repository_name
stringlengths 7
107
| function_path
stringlengths 4
190
| function_identifier
stringlengths 1
236
| language
stringclasses 1
value | function
stringlengths 9
647k
| docstring
stringlengths 5
488k
| function_url
stringlengths 71
285
| context
stringlengths 0
2.51M
| license
stringclasses 5
values |
---|---|---|---|---|---|---|---|---|
schmittx/home-assistant-eero | custom_components/eero/switch.py | EeroSwitch.turn_on | python | def turn_on(self, **kwargs):
setattr(self.resource, self.variable, True) | Turn the device on. | https://github.com/schmittx/home-assistant-eero/blob/3d6960ed239c63fe07d7b2a4da38bf70ea8f9eb0/custom_components/eero/switch.py#L163-L165 | import logging
from homeassistant.components.switch import DEVICE_CLASS_SWITCH, SwitchEntity
from . import EeroEntity
from .const import (
CONF_CLIENTS,
CONF_EEROS,
CONF_NETWORKS,
CONF_PROFILES,
DATA_COORDINATOR,
DOMAIN as EERO_DOMAIN,
)
_LOGGER = logging.getLogger(__name__)
BASIC_TYPES = {
"band_steering": [
"Band Steering",
],
"guest_network_enabled": [
"Guest Network",
],
"led_on": [
"LED Status Light",
],
"paused": [
"Paused",
],
"sqm": [
"Smart Queue Management",
],
"upnp": [
"UPnP",
],
"wpa3": [
"WPA3",
],
}
PREMIUM_TYPES = {
"ad_block": [
"Ad Blocking",
],
"block_gaming_content": [
"Gaming Content Filter",
],
"block_illegal_content": [
"Illegal or Criminal Content Filter",
],
"block_malware": [
"Advanced Security",
],
"block_messaging_content": [
"Chat and Messaging Content Filter",
],
"block_pornographic_content": [
"Adult Content Filter",
],
"block_shopping_content": [
"Shopping Content Filter",
],
"block_social_content": [
"Social Media Content Filter",
],
"block_streaming_content": [
"Streaming Content Filter",
],
"block_violent_content": [
"Violent Content Filter",
],
"safe_search_enabled": [
"SafeSearch Content Filter",
],
"youtube_restricted": [
"YouTube Restricted Content Filter",
],
}
SWITCH_TYPES = {**BASIC_TYPES, **PREMIUM_TYPES}
async def async_setup_entry(hass, entry, async_add_entities):
entry = hass.data[EERO_DOMAIN][entry.entry_id]
conf_networks = entry[CONF_NETWORKS]
conf_eeros = entry[CONF_EEROS]
conf_profiles = entry[CONF_PROFILES]
conf_clients = entry[CONF_CLIENTS]
coordinator = entry[DATA_COORDINATOR]
def get_entities():
entities = []
for network in coordinator.data.networks:
if network.id in conf_networks:
for variable in SWITCH_TYPES:
if variable in PREMIUM_TYPES and not network.premium_status_active:
continue
elif hasattr(network, variable):
entities.append(EeroSwitch(coordinator, network, None, variable))
for eero in network.eeros:
if eero.id in conf_eeros:
for variable in SWITCH_TYPES:
if variable in PREMIUM_TYPES and not network.premium_status_active:
continue
elif hasattr(eero, variable):
entities.append(EeroSwitch(coordinator, network, eero, variable))
for profile in network.profiles:
if profile.id in conf_profiles:
for variable in SWITCH_TYPES:
if variable in PREMIUM_TYPES and not network.premium_status_active:
continue
elif hasattr(profile, variable):
entities.append(EeroSwitch(coordinator, network, profile, variable))
for client in network.clients:
if client.id in conf_clients:
for variable in SWITCH_TYPES:
if variable in PREMIUM_TYPES and not network.premium_status_active:
continue
elif hasattr(client, variable):
entities.append(EeroSwitch(coordinator, network, client, variable))
return entities
async_add_entities(await hass.async_add_job(get_entities), True)
class EeroSwitch(SwitchEntity, EeroEntity):
@property
def name(self):
if self.resource.is_client:
return f"{self.network.name} {self.resource.name_connection_type} {SWITCH_TYPES[self.variable][0]}"
elif self.resource.is_eero or self.resource.is_profile:
return f"{self.network.name} {self.resource.name} {SWITCH_TYPES[self.variable][0]}"
return f"{self.resource.name} {SWITCH_TYPES[self.variable][0]}"
@property
def device_class(self):
return DEVICE_CLASS_SWITCH
@property
def is_on(self):
return bool(getattr(self.resource, self.variable))
@property
def device_state_attributes(self):
attrs = super().device_state_attributes
if self.variable == "guest_network_enabled" and self.is_on:
attrs["guest_network_name"] = self.resource.guest_network_name
attrs["connected_guest_clients"] = self.resource.connected_guest_clients_count
return attrs | MIT License |
ciscodevnet/webexteamssdk | webexteamssdk/api/team_memberships.py | TeamMembershipsAPI.get | python | def get(self, membershipId):
check_type(membershipId, basestring)
json_data = self._session.get(API_ENDPOINT + '/' + membershipId)
return self._object_factory(OBJECT_TYPE, json_data) | Get details for a team membership, by ID.
Args:
membershipId(basestring): The team membership ID.
Returns:
TeamMembership: A TeamMembership object with the details of the
requested team membership.
Raises:
TypeError: If the parameter types are incorrect.
ApiError: If the Webex Teams cloud returns an error. | https://github.com/ciscodevnet/webexteamssdk/blob/673312779b8e05cf0535bea8b96599015cccbff1/webexteamssdk/api/team_memberships.py#L165-L186 | from __future__ import (
absolute_import,
division,
print_function,
unicode_literals,
)
from builtins import *
from past.builtins import basestring
from ..generator_containers import generator_container
from ..restsession import RestSession
from ..utils import (
check_type,
dict_from_items_with_values,
)
API_ENDPOINT = 'team/memberships'
OBJECT_TYPE = 'team_membership'
class TeamMembershipsAPI(object):
def __init__(self, session, object_factory):
check_type(session, RestSession)
super(TeamMembershipsAPI, self).__init__()
self._session = session
self._object_factory = object_factory
@generator_container
def list(self, teamId, max=100, **request_parameters):
check_type(teamId, basestring)
check_type(max, int, optional=True)
params = dict_from_items_with_values(
request_parameters,
teamId=teamId,
max=max,
)
items = self._session.get_items(API_ENDPOINT, params=params)
for item in items:
yield self._object_factory(OBJECT_TYPE, item)
def create(self, teamId, personId=None, personEmail=None,
isModerator=False, **request_parameters):
check_type(teamId, basestring)
check_type(personId, basestring, optional=True)
check_type(personEmail, basestring, optional=True)
check_type(isModerator, bool, optional=True)
post_data = dict_from_items_with_values(
request_parameters,
teamId=teamId,
personId=personId,
personEmail=personEmail,
isModerator=isModerator,
)
json_data = self._session.post(API_ENDPOINT, json=post_data)
return self._object_factory(OBJECT_TYPE, json_data) | MIT License |
gamechanger/monufacture | monufacture/helpers.py | random_number | python | def random_number(a, b=None):
def build(*args):
return random.randrange(a, b)
return build | Inserts a random number in the given range into the document. | https://github.com/gamechanger/monufacture/blob/348a9ffeb8c1073d45a7a819208be17ce51fcb6a/monufacture/helpers.py#L211-L215 | import monufacture
import string
import random
from pytz import timezone
from datetime import datetime, timedelta
from bson.objectid import ObjectId
from bson.dbref import DBRef
class Sequence(object):
def __init__(self):
self.seq_num = 0
def next(self):
self.seq_num = self.seq_num + 1
return self.seq_num
def sequence(fn=None):
sequence = Sequence()
if not fn:
fn = lambda n: n
def build(*args):
return fn(sequence.next())
return build
def dependent(fn):
def build(obj):
return fn(obj)
return build
def id_of(factory_, document_=None, **overrides):
def build(*args):
instance_overrides = {}
for key, value in overrides.iteritems():
if callable(value):
instance_overrides[key] = value(*args)
else:
instance_overrides[key] = value
return monufacture.create(factory_, document_, **instance_overrides)["_id"]
return build
def text(*args, **kwargs):
return random_text(*args, **kwargs)
def random_text(length=10, spaces=False, digits=False, upper=True,
lower=True, other_chars=[]):
char_set = []
if upper:
char_set += list(string.uppercase)
if lower:
char_set += list(string.lowercase)
if spaces:
char_set.append(" ")
if digits:
char_set += list(string.digits)
char_set += other_chars
def build(*args):
return "".join([random.choice(char_set) for i in xrange(length)])
return build
def dbref_to(factory, document=None, **overrides):
def build(*args):
collection = monufacture.get_factory(factory).collection.name
_id = monufacture.create(factory, document, **overrides)["_id"]
return DBRef(collection, _id)
return build
def date(year=None, month=None, day=None, hour=None, minute=None, second=None, microsecond=None, tz=None):
if year or month or day or hour or minute or second or microsecond:
if not (year and month and day):
raise ValueError("Either all components of a date must be provided or none of them.")
def compact_args(**kwargs):
out = {}
out.update((k, v) for k, v in kwargs.iteritems() if v is not None)
return out
dt_args = compact_args(
year=year,
month=month,
day=day,
hour=hour,
minute=minute,
second=second,
microsecond=microsecond)
def build_specific(*args):
dt = datetime(**dt_args)
if tz:
dt = timezone(tz).localize(dt)
return dt
return build_specific
def build_now(*args):
return datetime.utcnow()
return build_now
def now():
return date()
def _convert_years_months_to_days(timedeltas):
if 'months' in timedeltas:
timedeltas['days'] = timedeltas.setdefault('days', 0) + 30 * timedeltas['months']
del timedeltas['months']
if 'years' in timedeltas:
timedeltas['days'] = timedeltas.setdefault('days', 0) + 365 * timedeltas['years']
del timedeltas['years']
def ago(**kwargs):
def build(*args):
_convert_years_months_to_days(kwargs)
return datetime.utcnow() - timedelta(**kwargs)
return build
def from_now(**kwargs):
def build(*args):
_convert_years_months_to_days(kwargs)
return datetime.utcnow() + timedelta(**kwargs)
return build
def list_of(fn, length):
def build(*args):
return [fn(*args) for i in range(length)]
return build
def object_id():
def build(*args):
return ObjectId()
return build
def union(*fns):
def build(*args):
out = []
for fn in fns:
out += fn(*args)
return out
return build
def one_of(*values):
def build(*args):
return random.choice(values)
return build | MIT License |
moluwole/bast | bast/controller.py | Controller.write_error | python | def write_error(self, status_code, **kwargs):
reason = self._reason
if self.settings.get("serve_traceback") and "exc_info" in kwargs:
error = []
for line in traceback.format_exception(*kwargs["exc_info"]):
error.append(line)
else:
error = None
data = {'_traceback': error, 'message': reason, 'code': status_code}
content = self.render_exception(**data)
self.write(content) | Handle Exceptions from the server. Formats the HTML into readable form | https://github.com/moluwole/bast/blob/231d3b57fb8fd110e6ddbc668b3909bb6f66b326/bast/controller.py#L36-L50 | import importlib
import os
import traceback
from tornado.gen import coroutine
from tornado.util import unicode_type
from tornado.web import RequestHandler
from bast import Bast
from .exception import BastException
from .jsonifier import Json as json_
from .view import TemplateRendering
class Controller(RequestHandler, TemplateRendering):
method = None
middleware = None
providers = {}
request_type = None
def __init__(self, application, request, **kwargs):
super(Controller, self).__init__(application, request, **kwargs)
self.request = request
self.application = application
self.session_driver = os.getenv("SESSION")
self.session = Bast.session['session'] | MIT License |
rebiocoder/bioforum | venv/Lib/site-packages/django/contrib/gis/geos/geometry.py | GEOSGeometryBase.geom_typeid | python | def geom_typeid(self):
return capi.geos_typeid(self.ptr) | Return an integer representing the Geometry type. | https://github.com/rebiocoder/bioforum/blob/08c8ff2f07ae667d37ce343f537e878d78ac8fe2/venv/Lib/site-packages/django/contrib/gis/geos/geometry.py#L184-L186 | import re
from ctypes import addressof, byref, c_double
from django.contrib.gis import gdal
from django.contrib.gis.geometry import hex_regex, json_regex, wkt_regex
from django.contrib.gis.geos import prototypes as capi
from django.contrib.gis.geos.base import GEOSBase
from django.contrib.gis.geos.coordseq import GEOSCoordSeq
from django.contrib.gis.geos.error import GEOSException
from django.contrib.gis.geos.libgeos import GEOM_PTR
from django.contrib.gis.geos.mutable_list import ListMixin
from django.contrib.gis.geos.prepared import PreparedGeometry
from django.contrib.gis.geos.prototypes.io import (
ewkb_w, wkb_r, wkb_w, wkt_r, wkt_w,
)
from django.utils.deconstruct import deconstructible
from django.utils.encoding import force_bytes, force_text
class GEOSGeometryBase(GEOSBase):
_GEOS_CLASSES = None
ptr_type = GEOM_PTR
destructor = capi.destroy_geom
has_cs = False
def __init__(self, ptr, cls):
self._ptr = ptr
if type(self) in (GEOSGeometryBase, GEOSGeometry):
if cls is None:
if GEOSGeometryBase._GEOS_CLASSES is None:
from .linestring import LineString, LinearRing
from .point import Point
from .polygon import Polygon
from .collections import (
GeometryCollection, MultiPoint, MultiLineString, MultiPolygon,
)
GEOSGeometryBase._GEOS_CLASSES = {
0: Point,
1: LineString,
2: LinearRing,
3: Polygon,
4: MultiPoint,
5: MultiLineString,
6: MultiPolygon,
7: GeometryCollection,
}
cls = GEOSGeometryBase._GEOS_CLASSES[self.geom_typeid]
self.__class__ = cls
self._post_init()
def _post_init(self):
self._cs = GEOSCoordSeq(capi.get_cs(self.ptr), self.hasz) if self.has_cs else None
def __copy__(self):
return self.clone()
def __deepcopy__(self, memodict):
return self.clone()
def __str__(self):
return self.ewkt
def __repr__(self):
return '<%s object at %s>' % (self.geom_type, hex(addressof(self.ptr)))
def __getstate__(self):
return bytes(self.wkb), self.srid
def __setstate__(self, state):
wkb, srid = state
ptr = wkb_r().read(memoryview(wkb))
if not ptr:
raise GEOSException('Invalid Geometry loaded from pickled state.')
self.ptr = ptr
self._post_init()
self.srid = srid
@classmethod
def _from_wkb(cls, wkb):
return wkb_r().read(wkb)
@staticmethod
def from_ewkt(ewkt):
ewkt = force_bytes(ewkt)
srid = None
parts = ewkt.split(b';', 1)
if len(parts) == 2:
srid_part, wkt = parts
match = re.match(b'SRID=(?P<srid>\-?\d+)', srid_part)
if not match:
raise ValueError('EWKT has invalid SRID part.')
srid = int(match.group('srid'))
else:
wkt = ewkt
if not wkt:
raise ValueError('Expected WKT but got an empty string.')
return GEOSGeometry(GEOSGeometry._from_wkt(wkt), srid=srid)
@staticmethod
def _from_wkt(wkt):
return wkt_r().read(wkt)
@classmethod
def from_gml(cls, gml_string):
return gdal.OGRGeometry.from_gml(gml_string).geos
def __eq__(self, other):
if isinstance(other, str):
try:
other = GEOSGeometry.from_ewkt(other)
except (ValueError, GEOSException):
return False
return isinstance(other, GEOSGeometry) and self.srid == other.srid and self.equals_exact(other)
def __or__(self, other):
return self.union(other)
def __and__(self, other):
return self.intersection(other)
def __sub__(self, other):
return self.difference(other)
def __xor__(self, other):
return self.sym_difference(other)
@property
def coord_seq(self):
if self.has_cs:
return self._cs.clone()
@property
def geom_type(self):
return capi.geos_type(self.ptr).decode()
@property | MIT License |
psd-tools/psd-tools | src/psd_tools/api/psd_image.py | PSDImage.bottom | python | def bottom(self):
return self.height | Bottom coordinate.
:return: `int` | https://github.com/psd-tools/psd-tools/blob/00241f3aed2ca52a8012e198a0f390ff7d8edca9/src/psd_tools/api/psd_image.py#L290-L296 | from __future__ import absolute_import, unicode_literals
import logging
from psd_tools.constants import (
Clipping, Compression, ColorMode, SectionDivider, Resource, Tag
)
from psd_tools.psd import PSD, FileHeader, ImageData, ImageResources
from psd_tools.api.layers import (
Artboard, Group, PixelLayer, ShapeLayer, SmartObjectLayer, TypeLayer,
GroupMixin, FillLayer
)
from psd_tools.api import adjustments
from psd_tools.api import deprecated
logger = logging.getLogger(__name__)
class PSDImage(GroupMixin):
def __init__(self, data):
assert isinstance(data, PSD)
self._record = data
self._layers = []
self._tagged_blocks = None
self._init()
@classmethod
def new(cls, mode, size, color=0, depth=8, **kwargs):
header = cls._make_header(mode, size, depth)
image_data = ImageData.new(header, color=color, **kwargs)
return cls(
PSD(
header=header,
image_data=image_data,
image_resources=ImageResources.new(),
)
)
@classmethod
def frompil(cls, image, compression=Compression.RLE):
header = cls._make_header(image.mode, image.size)
image_data = ImageData(compression=compression)
image_data.set_data([channel.tobytes() for channel in image.split()],
header)
return cls(
PSD(
header=header,
image_data=image_data,
image_resources=ImageResources.new(),
)
)
@classmethod
def open(cls, fp, **kwargs):
if hasattr(fp, 'read'):
self = cls(PSD.read(fp, **kwargs))
else:
with open(fp, 'rb') as f:
self = cls(PSD.read(f, **kwargs))
return self
def save(self, fp, mode='wb', **kwargs):
if hasattr(fp, 'write'):
self._record.write(fp, **kwargs)
else:
with open(fp, mode) as f:
self._record.write(f, **kwargs)
def topil(self, channel=None, apply_icc=False):
from .pil_io import convert_image_data_to_pil
if self.has_preview():
return convert_image_data_to_pil(self, channel, apply_icc)
return None
@deprecated
def compose(self, force=False, bbox=None, layer_filter=None):
from psd_tools.composer import compose
image = None
if (not force or len(self) == 0) and not bbox and not layer_filter:
image = self.topil()
if image is None:
image = compose(
self,
bbox=bbox or self.viewbox,
force=force,
layer_filter=layer_filter,
)
elif bbox is not None:
image = image.crop(bbox)
return image
def numpy(self, channel=None):
from .numpy_io import get_array
return get_array(self, channel)
def composite(
self,
viewport=None,
force=False,
color=1.0,
alpha=0.0,
layer_filter=None,
ignore_preview=False,
):
from psd_tools.composite import composite_pil
if not (ignore_preview or force or layer_filter) and self.has_preview():
return self.topil()
return composite_pil(self, color, alpha, viewport, layer_filter, force)
def is_visible(self):
return self.visible
@property
def parent(self):
return None
def is_group(self):
return isinstance(self, GroupMixin)
def has_preview(self):
version_info = self.image_resources.get_data(Resource.VERSION_INFO)
if version_info:
return version_info.has_composite
return True
@property
def name(self):
return 'Root'
@property
def kind(self):
return self.__class__.__name__.lower()
@property
def visible(self):
return True
@property
def left(self):
return 0
@property
def top(self):
return 0
@property
def right(self):
return self.width
@property | MIT License |
sublimelsp/lsp | plugin/session_buffer.py | SessionBuffer.language_id | python | def language_id(self) -> str:
return self.get_language_id() or "" | Deprecated: use get_language_id | https://github.com/sublimelsp/lsp/blob/027333e68d740e1b708ab335f18fdec6d295283b/plugin/session_buffer.py#L133-L137 | from .core.protocol import Diagnostic
from .core.protocol import DiagnosticSeverity
from .core.protocol import DocumentUri
from .core.protocol import Range
from .core.protocol import TextDocumentSyncKindFull
from .core.protocol import TextDocumentSyncKindNone
from .core.sessions import SessionViewProtocol
from .core.settings import userprefs
from .core.types import Capabilities
from .core.types import debounced
from .core.types import Debouncer
from .core.types import FEATURES_TIMEOUT
from .core.typing import Any, Iterable, Optional, List, Dict, Tuple
from .core.views import DIAGNOSTIC_SEVERITY
from .core.views import diagnostic_severity
from .core.views import did_change
from .core.views import did_close
from .core.views import did_open
from .core.views import did_save
from .core.views import format_diagnostic_for_panel
from .core.views import MissingUriError
from .core.views import range_to_region
from .core.views import will_save
from weakref import WeakSet
import sublime
import time
class PendingChanges:
__slots__ = ('version', 'changes')
def __init__(self, version: int, changes: Iterable[sublime.TextChange]) -> None:
self.version = version
self.changes = list(changes)
def update(self, version: int, changes: Iterable[sublime.TextChange]) -> None:
self.version = version
self.changes.extend(changes)
class DiagnosticSeverityData:
__slots__ = ('regions', 'regions_with_tag', 'annotations', 'panel_contribution', 'scope', 'icon')
def __init__(self, severity: int) -> None:
self.regions = []
self.regions_with_tag = {}
self.annotations = []
self.panel_contribution = []
_, _, self.scope, self.icon, _, _ = DIAGNOSTIC_SEVERITY[severity - 1]
if userprefs().diagnostics_gutter_marker != "sign":
self.icon = userprefs().diagnostics_gutter_marker
class SessionBuffer:
def __init__(self, session_view: SessionViewProtocol, buffer_id: int, uri: DocumentUri) -> None:
view = session_view.view
self.opened = False
self.capabilities = Capabilities()
self.session = session_view.session
self.session_views = WeakSet()
self.session_views.add(session_view)
self.last_known_uri = uri
self.id = buffer_id
self.pending_changes = None
self.diagnostics = []
self.data_per_severity = {}
self.diagnostics_version = -1
self.diagnostics_flags = 0
self.diagnostics_are_visible = False
self.last_text_change_time = 0.0
self.total_errors = 0
self.total_warnings = 0
self.should_show_diagnostics_panel = False
self.diagnostics_debouncer = Debouncer()
self._check_did_open(view)
self.session.register_session_buffer_async(self)
def __del__(self) -> None:
mgr = self.session.manager()
if mgr:
mgr.update_diagnostics_panel_async()
if not self.session.exiting:
self._check_did_close()
self.session.unregister_session_buffer_async(self)
def _check_did_open(self, view: sublime.View) -> None:
if not self.opened and self.should_notify_did_open():
language_id = self.get_language_id()
if not language_id:
return
self.session.send_notification(did_open(view, language_id))
self.opened = True
self.session.notify_plugin_on_session_buffer_change(self)
def _check_did_close(self) -> None:
if self.opened and self.should_notify_did_close():
self.session.send_notification(did_close(uri=self.last_known_uri))
self.opened = False
def get_uri(self) -> Optional[str]:
for sv in self.session_views:
return sv.get_uri()
return None
def get_language_id(self) -> Optional[str]:
for sv in self.session_views:
return sv.get_language_id()
return None
def get_view_in_group(self, group: int) -> sublime.View:
for sv in self.session_views:
view = sv.get_view_for_group(group)
if view:
return view
return next(iter(self.session_views)).view
@property | MIT License |
ni/hoplite | hoplite/client/remote_job.py | RemoteJob._get_job | python | def _get_job(self, force=False):
time_elapsed = time.time() - self._last_poll
if time_elapsed > .2 or force:
resp = self.jget(self._daemon_addr + '/jobs/{0}'.format(self.uuid))
if resp.status_code == 404:
raise JobDoesNotExistError
self._set_attributes_from_response_json(
hoplite_loads(str(resp.text)))
self._last_poll = time.time() | I call this before most other requests to get the status code sanity
check.
This method is rate limited for sanity | https://github.com/ni/hoplite/blob/bc1b01aa08ba21daa36f46b06000b62890096787/hoplite/client/remote_job.py#L166-L180 | import pickle
import time
from hoplite.client.helpers import ClientMixin
from hoplite.exceptions import (
JobDoesNotExistError,
TimeoutError,
ConnectionError,
JobFailedError)
from hoplite.serializer import hoplite_loads
import requests.exceptions
class RemoteJob(ClientMixin):
def __init__(self, address, port=5000, name="", uuid="", api_key="", config={}):
if ':' in address:
self.address = address.split(':')[0]
self.port = address.split(':')[1]
else:
self.address = address
self.port = port
self._daemon_addr = 'http://{0}:{1}'.format(self.address, self.port)
self._config = config
self.name = name
self.uuid = uuid
self._api_key = api_key
self._last_poll = 0
try:
if not self.uuid:
self._create_job()
self._get_job()
except requests.exceptions.ConnectionError:
raise ConnectionError(self.address)
def config(self, force=False):
self._get_job(force)
return self._config
def status(self, force=False):
self._get_job(force)
exception_dict = self._status.get("exception", None)
if exception_dict:
raise JobFailedError(
self.address,
self.uuid,
pickle.loads(exception_dict['traceback']),
exception_dict['previous_exception'])
return self._status
def start(self):
self._get_job()
resp = self.jput(
self._daemon_addr + '/jobs/{0}/start'.format(self.uuid))
return resp.json()["started"]
def join(self, timeout=-1):
num_seconds = 0
poll_interval = .05
while num_seconds < timeout or timeout == -1:
if self.finished():
return True
time.sleep(poll_interval)
num_seconds += poll_interval
raise TimeoutError(self.uuid)
def kill(self, force=False):
self._get_job(force)
resp = self.jput(
self._daemon_addr + '/jobs/{0}/kill'.format(self.uuid))
return hoplite_loads(str(resp.text))["killed"]
def running(self, force=False):
self._get_job(force)
return self._running
def finished(self, force=False):
self.status(force)
return self._finished | MIT License |
nipy/nipy | nipy/labs/utils/reproducibility_measures.py | cluster_threshold | python | def cluster_threshold(stat_map, domain, th, csize):
if stat_map.shape[0] != domain.size:
raise ValueError('incompatible dimensions')
thresholded_domain = domain.mask(stat_map > th)
label = thresholded_domain.connected_components()
binary = - np.ones(domain.size)
binary[stat_map > th] = label
nbcc = len(np.unique(label))
for i in range(nbcc):
if np.sum(label == i) < csize:
binary[binary == i] = - 1
binary = (binary > -1)
return binary | Perform a thresholding of a map at the cluster-level
Parameters
----------
stat_map: array of shape(nbvox)
the input data
domain: Nifti1Image instance,
referential- and domain-defining image
th (float): cluster-forming threshold
csize (int>0): cluster size threshold
Returns
-------
binary array of shape (nvox): the binarized thresholded map
Notes
-----
Should be replaced by a more standard function in the future | https://github.com/nipy/nipy/blob/d16d268938dcd5c15748ca051532c21f57cf8a22/nipy/labs/utils/reproducibility_measures.py#L55-L92 | from __future__ import absolute_import
import numpy as np
from nipy.io.nibcompat import get_affine
from nipy.labs.spatial_models.discrete_domain import grid_domain_from_binary_array
def histo_repro(h):
k = np.size(h) - 1
if k == 1:
return 0.
nf = np.dot(h, np.arange(k + 1)) / k
if nf == 0:
return 0.
n1k = np.arange(1, k + 1)
res = 1.0 * np.dot(h[1:], n1k * (n1k - 1)) / (k * (k - 1))
return res / nf | BSD 3-Clause New or Revised License |
jgm/pandocfilters | pandocfilters.py | get_value | python | def get_value(kv, key, value = None):
res = []
for k, v in kv:
if k == key:
value = v
else:
res.append([k, v])
return value, res | get value from the keyvalues (options) | https://github.com/jgm/pandocfilters/blob/06f4db99548a129c3ee8ac667436cb51a80c0f58/pandocfilters.py#L59-L67 | import codecs
import hashlib
import io
import json
import os
import sys
import atexit
import shutil
import tempfile
def get_filename4code(module, content, ext=None):
if os.getenv('PANDOCFILTER_CLEANUP'):
imagedir = tempfile.mkdtemp(prefix=module)
atexit.register(lambda: shutil.rmtree(imagedir))
else:
imagedir = module + "-images"
fn = hashlib.sha1(content.encode(sys.getfilesystemencoding())).hexdigest()
try:
os.mkdir(imagedir)
sys.stderr.write('Created directory ' + imagedir + '\n')
except OSError:
sys.stderr.write('Could not create directory "' + imagedir + '"\n')
if ext:
fn += "." + ext
return os.path.join(imagedir, fn) | BSD 3-Clause New or Revised License |
ali5h/rules_pip | third_party/py/click/formatting.py | HelpFormatter.write_usage | python | def write_usage(self, prog, args="", prefix="Usage: "):
usage_prefix = "{:>{w}}{} ".format(prefix, prog, w=self.current_indent)
text_width = self.width - self.current_indent
if text_width >= (term_len(usage_prefix) + 20):
indent = " " * term_len(usage_prefix)
self.write(
wrap_text(
args,
text_width,
initial_indent=usage_prefix,
subsequent_indent=indent,
)
)
else:
self.write(usage_prefix)
self.write("\n")
indent = " " * (max(self.current_indent, term_len(prefix)) + 4)
self.write(
wrap_text(
args, text_width, initial_indent=indent, subsequent_indent=indent
)
)
self.write("\n") | Writes a usage line into the buffer.
:param prog: the program name.
:param args: whitespace separated list of arguments.
:param prefix: the prefix for the first line. | https://github.com/ali5h/rules_pip/blob/fb02cb7bf5c03bc8cd4269679e4aea2e1839b501/third_party/py/click/formatting.py#L130-L162 | from contextlib import contextmanager
from ._compat import term_len
from .parser import split_opt
from .termui import get_terminal_size
FORCED_WIDTH = None
def measure_table(rows):
widths = {}
for row in rows:
for idx, col in enumerate(row):
widths[idx] = max(widths.get(idx, 0), term_len(col))
return tuple(y for x, y in sorted(widths.items()))
def iter_rows(rows, col_count):
for row in rows:
row = tuple(row)
yield row + ("",) * (col_count - len(row))
def wrap_text(
text, width=78, initial_indent="", subsequent_indent="", preserve_paragraphs=False
):
from ._textwrap import TextWrapper
text = text.expandtabs()
wrapper = TextWrapper(
width,
initial_indent=initial_indent,
subsequent_indent=subsequent_indent,
replace_whitespace=False,
)
if not preserve_paragraphs:
return wrapper.fill(text)
p = []
buf = []
indent = None
def _flush_par():
if not buf:
return
if buf[0].strip() == "\b":
p.append((indent or 0, True, "\n".join(buf[1:])))
else:
p.append((indent or 0, False, " ".join(buf)))
del buf[:]
for line in text.splitlines():
if not line:
_flush_par()
indent = None
else:
if indent is None:
orig_len = term_len(line)
line = line.lstrip()
indent = orig_len - term_len(line)
buf.append(line)
_flush_par()
rv = []
for indent, raw, text in p:
with wrapper.extra_indent(" " * indent):
if raw:
rv.append(wrapper.indent_only(text))
else:
rv.append(wrapper.fill(text))
return "\n\n".join(rv)
class HelpFormatter(object):
def __init__(self, indent_increment=2, width=None, max_width=None):
self.indent_increment = indent_increment
if max_width is None:
max_width = 80
if width is None:
width = FORCED_WIDTH
if width is None:
width = max(min(get_terminal_size()[0], max_width) - 2, 50)
self.width = width
self.current_indent = 0
self.buffer = []
def write(self, string):
self.buffer.append(string)
def indent(self):
self.current_indent += self.indent_increment
def dedent(self):
self.current_indent -= self.indent_increment | MIT License |
neurotechx/moabb | moabb/datasets/base.py | BaseDataset.get_data | python | def get_data(self, subjects=None):
if subjects is None:
subjects = self.subject_list
if not isinstance(subjects, list):
raise (ValueError("subjects must be a list"))
data = dict()
for subject in subjects:
if subject not in self.subject_list:
raise ValueError("Invalid subject {:d} given".format(subject))
data[subject] = self._get_single_subject_data(subject)
return data | Return the data correspoonding to a list of subjects.
The returned data is a dictionary with the folowing structure::
data = {'subject_id' :
{'session_id':
{'run_id': raw}
}
}
subjects are on top, then we have sessions, then runs.
A sessions is a recording done in a single day, without removing the
EEG cap. A session is constitued of at least one run. A run is a single
contigous recording. Some dataset break session in multiple runs.
Parameters
----------
subjects: List of int
List of subject number
Returns
-------
data: Dict
dict containing the raw data | https://github.com/neurotechx/moabb/blob/70d27fdb7b96b671d4dfa716451cbe6e49cd7bb6/moabb/datasets/base.py#L77-L115 | import abc
import logging
from inspect import signature
log = logging.getLogger(__name__)
class BaseDataset(metaclass=abc.ABCMeta):
def __init__(
self,
subjects,
sessions_per_subject,
events,
code,
interval,
paradigm,
doi=None,
unit_factor=1e6,
):
try:
_ = iter(subjects)
except TypeError:
raise ValueError("subjects must be a iterable, like a list") from None
self.subject_list = subjects
self.n_sessions = sessions_per_subject
self.event_id = events
self.code = code
self.interval = interval
self.paradigm = paradigm
self.doi = doi
self.unit_factor = unit_factor | BSD 3-Clause New or Revised License |
carlmontanari/nornir_ansible | nornir_ansible/plugins/inventory/ansible.py | _get_inventory_element | python | def _get_inventory_element(
typ: Type[HostOrGroup], data: Dict[str, Any], name: str, defaults: Defaults
) -> HostOrGroup:
return typ(
name=name,
hostname=data.get("hostname"),
port=data.get("port"),
username=data.get("username"),
password=data.get("password"),
platform=data.get("platform"),
data=data.get("data"),
groups=data.get("groups"),
defaults=defaults,
connection_options=_get_connection_options(data.get("connection_options", {})),
) | Get inventory information for a given host/group
Arguments:
data: dictionary of host or group data to serialize | https://github.com/carlmontanari/nornir_ansible/blob/f5ef4e792bdcce7071a35ce624ef55497b423463/nornir_ansible/plugins/inventory/ansible.py#L475-L496 | import configparser as cp
import logging
from collections import defaultdict
from pathlib import Path
from typing import Any, DefaultDict, Dict, List, MutableMapping, Optional, Tuple, Type, Union, cast
import ruamel.yaml
from mypy_extensions import TypedDict
from nornir.core.exceptions import NornirNoValidInventoryError
from nornir.core.inventory import (
ConnectionOptions,
Defaults,
Group,
Host,
HostOrGroup,
Inventory,
ParentGroups,
)
from ruamel.yaml.composer import ComposerError
from ruamel.yaml.scanner import ScannerError
VARS_FILENAME_EXTENSIONS = ["", ".ini", ".yml", ".yaml"]
RESERVED_FIELDS = ("hostname", "port", "username", "password", "platform", "connection_options")
YAML = ruamel.yaml.YAML(typ="safe")
LOG = logging.getLogger(__name__)
VarsDict = Dict[str, Any]
AnsibleHostsDict = Dict[str, Optional[VarsDict]]
AnsibleGroupDataDict = TypedDict(
"AnsibleGroupDataDict",
{"children": Dict[str, Any], "vars": VarsDict, "hosts": AnsibleHostsDict},
total=False,
)
AnsibleGroupsDict = Dict[str, AnsibleGroupDataDict]
class AnsibleParser:
def __init__(self, hostsfile: str) -> None:
self.hostsfile = hostsfile
self.path = str(Path(hostsfile).absolute().parents[0])
self.hosts: Dict[str, Any] = {}
self.groups: Dict[str, Any] = {}
self.defaults: Dict[str, Any] = {"data": {}}
self.original_data: Optional[AnsibleGroupsDict] = None
self.load_hosts_file()
def parse_group(
self, group: str, data: AnsibleGroupDataDict, parent: Optional[str] = None
) -> None:
data = data or {}
if group == "defaults":
group_file = "all"
dest_group = self.defaults
else:
self.add(group, self.groups)
group_file = group
dest_group = self.groups[group]
if parent and parent != "defaults":
dest_group["groups"].append(parent)
group_data = data.get("vars", {})
vars_file_data = {}
if self._vars_file_exists(f"{self.path}/group_vars/{group_file}"):
vars_file_data = self.read_vars_file(
element=group_file, path=self.path, is_host=False, is_dir=False
)
elif Path(f"{self.path}/group_vars/{group_file}").is_dir():
for file in self._get_all_files(f"{self.path}/group_vars/{group_file}"):
t_vars_file_data = self.read_vars_file(
element=group_file,
path=file,
is_host=False,
is_dir=True,
)
if isinstance(t_vars_file_data, dict):
vars_file_data = {**t_vars_file_data, **vars_file_data}
self.normalize_data(dest_group, group_data, vars_file_data)
self.map_nornir_vars(dest_group)
self.parse_hosts(data.get("hosts", {}), parent=group)
for children, children_data in data.get("children", {}).items():
self.parse_group(children, cast(AnsibleGroupDataDict, children_data), parent=group)
def parse(self) -> None:
if self.original_data is not None:
self.parse_group("defaults", self.original_data["all"])
self.sort_groups()
def parse_hosts(self, hosts: AnsibleHostsDict, parent: Optional[str] = None) -> None:
for host, data in hosts.items():
data = data or {}
self.add(host, self.hosts)
if parent and parent != "defaults":
self.hosts[host]["groups"].append(parent)
vars_file_data = {}
if self._vars_file_exists(f"{self.path}/host_vars/{host}"):
vars_file_data = self.read_vars_file(
element=host, path=self.path, is_host=True, is_dir=False
)
elif Path(f"{self.path}/host_vars/{host}").is_dir():
vars_file_data = {}
for file in self._get_all_files(f"{self.path}/host_vars/{host}"):
t_vars_file_data = self.read_vars_file(
element=host,
path=file,
is_host=True,
is_dir=True,
)
if isinstance(t_vars_file_data, dict):
vars_file_data = {**t_vars_file_data, **vars_file_data}
self.normalize_data(self.hosts[host], data, vars_file_data, host)
self.map_nornir_vars(self.hosts[host])
@staticmethod
def _get_all_files(path: str) -> List[str]:
files_list = [
str(file)
for file in Path(path).rglob("*")
if Path(file).suffix in VARS_FILENAME_EXTENSIONS and Path(file).is_file()
]
return files_list
@staticmethod
def _vars_file_exists(path: str) -> bool:
for ext in VARS_FILENAME_EXTENSIONS:
if Path(f"{path}{ext}").is_file():
return True
return False
def normalize_data(
self,
host_or_group: Dict[str, Any],
data: Dict[str, Any],
vars_data: Dict[str, Any],
hostname: Optional[str] = None,
) -> None:
self.map_nornir_vars(data)
for k, v in data.items():
if k in RESERVED_FIELDS:
host_or_group[k] = v
else:
host_or_group["data"][k] = v
self.map_nornir_vars(vars_data)
for k, v in vars_data.items():
if k in RESERVED_FIELDS:
host_or_group[k] = v
else:
host_or_group["data"][k] = v
for field in RESERVED_FIELDS:
if field not in host_or_group:
if field == "connection_options":
host_or_group[field] = {}
elif field == "hostname" and hostname is not None:
host_or_group[field] = hostname
else:
host_or_group[field] = None
def sort_groups(self) -> None:
for host in self.hosts.values():
host["groups"].sort()
for name, group in self.groups.items():
if name == "defaults":
continue
group["groups"].sort()
@staticmethod
def read_vars_file(
element: str, path: str, is_host: bool = True, is_dir: bool = False
) -> VarsDict:
sub_dir = "host_vars" if is_host else "group_vars"
vars_dir = Path(path) / sub_dir
if is_dir:
with open(path) as f:
for ext in VARS_FILENAME_EXTENSIONS:
if Path(f"{path}{ext}").is_file():
LOG.debug("AnsibleInventory: reading var file %r", path)
return cast(Dict[str, Any], YAML.load(f))
elif vars_dir.is_dir():
vars_file_base = vars_dir / element
for extension in VARS_FILENAME_EXTENSIONS:
vars_file = vars_file_base.with_suffix(vars_file_base.suffix + extension)
if vars_file.is_file():
with open(vars_file) as f:
LOG.debug("AnsibleInventory: reading var file %r", vars_file)
return cast(Dict[str, Any], YAML.load(f))
LOG.debug(
"AnsibleInventory: no vars file was found with the path %r "
"and one of the supported extensions: %s",
vars_file_base,
VARS_FILENAME_EXTENSIONS,
)
return {}
@staticmethod
def map_nornir_vars(obj: VarsDict) -> None:
mappings = {
"ansible_host": "hostname",
"ansible_port": "port",
"ansible_user": "username",
"ansible_password": "password",
}
for ansible_var, nornir_var in mappings.items():
if ansible_var in obj:
obj[nornir_var] = obj.pop(ansible_var)
@staticmethod
def add(element: str, element_dict: Dict[str, VarsDict]) -> None:
if element not in element_dict:
element_dict[element] = {"groups": [], "data": {}}
def load_hosts_file(self) -> None:
raise NotImplementedError
class INIParser(AnsibleParser):
@staticmethod
def normalize_value(value: str) -> Union[str, int]:
try:
return int(value)
except (ValueError, TypeError):
return value
@staticmethod
def normalize_content(content: str) -> VarsDict:
result: VarsDict = {}
if not content:
return result
for option in content.split():
key, value = option.split("=")
result[key] = INIParser.normalize_value(value)
return result
@staticmethod
def process_meta(meta: Optional[str], section: MutableMapping[str, str]) -> Dict[str, Any]:
if meta == "vars":
return {key: INIParser.normalize_value(value) for key, value in section.items()}
if meta == "children":
return {group_name: {} for group_name in section}
raise ValueError(f"Unknown tag {meta}")
def normalize(self, data: cp.ConfigParser) -> Dict[str, AnsibleGroupDataDict]:
groups: DefaultDict[str, Dict[str, Any]] = defaultdict(dict)
result: Dict[str, Dict[str, Dict[str, Dict[str, Any]]]] = {"all": {"children": groups}}
for section_name, section in data.items():
if section_name == "DEFAULT":
continue
if ":" in section_name:
group_name, meta = section_name.split(":")
subsection = self.process_meta(meta, section)
if group_name == "all":
result["all"][meta] = subsection
else:
groups[group_name][meta] = subsection
else:
groups[section_name]["hosts"] = {
host: self.normalize_content(host_vars) for host, host_vars in section.items()
}
return cast(AnsibleGroupsDict, result)
def load_hosts_file(self) -> None:
original_data = cp.ConfigParser(interpolation=None, allow_no_value=True, delimiters=" =")
original_data.read(self.hostsfile)
self.original_data = self.normalize(original_data)
class YAMLParser(AnsibleParser):
def load_hosts_file(self) -> None:
with open(self.hostsfile, "r") as f:
self.original_data = cast(AnsibleGroupsDict, YAML.load(f))
def parse(hostsfile: str) -> Tuple[Dict[str, Any], Dict[str, Any], Dict[str, Any]]:
try:
parser: AnsibleParser = INIParser(hostsfile)
except cp.Error:
try:
parser = YAMLParser(hostsfile)
except (ScannerError, ComposerError) as exc:
LOG.error("AnsibleInventory: file %r is not INI or YAML file", hostsfile)
raise NornirNoValidInventoryError(
f"AnsibleInventory: no valid inventory source(s) to parse. Tried: {hostsfile}"
) from exc
parser.parse()
return parser.hosts, parser.groups, parser.defaults
def _get_connection_options(data: Dict[str, Any]) -> Dict[str, ConnectionOptions]:
connection_options = {}
for connection_name, connection_data in data.items():
connection_options[connection_name] = ConnectionOptions(
hostname=connection_data.get("hostname"),
port=connection_data.get("port"),
username=connection_data.get("username"),
password=connection_data.get("password"),
platform=connection_data.get("platform"),
extras=connection_data.get("extras"),
)
return connection_options
def _get_defaults(data: Dict[str, Any]) -> Defaults:
return Defaults(
hostname=data.get("hostname"),
port=data.get("port"),
username=data.get("username"),
password=data.get("password"),
platform=data.get("platform"),
data=data.get("data"),
connection_options=_get_connection_options(data.get("connection_options", {})),
) | Apache License 2.0 |
nosarthur/gita | gita/utils.py | get_relative_path | python | def get_relative_path(kid: str, parent: str) -> Union[List[str], None]:
if parent == '':
return None
if parent == os.path.commonpath((kid, parent)):
rel = os.path.normpath(os.path.relpath(kid, parent)).split(os.sep)
if rel == ['.']:
rel = []
return rel
else:
return None | Return the relative path depth if relative, otherwise MAX_INT.
Both the `kid` and `parent` should be absolute paths without trailing / | https://github.com/nosarthur/gita/blob/09e6f755c95764ada1ca0e677aa74e49c32f5ab4/gita/utils.py#L20-L37 | import sys
import os
import json
import csv
import asyncio
import platform
import subprocess
from functools import lru_cache, partial
from pathlib import Path
from typing import List, Dict, Coroutine, Union, Iterator, Tuple
from collections import Counter, defaultdict
from . import info
from . import common
MAX_INT = sys.maxsize | MIT License |
mila-iqia/myia | myia/operations/prim_random_initialize.py | bprop_random_initialize | python | def bprop_random_initialize(seed, out, dout):
return (zeros_like(seed),) | Backpropagator for primitive `random_initialize`. | https://github.com/mila-iqia/myia/blob/56774a39579b4ec4123f44843ad4ca688acc859b/myia/operations/prim_random_initialize.py#L27-L29 | import numpy as np
from .. import xtype
from ..lib import (
AbstractRandomState,
bprop_to_grad_transform,
standard_prim,
zeros_like,
)
from . import primitives as P
def pyimpl_random_initialize(seed):
return np.random.RandomState(seed)
@standard_prim(P.random_initialize)
async def infer_random_initialize(self, engine, seed: xtype.u32):
return AbstractRandomState()
@bprop_to_grad_transform(P.random_initialize) | MIT License |
tlc-pack/tenset | python/tvm/contrib/tedd.py | insert_dot_id | python | def insert_dot_id(sch):
for stage_idx, stage in enumerate(sch["stages"]):
dom_path = [stage_idx]
stage["id"] = dom_path_to_string(dom_path, stage["type"])
for itervar_idx, itervar in enumerate(stage["all_itervars"]):
dom_path = [stage_idx, itervar_idx]
itervar["id"] = dom_path_to_string(dom_path, itervar["type"])
for rel_idx, rel in enumerate(stage["relations"]):
dom_path = [stage_idx, rel_idx]
rel["id"] = dom_path_to_string(dom_path, rel["type"])
for tensor_idx, tensor in enumerate(stage["output_tensors"]):
dom_path = [stage_idx, tensor_idx]
tensor["id"] = dom_path_to_string(dom_path, tensor["type"])
return sch | Insert unique ID for each node in the DOM tree.
They are used as Dot node ID. | https://github.com/tlc-pack/tenset/blob/3f7ed0291df47331d43f43a064fffacdc2914b47/python/tvm/contrib/tedd.py#L62-L78 | import html
import json
import warnings
from graphviz import Digraph
from graphviz import Source
import tvm
TVMDD_TABLE_BODY_WIDTH = 30
ITERVAR_TYPE_STRING_MAP = {
0: ("kDataPar", "#FFFFFF"),
1: ("kThreadIndex", "#2980B9"),
2: ("kCommReduce", "#FAD7A0"),
3: ("kOrdered", "#D35400"),
4: ("kOpaque", "#ABB2B9"),
5: ("kUnrolled", "#D2B4DE"),
6: ("kVectorized", "#AED6F1"),
7: ("kParallelized", "#F5B7B1"),
8: ("kTensorized", "#A9DFBF"),
}
PALETTE = {
0: "#000000",
1: "#922B21",
2: "#76448A",
3: "#1F618D",
4: "#148F77",
5: "#B7950B",
6: "#AF601A",
7: "#F5B7B1",
8: "#A9DFBF",
}
PALETTE_SIZE = 9
def dom_path_to_string(dom_path, prefix=""):
path_string = prefix
for index in dom_path:
path_string = path_string + "_" + str(index)
return path_string | Apache License 2.0 |
ekimekim/factoriocalc | factoriocalc/calculator.py | split_into_steps | python | def split_into_steps(processes, input_limit=None, input_liquid_limit=None):
def limit(item, input=False):
if input and is_liquid(item) and input_liquid_limit is not None:
return input_liquid_limit
elif input and not is_liquid(item) and input_limit is not None:
return input_limit
else:
return line_limit(item)
results = []
inputs = []
for process in processes.values():
steps = max(
[
throughput / limit(item, process.is_input)
for item, throughput in process.inputs().items()
] + [
throughput / limit(item, process.is_input)
for item, throughput in process.outputs().items()
]
)
whole_steps, leftover = divmod(steps, 1)
maximal_step = process.rescale(process.throughput / steps)
fractional_step = maximal_step.rescale(maximal_step.throughput * leftover)
part = [maximal_step] * whole_steps
if leftover:
part.append(fractional_step)
if process.is_input:
inputs += part
else:
results += part
return results, inputs | Splits a dict of full processes into an unordered list of steps,
where each step uses no more than 1 belt for each input or output.
To prevent balance issues, all but the final step is maximised, ie.
scaled to the point that one or more inputs or outputs is running at exactly
45 items/sec.
Since raw inputs aren't really a "step", it returns them seperately.
Inputs are optionally split by lower limits input_limit and input_liquid_limit.
Returns (steps, inputs) | https://github.com/ekimekim/factoriocalc/blob/18583ee0ea16a12c061b272db68469edee86606d/factoriocalc/calculator.py#L257-L305 | from fractions import Fraction
from .util import line_limit, is_liquid
class Process(object):
def __init__(self, item, recipe, throughput, outputs=None):
self.item = item
self.recipe = recipe
self.throughput = throughput
if outputs:
self.per_process_outputs = outputs
elif self.recipe and self.recipe.is_virtual:
self.per_process_outputs = {}
else:
self.per_process_outputs = {item: 1}
@property
def is_input(self):
return self.recipe is None
def buildings(self):
return None if self.is_input else self.throughput / self.recipe.throughput
def inputs(self):
return {} if self.is_input else {
k: v * self.throughput
for k, v in self.recipe.inputs.items()
}
def outputs(self):
return {k: v * self.throughput for k, v in self.per_process_outputs.items()}
def rescale(self, new_throughput):
return type(self)(self.item, self.recipe, new_throughput, self.per_process_outputs)
def __str__(self):
return "<{cls.__name__}: {throughput:.2f}/sec of {self.item}>".format(
cls=type(self), self=self, throughput=float(self.throughput)
)
__repr__ = __str__
def merge_processes_into(a, b):
for k, v in b.items():
if k in a:
assert a[k].recipe == v.recipe
a[k].throughput += v.throughput
else:
a[k] = v
def merge_into(a, b):
for k, v in b.items():
a[k] = a.get(k, 0) + v
class Calculator(object):
DEFAULT_MODS = ['prod 3'] * 4 + ['speed 3'] * 4
def __init__(self, datafile, stop_items=[], module_priorities=DEFAULT_MODS,
beacon_speed=0, oil_beacon_speed=None):
self.datafile = datafile
self.stop_items = stop_items
self.module_priorities = module_priorities
self.beacon_speed = beacon_speed
self.oil_beacon_speed = beacon_speed if oil_beacon_speed is None else oil_beacon_speed
def solve(self, item, throughput):
if item not in self.datafile.recipes or item in self.stop_items:
return {item: Process(item, None, throughput)}
recipe = self.datafile.recipes[item]
recipe = self.datafile.resolve_recipe(recipe, self.module_priorities, self.beacon_speed)
result = {item: Process(item, recipe, throughput)}
for name, amount in recipe.inputs.items():
amount *= throughput
subresult = self.solve(name, amount)
merge_processes_into(result, subresult)
return result
def solve_all(self, items):
results = {}
for item, throughput in items.items():
merge_processes_into(results, self.solve(item, throughput))
return results
def solve_oil(self, processes):
HEAVY_PER_PROCESS, LIGHT_PER_PROCESS, PETROL_PER_PROCESS = 10, 45, 55
refinery_recipe = self.datafile.recipes['oil products']
refinery_recipe = self.datafile.resolve_recipe(refinery_recipe, self.module_priorities, self.oil_beacon_speed)
heavy_crack_recipe = self.datafile.recipes['heavy oil cracking']
heavy_crack_recipe = self.datafile.resolve_recipe(heavy_crack_recipe, self.module_priorities, self.beacon_speed)
light_crack_recipe = self.datafile.recipes['light oil cracking']
light_crack_recipe = self.datafile.resolve_recipe(light_crack_recipe, self.module_priorities, self.beacon_speed)
light_per_heavy = Fraction(1) / heavy_crack_recipe.inputs['heavy oil']
petrol_per_light = Fraction(1) / light_crack_recipe.inputs['light oil']
excesses = {}
heavy_cracking = 0
light_cracking = 0
oil_processing = 0
heavy_oil_needed = processes.pop('heavy oil').throughput if 'heavy oil' in processes else 0
light_oil_needed = processes.pop('light oil').throughput if 'light oil' in processes else 0
petroleum_needed = processes.pop('petroleum').throughput if 'petroleum' in processes else 0
oil_processing = Fraction(heavy_oil_needed) / HEAVY_PER_PROCESS
extra_light = light_oil_needed - oil_processing * LIGHT_PER_PROCESS
if extra_light < 0:
excesses['light oil'] = extra_light
else:
total_light_per_process = LIGHT_PER_PROCESS + HEAVY_PER_PROCESS * light_per_heavy
processing_for_light = extra_light / total_light_per_process
light_from_cracking = extra_light - processing_for_light * LIGHT_PER_PROCESS
oil_processing += processing_for_light
heavy_cracking += light_from_cracking
extra_petrol = petroleum_needed - oil_processing * PETROL_PER_PROCESS
if extra_petrol < 0:
excesses['petroleum'] = extra_petrol
else:
petrol_available = -excesses.get('light oil', 0) * petrol_per_light
if petrol_available > extra_petrol:
excesses['light oil'] += extra_petrol / petrol_per_light
light_cracking += extra_petrol
else:
extra_petrol -= petrol_available
light_cracking += petrol_available
excesses.pop('light oil', None)
total_petrol_per_process = PETROL_PER_PROCESS + petrol_per_light * (
LIGHT_PER_PROCESS + light_per_heavy * HEAVY_PER_PROCESS
)
processing_for_petrol = extra_petrol / total_petrol_per_process
petrol_from_cracking = extra_petrol - processing_for_petrol * PETROL_PER_PROCESS
light_to_crack = petrol_from_cracking / petrol_per_light
light_from_cracking = light_to_crack - processing_for_petrol * LIGHT_PER_PROCESS
oil_processing += processing_for_petrol
heavy_cracking += light_from_cracking
light_cracking += petrol_from_cracking
if excesses:
raise ValueError("Handling exccess oil products is not implemeted: {}".format(excesses))
new_processes = [
Process('oil products', refinery_recipe, oil_processing, outputs={
'heavy oil': HEAVY_PER_PROCESS,
'light oil': LIGHT_PER_PROCESS,
'petroleum': PETROL_PER_PROCESS,
}),
Process('heavy oil cracking', heavy_crack_recipe, heavy_cracking, outputs={'light oil': 1}),
Process('light oil cracking', light_crack_recipe, light_cracking, outputs={'petroleum': 1}),
]
new_processes = {p.item: p for p in new_processes if p.throughput}
new_inputs = {}
for process in new_processes.values():
merge_into(new_inputs, process.inputs())
for item in ('heavy oil', 'light oil', 'petroleum'):
new_inputs.pop(item, None)
merge_processes_into(processes, new_processes)
return processes, new_inputs
def solve_with_oil(self, items):
results = self.solve_all(items)
results, further_inputs = self.solve_oil(results)
merge_processes_into(results, self.solve_all(further_inputs))
return results | MIT License |
dmlc/gluon-nlp | src/gluonnlp/base.py | use_einsum_optimization | python | def use_einsum_optimization():
flag = os.environ.get('GLUONNLP_USE_EINSUM', False)
return flag | Whether to use einsum for attention. This will potentially accelerate the
attention cell
Returns
-------
flag
The use einsum flag | https://github.com/dmlc/gluon-nlp/blob/5d4bc9eba7226ea9f9aabbbd39e3b1e886547e48/src/gluonnlp/base.py#L73-L84 | import os
import numpy as np
__all__ = ['get_home_dir', 'get_data_home_dir']
INT_TYPES = (int, np.int32, np.int64)
FLOAT_TYPES = (float, np.float16, np.float32, np.float64)
def get_home_dir():
_home_dir = os.environ.get('GLUONNLP_HOME', os.path.join('~', '.gluonnlp'))
_home_dir = os.path.expanduser(_home_dir)
return _home_dir
def get_data_home_dir():
home_dir = get_home_dir()
return os.path.join(home_dir, 'datasets')
def get_model_zoo_home_dir():
home_dir = get_home_dir()
return os.path.join(home_dir, 'models')
def get_model_zoo_checksum_dir():
curr_dir = os.path.realpath(os.path.dirname(os.path.realpath(__file__)))
check_sum_dir = os.path.join(curr_dir, 'models', 'model_zoo_checksums')
return check_sum_dir
def get_repo_url():
default_repo = 's3://gluonnlp-numpy-data'
repo_url = os.environ.get('GLUONNLP_REPO_URL', default_repo)
if repo_url[-1] != '/':
repo_url = repo_url + '/'
return repo_url
def get_repo_model_zoo_url():
repo_url = get_repo_url()
model_zoo_url = repo_url + 'models/'
return model_zoo_url | Apache License 2.0 |
ciscodevnet/virl2-client | virl2_client/models/lab.py | Lab.create_interface_local | python | def create_interface_local(
self, iface_id, label, node, slot, iface_type="physical"
):
if iface_id not in self._interfaces:
iface = Interface(iface_id, node, label, slot, iface_type)
self._interfaces[iface_id] = iface
else:
self._interfaces[iface_id].node = node
self._interfaces[iface_id].label = label
self._interfaces[iface_id].slot = slot
self._interfaces[iface_id].iface_type = iface_type
return self._interfaces[iface_id] | Helper function to create an interface in the client library. | https://github.com/ciscodevnet/virl2-client/blob/b1e6f5b40375f5154b40fce5d3d4fffdd67e7977/virl2_client/models/lab.py#L695-L707 | import json
import logging
import time
from .node import Node
from .interface import Interface
from .link import Link
from ..exceptions import LabNotFound, LinkNotFound, NodeNotFound
from .cl_pyats import ClPyats
logger = logging.getLogger(__name__)
class Lab:
def __init__(
self,
title,
lab_id,
context,
username,
password,
auto_sync=True,
auto_sync_interval=1.0,
wait=True,
):
self.username = username
self.password = password
self._title = title
self._description = ""
self._notes = ""
self._lab_id = lab_id
self._nodes = {}
self._context = context
self._owner = username
self._links = {}
self._interfaces = {}
self.events = []
self.pyats = ClPyats(self)
self.auto_sync = auto_sync
self.auto_sync_interval = auto_sync_interval
self._last_sync_statistics_time = 0
self._last_sync_state_time = 0
self._last_sync_l3_address_time = 0
self._last_sync_topology_time = 0
self._initialized = False
self.wait_for_convergence = wait
def __len__(self):
return len(self._nodes)
def __str__(self):
return "Lab: {}".format(self._title)
def __repr__(self):
return "{}({!r}, {!r}, {!r}, {!r}, {!r}, {!r})".format(
self.__class__.__name__,
self._title,
self._lab_id,
self._context,
self.auto_sync,
self.auto_sync_interval,
self.wait_for_convergence,
)
def need_to_wait(self, local_wait):
if local_wait is None:
return self.wait_for_convergence
if not isinstance(local_wait, bool):
raise ValueError
return local_wait
def sync_statistics_if_outdated(self):
timestamp = time.time()
if (
self.auto_sync
and timestamp - self._last_sync_statistics_time > self.auto_sync_interval
):
self.sync_statistics()
def sync_states_if_outdated(self):
timestamp = time.time()
if (
self.auto_sync
and timestamp - self._last_sync_state_time > self.auto_sync_interval
):
self.sync_states()
def sync_l3_addresses_if_outdated(self):
timestamp = time.time()
if (
self.auto_sync
and timestamp - self._last_sync_l3_address_time > self.auto_sync_interval
):
self.sync_layer3_addresses()
def sync_topology_if_outdated(self):
timestamp = time.time()
if (
self.auto_sync
and timestamp - self._last_sync_topology_time > self.auto_sync_interval
):
self._sync_topology(exclude_configurations=True)
@property
def id(self):
return self._lab_id
@property
def title(self):
self.sync_topology_if_outdated()
return self._title
@title.setter
def title(self, value):
url = self.lab_base_url + "/title"
response = self.session.put(url, data=value)
response.raise_for_status()
self._title = value
@property
def notes(self):
self.sync_topology_if_outdated()
return self._notes
@notes.setter
def notes(self, value):
url = self.lab_base_url + "/notes"
response = self.session.put(url, data=value)
response.raise_for_status()
self._notes = value
@property
def description(self):
self.sync_topology_if_outdated()
return self._description
@description.setter
def description(self, value):
url = self.lab_base_url + "/description"
response = self.session.put(url, data=value)
response.raise_for_status()
self._description = value
@property
def client_uuid(self):
return self._context.uuid
@property
def session(self):
return self._context.session
@property
def owner(self):
self.sync_topology_if_outdated()
return self._owner
def nodes(self):
self.sync_topology_if_outdated()
return list(self._nodes.values())
def links(self):
self.sync_topology_if_outdated()
return list(self._links.values())
def interfaces(self):
self.sync_topology_if_outdated()
return list(self._interfaces.values())
@property
def lab_base_url(self):
return self._context.base_url + "labs/{}".format(self._lab_id)
@property
def statistics(self):
return {
"nodes": len(self._nodes),
"links": len(self._links),
"interfaces": len(self._interfaces),
}
def get_node_by_id(self, node_id):
self.sync_topology_if_outdated()
try:
return self._nodes[node_id]
except KeyError:
raise NodeNotFound(node_id)
def get_node_by_label(self, label):
self.sync_topology_if_outdated()
for node in self._nodes.values():
if node.label == label:
return node
else:
raise NodeNotFound(label)
def get_link_by_nodes(self, node1, node2):
self.sync_topology_if_outdated()
for link in self.links():
link_node_pair = (link.interface_a.node, link.interface_b.node)
if (node1, node2) == link_node_pair:
return link
elif (node2, node1) == link_node_pair:
return link
else:
raise LinkNotFound()
def get_link_by_interfaces(self, iface1, iface2):
self.sync_topology_if_outdated()
for link in self.links():
link_iface_pair = (link.interface_a, link.interface_b)
if (iface1, iface2) == link_iface_pair:
return link
elif (iface2, iface1) == link_iface_pair:
return link
else:
raise LinkNotFound()
def find_nodes_by_tag(self, tag):
self.sync_topology_if_outdated()
return [node for node in self.nodes() if tag in node.tags()]
def create_node(
self, label, node_definition, x=0, y=0, wait=None, populate_interfaces=False
):
url = self.lab_base_url + "/nodes"
if populate_interfaces:
url += "?populate_interfaces=true"
data = {
"label": label,
"node_definition": node_definition,
"x": x,
"y": y,
}
response = self.session.post(url, json=data)
result = response.json()
response.raise_for_status()
node_id = result["id"]
config = ""
if not self._initialized:
self._initialized = True
image_definition = None
config = ""
if self.need_to_wait(wait):
self.wait_until_lab_converged()
node = self.add_node_local(
node_id, label, node_definition, image_definition, config, x, y
)
return node
def add_node_local(
self,
node_id,
label,
node_definition,
image_definition,
config,
x,
y,
ram=0,
cpus=0,
cpu_limit=100,
data_volume=0,
boot_disk_size=0,
tags=None,
):
if tags is None:
tags = []
node = Node(
self,
node_id,
label,
node_definition,
image_definition,
config,
x,
y,
ram,
cpus,
cpu_limit,
data_volume,
boot_disk_size,
tags,
)
self._nodes[node.id] = node
return node
def remove_node(self, node, wait=None):
node.remove_on_server()
for iface in node.interfaces():
for lnk in iface.links():
try:
del self._links[lnk.id]
except KeyError:
pass
try:
del self._interfaces[iface.id]
except KeyError:
pass
try:
del self._nodes[node.id]
except KeyError:
pass
if self.need_to_wait(wait):
self.wait_until_lab_converged()
logger.debug("%s node removed from lab %s", node.id, self._lab_id)
def remove_nodes(self, wait=None):
for node in list(self._nodes.values()):
self.remove_node(node, wait=False)
if self.need_to_wait(wait):
self.wait_until_lab_converged()
logger.debug("all nodes removed from lab %s", self._lab_id)
def remove_link(self, link, wait=None):
link.remove_on_server()
try:
del self._links[link.id]
except KeyError:
pass
if self.need_to_wait(wait):
self.wait_until_lab_converged()
logger.debug("link %s removed from lab %s", link.id, self._lab_id)
def remove_interface(self, iface, wait=None):
iface.remove_on_server()
for lnk in iface.links():
try:
del self._links[lnk.id]
except KeyError:
pass
try:
del self._interfaces[iface.id]
except KeyError:
pass
if self.need_to_wait(wait):
self.wait_until_lab_converged()
logger.debug("interface %s removed from lab %s", iface.id, self._lab_id)
def create_link(self, i1, i2, wait=None):
url = self.lab_base_url + "/links"
data = {
"src_int": i1.id,
"dst_int": i2.id,
}
response = self.session.post(url, json=data)
result = response.json()
link_id = result["id"]
if self.need_to_wait(wait):
self.wait_until_lab_converged()
link = self.create_link_local(i1, i2, link_id)
return link
def connect_two_nodes(self, node1, node2):
iface1 = node1.next_available_interface() or node1.create_interface()
iface2 = node2.next_available_interface() or node2.create_interface()
return self.create_link(iface1, iface2)
def create_link_local(self, i1, i2, link_id):
link = Link(self, link_id, i1, i2)
self._links[link_id] = link
return link
def create_interface(self, node, slot=None, wait=None):
url = self.lab_base_url + "/interfaces"
payload = {"node": node.id}
if slot is not None:
payload["slot"] = slot
response = self.session.post(url, json=payload)
response.raise_for_status()
result = response.json()
if isinstance(result, dict):
result = [result]
if self.need_to_wait(wait):
self.wait_until_lab_converged()
desired_interface = None
for iface in result:
lab_interface = self.create_interface_local(
iface_id=iface["id"],
label=iface["label"],
node=node,
slot=iface["slot"],
)
if slot == iface["slot"] or slot is None:
desired_interface = lab_interface
return desired_interface | Apache License 2.0 |
emorynlp/bert-2019 | bertsota/common/data.py | ParserVocabulary._add_pret_words | python | def _add_pret_words(self, pret_file):
words_in_train_data = set(self._id2word)
with open(pret_file) as f:
for line in f:
line = line.strip().split()
if line:
word = line[0]
if word not in words_in_train_data:
self._id2word.append(word) | Read pre-trained embedding file for extending vocabulary
Parameters
----------
pret_file : str
path to pre-trained embedding file | https://github.com/emorynlp/bert-2019/blob/228b2046d92084ea3cd7c900c1d8af1f0a925cfe/bertsota/common/data.py#L197-L213 | import pickle
from collections import Counter
import numpy as np
from bertsota.common.k_means import KMeans
from bertsota.common.savable import Savable
class ConllWord(object):
def __init__(self, id, form, lemma=None, cpos=None, pos=None, feats=None, head=None, relation=None, phead=None,
pdeprel=None):
self.id = id
self.form = form
self.cpos = cpos
self.pos = pos
self.head = head
self.relation = relation
self.lemma = lemma
self.feats = feats
self.phead = phead
self.pdeprel = pdeprel
def __str__(self):
values = [str(self.id), self.form, self.lemma, self.cpos, self.pos, self.feats, str(self.head), self.relation,
self.phead, self.pdeprel]
return '\t'.join(['_' if v is None else v for v in values])
class ConllSentence(object):
def __init__(self, words):
super().__init__()
self.words = words
def __str__(self):
return '\n'.join([word.__str__() for word in self.words])
def __len__(self):
return len(self.words)
def __getitem__(self, index):
return self.words[index]
def __iter__(self):
return (line for line in self.words)
class ParserVocabulary(Savable):
PAD, ROOT, UNK = 0, 1, 2
def __init__(self, input_file, pret_file, min_occur_count=2, root='root', shared_vocab=None):
super().__init__()
word_counter = Counter()
tag_set = set()
rel_set = set()
if input_file.endswith('.conllu'):
with open(input_file) as f:
for line in f:
if line.startswith('#'):
continue
cell = line.strip().split()
if cell:
word, tag = cell[1].lower(), cell[3]
word_counter[word] += 1
tag_set.add(tag)
token = cell[8]
if token != '_':
token = token.split('|')
for edge in token:
head, rel = edge.split(':', 1)
if rel != root:
rel_set.add(rel)
else:
with open(input_file) as f:
for line in f:
info = line.strip().split()
if info:
if len(info) == 10:
arc_offset = 6
rel_offset = 7
elif len(info) == 8:
arc_offset = 5
rel_offset = 6
word, tag, head, rel = info[1].lower(), info[3], int(info[arc_offset]), info[rel_offset]
word_counter[word] += 1
tag_set.add(tag)
if rel != root:
rel_set.add(rel)
self._id2word = ['<pad>', '<root>', '<unk>']
self._id2tag = ['<pad>', '<root>', '<unk>']
self._id2rel = ['<pad>', root]
self.root = root
reverse = lambda x: dict(list(zip(x, list(range(len(x))))))
for word, count in word_counter.most_common():
if count > min_occur_count:
self._id2word.append(word)
self._pret_file = pret_file
self._words_in_train_data = len(self._id2word)
if shared_vocab:
self._id2word = shared_vocab._id2word
self._id2tag = shared_vocab._id2tag
self._word2id = shared_vocab._word2id
self._tag2id = shared_vocab._tag2id
else:
if pret_file:
self._add_pret_words(pret_file)
self._id2tag += list(sorted(tag_set))
self._word2id = reverse(self._id2word)
self._tag2id = reverse(self._id2tag)
self._id2rel += list(sorted(rel_set))
self._rel2id = reverse(self._id2rel)
def log_info(self, logger):
logger.info('#words in training set: %d' % self._words_in_train_data)
logger.info("Vocab info: #words %d, #tags %d #rels %d" % (self.vocab_size, self.tag_size, self.rel_size)) | Apache License 2.0 |
openstack/rally-openstack | tests/functional/test_task_samples.py | TestTaskSamples._skip | python | def _skip(self, validation_output):
skip_lst = ["[Ss]ervice is not available",
"is not installed. To install it run",
"extension.* is not configured"]
for check_str in skip_lst:
if re.search(check_str, validation_output) is not None:
return True
return False | Help to decide do we want to skip this result or not.
:param validation_output: string representation of the
error that we want to check
:return: True if we want to skip this error
of task sample validation, otherwise False. | https://github.com/openstack/rally-openstack/blob/d52e165320d87860930d6fbcca105e19bec0d879/tests/functional/test_task_samples.py#L39-L54 | import copy
import json
import os
import re
import traceback
import unittest
from rally import api
from rally.cli import yamlutils as yaml
from rally.common import broker
from rally import plugins
import rally_openstack as rally_openstack_module
from rally_openstack.common import consts
from rally_openstack.common import credential
from tests.functional import utils
class TestTaskSamples(unittest.TestCase):
NUMBER_OF_THREADS = 20 | Apache License 2.0 |
ddorn/gui | GUI/base.py | BaseWidget.__init__ | python | def __init__(self, pos, size, anchor=CENTER):
self.__verify(pos)
self.__verify(size)
super().__init__((0, 0), (0, 0))
self._anchor = anchor
self._pos = pos
self._size = size
self._focus = False
self.clicked = False | Creates a Basic Widget with... nothing
The pos, size and anchor can be tuples or funcions that returns a tuple (an anchostr for the anchor) | https://github.com/ddorn/gui/blob/e1fcb5286d24e0995f280d5180222e51895c368c/GUI/base.py#L24-L40 | import pygame
from GUI.locals import CENTER, TOPLEFT, TOPRIGHT, MIDTOP, MIDLEFT, MIDRIGHT, BOTTOMRIGHT, MIDBOTTOM, BOTTOMLEFT
from pygame.event import EventType
class BaseWidget(pygame.Rect): | MIT License |
vovanec/supervisor_checks | supervisor_checks/bin/tcp_check.py | _make_argument_parser | python | def _make_argument_parser():
parser = argparse.ArgumentParser(
description='Run TCP check program.')
parser.add_argument('-n', '--check-name', dest='check_name',
type=str, required=True, default=None,
help='Check name.')
parser.add_argument('-g', '--process-group', dest='process_group',
type=str, default=None,
help='Supervisor process group name.')
parser.add_argument('-N', '--process-name', dest='process_name',
type=str, default=None,
help='Supervisor process name. Process group argument is ignored if this ' +
'is passed in')
parser.add_argument(
'-p', '--port', dest='port', type=str,
default=None, required=True,
help='TCP port to query. Can be integer or regular expression which '
'will be used to extract port from a process name.')
parser.add_argument(
'-t', '--timeout', dest='timeout', type=int, required=False,
default=tcp.DEFAULT_TIMEOUT,
help='Connection timeout. Default: %s' % (tcp.DEFAULT_TIMEOUT,))
parser.add_argument(
'-r', '--num-retries', dest='num_retries', type=int,
default=tcp.DEFAULT_RETRIES, required=False,
help='Connection retries. Default: %s' % (tcp.DEFAULT_RETRIES,))
return parser | Create the option parser. | https://github.com/vovanec/supervisor_checks/blob/f44b105659d60d0e1f1845b111fec148ae5514e5/supervisor_checks/bin/tcp_check.py#L20-L50 | import argparse
import sys
from supervisor_checks import check_runner
from supervisor_checks.check_modules import tcp
__author__ = '[email protected]' | MIT License |
ibm/superglue-mtl | data_utils.py | COPALoader.get_labels | python | def get_labels(self):
return [0] | this is set to [0] because we treat each subinstance as a logistic regression task | https://github.com/ibm/superglue-mtl/blob/1eb3e581c0ef3b4c261e0256ec26116d2b657c40/data_utils.py#L633-L635 | import os
import json
import logging
import torch
import numpy as np
from torch.utils.data import TensorDataset, Dataset
logging.getLogger().setLevel(logging.INFO)
DATA_PATH = os.environ["SG_DATA"]
EXP_PATH = os.environ["SG_MTL_EXP"]
BERT_LARGE_MNLI_PATH = "/datastor/xhua/Experiments/mnli_bert_large_no_transfer_seed_42_lr_1e-5_max_seq_len_256/pytorch_model.bin_epoch_4_train_loss_0.0049_dev_loss_0.5259_acc_86.52"
BERT_LARGE_SQUAD_NLI_PATH = "/dccstor/xhua11/Experiments/squadnli_bert-large_transfer-wwm_lr-1e-5_seed-42_max-len-256/pytorch_model.bin_epoch_1_train_loss_0.2614_val_loss_0.2474"
BERT_LARGE_SQUAD_1_PATH = "/u/avi/Projects/dccstor_avi5/nq/trained_squad_models/using_mglass_pretraining/bert_large_sq1.bin"
BERT_LARGE_SQUAD_2_PATH = "/u/avi/Projects/dccstor_avi5/nq/trained_squad_models/bert_large_sq2_mglass_pretrained.bin"
BERT_LARGE_WWM_SQUAD_2_PATH = "/dccstor/panlin2/squad2/expts/Pan_squad2_whole_word_32bs/output/pytorch_model.bin"
TRANSFER_PATH = {
"squad1-bert-large" : BERT_LARGE_SQUAD_1_PATH,
"squad2-bert-large" : BERT_LARGE_SQUAD_2_PATH,
"squad2-bert-large-wwm" : BERT_LARGE_WWM_SQUAD_2_PATH,
"squad2nli-roberta-large" : ROBERTA_LARGE_SQUAD_NLI_PATH,
}
class InputExample(object):
def __init__(self, guid, text_hyp, text_pre=None, label=None):
self.guid = guid
self.text_hyp = text_hyp
self.text_pre = text_pre
self.label = label
def featurize_example(self, *kargs, **kwargs):
raise NotImplementedError
class DefaultInputExample(InputExample):
def __init__(self, guid, text_hyp, text_pre, label):
super(DefaultInputExample, self).__init__(guid, text_hyp, text_pre, label)
def featurize_example(self, tokenizer, max_seq_length=128, label_map=None, output_mode="classification",
model_type="bert", print_example=False, task=None):
tokens_a = tokenizer.tokenize(self.text_hyp)
if self.text_pre:
tokens_b = tokenizer.tokenize(self.text_pre)
special_tokens_count = 4 if model_type == "roberta" else 3
_truncate_seq_pair(tokens_a, tokens_b, max_seq_length - special_tokens_count)
else:
special_tokens_count = 3 if model_type == "roberta" else 2
if len(tokens_a) > max_seq_length - special_tokens_count:
tokens_a = tokens_a[:max_seq_length - special_tokens_count]
tokens = tokens_a + [tokenizer.sep_token]
if model_type == "roberta":
tokens += [tokenizer.sep_token]
segment_ids = [0] * len(tokens)
if tokens_b:
tokens += tokens_b + [tokenizer.sep_token]
segment_ids += [1] * (len(tokens_b) + 1)
tokens = [tokenizer.cls_token] + tokens
segment_ids = [0] + segment_ids
input_ids = tokenizer.convert_tokens_to_ids(tokens)
input_mask = [1] * len(input_ids)
padding_length = max_seq_length - len(input_ids)
input_ids = input_ids + tokenizer.convert_tokens_to_ids([tokenizer.pad_token] * padding_length)
input_mask = input_mask + [0] * padding_length
segment_ids = segment_ids + [0] * padding_length
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
if output_mode == "classification":
label_id = label_map[self.label]
elif output_mode == "regression":
label_id = float(self.label)
else:
raise KeyError
if print_example:
logging.info("*** Example (%s) ***" % task)
logging.info("guid: %s" % (self.guid))
logging.info("tokens: %s" % " ".join(
[str(x) for x in tokens]))
logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
logging.info(
"segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
logging.info("label: %s (id = %s)" % (str(self.label), str(label_id)))
return InputFeatures(input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
label_id=label_id)
class WSCInputExample(InputExample):
def __init__(self, guid, text, span_1, span_2, label):
super(WSCInputExample, self).__init__(guid, text_hyp=text, text_pre=None, label=label)
self.spans = [span_1, span_2]
def featurize_example(self, tokenizer, max_seq_length=128, label_map=None, model_type="bert", print_example=False,
task=None):
tokens_a = tokenizer.tokenize(self.text_hyp)
token_word_ids = _get_word_ids(tokens_a, model_type)
span_1_tok_ids = _get_token_ids(token_word_ids, self.spans[0][0], offset=1)
span_2_tok_ids = _get_token_ids(token_word_ids, self.spans[1][0], offset=1)
special_tokens_count = 2
if len(tokens_a) > max_seq_length - special_tokens_count:
tokens_a = tokens_a[:max_seq_length - special_tokens_count]
tokens = tokens_a + [tokenizer.sep_token]
segment_ids = [0] * len(tokens)
tokens = [tokenizer.cls_token] + tokens
segment_ids = [0] + segment_ids
input_ids = tokenizer.convert_tokens_to_ids(tokens)
input_mask = [1] * len(input_ids)
padding_length = max_seq_length - len(input_ids)
input_ids = input_ids + tokenizer.convert_tokens_to_ids([tokenizer.pad_token] * padding_length)
input_mask = input_mask + [0] * padding_length
segment_ids = segment_ids + [0] * padding_length
span_1_mask = [0] * len(input_ids)
for k in span_1_tok_ids:
span_1_mask[k] = 1
span_2_mask = [0] * len(input_ids)
for k in span_2_tok_ids:
span_2_mask[k] = 1
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
assert len(span_1_mask) == max_seq_length
assert len(span_2_mask) == max_seq_length
if self.label is not None:
label_id = int(self.label)
else:
label_id = None
if print_example:
logging.info("*** Example (%s) ***" % task)
logging.info("guid: %s" % (self.guid))
logging.info("tokens: %s" % " ".join(
[str(x) for x in tokens]))
logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
logging.info(
"segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
logging.info("label: %s (id = %s)" % (str(self.label), str(label_id)))
return InputFeatures(input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
span_1_mask=span_1_mask,
span_1_text=self.spans[0][1],
span_2_mask=span_2_mask,
span_2_text=self.spans[1][1],
label_id=label_id)
class COPAInputExample(InputExample):
def __init__(self, guid, text_pre, text_choice_1, text_choice_2, question, label=None):
super(COPAInputExample, self).__init__(guid=guid, text_hyp=None, text_pre=text_pre, label=label)
self.text_choice_1 = text_choice_1
self.text_choice_2 = text_choice_2
self.question = question
def featurize_example(self, tokenizer, max_seq_length=128, label_map=None, model_type="bert", print_example=False,
task=None):
def _featurize_example(text_a, text_b, text_c, cur_label=None, print_example=False):
tokens_a = tokenizer.tokenize(text_a)
tokens_b = tokenizer.tokenize(text_b)
tokens_c = tokenizer.tokenize(text_c)
special_tokens_count = 6 if model_type == "roberta" else 4
_truncate_seq_pair(tokens_a, tokens_c, max_seq_length - special_tokens_count - len(tokens_b))
tokens = tokens_a + [tokenizer.sep_token]
if model_type == "roberta":
tokens += [tokenizer.sep_token]
segment_ids = [0] * len(tokens)
tokens += tokens_b + [tokenizer.sep_token]
segment_ids += [1] * (len(tokens_b) + 1)
if model_type == "roberta":
tokens += [tokenizer.sep_token]
segment_ids += [1]
tokens += tokens_c + [tokenizer.sep_token]
segment_ids += [2] * (len(tokens_c) + 1)
tokens = [tokenizer.cls_token] + tokens
segment_ids = [0] + segment_ids
input_ids = tokenizer.convert_tokens_to_ids(tokens)
input_mask = [1] * len(input_ids)
padding_length = max_seq_length - len(input_ids)
input_ids = input_ids + tokenizer.convert_tokens_to_ids([tokenizer.pad_token] * padding_length)
input_mask = input_mask + [0] * padding_length
segment_ids = segment_ids + [0] * padding_length
label_id = float(cur_label) if cur_label is not None else None
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
if print_example:
logging.info("*** Example (COPA) ***")
logging.info("guid: %s" % (self.guid))
logging.info("tokens: %s" % " ".join(
[str(x) for x in tokens]))
logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
logging.info(
"segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
logging.info("label: %s (id = %s)" % (str(cur_label), str(label_id)))
return InputFeatures(input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
label_id=label_id)
feat_ex_1 = _featurize_example(self.text_choice_1,
self.question,
self.text_pre,
cur_label=int(self.label == 0),
print_example=print_example)
feat_ex_2 = _featurize_example(self.text_choice_2,
self.question,
self.text_pre,
cur_label=int(self.label == 1),
print_example=print_example)
return feat_ex_1, feat_ex_2
class InputFeatures(object):
def __init__(self, input_ids, input_mask, segment_ids, label_id, **kwargs):
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.label_id = label_id
self.__dict__.update(kwargs)
class SuperGlueDataset(Dataset):
def __init__(self, task_loader, task_samples, tokenizer, max_seq_length, model_type="bert"):
label_map = {label: i for i, label in enumerate(task_loader.get_labels())}
label_map[None] = None
features = []
self.all_guids = []
self.task_name = task_loader.task_name
for (ex_index, example) in enumerate(task_samples):
print_example = True if ex_index < 1 else False
featurized_example = example.featurize_example(tokenizer,
max_seq_length=max_seq_length,
label_map=label_map,
model_type=model_type,
print_example=print_example,
task=task_loader.task_name)
if task_loader.task_name == "COPA":
features.append(featurized_example[0])
features.append(featurized_example[1])
self.all_guids.append(str(example.guid) + "_0")
self.all_guids.append(str(example.guid) + "_1")
else:
features.append(featurized_example)
self.all_guids.append(str(example.guid))
self.all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
self.all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
self.all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)
if task_loader.task_name in ["WSC", "WiC"]:
self.all_span_1_mask = torch.tensor([f.span_1_mask for f in features], dtype=torch.long)
self.all_span_1_text = [f.span_1_text for f in features]
self.all_span_2_mask = torch.tensor([f.span_2_mask for f in features], dtype=torch.long)
self.all_span_2_text = [f.span_2_text for f in features]
if features[0].label_id is None:
self.all_label_ids = torch.tensor([0 for _ in features], dtype=torch.long)
elif task_loader.task_name == "COPA":
self.all_label_ids = torch.tensor([f.label_id for f in features],
dtype=torch.float)
else:
self.all_label_ids = torch.tensor([f.label_id for f in features],
dtype=torch.long)
def __len__(self):
return len(self.all_guids)
def __getitem__(self, index):
item = (self.all_guids[index], self.all_input_ids[index], self.all_input_mask[index],
self.all_segment_ids[index], self.all_label_ids[index])
if self.task_name in ["WSC", "WiC"]:
item = item + (self.all_span_1_mask[index], self.all_span_1_text[index],
self.all_span_2_mask[index], self.all_span_2_text[index])
return item
def load_jsonl_raw(dataset, demo=False, set_type="train"):
fname = "%s.jsonl" % set_type
lines = []
for ln in open(os.path.join(DATA_PATH, dataset, fname)):
lines.append(json.loads(ln))
if demo and len(lines) >= 500:
break
return lines
def load_squadnli_raw(demo=False, set_type="train"):
fname = "squadnli.%s.jsonl" % set_type
lines = []
for ln in open(os.path.join(DATA_PATH + "../../squadnli/", fname)):
cur_obj = json.loads(ln)
context = cur_obj["context"]
for item in cur_obj["statements"]:
lines.append({"premise": context, "hypothesis": item[1], "label": item[-1], "id": item[0]})
if demo and len(lines) >= 100:
break
return lines
class DataLoader(object):
task_name = None
def get_train_examples(self, demo=False):
return self._create_examples(load_jsonl_raw(dataset=self.task_name,
demo=demo,
set_type="train"))
def get_test_examples(self, demo=False, test_set="val"):
return self._create_examples(load_jsonl_raw(dataset=self.task_name,
demo=demo,
set_type=test_set))
class SQuADNLILoader(DataLoader):
task_name = "SQuADNLI"
def get_train_examples(self, demo=False):
return self._create_examples(load_squadnli_raw(demo=demo, set_type="train"))
def get_test_examples(self, demo=False, test_set="val"):
return self._create_examples(load_squadnli_raw(demo=demo, set_type=test_set))
def get_labels(self):
return [False, True]
def _create_examples(self, lines):
examples = []
for (i, line) in enumerate(lines):
text_hyp = line["hypothesis"]
text_pre = line["premise"]
if "label" in line:
label = line["label"]
else:
label = None
examples.append(
DefaultInputExample(guid=line["id"],
text_hyp=text_hyp,
text_pre=text_pre,
label=label)
)
return examples
class BoolQLoader(DataLoader):
task_name = "BoolQ"
def get_labels(self):
return [False, True]
def _create_examples(self, lines):
examples = []
for (i, line) in enumerate(lines):
text_hyp = line["question"]
text_pre = line["passage"]
if "label" in line:
label = line["label"]
else:
label = None
examples.append(
DefaultInputExample(guid=line["idx"],
text_hyp=text_hyp,
text_pre=text_pre,
label=label)
)
return examples
class BoolQNLILoader(BoolQLoader):
task_name = "BoolQNLI"
def get_train_examples(self, demo=False):
return self._create_examples(load_jsonl_raw(dataset="BoolQNLI",
demo=demo,
set_type="train"))
def get_test_examples(self, demo=False, test_set="val"):
return self._create_examples(load_jsonl_raw(dataset="BoolQNLI",
demo=demo,
set_type=test_set))
def _create_examples(self, lines):
examples = []
for (i, line) in enumerate(lines):
text_hyp = line["question"]
text_pre = line["passage"]
if "label" in line:
label = line["label"]
else:
label = None
examples.append(
DefaultInputExample(guid=str(i),
text_hyp=text_hyp,
text_pre=text_pre,
label=label)
)
return examples
class RTELoader(DataLoader):
task_name = "RTE"
def get_train_examples(self, demo=False):
return self._create_examples(load_jsonl_raw(dataset="RTE",
demo=demo,
set_type="train"))
def get_test_examples(self, demo=False, test_set="val"):
return self._create_examples(load_jsonl_raw(dataset="RTE",
demo=demo,
set_type=test_set))
def get_labels(self):
return ["entailment", "not_entailment"]
def _create_examples(self, lines):
examples = []
for (i, line) in enumerate(lines):
text_hyp = line["hypothesis"]
text_pre = line["premise"]
guid = line["idx"]
if "label" in line:
label = line["label"]
else:
label = None
examples.append(
DefaultInputExample(guid=guid,
text_hyp=text_hyp,
text_pre=text_pre,
label=label)
)
return examples
class CBLoader(DataLoader):
task_name = "CB"
def get_train_examples(self, demo=False):
return self._create_examples(load_jsonl_raw(dataset="CB",
demo=demo,
set_type="train"))
def get_test_examples(self, demo=False, test_set="val"):
return self._create_examples(load_jsonl_raw(dataset="CB",
demo=demo,
set_type=test_set))
def get_labels(selfself):
return ["entailment", "neutral", "contradiction"]
def _create_examples(self, lines):
examples = []
for (i, line) in enumerate(lines):
text_hyp = line["hypothesis"]
text_pre = line["premise"]
guid = line["idx"]
if "label" in line:
label = line["label"]
else:
label = None
examples.append(
DefaultInputExample(guid=guid,
text_hyp=text_hyp,
text_pre=text_pre,
label=label)
)
return examples
class WSCLoader(DataLoader):
task_name = "WSC"
def get_labels(self):
return [0]
def _create_examples(self, lines):
examples = []
for (i, line) in enumerate(lines):
text = line["text"]
span_1 = (line["target"]["span1_index"], line["target"]["span1_text"])
span_2 = (line["target"]["span2_index"], line["target"]["span2_text"])
if "label" in line:
label = line["label"]
else:
label = None
examples.append(
WSCInputExample(guid=line["idx"],
text=text,
span_1=span_1,
span_2=span_2,
label=label)
)
return examples
class COPALoader(DataLoader):
task_name = "COPA" | Apache License 2.0 |
seldonio/alibi | alibi/utils/lang_model.py | BertBaseUncased.__init__ | python | def __init__(self, preloading: bool = True):
super().__init__("bert-base-uncased", preloading) | Initialize BertBaseUncased.
Parameters
----------
preloading
See `LanguageModel` constructor. | https://github.com/seldonio/alibi/blob/ef757b9579f85ef2e3dfc7088211969616ee3fdb/alibi/utils/lang_model.py#L343-L352 | import abc
import numpy as np
from pathlib import Path
from typing import List, Optional, Tuple, Union
import tensorflow as tf
import transformers
from transformers import TFAutoModelForMaskedLM, AutoTokenizer
class LanguageModel(abc.ABC):
SUBWORD_PREFIX = ''
def __init__(self, model_path: str, preloading: bool = True):
self.model_path = model_path
self.model, self.caller, self.tokenizer = None, None, None
if preloading:
self.model = TFAutoModelForMaskedLM.from_pretrained(model_path)
self.caller = tf.function(self.model.call, experimental_relax_shapes=True)
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
def from_disk(self, path: Union[str, Path]):
self.model = TFAutoModelForMaskedLM.from_pretrained(path, local_files_only=True)
self.caller = tf.function(self.model.call, experimental_relax_shapes=True)
self.tokenizer = AutoTokenizer.from_pretrained(path, local_files_only=True)
def to_disk(self, path: Union[str, Path]):
if self.model:
self.model.save_pretrained(path)
if self.tokenizer:
self.tokenizer.save_pretrained(path)
@abc.abstractmethod
def is_subword_prefix(self, token: str) -> bool:
pass
def select_word(self,
tokenized_text: List[str],
start_idx: int,
punctuation: str) -> str:
end_idx = start_idx + 1
while end_idx < len(tokenized_text):
if (not self.is_subword_prefix(tokenized_text[end_idx])) or self.is_punctuation(tokenized_text[end_idx], punctuation):
break
end_idx += 1
word = self.tokenizer.convert_tokens_to_string(tokenized_text[start_idx:end_idx])
return word
def is_stop_word(self,
tokenized_text: List[str],
start_idx: int,
punctuation: str,
stopwords: Optional[List[str]]) -> bool:
if not stopwords:
return False
if self.is_subword_prefix(tokenized_text[start_idx]):
return False
word = self.select_word(tokenized_text, start_idx=start_idx, punctuation=punctuation).strip()
return word.lower() in stopwords
def is_punctuation(self, token: str, punctuation: str) -> bool:
token = token.replace(self.SUBWORD_PREFIX, '').strip()
return all([c in punctuation for c in token])
@property
@abc.abstractmethod
def mask(self) -> str:
pass
@property
def mask_id(self) -> int:
return self.tokenizer.mask_token_id
@property
def max_num_tokens(self) -> int:
return self.model.config.max_position_embeddings
def head_tail_split(self, text: str) -> Tuple[str, str, List[str], List[str]]:
text = text.strip()
if len(text) == 0:
raise ValueError("The text is empty.")
tokens: List[str] = self.tokenizer.tokenize(text)
if self.max_num_tokens == -1 or len(tokens) <= self.max_num_tokens:
return text, '', tokens, []
head_num_tokens = self.max_num_tokens
while (head_num_tokens > 0) and self.is_subword_prefix(tokens[head_num_tokens]):
head_num_tokens -= 1
if head_num_tokens == 0:
raise ValueError("Check the first word in the sentence. Seems it is a very long word")
ids = self.tokenizer.convert_tokens_to_ids(tokens[:head_num_tokens])
head_text = self.tokenizer.decode(ids).strip()
tail_text = ''
if len(tokens) >= head_num_tokens:
ids = self.tokenizer.convert_tokens_to_ids(tokens[head_num_tokens:])
tail_text = self.tokenizer.decode(ids).strip()
return head_text, tail_text, tokens[:head_num_tokens], tokens[head_num_tokens:]
def predict_batch_lm(self,
x: transformers.tokenization_utils_base.BatchEncoding,
vocab_size: int,
batch_size: int) -> np.ndarray:
n, m = x['input_ids'].shape
y = np.zeros((n, m, vocab_size), dtype=np.float32)
n_minibatch = int(np.ceil(n / batch_size))
for i in range(n_minibatch):
istart, istop = i * batch_size, min((i + 1) * batch_size, n)
x_batch = dict()
if 'input_ids' in x.keys():
x_batch['input_ids'] = x['input_ids'][istart:istop]
if 'token_type_ids' in x.keys():
x_batch['token_type_ids'] = x['token_type_ids'][istart:istop]
if 'attention_mask' in x.keys():
x_batch['attention_mask'] = x['attention_mask'][istart:istop]
y[istart:istop] = self.caller(**x_batch).logits.numpy()
return y
class DistilbertBaseUncased(LanguageModel):
SUBWORD_PREFIX = '##'
def __init__(self, preloading: bool = True):
super().__init__("distilbert-base-uncased", preloading)
@property
def mask(self) -> str:
return self.tokenizer.mask_token
def is_subword_prefix(self, token: str) -> bool:
return token.startswith(DistilbertBaseUncased.SUBWORD_PREFIX)
class BertBaseUncased(LanguageModel):
SUBWORD_PREFIX = '##' | Apache License 2.0 |
uok-psychology/django-questionnaire | questionnaire/forms.py | generate_radioselect_field | python | def generate_radioselect_field():
return ChoiceField(widget=RadioSelect,choices=[]) | @return radioselect field no default set TODO: this isn't actually true, it returns a ChoiceField that has a RadioSelect widget | https://github.com/uok-psychology/django-questionnaire/blob/50c85328306533554e0f9c56794f54422cb12bc9/questionnaire/forms.py#L54-L58 | from django import forms
from django.forms.fields import CharField,BooleanField,ChoiceField,MultipleChoiceField, TypedChoiceField
from django.forms.widgets import RadioSelect, CheckboxInput
from questionnaire.models import AnswerSet
def get_choices(question):
choices_list = question.selectoptions
if choices_list == None:
return None
choices= [(x,x) for x in choices_list]
return choices
def generate_charfield():
return CharField(max_length=100,widget=forms.TextInput(attrs={'size':'40'}))
def generate_textfield():
return CharField(widget = forms.Textarea(attrs={'rows':'4','cols':'40',}))
def generate_boolean_field():
return TypedChoiceField(
choices=((1,'Yes'),(0,'No')),
widget=forms.RadioSelect, coerce=int
)
def generate_select_dropdown_field():
return ChoiceField(choices=[]) | MIT License |
vitorazor/lidar_rgb_detector | second/builder/dataset_builder.py | build | python | def build(input_reader_config,
model_config,
training,
voxel_generator,
target_assigner,
multi_gpu=False):
if not isinstance(input_reader_config, input_reader_pb2.InputReader):
raise ValueError('input_reader_config not of type '
'input_reader_pb2.InputReader.')
prep_cfg = input_reader_config.preprocess
dataset_cfg = input_reader_config.dataset
num_point_features = model_config.num_point_features
out_size_factor = get_downsample_factor(model_config)
assert out_size_factor > 0
cfg = input_reader_config
db_sampler_cfg = prep_cfg.database_sampler
db_sampler = None
if len(db_sampler_cfg.sample_groups) > 0 or db_sampler_cfg.database_info_path != "":
db_sampler = dbsampler_builder.build(db_sampler_cfg)
grid_size = voxel_generator.grid_size
feature_map_size = grid_size[:2] // out_size_factor
feature_map_size = [*feature_map_size, 1][::-1]
print("feature_map_size", feature_map_size)
assert all([n != '' for n in target_assigner.classes]), "you must specify class_name in anchor_generators."
dataset_cls = get_dataset_class(dataset_cfg.dataset_class_name)
assert dataset_cls.NumPointFeatures >= 3, "you must set this to correct value"
assert dataset_cls.NumPointFeatures == num_point_features, "currently you need keep them same"
prep_func = partial(
prep_pointcloud,
root_path=dataset_cfg.kitti_root_path,
voxel_generator=voxel_generator,
target_assigner=target_assigner,
training=training,
max_voxels=prep_cfg.max_number_of_voxels,
remove_outside_points=False,
remove_unknown=prep_cfg.remove_unknown_examples,
create_targets=training,
shuffle_points=prep_cfg.shuffle_points,
gt_rotation_noise=list(prep_cfg.groundtruth_rotation_uniform_noise),
gt_loc_noise_std=list(prep_cfg.groundtruth_localization_noise_std),
global_rotation_noise=list(prep_cfg.global_rotation_uniform_noise),
global_scaling_noise=list(prep_cfg.global_scaling_uniform_noise),
global_random_rot_range=list(
prep_cfg.global_random_rotation_range_per_object),
global_translate_noise_std=list(prep_cfg.global_translate_noise_std),
db_sampler=db_sampler,
num_point_features=dataset_cls.NumPointFeatures,
anchor_area_threshold=prep_cfg.anchor_area_threshold,
gt_points_drop=prep_cfg.groundtruth_points_drop_percentage,
gt_drop_max_keep=prep_cfg.groundtruth_drop_max_keep_points,
remove_points_after_sample=prep_cfg.remove_points_after_sample,
remove_environment=prep_cfg.remove_environment,
use_group_id=prep_cfg.use_group_id,
out_size_factor=out_size_factor,
multi_gpu=multi_gpu,
min_points_in_gt=prep_cfg.min_num_of_points_in_gt,
random_flip_x=prep_cfg.random_flip_x,
random_flip_y=prep_cfg.random_flip_y,
sample_importance=prep_cfg.sample_importance)
ret = target_assigner.generate_anchors(feature_map_size)
class_names = target_assigner.classes
anchors_dict = target_assigner.generate_anchors_dict(feature_map_size)
anchors_list = []
for k, v in anchors_dict.items():
anchors_list.append(v["anchors"])
anchors = np.concatenate(anchors_list, axis=0)
anchors = anchors.reshape([-1, target_assigner.box_ndim])
assert np.allclose(anchors, ret["anchors"].reshape(-1, target_assigner.box_ndim))
matched_thresholds = ret["matched_thresholds"]
unmatched_thresholds = ret["unmatched_thresholds"]
anchors_bv = box_np_ops.rbbox2d_to_near_bbox(
anchors[:, [0, 1, 3, 4, 6]])
anchor_cache = {
"anchors": anchors,
"anchors_bv": anchors_bv,
"matched_thresholds": matched_thresholds,
"unmatched_thresholds": unmatched_thresholds,
"anchors_dict": anchors_dict,
}
prep_func = partial(prep_func, anchor_cache=anchor_cache)
dataset = dataset_cls(
info_path=dataset_cfg.kitti_info_path,
root_path=dataset_cfg.kitti_root_path,
class_names=class_names,
prep_func=prep_func)
return dataset | Builds a tensor dictionary based on the InputReader config.
Args:
input_reader_config: A input_reader_pb2.InputReader object.
Returns:
A tensor dict based on the input_reader_config.
Raises:
ValueError: On invalid input reader proto.
ValueError: If no input paths are specified. | https://github.com/vitorazor/lidar_rgb_detector/blob/5308ba24a90d6e8d73940be4b40d31eccb4df94b/second/builder/dataset_builder.py#L34-L135 | from second.protos import input_reader_pb2
from second.data.dataset import get_dataset_class
from second.data.preprocess import prep_pointcloud
from second.core import box_np_ops
import numpy as np
from second.builder import dbsampler_builder
from functools import partial
from second.utils.config_tool import get_downsample_factor | MIT License |
rapid7/vm-console-client-python | rapid7vmconsole/models/site.py | Site.risk_score | python | def risk_score(self, risk_score):
self._risk_score = risk_score | Sets the risk_score of this Site.
The risk score (with criticality adjustments) of the site. # noqa: E501
:param risk_score: The risk_score of this Site. # noqa: E501
:type: float | https://github.com/rapid7/vm-console-client-python/blob/55e1f573967bce27cc9a2d10c12a949b1142c2b3/rapid7vmconsole/models/site.py#L310-L319 | import pprint
import re
import six
class Site(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'assets': 'int',
'connection_type': 'str',
'description': 'str',
'id': 'int',
'importance': 'str',
'last_scan_time': 'str',
'links': 'list[Link]',
'name': 'str',
'risk_score': 'float',
'scan_engine': 'int',
'scan_template': 'str',
'type': 'str',
'vulnerabilities': 'Vulnerabilities'
}
attribute_map = {
'assets': 'assets',
'connection_type': 'connectionType',
'description': 'description',
'id': 'id',
'importance': 'importance',
'last_scan_time': 'lastScanTime',
'links': 'links',
'name': 'name',
'risk_score': 'riskScore',
'scan_engine': 'scanEngine',
'scan_template': 'scanTemplate',
'type': 'type',
'vulnerabilities': 'vulnerabilities'
}
def __init__(self, assets=None, connection_type=None, description=None, id=None, importance=None, last_scan_time=None, links=None, name=None, risk_score=None, scan_engine=None, scan_template=None, type=None, vulnerabilities=None):
self._assets = None
self._connection_type = None
self._description = None
self._id = None
self._importance = None
self._last_scan_time = None
self._links = None
self._name = None
self._risk_score = None
self._scan_engine = None
self._scan_template = None
self._type = None
self._vulnerabilities = None
self.discriminator = None
if assets is not None:
self.assets = assets
if connection_type is not None:
self.connection_type = connection_type
if description is not None:
self.description = description
if id is not None:
self.id = id
if importance is not None:
self.importance = importance
if last_scan_time is not None:
self.last_scan_time = last_scan_time
if links is not None:
self.links = links
if name is not None:
self.name = name
if risk_score is not None:
self.risk_score = risk_score
if scan_engine is not None:
self.scan_engine = scan_engine
if scan_template is not None:
self.scan_template = scan_template
if type is not None:
self.type = type
if vulnerabilities is not None:
self.vulnerabilities = vulnerabilities
@property
def assets(self):
return self._assets
@assets.setter
def assets(self, assets):
self._assets = assets
@property
def connection_type(self):
return self._connection_type
@connection_type.setter
def connection_type(self, connection_type):
allowed_values = ["activesync-ldap", "activesync-office365", "activesync-powershell", "aws", "dhcp", "sonar", "vsphere"]
if connection_type not in allowed_values:
raise ValueError(
"Invalid value for `connection_type` ({0}), must be one of {1}"
.format(connection_type, allowed_values)
)
self._connection_type = connection_type
@property
def description(self):
return self._description
@description.setter
def description(self, description):
self._description = description
@property
def id(self):
return self._id
@id.setter
def id(self, id):
self._id = id
@property
def importance(self):
return self._importance
@importance.setter
def importance(self, importance):
self._importance = importance
@property
def last_scan_time(self):
return self._last_scan_time
@last_scan_time.setter
def last_scan_time(self, last_scan_time):
self._last_scan_time = last_scan_time
@property
def links(self):
return self._links
@links.setter
def links(self, links):
self._links = links
@property
def name(self):
return self._name
@name.setter
def name(self, name):
self._name = name
@property
def risk_score(self):
return self._risk_score
@risk_score.setter | MIT License |
gadsbyfly/pybiomed | PyBioMed/PyMolecule/fingerprint.py | CalculateAtomPairsFingerprint | python | def CalculateAtomPairsFingerprint(mol):
res = Pairs.GetAtomPairFingerprint(mol)
return res.GetLength(), res.GetNonzeroElements(), res | #################################################################
Calculate atom pairs fingerprints
Usage:
result=CalculateAtomPairsFingerprint(mol)
Input: mol is a molecule object.
Output: result is a tuple form. The first is the number of
fingerprints. The second is a dict form whose keys are the
position which this molecule has some substructure. The third
is the DataStructs which is used for calculating the similarity.
################################################################# | https://github.com/gadsbyfly/pybiomed/blob/8db017961390dbcdcb7060fec758b9b8b9fc604f/PyBioMed/PyMolecule/fingerprint.py#L219-L241 | from openbabel import pybel
from rdkit import Chem, DataStructs
from rdkit.Chem import AllChem, ChemicalFeatures, MACCSkeys
from rdkit.Chem.AtomPairs import Pairs, Torsions
from rdkit.Chem.Fingerprints import FingerprintMols
from rdkit.Chem.Pharm2D import Generate
from rdkit.Chem.Pharm2D.SigFactory import SigFactory
from PyBioMed.PyMolecule.estate import CalculateEstateFingerprint as EstateFingerprint
from PyBioMed.PyMolecule.ghosecrippen import GhoseCrippenFingerprint
from PyBioMed.PyMolecule.PubChemFingerprints import calcPubChemFingerAll
Version = 1.0
similaritymeasure = [i[0] for i in DataStructs.similarityFunctions]
def CalculateFP2Fingerprint(mol):
res = {}
NumFinger = 1024
temp = mol.calcfp().bits
for i in temp:
res.update({i: 1})
return NumFinger, res
def CalculateFP3Fingerprint(mol):
res = {}
NumFinger = 210
temp = mol.calcfp("FP3").bits
for i in temp:
res.update({i: 1})
return NumFinger, res
def CalculateFP4Fingerprint(mol):
res = {}
NumFinger = 307
temp = mol.calcfp("FP4").bits
for i in temp:
res.update({i: 1})
return NumFinger, res
def CalculateDaylightFingerprint(mol):
res = {}
NumFinger = 2048
bv = FingerprintMols.FingerprintMol(mol)
temp = tuple(bv.GetOnBits())
for i in temp:
res.update({i: 1})
return NumFinger, res, bv
def CalculateMACCSFingerprint(mol):
res = {}
NumFinger = 166
bv = MACCSkeys.GenMACCSKeys(mol)
temp = tuple(bv.GetOnBits())
for i in temp:
res.update({i: 1})
return NumFinger, res, bv
def CalculateEstateFingerprint(mol):
NumFinger = 79
res = {}
temp = EstateFingerprint(mol)
for i in temp:
if temp[i] > 0:
res[i[7:]] = 1
return NumFinger, res, temp | BSD 3-Clause New or Revised License |
saketkc/pysradb | pysradb/utils.py | order_dataframe | python | def order_dataframe(df, columns):
remaining_columns = [w for w in df.columns if w not in columns]
df = df[columns + remaining_columns]
return df | Order a dataframe
Order a dataframe by moving the `columns` in the front
Parameters
----------
df: Dataframe
Dataframe
columns: list
List of columns that need to be put in front | https://github.com/saketkc/pysradb/blob/bce1726813a104ff83eb1221679bf93074252af6/pysradb/utils.py#L177-L191 | import errno
import gzip
import io
import ntpath
import os
import shlex
import subprocess
import urllib.request as urllib_request
import warnings
import requests
from requests.adapters import HTTPAdapter
from requests.packages.urllib3.util.retry import Retry
from tqdm.autonotebook import tqdm
from .exceptions import IncorrectFieldException
warnings.simplefilter(action="ignore", category=FutureWarning)
tqdm.pandas()
def path_leaf(path):
head, tail = ntpath.split(path)
return tail or ntpath.basename(head)
def requests_3_retries():
session = requests.Session()
retry = Retry(
total=3,
backoff_factor=0.5,
status_forcelist=[500, 502, 503, 504],
)
adapter = HTTPAdapter(max_retries=retry)
session.mount("http://", adapter)
session.mount("https://", adapter)
return session
def scientific_name_to_taxid(name):
r = requests.get(
"https://www.ebi.ac.uk/ena/data/taxonomy/v1/taxon/scientific-name/" + name,
timeout=5,
)
if r.status_code == 404:
raise IncorrectFieldException(f"Unknown scientific name: {name}")
r.raise_for_status()
return r.json()[0]["taxId"]
def unique(sequence):
visited = set()
return [x for x in sequence if not (x in visited or visited.add(x))]
class TqdmUpTo(tqdm):
def update_to(self, b=1, bsize=1, tsize=None):
if tsize is not None:
self.total = tsize
self.update(b * bsize - self.n)
def _extract_first_field(data):
return list(next(iter(zip(*data))))
def _find_aspera_keypath(aspera_dir=None):
if aspera_dir is None:
aspera_dir = os.path.join(os.path.expanduser("~"), ".aspera")
aspera_keypath = os.path.join(
aspera_dir, "connect", "etc", "asperaweb_id_dsa.openssh"
)
if os.path.isfile(aspera_keypath):
return aspera_keypath
def mkdir_p(path):
if path:
try:
os.makedirs(path)
except OSError as exc:
if exc.errno == errno.EEXIST and os.path.isdir(path):
pass
else:
raise | BSD 3-Clause New or Revised License |
napari/napari | napari/_qt/containers/_base_item_model.py | _BaseEventedItemModel._on_end_insert | python | def _on_end_insert(self, e):
self.endInsertRows() | Must be called after insert operation to update model. | https://github.com/napari/napari/blob/c4c987c880fe125da608edf427767eafe7f2b3f4/napari/_qt/containers/_base_item_model.py#L244-L246 | from __future__ import annotations
from collections.abc import MutableSequence
from typing import TYPE_CHECKING, Any, Generic, Tuple, TypeVar, Union
from qtpy.QtCore import QAbstractItemModel, QModelIndex, Qt
from ...utils.events import disconnect_events
from ...utils.events.containers import SelectableEventedList
from ...utils.translations import trans
if TYPE_CHECKING:
from qtpy.QtWidgets import QWidget
ItemType = TypeVar("ItemType")
ItemRole = Qt.UserRole
SortRole = Qt.UserRole + 1
class _BaseEventedItemModel(QAbstractItemModel, Generic[ItemType]):
_root: SelectableEventedList[ItemType]
def __init__(
self, root: SelectableEventedList[ItemType], parent: QWidget = None
):
super().__init__(parent=parent)
self.setRoot(root)
def parent(self, index):
return QModelIndex()
def data(self, index: QModelIndex, role: Qt.ItemDataRole) -> Any:
if role == Qt.DisplayRole:
return str(self.getItem(index))
if role == ItemRole:
return self.getItem(index)
if role == SortRole:
return index.row()
return None
def flags(self, index: QModelIndex) -> Qt.ItemFlags:
if (
not index.isValid()
or index.row() >= len(self._root)
or index.model() is not self
):
return Qt.ItemIsDropEnabled
base_flags = (
Qt.ItemIsSelectable
| Qt.ItemIsEditable
| Qt.ItemIsUserCheckable
| Qt.ItemIsDragEnabled
| Qt.ItemIsEnabled
)
if isinstance(self.getItem(index), MutableSequence):
return base_flags | Qt.ItemIsDropEnabled
return base_flags | Qt.ItemNeverHasChildren
def columnCount(self, parent: QModelIndex) -> int:
return 1
def rowCount(self, parent: QModelIndex = QModelIndex()) -> int:
try:
return len(self.getItem(parent))
except TypeError:
return 0
def index(
self, row: int, column: int = 0, parent: QModelIndex = QModelIndex()
) -> QModelIndex:
return (
self.createIndex(row, column, self.getItem(parent)[row])
if self.hasIndex(row, column, parent)
else QModelIndex()
)
def supportedDropActions(self) -> Qt.DropActions:
return Qt.MoveAction
def setRoot(self, root: SelectableEventedList[ItemType]):
if not isinstance(root, SelectableEventedList):
raise TypeError(
trans._(
"root must be an instance of {class_name}",
deferred=True,
class_name=SelectableEventedList,
)
)
current_root = getattr(self, "_root", None)
if root is current_root:
return
if current_root is not None:
disconnect_events(self._root.events, self)
self._root = root
self._root.events.removing.connect(self._on_begin_removing)
self._root.events.removed.connect(self._on_end_remove)
self._root.events.inserting.connect(self._on_begin_inserting)
self._root.events.inserted.connect(self._on_end_insert)
self._root.events.moving.connect(self._on_begin_moving)
self._root.events.moved.connect(self._on_end_move)
self._root.events.connect(self._process_event)
def _split_nested_index(
self, nested_index: Union[int, Tuple[int, ...]]
) -> Tuple[QModelIndex, int]:
if isinstance(nested_index, int):
return QModelIndex(), nested_index
par = QModelIndex()
*_p, idx = nested_index
for i in _p:
par = self.index(i, 0, par)
return par, idx
def _on_begin_inserting(self, event):
par, idx = self._split_nested_index(event.index)
self.beginInsertRows(par, idx, idx) | BSD 3-Clause New or Revised License |
compas-dev/compas | src/compas/data/data.py | Data.from_json | python | def from_json(cls, filepath):
data = compas.json_load(filepath)
return cls.from_data(data) | Construct an object from serialized data contained in a JSON file.
Parameters
----------
filepath : path string, file-like object or URL string
The path, file or URL to the file for serialization.
Returns
-------
:class:`compas.data.Data`
An object of the type of ``cls``. | https://github.com/compas-dev/compas/blob/d795a8bfe9f21ffa124d09e37e9c0ed2e3520057/src/compas/data/data.py#L170-L184 | from __future__ import print_function
from __future__ import absolute_import
from __future__ import division
import os
import json
from uuid import uuid4
from copy import deepcopy
import compas
from compas.data.encoders import DataEncoder
from compas.data.encoders import DataDecoder
class Data(object):
def __init__(self, name=None):
self._guid = None
self._name = None
self._jsondefinitions = None
self._JSONSCHEMA = None
self._jsonvalidator = None
if name:
self.name = name
def __getstate__(self):
return {'__dict__': self.__dict__, 'dtype': self.dtype, 'data': self.data}
def __setstate__(self, state):
self.__dict__.update(state['__dict__'])
self.data = state['data']
@property
def DATASCHEMA(self):
raise NotImplementedError
@property
def JSONSCHEMANAME(self):
raise NotImplementedError
@property
def JSONSCHEMA(self):
if not self._JSONSCHEMA:
schema_filename = '{}.json'.format(self.JSONSCHEMANAME.lower())
schema_path = os.path.join(os.path.dirname(__file__), 'schemas', schema_filename)
with open(schema_path, 'r') as fp:
self._JSONSCHEMA = json.load(fp)
return self._JSONSCHEMA
@property
def jsondefinitions(self):
if not self._jsondefinitions:
schema_path = os.path.join(os.path.dirname(__file__), 'schemas', 'compas.json')
with open(schema_path, 'r') as fp:
self._jsondefinitions = json.load(fp)
return self._jsondefinitions
@property
def jsonvalidator(self):
if not self._jsonvalidator:
from jsonschema import RefResolver, Draft7Validator
resolver = RefResolver.from_schema(self.jsondefinitions)
self._jsonvalidator = Draft7Validator(self.JSONSCHEMA, resolver=resolver)
return self._jsonvalidator
@property
def dtype(self):
return '{}/{}'.format('.'.join(self.__class__.__module__.split('.')[:2]), self.__class__.__name__)
@property
def data(self):
raise NotImplementedError
@data.setter
def data(self, data):
raise NotImplementedError
@property
def jsonstring(self):
return compas.json_dumps(self.data)
@property
def guid(self):
if not self._guid:
self._guid = uuid4()
return self._guid
@property
def name(self):
if not self._name:
self._name = self.__class__.__name__
return self._name
@name.setter
def name(self, name):
self._name = name
@classmethod
def from_data(cls, data):
obj = cls()
obj.data = data
return obj
def to_data(self):
return self.data
@classmethod | MIT License |
gaa-uam/scikit-fda | skfda/exploratory/visualization/_utils.py | _get_axes_shape | python | def _get_axes_shape(
n_axes: int,
n_rows: Optional[int] = None,
n_cols: Optional[int] = None,
) -> Tuple[int, int]:
if (
(n_rows is not None and n_cols is not None)
and ((n_rows * n_cols) < n_axes)
):
raise ValueError(
f"The number of rows ({n_rows}) multiplied by "
f"the number of columns ({n_cols}) "
f"is less than the number of required "
f"axes ({n_axes})",
)
if n_rows is None and n_cols is None:
new_n_cols = int(math.ceil(math.sqrt(n_axes)))
new_n_rows = int(math.ceil(n_axes / new_n_cols))
elif n_rows is None and n_cols is not None:
new_n_cols = n_cols
new_n_rows = int(math.ceil(n_axes / n_cols))
elif n_cols is None and n_rows is not None:
new_n_cols = int(math.ceil(n_axes / n_rows))
new_n_rows = n_rows
return new_n_rows, new_n_cols | Get the number of rows and columns of the subplots. | https://github.com/gaa-uam/scikit-fda/blob/1a6fc2c01e39871e09fd2ec6d0b14d378d6b069f/skfda/exploratory/visualization/_utils.py#L113-L140 | import io
import math
import re
from itertools import repeat
from typing import Optional, Sequence, Tuple, TypeVar, Union
import matplotlib.backends.backend_svg
import matplotlib.pyplot as plt
from matplotlib.axes import Axes
from matplotlib.figure import Figure
from typing_extensions import Protocol
from ...representation._functional_data import FData
non_close_text = '[^>]*?'
svg_width_regex = re.compile(
f'(<svg {non_close_text}width="){non_close_text}("{non_close_text}>)',
)
svg_width_replacement = r'\g<1>100%\g<2>'
svg_height_regex = re.compile(
f'(<svg {non_close_text})height="{non_close_text}"({non_close_text}>)',
)
svg_height_replacement = r'\g<1>\g<2>'
ColorLike = Union[
Tuple[float, float, float],
Tuple[float, float, float, float],
str,
Sequence[float],
]
K = TypeVar('K', contravariant=True)
V = TypeVar('V', covariant=True)
class Indexable(Protocol[K, V]):
def __getitem__(self, __key: K) -> V:
pass
def __len__(self) -> int:
pass
def _create_figure() -> Figure:
return plt.figure()
def _figure_to_svg(figure: Figure) -> str:
old_canvas = figure.canvas
matplotlib.backends.backend_svg.FigureCanvas(figure)
output = io.BytesIO()
figure.savefig(output, format='svg')
figure.set_canvas(old_canvas)
data = output.getvalue()
decoded_data = data.decode('utf-8')
new_data = svg_width_regex.sub(
svg_width_replacement,
decoded_data,
count=1,
)
return svg_height_regex.sub(
svg_height_replacement,
new_data,
count=1,
)
def _get_figure_and_axes(
chart: Union[Figure, Axes, Sequence[Axes], None] = None,
fig: Optional[Figure] = None,
axes: Union[Axes, Sequence[Axes], None] = None,
) -> Tuple[Figure, Sequence[Axes]]:
num_defined = sum(e is not None for e in (chart, fig, axes))
if num_defined > 1:
raise ValueError(
"Only one of chart, fig and axes parameters"
"can be passed as an argument.",
)
if chart is not None:
if isinstance(chart, matplotlib.figure.Figure):
fig = chart
else:
axes = chart
if fig is None and axes is None:
new_fig = _create_figure()
new_axes = []
elif fig is not None:
new_fig = fig
new_axes = fig.axes
else:
assert axes is not None
if isinstance(axes, Axes):
axes = [axes]
new_fig = axes[0].figure
new_axes = axes
return new_fig, new_axes | BSD 3-Clause New or Revised License |
thecesrom/ignition | src/system/nav.py | openWindow | python | def openWindow(path, params=None):
print(path, params)
return FPMIWindow("Opened Window") | Opens the window with the given path.
If the window is already open, brings it to the front. The optional
params dictionary contains key:value pairs which will be used to set
the target window's root container's dynamic variables.
Args:
path (str): The path to the window to open.
params (dict): A dictionary of parameters to pass into the
window. The keys in the dictionary must match dynamic
property names on the target window's root container. The
values for each key will be used to set those properties.
Optional.
Returns:
FPMIWindow: A reference to the opened window. | https://github.com/thecesrom/ignition/blob/c784e573530a217f4c430bd110889ce569152747/src/system/nav.py#L135-L154 | from __future__ import print_function
__all__ = [
"centerWindow",
"closeParentWindow",
"closeWindow",
"desktop",
"getCurrentWindow",
"goBack",
"goForward",
"goHome",
"openWindow",
"openWindowInstance",
"swapTo",
"swapWindow",
]
from com.inductiveautomation.factorypmi.application import FPMIWindow
from com.inductiveautomation.factorypmi.application.script.builtin import (
NavUtilities,
)
from java.util import EventObject
def centerWindow(arg):
print(arg)
def closeParentWindow(event):
print(event)
def closeWindow(arg):
print(arg)
def desktop(handle="primary"):
print(handle)
return NavUtilities()
def getCurrentWindow():
return "Path/To/Maximized Window"
def goBack():
return FPMIWindow("Back")
def goForward():
return FPMIWindow("Forward")
def goHome():
return FPMIWindow("Home") | MIT License |
jdasoftwaregroup/kartothek | kartothek/io/eager.py | delete_dataset | python | def delete_dataset(dataset_uuid=None, store=None, factory=None):
ds_factory = _ensure_factory(
dataset_uuid=dataset_uuid,
load_schema=False,
store=store,
factory=factory,
load_dataset_metadata=False,
)
garbage_collect_dataset(factory=ds_factory)
delete_indices(dataset_factory=ds_factory)
for metapartition in dispatch_metapartitions_from_factory(ds_factory):
metapartition = cast(MetaPartition, metapartition)
metapartition.delete_from_store(dataset_uuid=dataset_uuid, store=store)
delete_common_metadata(dataset_factory=ds_factory)
delete_top_level_metadata(dataset_factory=ds_factory) | Delete the entire dataset from the store.
Parameters
---------- | https://github.com/jdasoftwaregroup/kartothek/blob/6bc7e868435e98cbda0b695900f29d1ff7d49110/kartothek/io/eager.py#L71-L101 | import warnings
from functools import partial
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, Union, cast
import pandas as pd
from simplekv import KeyValueStore
from kartothek.core.common_metadata import (
empty_dataframe_from_schema,
make_meta,
store_schema_metadata,
)
from kartothek.core.dataset import DatasetMetadata, DatasetMetadataBuilder
from kartothek.core.docs import default_docs
from kartothek.core.factory import DatasetFactory, _ensure_factory
from kartothek.core.naming import (
DEFAULT_METADATA_STORAGE_FORMAT,
DEFAULT_METADATA_VERSION,
METADATA_BASE_SUFFIX,
METADATA_FORMAT_JSON,
PARQUET_FILE_SUFFIX,
get_partition_file_prefix,
)
from kartothek.core.typing import StoreInput
from kartothek.core.utils import lazy_store
from kartothek.io.iter import store_dataframes_as_dataset__iter
from kartothek.io_components.delete import (
delete_common_metadata,
delete_indices,
delete_top_level_metadata,
)
from kartothek.io_components.gc import delete_files, dispatch_files_to_gc
from kartothek.io_components.index import update_indices_from_partitions
from kartothek.io_components.metapartition import (
SINGLE_TABLE,
MetaPartition,
parse_input_to_metapartition,
)
from kartothek.io_components.read import dispatch_metapartitions_from_factory
from kartothek.io_components.update import update_dataset_from_partitions
from kartothek.io_components.utils import (
_ensure_compatible_indices,
align_categories,
normalize_args,
sort_values_categorical,
validate_partition_keys,
)
from kartothek.io_components.write import raise_if_dataset_exists
from kartothek.serialization import DataFrameSerializer
from kartothek.serialization._parquet import ParquetSerializer
from kartothek.utils.ktk_adapters import get_dataset_keys
from kartothek.utils.store import copy_rename_keys
__all__ = (
"delete_dataset",
"read_dataset_as_dataframes",
"read_table",
"commit_dataset",
"store_dataframes_as_dataset",
"create_empty_dataset_header",
"write_single_partition",
"update_dataset_from_dataframes",
"build_dataset_indices",
"garbage_collect_dataset",
"copy_dataset",
)
@default_docs
@normalize_args | MIT License |
asdf-format/asdf | asdf/util.py | BinaryStruct.pack | python | def pack(self, **kwargs):
fields = [0] * len(self._names)
for key, val in kwargs.items():
if key not in self._offsets:
raise KeyError("No header field '{0}'".format(key))
i = self._names.index(key)
fields[i] = val
return struct.pack(self._fmt, *fields) | Pack the given arguments, which are given as kwargs, and
return the binary struct. | https://github.com/asdf-format/asdf/blob/ee34d21e2d0e8834128716cc72fd47f31856d00e/asdf/util.py#L171-L182 | import enum
import inspect
import math
import struct
import types
import importlib.util
import re
from functools import lru_cache
from urllib.request import pathname2url
import numpy as np
from . import constants
urllib_parse_spec = importlib.util.find_spec('urllib.parse')
patched_urllib_parse = importlib.util.module_from_spec(urllib_parse_spec)
urllib_parse_spec.loader.exec_module(patched_urllib_parse)
del urllib_parse_spec
patched_urllib_parse.uses_relative.append('asdf')
patched_urllib_parse.uses_netloc.append('asdf')
__all__ = ['human_list', 'get_array_base', 'get_base_uri', 'filepath_to_url',
'iter_subclasses', 'calculate_padding', 'resolve_name', 'NotSet',
'is_primitive', 'uri_match', 'get_class_name']
def human_list(l, separator="and"):
if len(l) == 1:
return l[0]
else:
return ', '.join(l[:-1]) + ' ' + separator + ' ' + l[-1]
def get_array_base(arr):
base = arr
while isinstance(base.base, np.ndarray):
base = base.base
return base
def get_base_uri(uri):
parts = patched_urllib_parse.urlparse(uri)
return patched_urllib_parse.urlunparse(list(parts[:5]) + [''])
def filepath_to_url(path):
return patched_urllib_parse.urljoin('file:', pathname2url(path))
def iter_subclasses(cls):
for x in cls.__subclasses__():
yield x
for y in iter_subclasses(x):
yield y
def calculate_padding(content_size, pad_blocks, block_size):
if not pad_blocks:
return 0
if pad_blocks is True:
pad_blocks = 1.1
new_size = content_size * pad_blocks
new_size = int((math.ceil(
float(new_size) / block_size) + 1) * block_size)
return max(new_size - content_size, 0)
class BinaryStruct:
def __init__(self, descr, endian='>'):
self._fmt = [endian]
self._offsets = {}
self._names = []
i = 0
for name, fmt in descr:
self._fmt.append(fmt)
self._offsets[name] = (i, (endian + fmt).encode('ascii'))
self._names.append(name)
i += struct.calcsize(fmt.encode('ascii'))
self._fmt = ''.join(self._fmt).encode('ascii')
self._size = struct.calcsize(self._fmt)
@property
def size(self):
return self._size | BSD 3-Clause New or Revised License |
jahjajaka/afternoon_cleaner | object_detection/dataset_tools/create_coco_tf_record.py | create_tf_example | python | def create_tf_example(image,
annotations_list,
image_dir,
category_index,
include_masks=False):
image_height = image['height']
image_width = image['width']
filename = image['file_name']
image_id = image['id']
full_path = os.path.join(image_dir, filename)
with tf.gfile.GFile(full_path, 'rb') as fid:
encoded_jpg = fid.read()
encoded_jpg_io = io.BytesIO(encoded_jpg)
image = PIL.Image.open(encoded_jpg_io)
key = hashlib.sha256(encoded_jpg).hexdigest()
xmin = []
xmax = []
ymin = []
ymax = []
is_crowd = []
category_names = []
category_ids = []
area = []
encoded_mask_png = []
num_annotations_skipped = 0
for object_annotations in annotations_list:
(x, y, width, height) = tuple(object_annotations['bbox'])
if width <= 0 or height <= 0:
num_annotations_skipped += 1
continue
if x + width > image_width or y + height > image_height:
num_annotations_skipped += 1
continue
xmin.append(float(x) / image_width)
xmax.append(float(x + width) / image_width)
ymin.append(float(y) / image_height)
ymax.append(float(y + height) / image_height)
is_crowd.append(object_annotations['iscrowd'])
category_id = int(object_annotations['category_id'])
category_ids.append(category_id)
category_names.append(category_index[category_id]['name'].encode('utf8'))
area.append(object_annotations['area'])
if include_masks:
run_len_encoding = mask.frPyObjects(object_annotations['segmentation'],
image_height, image_width)
binary_mask = mask.decode(run_len_encoding)
if not object_annotations['iscrowd']:
binary_mask = np.amax(binary_mask, axis=2)
pil_image = PIL.Image.fromarray(binary_mask)
output_io = io.BytesIO()
pil_image.save(output_io, format='PNG')
encoded_mask_png.append(output_io.getvalue())
feature_dict = {
'image/height':
dataset_util.int64_feature(image_height),
'image/width':
dataset_util.int64_feature(image_width),
'image/filename':
dataset_util.bytes_feature(filename.encode('utf8')),
'image/source_id':
dataset_util.bytes_feature(str(image_id).encode('utf8')),
'image/key/sha256':
dataset_util.bytes_feature(key.encode('utf8')),
'image/encoded':
dataset_util.bytes_feature(encoded_jpg),
'image/format':
dataset_util.bytes_feature('jpeg'.encode('utf8')),
'image/object/bbox/xmin':
dataset_util.float_list_feature(xmin),
'image/object/bbox/xmax':
dataset_util.float_list_feature(xmax),
'image/object/bbox/ymin':
dataset_util.float_list_feature(ymin),
'image/object/bbox/ymax':
dataset_util.float_list_feature(ymax),
'image/object/class/text':
dataset_util.bytes_list_feature(category_names),
'image/object/is_crowd':
dataset_util.int64_list_feature(is_crowd),
'image/object/area':
dataset_util.float_list_feature(area),
}
if include_masks:
feature_dict['image/object/mask'] = (
dataset_util.bytes_list_feature(encoded_mask_png))
example = tf.train.Example(features=tf.train.Features(feature=feature_dict))
return key, example, num_annotations_skipped | Converts image and annotations to a tf.Example proto.
Args:
image: dict with keys:
[u'license', u'file_name', u'coco_url', u'height', u'width',
u'date_captured', u'flickr_url', u'id']
annotations_list:
list of dicts with keys:
[u'segmentation', u'area', u'iscrowd', u'image_id',
u'bbox', u'category_id', u'id']
Notice that bounding box coordinates in the official COCO dataset are
given as [x, y, width, height] tuples using absolute coordinates where
x, y represent the top-left (0-indexed) corner. This function converts
to the format expected by the Tensorflow Object Detection API (which is
which is [ymin, xmin, ymax, xmax] with coordinates normalized relative
to image size).
image_dir: directory containing the image files.
category_index: a dict containing COCO category information keyed
by the 'id' field of each category. See the
label_map_util.create_category_index function.
include_masks: Whether to include instance segmentations masks
(PNG encoded) in the result. default: False.
Returns:
example: The converted tf.Example
num_annotations_skipped: Number of (invalid) annotations that were ignored.
Raises:
ValueError: if the image pointed to by data['filename'] is not a valid JPEG | https://github.com/jahjajaka/afternoon_cleaner/blob/590bdf58a216cbc6cfc47ef8f49d7af3df3703b7/object_detection/dataset_tools/create_coco_tf_record.py#L73-L191 | from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import hashlib
import io
import json
import os
import contextlib2
import numpy as np
import PIL.Image
from pycocotools import mask
import tensorflow as tf
from object_detection.dataset_tools import tf_record_creation_util
from object_detection.utils import dataset_util
from object_detection.utils import label_map_util
flags = tf.app.flags
tf.flags.DEFINE_boolean('include_masks', False,
'Whether to include instance segmentations masks '
'(PNG encoded) in the result. default: False.')
tf.flags.DEFINE_string('train_image_dir', '',
'Training image directory.')
tf.flags.DEFINE_string('val_image_dir', '',
'Validation image directory.')
tf.flags.DEFINE_string('test_image_dir', '',
'Test image directory.')
tf.flags.DEFINE_string('train_annotations_file', '',
'Training annotations JSON file.')
tf.flags.DEFINE_string('val_annotations_file', '',
'Validation annotations JSON file.')
tf.flags.DEFINE_string('testdev_annotations_file', '',
'Test-dev annotations JSON file.')
tf.flags.DEFINE_string('output_dir', '/tmp/', 'Output data directory.')
FLAGS = flags.FLAGS
tf.logging.set_verbosity(tf.logging.INFO) | MIT License |
edinburghnlp/nematus | nematus/server_translator.py | Translator._load_model_options | python | def _load_model_options(self):
self._options = []
for model in self._models:
config = load_config_from_json_file(model)
setattr(config, 'reload', model)
self._options.append(config)
_, _, _, self._num_to_target = util.load_dictionaries(self._options[0]) | Loads config options for each model. | https://github.com/edinburghnlp/nematus/blob/d55074a2e342a33a4d5b0288cbad6269bd47271d/nematus/server_translator.py#L63-L74 | import logging
import sys
import time
from multiprocessing import Process, Queue
from collections import defaultdict
from queue import Empty
import numpy
from beam_search_sampler import BeamSearchSampler
from config import load_config_from_json_file
import exception
import model_loader
import rnn_model
from transformer import Transformer as TransformerModel
import translate_utils
import util
class Translation(object):
def __init__(self, source_words, target_words, sentence_id=None, score=0, hypothesis_id=None):
self.source_words = source_words
self.target_words = target_words
self.sentence_id = sentence_id
self.score = score
self.hypothesis_id = hypothesis_id
class QueueItem(object):
def __init__(self, **kwargs):
self.__dict__.update(kwargs)
class Translator(object):
def __init__(self, settings):
self._models = settings.models
self._num_processes = settings.num_processes
self._verbose = settings.verbose
self._retrieved_translations = defaultdict(dict)
self._batch_size = settings.minibatch_size
self._load_model_options()
self._init_queues()
self._init_processes() | BSD 3-Clause New or Revised License |
webrecorder/wacz-format | py-wacz/wacz/util.py | get_py_wacz_version | python | def get_py_wacz_version():
return pkg_resources.get_distribution("wacz").version | Get version of the py-wacz package | https://github.com/webrecorder/wacz-format/blob/80083019bb0cbac645df356ff2d223e37671abe7/py-wacz/wacz/util.py#L30-L32 | import hashlib, datetime, json
from warcio.timeutils import iso_date_to_timestamp
import pkg_resources
WACZ_VERSION = "1.1.1"
def check_http_and_https(url, ts, pages_dict):
url_body = url.split(":")[1]
checks = [
f"http:{url_body}",
f"https:{url_body}",
f"{ts}/http:{url_body}",
f"{ts}/https:{url_body}",
]
for check in checks:
if check in pages_dict:
return check
return "" | MIT License |
hsuxu/magic-vnet | magic_vnet/blocks/squeeze_excitation.py | ChannelSELayer3D.__init__ | python | def __init__(self, num_channels, reduction_ratio=2, act_type=nn.ReLU):
super(ChannelSELayer3D, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool3d(1)
num_channels_reduced = num_channels // reduction_ratio
self.reduction_ratio = reduction_ratio
self.fc1 = nn.Linear(num_channels, num_channels_reduced, bias=True)
self.fc2 = nn.Linear(num_channels_reduced, num_channels, bias=True)
self.act = act_type()
self.sigmoid = nn.Sigmoid() | :param num_channels: No of input channels
:param reduction_ratio: By how much should the num_channels should be reduced | https://github.com/hsuxu/magic-vnet/blob/6958932f3974d268e93bd6443369a3f43c497ed3/magic_vnet/blocks/squeeze_excitation.py#L13-L25 | import torch
from torch import nn
from torch.nn import functional as F
class ChannelSELayer3D(nn.Module): | MIT License |
lbtcio/lbtc-lightwallet-server | wallet/bip32.py | PrivKey._privkey_secret_exponent | python | def _privkey_secret_exponent(cls, privkey):
if not isinstance(privkey, (bytes, bytearray)):
raise TypeError('privkey must be raw bytes')
if len(privkey) != 32:
raise ValueError('privkey must be 32 bytes')
exponent = bytes_to_int(privkey)
if not 1 <= exponent < cls.CURVE.order:
raise ValueError('privkey represents an invalid exponent')
return exponent | Return the private key as a secret exponent if it is a valid private
key. | https://github.com/lbtcio/lbtc-lightwallet-server/blob/4fe64576fb0c45c41cbf72de2390d23ebebfc9c3/wallet/bip32.py#L189-L200 | import struct
import ecdsa
import ecdsa.ellipticcurve as EC
import ecdsa.numbertheory as NT
from lib.coins import Coin
from lib.hash import Base58, hmac_sha512, hash160
from lib.util import cachedproperty, bytes_to_int, int_to_bytes
class DerivationError(Exception):
class _KeyBase(object):
CURVE = ecdsa.SECP256k1
def __init__(self, chain_code, n, depth, parent):
if not isinstance(chain_code, (bytes, bytearray)):
raise TypeError('chain code must be raw bytes')
if len(chain_code) != 32:
raise ValueError('invalid chain code')
if not 0 <= n < 1 << 32:
raise ValueError('invalid child number')
if not 0 <= depth < 256:
raise ValueError('invalid depth')
if parent is not None:
if not isinstance(parent, type(self)):
raise TypeError('parent key has bad type')
self.chain_code = chain_code
self.n = n
self.depth = depth
self.parent = parent
def _hmac_sha512(self, msg):
hmac = hmac_sha512(self.chain_code, msg)
return hmac[:32], hmac[32:]
def _extended_key(self, ver_bytes, raw_serkey):
if not isinstance(ver_bytes, (bytes, bytearray)):
raise TypeError('ver_bytes must be raw bytes')
if len(ver_bytes) != 4:
raise ValueError('ver_bytes must have length 4')
if not isinstance(raw_serkey, (bytes, bytearray)):
raise TypeError('raw_serkey must be raw bytes')
if len(raw_serkey) != 33:
raise ValueError('raw_serkey must have length 33')
return (ver_bytes + bytes([self.depth])
+ self.parent_fingerprint() + struct.pack('>I', self.n)
+ self.chain_code + raw_serkey)
def fingerprint(self):
return self.identifier()[:4]
def parent_fingerprint(self):
return self.parent.fingerprint() if self.parent else bytes(4)
def extended_key_string(self, coin):
return Base58.encode_check(self.extended_key(coin))
class PubKey(_KeyBase):
def __init__(self, pubkey, chain_code, n, depth, parent=None):
super().__init__(chain_code, n, depth, parent)
if isinstance(pubkey, ecdsa.VerifyingKey):
self.verifying_key = pubkey
else:
self.verifying_key = self._verifying_key_from_pubkey(pubkey)
self.addresses = {}
@classmethod
def _verifying_key_from_pubkey(cls, pubkey):
if not isinstance(pubkey, (bytes, bytearray)):
raise TypeError('pubkey must be raw bytes')
if len(pubkey) != 33:
raise ValueError('pubkey must be 33 bytes')
if pubkey[0] not in (2, 3):
raise ValueError('invalid pubkey prefix byte')
curve = cls.CURVE.curve
is_odd = pubkey[0] == 3
x = bytes_to_int(pubkey[1:])
a, b, p = curve.a(), curve.b(), curve.p()
y2 = pow(x, 3, p) + b
assert a == 0
y = NT.square_root_mod_prime(y2 % p, p)
if bool(y & 1) != is_odd:
y = p - y
point = EC.Point(curve, x, y)
return ecdsa.VerifyingKey.from_public_point(point, curve=cls.CURVE)
@cachedproperty
def pubkey_bytes(self):
point = self.verifying_key.pubkey.point
prefix = bytes([2 + (point.y() & 1)])
padded_bytes = _exponent_to_bytes(point.x())
return prefix + padded_bytes
def address(self, coin):
address = self.addresses.get(coin)
if not address:
address = coin.P2PKH_address_from_pubkey(self.pubkey_bytes)
self.addresses[coin] = address
return address
def ec_point(self):
return self.verifying_key.pubkey.point
def child(self, n):
if not 0 <= n < (1 << 31):
raise ValueError('invalid BIP32 public key child number')
msg = self.pubkey_bytes + struct.pack('>I', n)
L, R = self._hmac_sha512(msg)
curve = self.CURVE
L = bytes_to_int(L)
if L >= curve.order:
raise DerivationError
point = curve.generator * L + self.ec_point()
if point == EC.INFINITY:
raise DerivationError
verkey = ecdsa.VerifyingKey.from_public_point(point, curve=curve)
return PubKey(verkey, R, n, self.depth + 1, self)
def identifier(self):
return hash160(self.pubkey_bytes)
def extended_key(self, coin):
return self._extended_key(coin.XPUB_VERBYTES, self.pubkey_bytes)
class PrivKey(_KeyBase):
HARDENED = 1 << 31
def __init__(self, privkey, chain_code, n, depth, parent=None):
super().__init__(chain_code, n, depth, parent)
if isinstance(privkey, ecdsa.SigningKey):
self.signing_key = privkey
else:
self.signing_key = self._signing_key_from_privkey(privkey)
@classmethod
def _signing_key_from_privkey(cls, privkey):
exponent = cls._privkey_secret_exponent(privkey)
return ecdsa.SigningKey.from_secret_exponent(exponent, curve=cls.CURVE)
@classmethod | MIT License |
apache/cassandra-dtest | upgrade_tests/upgrade_manifest.py | VersionMeta.clone_with_local_env_version | python | def clone_with_local_env_version(self):
cassandra_dir, cassandra_version = cassandra_dir_and_version(CONFIG)
if cassandra_version:
return self._replace(version=cassandra_version)
return self._replace(version="clone:{}".format(cassandra_dir)) | Returns a new object cloned from this one, with the version replaced with the local env version. | https://github.com/apache/cassandra-dtest/blob/7c3333958e2b2bd53018a50ab1f529e1a2cca173/upgrade_tests/upgrade_manifest.py#L144-L151 | import logging
from collections import namedtuple
from dtest import RUN_STATIC_UPGRADE_MATRIX
from conftest import cassandra_dir_and_version
import ccmlib.repository
from ccmlib.common import get_version_from_build
from enum import Enum
logger = logging.getLogger(__name__)
UpgradePath = namedtuple('UpgradePath', ('name', 'starting_version', 'upgrade_version', 'starting_meta', 'upgrade_meta'))
VERSION_FAMILY = None
CONFIG = None
CASSANDRA_2_0 = '2.0'
CASSANDRA_2_1 = '2.1'
CASSANDRA_2_2 = '2.2'
CASSANDRA_3_0 = '3.0'
CASSANDRA_3_11 = '3.11'
CASSANDRA_4_0 = '4.0'
CASSANDRA_4_0_X = '4.0.1'
CASSANDRA_4_1 = '4.1'
TRUNK = CASSANDRA_4_1
def is_same_family_current_to_indev(origin, destination):
return origin.family == destination.family and origin.variant == "current" and destination.variant == "indev"
class VersionSelectionStrategies(Enum):
ALL=(lambda origin, destination: True,)
BOTH=(lambda origin, destination: (origin.variant == destination.variant) or is_same_family_current_to_indev(origin,destination),)
INDEV=(lambda origin, destination: origin.variant == 'indev' and destination.variant == 'indev' or is_same_family_current_to_indev(origin, destination),)
RELEASES=(lambda origin, destination: not VersionSelectionStrategies.INDEV.value[0](origin, destination) or is_same_family_current_to_indev(origin, destination),)
def set_config(config):
global CONFIG
CONFIG = config
set_version_family()
def set_version_family():
cassandra_version_slug = CONFIG.getoption("--cassandra-version")
cassandra_dir = CONFIG.getoption("--cassandra-dir") or CONFIG.getini("cassandra_dir")
if cassandra_version_slug:
ccm_repo_cache_dir, _ = ccmlib.repository.setup(cassandra_version_slug)
current_version = get_version_from_build(ccm_repo_cache_dir)
else:
current_version = get_version_from_build(cassandra_dir)
if current_version.vstring.startswith('2.0'):
version_family = CASSANDRA_2_0
elif current_version.vstring.startswith('2.1'):
version_family = CASSANDRA_2_1
elif current_version.vstring.startswith('2.2'):
version_family = CASSANDRA_2_2
elif current_version.vstring.startswith('3.0'):
version_family = CASSANDRA_3_0
elif current_version.vstring.startswith('3.11'):
version_family = CASSANDRA_3_11
elif current_version.vstring.startswith('4.0.0') or current_version.vstring.startswith('4.0-'):
version_family = CASSANDRA_4_0
elif current_version.vstring.startswith('4.0'):
version_family = CASSANDRA_4_0_X
elif current_version.vstring.startswith('4.1'):
version_family = CASSANDRA_4_1
else:
raise RuntimeError("Testing upgrades from/to version %s is not supported. Please use a custom manifest (see upgrade_manifest.py)" % current_version.vstring)
global VERSION_FAMILY
VERSION_FAMILY = version_family
logger.info("Setting version family to %s\n" % VERSION_FAMILY)
class VersionMeta(namedtuple('_VersionMeta', ('name', 'family', 'variant', 'version', 'min_proto_v', 'max_proto_v', 'java_versions'))):
@property
def java_version(self):
return max(self.java_versions)
@property
def matches_current_env_version_family(self):
return self.family == VERSION_FAMILY
@property
def matches_current_env_version_family_and_is_indev(self):
return self.family == VERSION_FAMILY and self.variant == "indev" | Apache License 2.0 |
ns1/ns1-python | ns1/__init__.py | NS1.zones | python | def zones(self):
import ns1.rest.zones
return ns1.rest.zones.Zones(self.config) | Return a new raw REST interface to zone resources
:rtype: :py:class:`ns1.rest.zones.Zones` | https://github.com/ns1/ns1-python/blob/0fed6588108dc1bfe683286dd422541e75f74ca0/ns1/__init__.py#L46-L54 | from .config import Config
version = "0.16.1"
class NS1:
def __init__(self, apiKey=None, config=None, configFile=None, keyID=None):
self.config = config
if self.config is None:
self._loadConfig(apiKey, configFile)
if keyID:
self.config.useKeyID(keyID)
def _loadConfig(self, apiKey, configFile):
self.config = Config()
if apiKey:
self.config.createFromAPIKey(apiKey)
else:
configFile = (
Config.DEFAULT_CONFIG_FILE if not configFile else configFile
)
self.config.loadFromFile(configFile) | MIT License |
square/bionic | bionic/persistence.py | Inventory.find_entry | python | def find_entry(self, provenance):
logger.debug("In %s inventory for %r, searching ...", self.tier, provenance)
n_prior_attempts = 0
while True:
if n_prior_attempts in (10, 100, 1000, 10000, 100000, 1000000):
message = f"""
While searching in the {self.tier} cache for an entry matching
{provenance!r}, found {n_prior_attempts} invalid metadata files;
either a lot of artifact files were manually deleted,
or there's a bug in the cache code
"""
if n_prior_attempts == 1000000:
raise AssertionError("Giving up: " + oneline(message))
else:
logger.warn(oneline(message))
n_prior_attempts += 1
match = self._find_best_match(provenance)
if not match:
logger.debug(
"... in %s inventory for %r, found no match", self.tier, provenance
)
return InventoryEntry(
tier=self.tier,
provenance=None,
exactly_matches_provenance=False,
artifact=None,
)
metadata_record = self._load_metadata_if_valid_else_delete(
match.metadata_url
)
if metadata_record is None:
continue
logger.debug(
"... in %s inventory for %r, found %s match at %s",
self.tier,
provenance,
match.level,
match.metadata_url,
)
return InventoryEntry(
tier=self.tier,
provenance=metadata_record.provenance,
exactly_matches_provenance=(match.level == "exact"),
artifact=metadata_record.artifact,
) | Returns an InventoryEntry describing the closest match to the provided
Provenance. | https://github.com/square/bionic/blob/357da8e2806996427e0aa6efd08f7ea8c5198f9b/bionic/persistence.py#L480-L535 | import attr
import cattr
import os
import shutil
import tempfile
from typing import List, Optional, Tuple
import yaml
import warnings
from uuid import uuid4
from pathlib import Path
from .datatypes import CodeFingerprint, Artifact
from .utils.files import (
ensure_dir_exists,
ensure_parent_dir_exists,
)
from .utils.misc import hash_simple_obj_to_hex, oneline
from .utils.urls import (
bucket_and_object_names_from_gs_url,
derelativize_url,
path_from_url,
relativize_url,
url_from_path,
)
import logging
logger = logging.getLogger(__name__)
try:
YamlDumper = yaml.CDumper
YamlLoader = yaml.CLoader
except AttributeError:
running_under_readthedocs = os.environ.get("READTHEDOCS") == "True"
if not running_under_readthedocs:
warnings.warn(
oneline(
"""
Failed to find LibYAML bindings;
falling back to slower Python implementation.
This may reduce performance on large flows.
Installing LibYAML should resolve this."""
)
)
YamlDumper = yaml.Dumper
YamlLoader = yaml.Loader
class PersistentCache:
def __init__(self, local_store, cloud_store):
self._local_store = local_store
self._cloud_store = cloud_store
def get_accessor(self, task_key, provenance):
return CacheAccessor(self, task_key, provenance)
class CacheAccessor:
def __init__(self, parent_cache, task_key, provenance):
self.task_key = task_key
self.provenance = provenance
self._local = parent_cache._local_store
self._cloud = parent_cache._cloud_store
self._stored_local_entry = None
self._stored_cloud_entry = None
def flush_stored_entries(self):
self._stored_local_entry = None
self._stored_cloud_entry = None
def can_load(self):
try:
return self._get_nearest_entry_with_artifact() is not None
except InternalCacheStateError as e:
self.raise_state_error_with_explanation(e)
def load_provenance(self):
try:
entry = self._get_nearest_entry_with_artifact()
if entry is None:
return None
return entry.provenance
except InternalCacheStateError as e:
self.raise_state_error_with_explanation(e)
def load_artifact(self):
try:
entry = self._get_nearest_entry_with_artifact()
if entry is None:
return None
return entry.artifact
except InternalCacheStateError as e:
self.raise_state_error_with_explanation(e)
def replicate_and_load_local_artifact(self):
try:
entry = self._get_nearest_entry_with_artifact()
if entry is None:
return None
if entry.tier == "local":
local_artifact = entry.artifact
elif entry.tier == "cloud":
local_artifact = self._local_artifact_from_cloud(entry.artifact)
else:
raise AssertionError("Unrecognized tier: " + entry.tier)
self._save_or_reregister_artifact(local_artifact)
return local_artifact
except InternalCacheStateError as e:
self.raise_state_error_with_explanation(e)
def save_local_artifact(self, artifact):
try:
self._save_or_reregister_artifact(artifact)
except InternalCacheStateError as e:
self.raise_state_error_with_explanation(e)
def update_provenance(self):
try:
self._save_or_reregister_artifact(None)
except InternalCacheStateError as e:
self.raise_state_error_with_explanation(e)
def generate_unique_local_dir_path(self):
return self._local.generate_unique_dir_path(self.provenance)
def raise_state_error_with_explanation(self, source_exc, preamble_message=None):
stores = [self._local]
if self._cloud:
stores.append(self._cloud)
inventory_root_urls = " and ".join(store.inventory.root_url for store in stores)
message = f"""
{preamble_message}
Cached data may be in an invalid state; this should be
impossible but could have resulted from either a bug or a
change to the cached files. You should be able to repair
the problem by removing all cached files under
{inventory_root_urls}."""
if preamble_message is None:
final_message = oneline(message)
else:
final_message = oneline(preamble_message) + "\n" + oneline(message)
raise InvalidCacheStateError(final_message) from source_exc
def _save_or_reregister_artifact(self, artifact):
local_entry = self._get_local_entry()
cloud_entry = self._get_cloud_entry()
self.flush_stored_entries()
local_artifact = artifact
cloud_artifact = None
if local_artifact is None:
if local_entry.artifact is not None:
local_artifact = local_entry.artifact
else:
if cloud_entry is None or cloud_entry.artifact is None:
raise AssertionError(
oneline(
"""
Attempted to register metadata with no artifact
argument and no previously saved values;
this suggests we called update_provenance() without
previously finding a cached value, which shouldn't
happen."""
)
)
cloud_artifact = cloud_entry.artifact
local_artifact = self._local_artifact_from_cloud(cloud_artifact)
if not local_entry.exactly_matches_provenance:
local_entry = self._local.inventory.register_artifact(
self.provenance,
local_artifact,
)
self._stored_local_entry = local_entry
if self._cloud:
assert cloud_entry is not None
if not cloud_entry.exactly_matches_provenance:
if cloud_artifact is None:
if cloud_entry.artifact is not None:
cloud_artifact = cloud_entry.artifact
else:
cloud_artifact = self._cloud_artifact_from_local(local_artifact)
cloud_entry = self._cloud.inventory.register_artifact(
self.provenance,
cloud_artifact,
)
self._stored_cloud_entry = cloud_entry
def _get_nearest_entry_with_artifact(self):
local_entry = self._get_local_entry()
if local_entry.artifact is not None:
return local_entry
cloud_entry = self._get_cloud_entry()
if cloud_entry is not None and cloud_entry.artifact is not None:
return cloud_entry
return None
def _get_local_entry(self):
if self._stored_local_entry is None:
self._stored_local_entry = self._local.inventory.find_entry(self.provenance)
return self._stored_local_entry
def _get_cloud_entry(self):
if self._stored_cloud_entry is None:
if self._cloud is None:
return None
self._stored_cloud_entry = self._cloud.inventory.find_entry(self.provenance)
return self._stored_cloud_entry
def _local_artifact_from_cloud(self, cloud_artifact):
dir_path = self._local.generate_unique_dir_path(self.provenance)
filename = path_from_url(cloud_artifact.url).name
file_path = dir_path / filename
ensure_parent_dir_exists(file_path)
logger.info("Downloading %s from GCS ...", self.task_key)
try:
self._cloud.download(file_path, cloud_artifact.url)
except Exception as e:
raise InternalCacheStateError.from_failure(
"artifact blob",
cloud_artifact.url,
e,
)
return Artifact(
url=url_from_path(file_path),
content_hash=cloud_artifact.content_hash,
)
def _cloud_artifact_from_local(self, local_artifact):
url_prefix = self._cloud.generate_unique_url_prefix(self.provenance)
file_path = path_from_url(local_artifact.url)
blob_url = url_prefix + "/" + file_path.name
logger.info("Uploading %s to GCS ...", self.task_key)
try:
self._cloud.upload(file_path, blob_url)
except Exception as e:
raise InternalCacheStateError.from_failure("artifact file", file_path, e)
return Artifact(
url=blob_url,
content_hash=local_artifact.content_hash,
)
@attr.s(frozen=True)
class NullableWrapper:
value = attr.ib()
@attr.s(frozen=True)
class InventoryEntry:
tier = attr.ib()
provenance = attr.ib()
exactly_matches_provenance = attr.ib()
artifact = attr.ib()
@attr.s(frozen=True)
class MetadataMatch:
metadata_url = attr.ib()
level = attr.ib()
@attr.s(frozen=True)
class ExternalCacheItem:
inventory = attr.ib()
abs_artifact_url = attr.ib()
abs_metadata_url = attr.ib()
descriptor = attr.ib()
class Inventory:
def __init__(self, name, tier, filesystem):
self.name = name
self.tier = tier
self._fs = filesystem
self.root_url = filesystem.root_url
def register_artifact(self, provenance, artifact):
logger.debug(
"In %s inventory for %r, saving artifact URL %s ...",
self.tier,
provenance,
artifact.url,
)
expected_metadata_url = self._exact_metadata_url_for_provenance(provenance)
metadata_record = None
if self._fs.exists(expected_metadata_url):
logger.warn(
"In %s cache, attempted to create duplicate entry mapping %r " "to %s",
self.tier,
provenance,
artifact.url,
)
metadata_record = self._load_metadata_if_valid_else_delete(
expected_metadata_url,
)
if metadata_record is None:
metadata_url, metadata_record = self._create_and_write_metadata(
provenance, artifact
)
assert metadata_url == expected_metadata_url
logger.debug(
"... in %s inventory for %r, created metadata record at %s",
self.tier,
provenance,
metadata_url,
)
return InventoryEntry(
tier=self.tier,
provenance=metadata_record.provenance,
exactly_matches_provenance=True,
artifact=artifact,
) | Apache License 2.0 |
lawsie/guizero | guizero/base.py | BaseWindow.__init__ | python | def __init__(self, master, tk, title, width, height, layout, bg, visible):
super(BaseWindow, self).__init__(master, tk, layout, False)
self.tk.title( str(title) )
self.tk.geometry(str(width)+"x"+str(height))
self._on_close = None
self._full_screen = False
self._icon = None
self._icon_cascade = True
self.bg = bg
self.tk.wm_protocol("WM_DELETE_WINDOW", self._close_window)
self.visible = visible
self.tk.update() | Base class for objects which use windows e.g. `App` and `Window` | https://github.com/lawsie/guizero/blob/7744c41a1e747ade2e5913638586073c27b4db9b/guizero/base.py#L478-L498 | from .tkmixins import (
ScheduleMixin,
DestroyMixin,
EnableMixin,
FocusMixin,
DisplayMixin,
TextMixin,
ColorMixin,
SizeMixin,
LayoutMixin,
EventsMixin)
from . import utilities as utils
from .event import EventManager
from . import dialog
from tkinter import BOTH, X, Y, YES
class Base():
def __init__(self, tk):
self._tk = tk
self._tk_defaults = {}
for key in self.tk.keys():
self._tk_defaults[key] = self.tk[key]
@property
def tk(self):
return self._tk
def _has_tk_config(self, key):
return key in self.tk.keys()
def _get_tk_config(self, key, default=False):
if default:
return self._tk_defaults[key]
else:
return self.tk[key]
def _set_tk_config(self, keys, value):
if isinstance(keys, str):
keys = [keys]
for key in keys:
if key in self.tk.keys():
if value is None:
self.tk[key] = self._tk_defaults[key]
else:
self.tk[key] = value
def __repr__(self):
return "guizero.{} object".format(self.__class__.__name__)
class Component(
Base,
ScheduleMixin,
DestroyMixin,
FocusMixin,
ColorMixin,
EventsMixin):
def __init__(self, master, tk, displayable):
super(Component, self).__init__(tk)
self._master = master
self._events = EventManager(self, tk)
self._displayable = displayable
self._when_resized = None
self._actual_height = None
self._actual_width = None
self.events.set_event("<Component.Configure>", "<Configure>", self._on_configure_change)
if self.master is not None:
if isinstance(master, Container):
self.master._add_child(self)
else:
utils.raise_error("{}\nMaster is not an [App], [Window] or [Box]".format(self.description))
@property
def master(self):
return self._master
@property
def description(self):
return "[{}] object".format(self.__class__.__name__)
def __str__(self):
return self.description
@property
def events(self):
return self._events
@property
def displayable(self):
return self._displayable
@property
def when_resized(self):
return self._when_resized
@when_resized.setter
def when_resized(self, value):
self._when_resized = value
def destroy(self):
if self.master is not None:
self.master._remove_child(self)
self.tk.destroy()
def _on_configure_change(self, event):
if event.tk_event.widget == self.tk:
if self._actual_height != event.tk_event.height or self._actual_width != event.tk_event.width:
self._actual_height = event.tk_event.height
self._actual_width = event.tk_event.height
if self._when_resized is not None:
args_expected = utils.no_args_expected(self._when_resized)
if args_expected == 0:
self._when_resized()
elif args_expected == 1:
self._when_resized(event)
else:
utils.error_format("An event callback function must accept either 0 or 1 arguments.\nThe current callback has {} arguments.".format(args_expected))
class Container(Component):
def __init__(self, master, tk, layout, displayable):
super(Container, self).__init__(master, tk, displayable)
self._children = []
self._layout_manager = layout
self._bg = None
self._text_color = None
self._text_size = None
self._font = None
self._enabled = True
if self.master is not None:
self.bg = master.bg
self.text_color = master.text_color
self.text_size = master.text_size
self.font = master.font
@property
def layout(self):
return self._layout_manager
@property
def bg(self):
return self._bg
@bg.setter
def bg(self, value):
self._bg = utils.convert_color(value)
super(Container, self.__class__).bg.fset(self, self._bg)
for child in self.children:
if isinstance(child, (Container, Widget)):
child.bg = self._bg
@property
def text_color(self):
return self._text_color
@text_color.setter
def text_color(self, value):
self._text_color = utils.convert_color(value)
for child in self.children:
if isinstance(child, (Container, TextWidget)):
child.text_color = self.text_color
@property
def text_size(self):
return self._text_size
@text_size.setter
def text_size(self, value):
self._text_size = value
for child in self.children:
if isinstance(child, (Container, TextWidget)):
child.text_size = self.text_size
@property
def font(self):
return self._font
@font.setter
def font(self, value):
self._font = value
for child in self.children:
if isinstance(child, (Container, TextWidget)):
child.font = self.font
@property
def children(self):
return self._children
def add_tk_widget(self, tk_widget, grid=None, align=None, visible=True, enabled=None, width=None, height=None):
if self.tk is not tk_widget.master:
utils.error_format("The tk widget's master is not '{}'.\nIt may not display correctly.".format(self.description))
return Widget(self, tk_widget, grid, align, visible, enabled, width, height)
def _add_child(self, child):
self.children.append(child)
def _remove_child(self, child):
self.children.remove(child)
def display_widgets(self):
for child in self.children:
if child.displayable:
if self.layout != "grid":
child.tk.pack_forget()
else:
child.tk.grid_forget()
if child.visible:
if self.layout != "grid":
self._pack_widget(child)
else:
self._grid_widget(child)
def _pack_widget(self, widget):
pack_params={}
if widget.width == "fill" and widget.height == "fill":
pack_params["fill"] = BOTH
pack_params["expand"] = YES
elif widget.width == "fill":
pack_params["fill"] = X
elif widget.height == "fill":
pack_params["fill"] = Y
if widget.align is not None:
pack_params["side"] = widget.align
if pack_params.get("side") is None and pack_params.get("fill") == Y:
pack_params["expand"] = YES
if pack_params.get("side") in ["top", "bottom"] and pack_params.get("fill") == Y:
pack_params["expand"] = YES
if pack_params.get("side") in ["left", "right"] and pack_params.get("fill") == X:
pack_params["expand"] = YES
widget.tk.pack(**pack_params)
def _grid_widget(self, widget):
grid_params = {
"column": widget.grid[0],
"row": widget.grid[1]
}
if len(widget.grid) == 4:
grid_params["columnspan"] = widget.grid[2]
grid_params["rowspan"] = widget.grid[3]
if widget.align is not None:
directions = {"top": "N", "bottom": "S", "left": "W", "right": "E"}
grid_params["sticky"] = directions[widget.align]
widget.tk.grid(**grid_params)
@property
def enabled(self):
return self._enabled
@enabled.setter
def enabled(self, value):
if value:
self.enable()
else:
self.disable()
def disable(self):
self._enabled = False
for child in self.children:
if isinstance(child, (Container, Widget)):
child.disable()
def enable(self):
self._enabled = True
for child in self.children:
if isinstance(child, (Container, Widget)):
child.enable()
class BaseWindow(Container): | BSD 3-Clause New or Revised License |
altosaar/deep-exponential-families-gluon | common/util.py | score_grad_variance_callback | python | def score_grad_variance_callback(my_model):
params = my_model.collect_params()
param_grads = collections.defaultdict(lambda: [])
for name, param in params.items():
if param.grad_req != 'null':
grads = np.stack(param_grads[name])
param.grad_variance = np.mean(np.var(grads, axis=0))
param.grad_norm = np.mean(np.linalg.norm(grads, axis=-1))
for block in my_model.sequential._children:
print(block.name, ':')
print([(name, p.data().asnumpy().tolist())
for name, p in filter(
lambda x: 'weight' in x[0] or 'bias' in x[0],
block.collect_params().items())])
for child_block in block._children:
print(child_block.name, ':')
print('mean:', child_block.get_param_not_repeated('mean').asnumpy())
if hasattr(child_block, 'variance'):
print('variance: ', child_block.get_param_not_repeated(
'variance').asnumpy()) | Get score function gradient variance. | https://github.com/altosaar/deep-exponential-families-gluon/blob/80d69b54081f622c0012bb181aa6d8ab9a740f15/common/util.py#L101-L121 | import os
import logging
import mxnet as mx
import numpy as np
import collections
from mxnet import nd
def log_to_file(filename):
logging.basicConfig(level=logging.INFO,
format='%(asctime)s %(name)-4s %(levelname)-4s %(message)s',
datefmt='%m-%d %H:%M',
filename=filename,
filemode='a')
console = logging.StreamHandler()
console.setLevel(logging.INFO)
logging.getLogger('').addHandler(console)
def flatten(l): return [item for sublist in l for item in sublist]
def softplus(x):
return nd.Activation(x, act_type='softrelu')
def np_softplus(x):
return np.log(1. + np.exp(x))
class Softplus(object):
def __init__(self):
pass
def __call__(self, x: nd.NDArray) -> nd.NDArray:
return nd.Activation(x, act_type='softrelu')
def backward(self, x):
return nd.sigmoid(x)
def sigmoid(x):
return nd.Activation(x, act_type='sigmoid')
def np_inverse_softplus(x):
return np.log(np.exp(x) - 1.)
def latest_checkpoint(directory):
files = [f for f in os.listdir(directory) if 'params' in f]
if len(files) > 0 and any('params' in f for f in files):
l = sorted((int(f.split('-')[-1]), i) for i, f in enumerate(files))
return os.path.join(directory, files[l[-1][-1]]), l[-1][0]
else:
return None, None
def repeat_emb(param, emb):
res = nd.expand_dims(emb, 0)
param.repeated = nd.repeat(res, repeats=param.n_repeats, axis=0)
param.repeated.attach_grad()
return param.repeated
def pathwise_grad_variance_callback(my_model, data_batch):
param_grads = collections.defaultdict(lambda: [])
params = my_model.collect_params()
n_samples_stats = 10
for i in range(n_samples_stats):
with mx.autograd.record():
log_q_sum, elbo, sample = my_model(data_batch)
my_model.compute_gradients(elbo, data_batch, log_q_sum)
for name, param in params.items():
if param.grad_req != 'null':
param_grads[name].append(param.grad().asnumpy())
def callback_elbo_sample(my_model, data_batch):
n_samples_stats = 10
_, elbo, sample = my_model(data_batch)
for _ in range(n_samples_stats):
tmp_sample = nd.zeros_like(sample)
tmp_elbo = nd.zeros_like(elbo)
for _ in range(n_samples_stats):
_, elbo, sample = my_model(data_batch)
tmp_sample += sample
tmp_elbo += elbo
tmp_sample /= n_samples_stats
tmp_elbo /= n_samples_stats
tmp_sample = np.mean(tmp_sample.asnumpy(), 0)
tmp_elbo = np.mean(tmp_elbo.asnumpy())
return tmp_elbo, tmp_sample | MIT License |
chandler37/immaculater | pyatdllib/ui/uicmd.py | _PerformLs | python | def _PerformLs(current_obj, location, state, recursive, show_uid, show_all,
show_timestamps, view_filter_override=None):
if show_all and isinstance(current_obj, container.Container):
state.Print(_ListingForOneItem(
show_uid,
show_timestamps,
current_obj,
state.ToDoList(),
'.'))
state.Print(_ListingForOneItem(
show_uid,
show_timestamps,
_FindParentOf(state, current_obj),
state.ToDoList(),
'..'))
if hasattr(current_obj, 'items'):
items = list(current_obj.items)
if current_obj is state.ToDoList().root:
items.insert(0, state.ToDoList().inbox)
else:
items = [current_obj]
if state.CurrentSorting() == 'alpha' and not isinstance(current_obj, prj.Prj):
items.sort(key=lambda x: '' if x.uid == 1 else x.name)
items.sort(key=lambda x: 0 if isinstance(x, folder.Folder) or x.uid == 1 else 1)
to_recurse = []
for item in items:
the_view_filter = view_filter_override if view_filter_override is not None else state.ViewFilter()
if show_all or the_view_filter.Show(item):
q = _ListingForOneItem(show_uid, show_timestamps, item, state.ToDoList())
state.Print(q)
if recursive and isinstance(item, container.Container):
to_recurse.append((item, location))
for obj, loc in to_recurse:
state.Print('')
if loc:
state.Print('%s%s%s:'
% (loc if loc != FLAGS.pyatdl_separator else '',
FLAGS.pyatdl_separator, obj.name))
else:
state.Print('%s:' % obj.name)
_PerformLs(obj,
'%s%s%s'
% (loc if loc != FLAGS.pyatdl_separator else '',
FLAGS.pyatdl_separator, obj.name),
state, recursive, show_uid, show_all, show_timestamps,
view_filter_override) | Performs 'ls'.
Args:
current_obj: AuditableObject
location: basestring
state: State
recursive: bool
show_uid: bool
show_all: bool
show_timestamps: bool
view_filter_override: None|ViewFilter | https://github.com/chandler37/immaculater/blob/13bfe8c949a16945d2195920375ad6d522664208/pyatdllib/ui/uicmd.py#L734-L792 | from __future__ import absolute_import
from __future__ import unicode_literals
from __future__ import print_function
import base64
import datetime
import json
import pipes
import pytz
import random
import re
import six
from six.moves import xrange
import time
from absl import flags
from google.protobuf import text_format
from third_party.google.apputils.google.apputils import app
from third_party.google.apputils.google.apputils import appcommands
from typing import Any, Dict, List, Optional, Union
from ..core import action
from ..core import auditable_object
from ..core import common
from ..core import container
from ..core import ctx
from ..core import folder
from ..core import prj
from ..core import tdl
from ..core import uid
from ..core import view_filter
from . import appcommandsutil
from . import lexer
from . import serialization
from . import state as state_module
FLAGS = flags.FLAGS
flags.DEFINE_string('no_context_display_string', '<none>',
'Text to indicate the lack of a context')
flags.DEFINE_string('timezone', 'UTC',
'Time zone in pytz format, e.g. "US/Eastern", "UTC", "US/Pacific"')
flags.DEFINE_string('time_format', '%Y/%m/%d-%H:%M:%S',
'Format string for timestamps, used in, e.g., "ls"')
flags.DEFINE_bool('pyatdl_allow_exceptions_in_batch_mode', False,
'In batch mode, allow exceptions? If so, they will be '
'printed but execution will continue. If not, execution will '
'be aborted.')
flags.DEFINE_bool('seed_upon_creation', False,
'Run the command "seed" after creation of a to-do list?')
class Error(Exception):
class BadArgsError(Error, appcommandsutil.IncorrectUsageError):
class NoSuchContainerError(Error):
def _ProjectString(project: prj.Prj, path: List[folder.Folder]) -> str:
ps = FLAGS.pyatdl_separator.join(
state_module.State.SlashEscaped(x.name) for x in reversed(path))
return FLAGS.pyatdl_separator.join([ps, project.name])
def _CompleteStr(is_complete: bool) -> str:
return '---COMPLETE---' if is_complete else '--incomplete--'
def _ActiveStr(is_active: bool) -> str:
return '---active---' if is_active else '--INACTIVE--'
def _ListingForContext(show_uid: bool, show_timestamps: bool, context: Optional[ctx.Ctx]) -> str:
if context is None:
uid_str = 'uid=0 ' if show_uid else ''
else:
uid_str = ('uid=%s ' % context.uid) if show_uid else ''
return '--context-- %s%s%s%s %s' % (
uid_str,
_DeletedStr(context.is_deleted if context is not None else False),
_ConcatenatedTimestampStr(context, show_timestamps),
_ActiveStr(True if context is None else context.is_active),
pipes.quote(context.name if context is not None
else FLAGS.no_context_display_string))
def _ListingForOneItem(show_uid: bool, show_timestamps: bool, item: Union[folder.Folder, prj.Prj, action.Action],
to_do_list: tdl.ToDoList, name_override: str = None, in_context_override: str = None) -> str:
by_type = {folder.Folder: '--folder--- ',
prj.Prj: '--project-- ',
action.Action: '--action--- ',
ctx.Ctx: '--context-- '}
deleted_str = _DeletedStr(item.is_deleted)
type_str = by_type[type(item)]
lead = '%s%s%s' % (
type_str, deleted_str, _ConcatenatedTimestampStr(item, show_timestamps))
completed_str = ''
if isinstance(item, (action.Action, prj.Prj)):
completed_str = '%s ' % _CompleteStr(item.is_complete)
active_str = ''
if isinstance(item, (prj.Prj, ctx.Ctx)):
active_str = '%s ' % _ActiveStr(item.is_active)
in_context = ''
if isinstance(item, action.Action):
if item.ctx_uid is None:
in_context = ' --in-context-- %s' % pipes.quote(
FLAGS.no_context_display_string)
else:
context = to_do_list.ContextByUID(item.ctx_uid)
if context is None:
raise AssertionError(
"The protobuf has a bad Context association with an Action. item.ctx_uid=%s item.uid=%s"
% (item.ctx_uid, item.uid))
in_context = ' --in-context-- %s' % pipes.quote(context.name)
effective_name = item.name or ''
if name_override is not None:
effective_name = name_override
return '%s%s%s%s%s%s' % (
lead,
'uid=%s ' % item.uid if show_uid else '',
completed_str,
active_str,
pipes.quote(effective_name),
in_context_override if in_context_override is not None else in_context)
def _JsonForOneItem(item: Optional[Union[folder.Folder, prj.Prj, action.Action, ctx.Ctx]],
to_do_list: tdl.ToDoList,
number_of_items: int,
*,
name_override: str = None,
in_context_override: str = None,
path_leaf_first: List[container.Container] = None,
in_prj: str = None) -> Dict[str, Any]:
name = FLAGS.no_context_display_string if item is None else item.name
rv = {
'is_deleted': False if item is None else item.is_deleted,
'ctime': 0 if item is None else item.ctime,
'dtime': None if item is None or not item.is_deleted else item.dtime,
'mtime': 0 if item is None else item.mtime,
'is_complete': item.is_complete if isinstance(item, (prj.Prj, action.Action)) else False,
'uid': str(0 if item is None else item.uid),
'name': name_override if name_override is not None else name,
'number_of_items': number_of_items
}
if in_prj is not None:
rv['in_prj'] = in_prj
if isinstance(item, prj.Prj):
rv['needsreview'] = bool(item.NeedsReview())
rv['default_context_uid'] = str(0 if item.default_context_uid is None else item.default_context_uid)
if isinstance(item, action.Action):
if item.ctx_uid is None:
in_context = FLAGS.no_context_display_string
else:
context = to_do_list.ContextByUID(item.ctx_uid)
if context is not None:
in_context = context.name
else:
raise AssertionError(
"The protobuf has a bad Context association with an Action. item.ctx_uid=%s item.uid=%s"
% (item.ctx_uid, item.uid))
rv['in_context'] = in_context_override if in_context_override is not None else in_context
rv['in_context_uid'] = str(item.ctx_uid) if item.ctx_uid is not None else None
if item is None:
rv['is_active'] = True
if isinstance(item, (prj.Prj, ctx.Ctx)):
rv['is_active'] = item.is_active
if item is not None:
rv['has_note'] = bool(item.note)
if path_leaf_first is not None:
rv['path'] = FLAGS.pyatdl_separator.join(
state_module.State.SlashEscaped(x.name) for x in reversed(path_leaf_first))
if not rv['path']:
rv['path'] = FLAGS.pyatdl_separator
return rv
def _TimestampStr(epoch_sec_or_none: Optional[float]) -> str:
if epoch_sec_or_none is None:
return ''
tz = pytz.timezone(FLAGS.timezone)
return datetime.datetime.fromtimestamp(epoch_sec_or_none, tz).strftime(
FLAGS.time_format)
def _ConcatenatedTimestampStr(c, show_timestamps):
ctime_str = 'ctime=%s ' % _TimestampStr(0 if c is None else c.ctime) if show_timestamps else ''
mtime_str = 'mtime=%s ' % _TimestampStr(0 if c is None else c.mtime) if show_timestamps else ''
if show_timestamps and c is not None and c.dtime:
dtime_str = 'dtime=%s ' % _TimestampStr(c.dtime)
else:
dtime_str = ''
return '%s%s%s' % (mtime_str, ctime_str, dtime_str)
def _DeletedStr(is_deleted):
return '--DELETED-- ' if is_deleted else ''
def NewToDoList():
t = tdl.ToDoList()
if FLAGS.seed_upon_creation:
APP_NAMESPACE.FindCmdAndExecute(
state_module.State(lambda _: None, t, APP_NAMESPACE),
['seed'])
return t
def _RemovePrefix(prefix, text):
match = re.match(prefix, text)
if match is None:
return text
return text[len(match.group()):]
def _Inboxize(state, note):
def essence(line):
return _RemovePrefix(r'@xfer\b', line.strip().lstrip(':-\u2013\u2014').lstrip()).lstrip()
first_action = None
note = note.replace(r'\n', '\n')
beginning = 'You chose to process'
for line in note.splitlines():
action = essence(line).strip()
if not action:
continue
if first_action is None:
first_action = action
if action.startswith(beginning):
raise BadArgsError('You already turned this note into Actions in the Inbox.')
APP_NAMESPACE.FindCmdAndExecute(
state,
['do', action])
if first_action is None:
return ''
return "\\n".join(
[f'{beginning} the note that was here into',
'a sequence of Actions in the Inbox.',
'',
'The first such action was the following:',
f'\t- {first_action}',
])
def _LookupProject(state, argument):
try:
the_uid = lexer.ParseSyntaxForUID(argument)
except lexer.Error as e:
raise BadArgsError(e)
if the_uid is not None:
x = state.ToDoList().ProjectByUID(the_uid)
if x is None:
raise NoSuchContainerError('No Project exists with UID %s' % the_uid)
the_project, the_path = x
if not the_path:
return the_project, None
return the_project, the_path[0]
try:
dirname = state.DirName(argument)
basename = state.BaseName(argument)
if not basename:
raise BadArgsError('Unexpected trailing "%s"' % FLAGS.pyatdl_separator)
except state_module.InvalidPathError as e:
raise BadArgsError(e)
if not dirname and basename == '.':
return (state.CurrentWorkingContainer(),
_FindParentOf(state, state.CurrentWorkingContainer()))
containr = state.GetContainerFromPath(dirname)
if containr is state.ToDoList().root and basename == FLAGS.inbox_project_name:
return state.ToDoList().inbox, None
project_names = []
for item in containr.items:
if isinstance(item, prj.Prj):
if not item.is_deleted:
project_names.append(item.name)
if the_uid == item.uid or item.name == basename:
return item, containr
for item in containr.items:
if isinstance(item, prj.Prj):
if item.is_deleted and item.name == basename:
return item, containr
if project_names:
raise BadArgsError(
'No such Project "%s". Choices: %s'
% (basename,
' '.join(sorted(project_names))))
else:
raise BadArgsError(
'No such Project "%s". There are no Projects in the current Folder.'
% basename)
def _LookupFolder(state, argument):
try:
the_uid = lexer.ParseSyntaxForUID(argument)
except lexer.Error as e:
raise BadArgsError(e)
if the_uid is not None:
x = state.ToDoList().FolderByUID(the_uid)
if x is None:
raise NoSuchContainerError('No Folder exists with UID %s' % the_uid)
the_folder, unused_path = x
return the_folder
try:
dirname = state.DirName(argument)
basename = state.BaseName(argument)
if not basename:
raise BadArgsError('Unexpected trailing "%s"' % FLAGS.pyatdl_separator)
except state_module.InvalidPathError as e:
raise BadArgsError(e)
containr = state.GetContainerFromPath(dirname)
folder_names = []
for item in containr.items:
if isinstance(item, folder.Folder):
folder_names.append(item.name)
if item.name == basename:
return item
if folder_names:
raise NoSuchContainerError(
'No such Folder "%s". Choices: %s'
% (basename,
' '.join(sorted(folder_names))))
else:
raise NoSuchContainerError(
'No such Folder "%s". There are no Folders within the specified Folder.'
% basename)
def _LookupAction(state, argument):
try:
the_uid = lexer.ParseSyntaxForUID(argument)
except lexer.Error as e:
raise BadArgsError(e)
if the_uid is not None:
x = state.ToDoList().ActionByUID(the_uid)
if x is None:
raise NoSuchContainerError('No Action with UID %s exists.' % the_uid)
return x
try:
dirname = state.DirName(argument)
basename = state.BaseName(argument)
if not basename:
raise BadArgsError('Unexpected trailing "%s"' % FLAGS.pyatdl_separator)
except state_module.Error as e:
raise BadArgsError(e)
try:
containr = state.GetContainerFromPath(dirname)
except state_module.Error as e:
raise BadArgsError(e)
if not isinstance(containr, prj.Prj):
raise BadArgsError(
'This command only makes sense inside a Project, not inside "%s". See "help pwd".'
% (containr.name if containr.name else FLAGS.pyatdl_separator,))
action_names = []
for item in containr.items:
assert isinstance(item, action.Action), str(item)
action_names.append(item.name)
if the_uid == item.uid or item.name == basename:
return item, containr
if action_names:
raise BadArgsError(
'No such Action "%s". Choices: %s'
% (basename,
' '.join(sorted(action_names))))
else:
raise BadArgsError(
'No such Action "%s". There are no Actions in the current Project.'
% basename)
def _LookupContext(state, argument):
if argument == 'uid=0' or argument == FLAGS.no_context_display_string:
return None
try:
the_uid = lexer.ParseSyntaxForUID(argument)
except lexer.Error as e:
raise BadArgsError(e)
if the_uid is not None:
return state.ToDoList().ContextByUID(the_uid)
return state.ToDoList().ContextByName(argument)
def _ExecuteUICmd(the_state: state_module.State, argv: List[str]) -> None:
try:
try:
APP_NAMESPACE.FindCmdAndExecute(the_state, argv)
except AssertionError as e:
raise AssertionError('argv=%s err=%s' % (argv, str(e)))
except (appcommandsutil.CmdNotFoundError,
appcommandsutil.InvalidUsageError,
appcommandsutil.IncorrectUsageError) as e:
raise AssertionError('argv=%s error=%s' % (argv, str(e)))
class UICmd(appcommands.Cmd):
@staticmethod
def RaiseUnlessNArgumentsGiven(n: int, args: List[str]) -> None:
assert n >= 1
if len(args) != n + 1:
if len(args) < 2:
if n == 1:
raise BadArgsError('Needs a single positional argument; found none')
else:
raise BadArgsError('Needs %d positional arguments; found none' % n)
else:
if n == 1:
raise BadArgsError('Needs a single positional argument; found these: %s' % repr(args[1:]))
else:
raise BadArgsError('Needs %d positional arguments; found these: %s' % (n, repr(args[1:])))
@staticmethod
def RaiseIfAnyArgumentsGiven(args):
if len(args) != 1:
raise BadArgsError(
'Takes no arguments; found these arguments: %s' % repr(args[1:]))
class UICmdEcho(UICmd):
def __init__(self, name, flag_values, **kargs):
super().__init__(name, flag_values, **kargs)
flags.DEFINE_bool('stdout', False,
'For debugging, output directly to stdout.',
flag_values=flag_values)
def Run(self, args):
p = ' '.join(x for x in args[1:])
state = FLAGS.pyatdl_internal_state
if FLAGS.stdout:
print(p)
else:
state.Print(p)
class UICmdEcholines(UICmd):
def Run(self, args):
state = FLAGS.pyatdl_internal_state
for x in args[1:]:
state.Print(x)
class UICmdChclock(UICmd):
def Run(self, args):
self.RaiseUnlessNArgumentsGiven(1, args)
arg = args[-1]
relative_not_absolute = False
if arg.startswith('+'):
relative_not_absolute = True
arg = arg[1:]
if arg.startswith('+'):
raise BadArgsError('A leading \'++\' makes no sense.')
assert arg, arg
try:
a_float = float(arg)
except ValueError:
raise BadArgsError(
'Needs a numeric argument, seconds since the epoch (1970 CE). To move '
'the clock relative to the old clock, prepend the argument with \'+\'. The argument: %s' % (repr(arg),))
if a_float < 0 and not relative_not_absolute:
raise BadArgsError('Minimum value is 0, a.k.a. 1970 CE.')
if relative_not_absolute:
old_time = time.time
def NewTime():
return old_time() + a_float
time.time = NewTime
else:
def AbsoluteNewTime():
return a_float
time.time = AbsoluteNewTime
class UICmdLs(UICmd):
def __init__(self, name, flag_values, **kargs):
super().__init__(name, flag_values, **kargs)
flags.DEFINE_bool('show_all', False,
'Additionally lists everything, even hidden objects, '
'overriding the view filter',
short_name='a', flag_values=flag_values)
flags.DEFINE_bool('recursive', False,
'Additionally lists subdirectories/subprojects recursively',
short_name='R', flag_values=flag_values)
flags.DEFINE_bool('show_timestamps', False,
'Additionally lists timestamps ctime, dtime, mtime',
short_name='l', flag_values=flag_values)
flags.DEFINE_enum('view_filter', None, sorted(view_filter.CLS_BY_UI_NAME),
'Instead of using the global view filter (see "help '
'view"), override it and use this view filter. Note: '
'this is ignored in --show_all mode',
short_name='v', flag_values=flag_values)
def Run(self, args):
state = FLAGS.pyatdl_internal_state
override = None
if FLAGS.view_filter:
override = state.NewViewFilter(
filter_cls=view_filter.CLS_BY_UI_NAME[FLAGS.view_filter])
def DoIt(obj, location):
_PerformLs(obj, location, state,
recursive=FLAGS.recursive, show_uid=FLAGS.pyatdl_show_uid,
show_all=FLAGS.show_all, show_timestamps=FLAGS.show_timestamps,
view_filter_override=override)
if len(args) == 1:
DoIt(state.CurrentWorkingContainer(), '.')
else:
for i, name in enumerate(args[1:]):
try:
dirname = state.DirName(name)
basename = state.BaseName(name)
if not basename and name != FLAGS.pyatdl_separator:
raise BadArgsError(
'Unexpected trailing "%s"; dirname=%s and basename=%s'
% (FLAGS.pyatdl_separator, dirname, basename))
obj = state.GetObjectFromPath(name)
except state_module.InvalidPathError as e:
raise BadArgsError(e)
if isinstance(obj, container.Container) and len(args) > 2:
state.Print('%s:' % name)
DoIt(obj, dirname)
if i < len(args) - 2:
state.Print('')
def _FindParentOf(state, obj):
item = None
if isinstance(obj, ctx.Ctx):
return state.ToDoList().root
for (c, path) in state.ToDoList().ContainersPreorder():
if c.uid == obj.uid:
if path:
item = path[0]
else:
item = state.ToDoList().root
break
for subitem in c.items:
if subitem.uid == obj.uid:
item = c
break
if item is not None:
break
else:
raise AssertionError(
'Cannot happen. %s %s %s'
% (state.CurrentWorkingContainer().name, str(state.ToDoList().root),
obj.uid))
return item | Apache License 2.0 |
pinterest/kingpin | kingpin/manageddata/decider.py | Decider.is_hashed_id_in_experiment | python | def is_hashed_id_in_experiment(self, unique_id, experiment_name):
decider_value = self.get_decider_value(experiment_name)
hash_val = hashlib.md5("decider_%s%s" % (experiment_name, unique_id)).hexdigest()
val = int(hash_val, 16) % 100
return val < decider_value | Checks if a decider should be active given an ID (e.g. of a user, random request, etc.).
This function computes a hash of the user ID and the decider, so different deciders will get different
random samples of users.
Ex: decider.is_hashed_id_in_decider(context.viewing_user.id, config.decider.NEW_BOARD_PIN_TUPLES_READ) | https://github.com/pinterest/kingpin/blob/baea08ae941a4e57edb9129658fe3e7d40e4d0c3/kingpin/manageddata/decider.py#L99-L114 | import logging
import hashlib
import random
from managed_datastructures import ManagedHashMap
from ..kazoo_utils.decorators import SingletonMetaclass
log = logging.getLogger(__name__)
class Decider(object):
__metaclass__ = SingletonMetaclass
def __init__(self):
self.initialized = False
def initialize(self, zk_hosts, aws_keyfile, s3_bucket, s3_endpoint="s3.amazonaws.com"):
self.decider_map = ManagedHashMap("admin", "decider", "Decider Values",
"Map of decider name and its value",
zk_hosts, aws_keyfile, s3_bucket, s3_endpoint=s3_endpoint)
def check_initialized(self):
if not self.initialized:
raise Exception("Decider not initialized! Please call initialize()")
def get_decider_value(self, experiment_name, default=0):
experiment_name = experiment_name.lower()
decider_value = self.decider_map.get(experiment_name)
if decider_value is None:
decider_value = default
return decider_value
def decide_experiment(self, experiment_name, default=False):
default_value = 100 if default else 0
exp_value = self.get_decider_value(experiment_name, default=default_value)
if exp_value == 100:
return True
if exp_value == 0:
return False
return random.randrange(0, 100, 1) < exp_value
def is_id_in_experiment(self, decider_id, experiment_name):
decider_value = self.get_decider_value(experiment_name)
decider_id %= 100
return decider_id < decider_value | Apache License 2.0 |
davemlz/eemont | eemont/extra.py | require | python | def require(module):
return ee_require(module) | Loads and executes a JavaScript GEE module.
All modules must be first installed before requiring them. After requiring the module,
it can be used in the same way as it is used in the Code Editor.
Warning
-------
This method is highly :code:`experimental`. Please report any irregularities in the
Issues Page of `eeExtra <https://github.com/r-earthengine/ee_extra>`_.
Parameters
----------
module : str
Path to the module in the Code Editor (e.g. "users/dmlmont/spectral:spectral").
Returns
-------
BoxDict
Loaded module. Methods and attributes can be accessed using dot notation.
See Also
--------
install : Installs a JavaScript GEE module.
uninstall : Uninstalls a JavaScript GEE module.
Examples
--------
>>> import ee, eemont
>>> ee.Authenticate()
>>> ee.Initialize()
>>> LandsatLST = ee.require("users/sofiaermida/landsat_smw_lst:modules/Landsat_LST.js") | https://github.com/davemlz/eemont/blob/f8eb4099b5c1d07d217d6c1be054dc33c9283a00/eemont/extra.py#L10-L43 | import ee
from ee_extra.JavaScript.install import install as ee_install
from ee_extra.JavaScript.install import uninstall as ee_uninstall
from ee_extra.JavaScript.main import ee_require
from .extending import extend
@extend(ee) | MIT License |
a3data/hermione | hermione/module_templates/__IMPLEMENTED_SAGEMAKER__/src/ml/analysis/feature_selection.py | FeatureSelector.inverse_transform | python | def inverse_transform(self, df: pd.DataFrame):
pass | Apply the invese_transform of vectorizer to each column
Options: index, bag_of_words and tf_idf
Parameters
----------
df : pd.DataFrame
dataframe with columns to be unvectorizer
Returns
-------
pd.DataFrame | https://github.com/a3data/hermione/blob/4a833e96664fc91c65bdd28b2637c291f4f5a4d6/hermione/module_templates/__IMPLEMENTED_SAGEMAKER__/src/ml/analysis/feature_selection.py#L317-L333 | from sklearn.feature_selection import VarianceThreshold
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import SelectPercentile
from sklearn.feature_selection import RFE
from sklearn.feature_selection import SelectFromModel
from sklearn.feature_selection import SequentialFeatureSelector
from mlxtend.feature_selection import ExhaustiveFeatureSelector
from abc import ABC, abstractmethod
import numpy as np
import pandas as pd
class SelectAlgorithm(ABC):
def transform(self, df: pd.DataFrame):
return df[df.columns[self.selected_columns]]
def get_support(self):
return self.selected_columns
@abstractmethod
def fit(self) -> None:
pass
class SelectCoefficients(SelectAlgorithm):
def __init__(self, model, num_feat = None):
self.model = model
self.num_feat = num_feat
def fit(self, X: pd.DataFrame, y = None):
self.num_feat = int(X.shape[1]/2) if self.num_feat == None else self.num_feat
trained_model = self.model.fit(X,y)
self.selected_columns = np.argsort(np.abs(trained_model.coef_.ravel()))[-self.num_feat:]
class SelectCorrelation(SelectAlgorithm):
def __init__(self, threshold = 1.0):
self.threshold = threshold
def fit(self, X: pd.DataFrame, y = None):
corr = X.corr()
self.selected_columns = np.full((corr.shape[0],), True, dtype=bool)
[self.check_correlation(corr.iloc[i,j],j) for i in range(corr.shape[0]) for j in range(i+1, corr.shape[0])]
def check_correlation(self,corr,j):
if np.abs(corr) >= self.threshold and self.selected_columns[j]:
self.selected_columns[j] = False
class MyExhaustiveFeatureSelector(ExhaustiveFeatureSelector):
def get_support(self):
return list(self.best_idx_)
class SelectEnsemble(SelectAlgorithm):
def __init__(self, dic_selection: dict, num_feat = None):
self.dic_selection = dic_selection
self.num_feat = num_feat
def fit(self, X: pd.DataFrame, y = None):
self.num_feat = int(X.shape[1]/2) if self.num_feat == None else self.num_feat
self.column_dic = {}
for i,column in enumerate(X.columns):
self.column_dic[column] = i
self.column_count = [0 for column in X.columns]
selections = [FeatureSelector(selector,**self.dic_selection[selector]) for selector in self.dic_selection]
[selection.fit(X,y) for selection in selections]
[self.increment_count(column) for selection in selections for column in selection.selected_columns]
self.selected_columns = np.argsort(self.column_count)[-self.num_feat:]
def increment_count(self,column):
self.column_count[self.column_dic[column]]+=1
class FeatureSelector:
def __init__(self, selector, **kwargs):
self.selector = selector
self.selectors = {'variance': VarianceThreshold,
'univariate_kbest': SelectKBest,
'univariate_percentile': SelectPercentile,
'recursive': RFE,
'model':SelectFromModel,
'sequential':SequentialFeatureSelector,
'exaustive':MyExhaustiveFeatureSelector,
'correlation':SelectCorrelation,
'coefficients':SelectCoefficients,
'ensemble':SelectEnsemble}
self.kwargs = kwargs
self.fitted = False
def fit(self, X: pd.DataFrame, y = None):
self.columns = X.columns
self.selection = self.selectors[self.selector](**self.kwargs)
self.selection.fit(X,y)
self.selected_columns = self.columns[self.selection.get_support()]
self.fitted = True
def transform(self, df: pd.DataFrame):
if not self.fitted:
raise Exception("Not yet trained.")
return df[self.selected_columns] | Apache License 2.0 |
brendanhasz/probflow | src/probflow/utils/validation.py | ensure_tensor_like | python | def ensure_tensor_like(obj, name):
if isinstance(obj, (int, float, np.ndarray, list)):
return
if get_backend() == "pytorch":
import torch
tensor_types = (torch.Tensor, BaseParameter)
else:
import tensorflow as tf
tensor_types = (tf.Tensor, tf.Variable, BaseParameter)
if not isinstance(obj, tensor_types):
raise TypeError(name + " must be Tensor-like") | Determine whether an object can be cast to a Tensor | https://github.com/brendanhasz/probflow/blob/27fade8d85d37ffc0193862d0329c9255f3c74e7/src/probflow/utils/validation.py#L18-L35 | import numpy as np
from probflow.utils.base import BaseParameter
from probflow.utils.settings import get_backend | MIT License |
twidi/mixt | src/mixt/vendor/pytypes/util.py | get_class_that_defined_method | python | def get_class_that_defined_method(meth):
if is_classmethod(meth):
return meth.__self__
if hasattr(meth, 'im_class'):
return meth.im_class
elif hasattr(meth, '__qualname__'):
try:
cls_names = meth.__qualname__.split('.<locals>', 1)[0].rsplit('.', 1)[0].split('.')
cls = inspect.getmodule(meth)
for cls_name in cls_names:
cls = getattr(cls, cls_name)
if isinstance(cls, type):
return cls
except AttributeError:
pass
raise ValueError(str(meth)+' is not a method.') | Determines the class owning the given method. | https://github.com/twidi/mixt/blob/adeff652784f0d814835fd16a8cacab09f426922/src/mixt/vendor/pytypes/util.py#L416-L438 | from mixt.vendor import pytypes
import subprocess
import hashlib
import sys
import os
import inspect
import traceback
from warnings import warn_explicit
_code_callable_dict = {}
_sys_excepthook = sys.__excepthook__
def _check_python3_5_version():
try:
ver = subprocess.check_output([pytypes.python3_5_executable, '--version'])
ver = ver[:-1].split(' ')[-1].split('.')
return (int(ver[0]) >= 3 and int(ver[1]) >= 5)
except Exception:
return False
def _md5(fname):
m = hashlib.md5()
with open(fname, 'rb') as f:
for chunk in iter(lambda: f.read(4096), b''):
m.update(chunk)
return m.hexdigest()
def _python_version_string():
try:
impl = sys.subversion[0]
except AttributeError:
impl = sys.implementation.name
if impl == 'cpython':
impl = 'CPython'
lst = [impl,
'.'.join([str(x) for x in sys.version_info[:3]]),
' '.join([str(x) for x in sys.version_info[3:]])]
return '%s %s %s' % tuple(lst)
def _full_module_file_name_nosuffix(module_name):
module = sys.modules[module_name]
bn = os.path.basename(module.__file__).partition('.')[0]
if not (module.__package__ is None or module.__package__ == ''):
return module.__package__.replace('.', os.sep)+os.sep+bn
else:
return bn
def _find_files(file_name, search_paths):
res = []
if os.path.isfile(file_name):
res.append(file_name)
if search_paths is None:
return res
for path in search_paths:
if not path.endswith(os.sep):
file_path = path+os.sep+file_name
else:
file_path = path+file_name
if os.path.isfile(file_path):
res.append(file_path)
return res
def getargspecs(func):
if func is None:
raise TypeError('None is not a Python function')
if hasattr(func, 'ch_func'):
return getargspecs(func.ch_func)
elif hasattr(func, 'ov_func'):
return getargspecs(func.ov_func)
if hasattr(inspect, 'getfullargspec'):
return inspect.getfullargspec(func)
else:
return inspect.getargspec(func)
def get_required_kwonly_args(argspecs):
try:
kwonly = argspecs.kwonlyargs
if argspecs.kwonlydefaults is None:
return kwonly
res = []
for name in kwonly:
if not name in argspecs.kwonlydefaults:
res.append(name)
return res
except AttributeError:
return []
def getargnames(argspecs, with_unbox=False):
args = argspecs.args
vargs = argspecs.varargs
try:
kw = argspecs.keywords
except AttributeError:
kw = argspecs.varkw
try:
kwonly = argspecs.kwonlyargs
except AttributeError:
kwonly = None
res = []
if not args is None:
res.extend(args)
if not vargs is None:
res.append('*'+vargs if with_unbox else vargs)
if not kwonly is None:
res.extend(kwonly)
if not kw is None:
res.append('**'+kw if with_unbox else kw)
return res
def getargskw(args, kw, argspecs):
return _getargskw(args, kw, argspecs)[0]
def _getargskw(args, kw, argspecs):
res = []
err = False
try:
kwds = argspecs.keywords
except AttributeError:
kwds = argspecs.varkw
if not kwds is None:
used = set()
if len(args) > len(argspecs.args):
if not argspecs.varargs is None:
res.extend(args[:len(argspecs.args)])
res.append(args[len(argspecs.args):])
else:
err = True
res.extend(args)
elif len(args) < len(argspecs.args):
res.extend(args)
ipos = -len(argspecs.args)+len(res)
for name in argspecs.args[len(args):]:
if name in kw:
res.append(kw[name])
if not kwds is None:
used.add(name)
elif not argspecs.defaults is None:
res.append(argspecs.defaults[ipos])
else:
err = True
ipos += 1
if not argspecs.varargs is None:
res.append(tuple())
else:
res.extend(args)
if not argspecs.varargs is None:
res.append(tuple())
try:
ipos = -len(argspecs.kwonlyargs)
for name in argspecs.kwonlyargs:
if name in kw:
res.append(kw[name])
if not kwds is None:
used.add(name)
else:
if not argspecs.kwonlydefaults is None and name in argspecs.kwonlydefaults:
res.append(argspecs.kwonlydefaults[name])
else:
err = True
ipos += 1
except AttributeError:
pass
except TypeError:
err = True
if not kwds is None:
if len(used) > 0:
kw2 = {}
if len(used) < len(kw):
for name in kw:
if not name in used:
kw2[name] = kw[name]
res.append(kw2)
else:
res.append(kw)
return tuple(res), err
def fromargskw(argskw, argspecs, slf_or_clsm = False):
res_args = argskw
try:
kwds = argspecs.keywords
except AttributeError:
kwds = argspecs.varkw
if not kwds is None:
res_kw = argskw[-1]
res_args = argskw[:-1]
else:
res_kw = None
if not argspecs.varargs is None:
vargs_pos = (len(argspecs.args)-1) if slf_or_clsm else len(argspecs.args)
if vargs_pos > 0:
res_lst = list(argskw[:vargs_pos])
res_lst.extend(argskw[vargs_pos])
res_args = tuple(res_lst)
else:
res_args = argskw[0]
try:
if len(argspecs.kwonlyargs) > 0:
res_kw = {} if res_kw is None else dict(res_kw)
ipos = -len(argspecs.kwonlyargs) - (0 if kwds is None else 1)
for name in argspecs.kwonlyargs:
res_kw[name] = argskw[ipos]
ipos += 1
except AttributeError:
pass
if res_kw is None:
res_kw = {}
return res_args, res_kw
def _unchecked_backend(func):
if hasattr(func, 'ov_func'):
return _unchecked_backend(func.ov_func)
elif hasattr(func, 'ch_func'):
return _unchecked_backend(func.ch_func)
else:
return func
def _actualfunc(func, prop_getter = False):
if type(func) == classmethod or type(func) == staticmethod:
return _actualfunc(func.__func__, prop_getter)
if isinstance(func, property):
if prop_getter:
return _actualfunc(func.fget, prop_getter)
else:
return _actualfunc(func.fget if func.fset is None else func.fset, prop_getter)
elif hasattr(func, 'ov_func'):
return _actualfunc((func.ov_func), prop_getter)
elif hasattr(func, 'ch_func'):
return _actualfunc((func.ch_func), prop_getter)
return func
def _get_class_nesting_list_for_staticmethod(staticmeth, module_or_class, stack, rec_set):
if hasattr(module_or_class, _actualfunc(staticmeth).__name__):
val = getattr(module_or_class, _actualfunc(staticmeth).__name__)
bck = _unchecked_backend(staticmeth)
try:
if _unchecked_backend(val) is bck.__func__:
return stack
except AttributeError:
pass
if _unchecked_backend(val) is bck:
return stack
classes = [cl[1] for cl in inspect.getmembers(module_or_class, inspect.isclass)]
mod_name = module_or_class.__module__ if inspect.isclass(module_or_class) else module_or_class.__name__
for cl in classes:
if cl.__module__ == mod_name and not cl in rec_set:
stack.append(cl)
rec_set.add(cl)
result = _get_class_nesting_list_for_staticmethod(staticmeth, cl, stack, rec_set)
if not result is None:
return result
stack.pop()
return None
def _get_class_nesting_list_py2(cls, module_or_class, stack, rec_set):
classes = [cl[1] for cl in inspect.getmembers(module_or_class, inspect.isclass)]
mod_name = module_or_class.__module__ if inspect.isclass(module_or_class) else module_or_class.__name__
for cl in classes:
if cl.__module__ == mod_name and not cl in rec_set:
if cl is cls:
return stack
stack.append(cl)
rec_set.add(cl)
result = _get_class_nesting_list_py2(cls, cl, stack, rec_set)
if not result is None:
return result
stack.pop()
return None
def _get_class_nesting_list(cls, module_or_class):
if hasattr(cls, '__qualname__'):
names = cls.__qualname__.split('.')
cl = module_or_class
res = []
for name in names[:-1]:
cl = getattr(cl, name)
res.append(cl)
return res
else:
res = _get_class_nesting_list_py2(cls, module_or_class, [], set())
return [] if res is None else res
def get_staticmethod_qualname(staticmeth):
func = _actualfunc(staticmeth)
module = sys.modules[func.__module__]
nst = _get_class_nesting_list_for_staticmethod(staticmeth, module, [], set())
nst = [cl.__name__ for cl in nst]
return '.'.join(nst)+'.'+func.__name__
def get_class_qualname(cls):
if hasattr(cls, '__qualname__'):
return cls.__qualname__
module = sys.modules[cls.__module__]
if not hasattr(cls, '__name__'):
res = cls._name if not cls._name is None else cls.__origin__.__name__
return res
if hasattr(module, cls.__name__) and getattr(module, cls.__name__) is cls:
return cls.__name__
else:
nst = _get_class_nesting_list(cls, module)
nst.append(cls)
nst = [cl.__name__ for cl in nst]
return '.'.join(nst)
return cls.__name__
def search_class_module(cls, deep_search=True):
for md_name in sys.modules:
module = sys.modules[md_name]
if hasattr(module, cls.__name__) and getattr(module, cls.__name__) is cls:
return module
if deep_search:
for md_name in sys.modules:
module = sys.modules[md_name]
try:
nst = _get_class_nesting_list(cls, module)
if cls is nst[-1]:
return module
except:
pass
return None | MIT License |
jeeftor/alfredtoday | src/lib/pyexchange/exchange2010/__init__.py | Exchange2010CalendarEvent.resend_invitations | python | def resend_invitations(self):
if not self.id:
raise TypeError(u"You can't send invites for an event that hasn't been created yet.")
if self._dirty_attributes:
raise ValueError(u"There are unsaved changes to this invite - please update it first: %r" % self._dirty_attributes)
self.refresh_change_key()
body = soap_request.update_item(self, [], calendar_item_update_operation_type=u'SendOnlyToAll')
self.service.send(body)
return self | Resends invites for an event. ::
event = service.calendar().get_event(id='KEY HERE')
event.resend_invitations()
Anybody who has not declined this meeting will get a new invite. | https://github.com/jeeftor/alfredtoday/blob/f6e2c2228caa71015e654e1fdbf552e2ca4f90ad/src/lib/pyexchange/exchange2010/__init__.py#L267-L289 | import logging
from ..base.calendar import BaseExchangeCalendarEvent, BaseExchangeCalendarService, ExchangeEventOrganizer, ExchangeEventResponse
from ..base.folder import BaseExchangeFolder, BaseExchangeFolderService
from ..base.soap import ExchangeServiceSOAP
from ..exceptions import FailedExchangeException, ExchangeStaleChangeKeyException, ExchangeItemNotFoundException, ExchangeInternalServerTransientErrorException, ExchangeIrresolvableConflictException, InvalidEventType
from ..compat import BASESTRING_TYPES
from . import soap_request
from lxml import etree
from copy import deepcopy
from datetime import date
import warnings
log = logging.getLogger("pyexchange")
class Exchange2010Service(ExchangeServiceSOAP):
def calendar(self, id="calendar"):
return Exchange2010CalendarService(service=self, calendar_id=id)
def mail(self):
raise NotImplementedError("Sorry - nothin' here. Feel like adding it? :)")
def contacts(self):
raise NotImplementedError("Sorry - nothin' here. Feel like adding it? :)")
def folder(self):
return Exchange2010FolderService(service=self)
def _send_soap_request(self, body, headers=None, retries=2, timeout=30, encoding="utf-8"):
headers = {
"Accept": "text/xml",
"Content-type": "text/xml; charset=%s " % encoding
}
return super(Exchange2010Service, self)._send_soap_request(body, headers=headers, retries=retries, timeout=timeout, encoding=encoding)
def _check_for_errors(self, xml_tree):
super(Exchange2010Service, self)._check_for_errors(xml_tree)
self._check_for_exchange_fault(xml_tree)
def _check_for_exchange_fault(self, xml_tree):
response_codes = xml_tree.xpath(u'//m:ResponseCode', namespaces=soap_request.NAMESPACES)
if not response_codes:
raise FailedExchangeException(u"Exchange server did not return a status response", None)
for code in response_codes:
if code.text == u"ErrorChangeKeyRequiredForWriteOperations":
raise ExchangeStaleChangeKeyException(u"Exchange Fault (%s) from Exchange server" % code.text)
elif code.text == u"ErrorItemNotFound":
raise ExchangeItemNotFoundException(u"Exchange Fault (%s) from Exchange server" % code.text)
elif code.text == u"ErrorIrresolvableConflict":
raise ExchangeIrresolvableConflictException(u"Exchange Fault (%s) from Exchange server" % code.text)
elif code.text == u"ErrorInternalServerTransientError":
raise ExchangeInternalServerTransientErrorException(u"Exchange Fault (%s) from Exchange server" % code.text)
elif code.text == u"ErrorCalendarOccurrenceIndexIsOutOfRecurrenceRange":
pass
elif code.text != u"NoError":
raise FailedExchangeException(u"Exchange Fault (%s) from Exchange server" % code.text)
class Exchange2010CalendarService(BaseExchangeCalendarService):
def event(self, id=None, **kwargs):
return Exchange2010CalendarEvent(service=self.service, id=id, **kwargs)
def get_event(self, id):
return Exchange2010CalendarEvent(service=self.service, id=id)
def new_event(self, **properties):
return Exchange2010CalendarEvent(service=self.service, calendar_id=self.calendar_id, **properties)
def list_events(self, start=None, end=None, details=False):
return Exchange2010CalendarEventList(service=self.service, start=start, end=end, details=details)
class Exchange2010CalendarEventList(object):
def __init__(self, service=None, start=None, end=None, details=False):
self.service = service
self.count = 0
self.start = start
self.end = end
self.events = list()
self.event_ids = list()
self.details = details
body = soap_request.get_calendar_items(format=u'AllProperties', start=self.start, end=self.end)
response_xml = self.service.send(body)
self._parse_response_for_all_events(response_xml)
for event in self.events:
self.event_ids.append(event._id)
if self.details:
log.debug(u'Received request for all details, retrieving now!')
self.load_all_details()
return
def _parse_response_for_all_events(self, response):
items = response.xpath(u'//m:FindItemResponseMessage/m:RootFolder/t:Items/t:CalendarItem', namespaces=soap_request.NAMESPACES)
if not items:
items = response.xpath(u'//m:GetItemResponseMessage/m:Items/t:CalendarItem', namespaces=soap_request.NAMESPACES)
if items:
self.count = len(items)
log.debug(u'Found %s items' % self.count)
for item in items:
self._add_event(xml=soap_request.M.Items(deepcopy(item)))
else:
log.debug(u'No calendar items found with search parameters.')
return self
def _add_event(self, xml=None):
log.debug(u'Adding new event to all events list.')
event = Exchange2010CalendarEvent(service=self.service, xml=xml)
log.debug(u'Subject of new event is %s' % event.subject)
self.events.append(event)
return self
def load_all_details(self):
log.debug(u"Loading all details")
if self.count > 0:
del(self.events[:])
log.debug(u"Requesting all event details for events: {event_list}".format(event_list=str(self.event_ids)))
body = soap_request.get_item(exchange_id=self.event_ids, format=u'AllProperties')
response_xml = self.service.send(body)
self._parse_response_for_all_events(response_xml)
return self
class Exchange2010CalendarEvent(BaseExchangeCalendarEvent):
def _init_from_service(self, id):
log.debug(u'Creating new Exchange2010CalendarEvent object from ID')
body = soap_request.get_item(exchange_id=id, format=u'AllProperties')
response_xml = self.service.send(body)
properties = self._parse_response_for_get_event(response_xml)
self._update_properties(properties)
self._id = id
log.debug(u'Created new event object with ID: %s' % self._id)
self._reset_dirty_attributes()
return self
def _init_from_xml(self, xml=None):
log.debug(u'Creating new Exchange2010CalendarEvent object from XML')
properties = self._parse_response_for_get_event(xml)
self._update_properties(properties)
self._id, self._change_key = self._parse_id_and_change_key_from_response(xml)
log.debug(u'Created new event object with ID: %s' % self._id)
self._reset_dirty_attributes()
return self
def as_json(self):
raise NotImplementedError
def validate(self):
if self.recurrence is not None:
if not (isinstance(self.recurrence_end_date, date)):
raise ValueError('recurrence_end_date must be of type date')
elif (self.recurrence_end_date < self.start.date()):
raise ValueError('recurrence_end_date must be after start')
if self.recurrence == u'daily':
if not (isinstance(self.recurrence_interval, int) and 1 <= self.recurrence_interval <= 999):
raise ValueError('recurrence_interval must be an int in the range from 1 to 999')
elif self.recurrence == u'weekly':
if not (isinstance(self.recurrence_interval, int) and 1 <= self.recurrence_interval <= 99):
raise ValueError('recurrence_interval must be an int in the range from 1 to 99')
if self.recurrence_days is None:
raise ValueError('recurrence_days is required')
for day in self.recurrence_days.split(' '):
if day not in self.WEEKLY_DAYS:
raise ValueError('recurrence_days received unknown value: %s' % day)
elif self.recurrence == u'monthly':
if not (isinstance(self.recurrence_interval, int) and 1 <= self.recurrence_interval <= 99):
raise ValueError('recurrence_interval must be an int in the range from 1 to 99')
elif self.recurrence == u'yearly':
pass
else:
raise ValueError('recurrence received unknown value: %s' % self.recurrence)
super(Exchange2010CalendarEvent, self).validate()
def create(self):
self.validate()
body = soap_request.new_event(self)
response_xml = self.service.send(body)
self._id, self._change_key = self._parse_id_and_change_key_from_response(response_xml)
return self | MIT License |
databand-ai/dbnd | modules/dbnd/src/dbnd/_vendor/dulwich/repo.py | BaseRepo._init_files | python | def _init_files(self, bare):
from dbnd._vendor.dulwich.config import ConfigFile
self._put_named_file("description", b"Unnamed repository")
f = BytesIO()
cf = ConfigFile()
cf.set("core", "repositoryformatversion", "0")
if self._determine_file_mode():
cf.set("core", "filemode", True)
else:
cf.set("core", "filemode", False)
cf.set("core", "bare", bare)
cf.set("core", "logallrefupdates", True)
cf.write_to_file(f)
self._put_named_file("config", f.getvalue())
self._put_named_file(os.path.join("info", "exclude"), b"") | Initialize a default set of named files. | https://github.com/databand-ai/dbnd/blob/ec0076f9a142b20e2f7afd886ed1a18683c553ec/modules/dbnd/src/dbnd/_vendor/dulwich/repo.py#L212-L229 | from io import BytesIO
import errno
import os
import sys
import stat
import time
from dbnd._vendor.dulwich.errors import (
NoIndexPresent,
NotBlobError,
NotCommitError,
NotGitRepository,
NotTreeError,
NotTagError,
CommitError,
RefFormatError,
HookError,
)
from dbnd._vendor.dulwich.file import GitFile
from dbnd._vendor.dulwich.object_store import (
DiskObjectStore,
MemoryObjectStore,
ObjectStoreGraphWalker,
)
from dbnd._vendor.dulwich.objects import (
check_hexsha,
Blob,
Commit,
ShaFile,
Tag,
Tree,
)
from dbnd._vendor.dulwich.pack import pack_objects_to_data
from dbnd._vendor.dulwich.hooks import (
PreCommitShellHook,
PostCommitShellHook,
CommitMsgShellHook,
)
from dbnd._vendor.dulwich.refs import (
check_ref_format,
RefsContainer,
DictRefsContainer,
InfoRefsContainer,
DiskRefsContainer,
read_packed_refs,
read_packed_refs_with_peeled,
write_packed_refs,
SYMREF,
)
import warnings
CONTROLDIR = ".git"
OBJECTDIR = "objects"
REFSDIR = "refs"
REFSDIR_TAGS = "tags"
REFSDIR_HEADS = "heads"
INDEX_FILENAME = "index"
COMMONDIR = "commondir"
GITDIR = "gitdir"
WORKTREES = "worktrees"
BASE_DIRECTORIES = [
["branches"],
[REFSDIR],
[REFSDIR, REFSDIR_TAGS],
[REFSDIR, REFSDIR_HEADS],
["hooks"],
["info"],
]
DEFAULT_REF = b"refs/heads/master"
class InvalidUserIdentity(Exception):
def __init__(self, identity):
self.identity = identity
def check_user_identity(identity):
try:
fst, snd = identity.split(b" <", 1)
except ValueError:
raise InvalidUserIdentity(identity)
if b">" not in snd:
raise InvalidUserIdentity(identity)
def parse_graftpoints(graftpoints):
grafts = {}
for l in graftpoints:
raw_graft = l.split(None, 1)
commit = raw_graft[0]
if len(raw_graft) == 2:
parents = raw_graft[1].split()
else:
parents = []
for sha in [commit] + parents:
check_hexsha(sha, "Invalid graftpoint")
grafts[commit] = parents
return grafts
def serialize_graftpoints(graftpoints):
graft_lines = []
for commit, parents in graftpoints.items():
if parents:
graft_lines.append(commit + b" " + b" ".join(parents))
else:
graft_lines.append(commit)
return b"\n".join(graft_lines)
class BaseRepo(object):
def __init__(self, object_store, refs):
self.object_store = object_store
self.refs = refs
self._graftpoints = {}
self.hooks = {}
def _determine_file_mode(self):
raise NotImplementedError(self._determine_file_mode) | Apache License 2.0 |
hbldh/pyefd | pyefd.py | elliptic_fourier_descriptors | python | def elliptic_fourier_descriptors(
contour, order=10, normalize=False, return_transformation=False
):
dxy = np.diff(contour, axis=0)
dt = np.sqrt((dxy ** 2).sum(axis=1))
t = np.concatenate([([0.0]), np.cumsum(dt)])
T = t[-1]
phi = (2 * np.pi * t) / T
orders = np.arange(1, order + 1)
consts = T / (2 * orders * orders * np.pi * np.pi)
phi = phi * orders.reshape((order, -1))
d_cos_phi = np.cos(phi[:, 1:]) - np.cos(phi[:, :-1])
d_sin_phi = np.sin(phi[:, 1:]) - np.sin(phi[:, :-1])
cos_phi = (dxy[:, 0] / dt) * d_cos_phi
a = consts * np.sum(cos_phi, axis=1)
b = consts * np.sum((dxy[:, 0] / dt) * d_sin_phi, axis=1)
c = consts * np.sum((dxy[:, 1] / dt) * d_cos_phi, axis=1)
d = consts * np.sum((dxy[:, 1] / dt) * d_sin_phi, axis=1)
coeffs = np.concatenate(
[
a.reshape((order, 1)),
b.reshape((order, 1)),
c.reshape((order, 1)),
d.reshape((order, 1)),
],
axis=1,
)
if normalize:
coeffs = normalize_efd(coeffs, return_transformation=return_transformation)
return coeffs | Calculate elliptical Fourier descriptors for a contour.
:param numpy.ndarray contour: A contour array of size ``[M x 2]``.
:param int order: The order of Fourier coefficients to calculate.
:param bool normalize: If the coefficients should be normalized;
see references for details.
:param bool return_transformation: If the normalization parametres should be returned.
Default is ``False``.
:return: A ``[order x 4]`` array of Fourier coefficients and optionally the
transformation parametres ``scale``, ``psi_1`` (rotation) and ``theta_1`` (phase)
:rtype: ::py:class:`numpy.ndarray` or (:py:class:`numpy.ndarray`, (float, float, float)) | https://github.com/hbldh/pyefd/blob/17da03001365a24a9570790133ea39b58d5cd2c0/pyefd.py#L37-L84 | from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from __future__ import absolute_import
import numpy as np
try:
_range = xrange
except NameError:
_range = range | MIT License |
sdispater/orator | orator/orm/relations/relation.py | Relation.__init__ | python | def __init__(self, query, parent):
self._query = query
self._parent = parent
self._related = query.get_model()
self._extra_query = None
self.add_constraints() | :param query: A Builder instance
:type query: orm.orator.Builder
:param parent: The parent model
:type parent: Model | https://github.com/sdispater/orator/blob/0666e522be914db285b6936e3c36801fc1a9c2e7/orator/orm/relations/relation.py#L13-L26 | from contextlib import contextmanager
from ...query.expression import QueryExpression
from ..collection import Collection
from ..builder import Builder
class Relation(object):
_constraints = True | MIT License |
theetcher/fxpt | fxpt/side_utils/profilehooks.py | FuncTimer.__call__ | python | def __call__(self, *args, **kw):
fn = self.fn
timer = self.timer
self.ncalls += 1
try:
start = timer()
return fn(*args, **kw)
finally:
duration = timer() - start
self.totaltime += duration
if self.immediate:
funcname = fn.__name__
filename = fn.__code__.co_filename
lineno = fn.__code__.co_firstlineno
sys.stderr.write("\n %s (%s:%s):\n %.3f seconds\n\n" % (
funcname, filename, lineno, duration
))
sys.stderr.flush() | Profile a singe call to the function. | https://github.com/theetcher/fxpt/blob/d40c571885c7c4056f548a60140740c7beb8703d/fxpt/side_utils/profilehooks.py#L731-L749 | __author__ = "Marius Gedminas <[email protected]>"
__copyright__ = "Copyright 2004-2014 Marius Gedminas"
__license__ = "MIT"
__version__ = "1.7.1"
__date__ = "2014-12-02"
import atexit
import inspect
import sys
import re
from profile import Profile
import pstats
try:
import hotshot
import hotshot.stats
except ImportError:
hotshot = None
import trace
if hotshot is not None:
import _hotshot
import hotshot.log
try:
import cProfile
except ImportError:
cProfile = None
import time
AVAILABLE_PROFILERS = {}
__all__ = ['coverage', 'coverage_with_hotshot', 'profile', 'timecall']
def profile(fn=None, skip=0, filename=None, immediate=False, dirs=False,
sort=None, entries=40,
profiler=('cProfile', 'profile', 'hotshot')):
if fn is None:
def decorator(fn):
return profile(fn, skip=skip, filename=filename,
immediate=immediate, dirs=dirs,
sort=sort, entries=entries,
profiler=profiler)
return decorator
if isinstance(profiler, str):
profiler = [profiler]
for p in profiler:
if p in AVAILABLE_PROFILERS:
profiler_class = AVAILABLE_PROFILERS[p]
break
else:
raise ValueError('only these profilers are available: %s'
% ', '.join(sorted(AVAILABLE_PROFILERS)))
fp = profiler_class(fn, skip=skip, filename=filename,
immediate=immediate, dirs=dirs,
sort=sort, entries=entries)
def new_fn(*args, **kw):
return fp(*args, **kw)
new_fn.__doc__ = fn.__doc__
new_fn.__name__ = fn.__name__
new_fn.__dict__ = fn.__dict__
new_fn.__module__ = fn.__module__
return new_fn
def coverage(fn):
fp = TraceFuncCoverage(fn)
def new_fn(*args, **kw):
return fp(*args, **kw)
new_fn.__doc__ = fn.__doc__
new_fn.__name__ = fn.__name__
new_fn.__dict__ = fn.__dict__
new_fn.__module__ = fn.__module__
return new_fn
def coverage_with_hotshot(fn):
fp = HotShotFuncCoverage(fn)
def new_fn(*args, **kw):
return fp(*args, **kw)
new_fn.__doc__ = fn.__doc__
new_fn.__name__ = fn.__name__
new_fn.__dict__ = fn.__dict__
new_fn.__module__ = fn.__module__
return new_fn
class FuncProfile(object):
in_profiler = False
Profile = Profile
def __init__(self, fn, skip=0, filename=None, immediate=False, dirs=False,
sort=None, entries=40):
self.fn = fn
self.skip = skip
self.filename = filename
self.immediate = immediate
self.dirs = dirs
self.sort = sort or ('cumulative', 'time', 'calls')
if isinstance(self.sort, str):
self.sort = (self.sort, )
self.entries = entries
self.reset_stats()
atexit.register(self.atexit)
def __call__(self, *args, **kw):
self.ncalls += 1
if self.skip > 0:
self.skip -= 1
self.skipped += 1
return self.fn(*args, **kw)
if FuncProfile.in_profiler:
return self.fn(*args, **kw)
profiler = self.Profile()
try:
FuncProfile.in_profiler = True
return profiler.runcall(self.fn, *args, **kw)
finally:
FuncProfile.in_profiler = False
self.stats.add(profiler)
if self.immediate:
self.print_stats()
self.reset_stats()
def print_stats(self):
funcname = self.fn.__name__
filename = self.fn.__code__.co_filename
lineno = self.fn.__code__.co_firstlineno
print("")
print("*** PROFILER RESULTS ***")
print("%s (%s:%s)" % (funcname, filename, lineno))
if self.skipped:
skipped = " (%d calls not profiled)" % self.skipped
else:
skipped = ""
print("function called %d times%s" % (self.ncalls, skipped))
print("")
stats = self.stats
if self.filename:
stats.dump_stats(self.filename)
if not self.dirs:
stats.strip_dirs()
stats.sort_stats(*self.sort)
stats.print_stats(self.entries)
def reset_stats(self):
self.stats = pstats.Stats(Profile())
self.ncalls = 0
self.skipped = 0
def atexit(self):
if not self.immediate:
self.print_stats()
AVAILABLE_PROFILERS['profile'] = FuncProfile
if cProfile is not None:
class CProfileFuncProfile(FuncProfile):
Profile = cProfile.Profile
AVAILABLE_PROFILERS['cProfile'] = CProfileFuncProfile
if hotshot is not None:
class HotShotFuncProfile(FuncProfile):
in_profiler = False
def __init__(self, fn, skip=0, filename=None, immediate=False,
dirs=False, sort=None, entries=40):
if filename:
self.logfilename = filename + ".raw"
else:
self.logfilename = fn.__name__ + ".prof"
super(HotShotFuncProfile, self).__init__(
fn, skip=skip, filename=filename, immediate=immediate,
dirs=dirs, sort=sort, entries=entries)
def __call__(self, *args, **kw):
self.ncalls += 1
if self.skip > 0:
self.skip -= 1
self.skipped += 1
return self.fn(*args, **kw)
if HotShotFuncProfile.in_profiler:
return self.fn(*args, **kw)
if self.profiler is None:
self.profiler = hotshot.Profile(self.logfilename)
try:
HotShotFuncProfile.in_profiler = True
return self.profiler.runcall(self.fn, *args, **kw)
finally:
HotShotFuncProfile.in_profiler = False
if self.immediate:
self.print_stats()
self.reset_stats()
def print_stats(self):
if self.profiler is None:
self.stats = pstats.Stats(Profile())
else:
self.profiler.close()
self.stats = hotshot.stats.load(self.logfilename)
super(HotShotFuncProfile, self).print_stats()
def reset_stats(self):
self.profiler = None
self.ncalls = 0
self.skipped = 0
AVAILABLE_PROFILERS['hotshot'] = HotShotFuncProfile
class HotShotFuncCoverage:
def __init__(self, fn):
self.fn = fn
self.logfilename = fn.__name__ + ".cprof"
self.profiler = _hotshot.coverage(self.logfilename)
self.ncalls = 0
atexit.register(self.atexit)
def __call__(self, *args, **kw):
self.ncalls += 1
old_trace = sys.gettrace()
try:
return self.profiler.runcall(self.fn, args, kw)
finally:
sys.settrace(old_trace)
def atexit(self):
self.profiler.close()
funcname = self.fn.__name__
filename = self.fn.__code__.co_filename
lineno = self.fn.__code__.co_firstlineno
print("")
print("*** COVERAGE RESULTS ***")
print("%s (%s:%s)" % (funcname, filename, lineno))
print("function called %d times" % self.ncalls)
print("")
fs = FuncSource(self.fn)
reader = hotshot.log.LogReader(self.logfilename)
for what, (filename, lineno, funcname), tdelta in reader:
if filename != fs.filename:
continue
if what == hotshot.log.LINE:
fs.mark(lineno)
if what == hotshot.log.ENTER:
if lineno == fs.firstlineno:
lineno = fs.firstcodelineno
fs.mark(lineno)
reader.close()
print(fs)
never_executed = fs.count_never_executed()
if never_executed:
print("%d lines were not executed." % never_executed)
class TraceFuncCoverage:
tracer = trace.Trace(count=True, trace=False,
ignoredirs=[sys.prefix, sys.exec_prefix])
tracing = False
def __init__(self, fn):
self.fn = fn
self.logfilename = fn.__name__ + ".cprof"
self.ncalls = 0
atexit.register(self.atexit)
def __call__(self, *args, **kw):
self.ncalls += 1
if TraceFuncCoverage.tracing:
return self.fn(*args, **kw)
old_trace = sys.gettrace()
try:
TraceFuncCoverage.tracing = True
return self.tracer.runfunc(self.fn, *args, **kw)
finally:
sys.settrace(old_trace)
TraceFuncCoverage.tracing = False
def atexit(self):
funcname = self.fn.__name__
filename = self.fn.__code__.co_filename
lineno = self.fn.__code__.co_firstlineno
print("")
print("*** COVERAGE RESULTS ***")
print("%s (%s:%s)" % (funcname, filename, lineno))
print("function called %d times" % self.ncalls)
print("")
fs = FuncSource(self.fn)
for (filename, lineno), count in self.tracer.counts.items():
if filename != fs.filename:
continue
fs.mark(lineno, count)
print(fs)
never_executed = fs.count_never_executed()
if never_executed:
print("%d lines were not executed." % never_executed)
class FuncSource:
blank_rx = re.compile(r"^\s*finally:\s*(#.*)?$")
def __init__(self, fn):
self.fn = fn
self.filename = inspect.getsourcefile(fn)
self.sourcelines = {}
self.source = []
self.firstlineno = self.firstcodelineno = 0
try:
self.source, self.firstlineno = inspect.getsourcelines(fn)
self.firstcodelineno = self.firstlineno
self.find_source_lines()
except IOError:
self.filename = None
def find_source_lines(self):
if self.filename is None:
return
strs = trace.find_strings(self.filename)
lines = trace.find_lines_from_code(self.fn.__code__, strs)
for lineno in lines:
self.sourcelines.setdefault(lineno, 0)
if lines:
self.firstcodelineno = min(lines)
else:
self.firstcodelineno = self.firstlineno
def mark(self, lineno, count=1):
self.sourcelines[lineno] = self.sourcelines.get(lineno, 0) + count
def count_never_executed(self):
lineno = self.firstlineno
counter = 0
for line in self.source:
if self.sourcelines.get(lineno) == 0:
if not self.blank_rx.match(line):
counter += 1
lineno += 1
return counter
def __str__(self):
if self.filename is None:
return "cannot show coverage data since co_filename is None"
lines = []
lineno = self.firstlineno
for line in self.source:
counter = self.sourcelines.get(lineno)
if counter is None:
prefix = ' ' * 7
elif counter == 0:
if self.blank_rx.match(line):
prefix = ' ' * 7
else:
prefix = '>' * 6 + ' '
else:
prefix = '%5d: ' % counter
lines.append(prefix + line)
lineno += 1
return ''.join(lines)
def timecall(fn=None, immediate=True, timer=None):
if fn is None:
def decorator(fn):
return timecall(fn, immediate=immediate, timer=timer)
return decorator
if timer is None:
timer = time.time
fp = FuncTimer(fn, immediate=immediate, timer=timer)
def new_fn(*args, **kw):
return fp(*args, **kw)
new_fn.__doc__ = fn.__doc__
new_fn.__name__ = fn.__name__
new_fn.__dict__ = fn.__dict__
new_fn.__module__ = fn.__module__
return new_fn
class FuncTimer(object):
def __init__(self, fn, immediate, timer):
self.fn = fn
self.ncalls = 0
self.totaltime = 0
self.immediate = immediate
self.timer = timer
if not immediate:
atexit.register(self.atexit) | MIT License |
adaptivepele/adaptivepele | AdaptivePELE/utilities/utilities.py | getMetricsFromReportsInEpoch | python | def getMetricsFromReportsInEpoch(reportName, outputFolder, nTrajs):
metrics = []
for i in range(1, nTrajs):
report = np.loadtxt(os.path.join(outputFolder, reportName % i))
if len(report.shape) < 2:
metrics.append(report.tolist()+[i, 0])
else:
traj_line = np.array([i] * report.shape[0])
snapshot_line = np.array(range(report.shape[0]))
metrics.extend(np.hstack((report, traj_line[:, np.newaxis], snapshot_line[:, np.newaxis])))
return np.array(metrics) | Extract the metrics in report file from an epoch to a numpy array | https://github.com/adaptivepele/adaptivepele/blob/b7c908a53a2ba9ec19fa81a517377cc365176036/AdaptivePELE/utilities/utilities.py#L640-L653 | from __future__ import absolute_import, division, print_function, unicode_literals
import os
import ast
import sys
import glob
import json
import errno
import socket
import shutil
import string
from builtins import range
import six
from six import reraise as raise_
import numpy as np
import mdtraj as md
from scipy import linalg
try:
import cPickle as pickle
except ImportError:
import pickle
from AdaptivePELE.atomset import RMSDCalculator, atomset
from AdaptivePELE.freeEnergies import utils
try:
import multiprocessing as mp
PARALELLIZATION = True
except ImportError:
PARALELLIZATION = False
class UnsatisfiedDependencyException(Exception):
__module__ = Exception.__module__
class RequiredParameterMissingException(Exception):
__module__ = Exception.__module__
class ImproperParameterValueException(Exception):
__module__ = Exception.__module__
class UnspecifiedPELECrashException(Exception):
__module__ = Exception.__module__
class Topology(object):
def __init__(self, path):
self.path = os.path.abspath(path)
self.topologies = []
self.topologyMap = {}
self.topologyFiles = []
def __getitem__(self, key):
return self.topologies[key]
def __iter__(self):
for top in self.topologies:
yield top
def cleanTopologies(self):
files = glob.glob(os.path.join(self.path, "topology*.pdb"))
for f in files:
os.remove(f)
def writeTopologyObject(self):
writeObject(os.path.join(self.path, "topologies.pkl"), self, protocol=2)
def setTopologies(self, topologyFiles, cleanFiles=True):
if self.topologies:
self.topologies = []
self.topologyFiles = []
if cleanFiles:
self.cleanTopologies()
for top in topologyFiles:
self.topologies.append(getTopologyFile(top))
self.topologyFiles.append(os.path.abspath(top))
def topologyFilesIterator(self):
for top_file in self.topologyFiles:
yield top_file
def mapEpochTopologies(self, epoch, trajectoryMapping):
mapping = trajectoryMapping[1:]+[trajectoryMapping[0]]
self.topologyMap[epoch] = [self.topologyMap[i_epoch][i_traj-1] for i_epoch, i_traj, _ in mapping]
def getTopology(self, epoch, trajectory_number):
return self.topologies[self.topologyMap[epoch][trajectory_number-1]]
def getTopologyFile(self, epoch, trajectory_number):
return self.topologyFiles[self.topologyMap[epoch][trajectory_number-1]]
def getTopologyFromIndex(self, index):
return self.topologies[index]
def getTopologyIndex(self, epoch, trajectory_number):
return self.topologyMap[epoch][trajectory_number-1]
def writeMappingToDisk(self, epochDir, epoch):
with open(epochDir+"/topologyMapping.txt", "w") as f:
f.write("%s\n" % ':'.join(map(str, self.topologyMap[epoch])))
def readMappingFromDisk(self, epochDir, epoch):
try:
with open(epochDir+"/topologyMapping.txt") as f:
self.topologyMap[epoch] = list(map(int, f.read().rstrip().split(':')))
except IOError:
sys.stderr.write("WARNING: topologyMapping.txt not found, you might not be able to recronstruct fine-grained pathways\n")
class TopologyCompat(object):
def __init__(self, pdb_file):
self.topologyFiles = os.path.abspath(pdb_file)
self.path = os.path.split(self.topologyFiles)[0]
self.topologies = [getTopologyFile(self.topologyFiles)]
def getTopologyFile(self, epoch, trajectory_number):
return self.topologyFiles
def topologyFilesIterator(self):
yield self.topologyFiles
def getTopologyIndex(self, epoch, trajectory_number):
return 0
def getTopology(self, epoch, trajectory_number):
return self.topologies[0]
def cleanup(tmpFolder):
try:
shutil.rmtree(tmpFolder)
except OSError as exc:
if exc.errno != errno.ENOENT:
raise
def makeFolder(outputDir):
try:
os.makedirs(outputDir)
except OSError as exc:
if exc.errno != errno.EEXIST or not os.path.isdir(outputDir):
print(exc.args)
raise
def getSnapshots(trajectoryFile, verbose=False, topology=None, use_pdb=False):
ext = getFileExtension(trajectoryFile)
if ext == ".pdb" or use_pdb:
with open(trajectoryFile, "r") as inputFile:
inputFileContent = inputFile.read()
snapshots = inputFileContent.split("ENDMDL")
if len(snapshots) > 1:
snapshots = snapshots[:-1]
if not verbose:
return snapshots
remarkInfo = "REMARK 000 File created using PELE++\nREMARK source : %s\nREMARK original model nr : %d\nREMARK First snapshot is 1, not 0 (as opposed to report)\n%s"
snapshotsWithInfo = [remarkInfo % (trajectoryFile, i+1, snapshot) for i, snapshot in enumerate(snapshots)]
elif ext == ".xtc":
with md.formats.XTCTrajectoryFile(trajectoryFile) as f:
snapshotsWithInfo, _, _, _ = f.read()
snapshotsWithInfo *= 10
elif ext == ".trr":
with md.formats.TRRTrajectoryFile(trajectoryFile) as f:
snapshotsWithInfo, _, _, _, _ = f.read()
snapshotsWithInfo *= 10
elif ext == ".dcd":
with md.formats.DCDTrajectoryFile(trajectoryFile) as f:
snapshotsWithInfo, _, _ = f.read()
elif ext == ".dtr":
with md.formats.DTRTrajectoryFile(trajectoryFile) as f:
snapshotsWithInfo, _, _ = f.read()
elif ext == ".mdcrd":
with md.formats.MDCRDTrajectoryFile(trajectoryFile) as f:
snapshotsWithInfo, _ = f.read()
elif ext == ".nc":
with md.formats.NetCDFTrajectoryFile(trajectoryFile) as f:
snapshotsWithInfo, _, _, _ = f.read()
else:
raise ValueError("Unrecongnized file extension for %s" % trajectoryFile)
return snapshotsWithInfo
def getTrajNum(trajFilename):
return getReportNum(trajFilename)
def getFileSuffix(filename, separator="_"):
name, _ = os.path.splitext(filename)
return name.split(separator)[-1]
def isReport(reportFilename):
return getFileSuffix(reportFilename).isdigit()
def getReportNum(reportFilename):
return int(getFileSuffix(reportFilename))
def getReportList(reportBase):
return glob_sorted(reportBase, key=getReportNum, filter_func=isReport)
def getPrmtopNum(prmtopFilename):
return int(prmtopFilename.split("_")[-1][:-7])
def calculateContactMapEigen(contactMap):
nLig, nCA = contactMap.shape
extendedCM = np.zeros((nLig+nCA, nLig+nCA))
extendedCM[nCA:, :nCA] = contactMap
extendedCM[:nCA, nCA:] = contactMap.T
assert (extendedCM == extendedCM.T).all(), "Extended ContactMap not symmetric"
eiv, eic = np.linalg.eigh(extendedCM)
return eiv, eic
def assertSymmetriesDict(symmetries, PDB):
for group in symmetries:
for key in group:
assert key in PDB.atoms, "Symmetry atom %s not found in initial structure" % key
if symmetries:
print("Symmetry dictionary correctly defined!")
def getRMSD(traj, nativePDB, resname, reschain, resnum, symmetries, topology=None):
snapshots = getSnapshots(traj)
rmsds = np.zeros(len(snapshots))
RMSDCalc = RMSDCalculator.RMSDCalculator(symmetries)
for i, snapshot in enumerate(snapshots):
snapshotPDB = atomset.PDB()
snapshotPDB.initialise(snapshot, resname=resname, chain=reschain, resnum=resnum, topology=topology)
rmsds[i] = RMSDCalc.computeRMSD(nativePDB, snapshotPDB)
return rmsds
def readClusteringObject(clusteringObjectPath):
with open(clusteringObjectPath, 'rb') as f:
try:
if six.PY2:
return pickle.load(f)
elif six.PY3:
return pickle.load(f, encoding="latin")
except EOFError:
t, v, tb = sys.exc_info()
raise_(t, v, tb)
def ensure_connectivity_msm(msm):
if msm.nstates_full == msm.nstates:
return msm.stationary_distribution
else:
counts = msm.count_matrix_full
counts += 1/counts.shape[0]
trans = utils.buildRevTransitionMatrix(counts)
_, eic = getSortedEigen(trans)
return getStationaryDistr(eic[:, 0])
def getStationaryDistr(lowestEigenvector):
absStationary = np.abs(lowestEigenvector)
return absStationary / absStationary.sum()
def getSortedEigen(T):
eigenvals, eigenvectors = linalg.eig(T, left=True, right=False)
sortedIndices = np.argsort(eigenvals)[::-1]
return eigenvals[sortedIndices], eigenvectors[:, sortedIndices]
def get_epoch_folders(path):
allFolders = os.listdir(path)
folders = [epoch for epoch in allFolders if epoch.isdigit()]
folders.sort(key=int)
return folders
def gen_atom_name(index):
ind1 = index//6760
ind2 = (index % 6760)
ind3 = ind2 % 260
return chr(65+ind1)+chr(65+ind2//260)+chr(65+ind3//10)+str(ind3 % 10)
def join_coordinates_prob(coords, p):
if len(p.shape) < 2:
p = p[:, np.newaxis]
return np.hstack((coords, p))
def write_PDB_clusters(pmf_xyzg, title="clusters.pdb", use_beta=False, elements=None):
templateLine = "HETATM%s %s CLT L 502 %s%s%s 0.75%s %s \n"
if elements is None:
elements = ["H" for i in range(len(pmf_xyzg))]
content = ""
names = []
for i, line in enumerate(pmf_xyzg):
number = str(i).rjust(5)
number3 = gen_atom_name(i).ljust(4)
names.append(number3)
x = ("%.3f" % line[0]).rjust(8)
y = ("%.3f" % line[1]).rjust(8)
z = ("%.3f" % line[2]).rjust(8)
element = elements[i].rjust(2)
if use_beta:
g = ("%.2f" % line[-1]).rjust(6)
else:
g = ("%.2f" % 0).rjust(6)
content += templateLine % (number, number3, x, y, z, g, element)
with open(title, 'w') as f:
f.write(content)
return names
def distanceCOM(coords1, coords2):
coords1 = np.array(coords1)
coords2 = np.array(coords2)
return np.linalg.norm(coords1-coords2)
def sign(x, tol=1e-7):
x[abs(x) < tol] = 0
return np.sign(x)
def getAtomNames(values):
names = ["O", "H", "N"]
values += 1
return [names[int(value)] for value in values]
def getReportAndTrajectoryWildcard(JSONdict):
reportWildcard = os.path.split(JSONdict["commands"][0]["PELE_Output"]['reportPath'])[1]
trajWildcard = os.path.split(JSONdict["commands"][0]["PELE_Output"]['trajectoryPath'])[1]
trajWildcard = '_%d'.join(os.path.splitext(trajWildcard))
reportWildcard = '_%d'.join(os.path.splitext(reportWildcard))
return reportWildcard, trajWildcard
def getPELEControlFileDict(templetizedControlFile):
with open(templetizedControlFile) as fc:
peleControlFile = fc.read()
templateNames = {ele[1]: '"$%s"' % ele[1] for ele in string.Template.pattern.findall(peleControlFile)}
templateNames.pop("OUTPUT_PATH", None)
templateNames.pop("REPORT_NAME", None)
templateNames.pop("TRAJECTORY_NAME", None)
return json.loads(string.Template(peleControlFile).safe_substitute(templateNames)), templateNames | MIT License |
iristyle/chocolateypackages | EthanBrown.SublimeText2.WebPackages/tools/PackageCache/SublimeLinter/sublimelinter/modules/libs/capp_lint.py | LintChecker.block_comment | python | def block_comment(self):
commentOpenCount = self.line.count('/*')
commentOpenCount -= self.line.count('*/')
if commentOpenCount:
if self.verbose:
print u'%d: BLOCK COMMENT START' % self.lineNum
else:
return
match = None
while not match and self.next_statement(expect_line=True, check_line=False):
match = self.BLOCK_COMMENT_END_RE.match(self.line)
if self.verbose:
print u'%d: BLOCK COMMENT END' % self.lineNum | Find the end of a block comment | https://github.com/iristyle/chocolateypackages/blob/8c9833710577de6db6e8b1db5d9196e19e19d117/EthanBrown.SublimeText2.WebPackages/tools/PackageCache/SublimeLinter/sublimelinter/modules/libs/capp_lint.py#L512-L531 | from __future__ import with_statement
from optparse import OptionParser
from string import Template
import cgi
import cStringIO
import os
import os.path
import re
import sys
import unittest
EXIT_CODE_SHOW_HTML = 205
EXIT_CODE_SHOW_TOOLTIP = 206
def exit_show_html(html):
sys.stdout.write(html.encode('utf-8'))
sys.exit(EXIT_CODE_SHOW_HTML)
def exit_show_tooltip(text):
sys.stdout.write(text)
sys.exit(EXIT_CODE_SHOW_TOOLTIP)
def within_textmate():
return os.getenv('TM_APP_PATH') is not None
def tabs2spaces(text, positions=None):
while True:
index = text.find(u'\t')
if index < 0:
return text
spaces = u' ' * (4 - (index % 4))
text = text[0:index] + spaces + text[index + 1:]
if positions is not None:
positions.append(index)
def relative_path(basedir, filename):
if filename.find(basedir) == 0:
filename = filename[len(basedir) + 1:]
return filename
def string_replacer(line):
r = []
in_quote = None
escapes = 0
for i, c in enumerate(line):
if in_quote:
if not escapes and c == in_quote:
in_quote = None
r.append(c)
continue
else:
if not escapes and (c == '"' or c == "'"):
in_quote = c
r.append(c)
continue
r.append(c)
if c == '\\':
escapes = (escapes + 1) % 2
else:
escapes = 0
if in_quote:
pass
return "".join(r)
class LintChecker(object):
VAR_BLOCK_START_RE = re.compile(ur'''(?x)
(?P<indent>\s*) # indent before a var keyword
(?P<var>var\s+) # var keyword and whitespace after
(?P<identifier>[a-zA-Z_$]\w*)\s*
(?:
(?P<assignment>=)\s*
(?P<expression>.*)
|
(?P<separator>[,;+\-/*%^&|=\\])
)
''')
SEPARATOR_RE = re.compile(ur'''(?x)
(?P<expression>.*) # Everything up to the line separator
(?P<separator>[,;+\-/*%^&|=\\]) # The line separator
\s* # Optional whitespace after
$ # End of expression
''')
INDENTED_EXPRESSION_RE_TEMPLATE = ur'''(?x)
[ ]{%d} # Placeholder for indent of first identifier that started block
(?P<expression>.+) # Expression
'''
VAR_BLOCK_RE_TEMPLATE = ur'''(?x)
[ ]{%d} # Placeholder for indent of first identifier that started block
(?P<indent>\s*) # Capture any further indent
(?:
(?P<bracket>[\[\{].*)
|
(?P<identifier>[a-zA-Z_$]\w*)\s*
(?:
(?P<assignment>=)\s*
(?P<expression>.*)
|
(?P<separator>[,;+\-/*%%^&|=\\])
)
|
(?P<indented_expression>.+)
)
'''
STATEMENT_RE = re.compile(ur'''(?x)
\s*((continue|do|for|function|if|else|return|switch|while|with)\b|\[+\s*[a-zA-Z_$]\w*\s+[a-zA-Z_$]\w*\s*[:\]])
''')
TRAILING_WHITESPACE_RE = re.compile(ur'^.*(\s+)$')
STRIP_LINE_COMMENT_RE = re.compile(ur'(.*)\s*(?://.*|/\*.*\*/\s*)$')
LINE_COMMENT_RE = re.compile(ur'\s*(?:/\*.*\*/\s*|//.*)$')
COMMENT_RE = re.compile(ur'/\*.*?\*/')
BLOCK_COMMENT_START_RE = re.compile(ur'\s*/\*.*(?!\*/\s*)$')
BLOCK_COMMENT_END_RE = re.compile(ur'.*?\*/')
METHOD_RE = ur'[-+]\s*\([a-zA-Z_$]\w*\)\s*[a-zA-Z_$]\w*'
FUNCTION_RE = re.compile(ur'\s*function\s*(?P<name>[a-zA-Z_$]\w*)?\(.*\)\s*\{?')
RE_RE = re.compile(ur'(?<!\\)/.*?[^\\]/[gims]*')
EMPTY_STRING_LITERAL_FUNCTION = lambda match: match.group(1) + (len(match.group(2)) * ' ') + match.group(1)
EMPTY_SELF_STRING_LITERAL_FUNCTION = lambda self, match: match.group(1) + (len(match.group(2)) * ' ') + match.group(1)
def noncapturing(regex):
return ur'(?:%s)' % regex
def optional(regex):
return ur'(?:%s)?' % regex
DECIMAL_DIGIT_RE = ur'[0-9]'
NON_ZERO_DIGIT_RE = ur'[1-9]'
DECIMAL_DIGITS_RE = DECIMAL_DIGIT_RE + ur'+'
DECIMAL_DIGITS_OPT_RE = optional(DECIMAL_DIGIT_RE + ur'+')
EXPONENT_INDICATOR_RE = ur'[eE]'
SIGNED_INTEGER_RE = noncapturing(DECIMAL_DIGITS_RE) + ur'|' + noncapturing(ur'\+' + DECIMAL_DIGITS_RE) + ur'|' + noncapturing('-' + DECIMAL_DIGITS_RE)
DECIMAL_INTEGER_LITERAL_RE = ur'0|' + noncapturing(NON_ZERO_DIGIT_RE + DECIMAL_DIGIT_RE + ur'*')
EXPONENT_PART_RE = EXPONENT_INDICATOR_RE + noncapturing(SIGNED_INTEGER_RE)
EXPONENT_PART_OPT_RE = optional(EXPONENT_PART_RE)
DECIMAL_LITERAL_RE = re.compile(noncapturing(noncapturing(DECIMAL_INTEGER_LITERAL_RE) + ur'\.' + DECIMAL_DIGITS_OPT_RE + EXPONENT_PART_OPT_RE) + ur'|\.' + noncapturing(DECIMAL_DIGITS_RE + EXPONENT_PART_OPT_RE) + ur'|' + noncapturing(noncapturing(DECIMAL_INTEGER_LITERAL_RE) + EXPONENT_PART_OPT_RE))
ERROR_TYPE_ILLEGAL = 1
ERROR_TYPE_WARNING = 2
STD_IGNORES = (
{'regex': STRIP_LINE_COMMENT_RE, 'replace': ''},
{'function': string_replacer},
{'regex': COMMENT_RE, 'replace': ''},
{'regex': RE_RE, 'replace': '/ /'},
)
EXPONENTIAL_TO_SIMPLE = (
{'regex': DECIMAL_LITERAL_RE, 'replace': '42'},
)
LINE_CHECKLIST = (
{
'id': 'tabs',
'regex': re.compile(ur'[\t]'),
'error': 'line contains tabs',
'type': ERROR_TYPE_ILLEGAL
},
{
'regex': re.compile(ur'([^\t -~])'),
'error': 'line contains non-ASCII characters',
'showPositionForGroup': 1,
'type': ERROR_TYPE_ILLEGAL,
'option': 'sublimelinter_objj_check_ascii',
'optionDefault': False
},
{
'regex': re.compile(ur'^\s*(?:(?:else )?if|for|switch|while|with)(\()'),
'error': 'missing space between control statement and parentheses',
'showPositionForGroup': 1,
'type': ERROR_TYPE_WARNING
},
{
'regex': re.compile(ur'^\s*(?:(?:else )?if|for|switch|while|with)\s*\(.+\)\s*(\{)\s*(?://.*|/\*.*\*/\s*)?$'),
'error': 'braces should be on their own line',
'showPositionForGroup': 1,
'type': ERROR_TYPE_ILLEGAL
},
{
'regex': re.compile(ur'^\s*(?:(?:else )?if|for|switch|while|with)\s*\((\s+)?.+?(\s+)?\)\s*(?:(?:\{|//.*|/\*.*\*/)\s*)?$'),
'error': 'space inside parentheses',
'showPositionForGroup': [1, 2],
'type': ERROR_TYPE_ILLEGAL
},
{
'regex': re.compile(ur'^\s*(?:(?:else )?if|for|switch|while|with)\s*\(.+\)\s*(?:[\w_]|\[).+(;)\s*(?://.*|/\*.*\*/\s*)?$'),
'error': 'dependent statements must be on their own line',
'showPositionForGroup': 1,
'type': ERROR_TYPE_ILLEGAL
},
{
'regex': TRAILING_WHITESPACE_RE,
'error': 'trailing whitespace',
'showPositionForGroup': 1,
'type': ERROR_TYPE_ILLEGAL
},
{
'filter': {'regex': re.compile(ur'(^@import\b|^\s*' + METHOD_RE + '|^\s*[a-zA-Z_$]\w*:\s*\([a-zA-Z_$][\w<>]*\)\s*\w+|[a-zA-Z_$]\w*(\+\+|--)|([ -+*/%^&|<>!]=?|&&|\|\||<<|>>>|={1,3}|!==?)\s*[-+][\w(\[])'), 'pass': False},
'preprocess': STD_IGNORES + EXPONENTIAL_TO_SIMPLE,
'regex': re.compile(ur'(?<=[\w)\]"\']|([ ]))([-+*/%^]|&&?|\|\|?|<<|>>>?)(?=[\w({\["\']|(?(1)\b\b|[ ]))'),
'error': 'binary operator without surrounding spaces',
'showPositionForGroup': 2,
'type': ERROR_TYPE_WARNING
},
{
'filter': {'regex': re.compile(ur'^\s*(?:@outlet\s+)?[a-zA-Z_$]\w*\s+[a-zA-Z_$]\w*\s+@accessors\b'), 'pass': False},
'preprocess': STD_IGNORES,
'regex': re.compile(ur'(?<=[\w)\]"\']|([ ]))(=|[-+*/%^&|]=|<<=|>>>?=)(?=[\w({\["\']|(?(1)\b\b|[ ]))'),
'error': 'assignment operator without surrounding spaces',
'showPositionForGroup': 2,
'type': ERROR_TYPE_WARNING
},
{
'filter': {'regex': re.compile(ur'^(@import\b|@implementation\b|\s*' + METHOD_RE + ')'), 'pass': False},
'preprocess': STD_IGNORES,
'regex': re.compile(ur'(?<=[\w)\]"\']|([ ]))(===?|!==?|[<>]=?)(?=[\w({\["\']|(?(1)\b\b|[ ]))'),
'error': 'comparison operator without surrounding spaces',
'showPositionForGroup': 2,
'type': ERROR_TYPE_WARNING
},
{
'regex': re.compile(ur'^(\s+)' + METHOD_RE + '|^\s*[-+](\()[a-zA-Z_$][\w]*\)\s*[a-zA-Z_$]\w*|^\s*[-+]\s*\([a-zA-Z_$][\w]*\)(\s+)[a-zA-Z_$]\w*'),
'error': 'extra or missing space in a method declaration',
'showPositionForGroup': 0,
'type': ERROR_TYPE_WARNING
},
{
'regex': re.compile(ur'^(?:\s*[-+]\s*\([a-zA-Z_$]\w*\)|@implementation)\s*[a-zA-Z_$][\w]*.*?\s*(\{)\s*(?:$|//.*$)'),
'error': 'braces should be on their own line',
'showPositionForGroup': 0,
'type': ERROR_TYPE_ILLEGAL
},
{
'regex': re.compile(ur'^\s*var\s+[a-zA-Z_$]\w*\s*=\s*function\s+([a-zA-Z_$]\w*)\s*\('),
'error': 'function name is ignored',
'showPositionForGroup': 1,
'skip': True,
'type': ERROR_TYPE_WARNING
},
)
VAR_DECLARATIONS = ['none', 'single', 'strict']
VAR_DECLARATIONS_NONE = 0
VAR_DECLARATIONS_SINGLE = 1
VAR_DECLARATIONS_STRICT = 2
DIRS_TO_SKIP = ('.git', 'Frameworks', 'Build', 'Resources', 'CommonJS', 'Objective-J')
ERROR_FORMATS = ('text', 'html')
TEXT_ERROR_SINGLE_FILE_TEMPLATE = Template(u'$lineNum: $message.\n+$line\n')
TEXT_ERROR_MULTI_FILE_TEMPLATE = Template(u'$filename:$lineNum: $message.\n+$line\n')
def __init__(self, view=None, basedir='', var_declarations=VAR_DECLARATIONS_SINGLE, verbose=False):
self.view = view
self.basedir = unicode(basedir, 'utf-8')
self.errors = []
self.errorFiles = []
self.filesToCheck = []
self.varDeclarations = var_declarations
self.verbose = verbose
self.sourcefile = None
self.filename = u''
self.line = u''
self.lineNum = 0
self.varIndent = u''
self.identifierIndent = u''
self.fileChecklist = (
{'title': 'Check variable blocks', 'action': self.check_var_blocks},
)
def run_line_checks(self):
for check in self.LINE_CHECKLIST:
option = check.get('option')
if option:
default = check.get('optionDefault', False)
if self.view and not self.view.settings().get(option, default):
continue
line = self.line
originalLine = line
lineFilter = check.get('filter')
if lineFilter:
match = lineFilter['regex'].search(line)
if (match and not lineFilter['pass']) or (not match and lineFilter['pass']):
continue
preprocess = check.get('preprocess')
if preprocess:
if not isinstance(preprocess, (list, tuple)):
preprocess = (preprocess,)
for processor in preprocess:
regex = processor.get('regex')
if regex:
line = regex.sub(processor.get('replace', ''), line)
fnct = processor.get('function')
if fnct:
line = fnct(line)
regex = check.get('regex')
if not regex:
continue
match = regex.search(line)
if not match:
continue
positions = []
groups = check.get('showPositionForGroup')
if (check.get('id') == 'tabs'):
line = tabs2spaces(line, positions=positions)
elif groups is not None:
line = tabs2spaces(line)
if not isinstance(groups, (list, tuple)):
groups = (groups,)
for match in regex.finditer(line):
for group in groups:
if group > 0:
start = match.start(group)
if start >= 0:
positions.append(start)
else:
for i in range(1, len(match.groups()) + 1):
if match.start(i) >= 0:
positions.append(match.start(i))
break
if positions:
self.error(check['error'], line=originalLine, positions=positions, type=check['type'])
def next_statement(self, expect_line=False, check_line=True):
try:
while True:
raw_line = self.sourcefile.next()
if raw_line[-1] == '\n':
raw_line = raw_line[:-1]
try:
self.line = unicode(raw_line, 'utf-8', 'strict')
self.lineNum += 1
except UnicodeDecodeError:
self.line = unicode(raw_line, 'utf-8', 'replace')
self.lineNum += 1
self.error('line contains invalid unicode character(s)', type=self.ERROR_TYPE_ILLEGAL)
if self.verbose:
print u'%d: %s' % (self.lineNum, tabs2spaces(self.line))
if check_line:
self.run_line_checks()
if not self.is_statement():
continue
return True
except StopIteration:
if expect_line:
self.error('unexpected EOF', type=self.ERROR_TYPE_ILLEGAL)
raise
def is_statement(self):
if len(self.line.strip()) == 0:
return False
match = self.LINE_COMMENT_RE.match(self.line)
if match:
return False
match = self.BLOCK_COMMENT_START_RE.match(self.line)
if match:
self.block_comment()
return False
return True
def is_expression(self):
match = self.STATEMENT_RE.match(self.line)
return match is None
def strip_comment(self):
match = self.STRIP_LINE_COMMENT_RE.match(self.expression)
if match:
self.expression = match.group(1)
def get_expression(self, lineMatch):
groupdict = lineMatch.groupdict()
self.expression = groupdict.get('expression')
if self.expression is None:
self.expression = groupdict.get('bracket')
if self.expression is None:
self.expression = groupdict.get('indented_expression')
if self.expression is None:
self.expression = ''
return
self.expression = string_replacer(self.expression)
self.strip_comment()
self.expression = self.expression.strip() | MIT License |
kytos/kytos | kytos/core/interface.py | Interface.get_next_available_tag | python | def get_next_available_tag(self):
try:
return self.available_tags.pop()
except IndexError:
return False | Get the next available tag from the interface.
Return the next available tag if exists and remove from the
available tags.
If no tag is available return False. | https://github.com/kytos/kytos/blob/3b9731c08fe7550a27d159f4e2de71419c9445f1/kytos/core/interface.py#L167-L177 | import json
import logging
from enum import IntEnum
from pyof.v0x01.common.phy_port import Port as PortNo01
from pyof.v0x01.common.phy_port import PortFeatures as PortFeatures01
from pyof.v0x04.common.port import PortFeatures as PortFeatures04
from pyof.v0x04.common.port import PortNo as PortNo04
from kytos.core.common import GenericEntity
from kytos.core.helpers import now
__all__ = ('Interface',)
LOG = logging.getLogger(__name__)
class TAGType(IntEnum):
VLAN = 1
VLAN_QINQ = 2
MPLS = 3
class TAG:
def __init__(self, tag_type, value):
self.tag_type = TAGType(tag_type)
self.value = value
def __eq__(self, other):
if not other:
return False
return self.tag_type == other.tag_type and self.value == other.value
def as_dict(self):
return {'tag_type': self.tag_type, 'value': self.value}
@classmethod
def from_dict(cls, tag_dict):
return cls(tag_dict.get('tag_type'), tag_dict.get('value'))
@classmethod
def from_json(cls, tag_json):
return cls.from_dict(json.loads(tag_json))
def as_json(self):
return json.dumps(self.as_dict())
def __repr__(self):
return f"TAG({self.tag_type!r}, {self.value!r})"
class Interface(GenericEntity):
def __init__(self, name, port_number, switch, address=None, state=None,
features=None, speed=None, config=None):
self.name = name
self.port_number = int(port_number)
self.switch = switch
self.address = address
self.state = state
self.features = features
self.config = config
self.nni = False
self.endpoints = []
self.stats = None
self.link = None
self.lldp = True
self._custom_speed = speed
self.set_available_tags(range(1, 4096))
super().__init__()
def __repr__(self):
return f"Interface('{self.name}', {self.port_number}, {self.switch!r})"
def __eq__(self, other):
if isinstance(other, str):
return self.address == other
if isinstance(other, Interface):
return self.port_number == other.port_number and self.switch.dpid == other.switch.dpid
return False
@property
def id(self):
return "{}:{}".format(self.switch.dpid, self.port_number)
@property
def uni(self):
return not self.nni
def set_available_tags(self, iterable):
self.available_tags = []
for i in iterable:
vlan = TAGType.VLAN
tag = TAG(vlan, i)
self.available_tags.append(tag)
def enable(self):
self.switch.enable()
self._enabled = True
def use_tag(self, tag):
try:
self.available_tags.remove(tag)
except ValueError:
return False
return True
def is_tag_available(self, tag):
return tag in self.available_tags | MIT License |
scrapinghub/exporters | exporters/writers/filebase_base_writer.py | FilebaseBaseWriter.create_filebase_name | python | def create_filebase_name(self, group_info, extension='gz', file_name=None):
dirname = self.filebase.formatted_dirname(groups=group_info)
if not file_name:
file_name = self.filebase.prefix_template + '.' + extension
return dirname, file_name | Return tuple of resolved destination folder name and file name | https://github.com/scrapinghub/exporters/blob/b14f70530826bbbd6163d9e56e74345e762a9189/exporters/writers/filebase_base_writer.py#L145-L152 | import datetime
import hashlib
import os
import re
import uuid
import six
from exporters.write_buffers.grouping import GroupingBufferFilesTracker
from exporters.write_buffers.utils import get_filename
from exporters.writers.base_writer import BaseWriter
MD5_FILE_NAME = 'md5checksum.md5'
def md5_for_file(f, block_size=2**20):
md5 = hashlib.md5()
while True:
data = f.read(block_size)
if not data:
break
md5.update(data)
return md5.hexdigest()
class Filebase(object):
def __init__(self, filebase):
self.input_filebase = filebase
self.template = self._get_template()
self.dirname_template, self.prefix_template = os.path.split(self.template)
def _get_template(self):
return datetime.datetime.now().strftime(self.input_filebase)
def formatted_dirname(self, **format_info):
try:
dirname = self.dirname_template.format(**format_info)
return dirname
except KeyError as e:
raise KeyError('filebase option should not contain {} key'.format(str(e)))
def _has_key_info(self, key):
return bool(re.findall('\{'+key+'\[\d\]\}', self.template))
def formatted_prefix(self, **format_info):
prefix_name = self.prefix_template.format(**format_info)
file_number = format_info.pop('file_number', 0)
if prefix_name == self.prefix_template:
prefix_name += '{:04d}'.format(file_number)
for key, value in format_info.iteritems():
if value and not self._has_key_info(key):
prefix_name = '{}-{}'.format(prefix_name, ''.join(value))
return prefix_name
class FilebasedGroupingBufferFilesTracker(GroupingBufferFilesTracker):
def __init__(self, formatter, filebase, compression_format, start_file_count=0, **kwargs):
super(FilebasedGroupingBufferFilesTracker, self).__init__(formatter,
compression_format, **kwargs)
self.filebase = filebase
self.start_file_count = start_file_count
def create_new_group_file(self, key):
group_files = self.grouping_info[key]['group_file']
group_folder = self._get_group_folder(group_files)
current_file_count = len(group_files) + self.start_file_count
group_info = self.grouping_info[key]['path_safe_keys']
name_without_ext = self.filebase.formatted_prefix(
groups=group_info, file_number=current_file_count)
file_name = get_filename(name_without_ext, self.file_extension, self.compression_format)
file_name = os.path.join(group_folder, file_name)
new_buffer_file = self._create_buffer_file(file_name=file_name)
self.grouping_info.add_buffer_file_to_group(key, new_buffer_file)
self.grouping_info.reset_key(key)
return new_buffer_file
def _get_group_folder(self, group_files):
if group_files:
return os.path.dirname(group_files[0].path)
group_folder = os.path.join(self.tmp_folder, str(uuid.uuid4()))
os.mkdir(group_folder)
return group_folder
class FilebaseBaseWriter(BaseWriter):
supported_options = {
'filebase': {'type': six.string_types},
'start_file_count': {'type': int, 'default': 0},
'generate_md5': {'type': bool, 'default': False}
}
hash_algorithm = 'md5'
def __init__(self, *args, **kwargs):
super(FilebaseBaseWriter, self).__init__(*args, **kwargs)
self.filebase = Filebase(self.read_option('filebase'))
self.set_metadata('effective_filebase', self.filebase.template)
self.generate_md5 = self.read_option('generate_md5')
self.written_files = {}
self.last_written_file = None
self.generate_md5 = self.read_option('generate_md5')
self.logger.info(
'{} has been initiated. Writing to: {}'.format(
self.__class__.__name__, self.filebase.template))
def _items_group_files_handler(self, write_buffer_class, **kwargs):
group_files_class = write_buffer_class.filebased_group_files_tracker_class
return group_files_class(self.export_formatter,
filebase=Filebase(self.read_option('filebase')),
start_file_count=self.read_option('start_file_count'),
compression_format=self.read_option('compression'),
**kwargs)
def write(self, path, key, file_name=False):
raise NotImplementedError
def get_file_suffix(self, path, prefix):
return str(uuid.uuid4()) | BSD 3-Clause New or Revised License |
sorsnce/red-team | 1. Information Gathering/recon-ng/recon/core/framework.py | Framework.insert_locations | python | def insert_locations(self, latitude=None, longitude=None, street_address=None, mute=False):
data = dict(
latitude = latitude,
longitude = longitude,
street_address = street_address
)
rowcount = self.insert('locations', data.copy(), data.keys())
if not mute: self._display(data, rowcount, '[location] %s, %s - %s', data.keys())
return rowcount | Adds a location to the database and returns the affected row count. | https://github.com/sorsnce/red-team/blob/5cd1932ccafcd2c1b92b8642e9a64fa0d2e99324/1. Information Gathering/recon-ng/recon/core/framework.py#L430-L439 | from contextlib import closing
import cmd
import codecs
import inspect
import json
import os
import random
import re
import requests
import socket
import sqlite3
import string
import subprocess
import sys
import traceback
class FrameworkException(Exception):
pass
class Colors(object):
N = '\033[m'
R = '\033[31m'
G = '\033[32m'
O = '\033[33m'
B = '\033[34m'
class Options(dict):
def __init__(self, *args, **kwargs):
self.required = {}
self.description = {}
super(Options, self).__init__(*args, **kwargs)
def __getitem__(self, name):
name = self.__keytransform__(name)
return super(Options, self).__getitem__(name)
def __setitem__(self, name, value):
name = self.__keytransform__(name)
value = self._autoconvert(value)
super(Options, self).__setitem__(name, value)
def __delitem__(self, name):
name = self.__keytransform__(name)
super(Options, self).__delitem__(name)
if name in self.required:
del self.required[name]
if name in self.description:
del self.description[name]
def __keytransform__(self, key):
return key.upper()
def _boolify(self, value):
return {'true':True, 'false':False}[value.lower()]
def _autoconvert(self, value):
if value in (None, True, False):
return value
elif (isinstance(value, str)) and value.lower() in ('none', "''", '""'):
return None
orig = value
for fn in (self._boolify, int, float):
try:
value = fn(value)
break
except ValueError: pass
except KeyError: pass
except AttributeError: pass
if type(value) is int and '.' in str(orig):
return float(orig)
return value
def init_option(self, name, value=None, required=False, description=''):
name = self.__keytransform__(name)
self[name] = value
self.required[name] = required
self.description[name] = description
def serialize(self):
data = {}
for key in self:
data[key] = self[key]
return data
class Framework(cmd.Cmd):
prompt = '>>>'
_script = 0
_load = 0
_global_options = Options()
_loaded_modules = {}
app_path = ''
data_path = ''
core_path = ''
home_path = ''
mod_path = ''
spaces_path = ''
workspace = ''
_record = None
_spool = None
_summary_counts = {}
def __init__(self, params):
cmd.Cmd.__init__(self)
self._modulename = params
self.ruler = '-'
self.spacer = ' '
self.time_format = '%Y-%m-%d %H:%M:%S'
self.nohelp = f"{Colors.R}[!] No help on %s{Colors.N}"
self.do_help.__func__.__doc__ = '''Displays this menu'''
self.doc_header = 'Commands (type [help|?] <topic>):'
self._exit = 0
def default(self, line):
self.error(f"Invalid command: {line}")
def emptyline(self):
return 0
def precmd(self, line):
if Framework._load:
print('\r', end='')
if Framework._script:
print(f"{line}")
if Framework._record:
recorder = codecs.open(Framework._record, 'ab', encoding='utf-8')
recorder.write(f"{line}{os.linesep}")
recorder.flush()
recorder.close()
if Framework._spool:
Framework._spool.write(f"{self.prompt}{line}{os.linesep}")
Framework._spool.flush()
return line
def onecmd(self, line):
cmd, arg, line = self.parseline(line)
if not line:
return self.emptyline()
if line == 'EOF':
sys.stdin = sys.__stdin__
Framework._script = 0
Framework._load = 0
return
if cmd is None:
return self.default(line)
self.lastcmd = line
if cmd == '':
return self.default(line)
else:
try:
func = getattr(self, 'do_' + cmd)
except AttributeError:
return self.default(line)
try:
return func(arg)
except Exception:
self.print_exception()
def print_topics(self, header, cmds, cmdlen, maxcol):
if cmds:
self.stdout.write(f"{header}{os.linesep}")
if self.ruler:
self.stdout.write(f"{self.ruler * len(header)}{os.linesep}")
for cmd in cmds:
self.stdout.write(f"{cmd.ljust(15)} {getattr(self, 'do_' + cmd).__doc__}{os.linesep}")
self.stdout.write(os.linesep)
def to_unicode_str(self, obj, encoding='utf-8'):
if type(obj) not in (str, bytes):
obj = str(obj)
obj = self.to_unicode(obj, encoding)
return obj
def to_unicode(self, obj, encoding='utf-8'):
if isinstance(obj, bytes):
obj = obj.decode(encoding)
return obj
def is_hash(self, hashstr):
hashdict = [
{'pattern': r'^[a-fA-F0-9]{32}$', 'type': 'MD5'},
{'pattern': r'^[a-fA-F0-9]{16}$', 'type': 'MySQL'},
{'pattern': r'^\*[a-fA-F0-9]{40}$', 'type': 'MySQL5'},
{'pattern': r'^[a-fA-F0-9]{40}$', 'type': 'SHA1'},
{'pattern': r'^[a-fA-F0-9]{56}$', 'type': 'SHA224'},
{'pattern': r'^[a-fA-F0-9]{64}$', 'type': 'SHA256'},
{'pattern': r'^[a-fA-F0-9]{96}$', 'type': 'SHA384'},
{'pattern': r'^[a-fA-F0-9]{128}$', 'type': 'SHA512'},
{'pattern': r'^\$[PH]{1}\$.{31}$', 'type': 'phpass'},
{'pattern': r'^\$2[ya]?\$.{56}$', 'type': 'bcrypt'},
]
for hashitem in hashdict:
if re.match(hashitem['pattern'], hashstr):
return hashitem['type']
return False
def get_random_str(self, length):
return ''.join(random.choice(string.lowercase) for i in range(length))
def _is_writeable(self, filename):
try:
fp = open(filename, 'a')
fp.close()
return True
except IOError:
return False
def _parse_rowids(self, rowids):
xploded = []
rowids = [x.strip() for x in rowids.split(',')]
for rowid in rowids:
try:
if '-' in rowid:
start = int(rowid.split('-')[0].strip())
end = int(rowid.split('-')[-1].strip())
xploded += range(start, end+1)
else:
xploded.append(int(rowid))
except ValueError:
continue
return sorted(list(set(xploded)))
def print_exception(self, line=''):
stack_list = [x.strip() for x in traceback.format_exc().strip().splitlines()]
exctype = stack_list[-1].split(':')[0].strip()
message = ' '.join(stack_list[-1].split(':')[1:]).strip()
if self._global_options['verbosity'] == 0:
return
elif self._global_options['verbosity'] == 1:
line = ' '.join([x for x in [message, line] if x])
self.error(line)
elif self._global_options['verbosity'] == 2:
print(f"{Colors.R}{'-'*60}")
traceback.print_exc()
print(f"{'-'*60}{Colors.N}")
def error(self, line):
if not re.search('[.,;!?]$', line):
line += '.'
line = line[:1].upper() + line[1:]
print(f"{Colors.R}[!] {line}{Colors.N}")
def output(self, line):
print(f"{Colors.B}[*]{Colors.N} {line}")
def alert(self, line):
print(f"{Colors.G}[*]{Colors.N} {line}")
def verbose(self, line):
if self._global_options['verbosity'] >= 1:
self.output(line)
def debug(self, line):
if self._global_options['verbosity'] >= 2:
self.output(line)
def heading(self, line, level=1):
line = line
print('')
if level == 0:
print(self.ruler*len(line))
print(line.upper())
print(self.ruler*len(line))
if level == 1:
print(f"{self.spacer}{line.title()}")
print(f"{self.spacer}{self.ruler*len(line)}")
def table(self, data, header=[], title=''):
tdata = list(data)
if header:
tdata.insert(0, header)
if len(set([len(x) for x in tdata])) > 1:
raise FrameworkException('Row lengths not consistent.')
lens = []
cols = len(tdata[0])
for i in range(0,cols):
lens.append(len(max([self.to_unicode_str(x[i]) if x[i] != None else '' for x in tdata], key=len)))
title_len = len(title)
tdata_len = sum(lens) + (3*(cols-1))
diff = title_len - tdata_len
if diff > 0:
diff_per = diff / cols
lens = [x+diff_per for x in lens]
diff_mod = diff % cols
for x in range(0, diff_mod):
lens[x] += 1
if len(tdata) > 0:
separator_str = f"{self.spacer}+-{'%s---'*(cols-1)}%s-+"
separator_sub = tuple(['-'*x for x in lens])
separator = separator_str % separator_sub
data_str = f"{self.spacer}| {'%s | '*(cols-1)}%s |"
print('')
print(separator)
if title:
print(f"{self.spacer}| {title.center(tdata_len)} |")
print(separator)
if header:
rdata = tdata.pop(0)
data_sub = tuple([rdata[i].center(lens[i]) for i in range(0,cols)])
print(data_str % data_sub)
print(separator)
for rdata in tdata:
data_sub = tuple([self.to_unicode_str(rdata[i]).ljust(lens[i]) if rdata[i] != None else ''.ljust(lens[i]) for i in range(0,cols)])
print(data_str % data_sub)
print(separator)
print('')
def query(self, *args, **kwargs):
path = os.path.join(self.workspace, 'data.db')
return self._query(path, *args, **kwargs)
def _query(self, path, query, values=(), include_header=False):
self.debug(f"DATABASE => {path}")
self.debug(f"QUERY => {query}")
with sqlite3.connect(path) as conn:
with closing(conn.cursor()) as cur:
if values:
self.debug(f"VALUES => {repr(values)}")
cur.execute(query, values)
else:
cur.execute(query)
if cur.rowcount == -1:
rows = []
if include_header:
rows.append(tuple([x[0] for x in cur.description]))
rows.extend(cur.fetchall())
results = rows
else:
conn.commit()
results = cur.rowcount
return results
def get_columns(self, table):
return [(x[1], x[2]) for x in self.query(f"PRAGMA table_info('{table}')")]
def get_tables(self):
return [x[0] for x in self.query('SELECT name FROM sqlite_master WHERE type=\'table\'') if x[0] not in ['dashboard']]
def _display(self, data, rowcount, pattern=None, keys=None):
display = self.alert if rowcount else self.verbose
if pattern and keys:
values = tuple([data[key] or '<blank>' for key in keys])
display(pattern % values)
else:
for key in sorted(data.keys()):
display(f"{key.title()}: {data[key]}")
display(self.ruler*50)
def insert_domains(self, domain=None, mute=False):
data = dict(
domain = domain
)
rowcount = self.insert('domains', data.copy(), data.keys())
if not mute: self._display(data, rowcount, '[domain] %s', data.keys())
return rowcount
def insert_companies(self, company=None, description=None, mute=False):
data = dict(
company = company,
description = description
)
rowcount = self.insert('companies', data.copy(), ('company',))
if not mute: self._display(data, rowcount, '[company] %s - %s', data.keys())
return rowcount
def insert_netblocks(self, netblock=None, mute=False):
data = dict(
netblock = netblock
)
rowcount = self.insert('netblocks', data.copy(), data.keys())
if not mute: self._display(data, rowcount, '[netblock] %s', data.keys())
return rowcount | MIT License |
checkpointsw/karta | src/thumbs_up/utils/function.py | FeatureClassifier.train | python | def train(self, scoped_functions):
clf = RandomForestClassifier(n_estimators=100)
eas = [self._interest(x) for x in scoped_functions] + [self._interest(x) + self._inner_offset for x in scoped_functions]
data_set = [self.extractSample(x) for x in eas]
data_results = [self._tag(x) for x in eas]
clf.fit(data_set, data_results)
self._classifier = clf | Train the classifier on the scoped functions.
Args:
scoped_functions (list): list of all relevant (scoped) functions
Note:
Training must happen *after* the calibration phase | https://github.com/checkpointsw/karta/blob/b845928487b50a5b41acd532ae0399177a4356aa/src/thumbs_up/utils/function.py#L80-L97 | from sklearn import metrics
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
import idc
import ida_nalt
import sark
import numpy
import struct
import time
CALIBRATION_LOWER_BOUND = 0.75
CALIBRATION_UPPER_BOUND = 0.96
CALIBRATION_TIME_ESTIMATE = 10
class FeatureClassifier():
def __init__(self, analyzer, name, feature_size, inner_offset, classifier_offsets, interest, tag):
self._analyzer = analyzer
self._name = name
self._feature_size = feature_size
self._inner_offset = inner_offset
self._classifier_offsets = classifier_offsets
self._interest = interest
self._tag = tag
self._classifier = None
self._needs_calibration = True
self._needs_training = True
def extractSample(self, ea):
return [idc.get_wide_byte(ea + o) for o in self._classifier_offsets] | MIT License |
stypr/clubhouse-py | clubhouse/clubhouse.py | Clubhouse.get_club | python | def get_club(self, club_id, source_topic_id=None):
data = {
"club_id": int(club_id),
"source_topic_id": source_topic_id,
"query_id": None,
"query_result_position": None,
"slug": None,
}
req = requests.post(f"{self.API_URL}/get_club", headers=self.HEADERS, json=data)
return req.json() | (Clubhouse, int, int) -> dict
Get the information about the given club_id. | https://github.com/stypr/clubhouse-py/blob/a0aad17a42a4f391fc40eebc36e5535e629bdd9a/clubhouse/clubhouse.py#L532-L545 | import uuid
import random
import secrets
import functools
import requests
class Clubhouse:
API_URL = "https://www.clubhouseapi.com/api"
API_BUILD_ID_IOS = "434"
API_BUILD_VERSION = "0.1.40"
API_BUILD_ID_ANDROID = "3389"
API_BUILD_VERSION_ANDROID= "1.0.1"
API_UA_IOS = f"clubhouse/{API_BUILD_ID_IOS} (iPhone; iOS 14.4; Scale/2.00)"
API_UA_ANDROID = f"clubhouse/android/{API_BUILD_ID_ANDROID}"
API_UA_STATIC = f"Clubhouse/{API_BUILD_ID_IOS} CFNetwork/1220.1 Darwin/20.3.0"
PUBNUB_PUB_KEY = "pub-c-6878d382-5ae6-4494-9099-f930f938868b"
PUBNUB_SUB_KEY = "sub-c-a4abea84-9ca3-11ea-8e71-f2b83ac9263d"
PUBNUB_API_URL = "https://clubhouse.pubnubapi.com/v2"
SENTRY_URL = "[email protected]/5245095"
TWITTER_ID = "NyJhARWVYU1X3qJZtC2154xSI"
TWITTER_SECRET = "ylFImLBFaOE362uwr4jut8S8gXGWh93S1TUKbkfh7jDIPse02o"
INSTAGRAM_ID = "1352866981588597"
INSTAGRAM_CALLBACK = "https://www.joinclubhouse.com/callback/instagram"
AGORA_KEY = "938de3e8055e42b281bb8c6f69c21f78"
INSTABUG_KEY = "4e53155da9b00728caa5249f2e35d6b3"
AMPLITUDE_KEY = "9098a21a950e7cb0933fb5b30affe5be"
STRIPE_PUBLISH_KEY = "[email protected]/5245095"
ANDROID_API_KEY = "AIzaSyDGJ877BvgHAg2Bed1sgFjZ4wJmh2RfEfU"
ANDROID_API_ID = "1:1096237342636:android:c800b1b9e5ee70d1f8a409"
ANDROID_RECAPTCHA_KEY = "LcNAMYaAAAAAKDxm-jPPMrJvh_VTiWyWy4D9jp3"
IOS_API_ID = "co.alphaexploration.clubhouse:16.0.3"
IOS_RECAPTCHA_KEY = "6LeWyKUaAAAAAA7XsHRe-JWuI1qLwoZn5p3seyoW"
HEADERS = {
"CH-Languages": "en-JP,ja-JP",
"CH-Locale": "en_JP",
"Accept": "application/json",
"Accept-Language": "en-JP;q=1, ja-JP;q=0.9",
"Accept-Encoding": "gzip, deflate",
"ch-keyboards": "en_US",
"CH-AppBuild": f"{API_BUILD_ID_ANDROID}",
"CH-AppVersion": f"{API_BUILD_VERSION_ANDROID}",
"User-Agent": f"{API_UA_ANDROID}",
"Connection": "close",
"Content-Type": "application/json; charset=utf-8",
"Cookie": f"__cfduid={secrets.token_hex(21)}{random.randint(1, 9)}"
}
def require_authentication(func):
@functools.wraps(func)
def wrap(self, *args, **kwargs):
if not (self.HEADERS.get("CH-UserID") and
self.HEADERS.get("CH-DeviceId") and
self.HEADERS.get("Authorization")):
raise Exception('Not Authenticated')
return func(self, *args, **kwargs)
return wrap
def unstable_endpoint(func):
@functools.wraps(func)
def wrap(self, *args, **kwargs):
print("[!] This endpoint is NEVER TESTED and MAY BE UNSTABLE. BE CAREFUL!")
return func(self, *args, **kwargs)
return wrap
def __init__(self, user_id='', user_token='', user_device='', headers=None):
self.HEADERS = dict(self.HEADERS)
if isinstance(headers, dict):
self.HEADERS.update(headers)
self.HEADERS['CH-UserID'] = user_id if user_id else "(null)"
if user_token:
self.HEADERS['Authorization'] = f"Token {user_token}"
self.HEADERS['CH-DeviceId'] = user_device.upper() if user_device else str(uuid.uuid4()).upper()
def __str__(self):
return "Clubhouse(user_Id={}, user_token={}, user_device={})".format(
self.HEADERS.get('CH-UserID'),
self.HEADERS.get('Authorization'),
self.HEADERS.get('CH-DeviceId')
)
def start_phone_number_auth(self, phone_number):
if self.HEADERS.get("Authorization"):
raise Exception('Already Authenticatied')
data = {
"phone_number": phone_number
}
req = requests.post(f"{self.API_URL}/start_phone_number_auth", headers=self.HEADERS, json=data)
return req.json()
@unstable_endpoint
def call_phone_number_auth(self, phone_number):
if self.HEADERS.get("Authorization"):
raise Exception('Already Authenticatied')
data = {
"phone_number": phone_number
}
req = requests.post(f"{self.API_URL}/call_phone_number_auth", headers=self.HEADERS, json=data)
return req.json()
@unstable_endpoint
def resend_phone_number_auth(self, phone_number):
if self.HEADERS.get("Authorization"):
raise Exception('Already Authenticatied')
data = {
"phone_number": phone_number
}
req = requests.post(f"{self.API_URL}/resend_phone_number_auth", headers=self.HEADERS, json=data)
return req.json()
def complete_phone_number_auth(self, phone_number, verification_code, rc_token=None, safety_net_nonce=None, safety_net_response=None):
if self.HEADERS.get("Authorization"):
raise Exception('Already Authenticatied')
data = {
"device_token": None,
"rc_token": rc_token,
"safety_net_nonce": safety_net_nonce,
"safety_net_response": safety_net_response,
"phone_number": phone_number,
"verification_code": verification_code
}
req = requests.post(f"{self.API_URL}/complete_phone_number_auth", headers=self.HEADERS, json=data)
return req.json()
def check_for_update(self, is_testflight=False):
query = f"is_testflight={int(is_testflight)}"
req = requests.get(f"{self.API_URL}/check_for_update?{query}", headers=self.HEADERS)
return req.json()
@require_authentication
def logout(self):
data = {}
req = requests.post(f"{self.API_URL}/logout", headers=self.HEADERS, json=data)
return req.json()
@require_authentication
def get_release_notes(self):
req = requests.post(f"{self.API_URL}/get_release_notes", headers=self.HEADERS)
return req.json()
@require_authentication
def check_waitlist_status(self):
req = requests.post(f"{self.API_URL}/check_waitlist_status", headers=self.HEADERS)
return req.json()
@require_authentication
def add_email(self, email):
data = {
"email": email
}
req = requests.post(f"{self.API_URL}/add_email", headers=self.HEADERS, json=data)
return req.json()
@require_authentication
def update_photo(self, photo_filename):
files = {
"file": ("image.jpg", open(photo_filename, "rb"), "image/jpeg"),
}
tmp = self.HEADERS['Content-Type']
self.HEADERS.pop("Content-Type")
req = requests.post(f"{self.API_URL}/update_photo", headers=self.HEADERS, files=files)
self.HEADERS['Content-Type'] = tmp
return req.json()
@require_authentication
def follow(self, user_id, user_ids=None, source=4, source_topic_id=None):
data = {
"source_topic_id": source_topic_id,
"user_ids": user_ids,
"user_id": int(user_id),
"source": source
}
req = requests.post(f"{self.API_URL}/follow", headers=self.HEADERS, json=data)
return req.json()
@require_authentication
def unfollow(self, user_id):
data = {
"user_id": int(user_id)
}
req = requests.post(f"{self.API_URL}/unfollow", headers=self.HEADERS, json=data)
return req.json()
@require_authentication
def block(self, user_id):
data = {
"user_id": int(user_id)
}
req = requests.post(f"{self.API_URL}/block", headers=self.HEADERS, json=data)
return req.json()
@require_authentication
def unblock(self, user_id):
data = {
"user_id": int(user_id)
}
req = requests.post(f"{self.API_URL}/unblock", headers=self.HEADERS, json=data)
return req.json()
@require_authentication
def follow_multiple(self, user_ids, user_id=None, source=7, source_topic_id=None):
data = {
"source_topic_id": source_topic_id,
"user_ids": user_ids,
"user_id": user_id,
"source": source
}
req = requests.post(f"{self.API_URL}/follow_multiple", headers=self.HEADERS, json=data)
return req.json()
@require_authentication
def follow_club(self, club_id, source_topic_id=None):
data = {
"club_id": int(club_id),
"source_topic_id": source_topic_id
}
req = requests.post(f"{self.API_URL}/follow_club", headers=self.HEADERS, json=data)
return req.json()
@require_authentication
def unfollow_club(self, club_id, source_topic_id=None):
data = {
"club_id": int(club_id),
"source_topic_id": source_topic_id
}
req = requests.post(f"{self.API_URL}/unfollow_club", headers=self.HEADERS, json=data)
return req.json()
@require_authentication
def update_follow_notifications(self, user_id, notification_type=2):
data = {
"user_id": int(user_id),
"notification_type": int(notification_type)
}
req = requests.post(f"{self.API_URL}/update_follow_notifications", headers=self.HEADERS, json=data)
return req.json()
@require_authentication
def get_suggested_follows_similar(self, user_id='', username=''):
data = {
"user_id": int(user_id) if user_id else None,
"username": username if username else None,
"query_id": None,
"query_result_position": None,
}
req = requests.post(f"{self.API_URL}/get_suggested_follows_similar", headers=self.HEADERS, json=data)
return req.json()
@require_authentication
def get_suggested_follows_friends_only(self, club_id=None, upload_contacts=True, contacts=()):
data = {
"club_id": club_id,
"upload_contacts": upload_contacts,
"contacts": contacts
}
req = requests.post(f"{self.API_URL}/get_suggested_follows_friends_only", headers=self.HEADERS, json=data)
return req.json()
@require_authentication
def get_suggested_follows_all(self, in_onboarding=True, page_size=50, page=1):
query = "in_onboarding={}&page_size={}&page={}".format(
"true" if in_onboarding else "false",
page_size,
page
)
req = requests.get(f"{self.API_URL}/get_suggested_follows_all?{query}", headers=self.HEADERS)
return req.json()
@require_authentication
def ignore_suggested_follow(self, user_id):
data = {
"user_id": int(user_id)
}
req = requests.post(f"{self.API_URL}/user_id", headers=self.HEADERS, json=data)
return req.json()
@require_authentication
def get_event(self, event_id=None, user_ids=None, club_id=None, is_member_only=False, event_hashid=None, description=None, time_start_epoch=None, name=None):
data = {
"user_ids": user_ids,
"club_id": club_id,
"is_member_only": is_member_only,
"event_id": int(event_id) if event_id else None,
"event_hashid": event_hashid,
"description": description,
"time_start_epoch": time_start_epoch,
"name": name
}
req = requests.post(f"{self.API_URL}/get_event", headers=self.HEADERS, json=data)
return req.json()
@require_authentication
def create_event(self, name, time_start_epoch, description, event_id=None, user_ids=(), club_id=None, is_member_only=False, event_hashid=None):
data = {
"user_ids": user_ids,
"club_id": club_id,
"is_member_only": is_member_only,
"event_id": int(event_id) if event_id else None,
"event_hashid": event_hashid,
"description": description,
"time_start_epoch": time_start_epoch,
"name": name
}
req = requests.post(f"{self.API_URL}/edit_event", headers=self.HEADERS, json=data)
return req.json()
@require_authentication
def edit_event(self, name, time_start_epoch, description, event_id=None, user_ids=(), club_id=None, is_member_only=False, event_hashid=None):
data = {
"user_ids": user_ids,
"club_id": club_id,
"is_member_only": is_member_only,
"event_id": int(event_id) if event_id else None,
"event_hashid": event_hashid,
"description": description,
"time_start_epoch": time_start_epoch,
"name": name
}
req = requests.post(f"{self.API_URL}/edit_event", headers=self.HEADERS, json=data)
return req.json()
@require_authentication
def delete_event(self, event_id, user_ids=None, club_id=None, is_member_only=False, event_hashid=None, description=None, time_start_epoch=None, name=None):
data = {
"user_ids": user_ids,
"club_id": club_id,
"is_member_only": is_member_only,
"event_id": int(event_id) if event_id else None,
"event_hashid": event_hashid,
"description": description,
"time_start_epoch": time_start_epoch,
"name": name
}
req = requests.post(f"{self.API_URL}/delete_event", headers=self.HEADERS, json=data)
return req.json()
@require_authentication
def get_events(self, is_filtered=True, page_size=25, page=1):
_is_filtered = "true" if is_filtered else "false"
query = "is_filtered={}&page_size={}&page={}".format(
"true" if is_filtered else "false",
page_size,
page
)
req = requests.get(f"{self.API_URL}/get_events?{query}", headers=self.HEADERS)
return req.json()
@require_authentication | MIT License |
ngageoint/sarpy | sarpy/io/product/sidd2_elements/Measurement.py | PlaneProjectionType.__init__ | python | def __init__(self, ReferencePoint=None, SampleSpacing=None, TimeCOAPoly=None, ProductPlane=None, **kwargs):
if '_xml_ns' in kwargs:
self._xml_ns = kwargs['_xml_ns']
if '_xml_ns_key' in kwargs:
self._xml_ns_key = kwargs['_xml_ns_key']
super(PlaneProjectionType, self).__init__(
ReferencePoint=ReferencePoint, SampleSpacing=SampleSpacing, TimeCOAPoly=TimeCOAPoly, **kwargs)
self.ProductPlane = ProductPlane | Parameters
----------
ReferencePoint : ReferencePointType
SampleSpacing : RowColDoubleType|numpy.ndarray|list|tuple
TimeCOAPoly : Poly2DType|numpy.ndarray|list|tuple
ProductPlane : ProductPlaneType
kwargs | https://github.com/ngageoint/sarpy/blob/91405721a7e6ffe7c76dd7b143915fee4bee1e82/sarpy/io/product/sidd2_elements/Measurement.py#L132-L149 | __classification__ = "UNCLASSIFIED"
__author__ = "Thomas McCullough"
from typing import Union, List
from sarpy.io.xml.base import Serializable, SerializableArray
from sarpy.io.xml.descriptors import SerializableDescriptor, UnitVectorDescriptor, FloatDescriptor, StringEnumDescriptor, SerializableArrayDescriptor
from .base import DEFAULT_STRICT
from .blocks import ReferencePointType, RowColDoubleType, Poly2DType, XYZType, RowColIntType, XYZPolyType, RowColArrayElement
class BaseProjectionType(Serializable):
_fields = ('ReferencePoint', )
_required = ('ReferencePoint', )
ReferencePoint = SerializableDescriptor(
'ReferencePoint', ReferencePointType, _required, strict=DEFAULT_STRICT,
docstring='Reference point for the geometrical system.')
def __init__(self, ReferencePoint=None, **kwargs):
if '_xml_ns' in kwargs:
self._xml_ns = kwargs['_xml_ns']
if '_xml_ns_key' in kwargs:
self._xml_ns_key = kwargs['_xml_ns_key']
self.ReferencePoint = ReferencePoint
super(BaseProjectionType, self).__init__(**kwargs)
class MeasurableProjectionType(BaseProjectionType):
_fields = ('ReferencePoint', 'SampleSpacing', 'TimeCOAPoly')
_required = ('ReferencePoint', 'SampleSpacing', 'TimeCOAPoly')
SampleSpacing = SerializableDescriptor(
'SampleSpacing', RowColDoubleType, _required, strict=DEFAULT_STRICT,
docstring='Sample spacing in row and column.')
TimeCOAPoly = SerializableDescriptor(
'TimeCOAPoly', Poly2DType, _required, strict=DEFAULT_STRICT,
docstring='Time (units = seconds) at which center of aperture for a given pixel '
'coordinate in the product occurs.')
def __init__(self, ReferencePoint=None, SampleSpacing=None, TimeCOAPoly=None, **kwargs):
if '_xml_ns' in kwargs:
self._xml_ns = kwargs['_xml_ns']
if '_xml_ns_key' in kwargs:
self._xml_ns_key = kwargs['_xml_ns_key']
super(MeasurableProjectionType, self).__init__(ReferencePoint=ReferencePoint, **kwargs)
self.SampleSpacing = SampleSpacing
self.TimeCOAPoly = TimeCOAPoly
class ProductPlaneType(Serializable):
_fields = ('RowUnitVector', 'ColUnitVector')
_required = _fields
RowUnitVector = UnitVectorDescriptor(
'RowUnitVector', XYZType, _required, strict=DEFAULT_STRICT,
docstring='Unit vector of the plane defined to be aligned in the increasing row direction '
'of the product. (Defined as Rpgd in Design and Exploitation document)')
ColUnitVector = UnitVectorDescriptor(
'ColUnitVector', XYZType, _required, strict=DEFAULT_STRICT,
docstring='Unit vector of the plane defined to be aligned in the increasing column direction '
'of the product. (Defined as Cpgd in Design and Exploitation document)')
def __init__(self, RowUnitVector=None, ColUnitVector=None, **kwargs):
if '_xml_ns' in kwargs:
self._xml_ns = kwargs['_xml_ns']
if '_xml_ns_key' in kwargs:
self._xml_ns_key = kwargs['_xml_ns_key']
self.RowUnitVector = RowUnitVector
self.ColUnitVector = ColUnitVector
super(ProductPlaneType, self).__init__(**kwargs)
class PlaneProjectionType(MeasurableProjectionType):
_fields = ('ReferencePoint', 'SampleSpacing', 'TimeCOAPoly', 'ProductPlane')
_required = ('ReferencePoint', 'SampleSpacing', 'TimeCOAPoly', 'ProductPlane')
ProductPlane = SerializableDescriptor(
'ProductPlane', ProductPlaneType, _required, strict=DEFAULT_STRICT,
docstring='') | MIT License |
elliot79313/tra-tracking-on-gae | gaesessions/__init__.py | Session.make_cookie_headers | python | def make_cookie_headers(self):
if not self.sid:
return [EXPIRE_COOKIE_FMT % k for k in self.cookie_keys]
if self.cookie_data is None:
return []
if self.is_ssl_only():
m = MAX_DATA_PER_COOKIE - 8
fmt = COOKIE_FMT_SECURE
else:
m = MAX_DATA_PER_COOKIE
fmt = COOKIE_FMT
sig = Session.__compute_hmac(self.base_key, self.sid, self.cookie_data)
cv = sig + self.sid + b64encode(self.cookie_data)
num_cookies = 1 + (len(cv) - 1) / m
if self.get_expiration() > 0:
ed = "expires=%s; " % datetime.datetime.fromtimestamp(self.get_expiration()).strftime(COOKIE_DATE_FMT)
else:
ed = ''
cookies = [fmt % (i, cv[i * m:i * m + m], ed) for i in xrange(num_cookies)]
old_cookies = xrange(num_cookies, len(self.cookie_keys))
key = COOKIE_NAME_PREFIX + '%02d'
cookies_to_ax = [EXPIRE_COOKIE_FMT % (key % i) for i in old_cookies]
return cookies + cookies_to_ax | Returns a list of cookie headers to send (if any). | https://github.com/elliot79313/tra-tracking-on-gae/blob/9f920a6e96b357bccba2d4328a3a7e2dcdebfc0a/gaesessions/__init__.py#L120-L149 | from Cookie import CookieError, SimpleCookie
from base64 import b64decode, b64encode
import datetime
import hashlib
import hmac
import logging
import pickle
import os
import threading
import time
from google.appengine.api import memcache
from google.appengine.ext import db
COOKIE_NAME_PREFIX = "DgU"
COOKIE_PATH = "/"
DEFAULT_COOKIE_ONLY_THRESH = 10240
DEFAULT_LIFETIME = datetime.timedelta(days=7)
SID_LEN = 43
SIG_LEN = 44
MAX_COOKIE_LEN = 4096
EXPIRE_COOKIE_FMT = ' %s=; expires=Wed, 01-Jan-1970 00:00:00 GMT; Path=' + COOKIE_PATH
COOKIE_FMT = ' ' + COOKIE_NAME_PREFIX + '%02d="%s"; %sPath=' + COOKIE_PATH + '; HttpOnly'
COOKIE_FMT_SECURE = COOKIE_FMT + '; Secure'
COOKIE_DATE_FMT = '%a, %d-%b-%Y %H:%M:%S GMT'
COOKIE_OVERHEAD = len(COOKIE_FMT % (0, '', '')) + len('expires=Xxx, xx XXX XXXX XX:XX:XX GMT; ') + 150
MAX_DATA_PER_COOKIE = MAX_COOKIE_LEN - COOKIE_OVERHEAD
_tls = threading.local()
def get_current_session():
return _tls.current_session
def set_current_session(session):
_tls.current_session = session
def is_gaesessions_key(k):
return k.startswith(COOKIE_NAME_PREFIX)
class SessionModel(db.Model):
pdump = db.BlobProperty()
class Session(object):
DIRTY_BUT_DONT_PERSIST_TO_DB = 1
def __init__(self, sid=None, lifetime=DEFAULT_LIFETIME, no_datastore=False,
cookie_only_threshold=DEFAULT_COOKIE_ONLY_THRESH, cookie_key=None):
self._accessed = False
self.sid = None
self.cookie_keys = []
self.cookie_data = None
self.data = {}
self.dirty = False
self.lifetime = lifetime
self.no_datastore = no_datastore
self.cookie_only_thresh = cookie_only_threshold
self.base_key = cookie_key
if sid:
self.__set_sid(sid, False)
self.data = None
else:
self.__read_cookie()
@staticmethod
def __compute_hmac(base_key, sid, text):
key = base_key + sid
return b64encode(hmac.new(key, text, hashlib.sha256).digest())
def __read_cookie(self):
try:
cookie = SimpleCookie(os.environ['HTTP_COOKIE'])
self.cookie_keys = filter(is_gaesessions_key, cookie.keys())
if not self.cookie_keys:
return
self.cookie_keys.sort()
data = ''.join(cookie[k].value for k in self.cookie_keys)
i = SIG_LEN + SID_LEN
sig, sid, b64pdump = data[:SIG_LEN], data[SIG_LEN:i], data[i:]
pdump = b64decode(b64pdump)
actual_sig = Session.__compute_hmac(self.base_key, sid, pdump)
if sig == actual_sig:
self.__set_sid(sid, False)
if self.get_expiration() != 0 and time.time() > self.get_expiration():
return self.terminate()
if pdump:
self.data = self.__decode_data(pdump)
else:
self.data = None
else:
logging.warn('cookie with invalid sig received from %s: %s' % (os.environ.get('REMOTE_ADDR'), b64pdump))
except (CookieError, KeyError, IndexError, TypeError):
self.terminate(False) | MIT License |
ziirish/burp-ui | burpui/tools/logging.py | Logger.init_logger | python | def init_logger(self, config):
level = config.get("level", None)
level = self.level if level is None else level
level = convert_level(level)
logfile = config.get("logfile")
if self._handler is not None:
self.removeHandler(self._handler)
if logfile:
handler = logging.FileHandler(logfile)
else:
handler = logging.StreamHandler()
if level > logging.DEBUG:
LOG_FORMAT = (
"[%(asctime)s] %(levelname)s in " "%(module)s.%(funcName)s: %(message)s"
)
else:
LOG_FORMAT = (
"-" * 27
+ "[%(asctime)s]"
+ "-" * 28
+ "\n"
+ "%(levelname)s in %(module)s.%(funcName)s "
+ "[%(pathname)s:%(lineno)d]:\n"
+ "%(message)s\n"
+ "-" * 80
)
handler.setLevel(level)
handler.setFormatter(logging.Formatter(LOG_FORMAT))
self.setLevel(level)
self.addHandler(handler)
self._handler = handler | :param config: Logger configuration
:type config: dict | https://github.com/ziirish/burp-ui/blob/668922753d97f0a71844d6985d9b8b2695fb2421/burpui/tools/logging.py#L84-L121 | import logging
def convert_level(verbose):
if logging.getLevelName(verbose) != "Level %s" % verbose and (
not isinstance(verbose, int) or verbose > 0
):
return verbose
if isinstance(verbose, bool):
if verbose:
verbose = logging.DEBUG
else:
verbose = logging.CRITICAL
else:
levels = [
logging.CRITICAL,
logging.ERROR,
logging.WARNING,
logging.INFO,
logging.DEBUG,
]
if verbose >= len(levels):
verbose = len(levels) - 1
if not verbose:
verbose = 0
verbose = levels[verbose]
return verbose
class Logger(logging.Logger):
app = None
_handler = None
def __init__(self, app=None, name=None, level=logging.NOTSET):
if app and not name:
name = app.name
elif not name:
name = "burp-ui"
logging.Logger.__init__(self, name, level)
if app:
self.init_app(app)
def init_app(self, app):
self.app = app
config = {
"level": app.config.get("LOG_LEVEL"),
"logfile": app.config.get("LOG_FILE"),
}
self.init_logger(config) | BSD 3-Clause New or Revised License |
galacticpuzzlehunt/gph-site | puzzles/views.py | hints | python | def hints(request):
puzzle = request.context.puzzle
team = request.context.team
open_hints = []
if ONE_HINT_AT_A_TIME:
open_hints = [hint for hint in team.asked_hints if hint.status == Hint.NO_RESPONSE]
relevant_hints_remaining = (team.num_hints_remaining
if puzzle.round.slug == INTRO_ROUND_SLUG
else team.num_nonintro_hints_remaining)
puzzle_hints = [hint for hint in reversed(team.asked_hints) if hint.puzzle == puzzle]
can_followup = bool(puzzle_hints) and puzzle_hints[0].status == Hint.ANSWERED
error = None
if request.context.hunt_is_over:
error = 'Sorry, hints are closed.'
can_followup = False
elif team.num_hints_remaining <= 0 and team.num_free_answers_remaining <= 0:
error = 'You have no hints available!'
elif relevant_hints_remaining <= 0 and team.num_free_answers_remaining <= 0:
error = 'You have no hints that can be used on this puzzle.'
elif open_hints:
error = ('You already have a hint open (on %s)! '
'You can have one hint open at a time.' % open_hints[0].puzzle)
can_followup = False
if request.method == 'POST':
is_followup = can_followup and bool(request.POST.get('is_followup'))
if error and not is_followup:
messages.error(request, error)
return redirect('hints', puzzle.slug)
form = RequestHintForm(team, request.POST)
if form.is_valid():
if relevant_hints_remaining <= 0 and not is_followup:
team.total_hints_awarded += 1
team.total_free_answers_awarded -= 1
team.save()
Hint(
team=team,
puzzle=puzzle,
hint_question=form.cleaned_data['hint_question'],
notify_emails=form.cleaned_data['notify_emails'],
is_followup=is_followup,
).save()
messages.success(request, (
'Your request for a hint has been submitted and the puzzle '
'hunt staff has been notified\u2014we will respond to it soon!'
))
return redirect('hints', puzzle.slug)
else:
form = RequestHintForm(team)
return render(request, 'hints.html', {
'hints': puzzle_hints,
'error': error,
'form': form,
'intro_count': sum(1 for p in request.context.all_puzzles if p.round.slug == INTRO_ROUND_SLUG),
'relevant_hints_remaining': relevant_hints_remaining,
'can_followup': can_followup,
}) | List or submit hint requests for a puzzle. | https://github.com/galacticpuzzlehunt/gph-site/blob/1f7b123106fb78f2ea5b05d5692126d708d4c7ff/puzzles/views.py#L770-L830 | import csv
import datetime
import itertools
import json
import logging
import os
import requests
from collections import defaultdict, OrderedDict, Counter
from functools import wraps
from urllib.parse import unquote
from django.conf import settings
from django.contrib import messages
from django.contrib.auth import login, update_session_auth_hash
from django.contrib.auth.forms import PasswordChangeForm
from django.contrib.auth.models import User
from django.contrib.auth.tokens import default_token_generator
from django.db.models import F, Q, Avg, Count
from django.forms import formset_factory, modelformset_factory
from django.http import HttpResponse, Http404
from django.shortcuts import redirect, render
from django.template import TemplateDoesNotExist
from django.urls import reverse
from django.utils.encoding import force_bytes
from django.utils.html import escape
from django.utils.http import urlsafe_base64_encode
from django.views.decorators.clickjacking import xframe_options_sameorigin
from django.views.decorators.http import require_GET, require_POST
from django.views.static import serve
from puzzles.models import (
Round,
Puzzle,
Team,
TeamMember,
PuzzleUnlock,
AnswerSubmission,
PuzzleMessage,
Survey,
Hint,
)
from puzzles.forms import (
RegisterForm,
TeamMemberForm,
TeamMemberFormset,
TeamMemberModelFormset,
SubmitAnswerForm,
RequestHintForm,
AnswerHintForm,
SurveyForm,
PasswordResetForm,
)
from puzzles.hunt_config import (
STORY_PAGE_VISIBLE,
WRAPUP_PAGE_VISIBLE,
INITIAL_STATS_AVAILABLE,
SURVEYS_AVAILABLE,
HUNT_START_TIME,
HUNT_END_TIME,
HUNT_CLOSE_TIME,
MAX_MEMBERS_PER_TEAM,
ONE_HINT_AT_A_TIME,
INTRO_ROUND_SLUG,
META_META_SLUG,
)
from puzzles.messaging import send_mail_wrapper, dispatch_victory_alert
from puzzles.shortcuts import dispatch_shortcut
def validate_puzzle(require_team=False):
def decorator(f):
@wraps(f)
def inner(request, slug):
puzzle = Puzzle.objects.filter(slug=slug).first()
if not puzzle or puzzle not in request.context.unlocks:
messages.error(request, 'Invalid puzzle name.')
return redirect('puzzles')
if request.context.team:
unlock = request.context.team.db_unlocks.get(puzzle.id)
if unlock and not unlock.view_datetime:
unlock.view_datetime = request.context.now
unlock.save()
elif require_team:
messages.error(
request,
'You must be signed in and have a registered team to '
'access this page.'
)
return redirect('puzzle', slug)
request.context.puzzle = puzzle
return f(request)
return inner
return decorator
def access_restrictor(check_request):
def decorator(f):
@wraps(f)
def inner(request, *args, **kwargs):
if not request.context.is_superuser:
check_res = check_request(request)
if check_res is not None:
return check_res
return f(request, *args, **kwargs)
return inner
return decorator
@access_restrictor
def require_admin(request):
raise Http404
@access_restrictor
def require_after_hunt_end_or_admin(request):
if not request.context.hunt_is_over:
messages.error(request, 'Sorry, not available until the hunt ends.')
return redirect('index')
@access_restrictor
def require_before_hunt_closed_or_admin(request):
if request.context.hunt_is_closed:
messages.error(request, 'Sorry, the hunt is over.')
return redirect('index')
@require_GET
def index(request):
return render(request, 'home.html')
@require_GET
def rules(request):
return render(request, 'rules.html')
@require_GET
def faq(request):
return render(request, 'faq.html')
@require_GET
def archive(request):
return render(request, 'archive.html')
recaptcha_logger = logging.getLogger('puzzles.recaptcha')
@require_before_hunt_closed_or_admin
def register(request):
team_members_formset = formset_factory(
TeamMemberForm,
formset=TeamMemberFormset,
extra=0,
min_num=1,
max_num=MAX_MEMBERS_PER_TEAM,
validate_max=True,
)
if request.method == 'POST':
form = RegisterForm(request.POST)
formset = team_members_formset(request.POST)
if 'g-recaptcha-response' in request.POST:
url = 'https://www.google.com/recaptcha/api/siteverify'
token = request.POST['g-recaptcha-response']
try:
response = requests.post(url, data={
'secret': settings.RECAPTCHA_SECRETKEY,
'response': token,
}).json()
recaptcha_logger.info('team [%s] token [%s]\n%s' % (
request.POST['team_id'], token, response))
except Exception:
pass
if form.is_valid() and formset.is_valid():
data = form.cleaned_data
formset_data = formset.cleaned_data
user = User.objects.create_user(
data.get('team_id'),
password=data.get('password'),
first_name=data.get('team_name'),
)
team = Team.objects.create(
user=user,
team_name=data.get('team_name'),
)
for team_member in formset_data:
TeamMember.objects.create(
team=team,
name=team_member.get('name'),
email=team_member.get('email'),
)
login(request, user)
team_link = request.build_absolute_uri(
reverse('team', args=(data.get('team_name'),))
)
send_mail_wrapper(
'Team created', 'registration_email',
{
'team_name': data.get('team_name'),
'team_link': team_link,
},
team.get_emails())
return redirect('index')
else:
form = RegisterForm()
formset = team_members_formset()
return render(request, 'register.html', {
'form': form,
'team_members_formset': formset,
})
@require_before_hunt_closed_or_admin
def password_change(request):
if request.method == 'POST':
form = PasswordChangeForm(user=request.user, data=request.POST)
if form.is_valid():
form.save()
update_session_auth_hash(request, form.user)
return redirect('password_change_done')
else:
form = PasswordChangeForm(user=request.user)
return render(request, 'password_change.html', {'form': form})
@require_before_hunt_closed_or_admin
def password_reset(request):
if request.method == 'POST':
form = PasswordResetForm(data=request.POST)
if form.is_valid():
team = form.cleaned_data.get('team')
uid = urlsafe_base64_encode(force_bytes(team.user.pk))
token = default_token_generator.make_token(team.user)
reset_link = request.build_absolute_uri(reverse(
'password_reset_confirm',
kwargs={'uidb64': uid, 'token': token},
))
send_mail_wrapper(
'Password reset', 'password_reset_email',
{'team_name': team.team_name, 'reset_link': reset_link},
team.get_emails())
return redirect('password_reset_done')
else:
form = PasswordResetForm()
return render(request, 'password_reset.html', {'form': form})
@require_GET
def team(request, team_name):
user_team = request.context.team
is_own_team = user_team is not None and user_team.team_name == team_name
can_view_info = is_own_team or request.context.is_superuser
team_query = Team.objects.filter(team_name=team_name)
if not can_view_info:
team_query = team_query.exclude(is_hidden=True)
team = team_query.first()
if not team:
messages.error(request, 'Team \u201c{}\u201d not found.'.format(team_name))
return redirect('teams')
leaderboard_ids = Team.leaderboard_teams(user_team).values_list('id', flat=True)
rank = None
for i, leaderboard_id in enumerate(leaderboard_ids):
if team.id == leaderboard_id:
rank = i + 1
break
guesses = defaultdict(int)
correct = {}
unlock_time_map = {
puzzle_id: unlock.unlock_datetime
for (puzzle_id, unlock) in team.db_unlocks.items()
}
for submission in team.submissions:
if submission.is_correct:
correct[submission.puzzle_id] = {
'submission': submission,
'unlock_time': unlock_time_map.get(submission.puzzle_id),
'solve_time': submission.submitted_datetime,
'open_duration':
(submission.submitted_datetime - unlock_time_map[submission.puzzle_id])
.total_seconds() if submission.puzzle_id in unlock_time_map else None,
}
else:
guesses[submission.puzzle_id] += 1
submissions = []
for puzzle in correct:
correct[puzzle]['guesses'] = guesses[puzzle]
submissions.append(correct[puzzle])
submissions.sort(key=lambda s: s['solve_time'])
solves = [HUNT_START_TIME] + [s['solve_time'] for s in submissions]
if solves[-1] >= HUNT_END_TIME:
solves.append(min(request.context.now, HUNT_CLOSE_TIME))
else:
solves.append(HUNT_END_TIME)
chart = {
'hunt_length': (solves[-1] - HUNT_START_TIME).total_seconds(),
'solves': [{
'before': (solves[i - 1] - HUNT_START_TIME).total_seconds(),
'after': (solves[i] - HUNT_START_TIME).total_seconds(),
} for i in range(1, len(solves))],
'metas': [
(s['solve_time'] - HUNT_START_TIME).total_seconds()
for s in submissions if s['submission'].puzzle.is_meta
],
'end': (HUNT_END_TIME - HUNT_START_TIME).total_seconds(),
}
return render(request, 'team.html', {
'view_team': team,
'submissions': submissions,
'chart': chart,
'solves': sum(1 for s in submissions if not s['submission'].used_free_answer),
'modify_info_available': is_own_team and not request.context.hunt_is_closed,
'view_info_available': can_view_info,
'rank': rank,
})
def teams_generic(request, hide_hidden):
team_name = request.GET.get('team')
user_team = request.context.team
return render(request, 'teams.html', {
'teams': Team.leaderboard(user_team, hide_hidden=hide_hidden),
'current_team': user_team,
})
@require_GET
def teams(request):
return teams_generic(request, hide_hidden=True)
@require_GET
@require_admin
def teams_unhidden(request):
return teams_generic(request, hide_hidden=False)
@require_before_hunt_closed_or_admin
def edit_team(request):
team = request.context.team
if team is None:
messages.error(request, 'You\u2019re not logged in.')
return redirect('login')
team_members_formset = modelformset_factory(
TeamMember,
formset=TeamMemberModelFormset,
fields=('name', 'email'),
extra=0,
min_num=1,
max_num=MAX_MEMBERS_PER_TEAM,
validate_max=True,
)
if request.method == 'POST':
post_data_copy = request.POST.copy()
num_forms = 0
for i in range(int(post_data_copy['form-TOTAL_FORMS'])):
if post_data_copy.get('form-{}-id'.format(i)):
num_forms += 1
post_data_copy['form-INITIAL_FORMS'] = str(num_forms)
post_data_copy['team'] = team
formset = team_members_formset(post_data_copy)
if formset.is_valid():
team_member_ids = set(team.teammember_set.values_list('id', flat=True))
for form in formset.forms:
if form.cleaned_data and form.cleaned_data['id'] is not None:
team_member_ids.remove(form.cleaned_data['id'].id)
TeamMember.objects.filter(id__in=team_member_ids).delete()
team_member_instances = formset.save(commit=False)
for team_member in team_member_instances:
team_member.team = team
team_member.save()
messages.success(request, 'Team updated!')
return redirect('edit-team')
if len(formset) == 0:
errors = formset.non_form_errors()
formset = team_members_formset(queryset=team.teammember_set.all())
formset.non_form_errors().extend(errors)
else:
formset = team_members_formset(queryset=team.teammember_set.all())
return render(request, 'edit_team.html', {'team_members_formset': formset})
@require_GET
def puzzles(request):
if request.context.hunt_has_started:
return render(request, 'puzzles.html', {'rounds': render_puzzles(request)})
elif request.context.hunt_has_almost_started:
return render(request, 'countdown.html', {'start': request.context.start_time})
else:
raise Http404
@require_GET
def round(request, slug):
round = Round.objects.filter(slug=slug).first()
if round:
rounds = render_puzzles(request)
if slug in rounds:
request.context.round = round
template_name = 'round_bodies/{}.html'.format(slug)
try:
return render(request, template_name, {'round': rounds[slug]})
except (TemplateDoesNotExist, IsADirectoryError):
return redirect('puzzles')
messages.error(request, 'Invalid round name.')
return redirect('puzzles')
def render_puzzles(request):
team = request.context.team
solved = {}
hints = {}
if team is not None:
solved = team.solves
hints = Counter(hint.puzzle_id for hint in team.asked_hints)
correct = defaultdict(int)
guesses = defaultdict(int)
teams = defaultdict(set)
full_stats = request.context.is_superuser or request.context.hunt_is_over
if full_stats or INITIAL_STATS_AVAILABLE:
for submission in AnswerSubmission.objects.filter(
used_free_answer=False,
team__is_hidden=False,
submitted_datetime__lt=HUNT_END_TIME,
):
if submission.is_correct:
correct[submission.puzzle_id] += 1
guesses[submission.puzzle_id] += 1
teams[submission.puzzle_id].add(submission.team_id)
fields = Survey.fields()
survey_averages = dict()
if request.context.is_superuser:
surveyed_puzzles = Puzzle.objects.annotate(**{
field.name: Avg('survey__' + field.name)
for field in fields
}).values_list('id', *(field.name for field in fields))
for sp in surveyed_puzzles:
if all(a is not None for a in sp[1:]):
survey_averages[sp[0]] = sp[1:]
rounds = OrderedDict()
for puzzle in request.context.unlocks:
if puzzle.round.slug not in rounds:
rounds[puzzle.round.slug] = {
'round': puzzle.round,
'puzzles': [],
'unlocked_slugs': [],
}
rounds[puzzle.round.slug]['unlocked_slugs'].append(puzzle.slug)
data = {'puzzle': puzzle}
if puzzle.id in solved:
data['answer'] = puzzle.answer
if puzzle.is_meta:
rounds[puzzle.round.slug]['meta_answer'] = puzzle.answer
if puzzle.id in hints:
data['hints'] = hints[puzzle.id]
data['full_stats'] = full_stats
if puzzle.id in guesses:
data['solve_stats'] = {
'correct': correct[puzzle.id],
'guesses': guesses[puzzle.id],
'teams': len(teams[puzzle.id]),
}
if puzzle.id in survey_averages:
data['survey_stats'] = [{
'average': average,
'adjective': field.adjective,
'max_rating': field.max_rating,
} for (field, average) in zip(fields, survey_averages[puzzle.id])]
data['new'] = (team and puzzle.id in team.db_unlocks and
not team.db_unlocks[puzzle.id].view_datetime)
rounds[puzzle.round.slug]['puzzles'].append(data)
return rounds
@require_GET
@validate_puzzle()
def puzzle(request):
team = request.context.team
template_name = 'puzzle_bodies/{}'.format(request.context.puzzle.body_template)
data = {
'can_view_hints':
team and not request.context.hunt_is_closed and (
team.num_hints_total > 0 or
team.num_free_answers_total > 0
),
'can_ask_for_hints':
team and not request.context.hunt_is_over and (
team.num_hints_remaining > 0 or
team.num_free_answers_remaining > 0
),
}
try:
return render(request, template_name, data)
except (TemplateDoesNotExist, IsADirectoryError):
data['template_name'] = template_name
return render(request, 'puzzle.html', data)
@validate_puzzle(require_team=True)
@require_before_hunt_closed_or_admin
def solve(request):
puzzle = request.context.puzzle
team = request.context.team
form = None
survey = None
if request.method == 'POST' and 'answer' in request.POST:
if request.context.puzzle_answer:
messages.error(request, 'You\u2019ve already solved this puzzle!')
return redirect('solve', puzzle.slug)
if request.context.guesses_remaining <= 0:
messages.error(request, 'You have no more guesses for this puzzle!')
return redirect('solve', puzzle.slug)
semicleaned_guess = PuzzleMessage.semiclean_guess(request.POST.get('answer'))
normalized_answer = Puzzle.normalize_answer(request.POST.get('answer'))
puzzle_messages = [
message for message in puzzle.puzzlemessage_set.all()
if semicleaned_guess == message.semicleaned_guess
]
tried_before = any(
normalized_answer == submission.submitted_answer
for submission in request.context.puzzle_submissions
)
is_correct = normalized_answer == puzzle.normalized_answer
form = SubmitAnswerForm(request.POST)
if puzzle_messages:
for message in puzzle_messages:
form.add_error(None, message.response)
elif not normalized_answer:
form.add_error(None, 'All puzzle answers will have '
'at least one letter A through Z (case does not matter).')
elif tried_before:
form.add_error(None, 'You\u2019ve already tried calling in the '
'answer \u201c%s\u201d for this puzzle.' % normalized_answer)
elif form.is_valid():
AnswerSubmission(
team=team,
puzzle=puzzle,
submitted_answer=normalized_answer,
is_correct=is_correct,
used_free_answer=False,
).save()
if is_correct:
if not request.context.hunt_is_over:
team.last_solve_time = request.context.now
team.save()
messages.success(request, '%s is correct!' % puzzle.answer)
if puzzle.slug == META_META_SLUG:
dispatch_victory_alert(
'Team %s has finished the hunt!' % team +
'\n**Emails:** <%s>' % request.build_absolute_uri(reverse('finishers')))
return redirect('victory')
else:
messages.error(request, '%s is incorrect.' % normalized_answer)
return redirect('solve', puzzle.slug)
elif request.method == 'POST':
if not request.context.puzzle_answer or not SURVEYS_AVAILABLE:
raise Http404
survey = SurveyForm(request.POST)
if survey.is_valid():
Survey.objects.update_or_create(
puzzle=puzzle, team=team, defaults=survey.cleaned_data)
messages.success(request, 'Thanks!')
return redirect('solve', puzzle.slug)
if survey is None and SURVEYS_AVAILABLE:
survey = SurveyForm(
instance=Survey.objects.filter(puzzle=puzzle, team=team).first())
return render(request, 'solve.html', {
'form': form or SubmitAnswerForm(),
'survey': survey,
})
@validate_puzzle(require_team=True)
@require_before_hunt_closed_or_admin
def free_answer(request):
puzzle = request.context.puzzle
team = request.context.team
if request.method == 'POST':
if puzzle.is_meta:
messages.error(request, 'You can\u2019t use a free answer on a metapuzzle.')
elif request.context.puzzle_answer:
messages.error(request, 'You\u2019ve already solved this puzzle!')
elif team.num_free_answers_remaining <= 0:
messages.error(request, 'You have no free answers to use.')
elif request.POST.get('use') == 'Yes':
AnswerSubmission(
team=team,
puzzle=puzzle,
submitted_answer=puzzle.normalized_answer,
is_correct=True,
used_free_answer=True,
).save()
messages.success(request, 'Free answer used!')
return redirect('solve', puzzle.slug)
return render(request, 'free_answer.html')
@validate_puzzle()
@require_after_hunt_end_or_admin
def post_hunt_solve(request):
puzzle = request.context.puzzle
answer = Puzzle.normalize_answer(request.GET.get('answer'))
is_correct = answer == puzzle.normalized_answer
return render(request, 'post_hunt_solve.html', {
'is_correct': answer is not None and is_correct,
'is_wrong': answer is not None and not is_correct,
'form': SubmitAnswerForm(),
})
@require_GET
@validate_puzzle()
@require_admin
def survey(request):
surveys = [
{'survey': survey, 'ratings': []} for survey in
request.context.puzzle.survey_set.select_related('team').order_by('id')
]
fields = [
{'field': field, 'total': 0, 'count': 0, 'max': field.max_rating}
for field in Survey.fields()
]
for field in fields:
for survey in surveys:
rating = field['field'].value_from_object(survey['survey'])
if not survey['survey'].team.is_hidden:
field['total'] += rating
field['count'] += 1
survey['ratings'].append((rating, field['field'].max_rating))
field['average'] = field['total'] / field['count'] if field['count'] else 0
return render(request, 'survey.html', {'fields': fields, 'surveys': surveys})
@require_GET
@require_admin
def hint_list(request):
if 'team' in request.GET or 'puzzle' in request.GET:
hints = (
Hint.objects
.select_related()
.order_by('-submitted_datetime')
)
query_description = "Hints"
if 'team' in request.GET:
team = Team.objects.get(id=request.GET['team'])
hints = hints.filter(team=team)
query_description += " from " + team.team_name
if 'puzzle' in request.GET:
puzzle = Puzzle.objects.get(id=request.GET['puzzle'])
hints = hints.filter(puzzle=puzzle)
query_description += " on " + puzzle.name
return render(request, 'hint_list_query.html', {
'query_description': query_description,
'hints': hints,
})
else:
unanswered = (
Hint.objects
.select_related()
.filter(status=Hint.NO_RESPONSE)
.order_by('submitted_datetime')
)
popular = list(
Hint.objects
.values('puzzle_id')
.annotate(count=Count('team_id', distinct=True))
.order_by('-count')
)
claimers = list(
Hint.objects
.values('claimer')
.annotate(count=Count('*'))
.order_by('-count')
)
puzzles = {puzzle.id: puzzle for puzzle in request.context.all_puzzles}
for aggregate in popular:
aggregate['puzzle'] = puzzles[aggregate['puzzle_id']]
return render(request, 'hint_list.html', {
'unanswered': unanswered,
'stats': itertools.zip_longest(popular, claimers),
})
@validate_puzzle(require_team=True)
@require_before_hunt_closed_or_admin | MIT License |
plangrid/flask-rebar | flask_rebar/authenticators/header_api_key.py | HeaderApiKeyAuthenticator.register_key | python | def register_key(self, key, app_name=DEFAULT_APP_NAME):
self.keys[key] = app_name | Register a client application's shared secret.
:param str app_name:
Name for the application. Since an application can have multiple
shared secrets, this does not need to be unique.
:param str key:
The shared secret. | https://github.com/plangrid/flask-rebar/blob/9aa839badb97e1048f261d1573a0dc1341b335eb/flask_rebar/authenticators/header_api_key.py#L51-L61 | from flask import request, g
from werkzeug.security import safe_str_cmp
from flask_rebar import errors, messages
from flask_rebar.authenticators.base import Authenticator
def get_authenticated_app_name():
return g.authenticated_app_name
class HeaderApiKeyAuthenticator(Authenticator):
DEFAULT_APP_NAME = "default"
def __init__(self, header, name="sharedSecret"):
self.header = header
self.keys = {}
self.name = name
@property
def authenticated_app_name(self):
return get_authenticated_app_name() | MIT License |
bitmovin/bitmovin-api-sdk-python | bitmovin_api_sdk/models/akamai_net_storage_input.py | AkamaiNetStorageInput.__eq__ | python | def __eq__(self, other):
if not isinstance(other, AkamaiNetStorageInput):
return False
return self.__dict__ == other.__dict__ | Returns true if both objects are equal | https://github.com/bitmovin/bitmovin-api-sdk-python/blob/79dd938804197151af7cbe5501c7ec1d97872c15/bitmovin_api_sdk/models/akamai_net_storage_input.py#L187-L192 | from enum import Enum
from six import string_types, iteritems
from bitmovin_api_sdk.common.poscheck import poscheck_model
from bitmovin_api_sdk.models.input import Input
import pprint
import six
class AkamaiNetStorageInput(Input):
@poscheck_model
def __init__(self,
id_=None,
name=None,
description=None,
created_at=None,
modified_at=None,
custom_data=None,
host=None,
username=None,
password=None):
super(AkamaiNetStorageInput, self).__init__(id_=id_, name=name, description=description, created_at=created_at, modified_at=modified_at, custom_data=custom_data)
self._host = None
self._username = None
self._password = None
self.discriminator = None
if host is not None:
self.host = host
if username is not None:
self.username = username
if password is not None:
self.password = password
@property
def openapi_types(self):
types = {}
if hasattr(super(AkamaiNetStorageInput, self), 'openapi_types'):
types = getattr(super(AkamaiNetStorageInput, self), 'openapi_types')
types.update({
'host': 'string_types',
'username': 'string_types',
'password': 'string_types'
})
return types
@property
def attribute_map(self):
attributes = {}
if hasattr(super(AkamaiNetStorageInput, self), 'attribute_map'):
attributes = getattr(super(AkamaiNetStorageInput, self), 'attribute_map')
attributes.update({
'host': 'host',
'username': 'username',
'password': 'password'
})
return attributes
@property
def host(self):
return self._host
@host.setter
def host(self, host):
if host is not None:
if not isinstance(host, string_types):
raise TypeError("Invalid type for `host`, type has to be `string_types`")
self._host = host
@property
def username(self):
return self._username
@username.setter
def username(self, username):
if username is not None:
if not isinstance(username, string_types):
raise TypeError("Invalid type for `username`, type has to be `string_types`")
self._username = username
@property
def password(self):
return self._password
@password.setter
def password(self, password):
if password is not None:
if not isinstance(password, string_types):
raise TypeError("Invalid type for `password`, type has to be `string_types`")
self._password = password
def to_dict(self):
result = {}
if hasattr(super(AkamaiNetStorageInput, self), "to_dict"):
result = super(AkamaiNetStorageInput, self).to_dict()
for attr, _ in six.iteritems(self.openapi_types):
value = getattr(self, attr)
if value is None:
continue
if isinstance(value, list):
if len(value) == 0:
continue
result[self.attribute_map.get(attr)] = [y.value if isinstance(y, Enum) else y for y in [x.to_dict() if hasattr(x, "to_dict") else x for x in value]]
elif hasattr(value, "to_dict"):
result[self.attribute_map.get(attr)] = value.to_dict()
elif isinstance(value, Enum):
result[self.attribute_map.get(attr)] = value.value
elif isinstance(value, dict):
result[self.attribute_map.get(attr)] = {k: (v.to_dict() if hasattr(v, "to_dict") else v) for (k, v) in value.items()}
else:
result[self.attribute_map.get(attr)] = value
return result
def to_str(self):
return pprint.pformat(self.to_dict())
def __repr__(self):
return self.to_str() | MIT License |
yuxixie/rl-for-question-generation | discriminators/src/answerability/pretraining/fairseq/data/iterators.py | EpochBatchIterator.next_epoch_itr | python | def next_epoch_itr(self, shuffle=True, fix_batches_to_gpus=False):
if self._next_epoch_itr is not None:
self._cur_epoch_itr = self._next_epoch_itr
self._next_epoch_itr = None
else:
self.epoch += 1
self._cur_epoch_itr = self._get_iterator_for_epoch(
self.epoch, shuffle, fix_batches_to_gpus=fix_batches_to_gpus)
return self._cur_epoch_itr | Return a new iterator over the dataset.
Args:
shuffle (bool, optional): shuffle batches before returning the
iterator. Default: ``True``
fix_batches_to_gpus: ensure that batches are always
allocated to the same shards across epochs. Requires
that :attr:`dataset` supports prefetching. Default:
``False`` | https://github.com/yuxixie/rl-for-question-generation/blob/188cd7b04528e4f192023a596a072b3245c62838/discriminators/src/answerability/pretraining/fairseq/data/iterators.py#L96-L114 | import itertools
import math
import numpy as np
import torch
from . import data_utils
class CountingIterator(object):
def __init__(self, iterable):
self.iterable = iterable
self.count = 0
self.itr = iter(self)
def __len__(self):
return len(self.iterable)
def __iter__(self):
for x in self.iterable:
self.count += 1
yield x
def __next__(self):
return next(self.itr)
def has_next(self):
return self.count < len(self)
def skip(self, num_to_skip):
next(itertools.islice(self.itr, num_to_skip, num_to_skip), None)
return self
class EpochBatchIterator(object):
def __init__(self, dataset, collate_fn, batch_sampler, seed=1, num_shards=1, shard_id=0):
assert isinstance(dataset, torch.utils.data.Dataset)
self.dataset = dataset
self.collate_fn = collate_fn
self.frozen_batches = tuple(batch_sampler)
self.seed = seed
self.num_shards = num_shards
self.shard_id = shard_id
self.epoch = 0
self._cur_epoch_itr = None
self._next_epoch_itr = None
self._supports_prefetch = (
hasattr(dataset, 'supports_prefetch') and dataset.supports_prefetch
)
def __len__(self):
return len(self.frozen_batches) | MIT License |
cebel/pyuniprot | src/pyuniprot/manager/database.py | DbManager.get_alternative_short_names | python | def get_alternative_short_names(cls, entry):
names = []
query = "./n:protein/n:alternativeName/n:shortName"
for name in entry.iterfind(query, namespaces=XN):
names.append(models.AlternativeShortName(name=name.text))
return names | get list of models.AlternativeShortName objects from XML node entry
:param entry: XML node entry
:return: list of :class:`pyuniprot.manager.models.AlternativeShortName` objects | https://github.com/cebel/pyuniprot/blob/19cef498bf9cb01955da1673c00361f8e2d4e8f9/src/pyuniprot/manager/database.py#L440-L452 | import configparser
import gzip
import logging
import os
import re
import shutil
import sys
import time
import lxml
from configparser import RawConfigParser
from datetime import datetime
from typing import Iterable
import numpy as np
import sqlalchemy
from sqlalchemy.engine import reflection
from sqlalchemy.orm import sessionmaker, scoped_session
from sqlalchemy.sql import sqltypes
from tqdm import tqdm
from lxml.etree import iterparse
from . import defaults
from . import models
from ..constants import PYUNIPROT_DATA_DIR, PYUNIPROT_DIR
if sys.version_info[0] == 3:
from urllib.request import urlretrieve
from requests.compat import urlparse, urlsplit
else:
from urllib import urlretrieve
from urlparse import urlparse, urlsplit
log = logging.getLogger(__name__)
alchemy_pandas_dytpe_mapper = {
sqltypes.Text: np.unicode,
sqltypes.String: np.unicode,
sqltypes.Integer: np.float,
sqltypes.REAL: np.double
}
LxmlElement = lxml.etree._Element
XN_URL = 'http://uniprot.org/uniprot'
XN = {'n': XN_URL}
def get_connection_string(connection=None):
if not connection:
config = configparser.ConfigParser()
cfp = defaults.config_file_path
if os.path.exists(cfp):
log.info('fetch database configuration from %s', cfp)
config.read(cfp)
connection = config['database']['sqlalchemy_connection_string']
log.info('load connection string from %s: %s', cfp, connection)
else:
with open(cfp, 'w') as config_file:
connection = defaults.sqlalchemy_connection_string_default
config['database'] = {'sqlalchemy_connection_string': connection}
config.write(config_file)
log.info('create configuration file %s', cfp)
return connection
class BaseDbManager(object):
def __init__(self, connection=None, echo=False):
log.setLevel(logging.INFO)
handler = logging.FileHandler(os.path.join(PYUNIPROT_DIR, defaults.TABLE_PREFIX + 'database.log'))
handler.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
log.addHandler(handler)
try:
self.connection = get_connection_string(connection)
self.engine = sqlalchemy.create_engine(self.connection, echo=echo)
self.inspector = reflection.Inspector.from_engine(self.engine)
self.sessionmaker = sessionmaker(
bind=self.engine,
autoflush=False,
autocommit=False,
expire_on_commit=True
)
self.session = scoped_session(self.sessionmaker)
except:
log.warning('No valid database connection. Execute `pyuniprot connection` on command line')
def _create_tables(self, checkfirst=True):
log.info('create tables in {}'.format(self.engine.url))
models.Base.metadata.create_all(self.engine, checkfirst=checkfirst)
def _drop_tables(self):
log.info('drop tables in {}'.format(self.engine.url))
self.session.commit()
models.Base.metadata.drop_all(self.engine)
self.session.commit()
class DbManager(BaseDbManager):
pmids = set()
keywords = {}
subcellular_locations = {}
tissues = {}
def db_import_xml(self, url: Iterable[str] = None, force_download: bool = False, taxids: Iterable[int] = None,
silent: bool = False):
log.info('Update UniProt database from {}'.format(url))
self._drop_tables()
xml_file_path, version_file_path = self.download_and_extract(url, force_download)
self._create_tables()
self.import_version(version_file_path)
self.import_xml(xml_file_path, taxids, silent)
self.session.close()
def import_version(self, version_file_path):
pattern = "UniProtKB/(?P<knowledgebase>Swiss-Prot|TrEMBL) Release" " (?P<release_name>\\d{4}_\\d{2}) of (?P<release_date>\\d{2}-\\w{3}-\\d{4})"
with open(version_file_path) as fd:
content = fd.read()
for knowledgebase, release_name, release_date_str in re.findall(pattern, content):
release_date = datetime.strptime(release_date_str, '%d-%b-%Y')
version = models.Version(
knowledgebase=knowledgebase,
release_name=release_name,
release_date=release_date
)
self.session.add(version)
self.session.commit()
def import_xml(self, xml_file_path, taxids=None, silent=False):
version = self.session.query(models.Version).filter(models.Version.knowledgebase == 'Swiss-Prot').first()
version.import_start_date = datetime.now()
log.info('Load gzipped XML from {}'.format(xml_file_path))
doc = iterparse(xml_file_path, events=('start', 'end'))
batch_commit_after = 100
counter = 0
for action, elem in tqdm(doc, mininterval=1, disable=silent):
if action == 'end' and elem.tag == f'{{{XN_URL}}}entry':
counter += 1
self.insert_entry(elem, taxids)
if counter%batch_commit_after == 0:
self.session.commit()
elem.clear()
version.import_completed_date = datetime.now()
self.session.commit()
def insert_entry(self, entry, taxids):
entry_dict = dict(entry.attrib)
entry_dict['created'] = datetime.strptime(entry_dict['created'], '%Y-%m-%d')
entry_dict['modified'] = datetime.strptime(entry_dict['modified'], '%Y-%m-%d')
taxid = self.get_taxid(entry)
if taxids is None or taxid in taxids:
entry_dict = self.update_entry_dict(entry, entry_dict, taxid)
entry_obj = models.Entry(**entry_dict)
del entry_dict
self.session.add(entry_obj)
def update_entry_dict(self, entry, entry_dict, taxid):
rp_full, rp_short = self.get_recommended_protein_name(entry)
pmids = self.get_pmids(entry)
accessions = self.get_accessions(entry)
sequence = self.get_sequence(entry)
name = self.get_entry_name(entry)
subcellular_locations = self.get_subcellular_locations(entry)
tissue_in_references = self.get_tissue_in_references(entry)
organism_hosts = self.get_organism_hosts(entry)
db_references = self.get_db_references(entry)
other_gene_names = self.get_other_gene_names(entry)
features = self.get_features(entry)
functions = self.get_functions(entry)
gene_name = self.get_gene_name(entry)
keywords = self.get_keywords(entry)
ec_numbers = self.get_ec_numbers(entry)
alternative_full_names = self.get_alternative_full_names(entry)
alternative_short_names = self.get_alternative_short_names(entry)
disease_comments = self.get_disease_comments(entry)
tissue_specificities = self.get_tissue_specificities(entry)
entry_dict.update(
accessions=accessions,
sequence=sequence,
name=name,
pmids=pmids,
subcellular_locations=subcellular_locations,
tissue_in_references=tissue_in_references,
organism_hosts=organism_hosts,
recommended_full_name=rp_full,
recommended_short_name=rp_short,
taxid=taxid,
db_references=db_references,
other_gene_names=other_gene_names,
features=features,
functions=functions,
gene_name=gene_name,
keywords=keywords,
ec_numbers=ec_numbers,
alternative_full_names=alternative_full_names,
alternative_short_names=alternative_short_names,
disease_comments=disease_comments,
tissue_specificities=tissue_specificities
)
return entry_dict
@classmethod
def get_sequence(cls, entry):
seq_tag = entry.find("./n:sequence", namespaces=XN)
seq = seq_tag.text
seq_tag.clear()
return models.Sequence(sequence=seq)
def get_tissue_in_references(self, entry):
tissue_in_references = []
query = "./n:reference/n:source/n:tissue"
tissues = {x.text for x in entry.iterfind(query, namespaces=XN)}
for tissue in tissues:
if tissue not in self.tissues:
self.tissues[tissue] = models.TissueInReference(tissue=tissue)
tissue_in_references.append(self.tissues[tissue])
return tissue_in_references
@classmethod
def get_tissue_specificities(cls, entry):
tissue_specificities = []
query = "./n:comment[@type='tissue specificity']/n:text"
for ts in entry.iterfind(query, namespaces=XN):
tissue_specificities.append(models.TissueSpecificity(comment=ts.text))
return tissue_specificities
def get_subcellular_locations(self, entry):
subcellular_locations = []
query = './n:comment/n:subcellularLocation/location'
sls = {x.text for x in entry.iterfind(query, namespaces=XN)}
for sl in sls:
if sl not in self.subcellular_locations:
self.subcellular_locations[sl] = models.SubcellularLocation(location=sl)
subcellular_locations.append(self.subcellular_locations[sl])
return subcellular_locations
def get_keywords(self, entry):
keyword_objects = []
for keyword in entry.iterfind("./n:keyword", namespaces=XN):
identifier = keyword.get('id')
name = keyword.text
keyword_hash = hash(identifier)
if keyword_hash not in self.keywords:
self.keywords[keyword_hash] = models.Keyword(**{'identifier': identifier, 'name': name})
keyword_objects.append(self.keywords[keyword_hash])
return keyword_objects
@classmethod
def get_entry_name(cls, entry):
name = entry.find('./n:name', namespaces=XN).text
return name
def get_disease_comments(self, entry):
disease_comments = []
query = "./n:comment[@type='disease']"
for disease_comment in entry.iterfind(query, namespaces=XN):
value_dict = {'comment': disease_comment.find('./n:text', namespaces=XN).text}
disease = disease_comment.find("./n:disease", namespaces=XN)
if disease is not None:
disease_dict = {'identifier': disease.get('id')}
for element in disease:
key = element.tag
if key in ['acronym', 'description', 'name']:
disease_dict[key] = element.text
if key == 'dbReference':
disease_dict['ref_id'] = element.get('id')
disease_dict['ref_type'] = element.get('type')
disease_obj = models.get_or_create(self.session, models.Disease, **disease_dict)
self.session.add(disease_obj)
self.session.flush()
value_dict['disease_id'] = disease_obj.id
disease_comments.append(models.DiseaseComment(**value_dict))
return disease_comments
@classmethod
def get_alternative_full_names(cls, entry):
names = []
query = "./n:protein/n:alternativeName/n:fullName"
for name in entry.iterfind(query, namespaces=XN):
names.append(models.AlternativeFullName(name=name.text))
return names
@classmethod | Apache License 2.0 |
intel/openfl | openfl/protocols/director_pb2_grpc.py | FederationDirectorServicer.CollaboratorHealthCheck | python | def CollaboratorHealthCheck(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!') | Missing associated documentation comment in .proto file. | https://github.com/intel/openfl/blob/4bda3850b6bce7c904a5ac3ed56115bec00be2e0/openfl/protocols/director_pb2_grpc.py#L123-L127 | import grpc
from . import director_pb2 as director__pb2
class FederationDirectorStub(object):
def __init__(self, channel):
self.AcknowledgeShard = channel.unary_unary(
'/FederationDirector/AcknowledgeShard',
request_serializer=director__pb2.ShardInfo.SerializeToString,
response_deserializer=director__pb2.ShardAcknowledgement.FromString,
)
self.WaitExperiment = channel.stream_stream(
'/FederationDirector/WaitExperiment',
request_serializer=director__pb2.WaitExperimentRequest.SerializeToString,
response_deserializer=director__pb2.WaitExperimentResponse.FromString,
)
self.GetExperimentData = channel.unary_stream(
'/FederationDirector/GetExperimentData',
request_serializer=director__pb2.GetExperimentDataRequest.SerializeToString,
response_deserializer=director__pb2.ExperimentData.FromString,
)
self.SetNewExperiment = channel.stream_unary(
'/FederationDirector/SetNewExperiment',
request_serializer=director__pb2.ExperimentInfo.SerializeToString,
response_deserializer=director__pb2.SetNewExperimentResponse.FromString,
)
self.GetDatasetInfo = channel.unary_unary(
'/FederationDirector/GetDatasetInfo',
request_serializer=director__pb2.GetDatasetInfoRequest.SerializeToString,
response_deserializer=director__pb2.ShardInfo.FromString,
)
self.GetTrainedModel = channel.unary_unary(
'/FederationDirector/GetTrainedModel',
request_serializer=director__pb2.GetTrainedModelRequest.SerializeToString,
response_deserializer=director__pb2.TrainedModelResponse.FromString,
)
self.StreamMetrics = channel.unary_stream(
'/FederationDirector/StreamMetrics',
request_serializer=director__pb2.StreamMetricsRequest.SerializeToString,
response_deserializer=director__pb2.StreamMetricsResponse.FromString,
)
self.RemoveExperimentData = channel.unary_unary(
'/FederationDirector/RemoveExperimentData',
request_serializer=director__pb2.RemoveExperimentRequest.SerializeToString,
response_deserializer=director__pb2.RemoveExperimentResponse.FromString,
)
self.CollaboratorHealthCheck = channel.unary_unary(
'/FederationDirector/CollaboratorHealthCheck',
request_serializer=director__pb2.CollaboratorStatus.SerializeToString,
response_deserializer=director__pb2.CollaboratorHealthCheckResponse.FromString,
)
self.GetEnvoys = channel.unary_unary(
'/FederationDirector/GetEnvoys',
request_serializer=director__pb2.GetEnvoysRequest.SerializeToString,
response_deserializer=director__pb2.GetEnvoysResponse.FromString,
)
class FederationDirectorServicer(object):
def AcknowledgeShard(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def WaitExperiment(self, request_iterator, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def GetExperimentData(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def SetNewExperiment(self, request_iterator, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def GetDatasetInfo(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def GetTrainedModel(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def StreamMetrics(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def RemoveExperimentData(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!') | Apache License 2.0 |
jgurtowski/ectools | nucio.py | getNucmerAlignmentIterator | python | def getNucmerAlignmentIterator(fh):
return lineRecordIterator(fh, NucRecord, NucRecordTypes) | Get nucmer alignments from show-coords output
(Deprecated legacy) | https://github.com/jgurtowski/ectools/blob/031eb0300c82392915d8393a5fedb4d3452b15bf/nucio.py#L68-L72 | import sys
from collections import namedtuple
from itertools import imap, izip, ifilter
from misc import trueFunc
NucRecord = namedtuple('NucRecord',
["sstart","send","b3","qstart","qend",
"b6", "salen","qalen","b9","pctid",
"b11","slen","qlen","b14","sname","qname"])
NucRecordTypes = [int, int, str, int,int,str,int,int,str,float,str,
int,int,str,str,str]
NucSNPRecord = namedtuple('NucSNPRecord',
["spos", "sbase", "qbase", "qpos",
"b5", "buf", "dist", "b8", "r", "q", "b9",
"frm1", "frm2", "b12", "r1", "r2", "sname", "qname"])
NucSNPRecordTypes = [int, str, str, int, str, int, int, str, int, int,
str, int, int, str, int, int, str, str]
DeltaAlignment = namedtuple('DeltaAlignment',
["sstart","send","qstart","qend","errors",
"simerrors", "stopcodons", "positions"])
DeltaAlignmentTypes = [int, int, int, int ,int ,int ,int, list]
DeltaRecord = namedtuple('DeltaRecord',
["sname", "qname", "slen", "qlen", "alignments"])
DeltaRecordTypes = [str, str, int, int, list]
M4Record = namedtuple('M4Record',
["qname", "tname", "score", "pctsimilarity", "qstrand",
"qstart", "qend", "qseqlength", "tstrand", "tstart" ,"tend",
"tseqlength", "mapqv"])
M4RecordTypes = [str, str, float, float, int, int, int, int, int, int,int,int,int]
def lineRecordIterator(fh, nt, nt_types, filter_func=trueFunc, delim=None, cleaner_func=None):
if cleaner_func == None:
cleaner_func = lambda line : line.strip().split(delim)
filtered_lines = ifilter(filter_func, fh)
split_clean_lines = imap(cleaner_func, filtered_lines)
typed = imap(lambda splitline : typeify(splitline, nt_types), split_clean_lines)
return imap(nt._make, typed)
def lineItemIterator(fh, filter_func=trueFunc):
filtered = ifilter( filter_func, fh)
return imap(str.split, filtered) | BSD 3-Clause New or Revised License |
awused/cynaoko | naoko/lib/database.py | NaokoDB.insertVideo | python | def insertVideo(self, site, vid, title, dur, nick):
self.logger.debug("Inserting %s into videos", (site, vid, int(dur * 1000), title, 0))
self.logger.debug("Inserting %s into video_stats", (site, vid, nick))
self.executeDML("INSERT OR IGNORE INTO videos VALUES(?, ?, ?, ?, ?)", (site, vid, int(dur * 1000), title, 0))
self.executeDML("INSERT INTO video_stats VALUES(?, ?, ?)", (site, vid, nick))
self.commit()
self.unflagVideo(site, vid, 1) | Inserts a video into the database.
The video is assumed to be valid so it also removes the invalid flag from the video.
dur is supplied in seconds as a float but stored in milliseconds as an integer.
nick is the username of the user who added it, with unregistered users using an empty string. | https://github.com/awused/cynaoko/blob/23e3f287814535e80268a0fa8dfb6d415bb4a9a2/naoko/lib/database.py#L465-L480 | import sqlite3
import logging
import time
try:
from settings import LOG_LEVEL
except:
print "Defaulting to LOG_LEVEL debug [%s]" % (__name__)
LOG_LEVEL = logging.DEBUG
ProgrammingError = sqlite3.ProgrammingError
DatabaseError = sqlite3.DatabaseError
def dbopen(fn):
def dbopen_func(self, *args, **kwargs):
if self._state == "open":
return fn(self, *args, **kwargs)
elif self._state == "closed":
raise DatabaseError("Cannot perform operations on closed database")
else:
raise DatabaseError("Database must be open to perform operations")
return dbopen_func
class NaokoCursor(sqlite3.Cursor):
_id = 0
def __init__(self, *args, **kwargs):
self.logger = logging.getLogger('naokocursor')
self.id = NaokoCursor._id
NaokoCursor._id += 1
sqlite3.Cursor.__init__(self, *args, **kwargs)
def __enter__(self):
return self
def __str__(self):
return "NaokoCursor #%d" % self.id
def __exit__(self, exc_type, exc_value, traceback):
self.close()
if not self.logger:
return
if exc_type and exc_value:
self.logger.error("%s closed %s: %s" % (self, exc_type, exc_value))
else:
self.logger.debug("%s closed" % self)
class NaokoDB(object):
_dbinfo_sql = "SELECT name FROM sqlite_master WHERE type='table'"
_version_sql = "SELECT value FROM metadata WHERE key='dbversion'"
_required_tables = set(["video_stats", "videos", "user_count", "bans", "chat"])
_foreign_keys = False
def __enter__(self):
return self
def __init__(self, database):
self.logger = logging.getLogger("database")
self.logger.setLevel(LOG_LEVEL)
self.db_file = database
self.con = sqlite3.connect(database, timeout=60)
self._state = "open"
self.initdb()
tables = self._getTables()
if not self._required_tables <= tables:
raise ValueError("Database '%s' is non-empty but "
"does not provide required tables %s" %
(database, self._required_tables - tables))
def __exit__(self, exc_type, exc_val, exc_tb):
self._state = "closed"
if self.con:
self.con.close()
if exc_type and exc_val:
self.logger.error("Database '%s' closed due to %s: %s" %
(self.db_file, exc_type, exc_val))
else:
self.logger.debug("Database '%s' closed" % self.db_file)
def _getTables(self):
with self.execute(self._dbinfo_sql) as cur:
return set([table[0] for table in cur.fetchall()])
def _getVersion(self):
tables = self._getTables()
if 'metadata' in tables:
try:
with self.execute(self._version_sql) as cur:
version = cur.fetchone()[0]
self.logger.debug("Database version is %s" % version)
return int(version)
except TypeError as e:
self.logger.debug(e)
self.logger.debug("Database version is 3 (empty metadata table)")
self.executeDML("INSERT INTO metadata(key, value) VALUES ('dbversion', '3')")
self.commit()
return 3
elif tables :
self.logger.debug("Database version is 1 (no metadata table)")
return 1
def _update(self):
version = self._getVersion()
if version < 2:
stmts = ["CREATE TABLE IF NOT EXISTS videos(type TEXT, id TEXT, duration_ms INTEGER, title TEXT, primary key(type, id))",
"CREATE TABLE IF NOT EXISTS video_stats(type TEXT, id TEXT, uname TEXT, FOREIGN KEY(type, id) REFERENCES video(type, id))",
"CREATE INDEX IF NOT EXISTS video_stats_idx ON video_stats(type, id)",
"CREATE TABLE IF NOT EXISTS bans(reason TEXT, auth INTEGER, uname TEXT, timestamp INTEGER, mod TEXT)",
"CREATE TABLE IF NOT EXISTS user_count(timestamp INTEGER, count INTEGER, primary key(timestamp, count))",
"CREATE TABLE IF NOT EXISTS chat(timestamp INTEGER, username TEXT, userid TEXT, msg TEXT, protocol TEXT, channel TEXT, flags TEXT)",
"CREATE INDEX IF NOT EXISTS chat_ts ON chat(timestamp)",
"CREATE INDEX IF NOT EXISTS chat_user ON chat(username)",
"ALTER TABLE videos ADD COLUMN flags INTEGER DEFAULT 0 NOT NULL",
"CREATE TABLE metadata(key TEXT, value TEXT, PRIMARY KEY(key))",
"INSERT INTO metadata(key, value) VALUES ('dbversion', '2')"]
for stmt in stmts:
self.executeDML(stmt)
self.commit()
if version < 3:
stmts = ["UPDATE chat SET timestamp = timestamp * 1000",
"UPDATE metadata SET value = '3' WHERE key = 'dbversion'"]
for stmt in stmts:
self.executeDML(stmt)
self.commit()
if version < 4:
stmts = ["UPDATE user_count SET timestamp = count, count = timestamp WHERE timestamp < 1000",
"UPDATE metadata SET value = '4' WHERE key = 'dbversion'"]
for stmt in stmts:
self.executeDML(stmt)
self.commit()
if version < 5:
stmts = ["CREATE TABLE IF NOT EXISTS playlistmeta(name TEXT, uname TEXT, length INTEGER, timestamp INTEGER, PRIMARY KEY(name))",
"CREATE TABLE IF NOT EXISTS playlists(name TEXT, idx INTEGER, type TEXT, id TEXT, PRIMARY KEY(name, idx), FOREIGN KEY(name) " +
"REFERENCES playlistmeta(name), FOREIGN KEY(type, id) REFERENCES videos(type, id))",
"CREATE TABLE IF NOT EXISTS video_stats2(type TEXT, id TEXT, uname TEXT, FOREIGN KEY(type, id) REFERENCES videos(type, id))",
"INSERT INTO video_stats2(type, id, uname) SELECT type, id, uname FROM video_stats",
"DROP INDEX video_stats_idx",
"ALTER TABLE video_stats RENAME TO video_stats_backup",
"ALTER TABLE video_stats2 RENAME TO video_stats",
"CREATE INDEX IF NOT EXISTS video_stats_idx ON video_stats(type, id)",
"UPDATE metadata SET value = '5' WHERE key = 'dbversion'"]
for stmt in stmts:
self.executeDML(stmt)
self.commit()
if version < 6:
stmts = ["DROP TABLE video_stats_backup",
"UPDATE videos SET flags = flags & ~1 WHERE type = 'yt'",
"UPDATE metadata SET value = '6' WHERE key = 'dbversion'"]
for stmt in stmts:
self.executeDML(stmt)
self.commit()
self._foreign_keys = True
@dbopen
def initdb(self):
self._update()
assert self._getVersion() >= 6
@dbopen
def cursor(self):
cur = self.con.cursor(NaokoCursor)
if self._foreign_keys: cur.execute("PRAGMA foreign_keys = ON");
return cur
@dbopen
def execute(self, stmt, *args):
cur = self.cursor()
cur.execute(stmt, *args)
return cur
@dbopen
def executeDML(self, stmt, *args):
with self.execute(stmt, *args):
pass
@dbopen
def commit(self):
self.con.commit()
@dbopen
def executescript(self, script):
cur = self.cursor()
cur.executescript(script)
return cur
@dbopen
def fetch(self, stmt, *args):
with self.execute(stmt, *args) as cur:
return cur.fetchall()
def close(self):
self.__exit__(None, None, None)
def getVideos(self, num=None, columns=None, orderby=None, duration_s=None, title=None, user=None, blockedFlags=0b11, blockedSites = []):
_tables = {'videos' : set(['type', 'id', 'duration_ms', 'title']),
'video_stats' : set(['type', 'id', 'uname'])}
legal_cols = set.union(_tables['videos'], _tables['video_stats'])
if not columns:
columns = legal_cols
if not set(columns) <= legal_cols:
raise ProgrammingError("Argument columns: %s not a subset of video "
"columns %s" % (columns, _tables['videos']))
col_repl = {'id' : 'v.id',
'type' : 'v.type'}
sel_cols = []
for col in columns:
sel_col = col
if col in col_repl:
sel_col = col_repl[col]
sel_cols.append(sel_col)
binds = ()
sel_list = ', '.join(sel_cols)
sel_cls = 'SELECT DISTINCT %s' % (sel_list)
from_cls = ' FROM video_stats vs, videos v '
where_cls = ' WHERE vs.type = v.type AND vs.id = v.id '
if isinstance(duration_s, (int, long)):
where_cls += " AND v.duration_ms <= ? "
binds += (duration_s*1000,)
if isinstance(title, (str, unicode)):
where_cls += " AND v.title like ? COLLATE NOCASE "
binds += ("%%%s%%" % (title),)
if isinstance(user, (str, unicode)):
where_cls += " AND vs.uname like ? COLLATE NOCASE "
binds += (user,)
if isinstance(blockedFlags, (int, long)):
where_cls += " AND v.flags & ? = 0 "
binds += (blockedFlags,)
if isinstance(blockedSites, (list, tuple)):
sites_cls = " AND v.type NOT IN ("
flg = False
for b in blockedSites:
if isinstance(b, (str, unicode)) and len(b) == 2:
if flg:
sites_cls += ","
sites_cls += "?"
binds += (b,)
flg = True
if flg:
where_cls += sites_cls + ") "
sql = sel_cls + from_cls + where_cls
def matchOrderBy(this, other):
valid = this == other
if not valid:
valid = (len(this) == 2) and (len(other) == 2)
for i in range(len(this)):
valid = valid and (this[i].lower() == other[1].lower())
return valid
valid = this and other and (this[0].lower() != other[0].lower())
if valid and (len(this) == 2) and this[1] and other[1]:
return valid and (this[1].lower() == other[1].lower())
else:
return valid and (this[1] == other[1])
if orderby is None:
pass
elif matchOrderBy(orderby, ('id', 'ASC')):
sql += ' ORDER BY v.id ASC'
elif matchOrderBy(orderby, ('id', 'DESC')):
sql += ' ORDER BY v.id DESC'
elif matchOrderBy(orderby, ('RANDOM()',)):
sql += ' ORDER BY RANDOM()'
else:
raise ProgrammingError("Invalid orderby %s" % (orderby))
if isinstance(num, (int, long)):
sql += ' LIMIT ?'
binds += (num,)
elif num != None:
raise ProgrammingError("Invalid num %s" % (num))
self.logger.debug("Generated SQL %s" % (sql))
with self.execute(sql, binds) as cur:
return cur.fetchall()
def insertChat(self, msg, username, userid=None, timestamp=None, protocol='ST', channel=None, flags=None):
if userid is None:
userid = username
if timestamp is None:
timestamp = int(time.time() * 1000)
chat = (timestamp, username, userid, msg, protocol, channel, flags)
with self.cursor() as cur:
self.logger.debug("Inserting chat message %s" % (chat,))
cur.execute("INSERT INTO chat VALUES(?, ?, ?, ?, ?, ?, ?)", chat)
self.commit()
def getQuote(self, nick, excludes=[], protocol=None):
select_cls = "SELECT username, msg, timestamp, protocol FROM chat "
where_cls = " WHERE msg NOT LIKE '/me%%' AND msg NOT LIKE '$%%' "
limit_cls = " ORDER BY RANDOM() LIMIT 1"
binds = ()
if protocol:
where_cls += " AND protocol = ? "
binds = (protocol,)
if nick:
where_cls += " AND username = ? COLLATE NOCASE "
binds += (nick,)
else:
for e in excludes:
where_cls += " AND (username != ? or protocol != ?) "
binds += e
sql = select_cls + where_cls + limit_cls
rows = self.fetch(sql, binds)
if rows: return rows[0]
else: return None
def flagVideo(self, site, vid, flags):
self.logger.debug("Flagging %s:%s with flags %s", site, vid, bin(flags))
self.executeDML("UPDATE videos SET flags=(flags | ?) WHERE type = ? AND id = ?", (flags, site, vid))
self.commit()
def unflagVideo(self, site, vid, flags):
self.executeDML("UPDATE videos SET flags=(flags & ?) WHERE type = ? AND id = ?", (~flags, site, vid))
self.commit() | BSD 2-Clause Simplified License |
kriaga/health-checker | HealthChecker/venv/Lib/site-packages/nltk/app/wordnet_app.py | page_from_reference | python | def page_from_reference(href):
word = href.word
pos_forms = defaultdict(list)
words = word.split(',')
words = [w for w in [w.strip().lower().replace(' ', '_')
for w in words]
if w != ""]
if len(words) == 0:
return "", "Please specify a word to search for."
for w in words:
for pos in [wn.NOUN, wn.VERB, wn.ADJ, wn.ADV]:
form = wn.morphy(w, pos)
if form and form not in pos_forms[pos]:
pos_forms[pos].append(form)
body = ''
for pos,pos_str,name in _pos_tuples():
if pos in pos_forms:
body += _hlev(3, name) + '\n'
for w in pos_forms[pos]:
try:
body += _collect_all_synsets(w, pos, href.synset_relations)
except KeyError:
pass
if not body:
body = "The word or words '%s' where not found in the dictonary." % word
return body, word | Returns a tuple of the HTML page built and the new current word
:param href: The hypertext reference to be solved
:type href: str
:return: A tuple (page,word), where page is the new current HTML page
to be sent to the browser and
word is the new current word
:rtype: A tuple (str,str) | https://github.com/kriaga/health-checker/blob/3d9ce933f131bcbb897103b0f509cc45393cae4a/HealthChecker/venv/Lib/site-packages/nltk/app/wordnet_app.py#L723-L764 | from __future__ import print_function
from sys import path
import os
import sys
from sys import argv
from collections import defaultdict
import webbrowser
import datetime
import re
import threading
import time
import getopt
import base64
import pickle
import copy
from six.moves.urllib.parse import unquote_plus
from nltk import compat
from nltk.corpus import wordnet as wn
from nltk.corpus.reader.wordnet import Synset, Lemma
if compat.PY3:
from http.server import HTTPServer, BaseHTTPRequestHandler
else:
from BaseHTTPServer import HTTPServer, BaseHTTPRequestHandler
firstClient = True
server_mode = None
logfile = None
class MyServerHandler(BaseHTTPRequestHandler):
def do_HEAD(self):
self.send_head()
def do_GET(self):
global firstClient
sp = self.path[1:]
if unquote_plus(sp) == 'SHUTDOWN THE SERVER':
if server_mode:
page = "Server must be killed with SIGTERM."
type = "text/plain"
else:
print('Server shutting down!')
os._exit(0)
elif sp == '':
type = 'text/html'
if not server_mode and firstClient:
firstClient = False
page = get_static_index_page(True)
else:
page = get_static_index_page(False)
word = 'green'
elif sp.endswith('.html'):
type = 'text/html'
usp = unquote_plus(sp)
if usp == 'NLTK Wordnet Browser Database Info.html':
word = '* Database Info *'
if os.path.isfile(usp):
with open(usp, 'r') as infile:
page = infile.read()
else:
page = (html_header % word) + '<p>The database info file:' '<p><b>' + usp + '</b>' + '<p>was not found. Run this:' + '<p><b>python dbinfo_html.py</b>' + '<p>to produce it.' + html_trailer
else:
word = sp
page = get_static_page_by_path(usp)
elif sp.startswith("search"):
type = 'text/html'
parts = (sp.split("?")[1]).split("&")
word = [p.split("=")[1].replace("+", " ")
for p in parts if p.startswith("nextWord")][0]
page, word = page_from_word(word)
elif sp.startswith("lookup_"):
type = 'text/html'
sp = sp[len("lookup_"):]
page, word = page_from_href(sp)
elif sp == "start_page":
type = 'text/html'
page, word = page_from_word("wordnet")
else:
type = 'text/plain'
page = "Could not parse request: '%s'" % sp
self.send_head(type)
self.wfile.write(page.encode('utf8'))
def send_head(self, type=None):
self.send_response(200)
self.send_header('Content-type', type)
self.end_headers()
def log_message(self, format, *args):
global logfile
if logfile:
logfile.write(
"%s - - [%s] %s\n" %
(self.address_string(),
self.log_date_time_string(),
format%args))
def get_unique_counter_from_url(sp):
pos = sp.rfind('%23')
if pos != -1:
return int(sp[(pos + 3):])
else:
return None
def wnb(port=8000, runBrowser=True, logfilename=None):
global server_mode, logfile
server_mode = not runBrowser
if logfilename:
try:
logfile = open(logfilename, "a", 1)
except IOError as e:
sys.stderr.write("Couldn't open %s for writing: %s",
logfilename, e)
sys.exit(1)
else:
logfile = None
url = 'http://localhost:' + str(port)
server_ready = None
browser_thread = None
if runBrowser:
server_ready = threading.Event()
browser_thread = startBrowser(url, server_ready)
server = HTTPServer(('', port), MyServerHandler)
if logfile:
logfile.write(
'NLTK Wordnet browser server running serving: %s\n' % url)
if runBrowser:
server_ready.set()
try:
server.serve_forever()
except KeyboardInterrupt:
pass
if runBrowser:
browser_thread.join()
if logfile:
logfile.close()
def startBrowser(url, server_ready):
def run():
server_ready.wait()
time.sleep(1)
webbrowser.open(url, new = 2, autoraise = 1)
t = threading.Thread(target=run)
t.start()
return t
def _pos_tuples():
return [
(wn.NOUN,'N','noun'),
(wn.VERB,'V','verb'),
(wn.ADJ,'J','adj'),
(wn.ADV,'R','adv')]
def _pos_match(pos_tuple):
if pos_tuple[0] == 's':
pos_tuple = ('a', pos_tuple[1], pos_tuple[2])
for n,x in enumerate(pos_tuple):
if x is not None:
break
for pt in _pos_tuples():
if pt[n] == pos_tuple[n]: return pt
return None
HYPONYM = 0
HYPERNYM = 1
CLASS_REGIONAL = 2
PART_HOLONYM = 3
PART_MERONYM = 4
ATTRIBUTE = 5
SUBSTANCE_HOLONYM = 6
SUBSTANCE_MERONYM = 7
MEMBER_HOLONYM = 8
MEMBER_MERONYM = 9
VERB_GROUP = 10
INSTANCE_HYPONYM = 12
INSTANCE_HYPERNYM = 13
CAUSE = 14
ALSO_SEE = 15
SIMILAR = 16
ENTAILMENT = 17
ANTONYM = 18
FRAMES = 19
PERTAINYM = 20
CLASS_CATEGORY = 21
CLASS_USAGE = 22
CLASS_REGIONAL = 23
CLASS_USAGE = 24
CLASS_CATEGORY = 11
DERIVATIONALLY_RELATED_FORM = 25
INDIRECT_HYPERNYMS = 26
def lemma_property(word, synset, func):
def flattern(l):
if l == []:
return []
else:
return l[0] + flattern(l[1:])
return flattern([func(l) for l in synset.lemmas if l.name == word])
def rebuild_tree(orig_tree):
node = orig_tree[0]
children = orig_tree[1:]
return (node, [rebuild_tree(t) for t in children])
def get_relations_data(word, synset):
if synset.pos() == wn.NOUN:
return ((HYPONYM, 'Hyponyms',
synset.hyponyms()),
(INSTANCE_HYPONYM , 'Instance hyponyms',
synset.instance_hyponyms()),
(HYPERNYM, 'Direct hypernyms',
synset.hypernyms()),
(INDIRECT_HYPERNYMS, 'Indirect hypernyms',
rebuild_tree(synset.tree(lambda x: x.hypernyms()))[1]),
(INSTANCE_HYPERNYM , 'Instance hypernyms',
synset.instance_hypernyms()),
(PART_HOLONYM, 'Part holonyms',
synset.part_holonyms()),
(PART_MERONYM, 'Part meronyms',
synset.part_meronyms()),
(SUBSTANCE_HOLONYM, 'Substance holonyms',
synset.substance_holonyms()),
(SUBSTANCE_MERONYM, 'Substance meronyms',
synset.substance_meronyms()),
(MEMBER_HOLONYM, 'Member holonyms',
synset.member_holonyms()),
(MEMBER_MERONYM, 'Member meronyms',
synset.member_meronyms()),
(ATTRIBUTE, 'Attributes',
synset.attributes()),
(ANTONYM, "Antonyms",
lemma_property(word, synset, lambda l: l.antonyms())),
(DERIVATIONALLY_RELATED_FORM, "Derivationally related form",
lemma_property(word, synset, lambda l: l.derivationally_related_forms())))
elif synset.pos() == wn.VERB:
return ((ANTONYM, 'Antonym',
lemma_property(word, synset, lambda l: l.antonyms())),
(HYPONYM, 'Hyponym',
synset.hyponyms()),
(HYPERNYM, 'Direct hypernyms',
synset.hypernyms()),
(INDIRECT_HYPERNYMS, 'Indirect hypernyms',
rebuild_tree(synset.tree(lambda x: x.hypernyms()))[1]),
(ENTAILMENT, 'Entailments',
synset.entailments()),
(CAUSE, 'Causes',
synset.causes()),
(ALSO_SEE, 'Also see',
synset.also_sees()),
(VERB_GROUP, 'Verb Groups',
synset.verb_groups()),
(DERIVATIONALLY_RELATED_FORM, "Derivationally related form",
lemma_property(word, synset, lambda l: l.derivationally_related_forms())))
elif synset.pos() == wn.ADJ or synset.pos == wn.ADJ_SAT:
return ((ANTONYM, 'Antonym',
lemma_property(word, synset, lambda l: l.antonyms())),
(SIMILAR, 'Similar to',
synset.similar_tos()),
(PERTAINYM, 'Pertainyms',
lemma_property(word, synset, lambda l: l.pertainyms())),
(ATTRIBUTE, 'Attributes',
synset.attributes()),
(ALSO_SEE, 'Also see',
synset.also_sees()))
elif synset.pos() == wn.ADV:
return ((ANTONYM, 'Antonym',
lemma_property(word, synset, lambda l: l.antonyms())),)
else:
raise TypeError("Unhandles synset POS type: " + str(synset.pos()))
html_header = '''
<!DOCTYPE html PUBLIC '-//W3C//DTD HTML 4.01//EN'
'http://www.w3.org/TR/html4/strict.dtd'>
<html>
<head>
<meta name='generator' content=
'HTML Tidy for Windows (vers 14 February 2006), see www.w3.org'>
<meta http-equiv='Content-Type' content=
'text/html; charset=us-ascii'>
<title>NLTK Wordnet Browser display of: %s</title></head>
<body bgcolor='#F5F5F5' text='#000000'>
'''
html_trailer = '''
</body>
</html>
'''
explanation = '''
<h3>Search Help</h3>
<ul><li>The display below the line is an example of the output the browser
shows you when you enter a search word. The search word was <b>green</b>.</li>
<li>The search result shows for different parts of speech the <b>synsets</b>
i.e. different meanings for the word.</li>
<li>All underlined texts are hypertext links. There are two types of links:
word links and others. Clicking a word link carries out a search for the word
in the Wordnet database.</li>
<li>Clicking a link of the other type opens a display section of data attached
to that link. Clicking that link a second time closes the section again.</li>
<li>Clicking <u>S:</u> opens a section showing the relations for that synset.
</li>
<li>Clicking on a relation name opens a section that displays the associated
synsets.</li>
<li>Type a search word in the <b>Word</b> field and start the search by the
<b>Enter/Return</b> key or click the <b>Search</b> button.</li>
</ul>
<hr width='100%'>
'''
def _bold(txt): return '<b>%s</b>' % txt
def _center(txt): return '<center>%s</center>' % txt
def _hlev(n,txt): return '<h%d>%s</h%d>' % (n,txt,n)
def _italic(txt): return '<i>%s</i>' % txt
def _li(txt): return '<li>%s</li>' % txt
def pg(word, body):
return (html_header % word) + body + html_trailer
def _ul(txt): return '<ul>' + txt + '</ul>'
def _abbc(txt):
return _center(_bold('<br>'*10 + '*'*10 + ' ' + txt + ' ' + '*'*10))
full_hyponym_cont_text = _ul(_li(_italic('(has full hyponym continuation)'))) + '\n'
def _get_synset(synset_key):
return wn.synset(synset_key)
def _collect_one_synset(word, synset, synset_relations):
if isinstance(synset, tuple):
raise NotImplementedError("word not supported by _collect_one_synset")
typ = 'S'
pos_tuple = _pos_match((synset.pos(), None, None))
assert pos_tuple is not None, "pos_tuple is null: synset.pos(): %s" % synset.pos()
descr = pos_tuple[2]
ref = copy.deepcopy(Reference(word, synset_relations))
ref.toggle_synset(synset)
synset_label = typ + ";"
if synset.name() in synset_relations:
synset_label = _bold(synset_label)
s = '<li>%s (%s) ' % (make_lookup_link(ref, synset_label), descr)
def format_lemma(w):
w = w.replace('_', ' ')
if w.lower() == word:
return _bold(w)
else:
ref = Reference(w)
return make_lookup_link(ref, w)
s += ', '.join(format_lemma(l.name()) for l in synset.lemmas())
gl = " (%s) <i>%s</i> " % (synset.definition(),
"; ".join("\"%s\"" % e for e in synset.examples()))
return s + gl + _synset_relations(word, synset, synset_relations) + '</li>\n'
def _collect_all_synsets(word, pos, synset_relations=dict()):
return '<ul>%s\n</ul>\n' % ''.join((_collect_one_synset(word, synset, synset_relations)
for synset
in wn.synsets(word, pos)))
def _synset_relations(word, synset, synset_relations):
if not synset.name() in synset_relations:
return ""
ref = Reference(word, synset_relations)
def relation_html(r):
if isinstance(r, Synset):
return make_lookup_link(Reference(r.lemma_names()[0]), r.lemma_names()[0])
elif isinstance(r, Lemma):
return relation_html(r.synset())
elif isinstance(r, tuple):
return "%s\n<ul>%s</ul>\n" % (relation_html(r[0]),
''.join('<li>%s</li>\n' % relation_html(sr) for sr in r[1]))
else:
raise TypeError("r must be a synset, lemma or list, it was: type(r) = %s, r = %s" % (type(r), r))
def make_synset_html(db_name, disp_name, rels):
synset_html = '<i>%s</i>\n' % make_lookup_link(
copy.deepcopy(ref).toggle_synset_relation(synset, db_name).encode(),
disp_name)
if db_name in ref.synset_relations[synset.name()]:
synset_html += '<ul>%s</ul>\n' % ''.join("<li>%s</li>\n" % relation_html(r) for r in rels)
return synset_html
html = '<ul>' + '\n'.join(("<li>%s</li>" % make_synset_html(*rel_data) for rel_data
in get_relations_data(word, synset)
if rel_data[2] != [])) + '</ul>'
return html
class Reference(object):
def __init__(self, word, synset_relations=dict()):
self.word = word
self.synset_relations = synset_relations
def encode(self):
string = pickle.dumps((self.word, self.synset_relations), -1)
return base64.urlsafe_b64encode(string).decode()
@staticmethod
def decode(string):
string = base64.urlsafe_b64decode(string.encode())
word, synset_relations = pickle.loads(string)
return Reference(word, synset_relations)
def toggle_synset_relation(self, synset, relation):
if relation in self.synset_relations[synset.name()]:
self.synset_relations[synset.name()].remove(relation)
else:
self.synset_relations[synset.name()].add(relation)
return self
def toggle_synset(self, synset):
if synset.name() in self.synset_relations:
del self.synset_relations[synset.name()]
else:
self.synset_relations[synset.name()] = set()
return self
def make_lookup_link(ref, label):
return '<a href="lookup_%s">%s</a>' % (ref.encode(), label)
def page_from_word(word):
return page_from_reference(Reference(word))
def page_from_href(href):
return page_from_reference(Reference.decode(href)) | MIT License |
centerforthebuiltenvironment/clima | my_project/tab_wind/app_wind.py | sliders | python | def sliders():
return html.Div(
className="container-col justify-center",
id="slider-container",
children=[
html.Div(
className="container-row each-slider",
children=[
html.P("Month Range"),
dcc.RangeSlider(
id="month-slider",
min=1,
max=12,
step=1,
value=[1, 12],
marks={1: "1", 12: "12"},
tooltip={"always_visible": False, "placement": "top"},
allowCross=False,
),
],
),
html.Div(
className="container-row each-slider",
children=[
html.P("Hour Range"),
dcc.RangeSlider(
id="hour-slider",
min=1,
max=24,
step=1,
value=[1, 24],
marks={1: "1", 24: "24"},
tooltip={"always_visible": False, "placement": "topLeft"},
allowCross=False,
),
],
),
],
) | Returns 2 sliders for the hour | https://github.com/centerforthebuiltenvironment/clima/blob/b3bec2839aed4a3766dd31d9369817073ac465cf/my_project/tab_wind/app_wind.py#L11-L50 | from dash import dcc, html
from my_project.global_scheme import month_lst, container_row_center_full
from dash.dependencies import Input, Output, State
from my_project.template_graphs import heatmap, wind_rose
from my_project.utils import title_with_tooltip, generate_chart_name
from my_project.utils import code_timer
from app import app, cache, TIMEOUT | MIT License |
mgraffg/evodag | EvoDAG/base.py | EvoDAG.generations | python | def generations(self):
return self._generations | Number of generations | https://github.com/mgraffg/evodag/blob/d553444d6505a3885760250955f47383c064f6d8/EvoDAG/base.py#L182-L184 | import numpy as np
import logging
from SparseArray import SparseArray
from .node import Variable
from .node import Add, Mul, Div, Fabs, Exp, Sqrt, Sin, Cos, Log1p
from .node import Sq, Min, Max
from .node import Atan2, Hypot, Acos, Asin, Atan, Tan, Cosh, Sinh
from .node import Tanh, Acosh, Asinh, Atanh, Expm1, Log, Log2, Log10
from .node import Lgamma, Sign, Ceil, Floor, NaiveBayes, NaiveBayesMN
from .node import Centroid
from .model import Model
from .population import SteadyState
from .utils import tonparray
from .function_selection import FunctionSelection
from .naive_bayes import NaiveBayes as NB
from .bagging_fitness import BaggingFitness
import time
import importlib
import inspect
class EvoDAG(object):
def __init__(self, generations=np.inf, popsize=10000,
seed=0, tournament_size=2,
early_stopping_rounds=-1,
function_set=[Add, Mul, Div, Fabs,
Exp, Sqrt, Sin, Cos, Log1p,
Sq, Min, Max, Atan2, Hypot, Acos, Asin, Atan,
Tan, Cosh, Sinh, Tanh, Acosh, Asinh, Atanh,
Expm1, Log, Log2, Log10, Lgamma, Sign,
Ceil, Floor, NaiveBayes, NaiveBayesMN, Centroid],
tr_fraction=0.5, population_class=SteadyState,
negative_selection=True,
number_tries_feasible_ind=30, time_limit=None,
unique_individuals=True, classifier=True,
labels=None, all_inputs=False, random_generations=0,
fitness_function='BER', orthogonal_selection=False, orthogonal_dot_selection=False,
min_density=0.8, multiple_outputs=False, function_selection=True,
fs_tournament_size=2, finite=True, pr_variable=0.33,
share_inputs=False, input_functions=None, F1_index=-1,
use_all_vars_input_functions=False, remove_raw_inputs=True,
probability_calibration=None, **kwargs):
self._remove_raw_inputs = remove_raw_inputs
self._fitness_function = fitness_function
self._bagging_fitness = BaggingFitness(base=self)
generations = np.inf if generations is None else generations
self._pr_variable = pr_variable
self._share_inputs = share_inputs
self._finite = finite
self._generations = generations
self._popsize = popsize
self._classifier = classifier
self._number_tries_feasible_ind = number_tries_feasible_ind
self._unfeasible_counter = 0
self._negative_selection = negative_selection
self._number_tries_unique_args = 3
self._tr_fraction = tr_fraction
if early_stopping_rounds is not None and early_stopping_rounds < 0:
early_stopping_rounds = popsize
self._early_stopping_rounds = early_stopping_rounds
self._tournament_size = tournament_size
self._seed = seed
self._labels = labels
self._multiclass = False
self._function_set = function_set
self._function_selection = function_selection
self._fs_tournament_size = fs_tournament_size
density_safe = [k for k, v in enumerate(function_set) if v.density_safe]
self._function_selection_ins = FunctionSelection(nfunctions=len(self._function_set),
seed=seed,
tournament_size=self._fs_tournament_size,
nargs=map(lambda x: x.nargs,
function_set),
density_safe=density_safe)
self._min_density = min_density
self._function_selection_ins.min_density = self._min_density
self._time_limit = time_limit
self._init_time = time.time()
self._random_generations = random_generations
if not inspect.isclass(population_class):
pop = importlib.import_module('EvoDAG.population')
population_class = getattr(pop, population_class)
self._set_input_functions(input_functions)
self._population_class = population_class
np.random.seed(self._seed)
self._unique_individuals = unique_individuals
self._unique_individuals_set = set()
self._logger = logging.getLogger('EvoDAG')
self._all_inputs = all_inputs
if self._generations == np.inf and tr_fraction == 1:
raise RuntimeError("Infinite evolution, set generations\
or tr_fraction < 1 ")
self._multiple_outputs = multiple_outputs
self._F1_index = F1_index
self._use_all_vars_input_functions = use_all_vars_input_functions
self._probability_calibration = probability_calibration
self._orthogonal_selection = orthogonal_selection
self._orthogonal_dot_selection = orthogonal_dot_selection
self._extras = kwargs
if self._time_limit is not None:
self._logger.info('Time limit: %0.2f' % self._time_limit)
def _set_input_functions(self, input_functions):
if input_functions is not None:
if not isinstance(input_functions, list):
input_functions = [input_functions]
r = []
for f in input_functions:
if not inspect.isclass(f):
_ = importlib.import_module('EvoDAG.node')
f = getattr(_, f)
r.append(f)
else:
r.append(f)
self._input_functions = r
else:
self._input_functions = input_functions
def get_params(self):
import inspect
a = inspect.getargspec(self.__init__)[0]
out = dict()
for key in a[1:]:
value = getattr(self, "_%s" % key, None)
out[key] = value
return out
def clone(self):
return self.__class__(**self.get_params())
@property
def classifier(self):
return self._classifier
@property
def signature(self):
kw = self.get_params()
keys = sorted(kw.keys())
l = []
for k in keys:
n = k[0] + k[-1]
v = kw[k]
if k == 'function_set':
v = "_".join([x.__name__[0] +
x.__name__[-1] +
str(x.nargs) for x in kw[k]])
elif k == 'population_class':
v = kw[k].__name__
else:
v = str(v)
l.append('{0}_{1}'.format(n, v))
return '-'.join(l)
@property
def popsize(self):
return self._popsize
@property | Apache License 2.0 |
apiad/sublime-browser-integration | selenium/webdriver/phantomjs/service.py | Service.__init__ | python | def __init__(self, executable_path, port=0, service_args=None, log_path=None):
self.port = port
self.path = executable_path
self.service_args= service_args
if self.port == 0:
self.port = utils.free_port()
if self.service_args is None:
self.service_args = []
self.service_args.insert(0, self.path)
self.service_args.append("--webdriver=%d" % self.port)
if not log_path:
log_path = "ghostdriver.log"
self._log = open(log_path, 'w') | Creates a new instance of the Service
:Args:
- executable_path : Path to PhantomJS binary
- port : Port the service is running on
- service_args : A List of other command line options to pass to PhantomJS
- log_path: Path for PhantomJS service to log to | https://github.com/apiad/sublime-browser-integration/blob/3914a8cd80ceabe58593a4123dd9e9493c5d5ebd/selenium/webdriver/phantomjs/service.py#L28-L50 | import subprocess
import time
import signal
from selenium.common.exceptions import WebDriverException
from selenium.webdriver.common import utils
class Service(object): | MIT License |
dcoles/pycurl-requests | pycurl_requests/_pycurl.py | debug_function | python | def debug_function(infotype: int, message: bytes):
if infotype > CURLINFO_HEADER_OUT:
return
message = message.decode('utf-8', 'replace')
if infotype == CURLINFO_TEXT:
LOGGER_TEXT.debug(message.rstrip())
elif infotype == CURLINFO_HEADER_IN:
for line in message.splitlines():
LOGGER_HEADER_IN.debug(line)
elif infotype == CURLINFO_HEADER_OUT:
for line in message.splitlines():
LOGGER_HEADER_OUT.debug(line) | cURL `DEBUGFUNCTION` that writes to logger | https://github.com/dcoles/pycurl-requests/blob/4365c7797d7897a655e9d7f91081dc7e303d230a/pycurl_requests/_pycurl.py#L195-L210 | import datetime
import http.client
import io
from io import BytesIO
import logging
import pycurl
from pycurl_requests import exceptions
from pycurl_requests import models
from pycurl_requests import structures
try:
from urllib3.util.timeout import Timeout
except ImportError:
Timeout = None
CURLINFO_TEXT = 0
CURLINFO_HEADER_IN = 1
CURLINFO_HEADER_OUT = 2
LOGGER = logging.getLogger('curl')
LOGGER_TEXT = LOGGER.getChild('text')
LOGGER_HEADER_IN = LOGGER.getChild('header_in')
LOGGER_HEADER_OUT = LOGGER.getChild('header_out')
DEBUGFUNCTION_LOGGERS = {LOGGER_TEXT, LOGGER_HEADER_IN, LOGGER_HEADER_OUT}
VERSION_INFO = pycurl.version_info()
class Request:
def __init__(self, prepared, *, curl=None, timeout=None, allow_redirects=True, max_redirects=-1):
self.prepared = prepared
self.curl = curl or pycurl.Curl()
self.timeout = timeout
self.allow_redirects = allow_redirects
self.max_redirects = max_redirects
if timeout is not None:
if isinstance(timeout, (int, float)):
self.connect_timeout, self.read_timeout = timeout, timeout
elif Timeout and isinstance(timeout, Timeout):
timeout.start_connect()
self.connect_timeout = (0 if timeout.connect_timeout is Timeout.DEFAULT_TIMEOUT
else timeout.connect_timeout)
self.read_timeout = (0 if timeout.read_timeout is Timeout.DEFAULT_TIMEOUT
else timeout.read_timeout)
else:
self.connect_timeout, self.read_timeout = timeout
else:
self.connect_timeout, self.read_timeout = (None, None)
self.response_buffer = BytesIO()
self.reason = None
self.headers = http.client.HTTPMessage()
self.reset_headers = False
def header_function(self, line: bytes):
if self.reset_headers:
self.headers = http.client.HTTPMessage()
self.reset_headers = False
try:
line = line.decode('utf-8')
except UnicodeDecodeError:
line = line.decode('iso-8859-1')
if self.reason is None:
_, _, reason = line.split(' ', 2)
self.reason = reason.strip()
return
if line == '\r\n':
self.reset_headers = True
return
elif ':' not in line:
return
name, value = line.split(':', 1)
self.headers.add_header(name, value.strip())
def send(self):
try:
scheme, _ = self.prepared.url.split(':', 1)
except ValueError:
raise exceptions.MissingSchema('Missing scheme for {!r}'.format(self.prepared.url))
supported_protocols = VERSION_INFO[8]
if scheme.lower() not in supported_protocols:
raise exceptions.InvalidSchema('Unsupported scheme for {!r}'.format(self.prepared.url))
self.curl.setopt(pycurl.URL, self.prepared.url)
if self.prepared.method:
self.curl.setopt(pycurl.CUSTOMREQUEST, self.prepared.method)
if self.prepared.method == 'HEAD':
self.curl.setopt(pycurl.NOBODY, 1)
self._prepare_http_auth()
self.curl.setopt(pycurl.HTTPHEADER, ['{}: {}'.format(n, v) for n, v in self.prepared.headers.items()])
if self.prepared.body is not None:
if isinstance(self.prepared.body, str):
body = io.BytesIO(self.prepared.body.encode('iso-8859-1'))
elif isinstance(self.prepared.body, bytes):
body = io.BytesIO(self.prepared.body)
else:
body = self.prepared.body
self.curl.setopt(pycurl.UPLOAD, 1)
self.curl.setopt(pycurl.READDATA, body)
content_length = self.prepared.headers.get('Content-Length')
if content_length is not None:
self.curl.setopt(pycurl.INFILESIZE_LARGE, int(content_length))
self.curl.setopt(pycurl.HEADERFUNCTION, self.header_function)
self.curl.setopt(pycurl.WRITEDATA, self.response_buffer)
if self.connect_timeout is not None:
timeout = int(self.connect_timeout * 1000)
self.curl.setopt(pycurl.CONNECTTIMEOUT_MS, timeout)
if self.read_timeout is not None:
timeout = int(self.read_timeout * 1000)
self.curl.setopt(pycurl.TIMEOUT_MS, timeout)
if self.allow_redirects:
self.curl.setopt(pycurl.FOLLOWLOCATION, 1)
self.curl.setopt(pycurl.POSTREDIR, pycurl.REDIR_POST_ALL)
self.curl.setopt(pycurl.MAXREDIRS, self.max_redirects)
if any((l.isEnabledFor(logging.DEBUG) for l in DEBUGFUNCTION_LOGGERS)):
self.curl.setopt(pycurl.VERBOSE, 1)
self.curl.setopt(pycurl.DEBUGFUNCTION, debug_function)
return self.perform()
def _prepare_http_auth(self):
if not self.prepared.curl_auth:
return
self.prepared.curl_auth.setopts(self.curl)
def perform(self):
try:
start_time = datetime.datetime.now(tz=datetime.timezone.utc)
try:
self.curl.perform()
finally:
end_time = datetime.datetime.now(tz=datetime.timezone.utc)
self.prepared.url = self.curl.getinfo(pycurl.EFFECTIVE_URL)
self.response_buffer.seek(0)
response = self.build_response(elapsed=end_time - start_time)
except pycurl.error as e:
raise exceptions.RequestException.from_pycurl_error(
e, request=self.prepared, response=response) from e
return response
def build_response(self, elapsed=None):
status_code = self.curl.getinfo(pycurl.RESPONSE_CODE)
if not status_code:
return None
response = models.Response()
response.request = self.prepared
response.elapsed = elapsed
response.status_code = status_code
response.reason = self.reason
response.headers = structures.CaseInsensitiveDict(
((k, ', '.join(self.headers.get_all(k))) for k in self.headers.keys()))
response.encoding = self.headers.get_content_charset()
response.url = self.prepared.url
response.raw = self.response_buffer
return response | MIT License |
mikeiacovacci/axiom-framework | lib/classes.py | AxiomTool.resolve_command | python | def resolve_command(self, number):
if number >= 0 and number in range(self.combined_list.__len__()):
command_name = self.combined_list[number]
return self.resolve_command_name(command_name)
else:
return None, int(-1) | SUMMARY: determines the object's type (command or action) and finds its ID value
INPUT: command/action ID number integer
OUTPUT: two-item tuple containing 1) "command", "action", or None and 2) ID value, -1 if unresolved | https://github.com/mikeiacovacci/axiom-framework/blob/2edc8bb1a123eb3c67897b0742050ee6956058bf/lib/classes.py#L953-L962 | import lib.config as config
from lib.config import print_error
from os import devnull, path
from pexpect import exceptions, pty_spawn
from prompt_toolkit import prompt, PromptSession
from prompt_toolkit.auto_suggest import AutoSuggestFromHistory
from prompt_toolkit.history import FileHistory
from queue import Queue
from re import search
from shlex import split
from subprocess import call, PIPE, Popen, STDOUT
from threading import Event
from time import sleep
class AxiomAction:
def __init__(self, name, prompt_type, execution_type, text, output_list, note):
self.execution_type = execution_type
self.name = name
self.note = note
self.output_list = output_list
self.prompt_type = prompt_type
self.text = text
def cli_print(self):
print()
if isinstance(self.text, str):
print(self.text)
elif isinstance(self.text, list):
line = 0
while line < self.text.__len__():
print(self.text[line])
line += 1
print()
def confirm_and_execute(self, tool):
self.show()
response = input("\n[AXIOM] Execute? [Y/n] ")
if response not in ["Y", "y", "Yes", "yes"]:
return False
else:
self.run(tool)
return True
def existing_subprocess(self):
i = 0
while i < dispatch.subprocesses.__len__():
if self.prompt_type == dispatch.subprocesses[i].current_prompt:
return True
i += 1
return False
def extract_ending_prompt(self):
ending_prompt = str()
if self.execution_type != "interactive":
return False
for x in self.output_list:
if isinstance(x, tuple):
if x[0] == "PROMPT":
ending_prompt = x[1]
break
return ending_prompt
def print_text(self):
if isinstance(self.text, str):
print("\n TEXT: " + self.text)
elif isinstance(self.text, list):
print("\n TEXT: ", end="")
print(self.text[0])
line = 1
while line < self.text.__len__():
print(" " + self.text[line])
line += 1
def run(self, tool):
if self.prompt_type == "bash" and not self.existing_subprocess():
if not tool.platform_matches():
print_error(str("\nERROR: Cannot execute " + tool.name + " (" + tool.platform + ") on " +
config.axiom.platform))
dispatch.continue_trigger.set()
return
if tool.is_installed():
pass
else:
if tool.install():
self.show()
print()
else:
if tool.proceed_despite_uninstalled():
pass
else:
dispatch.continue_trigger.set()
return
elif self.prompt_type != "other" and not self.existing_subprocess():
print_error("\nERROR: Prompt type incompatible with current runtime")
dispatch.continue_trigger.set()
return
multiple_lines = False
if isinstance(self, AxiomCommand):
if isinstance(self.text[0], list):
multiple_lines = True
elif isinstance(self, AxiomAction):
if isinstance(self.text, list):
multiple_lines = True
if self.execution_type == "standalone":
if multiple_lines:
self.run_multiline_standalone()
else:
self.run_standalone()
elif self.execution_type == "autonomous":
if multiple_lines:
print_error("ERROR: Autonomous multi-line commands are unsupported")
else:
self.run_autonomous()
elif self.execution_type == "interactive":
self.run_interactive()
elif self.execution_type == "NX":
if multiple_lines:
self.run_multiline_nx()
else:
self.run_nx()
def run_autonomous(self):
if self.prompt_type == "bash" and not self.existing_subprocess():
try:
print()
call(self.text, shell=True)
except OSError:
print_error("ERROR: Failed to execute via call()")
else:
dispatch.tasking.put(AxiomInteractiveTask(self.text, self.prompt_type, self.prompt_type))
dispatch.monitor_task_queue()
dispatch.continue_trigger.set()
def run_interactive(self):
ending_prompt = self.extract_ending_prompt()
if ending_prompt is not False:
dispatch.tasking.put(AxiomInteractiveTask(self.text, self.prompt_type, ending_prompt))
dispatch.monitor_task_queue()
dispatch.continue_trigger.set()
def run_multiline_nx(self):
print()
line = 0
while line < self.text.__len__():
print(self.text[line])
line += 1
dispatch.continue_trigger.set()
def run_multiline_standalone(self):
if self.prompt_type == "bash" and not self.existing_subprocess():
try:
print()
proc = Popen(["bash", "-i"], shell=True, stdin=PIPE, stdout=PIPE)
i = 0
while proc.returncode is None:
if i < self.text.__len__():
proc.stdin.write(self.text[i].encode())
proc.stdin.write("\n".encode())
proc.stdin.flush()
i += 1
else:
proc.stdin.close()
proc.poll()
except OSError:
print_error("ERROR: Failed to execute via Popen()")
else:
dispatch.tasking.put(AxiomInteractiveTask(self.text, self.prompt_type, self.prompt_type))
dispatch.monitor_task_queue()
dispatch.continue_trigger.set()
def run_nx(self):
print()
print(self.text)
print()
dispatch.continue_trigger.set()
def run_standalone(self):
if self.prompt_type == "bash" and not self.existing_subprocess():
try:
print()
call(split(self.text))
except OSError:
print_error("ERROR: Failed to execute via call()")
else:
dispatch.tasking.put(AxiomInteractiveTask(self.text, self.prompt_type, self.prompt_type))
dispatch.monitor_task_queue()
dispatch.continue_trigger.set()
def show(self):
print("\n NAME: " + self.name +
"\n TYPE: " + self.execution_type + " action (" + self.prompt_type + ")"
"\n NOTE: " + self.note)
self.print_text()
class AxiomCommand(AxiomAction):
def __init__(self, name, prompt_type, execution_type, text, output_list, note, input_list):
super().__init__(name, prompt_type, execution_type, text, output_list, note)
self.input_list = input_list
def build(self):
input_count = 0
if isinstance(self.text[0], str):
token_count = 0
built_text = str()
while token_count < self.text.__len__() or input_count < self.input_list.__len__():
if token_count < self.text.__len__():
built_text += self.text[token_count]
token_count += 1
if input_count < self.input_list.__len__():
built_text += self.input_build_prompt(input_count)
input_count += 1
else:
built_text = []
current_line = 0
while current_line < self.text.__len__():
line_tokens = self.text[current_line].__len__()
current_token = 0
line_inputs = line_tokens - 1
current_input = 0
built_line = str()
while current_token < line_tokens or current_input < line_inputs:
if current_token < line_tokens:
built_line += self.text[current_line][current_token]
current_token += 1
if current_input < line_inputs:
built_line += self.input_build_prompt(input_count)
current_input += 1
input_count += 1
built_text.append(built_line)
current_line += 1
return built_text
def build_with_placeholders(self):
input_count = 0
if isinstance(self.text[0], str):
token_count = 0
built_text = str()
while token_count < self.text.__len__() or input_count < self.input_list.__len__():
if token_count < self.text.__len__():
built_text += self.text[token_count]
token_count += 1
if input_count < self.input_list.__len__():
built_text += str("{" + self.input_list[input_count][1] + "}")
input_count += 1
else:
built_text = []
current_line = 0
while current_line < self.text.__len__():
line_tokens = self.text[current_line].__len__()
current_token = 0
line_inputs = line_tokens - 1
current_input = 0
built_line = str()
while current_token < line_tokens or current_input < line_inputs:
if current_token < line_tokens:
built_line += self.text[current_line][current_token]
current_token += 1
if current_input < line_inputs:
built_line += str("{" + self.input_list[input_count][1] + "}")
current_input += 1
input_count += 1
built_text.append(built_line)
current_line += 1
return built_text
def cli_print(self):
text = self.build()
print()
if isinstance(text, str):
print(text)
elif isinstance(text, list):
line = 0
while line < text.__len__():
print(text[line])
line += 1
print()
def input_build_prompt(self, input_count):
input_type = self.input_list[input_count][1]
prompt_text = str("[AXIOM] Enter " + self.input_list[input_count][0] + ": ")
if input_type in ["STRMENU", "INTMENU"]:
option_name = self.input_list[input_count][0]
option_list = self.input_list[input_count][2]
response = self.option_prompt(option_name, option_list)
return response
elif input_type in ["STR", "INT", "IPV4", "IPV6", "IPV4RNGE", "IPV6RNGE", "IPV4CIDR", "IPV6CIDR", "MAC", "FILE",
"RLATVPTH", "FULLPATH", "DOMAIN", "HTTPURL", "HTTPSURL", "WEBURL"]:
if input_type == "HTTPSURL":
history_file = str(config.axiom.history_folder + "/WEBURL" + ".axiom")
else:
history_file = str(config.axiom.history_folder + "/" + input_type + ".axiom")
session = PromptSession(history=FileHistory(history_file))
response = session.prompt(prompt_text, auto_suggest=AutoSuggestFromHistory())
return response
else:
response = prompt(prompt_text)
return response
@staticmethod
def option_prompt(option_name, option_list):
while True:
print("\n" + option_name + "\n")
count = 0
while count < option_list.__len__():
print(" " + str(count + 1) + "\t" + str(option_list[count]))
count += 1
number = prompt("\n[AXIOM] Select an option: ")
try:
number = int(number)
number -= 1
except (ValueError, TypeError):
number = -1
if 0 <= number < option_list.__len__():
return option_list[number]
def print_text(self):
text_with_placeholders = self.build_with_placeholders()
if isinstance(text_with_placeholders, str):
print("\n TEXT: " + text_with_placeholders)
elif isinstance(text_with_placeholders, list):
print("\n TEXT: ", end="")
print(text_with_placeholders[0])
line = 1
while line < text_with_placeholders.__len__():
print(" " + text_with_placeholders[line])
line += 1
def run_autonomous(self):
text = self.build()
if self.prompt_type == "bash" and not self.existing_subprocess():
try:
print()
call(text, shell=True)
except OSError:
print_error("ERROR: Failed to execute via call()")
else:
dispatch.tasking.put(AxiomInteractiveTask(text, self.prompt_type, self.prompt_type))
dispatch.monitor_task_queue()
dispatch.continue_trigger.set()
def run_interactive(self):
text = self.build()
ending_prompt = self.extract_ending_prompt()
if ending_prompt is not False:
dispatch.tasking.put(AxiomInteractiveTask(text, self.prompt_type, ending_prompt))
dispatch.monitor_task_queue()
dispatch.continue_trigger.set()
def run_multiline_nx(self):
text = self.build()
print()
line = 0
while line < self.text.__len__():
print(text[line])
line += 1
dispatch.continue_trigger.set()
def run_multiline_standalone(self):
text = self.build()
if self.prompt_type == "bash" and not self.existing_subprocess():
try:
print()
proc = Popen(["bash", "-i"], shell=True, stdin=PIPE, stdout=PIPE)
i = 0
while proc.returncode is None:
if i < text.__len__():
proc.stdin.write(text[i].encode())
proc.stdin.write("\n".encode())
proc.stdin.flush()
i += 1
else:
proc.stdin.close()
proc.poll()
except OSError:
print_error("ERROR: Failed to execute via Popen()")
else:
dispatch.tasking.put(AxiomInteractiveTask(text, self.prompt_type, self.prompt_type))
dispatch.monitor_task_queue()
dispatch.continue_trigger.set()
def run_nx(self):
text = self.build()
print()
print(text)
print()
dispatch.continue_trigger.set()
def run_standalone(self):
text = self.build()
if self.prompt_type == "bash" and not self.existing_subprocess():
try:
print()
call(split(text))
except OSError:
print_error("ERROR: Failed to execute via call()")
else:
dispatch.tasking.put(AxiomInteractiveTask(text, self.prompt_type, self.prompt_type))
dispatch.monitor_task_queue()
dispatch.continue_trigger.set()
def show(self):
print("\n NAME: " + self.name +
"\n TYPE: " + self.execution_type + " command (" + self.prompt_type + ")"
"\n NOTE: " + self.note)
self.print_text()
class AxiomDispatcher:
def __init__(self):
self.continue_trigger = Event()
self.subprocesses = []
self.tasking = Queue(maxsize=0)
self.trigger = Event()
def check_for_ambiguous_target(self, current_task):
prompt_type = current_task.ending_prompt
for x in self.subprocesses:
if x.current_prompt == prompt_type:
return True
return False
@staticmethod
def get_subprocess_output_detect_prompt(proc, pattern):
timeout = 0
safety_timer = 0
while True:
try:
print(proc.readline().decode(), end='')
except exceptions.TIMEOUT:
if search(pattern, proc.before.decode()):
if timeout >= config.axiom.pattern_timeout:
print(proc.before.decode())
break
else:
timeout += 1
sleep(1)
continue
else:
safety_timer += 1
sleep(1)
if safety_timer >= config.axiom.safety_timeout:
proc.sendline()
continue
else:
timeout = 0
safety_timer = 0
def handle_new_tasks(self):
if not self.tasking.empty():
current_task = self.tasking.get()
if self.matching_subprocess(current_task) >= 0:
target = self.matching_subprocess(current_task)
if current_task.prompt_change:
if self.check_for_ambiguous_target(current_task):
print_error("\nERROR: Cannot create subprocess with same prompt type as existing subprocess")
self.tasking.task_done()
return
self.read_and_transmit(target, current_task)
self.tasking.task_done()
return
elif current_task.starting_prompt == "bash":
if self.check_for_ambiguous_target(current_task):
print_error("\nERROR: Cannot create subprocess with same prompt type as existing subprocess")
self.tasking.task_done()
return
self.spawn_and_transmit(current_task)
self.tasking.task_done()
return
else:
print_error("\nERROR: Prompt type incompatible with current runtime")
self.tasking.task_done()
return
def matching_subprocess(self, current_task):
i = 0
while i < self.subprocesses.__len__():
if current_task.starting_prompt == self.subprocesses[i].current_prompt:
return i
else:
i += 1
return -1
def monitor_task_queue(self):
self.handle_new_tasks()
def read_and_transmit(self, target, current_task):
proc = self.subprocesses[target].process
while True:
try:
print(proc.readline().decode(), end='')
except exceptions.TIMEOUT:
break
self.transmit_text(current_task, proc)
self.subprocesses[target].current_prompt = current_task.ending_prompt
self.subprocesses[target].prompt_pattern = current_task.ending_prompt_pattern
dispatch.continue_trigger.set()
def spawn_and_transmit(self, current_task):
try:
self.subprocesses.append(AxiomExecutingSubprocess(current_task.starting_prompt,
pty_spawn.spawn("/bin/bash -i",
timeout=config.axiom.pty_timeout)))
except OSError:
print_error("ERROR: Failed to spawn /bin/bash subprocess")
exit(1)
else:
target = self.matching_subprocess(current_task)
proc = self.subprocesses[target].process
self.transmit_text(current_task, proc)
self.subprocesses[target].current_prompt = current_task.ending_prompt
self.subprocesses[target].prompt_pattern = current_task.ending_prompt_pattern
dispatch.continue_trigger.set()
def transmit_text(self, current_task, proc):
pattern = str(current_task.ending_prompt_pattern + "$")
try:
if isinstance(current_task.text, str):
proc.sendline(current_task.text)
elif isinstance(current_task.text, list):
i = 0
while i < current_task.text.__len__():
proc.sendline(current_task.text[i])
i += 1
except OSError:
print_error("ERROR: Failed to transmit command")
exit(1)
else:
self.get_subprocess_output_detect_prompt(proc, pattern)
class AxiomExecutingSubprocess:
def __init__(self, current_prompt, process):
self.current_prompt = current_prompt
self.process = process
self.prompt_pattern = None
class AxiomInteractiveTask:
def __init__(self, text, starting_prompt, ending_prompt):
self.ending_prompt = ending_prompt
self.starting_prompt = starting_prompt
self.text = text
self.prompt_change = self.detect_prompt_change()
self.ending_prompt_pattern = self.resolve_ending_prompt_pattern()
def detect_prompt_change(self):
if self.starting_prompt == self.ending_prompt:
return False
else:
return True
def resolve_ending_prompt_pattern(self):
if self.prompt_change:
for x in config.axiom.prompts:
if x[0] == self.ending_prompt:
return x[1]
else:
for x in config.axiom.prompts:
if x[0] == self.starting_prompt:
return x[1]
class AxiomToolkit:
def __init__(self, name, location, tool_name_list):
self.location = location
self.name = name
self.tool_name_list = tool_name_list
class AxiomTool:
def __init__(self, name, platform, ptf_module, description, action_list, command_list):
self.action_list = action_list
self.combined_list = []
self.command_list = command_list
self.description = description
self.name = name
self.platform = platform
self.ptf_module = ptf_module
def initialize_combined_list(self):
self.combined_list = []
x = 0
while x < self.action_list.__len__():
self.combined_list.append(self.action_list[x].name)
x += 1
y = 0
while y < self.command_list.__len__():
self.combined_list.append(self.command_list[y].name)
y += 1
self.combined_list = sorted(self.combined_list, key=str.casefold)
def install(self):
if self.ptf_module not in ["", None]:
answer = input("[AXIOM] Install " + self.name + " via PTF? [Y/n] ")
if answer not in ["Y", "y", "Yes", "yes"]:
return False
else:
if config.axiom.platform.lower() != "linux":
print_error(str("ERROR: Unable to run PTF on " + config.axiom.platform))
return False
else:
input_text = str("python3 ./ptf --no-network-connection << EOF\n" +
str("use " + self.ptf_module + "\n") +
"install\n" +
"EOF\n")
try:
call(input_text, shell=True, cwd=config.axiom.ptf_folder)
return True
except OSError:
print_error("ERROR: Failed to execute PTF")
exit(1)
else:
return False
def is_installed(self):
ptf_config_file = str(config.axiom.ptf_folder + "/config/ptf.config")
if self.ptf_module not in ["", None]:
tool_module_file = str(config.axiom.ptf_folder + "/" + self.ptf_module + ".py")
try:
with open(ptf_config_file) as ptf_config:
for line in enumerate(ptf_config):
if search("^BASE_INSTALL_PATH=", line[1]):
install_path = line[1].split("\"")[1]
break
except OSError:
print_error(str("ERROR: Failed to extract PTF base install path from " + ptf_config_file))
exit(1)
else:
try:
with open(tool_module_file) as module_file:
for line in enumerate(module_file):
if search("^INSTALL_LOCATION=", line[1]):
location = line[1].split("\"")[1]
break
except OSError:
print_error(str("ERROR: Failed to extract PTF install location from " + tool_module_file))
exit(1)
else:
folder = str(self.ptf_module.split("/")[1])
ptf_tool_folder = str(install_path + "/" + folder + "/" + location)
if path.exists(ptf_tool_folder):
return True
else:
return False
text = str("which \"" + self.name + "\"")
try:
dev_null = open(devnull, 'w')
if call(split(text), stdout=dev_null, stderr=STDOUT) == 0:
return True
else:
return False
except OSError:
print_error(str("ERROR: Failed to run command " + text))
exit(1)
def platform_matches(self):
if self.platform.lower() == config.axiom.platform.lower():
return True
else:
return False
def proceed_despite_uninstalled(self):
answer = input("[AXIOM] Unable to confirm " + self.name + " is installed. Proceed anyway? [Y/n] ")
if answer not in ["Y", "y", "Yes", "yes"]:
return False
else:
return True | Apache License 2.0 |
humancompatibleai/rlsp | src/envs/env.py | Env.step | python | def step(self, action, r_vec=None):
self.s = self.state_step(action)
self.timestep+=1
obs = self.s_to_f(self.s)
reward = 0 if r_vec is None else np.array(obs.T @ r_vec)
done = False
info = defaultdict(lambda : '')
return np.array(obs, dtype='float32'), reward, np.array(done, dtype='bool'), info | given an action, takes a step from self.s, updates self.s and returns:
- the observation (features of the next state)
- the associated reward
- done, the indicator of completed episode
- info | https://github.com/humancompatibleai/rlsp/blob/cacae643752a02b2be092870df2ce3de8d674144/src/envs/env.py#L68-L83 | import numpy as np
from collections import defaultdict
from copy import deepcopy
from scipy.sparse import lil_matrix
class Env(object):
def __init__(self):
raise ValueError('Cannot instantiate abstract class Env')
def is_deterministic(self):
return False
def get_initial_state_distribution(self, known_initial_state=True):
if known_initial_state:
p_0 = np.zeros(self.nS)
p_0[self.get_num_from_state(self.init_state)] = 1
else:
p_0 = np.ones(self.nS) / self.nS
return p_0
def make_transition_matrices(self, states_iter, actions_iter, nS, nA):
P = {}
T_matrix = lil_matrix((nS * nA, nS))
baseline_matrix = lil_matrix((nS, nS))
actions = list(actions_iter)
for state in states_iter:
state_id = self.get_num_from_state(state)
P[state_id] = {}
for action in actions:
next_s = self.get_next_states(state, action)
next_s = [(p, self.get_num_from_state(s), r) for p, s, r in next_s]
P[state_id][action] = next_s
state_action_index = state_id * nA + action
for prob, next_state_id, _ in next_s:
T_matrix[state_action_index, next_state_id] = prob
if action == self.default_action:
baseline_matrix[state_id, next_state_id] = prob
self.P = P
self.T_matrix = T_matrix.tocsr()
self.T_matrix_transpose = T_matrix.transpose().tocsr()
self.baseline_matrix_transpose = baseline_matrix.transpose().tocsr()
def make_f_matrix(self, nS, num_features):
self.f_matrix = np.zeros((nS, num_features))
for state_id in self.P.keys():
state = self.get_state_from_num(state_id)
self.f_matrix[state_id, :] = self.s_to_f(state)
def reset(self, state=None):
if state is None: state = self.init_state
self.timestep = 0
self.s = deepcopy(state)
def state_step(self, action, state=None):
if state == None: state = self.s
next_states = self.get_next_states(state, action)
probabilities = [p for p, _, _ in next_states]
idx = np.random.choice(np.arange(len(next_states)), p=probabilities)
return next_states[idx][1] | MIT License |
instadeepai/mava | mava/wrappers/pettingzoo.py | PettingZooParallelEnvWrapper.extra_spec | python | def extra_spec(self) -> Dict[str, specs.BoundedArray]:
return {} | Extra data spec.
Returns:
Dict[str, specs.BoundedArray]: spec for extra data. | https://github.com/instadeepai/mava/blob/3159ed45bce4936c8298085cad1bdefbac50160f/mava/wrappers/pettingzoo.py#L549-L555 | import copy
from typing import Any, Dict, Iterator, List, Optional, Union
import dm_env
import gym
import numpy as np
from acme import specs
from acme.wrappers.gym_wrapper import _convert_to_spec
from pettingzoo.utils.env import AECEnv, ParallelEnv
from supersuit import black_death_v1
from mava import types
from mava.utils.wrapper_utils import (
apply_env_wrapper_preprocessers,
convert_dm_compatible_observations,
convert_np_type,
parameterized_restart,
)
from mava.wrappers.env_wrappers import ParallelEnvWrapper, SequentialEnvWrapper
class PettingZooAECEnvWrapper(SequentialEnvWrapper):
def __init__(
self,
environment: AECEnv,
env_preprocess_wrappers: Optional[List] = [
(black_death_v1, None),
],
):
self._environment = environment
self._reset_next_step = True
if env_preprocess_wrappers:
self._environment = apply_env_wrapper_preprocessers(
self._environment, env_preprocess_wrappers
)
self.correct_agent_name()
self.last_turn_agent = None
def reset(self) -> dm_env.TimeStep:
self._reset_next_step = False
self._environment.reset()
self._step_types = {
agent: dm_env.StepType.FIRST for agent in self.possible_agents
}
self._first_step_performed = {agent: False for agent in self.possible_agents}
observe, _, done, _ = self._environment.last()
agent = self.current_agent
observation = self._convert_observation(agent, observe, done)
self._discount = convert_np_type(self.discount_spec()[agent].dtype, 1)
reward = convert_np_type(self.reward_spec()[agent].dtype, 0)
return parameterized_restart(reward, self._discount, observation)
def step(self, action: Union[int, float]) -> dm_env.TimeStep:
if self._reset_next_step:
return self.reset()
_, _, done, _ = self._environment.last()
if done:
self._environment.step(None)
else:
self._environment.step(action)
agent = self.current_agent
if self.env_done():
self._reset_next_step = True
reward = convert_np_type(self.reward_spec()[agent].dtype, 0)
observation = self._convert_observation(
agent, self._environment.observe(agent), done
)
else:
observe, reward, done, info = self._environment.last()
reward = convert_np_type(self.reward_spec()[agent].dtype, reward)
observation = self._convert_observation(agent, observe, done)
step_type = dm_env.StepType.LAST if done else dm_env.StepType.MID
return dm_env.TimeStep(
observation=observation,
reward=reward,
discount=self._discount,
step_type=step_type,
)
def env_done(self) -> bool:
return not self.agents
def agent_iter(self, max_iter: int = 2 ** 63) -> Iterator:
return self._environment.agent_iter(max_iter)
def _convert_observation(
self, agent: str, observe: Union[dict, np.ndarray], done: bool
) -> types.OLT:
legals: np.ndarray = None
observation: np.ndarray = None
if isinstance(observe, dict) and "action_mask" in observe:
legals = observe["action_mask"]
observation = observe["observation"]
else:
legals = np.ones(
self._environment.action_spaces[agent].shape,
dtype=self._environment.action_spaces[agent].dtype,
)
observation = observe
if observation.dtype == np.int8:
observation = np.dtype(np.float32).type(
observation
)
if legals.dtype == np.int8:
legals = np.dtype(np.int64).type(legals)
observation = types.OLT(
observation=observation,
legal_actions=legals,
terminal=np.asarray([done], dtype=np.float32),
)
return observation
def correct_agent_name(self) -> None:
self._environment.reset()
if "tictactoe" in self._environment.metadata["name"]:
corrected_names = ["player_0", "player_1"]
self._environment.unwrapped.possible_agents = corrected_names
self._environment.unwrapped.agents = corrected_names
self._environment.possible_agents = corrected_names
self._environment.agents = corrected_names
previous_names = list(self.observation_spaces.keys())
for corrected_name, prev_name in zip(corrected_names, previous_names):
self.observation_spaces[corrected_name] = self.observation_spaces[
prev_name
]
self.action_spaces[corrected_name] = self.action_spaces[prev_name]
self.rewards[corrected_name] = self.rewards[prev_name]
self.dones[corrected_name] = self.dones[prev_name]
self.infos[corrected_name] = self.infos[prev_name]
del self.observation_spaces[prev_name]
del self.action_spaces[prev_name]
del self.rewards[prev_name]
del self.dones[prev_name]
del self.infos[prev_name]
def observation_spec(self) -> types.Observation:
observation_specs = {}
for agent in self._environment.possible_agents:
if isinstance(self._environment.observation_spaces[agent], gym.spaces.Dict):
obs_space = copy.deepcopy(
self._environment.observation_spaces[agent]["observation"]
)
legal_actions_space = copy.deepcopy(
self._environment.observation_spaces[agent]["action_mask"]
)
else:
obs_space = copy.deepcopy(self._environment.observation_spaces[agent])
legal_actions_space = copy.deepcopy(
self._environment.action_spaces[agent]
)
if obs_space.dtype == np.int8:
obs_space.dtype = np.dtype(np.float32)
if legal_actions_space.dtype == np.int8:
legal_actions_space.dtype = np.dtype(np.int64)
observation_specs[agent] = types.OLT(
observation=_convert_to_spec(obs_space),
legal_actions=_convert_to_spec(legal_actions_space),
terminal=specs.Array((1,), np.float32),
)
return observation_specs
def action_spec(self) -> Dict[str, specs.DiscreteArray]:
action_specs = {}
for agent in self.possible_agents:
action_specs[agent] = _convert_to_spec(
self._environment.action_spaces[agent]
)
return action_specs
def reward_spec(self) -> Dict[str, specs.Array]:
reward_specs = {}
for agent in self.possible_agents:
reward_specs[agent] = specs.Array((), np.float32)
return reward_specs
def discount_spec(self) -> Dict[str, specs.BoundedArray]:
discount_specs = {}
for agent in self.possible_agents:
discount_specs[agent] = specs.BoundedArray(
(), np.float32, minimum=0, maximum=1.0
)
return discount_specs
def extra_spec(self) -> Dict[str, specs.BoundedArray]:
return {}
@property
def agents(self) -> List:
return self._environment.agents
@property
def possible_agents(self) -> List:
return self._environment.possible_agents
@property
def environment(self) -> AECEnv:
return self._environment
@property
def current_agent(self) -> Any:
return self._environment.agent_selection
@property
def num_agents(self) -> int:
return self._environment.num_agents
def __getattr__(self, name: str) -> Any:
if hasattr(self.__class__, name):
return self.__getattribute__(name)
else:
return getattr(self._environment, name)
class PettingZooParallelEnvWrapper(ParallelEnvWrapper):
def __init__(
self,
environment: ParallelEnv,
env_preprocess_wrappers: Optional[List] = [
(black_death_v1, None),
],
):
self._environment = environment
self._reset_next_step = True
if env_preprocess_wrappers:
self._environment = apply_env_wrapper_preprocessers(
self._environment, env_preprocess_wrappers
)
def reset(self) -> dm_env.TimeStep:
self._reset_next_step = False
self._step_type = dm_env.StepType.FIRST
discount_spec = self.discount_spec()
observe = self._environment.reset()
self._discounts = {
agent: convert_np_type(discount_spec[agent].dtype, 1)
for agent in self.possible_agents
}
if type(observe) == tuple:
observe, env_extras = observe
else:
env_extras = {}
observations = self._convert_observations(
observe, {agent: False for agent in self.possible_agents}
)
rewards_spec = self.reward_spec()
rewards = {
agent: convert_np_type(rewards_spec[agent].dtype, 0)
for agent in self.possible_agents
}
return parameterized_restart(rewards, self._discounts, observations), env_extras
def step(self, actions: Dict[str, np.ndarray]) -> dm_env.TimeStep:
if self._reset_next_step:
return self.reset()
observations, rewards, dones, infos = self._environment.step(actions)
rewards = self._convert_reward(rewards)
observations = self._convert_observations(observations, dones)
if self.env_done():
self._step_type = dm_env.StepType.LAST
self._reset_next_step = True
else:
self._step_type = dm_env.StepType.MID
return dm_env.TimeStep(
observation=observations,
reward=rewards,
discount=self._discounts,
step_type=self._step_type,
)
def env_done(self) -> bool:
return not self.agents
def _convert_reward(self, rewards: Dict[str, float]) -> Dict[str, float]:
rewards_spec = self.reward_spec()
if not rewards:
rewards = {
agent: convert_np_type(rewards_spec[agent].dtype, 0)
for agent in self.possible_agents
}
else:
rewards = {
agent: convert_np_type(rewards_spec[agent].dtype, reward)
for agent, reward in rewards.items()
}
return rewards
def _convert_observations(
self, observes: Dict[str, np.ndarray], dones: Dict[str, bool]
) -> types.Observation:
return convert_dm_compatible_observations(
observes,
dones,
self._environment.action_spaces,
self._environment.observation_spaces,
self.env_done(),
self.possible_agents,
)
def observation_spec(self) -> types.Observation:
observation_specs = {}
for agent in self.possible_agents:
observation_specs[agent] = types.OLT(
observation=_convert_to_spec(
self._environment.observation_spaces[agent]
),
legal_actions=_convert_to_spec(self._environment.action_spaces[agent]),
terminal=specs.Array((1,), np.float32),
)
return observation_specs
def action_spec(self) -> Dict[str, Union[specs.DiscreteArray, specs.BoundedArray]]:
action_specs = {}
action_spaces = self._environment.action_spaces
for agent in self.possible_agents:
action_specs[agent] = _convert_to_spec(action_spaces[agent])
return action_specs
def reward_spec(self) -> Dict[str, specs.Array]:
reward_specs = {}
for agent in self.possible_agents:
reward_specs[agent] = specs.Array((), np.float32)
return reward_specs
def discount_spec(self) -> Dict[str, specs.BoundedArray]:
discount_specs = {}
for agent in self.possible_agents:
discount_specs[agent] = specs.BoundedArray(
(), np.float32, minimum=0, maximum=1.0
)
return discount_specs | Apache License 2.0 |
bbn-q/auspex | src/auspex/stream.py | DataStreamDescriptor.axis_names | python | def axis_names(self, with_metadata=False):
vals = []
for a in self.axes:
if a.unstructured:
for p in a.parameter:
vals.append(p.name)
else:
vals.append(a.name)
if with_metadata and a.metadata is not None:
if a.unstructured:
vals.append("+".join(a.name) + "_metadata")
else:
vals.append(a.name + "_metadata")
return vals | Returns all axis names included those from unstructured axes | https://github.com/bbn-q/auspex/blob/e9763e1907546ad49210415a6b8c2f6d9999f31a/src/auspex/stream.py#L392-L406 | import os
import sys
if sys.platform == 'win32' or 'NOFORKING' in os.environ:
import threading as mp
from queue import Queue
else:
import multiprocessing as mp
from multiprocessing import Queue
from multiprocessing import Value, RawValue, RawArray
import ctypes
import logging
import numbers
import itertools
import time
import datetime
import numpy as np
from functools import reduce
from auspex.log import logger
def cartesian(arrays, out=None, dtype='f'):
arrays = [np.asarray(x) for x in arrays]
n = np.prod([x.size for x in arrays])
if out is None:
out = np.zeros([n, len(arrays)], dtype=dtype)
m = int(n / arrays[0].size)
out[:,0] = np.repeat(arrays[0], m)
if arrays[1:]:
cartesian(arrays[1:], out=out[0:m,1:])
for j in range(1, arrays[0].size):
out[j*m:(j+1)*m,1:] = out[0:m,1:]
return out
class DataAxis(object):
def __init__(self, name, points=[], unit=None, metadata=None, dtype=np.float32):
super(DataAxis, self).__init__()
if isinstance(name, list):
self.unstructured = True
self.name = name
else:
self.unstructured = False
self.name = str(name)
self.points = np.array(points)
self.unit = unit
self.refine_func = None
self.metadata = metadata
self.done = True
self.original_points = self.points
self.has_been_extended = False
self.num_new_points = 0
self.dtype = dtype
if self.unstructured:
if unit is not None and len(name) != len(unit):
raise ValueError("DataAxis unit length {} and tuples length {} must match.".format(len(unit),len(name)))
if self.unstructured and len(name) != len(points[0]):
raise ValueError("DataAxis points length {} and names length {} must match.".format(len(points[0]), len(name)))
def data_type(self, with_metadata=False):
dtype = []
if self.unstructured:
name = "+".join(self.name)
dtype.extend([(p.name, 'f') for p in self.parameter])
else:
name = self.name
dtype.append((name, 'f'))
if with_metadata and self.metadata is not None:
dtype.append((name + "_metadata", str))
return dtype
def points_with_metadata(self):
if self.metadata is not None:
if self.unstructured:
return [list(self.original_points[i]) + [self.metadata[i]] for i in range(len(self.original_points))]
return [(self.original_points[i], self.metadata[i], ) for i in range(len(self.original_points))]
if self.unstructured:
return [tuple(self.original_points[i]) for i in range(len(self.original_points))]
return [(self.original_points[i],) for i in range(len(self.original_points))]
def tuple_width(self):
if self.unstructured:
width = len(name)
else:
width = 1
if self.metadata:
width += 1
return width
def num_points(self):
if self.has_been_extended:
return len(self.points)
else:
return len(self.original_points)
def add_points(self, points):
if self.unstructured and len(self.parameter) != len(points[0]):
raise ValueError("Parameter value tuples must be the same length as the number of parameters.")
if type(points) in [list, np.ndarray]:
points = np.array(points)
else:
points = np.array([points])
self.num_new_points = len(points)
self.points = np.append(self.points, points, axis=0)
self.has_been_extended = True
def reset(self):
self.points = self.original_points
self.has_been_extended = False
self.num_new_points = 0
def __repr__(self):
return "<DataAxis(name={}, start={}, stop={}, num={}, unit={})>".format(
self.name, self.points[0], self.points[-1], len(self.points), self.unit)
def __str__(self):
return "<DataAxis(name={}, start={}, stop={}, num={}, unit={})>".format(
self.name, self.points[0], self.points[-1], len(self.points), self.unit)
class SweepAxis(DataAxis):
def __init__(self, parameter, points = [], metadata=None, refine_func=None, callback_func=None):
self.unstructured = hasattr(parameter, '__iter__')
self.parameter = parameter
if self.unstructured:
unit = [p.unit for p in parameter]
super(SweepAxis, self).__init__([p.name for p in parameter], points=points, unit=unit, metadata=metadata)
self.value = points[0]
else:
super(SweepAxis, self).__init__(parameter.name, points, unit=parameter.unit, metadata=metadata)
self.value = points[0]
if self.metadata is not None:
self.metadata_value = self.metadata[0]
self.refine_func = refine_func
self.callback_func = callback_func
self.step = 0
self.done = False
self.experiment = None
if self.unstructured and len(parameter) != len(points[0]):
raise ValueError("Parameter value tuples must be the same length as the number of parameters.")
logger.debug("Created {}".format(self.__repr__()))
def update(self):
if self.step < self.num_points():
if self.callback_func:
self.callback_func(self, self.experiment)
self.value = self.points[self.step]
if self.metadata is not None:
self.metadata_value = self.metadata[self.step]
logger.debug("Sweep Axis '{}' at step {} takes value: {}.".format(self.name,
self.step,self.value))
self.push()
self.step += 1
self.done = False
def check_for_refinement(self, output_connectors_dict):
if not self.done and self.step==self.num_points():
logger.debug("Refining on axis {}".format(self.name))
if self.refine_func:
points = self.refine_func(self, self.experiment)
if points is None or points is False:
self.step = 0
self.done = True
self.reset()
logger.debug("Sweep Axis '{}' complete.".format(self.name))
for oc in output_connectors_dict.values():
oc.push_event("refined", (self.name, True, self.original_points))
return False
self.add_points(points)
self.done = False
for oc in output_connectors_dict.values():
oc.push_event("refined", (self.name, False, points))
return True
else:
self.step = 0
self.done = True
logger.debug("Sweep Axis '{}' complete.".format(self.name))
return False
def push(self):
if self.unstructured:
for p, v in zip(self.parameter, self.value):
p.value = v
p.push()
else:
self.parameter.value = self.value
self.parameter.push()
def __repr__(self):
return "<SweepAxis(name={},length={},unit={},value={},unstructured={}>".format(self.name,
self.num_points(),self.unit,self.value,self.unstructured)
class DataStreamDescriptor(object):
def __init__(self, dtype=np.float32):
super(DataStreamDescriptor, self).__init__()
self.data_name = "Data"
self.data_unit = "Unit"
self.axes = []
self.unit = None
self.params = {}
self.parent = None
self._exp_src = None
self.dtype = dtype
self.metadata = {}
self.buffer_mult_factor = 1
self.visited_tuples = []
def is_adaptive(self):
return True in [a.refine_func is not None for a in self.axes]
def add_axis(self, axis, position=0):
if isinstance(axis, DataAxis):
logger.debug("Adding DataAxis into DataStreamDescriptor: {}".format(axis))
self.axes.insert(position, axis)
else:
raise TypeError("Failed adding axis. Object is not DataAxis: {}".format(axis))
def add_param(self, key, value):
self.params[key] = value
def num_dims(self):
return len(self.axes)
def extent(self, flip=False):
if self.num_dims() == 2:
return (self.axes[1].points[0], self.axes[1].points[-1], self.axes[0].points[0], self.axes[0].points[-1])
else:
raise Exception("Can't get extent for any number of axes other than two.")
def data_dims(self):
dims = []
for a in self.axes:
if isinstance(a, SweepAxis):
dims.append(1)
else:
dims.append(len(a.points))
return dims
def tuple_width(self):
return sum([a.tuple_width() for a in self.axes])
def dims(self):
dims = []
for a in self.axes:
dims.append(len(a.points))
return [a.num_points() for a in self.axes]
def axes_done(self):
doneness = [a.done for a in self.axes]
return [np.all(doneness[i:]) for i in range(len(doneness))]
def done(self):
return np.all([a.done for a in self.axes])
def num_points(self):
if len(self.axes)>0:
return reduce(lambda x,y: x*y, [a.num_points() for a in self.axes])
else:
return 0
def expected_num_points(self):
if len(self.axes)>0:
return reduce(lambda x,y: x*y, [len(a.original_points) for a in self.axes])
else:
return 0
def last_data_axis(self):
data_axes_idx = [i for i, a in enumerate(self.axes) if not isinstance(a,SweepAxis)]
if len(data_axes_idx)>0:
return data_axes_idx[0]
else:
logger.warning("DataStreamDescriptor has no pure DataAxis. Return None.")
return None
def axis_data_type(self, with_metadata=False, excluding_axis=None):
dtype = []
for a in self.axes:
if a.name != excluding_axis:
dtype.extend(a.data_type(with_metadata=with_metadata))
return dtype
def tuples(self, as_structured_array=True):
if len(self.visited_tuples) == 0:
self.visited_tuples = self.expected_tuples(with_metadata=True)
if as_structured_array:
if type(self.visited_tuples) is np.ndarray and type(self.visited_tuples.dtype.names) is tuple:
return self.visited_tuples
elif type(self.visited_tuples) is np.ndarray:
return np.rec.fromarrays(self.visited_tuples.T, dtype=self.axis_data_type(with_metadata=True))
return np.core.records.fromrecords(self.visited_tuples, dtype=self.axis_data_type(with_metadata=True))
return self.visited_tuples
def expected_tuples(self, with_metadata=False, as_structured_array=True):
vals = [a.points_with_metadata() for a in self.axes]
simple = True
if True in [a.unstructured for a in self.axes]:
simple = False
if True in [a.metadata is not None for a in self.axes]:
simple = False
if self.axes == []:
simple = False
if simple:
flattened_list = cartesian(vals)
else:
nested_list = itertools.product(*vals)
flattened_list = [tuple((val for sublist in line for val in sublist)) for line in nested_list]
if as_structured_array:
if simple:
return np.rec.fromarrays(flattened_list.T, dtype=self.axis_data_type(with_metadata=True))
return np.rec.fromrecords(flattened_list, dtype=self.axis_data_type(with_metadata=True))
return flattened_list | Apache License 2.0 |
lsgos/uncertainty-adversarial-paper | ROC_curves_cats.py | create_adv_examples | python | def create_adv_examples(model, input_t, x_to_adv, attack_dict):
if attack_dict['method'] == 'fgm':
attack = attacks.FastGradientMethod(model, sess=K.get_session(), back='tf')
elif attack_dict['method'] == 'bim':
attack = attacks.BasicIterativeMethod(model, sess=K.get_session(), back='tf')
elif attack_dict['method'] == 'mim':
attack = attacks.MomentumIterativeMethod(model, sess=K.get_session(), back='tf')
else:
assert False, 'Current attack needs to be added to the create attack fn'
adv_tensor = attack.generate(input_t, **{k: a for k, a in attack_dict.items() if
k != 'method'})
x_adv = batch_eval(adv_tensor, input_t, x_to_adv, batch_size=args.batch_size, verbose="Generating adv examples")
return x_adv | This fn may seem bizarre and pointless, but the point of it is to
enable the entire attack to be specified as a dict from the command line without
editing this script, which is convenient for storing the settings used for an attack | https://github.com/lsgos/uncertainty-adversarial-paper/blob/7f39d1ebf15061bd9b6c33f9c5fe4afb5bce42cf/ROC_curves_cats.py#L70-L87 | import argparse
import h5py
import json
import numpy as np
from keras import backend as K
from sklearn.metrics import roc_auc_score, roc_curve, precision_recall_curve, average_precision_score
from keras.utils import to_categorical
import src.utilities as U
from cleverhans import attacks
from cleverhans.model import CallableModelWrapper
from cats_and_dogs import H5PATH, define_model_resnet
def load_model(deterministic=False, name='save/cats_dogs_rn50_w_run.h5'):
lp = not deterministic
K.set_learning_phase(lp)
model = define_model_resnet()
model.load_weights(name)
model.compile(loss='categorical_crossentropy', optimizer='sgd')
return model
def make_random_targets(y, n_classes=10):
labels = y.argmax(axis=1)
new = (labels + np.random.randint(1, n_classes - 1)) % n_classes
return to_categorical(new, num_classes=n_classes)
def get_models(n_mc=10):
models = []
model = load_model(deterministic=True)
models.append(('Deterministic Model', model))
model = load_model(deterministic=False)
input_tensor = model.input
mc_model = U.MCModel(model, input_tensor, n_mc=n_mc)
models.append(('MC Model', mc_model))
return models
def batch_gen(array, batch_size=256):
N = array.shape[0]
n_batches = N // batch_size + (N % batch_size != 0)
bs = batch_size
return (array[i * bs:(i + 1) * bs] for i in range(n_batches))
def batch_eval(tensor, input_t, x, batch_size=256, verbose=False):
bg = batch_gen(x, batch_size=batch_size)
res = []
for i, b in enumerate(bg):
res.append(tensor.eval(session=K.get_session(), feed_dict={input_t: b}))
if verbose:
print(verbose, 'iteration: ', i)
return np.concatenate(res, axis=0) | MIT License |
sulab/wikidataintegrator | wikidataintegrator/wdi_fastrun.py | FastRunContainer.clear | python | def clear(self):
self.prop_dt_map = dict()
self.prop_data = dict()
self.rev_lookup = defaultdict(set)
self.rev_lookup_ci = defaultdict(set) | convinience function to empty this fastrun container | https://github.com/sulab/wikidataintegrator/blob/5feff88d7e97ffad1713a086202efa93ebe49516/wikidataintegrator/wdi_fastrun.py#L585-L592 | import copy
from collections import defaultdict
from functools import lru_cache
from itertools import chain
from wikidataintegrator.wdi_config import config
example_Q14911732 = {'P1057':
{'Q14911732-23F268EB-2848-4A82-A248-CF4DF6B256BC':
{'v': 'Q847102',
'ref': {'9d96507726508344ef1b8f59092fb350171b3d99':
{('P248', 'Q29458763'), ('P594', 'ENSG00000123374')}},
'qual': {('P659', 'Q21067546'), ('P659', 'Q20966585')},
}
}
}
class FastRunContainer(object):
def __init__(self, base_data_type, engine, mediawiki_api_url=None, sparql_endpoint_url=None, wikibase_url=None,
concept_base_uri=None, base_filter=None, use_refs=False, ref_handler=None, case_insensitive=False,
debug=False):
self.prop_data = {}
self.loaded_langs = {}
self.statements = []
self.base_filter = {}
self.base_filter_string = ''
self.prop_dt_map = {}
self.current_qid = ''
self.rev_lookup = defaultdict(set)
self.rev_lookup_ci = defaultdict(set)
self.base_data_type = base_data_type
self.engine = engine
self.mediawiki_api_url = config['MEDIAWIKI_API_URL'] if mediawiki_api_url is None else mediawiki_api_url
self.sparql_endpoint_url = config['SPARQL_ENDPOINT_URL'] if sparql_endpoint_url is None else sparql_endpoint_url
self.wikibase_url = config['WIKIBASE_URL'] if wikibase_url is None else wikibase_url
self.concept_base_uri = config['CONCEPT_BASE_URI'] if concept_base_uri is None else concept_base_uri
self.case_insensitive = case_insensitive
self.debug = debug
self.reconstructed_statements = []
self.use_refs = use_refs
self.ref_handler = ref_handler
if base_filter and any(base_filter):
self.base_filter = base_filter
for k, v in self.base_filter.items():
if v:
self.base_filter_string += '?item wdt:{0} wd:{1} . \n'.format(k, v)
else:
self.base_filter_string += '?item wdt:{0} ?zz . \n'.format(k)
def reconstruct_statements(self, qid):
reconstructed_statements = []
if qid not in self.prop_data:
self.reconstructed_statements = reconstructed_statements
return reconstructed_statements
for prop_nr, dt in self.prop_data[qid].items():
q_props = set(chain(*[[x[0] for x in d['qual']] for d in dt.values()]))
r_props = set(chain(*[set(chain(*[[y[0] for y in x] for x in d['ref'].values()])) for d in dt.values()]))
props = q_props | r_props
for prop in props:
if prop not in self.prop_dt_map:
self.prop_dt_map.update({prop: self.get_prop_datatype(prop)})
for uid, d in dt.items():
qualifiers = []
for q in d['qual']:
f = [x for x in self.base_data_type.__subclasses__() if x.DTYPE ==
self.prop_dt_map[q[0]]][0]
qualifiers.append(f(q[1], prop_nr=q[0], is_qualifier=True))
references = []
for ref_id, refs in d['ref'].items():
this_ref = []
for ref in refs:
f = [x for x in self.base_data_type.__subclasses__() if x.DTYPE ==
self.prop_dt_map[ref[0]]][0]
this_ref.append(f(ref[1], prop_nr=ref[0], is_reference=True))
references.append(this_ref)
f = [x for x in self.base_data_type.__subclasses__() if x.DTYPE ==
self.prop_dt_map[prop_nr]][0]
if self.prop_dt_map[prop_nr] == 'quantity' and d['unit'] != '1':
reconstructed_statements.append(
f(d['v'], prop_nr=prop_nr, qualifiers=qualifiers, references=references, unit=d['unit'],
concept_base_uri=self.concept_base_uri))
else:
reconstructed_statements.append(
f(d['v'], prop_nr=prop_nr, qualifiers=qualifiers, references=references))
self.reconstructed_statements = reconstructed_statements
return reconstructed_statements
def load_item(self, data, cqid=None):
match_sets = []
for date in data:
current_value = date.get_value()
if not current_value and not date.data_type:
continue
prop_nr = date.get_prop_nr()
if prop_nr not in self.prop_dt_map:
if self.debug:
print("{} not found in fastrun".format(prop_nr))
self.prop_dt_map.update({prop_nr: self.get_prop_datatype(prop_nr)})
self._query_data(prop_nr)
if self.prop_dt_map[prop_nr] == 'time':
current_value = current_value[0]
elif self.prop_dt_map[prop_nr] == 'wikibase-item':
current_value = 'Q{}'.format(current_value)
elif self.prop_dt_map[prop_nr] == 'quantity':
current_value = self.format_amount(current_value[0])
if self.debug:
print(current_value)
if current_value in self.rev_lookup:
temp_set = set(self.rev_lookup[current_value])
elif self.case_insensitive and current_value.casefold() in self.rev_lookup_ci:
temp_set = set(self.rev_lookup_ci[current_value.casefold()])
else:
if self.debug:
if self.case_insensitive:
print('case insensitive enabled')
print(self.rev_lookup_ci)
else:
print(self.rev_lookup)
print('no matches for rev lookup')
return True
match_sets.append(temp_set)
if cqid:
matching_qids = {cqid}
else:
matching_qids = match_sets[0].intersection(*match_sets[1:])
if not len(matching_qids) == 1:
if self.debug:
print('no matches')
return True
qid = matching_qids.pop()
self.current_qid = qid
def write_required(self, data, append_props=None, cqid=None):
del_props = set()
data_props = set()
if not append_props:
append_props = []
for x in data:
if x.value and x.data_type:
data_props.add(x.get_prop_nr())
write_required = False
self.load_item(data, cqid)
reconstructed_statements = self.reconstruct_statements(self.current_qid)
tmp_rs = copy.deepcopy(reconstructed_statements)
for p in append_props:
app_data = [x for x in data if x.get_prop_nr() == p]
rec_app_data = [x for x in tmp_rs if x.get_prop_nr() == p]
comp = []
for x in app_data:
for y in rec_app_data:
if x.get_value() == y.get_value():
if self.use_refs and self.ref_handler:
to_be = copy.deepcopy(y)
self.ref_handler(to_be, x)
else:
to_be = x
if y.equals(to_be, include_ref=self.use_refs):
comp.append(True)
if len(comp) != len(app_data):
if self.debug:
print("failed append: {}".format(p))
return True
tmp_rs = [x for x in tmp_rs if x.get_prop_nr() not in append_props and x.get_prop_nr() in data_props]
for date in data:
reconst_props = set([x.get_prop_nr() for x in tmp_rs])
if (not date.value or not date.data_type) and date.get_prop_nr() in reconst_props:
if self.debug:
print('returned from delete prop handling')
return True
elif not date.value or not date.data_type:
continue
if date.get_prop_nr() in append_props:
continue
if not date.get_value() and not date.data_type:
del_props.add(date.get_prop_nr())
bool_vec = []
for x in tmp_rs:
if (x.get_value() == date.get_value() or (
self.case_insensitive and x.get_value().casefold() == date.get_value().casefold())) and x.get_prop_nr() not in del_props:
if self.use_refs and self.ref_handler:
to_be = copy.deepcopy(x)
self.ref_handler(to_be, date)
else:
to_be = date
if x.equals(to_be, include_ref=self.use_refs):
bool_vec.append(True)
else:
bool_vec.append(False)
else:
bool_vec.append(False)
"""
bool_vec = [x.equals(date, include_ref=self.use_refs, fref=self.ref_comparison_f) and
x.get_prop_nr() not in del_props for x in tmp_rs]
"""
if self.debug:
print("bool_vec: {}".format(bool_vec))
print('-----------------------------------')
for x in tmp_rs:
if date == x and x.get_prop_nr() not in del_props:
print(x.get_prop_nr(), x.get_value(), [z.get_value() for z in x.get_qualifiers()])
print(date.get_prop_nr(), date.get_value(), [z.get_value() for z in date.get_qualifiers()])
else:
if x.get_prop_nr() == date.get_prop_nr():
print(x.get_prop_nr(), x.get_value(), [z.get_value() for z in x.get_qualifiers()])
print(date.get_prop_nr(), date.get_value(), [z.get_value() for z in date.get_qualifiers()])
if not any(bool_vec):
if self.debug:
print(len(bool_vec))
print('fast run failed at', date.get_prop_nr())
write_required = True
else:
tmp_rs.pop(bool_vec.index(True))
if len(tmp_rs) > 0:
if self.debug:
print('failed because not zero')
for x in tmp_rs:
print('xxx', x.get_prop_nr(), x.get_value(), [z.get_value() for z in x.get_qualifiers()])
print('failed because not zero--END')
write_required = True
return write_required
def init_language_data(self, lang, lang_data_type):
if lang not in self.loaded_langs:
self.loaded_langs[lang] = {}
if lang_data_type not in self.loaded_langs[lang]:
result = self._query_lang(lang=lang, lang_data_type=lang_data_type)
data = self._process_lang(result)
self.loaded_langs[lang].update({lang_data_type: data})
def get_language_data(self, qid, lang, lang_data_type):
self.init_language_data(lang, lang_data_type)
current_lang_data = self.loaded_langs[lang][lang_data_type]
all_lang_strings = current_lang_data.get(qid, [])
if not all_lang_strings and lang_data_type in {'label', 'description'}:
all_lang_strings = ['']
return all_lang_strings
def check_language_data(self, qid, lang_data, lang, lang_data_type):
all_lang_strings = set(x.strip().lower() for x in self.get_language_data(qid, lang, lang_data_type))
for s in lang_data:
if s.strip().lower() not in all_lang_strings:
print('fastrun failed at label: {}, string: {}'.format(lang_data_type, s))
return True
return False
def get_all_data(self):
return self.prop_data
def format_query_results(self, r, prop_nr):
prop_dt = self.get_prop_datatype(prop_nr)
for i in r:
for value in {'item', 'sid', 'pq', 'pr', 'ref', 'unit'}:
if value in i:
i[value] = i[value]['value'].split('/')[-1]
for value in {'v', 'qval', 'rval'}:
if value in i:
if i[value].get("datatype") == 'http://www.w3.org/2001/XMLSchema#dateTime' and not i[value]['value'][0] in '+-':
i[value]['value'] = '+' + i[value]['value']
if 'v' in i:
if i['v']['type'] == 'uri' and prop_dt == 'wikibase-item':
i['v'] = i['v']['value'].split('/')[-1]
elif i['v']['type'] == 'literal' and prop_dt == 'quantity':
i['v'] = self.format_amount(i['v']['value'])
else:
i['v'] = i['v']['value']
if type(i['v']) is not dict:
self.rev_lookup[i['v']].add(i['item'])
if self.case_insensitive:
self.rev_lookup_ci[i['v'].casefold()].add(i['item'])
if 'qval' in i:
qual_prop_dt = self.get_prop_datatype(prop_nr=i['pq'])
if i['qval']['type'] == 'uri' and qual_prop_dt == 'wikibase-item':
i['qval'] = i['qval']['value'].split('/')[-1]
else:
i['qval'] = i['qval']['value']
if 'rval' in i:
ref_prop_dt = self.get_prop_datatype(prop_nr=i['pr'])
if i['rval']['type'] == 'uri' and ref_prop_dt == 'wikibase-item':
i['rval'] = i['rval']['value'].split('/')[-1]
else:
i['rval'] = i['rval']['value']
def format_amount(self, amount):
if float(amount) % 1 == 0:
amount = int(float(amount))
if not str(amount).startswith('+') and float(amount) >= 0:
amount = str('+{}'.format(amount))
return str(amount)
def update_frc_from_query(self, r, prop_nr):
for i in r:
qid = i['item']
if qid not in self.prop_data:
self.prop_data[qid] = {prop_nr: dict()}
if prop_nr not in self.prop_data[qid]:
self.prop_data[qid].update({prop_nr: dict()})
if i['sid'] not in self.prop_data[qid][prop_nr]:
self.prop_data[qid][prop_nr].update({i['sid']: dict()})
d = {'v': i['v']}
self.prop_data[qid][prop_nr][i['sid']].update(d)
if 'qual' not in self.prop_data[qid][prop_nr][i['sid']]:
self.prop_data[qid][prop_nr][i['sid']]['qual'] = set()
if 'pq' in i and 'qval' in i:
self.prop_data[qid][prop_nr][i['sid']]['qual'].add((i['pq'], i['qval']))
if 'ref' not in self.prop_data[qid][prop_nr][i['sid']]:
self.prop_data[qid][prop_nr][i['sid']]['ref'] = dict()
if 'ref' in i:
if i['ref'] not in self.prop_data[qid][prop_nr][i['sid']]['ref']:
self.prop_data[qid][prop_nr][i['sid']]['ref'][i['ref']] = set()
self.prop_data[qid][prop_nr][i['sid']]['ref'][i['ref']].add((i['pr'], i['rval']))
if 'unit' not in self.prop_data[qid][prop_nr][i['sid']]:
self.prop_data[qid][prop_nr][i['sid']]['unit'] = '1'
if 'unit' in i:
self.prop_data[qid][prop_nr][i['sid']]['unit'] = i['unit']
def _query_data_refs(self, prop_nr):
page_size = 10000
page_count = 0
num_pages = None
if self.debug:
query = """PREFIX wd: <{0}/entity/>
PREFIX wdt: <{0}/prop/direct/>
PREFIX p: <{0}/prop/>
PREFIX ps: <{0}/prop/statement/>
SELECT (COUNT(?item) as ?c) where {{
{1}
?item p:{2} ?sid .
}}""".format(self.wikibase_url, self.base_filter_string, prop_nr)
if self.debug:
print(query)
r = self.engine.execute_sparql_query(query, endpoint=self.sparql_endpoint_url)['results']['bindings']
count = int(r[0]['c']['value'])
num_pages = (int(count) // page_size) + 1
print("Query {}: {}/{}".format(prop_nr, page_count, num_pages))
while True:
query = """
PREFIX wd: <**wikibase_url**/entity/>
PREFIX wdt: <**wikibase_url**/prop/direct/>
PREFIX p: <**wikibase_url**/prop/>
PREFIX ps: <**wikibase_url**/prop/statement/>
#Tool: wdi_core fastrun
SELECT ?item ?qval ?pq ?sid ?v ?ref ?pr ?rval WHERE {
{
SELECT ?item ?v ?sid where {
**base_filter_string**
?item p:**prop_nr** ?sid .
?sid ps:**prop_nr** ?v .
} GROUP BY ?item ?v ?sid
ORDER BY ?sid
OFFSET **offset**
LIMIT **page_size**
}
OPTIONAL {
?sid ?pq ?qval .
[] wikibase:qualifier ?pq
}
OPTIONAL {
?sid prov:wasDerivedFrom ?ref .
?ref ?pr ?rval .
[] wikibase:reference ?pr
}
}""".replace("**offset**", str(page_count * page_size)). replace("**base_filter_string**", self.base_filter_string). replace("**prop_nr**", prop_nr).replace("**page_size**", str(page_size)). replace("**wikibase_url**", self.wikibase_url)
if self.debug:
print(query)
results = self.engine.execute_sparql_query(query, endpoint=self.sparql_endpoint_url)['results']['bindings']
self.format_query_results(results, prop_nr)
self.update_frc_from_query(results, prop_nr)
page_count += 1
if num_pages:
print("Query {}: {}/{}".format(prop_nr, page_count, num_pages))
if len(results) == 0:
break
def _query_data(self, prop_nr):
if self.use_refs:
self._query_data_refs(prop_nr)
else:
query = '''
PREFIX wd: <{0}/entity/>
PREFIX wdt: <{0}/prop/direct/>
PREFIX p: <{0}/prop/>
PREFIX ps: <{0}/prop/statement/>
PREFIX psv: <{0}/prop/statement/value/>
#Tool: wdi_core fastrun
select ?item ?qval ?pq ?sid ?v ?unit where {{
{1}
?item p:{2} ?sid .
?sid ps:{2} ?v .
OPTIONAL {{
?sid ?pq ?qval .
[] wikibase:qualifier ?pq
}}
OPTIONAL {{
?sid psv:{2} ?valuenode .
?valuenode wikibase:quantityUnit ?unit
}}
}}
'''.format(self.wikibase_url, self.base_filter_string, prop_nr)
if self.debug:
print(query)
r = self.engine.execute_sparql_query(query=query, endpoint=self.sparql_endpoint_url)['results']['bindings']
self.format_query_results(r, prop_nr)
self.update_frc_from_query(r, prop_nr)
def _query_lang(self, lang, lang_data_type):
lang_data_type_dict = {
'label': 'rdfs:label',
'description': 'schema:description',
'aliases': 'skos:altLabel'
}
query = '''
PREFIX wd: <{0}/entity/>
PREFIX wdt: <{0}/prop/direct/>
PREFIX p: <{0}/prop/>
PREFIX ps: <{0}/prop/statement/>
#Tool: wdi_core fastrun
SELECT ?item ?label WHERE {{
{1}
OPTIONAL {{
?item {2} ?label FILTER (lang(?label) = "{3}") .
}}
}}
'''.format(self.wikibase_url, self.base_filter_string, lang_data_type_dict[lang_data_type], lang)
if self.debug:
print(query)
return self.engine.execute_sparql_query(query=query, endpoint=self.sparql_endpoint_url)['results']['bindings']
@staticmethod
def _process_lang(result):
data = defaultdict(set)
for r in result:
qid = r['item']['value'].split("/")[-1]
if 'label' in r:
data[qid].add(r['label']['value'])
return data
@lru_cache(maxsize=100000)
def get_prop_datatype(self, prop_nr):
item = self.engine(wd_item_id=prop_nr, sparql_endpoint_url=self.sparql_endpoint_url,
mediawiki_api_url=self.mediawiki_api_url,
wikibase_url=self.wikibase_url)
return item.entity_metadata['datatype'] | MIT License |
napari/napari | napari/_qt/widgets/qt_highlight_preview.py | QtTriangle.maximum | python | def maximum(self):
return self._max_value | Return maximum value.
Returns
-------
int
Maximum value of triangle widget. | https://github.com/napari/napari/blob/c4c987c880fe125da608edf427767eafe7f2b3f4/napari/_qt/widgets/qt_highlight_preview.py#L239-L247 | import numpy as np
from qtpy.QtCore import QSize, Qt, Signal
from qtpy.QtGui import QColor, QIntValidator, QPainter, QPainterPath, QPen
from qtpy.QtWidgets import (
QFrame,
QHBoxLayout,
QLabel,
QLineEdit,
QSlider,
QVBoxLayout,
QWidget,
)
from ...utils.translations import translator
trans = translator.load()
class QtStar(QFrame):
def __init__(
self,
parent: QWidget = None,
value: int = None,
):
super().__init__(parent)
self._value = value
def sizeHint(self):
return QSize(100, 100)
def minimumSizeHint(self):
return QSize(100, 100)
def paintEvent(self, e):
qp = QPainter()
qp.begin(self)
self.drawStar(qp)
qp.end()
def value(self):
return self._value
def setValue(self, value: int):
self._value = value
self.update()
def drawStar(self, qp):
width = self.rect().width()
height = self.rect().height()
col = QColor(135, 206, 235)
pen = QPen(col, self._value)
pen.setJoinStyle(Qt.PenJoinStyle.MiterJoin)
qp.setPen(pen)
path = QPainterPath()
star_center_x = width / 2
star_center_y = height / 2
if width < height:
radius_outer = width * 0.35
else:
radius_outer = height * 0.35
golden_ratio = (1 + np.sqrt(5)) / 2
radius_inner = radius_outer / (1 + golden_ratio)
theta_start = np.pi / 2
theta_inc = (2 * np.pi) / 10
for n in range(11):
theta = theta_start + (n * theta_inc)
theta = np.mod(theta, 2 * np.pi)
if np.mod(n, 2) == 0:
x = radius_outer * np.cos(theta)
y = radius_outer * np.sin(theta)
else:
x = radius_inner * np.cos(theta)
y = radius_inner * np.sin(theta)
x_adj = star_center_x - x
y_adj = star_center_y - y + 3
if n == 0:
path.moveTo(x_adj, y_adj)
else:
path.lineTo(x_adj, y_adj)
qp.drawPath(path)
class QtTriangle(QFrame):
valueChanged = Signal(int)
def __init__(
self,
parent: QWidget = None,
value: int = 1,
min_value: int = 1,
max_value: int = 10,
):
super().__init__(parent)
self._max_value = max_value
self._min_value = min_value
self._value = value
def mousePressEvent(self, event):
perc = event.pos().x() / self.rect().width()
value = ((self._max_value - self._min_value) * perc) + self._min_value
self.setValue(value)
def paintEvent(self, e):
qp = QPainter()
qp.begin(self)
self.drawTriangle(qp)
perc = (self._value - self._min_value) / (
self._max_value - self._min_value
)
self.drawLine(qp, self.rect().width() * perc)
qp.end()
def sizeHint(self):
return QSize(75, 30)
def minimumSizeHint(self):
return QSize(75, 30)
def drawTriangle(self, qp):
width = self.rect().width()
height = self.rect().height()
col = QColor(135, 206, 235)
qp.setPen(QPen(col, 1))
qp.setBrush(col)
path = QPainterPath()
height = 10
path.moveTo(0, height)
path.lineTo(width, height)
path.lineTo(width, 0)
path.closeSubpath()
qp.drawPath(path)
def value(self):
return self._value
def setValue(self, value):
self._value = value
self.update()
def minimum(self):
return self._min_value | BSD 3-Clause New or Revised License |
aoldoni/tetre | lib/tetre/graph_processing_children.py | Obj.remove_tags | python | def remove_tags(self, root, node_set, spacy_tree):
is_applied = False
node_set = set(node_set) - self.tags_to_be_removed
for child in spacy_tree.children:
if child.dep_ in self.tags_to_be_removed:
is_applied = True
child.no_follow = True
return root, node_set, spacy_tree, is_applied | 1) Consider the following sentence:
"2 Related work Learning to rank has been a promising research area which continuously improves web
search relevance (Burges et al."
In this case, the dependency parser puts not the action the improves something as a parent of the word
"improves" in the in the tree, and adds to it the relcl relation. This method adjusts the tree, bringing
the node above under "improves".
2) Now consider the following sentence:
"Evaluation on the ACE 2003 corpus shows that, compared with a baseline coreference resolution system of
no explicit anaphoricity determination, their method improves the performance by 2.8, 2.2 and 4.5 to 54.5,
64.0 and 60.8 in F1-measure (due to the gain in precision) on the NWIRE, NPAPER and BNEWS domains,
respectively, via careful determination of an anaphoricity threshold with proper constraint-based
representation and global optimization."
"Adding latent states to the smoothing model further improves the POS tagging accuracy (Huang and Yates,
2012)."
In this case, the "appos" relation prints further information on the noun that is part of the "obj" node.
http://universaldependencies.org/u/dep/appos.html - one can remove it as in all observed cases the extra
information wasn't really relevant (wither it were citations, or long subsequent clauses)
Args:
root: The head of the NLTK tree.
node_set: The nodes of the NLTK tree.
spacy_tree: The TreeNode object, rooted at the child node.
Returns:
root: The modified head of the NLTK tree.
node_set: The modified nodes of the NLTK tree.
spacy_tree: The modified TreeNode object.
is_applied: A boolean marking if the rule was applied or not. | https://github.com/aoldoni/tetre/blob/a8b07aa47a9adf7dce46dff96e20be63a761e9f7/lib/tetre/graph_processing_children.py#L160-L204 | from tetre.rule_applier import *
from tree_utils import find_in_spacynode
class Children(RuleApplier):
def __init__(self):
RuleApplier.__init__(self)
self.tags_to_be_removed = {'det', ' ', ''}
def bring_grandchild_prep_or_relcl_up_as_child(self, root, node_set, spacy_tree):
bring_up = [
("relcl", "", "mod"),
("acl", "", "mod"),
("advcl", "", "mod"),
("prep", "by", "prep"),
("prep", "to", "prep"),
("prep", "for", "prep"),
("prep", "with", "prep"),
("prep", "whereby", "prep"),
]
is_applied = False
node = spacy_tree
head = spacy_tree.head
for dep_, orth_, dep_new_ in bring_up:
changed = True
while changed:
changed = False
prep = find_in_spacynode(node, dep_, orth_)
if not prep:
break
prep_head = prep.head.children[:]
for i in range(0, len(prep_head)):
if prep.dep_ in prep_head[i].dep_ and prep.orth_ == prep_head[i].orth_ and prep.idx == prep_head[i].idx:
is_applied = True
prep.head.children.pop(i)
head.children.append(prep)
prep.head = head
prep.dep_ = dep_new_
node_set = list(node_set)
node_set.append(dep_new_)
changed = True
break
return root, node_set, spacy_tree, is_applied
class Obj(Children):
def __init__(self):
Children.__init__(self)
return
@RuleApplier.register_function
def remove_duplicates(self, root, node_set, spacy_tree):
return root, set(node_set), spacy_tree, False
@RuleApplier.register_function | MIT License |
mukund109/word-mesh | wordmesh/utils.py | PlotlyVisualizer.__init__ | python | def __init__(self, words, fontsizes_norm, height, width,
filename='temp-plot.html', title=None, textcolors='white',
hovertext=None, axis_visible=False, bg_color='black',
title_fontcolor='white', title_fontsize='auto',
title_font_family='Courier New, monospace', bb_padding=0.08,
boundary_padding_factor=1.1):
self.words = words
self.fontsizes_norm = fontsizes_norm
self.height = height
self.width = width
self.title = title
self.textcolors = textcolors
self.hovertext = hovertext
self.axis_visible = axis_visible
self.bg_color = bg_color
self.title_fontcolor = title_fontcolor
self.title_fontsize = title_fontsize
self.title_font_family = title_font_family
self.padding = bb_padding
self.boundary_padding = boundary_padding_factor
self.bounding_box_dimensions, self.real_fontsizes = self.get_bb_dimensions() | Parameters
---------- | https://github.com/mukund109/word-mesh/blob/2be945d988d661bd51afa6bd646f944c9c5d202a/wordmesh/utils.py#L19-L44 | import numpy as np
import plotly.offline as py
import plotly.graph_objs as go
PLOTLY_FONTSIZE_BBW = 0.6
PLOTLY_FONTSIZE_BBH = 0.972+0.088
class PlotlyVisualizer(): | MIT License |
datadotworld/data.world-py | datadotworld/client/api.py | RestApiClient.get_user_data | python | def get_user_data(self):
try:
return self._user_api.get_user_data().to_dict()
except _swagger.rest.ApiException as e:
raise RestApiError(cause=e) | Retrieve data for authenticated user
:returns: User data, with all attributes
:rtype: dict
:raises RestApiException: If a server error occurs
Examples
--------
>>> import datadotworld as dw
>>> api_client = dw.api_client()
>>> user_data = api_client.get_user_data() # doctest: +SKIP
>>> user_data[display_name] # doctest: +SKIP
'Name User' | https://github.com/datadotworld/data.world-py/blob/7e5f474b655f4f0c88cc6862353e4d52c0e0bb31/datadotworld/client/api.py#L501-L519 | from __future__ import absolute_import, division
import functools
import glob
import json
import os
import shutil
import uuid
import zipfile
from os import path
import requests
import six
from datadotworld.client import _swagger
from datadotworld.client.content_negotiating_api_client import (
ContentNegotiatingApiClient
)
from datadotworld.util import parse_dataset_key, _user_agent
from datadotworld.hosts import API_HOST, DOWNLOAD_HOST
class RestApiClient(object):
def __init__(self, config):
self._config = config
self._host = "{}/v0".format(API_HOST)
swagger_client = _swagger.ApiClient(
host=self._host,
header_name='Authorization',
header_value='Bearer {}'.format(self._config.auth_token))
swagger_client.user_agent = _user_agent()
self._build_api_client = functools.partial(
ContentNegotiatingApiClient,
host=self._host,
header_name='Authorization',
header_value='Bearer {}'.format(self._config.auth_token),
user_agent=_user_agent())
self._datasets_api = _swagger.DatasetsApi(swagger_client)
self._user_api = _swagger.UserApi(swagger_client)
self._streams_api = _swagger.StreamsApi(swagger_client)
self._projects_api = _swagger.ProjectsApi(swagger_client)
self._insights_api = _swagger.InsightsApi(swagger_client)
self._files_api = _swagger.FilesApi(swagger_client)
self._queries_api = _swagger.QueriesApi(swagger_client)
self._search_api = _swagger.SearchApi(swagger_client)
self._tables_api = _swagger.TablesApi(swagger_client)
self._connections_api = _swagger.ConnectionsApi(swagger_client)
def get_dataset(self, dataset_key):
try:
return self._datasets_api.get_dataset(
*(parse_dataset_key(dataset_key))).to_dict()
except _swagger.rest.ApiException as e:
raise RestApiError(cause=e)
def create_dataset(self, owner_id, **kwargs):
request = self.__build_dataset_obj(
lambda: _swagger.DatasetCreateRequest(
title=kwargs.get('title'),
visibility=kwargs.get('visibility')),
lambda name, url, expand_archive, description, labels:
_swagger.FileCreateRequest(
name=name,
source=_swagger.FileSourceCreateRequest(
url=url,
expand_archive=expand_archive),
description=description,
labels=labels),
kwargs)
try:
(_, _, headers) = self._datasets_api.create_dataset_with_http_info(
owner_id, request, _return_http_data_only=False)
if 'Location' in headers:
return headers['Location']
except _swagger.rest.ApiException as e:
raise RestApiError(cause=e)
def update_dataset(self, dataset_key, **kwargs):
request = self.__build_dataset_obj(
lambda: _swagger.DatasetPatchRequest(),
lambda name, url, expand_archive, description, labels:
_swagger.FileCreateOrUpdateRequest(
name=name,
source=_swagger.FileSourceCreateOrUpdateRequest(
url=url,
expand_archive=expand_archive)
if url is not None else None,
description=description,
labels=labels),
kwargs)
owner_id, dataset_id = parse_dataset_key(dataset_key)
try:
self._datasets_api.patch_dataset(owner_id, dataset_id, request)
except _swagger.rest.ApiException as e:
raise RestApiError(cause=e)
def replace_dataset(self, dataset_key, **kwargs):
request = self.__build_dataset_obj(
lambda: _swagger.DatasetPutRequest(
title=kwargs.get('title'),
visibility=kwargs.get('visibility')
),
lambda name, url, expand_archive, description, labels:
_swagger.FileCreateRequest(
name=name,
source=_swagger.FileSourceCreateRequest(
url=url,
expand_archive=expand_archive),
description=description,
labels=labels),
kwargs)
owner_id, dataset_id = parse_dataset_key(dataset_key)
try:
self._datasets_api.replace_dataset(owner_id, dataset_id, request)
except _swagger.rest.ApiException as e:
raise RestApiError(cause=e)
def delete_dataset(self, dataset_key):
owner_id, dataset_id = parse_dataset_key(dataset_key)
try:
self._datasets_api.delete_dataset(owner_id, dataset_id)
except _swagger.rest.ApiException as e:
raise RestApiError(cause=e)
def add_files_via_url(self, dataset_key, files={}):
file_requests = [_swagger.FileCreateOrUpdateRequest(
name=file_name,
source=_swagger.FileSourceCreateOrUpdateRequest(
url=file_info['url'],
expand_archive=file_info.get('expand_archive',
False)),
description=file_info.get('description'),
labels=file_info.get('labels'),
) for file_name, file_info in files.items()]
owner_id, dataset_id = parse_dataset_key(dataset_key)
try:
self._files_api.add_files_by_source(
owner_id, dataset_id,
_swagger.FileBatchUpdateRequest(files=file_requests))
except _swagger.rest.ApiException as e:
raise RestApiError(cause=e)
def sync_files(self, dataset_key):
try:
self._files_api.sync(*(parse_dataset_key(dataset_key)))
except _swagger.rest.ApiException as e:
raise RestApiError(cause=e)
def upload_files(self, dataset_key, files, files_metadata={}, **kwargs):
owner_id, dataset_id = parse_dataset_key(dataset_key)
try:
self._files_api.upload_files(owner_id, dataset_id, files, **kwargs)
if files_metadata:
self.update_dataset(dataset_key, files=files_metadata)
except _swagger.rest.ApiException as e:
raise RestApiError(cause=e)
def upload_file(self, dataset_key, name, file_metadata={}, **kwargs):
owner_id, dataset_id = parse_dataset_key(dataset_key)
try:
self._files_api.upload_file(owner_id, dataset_id, name, **kwargs)
if file_metadata:
self.update_dataset(dataset_key, files=file_metadata)
except _swagger.rest.ApiException as e:
raise RestApiError(cause=e)
def delete_files(self, dataset_key, names):
owner_id, dataset_id = parse_dataset_key(dataset_key)
try:
self._files_api.delete_files_and_sync_sources(
owner_id, dataset_id, names)
except _swagger.rest.ApiException as e:
raise RestApiError(cause=e)
def download_datapackage(self, dataset_key, dest_dir):
if path.isdir(dest_dir):
raise ValueError('dest_dir must be a new directory, '
'but {} already exists'.format(dest_dir))
owner_id, dataset_id = parse_dataset_key(dataset_key)
url = "{0}/datapackage/{1}/{2}".format(
DOWNLOAD_HOST, owner_id, dataset_id)
headers = {
'User-Agent': _user_agent(),
'Authorization': 'Bearer {0}'.format(self._config.auth_token)
}
try:
response = requests.get(url, headers=headers, stream=True)
response.raise_for_status()
except requests.RequestException as e:
raise RestApiError(cause=e)
unzip_dir = path.join(self._config.tmp_dir, str(uuid.uuid4()))
os.makedirs(unzip_dir)
zip_file = path.join(unzip_dir, 'dataset.zip')
with open(zip_file, 'wb') as f:
for data in response.iter_content(chunk_size=4096):
f.write(data)
zip_obj = zipfile.ZipFile(zip_file)
zip_obj.extractall(path=unzip_dir)
unzipped_descriptor = glob.glob(
'{}/**/datapackage.json'.format(unzip_dir))
if not unzipped_descriptor:
raise RuntimeError(
'Zip file did not contain a datapackage manifest.')
unzipped_dir = path.dirname(unzipped_descriptor[0])
shutil.move(unzipped_dir, dest_dir)
shutil.rmtree(unzip_dir, ignore_errors=True)
return path.join(dest_dir, 'datapackage.json') | Apache License 2.0 |
engineering-course/lip_jppnet | utils/utils.py | save | python | def save(saver, sess, logdir, step):
if not os.path.exists(logdir):
os.makedirs(logdir)
model_name = 'model.ckpt'
checkpoint_path = os.path.join(logdir, model_name)
if not os.path.exists(logdir):
os.makedirs(logdir)
saver.save(sess, checkpoint_path, global_step=step)
print('The checkpoint has been created.') | Save weights.
Args:
saver: TensorFlow Saver object.
sess: TensorFlow session.
logdir: path to the snapshots directory.
step: current training step. | https://github.com/engineering-course/lip_jppnet/blob/1899e8d18656312b6f9cea1c908205dcdf6c95e5/utils/utils.py#L84-L100 | from PIL import Image
import numpy as np
import tensorflow as tf
import os
import scipy.misc
from scipy.stats import multivariate_normal
import matplotlib.pyplot as plt
n_classes = 20
label_colours = [(0,0,0)
,(128,0,0),(255,0,0),(0,85,0),(170,0,51),(255,85,0)
,(0,0,85),(0,119,221),(85,85,0),(0,85,85),(85,51,0)
,(52,86,128),(0,128,0),(0,0,255),(51,170,221),(0,255,255)
,(85,255,170),(170,255,85),(255,255,0),(255,170,0)]
IMG_MEAN = np.array((104.00698793,116.66876762,122.67891434), dtype=np.float32)
def decode_labels(mask, num_images=1, num_classes=20):
n, h, w, c = mask.shape
assert(n >= num_images), 'Batch size %d should be greater or equal than number of images to save %d.' % (n, num_images)
outputs = np.zeros((num_images, h, w, 3), dtype=np.uint8)
for i in range(num_images):
img = Image.new('RGB', (len(mask[i, 0]), len(mask[i])))
pixels = img.load()
for j_, j in enumerate(mask[i, :, :, 0]):
for k_, k in enumerate(j):
if k < n_classes:
pixels[k_,j_] = label_colours[k]
outputs[i] = np.array(img)
return outputs
def prepare_label(input_batch, new_size, one_hot=True):
with tf.name_scope('label_encode'):
input_batch = tf.image.resize_nearest_neighbor(input_batch, new_size)
input_batch = tf.squeeze(input_batch, squeeze_dims=[3])
if one_hot:
input_batch = tf.one_hot(input_batch, depth=n_classes)
return input_batch
def inv_preprocess(imgs, num_images):
n, h, w, c = imgs.shape
assert(n >= num_images), 'Batch size %d should be greater or equal than number of images to save %d.' % (n, num_images)
outputs = np.zeros((num_images, h, w, c), dtype=np.uint8)
for i in range(num_images):
outputs[i] = (imgs[i] + IMG_MEAN)[:, :, ::-1].astype(np.uint8)
return outputs | MIT License |
rajammanabrolu/worldgeneration | evennia-engine/evennia/evennia/contrib/turnbattle/tb_magic.py | is_in_combat | python | def is_in_combat(character):
return bool(character.db.combat_turnhandler) | Returns true if the given character is in combat.
Args:
character (obj): Character to determine if is in combat or not
Returns:
(bool): True if in combat or False if not in combat | https://github.com/rajammanabrolu/worldgeneration/blob/5e97df013399e1a401d0a7ec184c4b9eb3100edd/evennia-engine/evennia/evennia/contrib/turnbattle/tb_magic.py#L265-L275 | from random import randint
from evennia import DefaultCharacter, Command, default_cmds, DefaultScript, create_object
from evennia.commands.default.muxcommand import MuxCommand
from evennia.commands.default.help import CmdHelp
TURN_TIMEOUT = 30
ACTIONS_PER_TURN = 1
def roll_init(character):
return randint(1, 1000)
def get_attack(attacker, defender):
attack_value = randint(1, 100)
return attack_value
def get_defense(attacker, defender):
defense_value = 50
return defense_value
def get_damage(attacker, defender):
damage_value = randint(15, 25)
return damage_value
def apply_damage(defender, damage):
defender.db.hp -= damage
if defender.db.hp <= 0:
defender.db.hp = 0
def at_defeat(defeated):
defeated.location.msg_contents("%s has been defeated!" % defeated)
def resolve_attack(attacker, defender, attack_value=None, defense_value=None):
if not attack_value:
attack_value = get_attack(attacker, defender)
if not defense_value:
defense_value = get_defense(attacker, defender)
if attack_value < defense_value:
attacker.location.msg_contents("%s's attack misses %s!" % (attacker, defender))
else:
damage_value = get_damage(attacker, defender)
attacker.location.msg_contents(
"%s hits %s for %i damage!" % (attacker, defender, damage_value)
)
apply_damage(defender, damage_value)
if defender.db.hp <= 0:
at_defeat(defender)
def combat_cleanup(character):
for attr in character.attributes.all():
if attr.key[:7] == "combat_":
character.attributes.remove(key=attr.key) | MIT License |
hipchat/curler | curler/twisted_gears/client.py | GearmanWorker.doJob | python | def doJob(self):
return self.getJob().addCallback(self._finishJob) | Do a single job | https://github.com/hipchat/curler/blob/b22bf79ecc4c1985038e0ba183ca7125be4b8ac0/curler/twisted_gears/client.py#L164-L166 | import sys
import struct
from collections import deque
from twisted.internet import defer
from twisted.protocols import stateful
from twisted.python import log
from constants import *
__all__ = ['GearmanProtocol', 'GearmanWorker', 'GearmanClient']
class GearmanProtocol(stateful.StatefulProtocol):
unsolicited = [ WORK_COMPLETE, WORK_FAIL, NOOP,
WORK_DATA, WORK_WARNING, WORK_EXCEPTION ]
def makeConnection(self, transport):
self.receivingCommand = 0
self.deferreds = deque()
self.unsolicited_handlers = set()
stateful.StatefulProtocol.makeConnection(self, transport)
def send_raw(self, cmd, data=''):
self.transport.writeSequence([REQ_MAGIC,
struct.pack(">II", cmd, len(data)),
data])
def send(self, cmd, data=''):
self.send_raw(cmd, data)
d = defer.Deferred()
self.deferreds.append(d)
return d
def getInitialState(self):
return self._headerReceived, HEADER_LEN
def connectionLost(self, reason):
for d in list(self.deferreds):
d.errback(reason)
self.deferreds.clear()
def _headerReceived(self, header):
if header[:4] != RES_MAGIC:
log.msg("Invalid header magic returned, failing.")
self.transport.loseConnection()
return
cmd, size = struct.unpack(">II", header[4:])
self.receivingCommand = cmd
return self._completed, size
def _completed(self, data):
if self.receivingCommand in self.unsolicited:
self._unsolicited(self.receivingCommand, data)
else:
d = self.deferreds.popleft()
d.callback((self.receivingCommand, data))
self.receivingCommand = 0
return self._headerReceived, HEADER_LEN
def _unsolicited(self, cmd, data):
for cb in self.unsolicited_handlers:
cb(cmd, data)
def register_unsolicited(self, cb):
self.unsolicited_handlers.add(cb)
def unregister_unsolicited(self, cb):
self.unsolicited_handlers.discard(cb)
def echo(self, data="hello"):
return self.send(ECHO_REQ, data)
class _GearmanJob(object):
def __init__(self, raw_data):
self.handle, self.function, self.data = raw_data.split("\0", 2)
def __repr__(self):
return "<GearmanJob %s func=%s with %d bytes of data>" % (self.handle,
self.function,
len(self.data))
class GearmanWorker(object):
def __init__(self, protocol):
self.protocol = protocol
self.functions = {}
self.sleeping = None
self.protocol.register_unsolicited(self._unsolicited)
def setId(self, client_id):
self.protocol.send_raw(SET_CLIENT_ID, client_id)
def registerFunction(self, name, func):
self.functions[name] = func
self.protocol.send_raw(CAN_DO, name)
def _send_job_res(self, cmd, job, data=''):
self.protocol.send_raw(cmd, job.handle + "\0" + data)
def _sleep(self):
if not self.sleeping:
self.sleeping = defer.Deferred()
self.protocol.send_raw(PRE_SLEEP)
return self.sleeping
def _unsolicited(self, cmd, data):
assert cmd == NOOP
if self.sleeping:
self.sleeping.callback(None)
self.sleeping = None
@defer.inlineCallbacks
def getJob(self):
if self.sleeping:
yield self._sleep()
stuff = yield self.protocol.send(GRAB_JOB)
while stuff[0] == NO_JOB:
yield self._sleep()
stuff = yield self.protocol.send(GRAB_JOB)
defer.returnValue(_GearmanJob(stuff[1]))
@defer.inlineCallbacks
def _finishJob(self, job):
assert job
f = self.functions[job.function]
assert f
try:
rv = yield f(job)
if rv is None:
rv = ""
self._send_job_res(WORK_COMPLETE, job, rv)
except:
etype, emsg, bt = sys.exc_info()
self._send_job_res(WORK_EXCEPTION, job, "%s(%s)"
% (etype.__name__, emsg))
self._send_job_res(WORK_FAIL, job) | MIT License |
xanaduai/strawberryfields | strawberryfields/backends/tfbackend/ops.py | beamsplitter | python | def beamsplitter(
theta, phi, mode1, mode2, in_modes, cutoff, pure=True, batched=False, dtype=tf.complex64
):
theta = tf.cast(theta, dtype)
phi = tf.cast(phi, dtype)
matrix = beamsplitter_matrix(theta, phi, cutoff, batched, dtype)
output = two_mode_gate(matrix, mode1, mode2, in_modes, pure, batched)
return output | returns beamsplitter unitary matrix on specified input modes | https://github.com/xanaduai/strawberryfields/blob/c1eed81a93419cb9c28a6ca205925691063722ce/strawberryfields/backends/tfbackend/ops.py#L825-L833 | from string import ascii_lowercase as indices
import tensorflow as tf
import numpy as np
from scipy.special import factorial
from thewalrus.fock_gradients import displacement as displacement_tw
from thewalrus.fock_gradients import grad_displacement as grad_displacement_tw
from thewalrus.fock_gradients import squeezing as squeezing_tw
from thewalrus.fock_gradients import grad_squeezing as grad_squeezing_tw
from thewalrus.fock_gradients import beamsplitter as beamsplitter_tw
from thewalrus.fock_gradients import grad_beamsplitter as grad_beamsplitter_tw
from thewalrus.fock_gradients import mzgate as mzgate_tw
from thewalrus.fock_gradients import grad_mzgate as grad_mzgate_tw
from thewalrus.fock_gradients import two_mode_squeezing as two_mode_squeezing_tw
from thewalrus.fock_gradients import grad_two_mode_squeezing as grad_two_mode_squeezing_tw
try:
from tensorflow.python.ops.special_math_ops import _einsum_v1
tf.einsum = _einsum_v1
except ImportError:
pass
max_num_indices = len(indices)
def _numer_safe_power(base, exponent, dtype=tf.complex64):
if exponent == 0:
return tf.ones_like(base, dtype)
return base ** exponent
def mix(pure_state, batched=False):
if not batched:
pure_state = tf.expand_dims(pure_state, 0)
batch_offset = 1
num_modes = len(pure_state.shape) - batch_offset
max_num = (max_num_indices - batch_offset) // 2
if num_modes > max_num:
raise ValueError(
"Converting state from pure to mixed currently only supported for {} modes.".format(
max_num
)
)
batch_index = indices[:batch_offset]
bra_indices = indices[batch_offset : batch_offset + num_modes]
ket_indices = indices[batch_offset + num_modes : batch_offset + 2 * num_modes]
eqn_lhs = batch_index + bra_indices + "," + batch_index + ket_indices
eqn_rhs = "".join(bdx + kdx for bdx, kdx in zip(bra_indices, ket_indices))
eqn = eqn_lhs + "->" + batch_index + eqn_rhs
mixed_state = tf.einsum(eqn, pure_state, tf.math.conj(pure_state))
if not batched:
mixed_state = tf.squeeze(mixed_state, 0)
return mixed_state
def batchify_indices(idxs, batch_size):
return [(bdx,) + idxs[i] for bdx in range(batch_size) for i in range(len(idxs))]
def unravel_index(ind, tensor_shape):
ind = tf.expand_dims(tf.cast(ind, tf.int64), 0)
tensor_shape = tf.expand_dims(tf.cast(tensor_shape, tf.int64), 1)
strides = tf.math.cumprod(tensor_shape, reverse=True)
strides_shifted = tf.math.cumprod(tensor_shape, exclusive=True, reverse=True)
unraveled_coords = (ind % strides) // strides_shifted
return tf.transpose(unraveled_coords)
def squeezed_vacuum_vector(r, theta, cutoff, batched=False, eps=1e-32, dtype=tf.complex64):
if batched:
batch_size = r.shape[0]
r = tf.cast(r, dtype)
theta = tf.cast(theta, dtype)
c1 = tf.cast(
tf.stack(
[
tf.sqrt(1 / tf.cosh(r)) * np.sqrt(factorial(k)) / factorial(k / 2.0)
for k in range(0, cutoff, 2)
],
axis=-1,
),
dtype,
)
c2 = tf.stack(
[
(-0.5 * tf.exp(1j * theta) * tf.cast(tf.tanh(r + eps), dtype)) ** (k / 2.0)
for k in range(0, cutoff, 2)
],
axis=-1,
)
even_coeffs = c1 * c2
ind = [(k,) for k in np.arange(0, cutoff, 2)]
shape = [cutoff]
if batched:
ind = batchify_indices(ind, batch_size)
shape = [batch_size] + shape
output = tf.scatter_nd(ind, tf.reshape(even_coeffs, [-1]), shape)
return output
@tf.custom_gradient
def single_squeezing_matrix(r, phi, cutoff, dtype=tf.complex64.as_numpy_dtype):
r = r.numpy()
phi = phi.numpy()
gate = squeezing_tw(r, phi, cutoff, dtype)
def grad(dy):
Dr, Dphi = grad_squeezing_tw(gate, r, phi)
grad_r = tf.math.real(tf.reduce_sum(dy * tf.math.conj(Dr)))
grad_phi = tf.math.real(tf.reduce_sum(dy * tf.math.conj(Dphi)))
return grad_r, grad_phi, None
return gate, grad
def squeezer_matrix(r, phi, cutoff, batched=False, dtype=tf.complex64):
r = tf.cast(r, dtype)
phi = tf.cast(phi, dtype)
if batched:
return tf.stack(
[
single_squeezing_matrix(r_, phi_, cutoff, dtype=dtype.as_numpy_dtype)
for r_, phi_ in tf.transpose([r, phi])
]
)
return single_squeezing_matrix(r, phi, cutoff, dtype=dtype.as_numpy_dtype)
def phase_shifter_matrix(theta, cutoff, batched=False, dtype=tf.complex64):
if batched:
batch_size = theta.shape[0]
theta = tf.cast(theta, dtype)
shape = [cutoff, cutoff]
if batched:
shape = [batch_size] + shape
zero_matrix = tf.zeros(shape=shape, dtype=dtype)
diag = [tf.exp(1j * theta * k) for k in np.arange(cutoff, dtype=np.complex64)]
if batched:
diag = tf.stack(diag, axis=1)
diag_matrix = tf.linalg.set_diag(zero_matrix, diag)
return diag_matrix
def kerr_interaction_matrix(kappa, cutoff, batched=False):
coeffs = [tf.exp(1j * kappa * n ** 2) for n in range(cutoff)]
if batched:
coeffs = tf.stack(coeffs, axis=1)
output = tf.linalg.diag(coeffs)
return output
def cross_kerr_interaction_matrix(kappa, cutoff, batched=False):
coeffs = [tf.exp(1j * kappa * n1 * n2) for n1 in range(cutoff) for n2 in range(cutoff)]
if batched:
coeffs = tf.stack(coeffs, axis=1)
output = tf.linalg.diag(coeffs)
if batched:
output = tf.transpose(tf.reshape(output, [-1] + [cutoff] * 4), [0, 1, 3, 2, 4])
else:
output = tf.transpose(tf.reshape(output, [cutoff] * 4), [0, 2, 1, 3])
return output
def cubic_phase_matrix(
gamma, cutoff, hbar, batched=False, method="self_adjoint_eig", dtype=tf.complex64
):
a, ad = ladder_ops(cutoff)
x = np.sqrt(hbar / 2) * tf.cast(a + ad, dtype)
x3 = x @ x @ x
if batched:
x3 = tf.expand_dims(x3, 0)
gamma = tf.reshape(gamma, [-1, 1, 1])
H0 = gamma / (3 * hbar) * x3
lambdas, U = tf.linalg.eigh(H0)
transpose_list = [1, 0]
if batched:
transpose_list = [0, 2, 1]
if method == "self_adjoint_eig":
V = U @ tf.linalg.diag(tf.exp(1j * lambdas)) @ tf.math.conj(tf.transpose(U, transpose_list))
else:
raise ValueError("'method' must be either 'self_adjoint_eig' or 'expm'.")
return V
def loss_superop(T, cutoff, batched=False, dtype=tf.complex64):
if not batched:
T = tf.expand_dims(T, 0)
T = tf.reshape(T, [-1, 1, 1, 1, 1, 1])
T = tf.cast(T, tf.float64)
rng = np.arange(cutoff)
a = np.reshape(rng, [-1, cutoff, 1, 1, 1, 1])
b = np.reshape(rng, [-1, 1, cutoff, 1, 1, 1])
c = np.reshape(rng, [-1, 1, 1, cutoff, 1, 1])
d = np.reshape(rng, [-1, 1, 1, 1, cutoff, 1])
l = np.reshape(rng, [-1, 1, 1, 1, 1, cutoff])
a_mask = np.where(a == b - l, 1, 0)
d_mask = np.where(d == c - l, 1, 0)
mask = (l <= np.minimum(b, c)) * a_mask * d_mask
exponent = tf.abs((b + c) / 2 - l) * mask
T_numer = tf.pow((1 - T), l) * tf.pow(T, exponent)
fact_numer = np.sqrt(factorial(b) * factorial(c))
fact_denom = np.sqrt(factorial(b - l) * factorial(c - l)) * factorial(l)
fact_denom_masked = np.where(fact_denom > 0, fact_denom, 1)
factors = mask * fact_numer / fact_denom_masked
l_terms = T_numer * factors
output = tf.cast(tf.reduce_sum(l_terms, -1), dtype)
if not batched:
output = tf.squeeze(output, 0)
return output
@tf.custom_gradient
def single_displacement_matrix(r, phi, cutoff, dtype=tf.complex64.as_numpy_dtype):
r = r.numpy()
phi = phi.numpy()
gate = displacement_tw(r, phi, cutoff, dtype)
def grad(dy):
Dr, Dphi = grad_displacement_tw(gate, r, phi)
grad_r = tf.math.real(tf.reduce_sum(dy * tf.math.conj(Dr)))
grad_phi = tf.math.real(tf.reduce_sum(dy * tf.math.conj(Dphi)))
return grad_r, grad_phi, None
return gate, grad
def displacement_matrix(r, phi, cutoff, batched=False, dtype=tf.complex64):
r = tf.cast(r, dtype)
phi = tf.cast(phi, dtype)
if batched:
return tf.stack(
[
single_displacement_matrix(r_, phi_, cutoff, dtype=dtype.as_numpy_dtype)
for r_, phi_ in tf.transpose([r, phi])
]
)
return single_displacement_matrix(r, phi, cutoff, dtype=dtype.as_numpy_dtype)
@tf.custom_gradient
def single_beamsplitter_matrix(theta, phi, cutoff, dtype=tf.complex64.as_numpy_dtype):
theta = theta.numpy()
phi = phi.numpy()
gate = beamsplitter_tw(theta, phi, cutoff, dtype)
gate = np.transpose(gate, [0, 2, 1, 3])
def grad(dy):
Dtheta, Dphi = grad_beamsplitter_tw(np.transpose(gate, [0, 2, 1, 3]), theta, phi)
Dtheta = np.transpose(Dtheta, [0, 2, 1, 3])
Dphi = np.transpose(Dphi, [0, 2, 1, 3])
grad_theta = tf.math.real(tf.reduce_sum(dy * tf.math.conj(Dtheta)))
grad_phi = tf.math.real(tf.reduce_sum(dy * tf.math.conj(Dphi)))
return grad_theta, grad_phi, None
return gate, grad
def beamsplitter_matrix(theta, phi, cutoff, batched=False, dtype=tf.complex64):
theta = tf.cast(theta, dtype)
phi = tf.cast(phi, dtype)
if batched:
return tf.stack(
[
single_beamsplitter_matrix(theta_, phi_, cutoff, dtype=dtype.as_numpy_dtype)
for theta_, phi_ in tf.transpose([theta, phi])
]
)
return tf.convert_to_tensor(
single_beamsplitter_matrix(theta, phi, cutoff, dtype=dtype.as_numpy_dtype)
)
@tf.custom_gradient
def single_mzgate_matrix(phi_in, phi_ex, cutoff, dtype=tf.complex64.as_numpy_dtype):
phi_in = phi_in.numpy()
phi_ex = phi_ex.numpy()
gate = mzgate_tw(phi_in, phi_ex, cutoff, dtype)
gate = np.transpose(gate, [0, 2, 1, 3])
def grad(dy):
Dtheta, Dphi = grad_mzgate_tw(np.transpose(gate, [0, 2, 1, 3]), phi_in, phi_ex)
Dtheta = np.transpose(Dtheta, [0, 2, 1, 3])
Dphi = np.transpose(Dphi, [0, 2, 1, 3])
grad_theta = tf.math.real(tf.reduce_sum(dy * tf.math.conj(Dtheta)))
grad_phi = tf.math.real(tf.reduce_sum(dy * tf.math.conj(Dphi)))
return grad_theta, grad_phi, None
return gate, grad
def mzgate_matrix(phi_in, phi_ex, cutoff, batched=False, dtype=tf.complex64):
phi_in = tf.cast(phi_in, dtype)
phi_ex = tf.cast(phi_ex, dtype)
if batched:
return tf.stack(
[
single_mzgate_matrix(phi_in_, phi_ex_, cutoff, dtype=dtype.as_numpy_dtype)
for phi_in_, phi_ex_ in tf.transpose([phi_in, phi_ex])
]
)
return tf.convert_to_tensor(
single_mzgate_matrix(phi_in, phi_ex, cutoff, dtype=dtype.as_numpy_dtype)
)
@tf.custom_gradient
def single_two_mode_squeezing_matrix(theta, phi, cutoff, dtype=tf.complex64.as_numpy_dtype):
theta = theta.numpy()
phi = phi.numpy()
gate = two_mode_squeezing_tw(theta, phi, cutoff, dtype)
gate = np.transpose(gate, [0, 2, 1, 3])
def grad(dy):
Dr, Dphi = grad_two_mode_squeezing_tw(np.transpose(gate, [0, 2, 1, 3]), theta, phi)
Dr = np.transpose(Dr, [0, 2, 1, 3])
Dphi = np.transpose(Dphi, [0, 2, 1, 3])
grad_r = tf.math.real(tf.reduce_sum(dy * tf.math.conj(Dr)))
grad_phi = tf.math.real(tf.reduce_sum(dy * tf.math.conj(Dphi)))
return grad_r, grad_phi, None
return gate, grad
def two_mode_squeezer_matrix(theta, phi, cutoff, batched=False, dtype=tf.complex64):
theta = tf.cast(theta, dtype)
phi = tf.cast(phi, dtype)
if batched:
return tf.stack(
[
single_two_mode_squeezing_matrix(theta_, phi_, cutoff, dtype=dtype.as_numpy_dtype)
for theta_, phi_ in tf.transpose([theta, phi])
]
)
return tf.convert_to_tensor(
single_two_mode_squeezing_matrix(theta, phi, cutoff, dtype=dtype.as_numpy_dtype)
)
def fock_state(n, cutoff, pure=True, batched=False, dtype=tf.complex64):
if not isinstance(n, (np.ndarray, int)):
raise ValueError("'n' is expected to be either an int or a numpy array")
if batched:
batch_size = n.shape[0]
idxs = list(zip(range(batch_size), n))
values = [1.0] * batch_size
shape = [batch_size, cutoff]
else:
idxs = [(n,)]
values = [1.0]
shape = [cutoff]
fock_sparse = tf.scatter_nd(idxs, values, shape)
fock = tf.cast(fock_sparse, dtype)
if not pure:
fock = mix(fock, batched)
return fock
def coherent_state(r, phi, cutoff, pure=True, batched=False, dtype=tf.complex64):
alpha = tf.cast(r, dtype) * tf.exp(1j * tf.cast(phi, dtype))
coh = tf.stack(
[
tf.cast(tf.exp(-0.5 * tf.abs(r) ** 2), dtype)
* _numer_safe_power(alpha, n, dtype)
/ tf.cast(np.sqrt(factorial(n)), dtype)
for n in range(cutoff)
],
axis=-1,
)
if not pure:
coh = mix(coh, batched)
return coh
def squeezed_vacuum(r, theta, cutoff, pure=True, batched=False, dtype=tf.complex64):
squeezed = squeezed_vacuum_vector(r, theta, cutoff, batched=batched, dtype=dtype)
if not pure:
squeezed = mix(squeezed, batched)
return squeezed
def displaced_squeezed(
r_d, phi_d, r_s, phi_s, cutoff, pure=True, batched=False, eps=1e-12, dtype=tf.complex64
):
alpha = tf.cast(r_d, dtype) * tf.exp(1j * tf.cast(phi_d, dtype))
r_s = (
tf.cast(r_s, dtype) + eps
)
phi_s = tf.cast(phi_s, dtype)
phase = tf.exp(1j * phi_s)
sinh = tf.sinh(r_s)
cosh = tf.cosh(r_s)
tanh = tf.tanh(r_s)
gamma = alpha * cosh + tf.math.conj(alpha) * phase * sinh
hermite_arg = gamma / tf.sqrt(phase * tf.sinh(2 * r_s))
prefactor = tf.expand_dims(
tf.exp(-0.5 * alpha * tf.math.conj(alpha) - 0.5 * tf.math.conj(alpha) ** 2 * phase * tanh),
-1,
)
coeff = tf.stack(
[
_numer_safe_power(0.5 * phase * tanh, n / 2.0, dtype) / tf.sqrt(factorial(n) * cosh)
for n in range(cutoff)
],
axis=-1,
)
hermite_terms = tf.stack(
[tf.cast(H(n, hermite_arg, dtype), dtype) for n in range(cutoff)], axis=-1
)
squeezed_coh = prefactor * coeff * hermite_terms
if not pure:
squeezed_coh = mix(squeezed_coh, batched)
return squeezed_coh
def thermal_state(nbar, cutoff, dtype=tf.complex64):
nbar = tf.cast(nbar, dtype)
coeffs = tf.stack(
[
_numer_safe_power(nbar, n, dtype) / _numer_safe_power(nbar + 1, n + 1, dtype)
for n in range(cutoff)
],
axis=-1,
)
thermal = tf.linalg.diag(coeffs)
return thermal
def single_mode_gate(matrix, mode, in_modes, pure=True, batched=False):
if batched:
batch_offset = 1
else:
batch_offset = 0
batch_index = indices[:batch_offset]
left_gate_str = indices[batch_offset : batch_offset + 2]
num_indices = len(in_modes.shape)
if pure:
num_modes = num_indices - batch_offset
mode_size = 1
else:
right_gate_str = indices[batch_offset + 2 : batch_offset + 4]
num_modes = (num_indices - batch_offset) // 2
mode_size = 2
max_len = len(indices) - 2 * mode_size - batch_offset
if num_modes == 0:
raise ValueError("'in_modes' must have at least one mode")
if num_modes > max_len:
raise NotImplementedError(
"The max number of supported modes for this operation is currently {}".format(max_len)
)
if mode < 0 or mode >= num_modes:
raise ValueError("'mode' argument is not compatible with number of in_modes")
other_modes_indices = indices[
batch_offset + 2 * mode_size : batch_offset + (1 + num_modes) * mode_size
]
if pure:
eqn_lhs = "{},{}{}{}{}".format(
batch_index + left_gate_str,
batch_index,
other_modes_indices[: mode * mode_size],
left_gate_str[1],
other_modes_indices[mode * mode_size :],
)
eqn_rhs = "".join(
[
batch_index,
other_modes_indices[: mode * mode_size],
left_gate_str[0],
other_modes_indices[mode * mode_size :],
]
)
else:
eqn_lhs = "{},{}{}{}{}{},{}".format(
batch_index + left_gate_str,
batch_index,
other_modes_indices[: mode * mode_size],
left_gate_str[1],
right_gate_str[0],
other_modes_indices[mode * mode_size :],
batch_index + right_gate_str,
)
eqn_rhs = "".join(
[
batch_index,
other_modes_indices[: mode * mode_size],
left_gate_str[0],
right_gate_str[1],
other_modes_indices[mode * mode_size :],
]
)
eqn = eqn_lhs + "->" + eqn_rhs
einsum_inputs = [matrix, in_modes]
if not pure:
transposed_axis = [0, 2, 1] if batched else [1, 0]
einsum_inputs.append(tf.transpose(tf.math.conj(matrix), transposed_axis))
output = tf.einsum(eqn, *einsum_inputs)
return output
def two_mode_gate(matrix, mode1, mode2, in_modes, pure=True, batched=False):
if batched:
batch_offset = 1
else:
batch_offset = 0
batch_index = indices[:batch_offset]
left_gate_str = indices[batch_offset : batch_offset + 4]
num_indices = len(in_modes.shape)
if pure:
num_modes = num_indices - batch_offset
mode_size = 1
else:
right_gate_str = indices[batch_offset + 4 : batch_offset + 8]
num_modes = (num_indices - batch_offset) // 2
mode_size = 2
max_len = (len(indices) - 4) // mode_size - batch_offset
if num_modes == 0:
raise ValueError("'in_modes' must have at least one mode")
if num_modes > max_len:
raise NotImplementedError(
"The max number of supported modes for this operation is currently {}".format(max_len)
)
min_mode = min(mode1, mode2)
max_mode = max(mode1, mode2)
if min_mode < 0 or max_mode >= num_modes or mode1 == mode2:
raise ValueError("One or more mode numbers are incompatible")
other_modes_indices = indices[
batch_offset + 4 * mode_size : batch_offset + 4 * mode_size + mode_size * (num_modes - 2)
]
if mode1 == min_mode:
lhs_min_mode_indices = left_gate_str[1]
lhs_max_mode_indices = left_gate_str[3]
rhs_min_mode_indices = left_gate_str[0]
rhs_max_mode_indices = left_gate_str[2]
else:
lhs_min_mode_indices = left_gate_str[3]
lhs_max_mode_indices = left_gate_str[1]
rhs_min_mode_indices = left_gate_str[2]
rhs_max_mode_indices = left_gate_str[0]
if not pure:
if mode1 == min_mode:
lhs_min_mode_indices += right_gate_str[0]
lhs_max_mode_indices += right_gate_str[2]
rhs_min_mode_indices += right_gate_str[1]
rhs_max_mode_indices += right_gate_str[3]
else:
lhs_min_mode_indices += right_gate_str[2]
lhs_max_mode_indices += right_gate_str[0]
rhs_min_mode_indices += right_gate_str[3]
rhs_max_mode_indices += right_gate_str[1]
eqn_lhs = "{},{}{}{}{}{}{}".format(
batch_index + left_gate_str,
batch_index,
other_modes_indices[: min_mode * mode_size],
lhs_min_mode_indices,
other_modes_indices[min_mode * mode_size : (max_mode - 1) * mode_size],
lhs_max_mode_indices,
other_modes_indices[(max_mode - 1) * mode_size :],
)
if not pure:
eqn_lhs += "," + batch_index + right_gate_str
eqn_rhs = "".join(
[
batch_index,
other_modes_indices[: min_mode * mode_size],
rhs_min_mode_indices,
other_modes_indices[min_mode * mode_size : (max_mode - 1) * mode_size],
rhs_max_mode_indices,
other_modes_indices[(max_mode - 1) * mode_size :],
]
)
eqn = eqn_lhs + "->" + eqn_rhs
einsum_inputs = [matrix, in_modes]
if not pure:
if batched:
transpose_list = [0, 2, 1, 4, 3]
else:
transpose_list = [1, 0, 3, 2]
einsum_inputs.append(tf.math.conj(tf.transpose(matrix, transpose_list)))
output = tf.einsum(eqn, *einsum_inputs)
return output
def single_mode_superop(superop, mode, in_modes, pure=True, batched=False):
if batched:
batch_offset = 1
else:
batch_offset = 0
max_len = (len(indices) - 2) // 2 - batch_offset
if pure:
num_modes = len(in_modes.shape) - batch_offset
else:
num_modes = (len(in_modes.shape) - batch_offset) // 2
if num_modes > max_len:
raise NotImplementedError(
"The max number of supported modes for this operation is currently {}".format(max_len)
)
if pure:
in_modes = mix(in_modes, batched)
batch_index = indices[:batch_offset]
superop_indices = indices[batch_offset : batch_offset + 4]
state_indices = indices[batch_offset + 4 : batch_offset + 4 + 2 * num_modes]
left_unchanged_indices = state_indices[: 2 * mode]
right_unchanged_indices = state_indices[2 * mode : 2 * (num_modes - 1)]
eqn_lhs = ",".join(
[
batch_index + superop_indices,
batch_index + left_unchanged_indices + superop_indices[1:3] + right_unchanged_indices,
]
)
eqn_rhs = "".join(
[
batch_index,
left_unchanged_indices
+ superop_indices[0]
+ superop_indices[3]
+ right_unchanged_indices,
]
)
eqn = "->".join([eqn_lhs, eqn_rhs])
new_state = tf.einsum(eqn, superop, in_modes)
return new_state
def phase_shifter(theta, mode, in_modes, cutoff, pure=True, batched=False, dtype=tf.complex64):
matrix = phase_shifter_matrix(theta, cutoff, batched=batched, dtype=dtype)
output = single_mode_gate(matrix, mode, in_modes, pure, batched)
return output
def displacement(r, phi, mode, in_modes, cutoff, pure=True, batched=False, dtype=tf.complex64):
r = tf.cast(r, dtype)
phi = tf.cast(phi, dtype)
matrix = displacement_matrix(r, phi, cutoff, batched, dtype)
output = single_mode_gate(matrix, mode, in_modes, pure, batched)
return output
def squeezer(r, theta, mode, in_modes, cutoff, pure=True, batched=False, dtype=tf.complex64):
r = tf.cast(r, dtype)
theta = tf.cast(theta, dtype)
matrix = squeezer_matrix(r, theta, cutoff, batched, dtype)
output = single_mode_gate(matrix, mode, in_modes, pure, batched)
return output
def kerr_interaction(kappa, mode, in_modes, cutoff, pure=True, batched=False):
matrix = kerr_interaction_matrix(kappa, cutoff, batched)
output = single_mode_gate(matrix, mode, in_modes, pure, batched)
return output
def cross_kerr_interaction(kappa, mode1, mode2, in_modes, cutoff, pure=True, batched=False):
matrix = cross_kerr_interaction_matrix(kappa, cutoff, batched)
output = two_mode_gate(matrix, mode1, mode2, in_modes, pure, batched)
return output
def cubic_phase(
gamma,
mode,
in_modes,
cutoff,
hbar=2,
pure=True,
batched=False,
method="self_adjoint_eig",
dtype=tf.complex64,
):
matrix = cubic_phase_matrix(gamma, cutoff, hbar, batched, method=method, dtype=dtype)
output = single_mode_gate(matrix, mode, in_modes, pure, batched)
return output | Apache License 2.0 |
pyglet/pyglet | pyglet/media/drivers/xaudio2/interface.py | XA2SourceVoice.cone_outside_volume | python | def cone_outside_volume(self):
if self.is_emitter:
return self._emitter.pCone.contents.OuterVolume
else:
return 0 | The volume scaler of the sound beyond the outer cone. | https://github.com/pyglet/pyglet/blob/b9a63ea179735c8f252ac31d51751bdf8a741c9d/pyglet/media/drivers/xaudio2/interface.py#L529-L534 | import weakref
from collections import namedtuple, defaultdict
import pyglet
from pyglet.libs.win32.types import *
from pyglet.util import debug_print
from pyglet.media.devices import get_audio_device_manager
from . import lib_xaudio2 as lib
_debug = debug_print('debug_media')
class XAudio2Driver:
allow_3d = True
processor = lib.XAUDIO2_DEFAULT_PROCESSOR
category = lib.AudioCategory_GameEffects
restart_on_error = True
max_frequency_ratio = 2.0
def __init__(self):
assert _debug('Constructing XAudio2Driver')
self._listener = None
self._xaudio2 = None
self._dead = False
self._emitting_voices = []
self._voice_pool = defaultdict(list)
self._in_use = []
self._players = []
self._create_xa2()
if self.restart_on_error:
audio_devices = get_audio_device_manager()
if audio_devices:
assert _debug('Audio device instance found.')
audio_devices.push_handlers(self)
if audio_devices.get_default_output() is None:
raise ImportError("No default audio device found, can not create driver.")
pyglet.clock.schedule_interval_soft(self._check_state, 0.5)
def _check_state(self, dt):
if self._dead is True:
if self._xaudio2:
self._shutdown_xaudio2()
else:
if not self._xaudio2:
self._create_xa2()
for player in self._players:
player.dispatch_event('on_driver_reset')
self._players.clear()
def on_default_changed(self, device):
if device is None:
assert _debug('Error: Default audio device was removed or went missing.')
self._dead = True
else:
if self._dead:
assert _debug('Warning: Default audio device added after going missing.')
self._dead = False
def _create_xa2(self, device_id=None):
self._xaudio2 = lib.IXAudio2()
try:
lib.XAudio2Create(ctypes.byref(self._xaudio2), 0, self.processor)
except OSError:
raise ImportError("XAudio2 driver could not be initialized.")
if _debug:
debug = lib.XAUDIO2_DEBUG_CONFIGURATION()
debug.LogThreadID = True
debug.TraceMask = lib.XAUDIO2_LOG_ERRORS | lib.XAUDIO2_LOG_WARNINGS
debug.BreakMask = lib.XAUDIO2_LOG_WARNINGS
self._xaudio2.SetDebugConfiguration(ctypes.byref(debug), None)
self._master_voice = lib.IXAudio2MasteringVoice()
self._xaudio2.CreateMasteringVoice(byref(self._master_voice),
lib.XAUDIO2_DEFAULT_CHANNELS,
lib.XAUDIO2_DEFAULT_SAMPLERATE,
0, device_id, None, self.category)
if self.allow_3d:
self.enable_3d()
@property
def active_voices(self):
return self._in_use
@property
def pooled_voices(self):
return [voice for voices in self._voice_pool.values() for voice in voices]
@property
def all_voices(self):
return self.active_voices + self.all_voices
def clear_pool(self):
for voice in self.pooled_voices:
voice.destroy()
for voice_key in self._voice_pool:
self._voice_pool[voice_key].clear()
def clear_active(self):
for voice in self._in_use:
voice.destroy()
self._in_use.clear()
def set_device(self, device):
self._shutdown_xaudio2()
self._create_xa2(device.id)
for player in self._players:
player.dispatch_event('on_driver_reset')
self._players.clear()
def _shutdown_xaudio2(self):
for voice in self.active_voices:
voice.player.on_driver_destroy()
self._players.append(voice.player.player)
self._delete_driver()
def _delete_driver(self):
if self._xaudio2:
if self.allow_3d:
pyglet.clock.unschedule(self._calculate_3d_sources)
self.clear_pool()
self.clear_active()
self._xaudio2.StopEngine()
self._xaudio2.Release()
self._xaudio2 = None
def enable_3d(self):
channel_mask = DWORD()
self._master_voice.GetChannelMask(byref(channel_mask))
self._x3d_handle = lib.X3DAUDIO_HANDLE()
lib.X3DAudioInitialize(channel_mask.value, lib.X3DAUDIO_SPEED_OF_SOUND, self._x3d_handle)
self._mvoice_details = lib.XAUDIO2_VOICE_DETAILS()
self._master_voice.GetVoiceDetails(byref(self._mvoice_details))
matrix = (FLOAT * self._mvoice_details.InputChannels)()
self._dsp_settings = lib.X3DAUDIO_DSP_SETTINGS()
self._dsp_settings.SrcChannelCount = 1
self._dsp_settings.DstChannelCount = self._mvoice_details.InputChannels
self._dsp_settings.pMatrixCoefficients = matrix
pyglet.clock.schedule_interval_soft(self._calculate_3d_sources, 1 / 15.0)
@property
def volume(self):
vol = c_float()
self._master_voice.GetVolume(ctypes.byref(vol))
return vol.value
@volume.setter
def volume(self, value):
self._master_voice.SetVolume(value, 0)
def _calculate_3d_sources(self, dt):
for source_voice in self._emitting_voices:
self.apply3d(source_voice)
self._xaudio2.CommitChanges(0)
def _calculate3d(self, listener, emitter):
lib.X3DAudioCalculate(
self._x3d_handle,
listener,
emitter,
lib.default_dsp_calculation,
self._dsp_settings
)
def _apply3d(self, voice, commit):
voice.SetOutputMatrix(self._master_voice,
1,
self._mvoice_details.InputChannels,
self._dsp_settings.pMatrixCoefficients,
commit)
voice.SetFrequencyRatio(self._dsp_settings.DopplerFactor, commit)
def apply3d(self, source_voice, commit=1):
self._calculate3d(self._listener.listener, source_voice._emitter)
self._apply3d(source_voice._voice, commit)
def __del__(self):
try:
self._delete_driver()
pyglet.clock.unschedule(self._check_state)
except AttributeError:
pass
def get_performance(self):
pf = lib.XAUDIO2_PERFORMANCE_DATA()
self._xaudio2.GetPerformanceData(ctypes.byref(pf))
return pf
def create_listener(self):
assert self._listener is None, "You can only create one listener."
self._listener = XAudio2Listener(self)
return self._listener
def get_source_voice(self, source, player):
voice_key = (source.audio_format.channels, source.audio_format.sample_size)
if len(self._voice_pool[voice_key]) > 0:
source_voice = self._voice_pool[voice_key].pop(0)
source_voice.acquired(player)
else:
source_voice = self._get_voice(source, player)
if source_voice.is_emitter:
self._emitting_voices.append(source_voice)
self._in_use.append(source_voice)
return source_voice
def _create_new_voice(self, source, player):
voice = lib.IXAudio2SourceVoice()
wfx_format = self.create_wave_format(source.audio_format)
callback = lib.XA2SourceCallback(player)
self._xaudio2.CreateSourceVoice(ctypes.byref(voice),
ctypes.byref(wfx_format),
0,
self.max_frequency_ratio,
callback,
None, None)
return voice, callback
def _get_voice(self, source, player):
voice, callback = self._create_new_voice(source, player)
return XA2SourceVoice(voice, callback, source.audio_format)
def return_voice(self, voice):
voice.reset()
voice_key = (voice.audio_format.channels, voice.audio_format.sample_size)
self._voice_pool[voice_key].append(voice)
if voice.is_emitter:
self._emitting_voices.remove(voice)
@staticmethod
def create_buffer(audio_data):
if type(audio_data.data) == bytes:
data = (ctypes.c_char * audio_data.length)()
ctypes.memmove(data, audio_data.data, audio_data.length)
else:
data = audio_data.data
buff = lib.XAUDIO2_BUFFER()
buff.AudioBytes = audio_data.length
buff.pAudioData = data
return buff
@staticmethod
def create_wave_format(audio_format):
wfx = lib.WAVEFORMATEX()
wfx.wFormatTag = lib.WAVE_FORMAT_PCM
wfx.nChannels = audio_format.channels
wfx.nSamplesPerSec = audio_format.sample_rate
wfx.wBitsPerSample = audio_format.sample_size
wfx.nBlockAlign = wfx.wBitsPerSample * wfx.nChannels // 8
wfx.nAvgBytesPerSec = wfx.nSamplesPerSec * wfx.nBlockAlign
return wfx
class XA2SourceVoice:
def __init__(self, voice, callback, audio_format):
self._voice_state = lib.XAUDIO2_VOICE_STATE()
self._voice = voice
self._callback = callback
self.audio_format = audio_format
if audio_format is not None and audio_format.channels == 1:
self._emitter = lib.X3DAUDIO_EMITTER()
self._emitter.ChannelCount = audio_format.channels
self._emitter.CurveDistanceScaler = 1.0
cone = lib.X3DAUDIO_CONE()
cone.InnerVolume = 1.0
self._emitter.pCone = pointer(cone)
self._emitter.pVolumeCurve = None
else:
self._emitter = None
@property
def player(self):
return self._callback.xa2_player
def delete(self):
self._emitter = None
self._voice.Stop(0, 0)
self._voice.FlushSourceBuffers()
self._voice = None
self._callback.xa2_player = None
def __del__(self):
self.destroy()
def destroy(self):
self._emitter = None
if self._voice is not None:
try:
self._voice.Stop(0, 0)
self._voice.FlushSourceBuffers()
self._voice.DestroyVoice()
except TypeError:
pass
self._voice = None
self._callback = None
def acquired(self, player):
self._callback.xa2_player = player
def reset(self):
if self._emitter is not None:
self.position = (0, 0, 0)
self._voice.Stop(0, 0)
self._voice.FlushSourceBuffers()
self._callback.xa2_player = None
@property
def buffers_queued(self):
self._voice.GetState(ctypes.byref(self._voice_state), lib.XAUDIO2_VOICE_NOSAMPLESPLAYED)
return self._voice_state.BuffersQueued
@property
def volume(self):
vol = c_float()
self._voice.GetVolume(ctypes.byref(vol))
return vol.value
@volume.setter
def volume(self, value):
self._voice.SetVolume(value, 0)
@property
def is_emitter(self):
return self._emitter is not None
@property
def position(self):
if self.is_emitter:
return self._emitter.Position.x, self._emitter.Position.y, self._emitter.Position.z
else:
return 0, 0, 0
@position.setter
def position(self, position):
if self.is_emitter:
x, y, z = position
self._emitter.Position.x = x
self._emitter.Position.y = y
self._emitter.Position.z = z
@property
def min_distance(self):
if self.is_emitter:
return self._emitter.CurveDistanceScaler
else:
return 0
@min_distance.setter
def min_distance(self, value):
if self.is_emitter:
if self._emitter.CurveDistanceScaler != value:
self._emitter.CurveDistanceScaler = min(value, lib.FLT_MAX)
@property
def frequency(self):
value = c_float()
self._voice.GetFrequencyRatio(byref(value))
return value.value
@frequency.setter
def frequency(self, value):
if self.frequency == value:
return
self._voice.SetFrequencyRatio(value, 0)
@property
def cone_orientation(self):
if self.is_emitter:
return self._emitter.OrientFront.x, self._emitter.OrientFront.y, self._emitter.OrientFront.z
else:
return 0, 0, 0
@cone_orientation.setter
def cone_orientation(self, value):
if self.is_emitter:
x, y, z = value
self._emitter.OrientFront.x = x
self._emitter.OrientFront.y = y
self._emitter.OrientFront.z = z
_ConeAngles = namedtuple('_ConeAngles', ['inside', 'outside'])
@property
def cone_angles(self):
if self.is_emitter:
return self._ConeAngles(self._emitter.pCone.contents.InnerAngle, self._emitter.pCone.contents.OuterAngle)
else:
return self._ConeAngles(0, 0)
def set_cone_angles(self, inside, outside):
if self.is_emitter:
self._emitter.pCone.contents.InnerAngle = inside
self._emitter.pCone.contents.OuterAngle = outside
@property | BSD 3-Clause New or Revised License |
sassoftware/python-pipefitter | pipefitter/estimator/regression.py | LogisticRegression.fit | python | def fit(self, table, *args, **kwargs):
params = self.get_combined_params(*args, **kwargs)
return self._get_super(table).fit(table, **params) | Fit function for logistic regression
Parameters
----------
*args : dicts or two-element tuples or consecutive key/value pairs, optional
The following types are allowed:
* Dictionaries contain key/value pairs of parameters.
* Two-element tuples must contain the name of the parameter in the
first element and the value in the second element.
* Consecutive key/value pairs are also allowed.
**kwargs : keyword arguments, optional
These keyword arguments are the same as on the constructor.
Examples
--------
>>> log = LogisticRegression(target='Origin',
... inputs=['MPG_City', 'MPG_Highway', 'Length',
... 'Weight', 'Type', 'Cylinders'],
... nominals = ['Type', 'Cylinders', 'Origin'])
>>> model = log.fit(training_data)
Returns
-------
:class:`LogisticRegressionModel` | https://github.com/sassoftware/python-pipefitter/blob/d3199b72dfd66729753da50e9e15eb303361ee8a/pipefitter/estimator/regression.py#L96-L125 | from __future__ import print_function, division, absolute_import, unicode_literals
import functools
from ..base import BaseEstimator, BaseModel
from ..utils.params import (param_def, check_int, check_string, check_boolean,
check_float, check_variable, check_variable_list)
class LogisticRegression(BaseEstimator):
param_defs = dict(
intercept=param_def(True, check_boolean),
max_effects=param_def(0, functools.partial(check_int, minimum=0)),
selection=param_def('none', functools.partial(check_string,
valid_values=['none', 'backward',
'forward', 'stepwise'])),
sig_level=param_def(0.05, functools.partial(check_float, minimum=0.0, maximum=1.0)),
criterion=param_def(None, functools.partial(check_string, allow_none=True,
valid_values=['sl', 'aic', 'aicc', 'sbc'])),
target=param_def(None, check_variable),
nominals=param_def(None, check_variable_list),
inputs=param_def(None, check_variable_list),
)
def __init__(self, intercept=True, max_effects=0, selection='none',
sig_level=0.05, criterion=None,
target=None, nominals=None, inputs=None):
BaseEstimator.__init__(self, intercept=intercept, max_effects=max_effects,
selection=selection, sig_level=sig_level, criterion=criterion,
target=target, nominals=nominals, inputs=inputs)
if self.params['criterion'] == 'sl' and self.params['selection'] in ['backward', 'lasso']:
raise ValueError("criterion='sl' is not valid with "
"selection='backward' | 'lasso'") | Apache License 2.0 |
pybricks/pybricksdev | pybricksdev/ble/lwp3/messages.py | ErrorMessage.code | python | def code(self) -> ErrorCode:
return ErrorCode(self._data[4]) | Gets an error code describing the error. | https://github.com/pybricks/pybricksdev/blob/3a89ec32d0abc484b898ca4fd8b4b3079112aa70/pybricksdev/ble/lwp3/messages.py#L593-L595 | import abc
import struct
from enum import IntEnum
from typing import Any, Dict, List, NamedTuple, Optional, Tuple, Type, Union, overload
from .bytecodes import (
Feedback,
MAX_NAME_SIZE,
AlertKind,
AlertOperation,
AlertStatus,
BatteryKind,
BluetoothAddress,
DataFormat,
EndInfo,
ErrorCode,
HubAction,
HubKind,
HubProperty,
HubPropertyOperation,
HwNetCmd,
HwNetExtFamily,
HwNetFamily,
HwNetSubfamily,
InfoKind,
IODeviceCapabilities,
IODeviceKind,
IODeviceMapping,
IOEvent,
LastNetwork,
LWPVersion,
MessageKind,
ModeCapabilities,
ModeInfoKind,
PortID,
PortInfoFormatSetupCommand,
PortOutputCommand,
StartInfo,
Version,
VirtualPortSetupCommand,
)
from ...tools.checksum import xor_bytes
class AbstractMessage(abc.ABC):
@abc.abstractmethod
def __init__(self, length: int, kind: MessageKind) -> None:
super().__init__()
if not isinstance(length, int):
raise TypeError("length must be int")
if not isinstance(kind, MessageKind):
raise TypeError("kind must be MessageKind")
self._data = bytearray(length)
self._data[0] = length
self._data[2] = kind
def __bytes__(self) -> bytes:
return bytes(self._data)
@property
def length(self) -> int:
return self._data[0]
@property
def kind(self) -> MessageKind:
return MessageKind(self._data[2])
def __repr__(self) -> str:
return f"{self.__class__.__name__}()"
class AbstractHubPropertyMessage(AbstractMessage):
@abc.abstractmethod
def __init__(
self, length: int, prop: HubProperty, op: HubPropertyOperation
) -> None:
super().__init__(length, MessageKind.HUB_PROPERTY)
if not isinstance(prop, HubProperty):
raise TypeError("prop must be HubProperty")
if op not in _HUB_PROPERTY_OPS_MAP[prop]:
raise ValueError(f"cannot perform {op} on {prop}")
if not isinstance(op, HubPropertyOperation):
raise TypeError("op must be HubPropertyOperation")
self._data[3] = prop
self._data[4] = op
@property
def prop(self) -> HubProperty:
return HubProperty(self._data[3])
@property
def op(self) -> HubPropertyOperation:
return HubPropertyOperation(self._data[4])
def __repr__(self) -> str:
return f"{self.__class__.__name__}({repr(self.prop)})"
class _HubPropertyType(NamedTuple):
type: type
fmt: str
max_size: Optional[int] = None
_HUB_PROPERTY_TYPE_MAP = {
HubProperty.NAME: _HubPropertyType(str, "s", MAX_NAME_SIZE),
HubProperty.BUTTON: _HubPropertyType(bool, "?"),
HubProperty.FW_VERSION: _HubPropertyType(Version, "i"),
HubProperty.HW_VERSION: _HubPropertyType(Version, "i"),
HubProperty.RSSI: _HubPropertyType(int, "b"),
HubProperty.BATTERY_VOLTAGE: _HubPropertyType(int, "B"),
HubProperty.BATTERY_KIND: _HubPropertyType(BatteryKind, "B"),
HubProperty.MFG_NAME: _HubPropertyType(str, "s", 15),
HubProperty.RADIO_FW_VERSION: _HubPropertyType(str, "s", 15),
HubProperty.LWP_VERSION: _HubPropertyType(LWPVersion, "H"),
HubProperty.HUB_KIND: _HubPropertyType(HubKind, "B"),
HubProperty.HW_NET_ID: _HubPropertyType(LastNetwork, "B"),
HubProperty.BDADDR: _HubPropertyType(BluetoothAddress, "6s"),
HubProperty.BOOTLOADER_BDADDR: _HubPropertyType(BluetoothAddress, "6s"),
HubProperty.HW_NET_FAMILY: _HubPropertyType(HwNetFamily, "B"),
HubProperty.VOLUME: _HubPropertyType(int, "B"),
}
Op = HubPropertyOperation
_HUB_PROPERTY_OPS_MAP = {
HubProperty.NAME: [
Op.SET,
Op.ENABLE_UPDATES,
Op.DISABLE_UPDATES,
Op.RESET,
Op.REQUEST_UPDATE,
Op.UPDATE,
],
HubProperty.BUTTON: [
Op.ENABLE_UPDATES,
Op.DISABLE_UPDATES,
Op.REQUEST_UPDATE,
Op.UPDATE,
],
HubProperty.FW_VERSION: [Op.REQUEST_UPDATE, Op.UPDATE],
HubProperty.HW_VERSION: [Op.REQUEST_UPDATE, Op.UPDATE],
HubProperty.RSSI: [
Op.ENABLE_UPDATES,
Op.DISABLE_UPDATES,
Op.REQUEST_UPDATE,
Op.UPDATE,
],
HubProperty.BATTERY_VOLTAGE: [
Op.ENABLE_UPDATES,
Op.DISABLE_UPDATES,
Op.REQUEST_UPDATE,
Op.UPDATE,
],
HubProperty.BATTERY_KIND: [Op.REQUEST_UPDATE, Op.UPDATE],
HubProperty.MFG_NAME: [Op.REQUEST_UPDATE, Op.UPDATE],
HubProperty.RADIO_FW_VERSION: [Op.REQUEST_UPDATE, Op.UPDATE],
HubProperty.LWP_VERSION: [Op.REQUEST_UPDATE, Op.UPDATE],
HubProperty.HUB_KIND: [Op.REQUEST_UPDATE, Op.UPDATE],
HubProperty.HW_NET_ID: [Op.SET, Op.RESET, Op.REQUEST_UPDATE, Op.UPDATE],
HubProperty.BDADDR: [Op.REQUEST_UPDATE, Op.UPDATE],
HubProperty.BOOTLOADER_BDADDR: [Op.REQUEST_UPDATE, Op.UPDATE],
HubProperty.HW_NET_FAMILY: [Op.SET, Op.REQUEST_UPDATE, Op.UPDATE],
HubProperty.VOLUME: [
Op.SET,
Op.ENABLE_UPDATES,
Op.DISABLE_UPDATES,
Op.RESET,
Op.REQUEST_UPDATE,
Op.UPDATE,
],
}
del Op
class AbstractHubPropertyValueMessage(AbstractHubPropertyMessage):
_MAX_VALUE_SIZE = 15
@abc.abstractmethod
def __init__(self, prop: HubProperty, op: HubPropertyOperation, value: Any) -> None:
super().__init__(5 + self._MAX_VALUE_SIZE, prop, op)
meta = _HUB_PROPERTY_TYPE_MAP[self.prop]
if not isinstance(value, meta.type):
raise TypeError(
f"expecting value of type {meta.type} but received {type(value)}"
)
if meta.max_size is None:
fmt = meta.fmt
else:
if isinstance(value, str):
value = value.encode()
if len(value) > meta.max_size:
raise ValueError("length of value is too long")
fmt = f"{len(value)}{meta.fmt}"
self._data[0] = 5 + struct.calcsize(fmt)
self._data = memoryview(self._data)[: self.length]
struct.pack_into(fmt, self._data, 5, value)
@property
def value(self) -> Any:
meta = _HUB_PROPERTY_TYPE_MAP[self.prop]
if meta.max_size is None:
fmt = meta.fmt
else:
fmt = f"{self.length - 5}{meta.fmt}"
(result,) = struct.unpack_from(fmt, self._data, 5)
if meta.type == str:
return result.decode().strip("\0")
return meta.type(result)
def __repr__(self) -> str:
return f"{self.__class__.__name__}({repr(self.prop)}, {repr(self.value)})"
class HubPropertySet(AbstractHubPropertyValueMessage):
def __init__(self, prop: HubProperty, value: Any) -> None:
super().__init__(prop, HubPropertyOperation.SET, value)
class HubPropertyEnableUpdates(AbstractHubPropertyMessage):
def __init__(self, prop: HubProperty) -> None:
super().__init__(5, prop, HubPropertyOperation.ENABLE_UPDATES)
class HubPropertyDisableUpdates(AbstractHubPropertyMessage):
def __init__(self, prop: HubProperty) -> None:
super().__init__(5, prop, HubPropertyOperation.DISABLE_UPDATES)
class HubPropertyReset(AbstractHubPropertyMessage):
def __init__(self, prop: HubProperty) -> None:
super().__init__(5, prop, HubPropertyOperation.RESET)
class HubPropertyRequestUpdate(AbstractHubPropertyMessage):
def __init__(self, prop: HubProperty) -> None:
super().__init__(5, prop, HubPropertyOperation.REQUEST_UPDATE)
class HubPropertyUpdate(AbstractHubPropertyValueMessage):
def __init__(self, prop: HubProperty, value: Any) -> None:
super().__init__(prop, HubPropertyOperation.UPDATE, value)
class HubActionMessage(AbstractMessage):
def __init__(self, action: HubAction) -> None:
super().__init__(4, MessageKind.HUB_ACTION)
self._data[3] = action
@property
def action(self) -> HubAction:
return HubAction(self._data[3])
def __repr__(self) -> str:
return f"{self.__class__.__name__}({repr(self.action)})"
class AbstractHubAlertMessage(AbstractMessage):
@abc.abstractmethod
def __init__(self, length: int, alert: AlertKind, op: AlertOperation) -> None:
super().__init__(length, MessageKind.HUB_ALERT)
self._data[3] = alert
self._data[4] = op
@property
def alert(self) -> AlertKind:
return AlertKind(self._data[3])
@property
def op(self) -> AlertOperation:
return AlertOperation(self._data[4])
def __repr__(self) -> str:
return f"{self.__class__.__name__}({repr(self.alert)})"
class HubAlertEnableUpdatesMessage(AbstractHubAlertMessage):
def __init__(self, alert: AlertKind) -> None:
super().__init__(5, alert, AlertOperation.ENABLE_UPDATES)
class HubAlertDisableUpdatesMessage(AbstractHubAlertMessage):
def __init__(self, alert: AlertKind) -> None:
super().__init__(5, alert, AlertOperation.DISABLE_UPDATES)
class HubAlertRequestUpdateMessage(AbstractHubAlertMessage):
def __init__(self, alert: AlertKind) -> None:
super().__init__(5, alert, AlertOperation.REQUEST_UPDATE)
class HubAlertUpdateMessage(AbstractHubAlertMessage):
def __init__(self, alert: AlertKind, status: AlertStatus) -> None:
super().__init__(6, alert, AlertOperation.UPDATE)
self._data[5] = status
@property
def status(self) -> AlertStatus:
return AlertStatus(self._data[5])
def __repr__(self) -> str:
return f"{self.__class__.__name__}({repr(self.alert)}, {repr(self.status)})"
class AbstractHubAttachedIOMessage(AbstractMessage):
@abc.abstractmethod
def __init__(self, length: int, port: PortID, event: IOEvent) -> None:
super().__init__(length, MessageKind.HUB_ATTACHED_IO)
self._data[3] = port
self._data[4] = event
@property
def port(self) -> PortID:
return PortID(self._data[3])
@property
def event(self) -> IOEvent:
return IOEvent(self._data[4])
class HubIODetachedMessage(AbstractHubAttachedIOMessage):
def __init__(self, port: PortID) -> None:
super().__init__(5, port, IOEvent.DETACHED)
def __repr__(self) -> str:
return f"{self.__class__.__name__}({repr(self.port)})"
class HubIOAttachedMessage(AbstractHubAttachedIOMessage):
def __init__(
self, port: PortID, device: IODeviceKind, hw_ver: Version, fw_ver: Version
) -> None:
super().__init__(15, port, IOEvent.ATTACHED)
struct.pack_into("<Hii", self._data, 5, device, hw_ver, fw_ver)
@property
def device(self) -> IODeviceKind:
(result,) = struct.unpack_from("<H", self._data, 5)
return IODeviceKind(result)
@property
def hw_ver(self) -> Version:
(result,) = struct.unpack_from("<i", self._data, 7)
return Version(result)
@property
def fw_ver(self) -> Version:
(result,) = struct.unpack_from("<i", self._data, 11)
return Version(result)
def __repr__(self) -> str:
return f"{self.__class__.__name__}({repr(self.port)}, {repr(self.device)}, {repr(self.hw_ver)}, {repr(self.fw_ver)})"
class HubIOAttachedVirtualMessage(AbstractHubAttachedIOMessage):
def __init__(
self, port: PortID, device: IODeviceKind, port_a: PortID, port_b: PortID
) -> None:
super().__init__(9, port, IOEvent.ATTACHED_VIRTUAL)
struct.pack_into("<HBB", self._data, 5, device, port_a, port_b)
@property
def device(self) -> IODeviceKind:
(result,) = struct.unpack_from("<H", self._data, 5)
return IODeviceKind(result)
@property
def port_a(self) -> Version:
return PortID(self._data[7])
@property
def port_b(self) -> Version:
return PortID(self._data[8])
def __repr__(self) -> str:
return f"{self.__class__.__name__}({repr(self.port)}, {repr(self.device)}, {repr(self.port_a)}, {repr(self.port_b)})"
class ErrorMessage(AbstractMessage):
def __init__(self, command: MessageKind, code: ErrorCode) -> None:
super().__init__(5, MessageKind.ERROR)
self._data[3] = command
self._data[4] = code
@property
def command(self) -> MessageKind:
return MessageKind(self._data[3])
@property | MIT License |
opennetworkingfoundation/tapi | RI/flask_server/tapi_server/models/tapi_oam_oam_service.py | TapiOamOamService.__init__ | python | def __init__(self, operational_state=None, lifecycle_state=None, administrative_state=None, name=None, uuid=None, layer_protocol_name=None, meg_level=None, direction=None, oam_profile=None, end_point=None, meg=None):
self.openapi_types = {
'operational_state': TapiCommonOperationalState,
'lifecycle_state': TapiCommonLifecycleState,
'administrative_state': TapiCommonAdministrativeState,
'name': List[TapiCommonNameAndValue],
'uuid': str,
'layer_protocol_name': TapiCommonLayerProtocolName,
'meg_level': int,
'direction': TapiCommonForwardingDirection,
'oam_profile': TapiOamOamProfileRef,
'end_point': List[TapiOamOamServiceEndPoint],
'meg': TapiOamMegRef
}
self.attribute_map = {
'operational_state': 'operational-state',
'lifecycle_state': 'lifecycle-state',
'administrative_state': 'administrative-state',
'name': 'name',
'uuid': 'uuid',
'layer_protocol_name': 'layer-protocol-name',
'meg_level': 'meg-level',
'direction': 'direction',
'oam_profile': 'oam-profile',
'end_point': 'end-point',
'meg': 'meg'
}
self._operational_state = operational_state
self._lifecycle_state = lifecycle_state
self._administrative_state = administrative_state
self._name = name
self._uuid = uuid
self._layer_protocol_name = layer_protocol_name
self._meg_level = meg_level
self._direction = direction
self._oam_profile = oam_profile
self._end_point = end_point
self._meg = meg | TapiOamOamService - a model defined in OpenAPI
:param operational_state: The operational_state of this TapiOamOamService. # noqa: E501
:type operational_state: TapiCommonOperationalState
:param lifecycle_state: The lifecycle_state of this TapiOamOamService. # noqa: E501
:type lifecycle_state: TapiCommonLifecycleState
:param administrative_state: The administrative_state of this TapiOamOamService. # noqa: E501
:type administrative_state: TapiCommonAdministrativeState
:param name: The name of this TapiOamOamService. # noqa: E501
:type name: List[TapiCommonNameAndValue]
:param uuid: The uuid of this TapiOamOamService. # noqa: E501
:type uuid: str
:param layer_protocol_name: The layer_protocol_name of this TapiOamOamService. # noqa: E501
:type layer_protocol_name: TapiCommonLayerProtocolName
:param meg_level: The meg_level of this TapiOamOamService. # noqa: E501
:type meg_level: int
:param direction: The direction of this TapiOamOamService. # noqa: E501
:type direction: TapiCommonForwardingDirection
:param oam_profile: The oam_profile of this TapiOamOamService. # noqa: E501
:type oam_profile: TapiOamOamProfileRef
:param end_point: The end_point of this TapiOamOamService. # noqa: E501
:type end_point: List[TapiOamOamServiceEndPoint]
:param meg: The meg of this TapiOamOamService. # noqa: E501
:type meg: TapiOamMegRef | https://github.com/opennetworkingfoundation/tapi/blob/1f3fd9483d5674552c5a31206c97399c8c151897/RI/flask_server/tapi_server/models/tapi_oam_oam_service.py#L30-L94 | from __future__ import absolute_import
from datetime import date, datetime
from typing import List, Dict
from tapi_server.models.base_model_ import Model
from tapi_server.models.tapi_common_admin_state_pac import TapiCommonAdminStatePac
from tapi_server.models.tapi_common_administrative_state import TapiCommonAdministrativeState
from tapi_server.models.tapi_common_forwarding_direction import TapiCommonForwardingDirection
from tapi_server.models.tapi_common_global_class import TapiCommonGlobalClass
from tapi_server.models.tapi_common_layer_protocol_name import TapiCommonLayerProtocolName
from tapi_server.models.tapi_common_lifecycle_state import TapiCommonLifecycleState
from tapi_server.models.tapi_common_name_and_value import TapiCommonNameAndValue
from tapi_server.models.tapi_common_operational_state import TapiCommonOperationalState
from tapi_server.models.tapi_oam_meg_ref import TapiOamMegRef
from tapi_server.models.tapi_oam_oam_constraint import TapiOamOamConstraint
from tapi_server.models.tapi_oam_oam_profile_ref import TapiOamOamProfileRef
from tapi_server.models.tapi_oam_oam_service_end_point import TapiOamOamServiceEndPoint
from tapi_server import util
class TapiOamOamService(Model): | Apache License 2.0 |
liberai/nspm | gsoc/zheyuan/pipeline/paraphrase_questions.py | paraphrase_questions | python | def paraphrase_questions(tokenizer, device, model, sentence):
sentence = sentence.replace("<A>", "XYZ")
text = "paraphrase: " + sentence + " </s>"
max_len = 256
encoding = tokenizer.encode_plus(text, pad_to_max_length=True, return_tensors="pt")
input_ids, attention_masks = encoding["input_ids"].to(device), encoding["attention_mask"].to(device)
beam_outputs = model.generate(
input_ids=input_ids, attention_mask=attention_masks,
do_sample=True,
max_length=256,
top_k=120,
top_p=0.98,
early_stopping=True,
num_return_sequences=10
)
print("\nOriginal Question ::")
print(sentence)
print("\n")
print("Paraphrased Questions :: ")
final_outputs = []
for beam_output in beam_outputs:
sent = tokenizer.decode(beam_output, skip_special_tokens=True, clean_up_tokenization_spaces=True)
if sent.replace("?", " ?").lower() != sentence.lower() and sent.replace("?", " ?") not in final_outputs:
if has_NNP(sent.replace("?", " ?"), count_NNP(sent.replace("?", " ?"))):
sent = re.sub('XYZ', '<A>', sent, flags=re.IGNORECASE)
final_outputs.append(sent.replace("?", " ?"))
else:
print("******************", sent.replace("?", " ?"))
sentence = sentence.replace("XYZ", "<A>")
return final_outputs | @param tokenizer: Tokenizer is in charge of preparing the inputs for a model
@param device: Device the model will be run on
@param model: The pre-trained model
@param sentence: The sentence need to be templates
@return: final_outputs: the candidates of templates questions | https://github.com/liberai/nspm/blob/cc352dbbda6751e8cf19769c9440c03e31687829/gsoc/zheyuan/pipeline/paraphrase_questions.py#L61-L101 | import tensorflow_hub as hub
import tensorflow as tf
import zipfile
import requests, zipfile, io
import os
import re
import argparse
import torch
from transformers import T5ForConditionalGeneration,T5Tokenizer
from constant import Constant
from textual_similarity import similarities, minDistance, words_distance, tags_distance, has_NNP, count_NNP
from bert_classifier import load_model, predict
const = Constant()
const.URL = "https://datascience-models-ramsri.s3.amazonaws.com/t5_paraphraser.zip"
const.MODEL_DIR = "~/Downloads/model_save1/"
def get_pretrained_model(zip_file_url):
model_name = zip_file_url.split("/")[-1].replace(".zip", "")
folder_path = './{}'.format(model_name)
print('Getting pretained model {}'.format(model_name))
if not os.path.exists(folder_path):
os.system("curl --output ./t5_paraphraser.zip https://datascience-models-ramsri.s3.amazonaws.com/t5_paraphraser.zip")
os.system("unzip ./t5_paraphraser.zip -d ./t5_paraphraser")
else:
print("Folder available: ", folder_path)
print('Finish {}'.format(model_name))
return folder_path
def prepare_model(folder_path):
model = T5ForConditionalGeneration.from_pretrained(folder_path)
tokenizer = T5Tokenizer.from_pretrained('t5-base')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("device ", device)
model = model.to(device)
return tokenizer, device, model
def set_seed(seed):
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed) | MIT License |
openstack/keystone | keystone/federation/backends/base.py | FederationDriverBase.list_mappings | python | def list_mappings(self):
raise exception.NotImplemented() | List all mappings.
:returns: list of mapping refs
:rtype: list of dicts | https://github.com/openstack/keystone/blob/1e7ecca881a51144d61ae8026e1a77d6669997e2/keystone/federation/backends/base.py#L218-L225 | import abc
from keystone import exception
class FederationDriverBase(object, metaclass=abc.ABCMeta):
@abc.abstractmethod
def create_idp(self, idp_id, idp):
raise exception.NotImplemented()
@abc.abstractmethod
def delete_idp(self, idp_id):
raise exception.NotImplemented()
@abc.abstractmethod
def get_idp(self, idp_id):
raise exception.NotImplemented()
@abc.abstractmethod
def get_idp_from_remote_id(self, remote_id):
raise exception.NotImplemented()
@abc.abstractmethod
def update_idp(self, idp_id, idp):
raise exception.NotImplemented()
@abc.abstractmethod
def create_protocol(self, idp_id, protocol_id, protocol):
raise exception.NotImplemented()
@abc.abstractmethod
def update_protocol(self, idp_id, protocol_id, protocol):
raise exception.NotImplemented()
@abc.abstractmethod
def get_protocol(self, idp_id, protocol_id):
raise exception.NotImplemented()
@abc.abstractmethod
def list_protocols(self, idp_id):
raise exception.NotImplemented()
@abc.abstractmethod
def delete_protocol(self, idp_id, protocol_id):
raise exception.NotImplemented()
@abc.abstractmethod
def create_mapping(self, mapping_id, mapping):
raise exception.NotImplemented()
@abc.abstractmethod
def delete_mapping(self, mapping_id):
raise exception.NotImplemented()
@abc.abstractmethod
def update_mapping(self, mapping_id, mapping_ref):
raise exception.NotImplemented()
@abc.abstractmethod | Apache License 2.0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.