chemical_formula_hill
string
chemical_formula_reduced
string
chemical_formula_anonymous
string
atomic_numbers
list
elements
list
elements_ratios
list
nelements
int32
nsites
int32
cell
list
positions
list
pbc
list
dimension_types
list
nperiodic_dimensions
int32
structure_hash
string
multiplicity
int32
software
string
method
string
adsorption_energy
float64
atomic_forces
list
atomization_energy
float64
cauchy_stress
list
cauchy_stress_volume_normalized
bool
electronic_band_gap
float64
electronic_band_gap_type
string
energy
float64
formation_energy
float64
max_force_norm
float64
mean_force_norm
float64
property_object_metadata
string
property_object_metadata_id
string
property_object_last_modified
timestamp[ns]
property_object_hash
string
property_object_id
string
configuration_metadata
string
configuration_metadata_id
string
configuration_labels
list
configuration_names
list
configuration_dataset_ids
list
configuration_last_modified
timestamp[ns]
configuration_hash
string
configuration_id
string
dataset_name
string
dataset_authors
list
dataset_description
string
dataset_elements
list
dataset_nelements
int32
dataset_nproperty_objects
int64
dataset_nconfigurations
int32
dataset_nsites
int64
dataset_adsorption_energy_count
int64
dataset_atomic_forces_count
int64
dataset_atomization_energy_count
int64
dataset_cauchy_stress_count
int64
dataset_electronic_band_gap_count
int64
dataset_energy_count
int64
dataset_energy_mean
float64
dataset_energy_variance
float64
dataset_formation_energy_count
int64
dataset_last_modified
timestamp[ns]
dataset_dimension_types
list
dataset_nperiodic_dimensions
list
dataset_publication_year
string
dataset_total_elements_ratios
list
dataset_license
string
dataset_links
string
dataset_doi
string
dataset_hash
string
dataset_id
string
dataset_extended_id
string
AlTi
AlTi
AB
[ 13, 22 ]
[ "Al", "Ti" ]
[ 0.5, 0.5 ]
2
2
[ [ 0, 2.5642, 2.5642 ], [ 2.5642, 0, 2.5642 ], [ 2.5642, 2.5642, 0 ] ]
[ [ 0, 0, 0 ], [ 1.2821, 1.2821, 1.2821 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2591936665972185085835024036872141918568541653457164359049544389327593353916830309446708990353435103380452514855985510291230475737870791983307264533813218
1
VASP
DFT
null
[ [ -0.000013, -0.00001, -0.000009 ], [ 0.000013, 0.00001, 0.000009 ] ]
null
[ [ 0.053608446712393815, 1.2483018251766518e-7, 1.2483018251766518e-7 ], [ 1.2483018251766518e-7, 0.05360850912748508, 1.8724527377649775e-7 ], [ 1.2483018251766518e-7, 1.8724527377649775e-7, 0.05360857154257634 ] ]
true
null
null
-6.803269
null
0.000019
0.000019
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:13:59
6705843371142549089331536950271453576382049720331197665351402643485453392026874148238431596458878209110736120742201904519105034841492157976231841022146498
PO_6705843371142549089331536
null
null
null
[ "train_1st_stage_2052" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6890373372079310942347687937588547509361954440471224120150562439607310101272420871032500303897716019016345104750116205572293268984080680894495042164307118
CO_6890373372079310942347687
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni2
Al3Ni
A3B
[ 13, 13, 13, 13, 13, 13, 28, 28 ]
[ "Al", "Ni" ]
[ 0.75, 0.25 ]
2
8
[ [ 4.94008, 0, 0 ], [ 0, 4.94008, 0 ], [ 0, 0, 4.94008 ] ]
[ [ 3.70506, 2.47004, 0 ], [ 1.23502, 2.47004, 0 ], [ 0, 3.70506, 2.47004 ], [ 0, 1.23502, 2.47004 ], [ 2.47004, 0, 1.23502 ], [ 2.47004, 0, 3.70506 ], [ 0, 0, 0 ], [ 2.47004, 2.47004, 2.47004 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5766720544216566482151183134528156977980818762609907425532778709428710790176993699904670796199931366139092944260639878542334523901113494975759609570562238
1
VASP
DFT
null
[ [ 0.000042, -0.000002, -0.000001 ], [ -0.000041, -0.000004, -0.000001 ], [ 0, 0.000042, 0.000003 ], [ 0.000001, -0.000043, 0.000002 ], [ 0.000002, 0, -0.000039 ], [ 0.000001, 0, 0.00004 ], [ -0.000002, 0.000007, -0.000005 ], [ -0.000002, 0, 0.000002 ] ]
null
[ [ -0.02299821350632456, -6.241509125883259e-8, 1.2483018251766518e-7 ], [ -6.241509125883259e-8, -0.02299821350632456, 6.241509125883259e-8 ], [ 1.2483018251766518e-7, 6.241509125883259e-8, -0.02299821350632456 ] ]
true
null
null
-35.27003
null
0.000032
0.000043
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:41:54
2401868040318984401299179567302816872542256210756728417633530086094701049823720131999390759902960641034545317156505958260571771973066829353751639283069266
PO_2401868040318984401299179
null
null
null
[ "train_1st_stage_2044" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7622761459083500023555463083720428870699453831707813909502869757352036342436950962802223598923926786717934651327653482206663405539298521904251198121119261
CO_7622761459083500023555463
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni7
Al3Ni7
A7B3
[ 13, 13, 13, 28, 28, 28, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.3, 0.7 ]
2
10
[ [ 2.8698, -0.027363, 2.85486 ], [ -1.44838, -4.2201, 4.28291 ], [ 2.85746, -2.772, -2.89729 ] ]
[ [ 5.66342, -2.85769, 0.0211 ], [ 1.42041, -4.2241, 4.27005 ], [ 1.48325, -4.1424, 1.3388 ], [ -0.01935, -2.86236, 2.8606 ], [ 1.42853, -1.40075, 1.42036 ], [ 2.86068, -2.82735, 2.83684 ], [ -0.00962, -5.55847, 2.82465 ], [ 2.86101, -2.78819, -0.03207 ], [ 2.84914, -5.6101, 2.8214 ], [ 4.28566, -4.21191, 1.39197 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5979603083529042349383741628473338094812859883112613019257379970061882469010155744907418221455245773929421983433086148058537016235811253138182075795004236
1
VASP
DFT
null
[ [ 0.105721, 0.066571, -0.104323 ], [ -0.001481, -0.001207, 0.001437 ], [ -0.105209, -0.068396, 0.103533 ], [ -0.066161, 0.080294, 0.067279 ], [ 0.101688, 0.112298, -0.100586 ], [ -0.101245, -0.109765, 0.100326 ], [ 0.065771, -0.07994, -0.067524 ], [ 0.041978, -0.093752, -0.042288 ], [ 0.000592, -0.00031, -0.00024 ], [ -0.041654, 0.094206, 0.042386 ] ]
null
[ [ -0.001576854865563146, -0.00022219772488144397, -0.0005434481995906553 ], [ -0.00022219772488144397, -0.009265582712464955, 0.00022026285705242018 ], [ -0.0005434481995906553, 0.00022026285705242018, -0.0015606269418358496 ] ]
true
null
null
-53.687815
null
0.116026
0.181848
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:40:07
2309577157390195298626723725839580729601471411759938189329198748715758131426781129370572942906232621472491739343795383542552456318457849303320174706635426
PO_2309577157390195298626723
null
null
null
[ "train_1st_stage_769" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
171078936942832137614005555553821766688588172984973054691977809700788968261935709969048435285292971120342923259899424190363061085969327002201080609780480
CO_1710789369428321376140055
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni2Ti9
Ni2Ti9
A9B2
[ 28, 28, 22, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.18181818181818182, 0.8181818181818182 ]
2
11
[ [ -0.108826, 2.04268, 2.11368 ], [ 5.39076, -0.138541, -1.63525 ], [ -2.25711, 8.81127, -6.58478 ] ]
[ [ -1.61155, 8.64657, -6.39237 ], [ 2.83493, 2.22309, -2.00246 ], [ 1.68583, 2.05053, 0.15182 ], [ 4.74046, 3.4225, -1.0168 ], [ 0.98643, 4.13179, -1.89554 ], [ 3.40672, 3.94134, -3.63354 ], [ -0.63038, 6.61006, -2.32712 ], [ 1.74493, 6.30227, -3.95403 ], [ 3.20742, 6.78977, -6.39653 ], [ 0.12813, 8.78054, -4.3856 ], [ 1.76485, 9.35128, -6.89959 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3435719811220744568685525660786280918362827945300242737224037184562776502325554766960796973136983624823741798934480307452941058309573822823806143460931513
1
VASP
DFT
null
[ [ 1.074059, -0.005004, 0.060721 ], [ -1.073804, 0.004975, -0.061037 ], [ -0.000211, -0.000136, 0.000153 ], [ 0.105486, 0.39329, -0.375104 ], [ -0.318075, 0.370096, -0.374256 ], [ 0.35979, 0.630294, -0.590375 ], [ -0.002174, -0.010663, 0.011275 ], [ 0.001709, 0.010974, -0.011368 ], [ -0.359509, -0.630543, 0.590334 ], [ 0.318299, -0.370265, 0.374682 ], [ -0.10557, -0.393017, 0.374975 ] ]
null
[ [ 0.005738505905428326, 0.006595215448047062, -0.005780199186389226 ], [ 0.006595215448047062, -0.007191279569568913, 0.0017583579509438316 ], [ -0.005780199186389226, 0.0017583579509438316, -0.007696217657852869 ] ]
true
null
null
-82.148231
null
0.581071
1.075786
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:06:06
7095955504875574940030579530897403421771472743111725429540451113911769554951565559818459888482294718492399449012920265159625918083334540201827531269037259
PO_7095955504875574940030579
null
null
null
[ "train_1st_stage_463" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
3342565074435382364791835740066021562617137918684962917028648075636043320336289665378278833631275797727927841644508835990571620229110798777873092793811874
CO_3342565074435382364791835
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
NiTi5
NiTi5
A5B
[ 28, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.16666666666666666, 0.8333333333333334 ]
2
6
[ [ -1.59169, 1.59152, 1.64156 ], [ 3.13892, 3.13915, 0.000071 ], [ -3.06918, 3.06906, -6.14375 ] ]
[ [ -4.54914, 4.58824, -4.54056 ], [ 0.10466, 3.07382, 0.03658 ], [ -1.34005, 1.37918, -1.50051 ], [ -0.15694, 3.3355, -2.87612 ], [ -3.08245, 3.12161, -2.99378 ], [ -1.54806, 4.72644, -4.70926 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
8026491333956937170631072398529408108229877614617396032222862196032024335479425617629784672515355433479193851236224878178597208020058612201006552077688445
1
VASP
DFT
null
[ [ -0.005027, 0.00487, 0.049278 ], [ -0.614812, 0.61358, 0.24185 ], [ 0.246653, -0.244512, -0.143448 ], [ 0.088327, -0.089186, -0.339791 ], [ -0.200719, 0.201422, 0.251081 ], [ 0.485576, -0.486173, -0.058971 ] ]
null
[ [ 0.01017802893157783, -0.008338656192180034, -0.00033616768152007226 ], [ -0.008338656192180034, 0.010182834893604758, 0.0003300510025767067 ], [ -0.00033616768152007226, 0.0003300510025767067, 0.006117989660282029 ] ]
true
null
null
-44.493306
null
0.459737
0.901646
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:58:23
3054779759623119753572585807457577600482431973925334733628980492528690658365033051552288147235361778940695595613150667808878958331284514290461893679037205
PO_3054779759623119753572585
null
null
null
[ "train_2nd_stage_947" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11053784674491129136557346098469896239561154388573215580392077177538821540035092201160339755128891900125014309523930305958444754189487858525583264833372950
CO_1105378467449112913655734
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni6Ti2
Al2Ni3Ti
A3B2C
[ 13, 13, 13, 13, 28, 28, 28, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.3333333333333333, 0.5, 0.16666666666666666 ]
3
12
[ [ 3.86442, 2.26669, 0.020656 ], [ -0.245637, 3.63079, -0.114082 ], [ -0.003122, -0.016253, 7.787 ] ]
[ [ 0.15675, 0.35953, 0.12135 ], [ -0.01734, 0.25249, 3.89575 ], [ 1.17195, 3.87925, 1.70672 ], [ 3.20336, 4.51305, 5.82272 ], [ 1.04965, 2.31156, -0.04165 ], [ 0.93799, 2.30826, 3.89614 ], [ 2.56185, 4.30194, 7.53143 ], [ 2.31238, 4.27599, 3.87766 ], [ 2.68849, 2.15117, 2.02115 ], [ 2.79323, 2.44215, 5.83813 ], [ 1.66499, 4.28764, 5.7223 ], [ 3.47648, 4.24692, 1.88217 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9382371560886321903065459718199578788166999772419243730780764554440018363074655732762030863913335598498701409352935028445008989634936969745816172133748051
1
VASP
DFT
null
[ [ -4.006791, 0.581347, -4.659596 ], [ -1.206122, 3.415571, 0.270941 ], [ 0.574234, -0.121352, 3.239881 ], [ 37.218087, -5.598093, -3.202262 ], [ 3.84223, -1.194848, -0.575999 ], [ 3.078654, -2.349909, 0.166212 ], [ -2.652665, -1.055535, 9.744435 ], [ 0.295676, -1.264211, -5.258482 ], [ -5.984049, 5.016574, -0.384353 ], [ -3.574973, 13.021779, 0.521729 ], [ -35.174208, -6.867175, -1.105466 ], [ 7.589925, -3.584148, 1.242961 ] ]
null
[ [ 0.6341431942083173, -0.07060813304310576, 0.012604041113717393 ], [ -0.07060813304310576, 0.6548051484337325, -0.007955489946942059 ], [ 0.012604041113717393, -0.007955489946942059, 0.4747325545296086 ] ]
true
null
null
-39.802316
null
11.671218
37.77273
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:24:29
8690957842197043065597987528193186551566241551901189116509666883218683771322652858883309751930836294368743435802736801671307608831646565409882013213721991
PO_8690957842197043065597987
null
null
null
[ "train_1st_stage_1626", "train_1st_stage_1426", "train_1st_stage_1226", "train_1st_stage_1826" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9103445236649939149920254750747407343852414084088046669618000308366147472690037900003326524542014084969696834989653233177552884228261562079414102526019329
CO_9103445236649939149920254
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni5
Al3Ni5
A5B3
[ 13, 13, 13, 28, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.375, 0.625 ]
2
8
[ [ 0.983955, 3.41882, -2.13387 ], [ 3.41882, 0.983955, 2.13387 ], [ 3.01954, -3.01954, -3.44546 ] ]
[ [ 0.98396, 3.41882, -2.13387 ], [ 2.49373, 1.90905, -3.8566 ], [ 2.20139, 2.20139, 0 ], [ 1.24014, 0.96125, -1.92063 ], [ 2.76336, -0.56198, -3.6587 ], [ 2.45757, -0.25619, 0.21324 ], [ 3.71116, 0.69162, -1.72273 ], [ 3.98079, -1.7794, -1.52483 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10781132259720055762907988953790202148735435933030256420958641389550251283422746441000229066731885882625409075798842644260928926951819049911179997429585258
1
VASP
DFT
null
[ [ 0.000829, -0.000837, -0.000977 ], [ -0.001058, 0.001088, 0.001204 ], [ 0.001202, -0.001226, -0.001361 ], [ 0.074213, -0.074247, -0.084642 ], [ -0.074544, 0.074552, 0.085037 ], [ 0.074256, -0.074224, -0.084697 ], [ -0.000277, 0.000281, 0.000318 ], [ -0.074622, 0.074613, 0.08512 ] ]
null
[ [ -0.0002803061748434171, 0.0023596649401314246, 0.001968696808486097 ], [ 0.0023596649401314246, -0.00027918270320075815, -0.0019697578650374973 ], [ 0.001968696808486097, -0.0019697578650374973, -0.001435235023496855 ] ]
true
null
null
-42.717908
null
0.068367
0.135576
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:24:55
11413962675721988993292024341105652981234155324050785443875891757152339856931309192354695323867637197956721077657595248811220873243724712021380333831414194
PO_1141396267572198899329202
null
null
null
[ "train_1st_stage_728" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7649155444788244944896258023565254249293742028074514055801630511794785073866917404287934193170549483555441399048909077093501573455741346029871735287249339
CO_7649155444788244944896258
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni6Ti2
Al2Ni3Ti
A3B2C
[ 13, 13, 13, 13, 28, 28, 28, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.3333333333333333, 0.5, 0.16666666666666666 ]
3
12
[ [ 3.08507, 0.083801, 4.05811 ], [ -1.16775, 6.63157, -0.159824 ], [ -2.95119, -0.451987, 3.68039 ] ]
[ [ 0.8988, 6.06861, 3.82321 ], [ -1.78316, 0.3464, 5.25763 ], [ 1.21731, 0.48992, 6.19765 ], [ -0.67033, 3.87721, 5.7245 ], [ 0.21976, 0.31448, 4.05416 ], [ -1.47201, 2.96435, 3.59749 ], [ 2.57988, 1.9638, 4.02762 ], [ 1.0213, 3.77415, 4.02128 ], [ -2.76987, 4.75293, 3.45732 ], [ 0.36628, 3.14979, 1.80265 ], [ 0.16731, 2.69655, 5.44834 ], [ -1.14351, 5.17615, 2.2567 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11620242934194392793165768666234766867334873035184909392290463929610087195308996956281656714235752538375065226705285264166070347642192157888816044450535220
1
VASP
DFT
null
[ [ 3.193667, -0.267394, 0.020941 ], [ -0.364618, 0.564836, 0.291086 ], [ 0.631228, 0.071839, 1.181897 ], [ -19.436641, 28.792729, 4.952243 ], [ -2.426276, 2.413202, -1.130554 ], [ 1.682527, -1.87817, -1.365042 ], [ -0.632661, -0.551288, 0.086537 ], [ 1.530937, 1.983931, -2.467323 ], [ -2.658482, 1.290764, 2.404331 ], [ -1.532846, -0.533986, 0.830953 ], [ 17.962875, -29.678062, -3.22526 ], [ 2.050289, -2.2084, -1.579811 ] ]
null
[ [ 0.16875804857581403, -0.17666242056301512, -0.07738478916144224 ], [ -0.17666242056301512, 0.2647947139486808, 0.02870276560210808 ], [ -0.07738478916144224, 0.02870276560210808, 0.07239208118146571 ] ]
true
null
null
-50.883419
null
7.92312
35.090297
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:13:43
6895337785870762712513472406823445917152085912297406784895356352913384503640524770071051129052019522674933413039121564316704405407950082529283366730200516
PO_6895337785870762712513472
null
null
null
[ "train_1st_stage_1603", "train_1st_stage_2003", "train_1st_stage_1803", "train_1st_stage_1403" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12990735510659252880032279378474858036615352309796269818763292665410835758952531138079603044483484106513083277185989215692242157072439237807534475355226075
CO_1299073551065925288003227
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
NiTi8
NiTi8
A8B
[ 28, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.1111111111111111, 0.8888888888888888 ]
2
9
[ [ -0.000003, 2.04757, 2.04758 ], [ 2.04758, -2.04757, -0.000006 ], [ 11.9801, 11.9801, -11.9801 ] ]
[ [ 0.00002, 0, 0 ], [ 1.81968, 1.81968, 0.2279 ], [ 3.93101, 1.88343, -1.88343 ], [ 3.93864, 3.93864, -3.93864 ], [ 5.98872, 5.98872, -3.94115 ], [ 8.03895, 5.99138, -5.99138 ], [ 10.089, 8.04146, -5.99389 ], [ 10.0967, 10.0967, -8.04909 ], [ 12.208, 10.1604, -10.1604 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9112956198446847954338306352138507072528078211503159087927235128532829067869772336101739935494003430964612042366670698803084389892710022721387978656872118
1
VASP
DFT
null
[ [ 0.00008, 0.00007, -0.000085 ], [ 0.285112, 0.285076, -0.285093 ], [ -0.242335, -0.24237, 0.242325 ], [ -0.029508, -0.029519, 0.029545 ], [ 0.01173, 0.011821, -0.011753 ], [ -0.012006, -0.011968, 0.011973 ], [ 0.02941, 0.029379, -0.029376 ], [ 0.243077, 0.243059, -0.243084 ], [ -0.285559, -0.285549, 0.285547 ] ]
null
[ [ 0.010654942643886568, 0.0025356130823900734, -0.002536923799306509 ], [ 0.0025356130823900734, 0.010655005058977826, -0.002536986214397768 ], [ -0.002536923799306509, -0.002536986214397768, 0.010655504379707898 ] ]
true
null
null
-67.900787
null
0.219163
0.49459
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:07:46
12689904573540557820113996647703131056480157960632927307073002179165941114978008767442439849651321917201162128925118493427104218575435914812577972248367168
PO_1268990457354055782011399
null
null
null
[ "train_1st_stage_550" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
985341180986049928021117066464931439512025010578756911625158684313527459022906666532851895409744467905549511032911841591037384561110536033989245411935667
CO_9853411809860499280211170
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi5Ti2
AlNi5Ti2
A5B2C
[ 13, 28, 28, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.125, 0.625, 0.25 ]
3
8
[ [ -1.81126, 2.4389, 5.42069 ], [ 1.26386, -3.38647, 5.91041 ], [ 1.64246, 3.39093, -4.94132 ] ]
[ [ 2.90631, 0.00446, 0.96909 ], [ 1.17946, -0.47155, 6.15009 ], [ 0.98121, 1.29608, 1.89394 ], [ 0.11384, 1.14729, 4.49584 ], [ -0.74823, 0.90963, 7.0823 ], [ 1.84329, 1.53373, -0.69252 ], [ -0.90975, 2.68739, 2.71607 ], [ 2.00481, -0.24403, 3.67371 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11194052121619644490293335333373963026463379487235904914035746041881881350048493485712308458609382054459828586157611842859074765120757750479662820612394010
1
VASP
DFT
null
[ [ 0.00006, -0.000025, 0.000006 ], [ -0.00001, -0.00003, 0.000018 ], [ 0.06826, 0.003553, -0.215448 ], [ -0.068261, -0.003534, 0.215403 ], [ 0.067037, 0.037019, -0.208753 ], [ -0.06708, -0.037067, 0.208816 ], [ 0.041266, 0.012469, -0.121587 ], [ -0.041273, -0.012384, 0.121544 ] ]
null
[ [ -0.015805748050021728, 0.0005216653327413227, -0.006502716282801472 ], [ 0.0005216653327413227, -0.014915022282666928, -0.0015506405272344365 ], [ -0.006502716282801472, -0.0015506405272344365, 0.0012796966160798443 ] ]
true
null
null
-50.153855
null
0.144359
0.226031
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:06:41
8302576846882488360540341211815878413883041852396081174115745490274963679603592160484117226523189593317905227670569814249487488878459649709820607255214792
PO_8302576846882488360540341
null
null
null
[ "train_2nd_stage_367" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5435715329972982154484694311469103390213723717910774024641004030703943217514657456192874133415728284348834099219008677646683968462096379903590184227299765
CO_5435715329972982154484694
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni2Ti6
NiTi3
A3B
[ 28, 28, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.25, 0.75 ]
2
8
[ [ 0, 0, 4.45641 ], [ 2.84829, 4.93337, 0 ], [ -2.84829, 4.93337, 0 ] ]
[ [ 0, 5.76208, 3.34231 ], [ 0, 4.10466, 1.1141 ], [ 0, 0.80986, 1.1141 ], [ 0, 9.05688, 3.34231 ], [ -1.4504, 3.2873, 1.1141 ], [ 1.4504, 6.57944, 3.34231 ], [ 1.4504, 3.2873, 1.1141 ], [ -1.4504, 6.57944, 3.34231 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6361509161800826831547777920431409132000781508122401627301304016365256315976733257762595191320469848476909630313472734818154572202546830824274998995479774
1
VASP
DFT
null
[ [ 0.000461, -18.908138, -0.000011 ], [ -0.001341, 18.906291, 0.000007 ], [ 0.000298, -0.447563, 0.000012 ], [ 0.000348, 0.447098, 0 ], [ -15.17272, -8.366017, 0.000006 ], [ 15.174843, 8.368073, -0.000007 ], [ 15.172437, -8.36601, 0.000004 ], [ -15.174324, 8.366267, -0.00001 ] ]
null
[ [ 0.5424856964683529, -0.000027337809971368672, 6.241509125883259e-8 ], [ -0.000027337809971368672, 0.20043121078602122, -1.2483018251766518e-7 ], [ 6.241509125883259e-8, -1.2483018251766518e-7, 0.02490530661973819 ] ]
true
null
null
-38.20446
null
13.502316
18.908138
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:20:41
4357671490525208656231087748065208961042928250595205187699362989558737820048947732931745236807480688539350029354204154002310979972459990241664803404390624
PO_4357671490525208656231087
null
null
null
[ "train_1st_stage_2168" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10186650095235993700221254661119841552880415054918169335143914180706716539586836221885662789957885647645457933414023151830893412256019061195938526541075075
CO_1018665009523599370022125
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni6
Al2Ni3
A3B2
[ 13, 13, 13, 13, 28, 28, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.4, 0.6 ]
2
10
[ [ 0, 2.90562, 0 ], [ 2.90562, 0, 0 ], [ 0, 0, -14.003 ] ]
[ [ 0, 0, -13.8627 ], [ 0, 0, -2.76077 ], [ 0, 0, -5.64101 ], [ 0, 0, -8.54207 ], [ 1.45281, 1.45281, -1.33601 ], [ 1.45281, 1.45281, -4.20089 ], [ 1.45281, 1.45281, -7.06577 ], [ 1.45281, 1.45281, -9.87165 ], [ 0, 0, -11.2024 ], [ 1.45281, 1.45281, -12.5331 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5006056440380421897357560440276592901079998917559335701263598796728131255466622460348638043884378403363278002357382225491152906556983260164747488362563272
1
VASP
DFT
null
[ [ 0, 0, -0.040012 ], [ 0, 0, -0.046669 ], [ 0, 0, 0.04708 ], [ 0, 0, 0.039885 ], [ 0, 0, 0.076988 ], [ 0, 0, -0.000259 ], [ 0, 0, -0.076748 ], [ 0, 0, 0.14422 ], [ 0, 0, -0.000084 ], [ 0, 0, -0.144402 ] ]
null
[ [ -0.0008767447869128213, -6.241509125883259e-8, 0 ], [ -6.241509125883259e-8, -0.0008767447869128213, 0 ], [ 0, 0, -0.001925443150243726 ] ]
true
null
null
-53.058352
null
0.061635
0.144402
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:46:01
9792797869110715007075251712383379997346406244831727391735942938831900504621528921470744061556563516497201853107852795387203816976974988888321128343154000
PO_9792797869110715007075251
null
null
null
[ "train_1st_stage_639" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10865695215614564613613034900388704923066841085742289393037835556543624269689300464748629240791851542796693938768162083676676410030178608417653437214499568
CO_1086569521561456461361303
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni5Ti
Al6Ni5Ti
A6B5C
[ 13, 13, 13, 13, 13, 13, 28, 28, 28, 28, 28, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.5, 0.4166666666666667, 0.08333333333333333 ]
3
12
[ [ 3.72577, -0.679501, 3.46477 ], [ -0.964102, 5.14883, 0.026705 ], [ -3.72704, 0.721235, 3.43482 ] ]
[ [ -3.46546, 0.78043, 3.36418 ], [ 0.24973, 0.0799, 3.52659 ], [ -1.75085, 0.38702, 5.14429 ], [ -1.70648, 0.98368, 1.74088 ], [ -0.26677, 2.47746, 5.17927 ], [ 0.57133, 2.29673, 1.7278 ], [ -1.45138, 2.15607, 3.80269 ], [ 2.28183, 1.4192, 3.12255 ], [ 0.65118, 3.34468, 3.33255 ], [ -3.05811, 4.02329, 3.60774 ], [ -0.75622, 3.75269, 5.18134 ], [ -1.42739, 3.63374, 1.76973 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11540814128560083034375452568833454371684332614910294132796326954981185348795351214103705252234623023618238788194702077769518047267472264212672111673186119
1
VASP
DFT
null
[ [ -1.766921, 2.189543, 0.970932 ], [ -1.232466, 2.578699, -1.195315 ], [ -0.146641, 0.600706, 0.296325 ], [ 1.83047, -1.075187, -0.228634 ], [ 21.22583, -29.026919, 0.163519 ], [ -0.199215, -8.534366, 1.558254 ], [ -4.965986, -2.18318, -7.847907 ], [ -5.028767, -2.046273, 7.812777 ], [ 2.118375, 2.425169, 4.36973 ], [ 1.544621, 3.465053, -6.148347 ], [ -11.888257, 32.159606, 0.595459 ], [ -1.491043, -0.552851, -0.346793 ] ]
null
[ [ 0.2934996640789829, -0.0519087589472333, -0.008999444763337293 ], [ -0.0519087589472333, 0.5039298973148517, -0.015062009822581476 ], [ -0.008999444763337293, -0.015062009822581476, 0.45777949227206693 ] ]
true
null
null
-40.899264
null
10.0966
35.960042
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:23:51
1034135750038967441425535318755315164205346441630894743618948723735409096804787433395912932903434450794864057661958779375152137476386015242885742021402593
PO_1034135750038967441425535
null
null
null
[ "train_1st_stage_1484", "train_1st_stage_1284", "train_1st_stage_1684", "train_1st_stage_1884" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7192420581067511152776716288246316523606153905506692780986854758849707863114885743569162414709116040866085529139564596223815644828418204103290468358888785
CO_7192420581067511152776716
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni6Ti4
Ni3Ti2
A3B2
[ 28, 28, 28, 28, 28, 28, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.6, 0.4 ]
2
10
[ [ -3.01413, -3.01413, 0 ], [ -1.55423, 1.55423, -3.90025 ], [ 4.89712, -4.89712, -1.33834 ] ]
[ [ -1.23546, 1.23545, -3.84914 ], [ -1.76167, -1.25246, -1.38908 ], [ 0.32493, -0.32493, -2.52264 ], [ -1.75551, -1.25862, -3.96283 ], [ 2.0091, -2.0091, -3.81725 ], [ 1.45128, -4.46541, -1.43282 ], [ 1.92251, -1.92251, -1.04421 ], [ -0.26695, -2.74718, -2.76217 ], [ 3.72733, -3.72733, -2.4879 ], [ 1.53787, -4.552, -4.20586 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
13377292958960541410310555875607156517237180857254000237787092896672915424602552886387331859980907257993105597186960926230209419753255377791355962622076777
1
VASP
DFT
null
[ [ -0.006823, 0.006891, 0.18674 ], [ -0.116639, 0.116625, -0.086181 ], [ 0.116356, -0.116354, 0.086343 ], [ 0.006779, -0.006811, -0.187009 ], [ 0.016127, -0.01613, 0.041142 ], [ -0.015882, 0.015879, -0.041544 ], [ 0.177849, -0.17785, 0.060556 ], [ 0.049672, -0.04967, -0.248874 ], [ -0.049554, 0.049568, 0.24928 ], [ -0.177885, 0.177852, -0.060454 ] ]
null
[ [ -0.004950952283924377, -0.004787674405191271, -0.0038274806412653905 ], [ -0.004787674405191271, -0.004951014699015635, 0.0038276054714479076 ], [ -0.0038274806412653905, 0.0038276054714479076, -0.006718110762735704 ] ]
true
null
null
-68.339884
null
0.18754
0.258946
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:20:23
13387757720684060921986105706263165093985460408705445685684014897916019810387585232166095627723412601229955600649231917763294081616735648936121052025270359
PO_1338775772068406092198610
null
null
null
[ "train_1st_stage_1104" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
8701947000347404034854425148403649908342951450960792277491624219264824210715041524751993143326012602597773463250725379283347848016032943054954467650082190
CO_8701947000347404034854425
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni9Ti3
Ni3Ti
A3B
[ 28, 28, 28, 28, 28, 28, 28, 28, 28, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.75, 0.25 ]
2
12
[ [ 3.03595, -2.32514, 2.66113 ], [ -3.22397, -2.55774, -2.65915 ], [ 4.62868, 1.53632, -4.04221 ] ]
[ [ 2.68569, -2.47002, 2.32666 ], [ 1.37234, -3.43592, -1.3266 ], [ 3.38569, -2.23498, -2.38955 ], [ 4.02322, -1.01998, -4.2039 ], [ 1.67317, -1.02732, -1.45973 ], [ 1.1335, -1.28089, 0.9748 ], [ -0.04432, -2.34898, -2.577 ], [ 1.80205, -1.02499, -3.77007 ], [ 4.95657, -0.91971, -1.06673 ], [ 3.4973, 0.39177, -2.33107 ], [ 1.17877, -3.66499, 0.9081 ], [ 2.93616, -2.32992, 0.03444 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9739357422098260887851098810517927705767237148212966975754925322673548814009838387144392517147802865163543411161449089101191512492796614603757746948037899
1
VASP
DFT
null
[ [ 0.255505, 0.791482, 0.192293 ], [ 0.559187, -0.598072, -0.458225 ], [ -1.178947, 0.865703, -0.88888 ], [ 1.326019, 0.06842, -1.483648 ], [ -1.062977, 0.537171, 1.567031 ], [ 0.378921, 0.720191, 0.318456 ], [ 0.066647, -0.20742, -0.899829 ], [ 1.01739, -0.862829, 1.164322 ], [ 0.081257, -0.109947, -0.089991 ], [ -1.283598, -1.862427, -0.175897 ], [ -3.651164, -1.740927, 2.606852 ], [ 3.491759, 2.398655, -1.852483 ] ]
null
[ [ 0.24355947711005324, -0.042610970047678776, 0.01855956429145268 ], [ -0.042610970047678776, 0.20232014110787855, -0.03190603291569388 ], [ 0.01855956429145268, -0.03190603291569388, 0.23055591699718803 ] ]
true
null
null
-72.807127
null
1.908448
4.812224
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:56:35
13072503352488900009999302153083678713344689765941615030284034208855248413706752874230723890019715767646131490718079715648762467884424852347864987201927778
PO_1307250335248890000999930
null
null
null
[ "train_2nd_stage_751" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4346985559138858819364918334435968577296550311240776574193979677993802906283327219350651238400531777472948545667189429542916642449275521317926944659972163
CO_4346985559138858819364918
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2NiTi3
Al2NiTi3
A3B2C
[ 13, 13, 28, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.3333333333333333, 0.16666666666666666, 0.5 ]
3
6
[ [ 1.91381, -6.18072, 0 ], [ 1.91381, 6.18072, 0 ], [ 0, 0, 3.88369 ] ]
[ [ 1.91381, -4.19851, 1.94184 ], [ 1.91381, 4.19851, 1.94184 ], [ 0, 0, 0 ], [ 1.91381, -2.0064, 0 ], [ 1.91381, 2.0064, 0 ], [ 1.91381, 0, 1.94184 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12149374613736391249598063636060195735098521650392263935028402702671793971596336837006964386609575605251107209710302848356973613714489494520084841717516844
1
VASP
DFT
null
[ [ -0.000001, 0.277457, 0.000034 ], [ 0, -0.277361, 0.000034 ], [ 0, 0.000113, -0.000007 ], [ -0.000001, -0.17297, -0.000039 ], [ 0.000001, 0.172753, -0.000038 ], [ 0.000001, 0.000008, 0.000017 ] ]
null
[ [ 0.000662848269168802, 0, 0 ], [ 0, -0.011243392124274842, 0 ], [ 0, 0, 0.012526521570373922 ] ]
true
null
null
-38.253627
null
0.150112
0.277457
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:18:27
8709670827942577458831724907316977215138571601457791657890081626396859443279677414377578641080476972609413869315890729618922104102660177855195216177777151
PO_8709670827942577458831724
null
null
null
[ "train_2nd_stage_536" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
2987670637935384038848382412506528493628158437886245017700993868743268721316246025822124948664840630570258675366932592395052888419046562315281157219202356
CO_2987670637935384038848382
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlTi5
AlTi5
A5B
[ 13, 22, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.16666666666666666, 0.8333333333333334 ]
2
6
[ [ 2.64371, -4.57905, 0 ], [ 2.64371, 4.57905, 0 ], [ 0, 0, 4.24263 ] ]
[ [ 0, 0, 0 ], [ 2.64371, 1.52635, 0 ], [ 2.64371, -1.52635, 0 ], [ 1.32186, -2.28952, 2.12132 ], [ 1.32186, 2.28952, 2.12132 ], [ 2.64371, 0, 2.12132 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10978325102466176951783643602865004464311129704662559301586494842459256706208966896618644829649174068854220922469908956159887946470958202770801503519725302
1
VASP
DFT
null
[ [ 0.00012, 0.000011, -0.000009 ], [ -0.000636, 0.000494, 0.000028 ], [ 0.000779, -0.000871, 0.00003 ], [ -0.000139, -0.000214, -0.000018 ], [ -0.000264, 0.000279, -0.000016 ], [ 0.00014, 0.0003, -0.000015 ] ]
null
[ [ 0.022219335582505585, 0.00006260233653260908, 0 ], [ 0.00006260233653260908, 0.022252602826146543, 0 ], [ 0, 0, 0.027149066735401958 ] ]
true
null
null
-40.293728
null
0.000511
0.001169
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:35:17
10431817045508660957764467374445789045426875023463315148031218423996637518214777622349606023420536870876967345316153733348344410996925037861494845209841768
PO_1043181704550866095776446
null
null
null
[ "train_1st_stage_2153" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
8229033385207344016137216706463070255677546338429356847214157340603309056831979408078108167243208776619715950559371407004020536307168410726919681875133338
CO_8229033385207344016137216
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi4Ti
AlNi4Ti
A4BC
[ 13, 28, 28, 28, 28, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.16666666666666666, 0.6666666666666666, 0.16666666666666666 ]
3
6
[ [ 0, 4.27692, 0 ], [ 2.02145, 0, -4.03029 ], [ -2.45736, 0, -3.5109 ] ]
[ [ -2.43983, 0, -3.50047 ], [ -1.38268, 2.13846, -4.28015 ], [ -0.26798, 0, -4.9802 ], [ -0.09494, 0, -2.48589 ], [ 0.94447, 2.13846, -3.29354 ], [ -1.22904, 2.13846, -1.77057 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3374658151731741925108948244982879707532799032717968387442467707467703155812205880071317865414083743809706884725881842896641994560833593730508968704723157
1
VASP
DFT
null
[ [ 0.096875, 0, 0.139185 ], [ -0.174766, -0.000001, 0.020206 ], [ 0.095042, -0.000002, -0.088335 ], [ -0.115432, -0.000009, 0.05889 ], [ 0.077136, 0.000007, -0.158861 ], [ 0.021146, 0.000006, 0.028915 ] ]
null
[ [ 0.0033902629269972682, 6.241509125883259e-8, -0.006808987135608563 ], [ 6.241509125883259e-8, -0.005945474348042615, 0 ], [ -0.006808987135608563, 0, -0.0015261738114609742 ] ]
true
null
null
-35.986442
null
0.136212
0.176598
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:24:49
1714616582634214221660158907628191892540260031466247527881886053174671773356759209183180097839168213445394741011064030253279929851339393922222433570343611
PO_1714616582634214221660158
null
null
null
[ "train_2nd_stage_704" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
8798520199234510680802772707280598342030126756234554355425655099615229320247480838253651535963340795605427899207694585616012545809544918470344532605523910
CO_8798520199234510680802772
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
NiTi3
NiTi3
A3B
[ 28, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.25, 0.75 ]
2
4
[ [ 1.50032, -2.7529, 4.23118 ], [ -1.53148, 2.71627, 4.24371 ], [ -1.34865, -2.23378, -4.25216 ] ]
[ [ -1.51541, 2.50684, 4.24284 ], [ -1.27598, 1.0261, 1.75536 ], [ -0.42325, 0.26845, 4.23721 ], [ 0.23724, -1.71161, 2.47546 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2294398474242592920240177612347343865134014942496245579013481087851231042850824114319647621820940929895413048931684883392543598779311124441506012151434736
1
VASP
DFT
null
[ [ 0.408382, -0.067762, 0.00224 ], [ -0.154339, -0.093892, -0.20729 ], [ -0.097412, 0.256501, 0.000461 ], [ -0.156631, -0.094848, 0.204589 ] ]
null
[ [ 0.00027936994847453466, -0.001448716683208763, 0.000014105810624496162 ], [ -0.001448716683208763, -0.008085250921669174, -0.00001185886733917819 ], [ 0.000014105810624496162, -0.00001185886733917819, -0.008351451285888094 ] ]
true
null
null
-29.425192
null
0.309469
0.413972
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:58:44
11239887577738585062814395804581809162571312848289476455964968159920852331235830893563353939655623481519553552937615598750212522227532880090442248772413455
PO_1123988757773858506281439
null
null
null
[ "train_2nd_stage_122" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
2408854289804768448353745481334415968759648615208346655891711876316483015744726672383922537317454167074644243248960782278037010168964624988818461881595480
CO_2408854289804768448353745
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni7Ti3
Al2Ni7Ti3
A7B3C2
[ 13, 13, 28, 28, 28, 28, 28, 28, 28, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.16666666666666666, 0.5833333333333334, 0.25 ]
3
12
[ [ 3.73545, -1.10799, -0.043301 ], [ -0.925309, 5.01161, 3.37353 ], [ 0.96719, -5.26063, 3.42878 ] ]
[ [ 1.53993, -5.13652, 3.4553 ], [ 1.041, 1.71998, 1.85204 ], [ 0.07421, 0.10977, 3.30685 ], [ 3.19974, -4.0525, 3.42766 ], [ 2.26497, 0.80917, 3.2098 ], [ 1.45018, -1.633, 3.57896 ], [ 0.69546, 3.04916, 3.4925 ], [ 2.02804, -0.4416, 1.9072 ], [ 2.12288, -0.41447, 4.86932 ], [ 0.25057, 1.37485, 4.64098 ], [ 2.79558, -2.35575, 4.88095 ], [ 3.39949, -2.25513, 1.96625 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5139961017038169371129307706012305683256963403216046882317191158327459731996749208496767720490927813234406512745031600438928574629589717540655039071039119
1
VASP
DFT
null
[ [ -4.414662, -1.948526, -1.24737 ], [ -20.791422, -24.463584, 5.710515 ], [ 0.804285, -0.231231, -0.673215 ], [ 4.051791, 0.081374, -0.728761 ], [ 3.208313, 9.469922, 4.724113 ], [ -4.316221, -6.994943, -5.173538 ], [ 0.580501, 3.656827, 0.174476 ], [ -0.955914, -4.271931, -9.562306 ], [ -3.361791, 4.285963, 9.167278 ], [ 5.104485, 5.636024, 8.981327 ], [ 21.544752, 21.632883, -5.031219 ], [ -1.454117, -6.852778, -6.341299 ] ]
null
[ [ 0.38281122819889296, 0.19805450652597614, 0.01564827477477569 ], [ 0.19805450652597614, 0.6820319843728431, 0.05063068512352617 ], [ 0.01564827477477569, 0.05063068512352617, 0.5119064835626391 ] ]
true
null
null
-44.563251
null
11.716889
32.609203
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:55:50
755659632799334396396623589080014594130533308780760453217303717063319541260927401530369271705958614945232369987265428320152322770530236219344778250988062
PO_7556596327993343963966235
null
null
null
[ "train_1st_stage_1483", "train_1st_stage_1283", "train_1st_stage_1683", "train_1st_stage_1883" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12230491144719224524718688264183793022849151312173799815202976959741361948744069996240002173898218665754295416577398954052097534922200552479178766473636429
CO_1223049114471922452471868
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al5Ni4
Al5Ni4
A5B4
[ 13, 13, 13, 13, 13, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.5555555555555556, 0.4444444444444444 ]
2
9
[ [ -2.887472, 0.164664, -2.850128 ], [ 1.348237, 4.641731, -1.094558 ], [ 1.442239, -5.028901, -4.647523 ] ]
[ [ 2.25473, 0.26275, -5.18269 ], [ -1.50179, 1.61682, -4.19027 ], [ -0.92849, -2.2227, -4.99529 ], [ -0.30914, 3.51862, -2.39516 ], [ 0.1931, -0.44967, -3.13527 ], [ -0.16591, 0.05253, -5.63392 ], [ -1.03168, 1.24622, -1.79627 ], [ 0.91564, 1.82274, -3.73421 ], [ 1.49218, -2.01254, -4.544 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10146051972423889181960313846951785913295265883359470188489413450981750487270776329687764083387699790163831095689782101547776529526337279719038092298276852
1
VASP
DFT
null
[ [ 0.001377, -0.001465, -0.001063 ], [ 0.000387, -0.000218, -0.000364 ], [ -0.001697, 0.001566, 0.001398 ], [ -0.004584, -0.007064, 0.003533 ], [ 0.004839, 0.007212, -0.003726 ], [ -0.000427, 0.001552, 0.001672 ], [ 0.002624, -0.005448, -0.004207 ], [ -0.002872, 0.004855, 0.004432 ], [ 0.000352, -0.000991, -0.001674 ] ]
null
[ [ 0.0004493262419723357, 0.00013169584255613674, -0.0001536659546792458 ], [ 0.00013169584255613674, 0.0004777251084951045, -0.0001429305589827266 ], [ -0.0001536659546792458, -0.0001429305589827266, 0.00044320956302897014 ] ]
true
null
null
-46.229564
null
0.004774
0.00945
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:41:02
7616247593397479928822066682861822177103621590717200795127235337400392830421030165357088375011236362784675944338521573563910008622339408103300500651876703
PO_7616247593397479928822066
null
null
null
[ "train_1st_stage_203" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
8274437918044856616389512024866013235903005319055608288605130835963047403316529863265813748902072301631277314954533165966778406688999560076718686226911827
CO_8274437918044856616389512
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al7Ni5
Al7Ni5
A7B5
[ 13, 13, 13, 13, 13, 13, 13, 28, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.5833333333333334, 0.4166666666666667 ]
2
12
[ [ -0.000001, 2.02492, 2.02492 ], [ 6.03729, 1.70717, -1.70717 ], [ 1.06804, 6.58019, -6.58019 ] ]
[ [ 6.94251, 8.0847, -8.0847 ], [ 1.59832, 1.9876, 0.03732 ], [ 3.35947, 2.15296, -2.15296 ], [ 0.40755, 2.37224, -2.37224 ], [ 3.60063, 4.1293, -4.1293 ], [ 6.70135, 6.10835, -6.10835 ], [ 3.85714, 6.15824, -6.15824 ], [ 5.09684, 3.98209, -1.95717 ], [ 1.9999, 4.2531, -2.22818 ], [ 5.15099, 6.13129, -4.10637 ], [ 2.2648, 6.30229, -4.27737 ], [ 5.20514, 8.28048, -6.25556 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12857484365457931893540690051068681294104847027858807348747192080234496712393919500615541580295280224124318795167896581167447803956474543336430527643939208
1
VASP
DFT
null
[ [ 0.088858, 0.166554, -0.166556 ], [ 0.000026, 0.00007, -0.000061 ], [ -0.088764, -0.166487, 0.166486 ], [ -0.176933, -0.075198, 0.075196 ], [ 0.179009, 0.057738, -0.057737 ], [ -0.178882, -0.057955, 0.057954 ], [ 0.176958, 0.075041, -0.075043 ], [ 0.037362, -0.125987, 0.125987 ], [ 0.0618, 0.050851, -0.050851 ], [ -0.000089, 0.000469, -0.000468 ], [ -0.062399, -0.050564, 0.050564 ], [ -0.036947, 0.125469, -0.125469 ] ]
null
[ [ -0.0017138559908762838, -0.0037224360426767753, 0.0037221863823117397 ], [ -0.0037224360426767753, -0.0003400998322693787, 0.0001072915418739332 ], [ 0.0037221863823117397, 0.0001072915418739332, -0.00033991258699560224 ] ]
true
null
null
-59.860255
null
0.155287
0.251748
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:41:17
12700859230156540158104031839216939529844208570133293350246313194944602517597538709899740307711289253513528575611113921275566905088344644929355253727893129
PO_1270085923015654015810403
null
null
null
[ "train_1st_stage_665" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10821464683414554680962280346677000610578839042693026194967188500449895423348159326532647928338914421901966280123961173305771186016594358953402351826090718
CO_1082146468341455468096228
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlTi
AlTi
AB
[ 13, 22 ]
[ "Al", "Ti" ]
[ 0.5, 0.5 ]
2
2
[ [ 0, 0, -3.10147 ], [ 0, 3.10147, 0 ], [ 3.10147, 0, 0 ] ]
[ [ 0, 0, 0 ], [ 1.55073, 1.55073, -1.55073 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11772692914204839733195179885406359280735124054242395017765605486485763013856468531519022972133210740618376157461000275828828627744212931897376723423811200
1
VASP
DFT
null
[ [ -0.000038, -0.000042, 0.000035 ], [ 0.000038, 0.000042, -0.000035 ] ]
null
[ [ -0.011673869008687011, 0, 6.241509125883259e-8 ], [ 0, -0.011673993838869528, -6.241509125883259e-8 ], [ 6.241509125883259e-8, -6.241509125883259e-8, -0.011673432103048198 ] ]
true
null
null
-12.024247
null
0.000067
0.000067
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:35:48
975259801484820475539249952084152449093321910506730023470930132191062404044045713941801196365809193399811184981955542907875724269670136600066615667924709
PO_9752598014848204755392499
null
null
null
[ "train_2nd_stage_593" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
8230844127534194230077902269259690024406089581870618933975791211544817769814017770800606733635978595651698433279123030326903722319142268546398181195277386
CO_8230844127534194230077902
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ti2
AlTi
AB
[ 13, 13, 22, 22 ]
[ "Al", "Ti" ]
[ 0.5, 0.5 ]
2
4
[ [ -1.99297, 4.10267, -2.09692 ], [ -1.99297, 2.09692, -4.10267 ], [ 0.05503, -8.24582, 8.24582 ] ]
[ [ -3.88743, -2.07047, 2.07047 ], [ -0.00221, -6.16012, 6.16012 ], [ -3.91544, 4.09001, -4.09001 ], [ -0.02923, -4.07478, 4.07478 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2592479466801203065153325382729190656448889680552781996280401013518176739788424578596577209045252400200736701487890651703305916192766113452347014349609825
1
VASP
DFT
null
[ [ -0.174038, -0.113615, 0.113612 ], [ 0.17421, 0.113708, -0.11371 ], [ -0.619441, 0.052834, -0.052842 ], [ 0.619269, -0.052926, 0.05294 ] ]
null
[ [ 0.005465002975532121, 0.0004369680539030869, -0.00043703046899434573 ], [ 0.0004369680539030869, -0.005199239516952013, 0.000016789659548625965 ], [ -0.00043703046899434573, 0.000016789659548625965, -0.005199364347134531 ] ]
true
null
null
-24.129962
null
0.430414
0.623932
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:41:07
7116844179432595473902058277408608686345365039848914560931044426771523362356324266735340020503145958207718864615362768928411886145508009277741176288677550
PO_7116844179432595473902058
null
null
null
[ "train_2nd_stage_442" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7802709158318626443327885571703322295746383841181618409525810361297073697153042410049790379308827499952437365636000198398683741533650948534100456739197858
CO_7802709158318626443327885
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi2Ti5
AlNi2Ti5
A5B2C
[ 13, 28, 28, 22, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.125, 0.25, 0.625 ]
3
8
[ [ 0, 2.09529, 2.09529 ], [ 6.7273, 0, 0 ], [ 0, 4.21473, -4.21473 ] ]
[ [ 0, 0, 0 ], [ 3.36365, 2.10737, -2.10737 ], [ 3.36365, 0, 0 ], [ 1.80441, 2.10189, -0.0066 ], [ 4.92289, 4.20814, -2.11284 ], [ 4.92289, 2.10189, -0.0066 ], [ 0, 2.10737, -2.10737 ], [ 1.80441, 4.20814, -2.11284 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5512489738158665818117311768528185008609781759192469986902457436974942255406393083317079291066152241498651268428776117245335880291635369002893068659756041
1
VASP
DFT
null
[ [ 0.002664, 0.000801, -0.000767 ], [ -0.001406, -0.000201, 0.000227 ], [ -0.001657, 0.000395, -0.000377 ], [ 0.113515, -0.091127, 0.091103 ], [ -0.115293, 0.09114, -0.091167 ], [ -0.11371, -0.091466, 0.091463 ], [ 0.003464, -0.000882, 0.000913 ], [ 0.112424, 0.091339, -0.091396 ] ]
null
[ [ -0.004691804825017703, 0.000024029810134650543, -0.00002415464031716821 ], [ 0.000024029810134650543, -0.008371673775455956, 0.002233087135058512 ], [ -0.00002415464031716821, 0.002233087135058512, -0.008371611360364696 ] ]
true
null
null
-56.03079
null
0.087241
0.172946
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:19:49
7149299145722832459349413951831175557104539370720827559637837140945352528597174862334847515933367729137365466838886508404346504055947147867823095984080062
PO_7149299145722832459349413
null
null
null
[ "train_1st_stage_859" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7960065117651550593084589617086061778595125802786515649411918252337601669687346221906888638898027245244182577440527281790505758359100472225858615090626205
CO_7960065117651550593084589
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al5Ti3
Al5Ti3
A5B3
[ 13, 13, 13, 13, 13, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.625, 0.375 ]
2
8
[ [ -2.82794, -2.82794, 0 ], [ -1.25795, 1.25795, -6.09726 ], [ 2.92288, -2.92288, -3.78307 ] ]
[ [ 1.6541, -1.6541, -9.82115 ], [ -1.3631, -1.46484, -1.9972 ], [ 0.11258, -0.11258, -4.05356 ], [ 0.24598, -0.24598, -7.99794 ], [ 1.5207, -1.5207, -5.87678 ], [ -1.34497, -1.48297, -6.12059 ], [ 0.09834, -2.92628, -3.88873 ], [ 0.28371, -3.11165, -7.75413 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7849965827014998795492013096095792411680123055620307908641353593004668795328785705837415364944714643279644265930374636210933047184298047759222207995762457
1
VASP
DFT
null
[ [ -0.009642, 0.009647, -0.053437 ], [ -0.000085, 0.000087, -0.000112 ], [ 0.009445, -0.009436, 0.053451 ], [ -0.036368, 0.036381, -0.022689 ], [ 0.03644, -0.036434, 0.022474 ], [ 0.120349, -0.120361, 0.174697 ], [ 0.000062, -0.000091, 0.000068 ], [ -0.1202, 0.120207, -0.174453 ] ]
null
[ [ -0.0033591802115503695, -0.0014988984165808644, 0.0017453131968707353 ], [ -0.0014988984165808644, -0.003359242626641628, -0.0017453756119619943 ], [ 0.0017453131968707353, -0.0017453756119619943, -0.0012152218268094703 ] ]
true
null
null
-45.467588
null
0.088808
0.243905
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:11:16
346499930458265966201450155600624611868680880563293662656079329881613441831131318167795539379976964652131659602676395325576911743375656654975366831522166
PO_3464999304582659662014501
null
null
null
[ "train_1st_stage_829" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11333407720163950305190738810066913291267436009696711130295016156350445481786126152607429370156368879787257031905628910757693724013848646164155365705818323
CO_1133340772016395030519073
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi5
AlNi5
A5B
[ 13, 28, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.16666666666666666, 0.8333333333333334 ]
2
6
[ [ 0, 3.54977, 0 ], [ 2.50771, 0, -5.01677 ], [ -2.51006, 0, -2.51103 ] ]
[ [ 0, 0, 0 ], [ -1.24819, 1.77489, -3.77239 ], [ -0.01555, 0, -5.00457 ], [ 1.25268, 1.77489, -6.27228 ], [ 0.0132, 0, -2.52323 ], [ 1.24584, 1.77489, -3.75541 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11893000141382582038773243133943385361975705662950728044286601175113554884794939506047976270184184736483316352519351391752642672774408211832196471119267991
1
VASP
DFT
null
[ [ -0.000108, 0.000042, 0.000133 ], [ 0.079009, -0.000041, -0.077779 ], [ 0.047027, 0.000041, -0.043772 ], [ -0.000031, -0.000042, -0.000012 ], [ -0.047034, 0.000041, 0.043768 ], [ -0.078863, -0.000041, 0.077662 ] ]
null
[ [ 0.0024038548247426778, 0, -0.0003649410385903941 ], [ 0, 0.0023857544482776168, 0 ], [ -0.0003649410385903941, 0, 0.0024233283332154337 ] ]
true
null
null
-32.750143
null
0.058379
0.110869
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:44:22
8515584459849829984821152268178688489721176420371150875339272363835059390845938572021875849448879816992177063478279446126906155870391993265593236681336527
PO_8515584459849829984821152
null
null
null
[ "train_1st_stage_547" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5382652845482419556417688575958986557690887222830772642650625692200942035623759006876599113040267643207681573504058250162789426887310408197659116516344863
CO_5382652845482419556417688
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni
Al3Ni
A3B
[ 13, 13, 13, 28 ]
[ "Al", "Ni" ]
[ 0.75, 0.25 ]
2
4
[ [ 0, 0, 3.86228 ], [ 0, 3.86228, 0 ], [ -3.86228, 0, 0 ] ]
[ [ -1.93114, 1.93114, 0 ], [ -1.93114, 0, 1.93114 ], [ 0, 1.93114, 1.93114 ], [ 0, 0, 0 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9634950133576692224089368322489180201612660065039525785281152331955325222104400249238855709134929194982107762757214553840107013014443508866685003280969541
1
VASP
DFT
null
[ [ -0.000004, 0.000005, -0.000008 ], [ -0.000004, -0.000008, 0.000004 ], [ 0.000008, 0.000004, 0.000004 ], [ 0, 0, 0.000001 ] ]
null
[ [ -0.003535440429265313, 0, 0 ], [ 0, -0.003535378014174054, 6.241509125883259e-8 ], [ 0, 6.241509125883259e-8, -0.003535378014174054 ] ]
true
null
null
-17.570024
null
0.000008
0.00001
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:36:20
13097003225773087289654089565225271967000753847519499606873759414260725638380515382140073677058184761806821103691895831048308929964746755172795246275129956
PO_1309700322577308728965408
null
null
null
[ "train_1st_stage_2018" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5085798536862241105152179979603600067920429149414047332047592104519064993961937475588013467132576160364207943470893703443020620010709681146784434350982887
CO_5085798536862241105152179
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni2
Ni
A
[ 28, 28 ]
[ "Ni" ]
[ 1 ]
1
2
[ [ 2.53144, 0, 0 ], [ 1.26572, 2.19229, 0 ], [ 0, 0, 3.99021 ] ]
[ [ 0, 0, 0 ], [ 1.26572, 0.73076, 1.99511 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
8635778322107591383496865844477550073428306898453353361585536348428002444779744365563230146983080504195813975986628548079526158985594384660008949067070879
1
VASP
DFT
null
[ [ 0.000003, 0.000003, 0.000047 ], [ -0.000003, -0.000003, -0.000047 ] ]
null
[ [ 0.005849043032047719, -6.241509125883259e-8, 0 ], [ -6.241509125883259e-8, 0.005849043032047719, 0 ], [ 0, 0, -0.0008995887103135541 ] ]
true
null
null
-10.749134
null
0.000047
0.000047
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:25:33
4869294274403431415514125810668704389950055669003108540621589471097326079176154247912076155638562871655848618301209371727966297946575720266148705214102664
PO_4869294274403431415514125
null
null
null
[ "train_2nd_stage_209" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10090350563668887337081703809700376610565656405682820146178366536568710469153834809089455808818611584320748036006050363725330928534594159509489673978124680
CO_1009035056366888733708170
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi9Ti2
AlNi9Ti2
A9B2C
[ 13, 28, 28, 28, 28, 28, 28, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.08333333333333333, 0.75, 0.16666666666666666 ]
3
12
[ [ 3.6025, -0.000139, 0.246429 ], [ 1.07204, -1.91796, 10.7821 ], [ 0.002452, -3.61072, -0.037884 ] ]
[ [ 1.68176, -3.32866, 1.86812 ], [ 1.0747, -5.22773, 10.7414 ], [ 3.36086, -3.34752, 3.77693 ], [ 3.11779, -3.38499, 7.33026 ], [ 2.87472, -3.42243, 10.8836 ], [ 1.55838, -1.54209, 3.67266 ], [ 1.31532, -1.57956, 7.22597 ], [ 1.19526, -3.40361, 8.97999 ], [ 3.48178, -1.52337, 2.01028 ], [ 3.23785, -1.56093, 5.57623 ], [ 1.43812, -3.36617, 5.42981 ], [ 2.99499, -1.59835, 9.12641 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3256535841454788053701575475943449807175834007800329298879202042590007241132168673420524616297347494093373944411861141249509339542363837506320515573109093
1
VASP
DFT
null
[ [ -0.000068, 0.000069, 0.000842 ], [ -0.0138, -0.001861, 0.191319 ], [ 0.013772, 0.001819, -0.191114 ], [ -0.000696, -0.000665, 0.000131 ], [ -0.01315, -0.001377, 0.190315 ], [ 0.013257, 0.001253, -0.191427 ], [ 0.000658, 0.000757, 0.000362 ], [ -0.020998, -0.003021, 0.305163 ], [ 0, 0.000076, 0.000254 ], [ 0.021004, 0.003101, -0.305457 ], [ 0.005783, 0.001316, -0.091324 ], [ -0.005762, -0.001467, 0.090936 ] ]
null
[ [ 0.007330340392893592, -0.00001891177265142627, 0.00036924767988725355 ], [ -0.00001891177265142627, 0.007360362051789091, 0.000037511469846558375 ], [ 0.00036924767988725355, 0.000037511469846558375, 0.002176102156739198 ] ]
true
null
null
-74.110544
null
0.130333
0.306194
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:15:24
6727801335713768029393112665578603376261417267671229906845263331900397005477585306977986378958828234591070641351386774307449259093465865332719688926188128
PO_6727801335713768029393112
null
null
null
[ "train_1st_stage_1013" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
3546854661618490055386960745592436870968331952796702457205874851460905182400673612695847234184193307319735574954979300189511687512142803710516079637530717
CO_3546854661618490055386960
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ti8
Al3Ti4
A4B3
[ 13, 13, 13, 13, 13, 13, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.42857142857142855, 0.5714285714285714 ]
2
14
[ [ 3.970382, 0.229773, 0.00001 ], [ 1.155875, 14.391349, 0.000005 ], [ 0.000012, 0.000001, 4.019015 ] ]
[ [ 3.94883, 0.55313, 0.00714 ], [ 1.60646, 6.58255, 0.00715 ], [ 1.3717, 10.62514, 0.00715 ], [ 3.82817, 2.6213, 2.01665 ], [ 3.59076, 6.7108, 2.01666 ], [ 3.35602, 10.75336, 2.01666 ], [ 1.84291, 2.50416, 0.00713 ], [ 3.70786, 4.69482, 0.00714 ], [ 3.47577, 8.69599, 0.00715 ], [ 3.23406, 12.85184, 0.00715 ], [ 1.96376, 0.44048, 2.01663 ], [ 1.72847, 4.48414, 2.01664 ], [ 1.48679, 8.63971, 2.01665 ], [ 1.25468, 12.64126, 2.01664 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
8635659989826642303850719698333936604622750829672152023267276865791113654312803101075175732839900196354761751205783068670945512354729899532255186329938448
1
VASP
DFT
null
[ [ 0.000143, 0.003436, -0.000009 ], [ 0.000757, 0.002585, -0.00002 ], [ 0.001088, -0.004588, -0.000008 ], [ -0.000072, -0.005837, -0.000005 ], [ -0.001293, 0.006536, 0.000008 ], [ -0.000956, -0.000137, 0.000008 ], [ -0.00011, -0.00192, -0.000027 ], [ -0.001502, 0.005591, -0.000046 ], [ -0.003619, 0.000528, -0.000079 ], [ -0.001068, 0.002381, 0.000043 ], [ 0.000165, -0.000128, 0.000008 ], [ 0.001259, -0.000773, 0.000006 ], [ 0.003598, -0.000137, 0.000069 ], [ 0.001608, -0.007537, 0.000052 ] ]
null
[ [ -0.0004950140887738012, -0.00007539743024066976, 1.8724527377649775e-7 ], [ -0.00007539743024066976, -0.00027812164664935796, 1.8724527377649775e-7 ], [ 1.8724527377649775e-7, 1.8724527377649775e-7, 0.0001288871634494893 ] ]
true
null
null
-90.210175
null
0.003664
0.007707
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:37:21
3464698608967139852452671432882607006879446854444894701998650465405182700383262502995000225923272844669494392575387572101923910817764884446201262329414581
PO_3464698608967139852452671
null
null
null
[ "train_1st_stage_300" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
1984334868970433122834612822501529735205520700411553623859147385824155391685968202968944287220809986555737119732823423015910192058703467012755842013797064
CO_1984334868970433122834612
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al8Ni3
Al8Ni3
A8B3
[ 13, 13, 13, 13, 13, 13, 13, 13, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.7272727272727273, 0.2727272727272727 ]
2
11
[ [ -2.835898, 2.918175, 0.02705 ], [ 2.891965, 2.812856, -0.024122 ], [ -4.317714, 7.244168, -10.279196 ] ]
[ [ 2.23933, 3.46397, -0.44164 ], [ -0.62434, 3.51595, -0.40372 ], [ 0.80355, 4.92377, -2.41552 ], [ -2.06012, 4.97576, -2.37762 ], [ -2.08475, 4.97678, -5.15319 ], [ -2.05673, 7.84159, -5.13089 ], [ -2.08176, 7.84227, -7.96761 ], [ -4.94567, 7.89421, -7.92118 ], [ -0.6258, 6.38271, -3.6657 ], [ -3.51522, 6.43546, -6.53719 ], [ -3.5127, 9.30122, -9.43273 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7797195192464051775410274305434754977499760981822821739284342157841808275391606574384563420517003122548207583350235406272537206467006938024940976091366582
1
VASP
DFT
null
[ [ 0.000154, 0.000348, 0.011558 ], [ 0.000278, -0.000259, 0.006554 ], [ -0.000366, 0.000394, -0.007162 ], [ -0.000125, -0.000305, -0.011818 ], [ -0.000075, 0.000126, -0.0099 ], [ -0.000583, 0.000549, 0.00445 ], [ 0.000518, -0.000565, -0.003798 ], [ 0.00008, -0.000157, 0.010408 ], [ -0.000277, 0.000398, -0.002984 ], [ 0.000007, -0.000044, 0.000386 ], [ 0.000389, -0.000487, 0.002306 ] ]
null
[ [ 0.0002959099476581253, 0.000039071847128029195, -0.000002871094197906299 ], [ 0.000039071847128029195, 0.00028018134466089944, -0.0000013107169164354842 ], [ -0.000002871094197906299, -0.0000013107169164354842, 0.000036075922747605236 ] ]
true
null
null
-50.623583
null
0.006513
0.011823
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:13:07
8332407157698664006270481995696867365405815366242726795680377188480916932138390536960603127392331411849844061253559898451012498453361453227491164241692965
PO_8332407157698664006270481
null
null
null
[ "train_1st_stage_122" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10120343544452449400211186951044067477011509017194175400085872270045577621762146670025744237059599291350858698184193665546758363323321882161697669742015309
CO_1012034354445244940021118
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni6Ti
Ni6Ti
A6B
[ 28, 28, 28, 28, 28, 28, 22 ]
[ "Ni", "Ti" ]
[ 0.8571428571428571, 0.14285714285714285 ]
2
7
[ [ -0.390475, 3.557284, 0.188721 ], [ 3.952301, -1.301851, -1.306319 ], [ -2.486353, -0.004822, -5.059781 ] ]
[ [ 3.52311, 2.25253, -1.13241 ], [ 1.01032, 1.97828, -1.1647 ], [ 2.48965, 0.40585, -2.49172 ], [ -0.0028, 0.13274, -2.49808 ], [ 1.08609, 2.11757, -3.63636 ], [ -1.42676, 1.84338, -3.66864 ], [ 0.00026, 0.2669, -5.02474 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10908862506461992704085299359383271885262609512260318913284243994497458881647068666426368603571985661938972026370544213556132054658926905504812268974696606
1
VASP
DFT
null
[ [ 0.002445, -0.000081, 0.007695 ], [ -0.014454, -0.002222, 0.012412 ], [ 0.006574, 0.000013, 0.012868 ], [ -0.006506, 0.000028, -0.0135 ], [ 0.014048, 0.002161, -0.012586 ], [ -0.00197, 0.000132, -0.007186 ], [ -0.000138, -0.00003, 0.000297 ] ]
null
[ [ 0.001236567788019991, 0.000035202111469981574, 0.000024903621412274196 ], [ 0.000035202111469981574, 0.0009377243310727007, 0.000013980980441978496 ], [ 0.000024903621412274196, 0.000013980980441978496, 0.0007400557370559779 ] ]
true
null
null
-42.288069
null
0.011923
0.019181
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:18:24
9444005207439678618774664835798954882131277538751557885574600057451288197022397583398194266535041511578045983013235521842269679156507142437553896745476514
PO_9444005207439678618774664
null
null
null
[ "train_1st_stage_271" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9457025883424476393230497801989746069258406893282346233088255672744669394704705639189898213810185851586404426817792967322602134913623162848852904155181218
CO_9457025883424476393230497
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni4Ti2
Al2Ni2Ti
A2B2C
[ 13, 13, 13, 13, 28, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.4, 0.4, 0.2 ]
3
10
[ [ 0, 4.0255, 0 ], [ 4.63317, 0, -6.90797 ], [ -2.71447, 0, -3.00943 ] ]
[ [ -2.55691, 0, -3.15154 ], [ -0.31831, 0, -5.17073 ], [ 1.92029, 0, -7.18992 ], [ 1.03893, 2.01275, -3.66602 ], [ -1.48015, 2.01275, -4.12275 ], [ 0.84353, 2.01275, -6.21871 ], [ 0.00215, 0, -2.73086 ], [ 2.0757, 0, -4.60118 ], [ -1.24876, 2.01275, -1.60254 ], [ 3.32662, 2.01275, -5.72949 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10195281399339729731987490059165961872084031733098147862851526148952518157177286885452982444027259407919924982259133745747944886579840570231424054685911338
1
VASP
DFT
null
[ [ 0.068963, 0.000001, -0.062443 ], [ -0.000095, 0, 0.000027 ], [ -0.069022, 0, 0.062476 ], [ -0.000064, 0, 0.000082 ], [ -0.03325, 0, 0.028872 ], [ 0.033343, 0.000001, -0.029228 ], [ -0.052922, -0.000001, 0.047593 ], [ 0.053146, -0.000001, -0.047106 ], [ 0.141088, 0.000002, -0.128943 ], [ -0.141187, -0.000003, 0.128669 ] ]
null
[ [ -0.005178018385924009, -6.241509125883259e-8, 0.002215111588775968 ], [ -6.241509125883259e-8, -0.00511385567210993, 0 ], [ 0.002215111588775968, 0, -0.004860263156325292 ] ]
true
null
null
-57.969003
null
0.079906
0.191134
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:23:52
9854735872649417367471361107776058197967815183478139597145311772068589078672811405907580598672871890902546056813269118329579698485124877056216070810611364
PO_9854735872649417367471361
null
null
null
[ "train_1st_stage_995" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
8031693653184074741654427076867959092124273761644504025311450795312645056474111668427577621714121145219880443346939030100472788975197478080704497838388282
CO_8031693653184074741654427
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al8Ti16
AlTi2
A2B
[ 13, 13, 13, 13, 13, 13, 13, 13, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
24
[ [ 2.59638, -4.53983, 0.00163 ], [ 2.59647, 4.5403, 0.002265 ], [ 0.000025, 0.000023, 17.3495 ] ]
[ [ 0.12475, -0.02191, 1.57087 ], [ 0.12137, 0.02954, 15.7785 ], [ 0.12428, 0.02414, 10.2452 ], [ 0.12358, -0.0276, 7.10348 ], [ 2.71437, 1.5551, 14.7587 ], [ 2.70819, -1.55314, 2.58424 ], [ 2.71243, -1.55416, 6.08896 ], [ 2.71034, 1.55448, 11.2661 ], [ 2.60585, 1.51048, 2.15358 ], [ 2.6079, -1.51111, 15.2415 ], [ 2.60731, -1.50999, 10.8008 ], [ 2.60589, 1.51167, 6.53461 ], [ 3.68731, 2.55426, 17.2673 ], [ 3.62085, -2.50989, 0.06606 ], [ 2.81208, -0.05003, 17.3379 ], [ 3.64468, 2.52525, 8.75562 ], [ 3.66298, -2.53731, 8.60738 ], [ 2.8112, 0.01527, 8.68091 ], [ 1.15058, 0.82837, 4.34066 ], [ 3.76536, 0.66596, 4.34234 ], [ 2.64181, 3.0822, 4.34189 ], [ 3.7674, -0.66482, 13.0161 ], [ 1.14895, -0.82642, 13.014 ], [ 2.64224, -3.08491, 13.0149 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9799292771322791602965088542998360115543959399106492617049900393587728704803660038424031781390682408890480106363123191234490850716864250541275877578928277
1
VASP
DFT
null
[ [ -0.565793, -0.182034, 1.067356 ], [ -0.552238, 0.181329, -1.104733 ], [ -0.572777, 0.185003, 1.091993 ], [ -0.552238, -0.170909, -1.082875 ], [ -0.535976, -0.264625, -0.200529 ], [ -0.513397, 0.232636, 0.229906 ], [ -0.532092, 0.253872, -0.208796 ], [ -0.523683, -0.244646, 0.214307 ], [ 0.235751, 0.061143, -0.524339 ], [ 0.324817, -0.058308, -0.472184 ], [ 0.264329, -0.067845, -0.023155 ], [ 0.294873, 0.051484, 0.143809 ], [ -0.6088, -0.210065, 0.261853 ], [ 0.764905, -0.682171, 0.308068 ], [ 0.726701, 0.912038, 0.318815 ], [ 0.218018, 0.312481, 0.032216 ], [ -0.040202, -0.145646, -0.027927 ], [ 0.715725, -0.175827, 0.029332 ], [ 0.378381, 0.531938, -0.020011 ], [ 0.000098, -0.302369, -0.008325 ], [ 0.339785, -0.458378, -0.019245 ], [ -0.018121, 0.300697, 0.008655 ], [ 0.414328, -0.554451, -0.006689 ], [ 0.337606, 0.494655, -0.007501 ] ]
null
[ [ -0.010612999702560633, 0.00001017365987518971, -0.0007383705295919894 ], [ 0.00001017365987518971, 0.02854934930779387, -0.00008163893936655302 ], [ -0.0007383705295919894, -0.00008163893936655302, 0.037832096170355003 ] ]
true
null
null
-152.313987
null
0.689694
1.248312
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:00:48
5888994963242867098481565733191558241496211723034889760023140141160253749246502088727086150532742431739737094733224501928580886562897049326084724407141598
PO_5888994963242867098481565
null
null
null
[ "train_1st_stage_2247" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
502033085315168502265762510103538092563480577927865955813200787215548733337947352438873007646087858905873291755313968426273529439875851373209631454021576
CO_5020330853151685022657625
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi7Ti4
AlNi7Ti4
A7B4C
[ 13, 28, 28, 28, 28, 28, 28, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.08333333333333333, 0.5833333333333334, 0.3333333333333333 ]
3
12
[ [ 2.62799, 1.07181, 4.06021 ], [ -1.05862, 6.85801, 0.029219 ], [ -2.64074, -1.00962, 4.0488 ] ]
[ [ 0.8203, 1.60188, 2.10035 ], [ -1.97841, -0.72031, 3.99691 ], [ -0.51759, 7.07455, 4.09696 ], [ 0.15006, 2.28716, 4.15872 ], [ -2.54501, 1.10742, 4.0064 ], [ -0.14222, 4.9108, 4.03045 ], [ -2.83645, 3.7577, 4.11684 ], [ 0.27512, 3.66466, 6.12344 ], [ 0.6412, 1.38427, 6.02705 ], [ 0.1416, 2.9007, 2.01955 ], [ -2.00059, 4.92671, 2.0841 ], [ -2.15616, 4.73066, 6.05007 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
8059904933025270416785600198436923311952481165088908187742754807627668510763445949047639144529196893463856019964590127780535945030137422149381367320807805
1
VASP
DFT
null
[ [ 15.932948, -31.810869, 1.717722 ], [ 1.236265, -6.877682, 1.399596 ], [ -0.538321, -2.297108, -1.126328 ], [ -2.252155, 4.153912, 0.108677 ], [ -3.547581, 6.878564, -0.330969 ], [ -0.268941, -2.676309, 0.397565 ], [ -0.709324, -1.395935, -0.294364 ], [ -0.562345, 0.35162, 0.116022 ], [ 2.521347, 0.803506, -0.147807 ], [ -14.978549, 32.53959, -1.948297 ], [ 0.800711, -0.872065, 0.12894 ], [ 2.365945, 1.202776, -0.020755 ] ]
null
[ [ 0.02786440609631944, -0.19193021294147697, 0.005399092639162794 ], [ -0.19193021294147697, 0.46052469523090417, -0.014690515199408907 ], [ 0.005399092639162794, -0.014690515199408907, 0.1170739215420213 ] ]
true
null
null
-56.566541
null
8.765752
35.874472
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:29:09
4784801104226566318662746924030647640984664649012256844856294376993728814085564903862709301657292970666439658255012823187993094745636999853013949147349972
PO_4784801104226566318662746
null
null
null
[ "train_1st_stage_1648", "train_1st_stage_1248", "train_1st_stage_1848", "train_1st_stage_1448" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
679340347924633738662494560457500872830440225535031348692793660227985526974160498136734259905489345981636576891549489481922313831849587225884165374112236
CO_6793403479246337386624945
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
NiTi4
NiTi4
A4B
[ 28, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.2, 0.8 ]
2
5
[ [ 7.17105, -0.017965, 0.251655 ], [ -0.016792, 7.09989, 0.247586 ], [ 3.44116, 3.44387, 1.72077 ] ]
[ [ 0, 0, 0 ], [ 9.01957, 7.5605, 2.02087 ], [ 1.57585, 2.96529, 0.19914 ], [ 7.60518, 5.01668, 1.91899 ], [ 2.99024, 5.50911, 0.30102 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4565048413095634500945190157610248484723596162997067037348754257039658966666240403972195595211658852851182808912574238321866273877749291509135133139987928
1
VASP
DFT
null
[ [ 0.000448, 0.000296, 0.000215 ], [ 0.587382, 0.324819, 0.089355 ], [ -0.587713, -0.32581, -0.089608 ], [ 0.321157, -0.64298, 0.010031 ], [ -0.321274, 0.643675, -0.009994 ] ]
null
[ [ -0.013970057801008202, 0.00018799425487160372, -0.008097359449373386 ], [ 0.00018799425487160372, -0.014695383576527096, -0.0046788849011271255 ], [ -0.008097359449373386, -0.0046788849011271255, -0.021590690783346626 ] ]
true
null
null
-37.263903
null
0.558781
0.719468
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:12:03
4897407810504225811450456038235386984815333750311035566201771029768518438089073053614447880747934080993600079001870337775810909375193627118160956172610857
PO_4897407810504225811450456
null
null
null
[ "train_2nd_stage_85" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4107542785965668797903416405868556667032356636982345965544453848561143920109180163331108890493551606229132188870815007263446985594239040201561796581559080
CO_4107542785965668797903416
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi2Ti2
AlNi2Ti2
A2B2C
[ 13, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.2, 0.4, 0.4 ]
3
5
[ [ -1.69337, 1.90345, 4.0916 ], [ 1.90345, -1.69337, 4.0916 ], [ 2.28241, 2.28241, -6.38173 ] ]
[ [ 2.49242, 2.49242, 1.80144 ], [ 2.20225, 0.29028, 0.90076 ], [ 0.29028, 2.20225, 0.90076 ], [ 0.56216, 0.56216, 2.78591 ], [ 1.93033, 1.93033, -0.98443 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7225523211869958414742380017556865053402149511029958692048622886686626708345110793513919508269850551609237134260280681127224883100390130223494629176377216
1
VASP
DFT
null
[ [ 0.001163, 0.001205, 0.00088 ], [ 0.246167, -0.247258, -0.000281 ], [ -0.247228, 0.246141, -0.000289 ], [ -0.021245, -0.021276, 0.151472 ], [ 0.021143, 0.021189, -0.151782 ] ]
null
[ [ -0.0066895870660304176, 0.007997744963724289, 0.0016400189379170847 ], [ 0.007997744963724289, -0.0066884011792965, 0.0016383337304530963 ], [ 0.0016400189379170847, 0.0016383337304530963, -0.00251763753610753 ] ]
true
null
null
-32.492656
null
0.201759
0.348905
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:21:41
5761851648908654105403661056390966718784440511032380380835398995684902302484327138673265366844370047402075395232279703550742988516892855895322091299915859
PO_5761851648908654105403661
null
null
null
[ "train_2nd_stage_892" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5701589099097039925711516466254458620436652018108631956912914664022825197565955252479391541948574333089026360542694050850685926466609043158931786209550446
CO_5701589099097039925711516
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al5Ni5Ti2
Al5Ni5Ti2
A5B5C2
[ 13, 13, 13, 13, 13, 28, 28, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.4166666666666667, 0.4166666666666667, 0.16666666666666666 ]
3
12
[ [ 3.93525, 1.58584, 0.081397 ], [ -0.310759, 3.4905, 3.82961 ], [ 0.306872, -3.67237, 3.99935 ] ]
[ [ 3.85322, 1.6299, 0.38597 ], [ 3.54472, 1.5112, 3.79528 ], [ 1.64469, -1.43604, 4.13906 ], [ 1.5881, 0.30739, 2.22653 ], [ 3.62216, 0.25765, 6.11126 ], [ 1.2851, 1.47895, 3.95465 ], [ 3.56509, 0.15388, 4.00271 ], [ 1.92287, 3.48736, 4.00879 ], [ 2.46555, 2.13403, 1.89118 ], [ 2.29678, 2.1273, 5.813 ], [ 1.19401, 0.38771, 5.6562 ], [ 0.48475, 1.53908, 5.48172 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
13079250851546422629558141998147974643682125673524264277254525828013794167820628421613542569391647160877125162555526025558718713552403320864776985155061001
1
VASP
DFT
null
[ [ 1.054432, 0.226275, -1.63437 ], [ -1.289451, 30.910247, -5.68241 ], [ 2.923569, -1.118929, -1.75725 ], [ -2.735346, 1.471678, 0.617433 ], [ 2.39746, -0.008307, 3.187171 ], [ 4.56883, 2.289264, -17.816486 ], [ -4.366255, -31.2098, 2.319157 ], [ 1.679069, 2.63851, -1.80142 ], [ 0.152208, -1.148396, 1.55021 ], [ 12.110345, 1.648249, 3.435839 ], [ 35.728605, -66.822124, 15.254478 ], [ -52.223466, 61.123334, 2.327648 ] ]
null
[ [ 0.6409207241379314, -0.18358306829688575, -0.002533803044743567 ], [ -0.18358306829688575, 1.2017187587212608, -0.10379835646145012 ], [ -0.002533803044743567, -0.10379835646145012, 0.5221156576247552 ] ]
true
null
null
-20.92645
null
22.521238
80.428666
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:15:30
6804203647612296726191456230124394117687622158645677348709819160218514814410008734420863403448421352939462360729703802607852195506864327061858706116135616
PO_6804203647612296726191456
null
null
null
[ "train_1st_stage_1643", "train_1st_stage_1443", "train_1st_stage_1243", "train_1st_stage_1843" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
34576126485231784381732990420358964747779413481454382788387544808641553048734868879597432583363461593224627436189635195280141051881409978219218647938185
CO_3457612648523178438173299
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al7Ti5
Al7Ti5
A7B5
[ 13, 13, 13, 13, 13, 13, 13, 22, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.5833333333333334, 0.4166666666666667 ]
2
12
[ [ 3.95891, -0.070434, -4.0981 ], [ -3.98315, 3.951, -0.053422 ], [ 3.99827, 4.04386, 4.07496 ] ]
[ [ 7.95717, 3.97343, -0.02314 ], [ 2.01281, 2.004, -0.01073 ], [ 3.9532, 3.9435, -0.04008 ], [ 1.96733, 1.90507, -4.12481 ], [ 0.02082, 3.98093, -0.03648 ], [ 1.96121, 5.92043, -0.06583 ], [ 1.97945, -0.03521, -2.04905 ], [ 3.88461, 1.86245, -2.13763 ], [ 1.91259, 3.91509, 2.00522 ], [ 3.98614, 5.98414, 1.9992 ], [ 2.06143, 4.00934, -2.08178 ], [ 0.08942, 6.06198, 2.06107 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4085389354055351036557643537718139758149462765376530848202133790552052771435718906475570773848691083649231098537206948065861249071180867498814616845382938
1
VASP
DFT
null
[ [ -0.000055, -0.000105, -0.000041 ], [ -0.152341, -0.015089, -0.038032 ], [ 0.02643, 0.144498, 0.039186 ], [ -0.000093, -0.000075, -0.000044 ], [ -0.026485, -0.144535, -0.039182 ], [ 0.15231, 0.015045, 0.038033 ], [ -0.000089, -0.000114, -0.00003 ], [ 0.174847, 0.187503, 0.044803 ], [ 0.421596, 0.415467, -0.185892 ], [ 0.0001, 0.000127, -0.000072 ], [ -0.421122, -0.41504, 0.186106 ], [ -0.175099, -0.187682, -0.044836 ] ]
null
[ [ 0.002766673750230272, -0.00004244226205600615, -0.002595781230363588 ], [ -0.00004244226205600615, -0.0017612290451417376, -0.0021815946847699753 ], [ -0.002595781230363588, -0.0021815946847699753, 0.004885790928650155 ] ]
true
null
null
-69.957241
null
0.198437
0.620413
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:16:06
693653066128393419572184866492221911371564552886750021936949532869699333875356432952911744233485561347751027679077695171010296299845883575372803102677487
PO_6936530661283934195721848
null
null
null
[ "train_1st_stage_836" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
3892850661731705351377539529776907249042660622803174255852836330279687373749269884899143613723630498739933721086006210822213502865650444981729697853854784
CO_3892850661731705351377539
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni6
AlNi3
A3B
[ 13, 13, 28, 28, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.25, 0.75 ]
2
8
[ [ 4.56653, 0, 0 ], [ 0, 4.56653, 0 ], [ 0, 0, 4.56653 ] ]
[ [ 0, 0, 0 ], [ 2.28327, 2.28327, 2.28327 ], [ 3.4249, 2.28327, 0 ], [ 1.14163, 2.28327, 0 ], [ 0, 3.4249, 2.28327 ], [ 0, 1.14163, 2.28327 ], [ 2.28327, 0, 1.14163 ], [ 2.28327, 0, 3.4249 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7147533519823579187721063061393030975702123620211806682231375398600771640310144523688771582389918543599126595812535492871156200844328029669639629467916577
1
VASP
DFT
null
[ [ -0.000123, 0.000017, -0.00007 ], [ 0.00012, -0.000026, 0.000064 ], [ -0.000344, -0.000015, -0.000067 ], [ 0.000328, -0.000012, -0.000063 ], [ -0.00001, -0.000117, 0.000063 ], [ -0.000011, 0.000131, 0.000066 ], [ 0.000014, 0.00001, -0.000187 ], [ 0.000024, 0.000012, 0.000194 ] ]
null
[ [ 0.013219890819168292, 0, 0 ], [ 0, 0.013209030593289256, 0 ], [ 0, 0, 0.013219079422981927 ] ]
true
null
null
-42.429395
null
0.000204
0.000351
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:14:08
6914622940949584882132368562061245535211869854770142473736990171495693311120153383431068888519776452960989606920003685183821447659794710236985330553602806
PO_6914622940949584882132368
null
null
null
[ "train_2nd_stage_524" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10151563501963498682209949296032567640503468676424963942130758428590282317234616137453377034737021745094065598619963811469505797347302151183535532354915391
CO_1015156350196349868220994
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlTi
AlTi
AB
[ 13, 22 ]
[ "Al", "Ti" ]
[ 0.5, 0.5 ]
2
2
[ [ 0, 2.5642, 2.5642 ], [ 2.5642, 0, 2.5642 ], [ 2.5642, 2.5642, 0 ] ]
[ [ 0, 0, 0 ], [ 2.5642, 2.5642, 2.5642 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7887182253461994628745772843637874379356376931982185970996534367257137801283657480464272779066683578867469136258859435988835130335430871618553175537084012
1
VASP
DFT
null
[ [ 0, 0.000001, 0 ], [ 0, -0.000001, 0 ] ]
null
[ [ 0.011726609760800725, -3.120754562941629e-7, -1.2483018251766518e-7 ], [ -3.120754562941629e-7, 0.011725361458975547, -6.241509125883259e-8 ], [ -1.2483018251766518e-7, -6.241509125883259e-8, 0.011726921836257018 ] ]
true
null
null
-11.009216
null
0.000001
0.000001
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:40:14
6915202836338176406149091950657798503577393441285103328870666930787927280143260944065275190652690936329618713377734496286170357349809585400979589979401935
PO_6915202836338176406149091
null
null
null
[ "train_1st_stage_2110" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5177193551021290249056977732594198044773902326048099932341286968431356745018828083283871810252876650802572582779247412790264416286855597958275839259114052
CO_5177193551021290249056977
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni5Ti3
Ni5Ti3
A5B3
[ 28, 28, 28, 28, 28, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.625, 0.375 ]
2
8
[ [ 1.62061, 4.12829, 0.475851 ], [ 4.86116, -4.12739, -1.76727 ], [ -0.306204, 5.28607, -2.90023 ] ]
[ [ -0.09701, 5.48528, -2.84464 ], [ 2.08394, 1.79523, -0.56938 ], [ 2.49877, -0.52874, -1.50887 ], [ 1.48159, 6.37839, -1.15672 ], [ 3.59289, 5.71657, -2.5795 ], [ 4.22507, 1.2384, -2.05939 ], [ 1.80041, 3.94366, -1.97401 ], [ 4.51133, 3.7355, -3.82291 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12337766228241630426382264439122832169553716570742818152802915214923254825983881062841387285598428391651743399182925774811798659585390605294425789178648157
1
VASP
DFT
null
[ [ -0.297114, 0.000089, -0.201976 ], [ 0.15212, 0.691899, -0.05894 ], [ -0.031007, -0.014567, -0.294169 ], [ 0.21198, -0.283297, 0.278709 ], [ 0.017761, -0.262706, 0.246506 ], [ -0.098159, -0.003623, 0.28264 ], [ -0.26029, -0.100038, -0.33941 ], [ 0.304708, -0.027757, 0.086639 ] ]
null
[ [ -0.021421608301126445, 0.0013727575171467636, 0.012916678305832884 ], [ 0.0013727575171467636, -0.022987228450263002, -0.0015701140357071925 ], [ 0.012916678305832884, -0.0015701140357071925, -0.012655533564005929 ] ]
true
null
null
-53.678851
null
0.404235
0.710872
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:16:17
2274810540038344541197671070459666396206557998994406329030549052835379410106848943215842455666948759791659301489565881017535304830940631922470524698885062
PO_2274810540038344541197671
null
null
null
[ "train_2nd_stage_811" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
3865898240649356624899216612520991108682789944011288265224660107172566268389789222778228097532296973248710083132273667578993410041845054652199332290516061
CO_3865898240649356624899216
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni4Ti4
AlNiTi
ABC
[ 13, 13, 13, 13, 28, 28, 28, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.3333333333333333, 0.3333333333333333, 0.3333333333333333 ]
3
12
[ [ 3.69385, 0, 0 ], [ 0, 6.289, 0 ], [ 0, 0, 7.48768 ] ]
[ [ 0.92346, 0.92619, 3.27573 ], [ 2.77039, 2.21831, 7.01957 ], [ 2.77039, 5.36281, 4.21194 ], [ 0.92346, 4.07069, 0.4681 ], [ 0.92346, 4.76126, 2.77379 ], [ 2.77039, 4.67225, 6.51763 ], [ 2.77039, 1.52775, 4.71389 ], [ 0.92346, 1.61675, 0.97005 ], [ 0.92346, 3.31281, 5.08558 ], [ 2.77039, 6.12069, 1.34174 ], [ 2.77039, 2.97619, 2.4021 ], [ 0.92346, 0.16831, 6.14594 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10967598907694130524684445925825368940174275923676044329969557009017451746782993419736490165839560610779859035002218381994713207211585337178959948080740167
1
VASP
DFT
null
[ [ 0.000015, 0.197295, 0.121415 ], [ -0.000016, -0.198427, 0.119787 ], [ -0.000017, -0.196892, -0.121152 ], [ 0.000015, 0.198401, -0.120192 ], [ 0.000009, -0.237989, 0.156369 ], [ -0.000011, 0.239187, 0.15629 ], [ -0.00001, 0.237765, -0.156417 ], [ 0.00001, -0.238633, -0.156575 ], [ 0.000009, -0.123652, -0.236795 ], [ 0.000006, 0.122291, -0.236165 ], [ -0.00002, 0.123213, 0.237548 ], [ 0.000011, -0.122559, 0.235887 ] ]
null
[ [ -0.005097877408747668, 3.120754562941629e-7, -3.120754562941629e-7 ], [ 3.120754562941629e-7, 0.015856616349397674, 0.000006366339308400924 ], [ -3.120754562941629e-7, 0.000006366339308400924, 0.013211964102578421 ] ]
true
null
null
-73.918064
null
0.261134
0.285722
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:18:18
2830204676910787239882279678316059372111024819117329747942800113614712898766671052665846690751271079096687271357761828927804338717557280537640943056535402
PO_2830204676910787239882279
null
null
null
[ "train_2nd_stage_338" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12823698482294365726728152009577624293314823094166160815135134268021248920772363261634133408768070887887799810271505610641838066281685004541357527424701650
CO_1282369848229436572672815
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni2Ti4
AlNiTi2
A2BC
[ 13, 13, 28, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.25, 0.25, 0.5 ]
3
8
[ [ 2.06815, -3.58215, 0 ], [ 2.06815, 3.58215, 0 ], [ 0, 0, 8.34725 ] ]
[ [ 2.06815, 1.19429, 2.08681 ], [ 2.06815, -1.19429, 6.26044 ], [ 0, 0, 2.08681 ], [ 0, 0, 6.26044 ], [ 2.06815, 1.19429, 4.84141 ], [ 2.06815, -1.19429, 0.66778 ], [ 2.06815, -1.19429, 3.50585 ], [ 2.06815, 1.19429, 7.67947 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
1624768225909843633348349070407238699269863494690282115356555393597273144880300759548914249959009226644548610411199686075154212559997714159763941477366561
1
VASP
DFT
null
[ [ -0.000001, -0.003865, -0.000917 ], [ 0, 0.003871, 0.001176 ], [ -0.000001, 0.001259, 0.000116 ], [ 0, -0.001253, 0.000289 ], [ 0.000005, -0.001807, 1.240685 ], [ -0.000005, 0.001803, 1.239231 ], [ -0.000009, 0.001786, -1.241664 ], [ 0.000011, -0.001795, -1.238916 ] ]
null
[ [ 0.0016841464074370796, 1.2483018251766518e-7, 0 ], [ 1.2483018251766518e-7, 0.001621294410539435, -6.241509125883259e-8 ], [ 0, -6.241509125883259e-8, 0.021561730181002527 ] ]
true
null
null
-50.203656
null
0.621384
1.241665
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:24:29
5892079554772958780176597918861792738912718159290239924165848307915060050354514235162545003905862668002292574671426793691895664643404756388313866690079217
PO_5892079554772958780176597
null
null
null
[ "train_1st_stage_2276" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9127023773091523300741507312750328505521494491202240878551402857518736029912102408615801659636936099630021972785453151836820504571326432449465891372518661
CO_9127023773091523300741507
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2NiTi7
Al2NiTi7
A7B2C
[ 13, 13, 28, 22, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.2, 0.1, 0.7 ]
3
10
[ [ 3.96489, 0, 0 ], [ 0, 0.000703, -3.98289 ], [ 0, 9.94303, -1.98775 ] ]
[ [ 0, 9.87021, -1.98778 ], [ 0, 3.99452, -3.98141 ], [ 0, 8.04297, -3.97991 ], [ 1.98244, 1.92061, -3.98218 ], [ 1.98244, 6.03654, -3.98065 ], [ 1.98244, 9.83851, -3.97924 ], [ 0, 1.97354, -1.99071 ], [ 1.98244, 3.9776, -1.98997 ], [ 0, 6.02229, -1.98921 ], [ 1.98244, 7.98457, -1.98848 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9179943408192065208574438678369939658616078746332923007427263891716169175678936909867850068720682494752111837442541661163897203644104446039392898590587890
1
VASP
DFT
null
[ [ -0.000039, -0.26829, -0.0001 ], [ -0.000029, 0.016105, 0.000187 ], [ -0.000013, 0.321899, -0.000087 ], [ 0.000024, -0.052373, 0.000367 ], [ 0.000026, -0.130095, -0.000246 ], [ 0.000025, 0.043701, -0.000548 ], [ -0.000023, 0.156403, 0.000265 ], [ 0.000031, 0.351033, 0.000428 ], [ -0.00003, -0.184224, -0.000966 ], [ 0.000027, -0.254159, 0.0007 ] ]
null
[ [ -0.011979952616220325, 6.241509125883259e-8, 0 ], [ 6.241509125883259e-8, -0.009809779893150718, 0.00010123727802182643 ], [ 0, 0.00010123727802182643, -0.006296059915643477 ] ]
true
null
null
-69.973945
null
0.177829
0.351033
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:27:32
10912880094048008853214965130254596029231479316294852227645499661391447108503566333084226392007257468955243292063515547954342517689451880100253347965395681
PO_1091288009404800885321496
null
null
null
[ "train_1st_stage_1148" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6824898233196458170232152170250280668488178241897449804333990318635574861530983745961594393894830045715235639217562505769294249316729919939300102204727609
CO_6824898233196458170232152
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni9Ti
Al2Ni9Ti
A9B2C
[ 13, 13, 28, 28, 28, 28, 28, 28, 28, 28, 28, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.16666666666666666, 0.75, 0.08333333333333333 ]
3
12
[ [ 2.67345, 0.014393, -0.033709 ], [ -1.29877, 2.1467, 4.34552 ], [ 1.25444, -10.9437, 4.15056 ] ]
[ [ 2.65236, -9.03361, 7.85423 ], [ 1.35921, -3.71962, 6.37097 ], [ 0.00592, 0.0462, 4.43416 ], [ 1.33137, -2.09305, 4.17707 ], [ 0.01739, -4.41723, 4.29533 ], [ 1.31331, -6.58722, 4.22102 ], [ 2.62864, -8.79419, 4.21258 ], [ 0.0345, -1.43737, 2.10547 ], [ 1.36156, -3.76677, 2.1171 ], [ 0.00521, -5.90284, 6.47906 ], [ 1.30413, -8.03646, 6.24056 ], [ 1.42244, 1.00345, 2.59817 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9991547690496191172177777856958499671465083064926957602373696295626394387265109931510573401531813723356690864721907775299027985446750754712362412508248652
1
VASP
DFT
null
[ [ -0.820645, 25.707866, 31.837337 ], [ 0.032315, -0.171592, 0.037006 ], [ 0.302142, -0.799782, 0.532919 ], [ 0.129639, -0.243701, 0.218753 ], [ -0.051959, 0.211576, -0.056198 ], [ 0.050028, 0.178568, -0.017674 ], [ 0.056186, -0.208245, -0.279295 ], [ -0.082165, 0.442733, 0.572756 ], [ -0.112697, 0.318306, -0.124709 ], [ -0.050126, 0.312937, -0.273684 ], [ 0.012364, 1.290327, -0.480139 ], [ 0.534917, -27.038993, -31.967073 ] ]
null
[ [ -0.052491903144864564, -0.011442309020116741, -0.0013855526108548244 ], [ -0.011442309020116741, 0.07572099007375555, 0.1627002894785968 ], [ -0.0013855526108548244, 0.1627002894785968, 0.1343919248381533 ] ]
true
null
null
-51.528021
null
7.332306
41.87227
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:22:13
11490403618933942485853255866034323216075936678329434778614725540630882496446830903803951343946690956455227349763348777055284044798599657359127980485696254
PO_1149040361893394248585325
null
null
null
[ "train_1st_stage_1966", "train_1st_stage_1766", "train_1st_stage_1566", "train_1st_stage_1366" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7314854291563719501650846874754511570396776439871238105401238645121607969945170737114120854168869229923466075397027180646047583442580405550502804108008313
CO_7314854291563719501650846
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni4
Al3Ni2
A3B2
[ 13, 13, 13, 13, 13, 13, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.6, 0.4 ]
2
10
[ [ 0, 2.876131, 0 ], [ 2.876131, 0, 0 ], [ -0.000001, 0, -15.902605 ] ]
[ [ 0, 0, -15.41716 ], [ 1.43807, 1.43807, -1.59026 ], [ 0, 0, -3.66595 ], [ 0, 0, -6.61784 ], [ 0, 0, -9.54154 ], [ 0, 0, -12.46522 ], [ 1.43807, 1.43807, -5.15062 ], [ 1.43807, 1.43807, -8.07714 ], [ 1.43807, 1.43807, -11.00596 ], [ 1.43807, 1.43807, -13.93247 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9731778917694101137890744020386915858856533428462785956672789107260843503513256201751458060587091886340448521414626686733396635358792841709092702980260855
1
VASP
DFT
null
[ [ 0.000011, 0.00001, -0.036998 ], [ -0.000005, -0.000005, -0.000072 ], [ 0.000009, 0.00001, 0.03731 ], [ 0.000012, 0.000012, 0.016718 ], [ 0.000011, 0.000012, -0.000303 ], [ 0.000012, 0.000012, -0.017078 ], [ -0.000014, -0.000013, -0.133168 ], [ -0.000012, -0.000012, 0.038559 ], [ -0.000011, -0.000012, -0.039374 ], [ -0.000013, -0.000013, 0.134406 ] ]
null
[ [ 0.010014002071749616, 0, 6.241509125883259e-8 ], [ 0, 0.010014002071749616, 0 ], [ 6.241509125883259e-8, 0, -0.0016378968248142844 ] ]
true
null
null
-49.428885
null
0.045399
0.134406
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:39:01
3219882693735386788316621865011153254127333903478586555166053678485953315738893490983540011108078505624878627661656089807202094612684035729284597398098478
PO_3219882693735386788316621
null
null
null
[ "train_1st_stage_1" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
781462652305561553968399465838642214797065489126921160633121219283107467454592076430513080698900306208721475078054061540702557641288145511398052121075636
CO_7814626523055615539683994
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni4
Al3Ni2
A3B2
[ 13, 13, 13, 13, 13, 13, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.6, 0.4 ]
2
10
[ [ 2.802412, 0.017557, 0 ], [ 1.331577, 11.618415, 0 ], [ 0, 0, 4.130453 ] ]
[ [ 2.79634, 1.03659, 0 ], [ 2.77128, 5.21339, 0 ], [ 2.74625, 9.37906, 0 ], [ 2.73421, 11.38214, 2.06523 ], [ 2.7843, 3.03963, 2.06523 ], [ 2.75927, 7.20532, 2.06523 ], [ 1.38256, 3.11678, 0 ], [ 1.35755, 7.29894, 0 ], [ 1.37059, 5.10226, 2.06523 ], [ 1.34557, 9.28431, 2.06523 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3724816305028684815233970537401937604357240738659587489382344313792880756601313283329029654754853673246940817393703267922462522286930430461246773214494764
1
VASP
DFT
null
[ [ 0.00002, 0.153801, 0 ], [ 0.000137, 0.018543, 0 ], [ -0.000626, -0.156009, 0 ], [ 0.000036, -0.153943, 0 ], [ 0.000661, 0.156636, 0 ], [ -0.000158, -0.018632, 0 ], [ 0.001057, -0.074287, 0 ], [ 0.000442, 0.10386, 0 ], [ -0.000488, -0.104723, 0 ], [ -0.001082, 0.074755, 0 ] ]
null
[ [ 0.011036985417481882, 0.00007059146821373965, 0 ], [ 0.00007059146821373965, -0.0007458603405430493, 0 ], [ 0, 0, 0.006192950184883886 ] ]
true
null
null
-49.3357
null
0.101521
0.156637
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:19:10
12770177326230401794709183797116843068028535564747433047016233450376962763089033766276536983108251348157835976589565551276328816116237640018187766424213172
PO_1277017732623040179470918
null
null
null
[ "train_1st_stage_19" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12276646919397969298445374101041635130723847685003444444248251355350192395736798630665344957969164441601812203498408487352826712306325811860981550425757064
CO_1227664691939796929844537
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al16Ni8
Al2Ni
A2B
[ 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 28, 28, 28, 28, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.6666666666666666, 0.3333333333333333 ]
2
24
[ [ 0, 5.40249, 5.40249 ], [ 5.40249, 0, 5.40249 ], [ 5.40249, 5.40249, 0 ] ]
[ [ 5.40249, 2.70125, 2.70125 ], [ 2.70125, 5.40249, 2.70125 ], [ 2.70125, 2.70125, 5.40249 ], [ 5.40249, 5.40249, 5.40249 ], [ 4.05187, 4.05187, 0.74393 ], [ 4.05187, 0.74393, 4.05187 ], [ 0.74393, 4.05187, 4.05187 ], [ 7.35981, 4.05187, 4.05187 ], [ 4.05187, 7.35981, 4.05187 ], [ 4.05187, 4.05187, 7.35981 ], [ 6.75312, 6.75312, 10.0611 ], [ 6.75312, 10.0611, 6.75312 ], [ 10.0611, 6.75312, 6.75312 ], [ 3.44517, 6.75312, 6.75312 ], [ 6.75312, 3.44517, 6.75312 ], [ 6.75312, 6.75312, 3.44517 ], [ 3.05124, 3.05124, 3.05124 ], [ 5.0525, 5.0525, 3.05124 ], [ 5.0525, 3.05124, 5.0525 ], [ 3.05124, 5.0525, 5.0525 ], [ 7.75374, 7.75374, 7.75374 ], [ 5.75249, 5.75249, 7.75374 ], [ 5.75249, 7.75374, 5.75249 ], [ 7.75374, 5.75249, 5.75249 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2698957888827678174818063818343410386359953079844047183392330789215398658589854229873792600144120658398095890634012761488866742239942728623680301475543226
1
VASP
DFT
null
[ [ 0.000367, 0.000055, -0.000417 ], [ 0.000081, 0.000347, 0.000212 ], [ -0.000404, 0.000211, 0.000346 ], [ -0.000182, 0.000427, -0.000042 ], [ 0.00022, -0.000078, 0.147805 ], [ 0.000031, 0.147787, -0.000019 ], [ 0.147833, -0.000034, 0.000214 ], [ -0.147767, -0.000032, -0.00016 ], [ 0.000032, -0.147811, 0.000071 ], [ -0.000153, 0.000016, -0.147791 ], [ 0.000194, -0.00013, -0.148141 ], [ 0.000011, -0.14813, -0.000067 ], [ -0.148113, -0.000082, 0.000171 ], [ 0.147992, -0.000148, -0.000267 ], [ -0.000058, 0.147977, -0.000032 ], [ -0.000236, -0.000093, 0.147963 ], [ -0.167406, -0.167331, -0.167317 ], [ 0.167253, 0.167281, -0.167244 ], [ 0.167362, -0.167375, 0.167414 ], [ -0.1672, 0.167162, 0.167186 ], [ 0.167099, 0.167177, 0.167123 ], [ -0.167139, -0.167049, 0.167091 ], [ -0.166962, 0.166977, -0.166928 ], [ 0.167143, -0.167126, -0.167171 ] ]
null
[ [ -0.0684287853016211, -0.0000014355470989531495, 0.0000012483018251766516 ], [ -0.0000014355470989531495, -0.06842947186762494, 6.241509125883259e-8 ], [ 0.0000012483018251766516, 6.241509125883259e-8, -0.06842915979216865 ] ]
true
null
null
-114.031506
null
0.170573
0.289917
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:30:23
8748277521277569227367547061350168329384461051675590975837916856235337587990224249209576729207914636967961644173528598060216937650252958753419295711065165
PO_8748277521277569227367547
null
null
null
[ "train_2nd_stage_115" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5225746746067351599068530720389316583046516723914086451842523982395537680811777374351704341171954175840611461743641202593560746017091679307352746104242956
CO_5225746746067351599068530
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ti2
AlTi
AB
[ 13, 13, 22, 22 ]
[ "Al", "Ti" ]
[ 0.5, 0.5 ]
2
4
[ [ 0, -2.16322, -2.16322 ], [ 3.77332, 0, 0 ], [ 0, -4.10333, 4.10333 ] ]
[ [ 0, -4.09057, 4.09057 ], [ 1.88666, -4.17186, 2.00864 ], [ 0, -1.98203, 1.98203 ], [ 1.88666, -2.17707, 0.01385 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4143765262393906607568830891359827664252941738193389875894485025386978451201116086057022190328426707815958615683227803862831105258066991324959300246351389
1
VASP
DFT
null
[ [ 0.000002, -0.105313, 0.105322 ], [ 0.000002, 0.105051, -0.105052 ], [ -0.000004, -0.249371, 0.249384 ], [ 0, 0.249633, -0.249655 ] ]
null
[ [ -0.0017110473117696362, 1.8724527377649775e-7, -3.120754562941629e-7 ], [ 1.8724527377649775e-7, 0.0014704371349668368, -0.00026757349622661525 ], [ -3.120754562941629e-7, -0.00026757349622661525, 0.0014704371349668368 ] ]
true
null
null
-23.92831
null
0.250807
0.35305
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:30:37
5333329004102167066942112663717521989371062825728624185763754894255552101880160041807728706478235113341800553043452544125547561815139272631685667739560934
PO_5333329004102167066942112
null
null
null
[ "train_2nd_stage_476" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10669204886297535471168062423262120285048622435650634012746185515855345227881575637488657148401133026533143776644856383410433631372097942400123836780095501
CO_1066920488629753547116806
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni8
Al3Ni4
A4B3
[ 13, 13, 13, 13, 13, 13, 28, 28, 28, 28, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.42857142857142855, 0.5714285714285714 ]
2
14
[ [ 2.864311, 0.048743, 0.000023 ], [ 1.18676, 14.25531, -0.000016 ], [ -0.000044, 0.000036, 4.088655 ] ]
[ [ 2.86082, 0.50527, 0.04519 ], [ 1.32606, 6.45509, 0.06863 ], [ 1.25533, 10.55218, 0.05674 ], [ 1.36259, 4.33346, 2.08953 ], [ 1.29086, 8.49299, 2.10117 ], [ 1.21998, 12.59027, 2.11291 ], [ 1.39513, 2.41484, 3.7535 ], [ 2.7922, 4.49934, 0.06504 ], [ 2.72309, 8.51674, 0.05392 ], [ 2.65157, 12.64934, 0.07481 ], [ 1.43122, 0.3393, 2.10934 ], [ 2.82801, 2.4238, 1.70921 ], [ 2.7588, 6.44463, 2.11918 ], [ 2.6875, 10.57701, 2.09807 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6646792335937556265660526338055467517411594343322463881074240333079929083160428533466416745436998547521522010114046902890936284363458354278571318755564269
1
VASP
DFT
null
[ [ -0.000163, 0.005039, -0.003926 ], [ 0.000113, -0.002887, -0.002984 ], [ 0.00004, -0.00079, -0.001687 ], [ 0.000077, -0.006039, -0.004395 ], [ 0.000067, 0.001821, -0.001544 ], [ -0.000048, 0.000453, -0.003095 ], [ -0.000053, -0.002976, 0.015577 ], [ -0.000037, 0.000659, -0.002588 ], [ 0.000134, -0.00086, -0.00217 ], [ 0.000039, -0.002144, -0.001831 ], [ -0.000086, 0.000438, -0.002734 ], [ -0.000158, 0.003803, 0.015294 ], [ 0.000044, 0.002089, -0.001913 ], [ 0.000031, 0.001394, -0.002004 ] ]
null
[ [ -0.0006884384565849233, -0.0000023093583765768054, 1.2483018251766518e-7 ], [ -0.0000023093583765768054, -0.0004419612612037935, -1.2483018251766518e-7 ], [ 1.2483018251766518e-7, -1.2483018251766518e-7, -0.0004097550741142359 ] ]
true
null
null
-74.310525
null
0.005206
0.015859
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:45:33
6525443648197521642018246610352870410966277471793733231700398626303468474915649037861129679890600896372949902359270093392307923560580297387900547802603813
PO_6525443648197521642018246
null
null
null
[ "train_1st_stage_74" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10347652865610924227478722557208824028179937887707942349576104159502223480149969737295900535757815098222489891597957326126377115889635055584034178805500295
CO_1034765286561092422747872
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni7Ti16
Al6Ni7Ti16
A16B7C6
[ 13, 13, 13, 13, 13, 13, 28, 28, 28, 28, 28, 28, 28, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.20689655172413793, 0.2413793103448276, 0.5517241379310345 ]
3
29
[ [ 0, 6.0863, 6.0863 ], [ 6.0863, 0, 6.0863 ], [ 6.0863, 6.0863, 0 ] ]
[ [ 6.0863, 3.61526, 6.0863 ], [ 6.0863, 8.55734, 6.0863 ], [ 8.55734, 6.0863, 6.0863 ], [ 3.61526, 6.0863, 6.0863 ], [ 6.0863, 6.0863, 3.61526 ], [ 6.0863, 6.0863, 8.55734 ], [ 0, 0, 0 ], [ 3.04315, 6.0863, 3.04315 ], [ 3.04315, 0, 3.04315 ], [ 0, 3.04315, 3.04315 ], [ 6.0863, 3.04315, 3.04315 ], [ 3.04315, 3.04315, 6.0863 ], [ 3.04315, 3.04315, 0 ], [ 10.6875, 7.57136, 7.57136 ], [ 7.57136, 10.6875, 7.57136 ], [ 10.6875, 10.6875, 10.6875 ], [ 7.57136, 7.57136, 10.6875 ], [ 4.60124, 1.48506, 4.60124 ], [ 1.48506, 4.60124, 4.60124 ], [ 1.48506, 1.48506, 1.48506 ], [ 4.60124, 4.60124, 1.48506 ], [ 8.25302, 10.0059, 10.0059 ], [ 10.0059, 8.25302, 10.0059 ], [ 8.25302, 8.25302, 8.25302 ], [ 10.0059, 10.0059, 8.25302 ], [ 2.16672, 3.91958, 2.16672 ], [ 3.91958, 2.16672, 2.16672 ], [ 3.91958, 3.91958, 3.91958 ], [ 2.16672, 2.16672, 3.91958 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11921311695535288004601592544928401103460958033943217185667238702060487692633817180447622621297078432521820455103071123413631810967320426685790497063541791
1
VASP
DFT
null
[ [ -0.00019, -0.0408, -0.000057 ], [ 0.000188, 0.040816, -0.000036 ], [ 0.04074, 0.000321, -0.00012 ], [ -0.040815, -0.000062, 0.000028 ], [ 0.000074, 0.00012, -0.040814 ], [ -0.000076, 0.000141, 0.040688 ], [ 0.000055, 0.000121, 0.000184 ], [ 0.000262, 0.000005, 0.00014 ], [ -0.000256, 0.000724, -0.000067 ], [ 0.000322, -0.000376, 0.000079 ], [ -0.000475, 0.000173, -0.000023 ], [ -0.000048, -0.000002, -0.000621 ], [ 0.000046, -0.000207, 0.000137 ], [ 1.188297, -1.188317, -1.188384 ], [ -1.188294, 1.18883, -1.188497 ], [ 1.188802, 1.189119, 1.188606 ], [ -1.18843, -1.188441, 1.188506 ], [ 1.188135, -1.188441, 1.188222 ], [ -1.188029, 1.188221, 1.18837 ], [ -1.188525, -1.188843, -1.188256 ], [ 1.188357, 1.188479, -1.188075 ], [ -2.633365, 2.633004, 2.63238 ], [ 2.632526, -2.633527, 2.632272 ], [ -2.632546, -2.632693, -2.632574 ], [ 2.632457, 2.632795, -2.633033 ], [ -2.632772, 2.633157, -2.632398 ], [ 2.633695, -2.633651, -2.633121 ], [ 2.633242, 2.633268, 2.63296 ], [ -2.633377, -2.633934, 2.633507 ] ]
null
[ [ 0.14323982575991412, 0.0000440650544287358, -0.0000027462640153886334 ], [ 0.0000440650544287358, 0.143127665840922, -0.0000026214338328709683 ], [ -0.0000027462640153886334, -0.0000026214338328709683, 0.14328176870124007 ] ]
true
null
null
-186.845094
null
1.834461
4.561539
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:09:20
12193791694581643287361999459559171650161885827850347985049655866098361738369398833607306950658556102311538583453102095472064069197349936246027955733172461
PO_1219379169458164328736199
null
null
null
[ "train_1st_stage_2229" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
1083555607713751721744404728547788752304978253822777146046521133640809639051812620368161847649567069448963602758038316310934146738381699786666348694252440
CO_1083555607713751721744404
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2NiTi3
Al2NiTi3
A3B2C
[ 13, 13, 28, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.3333333333333333, 0.16666666666666666, 0.5 ]
3
6
[ [ 2.57017, -4.45167, 0 ], [ 2.57017, 4.45167, 0 ], [ 0, 0, 4.17601 ] ]
[ [ 2.57017, 1.48419, 0 ], [ 2.57017, -1.48419, 0 ], [ 0, 0, 0 ], [ 1.28509, -2.22583, 2.088 ], [ 1.28509, 2.22583, 2.088 ], [ 2.57017, 0, 2.088 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11379771260753852002158455652282014252249820916076639249364268703521451754573514729222568481573815734914007840143508786326031666390660404175049388665133729
1
VASP
DFT
null
[ [ -0.000055, -0.001195, -0.000106 ], [ 0.00014, 0.001191, -0.000104 ], [ 0.00001, -0.000001, 0.00001 ], [ -0.000073, -0.00006, 0.000069 ], [ -0.000067, 0.00006, 0.000071 ], [ 0.000045, 0.000006, 0.000061 ] ]
null
[ [ 0.00847247414783897, 0.0000033079998367181266, 6.241509125883259e-8 ], [ 0.0000033079998367181266, 0.008415301924245878, -6.241509125883259e-8 ], [ 6.241509125883259e-8, -6.241509125883259e-8, 0.11963069334034811 ] ]
true
null
null
-33.544166
null
0.000454
0.001204
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:11:21
1259243358426334766600934546824530864942937159894999040253096723560366550897648486210739528500181748246287049785693968039125128688832301659832865011721596
PO_1259243358426334766600934
null
null
null
[ "train_1st_stage_2383" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10066840994471661124038560305412631330443722937823661191114696819640932427416982770241347425169531560014199103515174100563997993353078098349205748226621285
CO_1006684099447166112403856
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni8Ti2
AlNi4Ti
A4BC
[ 13, 13, 28, 28, 28, 28, 28, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.16666666666666666, 0.6666666666666666, 0.16666666666666666 ]
3
12
[ [ 0, 0, 4.16702 ], [ 3.85001, 2.27446, 0 ], [ -3.88103, 6.73577, 0 ] ]
[ [ -3.71461, 6.73889, 0 ], [ 1.16335, 6.5357, 0 ], [ 1.19297, 2.25377, 0 ], [ 2.5587, 4.49665, 0 ], [ -0.02703, 4.37652, 0 ], [ -1.28103, 6.90167, 0 ], [ 1.31992, 0.78697, 2.08351 ], [ -0.07669, 2.98176, 2.08351 ], [ 1.26226, 5.24209, 2.08351 ], [ 0.05156, 7.57584, 2.08351 ], [ 2.4192, 3.06716, 2.08351 ], [ -1.20471, 5.37885, 2.08351 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10379754127339251250367219151380024560270935203225158186312252181487561624863132739339158477287875810294648899803113642219219351601403704527773088159590347
1
VASP
DFT
null
[ [ -0.142363, -0.044767, 0 ], [ -0.060519, -0.18025, 0.000001 ], [ 0.170943, 0.117907, 0.000001 ], [ 0.084566, -0.145219, 0.000002 ], [ -0.185906, 0.105454, 0.000002 ], [ 0.146869, -0.080857, 0.000001 ], [ -0.099815, 0.126205, 0 ], [ 0.195273, 0.029664, -0.000002 ], [ -0.108725, 0.147461, -0.000002 ], [ -0.042889, -0.047874, 0.000001 ], [ -0.16042, -0.138363, -0.000002 ], [ 0.202984, 0.11064, -0.000001 ] ]
null
[ [ 0.007551664306497413, -0.0008971545217544596, 0 ], [ -0.0008971545217544596, 0.0016167381088775402, 0 ], [ 0, 0, -0.0048696878351053765 ] ]
true
null
null
-71.992774
null
0.178784
0.231179
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:14:10
2890495834709126470117388497521847458902783697136493288670090628603548431398722897590987038316092787663473800126449969528157813809714644878710387729043148
PO_2890495834709126470117388
null
null
null
[ "train_1st_stage_616" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
3392625585456949454124175658173954056101587002692901941408194358705678804841397040982295548112749468819518969504119129778454352040566494336667010367244761
CO_3392625585456949454124175
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni6Ti8
Ni3Ti4
A4B3
[ 28, 28, 28, 28, 28, 28, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.42857142857142855, 0.5714285714285714 ]
2
14
[ [ 0.031326, -4.77478, 0.121944 ], [ 2.01325, 0.125793, 4.40902 ], [ -6.98559, 2.46501, 4.76919 ] ]
[ [ -0.10895, -0.28312, 0.38827 ], [ -0.51706, -0.15569, 4.48769 ], [ -3.02283, -0.22298, 4.30462 ], [ -1.58384, -0.20983, 2.34579 ], [ -3.94767, -2.51748, 7.62147 ], [ -4.20423, -0.16766, 6.3867 ], [ -5.76879, -0.17107, 4.45377 ], [ 0.5901, -2.541, 5.4368 ], [ -1.69409, -2.56997, 3.76308 ], [ -4.26641, -2.55907, 5.16329 ], [ 0.84551, -3.71568, 2.61583 ], [ -1.88896, 1.12701, 6.49213 ], [ 0.77855, -1.41543, 2.62811 ], [ -1.82489, -1.40768, 6.55271 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2706738328876593855813692438115778646154107482579132397953081845489765979511651201600874231546591206501761158603408697488704609392986560321681335710254257
1
VASP
DFT
null
[ [ 0.077101, 0.100697, 0.206616 ], [ -0.332481, 0.01955, 0.439025 ], [ 0.002207, 0.126363, 0.078356 ], [ 0.145119, -0.061273, -0.265193 ], [ 0.72863, 0.08383, -0.26553 ], [ 0.592921, 0.184689, 0.041796 ], [ -0.413386, -0.186234, -0.144815 ], [ 0.266376, 0.019136, -0.499401 ], [ 0.14224, -0.167321, 0.618558 ], [ 0.143631, 0.040537, -0.200596 ], [ -0.698402, -0.844332, 0.397519 ], [ 0.00962, -1.287987, -0.155269 ], [ -0.38304, 0.573434, 0.007958 ], [ -0.280536, 1.398911, -0.259024 ] ]
null
[ [ -0.021128257372209934, -0.00019461025454503998, 0.0013759406868009642 ], [ -0.00019461025454503998, -0.013546571406817023, 0.0007708263770465824 ], [ 0.0013759406868009642, 0.0007708263770465824, 0.0003168190032298342 ] ]
true
null
null
-99.709532
null
0.657464
1.450085
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:18:53
3404568419389246714288800881144543205480160994301347299442016010307249835271885730985636396400493295547902307241208719461241674904115017238779455852424598
PO_3404568419389246714288800
null
null
null
[ "train_1st_stage_1210" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6928607841668052263298277494682369469268209982900030380389344932594085534306310998328141321341581957434202164270272342863092619467149124019870576907720618
CO_6928607841668052263298277
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al7Ni3Ti2
Al7Ni3Ti2
A7B3C2
[ 13, 13, 13, 13, 13, 13, 13, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.5833333333333334, 0.25, 0.16666666666666666 ]
3
12
[ [ 2.15383, 1.02845, 3.62971 ], [ -0.987622, 6.30684, 0.167763 ], [ -2.34732, -0.74065, 4.1179 ] ]
[ [ -3.20567, 5.5064, 4.24006 ], [ 0.10315, 0.30561, 3.93282 ], [ -0.33681, 1.26821, 3.97078 ], [ -0.08974, 4.43415, 3.55954 ], [ -2.29379, 3.4772, 4.23201 ], [ -1.22406, 1.06885, 5.88379 ], [ -0.02009, 3.47223, 6.02119 ], [ 1.43081, 3.02566, 3.78792 ], [ -0.55067, 3.17466, 2.04822 ], [ -1.58106, 5.15485, 5.94625 ], [ -0.91633, 0.39515, 2.02596 ], [ -1.49498, 4.83774, 2.15891 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
240647515707852873473348811223849156645480724651103980420419682596022461167187181691650883718686422856928413177289446897066707389347557415535204073121001
1
VASP
DFT
null
[ [ 2.621077, 1.544469, -0.713994 ], [ 31.876753, -71.521535, -1.233086 ], [ -31.130699, 74.123125, -0.307687 ], [ 4.089412, 1.601512, 7.078759 ], [ 2.035273, 0.015825, 3.762934 ], [ -2.080277, -0.105853, 2.220282 ], [ -8.652031, -6.409796, -2.327947 ], [ 1.741111, -1.001702, -1.589335 ], [ 9.467522, -3.773426, -2.270637 ], [ -0.984257, -0.608777, 0.002285 ], [ -2.317125, 2.953503, -1.396179 ], [ -6.666758, 3.182654, -3.225396 ] ]
null
[ [ 0.5800643249531057, -0.2437308065355587, 0.0509873873700704 ], [ -0.2437308065355587, 0.9274956210870207, 0.038141050872086225 ], [ 0.0509873873700704, 0.038141050872086225, 0.48723529595021287 ] ]
true
null
null
-7.705289
null
17.894153
80.395602
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:47:06
573989482639061740412026583483940428289880766339483503668272326799420564032568242431207084137132884484436614125470121973341223171685497421579572115356675
PO_5739894826390617404120265
null
null
null
[ "train_1st_stage_1911", "train_1st_stage_1711", "train_1st_stage_1311", "train_1st_stage_1511" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7731899870499524512334790967145789220089782005610099414360704565754320574066471816390120980148811986305514286117139596113858804620265642751815832787402946
CO_7731899870499524512334790
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al5Ti3
Al5Ti3
A5B3
[ 13, 13, 13, 13, 13, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.625, 0.375 ]
2
8
[ [ 3.93136, 0, 0 ], [ 0, 4.00112, -4.00885 ], [ 0, 6.01974, 2.00708 ] ]
[ [ 0, 9.98391, -1.98053 ], [ 1.96568, 2.00508, 0.00066 ], [ 0, 4.0471, -0.01991 ], [ 0, 8.04147, -0.03435 ], [ 0, 5.98954, -1.96609 ], [ 1.96568, 6.08343, 0.07006 ], [ 1.96568, 4.00563, -2.00376 ], [ 1.96568, 7.94758, -2.0705 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
885736186646272300963540265981745792368760876258698841567454831395400319578623131181415625936226729855573904817093760537651242320340818466421892166127027
1
VASP
DFT
null
[ [ -0.000001, -0.068205, -0.1061 ], [ -0.000002, -0.00018, -0.000115 ], [ 0, 0.068242, 0.105943 ], [ -0.000001, -0.106291, -0.068843 ], [ -0.000001, 0.1061, 0.068892 ], [ -0.000001, 0.408015, 0.404235 ], [ 0.000006, -0.000009, -0.000086 ], [ 0, -0.407672, -0.403926 ] ]
null
[ [ -0.018149621972064666, 0, -6.241509125883259e-8 ], [ 0, -0.0013067223505949187, -0.00004699856371790093 ], [ -6.241509125883259e-8, -0.00004699856371790093, -0.0012471783535339925 ] ]
true
null
null
-45.409104
null
0.20673
0.574354
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:51:37
5732566490110889627963654386351441273278308821761643994016931797723018502394953596067859852553282062838068132134381577507217181374899947883662195790623621
PO_5732566490110889627963654
null
null
null
[ "train_1st_stage_449" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4670992797100752571365399274944893430003123444025608105287674668000696205835521899779553713975551243108177415648477856433912356895775974167514897117948794
CO_4670992797100752571365399
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni6Ti
Al3Ni6Ti
A6B3C
[ 13, 13, 13, 28, 28, 28, 28, 28, 28, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.3, 0.6, 0.1 ]
3
10
[ [ 2.65927, -2.78953, -0.065389 ], [ -3.46339, -3.13834, -6.96904 ], [ 0.673854, 3.36418, -2.50461 ] ]
[ [ -3.42139, -3.09734, -7.01013 ], [ 1.05932, -1.60366, -2.11556 ], [ 0.43332, -2.12039, -5.52898 ], [ 0.90683, 0.91916, -2.333 ], [ 1.95811, -0.69811, -4.19339 ], [ -0.60044, -0.48246, -3.83772 ], [ 0.22263, 0.35209, -5.96635 ], [ -2.07762, -1.85681, -5.28082 ], [ -1.01826, -3.46097, -7.37423 ], [ -1.17517, -0.94434, -7.50682 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4323914215393515553333512148520907996012703518610728886258794442725850212763297434961937196454296751031556836165703292498367141578345593522190526890635399
1
VASP
DFT
null
[ [ -0.129519, -0.119834, -0.140978 ], [ -0.027845, -0.027151, 0.027365 ], [ 0.111621, 0.105288, 0.043741 ], [ 0.022167, 0.019089, 0.090045 ], [ 0.065756, 0.064996, -0.039125 ], [ 0.094184, 0.084166, 0.234793 ], [ -0.086017, -0.083001, 0.018883 ], [ -0.018712, -0.013671, -0.206804 ], [ 0.140512, 0.126336, 0.334446 ], [ -0.172146, -0.156217, -0.362366 ] ]
null
[ [ 0.0003799830755837727, 0.002556959043600594, -0.0000714652794913633 ], [ 0.002556959043600594, 0.00011871350357429956, -0.00009218708978929573 ], [ -0.0000714652794913633, -0.00009218708978929573, 0.0020878472176992084 ] ]
true
null
null
-57.114
null
0.203842
0.43052
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:28:41
1494349298077469245186927479453742575658062097291288842682275975144002056728921414587157893618354484695707906893678459342389826822146188885144187163700322
PO_1494349298077469245186927
null
null
null
[ "train_1st_stage_633" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
8584613787777456236007847224682505767419281707066842274751451833066675323891878595821036599598609419095825639948359545072415000267760458219813335066292701
CO_8584613787777456236007847
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni6
AlNi3
A3B
[ 13, 13, 28, 28, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.25, 0.75 ]
2
8
[ [ 2.87953, 0, -2.87953 ], [ 3.10445, 2.53478, 3.10445 ], [ 3.10445, -2.53478, 3.10445 ] ]
[ [ 5.9502, 0, 5.9502 ], [ 3.2507, 0, 0.37117 ], [ 4.81187, -1.24549, 1.93233 ], [ 2.86363, 0, 2.86363 ], [ 4.81187, 1.24549, 1.93233 ], [ 4.38904, 1.24549, 4.38904 ], [ 4.38904, -1.24549, 4.38904 ], [ 6.33727, 0, 3.45774 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
399687514237267789302450918096493744841895845632853081343501889260009022457846579391268600619337357746113787741053619565776191422504107485153646497035403
1
VASP
DFT
null
[ [ -0.000191, -0.000874, -0.000248 ], [ -0.000539, 0.001252, -0.000513 ], [ -0.048508, -0.119269, -0.048414 ], [ -0.09731, 0.000348, -0.097386 ], [ -0.048901, 0.119645, -0.048806 ], [ 0.048564, 0.119384, 0.048523 ], [ 0.049143, -0.12014, 0.049102 ], [ 0.097742, -0.000346, 0.097743 ] ]
null
[ [ -0.0007855563385836668, -0.000012233357886731185, -0.000054675619942737344 ], [ -0.000012233357886731185, -0.0008299334684686968, -0.000012295772977990018 ], [ -0.000054675619942737344, -0.000012295772977990018, -0.0007854939234924079 ] ]
true
null
null
-43.681616
null
0.103812
0.138779
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:49:07
11002542661192160649882941655044013359814780640702088982764403628790506061085190297357080807945902041694292416589792075492280774678245448496406547686532499
PO_1100254266119216064988294
null
null
null
[ "train_1st_stage_651" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
2481376082957389725350694328322226612113762498038047005812112333232626276224231283548993227238881051740400717592803838654128105603554573924200700126252408
CO_2481376082957389725350694
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni4Ti8
NiTi2
A2B
[ 28, 28, 28, 28, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
12
[ [ 0, 0, 4.36099 ], [ 5.94005, 5.01425, 0 ], [ -2.90611, 4.16113, 0 ] ]
[ [ 5.54081, 5.20109, 0 ], [ 2.21967, 6.60551, 0 ], [ 1.97158, 5.14663, 2.18049 ], [ 2.3886, 7.9039, 2.18049 ], [ 1.33652, 2.15686, 0 ], [ 3.30472, 4.26242, 0 ], [ -1.32842, 2.7954, 0 ], [ 0.58154, 4.73873, 0 ], [ -1.90888, 4.75958, 2.18049 ], [ 2.89251, 2.54075, 2.18049 ], [ 4.20866, 6.0853, 2.18049 ], [ 0.24746, 3.16967, 2.18049 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3588217314398746447198786200666592994228388715769215012384880638794754255513943717357375491607090844321271755286206081067753977385858172677788783529025226
1
VASP
DFT
null
[ [ -0.249093, -0.315123, -0.000025 ], [ 0.332904, 0.216638, -0.000023 ], [ 0.243274, 0.349884, 0.000026 ], [ -0.333547, -0.20691, 0.000024 ], [ -0.23035, -0.543047, -0.000065 ], [ 0.295713, 0.179958, -0.000034 ], [ -0.910766, -0.213976, -0.000047 ], [ -0.153568, 0.906186, -0.000039 ], [ 0.154884, -1.007034, 0.00004 ], [ 1.045099, 0.212325, 0.000038 ], [ -0.295543, -0.194059, 0.00003 ], [ 0.100995, 0.615157, 0.000073 ] ]
null
[ [ 0.03583375219352096, 0.0067744715901424295, 6.241509125883259e-8 ], [ 0.0067744715901424295, 0.03529904210670654, -2.4966036503533035e-7 ], [ 6.241509125883259e-8, -2.4966036503533035e-7, 0.03055649381249541 ] ]
true
null
null
-85.951649
null
0.622544
1.066449
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:25:42
7141715787486703802124895192519825080498779702630494633689776071020136168080179054440991341652336028753630678654979596906073996098085783448858037947458146
PO_7141715787486703802124895
null
null
null
[ "train_1st_stage_2334" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
658337539032856472115260574258534501341899709295628483202476447778485330504863567471492194358579950511057124653855809204736417367327611308935831648815608
CO_6583375390328564721152605
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni8Ti4
Ni2Ti
A2B
[ 28, 28, 28, 28, 28, 28, 28, 28, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.6666666666666666, 0.3333333333333333 ]
2
12
[ [ 3.59852, -0.000007, -0.006111 ], [ -0.000007, 3.59852, -0.006111 ], [ 1.81868, 1.81868, 11.4291 ] ]
[ [ 3.60819, 3.60819, 5.68408 ], [ 1.809, 1.809, 5.73277 ], [ 3.6179, 1.81864, 11.4047 ], [ 3.59855, 1.79929, 0.01212 ], [ 3.61468, 3.61468, 9.50864 ], [ 1.80251, 1.80251, 1.9082 ], [ 1.80571, 3.60497, 3.79411 ], [ 1.81221, 3.61148, 7.62274 ], [ 3.60147, 3.60147, 1.72975 ], [ 1.81572, 1.81572, 9.6871 ], [ 3.61119, 1.81192, 7.45039 ], [ 3.60527, 1.806, 3.96645 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9720816500535908735729446578326787360044232393462564319628922998474414843247534174313416451830395828957279718640530524500678685397202521984011455147774715
1
VASP
DFT
null
[ [ -0.000359, 0.000644, -0.011446 ], [ -0.000646, 0.000345, 0.011862 ], [ 0.000712, -0.000317, -0.010932 ], [ 0.000318, -0.000709, 0.011763 ], [ -0.000314, 0.000814, 0.03982 ], [ -0.000815, 0.000303, -0.040077 ], [ 0.000809, -0.000312, 0.039293 ], [ 0.000381, -0.000806, -0.039871 ], [ 0.000859, 0.000761, 0.411537 ], [ -0.000765, -0.000859, -0.411848 ], [ 0.000694, 0.000867, 0.412409 ], [ -0.000874, -0.00073, -0.41251 ] ]
null
[ [ -0.006705378084118902, -0.00001841245192135561, 0.00003126996072067512 ], [ -0.00001841245192135561, -0.006738395667394824, 0.00003114513053815745 ], [ 0.00003126996072067512, 0.00003114513053815745, 0.004870561646383 ] ]
true
null
null
-79.680474
null
0.154459
0.412512
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:28:44
12592720171749016900605347683083692991511586991494554384862893631030862893621143191231752480491250665777556554124971132940393518277941470066057948612088623
PO_1259272017174901690060534
null
null
null
[ "train_2nd_stage_198" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6869582153413356535988757234427759080375426466564525568195231474449337418227131257093688881839825112782485061137994670285557064138378027947510321557919877
CO_6869582153413356535988757
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni3Ti3
NiTi
AB
[ 28, 28, 28, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.5, 0.5 ]
2
6
[ [ -1.9729, 1.97219, 1.97092 ], [ 2.41479, 2.4156, 0.000006 ], [ -2.69771, 2.69685, -5.39894 ] ]
[ [ -4.10043, 4.11845, -3.81781 ], [ -0.92287, 3.3567, 0.12512 ], [ -0.66392, 3.0979, -2.31634 ], [ -1.14379, 1.16278, -0.86032 ], [ -3.07122, 3.08958, -1.75809 ], [ -1.69311, 4.12675, -4.37604 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10390897724883954919990560801597433841292607799490909271596417041768993852337225104890923621366237872137095312532551982064397125211805519755835797271452377
1
VASP
DFT
null
[ [ 0.218159, -0.217637, 0.435602 ], [ 0.000387, 0, -0.00019 ], [ -0.217565, 0.217657, -0.435956 ], [ -0.000363, 0.000154, -0.000011 ], [ -0.339155, 0.338628, -0.677748 ], [ 0.338537, -0.338803, 0.678304 ] ]
null
[ [ 0.04580006913554883, 0.0010872084746376047, -0.0021781618547507394 ], [ 0.0010872084746376047, 0.04580868241814255, 0.0021820940055000456 ], [ -0.0021781618547507394, 0.0021820940055000456, 0.04253320084397027 ] ]
true
null
null
-41.508166
null
0.454747
0.830356
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:39:27
8450176381165452749819071603032803627777115876759401082374862389566581437675058368190233131181650417744048515694171476713348771178099178949487257703908447
PO_8450176381165452749819071
null
null
null
[ "train_2nd_stage_642" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
1458441592696320262763706394315444843433358255135953148346083873433489200697394730305648539451303323338292200975177784604806684847203291212738128404364798
CO_1458441592696320262763706
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni4Ti7
Ni4Ti7
A7B4
[ 28, 28, 28, 28, 22, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.36363636363636365, 0.6363636363636364 ]
2
11
[ [ 2.64501, 4.29218, 0.519923 ], [ 7.31379, 0.391273, -2.47584 ], [ 0.069968, 2.13296, -4.57558 ] ]
[ [ 3.36239, 4.07664, -0.2164 ], [ 5.76826, 4.31346, -1.74459 ], [ 6.79383, 2.61873, -3.71563 ], [ 1.88593, 2.46429, -2.76797 ], [ 2.40023, 1.58809, -0.435 ], [ 4.34369, 2.45271, -2.4691 ], [ 8.2184, 4.47948, -2.99113 ], [ 2.8481, 4.95284, -2.54935 ], [ 5.4041, 4.9553, -4.08452 ], [ 4.99354, 2.38646, -5.27788 ], [ 7.22796, 4.10984, -5.95128 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
1698302990365715374387496085034663114621895665526769587042735001941016498854053788707556999352072609374120286157848024037530614736938018133934989062429189
1
VASP
DFT
null
[ [ 0.01488, 0.297423, 0.087441 ], [ -0.486615, 0.324517, -0.00408 ], [ 0.486793, -0.325073, 0.004243 ], [ -0.01445, -0.297808, -0.087917 ], [ 0.086911, 0.016721, -0.077763 ], [ 0.053603, 0.18821, 0.056756 ], [ -0.054175, -0.188176, -0.055905 ], [ -0.088156, -0.016134, 0.077532 ], [ -0.146096, 0.047208, 0.260016 ], [ 0.000971, -0.00058, -0.000135 ], [ 0.146334, -0.046306, -0.260188 ] ]
null
[ [ 0.003570268050187741, 0.00894133631337532, -0.0008770568623691154 ], [ 0.00894133631337532, 0.013735751548422544, -0.004915750172454395 ], [ -0.0008770568623691154, -0.004915750172454395, 0.0017675329693588799 ] ]
true
null
null
-79.423121
null
0.2764
0.58537
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:16:07
3206477235417995039198245354716471751997003746251844709604494698351963532717006312812588682133890121701584951447667269473807784213827597817932628982054567
PO_3206477235417995039198245
null
null
null
[ "train_2nd_stage_781" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11788428968238084413877846875799391598451643941706997771320165538097294476157261957459516413444847222248148164551836803710155952068755073999125980337017838
CO_1178842896823808441387784
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni7Ti2
Al3Ni7Ti2
A7B3C2
[ 13, 13, 13, 28, 28, 28, 28, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.25, 0.5833333333333334, 0.16666666666666666 ]
3
12
[ [ 3.76806, -0.691942, -0.000151 ], [ -1.02028, 5.63927, 0.001134 ], [ -0.000098, 0.000505, 6.90351 ] ]
[ [ 0.25581, 5.28336, 1.72666 ], [ 2.06603, 0.20602, 5.17812 ], [ 2.55933, 3.315, 5.17748 ], [ 0.14421, 0.39047, 6.77788 ], [ 0.14487, 0.39001, 3.57661 ], [ 2.2406, 1.69483, 6.90049 ], [ 2.24067, 1.69272, 3.45558 ], [ 0.68389, 3.92741, 6.78253 ], [ 0.68862, 3.9276, 3.57454 ], [ 0.46, 2.10481, 5.17862 ], [ 0.30064, 1.78313, 1.72595 ], [ -0.71163, 4.14905, 1.72762 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12226677720408818124538330103563884037425780839909106762690086242182633876348696420143811119677644464145640395235492551615655023655047913707586980934295640
1
VASP
DFT
null
[ [ 24.086232, 23.084578, -0.021298 ], [ -0.200572, -1.069227, 0.003643 ], [ 0.281865, 0.376429, 0.001779 ], [ -0.665379, -0.971787, -0.770066 ], [ -0.664337, -0.964419, 0.78497 ], [ 0.461923, 0.461359, 1.257474 ], [ 0.468227, 0.47322, -1.260956 ], [ 0.71015, -0.557055, -0.575823 ], [ 0.680704, -0.557425, 0.567189 ], [ -0.447607, 0.529785, -0.011338 ], [ -0.743466, 3.277634, -0.000182 ], [ -23.96774, -24.083092, 0.024607 ] ]
null
[ [ 0.13838979867855528, 0.13896070951829984, -0.000032393432363334107 ], [ 0.13896070951829984, 0.24177153440585267, -0.00035738881254807536 ], [ -0.000032393432363334107, -0.00035738881254807536, 0.07669310512011186 ] ]
true
null
null
-56.912895
null
6.727445
33.977176
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:22:07
10018662802073927993593256051288463923909556760731205837291190928656868297879289864398153938124592156014428328792227240915169533443306556230082000415555973
PO_1001866280207392799359325
null
null
null
[ "train_1st_stage_1625", "train_1st_stage_1825", "train_1st_stage_1425", "train_1st_stage_1225" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
24966395536560185888020424752184437276381347406575209112524277454936759764656784514719280425080338722836940202098378711660932589996596588696253833630863
CO_2496639553656018588802042
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni2
Al3Ni
A3B
[ 13, 13, 13, 13, 13, 13, 28, 28 ]
[ "Al", "Ni" ]
[ 0.75, 0.25 ]
2
8
[ [ -2.36609, -2.36631, 0.000074 ], [ -1.1038, 1.10344, -6.25134 ], [ 3.27642, -3.27625, -4.47732 ] ]
[ [ -3.45159, -1.25821, -6.2278 ], [ -1.28595, -1.05736, -2.21264 ], [ -1.81023, -2.89935, -4.15701 ], [ -0.74838, -1.59506, -6.39319 ], [ 0.80288, -3.146, -3.18737 ], [ -0.62262, -4.08695, -7.6596 ], [ -1.22559, -3.48376, -1.84725 ], [ -1.87058, -0.47294, -4.52239 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6385552437494893264102774232142367660453812772127725298974225481912822310743751007935027664392418543236276224274990359964619186664575104701121952728617636
1
VASP
DFT
null
[ [ -0.278517, 0.278596, -0.007014 ], [ -0.143798, 0.1437, 0.337714 ], [ 0.143853, -0.143599, -0.337306 ], [ 0.278577, -0.278573, 0.007584 ], [ -0.134844, 0.13473, -0.344599 ], [ 0.134946, -0.134812, 0.344956 ], [ -0.000192, -0.000133, -0.000622 ], [ -0.000026, 0.000093, -0.000713 ] ]
null
[ [ 0.02807780329333339, -0.0035180890338953573, 8.113961863648235e-7 ], [ -0.0035180890338953573, 0.028078801934793528, -4.36905638811828e-7 ], [ 8.113961863648235e-7, -4.36905638811828e-7, 0.03159220983684448 ] ]
true
null
null
-34.955045
null
0.295676
0.394182
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:36:44
10431808859723773647395597778554616460142662496054502127086060258272351989056307510531807913493368288644846538532304127735684893627163245454313956569561742
PO_1043180885972377364739559
null
null
null
[ "train_2nd_stage_732" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11958312149287619057135761062019957241848014589627935109472399902756716757677713496739267199990456517284098692086721616423895544703359305333870787293306377
CO_1195831214928761905713576
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni4Ti8
AlNiTi2
A2BC
[ 13, 13, 13, 13, 28, 28, 28, 28, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.25, 0.25, 0.5 ]
3
16
[ [ 3.82485, 0, 0 ], [ 0, 7.6497, 0 ], [ 0, 0, 8.15185 ] ]
[ [ 1.70684, 0.95621, 6.11388 ], [ 3.61927, 6.69349, 2.03796 ], [ 1.70684, 4.78107, 6.11388 ], [ 3.61927, 2.86864, 2.03796 ], [ 3.61927, 2.86864, 6.11388 ], [ 1.70684, 4.78106, 2.03796 ], [ 3.61927, 6.69349, 6.11388 ], [ 1.70684, 0.95621, 2.03796 ], [ 3.61927, 0.95621, 4.07592 ], [ 1.70684, 6.69349, 4.07592 ], [ 3.61927, 4.78107, 0 ], [ 1.70684, 2.86864, 8.15184 ], [ 3.61927, 0.95621, 0 ], [ 1.70684, 6.69349, 8.15184 ], [ 3.61927, 4.78106, 4.07592 ], [ 1.70684, 2.86864, 4.07592 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5682142559272410791486215558825364702687180283575847611873124739551835366574942471437413696225086685535574467362430081996884227105676204211482820889071818
1
VASP
DFT
null
[ [ 0.000019, -0.001094, -0.000147 ], [ -0.000039, -0.000456, -0.001308 ], [ 0.000018, 0.001039, -0.000185 ], [ -0.000038, 0.000396, 0.00144 ], [ 0.000012, 0.00014, -0.000568 ], [ 0.000034, 0.000476, -0.000037 ], [ 0.000012, -0.000185, 0.000421 ], [ 0.000034, -0.000506, -0.000006 ], [ -0.000048, 0.000034, -0.023142 ], [ 0.000036, -0.001259, 0.023551 ], [ -0.000052, 0.003817, 0.023699 ], [ 0.000026, 0.000532, -0.023145 ], [ -0.000054, -0.003436, 0.023083 ], [ 0.000027, 0.000008, -0.023694 ], [ -0.000034, -0.00028, -0.023503 ], [ 0.000047, 0.000774, 0.023541 ] ]
null
[ [ 0.015204441060834134, 0, 6.241509125883259e-8 ], [ 0, 0.01611389135556658, -6.241509125883259e-8 ], [ 6.241509125883259e-8, -6.241509125883259e-8, 0.03190996506644319 ] ]
true
null
null
-105.006884
null
0.01219
0.024004
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:21:41
1733850689509792733408703161268919571669800677270738672696288091323111430482001383702547519252512435989832097942406305916118490852326670230544229913847995
PO_1733850689509792733408703
null
null
null
[ "train_2nd_stage_454" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5543902125861763529104281079210511574675582953812577870440436329308119499066452090839012226188831276251386401432395185382619517210688896583666773721181250
CO_5543902125861763529104281
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni4
AlNi2
A2B
[ 13, 13, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
6
[ [ 0.146673, 3.44624, -0.146671 ], [ 2.57096, -0.000001, 2.57096 ], [ 3.98273, 1.26768, -3.98273 ] ]
[ [ 6.46039, 1.30633, -1.3185 ], [ 2.82858, 3.25577, -0.25758 ], [ 3.9181, 1.56922, 1.22378 ], [ 5.33018, 3.11962, -0.18838 ], [ 1.38814, 1.72521, 1.18286 ], [ 3.95879, 1.44248, -1.38771 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6297347343350547975358050181408718638517389908288212825276084114516331953163495749287457331804423470922272489278031981117664822691764266387567537202278868
1
VASP
DFT
null
[ [ 0.07668, -0.223586, -0.07589 ], [ -0.076536, 0.223625, 0.075696 ], [ 0.14985, -0.114884, -0.149133 ], [ 0.01797, 0.337519, -0.016121 ], [ -0.149337, 0.11483, 0.148659 ], [ -0.018627, -0.337504, 0.01679 ] ]
null
[ [ -0.005077030768267219, -0.003047354415621242, -0.003708205401869761 ], [ -0.003047354415621242, -0.0003159451919522105, 0.0030466678496173945 ], [ -0.003708205401869761, 0.0030466678496173945, -0.005069603372407417 ] ]
true
null
null
-32.187397
null
0.27564
0.338434
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:33:38
2055981143171278075522589559423241587220381928997961077995834560285376799537851538233069268948874409886004909731846375072236062189579354619767750132950723
PO_2055981143171278075522589
null
null
null
[ "train_1st_stage_925" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5415476625587395488442138455293574005920266324033431364243990123114542953667486571342647329318202547863068363988620248882312030551034971481948482957561334
CO_5415476625587395488442138
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi6Ti
AlNi6Ti
A6BC
[ 13, 28, 28, 28, 28, 28, 28, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.125, 0.75, 0.125 ]
3
8
[ [ 3.6012, 0, 0 ], [ 0, 3.52436, -3.58199 ], [ 0, 5.42387, 1.81172 ] ]
[ [ 0, 5.36528, 1.7541 ], [ 1.8006, 1.79506, 0.00093 ], [ 0, 3.58079, -0.00169 ], [ 1.8006, 5.37595, 0.00196 ], [ 0, 1.78752, -1.76604 ], [ 1.8006, 3.55442, -1.7872 ], [ 1.8006, 7.1379, -1.7888 ], [ 0, 5.4338, -1.70334 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4555481983842855322293607716557301470502913483084262533778798126196924273962439571433575500686617565961834674967841435524057005379771471519302481183532214
1
VASP
DFT
null
[ [ -0.000001, -0.026188, -0.02538 ], [ 0, 0.242032, -0.256753 ], [ -0.000001, -0.052863, -0.052478 ], [ 0, 0.087422, 0.219922 ], [ -0.000001, -0.124603, -0.122753 ], [ 0, -0.253131, 0.246142 ], [ 0.000001, 0.221416, 0.084158 ], [ 0.000002, -0.094086, -0.092858 ] ]
null
[ [ 0.006792010230786161, 0, 6.241509125883259e-8 ], [ 0, -0.0009904650831864142, 0.008264756724129576 ], [ 6.241509125883259e-8, 0.008264756724129576, -0.0014645077012972476 ] ]
true
null
null
-47.658579
null
0.199689
0.353074
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:06:50
3028567351294232003656195767736129459152881856054664521715012647162832700594562084473671982577527135543014201390066008897590849745900837534612764848914201
PO_3028567351294232003656195
null
null
null
[ "train_1st_stage_495" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
3202413352357398618888288222551879598251426500358234025276361540816731539628994090783645134112976587146001658931084478974061836710872431572250596156183429
CO_3202413352357398618888288
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni10Ti2
Ni5Ti
A5B
[ 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.8333333333333334, 0.16666666666666666 ]
2
12
[ [ 1.35937, 4.23017, -1.4214 ], [ 4.23651, -4.28235, -1.45227 ], [ -0.033929, -0.0028, -5.2892 ] ]
[ [ 0.02312, -0.01766, -0.0634 ], [ 1.50048, 1.4388, -1.61498 ], [ 1.49263, -1.3097, -1.39331 ], [ 2.93347, -0.08997, -2.78526 ], [ 2.84927, -2.85617, -2.73272 ], [ 4.12445, -1.39219, -4.1016 ], [ 1.32876, 4.10988, -4.04126 ], [ 1.32093, 1.3614, -3.8196 ], [ 1.43891, -1.41231, -3.94978 ], [ 2.8323, -2.85756, -5.37733 ], [ 2.70122, 0.21518, -5.27535 ], [ 4.32277, -1.70014, -6.9007 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2551116110343980716659198677007970418821233938192624296945210416122463072196015767503114975067266672767459163616719524705542911263626695101597786930695793
1
VASP
DFT
null
[ [ 0.61652, 0.416708, 0.481586 ], [ 0.296307, -0.321451, 1.273519 ], [ 0.672365, -0.526422, 0.208307 ], [ -0.361851, 0.731037, 1.327732 ], [ 0.00002, 0.000524, -0.000135 ], [ 0.362179, -0.731832, -1.326859 ], [ -0.67182, 0.526683, -0.208628 ], [ -0.297028, 0.321501, -1.27367 ], [ -0.616906, -0.416728, -0.481769 ], [ 0.00014, 0.000167, 0.000259 ], [ -0.637794, -1.390451, -1.326619 ], [ 0.637867, 1.390263, 1.326276 ] ]
null
[ [ 0.11862119165432776, 0.012859069176600981, 0.0148116628915423 ], [ 0.012859069176600981, 0.11716305029233891, 0.014577419054047903 ], [ 0.0148116628915423, 0.014577419054047903, 0.1430348546002201 ] ]
true
null
null
-70.877947
null
1.115889
2.024859
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:02:21
319888315735674877227714516443224845988142801006004785886345003901888331602552656744906889978162889850073791013968165598152663114833986899257263808784290
PO_3198883157356748772277145
null
null
null
[ "train_2nd_stage_673" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10334205856600492372156624955376530982052569899386613387639723664307053622084599098472540311458210139858316748585966436260676808569152713703240021233263412
CO_1033420585660049237215662
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi10Ti
AlNi10Ti
A10BC
[ 13, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.08333333333333333, 0.8333333333333334, 0.08333333333333333 ]
3
12
[ [ 2.523014, -0.001292, 4.122571 ], [ 2.518367, 4.371285, 0.025756 ], [ -2.507121, 4.352465, 4.12383 ] ]
[ [ -2.48796, 4.35057, 4.12213 ], [ 2.51928, 4.40319, 4.10579 ], [ 0.0477, 4.37626, 4.15699 ], [ 1.29389, 6.54196, 8.24564 ], [ 1.27364, 2.18361, 4.11995 ], [ 1.26306, 6.53747, 4.15017 ], [ 1.28123, 0.71731, 2.05078 ], [ 1.2587, 5.10802, 2.08022 ], [ 1.29085, 5.1205, 6.19777 ], [ 2.53031, 2.91194, 2.08673 ], [ 2.53184, 7.26593, 6.18722 ], [ 0.00046, 2.9314, 2.06482 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6580296312897173309377293614899827711956568868817069611437370190621660210338428194495851501837828048661981068675146429395030531554695200989360252977590135
1
VASP
DFT
null
[ [ 0.004224, 0.004199, -0.002574 ], [ 0.001469, 0.008357, -0.001046 ], [ -0.008916, 0.007806, 0.00148 ], [ 0.000916, 0.006564, -0.001364 ], [ 0.00223, 0.000793, -0.00058 ], [ -0.004203, 0.008771, 0.001297 ], [ -0.000708, -0.007157, 0.000774 ], [ 0.005312, -0.008943, -0.001835 ], [ -0.002199, -0.001571, 0.00096 ], [ 0.004264, -0.00488, 0.004686 ], [ -0.00013, -0.0072, -0.006077 ], [ -0.002259, -0.006739, 0.004278 ] ]
null
[ [ 0.00010161176856937943, -0.000027525055245145167, 0.000007052905312248081 ], [ -0.000027525055245145167, 0.000316881418321093, 0.000007177735494765747 ], [ 0.000007052905312248081, 0.000007177735494765747, -0.00038435213197189107 ] ]
true
null
null
-69.420257
null
0.007698
0.011942
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:22:03
3124428755635998608260686748230444772769321674036418245566726639759129892318302198194526452641892549283475831519016239852810517829769944727959209000808297
PO_3124428755635998608260686
null
null
null
[ "train_1st_stage_199" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
8670634263768331016664631135076467196065372439354407090234420810286189301310488457823255090563082553835985866534364326537128965310081672987223124035847981
CO_8670634263768331016664631
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al10Ni4
Al5Ni2
A5B2
[ 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.7142857142857143, 0.2857142857142857 ]
2
14
[ [ -1.14206, -4.76814, -0.081461 ], [ 2.81741, 0.416203, 3.97801 ], [ -6.98649, 2.18389, 4.32574 ] ]
[ [ -7.58263, -2.23517, 4.38072 ], [ -0.90369, -1.09789, 4.27555 ], [ -3.31559, -0.37203, 4.21963 ], [ -5.80565, -0.21402, 4.44939 ], [ 1.58637, -1.25586, 4.04577 ], [ -2.68067, -3.11902, 4.20686 ], [ -5.1362, -2.46707, 2.77463 ], [ -0.23422, -3.35091, 2.60076 ], [ -1.90051, 0.58097, 1.74254 ], [ -3.98506, 1.88101, 5.89442 ], [ -1.82904, 0.30856, 6.1699 ], [ 0.2555, -0.99148, 2.01803 ], [ -2.39021, -1.77846, 2.32527 ], [ -4.47479, -0.47841, 6.47714 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5469333212864057368241439616506739537312215505169601302136349793978509959084014364812373615016951097314437359430893836020488513793580806965883796729539588
1
VASP
DFT
null
[ [ 0.000112, -0.000113, -0.000156 ], [ 0.190647, -0.019657, -0.101522 ], [ -0.190718, 0.019191, 0.101524 ], [ 0.190826, -0.019744, -0.101376 ], [ -0.19077, 0.019214, 0.101377 ], [ -0.000072, -0.000036, -0.000249 ], [ -0.105008, -0.134257, 0.173227 ], [ -0.104937, -0.134278, 0.173133 ], [ 0.104964, 0.133805, -0.173126 ], [ 0.104935, 0.133882, -0.173239 ], [ 0.000857, -0.031202, 0.041649 ], [ 0.000999, -0.031184, 0.041494 ], [ -0.000929, 0.032236, -0.041286 ], [ -0.000905, 0.032145, -0.04145 ] ]
null
[ [ -0.003972970218989729, 0.0058995992559673725, 0.002376953920410121 ], [ 0.0058995992559673725, -0.02121676197161496, -0.006022681815929791 ], [ 0.002376953920410121, -0.006022681815929791, 0.01316552727468185 ] ]
true
null
null
-64.890322
null
0.146313
0.243021
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:28:31
8788975998072219221865781264970725285812987528435003493794002580332470084596025505524493651998398575284127714099737328635328241328362155082374717493866909
PO_8788975998072219221865781
null
null
null
[ "train_1st_stage_563" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9281980023854162687288113158204231392958362738033722535025863603325086304855200767099895849298890911193001385573429571059614716872248424097471705035136070
CO_9281980023854162687288113
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ti4
Al3Ti4
A4B3
[ 13, 13, 13, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.42857142857142855, 0.5714285714285714 ]
2
7
[ [ 5.23375, 0, 0 ], [ -2.61688, 4.53256, 0 ], [ 0, 0, 4.85377 ] ]
[ [ 0, 4.53254, 0 ], [ -1.30842, 2.26629, 0 ], [ 1.30842, 2.26629, 0 ], [ 0, 0, 1.27713 ], [ 0, 0, 3.57664 ], [ 0, 3.02171, 2.42689 ], [ 2.61688, 1.51085, 2.42689 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10848912729231538534929624432862483994672571944750340357104157020030786379523555495638007228592356684654428182096991147728147080013454167955558435985832325
1
VASP
DFT
null
[ [ -0.000041, -0.000035, -0.000372 ], [ 0.000038, 0.000036, -0.00037 ], [ -0.00002, 0.000002, -0.00037 ], [ 0.000047, 0.000004, 0.374361 ], [ 0.000006, 0.000002, -0.373208 ], [ -0.000009, -0.000011, 0.000022 ], [ -0.000021, 0.000003, -0.000063 ] ]
null
[ [ 0.01145036056688913, -0.0000013107169164354842, 1.2483018251766518e-7 ], [ -0.0000013107169164354842, 0.011449611585794025, 6.241509125883259e-8 ], [ 1.2483018251766518e-7, 6.241509125883259e-8, -0.011717871648024488 ] ]
true
null
null
-44.976382
null
0.106969
0.374361
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:59:31
9396997406741596661294741507528837441308461310304297314624953115061747203343248041440561016612485261886980268146961795360297548429628275664511948475502884
PO_9396997406741596661294741
null
null
null
[ "train_2nd_stage_613" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10562007458482010306244384304491009340075778965985729859260346922936336362869998751662606712953746698111738302884510460922369379667410784931528629143897692
CO_1056200745848201030624438
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ti2
Al2Ti
A2B
[ 13, 13, 13, 13, 22, 22 ]
[ "Al", "Ti" ]
[ 0.6666666666666666, 0.3333333333333333 ]
2
6
[ [ -1.48721, 7.13837, 0 ], [ -1.48721, -7.13837, 0 ], [ 0, 0, 4.4897 ] ]
[ [ -1.48721, -6.93191, 0 ], [ -1.48721, -2.16047, 0 ], [ -1.48721, 0.58669, 2.24485 ], [ -1.48721, -4.18475, 2.24485 ], [ -1.48721, 2.54969, 0 ], [ -1.48721, 5.38184, 2.24485 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12395106449333019895364604489830489272594500135997269816793074834741404490404956011786890880748873668392835594908880291771405022098319095635284555167345417
1
VASP
DFT
null
[ [ 0.000001, 0.106797, 0 ], [ 0.000001, -0.432108, -0.000001 ], [ 0.000001, -0.106585, -0.000002 ], [ 0.000001, 0.432308, 0 ], [ 0.000003, 0.321962, 0 ], [ -0.000007, -0.322375, 0.000002 ] ]
null
[ [ -0.020274044433241552, 0, 0 ], [ 0, -0.01568160443350791, 6.241509125883259e-8 ], [ 0, 6.241509125883259e-8, 0.006395050250379986 ] ]
true
null
null
-31.911456
null
0.287023
0.432308
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:11:42
10311080513236959188403411397219283162893650184978409144825654587478151894615574813415466087275147249986979853188121185943108754829269025205158708900690885
PO_1031108051323695918840341
null
null
null
[ "train_2nd_stage_479" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
2409285144029460774960757645911958207136275348906769159235629025187537003007405462078331038261286891295880945644456882712333966414064440101442558734110748
CO_2409285144029460774960757
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni2Ti2
NiTi
AB
[ 28, 28, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.5, 0.5 ]
2
4
[ [ 2.94508, -2.94508, 0 ], [ 2.94508, 0, 2.94508 ], [ 0, -2.94508, 2.94508 ] ]
[ [ 0.00001, -0.00001, 0.00001 ], [ 4.41762, -4.41762, 4.41762 ], [ 1.47254, -1.47254, 1.47254 ], [ 2.94508, -2.94508, 2.94508 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3942061986571794557617031693838537641103416702273335488359079226915008766860945220139321677959108370940933588009964205208233727197287675062560007336487837
1
VASP
DFT
null
[ [ -0.000086, 0.000085, -0.000087 ], [ 0.00005, -0.000049, 0.00005 ], [ 0.000027, -0.000029, 0.000025 ], [ 0.00001, -0.000006, 0.000012 ] ]
null
[ [ -0.004775004141665728, -0.000001061056551400154, 0.000001061056551400154 ], [ -0.000001061056551400154, -0.004775004141665728, -0.000001061056551400154 ], [ 0.000001061056551400154, -0.000001061056551400154, -0.0047751913869395046 ] ]
true
null
null
-27.742749
null
0.000075
0.000149
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:02:14
5435492387277533928775909095392303829894241156758975328655529593891091220463283453321068628909449515681895695608493061903605307497050807564868127050412035
PO_5435492387277533928775909
null
null
null
[ "train_2nd_stage_363" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7362115526343018767683075809403118051285377687955926169690474329908969662184184487949355883813139034155431551583491723186525448195579805236649504921118565
CO_7362115526343018767683075
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni10Ti2
Ni5Ti
A5B
[ 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.8333333333333334, 0.16666666666666666 ]
2
12
[ [ 0, 0, 4.09856 ], [ 3.79704, 2.19222, 0 ], [ -3.80971, 6.59861, 0 ] ]
[ [ -3.77142, 6.5595, 0 ], [ -1.28462, 2.25225, 0 ], [ 0.01181, 4.39375, 0 ], [ 1.18831, 6.5515, 0 ], [ -1.26861, 6.6115, 0 ], [ -2.55165, 7.3128, 2.04928 ], [ 2.59818, 2.96642, 2.04928 ], [ -0.02237, 2.93195, 2.04928 ], [ 1.27407, 5.07345, 2.04928 ], [ -0.04884, 7.3648, 2.04928 ], [ 1.28356, 2.20742, 0 ], [ -1.29411, 5.11827, 2.04928 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5677227887390219355255631752242952461701413917881634004036573729563408789390158721420770651302331368252548346092884935721119792370233142505843914342674735
1
VASP
DFT
null
[ [ 0.09558, 0.031165, 0 ], [ 0.073933, 0.068001, 0 ], [ 0.065557, 0.041931, 0 ], [ -0.04434, -0.02651, 0 ], [ 0.067558, 0.035226, 0 ], [ -0.068459, -0.034557, 0 ], [ 0.044655, 0.025587, -0.000001 ], [ -0.064419, -0.042565, 0 ], [ -0.073748, -0.067167, 0 ], [ -0.096442, -0.029859, 0 ], [ -0.016435, -0.011382, 0.000001 ], [ 0.016559, 0.010127, 0 ] ]
null
[ [ -0.0021442080451059345, 0.0028267170680212686, 0 ], [ 0.0028267170680212686, -0.00541057701595442, 0 ], [ 0, 0, -0.003007720832671883 ] ]
true
null
null
-73.568473
null
0.071011
0.100959
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:23:06
5963395037346135746157219738098820718321298130759889354886402948897655697831650986344232356167380669266944100672769937261613385719000084412402339894287216
PO_5963395037346135746157219
null
null
null
[ "train_1st_stage_842" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
8693667096371281924909018097810607231683890831628248843214978990480575090458987110933991313351225686765067585307337700734391862041563641326677647045538331
CO_8693667096371281924909018
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
NiTi5
NiTi5
A5B
[ 28, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.16666666666666666, 0.8333333333333334 ]
2
6
[ [ 4.81649, 0.005181, 0 ], [ 7.19958, 4.1575, 0 ], [ 0, 0, 4.82742 ] ]
[ [ 6.40509, 2.77328, 2.41375 ], [ 11.7987, 4.09599, 0.00006 ], [ 7.2693, 1.6092, 0.00006 ], [ 4.96181, 2.61791, 0.00006 ], [ 1.60635, 0.0033, 2.4136 ], [ 4.00697, 1.38837, 2.41361 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10285071302139985981214407322929873551531127891340848735514828442053796641284075034957542959928123283713779795051539854799266025051383915758526158024131406
1
VASP
DFT
null
[ [ -0.01897, -0.01779, 0.00009 ], [ 0.692718, 0.968324, -0.000479 ], [ 0.435561, -1.071919, -0.000468 ], [ -1.100039, 0.144979, -0.00047 ], [ -0.012248, 0.005079, 0.000257 ], [ 0.002978, -0.028673, 0.001069 ] ]
null
[ [ 0.0020300508431935296, 0.00047891099522902244, 0 ], [ 0.00047891099522902244, 0.0028197889928915382, 1.2483018251766518e-7 ], [ 0, 1.2483018251766518e-7, -0.01783336470465616 ] ]
true
null
null
-44.318778
null
0.587549
1.190592
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:12:56
679237476829779915231152373345634401211765496752658739815060525661821641400139241611208449236000004588024178568771515321684846686105862248786228294436435
PO_6792374768297799152311523
null
null
null
[ "train_1st_stage_2206" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
8123183162453576546138674316811758806503478159467537911331003210611482398076166432760844911060020702295988785313593680104972287330278627313172032676908305
CO_8123183162453576546138674
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni4Ti6
Ni2Ti3
A3B2
[ 28, 28, 28, 28, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.4, 0.6 ]
2
10
[ [ 0.000002, 2.112691, 2.112686 ], [ 2.9878, -0.000004, 0.000008 ], [ -0.000041, 11.26627, -11.266248 ] ]
[ [ 0.00561, 2.22162, 1.99891 ], [ 0.00561, 4.36003, -0.1395 ], [ 0.00561, 6.49821, -2.27766 ], [ 1.49949, 8.93679, -6.82893 ], [ 1.49957, 2.23355, -0.12576 ], [ 1.49956, 4.37365, -2.26585 ], [ 1.49956, 6.55407, -4.44626 ], [ 0.00566, 8.90584, -4.68534 ], [ 0.00564, 11.08041, -6.85992 ], [ 1.49954, 11.3193, -9.21149 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
1844642436800525938149834050287161933515230835400223721591847412876692544969741401326898935245931978660289821502872343270311111708355573212853989909525123
1
VASP
DFT
null
[ [ 0.000049, -0.023755, 0.023718 ], [ 0.000017, -0.000473, 0.000455 ], [ 0.000003, 0.023988, -0.024026 ], [ 0.000047, 0.000673, -0.000742 ], [ -0.000062, -0.005079, 0.005158 ], [ -0.000066, 0.004588, -0.004527 ], [ 0.000026, 0.005118, -0.005155 ], [ 0.00003, -0.012442, 0.012443 ], [ -0.000028, 0.01202, -0.011947 ], [ -0.000017, -0.004638, 0.004623 ] ]
null
[ [ -0.0011956859032454556, 6.241509125883259e-8, 0 ], [ 6.241509125883259e-8, -0.0010910157952043935, -0.00010573116459246239 ], [ 0, -0.00010573116459246239, -0.0010895178330141814 ] ]
true
null
null
-72.050461
null
0.013122
0.033951
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:39:54
7847287962817153188767528304826108005241591368795542049786467334192498835619063102452298293003857498871774264923376963085196440701537603580242650937751581
PO_7847287962817153188767528
null
null
null
[ "train_1st_stage_250" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7937297987315632975459207361071845292993368862155766427787056695274439444630466953431573635945203784788245454574081780806448395781996021687974426999827286
CO_7937297987315632975459207
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al11Ni
Al11Ni
A11B
[ 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 28 ]
[ "Al", "Ni" ]
[ 0.9166666666666666, 0.08333333333333333 ]
2
12
[ [ 0, 4.8863, 0 ], [ -5.59994, 0, 4.57643 ], [ 2.80919, 0, 4.61899 ] ]
[ [ -0.00167, 4.84236, 0.06755 ], [ 0.00782, 4.84236, 4.53726 ], [ -2.7969, 0.03529, 4.59061 ], [ -4.22903, 2.45841, 4.64309 ], [ 1.40767, 2.42228, 4.6119 ], [ -1.36476, 2.45841, 4.53814 ], [ 1.36559, 0.80981, 2.33443 ], [ -1.35944, 0.80981, 2.27038 ], [ -1.3923, 0.83929, 6.90011 ], [ -2.84094, 3.27912, 6.90248 ], [ -2.75285, 3.27912, 2.27875 ], [ 0.00307, 3.2415, 2.3024 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6819543435833012818279884646159275075166214622343895288220508903143584563203225662162018005298897728423797825020290921967278080248840742926895060716473597
1
VASP
DFT
null
[ [ 0.056504, -0.066632, -0.039499 ], [ -0.056494, -0.066629, 0.039486 ], [ 0.000009, 0.037405, 0.000032 ], [ -0.031012, -0.045206, 0.008423 ], [ 0.000006, 0.067191, -0.000014 ], [ 0.031003, -0.045201, -0.008408 ], [ -0.052956, 0.050304, -0.081318 ], [ 0.052963, 0.050304, 0.081293 ], [ -0.000015, -0.031023, -0.000006 ], [ -0.124479, -0.004736, 0.097442 ], [ 0.124464, -0.004742, -0.097437 ], [ 0.000007, 0.058965, 0.000007 ] ]
null
[ [ 0.0004109409608481537, 6.241509125883259e-8, -0.000428354771309368 ], [ 6.241509125883259e-8, 0.00781592980288731, -1.2483018251766518e-7 ], [ -0.000428354771309368, -1.2483018251766518e-7, -0.002512956404263117 ] ]
true
null
null
-46.948667
null
0.086011
0.158153
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:14:16
1257821200721548420124168621299878518508379177255977508674108148117277397922981643971693464535798752807404538231973881391074334134198650168995401352123588
PO_1257821200721548420124168
null
null
null
[ "train_1st_stage_916" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12661287712704217515890395279513511100092557198626184518339658077882076304255475525827609527521353413955402346586977263146266499943041925732396240790327567
CO_1266128771270421751589039
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al7Ni2Ti
Al7Ni2Ti
A7B2C
[ 13, 13, 13, 13, 13, 13, 13, 28, 28, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.7, 0.2, 0.1 ]
3
10
[ [ -2.79331, -2.79331, 0 ], [ -1.04326, 1.04326, -3.65814 ], [ 6.65422, -6.65422, -1.67674 ] ]
[ [ 3.3532, -8.93981, -1.91748 ], [ -0.56193, -2.23138, -1.00967 ], [ -2.46868, -3.11793, -2.8445 ], [ 0.32223, -3.11553, -3.64435 ], [ -0.56978, -5.01683, -1.80529 ], [ 2.34829, -5.1416, -4.79776 ], [ 1.47154, -7.05815, -2.96823 ], [ 1.87731, -4.67061, -2.40315 ], [ -0.11031, -5.4763, -4.19319 ], [ 4.24864, -7.04195, -3.7582 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7634944452845210073531504992199958578327879333704463780282755826474010055989703426451343258004623579361562168895014619434231258359294953973707664890571987
1
VASP
DFT
null
[ [ -0.129958, 0.129894, 0.073673 ], [ 0.108818, -0.108777, -0.057587 ], [ 0.007688, -0.007733, -0.003825 ], [ 0.080345, -0.080323, -0.040064 ], [ -0.112732, 0.112719, 0.070954 ], [ -0.021843, 0.021907, 0.003696 ], [ -0.006541, 0.006499, -0.000957 ], [ 0.064788, -0.064783, -0.042168 ], [ 0.027117, -0.027155, -0.017121 ], [ -0.017683, 0.017751, 0.013399 ] ]
null
[ [ 0.003965605238221187, -0.0001693321425852128, -0.00004493886570635946 ], [ -0.0001693321425852128, 0.003966042143859999, 0.00004506369588887712 ], [ -0.00004493886570635946, 0.00004506369588887712, 0.00438247563273893 ] ]
true
null
null
-48.84775
null
0.088049
0.197963
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:11:51
8548255405621829270911844022632729089386197656407685868540017251531726245960288104736125191043448368438413747555007479863584516887755724692214360877538254
PO_8548255405621829270911844
null
null
null
[ "train_1st_stage_1115" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
224937747625441009569234656473434067751982342303984280843501715723152909552796437341978814121530901314626372636160705334054279830844759476014395930423837
CO_2249377476254410095692346
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni4
Al3Ni2
A3B2
[ 13, 13, 13, 13, 13, 13, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.6, 0.4 ]
2
10
[ [ -2.16446, 1.08886, 1.21723 ], [ 5.59194, 3.89665, 0.390488 ], [ -7.13679, -0.96469, -5.75963 ] ]
[ [ -3.76323, 3.79405, -4.11425 ], [ -0.16655, 2.33676, 0.55946 ], [ 1.88528, 3.81142, -0.13598 ], [ 0.03722, 2.2436, -2.00433 ], [ -3.73494, 1.85441, -2.32037 ], [ -5.34265, 0.37636, -3.85361 ], [ -1.72836, 1.04638, -1.05043 ], [ -0.07561, 4.45833, -1.17845 ], [ -1.80234, 3.14713, -3.07177 ], [ -3.57706, 1.57358, -4.80751 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
8977952587371539662900892738899988347794871840301305024565839622808850144696828039137993118762782222276549490417889542505784759408624366230338903896378009
1
VASP
DFT
null
[ [ 0.449754, 0.881249, 0.041305 ], [ 0.000001, -0.000045, -0.000014 ], [ -0.449637, -0.881323, -0.041176 ], [ 0.306526, -0.45484, 0.880187 ], [ -0.000046, 0, -0.000001 ], [ -0.306549, 0.454916, -0.880393 ], [ -0.11187, 0.200295, -0.384703 ], [ 0.135599, 0.041873, 0.173743 ], [ -0.135655, -0.041708, -0.173748 ], [ 0.111877, -0.200418, 0.384801 ] ]
null
[ [ 0.16155110281833918, -0.004917747455374678, -0.000042005356417194324 ], [ -0.004917747455374678, 0.15796379544823774, 0.00004880860136440708 ], [ -0.000042005356417194324, 0.00004880860136440708, 0.1658101214005681 ] ]
true
null
null
-47.078677
null
0.539965
1.03731
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:08:16
12042359897844291985378264821047649715187140635502655642608625019375765577817050732805458446344910695291424594501812714538281002048348000542280669854214259
PO_1204235989784429198537826
null
null
null
[ "train_2nd_stage_681" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
307124165919326982172558469162799475049503538580281465720389080713456452236430384017547400688298263034933267860841122519739445262088077343293580588282922
CO_3071241659193269821725584
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni4Ti3
Al3Ni4Ti3
A4B3C3
[ 13, 13, 13, 28, 28, 28, 28, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.3, 0.4, 0.3 ]
3
10
[ [ 4.13162, 0, 0 ], [ 0, 0.264222, -4.0812 ], [ 0, 8.12011, -1.57433 ] ]
[ [ 0, 0, 0 ], [ 2.06581, 5.24131, -3.79081 ], [ 2.06581, 3.14302, -1.86473 ], [ 2.06581, 1.72834, -3.99599 ], [ 0, 6.66372, -3.70765 ], [ 0, 1.72061, -1.94789 ], [ 2.06581, 6.65599, -1.65955 ], [ 0, 3.25368, -3.90571 ], [ 2.06581, 8.25222, -3.61494 ], [ 0, 5.13065, -1.74983 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12342068456107434649309860028169254293483797747048126554641743115810906317936604873157068433652052836221759158193958078596999015723714653871892057679316132
1
VASP
DFT
null
[ [ 0.000001, 0.000213, -0.00004 ], [ -0.000001, -0.134449, -0.017742 ], [ -0.000001, 0.134074, 0.017712 ], [ -0.000001, -0.354278, -0.009566 ], [ 0, 0.107644, 0.023202 ], [ 0.000005, -0.10781, -0.023215 ], [ -0.000002, 0.354322, 0.009532 ], [ 0.000003, 0.385235, 0.024096 ], [ -0.000005, 0.000221, 0.000078 ], [ 0.000001, -0.385172, -0.024055 ] ]
null
[ [ 0.009845855815898322, 0, 6.241509125883259e-8 ], [ 0, -0.0009112603323789556, -0.0028355800109800228 ], [ 6.241509125883259e-8, -0.0028355800109800228, -0.0071526446280796956 ] ]
true
null
null
-62.162182
null
0.197247
0.385988
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:39:16
13249571943130078569364121897528954521904966684912706030881648108227465483265708413628110952253319588605643769680346644457055523833932438964779139309163914
PO_1324957194313007856936412
null
null
null
[ "train_1st_stage_582" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9075662682293481995940542677045719561707439712824512299236805026936343633574659477478924326249619616828291355504202066972544474002112317639578517324355867
CO_9075662682293481995940542
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlTi
AlTi
AB
[ 13, 22 ]
[ "Al", "Ti" ]
[ 0.5, 0.5 ]
2
2
[ [ -1.4281, 1.4281, 2.01964 ], [ 1.4281, -1.4281, 2.01964 ], [ 2.81819, 2.81819, 0 ] ]
[ [ 0, 0, 0 ], [ 1.4091, 1.4091, 2.01964 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10319212345556128638619765073541306404359571939775904823615389434114999442302760403537153179910814044794137776837486103341033484680701812035980496539785282
1
VASP
DFT
null
[ [ 0.00003, 0.000028, 0 ], [ -0.00003, -0.000028, 0 ] ]
null
[ [ 0.00039184194292295096, -0.001705617198830118, 1.2483018251766518e-7 ], [ -0.001705617198830118, 0.00039209160328798626, 0 ], [ 1.2483018251766518e-7, 0, 0.0020976463870268454 ] ]
true
null
null
-12.378802
null
0.000041
0.000041
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:17:10
13243754813775437106460213323134383831913424134543997394108595294000253631393377567264455407651108970728580011069087197398557130032183499912739849435967410
PO_1324375481377543710646021
null
null
null
[ "train_1st_stage_780" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9984529296178242826761762206457520001775202947992795897180212783921891953015843885479220823353821506508413733159289545321346641841226093468511290472936873
CO_9984529296178242826761762
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni6Ti4
AlNi3Ti2
A3B2C
[ 13, 13, 28, 28, 28, 28, 28, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.16666666666666666, 0.5, 0.3333333333333333 ]
3
12
[ [ 3.82736, 3.8828, 0.175899 ], [ 0.588643, 5.60885, 3.64591 ], [ -0.534733, -5.64158, 3.79142 ] ]
[ [ 0.90878, 5.48067, 3.66555 ], [ 0.84002, -2.43169, 4.13695 ], [ 0.24857, -0.14051, 3.71859 ], [ 1.95752, 2.92824, 3.79617 ], [ 2.50445, 0.08076, 3.87233 ], [ 3.29852, 6.78478, 3.76873 ], [ 1.04109, 1.37793, 1.89276 ], [ 1.04916, 1.25765, 5.66167 ], [ 2.66346, 4.7961, 2.17997 ], [ 2.67953, 4.84836, 5.46826 ], [ 3.58589, 1.86536, 5.20519 ], [ 3.31885, 1.9524, 2.25519 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4325846410836165927311629400087647515715405659283123871514637185198818878955943451552131661567483518593313257085478641631647733881053613682731763788700492
1
VASP
DFT
null
[ [ -1.255038, -0.904981, 0.77545 ], [ 27.452421, -10.62542, -21.063087 ], [ 1.656419, 0.847152, -0.268458 ], [ -3.038032, 0.504982, 0.447778 ], [ 0.210289, 2.09863, 0.145683 ], [ 0.289244, -0.766988, -0.917122 ], [ 0.288001, 0.593215, 0.705027 ], [ 1.11955, 1.257018, -0.412999 ], [ 0.236189, -1.78772, -0.105183 ], [ -0.831229, -1.771266, -0.889205 ], [ -26.618427, 10.312645, 23.135803 ], [ 0.490612, 0.242732, -1.553688 ] ]
null
[ [ 0.3380250298057526, -0.08310244842639011, -0.14777265934749556 ], [ -0.08310244842639011, 0.10774667271939262, 0.05753054863200759 ], [ -0.14777265934749556, 0.05753054863200759, 0.23938609203303135 ] ]
true
null
null
-59.573766
null
7.609099
36.744478
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:57:21
5263884500040318888302670907880415684675733545395271224635920697712453063036746617177412088221611633919791541773465780993717510515290814461392334518901461
PO_5263884500040318888302670
null
null
null
[ "train_1st_stage_1599", "train_1st_stage_1999", "train_1st_stage_1799", "train_1st_stage_1399" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12813620994115848897428086773877188453242452917268489894385476827401936169038926669284532010232785133595329662437343613179085799786964972523506870156520500
CO_1281362099411584889742808
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al10Ni4
Al5Ni2
A5B2
[ 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.7142857142857143, 0.2857142857142857 ]
2
14
[ [ -4.40048, 2.12594, 0.41577 ], [ -4.54188, -7.58416, 4.96066 ], [ -1.29204, 1.9743, 4.1467 ] ]
[ [ -8.50725, -4.96922, 6.03603 ], [ -3.93461, 1.94891, 4.12479 ], [ -4.06772, -1.10841, 4.16382 ], [ -6.34788, -0.20441, 4.42104 ], [ -3.9811, -3.99484, 5.56233 ], [ -6.45321, -3.25088, 4.46104 ], [ -6.44046, -3.91396, 7.51373 ], [ -2.00615, 0.56827, 2.60099 ], [ -5.02205, 0.31183, 1.8486 ], [ -5.38648, -1.61623, 6.73611 ], [ -6.03753, -5.45042, 5.62944 ], [ -3.17034, -1.51474, 1.89297 ], [ -7.23925, 0.21124, 6.68948 ], [ -8.89931, -3.42308, 7.92117 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
1607837660743933470078950686358541276001743166864029271274885231441239395045990377318943095107718567042977051486971704901215090715896586580679835279983757
1
VASP
DFT
null
[ [ 0.06627, 0.085532, -0.064426 ], [ 0.098778, 0.1995, -0.082072 ], [ -0.109115, -0.020681, 0.030381 ], [ 0.136124, 0.050537, -0.028136 ], [ -0.032725, -0.249947, 0.068287 ], [ -0.129212, -0.187498, 0.069728 ], [ -0.036171, -0.094777, 0.068285 ], [ -0.009107, 0.221719, -0.035812 ], [ 0.108597, 0.160787, -0.075603 ], [ -0.090522, -0.147296, 0.055612 ], [ -0.109964, -0.161404, 0.028793 ], [ 0.014394, -0.045293, 0.02095 ], [ 0.007189, 0.078245, -0.022647 ], [ 0.085463, 0.110576, -0.03334 ] ]
null
[ [ -0.0063365673098704604, 0.005402213393725736, 0.008979222273769431 ], [ 0.005402213393725736, -0.007174614740202805, -0.0019683847330298028 ], [ 0.008979222273769431, -0.0019683847330298028, 0.0068727753588750905 ] ]
true
null
null
-64.967693
null
0.166947
0.261166
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:38:33
6816249365280290585734786720624660125900092977175156366876674895658606653710736153641944601161112166191642836779579617890093981259263091555016382444820818
PO_6816249365280290585734786
null
null
null
[ "train_1st_stage_1187" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12465830600621840676834117206224852810841118433912534724390281152032127400771578711950971947944292743401635302347625401770248974717132062417877710426064804
CO_1246583060062184067683411
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni
Al4Ni
A4B
[ 13, 13, 13, 13, 28 ]
[ "Al", "Ni" ]
[ 0.8, 0.2 ]
2
5
[ [ 0.254842, 2.64276, 0.127008 ], [ 5.16433, -1.83274, -1.52979 ], [ -1.87164, 1.83082, -5.0501 ] ]
[ [ 4.66688, 0.91211, -1.72108 ], [ 1.83947, 1.08579, -0.72542 ], [ 3.43862, -0.07237, -4.03878 ], [ 0.86605, 2.74405, -2.91612 ], [ 1.70322, 1.42212, -4.90715 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
1281314590229081446897588305024924795729035048004827160944266742679031838642730235620080831812689822512234414939689731670247678030634612698440548721783043
1
VASP
DFT
null
[ [ -0.039086, 0.000078, 0.079138 ], [ -0.169004, 0.178037, -0.084137 ], [ 0.168997, -0.178189, 0.084126 ], [ 0.039129, -0.000175, -0.079076 ], [ -0.000035, 0.000249, -0.000051 ] ]
null
[ [ 0.005893857067571561, 0.0012614089943410063, 0.00281916484197895 ], [ 0.0012614089943410063, 0.00268228854684833, 0.0006339500819159625 ], [ 0.00281916484197895, 0.0006339500819159625, 0.0016905751618367393 ] ]
true
null
null
-21.355857
null
0.139168
0.259593
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:16:02
4260941802850670055006864965245568022286941717405399497501354904544137275008303931678196605870681842506692752510499917997054534102391437600287526781596285
PO_4260941802850670055006864
null
null
null
[ "train_1st_stage_1020" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
8488021068489479550162251816299656219710273183832455151813880463070860022096697617410411192315733990267986813331376093398783549543577331855221122167994596
CO_8488021068489479550162251
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni4Ti2
AlNi2Ti
A2BC
[ 13, 13, 28, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.25, 0.5, 0.25 ]
3
8
[ [ -0.000002, 5.89496, -0.000002 ], [ -2.945005, -0.000001, 2.945006 ], [ 2.945025, -0.000003, 2.945016 ] ]
[ [ 0.73082, 1.21139, 1.46611 ], [ 0.73083, 4.15886, 4.41112 ], [ 2.20335, 5.63262, 2.93864 ], [ -0.74166, 5.63262, 2.93864 ], [ -0.74166, 2.68511, 2.93864 ], [ 2.20335, 2.68511, 2.93864 ], [ 0.73082, 1.21139, 4.41111 ], [ 0.73081, 4.15888, 1.4661 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10446370112876235327302137489924603220248540021629067294998649392357782719859484322199783669798868648015215714625290813741066137224736508081670061699967769
1
VASP
DFT
null
[ [ -0.000064, 0.00062, -0.0001 ], [ -0.000051, -0.000578, -0.000058 ], [ 0.00006, -0.000316, 0.000092 ], [ 0.000037, -0.00032, 0.000066 ], [ 0.000046, 0.000357, 0.000077 ], [ 0.00006, 0.000323, 0.000092 ], [ -0.000031, 0.000305, -0.000055 ], [ -0.000056, -0.00039, -0.000113 ] ]
null
[ [ -0.0008542129389683828, 1.2483018251766518e-7, 6.241509125883259e-8 ], [ 1.2483018251766518e-7, -0.0012025515632839274, 6.241509125883259e-8 ], [ 6.241509125883259e-8, 6.241509125883259e-8, -0.0008543377691509003 ] ]
true
null
null
-50.048835
null
0.000414
0.000631
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:25:35
8979657100593031243232074836250294684127474437285123693832093544467190071060871433415685902288973357145947202127224051432233428221834193220939665090099001
PO_8979657100593031243232074
null
null
null
[ "train_1st_stage_179" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4082988351801948697055615147909356891268377157032463227911122490547214786512513633948532862757196111041440395283390918482407204370618531797734886268654048
CO_4082988351801948697055615
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni7Ti2
Al3Ni7Ti2
A7B3C2
[ 13, 13, 13, 28, 28, 28, 28, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.25, 0.5833333333333334, 0.16666666666666666 ]
3
12
[ [ 2.56356, 0.09396, 3.77757 ], [ -1.14888, 6.20864, -0.00194 ], [ -2.56069, -0.099076, 3.77119 ] ]
[ [ -2.45116, 0.14061, 3.62741 ], [ 0.10689, 0.2542, 3.91818 ], [ -1.45116, 4.97947, 5.65216 ], [ -1.35388, 2.19777, 3.57116 ], [ 1.20348, 2.29385, 3.9732 ], [ 0.17848, 4.62593, 3.98372 ], [ -2.42334, 4.5439, 3.57416 ], [ -2.2421, 6.11021, 5.65263 ], [ 1.22364, 0.2161, 5.66452 ], [ 0.34525, 2.86806, 1.88935 ], [ -0.12738, 2.67045, 5.67001 ], [ -0.84988, 4.19768, 1.87773 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11409662848485139381756613409602733430715180935373386683274404264928733442816769940226873846317384357423197426303622276915053563563585263697786531075966425
1
VASP
DFT
null
[ [ -1.394561, 3.366872, 5.495186 ], [ -1.01235, 2.839856, -5.543049 ], [ 21.283983, -27.10613, -0.024062 ], [ 1.540422, 0.037152, 0.672345 ], [ 1.628734, -0.013757, -0.533107 ], [ 0.222222, -1.851609, -0.651766 ], [ 1.103411, -2.233852, 0.243878 ], [ -21.761227, 27.604383, 0.162019 ], [ 6.181189, 2.804379, -0.114695 ], [ 2.276505, -8.130763, 0.000373 ], [ 0.659146, -1.392626, -0.054382 ], [ -10.727474, 4.076094, 0.347259 ] ]
null
[ [ 0.4958344727333073, -0.1262328368635249, 0.00036519069895542944 ], [ -0.1262328368635249, 0.43662083875041396, -0.0030339975860918513 ], [ 0.00036519069895542944, -0.0030339975860918513, 0.322509886420632 ] ]
true
null
null
-49.324169
null
9.887242
35.150807
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:14:56
4613110770734242656854549334850931426972547274574646711575404517478038720306318133059912780847996007602174779705008771179711524460932475095522633199771024
PO_4613110770734242656854549
null
null
null
[ "train_1st_stage_1902", "train_1st_stage_1702", "train_1st_stage_1302", "train_1st_stage_1502" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11803764712909910504084622834518089315370585097911341048479258425878798387604270482428168805149752193330771754228693129901180530966322262349951912210280305
CO_1180376471290991050408462
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni2Ti4
Al3NiTi2
A3B2C
[ 13, 13, 13, 13, 13, 13, 28, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.5, 0.16666666666666666, 0.3333333333333333 ]
3
12
[ [ 1.95635, 0.074377, -0.45279 ], [ -1.2267, 6.14317, -0.151492 ], [ -0.005442, -0.00498, 8.83863 ] ]
[ [ -0.16204, 0.79194, 8.79189 ], [ 0.69083, 2.67562, -0.06875 ], [ -0.20369, 4.3153, -0.1147 ], [ -0.36674, 3.39158, 4.51454 ], [ 0.158, 2.88483, 2.00085 ], [ 0.72465, 4.62575, 6.25289 ], [ -0.96912, 6.0933, 3.88126 ], [ 1.21607, 2.09483, 4.16402 ], [ 0.91083, 0.34203, 2.06273 ], [ 0.90536, 0.58916, 5.71961 ], [ -0.28975, 2.36893, 6.46855 ], [ -0.84591, 4.9433, 2.05603 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4852356068847385922616360702975446666239978306529939494873813269302000850297082764852049551977492222215981726071507340303191323106673982927462681692192270
1
VASP
DFT
null
[ [ -1.477193, -7.913098, -2.615438 ], [ 2.757089, -6.228124, -2.915095 ], [ -2.859614, 12.234053, -3.322031 ], [ 5.385574, 33.380944, -6.011941 ], [ 1.083656, -2.976821, 6.195164 ], [ -0.359579, 2.246638, -0.406903 ], [ -0.061871, -4.73625, 4.636752 ], [ -7.938632, -28.211327, -8.812252 ], [ 1.959777, 24.113888, -8.114065 ], [ 1.303697, -5.736834, 7.565268 ], [ 2.589448, 3.7363, 12.112461 ], [ -2.382351, -19.909369, 1.688078 ] ]
null
[ [ 1.3347108378926609, 0.10118297689243126, -0.12744462586031516 ], [ 0.10118297689243126, 1.0983853322745976, -0.0072271058319514836 ], [ -0.12744462586031516, -0.0072271058319514836, 0.7043624812328806 ] ]
true
null
null
-6.59131
null
14.822782
34.342907
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:06:07
4840388531057197270001466667325678435733978962859480193949105639269521967423340872803014717346681349086714892068574476419889357754891311692749932080687852
PO_4840388531057197270001466
null
null
null
[ "train_1st_stage_1622", "train_1st_stage_1422", "train_1st_stage_1822", "train_1st_stage_1222" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7958591142131812357797484853129973725493502209828212741587218178591264777398068228642983685869077091372140233294261309832060688161933576742423084757694234
CO_7958591142131812357797484
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi5Ti4
AlNi5Ti4
A5B4C
[ 13, 28, 28, 28, 28, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.1, 0.5, 0.4 ]
3
10
[ [ 4.167634, -0.423733, -0.15248 ], [ 0.106405, 3.984151, -8.163197 ], [ -1.721468, 2.912406, 2.475001 ] ]
[ [ 0.11442, 3.98684, -8.15487 ], [ 2.24969, 1.30528, 0.03519 ], [ 0.10764, 1.65684, -1.86924 ], [ 2.14476, 1.78335, -4.14987 ], [ 2.46117, 4.82168, -3.95523 ], [ 0.31894, 5.17305, -5.85934 ], [ 0.31695, 2.92183, 0.33803 ], [ 2.35256, 3.01887, -1.90964 ], [ 0.21587, 3.4599, -3.91498 ], [ 2.2517, 3.55657, -6.16231 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10685483180495549052007308004070882256919813457926160535885104050243446935418718535387154294408018907107677374568410686999045080862809984268242515841846627
1
VASP
DFT
null
[ [ 0.000109, 0.000741, -0.000855 ], [ 0.000814, 0.012209, -0.013599 ], [ -0.000016, -0.003079, 0.003702 ], [ -0.000256, -0.000142, 0.000347 ], [ 0.00024, 0.002662, -0.003359 ], [ -0.000703, -0.011875, 0.013249 ], [ 0.000038, -0.000443, 0.000737 ], [ -0.000063, 0.00014, 0.00004 ], [ -0.000197, -0.001264, 0.001233 ], [ 0.000034, 0.00105, -0.001496 ] ]
null
[ [ 0.004282861147089832, -0.000008488452411201232, 0.000006241509125883258 ], [ -0.000008488452411201232, 0.004158343040028462, 0.00009986414601413213 ], [ 0.000006241509125883258, 0.00009986414601413213, 0.004178503114505064 ] ]
true
null
null
-66.983033
null
0.005142
0.018294
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:12:03
256514801219572559626501935196443838752029198592863267249356784398287645767638540086520464471429193642708042074999501048964554220242675925466146192663506
PO_2565148012195725596265019
null
null
null
[ "train_1st_stage_187" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7894809131671581482820251402149307546798026099001060503457183371991584515951103829877814274431247004997697830973490611710504434491506943136814937504743426
CO_7894809131671581482820251
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni5Ti
Al2Ni5Ti
A5B2C
[ 13, 13, 28, 28, 28, 28, 28, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.25, 0.625, 0.125 ]
3
8
[ [ 0.744547, 3.32788, -2.22611 ], [ 3.32788, 0.744547, 2.22611 ], [ 3.15989, -3.15989, -3.66692 ] ]
[ [ 7.23231, 0.91254, -3.66692 ], [ 5.65237, 2.49248, -1.83346 ], [ 4.48973, 1.6189, 0.19677 ], [ 6.07045, 0.03819, -1.63758 ], [ 5.1961, -1.12367, -3.66692 ], [ 2.45353, -0.41731, 0.19677 ], [ 4.77878, 1.32985, -3.86369 ], [ 3.61615, 0.45627, -1.83346 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7409425639691801230395971261689323947901138913831495014865451919788511924902818011994090381240053368451895944377313799644096844891473278533911077721846470
1
VASP
DFT
null
[ [ 0.000176, -0.000146, -0.00016 ], [ -0.000106, 0.000085, 0.000081 ], [ -0.07171, 0.071733, 0.083245 ], [ 0.071306, -0.071319, -0.082747 ], [ 0.000004, -0.000082, -0.000038 ], [ -0.071458, 0.071419, 0.082858 ], [ 0.071749, -0.071703, -0.083252 ], [ 0.000038, 0.000013, 0.000013 ] ]
null
[ [ -0.006248499616104247, -0.005777016016735026, -0.006707000876491632 ], [ -0.005777016016735026, -0.006237826635498987, 0.006697825858076583 ], [ -0.006707000876491632, 0.006697825858076583, -0.004243789299961804 ] ]
true
null
null
-46.513592
null
0.065516
0.131226
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:17:47
7260623480624592116650283491326276269399517137303239809975143007580634704596074052500835321325217670152958617833259014271106476505952360596142596208762533
PO_7260623480624592116650283
null
null
null
[ "train_1st_stage_445" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11283787696724409466791442134414822631968883307326626912247090540263944731449813947098844490470628375643408553201340069244245003553342941503041357784525929
CO_1128378769672440946679144
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ti6
Al2Ti3
A3B2
[ 13, 13, 13, 13, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.4, 0.6 ]
2
10
[ [ -4.71505, 0.022024, 2.70056 ], [ 4.71505, 0.022022, 2.70057 ], [ -0.000001, 6.62569, -2.64586 ] ]
[ [ -2.37043, 0.68131, 3.17335 ], [ 1.86161, 5.94616, 0.92377 ], [ 0.49592, 2.6113, -0.45387 ], [ 0.0129, 3.99416, 1.85042 ], [ 0.43224, 1.3592, 2.32171 ], [ -0.47104, 5.37073, -0.48106 ], [ -1.88649, 2.05788, 0.84187 ], [ -2.78977, 4.67204, 0.99878 ], [ -0.43206, 6.6518, 2.32803 ], [ 2.78959, 3.31693, 0.9504 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5749855753269537399914070243299994990376951096365834953244170643818477769061522557568656915644456496634684359646161047095464605724328832874562865264105198
1
VASP
DFT
null
[ [ 0.180479, 0.043776, 0.221921 ], [ -0.107874, -0.10382, -0.097468 ], [ 0.108045, -0.103568, -0.097498 ], [ -0.180495, 0.044089, 0.22207 ], [ -0.068219, -0.104659, -0.094875 ], [ -0.42484, 0.25129, 0.128719 ], [ 0.424521, 0.251952, 0.128422 ], [ 0.068579, -0.105359, -0.095049 ], [ 0.066643, -0.086655, -0.158127 ], [ -0.066838, -0.087045, -0.158115 ] ]
null
[ [ 0.014178711451086479, -1.2483018251766518e-7, -0.000005492528030777267 ], [ -1.2483018251766518e-7, 0.016425342660948156, -0.002659943944177668 ], [ -0.000005492528030777267, -0.002659943944177668, 0.01076934950616401 ] ]
true
null
null
-64.544094
null
0.265556
0.510102
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:16:41
13323767055723409507276268728052763329781083180234611548260796608127668828531696791307840126810905587928754843962153128974359993412084512971081456164310086
PO_1332376705572340950727626
null
null
null
[ "train_2nd_stage_336" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11881408052663702243173851106613268743481178012298788191668772987188855901909214025565400454171596466309040837826743371152467406084093179953549627226251578
CO_1188140805266370224317385
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al7Ni4
Al7Ni4
A7B4
[ 13, 13, 13, 13, 13, 13, 13, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.6363636363636364, 0.36363636363636365 ]
2
11
[ [ -0.05684, 2.837075, -2.855955 ], [ 1.137882, 0.936472, 3.745366 ], [ 9.419148, -5.63076, -5.781068 ] ]
[ [ 9.47152, -4.69007, -4.8567 ], [ 1.11866, 1.23973, -1.63748 ], [ 2.34268, -1.32108, -1.36804 ], [ 4.66525, -0.11397, -0.21516 ], [ 5.83246, 0.16228, -2.80168 ], [ 6.95562, -2.37575, -2.50759 ], [ 8.18514, -2.11438, -5.11012 ], [ 2.33746, 0.41878, 0.36047 ], [ 4.67045, -1.85381, -1.94366 ], [ 7.14135, -4.15766, -4.28139 ], [ 9.28587, -2.90822, -3.08289 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
1960855102958881737719697060618690972444137984122450584770003135419323644116033512513273766210043495610942726670512925248703026404755225109723106210258160
1
VASP
DFT
null
[ [ -0.003485, 0.000849, 0.001002 ], [ 0.00204, -0.000054, -0.000068 ], [ -0.000641, 0.000556, 0.000579 ], [ 0.000446, -0.000473, -0.000538 ], [ -0.001839, 0.000107, 0.000001 ], [ 0.003774, -0.001019, -0.000999 ], [ 0.000097, -0.000059, 0.000028 ], [ 0.002171, -0.00017, -0.0002 ], [ -0.001597, -0.000018, 0.000057 ], [ 0.001828, -0.000459, -0.000659 ], [ -0.002795, 0.000739, 0.000796 ] ]
null
[ [ 0.00011278406990471046, 0.000005242867665741937, 0.000004618716753153611 ], [ 0.000005242867665741937, 0.00008713146739733029, -0.000006615999673436253 ], [ 0.000004618716753153611, -0.000006615999673436253, 0.00008819252394873043 ] ]
true
null
null
-53.738034
null
0.002037
0.004035
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:15:26
4307904499951200745644171006496033523265132111218213308018104043285618050336650098312463356025144678023957551571037632274694177271092424944234285079251006
PO_4307904499951200745644171
null
null
null
[ "train_1st_stage_118" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4342336238524378367608731599396399518842566157408308901622483660177898769425259976079269775329551026144546724726473445367973274653330150325096514089991177
CO_4342336238524378367608731
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni3
AlNi
AB
[ 13, 13, 13, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.5, 0.5 ]
2
6
[ [ -0.000004, 2.890531, -2.890521 ], [ 2.894936, -2.894936, -2.894936 ], [ -2.890521, -2.890521, -0.000002 ] ]
[ [ 2.40169, -2.40772, -2.43612 ], [ -1.45524, -1.44131, -1.46972 ], [ 0.47319, -0.47922, -3.39815 ], [ 0.95421, -0.96023, -0.98863 ], [ -0.00779, -2.88877, -2.91717 ], [ -0.97425, 0.96823, -1.95071 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10087485985497883688185296207060222282438046749811352115612039632381361803358185879022920158765313385958693674176279617683490706197433454531049496770621846
1
VASP
DFT
null
[ [ -0.000008, -0.00001, -0.000047 ], [ -0.000184, 0.000217, 0.000218 ], [ 0.000219, -0.000217, -0.000189 ], [ 0.000196, -0.000186, -0.000195 ], [ -0.00005, 0.000049, 0.000035 ], [ -0.000173, 0.000147, 0.000178 ] ]
null
[ [ -0.00012770127671557144, -1.2483018251766518e-7, -6.241509125883259e-8 ], [ -1.2483018251766518e-7, -0.00012751403144179495, 0 ], [ -6.241509125883259e-8, 0, -0.0001275764465330538 ] ]
true
null
null
-31.619146
null
0.000245
0.000362
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:53:36
5503536437841532112606609145181083077967829889279627672773257490345390957761039756712034183453914169535231653876168679212503636546150758015948453821467605
PO_5503536437841532112606609
null
null
null
[ "train_1st_stage_73" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11198665509652171461687846967835979342478739340927320701977967350441387094455243339164892936117903169979902820186561373982294327070485253166033089884650534
CO_1119866550965217146168784
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi5Ti2
AlNi5Ti2
A5B2C
[ 13, 28, 28, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.125, 0.625, 0.25 ]
3
8
[ [ -1.66327, 2.26738, 5.32751 ], [ 2.26738, -1.66327, 5.32751 ], [ 2.07433, 2.07433, -5.57674 ] ]
[ [ 2.07433, 2.07433, -5.57673 ], [ 0.30206, 0.30206, 5.32751 ], [ 2.39971, 0.43252, 3.87518 ], [ 0.43252, 2.39971, 3.87518 ], [ 0.27873, 2.24592, 1.20311 ], [ 2.24592, 0.27873, 1.20311 ], [ 0.44981, 0.44981, 7.88919 ], [ 2.22864, 2.22864, -2.81091 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
8463047913061256361030392464471217419656801330812594778971528376155428243154109715870285542940981727856585733519926749608196703313104180662219934999955611
1
VASP
DFT
null
[ [ 0.000014, 0.000014, 0.000148 ], [ -0.000015, -0.000024, -0.000208 ], [ -0.009102, 0.019407, 0.196444 ], [ 0.019416, -0.009072, 0.196911 ], [ 0.009126, -0.019414, -0.196606 ], [ -0.019401, 0.009131, -0.196492 ], [ -0.040444, -0.040446, -0.243289 ], [ 0.040405, 0.040404, 0.243092 ] ]
null
[ [ 0.004782556367708047, 0.00280686906900096, 0.001588214412172254 ], [ 0.00280686906900096, 0.0047845536506283285, 0.0015880895819897361 ], [ 0.001588214412172254, 0.0015880895819897361, 0.00805491718731738 ] ]
true
null
null
-50.164289
null
0.161389
0.249922
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:13:18
1046829483439599353610952403898905426972659613677430635842143872474058232758689218370595514431147271342854107738110413218331976485839630276282504362527006
PO_1046829483439599353610952
null
null
null
[ "train_2nd_stage_521" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
1283075408429746161229501630814802096790335398964965560366031869572506135478682903944524759892924872991819585707016450257281939311685638708087265476560816
CO_1283075408429746161229501
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlTi3
AlTi3
A3B
[ 13, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.25, 0.75 ]
2
4
[ [ 3.51022, -2.20553, 2.20553 ], [ -3.51022, -2.20553, 2.20553 ], [ 0, -2.01395, -2.01395 ] ]
[ [ 0, 0, 0 ], [ -1.75511, -2.10975, 0.0958 ], [ 1.75511, -2.10974, 0.09579 ], [ 0, -2.20553, 2.20553 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
13397633442476600686059736015354773334269802321364449082555547643621559340039580494802396525637664211109070365061410985338445635961028316826026754820929830
1
VASP
DFT
null
[ [ -0.000058, -0.00004, 0.000045 ], [ 0.000032, 0.00006, -0.000061 ], [ -0.000016, 0.000005, -0.000006 ], [ 0.000043, -0.000025, 0.000022 ] ]
null
[ [ 0.01890222314246367, 0.000002059698011541475, -0.000002059698011541475 ], [ 0.000002059698011541475, 0.023404223674963264, 0.004513297664017443 ], [ -0.000002059698011541475, 0.004513297664017443, 0.023404161259872006 ] ]
true
null
null
-27.694155
null
0.000062
0.000091
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:58:46
10792773235074196127928722025136501137986565778722284156214906996765920825958596943843880790447578134061666471422614402519353756346564397989568771611782596
PO_1079277323507419612792872
null
null
null
[ "train_1st_stage_2261" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5289464063312191690005519974903095653660395290365677805769541355229407326825151657235548813169450759309131897181493938621834044268546407400993977246218738
CO_5289464063312191690005519
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al8Ni4Ti4
Al2NiTi
A2BC
[ 13, 13, 13, 13, 13, 13, 13, 13, 28, 28, 28, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.5, 0.25, 0.25 ]
3
16
[ [ 5.73928, 0, 0 ], [ 0, 5.99933, 0 ], [ 0, 0, 7.09344 ] ]
[ [ 5.63023, 0.57594, 2.69551 ], [ 2.76059, 5.42339, 4.39793 ], [ 5.63023, 3.5756, 0.85121 ], [ 2.76059, 2.42373, 6.24223 ], [ 0.20088, 0.46795, 6.32735 ], [ 3.07051, 5.53138, 0.76609 ], [ 0.20088, 3.46761, 4.31281 ], [ 3.07051, 2.53172, 2.78063 ], [ 5.09074, 2.45372, 6.18548 ], [ 2.2211, 3.5456, 0.90796 ], [ 5.09074, 5.45339, 4.45468 ], [ 2.2211, 0.54594, 2.63876 ], [ 2.1924, 0.40196, 6.17839 ], [ 5.06205, 5.59737, 0.91505 ], [ 2.1924, 3.40162, 4.46177 ], [ 5.06205, 2.59771, 2.63167 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11235766482893407891658889258166927241264338568009601635023912948245623145457875326818846868922226454381600146789081465977057336874126885026617481626742913
1
VASP
DFT
null
[ [ 3.129021, -2.388966, 4.224338 ], [ 3.129305, 2.390767, -4.223475 ], [ 3.128896, -2.390231, -4.224015 ], [ 3.129464, 2.388276, 4.224564 ], [ -5.118742, 1.848504, -3.934886 ], [ -5.119683, -1.847721, 3.933971 ], [ -5.120986, 1.847825, 3.934453 ], [ -5.118264, -1.848451, -3.935236 ], [ -0.67248, -0.201592, -1.186885 ], [ -0.672547, 0.201692, 1.186919 ], [ -0.672524, -0.201788, 1.186743 ], [ -0.672573, 0.201919, -1.186678 ], [ 2.66259, -1.444144, -1.229319 ], [ 2.662872, 1.443937, 1.229128 ], [ 2.662831, -1.443641, 1.229636 ], [ 2.662818, 1.443613, -1.229259 ] ]
null
[ [ 0.4201116102068139, -0.000001622792372729647, -0.000001747622555247312 ], [ -0.000001622792372729647, 0.40455489837091496, -0.000006303924217142091 ], [ -0.000001747622555247312, -0.000006303924217142091, 0.4019808375923095 ] ]
true
null
null
-46.335334
null
4.284622
6.717059
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:39:44
1987561185146518455882944012020397077731064609688273661266242331795106518453279109322196370780090832446883199455838283216182262615275511777231810960645187
PO_1987561185146518455882944
null
null
null
[ "train_1st_stage_2103" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11601117553501030297947302221854834458783723680748798049124761170837272674237585839329773588367046962065947181441845025390774352052203512625412525902335930
CO_1160111755350103029794730
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al7Ni3
Al7Ni3
A7B3
[ 13, 13, 13, 13, 13, 13, 13, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.7, 0.3 ]
2
10
[ [ 0.040694, 2.02711, 1.95827 ], [ -2.09023, 4.24127, -6.3757 ], [ -6.36301, -0.281475, 0.423592 ] ]
[ [ -2.30753, 6.0101, -4.14471 ], [ -5.0159, 1.74812, 0.32339 ], [ -3.58844, 2.03875, -2.03587 ], [ -1.60025, 4.19006, -2.27537 ], [ -5.02271, 6.01913, -4.09763 ], [ -1.4702, 2.23807, -0.25746 ], [ -5.31131, 4.16486, -2.17217 ], [ -6.78758, 4.19363, -4.20002 ], [ -6.28085, 1.89965, -1.83592 ], [ -3.54595, 3.8413, -3.90266 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4921971956618921407672049217236738920885238933873271637961890281170179612442974395353641144407205588042825150482708031216218477004294395757429201816069192
1
VASP
DFT
null
[ [ -0.007897, 0.09583, -0.102 ], [ 0.134209, -0.139177, 0.142525 ], [ 0.212479, -0.044074, 0.041409 ], [ -0.054432, -0.072006, 0.076697 ], [ -0.074257, 0.146992, -0.151136 ], [ -0.229554, -0.044531, 0.051372 ], [ -0.029464, 0.064163, -0.066356 ], [ -0.023366, 0.179931, -0.183885 ], [ -0.023399, -0.072411, 0.076915 ], [ 0.095682, -0.114718, 0.11446 ] ]
null
[ [ -0.0054231224492974454, -0.001886433718206956, 0.0024047286360203016 ], [ -0.001886433718206956, -0.0019573996769682487, 0.012677441261037778 ], [ 0.0024047286360203016, 0.012677441261037778, -0.002363160185241919 ] ]
true
null
null
-46.089761
null
0.183429
0.258331
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:41:14
11433524033549865680303860597220875787820063969926714915667671538736143806267373358331099152103277999137504393104544189407976485899912719359756847034840840
PO_1143352403354986568030386
null
null
null
[ "train_1st_stage_441" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
8676893713203235669578831132996031151831444142655777339005693307439098289617558655119660540297549137603030892442475123171536154249032401517218770791403771
CO_8676893713203235669578831
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni4Ti3
Ni4Ti3
A4B3
[ 28, 28, 28, 28, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.5714285714285714, 0.42857142857142855 ]
2
7
[ [ 4.10444, -0.202451, -0.010963 ], [ 0.08005, 1.71021, -5.4399 ], [ -1.87323, 3.57646, 2.32871 ] ]
[ [ 2.24921, 3.34286, 2.16989 ], [ 2.19182, 1.66019, 0.36073 ], [ 0.14826, 2.19255, -1.11338 ], [ 0.26838, 4.72317, -1.78494 ], [ 0.22236, 3.92361, 0.66784 ], [ 2.26054, 3.35663, -1.45464 ], [ 0.19428, 2.99211, -3.56616 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
13122658156750143541338940812234097997201959629932085179669732045506841107079234227025459235982855068355807937797838911260854646991078057429716017233184142
1
VASP
DFT
null
[ [ 0.018464, -0.051648, -0.358348 ], [ -0.01859, 0.051344, 0.358712 ], [ -0.011369, -0.36975, -0.204907 ], [ 0.0114, 0.369639, 0.205157 ], [ 0.016563, 0.020279, -0.060457 ], [ 0.000121, 0.000194, -0.00029 ], [ -0.016589, -0.020059, 0.060132 ] ]
null
[ [ -0.004922553417401609, 0.00023592904495838715, 0.0006536108356624947 ], [ 0.00023592904495838715, -0.0003115761355640922, 0.005952901743902416 ], [ 0.0006536108356624947, 0.005952901743902416, 0.0066215546165582905 ] ]
true
null
null
-47.701784
null
0.243277
0.422909
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:02:01
7063799753993763915146825313906001492823579867576893689320685231930516040075483103335312451514633633163634739864069806196333712797696035473722774271599813
PO_7063799753993763915146825
null
null
null
[ "train_2nd_stage_861" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12423324787341581193959739486003882860866608783957989220605302587872461116051617322441730007819943424131738617389268643701628953695945586441619378183014492
CO_1242332478734158119395973
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ti
Al3Ti
A3B
[ 13, 13, 13, 22 ]
[ "Al", "Ti" ]
[ 0.75, 0.25 ]
2
4
[ [ -1.72538, 4.53512, -2.31434 ], [ -1.72538, 2.31434, -4.53512 ], [ 0.437098, -9.13613, 9.13613 ] ]
[ [ -3.2322, 2.28141, -2.28141 ], [ -3.10886, -0.0066, 0.0066 ], [ 0.09521, -2.28008, 2.28008 ], [ -0.00001, -0.00001, 0.00001 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9944401577474086781681523977040079943832139339728931018594808335563581028842967383844651494213272876262199545000891986801453405270930076954885505169324785
1
VASP
DFT
null
[ [ -0.000139, -0.000205, 0.000205 ], [ -0.165675, 0.118677, -0.118677 ], [ 0.165551, -0.118588, 0.118588 ], [ 0.000262, 0.000115, -0.000116 ] ]
null
[ [ -0.001760792139502926, 0.0012155339022657645, -0.0012155339022657645 ], [ 0.0012155339022657645, -0.004518415701500667, -0.005106677936615164 ], [ -0.0012155339022657645, -0.005106677936615164, -0.004518478116591926 ] ]
true
null
null
-20.0779
null
0.118029
0.235832
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:11:55
12414596893522201142671751708980042996161135727590964651776875737812595483637043841820832360555235641832952390673130898230742158076549302145383241394166751
PO_1241459689352220114267175
null
null
null
[ "train_2nd_stage_619" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
1152742569970592204948024806852479202337018993966629742920367041919362858002152198081269606447552075872053829270460559859477875868108181640701764748560698
CO_1152742569970592204948024
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0