chemical_formula_hill
string
chemical_formula_reduced
string
chemical_formula_anonymous
string
atomic_numbers
list
elements
list
elements_ratios
list
nelements
int32
nsites
int32
cell
list
positions
list
pbc
list
dimension_types
list
nperiodic_dimensions
int32
structure_hash
string
multiplicity
int32
software
string
method
string
adsorption_energy
float64
atomic_forces
list
atomization_energy
float64
cauchy_stress
list
cauchy_stress_volume_normalized
bool
electronic_band_gap
float64
electronic_band_gap_type
string
energy
float64
formation_energy
float64
max_force_norm
float64
mean_force_norm
float64
property_object_metadata
string
property_object_metadata_id
string
property_object_last_modified
timestamp[ns]
property_object_hash
string
property_object_id
string
configuration_metadata
string
configuration_metadata_id
string
configuration_labels
list
configuration_names
list
configuration_dataset_ids
list
configuration_last_modified
timestamp[ns]
configuration_hash
string
configuration_id
string
dataset_name
string
dataset_authors
list
dataset_description
string
dataset_elements
list
dataset_nelements
int32
dataset_nproperty_objects
int64
dataset_nconfigurations
int32
dataset_nsites
int64
dataset_adsorption_energy_count
int64
dataset_atomic_forces_count
int64
dataset_atomization_energy_count
int64
dataset_cauchy_stress_count
int64
dataset_electronic_band_gap_count
int64
dataset_energy_count
int64
dataset_energy_mean
float64
dataset_energy_variance
float64
dataset_formation_energy_count
int64
dataset_last_modified
timestamp[ns]
dataset_dimension_types
list
dataset_nperiodic_dimensions
list
dataset_publication_year
string
dataset_total_elements_ratios
list
dataset_license
string
dataset_links
string
dataset_doi
string
dataset_hash
string
dataset_id
string
dataset_extended_id
string
Al3Ti4
Al3Ti4
A4B3
[ 13, 13, 13, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.42857142857142855, 0.5714285714285714 ]
2
7
[ [ 5.14046, 0, 0 ], [ -2.57023, 4.45177, 0 ], [ 0, 0, 5.02702 ] ]
[ [ 2.57023, 0, 0 ], [ 3.85534, 2.22588, 0 ], [ 1.28512, 2.22588, 0 ], [ 0, 0, 1.35748 ], [ 0, 0, 3.66955 ], [ 0, 2.96785, 2.51351 ], [ 2.57023, 1.48392, 2.51351 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4040657908725237532102416907744015950743781374182880012849263517306434785890544207301050193453403998746868917872501426730015719511799333856569024161175847
1
VASP
DFT
null
[ [ 0.000001, -0.000202, 0.00033 ], [ 0.000186, 0.000116, 0.000329 ], [ -0.000184, 0.000116, 0.000328 ], [ -0.000006, -0.000001, -0.12462 ], [ 0.000002, -0.00001, 0.123399 ], [ -0.000003, -0.000021, 0.000102 ], [ 0.000004, 0.000002, 0.000132 ] ]
null
[ [ -0.0019417959041535403, 0, -6.241509125883259e-8 ], [ 0, -0.0019421079796098344, 6.241509125883259e-8 ], [ -6.241509125883259e-8, 6.241509125883259e-8, 0.01272281703238295 ] ]
true
null
null
-45.0094
null
0.035633
0.12462
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:04:32
12580494806838126434489092269946539806718232436966042814525965884936955095983346167539368729344077649907620945300014905835696619364881222391652115289107866
PO_1258049480683812643448909
null
null
null
[ "train_2nd_stage_588" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12260898877335668845047437698807871433563699158587397616404297088413565776100705553951400782510105194896785808317546770771164109307809740198791732757785021
CO_1226089887733566884504743
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni2Ti4
NiTi2
A2B
[ 28, 28, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
6
[ [ 4.43839, -0.419808, -0.01251 ], [ 0.333922, 3.65858, -4.31986 ], [ -1.93524, 3.13733, 2.50752 ] ]
[ [ 0.33852, 3.35064, -3.95996 ], [ 0.36086, 3.47295, -0.13252 ], [ 2.40193, 1.3726, 0.10744 ], [ -1.76368, 4.65866, 0.7075 ], [ 2.56889, 3.20189, -2.0525 ], [ 0.52782, 5.30226, -2.29247 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6905835957727867353007433387458975835455455987883915033068306608722739363535557273222479173475179500914523040034305766644776281512647124206213134401126056
1
VASP
DFT
null
[ [ -0.000117, 0.000099, -0.000102 ], [ -0.000093, 0.000153, -0.000165 ], [ 0.000059, 0.000028, -0.000049 ], [ 0.000069, -0.000038, 0.000004 ], [ 0.000052, -0.000086, 0.000104 ], [ 0.00003, -0.000156, 0.000208 ] ]
null
[ [ -0.04245898930046352, 0.0000804530526326352, -0.00009624407072111983 ], [ 0.0000804530526326352, -0.04158130828718182, -0.0010589968533886124 ], [ -0.00009624407072111983, -0.0010589968533886124, -0.04122828853102186 ] ]
true
null
null
-42.921587
null
0.000166
0.000262
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:29:15
8721031045562797221682131711394286278869985906685513578579437897453577920423737174172871000522630482076665073676865945841752520978151658278832861271172097
PO_8721031045562797221682131
null
null
null
[ "train_2nd_stage_874" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
1342983214450349413181238368954880967454810169504965233402653068849093392247629992463053051974012203868676982425385497487293273725347497943230669475788275
CO_1342983214450349413181238
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni4Ti8
NiTi2
A2B
[ 28, 28, 28, 28, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
12
[ [ -4.48478, 1.96145, 0.21346 ], [ -4.66388, -7.62717, 0.068255 ], [ -1.68108, 1.84851, 4.21464 ] ]
[ [ -2.52575, 1.64025, 3.55711 ], [ -4.77576, 2.603, 3.66868 ], [ -4.71806, -3.06937, 0.48361 ], [ -5.56623, -2.16307, 2.59577 ], [ -4.95901, -0.50701, 0.72477 ], [ -7.26821, -2.81356, 0.78552 ], [ -7.43056, -3.42456, 3.86653 ], [ -8.29135, -5.22351, 1.43442 ], [ -1.99296, -0.00892, 1.64496 ], [ -4.53482, 0.04065, 3.42749 ], [ -3.01608, -2.41889, 2.29384 ], [ -5.3253, -4.72544, 2.3546 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5708731760930537344353712041013302599482701983333600364214195563992748252258153586019421696053652301915386097732661139794208308490422261229837527612998058
1
VASP
DFT
null
[ [ 0.025614, 0.058639, -0.016365 ], [ -0.025285, -0.05859, 0.015807 ], [ 0.024839, 0.059128, -0.015664 ], [ -0.024484, -0.059245, 0.015474 ], [ 0.056965, -0.035057, -0.040711 ], [ 0.01255, 0.026772, -0.006479 ], [ 0.056727, -0.034945, -0.040652 ], [ -0.011895, -0.027475, 0.006085 ], [ 0.011797, 0.027539, -0.005911 ], [ -0.056839, 0.035049, 0.040658 ], [ -0.01284, -0.027055, 0.006749 ], [ -0.057149, 0.03524, 0.041008 ] ]
null
[ [ 0.0033561842871699453, -0.004258893752046441, -0.000110349881345616 ], [ -0.004258893752046441, -0.003978525162111765, 0.0027142450735728524 ], [ -0.000110349881345616, 0.0027142450735728524, 0.0035866208040975555 ] ]
true
null
null
-87.684899
null
0.058251
0.078674
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:24:18
4600740155910729107794450237890146001028799287924433381960594699611060501178360509638011073489615602626981119410519016444476201154754656383403750146277602
PO_4600740155910729107794450
null
null
null
[ "train_1st_stage_764" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4417010473679714889384596085644006816628601576628379599237224443342471028316787449585612157975817967408793565091127063221782182091211636010886454972872695
CO_4417010473679714889384596
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni2Ti4
NiTi2
A2B
[ 28, 28, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
6
[ [ -1.86572, 1.39636, 2.13412 ], [ 4.29076, 4.28615, -1.39274 ], [ -1.46749, 1.61571, -4.67953 ] ]
[ [ -2.86558, 2.67728, -2.92394 ], [ 1.09318, 1.79924, -1.22797 ], [ 0.73965, 4.19953, -0.76814 ], [ -1.43609, 1.4374, -0.86297 ], [ -0.33631, 3.03911, -3.28894 ], [ 1.77871, 4.56313, -4.77651 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5294782588272464583740031571217102897242378207714758643236042623819470961304866470724946919094877743588243640356951572636891738318907141416794388822472477
1
VASP
DFT
null
[ [ 0.052737, -0.212789, 0.185545 ], [ -0.052181, 0.213404, -0.185523 ], [ -0.116654, 0.012965, -0.110104 ], [ 0.156254, -0.105795, 0.205113 ], [ -0.156642, 0.105038, -0.205111 ], [ 0.116485, -0.012824, 0.110079 ] ]
null
[ [ -0.01363401494967065, 0.006839071209595321, 0.007121811572997833 ], [ 0.006839071209595321, -0.0032141899545561014, -0.009513183379488744 ], [ 0.007121811572997833, -0.009513183379488744, -0.014363959441942693 ] ]
true
null
null
-43.586091
null
0.242303
0.287546
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:48:58
550956709857981627358311915653914182978003575083737476769133775034637737622724472094926503762799712361892863792984966491795614532882032942343405547531441
PO_5509567098579816273583119
null
null
null
[ "train_2nd_stage_692" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
797232131965981619950846959761649894943394020792010714125897660401754167568481484090665234779280853560450386494451503205178662996511889087164196560975799
CO_7972321319659816199508469
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al13Ti
Al13Ti
A13B
[ 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 22 ]
[ "Al", "Ti" ]
[ 0.9285714285714286, 0.07142857142857142 ]
2
14
[ [ 2.87099, -0.003438, -0.008321 ], [ -1.41906, 2.49891, 4.6305 ], [ -0.004186, -14.8016, 4.67609 ] ]
[ [ 1.44775, -12.2777, 9.28498 ], [ 0.01352, 0.04939, 4.63737 ], [ 1.44603, -2.43536, 4.63211 ], [ 0.00756, -4.92439, 4.64654 ], [ 1.4401, -7.41185, 4.64487 ], [ 0.00167, -9.88406, 4.65714 ], [ 1.43434, -12.3383, 4.68851 ], [ 1.44331, 0.88624, 2.31875 ], [ 0.00479, -1.60346, 2.31583 ], [ 1.43733, -4.09985, 2.32708 ], [ -0.00117, -6.58828, 2.33125 ], [ 0.01231, -6.58949, 6.96168 ], [ 1.44487, -9.07129, 6.96943 ], [ 0.00653, -11.4892, 6.99383 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3344789369512401182836721387744073639677121032530188814334922771169942016625552168082968667701135457620795359640525596374697160186560905458048231864622478
1
VASP
DFT
null
[ [ 0.002413, -0.000335, -0.066573 ], [ -0.000996, -0.133552, -0.019048 ], [ 0.000178, -0.030422, 0.080115 ], [ 0.001292, -0.01913, -0.005023 ], [ 0.001025, 0.026778, -0.033997 ], [ 0.001277, 0.070779, 0.076006 ], [ -0.001582, 0.043056, 0.016297 ], [ -0.00101, 0.006531, 0.018234 ], [ 0.001425, 0.073753, -0.080079 ], [ -0.001719, 0.067761, -0.00785 ], [ -0.000603, -0.065778, -0.005547 ], [ -0.00118, 0.006643, 0.089958 ], [ 0.000209, -0.154538, 0.020111 ], [ -0.000729, 0.108453, -0.082604 ] ]
null
[ [ -0.0051375734067882865, 0.0002358042147758695, 0.001040521986375998 ], [ 0.0002358042147758695, 0.0011581744333988974, -0.001686580595996174 ], [ 0.001040521986375998, -0.001686580595996174, -0.002641593907347571 ] ]
true
null
null
-57.125519
null
0.081798
0.155841
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:56:23
10526511335500588915256602985727511514604406594738209784873965990418535800712417420497764598571791020872546830582961656929853750635847855920848204292107052
PO_1052651133550058891525660
null
null
null
[ "train_1st_stage_702" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5363020681181061463034278423433240521055254457777365679045907778711175272529676087959733423848684071550789743901885896437796941034757245627631276367657019
CO_5363020681181061463034278
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al10Ni2
Al5Ni
A5B
[ 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 28, 28 ]
[ "Al", "Ni" ]
[ 0.8333333333333334, 0.16666666666666666 ]
2
12
[ [ 0.156922, 2.82722, -0.009561 ], [ 5.01186, -1.70046, -1.27148 ], [ -4.91522, 1.65223, -11.3932 ] ]
[ [ -0.03373, 2.79534, -12.5643 ], [ 2.03057, 1.30188, -1.01596 ], [ 3.14794, -0.18534, -3.14535 ], [ 0.29884, -0.02607, -2.80895 ], [ 1.53276, 1.31593, -5.00899 ], [ -1.31633, 1.47519, -4.67259 ], [ -0.04204, 2.81519, -6.81154 ], [ 2.1189, 1.2735, -7.92789 ], [ 0.07603, 2.79938, -9.55751 ], [ -3.00272, 2.96992, -9.66321 ], [ -1.63053, 1.48062, -8.22733 ], [ -1.45308, 1.46147, -10.9838 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4500691478035989324197938808822546087455790867655713551522723786173220601721371550651185439755220464109892602994992529234163278530647194823834673773584165
1
VASP
DFT
null
[ [ 0.14025, -0.004617, -0.044664 ], [ -0.176668, 0.007838, -0.082457 ], [ -0.102253, 0.007924, -0.064384 ], [ 0.032775, -0.003409, 0.153642 ], [ -0.032471, 0.003393, -0.152776 ], [ 0.102332, -0.007928, 0.064975 ], [ 0.175724, -0.007775, 0.08156 ], [ -0.139597, 0.004592, 0.043432 ], [ 0.004534, 0.003726, 0.038399 ], [ -0.00442, -0.003701, -0.037324 ], [ 0.047293, -0.003183, 0.090332 ], [ -0.0475, 0.003142, -0.090734 ] ]
null
[ [ -0.0013266951797977454, 0.0027516941283281518, 0.0023950542968751826 ], [ 0.0027516941283281518, 0.008238167895253312, -0.0008393581472487805 ], [ 0.0023950542968751826, -0.0008393581472487805, -0.005597635044457141 ] ]
true
null
null
-50.407408
null
0.12663
0.195121
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:13:23
1128144012886896257006486481422088539682940172001530725713985345553807295044630379395671531819483348437001375007516324558783373447758586432603943293154584
PO_1128144012886896257006486
null
null
null
[ "train_1st_stage_640" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9670305607793312897223062895677287698994996421636198533049749736367962361448849567299957483792456627987727908939421373394463133365137360315373594829117384
CO_9670305607793312897223062
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni
Ni
A
[ 28 ]
[ "Ni" ]
[ 1 ]
1
1
[ [ 1.41018, -1.41018, -1.41018 ], [ -1.41018, -1.41018, 1.41018 ], [ -1.41018, 1.41018, -1.41018 ] ]
[ [ 0, 0, 0 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10145955333867316542336988491228700038797020879327809850926575112448761352666712005847986043456019417251413749467567346925665356277514093457976615877754566
1
VASP
DFT
null
[ [ 0, 0, 0 ] ]
null
[ [ 0.002721048318520065, 1.8724527377649775e-7, 1.8724527377649775e-7 ], [ 1.8724527377649775e-7, 0.002721048318520065, 1.8724527377649775e-7 ], [ 1.8724527377649775e-7, 1.8724527377649775e-7, 0.002721048318520065 ] ]
true
null
null
-5.351512
null
0
0
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:06:14
11761904863231493079786107615584247918372601334382106786144287547539138171984733367818540145413767956918325805497830278699667567013288239196630226837732853
PO_1176190486323149307978610
null
null
null
[ "train_2nd_stage_228" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10854117648202036268928097650102199089599448712377101322751833659166006602360526056202157197700976953083157192552929316084122049901665052417080543756049534
CO_1085411764820203626892809
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi6Ti
AlNi6Ti
A6BC
[ 13, 28, 28, 28, 28, 28, 28, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.125, 0.75, 0.125 ]
3
8
[ [ 0.000006, 0.000005, 3.577255 ], [ 2.511681, -6.713859, -0.000001 ], [ 2.10102, 4.613181, -0.000007 ] ]
[ [ 1.39285, 0.52788, 1.79866 ], [ 4.33293, -2.19872, 0.01002 ], [ 3.2788, -4.5133, 0.01002 ], [ 2.01842, -1.14449, 0.01002 ], [ 3.06532, 1.154, 0.01001 ], [ 2.44336, 2.83457, 1.79865 ], [ 3.69911, -0.52238, 1.79865 ], [ 2.64861, -2.8289, 1.79868 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
1158234246815598389632248945068567807149083819213538082808267778649403360642509475666170778503986052614773272135501853840999351055598227933279755593464481
1
VASP
DFT
null
[ [ 0.000599, -0.000223, -0.00001 ], [ -0.004526, -0.00263, 0.000029 ], [ -0.001155, 0.005334, 0.000026 ], [ 0.001069, -0.005407, 0.000003 ], [ 0.004133, 0.002916, -0.000009 ], [ -0.000215, -0.000355, -0.000043 ], [ 0.000506, 0.000076, -0.000041 ], [ -0.000411, 0.000288, 0.000045 ] ]
null
[ [ 0.0004227998281873319, -0.000018537282103873277, -1.8724527377649775e-7 ], [ -0.000018537282103873277, 0.00039870760296142253, 1.2483018251766518e-7 ], [ -1.8724527377649775e-7, 1.2483018251766518e-7, -0.0001293240690883011 ] ]
true
null
null
-48.147353
null
0.002917
0.005512
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:13:26
4579897358165246928445582077560324493824333521398700306517534251133603696264528598266412475968228455285442934978923000367062652769904500569933606806384392
PO_4579897358165246928445582
null
null
null
[ "train_1st_stage_314" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11049082977551800470747774093882178817548784747472837487658155696033800086880313345616271318250970984499719097728673189006614238997654683476379022191805453
CO_1104908297755180047074777
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlTi
AlTi
AB
[ 13, 22 ]
[ "Al", "Ti" ]
[ 0.5, 0.5 ]
2
2
[ [ 0, 0, -3.14166 ], [ 0, 3.14166, 0 ], [ 3.14166, 0, 0 ] ]
[ [ 0, 0, 0 ], [ 1.57083, 1.57083, -1.57083 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
616306475156450384629413434156319081302790271362103486187001658369484956452879495343349650402549393265206665447327064973098591207556358964163396889837935
1
VASP
DFT
null
[ [ -0.000003, -0.000001, -0.000005 ], [ 0.000003, 0.000001, 0.000005 ] ]
null
[ [ -0.005558688027511629, 6.241509125883259e-8, -6.241509125883259e-8 ], [ 6.241509125883259e-8, -0.005558688027511629, 0 ], [ -6.241509125883259e-8, 0, -0.005558688027511629 ] ]
true
null
null
-12.081728
null
0.000006
0.000006
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:25:32
6909453289147680932659292923446828863739740560684066926840460179732480726473906512851764272100773379178542846809963859262383036797039672542457042690468627
PO_6909453289147680932659292
null
null
null
[ "train_2nd_stage_532" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10613503131802148046270747972180835379493144367717913024093698165161931998173348982278630538796885778137006918538256448385870630849168683046375769340162971
CO_1061350313180214804627074
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni2Ti10
NiTi5
A5B
[ 28, 28, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.16666666666666666, 0.8333333333333334 ]
2
12
[ [ -0.055142, 2.05657, 2.04854 ], [ 5.83692, 0.143681, -2.04445 ], [ 0.076686, 8.23415, -8.26436 ] ]
[ [ 5.79903, 10.3222, -8.1492 ], [ 0.07861, 2.17077, -2.17715 ], [ 1.48984, 2.08321, 0.00606 ], [ 4.31111, 2.17558, -2.06805 ], [ 2.00171, 4.0629, -1.96759 ], [ 4.01799, 4.15397, -4.06208 ], [ 0.08544, 4.06971, -4.08335 ], [ 1.96992, 6.21082, -4.1248 ], [ 3.90771, 6.28212, -6.20155 ], [ 5.7922, 8.42324, -6.24301 ], [ 1.85964, 8.33897, -6.26428 ], [ 3.87592, 8.43004, -8.35876 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12156760475518230637845841032493200696516170716417247587795346300427828178729961214049275159587886941504377473650233593767995820285828761211791199246700033
1
VASP
DFT
null
[ [ 0.043458, 0.250987, -0.251526 ], [ -0.044424, -0.250959, 0.251379 ], [ 0.41176, 0.107558, -0.096166 ], [ -0.410951, -0.107914, 0.096601 ], [ 0.361807, 0.036956, -0.025685 ], [ -0.620251, -0.119916, 0.105664 ], [ 0.112095, 0.513452, -0.510904 ], [ 0.20016, -0.131106, 0.136794 ], [ -0.19962, 0.130474, -0.136161 ], [ -0.113844, -0.513703, 0.5111 ], [ 0.621187, 0.120705, -0.10638 ], [ -0.361376, -0.036534, 0.025283 ] ]
null
[ [ 0.015993991965258365, -0.0006674669859219555, 0.0007751954334347007 ], [ -0.0006674669859219555, 0.019466455567443516, -0.006794319589162739 ], [ 0.0007751954334347007, -0.006794319589162739, 0.01929306644392648 ] ]
true
null
null
-89.596536
null
0.467966
0.733536
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:08:26
228279921441552175609287944886305487490901579694945328636375378385337138460597111632995085768312994996740686106088711369492500699008984392310620303155784
PO_2282799214415521756092879
null
null
null
[ "train_1st_stage_740" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7484795582547888017433404306867475719676796531758846820155987735098050315027406597737922660928233493421571340618450174541568693829743710388974074789400088
CO_7484795582547888017433404
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni
Al2Ni
A2B
[ 13, 13, 28 ]
[ "Al", "Ni" ]
[ 0.6666666666666666, 0.3333333333333333 ]
2
3
[ [ -1.20328, 1.60706, 1.96659 ], [ 1.60706, -1.20328, 1.96659 ], [ 3.86934, 3.86934, 1.21356 ] ]
[ [ 3.71513, 3.71513, 1.24523 ], [ 1.57858, 1.57858, 1.68391 ], [ 2.84874, 2.84874, 3.43116 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
8041776435076021576771199334475490969956562395787310795974127032227489326020027701650819749433698350198783539207598098376512981328226819063952330543247599
1
VASP
DFT
null
[ [ 0.106748, 0.106748, -0.022797 ], [ -0.106744, -0.106743, 0.022779 ], [ -0.000005, -0.000005, 0.000018 ] ]
null
[ [ 0.001999092957929149, 0.0010737268149256967, -0.00017170391605304843 ], [ 0.0010737268149256967, 0.001999092957929149, -0.00017170391605304843 ], [ -0.00017170391605304843, -0.00017170391605304843, 0.0009987662903238389 ] ]
true
null
null
-14.098961
null
0.101787
0.152676
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:38:20
12630391926699641382255290719827597764779522099522699581984459766156636370247498690764999239937182138226155629840806682497480520457438985608969136325128770
PO_1263039192669964138225529
null
null
null
[ "train_1st_stage_439" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
620309917516280160247937164851080694400283219150198684089273154764637216398537128134543626707688703485967541296463841151374307147386401850558660746025713
CO_6203099175162801602479371
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi4Ti3
AlNi4Ti3
A4B3C
[ 13, 28, 28, 28, 28, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.125, 0.5, 0.375 ]
3
8
[ [ -2.95569, -2.95569, 0 ], [ -1.61719, 1.61719, -3.52631 ], [ 3.48491, -3.48491, -3.19642 ] ]
[ [ 3.08046, -3.08046, -3.40362 ], [ -1.06212, -1.89357, -1.09539 ], [ -0.34141, 0.34141, -2.73375 ], [ 0.69469, -3.65038, -2.70678 ], [ 1.42353, -1.42353, -4.35258 ], [ -0.97734, -1.97835, -3.63161 ], [ 1.33602, -1.33602, -1.80973 ], [ 0.76532, -3.72101, -5.22936 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9241317766801957663244340224748125684715197390564327998295869689904406735549113329511150014466385093438883218834727318663317594753708639669426992403514309
1
VASP
DFT
null
[ [ -0.020207, 0.020215, -0.044129 ], [ 0.057108, -0.057112, 0.003862 ], [ 0.060268, -0.060282, -0.058669 ], [ -0.020716, 0.020709, 0.075276 ], [ -0.06245, 0.062437, 0.053864 ], [ 0.066323, -0.066296, 0.144602 ], [ -0.064358, 0.064345, -0.13992 ], [ -0.015967, 0.015983, -0.034887 ] ]
null
[ [ -0.01752122683327074, 0.00011434444718618129, 0.0007518521893038972 ], [ 0.00011434444718618129, -0.01752116441817948, -0.0007517897742126384 ], [ 0.0007518521893038972, -0.0007517897742126384, -0.016684302874581055 ] ]
true
null
null
-52.71058
null
0.100244
0.172347
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:27:10
12805022265286171842666529081341604495267470080852791743502396994622028881791955001332078613225586242284630382867464025400094300849339833936278812723950147
PO_1280502226528617184266652
null
null
null
[ "train_1st_stage_539" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7989850277653807355759377712928501800810368848984448402503266605768796660972471066126232726036969217081662139797514830572542026681071680146468972862488887
CO_7989850277653807355759377
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni7Ti
Al2Ni7Ti
A7B2C
[ 13, 13, 28, 28, 28, 28, 28, 28, 28, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.2, 0.7, 0.1 ]
3
10
[ [ 2.840965, 0.071093, 2.30948 ], [ -2.026101, -4.50325, 5.534296 ], [ 2.969775, -1.916196, -3.594075 ] ]
[ [ 3.18782, -0.25396, 1.88607 ], [ 2.09165, -4.79889, 3.37448 ], [ 0.19874, -3.20045, 2.75062 ], [ 0.78767, -0.86685, 1.95408 ], [ 0.6155, -3.97883, 5.1651 ], [ 2.63971, -2.52638, 2.63022 ], [ -0.20307, -5.64831, 3.32022 ], [ 1.65073, -4.25709, 0.99691 ], [ 2.23984, -1.9235, 0.20049 ], [ 4.12462, -3.48452, 0.83321 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6736089238571830518364648111208671531055216945442282327546223803717745290670354697082218866859644434521326199126288368354885260401250205472327611167337296
1
VASP
DFT
null
[ [ 0.008982, -0.006448, -0.010936 ], [ -0.008942, 0.006011, 0.010917 ], [ -0.007145, 0.007395, 0.00865 ], [ 0.005103, -0.002919, -0.00638 ], [ -0.008537, 0.00286, 0.010371 ], [ 0.000094, -0.000032, -0.00025 ], [ 0.00809, -0.003274, -0.009786 ], [ -0.004963, 0.00339, 0.005999 ], [ 0.007351, -0.007452, -0.008711 ], [ -0.000033, 0.00047, 0.000126 ] ]
null
[ [ 0.0017264014242193092, 0.0000023093583765768054, -0.000037386639664040714 ], [ 0.0000023093583765768054, 0.0017280242165920387, -0.000007240150586024579 ], [ -0.000037386639664040714, -0.000007240150586024579, 0.0017438776497717822 ] ]
true
null
null
-58.597261
null
0.010272
0.015551
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:41:57
4155135663994030647498348174819288076997645193942497383632970980654862788513621781182293967825581969893693053220065843232822142585141943565957163163845641
PO_4155135663994030647498348
null
null
null
[ "train_1st_stage_216" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11284111194411719767668460710895249667757632592364528521892341662469915513519325275193889426091912217424747428077795670560662001260739229901901685412187869
CO_1128411119441171976766846
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni2Ti2
NiTi
AB
[ 28, 28, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.5, 0.5 ]
2
4
[ [ 2.8945, -0.485487, 0 ], [ 1.53166, 4.46782, 0 ], [ 0, 0, 4.0601 ] ]
[ [ 3.05329, 0.27421, 1.01503 ], [ 1.37287, 3.70812, 3.04508 ], [ 2.84269, 2.84132, 1.01503 ], [ 1.58347, 1.14101, 3.04508 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12240111764122814791132984246558693936526704955885182592971343343667526033123950145364386075320803997792266594781548902210014470141280616885872176279557253
1
VASP
DFT
null
[ [ -0.16365, 0.127656, -0.000002 ], [ 0.163604, -0.127824, 0 ], [ 0.062575, 0.464401, 0 ], [ -0.062529, -0.464234, 0.000002 ] ]
null
[ [ 0.006970579806877682, -0.0012698350316609488, -6.241509125883259e-8 ], [ -0.0012698350316609488, 0.005620915873496685, 0 ], [ -6.241509125883259e-8, 0, 0.003576259898948589 ] ]
true
null
null
-28.141685
null
0.338048
0.468598
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:07:49
959542451626295787265132914171855759293486492771756498505483927685983600671828105795867833953371034547138484627167692263124969994208448560004916835043075
PO_9595424516262957872651329
null
null
null
[ "train_2nd_stage_253" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5668857561527418650212427805488864763528270999673653969677061099838670346377100720903650361318988218188037322867314987266538021888251015695218870498788959
CO_5668857561527418650212427
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni4Ti2
Ni2Ti
A2B
[ 28, 28, 28, 28, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.6666666666666666, 0.3333333333333333 ]
2
6
[ [ 0, 0, 4.2333 ], [ 3.91507, 2.32095, 0 ], [ 0.015174, 4.44815, 0 ] ]
[ [ 0.01987, 4.4048, 0 ], [ 2.58449, 4.53772, 0 ], [ 1.35587, 5.19681, 2.11665 ], [ 3.92049, 5.32973, 2.11665 ], [ 1.12579, 2.14712, 0 ], [ 2.7994, 3.13927, 2.11665 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
13337229156235809435734381049306132861154040450653495274215686108410345116529123429743695144814359780480971496500387694619988916558250568247770473009823402
1
VASP
DFT
null
[ [ -0.120699, -0.084808, -0.000001 ], [ -0.128439, -0.065552, 0 ], [ 0.128002, 0.065284, -0.000001 ], [ 0.12036, 0.084957, 0 ], [ -0.045472, -0.032737, 0.000005 ], [ 0.046248, 0.032855, -0.000002 ] ]
null
[ [ -0.004723074785738379, 0.005301974757164051, -6.241509125883259e-8 ], [ 0.005301974757164051, -0.009865017248914783, 0 ], [ -6.241509125883259e-8, 0, -0.0020992691793995746 ] ]
true
null
null
-40.001055
null
0.115915
0.147515
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:14:19
4964580573506244030120546691677433206704982754445432865640524802071209601964789758581555927616838299392076906546103873290516661848701855291736625160940151
PO_4964580573506244030120546
null
null
null
[ "train_1st_stage_1103" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10444760285192934212021716401923372310095466477145035766480604462972245248837684305065444557837613972358180103392585224889479864952718467934789377546541273
CO_1044476028519293421202171
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni2Ti2
AlNiTi
ABC
[ 13, 13, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.3333333333333333, 0.3333333333333333, 0.3333333333333333 ]
3
6
[ [ 3.82279, 0, 0 ], [ 0, 3.82279, 0 ], [ 0, 0, 6.21257 ] ]
[ [ 0.9557, 0.9557, 4.63731 ], [ 2.86709, 2.86709, 1.57526 ], [ 2.86709, 0.9557, 0 ], [ 0.9557, 2.86709, 0 ], [ 0.9557, 0.9557, 1.83679 ], [ 2.86709, 2.86709, 4.37578 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
1653679901728493567494767134795861070526240860472589377978413787265942659347149182503089356916664761412615038639211172873428812133869221285180824008649048
1
VASP
DFT
null
[ [ -0.00002, -0.000018, 0.26469 ], [ 0.000018, 0.000019, -0.264639 ], [ 0.000012, -0.000012, 0.000002 ], [ -0.000014, 0.000014, -0.000013 ], [ -0.000014, -0.000011, 0.287665 ], [ 0.000019, 0.000007, -0.287705 ] ]
null
[ [ 0.0029166572145252465, -6.241509125883259e-8, 6.241509125883259e-8 ], [ -6.241509125883259e-8, 0.0029163451390689524, -1.2483018251766518e-7 ], [ 6.241509125883259e-8, -1.2483018251766518e-7, 0.00651301477285918 ] ]
true
null
null
-36.087869
null
0.184123
0.287705
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:53:40
10932673448383528286093622691888349075745120527545424048821700843571861216303248380483022350135732623423249664237534418421895929085251623686995635372246259
PO_1093267344838352828609362
null
null
null
[ "train_2nd_stage_592" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
13403399489634629974950828379725469517147257593489400611858635137646528720555808521600278846707329551702841149688179676927720597582689143958879479786713618
CO_1340339948963462997495082
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlTi3
AlTi3
A3B
[ 13, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.25, 0.75 ]
2
4
[ [ -2.83171, -2.83171, 0 ], [ 2.83171, -2.83171, 0 ], [ 0, 0, 4.00464 ] ]
[ [ 0, 0, 0 ], [ -1.41586, -1.41586, 2.00232 ], [ 0, -2.83171, 0 ], [ 1.41586, -1.41586, 2.00232 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
472869816110027338989198619360793808010263243426118067262228846756297008778999394960682773297503649883618140874004183870570874404561340324744109658995435
1
VASP
DFT
null
[ [ 0, -0.000024, 0 ], [ 0.000057, 0.000025, 0 ], [ 0, -0.000029, -0.000002 ], [ -0.000057, 0.000027, 0.000003 ] ]
null
[ [ 0.008263258761939363, 7.48981095105991e-7, 2.4966036503533035e-7 ], [ 7.48981095105991e-7, 0.008263446007213139, 0 ], [ 2.4966036503533035e-7, 0, 0.00829658842067158 ] ]
true
null
null
-28.249578
null
0.000045
0.000063
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:16:31
6555104499957477974427822344055311169521104639957817839454859527012314696774116886962856273521149230518999729193822176104127367861960294262048478893046831
PO_6555104499957477974427822
null
null
null
[ "train_2nd_stage_852" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10981296050883187545496894609673637110423631789072280338213147572004131548487179104421113713550529287786005197294521697432078131279545233671315633580683467
CO_1098129605088318754549689
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al5Ni4Ti3
Al5Ni4Ti3
A5B4C3
[ 13, 13, 13, 13, 13, 28, 28, 28, 28, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.4166666666666667, 0.3333333333333333, 0.25 ]
3
12
[ [ 2.68714, 1.00806, -0.259504 ], [ -0.041588, 3.66845, 4.29352 ], [ -0.119379, -4.03419, 4.36473 ] ]
[ [ -0.03581, 3.28099, 3.90873 ], [ 2.46386, 0.85873, 4.28111 ], [ 0.65833, -2.19409, 4.76813 ], [ 1.8276, -0.72404, 4.44505 ], [ 1.75111, 1.97599, 1.92465 ], [ 0.96049, 1.14049, 3.80829 ], [ 1.60617, 3.02452, 3.9616 ], [ 0.57388, -0.12495, 2.12673 ], [ 0.17345, -1.85737, 6.69081 ], [ 1.38674, 0.68051, 6.45237 ], [ 1.60684, 2.16098, 6.43898 ], [ 2.39186, -0.57452, 1.53515 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6765229607801686731209580670617057072741425085488644811878209569017312941354574260588687185130896958503426250548953142620734478014192007950249776803164666
1
VASP
DFT
null
[ [ -2.331242, 16.210568, 5.674349 ], [ 17.244062, 9.924595, 4.932694 ], [ 12.439202, -18.348199, -11.563921 ], [ -20.784879, -2.710139, -2.782548 ], [ 16.131192, -6.649493, 2.997669 ], [ -12.347618, -0.974859, 0.347957 ], [ 4.04963, -6.472809, 1.450779 ], [ -1.312733, 18.543136, 1.81399 ], [ -13.847315, 10.921518, -0.146688 ], [ -12.835183, -36.093062, -3.033569 ], [ -21.747787, -24.998448, 34.557873 ], [ 35.342671, 40.647191, -34.248584 ] ]
null
[ [ 1.973219093923256, 0.3068289061380367, -0.051074893328015285 ], [ 0.3068289061380367, 1.8671213030847391, -0.23270449409868207 ], [ -0.051074893328015285, -0.23270449409868207, 0.9019335828770569 ] ]
true
null
null
36.248867
null
25.691016
63.829962
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:11:09
11655867152198226045204292607250773775935522062704120462065753287763210793681335957641575949068867610531611935354014971606948823542247047955089865242663726
PO_1165586715219822604520429
null
null
null
[ "train_1st_stage_1619", "train_1st_stage_1819", "train_1st_stage_1419", "train_1st_stage_1219" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4946906679414006227700639817756158111902885159121222879197919957163717060524998535480403894593955561861189559166011846623791417925301054229206009807977046
CO_4946906679414006227700639
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni4Ti8
AlNiTi2
A2BC
[ 13, 13, 13, 13, 28, 28, 28, 28, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.25, 0.25, 0.5 ]
3
16
[ [ 5.02561, 0, 0 ], [ 0, 7.80431, 0 ], [ 0, 0, 6.4512 ] ]
[ [ 3.05045, 5.85323, 0.16529 ], [ 0.53765, 1.95108, 3.0603 ], [ 1.97516, 1.95108, 6.2859 ], [ 4.48797, 5.85323, 3.39089 ], [ 2.1769, 5.85323, 2.50419 ], [ 4.6897, 1.95108, 0.72141 ], [ 2.84872, 1.95108, 3.94701 ], [ 0.33591, 5.85323, 5.72978 ], [ 0.74443, 7.4028, 1.18408 ], [ 3.25724, 0.40151, 2.04152 ], [ 4.28118, 3.50064, 5.26712 ], [ 1.76838, 4.30366, 4.40968 ], [ 4.28118, 0.40151, 5.26712 ], [ 1.76838, 7.4028, 4.40968 ], [ 0.74443, 4.30366, 1.18408 ], [ 3.25724, 3.50064, 2.04152 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7730059977739847457287214259124384847614160013246091063164390266370889886498415410628579258833518765751518979387825785979955503700030284041001514097889982
1
VASP
DFT
null
[ [ 0.101721, -0.001038, 0.149793 ], [ 0.101674, 0.00094, -0.148443 ], [ -0.100572, 0.000851, -0.147604 ], [ -0.101872, -0.001278, 0.146757 ], [ -0.196873, -0.00029, 0.027933 ], [ -0.197793, 0.000688, -0.029046 ], [ 0.196891, 0.001214, -0.029636 ], [ 0.196744, -0.000154, 0.030078 ], [ 0.261118, 0.130234, 0.082081 ], [ 0.260182, -0.130681, -0.081846 ], [ -0.261239, 0.129915, -0.08179 ], [ -0.260296, -0.131394, 0.080643 ], [ -0.260341, -0.129182, -0.080762 ], [ -0.260836, 0.130123, 0.08057 ], [ 0.26073, -0.130578, 0.082677 ], [ 0.260763, 0.13063, -0.081406 ] ]
null
[ [ 0.00788171530907412, -0.000032830338002145935, 0.000043752978972441636 ], [ -0.000032830338002145935, 0.02752193449058223, -0.000002808679106647466 ], [ 0.000043752978972441636, -0.000002808679106647466, 0.049607452117428875 ] ]
true
null
null
-103.777462
null
0.246014
0.303118
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:27:01
7484027107963583159867272982825213321232771174259067355306080874891237083760835465359192594321037978140329267825920671650615197129823604361803808683460944
PO_7484027107963583159867272
null
null
null
[ "train_2nd_stage_94" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11472233862722108169930414683675488079187283279952481035799440655893322513475062790063744765512697007956688775568753456974517351724473345235064849655276120
CO_1147223386272210816993041
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ti4
AlTi2
A2B
[ 13, 13, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
6
[ [ -1.3668, 2.4924, -4.73004 ], [ 1.3668, 2.4924, -4.73004 ], [ 0, -10.2454, 4.8651 ] ]
[ [ 0, -0.12782, 0.02355 ], [ 0, -5.28734, 0.1028 ], [ 0, -0.19035, -4.72229 ], [ 0, -6.74896, 2.48432 ], [ 0, -1.62353, -2.38681 ], [ 0, 3.41084, -7.03407 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4757419700160013646062976142539832900027812200467383562171022796284380198468129905278404924843902708887326428935533503583395263899934725189656517071549043
1
VASP
DFT
null
[ [ 0.000001, 0.163246, 0.082474 ], [ 0.000001, 0.350082, -0.092418 ], [ -0.000001, 0.374261, 0.125916 ], [ 0.000002, -0.316432, 0.112291 ], [ -0.000004, -0.193457, 0.21705 ], [ 0.000001, -0.3777, -0.445314 ] ]
null
[ [ -0.021155595182181304, 0, 0 ], [ 0, 0.009648561712429152, -0.002922773893468612 ], [ 0, -0.002922773893468612, 0.0011229723219289157 ] ]
true
null
null
-39.7622
null
0.358381
0.583919
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:33:07
3601114423838780438227393105885969119136869721452589609560665886653591720733148692699842672013883139292361490953355137045362967462548134344233870068029052
PO_3601114423838780438227393
null
null
null
[ "train_2nd_stage_125" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
3704360277430767456246552612388209758189623494860484673415844330774789159350573282828368695555215842864642836221039269384433550834577067118840832577817757
CO_3704360277430767456246552
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi9
AlNi9
A9B
[ 13, 28, 28, 28, 28, 28, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.1, 0.9 ]
2
10
[ [ 1.677028, 3.734266, -1.389307 ], [ 5.14856, -1.294994, -1.758277 ], [ -0.473949, 0.029229, -4.965246 ] ]
[ [ 6.82164, 2.43257, -3.1483 ], [ 1.6639, 1.22586, -1.41414 ], [ 3.3263, 2.45979, -2.81758 ], [ 3.27315, -0.02856, -2.83032 ], [ 4.93019, 1.1896, -4.2312 ], [ 6.58454, 2.44717, -5.63096 ], [ 1.41325, 1.26551, -3.88317 ], [ 3.07028, 2.48372, -5.28403 ], [ 3.01713, -0.00463, -5.29676 ], [ 4.67956, 1.22929, -6.70021 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5312456391206703470736321773522331024153086016322292373665791892651469615405084718850804928106343029405433853905000964973387321103654208044447358055485725
1
VASP
DFT
null
[ [ -0.000704, 0.000286, -0.000589 ], [ -0.004292, -0.0106, -0.003666 ], [ -0.009327, -0.000311, 0.00139 ], [ 0.007676, 0.011057, -0.004996 ], [ 0.010945, 0.020873, 0.003038 ], [ -0.000167, 0.000167, 0.00026 ], [ -0.010822, -0.020583, -0.002665 ], [ -0.006785, -0.011669, 0.005379 ], [ 0.00945, 0.00016, -0.001563 ], [ 0.004027, 0.010621, 0.003413 ] ]
null
[ [ 0.006103571774201238, 0.000029896828712980806, 0.0000033704149279769593 ], [ 0.000029896828712980806, 0.006269845577314768, 0.00007995373190256454 ], [ 0.0000033704149279769593, 0.00007995373190256454, 0.006203123844759076 ] ]
true
null
null
-54.399902
null
0.012026
0.023764
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:24:04
12939693188427290950124602573585069788338344971287019400115752182590260087441808705806353960193448455099736499922425987387908877997093903477475355797052172
PO_1293969318842729095012460
null
null
null
[ "train_1st_stage_196" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7918718372717027772301698220514584388121125981638183457355625377787551509964006114047572554177121645258313738341427504897258471899942184276082219098505565
CO_7918718372717027772301698
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi7Ti4
AlNi7Ti4
A7B4C
[ 13, 28, 28, 28, 28, 28, 28, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.08333333333333333, 0.5833333333333334, 0.3333333333333333 ]
3
12
[ [ 4.24318, 0.000004, -0.000004 ], [ -0.000003, 4.38776, -0.043605 ], [ 0.000009, 0.004067, 8.16649 ] ]
[ [ 2.12159, 0.47797, 1.36542 ], [ 0, 0.07548, 0.01453 ], [ 0, 0.10786, 2.76189 ], [ 0.00001, 0.12817, 5.39661 ], [ 2.1216, 2.68898, 8.13887 ], [ 2.12159, 2.85179, 2.73922 ], [ 2.1216, 2.9343, 5.3424 ], [ 0.00001, 2.36085, 4.04845 ], [ 2.1216, 0.74248, 4.07042 ], [ 2.1216, 0.46445, 6.87327 ], [ 4.24318, 2.34935, 1.49768 ], [ 0.00001, 2.39379, 6.57573 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10777079208261296007684345997812561017171173820846197578155851754646398481947662979308510847526593142534603012160172764679017067170344490504466777279155615
1
VASP
DFT
null
[ [ 0.000008, -0.121301, 0.202973 ], [ 0.000005, -0.030407, 0.146998 ], [ 0.000015, -0.142128, -0.140367 ], [ 0.000027, -0.212348, 0.104808 ], [ -0.000005, 0.218861, 0.044732 ], [ 0.000027, 0.149186, -0.080478 ], [ -0.000012, -0.150078, 0.14186 ], [ -0.000029, -0.192076, 0.077885 ], [ -0.000028, 0.53904, -0.143641 ], [ -0.000004, -0.33068, -0.059066 ], [ 0.000004, -0.026384, -0.124068 ], [ -0.000008, 0.298314, -0.171639 ] ]
null
[ [ -0.0024290705216112466, 6.241509125883259e-8, 0 ], [ 6.241509125883259e-8, -0.012080565743329563, 0.00009586958017356685 ], [ 0, 0.00009586958017356685, -0.003568458012541235 ] ]
true
null
null
-78.712932
null
0.249548
0.55785
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:18:25
9524139927310256415929949028944610036179405812462745323505005357277700191775049143459668270135600777850339228939913831020809014018540790487056739919992942
PO_9524139927310256415929949
null
null
null
[ "train_1st_stage_1063" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
3293694791320327076131826534931361601374102098233570258985146708293904494149202203090045390684066010689547784399562815708399650544789054011634680982285031
CO_3293694791320327076131826
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni4Ti3
Al3Ni4Ti3
A4B3C3
[ 13, 13, 13, 28, 28, 28, 28, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.3, 0.4, 0.3 ]
3
10
[ [ 0.329196, 4.074377, -0.329194 ], [ 2.876326, 0.000003, 2.876328 ], [ 5.851328, 1.118034, -5.851342 ] ]
[ [ 5.85645, 1.13353, -5.84467 ], [ 3.74682, 1.70702, -0.85868 ], [ 5.32009, 3.51645, -2.43196 ], [ 1.29059, 1.87161, -1.27881 ], [ 4.90003, 3.3516, -4.88829 ], [ 2.77747, 3.92745, 0.11066 ], [ 6.28959, 1.29628, -3.4015 ], [ 2.48114, 3.74293, -2.46933 ], [ 3.70944, 1.48043, -3.69765 ], [ 7.45919, 3.17082, -4.5711 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12932861419853671140282067587651007249280343648243571804525815730631084148990671053102462666132717595300171611914851687987520755400938534581246880168526767
1
VASP
DFT
null
[ [ -0.000701, 0.000182, 0.000679 ], [ 0.002599, -0.00036, -0.002656 ], [ -0.001909, 0.000343, 0.001764 ], [ 0.004726, -0.000578, -0.004648 ], [ -0.004585, 0.000622, 0.004623 ], [ -0.001115, 0.000042, 0.001214 ], [ 0.000592, -0.000181, -0.000496 ], [ 0.003032, -0.000416, -0.003171 ], [ -0.002007, 0.000219, 0.001954 ], [ -0.000633, 0.000128, 0.000738 ] ]
null
[ [ -0.0011248447746666807, -0.000020971470662967747, -0.00012027388085577037 ], [ -0.000020971470662967747, -0.0012581009945042882, 0.00002128354611926191 ], [ -0.00012027388085577037, 0.00002128354611926191, -0.0011250320199404573 ] ]
true
null
null
-62.208403
null
0.003118
0.006654
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:21:54
10515061085161679997869982189081206885348650158721389083496016505968586100558735341278727686155364905576948256769655046945547484506946785616080035007648573
PO_1051506108516167999786998
null
null
null
[ "train_1st_stage_77" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7648449844488465000855141476006782606104575300910914901681023688983227729454371506206977996169231748159867196347569385881162648963104654403684270674776832
CO_7648449844488465000855141
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni8Ti
Al3Ni8Ti
A8B3C
[ 13, 13, 13, 28, 28, 28, 28, 28, 28, 28, 28, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.25, 0.6666666666666666, 0.08333333333333333 ]
3
12
[ [ 2.6891, 0.128156, 4.16191 ], [ 2.68051, 4.20093, -0.031051 ], [ -2.68834, 4.36067, 4.14629 ] ]
[ [ 5.21949, 4.47928, 4.27675 ], [ 0.14759, 4.63081, 4.21195 ], [ 2.59311, 6.90542, 6.08594 ], [ 2.66365, 4.54805, 4.16576 ], [ 3.99466, 2.31897, 4.07998 ], [ 1.34648, 2.40478, 4.12143 ], [ 1.34867, 6.7825, 3.95445 ], [ 1.37162, 0.58594, 2.10191 ], [ 1.35025, 4.88956, 2.11957 ], [ 1.29538, 4.80733, 6.39482 ], [ 2.6819, 2.69762, 2.01252 ], [ 0.13516, 2.70654, 1.98126 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
1096319246377754531540477047288828892721666629777067897390634087014161058450629149015299905814987975922532363362961757150191713543873568916160149373994239
1
VASP
DFT
null
[ [ 0.177126, -0.120643, -0.266988 ], [ -0.163626, 0.18233, 0.209675 ], [ -0.334335, -0.005829, 0.088014 ], [ 0.111444, -0.023368, 0.191989 ], [ 0.02265, 0.121211, -0.246074 ], [ 0.101054, 0.095617, 0.038049 ], [ -0.049341, -0.113291, 0.238521 ], [ 0.065582, -0.290755, -0.031702 ], [ 0.077442, -0.144261, 0.070061 ], [ -0.024253, 0.225521, -0.018491 ], [ 0.002353, -0.116408, 0.045341 ], [ 0.013902, 0.189876, -0.318397 ] ]
null
[ [ 0.010712364527844695, -0.0015487056594054127, 0.0012617210697973005 ], [ -0.0015487056594054127, -0.005728457075735654, -0.005136886840784439 ], [ 0.0012617210697973005, -0.005136886840784439, -0.011846384320926422 ] ]
true
null
null
-68.364562
null
0.26027
0.370975
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:34:10
876235794862881468730898952035661627000959338990815109901081712984067130865612535847599320670746161067675236419111105176870050069230704303467265104140641
PO_8762357948628814687308989
null
null
null
[ "train_1st_stage_626" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5109264867017125509263512445440423132074993598327684749148829971468078852694357929009453213481018395272520511282208239659812120171996357884688448448139649
CO_5109264867017125509263512
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni5Ti3
Al4Ni5Ti3
A5B4C3
[ 13, 13, 13, 13, 28, 28, 28, 28, 28, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.3333333333333333, 0.4166666666666667, 0.25 ]
3
12
[ [ 3.04975, -0.273064, -0.144056 ], [ -0.968606, 5.19121, 3.5964 ], [ 1.26455, -6.67239, 4.01217 ] ]
[ [ 1.35531, -6.08596, 4.13885 ], [ 1.70691, -2.27232, 4.00069 ], [ 0.26333, 1.84214, 2.00421 ], [ 2.97987, -2.36951, 1.40051 ], [ 0.13962, -0.35269, 3.56203 ], [ 3.00354, -4.23701, 3.97626 ], [ 1.88588, 1.42528, 3.80249 ], [ 0.51743, 3.81895, 3.38316 ], [ 3.14437, -3.32678, 5.35788 ], [ 1.60156, -0.23784, 2.12903 ], [ 1.83237, -1.5286, 5.26912 ], [ 0.38293, 0.96782, 5.90932 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5344463676239522903712537281168696685071553343005487502222091497390996809497415788791100417043720037728076843501412225219611399764224887073753676766704055
1
VASP
DFT
null
[ [ -0.289161, -2.324997, -3.049414 ], [ -3.778931, -15.325037, -29.8376 ], [ 0.142945, 1.834998, 2.67835 ], [ 0.51942, 5.861973, 5.075237 ], [ 0.762804, 0.340242, 4.321612 ], [ -1.35348, -10.819389, -12.962635 ], [ -0.599611, -5.514312, -4.007667 ], [ -0.380864, -0.850726, 0.167715 ], [ 2.160958, 7.746498, 15.130343 ], [ 0.412952, -0.592037, -4.412916 ], [ 2.505814, 19.830482, 29.71032 ], [ -0.102846, -0.187694, -2.813346 ] ]
null
[ [ 0.2083988092606675, 0.03310452749804599, 0.03756059052337908 ], [ 0.03310452749804599, 0.3939712961763373, 0.25726370903739004 ], [ 0.03756059052337908, 0.25726370903739004, 0.5714345647752945 ] ]
true
null
null
-47.08299
null
11.49904
35.808243
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:23:59
8800874418546548963117782957730138515068391329766403075398451306095593129889064864484558324127313825397218520329674422086238087387080570878020110328086903
PO_8800874418546548963117782
null
null
null
[ "train_1st_stage_1757", "train_1st_stage_1957", "train_1st_stage_1557", "train_1st_stage_1357" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7770631811162264894209923000934111802319748264963967396063519711588278906471341193973403308986877019697375814211216818513663878364402579292730398942798721
CO_7770631811162264894209923
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni9Ti5
Ni9Ti5
A9B5
[ 28, 28, 28, 28, 28, 28, 28, 28, 28, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.6428571428571429, 0.35714285714285715 ]
2
14
[ [ -0.000003, -0.000011, 4.22961 ], [ 3.92213, 2.263779, -0.000004 ], [ -2.620803, 9.069888, -0.000006 ] ]
[ [ 1.24019, 11.26513, 0.00525 ], [ 2.61205, 4.62495, 0.00526 ], [ 0.08681, 4.47035, 0.00525 ], [ -1.3925, 6.76735, 0.00525 ], [ -0.13299, 8.98345, 0.00525 ], [ -1.32693, 9.74197, 2.12007 ], [ 0.18587, 3.0756, 2.12007 ], [ 1.45365, 5.40883, 2.12006 ], [ -0.07339, 7.57033, 2.12006 ], [ 1.20181, 2.09073, 0.00526 ], [ 1.10906, 6.78097, 0.00526 ], [ 2.79175, 3.33326, 2.12007 ], [ -0.94186, 5.27234, 2.12005 ], [ 1.15026, 9.72408, 2.12006 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3822863777007961376823440183842825787021069632175214149240075434643195731907161144648912459149028322540265276317303158774865206976946994615593854189150678
1
VASP
DFT
null
[ [ -0.011377, -0.002251, 0.000043 ], [ 0.018399, -0.025466, 0.000013 ], [ -0.01179, 0.029934, -0.000023 ], [ -0.007749, -0.008864, 0.000012 ], [ 0.001895, 0.001544, 0.000016 ], [ 0.015368, -0.006315, -0.00003 ], [ 0.023868, 0.012221, 0.000007 ], [ 0.023801, 0.014361, -0.000004 ], [ 0.002202, 0.016479, 0.000036 ], [ 0.002182, 0.001837, 0.000015 ], [ 0.002263, 0.000606, -0.000059 ], [ -0.032148, -0.002661, -0.000021 ], [ -0.017851, -0.026091, 0.000039 ], [ -0.009066, -0.005333, -0.000044 ] ]
null
[ [ -0.003925222674176722, 0.00030876745645744475, -1.8724527377649775e-7 ], [ 0.00030876745645744475, -0.004317626352921003, -3.744905475529955e-7 ], [ -1.8724527377649775e-7, -3.744905475529955e-7, -0.00438029110454487 ] ]
true
null
null
-94.393415
null
0.018346
0.032258
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:37:46
9515208263444869067884113016754232613515731336836324304133429764230722764155911288331218595061087933130414484350399724872773192788280114261843199267548215
PO_9515208263444869067884113
null
null
null
[ "train_1st_stage_286" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11438795462034243238261809813068771673026409378989912369663163792461780902620327053031487153328321759761591289834592109732506765604878049707567226412394382
CO_1143879546203424323826180
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni4
Al3Ni2
A3B2
[ 13, 13, 13, 13, 13, 13, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.6, 0.4 ]
2
10
[ [ 0, 2.857334, 0 ], [ 2.857335, 0, 0 ], [ -0.000001, 0, -16.051396 ] ]
[ [ 0, 0, -15.57034 ], [ 1.42867, 1.42867, -1.60515 ], [ 0, 0, -3.69135 ], [ 0, 0, -6.67598 ], [ 0, 0, -9.63074 ], [ 0, 0, -12.58564 ], [ 1.42867, 1.42867, -5.21293 ], [ 1.42867, 1.42867, -8.15088 ], [ 1.42867, 1.42867, -11.11086 ], [ 1.42867, 1.42867, -14.04864 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3073231766617451544729667002370839794258276642379096048958227712967858498914216549069420761286197446705496264929000521393448908926810717134357922976476035
1
VASP
DFT
null
[ [ 0.000002, 0.000002, 0.047157 ], [ -0.000002, -0.000002, -0.000183 ], [ 0.000001, 0.000001, -0.047603 ], [ -0.000006, -0.000006, -0.050811 ], [ -0.000006, -0.000006, -0.00193 ], [ -0.000006, -0.000006, 0.052077 ], [ 0.000002, 0.000002, -0.007012 ], [ 0.000006, 0.000006, 0.063402 ], [ 0.000006, 0.000005, -0.061967 ], [ 0.000003, 0.000003, 0.006868 ] ]
null
[ [ 0.006063064379974255, 0, 6.241509125883259e-8 ], [ 0, 0.006063064379974255, 0 ], [ 6.241509125883259e-8, 0, 0.0012850018988368453 ] ]
true
null
null
-49.448824
null
0.033901
0.063402
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:36:29
6233277562674218534442675837263127252281175339401981202648717788303278506486016728599567886965062318999775703005645923785489151125471505209856200386172122
PO_6233277562674218534442675
null
null
null
[ "train_1st_stage_3" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4586932451254523864341659367125918927125972201540135150811897964397016698060315800973488020436560898457409034257121370692398071874701722324303815108983020
CO_4586932451254523864341659
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi2Ti2
AlNi2Ti2
A2B2C
[ 13, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.2, 0.4, 0.4 ]
3
5
[ [ -2.24722, 2.9865, 3.16625 ], [ 2.9865, -2.24722, 3.16625 ], [ 1.8871, 1.8871, -2.83062 ] ]
[ [ 0, 0, 0 ], [ 1.65779, 1.65779, -0.46298 ], [ 0.96859, 0.96859, 3.96486 ], [ 0.26179, 2.36459, 1.75094 ], [ 2.36459, 0.26179, 1.75094 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12064067511937897592521311916356329549076642650970440163491233599341143832041957644239314757897823134595552396578377889577839905792165638584858466640543498
1
VASP
DFT
null
[ [ -0.000019, 0.000041, -0.000007 ], [ -0.071216, -0.071144, -0.094021 ], [ 0.071113, 0.071194, 0.094034 ], [ -0.095436, 0.095457, 0.000011 ], [ 0.095557, -0.095549, -0.000017 ] ]
null
[ [ 0.014492222454479595, -0.003959987880007892, 0.005180015668844292 ], [ -0.003959987880007892, 0.014492097624297076, 0.0051798284235705155 ], [ 0.005180015668844292, 0.0051798284235705155, 0.009686322842640746 ] ]
true
null
null
-32.434485
null
0.109125
0.137743
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:10:59
6212798524364073078959305011303223972169028597734363322302279299113376594882168364145235308595363668371098471592958144272283087385269395659300164729069053
PO_6212798524364073078959305
null
null
null
[ "train_2nd_stage_144" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4382562126319898886963725690369270280868642111091949944710691629852779207819996481905698015528111540908455955584536911871516732442419283657767844038165315
CO_4382562126319898886963725
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni10Ti2
Ni5Ti
A5B
[ 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.8333333333333334, 0.16666666666666666 ]
2
12
[ [ 1.81645, 1.8101, -3.54825 ], [ 3.5924, 5.39959, 1.77629 ], [ 3.55819, -3.54163, -0.008298 ] ]
[ [ 3.65049, 5.40538, 1.71215 ], [ 1.81814, 1.80331, 0.0318 ], [ 3.61551, 3.60374, -0.06334 ], [ 1.84358, 0.0551, -1.76025 ], [ 3.59716, 1.83321, -1.76858 ], [ 5.38856, 3.6253, -1.78372 ], [ 7.14214, 5.4034, -1.79205 ], [ 3.55375, 0.04467, 0.05929 ], [ 5.35113, 1.8451, -0.03586 ], [ 3.51878, -1.75697, -1.71621 ], [ 5.24845, -0.06, -1.80162 ], [ 7.29546, 1.97687, -1.75898 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7122101238723051596021906468946583029382202964352985272374339712819784177663412032357009374052787166477646195741699042334250170597457209862496637190496142
1
VASP
DFT
null
[ [ 0.002049, -0.11357, 0.036284 ], [ 0.099689, 0.030791, 0.142469 ], [ -0.039978, -0.075994, -0.094815 ], [ -0.003829, -0.094559, -0.081369 ], [ 0.000507, -0.046894, -0.07229 ], [ -0.000407, 0.046631, 0.072227 ], [ 0.004357, 0.09458, 0.081577 ], [ 0.039994, 0.075492, 0.094783 ], [ -0.100074, -0.030912, -0.142423 ], [ -0.0021, 0.11415, -0.035787 ], [ 0.203981, 0.159376, 0.254171 ], [ -0.204189, -0.159091, -0.254827 ] ]
null
[ [ -0.01544311636980791, 0.00585965359756172, 0.0005548077461997628 ], [ 0.00585965359756172, -0.014787945156863944, 0.0016793404454101496 ], [ 0.0005548077461997628, 0.0016793404454101496, -0.01339003435793987 ] ]
true
null
null
-73.291283
null
0.166311
0.363235
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:35:34
6555666564453542602394797765276391067362289953248176949159922857314012685427253335922438533848399477829930671902126882202745475270670082542911493362286444
PO_6555666564453542602394797
null
null
null
[ "train_1st_stage_483" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
1394166250097841913962091414356119102097558239296577719010060486963371822291064908228084193600034971178282492898367130346216970030167949515176802768050653
CO_1394166250097841913962091
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni2
AlNi
AB
[ 13, 13, 28, 28 ]
[ "Al", "Ni" ]
[ 0.5, 0.5 ]
2
4
[ [ 3.01254, -3.01254, 0 ], [ 3.01254, 0, 3.01254 ], [ 0, -3.01254, 3.01254 ] ]
[ [ 0, 0, 0 ], [ 4.51881, -4.51881, 4.51881 ], [ 3.01254, -3.01254, 3.01254 ], [ 1.50627, -1.50627, 1.50627 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5298273088571239885647478809335191112689316450518712167566201017897306646155274062549878357869607979497895344945773339182202207011298792550856017608411348
1
VASP
DFT
null
[ [ -0.000002, 0.000002, -0.000002 ], [ 0.000004, -0.000002, 0.000003 ], [ -0.000002, 0, 0.000001 ], [ -0.000001, 0.000001, -0.000002 ] ]
null
[ [ -0.021505244523413285, 0, 0 ], [ 0, -0.021505244523413285, 0 ], [ 0, 0, -0.021505244523413285 ] ]
true
null
null
-19.631152
null
0.000003
0.000005
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:29:50
11523512341345409781301642993236424121228356715556604736916275680035759704298512898813333029596800109444261135244382920017828388343059997565923004115207821
PO_1152351234134540978130164
null
null
null
[ "train_1st_stage_2179" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9734556497270825196957054956679418917843356763826954460314935336782202659579146197595919631405457668191913329446074662822276790944053158486024466005609568
CO_9734556497270825196957054
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi9Ti2
AlNi9Ti2
A9B2C
[ 13, 28, 28, 28, 28, 28, 28, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.08333333333333333, 0.75, 0.16666666666666666 ]
3
12
[ [ -3.82476, 2.22173, 0.017288 ], [ -0.004058, -4.41085, 0.102461 ], [ -1.26126, 2.1674, 8.28393 ] ]
[ [ -0.07399, -4.37021, 0.10278 ], [ -3.80389, 2.36393, 4.1761 ], [ -3.85451, 2.20497, 8.32847 ], [ -2.37603, -0.10903, 4.20108 ], [ -1.32162, -2.17665, 0.0756 ], [ -1.4066, -2.3157, 4.22812 ], [ -2.56403, -1.52769, 2.13228 ], [ -2.50313, -1.44769, 6.33276 ], [ -1.29055, 0.6729, 2.06506 ], [ -1.22287, 0.74897, 6.26551 ], [ -3.83512, 0.65175, 2.33658 ], [ -3.74713, 0.77417, 6.07836 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12103099041289479881842760750947305675409242701295116117723497342397135107322952247617873731277049151314815594543305289993432047702683740343349673063719788
1
VASP
DFT
null
[ [ 0.02462, -0.015125, -0.00048 ], [ 0.019319, -0.088924, -0.128526 ], [ -0.105001, -0.030285, 0.048252 ], [ -0.138799, 0.08087, 0.000703 ], [ -0.026392, 0.106282, -0.046917 ], [ 0.087757, 0.026243, 0.127278 ], [ 0.003373, 0.038986, -0.038957 ], [ 0.05088, -0.014617, -0.107671 ], [ 0.038546, -0.036994, 0.107257 ], [ -0.031644, -0.0215, 0.03983 ], [ 0.03679, -0.023179, -0.313998 ], [ 0.04055, -0.021757, 0.31323 ] ]
null
[ [ -0.0132708215336355, 0.002196262231215801, 0.0019826777889280756 ], [ 0.002196262231215801, -0.010834261201073194, 0.0032221790862372317 ], [ 0.0019826777889280756, 0.0032221790862372317, 0.005067793334760911 ] ]
true
null
null
-72.981733
null
0.143855
0.316995
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:37:56
6752480169516637320294560421780024918648980689310295924249290284064954301750615007708554634243894034590616894084536410786639708958350773873960138099359418
PO_6752480169516637320294560
null
null
null
[ "train_1st_stage_431" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9319288552701457696379373085603262761264396111969965137359470849449097360605127599402793437256918200387486697456292107604998480350471871324967046755131247
CO_9319288552701457696379373
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni6Ti18
NiTi3
A3B
[ 28, 28, 28, 28, 28, 28, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.25, 0.75 ]
2
24
[ [ 5.40935, 0, 0 ], [ 0, 5.01539, 0.000592 ], [ 0, -0.001679, 13.6478 ] ]
[ [ 1.35234, 4.8562, 3.41237 ], [ 1.35234, 3.39285, 8.04265 ], [ 1.35234, 3.3924, 12.4295 ], [ 4.05702, 0.15751, 10.2357 ], [ 4.05702, 1.62134, 1.21857 ], [ 4.05702, 1.62083, 5.60542 ], [ 0.01943, 1.09158, 7.7356 ], [ 0.01943, 1.09105, 12.736 ], [ 5.37396, 2.79936, 3.41212 ], [ 0.0354, 2.21435, 10.2359 ], [ 5.38993, 3.9227, 0.91203 ], [ 5.38993, 3.9221, 5.91245 ], [ 1.35234, 4.76471, 10.2362 ], [ 1.35234, 1.34892, 1.55228 ], [ 1.35234, 1.34849, 5.27163 ], [ 2.68525, 1.09158, 7.7356 ], [ 2.68525, 1.09105, 12.736 ], [ 2.74007, 2.79936, 3.41212 ], [ 2.66928, 2.21435, 10.2359 ], [ 2.72411, 3.9227, 0.91203 ], [ 2.7241, 3.9221, 5.91245 ], [ 4.05702, 0.249, 3.41183 ], [ 4.05702, 3.66519, 8.37641 ], [ 4.05702, 3.66483, 12.0958 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6043090073380350838108579868178425103959865887618706040826655120722914836127634392699317552132984961538472902904124191332102866826092848061566381158125741
1
VASP
DFT
null
[ [ 0.000074, 0.114067, -0.000335 ], [ -0.000015, 0.101669, 0.066855 ], [ -0.000011, 0.101216, -0.067374 ], [ 0.000062, -0.115085, -0.000503 ], [ -0.000062, -0.100858, 0.066488 ], [ -0.000058, -0.100653, -0.067192 ], [ -0.151968, -0.063545, 0.141719 ], [ -0.151951, -0.06375, -0.140792 ], [ -0.13847, 0.042874, -0.000513 ], [ 0.139331, -0.041844, -0.000013 ], [ 0.152059, 0.063355, 0.141406 ], [ 0.15193, 0.062775, -0.140377 ], [ -0.000145, -0.771688, 0.000066 ], [ 0.000117, -0.067111, 0.138551 ], [ 0.000102, -0.067343, -0.139711 ], [ 0.152007, -0.063683, 0.14157 ], [ 0.151936, -0.063663, -0.14064 ], [ 0.138462, 0.042599, -0.000454 ], [ -0.13944, -0.041825, 0.000019 ], [ -0.152044, 0.063282, 0.141437 ], [ -0.151915, 0.062826, -0.140434 ], [ -0.000121, 0.770512, -0.000115 ], [ 0.000081, 0.068135, 0.138634 ], [ 0.000039, 0.067737, -0.138294 ] ]
null
[ [ 0.013778693131208622, -0.0000013107169164354842, 3.744905475529955e-7 ], [ -0.0000013107169164354842, 0.011974085597641996, -0.000006553584582177421 ], [ 3.744905475529955e-7, -0.000006553584582177421, 0.013820573657443299 ] ]
true
null
null
-176.58423
null
0.216221
0.771688
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:19:23
12319766250864958528393497249919541460834413500235568206253500456146658662339420657281524062046869547711015553600246395604466386959473716522435284574243765
PO_1231976625086495852839349
null
null
null
[ "train_2nd_stage_318" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4157848403109767749487341077314184494335841383946723807055209993256706175707668257150653404846279955766628225141979530720090951616090915867245019324133710
CO_4157848403109767749487341
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni4Ti4
NiTi
AB
[ 28, 28, 28, 28, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.5, 0.5 ]
2
8
[ [ -1.13834, 1.6333, 1.63381 ], [ 4.17581, 4.38147, -1.5589 ], [ -4.17586, 1.55957, -4.382 ] ]
[ [ -1.11257, 7.44568, -4.18049 ], [ 0.09012, 3.48454, 0.51481 ], [ -1.17673, 1.11721, -1.85362 ], [ -1.11227, 4.73027, -1.46547 ], [ 1.54463, 4.4916, -1.44869 ], [ 0.44041, 5.70536, -3.20557 ], [ -2.63139, 3.08086, -2.86021 ], [ -1.52684, 4.83697, -4.07444 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2850021702577119039932024105992995992663702482365948643179456569430106814880153421860786778430293138043108522454577294548552036892391206231035161802105263
1
VASP
DFT
null
[ [ 0.000584, 0.603901, -0.603341 ], [ -0.774087, -0.270036, -0.270388 ], [ 0.772747, 0.270141, 0.270876 ], [ -0.000372, -0.604001, 0.603367 ], [ -0.000297, 0.001085, -0.000323 ], [ 0.307825, 0.390663, 0.390879 ], [ 0.000319, 0.000134, 0.00032 ], [ -0.306719, -0.391888, -0.391389 ] ]
null
[ [ 0.060922371936286336, -0.0012207767699315066, -0.0012439327687885334 ], [ -0.0012207767699315066, 0.06405554710238848, -0.0034915002050190944 ], [ -0.0012439327687885334, -0.0034915002050190944, 0.06404468687650944 ] ]
true
null
null
-52.578423
null
0.587532
0.863273
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:45:07
5280822087016812030187929820895467562474072574502544802932928529370872325299662103707161119945232911074700287710773888092092170718182357039346963451857860
PO_5280822087016812030187929
null
null
null
[ "train_1st_stage_2172" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6232817291607293813580968090629327478643466217140971718429680183197398812074880346188611043504530048247012067611996177885043894198056357558531070205773735
CO_6232817291607293813580968
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ti3
AlTi
AB
[ 13, 13, 13, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.5, 0.5 ]
2
6
[ [ -1.60113, 2.0208, 1.25626 ], [ 4.84352, 4.91735, -1.73681 ], [ -1.44754, 1.55755, -4.35039 ] ]
[ [ 2.15409, 8.04596, -4.74089 ], [ 0.03897, 3.58271, -0.25712 ], [ 1.31983, 5.59435, -1.86056 ], [ -1.14592, 1.34701, -1.44474 ], [ 0.11577, 3.35108, -3.06045 ], [ 1.37746, 5.35516, -4.67616 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4621502046462787068742193262953688301866568956156296842601821388943865489676731275328721457752374411587103375315694015265549240288556227720756349114154807
1
VASP
DFT
null
[ [ -0.049921, 0.043486, -0.133457 ], [ -0.000172, -0.000008, -0.000134 ], [ 0.050051, -0.043001, 0.133115 ], [ 0.018437, 0.191601, -0.284839 ], [ -0.000143, -0.000166, 0.000007 ], [ -0.018251, -0.191913, 0.285308 ] ]
null
[ [ -0.005777452922373838, 0.00025764949671646086, -0.0013930424218058844 ], [ 0.00025764949671646086, -0.0033479454951237794, -0.0023439363371341986 ], [ -0.0013930424218058844, -0.0023439363371341986, -0.003015959624718049 ] ]
true
null
null
-36.938877
null
0.16435
0.344332
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:19:34
7397989345459028352610478085034233351313024759104602252969778545215378951263903920608338837256328053056443064555446372778742702782567800508668263907555530
PO_7397989345459028352610478
null
null
null
[ "train_1st_stage_432" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4921489707323719940708589492799312799806474627538457021271216855544608721903366191037313750578886867312610185141876579989689107079011150451059759819441617
CO_4921489707323719940708589
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlTi3
AlTi3
A3B
[ 13, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.25, 0.75 ]
2
4
[ [ 4.08605, 0, 0 ], [ 0, 4.08605, 0 ], [ 0, 0, 4.08605 ] ]
[ [ 0, 0, 0 ], [ 2.04303, 0, 0 ], [ 0, 2.04303, 0 ], [ 0, 0, 2.04303 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5392481433504013230274370970408407348506458953594812851686422655461397625585759976731851160871877970855010351962517750255483172690768087170776829151905034
1
VASP
DFT
null
[ [ 0.00021, 0.000209, 0.000214 ], [ -0.000198, 0.000006, 0.000002 ], [ -0.000004, -0.00021, -0.000002 ], [ -0.000008, -0.000004, -0.000214 ] ]
null
[ [ 0.1584678597252441, -6.241509125883259e-8, 0 ], [ -6.241509125883259e-8, 0.15856741179580194, -1.2483018251766518e-7 ], [ 0, -1.2483018251766518e-7, 0.15871252688297874 ] ]
true
null
null
-14.906709
null
0.000247
0.000365
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:55:23
711966413010143652843598192901348261034642450721794617457295288446394848663333480974494413486597040921162243738904348880374576939425651539189173932692766
PO_7119664130101436528435981
null
null
null
[ "train_1st_stage_2184" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
3542500954588822051067350076914174364904592888023826265156938331070016661903419479365159511451497257965374294421298229596356985090549776876760194761293431
CO_3542500954588822051067350
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni5Ti6
Ni5Ti6
A6B5
[ 28, 28, 28, 28, 28, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.45454545454545453, 0.5454545454545454 ]
2
11
[ [ 2.51514, 4.11822, 0.75408 ], [ 7.15483, 0.395086, -2.2881 ], [ 0.02981, 2.03521, -4.53541 ] ]
[ [ 6.55639, 0.65568, -2.22631 ], [ 3.18291, 4.0984, -3.66499 ], [ 1.69692, 0.55206, -1.01828 ], [ 7.27492, 4.5819, -3.10864 ], [ 5.4783, 4.38987, -4.74507 ], [ 5.0959, 2.84649, -2.57438 ], [ 6.93878, 2.19906, -4.39701 ], [ 2.50269, 3.08015, -1.27849 ], [ 2.37715, 1.5703, -3.4048 ], [ 4.1587, 2.54957, -5.63354 ], [ 7.90578, 4.5312, -5.87324 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9897801585400742837786506006665776825905108091057091411249050117825540582593168821570759985557224026856745168255917958265554225271963587934576204172770960
1
VASP
DFT
null
[ [ 0.070638, 0.079393, -0.0586 ], [ 0.091003, -0.189841, 0.042571 ], [ -0.091046, 0.189887, -0.042632 ], [ 0.000729, -0.000569, 0.000276 ], [ -0.070572, -0.079831, 0.05818 ], [ -0.285354, -0.189367, 0.0604 ], [ 0.284111, 0.189017, -0.060348 ], [ -0.086, 0.119209, 0.130145 ], [ 0.085675, -0.119, -0.129582 ], [ -0.190255, 0.438872, 0.08146 ], [ 0.191073, -0.437771, -0.081868 ] ]
null
[ [ -0.002871468688453852, 0.0004591878263912313, 0.003129367845535348 ], [ 0.0004591878263912313, -0.007321477449934838, -0.000788801923329126 ], [ 0.003129367845535348, -0.000788801923329126, -0.008466731959443157 ] ]
true
null
null
-77.923563
null
0.248138
0.485223
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:23:28
7805086560086061579466728956716055412287198162815746753162024221521310144032030431172050123170633367401119097732954284033470953228779004934960377626680925
PO_7805086560086061579466728
null
null
null
[ "train_1st_stage_1159" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10901347823483070867085865180250458749883475506243687462043546004168365874461613992078577847174403111193347642032119798035567036741958949111693968575214292
CO_1090134782348307086708586
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi3
AlNi3
A3B
[ 13, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.25, 0.75 ]
2
4
[ [ 3.75426, 0, 0 ], [ 0, 3.75426, 0 ], [ 0, 0, 3.75426 ] ]
[ [ 0, 0, 0 ], [ 1.87713, 0, 0 ], [ 0, 1.87713, 0 ], [ 0, 0, 1.87713 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9383501457196728954413927986529874217891206385762045750847013947617972217946009964345349487575315131912719987938496440992870939839238250194910284651632056
1
VASP
DFT
null
[ [ 0, 0, 0 ], [ 0, 0, 0 ], [ 0, 0, 0 ], [ 0, 0, 0 ] ]
null
[ [ 0.1342651597878066, 0, 6.241509125883259e-8 ], [ 0, 0.13430716514422378, -6.241509125883259e-8 ], [ 6.241509125883259e-8, -6.241509125883259e-8, 0.1343221447661259 ] ]
true
null
null
-10.620365
null
0
0
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:52:53
3272806441539639289507358109210961066369702650699594994467954510846748061858156197066789958434638181537101459614131094379695736351535001189340553444231225
PO_3272806441539639289507358
null
null
null
[ "train_1st_stage_2205" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12001780101670282610092979429979176612581609079210017724826651733358692677016731897421708989662208936553130901855439204395598647198112731505106175723876325
CO_1200178010167028261009297
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni5Ti
Al6Ni5Ti
A6B5C
[ 13, 13, 13, 13, 13, 13, 28, 28, 28, 28, 28, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.5, 0.4166666666666667, 0.08333333333333333 ]
3
12
[ [ 2.16184, -0.092596, 0.711755 ], [ -1.38826, 7.34918, 4.77506 ], [ 0.954657, -4.60068, 4.04335 ] ]
[ [ 2.78772, -4.52628, 4.66134 ], [ 0.54528, 3.24557, 4.91367 ], [ 0.60776, -0.56526, 4.64481 ], [ 1.35122, 1.40957, 2.44166 ], [ -0.08776, 4.31362, 6.85386 ], [ -0.05388, 1.08652, 6.76013 ], [ 1.73593, 1.38304, 5.00741 ], [ 1.95391, -2.4456, 4.23076 ], [ -0.57468, 5.47607, 4.92042 ], [ 1.02718, 2.08875, 7.14689 ], [ 0.05235, 3.34876, 2.85566 ], [ 2.2982, -0.90878, 2.91331 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9971854389754643037003132450375795494751280841741681044402153830736300534000223306930952677175353149519298388842479645713708161341738638861857710741164862
1
VASP
DFT
null
[ [ 1.120947, -0.735557, -1.037308 ], [ 0.220503, 1.799641, 1.792626 ], [ -0.868323, 0.553017, 2.468254 ], [ -0.539347, 1.554831, 2.251885 ], [ 0.549484, -0.586147, -0.184287 ], [ -2.148924, -31.959757, -3.798855 ], [ 0.115754, -2.816676, -1.855978 ], [ -1.913122, -2.907376, 3.230126 ], [ -0.592743, -2.29268, 1.000705 ], [ 2.670041, 32.082685, 0.975396 ], [ 0.948338, 1.034894, -2.781443 ], [ 0.437392, 4.273126, -2.061121 ] ]
null
[ [ 0.7413584648407323, 0.011882585073856545, 0.12234500082901222 ], [ 0.011882585073856545, 0.5609849677816494, -0.005486348936742642 ], [ 0.12234500082901222, -0.005486348936742642, 0.4253438673070419 ] ]
true
null
null
-39.194046
null
7.797636
32.256398
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:52:05
4547681760599581420518307252748035923910526450075347644561720993936193034243026504061778457982534719752638584050618794195691318095048722797958970410713589
PO_4547681760599581420518307
null
null
null
[ "train_1st_stage_1623", "train_1st_stage_1823", "train_1st_stage_1423", "train_1st_stage_1223" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
2880810843849789496962947553143729480214280011396545061350729751982563994287263000049326777697437642794537029020694927004046538147105503981070427640219635
CO_2880810843849789496962947
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni2
Ni
A
[ 28, 28 ]
[ "Ni" ]
[ 1 ]
1
2
[ [ 0, 2.30187, 2.30187 ], [ 2.30187, 0, 2.30187 ], [ 2.30187, 2.30187, 0 ] ]
[ [ 0, 0, 0 ], [ 1.15094, 1.15094, 1.15094 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4986518563885449068115048530755005094953557857157438836165119451152655431961073305227594977971259230265807819021667156487046278111643619291521264601035371
1
VASP
DFT
null
[ [ 0.000106, 0.000107, 0.000107 ], [ -0.000106, -0.000107, -0.000107 ] ]
null
[ [ 0.05100236699197253, -8.73811277623656e-7, -8.73811277623656e-7 ], [ -8.73811277623656e-7, 0.05100236699197253, -8.73811277623656e-7 ], [ -8.73811277623656e-7, -8.73811277623656e-7, 0.05100236699197253 ] ]
true
null
null
-7.25625
null
0.000185
0.000185
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:21:41
9561958555317009314277281191257275404771645366602822320686061919291082759780021976860083561955373375745120894760358565182631972980179981834217903730394103
PO_9561958555317009314277281
null
null
null
[ "train_1st_stage_2207" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
3928835407951685882164096260681195206996057176733290451481573337733304838617591740917053365090991223140675632803972198246331763153798322829376275223615068
CO_3928835407951685882164096
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ti2
Al2Ti
A2B
[ 13, 13, 13, 13, 22, 22 ]
[ "Al", "Ti" ]
[ 0.6666666666666666, 0.3333333333333333 ]
2
6
[ [ 0.26425, 3.911748, -0.264246 ], [ 2.833155, 0.000002, 2.833153 ], [ 4.409179, 1.377184, -4.409175 ] ]
[ [ 4.36803, 1.3896, -4.35037 ], [ 1.5673, 1.76847, -1.54965 ], [ 3.17585, 3.52451, -3.1582 ], [ 3.116, 3.72434, -0.26519 ], [ 1.64752, 1.94875, 1.20329 ], [ 4.32032, 1.5882, -1.46953 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12077390180982236170593025039035714578571357798773432208113415925267509646327330823932231221057130636829720572483797798679924249173860598840419765821197163
1
VASP
DFT
null
[ [ -0.011689, 0.001126, 0.011713 ], [ 0.001294, -0.000191, -0.001284 ], [ 0.010564, -0.000972, -0.010574 ], [ 0.001502, -0.000191, -0.001465 ], [ 0.0052, -0.001757, -0.00523 ], [ -0.00687, 0.001985, 0.00684 ] ]
null
[ [ 0.0004556301661894778, 0.000004244226205600616, 0.00005679773304553765 ], [ 0.000004244226205600616, 0.0004100047344792712, -0.000004181811114341783 ], [ 0.00005679773304553765, -0.000004181811114341783, 0.0004556301661894778 ] ]
true
null
null
-33.207468
null
0.00883
0.016586
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:18:53
1115129255681312344526963833538816455716145778893861497428359361476022378162460891457957828841261829969741592156961687469352280791742537648362667343146863
PO_1115129255681312344526963
null
null
null
[ "train_1st_stage_279" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6655734374792780354871104645643664678677273282951857330704310324781577665858151539690271698400664335824390975272234822059492623532833713305142094524256572
CO_6655734374792780354871104
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al5NiTi2
Al5NiTi2
A5B2C
[ 13, 13, 13, 13, 13, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.625, 0.125, 0.25 ]
3
8
[ [ 3.84167, -0.006905, 0.379866 ], [ 1.15139, -2.14552, 7.93258 ], [ 0.003429, -3.85899, -0.10489 ] ]
[ [ 0.04245, -3.53821, -0.06558 ], [ 3.50116, -3.65067, 4.18541 ], [ 3.11819, -3.75624, 8.05654 ], [ 1.76337, -3.59677, 2.14511 ], [ 3.31639, -1.77164, 6.08821 ], [ 1.57861, -1.71773, 4.04791 ], [ 1.37844, -3.70287, 6.03611 ], [ 3.70132, -1.66553, 2.19721 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6675062787758432325312836029680831619901626466329289047014685296684105258246691121441134126576303184893940556356888680382617943146989788432152956119922900
1
VASP
DFT
null
[ [ 0.018487, 0.005347, -0.187786 ], [ -0.000644, -0.000631, -0.000066 ], [ -0.018398, -0.00523, 0.187317 ], [ -0.058213, -0.016509, 0.5917 ], [ 0.05803, 0.016405, -0.591299 ], [ -0.000315, -0.000444, -0.000524 ], [ 0.016533, 0.004413, -0.157204 ], [ -0.01548, -0.003351, 0.157862 ] ]
null
[ [ 0.017818322667662784, 0.00003089547017312213, -0.00013163342746487793 ], [ 0.00003089547017312213, 0.017811207347259276, -0.000024966036503533033 ], [ -0.00013163342746487793, -0.000024966036503533033, 0.01907180494541392 ] ]
true
null
null
-43.082188
null
0.235582
0.594786
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:10:38
11016737271678420002953508994956739424449248461656250161805286902937560420578428631664558109307581263679731302744276904151322347459931783106422813280713073
PO_1101673727167842000295350
null
null
null
[ "train_2nd_stage_930" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12882447172394086196574763942043838108093088662285388891257669144842307556089955852662153705298364487493048327805971503366161097818899090801916930009996576
CO_1288244717239408619657476
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ti4
AlTi2
A2B
[ 13, 13, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
6
[ [ -3.21105, 3.19022, 2.60785 ], [ 3.19022, -3.21105, 2.60785 ], [ 3.21393, 3.21393, -2.58224 ] ]
[ [ -0.00521, -0.0052, 1.30393 ], [ -0.01561, -0.01562, 3.91178 ], [ 0.97941, 4.18004, 0.02063 ], [ 2.2137, -0.98693, 2.61283 ], [ 0.96811, 2.21458, 2.62066 ], [ 2.22499, 0.97852, 0.01281 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
199934256738458619734357503669389533714636724077569549238722138062618204545842690711494077667753318668043891342855976577210680813024071642927795888965616
1
VASP
DFT
null
[ [ 0.000114, -0.000052, 0.000001 ], [ -0.000097, 0.000091, -0.00003 ], [ -0.222385, -0.222175, -0.00185 ], [ 0.222162, 0.222213, 0.00187 ], [ -0.216325, 0.216275, -0.000006 ], [ 0.216531, -0.216351, 0.000015 ] ]
null
[ [ 0.012065960611974996, 0.0002836141746801352, -0.000037199394390264215 ], [ 0.0002836141746801352, 0.012067146498708915, -0.000037136979299005385 ], [ -0.000037199394390264215, -0.000037136979299005385, 0.022509628171950416 ] ]
true
null
null
-39.664734
null
0.206805
0.314357
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:21:06
7280869315344700329659358062071807559775861417151595491843138285405723453570181368879524939566040962647636742063334948326184857529516815865088401654031555
PO_7280869315344700329659358
null
null
null
[ "train_2nd_stage_430" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5815629773372453709990128990244528738309160418770004531522287964550441468144481408807683854321778385116621742361009862674796746865769327765486782864125723
CO_5815629773372453709990128
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni4
Al3Ni2
A3B2
[ 13, 13, 13, 13, 13, 13, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.6, 0.4 ]
2
10
[ [ 3.61061, -1.58494, 0.944814 ], [ -4.39044, -4.42202, -8.14418 ], [ 1.79156, 3.53564, -0.854861 ] ]
[ [ 3.45482, -1.56615, 0.70057 ], [ 2.5453, 0.99415, -0.19927 ], [ 2.87466, 0.18964, -2.82124 ], [ 0.17357, -0.78571, -2.86622 ], [ 0.50293, -1.59023, -5.48819 ], [ -2.19815, -2.56557, -5.53317 ], [ 1.80747, -1.15947, -1.0292 ], [ -0.5508, -2.97225, -3.8034 ], [ -1.11657, -1.25162, -7.43978 ], [ -0.22565, -3.76647, -6.39187 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11062906916682034808665281722334242605959473749327074825714708647944616196374245574232093884358314297471581638032392065591442068912946204703534652505104417
1
VASP
DFT
null
[ [ -0.003181, 0.015289, 0.028069 ], [ 0.000513, 0.004737, 0.031793 ], [ -0.005033, 0.013989, -0.005049 ], [ 0.005017, -0.014181, 0.004881 ], [ -0.000585, -0.004724, -0.031551 ], [ 0.003066, -0.015337, -0.027819 ], [ 0.003385, -0.008141, -0.026324 ], [ -0.00335, 0.00834, 0.026309 ], [ -0.008192, 0.02011, 0.065661 ], [ 0.008361, -0.020083, -0.06597 ] ]
null
[ [ 0.004935223680927151, 0.0012664022016417131, 0.002351987883906588 ], [ 0.0012664022016417131, 0.002771542127348461, -0.003980647275214565 ], [ 0.002351987883906588, -0.003980647275214565, -0.009970436338050951 ] ]
true
null
null
-49.898677
null
0.035379
0.069464
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:04:27
13128393556028913067175417279647284788865972143205930582856863327646628400842417778408230811341351411039355588971227706898304693192797384731869019593641490
PO_1312839355602891306717541
null
null
null
[ "train_1st_stage_833" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5121181691214028979730132200572443646955380610030659272691307671259915299218916594580307855615879448982477219842024997132538147224269092361524018619188126
CO_5121181691214028979730132
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni7Ti3
Ni7Ti3
A7B3
[ 28, 28, 28, 28, 28, 28, 28, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.7, 0.3 ]
2
10
[ [ 2.33739, -2.12068, 0.277039 ], [ 1.92583, 1.79582, -2.16068 ], [ 6.90324, 5.20989, 5.01223 ] ]
[ [ 6.91847, 5.19932, 4.98589 ], [ 4.18182, -0.24469, 0.75422 ], [ 5.86976, 1.47992, 0.96915 ], [ 7.5546, 3.20257, 1.23144 ], [ 7.2689, 3.19032, 3.59192 ], [ 2.17446, -0.15591, -0.91201 ], [ 3.75825, 1.65379, 1.9459 ], [ 3.88459, 1.66415, -0.55189 ], [ 5.34349, 3.31282, 2.07144 ], [ 7.12634, 5.2546, 2.55516 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3268009299148932629625444178165086366722340141578407547634075417670272338131233135064196628604981253866399699634808560833494988436675706791289455106510152
1
VASP
DFT
null
[ [ 0.160804, -0.050355, 0.38279 ], [ -0.528128, -0.665721, -0.85807 ], [ -0.52501, -0.773416, -0.884481 ], [ -0.348003, 0.796977, 0.184322 ], [ 0.256942, 0.514547, 1.308419 ], [ -0.049459, 0.594125, 0.224191 ], [ -0.60046, -0.638074, -0.900025 ], [ -0.121624, -1.242049, -1.607321 ], [ 0.555302, 0.654146, 0.761225 ], [ 1.199637, 0.809819, 1.388949 ] ]
null
[ [ 0.22090367279437462, -0.022336114218250862, -0.03268746985825447 ], [ -0.022336114218250862, 0.27359511698599365, -0.005435480637366694 ], [ -0.03268746985825447, -0.005435480637366694, 0.2214464968430527 ] ]
true
null
null
-61.560048
null
1.231201
2.034935
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:46:58
6064195715731550127580050110829264609714988076721488815301459518226099469426896937330053879431849472198246812229822926834975542107768368836640367011877232
PO_6064195715731550127580050
null
null
null
[ "train_2nd_stage_807" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10383240067071543819525492003865545122600134086225943496407884630873827737940782099835405670826274188651907646379351250661140097224450446959631836142548638
CO_1038324006707154381952549
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni4Ti
Al3Ni4Ti
A4B3C
[ 13, 13, 13, 28, 28, 28, 28, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.375, 0.5, 0.125 ]
3
8
[ [ -1.31126, 1.31126, 2.2435 ], [ 1.85078, -1.85078, 5.93977 ], [ 4.10239, 4.10239, 0 ] ]
[ [ 0, 0, 0 ], [ 2.32096, 1.78144, 4.09163 ], [ 0.26976, -0.26976, 4.09163 ], [ 1.43427, 0.62149, 6.1395 ], [ 3.20764, 2.94139, 2.04377 ], [ 1.161, 0.89475, 2.04377 ], [ 3.4809, 2.66812, 6.1395 ], [ 2.0512, 2.0512, 0 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7053713704148982953833088820475917995501691549526530728805701001785922160961753692805761598986793701877110270694836553574144978020699503904822846642986248
1
VASP
DFT
null
[ [ 0.000204, 0.00123, -0.000585 ], [ 0.000131, -0.001131, 0.000782 ], [ 0.001312, 0.000072, 0.000772 ], [ -0.048654, -0.003872, -0.02714 ], [ 0.046985, 0.0035, 0.026329 ], [ -0.003727, -0.04857, 0.027117 ], [ 0.003777, 0.047772, -0.026689 ], [ -0.000028, 0.000998, -0.000585 ] ]
null
[ [ -0.014652754069197313, 0.00047497884447971595, 0.0006636596653551667 ], [ 0.00047497884447971595, -0.01465724795576795, -0.0006610382315222959 ], [ 0.0006636596653551667, -0.0006610382315222959, -0.015524193573353133 ] ]
true
null
null
-45.690463
null
0.028233
0.055846
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:22:50
32009563802804520874421264274596747696681874706371344240782970648228649198846101709024409005869341658725403265445072783728692470691367491140346830551059
PO_3200956380280452087442126
null
null
null
[ "train_1st_stage_471" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
2176759302755732199043271499605030408744999324459479306525016314436627849159557683468342225603721386859997202223687093934828866144893556191812902925442954
CO_2176759302755732199043271
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
NiTi8
NiTi8
A8B
[ 28, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.1111111111111111, 0.8888888888888888 ]
2
9
[ [ 0.034196, -0.034196, 4.10837 ], [ 6.01387, -0.01689, 2.00427 ], [ -0.01689, 6.01387, -2.00427 ] ]
[ [ 0, 0, 0 ], [ 1.96726, 1.96726, 0 ], [ 4.02973, 4.02973, 0 ], [ 1.96872, 5.99684, 0.03353 ], [ 4.04675, 1.95023, 2.03702 ], [ 0.00014, 4.02827, 0.03353 ], [ 4.06246, -0.03406, 4.07484 ], [ 0.01717, 1.95141, 2.07057 ], [ 1.98443, 4.01256, 2.07135 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
998197181055391495711312731817921843152285546520103933491900036648161609524049298329956999490293714178946273151377912438962488546023174272742625702099760
1
VASP
DFT
null
[ [ -0.000153, -0.000606, -0.000002 ], [ 0.157371, 0.157174, -0.000013 ], [ -0.157678, -0.155899, 0.000023 ], [ 0.236206, -0.001886, -0.00165 ], [ -0.157339, 0.157781, 0.001072 ], [ -0.001386, -0.233509, -0.001609 ], [ -0.235209, -0.003245, 0.001605 ], [ -0.000001, 0.235827, 0.001636 ], [ 0.158189, -0.155636, -0.001061 ] ]
null
[ [ 0.0042846711847363385, -0.000019535923564014598, 0.000023343244130803382 ], [ -0.000019535923564014598, 0.004301648089558741, -0.000023031168674509222 ], [ 0.000023343244130803382, -0.000023031168674509222, 0.007314549374805108 ] ]
true
null
null
-68.004222
null
0.20337
0.236219
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:27:48
7883321858812004882481595849218464318998614355342488724668622777909954663644250834085995202261122341025690528848116309219576907051077097238507054422014621
PO_7883321858812004882481595
null
null
null
[ "train_1st_stage_601" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9812223484446475260741301898856854985397300937716783175441827667764864194752525505953642934377664385409834401827877982867648564443065146458982083984235926
CO_9812223484446475260741301
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ti8
Al3Ti4
A4B3
[ 13, 13, 13, 13, 13, 13, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.42857142857142855, 0.5714285714285714 ]
2
14
[ [ 3.968978, 0.229634, 0.000001 ], [ 1.155152, 14.387933, -0.000001 ], [ 0.000003, 0, 4.021584 ] ]
[ [ 3.9474, 0.5535, 0.00714 ], [ 1.60577, 6.58096, 0.00715 ], [ 1.37107, 10.62169, 0.00715 ], [ 3.82676, 2.62059, 2.01793 ], [ 3.58931, 6.70963, 2.01794 ], [ 3.35462, 10.75026, 2.01794 ], [ 1.84212, 2.50471, 0.00712 ], [ 3.70629, 4.69446, 0.00713 ], [ 3.47423, 8.69371, 0.00714 ], [ 3.23257, 12.84895, 0.00714 ], [ 1.96309, 0.44006, 2.01793 ], [ 1.7279, 4.48267, 2.01792 ], [ 1.48621, 8.63789, 2.01794 ], [ 1.25407, 12.63725, 2.01793 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12581560233517202313745579012956510662105267030451993776997208231734132769281098619767371328876550997524223143139982210248814355290924866958637000831663292
1
VASP
DFT
null
[ [ 0.00035, 0.000331, 0.000026 ], [ 0.000605, 0.001704, -0.000012 ], [ 0.000702, 0.001532, -0.000003 ], [ -0.000176, -0.002412, -0.000025 ], [ -0.000788, 0.001562, 0.000001 ], [ -0.00079, 0.001881, 0.000013 ], [ 0.000727, -0.004984, 0.00003 ], [ -0.000621, 0.001579, -0.000015 ], [ -0.001382, -0.001948, -0.000035 ], [ -0.000556, -0.004395, 0.000034 ], [ -0.000802, 0.001374, -0.000085 ], [ -0.000048, 0.005989, 0.000004 ], [ 0.001267, -0.002361, 0.00004 ], [ 0.001512, 0.000149, 0.000028 ] ]
null
[ [ -0.000730693473367153, -0.00026701176040528577, 0.0000029335092891651313 ], [ -0.00026701176040528577, -0.0008499062976715233, 5.617358213294933e-7 ], [ 0.0000029335092891651313, 5.617358213294933e-7, -0.0006042404984767582 ] ]
true
null
null
-90.216597
null
0.002537
0.005989
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:38:11
1289894114335003831152561136529654456814365440077143807089607755336894693921228160670149207249080000737034469752128202062146935300543782871148241045250118
PO_1289894114335003831152561
null
null
null
[ "train_1st_stage_174" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
3815072139073858054246700706193068850234582522697985522346651958915772524910285903475826229726350486388989959154558580687079323124519130192249223746860080
CO_3815072139073858054246700
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni2Ti
Ni2Ti
A2B
[ 28, 28, 22 ]
[ "Ni", "Ti" ]
[ 0.6666666666666666, 0.3333333333333333 ]
2
3
[ [ 1.54226, -4.23079, -0.392395 ], [ 1.54226, 4.23079, 0.392395 ], [ 0, 0.849392, 2.96527 ] ]
[ [ 1.54226, 1.69857, 1.11774 ], [ 1.54226, -0.84917, 1.84753 ], [ 1.54226, 4.23079, 0.3924 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
1500841800940213135127194626294519007227065853735251213405315515401110042992108722418412916968269417850670154278508205678988761002659414300938634489969734
1
VASP
DFT
null
[ [ 0, -0.305758, 0.087775 ], [ -0.000001, 0.305891, -0.087785 ], [ 0, -0.000133, 0.00001 ] ]
null
[ [ 0.0021501374787755234, 0, 0 ], [ 0, 0.0014090206851681455, 0.00021202406500625426 ], [ 0, 0.00021202406500625426, 0.002091904198631033 ] ]
true
null
null
-19.979589
null
0.21216
0.318238
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:19:48
7329450259608303217840964478402149959609410560236190356739594276038833704029179693348551148675277243488358525158790880090638898518179803023008428219607707
PO_7329450259608303217840964
null
null
null
[ "train_2nd_stage_535" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9896381014285071973477529747564426055920622883439994422644489913535270202297902208390075977992754577750043516213776495052082885851112116740580708488345083
CO_9896381014285071973477529
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlTi
AlTi
AB
[ 13, 22 ]
[ "Al", "Ti" ]
[ 0.5, 0.5 ]
2
2
[ [ 0, 1.98784, 1.98784 ], [ 4.11174, 0, 0 ], [ 0, 1.98784, -1.98784 ] ]
[ [ 0, 0, 0 ], [ 2.05587, 1.98784, 0 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6210363570708309598709813429086664797572731812559346213635068754542837910661214875713259024831750582491316345140056817326011667200788671856788904109725968
1
VASP
DFT
null
[ [ 0, 0, -0.000001 ], [ 0, 0, 0.000001 ] ]
null
[ [ 0.0015922713931040779, 1.2483018251766518e-7, 0 ], [ 1.2483018251766518e-7, 0.0002691962885993449, 5.617358213294933e-7 ], [ 0, 5.617358213294933e-7, 0.0002691962885993449 ] ]
true
null
null
-12.384782
null
0.000001
0.000001
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:12:53
2381437129237046176507250627351019625108752010184620962610340077110479138625658957690486111125114979034805208938160531777834301778690916193233674758445880
PO_2381437129237046176507250
null
null
null
[ "train_1st_stage_823" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5543941203128159119218030360592184399865338582544645236816698709200682652034889243401284954162631861613517820128861765374989692145340044384893274899209719
CO_5543941203128159119218030
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ti10
AlTi5
A5B
[ 13, 13, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.16666666666666666, 0.8333333333333334 ]
2
12
[ [ 2.85128, -2.13811, -2.78879 ], [ -2.01055, 4.65602, -1.95308 ], [ 3.91418, 6.58721, 6.36331 ] ]
[ [ 0.29487, 0.17871, 0.13699 ], [ 1.41206, 8.88414, 1.97415 ], [ 1.48899, 2.48061, -0.39691 ], [ 3.0692, 4.44412, -0.28077 ], [ 5.08192, 6.5449, 3.89167 ], [ -0.07399, 4.39109, 0.21204 ], [ 1.31137, 6.81744, -0.22122 ], [ 5.04395, 4.49669, 1.70643 ], [ 3.42844, 9.01528, 3.97921 ], [ 3.24684, 0.10732, -0.45646 ], [ 1.78094, 4.67178, 1.8991 ], [ 3.39047, 6.96706, 1.79396 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9046293325909034373353197227917783883805918858059010052182207620686042054532172083468096325977069935019755268672576293907587319383808876790332673794818211
1
VASP
DFT
null
[ [ -0.293398, -0.195803, -0.15211 ], [ 0.292948, 0.197371, 0.150432 ], [ -0.585824, -0.730583, -0.044261 ], [ 0.586749, 0.729372, 0.046177 ], [ -0.028985, 0.021796, -0.077275 ], [ -0.693666, -0.114723, -0.625889 ], [ 0.571281, 0.378747, 0.29875 ], [ 0.010167, 0.083906, -0.022316 ], [ -0.009979, -0.084462, 0.022593 ], [ -0.571823, -0.377474, -0.300395 ], [ 0.693497, 0.114562, 0.62591 ], [ 0.029034, -0.022708, 0.078382 ] ]
null
[ [ 0.042114395581623505, 0.013709724455367613, 0.009361389877547263 ], [ 0.013709724455367613, 0.021936532804011814, 0.01250473870352459 ], [ 0.009361389877547263, 0.01250473870352459, 0.02037609310744974 ] ]
true
null
null
-86.08187
null
0.53071
0.941313
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:41:01
3616993874531878196297777799662594546725113347747875674094692469094300426241338415855677515381681758200371350394761660793890843227061091973113370188832856
PO_3616993874531878196297777
null
null
null
[ "train_2nd_stage_668" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
3321284766802917768616575888232765173824514407159081729898363121291989503542617828135738289581540824273149739697895903326425138117896742073886746627701079
CO_3321284766802917768616575
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni3
AlNi
AB
[ 13, 13, 13, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.5, 0.5 ]
2
6
[ [ -1.52798, 1.93594, 1.23943 ], [ 4.12838, 4.29361, -1.61709 ], [ -1.0117, 1.43387, -3.48682 ] ]
[ [ -2.08322, 2.80396, -1.87533 ], [ -0.0326, 3.27924, -0.08978 ], [ 1.00631, 5.18842, -1.79108 ], [ -0.81346, 1.11926, -0.75155 ], [ 0.22546, 3.02845, -2.45289 ], [ 1.2644, 4.93762, -4.15419 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7572021893387635254915830134323823174672827600850442126976034634567184876533130416405547813692745107063999883937837680013361494690323031695139586742842119
1
VASP
DFT
null
[ [ 0.000154, 0.002649, 0.000965 ], [ -0.000913, 0.002427, 0.0001 ], [ -0.001474, 0.001807, 0.000169 ], [ 0.001013, -0.001928, -0.000993 ], [ 0.000836, -0.002345, -0.000362 ], [ 0.000385, -0.002611, 0.000121 ] ]
null
[ [ 0.07564490607751102, -0.000036387998203899396, -0.00009293607088440171 ], [ -0.000036387998203899396, 0.07569446365997054, 0.00008931599559138942 ], [ -0.00009293607088440171, 0.00008931599559138942, 0.07552950057377344 ] ]
true
null
null
-30.818297
null
0.002551
0.002823
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:57:11
3566491136962799658995701637113740748908579034171273416318776901908046812334828496171209526500176530242231866089255387606459924308690339135396553957596971
PO_3566491136962799658995701
null
null
null
[ "train_2nd_stage_823" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6055750857056914267636880287263036732334391306546637183143405223176621563249524629697957772747038231286723853873909738767892614451417712158704332911086082
CO_6055750857056914267636880
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni4Ti2
Ni2Ti
A2B
[ 28, 28, 28, 28, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.6666666666666666, 0.3333333333333333 ]
2
6
[ [ -3.10576, 2.12552, 3.28935 ], [ 1.82354, -2.68461, 3.12212 ], [ 2.55605, 2.73649, -2.07126 ] ]
[ [ 1.49992, 0.96509, 0.91162 ], [ 1.24154, -0.79929, 2.67702 ], [ 0.0323, 2.97669, 1.66319 ], [ -0.22608, 1.2123, 3.4286 ], [ 1.7999, 2.78703, -0.73114 ], [ -0.52606, -0.60963, 5.07136 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
13107711528461064784045803787897008179396480203892532223058924807176252820255284335845424139339868054332242559799090785493095892853195225341898205927764705
1
VASP
DFT
null
[ [ -0.136146, -0.177955, -0.319721 ], [ 0.119868, -0.072953, 0.065115 ], [ -0.120082, 0.073049, -0.065162 ], [ 0.136151, 0.178028, 0.319734 ], [ 0.299325, -0.594255, -0.284858 ], [ -0.299115, 0.594086, 0.284892 ] ]
null
[ [ -0.01233365893838413, 0.001550078791413107, 0.0001318206727386544 ], [ 0.001550078791413107, -0.009529286473033522, 0.00593611208435379 ], [ 0.0001318206727386544, 0.00593611208435379, -0.000510368201223474 ] ]
true
null
null
-39.602805
null
0.422979
0.723795
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:29:32
3560487710143474791179837930310902151187798693822505069504193291543105429843953786890370112316599811797008252085928299999395629339214305640692973084149748
PO_3560487710143474791179837
null
null
null
[ "train_2nd_stage_86" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
2189004555477332367039842014299988341308767492506899818416547986654426122152306801967054006237590409765008017765808403773905784835460828017261657346665818
CO_2189004555477332367039842
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al5Ni6Ti
Al5Ni6Ti
A6B5C
[ 13, 13, 13, 13, 13, 28, 28, 28, 28, 28, 28, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.4166666666666667, 0.5, 0.08333333333333333 ]
3
12
[ [ 0.000004, -0.000002, 4.121157 ], [ 3.569214, 2.060672, 0.000003 ], [ -4.359202, 7.550337, 0 ] ]
[ [ -1.08909, 9.43232, 0.0034 ], [ 1.81727, 4.39832, 0.00338 ], [ 0.36438, 6.91483, 0.00339 ], [ -2.86614, 8.38887, 2.06397 ], [ -1.4278, 5.8976, 2.06396 ], [ 0.76717, 2.09575, 0.00337 ], [ -0.70191, 4.64028, 0.00338 ], [ -2.14699, 7.14323, 0.00339 ], [ 2.55167, 3.12626, 2.06395 ], [ 1.08281, 5.6704, 2.06396 ], [ -0.36239, 8.17358, 2.06396 ], [ 0.03263, 3.36803, 2.06395 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
8179524268538868287054343319779914441741753733598441662121001651517066250983482541875104626021878005719394740368876013072138893225940412487253215428874838
1
VASP
DFT
null
[ [ 0.007889, -0.0136, -0.000023 ], [ 0.000144, 0.00004, 0.000081 ], [ -0.007813, 0.013734, 0.000057 ], [ 0.004641, -0.00789, 0.000006 ], [ -0.004591, 0.008093, 0.000086 ], [ -0.003652, 0.006119, -0.000027 ], [ 0.003471, -0.006264, -0.000072 ], [ 0.000056, -0.000236, -0.000052 ], [ -0.002728, 0.004551, -0.000032 ], [ 0.00251, -0.004477, -0.000073 ], [ 0.000081, -0.000302, -0.000008 ], [ -0.000008, 0.000233, 0.000056 ] ]
null
[ [ -0.0006626610238950255, -0.0000469361486266421, -6.241509125883259e-8 ], [ -0.0000469361486266421, -0.0006108564981501945, -3.120754562941629e-7 ], [ -6.241509125883259e-8, -3.120754562941629e-7, -0.0007655210942895816 ] ]
true
null
null
-67.043043
null
0.006307
0.015801
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:23:26
3764307362502138679834233129746573786623550584011671756568105580831258816900562286755203992416234479038149289067547672670295818327824494531033710553647480
PO_3764307362502138679834233
null
null
null
[ "train_1st_stage_112" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6832766980277727255923374001896282656160848221291571225799148315448613872689860442139680201700825373281180092152754914820732316387951819777599028798697771
CO_6832766980277727255923374
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni3Ti3
AlNiTi
ABC
[ 13, 13, 13, 28, 28, 28, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.3333333333333333, 0.3333333333333333, 0.3333333333333333 ]
3
9
[ [ 3.26101, -5.64824, 0 ], [ 3.26101, 5.64824, 0 ], [ 0, 0, 3.5285 ] ]
[ [ 4.09221, 4.20855, 0 ], [ 4.09221, -4.20855, 0 ], [ 4.85962, 0, 0 ], [ 0, 0, 1.76425 ], [ 3.26101, 1.88274, 0 ], [ 3.26101, -1.88274, 0 ], [ 5.19524, 2.29804, 1.76425 ], [ 5.19524, -2.29804, 1.76425 ], [ 2.65355, 0, 1.76425 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11840065460284919023201428730290717484291664267308190548049682832257292623581004052948912837808947112083317700327077910549834175892235457523443728902055998
1
VASP
DFT
null
[ [ 0.022725, -0.041734, 0 ], [ 0.025426, 0.042967, 0 ], [ -0.048468, -0.001641, 0 ], [ -0.000283, -0.000957, 0.000001 ], [ -0.001282, 0.00084, 0 ], [ 0.001381, 0.000176, 0 ], [ -0.071735, 0.124571, -0.000002 ], [ -0.071495, -0.124216, -0.000002 ], [ 0.143731, -0.000005, 0.000002 ] ]
null
[ [ 0.0026578218310748677, 0.0000015603772814708146, 0 ], [ 0.0000015603772814708146, 0.0026668096042161394, 0 ], [ 0, 0, 0.02177369183091752 ] ]
true
null
null
-55.909106
null
0.064519
0.143749
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:08:50
10112108920859258984176129343797261418164842830828997655153024473060178156666559922812530525854834445666136402837894847434049812328694204372680843431221656
PO_1011210892085925898417612
null
null
null
[ "train_2nd_stage_216" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
1996463114109412982427081412361320244927515863079362321286312525848894480036327175507272605342139382479281141809999021492609221828339076682894265324552795
CO_1996463114109412982427081
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ti4
Al3Ti2
A3B2
[ 13, 13, 13, 13, 13, 13, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.6, 0.4 ]
2
10
[ [ 4.04065, 0, 0.000001 ], [ 0, -0.012859, -3.928509 ], [ -0.000001, 10.093729, -1.991337 ] ]
[ [ 0.00273, 10.0466, -1.99187 ], [ 2.02306, 2.01521, -3.93486 ], [ 0.00273, 4.09028, -3.94068 ], [ 0.00273, 8.0802, -3.95104 ], [ 0.00273, 2.02163, -1.97061 ], [ 0.00273, 6.05643, -1.98151 ], [ 2.02305, 6.05468, -3.94565 ], [ 2.02306, 0.11205, -1.96524 ], [ 2.02306, 3.93117, -1.97598 ], [ 2.02305, 8.08195, -1.98691 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
1025593886067709436898407577829530246504276541271811908763116803473946300881592336410864627820377712637106624011682617060267338973747090592762180809281412
1
VASP
DFT
null
[ [ -0.000008, 0.002276, 0.000402 ], [ 0.000017, -0.000383, -0.000008 ], [ -0.000001, -0.003045, -0.00041 ], [ -0.000017, 0.002001, -0.000066 ], [ 0.000006, -0.000565, 0.000017 ], [ -0.000013, -0.000825, 0.000028 ], [ -0.000003, 0.004413, -0.000514 ], [ 0.000004, 0.006172, -0.000002 ], [ 0.000019, -0.006445, 0.000091 ], [ -0.000003, -0.0036, 0.000463 ] ]
null
[ [ -0.0004301023938646153, 0, -6.241509125883259e-8 ], [ 0, -0.00008900392013509526, 1.8724527377649775e-7 ], [ -6.241509125883259e-8, 1.8724527377649775e-7, -0.0002705070055157804 ] ]
true
null
null
-57.866638
null
0.002985
0.006446
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:20:50
1097174844499539592351070261049590680783567522022905297105616121553015473126908339664818316288608244983971065453861414613386288994480886084614525434060549
PO_1097174844499539592351070
null
null
null
[ "train_1st_stage_341" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
13300199842404406533258954209378733657528283688470158473352629082362383145075155676675186061070129255917809774711575005281628026766371931611771009638842402
CO_1330019984240440653325895
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni2Ti10
NiTi5
A5B
[ 28, 28, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.16666666666666666, 0.8333333333333334 ]
2
12
[ [ 4.04262, -0.012542, -0.010203 ], [ 1.98637, 3.96057, -9.9174 ], [ -2.00318, 4.00251, 1.98407 ] ]
[ [ 2.03935, 3.97319, 1.95707 ], [ 2.00836, 1.99638, -3.95351 ], [ 2.02602, 2.0029, -0.00106 ], [ 0.00936, 4.0231, -0.00406 ], [ 4.03835, 1.94646, -1.99238 ], [ 2.02169, 3.96667, -1.99538 ], [ -0.00808, 3.99482, -3.8984 ], [ 2.01787, 5.98165, -3.90655 ], [ 2.0042, 3.96034, -5.9169 ], [ 4.02988, 5.9698, -5.99693 ], [ 4.01621, 3.94849, -8.00729 ], [ 1.99954, 5.94786, -8.00524 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
8915848904436654076585816263143271962949327715414492185904261660774284266496118792977647032086174749643018748921919085382432139226408618962256962556193009
1
VASP
DFT
null
[ [ -0.000224, 0.069539, -0.02517 ], [ 0.000383, -0.069283, 0.025226 ], [ 0.000255, 0.402622, 0.244141 ], [ -0.002015, 0.230717, -0.336423 ], [ 0.001844, -0.230322, 0.335883 ], [ -0.000145, -0.402713, -0.244101 ], [ -0.000991, 0.432488, 0.150946 ], [ -0.004924, 0.264232, -0.262064 ], [ -0.00165, 0.200699, 0.222108 ], [ 0.001636, -0.200769, -0.222363 ], [ 0.004609, -0.264765, 0.261961 ], [ 0.001222, -0.432444, -0.150141 ] ]
null
[ [ 0.016987452972825206, -0.0003266805876487297, 0.0007140910590923036 ], [ -0.0003266805876487297, -0.003996251048029273, -0.005084146088670726 ], [ 0.0007140910590923036, -0.005084146088670726, 0.00715245738280592 ] ]
true
null
null
-89.334956
null
0.347011
0.470917
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:20:10
6710305193089854498734707162034831446197355586252818573858288822194781562380384749145313463448743854196192550248596449632952748145490710908666032982793148
PO_6710305193089854498734707
null
null
null
[ "train_1st_stage_819" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6140648144352383861439689834891063707250947478258016830646171812960726426998374962859902208362168865730077945533742235430743646118161057793821142805484850
CO_6140648144352383861439689
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi2Ti5
AlNi2Ti5
A5B2C
[ 13, 28, 28, 22, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.125, 0.25, 0.625 ]
3
8
[ [ -1.99792, 2.22924, 6.63714 ], [ 2.22924, -1.99792, 6.63714 ], [ 1.99728, 1.99728, -6.71078 ] ]
[ [ 2.22859, 2.22859, 6.56352 ], [ 2.05569, 2.05569, -3.35869 ], [ 2.17018, 2.17018, 3.21142 ], [ 2.11294, 2.11294, -0.07364 ], [ 0.03233, 2.14591, 1.83666 ], [ 2.14591, 0.03233, 1.83666 ], [ 2.19627, 0.08269, 4.72684 ], [ 0.08269, 2.19627, 4.72684 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10449712408058730689566665885533135630020787498999837158587757279960870879210816671293212084187605956827412545227319482921617094244413270243747287623949342
1
VASP
DFT
null
[ [ 0.000046, 0.000047, -0.000005 ], [ 0.000595, 0.000596, 0.034982 ], [ -0.00055, -0.000547, -0.034122 ], [ -0.000008, -0.000001, -0.000904 ], [ -0.013469, -0.01386, -0.786495 ], [ -0.01384, -0.013458, -0.785611 ], [ 0.013443, 0.013779, 0.785915 ], [ 0.013785, 0.013444, 0.78624 ] ]
null
[ [ -0.006239012522232905, 0.000012607848434284181, -0.00032037666343158764 ], [ 0.000012607848434284181, -0.006261107464538531, -0.00032006458797529346 ], [ -0.00032037666343158764, -0.00032006458797529346, -0.024598661276383542 ] ]
true
null
null
-55.897169
null
0.401912
0.786732
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:38:08
7898082144675030810584414885453138465910084572539787994970769421921696922954096006790527148940164543704429955310360155767885968565583283819894221705050746
PO_7898082144675030810584414
null
null
null
[ "train_2nd_stage_189" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9233057423926857290997109157742108585135570202778396882308090489957624800725374804715957604633835754724672006925524498197944882444226690882772651208019260
CO_9233057423926857290997109
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni4Ti8
AlNi2Ti4
A4B2C
[ 13, 13, 28, 28, 28, 28, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.14285714285714285, 0.2857142857142857, 0.5714285714285714 ]
3
14
[ [ 2.97808, 0, 0 ], [ 0, 7.73959, 0.043569 ], [ 0, 2.9189, 9.08126 ] ]
[ [ 2.23356, 8.63751, 7.06663 ], [ 0.74452, 2.02097, 2.0582 ], [ 0.74452, 5.85589, 0.04412 ], [ 2.23356, 4.80259, 9.08071 ], [ 0.74452, 7.17363, 5.61456 ], [ 2.23356, 3.48485, 3.51027 ], [ 0.74452, 3.29008, 7.75085 ], [ 2.23356, 7.36841, 1.37398 ], [ 0.74452, 2.50541, 5.20341 ], [ 2.23356, 8.15308, 3.92142 ], [ 0.74452, 5.59412, 3.32622 ], [ 2.23356, 5.06437, 5.79861 ], [ 0.74452, 6.36538, 7.96011 ], [ 2.23356, 4.29312, 1.16471 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
8069558989728554386978785814601576986367182597172451992815274595914204193352589219876762756647084910525133625477562489603376976303645966562093030416741751
1
VASP
DFT
null
[ [ -0.000004, 0.043473, -0.184839 ], [ 0.000005, -0.043001, 0.185213 ], [ 0.000003, 0.156786, 0.235576 ], [ -0.000002, -0.156838, -0.235226 ], [ 0.000004, 0.055314, 0.012022 ], [ -0.000003, -0.055887, -0.012455 ], [ 0.000001, 0.183202, 0.374743 ], [ -0.000002, -0.184203, -0.374551 ], [ 0.000004, -0.100856, -0.405132 ], [ -0.000003, 0.100991, 0.404377 ], [ 0.000002, 0.060236, -0.347541 ], [ -0.000004, -0.059903, 0.347111 ], [ 0.000002, -0.427162, 0.167689 ], [ -0.000002, 0.427849, -0.166988 ] ]
null
[ [ 0.005221396874348898, 0, 0 ], [ 0, -0.016423844698757947, -0.009415191686212377 ], [ 0, -0.009415191686212377, -0.014345921480568891 ] ]
true
null
null
-95.485327
null
0.310825
0.459282
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:41:08
2652504516535971328984365356133055991666782014319930515705648814919706077273509291034028809805254695227138179229728217995527756538672586279399607779261501
PO_2652504516535971328984365
null
null
null
[ "train_2nd_stage_128" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7763317066014335161672757002758250160804262321312303255672171255569525356281145200694866908553637094790790112472731120671445689537574953787476753850197718
CO_7763317066014335161672757
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi2
AlNi2
A2B
[ 13, 28, 28 ]
[ "Al", "Ni" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
3
[ [ 1.51816, -2.62952, 0.000004 ], [ 1.51816, 2.62952, -0.000004 ], [ 0, -0.000004, 4.59923 ] ]
[ [ 0, 0, 0 ], [ 1.51816, -0.87651, 3.07342 ], [ 1.51816, 0.8765, 1.52581 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2689542809130643600828629965425991720330624644047206055197420823896224946463150723611362468822304815008210806977995284089889780916699566058345539858511617
1
VASP
DFT
null
[ [ 0, -0.000001, -0.000294 ], [ -0.000003, -0.000009, -0.076779 ], [ 0.000002, 0.00001, 0.077073 ] ]
null
[ [ 0.007837899915010419, 0, 0 ], [ 0, 0.007837962330101677, -1.8724527377649775e-7 ], [ 0, -1.8724527377649775e-7, 0.03599340999696105 ] ]
true
null
null
-14.280699
null
0.051382
0.077073
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:24:38
965426545077989878595459855291104162010996845864321128243801825491007317011585230912424549565114993132809084703857719228789994378197160035410037946866101
PO_9654265450779898785954598
null
null
null
[ "train_1st_stage_2278" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12776580738341979640092224263724296429334641324690269377681749851960381693923891925268831133172445247238818964002009121062212311343731640318420587097895619
CO_1277658073834197964009222
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
NiTi
NiTi
AB
[ 28, 22 ]
[ "Ni", "Ti" ]
[ 0.5, 0.5 ]
2
2
[ [ 0, 2.50024, 2.50024 ], [ 2.50024, 0, 2.50024 ], [ 2.50024, 2.50024, 0 ] ]
[ [ 5.00047, 2.50024, 2.50024 ], [ 1.25012, 1.25012, 1.25012 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4015056942532903721917045287172149048718416694985479206474115603890503458528273019020126522682516922559143008692229742146408300725479237616152233666338999
1
VASP
DFT
null
[ [ 0.000092, -0.000002, -0.000001 ], [ -0.000092, 0.000002, 0.000001 ] ]
null
[ [ 0.0326537657089747, 6.241509125883259e-8, 6.241509125883259e-8 ], [ 6.241509125883259e-8, 0.0326537657089747, -0.0000012483018251766516 ], [ 6.241509125883259e-8, -0.0000012483018251766516, 0.0326537657089747 ] ]
true
null
null
-11.505411
null
0.000092
0.000092
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:11:44
821433039564096596188512623962450583094607174113968710373076002053784143074374511522659006679344293926564748286160229571084582243545784927106597793580574
PO_8214330395640965961885126
null
null
null
[ "train_1st_stage_2194", "train_1st_stage_2208", "train_1st_stage_2209", "train_1st_stage_2210", "train_1st_stage_2223" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
2412341932631184119745213039365670372549698929027108884447010676903718578367602851225377259795500537268457477032504326774836387013567271926143856681383036
CO_2412341932631184119745213
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni6Ti2
Ni3Ti
A3B
[ 28, 28, 28, 28, 28, 28, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.75, 0.25 ]
2
8
[ [ 5.77358, 0, 0 ], [ 0, 4.08307, 0 ], [ 0, 0, 4.08307 ] ]
[ [ 0, 2.04154, 1.02079 ], [ 1.44339, 0, 1.02073 ], [ 1.4434, 2.04154, 3.06233 ], [ 2.88679, 0, 3.06228 ], [ 4.33019, 0, 1.02073 ], [ 4.33018, 2.04154, 3.06233 ], [ 0, 0, 3.06226 ], [ 2.88679, 2.04154, 1.0208 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7159835794187026407495198635579539419909133190009310413870532403458661180137030940371172687854619548700323250078219469868721635493492002980106827208310551
1
VASP
DFT
null
[ [ -0.00003, -0.000037, 0.000036 ], [ 0.000002, 0.000029, -0.000087 ], [ -0.000048, -0.000026, 0.000114 ], [ 0.000036, 0.000029, -0.000108 ], [ -0.000002, 0.00003, -0.000087 ], [ 0.000063, -0.000027, 0.000114 ], [ 0.000074, 0.00004, -0.000009 ], [ -0.000096, -0.000037, 0.000027 ] ]
null
[ [ 0.0067455109877983315, 0, 0 ], [ 0, 0.006632290012254809, 0 ], [ 0, 0, 0.006633101408441174 ] ]
true
null
null
-50.958912
null
0.000101
0.000133
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:23:00
13060466014806870436049842731156022519449188108272019442168587349484349213819726194135392982418128453518887108163387366797640537805191254909522561682029526
PO_1306046601480687043604984
null
null
null
[ "train_2nd_stage_594" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6265028997515140263451765276692254210908676672742618885673882712670890350722344495082999039522083475826889157694882819481901374929320306789821204739483109
CO_6265028997515140263451765
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al7NiTi4
Al7NiTi4
A7B4C
[ 13, 13, 13, 13, 13, 13, 13, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.5833333333333334, 0.08333333333333333, 0.3333333333333333 ]
3
12
[ [ 3.93713, 0.00002, 0 ], [ -0.000066, 11.9199, 0 ], [ 0, 0, 3.92468 ] ]
[ [ 0, 0.38723, 0 ], [ 1.96855, 2.50048, 0 ], [ -0.00002, 4.26037, 0 ], [ 1.96853, 6.15371, 0 ], [ 3.93708, 8.2579, 0 ], [ 1.96851, 10.1994, 0 ], [ 1.96856, 0.38445, 1.96234 ], [ 1.96854, 4.31653, 1.96234 ], [ -0.00001, 2.29641, 1.96234 ], [ -0.00003, 6.16665, 1.96234 ], [ 1.96852, 8.23001, 1.96234 ], [ 3.93707, 10.4196, 1.96234 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6353228828417665580212785966867502435030048545891384630204577412828561892542130513552664056678519514808321231559798982108737412183941858228491674945707228
1
VASP
DFT
null
[ [ -0.000023, 0.132183, 0 ], [ 0.000035, -0.048446, 0.000001 ], [ -0.000029, 0.144851, 0.000002 ], [ 0.000016, 0.030775, 0.000001 ], [ 0.000037, -0.197518, 0.000001 ], [ -0.000026, 0.170519, 0.000001 ], [ 0.000034, 0.114809, 0 ], [ 0.000004, 0.039802, -0.000002 ], [ -0.000031, -0.135118, -0.000002 ], [ -0.00001, 0.024233, 0 ], [ -0.000028, 0.061988, -0.000004 ], [ 0.000022, -0.33808, 0.000003 ] ]
null
[ [ -0.003588742917200356, 0, 0 ], [ 0, -0.005624348703515921, -6.241509125883259e-8 ], [ 0, -6.241509125883259e-8, -0.001303289520575683 ] ]
true
null
null
-68.147581
null
0.11986
0.33808
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:18:50
3932518123487063262966770945018073955264245208907315597954816802360178772358032576482458199313017718362707882693656959483756682239873716709946941648699051
PO_3932518123487063262966770
null
null
null
[ "train_1st_stage_805" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6839990907270166157225219094487747066458500105387398401225277957822454926813040034666683073873828655244620556491122802752556835029800286879189927432245473
CO_6839990907270166157225219
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni6Ti5
Ni6Ti5
A6B5
[ 28, 28, 28, 28, 28, 28, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.5454545454545454, 0.45454545454545453 ]
2
11
[ [ 0.084576, 2.10014, 2.10184 ], [ 16.1431, 1.4534, 0.000006 ], [ 0.084581, 2.10014, -2.10184 ] ]
[ [ 0.24839, 4.19708, 0 ], [ 1.46521, 2.04453, -0.00001 ], [ 4.37192, 1.92746, 0 ], [ 7.34983, 1.80753, 0 ], [ 10.3377, 1.68721, 0 ], [ 13.3156, 1.56728, 0.00001 ], [ 2.91641, 4.08963, -0.00001 ], [ 5.94969, 3.96746, 0 ], [ 8.92834, 3.84751, 0 ], [ 11.907, 3.72755, 0.00001 ], [ 14.9403, 3.60538, 0.00002 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10829429868684983369379798094917427294176044759717453720910134100752498630283828793984723205280297366060572935222319927190158976248203605181980759023925043
1
VASP
DFT
null
[ [ -0.577439, 0.022868, -0.000032 ], [ 0.576768, -0.023492, 0.000035 ], [ -0.240789, 0.010949, -0.000015 ], [ -0.048074, 0.001091, -0.000003 ], [ 0.048322, -0.001868, 0.000011 ], [ 0.24163, -0.009931, 0.000015 ], [ -0.265098, 0.009929, 0.000032 ], [ -0.00556, 0.000372, 0.000002 ], [ 0.000102, 0.000137, -0.000005 ], [ 0.004763, -0.000218, -0.000005 ], [ 0.265375, -0.009837, -0.000034 ] ]
null
[ [ -0.012022582123550108, -0.000976733763109471, -1.8724527377649775e-7 ], [ -0.000976733763109471, -0.03366039630079715, 0 ], [ -1.8724527377649775e-7, 0, -0.033655153433131406 ] ]
true
null
null
-75.924071
null
0.206892
0.577892
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:29:09
9530048250161045922755939455467099992321950518386942135101046812635436711192367002846745770165546266963510572820325821502467047014527078888729879807193716
PO_9530048250161045922755939
null
null
null
[ "train_1st_stage_1019" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9790238035419653904621794611113589694611969800346196520193776740220347371218751618301412679598532155362983954622829392574505609400354855832797472990046743
CO_9790238035419653904621794
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni2Ti2
NiTi
AB
[ 28, 28, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.5, 0.5 ]
2
4
[ [ 3.20296, -3.48259, 1.22755 ], [ -2.27827, -0.2824, -4.59339 ], [ 4.51193, 0.198389, 2.44391 ] ]
[ [ 2.30782, -0.44169, -0.93997 ], [ 3.1288, -3.12492, 0.01804 ], [ 0.28188, -1.49654, -3.00401 ], [ 5.15473, -2.07006, 2.08208 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3622454338242998395280087777269137222998199179165808412657425665092718028955464624026254255667785130158242369601911980573935952344095334237830835325261973
1
VASP
DFT
null
[ [ 0.14192, -0.093507, 0.149857 ], [ -0.141869, 0.093554, -0.149775 ], [ 0.059396, -0.082561, 0.063934 ], [ -0.059446, 0.082514, -0.064017 ] ]
null
[ [ 0.0008978410877583067, 0.0009966441772210385, -0.0012743289182315847 ], [ 0.0009966441772210385, 0.00308648867784053, 0.0010333442508812323 ], [ -0.0012743289182315847, 0.0010333442508812323, 0.0006836324945579933 ] ]
true
null
null
-27.695093
null
0.173352
0.226588
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:33:26
9761194820301681873350465415770276387875792427451418966046977710373001609484292603915877603142914955995664081929269782148884111773132645292582565623164292
PO_9761194820301681873350465
null
null
null
[ "train_2nd_stage_88" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10570105361353580327495738284479470530767498655624970336883687730585371924226217239591360009084781671259970541838869318368434039133384820874899482459534418
CO_1057010536135358032749573
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni3Ti
Al2Ni3Ti
A3B2C
[ 13, 13, 28, 28, 28, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.3333333333333333, 0.5, 0.16666666666666666 ]
3
6
[ [ 0, 2.90596, -2.90596 ], [ 2.94971, -2.94971, -2.94971 ], [ -2.90596, -2.90596, 0 ] ]
[ [ 2.91779, -2.9178, -2.9178 ], [ 0.04649, -0.04649, -2.95246 ], [ -1.44569, -1.46027, -1.46027 ], [ 1.43637, -1.43637, -1.43637 ], [ 1.52792, -1.52792, -4.43388 ], [ 0.02916, -2.93513, -2.93513 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6079409937032173739442132454646102016562025457164354890000607258477577313347643269696892846267956095846376928165611367574939180324118125969849107554150271
1
VASP
DFT
null
[ [ 0.281683, -0.281632, -0.281639 ], [ -0.281522, 0.2815, 0.28156 ], [ 0.00008, -0.000101, -0.000119 ], [ 0.219941, -0.219967, -0.21999 ], [ -0.220103, 0.220052, 0.220054 ], [ -0.000078, 0.000148, 0.000134 ] ]
null
[ [ -0.005692256322805531, -0.002724855639086854, -0.002724855639086854 ], [ -0.002724855639086854, -0.005692131492623014, 0.002724855639086854 ], [ -0.002724855639086854, 0.002724855639086854, -0.005692193907714273 ] ]
true
null
null
-35.396949
null
0.289668
0.487834
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:40:05
6742662201849572192215215152714113645844366133549977543734260680233235700216862617101336201866789706497424325478588462283500072889544075957547861228021625
PO_6742662201849572192215215
null
null
null
[ "train_1st_stage_1033" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
8963084373982105319321655824309434988618037601839219039178549762215530259296125976871865186815956748234066861518319876797874460435843060341772872312467700
CO_8963084373982105319321655
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni6Ti6
NiTi
AB
[ 28, 28, 28, 28, 28, 28, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.5, 0.5 ]
2
12
[ [ 0.080643, 3.07697, 2.49618 ], [ 3.78355, -4.91967, 2.79631 ], [ 3.76606, 5.23327, -3.42678 ] ]
[ [ 3.99859, -1.14683, 4.43035 ], [ 1.49751, 2.03547, 0.58837 ], [ 3.62043, 3.60212, -1.41138 ], [ 4.98354, 4.94174, 0.03911 ], [ 5.62592, 3.43713, 1.87307 ], [ 3.35621, 0.35778, 2.59639 ], [ 2.5993, 4.35728, 0.83659 ], [ 1.85085, -0.57609, 0.65034 ], [ 4.04977, 1.87304, 0.70616 ], [ 2.56771, -2.25767, 2.70004 ], [ 4.85172, -1.15512, 1.26716 ], [ 3.26707, 6.21369, -1.47335 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10931846854805406602505142059814268618691045003738108913432803018701313460941025115887906064239339887371232472963554523953557531979489675624312576206619233
1
VASP
DFT
null
[ [ 0.176159, -0.162582, 0.194961 ], [ 0.531842, -0.000402, -0.018214 ], [ -0.531903, 0.000509, 0.017773 ], [ -0.17671, 0.161898, -0.194727 ], [ -0.373875, -0.322831, 0.410836 ], [ 0.37393, 0.322959, -0.410289 ], [ -0.000124, 0.000203, -0.000298 ], [ -0.082392, 0.235683, -0.286076 ], [ 0.270919, -0.274072, 0.329144 ], [ 0.000018, -0.000392, 0.000401 ], [ -0.270403, 0.274034, -0.329069 ], [ 0.082539, -0.235007, 0.285559 ] ]
null
[ [ -0.01112424171506173, -0.0048709985520218125, 0.0064688248882479255 ], [ -0.0048709985520218125, -0.004444703478723985, 0.008938340388994897 ], [ 0.0064688248882479255, 0.008938340388994897, -0.00850293271237328 ] ]
true
null
null
-83.018384
null
0.394974
0.642486
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:41:03
13286448507680199122434672989977622149730508995639120044095727073120726150820903738691537285435192506698145420462610363916450563621144504344815173243926935
PO_1328644850768019912243467
null
null
null
[ "train_2nd_stage_670" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5960007138990170414300389747981120211294250422000644475092652389028178305794924897509484959547026403161883660394632954490066682324921016714789974876597831
CO_5960007138990170414300389
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni7Ti3
Al2Ni7Ti3
A7B3C2
[ 13, 13, 28, 28, 28, 28, 28, 28, 28, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.16666666666666666, 0.5833333333333334, 0.25 ]
3
12
[ [ -0.022548, 4.52636, -0.197137 ], [ -5.3119, -0.014012, 4.30076 ], [ 2.73543, -0.122495, 4.3878 ] ]
[ [ 2.36563, 4.25143, 4.18875 ], [ -0.15298, 2.48983, 6.29053 ], [ 0.06347, 0.01235, 4.31679 ], [ -2.70788, 4.27324, 4.10423 ], [ -3.90793, 2.37783, 4.22672 ], [ 1.56158, 2.01501, 4.37529 ], [ -1.53607, 2.12597, 4.26285 ], [ -1.22043, 0.59881, 2.18773 ], [ -2.47122, 3.1278, 6.31351 ], [ -3.70128, 0.81058, 6.14491 ], [ -0.81385, 1.24193, 6.37921 ], [ 0.03132, 2.88687, 2.54977 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6200252398719932216115370496126335815152043936660696854027991358806621992018039271602007759680026470484829574874638788675909497443359892226026776192207081
1
VASP
DFT
null
[ [ 1.471749, 0.024464, -0.154418 ], [ 19.622046, 36.916808, -2.615603 ], [ -0.794664, 0.376038, 0.095287 ], [ 0.758635, 1.53944, -0.666975 ], [ -1.415295, -0.578152, 0.250973 ], [ -0.422348, -0.160567, 0.194642 ], [ 0.32755, -0.464337, -0.451666 ], [ 0.502074, 0.051246, 0.10952 ], [ -0.65463, 0.242206, 0.583824 ], [ 0.32383, -0.149725, 0.273656 ], [ -19.436879, -37.853879, 3.374142 ], [ -0.282068, 0.056458, -0.993382 ] ]
null
[ [ 0.04329591325915321, 0.1350323036744689, -0.013341537832031758 ], [ 0.1350323036744689, 0.26403324983532306, -0.0045170425694929725 ], [ -0.013341537832031758, -0.0045170425694929725, -0.05263090155309798 ] ]
true
null
null
-56.938887
null
7.871525
42.685984
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:38:15
9015237146394523427250141900788164600753362900848995785656543417315257111958511055751934957703260139473353392577176135065475782339276877323637986783342826
PO_9015237146394523427250141
null
null
null
[ "train_1st_stage_1271", "train_1st_stage_1671", "train_1st_stage_1471", "train_1st_stage_1871" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5273842125522437139666410835514878339524702137714316662304630664728169567892863324572438320739765289006213799837238338376522135098669012840411539475443487
CO_5273842125522437139666410
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni4
Al3Ni2
A3B2
[ 13, 13, 13, 13, 13, 13, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.6, 0.4 ]
2
10
[ [ 2.766624, 0.017105, 0 ], [ 1.311082, 11.864204, 0 ], [ 0, 0, 4.107604 ] ]
[ [ 2.75961, 1.12153, 0 ], [ 2.7342, 5.33484, 0 ], [ 2.70876, 9.50344, 0 ], [ 2.69663, 11.55862, 2.0538 ], [ 2.74743, 3.17682, 2.0538 ], [ 2.72197, 7.34553, 2.0538 ], [ 1.36384, 3.19134, 0 ], [ 1.33804, 7.44635, 0 ], [ 1.3515, 5.21659, 2.0538 ], [ 1.32575, 9.47182, 2.0538 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2650347238315949757697335795843743640850646816212907632961389595881644463477149373805189481161274748801779261207567014310053839975571892661412508320306320
1
VASP
DFT
null
[ [ 0.000167, 0.000937, 0 ], [ 0.000228, 0.00187, 0 ], [ -0.000433, -0.000779, 0 ], [ -0.000176, 0.000359, 0 ], [ 0.000486, 0.000125, 0 ], [ -0.0002, -0.003845, 0 ], [ 0.000111, 0.004002, 0 ], [ 0.00016, -0.002935, 0 ], [ -0.000218, 0.004164, 0 ], [ -0.000125, -0.003897, 0 ] ]
null
[ [ 0.00043478352570902774, 0.00003595109256508757, 0 ], [ 0.00003595109256508757, 0.0002990307022210669, 0 ], [ 0, 0, 0.00022612987563075043 ] ]
true
null
null
-49.375163
null
0.002349
0.00417
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:17:07
5908054966536572809358880665441359261914270082641224108347234036569947704668765899976113064697657736826604244894058878634576791971056983304314008387455630
PO_5908054966536572809358880
null
null
null
[ "train_1st_stage_37" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
3859660003717193755086179361541853383192889278669060640464116488472855501110953273534149933674578203203802650382172941143854368989425857950492577637066657
CO_3859660003717193755086179
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al10Ti6
Al5Ti3
A5B3
[ 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.625, 0.375 ]
2
16
[ [ -5.34862, 5.2071, 2.5843 ], [ 4.75898, -5.14218, 2.64025 ], [ 4.98064, 5.47574, -2.75862 ] ]
[ [ -0.33296, 5.45886, 1.21839 ], [ 4.73019, 0.01302, 1.25079 ], [ 0.31772, 2.90251, -0.0191 ], [ 3.69114, 2.26464, 2.13141 ], [ 5.61283, 2.30091, 0.2961 ], [ -0.80768, 2.90549, 2.53925 ], [ 2.40765, 4.67145, -0.28673 ], [ 1.221, 1.19182, 1.81535 ], [ -3.01463, 4.53425, 2.75145 ], [ 8.15055, 1.4114, 0.64418 ], [ 4.87803, 4.24691, -1.4311 ], [ -0.4518, 0.38182, 3.91403 ], [ 1.70815, 7.24375, 0.44793 ], [ 2.46403, -1.19755, 2.85098 ], [ 1.72739, 4.1168, 2.27265 ], [ 2.85569, 1.91615, -0.65174 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12147674779416316893708033469207800762806233634157116802275303098941311703878674518547295356679847438063012506492777809364562307794315362449682763956614987
1
VASP
DFT
null
[ [ 0.001571, -0.040039, 0.000332 ], [ -0.010232, 0.291644, -0.004868 ], [ 0.110132, -0.164398, -0.044518 ], [ 0.062509, 0.381194, -0.176243 ], [ -0.088965, 0.381191, 0.164283 ], [ -0.097661, -0.170136, 0.049989 ], [ 0.358473, -0.170398, 0.245568 ], [ 0.20705, -0.234577, -0.054476 ], [ -0.345269, -0.202885, -0.239383 ], [ -0.190875, -0.246574, 0.062492 ], [ 0.002212, -0.099538, 0.000824 ], [ 0.004876, -0.150505, 0.002549 ], [ 0.057622, 0.275674, 0.176509 ], [ -0.302087, -0.072783, -0.222808 ], [ 0.306318, -0.043387, 0.225492 ], [ -0.075673, 0.265516, -0.185744 ] ]
null
[ [ 0.02048482019642263, -0.00015279214340162213, -0.0011431323964055187 ], [ -0.00015279214340162213, 0.02431017872458522, -0.00044046329901358146 ], [ -0.0011431323964055187, -0.00044046329901358146, -0.0018676467757380473 ] ]
true
null
null
-87.052521
null
0.302231
0.466735
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:12:18
1998372564321423366236942232951109783962489594066798127266429197418998628291247760571859942398211469399661134106492932291212700427890048028884958959140423
PO_1998372564321423366236942
null
null
null
[ "train_2nd_stage_257" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
8953723733495368591393536372411104995801283331056844314484536945742279253938531801056245189610116912254547779853748266731979091197456932868154343732541531
CO_8953723733495368591393536
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni3Ti3
Al4Ni3Ti3
A4B3C3
[ 13, 13, 13, 13, 28, 28, 28, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.4, 0.3, 0.3 ]
3
10
[ [ 0, 2.86724, 0 ], [ 2.86724, 0, 0 ], [ 0, 0, -17.0346 ] ]
[ [ 0, 0, -0.22204 ], [ 0, 0, -3.18487 ], [ 1.43362, 1.43362, -8.2261 ], [ 1.43362, 1.43362, -12.2154 ], [ 1.43362, 1.43362, -1.70345 ], [ 0, 0, -6.79354 ], [ 0, 0, -13.6479 ], [ 1.43362, 1.43362, -5.12275 ], [ 0, 0, -10.2207 ], [ 1.43362, 1.43362, -15.3187 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12696577911621259737249182909088240572916634515105817337277621235169265999375390134161284951811184473049560757887791851129084474657328694140234630856339083
1
VASP
DFT
null
[ [ 0, 0, -0.135753 ], [ 0, 0, 0.136967 ], [ 0.000001, 0, -0.10532 ], [ -0.000001, -0.000001, 0.106136 ], [ 0, 0, -0.000246 ], [ -0.000001, 0, 0.064402 ], [ 0, 0, -0.065527 ], [ 0.000002, 0, -0.073583 ], [ -0.000002, 0, -0.000137 ], [ 0, 0.000002, 0.073063 ] ]
null
[ [ 0.0012896206155899987, -1.2483018251766518e-7, -1.2483018251766518e-7 ], [ -1.2483018251766518e-7, 0.0012896206155899987, -6.241509125883259e-8 ], [ -1.2483018251766518e-7, -6.241509125883259e-8, 0.0012627821263487007 ] ]
true
null
null
-59.941199
null
0.076113
0.136967
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:18:36
207418281429402901068289824268576692055050748328457267421953471001695901253494802804437665481971462040881298134475509936561163406690083735605377610253231
PO_2074182814294029010682898
null
null
null
[ "train_1st_stage_708" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
1322249865239946039385447802201526901532164423662034147912247715951924249261693569130190468862510839148123402467383417302269204321103022024639248147332116
CO_1322249865239946039385447
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al5Ni3Ti4
Al5Ni3Ti4
A5B4C3
[ 13, 13, 13, 13, 13, 28, 28, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.4166666666666667, 0.25, 0.3333333333333333 ]
3
12
[ [ 2.47447, 0.081097, 4.3862 ], [ -1.02169, 5.78609, -0.156762 ], [ -2.28399, -0.464376, 3.98391 ] ]
[ [ -2.51082, 5.26027, 3.7713 ], [ 0.71766, 0.14378, 4.37542 ], [ -2.27817, 3.21342, 4.29577 ], [ -0.67481, 0.3947, 6.41466 ], [ 0.28587, 2.23439, 4.84124 ], [ -1.43206, 1.28183, 4.38763 ], [ 1.46802, 2.13941, 4.10692 ], [ 0.20166, 4.18414, 3.88195 ], [ -0.69478, 0.63801, 1.90779 ], [ -0.43574, 2.16, 2.74822 ], [ -1.61191, 4.57894, 2.06003 ], [ -1.32613, 3.84151, 6.23333 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
204181599831684729250347256030842458014166761636827641447597774502715015692369857752680673503720624562624933653054345794219760396511321928008924890194844
1
VASP
DFT
null
[ [ -4.799732, -2.29277, 3.343616 ], [ -3.372204, 1.580962, 0.537412 ], [ 0.676865, 0.806475, -0.989532 ], [ 1.861309, 0.865405, -2.703419 ], [ -23.013546, 6.105858, 22.335614 ], [ 1.306463, 1.796835, 4.775232 ], [ 22.358735, -1.920194, -17.576355 ], [ -2.832858, -5.625083, 7.460273 ], [ -1.510209, -3.628159, -2.300097 ], [ -0.869729, 11.031263, -3.536586 ], [ 4.288236, -8.064589, -5.379537 ], [ 5.906671, -0.656002, -5.966621 ] ]
null
[ [ 0.7013281715713324, 0.01330564915455793, -0.14442128102235255 ], [ 0.01330564915455793, 0.805440850432362, 0.11728981534268558 ], [ -0.14442128102235255, 0.11728981534268558, 0.652846250794574 ] ]
true
null
null
-32.925337
null
10.52154
32.646354
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:31:26
12064172042640141740724828697203942196747428839675647690353170613638511828374875772730876740785504894126895986602954092671523401032619123703907541547139015
PO_1206417204264014174072482
null
null
null
[ "train_1st_stage_1900", "train_1st_stage_1700", "train_1st_stage_1500", "train_1st_stage_1300" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
710017986275929351981124503212158553445274499675115613646058852705485782238621730707978123004564432470026251803349495029850215906301115582604291150553173
CO_7100179862759293519811245
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni7Ti2
Al3Ni7Ti2
A7B3C2
[ 13, 13, 13, 28, 28, 28, 28, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.25, 0.5833333333333334, 0.16666666666666666 ]
3
12
[ [ 3.94501, -0.559896, 0 ], [ -1.13245, 6.21168, 3.10348 ], [ 1.13245, -6.21168, 3.10348 ] ]
[ [ 2.02305, 0.10291, 1.55174 ], [ 0.36429, 2.56361, 1.55174 ], [ 0.30676, 2.17486, 4.65522 ], [ 1.18416, -5.8236, 3.21505 ], [ 0.05171, 0.38808, 2.99191 ], [ 3.42909, -4.20976, 3.05479 ], [ 2.29664, 2.00192, 3.15217 ], [ 1.73866, -1.94653, 2.95145 ], [ 0.60621, 4.26515, 3.25551 ], [ 3.71806, -2.18457, 4.65522 ], [ 1.97835, -0.18318, 4.65522 ], [ 3.72058, -2.20556, 1.55174 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10949816426071023854580690794843816589863922933554813280484990359770050307741082207658008122340741609096135112225635181472369139963142955195267044101225036
1
VASP
DFT
null
[ [ 0.059255, 0.215834, 0.000397 ], [ -0.076828, -0.490086, -0.000089 ], [ 0.057235, 0.278988, -0.000153 ], [ -0.006948, -0.022287, 0.063676 ], [ -0.006799, -0.021314, -0.064098 ], [ -0.005464, 0.04471, 0.062797 ], [ -0.005418, 0.045028, -0.062449 ], [ 0.015976, -0.11736, 0.00694 ], [ 0.015946, -0.11736, -0.006919 ], [ 0.021529, 0.261042, -0.000115 ], [ 0.076284, 0.206271, -0.000147 ], [ -0.144768, -0.283465, 0.00016 ] ]
null
[ [ -0.005298354681871039, 0.0022457573985840552, 5.617358213294933e-7 ], [ 0.0022457573985840552, 0.00973999982112334, 0.000004493886570635946 ], [ 5.617358213294933e-7, 0.000004493886570635946, 0.003667885252916555 ] ]
true
null
null
-71.527432
null
0.194358
0.496071
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:45:01
13056390070247491964592654720927783431528631015599591902082341922370932693649929878149087746038262826341750502413856218544099815040921111196713691013494819
PO_1305639007024749196459265
null
null
null
[ "train_1st_stage_1078", "train_1st_stage_876" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12440379156989034943045132551208543698830195650580755122212796049193242499836088848728417613043193000555381113766611898158365686896311629949281720976907341
CO_1244037915698903494304513
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni10
Al2Ni5
A5B2
[ 13, 13, 13, 13, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.2857142857142857, 0.7142857142857143 ]
2
14
[ [ 3.535848, 0.202952, 0 ], [ 1.049953, 12.612398, -0.000003 ], [ -0.000001, 0.000005, 3.616055 ] ]
[ [ 3.52457, 0.51304, 3.6043 ], [ 1.23666, 9.47135, 3.60432 ], [ 1.55265, 3.96573, 1.79627 ], [ 1.3547, 7.41638, 1.79628 ], [ 1.65493, 2.18291, 3.60427 ], [ 3.32274, 4.0293, 3.60426 ], [ 1.45293, 5.70223, 3.60428 ], [ 3.11612, 7.63306, 3.60428 ], [ 2.90747, 11.26684, 3.60426 ], [ 1.75449, 0.44912, 1.79624 ], [ 3.42226, 2.29566, 1.79624 ], [ 3.2197, 5.82409, 1.79623 ], [ 3.01108, 9.45793, 1.79626 ], [ 1.13843, 11.18576, 1.79624 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3638825253583915954044148030622903285689879017329175156775156518424426378611400852503293634111160695170293525829890656606259117077130708423061412443097442
1
VASP
DFT
null
[ [ -0.000547, 0.008474, -0.000066 ], [ 0.000661, -0.010813, -0.000095 ], [ 0.000565, -0.010084, -0.000079 ], [ -0.00079, 0.012564, -0.000018 ], [ -0.000298, 0.004938, -0.000019 ], [ -0.000116, 0.002007, 0.000104 ], [ 0.000801, -0.016044, 0.000085 ], [ -0.00045, 0.009552, -0.000014 ], [ -0.001417, 0.024121, -0.00001 ], [ 0.00011, -0.000759, 0.000097 ], [ 0.000208, -0.004528, -0.000079 ], [ 0.001628, -0.02452, 0.000004 ], [ 0.000576, -0.010471, 0.000021 ], [ -0.00093, 0.015564, 0.000071 ] ]
null
[ [ -0.0009412195761831952, -0.000013980980441978496, 1.8724527377649775e-7 ], [ -0.000013980980441978496, -0.0006220287994855255, 5.617358213294933e-7 ], [ 1.8724527377649775e-7, 5.617358213294933e-7, -0.0006368835912051277 ] ]
true
null
null
-76.074832
null
0.011052
0.024574
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:12:11
3811329462129981623741262891551686609089451437668728756763751215337559521593851488682986400997905973050062852501356987659623592969913884246852080229291289
PO_3811329462129981623741262
null
null
null
[ "train_1st_stage_213" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
1293905396865499370827531574169145831718809899908199288565524491702976120166146952072103646536926914500750937747357287415061043223803757868059219450475738
CO_1293905396865499370827531
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi2Ti3
AlNi2Ti3
A3B2C
[ 13, 28, 28, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.16666666666666666, 0.3333333333333333, 0.5 ]
3
6
[ [ 4.11716, 0, 0 ], [ 0, 0.321067, -4.11672 ], [ 0, 5.15259, -1.67149 ] ]
[ [ 0, 0.48207, -4.10387 ], [ 2.05858, 1.99275, -3.98717 ], [ 0, 1.73619, -1.93565 ], [ 0, 3.51583, -3.86963 ], [ 2.05858, 0.28396, -2.0487 ], [ 2.05858, 3.41811, -1.80648 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10232667677626987062538827973674774013116585830828734494345234369838170609149188194915220400633200459461533537935434495196674840049279444664271919266653424
1
VASP
DFT
null
[ [ -0.000008, -0.198191, -0.018167 ], [ 0.000003, 0.050533, 0.003284 ], [ 0.000002, 0.229928, 0.01628 ], [ -0.000001, 0.222731, 0.019939 ], [ 0.000005, -0.241572, -0.018745 ], [ -0.000001, -0.063428, -0.00259 ] ]
null
[ [ -0.004223566810393942, 6.241509125883259e-8, 1.8724527377649775e-7 ], [ 6.241509125883259e-8, -0.001520743698521456, -0.0001705180293191306 ], [ 1.8724527377649775e-7, -0.0001705180293191306, -0.0011676615272702398 ] ]
true
null
null
-40.487094
null
0.168261
0.242298
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:47:22
6873281294651700363673220817542579377534395543219927234407280579646346659757335060546917979312471669093357652946223384463055234680921106634101454765477200
PO_6873281294651700363673220
null
null
null
[ "train_1st_stage_861" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11908725455937562769267932699090855195100279629011152465732927923125195035939475532429517335987445546169537162262929321582865807713092515511406499633075206
CO_1190872545593756276926793
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni7Ti
Al2Ni7Ti
A7B2C
[ 13, 13, 28, 28, 28, 28, 28, 28, 28, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.2, 0.7, 0.1 ]
3
10
[ [ -3.26616, 1.67431, 0.012266 ], [ -2.93652, -5.72358, 4.92698 ], [ -0.433396, 3.12094, 2.48771 ] ]
[ [ -4.88882, -2.22222, 5.74829 ], [ -1.15621, 1.02934, 1.66722 ], [ -5.90715, -4.18155, 4.93353 ], [ -2.56008, 2.29616, 3.04027 ], [ -1.76727, -0.16618, 3.48381 ], [ -4.27776, -1.02669, 3.93169 ], [ -3.48495, -3.48905, 4.37524 ], [ -3.58935, 0.32137, 2.11178 ], [ -2.45568, -1.51426, 5.30374 ], [ -2.80581, -2.1569, 2.46391 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2161334485574861924206291179022115261717352236031632456817186223856301775326161688572854180002532589352415259675376576133359833727211750378112551588755619
1
VASP
DFT
null
[ [ 0.063631, 0.094103, 1.324095 ], [ -0.063364, -0.094313, -1.32449 ], [ -0.000167, 0.00007, 0.000074 ], [ 0.219992, 0.414264, -0.466458 ], [ 0.000107, -0.002196, 0.29537 ], [ -0.00014, 0.001296, -0.29457 ], [ -0.220084, -0.41357, 0.466163 ], [ -0.008387, -0.033478, -1.150056 ], [ 0.008562, 0.033853, 1.150109 ], [ -0.000151, -0.000029, -0.000237 ] ]
null
[ [ 0.10443143273208846, -0.006614876201793594, 0.001557256526907873 ], [ -0.006614876201793594, 0.0991951186509287, 0.007644038641560485 ], [ 0.001557256526907873, 0.007644038641560485, 0.11531350389306591 ] ]
true
null
null
-56.752089
null
0.687236
1.329355
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:26:25
11881743700109900154958236979262134563709310977923267867533748591463950154997994855618367072674745532248535477398295466824915140005466759278896895065780653
PO_1188174370010990015495823
null
null
null
[ "train_2nd_stage_666" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
8086953518141413343606776761957958270980167758911828885529490883381239354578417568048459724914312531664460988661794438698665144638038548138370722224464660
CO_8086953518141413343606776
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlTi8
AlTi8
A8B
[ 13, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.1111111111111111, 0.8888888888888888 ]
2
9
[ [ 1.59333, 4.80343, -1.60503 ], [ 4.8034, -1.60503, -1.5933 ], [ -1.60508, -1.59336, -4.80345 ] ]
[ [ -1.57669, -1.59341, -4.80339 ], [ 1.29632, 1.7394, -1.82389 ], [ 3.36109, 2.97944, -2.87297 ], [ 3.17647, 0.05022, -3.24857 ], [ 4.60115, 1.93039, -4.93775 ], [ 0.24724, -0.32539, -3.06399 ], [ 1.67193, 1.55474, -4.75314 ], [ 1.48728, -1.37449, -5.12876 ], [ 3.55205, -0.1344, -6.17781 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4037962460599163143368863047423684201036679687032109324349819854791325296639997457734140505161952854333365976977260853332023747760061395088494657161711542
1
VASP
DFT
null
[ [ 0.000395, 0.000619, 0.000038 ], [ -0.018835, 0.163987, -0.233223 ], [ 0.163561, -0.233077, 0.019485 ], [ 0.405767, -0.405296, 0.405131 ], [ -0.23323, 0.020632, -0.163746 ], [ 0.232751, -0.020797, 0.165121 ], [ -0.405802, 0.406048, -0.40536 ], [ -0.164635, 0.232251, -0.019754 ], [ 0.020028, -0.164367, 0.232307 ] ]
null
[ [ 0.013313201380600248, 0.001401780534582121, -0.0014201305714122178 ], [ 0.001401780534582121, 0.013290482287382034, 0.001410643477540875 ], [ -0.0014201305714122178, 0.001410643477540875, 0.013292666815576091 ] ]
true
null
null
-66.984536
null
0.346588
0.702757
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:13:26
11829961236051444056215998195209261754440868669457438247702709005873961283825183882867221604066850201422130538194163620444815043772547003333205541862286702
PO_1182996123605144405621599
null
null
null
[ "train_2nd_stage_684" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11766086106104730693550976817773453683995698508939414777299937210369791312293932614407340642955473188816309565343600842825288851235324950141554159722211047
CO_1176608610610473069355097
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni6Ti6
NiTi
AB
[ 28, 28, 28, 28, 28, 28, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.5, 0.5 ]
2
12
[ [ -1.56337, 1.54242, -4.26187 ], [ 4.41945, 4.27701, -1.57671 ], [ 3.1036, -2.74761, -2.78215 ] ]
[ [ 5.31975, 3.09685, -8.05955 ], [ 1.15725, 1.70113, -1.64691 ], [ 2.68714, 3.20168, -2.83291 ], [ 4.197, 4.27151, -4.59509 ], [ 3.90688, 2.47284, -6.20692 ], [ 3.16778, 0.41511, -2.52975 ], [ 1.66082, 1.28605, -3.98464 ], [ 1.37666, -0.67022, -1.09048 ], [ 4.29396, 1.66957, -4.11993 ], [ 1.89049, -1.27792, -4.11917 ], [ 2.95332, 0.16368, -6.16247 ], [ 1.90316, 3.47402, -4.98886 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11815319818703003899965849200239097920622383369704864685965506403078030047301692132146477697350610808290076993366526612395319933093600096369479008485755361
1
VASP
DFT
null
[ [ 0.463563, 0.319644, 0.249033 ], [ -0.110934, 0.513859, 0.576203 ], [ 0.639374, 0.099639, 0.242146 ], [ 0.314809, 0.225034, 0.491828 ], [ -0.042794, 0.183386, -0.579528 ], [ -0.181812, -0.883103, 0.523486 ], [ 0.114696, -1.071408, -0.911755 ], [ -1.817115, -0.993111, -1.014656 ], [ 1.302665, 0.302711, 0.873587 ], [ -0.413658, -0.992167, 0.789592 ], [ -0.798665, 0.032, 0.357464 ], [ 0.529871, 2.263515, -1.597402 ] ]
null
[ [ 0.13293322174034308, 0.014046266627435236, 0.011041728964417553 ], [ 0.014046266627435236, 0.1200652272056921, -0.005720031038415712 ], [ 0.011041728964417553, -0.005720031038415712, 0.1601142450024696 ] ]
true
null
null
-80.977519
null
1.225773
2.820631
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:19:48
12021262085668098606737376656978697850777734425651639968093294629729954231766819315114668396456740894675322007040673888636361171483071221780440761707417780
PO_1202126208566809860673737
null
null
null
[ "train_2nd_stage_667" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6269084378140720388729829617162924260485262494121682767999480767215272480422191532063874452812166685562849372808748524925807486638184000379935200268940651
CO_6269084378140720388729829
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al5Ni3Ti2
Al5Ni3Ti2
A5B3C2
[ 13, 13, 13, 13, 13, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.5, 0.3, 0.2 ]
3
10
[ [ -1.296262, 1.296261, 2.18946 ], [ 2.016645, 2.016643, -0.000001 ], [ -6.547076, 6.547074, -15.201325 ] ]
[ [ 1.66222, 2.36664, -0.41726 ], [ 0.0651, 3.96374, -2.30867 ], [ -1.53645, 5.56529, -4.20505 ], [ -1.83715, 5.866, -8.28573 ], [ -4.0092, 8.03806, -10.8575 ], [ -0.79653, 2.80871, -0.27267 ], [ -1.09587, 3.10804, -4.35158 ], [ -2.69153, 4.70371, -6.24111 ], [ -4.57772, 6.58994, -8.47482 ], [ -5.45728, 7.46949, -13.24012 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12384458258571561052889376198092835252797607821686380672701157188400083062384487360197484356184071834191473846208428817382549892066936847663790165005499980
1
VASP
DFT
null
[ [ -0.010044, 0.010028, -0.011505 ], [ -0.008053, 0.008036, -0.009332 ], [ 0.00732, -0.007331, 0.008447 ], [ 0.006098, -0.006094, 0.006859 ], [ 0.002926, -0.002902, 0.003492 ], [ 0.000706, -0.000673, 0.001223 ], [ 0.000578, -0.000627, 0.000697 ], [ 0.000279, -0.000285, -0.000123 ], [ -0.005745, 0.005762, -0.006813 ], [ 0.005934, -0.005913, 0.007054 ] ]
null
[ [ -0.0007682673583049702, -0.00005118037483224272, 0.000043690563881182805 ], [ -0.00005118037483224272, -0.0007694532450388881, -0.00004281675260355915 ], [ 0.000043690563881182805, -0.00004281675260355915, -0.0007352497750290478 ] ]
true
null
null
-56.418378
null
0.008742
0.01827
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:03:39
3016359717100125666111201523109258505302856990687930957182737097270213392398896924782455408405210820803115130967408276299479089943047487041857078567472568
PO_3016359717100125666111201
null
null
null
[ "train_1st_stage_382" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11209162098662147681076553370179673474932592433271038901841024976548230979362916870633715159883170231206940987773826093136165639157597157292512667319903631
CO_1120916209866214768107655
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al8Ni2Ti2
Al4NiTi
A4BC
[ 13, 13, 13, 13, 13, 13, 13, 13, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.6666666666666666, 0.16666666666666666, 0.16666666666666666 ]
3
12
[ [ 1.94598, -7.55551, 0 ], [ 1.94598, 7.55551, 0 ], [ 0, 0, 6.12887 ] ]
[ [ 0, 0, 0 ], [ 0, 0, 3.06443 ], [ 1.94598, -4.82662, 5.8916 ], [ 1.94598, 4.82662, 2.82717 ], [ 1.94598, -4.82662, 3.3017 ], [ 1.94598, 4.82662, 0.23726 ], [ 1.94598, 1.06508, 4.59665 ], [ 1.94598, -1.06508, 1.53222 ], [ 1.94598, 3.36311, 4.59665 ], [ 1.94598, -3.36311, 1.53222 ], [ 1.94598, -1.7448, 4.59665 ], [ 1.94598, 1.7448, 1.53222 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11544316358843211179078028111728697185787534062941737409142359430219288617733844019676161579328704499112254775138420113243688322687167037430663281620484094
1
VASP
DFT
null
[ [ 0, -0.000164, -0.000394 ], [ 0, -0.000154, 0.000411 ], [ 0, 0.043425, 0.014326 ], [ 0.000002, -0.042887, 0.014015 ], [ 0, 0.043401, -0.014269 ], [ 0.000002, -0.042902, -0.014033 ], [ 0, -0.085046, 0.000006 ], [ 0, 0.084477, -0.000022 ], [ 0.000001, -0.024443, 0.000018 ], [ -0.000006, 0.024622, -0.000046 ], [ 0.000001, 0.092351, 0.000011 ], [ 0, -0.09268, -0.000023 ] ]
null
[ [ -0.02443201298272246, -6.241509125883259e-8, -1.2483018251766518e-7 ], [ -6.241509125883259e-8, 0.0071455293076761895, 2.4966036503533035e-7 ], [ -1.2483018251766518e-7, 2.4966036503533035e-7, -0.032623619219896684 ] ]
true
null
null
-60.605646
null
0.048846
0.09268
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:42:43
8495490046251060499889155912328132398533081825051612825321999750365629424905724839690234892183704846091052026712538712342325918022764747059518653486310960
PO_8495490046251060499889155
null
null
null
[ "train_2nd_stage_612" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
8108829520558488992400584517715115936036583716895046801162658786332505881404035955868378696713198641112262660537152281491289476260293090676345282806080869
CO_8108829520558488992400584
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni2Ti4
Al2NiTi2
A2B2C
[ 13, 13, 13, 13, 28, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.4, 0.2, 0.4 ]
3
10
[ [ 0.000003, 4.043345, 0.000001 ], [ 5.153875, -0.000009, -7.747222 ], [ -2.805754, 0.000004, -2.927402 ] ]
[ [ 4.9359, 0.00083, -7.54131 ], [ -1.57394, 2.02251, -4.11084 ], [ -0.10911, 0.00083, -5.51448 ], [ 1.3407, 2.0225, -6.90388 ], [ 2.49286, 0.00084, -8.00807 ], [ 3.78383, 2.0225, -6.4372 ], [ 3.5652, 2.0225, -9.03568 ], [ -0.15065, 0.00083, -2.66615 ], [ 1.27335, 2.0225, -4.03173 ], [ 2.71143, 0.00083, -5.40952 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
1004724962776044660119693551800705616852131518383800822506424146936977662651221674624670320676860161040042794621761363177377649544904876061241102713202217
1
VASP
DFT
null
[ [ 0.000005, -0.00001, -0.000012 ], [ -0.005998, -0.000025, 0.006115 ], [ 0.003936, 0.00002, -0.004246 ], [ 0.00134, 0.000025, -0.001246 ], [ 0.002211, -0.000007, -0.003177 ], [ -0.000937, -0.000009, 0.002195 ], [ -0.005388, 0.000012, 0.005469 ], [ -0.004336, 0.00003, 0.004061 ], [ 0.002567, -0.000022, -0.002484 ], [ 0.006599, -0.000015, -0.006675 ] ]
null
[ [ -0.00038697356580476197, 0, -0.000008675697684977729 ], [ 0, -0.0003193780219714463, 0 ], [ -0.000008675697684977729, 0, -0.0003882842827211975 ] ]
true
null
null
-61.968186
null
0.004904
0.009386
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:33:59
4660530730374304525455498856036343553381632733240720837239813855676686111630378972503552479767763786547479827235028673475110150423337313183044510540712354
PO_4660530730374304525455498
null
null
null
[ "train_1st_stage_207" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7159751126619977051694814189180659494930693293002968505514031914955020980479260114662700035817655220302790675799682143891017028072196457135731774516673090
CO_7159751126619977051694814
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi8
AlNi8
A8B
[ 13, 28, 28, 28, 28, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.1111111111111111, 0.8888888888888888 ]
2
9
[ [ 5.32169, 1.76936, -0.001355 ], [ -0.001355, 1.76936, 5.32169 ], [ 5.32361, 0.005111, 5.32361 ] ]
[ [ 5.32225, 1.77447, 10.6453 ], [ 7.11867, 1.77278, 5.32206 ], [ 3.52527, 1.77106, 5.32187 ], [ 1.78087, 0.00171, 1.78087 ], [ 5.32206, 1.77278, 7.11867 ], [ 8.86461, 1.77447, 7.10293 ], [ 5.32187, 1.77106, 3.52527 ], [ 8.86442, 1.77276, 3.54138 ], [ 7.10293, 1.77447, 8.86461 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
8112057066917953317871062556187668335677716431214293518685069700843043302573986157925868739570723209664111432622832176541577349576136677608395165601713080
1
VASP
DFT
null
[ [ 0.00037, 0.000047, 0.000325 ], [ -0.103001, -0.000568, 0.000341 ], [ 0.102195, 0.000497, 0.000253 ], [ -0.001687, -0.000072, -0.001166 ], [ 0.000891, -0.000567, -0.102676 ], [ 0.001255, 0.000027, -0.001556 ], [ 0.000792, 0.000498, 0.102084 ], [ 0.001152, 0.000112, 0.001191 ], [ -0.001967, 0.000026, 0.001204 ] ]
null
[ [ 0.008904199334076315, -0.00020509598987652385, 0.000050743469193430885 ], [ -0.00020509598987652385, 0.007343010656419135, -0.00020509598987652385 ], [ 0.000050743469193430885, -0.00020509598987652385, 0.008911064994114787 ] ]
true
null
null
-49.011392
null
0.046498
0.103003
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:00:13
9750106366649023179146641106748277633300041723255868496355670679074021837938448723038629570563705204435809417910588346950309013838375018273284412589760391
PO_9750106366649023179146641
null
null
null
[ "train_2nd_stage_399" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
703465086602729929659016698107664668318571681346426850221293417780369248570571520288934847877711424350760516180106936518374154818651521196839638654749302
CO_7034650866027299296590166
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni4Ti6
Ni2Ti3
A3B2
[ 28, 28, 28, 28, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.4, 0.6 ]
2
10
[ [ 0.000002, 2.111091, 2.111093 ], [ 2.98554, -0.000004, 0.000009 ], [ -0.000044, 11.256024, -11.255938 ] ]
[ [ 0.00561, 2.21851, 1.99881 ], [ 0.00561, 4.35638, -0.13905 ], [ 0.0056, 6.49401, -2.27666 ], [ 1.49836, 8.92879, -6.82254 ], [ 1.49843, 2.23136, -0.12516 ], [ 1.49842, 4.37012, -2.26391 ], [ 1.49843, 6.54864, -4.44243 ], [ 0.00566, 8.89727, -4.67997 ], [ 0.00563, 11.07136, -6.85407 ], [ 1.4984, 11.30884, -9.20263 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4766692499671865117669482348082467272814831099087243195732868082251293862003340101853086705465817769900645934296081993510751590812815580371781713049056288
1
VASP
DFT
null
[ [ 0.000036, -0.022802, 0.022667 ], [ 0.000001, -0.000138, 0.000135 ], [ -0.000006, 0.022384, -0.02241 ], [ 0.000039, -0.000279, 0.000231 ], [ -0.000045, -0.004156, 0.00418 ], [ -0.000036, 0.00377, -0.003724 ], [ 0.000027, 0.003604, -0.003637 ], [ 0.000025, -0.004069, 0.004047 ], [ -0.000028, 0.004531, -0.004419 ], [ -0.000013, -0.002845, 0.00293 ] ]
null
[ [ -0.003412420284394154, -1.8724527377649775e-7, 0 ], [ -1.8724527377649775e-7, -0.0033487568913101442, -0.00006422512890533873 ], [ 0, -0.00006422512890533873, -0.0033480703253062974 ] ]
true
null
null
-72.050531
null
0.009685
0.032152
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:40:00
6168218787775487731770125238337230441976812473427192895596777681356035326395965875644040316262287116836552255566510513284353090546338979093298343543341907
PO_6168218787775487731770125
null
null
null
[ "train_1st_stage_178" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11103416305229055712739557218773375106509223388397137143829844184061793059740572067782923227539275544610819339350974547395971487108042065852055480715809253
CO_1110341630522905571273955
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlTi11
AlTi11
A11B
[ 13, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.08333333333333333, 0.9166666666666666 ]
2
12
[ [ -4.383838, 2.526799, 0.053294 ], [ -4.377234, -7.593207, 0.003883 ], [ -1.433033, 2.48265, 4.644022 ] ]
[ [ -8.72195, -5.07843, 0.06096 ], [ -2.8727, 0.00756, 0.10284 ], [ -2.90919, 0.01166, 4.56251 ], [ -4.40234, -2.50954, 0.03299 ], [ -2.96753, -5.06198, 0.09433 ], [ -5.81539, -5.09479, -0.03801 ], [ -7.2267, -4.42735, 2.35276 ], [ -1.24991, 0.87418, 2.33614 ], [ -4.48091, 0.87336, 2.33926 ], [ -2.95387, -1.75719, 2.35165 ], [ -5.80284, -1.63286, 2.34007 ], [ -4.46053, -4.15757, 2.35499 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12376774886353378566802933371055750541710480490562496506655114913034829632466705841245933919002677488532849437832049189211355846411076359223744709509495804
1
VASP
DFT
null
[ [ 0.010463, -0.003915, -0.001324 ], [ -0.000474, 0.000966, 0.006773 ], [ 0.008202, -0.008468, -0.007263 ], [ -0.00458, 0.001379, -0.000195 ], [ 0.011469, -0.004841, 0.008794 ], [ -0.001327, 0.003337, -0.007908 ], [ -0.005514, 0.00035, -0.014131 ], [ -0.001985, 0.009041, 0.012118 ], [ -0.004751, 0.005153, -0.012996 ], [ -0.000646, 0.000047, 0.011928 ], [ -0.003313, -0.002593, -0.010051 ], [ -0.007543, -0.000457, 0.014256 ] ]
null
[ [ -0.00037286775518026585, 0.000248661723575189, -0.00005167969556231337 ], [ 0.000248661723575189, -0.0001289495785407481, -0.00008894150504383642 ], [ -0.00005167969556231337, -0.00008894150504383642, -0.00028579870287419437 ] ]
true
null
null
-90.770071
null
0.012069
0.016135
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:13:13
7369984813142723434075477722385269230872090256080793969828601390402713018366034875848942280156970056773040101467215522977136223497292196313455089237457333
PO_7369984813142723434075477
null
null
null
[ "train_1st_stage_275", "train_1st_stage_297" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11950900669628507222587514332395152669952903361168928979049982771280696812540223971673493381071280910102606941641919151011336011817019900826282006079550951
CO_1195090066962850722258751
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni4Ti12
NiTi3
A3B
[ 28, 28, 28, 28, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.25, 0.75 ]
2
16
[ [ 5.47706, 0, 0 ], [ 0, 8.42608, 0 ], [ 0, 0, 5.27987 ] ]
[ [ 0.47847, 6.31956, 3.19601 ], [ 2.26006, 2.10652, 0.55607 ], [ 3.217, 6.31956, 4.7238 ], [ 4.99859, 2.10652, 2.08387 ], [ 0.1471, 2.10652, 4.50991 ], [ 1.26, 0.36166, 1.97983 ], [ 1.26, 3.85138, 1.97983 ], [ 1.47853, 4.5747, 4.61977 ], [ 1.47853, 8.06442, 4.61977 ], [ 2.59143, 6.31956, 1.86997 ], [ 2.88563, 2.10652, 3.4099 ], [ 3.99853, 0.36166, 0.6601 ], [ 3.99853, 3.85138, 0.6601 ], [ 4.21706, 4.5747, 3.30004 ], [ 4.21706, 8.06442, 3.30004 ], [ 5.32996, 6.31956, 0.76997 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5255442018821749520637804024951074189576879074675686162371414002241760871168428175097727824039325912070494981160686671041261555309561576313274591685344673
1
VASP
DFT
null
[ [ 0.228986, 0.00054, 0.40171 ], [ -0.229252, -0.000555, 0.401798 ], [ 0.229239, 0.000559, -0.401747 ], [ -0.229184, -0.000538, -0.40152 ], [ 0.012069, -0.001712, -0.298429 ], [ -0.226419, 0.14486, -0.20283 ], [ -0.226629, -0.145554, -0.203008 ], [ 0.227088, 0.144923, -0.203424 ], [ 0.226925, -0.14402, -0.203223 ], [ -0.012303, 0.001655, -0.298282 ], [ 0.012357, -0.001767, 0.297936 ], [ -0.226682, 0.144451, 0.203154 ], [ -0.226861, -0.145278, 0.203434 ], [ 0.226721, 0.144635, 0.202996 ], [ 0.226596, -0.143893, 0.202944 ], [ -0.012651, 0.001695, 0.298492 ] ]
null
[ [ 0.004805400291108779, 3.120754562941629e-7, -0.00000411939602308295 ], [ 3.120754562941629e-7, -0.03842379123548874, -8.113961863648235e-7 ], [ -0.00000411939602308295, -8.113961863648235e-7, -0.028837207708679608 ] ]
true
null
null
-118.152641
null
0.358783
0.4626
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:54:53
8032164766783261436839583825309366078652140679303998460451750806362586446889313766910277864367349090977881655563230866277588520202545380670916034837039147
PO_8032164766783261436839583
null
null
null
[ "train_2nd_stage_448" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7940414422205582271728006389686784874495513689290716525955286545759563330796585487951708744183639655899810185246053748796750475303366029746932995049774328
CO_7940414422205582271728006
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni4Ti4
AlNi2Ti2
A2B2C
[ 13, 13, 28, 28, 28, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.2, 0.4, 0.4 ]
3
10
[ [ -2.897015, -2.896999, -0.000005 ], [ -1.237766, 1.237761, -3.723554 ], [ 5.832956, -5.832954, -1.604804 ] ]
[ [ 2.65137, -8.43775, -1.97518 ], [ -0.41366, -2.47574, -3.52082 ], [ -0.74932, -2.14013, -1.02449 ], [ -2.80724, -2.97919, -2.8925 ], [ 1.15923, -4.04866, -2.29329 ], [ -0.94304, -4.8434, -4.13179 ], [ -1.2578, -4.5286, -1.6494 ], [ 1.60403, -4.49339, -4.86223 ], [ 0.80065, -6.58703, -3.01796 ], [ 3.47686, -6.36624, -3.83419 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9767871817303620916372388962616883187239274986916883926199197936442532724813975044478905531409292757552345050437753385789392312554715274999787085689708671
1
VASP
DFT
null
[ [ -0.002398, 0.00232, 0.001441 ], [ -0.00044, 0.000407, 0.000377 ], [ -0.005434, 0.005423, 0.003609 ], [ -0.01374, 0.013957, 0.009256 ], [ -0.001203, 0.001407, 0.000803 ], [ 0.025994, -0.026043, -0.017301 ], [ 0.003324, -0.003365, -0.002143 ], [ -0.009269, 0.009139, 0.005961 ], [ -0.005446, 0.005409, 0.003662 ], [ 0.008612, -0.008652, -0.005666 ] ]
null
[ [ 0.004265946657358689, -0.0000885045994050246, -0.00000580460348707143 ], [ -0.0000885045994050246, 0.004266133902632465, 0.000005742188395812598 ], [ -0.00000580460348707143, 0.000005742188395812598, 0.004328049673161228 ] ]
true
null
null
-65.578054
null
0.011864
0.04066
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:31:41
9525653157283117505758265611589148552589332542506029309056419539261442893770800120791089688630242589018957500852079378551938937215049375089430918065457160
PO_9525653157283117505758265
null
null
null
[ "train_1st_stage_305" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10831737274774922274168670077051830590830913638901981182993961093891298730762413546161836720963397088429983197535279371198060842356885080239070955443628211
CO_1083173727477492227416867
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi3
AlNi3
A3B
[ 13, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.25, 0.75 ]
2
4
[ [ 0, -2.0392, -2.0392 ], [ 0, -2.0392, 2.0392 ], [ -5.51674, 0, 0 ] ]
[ [ 0, 0, 0 ], [ -4.10906, -2.0392, 0 ], [ -2.75837, 0, 0 ], [ -1.40768, -2.0392, 0 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3894436526468662356929824540646311492500016962256157827246480916055549839303687702885307221385705290997855570572705972195045605990624254674280752836270120
1
VASP
DFT
null
[ [ -0.000313, 0, 0 ], [ -0.208671, -0.000001, 0 ], [ 0.000095, 0, 0 ], [ 0.208888, 0.000001, 0 ] ]
null
[ [ 0.004506556834161488, 0, 0 ], [ 0, 0.0001189631639393349, 0 ], [ 0, 0, 0.00011902557903059373 ] ]
true
null
null
-21.416215
null
0.104492
0.208888
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:11:54
5752946526723035571452078368133440111910214377833711108674071080432041844697298730474165508358480313310250737391868388350968841981449639731637783484583470
PO_5752946526723035571452078
null
null
null
[ "train_2nd_stage_213" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12452954455361636064902419016729136643778591485040466864480617157213356337447723834404581305080715328684949369052671703959470602167069287756100104156489041
CO_1245295445536163606490241
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni8Ti4
Ni2Ti
A2B
[ 28, 28, 28, 28, 28, 28, 28, 28, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.6666666666666666, 0.3333333333333333 ]
2
12
[ [ 3.70073, 0.011842, 0.292659 ], [ 1.03088, -1.8372, 10.3977 ], [ 0.00687, -3.71229, 0.000856 ] ]
[ [ 0.03818, -3.40285, 0.00331 ], [ 3.45207, -3.38579, 3.86976 ], [ 3.20287, -3.38315, 6.97314 ], [ 2.91603, -3.37795, 10.5469 ], [ 1.59759, -1.53629, 3.72294 ], [ 1.34975, -1.53226, 6.82643 ], [ 1.73213, -3.39397, 2.09239 ], [ 1.22207, -3.38682, 8.45783 ], [ 1.4771, -3.39034, 5.27512 ], [ 3.59506, -1.53136, 2.02867 ], [ 3.32403, -1.52838, 5.42103 ], [ 3.05301, -1.52531, 8.81336 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
13064293652644121072906118103268153347720608450192610161076220701688356359817227763308842701487634568310098568595729539954351188464096710874570068607089258
1
VASP
DFT
null
[ [ 0.004632, 0.004373, 0.000341 ], [ 0.106535, -0.001706, -1.393935 ], [ -0.107201, 0.001148, 1.394247 ], [ -0.00389, -0.004355, -0.000321 ], [ 0.111707, 0.004489, -1.393538 ], [ -0.112366, -0.003437, 1.393688 ], [ 0.103364, 0.002429, -1.346102 ], [ -0.103541, -0.002487, 1.346213 ], [ 0.00036, -0.001635, -0.000694 ], [ 0.034664, -0.007081, -0.343712 ], [ 0.000255, 0.001233, -0.00001 ], [ -0.034519, 0.007029, 0.343822 ] ]
null
[ [ 0.0644651773463202, -0.000431350695689792, -0.00018843116051041556 ], [ -0.000431350695689792, 0.06452584481502377, -0.000739244340869613 ], [ -0.00018843116051041556, -0.000739244340869613, 0.07584145119988508 ] ]
true
null
null
-78.292106
null
0.749942
1.398363
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:18:53
7180100854860652206199543194053103149535359946093332869825415222830201473995234303628376218429484326125856288151686346511349732438876615435151163443942759
PO_7180100854860652206199543
null
null
null
[ "train_2nd_stage_783" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7415613625653550636245403773795732863761514667179685265000229865961388647280817498708254010241700814228491005975373454405802097056852759729273664832602590
CO_7415613625653550636245403
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ti4
Al3Ti2
A3B2
[ 13, 13, 13, 13, 13, 13, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.6, 0.4 ]
2
10
[ [ 2.90088, 0.303584, 2.77516 ], [ -1.52024, -5.37102, 5.09703 ], [ 3.06023, -3.5349, -2.81217 ] ]
[ [ 5.57263, -3.09146, 0.38695 ], [ 0.10386, -3.76626, 3.25693 ], [ 1.40582, -1.40443, 1.63764 ], [ 1.89816, -5.31054, 4.4706 ], [ 1.65343, -5.55618, 1.83297 ], [ 2.91649, -3.14941, 0.24943 ], [ 3.00698, -3.24914, 3.08605 ], [ -0.25432, -6.76755, 3.9597 ], [ 3.304, -7.30906, 3.21973 ], [ 4.46381, -5.15286, 1.7715 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12855095608516541920585585388947407230660594583337631581486603904444813439439935324935354672339888946333042197935356224188677891102447544926696885892507008
1
VASP
DFT
null
[ [ 0.039616, 0.070218, -0.0451 ], [ 0.198162, 0.097783, -0.216595 ], [ -0.197882, -0.098046, 0.216339 ], [ -0.039546, -0.070116, 0.045149 ], [ 0.019224, 0.304439, -0.052196 ], [ -0.019625, -0.304003, 0.05251 ], [ -0.181391, -0.329651, 0.216748 ], [ 0.049398, 0.086696, -0.055241 ], [ -0.049721, -0.08726, 0.05546 ], [ 0.181767, 0.329939, -0.217074 ] ]
null
[ [ 0.018754361791271493, -0.006110874339878522, 0.013695493814560597 ], [ -0.006110874339878522, 0.00025627636470876655, 0.009655864278106436 ], [ 0.013695493814560597, 0.009655864278106436, 0.015993555059619555 ] ]
true
null
null
-56.392905
null
0.251962
0.434764
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:33:33
2712675054403241247268146044299549641002976065383794151967428925684860026046330802328990629813624054597446382604941823708238554809038325315861509043582065
PO_2712675054403241247268146
null
null
null
[ "train_2nd_stage_832", "train_2nd_stage_833" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5396091347601720530153747085991776724844214189561646492851525777474428315271299773219539375366680712182477913797243301161696527206105682714889455731873848
CO_5396091347601720530153747
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ti8
AlTi2
A2B
[ 13, 13, 13, 13, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
12
[ [ 5.83826, 0, 0 ], [ 0, 3.84933, 0 ], [ 0.000001, 0, 8.75163 ] ]
[ [ 3.7114, 0.96233, 5.19152 ], [ 5.046, 2.887, 0.81571 ], [ 0.79227, 0.96233, 7.93593 ], [ 2.12687, 2.887, 3.56011 ], [ 0.66378, 0.96233, 2.13482 ], [ 2.25535, 2.887, 6.51064 ], [ 3.58291, 0.96233, 2.24099 ], [ 5.17448, 2.887, 6.61681 ], [ 0.72747, 0.96233, 5.09523 ], [ 2.19166, 2.887, 0.71941 ], [ 3.6466, 0.96233, 8.03222 ], [ 5.11079, 2.887, 3.65641 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11320204577121722779627756949924621072077049338033464253440458610559916483977825133216197600248211149822980748978969345336830939103875698028715222271702012
1
VASP
DFT
null
[ [ -0.054932, 0.000016, -0.499884 ], [ 0.056144, -0.000017, -0.500791 ], [ -0.05621, 0.000015, 0.50032 ], [ 0.056868, -0.000018, 0.499179 ], [ 0.081689, 0.000026, -0.189607 ], [ -0.080295, -0.000017, -0.186962 ], [ 0.081441, 0.000022, 0.188657 ], [ -0.081481, -0.000018, 0.189766 ], [ 0.247507, 0.000021, -0.184033 ], [ -0.249537, -0.000023, -0.184576 ], [ 0.248413, 0.000015, 0.184086 ], [ -0.249608, -0.000021, 0.183845 ] ]
null
[ [ -0.0028312733696831635, -1.8724527377649775e-7, -0.00003913426221928803 ], [ -1.8724527377649775e-7, -0.03480003345209218, -6.241509125883259e-8 ], [ -0.00003913426221928803, -6.241509125883259e-8, 0.006638968427019503 ] ]
true
null
null
-80.701552
null
0.339386
0.503928
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:12:09
13043048468306993659497772909930127499937258597487624797830225429031822715254093663249465087775105022535313788708194104281988835979042655751583450438683200
PO_1304304846830699365949777
null
null
null
[ "train_2nd_stage_487" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
13093603617430370878244893167883113794454446234775972586258605378760255300684412172725478183330791893120184842248263958548145064287419051588182566708460561
CO_1309360361743037087824489
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al7Ni2Ti
Al7Ni2Ti
A7B2C
[ 13, 13, 13, 13, 13, 13, 13, 28, 28, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.7, 0.2, 0.1 ]
3
10
[ [ -2.81062, -2.81062, 0 ], [ -1.06823, 1.06823, -3.67748 ], [ 6.54993, -6.54993, -1.65617 ] ]
[ [ 6.06579, -6.06579, -1.91216 ], [ -0.60199, -2.20863, -1.00395 ], [ 0.27732, -0.27732, -2.84741 ], [ 0.25591, -3.06653, -3.65139 ], [ 2.20384, -2.20384, -1.81759 ], [ 2.23414, -5.04477, -4.80065 ], [ 4.17283, -4.17284, -2.9615 ], [ 1.84148, -4.6521, -2.42349 ], [ 2.58799, -2.58799, -4.1898 ], [ 4.08546, -6.89608, -3.72714 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5580413355084525475196531930186631009797093395785620859163413881195799307812376725913952802857635819363831126652352417227008882201994403949578183140133356
1
VASP
DFT
null
[ [ -0.247852, 0.247835, 0.14412 ], [ 0.163935, -0.163917, -0.095957 ], [ 0.107972, -0.107982, -0.062795 ], [ 0.042462, -0.042466, -0.023881 ], [ -0.277135, 0.277124, 0.161208 ], [ -0.009017, 0.009043, 0.006454 ], [ 0.014843, -0.014779, -0.009863 ], [ -0.048605, 0.048556, 0.027554 ], [ 0.070268, -0.070267, -0.041569 ], [ 0.183128, -0.183146, -0.105272 ] ]
null
[ [ -0.0004301023938646153, 0.0032677421028561794, 0.0021010168019548222 ], [ 0.0032677421028561794, -0.0004297903184083212, -0.0021008919717723047 ], [ 0.0021010168019548222, -0.0021008919717723047, 0.002381260561706981 ] ]
true
null
null
-48.804642
null
0.178217
0.42378
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:34:42
4165748998512057194299745593799082157825035786280890908671584633697044470192017089148421856822236982239920073716094871732123748323447211217734145567591681
PO_4165748998512057194299745
null
null
null
[ "train_1st_stage_1021" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
246019172657083892071468611990863867657220672496837033104221979753713482058458360782595673602482856225834842314404905973423820860015274974737616050591873
CO_2460191726570838920714686
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni2Ti
Ni2Ti
A2B
[ 28, 28, 22 ]
[ "Ni", "Ti" ]
[ 0.6666666666666666, 0.3333333333333333 ]
2
3
[ [ 1.66884, -2.89052, 0 ], [ 1.66884, 2.89052, 0 ], [ 0, 0, 4.4342 ] ]
[ [ 1.66884, 0.96351, 1.49294 ], [ 1.66884, -0.96351, 2.94125 ], [ 0, 0, 0 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6366283019407197814178299786319862206300515673525910408710880937695427818119132532241739054132167466489020459582021458644804269215405025335460197766051379
1
VASP
DFT
null
[ [ -0.000002, -0.000001, 0.565343 ], [ 0.000001, 0, -0.564934 ], [ 0.000001, 0.000001, -0.00041 ] ]
null
[ [ -0.008689803495602225, 0, -6.241509125883259e-8 ], [ 0, -0.008689990740876001, 6.241509125883259e-8 ], [ -6.241509125883259e-8, 6.241509125883259e-8, -0.0010292872699494081 ] ]
true
null
null
-18.446897
null
0.376896
0.565343
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:32:52
9410480993670735205214812077170811896510614896027795317001287211977230657299585698498654507171085527138987630622651857316393180784598947554338272560933361
PO_9410480993670735205214812
null
null
null
[ "train_1st_stage_2336" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5451913686786769774457513432549692852517173658863579039625261915391955551187915060132047943889413174402541081759780502097787173553952942970456417901795627
CO_5451913686786769774457513
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni4
Al3Ni2
A3B2
[ 13, 13, 13, 13, 13, 13, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.6, 0.4 ]
2
10
[ [ 3.588111, -1.589485, 0.919684 ], [ -4.386755, -4.449413, -8.225877 ], [ 1.776046, 3.511449, -0.873077 ] ]
[ [ 3.43224, -1.55775, 0.67833 ], [ 2.52626, 0.99255, -0.218 ], [ 2.84446, 0.16946, -2.88306 ], [ 0.16263, -0.79221, -2.90612 ], [ 0.48082, -1.61531, -5.57124 ], [ -2.2012, -2.57646, -5.59449 ], [ 1.79105, -1.15875, -1.06173 ], [ -0.56001, -2.97546, -3.85441 ], [ -1.13405, -1.28312, -7.528 ], [ -0.24565, -3.78904, -6.48705 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3235520600525003991093275259137055763183110408922566576708907139586373257551693924067491677078276916145605935522395425125922421138559379547785571057706237
1
VASP
DFT
null
[ [ 0.000443, -0.001276, -0.004305 ], [ 0.000491, -0.001379, -0.004233 ], [ 0.000118, -0.000356, -0.000605 ], [ 0.000023, -0.000025, -0.000727 ], [ -0.000577, 0.00162, 0.005068 ], [ -0.000601, 0.001545, 0.005085 ], [ -0.000367, 0.001037, 0.003334 ], [ 0.000289, -0.00107, -0.003191 ], [ 0.000153, 0.001032, 0.002687 ], [ 0.000026, -0.001128, -0.003113 ] ]
null
[ [ 0.003173308069781566, -0.000012670263525543014, -0.000027649885427662832 ], [ -0.000012670263525543014, 0.0031815468618277315, 0.000012919923890578343 ], [ -0.000027649885427662832, 0.000012919923890578343, 0.0032453350850942587 ] ]
true
null
null
-49.917392
null
0.003421
0.005352
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:37:21
5537877601056486665238486169683894833373156712577880522508915785430726164374905306563321151535806698882181870013680067611607754329903247794036008379072747
PO_5537877601056486665238486
null
null
null
[ "train_1st_stage_16" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9262789295375869311330522800609247360103002520998955748654587740109772594756252740879466047653766653864993932279311410839622221239410485080697550869906787
CO_9262789295375869311330522
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ti2
Ti
A
[ 22, 22 ]
[ "Ti" ]
[ 1 ]
1
2
[ [ 2.78211, 0.250045, 0 ], [ -1.16258, 2.53967, 0 ], [ 0, 0, 4.56116 ] ]
[ [ -0.79629, 2.35231, 0 ], [ 1.17611, 1.20737, 2.28058 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9887072963099498374089641993373907093586612855933840848126522464394847754264240495932624365133232086527034730767457421653383798238563784359514159726091310
1
VASP
DFT
null
[ [ -0.000314, -0.000033, 0.000002 ], [ 0.000314, 0.000033, -0.000002 ] ]
null
[ [ 0.0026968936782028967, -0.00003089547017312213, -1.2483018251766518e-7 ], [ -0.00003089547017312213, 0.002670055188961599, -6.241509125883259e-8 ], [ -1.2483018251766518e-7, -6.241509125883259e-8, 0.002332701620707609 ] ]
true
null
null
-15.429114
null
0.000316
0.000316
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:26:31
10714793158358517456353303009644855622908428261940635868306060093151324796772278836220581825599552548364416857489345839449438996307111472995528239122678277
PO_1071479315835851745635330
null
null
null
[ "train_1st_stage_2085" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12152141297573325031907150788592481201140840864110021965665472940163094491210477940277719735175882652944863659030011864010220574958066370464337970081233973
CO_1215214129757332503190715
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni5Ti9
Ni5Ti9
A9B5
[ 28, 28, 28, 28, 28, 22, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.35714285714285715, 0.6428571428571429 ]
2
14
[ [ 3.14274, 0.406956, 3.85031 ], [ -4.135, 2.65319, 4.45173 ], [ -2.56488, -4.77362, 3.76702 ] ]
[ [ 2.56337, 0.42758, 3.79551 ], [ 0.10389, 1.28752, 4.10446 ], [ -1.34189, 0.54815, 8.8199 ], [ -0.95509, -2.83637, 3.11701 ], [ -1.45723, 1.06489, 2.17169 ], [ -1.77279, -0.58193, 4.18264 ], [ -0.48527, -1.82978, 7.73346 ], [ -2.35235, 2.05225, 4.38596 ], [ -1.4866, -3.13965, 5.44659 ], [ -0.8542, 0.84803, 6.55724 ], [ 0.55022, -0.94279, 2.49677 ], [ 0.83881, -0.98721, 5.31427 ], [ -3.06457, -1.17106, 6.58009 ], [ -2.87549, -1.2486, 9.50288 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3514204147724823585609675410816850233531739288768051434769426030618500234083330640668157819445683507635741599526929042737371394414147865075726307720152426
1
VASP
DFT
null
[ [ -0.153077, 0.165789, 0.287802 ], [ 0.035083, -0.044191, 0.091136 ], [ 0.014241, -0.243852, 0.08095 ], [ -0.031927, -0.041539, 0.082831 ], [ 0.004205, -0.07622, -0.062128 ], [ 0.500866, 0.339329, 0.260895 ], [ -0.344878, -0.424026, -0.333885 ], [ -0.189147, -0.272078, -0.135453 ], [ 0.022982, -0.029436, 0.26783 ], [ -0.014937, 0.184184, -0.146338 ], [ 0.015371, 0.12252, -0.201588 ], [ 0.07155, 0.398592, -0.187273 ], [ -0.011719, 0.044751, -0.102709 ], [ 0.081387, -0.123823, 0.097931 ] ]
null
[ [ -0.009509563304195731, 0.0014526488339580694, 0.000945838292936349 ], [ 0.0014526488339580694, -0.02122780944276777, 0.003866302828028384 ], [ 0.000945838292936349, 0.003866302828028384, -0.003546175824961832 ] ]
true
null
null
-101.307262
null
0.29021
0.658845
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:45:04
11264827184425121684475727418801913106545624264516776516271145901125659277518882008671584546414448828270041092560114962799233635408704963625901941386524302
PO_1126482718442512168447572
null
null
null
[ "train_1st_stage_1174" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7570893387428208727506529581538921509162460521015834139542910813268527463977904661828669004667471690808571994539663144639036100380132898455178971059249884
CO_7570893387428208727506529
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al5NiTi2
Al5NiTi2
A5B2C
[ 13, 13, 13, 13, 13, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.625, 0.125, 0.25 ]
3
8
[ [ -2.01075, 1.85813, 7.75195 ], [ 1.85813, -2.01075, 7.75195 ], [ 2.01056, 2.01056, -7.71387 ] ]
[ [ -0.07631, -0.07631, 7.75195 ], [ 1.87576, -0.05868, 5.9706 ], [ -0.05868, 1.87576, 5.9706 ], [ -0.01782, 1.91662, 1.81943 ], [ 1.91662, -0.01782, 1.81943 ], [ 0, 0, 0 ], [ -0.11447, -0.11447, 11.6287 ], [ 1.97241, 1.97241, -3.83866 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
1230954455077681104679657081944984642660693567652430504196711337223195405680079139496724151182928520650706585593617653301598778815307881492584876212102893
1
VASP
DFT
null
[ [ -0.000014, -0.000014, 0.000047 ], [ 0.004342, 0.003881, -0.381391 ], [ 0.003881, 0.004341, -0.381391 ], [ -0.00434, -0.003883, 0.381449 ], [ -0.003882, -0.00434, 0.381449 ], [ 0.000002, 0.000001, 0.000004 ], [ 0.001549, 0.001552, -0.097828 ], [ -0.001539, -0.001538, 0.097662 ] ]
null
[ [ -0.024949122013801887, 0.0001367514649481022, -0.00004937033718573657 ], [ 0.0001367514649481022, -0.024949184428893146, -0.00004930792209447774 ], [ -0.00004937033718573657, -0.00004930792209447774, -0.017898463644839123 ] ]
true
null
null
-42.268888
null
0.215182
0.381493
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:47:20
13281046926036454280447095923214544153679924176454689110073663145055436431432238842580366471628025500291061478941202266461828583313685132188627041723419404
PO_1328104692603645428044709
null
null
null
[ "train_2nd_stage_146" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
151439513125914210217751660712796061874952846469536672113791826003371714715687971533586545292913012854676709280944516904778652902963533862033200120132349
CO_1514395131259142102177516
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni4
AlNi
AB
[ 13, 13, 13, 13, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.5, 0.5 ]
2
8
[ [ 3.27003, 0, 0 ], [ -1.63501, 2.83193, 0 ], [ 0, 0, 11.8093 ] ]
[ [ 0, 0, 2.95233 ], [ 0, 0, 8.85699 ], [ 0, 1.88795, 8.85699 ], [ 1.63501, 0.94398, 2.95233 ], [ 0, 1.88795, 1.48798 ], [ 1.63501, 0.94398, 7.39264 ], [ 1.63501, 0.94398, 10.3213 ], [ 0, 1.88795, 4.41669 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11318264889713209301723655471378292889804252919654661892186003577306460545007724438920874132129067848747099826240657433143503998616124055545673639779478503
1
VASP
DFT
null
[ [ -0.000218, -0.000068, 0.000114 ], [ -0.000281, -0.000133, -0.000183 ], [ 0.000217, 0.000146, -0.000172 ], [ 0.000216, 0.000029, 0.000119 ], [ 0.000001, 0.00002, -0.467035 ], [ 0.000032, -0.000006, -0.467131 ], [ 0.000032, -0.000007, 0.46745 ], [ 0, 0.000019, 0.466839 ] ]
null
[ [ 0.4054087992344271, -6.241509125883259e-8, -6.241509125883259e-8 ], [ -6.241509125883259e-8, 0.4054098602909784, 0 ], [ -6.241509125883259e-8, 0, -0.026545013482198978 ] ]
true
null
null
-18.192244
null
0.233704
0.46745
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:57:06
9201586386531276001859748686888858336745025779409908047955934129997413483551079344985165207436105468609287475755451944818478449043364751242469626141490292
PO_9201586386531276001859748
null
null
null
[ "train_1st_stage_2149" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
1568779297686093635736596394407049511882238844932932729554999424058340674611557260434320942457059035463749251331172176117334689212703533507126802612179379
CO_1568779297686093635736596
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni6Ti3
AlNi2Ti
A2BC
[ 13, 13, 13, 28, 28, 28, 28, 28, 28, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.25, 0.5, 0.25 ]
3
12
[ [ 3.57902, 1.04507, 0.493032 ], [ 0.183226, 5.62547, 4.05048 ], [ 0.082665, -5.08826, 3.88477 ] ]
[ [ 3.38588, 6.50491, 4.51204 ], [ 2.14906, -0.94767, 4.20116 ], [ 2.88405, 2.4519, 6.17056 ], [ 3.47147, 1.13625, 4.46875 ], [ 0.86406, -3.10527, 4.20592 ], [ 1.00507, 2.27754, 3.8439 ], [ 2.16237, 4.50842, 4.37087 ], [ 1.71208, 0.30757, 2.19174 ], [ 0.49793, -1.0124, 5.965 ], [ 1.8688, 1.39776, 6.09948 ], [ 2.9572, 2.82592, 2.75283 ], [ 0.48014, -1.64074, 1.91077 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2539757677800719483590956937587334815451396929355003469905862560375480912995500300951898161556287262811215175486378267828930758880638267753820104900191090
1
VASP
DFT
null
[ [ 0.382223, 1.130962, -0.312777 ], [ 0.002862, -0.215966, 0.851289 ], [ 23.343606, 26.472102, 1.604112 ], [ 0.963718, -0.653461, -2.034248 ], [ 0.604718, 0.708358, -0.274018 ], [ 0.003015, 0.383426, 1.003688 ], [ 0.50428, -0.549273, -1.301336 ], [ -0.294952, 1.539094, 1.035976 ], [ 0.415614, -0.42227, 0.825544 ], [ -25.000993, -26.808618, -0.909115 ], [ -0.423508, -0.314486, -1.466491 ], [ -0.500584, -1.269868, 0.977377 ] ]
null
[ [ 0.19418152528318305, 0.1776893360594967, -0.03321962092632728 ], [ 0.1776893360594967, 0.1876857370755113, -0.0033122440629237276 ], [ -0.03321962092632728, -0.0033122440629237276, 0.06270794286701903 ] ]
true
null
null
-57.92219
null
7.177729
36.66849
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:25:07
10038875170450520933981410571862507233806931897389355073477053498133079875733084620005395996707712344903881713599669695764758624188958634820593895253188549
PO_1003887517045052093398141
null
null
null
[ "train_1st_stage_1651", "train_1st_stage_1251", "train_1st_stage_1851", "train_1st_stage_1451" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
8492798505929808201501385223037264625926410423830078184867911978658210496070289673389184330575814095104373167499816299703853671666652765985036878775990250
CO_8492798505929808201501385
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ti5
Al3Ti5
A5B3
[ 13, 13, 13, 22, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.375, 0.625 ]
2
8
[ [ 3.94873, -0.010425, 0.000619 ], [ 0.000628, 0.000951, -3.98906 ], [ 1.99574, 7.97763, -1.99234 ] ]
[ [ 3.94944, 0.02173, -3.98844 ], [ 1.98026, 1.99133, -3.98828 ], [ 3.95981, 3.95051, -3.98751 ], [ 1.99086, 6.00734, -3.98734 ], [ 1.97486, 0.06458, -1.99421 ], [ 3.95431, 1.98564, -1.99344 ], [ 1.98503, 3.91713, -1.9933 ], [ 3.96478, 5.952, -1.99251 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12884457408896103200184582360813936547602614850241519047864469325344687761360643257688614312832077460098777586452302787620816676148905024443965386274711579
1
VASP
DFT
null
[ [ -0.000661, -0.299103, -0.000237 ], [ -0.000002, 0.000358, -0.000027 ], [ 0.000679, 0.299094, 0.000258 ], [ 0.00099, 0.246609, -0.000081 ], [ -0.00042, -0.221222, -0.000036 ], [ 0.000013, 0.000253, -0.000048 ], [ 0.000455, 0.220982, 0.00009 ], [ -0.001054, -0.246972, 0.000081 ] ]
null
[ [ -0.022598944167541806, -0.00003401622473606376, -0.000004493886570635946 ], [ -0.00003401622473606376, -0.038283794185795174, 0.000007614641133577575 ], [ -0.000004493886570635946, 0.000007614641133577575, -0.01965719608633051 ] ]
true
null
null
-52.864306
null
0.191826
0.299104
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:14:44
5523163654139308561012211387710479783946745208410116889793641156694173251497888877347218094016081398279034072776393662922452421693580077199834288450345109
PO_5523163654139308561012211
null
null
null
[ "train_1st_stage_558" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10620517315573995232085897795025746393386738611578297113804387207636022835579853207699347084859361970198428545600146099786215515239964650741525620885419472
CO_1062051731557399523208589
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni3Ti5
Ni3Ti5
A5B3
[ 28, 28, 28, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.375, 0.625 ]
2
8
[ [ 0, 3.00176, 0 ], [ 4.32909, 0, 4.32909 ], [ 4.32909, 0, -4.32909 ] ]
[ [ 0, 0, 0 ], [ 4.32909, 0, 0 ], [ 2.16455, 0, 2.16455 ], [ 2.16455, 1.50088, 0.04057 ], [ 6.49364, 1.50088, -0.04057 ], [ 4.28852, 1.50088, 2.16455 ], [ 2.16455, 0, -2.16455 ], [ 4.36966, 1.50088, -2.16455 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
13072384827100919020897421994700114240029622250350527222992924937649382267809284377519598564034843919719647140094171058502291567733541663988297562987861082
1
VASP
DFT
null
[ [ 0.000077, 0.000001, 0.000176 ], [ 0.000187, -0.000001, -0.000034 ], [ -0.000083, 0, 0.000117 ], [ 0.000419, -0.000002, 0.333331 ], [ -0.000184, -0.000004, -0.333672 ], [ -0.333301, 0.000005, -0.000042 ], [ 0.000261, 0.000002, 0.000053 ], [ 0.332625, -0.000001, 0.000071 ] ]
null
[ [ -0.010611688985644198, -1.8724527377649775e-7, 9.986414601413214e-7 ], [ -1.8724527377649775e-7, -0.010632660456307166, -3.120754562941629e-7 ], [ 9.986414601413214e-7, -3.120754562941629e-7, -0.010708682037460423 ] ]
true
null
null
-57.543908
null
0.166715
0.333672
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:36:01
2009132337040862724673579721858451724115817238289839567391057282753335159525381346908772427929039995037333434298678229672776345337954938027661998131217755
PO_2009132337040862724673579
null
null
null
[ "train_1st_stage_862" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
989826930519571591394722399091441470534313806695691613481677126233217968200511282902255597610244174785362043721153446545128671173066550629611847423070591
CO_9898269305195715913947223
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni4Ti6
Ni2Ti3
A3B2
[ 28, 28, 28, 28, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.4, 0.6 ]
2
10
[ [ -0.075362, -4.93377, -0.093203 ], [ 2.3091, -0.11072, 4.19053 ], [ -4.14733, -2.49813, 4.94785 ] ]
[ [ 1.73899, -0.51477, 4.76667 ], [ -0.31807, -3.98587, 4.4383 ], [ -2.34342, -5.38011, 4.14915 ], [ -1.47263, -3.9305, 2.34303 ], [ -0.30685, -2.73143, 0.36764 ], [ -2.60238, -2.77098, 4.36298 ], [ 1.20382, -4.23157, 2.22738 ], [ -1.84803, -4.26766, 6.63924 ], [ -0.19148, -1.59298, 3.06768 ], [ -0.37232, -1.64223, 5.89839 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
1027232805731977271606537927430027776281206523451429763912033340181315937882942524953812984580435220880515129989885941863894156780873114003144984937925246
1
VASP
DFT
null
[ [ 0.120042, 0.055646, -0.062526 ], [ -0.003573, -0.097182, -0.002423 ], [ -0.11328, 0.059048, 0.069881 ], [ -0.001053, -0.0959, -0.003314 ], [ -0.127763, -0.114927, 0.064165 ], [ 0.121921, -0.114739, -0.072076 ], [ -0.086816, 0.08014, 0.051651 ], [ 0.089404, 0.079164, -0.045341 ], [ 0.046883, 0.07478, -0.025888 ], [ -0.045766, 0.073969, 0.025871 ] ]
null
[ [ -0.0006478686472666822, 0.0001289495785407481, 0.001548268753766601 ], [ 0.0001289495785407481, -0.0020650657093897345, 0.00006584792127806837 ], [ 0.001548268753766601, 0.00006584792127806837, 0.0010909533801131347 ] ]
true
null
null
-71.877015
null
0.129031
0.183436
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:39:26
7010918912162565902368335648033414022115608225205914659967901511170735957448065889516125801220731128021106233606678225650577168580285577861137554664926207
PO_7010918912162565902368335
null
null
null
[ "train_1st_stage_666" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9407610597892660227696382046197143357531696329936034994551442920245659945761291115376086174581757582570047524420441990185775303768971648116809159490463618
CO_9407610597892660227696382
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0