pin %d is not a valid ESP32 GPIO Pin." % pwm_pin)
self._esp = esp
self._duty_cycle = duty_cycle
self._freq = frequency
self._var_freq = variable_frequency
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, exc_traceback):
self.deinit()
def deinit(self):
self._duty_cycle = 0
self._freq = 0
self._pwm_pin = None | MIT License |
wrr/wwwhisper | wwwhisper_auth/models.py | User.login_successful | python | def login_successful(self):
return | Must be called after successful login. | https://github.com/wrr/wwwhisper/blob/38a55dd9c828fbb1b5a8234ea3ddf2242e684983/wwwhisper_auth/models.py#L239-L243 | from django.contrib.auth.models import AbstractBaseUser
from django.db import connection
from django.db import models
from django.db import IntegrityError
from django.forms import ValidationError
from django.utils import timezone
from functools import wraps
from wwwhisper_auth import url_utils
from wwwhisper_auth import email_re
import logging
import random
import re
import threading
import uuid as uuidgen
logger = logging.getLogger(__name__)
class LimitExceeded(Exception):
pass
class ValidatedModel(models.Model):
class Meta:
abstract = True
app_label = 'wwwhisper_auth'
def save(self, *args, **kwargs):
self.full_clean()
return super(ValidatedModel, self).save(*args, **kwargs)
SINGLE_SITE_ID = 'theone'
class Site(ValidatedModel):
site_id = models.TextField(primary_key=True, db_index=True, editable=False)
mod_id = models.IntegerField(default=0)
_default_skin = {
'title': 'wwwhisper: Web Access Control',
'header': 'Protected site',
'message': 'Access to this site is restricted, please verify your email:'
}
title = models.CharField(max_length=80, blank=True)
header = models.CharField(max_length=100, blank=True)
message = models.CharField(max_length=500, blank=True)
branding = models.BooleanField(default=True)
aliases_limit = None
users_limit = None
locations_limit = None
def __init__(self, *args, **kwargs):
super(Site, self).__init__(*args, **kwargs)
self.mod_id_lock = threading.Lock()
def heavy_init(self):
self.locations = LocationsCollection(self)
self.users = UsersCollection(self)
self.aliases = AliasesCollection(self)
def site_modified(self):
cursor = connection.cursor()
cursor.execute(
'UPDATE wwwhisper_auth_site '
'SET mod_id = mod_id + 1 WHERE site_id = %s', [self.site_id])
cursor.close()
mod_id = self.mod_id_from_db()
with self.mod_id_lock:
self.mod_id = mod_id
def skin(self):
result = dict([(attr, getattr(self, attr) or self._default_skin[attr])
for attr in self._default_skin.iterkeys()])
result['branding'] = self.branding
return result
def update_skin(self, title, header, message, branding):
for attr in self._default_skin.iterkeys():
arg = locals()[attr].strip()
if arg == self._default_skin[attr]:
arg = ''
setattr(self, attr, arg)
self.branding = branding
self.save()
self.site_modified()
def get_mod_id_ts(self):
with self.mod_id_lock:
return self.mod_id
def mod_id_from_db(self):
cursor = connection.cursor()
cursor.execute(
'SELECT mod_id FROM wwwhisper_auth_site WHERE site_id = %s',
[self.site_id])
row = cursor.fetchone()
cursor.close()
if row is None:
return None
return row[0]
def modify_site(decorated_method):
@wraps(decorated_method)
def wrapper(self, *args, **kwargs):
result = decorated_method(self, *args, **kwargs)
self.site.site_modified()
return result
return wrapper
class SitesCollection(object):
def create_item(self, site_id, **kwargs):
site = Site.objects.create(site_id=site_id, **kwargs)
site.heavy_init()
return site
def find_item(self, site_id):
site = _find(Site, site_id=site_id)
if site is not None:
site.heavy_init()
return site
def delete_item(self, site_id):
site = self.find_item(site_id)
if site is None:
return False
site.delete()
return True
class User(AbstractBaseUser):
class Meta:
app_label = 'wwwhisper_auth'
unique_together = ('site', 'email')
site = models.ForeignKey(Site, related_name='+')
uuid = models.CharField(max_length=36, db_index=True,
editable=False, unique=True)
email = models.EmailField(db_index=True)
USERNAME_FIELD = 'uuid'
REQUIRED_FIELDS = ['email', 'site']
def attributes_dict(self, site_url):
return _add_common_attributes(self, site_url, {'email': self.email})
@models.permalink
def get_absolute_url(self):
return ('wwwhisper_user', (), {'uuid' : self.uuid})
@modify_site | MIT License |
pmatigakis/huginn | huginn/rest.py | FlightControlsResource.get | python | def get(self):
flight_controls_data = {
"aileron": self.controls.aileron,
"elevator": self.controls.elevator,
"rudder": self.controls.rudder,
"throttle": self.controls.throttle,
}
return flight_controls_data | returns the flight controls values | https://github.com/pmatigakis/huginn/blob/a35fec1df844eec05c7ab97a7c70c750e43a9f08/huginn/rest.py#L273-L282 | from logging import getLogger
from flask import request
from flask_restful import Resource, reqparse, marshal_with, abort
from tinydb import Query
from huginn.schemas import (AccelerationsSchema, VelocitiesSchema,
OrientationSchema, AtmosphereShema, ForcesSchema,
InitialConditionSchema, PositionSchema,
AirspeedIndicatorSchema, AltimeterSchema,
AttitudeIndicatorSchema, HeadingIndicatorSchema,
VerticalSpeedIndicatorSchema)
from huginn.fdm import (Accelerations, Velocities, Orientation, Atmosphere,
Forces, InitialCondition, Position)
from huginn import request_models
from huginn import request_parsers
logger = getLogger(__name__)
class FDMResource(Resource):
def __init__(self, fdm, aircraft):
self.fdm = fdm
self.aircraft = aircraft
def get(self):
sensors = self.aircraft.sensors
flight_data = {
"time": self.fdm.fdmexec.GetSimTime(),
"dt": self.fdm.fdmexec.GetDeltaT(),
"latitude": self.fdm.position.latitude,
"longitude": self.fdm.position.longitude,
"altitude": self.fdm.position.altitude,
"airspeed": self.fdm.velocities.true_airspeed,
"heading": self.fdm.orientation.psi,
"x_acceleration": self.fdm.accelerations.x,
"y_acceleration": self.fdm.accelerations.y,
"z_acceleration": self.fdm.accelerations.z,
"roll_rate": self.fdm.velocities.p,
"pitch_rate": self.fdm.velocities.q,
"yaw_rate": self.fdm.velocities.r,
"temperature": self.fdm.atmosphere.temperature,
"static_pressure": self.fdm.atmosphere.pressure,
"total_pressure": sensors.pitot_tube.true_pressure,
"roll": self.fdm.orientation.phi,
"pitch": self.fdm.orientation.theta,
"climb_rate": self.fdm.velocities.climb_rate
}
return flight_data
class AircraftResource(Resource):
def __init__(self, aircraft):
self.aircraft = aircraft
def get(self):
return {"type": self.aircraft.type}
class GPSResource(Resource):
def __init__(self, gps):
self.gps = gps
def get(self):
gps_data = {
"latitude": self.gps.latitude,
"longitude": self.gps.longitude,
"altitude": self.gps.altitude,
"airspeed": self.gps.airspeed,
"heading": self.gps.heading
}
return gps_data
class AccelerometerResource(Resource):
def __init__(self, accelerometer):
self.accelerometer = accelerometer
def get(self):
accelerometer_data = {
"x": self.accelerometer.x,
"y": self.accelerometer.y,
"z": self.accelerometer.z,
}
return accelerometer_data
class GyroscopeResource(Resource):
def __init__(self, gyroscope):
self.gyroscope = gyroscope
def get(self):
gyroscope_data = {
"roll_rate": self.gyroscope.roll_rate,
"pitch_rate": self.gyroscope.pitch_rate,
"yaw_rate": self.gyroscope.yaw_rate
}
return gyroscope_data
class ThermometerResource(Resource):
def __init__(self, thermometer):
self.thermometer = thermometer
def get(self):
thermometer_data = {
"temperature": self.thermometer.temperature,
}
return thermometer_data
class PressureSensorResource(Resource):
def __init__(self, pressure_sensor):
self.pressure_sensor = pressure_sensor
def get(self):
pressure_sensor_data = {
"static_pressure": self.pressure_sensor.pressure,
}
return pressure_sensor_data
class PitotTubeResource(Resource):
def __init__(self, pitot_tube):
self.pitot_tube = pitot_tube
def get(self):
pitot_tube_data = {
"total_pressure": self.pitot_tube.pressure,
}
return pitot_tube_data
class InertialNavigationSystemResource(Resource):
def __init__(self, inertial_navigation_system):
self.inertial_navigation_system = inertial_navigation_system
def get(self):
inertial_navigation_system_data = {
"latitude": self.inertial_navigation_system.latitude,
"longitude": self.inertial_navigation_system.longitude,
"altitude": self.inertial_navigation_system.altitude,
"airspeed": self.inertial_navigation_system.airspeed,
"heading": self.inertial_navigation_system.heading,
"roll": self.inertial_navigation_system.roll,
"pitch": self.inertial_navigation_system.pitch,
}
return inertial_navigation_system_data
class EngineResource(Resource):
def __init__(self, engine):
self.engine = engine
def get(self):
engine_data = {
"thrust": self.engine.thrust,
"throttle": self.engine.throttle,
}
return engine_data
class FlightControlsResource(Resource):
def __init__(self, controls):
self.controls = controls | BSD 3-Clause New or Revised License |
antoineco/kovhernetes | kovh/userdata.py | UserData.gen_kubelet_unit | python | def gen_kubelet_unit(self, roles):
labels = ("node-role.kubernetes.io/{}=''".format(r) for r in roles)
self.add_sunits([
{
'name': 'kubelet.service',
'enable': True,
'contents': (
files['kubelet'].decode()
.replace('__IMAGE_TAG__', 'v{}'.format(self.k8s_ver))
.replace('__NODE_LABELS__', ','.join(labels)))
}
]) | Generate kubelet service unit | https://github.com/antoineco/kovhernetes/blob/bb8a7fefede33e24c9946633ce6e17a6bdcaff77/kovh/userdata.py#L141-L155 | from gzip import compress
from urllib.parse import quote
from pkg_resources import resource_string
from json import loads, dumps
from collections import OrderedDict
def res_plain(resource):
return resource_string(__name__, resource)
def res_gzip(resource):
return compress(res_plain(resource))
files = {
'coremeta' : res_plain('data/systemd/coreos-metadata.service.d/10-provider.conf'),
'coremetassh' : res_plain('data/systemd/[email protected]/10-provider.conf'),
'kubelet' : res_plain('data/systemd/kubelet.service'),
'etcd' : res_plain('data/systemd/etcd-member.service.d/10-daemon.conf'),
'docker' : res_plain('data/systemd/docker.service.d/10-daemon.conf'),
'apiserver' : res_plain('data/k8s/manifests/kube-apiserver.json'),
'proxy' : res_plain('data/k8s/manifests/kube-proxy.json'),
'controller-manager' : res_plain('data/k8s/manifests/kube-controller-manager.json'),
'scheduler' : res_plain('data/k8s/manifests/kube-scheduler.json'),
'addon-manager' : res_gzip('data/k8s/manifests/kube-addon-manager.yml'),
'kubelet-config' : res_gzip('data/k8s/kubeletconfig.json'),
'proxy-config' : res_gzip('data/k8s/kubeproxyconfig.json'),
'controller-manager-config' : res_gzip('data/k8s/kubecontrollermanagerconfig.json'),
'scheduler-config' : res_gzip('data/k8s/kubeschedulerconfig.json'),
'kubedns' : res_gzip('data/k8s/addons/kubedns.yml'),
'flannel' : res_gzip('data/k8s/addons/flannel.yml'),
'kubeconfig' : res_plain('data/k8s/kubeconfig.json')
}
class UserData:
def __init__(self, k8s_ver='1.12.2'):
self.k8s_ver = k8s_ver
self.data = {
'ignition': { 'version': '2.1.0' },
'storage': {},
'systemd': {}
}
def add_files(self, definition):
if not 'files' in self.data['storage']:
self.data['storage']['files'] = []
if isinstance(definition, list):
self.data['storage']['files'].extend(definition)
else:
raise TypeError("'definition must be a list, not '{}'".format(type(definition)))
def add_sunits(self, definition):
if not 'units' in self.data['systemd']:
self.data['systemd']['units'] = []
if isinstance(definition, list):
self.data['systemd']['units'].extend(definition)
else:
raise TypeError("'definition must be a list, not '{}'".format(type(definition)))
def configure_clinux_core(self):
self.add_sunits([
{
'name': 'coreos-metadata.service',
'dropins': [{
'name': '10-provider.conf',
'contents': files['coremeta'].decode()
}]
},
{
'name': '[email protected]',
'enable': True,
'dropins': [{
'name': '10-provider.conf',
'contents': files['coremetassh'].decode()
}]
},
{
'name': 'locksmithd.service',
'mask': True
}
])
def gen_kubeconfig(self, component, server='localhost'):
kubeconfig = loads(files['kubeconfig'].decode(), object_pairs_hook=OrderedDict)
kubeconfig['users'][0]['user']['client-certificate'] = 'tls/client/{}.crt'.format(component)
kubeconfig['clusters'][0]['cluster']['server'] = 'https://' + server + ':6443'
kubeconfig = compress((dumps(kubeconfig, indent=2) + '\n').encode())
self.add_files([
{
'filesystem': 'root',
'path': '/etc/kubernetes/kubeconfig-' + component + '.gz',
'mode': 416,
'contents': {
'source': 'data:,' + quote(kubeconfig)
}
}
])
def gen_kubemanifest(self, component, tag):
manifest = loads(files[component].decode(), object_pairs_hook=OrderedDict)
manifest['spec']['containers'][0]['image'] = 'k8s.gcr.io/hyperkube:v{}'.format(self.k8s_ver)
manifest = compress((dumps(manifest, indent=2) + '\n').encode())
self.add_files([
{
'filesystem': 'root',
'path': '/etc/kubernetes/manifests/kube-{}.json'.format(component) + '.gz',
'mode': 416,
'contents': {
'source': 'data:,' + quote(manifest)
}
}
]) | Apache License 2.0 |
crm416/semantic | semantic/dates.py | DateService.extractDates | python | def extractDates(self, inp):
def merge(param):
day, time = param
if not (day or time):
return None
if not day:
return time
if not time:
return day
return datetime.datetime(
day.year, day.month, day.day, time.hour, time.minute
)
days = self.extractDays(inp)
times = self.extractTimes(inp)
return map(merge, zip_longest(days, times, fillvalue=None)) | Extract semantic date information from an input string.
In effect, runs both parseDay and parseTime on the input
string and merges the results to produce a comprehensive
datetime object.
Args:
inp (str): Input string to be parsed.
Returns:
A list of datetime objects containing the extracted dates from the
input snippet, or an empty list if not found. | https://github.com/crm416/semantic/blob/46deb8fefb3ea58aad2fedc8d0d62f3ee254b8fe/semantic/dates.py#L349-L378 | import re
import datetime
try:
from itertools import zip_longest
except:
from itertools import izip_longest as zip_longest
from .numbers import NumberService
class DateService(object):
def __init__(self, tz=None, now=None):
self.tz = tz
if now:
self.now = now
else:
self.now = datetime.datetime.now(tz=self.tz)
__months__ = ['january', 'february', 'march', 'april', 'may', 'june',
'july', 'august', 'september', 'october', 'november',
'december']
__shortMonths__ = ['jan', 'feb', 'mar', 'apr', 'may',
'jun', 'jul', 'aug', 'sept', 'oct', 'nov', 'dec']
__daysOfWeek__ = ['monday', 'tuesday', 'wednesday',
'thursday', 'friday', 'saturday', 'sunday']
__relativeDates__ = ['tomorrow', 'tonight', 'next']
__todayMatches__ = ['tonight', 'today', 'this morning',
'this evening', 'this afternoon']
__tomorrowMatches__ = ['tomorrow', 'next morning',
'next evening', 'next afternoon']
__dateDescriptors__ = {
'one': 1,
'first': 1,
'two': 2,
'second': 2,
'three': 3,
'third': 3,
'four': 4,
'fourth': 4,
'five': 5,
'fifth': 5,
'six': 6,
'sixth': 6,
'seven': 7,
'seventh': 7,
'eight': 8,
'eighth': 8,
'nine': 9,
'ninth': 9,
'ten': 10,
'tenth': 10,
'eleven': 11,
'eleventh': 11,
'twelve': 12,
'twelth': 12,
'thirteen': 13,
'thirteenth': 13,
'fourteen': 14,
'fourteenth': 14,
'fifteen': 15,
'fifteenth': 15,
'sixteen': 16,
'sixteenth': 16,
'seventeen': 17,
'seventeenth': 17,
'eighteen': 18,
'eighteenth': 18,
'nineteen': 19,
'nineteenth': 19,
'twenty': 20,
'twentieth': 20,
'twenty one': 21,
'twenty first': 21,
'twenty two': 22,
'twenty second': 22,
'twenty three': 23,
'twenty third': 23,
'twenty four': 24,
'twenty fourth': 24,
'twenty five': 25,
'twenty fifth': 25,
'twenty six': 26,
'twenty sixth': 26,
'twenty seven': 27,
'twenty seventh': 27,
'twenty eight': 28,
'twenty eighth': 28,
'twenty nine': 29,
'twenty ninth': 29,
'thirty': 30,
'thirtieth': 30,
'thirty one': 31,
'thirty first': 31
}
_dayRegex = re.compile(
r"""(?ix)
((week|day)s?\ from\ )?
(
tomorrow
|tonight
|today
|(next|this)[\ \b](morning|afternoon|evening|Monday|Tuesday|Wednesday|Thursday|Friday|Saturday|Sunday)
|(Monday|Tuesday|Wednesday|Thursday|Friday|Saturday|Sunday)
|(Jan(?:uary)?|Feb(?:ruary)?|Mar(?:ch)?|Apr(?:il)?|May|June?|July?|Aug(?:ust)?|Sept(?:ember)?|Oct(?:ober)?|Nov(?:ember)?|Dec(?:ember)?)\ (\w+)((\s|\-)?\w*)
)
""")
_timeRegex = re.compile(
r"""(?ix)
.*?
(
morning
|afternoon
|evening
|(\d{1,2}\:\d{2})\ ?(am|pm)?
|in\ (.+?)\ (hours|minutes)(\ (?:and\ )?(.+?)\ (hours|minutes))?
)
.*?""")
def _preprocess(self, inp):
return inp.replace('-', ' ').lower()
def extractDays(self, inp):
inp = self._preprocess(inp)
def extractDayOfWeek(dayMatch):
if dayMatch.group(5) in self.__daysOfWeek__:
return self.__daysOfWeek__.index(dayMatch.group(5))
elif dayMatch.group(6) in self.__daysOfWeek__:
return self.__daysOfWeek__.index(dayMatch.group(6))
def extractMonth(dayMatch):
if dayMatch.group(7) in self.__months__:
return self.__months__.index(dayMatch.group(7)) + 1
elif dayMatch.group(7) in self.__shortMonths__:
return self.__shortMonths__.index(dayMatch.group(7)) + 1
def extractDay(dayMatch):
combined = dayMatch.group(8) + dayMatch.group(9)
if combined in self.__dateDescriptors__:
return self.__dateDescriptors__[combined]
elif dayMatch.group(8) in self.__dateDescriptors__:
return self.__dateDescriptors__[dayMatch.group(8)]
elif int(dayMatch.group(8)) in self.__dateDescriptors__.values():
return int(dayMatch.group(8))
def extractDaysFrom(dayMatch):
if not dayMatch.group(1):
return 0
def numericalPrefix(dayMatch):
prefix = inp.split(dayMatch.group(1))[0].strip().split(' ')
prefix.reverse()
prefix = list(filter(lambda s: s != 'and', prefix))
service = NumberService()
num = prefix[0]
if service.isValid(num):
for n in prefix[1:]:
inc = n + " " + num
if service.isValid(inc):
num = inc
else:
break
return service.parse(num)
return 1
factor = numericalPrefix(dayMatch)
if dayMatch.group(2) == 'week':
return factor * 7
elif dayMatch.group(2) == 'day':
return factor * 1
def handleMatch(dayMatch):
def safe(exp):
try:
return exp()
except:
return False
days_from = safe(lambda: extractDaysFrom(dayMatch))
today = safe(lambda: dayMatch.group(3) in self.__todayMatches__)
tomorrow = safe(lambda: dayMatch.group(3)
in self.__tomorrowMatches__)
next_week = safe(lambda: dayMatch.group(4) == 'next')
day_of_week = safe(lambda: extractDayOfWeek(dayMatch))
month = safe(lambda: extractMonth(dayMatch))
day = safe(lambda: extractDay(dayMatch))
if not dayMatch:
return None
elif today:
d = self.now
elif tomorrow:
d = self.now + datetime.timedelta(days=1)
elif type(day_of_week) == int:
current_day_of_week = self.now.weekday()
num_days_away = (day_of_week - current_day_of_week) % 7
if next_week:
num_days_away += 7
d = self.now + datetime.timedelta(days=num_days_away)
elif month and day:
d = datetime.datetime(
self.now.year, month, day,
self.now.hour, self.now.minute)
if days_from:
d += datetime.timedelta(days=days_from)
return d
matches = self._dayRegex.finditer(inp)
return [handleMatch(dayMatch) for dayMatch in matches]
def extractDay(self, inp):
day = self.extractDay(inp)
if day:
return day[0]
return None
def extractTimes(self, inp):
def handleMatch(time):
relative = False
if not time:
return None
elif time.group(1) == 'morning':
h = 8
m = 0
elif time.group(1) == 'afternoon':
h = 12
m = 0
elif time.group(1) == 'evening':
h = 19
m = 0
elif time.group(4) and time.group(5):
h, m = 0, 0
converter = NumberService()
try:
diff = converter.parse(time.group(4))
except:
return None
if time.group(5) == 'hours':
h += diff
else:
m += diff
if time.group(6):
converter = NumberService()
try:
diff = converter.parse(time.group(7))
except:
return None
if time.group(8) == 'hours':
h += diff
else:
m += diff
relative = True
else:
t = time.group(2)
h, m = int(t.split(':')[0]) % 12, int(t.split(':')[1])
try:
if time.group(3) == 'pm':
h += 12
except IndexError:
pass
if relative:
return self.now + datetime.timedelta(hours=h, minutes=m)
else:
return datetime.datetime(
self.now.year, self.now.month, self.now.day, h, m
)
inp = self._preprocess(inp)
return [handleMatch(time) for time in self._timeRegex.finditer(inp)]
def extractTime(self, inp):
times = self.extractTimes(inp)
if times:
return times[0]
return None | MIT License |
rjt1990/pyflux | pyflux/ssm/ndynlin.py | NDynReg._ss_matrices | python | def _ss_matrices(self,beta):
T = np.identity(self.state_no)
Z = self.X
R = np.identity(self.state_no)
Q = np.identity(self.state_no)
for i in range(0,self.state_no):
Q[i][i] = self.latent_variables.z_list[i].prior.transform(beta[i])
return T, Z, R, Q | Creates the state space matrices required
Parameters
----------
beta : np.array
Contains untransformed starting values for latent variables
Returns
----------
T, Z, R, Q : np.array
State space matrices used in KFS algorithm | https://github.com/rjt1990/pyflux/blob/297f2afc2095acd97c12e827dd500e8ea5da0c0f/pyflux/ssm/ndynlin.py#L345-L368 | import sys
if sys.version_info < (3,):
range = xrange
import numpy as np
import pandas as pd
import scipy.stats as ss
from scipy import optimize
from .. import inference as ifr
from .. import families as fam
from .. import output as op
from .. import tsm as tsm
from .. import data_check as dc
from .. import covariances as cov
from .. import results as res
from .. import gas as gas
from .kalman import *
from .dynlin import *
class NDynReg(tsm.TSM):
def __init__(self, formula, data, family):
super(NDynReg,self).__init__('NDynReg')
self.max_lag = 0
self._z_hide = 0
self.supported_methods = ["MLE","PML","Laplace","M-H","BBVI"]
self.default_method = "MLE"
self.multivariate_model = False
self.is_pandas = True
self.data_original = data
self.formula = formula
self.y, self.X = dmatrices(formula, data)
self.z_no = self.X.shape[1]
self.y_name = self.y.design_info.describe()
self.data_name = self.y_name
self.X_names = self.X.design_info.describe().split(" + ")
self.y = np.array([self.y]).ravel()
self.data = self.y
self.data_length = self.data.shape[0]
self.X = np.array([self.X])[0]
self.index = data.index
self.state_no = self.X.shape[1]
self._create_latent_variables()
self.family = family
self.model_name2, self.link, self.scale, self.shape, self.skewness, self.mean_transform, self.cythonized = self.family.setup()
self.model_name = self.model_name2 + " Dynamic Regression Model"
for no, i in enumerate(self.family.build_latent_variables()):
self.latent_variables.add_z(i[0],i[1],i[2])
self.latent_variables.z_list[no+1].start = i[3]
self.family_z_no = len(self.family.build_latent_variables())
self.z_no = len(self.latent_variables.z_list)
def _get_scale_and_shape(self, parm):
if self.scale is True:
if self.shape is True:
model_shape = parm[-1]
model_scale = parm[-2]
else:
model_shape = 0
model_scale = parm[-1]
else:
model_scale = 0
model_shape = 0
if self.skewness is True:
model_skewness = parm[-3]
else:
model_skewness = 0
return model_scale, model_shape, model_skewness
def neg_loglik(self, beta):
states = np.zeros([self.state_no, self.data_length])
for state_i in range(self.state_no):
states[state_i,:] = beta[(self.z_no + (self.data_length*state_i)):(self.z_no + (self.data_length*(state_i+1)))]
parm = np.array([self.latent_variables.z_list[k].prior.transform(beta[k]) for k in range(self.z_no)])
scale, shape, skewness = self._get_scale_and_shape(parm)
return self.state_likelihood(beta, states) + self.family.neg_loglikelihood(self.data, self.link(np.sum(self.X*states.T,axis=1)), scale, shape, skewness)
def likelihood_markov_blanket(self, beta):
states = np.zeros([self.state_no, self.data_length])
for state_i in range(self.state_no):
states[state_i,:] = beta[(self.z_no + (self.data_length*state_i)):(self.z_no + (self.data_length*(state_i+1)))]
parm = np.array([self.latent_variables.z_list[k].prior.transform(beta[k]) for k in range(self.z_no)])
scale, shape, skewness = self._get_scale_and_shape(parm)
return self.family.markov_blanket(self.data, self.link(np.sum(self.X*states.T,axis=1)), scale, shape, skewness)
def state_likelihood(self, beta, alpha):
_, _, _, Q = self._ss_matrices(beta)
state_lik = 0
for i in range(alpha.shape[0]):
state_lik += np.sum(ss.norm.logpdf(alpha[i][1:]-alpha[i][:-1],loc=0,scale=np.power(Q[i][i],0.5)))
return state_lik
def state_likelihood_markov_blanket(self, beta, alpha, col_no):
_, _, _, Q = self._ss_matrices(beta)
blanket = np.append(0,ss.norm.logpdf(alpha[col_no][1:]-alpha[col_no][:-1],loc=0,scale=np.sqrt(Q[col_no][col_no])))
blanket[:-1] = blanket[:-1] + blanket[1:]
return blanket
def neg_logposterior(self, beta):
post = self.neg_loglik(beta)
for k in range(0,self.z_no):
post += -self.latent_variables.z_list[k].prior.logpdf(beta[k])
return post
def markov_blanket(self, beta, alpha):
likelihood_blanket = self.likelihood_markov_blanket(beta)
state_blanket = self.state_likelihood_markov_blanket(beta, alpha, 0)
for i in range(self.state_no-1):
likelihood_blanket = np.append(likelihood_blanket,self.likelihood_markov_blanket(beta))
state_blanket = np.append(state_blanket,self.state_likelihood_markov_blanket(beta,alpha,i+1))
return likelihood_blanket + state_blanket
def evo_blanket(self, beta, alpha):
evo_blanket = np.zeros(self.state_no)
for i in range(evo_blanket.shape[0]):
evo_blanket[i] = self.state_likelihood_markov_blanket(beta, alpha, i).sum()
if self.family_z_no > 0:
evo_blanket = np.append([self.likelihood_markov_blanket(beta).sum()]*(self.family_z_no),evo_blanket)
return evo_blanket
def log_p_blanket(self, beta):
states = np.zeros([self.state_no, self.data.shape[0]])
for state_i in range(self.state_no):
states[state_i,:] = beta[(self.z_no + (self.data.shape[0]*state_i)):(self.z_no + (self.data.shape[0]*(state_i+1)))]
return np.append(self.evo_blanket(beta,states),self.markov_blanket(beta,states))
def _create_latent_variables(self):
for parm in range(self.z_no):
self.latent_variables.add_z('Sigma^2 ' + self.X_names[parm], fam.Flat(transform='exp'), fam.Normal(0,3))
def _model(self, data, beta):
T, Z, R, Q, H = self._ss_matrices(beta)
return nld_univariate_kalman(data, Z, H, T, Q, R, 0.0)
def _preoptimize_model(self):
gaussian_model = DynReg(formula=self.formula, data=self.data_original)
gaussian_model.fit()
for i in range(self.z_no-self.family_z_no):
self.latent_variables.z_list[i].start = gaussian_model.latent_variables.get_z_values()[i+1]
if self.model_name2 == 't':
def temp_function(params):
return -np.sum(ss.t.logpdf(x=self.data, df=np.exp(params[0]),
loc=np.ones(self.data.shape[0])*params[1], scale=np.exp(params[2])))
p = optimize.minimize(temp_function,np.array([2.0,0.0,-1.0]),method='L-BFGS-B')
self.latent_variables.z_list[-2].start = p.x[2]
self.latent_variables.z_list[-1].start = p.x[0]
elif self.model_name2 == 'Skewt':
def temp_function(params):
return -np.sum(fam.Skewt.logpdf_internal(x=self.data,df=np.exp(params[0]),
loc=np.ones(self.data.shape[0])*params[1], scale=np.exp(params[2]),gamma=np.exp(params[3])))
p = optimize.minimize(temp_function,np.array([2.0,0.0,-1.0,0.0]),method='L-BFGS-B')
self.latent_variables.z_list[-3].start = p.x[3]
self.latent_variables.z_list[-2].start = p.x[2]
self.latent_variables.z_list[-1].start = p.x[0]
return gaussian_model.latent_variables | BSD 3-Clause New or Revised License |
iristyle/chocolateypackages | EthanBrown.SublimeText2.EditorPackages/tools/PackageCache/SmartMarkdown/headline_move.py | HeadlineMoveCommand.run | python | def run(self, edit, forward=True, same_level=True):
new_sel = []
if same_level:
level_type = headline.MATCH_PARENT
else:
level_type = headline.MATCH_ANY
for region in self.view.sel():
if same_level:
_, level = headline.headline_and_level_at_point(self.view, region.a,
search_above_and_down=True)
if level is None:
return
else:
level = headline.ANY_LEVEL
match_region, _ = headline.find_headline(self.view, region.a, level, forward, level_type, skip_headline_at_point=True, skip_folded=True)
if is_region_void(match_region):
return
new_sel.append(sublime.Region(match_region.a, match_region.a))
self.adjust_view(new_sel) | Move between headlines, forward or backward.
If same_level is true, only move to headline with the same level
or higher level. | https://github.com/iristyle/chocolateypackages/blob/8c9833710577de6db6e8b1db5d9196e19e19d117/EthanBrown.SublimeText2.EditorPackages/tools/PackageCache/SmartMarkdown/headline_move.py#L20-L55 | import sublime
import sublime_plugin
try:
from . import headline
from .utilities import is_region_void
except ValueError:
import headline
from utilities import is_region_void
class HeadlineMoveCommand(sublime_plugin.TextCommand): | MIT License |
scikit-hep/uproot4 | src/uproot/behaviors/TAxis.py | AxisTraits.discrete | python | def discrete(self):
fNbins = self._axis.member("fNbins")
fLabels = self._axis.member("fLabels", none_if_missing=True)
return fLabels is not None and len(fLabels) == fNbins | True if bins are discrete: if they have string-valued labels. | https://github.com/scikit-hep/uproot4/blob/e0db77a2a10d701cb48f72e9f0d7867e1589572d/src/uproot/behaviors/TAxis.py#L39-L45 | from __future__ import absolute_import
try:
from collections.abc import Sequence
except ImportError:
from collections import Sequence
import numpy
class AxisTraits(object):
def __init__(self, axis):
self._axis = axis
def __repr__(self):
return "AxisTraits({0})".format(repr(self._axis))
@property
def circular(self):
return False
@property | BSD 3-Clause New or Revised License |
michaelhush/m-loop | mloop/utilities.py | _generate_legend_labels | python | def _generate_legend_labels(param_indices, all_param_names):
labels = []
for index in param_indices:
label = str(index)
name = all_param_names[index]
if name:
label = label + ': {name}'.format(name=name)
labels.append(label)
return labels | Generate a list of labels for the legend of a plot.
This is a helper function for visualization methods, used to generate the
labels in legends for plots that show the values for optimization
parameters. The label has the parameter's index and, if available, a colon
followed by the parameter's name e.g. '3: some_name'. If no name is
available, then the label will simply be a string representation of the
parameter's index, e.g. '3'.
Args:
param_indices (list-like of int): The indices of the parameters for
which labels should be generated. Generally this should be the same
as the list of indices of parameters included in the plot.
all_param_names (list-like of str): The names of all parameters from the
optimization. Note this this argument should be *all* of the names
for all of the parameters, not just the ones to be included in the
plot legend.
Returns:
labels (list of str): The labels generated for use in a plot legend. | https://github.com/michaelhush/m-loop/blob/24e0e67d993b81dcc319d7cc6390c3345036fc67/mloop/utilities.py#L417-L449 | from __future__ import absolute_import, division, print_function
__metaclass__ = type
import scipy.io as si
import pickle
import logging
import datetime
import sys
import os
import numpy as np
import numpy.random as nr
import base64
import mloop
python_version = sys.version_info[0]
if python_version < 3:
import Queue
empty_exception = Queue.Empty
else:
import queue
empty_exception = queue.Empty
default_interface_in_filename = 'exp_output'
default_interface_out_filename = 'exp_input'
default_interface_file_type = 'txt'
archive_foldername = './M-LOOP_archives/'
log_foldername = './M-LOOP_logs/'
default_log_filename = 'M-LOOP'
filewrite_wait = 0.1
mloop_path = os.path.dirname(mloop.__file__)
np.set_printoptions(threshold=np.inf)
def config_logger(**kwargs):
_ = _config_logger(**kwargs)
def _config_logger(log_filename = default_log_filename,
file_log_level=logging.DEBUG,
console_log_level=logging.INFO,
**kwargs):
log = logging.getLogger('mloop')
if len(log.handlers) == 0:
log.setLevel(min(file_log_level,console_log_level))
if log_filename is not None:
filename_suffix = generate_filename_suffix('log')
full_filename = log_filename + filename_suffix
filename_with_path = os.path.join(log_foldername, full_filename)
actual_log_foldername = os.path.dirname(filename_with_path)
if not os.path.exists(actual_log_foldername):
os.makedirs(actual_log_foldername)
fh = logging.FileHandler(filename_with_path)
fh.setLevel(file_log_level)
fh.setFormatter(logging.Formatter('%(asctime)s %(name)-20s %(levelname)-8s %(message)s'))
log.addHandler(fh)
ch = logging.StreamHandler(stream = sys.stdout)
ch.setLevel(console_log_level)
ch.setFormatter(logging.Formatter('%(levelname)-8s %(message)s'))
log.addHandler(ch)
log.info('M-LOOP version ' + mloop.__version__)
log.debug('M-LOOP Logger configured.')
return kwargs
def datetime_to_string(datetime):
return datetime.strftime('%Y-%m-%d_%H-%M')
def generate_filename_suffix(file_type, file_datetime=None, random_bytes=False):
if file_datetime is None:
file_datetime = datetime.datetime.now()
date_string = datetime_to_string(file_datetime)
filename_suffix = '_' + date_string
if random_bytes:
random_string = base64.urlsafe_b64encode(nr.bytes(6)).decode()
filename_suffix = filename_suffix + '_' + random_string
filename_suffix = filename_suffix + '.' + file_type
return filename_suffix
def dict_to_txt_file(tdict,filename):
with open(filename,'w') as out_file:
for key in tdict:
out_file.write(str(key) + '=' + repr(tdict[key]).replace('\n', '').replace('\r', '') + '\n')
def txt_file_to_dict(filename):
with open(filename,'r') as in_file:
tdict_string = ''
for line in in_file:
temp = (line.partition('#')[0]).strip('\n').strip()
if temp != '':
tdict_string += temp+','
array = np.array
inf = float('inf')
nan = float('nan')
tdict = eval('dict('+tdict_string+')')
return tdict
def save_dict_to_file(dictionary,filename,file_type=None):
if file_type is None:
file_type = get_file_type(filename)
if file_type=='mat':
si.savemat(filename,dictionary)
elif file_type=='txt':
dict_to_txt_file(dictionary,filename)
elif file_type=='pkl':
with open(filename,'wb') as out_file:
pickle.dump(dictionary,out_file)
else:
raise ValueError
def get_dict_from_file(filename,file_type=None):
if file_type is None:
file_type = get_file_type(filename)
if file_type=='mat':
dictionary = si.loadmat(filename)
elif file_type=='txt':
dictionary = txt_file_to_dict(filename)
elif file_type=='pkl':
with open(filename,'rb') as in_file:
dictionary = pickle.load(in_file)
else:
raise ValueError
return dictionary
def get_file_type(filename):
_, file_type = os.path.splitext(filename)
file_type = file_type[1:]
return file_type
def get_controller_type_from_learner_archive(learner_filename):
file_type = get_file_type(learner_filename)
log = logging.getLogger(__name__)
if not check_file_type_supported(file_type):
message = 'File type not supported: ' + repr(file_type)
log.error(message)
raise ValueError(message)
learner_dict = get_dict_from_file(learner_filename, file_type)
archive_type = learner_dict['archive_type']
if archive_type == 'controller':
message = ('{filename} is a controller archive, not a '
'learner archive.').format(filename=learner_filename)
log.error(message)
raise ValueError(message)
ARCHIVE_CONTROLLER_MAPPING = {
'gaussian_process_learner': 'gaussian_process',
'neural_net_learner': 'neural_net',
'differential_evolution': 'differential_evolution',
}
if archive_type in ARCHIVE_CONTROLLER_MAPPING:
controller_type = ARCHIVE_CONTROLLER_MAPPING[archive_type]
else:
message = ('Learner archive has unsupported archive_type: '
'{archive_type}').format(archive_type=archive_type)
log.error(message)
raise NotImplementedError(message)
return controller_type
def check_file_type_supported(file_type):
return file_type == 'mat' or 'txt' or 'pkl'
def safe_cast_to_array(in_array):
out_array = np.squeeze(np.array(in_array))
if out_array.shape == ():
out_array = np.array([out_array[()]])
return out_array
def safe_cast_to_list(in_array):
if isinstance(in_array, np.ndarray):
t_array = np.squeeze(in_array)
if t_array.shape == ():
out_list = [t_array[()]]
else:
out_list = list(t_array)
else:
out_list = list(in_array)
return out_list
def chunk_list(list_, chunk_size):
if (chunk_size is None) or (chunk_size == float('inf')):
return [list_]
return [list_[i:(i+chunk_size)] for i in range(0, len(list_), chunk_size)]
def _param_names_from_file_dict(file_dict):
if 'param_names' in file_dict:
param_names = [str(name) for name in file_dict['param_names']]
else:
num_params = int(file_dict['num_params'])
param_names = [''] * num_params
return param_names | MIT License |
nccgroup/libptmalloc | libptmalloc/frontend/commands/gdb/pthelp.py | pthelp.invoke | python | def invoke(self, arg, from_tty):
pu.print_header("{:<20}".format("pthelp"), end="")
print("List all libptmalloc commands")
for cmd in self.cmds:
if cmd.parser != None:
description = cmd.parser.description.split("\n")[0]
elif cmd.description != None:
description = cmd.description
else:
description = "Unknown"
pu.print_header("{:<20}".format(cmd.name), end="")
print(description)
print("Note: Use a command name with -h to get additional help") | Inherited from gdb.Command
See https://sourceware.org/gdb/current/onlinedocs/gdb/Commands-In-Python.html
Print the usage of all the commands | https://github.com/nccgroup/libptmalloc/blob/e9011393db1ea79b769dcf5f52bd1170a367b304/libptmalloc/frontend/commands/gdb/pthelp.py#L32-L51 | from __future__ import print_function
import sys
import logging
from libptmalloc.frontend import printutils as pu
from libptmalloc.ptmalloc import malloc_state as ms
from libptmalloc.ptmalloc import ptmalloc as pt
from libptmalloc.frontend import helpers as h
from libptmalloc.frontend.commands.gdb import ptcmd
log = logging.getLogger("libptmalloc")
log.trace("pthelp.py")
try:
import gdb
except ImportError:
print("Not running inside of GDB, exiting...")
raise Exception("sys.exit()")
class pthelp(ptcmd.ptcmd):
def __init__(self, ptm, commands=[]):
log.debug("pthelp.__init__()")
super(pthelp, self).__init__(ptm, "pthelp")
self.cmds = commands
@h.catch_exceptions | MIT License |
universitadellacalabria/uniticket | uni_ticket/views/management.py | manage_closed_ticket_url | python | def manage_closed_ticket_url(request, structure_slug):
structure = get_object_or_404(OrganizationalStructure,
slug=structure_slug)
user_type = get_user_type(request.user, structure)
return redirect('uni_ticket:{}_closed_ticket'.format(user_type),
structure_slug) | Makes URL redirect to closed ticket page depending of user role
:type structure_slug: String
:param structure_slug: slug of structure to manage
:return: redirect | https://github.com/universitadellacalabria/uniticket/blob/b7c6e9b793eda273038a6339f6dfdfc3e3b5a344/uni_ticket/views/management.py#L69-L83 | import json
import logging
import os
import zipfile
from django.conf import settings
from django.contrib import messages
from django.contrib.admin.models import LogEntry, ADDITION, CHANGE
from django.contrib.admin.views.decorators import staff_member_required
from django.contrib.auth.decorators import login_required
from django.contrib.contenttypes.models import ContentType
from django.db.models import Q
from django.http import HttpResponse, HttpResponseRedirect
from django.shortcuts import get_object_or_404, render, redirect
from django.urls import reverse
from django.utils.html import strip_tags
from django.utils.translation import gettext as _
from django_form_builder.utils import get_as_dict, get_labeled_errors
from organizational_area.models import *
from uni_ticket.decorators import (has_admin_privileges,
ticket_assigned_to_structure,
ticket_is_taken_and_not_closed,
ticket_is_not_taken_and_not_closed,
ticket_is_taken_for_employee)
from uni_ticket.forms import *
from uni_ticket.models import *
from uni_ticket.utils import *
logger = logging.getLogger(__name__)
@login_required
def manage_opened_ticket_url(request, structure_slug):
structure = get_object_or_404(OrganizationalStructure,
slug=structure_slug)
user_type = get_user_type(request.user, structure)
return redirect('uni_ticket:{}_opened_ticket'.format(user_type),
structure_slug)
@login_required
def manage_unassigned_ticket_url(request, structure_slug):
structure = get_object_or_404(OrganizationalStructure,
slug=structure_slug)
user_type = get_user_type(request.user, structure)
return redirect('uni_ticket:{}_unassigned_ticket'.format(user_type),
structure_slug)
@login_required | Apache License 2.0 |
bigmlcom/bigmler | bigmler/checkpoint.py | is_evaluation_created | python | def is_evaluation_created(path):
evaluation_id = None
try:
with open("%s%sevaluation" % (path, os.sep)) as evaluation_file:
evaluation_id = evaluation_file.readline().strip()
try:
evaluation_id = bigml.api.get_evaluation_id(evaluation_id)
return True, evaluation_id
except ValueError:
return False, None
except IOError:
return False, None | Checks existence and reads the evaluation id from the evaluation file
in the path directory | https://github.com/bigmlcom/bigmler/blob/91973ca1e752954302bf26bb22aa6874dc34ce69/bigmler/checkpoint.py#L119-L134 | import os
import bigml.api
from bigml.util import console_log
from bigmler.utils import log_message
def is_source_created(path, suffix=""):
source_id = None
try:
with open("%s%ssource%s" % (path, os.sep, suffix)) as source_file:
source_id = source_file.readline().strip()
try:
source_id = bigml.api.get_source_id(source_id)
return True, source_id
except ValueError:
return False, None
except IOError:
return False, None
def is_dataset_created(path, suffix=""):
dataset_id = None
try:
with open("%s%sdataset%s" % (path, os.sep, suffix)) as dataset_file:
dataset_id = dataset_file.readline().strip()
try:
dataset_id = bigml.api.get_dataset_id(dataset_id)
return True, dataset_id
except ValueError:
return False, None
except IOError:
return False, None
def are_datasets_created(path, number_of_datasets, suffix='parts'):
dataset_ids = []
try:
with open("%s%sdataset_%s" % (path, os.sep, suffix)) as datasets_file:
for line in datasets_file:
dataset = line.strip()
try:
dataset_id = bigml.api.get_dataset_id(dataset)
dataset_ids.append(dataset_id)
except ValueError:
return False, dataset_ids
return len(dataset_ids) == number_of_datasets, dataset_ids
except IOError:
return False, dataset_ids
def are_models_created(path, number_of_models):
model_ids = []
try:
with open("%s%smodels" % (path, os.sep)) as models_file:
for line in models_file:
model = line.strip()
try:
model_id = bigml.api.get_model_id(model)
model_ids.append(model_id)
except ValueError:
return False, model_ids
return len(model_ids) == number_of_models, model_ids
except IOError:
return False, model_ids
def are_predictions_created(predictions_file, number_of_tests):
predictions = file_number_of_lines(predictions_file)
if predictions != number_of_tests:
os.remove(predictions_file)
return False, None
return True, None | Apache License 2.0 |
Subsets and Splits