chemical_formula_hill
string
chemical_formula_reduced
string
chemical_formula_anonymous
string
atomic_numbers
list
elements
list
elements_ratios
list
nelements
int32
nsites
int32
cell
list
positions
list
pbc
list
dimension_types
list
nperiodic_dimensions
int32
structure_hash
string
multiplicity
int32
software
string
method
string
adsorption_energy
float64
atomic_forces
list
atomization_energy
float64
cauchy_stress
list
cauchy_stress_volume_normalized
bool
electronic_band_gap
float64
electronic_band_gap_type
string
energy
float64
formation_energy
float64
max_force_norm
float64
mean_force_norm
float64
property_object_metadata
string
property_object_metadata_id
string
property_object_last_modified
timestamp[ns]
property_object_hash
string
property_object_id
string
configuration_metadata
string
configuration_metadata_id
string
configuration_labels
list
configuration_names
list
configuration_dataset_ids
list
configuration_last_modified
timestamp[ns]
configuration_hash
string
configuration_id
string
dataset_name
string
dataset_authors
list
dataset_description
string
dataset_elements
list
dataset_nelements
int32
dataset_nproperty_objects
int64
dataset_nconfigurations
int32
dataset_nsites
int64
dataset_adsorption_energy_count
int64
dataset_atomic_forces_count
int64
dataset_atomization_energy_count
int64
dataset_cauchy_stress_count
int64
dataset_electronic_band_gap_count
int64
dataset_energy_count
int64
dataset_energy_mean
float64
dataset_energy_variance
float64
dataset_formation_energy_count
int64
dataset_last_modified
timestamp[ns]
dataset_dimension_types
list
dataset_nperiodic_dimensions
list
dataset_publication_year
string
dataset_total_elements_ratios
list
dataset_license
string
dataset_links
string
dataset_doi
string
dataset_hash
string
dataset_id
string
dataset_extended_id
string
Al3Ti8
Al3Ti8
A8B3
[ 13, 13, 13, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.2727272727272727, 0.7272727272727273 ]
2
11
[ [ 3.95349, 0.030302, 0.003941 ], [ -0.005464, 2.00246, -9.92068 ], [ -2.00978, 4.03673, 1.98397 ] ]
[ [ -0.00569, 2.02751, -9.88281 ], [ -0.01327, 1.99448, -2.02135 ], [ -0.00948, 2.011, -5.95208 ], [ 1.96127, 2.03378, 0.007 ], [ -0.03106, 4.05278, -0.00257 ], [ 1.94804, 4.02195, -2.00289 ], [ 1.96547, 2.00504, -3.98577 ], [ -0.02687, 4.02303, -3.97645 ], [ 1.95162, 4.066, -5.9398 ], [ 1.96906, 2.04726, -7.91444 ], [ -0.02329, 4.06707, -7.91336 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5456795578697247123479050758820352791230158721959740982934781381993482137906518848803825798240114641221940206450768435915870334453269352711013978887478171
1
VASP
DFT
null
[ [ 0.001327, -0.114082, -0.3929 ], [ -0.001321, 0.114303, 0.39282 ], [ 0.000012, 0.000031, 0.000185 ], [ -0.002544, 0.271229, 0.092906 ], [ 0.002647, -0.271845, -0.093539 ], [ 0.000721, -0.015212, -0.165068 ], [ -0.000019, 0.006526, -0.021243 ], [ -0.001878, 0.096593, -0.141896 ], [ 0.00173, -0.096466, 0.142266 ], [ 0.000019, -0.006799, 0.021309 ], [ -0.000695, 0.015722, 0.16516 ] ]
null
[ [ -0.02568792944903269, 0.00018955463215307455, -0.00001691448973114363 ], [ 0.00018955463215307455, -0.04904384384336161, 0.0013884861201439896 ], [ -0.00001691448973114363, 0.0013884861201439896, -0.03615169466839345 ] ]
true
null
null
-76.427137
null
0.192043
0.409129
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:24:01
8322169553009195122776351449350506931956837215983591700272825460332736882408440457774263669359597157146650430064935966726537917330725897180013760358850291
PO_8322169553009195122776351
null
null
null
[ "train_1st_stage_1158" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11052922298262014379500546220520300840096164406593278369619333422295566320260297078156493017184292806899691176999546273872885341908392042168108499428789446
CO_1105292229826201437950054
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni6Ti3
Ni2Ti
A2B
[ 28, 28, 28, 28, 28, 28, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.6666666666666666, 0.3333333333333333 ]
2
9
[ [ -1.05876, 1.94661, 1.58596 ], [ 5.42971, 2.71045, 2.744 ], [ 3.18815, 6.07683, -2.85836 ] ]
[ [ 4.08696, 6.69707, -2.22287 ], [ 5.29464, 5.49073, 2.39627 ], [ 6.77994, 7.28458, 1.23273 ], [ 2.81634, 6.14965, -0.08799 ], [ 2.36493, 2.19576, 2.05878 ], [ 3.85022, 3.98961, 0.89523 ], [ 1.32819, 4.35825, 1.06673 ], [ 5.33535, 5.72207, -0.18555 ], [ 3.80951, 3.75827, 3.47705 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10473092049970245503259691528278762848781140357021022645889455934653679945953702662593984282341244272840203575443832509265726902509427347040548881951106213
1
VASP
DFT
null
[ [ -0.076561, -0.057073, -0.018153 ], [ 0.076202, 0.007892, 0.047374 ], [ 0.09072, 0.055523, 0.017013 ], [ 0.076695, 0.056869, 0.018788 ], [ -0.090535, -0.05591, -0.016414 ], [ -0.076279, -0.007267, -0.048283 ], [ -0.000314, 0.000157, -0.000524 ], [ 0.248003, 0.193548, -0.034361 ], [ -0.247931, -0.193739, 0.034561 ] ]
null
[ [ -0.00298437758854108, 0.002019003372040716, 0.0059984023454301046 ], [ 0.002019003372040716, 0.0027313468085777724, -0.009616480355522112 ], [ 0.0059984023454301046, -0.009616480355522112, 0.0070904167820946395 ] ]
true
null
null
-59.799
null
0.136019
0.316542
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:09:19
9658949011414901769721039041741205443967232434055707434178250768977565448881462259520748652408553295257468297339634658878468568408317438146813160951998724
PO_9658949011414901769721039
null
null
null
[ "train_1st_stage_654" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6554193492993358252543196592964332682592748712547905396130980891909608263481256954088490412414385022394542185376381793655848859608919499674068033129650378
CO_6554193492993358252543196
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6NiTi3
Al6NiTi3
A6B3C
[ 13, 13, 13, 13, 13, 13, 28, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.6, 0.1, 0.3 ]
3
10
[ [ 2.75859, -2.75859, 0.368906 ], [ -2.77401, -2.77401, 0 ], [ 2.03602, -2.03602, -9.63686 ] ]
[ [ 2.03341, -2.03341, -9.59797 ], [ 1.51093, -4.28494, -1.71502 ], [ 1.75762, -4.53163, -5.40422 ], [ 3.28657, -3.28657, -7.52703 ], [ 1.51886, -1.51886, -1.90287 ], [ 1.7651, -1.7651, -5.58528 ], [ 0.24727, -5.79529, -3.55962 ], [ -0.0009, -2.77311, 0.08266 ], [ 0.25498, -3.02899, -3.74407 ], [ 0.51086, -3.28487, -7.5708 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
8413782106115430146597265337987421087032363173763184691435091788183167490570071142295482331561166347720282744510792836715561096098394705571457771182666634
1
VASP
DFT
null
[ [ 0.003025, -0.003037, -0.061895 ], [ 0.009985, -0.009987, -0.159017 ], [ -0.010097, 0.0101, 0.159019 ], [ -0.00305, 0.003057, 0.061903 ], [ 0.010701, -0.01071, -0.143008 ], [ -0.010733, 0.010738, 0.143049 ], [ -0.000006, 0.000001, -0.000004 ], [ 0.04306, -0.043005, -0.5949 ], [ 0.000111, -0.000111, -0.000079 ], [ -0.042997, 0.042955, 0.594934 ] ]
null
[ [ -0.0033807134180346664, -0.004843785572232961, 0.00011191025862708682 ], [ -0.004843785572232961, -0.0033807134180346664, -0.00011191025862708682 ], [ 0.00011191025862708682, -0.00011191025862708682, -0.0002176414232195492 ] ]
true
null
null
-56.073062
null
0.192728
0.59803
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:14:12
6482570447189878325820939377993597800150756099939689645112904028672288358291127691830463087824867748484295441248954212764487390710973336456095383832342234
PO_6482570447189878325820939
null
null
null
[ "train_1st_stage_566" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
13001130084859137312859680629512438521687873239549612755601575771464160535269652700993424468909085191629012013151005992992767133542613682727646151468132476
CO_1300113008485913731285968
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni4Ti2
Ni2Ti
A2B
[ 28, 28, 28, 28, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.6666666666666666, 0.3333333333333333 ]
2
6
[ [ -2.89455, 2.89455, 2.32681 ], [ 2.89455, -2.89455, 2.32681 ], [ 2.89455, 2.89455, -2.32681 ] ]
[ [ 1.9793, 0.91526, 0 ], [ 1.9793, -0.91526, 2.32681 ], [ 0.91526, 3.80981, 0 ], [ 0.91526, 1.9793, 2.32681 ], [ 0, 0, 1.1634 ], [ 0, 0, 3.49021 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9872407010706495391341422436867473453700985775360133933801025933051652514445043486066045987079678641306866401650893309114037102017757817873345476312853021
1
VASP
DFT
null
[ [ 0.653844, -0.6524, -0.000007 ], [ 0.65062, 0.650684, -0.000307 ], [ -0.651828, -0.651872, 0.000289 ], [ -0.652321, 0.653775, -0.000021 ], [ -0.000137, -0.000088, 0.000034 ], [ -0.000179, -0.000099, 0.000012 ] ]
null
[ [ 0.00020665636715799468, -0.0000036824903842711223, 0.0000038073205667887874 ], [ -0.0000036824903842711223, 0.00020728051807058302, 0.0000033704149279769593 ], [ 0.0000038073205667887874, 0.0000033704149279769593, 0.04604923017985409 ] ]
true
null
null
-36.460124
null
0.614932
0.923655
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:18:27
11556759472036506358522179417425845337392873098741688248583033443667472006754898094259351244118973298101956533179834725176848275985063269684016193223958799
PO_1155675947203650635852217
null
null
null
[ "train_1st_stage_2049" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
8481323103367698079084106894190322153701661007115840037841246374434851515101584752626308357658959748814520662018048374384134684220837796701173546415063918
CO_8481323103367698079084106
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni9Ti5
Ni9Ti5
A9B5
[ 28, 28, 28, 28, 28, 28, 28, 28, 28, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.6428571428571429, 0.35714285714285715 ]
2
14
[ [ -0.000002, -0.00001, 4.23067 ], [ 3.921147, 2.263271, -0.000003 ], [ -2.622692, 9.072268, -0.000004 ] ]
[ [ 1.23649, 11.26692, 0.00526 ], [ 2.61202, 4.62327, 0.00527 ], [ 0.0848, 4.47341, 0.00525 ], [ -1.39448, 6.76828, 0.00525 ], [ -0.13506, 8.9853, 0.00526 ], [ -1.32823, 9.74381, 2.1206 ], [ 0.18689, 3.0769, 2.1206 ], [ 1.45382, 5.41066, 2.12059 ], [ -0.07507, 7.57278, 2.1206 ], [ 1.20104, 2.09075, 0.00526 ], [ 1.10715, 6.7819, 0.00526 ], [ 2.78873, 3.33332, 2.1206 ], [ -0.94384, 5.27193, 2.12058 ], [ 1.14716, 9.72532, 2.12059 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2136901985542635246742864016817806982231678731362713969653998184165464513425233034385891876186187411218173804558238167749864131075515297275723832642958142
1
VASP
DFT
null
[ [ -0.007922, -0.001448, 0.00001 ], [ 0.008411, -0.016459, 0 ], [ -0.009717, 0.015843, 0.000008 ], [ -0.005336, -0.006187, -0.000004 ], [ -0.002147, -0.001247, 0.000016 ], [ 0.00009, -0.000128, -0.000011 ], [ 0.017873, 0.006429, -0.000009 ], [ 0.014985, 0.012584, -0.000007 ], [ 0.000008, 0.000141, 0.000017 ], [ 0.000916, -0.000318, 0.000004 ], [ 0.000165, 0.000833, -0.000018 ], [ -0.009676, -0.005286, 0.000003 ], [ -0.008965, -0.005555, 0.000006 ], [ 0.001315, 0.000799, -0.000014 ] ]
null
[ [ 0.0002539670063321897, 0.00009899033473650846, -6.241509125883259e-8 ], [ 0.00009899033473650846, 0.00012832542762815979, -1.8724527377649775e-7 ], [ -6.241509125883259e-8, -1.8724527377649775e-7, -0.00006790761928960985 ] ]
true
null
null
-94.399163
null
0.00854
0.019568
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:31:31
2555112642064920923587667066030308003457689503019730939197606002190012326080496838537268799757827660650364548348440875727862115789143065974475761260785171
PO_2555112642064920923587667
null
null
null
[ "train_1st_stage_159" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
1654966560545937148571665370708994902010607222763275538720005311146458649851894089427737064932579684507800784435221618483535456060792640647155930326337670
CO_1654966560545937148571665
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni5Ti
Al6Ni5Ti
A6B5C
[ 13, 13, 13, 13, 13, 13, 28, 28, 28, 28, 28, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.5, 0.4166666666666667, 0.08333333333333333 ]
3
12
[ [ 3.63185, 1.49337, -0.77636 ], [ -0.188743, 4.43614, 4.31861 ], [ -0.210015, -5.19759, 4.37296 ] ]
[ [ 3.38689, 0.40866, 0.27092 ], [ 3.15858, 0.9848, 3.59204 ], [ 0.62077, -3.53742, 4.10819 ], [ 1.64315, 0.44343, 2.01575 ], [ 2.3153, 2.21696, 5.7723 ], [ 0.14214, -1.57655, 6.69679 ], [ 0.59578, 1.77249, 3.84888 ], [ 1.92654, -1.39662, 3.64106 ], [ 1.67004, 3.76387, 3.6676 ], [ 1.33923, 0.3853, 5.81979 ], [ 0.28223, -1.55015, 2.23442 ], [ 2.71523, 2.80756, 1.43612 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4821495620834483199222479876447715642366353571806940476395269426354626940242452701109842348235735515213777808657620303552360441984834199002609241879345380
1
VASP
DFT
null
[ [ -9.354879, 12.157811, -27.708594 ], [ 1.840637, 0.594841, 1.868516 ], [ 0.529958, 0.071355, 0.024479 ], [ -2.810401, -0.839237, -1.367745 ], [ 1.099725, 2.774777, -0.625388 ], [ -5.191989, 0.096473, -4.200951 ], [ 0.576471, -1.150463, 0.873901 ], [ 2.081879, 0.924177, 2.047678 ], [ 3.59334, 0.261377, 3.48391 ], [ -1.49866, -2.816383, 0.219369 ], [ 9.852773, -11.625875, 25.63807 ], [ -0.718854, -0.448853, -0.253246 ] ]
null
[ [ 0.19943924774064462, 0.02859466266404778, 0.20538646971124247 ], [ 0.02859466266404778, 0.10814756485054809, -0.04456175372497359 ], [ 0.20538646971124247, -0.04456175372497359, 0.3150763738818876 ] ]
true
null
null
-47.102161
null
7.616618
31.671633
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:27:59
7820266035653575242045544667947859559822741680733579925793130516313496464847802219345567895769021107023389449173907572019837718925712813498200726162028781
PO_7820266035653575242045544
null
null
null
[ "train_1st_stage_1910", "train_1st_stage_1710", "train_1st_stage_1310", "train_1st_stage_1510" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10396314913018204550376665329409928791661340190845274147296496214373437758560530501156977804920778940761589687938774252553243048932600679415164963694420544
CO_1039631491301820455037666
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni8Ti4
Ni2Ti
A2B
[ 28, 28, 28, 28, 28, 28, 28, 28, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.6666666666666666, 0.3333333333333333 ]
2
12
[ [ 5.38275, 0, 0 ], [ 0, 5.38275, 0 ], [ 0, 0, 5.38275 ] ]
[ [ 0.61902, 3.31039, 4.76373 ], [ 0.61902, 4.76373, 2.07236 ], [ 2.07236, 0.61902, 4.76373 ], [ 2.07236, 2.07236, 2.07236 ], [ 3.31039, 3.31039, 3.31039 ], [ 3.31039, 4.76373, 0.61902 ], [ 4.76373, 0.61902, 3.31039 ], [ 4.76373, 2.07236, 0.61902 ], [ 0, 0, 0 ], [ 0, 2.69138, 2.69138 ], [ 2.69138, 0, 2.69138 ], [ 2.69138, 2.69138, 0 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2217313081075896882140472177221135305176255988990471320020021209854617556641850061899468242538074274224001553618912039506893920870471814403933475090750826
1
VASP
DFT
null
[ [ 0.520308, 0.52016, -0.520184 ], [ 0.520252, -0.520196, -0.520103 ], [ -0.520225, 0.520445, -0.520339 ], [ -0.520276, -0.520359, -0.520334 ], [ 0.520204, 0.520176, 0.520139 ], [ 0.520129, -0.520101, 0.520245 ], [ -0.52024, 0.520313, 0.520163 ], [ -0.520218, -0.520118, 0.52033 ], [ 0.00025, 0.000145, -0.000178 ], [ 0.000081, -0.000233, -0.000036 ], [ -0.000118, 0.000307, 0.000263 ], [ -0.000146, -0.00054, 0.000034 ] ]
null
[ [ 0.13074126615042417, 1.2483018251766518e-7, 0.0000025590187416121356 ], [ 1.2483018251766518e-7, 0.13074101649005912, -0.0000012483018251766516 ], [ 0.0000025590187416121356, -0.0000012483018251766516, 0.13074101649005912 ] ]
true
null
null
-68.962708
null
0.600843
0.901249
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:13:00
8432869634339457969743023453601244090099104181015232482135451122433812665289700175062897279248978796317731102081484793532300390498666976259850310687561578
PO_8432869634339457969743023
null
null
null
[ "train_1st_stage_2065" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
2056252434526867643743240137609499708835825618838741191898695618997373560888475863376003998920629692417239654868802497600187667828989881681590386730267466
CO_2056252434526867643743240
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni2Ti6
NiTi3
A3B
[ 28, 28, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.25, 0.75 ]
2
8
[ [ 3.33127, 4.42451, 0 ], [ -3.33127, 4.42451, 0 ], [ 0, 0, 4.13822 ] ]
[ [ 0, 2.82388, 1.03456 ], [ 0, 6.02514, 3.10366 ], [ -1.38742, 3.39944, 3.10366 ], [ 0, 0.95222, 3.10366 ], [ -1.38742, 5.44958, 1.03456 ], [ 1.38742, 3.39944, 3.10366 ], [ 0, 7.89679, 1.03456 ], [ 1.38742, 5.44958, 1.03456 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3350637132290658161053517135751699863987759760465556760764772005737405481312551190106801291140917234725556604658968247357644205802420793571371333689082469
1
VASP
DFT
null
[ [ 0.000137, 0.231823, -0.000055 ], [ 0.000119, -0.231847, 0.000049 ], [ -0.083061, 0.107353, 0.00006 ], [ -0.000432, -0.440699, 0.000059 ], [ -0.082848, -0.107156, -0.000062 ], [ 0.082775, 0.107139, 0.000068 ], [ -0.000308, 0.441312, -0.000048 ], [ 0.083618, -0.107925, -0.000072 ] ]
null
[ [ 0.001416323250845429, 0.0000016852074639884797, 1.2483018251766518e-7 ], [ 0.0000016852074639884797, -0.01885690978620976, 2.4966036503533035e-7 ], [ 1.2483018251766518e-7, 2.4966036503533035e-7, 0.0023567314308422594 ] ]
true
null
null
-59.036794
null
0.236098
0.441312
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:16:40
9984488802104677995988089856240260192415557740632543148442528258167853143336191424785125296950654842482855147572788159493500842392097202366061660705997168
PO_9984488802104677995988089
null
null
null
[ "train_2nd_stage_500" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
1690143131317291238023645960512433908660232389731490742348699367236747261741541525834996057696392706663662293240127201393256157383517187791933959330795882
CO_1690143131317291238023645
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ti10
Al3Ti5
A5B3
[ 13, 13, 13, 13, 13, 13, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.375, 0.625 ]
2
16
[ [ 7.76119, 0.000002, 0 ], [ -3.8806, 6.72139, 0 ], [ 0, 0, 5.21669 ] ]
[ [ 0.77495, 6.72139, 1.30417 ], [ 3.10574, 0, 3.91252 ], [ -2.3277, 4.03178, 1.30417 ], [ 1.5529, 2.68961, 1.30417 ], [ 2.3278, 4.03178, 3.91252 ], [ -1.5528, 2.68961, 3.91252 ], [ 0.00005, 4.48093, 0 ], [ 3.88064, 2.24046, 2.60835 ], [ 3.88064, 2.24046, 0 ], [ 0.00005, 4.48093, 2.60835 ], [ -2.07967, 6.72139, 1.30417 ], [ 5.96037, 0, 3.91252 ], [ -0.90039, 1.5596, 1.30417 ], [ 2.98021, 5.16179, 1.30417 ], [ 0.90049, 1.5596, 3.91252 ], [ -2.98011, 5.16179, 3.91252 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5708970313033226236057128209567199367326031388805397647301739498130074244848993800117369381855069264267564196729198737960450851025858209175321423496601975
1
VASP
DFT
null
[ [ 0.132213, 0.001088, -0.000569 ], [ -0.13363, 0.000459, 0.000576 ], [ -0.064794, 0.113761, -0.000591 ], [ -0.068179, -0.116376, -0.000562 ], [ 0.065314, 0.11342, 0.000574 ], [ 0.067606, -0.115366, 0.000607 ], [ -0.000281, -0.000877, -0.000145 ], [ 0.000466, -0.000588, 0.000083 ], [ 0.000506, -0.000455, -0.000176 ], [ -0.000271, -0.000872, 0.000098 ], [ -0.0401, 0.001422, -0.000165 ], [ 0.039963, 0.001765, 0.000226 ], [ 0.020475, -0.033564, -0.000262 ], [ 0.020283, 0.035292, -0.000066 ], [ -0.02048, -0.034246, 0.000123 ], [ -0.01909, 0.035137, 0.00025 ] ]
null
[ [ 0.002535488252207556, 4.993207300706607e-7, -0.0000011234716426589865 ], [ 4.993207300706607e-7, 0.002523816630142154, 0.0000018724527377649773 ], [ -0.0000011234716426589865, 0.0000018724527377649773, -0.006415085494674071 ] ]
true
null
null
-104.700772
null
0.064975
0.134878
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:46:33
10361576127100112573608542511765084695981465337640824395838646583892975788831545604718184769103614728113603357277287590343532568113365972586464210158272284
PO_1036157612710011257360854
null
null
null
[ "train_2nd_stage_381" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7832012035181765660456200145921117711286815168058078536788652635931894386712115484995643829561749774637441924140482076857881223363966008877196126705613410
CO_7832012035181765660456200
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
NiTi3
NiTi3
A3B
[ 28, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.25, 0.75 ]
2
4
[ [ 0, 0, 3.96732 ], [ 0, 3.96732, 0 ], [ -3.96732, 0, 0 ] ]
[ [ 0, 0, 0 ], [ -1.98366, 1.98366, 0 ], [ -1.98366, 0, 1.98366 ], [ 0, 1.98366, 1.98366 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12230070874600129095759055641465730661162617237670284381867226368900387892128198098853519948594134478224676503982501897312411506532426806361069959815040631
1
VASP
DFT
null
[ [ -0.000002, -0.000002, -0.000002 ], [ 0.000002, 0.000001, 0.000008 ], [ 0.000003, -0.000001, -0.000003 ], [ -0.000002, 0.000001, -0.000003 ] ]
null
[ [ 0.009203479696662418, 1.2483018251766518e-7, -6.241509125883259e-8 ], [ 1.2483018251766518e-7, 0.009200296527008217, 1.8724527377649775e-7 ], [ -6.241509125883259e-8, 1.8724527377649775e-7, 0.00920279313065857 ] ]
true
null
null
-29.264433
null
0.000005
0.000008
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:37:10
558306233048405432272735344350991323478860855002335472353830754303306514659134760973533321031604283708008704292870782332795049693235522479525908325467713
PO_5583062330484054322727353
null
null
null
[ "train_2nd_stage_269" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
1898946798058654618164337944562351792655128916392531750065760806913197326237340873340789779946107394196391399062280244111133583491765475300433969953132794
CO_1898946798058654618164337
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni5Ti2
Al2Ni5Ti2
A5B2C2
[ 13, 13, 28, 28, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.2222222222222222, 0.5555555555555556, 0.2222222222222222 ]
3
9
[ [ -2.89938, -2.89938, 0 ], [ 0, 2.89938, -2.89938 ], [ 4.51818, -4.51818, -4.51818 ] ]
[ [ 0.41276, -0.41276, -0.41276 ], [ 3.10138, -3.10138, -3.10138 ], [ -1.68565, -1.21372, -1.21372 ], [ 0.03786, -0.03786, -2.93724 ], [ 1.75707, -1.75707, -1.75707 ], [ 1.54336, -1.54336, -4.44274 ], [ 1.33396, -4.23334, -4.23334 ], [ -0.17585, -2.72353, -2.72353 ], [ 3.0497, -3.0497, -5.94908 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5218665772414844056944269257025597158315219327924059028532888760840454824569326279984831190998593593207214988908759786800211774778139161027034213809838836
1
VASP
DFT
null
[ [ -0.025937, 0.026004, 0.026003 ], [ 0.026042, -0.026036, -0.026041 ], [ -0.168596, 0.16852, 0.16852 ], [ 0.087482, -0.087471, -0.087489 ], [ -0.000006, 0.000001, 0.000012 ], [ -0.087445, 0.087447, 0.087449 ], [ 0.168532, -0.168531, -0.168535 ], [ 0.000008, -0.000027, -0.000011 ], [ -0.00008, 0.000094, 0.000091 ] ]
null
[ [ -0.0025741856087880322, -0.00116872258382164, -0.0011688474140041578 ], [ -0.00116872258382164, -0.0025735614578754435, 0.0011685353385478636 ], [ -0.0011688474140041578, 0.0011685353385478636, -0.002573811118240479 ] ]
true
null
null
-55.005659
null
0.108569
0.291929
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:02:26
1698589473558347104365786809015738522881227629634577615178081824724629480752980601446065882382439515787901705523877314300115078835381141558228317029599817
PO_1698589473558347104365786
null
null
null
[ "train_1st_stage_1134" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10733876040238491456050658824139314491237498064675377335196081009213109368803343581352810002062241069142803769725148615394063779292910841848005953426932631
CO_1073387604023849145605065
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ti2
Al2Ti
A2B
[ 13, 13, 13, 13, 22, 22 ]
[ "Al", "Ti" ]
[ 0.6666666666666666, 0.3333333333333333 ]
2
6
[ [ 2.78818, -2.78785, 0.453796 ], [ -2.77525, -2.77564, -0.000432 ], [ 1.85602, -1.85493, -5.44337 ] ]
[ [ -2.73387, -2.77883, -0.03556 ], [ 1.59413, -4.33076, -1.44976 ], [ 0.35781, -5.86958, -3.3073 ], [ 1.89763, -4.63365, -5.17531 ], [ -1.19571, -4.31655, -1.57721 ], [ 0.35947, -3.09593, -3.63365 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4259281581567643346884563136755498381985309368999299970401537026356893484709029106170012306467912954968723984674069157302856799262901928696554780725091545
1
VASP
DFT
null
[ [ -0.038919, 0.038782, 0.469723 ], [ 0.007057, -0.007073, -0.08625 ], [ -0.007251, 0.007217, 0.087186 ], [ 0.038926, -0.038884, -0.47077 ], [ 0.110176, -0.109758, -1.327258 ], [ -0.109988, 0.109717, 1.32737 ] ]
null
[ [ 0.0268303128643431, -0.006174600148053789, -0.002072742765614571 ], [ -0.006174600148053789, 0.026829439053065476, 0.0020649408792072174 ], [ -0.002072742765614571, 0.0020649408792072174, 0.05821929916404882 ] ]
true
null
null
-31.937558
null
0.63238
1.33643
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:11:15
11529599587866634046040571467303098620784871969209627697868422160950143488407893471758249809554086242177857094249171517581196555936204111991382209043757063
PO_1152959958786663404604057
null
null
null
[ "train_2nd_stage_775" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5086338233701342992317586630622255944452878970818912659692454734896196256942868621167435114419369825407307109154442998871485077715660589860365993156197743
CO_5086338233701342992317586
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni2Ti6
Al3NiTi3
A3B3C
[ 13, 13, 13, 13, 13, 13, 28, 28, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.42857142857142855, 0.14285714285714285, 0.42857142857142855 ]
3
14
[ [ 3.99181, -6.91402, 0 ], [ 3.99181, 6.91402, 0 ], [ 0, 0, 4.05913 ] ]
[ [ 1.75879, 2.08112, 1.01478 ], [ 5.30193, 0.4826, 1.01478 ], [ 4.91472, 4.3503, 1.01478 ], [ 6.22483, -2.08112, 3.04435 ], [ 2.6817, -0.4826, 3.04435 ], [ 3.06891, -4.3503, 3.04435 ], [ 3.99181, -2.30513, 1.01478 ], [ 3.99181, 2.30513, 3.04435 ], [ 1.36759, -0.23923, 1.01478 ], [ 3.51519, -5.61004, 1.01478 ], [ 7.09265, -1.06476, 1.01478 ], [ 6.61603, 0.23923, 3.04435 ], [ 4.46844, 5.61004, 3.04435 ], [ 0.89097, 1.06476, 3.04435 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5381439321127406791653515604741136767758912808748691125878385393519031786239968283831751605469486677360479640962691334160507520187608331331428813375367683
1
VASP
DFT
null
[ [ 4.366529, 5.284521, 0.00005 ], [ -6.759498, 1.139362, 0.00005 ], [ 2.392997, -6.423395, 0.000045 ], [ -4.365213, -5.28525, -0.000045 ], [ 6.759192, -1.137969, -0.00005 ], [ -2.394573, 6.423878, -0.000053 ], [ 0.000016, -0.00019, -0.000002 ], [ -0.000029, 0.000307, 0.000001 ], [ 3.408129, -0.603469, 0.000114 ], [ -1.181817, 3.253289, 0.000122 ], [ -2.226236, -2.650438, 0.000123 ], [ -3.408554, 0.603919, -0.000111 ], [ 1.180976, -3.254225, -0.000121 ], [ 2.22808, 2.64966, -0.000122 ] ]
null
[ [ 0.24005149932094177, -6.241509125883258e-7, -6.241509125883259e-8 ], [ -6.241509125883258e-7, 0.2400201045300386, 4.36905638811828e-7 ], [ -6.241509125883259e-8, 4.36905638811828e-7, 0.37188303228547526 ] ]
true
null
null
-64.23241
null
4.421374
6.855668
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:24:01
7949215265251980978355081166137237396231986042201174685405217812785987906173438416243245821958665460521391454214307216188087423377224048264312884592242976
PO_7949215265251980978355081
null
null
null
[ "train_1st_stage_2303" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
8391974797955851049098804656332769445536469970373927452896935474354478151494190970130844050327063679561262226098864715571595508600443596948942014202499204
CO_8391974797955851049098804
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni9Ti
Al2Ni9Ti
A9B2C
[ 13, 13, 28, 28, 28, 28, 28, 28, 28, 28, 28, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.16666666666666666, 0.75, 0.08333333333333333 ]
3
12
[ [ 3.81316, 2.21124, -0.001563 ], [ 0.06893, 4.58321, -0.000798 ], [ -0.000256, -0.000384, 8.55698 ] ]
[ [ 1.8839, 5.29137, 2.14327 ], [ 3.81832, 5.2743, 6.42178 ], [ 0.01476, 0.36262, 0.07563 ], [ 0.0351, 0.36081, 4.20207 ], [ 1.66979, 2.16837, 0.06835 ], [ 1.68449, 2.17136, 4.20749 ], [ 2.29684, 4.27044, 0.04451 ], [ 2.26828, 4.26969, 4.22893 ], [ 1.48735, 5.31179, 6.41472 ], [ 2.60142, 3.00385, 2.13637 ], [ 2.53389, 2.99862, 6.4168 ], [ 3.34689, 5.27433, 2.1322 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11080629217690494549561055218536451841431501057140246941121522278338564897672038779768287691007357024079620498519088013468385359576424272724746803116688779
1
VASP
DFT
null
[ [ -37.684849, 0.875433, 0.168925 ], [ 0.83024, -0.025454, -0.004888 ], [ 1.472507, -0.557823, -0.370804 ], [ 0.989714, -0.306026, 0.333245 ], [ -2.161375, -1.95143, -0.278788 ], [ -2.130696, -2.092839, 0.308867 ], [ 0.695968, 2.119961, -0.666716 ], [ 1.145594, 1.97782, 0.699649 ], [ -1.007506, 0.159536, 0.017497 ], [ -0.813963, -0.061222, 0.029994 ], [ 0.291929, 0.022558, -0.011657 ], [ 38.372437, -0.160515, -0.225324 ] ]
null
[ [ 0.3457776082910122, 0.006141145659139056, -0.0022362703047127124 ], [ 0.006141145659139056, 0.023101572897449185, -0.00004699856371790093 ], [ -0.0022362703047127124, -0.00004699856371790093, -0.06604234428733963 ] ]
true
null
null
-52.201674
null
7.698531
38.373434
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:17:04
7251583780123467881994017706935461162777705744436730574077154864613209860417782316868162116039378031775693914202756866340444645841837520209036708682610974
PO_7251583780123467881994017
null
null
null
[ "train_1st_stage_1722", "train_1st_stage_1922", "train_1st_stage_1322", "train_1st_stage_1522" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7278845426915387683416304332039710353643489117068217959907977360107238935942899898366768569054479526972790360949428303047985732251336358207408615111724815
CO_7278845426915387683416304
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni8Ti4
Ni2Ti
A2B
[ 28, 28, 28, 28, 28, 28, 28, 28, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.6666666666666666, 0.3333333333333333 ]
2
12
[ [ 2.96335, -0.15797, 3.44837 ], [ -3.52598, 1.86453, 3.11545 ], [ -3.14215, -5.37024, -0.342229 ] ]
[ [ -3.20483, -3.46589, 5.84802 ], [ -0.02747, -0.70542, 3.61291 ], [ -2.61011, -0.24536, 2.5382 ], [ -4.38197, -1.66129, 3.36763 ], [ -0.09475, -3.02274, 2.93624 ], [ -1.44184, -4.39815, 4.29028 ], [ -1.84887, 0.25774, 5.22225 ], [ -2.6774, -2.56267, 1.86153 ], [ -4.02331, -3.96169, 3.16289 ], [ -1.8237, -4.67664, 1.96928 ], [ -0.67592, -1.16484, 1.16659 ], [ -2.02895, -2.10325, 4.30785 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
8110332599023934135243044679442187936887364929079898843165872488499651217744859380332429959115511580942088542468413007403872489829935689747694595229982940
1
VASP
DFT
null
[ [ 0.000326, -0.000181, -0.000252 ], [ -0.146698, -1.142735, 0.736262 ], [ 0.572675, -0.48776, 0.939762 ], [ -0.040763, 1.2416, -0.57062 ], [ -0.572673, 0.487443, -0.939824 ], [ 0.000241, -0.000042, -0.000073 ], [ 0.040074, -1.241287, 0.571019 ], [ 0.146675, 1.143512, -0.736398 ], [ 0.317794, -0.477035, 0.644735 ], [ -0.31784, 0.476768, -0.64455 ], [ -0.187492, -1.527667, 0.702403 ], [ 0.187681, 1.527384, -0.702464 ] ]
null
[ [ 0.10746536790308904, -0.004601552603057431, -0.04905401750323681 ], [ -0.004601552603057431, 0.18451255383591225, -0.023928011120807387 ], [ -0.04905401750323681, -0.023928011120807387, 0.11204026926217896 ] ]
true
null
null
-77.388773
null
1.082162
1.69183
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:49:19
3142613451755581225442984969295509091989567341800615119635971961632151899032231456250274293621063486640209676751839092658158768897816490487943325950330885
PO_3142613451755581225442984
null
null
null
[ "train_2nd_stage_780" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10535413552969801711804440408955875010722120012250846813907708063285345204021950359075931520044173524349991855230328379931480120243831018228598878122134054
CO_1053541355296980171180444
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni7
Al2Ni7
A7B2
[ 13, 13, 28, 28, 28, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.2222222222222222, 0.7777777777777778 ]
2
9
[ [ 3.610467, -0.00627, -0.004501 ], [ 0.002748, 5.25554, -5.354833 ], [ -1.79674, 3.495952, 1.797363 ] ]
[ [ -0.00169, 0.01596, 0.00478 ], [ 1.80751, 3.49587, -1.79243 ], [ 1.80657, 1.76022, 0.00464 ], [ 0.00457, 3.50387, 0.00483 ], [ 1.81301, 5.24128, 0.00055 ], [ 0.00536, 5.26205, -1.80216 ], [ 1.81372, 6.98619, -1.79739 ], [ 1.80854, 5.27074, -3.55215 ], [ 0.00643, 7.00124, -3.54284 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5349056446533815885854329811574395822827916511825424673440710743728093714520555775440865262384487442836241648298376165698638344246005157201445092466235738
1
VASP
DFT
null
[ [ 0.000066, 0.002553, 0.004399 ], [ -0.000048, -0.002753, -0.004792 ], [ -0.000331, 0.00342, 0.00281 ], [ 0, 0.000271, -0.000201 ], [ -0.000017, -0.00314, -0.003646 ], [ 0.000198, -0.00858, 0.00303 ], [ 0.000141, 0.002408, -0.004765 ], [ -0.000076, -0.002754, 0.005997 ], [ 0.000066, 0.008574, -0.002833 ] ]
null
[ [ 0.00011159818317079265, -0.0000033079998367181266, 0.0000037449054755299546 ], [ -0.0000033079998367181266, 0.0003196900974277405, -0.00003214377199829878 ], [ 0.0000037449054755299546, -0.00003214377199829878, -0.00007427395859801077 ] ]
true
null
null
-49.036284
null
0.005586
0.009101
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:00:21
9648566659027042935609055539545127105481906546697384729042022323764659631953938691613613802564280450562011699785741523602991253303756182033718160313595092
PO_9648566659027042935609055
null
null
null
[ "train_1st_stage_215" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12389912225865389264640049962602124613426719876762005680939881876588583449553866483096155771493083289752620282158173021198973751668885388907867684529896887
CO_1238991222586538926464004
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni2Ti2
NiTi
AB
[ 28, 28, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.5, 0.5 ]
2
4
[ [ 0, -2.15393, -2.15393 ], [ 3.04611, 0, 0 ], [ 0, -4.06594, 4.06594 ] ]
[ [ 0, -4.05506, 4.05506 ], [ 1.52306, -4.13729, 1.98337 ], [ 0, -4.33615, 0.0283 ], [ 1.52306, -1.94419, -0.20974 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
48609159664464829350637738747380458767328382708473365286686194976016895785465417723445278178587370215499338151386974434991050359099449613907259427597672
1
VASP
DFT
null
[ [ 0.000026, -0.048066, 0.048104 ], [ -0.000028, 0.048123, -0.048143 ], [ 0.000028, 0.187111, -0.187127 ], [ -0.000026, -0.187168, 0.187166 ] ]
null
[ [ -0.008480712939885135, 6.241509125883259e-8, -1.2483018251766518e-7 ], [ 6.241509125883259e-8, -0.005524671802775566, -0.002955853891835793 ], [ -1.2483018251766518e-7, -0.002955853891835793, -0.005524359727319271 ] ]
true
null
null
-27.805112
null
0.166348
0.264694
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:15:12
11062567697376903955897882091340679878535076819843207084838936290974315917541663843208689933952686835418685427468301819658371491935021716185454238234732853
PO_1106256769737690395589788
null
null
null
[ "train_2nd_stage_107" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7196698500970797747461653725624954880403904033961981638057772028936325715794172484415836840151207359416811750654873694477157914971120919450145536920264910
CO_7196698500970797747461653
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni4Ti4
AlNiTi
ABC
[ 13, 13, 13, 13, 28, 28, 28, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.3333333333333333, 0.3333333333333333, 0.3333333333333333 ]
3
12
[ [ -4.329, 2.44843, 0.291207 ], [ -4.24536, -7.34551, -0.06539 ], [ -1.37135, 2.33197, 4.18344 ] ]
[ [ -0.74787, -0.42639, 0.06037 ], [ -4.20888, 3.10374, 4.3155 ], [ -4.97462, -2.81394, 0.17268 ], [ -5.67248, -1.66809, 2.175 ], [ -5.04709, -0.45493, 0.24648 ], [ -4.20676, -1.77099, 4.13918 ], [ -4.97985, -5.29294, 0.0461 ], [ -1.39382, 0.78725, 2.10468 ], [ -7.14567, -4.06343, 1.63066 ], [ -4.18834, 0.75239, 2.76728 ], [ -2.82153, -1.61284, 1.62327 ], [ -4.27569, -4.15178, 2.53336 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9578496482596969970200456152838954992060823568898897742573720820845418581309223551593881910016377926447280221323633738327264094083085722435883472777671792
1
VASP
DFT
null
[ [ 0.892534, -0.316971, -0.294626 ], [ -0.981828, 0.684973, 0.052878 ], [ 0.213919, -0.866786, -0.965254 ], [ -0.454679, 0.246493, 1.171926 ], [ 0.604844, 0.973889, -0.328583 ], [ -0.161013, 0.052635, 0.035239 ], [ -0.110959, 0.13108, -0.360091 ], [ -0.122728, -0.089028, 0.279246 ], [ 0.088966, -0.04774, 0.091405 ], [ -0.260573, -0.301021, 0.001131 ], [ 0.183109, -0.207907, 0.130907 ], [ 0.108407, -0.259619, 0.185821 ] ]
null
[ [ 0.012805267367935868, 0.00723796605783052, -0.005454766900565673 ], [ 0.00723796605783052, 0.010033163504766079, -0.005881498879502312 ], [ -0.005454766900565673, -0.005881498879502312, 0.009098310267891284 ] ]
true
null
null
-73.899479
null
0.670523
1.314836
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:03:48
648783346402903265230118922434329925288159912109382170190020395697768037780153332621987916936055882556304880295392966112474932849945488771970422776560605
PO_6487833464029032652301189
null
null
null
[ "train_1st_stage_1212" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
13009374194937477168825943626875097811922433523980620847816449933024323214855893111363641755432245176862231562050676330291888566582252950861548268143916333
CO_1300937419493747716882594
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni5Ti6
Ni5Ti6
A6B5
[ 28, 28, 28, 28, 28, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.45454545454545453, 0.5454545454545454 ]
2
11
[ [ 2.51125, 4.16557, 0.638627 ], [ 7.18003, 0.37899, -2.37405 ], [ 0.100297, 2.09282, -4.52857 ] ]
[ [ 6.57384, 0.69798, -2.3052 ], [ 3.27167, 4.13145, -3.64338 ], [ 1.75718, 0.59802, -1.15621 ], [ 7.36007, 4.637, -3.26751 ], [ 5.63504, 4.41046, -4.86845 ], [ 5.18749, 2.93971, -2.67506 ], [ 7.0214, 2.16873, -4.49859 ], [ 2.58056, 3.08953, -1.28183 ], [ 2.4483, 1.63992, -3.51777 ], [ 4.27128, 2.59931, -5.71093 ], [ 8.0379, 4.60195, -5.99129 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9289176670267980753387574159094052331306580818515867530936204187703690992924538708239716336291343142899988773264315227233949596558919213681850804144285439
1
VASP
DFT
null
[ [ 0.617196, -0.151488, 0.109729 ], [ 0.022618, -0.025202, -0.28649 ], [ -0.022507, 0.025215, 0.286442 ], [ -0.000264, 0.000337, 0.00001 ], [ -0.617336, 0.151199, -0.109641 ], [ -0.227012, -0.333337, 0.177503 ], [ 0.226934, 0.333545, -0.177427 ], [ -0.162966, 0.022502, 0.04988 ], [ 0.16291, -0.022484, -0.049934 ], [ -0.085537, 0.510397, -0.07634 ], [ 0.085965, -0.510683, 0.076269 ] ]
null
[ [ 0.007382082503547164, 0.004043249611747175, 0.008637000328397253 ], [ 0.004043249611747175, 0.005422623128567374, 0.0017576713849399843 ], [ 0.008637000328397253, 0.0017576713849399843, 0.01460157369436507 ] ]
true
null
null
-77.813421
null
0.376266
0.64497
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:20:07
12083366598148295627605710805186258424080359768437060589753287739318458334122694772770610116439110745214520835670883667182072019128713439038035477772551002
PO_1208336659814829562760571
null
null
null
[ "train_2nd_stage_906" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
2479778774695627524573515409117890172453186079398547642090610105221476435892723516291027694028287546444463062209002186875675363441640973934479749492015541
CO_2479778774695627524573515
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al
Al
A
[ 13 ]
[ "Al" ]
[ 1 ]
1
1
[ [ 2.02466, 0, 2.02466 ], [ 0, 2.02466, -2.02466 ], [ 0, 2.02466, 2.02466 ] ]
[ [ 0, 0, 0 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3273188819660107100290682033235574633254186900896160963884009209948592976922098445840296357221624976523123338455741246950148372486622221535668544469433291
1
VASP
DFT
null
[ [ 0, 0, 0 ] ]
null
[ [ 0.0005752798961326599, 0, 0.00019666995255658147 ], [ 0, 0.0001999779523932996, 0 ], [ 0.00019666995255658147, 0, 0.0002977199853046314 ] ]
true
null
null
-3.745627
null
0
0
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:55:14
5325572271282289974524139786861045981636372939603832118260544520387884621538162625769818651065889291535766570988223543692559479682489196315134162400028532
PO_5325572271282289974524139
null
null
null
[ "train_1st_stage_623" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6326895253890903709839341327017618141237155985840760131344672639089946422863105450429112268474314663769654015556859220592733849735490540610589617092962353
CO_6326895253890903709839341
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ti5
Al3Ti5
A5B3
[ 13, 13, 13, 22, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.375, 0.625 ]
2
8
[ [ 0, 1.97179, 1.97179 ], [ 8.06477, 0, 0 ], [ 0, 3.93301, -3.93301 ] ]
[ [ 0, 0, 0 ], [ 4.03239, 1.9665, -1.9665 ], [ 4.03239, 0, 0 ], [ 2.14018, 1.97628, -0.00449 ], [ 5.92459, 3.92852, -1.95673 ], [ 5.92459, 1.97628, -0.00449 ], [ 0, 3.93829, 0.00529 ], [ 2.14018, 3.92852, -1.95673 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
1102684300922813231572446464343501783061863200338058327527489544295297329979154429315605665815542490437615795151742726015198448348504167089802196163783865
1
VASP
DFT
null
[ [ -0.000307, 0.001486, -0.001477 ], [ 0.000275, -0.002133, 0.002144 ], [ 0.000323, 0.002432, -0.002419 ], [ -0.840649, 0.021255, -0.021273 ], [ 0.841375, -0.020781, 0.02077 ], [ 0.840627, 0.02123, -0.021242 ], [ 0.000099, -0.001401, 0.001416 ], [ -0.841744, -0.022087, 0.022082 ] ]
null
[ [ -0.03125029996692859, -0.000002371773467835638, 0.000002371773467835638 ], [ -0.000002371773467835638, -0.034731813757346276, 0.0001723904820568956 ], [ 0.000002371773467835638, 0.0001723904820568956, -0.034731751342255014 ] ]
true
null
null
-52.357311
null
0.422144
0.842323
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:31:07
5620933267139698625677419893488562839325598571698705047302992903646585120985335632917818058785404737436281931836531077556662112415138843780446814863052041
PO_5620933267139698625677419
null
null
null
[ "train_1st_stage_552" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4991442139934662873239671611924951788708951905743122743044537497103742151868823348444977854750450996128071892662822625729900781660007892232351225369882257
CO_4991442139934662873239671
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni6Ti4
Ni3Ti2
A3B2
[ 28, 28, 28, 28, 28, 28, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.6, 0.4 ]
2
10
[ [ -2.93934, -2.90005, 0.025501 ], [ -0.002431, 2.91755, -2.92448 ], [ 3.01654, -6.05564, -6.05056 ] ]
[ [ -2.77255, -0.1196, -3.03593 ], [ -1.52805, -1.36741, -1.36423 ], [ -1.31172, -1.61527, -4.53113 ], [ -0.06722, -2.86307, -2.85944 ], [ 0.20829, -3.17169, -6.08734 ], [ -0.03152, -5.86664, -5.85859 ], [ 0.04979, -0.04131, -2.96043 ], [ -1.4623, -4.40346, -4.39739 ], [ 1.55927, -4.52791, -4.52347 ], [ 1.63907, -4.63487, -7.54854 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2446131634484292519259755448777354039730975837855982973120600266804096186895537852088004328185778819265325039524155226688740055077181584903143123281958208
1
VASP
DFT
null
[ [ -0.169471, 0.174551, 0.173817 ], [ -0.000916, 0.003622, 0.005883 ], [ 0.001468, -0.004206, -0.006567 ], [ 0.169875, -0.17448, -0.173617 ], [ -0.103904, 0.107943, 0.106823 ], [ 0.10289, -0.107735, -0.106608 ], [ 0.000795, -0.000506, -0.000522 ], [ 0.154379, -0.155188, -0.155656 ], [ -0.00042, 0.000706, 0.000688 ], [ -0.154696, 0.155294, 0.15576 ] ]
null
[ [ 0.003032249963536604, 0.0018012995337299085, 0.0018600321346044697 ], [ 0.0018012995337299085, 0.003164445126822812, -0.001978558392904993 ], [ 0.0018600321346044697, -0.001978558392904993, 0.0033181110815020576 ] ]
true
null
null
-67.128609
null
0.151982
0.299071
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:44:45
6931615350982822509438788823719583596738205761857690657290793031251348364877530598919785602178593844480291445642128136523164710886113890663400386712783773
PO_6931615350982822509438788
null
null
null
[ "train_2nd_stage_877" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10831037190126343918020705408724170829172073101568103407854029578650931209576050446514056016692433991461966605753708794773762011192846232289174017455258091
CO_1083103719012634391802070
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ti2
Al2Ti
A2B
[ 13, 13, 13, 13, 22, 22 ]
[ "Al", "Ti" ]
[ 0.6666666666666666, 0.3333333333333333 ]
2
6
[ [ -1.42098, 2.52724, -4.6475 ], [ 1.42098, 2.52724, -4.64749 ], [ 0, -9.76548, 4.62508 ] ]
[ [ 0, -4.84481, 0.00382 ], [ 0, 0.12366, -4.69816 ], [ 0, -6.5004, 2.35075 ], [ 0, -1.53193, -2.35123 ], [ 0, -4.71072, -4.61398 ], [ 0, 3.38847, -7.02842 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9559067187506046392928801370173927628418704967423810501572202164684292328680497069832068699166208562056780295513245175106219680589804248478966453355948809
1
VASP
DFT
null
[ [ 0.000008, -0.075785, -0.167969 ], [ 0.000004, -0.137002, -0.145668 ], [ -0.000005, 0.137459, 0.145495 ], [ -0.000008, 0.075412, 0.168492 ], [ 0.000007, 0.162502, -0.128216 ], [ -0.000005, -0.162586, 0.127865 ] ]
null
[ [ -0.01723361809275004, 3.120754562941629e-7, 4.993207300706607e-7 ], [ 3.120754562941629e-7, -0.015522758026254179, -0.003699342458911007 ], [ 4.993207300706607e-7, -0.003699342458911007, 0.00490108262600857 ] ]
true
null
null
-31.778178
null
0.19714
0.206993
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:02:15
3099694893668951322694418518599041044098284287611388815984854328656134028408923660521028699688595904953551938315227699220804481569546955418459770037840433
PO_3099694893668951322694418
null
null
null
[ "train_2nd_stage_42" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10093430339221396921508303676825144594486865092114295086542402286873786043168875912484230377167196357188113720591700453248139022045026024112172755749839497
CO_1009343033922139692150830
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni10Ti2
Ni5Ti
A5B
[ 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.8333333333333334, 0.16666666666666666 ]
2
12
[ [ 0.132816, 3.576526, -0.126954 ], [ 6.326186, 1.242799, -8.877401 ], [ -2.535858, 0.004376, -2.528788 ] ]
[ [ -2.37645, 3.58409, -2.66967 ], [ -1.2137, 1.70633, -3.83886 ], [ 0.10847, 3.40319, -5.16185 ], [ 1.32096, 1.52198, -6.38095 ], [ 2.59347, 3.22243, -7.65388 ], [ 3.80603, 1.3412, -8.87309 ], [ 5.12819, 3.03807, -10.1961 ], [ 0.09751, 3.49405, -2.61474 ], [ 2.63227, 3.30973, -5.15692 ], [ 3.81812, 1.4303, -6.34927 ], [ 1.31005, 1.61281, -3.83392 ], [ 5.14034, 3.12724, -7.67219 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4175886926307798195857618095132182737836180826584891171806604292719363565976792520494436885402393719044332438032824158511090228215437856146755161492958733
1
VASP
DFT
null
[ [ 0.001001, -0.000066, -0.001 ], [ -0.002119, 0.000135, 0.002131 ], [ 0.000361, -0.000032, -0.0004 ], [ 0.001259, -0.000095, -0.001285 ], [ -0.001578, 0.000139, 0.001566 ], [ -0.000006, 0.000048, 0.000022 ], [ 0.002232, -0.00015, -0.002191 ], [ -0.001338, 0.000086, 0.001347 ], [ 0.00221, -0.000199, -0.002177 ], [ -0.002661, 0.000154, 0.002685 ], [ 0.000878, -0.000089, -0.000945 ], [ -0.00024, 0.000071, 0.000247 ] ]
null
[ [ -0.0025717514202289377, -0.000004930792209447774, -0.00006553584582177421 ], [ -0.000004930792209447774, -0.002636912775503159, 0.00000411939602308295 ], [ -0.00006553584582177421, 0.00000411939602308295, -0.0025701286278562076 ] ]
true
null
null
-73.982177
null
0.001885
0.003783
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:18:12
13310376754035723946565018075018428841110188482217134221962952626964603296366137083968477371737685272435463273447393035899218864094252966842760901312612246
PO_1331037675403572394656501
null
null
null
[ "train_1st_stage_137" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
2068873846691468207147558049526193567563284810102500433113458735308704880465897741553763560730798914140808505003823616141665166929692655070836830332876563
CO_2068873846691468207147558
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al10Ni4
Al5Ni2
A5B2
[ 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.7142857142857143, 0.2857142857142857 ]
2
14
[ [ -4.189082, 2.282988, -0.031888 ], [ -0.221541, -5.334943, 4.262067 ], [ 2.60965, 4.844637, 4.017747 ] ]
[ [ 2.33603, 4.93326, 4.05767 ], [ 0.58717, -0.76033, 4.14858 ], [ -0.41786, 4.86446, 3.97869 ], [ 0.98732, 1.99469, 4.66675 ], [ -1.50404, -2.59352, 3.61655 ], [ -2.63653, 2.94, 1.96287 ], [ -1.62767, 0.28724, 2.64831 ], [ -1.50939, 0.54367, 5.61582 ], [ 0.11733, 3.00882, 2.04187 ], [ -1.10921, 3.29866, 6.13397 ], [ -3.18133, -0.93905, 4.34086 ], [ -1.30283, 2.50318, 3.91258 ], [ 0.78076, 0.03519, 6.37002 ], [ 0.04961, -1.36726, 1.92397 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11986940226043527174416212857557248529049365790129088974670050476160501510651062335913615988593096052029339219824449819333662044451512799924743976306673110
1
VASP
DFT
null
[ [ -0.013494, 0.008802, -0.005438 ], [ 0.001774, -0.001298, -0.000689 ], [ -0.014254, 0.006645, 0.003134 ], [ 0.002035, -0.000683, -0.001042 ], [ -0.00071, -0.000517, 0.001888 ], [ 0.013436, -0.008434, 0.005234 ], [ 0.000808, 0.000545, -0.001829 ], [ -0.002067, 0.000633, 0.000952 ], [ 0.014415, -0.006728, -0.003413 ], [ -0.001813, 0.001352, 0.001162 ], [ -0.004715, 0.00365, 0.000605 ], [ -0.010034, 0.001306, -0.000999 ], [ 0.009965, -0.001557, 0.000912 ], [ 0.004654, -0.003717, -0.000477 ] ]
null
[ [ 0.0009787310460297536, 0.00013843667241209066, 0.00027612436372907533 ], [ 0.00013843667241209066, 0.001000576327970345, 0.0003073319093584916 ], [ 0.00027612436372907533, 0.0003073319093584916, 0.0009708667445311408 ] ]
true
null
null
-65.147101
null
0.008002
0.017004
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:19:29
3778716858168168850275802572448093076382535213673993214162856064352758846246501109348169177356427456761237752636784561383638857386003755722910857062864575
PO_3778716858168168850275802
null
null
null
[ "train_1st_stage_343", "train_1st_stage_379" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6943854034774029003037955420603363135505580206928686274810720619588826894334059629888169416929486677938878348374303488205333244612041687643267515268331376
CO_6943854034774029003037955
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni2Ti9
Ni2Ti9
A9B2
[ 28, 28, 22, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.18181818181818182, 0.8181818181818182 ]
2
11
[ [ 0.03551, 2.04847, 2.06045 ], [ 3.70777, -4.18385, 4.09564 ], [ 5.90798, 6.06834, -4.08609 ] ]
[ [ 3.67665, -1.94534, 5.96831 ], [ 5.91487, 3.82013, -1.85108 ], [ 1.81264, 2.02257, 0.00677 ], [ 4.07111, 4.03608, 0.01483 ], [ 1.44783, -0.01638, 2.04015 ], [ 3.75472, 1.96641, 2.07791 ], [ 5.89965, 1.88312, 0.07492 ], [ 7.74975, 3.97156, 0.01557 ], [ 3.69187, -0.00833, 4.04232 ], [ 5.8368, -0.09162, 2.03932 ], [ 8.14368, 1.89116, 2.07708 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10771195738407509060315165539586903746168451313733048513948232693789096495553958317395807976507907758160644392948584275775541214570569685550223095557568072
1
VASP
DFT
null
[ [ -0.138381, -0.129438, 0.13045 ], [ 0.137584, 0.128798, -0.130648 ], [ 0.422234, 0.149271, -0.15546 ], [ -0.42352, -0.147115, 0.153841 ], [ 0.642373, 0.01933, -0.02851 ], [ -0.227205, -0.163825, 0.166374 ], [ 0.370232, -0.686501, 0.675451 ], [ 0.001614, 0.000816, -0.000618 ], [ -0.369857, 0.686526, -0.675644 ], [ 0.228045, 0.162745, -0.165142 ], [ -0.643119, -0.020608, 0.029906 ] ]
null
[ [ 0.03287022124546033, 0.006428567154385979, -0.006660938539142612 ], [ 0.006428567154385979, 0.006119924528111052, 0.012893522306975859 ], [ -0.006660938539142612, 0.012893522306975859, 0.006519193866893804 ] ]
true
null
null
-82.065288
null
0.491943
1.031798
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:12:15
1518583897522320920881538200435069525036679860433835880232712717772612456621311414572871324364321606914830285751120497295902467267076714971400842646037403
PO_1518583897522320920881538
null
null
null
[ "train_1st_stage_637" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4105378873852879751533333269943441356578526822067071190604173947387761625478436715959080871379867920078467726678182972530964936106310738123732230271780831
CO_4105378873852879751533333
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni2
Al2Ni
A2B
[ 13, 13, 13, 13, 28, 28 ]
[ "Al", "Ni" ]
[ 0.6666666666666666, 0.3333333333333333 ]
2
6
[ [ 1.38978, 5.1196, -0.008756 ], [ -1.38978, 5.1196, -0.008756 ], [ 0, 1.80762, 5.57554 ] ]
[ [ 0, 8.04895, 3.78775 ], [ 0, 3.99336, 1.58203 ], [ 0, 5.30966, 4.29062 ], [ 0, 1.25406, 2.08489 ], [ 0, 1.85395, 5.50509 ], [ 0, 7.44907, 0.36755 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12160792693944937201585341155001648046623829551173368651180194839271476214446467448974930543984242719823772697985500116052638290870333171073252919076287578
1
VASP
DFT
null
[ [ 0, 0.238111, 0.03903 ], [ 0, 0.062665, 0.273214 ], [ 0, -0.062651, -0.273255 ], [ 0, -0.237977, -0.038992 ], [ 0, -0.054236, 0.186047 ], [ 0, 0.054088, -0.186044 ] ]
null
[ [ -0.013605428837874101, 0, 0 ], [ 0, -0.012505987005349767, 0.0031115171294353217 ], [ 0, 0.0031115171294353217, -0.014445785626583024 ] ]
true
null
null
-28.022531
null
0.238438
0.280345
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:31:16
6905090923416525013044606461742610852441151630713413140783390593385178119746933524983951395631234790820984453280287157685427801104849088834729695684474155
PO_6905090923416525013044606
null
null
null
[ "train_2nd_stage_453" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5126703099833084267041664893672937177177641568945484035739402241977804186368829917637619289848194950875060612420152801055524147460684779953983765191284623
CO_5126703099833084267041664
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ti2
Al2Ti
A2B
[ 13, 13, 13, 13, 22, 22 ]
[ "Al", "Ti" ]
[ 0.6666666666666666, 0.3333333333333333 ]
2
6
[ [ -1.4706, 7.08589, 0 ], [ -1.4706, -7.08589, 0 ], [ 0, 0, 4.47937 ] ]
[ [ -1.4706, -6.86146, 0 ], [ -1.4706, -2.13633, 0 ], [ -1.4706, 0.5629, 2.23968 ], [ -1.4706, -4.16224, 2.23968 ], [ -1.4706, 2.54052, 0 ], [ -1.4706, 5.33269, 2.23968 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11299303719594240528945315078461136337326316006793699041039041536041179894947261215326964044355428094244468508124237484144944007528569336908909291543876366
1
VASP
DFT
null
[ [ 0.000001, 0.006971, -0.000029 ], [ 0.000001, -0.352075, -0.000035 ], [ 0, -0.007298, 0.00003 ], [ 0, 0.352629, 0.000037 ], [ 0, 0.388362, -0.000039 ], [ -0.000003, -0.388589, 0.000037 ] ]
null
[ [ -0.02974079098483372, 0, 0 ], [ 0, -0.023269968813665515, -3.120754562941629e-7 ], [ 0, -3.120754562941629e-7, -0.002732220619855396 ] ]
true
null
null
-31.842645
null
0.249321
0.388589
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:37:57
6931978560812023845168327748845611067700262243544586583981479489046151095316430409900174398541469578964385431116691484811884333448025664330176022655462632
PO_6931978560812023845168327
null
null
null
[ "train_2nd_stage_603" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7997448733336117700153525647299216218790935570409563516956292778491878450625345937197999817082741729646009716020495435216044659806246770806647241547687162
CO_7997448733336117700153525
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni2Ti10
NiTi5
A5B
[ 28, 28, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.16666666666666666, 0.8333333333333334 ]
2
12
[ [ 0, 2.05892, 2.05892 ], [ 0, 6.19883, -6.19883 ], [ -7.63838, 0, 0 ] ]
[ [ 0, 0.10564, -0.10564 ], [ 0, 4.02692, -4.02692 ], [ -5.82594, 2.00673, 0.05219 ], [ -3.81919, 2.06628, -2.06628 ], [ -1.81244, 4.18474, -2.12582 ], [ -6.11464, 6.19515, -4.13623 ], [ -3.81919, 6.14243, -6.14243 ], [ -1.81244, 2.00673, 0.05219 ], [ 0, 2.06628, -2.06628 ], [ -5.82594, 4.18474, -2.12582 ], [ -3.81919, 4.18895, -4.18895 ], [ -1.52374, 6.19515, -4.13623 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11409987405676898740474805667170851765936126255015294950331717196741032184825757424261886095652334918619571248957721577783927554068983417217992285348926914
1
VASP
DFT
null
[ [ -0.000097, -0.308796, 0.308795 ], [ -0.000097, 0.308998, -0.308996 ], [ 0.345787, 0.082708, -0.082706 ], [ -0.000698, -0.000142, 0.00014 ], [ -0.345124, -0.082914, 0.082911 ], [ 0.587938, 0.000237, -0.000242 ], [ -0.000642, -0.131281, 0.131285 ], [ -0.345489, 0.082856, -0.082857 ], [ 0.00107, 0.000215, -0.000225 ], [ 0.344904, -0.08347, 0.083467 ], [ -0.000554, 0.131439, -0.131427 ], [ -0.587, 0.00015, -0.000145 ] ]
null
[ [ 0.027382561591801254, 3.744905475529955e-7, -3.744905475529955e-7 ], [ 3.744905475529955e-7, 0.011082361188827054, 0.005331185019873184 ], [ -3.744905475529955e-7, 0.005331185019873184, 0.011082236358644536 ] ]
true
null
null
-89.834462
null
0.323409
0.587938
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:27:21
12743492901083336575189391076702859593712322614733288126872194668623655319775685637238144901987606316734380933102752719973926231250855787968931083445643423
PO_1274349290108333657518939
null
null
null
[ "train_1st_stage_609" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
8726599437077959704992040654237638688867501211624706569360136292642899443782855277142916770142924047927910461201702054868952146722335937459591036825140041
CO_8726599437077959704992040
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni2Ti4
NiTi2
A2B
[ 28, 28, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
6
[ [ 1.40963, 5.13528, -0.038454 ], [ -1.40963, 5.13528, -0.038454 ], [ 0, 1.24233, 6.07498 ] ]
[ [ 0, 5.75628, 1.11215 ], [ 0, 5.75662, 4.88592 ], [ 0, 2.78336, 5.34726 ], [ 0, 8.72954, 0.65081 ], [ 0, 1.98261, 2.71941 ], [ 0, 9.53028, 3.27866 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3869205769976833564595386071385991668163744482548782651565277368321110680100426977902684340180017065626494919715535085353735045304250693697752601263601846
1
VASP
DFT
null
[ [ 0, -0.21249, 0.097081 ], [ 0, 0.212426, -0.096922 ], [ 0.000003, 0.004098, 0.118256 ], [ 0, -0.003348, -0.118541 ], [ 0.000002, 0.353578, -0.406202 ], [ -0.000004, -0.354265, 0.406329 ] ]
null
[ [ -0.008315999514053077, -6.241509125883259e-8, 0 ], [ -6.241509125883259e-8, 0.0032786647438264754, -0.005777952243103909 ], [ 0, -0.005777952243103909, 0.0007125306818108327 ] ]
true
null
null
-43.686309
null
0.296939
0.53908
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:40:07
4772882537656507403062888509089289247499012711455150151808298302681326797718286763001815487301791755876454188871092388086354788736517326026384412321230460
PO_4772882537656507403062888
null
null
null
[ "train_2nd_stage_574" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5887715924547236382324934052880294381926212229655275742632911590050476943143680896319709864657982126219803326347329741968997117221938897634908452077471852
CO_5887715924547236382324934
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi4Ti3
AlNi4Ti3
A4B3C
[ 13, 28, 28, 28, 28, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.125, 0.5, 0.375 ]
3
8
[ [ 1.60512, 3.76267, 0.529153 ], [ 5.02818, -4.13842, -1.90197 ], [ -0.310566, 5.06013, -2.88564 ] ]
[ [ -0.31056, 5.06013, -2.88563 ], [ 1.98972, 1.4895, -0.5503 ], [ 4.48829, 0.66482, -2.26534 ], [ 1.83444, 4.01956, -1.99311 ], [ 4.33301, 3.19488, -3.70815 ], [ 2.38732, -0.78796, -1.63867 ], [ 6.47801, 2.15432, -2.81564 ], [ 2.3303, 1.70967, -3.14893 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
8838140224163400976154992251013572079499236604088687188756410185458229045624354294344198297946742135598020811762881182583747479567417316486300134419321279
1
VASP
DFT
null
[ [ -0.000208, 0.000057, 0.000043 ], [ -0.031553, 0.009678, 0.021634 ], [ 0.030142, -0.009876, -0.020642 ], [ -0.030058, 0.009852, 0.020642 ], [ 0.031495, -0.009623, -0.021616 ], [ -0.28809, 0.096246, 0.197514 ], [ -0.000213, 0.000053, 0.000244 ], [ 0.288484, -0.096388, -0.197818 ] ]
null
[ [ -0.010409713750330616, 0.00048727461745770595, 0.0009756102914668121 ], [ 0.00048727461745770595, -0.009287927315135617, -0.00025552738361366055 ], [ 0.0009756102914668121, -0.00025552738361366055, -0.009661856126867284 ] ]
true
null
null
-52.797877
null
0.11002
0.36283
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:17:52
540624490442234813221154987764917886616584371803905409108707329303735259375028984945553461802597005511685670877786041982379649446943157405530546717435269
PO_5406244904422348132211549
null
null
null
[ "train_1st_stage_629" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
3267073539940768084091515191658391272608564632892145075607640263983338974933893190648499428349139657455690177906429910059300635739508425137252671029538739
CO_3267073539940768084091515
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni6
AlNi
AB
[ 13, 13, 13, 13, 13, 13, 28, 28, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.5, 0.5 ]
2
12
[ [ 3.33134, 0, 0 ], [ -1.66567, 2.88502, 0 ], [ 0, 0, 17.4281 ] ]
[ [ 0, 0, 5.79354 ], [ 0, 0, 11.6345 ], [ 1.66567, 0.96167, 11.6029 ], [ 1.66567, 0.96167, 0.00051 ], [ 0, 1.92335, 17.4276 ], [ 0, 1.92335, 5.8252 ], [ 0, 0, 1.51702 ], [ 0, 0, 15.9111 ], [ 1.66567, 0.96167, 7.32638 ], [ 1.66567, 0.96167, 4.29237 ], [ 0, 1.92335, 13.1357 ], [ 0, 1.92335, 10.1017 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
8632071243635486669605121942388301229076996761668568690596856996078542516399071662458443198435083355167018552553320915105948888660984721274662509916148662
1
VASP
DFT
null
[ [ 0.000001, 0.000043, -0.41856 ], [ 0.000001, 0.000091, 0.417394 ], [ -0.000002, -0.000058, -0.418433 ], [ -0.000002, 0.000236, 0.041766 ], [ 0.000001, -0.000249, -0.041508 ], [ -0.000001, -0.000062, 0.418758 ], [ 0, 0.000006, -0.136373 ], [ 0, 0.000007, 0.136454 ], [ 0, 0.00001, -0.13417 ], [ 0, 0.000009, 0.135428 ], [ 0, -0.000017, -0.134935 ], [ 0.000001, -0.000017, 0.134179 ] ]
null
[ [ 0.5228364895137034, -8.73811277623656e-7, 6.241509125883259e-8 ], [ -8.73811277623656e-7, 0.5228375505702548, 1.8724527377649775e-7 ], [ 6.241509125883259e-8, 1.8724527377649775e-7, -0.08435405825140349 ] ]
true
null
null
-30.897345
null
0.213997
0.418758
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:11:53
7068547661758291215332962426206484973811005380028176968421738004353435471002460198794416560541575914133559946780812355984115832371642682120135377777258328
PO_7068547661758291215332962
null
null
null
[ "train_1st_stage_2375" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11952455798949418709011578301992955652598499243364670763233938142241902380300163509130932287147242542656970016702553884310780891742196032195610579129239325
CO_1195245579894941870901157
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi2
AlNi2
A2B
[ 13, 28, 28 ]
[ "Al", "Ni" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
3
[ [ 0.201878, 1.9738, 1.98453 ], [ 4.64953, 1.5044, 0 ], [ 0.201878, 1.9738, -1.98453 ] ]
[ [ 0, 0, 0 ], [ 1.6461, 1.82291, 0 ], [ 3.40719, 3.62908, 0 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2804720317906064027232661859872545084833816651359931274585215000321728391888479192161085939330224836684053854931388052814335442760757015132626050856993756
1
VASP
DFT
null
[ [ -0.000296, -0.000007, 0 ], [ 0.071727, -0.017529, 0.000001 ], [ -0.071431, 0.017537, -0.000001 ] ]
null
[ [ 0.0027139329981165582, -0.000680386909812534, 0 ], [ -0.000680386909812534, 0.001399471176205544, 0 ], [ 0, 0, 0.0014102689869933223 ] ]
true
null
null
-16.02556
null
0.049229
0.073838
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:11:53
6790298034274786448377870175601255239574766216450511930274689478008545351944165313097599707464489208946091050958212547559810492181413428531523157092948450
PO_6790298034274786448377870
null
null
null
[ "train_1st_stage_788" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
2324373884022327957992219242914966116746394227099114678273467509428265497828826048231779870659595089949029898404595129753777865570159719119485657400338667
CO_2324373884022327957992219
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni2Ti
Al4Ni2Ti
A4B2C
[ 13, 13, 13, 13, 28, 28, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.5714285714285714, 0.2857142857142857, 0.14285714285714285 ]
3
7
[ [ 1.65997, -2.87516, 0 ], [ 1.65997, 2.87516, 0 ], [ 0, 0, 10.9865 ] ]
[ [ 1.65997, 0.95858, 9.53514 ], [ 1.65997, -0.95858, 1.45131 ], [ 1.65997, 0.95858, 4.3781 ], [ 1.65997, -0.95858, 6.60835 ], [ 1.65997, 0.95858, 2.35659 ], [ 1.65997, -0.95858, 8.62986 ], [ 0, 0, 5.49323 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
831870765044863705658506798586212648091349407676291162137299841046746381364262563183452548738698275582285224183056903034583477458899186848581896966982552
1
VASP
DFT
null
[ [ -0.000001, -0.00508, 3.19813 ], [ 0, 0.005081, -3.197504 ], [ -0.000002, -0.001804, -1.6185 ], [ 0.000002, 0.001805, 1.618116 ], [ 0, -0.005158, -0.935279 ], [ 0, 0.005159, 0.935452 ], [ 0, -0.000003, -0.000415 ] ]
null
[ [ 0.15753956007295147, -1.8724527377649775e-7, -6.241509125883259e-8 ], [ -1.8724527377649775e-7, 0.1574723390196657, -0.0000306458098080868 ], [ -6.241509125883259e-8, -0.0000306458098080868, 0.1745444268562379 ] ]
true
null
null
-24.363591
null
1.643348
3.198134
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:37:31
12094233674175284265240828395869207283463780725359306754326400749002541114805098259224202526783756350959838000865492970392264797687031049954976528998914819
PO_1209423367417528426524082
null
null
null
[ "train_1st_stage_2145" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7862761707846215479690883060710765153856510659284433475300356389147638593007285849934585710104046050177329832858359638050272936115601400121022400312429395
CO_7862761707846215479690883
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni4
AlNi2
A2B
[ 13, 13, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
6
[ [ 1.49907, 4.35884, 0.025469 ], [ -1.49907, 4.35884, 0.025469 ], [ 0, 1.58667, 5.3953 ] ]
[ [ 0, 8.62113, 0.2391 ], [ 0, 3.2233, 2.2239 ], [ 0, 6.71555, 3.92915 ], [ 0, 5.92221, 1.2315 ], [ 0, 9.33045, 3.02717 ], [ 0, 4.10065, 4.83113 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7004353011794581240224330200616432856082992360846058287645753908152425052086380387108912943204923658964120836245672672355709874360489746089103279187105996
1
VASP
DFT
null
[ [ 0, 0.130658, -0.228932 ], [ 0, -0.131054, 0.228812 ], [ 0, 0.000212, 0.000099 ], [ 0, 0.000295, -0.000124 ], [ -0.000001, -0.197932, -0.081542 ], [ 0, 0.19782, 0.081686 ] ]
null
[ [ -0.013037326677236208, -6.241509125883259e-8, 0 ], [ -6.241509125883259e-8, 0.006325020517987575, 0.00336236338120457 ], [ 0, 0.00336236338120457, 0.005645195343996372 ] ]
true
null
null
-31.73733
null
0.159321
0.263686
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:27:45
8576424651837519643640582656011408554146928498636238692813898675285276371961335929443835303943728072349069212966503189172189008186939195403780124349931700
PO_8576424651837519643640582
null
null
null
[ "train_2nd_stage_96" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7167976584420131118034012197318336400936738991719935881960810099484521371202617966967030706689847086241199053520483164663527089292134931094365030465757252
CO_7167976584420131118034012
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni8
AlNi2
A2B
[ 13, 13, 13, 13, 28, 28, 28, 28, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
12
[ [ 4.28101, -0.020147, 0.83224 ], [ -1.38091, 0.18367, -4.18532 ], [ 2.15355, 8.28856, 2.3176 ] ]
[ [ -1.03995, 0.19436, -4.02334 ], [ 2.03652, 2.09395, 0.56446 ], [ 4.58468, 4.1432, 1.16771 ], [ 1.99923, 6.2466, 0.73795 ], [ 4.90591, 8.32865, 1.6161 ], [ 0.0854, 2.14219, -1.12166 ], [ 2.76635, 4.22485, -0.50001 ], [ 4.37803, 6.31145, -0.06899 ], [ 3.01581, 8.39793, -0.06656 ], [ 2.47394, 2.19598, -1.95314 ], [ 0.87387, 4.29878, -2.16373 ], [ 2.48793, 6.38073, -1.75165 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11392650448029968470539013278087672989957248140891771312336300010048539720076646197299110103057243480430439786787885625253095489194169679058796693485324190
1
VASP
DFT
null
[ [ -0.025477, -0.056576, -0.042204 ], [ -0.027299, -0.05747, 0.01541 ], [ 0.026627, 0.060108, -0.015487 ], [ 0.026075, 0.054165, 0.041997 ], [ 0.068917, 0.020662, -0.046819 ], [ -0.197249, 0.011713, -0.115137 ], [ 0.11878, -0.010024, -0.029219 ], [ -0.064881, -0.022859, -0.032573 ], [ 0.064977, 0.022653, 0.03277 ], [ -0.118901, 0.010207, 0.029397 ], [ 0.197122, -0.011691, 0.115106 ], [ -0.068691, -0.020887, 0.046761 ] ]
null
[ [ 0.005480045012525501, -0.002450478897913026, 0.002632793379480076 ], [ -0.002450478897913026, 0.005085768881043455, -0.0002476630821150477 ], [ 0.002632793379480076, -0.0002476630821150477, 0.0017606673093204083 ] ]
true
null
null
-64.179491
null
0.109011
0.228694
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:35:35
9323468962264332350299869635843647652908822754642749888486062314305119979556778930545162276932038105611835810094659297954593687390878125897660348209894013
PO_9323468962264332350299869
null
null
null
[ "train_1st_stage_611" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5358324239984800703248191568692919696543038707147097218986889881661179085447356787489168709088180439947580085613468008436241989695810532350748835641318182
CO_5358324239984800703248191
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni10Ti2
Al2Ni5Ti
A5B2C
[ 13, 13, 13, 13, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.25, 0.625, 0.125 ]
3
16
[ [ 3.90817, 0, 0 ], [ 0, 4.98862, 0 ], [ 0, 0, 9.74364 ] ]
[ [ 1.95409, 1.68979, 6.21816 ], [ 1.95409, 3.29883, 3.52548 ], [ 1.95409, 0.80452, 1.34634 ], [ 1.95409, 4.1841, 8.3973 ], [ 0, 0, 0 ], [ 0, 2.49431, 4.87182 ], [ 0, 3.02107, 7.26293 ], [ 0, 1.96754, 2.48072 ], [ 0, 4.46185, 2.39111 ], [ 0, 0.52676, 7.35254 ], [ 1.95409, 1.64289, 8.65986 ], [ 1.95409, 3.34573, 1.08379 ], [ 1.95409, 0.85142, 3.78804 ], [ 1.95409, 4.1372, 5.95561 ], [ 0, 0, 4.87182 ], [ 0, 2.49431, 0 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3911612083227670341031314288023777318853951039516642612056349813702366454954834862168611593546287817339137746708007131856097783745551104455541500026821519
1
VASP
DFT
null
[ [ -0.00004, -0.030622, 0.085077 ], [ -0.000041, 0.030451, -0.085414 ], [ -0.00004, 0.029662, 0.086523 ], [ -0.00004, -0.029732, -0.086 ], [ 0.000033, -0.00009, 0.000148 ], [ 0.000034, -0.000068, -0.000014 ], [ 0.000032, 0.004688, 0.423768 ], [ 0.000032, -0.004648, -0.423955 ], [ 0.000032, -0.004246, 0.425061 ], [ 0.000032, 0.004209, -0.425244 ], [ -0.000039, -0.196495, -0.078631 ], [ -0.00004, 0.196546, 0.078893 ], [ -0.00004, 0.195647, -0.077572 ], [ -0.000039, -0.195513, 0.077298 ], [ 0.000062, 0.000073, -0.000111 ], [ 0.000063, 0.000139, 0.000175 ] ]
null
[ [ -0.02777939674202491, 0, 0 ], [ 0, -0.025799277971838445, -0.000013356829529390173 ], [ 0, -0.000013356829529390173, -0.02688086908826276 ] ]
true
null
null
-93.015383
null
0.181653
0.425265
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:28:08
1426900987589103340392940830259904168310495700319616054594214387868506599590996648370716423256912085413610304490492997071125160091113956866625172484549401
PO_1426900987589103340392940
null
null
null
[ "train_2nd_stage_206" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
8681465355980231356564252570141697207726104715828601555234086870524007660304962312244347651121421289983500882851062458113779332735127108418097568703439093
CO_8681465355980231356564252
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi7Ti
AlNi7Ti
A7BC
[ 13, 28, 28, 28, 28, 28, 28, 28, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.1111111111111111, 0.7777777777777778, 0.1111111111111111 ]
3
9
[ [ 3.76541, -2.20293, 0.479898 ], [ -1.38891, 1.14208, -3.99809 ], [ 4.91441, 4.2197, 1.83951 ] ]
[ [ 0.07633, 0.02779, -0.088 ], [ 1.9082, 1.42092, -1.0591 ], [ 3.69412, 2.87829, -2.06864 ], [ 6.992, 3.09809, 0.77378 ], [ 3.91293, 0.37022, -2.08891 ], [ 3.36201, 2.8417, 0.43808 ], [ 5.25689, 4.22436, -0.71302 ], [ 3.54948, 0.32773, 0.4678 ], [ 5.32606, 1.66602, -0.53722 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7846733852060402574776140655790617148629858340174313324574618362233983068302770340731731099098816763969215520404855567789008889293295468433516502258417811
1
VASP
DFT
null
[ [ -0.004508, 0.055381, 0.08666 ], [ 0.005072, -0.217894, -0.11649 ], [ -0.06493, 0.019589, -0.015541 ], [ 0.030651, 0.11194, -0.021857 ], [ -0.152716, -0.208506, 0.038043 ], [ -0.01903, -0.076168, 0.027587 ], [ 0.113163, 0.048692, 0.06419 ], [ -0.134311, -0.012544, 0.116685 ], [ 0.226608, 0.27951, -0.179278 ] ]
null
[ [ -0.002554462439950241, 0.005823203184266562, -0.0020934645759125036 ], [ 0.005823203184266562, -0.0016383961455443553, -0.0009772330838395415 ], [ -0.0020934645759125036, -0.0009772330838395415, -0.004757465501021995 ] ]
true
null
null
-52.797484
null
0.177944
0.402017
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:25:01
6664676169790725852513230211586751116093485359281332392376464691374612832143488278516613578205413995163744077275541245748363523150443544393927605983206084
PO_6664676169790725852513230
null
null
null
[ "train_1st_stage_707" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
1936381654569442162786983243724398354794768728071396917839979653430733271385542268174938081157666070713038046699593393023175140265923902115237966770486370
CO_1936381654569442162786983
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi13
AlNi13
A13B
[ 13, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.07142857142857142, 0.9285714285714286 ]
2
14
[ [ 2.488694, -0.002912, 4.097739 ], [ -3.732745, 2.150252, 4.092472 ], [ -2.489559, -4.30942, 4.095426 ] ]
[ [ -3.72885, 2.1398, 4.09324 ], [ -0.00442, 0.00096, 4.08977 ], [ -2.4927, -0.02567, 4.09768 ], [ -2.50238, -0.0135, 8.19091 ], [ -1.2278, -2.15976, 4.09572 ], [ -1.22867, -2.15063, 8.19421 ], [ -3.72104, -2.18176, 8.19888 ], [ -1.23979, -3.59467, 6.1439 ], [ -1.26015, 0.71209, 2.05144 ], [ -1.24938, 0.68625, 6.13924 ], [ -3.72952, 0.69443, 6.14423 ], [ 0.00762, -1.45095, 6.14499 ], [ -2.48431, -1.45978, 6.15053 ], [ -2.47116, -1.44678, 10.23632 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9913217077684944224569573231560020447327492740699530991912962469386895908624360496384586726969787761453168414739753474860784861803079336002203229879329964
1
VASP
DFT
null
[ [ 0.003222, -0.001007, -0.001473 ], [ 0.002205, 0.000166, -0.001613 ], [ 0.000323, 0.000339, 0.002633 ], [ 0.001348, 0.00217, 0.000347 ], [ 0.000443, 0.000207, -0.000544 ], [ 0.00163, 0.002601, 0.002633 ], [ 0.000081, 0.000135, 0.000618 ], [ -0.001119, 0.000328, -0.002126 ], [ -0.003427, -0.000078, -0.00121 ], [ -0.001531, -0.002162, 0.001069 ], [ -0.000631, -0.001377, -0.002787 ], [ -0.001192, -0.000174, 0.000125 ], [ -0.001493, -0.001665, 0.001089 ], [ 0.000141, 0.000517, 0.001238 ] ]
null
[ [ 0.004156470587290697, -0.00002234460267066206, 0.000004181811114341783 ], [ -0.00002234460267066206, 0.004154972625100484, -0.00001235818806924885 ], [ 0.000004181811114341783, -0.00001235818806924885, 0.003804449472590881 ] ]
true
null
null
-75.767023
null
0.002444
0.004044
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:20:33
3324422868731599877293110189835859071134820716516596215412585132721806859552349687494362842739811156966954354557156899427821970945548050129342725053785849
PO_3324422868731599877293110
null
null
null
[ "train_1st_stage_276", "train_1st_stage_325" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
684147834583494225896825254792139401391886859064959495407128336950162287554012786772231248665145306195854971398576702763740069488615280880491794466001909
CO_6841478345834942258968252
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ti2
Al2Ti
A2B
[ 13, 13, 13, 13, 22, 22 ]
[ "Al", "Ti" ]
[ 0.6666666666666666, 0.3333333333333333 ]
2
6
[ [ -1.47153, 2.80021, -4.69143 ], [ 1.47157, 2.80085, -4.69222 ], [ 0.000011, -9.93341, 4.89228 ] ]
[ [ -0.00039, -4.1737, -4.50976 ], [ 0.0001, 0.57995, -4.68802 ], [ 0.00045, -6.71044, 2.50908 ], [ -0.00005, -1.53068, -2.20494 ], [ -0.00009, -4.5882, 0.15595 ], [ 0.00014, 3.63747, -7.04891 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11103953383711781319335903725375920380844160136895896556424659128541317882115388626864481319755854015403643733460901052325915939025407584039836831627617704
1
VASP
DFT
null
[ [ 0.003169, 0.089815, 0.106764 ], [ -0.001204, -0.184051, 0.501037 ], [ -0.003169, -0.090416, -0.106965 ], [ 0.001205, 0.184673, -0.50033 ], [ 0.000213, 0.20125, -0.266848 ], [ -0.000215, -0.201271, 0.266341 ] ]
null
[ [ -0.0009479604060391491, 0.00007208943040395162, -0.0000578587895969378 ], [ 0.00007208943040395162, -0.004556988227898626, -0.004845221119331914 ], [ -0.0000578587895969378, -0.004845221119331914, 0.001383492912843283 ] ]
true
null
null
-32.002743
null
0.335803
0.533774
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:17:17
4397892956224826276783545734712967932823845715842711503509689281574994901775063263379439661611850343525526279793660817169646316704635572480009807163063266
PO_4397892956224826276783545
null
null
null
[ "train_2nd_stage_560" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
13303666552125204893791185675813990701704684695253654010418171026913951649681465074382814495214542648705853982420792938390738524311810293087413413096060090
CO_1330366655212520489379118
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ti2
Al2Ti
A2B
[ 13, 13, 13, 13, 22, 22 ]
[ "Al", "Ti" ]
[ 0.6666666666666666, 0.3333333333333333 ]
2
6
[ [ 1.43181, 5.25346, 0.099259 ], [ -1.43181, 5.25346, 0.099259 ], [ 0, 1.66137, 6.42444 ] ]
[ [ 0, 3.47785, 5.58213 ], [ 0, 8.69045, 1.04083 ], [ 0, 2.27452, 3.03318 ], [ 0, 9.89377, 3.58978 ], [ 0, 5.82515, 1.39654 ], [ 0, 6.34315, 5.22641 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5017722821387775406267514641288356982653185454173714775270522256982513611366505626924075839158757141422029402721363166022625260519817301058570634725582155
1
VASP
DFT
null
[ [ 0.000001, -0.013808, 0.171521 ], [ 0.000001, 0.013893, -0.171019 ], [ 0.000001, -0.639808, -0.041101 ], [ 0.000001, 0.639923, 0.040613 ], [ -0.000003, -0.084128, 0.056828 ], [ 0, 0.083928, -0.056843 ] ]
null
[ [ -0.007219553605909165, 6.241509125883259e-8, -6.241509125883259e-8 ], [ 6.241509125883259e-8, -0.0013006056716515534, 0.0005645445004361407 ], [ -6.241509125883259e-8, 0.0005645445004361407, 0.00041986631889816674 ] ]
true
null
null
-32.126499
null
0.304814
0.64121
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:18:39
607685257174693927506883868856638564596529924783621560142714763777558734049877644538234314511620120397281922795853668975515665366830858991397809561276975
PO_6076852571746939275068838
null
null
null
[ "train_2nd_stage_388" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5754088717929450411562775818824958272746479771984193558465638670198525237426169759891431071072955593030710504857560100763227216590366733406202637618512363
CO_5754088717929450411562775
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni
Al3Ni
A3B
[ 13, 13, 13, 28 ]
[ "Al", "Ni" ]
[ 0.75, 0.25 ]
2
4
[ [ -5.55078, 3.58467, -5.55078 ], [ -5.55077, 5.55077, -3.58467 ], [ -3.58467, 5.55078, -5.55078 ] ]
[ [ -3.81236, 3.81236, -3.81236 ], [ -7.34311, 7.34311, -7.34311 ], [ -10.8739, 10.8739, -10.8739 ], [ 0, 0, 0 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12596558408205780766889889918463640884381909031745734154122120871159906942656563909869919174174096465997914977379381878485182123815204769417143477174204176
1
VASP
DFT
null
[ [ 0.032278, -0.032278, 0.032259 ], [ -0.000112, 0.000112, -0.000112 ], [ -0.031998, 0.031998, -0.031996 ], [ -0.000168, 0.000168, -0.000151 ] ]
null
[ [ -0.005420563430555833, -0.003145408523988868, 0.003146594410722786 ], [ -0.003145408523988868, -0.005420563430555833, -0.003146594410722786 ], [ 0.003146594410722786, -0.003146594410722786, -0.005420064109825763 ] ]
true
null
null
-17.60108
null
0.027948
0.055896
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:03:31
643590834430475276622523259879908456067670443007205316729975402065289042264701222729276155715060384882318732224570232249098050456862529050882980171819028
PO_6435908344304752766225232
null
null
null
[ "train_2nd_stage_347" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11815137679157447380974398115625312444686909705559851219860462202414923938437151479392554826069788815942581584822667096773334384091608570156183722416565722
CO_1181513767915744738097439
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni4Ti2
Al3Ni2Ti
A3B2C
[ 13, 13, 13, 13, 13, 13, 28, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.5, 0.3333333333333333, 0.16666666666666666 ]
3
12
[ [ 0, 0, 3.98994 ], [ 3.46683, 2.00347, 0 ], [ -5.05058, 8.7396, 0 ] ]
[ [ 2.99047, 2.16093, 0 ], [ 1.50644, 4.72889, 0 ], [ -0.02902, 7.38585, 0 ], [ -2.7589, 8.10844, 0 ], [ 1.26513, 1.14517, 1.99497 ], [ -0.22895, 3.73057, 1.99497 ], [ 0.47988, 2.50401, 0 ], [ -0.9327, 4.94833, 0 ], [ 2.30834, 3.34123, 1.99497 ], [ 0.72369, 6.08338, 1.99497 ], [ -1.78349, 6.42055, 1.99497 ], [ -1.05917, 9.16846, 1.99497 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
1093076796558673102909812341622194721097287176854814764927032587435927440897936605511140834913476001832663820439729583741714426885868603187409513706894931
1
VASP
DFT
null
[ [ 0.069943, -0.12139, -0.000001 ], [ -0.04705, 0.081176, 0 ], [ 0.106783, -0.184842, 0 ], [ 0.039833, -0.069156, -0.000001 ], [ -0.029043, 0.050207, 0 ], [ -0.031898, 0.055061, -0.000001 ], [ -0.047806, 0.083177, 0 ], [ -0.25036, 0.433508, 0.000002 ], [ 0.022917, -0.039251, -0.000002 ], [ 0.073776, -0.127651, -0.000002 ], [ 0.208904, -0.361456, -0.000001 ], [ -0.116, 0.200618, 0.000006 ] ]
null
[ [ -0.007242584774583674, 0.007522641289062056, -6.241509125883259e-8 ], [ 0.007522641289062056, -0.015912852346621882, 0 ], [ -6.241509125883259e-8, 0, -0.015113252612504978 ] ]
true
null
null
-66.513727
null
0.173958
0.500609
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:26:11
2616680937187182701665246939597262281271753323525323187349385516358773879124977721128013798136843851657655526176270150612915766842276486026752299479889795
PO_2616680937187182701665246
null
null
null
[ "train_1st_stage_1015" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
8549546407572307622047804557287915511916333295012736635665710232103076126766225547405591626502777449934083233107982930893926003572476743981802472652450161
CO_8549546407572307622047804
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3NiTi2
Al3NiTi2
A3B2C
[ 13, 13, 13, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.5, 0.16666666666666666, 0.3333333333333333 ]
3
6
[ [ 0, 2.0216, 2.0216 ], [ 2.85897, 0, 0 ], [ 0, 7.65164, -7.65164 ] ]
[ [ 0, 2.25839, 1.7848 ], [ 0, 2.31375, -2.31375 ], [ 0, 5.10109, -5.10109 ], [ 1.42949, 2.28607, -0.26447 ], [ 1.42949, 4.70215, -2.68055 ], [ 1.42949, 7.52163, -5.50003 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5598880058643933087868653337401345491453161013137627794215619943710214569932852127187531392039522115697778091189435635335394841851700847508873959903462874
1
VASP
DFT
null
[ [ 0.000029, 0.099558, -0.099514 ], [ 0.000028, -0.099425, 0.099411 ], [ 0.000024, -0.000279, 0.000278 ], [ -0.000028, -0.000066, 0.000061 ], [ -0.000033, 0.04108, -0.041082 ], [ -0.000019, -0.040868, 0.040846 ] ]
null
[ [ 0.00107890726750018, -6.241509125883259e-8, 0 ], [ -6.241509125883259e-8, -0.002191393854097612, 0.0032708628574191216 ], [ 0, 0.0032708628574191216, -0.002191331439006353 ] ]
true
null
null
-35.384923
null
0.066288
0.140765
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:33:23
3466600452034404461410347784273837373028660304219367520359603172549404800264357809593917503128524332658106099517302102502191665879753393121000715973323733
PO_3466600452034404461410347
null
null
null
[ "train_1st_stage_727" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11750364212136704930365291189769316277142751636352440780864862454241624064505318596399113702819759429522108980983516457466131995858509792468072220439984077
CO_1175036421213670493036529
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni8Ti6
Ni4Ti3
A4B3
[ 28, 28, 28, 28, 28, 28, 28, 28, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.5714285714285714, 0.42857142857142855 ]
2
14
[ [ 3.33646, 0.151134, -0.001007 ], [ 1.07792, 13.2798, -0.000037 ], [ -0.000941, 0.000405, 3.33135 ] ]
[ [ 3.35458, 0.46931, -0.0009 ], [ 3.20008, 4.14692, 3.33044 ], [ 3.03144, 8.00981, 0.00023 ], [ 1.27316, 9.91994, 0.00009 ], [ 2.85081, 11.8611, 3.3296 ], [ 1.6826, 0.42278, 1.66647 ], [ 3.27898, 2.27831, 1.66604 ], [ 3.10877, 6.04048, 1.6651 ], [ 1.61526, 2.16947, 3.32988 ], [ 1.43921, 5.97972, 3.33038 ], [ 1.53393, 4.10382, 1.66377 ], [ 1.356, 7.98031, 1.6649 ], [ 2.93682, 9.987, 1.6656 ], [ 1.17153, 11.8725, 1.66573 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7749783721683415809803028722846423641626833822895942691963140713539415865396318486123468129025643635019768297907062883686340972375405485529051132596618183
1
VASP
DFT
null
[ [ 0.020347, 0.169897, 0.014117 ], [ 0.015729, -0.065447, -0.009791 ], [ -0.066095, 0.060959, -0.015461 ], [ -0.05001, -0.114709, 0.001818 ], [ -0.073082, 0.050405, 0.018801 ], [ 0.052399, -0.244459, -0.022635 ], [ 0.025438, 0.125549, -0.028175 ], [ -0.012927, 0.869142, -0.008574 ], [ -0.024234, -0.982759, 0.02759 ], [ -0.009358, 0.492489, 0.006862 ], [ -0.060382, 0.158532, 0.015243 ], [ 0.073684, -0.646527, 0.01435 ], [ 0.047782, -0.650559, -0.003175 ], [ 0.060709, 0.777487, -0.010969 ] ]
null
[ [ 0.3384485161999438, 0.002975389815399808, 0.000583081782540014 ], [ 0.002975389815399808, 0.256984463919098, -0.000022906338491991557 ], [ 0.000583081782540014, -0.000022906338491991557, 0.33729726984167463 ] ]
true
null
null
-90.123167
null
0.394845
0.983445
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:40:57
5631056377846356471553704052903255300196708987491989428150577341670428014168641773191863350311760969790653262532155404414506565203667000298621536398064110
PO_5631056377846356471553704
null
null
null
[ "train_2nd_stage_719" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9843750634951802900427801351162640429442620508439097238172334199550026811653470577079979731436282091172914453800155724276129665661532419125700879660314203
CO_9843750634951802900427801
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNiTi2
AlNiTi2
A2BC
[ 13, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.25, 0.25, 0.5 ]
3
4
[ [ 0, 2.80039, 0 ], [ 2.80039, 0, 0 ], [ 0, 0, -7.36855 ] ]
[ [ 0, 0, -3.94053 ], [ 1.40019, 1.40019, -5.45168 ], [ 0, 0, -7.09516 ], [ 1.40019, 1.40019, -1.934 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5934214634678927450647780995758380827950299622975268174408706455357733458162060869187927912905722329407579182780145693733378878815780098269758516517342579
1
VASP
DFT
null
[ [ -0.000025, -0.000025, -0.313385 ], [ 0.000029, 0.000027, 0.263125 ], [ -0.000022, -0.000018, -0.764203 ], [ 0.000018, 0.000015, 0.814463 ] ]
null
[ [ -0.010156807800549825, 0, 0 ], [ 0, -0.010156807800549825, 0 ], [ 0, 0, -0.0020979584624831395 ] ]
true
null
null
-26.291258
null
0.538794
0.814463
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:17:44
3400697605850695123508835554304674361247708517363258395037814231403169992664357741890985548195369760784576751680284754609428736588977813330476124650821498
PO_3400697605850695123508835
null
null
null
[ "train_2nd_stage_311" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4567944255734110630254083880947818730687308756873979153059648478387428360193382735458108057618370363318528785254682895113671696053737376204587189405543458
CO_4567944255734110630254083
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni7Ti2
Al3Ni7Ti2
A7B3C2
[ 13, 13, 13, 28, 28, 28, 28, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.25, 0.5833333333333334, 0.16666666666666666 ]
3
12
[ [ 4.08877, 2.06674, 0.001373 ], [ -0.190285, 4.04513, 4.08741 ], [ 0.19063, -4.04589, 4.08897 ] ]
[ [ 0.26714, -3.80493, 3.98382 ], [ 0.07428, 0.23891, 4.19426 ], [ 2.77191, 2.94151, 2.04492 ], [ 1.60783, -1.86808, 4.07435 ], [ 1.41851, 2.1776, 4.10321 ], [ 2.76556, 0.14916, 3.96721 ], [ 2.57835, 4.19723, 4.20955 ], [ 1.29282, 0.54914, 2.04361 ], [ 1.41102, 0.52666, 6.13337 ], [ 2.68496, 2.60874, 6.13286 ], [ 3.83922, 0.03719, 6.13418 ], [ 0.11441, -1.46753, 2.04468 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5279949649349331848580923626946504242814657920698106574240140234654346455558239614880996494608973359075118968933299678727222464321235268277298136089042036
1
VASP
DFT
null
[ [ -0.225949, -0.762658, -0.615327 ], [ -0.204004, -0.742123, 0.609651 ], [ -23.862474, -31.024488, -0.007978 ], [ -0.45753, 0.104566, 0.700214 ], [ -0.465659, 0.102388, -0.698223 ], [ 0.140793, 0.706529, 0.194194 ], [ 0.128022, 0.693048, -0.178149 ], [ 1.090623, 0.13485, 0.008631 ], [ -0.892021, -0.10671, -0.011119 ], [ 0.356325, -0.293912, 0.003399 ], [ 24.210041, 32.393727, -0.002389 ], [ 0.181831, -1.205218, -0.002903 ] ]
null
[ [ 0.15638250911119525, 0.16266852019714606, -0.0002768733448241813 ], [ 0.16266852019714606, 0.28030885869234123, 0.00018493591539992093 ], [ -0.0002768733448241813, 0.00018493591539992093, 0.06348338796081876 ] ]
true
null
null
-55.76256
null
7.367352
40.441064
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:35:24
12860052097902661597560177785418470253616364553101902178804093912732231931214423150944738584271885577784157661363992679142629519928236689267735833436319684
PO_1286005209790266159756017
null
null
null
[ "train_1st_stage_1728", "train_1st_stage_1928", "train_1st_stage_1328", "train_1st_stage_1528" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5520968820098929133105806176123056129869068663480325554390199136194048634848722258910327965240194936494340697560738820173345382583802406296384936847265206
CO_5520968820098929133105806
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni2Ti8
AlNiTi4
A4BC
[ 13, 13, 28, 28, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.16666666666666666, 0.16666666666666666, 0.6666666666666666 ]
3
12
[ [ 2.79416, -0.000001, -0.000005 ], [ 0, 7.70361, -0.000001 ], [ -0.000001, 0, 8.34238 ] ]
[ [ 2.79397, 4.01188, 2.08537 ], [ 2.79397, 3.69166, 6.25656 ], [ 0.00008, 1.26636, 2.08498 ], [ 0.00008, 6.43745, 6.25618 ], [ 0.00059, 0.00014, 0.00099 ], [ 0.00059, 7.70328, 4.17264 ], [ 1.39662, 6.61429, 2.08503 ], [ 1.39663, 1.0892, 6.25624 ], [ 1.39706, 2.37169, 0.29316 ], [ 1.39706, 2.37188, 3.87817 ], [ 1.39706, 5.3318, 8.04932 ], [ 1.39706, 5.332, 4.46438 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4651402567568386039727627853236078917975803618631124412118418376945889230111080191359886588420354780439890438888706817318067289501694571854599032401001916
1
VASP
DFT
null
[ [ 0.000354, 0.893553, 0.001084 ], [ 0.000357, -0.894111, 0.000555 ], [ -0.001661, 0.569454, 0.0098 ], [ -0.001657, -0.573161, 0.009604 ], [ -0.003876, -0.001301, -0.009674 ], [ -0.003887, 0.004157, -0.015164 ], [ 0.003182, -0.521771, 0.011646 ], [ 0.003156, 0.524965, 0.010583 ], [ 0.000999, 1.021255, -0.519884 ], [ 0.001012, 1.016247, 0.510748 ], [ 0.001017, -1.017367, 0.511484 ], [ 0.001004, -1.021921, -0.520783 ] ]
null
[ [ 0.056112977079337, 1.8724527377649775e-7, 7.48981095105991e-7 ], [ 1.8724527377649775e-7, 0.0573343780001811, 0.0000023093583765768054 ], [ 7.48981095105991e-7, 0.0000023093583765768054, 0.06732335162033593 ] ]
true
null
null
-82.676825
null
0.71443
1.146969
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:40:37
10952128534635001439165457120383841649433738933973711843826547358067114366322672206890675043851869444359610523814970431729491266008128777350733668698123530
PO_1095212853463500143916545
null
null
null
[ "train_1st_stage_2200" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4193823518795991610874811523467699715405597610306719394368987287938744988461542273916706772462086081165862793814413473220539787930724234695437849729398811
CO_4193823518795991610874811
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni3Ti4
Al2Ni3Ti4
A4B3C2
[ 13, 13, 28, 28, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.2222222222222222, 0.3333333333333333, 0.4444444444444444 ]
3
9
[ [ -1.79617, 1.79852, 1.79566 ], [ 5.57465, 2.80001, 2.77176 ], [ 2.8531, 5.63109, -2.78617 ] ]
[ [ 6.49483, 9.82236, 1.40819 ], [ 1.41508, 4.19747, 1.96086 ], [ -0.61956, 3.46408, 0.66019 ], [ 2.20574, 6.27333, 0.67257 ], [ 3.06849, 2.58351, 2.5344 ], [ 1.48884, 4.31166, -0.77661 ], [ 0.81169, 1.49668, 1.36553 ], [ 4.15939, 4.7426, 1.46308 ], [ 4.25278, 7.59401, 1.39741 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4597015701981246123068177369533426057509258213065972437605702313369861819580918376852181624740697196778027532871563459082048269102652065007139209036958962
1
VASP
DFT
null
[ [ 0.030822, -0.096604, 0.127718 ], [ -0.094917, -0.089156, -0.005476 ], [ -0.102486, -0.051811, -0.050679 ], [ 0.042867, -0.052304, 0.095806 ], [ -0.202518, -0.395155, 0.194033 ], [ -0.005484, 0.194637, -0.20083 ], [ 0.199699, 0.154306, 0.045027 ], [ 0.042912, 0.117918, -0.075608 ], [ 0.089105, 0.218169, -0.129992 ] ]
null
[ [ 0.025224122905888307, -0.0021815322696787163, 0.005628717759904039 ], [ -0.0021815322696787163, 0.018680275077947263, 0.0009258030486422636 ], [ 0.005628717759904039, 0.0009258030486422636, 0.02648497016440798 ] ]
true
null
null
-58.773924
null
0.219167
0.484572
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:20:55
11691598970710115629659493809785163975114758724787537036865748242041748708299996382393578317418576257789091806072793511764540198461327835632146811571119040
PO_1169159897071011562965949
null
null
null
[ "train_2nd_stage_897" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7689766122935427409397090747080995708504848406134290252057071832315782511339329997882547719370872487079716396360102928413227419708594458799146657891033035
CO_7689766122935427409397090
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlTi3
AlTi3
A3B
[ 13, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.25, 0.75 ]
2
4
[ [ 1.48061, 1.48061, 1.78557 ], [ -1.48061, -1.48061, 1.78557 ], [ 6.23534, -6.23534, 0 ] ]
[ [ 0, 0, 0 ], [ 4.74425, -4.74425, 1.78557 ], [ 3.11767, -3.11767, 0 ], [ 1.49109, -1.49109, 1.78557 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
8387465839041305057842150905954332263246036137386732661020827320821996540129660418041796116408766176360944031918890468489424929460362889108081789212070802
1
VASP
DFT
null
[ [ -0.000448, 0.000448, 0.000003 ], [ -0.410796, 0.410798, -0.000005 ], [ 0.000885, -0.000889, 0.000002 ], [ 0.410359, -0.410357, 0 ] ]
null
[ [ 0.00023405659222062216, -0.0006987369466426306, -6.241509125883259e-8 ], [ -0.0006987369466426306, 0.00023411900731188103, 6.241509125883259e-8 ], [ -6.241509125883259e-8, 6.241509125883259e-8, -0.015348307846185743 ] ]
true
null
null
-27.721431
null
0.290794
0.580955
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:04:31
13186152731128025527792823999715066422789361679664788240333899851104022954314970264037015165291887409418170369688114669124349039377485135786730905269503516
PO_1318615273112802552779282
null
null
null
[ "train_2nd_stage_273" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11866132006588040262036845479562254587211810434362112221640485807328460033451947222038454555909069185687243759563798848550938706203207686255129044310965009
CO_1186613200658804026203684
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ti2
AlTi
AB
[ 13, 13, 22, 22 ]
[ "Al", "Ti" ]
[ 0.5, 0.5 ]
2
4
[ [ 1.58353, 1.58353, 1.62077 ], [ -1.58353, -1.58353, 1.62077 ], [ 6.22725, -6.22725, 0 ] ]
[ [ 0.00335, -0.00335, 0 ], [ 4.66709, -4.66709, 1.62077 ], [ 3.15372, -3.15372, 0 ], [ 1.51672, -1.51672, 1.62077 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
8652944843668911322301874076691212352011226436341473038760045063103201305143898767997508082534860254393975508475447994196912127696665038371887790160845411
1
VASP
DFT
null
[ [ -0.220324, 0.220324, -0.000001 ], [ 0.221108, -0.221109, -0.000001 ], [ -0.537003, 0.536995, -0.000006 ], [ 0.536219, -0.53621, 0.000008 ] ]
null
[ [ 0.00798432571910364, 0.004753346104998913, 0 ], [ 0.004753346104998913, 0.007984200888921123, 0 ], [ 0, 0, 0.017663782901705914 ] ]
true
null
null
-23.483016
null
0.535508
0.759431
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:13:58
4197135104243896038639427536187410120463511113128889720981322996451063588721273882549820839207919354581362506761127018660735973363287760024396091395487184
PO_4197135104243896038639427
null
null
null
[ "train_1st_stage_2335" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11403289110806430789750631808019521776294778325878844252878236491315899834288013564769129413185027369165232638478984167505442346998330768810921176526463452
CO_1140328911080643078975063
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al12Ni2
Al6Ni
A6B
[ 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 28, 28 ]
[ "Al", "Ni" ]
[ 0.8571428571428571, 0.14285714285714285 ]
2
14
[ [ 2.87912, -0.004177, -0.02458 ], [ -1.39648, 1.78902, 4.75314 ], [ 0.018019, -14.071, 4.4993 ] ]
[ [ 0.0226, -13.572, 4.95118 ], [ 0.04214, -0.23333, 4.97377 ], [ 1.47568, -2.72193, 4.6791 ], [ 0.03022, -5.20887, 4.42279 ], [ 1.46372, -7.63441, 4.11326 ], [ 0.01995, -10.1704, 4.06334 ], [ 1.4651, 0.87139, 2.82965 ], [ 0.01948, -1.54998, 2.54471 ], [ 1.45314, -4.04108, 2.26382 ], [ 1.4902, -4.74067, 6.72229 ], [ 0.04512, -7.25779, 6.51562 ], [ 0.04777, -10.6594, 7.40346 ], [ 1.46897, -11.6611, 5.41206 ], [ 1.47786, -9.17293, 6.03016 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
1749366072582313388248359859848777496800909578410116609402759730911914750279381206222980807140136359645437471329569691167440900818214665783389130947762703
1
VASP
DFT
null
[ [ 0.00078, 0.03833, -0.15933 ], [ 0.000798, -0.018513, 0.006026 ], [ -0.000748, 0.106687, -0.003597 ], [ -0.000283, -0.021301, -0.020679 ], [ -0.001243, -0.003975, -0.018898 ], [ 0.002878, -0.189535, 0.028213 ], [ 0.001247, 0.003837, 0.019184 ], [ 0.000272, 0.021386, 0.020548 ], [ 0.00075, -0.106651, 0.003518 ], [ -0.000795, 0.018588, -0.00606 ], [ -0.000798, -0.039084, 0.159155 ], [ -0.002904, 0.189081, -0.028088 ], [ -0.002133, -0.168524, 0.042071 ], [ 0.00218, 0.169674, -0.042061 ] ]
null
[ [ 0.0002859859481479709, -0.0006235891767669962, -0.0023102321878544292 ], [ -0.0006235891767669962, 0.003794775133445762, 0.012037312085087192 ], [ -0.0023102321878544292, 0.012037312085087192, -0.0034475599807728763 ] ]
true
null
null
-57.804213
null
0.10071
0.191645
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:41:54
5869018069283616691750765485068950345207552706492414634205780779766935793413644154923618580277417091664855662122733131814314965046932019334719580825659411
PO_5869018069283616691750765
null
null
null
[ "train_1st_stage_429" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7623818081623595629420048942576872598047666584518122964332805587074109013962018591670416263089271997512138649650838981451298497105190268161564945192792227
CO_7623818081623595629420048
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ti8
AlTi2
A2B
[ 13, 13, 13, 13, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
12
[ [ 5.88561, 0, 0 ], [ 0, 5.88561, 0 ], [ 0, 0, 5.88561 ] ]
[ [ 0, 0, 0 ], [ 2.9428, 2.9428, 0 ], [ 2.9428, 0, 2.9428 ], [ 0, 2.9428, 2.9428 ], [ 2.26596, 2.26596, 2.26596 ], [ 3.61965, 3.61965, 3.61965 ], [ 5.20876, 0.67685, 3.61965 ], [ 0.67685, 5.20876, 2.26596 ], [ 3.61965, 5.20876, 0.67685 ], [ 2.26596, 0.67685, 5.20876 ], [ 0.67685, 3.61965, 5.20876 ], [ 5.20876, 2.26596, 0.67685 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
8113892693601836495026983830722958374250389169287959749956414192210768408829204438557089506712899195198847343467318503186664808812644114917368991789470439
1
VASP
DFT
null
[ [ -0.003287, -0.000596, 0.001962 ], [ 0.001666, 0.002702, 0.002029 ], [ 0.000177, -0.000676, -0.003595 ], [ 0.000837, -0.000025, -0.000973 ], [ -0.676927, -0.676623, -0.677397 ], [ 0.677077, 0.677137, 0.676705 ], [ -0.676711, 0.676434, 0.675832 ], [ 0.676592, -0.676981, -0.677334 ], [ 0.676191, -0.676122, 0.675829 ], [ -0.674707, 0.674671, -0.674163 ], [ 0.676126, 0.676736, -0.675926 ], [ -0.677035, -0.676657, 0.67703 ] ]
null
[ [ 0.08552920958962479, 0.000011671622065401691, 0.000022219772488144397 ], [ 0.000011671622065401691, 0.08553145653291011, 0.00002565260250738019 ], [ 0.000022219772488144397, 0.00002565260250738019, 0.0855285854387122 ] ]
true
null
null
-69.790314
null
0.782057
1.172568
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:45:11
7199620782517252801125857387447970307427159935308655413142739105695596390597555815031068480259038821369818651016176388486291178780745950064695657875310955
PO_7199620782517252801125857
null
null
null
[ "train_1st_stage_2019" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11374712828470923358835144310340570775440284884285430756628373655076478309379835393657867383017474532275037372543372955983472636699870646163746510696362349
CO_1137471282847092335883514
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ti2
AlTi
AB
[ 13, 13, 22, 22 ]
[ "Al", "Ti" ]
[ 0.5, 0.5 ]
2
4
[ [ 3.76225, 0, 0 ], [ 0, 3.76225, 0 ], [ 0, 0, 4.76456 ] ]
[ [ 0.94056, 0.94056, 1.11586 ], [ 2.82169, 2.82169, 3.6487 ], [ 0.94056, 2.82169, 0 ], [ 2.82169, 0.94056, 0 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10132449614843824350031511207945708209944645220331071852447035131819100491719002587928586771338384846735114017416825022941462722249979595200381618147219159
1
VASP
DFT
null
[ [ 0.000053, 0.000049, 10.07238 ], [ -0.00006, -0.000054, -10.072382 ], [ 0.000066, -0.000077, 0.000004 ], [ -0.000059, 0.000082, -0.000001 ] ]
null
[ [ 0.17091942077101616, 0, 8.73811277623656e-7 ], [ 0, 0.17091917111065114, 5.617358213294933e-7 ], [ 8.73811277623656e-7, 5.617358213294933e-7, 0.10279778013347979 ] ]
true
null
null
-12.694379
null
5.036241
10.072382
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:34:27
864002924574592751618228618203791559802547046729777415185935991505351732457079868718734696810255997096531032286427546521384681236556572611674955974440690
PO_8640029245745927516182286
null
null
null
[ "train_1st_stage_2028" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
1260735035642573204482863522030896966615286090216276085398996868882481745691319202350700986945952489609270002518859143727906483200925700134388261361978297
CO_1260735035642573204482863
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni3Ti3
Al2NiTi
A2BC
[ 13, 13, 13, 13, 13, 13, 28, 28, 28, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.5, 0.25, 0.25 ]
3
12
[ [ 2.67238, -0.364893, 0.130924 ], [ -1.01768, 5.39085, 4.05295 ], [ 0.734981, -3.93762, 3.70182 ] ]
[ [ -0.92315, 5.18118, 4.09066 ], [ 2.19101, -2.05845, 3.98608 ], [ 1.37977, 2.09466, 3.62547 ], [ 1.28181, 0.31533, 1.69 ], [ 0.3047, 2.06994, 2.17337 ], [ 2.40295, -1.6709, 2.31219 ], [ -0.10746, 1.43177, 4.16606 ], [ 1.23044, 0.12171, 4.29506 ], [ 0.04394, 3.85003, 4.17247 ], [ 1.25553, 1.44543, 6.11724 ], [ -0.2001, 2.11344, 5.65585 ], [ 2.49926, -0.38301, 5.2479 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5868088019243305075184881901991635774336442395623822787772253608846135390133057550068066108114169972704001514520538919829836503228031320183466872029009145
1
VASP
DFT
null
[ [ -7.41923, 12.85674, -0.691994 ], [ -1.263417, -4.98662, 7.955301 ], [ 5.000043, 15.240896, -1.089675 ], [ 2.658184, -4.793262, 5.220338 ], [ -7.856966, 1.370584, -9.609175 ], [ 1.685682, 5.474692, -14.414847 ], [ 11.916682, 8.013441, -20.595442 ], [ -9.120127, -15.82257, -23.729309 ], [ 7.532076, -11.65183, 1.304798 ], [ -53.293012, -26.513091, 30.455719 ], [ 52.454826, 40.404557, -5.057415 ], [ -2.294742, -19.593536, 30.251703 ] ]
null
[ [ 2.0692072003551236, 0.05031030846009459, -0.08705944038201759 ], [ 0.05031030846009459, 1.2456096126302931, -0.2023059728821628 ], [ -0.08705944038201759, -0.2023059728821628, 1.305846042713645 ] ]
true
null
null
36.389264
null
26.195767
66.862844
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:17:20
2813485088573913877794376317620165017680629003286856775038148538621397443964838130898044589221146860883434529726791875733827652311294759191594511662210019
PO_2813485088573913877794376
null
null
null
[ "train_1st_stage_1606", "train_1st_stage_2006", "train_1st_stage_1806", "train_1st_stage_1406" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
13013862494275901328219890287796145664507576251478651833220076464610045860501520208447382529355926919346176897230865482279226223413289865645261102416570003
CO_1301386249427590132821989
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ti2
AlTi
AB
[ 13, 13, 22, 22 ]
[ "Al", "Ti" ]
[ 0.5, 0.5 ]
2
4
[ [ 1.42332, -2.43416, 4.70012 ], [ -1.40159, 2.46254, 4.69397 ], [ -1.41533, -2.46712, -4.68744 ] ]
[ [ -1.41523, -2.46462, -4.64195 ], [ -1.40446, 0.81919, 2.30418 ], [ -1.40467, -2.42371, -0.06431 ], [ 0.0083, -1.65587, 2.42666 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12065224451189054731442782389752233886766845482623048638425653904107790093835813954074550157143452247882566218131589671520190917448813807394951582068645351
1
VASP
DFT
null
[ [ -0.000264, -0.295421, -0.144841 ], [ 0.000257, 0.295414, 0.144641 ], [ 0.002472, 0.420663, 0.511885 ], [ -0.002465, -0.420656, -0.511684 ] ]
null
[ [ -0.010601265665403972, 0.000018100376465061445, 0.000008613282593718895 ], [ 0.000018100376465061445, 0.0003791092643061491, 0.004837356817833301 ], [ 0.000008613282593718895, 0.004837356817833301, 0.004454190572595328 ] ]
true
null
null
-24.387874
null
0.495727
0.662563
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:14:59
3450026383809612557175150878775044777647511533280651749786874189692980245223234895719765106565362398169830870642332108811551285905263388532272302369790005
PO_3450026383809612557175150
null
null
null
[ "train_2nd_stage_281" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
2364498188745025074507570852790896041100743622245693107364462055076971376575768215021477946078528757761137440971468585157684869109776295219550956044684597
CO_2364498188745025074507570
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al16Ni8
Al2Ni
A2B
[ 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 28, 28, 28, 28, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.6666666666666666, 0.3333333333333333 ]
2
24
[ [ 0, 5.43339, 5.43339 ], [ 5.43339, 0, 5.43339 ], [ 5.43339, 5.43339, 0 ] ]
[ [ 5.43339, 2.7167, 2.7167 ], [ 2.7167, 5.43339, 2.7167 ], [ 2.7167, 2.7167, 5.43339 ], [ 5.43339, 5.43339, 5.43339 ], [ 4.07504, 4.07504, 0.84073 ], [ 4.07504, 0.84073, 4.07504 ], [ 0.84073, 4.07504, 4.07504 ], [ 7.30936, 4.07504, 4.07504 ], [ 4.07504, 7.30936, 4.07504 ], [ 4.07504, 4.07504, 7.30936 ], [ 6.79174, 6.79174, 10.0261 ], [ 6.79174, 10.0261, 6.79174 ], [ 10.0261, 6.79174, 6.79174 ], [ 3.55743, 6.79174, 6.79174 ], [ 6.79174, 3.55743, 6.79174 ], [ 6.79174, 6.79174, 3.55743 ], [ 3.01562, 3.01562, 3.01562 ], [ 5.13446, 5.13446, 3.01562 ], [ 5.13446, 3.01562, 5.13446 ], [ 3.01562, 5.13446, 5.13446 ], [ 7.85116, 7.85116, 7.85116 ], [ 5.73232, 5.73232, 7.85116 ], [ 5.73232, 7.85116, 5.73232 ], [ 7.85116, 5.73232, 5.73232 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
1895081282672787657388194859480089044721046812380053919556470763246595588489715051400303927956947095852699294996569427560138086910975594142583452692249168
1
VASP
DFT
null
[ [ -0.000001, -0.000059, 0.000052 ], [ -0.00006, 0.000009, 0.000152 ], [ 0.000062, 0.000168, -0.000012 ], [ -0.000189, -0.00008, 0.000019 ], [ 0.000052, -0.000043, -0.183615 ], [ 0.000163, -0.183614, -0.000114 ], [ -0.183653, 0.000124, -0.000048 ], [ 0.183595, -0.000012, 0.000028 ], [ 0.00002, 0.183627, 0.000092 ], [ 0.000128, 0.000155, 0.183635 ], [ -0.000046, -0.000045, 0.183426 ], [ -0.000013, 0.183524, -0.000021 ], [ 0.183467, -0.000018, -0.000024 ], [ -0.183684, -0.000051, 0.000006 ], [ -0.000049, -0.183628, 0.000001 ], [ -0.000017, -0.000025, -0.183725 ], [ 0.082102, 0.082186, 0.082196 ], [ -0.082171, -0.082081, 0.082325 ], [ -0.082102, 0.082247, -0.08201 ], [ 0.082335, -0.08218, -0.082184 ], [ -0.08203, -0.082112, -0.082092 ], [ 0.08208, 0.081984, -0.082096 ], [ 0.082049, -0.082084, 0.081985 ], [ -0.08204, 0.082009, 0.082024 ] ]
null
[ [ 0.06611362232155722, 0.0000071153204035069135, 0.000002122113102800308 ], [ 0.0000071153204035069135, 0.06611256126500582, -0.000006179094034624425 ], [ 0.000002122113102800308, -0.000006179094034624425, 0.06611362232155722 ] ]
true
null
null
-114.240135
null
0.139234
0.183725
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:44:51
6273905744284512814181307769191894036697435759422293627994958443961317802712010510938302359879821884464831887845063330447982276274447844636924378178379958
PO_6273905744284512814181307
null
null
null
[ "train_2nd_stage_915" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12566448297950901850388799763563900018398085685982430401738703966055227516444088332861423723566930117817262445745618528974312706925472863362681871487963571
CO_1256644829795090185038879
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni2Ti10
NiTi5
A5B
[ 28, 28, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.16666666666666666, 0.8333333333333334 ]
2
12
[ [ 4.06586, -0.016401, -0.024314 ], [ 1.98963, 3.96569, -9.93231 ], [ -2.00501, 4.0002, 1.99187 ] ]
[ [ 2.06072, 3.9656, 1.95434 ], [ 2.01736, 1.99845, -3.96736 ], [ 2.04091, 1.98302, -0.02152 ], [ 0.01625, 4.01209, 0.01255 ], [ 4.06183, 1.95197, -2.02557 ], [ 2.03717, 3.98104, -1.9915 ], [ -0.0073, 3.98112, -3.90265 ], [ 2.03374, 5.96514, -3.9013 ], [ 2.01344, 3.94932, -5.94027 ], [ 4.05427, 5.98042, -6.00506 ], [ 4.03397, 3.9646, -8.04403 ], [ 2.00915, 5.96503, -8.01836 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11828532481476667663605579114691871309574772377399387163684996201464739812670003797265123728649541280893415334435912487098579012708157487729338711545469380
1
VASP
DFT
null
[ [ 0.00003, 0.069622, -0.058421 ], [ 0.00017, -0.069651, 0.058559 ], [ 0.003083, 0.462726, 0.267762 ], [ -0.001383, 0.253993, -0.391258 ], [ 0.001187, -0.254221, 0.390525 ], [ -0.002979, -0.462502, -0.267877 ], [ 0.003364, 0.486591, 0.119634 ], [ -0.00158, 0.332066, -0.370193 ], [ 0.000489, 0.28847, 0.28493 ], [ -0.000598, -0.288253, -0.285164 ], [ 0.001077, -0.332184, 0.370649 ], [ -0.002861, -0.486658, -0.119146 ] ]
null
[ [ 0.025819250801041273, -0.00012208391850227653, -0.00015872157707121125 ], [ -0.00012208391850227653, -0.0011099275678558196, -0.005268270607884281 ], [ -0.00015872157707121125, -0.005268270607884281, 0.008703597230770427 ] ]
true
null
null
-89.236268
null
0.415962
0.534623
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:01:48
1696647021977225540136429678729905897233425705544413716244192991487981982415481512248662142531401997092466627582379481078795906053588206792204389522166635
PO_1696647021977225540136429
null
null
null
[ "train_1st_stage_632" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11066339840247677916477824875446349081101495701735180556998698798801899240059675027472087123737533213215121735304996940417117207608112620054082747468211562
CO_1106633984024767791647782
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni6Ti
Al3Ni6Ti
A6B3C
[ 13, 13, 13, 28, 28, 28, 28, 28, 28, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.3, 0.6, 0.1 ]
3
10
[ [ 0, 1.87521, 1.87521 ], [ 18.7521, 0, 0 ], [ 0, 1.87521, -1.87521 ] ]
[ [ 0.06787, 0, 0 ], [ 1.89284, 1.87521, 0 ], [ 15.0105, 0, 0 ], [ 3.76013, 0, 0 ], [ 5.6725, 1.87521, 0 ], [ 7.50329, 0, 0 ], [ 9.44378, 1.87521, 0 ], [ 11.2816, 0, 0 ], [ 13.1886, 1.87521, 0 ], [ 16.8785, 1.87521, 0 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9251537959085864899625807738741652006310903955611203411182776709461102866671268329348222995724434935121639829108842563637523794197354122280048776905222506
1
VASP
DFT
null
[ [ -0.457462, 0, 0.000001 ], [ 2.654759, -0.000002, -0.000001 ], [ -2.49166, 0, -0.000001 ], [ -0.104184, -0.000003, 0.000002 ], [ 0.044455, -0.000003, 0.000001 ], [ 0.176538, -0.000003, 0.000001 ], [ -0.187992, 0.000002, 0.000004 ], [ 0.024735, 0.000008, -0.000001 ], [ -0.099278, 0.000001, -0.000002 ], [ 0.440088, -0.000001, -0.000002 ] ]
null
[ [ -0.03856765802084035, 6.865660038471584e-7, 4.36905638811828e-7 ], [ 6.865660038471584e-7, -0.02292693547210697, 8.73811277623656e-7 ], [ 4.36905638811828e-7, 8.73811277623656e-7, -0.02292699788719823 ] ]
true
null
null
-51.530402
null
0.668115
2.654759
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:52:18
2617093655327534778027824299965472886458326124085622908627616689247621619821480382547208232904731867460035273207800532745638335548277052542337167932986837
PO_2617093655327534778027824
null
null
null
[ "train_1st_stage_2140" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10368762398433920691754978588249906095292094805704959194645800387985800792647846352808478092385027969628423857757123207458836271396923961217252253925573093
CO_1036876239843392069175497
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni6Ti6
Al2Ni3Ti3
A3B3C2
[ 13, 13, 13, 13, 28, 28, 28, 28, 28, 28, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.25, 0.375, 0.375 ]
3
16
[ [ 3.57618, -6.19412, 0 ], [ 3.57618, 6.19412, 0 ], [ 0, 0, 5.1046 ] ]
[ [ 3.57618, 2.06471, 0 ], [ 3.57618, -2.06471, 2.5523 ], [ 3.57618, -2.06471, 0 ], [ 3.57618, 2.06471, 2.5523 ], [ 1.4444, -2.50177, 1.27615 ], [ 1.4444, 2.50177, 1.27615 ], [ 4.26357, 0, 1.27615 ], [ 2.13179, -3.69235, 3.82845 ], [ 2.13179, 3.69235, 3.82845 ], [ 2.8888, 0, 3.82845 ], [ 2.71802, -4.70774, 1.27615 ], [ 2.71802, 4.70774, 1.27615 ], [ 1.71633, 0, 1.27615 ], [ 0.85816, -1.48638, 3.82845 ], [ 0.85816, 1.48638, 3.82845 ], [ 5.43604, 0, 3.82845 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5680774934224203954808030833956610678459163676890686634362677096773227956240234713788997163084872139665123152347395425779990310427516446954468733028578526
1
VASP
DFT
null
[ [ 0.000027, 0.000769, -0.000565 ], [ 0.000478, -0.000056, 0.000562 ], [ 0.000477, -0.000055, -0.000563 ], [ 0.000027, 0.00077, 0.000566 ], [ -0.03828, 0.065698, 0.000003 ], [ -0.037899, -0.065048, 0.000002 ], [ 0.076745, -0.000035, 0 ], [ 0.038566, -0.066397, -0.000004 ], [ 0.038364, 0.066234, -0.000005 ], [ -0.077432, 0.000034, -0.000001 ], [ -0.224409, 0.389164, -0.000009 ], [ -0.224368, -0.389523, 0.000001 ], [ 0.448085, -0.000328, 0.000001 ], [ 0.22339, -0.389617, 0.000001 ], [ 0.223471, 0.388887, 0.000003 ], [ -0.447241, -0.000495, 0.000007 ] ]
null
[ [ 0.005947534046054156, -0.0000029335092891651313, -1.2483018251766518e-7 ], [ -0.0000029335092891651313, 0.005966445818705582, -6.241509125883259e-8 ], [ -1.2483018251766518e-7, -6.241509125883259e-8, -0.0560818943638901 ] ]
true
null
null
-102.551561
null
0.197121
0.449521
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:23:38
12681054824776971914289964429861537881883627722604892240276250713491941197905063047337777631170312268621844890450061840881441404861206962197410715725438578
PO_1268105482477697191428996
null
null
null
[ "train_2nd_stage_870" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10109175698199717756187600581281313768166628495328415338646585943194272977919377767725895228919087015724063927825070098975418464468120863070792256383495595
CO_1010917569819971775618760
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni4Ti
Al2Ni4Ti
A4B2C
[ 13, 13, 28, 28, 28, 28, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.2857142857142857, 0.5714285714285714, 0.14285714285714285 ]
3
7
[ [ -3.08024, -2.78667, 0.136691 ], [ -0.201131, 2.65745, -2.68385 ], [ 1.5025, -4.17957, -4.25107 ] ]
[ [ 1.40375, -4.19111, -4.25508 ], [ -1.62988, -1.49238, -4.02069 ], [ -1.64202, -1.41023, -1.2733 ], [ -0.08662, -0.09369, -2.7514 ], [ -0.06312, -2.78486, -2.75274 ], [ -0.16302, -2.89863, -5.52302 ], [ -1.65319, -4.23508, -4.06954 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6301740921542524977157018334203576272487715012538101383957159889595898442397672873940720362073573226707454745786145910577943484523926927276695288892153005
1
VASP
DFT
null
[ [ 0.420618, -0.306507, -0.33551 ], [ -0.420845, 0.306471, 0.335527 ], [ -0.287303, -0.038425, -0.017415 ], [ 0.287669, 0.038136, 0.017112 ], [ 0.316966, -0.12101, -0.142609 ], [ -0.317263, 0.12127, 0.142803 ], [ 0.000158, 0.000066, 0.000092 ] ]
null
[ [ -0.02794585779041222, -0.001709674179761942, -0.0022624222279501636 ], [ -0.001709674179761942, -0.027884378925522268, 0.00852334244721492 ], [ -0.0022624222279501636, 0.00852334244721492, -0.02786883756779882 ] ]
true
null
null
-40.764088
null
0.365191
0.619365
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:36:36
9075226586125520450243875819005397145848198706160129837040199744678461849501396066736270859445465429932063120647276486098498428955621133267364855278473584
PO_9075226586125520450243875
null
null
null
[ "train_1st_stage_1177" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
2750617524435723391712179009262205768100242683306470167488374608382273938837195650481671690160994035008882559446925321271727345036555823533294115033301617
CO_2750617524435723391712179
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni2Ti26
NiTi13
A13B
[ 28, 28, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.07142857142857142, 0.9285714285714286 ]
2
28
[ [ -6.17206, 6.17206, 0 ], [ 0, -6.17206, -6.17206 ], [ -6.17206, 0, 6.17206 ] ]
[ [ -9.25808, 3.08603, 3.08603 ], [ -3.08603, -3.08603, -3.08603 ], [ -6.17206, 1.47191, -3.94234 ], [ -6.17206, -1.47191, -3.94234 ], [ -6.17206, 1.47191, 3.94234 ], [ -6.17206, -1.47191, 3.94234 ], [ -10.1144, 0, 1.47191 ], [ -10.1144, 0, -1.47191 ], [ -2.22972, 0, 1.47191 ], [ -2.22972, 0, -1.47191 ], [ -4.70014, -3.94234, 0 ], [ -7.64397, -3.94234, 0 ], [ -4.70014, 3.94234, 0 ], [ -7.64397, 3.94234, 0 ], [ -4.70014, 0, -2.22972 ], [ -7.64397, 0, -2.22972 ], [ -4.70014, 0, 2.22972 ], [ -7.64397, 0, 2.22972 ], [ -6.17206, 2.22972, -1.47191 ], [ -6.17206, 2.22972, 1.47191 ], [ -6.17206, -2.22972, -1.47191 ], [ -6.17206, -2.22972, 1.47191 ], [ -3.94234, 1.47191, 0 ], [ -3.94234, -1.47191, 0 ], [ -8.40177, 1.47191, 0 ], [ -8.40177, -1.47191, 0 ], [ 0, 0, 0 ], [ -6.17206, 0, 0 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10546187551658981434038452651985988102950604719425204233814806226888541194085929330065881877345684855639917068987242186423720830330245863285675669873888061
1
VASP
DFT
null
[ [ 0.000023, -0.000006, 0.000107 ], [ -0.000008, -0.000053, 0.000043 ], [ 0.000161, 0.485363, 0.408402 ], [ -0.000475, -0.484739, 0.408312 ], [ 0.00023, 0.485087, -0.407875 ], [ -0.000063, -0.485494, -0.40823 ], [ 0.407567, 0.000315, 0.484805 ], [ 0.408107, 0.000443, -0.484995 ], [ -0.407505, 0.000145, 0.485899 ], [ -0.407815, 0.000642, -0.485535 ], [ 0.484855, 0.407483, 0.000438 ], [ -0.485033, 0.407777, -0.000026 ], [ 0.48511, -0.408862, -0.000254 ], [ -0.484499, -0.408288, -0.000282 ], [ 0.484301, 0.000874, -0.407844 ], [ -0.484705, 0.000288, -0.40849 ], [ 0.484946, 0.000356, 0.408533 ], [ -0.484811, 0.000071, 0.408283 ], [ 0.000011, 0.407352, -0.485239 ], [ 0.000136, 0.407809, 0.485226 ], [ -0.000238, -0.408191, -0.485495 ], [ 0.00021, -0.408945, 0.485606 ], [ 0.407481, 0.485242, -0.000516 ], [ 0.407966, -0.485761, 0.000167 ], [ -0.408091, 0.484852, -0.000312 ], [ -0.40797, -0.484641, -0.000064 ], [ 0.000357, 0.00047, -0.000297 ], [ -0.00025, 0.000412, -0.000367 ] ]
null
[ [ 0.18579406048963862, 0.000009112603323789557, -0.000004868377118188941 ], [ 0.000009112603323789557, 0.1857037458525871, -0.0000038073205667887874 ], [ -0.000004868377118188941, -0.0000038073205667887874, 0.18566174049616987 ] ]
true
null
null
-194.444977
null
0.543388
0.634862
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:13:33
10676186209311819549358010396071214316047859921041611774063028743290673604020541274579205346246263694452018323562695731797226589734638720690653557296253010
PO_1067618620931181954935801
null
null
null
[ "train_1st_stage_2036" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10389603802845771496309834781255680360548960211911776584220884030213811974878979605075752143420975936104844692893035800456076292084907204147759366696954088
CO_1038960380284577149630983
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
NiTi7
NiTi7
A7B
[ 28, 22, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.125, 0.875 ]
2
8
[ [ 0, 3.98615, 3.98615 ], [ 3.98615, 0, 3.98615 ], [ 3.98615, 3.98615, 0 ] ]
[ [ 3.98615, 3.98615, 7.97229 ], [ 1.99307, 1.99307, 0 ], [ 1.99307, 0, 1.99307 ], [ 3.98615, 5.97922, 5.97922 ], [ 0, 1.99307, 1.99307 ], [ 5.97922, 3.98615, 5.97922 ], [ 5.97922, 5.97922, 3.98615 ], [ 3.98615, 3.98615, 3.98615 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2926297973489475009787250722057980848711933589592430260849972406757534873220793900577598950860657917850268518858280937933981883430874837378877680327503021
1
VASP
DFT
null
[ [ -0.000007, -0.000009, 0.000015 ], [ 0.000021, 0.000027, -0.000041 ], [ 0.000006, -0.000037, 0.000012 ], [ -0.000029, 0.000049, 0.00003 ], [ -0.000031, -0.000003, 0.000008 ], [ 0.000037, -0.000032, 0.000029 ], [ 0.000029, 0.000031, -0.000033 ], [ -0.000027, -0.000025, -0.00002 ] ]
null
[ [ -0.015082606802696893, 0.000004431471479377113, -0.000001622792372729647 ], [ 0.000004431471479377113, -0.01507580355774968, 0.000003183169654200462 ], [ -0.000001622792372729647, 0.000003183169654200462, -0.015073494199373103 ] ]
true
null
null
-59.89377
null
0.000045
0.000064
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:56:35
7371716307751337906980853912960689223645563295836613239396750447171084945294738007357655627181913699704257769451926092310326031107530279473005949170675365
PO_7371716307751337906980853
null
null
null
[ "train_2nd_stage_203" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10531684985267570874522902153003502685342428883220599886780121113948025576073334967376197158053504546000667046675413727365138653265317389142514466842033043
CO_1053168498526757087452290
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni4Ti8
NiTi2
A2B
[ 28, 28, 28, 28, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
12
[ [ 5.66165, 0, 0 ], [ 0, 5.66165, 0 ], [ 0, 0, 5.66165 ] ]
[ [ 0, 0, 0 ], [ 0, 2.83082, 2.83082 ], [ 2.83082, 0, 2.83082 ], [ 2.83082, 2.83082, 0 ], [ 0.65109, 3.48191, 5.01056 ], [ 0.65109, 5.01056, 2.17973 ], [ 2.17973, 0.65109, 5.01056 ], [ 2.17973, 2.17973, 2.17973 ], [ 3.48191, 3.48191, 3.48191 ], [ 3.48191, 5.01056, 0.65109 ], [ 5.01056, 0.65109, 3.48191 ], [ 5.01056, 2.17973, 0.65109 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7749848827076809927746249902773102001207833942076668346400472904846184812003436815412475091463818641857797997814627260345507480414672732307501180827172603
1
VASP
DFT
null
[ [ 0.00023, 0.000245, 0.000255 ], [ -0.000103, 0.000211, -0.0002 ], [ -0.000259, -0.000121, 0.000287 ], [ 0.000269, -0.000266, -0.00006 ], [ 1.371304, 1.371965, -1.37182 ], [ 1.370942, -1.370605, -1.370716 ], [ -1.372443, 1.372217, -1.37261 ], [ -1.371864, -1.372333, -1.371721 ], [ 1.372005, 1.372131, 1.371705 ], [ 1.372147, -1.371803, 1.372386 ], [ -1.370449, 1.370497, 1.370639 ], [ -1.371779, -1.372139, 1.371855 ] ]
null
[ [ 0.07322357502721587, 0.000053177657752525354, 0.000023780149769615214 ], [ 0.000053177657752525354, 0.07322744476287392, -0.00007745712825221122 ], [ 0.000023780149769615214, -0.00007745712825221122, 0.07322332536685083 ] ]
true
null
null
-79.673333
null
1.583994
2.377107
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:08:22
3272154952363234048476511013022290866606791739569324315805009440515206092056283398982438291420923791857270029593159187644287249292394713327367457585254908
PO_3272154952363234048476511
null
null
null
[ "train_1st_stage_2144" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
264855361426268337944828336362163019862217467336587024130439603805946740593552807087645931520080804343012905299070716742753639245205758357270278721419246
CO_2648553614262683379448283
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni8Ti6
Ni4Ti3
A4B3
[ 28, 28, 28, 28, 28, 28, 28, 28, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.5714285714285714, 0.42857142857142855 ]
2
14
[ [ 2.684907, -0.758946, 6.093737 ], [ -3.439059, 1.915916, 3.141156 ], [ -2.795023, -4.474785, 5.053006 ] ]
[ [ -2.65436, -4.44989, 5.73807 ], [ 0.20515, -0.59128, 5.4888 ], [ -2.41526, -0.44851, 4.19869 ], [ -3.98191, -1.37453, 7.79164 ], [ -2.33357, -3.40967, 8.14611 ], [ -1.51434, 0.36666, 7.05935 ], [ -0.05111, -2.24766, 7.88423 ], [ -1.84172, -2.36679, 11.37982 ], [ -1.88341, -0.91262, 9.19165 ], [ -0.41367, -3.69794, 9.80792 ], [ -3.94031, -2.82881, 9.97998 ], [ -1.86828, 0.9224, 1.88528 ], [ -0.40622, -1.34597, 2.99851 ], [ -1.97084, -1.95936, 6.22256 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7265577421099567848061799994556640741549875845662684022706746682728323434601819257922150208610176922057500909112158854752428416919661699448430452235000250
1
VASP
DFT
null
[ [ -0.008352, -0.019978, 0.000338 ], [ 0.000766, 0.000061, -0.000167 ], [ 0.007852, 0.019933, -0.001407 ], [ -0.005922, 0.013422, -0.016165 ], [ 0.017022, 0.005107, 0.013604 ], [ -0.000363, 0.000102, 0.000534 ], [ -0.016583, -0.005665, -0.012176 ], [ 0.005917, -0.012908, 0.015971 ], [ 0.012806, -0.017049, 0.009555 ], [ 0.015237, 0.015434, -0.007629 ], [ -0.012257, 0.017647, -0.009053 ], [ 0.00929, 0.009226, 0.019173 ], [ -0.009079, -0.009055, -0.020079 ], [ -0.016334, -0.016279, 0.007501 ] ]
null
[ [ 0.00044127469519994635, -0.000049932073007066066, -0.00007645848679206992 ], [ -0.000049932073007066066, 0.0003628813405788526, 0.000043940224246218135 ], [ -0.00007645848679206992, 0.000043940224246218135, 0.000429103752404474 ] ]
true
null
null
-96.563531
null
0.019461
0.02425
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:27:23
8119577938515710099951163906835612443819691864673191389336308424557024003389058395639011096690297730861867626312126931294112791945354034904004209254832937
PO_8119577938515710099951163
null
null
null
[ "train_1st_stage_263" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
490034273205502560700024209906149495742045739182451113239995702818102612624600365941627974065642404201487438956869386809908889872896779520910756567535421
CO_4900342732055025607000242
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ti6
Al2Ti3
A3B2
[ 13, 13, 13, 13, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.4, 0.6 ]
2
10
[ [ 2.80082, -2.800819, 0.391079 ], [ -2.815873, -2.815882, -0.000002 ], [ 2.119137, -2.119175, -10.097063 ] ]
[ [ -0.68841, -4.92543, -10.08467 ], [ 1.5453, -4.34323, -1.66022 ], [ 0.27948, -5.89331, -3.69686 ], [ 1.83148, -4.62945, -5.76049 ], [ 0.57177, -6.18558, -7.88171 ], [ 0.00456, -2.80246, 0.1534 ], [ -1.26114, -4.35266, -1.88258 ], [ 0.28511, -3.08305, -3.86552 ], [ -0.98063, -4.63325, -5.90158 ], [ 0.57129, -3.36927, -7.96338 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9129189771569263835228502697530291642216312892139801446962042956820699757724217627230060726999295814685792351794438310587340359381890823415368286155573482
1
VASP
DFT
null
[ [ -0.000082, 0.000112, 0.002489 ], [ 0.000231, -0.000251, -0.003392 ], [ -0.000233, 0.000241, 0.003713 ], [ 0.000046, -0.000146, -0.002488 ], [ -0.000279, 0.000018, 0.000329 ], [ -0.000035, 0.000169, 0.000221 ], [ 0.001044, -0.001061, -0.012002 ], [ -0.001064, 0.001029, 0.012139 ], [ 0.000091, -0.000029, 0.000319 ], [ 0.000282, -0.00008, -0.001328 ] ]
null
[ [ -0.0003577633030956284, -0.00011247199444841632, 0.000015166867175896315 ], [ -0.00011247199444841632, -0.0003568894918180047, -0.000015166867175896315 ], [ 0.000015166867175896315, -0.000015166867175896315, -0.0004679259391674678 ] ]
true
null
null
-65.425332
null
0.003885
0.012229
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:28:52
13323647636298168389107569979259089033489092111040334397500373922107093105681046209346459314007518858232760570067945661295995383673177847398691006097448308
PO_1332364763629816838910756
null
null
null
[ "train_1st_stage_204" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12194346038148652752189012664456006167119943395061453895077565547408955071120435228298577000568778862872131062254344175459614930828195566798150015815679494
CO_1219434603814865275218901
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni5Ti7
Ni5Ti7
A7B5
[ 28, 28, 28, 28, 28, 22, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.4166666666666667, 0.5833333333333334 ]
2
12
[ [ 2.70934, 0.000117, 0.026081 ], [ -1.35424, 2.34613, -0.002414 ], [ 0.000049, -0.000017, 26.1279 ] ]
[ [ 0.02557, 0.00015, 0.04382 ], [ -1.30973, 2.34604, 4.35278 ], [ -1.3299, 2.34587, 8.66365 ], [ 1.36449, 0.7822, 2.18363 ], [ 1.39122, 0.78217, 6.55918 ], [ 0.04862, 0.00029, 13.0831 ], [ 0.00731, 0.00022, 17.4181 ], [ 0.05372, 0.00009, 21.7552 ], [ 1.37678, 0.78205, 10.8116 ], [ 1.37964, 0.78201, 15.2637 ], [ 1.40071, 0.78191, 19.6078 ], [ 1.36848, 0.78192, 24.0592 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
125212464889729745236025599006146970904471507916217947953311896943180000233737847757412643340542290922743093646752034240713299875313676318468017426367816
1
VASP
DFT
null
[ [ -0.013379, 0.000386, 0.303528 ], [ -0.01448, -0.001587, 0.002625 ], [ 0.004105, -0.00056, -0.304731 ], [ 0.015278, -0.001877, 0.295428 ], [ 0.002024, 0.002981, -0.295562 ], [ -0.010579, 0.00013, -0.876858 ], [ 0.020033, -0.000379, 0.006461 ], [ -0.016482, 0.000444, 0.880863 ], [ 0.039026, 0.012479, -1.062943 ], [ -0.009284, -0.002005, 0.026535 ], [ -0.02309, 0.001493, -0.035286 ], [ 0.006828, -0.011505, 1.05994 ] ]
null
[ [ 0.05498625985193255, 0.0009731761029077176, -0.0016579944841996286 ], [ 0.0009731761029077176, 0.05487803208368973, -0.0008840473525901046 ], [ -0.0016579944841996286, -0.0008840473525901046, 0.039610676610866695 ] ]
true
null
null
-79.257218
null
0.432327
1.063732
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:18:51
13126578655333335992606959761505832463781929041058816912936772235648368143356821032198427427375544343919004703693107936397363100713434518098781125929697829
PO_1312657865533333599260695
null
null
null
[ "train_1st_stage_2266" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5370508154663027724335177112228217691769794242876118287936626783832044654782443381590635282728923278361109201256570483828544835287748878990819872059075539
CO_5370508154663027724335177
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi3
AlNi3
A3B
[ 13, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.25, 0.75 ]
2
4
[ [ 2.83629, -2.83629, 0 ], [ 2.83629, 0, 2.83629 ], [ 0, -2.83629, 2.83629 ] ]
[ [ 2.83629, -2.83629, 0.00001 ], [ 4.25444, -4.25444, 4.25444 ], [ 2.83629, -2.83629, 2.83629 ], [ 1.41815, -1.41815, 1.41815 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9399580732597937652097329912047560957428884557403984508685996703935218752679281840937549222462994654489445922006557263763416214429625770674595890440454416
1
VASP
DFT
null
[ [ 0.000036, -0.000036, -0.000047 ], [ -0.000033, 0.000032, 0 ], [ 0.000036, -0.000037, 0.000048 ], [ -0.000039, 0.00004, 0 ] ]
null
[ [ 0.0006261481955086085, -1.2483018251766518e-7, 1.2483018251766518e-7 ], [ -1.2483018251766518e-7, 0.0006261481955086085, -1.2483018251766518e-7 ], [ 1.2483018251766518e-7, -1.2483018251766518e-7, 0.0006260857804173496 ] ]
true
null
null
-21.689223
null
0.00006
0.00007
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:04:40
10529285923438317301986747491996894387182326988093208437180914505104156203096735098835457931366751984065628654851548575438316196551318651872354812760330
PO_1052928592343831730198674
null
null
null
[ "train_2nd_stage_182" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
8942018008643173414212426313413104229018117806130473260612283686144702424466413798851908090887910668827197186422811276233763990629383552646295939882574164
CO_8942018008643173414212426
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni6Ti4
AlNi3Ti2
A3B2C
[ 13, 13, 28, 28, 28, 28, 28, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.16666666666666666, 0.5, 0.3333333333333333 ]
3
12
[ [ 4.14682, -0.861839, -1.11515 ], [ -0.875012, 1.64224, 2.87031 ], [ 0.980738, -8.90437, 3.35823 ] ]
[ [ 0.12373, -7.26285, 6.16519 ], [ 1.7431, -3.61694, 1.0975 ], [ 0.98311, -0.2798, 2.34344 ], [ 2.46989, -2.51055, 2.14253 ], [ 4.19482, -4.29812, 1.82622 ], [ 1.83362, -5.29869, 2.76232 ], [ 3.58632, -7.41631, 2.7739 ], [ 3.54205, -5.51237, 1.06108 ], [ 2.75122, -0.25708, 0.74354 ], [ 0.23606, -1.51692, 1.50439 ], [ 0.22017, -4.94996, 4.70503 ], [ 1.90767, -7.11794, 4.23694 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12485804498974088526371214161558308917440213079573234262287202122917835889442779830354302194144262112701088881691053870568587012227165542854601190687789547
1
VASP
DFT
null
[ [ 9.660762, 20.930663, 13.978716 ], [ -3.520569, -6.25121, -5.47673 ], [ 5.863162, 10.569964, 7.481039 ], [ 5.449165, 8.466918, 7.019155 ], [ 6.893241, 13.58074, 7.684609 ], [ 2.924736, 5.526008, 2.824735 ], [ -0.12755, -0.59828, -3.182548 ], [ -7.379642, -14.944645, -8.094832 ], [ -10.45388, -21.762082, -17.467137 ], [ -6.71796, -12.428215, -4.667797 ], [ -2.531409, -3.913122, -2.832691 ], [ -0.060055, 0.823261, 2.733483 ] ]
null
[ [ 0.35752768612612623, 0.3260240433037781, 0.2451971242745025 ], [ 0.3260240433037781, 0.868263324991841, 0.39128351510145815 ], [ 0.2451971242745025, 0.39128351510145815, 0.6353370076588251 ] ]
true
null
null
-41.261658
null
13.429265
29.798871
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:12:27
6617399111394076494644226092739642758257738936444215281051281771334550039370544165949562806547116334404037343146121138373424431878142069797938785665373328
PO_6617399111394076494644226
null
null
null
[ "train_1st_stage_1654", "train_1st_stage_1254", "train_1st_stage_1854", "train_1st_stage_1454" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12237687461750695920285396792950719079617811655665330777537542939409621558875812448773262609489292943248200820924479873499323104265766400379319426999642440
CO_1223768746175069592028539
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni9Ti5
Ni9Ti5
A9B5
[ 28, 28, 28, 28, 28, 28, 28, 28, 28, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.6428571428571429, 0.35714285714285715 ]
2
14
[ [ 2.86781, -0.316022, 4.30221 ], [ -4.55723, 1.56306, 4.96065 ], [ -2.84594, -4.02121, 4.83544 ] ]
[ [ -2.45591, -3.79431, 5.42773 ], [ -0.26533, 0.04617, 4.29875 ], [ -2.39326, 0.00271, 5.72416 ], [ -3.12301, -0.31278, 9.40852 ], [ -2.10877, -1.80911, 3.73876 ], [ -0.94052, -0.20314, 7.89185 ], [ -4.53805, -0.20258, 7.27401 ], [ -2.76413, -1.98987, 7.44521 ], [ -3.45473, -2.26854, 11.0679 ], [ -1.30497, -2.0075, 9.56897 ], [ -4.88864, -2.11055, 8.91679 ], [ -1.04727, -4.09266, 7.6062 ], [ -1.56536, 0.0786, 2.12303 ], [ -0.80876, -1.84156, 5.91448 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6068679876571496465599490944137640881428096251805908280872526956306628978066370524952908313988123898170049485236157701297413612517378411597438411071216484
1
VASP
DFT
null
[ [ 0.021468, 0.374526, 0.001471 ], [ 0.223367, 0.078741, 0.124399 ], [ -0.072042, -0.056773, 0.239338 ], [ -0.029324, 0.11694, 0.160663 ], [ -0.223103, -0.078813, -0.124401 ], [ 0.029309, -0.117514, -0.161178 ], [ 0.071859, 0.056604, -0.239202 ], [ -0.021797, -0.374352, -0.001525 ], [ 0.000109, 0.000064, -0.000023 ], [ 0.034872, 0.111215, -0.01968 ], [ 0.000913, 0.000077, 0.000293 ], [ -0.036002, -0.111187, 0.020482 ], [ 0.244886, -0.059446, -0.061642 ], [ -0.244515, 0.059917, 0.061004 ] ]
null
[ [ 0.010223716778379294, -0.0009767961782007298, 0.002438120709843777 ], [ -0.0009767961782007298, -0.0277895704019001, 0.0005675404248165646 ], [ 0.002438120709843777, 0.0005675404248165646, 0.0021423980074594283 ] ]
true
null
null
-93.822814
null
0.211162
0.375144
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:34:49
11586551067261824839260420247806453418848619396938598129279178141928373668000863891171820071884931992706070556116821999309762970426746386682658511910955610
PO_1158655106726182483926042
null
null
null
[ "train_1st_stage_768" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
13266946642410341856354491872342257860051807857668222585497854030367798571278859491816434574536598057962074336755776229506871552855245524634023144673228397
CO_1326694664241034185635449
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al8Ni4
Al2Ni
A2B
[ 13, 13, 13, 13, 13, 13, 13, 13, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.6666666666666666, 0.3333333333333333 ]
2
12
[ [ 5.16931, 0, 0 ], [ 0, 3.89499, 0 ], [ 0, 0, 7.67964 ] ]
[ [ 0.35262, 0.97375, 1.70488 ], [ 2.23203, 2.92124, 5.5447 ], [ 2.93727, 0.97375, 2.13495 ], [ 4.81669, 2.92124, 5.97477 ], [ 0.80284, 0.97375, 4.39078 ], [ 1.78182, 2.92124, 0.55096 ], [ 3.38749, 0.97375, 7.12869 ], [ 4.36647, 2.92124, 3.28887 ], [ 3.42133, 0.97375, 4.55429 ], [ 4.33263, 2.92124, 0.71446 ], [ 0.83668, 0.97375, 6.96518 ], [ 1.74798, 2.92124, 3.12536 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12877446154008420963323901273870521951361890748914532006916033905843973352867132626463654121450104822176976515199642479001740127485296742843621066154790630
1
VASP
DFT
null
[ [ 0.081356, -0.000016, -0.121817 ], [ -0.081514, 0.000016, -0.121816 ], [ 0.081875, -0.000016, 0.121871 ], [ -0.081835, 0.000015, 0.121858 ], [ 0.122751, -0.000016, 0.053873 ], [ -0.1228, 0.00002, 0.053585 ], [ 0.123156, -0.000021, -0.053687 ], [ -0.123117, 0.000018, -0.05358 ], [ 0.193472, -0.00001, 0.340527 ], [ -0.193454, 0.000012, 0.340339 ], [ 0.19376, -0.000012, -0.340881 ], [ -0.193651, 0.000011, -0.340272 ] ]
null
[ [ -0.04861330454385819, 6.241509125883259e-8, 0.0000024341885590944705 ], [ 6.241509125883259e-8, -0.023558576195646358, 1.2483018251766518e-7 ], [ 0.0000024341885590944705, 1.2483018251766518e-7, -0.041532936591456224 ] ]
true
null
null
-56.242171
null
0.224172
0.3921
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:03:14
117530092065714441889137537271860964789857448590200607102256888555395372308283270980753188921678245352172311673403101049122193677486165303226924256785751
PO_1175300920657144418891375
null
null
null
[ "train_2nd_stage_145" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
13376597838314221267980577349742887598103668441897454376343211242180603922070279550626234286647923861224458310833986408182098992763894183773314794197061042
CO_1337659783831422126798057
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni8Ti4
Ni2Ti
A2B
[ 28, 28, 28, 28, 28, 28, 28, 28, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.6666666666666666, 0.3333333333333333 ]
2
12
[ [ 3.8849, -2.11797, 0.54439 ], [ -4.63284, -7.21732, -1.66999 ], [ -1.51597, 0.880913, -4.11419 ] ]
[ [ 0.04189, -0.02248, -0.02029 ], [ -2.74264, -5.77759, -2.71146 ], [ -1.06218, -4.24772, -3.86551 ], [ -1.56163, -1.58495, -1.55968 ], [ -4.34499, -7.33792, -4.23304 ], [ 0.73234, -5.24424, -2.30986 ], [ -1.26002, -1.71017, -4.11096 ], [ -4.54658, -4.77322, -4.24412 ], [ -0.8633, -6.83835, -1.07279 ], [ -2.54246, -8.33875, -2.68127 ], [ -1.43079, -4.08378, -1.2634 ], [ 0.5536, -2.69823, -2.6886 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4672315409226751283401048268336575272369392241231231328227268874543745987730248189747567708613468861423482810684340278793030389038942915392065161172338128
1
VASP
DFT
null
[ [ -0.075425, 0.043189, 0.03805 ], [ 0.081787, 0.004216, 0.143915 ], [ -0.113141, 0.065063, 0.046275 ], [ 0.025753, -0.065997, -0.158412 ], [ 0.108412, -0.06276, -0.058052 ], [ -0.063191, 0.03903, 0.031719 ], [ -0.066663, -0.010605, -0.145795 ], [ 0.16805, -0.048155, 0.073602 ], [ 0.057947, -0.098146, 0.093962 ], [ 0.032212, -0.019415, -0.016433 ], [ -0.193152, 0.095605, 0.090842 ], [ 0.037412, 0.057974, -0.139673 ] ]
null
[ [ -0.007224858888666166, 0.005554318971123511, 0.0030821196214524116 ], [ 0.005554318971123511, 0.00402802032948002, -0.0017421924423077937 ], [ 0.0030821196214524116, -0.0017421924423077937, -0.0037781103040796537 ] ]
true
null
null
-79.883958
null
0.143338
0.233881
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:17:30
7155412879405802970808495438881709379331110549766189426295057347480655251317527425593601989669726802919253694950923623972589770991719575761111961182500040
PO_7155412879405802970808495
null
null
null
[ "train_1st_stage_853" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9654384289036135789997722465402754907540502279767054737517168415440787966324511867498066733190761060145707900669351757325162342073365467650964921481165015
CO_9654384289036135789997722
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni4
Al3Ni2
A3B2
[ 13, 13, 13, 13, 13, 13, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.6, 0.4 ]
2
10
[ [ 2.69947, -3.02078, -0.081775 ], [ -3.87189, -3.39046, -2.57033 ], [ 3.28836, 0.373141, -5.44574 ] ]
[ [ 2.34741, -0.488, -4.73203 ], [ 1.05041, -4.37824, -4.29123 ], [ 1.06446, -1.73519, -1.13061 ], [ 0.35635, -2.2315, -6.05378 ], [ 3.0557, -2.62228, -2.96004 ], [ -0.94083, -3.49115, -2.4618 ], [ 2.70162, -2.87014, -5.43379 ], [ 1.42067, -4.11466, -1.86257 ], [ 0.76567, -4.56538, -6.71896 ], [ 0.6942, -1.99876, -3.55927 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6772303585216476658056999127623392571551045123980875916230495171058935863743340602637666178155268419355161454399043717475980596763199116767238495772066520
1
VASP
DFT
null
[ [ 0.001245, 0.001273, 0.000992 ], [ -0.069465, -0.063885, 0.054087 ], [ 0.069187, 0.064131, -0.053945 ], [ -0.001516, -0.001105, -0.000797 ], [ 0.0116, 0.007095, 0.107989 ], [ -0.011917, -0.006865, -0.107814 ], [ 0.000286, -0.000304, -0.000115 ], [ -0.012519, -0.014917, 0.038542 ], [ 0.000331, -0.000238, -0.000085 ], [ 0.012768, 0.014815, -0.038854 ] ]
null
[ [ 0.008785236170136981, -0.0012154714871745057, -0.0002616440625570262 ], [ -0.0012154714871745057, 0.008831360922577258, 0.00013618972912677268 ], [ -0.0002616440625570262, 0.00013618972912677268, 0.007763313880956114 ] ]
true
null
null
-49.616384
null
0.052658
0.108842
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:34:57
12214373353027785505631345618271944623921421704973137649707645350311148348794989277956043271973167375742379979515073395616475421156718513685147989611776688
PO_1221437335302778550563134
null
null
null
[ "train_1st_stage_742" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12986743533216851543809657904173508247833491925707308929045716049629398374850684238821458677315282577739328683869278431750255209824685531151613851433700306
CO_1298674353321685154380965
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni12Ti2
Ni6Ti
A6B
[ 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.8571428571428571, 0.14285714285714285 ]
2
14
[ [ 2.45584, -0.032737, 4.18379 ], [ -3.78725, 2.1508, 4.1626 ], [ -2.54597, -4.37039, 4.20429 ] ]
[ [ -0.1208, -4.37484, 8.41638 ], [ -0.0886, -0.05535, 4.19372 ], [ -2.56638, -0.04668, 4.10949 ], [ -2.56628, -0.07153, 8.37518 ], [ -1.26454, -2.21198, 4.12668 ], [ -1.36713, -2.25539, 8.34702 ], [ -1.34684, -3.6499, 6.35752 ], [ -1.28638, 0.73084, 2.06733 ], [ -1.28628, 0.70599, 6.33302 ], [ -3.76406, 0.71466, 6.24879 ], [ -0.03475, -1.51977, 6.25161 ], [ -2.57566, -1.48842, 10.4836 ], [ -3.90595, -2.29145, 8.49846 ], [ -2.49269, -1.41963, 6.14834 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
1806096791504870634665241840972770637087770637213759590412586928297676774393053475069543371553549723569915221124253686506977373496538434749879233800350613
1
VASP
DFT
null
[ [ -0.003014, 0.055906, -0.003791 ], [ -0.007266, -0.10863, -0.024644 ], [ -0.062835, -0.032526, 0.14584 ], [ -0.02221, -0.000125, -0.122549 ], [ 0.131635, 0.084782, 0.106633 ], [ 0.000136, -0.112246, 0.0189 ], [ -0.132008, -0.084692, -0.106162 ], [ 0.022234, -0.000055, 0.122057 ], [ 0.062721, 0.032734, -0.145422 ], [ 0.007957, 0.109042, 0.024269 ], [ 0.002184, -0.055666, 0.003825 ], [ 0.000167, 0.111431, -0.019087 ], [ -0.038794, 0.139118, 0.13748 ], [ 0.039093, -0.139074, -0.137349 ] ]
null
[ [ -0.012939022908503546, 0.0015474573575802362, 0.0008321804117540149 ], [ 0.0015474573575802362, -0.012903196646120977, 0.0018957335668045219 ], [ 0.0008321804117540149, 0.0018957335668045219, 0.006797565173908197 ] ]
true
null
null
-83.9847
null
0.136603
0.199398
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:52:19
3021073062312883809357299170411238443772350208499491912041176647860220996774761196768701790932722090635901198686995872234529375641501262221557794127206761
PO_3021073062312883809357299
null
null
null
[ "train_1st_stage_631" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4063251559242320105930949820275881281397637739434534493058618366732773652109087616398799224338112707160328257581135532982813682319249630379644560014485629
CO_4063251559242320105930949
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni2Ti6
NiTi3
A3B
[ 28, 28, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.25, 0.75 ]
2
8
[ [ -0.07632, 2.098978, 2.194623 ], [ 7.280033, -3.630098, 3.722555 ], [ 0.720618, 2.593544, -4.556922 ] ]
[ [ 0.01642, 0.00643, 0.00499 ], [ 3.03002, 0.45944, -0.32422 ], [ 1.23582, 2.36464, -0.10561 ], [ 1.73411, 0.20027, 1.98095 ], [ 4.19829, 2.7759, -0.39623 ], [ 4.67556, 0.63402, 1.66758 ], [ 5.57449, -1.69938, 3.93036 ], [ 6.77224, -1.24764, 1.43717 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6001713473583659296393450835443715594302383849857737746813356663645727659446520942067473690222188061725002682805446657787900008418154566563476183199896138
1
VASP
DFT
null
[ [ -0.018243, 0.002878, -0.003561 ], [ 0.0181, -0.002676, 0.003232 ], [ 0.004978, -0.002542, 0.002603 ], [ -0.004472, 0.002429, -0.00246 ], [ -0.004631, 0.002653, -0.002496 ], [ 0.000357, -0.000062, -0.00012 ], [ -0.001401, 0.000056, 0.000177 ], [ 0.005312, -0.002736, 0.002624 ] ]
null
[ [ 0.0011741526967611585, -0.00004194294132593549, 0.00003570143220005224 ], [ -0.00004194294132593549, 0.001229826958164037, -0.000026401583602486182 ], [ 0.00003570143220005224, -0.000026401583602486182, 0.0012303262788941078 ] ]
true
null
null
-59.450123
null
0.007927
0.018809
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:09:45
12644351846665513595687781957549916476367751465357222078114327074144325328330034568719649669635237283370088869543709747577215861855126175299876718836487152
PO_1264435184666551359568778
null
null
null
[ "train_1st_stage_145" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5368459550311352671986266207795382332705897645656788205902793428567218098995753375791327091666570480501017626866586385494294577601854215348063943618243150
CO_5368459550311352671986266
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ti
Al2Ti
A2B
[ 13, 13, 22 ]
[ "Al", "Ti" ]
[ 0.6666666666666666, 0.3333333333333333 ]
2
3
[ [ -1.74078, 1.3526, 5.18505 ], [ 1.3526, -1.74078, 5.18505 ], [ 1.74083, 1.74083, -5.04251 ] ]
[ [ -0.12387, -0.12387, 3.44402 ], [ 1.47651, 1.47651, 1.88357 ], [ 1.35264, 1.35264, 5.32759 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
418889236211186731247744413719809027789633265773710886984587984888923097564495321265814416990446786420102320244478944644342326276627136577004139045434957
1
VASP
DFT
null
[ [ -0.015141, -0.015141, 0.130548 ], [ 0.015106, 0.015106, -0.130546 ], [ 0.000035, 0.000035, -0.000002 ] ]
null
[ [ 0.006986245994783649, -0.00018375002866600313, 0.0012248961659545893 ], [ -0.00018375002866600313, 0.0069861835796923896, 0.0012248961659545893 ], [ 0.0012248961659545893, 0.0012248961659545893, 0.0023113556594970878 ] ]
true
null
null
-15.999137
null
0.088208
0.132292
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:12:53
8700027601503680527114395617870412629161216824904977112186594594895959225468665606022485531437701191818796365054004519534369862966760216048711632247122776
PO_8700027601503680527114395
null
null
null
[ "train_2nd_stage_599" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
3289710588898360922889644594187655021529480194025793149635487964371031567201225922829500750750264148575217274527730052204977221864034153734281452419908620
CO_3289710588898360922889644
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al8Ni2
Al4Ni
A4B
[ 13, 13, 13, 13, 13, 13, 13, 13, 28, 28 ]
[ "Al", "Ni" ]
[ 0.8, 0.2 ]
2
10
[ [ 1.69575, 4.41767, 1.7645 ], [ 3.89877, -1.65753, -2.39073 ], [ -1.65783, 5.49788, -3.81016 ] ]
[ [ 1.68064, 4.16473, 1.49545 ], [ 2.62072, 2.04336, -0.07745 ], [ 2.0077, 0.10506, -2.19647 ], [ 3.09042, 2.58442, -2.55099 ], [ 0.13173, 2.12058, -1.73316 ], [ 2.89086, 5.94797, -2.65489 ], [ 0.07727, 5.89159, -2.02393 ], [ 1.16245, 4.17769, -3.78372 ], [ 1.50742, 4.14487, -1.17843 ], [ 4.20372, 0.48292, -1.45001 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7904701205453696861294546072946019256079763020511592935456888523323136504152577289347634111170585958808857733811450051763897283232552405779246444635488282
1
VASP
DFT
null
[ [ 0.007326, -0.027216, 0.083539 ], [ -0.030396, -0.219421, 0.125184 ], [ 0.000692, 0.000152, 0.000102 ], [ 0.030225, 0.218777, -0.12522 ], [ -0.007611, 0.027119, -0.08331 ], [ 0.158073, 0.168208, -0.031417 ], [ -0.000434, 0.000482, -0.000241 ], [ -0.157848, -0.168265, 0.031128 ], [ -0.114562, -0.023421, -0.099722 ], [ 0.114536, 0.023585, 0.099957 ] ]
null
[ [ 0.001162356244513239, -0.0000990527498277673, 0.003811252717538094 ], [ -0.0000990527498277673, -0.00537899497977745, -0.0025577080246957 ], [ 0.003811252717538094, -0.0025577080246957, -0.01756978577427011 ] ]
true
null
null
-43.389842
null
0.145912
0.254442
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:26:58
8736026544324342211567999146478833511984701584966531018329213006766018734277750860639180568746824667325123033937675962402131111700364267097979596886861232
PO_8736026544324342211567999
null
null
null
[ "train_1st_stage_542" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
3689166032430162460092718313835532568492576630736545349934976525391128033958637031597949502959261729286985852829700741292706071798765005815988738119601468
CO_3689166032430162460092718
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni12Ti17
Ni12Ti17
A17B12
[ 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.41379310344827586, 0.5862068965517241 ]
2
29
[ [ -4.63303, 4.63303, -4.63303 ], [ 4.63303, 4.63303, 4.63303 ], [ 4.63303, -4.63303, -4.63303 ] ]
[ [ 0.87872, 0.87872, -6.61053 ], [ 3.75431, 3.75431, -1.97751 ], [ -0.87872, 0.87872, -2.65552 ], [ 0.87872, -0.87872, -2.65552 ], [ 2.65552, 0.87872, 0.87872 ], [ 2.65552, -0.87872, -0.87872 ], [ 1.97751, 3.75431, -3.75431 ], [ 6.61053, 0.87872, -0.87872 ], [ 0.87872, 2.65552, 0.87872 ], [ -0.87872, 2.65552, -0.87872 ], [ 0.87872, 6.61053, -0.87872 ], [ 3.75431, 1.97751, -3.75431 ], [ 3.34986, 3.34986, 0.44898 ], [ 1.28317, 1.28317, -4.18405 ], [ 1.28317, -1.28317, -5.08201 ], [ -1.28317, 1.28317, -5.08201 ], [ 5.08201, -1.28317, -1.28317 ], [ 5.08201, 1.28317, 1.28317 ], [ 4.18405, 1.28317, -1.28317 ], [ -0.44898, 3.34986, -3.34986 ], [ -1.28317, 5.08201, -1.28317 ], [ 1.28317, 5.08201, 1.28317 ], [ 3.34986, -0.44898, -3.34986 ], [ 1.28317, 4.18405, -1.28317 ], [ 3.04282, 3.04282, 3.04282 ], [ 1.59021, 1.59021, -1.59021 ], [ -3.04282, 3.04282, -3.04282 ], [ 3.04282, -3.04282, -3.04282 ], [ 0, 0, 0 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7273128723749437420792987512698572517754828822484714335215678041221372850198917573553549262761982816740217833765383763518192621093623588651269215708272374
1
VASP
DFT
null
[ [ -0.090502, -0.090524, -0.483663 ], [ 0.090722, 0.090688, -0.483591 ], [ 0.090804, -0.090941, 0.483716 ], [ -0.091034, 0.090688, 0.483706 ], [ -0.483557, -0.090702, -0.090564 ], [ -0.483621, 0.090705, 0.090849 ], [ 0.483494, 0.090695, -0.090985 ], [ 0.483702, -0.090977, 0.090825 ], [ -0.090653, -0.483606, -0.090596 ], [ 0.090756, -0.483567, 0.090712 ], [ -0.091036, 0.483692, 0.090769 ], [ 0.090774, 0.483602, -0.091062 ], [ -0.303368, -0.303526, -0.063187 ], [ 0.303352, 0.30357, -0.063648 ], [ 0.303126, -0.303354, 0.063557 ], [ -0.303239, 0.303382, 0.063432 ], [ -0.063335, -0.303363, -0.303231 ], [ -0.063492, 0.303563, 0.303348 ], [ 0.063532, 0.303352, -0.303181 ], [ 0.063476, -0.303483, 0.303274 ], [ -0.303345, -0.063342, -0.303491 ], [ 0.30357, -0.063438, 0.303458 ], [ -0.303508, 0.063503, 0.303488 ], [ 0.303287, 0.063692, -0.303376 ], [ 0.088113, 0.087951, 0.087956 ], [ -0.087909, -0.088032, 0.087724 ], [ -0.087987, 0.088033, -0.088272 ], [ 0.087939, -0.088125, -0.088137 ], [ -0.000064, -0.000138, 0.00017 ] ]
null
[ [ -0.0397166574358242, -0.00001135954660910753, -0.00000193486782902381 ], [ -0.00001135954660910753, -0.03971984060547839, 4.36905638811828e-7 ], [ -0.00000193486782902381, 4.36905638811828e-7, -0.039717843322558115 ] ]
true
null
null
-205.860403
null
0.407557
0.500497
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:02:26
4742409217749864591737261932699505603319234906790407047928410423099989203948852296024303106170463911834926892680344890163474681753412608601606669796805926
PO_4742409217749864591737261
null
null
null
[ "train_2nd_stage_17" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10799659525229875492643980044548014110574512599553313804646260992115260625862260800765814174113841170909189485639305489173038289558322443012432211279904678
CO_1079965952522987549264398
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
NiTi
NiTi
AB
[ 28, 22 ]
[ "Ni", "Ti" ]
[ 0.5, 0.5 ]
2
2
[ [ -0.310507, 2.390299, 1.797247 ], [ 3.24272, -2.497908, -1.148181 ], [ 3.512523, 1.712411, -1.671136 ] ]
[ [ 3.51587, 1.73081, -1.64068 ], [ 1.60435, 2.06976, 0.09352 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7085609140909050645088530374404852336044974937845832387556331035506019753373099243829992225155500891764471164265190594145032732874596529557341438980243345
1
VASP
DFT
null
[ [ -0.000035, 0.00003, 0.00002 ], [ 0.000035, -0.00003, -0.00002 ] ]
null
[ [ 0.00006597275146058603, 0.000026651243967521515, 0.000024591545955980036 ], [ 0.000026651243967521515, -0.00006603516655184488, -0.00006797003438086868 ], [ 0.000024591545955980036, -0.00006797003438086868, -0.00001135954660910753 ] ]
true
null
null
-14.012046
null
0.00005
0.00005
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:23:28
5650819736853659779090956622664352850834446923901514128983828112795723965225218262817581763675375261488691389774923280815653717312287975225120941191625907
PO_5650819736853659779090956
null
null
null
[ "train_1st_stage_245" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10897654786959764600156904722433867397306980937484138194173051462396943606063120782486812150876384837028792117586343137852309605174316953879533549444464830
CO_1089765478695976460015690
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni5
Al6Ni5
A6B5
[ 13, 13, 13, 13, 13, 13, 28, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.5454545454545454, 0.45454545454545453 ]
2
11
[ [ -2.833488, -2.933495, 0.054439 ], [ 4.478672, -1.568469, -4.286564 ], [ 4.963817, -4.771798, 1.23868 ] ]
[ [ 2.03757, -4.90765, -3.96831 ], [ 3.35059, -6.10838, -0.25865 ], [ 4.12881, -4.0564, -2.01151 ], [ 2.21244, -2.18562, -0.93858 ], [ 5.121, -7.83897, -1.39827 ], [ 5.94887, -5.83636, -3.21382 ], [ 3.581, -6.37599, -2.72815 ], [ -0.07318, -2.7996, -0.1675 ], [ 3.7644, -3.66068, 0.39557 ], [ 1.75395, -4.58781, -1.44777 ], [ 2.57687, -2.58141, -3.34568 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12908343191776058903583771252932080288027236101650011327620482554113970621713583976027512397949171471140658563149555979642497414448944626639088586278414584
1
VASP
DFT
null
[ [ -0.006055, 0.006093, 0.002119 ], [ -0.000878, 0.000618, 0.001507 ], [ 0.004401, -0.00427, 0.007428 ], [ -0.004362, 0.004204, -0.007274 ], [ 0.000912, -0.000631, -0.001682 ], [ 0.005977, -0.006141, -0.002375 ], [ 0.00201, -0.002133, 0.001227 ], [ -0.001986, 0.002207, -0.001076 ], [ 0.001443, -0.002059, -0.007264 ], [ -0.000003, 0.00006, -0.000095 ], [ -0.001459, 0.002052, 0.007486 ] ]
null
[ [ 0.0008138303749239181, 0.000020409734841638254, 0.00010816535315155687 ], [ 0.000020409734841638254, 0.000827998600639673, -0.00010779086260400387 ], [ 0.00010816535315155687, -0.00010779086260400387, 0.0007272606433479172 ] ]
true
null
null
-56.820668
null
0.005703
0.009632
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:16:38
1478683689792249363494634007756069407495285854131519730318975157508236729008558568575559583507151650192468413427911029982925819132750165599815573485471980
PO_1478683689792249363494634
null
null
null
[ "train_1st_stage_114" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10418064117716822549160815744399661029799197743999472066473960933345522775514990686916348025695584219145608084804421107779452025326841659920172132329240496
CO_1041806411771682254916081
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al7Ni2
Al7Ni2
A7B2
[ 13, 13, 13, 13, 13, 13, 13, 28, 28 ]
[ "Al", "Ni" ]
[ 0.7777777777777778, 0.2222222222222222 ]
2
9
[ [ -3.31449, -0.740305, -3.44616 ], [ 1.63101, 4.40257, -1.10684 ], [ 1.57025, -4.80313, -4.79157 ] ]
[ [ 2.62946, -0.33262, -5.4665 ], [ -1.93799, 0.33827, -4.71603 ], [ -1.3711, -2.4307, -4.4467 ], [ -0.07549, -0.76058, -6.22971 ], [ -0.41089, -3.49303, -6.90588 ], [ 0.21676, 2.9437, -2.95182 ], [ 0.53406, -0.44823, -3.54678 ], [ 1.99649, 1.62168, -3.79276 ], [ 1.16703, -2.40254, -5.22051 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
182799036012656063168133736389644025298328637692161827416702472636800624742202115331405431217333992314478718925239146681419442214814922305080931457170295
1
VASP
DFT
null
[ [ -0.005438, -0.068874, 0.07856 ], [ 0.037247, -0.026352, -0.020779 ], [ -0.017352, 0.031108, -0.083948 ], [ -0.000308, 0.000357, -0.000344 ], [ 0.017127, -0.031322, 0.083994 ], [ -0.037142, 0.026267, 0.02041 ], [ 0.005422, 0.068863, -0.07829 ], [ 0.043091, 0.005118, -0.089655 ], [ -0.042647, -0.005164, 0.090051 ] ]
null
[ [ -0.006089341133394224, -0.0006315158933568681, 0.0030612105658807025 ], [ -0.0006315158933568681, -0.0047069092771023415, -0.0018041082128365555 ], [ 0.0030612105658807025, -0.0018041082128365555, -0.005404210676646019 ] ]
true
null
null
-39.786446
null
0.076827
0.104618
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:04:09
2822462463812700670335154204731111723702635671123884995480995290104309602543397431965434449083735175253680781357547231053324270520613234690008071692606697
PO_2822462463812700670335154
null
null
null
[ "train_1st_stage_785" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4666002111567947684168569746666516933677298418331114010124444664000949590859259684509343051383038713928024144623450801385536263873105422554388541480960670
CO_4666002111567947684168569
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2
Al
A
[ 13, 13 ]
[ "Al" ]
[ 1 ]
1
2
[ [ 4.92933, 0.177722, 0.131668 ], [ 0.177722, 4.92933, 0.131668 ], [ 1.50572, 1.50572, 1.85537 ] ]
[ [ 4.52741, 3.88604, 0.66135 ], [ 2.08537, 2.72674, 1.45736 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2757056637456105349157538740780426490958481524696778776066458527843921234690570900700511941528720498633329126315631672955809441467656776170684953823211093
1
VASP
DFT
null
[ [ 0.03996, -0.039978, -0.000004 ], [ -0.03996, 0.039978, 0.000004 ] ]
null
[ [ 0.005309277322841334, 0.002727414657828466, 0.00037342949100159533 ], [ 0.002727414657828466, 0.005309277322841334, 0.0003734919060928541 ], [ 0.00037342949100159533, 0.0003734919060928541, 0.008017592962744598 ] ]
true
null
null
-7.058564
null
0.056525
0.056525
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:29:11
12494076586352124283639077790253785174479659906703329019761608706485846336673632596883552112574696826546386883081878410404743092713935904457778554403663352
PO_1249407658635212428363907
null
null
null
[ "train_2nd_stage_313" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11092820548219533345703304343190250132742266310392630315536529878914829732282888736383986067592893147908929670440788424390092675948261080012521368266196690
CO_1109282054821953334570330
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni4
Al3Ni2
A3B2
[ 13, 13, 13, 13, 13, 13, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.6, 0.4 ]
2
10
[ [ 2.765924, 0.017204, 0 ], [ 1.311185, 11.86245, 0 ], [ 0, 0, 4.106801 ] ]
[ [ 2.75892, 1.12195, 0 ], [ 2.73368, 5.3344, 0 ], [ 2.70849, 9.5025, 0 ], [ 2.6964, 11.55657, 2.0534 ], [ 2.74679, 3.17611, 2.0534 ], [ 2.72157, 7.34409, 2.0534 ], [ 1.36361, 3.19144, 0 ], [ 1.33794, 7.44581, 0 ], [ 1.35139, 5.21536, 2.0534 ], [ 1.32577, 9.46983, 2.0534 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4773007940595692124083778078140657739827787627706162540835603344589880832121882079493578686175282600089376512556189764709507455039821011046431538134481582
1
VASP
DFT
null
[ [ 0.000474, -0.002694, 0 ], [ 0.000393, 0.002388, 0 ], [ -0.001105, -0.000004, 0 ], [ -0.000481, 0.002988, 0 ], [ 0.001146, -0.00097, 0 ], [ -0.000357, -0.002766, 0 ], [ 0.000076, 0.00239, 0 ], [ 0.00064, -0.00374, 0 ], [ -0.000723, 0.004236, 0 ], [ -0.000063, -0.001828, 0 ] ]
null
[ [ 0.0004687373353538327, 0.00005904467633085562, 0 ], [ 0.00005904467633085562, 0.0003968351502236575, 0 ], [ 0, 0, 0.00029665892875323127 ] ]
true
null
null
-49.375194
null
0.002589
0.004297
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:35:29
8301882348325498447062354869159655197736177391075299519800825764132254039806683826948486492738424173448100591102553060625483326640661411957305125535169513
PO_8301882348325498447062354
null
null
null
[ "train_1st_stage_38", "train_1st_stage_235" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5663229301467922915681596235178799778758842374754334744736954624096141802096524372032738309153621538179674194968969316592316045012714796308456822484376590
CO_5663229301467922915681596
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNiTi6
AlNiTi6
A6BC
[ 13, 28, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.125, 0.125, 0.75 ]
3
8
[ [ 3.151, -3.14596, -0.005659 ], [ -3.14435, 0.006443, -3.16221 ], [ 3.13974, 3.1397, -6.27916 ] ]
[ [ -3.11168, 0.00645, -3.16216 ], [ 0.02912, 0.00416, -6.30539 ], [ 1.65485, -1.52157, -4.77918 ], [ 3.21892, 0.04489, -6.34207 ], [ 1.64866, -1.52913, -1.62152 ], [ 1.55455, 1.52722, -7.82332 ], [ -0.02609, -0.04489, -3.10467 ], [ 1.55112, 1.52283, -4.66885 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10269984163811965675805649865401661872984381620541919226608637084723996044294463791551075359535840229305001336624006368331649214962091256774721919619486093
1
VASP
DFT
null
[ [ -0.028899, 0.000643, -0.000671 ], [ -0.006799, -0.005727, 0.005225 ], [ 0.041652, 0.064354, -0.063108 ], [ 0.052925, 0.041724, -0.024861 ], [ 0.343758, 0.365567, -0.356441 ], [ -0.347213, -0.361528, 0.352438 ], [ 0.015395, -0.036868, 0.020465 ], [ -0.070819, -0.068164, 0.066953 ] ]
null
[ [ 0.0032874028566027115, 0.00022893855473739787, 0.00008401071283438865 ], [ 0.00022893855473739787, 0.0036567129515812243, -0.0004032014895320585 ], [ 0.00008401071283438865, -0.0004032014895320585, 0.0031984613515588754 ] ]
true
null
null
-57.007573
null
0.200305
0.615515
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:42:09
9861952434452162405888126576281655357707974887157730511651472687232746294803424371822101901646251078331796650412520658680542308766265310671832325249201578
PO_9861952434452162405888126
null
null
null
[ "train_1st_stage_2280" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6601935707631030637804554143196200820064975043840888109065171861715194263924543429830367795303017435962064450768836755135386967781059120772172530478480469
CO_6601935707631030637804554
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni4
AlNi
AB
[ 13, 13, 13, 13, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.5, 0.5 ]
2
8
[ [ 4.63058, 0, 0 ], [ 0, 4.63058, 0 ], [ 0, 0, 4.63058 ] ]
[ [ 1.86677, 1.86677, 1.86677 ], [ 0.44852, 2.76381, 4.18206 ], [ 2.76381, 4.18206, 0.44852 ], [ 4.18206, 0.44852, 2.76381 ], [ 0.46252, 0.46252, 0.46252 ], [ 1.85277, 4.16806, 2.77781 ], [ 4.16806, 2.77781, 1.85277 ], [ 2.77781, 1.85277, 4.16806 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7313017824782981265724386816423023916197955368374988140145559330440450922475830469472878542961073807523777181309448710507947657062997600230123000942689095
1
VASP
DFT
null
[ [ 0.10371, 0.103733, 0.103787 ], [ -0.103642, -0.103663, 0.103596 ], [ -0.103778, 0.103744, -0.103804 ], [ 0.1037, -0.103706, -0.103649 ], [ 0.17857, 0.178493, 0.178551 ], [ -0.178509, -0.178627, 0.178609 ], [ -0.178609, 0.178571, -0.178511 ], [ 0.178557, -0.178545, -0.17858 ] ]
null
[ [ 0.003195902332817264, 4.993207300706607e-7, -0.0000023093583765768054 ], [ 4.993207300706607e-7, 0.0031964640686385926, -9.362263688824887e-7 ], [ -0.0000023093583765768054, -9.362263688824887e-7, 0.00319608957809104 ] ]
true
null
null
-41.907468
null
0.244453
0.309313
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:31:16
10235650000746339234849887341298665428312486963913325300090217630945586482791112116955357843370734942685677904925129550524254679623638544162493939330229047
PO_1023565000074633923484988
null
null
null
[ "train_2nd_stage_60" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
801211831443077270500153955599004014868949065254113376255737892860640532262240246135976239416830891563010360353319356723293056204878800348159421816757431
CO_8012118314430772705001539
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ti2
Al2Ti
A2B
[ 13, 13, 13, 13, 22, 22 ]
[ "Al", "Ti" ]
[ 0.6666666666666666, 0.3333333333333333 ]
2
6
[ [ 3.95466, 0, 0 ], [ 0, -0.027651, -3.94924 ], [ 0, 6.04193, -2.02039 ] ]
[ [ 0, 5.98677, -2.01998 ], [ 1.97733, 1.99093, -3.9645 ], [ 0, 4.06468, -3.98017 ], [ 0, 2.00476, -1.98988 ], [ 1.97733, 0.1051, -1.97552 ], [ 1.97733, 3.90442, -2.00423 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10788699299656375102952727749373556464367691002275881944287368994223580612587583790491931056328248198962972044732281498380899254336817678405369862100033557
1
VASP
DFT
null
[ [ 0.000002, -0.146353, 0.000657 ], [ 0, 0.000214, 0.000069 ], [ 0.000001, 0.146848, -0.000506 ], [ 0.000002, 0.000235, 0.000048 ], [ -0.000006, 0.095195, 0.002412 ], [ 0.000001, -0.09614, -0.002681 ] ]
null
[ [ -0.008313066004763912, 6.241509125883259e-8, 1.2483018251766518e-7 ], [ 6.241509125883259e-8, -0.0033630499472084166, -0.0001546021810481283 ], [ 1.2483018251766518e-7, -0.0001546021810481283, 0.0009199984451551922 ] ]
true
null
null
-33.19375
null
0.080845
0.146849
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:15:00
7698227046132060859602484760249544069141036939005655409768045700183189623939138951355468828478969978435943681272187799393297648582671374381120008157278341
PO_7698227046132060859602484
null
null
null
[ "train_1st_stage_989" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
2687624224830045881193302886349543875765062369464033358448376309741241788269508211442474291020731764222888906516160507186568365024936572790659727024696195
CO_2687624224830045881193302
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni4Ti
Al3Ni4Ti
A4B3C
[ 13, 13, 13, 28, 28, 28, 28, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.375, 0.5, 0.125 ]
3
8
[ [ 0, 2.9107, 0 ], [ 5.80165, 0, 0 ], [ 0, 0, -5.80165 ] ]
[ [ 0.0258, 0.04985, -5.77915 ], [ 2.90143, 2.87045, -2.89283 ], [ 2.89082, 2.8653, -5.76055 ], [ 1.4056, 1.4263, -1.48838 ], [ 4.3951, 1.50205, -4.30932 ], [ 4.37045, 1.4954, -1.42863 ], [ 1.4617, 1.50425, -4.30632 ], [ 0.0349, 0.0189, -2.87193 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
13293474170451266675385124511898656208180934097850200848993888979446714751533187882404069837895258225438245664132436480698532184922365989407873847385521747
1
VASP
DFT
null
[ [ -0.158474, -0.171429, 0.048916 ], [ 0.307022, 0.395958, 0.204797 ], [ 0.160376, 0.402401, -0.251831 ], [ 0.504794, 0.215229, 0.44634 ], [ -0.154245, -0.265569, -0.180224 ], [ -0.11958, -0.232801, 0.082592 ], [ 0.001942, -0.340926, -0.201294 ], [ -0.541834, -0.002863, -0.149296 ] ]
null
[ [ -0.017589134452560353, -0.0009251164826384165, -0.0007906119609756323 ], [ -0.0009251164826384165, -0.01755162298271379, -0.0006851928718394641 ], [ -0.0007906119609756323, -0.0006851928718394641, -0.017679698749976915 ] ]
true
null
null
-45.599976
null
0.44709
0.707361
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:07:12
2921333865782580708203156789238344887141455758854665592216838748812099178614221359280800858246331618974938994174820763751829075872616155827970078637994560
PO_2921333865782580708203156
null
null
null
[ "train_1st_stage_1197" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4569604065363909796782430334838265999482148632206877098361653185277189115456370076205032030602994792481525954145848585905230454451647956263289510524137190
CO_4569604065363909796782430
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni
Al4Ni
A4B
[ 13, 13, 13, 13, 28 ]
[ "Al", "Ni" ]
[ 0.8, 0.2 ]
2
5
[ [ 0.268472, 2.66973, 0.133626 ], [ 5.14275, -1.84085, -1.43414 ], [ -1.93534, 1.83908, -4.97563 ] ]
[ [ 4.67117, 0.92969, -1.65731 ], [ 1.86162, 1.10187, -0.6719 ], [ 3.36326, -0.07166, -3.92755 ], [ 0.82217, 2.77025, -2.80851 ], [ 1.64477, 1.43464, -4.78754 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3616444299183539023705403538088422958537701448026738364660543179320864859118974607057233773078416737982966408167277421868188389484344328220438987943950036
1
VASP
DFT
null
[ [ -0.051889, 0.000441, 0.104823 ], [ -0.165455, 0.178147, -0.08245 ], [ 0.165368, -0.178421, 0.082416 ], [ 0.051886, -0.000707, -0.104859 ], [ 0.00009, 0.00054, 0.000071 ] ]
null
[ [ 0.004898211531810664, 0.0009624407072111984, 0.0017664094977162207 ], [ 0.0009624407072111984, 0.00009861584418895548, 0.00048190691960944636 ], [ 0.0017664094977162207, 0.00048190691960944636, 0.0022568672848281273 ] ]
true
null
null
-21.331477
null
0.149619
0.256852
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:16:04
4113520988090896713423601291433716466376917060219043114404860425945663317822465697942485507333828242797526017060412278252848072657245480824961204536955698
PO_4113520988090896713423601
null
null
null
[ "train_1st_stage_1124" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7440507453011182874008101194813505680721993543317041843669628475626819202860711016081755029201668590582150329250909446851214915077205326868028702743510395
CO_7440507453011182874008101
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni4Ti5
Ni4Ti5
A5B4
[ 28, 28, 28, 28, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.4444444444444444, 0.5555555555555556 ]
2
9
[ [ 0.00398, 2.119564, 2.131098 ], [ 3.00148, -0.116084, 0.107713 ], [ 2.232966, 10.83727, -8.666044 ] ]
[ [ 3.02424, 2.10905, 2.12877 ], [ 3.17776, 4.17423, 0.07439 ], [ 3.34043, 6.3705, -2.1113 ], [ 3.4939, 8.43547, -4.16546 ], [ 1.59909, 2.15296, -0.03108 ], [ 1.75635, 4.27078, -2.13794 ], [ 1.91371, 6.38818, -4.24458 ], [ 2.07343, 8.54302, -6.38878 ], [ 3.67228, 10.83515, -6.55275 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7154499631083224047592557114205730098153260399524177810381254296263008235194992044378664400059709967913121412528249384098912020410431114040299287025042906
1
VASP
DFT
null
[ [ -0.000661, -0.010697, 0.010363 ], [ -0.000334, -0.006844, 0.006884 ], [ 0.000619, 0.007631, -0.007127 ], [ 0.000606, 0.010062, -0.009744 ], [ 0.000601, 0.002181, -0.001576 ], [ 0.000096, 0.0007, -0.000773 ], [ -0.000997, -0.00538, 0.004652 ], [ 0.00097, 0.009892, -0.009442 ], [ -0.0009, -0.007546, 0.006763 ] ]
null
[ [ 0.0030876745645744474, -0.00004262950732978265, -0.00001959833865527343 ], [ -0.00004262950732978265, 0.002991804984400881, 0.00009262399542810755 ], [ -0.00001959833865527343, 0.00009262399542810755, 0.0029986082293480937 ] ]
true
null
null
-64.022101
null
0.00933
0.014908
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:38:31
9127506711643844274080542619138148553285625202781445502660671500819167007962584615985304889066204366143699090031272498811751697458024620494360825038480932
PO_9127506711643844274080542
null
null
null
[ "train_1st_stage_264" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
13215976569145474998433804655903319095471502847443203445722022855335272744388901578241485872833193986142371808236068922934322143451770743163094427922035844
CO_1321597656914547499843380
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni4Ti4
AlNi2Ti2
A2B2C
[ 13, 13, 28, 28, 28, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.2, 0.4, 0.4 ]
3
10
[ [ 2.45052, 4.46613, 0.087141 ], [ -2.45052, 4.46613, 0.087141 ], [ 0, 1.72492, 6.77295 ] ]
[ [ -1.57302, 4.89736, 1.78038 ], [ 1.57302, 5.75982, 5.16686 ], [ -1.76378, 5.01017, 6.82521 ], [ -1.76378, 6.50948, 3.5085 ], [ 1.76378, 5.64702, 0.12202 ], [ 1.76378, 4.14771, 3.43874 ], [ 0.70921, 6.4368, 2.48953 ], [ 0.70921, 3.35792, 1.07123 ], [ -0.70921, 4.22038, 4.45771 ], [ -0.70921, 7.29926, 5.87601 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12748022338596018309424434048456240515748776113381466665087027754509279586023971001416827361598420749003663755645466141520684917207207778798673153201686990
1
VASP
DFT
null
[ [ 0.2636, 0.00012, -0.000909 ], [ -0.263176, -0.000397, 0.000801 ], [ 0.014456, -0.116305, 0.018568 ], [ 0.014823, 0.117047, -0.018421 ], [ -0.014581, 0.116991, -0.019409 ], [ -0.014803, -0.117244, 0.019355 ], [ 0.188777, 0.074568, 0.067693 ], [ 0.189006, -0.074893, -0.069639 ], [ -0.189073, -0.074449, -0.067041 ], [ -0.189027, 0.074562, 0.069001 ] ]
null
[ [ 0.03216255894076769, 0.000008987773141271892, -0.0000015603772814708146 ], [ 0.000008987773141271892, 0.042748220833356956, -0.0022214779280843693 ], [ -0.0000015603772814708146, -0.0022214779280843693, 0.018558378404718762 ] ]
true
null
null
-64.726419
null
0.186152
0.263602
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:35:27
909826556435078999602001767006786088367677920806757474271234498106926168620668818247039316706619332224753494464441899577036184197135752736589357141498197
PO_9098265564350789996020017
null
null
null
[ "train_2nd_stage_342" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11851182870371032645584558976337420361329653757153417021770228977659057661266722644896293271220204556404468799865122857615168034223298411582682052525610108
CO_1185118287037103264558455
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni6Ti2
AlNi3Ti
A3BC
[ 13, 13, 28, 28, 28, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.2, 0.6, 0.2 ]
3
10
[ [ 3.73615, -0.349314, -0.753586 ], [ -1.03633, 2.17665, 3.54609 ], [ 0.009115, -7.61307, 3.53377 ] ]
[ [ 2.2537, 0.21002, 1.31342 ], [ 0.17191, -1.5877, 1.60057 ], [ 0.07537, -7.2243, 3.61903 ], [ 0.69464, 0.39948, 3.23004 ], [ 2.35935, -1.76645, 2.82873 ], [ 0.32443, -3.43832, 3.27593 ], [ 2.11029, -5.55244, 3.17182 ], [ 2.56727, -3.58171, 4.62013 ], [ 1.86024, -3.8754, 1.36465 ], [ 0.57448, -5.11535, 5.08311 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5053952697297826742298324007786530602649521641634080063457128701778192268334989239765035443442138291357259844882398528470221475489712430940924543809700426
1
VASP
DFT
null
[ [ -0.02992, -0.02699, -0.12442 ], [ 0.029798, 0.026838, 0.12387 ], [ -0.017608, 0.063875, -0.088628 ], [ 0.000119, -0.000381, 0.000547 ], [ 0.017797, -0.062739, 0.088841 ], [ 0.080115, -0.041288, 0.070647 ], [ -0.080108, 0.040591, -0.070165 ], [ 0.000095, -0.000095, 0.00046 ], [ -0.004113, 0.1535, -0.356444 ], [ 0.003825, -0.153312, 0.355291 ] ]
null
[ [ -0.0015786649032096523, 0.0002685721376867566, -0.0007021073615706078 ], [ 0.0002685721376867566, -0.003704959817124302, 0.001055751268643153 ], [ -0.0007021073615706078, 0.001055751268643153, -0.00753038076037815 ] ]
true
null
null
-61.158112
null
0.148657
0.388113
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:28:52
9400877272596582486270878096772543760006674503245814314817479846223295892916088378960673923453027955128656272288789285051272561777089085137737005377981810
PO_9400877272596582486270878
null
null
null
[ "train_1st_stage_1146" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4388889116781398167147909856352007891285531011291065556865970201374799786385770091138602531601229133698370362166418078209156437762023263408725482926651357
CO_4388889116781398167147909
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi7Ti2
AlNi7Ti2
A7B2C
[ 13, 28, 28, 28, 28, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.1, 0.7, 0.2 ]
3
10
[ [ 1.63519, 2.66857, 2.21446 ], [ 6.64165, 0.775327, -2.43555 ], [ 0.053117, 3.11148, -3.70342 ] ]
[ [ 0.10947, 3.11637, -3.70701 ], [ 2.09851, 1.68988, -0.18025 ], [ 4.45746, 1.53929, -1.72643 ], [ 6.17456, 3.36134, -1.83159 ], [ 0.0831, 1.56057, -1.85535 ], [ 2.26817, 3.20379, -2.1001 ], [ 3.98531, 5.02599, -2.20547 ], [ 6.34417, 4.87549, -3.75167 ], [ 3.95127, 3.35785, -0.22474 ], [ 4.49108, 3.20751, -3.70696 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9795511219764124656978805577210880028164536478745121340819541562281382816326870348600517333721013626907309443077270816653040616579839073871741833633024109
1
VASP
DFT
null
[ [ 0.000337, -0.000057, -0.000161 ], [ -0.422266, 0.277631, -0.076641 ], [ 0.263032, 0.769924, -1.018488 ], [ 0.615551, 0.051081, -0.607467 ], [ -0.003074, 0.001375, 0.000702 ], [ -0.615259, -0.049322, 0.604712 ], [ -0.263977, -0.770241, 1.019926 ], [ 0.420891, -0.279588, 0.079759 ], [ 0.444837, 0.668414, -1.152853 ], [ -0.440072, -0.669218, 1.150513 ] ]
null
[ [ -0.012916803136015403, 0.01414600594326685, 0.008947452992318685 ], [ 0.01414600594326685, 0.03394382323020351, -0.02302910897649768 ], [ 0.008947452992318685, -0.02302910897649768, 0.04989637157486601 ] ]
true
null
null
-61.114559
null
0.817231
1.404894
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:36:04
5722544189826615185917986926515668017602905643832363713917520876466776388685552361821752638992504106291491776188584439784147483975040644101444913072320882
PO_5722544189826615185917986
null
null
null
[ "train_2nd_stage_645" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
13052765967395041420733178171990694436947939757534579808822787110817989166841425653822578516292577059962835081853931559506190236176987456425553730318633912
CO_1305276596739504142073317
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni6Ti
Al2Ni6Ti
A6B2C
[ 13, 13, 28, 28, 28, 28, 28, 28, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.2222222222222222, 0.6666666666666666, 0.1111111111111111 ]
3
9
[ [ 0.135112, 3.49146, 0.282308 ], [ 5.2163, 0.004795, -2.62057 ], [ -4.03339, -1.27931, -3.97965 ] ]
[ [ 5.20497, 0.00616, -2.63044 ], [ 2.47372, 0.12092, -2.71203 ], [ 1.38453, 1.79802, -1.15231 ], [ 3.98067, 1.90142, -3.71293 ], [ -0.01898, 0.20726, -2.56165 ], [ 1.35021, 2.01038, -3.77168 ], [ -2.66331, 0.31383, -2.58394 ], [ -0.07509, 0.41857, -5.1562 ], [ -1.14833, 2.09602, -3.61105 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12238725122899026214675977025171051299636764299527673715262907141186787295534947139545482857348871552611013158313820409903539103967265396102495905177699534
1
VASP
DFT
null
[ [ 0.031061, -0.006261, 0.06174 ], [ 0.116395, -0.002314, -0.02231 ], [ 0.047148, 0.009079, -0.122614 ], [ -0.012659, 0.001485, -0.003235 ], [ -0.069365, -0.004101, 0.07572 ], [ -0.192998, 0.005007, 0.021676 ], [ 0.02415, 0.003385, -0.055697 ], [ 0.260686, -0.019904, 0.109067 ], [ -0.204418, 0.013623, -0.064346 ] ]
null
[ [ -0.0024476702188063783, -0.0004606233734901845, 0.0005397657092063842 ], [ -0.0004606233734901845, -0.003254260443144272, 0.0003350442098774133 ], [ 0.0005397657092063842, 0.0003350442098774133, -0.0058515396356980725 ] ]
true
null
null
-52.234739
null
0.13207
0.283282
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:16:46
10629214746846356939667263311232303861134089980610162573576354055880842333514093322787843107751420158570114890422875815711378822032184788270874145750137186
PO_1062921474684635693966726
null
null
null
[ "train_1st_stage_670" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
3928648150238572964855276212210525492366545959063909263535280899767374468622973681237212252732257230267908163526197976267938123801062677015053170827917753
CO_3928648150238572964855276
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ti7
Al2Ti7
A7B2
[ 13, 13, 22, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.2222222222222222, 0.7777777777777778 ]
2
9
[ [ 3.95161, 0.021809, 0.021565 ], [ -0.00041, 6.01945, -6.01264 ], [ -2.00914, 4.02221, 2.01913 ] ]
[ [ 1.94299, 3.99947, 1.99097 ], [ 1.96399, 4.07514, -1.93514 ], [ 1.96493, 2.01236, -0.02083 ], [ -0.02232, 4.0264, 0.01713 ], [ -0.00042, 2.01823, -1.96403 ], [ -0.02301, 6.07132, -1.9235 ], [ -0.00055, 4.03807, -3.98422 ], [ 1.96465, 6.01197, -4.01328 ], [ -0.02203, 8.00094, -4.05488 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11115883019334100890741267598194896637079246629557055580039789455140597739949689324802565977370347267444249579662680017513527561660380291875098224206118886
1
VASP
DFT
null
[ [ -0.00245, 0.080005, 0.3985 ], [ 0.002597, -0.080376, -0.398677 ], [ -0.000749, -0.099794, 0.161268 ], [ 0.000246, -0.000081, 0.000032 ], [ 0.000532, 0.099712, -0.160548 ], [ -0.000208, 0.098628, -0.006794 ], [ -0.001076, 0.213322, 0.116398 ], [ 0.001034, -0.213401, -0.116992 ], [ 0.000074, -0.098015, 0.006813 ] ]
null
[ [ -0.025618586282644126, 0.00006041780833854993, -0.00001891177265142627 ], [ 0.00006041780833854993, -0.037630495425588974, 0.0016751586342958077 ], [ -0.00001891177265142627, 0.0016751586342958077, -0.026418373262034806 ] ]
true
null
null
-63.982136
null
0.208396
0.406707
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:03:41
2036300991156175750937600998398686819409336495990609613137053748362296271295521255465480453245060123247145399904828695063158099223280018172797802742322680
PO_2036300991156175750937600
null
null
null
[ "train_1st_stage_1014" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11393754831206303898578992739598403741851283401010597209830517885954111970931494867940220807651168678438209545464314287770116525237967610482600573423863786
CO_1139375483120630389857899
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni2Ti4
AlNiTi2
A2BC
[ 13, 13, 28, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.25, 0.25, 0.5 ]
3
8
[ [ 3.13217, 3.23797, 2.19676 ], [ 4.60473, -1.26666, -1.51994 ], [ -0.467968, 3.11958, -3.74315 ] ]
[ [ 0.05138, 0.02034, 0.0019 ], [ -0.18048, 1.56412, -1.84901 ], [ 3.57569, 2.51639, -0.12967 ], [ 3.80631, 2.57237, -2.93631 ], [ 2.50428, 0.66997, -1.28585 ], [ 5.55982, 1.44678, -1.01951 ], [ 1.79095, 3.63768, -2.04419 ], [ 4.88887, 4.42814, -1.77233 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7697894021034819030689750021032930629838858878088071945364326864982725728456888889994682642459096557011122362735050910217028764632737409999701427280685956
1
VASP
DFT
null
[ [ 0.037238, -0.33124, 0.157334 ], [ -0.015701, 0.07463, -0.370861 ], [ -0.009723, -0.018828, -0.011802 ], [ -0.075057, 0.196001, 0.109007 ], [ 0.111769, 0.093382, 0.086875 ], [ -0.114412, 0.04475, 0.074439 ], [ 0.370199, 0.059369, 0.009954 ], [ -0.304313, -0.118063, -0.054946 ] ]
null
[ [ -0.00884502982756294, -0.006626984729497808, 0.0003910305467365861 ], [ -0.006626984729497808, 0.0190480247956443, -0.010120544632528445 ], [ 0.0003910305467365861, -0.010120544632528445, 0.014320268878061513 ] ]
true
null
null
-52.584502
null
0.253409
0.378621
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:36:20
3338162511604201433622746790855012722016650688369192214885270582663575885948542243286676816131206048189455118405528220185303189014184654004100691652744018
PO_3338162511604201433622746
null
null
null
[ "train_2nd_stage_970" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5988103330647181906383607183353089366948226670643935619937481062932455837020505029723563509738010747160086059406185355658359046119363668223424854565423561
CO_5988103330647181906383607
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ti2
AlTi
AB
[ 13, 13, 22, 22 ]
[ "Al", "Ti" ]
[ 0.5, 0.5 ]
2
4
[ [ 0, -2.18396, -2.18396 ], [ 3.78155, 0, 0 ], [ 0, -4.08762, 4.08762 ] ]
[ [ 0, -6.25931, 1.8914 ], [ 1.89078, -4.16996, 1.98601 ], [ 0, -4.22926, -0.13865 ], [ 1.89078, -2.11239, -0.07157 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3879222282226505703441476211656226619537821886141919628706865079691086034053066037675533378725515327673897660386842398800953922374291438167652374451594325
1
VASP
DFT
null
[ [ 0.000023, -0.152483, 0.152461 ], [ -0.000025, 0.152797, -0.15279 ], [ 0.000039, 0.590149, -0.59018 ], [ -0.000036, -0.590462, 0.590509 ] ]
null
[ [ -0.00028985568380601853, -1.8724527377649775e-7, 6.241509125883259e-8 ], [ -1.8724527377649775e-7, 0.004661408675574652, 0.0015786024881183935 ], [ 6.241509125883259e-8, 0.0015786024881183935, 0.004661720751030947 ] ]
true
null
null
-23.88176
null
0.52535
0.835073
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:28:38
4047807021643225143193583403155455672522551803311129330457868606817191369911567471556913328209597643079123770634303388092725873005892087614683384219915443
PO_4047807021643225143193583
null
null
null
[ "train_2nd_stage_261" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12354999191741203383992124466525681667946232019099285997014626313555173693519181927297911829271990153189594370202807909514539512013507934942849586084431844
CO_1235499919174120338399212
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
NiTi
NiTi
AB
[ 28, 22 ]
[ "Ni", "Ti" ]
[ 0.5, 0.5 ]
2
2
[ [ -0.310884, 2.390365, 1.797092 ], [ 3.239003, -2.498185, -1.149127 ], [ 3.507696, 1.710215, -1.669583 ] ]
[ [ 3.51103, 1.72863, -1.63914 ], [ 1.60174, 2.0687, 0.0942 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5510950670821585222527184375066201045633383829246853415482474014890873493205816130203943490969482856781171592709523734288246417685125981139332780054293430
1
VASP
DFT
null
[ [ -0.000023, 0.000011, -0.000007 ], [ 0.000023, -0.000011, 0.000007 ] ]
null
[ [ -0.0003587619445557697, 0.00000967433914511905, 0.000012295772977990018 ], [ 0.00000967433914511905, -0.0004437712988502996, -0.00004575026189272428 ], [ 0.000012295772977990018, -0.00004575026189272428, -0.00041331273431598935 ] ]
true
null
null
-14.012768
null
0.000026
0.000026
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:12:27
11452371768556829181764493794239103182508771300450556130665168163264778122577642236528423628135167818556189666395162184306566589756961801757524213820343613
PO_1145237176855682918176449
null
null
null
[ "train_1st_stage_63", "train_1st_stage_222", "train_1st_stage_223" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
3833235608585492117192171983056167331662607376410054393530535354149622219934274694438963288197880723318655431176930224516531633982510666204501090991851779
CO_3833235608585492117192171
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni2Ti8
NiTi4
A4B
[ 28, 28, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.2, 0.8 ]
2
10
[ [ 0.026703, 2.10183, 2.06566 ], [ -2.15178, 4.32711, -6.47737 ], [ -6.96631, -0.197418, 0.290927 ] ]
[ [ -6.86901, 0.05786, 0.02993 ], [ -3.73919, 1.81696, -1.80045 ], [ -5.29075, 1.98833, 0.14757 ], [ -2.31764, 4.03514, -1.97351 ], [ -7.55348, 4.1376, -4.11239 ], [ -5.65253, 6.2609, -4.19513 ], [ -1.8076, 2.08704, 0.00211 ], [ -7.08075, 2.04286, -1.9871 ], [ -5.1798, 4.16616, -2.06984 ], [ -3.44934, 4.46604, -4.49965 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6176353394698066880603756187046948603572163012947524118270061475908417166695121876985162701050246947927725045224667284493629107406947849973942244177472010
1
VASP
DFT
null
[ [ 0.083144, -0.207675, 0.209829 ], [ -0.084738, 0.207696, -0.209459 ], [ -0.002375, 0.000934, -0.001052 ], [ 0.377311, 0.179586, -0.188915 ], [ 0.394045, -0.359709, 0.360511 ], [ 0.137172, -0.580894, 0.589177 ], [ 0.002038, 0.000431, -0.000576 ], [ -0.135956, 0.580009, -0.588283 ], [ -0.39531, 0.358807, -0.359596 ], [ -0.37533, -0.179185, 0.188365 ] ]
null
[ [ 0.014790004854875485, -0.007283216998993174, 0.007345320014795712 ], [ -0.007283216998993174, 0.003863119658374184, 0.005945599178225133 ], [ 0.007345320014795712, 0.005945599178225133, 0.00347090322490368 ] ]
true
null
null
-74.312172
null
0.449722
0.83868
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:14:44
12738959816739425676885472613847818188287156030256170884227939615921977922559578840922257968354632173227597003263184999045104350512880870513137474393844055
PO_1273895981673942567688547
null
null
null
[ "train_1st_stage_451" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
254435721494400694871392569737028219712778282992682780202278544009658423338563831322252073534716491438122187329656749889863086812418744936826498843946899
CO_2544357214944006948713925
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni6Ti6
AlNi3Ti3
A3B3C
[ 13, 13, 28, 28, 28, 28, 28, 28, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.14285714285714285, 0.42857142857142855, 0.42857142857142855 ]
3
14
[ [ 3.85409, -6.67548, 0 ], [ 3.85409, 6.67548, 0 ], [ 0, 0, 3.91909 ] ]
[ [ 3.85409, -2.22561, 0.97977 ], [ 3.85409, 2.22561, 2.93932 ], [ 1.69811, 2.00932, 0.97977 ], [ 5.119, 0.46595, 0.97977 ], [ 4.74516, 4.20021, 0.97977 ], [ 6.01007, -2.00932, 2.93932 ], [ 2.58918, -0.46595, 2.93932 ], [ 2.96303, -4.20021, 2.93932 ], [ 1.32041, -0.23097, 0.97977 ], [ 3.39391, -5.41649, 0.97977 ], [ 6.84795, -1.02802, 0.97977 ], [ 6.38777, 0.23097, 2.93932 ], [ 4.31427, 5.41649, 2.93932 ], [ 0.86023, 1.02802, 2.93932 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3234428470444467646402258535836845242478366671606925149428003678833558467562524323665284972795991771792932050329157868243847452307739239414556797499965931
1
VASP
DFT
null
[ [ 0.000167, 0.000107, 0 ], [ -0.000282, -0.000744, 0.000001 ], [ 2.581015, 3.316856, 0.000019 ], [ -4.160985, 0.576073, 0.000023 ], [ 1.581586, -3.891098, 0.000023 ], [ -2.580591, -3.316722, -0.000018 ], [ 4.160411, -0.576315, -0.000015 ], [ -1.581634, 3.891223, -0.000016 ], [ 7.820172, -1.330042, 0.000043 ], [ -2.756719, 7.437423, 0.000089 ], [ -5.063074, -6.106247, 0.000068 ], [ -7.819518, 1.331197, -0.000079 ], [ 2.75737, -7.438085, -0.000074 ], [ 5.062083, 6.106373, -0.000065 ] ]
null
[ [ 0.2646468525974886, -0.0000300840739867573, 1.8724527377649775e-7 ], [ -0.0000300840739867573, 0.2646717562189009, 4.993207300706607e-7 ], [ 1.8724527377649775e-7, 4.993207300706607e-7, 0.4104409535520792 ] ]
true
null
null
-71.28189
null
5.20005
7.93273
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:16:05
845704728362502603752981479470001705933454985342060187432397529284087393282056668002286597114561660206764511727062713341682401082854022934657390946929546
PO_8457047283625026037529814
null
null
null
[ "train_1st_stage_2237" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5115368252765904278162406662711224685603477749508995762930773931650451296335105702756781828196409160435280643338142810704489195130766541369027884835162100
CO_5115368252765904278162406
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi4Ti
AlNi4Ti
A4BC
[ 13, 28, 28, 28, 28, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.16666666666666666, 0.6666666666666666, 0.16666666666666666 ]
3
6
[ [ 0.789261, 4.13193, -0.787734 ], [ 2.96365, -0.000643, 2.96617 ], [ 3.16544, 0.992538, -3.16256 ] ]
[ [ 0.77541, 3.93752, -0.74639 ], [ 1.30385, 1.51999, -1.27487 ], [ 2.62518, 3.22675, -2.59472 ], [ 3.24772, 4.00313, -0.25292 ], [ 3.80198, 1.5695, -0.80722 ], [ 1.91885, 2.16898, 1.07445 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6629073769778265699924434795062219334434482545752883148032058004672184828771038165379433956813725725759844526696850454824445109755494159916294827855007796
1
VASP
DFT
null
[ [ 0.114778, 0.624798, -0.114228 ], [ 0.083977, -0.292045, -0.084237 ], [ -0.182659, -0.17739, 0.182465 ], [ 0.037271, -0.160403, -0.037622 ], [ -0.087939, -0.11192, 0.087677 ], [ 0.034572, 0.116959, -0.034055 ] ]
null
[ [ -0.004037881913898915, 0.001832694324633101, 0.0034986155254226018 ], [ 0.001832694324633101, -0.0023761425242237563, -0.0018303849662565244 ], [ 0.0034986155254226018, -0.0018303849662565244, -0.00403008002749156 ] ]
true
null
null
-36.041965
null
0.289458
0.645441
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:56:12
8388593290073926365178409500947044270765465721521419347107073683534903657015762301178403197165875078077630800518944845341407986031068952453304299083664782
PO_8388593290073926365178409
null
null
null
[ "train_2nd_stage_914" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
13230537176797225825837921639157865681796788974409303654393058151288557393579264773391803610616173678684762226515476045243866569929989162685991771381752443
CO_1323053717679722582583792
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0