chemical_formula_hill
string
chemical_formula_reduced
string
chemical_formula_anonymous
string
atomic_numbers
list
elements
list
elements_ratios
list
nelements
int32
nsites
int32
cell
list
positions
list
pbc
list
dimension_types
list
nperiodic_dimensions
int32
structure_hash
string
multiplicity
int32
software
string
method
string
adsorption_energy
float64
atomic_forces
list
atomization_energy
float64
cauchy_stress
list
cauchy_stress_volume_normalized
bool
electronic_band_gap
float64
electronic_band_gap_type
string
energy
float64
formation_energy
float64
max_force_norm
float64
mean_force_norm
float64
property_object_metadata
string
property_object_metadata_id
string
property_object_last_modified
timestamp[ns]
property_object_hash
string
property_object_id
string
configuration_metadata
string
configuration_metadata_id
string
configuration_labels
list
configuration_names
list
configuration_dataset_ids
list
configuration_last_modified
timestamp[ns]
configuration_hash
string
configuration_id
string
dataset_name
string
dataset_authors
list
dataset_description
string
dataset_elements
list
dataset_nelements
int32
dataset_nproperty_objects
int64
dataset_nconfigurations
int32
dataset_nsites
int64
dataset_adsorption_energy_count
int64
dataset_atomic_forces_count
int64
dataset_atomization_energy_count
int64
dataset_cauchy_stress_count
int64
dataset_electronic_band_gap_count
int64
dataset_energy_count
int64
dataset_energy_mean
float64
dataset_energy_variance
float64
dataset_formation_energy_count
int64
dataset_last_modified
timestamp[ns]
dataset_dimension_types
list
dataset_nperiodic_dimensions
list
dataset_publication_year
string
dataset_total_elements_ratios
list
dataset_license
string
dataset_links
string
dataset_doi
string
dataset_hash
string
dataset_id
string
dataset_extended_id
string
Ni8Ti16
NiTi2
A2B
[ 28, 28, 28, 28, 28, 28, 28, 28, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
24
[ [ 0, 5.65076, 5.65076 ], [ 5.65076, 0, 5.65076 ], [ 5.65076, 5.65076, 0 ] ]
[ [ 0.95585, 4.69491, 4.69491 ], [ 4.69491, 0.95585, 4.69491 ], [ 0.95585, 0.95585, 0.95585 ], [ 4.69491, 4.69491, 0.95585 ], [ 3.78123, 7.52029, 3.78123 ], [ 7.52029, 3.78123, 3.78123 ], [ 7.52029, 7.52029, 7.52029 ], [ 3.78123, 3.78123, 7.52029 ], [ 5.65076, 3.60843, 5.65076 ], [ 5.65076, 7.69309, 5.65076 ], [ 7.69309, 5.65076, 5.65076 ], [ 3.60843, 5.65076, 5.65076 ], [ 5.65076, 5.65076, 3.60843 ], [ 5.65076, 5.65076, 7.69309 ], [ 4.86771, 2.82538, 2.82538 ], [ 0.78305, 2.82538, 2.82538 ], [ 2.82538, 0.78305, 2.82538 ], [ 2.82538, 4.86771, 2.82538 ], [ 2.82538, 2.82538, 4.86771 ], [ 2.82538, 2.82538, 0.78305 ], [ 9.88883, 7.06345, 7.06345 ], [ 7.06345, 9.88883, 7.06345 ], [ 9.88883, 9.88883, 9.88883 ], [ 7.06345, 7.06345, 9.88883 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5547906958520626504065544366076301645019306786281149025322413005955892748645148235830213157806380640154559540372733722452501503783666649186245809103504851
1
VASP
DFT
null
[ [ 0.273377, -0.273462, -0.273462 ], [ -0.273497, 0.273775, -0.273556 ], [ 0.273024, 0.273306, 0.27315 ], [ -0.273136, -0.273207, 0.273273 ], [ 0.273468, -0.273118, 0.273262 ], [ -0.273628, 0.273723, 0.273598 ], [ -0.273618, -0.273414, -0.273512 ], [ 0.273561, 0.273455, -0.273286 ], [ 0.000019, -0.682294, -0.000073 ], [ 0.000151, 0.682174, -0.00004 ], [ 0.682117, -0.000033, 0.000084 ], [ -0.682036, -0.000145, -0.0003 ], [ -0.00011, -0.000143, -0.682375 ], [ 0.000358, -0.000121, 0.682562 ], [ 0.682657, 0.000152, 0.000197 ], [ -0.682926, 0.000359, 0.000133 ], [ 0.00026, -0.682809, 0.000499 ], [ 0.000063, 0.682318, -0.000158 ], [ 0.000229, -0.00004, 0.682788 ], [ 0.000095, 0.000572, -0.682726 ], [ 0.000178, -0.000387, -0.000109 ], [ -0.000465, -0.000288, 0.000027 ], [ 0.000198, -0.000199, 0.000071 ], [ -0.000339, -0.000174, -0.000046 ] ]
null
[ [ 0.025037938688663205, 0.0000025590187416121356, 5.617358213294933e-7 ], [ 0.0000025590187416121356, 0.025036690386838034, -5.617358213294933e-7 ], [ 5.617358213294933e-7, -5.617358213294933e-7, 0.025040809782861117 ] ]
true
null
null
-175.246623
null
0.499164
0.682926
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:26:41
11651616037096579396407593485605792837056272221580033984440725314653532241095842963285213406624841371238877627245646682854402104584234366075156068151098095
PO_1165161603709657939640759
null
null
null
[ "train_2nd_stage_32" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9290999103656592129998125348658135377646103363298118406366295693998852290023384854113686983982105988341028466892550688741370906091499883832035023099749813
CO_9290999103656592129998125
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni3Ti3
Al2NiTi
A2BC
[ 13, 13, 13, 13, 13, 13, 28, 28, 28, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.5, 0.25, 0.25 ]
3
12
[ [ 0.006148, 4.19242, 0.098028 ], [ -4.61277, 0.007888, 3.79254 ], [ 2.48217, 0.058114, 4.44877 ] ]
[ [ 2.2748, 4.07281, 4.32015 ], [ 0.01638, 0.08938, 4.28233 ], [ -2.40083, 0.18264, 4.02703 ], [ -3.51673, 1.99745, 3.653 ], [ -1.09049, 2.1973, 4.27108 ], [ -1.12271, 0.08459, 6.22702 ], [ 1.21257, 2.09683, 4.41433 ], [ -1.78091, 3.05043, 6.2112 ], [ -1.96562, 2.90762, 2.07843 ], [ 1.10939, 1.26867, 2.35526 ], [ -1.20203, 0.77962, 1.98179 ], [ 0.63447, 2.62507, 2.35239 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2692768901754879495704871355568040252980595541099489015145320579885276111166852986759102784210255334509726126811050501534622840628862013391801252877263308
1
VASP
DFT
null
[ [ -0.721866, 0.905854, 4.133411 ], [ 0.488526, -0.609925, -1.395975 ], [ 0.169604, -4.084694, 1.719385 ], [ -1.182826, 1.34619, -0.78016 ], [ -0.283873, -0.714775, -0.17737 ], [ 13.077733, 29.404557, 1.509198 ], [ 1.320239, 0.436187, 4.027895 ], [ -13.650666, -26.180821, -3.369818 ], [ 1.457942, -1.424012, 0.354759 ], [ 19.848053, -53.333463, -3.005943 ], [ 0.654122, -0.005455, 0.507216 ], [ -21.176987, 54.260357, -3.522598 ] ]
null
[ [ 0.5383474510877096, -0.05341458543894388, -0.014809353533165724 ], [ -0.05341458543894388, 0.9945648184557505, 0.024782099229593253 ], [ -0.014809353533165724, 0.024782099229593253, 0.34434387122970556 ] ]
true
null
null
-33.706211
null
16.458539
58.35289
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:16:13
1605308064391881352285388218830580641632611280264150148194571706069193323359244673750996222615022710898366098093825448855269162490645428500262867856511177
PO_1605308064391881352285388
null
null
null
[ "train_1st_stage_1901", "train_1st_stage_1701", "train_1st_stage_1501", "train_1st_stage_1301" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10402188761750282688458641502566311182527489471182923828364671829290480780004100332409646279110187398319717345715785702958745647275497239402838905996598732
CO_1040218876175028268845864
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
NiTi2
NiTi2
A2B
[ 28, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
3
[ [ 0.127241, 2.06521, 2.0667 ], [ 5.39243, 1.74937, 0 ], [ 0.127241, 2.06521, -2.0667 ] ]
[ [ 0, 0.00001, 0 ], [ 1.74085, 1.96842, 0 ], [ 3.90607, 3.91138, 0 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
1719867743039587702840291971776675335888126622349965610492327870769729587098764951029611133281931977419553355629571471634251863931607325680353723899937937
1
VASP
DFT
null
[ [ 0.000149, -0.000029, 0.000004 ], [ 0.535771, -0.029879, -0.000001 ], [ -0.53592, 0.029908, -0.000003 ] ]
null
[ [ 0.010973259609306615, -0.00028280277849377045, 0 ], [ -0.00028280277849377045, 0.0029174686107116114, 6.241509125883259e-8 ], [ 0, 6.241509125883259e-8, 0.002620560021593345 ] ]
true
null
null
-21.954849
null
0.357836
0.536754
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:40:57
1752252702009341799884774200124723257997570684616442793394931451966877629586649150633912772763265073344400105851078505661436123808794036499341099946428145
PO_1752252702009341799884774
null
null
null
[ "train_1st_stage_963" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4045894948105836400801883882661280099750542108539161280643557365320430414308053736951552297943111117291174037331311646018422199894000833892125177679571792
CO_4045894948105836400801883
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni8Ti4
AlNi4Ti2
A4B2C
[ 13, 13, 28, 28, 28, 28, 28, 28, 28, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.14285714285714285, 0.5714285714285714, 0.2857142857142857 ]
3
14
[ [ 1.78568, -2.10462, 1.10008 ], [ 1.78628, 2.10418, 1.10848 ], [ 0.003762, 0.001284, 23.809 ] ]
[ [ 1.21704, 0.0003, 10.2312 ], [ 1.2189, 0.00094, 22.1357 ], [ 3.32439, -0.00033, 2.89503 ], [ 3.32628, 0.00031, 14.7995 ], [ 1.81751, 0.00002, 5.31269 ], [ 1.81941, 0.00066, 17.2172 ], [ 0.20662, 0.00037, 7.88521 ], [ 0.2085, 0.00101, 19.7897 ], [ 2.31384, 0.00029, 12.4481 ], [ 2.3157, 0.00093, 24.3526 ], [ 2.76908, 0.00001, 7.75205 ], [ 2.77097, 0.00065, 19.6565 ], [ 0.85999, 0.00006, 2.88322 ], [ 0.86188, 0.0007, 14.7877 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
13067754245299251831441955935877008607331741596008936448151232644518084463447677258981473425927075936831215813389414138287561098929986622109600002696410827
1
VASP
DFT
null
[ [ -0.158967, 0.001745, 0.284695 ], [ -0.158964, 0.001744, 0.284732 ], [ 0.157015, 0.000527, -0.25798 ], [ 0.157055, 0.000519, -0.257877 ], [ 0.006463, -0.001751, -0.00127 ], [ 0.006362, -0.001747, -0.001308 ], [ 0.008515, 0.001218, -0.005645 ], [ 0.008819, 0.00122, -0.006208 ], [ -0.045692, -0.002342, 0.073927 ], [ -0.045695, -0.002345, 0.07405 ], [ 0.116296, 0.00174, -0.207693 ], [ 0.116309, 0.001738, -0.207554 ], [ -0.083718, -0.001137, 0.113984 ], [ -0.083798, -0.001131, 0.114146 ] ]
null
[ [ -0.0007288834357206468, -0.0003948378673033749, -0.008672015194593458 ], [ -0.0003948378673033749, -0.00429153684477481, 0.0007636486415518166 ], [ -0.008672015194593458, 0.0007636486415518166, 0.004039567121362903 ] ]
true
null
null
-88.512581
null
0.158843
0.326106
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:32:29
2819138508615876038843205394585709542651934930031575771200711906210109491544196787838476418759295067715025750499230021408541568303815086128278592884529945
PO_2819138508615876038843205
null
null
null
[ "train_2nd_stage_571" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7477738833998824520868049127403659169561926867894015880630401232669800367234636536802883462752282448076984998023350803578329288162627606288629046850860984
CO_7477738833998824520868049
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni4Ti4
NiTi
AB
[ 28, 28, 28, 28, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.5, 0.5 ]
2
8
[ [ -1.65042, -2.85861, 0 ], [ -3.30083, 0, 0 ], [ 0, 0, -11.9206 ] ]
[ [ 0, 0, -8.94043 ], [ 0, 0, -2.98014 ], [ -1.65042, -0.95287, -2.98014 ], [ -3.30083, -1.90574, -8.94043 ], [ -1.65042, -0.95287, -10.4186 ], [ -3.30083, -1.90574, -4.4583 ], [ -3.30083, -1.90574, -1.50199 ], [ -1.65042, -0.95287, -7.46228 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11547906235804317619483572669712046204609447970360310391758482641079719588463664257732355005113890783185572886173409435469587858212613008371069104967375461
1
VASP
DFT
null
[ [ 0.000207, -0.000087, -0.000267 ], [ -0.00021, 0.000137, 0.000727 ], [ 0.000275, -0.000143, 0.000555 ], [ -0.000277, 0.000104, -0.000308 ], [ 0.000042, -0.000008, -4.056446 ], [ -0.000032, 0.000004, -4.056244 ], [ -0.000044, 0.000001, 4.05626 ], [ 0.00004, -0.000007, 4.055724 ] ]
null
[ [ 0.33055026089168604, -0.0000029335092891651313, -6.241509125883259e-8 ], [ -0.0000029335092891651313, 0.3305491998351347, -1.8724527377649775e-7 ], [ -6.241509125883259e-8, -1.8724527377649775e-7, 0.10540223706152833 ] ]
true
null
null
-44.34871
null
2.028357
4.056446
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:20:24
12900176842464229520995599832950693948089634309076159151059015386693227463390159233774270082134566297524631148975052241542638101208404057128859537450879068
PO_1290017684246422952099559
null
null
null
[ "train_1st_stage_2173" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
3376000619151055187026747870937817459350477006844773209264562184522106567736433249708943278063544335978770050191138203228058253390304249480437529385945795
CO_3376000619151055187026747
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni5Ti4
Ni5Ti4
A5B4
[ 28, 28, 28, 28, 28, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.5555555555555556, 0.4444444444444444 ]
2
9
[ [ 8.00434, -0.007349, -0.134695 ], [ -0.00734, 8.00433, -0.134695 ], [ 4.04672, 4.04674, 1.7157 ] ]
[ [ 8.00434, -0.00732, -0.13469 ], [ 6.73318, 6.73319, 1.62477 ], [ 2.68409, 5.31291, -0.13469 ], [ 9.35963, 6.73081, 1.58101 ], [ 5.31055, 5.31053, -0.17846 ], [ 8.0018, 2.51692, -0.1768 ], [ 4.04193, 9.5268, 1.62311 ], [ 2.51694, 8.00178, -0.1768 ], [ 9.52679, 4.04194, 1.62311 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
1046663910984088411687490002815162980776253545050718195333619185524074359360184473414453110544892838795322539335655644046636379438595247900292952423164167
1
VASP
DFT
null
[ [ -0.000168, -0.000048, -0.000013 ], [ 0.024726, 0.02518, 0.018796 ], [ 0.026704, -0.026464, -0.000038 ], [ -0.026585, 0.026748, 0.00003 ], [ -0.025438, -0.024779, -0.018746 ], [ 0.003437, -0.220423, 0.0313 ], [ -0.003425, 0.220262, -0.031308 ], [ -0.219963, 0.003128, 0.031255 ], [ 0.220713, -0.003603, -0.031275 ] ]
null
[ [ 0.011652210972020195, -0.00031931560688018746, 0.0028983071776951495 ], [ -0.00031931560688018746, 0.011660387348975104, 0.0029036748755434092 ], [ 0.0028983071776951495, 0.0029036748755434092, -0.009064918194067809 ] ]
true
null
null
-61.684745
null
0.116214
0.222947
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:14:04
4746803743592623075729687190702784991134384924598066447018284638947899909040231959394982779331807526477468050225366512004876753328773966232609550746509539
PO_4746803743592623075729687
null
null
null
[ "train_2nd_stage_558" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
13340178898911923522075893073806536020492233630860418736526486480261275615224737726236186488364359702992483728946166692841950045634850132073267815792731906
CO_1334017889891192352207589
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2NiTi3
Al2NiTi3
A3B2C
[ 13, 13, 28, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.3333333333333333, 0.16666666666666666, 0.5 ]
3
6
[ [ 1.946, -6.18363, 0 ], [ 1.946, 6.18363, 0 ], [ 0, 0, 3.949 ] ]
[ [ 1.946, -4.13146, 1.9745 ], [ 1.946, 4.13146, 1.9745 ], [ 0, 0, 0 ], [ 1.946, -1.95109, 0 ], [ 1.946, 1.95109, 0 ], [ 1.946, 0, 1.9745 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11711798457628025417337330798896393592163554033118431483306346730961755742326555824821520966244723882223817916968541074832474421482018098288186571663020463
1
VASP
DFT
null
[ [ -0.000001, -0.01557, 0 ], [ -0.000001, 0.01574, 0 ], [ 0, 0.000062, -0.000001 ], [ -0.000001, -0.384794, -0.000003 ], [ 0.000003, 0.384285, 0.000003 ], [ 0, 0.000277, 0.000001 ] ]
null
[ [ 0.019069370756854824, 0, -6.241509125883259e-8 ], [ 0, 0.002400421994723442, 6.241509125883259e-8 ], [ -6.241509125883259e-8, 6.241509125883259e-8, 0.022889736077716705 ] ]
true
null
null
-38.180057
null
0.133455
0.384794
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:59:31
5062720539578700127089379098030282453806339235391596293238586329779534554382023524602997689877917889913575289666450535255699609888103189464417540876613940
PO_5062720539578700127089379
null
null
null
[ "train_2nd_stage_246" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11668337818714920363489477690043024302059877094426234461829375997784131385042845054418210577541128686651528553087392537494884877928220667071423863399217588
CO_1166833781871492036348947
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni4Ti2
Al2Ni2Ti
A2B2C
[ 13, 13, 13, 13, 28, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.4, 0.4, 0.2 ]
3
10
[ [ 1.845892, 2.794613, 2.220236 ], [ 4.468632, 2.374416, -6.703889 ], [ -2.271673, 2.864853, -1.717357 ] ]
[ [ -2.12206, 2.90171, -1.87204 ], [ -0.03348, 3.25268, -4.05019 ], [ 2.05494, 3.60362, -6.22824 ], [ 2.02529, 3.21757, -2.0814 ], [ -0.197, 4.46765, -1.80732 ], [ 1.97567, 4.83235, -4.0726 ], [ 0.12912, 1.6568, -2.17663 ], [ 2.07555, 1.98372, -4.20634 ], [ -0.10535, 2.85966, 0.14041 ], [ 4.15575, 3.57542, -4.30313 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2073148999743604287692175066224563365191427809736820642162944777416343272879759690098926582112459042541809473069652545665739595536507634674158793323909180
1
VASP
DFT
null
[ [ -0.003098, -0.000478, 0.003037 ], [ -0.000076, 0.000032, 0.000011 ], [ 0.003005, 0.000391, -0.002956 ], [ 0.000002, -0.000048, 0.000067 ], [ -0.005224, -0.000907, 0.005281 ], [ 0.005726, 0.00091, -0.005805 ], [ -0.00011, 0.000174, 0.000143 ], [ -0.000145, -0.000023, 0.000086 ], [ -0.014829, -0.002495, 0.015474 ], [ 0.014749, 0.002445, -0.015337 ] ]
null
[ [ -0.001915456735642313, 0.00002053456502415592, -0.00014511508717678575 ], [ 0.00002053456502415592, -0.0020475894838372618, -0.00003139479090319279 ], [ -0.00014511508717678575, -0.00003139479090319279, -0.0018981677553636164 ] ]
true
null
null
-57.98113
null
0.006787
0.021577
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:04:25
10910701808989085469874039595771973820858159567573649794816244592017856293918877885090504203124418592174289850889571504737032522035428790356326273193895365
PO_1091070180898908546987403
null
null
null
[ "train_1st_stage_154", "train_1st_stage_208" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6229958730763516019073806309137874035491260822015710607075424963693375279725847182326818350294327103997532293548167734578006081539231018193117844186825751
CO_6229958730763516019073806
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlTi
AlTi
AB
[ 13, 22 ]
[ "Al", "Ti" ]
[ 0.5, 0.5 ]
2
2
[ [ -1.42586, 1.42586, 2.01647 ], [ 1.42586, -1.42586, 2.01647 ], [ 2.77719, 2.77719, 0 ] ]
[ [ 0, 0, 0 ], [ 1.38859, 1.38859, 2.01647 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5297280849350226512702568679574182344637535513631225903821677279643119171321521645108564184306142791593104480287475146976916383014899740227134356988492790
1
VASP
DFT
null
[ [ -0.000032, -0.000032, 0 ], [ 0.000032, 0.000032, 0 ] ]
null
[ [ -0.0022403272856445365, -0.002090406236440821, 1.2483018251766518e-7 ], [ -0.002090406236440821, -0.00224014004037076, -1.2483018251766518e-7 ], [ 1.2483018251766518e-7, -1.2483018251766518e-7, -0.00014985863411245702 ] ]
true
null
null
-12.37051
null
0.000045
0.000045
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:32:21
1412246087802132137212975689439245405920080619139154756710778965710164438583134858419545125518647729646460710639314944999555737544158889976675447333497130
PO_1412246087802132137212975
null
null
null
[ "train_1st_stage_834" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
8450891579907255886784031600943132530014885803167071591424599789445362862097570519839227827407816026262048339796278072371448397716013287049510670500541424
CO_8450891579907255886784031
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
NiTi5
NiTi5
A5B
[ 28, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.16666666666666666, 0.8333333333333334 ]
2
6
[ [ 2.63936, -4.5715, 0 ], [ 2.63936, 4.5715, 0 ], [ 0, 0, 4.33339 ] ]
[ [ 0, 0, 0 ], [ 1.31968, 2.28575, 2.16669 ], [ 2.63936, 1.52383, 0 ], [ 1.31968, -2.28575, 2.16669 ], [ 2.63936, 0, 2.16669 ], [ 2.63936, -1.52383, 0 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6871309081307656513475797616867641386186026260781365914731560382763158599404268474041999612110737735712297442786611110262569528394080855161572342303635177
1
VASP
DFT
null
[ [ -0.000004, -0.000036, 0.000008 ], [ -0.000068, 0.000016, 0.000021 ], [ 0.000083, 0.000181, -0.000036 ], [ -0.000059, -0.000098, 0.000024 ], [ 0.000009, 0.000035, 0.000023 ], [ 0.000039, -0.000098, -0.00004 ] ]
null
[ [ -0.004841975534586455, 4.36905638811828e-7, -6.241509125883259e-8 ], [ 4.36905638811828e-7, -0.004835359534913018, -6.241509125883259e-8 ], [ -6.241509125883259e-8, -6.241509125883259e-8, 0.020458168952455107 ] ]
true
null
null
-40.604893
null
0.000097
0.000202
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:12:54
1534349062144136831430857575367552792159296040944099573000625390065212764189824327898626571432339793521306323204310808087406496279023115104587236948358384
PO_1534349062144136831430857
null
null
null
[ "train_1st_stage_2353" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11102860560667472884217102908702225473582735936237669701411428463204428091369319088618066436753757331188497299383476092509449160792503149148289500634591889
CO_1110286056066747288421710
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al5Ti3
Al5Ti3
A5B3
[ 13, 13, 13, 13, 13, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.625, 0.375 ]
2
8
[ [ -2.78582, -2.78582, 0 ], [ -1.25691, 1.25691, -6.09826 ], [ 2.9466, -2.9466, -3.85778 ] ]
[ [ 1.67988, -1.67988, -9.91761 ], [ -1.33882, -1.44701, -2.00679 ], [ 0.118, -0.118, -4.052 ], [ 0.24424, -0.24424, -8.03802 ], [ 1.55364, -1.55364, -5.93159 ], [ -1.29874, -1.48708, -6.12439 ], [ 0.13448, -2.92031, -3.93568 ], [ 0.3108, -3.09662, -7.84522 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9716258395615806305295235674811414177123836336437113605553299231887280892026726166999493046782303216938998062156580453684352580574926043485996999624108361
1
VASP
DFT
null
[ [ -0.024458, 0.024428, 0.11975 ], [ -0.000091, 0.000137, -0.000165 ], [ 0.024232, -0.024262, -0.119543 ], [ 0.086999, -0.087026, -0.025226 ], [ -0.086879, 0.086849, 0.024968 ], [ -0.015492, 0.015485, -0.028118 ], [ -0.000135, 0.000203, -0.000255 ], [ 0.015824, -0.015814, 0.028589 ] ]
null
[ [ -0.006711619593244785, -0.008170197860872443, -0.001909464886881465 ], [ -0.008170197860872443, -0.006711619593244785, 0.0019090903963339119 ], [ -0.001909464886881465, 0.0019090903963339119, 0.0008670704477677021 ] ]
true
null
null
-45.44575
null
0.071563
0.125613
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:26:34
6949061312211805882374211876882798450576891664934879727203112628801438250336283280390764718777275763527660619049981014715122555303999478062178180671129112
PO_6949061312211805882374211
null
null
null
[ "train_1st_stage_678" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5784888342222427286205626934673219068154179227441686092971623946385272104107175099195975804886048644268653770732534111849042545492923745584177642685220011
CO_5784888342222427286205626
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni
Al3Ni
A3B
[ 13, 13, 13, 28 ]
[ "Al", "Ni" ]
[ 0.75, 0.25 ]
2
4
[ [ 0, 0, -2.79432 ], [ 0, 2.79432, 0 ], [ 7.17964, 0, 0 ] ]
[ [ 6.86456, 0, 0 ], [ 1.79491, 1.39716, -1.39716 ], [ 3.90489, 0, 0 ], [ 5.38473, 1.39716, -1.39716 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12870246162548290038815878308436142320168375744848705807289552112103574571127046740903514431302114034961712445573294761292848346622599488608189261221326948
1
VASP
DFT
null
[ [ 0.35729, 0, 0 ], [ -0.000022, 0, 0 ], [ -0.357232, 0, 0 ], [ -0.000036, 0, 0 ] ]
null
[ [ -0.013915257350882948, 0, 0 ], [ 0, -0.005476424937232488, 0 ], [ 0, 0, -0.005476424937232488 ] ]
true
null
null
-17.827044
null
0.178645
0.35729
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:39:44
3546732125668552416348699763397345124331054685357391157062882810867074292839591722593368773476636262631179295335585661757965445925496731846432664746821394
PO_3546732125668552416348699
null
null
null
[ "train_2nd_stage_12" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7336177761200221291898178868646572150245287304543679387176161750725402154507041168850274242266577827852821938566147863285875003983483002241117884766645214
CO_7336177761200221291898178
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al5Ti5
AlTi
AB
[ 13, 13, 13, 13, 13, 22, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.5, 0.5 ]
2
10
[ [ 2.671835, -2.951095, 0.180272 ], [ -3.49716, -3.350146, -3.002159 ], [ 3.51282, 0.083244, -6.63356 ] ]
[ [ 5.8361, -3.19664, -6.7495 ], [ 1.79518, -3.99642, -4.00628 ], [ 0.72331, -2.16261, -2.15126 ], [ 0.19519, -2.87916, -6.04161 ], [ 1.26707, -4.71297, -7.89662 ], [ 3.01566, -3.03789, -6.39556 ], [ 4.08753, -4.87171, -8.25057 ], [ 0.0466, -5.6715, -5.50736 ], [ -1.02527, -3.83767, -3.65228 ], [ 1.94379, -1.20407, -4.54053 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7564575073759104201537746033761945164840702915678668421460475474365451563957949253273851908399724282425360194029678730028107414956548674120070643472822326
1
VASP
DFT
null
[ [ 0.001302, 0.001172, -0.000393 ], [ -0.000464, -0.000312, 0.001145 ], [ 0.000621, 0.000461, -0.00117 ], [ -0.001378, -0.001259, 0.000308 ], [ -0.000066, -0.000047, 0.000145 ], [ -0.000095, -0.000081, -0.000261 ], [ -0.000307, -0.000503, -0.002487 ], [ -0.000331, -0.000382, -0.000269 ], [ 0.0003, 0.000324, -0.000179 ], [ 0.000418, 0.000628, 0.003161 ] ]
null
[ [ 0.000053115242661266524, 0.00023099825274893937, -0.00008756837303614211 ], [ 0.00023099825274893937, -0.00001210852770421352, -0.00008575833538963597 ], [ -0.00008756837303614211, -0.00008575833538963597, -0.0002829900237675469 ] ]
true
null
null
-61.911533
null
0.001367
0.00325
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:21:26
3419914282008174464263008765476790296224888487101039690678102459809104750679518969770672079518229549945502931550836463722856695982149267384983222798005440
PO_3419914282008174464263008
null
null
null
[ "train_1st_stage_374" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5233811834567745243069824933349475459101833374425947612680478250779100239172743512219747633939674806155620462617259245339464436900147298958872519645482174
CO_5233811834567745243069824
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlTi2
AlTi2
A2B
[ 13, 22, 22 ]
[ "Al", "Ti" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
3
[ [ 1.89337, -3.27941, 0 ], [ 1.89337, 3.27941, 0 ], [ 0, 0, 4.10444 ] ]
[ [ 0, 0, 0 ], [ 1.89337, 1.09314, 2.05222 ], [ 1.89337, -1.09314, 2.05222 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9069711161661376494645561305231427492092231495339743832844649399375104582208786982824335750252979481702949540722526372825365261122586744996591999672783380
1
VASP
DFT
null
[ [ 0, 0.000002, 0.000006 ], [ -0.000002, 0.000105, -0.000008 ], [ 0.000002, -0.000107, 0.000002 ] ]
null
[ [ 0.03906504388308198, 1.2483018251766518e-7, 6.241509125883259e-8 ], [ 1.2483018251766518e-7, 0.03906479422271695, 0 ], [ 6.241509125883259e-8, 0, -0.04108567004749543 ] ]
true
null
null
-16.391822
null
0.000073
0.000107
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:17:19
926961697814541074518446569927876902184638973260782599026037626787843673102205900564026598373558441616157109085574808720438617330806906317402963532584659
PO_9269616978145410745184465
null
null
null
[ "train_1st_stage_2032" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11023421386861702735677824989125071166153915208030616052221185719475575857126432948176505765665079062978488996356785360361562300894633284649358057729563311
CO_1102342138686170273567782
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni4Ti2
Al3Ni2Ti
A3B2C
[ 13, 13, 13, 13, 13, 13, 28, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.5, 0.3333333333333333, 0.16666666666666666 ]
3
12
[ [ 4.74778, 2.46047, 0.07053 ], [ -0.5327, 2.76022, 3.95155 ], [ 0.560662, -2.74979, 3.98971 ] ]
[ [ 5.00619, -0.23743, 4.2224 ], [ 4.47643, 2.50986, 3.82931 ], [ 2.03577, -0.84455, 4.15325 ], [ 1.49534, 1.90482, 3.84803 ], [ 1.84195, 1.20112, 2.01342 ], [ 0.61395, 1.58926, 5.96627 ], [ 2.94823, 0.69843, 4.22144 ], [ 2.50808, 3.46229, 3.98227 ], [ 2.13414, 2.27481, 5.98797 ], [ 4.88384, 1.7781, 6.02967 ], [ 2.62485, 0.22818, 5.81961 ], [ 3.13418, 2.78807, 2.04282 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7154241571786144662902491226309510130110677389046671831009691052099965835434594296024022774168684584198045734533298192745107490233540670918168986732209506
1
VASP
DFT
null
[ [ 0.93531, 0.620876, -0.933974 ], [ 1.067823, 0.15082, 0.929118 ], [ -9.608215, -4.148485, -5.514339 ], [ -9.227737, 0.925626, 2.606013 ], [ -3.152848, -7.411241, 0.203204 ], [ -16.4678, -7.513901, -0.240184 ], [ 8.083224, 9.023755, -10.563164 ], [ 5.675838, 4.884278, 2.57273 ], [ 18.183964, 2.261521, 0.889742 ], [ 0.707413, -0.289633, -0.343491 ], [ 237.282226, -37.813608, 52.937005 ], [ -233.479198, 39.309992, -42.54266 ] ]
null
[ [ -1.8003123142314672, 0.3663790822929976, -0.32607147877313475 ], [ 0.3663790822929976, -0.04166101235871935, 0.04268480710063798 ], [ -0.32607147877313475, 0.04268480710063798, -0.13380285120685242 ] ]
true
null
null
-27.42959
null
48.356333
246.038717
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:17:51
5295315507213531137165801677601083457512852218276714705366877503608984934723007947004855342771274602879553538965454407191480772083717242456432672301088371
PO_5295315507213531137165801
null
null
null
[ "train_1st_stage_1644", "train_1st_stage_1444", "train_1st_stage_1244", "train_1st_stage_1844" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6706149864156503222567412740277742872358987370119337952221381128432809544329119107749191359360318544524053781075070122308422548402918375780060442676702949
CO_6706149864156503222567412
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni6
AlNi
AB
[ 13, 13, 13, 13, 13, 13, 28, 28, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.5, 0.5 ]
2
12
[ [ 2.58559, 0.589912, -0.930742 ], [ -2.38488, 3.9515, 0.12303 ], [ -0.026182, 0.008641, 12.6638 ] ]
[ [ 2.29822, 0.72288, 2.59891 ], [ -2.12369, 3.82717, 9.25716 ], [ 0.63266, 1.8463, 7.17141 ], [ 1.20741, 1.58034, 0.11213 ], [ -1.03288, 2.96971, 11.7439 ], [ -0.45813, 2.70375, 4.68464 ], [ -1.81325, 3.46383, 1.40191 ], [ 1.98778, 1.08622, 10.4542 ], [ 1.49166, 1.22565, 4.92064 ], [ 0.34843, 2.20098, 2.3629 ], [ -0.17389, 2.34907, 9.49315 ], [ -1.31713, 3.32441, 6.93543 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2341405943482745304763451407019447651424443193702316889297428466767211840713088734862785962584125532164895416944346806213714972687222812762531724162878176
1
VASP
DFT
null
[ [ 0.026162, -0.135905, -0.01246 ], [ -0.026206, 0.136032, 0.012417 ], [ 0.026242, -0.136052, -0.012365 ], [ -0.026093, 0.136037, 0.012529 ], [ 0.026221, -0.135967, -0.011822 ], [ -0.02619, 0.135802, 0.012304 ], [ -0.016031, -0.060692, -0.084133 ], [ 0.01602, 0.060732, 0.083729 ], [ -0.015943, -0.060533, -0.083812 ], [ 0.015959, 0.060657, 0.084024 ], [ -0.01609, -0.060747, -0.084309 ], [ 0.015951, 0.060637, 0.083898 ] ]
null
[ [ -0.009474798098364563, -0.0019711934121364504, 0.004036820857347514 ], [ -0.0019711934121364504, -0.005015676733559786, -0.0014254358541692185 ], [ 0.004036820857347514, -0.0014254358541692185, -0.0008360501474120624 ] ]
true
null
null
-62.273102
null
0.121922
0.13911
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:55:19
5784052755880275543652512180565993183150249861210208226523235091461808999539118230351253145036194429734455211329434270393430241030910507506975139087923856
PO_5784052755880275543652512
null
null
null
[ "train_2nd_stage_309" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5712279992381473287478588783355524281742793401761517562951431190969913827732601031921293585846947567176563213606105456594027157544850666987055959267317612
CO_5712279992381473287478588
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi8Ti3
AlNi8Ti3
A8B3C
[ 13, 28, 28, 28, 28, 28, 28, 28, 28, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.08333333333333333, 0.6666666666666666, 0.25 ]
3
12
[ [ 3.6312, -0.506167, -0.489436 ], [ -1.08786, 2.1733, 3.65707 ], [ 1.05331, -9.41531, 3.55704 ] ]
[ [ 2.09669, 0.09133, 1.48309 ], [ 1.10871, -9.08102, 3.62109 ], [ 0.50678, 0.35455, 3.39156 ], [ 2.06562, -1.78424, 3.19182 ], [ 0.01672, -3.35203, 3.58329 ], [ 1.59877, -5.37444, 3.42936 ], [ 3.18107, -7.44839, 3.3314 ], [ 1.58266, -3.65981, 1.54634 ], [ 0.03283, -5.06666, 5.46631 ], [ -0.00518, -1.72128, 1.74009 ], [ 2.07942, -3.52967, 5.09014 ], [ 1.62067, -7.00519, 5.27257 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
1712800646397023952221305119695749367391103003366229932132579062340392007497399181893548575980917751909926018510222530534866765563090879047794265513371162
1
VASP
DFT
null
[ [ 0.000124, 0.000676, -0.000105 ], [ 0.018944, 0.072161, 0.075305 ], [ -0.018599, -0.07254, -0.075045 ], [ -0.000401, -0.026608, 0.007015 ], [ -0.011395, -0.059961, -0.0217 ], [ 0.011091, 0.059792, 0.022175 ], [ 0.000137, 0.026642, -0.007025 ], [ 0.010781, 0.047676, 0.023667 ], [ -0.010472, -0.04753, -0.023792 ], [ -0.003367, 0.017592, -0.043758 ], [ 0.000025, 0.000375, -0.000011 ], [ 0.00313, -0.018275, 0.043274 ] ]
null
[ [ 0.006554271148181269, -0.0005211660120112521, -0.002608139418432837 ], [ -0.0005211660120112521, 0.005280067060132202, -0.0013089692938802369 ], [ -0.002608139418432837, -0.0013089692938802369, -0.011870039640513521 ] ]
true
null
null
-76.901538
null
0.050043
0.106018
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:36:46
10864009057931681229700164884398275701334942771670378190742002764147180935011592986538953367324214361430216986174275757386587490507265226765701343490575502
PO_1086400905793168122970016
null
null
null
[ "train_1st_stage_1144" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5958088989651347869972169004421322281678007652290895677629631972974431908240846219905451652223266780877263481562000824241343902159121497975754220585192899
CO_5958088989651347869972169
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni8Ti2
AlNi4Ti
A4BC
[ 13, 13, 28, 28, 28, 28, 28, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.16666666666666666, 0.6666666666666666, 0.16666666666666666 ]
3
12
[ [ 0, 0, 4.14655 ], [ 3.85368, 2.24889, 0 ], [ -3.87825, 6.72187, 0 ] ]
[ [ -3.69006, 6.71251, 0 ], [ 1.14914, 6.48016, 0 ], [ 1.17837, 2.23534, 0 ], [ 2.55866, 4.49052, 0 ], [ -0.02616, 4.37834, 0 ], [ -1.25656, 6.89437, 0 ], [ 1.30766, 0.77983, 2.07327 ], [ -0.0657, 2.96618, 2.07327 ], [ 1.2593, 5.23824, 2.07327 ], [ 0.04395, 7.54186, 2.07327 ], [ 2.41875, 3.02943, 2.07327 ], [ -1.17113, 5.32668, 2.07327 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9917805638658775824066496208269025597287377327042383540924669503371816225332736162997540657590128752648455259358269394476074343297869828197585920499419242
1
VASP
DFT
null
[ [ -0.204043, 0.039762, -0.000051 ], [ 0.083906, 0.184427, -0.000053 ], [ 0.235416, 0.209112, -0.000039 ], [ 0.073017, -0.31778, -0.000039 ], [ -0.20306, -0.148966, -0.00004 ], [ -0.092234, -0.126185, -0.000043 ], [ 0.05199, 0.01312, 0.000046 ], [ 0.120385, 0.015228, 0.000042 ], [ 0.118799, -0.116936, 0.000051 ], [ 0.072254, -0.052646, 0.000043 ], [ -0.083819, -0.039649, 0.000041 ], [ -0.17261, 0.340515, 0.000041 ] ]
null
[ [ -0.0015110693593763367, -0.002815170276138385, 0 ], [ -0.002815170276138385, -0.009249167543463882, 0 ], [ 0, 0, -0.01573465726107792 ] ]
true
null
null
-71.956674
null
0.197094
0.381765
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:56:54
1665911040429222025878564456664665825888543301149625650657999355197924755091622412483277556943720288274183647403659853651307432723579625027628385061468968
PO_1665911040429222025878564
null
null
null
[ "train_1st_stage_554" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9076215376461056512263080345664544762663156380314731617860835336112103487155322068539761480516147614455144776465686471972882960492778071827725514199819727
CO_9076215376461056512263080
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni2Ti2
NiTi
AB
[ 28, 28, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.5, 0.5 ]
2
4
[ [ 2.63234, 0, 0 ], [ 0, 2.63234, 0 ], [ 0, 0, 8.11637 ] ]
[ [ 0.65808, 0.65808, 4.93476 ], [ 1.97425, 1.97425, 3.18162 ], [ 0.65808, 0.65808, 1.05513 ], [ 1.97425, 1.97425, 7.06125 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5896816468930446200199871434443141616049915049573908243778353267208177181005975428228823794093072831651815226427938683989976894612992969490689654867941853
1
VASP
DFT
null
[ [ -0.000008, -0.000011, 0.140973 ], [ 0.000011, 0.000009, -0.141103 ], [ -0.000014, -0.000009, 1.057588 ], [ 0.000011, 0.000011, -1.057458 ] ]
null
[ [ -0.0024957922541669385, 6.241509125883259e-8, 0 ], [ 6.241509125883259e-8, -0.0024957922541669385, -1.8724527377649775e-7 ], [ 0, -1.8724527377649775e-7, -0.022926685811741936 ] ]
true
null
null
-26.736026
null
0.599281
1.057588
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:26:27
2036185919486381646035796535914536033364242562605167454456295624062885138365508096558520945750490173941847806830755612758899943030942668725126375426691146
PO_2036185919486381646035796
null
null
null
[ "train_1st_stage_2314" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11117920352247868396788445253643461256750982042060795594936937099064893463074153577890375709861415051340450639785644602142735821766104297503114813452605179
CO_1111792035224786839678844
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al10Ti8
Al5Ti4
A5B4
[ 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.5555555555555556, 0.4444444444444444 ]
2
18
[ [ 7.9976, 0, 0 ], [ -3.9988, 6.92612, 0 ], [ 0, 0, 5.44842 ] ]
[ [ 2.47601, 0, 1.36211 ], [ -1.238, 2.14428, 1.36211 ], [ 2.7608, 4.78184, 1.36211 ], [ 5.52159, 0, 4.08632 ], [ 5.2368, 4.78184, 4.08632 ], [ 1.238, 2.14428, 4.08632 ], [ 0, 4.61742, 0 ], [ 3.9988, 2.30871, 2.72421 ], [ 3.9988, 2.30871, 0 ], [ 0, 4.61742, 2.72421 ], [ 0, 0, 0 ], [ 0, 0, 2.72421 ], [ 5.14452, 0, 1.36211 ], [ 5.42534, 4.45528, 1.36211 ], [ 1.42654, 2.47084, 1.36211 ], [ 2.85308, 0, 4.08632 ], [ -1.42654, 2.47084, 4.08632 ], [ 2.57226, 4.45528, 4.08632 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
1137646608085697397552274921852121672290807579331723128053105228795422379677778187349211680904376630326205218605135274741570352989029710407403011045244140
1
VASP
DFT
null
[ [ -0.210878, 0.000047, -0.000004 ], [ 0.105449, -0.182889, 0.000006 ], [ 0.105296, 0.182732, -0.000004 ], [ 0.210927, -0.000677, -0.000017 ], [ -0.105958, 0.182895, -0.000015 ], [ -0.104947, -0.182496, -0.000014 ], [ 0.000461, 0.00021, 0.000008 ], [ -0.00027, 0.000067, 0.000022 ], [ -0.000271, 0.000064, 0.000009 ], [ 0.000463, 0.000207, 0.000021 ], [ -0.000218, 0.00002, 0.000197 ], [ -0.000021, -0.000151, -0.000092 ], [ 0.11305, -0.000161, -0.000141 ], [ -0.056665, 0.098149, -0.0001 ], [ -0.056389, -0.097854, -0.00011 ], [ -0.113042, 0.000155, 0.000076 ], [ 0.056748, -0.098429, 0.000065 ], [ 0.056264, 0.098108, 0.000094 ] ]
null
[ [ 0.04490928095310277, 0.000003183169654200462, 1.8724527377649775e-7 ], [ 0.000003183169654200462, 0.04490634744381361, 6.865660038471584e-7 ], [ 1.8724527377649775e-7, 6.865660038471584e-7, 0.03781099986950952 ] ]
true
null
null
-104.941356
null
0.108157
0.211371
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:24:23
127840670670398625384184145060485306322130010438788458880080498164896044074443613294634222914272904719880120122795480917450714608052245476635128007801724
PO_1278406706703986253841841
null
null
null
[ "train_2nd_stage_339" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7086175722827041563410213623641665812802399349945668025797278924170878785600381609616884278724509762843296612599806202137557666798840564175359849070180582
CO_7086175722827041563410213
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al10Ni4
Al5Ni2
A5B2
[ 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.7142857142857143, 0.2857142857142857 ]
2
14
[ [ -4.14504, 2.28283, -0.045211 ], [ -0.173938, -5.13636, 4.26148 ], [ 2.638, 4.87182, 4.13969 ] ]
[ [ -0.26092, 0.06805, 0.07532 ], [ 0.52505, -0.56838, 4.20376 ], [ -0.32799, 4.92996, 4.05094 ], [ 1.09449, 2.1236, 4.70232 ], [ -1.43721, -2.4933, 3.69006 ], [ -2.57206, 3.00354, 1.97101 ], [ -1.56971, 0.42853, 2.61775 ], [ -1.46341, 0.68345, 5.74519 ], [ 0.13301, 3.01345, 2.13508 ], [ -0.89397, 3.37543, 6.24374 ], [ -3.13117, -0.68757, 4.30075 ], [ -1.32652, 2.58412, 4.04668 ], [ 0.9576, 0.22293, 6.40082 ], [ 0.12425, -1.3772, 2.00706 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9348763493686727191782973100230329226599882049213588618219449066580313433411891917156061090003557007248176362948173157567267797035372277961956964576686792
1
VASP
DFT
null
[ [ -0.008392, -0.022714, -0.044729 ], [ 0.072772, -0.041792, -0.00228 ], [ 0.021488, 0.019123, 0.047539 ], [ -0.096597, 0.049092, 0.128913 ], [ -0.090438, 0.057399, -0.129643 ], [ 0.008639, 0.022998, 0.044809 ], [ 0.090597, -0.05711, 0.12967 ], [ 0.096734, -0.048763, -0.129039 ], [ -0.021405, -0.018941, -0.047408 ], [ -0.072494, 0.042056, 0.002166 ], [ 0.014331, -0.453432, 0.249588 ], [ 0.390721, 0.229847, -0.241395 ], [ -0.391601, -0.230124, 0.241529 ], [ -0.014354, 0.452359, -0.24972 ] ]
null
[ [ -0.006717424196731856, -0.006932007280479722, 0.0035433047307639252 ], [ -0.006932007280479722, -0.014706555877862428, 0.006531364809689277 ], [ 0.0035433047307639252, 0.006531364809689277, 0.016234789387334945 ] ]
true
null
null
-64.915018
null
0.222615
0.517784
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:32:52
1581833422179569144973812982182182032718295190188246392071546460549120059267330046954533944758650294607982941768274507175101116827292988938221109787799905
PO_1581833422179569144973812
null
null
null
[ "train_1st_stage_509" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4756434243847630153883835311194679719930151514641874283246142878099701881342555832872210497991323216504989629507452040512057449075216594940601139053563983
CO_4756434243847630153883835
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni8
AlNi4
A4B
[ 13, 13, 28, 28, 28, 28, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.2, 0.8 ]
2
10
[ [ 0.155031, 3.547414, -0.155032 ], [ 2.508123, -0.000001, 2.508113 ], [ 6.333027, 1.227302, -6.333003 ] ]
[ [ 6.33394, 1.22873, -6.31971 ], [ 2.67402, 3.32895, -2.65982 ], [ 1.33746, 1.66519, -1.32327 ], [ 3.85348, 1.44544, -3.83939 ], [ 5.15427, 3.11227, -5.14011 ], [ 7.66525, 3.00254, -5.14292 ], [ 2.66906, 3.43889, -0.14675 ], [ 3.85077, 1.55514, -1.32852 ], [ 5.18593, 3.21908, -2.66373 ], [ 6.32998, 1.33863, -3.80771 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11354357699210095460234668519120164940880614294806496207308474873371477405659645668546015104896385253335162376347906903194149666040304539250089047232071204
1
VASP
DFT
null
[ [ 0.018039, -0.001513, -0.01793 ], [ -0.017698, 0.001448, 0.017573 ], [ -0.000232, 0.000031, 0.000329 ], [ 0.013737, -0.001107, -0.013953 ], [ -0.013441, 0.001105, 0.013324 ], [ 0.017157, -0.001573, -0.017038 ], [ -0.000354, 0.000022, 0.000528 ], [ -0.017109, 0.001575, 0.017071 ], [ 0.010346, -0.000923, -0.010418 ], [ -0.010445, 0.000935, 0.010515 ] ]
null
[ [ -0.0012174687700947883, 0.000003495245110494624, 0.00010966331534176883 ], [ 0.000003495245110494624, -0.0012943017474344111, -0.0000039321507493064525 ], [ 0.00010966331534176883, -0.0000039321507493064525, -0.0012179056757336002 ] ]
true
null
null
-54.663659
null
0.016808
0.025479
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:26:56
676418412414647072850001843690702287472459815021070715088388075319363171436701647969549319129311595877659519574763955731501532011930146932372489472049070
PO_6764184124146470728500018
null
null
null
[ "train_1st_stage_309" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
3959166379776783587704937723680768297263750427103014181275209058166613026891926098753976153785255908536057466809072196874113929500731766099903787021439288
CO_3959166379776783587704937
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni3Ti6
AlNiTi2
A2BC
[ 13, 13, 13, 28, 28, 28, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.25, 0.25, 0.5 ]
3
12
[ [ 3.8287, -0.383421, 2.39663 ], [ -0.821516, 5.46682, 0.048037 ], [ -3.86331, 0.497528, 2.41811 ] ]
[ [ 3.00614, 0.15778, 2.41754 ], [ 1.12956, 3.99085, 2.45946 ], [ -3.01103, 4.15192, 2.41543 ], [ 0.34011, 0.81098, 2.45133 ], [ -1.53499, 2.22924, 2.47729 ], [ 2.85671, 1.91012, 2.37818 ], [ 1.12747, 0.44103, 1.1827 ], [ 0.98095, 0.44572, 3.67499 ], [ 1.10051, 1.78818, 3.56706 ], [ 1.18137, 1.57529, 1.28408 ], [ -0.93198, 3.71798, 1.20685 ], [ -1.0241, 3.91662, 3.57181 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5992879716124701684208817568305929389003188802935095752539637459344319653355273155864539244292586959514992503619919475423066047077830124049162831412169061
1
VASP
DFT
null
[ [ 4.407914, -4.825982, 1.712644 ], [ -6.868914, -5.411, -0.482699 ], [ 4.007037, 2.696542, -0.470704 ], [ -54.835765, -6.694573, -9.246383 ], [ 16.61448, -3.114761, 1.082967 ], [ 3.093381, -0.03428, -1.563582 ], [ 28.849898, 298.87984, 3.740489 ], [ 12.00166, -81.845792, 37.300379 ], [ 3.808429, 83.880962, 3.561401 ], [ -14.561893, -300.744727, -37.18429 ], [ 2.865834, 10.395015, 5.413394 ], [ 0.617938, 6.818757, -3.863615 ] ]
null
[ [ 0.3797088860878727, 0.07151851956420709, -0.03321038349282097 ], [ 0.07151851956420709, -1.4367524591955398, -0.24953235168315843 ], [ -0.03321038349282097, -0.24953235168315843, 0.7701610321737632 ] ]
true
null
null
21.556598
null
74.59764
303.384428
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:23:47
9354803034333529129783661382152988124630223778521832217943460526454746511986901662181789799656366244035421887305496994438939626891889793696235058489236442
PO_9354803034333529129783661
null
null
null
[ "train_1st_stage_1772", "train_1st_stage_1972", "train_1st_stage_1572", "train_1st_stage_1372" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7226284319250846031044881052949832895377246058937983165292788671270794495995057639339683690664931046293151588409135122384142643774781322534720852732913488
CO_7226284319250846031044881
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi2Ti2
AlNi2Ti2
A2B2C
[ 13, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.2, 0.4, 0.4 ]
3
5
[ [ -1.91171, 1.91171, 4.9738 ], [ 1.91171, -1.91171, 4.9738 ], [ 1.91171, 1.91171, -4.9738 ] ]
[ [ 0, 0, 0 ], [ 1.91171, 0, 2.4869 ], [ 0, 1.91171, 2.4869 ], [ 0, 0, 3.7781 ], [ 0, 0, 6.16951 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
13176980577463271896582806038431705607485695106130013141537639140473010218748758611044080955485775242085091506983014141124411117378476624948353165307460626
1
VASP
DFT
null
[ [ -0.000001, 0, -0.000292 ], [ 0.000226, -0.000228, 0.00018 ], [ -0.000226, 0.000226, 0.000204 ], [ 0.00086, 0.000858, 1.1193 ], [ -0.000859, -0.000857, -1.119392 ] ]
null
[ [ 0.02492889952423403, 0.000027400225062627503, 0.0000035576602017534568 ], [ 0.000027400225062627503, 0.02493077197697179, 0.0000035576602017534568 ], [ 0.0000035576602017534568, 0.0000035576602017534568, 0.036173352705060266 ] ]
true
null
null
-29.12446
null
0.447947
1.119393
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:03:12
5689737253154245644313956827997227043677065311484864343940621751405842865283892966169320517245241554970714292795645632299420544895966637175221797538435920
PO_5689737253154245644313956
null
null
null
[ "train_1st_stage_2331" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7414307493402416981287485613411138544969269976385531426592919314105904456924842056468448936535900167511373606845423502938224253636320569482009132284830931
CO_7414307493402416981287485
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni6Ti2
Ni3Ti
A3B
[ 28, 28, 28, 28, 28, 28, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.75, 0.25 ]
2
8
[ [ 4.56248, 0, 0 ], [ 0, 4.56248, 0 ], [ 0, 0, 4.56248 ] ]
[ [ 0, 1.14062, 2.28124 ], [ 0, 3.42186, 2.28124 ], [ 1.14062, 2.28124, 0 ], [ 2.28124, 0, 1.14062 ], [ 2.28124, 0, 3.42186 ], [ 3.42186, 2.28124, 0 ], [ 0, 0, 0 ], [ 2.28124, 2.28124, 2.28124 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7346188432447607020942341465701405324742300029102053810364637306670469840426335951846906122352491544300843059318616970463179337969572596384225474709844713
1
VASP
DFT
null
[ [ 0.000031, -0.000183, 0.000014 ], [ 0.000026, 0.000243, 0.000014 ], [ 0.000056, 0.000571, -0.000016 ], [ -0.000047, -0.000579, 0.000028 ], [ -0.000042, -0.000577, -0.000026 ], [ -0.000045, 0.000585, -0.000014 ], [ 0.00018, -0.001002, -0.000019 ], [ -0.000159, 0.000943, 0.000019 ] ]
null
[ [ -0.011082361188827054, -4.36905638811828e-7, 6.241509125883259e-8 ], [ -4.36905638811828e-7, -0.011049281190459873, 0 ], [ 6.241509125883259e-8, 0, -0.011065633944369687 ] ]
true
null
null
-51.036865
null
0.000591
0.001018
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:13:50
5624762010090185296318966887864220841114338495207843033907921654127063202208003889537378731151821200286761833578387822341052398081801645319630408774444502
PO_5624762010090185296318966
null
null
null
[ "train_2nd_stage_244" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7531217641571562060068824684172306810476297796473375478448575548802517300404855890594924872889470312701489568197960155879431959287781373966809651635967091
CO_7531217641571562060068824
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni
Al4Ni
A4B
[ 13, 13, 13, 13, 28 ]
[ "Al", "Ni" ]
[ 0.8, 0.2 ]
2
5
[ [ 0.232825, 2.71183, 0.115711 ], [ 5.0678, -1.71759, -1.7933 ], [ -1.60329, 1.71606, -5.13173 ] ]
[ [ 4.49997, 1.06636, -1.80263 ], [ 1.71937, 1.26042, -0.87183 ], [ 3.58627, -0.12244, -4.26659 ], [ 1.0385, 2.78346, -3.22008 ], [ 1.85117, 1.42702, -5.13507 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5771558266998873181152428023735203423570883473207818251806820644229949163379656871098069565235462545259040615501139857705133409150755509915886795529633017
1
VASP
DFT
null
[ [ 0.183479, 0.000036, -0.366888 ], [ -0.35076, 0.048718, -0.175492 ], [ 0.350642, -0.048671, 0.175435 ], [ -0.183643, -0.000022, 0.366873 ], [ 0.000282, -0.000061, 0.000072 ] ]
null
[ [ 0.0007527884156727797, 0.0011767741305940295, 0.000053489733208819514 ], [ 0.0011767741305940295, 0.020863118064542413, 0.0005834562730875669 ], [ 0.000053489733208819514, 0.0005834562730875669, 0.0006739581554128742 ] ]
true
null
null
-21.340151
null
0.322218
0.410269
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:31:49
11124154402367922944576634825865533107019795843682695536773736584496400890041529025239819911311495932372773911868937816244682883311381362293457909774891874
PO_1112415440236792294457663
null
null
null
[ "train_1st_stage_778" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
1750615273916540735794395195841304198689282487053000971913639106000075300694903387104956618470125010135844991527554538819603530064724182238910842275624876
CO_1750615273916540735794395
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al5Ni4Ti3
Al5Ni4Ti3
A5B4C3
[ 13, 13, 13, 13, 13, 28, 28, 28, 28, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.4166666666666667, 0.3333333333333333, 0.25 ]
3
12
[ [ 2.41139, -0.266862, 4.34443 ], [ -1.34721, 6.41723, 0.15639 ], [ -2.48825, 0.576278, 4.33418 ] ]
[ [ 0.41748, 6.01199, 4.24541 ], [ -1.32952, 2.20774, 4.39699 ], [ -3.25247, 4.99632, 4.46101 ], [ 0.45401, 2.98052, 6.59542 ], [ 0.21933, 2.86768, 2.50843 ], [ -1.9552, 6.59151, 4.32078 ], [ 1.63727, 1.82857, 4.44715 ], [ 0.26595, 4.01415, 4.53354 ], [ 1.03826, 0.75649, 2.26819 ], [ 0.85912, 0.60268, 6.57335 ], [ -0.76868, 5.28033, 2.64521 ], [ -0.95952, 5.45576, 6.13151 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
19791337758936707260288723075210346970004018254594507262423355080536873812299195985539472877626378473407108464491202581320749510564262217257147020624084
1
VASP
DFT
null
[ [ 2.625793, 6.176856, 4.091952 ], [ 3.945876, 1.088639, 1.946583 ], [ 32.0056, -0.908031, -1.435985 ], [ -4.669178, 0.410814, -0.869353 ], [ 2.4334, -1.30635, -0.667815 ], [ 2.680899, 1.396259, 1.446158 ], [ -4.536933, 1.50372, -0.228885 ], [ -30.942374, -6.454404, 2.116653 ], [ 0.600837, 4.211306, -1.370328 ], [ 3.885644, 9.458205, 0.293843 ], [ -5.094232, -4.050131, -3.646222 ], [ -2.935332, -11.526883, -1.6766 ] ]
null
[ [ 0.6134219456462062, 0.07485117336197246, 0.026035019771523057 ], [ 0.07485117336197246, 0.5148656454543117, 0.0157271050350356 ], [ 0.026035019771523057, 0.0157271050350356, 0.23130733228085312 ] ]
true
null
null
-44.564259
null
10.503226
32.050663
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:25:50
11122916274585961185082933335909783890103415577055777100860187498560173431573842095458384353139636482114576986015350212380379338402521806644015991985972700
PO_1112291627458596118508293
null
null
null
[ "train_1st_stage_1604", "train_1st_stage_2004", "train_1st_stage_1804", "train_1st_stage_1404" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
13362651258214946530655273790922990444084408151852942295594721984675269758651436469103392980456209165847378128605135651681603380196903372827641635279575971
CO_1336265125821494653065527
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni3Ti5
Ni3Ti5
A5B3
[ 28, 28, 28, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.375, 0.625 ]
2
8
[ [ 2.29378, 3.02714, 1.8287 ], [ 4.13331, -3.25256, 0.199564 ], [ 4.38304, -0.665318, -4.39649 ] ]
[ [ 4.32447, -0.6685, -4.31773 ], [ 8.67717, -0.5549, -0.24873 ], [ 4.3093, -0.27904, -0.08499 ], [ 2.24265, 1.34724, -0.18477 ], [ 4.43417, 1.01458, -2.38301 ], [ 2.14545, -1.62139, -0.00714 ], [ 6.47315, 1.06331, -0.16284 ], [ 6.50082, -0.6117, -2.28323 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
850726250833571400510103239878173297531377525710130435069503717664897451408659341415474817291143088283913462868824745260156352313361740429527453643942133
1
VASP
DFT
null
[ [ 0.220619, -0.266875, 0.164932 ], [ -0.220921, 0.266909, -0.164582 ], [ -0.000208, 0.000031, 0.000195 ], [ 0.000588, -0.000894, 0.000709 ], [ -0.000736, 0.000907, -0.000618 ], [ -0.478029, 0.198272, 0.271367 ], [ 0.477285, -0.198088, -0.270622 ], [ 0.001402, -0.000262, -0.001381 ] ]
null
[ [ -0.015394557428808537, -0.004161338964408886, 0.00019592097146147548 ], [ -0.004161338964408886, -0.014813660174462583, -0.004570532302701792 ], [ 0.00019592097146147548, -0.004570532302701792, -0.013408946130591298 ] ]
true
null
null
-57.144526
null
0.242459
0.584349
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:16:49
6322142662157156806315939942916741117477075065549174074513246688586805988890355223635086938354414148326516776021740009129081676120091359883154459476177508
PO_6322142662157156806315939
null
null
null
[ "train_1st_stage_524" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10017700951539793225346115357099237942459941164110438167686118221458416037390657345018078895946625152851419590243597253968250478439116554477884536078722705
CO_1001770095153979322534611
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNiTi2
AlNiTi2
A2BC
[ 13, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.25, 0.25, 0.5 ]
3
4
[ [ 1.49209, -2.58438, 0 ], [ 1.49209, 2.58438, 0 ], [ 0, 0, 8.01838 ] ]
[ [ 1.49209, 0.86163, 4.00919 ], [ 0, 0, 0 ], [ 0, 0, 2.4857 ], [ 0, 0, 5.53268 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
8682859725326559211638554082370685957802019051276833117283627405645499759849825428512488420265328569931329319006302348535044907979167708492170404942770543
1
VASP
DFT
null
[ [ -0.000005, -0.002093, 0.000735 ], [ -0.000009, 0.00003, -0.000392 ], [ 0.00001, 0.001026, -7.559393 ], [ 0.000003, 0.001038, 7.55905 ] ]
null
[ [ 0.03250902511234547, -3.120754562941629e-7, -6.241509125883259e-8 ], [ -3.120754562941629e-7, 0.03255084322348889, 1.8724527377649775e-7 ], [ -6.241509125883259e-8, 1.8724527377649775e-7, 0.1131272904915428 ] ]
true
null
null
-20.296634
null
3.780264
7.559393
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:55:55
198693802407400274907865876124221266978569863978036758509279159553424811720298734294426490139878172322506709510079979934969229946306852061740877711337224
PO_1986938024074002749078658
null
null
null
[ "train_1st_stage_2055" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5091905331889334810594098434633836152130551130357235874525260577990761658584948516819744846398157538907111403379012712143385879208316004429346028403997741
CO_5091905331889334810594098
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni5
Al3Ni5
A5B3
[ 13, 13, 13, 28, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.375, 0.625 ]
2
8
[ [ -1.88896, -1.889, 0.000125 ], [ -1.1463, 1.14589, -5.85181 ], [ 2.98565, -2.98586, -4.2802 ] ]
[ [ 1.03525, -4.79634, -4.47469 ], [ -1.69442, -2.0667, -3.99712 ], [ -1.43845, -2.32291, -7.79975 ], [ -0.7585, -1.11353, -2.14282 ], [ -0.74139, -1.13088, -5.85154 ], [ 0.57198, -2.4441, -4.03434 ], [ -0.20159, -3.55964, -6.13721 ], [ 0.91377, -2.78615, -8.24022 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6151695435177425408315410238761768622676253696114564982759296651512834214003053847346033883132070105280002876339832824657458542670449004415739193964534653
1
VASP
DFT
null
[ [ -0.110015, 0.11033, 0.699054 ], [ -0.000251, 0.000478, -0.000307 ], [ 0.110702, -0.110522, -0.698585 ], [ -0.18234, 0.182198, 0.818643 ], [ 0.181666, -0.181982, -0.818509 ], [ 0.692182, -0.692241, 0.056341 ], [ -0.000106, 0.00013, -0.000082 ], [ -0.691838, 0.691609, -0.056555 ] ]
null
[ [ 0.07932340189594157, 0.00204178488035019, -0.002764988542766283 ], [ 0.00204178488035019, 0.07932234083939019, 0.0027651757880400598 ], [ -0.002764988542766283, 0.0027651757880400598, 0.07794895917133082 ] ]
true
null
null
-41.805206
null
0.638693
0.980555
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:14:41
7666165470300190892267015436398694659871242617143605053329432802925695158880212883119521874810934752239468426670633196954253484889607677826111098385815106
PO_7666165470300190892267015
null
null
null
[ "train_2nd_stage_809" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12883966709331691565475673759223705417535746330094749558329175624792426999746381679677368391979616004242248985597294072307966617729582753219393197231683519
CO_1288396670933169156547567
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al5Ni4Ti3
Al5Ni4Ti3
A5B4C3
[ 13, 13, 13, 13, 13, 28, 28, 28, 28, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.4166666666666667, 0.3333333333333333, 0.25 ]
3
12
[ [ 3.27563, 2.03312, 0.029292 ], [ 0.052901, 3.86923, 3.85753 ], [ -0.070285, -4.03017, 3.99479 ] ]
[ [ 0.97303, 3.88595, 3.69783 ], [ 2.97592, 2.23073, 4.15137 ], [ 1.5905, -1.94156, 4.1368 ], [ 2.05175, -0.06574, 3.35904 ], [ 1.57014, 2.08719, 2.15924 ], [ 1.16165, 1.73791, 4.24784 ], [ 2.33714, 4.20447, 4.34972 ], [ 0.65261, 0.43515, 2.08447 ], [ 1.84751, 2.57143, 5.91186 ], [ 1.6805, 1.0243, 5.59294 ], [ 2.54645, 0.44794, 5.84417 ], [ 0.57812, 2.4396, 5.54916 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3370170759990476265187160211059111976615350752297404607204148287137687619922296512034493632062953602629885033920333758784350057951245298786026265856098171
1
VASP
DFT
null
[ [ -21.669733, -3.003895, -12.675415 ], [ 8.946429, -3.604976, -3.373844 ], [ -3.034103, 3.659679, -2.658607 ], [ 7.861025, 7.493532, 8.939942 ], [ 3.756012, 6.274723, 3.146109 ], [ -3.479621, -6.836451, -36.699106 ], [ 14.761575, 1.984524, 7.274893 ], [ -7.073675, 5.317347, -1.441129 ], [ 45.455587, 22.201183, 15.989731 ], [ 33.493314, -52.506527, 16.043264 ], [ -23.535686, 12.861553, -6.307868 ], [ -55.481124, 6.159307, 11.762031 ] ]
null
[ [ 0.2952617669354023, 0.1632471080931154, 0.12265595281366373 ], [ 0.1632471080931154, 0.43154493145378947, 0.19260854015327797 ], [ 0.12265595281366373, 0.19260854015327797, 0.35661985862376655 ] ]
true
null
null
-1.662004
null
27.331517
64.312703
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:33:54
7532231908407800264658588158808490531494868810739451205026355830742482079043865610110220782103181554623646108832341851638491655296012598837370815071215336
PO_7532231908407800264658588
null
null
null
[ "train_1st_stage_1616", "train_1st_stage_2016", "train_1st_stage_1816", "train_1st_stage_1416" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
253010203389326199537695704924962169627654474014132855610455328155869841817661005907731547055146371194183940828853735465257798938383851855643605515367677
CO_2530102033893261995376957
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni6Ti6
NiTi
AB
[ 28, 28, 28, 28, 28, 28, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.5, 0.5 ]
2
12
[ [ 0.00002, -0.411576, -4.18179 ], [ 3.99037, 5.00374, 1.61869 ], [ 3.99047, -5.00368, -1.61866 ] ]
[ [ 4.03685, -4.75424, -1.64321 ], [ 2.04159, 1.59932, -0.15739 ], [ 4.03677, 2.94922, -0.29025 ], [ 4.0368, 1.02122, -2.21165 ], [ 6.03199, 1.59936, -0.15738 ], [ 4.03684, -3.23782, -3.90362 ], [ 1.68803, -0.09435, -2.10185 ], [ 1.68805, -2.12229, -4.01341 ], [ 4.03681, 0.08177, -0.00804 ], [ 4.03683, -1.88681, -1.92544 ], [ 6.38559, -0.09431, -2.10184 ], [ 6.38562, -2.12226, -4.01339 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7271574011924923063048734675443574665798730371050687496890213640764881521065655435304386917394154234651932543631683530993878539654461386177945780211554026
1
VASP
DFT
null
[ [ -0.000604, -0.430599, 0.042837 ], [ -0.000382, 0.000684, 0.00006 ], [ -0.00061, 0.430392, -0.042499 ], [ 0.000111, 0.157151, -0.016415 ], [ 0.000897, 0.000194, 0.000098 ], [ -0.000176, -0.156099, 0.016385 ], [ 0.360674, -0.177815, 0.016779 ], [ 0.360265, 0.177895, -0.017137 ], [ -0.000483, -0.498173, 0.047601 ], [ 0.000818, 0.497197, -0.04759 ], [ -0.360345, -0.178891, 0.016979 ], [ -0.360165, 0.178065, -0.017098 ] ]
null
[ [ 0.005142566614088993, 0.0000011234716426589865, -1.8724527377649775e-7 ], [ 0.0000011234716426589865, 0.02021050587034006, -0.0018544771914824336 ], [ -1.8724527377649775e-7, -0.0018544771914824336, 0.001859907304421952 ] ]
true
null
null
-83.572094
null
0.315936
0.500442
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:02:47
3382449848965183101375486477637298282042565007893688494117913469652585195186177208908119028173709019720965153607023865194652885383773296784238980335717917
PO_3382449848965183101375486
null
null
null
[ "train_2nd_stage_686" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11640001418005887750476898433678368702462438128451207201297994093452312286720751810507159107272481849077804509244468474324598043621694379892822495699260020
CO_1164000141800588775047689
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni3Ti5
Al4Ni3Ti5
A5B4C3
[ 13, 13, 13, 13, 28, 28, 28, 22, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.3333333333333333, 0.25, 0.4166666666666667 ]
3
12
[ [ -4.31324, 2.37059, 0.216257 ], [ -0.103632, -4.92067, -0.216257 ], [ -1.28687, 2.22893, 8.36758 ] ]
[ [ -3.76795, -2.81236, 0.04838 ], [ -4.15775, 2.96297, 4.27958 ], [ -2.06305, -0.68849, 4.06333 ], [ -1.56961, -1.54315, 0.04837 ], [ -3.73106, -0.33783, 0.15231 ], [ -1.9963, 1.75764, 4.17565 ], [ -2.91549, -1.75042, 2.05585 ], [ -2.88355, -1.80578, 6.69266 ], [ -1.44628, 0.80499, 1.66723 ], [ -1.3505, 0.63908, 6.23964 ], [ -4.28108, 0.61483, 2.66073 ], [ -4.23434, 0.53385, 5.78663 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6377624202356496300605641569055995060175134280537904635509412406034417113019892409405115069127240661644484806387160687629525517300676678970127482961246526
1
VASP
DFT
null
[ [ 0.175546, 0.213593, 0.082651 ], [ 0.272709, 0.044813, -0.082483 ], [ -0.175158, -0.213723, -0.082525 ], [ -0.272707, -0.045214, 0.082683 ], [ 0.130907, -0.226693, 0.140277 ], [ -0.131029, 0.226728, -0.139906 ], [ -0.000151, 0.000142, -0.000012 ], [ 0.024226, -0.041944, -0.214842 ], [ -0.156213, 0.270379, 0.12543 ], [ 0.000148, -0.000128, -0.000055 ], [ 0.156332, -0.270653, -0.124222 ], [ -0.02461, 0.042701, 0.213003 ] ]
null
[ [ -0.0034082384732798117, -0.0023687151283639553, -0.0018598448893306933 ], [ -0.0023687151283639553, -0.0006794506834436515, 0.0032198073127693966 ], [ -0.0018598448893306933, 0.0032198073127693966, 0.00784801115979435 ] ]
true
null
null
-75.732971
null
0.238326
0.336512
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:43:36
9335917264571393292623741210427370723896829115865857794543388976399984475338764401304662957273267619513645029284331935059422253771727126602972484540589169
PO_9335917264571393292623741
null
null
null
[ "train_1st_stage_1101" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6093969709845994428458044689839734810731813313874550635767518761334835702544288526004842119145322098905503321068405440838651995082539046553445093443006195
CO_6093969709845994428458044
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni6Ti4
AlNi3Ti2
A3B2C
[ 13, 13, 28, 28, 28, 28, 28, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.16666666666666666, 0.5, 0.3333333333333333 ]
3
12
[ [ 3.69047, -0.902405, -0.011816 ], [ -1.00926, 5.44914, 3.39175 ], [ 1.03663, -5.59246, 3.42787 ] ]
[ [ 1.01134, -5.42394, 3.41636 ], [ 0.96892, 2.11616, 1.77844 ], [ 0.06185, 0.42255, 3.43138 ], [ 3.1949, -4.02877, 3.48004 ], [ 2.46422, 1.42267, 3.20276 ], [ 1.52987, -2.10059, 3.38779 ], [ 0.6065, 3.23802, 3.45999 ], [ 0.37957, 1.67796, 5.05093 ], [ 2.09253, -0.11546, 1.81682 ], [ 1.91094, 0.25258, 5.04223 ], [ 2.93361, -2.40042, 5.03768 ], [ 3.39766, -2.66284, 1.75509 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7740254448229565424904637660010686278831460813751122945985223501588668508458277647813359660664441265988924761107437433810017565591499145634791331852719729
1
VASP
DFT
null
[ [ 0.947026, 0.569705, 0.503771 ], [ -27.302251, -28.092562, 2.235617 ], [ 0.33497, -3.520266, -2.544532 ], [ 0.599973, -2.272611, 0.453956 ], [ -1.394334, 0.864526, 0.671311 ], [ 0.048982, 2.097976, -1.206866 ], [ 1.998697, 4.893176, 2.678659 ], [ -0.892317, 2.57313, 3.178128 ], [ -1.628848, -3.371932, -1.093775 ], [ -0.633657, -7.126974, -0.287556 ], [ 27.052762, 29.342099, -4.452459 ], [ 0.868997, 4.043733, -0.136255 ] ]
null
[ [ 0.37817116548452884, 0.17512925626133316, -0.024068632321413538 ], [ 0.17512925626133316, 0.4371886912506869, 0.022202233847500665 ], [ -0.024068632321413538, 0.022202233847500665, 0.327286638184853 ] ]
true
null
null
-53.853777
null
9.738774
40.157628
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:13:04
4768476323524205550092694501463464112662819055715312579072766150006610589778365493892603572127245545262578306809946569702133468005770992231238084884574435
PO_4768476323524205550092694
null
null
null
[ "train_1st_stage_1693", "train_1st_stage_1493", "train_1st_stage_1293", "train_1st_stage_1893" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
1345146792986233156104982610785915418781444165605077467439190274623814181554480436604728013882517648642152543562176945002556299424257191216419780541921196
CO_1345146792986233156104982
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi8
AlNi8
A8B
[ 13, 28, 28, 28, 28, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.1111111111111111, 0.8888888888888888 ]
2
9
[ [ 5.28004, 1.76068, 0.00187 ], [ 0.001869, 1.76068, 5.28004 ], [ 5.27616, -0.001316, 5.27616 ] ]
[ [ 5.28191, 3.52136, 5.28191 ], [ 7.06238, 1.75973, 5.27872 ], [ 3.49569, 1.76031, 5.27935 ], [ 7.03989, 3.52077, 7.03989 ], [ 5.27872, 1.75973, 7.06238 ], [ 3.52132, 1.76068, 1.76059 ], [ 5.27935, 1.76031, 3.49569 ], [ 3.51817, -0.00072, 3.51817 ], [ 1.76059, 1.76068, 3.52132 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5493174910356457784777241471677714365570538070845086899370229937001330480557349040886542430779463759471087519052681687877122139274321884545853267544078821
1
VASP
DFT
null
[ [ -0.000088, 0.000018, 0.000036 ], [ -0.144808, 0.00211, -0.000954 ], [ 0.145134, -0.002117, 0.000955 ], [ 0.095203, 0.000543, 0.094958 ], [ -0.001039, 0.002113, -0.145077 ], [ -0.094299, 0.000029, 0.094266 ], [ 0.000867, -0.002116, 0.144862 ], [ -0.094994, -0.000607, -0.095098 ], [ 0.094024, 0.000028, -0.093949 ] ]
null
[ [ -0.008027204886798459, 0.0007220801907734341, -0.0001827513872058618 ], [ 0.0007220801907734341, -0.007844141424136301, 0.0007221426058646929 ], [ -0.0001827513872058618, 0.0007221426058646929, -0.008020526472033763 ] ]
true
null
null
-49.002927
null
0.12391
0.145153
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:03:17
4747853210544445176818940766140846253935944800550261033138589785590529148763301201143235831441198677002126731732796213209842027363067948557954235623460774
PO_4747853210544445176818940
null
null
null
[ "train_2nd_stage_530" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12790193892982326827805150594948515567672674755574441094238135438066380497483985853168209512117667009547430217345379246003093533906973516137810883102673673
CO_1279019389298232682780515
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al5Ni2Ti3
Al5Ni2Ti3
A5B3C2
[ 13, 13, 13, 13, 13, 28, 28, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.5, 0.2, 0.3 ]
3
10
[ [ 0.000003, 2.0135, 2.0135 ], [ 17.942012, 0.000013, 0.000014 ], [ 0, 2.013524, -2.013524 ] ]
[ [ 0.63382, 4.01293, -0.01386 ], [ 3.57667, 4.01292, -0.01388 ], [ 6.5192, 4.01294, -0.01385 ], [ 10.52988, 4.01297, -0.01382 ], [ 14.56509, 4.01297, -0.01383 ], [ 2.1071, 1.99938, -0.01389 ], [ 5.04623, 1.99938, -0.01388 ], [ 8.50885, 1.99943, -0.01384 ], [ 12.54744, 1.99944, -0.01383 ], [ 16.58608, 1.99943, -0.01384 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10336393940748809353318501935507951253917489888638417608653361960948547638212805301959043350484510531089681799266639678677908130007531999764862674106436673
1
VASP
DFT
null
[ [ 0.003907, -0.000006, -0.000039 ], [ -0.001163, -0.000048, 0.000015 ], [ -0.001705, -0.00002, -0.000029 ], [ -0.010981, -0.000024, -0.000014 ], [ 0.009909, -0.000022, -0.000012 ], [ 0.006657, 0.000027, 0.000026 ], [ -0.006536, 0.000028, -0.000025 ], [ -0.003716, -0.000015, 0.00001 ], [ 0.000021, 0.000073, 0.00003 ], [ 0.003607, 0.000009, 0.000037 ] ]
null
[ [ -0.0001725777273306721, 3.744905475529955e-7, 3.744905475529955e-7 ], [ 3.744905475529955e-7, -0.0007958548286413743, 0.0000011234716426589865 ], [ 3.744905475529955e-7, 0.0000011234716426589865, -0.0007959796588238919 ] ]
true
null
null
-58.278754
null
0.004826
0.010981
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:24:31
10654925748395430880306794305951397503083746356322538508082652520527237933472458387784479940324734951809482150958294072459513969706475306045845343344285923
PO_1065492574839543088030679
null
null
null
[ "train_1st_stage_103" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12190307071671850390447054066240471844934659097763295700209607154873040840095991192617714299297960028161875928633549182370165867156555188610586200480165097
CO_1219030707167185039044705
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni2
Ni
A
[ 28, 28 ]
[ "Ni" ]
[ 1 ]
1
2
[ [ 2.46994, 0, 0 ], [ -1.23497, 2.13903, 0 ], [ 0, 0, 4.12666 ] ]
[ [ 0, 0, 0 ], [ 1.23497, 0.71301, 2.06333 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12426550378544046516676623272875381911723418675884852626242651716880589960494282306572084096158207410545320290020440140800661521346982808752596686590127059
1
VASP
DFT
null
[ [ -0.000002, 0.000004, -0.000001 ], [ 0.000002, -0.000004, 0.000001 ] ]
null
[ [ 0.000728446530081835, 6.241509125883259e-8, 0 ], [ 6.241509125883259e-8, 0.000728446530081835, 0 ], [ 0, 0, 0.002580115042457621 ] ]
true
null
null
-10.771483
null
0.000005
0.000005
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:58:38
2011508082306826913216910295958064799061006724280482108958423361739294915441253495231966083614549414605953561672602393557527783150901467128140178704467384
PO_2011508082306826913216910
null
null
null
[ "train_1st_stage_715" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
1134572511813420449009719169409527309665651131328932453428845808397936975688968038126574308666181051669685786213791044454195957013561197224968364361871025
CO_1134572511813420449009719
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al16Ti8
Al2Ti
A2B
[ 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.6666666666666666, 0.3333333333333333 ]
2
24
[ [ 0, 5.85543, 5.85543 ], [ 5.85543, 0, 5.85543 ], [ 5.85543, 5.85543, 0 ] ]
[ [ 5.85543, 2.92772, 2.92772 ], [ 2.92772, 5.85543, 2.92772 ], [ 2.92772, 2.92772, 5.85543 ], [ 5.85543, 5.85543, 5.85543 ], [ 4.39157, 4.39157, 0.84201 ], [ 4.39157, 0.84201, 4.39157 ], [ 0.84201, 4.39157, 4.39157 ], [ 7.94114, 4.39157, 4.39157 ], [ 4.39157, 7.94114, 4.39157 ], [ 4.39157, 4.39157, 7.94114 ], [ 7.31929, 7.31929, 10.8689 ], [ 7.31929, 10.8689, 7.31929 ], [ 10.8689, 7.31929, 7.31929 ], [ 3.76973, 7.31929, 7.31929 ], [ 7.31929, 3.76973, 7.31929 ], [ 7.31929, 7.31929, 3.76973 ], [ 3.46407, 3.46407, 3.46407 ], [ 5.31908, 5.31908, 3.46407 ], [ 5.31908, 3.46407, 5.31908 ], [ 3.46407, 5.31908, 5.31908 ], [ 8.24679, 8.24679, 8.24679 ], [ 6.39179, 6.39179, 8.24679 ], [ 6.39179, 8.24679, 6.39179 ], [ 8.24679, 6.39179, 6.39179 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11099081685506920053404544170574920364014428288900413233445541724580224825982393755347825773479242793754732333129308287275741713195960426158900984053791864
1
VASP
DFT
null
[ [ -0.000042, 0.000112, 0.000148 ], [ 0.000107, -0.00004, 0.00007 ], [ 0.000056, -0.000028, 0.000069 ], [ -0.000028, -0.000107, -0.000066 ], [ 0.000029, -0.000007, -0.230779 ], [ -0.000011, -0.230806, 0.000129 ], [ -0.230848, -0.000054, 0.00013 ], [ 0.230709, 0.000036, 0.000125 ], [ 0.000073, 0.230752, 0.000125 ], [ 0.000027, -0.000013, 0.230773 ], [ -0.000081, 0.000003, 0.230701 ], [ -0.000046, 0.230602, 0.000039 ], [ 0.230623, -0.000019, -0.000009 ], [ -0.230772, -0.000057, 0.000004 ], [ -0.000093, -0.230797, -0.000047 ], [ -0.00006, -0.00008, -0.2307 ], [ -1.721645, -1.721719, -1.721659 ], [ 1.722218, 1.72208, -1.721986 ], [ 1.7216, -1.721705, 1.721644 ], [ -1.721616, 1.72158, 1.721704 ], [ 1.721583, 1.721595, 1.721628 ], [ -1.721515, -1.721567, 1.721699 ], [ -1.721943, 1.721967, -1.721991 ], [ 1.721674, -1.721728, -1.72175 ] ]
null
[ [ 0.10081260574090134, 0.000004306641296859447, -0.0000015603772814708146 ], [ 0.000004306641296859447, 0.10081772377838458, 2.4966036503533035e-7 ], [ -0.0000015603772814708146, 2.4966036503533035e-7, 0.10081884725002724 ] ]
true
null
null
-124.404483
null
1.10944
2.982755
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:25:16
7751285636880308753239418898520619661957278383611840414665528183075794697015045607190634384102406009260561152259304695176929440782565098528305103978004074
PO_7751285636880308753239418
null
null
null
[ "train_1st_stage_2289" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6995676528709873482285563312812569748091077766797156365262043413781519330277449146634427218002222100794234781265304526851778943215014999350682177779124012
CO_6995676528709873482285563
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ti2
AlTi
AB
[ 13, 13, 22, 22 ]
[ "Al", "Ti" ]
[ 0.5, 0.5 ]
2
4
[ [ 3.91242, 0, 0 ], [ 0, 0, 3.91241 ], [ 0, -4.15909, 0 ] ]
[ [ 0, -3.8125, 0 ], [ 1.95621, -3.8125, 1.9562 ], [ 1.95621, -1.73296, 0 ], [ 0, -1.73296, 1.9562 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9332398816228396278620372199144147369574070009948957752459975837789302843127231104829834083186723076729499915661444270012911709634967172730217047743847259
1
VASP
DFT
null
[ [ -0.000012, -0.000091, -0.000026 ], [ 0.000005, -0.000092, 0.000025 ], [ 0.000004, 0.000093, -0.000044 ], [ 0.000003, 0.00009, 0.000045 ] ]
null
[ [ -0.008288474458807931, 6.241509125883259e-8, 3.744905475529955e-7 ], [ 6.241509125883259e-8, 0.0019753128081595336, 0 ], [ 3.744905475529955e-7, 0, -0.008288848949355485 ] ]
true
null
null
-24.735166
null
0.000099
0.000103
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:39:55
12907892616186685770768115923724175694937751392674892763211574993829026547627278966323904641617611218067992100902940460819380685282992869942977008722993367
PO_1290789261618668577076811
null
null
null
[ "train_2nd_stage_212" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7351054842872532299857970199829151947138181530739579539680451840445766493977617641554908772046490002137135091970051706286069433375845838899880939797112523
CO_7351054842872532299857970
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni3Ti6
AlNiTi2
A2BC
[ 13, 13, 13, 28, 28, 28, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.25, 0.25, 0.5 ]
3
12
[ [ 3.8287, -0.383421, 2.39663 ], [ -0.821516, 5.46682, 0.048037 ], [ -3.86331, 0.497528, 2.41811 ] ]
[ [ 3.00614, 0.15778, 2.41754 ], [ 1.12956, 3.99085, 2.45946 ], [ -3.01103, 4.15192, 2.41543 ], [ 0.34011, 0.81098, 2.45133 ], [ -1.53499, 2.22924, 2.47729 ], [ 2.85671, 1.91012, 2.37818 ], [ 1.12747, 0.44103, 1.1827 ], [ 0.98095, 0.44572, 3.67499 ], [ 1.10051, 1.78818, 3.56706 ], [ 1.18137, 1.57529, 1.28408 ], [ -0.93198, 3.71798, 1.20685 ], [ -1.0241, 3.91662, 3.57181 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5992879716124701684208817568305929389003188802935095752539637459344319653355273155864539244292586959514992503619919475423066047077830124049162831412169061
1
VASP
DFT
null
[ [ 4.397642, -4.81955, 1.718599 ], [ -6.889414, -5.422804, -0.46907 ], [ 3.98728, 2.667975, -0.458677 ], [ -54.783137, -6.640023, -9.326455 ], [ 16.410346, -3.175488, 1.273127 ], [ 3.0246, -0.068285, -1.582253 ], [ 29.210525, 304.925448, 4.126561 ], [ 11.983468, -81.824865, 37.29172 ], [ 3.788063, 83.803218, 3.548599 ], [ -14.580064, -306.592161, -37.702079 ], [ 2.847025, 10.366956, 5.424858 ], [ 0.603667, 6.77958, -3.84493 ] ]
null
[ [ 0.3939315377632054, 0.06869748226949038, -0.03223502286171919 ], [ 0.06869748226949038, -1.4562958725705055, -0.25082771448714425 ], [ -0.03223502286171919, -0.25082771448714425, 0.7782694390942894 ] ]
true
null
null
21.390286
null
75.552104
309.245498
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:23:47
10767248972261578938702670684676677584255821413593532831113564108859828248451404523112937043813945855647944574601419734723981117264736914673705319816799651
PO_1076724897226157893870267
null
null
null
[ "train_1st_stage_1772", "train_1st_stage_1972", "train_1st_stage_1572", "train_1st_stage_1372" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7226284319250846031044881052949832895377246058937983165292788671270794495995057639339683690664931046293151588409135122384142643774781322534720852732913488
CO_7226284319250846031044881
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni4
Al3Ni2
A3B2
[ 13, 13, 13, 13, 13, 13, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.6, 0.4 ]
2
10
[ [ 2.764055, 0.016619, 0 ], [ 1.307796, 11.861521, 0 ], [ 0, 0, 4.108989 ] ]
[ [ 2.75682, 1.12303, 0 ], [ 2.73076, 5.33875, 0 ], [ 2.7044, 9.50662, 0 ], [ 2.69214, 11.55366, 2.05449 ], [ 2.74455, 3.17007, 2.05449 ], [ 2.71816, 7.33781, 2.05449 ], [ 1.36196, 3.19666, 0 ], [ 1.33561, 7.44819, 0 ], [ 1.34922, 5.21192, 2.05449 ], [ 1.3229, 9.46326, 2.05449 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12390421937711640438995592624914456311280335106655636224487678399662004484026582387654459751928755378204435527482859398650017503286927122798988241446212578
1
VASP
DFT
null
[ [ -0.000405, -0.006202, 0 ], [ -0.000213, -0.02167, 0 ], [ 0.002088, -0.019822, -0.000001 ], [ 0.000418, 0.006258, 0 ], [ -0.002254, 0.020326, 0 ], [ 0.000105, 0.021659, 0 ], [ 0.000148, -0.022067, -0.000001 ], [ -0.001574, 0.008729, 0 ], [ 0.001671, -0.009689, 0 ], [ 0.000014, 0.022479, 0.000001 ] ]
null
[ [ -0.00018705802850272124, -0.0001082277682428157, 0 ], [ -0.0001082277682428157, 0.00007377463786794011, 0 ], [ 0, 0, 0.0003078936451798211 ] ]
true
null
null
-49.374866
null
0.015945
0.022479
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:31:13
11117572769591863741227113619952657220602501208799159827743137918318116332705383960090154373617749214768181310462034235685609507267759844903919764988255216
PO_1111757276959186374122711
null
null
null
[ "train_1st_stage_34" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
3054794660108640419576887703246317002723601930830567313179854447644833558689712308488324061123930126181015972428432737558886074073067323239539630117122126
CO_3054794660108640419576887
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni2Ti3
Al3Ni2Ti3
A3B3C2
[ 13, 13, 13, 28, 28, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.375, 0.25, 0.375 ]
3
8
[ [ 2.82559, -2.81218, 0.269518 ], [ -2.85711, -2.84596, 0.258413 ], [ 0.002029, -3.48995, -6.81808 ] ]
[ [ 0.00151, -3.47065, -6.61134 ], [ 1.40148, -4.40038, -1.37179 ], [ -0.02211, -6.00787, -3.21983 ], [ 1.4108, -4.74696, -5.08586 ], [ -1.4314, -4.73156, -4.74532 ], [ -0.01425, -6.29955, -6.34546 ], [ -1.43987, -4.41727, -1.37734 ], [ -0.00634, -3.17897, -3.48572 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6469633519794020051792095715607492469019412308972399974061531609574977905346114741448890507321711754118431409732451252976689177663693418651920583381441717
1
VASP
DFT
null
[ [ -0.000498, 0.031514, 0.341401 ], [ -0.000001, -0.000013, -0.000338 ], [ 0.000495, -0.031527, -0.341441 ], [ -0.000563, 0.046322, 0.489092 ], [ 0.000568, -0.0463, -0.488801 ], [ -0.000459, 0.019136, 0.182554 ], [ 0.000009, -0.000001, -0.000435 ], [ 0.00045, -0.019131, -0.182032 ] ]
null
[ [ -0.011973149371273112, 0.001557194111816614, -0.00018955463215307455 ], [ 0.001557194111816614, -0.01183377647249214, 0.0010042588183546161 ], [ -0.00018955463215307455, 0.0010042588183546161, -0.0011660387348975104 ] ]
true
null
null
-49.503002
null
0.254423
0.491281
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:53:43
11761161641177112630853246164998979055288594666181314552097547325231965196812527931741505719628986086586971933407266320806396981996265751664051497569297597
PO_1176116164117711263085324
null
null
null
[ "train_1st_stage_411" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12925908847724631336532388483938126969841192562981068190616610995520757063999163045251509749078350994287237255624663107695391938982785640169680146819470867
CO_1292590884772463133653238
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi4Ti3
AlNi4Ti3
A4B3C
[ 13, 28, 28, 28, 28, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.125, 0.5, 0.375 ]
3
8
[ [ 0.52094, 4.10288, -0.433612 ], [ 3.49616, 1.06495, -5.74081 ], [ -2.70661, 0.017387, -3.15706 ] ]
[ [ 0, 0, 0 ], [ -1.32559, 1.82573, -4.33732 ], [ 1.02222, 1.31663, -6.35597 ], [ 0.28827, 3.86859, -2.97551 ], [ 2.63609, 3.35949, -4.99416 ], [ 0.02336, 3.64113, -5.4898 ], [ 2.40332, 3.12508, -7.53614 ], [ 1.28714, 1.54409, -3.84168 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4074977629000050362916118620938444558505195971696742349764574246300178848636638097754886988278964460800268265518844307680907577952944552047949100663368658
1
VASP
DFT
null
[ [ -0.000037, 0.000006, 0.00004 ], [ -0.027924, 0.007724, 0.025861 ], [ 0.029954, -0.004889, -0.023817 ], [ -0.029882, 0.004846, 0.023766 ], [ 0.02785, -0.00772, -0.025812 ], [ -0.016132, 0.00444, 0.012514 ], [ -0.000334, 0.000118, 0.000303 ], [ 0.016504, -0.004524, -0.012855 ] ]
null
[ [ 0.000760902377536428, 0.0005065608806566851, 0.0016312808251408482 ], [ 0.0005065608806566851, 0.002764364391853695, -0.0005803355185246253 ], [ 0.0016312808251408482, -0.0005803355185246253, 0.0017139808210588016 ] ]
true
null
null
-52.835083
null
0.024684
0.038836
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:17:12
1165701848535870863548141820342377353858753772980871475948670802372508838540235732626511813018373231163358967319896399728217893390281166692212382072305317
PO_1165701848535870863548141
null
null
null
[ "train_1st_stage_710" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
3658156093645809312424611107655475641706265936135020719272064345669800089134179387358754316184766330193392191865308970979143056683565397943325002445472945
CO_3658156093645809312424611
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni5Ti3
Al4Ni5Ti3
A5B4C3
[ 13, 13, 13, 13, 28, 28, 28, 28, 28, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.3333333333333333, 0.4166666666666667, 0.25 ]
3
12
[ [ 2.39113, 0.744737, 3.31593 ], [ -1.55185, 8.49506, -0.040237 ], [ -2.3268, -0.915696, 3.15224 ] ]
[ [ -3.34513, 6.58109, 3.47976 ], [ 0.67264, 1.42955, 1.24322 ], [ -0.92731, 4.25991, 5.12339 ], [ -0.83818, 3.58074, 1.48022 ], [ 0.21502, 0.39113, 3.11713 ], [ -1.27767, 2.42737, 3.41018 ], [ 1.10506, 2.87648, 2.9749 ], [ 0.25866, 5.40491, 3.50322 ], [ -1.97691, 4.89082, 3.42455 ], [ 0.71643, 1.74044, 5.08553 ], [ -0.90886, 6.82965, 1.62586 ], [ -0.97287, 7.09806, 4.15227 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5276224643768479814001817970293669900397102459766460392611116438409481473478029605599605034046956147229950215398298217413294550242297516449718585532001230
1
VASP
DFT
null
[ [ -4.631942, 16.956073, -31.157396 ], [ 0.823984, -1.217713, -0.403703 ], [ 3.886784, -2.035159, -1.775985 ], [ 1.939727, 0.973978, 1.647776 ], [ 0.949998, 1.552681, -0.610673 ], [ 0.929712, 1.938767, 0.746492 ], [ -0.904173, 0.90565, 0.677364 ], [ -2.268069, 0.859553, 2.556954 ], [ -0.181364, -2.144401, -4.953078 ], [ -0.608807, -2.309303, -1.755143 ], [ 0.478933, -15.546119, 32.539701 ], [ -0.414784, 0.065991, 2.487692 ] ]
null
[ [ 0.23059935790070415, -0.02809821302817503, -0.03502235600715614 ], [ -0.02809821302817503, 0.236397782293741, -0.13246173814097387 ], [ -0.03502235600715614, -0.13246173814097387, 0.520412661859758 ] ]
true
null
null
-51.23458
null
8.406483
36.065819
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:13:38
12476585234824864890711965599155309001837354654143601249686688636882085183516883801427113779095140100203542504269707367593501610058855250220550976641798742
PO_1247658523482486489071196
null
null
null
[ "train_1st_stage_1739", "train_1st_stage_1939", "train_1st_stage_1339", "train_1st_stage_1539" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
2110038934411592574221880881876907881600989760824755148630003691985725567796369508036029144017361087725394921281344234648224578798749608262903015343354585
CO_2110038934411592574221880
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni3Ti2
Ni3Ti2
A3B2
[ 28, 28, 28, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.6, 0.4 ]
2
5
[ [ -0.028366, 2.86898, 1.59306 ], [ 2.85177, -3.13442, -1.06491 ], [ 5.60614, 4.26727, -4.20092 ] ]
[ [ 5.60524, 4.26637, -4.19883 ], [ 1.67547, 1.94887, -0.09941 ], [ 5.05206, 2.9749, -1.88504 ], [ 3.34938, 0.95918, -1.66721 ], [ 6.7831, 2.12163, -3.69594 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2706009731927055055790516580528086955614517907847699405814284778453611353526607335215311122400091085665308509269089456922187100364786861448193810012383617
1
VASP
DFT
null
[ [ -0.005032, -0.015317, 0.025693 ], [ 0.005245, 0.015368, -0.02644 ], [ -0.000115, -0.000064, 0.000669 ], [ 0.034726, 0.087199, -0.154331 ], [ -0.034823, -0.087186, 0.154408 ] ]
null
[ [ -0.009000443404797434, 0.0010297241755882198, -0.002108256952540847 ], [ 0.0010297241755882198, 0.002032797107208918, 0.00005155486537979571 ], [ -0.002108256952540847, 0.00005155486537979571, 0.001808040363585862 ] ]
true
null
null
-34.103379
null
0.084677
0.180709
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:07:07
10134737258674118538306940513889764680598334488477915287417962724764718678790857270591764461987309167906657215899107840804815559568173187414304590214510349
PO_1013473725867411853830694
null
null
null
[ "train_1st_stage_1095" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5776026509103435199221379466365590586614656019277216434542460357780760166607046179351156443816729367220339273893195947860484133280503592929464967224803011
CO_5776026509103435199221379
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni2Ti2
NiTi
AB
[ 28, 28, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.5, 0.5 ]
2
4
[ [ 3.04092, -3.04092, 0 ], [ 3.04092, 0, 3.04092 ], [ 0, -3.04092, 3.04092 ] ]
[ [ 0, 0, 0 ], [ 4.56138, -4.56138, 4.56138 ], [ 1.52046, -1.52046, 1.52046 ], [ 3.04092, -3.04092, 3.04092 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5833811661294540058412430133986320555003566860301117758274846189690600407626889349349513046907575752823971829959996348714391056659155268818018114170531462
1
VASP
DFT
null
[ [ 0.000001, -0.00001, 0.000012 ], [ 0.000011, -0.000013, 0.000018 ], [ -0.00002, 0.000029, -0.000036 ], [ 0.000008, -0.000007, 0.000005 ] ]
null
[ [ -0.023709371056127696, 1.2483018251766518e-7, -6.241509125883259e-8 ], [ 1.2483018251766518e-7, -0.02370924622594518, 1.8724527377649775e-7 ], [ -6.241509125883259e-8, 1.8724527377649775e-7, -0.02370924622594518 ] ]
true
null
null
-27.616109
null
0.000026
0.00005
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:34:47
5909180452769864612689063068962756190782121487692869155573581015819374739261490369273732566056016121533217585156279321592294022091516341872683778814676481
PO_5909180452769864612689063
null
null
null
[ "train_1st_stage_2146" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
2601523304503754250577809682980979974005206100440031550628157993336483898277676567594459537855765992470681162321992756006284674472420430005518019512162558
CO_2601523304503754250577809
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni7Ti2
Al3Ni7Ti2
A7B3C2
[ 13, 13, 13, 28, 28, 28, 28, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.25, 0.5833333333333334, 0.16666666666666666 ]
3
12
[ [ 3.13576, 2.05653, 0.172276 ], [ 0.244783, 4.53612, 3.95096 ], [ -0.128303, -4.1289, 3.69027 ] ]
[ [ 0.37151, 0.49729, 7.10128 ], [ 0.64642, -2.01751, 3.85373 ], [ 1.07135, 0.6044, 1.91869 ], [ 0.09664, 0.32192, 3.86429 ], [ 1.4502, 2.82726, 3.78465 ], [ 1.93381, -0.12332, 3.83806 ], [ 2.37239, 4.56292, 4.23509 ], [ 2.06457, 2.86918, 2.19971 ], [ 2.43639, 3.39952, 6.18443 ], [ 0.10057, -1.23545, 1.79133 ], [ 1.26067, 0.63148, 5.80519 ], [ 2.92523, 0.58126, 5.96329 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12429782928738203640872981497036851500993228913433424692258711828009434532178061111083956837996701623395309944715668345806947352135388792996517575143323431
1
VASP
DFT
null
[ [ -11.956855, -7.581737, 25.680855 ], [ 8.876588, 2.430739, -2.047624 ], [ -0.264906, 3.378228, 1.446162 ], [ -1.189454, -0.761058, 1.887205 ], [ -11.968248, -5.834391, 14.494476 ], [ 1.418625, 1.612175, 4.015783 ], [ 3.341309, 2.742716, 2.062121 ], [ 6.437834, -8.394566, -16.228066 ], [ -5.867086, -2.044024, -11.401163 ], [ -0.454159, -0.183423, 0.534632 ], [ -0.939255, 9.992967, -20.847679 ], [ 12.565606, 4.642375, 0.403299 ] ]
null
[ [ 1.1069498686820434, -0.08240502219666393, -0.08568331244994284 ], [ -0.08240502219666393, 0.575448229633785, 0.014650132635364441 ], [ -0.08568331244994284, 0.014650132635364441, 0.8793849452730699 ] ]
true
null
null
-27.04265
null
11.953381
29.324997
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:30:27
10985097632666349238412922093840416219824274281594652967499608833218965504097431957824247274212616064212780276683913716876991707612304303991060532809018325
PO_1098509763266634923841292
null
null
null
[ "train_1st_stage_1652", "train_1st_stage_1252", "train_1st_stage_1852", "train_1st_stage_1452" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11324333734929107550389040932164611206904703955729297541986727734145700434326209342207999310208441577257158567082261541140992762047981249299221005513756018
CO_1132433373492910755038904
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni2Ti4
Al2NiTi2
A2B2C
[ 13, 13, 13, 13, 28, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.4, 0.2, 0.4 ]
3
10
[ [ 2.78052, 5.63429, 0.413872 ], [ -2.78049, 5.63411, 0.413944 ], [ -0.000022, 0.874249, 5.0221 ] ]
[ [ 0.79553, 7.90057, 2.55772 ], [ 0.79569, 3.80507, 0.78115 ], [ -0.79552, 4.24209, 3.29219 ], [ -0.79567, 8.33759, 5.06876 ], [ -0.048, 5.85276, 1.66944 ], [ 0.04802, 6.28989, 4.18047 ], [ -1.96274, 4.58683, 0.54775 ], [ -1.96285, 7.11859, 2.79115 ], [ 1.96275, 7.55582, 5.30216 ], [ 1.96286, 5.02406, 3.05876 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2338082105617793928121500491068249311784601686118804139865059738237514040758002679766937153320129131326025665452067055867307115110013484364821133205201995
1
VASP
DFT
null
[ [ 0.104832, 0.298329, 0.149436 ], [ 0.105002, -0.298308, -0.14924 ], [ -0.104934, -0.298299, -0.149253 ], [ -0.105338, 0.29812, 0.148998 ], [ -0.006923, 0.000208, 0.000266 ], [ 0.006868, 0.000008, -0.000333 ], [ -0.11256, -0.190282, -0.198585 ], [ -0.114298, 0.189098, 0.198648 ], [ 0.113726, 0.189953, 0.198438 ], [ 0.113625, -0.188826, -0.198376 ] ]
null
[ [ -0.008891404240368253, -0.000008113961863648234, 0.000006116678943365593 ], [ -0.000008113961863648234, -0.001055813683734412, 0.009082644079985318 ], [ 0.000006116678943365593, 0.009082644079985318, 0.0067730360430434755 ] ]
true
null
null
-60.346035
null
0.260057
0.349744
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:13:54
11987141678160535232048592052503393825838184431260724179754074114017758431640453689251694394690638827884035057492516615219941073830056194887665071293530630
PO_1198714167816053523204859
null
null
null
[ "train_2nd_stage_68" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9531144263574746471525327272104752054457226485095763438704315272148780663238576841348387901320148198034059173127027339692663883184982167487145437711252647
CO_9531144263574746471525327
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al5Ni
Al5Ni
A5B
[ 13, 13, 13, 13, 13, 28 ]
[ "Al", "Ni" ]
[ 0.8333333333333334, 0.16666666666666666 ]
2
6
[ [ 4.78244, 0.000008, 0 ], [ 7.17362, 4.1417, 0 ], [ 0, 0, 4.54036 ] ]
[ [ 7.15194, 4.10414, 0 ], [ 7.15197, 1.41812, 0 ], [ 4.82578, 2.76113, 0 ], [ 8.76777, 4.1417, 2.27018 ], [ 3.98536, 1.38057, 2.27018 ], [ 6.37656, 2.76113, 2.27018 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
73781636602606218932224664077774865879728651190363651108318809857722851187328550798289194414817151248427323822185753151669985850094622905285948004736548
1
VASP
DFT
null
[ [ -0.076027, -0.13092, 0.000001 ], [ -0.07811, 0.130431, 0 ], [ 0.153933, 0.000475, 0.000001 ], [ -0.002831, 0.009919, 0 ], [ 0.001404, -0.006168, 0 ], [ 0.001631, -0.003737, -0.000002 ] ]
null
[ [ -0.0026318571531111935, -0.00016770935021248316, 0 ], [ -0.00016770935021248316, -0.0035765719744048833, 0 ], [ 0, 0, 0.002546410893177852 ] ]
true
null
null
-24.764318
null
0.07968
0.153934
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:33:16
1222737249166211672776517966199216024357674400981370960923202379440073927333026825767673458079161334857179732555607856154667734835707844328105027008775436
PO_1222737249166211672776517
null
null
null
[ "train_2nd_stage_570" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11746535831716081119793535650504070740288932284943995076213264774489895117791445864280180378203075025165741909137690162706742547808847047598260427842519366
CO_1174653583171608111979353
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni2Ti6
Al3NiTi3
A3B3C
[ 13, 13, 13, 13, 13, 13, 28, 28, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.42857142857142855, 0.14285714285714285, 0.42857142857142855 ]
3
14
[ [ 3.99181, -6.91402, 0 ], [ 3.99181, 6.91402, 0 ], [ 0, 0, 4.05913 ] ]
[ [ 1.36759, -0.23923, 1.01478 ], [ 3.51519, -5.61004, 1.01478 ], [ 7.09265, -1.06476, 1.01478 ], [ 6.61603, 0.23923, 3.04435 ], [ 4.46844, 5.61004, 3.04435 ], [ 0.89097, 1.06476, 3.04435 ], [ 3.99181, -2.30513, 1.01478 ], [ 3.99181, 2.30513, 3.04435 ], [ 1.75879, 2.08112, 1.01478 ], [ 5.30193, 0.4826, 1.01478 ], [ 4.91472, 4.3503, 1.01478 ], [ 6.22483, -2.08112, 3.04435 ], [ 2.6817, -0.4826, 3.04435 ], [ 3.06891, -4.3503, 3.04435 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10453245600480488753765653316977401950167735509118089204094366477547822804303283112211914714952063280873606658684611489582552105716978526369921627474714723
1
VASP
DFT
null
[ [ 2.446254, -0.603591, 0.00012 ], [ -0.699472, 2.420938, 0.000114 ], [ -1.745886, -1.816027, 0.000117 ], [ -2.44578, 0.604576, -0.000116 ], [ 0.700117, -2.420418, -0.000118 ], [ 1.746383, 1.816515, -0.000112 ], [ -0.000114, -0.000057, 0.000004 ], [ -0.000055, -0.000041, 0.000003 ], [ 4.134002, 4.975621, 0.000067 ], [ -6.376718, 1.092761, 0.00005 ], [ 2.242415, -6.069236, 0.00007 ], [ -4.135094, -4.977115, -0.000077 ], [ 6.375975, -1.092142, -0.000054 ], [ -2.242028, 6.068217, -0.000069 ] ]
null
[ [ 0.21417208037192698, 0.0000015603772814708146, -6.241509125883258e-7 ], [ 0.0000015603772814708146, 0.21414492980722943, 2.4966036503533035e-7 ], [ -6.241509125883258e-7, 2.4966036503533035e-7, 0.2154193835556435 ] ]
true
null
null
-68.982706
null
3.852526
6.470755
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:42:08
12411014926465399826678174928456636147817813484394718552416533401692740659692498534074636127945546774573369991711780414072571246164025035551350312053602917
PO_1241101492646539982667817
null
null
null
[ "train_1st_stage_2183" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6760048970090672274587536814454778207788841667441957571751358429009440903974069073114340346903187595664989381338953692149988709058710371491572434751246489
CO_6760048970090672274587536
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi2Ti
AlNi2Ti
A2BC
[ 13, 28, 28, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.25, 0.5, 0.25 ]
3
4
[ [ 3.77852, 0.188177, 0.001192 ], [ -0.001192, 0.188177, -3.77852 ], [ 1.72589, 3.34384, -1.72589 ] ]
[ [ 0, 0, 0 ], [ 1.80668, 1.8601, -3.69654 ], [ 3.69654, 1.8601, -1.80668 ], [ 1.88867, 0.18818, -1.88867 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3257219523412318379149018880929011352941409935699504706296025527696595106814257074375536533849388816797214547094510547379611424308583696610422172801728866
1
VASP
DFT
null
[ [ 0.000054, 0.000031, -0.000053 ], [ -0.003625, -0.000024, -0.003658 ], [ 0.00366, -0.000021, 0.003625 ], [ -0.000089, 0.000014, 0.000086 ] ]
null
[ [ -0.053455404908627165, -0.00139647525182512, -0.00036968458552606536 ], [ -0.00139647525182512, -0.03410279446763976, 0.0013963504216426025 ], [ -0.00036968458552606536, 0.0013963504216426025, -0.05345546732371843 ] ]
true
null
null
-24.380841
null
0.002627
0.005151
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:24:12
4486085878230213671819970674131720037002150688509212808757206728815196181332439314627687828325103849694647049444172393850144083030371232250705953811782641
PO_4486085878230213671819970
null
null
null
[ "train_1st_stage_815" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4095922585211718290821873859664802058924010642782673678466621769369224371214947979009057176182107130265389309457411978595574484395589321359880875098212597
CO_4095922585211718290821873
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNiTi2
AlNiTi2
A2BC
[ 13, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.25, 0.25, 0.5 ]
3
4
[ [ -1.6103, 1.6103, 1.81446 ], [ 2.80067, 2.80067, 0 ], [ -1.57221, 1.57221, -4.82927 ] ]
[ [ -1.27664, 1.27664, -1.823 ], [ -0.53623, 3.3369, -2.93357 ], [ -1.57353, 1.57353, -4.56245 ], [ -0.1589, 2.95957, -0.03247 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4938019960206648439941831157331339350168797847861811054691164166902985233732234955612046532323759342941604451788848264691999576453996790389918423569183342
1
VASP
DFT
null
[ [ -0.035269, 0.035259, -0.000528 ], [ 0.069068, -0.069078, -0.01712 ], [ 0.022075, -0.022084, 0.067445 ], [ -0.055874, 0.055903, -0.049797 ] ]
null
[ [ -0.004872246853846989, -0.0018783197563433075, 0.0025011599520151978 ], [ -0.0018783197563433075, -0.004872122023664471, -0.0025012847821977158 ], [ 0.0025011599520151978, -0.0025012847821977158, -0.004560545888100379 ] ]
true
null
null
-26.060202
null
0.079197
0.099173
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:05:19
12235335728554134665068673489880737894148738776690641343242794265313234567165914145431941867199762396807099325458096244350582175467972321190412136856224941
PO_1223533572855413466506867
null
null
null
[ "train_2nd_stage_589" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7657441449930959164850726611932955844039576411292194430839511016853602294665997075119302728202676167380151261874818747409763091841384390678339378734201449
CO_7657441449930959164850726
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni5Ti
Ni5Ti
A5B
[ 28, 28, 28, 28, 28, 22 ]
[ "Ni", "Ti" ]
[ 0.8333333333333334, 0.16666666666666666 ]
2
6
[ [ -2.0077, 4.25969, 0 ], [ -2.0077, -4.25969, 0 ], [ 0, 0, 3.98565 ] ]
[ [ -2.0077, -4.01262, 0 ], [ -2.0077, 1.64613, 0 ], [ -2.0077, -1.18325, 0 ], [ -2.0077, 0.21384, 1.99282 ], [ -2.0077, -2.58033, 1.99282 ], [ -2.0077, 3.07644, 1.99282 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
517346101868394700467465641111888087750541249528848055199598688291833126790568286384903023957952531436100493616271510246092651348626491715318371839158028
1
VASP
DFT
null
[ [ 0, 0.255497, -0.000034 ], [ -0.000001, -0.256465, -0.000034 ], [ 0, 0.000667, -0.000058 ], [ 0, 0.118313, 0.000044 ], [ -0.000001, -0.118399, 0.000042 ], [ 0.000001, 0.000387, 0.00004 ] ]
null
[ [ -0.0034242791517333313, 0, 0 ], [ 0, -0.013077147505459344, 0 ], [ 0, 0, -0.007579314191925075 ] ]
true
null
null
-36.428615
null
0.124955
0.256465
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:20:12
3330937468901927019429464271979472237639892027120607607065932189478810444965762634053914090583323875617590896946661174038942228032609248250362038847148599
PO_3330937468901927019429464
null
null
null
[ "train_2nd_stage_152" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
686272183287283016017247520657443369548352879672317372430803437468468484462419132310122618955182255086356473152530623360488022377057232889249422739989173
CO_6862721832872830160172475
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni12Ti2
Ni6Ti
A6B
[ 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.8571428571428571, 0.14285714285714285 ]
2
14
[ [ 0, 0, 4.09968 ], [ 3.79654, 2.17555, 0 ], [ -2.52332, 8.73556, 0 ] ]
[ [ -2.48604, 8.70834, 0 ], [ 2.53514, 4.35747, 0 ], [ -0.08938, 4.37139, 0 ], [ 1.25123, 6.58014, 0 ], [ -1.25223, 6.55364, 0 ], [ 0.02819, 8.70983, 0 ], [ -1.23911, 9.42633, 2.04984 ], [ 2.62482, 2.89951, 2.04984 ], [ 0.00029, 2.91343, 2.04984 ], [ -1.29838, 5.12258, 2.04984 ], [ -0.01607, 7.29663, 2.04984 ], [ 1.26435, 9.45282, 2.04984 ], [ 1.29325, 2.19396, 0 ], [ 1.24218, 5.07694, 2.04984 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6508098273910809762883373622410592638393628644127467022993662682830674860208243267667941167645799633029349434823576752935626269400849910522865103614241954
1
VASP
DFT
null
[ [ -0.003121, -0.090454, 0 ], [ 0.060884, -0.080514, 0 ], [ -0.063762, -0.131699, 0 ], [ -0.042879, 0.018061, 0 ], [ 0.094775, 0.090115, 0 ], [ 0.048318, 0.012052, 0 ], [ 0.043102, -0.018486, 0 ], [ 0.063742, 0.131747, 0 ], [ -0.060707, 0.079733, 0 ], [ 0.003153, 0.090198, 0 ], [ -0.048101, -0.01236, 0 ], [ -0.094955, -0.08955, 0 ], [ 0.027216, -0.167374, 0 ], [ -0.027665, 0.16853, 0 ] ]
null
[ [ -0.004787611990100011, -0.0023115429047708648, 0 ], [ -0.0023115429047708648, -0.006655820501659389, 0 ], [ 0, 0, -0.0024401179927640597 ] ]
true
null
null
-84.47057
null
0.104939
0.170786
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:35:37
8229575191997581056249413670369034568218940695462877580283946188811584421316838834602201266707500871760048594423943570161845813907253814383666697911755163
PO_8229575191997581056249413
null
null
null
[ "train_1st_stage_799" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10463926023653253147354056992022911894228753711632807897412839157011093946323855834704155310161173000714213781737478126187648725433097898616350920350864161
CO_1046392602365325314735405
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlTi2
AlTi2
A2B
[ 13, 22, 22 ]
[ "Al", "Ti" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
3
[ [ -1.44527, 4.32937, -2.49635 ], [ 2.0214, 2.22623, -4.22735 ], [ -1.6737, -4.46901, 2.10299 ] ]
[ [ 2.02139, 2.22623, -4.22735 ], [ 0.38047, 4.33593, -4.4531 ], [ -1.47805, -2.24934, -0.16762 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5106802962894631356384546642141754663741101354469404828373734462836949407606576238636713511550668381516586945808060464346848969223182772812029209128638204
1
VASP
DFT
null
[ [ 0.000021, -0.000227, 0.000203 ], [ 0.051941, 0.539661, -0.498883 ], [ -0.051962, -0.539434, 0.49868 ] ]
null
[ [ 0.02022972971844778, -0.0010656128530620486, -0.0006877518905810761 ], [ -0.0010656128530620486, 0.018683333417418943, -0.0010292872699494081 ], [ -0.0006877518905810761, -0.0010292872699494081, 0.022547077226705715 ] ]
true
null
null
-20.023197
null
0.491175
0.736761
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:23:03
8243497730031202385473417329507007477724584138259952094534576695571281601615403609243774567476300525316878489805498955269088107384091640276694210930489328
PO_8243497730031202385473417
null
null
null
[ "train_1st_stage_2221" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4489862709389949582148730300133890695230118001500696865199075272954276023817311273812598222985108832458349801490943870867994850358874360334420831066249409
CO_4489862709389949582148730
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ti5
Al4Ti5
A5B4
[ 13, 13, 13, 13, 22, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.4444444444444444, 0.5555555555555556 ]
2
9
[ [ 0.000745, 2.81343, 0.096878 ], [ 2.813429, 0.000746, 0.096877 ], [ 2.04487, 2.044883, -18.430189 ] ]
[ [ 0.00867, 2.81159, 0.03134 ], [ 2.96233, 2.95258, -3.94607 ], [ 3.10266, 3.09291, -8.02297 ], [ 3.24288, 3.23313, -12.0965 ], [ 1.48502, 1.4753, -2.0087 ], [ 1.62537, 1.61567, -6.08135 ], [ 1.76576, 1.75604, -10.15397 ], [ 1.90805, 1.89831, -14.28697 ], [ 3.38766, 3.37793, -16.30651 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3904821403091125657192251391103753100484945237378218499255102857390787977810090828505772268137048536198423218752799861862615528608668844185857554561321080
1
VASP
DFT
null
[ [ 0.000197, 0.000181, -0.010252 ], [ 0.000094, 0.000102, -0.006262 ], [ -0.000145, -0.000124, 0.007285 ], [ -0.000005, -0.000011, 0.005102 ], [ -0.000369, -0.000384, 0.007847 ], [ 0.000021, 0.000044, -0.000917 ], [ 0.00029, 0.000287, -0.005041 ], [ 0.00015, 0.000143, -0.003373 ], [ -0.000232, -0.000237, 0.00561 ] ]
null
[ [ 0.0004758526557573396, 0.00005754671414064364, -0.000010048829692672045 ], [ 0.00005754671414064364, 0.0004761023161223749, -0.00001017365987518971 ], [ -0.000010048829692672045, -0.00001017365987518971, 0.0007834342254808665 ] ]
true
null
null
-57.350533
null
0.00575
0.010255
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:26:03
5229313116219569128110872878431245498255710345794497048826837447903255113783664354596838707345523443265663620909194907606523176641946982004466336096975297
PO_5229313116219569128110872
null
null
null
[ "train_1st_stage_365" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
3271583984897580880811167114108990722508302774925262140339968142727527154847072110814979764769218099241371998189232352336749917537274965336409867282940501
CO_3271583984897580880811167
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni8Ti2
AlNi4Ti
A4BC
[ 13, 13, 28, 28, 28, 28, 28, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.16666666666666666, 0.6666666666666666, 0.16666666666666666 ]
3
12
[ [ 4.14989, 2.19234, 0.01017 ], [ -0.071929, 4.99276, -0.000106 ], [ 0.00136, 0.001545, 7.41747 ] ]
[ [ 0.84875, 0.85193, 1.84366 ], [ 3.81441, 4.95247, 5.57287 ], [ 0.05412, 4.8982, 7.36261 ], [ 4.07744, 7.09126, 3.7716 ], [ 1.36523, 2.48967, 7.36952 ], [ 1.43233, 2.42673, 3.72139 ], [ 2.71653, 4.80391, 0.0414 ], [ 2.69649, 4.84826, 3.68632 ], [ 1.40571, 5.6768, 5.58058 ], [ 0.01484, 3.31999, 1.86619 ], [ 3.33543, 3.01827, 1.92133 ], [ 3.06832, 3.70503, 5.53743 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2956397088856955497239087806628303817272266425300741405370606661163607276703832727670901778751250116327148159772856331494606257153582804420683147436134270
1
VASP
DFT
null
[ [ 23.137617, 0.914885, -0.672316 ], [ 20.94835, 32.871161, 0.798587 ], [ -0.337604, -0.916264, -0.912842 ], [ 0.407248, -1.120875, 1.426377 ], [ 0.035772, -0.270196, -0.111401 ], [ -0.104, -0.12403, 0.207023 ], [ -1.011409, 0.757468, 2.187378 ], [ -1.184386, 0.936765, -2.217199 ], [ 0.01199, 1.285549, -0.22734 ], [ 0.872914, -0.245754, -0.094276 ], [ -23.612311, 0.381968, 0.289599 ], [ -19.164181, -34.470677, -0.67359 ] ]
null
[ [ 0.23105636119890133, 0.14093115394934116, -0.004617593281510952 ], [ 0.14093115394934116, 0.17365981776782646, 0.005147434991207182 ], [ -0.004617593281510952, 0.005147434991207182, 0.05762229881615809 ] ]
true
null
null
-46.695903
null
11.36619
39.445496
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:22:47
11209744703229320629067021994812001602018404316668741969159583576955511874230901076145019943890492955505370490890593367347812767500673007600931274518897062
PO_1120974470322932062906702
null
null
null
[ "train_1st_stage_1899", "train_1st_stage_1699", "train_1st_stage_1499", "train_1st_stage_1299" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7685820899479232060855532101405741196037043650936775139152395896341397620273022170904455333981393854102121616828177293219870341953387081305675017735680091
CO_7685820899479232060855532
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni6Ti4
AlNi3Ti2
A3B2C
[ 13, 13, 28, 28, 28, 28, 28, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.16666666666666666, 0.5, 0.3333333333333333 ]
3
12
[ [ 2.902225, -0.341226, 2.921913 ], [ -1.833068, 9.437168, -0.00002 ], [ -2.902133, 0.341221, 2.92182 ] ]
[ [ -1.40298, 1.42771, 4.36834 ], [ -0.68362, 7.54874, 4.36835 ], [ 0.94232, 8.86553, 2.90744 ], [ -1.95988, 9.20676, 2.90738 ], [ -2.68484, 3.03778, 2.90738 ], [ 0.21733, 2.69663, 2.90743 ], [ 0.59817, 5.93869, 2.90744 ], [ -2.30402, 6.27983, 2.90738 ], [ -1.40745, 1.39008, 1.44646 ], [ -1.04337, 4.48824, 4.36834 ], [ -1.04341, 4.48826, 1.44648 ], [ -0.67921, 7.58642, 1.4465 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2943247340357260323759609896193055014363980484737209443395471255755228835880446409738723007263714848672162140142896513701427919630297876533323793518448446
1
VASP
DFT
null
[ [ 0.000468, 0.004266, -0.000003 ], [ -0.000596, -0.004467, 0.000026 ], [ 0.000138, 0.00011, -0.000011 ], [ 0.000155, 0.000113, -0.000019 ], [ -0.00317, -0.024969, 0.000211 ], [ -0.003167, -0.025134, -0.000051 ], [ 0.003215, 0.025175, 0.000063 ], [ 0.003257, 0.025444, -0.000249 ], [ 0.001272, 0.013294, 0.000062 ], [ 0.000072, 0.000802, 0.000004 ], [ 0.000035, 0.000483, 0 ], [ -0.001678, -0.015118, -0.000034 ] ]
null
[ [ -0.003225611916256468, -0.00009836618382392014, -0.000004930792209447774 ], [ -0.00009836618382392014, -0.003990508859633461, 0.000002871094197906299 ], [ -0.000004930792209447774, 0.000002871094197906299, -0.0032408411985236233 ] ]
true
null
null
-77.866752
null
0.011713
0.025653
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:00:17
12173511330895833434432891738541665937627124046040445935789791250503828347975588280713644964246845350193015458667102722880243514675220967338113549433258479
PO_1217351133089583343443289
null
null
null
[ "train_1st_stage_182" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
13294101747064079344423630161368690625424658959765688636674187783439776840925251744798115905449308826077790546784359230147364847468473914636290728574677581
CO_1329410174706407934442363
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi8Ti
AlNi8Ti
A8BC
[ 13, 28, 28, 28, 28, 28, 28, 28, 28, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.1, 0.8, 0.1 ]
3
10
[ [ 1.75793, -3.57995, -1.76113 ], [ 0.022808, 3.5674, -3.54856 ], [ 5.4006, 1.8352, -0.025607 ] ]
[ [ 1.8598, -3.51655, -1.76782 ], [ 3.57988, -1.75572, -1.80515 ], [ 5.38747, 0.02255, -1.80547 ], [ 1.76945, -0.00845, -1.81411 ], [ 3.61559, 1.79501, -1.75694 ], [ 0.02918, 1.81112, -1.80343 ], [ 3.59334, 0.04576, -3.49049 ], [ 5.38292, 1.80968, -3.5695 ], [ 1.7759, 1.76897, -3.52201 ], [ 3.50115, 3.52199, -3.5417 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2893417400073887360346683850956846940537257085504107137677576495005324157141899602152342216226794531163379174766708151878959038457774960788800030341530560
1
VASP
DFT
null
[ [ -0.066637, 0.052903, -0.008192 ], [ 0.032048, 0.139686, -0.028904 ], [ 0.025981, 0.166814, 0.047416 ], [ -0.121831, -0.034514, -0.052324 ], [ -0.101164, -0.05068, 0.077201 ], [ 0.021023, 0.028868, -0.052472 ], [ -0.039399, -0.115724, -0.052453 ], [ 0.096646, -0.103939, 0.135844 ], [ 0.017629, -0.062113, 0.046018 ], [ 0.135705, -0.021301, -0.112136 ] ]
null
[ [ -0.001728648367504627, 0.003226672972807868, -0.0010981311156079004 ], [ 0.003226672972807868, -0.001427433137089501, 0.0017971177226155665 ], [ -0.0010981311156079004, 0.0017971177226155665, -0.0027234200919879006 ] ]
true
null
null
-58.318964
null
0.133059
0.196462
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:30:03
3908666890756017963483863813802354364571894826275964044757018273230934751393465994862077713377037149986932777498591567005422305944747748965077812477987871
PO_3908666890756017963483863
null
null
null
[ "train_1st_stage_761" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
13140250283816140023382243245967977343932851699774326863747058042022409126879084717378099509814442649144254858661284231110357566002792874832954320366515105
CO_1314025028381614002338224
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al5Ni3Ti4
Al5Ni3Ti4
A5B4C3
[ 13, 13, 13, 13, 13, 28, 28, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.4166666666666667, 0.25, 0.3333333333333333 ]
3
12
[ [ 4.357789, 2.664332, 0.014855 ], [ -0.010006, 4.912685, -0.156754 ], [ -0.006923, -0.033539, 8.099642 ] ]
[ [ 4.32293, 3.42698, 8.0099 ], [ 0.68189, 4.50805, 3.99972 ], [ 2.1962, 2.1264, 8.00265 ], [ 2.91302, 5.87187, 4.00729 ], [ 1.4475, 0.8777, 2.02966 ], [ 0.69591, 2.09601, 4.04126 ], [ 2.18216, 4.53846, 7.96103 ], [ 1.44413, 0.86088, 6.0795 ], [ 2.89696, 3.39987, 2.51132 ], [ 2.84886, 3.46179, 5.56792 ], [ 4.34592, 5.93237, 1.40644 ], [ 0.02922, 3.17277, 6.43435 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3804050853232137218248391530611482413868889453707571301909340170594844531917932479191966576254884973815179627045689229244769060593241045816073050347260480
1
VASP
DFT
null
[ [ -0.002064, -0.007714, -0.000047 ], [ -0.007612, 0.002387, -0.000272 ], [ 0.007898, -0.001839, -0.000152 ], [ 0.001434, 0.00774, -0.000349 ], [ 0.000231, -0.000382, 0.000491 ], [ 0.0021, -0.00334, -0.002404 ], [ -0.00183, 0.002847, 0.00281 ], [ -0.000204, 0.000301, 0.000302 ], [ -0.004695, 0.00766, 0.0006 ], [ 0.002818, -0.004763, -0.000513 ], [ 0.004423, -0.007233, -0.002818 ], [ -0.0025, 0.004336, 0.002352 ] ]
null
[ [ 0.00031332375811933956, 0.000036700073660193556, -0.00004687373353538327 ], [ 0.000036700073660193556, 0.00025646360998254306, 0.00007926716589871737 ], [ -0.00004687373353538327, 0.00007926716589871737, -0.0001546021810481283 ] ]
true
null
null
-72.419315
null
0.005928
0.009004
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:07:23
9228516294277256552536858525648131787331208848337652944674844830425936374194737445900092541957879681455492795791024042972169480838507734916878181453056663
PO_9228516294277256552536858
null
null
null
[ "train_1st_stage_383" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9119590986456471585996570656711519630835149867534732871327852214301250071354708503415761620623063360295474837923332798905939370909356875137745607565881155
CO_9119590986456471585996570
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni10Ti2
Ni5Ti
A5B
[ 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.8333333333333334, 0.16666666666666666 ]
2
12
[ [ 0, 3.36816, 0 ], [ 7.29655, 0, 0.000102 ], [ 0.000067, 0, -4.61527 ] ]
[ [ 0.05785, 0, -0.04989 ], [ 1.26427, 1.68408, -1.17102 ], [ 2.45991, 0, -2.37619 ], [ 3.70618, 1.68408, -3.41151 ], [ 4.86189, 0, -0.04982 ], [ 6.10816, 1.68408, -1.08514 ], [ 0.00725, 0, -2.29042 ], [ 1.21367, 1.68408, -3.41155 ], [ 3.65551, 1.68408, -1.17098 ], [ 4.91256, 0, -2.29035 ], [ 2.45994, 0, -4.59252 ], [ 6.1082, 1.68408, -3.48408 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12921512960292241517406139903283784148786020099617926585700625021506102954325885850459349107827243330067311995177638813263290002729130970721923462724825374
1
VASP
DFT
null
[ [ -0.140681, 0.000002, 0.512788 ], [ -0.336945, -0.000002, 0.257631 ], [ 0.000532, 0, 1.30988 ], [ -0.139806, 0.000002, -0.512771 ], [ 0.140093, 0, 0.51281 ], [ 0.000121, 0, -1.309652 ], [ 0.336478, 0.000002, -0.257275 ], [ 0.139661, -0.000002, -0.513044 ], [ 0.337247, 0.000001, 0.257494 ], [ -0.336803, 0, -0.257097 ], [ 0.00067, 0, -0.921405 ], [ -0.000567, -0.000002, 0.92064 ] ]
null
[ [ 0.2036065161387231, 1.2483018251766518e-7, -0.0000035576602017534568 ], [ 1.2483018251766518e-7, 0.2502626082508868, 6.241509125883259e-8 ], [ -0.0000035576602017534568, 6.241509125883259e-8, 0.31304307745394855 ] ]
true
null
null
-69.770327
null
0.690322
1.30988
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:18:57
969983417641816140858469468177520982185576280534880186112939706273978710798727855512762837108601685197034309787223858680916344474911652217033723450145616
PO_9699834176418161408584694
null
null
null
[ "train_2nd_stage_820" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5282354118823087828527614860693802140748114633407972932478333840827290083143800205237607817185836730186411303941019043829024251836015218151241095281315624
CO_5282354118823087828527614
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlTi2
AlTi2
A2B
[ 13, 22, 22 ]
[ "Al", "Ti" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
3
[ [ -1.53821, 1.43005, 5.6988 ], [ 1.43005, -1.53821, 5.6988 ], [ 1.54284, 1.54284, -5.69651 ] ]
[ [ 0.00001, 0.00001, 0.00001 ], [ -0.03389, -0.03389, 3.80122 ], [ 1.46858, 1.46858, 1.89987 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3585187385209403832250937349231768485617527931484906375640066543100973400138244118769934041066265544067922873493438269686847239600389967105590383525248401
1
VASP
DFT
null
[ [ -0.000037, -0.000037, -0.000481 ], [ -0.025185, -0.025186, 0.104129 ], [ 0.025223, 0.025223, -0.103648 ] ]
null
[ [ 0.0008475345242036876, 0.00025103349704302464, -0.0019331826215598215 ], [ 0.00025103349704302464, 0.0008475969392949464, -0.0019331826215598215 ], [ -0.0019331826215598215, -0.0019331826215598215, 0.0020165691834816216 ] ]
true
null
null
-20.167044
null
0.073383
0.110052
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:07:24
9855404608519215363639395073886147619100277147374876126580792411227799714912556444305489595479743315035948054868378993989168537066500298949019750806831775
PO_9855404608519215363639395
null
null
null
[ "train_2nd_stage_563" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9296796721335415027307726535368713418050432850747929031396199590799042326341170659816016971638320920911432701588532055308915784486999619188011752334686153
CO_9296796721335415027307726
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al5Ni3
Al5Ni3
A5B3
[ 13, 13, 13, 13, 13, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.625, 0.375 ]
2
8
[ [ -3.52612, 1.99899, -0.554835 ], [ -2.43317, -4.23171, 0.217099 ], [ -1.5478, 2.94368, 5.33544 ] ]
[ [ -3.35485, -1.17497, 4.49892 ], [ -2.0775, -0.22502, -0.1769 ], [ -4.78114, -0.56309, 0.69981 ], [ -1.57065, 1.29769, 2.07499 ], [ -4.13218, 1.19596, 2.90663 ], [ -4.8419, 0.60281, 5.26708 ], [ -5.35162, -0.90312, 3.0893 ], [ -2.78437, -0.83494, 2.10943 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4809563832022723415689709566654825621211969254095984272984589504309279062660882311014330692893326788024740361310106984149580445678244477716944570168017387
1
VASP
DFT
null
[ [ 0.108806, 0.078725, -0.415671 ], [ -0.000194, 0.000162, -0.000168 ], [ -0.10912, -0.078413, 0.415452 ], [ 0.093747, 0.14608, -0.066411 ], [ -0.094041, -0.145753, 0.066309 ], [ 0.000434, -0.000259, 0.000328 ], [ -0.074007, -0.067915, 0.216308 ], [ 0.074376, 0.067372, -0.216148 ] ]
null
[ [ 0.0010958841723225825, -0.0004087564326540946, 0.0012965486907197293 ], [ -0.0004087564326540946, 0.0014374195516909144, 0.0016181736559764935 ], [ 0.0012965486907197293, 0.0016181736559764935, -0.002376392184588792 ] ]
true
null
null
-39.500751
null
0.21534
0.436828
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:21:53
10000331957972747928714837604028237794346715603818932864401525425226862511349582830868363407268000076342056014919295837828309244040944212464652290909824973
PO_1000033195797274792871483
null
null
null
[ "train_1st_stage_930" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
13378186886786686385299999654082441571587428020766278747323761239221452109789045335553568636524326893447306938666450886034134496148741855419852545651341736
CO_1337818688678668638529999
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni2Ti5
Al3Ni2Ti5
A5B3C2
[ 13, 13, 13, 28, 28, 22, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.3, 0.2, 0.5 ]
3
10
[ [ 3.992103, -0.000002, -0.000001 ], [ 0.000002, 0.067323, -4.027932 ], [ 0.000005, 9.416038, -1.857292 ] ]
[ [ 3.98807, 0.36211, -4.01968 ], [ 1.99202, 5.58435, -3.93252 ], [ 1.99202, 3.45633, -1.95351 ], [ 1.99201, 1.8912, -3.99414 ], [ 3.98804, 1.96716, -1.97853 ], [ 3.98807, 3.50492, -3.96723 ], [ 3.98808, 7.63403, -3.8983 ], [ 1.99201, 0.33804, -2.00555 ], [ 3.98808, 5.52074, -1.91903 ], [ 1.99201, 7.70567, -1.88258 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7982278039735822412349278867999131078550799731599985335601302926756114284998508170875415385243565497532664175049539923711852878421910094098481544405466685
1
VASP
DFT
null
[ [ 0.000023, 0.007514, 0.000036 ], [ 0.000028, 0.001967, 0.00001 ], [ -0.000083, 0.000201, 0.000201 ], [ 0.000016, 0.002414, 0.00013 ], [ -0.000049, -0.002855, -0.000205 ], [ 0.000052, -0.002754, -0.000292 ], [ 0.000011, -0.006095, -0.000067 ], [ -0.00003, 0.004004, 0.000179 ], [ 0.00003, -0.002088, 0.000063 ], [ 0.000002, -0.002309, -0.000054 ] ]
null
[ [ -0.00010704188150889787, 0, -3.744905475529955e-7 ], [ 0, 0.00011259682463093398, -0.0000033704149279769593 ], [ -3.744905475529955e-7, -0.0000033704149279769593, 0.00038628699980091486 ] ]
true
null
null
-65.457604
null
0.003233
0.007514
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:38:58
5538724011508653173013725487388453117283072035880730278875889361789770651477204540742968559449599978248483885257063952026314241302278761661381794443123464
PO_5538724011508653173013725
null
null
null
[ "train_1st_stage_351" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6660828729719957237233496091942064350716639067348178753607010526250983957540145066182303522430283083776526640828229573425162139705272427981229159593453411
CO_6660828729719957237233496
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni3Ti5
Ni3Ti5
A5B3
[ 28, 28, 28, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.375, 0.625 ]
2
8
[ [ 4.30047, -3.07423, 0 ], [ 4.30047, 3.07423, 0 ], [ 0, 0, 4.32274 ] ]
[ [ 4.30047, 0, 4.32273 ], [ 2.09712, 0, 2.16137 ], [ 6.50381, 0, 2.16137 ], [ 8.60093, 0, 4.32273 ], [ 2.15023, 1.53711, 4.32273 ], [ 2.15023, -1.53711, 4.32273 ], [ 4.30047, -1.4162, 2.16137 ], [ 4.30047, 1.4162, 2.16137 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6874520621457347069197327266410862401715587877813806239293444592776775463647870378277460643022613716076575198897622305389844126090630067172368346704201374
1
VASP
DFT
null
[ [ 0.000005, -0.000488, 0.000026 ], [ -0.31474, 0.000498, -0.000031 ], [ 0.314733, -0.000371, -0.000032 ], [ -0.000123, 0.000257, 0.000068 ], [ -0.000167, -0.00002, 0.000053 ], [ 0.000428, 0.000057, 0.000053 ], [ 0.000381, -0.514307, -0.000068 ], [ -0.000517, 0.514373, -0.000069 ] ]
null
[ [ 0.0068033073623040095, 0.000008488452411201232, -6.241509125883259e-8 ], [ 0.000008488452411201232, -0.0003210632294354348, -6.241509125883259e-8 ], [ -6.241509125883259e-8, -6.241509125883259e-8, -0.0019581486580633545 ] ]
true
null
null
-57.222136
null
0.207443
0.514373
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:57:21
10424779161375397732595411324736837769551044267906163899761376102728671963176251093251821998125528180435871990798972501019580046706635345200788274903799789
PO_1042477916137539773259541
null
null
null
[ "train_2nd_stage_210" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12942796784620580373825014396068467194672900860271651439005640821216404165059608393798407998334742656925692361685375276126076456692623195151871912436759767
CO_1294279678462058037382501
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni4Ti4
AlNi2Ti2
A2B2C
[ 13, 13, 28, 28, 28, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.2, 0.4, 0.4 ]
3
10
[ [ -2.98141, -2.98141, 0 ], [ -0.402677, 0.402677, -7.28071 ], [ 3.03317, -3.03317, -2.77726 ] ]
[ [ -0.21075, 0.21075, -6.6915 ], [ -1.50012, -1.48129, -3.05115 ], [ 0.62708, -0.62708, -4.34243 ], [ -1.06496, -1.91645, -7.98279 ], [ 2.38727, -2.38727, -4.53712 ], [ 0.69521, -3.67663, -8.17748 ], [ 1.17278, -1.17278, -1.96104 ], [ -0.51926, -2.46215, -5.60139 ], [ 1.84156, -1.84156, -6.91852 ], [ 0.55219, -3.53361, -3.27816 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11880206153170523995959106891610609405940724035663480677899521506816862062903990028667277633525346265171977136446618325316358263113074585087745196688098318
1
VASP
DFT
null
[ [ 0.001293, -0.001317, 0.000248 ], [ -0.000549, 0.000548, -0.000168 ], [ -0.058587, 0.058573, 0.003838 ], [ -0.058881, 0.058885, 0.005532 ], [ 0.058878, -0.058899, -0.005169 ], [ 0.059021, -0.059001, -0.004716 ], [ 0.082108, -0.08213, -0.011203 ], [ 0.084245, -0.084202, -0.013653 ], [ -0.084654, 0.084619, 0.014103 ], [ -0.082874, 0.082925, 0.011187 ] ]
null
[ [ 0.011900123714500279, 0.007280720395342821, 0.0008155155823879065 ], [ 0.007280720395342821, 0.011899437148496431, -0.0008156404125704241 ], [ 0.0008155155823879065, -0.0008156404125704241, 0.01913496901776786 ] ]
true
null
null
-65.600262
null
0.081093
0.120522
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:13:40
12818540778902938358330366609798362616614106162466547450265147592215299177300796517561452157445291272725477696545961319342238237492661247347670199539489982
PO_1281854077890293835833036
null
null
null
[ "train_1st_stage_999" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10105101473862332921336842616897620513160996052888938416240698186216268803591646620783705225716422099372692953657611507461604602532387791841298632726800157
CO_1010510147386233292133684
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni11Ti3
Ni11Ti3
A11B3
[ 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.7857142857142857, 0.21428571428571427 ]
2
14
[ [ 3.539491, -0.179094, -0.555763 ], [ -1.11869, 1.810996, 3.871041 ], [ -0.005637, -10.793016, 3.436538 ] ]
[ [ 0.01894, -10.54221, 3.45012 ], [ 0.58216, 0.2282, 3.57395 ], [ 2.25858, -1.60526, 3.26347 ], [ 0.39504, -3.338, 3.52925 ], [ 2.06975, -5.22742, 3.22548 ], [ 0.20765, -6.91993, 3.48807 ], [ 1.88233, -8.80943, 3.18424 ], [ 2.07052, 0.13444, 1.50601 ], [ 0.21256, -1.48902, 1.77093 ], [ 0.01957, -5.08043, 1.69846 ], [ 2.25794, -7.06698, 5.0151 ], [ 1.88899, -3.38784, 1.48237 ], [ 0.57936, -5.16819, 5.29226 ], [ 0.3884, -8.7597, 5.23125 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12340219545987605770083767685558628553904278003694275556721585489184325847464295151156183461613309024308518804918612757755557552976912078729348671802712212
1
VASP
DFT
null
[ [ -0.00198, -0.008184, -0.009768 ], [ 0.000043, -0.000169, -0.000034 ], [ 0.001965, 0.008443, 0.00951 ], [ 0.000678, 0.001682, 0.004109 ], [ -0.000251, -0.000417, -0.001441 ], [ 0.000301, -0.000513, 0.002201 ], [ -0.000683, -0.001298, -0.004236 ], [ -0.000971, -0.001074, -0.006659 ], [ 0.001059, 0.001265, 0.006645 ], [ 0.000511, 0.003324, 0.002917 ], [ -0.000667, -0.003593, -0.003124 ], [ 0.001302, 0.010527, 0.005227 ], [ 0.000044, -0.001935, 0.001037 ], [ -0.001352, -0.008057, -0.006384 ] ]
null
[ [ -0.005948095781875486, 0.0000043690563881182805, 0.000011109886244072198 ], [ 0.0000043690563881182805, -0.0058610267295694145, -0.000001747622555247312 ], [ 0.000011109886244072198, -0.000001747622555247312, -0.0058816861247760885 ] ]
true
null
null
-88.799732
null
0.006145
0.012896
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:49:20
8955219233702012924232151531462081245131662029674109940064200777052834304740391403860895095670637909189038204383897479533726123510301281725601795035150329
PO_8955219233702012924232151
null
null
null
[ "train_1st_stage_146", "train_1st_stage_163" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6438835837937069872897823495401791992369202162171375891935378317566457989580104027510147243648103687624526315248026425325841785067417252568440989621640790
CO_6438835837937069872897823
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni4Ti4
AlNiTi
ABC
[ 13, 13, 13, 13, 28, 28, 28, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.3333333333333333, 0.3333333333333333, 0.3333333333333333 ]
3
12
[ [ 4.49587, 0, 0 ], [ 0, 4.98721, 0 ], [ 0, 0, 7.95474 ] ]
[ [ 4.40056, 3.74041, 2.59165 ], [ 0.09531, 1.2468, 5.36309 ], [ 0.09531, 1.2468, 6.56902 ], [ 4.40056, 3.74041, 1.38572 ], [ 2.81711, 3.74041, 4.83251 ], [ 1.67876, 1.2468, 3.12224 ], [ 1.67876, 1.2468, 0.85514 ], [ 2.81711, 3.74041, 7.09961 ], [ 1.44857, 3.74041, 4.58511 ], [ 3.0473, 1.2468, 3.36963 ], [ 3.0473, 1.2468, 0.60774 ], [ 1.44857, 3.74041, 7.347 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9627989119504023749401093486917445834483913483050481899474262830326999037919652481077660447139789063673645155124367148361754967589151550992538992577995324
1
VASP
DFT
null
[ [ -1.102208, -0.000005, 61.191172 ], [ 1.101958, 0.000003, -61.191211 ], [ 1.101619, 0.000002, 61.192022 ], [ -1.102611, -0.000005, -61.191749 ], [ 35.924013, -0.000004, 5.138971 ], [ -35.922767, -0.000001, -5.139005 ], [ -35.922135, 0.000002, 5.139016 ], [ 35.924874, -0.000003, -5.139005 ], [ -35.35719, -0.000017, -6.240857 ], [ 35.356022, 0.000035, 6.239988 ], [ 35.357951, 0.000012, -6.240877 ], [ -35.359527, -0.00002, 6.241535 ] ]
null
[ [ 1.1858926009363975, -5.617358213294933e-7, -0.000032518262545851775 ], [ -5.617358213294933e-7, -0.0746946363130953, 0 ], [ -0.000032518262545851775, 0, 1.1047884964868413 ] ]
true
null
null
23.829639
null
44.464947
61.201937
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:24:33
9705064155838541310018998587960673965860564325594410976067634689140660404889170544641914850560885485007712691214051244393281507631993306542325496364156095
PO_9705064155838541310018998
null
null
null
[ "train_1st_stage_2046" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
992660625199281950604585578079726483373189302766444698095712599955383649191569040569270088826828550604593170230201448966056513696911388500508190938194684
CO_9926606251992819506045855
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni4
AlNi2
A2B
[ 13, 13, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
6
[ [ 3.71567, -0.092808, 0.003099 ], [ 0.089563, 3.46346, -3.64202 ], [ -1.77659, 3.36455, 1.95544 ] ]
[ [ 0.08904, 3.4475, -3.49813 ], [ 0.08454, 3.38254, -0.05323 ], [ 1.89984, 1.63689, 0.04688 ], [ 1.98194, 4.92737, 0.16605 ], [ 1.94462, 3.36862, -1.77414 ], [ 0.13072, 5.17441, -1.75887 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11676728735841811020715530313079371434703039210139027167501213199794123768581611357732308730884799995806822830079139486853979340616463742461019578900052809
1
VASP
DFT
null
[ [ 0.000598, 0.007149, -0.078852 ], [ -0.000378, -0.006897, 0.078653 ], [ -0.000041, -0.000095, -0.000441 ], [ -0.002737, -0.05886, -0.033568 ], [ -0.000043, -0.000198, 0.000144 ], [ 0.002601, 0.058901, 0.034064 ] ]
null
[ [ 0.002841010123919541, 0.000026588828876262677, 0.00005979365742596161 ], [ 0.000026588828876262677, 0.003380651002943408, 0.0007261371717052583 ], [ 0.00005979365742596161, 0.0007261371717052583, 0.00199472390154103 ] ]
true
null
null
-32.469623
null
0.049123
0.079178
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:18:05
676186130014721428927955429614259886225039868095153015891341694396531963861674431032303882029333941558545457414138037430519695734223108931927287216240781
PO_6761861300147214289279554
null
null
null
[ "train_1st_stage_1090", "train_1st_stage_888", "train_1st_stage_689" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
377368295566739788344786582139252894808102663105564518102228492380493019211505291725492905728194663976217274339843034661599865652827063513080456077878159
CO_3773682955667397883447865
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlTi13
AlTi13
A13B
[ 13, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.07142857142857142, 0.9285714285714286 ]
2
14
[ [ -4.370014, 2.541066, 0.041975 ], [ -4.349881, -7.558291, 4.74761 ], [ -1.39834, 2.547042, 4.62741 ] ]
[ [ -8.67401, -5.02114, 4.77986 ], [ -4.25507, 2.57854, 4.69131 ], [ -2.88001, 0.08499, 4.61824 ], [ -5.79807, 0.07916, 4.69475 ], [ -4.36171, -2.47927, 4.70394 ], [ -7.29283, -2.47753, 4.78082 ], [ -5.77105, -5.05658, 4.70629 ], [ -7.16545, -4.2927, 7.05812 ], [ -1.27228, 0.89102, 2.32407 ], [ -4.41564, 0.89769, 2.33477 ], [ -2.93008, -1.65502, 2.37348 ], [ -5.85015, -1.61913, 2.39978 ], [ -5.77307, -1.59223, 7.01124 ], [ -8.7255, -1.56448, 7.09261 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5726760716826496233434581441597967391522127961917644238566761464839095853308969981959752154514842978911140724547048529492915562291875295558347803836360342
1
VASP
DFT
null
[ [ 0.007219, -0.003171, -0.000216 ], [ 0.002093, 0.005531, 0.002112 ], [ 0.008326, -0.005359, -0.00407 ], [ 0.002526, 0.000048, 0.001486 ], [ 0.001455, -0.001643, -0.000687 ], [ 0.00876, -0.006287, 0.002624 ], [ -0.002759, -0.003619, -0.001601 ], [ -0.005444, -0.015864, -0.003286 ], [ 0.011908, 0.012094, 0.003143 ], [ -0.012569, 0.002183, -0.002543 ], [ -0.007197, -0.001461, -0.004396 ], [ -0.003117, 0.000937, 0.000119 ], [ -0.002483, 0.005763, 0.004152 ], [ -0.008719, 0.010847, 0.003163 ] ]
null
[ [ -0.0008866687864229755, 0.0006676542311957321, 0.000007177735494765747 ], [ 0.0006676542311957321, -0.00019192640562091018, 3.120754562941629e-7 ], [ 0.000007177735494765747, 3.120754562941629e-7, -0.00043765461990693405 ] ]
true
null
null
-106.424035
null
0.009071
0.017261
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:25:30
1269365492238784109448305551169175182126554344851125723941487710652340944001967718573593316422656137506210996574483835590636656336906979571048084473591880
PO_1269365492238784109448305
null
null
null
[ "train_1st_stage_277", "train_1st_stage_298" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7970671654186287526584205131841977882102953924328571579220928444700484961664974091275928859150366190960327121008724135169973148046156520237013338585534405
CO_7970671654186287526584205
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3NiTi2
Al3NiTi2
A3B2C
[ 13, 13, 13, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.5, 0.16666666666666666, 0.3333333333333333 ]
3
6
[ [ 1.96725, -6.01574, 0 ], [ 1.96725, 6.01574, 0 ], [ 0, 0, 3.90499 ] ]
[ [ 1.96725, -1.94221, 0 ], [ 1.96725, 1.94221, 0 ], [ 1.96725, 0, 1.9525 ], [ 0.00001, 0, 0 ], [ 1.96725, -4.10886, 1.9525 ], [ 1.96725, 4.10886, 1.9525 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4903010818609379782770709871944842223383892545358001273544854845625701046674415930999683888039570519981394533048926802993806524525124886701049087737491901
1
VASP
DFT
null
[ [ 0.000004, -0.009605, 0.000039 ], [ 0.000003, 0.009592, 0.000039 ], [ 0.000007, 0.000062, -0.000022 ], [ -0.000032, 0.000238, 0.000012 ], [ 0.000009, 0.320584, -0.000032 ], [ 0.00001, -0.320871, -0.000036 ] ]
null
[ [ 0.018213971931152526, 6.241509125883259e-8, 6.241509125883259e-8 ], [ 6.241509125883259e-8, 0.01354026748259988, 0 ], [ 6.241509125883259e-8, 0, 0.008606978669501754 ] ]
true
null
null
-35.000911
null
0.11016
0.320871
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:48:34
12810135369048729695785170387476887459589898533495064972535828771127958924746933038124178656562629094179681974951165402494104327615364652316936990612440747
PO_1281013536904872969578517
null
null
null
[ "train_2nd_stage_11" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
3732887162772321298002221501008403068624503837262322328120088431120123380213285177806590063724308432919844787128329361894960352845814778676938027348138503
CO_3732887162772321298002221
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al8Ti4
Al2Ti
A2B
[ 13, 13, 13, 13, 13, 13, 13, 13, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.6666666666666666, 0.3333333333333333 ]
2
12
[ [ 6.04723, 0, 0 ], [ 0, 6.04723, 0 ], [ 0, 0, 6.04723 ] ]
[ [ 2.28541, 2.28541, 2.28541 ], [ 3.76182, 3.76182, 3.76182 ], [ 5.30903, 0.73821, 3.76182 ], [ 0.73821, 5.30903, 2.28541 ], [ 3.76182, 5.30903, 0.73821 ], [ 2.28541, 0.73821, 5.30903 ], [ 0.73821, 3.76182, 5.30903 ], [ 5.30903, 2.28541, 0.73821 ], [ 0, 0, 0 ], [ 3.02362, 3.02362, 0 ], [ 3.02362, 0, 3.02362 ], [ 0, 3.02362, 3.02362 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9681219340073119874499166301541612109585910265646025502152625081784206786747032753744497135135201168143765530126815152670590840294974139652682530214920864
1
VASP
DFT
null
[ [ -0.266673, -0.266824, -0.266575 ], [ 0.26664, 0.266793, 0.266507 ], [ -0.266758, 0.266623, 0.266742 ], [ 0.26682, -0.266606, -0.266767 ], [ 0.266769, -0.266566, 0.266798 ], [ -0.266777, 0.26662, -0.266807 ], [ 0.266639, 0.26681, -0.266718 ], [ -0.266619, -0.266814, 0.26673 ], [ -0.000043, -0.000087, 0.000085 ], [ 0.00005, -0.000019, 0.00001 ], [ -0.000043, 0.000068, 0.000033 ], [ -0.000005, 0.000003, -0.000036 ] ]
null
[ [ 0.09693388230971245, -9.362263688824887e-7, 0.0000024341885590944705 ], [ -9.362263688824887e-7, 0.09693712789445792, -0.000003245584745459294 ], [ 0.0000024341885590944705, -0.000003245584745459294, 0.09693419438516876 ] ]
true
null
null
-50.557233
null
0.307994
0.461998
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:57:26
6120336192785104933149482707510659941189616413568355711469638870067312647442821307533066597460042683286689844687340415814391912882050990028303305818374624
PO_6120336192785104933149482
null
null
null
[ "train_1st_stage_2214" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7870569300607129964337778492887796376364811718769380730132279101030327179586904476372115554793618588861917983352284130610930139343104617224089355554216118
CO_7870569300607129964337778
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni8Ti6
Ni4Ti3
A4B3
[ 28, 28, 28, 28, 28, 28, 28, 28, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.5714285714285714, 0.42857142857142855 ]
2
14
[ [ 4.11319, 0.348717, 0.268877 ], [ 1.09443, 5.73013, 7.38074 ], [ 0.032071, -3.23822, 3.69885 ] ]
[ [ 1.1813, 2.50604, 10.8449 ], [ 3.84576, 1.51894, 3.67625 ], [ 3.55037, 3.85846, 4.90704 ], [ 1.92816, -0.1135, 3.1318 ], [ 1.70908, 0.74787, 5.23946 ], [ 1.44498, 3.169, 6.17307 ], [ 3.90468, -0.53585, 4.96382 ], [ 3.28669, 3.19551, 9.57892 ], [ 3.33708, 4.36434, 7.38318 ], [ 1.67006, 2.63884, 3.61435 ], [ 1.39458, 2.00017, 8.3688 ], [ 1.96717, -2.00447, 4.75692 ], [ 4.10502, -0.67981, 2.33064 ], [ 3.64541, 1.6629, 6.30947 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6054060706003144191252074291926583712939342461921070547777700594031565613557751229536386015625755073556627112764991435528936390109413029488501208990911449
1
VASP
DFT
null
[ [ 0.020492, -0.292212, 0.017987 ], [ -0.029992, 0.000528, -0.316246 ], [ -0.020615, 0.292236, -0.01834 ], [ 0.040932, -0.022439, -0.4035 ], [ -0.041158, 0.022526, 0.403437 ], [ -0.000896, -0.149957, -0.048401 ], [ 0.030242, -0.001048, 0.315427 ], [ 0.000631, 0.149903, 0.048417 ], [ 0.01357, -0.02867, -0.251863 ], [ 0.004338, 0.02145, -0.158842 ], [ -0.013506, 0.029492, 0.253122 ], [ -0.004, -0.021908, 0.157955 ], [ 0.022156, -0.059985, 0.081857 ], [ -0.022194, 0.060083, -0.081011 ] ]
null
[ [ 0.021152661672892138, 0.0016632997669566295, 0.0021702975532521263 ], [ 0.0016632997669566295, 0.011017137418461574, 0.00020590738606288868 ], [ 0.0021702975532521263, 0.00020590738606288868, -0.002332576790525091 ] ]
true
null
null
-96.033198
null
0.24179
0.406191
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:31:58
6044901498480016207733996333951424848255671388475908603939094855148538806738658601754969195607960928244590077068503973364500457195880345781935672705475758
PO_6044901498480016207733996
null
null
null
[ "train_2nd_stage_899" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7659107678370866199249724548640846373609570603684163601544963695454997955418254062984678426542178132171883871246963089022511597658267621927012315464455842
CO_7659107678370866199249724
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni3
AlNi
AB
[ 13, 13, 13, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.5, 0.5 ]
2
6
[ [ -0.000004, 2.889286, -2.889283 ], [ 2.893699, -2.893699, -2.893697 ], [ -2.889282, -2.889284, -0.000002 ] ]
[ [ 2.40067, -2.40669, -2.43508 ], [ -1.45461, -1.44069, -1.46909 ], [ 0.47299, -0.47901, -3.39669 ], [ 0.9538, -0.95982, -0.98821 ], [ -0.00778, -2.88753, -2.91592 ], [ -0.97383, 0.96782, -1.94987 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5384733800297375778685800519445630673331008784811505119552254650741295022644759538482155097189125917210243607667056079216238301523712951047322844678988797
1
VASP
DFT
null
[ [ -0.000446, 0.000462, 0.000445 ], [ -0.000432, 0.000427, 0.000432 ], [ 0.000868, -0.000872, -0.000845 ], [ -0.000004, 0.000018, 0.00001 ], [ -0.000183, 0.000165, 0.000152 ], [ 0.000197, -0.0002, -0.000195 ] ]
null
[ [ -0.0006190328751051016, 0.00005617358213294932, 0.00005611116704169049 ], [ 0.00005617358213294932, -0.0006192201203788781, -0.00005586150667665515 ], [ 0.00005611116704169049, -0.00005586150667665515, -0.0006190952901963604 ] ]
true
null
null
-31.617848
null
0.000612
0.001493
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:54:51
11638664806275922192797371289177900453534454351642404973516643706746485198765954865921483179589542560405523598631256776066210374236629049581768222215314562
PO_1163866480627592219279737
null
null
null
[ "train_1st_stage_352" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
239456289850246063058152383677457825101908411426715794205932932383211491301303651918531275301805392637658603841811565546103658283654745487755878047344296
CO_2394562898502460630581523
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni5Ti
Al2Ni5Ti
A5B2C
[ 13, 13, 28, 28, 28, 28, 28, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.25, 0.625, 0.125 ]
3
8
[ [ 2.6768, 0, -2.6768 ], [ 2.72524, 3.27767, 2.72524 ], [ 2.72524, -3.27767, 2.72524 ] ]
[ [ 0.01293, 0, 0.01293 ], [ 2.83692, 0, 0.16012 ], [ 4.05905, -1.79892, 1.38225 ], [ 2.73265, 0, 2.73265 ], [ 4.05905, 1.79892, 1.38225 ], [ 1.37474, -1.63483, 1.37474 ], [ 1.37474, 1.63483, 1.37474 ], [ 5.25495, 0, 2.57816 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5592067351824067984016255147540437091973241448126139122069526062739860676415282831830277966749471179329872128110281202454375653117442195169820316341564414
1
VASP
DFT
null
[ [ 0.027942, 0.000016, 0.027955 ], [ -0.033215, 0.000071, -0.033205 ], [ -0.007774, -0.125347, -0.007776 ], [ 0.037193, -0.00005, 0.037214 ], [ -0.007813, 0.125431, -0.007815 ], [ -0.033951, 0.128575, -0.03393 ], [ -0.034074, -0.128631, -0.034054 ], [ 0.051693, -0.000065, 0.051611 ] ]
null
[ [ -0.00365590155539486, -0.0000018724527377649773, 0.006865223132832773 ], [ -0.0000018724527377649773, -0.004745544218591559, -0.00000193486782902381 ], [ 0.006865223132832773, -0.00000193486782902381, -0.0036561512157598946 ] ]
true
null
null
-46.781388
null
0.092312
0.137356
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:44:25
10494207069972653522772821113189959793318501414479406064017289896814291700998013264594018648821635908959902951227986104645902072657757723667377349123310207
PO_1049420706997265352277282
null
null
null
[ "train_1st_stage_741" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
8439053666040941666308156504713015643584818868869221904926943253300865839335279026061625526095487705233905578206381407843782322342774904715826961157350542
CO_8439053666040941666308156
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ti4
AlTi2
A2B
[ 13, 13, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
6
[ [ -1.95639, 1.82615, 7.25056 ], [ 1.82615, -1.95639, 7.25056 ], [ 1.91611, 1.91611, -6.82402 ] ]
[ [ -0.02408, 3.72605, 0.42654 ], [ -0.06891, 1.85478, 3.83856 ], [ 1.81904, 1.87187, -0.75249 ], [ 1.87051, -0.07359, 5.0176 ], [ -0.08601, -0.03318, 8.4296 ], [ 1.85945, -0.08465, 2.65951 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7631275609908519314237997037710736519886839298386317854472795928826477827183644290080402019314515413512332511242166887526178629026324702545355329396822822
1
VASP
DFT
null
[ [ -0.202449, 0.202581, -0.000033 ], [ 0.202616, -0.202652, 0.000228 ], [ -0.142331, 0.246197, 0.851103 ], [ 0.142271, -0.246364, -0.85036 ], [ -0.246558, 0.142885, -0.85277 ], [ 0.246451, -0.142646, 0.851833 ] ]
null
[ [ 0.005884557218973995, 0.012074012158747385, -0.00799880602027569 ], [ 0.012074012158747385, 0.005898975105054784, -0.007997308058085477 ], [ -0.00799880602027569, -0.007997308058085477, 0.05725442426827853 ] ]
true
null
null
-34.854883
null
0.69405
0.899124
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:28:35
5841704455055102006551180764254671532651779481977030641082107209140015165106261023990825730869608294080725747265057087434997906523405969257196126333129101
PO_5841704455055102006551180
null
null
null
[ "train_1st_stage_2228" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
8502400256885079069375765843815468149574120741139902682555884758235190002058761416908163239966500293524207219806546493977019806567773369954826843734796380
CO_8502400256885079069375765
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni2Ti2
NiTi
AB
[ 28, 28, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.5, 0.5 ]
2
4
[ [ 2.731202, -0.502693, 0.572056 ], [ 1.62007, -1.641989, 4.878129 ], [ -0.48379, -3.964112, -1.173688 ] ]
[ [ 2.29705, -0.71431, 0.81678 ], [ 1.64292, -3.11934, 1.82839 ], [ 2.4103, -3.98363, 4.43134 ], [ 3.14977, -1.49198, 3.09179 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
8214157516647419816671567222848595440317482244045376606104818600125751016860973521139205432330853010439033259420390002498968415059065714453191865297621867
1
VASP
DFT
null
[ [ -0.00742, -0.007346, 0.028009 ], [ 0.007337, 0.007529, -0.028231 ], [ 0.006105, 0.005315, -0.020773 ], [ -0.006022, -0.005499, 0.020994 ] ]
null
[ [ -0.0006490545340006, -0.000030583394716827964, -0.000012670263525543014 ], [ -0.000030583394716827964, -0.0008990269744922245, -0.00009699305181622583 ], [ -0.000012670263525543014, -0.00009699305181622583, -0.0005976244988033219 ] ]
true
null
null
-28.132031
null
0.026208
0.030125
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:03:51
7115380353768062419023379599772104800982606563759444539347192577560529913777042484060654295312012480094996844390230837884641771222454063637711190438357842
PO_7115380353768062419023379
null
null
null
[ "train_1st_stage_58", "train_1st_stage_241" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
1181440053852596755376090463296240933687041888697810111931951079293964096937824073239428019100757129064900566146264786223503153035589882020900390733917851
CO_1181440053852596755376090
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4
Al
A
[ 13, 13, 13, 13 ]
[ "Al" ]
[ 1 ]
1
4
[ [ 1.44638, -5.2679, 0.000004 ], [ 1.44638, 5.2679, -0.000004 ], [ 0, -0.000011, 4.86377 ] ]
[ [ 1.44638, -3.84155, 4.86376 ], [ 1.44638, 3.84154, 0.00001 ], [ 1.44638, 1.42636, 2.43187 ], [ 1.44638, -1.42637, 2.4319 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11488837962336619789434792454109252647082132275160904990848529485866769241779421748621729257056999212039271968559728658450070463424750689390172251738890683
1
VASP
DFT
null
[ [ 0, -0.204055, -0.00001 ], [ 0, 0.204055, 0.000028 ], [ 0, -0.204082, -0.000009 ], [ 0, 0.204082, -0.000009 ] ]
null
[ [ 0.006418518324693307, 0, 0 ], [ 0, 0.008109530392168858, 1.8724527377649775e-7 ], [ 0, 1.8724527377649775e-7, 0.0029386273266483556 ] ]
true
null
null
-14.418372
null
0.204069
0.204082
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:54:16
4891952373982487972539978239818545077806477495756578839359261797872603995858102946633588108956972425476436487959254389136120734336773261712334122646507349
PO_4891952373982487972539978
null
null
null
[ "train_2nd_stage_341" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
975478360962715177720237024131919036999371299396375073093484882841892516095112816904142277032862228319172936044563575439817104804648237373217847711510739
CO_9754783609627151777202370
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al7Ni2
Al7Ni2
A7B2
[ 13, 13, 13, 13, 13, 13, 13, 28, 28 ]
[ "Al", "Ni" ]
[ 0.7777777777777778, 0.2222222222222222 ]
2
9
[ [ 2.894259, -3.764902, 0.434522 ], [ -0.192003, -2.613038, -5.552194 ], [ 1.489062, 5.711502, -1.315354 ] ]
[ [ 3.97617, -0.68656, -6.25074 ], [ 1.2908, 2.37631, -1.11411 ], [ 1.57413, -1.9191, -1.3474 ], [ 3.08013, 0.47734, -2.64375 ], [ 0.88614, 1.7554, -4.10784 ], [ 1.33651, -1.0779, -4.00684 ], [ 1.7868, -3.91121, -3.90582 ], [ 0.51805, 0.19987, -2.20499 ], [ 2.15481, -2.35568, -5.8086 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9537793925068722979518887683230759595920901384995078812093917589749721404336493030347059583733220726783058105310672981041173093770779523697607314969830942
1
VASP
DFT
null
[ [ -0.007939, 0.006531, 0.008956 ], [ -0.000051, 0.001875, 0.004324 ], [ 0.000077, -0.001774, -0.004279 ], [ 0.007627, -0.006617, -0.008865 ], [ 0.005413, -0.005913, 0.000132 ], [ -0.000383, 0.000487, 0.000389 ], [ -0.005191, 0.00563, -0.000035 ], [ 0.002374, 0.002069, 0.005248 ], [ -0.001927, -0.002289, -0.00587 ] ]
null
[ [ -0.0010187391195266653, 0.00020596980115414752, 0.00024036051643776428 ], [ 0.00020596980115414752, -0.001173903036396123, -0.00039589892385477507 ], [ 0.00024036051643776428, -0.00039589892385477507, -0.0009738002538203058 ] ]
true
null
null
-40.037249
null
0.007281
0.013634
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:13:39
936824698489576634585864969176156933716221097752489615656257752287644341822227288512284577393900688397765209443477807784889516331685143772232726377495718
PO_9368246984895766345858649
null
null
null
[ "train_1st_stage_117" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
13338680602707982974970356277075602005253705821286936877883422894410073079717793499686492294863870897362066487342952818495512141825275742733947011974080649
CO_1333868060270798297497035
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni6Ti6
AlNi3Ti3
A3B3C
[ 13, 13, 28, 28, 28, 28, 28, 28, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.14285714285714285, 0.42857142857142855, 0.42857142857142855 ]
3
14
[ [ 3.85399, -6.6753, 0 ], [ 3.85399, 6.6753, 0 ], [ 0, 0, 3.91931 ] ]
[ [ 3.85399, 2.22554, 0.97983 ], [ 3.85399, -2.22554, 2.93948 ], [ 1.69961, 2.00926, 0.97983 ], [ 5.11809, 0.46727, 0.97983 ], [ 4.74425, 4.19876, 0.97983 ], [ 6.00836, -2.00926, 2.93948 ], [ 2.58988, -0.46727, 2.93948 ], [ 2.96371, -4.19876, 2.93948 ], [ 1.32192, -0.23364, 0.97983 ], [ 3.39536, -5.41367, 0.97983 ], [ 6.84468, -1.028, 0.97983 ], [ 6.38605, 0.23363, 2.93948 ], [ 4.31261, 5.41367, 2.93948 ], [ 0.86329, 1.028, 2.93948 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12374476219132302495472586654986720019457752697293523488444991619623034943928261881271220433151732134205134384779998642666613457101500155809461392812037508
1
VASP
DFT
null
[ [ 0.002005, -0.005576, 0.000003 ], [ -0.001464, 0.005532, -0.000003 ], [ 0.31185, 3.039633, -0.000011 ], [ -2.794393, -1.246633, -0.000012 ], [ 2.482021, -1.791617, -0.000012 ], [ -0.312779, -3.040921, 0.000012 ], [ 2.794337, 1.247326, 0.000012 ], [ -2.481788, 1.791261, 0.000013 ], [ 7.624288, -0.761848, -0.000043 ], [ -3.153494, 6.983367, -0.000037 ], [ -4.471689, -6.221949, -0.00004 ], [ -7.623956, 0.762309, 0.000049 ], [ 3.153925, -6.98311, 0.000033 ], [ 4.471138, 6.222224, 0.000037 ] ]
null
[ [ 0.38654221510907216, 0.00025128315740805993, -2.4966036503533035e-7 ], [ 0.00025128315740805993, 0.3865717374472376, 1.8724527377649775e-7 ], [ -2.4966036503533035e-7, 1.8724527377649775e-7, 0.43433419946705537 ] ]
true
null
null
-68.580043
null
4.595648
7.662372
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:15:53
10198713740969329845900392583616521490788575631157972879464216295416974431287141478651615638588589196940071584300475422268273503004194331060017279284087356
PO_1019871374096932984590039
null
null
null
[ "train_1st_stage_2376" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
1441855753222494976606376862163681103387691609591279187334647798345890406736656282482521549180398734586666312638849990673026841975153985214092210940812955
CO_1441855753222494976606376
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni4
Al3Ni2
A3B2
[ 13, 13, 13, 13, 13, 13, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.6, 0.4 ]
2
10
[ [ 3.585618, -1.588399, 0.919005 ], [ -4.383699, -4.445948, -8.219113 ], [ 1.774807, 3.508996, -0.872513 ] ]
[ [ 3.42984, -1.55664, 0.67798 ], [ 2.52449, 0.9919, -0.21773 ], [ 2.84249, 0.16945, -2.88078 ], [ 0.16252, -0.79155, -2.90378 ], [ 0.4805, -1.614, -5.56684 ], [ -2.19965, -2.57446, -5.59003 ], [ 1.78981, -1.15791, -1.0609 ], [ -0.55962, -2.97318, -3.85113 ], [ -1.13325, -1.28198, -7.52207 ], [ -0.24548, -3.78606, -6.48154 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
8552311655818885847159900868685516326234729419402608501003541893013723103334852401274348591520642741637582341669236803101689713857180368893211182604706038
1
VASP
DFT
null
[ [ 0.000845, -0.002485, -0.008351 ], [ 0.000942, -0.002724, -0.00827 ], [ 0.000202, -0.000512, -0.000547 ], [ -0.000031, 0.000137, -0.00075 ], [ -0.001049, 0.002963, 0.00925 ], [ -0.001005, 0.002828, 0.009289 ], [ 0.000092, 0.000054, 0.000034 ], [ -0.000168, -0.000202, -0.000339 ], [ -0.000316, 0.002703, 0.007962 ], [ 0.000488, -0.002761, -0.008278 ] ]
null
[ [ -0.00007820610934731721, -0.000021096300845485415, -0.0000354517718350169 ], [ -0.000021096300845485415, -0.00005355214830007836, 0.000023780149769615214 ], [ -0.0000354517718350169, 0.000023780149769615214, 0.00004868377118188941 ] ]
true
null
null
-49.916207
null
0.005628
0.009769
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:12:05
5319225443571937513118290244790303588307390178505755012667235467038119906101399969082863841260574336975667011157391114211173416171261210470527683974501780
PO_5319225443571937513118290
null
null
null
[ "train_1st_stage_225" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12899174533917758365854035666453997016134483877988965989989756356372540420142420190118766943107418613478465245425611529965472801407881728634330455363824908
CO_1289917453391775836585403
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al5NiTi4
Al5NiTi4
A5B4C
[ 13, 13, 13, 13, 13, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.5, 0.1, 0.4 ]
3
10
[ [ 3.16796, -2.98544, 0.172147 ], [ -2.63677, -3.00974, -3.67239 ], [ 3.07059, -0.320627, -6.94463 ] ]
[ [ 2.98122, -3.2359, -0.27639 ], [ 2.46865, -4.02192, -4.47509 ], [ 1.20976, -2.0618, -2.43767 ], [ 0.55958, -2.99661, -6.68466 ], [ 1.95609, -4.80794, -8.6738 ], [ 1.15027, -5.52679, -6.3113 ], [ 3.32956, -3.25181, -6.96267 ], [ 1.51037, -2.12723, -9.10429 ], [ -0.19109, -3.6467, -4.1443 ], [ 1.96044, -1.41171, -4.97803 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10886559838479630313717654373701908198482890795599997951360208044944208112842157055879144840937759208687834636089328783137134852161227290341936684014795181
1
VASP
DFT
null
[ [ 0.133065, 0.115256, -0.442387 ], [ 0.000135, 0.000059, -0.000005 ], [ 0.232282, 0.241738, -0.083436 ], [ -0.232233, -0.241687, 0.082836 ], [ -0.133079, -0.115321, 0.442094 ], [ -0.000148, -0.000298, -0.000091 ], [ -0.117321, -0.121219, 0.058011 ], [ 0.117506, 0.121502, -0.057221 ], [ 0.340819, 0.360066, -0.033851 ], [ -0.341026, -0.360096, 0.03405 ] ]
null
[ [ 0.0029402501190210852, 0.014222963750788993, 0.0003267430027399886 ], [ 0.014222963750788993, 0.004739177879283157, 0.0008891653900733289 ], [ 0.0003267430027399886, 0.0008891653900733289, -0.00011964972994318205 ] ]
true
null
null
-58.912168
null
0.299413
0.497119
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:11:01
2752049164661351926713537098240573745562938125025761985035164728516456726718543129831788460200398539901248461601079308175612769634467299300279566942183128
PO_2752049164661351926713537
null
null
null
[ "train_2nd_stage_896" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5293734173616516303583276350688272161289902022779793999932930727522905759387189622379537550837929646816744125278105907337869965867600265718876693684887090
CO_5293734173616516303583276
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ti6
AlTi3
A3B
[ 13, 13, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.25, 0.75 ]
2
8
[ [ 5.1481, 0, 0 ], [ 0, 5.1481, 0 ], [ 0, 0, 5.1481 ] ]
[ [ 0, 0, 0 ], [ 2.57405, 2.57405, 2.57405 ], [ 1.28703, 2.57405, 0 ], [ 3.86108, 2.57405, 0 ], [ 0, 1.28703, 2.57405 ], [ 0, 3.86108, 2.57405 ], [ 2.57405, 0, 1.28703 ], [ 2.57405, 0, 3.86108 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4730865823207117425165726637016507420500540715756499567393418282196329354892625554847019093845108956333664025044533442125948024207135899708616917845271356
1
VASP
DFT
null
[ [ -0.000142, -0.00015, 0.00001 ], [ 0.000153, 0.000274, 0.000008 ], [ 0.000228, 0.00028, 0.000009 ], [ -0.000122, 0.000145, 0 ], [ -0.000102, -0.000092, 0.000014 ], [ -0.000092, -0.000073, 0.000004 ], [ 0.000033, -0.000191, -0.000174 ], [ 0.000045, -0.000194, 0.000129 ] ]
null
[ [ -0.012694043675312627, -5.617358213294933e-7, 6.241509125883259e-8 ], [ -5.617358213294933e-7, -0.012670325940634272, -1.2483018251766518e-7 ], [ 6.241509125883259e-8, -1.2483018251766518e-7, -0.012705465637012995 ] ]
true
null
null
-56.185664
null
0.000228
0.000361
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:25:34
4446733181681874913217862337656821981937623625814289340635955182614871922276657952876237743540024542952812453212830994585846998775363236509395661136759129
PO_4446733181681874913217862
null
null
null
[ "train_1st_stage_2089" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7514017580537562621077733697143902525356722497112073362053188462199999756646048734594384316002798158637785552178364095506974586390054607085070546177550607
CO_7514017580537562621077733
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni10
AlNi5
A5B
[ 13, 13, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.16666666666666666, 0.8333333333333334 ]
2
12
[ [ 3.544994, -0.000008, -3.544993 ], [ -3.54502, 3.545029, -0.000019 ], [ 3.545072, 3.545048, 3.545064 ] ]
[ [ 3.53931, 3.53855, 3.53626 ], [ 3.55763, 3.55695, 0.0096 ], [ 1.77586, 1.77515, 0.00031 ], [ -1.7584, 1.78593, -0.00045 ], [ 0.00335, 3.54768, 0.00031 ], [ 1.76526, 5.30957, 0.00126 ], [ -1.7584, 3.54691, -1.76144 ], [ 3.54835, 1.77515, -1.77216 ], [ 1.76525, 3.5486, 1.7622 ], [ 0.00259, 1.78592, -1.76143 ], [ 1.77584, 3.54767, -1.77217 ], [ 0.00429, 5.30957, 1.7622 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
382154115965190801935650219793524472428753436681209121809924882179548853780992138043716600468217098214598281651389863866105556388460573181417685509136573
1
VASP
DFT
null
[ [ 0.005868, 0.005413, 0.005765 ], [ -0.006669, -0.006414, -0.006881 ], [ 0.000094, 0.000159, 0.000491 ], [ 0.002602, 0.002358, -0.000947 ], [ 0.000217, 0.000166, 0.000373 ], [ -0.002402, -0.002098, 0.00048 ], [ 0.002785, -0.00089, 0.002918 ], [ 0.000329, 0.000223, 0.000064 ], [ -0.002626, 0.000498, -0.002676 ], [ -0.000873, 0.002691, 0.002987 ], [ 0.000183, 0.000309, 0.000088 ], [ 0.000492, -0.002414, -0.002661 ] ]
null
[ [ -0.0009645628203139988, 0.000013918565350719667, 0.000010111244783930878 ], [ 0.000013918565350719667, -0.0009726143670863881, 0.000012607848434284181 ], [ 0.000010111244783930878, 0.000012607848434284181, -0.0009295479541177936 ] ]
true
null
null
-65.358183
null
0.003804
0.011531
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:00:39
2560273323022507710138586619983804450008564067130322951941090581132622209431247249561342821790204469775052284314562902163829104116055504290171744452937790
PO_2560273323022507710138586
null
null
null
[ "train_1st_stage_186" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
420456352297744713446655547879123006632880421557090839148414815025571537937775475733635651929856171336875791100891412153251568850625492641448205364402764
CO_4204563522977447134466555
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al12Ti17
Al12Ti17
A17B12
[ 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.41379310344827586, 0.5862068965517241 ]
2
29
[ [ -4.94597, 4.94597, -4.94597 ], [ 4.94597, 4.94597, 4.94597 ], [ 4.94597, -4.94597, -4.94597 ] ]
[ [ 0.9103, 0.9103, -7.11667 ], [ 4.03567, 4.03567, -2.1707 ], [ -0.9103, 0.9103, -2.77528 ], [ 0.9103, -0.9103, -2.77528 ], [ 2.77528, 0.9103, 0.9103 ], [ 2.77528, -0.9103, -0.9103 ], [ 2.1707, 4.03567, -4.03567 ], [ 7.11667, 0.9103, -0.9103 ], [ 0.9103, 2.77528, 0.9103 ], [ -0.9103, 2.77528, -0.9103 ], [ 0.9103, 7.11667, -0.9103 ], [ 4.03567, 2.1707, -4.03567 ], [ 3.6001, 3.6001, 0.46873 ], [ 1.34587, 1.34587, -4.47724 ], [ 1.34587, -1.34587, -5.4147 ], [ -1.34587, 1.34587, -5.4147 ], [ 5.4147, -1.34587, -1.34587 ], [ 5.4147, 1.34587, 1.34587 ], [ 4.47724, 1.34587, -1.34587 ], [ -0.46873, 3.6001, -3.6001 ], [ -1.34587, 5.4147, -1.34587 ], [ 1.34587, 5.4147, 1.34587 ], [ 3.6001, -0.46873, -3.6001 ], [ 1.34587, 4.47724, -1.34587 ], [ 3.16222, 3.16222, 3.16222 ], [ 1.78375, 1.78375, -1.78375 ], [ -3.16222, 3.16222, -3.16222 ], [ 3.16222, -3.16222, -3.16222 ], [ 0, 0, 0 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6541568862595604243076033522763798088129075564692409183088991349697729023538865697568149341614514488843458667707888122117579356915062134172355627206719976
1
VASP
DFT
null
[ [ -0.085826, -0.085431, 0.127444 ], [ 0.085214, 0.085317, 0.127518 ], [ 0.086608, -0.085413, -0.126878 ], [ -0.085517, 0.085819, -0.128014 ], [ 0.127773, -0.08607, -0.086246 ], [ 0.128422, 0.086247, 0.085791 ], [ -0.128669, 0.085679, -0.085299 ], [ -0.127897, -0.085884, 0.086418 ], [ -0.086017, 0.127439, -0.085918 ], [ 0.086274, 0.127485, 0.085622 ], [ -0.085811, -0.127892, 0.085193 ], [ 0.085245, -0.127316, -0.085309 ], [ -0.135714, -0.136581, -0.317995 ], [ 0.136133, 0.136476, -0.317533 ], [ 0.135602, -0.135945, 0.317875 ], [ -0.135643, 0.136437, 0.31754 ], [ -0.317509, -0.135471, -0.135099 ], [ -0.317268, 0.135193, 0.135688 ], [ 0.317853, 0.135577, -0.135483 ], [ 0.318401, -0.135412, 0.135692 ], [ -0.135546, -0.318357, -0.136361 ], [ 0.13562, -0.318509, 0.1362 ], [ -0.13601, 0.317203, 0.136416 ], [ 0.135505, 0.316908, -0.136491 ], [ 0.207705, 0.208731, 0.208277 ], [ -0.208685, -0.207679, 0.208181 ], [ -0.20806, 0.209244, -0.208399 ], [ 0.208053, -0.208194, -0.209159 ], [ -0.000237, 0.000398, 0.000327 ] ]
null
[ [ 0.02250837987012524, -0.00002103388575422658, -0.000003495245110494624 ], [ -0.00002103388575422658, 0.022498268625341312, 0.00002003524429408526 ], [ -0.000003495245110494624, 0.00002003524429408526, 0.02249920485171019 ] ]
true
null
null
-186.400219
null
0.276327
0.37201
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:16:18
75170434560358619580149615350090240456847264846953042694526642595541061944237465977293495517684498139312635901928882429521170553778751476766708724590010
PO_7517043456035861958014961
null
null
null
[ "train_2nd_stage_133" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4237388874611098321942500224688894035168169049528159428061623912230128411397217972172098073687988317285943881032577298888907954387188963841612544645877311
CO_4237388874611098321942500
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni6Ti6
NiTi
AB
[ 28, 28, 28, 28, 28, 28, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.5, 0.5 ]
2
12
[ [ 1.59889, 4.71082, -0.939146 ], [ 3.77029, -1.6387, -1.80096 ], [ -3.10379, -0.204788, -6.3114 ] ]
[ [ 2.02587, 2.82163, -8.80147 ], [ 1.67006, 1.65143, -1.63153 ], [ 2.96699, -0.60421, -3.71353 ], [ 1.2451, 3.85798, -4.52893 ], [ 2.40356, 0.47582, -5.8763 ], [ -0.09414, 2.65224, -6.23601 ], [ 2.78298, 3.84558, -2.61925 ], [ 3.746, 1.76007, -4.17334 ], [ 1.02284, 1.27671, -3.96666 ], [ 2.59735, 2.97321, -6.42185 ], [ -0.87315, 0.28794, -5.7762 ], [ 0.94142, 0.71136, -7.83047 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
13144498232727322937697611204360127093834166114072353530940921188839781593682002532519290203202997663057820129306840392477228840657850662816661978852500238
1
VASP
DFT
null
[ [ 0.103367, 0.089086, 0.074324 ], [ -0.0385, 0.100604, -0.110798 ], [ 0.040637, -0.017163, -0.0197 ], [ -0.002488, -0.08315, 0.132478 ], [ -0.062187, -0.107534, -0.093464 ], [ -0.041215, 0.017626, 0.01863 ], [ 0.262266, 0.152651, 0.136448 ], [ -0.204727, 0.088818, 0.098385 ], [ -0.077991, -0.232449, -0.225064 ], [ -0.048011, -0.138669, 0.298249 ], [ 0.205017, -0.088269, -0.098368 ], [ -0.136169, 0.218448, -0.211122 ] ]
null
[ [ 0.03529011674865653, -0.006830395511910343, 0.008803336546602042 ], [ -0.006830395511910343, 0.013280246212415586, 0.004626705884834742 ], [ 0.008803336546602042, 0.004626705884834742, 0.048268648409926916 ] ]
true
null
null
-82.891918
null
0.211444
0.332917
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:23:09
13307304311207986790455863982464361317786582740964009715525969897872431162620121653988136555597652007802056638939440696301227905980342918510102085550740192
PO_1330730431120798679045586
null
null
null
[ "train_2nd_stage_812" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10877372458441303159673111082905625136435086234664292110646968723389529970549705307124977310350120115874433946937144160406840352499663596348572865559239318
CO_1087737245844130315967311
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni3Ti
Al2Ni3Ti
A3B2C
[ 13, 13, 28, 28, 28, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.3333333333333333, 0.5, 0.16666666666666666 ]
3
6
[ [ -1.21847, 1.21844, 2.27871 ], [ 2.02012, 2.02012, 0.000021 ], [ -3.79036, 3.79043, -7.63529 ] ]
[ [ -0.01459, 0.04007, -0.05181 ], [ -1.59311, 1.6186, -1.73994 ], [ -0.40302, 2.44862, 0.24349 ], [ -1.95157, 3.99718, -1.41256 ], [ -2.64483, 4.69048, -5.73574 ], [ -3.30827, 3.33378, -3.57416 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7478224903778913158470795996829624673857408906963208944563763244844560998440322227348592701109489718689083099634363447258663863385682902052033645380827851
1
VASP
DFT
null
[ [ 0.075575, -0.075786, 0.080123 ], [ -0.0756, 0.075461, -0.079983 ], [ 0.000927, -0.000645, 0.00064 ], [ -0.237922, 0.237992, -0.249828 ], [ 0.237417, -0.237302, 0.24964 ], [ -0.000398, 0.000279, -0.000593 ] ]
null
[ [ 0.021188051029635894, -0.004375797217974235, 0.003657711593041366 ], [ -0.004375797217974235, 0.021189486576734848, -0.003658273328862695 ], [ 0.003657711593041366, -0.003658273328862695, 0.022577598206331286 ] ]
true
null
null
-35.033613
null
0.184442
0.419119
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:29:26
1307725428503560916143919130238641373267051373021889822139384877559626200840785635908053022169685677395185895890480881024251782249863386311724045512114910
PO_1307725428503560916143919
null
null
null
[ "train_2nd_stage_803" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9633386438128133516835850877480047632408136210148713951265253277734306423247549195191405825659311725173495540103769051014596262945566737424975211052238544
CO_9633386438128133516835850
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ti
Al3Ti
A3B
[ 13, 13, 13, 22 ]
[ "Al", "Ti" ]
[ 0.75, 0.25 ]
2
4
[ [ -1.86249, 4.28693, -2.19503 ], [ -1.86249, 2.19503, -4.28693 ], [ 0.244249, -8.71129, 8.71129 ] ]
[ [ -3.60284, 2.12632, -2.12632 ], [ -3.52862, -0.07811, 0.07811 ], [ 0.04788, -2.15121, 2.15121 ], [ 0, -0.00001, 0.00001 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6953157207835710535169841491133619095504649303435043829761977772197891475472574051681587388226950871139072963439879571260658242819032193640218453878642716
1
VASP
DFT
null
[ [ -0.000199, -0.000035, 0.000035 ], [ -0.289064, 0.125518, -0.125518 ], [ 0.289243, -0.125638, 0.125638 ], [ 0.00002, 0.000154, -0.000155 ] ]
null
[ [ 0.0039601751252816685, 0.002121239291522684, -0.002121176876431425 ], [ 0.002121239291522684, -0.003778047888988395, -0.0027916397867338047 ], [ -0.002121176876431425, -0.0027916397867338047, -0.003778047888988395 ] ]
true
null
null
-19.945402
null
0.169774
0.339457
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:20:41
9912376749251998194624785947392637759104761545602836669638172621677824661160687309623065227618333193568173593943590872309920573714328584324277043751335420
PO_9912376749251998194624785
null
null
null
[ "train_2nd_stage_602" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10928395788055190931780154410267787665533826694999836496479446808031377243134155666634893472704694609473611870896041108156655436462018139388804817368198132
CO_1092839578805519093178015
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al5Ni4
Al5Ni4
A5B4
[ 13, 13, 13, 13, 13, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.5555555555555556, 0.4444444444444444 ]
2
9
[ [ -2.889518, 0.15964, -2.850287 ], [ 1.349287, 4.638354, -1.10458 ], [ 1.436663, -5.04099, -4.636738 ] ]
[ [ 2.24699, 0.2563, -5.20007 ], [ -1.50885, 1.61696, -4.20959 ], [ -0.93854, -2.22307, -5.00558 ], [ -0.31492, 3.5207, -2.41791 ], [ 0.18672, -0.44643, -3.15097 ], [ -0.17392, 0.04951, -5.65074 ], [ -1.03709, 1.25063, -1.815 ], [ 0.90889, 1.82361, -3.7539 ], [ 1.48229, -2.01625, -4.55495 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4428381485718245360762006159735335668361750083147298222519768763832532480472384238195855419453254703947047015554192982037505800462170276605037066796827507
1
VASP
DFT
null
[ [ -0.003062, 0.004943, 0.003296 ], [ -0.000115, -0.000096, 0.000167 ], [ 0.003282, -0.004108, -0.003456 ], [ -0.000997, 0.002826, 0.000283 ], [ 0.001161, -0.003573, -0.000488 ], [ -0.001623, 0.000552, 0.002899 ], [ -0.000675, -0.001751, -0.000208 ], [ 0.00043, 0.001796, 0.000468 ], [ 0.0016, -0.00059, -0.002962 ] ]
null
[ [ 0.001208231336588481, -0.0000035576602017534568, -0.00006222784598505608 ], [ -0.0000035576602017534568, 0.001163854206703451, -0.000003432830019235792 ], [ -0.00006222784598505608, -0.000003432830019235792, 0.0012069830347633044 ] ]
true
null
null
-46.2283
null
0.003398
0.006684
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:45:35
7411011779850664379896227339190715708247990212577468867150408120668857885907858708242329200762963091001580458216339428707672381620977070985570532244779134
PO_7411011779850664379896227
null
null
null
[ "train_1st_stage_227" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9765261455723541182202551579219801562894581587904422782625262308867542045161247595048043134643322639451146929595821430285495895957477226343217064637822079
CO_9765261455723541182202551
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
NiTi2
NiTi2
A2B
[ 28, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
3
[ [ 0, -2.7205, 0 ], [ -2.7205, 0, 0 ], [ -1.36025, -1.36025, -6.13016 ] ]
[ [ -1.36025, -1.36025, 0 ], [ -1.36025, -1.36025, -3.98951 ], [ -2.7205, -2.7205, -2.14065 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10427372756566237566988208440020098451449106309268304077929681931051503860947270559137188330925225620633461641991100342671414799100342168465184372010293334
1
VASP
DFT
null
[ [ -0.000002, 0.000001, 0.000148 ], [ 0.003077, 0.003077, -2.38712 ], [ -0.003075, -0.003078, 2.386972 ] ]
null
[ [ 0.00799830669954562, 0.00000411939602308295, 0.000010922640970295701 ], [ 0.00000411939602308295, 0.00799830669954562, 0.000010922640970295701 ], [ 0.000010922640970295701, 0.000010922640970295701, -0.012487137647789599 ] ]
true
null
null
-21.185481
null
1.591416
2.387124
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:56:34
3011360340990065457493423027079900037791568004135663266419302012013874282258596750186451794045405318990805979521978625911007139910824747404249994280935047
PO_3011360340990065457493423
null
null
null
[ "train_1st_stage_2178" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
2348187821667249017527588062480806490753830220868552996497887938627745545807773377828532024748994991698665128031260928573940890162692142250215646494380687
CO_2348187821667249017527588
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNiTi6
AlNiTi6
A6BC
[ 13, 28, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.125, 0.125, 0.75 ]
3
8
[ [ 4.15717, 0, 0 ], [ 0, 4.15717, 0 ], [ 0, 0, 7.57084 ] ]
[ [ 0, 0, 0 ], [ 0, 0, 3.78542 ], [ 2.07859, 2.07859, 1.14691 ], [ 2.07859, 2.07859, 6.42393 ], [ 0, 2.07859, 2.49345 ], [ 2.07859, 0, 2.49345 ], [ 0, 2.07859, 5.07738 ], [ 2.07859, 0, 5.07738 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
1945085274685460613652780132293401913823424211900932601022197959287534652852609024961456786122041418212388406008371064616436228714695778126629416190035307
1
VASP
DFT
null
[ [ 0.000001, 0, 0.000059 ], [ 0.000037, 0.000033, 0.000372 ], [ -0.000016, -0.000016, -2.615518 ], [ -0.000021, -0.000018, 2.616083 ], [ 0.000022, -0.000028, -0.430098 ], [ -0.000022, 0.000042, -0.430633 ], [ 0.000024, -0.000021, 0.430032 ], [ -0.000025, 0.000009, 0.429702 ] ]
null
[ [ 0.02815831876105728, 6.241509125883259e-8, -6.241509125883259e-8 ], [ 6.241509125883259e-8, 0.02815201483684014, 0 ], [ -6.241509125883259e-8, 0, 0.09699966781589926 ] ]
true
null
null
-51.171136
null
0.869063
2.616083
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:14:40
3463548492679872194060815998957484673444469915464506813303421868961094918297139202513930617114971923523554950111488392166896749619832114236157023119975115
PO_3463548492679872194060815
null
null
null
[ "train_1st_stage_2281" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10450527732697359305556954254208358643946504536457633992280063142614773964080896378351245672055189085555051517985721627797323746617914856910241634765312222
CO_1045052773269735930555695
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni4Ti4
AlNiTi
ABC
[ 13, 13, 13, 13, 28, 28, 28, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.3333333333333333, 0.3333333333333333, 0.3333333333333333 ]
3
12
[ [ 4.0091, 0, 0 ], [ 0, 4.78194, 0 ], [ 0, 0, 9.35736 ] ]
[ [ 2.8642, 3.58645, 8.78716 ], [ 1.1449, 1.19548, 0.5702 ], [ 1.1449, 1.19548, 4.10848 ], [ 2.8642, 3.58645, 5.24888 ], [ 1.83681, 3.58645, 5.89627 ], [ 2.17229, 1.19548, 3.46109 ], [ 2.17229, 1.19548, 1.21759 ], [ 1.83681, 3.58645, 8.13977 ], [ 3.75827, 3.58645, 3.0946 ], [ 0.25083, 1.19548, 6.26276 ], [ 0.25083, 1.19548, 7.77328 ], [ 3.75827, 3.58645, 1.58408 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12123328986001238164877565858909870391147544508952456212734831760422987037808538474147688370843779300741976071717303241819841051640824671331206577764696352
1
VASP
DFT
null
[ [ 24.85544, -0.000001, 14.383993 ], [ -24.848638, 0.000001, -14.378029 ], [ -24.851412, 0.000001, 14.380846 ], [ 24.852529, 0, -14.381018 ], [ -26.440101, 0.000001, 15.028835 ], [ 26.440046, 0.000001, -15.02868 ], [ 26.437401, 0.000001, 15.027611 ], [ -26.443311, 0, -15.030125 ], [ 1.36045, -0.000004, 37.342842 ], [ -1.361571, 0.000003, -37.34383 ], [ -1.361482, 0.000001, 37.342638 ], [ 1.360651, -0.000004, -37.345082 ] ]
null
[ [ 0.6194381362926451, 0, -0.000001997282920282643 ], [ 0, -0.06618458828031851, 0 ], [ -0.000001997282920282643, 0, 1.1006849538969379 ] ]
true
null
null
13.431771
null
32.164784
37.369861
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:38:25
9518163429441308262488379242012533324116210730827535672000630765284406705118249418858254836747999053646219063432819139790954363052807529546304848257360750
PO_9518163429441308262488379
null
null
null
[ "train_1st_stage_2309" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
563407051421800630805456212074751317592244432384596758361090792369150695864473084674315420619844240930119005670373758766984167389760954594803701372626690
CO_5634070514218006308054562
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi8Ti3
AlNi8Ti3
A8B3C
[ 13, 28, 28, 28, 28, 28, 28, 28, 28, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.08333333333333333, 0.6666666666666666, 0.25 ]
3
12
[ [ 3.616773, -0.510068, -0.000004 ], [ -1.035606, 5.73553, 3.591868 ], [ 1.035616, -5.73556, 3.591867 ] ]
[ [ 1.85447, 0.05436, 1.79819 ], [ 1.08167, -5.42619, 3.65357 ], [ 0.04607, 0.30936, 3.53466 ], [ 3.14568, -3.86898, 3.6344 ], [ 2.11006, 1.86656, 3.55385 ], [ 1.59891, -1.75782, 3.5539 ], [ 0.5633, 3.97771, 3.63433 ], [ 0.29638, 2.08482, 5.39007 ], [ 3.41259, -1.97606, 5.39004 ], [ 1.85446, 0.0543, 5.39004 ], [ 0.32937, 2.31784, 1.79819 ], [ 3.37959, -2.20905, 1.7982 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4151176878209284084850480272802805268274891748117339781862468375778781953878081589786637146167861727073008936108147796802650853136011967181668027374988863
1
VASP
DFT
null
[ [ -0.000093, -0.000276, -0.000123 ], [ 0.000063, 0.000055, -0.011425 ], [ 0.000136, 0.000119, 0.011517 ], [ -0.00082, -0.000182, -0.004725 ], [ -0.000763, -0.00008, 0.004685 ], [ 0.000888, 0.000085, 0.004824 ], [ 0.000904, 0.000156, -0.004739 ], [ -0.003553, -0.034836, -0.000034 ], [ 0.003475, 0.034856, 0.00002 ], [ -0.000144, -0.000424, 0.00014 ], [ 0.001756, 0.013663, -0.000103 ], [ -0.001848, -0.013136, -0.000038 ] ]
null
[ [ 0.0027755991082802846, -0.000023031168674509222, 2.4966036503533035e-7 ], [ -0.000023031168674509222, 0.0023744573167597677, -8.113961863648235e-7 ], [ 2.4966036503533035e-7, -8.113961863648235e-7, 0.0015027057371476533 ] ]
true
null
null
-76.96349
null
0.011675
0.035029
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:38:06
7660708465138515518039581581222965282321628474590813421548967912149000680675745570411805619637461871626422922403712045100181284302584641967110072713535437
PO_7660708465138515518039581
null
null
null
[ "train_1st_stage_195" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
8456197682823759315977809077709508529649007978521195044333751065037384590143177056188583755494180435917805369707385146554807501598166096570654957452273504
CO_8456197682823759315977809
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlTi2
AlTi2
A2B
[ 13, 22, 22 ]
[ "Al", "Ti" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
3
[ [ 1.75115, -3.03309, 0 ], [ 1.75115, 3.03309, 0 ], [ 0, 0, 4.79816 ] ]
[ [ 0, 0, 0 ], [ 1.75115, -1.01103, 3.59334 ], [ 1.75115, 1.01103, 1.20482 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3234490030027130642302028052344198913817941916642156061581716767855903975159573342517903062107431470781732337820510145333553949021099962941341801404075619
1
VASP
DFT
null
[ [ -0.000004, 0.000003, -0.000504 ], [ 0.000001, -0.000031, -3.810831 ], [ 0.000003, 0.000028, 3.811335 ] ]
null
[ [ 0.05055403939146033, -6.241509125883259e-8, 6.241509125883259e-8 ], [ -6.241509125883259e-8, 0.05055310316509145, 6.241509125883258e-7 ], [ 6.241509125883259e-8, 6.241509125883258e-7, 0.03388889794989573 ] ]
true
null
null
-16.369307
null
2.54089
3.811335
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:30:14
7930801261412294128977964780087833286004199755222154349769674872814746713251754832294622958818845992767557411478109232241589482781080812908963028613480243
PO_7930801261412294128977964
null
null
null
[ "train_1st_stage_2091" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11913437019226921511952317414002240476616897451923119335937364912273775899330463488679237501470514666288419388752185248052157946303689241584126368686697340
CO_1191343701922692151195231
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni4Ti2
Al3Ni2Ti
A3B2C
[ 13, 13, 13, 13, 13, 13, 28, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.5, 0.3333333333333333, 0.16666666666666666 ]
3
12
[ [ 2.6187, -0.418659, 0.103492 ], [ -1.07403, 5.64333, 3.97631 ], [ 1.09027, -5.66476, 3.97154 ] ]
[ [ 0.25395, 0.29582, 7.53275 ], [ 0.1104, 0.28842, 4.0887 ], [ 1.36028, 0.17877, 2.06299 ], [ 0.1194, 2.4304, 1.98453 ], [ 2.59745, -1.49439, 6.06243 ], [ 2.6083, -2.29083, 2.11081 ], [ 2.46075, -3.83165, 4.40677 ], [ 1.40979, 1.80777, 3.68963 ], [ 1.26042, -1.95644, 4.06802 ], [ 0.13809, 3.70907, 3.94662 ], [ 1.61498, 0.56875, 6.277 ], [ -0.24907, 1.63815, 5.99753 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3358176866085619699745990999314841536120864776571064516940364813192745386300692165567911130424175726337065437299119901481627674907418192349530627328745096
1
VASP
DFT
null
[ [ -1.733034, -2.833021, 10.910199 ], [ -2.06142, -1.958262, -1.101885 ], [ -0.116875, -2.954912, -1.804064 ], [ 0.079259, -0.676093, 0.793887 ], [ 0.621611, -3.923667, -2.546218 ], [ -1.020093, 1.614402, -0.401054 ], [ -0.027713, -1.768504, -0.699289 ], [ -1.036158, -1.049429, 1.23677 ], [ 1.859105, 4.824022, -1.099072 ], [ 2.335802, 4.939837, 1.399297 ], [ -156.318178, -135.334663, 33.022158 ], [ 157.417695, 139.120291, -39.710729 ] ]
null
[ [ 0.8081308784505266, 0.7042576238795657, -0.17435505946935861 ], [ 0.7042576238795657, 0.6416034828212118, -0.13195573899613852 ], [ -0.17435505946935861, -0.13195573899613852, 0.07879749233699467 ] ]
true
null
null
-41.737928
null
38.631027
213.803012
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:39:12
876154135522415910355774175901047607375433224135734171427979555632818209698489518711207012620473806520483536362285166229689171319483779111901142060391128
PO_8761541355224159103557741
null
null
null
[ "train_1st_stage_1758", "train_1st_stage_1958", "train_1st_stage_1558", "train_1st_stage_1358" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12892765145970101449862535875287811346263044456678959948629707201747727389561470717399121838592611079758547325975686119437393128056648702584109878099862400
CO_1289276514597010144986253
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al11Ti
Al11Ti
A11B
[ 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 22 ]
[ "Al", "Ti" ]
[ 0.9166666666666666, 0.08333333333333333 ]
2
12
[ [ 0, 4.96627, 0 ], [ -5.69766, 0, 4.64262 ], [ 2.85889, 0, 4.65166 ] ]
[ [ -5.68819, 4.956, 4.65216 ], [ -0.00277, 4.956, 4.6391 ], [ -2.84548, 0.0139, 4.64563 ], [ -4.28527, 2.48036, 4.6561 ], [ 1.4328, 2.4953, 4.65015 ], [ -1.40568, 2.48036, 4.63516 ], [ 1.4114, 0.82806, 2.35311 ], [ -1.40469, 0.82806, 2.29554 ], [ -1.41603, 0.83218, 6.97146 ], [ -2.8571, 3.31615, 6.93502 ], [ -2.83385, 3.31615, 2.35624 ], [ 0.00335, 3.2951, 2.32432 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11812152540696070707294053697788587891949808506549106936948972742941464598604810502962758279315343961241733282405673276710194159863359512947454487052478465
1
VASP
DFT
null
[ [ -0.005623, -0.025961, 0.164677 ], [ 0.005641, -0.02595, -0.164645 ], [ 0.00001, 0.22502, 0.000019 ], [ 0.074057, -0.015838, 0.090888 ], [ -0.000006, -0.148964, 0.000015 ], [ -0.074061, -0.015851, -0.090866 ], [ -0.196795, -0.033992, 0.037051 ], [ 0.196788, -0.033977, -0.0371 ], [ -0.000005, -0.05832, -0.000012 ], [ -0.03269, -0.009375, -0.088715 ], [ 0.032685, -0.009384, 0.0887 ], [ -0.000002, 0.152592, -0.000012 ] ]
null
[ [ 0.01000208078931918, 6.865660038471584e-7, 0.007421091935583934 ], [ 6.865660038471584e-7, -0.0056275942882613806, -2.4966036503533035e-7 ], [ 0.007421091935583934, -2.4966036503533035e-7, 0.009096749890609813 ] ]
true
null
null
-49.942117
null
0.145942
0.22502
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:15:53
8367618241100250387419830769972688694096142114274323364862206323581447364032738944370383665055503462761621159160977360941754129808015568821953586364716267
PO_8367618241100250387419830
null
null
null
[ "train_1st_stage_845" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
1539295104618215740431192406308258952323125045396487047773016934014892895896340319333968126360991979639444455648311202797496406613385522830566699618363072
CO_1539295104618215740431192
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni2Ti3
Ni2Ti3
A3B2
[ 28, 28, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.4, 0.6 ]
2
5
[ [ 0.146618, 2.10193, 2.10351 ], [ 8.09576, 1.57187, 0 ], [ 0.146618, 2.10193, -2.10351 ] ]
[ [ 0.34994, 4.20016, 0 ], [ 3.41619, 3.99552, 0 ], [ 1.73645, 1.99591, 0 ], [ 4.82223, 1.79156, 0 ], [ 6.74643, 3.77214, 0 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9699630351186599420658071252161596653828588308792749049566101255206850699599996330657432591736027476868616953819400549032250687985745794620333961526140676
1
VASP
DFT
null
[ [ 0.072683, -0.010797, 0.000002 ], [ -0.071585, 0.010774, 0 ], [ 0.000209, -0.000021, -0.000002 ], [ -0.264612, 0.017153, 0 ], [ 0.263306, -0.017109, 0.000001 ] ]
null
[ [ -0.0052531037407083855, 0.0008356132417732505, -1.8724527377649775e-7 ], [ 0.0008356132417732505, -0.0011312735290663406, 6.241509125883259e-8 ], [ -1.8724527377649775e-7, 6.241509125883259e-8, -0.0014109555529971693 ] ]
true
null
null
-35.949554
null
0.135022
0.265167
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:25:14
1306557661871115073425500768305743363430408088281503681396272166474147497198977301451103543523340522901138892295788537645967608446621486955783485570148097
PO_1306557661871115073425500
null
null
null
[ "train_1st_stage_1161" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
8060881193522184033836744700797161374435417838908979739568940817164418217951275086775264460152164699462292993134942586021669222500043672183894186392358933
CO_8060881193522184033836744
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al
Al
A
[ 13 ]
[ "Al" ]
[ 1 ]
1
1
[ [ 2.025, 2.025, 0 ], [ 0, 2.025, 2.025 ], [ 2.025, 0, 2.025 ] ]
[ [ 0, 0, 0 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7139823580117456863074861889882343461725898813084998108494933191597655605744737598542917498832396805895762388608206499377715940742957944285803092254700923
1
VASP
DFT
null
[ [ 0, 0, 0 ] ]
null
[ [ 0.0005592392176791399, 0, 0 ], [ 0, 0.0005592392176791399, -6.241509125883259e-8 ], [ 0, -6.241509125883259e-8, 0.0005592392176791399 ] ]
true
null
null
-3.737349
null
0
0
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:38:13
10532648272566425285824177609622199226093674600035758126719130458517659207919963348107657312704463388131836155520268882561488098808142543900889034819369363
PO_1053264827256642528582417
null
null
null
[ "train_2nd_stage_0", "train_1st_stage_980" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5090693710366384245306202514892606433143081322764565782796543871520616497442999598582927504120935303432802879409120372825456306036099200008325385780093601
CO_5090693710366384245306202
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
NiTi4
NiTi4
A4B
[ 28, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.2, 0.8 ]
2
5
[ [ 0.285825, 2.185828, 2.110348 ], [ 4.912799, 1.871174, -0.39499 ], [ -1.71966, 2.340563, -4.398294 ] ]
[ [ 3.47822, 6.38366, -2.67963 ], [ 1.62212, 2.0446, -0.14134 ], [ 3.5281, 4.08521, -0.30619 ], [ -0.05043, 2.28511, -2.37057 ], [ 1.85592, 4.32548, -2.53517 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4177611795257423836395175983317683117459207951302415892231493056978479943118117049089124156376911656014584242365869854047947107572535149376199976930943963
1
VASP
DFT
null
[ [ 0.000703, 0.000948, -0.001232 ], [ 0.000086, 0.011419, -0.012011 ], [ -0.014569, 0.000339, 0.0002 ], [ 0.016, -0.002248, 0.001644 ], [ -0.00222, -0.010459, 0.011399 ] ]
null
[ [ -0.0010249806286525486, -0.00002559018741612136, -0.00003133237581193396 ], [ -0.00002559018741612136, -0.0012265813734185778, -0.00018824391523663905 ], [ -0.00003133237581193396, -0.00018824391523663905, -0.0011961852239755263 ] ]
true
null
null
-37.489641
null
0.012945
0.016573
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:20:40
1445191168702200517552024288255235694793694349072480075772971470716022752453414160996555618377504130792132684890318717670625288189976968491488011058171377
PO_1445191168702200517552024
null
null
null
[ "train_1st_stage_248" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5883521619298299269894891599560469786909836231176655296270422167599708162852336871616210931163681417893468519748400027988574075599780326223128714298620771
CO_5883521619298299269894891
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ti
Al2Ti
A2B
[ 13, 13, 22 ]
[ "Al", "Ti" ]
[ 0.6666666666666666, 0.3333333333333333 ]
2
3
[ [ -2.95518, -0.038956, -0.233597 ], [ 0.060724, -2.90217, -0.348546 ], [ -1.88702, -2.14126, 5.15577 ] ]
[ [ -3.1891, -3.38713, 3.04658 ], [ -1.59237, -1.69526, 1.52704 ], [ -1.88702, -2.14126, 5.15577 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
859194931943396676199156521417155151771706433158768279204630826500833208713410300857710088236094524669868495255618369206205781555811968716400940434802724
1
VASP
DFT
null
[ [ -0.010516, -0.023413, 0.104756 ], [ 0.010475, 0.023425, -0.104759 ], [ 0.000041, -0.000012, 0.000003 ] ]
null
[ [ -0.0010078788936476286, 0.00033348383259594247, -0.00023536730913705767 ], [ 0.00033348383259594247, -0.0046508605251519095, -0.00036350549149144094 ], [ -0.00023536730913705767, -0.00036350549149144094, -0.0034291475288515203 ] ]
true
null
null
-16.037688
null
0.071918
0.107856
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:01:12
11279270490669843488469438549487883224126120732805949716859828804097017062043865287154694894366705617041670210875902337207424751287608739523038736128994680
PO_1127927049066984348846943
null
null
null
[ "train_2nd_stage_628" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10048072815940406739328735080312472281411753082744780142509080369086504859117493718514798115086343895334158042526861477575174794956011235860259466239410960
CO_1004807281594040673932873
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0