chemical_formula_hill
string
chemical_formula_reduced
string
chemical_formula_anonymous
string
atomic_numbers
list
elements
list
elements_ratios
list
nelements
int32
nsites
int32
cell
list
positions
list
pbc
list
dimension_types
list
nperiodic_dimensions
int32
structure_hash
string
multiplicity
int32
software
string
method
string
adsorption_energy
float64
atomic_forces
list
atomization_energy
float64
cauchy_stress
list
cauchy_stress_volume_normalized
bool
electronic_band_gap
float64
electronic_band_gap_type
string
energy
float64
formation_energy
float64
max_force_norm
float64
mean_force_norm
float64
property_object_metadata
string
property_object_metadata_id
string
property_object_last_modified
timestamp[ns]
property_object_hash
string
property_object_id
string
configuration_metadata
string
configuration_metadata_id
string
configuration_labels
list
configuration_names
list
configuration_dataset_ids
list
configuration_last_modified
timestamp[ns]
configuration_hash
string
configuration_id
string
dataset_name
string
dataset_authors
list
dataset_description
string
dataset_elements
list
dataset_nelements
int32
dataset_nproperty_objects
int64
dataset_nconfigurations
int32
dataset_nsites
int64
dataset_adsorption_energy_count
int64
dataset_atomic_forces_count
int64
dataset_atomization_energy_count
int64
dataset_cauchy_stress_count
int64
dataset_electronic_band_gap_count
int64
dataset_energy_count
int64
dataset_energy_mean
float64
dataset_energy_variance
float64
dataset_formation_energy_count
int64
dataset_last_modified
timestamp[ns]
dataset_dimension_types
list
dataset_nperiodic_dimensions
list
dataset_publication_year
string
dataset_total_elements_ratios
list
dataset_license
string
dataset_links
string
dataset_doi
string
dataset_hash
string
dataset_id
string
dataset_extended_id
string
NiTi9
NiTi9
A9B
[ 28, 22, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.1, 0.9 ]
2
10
[ [ -0.002572, -0.017837, -4.02248 ], [ 4.01342, 6.05294, -2.01924 ], [ 4.01597, -4.06695, 0.011885 ] ]
[ [ 4.01342, 6.05294, -2.01924 ], [ 1.98066, 1.98608, -4.02382 ], [ 4.01081, 3.98469, -4.02781 ], [ 1.98687, -0.03334, -2.00853 ], [ 3.96383, 1.95013, -2.01129 ], [ 6.0214, 4.01946, -2.0133 ], [ 4.06298, 0.01802, -4.01854 ], [ 6.03995, 2.00149, -4.0213 ], [ 4.01601, -2.01654, -2.00203 ], [ 6.04616, -0.01793, -2.00601 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
1092394524733032224193501605797315896941374719170594828473372638402211200606403857790607728872868138338909351794516154555981625614791993284083738568047471
1
VASP
DFT
null
[ [ 0.000203, -0.000039, 0.000001 ], [ -0.205346, -0.172017, 0.002575 ], [ 0.129712, -0.098766, 0.005278 ], [ -0.061556, -0.197776, 0.001039 ], [ -0.019923, 0.122818, -0.008801 ], [ 0.000227, 0.000078, 0.000019 ], [ 0.020724, -0.122919, 0.008801 ], [ 0.061063, 0.197924, -0.001055 ], [ -0.130253, 0.098608, -0.005265 ], [ 0.205149, 0.172089, -0.002592 ] ]
null
[ [ -0.003564525861791929, 0.0014198809110471822, 0.0005969379327994748 ], [ 0.0014198809110471822, -0.004946895302992553, 0.0008430406376330516 ], [ 0.0005969379327994748, 0.0008430406376330516, -0.003736417023118753 ] ]
true
null
null
-75.741492
null
0.152666
0.267887
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:48:03
10963411324159123675528232045322983247968541205290068391069784628664998533080963179942900028197307483139371390343729992272450721311286191853122686493862262
PO_1096341132415912367552823
null
null
null
[ "train_1st_stage_979" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
13217966394585579317765830080729941274154759087038753240024686132808355805692218485772528005159675218698885568221594281947248228590739995151101004247307981
CO_1321796639458557931776583
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNiTi2
AlNiTi2
A2BC
[ 13, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.25, 0.25, 0.5 ]
3
4
[ [ 0, 4.0059, 0 ], [ 2.72498, 0, 2.72498 ], [ 2.72498, 0, -2.72498 ] ]
[ [ 0, 0, 0 ], [ 2.72498, 0, 0 ], [ 1.36249, 2.00295, -1.36249 ], [ 1.36249, 2.00295, 1.36249 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10338670001570227933931724772540084925491769657072338983890243474471958116289404613677259212528985197387612810908203163474863003684018180763946479312393915
1
VASP
DFT
null
[ [ 0, 0, -0.000001 ], [ -0.000001, 0, 0.000001 ], [ 0, 0, 0 ], [ 0.000001, 0, 0 ] ]
null
[ [ 0.006097143019801578, 6.241509125883259e-8, 0.000001997282920282643 ], [ 6.241509125883259e-8, 0.003460604734845972, 0 ], [ 0.000001997282920282643, 0, 0.006097143019801578 ] ]
true
null
null
-26.287768
null
0.000001
0.000001
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:36:20
6403506204373268326632028796460189302181127313316853142387860013292204879379014477453860479381587870236893976899604757527986497905890216766831579091918267
PO_6403506204373268326632028
null
null
null
[ "train_1st_stage_1163" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11921414420769935824028033394890819983898439561770773939760233783663756811396371631313237582372562625155537515966972293046063984737105105909368038751293985
CO_1192141442076993582402803
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ti4
AlTi2
A2B
[ 13, 13, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
6
[ [ -1.50798, 2.3003, -4.5828 ], [ 1.50798, 2.3003, -4.5828 ], [ 0, -9.40368, 4.27152 ] ]
[ [ 0, -4.63539, -0.27476 ], [ 0, -6.38057, 2.13383 ], [ 0, -4.67079, -4.72031 ], [ 0, 0.05547, -4.75326 ], [ 0, -1.74457, -2.58623 ], [ 0, 2.93284, -6.82479 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
955517236370880810558393028992529701449578380005398086286548794338692569345081082695643211374492400638236923398330937041361226018147114278940581438194634
1
VASP
DFT
null
[ [ 0.000001, -0.18426, 0.019586 ], [ 0, 0.183514, -0.019907 ], [ 0.000002, 0.113771, -0.743509 ], [ -0.000002, 0.317621, 0.170686 ], [ -0.000002, -0.114042, 0.743397 ], [ 0.000001, -0.316604, -0.170252 ] ]
null
[ [ 0.008847027110483225, 0, 0 ], [ 0, -0.0038471413950119226, -0.008683312326111305 ], [ 0, -0.008683312326111305, -0.005021481337046857 ] ]
true
null
null
-39.946236
null
0.432367
0.752163
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:23:17
2117491222758400019730383644370733438824349620196474861034644805418729204297989062063804195476514566236243604882763435656641624900448444942334312869810655
PO_2117491222758400019730383
null
null
null
[ "train_2nd_stage_263" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12819064762857686349984075063889762569645857641404375054172072094184840054798401625969839696140952518924049783010443840189558652329509178972447456657317042
CO_1281906476285768634998407
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni6
AlNi3
A3B
[ 13, 13, 28, 28, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.25, 0.75 ]
2
8
[ [ 0, 0.002175, 4.05221 ], [ 2.62846, 4.24363, -0.002368 ], [ -2.62846, 4.24363, -0.002368 ] ]
[ [ 0, 5.69341, 3.03603 ], [ 0, 2.79602, 1.01144 ], [ 0, 7.15922, 1.00903 ], [ 0, 1.33021, 3.03845 ], [ 1.29589, 4.92059, 1.01035 ], [ -1.29589, 3.56884, 3.03713 ], [ -1.29589, 4.92059, 1.01035 ], [ 1.29589, 3.56884, 3.03713 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2552405956806592087926321440366150824049290178333386601992905393111623393855297828637223604010764389568454216651339321351999090449082352394976042181147263
1
VASP
DFT
null
[ [ 0.001352, 0.033112, -0.000276 ], [ -0.000967, -0.034401, 0.00036 ], [ 0.00007, -0.402532, 0.000401 ], [ -0.000776, 0.404726, -0.000433 ], [ 0.038385, 0.637564, -0.000663 ], [ -0.037803, -0.638426, 0.000638 ], [ -0.038703, 0.637026, -0.000663 ], [ 0.038443, -0.63707, 0.000637 ] ]
null
[ [ 0.014017493270364913, -0.000018225206647579114, 0 ], [ -0.000018225206647579114, -0.02401227149400681, 0.0000073649807685422446 ], [ 0, 0.0000073649807685422446, -0.004525531021904174 ] ]
true
null
null
-43.510484
null
0.428689
0.639545
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:33:04
8216960166211787100165135858925453303074842238333410926280713515488934280479489554681848395925740975337209277921418626419572514439942319823197639065319740
PO_8216960166211787100165135
null
null
null
[ "train_2nd_stage_566" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4682421710433070526363005934524993792274729572535706108237270006179391924843110970749358898664167683254352465031205612044618350060103837291294668113426177
CO_4682421710433070526363005
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlTi3
AlTi3
A3B
[ 13, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.25, 0.75 ]
2
4
[ [ 0.000001, 4.041154, 0 ], [ 2.857571, 0.000001, 2.857567 ], [ 2.856979, 0, -2.856975 ] ]
[ [ 2.85817, 0.00735, 2.83887 ], [ 4.28665, 2.02792, 1.41041 ], [ 1.42938, 2.02792, 1.41012 ], [ 2.85787, 0.00734, -0.01837 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5095027393546540944925050025920288605690640330592523087904468328127986211941675685367326508127129523507576461436543074914966526946248163519556576889986430
1
VASP
DFT
null
[ [ 0.000002, 0.000031, -0.000084 ], [ 0.000032, -0.000006, 0.000019 ], [ -0.000041, -0.000024, 0.000037 ], [ 0.000008, -0.000002, 0.000028 ] ]
null
[ [ -0.0003126371921154924, 6.241509125883259e-8, 0.00002565260250738019 ], [ 6.241509125883259e-8, -0.0002869845896081122, -3.744905475529955e-7 ], [ 0.00002565260250738019, -3.744905475529955e-7, -0.00031307409775430426 ] ]
true
null
null
-28.276681
null
0.000054
0.00009
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:11:14
13182962611306668542290517901853526260574440777887488001105794069436706866190491661659318475266358794448817745848008154500903312618576687993407334573086224
PO_1318296261130666854229051
null
null
null
[ "train_1st_stage_168" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
3512982446902484309771573936176220583766640107201906261775594348785885373901864069806157215440389872353188867098560797105991718454154591610187220174053528
CO_3512982446902484309771573
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlTi3
AlTi3
A3B
[ 13, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.25, 0.75 ]
2
4
[ [ 0, 4.042788, 0.000001 ], [ 2.85852, 0.000001, 2.858518 ], [ 2.858806, -0.000001, -2.858815 ] ]
[ [ 2.85912, 0.00735, 2.83983 ], [ 4.28852, 2.02874, 1.41043 ], [ 1.42986, 2.02874, 1.41058 ], [ 2.85926, 0.00734, -0.01883 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
433144849455329246922972082580871035379904790092038260749259390567573671584934762170215005825596558840481854346397640368938092679551326765693261370078486
1
VASP
DFT
null
[ [ -0.000002, 0.000106, -0.000268 ], [ 0.000028, -0.000029, 0.000087 ], [ -0.000018, -0.000031, 0.000104 ], [ -0.000007, -0.000046, 0.000077 ] ]
null
[ [ -0.0000473106391741951, 6.241509125883259e-8, -0.000026401583602486182 ], [ 6.241509125883259e-8, -0.000026588828876262677, -6.241509125883259e-8 ], [ -0.000026401583602486182, -6.241509125883259e-8, -0.000046686488261606764 ] ]
true
null
null
-28.277387
null
0.000146
0.000288
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:40:58
9571382135745375868051488749453327000676737287520480761045178663150543354296992256780393751243962250443205465082498887564824867717770462174181832624464536
PO_9571382135745375868051488
null
null
null
[ "train_1st_stage_294" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
2915428759569590519309038593825573730873351785756980716915433421421737395807547299404132874061045899704456794195576021428637923340373232800070111124494850
CO_2915428759569590519309038
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
NiTi3
NiTi3
A3B
[ 28, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.25, 0.75 ]
2
4
[ [ 0, 0, 3.9295 ], [ 0, 3.9295, 0 ], [ -3.9295, 0, 0 ] ]
[ [ 0, 0, 0 ], [ -1.96475, 1.96475, 0 ], [ -1.96475, 0, 1.96475 ], [ 0, 1.96475, 1.96475 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7547389662722199009283267567963861146206044361066235640934156604806599420509823307914335240342935093211603378742535541016079452998813494789756217509283979
1
VASP
DFT
null
[ [ 0, 0.000002, 0.000001 ], [ 0.000002, 0.000004, -0.000003 ], [ 0.000001, -0.000003, 0.000001 ], [ -0.000003, -0.000003, 0.000001 ] ]
null
[ [ 0.0004771633726737751, 0, 0 ], [ 0, 0.0005054998241052851, 0 ], [ 0, 0, 0.0004881484287353296 ] ]
true
null
null
-29.273202
null
0.000004
0.000005
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:02:31
4934361087019327644846729510951759418999906111631945653522649517888206467188553515581473803972745121812206346073383386330272705900371121353856588783763679
PO_4934361087019327644846729
null
null
null
[ "train_2nd_stage_384" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
1555326006695412409321255853830026483700868390706371681090348332981360019941229207606166867807681058575779578468656308500694958890297470328647080690471473
CO_1555326006695412409321255
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ti2
AlTi
AB
[ 13, 13, 22, 22 ]
[ "Al", "Ti" ]
[ 0.5, 0.5 ]
2
4
[ [ 1.98629, -3.44036, 0 ], [ 1.98629, 3.44036, 0 ], [ 0, 0, 5.52311 ] ]
[ [ 1.98629, 1.14679, 1.38078 ], [ 1.98629, -1.14679, 4.14233 ], [ 0, 0, 0 ], [ 0, 0, 2.76156 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
1037544076920350564685363283573566238471935312136340675253167478858771544502476366170900775290833585174534537876713844033761818738569526343983570350059174
1
VASP
DFT
null
[ [ 0.000004, -0.00001, 0.000204 ], [ 0, 0.000006, -0.00017 ], [ 0, -0.000004, 0.00002 ], [ -0.000004, 0.000007, -0.000054 ] ]
null
[ [ 0.010336376018101487, 0, -2.4966036503533035e-7 ], [ 0, 0.010336937753922817, 0 ], [ -2.4966036503533035e-7, 0, 0.02403255639866593 ] ]
true
null
null
-21.167155
null
0.000112
0.000204
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:41:44
10623507886654841423031784895889400514841763363308339614977446483390183945613713608709803348763946221983107431307568702601163181376472859687426195395700946
PO_1062350788665484142303178
null
null
null
[ "train_1st_stage_2385" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7141581319042300565684752681951449737356587584174848526701635662637158785392997218517806153723626122948183017269640943827610061628768033379473374113514678
CO_7141581319042300565684752
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni4Ti4
NiTi
AB
[ 28, 28, 28, 28, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.5, 0.5 ]
2
8
[ [ 1.71191, -2.10924, 0.496828 ], [ -3.01516, -3.60836, -0.434549 ], [ 0.042131, -4.21135, -7.82373 ] ]
[ [ 1.46473, -2.14426, 0.40736 ], [ 0.05592, -4.73594, -1.7283 ], [ -0.58627, -5.8942, -3.81152 ], [ 1.02008, -4.87751, -5.51262 ], [ -0.87198, -3.19895, -0.07694 ], [ -2.48682, -5.07518, -2.29303 ], [ 0.24456, -3.44572, -3.74361 ], [ -1.37027, -5.32194, -5.95971 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11520454570789993846482057654353490292855942793973633493976860595734895168861633177134153259637191975006247257663485380812956491785967575765940526658176620
1
VASP
DFT
null
[ [ -0.504684, -0.264397, 0.344621 ], [ -0.277878, -0.035548, -0.314674 ], [ 0.27793, 0.036154, 0.315561 ], [ 0.505341, 0.264681, -0.345727 ], [ 0.0335, 0.110707, 0.346378 ], [ 0.410263, 0.358101, 0.503738 ], [ -0.410929, -0.358658, -0.502691 ], [ -0.033544, -0.111039, -0.347207 ] ]
null
[ [ 0.04939598978824395, -0.006420265947248554, 0.01288322381691815 ], [ -0.006420265947248554, 0.03390138096814751, 0.0012262692979622836 ], [ 0.01288322381691815, 0.0012262692979622836, 0.08619985974520095 ] ]
true
null
null
-55.074179
null
0.548888
0.741825
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:27:46
12306864478238797206249960939308118339588189490643617553054319204798824744948641341109696978072932689654190730419091566571325287559673012279768773715844577
PO_1230686447823879720624996
null
null
null
[ "train_2nd_stage_669" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
1708351011882320011701812642208655693916762006256939875113980711497821314163502353667701031358547163121556880774561985161097344750164949726736514616760394
CO_1708351011882320011701812
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ti4
AlTi2
A2B
[ 13, 13, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
6
[ [ 4.20489, 0, 0 ], [ -2.10245, 3.64154, 0 ], [ 0, 0, 6.65739 ] ]
[ [ 0, 0, 1.66435 ], [ 0, 0, 4.99304 ], [ 0, 2.4277, 3.02911 ], [ 2.10245, 1.21385, 6.35781 ], [ 2.10245, 1.21385, 3.62828 ], [ 0, 2.4277, 0.29958 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4672682767051398285871892701565140301165960356835052999142789590147589979280252039659902607118220116098519785183078172452520589293443152630821786614739909
1
VASP
DFT
null
[ [ 0.000026, 0.000042, 0.001119 ], [ 0.000029, 0.000028, -0.0012 ], [ -0.000011, -0.000008, 2.200944 ], [ -0.000021, -0.000029, 2.19875 ], [ -0.000015, -0.000015, -2.200493 ], [ -0.000008, -0.000018, -2.19912 ] ]
null
[ [ 0.05451683595057487, 8.73811277623656e-7, 6.241509125883259e-8 ], [ 8.73811277623656e-7, 0.054518021837308785, -2.4966036503533035e-7 ], [ 6.241509125883259e-8, -2.4966036503533035e-7, -0.052179016292384035 ] ]
true
null
null
-36.055956
null
1.466938
2.200944
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:47:24
8456520231019466947946148775755403459915729586331803257593421732869488762835806753121892968683611781709957396089959816624458344090928376345408027380512677
PO_8456520231019466947946148
null
null
null
[ "train_1st_stage_2074" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10528736451267813876291514074420078250451921736367779860727593894523351116661222300397109414845247464411828894457232215325817334514175864607833336045239813
CO_1052873645126781387629151
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi2
AlNi2
A2B
[ 13, 28, 28 ]
[ "Al", "Ni" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
3
[ [ 0.225059, 1.99795, 2.02668 ], [ 4.5844, 1.47432, 0 ], [ 0.225059, 1.99795, -2.02668 ] ]
[ [ 0, 0, 0 ], [ 1.63969, 1.82895, 0 ], [ 3.39482, 3.64127, 0 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
138999319327615016877884757474884439955796775351068149200812428447875901404235541797978247453268351075353290627117486436491749442261722759950553713980137
1
VASP
DFT
null
[ [ 0.000426, -0.000039, 0 ], [ 0.088649, -0.010067, 0 ], [ -0.089075, 0.010106, 0.000001 ] ]
null
[ [ 0.00508601854140849, -0.0013092189542452722, 0 ], [ -0.0013092189542452722, 0.004266820468636313, 0 ], [ 0, 0, 0.00648149515177347 ] ]
true
null
null
-16.018866
null
0.059764
0.089646
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:08:30
9458660316271939961990297137711139169224015223657989497652081029765344689184017926935085782552880720780605691868183088583407589066203901855822596325064187
PO_9458660316271939961990297
null
null
null
[ "train_1st_stage_826" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9900461048608511757308642735724065870912532643262176256125768480812065776474956402233782260530050971110956751993887184049808039687943347567659136609264762
CO_9900461048608511757308642
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi10Ti
AlNi10Ti
A10BC
[ 13, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.08333333333333333, 0.8333333333333334, 0.08333333333333333 ]
3
12
[ [ 2.525353, -0.001303, 4.125611 ], [ 2.520638, 4.375603, 0.025801 ], [ -2.509459, 4.356828, 4.12687 ] ]
[ [ -2.4904, 4.35483, 4.12524 ], [ 2.52157, 4.40735, 4.10886 ], [ 0.04787, 4.38048, 4.16003 ], [ 1.29501, 6.54838, 8.25177 ], [ 1.27478, 2.18576, 4.123 ], [ 1.26424, 6.54382, 4.15322 ], [ 1.28242, 0.71815, 2.05228 ], [ 1.25973, 5.11326, 2.08179 ], [ 1.29204, 5.12563, 6.20232 ], [ 2.53255, 2.91493, 2.08816 ], [ 2.53408, 7.27332, 6.19196 ], [ 0.00051, 2.9344, 2.06625 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3235759813699041927179553337051045422662081471524867357169199415069218596833232624278135211109972557465860771492133469890392604867589295605712659765217226
1
VASP
DFT
null
[ [ 0.003582, 0.005155, -0.001452 ], [ 0.001251, 0.010361, -0.001458 ], [ -0.009039, 0.008232, 0.001765 ], [ 0.001035, 0.006057, -0.001554 ], [ 0.001861, 0.000923, -0.000418 ], [ -0.004545, 0.008507, 0.001427 ], [ -0.001437, -0.006977, 0.000817 ], [ 0.005439, -0.009373, -0.001778 ], [ -0.001906, -0.001485, 0.001252 ], [ 0.003435, -0.005623, 0.006257 ], [ 0.001017, -0.008976, -0.007788 ], [ -0.000694, -0.006799, 0.002932 ] ]
null
[ [ 0.0009366008594300417, -0.00006578550618680954, -0.00009168776905922505 ], [ -0.00006578550618680954, 0.0015152511704906787, -0.00002683848924129801 ], [ -0.00009168776905922505, -0.00002683848924129801, 0.00004899584663818357 ] ]
true
null
null
-69.419821
null
0.008072
0.012353
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:34:06
6931601282407846295995730074020738920279308612997781707387568795495513526768775931255457463583774464143979126952142373850290623552754051198229103968293080
PO_6931601282407846295995730
null
null
null
[ "train_1st_stage_323" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
8513035854194685954434893145445672711055900589346841093194136046642357951803450427216603078235663368613246310428718379005919133042775706966418552542444355
CO_8513035854194685954434893
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al5Ni2Ti
Al5Ni2Ti
A5B2C
[ 13, 13, 13, 13, 13, 28, 28, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.625, 0.25, 0.125 ]
3
8
[ [ -1.96615, 1.96854, 7.04856 ], [ 1.96854, -1.96615, 7.04856 ], [ 1.96613, 1.96613, -7.04923 ] ]
[ [ 0.0012, 0.0012, 7.04856 ], [ 1.96818, 0.00084, 5.00143 ], [ 0.00084, 1.96818, 5.00143 ], [ 0.00035, 1.96769, 2.04647 ], [ 1.96769, 0.00035, 2.04647 ], [ 1.96793, 1.96793, 3.57796 ], [ 0.00059, 0.00059, 3.46993 ], [ 0, 0, 0 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
8183384801615429111079564245681984882625442634900640392884196155310807614414474617051946843921627351505495619405961092647978023346078538691436709864625782
1
VASP
DFT
null
[ [ -0.000025, -0.000024, -0.000008 ], [ 0.000427, 0.000204, 0.325586 ], [ 0.000204, 0.000427, 0.325586 ], [ -0.000454, -0.000225, -0.325692 ], [ -0.000225, -0.000454, -0.325692 ], [ 0.0003, 0.0003, 0.463893 ], [ -0.000269, -0.000268, -0.463779 ], [ 0.000042, 0.000041, 0.000106 ] ]
null
[ [ -0.012146164004242597, 0.00010604324004875656, 0.00005729705377560831 ], [ 0.00010604324004875656, -0.012146164004242597, 0.00005723463868434947 ], [ 0.00005729705377560831, 0.00005723463868434947, -0.023149694932809745 ] ]
true
null
null
-41.764028
null
0.278798
0.463893
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:40:28
12598519239967958381636184971403744445444093002812937315492197348119363431161455601113631452063089897888437363497680065578765926212446089947989660198423183
PO_1259851923996795838163618
null
null
null
[ "train_2nd_stage_131" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7241772542350279150010962023643597481212138311137495119041995748396146630904156507408407221690312532109032623825762280734090043923330531496160088196203687
CO_7241772542350279150010962
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni6Ti3
AlNi2Ti
A2BC
[ 13, 13, 13, 28, 28, 28, 28, 28, 28, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.25, 0.5, 0.25 ]
3
12
[ [ 2.24082, 0.05851, 4.14307 ], [ -1.36562, 6.9619, -0.087571 ], [ -2.1268, -0.284061, 4.00587 ] ]
[ [ -1.95077, 0.33109, 3.89735 ], [ -2.26273, 4.30499, 3.88198 ], [ -1.12467, 4.85942, 6.10934 ], [ -1.57002, 6.6538, 4.08527 ], [ -1.09619, 2.2124, 3.86818 ], [ 1.23107, 2.25939, 4.06945 ], [ -0.271, 4.55815, 4.19476 ], [ -0.27014, 3.74181, 6.02328 ], [ -1.17017, 5.04237, 2.49839 ], [ -0.45747, 0.7215, 5.87412 ], [ 0.98099, 0.41041, 6.07515 ], [ -0.20303, 2.79785, 1.85797 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12011124356758468072331529746204036575042446543632198669388076588184510687767709310856863706187818528124391039500810580974339359772383807751701980420855272
1
VASP
DFT
null
[ [ -6.548275, -4.9589, 4.126649 ], [ -5.594736, -1.854535, 7.56646 ], [ -20.287396, 25.947051, 1.855708 ], [ 7.031832, -3.908284, -3.742829 ], [ 4.715937, 2.464306, -0.380349 ], [ -7.287917, 2.883392, -0.872561 ], [ 7.021749, 0.852236, -1.089333 ], [ 15.192658, -31.091736, -1.236103 ], [ 3.991395, 7.272804, -8.371521 ], [ -42.386375, 11.521112, -2.448493 ], [ 44.928136, -10.099187, 2.214328 ], [ -0.777008, 0.97174, 2.378042 ] ]
null
[ [ 0.9199039487070264, -0.20254733204006067, 0.07535979394064067 ], [ -0.20254733204006067, 0.435698718192156, 0.0031347355433836077 ], [ 0.07535979394064067, 0.0031347355433836077, 0.5126659503930767 ] ]
true
null
null
-36.873745
null
18.351217
46.102432
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:08:27
3689437897855318871652673378401932462658939831666673772448918276244406513957036019452576712929214875240849420570225198242508769339539274784457411162499511
PO_3689437897855318871652673
null
null
null
[ "train_1st_stage_1597", "train_1st_stage_1997", "train_1st_stage_1797", "train_1st_stage_1397" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10842713216721888998164810093639882981830714863255449650867287248864237513961022616705376211083487348779997755971755963956085724954499809953280074893877241
CO_1084271321672188899816481
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi10
AlNi10
A10B
[ 13, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.09090909090909091, 0.9090909090909091 ]
2
11
[ [ 1.763591, 3.526016, 1.7663 ], [ 5.297851, 0.001703, -1.766964 ], [ 0.003975, 1.760215, -5.293168 ] ]
[ [ 7.04601, 3.52316, -0.00523 ], [ 1.76378, 1.75095, -0.01324 ], [ 3.53168, 3.52216, -0.02164 ], [ 3.51925, 1.76469, -1.77024 ], [ 5.28597, 3.52049, -1.78382 ], [ 5.28977, 1.76037, -3.54077 ], [ 1.74455, 3.51892, -1.76259 ], [ 1.74828, 1.75879, -3.5195 ], [ 3.51488, 3.51455, -3.53303 ], [ 3.50253, 1.75707, -5.28165 ], [ 5.27046, 3.52821, -5.29001 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5685076840420807743423345618163172673281356001223991901126072786831593412342172318976461377051853430510109854631496757670022047204494890420338251104671738
1
VASP
DFT
null
[ [ -0.002155, 0.00249, -0.002086 ], [ -0.002015, 0.0008, 0.007376 ], [ 0.006418, 0.002862, 0.007118 ], [ 0.001436, -0.002609, -0.000712 ], [ -0.002436, -0.005656, 0.002483 ], [ -0.001672, -0.00553, -0.01049 ], [ 0.001566, 0.004456, 0.012197 ], [ 0.003393, 0.00509, -0.001007 ], [ 0.000431, 0.001307, 0.000583 ], [ -0.006125, -0.002704, -0.00745 ], [ 0.001158, -0.000507, -0.008012 ] ]
null
[ [ 0.0013891102710565778, 0.00005885743105707912, 0.00007383705295919895 ], [ 0.00005885743105707912, 0.0013198295197592738, 0.00004244226205600615 ], [ 0.00007383705295919895, 0.00004244226205600615, 0.0012967983510847646 ] ]
true
null
null
-59.814253
null
0.00747
0.01308
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:47:33
6499011170352499650913047823137198907718625230973911068647356841932924997523661143960247286769808583199922703377935331213414512578029669052790195060170833
PO_6499011170352499650913047
null
null
null
[ "train_1st_stage_322" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11045666526535894072548824648450406582595061914808108804455394989423524089175858067200094851680456935220975980620248915903002007181464714332761236610744088
CO_1104566652653589407254882
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni5
Al3Ni5
A5B3
[ 13, 13, 13, 28, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.375, 0.625 ]
2
8
[ [ 3.92358, -2.18166, 3.53631 ], [ 3.92358, 3.53631, -2.18166 ], [ 3.26229, 2.63019, 2.63019 ] ]
[ [ 3.2623, 2.63019, 2.63019 ], [ 5.22408, 4.39834, 1.53936 ], [ 5.22408, 1.53936, 4.39834 ], [ 7.18588, 3.30752, 3.30752 ], [ 5.55472, 1.99241, 1.99241 ], [ 3.59293, 0.22428, 3.08323 ], [ 3.59293, 3.08323, 0.22428 ], [ 1.63117, 1.3151, 1.3151 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
13149466379766728173060277039456808454966309719021210485571841005324816727644387364088008116989033908034748181580990197660489309424408201710793988366635186
1
VASP
DFT
null
[ [ -0.000053, 0.000144, 0.000143 ], [ -0.000013, -0.000018, -0.000026 ], [ -0.000013, -0.000024, -0.000014 ], [ 0.000013, -0.00019, -0.00019 ], [ 0.00011, 0.000076, 0.000074 ], [ 0.000037, -0.000092, 0.000133 ], [ 0.00004, 0.000133, -0.000091 ], [ -0.000122, -0.00003, -0.000029 ] ]
null
[ [ -0.004175382359942123, 0.0013254468779725687, 0.0013251348025162745 ], [ 0.0013254468779725687, -0.00184611356925375, 0.0001434922948040561 ], [ 0.0013251348025162745, 0.0001434922948040561, -0.0018421814185044438 ] ]
true
null
null
-42.813639
null
0.000145
0.000269
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:51:09
3714264510021108393001904905465454374350056545389605775987801873492392549473457202328954689340699352225737575860373345990795563497362263979946223855770927
PO_3714264510021108393001904
null
null
null
[ "train_1st_stage_933" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
8834051653006187930976533286193334999171238617456134012782444043686698137135826845927878840531937095944136389829765513400497784339436349083324573134908345
CO_8834051653006187930976533
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni7Ti
Al2Ni7Ti
A7B2C
[ 13, 13, 28, 28, 28, 28, 28, 28, 28, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.2, 0.7, 0.1 ]
3
10
[ [ 2.6162, -2.61344, -0.095847 ], [ -3.37688, -3.13272, -6.75479 ], [ 0.817909, 3.52218, -2.33029 ] ]
[ [ 0.07633, -2.21013, -9.0368 ], [ 1.03882, -1.50401, -2.01865 ], [ 0.93792, 1.01601, -2.10241 ], [ 2.04025, -0.42933, -3.98706 ], [ -0.50272, -0.36807, -3.68607 ], [ -0.38399, -2.87617, -3.44048 ], [ -1.93496, -1.74671, -5.18883 ], [ -0.99833, -0.73263, -7.27353 ], [ -0.9251, -3.2848, -7.06838 ], [ 0.55758, -1.85707, -5.52772 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7331922742233094662015140464654715966392799175869530001440858962330151688193128120129943463629587983018698533035083024315396214600620348259463236752622656
1
VASP
DFT
null
[ [ -0.016077, -0.012306, -0.105804 ], [ 0.016552, 0.012953, 0.106121 ], [ 0.000144, -0.000002, 0.000012 ], [ 0.123496, 0.120142, 0.071327 ], [ 0.130581, 0.132231, -0.019822 ], [ 0.067782, 0.060901, 0.159259 ], [ -0.068965, -0.062145, -0.159972 ], [ -0.130381, -0.132149, 0.019968 ], [ -0.123074, -0.119651, -0.070765 ], [ -0.000058, 0.000026, -0.000325 ] ]
null
[ [ 0.0016902630863804451, -0.003923662296895251, 0.003788034303589808 ], [ -0.003923662296895251, 0.001418819854495782, 0.003756639512686615 ], [ 0.003788034303589808, 0.003756639512686615, 0.0059999627227115765 ] ]
true
null
null
-58.265291
null
0.133057
0.186894
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:02:18
8913590421592506635609862784395949725473957640940309327257031942313863962083170579770473615079719400910267081134305580860468743956082913608226931242505022
PO_8913590421592506635609862
null
null
null
[ "train_1st_stage_1160" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5143902805681655423315923309232651164426999165769506030543259266226307686705387123354554883432595321353580577930305012248012343171153687555813771968342650
CO_5143902805681655423315923
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ti4
Al3Ti2
A3B2
[ 13, 13, 13, 13, 13, 13, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.6, 0.4 ]
2
10
[ [ -4.60146, -0.006481, 2.70981 ], [ 4.60146, -0.006481, 2.70981 ], [ 0, 6.70657, -2.69378 ] ]
[ [ 0.58109, 1.49485, 2.0772 ], [ -0.58108, 5.2018, -0.62375 ], [ -1.71965, 1.84852, 0.72314 ], [ -2.88182, 4.84814, 0.7303 ], [ -0.00002, 6.69367, 2.69552 ], [ 2.30075, 3.34687, 1.3326 ], [ -1.70431, 0.7064, 3.36287 ], [ 1.7043, 5.98409, 0.66568 ], [ 0.59643, 2.63728, -0.69724 ], [ -0.59642, 4.05969, 2.01598 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7360057664399701417402878740620501860593741455883991023828003135855687997449494619820453010062440193995272780003781088739382506471863230989664715858906082
1
VASP
DFT
null
[ [ 0.115836, 0.027141, 0.132042 ], [ -0.114107, -0.028518, 0.130663 ], [ 0.11438, -0.028464, 0.130614 ], [ -0.115702, 0.026969, 0.13211 ], [ 0.001001, 0.001781, -0.536984 ], [ -0.000938, 0.002091, -0.536922 ], [ -0.296564, 0.03912, 0.136619 ], [ 0.295999, -0.039625, 0.137608 ], [ -0.296405, -0.039182, 0.137414 ], [ 0.296501, 0.038686, 0.136836 ] ]
null
[ [ 0.003897635203840318, -0.0000012483018251766516, 0.0000013731320076943167 ], [ -0.0000012483018251766516, 0.022965195923048635, -0.000014355470989531493 ], [ 0.0000013731320076943167, -0.000014355470989531493, 0.02629279409842204 ] ]
true
null
null
-57.396258
null
0.309662
0.536988
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:32:04
10031293828164273520372241866349089406080918991859605199044787471272830766303436982338178055366371293945836213289736995667965374934123416306051654693917444
PO_1003129382816427352037224
null
null
null
[ "train_2nd_stage_53" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4460134059113145186257718853080116835680016021730186494307539626564670854021196332208729406502929796370196394601825400633398828165796151955042569905594284
CO_4460134059113145186257718
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni6Ti4
Ni3Ti2
A3B2
[ 28, 28, 28, 28, 28, 28, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.6, 0.4 ]
2
10
[ [ 1.09185, 3.3177, -1.46323 ], [ 4.72145, -4.7222, -2.33971 ], [ -0.874459, 2.09433, -5.5694 ] ]
[ [ -0.2853, 2.02863, -5.2948 ], [ 1.43424, 0.91383, -1.75645 ], [ 2.2793, 1.89336, -3.78751 ], [ 4.21875, 0.50406, -5.50641 ], [ 0.45108, 0.30215, -3.80954 ], [ 2.49671, -1.30426, -5.91561 ], [ 2.9551, -0.40985, -3.62337 ], [ 4.86418, -1.79082, -5.34935 ], [ 1.85128, 0.99062, -6.07267 ], [ 3.76035, -0.39035, -7.79865 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2824553165446194737883627486459859269279458662641026514368157498659357137071422165205735636908576799315779000371562537904301858154330864196469418382452379
1
VASP
DFT
null
[ [ 0.427612, 0.011798, 0.25055 ], [ -0.000246, 0.000195, 0.000084 ], [ -0.429121, -0.010725, -0.249662 ], [ -0.719353, 0.099775, -0.11913 ], [ -0.000506, 0.000135, -0.000045 ], [ 0.72059, -0.100559, 0.118458 ], [ 0.023877, 0.248815, 0.689566 ], [ 1.064663, -0.522282, -0.23454 ], [ -1.064216, 0.521701, 0.233597 ], [ -0.023298, -0.248853, -0.688877 ] ]
null
[ [ 0.07710373400550372, 0.00925946603352159, 0.015613259908579489 ], [ 0.00925946603352159, 0.09160419525202948, -0.013234683195796635 ], [ 0.015613259908579489, -0.013234683195796635, 0.09287727586843589 ] ]
true
null
null
-67.191793
null
0.634942
1.20884
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:22:12
4985686625135589732036887550372801745054789367848939437442220848305019660384770664295183821029200913889247506702395282638120259223908322425367704523298280
PO_4985686625135589732036887
null
null
null
[ "train_2nd_stage_819" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
2846420580790404631875796047642888620169863645752278624794636325568254338098866300385992279181250148349968354475102103715549195458389026341010749454929098
CO_2846420580790404631875796
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi3Ti2
AlNi3Ti2
A3B2C
[ 13, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.16666666666666666, 0.5, 0.3333333333333333 ]
3
6
[ [ -4.14171, 2.42726, 0.217801 ], [ 0.022112, -4.83414, -0.150612 ], [ -1.31847, 2.2712, 4.06145 ] ]
[ [ -1.30007, -1.75726, 3.93594 ], [ -3.38195, 1.87347, 4.12014 ], [ -2.05241, -2.81483, -0.01661 ], [ -2.71166, -1.67922, 2.01414 ], [ -1.32412, 0.71082, 2.53531 ], [ -4.12133, 0.76487, 1.64353 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
8564599688429836212495849135568434201632081777333723798427877958608822854371228258088461173228559497067944212172192021301545870827422591677720755752822955
1
VASP
DFT
null
[ [ 0.000791, 0.000219, 0.000282 ], [ -0.000349, -0.000625, 0.000217 ], [ -0.000318, 0.000428, 0.000178 ], [ -0.000042, 0, -0.00073 ], [ -0.176672, -0.030354, -0.078308 ], [ 0.17659, 0.030331, 0.078361 ] ]
null
[ [ -0.0014508387963115632, -0.0012916803136015403, -0.0010798434938690624 ], [ -0.0012916803136015403, -0.0024070379943968785, -0.001524426188905727 ], [ -0.0010798434938690624, -0.001524426188905727, -0.0020889706893418673 ] ]
true
null
null
-38.556362
null
0.065682
0.195618
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:38:07
10386810136906390279858605496282082977677859217769751969994170412880484928792002289986856608451883236345352598803961735458491436276174213161517771521166560
PO_1038681013690639027985860
null
null
null
[ "train_1st_stage_953" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
8538643371010544499085362381076037452291175672668793703699843678903596870555976272149740912458578228009890419408748893530273049763215420696491449113192185
CO_8538643371010544499085362
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ti6
Al2Ti3
A3B2
[ 13, 13, 13, 13, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.4, 0.6 ]
2
10
[ [ -1.39314, 1.39758, 1.97331 ], [ 1.39783, -1.39288, 1.97331 ], [ 14.8253, 14.8253, 0.000012 ] ]
[ [ 1.42914, -1.36142, 1.97322 ], [ 2.97764, 2.97758, 0.00017 ], [ 5.92225, 5.92232, 3.94645 ], [ 7.47075, 10.2613, 1.9734 ], [ 1.51022, 1.51037, 1.97334 ], [ 4.44995, 4.44995, 1.97331 ], [ 7.38968, 7.38953, 1.97327 ], [ 10.3828, 10.3834, 1.97337 ], [ 11.8603, 11.8603, 0.00001 ], [ 13.3424, 13.3418, 1.97326 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5831650543671312367584904660012295679411116583725765889554287845163256907760448252139717659979249829106017315250544697464855867497462728008966276881652536
1
VASP
DFT
null
[ [ 0.0231, 0.021634, 0.000822 ], [ -0.008071, -0.007516, -0.000749 ], [ 0.008431, 0.007836, 0.000726 ], [ -0.023409, -0.021907, -0.000848 ], [ -0.000729, -0.001429, 0.000453 ], [ 0.00036, 0.000371, 0.000002 ], [ 0.000222, 0.000929, -0.000405 ], [ -0.171983, -0.174708, -0.00157 ], [ -0.001064, -0.001095, -0.000008 ], [ 0.173144, 0.175885, 0.001577 ] ]
null
[ [ -0.0017168519152567076, 0.010807547542014413, 0.0007502918120224264 ], [ 0.010807547542014413, -0.0018209602874764406, 0.0007513528685738266 ], [ 0.0007502918120224264, 0.0007513528685738266, -0.012583943454332046 ] ]
true
null
null
-65.073483
null
0.058304
0.246813
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:01:28
6747465414089600240447881963433952393241607914235843937543775266669033622998615284122267410512959237492425243547391041212766575007618652706301821334259018
PO_6747465414089600240447881
null
null
null
[ "train_1st_stage_846" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
235801162279478324309993353792512275979395841424053806659146454842696732865059316091343033700648136918880975768132409200474031701411050135039972325879925
CO_2358011622794783243099933
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi
AlNi
AB
[ 13, 28 ]
[ "Al", "Ni" ]
[ 0.5, 0.5 ]
2
2
[ [ 0, 2.51799, 2.51799 ], [ 2.51799, 0, 2.51799 ], [ 2.51799, 2.51799, 0 ] ]
[ [ 0, 0, 0 ], [ 1.259, 1.259, 1.259 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2052990726248111504853549103773775077991747560937340576780573081667834002360965045664150472952114927233623822166507724441818711992483685995682345488791465
1
VASP
DFT
null
[ [ 0.000057, 0.000057, 0.000056 ], [ -0.000057, -0.000057, -0.000056 ] ]
null
[ [ 0.0221010589845701, -1.2483018251766518e-7, -1.2483018251766518e-7 ], [ -1.2483018251766518e-7, 0.0221010589845701, -1.2483018251766518e-7 ], [ -1.2483018251766518e-7, -1.2483018251766518e-7, 0.0221010589845701 ] ]
true
null
null
-7.963789
null
0.000098
0.000098
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:46:33
7079975719369305907750926291258213827638414097600530953022734124238587423051120762347638552862774508698775094229461318235815308806882634091910885761451688
PO_7079975719369305907750926
null
null
null
[ "train_1st_stage_2351" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6752783363371826435817743231250503278101571985756116456153670236189286154233292409943319890971222495209232394627521565878241211771843524891976155893403503
CO_6752783363371826435817743
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni2Ti2
NiTi
AB
[ 28, 28, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.5, 0.5 ]
2
4
[ [ 3.54125, 0, 0 ], [ 0, 3.54125, 0 ], [ 0, 0, 4.48469 ] ]
[ [ 0.88531, 2.65594, 0 ], [ 2.65594, 0.88531, 0 ], [ 0.88531, 0.88531, 1.05031 ], [ 2.65594, 2.65594, 3.43438 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2112684318290921915547287560192874363242265586361018023560607308253127866667218735021905278000781206319098422435317638183430440745064815366179172737580157
1
VASP
DFT
null
[ [ 0.000049, -0.000051, -0.000246 ], [ -0.000048, 0.00005, -0.000243 ], [ 0.000043, 0.000053, 9.435349 ], [ -0.000045, -0.000052, -9.43486 ] ]
null
[ [ 0.1634866572133668, -6.241509125883259e-8, 4.993207300706607e-7 ], [ -6.241509125883259e-8, 0.16348597064736298, 4.993207300706607e-7 ], [ 4.993207300706607e-7, 4.993207300706607e-7, 0.09405417482921244 ] ]
true
null
null
-20.477514
null
4.717679
9.435349
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:37:32
7790124504410080821234653974318120775258828032536583063560987443626973656849533371173136060200626230447625067078278565714300343386230170521774917990518166
PO_7790124504410080821234653
null
null
null
[ "train_1st_stage_2308" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7625418140094937835270007965568787675891346839806490195924861368513616092502859248266683886014436888636494224674211016499432293547327184664160618985733010
CO_7625418140094937835270007
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni7
Al3Ni7
A7B3
[ 13, 13, 13, 28, 28, 28, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.3, 0.7 ]
2
10
[ [ 1.80625, 3.60773, 1.71801 ], [ 5.47749, -0.051509, -1.76116 ], [ -0.12513, 3.56916, -3.49412 ] ]
[ [ 1.80717, 3.51241, 1.63856 ], [ 3.61021, 1.76139, -1.76133 ], [ 1.742, 3.66961, -1.68205 ], [ 1.79554, 1.7391, -0.05373 ], [ 3.62867, 3.55808, -0.03905 ], [ 5.39798, 3.57244, -1.7656 ], [ 5.42487, 1.78368, -3.46893 ], [ 3.58528, 5.39136, -1.77679 ], [ 3.54764, 3.54597, -3.50839 ], [ 5.31625, 5.30832, -3.52198 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10275067876626867904155555986248000813966706312035732606251067847426600489309604306012727152930046633871846370855046330879587305708883629074922613471668780
1
VASP
DFT
null
[ [ -0.026761, -0.075506, -0.138858 ], [ -0.00005, 0.000006, 0.000131 ], [ 0.026557, 0.075515, 0.138775 ], [ 0.016695, 0.070847, 0.120498 ], [ -0.127542, -0.075703, -0.069401 ], [ 0.127625, 0.07577, 0.069447 ], [ -0.016408, -0.070739, -0.120702 ], [ -0.056875, 0.044554, 0.044049 ], [ 0.000016, -0.000106, -0.000049 ], [ 0.056743, -0.044637, -0.04389 ] ]
null
[ [ -0.003983643199594989, -0.0026213090026884506, 0.0034785178660372575 ], [ -0.0026213090026884506, -0.004835234704730501, 0.0008608913537330778 ], [ 0.0034785178660372575, 0.0008608913537330778, -0.006043341211136465 ] ]
true
null
null
-53.648404
null
0.109914
0.163866
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:39:44
3098901699820981571557605377252472379003019069632929971471461992679312406114784090907348115069492520037286284772698929540936797279140742899830395730793083
PO_3098901699820981571557605
null
null
null
[ "train_1st_stage_717" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9042552364440126006743980397170126138175640107523106942863433924330581756936244585585379824980842532208157994506965011879096214151290933209233566304461361
CO_9042552364440126006743980
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni2Ti4
AlNiTi2
A2BC
[ 13, 13, 28, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.25, 0.25, 0.5 ]
3
8
[ [ 3.95136, -0.000033, 0 ], [ 0.000035, 5.51411, 0 ], [ 0, 0, 5.5141 ] ]
[ [ 0.00002, 1.72316, 1.37853 ], [ 0.00004, 4.48022, 4.13558 ], [ 3.95136, 1.72313, 4.13557 ], [ 3.95138, 4.48018, 1.37853 ], [ 1.97568, 0.16886, 0.17575 ], [ 1.9757, 2.92591, 5.33835 ], [ 1.97568, 0.52036, 2.9328 ], [ 1.9757, 3.27741, 2.5813 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
488853349057455195549306960349365495964860797094252495592896739810917449660052397517921483636458730572877271146540546404750519583828566253546652172254537
1
VASP
DFT
null
[ [ -0.000159, -0.000498, 0.000334 ], [ -0.000163, 0.000406, -0.000357 ], [ 0.000049, 0.000193, 0.000044 ], [ 0.000042, -0.000244, 0.000103 ], [ 0.00006, 0.257242, -0.256659 ], [ 0.000045, 0.256389, 0.256228 ], [ 0.000067, -0.256938, -0.256794 ], [ 0.000059, -0.256551, 0.2571 ] ]
null
[ [ 0.00456797328396018, -7.48981095105991e-7, -6.241509125883259e-8 ], [ -7.48981095105991e-7, 0.014500398831434502, -0.000001997282920282643 ], [ -6.241509125883259e-8, -0.000001997282920282643, 0.014508949698936964 ] ]
true
null
null
-52.395796
null
0.181748
0.363383
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:38:09
1296752181264767299051235111422197460674208776369123876370154584854658163417438864627588100800889304220611686992180870471827707685953474386811226661193661
PO_1296752181264767299051235
null
null
null
[ "train_2nd_stage_295" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
13230723453429357418218617265660546612509795698638200672392534021282126460861319508105968281253936944978490870115379909963465280848170973081035511377524912
CO_1323072345342935741821861
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ti4
Al3Ti2
A3B2
[ 13, 13, 13, 13, 13, 13, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.6, 0.4 ]
2
10
[ [ 0.10055, 3.81664, -0.10055 ], [ 2.78673, 0, 2.78673 ], [ 7.85692, 1.5581, -7.85692 ] ]
[ [ 7.68145, 1.56275, -7.68145 ], [ 1.70984, 1.82966, -1.70984 ], [ 4.63602, 1.7068, -4.63602 ], [ 9.30805, 3.5318, -3.7346 ], [ 3.172, 3.73269, -0.38528 ], [ 6.06114, 3.6204, -3.27441 ], [ 3.22321, 3.67655, -3.22321 ], [ 1.54788, 1.90051, 1.23885 ], [ 4.5663, 1.76823, -1.77957 ], [ 7.58471, 1.63595, -4.79798 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11901506644921155197647981039797365560501571891886667435478280743199770685584040467734383961176205589471533758001534930789797417597234397582215428127287469
1
VASP
DFT
null
[ [ 0.769828, -0.045905, -0.769832 ], [ -0.381833, 0.037649, 0.381802 ], [ 0.381774, -0.037743, -0.38178 ], [ -0.769923, 0.045899, 0.769983 ], [ -0.463702, 0.089327, 0.463743 ], [ 0.463648, -0.089307, -0.463651 ], [ 0.000495, 0.00012, -0.000488 ], [ -0.113288, 0.020429, 0.113273 ], [ 0.000193, 0.000115, -0.00018 ], [ 0.112807, -0.020583, -0.11287 ] ]
null
[ [ 0.016128808562377445, 0.0005207915214636991, -0.021333478192268978 ], [ 0.0005207915214636991, -0.014642954899869677, -0.0005206666912811813 ], [ -0.021333478192268978, -0.0005206666912811813, 0.016128309241647373 ] ]
true
null
null
-56.916725
null
0.490904
1.089845
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:25:13
9709026989711687521172521157818350161247555962601608746689222726833555449674441379070531805521641986481020815852462685366216229751195400744832933418230974
PO_9709026989711687521172521
null
null
null
[ "train_1st_stage_964" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7544047238001324027276889270983418742151632609766423761173191982786411150264212760132972563515817649964848907769548603244386560952130944254933270609450420
CO_7544047238001324027276889
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni5Ti
Ni5Ti
A5B
[ 28, 28, 28, 28, 28, 22 ]
[ "Ni", "Ti" ]
[ 0.8333333333333334, 0.16666666666666666 ]
2
6
[ [ 4.40284, 0.000003, 0 ], [ 6.60424, 3.81296, 0 ], [ 0, 0, 4.0713 ] ]
[ [ 4.41799, 0.02625, 0 ], [ 2.21657, 1.24474, 0 ], [ 8.77536, 2.54198, 0 ], [ 1.46761, 0, 2.03565 ], [ 3.66903, 1.27099, 2.03565 ], [ 5.87044, 2.54198, 2.03565 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6373652664617873461106219576630250418547738157499624666518193621190591696815975308053383535889792693712314880756507650047262870175015339982768789126821891
1
VASP
DFT
null
[ [ 0.211525, 0.371453, -0.000001 ], [ 0.213292, -0.371001, 0.000003 ], [ -0.424841, 0.001016, -0.000002 ], [ -0.000546, -0.000428, 0.000008 ], [ -0.000277, 0.000058, -0.000008 ], [ 0.000846, -0.001098, 0 ] ]
null
[ [ -0.0025024706689316337, 0.000021221131028003076, 0 ], [ 0.000021221131028003076, -0.002512581913715564, -6.241509125883259e-8 ], [ 0, -6.241509125883259e-8, -0.004004552255166698 ] ]
true
null
null
-36.825882
null
0.213768
0.427943
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:53:53
10943793110841444374109526271829500743662101479741338755727379347848042835400089424168149488067702326651430570996250034505303366424361830214424972700197145
PO_1094379311084144437410952
null
null
null
[ "train_2nd_stage_195" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
2470630878076130406415977892319435876578839709097627779908835441162724711633566570107516391896220661599168464446623513397471941522884266272136449326497127
CO_2470630878076130406415977
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni6Ti10
Ni3Ti5
A5B3
[ 28, 28, 28, 28, 28, 28, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.375, 0.625 ]
2
16
[ [ 7.47238, 0.000013, 0 ], [ -3.73618, 6.47128, 0 ], [ 0, 0, 5.09558 ] ]
[ [ -1.5129, 2.62051, 3.82169 ], [ -2.22319, 3.85077, 1.2739 ], [ 3.02595, 0.00001, 3.82169 ], [ 1.513, 2.62051, 1.2739 ], [ 0.71035, 6.47128, 1.2739 ], [ 2.22329, 3.85078, 3.82169 ], [ -0.87762, 1.52017, 1.2739 ], [ -2.85846, 4.95111, 3.82169 ], [ -1.98079, 6.47128, 1.2739 ], [ 0.87773, 1.52019, 3.82169 ], [ 0.00005, 4.31419, 0 ], [ 0.00005, 4.31419, 2.54779 ], [ 3.73624, 2.1571, 0 ], [ 3.73624, 2.1571, 2.5478 ], [ 5.71709, 0.00001, 3.82169 ], [ 2.85857, 4.9511, 1.2739 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6252238638903117064927629467613892272768188244436880344622762599504715140017971737942219665227173186182907501760479818676422948788801950126512181256300850
1
VASP
DFT
null
[ [ 0.019055, -0.033101, 0.000034 ], [ -0.019039, 0.032877, -0.000039 ], [ -0.037835, 0.00002, 0.000028 ], [ -0.019011, -0.032864, -0.000043 ], [ 0.038102, -0.000058, -0.000044 ], [ 0.019025, 0.033102, 0.000037 ], [ -0.219162, 0.379057, 0.000004 ], [ 0.218724, -0.379458, 0 ], [ 0.437805, 0.000092, -0.000003 ], [ 0.218789, 0.379424, -0.000001 ], [ 0.000189, -0.00001, 0.000092 ], [ 0.000198, -0.000029, -0.000063 ], [ 0.000088, -0.000021, 0.000183 ], [ 0.000109, -0.00002, -0.000186 ], [ -0.437921, -0.000081, -0.000001 ], [ -0.219116, -0.378931, 0.000001 ] ]
null
[ [ 0.056366070274391555, 0.000001185886733917819, -6.241509125883259e-8 ], [ 0.000001185886733917819, 0.056370439330779676, -1.2483018251766518e-7 ], [ -6.241509125883259e-8, -1.2483018251766518e-7, 0.09192082700998554 ] ]
true
null
null
-115.076831
null
0.178524
0.437985
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:30:06
7223949641797268390568446667854193101315692684875931592152098347393151728016494818900157074137265944916202833293252604205226136709827412156092629653286257
PO_7223949641797268390568446
null
null
null
[ "train_2nd_stage_6" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6293260837222830607656415319381504470442518504631078555119073081136146498063345132368728383977269827772897229553284267131763043982237722960802709877750039
CO_6293260837222830607656415
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al8Ti2
Al4Ti
A4B
[ 13, 13, 13, 13, 13, 13, 13, 13, 22, 22 ]
[ "Al", "Ti" ]
[ 0.8, 0.2 ]
2
10
[ [ -0.000002, 3.930863, -0.000004 ], [ 6.009109, 0.000004, -8.466749 ], [ -2.88869, 0.000002, -2.723531 ] ]
[ [ -0.1475, 3.92721, -0.06809 ], [ -1.21564, 1.96177, -4.09596 ], [ 0.18717, 3.9272, -5.50502 ], [ 1.57701, 1.96177, -6.98473 ], [ 2.9668, 3.9272, -8.46441 ], [ 4.36952, 1.96178, -9.87346 ], [ 0.18095, 3.9272, -2.71102 ], [ 3.02134, 3.9272, -5.62296 ], [ 1.69476, 1.96176, -4.18301 ], [ 4.34791, 1.96176, -7.06287 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11187998893659167054742629975880665017811003681597000170495542371084088437368571205587940291283264570541314337888944600008575081254561896711722751928354764
1
VASP
DFT
null
[ [ -0.003181, -0.000006, -0.005374 ], [ 0.003608, 0.000002, 0.000092 ], [ 0.002953, 0.000011, 0.008519 ], [ -0.002326, -0.000006, 0.002338 ], [ -0.003311, -0.000013, -0.008326 ], [ -0.001322, -0.000005, -0.002444 ], [ 0.005431, 0.000005, 0.002705 ], [ -0.00219, -0.000004, 0.002525 ], [ 0.003604, -0.000004, 0.001604 ], [ -0.003266, 0.000018, -0.001638 ] ]
null
[ [ -0.00021870247977094938, 4.993207300706607e-7, -0.00002153320648429724 ], [ 4.993207300706607e-7, 0.00008344897701305916, 6.865660038471584e-7 ], [ -0.00002153320648429724, 6.865660038471584e-7, -0.00007870543007738789 ] ]
true
null
null
-48.358947
null
0.005092
0.009016
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:25:01
13270701817940200180196237725643976003776273023113480923531595332680560732272227649527455691015325361251475698559002118039201376347867834582477971838558435
PO_1327070181794020018019623
null
null
null
[ "train_1st_stage_363" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4580524834278851193228413448616300937958796089102288436491921089759947741161601473368783276096743413192123030313330535820860315404375659504027610147338336
CO_4580524834278851193228413
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni2Ti2
Al2NiTi
A2BC
[ 13, 13, 13, 13, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.5, 0.25, 0.25 ]
3
8
[ [ 0, 2.862486, 0 ], [ 2.862484, 0, 0 ], [ 0.000002, -0.000001, -13.789651 ] ]
[ [ 2.85711, 0.00254, -0.52775 ], [ 2.8571, 0.00255, -3.45064 ], [ 2.8571, 0.00254, -6.3733 ], [ 2.85711, 0.00254, -10.34577 ], [ 1.42586, 1.43378, -1.99315 ], [ 1.42586, 1.43379, -4.90817 ], [ 1.42586, 1.43378, -8.34096 ], [ 1.42587, 1.43378, -12.35025 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
747787373171969063605540075579228328147150870516506232468731515027237029702756155731444254335655419973608689460296577902721487892244980859164046393858705
1
VASP
DFT
null
[ [ 0.000005, -0.000013, -0.022875 ], [ 0.000001, -0.000028, 0.00048 ], [ 0.000006, -0.000007, 0.021254 ], [ 0.000007, -0.000004, 0.000542 ], [ -0.000025, 0.000027, 0.01048 ], [ 0.000017, 0.000006, -0.009524 ], [ -0.000007, 0.00001, -0.009569 ], [ -0.000005, 0.000008, 0.009211 ] ]
null
[ [ 0.0008564598822537007, -1.8724527377649775e-7, -3.744905475529955e-7 ], [ -1.8724527377649775e-7, 0.0008563974671624418, 3.120754562941629e-7 ], [ -3.744905475529955e-7, 3.120754562941629e-7, 0.00048359212707343476 ] ]
true
null
null
-45.899188
null
0.010492
0.022875
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:35:54
3343898716522916745994225974125385167575066421632647706383963457004513397998772233330684590239275325549731435804073296659698941523344240525320450400603811
PO_3343898716522916745994225
null
null
null
[ "train_1st_stage_329" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4127672834294160854935964742733384323966633016980554065701267804845668608058243516292349661239163499565389569453662453013584286581247398525483431616213297
CO_4127672834294160854935964
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni5Ti5
NiTi
AB
[ 28, 28, 28, 28, 28, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.5, 0.5 ]
2
10
[ [ -1.339058, 2.177602, 1.513555 ], [ 7.934285, 7.897377, 1.478834 ], [ -0.428146, 2.248275, -3.612557 ] ]
[ [ -1.40236, 3.5403, -1.68676 ], [ 0.70933, 3.33507, 0.47405 ], [ 2.39249, 5.37837, -0.97815 ], [ 4.50402, 5.17335, 1.18252 ], [ 4.84854, 9.39417, 1.24412 ], [ -0.51869, 1.3273, -0.63718 ], [ 1.16464, 3.37048, -2.08909 ], [ 1.93698, 5.34301, 1.58498 ], [ 3.62029, 7.38623, 0.13299 ], [ 5.30397, 9.42963, -1.3189 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9460395349946615596498021978100841081463685605551006668161433756694999951013125068861910472380864181646990121088650802871011648580209400446497608919563339
1
VASP
DFT
null
[ [ 0.000271, 0.000408, -0.00023 ], [ -0.000502, -0.000438, 0.000131 ], [ -0.000502, -0.000132, -0.000209 ], [ 0.0006, 0.000268, 0.000041 ], [ 0.000134, -0.000006, 0.000177 ], [ -0.001201, -0.000467, -0.000178 ], [ -0.000968, -0.000535, -0.000018 ], [ 0.000882, 0.000371, 0.000152 ], [ 0.001978, 0.00089, 0.000256 ], [ -0.000692, -0.00036, -0.000122 ] ]
null
[ [ 0.0005147996727028511, -0.000024029810134650543, -0.0000030583394716827964 ], [ -0.000024029810134650543, 0.0005083085032119325, -0.00009767961782007299 ], [ -0.0000030583394716827964, -0.00009767961782007299, 0.0004875866929140001 ] ]
true
null
null
-70.064724
null
0.000901
0.002184
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:06:22
5124803169367203338536838515809666302662150171234233303692170457997779717614894998680565212723918356842620716244327562956541705878894503501013065015422142
PO_5124803169367203338536838
null
null
null
[ "train_1st_stage_140" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5428676353795915126557199989768196524291250171689780616981023526427633258206556481747537095850550729382191240842662285690710405897363490547033803665421319
CO_5428676353795915126557199
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al10Ni4
Al5Ni2
A5B2
[ 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.7142857142857143, 0.2857142857142857 ]
2
14
[ [ -1.13813, -4.77939, -0.100032 ], [ 2.82928, 0.419238, 3.96047 ], [ -7.00624, 2.19176, 4.33383 ] ]
[ [ -7.59722, -2.23768, 4.37025 ], [ -0.87855, -1.09085, 4.25529 ], [ -3.34223, -0.37766, 4.21188 ], [ -5.79631, -0.20457, 4.44195 ], [ 1.57554, -1.26391, 4.0252 ], [ -2.67946, -3.12394, 4.18356 ], [ -5.16285, -2.49142, 2.77793 ], [ -0.24506, -3.37767, 2.59125 ], [ -1.88723, 0.60368, 1.72877 ], [ -3.97572, 1.90918, 5.87592 ], [ -1.82708, 0.31375, 6.15639 ], [ 0.26141, -0.99174, 2.00924 ], [ -2.39368, -1.78225, 2.31077 ], [ -4.48219, -0.47675, 6.45792 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2205698089637623899155043220660007845463852807282240668808637858134524372167624941255400943011761964910549765406974277210974189684864956577153857803825523
1
VASP
DFT
null
[ [ 0.000101, -0.000064, -0.000127 ], [ -0.334831, 0.053547, -0.113743 ], [ 0.334745, -0.053826, 0.113768 ], [ -0.334644, 0.053412, -0.113585 ], [ 0.334639, -0.053808, 0.113468 ], [ -0.000116, -0.000223, 0.000147 ], [ -0.047833, -0.001828, 0.11816 ], [ -0.047867, -0.0018, 0.11811 ], [ 0.047773, 0.001514, -0.118159 ], [ 0.047975, 0.001424, -0.118247 ], [ -0.050515, -0.127579, -0.018487 ], [ -0.050562, -0.127755, -0.01828 ], [ 0.050378, 0.128522, 0.01869 ], [ 0.050758, 0.128464, 0.018285 ] ]
null
[ [ -0.003217622784575337, 0.005860028088109273, 0.0023216541495547954 ], [ 0.005860028088109273, -0.014691513840869048, -0.002525252177241107 ], [ 0.0023216541495547954, -0.002525252177241107, 0.0066332886537149496 ] ]
true
null
null
-64.923454
null
0.178307
0.357654
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:36:18
11565496449847705987638309822856272992491493367388507643925464475085404572971765696939057304696188300547582034345641397489307935689690904761946990205731966
PO_1156549644984770598763830
null
null
null
[ "train_1st_stage_660" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9500345241375654294928552940111833828852647417476890192361484397074069674430075127322171960181526087769732279519173064128742505630621186529286319888735242
CO_9500345241375654294928552
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni12Ti4
Ni3Ti
A3B
[ 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.75, 0.25 ]
2
16
[ [ 4.54168, 0, 0 ], [ 0, 8.19351, 0 ], [ 0, 0, 5.02014 ] ]
[ [ 4.22318, 2.04838, 4.4063 ], [ 1.18756, 8.1628, 1.86575 ], [ 1.18756, 4.12746, 1.86575 ], [ 1.08328, 4.06605, 4.37582 ], [ 1.08328, 0.03071, 4.37582 ], [ 2.58934, 6.14513, 1.89623 ], [ 1.95234, 2.04838, 3.12391 ], [ 3.45841, 8.1628, 0.64431 ], [ 3.45841, 4.12746, 0.64431 ], [ 3.35412, 4.06605, 3.15438 ], [ 3.35412, 0.03071, 3.15438 ], [ 0.3185, 6.14513, 0.61384 ], [ 0.22539, 6.14513, 3.05267 ], [ 2.04545, 2.04838, 0.5426 ], [ 2.49623, 6.14513, 4.47753 ], [ 4.31629, 2.04838, 1.96747 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5155270124369488413274016699638646076279610314873031412635024574785218839470484558029167063558214919225330327067272829755017846173231291307150684996779560
1
VASP
DFT
null
[ [ -0.136192, -0.00007, 0.518326 ], [ 0.072083, 0.236555, -0.131589 ], [ 0.072059, -0.236526, -0.131619 ], [ -0.072371, 0.236543, -0.131981 ], [ -0.072355, -0.236656, -0.132025 ], [ 0.136255, 0.000144, 0.518886 ], [ -0.136191, -0.000156, -0.518896 ], [ 0.072367, 0.236486, 0.131866 ], [ 0.072371, -0.236443, 0.131852 ], [ -0.072076, 0.236478, 0.131763 ], [ -0.072141, -0.236325, 0.131714 ], [ 0.136242, 0.000067, -0.518693 ], [ 0.150865, 0.000063, -0.645511 ], [ -0.150918, -0.000247, -0.64558 ], [ 0.150956, 0.000183, 0.64545 ], [ -0.150953, -0.000095, 0.646036 ] ]
null
[ [ -0.03424198012114696, 2.4966036503533035e-7, 0.0000018724527377649773 ], [ 2.4966036503533035e-7, -0.024285649593720496, -0.0000018100376465061448 ], [ 0.0000018724527377649773, -0.0000018100376465061448, -0.04203681362318878 ] ]
true
null
null
-100.833946
null
0.439943
0.663438
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:34:56
11983653330320809728490690037363826226730721534382928523387195504703863220951141428359732462725699864738775159245145259622407801798998242022874780593880963
PO_1198365333032080972849069
null
null
null
[ "train_2nd_stage_15" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12404641027864774335100908336336619731255017460345682347956866189883771282473658208197470879531100179592060936827251300351999568827294069608437854543529228
CO_1240464102786477433510090
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni2Ti4
AlNiTi2
A2BC
[ 13, 13, 28, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.25, 0.25, 0.5 ]
3
8
[ [ 1.47331, -5.07559, 0 ], [ 1.47331, 5.07559, 0 ], [ 0, 0, 8.00924 ] ]
[ [ 1.47331, -0.55473, 6.00693 ], [ 1.47331, 0.55473, 2.00231 ], [ 1.47331, -2.49985, 2.00231 ], [ 1.47331, 2.49985, 6.00693 ], [ 1.47331, -3.7838, 4.40584 ], [ 1.47331, 3.7838, 0.40122 ], [ 1.47331, -3.7838, 7.60802 ], [ 1.47331, 3.7838, 3.6034 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9273228021589191574110184216535224782197109179882316732736220684054658916962306069818325659207939536615301535088441187641062534569207624162986843908391304
1
VASP
DFT
null
[ [ 0, -0.028428, -0.000048 ], [ 0, 0.029084, -0.000096 ], [ 0, 0.534098, 0.000006 ], [ 0, -0.533737, 0.000072 ], [ -0.000002, 0.749028, -0.241124 ], [ 0.000001, -0.749622, -0.240795 ], [ -0.000002, 0.749071, 0.241614 ], [ 0.000003, -0.749494, 0.240372 ] ]
null
[ [ 0.010397979713173954, 6.241509125883259e-8, 0 ], [ 6.241509125883259e-8, -0.005288742757817179, 4.36905638811828e-7 ], [ 0, 4.36905638811828e-7, -0.008039812735232741 ] ]
true
null
null
-52.380428
null
0.534218
0.787347
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:56:33
3129008771659270111785448566594867308427881728525163122018779631148260734253029848448354920755566864653542284116046726321151035469474567136862886806967850
PO_3129008771659270111785448
null
null
null
[ "train_2nd_stage_247" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4854170266093743027503464791711032878170763872742726865552503909471091054121125484322702589706011714693923358833064964388594367633644636845030844572166928
CO_4854170266093743027503464
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ti5
Al6Ti5
A6B5
[ 13, 13, 13, 13, 13, 13, 22, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.5454545454545454, 0.45454545454545453 ]
2
11
[ [ -1.33145, 1.28917, 2.17153 ], [ 2.89063, 2.81494, 0.101231 ], [ -5.10515, 8.56626, -11.9689 ] ]
[ [ -6.12282, 9.55045, -10.2769 ], [ -0.31124, 3.18364, 0.81938 ], [ -0.37817, 3.39332, -3.09938 ], [ -1.82587, 4.94496, -4.90817 ], [ -3.27674, 6.49996, -6.72091 ], [ -4.72445, 8.0516, -8.5297 ], [ 1.15945, 4.63289, -1.01587 ], [ -0.31526, 6.21352, -2.85844 ], [ -1.77172, 7.77451, -4.67816 ], [ -1.89672, 8.04633, -8.6694 ], [ -3.37143, 9.62697, -10.512 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3492161871855877449635776386459633415894407001729163077950457466013104322380630630452999237342666024325495639913013211316111209512793309497143797456137405
1
VASP
DFT
null
[ [ 0.136248, -0.146744, 0.170434 ], [ -0.135275, 0.145685, -0.169365 ], [ -0.018516, 0.020132, -0.023272 ], [ 0.013999, -0.016585, 0.018522 ], [ -0.014899, 0.017412, -0.019505 ], [ 0.018299, -0.019835, 0.02292 ], [ 0.078237, -0.086744, 0.098676 ], [ 0.000598, 0.002066, 0.000874 ], [ 0.000047, 0.000121, -0.000461 ], [ -0.001073, -0.001448, -0.000719 ], [ -0.077666, 0.085938, -0.098103 ] ]
null
[ [ -0.01998543705126071, -0.01483900070151367, -0.0011066195680191017 ], [ -0.01483900070151367, -0.019208868485818313, 0.00006447478927037405 ], [ -0.0011066195680191017, 0.00006447478927037405, -0.00457277924598711 ] ]
true
null
null
-65.77888
null
0.087592
0.262954
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:44:43
12665100943796769567022897455357126389311271929030187775437226745523262149556814055778186242830460952428667468273820067828482548785455999670954183046355189
PO_1266510094379676956702289
null
null
null
[ "train_1st_stage_511" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
1317579134406863702928777695118596085837945195140550947650156778003654472472551515520133353935382444924968469729455541008945618826015565555892656617962052
CO_1317579134406863702928777
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ti4
AlTi2
A2B
[ 13, 13, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
6
[ [ -1.87007, 2.2838, -4.19514 ], [ 1.87055, 2.28362, -4.19503 ], [ -0.000551, -8.76107, 4.14727 ] ]
[ [ -0.00005, -3.85418, -4.22069 ], [ -0.00036, -6.15941, 2.04079 ], [ -0.00019, -4.01674, 0.01812 ], [ 0.00016, 0.51002, -4.24418 ], [ -0.00002, -1.76255, -2.08298 ], [ 0.00033, 2.76422, -6.34528 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
1596770968003879138246452251281470291115891347710442950714439545358690227340019780339909247724770049935063070760667505035246558327870516178673813541273855
1
VASP
DFT
null
[ [ 0.000004, 0.025694, -0.020479 ], [ -0.000003, -0.025159, 0.020715 ], [ 0.00001, 0.476527, 0.137085 ], [ -0.000009, 0.154672, 0.148378 ], [ 0.000013, -0.154527, -0.148594 ], [ -0.000015, -0.477207, -0.137104 ] ]
null
[ [ 0.0067754078165113115, 5.617358213294933e-7, -6.241509125883259e-8 ], [ 5.617358213294933e-7, 0.01948280832135333, 0.002845191935033883 ], [ -6.241509125883259e-8, 0.002845191935033883, 0.001688765124190233 ] ]
true
null
null
-40.101311
null
0.247754
0.496512
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:43:20
12757403454515320799758221421155967750681944991461491946007714143198402482702220862105391456985331564545170343751517544899327178051966097906706223616064284
PO_1275740345451532079975822
null
null
null
[ "train_2nd_stage_132" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
8371058757581944153954065144516643836809074621089047259339288477554418076498797352668892081405523614809088894654340202975017177133691993406872852308889578
CO_8371058757581944153954065
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni5Ti5
NiTi
AB
[ 28, 28, 28, 28, 28, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.5, 0.5 ]
2
10
[ [ 2.60003, -2.7888, 0.197526 ], [ -2.83822, -2.7587, -2.56051 ], [ 3.21198, -0.01353, -6.32202 ] ]
[ [ 2.98731, -0.23124, -5.98563 ], [ 1.40897, -4.16771, -4.16491 ], [ 3.28083, -2.5702, -6.30324 ], [ -0.31492, -3.2576, -5.90004 ], [ 0.53284, -2.28902, -2.62732 ], [ -1.01805, -3.75074, -3.43073 ], [ 1.18852, -4.20518, -1.35188 ], [ 2.82809, -2.78836, -2.88466 ], [ 1.62947, -4.13021, -6.97794 ], [ 1.23598, -1.79587, -5.09663 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
1964190645720636705259325844884966428740619062840380578781236045405487593633195047471864226789193224698438232195850864667671363230681156812329222975847061
1
VASP
DFT
null
[ [ 0.007292, 0.118653, -0.261314 ], [ -0.000474, -0.000594, 0.00081 ], [ -0.005067, -0.116955, 0.25905 ], [ -0.482949, -0.399405, 0.21034 ], [ 0.482622, 0.399361, -0.209074 ], [ -0.711728, -0.756444, -0.10239 ], [ -0.127118, -0.086056, 0.202338 ], [ -0.000478, -0.000266, 0.00168 ], [ 0.127847, 0.086787, -0.204413 ], [ 0.710054, 0.754918, 0.102973 ] ]
null
[ [ 0.1532478359829029, 0.010799121504694472, 0.011361044571297742 ], [ 0.010799121504694472, 0.15893266490984861, 0.013441089902589597 ], [ 0.011361044571297742, 0.013441089902589597, 0.09565000388251828 ] ]
true
null
null
-68.345185
null
0.449107
1.04367
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:24:23
12750985335664063287457761774646020855082938183225916563221277981473399354992348517464200624404911314666056668010847914148764403366752297973758512395234895
PO_1275098533566406328745776
null
null
null
[ "train_2nd_stage_660" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6428423221015298471480213791849540622005216057979350583594645707668784758170481413158335544156628581551335313702197113059438703384148597261623310003526358
CO_6428423221015298471480213
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni12
AlNi6
A6B
[ 13, 13, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.14285714285714285, 0.8571428571428571 ]
2
14
[ [ -3.743011, 2.164176, 0.008301 ], [ -3.73938, -6.483118, 4.104039 ], [ -1.228191, 2.179252, 4.102969 ] ]
[ [ -1.236, 2.17911, 4.09088 ], [ -6.22542, 0.74139, 6.14981 ], [ -3.74468, 2.16334, 4.09081 ], [ -2.50409, 0.01284, 4.09172 ], [ -4.9716, 0.01833, 4.10443 ], [ -3.73831, -2.16778, 4.08651 ], [ -6.24546, -2.13941, 4.09952 ], [ -4.98514, -4.30121, 4.10021 ], [ -6.23425, -3.5742, 6.1552 ], [ -1.26162, 0.72284, 2.03327 ], [ -3.72916, 0.72847, 2.04611 ], [ -2.4886, -1.42203, 2.04695 ], [ -4.98737, -1.44073, 6.14148 ], [ -7.47012, -1.43839, 6.15055 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6128264936026836123286041362581239643403214288243561145980595651419015434839096516706853204595439767759463707354072393106245962617508376012653105955151635
1
VASP
DFT
null
[ [ 0.007229, -0.005027, 0.00039 ], [ -0.007602, 0.004456, -0.000147 ], [ 0.004087, 0.000566, 0.00275 ], [ 0.000436, -0.004892, -0.002151 ], [ -0.006112, 0.004625, 0.003671 ], [ -0.007374, 0.002011, -0.003424 ], [ 0.004317, 0.001591, 0.002063 ], [ 0.001128, -0.004, -0.003317 ], [ 0.00753, -0.00232, 0.003651 ], [ 0.005939, -0.004359, -0.003247 ], [ -0.000276, 0.005292, 0.00205 ], [ -0.004137, -0.000314, -0.00273 ], [ -0.00104, 0.00389, 0.003233 ], [ -0.004124, -0.001521, -0.00279 ] ]
null
[ [ -0.0000999889761966498, -0.000012483018251766517, 0.00006241509125883258 ], [ -0.000012483018251766517, -0.00013356829529390172, 0.00010123727802182643 ], [ 0.00006241509125883258, 0.00010123727802182643, -0.00012907440872326578 ] ]
true
null
null
-76.071397
null
0.006638
0.008814
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:39:00
881340117137851350549920944977152401395281870437645170330291116787439600268773286532367446970091566653299747045707117273696950158886167226574097924510795
PO_8813401171378513505499209
null
null
null
[ "train_1st_stage_188" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7508607628026458095108528533693362661188043896853256777621187346722997677208125524085294834398239488731082127766796282016806987869387812516063568790080229
CO_7508607628026458095108528
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni
Al3Ni
A3B
[ 13, 13, 13, 28 ]
[ "Al", "Ni" ]
[ 0.75, 0.25 ]
2
4
[ [ -1.82572, 4.87088, -2.87257 ], [ -1.8262, 2.85405, -4.85564 ], [ 0.481023, -9.58213, 9.58063 ] ]
[ [ -3.4114, 2.93387, -2.9379 ], [ -0.0588, -6.81786, 6.82471 ], [ -3.11209, 4.96066, -4.97229 ], [ -3.17089, -1.8572, 1.85242 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
13353963526238021183056990187317739909544242897901828462181638283499596122413873487367174045645025977135242165171487603602824925620994792059634393390830711
1
VASP
DFT
null
[ [ -0.000045, -0.000027, 0.000028 ], [ 0.206736, -0.204487, 0.200316 ], [ -0.2067, 0.204486, -0.200314 ], [ 0.000009, 0.000028, -0.00003 ] ]
null
[ [ -0.0031410394676007493, 0.0061930125999751446, -0.005950717215708357 ], [ 0.0061930125999751446, 0.009408700516721458, 0.014920577225788965 ], [ -0.005950717215708357, 0.014920577225788965, 0.008542379050048862 ] ]
true
null
null
-17.679315
null
0.176571
0.353102
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:19:09
4721408336955446713269902523806129451787025559258160093589308573234441480630698867385116080356992280033936820546794160115777201782671543002592780480983793
PO_4721408336955446713269902
null
null
null
[ "train_2nd_stage_586" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6951105212031577986770853264171098176189130648410668823645898717808925908438483833176686698297141889502762315889367764753808912618086202056955401698727446
CO_6951105212031577986770853
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ti2
AlTi
AB
[ 13, 13, 22, 22 ]
[ "Al", "Ti" ]
[ 0.5, 0.5 ]
2
4
[ [ 3.32599, -3.67933, 1.12159 ], [ -1.97251, -0.459719, -4.66429 ], [ 4.73372, -0.041356, 1.85683 ] ]
[ [ 2.73323, -0.77826, -1.38236 ], [ 3.35398, -3.40215, -0.30351 ], [ 0.70473, -1.79235, -3.19645 ], [ 5.38247, -2.38806, 1.51058 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12780984722119513103235628384101012223269551661355053115704828790607035077456077579620017085213208860321317888401264079946761261602890493959549502032259121
1
VASP
DFT
null
[ [ 0.00013, -0.000601, -0.000473 ], [ -0.000182, 0.00057, 0.000475 ], [ 0.000363, -0.000985, -0.000898 ], [ -0.000312, 0.001017, 0.000895 ] ]
null
[ [ 0.0047711344060076795, 0.005209662837192238, -0.00934653508582766 ], [ 0.005209662837192238, 0.01015393670635192, 0.0056712848521425635 ], [ -0.00934653508582766, 0.0056712848521425635, 0.0031085212050548975 ] ]
true
null
null
-24.531252
null
0.001078
0.00139
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:32:56
530136799807405945652313650238915768301251529990975858118710307063743802483620315559841345423647261436546949536249344820707879240352424095751859912405939
PO_5301367998074059456523136
null
null
null
[ "train_2nd_stage_124" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
2674276351453906720493752787234528845684476394682868568397665674241686424353905406243642998263074607744162069856653286358915531614298288004600952500552473
CO_2674276351453906720493752
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni4
Al3Ni2
A3B2
[ 13, 13, 13, 13, 13, 13, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.6, 0.4 ]
2
10
[ [ 2.765299, 0.017086, 0 ], [ 1.310409, 11.858026, 0 ], [ 0, 0, 4.104081 ] ]
[ [ 2.7582, 1.12248, 0 ], [ 2.73291, 5.34172, 0 ], [ 2.70746, 9.51185, 0 ], [ 2.69533, 11.55116, 2.05204 ], [ 2.74608, 3.16164, 2.05204 ], [ 2.7206, 7.33187, 2.05204 ], [ 1.36319, 3.19155, 0 ], [ 1.33703, 7.46117, 0 ], [ 1.35119, 5.19526, 2.05204 ], [ 1.32509, 9.46512, 2.05204 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6096785529428879235076273783137208481520539080975313906371754741968859309908454431669561625315906108176232970537140003923947128513483825435608441649939214
1
VASP
DFT
null
[ [ 0.00058, -0.020039, 0 ], [ 0.00021, -0.027276, 0 ], [ -0.001389, -0.011357, 0 ], [ -0.00046, 0.018898, 0 ], [ 0.001506, 0.010672, 0 ], [ -0.000118, 0.029686, 0 ], [ -0.000342, 0.015732, 0 ], [ 0.002039, -0.040849, 0 ], [ -0.002147, 0.040545, 0 ], [ 0.000121, -0.016012, 0 ] ]
null
[ [ -0.00008862942958754226, 0.00004069463950075884, 0 ], [ 0.00004069463950075884, -0.0002852993821441237, 0 ], [ 0, 0, -0.0014063368362440157 ] ]
true
null
null
-49.373977
null
0.023138
0.0409
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:21:27
701458270731582518675450397422920214356604707533600416707374383206935243648057679074892546471832943557506834090175592794060658128475778644319421720591194
PO_7014582707315825186754503
null
null
null
[ "train_1st_stage_31" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
2798938461940932507443178546943423486303462267336402444564948353231963216490264084084304953801777186524274977561125779607632149053245756576458658068317505
CO_2798938461940932507443178
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni5Ti
Al6Ni5Ti
A6B5C
[ 13, 13, 13, 13, 13, 13, 28, 28, 28, 28, 28, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.5, 0.4166666666666667, 0.08333333333333333 ]
3
12
[ [ 2.26908, 0.66535, 4.07396 ], [ -1.23038, 6.42501, 0.649489 ], [ -2.80895, 0.716252, 4.97441 ] ]
[ [ -3.66959, 6.98422, 5.65668 ], [ -1.31984, 2.84264, 4.76248 ], [ 0.28212, 4.7226, 4.95434 ], [ 0.81416, 1.30008, 2.15821 ], [ 0.76149, 2.2063, 5.90413 ], [ -1.92813, 5.94281, 7.26189 ], [ -1.16814, 6.96084, 5.14305 ], [ 1.24175, 2.45057, 4.64317 ], [ -2.48188, 4.81297, 5.264 ], [ -0.78444, 3.88551, 6.89502 ], [ -0.40373, 3.41397, 2.5204 ], [ -1.60138, 5.5886, 3.24679 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9862234904676381437014326340426432527096721367987944766865104983896798444993126168390320992642442596662661560546023011809456414125312890562762441456723064
1
VASP
DFT
null
[ [ 0.149753, -0.234019, -1.322619 ], [ -1.152273, -0.37448, -2.085857 ], [ -0.449253, 0.249376, -0.310644 ], [ 1.999501, 0.168692, 1.157017 ], [ -12.841336, -6.059362, 31.006013 ], [ 0.89114, 1.396695, 0.850495 ], [ -0.748253, -1.64108, -0.30969 ], [ 12.289412, 7.275728, -30.230648 ], [ -0.435869, 0.182967, -0.526963 ], [ 1.344633, 0.622616, 0.996567 ], [ -0.320694, -0.344596, 1.732062 ], [ -0.726759, -1.242539, -0.955733 ] ]
null
[ [ 0.1681026901175963, 0.07101158419300285, -0.09150264589855137 ], [ 0.07101158419300285, 0.15803875597283962, -0.0482826293903689 ], [ -0.09150264589855137, -0.0482826293903689, 0.29683593795204133 ] ]
true
null
null
-49.348202
null
6.993845
34.102619
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:26:57
7448836917927528247672296808543149186174894239449857926061346066076140474084888057367241771148796191231457869958186229012309187300692215975404620362379383
PO_7448836917927528247672296
null
null
null
[ "train_1st_stage_1660", "train_1st_stage_1260", "train_1st_stage_1460", "train_1st_stage_1860" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7223894660762097800293301665522003635533871626628569789682423084411633780562240702462102201298693959458454472036514137118660744194776729787478138513881766
CO_7223894660762097800293301
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni4
Al3Ni2
A3B2
[ 13, 13, 13, 13, 13, 13, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.6, 0.4 ]
2
10
[ [ 3.591106, -1.590789, 0.920499 ], [ -4.390429, -4.453576, -8.234014 ], [ 1.777532, 3.514393, -0.873755 ] ]
[ [ 3.43512, -1.55909, 0.67876 ], [ 2.52839, 0.99334, -0.21832 ], [ 2.84684, 0.16948, -2.8858 ], [ 0.16275, -0.793, -2.90894 ], [ 0.4812, -1.61689, -5.57654 ], [ -2.20306, -2.57886, -5.59985 ], [ 1.79253, -1.15976, -1.06274 ], [ -0.56048, -2.97819, -3.85835 ], [ -1.13501, -1.2845, -7.53513 ], [ -0.24585, -3.79263, -6.49368 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2932165107624106525988558463512961613131734746725446019013972049201101472556620670803038681505422135012485460996902950688662737342825029386137992147801089
1
VASP
DFT
null
[ [ -0.00016, 0.000449, 0.001269 ], [ -0.000119, 0.000374, 0.001324 ], [ -0.000118, 0.000178, 0.000278 ], [ -0.000041, 0.000006, 0.000332 ], [ 0.000078, -0.000474, -0.001458 ], [ 0.000081, -0.000501, -0.00145 ], [ -0.000546, 0.001366, 0.004448 ], [ 0.000598, -0.001403, -0.004546 ], [ 0.000608, -0.000594, -0.002354 ], [ -0.000382, 0.000599, 0.002158 ] ]
null
[ [ 0.0024655209349064046, -0.000013668904985684336, -0.000026027093054933184 ], [ -0.000013668904985684336, 0.0024942318768854674, 0.00005929433669589095 ], [ -0.000026027093054933184, 0.00005929433669589095, 0.0026728014529769873 ] ]
true
null
null
-49.916206
null
0.002075
0.004795
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:26:59
7781826808616212977743436480311500251332356160821920398373244280870578157293711015438725764711272035051794383112835534424864811575073505313450586784835910
PO_7781826808616212977743436
null
null
null
[ "train_1st_stage_15" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
3309680724675701910931085021604963342929477379838626400234929997228614600505463205775358391317087539707063008507825934552343253585335632895056791343281932
CO_3309680724675701910931085
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni4
Al3Ni2
A3B2
[ 13, 13, 13, 13, 13, 13, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.6, 0.4 ]
2
10
[ [ 2.76499, 0.017106, 0 ], [ 1.31036, 11.855875, 0 ], [ 0, 0, 4.099961 ] ]
[ [ 2.75791, 1.12265, 0 ], [ 2.73262, 5.3422, 0 ], [ 2.70729, 9.51219, 0 ], [ 2.69511, 11.54885, 2.04998 ], [ 2.74574, 3.15902, 2.04998 ], [ 2.72038, 7.32901, 2.04998 ], [ 1.36312, 3.18763, 0 ], [ 1.33683, 7.462, 0 ], [ 1.3512, 5.19211, 2.04998 ], [ 1.32497, 9.4668, 2.04998 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
281259329384675636129460782315715766358114190568692992985020365661802035098687507926860830972773421638735743854285609973538148784062590089467836887833478
1
VASP
DFT
null
[ [ 0.000666, -0.033101, 0 ], [ 0.000675, -0.043664, 0 ], [ -0.002061, -0.013131, 0 ], [ -0.000564, 0.033093, 0 ], [ 0.002237, 0.013267, 0 ], [ -0.000502, 0.044337, 0.000001 ], [ -0.000769, 0.038575, -0.000001 ], [ 0.002876, -0.039626, 0 ], [ -0.003061, 0.039347, 0 ], [ 0.000503, -0.039097, 0 ] ]
null
[ [ -0.00021526964975171356, 0.00004056980931824117, 0 ], [ 0.00004056980931824117, -0.0003764254153820193, 0 ], [ 0, 0, -0.0023501778462600817 ] ]
true
null
null
-49.373168
null
0.033784
0.04434
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:19:54
7470065599845798578816712066651723962442375684699687099753867892660938086027974158236443145007743909200012344318436727935189398357047083011284442482096488
PO_7470065599845798578816712
null
null
null
[ "train_1st_stage_29" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
825231697599572890618993370887289641275610572102120305237015446064016765367912635125309314215907570126177586347911417691255362227521973589263603497573731
CO_8252316975995728906189933
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2NiTi
Al2NiTi
A2BC
[ 13, 13, 28, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.5, 0.25, 0.25 ]
3
4
[ [ 0, 3.91072, 0 ], [ 2.65036, 0, 2.65036 ], [ 2.7653, 0, -2.7653 ] ]
[ [ 0, 0, 0 ], [ 1.38265, 1.95536, -1.38265 ], [ 1.32518, 1.95536, 1.32518 ], [ 2.70783, 0, -0.05747 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12211505825615274329720943638738681846749516152991144749230225833185642818257631836815202798834510225598181908571125375499648431809129734916122899723780684
1
VASP
DFT
null
[ [ -0.000008, 0.000001, -0.000014 ], [ -0.000003, 0.000006, -0.000003 ], [ 0, 0, -0.000002 ], [ 0.000011, -0.000007, 0.000019 ] ]
null
[ [ 0.0023840068257223695, -6.241509125883259e-8, -0.0013195798593942385 ], [ -6.241509125883259e-8, 0.0037030873643865373, 0 ], [ -0.0013195798593942385, 0, 0.002384069240813628 ] ]
true
null
null
-22.717487
null
0.000012
0.000023
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:57:10
3047813603448070890672573209317258042700305780459860866823613384951228418650284236079041269957401529542264366145552946984595861656611473986904520248844795
PO_3047813603448070890672573
null
null
null
[ "train_2nd_stage_472" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4420054690121134878824913745928335661964293796764326638280121171351315855026709969604752692441426408833321242877421713932546247528110964009084078180789719
CO_4420054690121134878824913
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni4Ti4
AlNiTi
ABC
[ 13, 13, 13, 13, 28, 28, 28, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.3333333333333333, 0.3333333333333333, 0.3333333333333333 ]
3
12
[ [ 3.92142, -0.890427, 0.110999 ], [ -1.17837, 6.41752, 2.45536 ], [ 1.11969, -6.02828, 2.38817 ] ]
[ [ 1.35686, -5.33775, 2.63893 ], [ 3.3726, -3.95593, 2.38664 ], [ 1.55782, -2.373, 1.99246 ], [ 2.21184, 0.30609, 1.59549 ], [ 0.19649, -0.15671, 2.60213 ], [ 2.21299, 1.90107, 2.4564 ], [ 0.54976, 4.61834, 2.73461 ], [ 3.62972, -2.72896, 1.39545 ], [ 1.94159, -0.29279, 3.66093 ], [ 0.40887, 2.84088, 1.62162 ], [ 0.13654, 2.20904, 2.95137 ], [ 3.89272, -1.63676, 3.62075 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4433841571424251321839563284799155772777501770900824144933721625799111570840932194009415339222272873568226316691484074907190547265176507106495392645296967
1
VASP
DFT
null
[ [ -0.586139, -0.459367, 1.192313 ], [ -3.796744, -15.92188, 10.702496 ], [ 2.811456, 0.461331, 6.653865 ], [ 0.340796, -7.577895, -7.139748 ], [ 2.037516, 19.767657, -31.194338 ], [ -1.396779, 6.819671, 2.139137 ], [ 1.578613, 1.907474, 0.046313 ], [ 0.529408, 14.079636, -14.909293 ], [ 6.618284, 5.527187, 2.506268 ], [ 7.386714, 14.934235, -35.848352 ], [ -5.687707, -17.73054, 37.095868 ], [ -9.835417, -21.80751, 28.755472 ] ]
null
[ [ 0.6154333343771135, 0.06698524907098682, -0.1005741800922926 ], [ 0.06698524907098682, 0.73978810114466, -0.36448272457528047 ], [ -0.1005741800922926, -0.36448272457528047, 1.1261651659222613 ] ]
true
null
null
-13.065384
null
19.441647
41.506933
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:56:07
8184960481168720466019405928849353459541335144380315235800562225885275546612199618260007624985055689363702406482904354537328854951923590593173100612869980
PO_8184960481168720466019405
null
null
null
[ "train_1st_stage_1608", "train_1st_stage_1408", "train_1st_stage_1808", "train_1st_stage_2008" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5469214009572652603631805746125778399829168259932418582413465858112998207902550532374814234870661003688354228071809041163216061176726726575160522261060231
CO_5469214009572652603631805
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNiTi
AlNiTi
ABC
[ 13, 28, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.3333333333333333, 0.3333333333333333, 0.3333333333333333 ]
3
3
[ [ 0, 2.81451, 2.81451 ], [ 2.81451, 0, 2.81451 ], [ 2.81451, 2.81451, 0 ] ]
[ [ 4.22176, 4.22176, 4.22176 ], [ 0, 0, 0 ], [ 1.40725, 1.40725, 1.40725 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12239822992155901409836328979738680869717853985810470837809046875120525746413815125355026715362096396944536827428113982396768391735109206805820939401960034
1
VASP
DFT
null
[ [ 0.000013, 0.000014, 0.000014 ], [ -0.000033, -0.000033, -0.000032 ], [ 0.00002, 0.000019, 0.000018 ] ]
null
[ [ 0.014876137680812675, -2.4966036503533035e-7, -2.4966036503533035e-7 ], [ -2.4966036503533035e-7, 0.014876200095903935, -3.120754562941629e-7 ], [ -2.4966036503533035e-7, -3.120754562941629e-7, 0.014876075265721416 ] ]
true
null
null
-17.989589
null
0.000038
0.000057
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:44:12
3417288600325053693563559674325996615997680674746800121330827173489114230814692549549249017550829342256831179093952463089596629011919193841339743397137764
PO_3417288600325053693563559
null
null
null
[ "train_1st_stage_2080" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12423193962676187656435865177824824042300815512982494520917870847163645995500194202093218701650541033521202131522664774359630719407566675661311960876090652
CO_1242319396267618765643586
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNiTi4
AlNiTi4
A4BC
[ 13, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.16666666666666666, 0.16666666666666666, 0.6666666666666666 ]
3
6
[ [ 0, 1.96373, 1.96373 ], [ 3.8292, 0.033601, -0.033601 ], [ 0.005544, 5.87507, -5.87507 ] ]
[ [ 3.82232, 0.2109, -0.2109 ], [ 1.91976, 1.91518, 0.04856 ], [ 0.05901, 1.96865, -1.96865 ], [ 1.97063, 3.94619, -1.98246 ], [ 0.04343, 3.8143, -3.81429 ], [ 1.93745, 5.86353, -3.89979 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6469371565322656799486956562743810372677599558942454884954438424998626619131320314685083338090789826686519496548782748603253274995582163251766100239746192
1
VASP
DFT
null
[ [ 0.065528, -0.980202, 0.980233 ], [ 0.01483, 0.078252, -0.078268 ], [ 0.000912, -0.618796, 0.618779 ], [ -0.046025, -0.22291, 0.222964 ], [ -0.044716, 0.929659, -0.929705 ], [ 0.009471, 0.813997, -0.814004 ] ]
null
[ [ 0.020945942890642884, -0.001440789966618891, 0.0014409772118926677 ], [ -0.001440789966618891, 0.043267764052995476, -0.0028111757102978197 ], [ 0.0014409772118926677, -0.0028111757102978197, 0.043267701637904214 ] ]
true
null
null
-40.810246
null
0.859985
1.387785
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:12:01
3890241110743672344265781050000316540688875795766368157207543959824404961436834221655626033742966020856443507339467404823060456878334701076221794010152832
PO_3890241110743672344265781
null
null
null
[ "train_1st_stage_2274" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10964416497092850640037637545103399412434482691799489269194273907071074713458224961765702530467323452020771786555654064137168214350946087692153406657533478
CO_1096441649709285064003763
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni4Ti12
NiTi3
A3B
[ 28, 28, 28, 28, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.25, 0.75 ]
2
16
[ [ 5.55864, 0, -0.000001 ], [ 0, 8.41649, 0 ], [ -0.000001, 0, 5.30769 ] ]
[ [ 0.46797, 6.31237, 3.04643 ], [ 2.31136, 2.10412, 0.39259 ], [ 3.24728, 6.31237, 4.91509 ], [ 5.09068, 2.10412, 2.26125 ], [ 0.08369, 2.10412, 4.63048 ], [ 1.18314, 0.38066, 1.82746 ], [ 1.18314, 3.82758, 1.82746 ], [ 1.59618, 4.58892, 4.48128 ], [ 1.59618, 8.03583, 4.48128 ], [ 2.69562, 6.31237, 1.97664 ], [ 2.86302, 2.10412, 3.33104 ], [ 3.96246, 0.38067, 0.82641 ], [ 3.96246, 3.82758, 0.82641 ], [ 4.37551, 4.58891, 3.48023 ], [ 4.37551, 8.03583, 3.48023 ], [ 5.47495, 6.31237, 0.6772 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2261991953466563767049101476169051424884245185609071125215849121904645940080314069699103617297629337194637900690481194096615096055611858774398678508890939
1
VASP
DFT
null
[ [ 0.263191, 0.000019, 0.46388 ], [ -0.263121, 0.00025, 0.46382 ], [ 0.262977, 0.000037, -0.463869 ], [ -0.262885, 0.000265, -0.464013 ], [ 0.050848, -0.000136, -0.32014 ], [ 0.04855, 0.027484, -0.125884 ], [ 0.048412, -0.027656, -0.126152 ], [ -0.048456, 0.027718, -0.125654 ], [ -0.048518, -0.027624, -0.125839 ], [ -0.050864, 0.000016, -0.320266 ], [ 0.050743, -0.000058, 0.320061 ], [ 0.048665, 0.02739, 0.125847 ], [ 0.04867, -0.027544, 0.126052 ], [ -0.048556, 0.027577, 0.125808 ], [ -0.048569, -0.02773, 0.126078 ], [ -0.051087, -0.000008, 0.32027 ] ]
null
[ [ -0.0004951389189563188, -6.241509125883259e-8, -7.48981095105991e-7 ], [ -6.241509125883259e-8, -0.021441518715238014, 6.241509125883258e-7 ], [ -7.48981095105991e-7, 6.241509125883258e-7, -0.014050573268732096 ] ]
true
null
null
-118.004025
null
0.283242
0.533342
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:21:54
9244838793667694156630210075059124703667913659640619216231117911033605282683088093306186180059177182794092544485696662409179164486762037663051229410588069
PO_9244838793667694156630210
null
null
null
[ "train_2nd_stage_585" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
2841523758151888993235712317741351256580149760317162978996461630815493969647243672584148548860765677672552276901075516783410794289392588995194350453874099
CO_2841523758151888993235712
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni
Al2Ni
A2B
[ 13, 13, 28 ]
[ "Al", "Ni" ]
[ 0.6666666666666666, 0.3333333333333333 ]
2
3
[ [ 5.27603, -0.080189, -1.99719 ], [ 5.27603, -0.080189, 1.99719 ], [ -5.30684, -1.91702, 0 ] ]
[ [ 1.51329, -2.02065, 0 ], [ 3.73192, -0.05676, 0 ], [ 0, 0, 0 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6123866347972291964771205625401284576657333197214783667986319046219543388686585793250554753149476160382817882295464806857965537005277917461471872873026873
1
VASP
DFT
null
[ [ 0.030849, -0.002837, 0 ], [ -0.03082, 0.00286, 0 ], [ -0.000029, -0.000023, 0 ] ]
null
[ [ 0.006262792672002519, -0.0001128464849959693, 0 ], [ -0.0001128464849959693, 0.004664342184863818, 0 ], [ 0, 0, 0.0048987732676319925 ] ]
true
null
null
-14.088936
null
0.020656
0.030979
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:13:41
545184735235597659103424293186200821814884430248353890180999192935426780790573146754741739431550793372895595417472503861852178926425214790884449449888466
PO_5451847352355976591034242
null
null
null
[ "train_2nd_stage_559" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6678023242195715137687344839317258088776642180486413655165966753785188525336804812521397639943626984024947724565171156966367034242253416519296713704921200
CO_6678023242195715137687344
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi5Ti4
AlNi5Ti4
A5B4C
[ 13, 28, 28, 28, 28, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.1, 0.5, 0.4 ]
3
10
[ [ 4.160985, -0.423052, -0.152238 ], [ 0.1061, 3.975681, -8.148177 ], [ -1.718731, 2.907654, 2.471115 ] ]
[ [ 0.11409, 3.97818, -8.13966 ], [ 2.24606, 1.30257, 0.03578 ], [ 0.10743, 1.65369, -1.86582 ], [ 2.14129, 1.77948, -4.1423 ], [ 2.45714, 4.81241, -3.94744 ], [ 0.31832, 5.16314, -5.84851 ], [ 0.3164, 2.9166, 0.338 ], [ 2.34874, 3.01282, -1.90541 ], [ 0.21548, 3.45357, -3.90805 ], [ 2.248, 3.54917, -6.15084 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7642392316894344319779525434763858556708487679527896577043102831702399796651926148225120945097887909199679787584819325101013021463317859251612456176276476
1
VASP
DFT
null
[ [ 0.000346, 0.004245, -0.004786 ], [ 0.000577, 0.00752, -0.008479 ], [ 0.000049, -0.001793, 0.002222 ], [ -0.000211, 0.000061, 0.000175 ], [ 0.000028, 0.000013, -0.000367 ], [ -0.000397, -0.007723, 0.00872 ], [ 0.00013, 0.001551, -0.001435 ], [ 0.000281, 0.006106, -0.006338 ], [ -0.000676, -0.009056, 0.009672 ], [ -0.000128, -0.000924, 0.000617 ] ]
null
[ [ -0.0004666776373422912, -0.0000037449054755299546, 0.0000013731320076943167 ], [ -0.0000037449054755299546, -0.0005178580121745339, 0.0000024966036503533032 ], [ 0.0000013731320076943167, 0.0000024966036503533032, -0.00043615665771672206 ] ]
true
null
null
-66.984242
null
0.005822
0.013267
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:41:49
8724535792538621480830012756029401757368248660108455907982396047187613554447842556531236040552391391027443158120792898850929771074507377624660133229729957
PO_8724535792538621480830012
null
null
null
[ "train_1st_stage_312" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10519595700104366942349167905925106770080073878297564995574452093045164522217191580311502027177537731866499762310066809211769663820457609380060704891130169
CO_1051959570010436694234916
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni2Ti2
NiTi
AB
[ 28, 28, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.5, 0.5 ]
2
4
[ [ 2.83101, 0, 0 ], [ 0, 0, 4.10797 ], [ 0, -4.70897, 0 ] ]
[ [ 0, -4.69387, 0 ], [ 0, -1.58474, 2.05398 ], [ 1.4155, -2.16671, 0 ], [ 1.4155, -4.11191, 2.05398 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4131625585808735896439880248125659128524376047976935578195907845639194683657739328138323830913083699139937983640385200071435110133741502035663743067476891
1
VASP
DFT
null
[ [ -0.000015, 0.258603, -0.000025 ], [ -0.000016, -0.259071, 0.000028 ], [ 0.000027, 0.689248, -0.000033 ], [ 0.000004, -0.688781, 0.000029 ] ]
null
[ [ 0.00900712181956213, 6.241509125883259e-8, -6.241509125883259e-8 ], [ 6.241509125883259e-8, 0.006539166696096631, 6.241509125883259e-8 ], [ -6.241509125883259e-8, 6.241509125883259e-8, 0.00010504459858861524 ] ]
true
null
null
-28.055274
null
0.473926
0.689248
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:03:55
4876906291726744307000238127697166257339861793376757364115495305397278703445272919919353897714266767224072632946625931712350792308797258043015773740364481
PO_4876906291726744307000238
null
null
null
[ "train_2nd_stage_320" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
2957592756352297600300850563288951739816213008759610300467021269808737836604432957150995246618030048903589176870364620348891084324153700535108679582110476
CO_2957592756352297600300850
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ti5
Al4Ti5
A5B4
[ 13, 13, 13, 13, 22, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.4444444444444444, 0.5555555555555556 ]
2
9
[ [ 8.62441, -0.003741, -0.142291 ], [ -0.003701, 8.62437, -0.14229 ], [ 4.34715, 4.34723, 1.84159 ] ]
[ [ 2.82778, 8.62286, -0.18821 ], [ 10.1401, 4.345, 1.74522 ], [ 8.62291, 2.82773, -0.18821 ], [ 4.34495, 10.1401, 1.74522 ], [ 0, 0, 0 ], [ 2.85477, 2.85474, -0.09391 ], [ 10.1131, 10.1131, 1.65091 ], [ 10.1145, 7.20055, 1.69929 ], [ 2.85336, 5.76731, -0.14229 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
8843523196510001939711503520185473042077565572743559986483479069025540242530785326022315595493389036534436585767662187413107153156617962852721005415361608
1
VASP
DFT
null
[ [ 0.035811, 0.004502, -0.015954 ], [ -0.036215, -0.004493, 0.015917 ], [ 0.004387, 0.03599, -0.01619 ], [ -0.004636, -0.03569, 0.016165 ], [ -0.0001, -0.000405, -0.000025 ], [ -0.047948, -0.047919, -0.00166 ], [ 0.048597, 0.048685, 0.001707 ], [ 0.052496, -0.0527, 0.000124 ], [ -0.052392, 0.05203, -0.000085 ] ]
null
[ [ 0.0011885705828419487, 0.00001903660283394394, 0.0008034694697749518 ], [ 0.00001903660283394394, 0.0011864484697391485, 0.0008319307513889794 ], [ 0.0008034694697749518, 0.0008319307513889794, -0.010936934026193973 ] ]
true
null
null
-56.442942
null
0.049299
0.074385
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:40:38
11005950265679955770437627239121974494246190675233202837955003285550804945328328325145254055923019478643738358492759773881862309796419263973756290409821992
PO_1100595026567995577043762
null
null
null
[ "train_2nd_stage_615" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6812481447824055947324728069681130922113985338059735819878172987329767438390129183386708902924929261494156925287787454047171372469415088437153112923434274
CO_6812481447824055947324728
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al11Ti
Al11Ti
A11B
[ 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 22 ]
[ "Al", "Ti" ]
[ 0.9166666666666666, 0.08333333333333333 ]
2
12
[ [ 0, 4.9635, 0 ], [ -5.69304, 0, 4.63111 ], [ 2.86489, 0, 4.63138 ] ]
[ [ 0.00646, 4.94665, 0.01049 ], [ 0.00578, 4.94665, 4.6208 ], [ -2.8404, 0.00594, 4.6312 ], [ -4.2817, 2.48125, 4.64051 ], [ 1.43857, 2.50504, 4.63133 ], [ -1.3991, 2.48125, 4.62189 ], [ 1.40587, 0.83581, 2.33801 ], [ -1.39362, 0.83581, 2.29328 ], [ -1.40795, 0.8334, 6.94689 ], [ -2.85771, 3.30424, 6.92294 ], [ -2.82309, 3.30424, 2.33946 ], [ 0.00612, 3.3007, 2.31564 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
301675597351752699251752213300402003554497293899649985137097144732913848320724478027301326956683563362639333810196261750290449382059483237887955231775452
1
VASP
DFT
null
[ [ 0.007729, 0.038917, 0.124388 ], [ -0.007739, 0.038911, -0.124387 ], [ 0.000018, 0.240713, 0.000003 ], [ 0.083734, -0.03673, 0.084709 ], [ -0.000028, -0.23327, 0.000013 ], [ -0.083703, -0.036729, -0.084709 ], [ -0.144505, -0.071282, 0.055161 ], [ 0.144483, -0.071286, -0.05517 ], [ -0.000007, -0.096664, -0.000012 ], [ 0.005877, 0.041993, -0.146869 ], [ -0.005864, 0.041995, 0.146841 ], [ 0.000005, 0.143433, 0.00003 ] ]
null
[ [ 0.007496114875277051, -3.120754562941629e-7, 0.00779932738861246 ], [ -3.120754562941629e-7, -0.007302440847100894, -2.4966036503533035e-7 ], [ 0.00779932738861246, -2.4966036503533035e-7, 0.004451194648214904 ] ]
true
null
null
-49.939688
null
0.155899
0.240713
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:50:42
11590948413838524489364618045589318135701800027429637037981829624131375848381629209419499841221636941081933556083013102695017127918488135852401236324715688
PO_1159094841383852448936461
null
null
null
[ "train_1st_stage_607" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
1999176155058278240986095308841963958486074088426583763663976985193969172129270851270328176910262245438491516087044029534350850917014856978082544928078419
CO_1999176155058278240986095
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni5Ti
Al6Ni5Ti
A6B5C
[ 13, 13, 13, 13, 13, 13, 28, 28, 28, 28, 28, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.5, 0.4166666666666667, 0.08333333333333333 ]
3
12
[ [ 3.82342, 3.25788, 0.013783 ], [ 0.326901, 5.07152, 3.92549 ], [ -0.323604, -5.07892, 3.94363 ] ]
[ [ 0.69058, 4.93587, 3.82129 ], [ 0.38383, -0.14893, 4.05981 ], [ 0.88903, 1.42858, 1.98739 ], [ 1.82412, 1.64129, 5.90299 ], [ 2.17179, 3.92949, 1.95536 ], [ 2.43779, 4.09719, 5.91784 ], [ 1.29692, -2.55344, 3.93163 ], [ 1.64482, 2.54143, 3.95597 ], [ 2.63332, 0.19623, 3.9018 ], [ 2.95899, 5.25232, 3.95684 ], [ 3.18224, 1.6485, 5.91525 ], [ 3.42704, 1.65973, 1.98344 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4412743584804359531514531925322861915951697659170478392078223597224503444692670194151838390787262251646599213177041927148094306071164770814017006870185801
1
VASP
DFT
null
[ [ -1.119597, 0.275823, -0.133087 ], [ -1.334048, 0.278073, 0.046859 ], [ -0.397884, -0.737931, -0.070848 ], [ -32.287573, -2.990505, -0.292615 ], [ 0.595836, -0.014349, 0.109429 ], [ 0.574541, 0.284643, -0.178042 ], [ 0.146193, 1.490771, 1.400392 ], [ 0.090237, 1.605747, -1.351137 ], [ 1.015774, 0.328948, 0.59943 ], [ 0.951559, 0.20485, -0.380373 ], [ 32.334326, 0.683617, 0.282121 ], [ -0.569364, -1.409688, -0.032128 ] ]
null
[ [ 0.36543761305644934, -0.011139845487876438, 0.0029297019685983424 ], [ -0.011139845487876438, 0.05585763694099711, -0.00004912067682070124 ], [ 0.0029297019685983424, -0.00004912067682070124, 0.102619148142297 ] ]
true
null
null
-50.023072
null
6.44568
32.427089
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:03:31
13212709870780839835688683681487078052596035091799151792120682312778875737378153068255088885067912658952754109101266024904374837719126824241677931537291672
PO_1321270987078083983568868
null
null
null
[ "train_1st_stage_1750", "train_1st_stage_1950", "train_1st_stage_1350", "train_1st_stage_1550" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10411921057460810367449345825302839061161584304781289600626118782817772766931717976622247567008412879473006249958399217278730140250970863020446090528012201
CO_1041192105746081036744934
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni
Al3Ni
A3B
[ 13, 13, 13, 28 ]
[ "Al", "Ni" ]
[ 0.75, 0.25 ]
2
4
[ [ -1.85806, 3.87602, 1.89876 ], [ 1.89876, 3.87602, -1.85806 ], [ -1.89872, -3.85627, -1.89872 ] ]
[ [ -1.86822, 1.94788, 0.0102 ], [ -1.87837, 0.01974, -1.87837 ], [ 0.0102, 1.94788, -1.86822 ], [ 0, 0, 0 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
1316267160148932049245290659314420249907847483747833119685377337526353889926848019766510843100292016775218201780338786574842401202458088138728369913640962
1
VASP
DFT
null
[ [ -0.002152, 0.000001, 0.002155 ], [ -0.000003, 0.000015, -0.000002 ], [ 0.002154, 0.000001, -0.002152 ], [ 0, -0.000017, -0.000001 ] ]
null
[ [ -0.01308588561823558, -0.0001620295769079294, 0.00016558723710968285 ], [ -0.0001620295769079294, -0.00566129843754115, -0.0001620295769079294 ], [ 0.00016558723710968285, -0.0001620295769079294, -0.01308588561823558 ] ]
true
null
null
-17.532562
null
0.001531
0.003046
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:17:02
3413445755713726380610205279260361287559315728571259952259270345574029437762777891649737459073627608190612888677984705974913302650315941880996990392368322
PO_3413445755713726380610205
null
null
null
[ "train_2nd_stage_48" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11296545243082983490637030143621611939301024224456130213182789103560137269847018703157646540349101530943748753702571689920876779722141524264651978156091503
CO_1129654524308298349063703
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ti
Al3Ti
A3B
[ 13, 13, 13, 22 ]
[ "Al", "Ti" ]
[ 0.75, 0.25 ]
2
4
[ [ 1.4068, -2.43338, 4.61839 ], [ -1.42929, 2.44722, 4.60413 ], [ -1.43329, -2.43162, -4.61113 ] ]
[ [ -0.02642, -4.8457, 0.02459 ], [ -1.44439, -2.40545, -0.01726 ], [ -1.43256, 0.8113, 2.30094 ], [ -0.0146, -1.64598, 2.30809 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
301430933244712777841693976710539424439243956833920906328226190485546057463602209445149698574131186334507576562614349904728913110387931999446655675915743
1
VASP
DFT
null
[ [ 0.000167, -0.080525, -0.199072 ], [ -0.001834, -0.083798, 0.199086 ], [ -0.000792, -0.156124, 0.000859 ], [ 0.002459, 0.320448, -0.000874 ] ]
null
[ [ -0.003902503580958507, 0.000004181811114341783, -0.000012483018251766517 ], [ 0.000004181811114341783, 0.000001185886733917819, 0.000057796374505678964 ], [ -0.000012483018251766517, 0.000057796374505678964, -0.00005486286521651383 ] ]
true
null
null
-20.228327
null
0.226835
0.320459
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:29:59
3915529655725026484233065595401490681231019182108594122934271116034710024384623699889388098568253384099873398251605730362354152160822828304076094210112016
PO_3915529655725026484233065
null
null
null
[ "train_2nd_stage_400" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5615861565802703323370721283542234219139552058722556671984794264882440553950821770086207257120060066328853436187273909982773201831416724953358146945408987
CO_5615861565802703323370721
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni6Ti3
AlNi2Ti
A2BC
[ 13, 13, 13, 28, 28, 28, 28, 28, 28, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.25, 0.5, 0.25 ]
3
12
[ [ 4.06748, 2.37594, 0.079418 ], [ -0.018428, 4.59063, 0.046829 ], [ 0.016759, 0.023226, 6.7674 ] ]
[ [ 1.40434, 0.84388, 1.54944 ], [ 2.77082, 3.06124, 1.3737 ], [ 4.02689, 5.45596, 4.45184 ], [ 0.30279, 4.38539, 0.09139 ], [ 4.0646, 3.58071, 3.40094 ], [ 1.0329, 2.27309, 6.76909 ], [ 2.42839, 1.80813, 3.41755 ], [ 2.84948, 4.99221, 0.13671 ], [ 1.7049, 4.02827, 3.40748 ], [ 1.37614, 5.36314, 5.1084 ], [ 2.74183, 3.10585, 5.40168 ], [ 0.00941, 3.03575, 2.87443 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7489567468019698432645169196591809181270352020644287365204945878480704634037470039433853795392159226096524476340254532301313334182593487763707410968244440
1
VASP
DFT
null
[ [ 0.033074, -0.235564, 2.589899 ], [ -0.633233, 0.341897, 0.529137 ], [ 0.048963, 0.928588, 35.93313 ], [ 0.410003, -1.460858, -0.921969 ], [ -0.742175, -7.830057, 0.180362 ], [ -0.934539, 0.28681, -0.573342 ], [ -4.644506, 3.331127, -1.151031 ], [ 0.826231, 1.054714, -1.334199 ], [ 4.27594, 1.621516, -0.782638 ], [ -0.307875, 0.201211, 2.380468 ], [ 0.155102, 0.038656, 1.403318 ], [ 1.513016, 1.721961, -38.253136 ] ]
null
[ [ 0.2982466438446734, -0.011331584648223572, -0.0239680191943043 ], [ -0.011331584648223572, 0.33152412356059763, 0.005979053667139867 ], [ -0.0239680191943043, 0.005979053667139867, 0.5904093142538008 ] ]
true
null
null
-52.541195
null
8.726559
38.321753
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:33:40
8340588706593300774933425046298039401984689018808136550987677858040689191384283771725731699818500097050931608952495609388627700819304922952939300178845296
PO_8340588706593300774933425
null
null
null
[ "train_1st_stage_1748", "train_1st_stage_1948", "train_1st_stage_1348", "train_1st_stage_1548" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9150804981443823486903229866826202786648821574918720235601941938289501971460781196826814198784923802188031914354808243493039945675130664008183016381249298
CO_9150804981443823486903229
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni2Ti4
Al3NiTi2
A3B2C
[ 13, 13, 13, 13, 13, 13, 28, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.5, 0.16666666666666666, 0.3333333333333333 ]
3
12
[ [ 0, 0, 3.82196 ], [ 3.52632, 1.88938, 0 ], [ -3.97837, 6.83451, 0 ] ]
[ [ 2.86589, 2.09912, 3.82195 ], [ 1.93441, 4.11053, 3.82195 ], [ -0.3057, 4.19938, 3.82194 ], [ -2.48404, 4.31162, 3.82194 ], [ -1.89496, 6.50117, 3.82195 ], [ -0.08116, 7.30612, 1.91098 ], [ 1.44196, 2.1442, 0 ], [ 2.70826, 2.76367, 1.91098 ], [ 0.97829, 1.06372, 1.91098 ], [ 0.34914, 2.50926, 1.91098 ], [ 0.87232, 5.15184, 1.91099 ], [ -1.3242, 5.21612, 1.911 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7466927854922433474590518978071956653350277821227319003650219183150408515597655425944764705211886015222634487496850221775248331707601187047168598781187641
1
VASP
DFT
null
[ [ 32.503884, -6.212806, 0.000147 ], [ 2.916244, 1.770026, 0.000239 ], [ 0.703579, -1.850012, 0.000677 ], [ -5.029094, 2.696245, 0.001058 ], [ -0.130766, 3.489298, 0.000397 ], [ -3.367797, 3.06405, -0.000164 ], [ -28.781157, -0.990024, 0.000244 ], [ -13.983082, -2.262717, -0.000322 ], [ 23.381398, -26.844073, -0.000089 ], [ -12.483717, 31.173004, -0.000104 ], [ 2.414059, -3.619658, -0.001014 ], [ 1.856446, -0.413332, -0.001071 ] ]
null
[ [ 0.8762436561451041, -0.04208331286617661, -0.000002808679106647466 ], [ -0.04208331286617661, 0.769048608002257, -0.000001997282920282643 ], [ -0.000002808679106647466, -0.000001997282920282643, 0.5713429394213265 ] ]
true
null
null
-31.79516
null
14.219063
35.599073
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:11:32
4035118497487477684650198656573807654365585677897502084724456502748348712335416323322208067547114002207921710709192585860890725449380622255700180452962054
PO_4035118497487477684650198
null
null
null
[ "train_1st_stage_1917", "train_1st_stage_1717", "train_1st_stage_1317", "train_1st_stage_1517" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5289012572564232271226385078894945059772316457986269416632070291990940692273851695874911628723362106539899223650402576949548466084814648703093017283592453
CO_5289012572564232271226385
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni10Ti2
Ni5Ti
A5B
[ 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.8333333333333334, 0.16666666666666666 ]
2
12
[ [ -2.99838, 0, -3.17053 ], [ 1.48977, -3.75386, -4.51777 ], [ -1.48977, -3.75386, 4.51777 ] ]
[ [ -1.7002, -3.73247, 4.21663 ], [ -2.72141, -2.52822, 0.13541 ], [ -1.70873, -1.25128, -1.82691 ], [ -1.28405, -3.73247, 1.7674 ], [ -0.21043, -2.52395, -0.30114 ], [ -2.78414, -5.00514, 0.12263 ], [ -1.77145, -3.7282, -1.83968 ], [ 0.20572, -2.52395, -2.75038 ], [ -1.23164, -3.7282, -4.38237 ], [ -1.77145, -6.28207, -1.83968 ], [ -0.29521, -5.00514, -0.1396 ], [ 0.2905, -5.00514, -2.91192 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9540257925885122813943480791195016022500707545128344472215235525800224402130889270165748341429719379142108573686898095879264352821720451397600015116905945
1
VASP
DFT
null
[ [ -0.047161, -0.07576, 0.046847 ], [ -0.112703, -0.100625, 0.021215 ], [ -0.013761, -0.000245, 0.076885 ], [ 0.046956, -0.074949, -0.04633 ], [ -0.04693, 0.075891, 0.046384 ], [ 0.013496, -0.000377, -0.076534 ], [ 0.113564, 0.101416, -0.021242 ], [ 0.046929, 0.074814, -0.046289 ], [ -0.112751, 0.101069, 0.021187 ], [ 0.112984, -0.101193, -0.021202 ], [ 0.050704, -0.000635, 0.109805 ], [ -0.051328, 0.000596, -0.110728 ] ]
null
[ [ 0.003337709420157331, 0.000004181811114341783, -0.00915098860491374 ], [ 0.000004181811114341783, -0.016591429218787913, -0.0000036200752930122895 ], [ -0.00915098860491374, -0.0000036200752930122895, -0.01275115348381446 ] ]
true
null
null
-73.178189
null
0.117673
0.153731
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:15:54
10578992972282965673535254154513704171722426140282587315214901374807535576975769750435134297485153839020978951044007342897688215599740222446245140402736601
PO_1057899297228296567353525
null
null
null
[ "train_1st_stage_450" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4140013123742387198356492523979247298399898259443179337910020576475414328831302850419379890189176691821979872237546261250282851517767625471568491664817680
CO_4140013123742387198356492
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni4Ti2
Al3Ni2Ti
A3B2C
[ 13, 13, 13, 13, 13, 13, 28, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.5, 0.3333333333333333, 0.16666666666666666 ]
3
12
[ [ 4.16302, 2.39104, 0.505154 ], [ -0.06817, 4.61637, 1.1754 ], [ 0.158437, 0.337373, 8.33471 ] ]
[ [ 0.32344, 3.86788, 1.322 ], [ 2.50156, 4.07783, 5.44801 ], [ 1.80187, 1.2395, 1.99019 ], [ 1.15563, 1.39402, 6.17183 ], [ 3.14018, 3.61495, 2.56111 ], [ 3.91094, 6.10604, 7.30201 ], [ 0.43772, 0.74132, 3.95073 ], [ 0.50017, 2.05986, 8.42821 ], [ 2.51943, 1.93237, 4.21958 ], [ 2.54682, 5.56768, 9.25231 ], [ 2.56523, 3.42227, 8.02647 ], [ 0.38778, 3.2119, 3.90029 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
8341202124868965254447919130784964659209033691881717691664649762003097886930569577639481941765759161757162092689203606119813557214838710013852209143792601
1
VASP
DFT
null
[ [ -0.01586, 0.119312, -0.473674 ], [ -0.013308, 0.119692, -0.472919 ], [ -0.032302, 0.157042, 0.293003 ], [ 0.039325, 0.156655, 0.292124 ], [ 0.046447, -0.276626, 0.183111 ], [ -0.0265, -0.277544, 0.181832 ], [ 0.008121, -0.129055, 0.499786 ], [ -0.004143, -0.000899, 0.013385 ], [ 0.002847, 0.001549, 0.011897 ], [ 0.016623, -0.125325, 0.497535 ], [ -0.00966, 0.127044, -0.513843 ], [ -0.011588, 0.128153, -0.512239 ] ]
null
[ [ 0.05629629020236419, -0.00014492784190300927, -0.00020103900894469974 ], [ -0.00014492784190300927, 0.06761014896467026, 0.004192983415677114 ], [ -0.00020103900894469974, 0.004192983415677114, 0.052498643974720524 ] ]
true
null
null
-64.945478
null
0.368825
0.529404
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:25:16
2982739852097423898549677120394953766067898041993339452023858844218728285352502889252314035922257200075880269831849800202103816876310508837396547756875656
PO_2982739852097423898549677
null
null
null
[ "train_2nd_stage_711" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5274716039022822749629173947227912211622700474348129356146735718249932374243707697967366697162033287160309353900383142956546096280705830818548488640513446
CO_5274716039022822749629173
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ti9
AlTi3
A3B
[ 13, 13, 13, 22, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.25, 0.75 ]
2
12
[ [ 0, 3.07862, 0 ], [ 9.46002, 0, -0.000002 ], [ -0.000001, 0, -6.57829 ] ]
[ [ 0.14742, 0, -6.57829 ], [ 3.18694, 0, -3.28915 ], [ 6.22643, 0, 0 ], [ 1.59962, 1.53931, -1.71872 ], [ 4.77423, 1.53931, -4.85959 ], [ 7.91693, 1.53931, -1.47401 ], [ 9.33287, 0, -3.28915 ], [ 1.59962, 1.53931, -4.85957 ], [ 3.18692, 0, -6.57829 ], [ 4.77423, 1.53931, -1.7187 ], [ 6.50099, 0, -3.28914 ], [ 7.91693, 1.53931, -5.10428 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7774278179038804905313375619948625417335237341542123763022389126920860880715319395918618240931193167416282291950335425391247848664919425873579405078688407
1
VASP
DFT
null
[ [ 0.570142, -0.000001, -0.00006 ], [ 0.000397, 0, -0.000065 ], [ -0.570564, -0.000001, 0.000233 ], [ 0.02721, -0.000004, 0.189829 ], [ -0.027051, -0.000003, -0.189961 ], [ -0.000191, 0.000003, -0.470028 ], [ -0.250737, 0.000007, 0.000179 ], [ 0.027305, 0, -0.189684 ], [ 0.001048, -0.000006, -0.000136 ], [ -0.027513, 0.000002, 0.189832 ], [ 0.250318, 0.000002, -0.000175 ], [ -0.000364, 0, 0.470037 ] ]
null
[ [ 0.06135297365088102, -6.241509125883259e-8, -0.000007677056224836406 ], [ -6.241509125883259e-8, 0.03377935946473649, 0 ], [ -0.000007677056224836406, 0, 0.04717800710527008 ] ]
true
null
null
-83.421244
null
0.279199
0.570564
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:36:52
8674253041394781068914171583242658243528159223241331899696653741337351255920644157585894317009242471479710488496658956620283012292848433602263987029930654
PO_8674253041394781068914171
null
null
null
[ "train_2nd_stage_679" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11965532164131489540614562807732476565984788430054434283810403363041675220704656080175869358711581579952519978378602716121626641933136090708331923824267387
CO_1196553216413148954061456
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni8
AlNi2
A2B
[ 13, 13, 13, 13, 28, 28, 28, 28, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
12
[ [ 2.76633, 0.093745, 0.022925 ], [ 1.17934, 1.90765, 8.05323 ], [ -1.14223, -6.24114, 0.507734 ] ]
[ [ 1.61354, -5.48379, 0.66934 ], [ 2.6781, 0.38869, 4.2369 ], [ 0.04914, -1.82443, 2.06253 ], [ 2.7378, -2.09935, 6.16074 ], [ 2.62904, 0.56999, 8.16713 ], [ 1.3921, -1.69662, 4.11059 ], [ 1.32981, -1.61828, 8.20828 ], [ 0.0841, -3.90888, 4.44905 ], [ 1.33513, 0.26088, 2.18883 ], [ 1.27754, -0.09809, 6.18552 ], [ 1.50091, -3.76801, 2.35812 ], [ 1.43454, -4.15096, 6.65212 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2741232679204167426110613606130304604430570096382030538403717596114645868906308271030674761278865337222878312823310973022437236303904355371473756013996637
1
VASP
DFT
null
[ [ -0.056486, -0.21243, -0.430753 ], [ 0.047708, 0.136606, -0.068492 ], [ -0.047822, -0.138068, 0.069474 ], [ 0.05637, 0.210851, 0.429761 ], [ -0.03381, -0.10689, -0.16516 ], [ -0.042674, -0.346088, -0.134965 ], [ -0.015537, -0.105032, -0.115034 ], [ 0.024354, -0.004852, -0.453 ], [ 0.042853, 0.345896, 0.134717 ], [ 0.03345, 0.106842, 0.165875 ], [ -0.024119, 0.005733, 0.452603 ], [ 0.015712, 0.107432, 0.114973 ] ]
null
[ [ 0.02063118358542459, -0.0013195798593942385, -0.003100282413008732 ], [ -0.0013195798593942385, -0.004241417526493968, -0.004263574883890854 ], [ -0.003100282413008732, -0.004263574883890854, -0.006304236292598384 ] ]
true
null
null
-64.193625
null
0.304704
0.483596
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:31:19
907589817232604552557213751812821754598964497640989275591289347833978451114713095491079555301550433160894356742569266771803836389266123379396024184640891
PO_9075898172326045525572137
null
null
null
[ "train_1st_stage_967" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5664536702672448841988506725007276934351848618388189347372948852618495522832521298762326934672156232538589446013727751209020629973319017106471905845643738
CO_5664536702672448841988506
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al7Ni3Ti2
Al7Ni3Ti2
A7B3C2
[ 13, 13, 13, 13, 13, 13, 13, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.5833333333333334, 0.25, 0.16666666666666666 ]
3
12
[ [ 3.23731, -0.85827, -0.009847 ], [ -0.874096, 4.73536, 0.004167 ], [ -0.00096, 0.002693, 7.00636 ] ]
[ [ 0.19093, 0.46558, 0.292 ], [ 0.17294, 0.47362, 3.21161 ], [ 0.29397, 3.37863, 6.89761 ], [ 0.31389, 3.37278, 3.6069 ], [ 1.86541, -0.48853, 1.7457 ], [ 0.56153, 3.89887, 5.25441 ], [ 0.45312, 1.69486, 5.25409 ], [ 2.10012, 1.41507, 6.68187 ], [ 2.07988, 1.42321, 3.81734 ], [ 2.08442, 2.57496, 5.24924 ], [ 1.10058, 1.52561, 1.74875 ], [ 1.63519, 2.39443, 1.75127 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2926353064647717199734966075542201766304997591983707199656570542403493080698588790599724778804178303087907690699734448572630618069709603302400455584059241
1
VASP
DFT
null
[ [ -1.773251, 1.786774, -3.508946 ], [ -1.22159, 1.496787, 3.70524 ], [ 5.814764, -4.482091, 14.333974 ], [ 5.010437, -4.745507, -14.023573 ], [ -3.278948, 3.787304, -0.244753 ], [ 12.542764, 18.915187, -0.118834 ], [ -7.207952, -7.823736, 0.083433 ], [ -5.152813, -11.923108, 6.723328 ], [ -4.521498, -11.499279, -6.828666 ], [ -2.407942, 13.894043, 0.067174 ], [ -104.600761, -164.753633, -0.580989 ], [ 106.796792, 165.347259, 0.392613 ] ]
null
[ [ 0.7178924502254227, 0.6349428563575256, 0.00270045133840465 ], [ 0.6349428563575256, 1.1616054533804867, 0.004797598404701425 ], [ 0.00270045133840465, 0.004797598404701425, 0.5728409016115384 ] ]
true
null
null
-14.543481
null
42.784984
196.838576
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:48:53
11473427077439828108160678224712974498395199107574917251813117935893333389094209410709528061801667081561044445116805231705102855594931135524680470611416068
PO_1147342707743982810816067
null
null
null
[ "train_1st_stage_1594", "train_1st_stage_1994", "train_1st_stage_1794", "train_1st_stage_1394" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4965705735837586680127157996640717492326743541167096867693669842979842983525025329243366906901014875740263068633076810940216002090249955658672927870407335
CO_4965705735837586680127157
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al8Ti6
Al4Ti3
A4B3
[ 13, 13, 13, 13, 13, 13, 13, 13, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.5714285714285714, 0.42857142857142855 ]
2
14
[ [ 0, -0.000002, 3.923108 ], [ 3.709876, 1.579447, 0.000001 ], [ -3.72568, 13.898528, -0.000002 ] ]
[ [ 3.3982, 1.45974, 0.00096 ], [ 1.81551, 5.17704, 0.00096 ], [ 0.212, 8.94397, 0.00096 ], [ -1.36243, 12.64136, 0.00095 ], [ 1.53851, 0.68041, 1.9625 ], [ -0.04421, 4.39773, 1.96251 ], [ 0.9908, 7.11462, 1.96251 ], [ -0.58355, 10.81187, 1.96251 ], [ 0.69333, 2.66568, 0.00096 ], [ -0.82042, 6.22211, 0.00096 ], [ -2.43838, 10.02183, 0.00096 ], [ 2.66071, 3.19175, 1.96251 ], [ -1.64299, 8.15453, 1.96252 ], [ 0.44881, 13.53386, 1.96251 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10208412948326208399196907804998388299917276790523067167059030889666168288285335475782189833251961077976771591952136317512542555248428338342000650804015987
1
VASP
DFT
null
[ [ 0.00031, -0.000811, -0.000014 ], [ 0.000681, -0.00157, 0.000005 ], [ 0.001181, -0.002556, 0.000016 ], [ -0.0021, 0.00487, 0.000035 ], [ -0.000229, 0.000557, 0.000029 ], [ 0.000281, -0.000474, 0.000007 ], [ 0.00214, -0.004939, 0.000011 ], [ -0.001402, 0.003227, -0.000004 ], [ 0.002427, -0.005691, 0.000008 ], [ 0.00025, -0.000397, -0.000058 ], [ 0.00043, -0.000384, -0.000005 ], [ -0.002398, 0.005579, -0.000008 ], [ -0.00091, 0.001821, -0.000045 ], [ -0.000661, 0.000768, 0.000022 ] ]
null
[ [ -0.00032861545547775353, 0.000027712300518921666, 1.2483018251766518e-7 ], [ 0.000027712300518921666, -0.00037942133976244324, -3.744905475529955e-7 ], [ 1.2483018251766518e-7, -3.744905475529955e-7, -0.00022950029055872738 ] ]
true
null
null
-82.577633
null
0.002651
0.006187
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:41:02
2208003958415460981073725705671941546352585124511457207184371215825748616868607072901490868681449894803623560923153324096624615613224740671442496417633902
PO_2208003958415460981073725
null
null
null
[ "train_1st_stage_85" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4825860962505735513832606869311492280969640926548454884152682209149835872112091447400074378855353571674829012168785148791523638003106350892759504947882275
CO_4825860962505735513832606
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni8Ti
Al3Ni8Ti
A8B3C
[ 13, 13, 13, 28, 28, 28, 28, 28, 28, 28, 28, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.25, 0.6666666666666666, 0.08333333333333333 ]
3
12
[ [ 0, 0, 4.13381 ], [ 5.21393, 4.55618, 0 ], [ -2.5012, 4.37152, 0 ] ]
[ [ 2.73193, 8.88326, 0 ], [ 0.27423, 4.44641, 0 ], [ 3.81488, 5.45603, 2.06691 ], [ 1.31329, 2.17232, 0 ], [ 2.74761, 4.47657, 0 ], [ -1.19876, 2.25877, 0 ], [ 1.45859, 6.6369, 0 ], [ -1.25176, 5.08185, 2.06691 ], [ 0.02038, 2.96449, 2.06691 ], [ 1.37425, 5.17948, 2.06691 ], [ 2.55445, 7.54382, 2.06691 ], [ 2.50783, 2.8994, 2.06691 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
1737307663252987758134916823273711036906289449959842769690807257453136231975527201199430542382208031192041489023571365254270153729654906547243459967020062
1
VASP
DFT
null
[ [ 0.170571, 0.138507, 0.00005 ], [ -0.39301, -0.193969, 0.000041 ], [ 0.097934, 0.236334, -0.000049 ], [ -0.119102, -0.034541, 0.000043 ], [ 0.017814, 0.050437, 0.000034 ], [ -0.294757, -0.146404, 0.000042 ], [ 0.215745, -0.103445, 0.00004 ], [ -0.037929, 0.060033, -0.000036 ], [ 0.134849, -0.110617, -0.000039 ], [ 0.209023, 0.194547, -0.000049 ], [ -0.115213, -0.177291, -0.000045 ], [ 0.114075, 0.086409, -0.000033 ] ]
null
[ [ 0.0035508569568062443, -0.0004315379409635684, 6.241509125883259e-8 ], [ -0.0004315379409635684, -0.004742361048937358, -6.241509125883259e-8 ], [ 6.241509125883259e-8, -6.241509125883259e-8, -0.007226544096130154 ] ]
true
null
null
-68.537176
null
0.212101
0.43827
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:24:20
2188203186151305061363549286078784258557671390036775594644843822579059441828879709375518281792213723208686988799105186769200597531733667596343471651073654
PO_2188203186151305061363549
null
null
null
[ "train_1st_stage_436" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5476960568533433541934234696966505087424396422839437140704888132574023526093315943415575893793016798541566120159264830408257188916858413693623621840523779
CO_5476960568533433541934234
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al5Ni3Ti4
Al5Ni3Ti4
A5B4C3
[ 13, 13, 13, 13, 13, 28, 28, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.4166666666666667, 0.25, 0.3333333333333333 ]
3
12
[ [ 3.66317, 2.61896, 0.007041 ], [ 0.005202, 3.73531, 3.45703 ], [ -0.002926, -3.73665, 3.46246 ] ]
[ [ 0.06087, -0.09962, 0.2547 ], [ 0.04916, -0.10519, 3.20571 ], [ 1.15388, -1.55701, 3.20805 ], [ 1.15526, 2.16569, 3.72632 ], [ 3.19171, 1.00053, 5.19383 ], [ 2.7773, 0.76171, 3.22491 ], [ 2.79849, 4.4974, 3.6964 ], [ 0.04277, -1.21699, 1.73218 ], [ 2.03397, 0.8429, 1.72456 ], [ 0.92055, 0.29685, 5.19495 ], [ 1.78964, 2.85165, 1.74228 ], [ 2.6726, 3.7147, 5.18924 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4095123650123676589296959843035394431594192850806416951340914988854479317713005473981119122740890809254140816812728223187932341247431757875333492450814123
1
VASP
DFT
null
[ [ -4.450778, 16.228352, -2.872857 ], [ -4.530047, 16.431405, 3.128494 ], [ 12.867588, -8.804639, 2.278662 ], [ 13.017572, -8.715048, -2.35492 ], [ 0.821316, 0.363947, -0.102383 ], [ -3.566621, -2.776124, 27.526619 ], [ -3.436775, -2.505289, -27.677136 ], [ 16.769239, 11.509584, 0.083588 ], [ -7.59394, -22.922155, 0.384986 ], [ -24.446236, 36.71034, -0.462267 ], [ 27.882067, -34.722556, 0.190873 ], [ -23.333383, -0.797815, -0.123658 ] ]
null
[ [ 0.2850225712143908, 0.0014480925322961746, -0.005111483898642094 ], [ 0.0014480925322961746, 0.3086646588021415, -0.0010390864392770447 ], [ -0.005111483898642094, -0.0010390864392770447, 0.6631496092293996 ] ]
true
null
null
-4.755054
null
23.273081
44.532033
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:28:47
11475472628729734707414334642474422867959381199571289107915758304420157601778096988566333030176311319872020555910194184362807498067460369384360786105006501
PO_1147547262872973470741433
null
null
null
[ "train_1st_stage_1688", "train_1st_stage_1488", "train_1st_stage_1288", "train_1st_stage_1888" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
8008862134807720900385183086049004931085675878190018432395737671407287285223232360921525953358975239941292004181447441350260728372524056612224363255939048
CO_8008862134807720900385183
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
NiTi
NiTi
AB
[ 28, 22 ]
[ "Ni", "Ti" ]
[ 0.5, 0.5 ]
2
2
[ [ -0.3101, 2.389199, 1.796469 ], [ 3.241392, -2.496531, -1.147487 ], [ 3.511473, 1.712156, -1.670504 ] ]
[ [ 0, 0, 0 ], [ 1.60069, 2.05068, 0.06299 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9210121815799978058875031580941444738089549259107446542767286761442995071031581934439996362058971772931771103121846755991615648446855484724725314688952517
1
VASP
DFT
null
[ [ 0.000005, 0.000013, 0.000016 ], [ -0.000005, -0.000013, -0.000016 ] ]
null
[ [ 0.0002256929699919386, -0.0000030583394716827964, 0.000013107169164354842 ], [ -0.0000030583394716827964, 0.00010710429660015672, -0.00004724822408293627 ], [ 0.000013107169164354842, -0.00004724822408293627, 0.00014842308701350386 ] ]
true
null
null
-14.008709
null
0.000021
0.000021
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:35:23
1147956473788064442852626695466591598175816093219268211799029425183524848555000372098822576956426514581336109940365110526515978988406180443520626369644155
PO_1147956473788064442852626
null
null
null
[ "train_1st_stage_231" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11157028430784647411228725965578834127662089107614617485460528809384211080819015546395381581285217869582308724125263524921727254604934541817713542569845018
CO_1115702843078464741122872
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni4Ti4
NiTi
AB
[ 28, 28, 28, 28, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.5, 0.5 ]
2
8
[ [ 4.76452, 0, 0 ], [ 0, 4.76452, 0 ], [ 0, 0, 4.76452 ] ]
[ [ 1.87529, 1.87529, 1.87529 ], [ 0.50697, 2.88923, 4.25754 ], [ 2.88923, 4.25754, 0.50697 ], [ 4.25754, 0.50697, 2.88923 ], [ 0.39349, 0.39349, 0.39349 ], [ 1.98876, 4.37102, 2.77575 ], [ 4.37102, 2.77575, 1.98876 ], [ 2.77575, 1.98876, 4.37102 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11410680468899519980815805533190418310603605062523755094153626185360871924230516861938451118675062583436761403141935032521696253484297016176975215744000256
1
VASP
DFT
null
[ [ 0.206141, 0.206728, 0.206048 ], [ -0.206665, -0.206834, 0.206675 ], [ -0.206299, 0.206211, -0.20701 ], [ 0.206735, -0.206117, -0.206249 ], [ -0.014918, -0.013227, -0.014068 ], [ 0.013694, 0.013248, -0.012276 ], [ 0.013007, -0.013391, 0.013275 ], [ -0.011695, 0.013382, 0.013605 ] ]
null
[ [ -0.020718876788643252, -0.000008176376954907068, 0.0000039321507493064525 ], [ -0.000008176376954907068, -0.020716317769901637, 0.000008301207137424733 ], [ 0.0000039321507493064525, 0.000008301207137424733, -0.020717566071726815 ] ]
true
null
null
-55.024156
null
0.190358
0.358058
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:02:36
2748723315869956755110732616123282673670754304803257413523283639762515479284727158354523504746310315679498357971008891065212382898805047315697775918999740
PO_2748723315869956755110732
null
null
null
[ "train_2nd_stage_80" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6878145411826442790981501833381850041223746513571578771826085151236037538538544523141524865229645753012798858329053786691611018359217208196784869368386851
CO_6878145411826442790981501
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni2Ti2
NiTi
AB
[ 28, 28, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.5, 0.5 ]
2
4
[ [ 2.723753, -0.5013, 0.570415 ], [ 1.615796, -1.637187, 4.863664 ], [ -0.482674, -3.954976, -1.170981 ] ]
[ [ 2.29045, -0.71273, 0.81567 ], [ 1.63874, -3.11124, 1.82126 ], [ 2.40395, -3.97319, 4.41717 ], [ 3.14105, -1.48795, 3.08328 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2823367203116056491966554843386680015923158004708986494822649573405983074883830359957832952049305205287966932665842390546517417699773649637738428326790367
1
VASP
DFT
null
[ [ -0.001318, -0.001062, 0.004164 ], [ 0.001556, 0.001492, -0.005466 ], [ 0.01222, 0.011965, -0.045677 ], [ -0.012459, -0.012395, 0.046979 ] ]
null
[ [ -0.0025165140644648706, -0.0000999889761966498, 0.00007714505279591706 ], [ -0.0000999889761966498, -0.003110830563431475, -0.00008644490139348312 ], [ 0.00007714505279591706, -0.00008644490139348312, -0.00288707246126856 ] ]
true
null
null
-28.129837
null
0.027326
0.050159
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:34:31
8378492073708988846351837927804290934447665770408056825857823589498912963832688188317424404489029300051906349552779637839246629299233339791018968720149574
PO_8378492073708988846351837
null
null
null
[ "train_1st_stage_57" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5795169901575448640388362741890947128639217534268738637161541864807738630982161477782344590514657206481163566731853731553263762663528538496422352802470428
CO_5795169901575448640388362
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni9Ti5
Ni9Ti5
A9B5
[ 28, 28, 28, 28, 28, 28, 28, 28, 28, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.6428571428571429, 0.35714285714285715 ]
2
14
[ [ 0, 0, 4.22331 ], [ 3.90627, 2.25624, 0 ], [ -2.61172, 9.04692, 0 ] ]
[ [ 1.22368, 11.2487, 0 ], [ 2.60894, 4.63001, 0 ], [ 0.09646, 4.47219, 0 ], [ -1.39003, 6.75023, 0 ], [ -0.11306, 8.9822, 0 ], [ -1.32067, 9.7616, 2.11165 ], [ 0.10658, 3.0554, 2.11165 ], [ 1.38857, 5.34779, 2.11165 ], [ -0.04324, 7.54563, 2.11165 ], [ 1.17286, 2.09673, 0 ], [ 1.09298, 6.75158, 0 ], [ 2.71522, 3.29182, 2.11165 ], [ -1.00779, 5.23398, 2.11165 ], [ 1.22177, 9.7532, 2.11165 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9062177961540126284700671557251155760759657159090785634782655656726181905104080022642965820711619620448093125883531531403349459824844455246011880455288007
1
VASP
DFT
null
[ [ 0.055595, 0.069175, -0.000028 ], [ -0.189284, -0.089313, -0.000034 ], [ -0.175274, -0.124107, -0.000034 ], [ 0.087132, 0.013434, -0.000029 ], [ -0.07424, -0.044839, -0.000034 ], [ 0.141354, -0.135317, 0.000038 ], [ 0.153703, 0.085234, 0.000032 ], [ 0.152198, 0.093858, 0.000033 ], [ -0.044763, 0.191657, 0.000038 ], [ 0.013085, -0.09858, -0.000039 ], [ -0.075579, 0.054071, -0.000046 ], [ 0.224355, 0.152171, 0.000039 ], [ 0.241353, 0.121762, 0.000035 ], [ -0.509636, -0.289204, 0.000028 ] ]
null
[ [ -0.009816832798462963, 0.00027531296754271055, -1.8724527377649775e-7 ], [ 0.00027531296754271055, -0.009096500230244777, -6.241509125883259e-8 ], [ -1.8724527377649775e-7, -6.241509125883259e-8, -0.006380694779390454 ] ]
true
null
null
-94.312783
null
0.196752
0.585976
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:54:27
4592930392581118904959999346242249001680207583622080339911269840735491779383945382979921050163165574609911966434978581455440339382777599741765156369137920
PO_4592930392581118904959999
null
null
null
[ "train_1st_stage_1180" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7086370909170532102870491663766218960825779926228570695538732946676352186025194854732447827403080796575654755047666005181712845867471262169287196721797727
CO_7086370909170532102870491
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni8Ti4
Ni2Ti
A2B
[ 28, 28, 28, 28, 28, 28, 28, 28, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.6666666666666666, 0.3333333333333333 ]
2
12
[ [ 3.10255, -2.03829, -1.89613 ], [ 0.152806, 3.60279, -3.6712 ], [ 3.39045, 5.41772, 1.85906 ] ]
[ [ 0.04351, 0.01718, -0.03688 ], [ 1.60278, 1.91019, 0.12599 ], [ 3.49984, 3.43545, -0.07661 ], [ 3.13682, 1.74216, -1.79671 ], [ 5.03386, 3.26739, -1.99935 ], [ 0.1002, 1.78092, -1.79946 ], [ 3.57994, 5.248, -1.91511 ], [ 3.20953, 3.5324, -3.62942 ], [ 1.62317, -0.12009, -1.86622 ], [ 1.61128, 3.60879, -1.81504 ], [ 1.69951, 1.68131, -3.70182 ], [ 5.17818, 5.17157, -3.72952 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7724959095031676618083980147002684945631086347833830454825140804458384859296490492015524337452366568722170291611883680298416995218825090195419600564405702
1
VASP
DFT
null
[ [ -0.065782, 0.048185, 0.062013 ], [ 0.040731, -0.480915, -0.407323 ], [ -0.540483, 0.071025, -0.220856 ], [ 0.540085, -0.070631, 0.220362 ], [ -0.040359, 0.481951, 0.40694 ], [ 0.065525, -0.049009, -0.061833 ], [ -0.606315, -0.231576, -0.045868 ], [ 0.606827, 0.231791, 0.046468 ], [ -0.000385, 0.000002, -0.000689 ], [ 0.760093, 1.379336, 1.428836 ], [ 0.000255, -0.000546, 0.000295 ], [ -0.76019, -1.379612, -1.428344 ] ]
null
[ [ 0.18284681988039655, -0.0008680066741365847, 0.003287465271693971 ], [ -0.0008680066741365847, 0.1596061861596227, 0.0049938938667104535 ], [ 0.003287465271693971, 0.0049938938667104535, 0.1588221901983205 ] ]
true
null
null
-77.13919
null
0.683379
2.126472
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:13:14
5351937890888231430337589898739408228172064849592898033245167806909256434559157711358803394691626661068981410840755958909529597251162949793893923794664065
PO_5351937890888231430337589
null
null
null
[ "train_2nd_stage_796" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5387405724791503844695816610747723170184038067288180871775146212843519904918093293232646432477509147190506248863867244647851978387134226396217573914311855
CO_5387405724791503844695816
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni4Ti8
NiTi2
A2B
[ 28, 28, 28, 28, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
12
[ [ 0, 2.31078, 2.31078 ], [ 0.000853, 5.60659, -5.60659 ], [ -6.88684, 0.000544, -0.000544 ] ]
[ [ -0.97262, 5.23225, -5.23225 ], [ -4.13475, 2.46456, -0.15379 ], [ -0.69116, 3.58432, -1.27354 ], [ -4.41621, 4.1125, -4.1125 ], [ -2.67035, 2.32525, -2.32525 ], [ -0.20019, 3.60998, -3.60998 ], [ -5.88031, 6.28419, -3.97341 ], [ -3.64414, 2.43883, 2.18272 ], [ -1.46408, 1.96217, 0.3486 ], [ -6.11389, 1.41317, -1.41317 ], [ -4.90718, 4.08684, -1.77606 ], [ -2.43702, 5.37156, -3.06079 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
492298930668748202153375167613041423616265991386464763933713423645219331948530176039290258386653757819396072025316942318253957687062635199880090980722525
1
VASP
DFT
null
[ [ 0.132554, 0.25555, -0.255572 ], [ -0.131973, -0.255815, 0.255825 ], [ -0.131945, 0.255895, -0.255904 ], [ 0.132089, -0.255618, 0.255613 ], [ 0.146042, 0.268734, -0.268743 ], [ 0.311994, -0.178678, 0.178679 ], [ -0.14583, 0.269175, -0.269198 ], [ 0.312039, 0.178826, -0.178805 ], [ -0.312446, -0.178205, 0.178215 ], [ 0.145936, -0.268854, 0.268843 ], [ -0.312309, 0.178229, -0.178221 ], [ -0.14615, -0.26924, 0.269266 ] ]
null
[ [ 0.03830077109061757, -6.241509125883258e-7, 5.617358213294933e-7 ], [ -6.241509125883258e-7, 0.008367866454889166, -0.014937179640063815 ], [ 5.617358213294933e-7, -0.014937179640063815, 0.008367679209615389 ] ]
true
null
null
-86.715459
null
0.397996
0.407865
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:33:36
7755972260602477279002358442850096633188184398182618795562688092852555259664343103020238456391770528017060194235240053426131870349111999776766004916031535
PO_7755972260602477279002358
null
null
null
[ "train_2nd_stage_948" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
13040499703469966128068650469627632174084509859465360473719624933117608802516453166726227889124148989284884147997955697683595906715412022263576683399119619
CO_1304049970346996612806865
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al11Ti
Al11Ti
A11B
[ 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 22 ]
[ "Al", "Ti" ]
[ 0.9166666666666666, 0.08333333333333333 ]
2
12
[ [ 3.73358, -3.2331, 2.85073 ], [ 3.73358, -3.2331, -2.85073 ], [ 7.05318, 3.11666, 0 ] ]
[ [ 0.45556, -0.31224, 0 ], [ 5.05504, -1.2854, 1.42311 ], [ 7.19118, -0.07763, 0 ], [ 9.3273, 1.13015, -1.42311 ], [ 6.87361, -2.95967, 0 ], [ 9.05797, -1.69418, -1.42537 ], [ 9.3273, 1.13015, 1.42311 ], [ 3.19124, 0.32854, 0 ], [ 9.05797, -1.69418, 1.42537 ], [ 11.1911, -0.48379, 0 ], [ 5.05504, -1.2854, -1.42311 ], [ 10.9248, -3.31073, 0 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12770567069446916437367894774535064200087987521719464184707422342759477665617778327410455179515963955291235648312397650378396612677744028698466918653495983
1
VASP
DFT
null
[ [ -0.102048, -0.119214, 0 ], [ -0.114951, -0.012168, -0.13376 ], [ 0.000005, 0.000006, 0.000001 ], [ 0.115074, 0.012268, 0.133809 ], [ 0.10204, 0.119347, -0.000002 ], [ 0.000046, -0.000015, 0.000078 ], [ 0.115073, 0.012269, -0.13381 ], [ 0.062921, -0.16746, 0.000002 ], [ 0.000046, -0.000014, -0.000079 ], [ -0.062865, 0.16753, -0.000001 ], [ -0.11495, -0.01217, 0.133759 ], [ -0.000391, -0.000379, 0.000004 ] ]
null
[ [ 0.0009520173869709734, -0.005047446015010532, 6.241509125883259e-8 ], [ -0.005047446015010532, -0.00013656421967432568, 0 ], [ 6.241509125883259e-8, 0, 0.005340360038288233 ] ]
true
null
null
-49.964592
null
0.114992
0.178937
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:01:39
9588614664244959480262962097240733386799800752237375261910930316866462008556826488170982685848270307293638447897977781960616080422760014496540423025652173
PO_9588614664244959480262962
null
null
null
[ "train_1st_stage_1065" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12800070071146939644572391019584313966199710770787627306701924188785922274229266790731572571078260473505518291336057613644707609985423713000196164438537881
CO_1280007007114693964457239
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al5Ni4Ti3
Al5Ni4Ti3
A5B4C3
[ 13, 13, 13, 13, 13, 28, 28, 28, 28, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.4166666666666667, 0.3333333333333333, 0.25 ]
3
12
[ [ 3.63449, -0.932392, -0.141036 ], [ -0.99453, 5.31932, 0.253255 ], [ -0.039543, 0.14909, 5.72045 ] ]
[ [ 0.17362, 0.30255, 0.08046 ], [ 2.08692, 1.65247, 5.34095 ], [ 0.41683, 3.62837, 0.36871 ], [ 1.87071, 0.07235, 1.31348 ], [ 2.23429, 3.31148, 4.31962 ], [ 0.20373, 0.33224, 2.39962 ], [ 2.14791, 0.84475, 3.48141 ], [ 0.61279, 3.39431, 3.00161 ], [ 0.38309, 2.1578, 4.50748 ], [ 2.04975, -0.32917, 3.68609 ], [ 0.44398, 2.20203, 1.76697 ], [ 2.3519, 2.98603, 1.60828 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2553918411311673017111134408424420557741196841805667950565519389886401189247715325622319991399013315094407548965281964089144255856704495661146573275361374
1
VASP
DFT
null
[ [ -3.294888, 2.290125, -2.623429 ], [ 2.501781, -4.631388, 8.829863 ], [ 2.40583, 2.231508, -8.319849 ], [ 5.46143, -0.175783, 0.943792 ], [ 5.121384, 1.107801, -3.011216 ], [ -2.671416, -0.403053, 3.867333 ], [ 0.372412, 36.352394, -10.132527 ], [ -2.977587, 6.707144, 4.257713 ], [ -1.306526, -1.051092, 2.589086 ], [ -3.061555, -27.580841, 11.00245 ], [ -1.146347, -10.794455, -6.988973 ], [ -1.404519, -4.05236, -0.414243 ] ]
null
[ [ 0.6790824968203156, 0.06119344067762345, 0.058607957937317566 ], [ 0.06119344067762345, 1.0787215201885938, -0.06750235810206624 ], [ 0.058607957937317566, -0.06750235810206624, 0.7631908892725243 ] ]
true
null
null
-17.305073
null
11.391954
37.739944
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:41:39
5999824092506337372661326316888696736177937771327962802967624393710191068535948345397924622062338137117104952581988843315873969327994986153330103959467562
PO_5999824092506337372661326
null
null
null
[ "train_1st_stage_1630", "train_1st_stage_1430", "train_1st_stage_1230", "train_1st_stage_1830" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6910697309676422433939964748904775846715123212406830258224600945184772981649403149805046716589434015655802173087713095629636740874419470419538215627429452
CO_6910697309676422433939964
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al9Ti3
Al3Ti
A3B
[ 13, 13, 13, 13, 13, 13, 13, 13, 13, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.75, 0.25 ]
2
12
[ [ 3.93683, -0.018251, 0.000045 ], [ -0.000045, -0.018251, -3.93683 ], [ 2.02472, 12.1202, -2.02472 ] ]
[ [ 0, 0, 0 ], [ 1.97783, 2.01059, -3.94627 ], [ 3.95574, 4.04927, -3.95575 ], [ 1.99653, 6.04187, -3.96497 ], [ 3.97415, 8.01622, -3.97415 ], [ 2.01524, 10.0732, -3.98367 ], [ 3.99311, 12.10195, -3.99311 ], [ 1.98735, 4.06753, -1.98735 ], [ 2.00576, 8.03447, -2.00576 ], [ 3.94682, 2.13065, -1.97839 ], [ 3.96497, 6.04187, -1.99653 ], [ 3.98312, 9.95309, -2.01468 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9014909728757860008970674445380834637472244616685697709629193153182443113125789376197377767162475192207576845555337937624253730358544651811046326231715438
1
VASP
DFT
null
[ [ -0.000665, 0.000217, -0.000642 ], [ 0.000519, 0.007879, -0.000543 ], [ -0.00004, -0.032818, -0.000816 ], [ 0.000008, 0.00007, 0.000006 ], [ 0.000068, 0.033072, 0.000847 ], [ -0.000567, -0.008039, 0.00051 ], [ 0.000665, 0.000218, 0.000626 ], [ 0.000846, -0.032894, 0.000015 ], [ -0.000869, 0.033084, -0.00004 ], [ -0.003119, -0.079223, 0.003164 ], [ -0.00001, -0.000245, -0.000037 ], [ 0.003163, 0.07868, -0.00309 ] ]
null
[ [ 0.002632356473841264, -0.0000084260373199424, -0.00019567131109644016 ], [ -0.0000084260373199424, -0.02039438072918858, 0.0000082387920461659 ], [ -0.00019567131109644016, 0.0000082387920461659, 0.002632418888932523 ] ]
true
null
null
-61.875774
null
0.025688
0.079347
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:51:53
6654775607741973187178695948936073569632596407857197381043398618945427150357485902996268517005254180804321415522690584871996162459908272385051543935803466
PO_6654775607741973187178695
null
null
null
[ "train_1st_stage_983" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
1547445810375996944856102737004968567279428575803098280057055495438887911350284944612566925827535881749397705043361512032883819377077648816763246967361693
CO_1547445810375996944856102
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni5Ti7
Ni5Ti7
A7B5
[ 28, 28, 28, 28, 28, 22, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.4166666666666667, 0.5833333333333334 ]
2
12
[ [ 2.85359, -3.01021, 2.95492 ], [ 3.0984, -2.99763, -2.97728 ], [ 5.93505, 2.99957, -0.030777 ] ]
[ [ 0.03079, -0.00901, 0.00545 ], [ 4.4074, -1.43497, 1.4453 ], [ 5.96837, -0.00008, -0.03082 ], [ 7.53678, 1.42687, -1.49374 ], [ 5.97345, -2.99936, -0.03411 ], [ 7.51568, -1.49836, -1.51562 ], [ 1.50671, -1.50383, 1.46476 ], [ 2.96725, -0.01797, -0.04625 ], [ 7.3953, -1.50616, 1.44966 ], [ 3.04308, -2.98939, 0.02132 ], [ 4.49342, -1.50358, -1.49578 ], [ 8.94198, -3.00569, -0.03746 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2018242460743842205257014026540430665504279321678334030298570341533179383489409084166230503198771884136100133679513390754384965358232863494319143440565275
1
VASP
DFT
null
[ [ 0.154777, -0.218908, -0.158265 ], [ 0.162366, -0.085429, -0.041614 ], [ -0.013013, -0.015586, 0.018572 ], [ -0.178853, 0.087177, -0.011623 ], [ -0.174652, 0.237469, 0.164678 ], [ 0.021775, -0.011384, 0.007858 ], [ 0.017577, -0.092854, 0.180376 ], [ -0.391301, 0.195171, -0.269972 ], [ -0.019429, 0.003459, -0.008798 ], [ 0.388338, -0.198755, 0.299973 ], [ 0.012435, 0.084288, -0.159844 ], [ 0.01998, 0.015352, -0.021342 ] ]
null
[ [ 0.03693625236551698, 0.0032991993088506313, -0.0028965595551399023 ], [ 0.0032991993088506313, 0.07257558154976668, 0.002700139262948356 ], [ -0.0028965595551399023, 0.002700139262948356, 0.04046414056873997 ] ]
true
null
null
-83.729681
null
0.214371
0.529428
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:37:12
2280848524090680460941543860250677803607156142747335200505902644983700406589081623688494791394873652472201897224869432370527058601144299846814538099386949
PO_2280848524090680460941543
null
null
null
[ "train_1st_stage_2042" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
2282373012823008423602041094690493719752665900053893083167754088110072154700003066979474010789064034350838785394562173273761369935352191841390247378167049
CO_2282373012823008423602041
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni4Ti7
Ni4Ti7
A7B4
[ 28, 28, 28, 28, 22, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.36363636363636365, 0.6363636363636364 ]
2
11
[ [ 0.012288, 1.91951, 1.88571 ], [ 11.2884, 3.77206, -3.78209 ], [ -1.57099, 2.02959, -3.94182 ] ]
[ [ -1.52873, 3.93098, -2.04196 ], [ 1.94835, 1.9358, -0.03295 ], [ 7.67794, 3.8338, -3.84412 ], [ 4.03267, 3.88048, -3.89162 ], [ 3.88757, 1.87464, -1.87501 ], [ 5.78476, 3.86391, -1.97495 ], [ 9.58824, 5.74343, -3.83654 ], [ 0.20264, 1.97812, -1.98593 ], [ 2.13771, 3.89656, -2.01882 ], [ 5.93491, 5.77331, -3.88189 ], [ 7.83854, 5.83721, -5.85659 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3716467074285061019537914542111886983387207501773455678536609257859063800415409843823438806935502579665353306829342750702435116863595585561011284725810288
1
VASP
DFT
null
[ [ 0.358295, 0.13863, -0.133038 ], [ -0.317561, -0.104209, 0.101789 ], [ -0.058981, -0.004172, 0.003517 ], [ 0.084531, -0.00322, -0.00027 ], [ -0.290914, -0.484565, 0.525221 ], [ -0.022108, 0.374204, -0.412255 ], [ -0.126748, -0.482579, 0.479688 ], [ 0.021765, -0.002569, 0.0115 ], [ 0.115721, 0.41126, -0.420419 ], [ 0.048358, -0.37175, 0.423936 ], [ 0.187643, 0.528969, -0.579669 ] ]
null
[ [ 0.0013105296711617075, -0.005007625186787396, 0.0029320737420661784 ], [ -0.005007625186787396, 0.06042592230041359, 0.012076321517123963 ], [ 0.0029320737420661784, 0.012076321517123963, 0.05961153018966834 ] ]
true
null
null
-77.593832
null
0.447053
0.806867
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:23:04
7217309209495310084956273947299432480586251771719679333873687687512861335534240255991620770448492933938830901272958441850765334772810970729420552076541263
PO_7217309209495310084956273
null
null
null
[ "train_1st_stage_2235" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
2245363342480149857912062552106083543918906483542269765324979765434898385679992793439304279458130213868724120910671011956314648225023963326189957106121416
CO_2245363342480149857912062
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni2Ti6
AlNiTi3
A3BC
[ 13, 13, 28, 28, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.2, 0.2, 0.6 ]
3
10
[ [ 0.237747, 4.100057, -0.237744 ], [ 2.915326, 0.000003, 2.915325 ], [ 6.457429, 1.315037, -6.457415 ] ]
[ [ 0.4528, 4.07351, -0.4476 ], [ 3.90616, 1.77828, -0.98563 ], [ 1.38536, 1.90166, -1.38017 ], [ 2.97362, 3.95027, -0.05311 ], [ 2.55554, 3.8297, -2.55034 ], [ 3.8247, 1.61868, -3.81951 ], [ 5.41243, 3.49848, -5.40725 ], [ 1.80338, 2.02211, 1.11713 ], [ 5.40379, 3.66827, -2.48328 ], [ 6.75388, 1.448, -3.83337 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9737041081170470659275465517575695656161509258680970224125783346022813774366140741200796653408244460932678496316504128339096893508284341109327166022201424
1
VASP
DFT
null
[ [ -0.000382, -0.000103, 0.000329 ], [ 0.000819, 0.00002, -0.000804 ], [ 0.015991, -0.001836, -0.016084 ], [ -0.016137, 0.001926, 0.016068 ], [ -0.000335, 0.000213, 0.000314 ], [ 0.006032, -0.000968, -0.006009 ], [ -0.010059, 0.00132, 0.01012 ], [ 0.001195, -0.00035, -0.001207 ], [ 0.010245, -0.001305, -0.010177 ], [ -0.00737, 0.001082, 0.007449 ] ]
null
[ [ 0.0013999704969356148, -0.000017288980278696623, -0.00004337848842488864 ], [ -0.000017288980278696623, 0.0010112493085756055, 0.000017351395369955457 ], [ -0.00004337848842488864, 0.000017351395369955457, 0.0013985973649279205 ] ]
true
null
null
-68.667935
null
0.009744
0.022854
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:00:15
3886479540307460848877163597654591285743277670232570656773152722128420507584908992431519985697669504394943475745791379730652867388093672157086354900543428
PO_3886479540307460848877163
null
null
null
[ "train_1st_stage_302" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6808573792570663600662156592652724911918471408225390477499411432481649489988424111186565895609763959220678543617589111359280970978891036713796265612944908
CO_6808573792570663600662156
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
NiTi5
NiTi5
A5B
[ 28, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.16666666666666666, 0.8333333333333334 ]
2
6
[ [ -1.85672, 5.69041, 0 ], [ -1.85672, -5.69041, 0 ], [ 0, 0, 4.54459 ] ]
[ [ -1.85672, -5.37427, 0 ], [ -1.85672, -3.4819, 2.2723 ], [ -1.85672, -1.4807, 0 ], [ -1.85672, 0.31613, 2.2723 ], [ -1.85672, 2.11297, 0 ], [ -1.85672, 4.11416, 2.2723 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
116918891501666944280257929633476328068406428097586986679245562556157852005936759546998228581821143587633028029292385549026001498569035422764152847417950
1
VASP
DFT
null
[ [ -0.000002, 0.000554, 0.000009 ], [ 0.000004, 0.383774, -0.000005 ], [ -0.000003, 0.103169, 0.000013 ], [ -0.000006, 0.000094, -0.000015 ], [ -0.000001, -0.102736, 0.000008 ], [ 0.000008, -0.384856, -0.00001 ] ]
null
[ [ 0.0009988287054150979, 0, 0 ], [ 0, -0.007681425281224525, 6.241509125883259e-8 ], [ 0, 6.241509125883259e-8, 0.022064858231639974 ] ]
true
null
null
-44.535932
null
0.162531
0.384856
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:38:22
9189631829283782483275880536859582355326990716786642488442503084657460663112877562560795043977363995772060247733545646106042319892853640435538100866641943
PO_9189631829283782483275880
null
null
null
[ "train_2nd_stage_229" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10832993820735788826491952191698079299349972984697904668481494839210948463477996111853866116385701339154304729591252668791657141469393065780850646981819813
CO_1083299382073578882649195
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi3
AlNi3
A3B
[ 13, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.25, 0.75 ]
2
4
[ [ 0, -2.09666, -2.09666 ], [ 0, -2.09666, 2.09666 ], [ -5.1939, 0, 0 ] ]
[ [ 0, -0.00001, 0 ], [ -3.88984, -2.09666, 0 ], [ -2.59695, -0.00001, 0 ], [ -1.30406, -2.09666, 0 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9140189443062704089367689993808660236359668246876839602086743701944293270188256142922021519108512383025431587356929374182742081306607145349600537515778895
1
VASP
DFT
null
[ [ 0.000378, 0.000069, 0.000001 ], [ 0.219482, -0.00007, 0 ], [ -0.000343, 0.00007, 0 ], [ -0.219518, -0.000069, 0 ] ]
null
[ [ -0.0065201300932626865, 0, 0 ], [ 0, 0.0017043688970049412, 0 ], [ 0, 0, 0.0017043688970049412 ] ]
true
null
null
-21.407256
null
0.109934
0.219518
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:24:17
9764033529250853974479121817973753752754819859591700288015003725431840364692921771971369544613455349752771206277651472756849309978360988910295955785672360
PO_9764033529250853974479121
null
null
null
[ "train_2nd_stage_590" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4579731223232378788782426689277973738188765100251864888832460987130131716723493855152903696852614004422228599733131910838247585167572937523666432930200998
CO_4579731223232378788782426
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0