chemical_formula_hill
string
chemical_formula_reduced
string
chemical_formula_anonymous
string
atomic_numbers
list
elements
list
elements_ratios
list
nelements
int32
nsites
int32
cell
list
positions
list
pbc
list
dimension_types
list
nperiodic_dimensions
int32
structure_hash
string
multiplicity
int32
software
string
method
string
adsorption_energy
float64
atomic_forces
list
atomization_energy
float64
cauchy_stress
list
cauchy_stress_volume_normalized
bool
electronic_band_gap
float64
electronic_band_gap_type
string
energy
float64
formation_energy
float64
max_force_norm
float64
mean_force_norm
float64
property_object_metadata
string
property_object_metadata_id
string
property_object_last_modified
timestamp[ns]
property_object_hash
string
property_object_id
string
configuration_metadata
string
configuration_metadata_id
string
configuration_labels
list
configuration_names
list
configuration_dataset_ids
list
configuration_last_modified
timestamp[ns]
configuration_hash
string
configuration_id
string
dataset_name
string
dataset_authors
list
dataset_description
string
dataset_elements
list
dataset_nelements
int32
dataset_nproperty_objects
int64
dataset_nconfigurations
int32
dataset_nsites
int64
dataset_adsorption_energy_count
int64
dataset_atomic_forces_count
int64
dataset_atomization_energy_count
int64
dataset_cauchy_stress_count
int64
dataset_electronic_band_gap_count
int64
dataset_energy_count
int64
dataset_energy_mean
float64
dataset_energy_variance
float64
dataset_formation_energy_count
int64
dataset_last_modified
timestamp[ns]
dataset_dimension_types
list
dataset_nperiodic_dimensions
list
dataset_publication_year
string
dataset_total_elements_ratios
list
dataset_license
string
dataset_links
string
dataset_doi
string
dataset_hash
string
dataset_id
string
dataset_extended_id
string
Al10Ni4Ti2
Al5Ni2Ti
A5B2C
[ 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 28, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.625, 0.25, 0.125 ]
3
16
[ [ 3.81351, 0, 0 ], [ 0, 5.39555, 0 ], [ 0, 0, 10.7327 ] ]
[ [ 0, 0, 0 ], [ 0, 2.69777, 5.36636 ], [ 0, 2.68079, 7.99378 ], [ 0, 2.71475, 2.73894 ], [ 0, 0.01698, 2.62743 ], [ 0, 5.37857, 8.1053 ], [ 1.90675, 1.3704, 9.36965 ], [ 1.90675, 4.02515, 1.36308 ], [ 1.90675, 1.32737, 4.00329 ], [ 1.90675, 4.06817, 6.72944 ], [ 1.90675, 1.37926, 6.73606 ], [ 1.90675, 4.01629, 3.99667 ], [ 1.90675, 1.31852, 1.36969 ], [ 1.90675, 4.07703, 9.36303 ], [ 0, 0, 5.36636 ], [ 0, 2.69778, 0 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7607522066007357527672334969249145562695561185153459293127064365054244340270202709554833430879448113074070646153805239174923229466641547429458299635288419
1
VASP
DFT
null
[ [ -0.000027, -0.000027, 0.000052 ], [ -0.000026, 0.000004, 0.000099 ], [ -0.000031, -0.044367, 0.258041 ], [ -0.00003, 0.044443, -0.258121 ], [ -0.000031, 0.044139, 0.258059 ], [ -0.000031, -0.044241, -0.258206 ], [ 0.000052, 0.053409, 0.261885 ], [ 0.000052, -0.053409, -0.262086 ], [ 0.000052, -0.053516, 0.262262 ], [ 0.000051, 0.053625, -0.262126 ], [ 0.000015, 0.056155, 0.06562 ], [ 0.000014, -0.056055, -0.065485 ], [ 0.000014, -0.056337, 0.0656 ], [ 0.000014, 0.056328, -0.065676 ], [ -0.000044, -0.000205, 0.000255 ], [ -0.000043, 0.000054, -0.000172 ] ]
null
[ [ -0.02479895130423314, 0, -6.241509125883259e-8 ], [ 0, -0.02196568065162969, 1.8724527377649775e-7 ], [ -6.241509125883259e-8, 1.8724527377649775e-7, -0.04541902500341366 ] ]
true
null
null
-79.930387
null
0.153983
0.267666
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:23:24
919309333186014325323020049788925809800036817369390033353442162069784011153098627363447186163189278569851743032289918487412065254387610481706813774195469
PO_9193093331860143253230200
null
null
null
[ "train_2nd_stage_169" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4116476033967516067816311964108524629291728896716077827106419303993980216683512008576675762073734550336300336918399191091882017382126598245038606721645917
CO_4116476033967516067816311
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni5Ti6
Ni5Ti6
A6B5
[ 28, 28, 28, 28, 28, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.45454545454545453, 0.5454545454545454 ]
2
11
[ [ 2.26981, 2.49136, 2.11097 ], [ 4.58051, -1.62879, -3.03097 ], [ -1.73271, 3.43142, -5.98308 ] ]
[ [ 5.02483, 4.26415, -6.72745 ], [ 2.38593, 1.33965, -0.35486 ], [ 4.85965, 1.05557, -2.74705 ], [ 2.91253, 1.23318, -4.60799 ], [ 2.42606, 4.72895, -4.43248 ], [ 2.59883, -0.1272, -2.64634 ], [ 0.33065, 1.39778, -1.99031 ], [ 2.76705, 2.8343, -2.58088 ], [ 4.90822, 2.71955, -4.75599 ], [ 0.42025, 3.20666, -4.22745 ], [ 2.59748, 3.06891, -6.42919 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
369928118793688976579894917294362880987302763857456012179724719527878950872828297798815408940252448190536517441323332920766219604436779933874824602633672
1
VASP
DFT
null
[ [ -0.000766, 0.171727, -0.182076 ], [ -0.266881, 0.184558, -0.018959 ], [ 0.161329, -0.117321, 0.053536 ], [ 0.132637, -0.010601, -0.098304 ], [ 0.095703, -0.326588, 0.198555 ], [ 0.166204, 0.129684, -0.201977 ], [ -0.279273, 0.092951, 0.211975 ], [ -0.171938, 0.232805, -0.043454 ], [ 0.08484, -0.217306, 0.142646 ], [ 0.30663, 0.024747, -0.39367 ], [ -0.228484, -0.164654, 0.331728 ] ]
null
[ [ 0.0012122259024290464, 0.0019358040553926923, 0.0014799242288381792 ], [ 0.0019358040553926923, 0.001310716916435484, 0.0030110912475998603 ], [ 0.0014799242288381792, 0.0030110912475998603, -0.0034023090396102227 ] ]
true
null
null
-77.298574
null
0.317894
0.49961
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:33:46
9714501113005465169110980722243646317371097753173786622467731942281681400750381234768110308605301013235752464745484809491766021431127373642874553152984639
PO_9714501113005465169110980
null
null
null
[ "train_2nd_stage_829" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9916043507138079282681070784062886802318337461714743229751257657576599648243498118022005979772409473135996193361366254327209017742197710915317155160955513
CO_9916043507138079282681070
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni6Ti2
Al2Ni3Ti
A3B2C
[ 13, 13, 13, 13, 28, 28, 28, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.3333333333333333, 0.5, 0.16666666666666666 ]
3
12
[ [ 3.62055, 2.72442, 0.094938 ], [ 0.168269, 4.34765, 3.8271 ], [ -0.128068, -4.30836, 3.86719 ] ]
[ [ 0.27078, 4.1871, 3.91243 ], [ 2.72477, 0.24701, 3.91361 ], [ 0.88923, 1.0684, 2.06302 ], [ 1.03354, 1.48486, 5.60559 ], [ 0.80551, 0.10762, 3.74796 ], [ 1.15275, -2.3552, 3.89674 ], [ 1.39621, 2.47265, 3.90008 ], [ 2.76233, 4.46081, 4.04217 ], [ 3.43601, 1.66014, 5.90871 ], [ 3.3842, 1.65205, 2.03061 ], [ 2.29557, 3.40154, 2.04432 ], [ 2.23545, 2.56656, 5.65822 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2790344509837297665063197445096590101074173707890932931976710774641168535969926199102635827228729861362299090466989199156388135892273013836448910820048233
1
VASP
DFT
null
[ [ 1.239272, 0.072539, -1.469208 ], [ 1.109767, 4.772406, -1.738805 ], [ 4.238409, 1.790327, -3.095712 ], [ -17.568179, -19.538507, 1.631273 ], [ -5.301967, -4.397909, 3.965584 ], [ 1.818795, 2.068537, 1.404306 ], [ -0.091541, -1.562012, -6.910607 ], [ 0.15388, 0.584394, 0.609974 ], [ 18.752116, -15.384186, 2.588 ], [ -1.290154, -2.487493, 2.772494 ], [ -3.825718, 3.127717, 0.052595 ], [ 0.76532, 30.954186, 0.190104 ] ]
null
[ [ 0.6569903007787042, -0.043571600717243475, 0.04553574122406767 ], [ -0.043571600717243475, 0.5117179899870375, -0.07638165381473029 ], [ 0.04553574122406767, -0.07638165381473029, 0.4184825139098671 ] ]
true
null
null
-42.183499
null
10.184941
30.964229
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:36:43
6579470076967832120428343025900873026793544869058752605392463944969243023539053993127083920225446719819804541803796989004231761507371168384125802710639616
PO_6579470076967832120428343
null
null
null
[ "train_1st_stage_1759", "train_1st_stage_1959", "train_1st_stage_1559", "train_1st_stage_1359" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
3596870215739721571984011230142844513235254397735065112103032170323034279495417782421839158397282770062310313246956529142312307191091336692266524425288221
CO_3596870215739721571984011
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
NiTi11
NiTi11
A11B
[ 28, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.08333333333333333, 0.9166666666666666 ]
2
12
[ [ -1.68036, 1.39418, 1.90267 ], [ 1.46197, -1.61232, 4.72821 ], [ 10.5524, 7.54313, 1.4909 ] ]
[ [ -1.06265, 1.02954, 1.39999 ], [ 1.33065, 1.72041, 5.22537 ], [ 2.73941, 3.00507, 3.29424 ], [ 6.06149, 2.97178, 6.26531 ], [ 7.73782, 4.51606, 4.3706 ], [ 7.89764, 7.46594, 4.52889 ], [ 0.21376, -0.40239, 3.60029 ], [ 1.38247, 1.04632, 1.34688 ], [ 3.96298, 1.64232, 5.40647 ], [ 5.54716, 3.0449, 3.55496 ], [ 5.63902, 5.99026, 3.62915 ], [ 8.67318, 5.77741, 6.49421 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7347013358856824712896441619698395801034293859548329772107727424683329023731893517913571587685720181497851555775560230183938095466709575904211309390830909
1
VASP
DFT
null
[ [ -0.226437, -0.419971, 0.135491 ], [ -0.613703, -0.567637, -0.175141 ], [ 0.503888, 0.100498, 0.38041 ], [ 0.040622, 0.193483, -0.145901 ], [ -0.160553, -0.278031, 0.031467 ], [ 0.243213, 0.303691, -0.060508 ], [ -0.025798, 0.009201, 0.039963 ], [ -0.280926, -0.565795, 0.162935 ], [ 0.198478, 0.91948, -0.472252 ], [ -0.038646, 0.189137, -0.184722 ], [ -0.267455, -0.050761, -0.137646 ], [ 0.627317, 0.166707, 0.425905 ] ]
null
[ [ 0.08824351707828891, -0.0027020117156861213, 0.022279878221026655 ], [ -0.0027020117156861213, 0.0751638729691792, -0.006175161883875119 ], [ 0.022279878221026655, -0.006175161883875119, 0.08779219355339629 ] ]
true
null
null
-91.026552
null
0.504452
1.052549
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:51:46
6778076733530361288827680795182927261339232567962463410876106680508031891523931649906700205346311541072400134482147428691498039550796385260264925731232759
PO_6778076733530361288827680
null
null
null
[ "train_2nd_stage_633" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
3976715305771309433841892570705698924937288962227460896979247254512575627906691886844030810235495359835609295538162516107818507657226653297674869063006149
CO_3976715305771309433841892
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni3
Al4Ni3
A4B3
[ 13, 13, 13, 13, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.5714285714285714, 0.42857142857142855 ]
2
7
[ [ -1.5189, 1.34557, 10.8051 ], [ 1.34557, -1.5189, 10.8051 ], [ 1.51881, 1.51881, -10.7821 ] ]
[ [ 1.49187, 1.49187, -7.4246 ], [ -0.14639, -0.14639, 18.2527 ], [ -0.0755, -0.0755, 9.41427 ], [ -0.09782, -0.09782, 12.19592 ], [ 0, 0, 0 ], [ -0.04913, -0.04913, 6.12606 ], [ 1.39461, 1.39461, 4.70203 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5994462775319200202911812008867247564637930872471652420099929757970622577659999253559870458480268542618035816614346327792411862977681762990405018087133686
1
VASP
DFT
null
[ [ -0.002306, -0.002306, 0.315109 ], [ 0.002314, 0.002314, -0.315094 ], [ 0.003358, 0.003358, -0.39131 ], [ -0.003388, -0.003388, 0.391307 ], [ 0.000022, 0.000022, -0.000094 ], [ -0.00462, -0.00462, 0.538243 ], [ 0.00462, 0.00462, -0.538161 ] ]
null
[ [ -0.022404458743179284, 0.000008113961863648234, -0.00010804052296903918 ], [ 0.000008113961863648234, -0.022404458743179284, -0.00010804052296903918 ], [ -0.00010804052296903918, -0.00010804052296903918, -0.008675510439703951 ] ]
true
null
null
-33.886922
null
0.355642
0.538283
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:42:01
7593319153676312648623735738570827912258319640453425824168352831985494609425751620391580907762741419843459109872183080279027276046899493779631353491069233
PO_7593319153676312648623735
null
null
null
[ "train_2nd_stage_178" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
2351149254073470291043952759330701238256330124665107482271446094790249071970192255274559647050010579173389597412986747414705371121197065308162515073470091
CO_2351149254073470291043952
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni5
Al6Ni5
A6B5
[ 13, 13, 13, 13, 13, 13, 28, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.5454545454545454, 0.45454545454545453 ]
2
11
[ [ -2.831077, -2.933804, 0.055387 ], [ 4.479844, -1.569167, -4.287259 ], [ 4.966057, -4.768631, 1.238617 ] ]
[ [ 2.01432, -4.91362, -3.95846 ], [ 3.3285, -6.11295, -0.24725 ], [ 4.10617, -4.06266, -1.99981 ], [ 2.18655, -2.19023, -0.92927 ], [ 5.09922, -7.84239, -1.38782 ], [ 5.9272, -5.84227, -3.20248 ], [ 3.55874, -6.38108, -2.71899 ], [ -0.09706, -2.80566, -0.15465 ], [ 3.7405, -3.66541, 0.40425 ], [ 1.73084, -4.59335, -1.43682 ], [ 2.55227, -2.58754, -3.33332 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
1947079309664286697307813948796877617166552706273422411033083863289864658838035851140353786200742201478763864128243513550935580289122016370327962440443697
1
VASP
DFT
null
[ [ 0.00018, 0.000001, 0.011436 ], [ -0.001274, 0.001047, -0.001505 ], [ 0.001389, -0.001424, -0.002939 ], [ -0.001366, 0.001399, 0.00306 ], [ 0.001267, -0.001068, 0.001452 ], [ -0.000231, 0.00002, -0.01142 ], [ 0.006051, -0.005777, 0.010298 ], [ -0.006001, 0.005715, -0.010266 ], [ -0.003841, 0.003838, 0.000448 ], [ -0.000005, -0.000006, 0.000045 ], [ 0.003832, -0.003744, -0.000609 ] ]
null
[ [ -0.00005885743105707912, -0.00011790210738793475, -0.000006678414764695086 ], [ -0.00011790210738793475, -0.00006541101563925655, 0.000016165508636037638 ], [ -0.000006678414764695086, 0.000016165508636037638, 0.00005642324249798465 ] ]
true
null
null
-56.818968
null
0.006529
0.013268
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:13:27
12823709584771871109595742318886717477787653329350195018635892041522096221127416273765968771121058639885174137825465136598980003123278093762798954237223250
PO_1282370958477187110959574
null
null
null
[ "train_1st_stage_228" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11596410914255959731418090919338477157700310645138363245057440601686552854446220833321548866410773857898000234098060494890945075924304354497755525196480670
CO_1159641091425595973141809
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi6Ti3
AlNi6Ti3
A6B3C
[ 13, 28, 28, 28, 28, 28, 28, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.1, 0.6, 0.3 ]
3
10
[ [ -3.00049, -2.88358, 0.060463 ], [ -0.046217, 2.88095, -2.89579 ], [ 2.91541, -5.78788, -5.80469 ] ]
[ [ 2.89008, -5.78995, -5.80632 ], [ -1.53132, -1.49533, -1.46321 ], [ -1.66323, -1.42368, -4.27119 ], [ -0.02668, -2.91399, -2.89863 ], [ -1.48715, -4.36087, -4.31476 ], [ 1.47217, -4.31225, -4.31359 ], [ 1.39, -4.33551, -7.21675 ], [ -0.03901, -0.09207, -2.97233 ], [ -0.13251, -2.77515, -5.64013 ], [ -0.04804, -5.78817, -5.75765 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12964463708340094961117040628099544815880864211730022660825647580772615802432149882169352431725824369389627383946635841878258392686110212270606697798844586
1
VASP
DFT
null
[ [ 0.019147, -0.023244, -0.02356 ], [ -0.042007, 0.026929, 0.027478 ], [ -0.049996, 0.056312, 0.056852 ], [ -0.097033, 0.086456, 0.087612 ], [ 0.212295, -0.183597, -0.186025 ], [ 0.11142, -0.102188, -0.103439 ], [ -0.086512, 0.064282, 0.065386 ], [ 0.020935, -0.084639, -0.084532 ], [ -0.269254, 0.371902, 0.374368 ], [ 0.181004, -0.212214, -0.214141 ] ]
null
[ [ -0.007323162657398827, -0.0007540991325892152, -0.0007511032082087913 ], [ -0.0007540991325892152, -0.006770601854484382, 0.0005749678206763656 ], [ -0.0007511032082087913, 0.0005749678206763656, -0.006753624949661979 ] ]
true
null
null
-64.593516
null
0.205776
0.592419
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:42:03
9646437722378968168531208738663662719953123944084525517361252469377768307430330517784201041082759931155035263923659511817962555292410932575892446061116502
PO_9646437722378968168531208
null
null
null
[ "train_1st_stage_426" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9768051182927486882593560920652790966717579535664886488097852757023579181541421178269441303006549627608420224766151096405441697045391267473192523081368049
CO_9768051182927486882593560
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
NiTi2
NiTi2
A2B
[ 28, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
3
[ [ -2.76104, -0.001297, -0.286752 ], [ 0.035839, -2.74619, -0.403402 ], [ -1.96369, -2.2241, 5.25389 ] ]
[ [ 0, 0, 0 ], [ -3.14132, -3.33621, 3.18601 ], [ -1.54756, -1.63538, 1.37773 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10134191912672621135629964136373777514544456944778660744067079423145741436001912316207224857840565856241454820003479879667094951136139501683249435751304702
1
VASP
DFT
null
[ [ -0.000042, -0.000096, 0.000624 ], [ 0.059227, 0.08324, -0.53397 ], [ -0.059184, -0.083144, 0.533346 ] ]
null
[ [ -0.005695189832094697, 0.000411190621213189, -0.001959709035344825 ], [ 0.000411190621213189, -0.005487222748020266, -0.002609762210805567 ], [ -0.001959709035344825, -0.002609762210805567, 0.008428721168866529 ] ]
true
null
null
-21.80468
null
0.362437
0.543655
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:20:08
5640161203247568750454152483267741896829741734332561138510701818004746288219793758019192409312437526600932590441853742622189592667320908172328504629351183
PO_5640161203247568750454152
null
null
null
[ "train_2nd_stage_422" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5703638861084618791736716673349583349851002421023615299626637524582853691717466827016245641294532095591891062532449900410984905257378433360754391931188771
CO_5703638861084618791736716
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni3
Al4Ni3
A4B3
[ 13, 13, 13, 13, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.5714285714285714, 0.42857142857142855 ]
2
7
[ [ -2.95676, -2.80052, 0.112377 ], [ -0.026665, 2.8773, -2.88523 ], [ 1.55393, -4.79091, -4.7897 ] ]
[ [ 1.01646, -4.20024, -4.196 ], [ -1.64215, -1.27908, -1.26045 ], [ 0.17329, -0.30828, -3.18507 ], [ -0.93139, -2.17803, -5.03921 ], [ -0.32886, -2.7226, -2.71088 ], [ -1.43585, -4.58939, -4.56142 ], [ 0.41393, -3.65566, -6.52433 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7813287532723241748169657349151060742071751301367872517771916502376203402748455671042414426441401765717239980512672902741255973565726112063535571486294335
1
VASP
DFT
null
[ [ 0.093257, -0.102725, -0.103708 ], [ 0.154243, -0.169173, -0.167131 ], [ -0.15441, 0.169358, 0.167346 ], [ -0.093279, 0.102793, 0.103666 ], [ 0.197077, -0.219842, -0.219841 ], [ 0.000359, -0.000401, -0.000348 ], [ -0.197245, 0.219991, 0.220016 ] ]
null
[ [ 0.0019908541658829825, 0.0012445569197011216, 0.0012438079386060158 ], [ 0.0012445569197011216, 0.001710111085400754, -0.0014570803054374465 ], [ 0.0012438079386060158, -0.0014570803054374465, 0.001584095016149171 ] ]
true
null
null
-35.614547
null
0.235831
0.368387
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:42:05
10460949030277449069757990765013355192716785461281551373931091164406118127712946447183120391267888104389947624674361918637648295742851739227874534786131027
PO_1046094903027744906975799
null
null
null
[ "train_1st_stage_1136" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7759470696187760338947245596289094900417569379745817908047818280378825382548202518225955215517267717083144308255159772173119156588198851973305327881090160
CO_7759470696187760338947245
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni6Ti4
Ni3Ti2
A3B2
[ 28, 28, 28, 28, 28, 28, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.6, 0.4 ]
2
10
[ [ 0.196535, -4.77243, -0.172142 ], [ 2.47133, -0.116176, 4.08942 ], [ -3.88348, -2.00681, 4.26561 ] ]
[ [ -3.65321, -5.83395, 4.06481 ], [ 0.67188, -5.29585, 3.72365 ], [ -1.52791, -4.37186, 4.60456 ], [ 0.48648, -2.92755, 3.96115 ], [ 1.34203, -3.97841, 1.92646 ], [ -0.2297, -1.50532, 6.06124 ], [ -1.68517, -2.00175, 4.09246 ], [ -1.21559, -4.07125, 2.0365 ], [ -1.43481, -3.63337, 6.95674 ], [ -0.03497, -1.59512, 1.41346 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
13119395838549578627897389248096386168983114183998497973685955995702482449143366636380732011555504830717382194914013201442192888612927905288499219634306901
1
VASP
DFT
null
[ [ 0.058456, 0.103377, 0.158779 ], [ -0.228234, -0.434649, 0.125834 ], [ -0.302959, -0.122118, 0.023766 ], [ 0.071326, 0.163354, 0.086215 ], [ 0.02423, 0.01896, -0.506017 ], [ 0.187741, -0.115854, -0.242916 ], [ 0.124501, 0.253993, 0.232707 ], [ -0.025172, 0.205972, 0.046308 ], [ 0.136475, 0.021793, 0.162279 ], [ -0.046364, -0.094829, -0.086954 ] ]
null
[ [ -0.00904875268543177, 0.002796882654399547, -0.0010756616827547207 ], [ 0.002796882654399547, -0.005583841309288939, -0.0012421227311420271 ], [ -0.0010756616827547207, -0.0012421227311420271, -0.0034141054918581425 ] ]
true
null
null
-67.686809
null
0.299449
0.506951
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:51:42
2476445779343162954403502376161680416390909029163403584953056964447881968026061607509181867666951051453451568922047104328566291810364462188743193675069135
PO_2476445779343162954403502
null
null
null
[ "train_1st_stage_855" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12007761176632660574129319359923123614401473112438161068813449394816584051895936771231961401254754106556991129730633897184211657219961073831094512771806103
CO_1200776117663266057412931
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni2Ti2
Al2NiTi
A2BC
[ 13, 13, 13, 13, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.5, 0.25, 0.25 ]
3
8
[ [ 3.87032, 0, 0 ], [ 0, 4.95497, 0 ], [ 0, 0, 6.02541 ] ]
[ [ 1.93517, 0, 0 ], [ 1.93517, 2.47748, 0 ], [ 1.93516, 1.23874, 2.36745 ], [ 1.93516, 3.71623, 3.65796 ], [ 3.87031, 1.23874, 0.82734 ], [ 3.87031, 3.71623, 5.19807 ], [ 3.87031, 1.23874, 4.23168 ], [ 3.87031, 3.71623, 1.79373 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5639037965796315383537762075706055267039430167492354006221612339422170857311298130513047572508203714756826436264333430777448190144490717801744627264512855
1
VASP
DFT
null
[ [ -0.000204, -0.000285, 0.000145 ], [ -0.000205, 0.000314, 0.000128 ], [ -0.000072, 0.000012, -0.093951 ], [ -0.00007, -0.000016, 0.093525 ], [ 0.000189, 0.000011, 0.205933 ], [ 0.000184, -0.000028, -0.205988 ], [ 0.00009, 0.000009, -0.037234 ], [ 0.000087, -0.000017, 0.037441 ] ]
null
[ [ -0.019979632447773638, 0, -6.241509125883259e-8 ], [ 0, 0.003533942467075101, 3.744905475529955e-7 ], [ -6.241509125883259e-8, 3.744905475529955e-7, -0.01864338775901329 ] ]
true
null
null
-44.940337
null
0.084356
0.205988
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:13:06
7842886134179224833320838063238900530695045709807009694621809822897832529916519352756308661290815626778977161204379520038867023046638547576783774714848148
PO_7842886134179224833320838
null
null
null
[ "train_2nd_stage_519" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
1137014198373028311721271124215305313717079093107428989077917946331033776171094932561439780967527456284839270230847168806673711035059252040480456795371684
CO_1137014198373028311721271
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al5Ni2
Al5Ni2
A5B2
[ 13, 13, 13, 13, 13, 28, 28 ]
[ "Al", "Ni" ]
[ 0.7142857142857143, 0.2857142857142857 ]
2
7
[ [ -0.000842, 2.85913, 0.069989 ], [ 2.85913, -0.000842, 0.069989 ], [ 1.72273, 1.72273, -11.9208 ] ]
[ [ 1.71012, 1.71012, -11.406 ], [ 1.46734, 1.46734, -1.49056 ], [ 2.94591, 2.94591, -3.4384 ], [ 1.56757, 1.56757, -5.58377 ], [ 1.63885, 1.63885, -8.49489 ], [ 3.03229, 3.03229, -6.96718 ], [ 3.10368, 3.10368, -9.88263 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
922121418325304205980919451316485039252559793256662063213488041252795398219945223240709112721383268123266823066710767335052826177809725592999078927942033
1
VASP
DFT
null
[ [ 0.004658, 0.004659, -0.240142 ], [ -0.0044, -0.0044, 0.14225 ], [ 0.004077, 0.004077, -0.142701 ], [ -0.005007, -0.005008, 0.239646 ], [ -0.00023, -0.00023, 0.000214 ], [ 0.004835, 0.004837, -0.207535 ], [ -0.003933, -0.003935, 0.208268 ] ]
null
[ [ 0.002397113994886724, 0.00011378271136485179, 0.0003228732670819409 ], [ 0.00011378271136485179, 0.0023970515797954654, 0.0003228732670819409 ], [ 0.0003228732670819409, 0.0003228732670819409, -0.005267521626789175 ] ]
true
null
null
-32.271282
null
0.168795
0.240232
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:12:05
2814242528846890026848735392676109764546369056932349511239284079799659156856263333487100645159082789176303774329706153938781084692826003964324229312022652
PO_2814242528846890026848735
null
null
null
[ "train_1st_stage_571" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
13177072850406081161538288552318604210706085466360771809352670206828497735853339415456159700924431084776933806300143013469725182439091238601948674506229598
CO_1317707285040608116153828
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al8Ni4Ti4
Al2NiTi
A2BC
[ 13, 13, 13, 13, 13, 13, 13, 13, 28, 28, 28, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.5, 0.25, 0.25 ]
3
16
[ [ 4.92471, 0, 0 ], [ 0, 6.72628, 0 ], [ 0, 0, 7.06997 ] ]
[ [ 0.51386, 0.34198, 1.26438 ], [ 2.97622, 6.3843, 2.2706 ], [ 4.41085, 3.70512, 5.80559 ], [ 1.9485, 3.02116, 4.79937 ], [ 4.41085, 6.3843, 5.80559 ], [ 1.9485, 0.34198, 4.79937 ], [ 0.51386, 3.02116, 1.26438 ], [ 2.97622, 3.70512, 2.2706 ], [ 4.27079, 5.04471, 0.73866 ], [ 1.80843, 1.68157, 2.79632 ], [ 0.65392, 1.68157, 6.33131 ], [ 3.11628, 5.04471, 4.27365 ], [ 0.53417, 5.04471, 3.31401 ], [ 2.99653, 1.68157, 0.22098 ], [ 4.39055, 1.68157, 3.75596 ], [ 1.92819, 5.04471, 6.84899 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12017314581691436024647389666228195150000439900225885007794629302501549142355313048095004548424379479240529288666477047883112742058140310362962226060315617
1
VASP
DFT
null
[ [ 0.036173, -0.088374, 0.110376 ], [ 0.036339, 0.088432, -0.110368 ], [ -0.036674, -0.088293, -0.110143 ], [ -0.036104, 0.088276, 0.110125 ], [ -0.036675, 0.088294, -0.110142 ], [ -0.036102, -0.088285, 0.110127 ], [ 0.036179, 0.088359, 0.110377 ], [ 0.036337, -0.088432, -0.110366 ], [ 0.286683, 0.000007, -0.123975 ], [ 0.286626, 0.000006, 0.124438 ], [ -0.286467, 0.000001, 0.124152 ], [ -0.286484, 0.000004, -0.1243 ], [ -0.080427, 0.000001, 0.177047 ], [ -0.080028, -0.000004, -0.177432 ], [ 0.080237, 0.000001, -0.177027 ], [ 0.080388, 0.000007, 0.17711 ] ]
null
[ [ -0.032633792879771875, 0, 0.000012607848434284181 ], [ 0, 0.018465629579108137, 0 ], [ 0.000012607848434284181, 0, -0.012580260963947777 ] ]
true
null
null
-90.616202
null
0.199643
0.312473
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:17:43
8945106189186860289190226995628009632639259195092877858864477728367489021009541057944070795503513898421365327818415844443059804902537105046430692562392181
PO_8945106189186860289190226
null
null
null
[ "train_2nd_stage_237" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
3641041367844907287763894547296912705960838120945824572644748609731217682148518228745132876642897913577804634988741507349191093399622198050021034234642045
CO_3641041367844907287763894
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3NiTi4
Al3NiTi4
A4B3C
[ 13, 13, 13, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.375, 0.125, 0.5 ]
3
8
[ [ 2.77991, 0, -2.77991 ], [ 2.78109, 3.9602, 2.78109 ], [ 2.78109, -3.9602, 2.78109 ] ]
[ [ 5.55304, 0, 5.55304 ], [ 5.57013, 0, 0.01032 ], [ 2.7805, 0, 0.00059 ], [ 5.56159, 0, 2.78168 ], [ 4.17104, -1.9801, 1.39113 ], [ 4.17104, 1.9801, 1.39113 ], [ 4.17163, 1.89358, 4.17163 ], [ 4.17163, -1.89358, 4.17163 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
1669877927312317926318312163935103106438384612276521312259273931381168125060511468060492904080146043690617669258939834674327841746923252248431837304797221
1
VASP
DFT
null
[ [ -0.054558, -0.000086, -0.05456 ], [ 0.054639, -0.000046, 0.054591 ], [ -0.000015, -0.000003, 0.000001 ], [ -0.000006, -0.000021, -0.000005 ], [ -0.000468, -0.000061, -0.000443 ], [ 0.000263, -0.000031, 0.000288 ], [ -0.000094, 0.293481, -0.000101 ], [ 0.000238, -0.293232, 0.00023 ] ]
null
[ [ -0.004093306514936758, -0.0000026838489241298007, -0.004205528849020139 ], [ -0.0000026838489241298007, -0.007016829389500477, -0.0000027462640153886334 ], [ -0.004205528849020139, -0.0000027462640153886334, -0.004093119269662981 ] ]
true
null
null
-50.974305
null
0.092773
0.293481
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:35:11
9305623913087596648409883884761494448549461485573520308908320369557174386865155089879724795964787573910736304261807774683640402440899554509282890214744132
PO_9305623913087596648409883
null
null
null
[ "train_1st_stage_1121" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5548762421253118107864171827783807056973911940020321809294657075181347722878039436607191268567168943471305865986238123781390520594915057416833650458886179
CO_5548762421253118107864171
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ti
Al2Ti
A2B
[ 13, 13, 22 ]
[ "Al", "Ti" ]
[ 0.6666666666666666, 0.3333333333333333 ]
2
3
[ [ -2.92772, 0, 2.92772 ], [ -2.92772, -2.92772, 0 ], [ 0, -2.92772, 2.92772 ] ]
[ [ -1.46386, -1.46386, 1.46386 ], [ -4.39157, -4.39157, 4.39157 ], [ 0, 0, 0 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5540085948071180117061732047225448481374183016838487380374507387893238033492948533589683678009904977518140228648623246695309140997595135979485286078637023
1
VASP
DFT
null
[ [ 0.000021, 0.00002, -0.000021 ], [ -0.000096, -0.000095, 0.000096 ], [ 0.000075, 0.000075, -0.000075 ] ]
null
[ [ 0.03322099405833497, -0.000001622792372729647, 0.0000015603772814708146 ], [ -0.000001622792372729647, 0.03322099405833497, 0.000001622792372729647 ], [ 0.0000015603772814708146, 0.000001622792372729647, 0.03322086922815245 ] ]
true
null
null
-14.129178
null
0.00011
0.000166
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:02:25
9887079748583375985661838494422844899980061040575461536219097269711606913728367397580615798190781759035259776619613153079167264541990724148109366406313451
PO_9887079748583375985661838
null
null
null
[ "train_1st_stage_2040" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7501831492984749664185353663995889094428366637846256878617664533391497093366956158018046884173543667625461425385659548280244891834836612799034974437602033
CO_7501831492984749664185353
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni5Ti5
Al2Ni5Ti5
A5B5C2
[ 13, 13, 28, 28, 28, 28, 28, 22, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.16666666666666666, 0.4166666666666667, 0.4166666666666667 ]
3
12
[ [ 4.05431, -0.601763, 0.10795 ], [ -1.00319, 5.65993, 3.06319 ], [ 1.03891, -5.73802, 3.05969 ] ]
[ [ 1.09842, -5.51401, 3.02797 ], [ 3.57946, -0.34647, 3.3292 ], [ 3.4594, -3.98711, 3.21719 ], [ 2.41821, 1.71292, 3.05297 ], [ 1.70964, -1.98263, 3.04977 ], [ 0.71552, 3.71259, 3.14613 ], [ 3.84658, -2.07031, 4.68846 ], [ 2.15915, 0.10236, 1.60628 ], [ 2.71735, -0.17623, 4.51525 ], [ 0.49902, 2.22692, 1.56275 ], [ 0.58759, 2.17892, 4.60891 ], [ 3.96197, -2.11348, 1.62935 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3654951256458851556441331389714013007743298972135595429031147499772379339002320635796819104962492839290364617093310378884414900940216829895389304941188112
1
VASP
DFT
null
[ [ 3.357793, 0.888278, 0.538126 ], [ 22.206193, -3.478377, -24.172087 ], [ 0.504242, 0.350531, -1.070671 ], [ 0.565864, 1.901546, 0.564528 ], [ 0.664022, 2.479936, 0.940392 ], [ 1.121693, 3.206272, -1.081456 ], [ 0.876954, -2.71901, 0.069743 ], [ -2.717529, -2.174281, -1.59058 ], [ -24.62961, 5.05735, 24.740948 ], [ -0.587011, -1.291471, 0.356304 ], [ 0.494591, -3.368371, -0.089566 ], [ -1.857201, -0.852404, 0.794319 ] ]
null
[ [ 0.25236131569446507, -0.028058204954678118, -0.11007656566099357 ], [ -0.028058204954678118, 0.292217782934709, 0.010877577274406825 ], [ -0.11007656566099357, 0.010877577274406825, 0.45911517522500594 ] ]
true
null
null
-59.57141
null
7.92818
35.274764
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:07:57
547335040846746476552747469543063496239849920441764939481086618199947644217553963125481714633062669645446774846395566781293719562785339191822700269956134
PO_5473350408467464765527474
null
null
null
[ "train_1st_stage_1698", "train_1st_stage_1498", "train_1st_stage_1298", "train_1st_stage_1898" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4486510886880701299202992841152275412251543358814569946693120490192541061871068045530343164479299006164171280360549092523684120894856872646392934134524083
CO_4486510886880701299202992
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al7NiTi4
Al7NiTi4
A7B4C
[ 13, 13, 13, 13, 13, 13, 13, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.5833333333333334, 0.08333333333333333, 0.3333333333333333 ]
3
12
[ [ -4.39641, 2.46901, 0.257652 ], [ -0.059985, -5.04191, -0.257652 ], [ -1.30757, 2.26478, 8.50823 ] ]
[ [ -3.66367, 2.0575, 0.21471 ], [ -4.31746, 3.18989, 4.46882 ], [ -3.69367, -0.46345, 0.08589 ], [ -2.14925, -0.56556, 4.21118 ], [ -1.49547, -1.69795, -0.04294 ], [ -2.87759, -1.87695, 2.13592 ], [ -1.42091, 0.74582, 6.28643 ], [ -2.17924, -3.08651, 4.08235 ], [ -2.88005, -1.87267, 6.78959 ], [ -1.41844, 0.74155, 1.63276 ], [ -4.36739, 0.70347, 2.76182 ], [ -4.32752, 0.63442, 5.91818 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9895663118182585345634106168978861558360575641675496221285023893287953992034247422113052215423296853002589110691637749103035365650139073565810396439709528
1
VASP
DFT
null
[ [ 0.00004, 0.000083, -0.000041 ], [ -0.00003, -0.000036, 0.000138 ], [ -0.000008, -0.000099, -0.000071 ], [ 0.000042, -0.000049, 0.000026 ], [ 0.000057, -0.000076, -0.000058 ], [ 0.038355, -0.066333, 0.241655 ], [ -0.038259, 0.066289, -0.241768 ], [ 0.00006, -0.000107, 0.00003 ], [ 0.026523, -0.045977, -0.063099 ], [ -0.026593, 0.045999, 0.06339 ], [ -0.030818, 0.053372, 0.035302 ], [ 0.030631, -0.053067, -0.035504 ] ]
null
[ [ 0.0008909130126285763, -0.0008029077339536223, -0.001058372702476024 ], [ -0.0008029077339536223, 0.0018185885140086049, 0.0018329439849981363 ], [ -0.001058372702476024, 0.0018329439849981363, -0.000834677015404368 ] ]
true
null
null
-67.84524
null
0.067899
0.253594
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:01:08
3104767660026441821509680265206147034173963866055650349256089279200497444976823762077226112371619297985012637175482309664635453625197155729904171274449999
PO_3104767660026441821509680
null
null
null
[ "train_1st_stage_543" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10524559656705175610573046480807709195036984799625053448428290201758765437880576800115504322074796680286805712086636615318546801263846626662946949890149818
CO_1052455965670517561057304
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi3Ti2
AlNi3Ti2
A3B2C
[ 13, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.16666666666666666, 0.5, 0.3333333333333333 ]
3
6
[ [ 2.56215, -3.30016, 0.305023 ], [ 2.43402, -1.34118, -6.05708 ], [ 1.39203, 3.57257, -1.68427 ] ]
[ [ 2.46781, -1.35149, -6.05121 ], [ 1.53836, 0.98008, -1.86819 ], [ 3.22789, -0.54469, -3.71229 ], [ 4.91743, -2.06947, -5.5564 ], [ 1.70463, -1.55187, -1.89635 ], [ 3.35912, -3.1101, -3.84396 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11742128287168327931577644479953168044845206227979740259923514386346928599630833266220418557045831984111000267335131943208574912496985489464603798986120044
1
VASP
DFT
null
[ [ 0.000022, 0.000036, 0.000107 ], [ -0.01046, -0.015708, -0.03841 ], [ 0.000213, 0.000124, -0.000273 ], [ 0.010189, 0.015373, 0.038561 ], [ 0.210862, 0.230358, 0.666218 ], [ -0.210827, -0.230182, -0.666202 ] ]
null
[ [ -0.000023842564860874044, -0.00017975546282543784, -0.00029378783455532496 ], [ -0.00017975546282543784, 0.00102597927011269, -0.0005469434447011499 ], [ -0.00029378783455532496, -0.0005469434447011499, -0.0008320555815714972 ] ]
true
null
null
-38.930185
null
0.259584
0.735781
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:15:21
13134065066534975309705716909515612837446713837129514487499329928930825301372551531473494156717077110829102698844476983576371774608470072544526122546929138
PO_1313406506653497530970571
null
null
null
[ "train_2nd_stage_759" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
13116371443127147294299497988108935595597951857720600952814857396106440573337087711370852320535624426844369286931236395643129642078906458661325704735680608
CO_1311637144312714729429949
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni2Ti6
AlNiTi3
A3BC
[ 13, 13, 28, 28, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.2, 0.2, 0.6 ]
3
10
[ [ 4.05839, 0, 0 ], [ 0, 0.101438, -4.06439 ], [ 0, 9.31757, -1.83952 ] ]
[ [ 0, 0.39743, -4.05824 ], [ 2.02919, 3.46147, -1.96128 ], [ 2.02919, 1.94278, -4.0261 ], [ 0, 1.91611, -1.99341 ], [ 0, 3.46603, -3.99443 ], [ 2.02919, 5.56497, -3.95079 ], [ 0, 7.61149, -3.90824 ], [ 2.02919, 0.39287, -2.02508 ], [ 0, 5.46552, -1.91961 ], [ 2.02919, 7.6095, -1.87504 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
1285364807783591350981592187926679644947613827990398781075945021668906262893664710029644566650497874738001721269993183981533136714087138516723482461788226
1
VASP
DFT
null
[ [ -0.000031, 0.091479, -0.000266 ], [ 0.000034, -0.090993, 0.000417 ], [ 0.000024, -0.008465, 0.005977 ], [ -0.000022, 0.008206, -0.006313 ], [ -0.000029, 0.182831, 0.00358 ], [ 0.000022, -0.263361, 0.008917 ], [ -0.000018, 0.262655, -0.009019 ], [ 0.000021, -0.181719, -0.003459 ], [ -0.000015, 0.115843, 0.009951 ], [ 0.000013, -0.116476, -0.009787 ] ]
null
[ [ -0.00008444761847320048, 3.120754562941629e-7, 6.241509125883259e-8 ], [ 3.120754562941629e-7, 0.005984483780079385, -0.002093027670273692 ], [ 6.241509125883259e-8, -0.002093027670273692, 0.0008565847124362183 ] ]
true
null
null
-68.629422
null
0.132729
0.263512
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:26:33
12916218835307287806283132060075582214615614700516553211799186352415550094060260155278107463298330831459240517625252448321641528545828330990409980918896844
PO_1291621883530728780628313
null
null
null
[ "train_1st_stage_588" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9743529585335016694703288554834546571536414317034840034634399791353958175036979816619138455390122839473359575690624059412423235246459436694080569431961946
CO_9743529585335016694703288
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni8Ti2
AlNi4Ti
A4BC
[ 13, 13, 28, 28, 28, 28, 28, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.16666666666666666, 0.6666666666666666, 0.16666666666666666 ]
3
12
[ [ 3.51857, -0.588438, 0.089963 ], [ -1.08378, 5.87636, 3.50012 ], [ 1.01355, -5.43785, 3.37981 ] ]
[ [ 1.17603, -4.80694, 3.03376 ], [ 3.39328, -1.57066, 1.71883 ], [ 0.00032, 0.46607, 3.39073 ], [ 3.09576, -3.73813, 3.56444 ], [ 2.05607, 1.94884, 3.45102 ], [ 1.58253, -1.62091, 3.40322 ], [ 0.51403, 4.05241, 3.66718 ], [ 1.82816, 0.19821, 1.77419 ], [ 1.74955, 0.1659, 5.30539 ], [ 0.29877, 2.16036, 1.95026 ], [ 0.24637, 1.97259, 5.36217 ], [ 3.28119, -1.70904, 5.13161 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4757231233366115025663100230902235114426339605929263347036697193646533451841213331530548357741594023359954337887626905562402312295682414356908327557868409
1
VASP
DFT
null
[ [ -4.147516, -19.982359, 27.984554 ], [ -0.518962, -2.837251, 0.263474 ], [ 0.389404, 0.372932, 1.098542 ], [ 0.562549, 1.761703, -0.980239 ], [ -0.301655, 0.096835, 1.725364 ], [ -0.414665, -0.348708, -0.252778 ], [ -0.01019, -0.774949, 0.394554 ], [ -0.034965, -0.641614, 0.207875 ], [ 0.443448, 0.501349, -1.887117 ], [ 0.406732, 1.210079, -2.020466 ], [ 3.785179, 23.007507, -27.462591 ], [ -0.159359, -2.365525, 0.928829 ] ]
null
[ [ 0.10565963689787977, 0.034710592626318267, -0.030720520672323618 ], [ 0.034710592626318267, 0.19166563536963077, -0.17622888533913128 ], [ -0.030720520672323618, -0.17622888533913128, 0.28318950239921015 ] ]
true
null
null
-57.416363
null
7.309205
36.025919
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:31:56
10373994422544616728502356355931607049102229288177512383320933765190587783135954163718865396690106383531826921639514386247040921760244412516612850548344759
PO_1037399442254461672850235
null
null
null
[ "train_1st_stage_1964", "train_1st_stage_1764", "train_1st_stage_1564", "train_1st_stage_1364" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
2096553049959045652167695299338480229642861696860027928338415264496964437714687799565076385657070325673239549508797710935834829999201370817706182806327717
CO_2096553049959045652167695
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al11Ni
Al11Ni
A11B
[ 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 28 ]
[ "Al", "Ni" ]
[ 0.9166666666666666, 0.08333333333333333 ]
2
12
[ [ -0.077988, 2.83179, -0.013813 ], [ 8.1678, 1.60919, -5.24827 ], [ -4.29561, -1.55822, -5.47575 ] ]
[ [ 3.51125, 0.04261, -10.4125 ], [ 1.27245, 1.44426, -1.42238 ], [ 3.00848, 2.89782, -3.21377 ], [ 4.90749, 1.51994, -5.05739 ], [ 6.50495, 2.97314, -7.03105 ], [ 0.24561, -0.01097, -3.59478 ], [ 2.07609, 1.4459, -5.4206 ], [ 3.67354, 2.89909, -7.39426 ], [ -2.59524, -0.08799, -3.9896 ], [ -0.85921, 1.36557, -5.78099 ], [ 0.85216, -0.01358, -7.50108 ], [ 2.14271, 1.43041, -8.9637 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9077041581243422054363384381565484789360158258091252125782418982424479303171421445121826203565403221347781409849788016061092351366444155026015405834882849
1
VASP
DFT
null
[ [ 0.035057, 0.004609, -0.193622 ], [ -0.001021, 0.002627, 0.056283 ], [ -0.02876, 0.001491, 0.045201 ], [ 0.187888, 0.012934, 0.191091 ], [ 0.057497, 0.001973, -0.050466 ], [ 0.000016, -0.000006, 0.000003 ], [ -0.057508, -0.001991, 0.050496 ], [ -0.187871, -0.012925, -0.191092 ], [ 0.028732, -0.001468, -0.045235 ], [ 0.001007, -0.002612, -0.056281 ], [ -0.03502, -0.004626, 0.193606 ], [ -0.000017, -0.000008, 0.000017 ] ]
null
[ [ 0.00704285648255541, -0.0006300179311666561, 0.008757523869618058 ], [ -0.0006300179311666561, 0.0047323122192446864, 0.0004211770358146022 ], [ 0.008757523869618058, 0.0004211770358146022, -0.01017472093174111 ] ]
true
null
null
-47.427894
null
0.108604
0.2683
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:14:31
6813372225341436360916985972236226807913548729216881312676162174468540859382647108437592696851951624699080688089394110886099220892928380264120193315371397
PO_6813372225341436360916985
null
null
null
[ "train_1st_stage_1070", "train_1st_stage_868" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10789031474695614556683397229594243937525726831411912143028929641426822874428148971304474835832283175255156530962574411567502804540417698773856387668797802
CO_1078903147469561455668339
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ti6
AlTi3
A3B
[ 13, 13, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.25, 0.75 ]
2
8
[ [ 2.8436, -4.92525, 0 ], [ 2.8436, 4.92525, 0 ], [ 0, 0, 4.70486 ] ]
[ [ 2.8436, 1.64175, 1.17621 ], [ 2.8436, -1.64175, 3.52864 ], [ 4.25686, -0.8258, 1.17621 ], [ 1.43033, -0.8258, 1.17621 ], [ 2.8436, -3.27365, 1.17621 ], [ 1.43033, 0.8258, 3.52864 ], [ 4.25686, 0.8258, 3.52864 ], [ 2.8436, 3.27365, 3.52864 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3357231059738406629070726679387513292789890943753334686969840815083633901426711998990539105575726719579910264798095291474100215070905456535704384549325846
1
VASP
DFT
null
[ [ -0.000227, -0.000141, -0.000001 ], [ -0.000217, -0.000209, 0 ], [ -0.214146, -0.123571, 0.000002 ], [ 0.21416, -0.123437, 0.000002 ], [ -0.000063, 0.24715, -0.000003 ], [ 0.214231, 0.123892, 0 ], [ -0.213782, 0.123898, 0 ], [ 0.000044, -0.247582, 0 ] ]
null
[ [ -0.010643146191638649, -8.73811277623656e-7, 0 ], [ -8.73811277623656e-7, -0.010634408078862411, 1.2483018251766518e-7 ], [ 0, 1.2483018251766518e-7, 0.009650309334984399 ] ]
true
null
null
-56.656938
null
0.185537
0.247582
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:18:53
12035140095556162566744254932729655622848504104867384022950058386836812728134796818932774325738428197556322315041742907087602221699331254675688435790265879
PO_1203514009555616256674425
null
null
null
[ "train_2nd_stage_360" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5579791909478507102117709833392425980913899497750982953827804863744128228178354106883066790079442859237824317330579775425510989207416273136828875616227795
CO_5579791909478507102117709
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni4Ti2
Al3Ni2Ti
A3B2C
[ 13, 13, 13, 13, 13, 13, 28, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.5, 0.3333333333333333, 0.16666666666666666 ]
3
12
[ [ 4.74778, 2.46047, 0.07053 ], [ -0.5327, 2.76022, 3.95155 ], [ 0.560662, -2.74979, 3.98971 ] ]
[ [ 5.00619, -0.23743, 4.2224 ], [ 4.47643, 2.50986, 3.82931 ], [ 2.03577, -0.84455, 4.15325 ], [ 1.49534, 1.90482, 3.84803 ], [ 1.84195, 1.20112, 2.01342 ], [ 0.61395, 1.58926, 5.96627 ], [ 2.94823, 0.69843, 4.22144 ], [ 2.50808, 3.46229, 3.98227 ], [ 2.13414, 2.27481, 5.98797 ], [ 4.88384, 1.7781, 6.02967 ], [ 2.62485, 0.22818, 5.81961 ], [ 3.13418, 2.78807, 2.04282 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7154241571786144662902491226309510130110677389046671831009691052099965835434594296024022774168684584198045734533298192745107490233540670918168986732209506
1
VASP
DFT
null
[ [ 0.864038, 0.649624, -0.861533 ], [ 0.998353, 0.176457, 0.934946 ], [ -9.651468, -4.143921, -5.524109 ], [ -9.25934, 0.947092, 2.658961 ], [ -3.170317, -7.467176, 0.251893 ], [ -16.525108, -7.464773, -0.20442 ], [ 8.066913, 9.061226, -10.599796 ], [ 5.635458, 4.890771, 2.592788 ], [ 18.129946, 2.311793, 0.926401 ], [ 0.642207, -0.300074, -0.307941 ], [ 236.260102, -37.742452, 52.730677 ], [ -231.990784, 39.081434, -42.59787 ] ]
null
[ [ -1.7614609172057643, 0.3615832939259427, -0.3212421110869826 ], [ 0.3615832939259427, -0.024172428618176978, 0.04199418411585899 ], [ -0.3212421110869826, 0.04199418411585899, -0.11109511753524645 ] ]
true
null
null
-27.417633
null
48.143715
244.997659
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:17:51
3764560912895586366972643532811519911269893668801526822417210887074712697994609520026016054988039722740312587189755665939083431174669461773635277069094299
PO_3764560912895586366972643
null
null
null
[ "train_1st_stage_1644", "train_1st_stage_1444", "train_1st_stage_1244", "train_1st_stage_1844" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6706149864156503222567412740277742872358987370119337952221381128432809544329119107749191359360318544524053781075070122308422548402918375780060442676702949
CO_6706149864156503222567412
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni5Ti3
Ni5Ti3
A5B3
[ 28, 28, 28, 28, 28, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.625, 0.375 ]
2
8
[ [ 3.98165, -3.26546, 0 ], [ 3.98165, 3.26546, 0 ], [ 0, 0, 3.99247 ] ]
[ [ 0, 0, 0 ], [ 1.99083, 1.63273, 3.99246 ], [ 1.99083, -1.63273, 3.99246 ], [ 3.98165, -1.3736, 1.99624 ], [ 3.98165, 1.3736, 1.99624 ], [ 3.98165, 0, 3.99246 ], [ 1.67222, 0, 1.99623 ], [ 6.29108, 0, 1.99623 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4831809021360994025060122035124018427511341843745967504338855178110445688017172080879077367390077168656458440001623840808551925088087961620893914290700471
1
VASP
DFT
null
[ [ -0.000153, 0.000008, -0.000012 ], [ 0.000009, 0.000124, 0.000016 ], [ -0.000019, -0.000107, 0.000016 ], [ -0.000058, -0.133313, -0.000082 ], [ -0.000052, 0.133309, -0.000082 ], [ 0.000156, -0.000019, 0.000169 ], [ 0.135102, 0.000014, -0.000015 ], [ -0.134985, -0.000015, -0.000011 ] ]
null
[ [ 0.01722076058395072, 0.000001061056551400154, 0 ], [ 0.000001061056551400154, 0.015552966930423455, 0 ], [ 0, 0, 0.0009414068214569718 ] ]
true
null
null
-53.770697
null
0.067166
0.135102
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:57:19
4384992379284268868903640457254698766081809441214804718137105586922189127498843746114056754263553487214055060382549768146237006096809943586197042128773544
PO_4384992379284268868903640
null
null
null
[ "train_2nd_stage_505" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4266090780656054623550037231586984626206675939307065044997046718936403616124089490281190608529428631241311442372668206769224123396520494376098641418206866
CO_4266090780656054623550037
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni5Ti
Ni5Ti
A5B
[ 28, 28, 28, 28, 28, 22 ]
[ "Ni", "Ti" ]
[ 0.8333333333333334, 0.16666666666666666 ]
2
6
[ [ 2.8256, -2.94387, -0.076123 ], [ 1.42874, -1.32641, -4.17574 ], [ 1.40578, 4.2067, -1.4753 ] ]
[ [ 1.5512, -1.23916, -4.15469 ], [ 1.37633, 1.33203, -1.57494 ], [ 1.44703, -1.42475, -1.41837 ], [ 2.92351, 0.02519, -2.73709 ], [ 4.17739, 1.26995, -4.33307 ], [ 4.27707, -1.45654, -4.28195 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11178464824384752171031609150080461562534912854787466935626775364520741611458799878586100466438026001997727919458135377541054109970597628353664869826663594
1
VASP
DFT
null
[ [ -0.121305, -0.124643, 0.07743 ], [ 0.072246, 0.088898, 0.45007 ], [ -0.00021, -0.000147, -0.001031 ], [ -0.071697, -0.088539, -0.450279 ], [ 0.120785, 0.124258, -0.07714 ], [ 0.000181, 0.000173, 0.000949 ] ]
null
[ [ 0.033189349607066744, 0.02220148486640556, 0.01687866346876106 ], [ 0.02220148486640556, 0.029631065254400697, 0.016828606565571474 ], [ 0.01687866346876106, 0.016828606565571474, 0.035496523455449486 ] ]
true
null
null
-35.9211
null
0.2185
0.464468
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:36:12
4725788838343312512803229108605827212194399846098636561886654767451690368386402802979731889181198360969385385514330213179742310986452872140366490876296706
PO_4725788838343312512803229
null
null
null
[ "train_2nd_stage_802" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10235305307420070141264451456645646074614919269058550230950399648911659528901016455755620483026729701110545267953470559726167901109677580630681050300722956
CO_1023530530742007014126445
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni2Ti8
AlNiTi4
A4BC
[ 13, 13, 28, 28, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.16666666666666666, 0.16666666666666666, 0.6666666666666666 ]
3
12
[ [ 3.29379, -0.000001, -0.000003 ], [ 0, 7.07089, 0 ], [ 0, 0, 8.14327 ] ]
[ [ 3.29374, 3.96806, 2.0358 ], [ 3.29374, 3.10281, 6.10743 ], [ 0.00002, 1.3687, 2.03622 ], [ 0.00002, 5.70219, 6.10786 ], [ 0.00008, 7.07076, 8.14254 ], [ 0.00009, 0.00012, 4.07094 ], [ 1.64682, 6.33763, 2.03638 ], [ 1.64682, 0.73327, 6.10802 ], [ 1.6469, 2.2139, 0.36491 ], [ 1.6469, 2.21376, 3.70646 ], [ 1.6469, 4.85714, 7.77808 ], [ 1.6469, 4.85699, 4.43656 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
1474266503404734774272479495857589564709496335128381718534402477995143746909614671142858620686927310891529485916522871968377107399301189597657076079302939
1
VASP
DFT
null
[ [ 0.000152, 0.250197, -0.000588 ], [ 0.000153, -0.248765, 0.000114 ], [ -0.000112, 0.586116, -0.006396 ], [ -0.000111, -0.586094, -0.006179 ], [ -0.000761, -0.000905, 0.010902 ], [ -0.000774, -0.00158, 0.009801 ], [ 0.000484, -0.462168, -0.008975 ], [ 0.00048, 0.462042, -0.0091 ], [ 0.000113, 0.430202, -0.021825 ], [ 0.000131, 0.430535, 0.026755 ], [ 0.000126, -0.43106, 0.027345 ], [ 0.00012, -0.42852, -0.021853 ] ]
null
[ [ -0.010643395852003685, 1.2483018251766518e-7, 6.241509125883259e-8 ], [ 1.2483018251766518e-7, 0.04260079638780359, -0.0000012483018251766516 ], [ 6.241509125883259e-8, -0.0000012483018251766516, 0.03767318734801002 ] ]
true
null
null
-82.20839
null
0.36164
0.586151
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:14:48
4789389101073451253465505943357087805247763202240576178599735746798715476728702929391211485454856033393924869573560236331086763522819925329941985494343941
PO_4789389101073451253465505
null
null
null
[ "train_1st_stage_2201" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
1288822034045042157159515006892156416932714228673380274212174952933325578447098742799164724503138570899041255051462878448276527852297768668832146329215856
CO_1288822034045042157159515
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni2
Al3Ni2
A3B2
[ 13, 13, 13, 28, 28 ]
[ "Al", "Ni" ]
[ 0.6, 0.4 ]
2
5
[ [ 0.163616, 2.05049, 2.05461 ], [ 7.65581, 1.4917, 0 ], [ 0.163616, 2.05049, -2.05461 ] ]
[ [ 7.48737, 1.49458, 0 ], [ 1.83049, 1.93585, 0 ], [ 4.65893, 1.71521, 0 ], [ 3.3545, 3.88403, 0 ], [ 6.29059, 3.64737, 0 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6525510853260659561769676637745923325613141983641805225414116084982043952548754481946892785958409684998287337446446393182374552028491999538938050381759861
1
VASP
DFT
null
[ [ -0.181757, 0.044819, 0 ], [ 0.181103, -0.044677, 0 ], [ 0.00017, 0.000051, 0 ], [ -0.097424, -0.016813, 0 ], [ 0.097907, 0.016619, 0 ] ]
null
[ [ -0.0010410837221973275, 0.0008248778460767314, -6.241509125883259e-8 ], [ 0.0008248778460767314, -0.007987820964214135, 6.241509125883259e-8 ], [ -6.241509125883259e-8, 6.241509125883259e-8, -0.008542066974592567 ] ]
true
null
null
-24.702372
null
0.114417
0.187201
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:09:45
1152841607856914158937978523505565827874454940018498304153244655934469512228183342536327166814924603738331056672842861687064071920126301337922557405860279
PO_1152841607856914158937978
null
null
null
[ "train_1st_stage_985" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5952721561402733148854183939119786476438107315167139393203925967755127391211900060828920371423116241726593588188422351164902710930304455254584391446617281
CO_5952721561402733148854183
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni6Ti4
AlNi3Ti2
A3B2C
[ 13, 13, 28, 28, 28, 28, 28, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.16666666666666666, 0.5, 0.3333333333333333 ]
3
12
[ [ 3.88342, -0.612161, -0.048431 ], [ -0.926963, 5.3731, -0.09364 ], [ 0.008401, -0.046631, 6.4745 ] ]
[ [ 0.12855, 0.53075, 0.17542 ], [ 0.14583, 0.38446, 3.15925 ], [ 2.44155, 1.7539, 0.01856 ], [ 2.44751, 1.73875, 3.06968 ], [ 0.7732, 3.76963, -0.07193 ], [ 0.79103, 3.73698, 3.13707 ], [ 1.09735, 4.98252, 1.50078 ], [ 0.46234, 2.0532, 4.80465 ], [ 2.00475, 0.18356, 4.80682 ], [ 0.41212, 1.41344, 1.44488 ], [ 2.66248, 3.10311, 1.54061 ], [ 2.69178, 3.23398, 4.75352 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5054235047622157053022674141039868510028699118828424452001078805995521576049781994628436621033159910653212848700783608587573416495913026935590896912182108
1
VASP
DFT
null
[ [ -4.353191, -14.165548, -19.76578 ], [ -1.412639, -2.871987, 4.72966 ], [ -0.587494, -1.7551, -1.300586 ], [ -0.620884, -2.528146, 0.911831 ], [ -0.545745, -2.334433, -2.957576 ], [ -0.45617, -2.291386, 2.116302 ], [ 1.006602, 5.433996, 0.877227 ], [ -0.098055, -0.580974, 0.040962 ], [ 0.909633, -1.250291, 0.675736 ], [ 5.178925, 18.104323, 14.459623 ], [ 1.069915, 3.237903, -0.248631 ], [ -0.090896, 1.001643, 0.461231 ] ]
null
[ [ 0.12786911089596645, 0.03142531188281836, 0.038241663999195465 ], [ 0.03142531188281836, 0.3210714058123897, 0.08911383311080205 ], [ 0.038241663999195465, 0.08911383311080205, 0.4577255656332193 ] ]
true
null
null
-60.352514
null
6.544665
24.704232
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:03:03
6864416630635802170722955874248013254402399965281120046535913173932233657607394510188663360669138999265867084428768749174207039854023399471120955230655963
PO_6864416630635802170722955
null
null
null
[ "train_1st_stage_1640", "train_1st_stage_1440", "train_1st_stage_1240", "train_1st_stage_1840" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
13370307996961779778380870556538146873558539818319170700802224118242952655939333021978925726743352741559163222945237006494697348252147240609479683352561123
CO_1337030799696177977838087
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ti5
Al6Ti5
A6B5
[ 13, 13, 13, 13, 13, 13, 22, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.5454545454545454, 0.45454545454545453 ]
2
11
[ [ -1.34016, 1.30329, 2.15392 ], [ 2.89749, 2.83742, 0.087705 ], [ -5.11587, 8.58426, -11.994 ] ]
[ [ -6.1343, 9.57297, -10.3082 ], [ -0.3226, 3.21407, 0.78826 ], [ -0.37756, 3.40551, -3.11013 ], [ -1.82904, 4.96053, -4.92501 ], [ -3.2877, 6.52322, -6.74885 ], [ -4.73918, 8.07823, -8.56373 ], [ 1.15817, 4.66476, -1.04269 ], [ -0.32078, 6.24925, -2.89194 ], [ -1.77971, 7.81223, -4.71612 ], [ -1.89848, 8.07192, -8.69422 ], [ -3.37742, 9.65641, -10.5435 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11496892666568631353580025009598479679571878037630868744383381530833206267039971471942078318739376379799992682818507539728122237024349257233251604930127275
1
VASP
DFT
null
[ [ 0.076595, -0.050627, 0.045695 ], [ -0.076922, 0.050992, -0.046215 ], [ -0.048721, 0.056268, -0.052516 ], [ -0.003095, 0.001592, -0.002379 ], [ 0.003116, -0.001661, 0.002499 ], [ 0.048856, -0.056293, 0.052595 ], [ 0.100266, -0.111245, 0.062869 ], [ 0.012878, -0.010558, 0.013795 ], [ 0.000751, -0.000552, 0.000348 ], [ -0.013299, 0.011192, -0.013633 ], [ -0.100425, 0.110894, -0.063058 ] ]
null
[ [ -0.014660992861243479, -0.014073729267589123, -0.0013184563877515795 ], [ -0.014073729267589123, -0.008676321835890316, -0.0022249731731948637 ], [ -0.0013184563877515795, -0.0022249731731948637, -0.00380182803875801 ] ]
true
null
null
-65.806724
null
0.069647
0.162423
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:47:36
1654383585206906545035622548084063445340484105810473996790215825104416675817156161010520328284045334313263727527403483338474253415701062053130907551457591
PO_1654383585206906545035622
null
null
null
[ "train_1st_stage_618" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11009005033804834776785065204308589402748249910130301468003815388189063436977772459394728925300407155088553182298530911630409093281858769563759505096450413
CO_1100900503380483477678506
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi2
AlNi2
A2B
[ 13, 28, 28 ]
[ "Al", "Ni" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
3
[ [ 5.5607, 0, -1.85357 ], [ 5.5607, 0, 1.85357 ], [ -5.5607, -1.85357, 0 ] ]
[ [ 0, 0, 0 ], [ 7.41427, 0, 0 ], [ 3.70714, 0, 0 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4677601236611707031906799772553175650234888339847980912788548575155416582438845588656833412966652433329129898060658960285277287701403786797972474926107182
1
VASP
DFT
null
[ [ 0.000187, 0.000001, 0 ], [ -0.314808, 0.000774, 0 ], [ 0.314621, -0.000775, 0 ] ]
null
[ [ -0.029809697245583477, 0.000002122113102800308, 0 ], [ 0.000002122113102800308, -0.008783800623038025, 0 ], [ 0, 0, -0.008827678432192987 ] ]
true
null
null
-15.660236
null
0.209873
0.314809
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:49:14
2867074367739957417738470282409795183719752455700504792396899536134220225704313723590101144284237990637085539350696043128140389746871777334075077005098827
PO_2867074367739957417738470
null
null
null
[ "train_1st_stage_2117" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
8846879779946021073927637775709166229206049052527507680262843408862364706896845850704940815728623237546559055624012387482920484113582498479296723042343321
CO_8846879779946021073927637
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ti4
Al3Ti2
A3B2
[ 13, 13, 13, 13, 13, 13, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.6, 0.4 ]
2
10
[ [ 2.79682, -2.70461, 0.266907 ], [ 2.23183, 2.06037, -2.51718 ], [ 7.90311, 5.98069, 5.76677 ] ]
[ [ 7.86356, 5.92541, 5.67792 ], [ 4.78313, -0.59346, 0.68639 ], [ 8.69245, 3.52308, 1.33347 ], [ 8.48649, 3.62913, 4.35898 ], [ 4.49908, 1.78787, -0.71126 ], [ 6.17969, 3.84635, 2.46421 ], [ 6.73779, 1.46481, 1.00993 ], [ 2.5394, -0.29132, -1.07821 ], [ 4.22347, 1.78693, 2.13506 ], [ 8.13936, 5.92555, 2.83116 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6791411175381993037374044390676853939617962546528622512545010558961547341953918100739092992626986303676690980009432802497137260536319599171582552831301457
1
VASP
DFT
null
[ [ 0.149912, 0.227457, 0.371179 ], [ -0.061757, -0.092645, -0.162563 ], [ 0.061994, 0.092805, 0.162724 ], [ -0.149979, -0.227457, -0.371387 ], [ -0.073897, -0.100404, -0.172599 ], [ 0.074036, 0.100676, 0.172757 ], [ -0.000022, -0.000071, -0.000031 ], [ 0.004816, 0.015968, 0.029137 ], [ -0.000071, -0.000052, 0.000062 ], [ -0.005032, -0.016277, -0.029278 ] ]
null
[ [ 0.0014832322286748973, 0.000800785620850822, 0.008797344697841193 ], [ 0.000800785620850822, 0.005243616646837043, 0.011275910386820694 ], [ 0.008797344697841193, 0.011275910386820694, 0.011555467580569006 ] ]
true
null
null
-57.504426
null
0.180915
0.460607
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:19:30
355101894412310069791066616896884157717666106462703764870715478013220966911545022154818013138249963030037749569569568440712031849519613128882353290946290
PO_3551018944123100697910666
null
null
null
[ "train_1st_stage_907" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
2176546791776398741951659637575241067743150319743837142837946516830802766657886896714276099473556025849867574657685094003689754582523729744581982719524836
CO_2176546791776398741951659
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni8
AlNi2
A2B
[ 13, 13, 13, 13, 28, 28, 28, 28, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
12
[ [ 0.000002, 3.75845, -0.000002 ], [ 2.65762, 0, 2.65762 ], [ 7.02235, -0.000003, -7.02235 ] ]
[ [ 7.01867, 0, -7.01867 ], [ 2.33915, 0, -2.33915 ], [ 1.33249, 1.87923, 1.32513 ], [ 6.01201, 1.87922, -3.35439 ], [ 1.13926, 1.87923, -1.13926 ], [ 3.51118, 1.87922, -3.51118 ], [ 4.69137, 0, -4.69137 ], [ 5.88309, 1.87922, -5.88309 ], [ 2.46807, 0, 0.18955 ], [ 3.65979, 1.87923, -1.00216 ], [ 4.83998, 0, -2.18236 ], [ 7.2119, 0, -4.55427 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
548322865365591648023571171036040039284868396599100190713329905106070011444294034776710088774345442655556213968743226253030202179054396061502645158678078
1
VASP
DFT
null
[ [ -0.139536, 0, 0.139574 ], [ 0.046355, 0.000006, -0.046333 ], [ 0.139409, -0.000034, -0.139409 ], [ -0.046287, 0.000033, 0.046287 ], [ 0.059046, -0.000028, -0.059019 ], [ -0.000046, 0.000032, 0.000071 ], [ -0.185881, -0.000016, 0.185908 ], [ -0.059078, 0.000035, 0.059101 ], [ 0.059144, 0.000037, -0.059153 ], [ 0.185986, -0.000034, -0.186056 ], [ 0.000042, -0.000013, -0.000041 ], [ -0.059154, -0.000018, 0.059071 ] ]
null
[ [ 0.007610521737554493, 2.4966036503533035e-7, -0.0016827108603381263 ], [ 2.4966036503533035e-7, 0.005928871933767766, -1.8724527377649775e-7 ], [ -0.0016827108603381263, -1.8724527377649775e-7, 0.00761064656773701 ] ]
true
null
null
-64.549885
null
0.115494
0.263073
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:15:48
8437406350464095315884584633933901227263291739995316133351068002519833297421321333521682891964403068852910726897301263945162835760918098960231087499259490
PO_8437406350464095315884584
null
null
null
[ "train_1st_stage_847" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
493536304329340456054584961145232839417914345326758881266293805040529562163982676279704356407662905697708902661150821314363678064714666605200526479425984
CO_4935363043293404560545849
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni2Ti2
Al2NiTi
A2BC
[ 13, 13, 13, 13, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.5, 0.25, 0.25 ]
3
8
[ [ 1.91499, -4.63052, 0 ], [ 1.91499, 4.63052, 0 ], [ 0, 0, 6.66784 ] ]
[ [ 1.91499, -1.26739, 6.34952 ], [ 1.91499, 1.26739, 3.0156 ], [ 1.91499, -1.26739, 3.65224 ], [ 1.91499, 1.26739, 0.31832 ], [ 1.91499, 2.63237, 5.00088 ], [ 1.91499, -2.63237, 1.66696 ], [ 1.91499, -4.02966, 5.00088 ], [ 1.91499, 4.02966, 1.66696 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3498633446287629522172097753126913616376217295178627064589828773677458079832705909044378679691086315079686809319718498723484101274917827256576308634200439
1
VASP
DFT
null
[ [ -0.000001, -0.238268, -0.195158 ], [ 0, 0.238168, -0.19497 ], [ 0, -0.238266, 0.195157 ], [ 0.000001, 0.238169, 0.195001 ], [ 0, 0.031271, -0.000009 ], [ -0.000002, -0.031399, -0.000005 ], [ 0.000001, -0.020468, -0.000012 ], [ 0.000002, 0.020793, -0.000002 ] ]
null
[ [ -0.00291378612032734, 0, 0 ], [ 0, 0.0059073387272834685, 1.2483018251766518e-7 ], [ 0, 1.2483018251766518e-7, 0.01601614932265525 ] ]
true
null
null
-45.588414
null
0.16694
0.307991
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:13:33
4517985155112625761109549503092222046845741864364968956480620268655614512792237834206388754479217110672625277140630901310661653005326658988108558709802231
PO_4517985155112625761109549
null
null
null
[ "train_2nd_stage_441" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6277532547131888618778613127568365032392421298012410376083902564143842206245101083890732614683945045060910882753995560970460792430959830330098265252836653
CO_6277532547131888618778613
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni5
Al4Ni5
A5B4
[ 13, 13, 13, 13, 28, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.4444444444444444, 0.5555555555555556 ]
2
9
[ [ 0.005371, 1.9299, 1.91158 ], [ 2.71372, -0.087427, 0.082101 ], [ 1.90688, 9.33586, -7.47145 ] ]
[ [ 0.04179, 1.97754, 1.86798 ], [ 2.86741, 3.67739, 0.14499 ], [ 2.99619, 5.61536, -1.80133 ], [ 3.1081, 7.40263, -3.60641 ], [ 1.45111, 1.85967, 0.05265 ], [ 1.57226, 3.72513, -1.825 ], [ 1.69341, 5.5906, -3.70266 ], [ 1.81837, 7.49787, -5.62073 ], [ 3.23303, 9.28827, -5.50073 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9504995065274800050797175149881012904277182866107571565136814899361651838121124984490681971969493927788221819903331511618412209799454526444397234643624828
1
VASP
DFT
null
[ [ -0.137295, -1.681304, 1.650705 ], [ 0.077751, 0.964905, -0.949198 ], [ -0.077572, -0.965253, 0.949371 ], [ 0.137382, 1.681207, -1.650742 ], [ 0.012531, 0.051763, -0.038317 ], [ -0.000011, -0.000009, -0.000099 ], [ -0.012758, -0.051466, 0.038366 ], [ -0.111034, -1.430807, 1.413127 ], [ 0.111007, 1.430963, -1.413213 ] ]
null
[ [ 0.1739722052995769, -0.0006350735535586215, 0.00018187757592823814 ], [ -0.0006350735535586215, 0.17842608379671596, -0.005490905238404537 ], [ 0.00018187757592823814, -0.005490905238404537, 0.18062103531101534 ] ]
true
null
null
-44.685446
null
1.287961
2.360182
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:39:43
9773505885612179892729557080057293060873001944406231709514582619437752554838255573547453090786562907430209223845068554521778711284145502968526309644575278
PO_9773505885612179892729557
null
null
null
[ "train_2nd_stage_718" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9615453106546185662068392787517047239537004452064590905225315640087545615503479266099251678234472003791442626500320731459135953104688074907393171296195640
CO_9615453106546185662068392
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni2Ti2
NiTi
AB
[ 28, 28, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.5, 0.5 ]
2
4
[ [ 0, 1.87276, 1.87276 ], [ 6.98117, 0, 0 ], [ 0, 1.87276, -1.87276 ] ]
[ [ 0.10753, 0, 0 ], [ 1.69313, 1.87276, 0 ], [ 3.42837, 0, 0 ], [ 5.35218, 1.87276, 0 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6340438221485523704680381472909008232629687822143620121378370533226110770518061034355631768267267891834478381656324490881399919515697020743446097737716564
1
VASP
DFT
null
[ [ -0.170738, -0.000006, 0.000001 ], [ 0.166331, 0.000001, -0.000008 ], [ -1.106397, 0.000003, 0.000011 ], [ 1.110804, 0.000002, -0.000004 ] ]
null
[ [ 0.025887782571243474, 1.2483018251766518e-7, 0 ], [ 1.2483018251766518e-7, 0.046062774254657254, 0 ], [ 0, 0, 0.04606296149993103 ] ]
true
null
null
-26.740072
null
0.638568
1.110804
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:08:48
1420253317040687257234072382625899661863275554783763861300173347990594990607853199081531889185248143771364897511305636837644514959987365582098130719168959
PO_1420253317040687257234072
null
null
null
[ "train_1st_stage_2252" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5252047941528774644582635997915935809455785385102027024973096545872816065885621636432597607863581362216646184667391970434749190174294923032256078507339367
CO_5252047941528774644582635
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni4Ti4
NiTi
AB
[ 28, 28, 28, 28, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.5, 0.5 ]
2
8
[ [ 3.49013, -0.001186, 0.000092 ], [ 0.001186, 3.49012, 0 ], [ -0.000204, 0.000025, 7.93718 ] ]
[ [ 0.03132, 0.29083, 0.00001 ], [ 0.03121, 0.29086, 3.96862 ], [ 1.77633, 0.29025, 1.98435 ], [ 0.03176, 2.03591, 5.95289 ], [ 1.77676, 2.03532, 7.9372 ], [ 1.77687, 2.0353, 3.96861 ], [ 1.77623, 0.29027, 5.95293 ], [ 0.03186, 2.0359, 1.98429 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7737123933618391497875760097165389300996957109568735308030711485664584501503502660220888485720544343090544014629597221395178086231155477567236762668560405
1
VASP
DFT
null
[ [ -0.000052, 0.000024, -0.000076 ], [ 0.000017, -0.000166, -0.000214 ], [ -0.000005, -0.000025, 0.00045 ], [ 0.000006, 0.000077, -0.000735 ], [ 0.000072, 0.000028, 0.000285 ], [ -0.00003, 0.000182, 0.00074 ], [ 0.000015, -0.000161, -0.001639 ], [ -0.000023, 0.000042, 0.001188 ] ]
null
[ [ 0.08658664606573192, 6.241509125883259e-8, 7.48981095105991e-7 ], [ 6.241509125883259e-8, 0.0866341439501799, -7.48981095105991e-7 ], [ 7.48981095105991e-7, -7.48981095105991e-7, 0.05298816553546354 ] ]
true
null
null
-54.804701
null
0.000681
0.001647
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:28:04
8642059635515189894096821580500493142311374642309449506572675940135902348085584674080843989397173556004358203895301069322915478982336578497388814662521254
PO_8642059635515189894096821
null
null
null
[ "train_2nd_stage_786" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
3458669245817808715252481094742813671058231142922172932413533134265914002635927473143760987902812129840513740616833845309153118445467293587352209852377249
CO_3458669245817808715252481
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni2
Al3Ni
A3B
[ 13, 13, 13, 13, 13, 13, 28, 28 ]
[ "Al", "Ni" ]
[ 0.75, 0.25 ]
2
8
[ [ 3.200127, -3.461171, -0.088516 ], [ -2.945218, -0.789075, -1.940669 ], [ 3.177374, 3.093222, -6.079822 ] ]
[ [ 6.22592, -0.33857, -6.11985 ], [ 4.31051, -2.20325, -2.45477 ], [ 3.50392, -1.01719, -5.0803 ], [ 1.50356, -1.63873, -1.78488 ], [ 0.69679, -0.4529, -4.41005 ], [ 1.9591, 0.776, -6.82546 ], [ -0.7006, -0.40294, -2.308 ], [ 2.50789, 1.20807, -4.4686 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11369419107715466752309027418435502718506678209145178135381843460275391833672430142198870721085828356261815919591095999268943235676368037405646339156099860
1
VASP
DFT
null
[ [ 0.00085, -0.001346, -0.00188 ], [ -0.000293, -0.002501, 0.000323 ], [ 0.003866, -0.007389, -0.001735 ], [ -0.003618, 0.006911, 0.00162 ], [ 0.002135, 0.004609, -0.004122 ], [ -0.003079, -0.000479, 0.00585 ], [ 0.001947, -0.001608, 0.000116 ], [ -0.001808, 0.001802, -0.000172 ] ]
null
[ [ -0.0005229760496577582, -0.000052428676657419366, 0.00007770678861724656 ], [ -0.000052428676657419366, -0.0006113558188802651, 0.000029834413621721976 ], [ 0.00007770678861724656, 0.000029834413621721976, -0.0006664059293705555 ] ]
true
null
null
-36.372516
null
0.004968
0.008518
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:27:16
6780050228858297207069002255639279841400781425516736862074518011769967341309875221154357312676272836786933693720838951169151137887814646439687345560399197
PO_6780050228858297207069002
null
null
null
[ "train_1st_stage_346" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9750951334514868505637200418603032462735406827338879629678191123234340225270295093160105912862056021552312244603336398295263762149349696297009981262309119
CO_9750951334514868505637200
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNiTi2
AlNiTi2
A2BC
[ 13, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.25, 0.25, 0.5 ]
3
4
[ [ 0, 3.94283, 0 ], [ 2.73564, 0, 2.73564 ], [ 2.73564, 0, -2.73564 ] ]
[ [ 0, 0, 0 ], [ 2.73564, 0, 0 ], [ 1.36782, 1.97142, -1.36782 ], [ 1.36782, 1.97142, 1.36782 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7200133430600000672691599165763748479732499835022755384679810832589808628975374000671708841683116051936273200134852056617080592753797735164837943915518546
1
VASP
DFT
null
[ [ -0.000001, 0.000053, 0 ], [ -0.000001, 0.00001, -0.000001 ], [ 0, -0.000032, -0.000001 ], [ 0.000002, -0.000031, 0.000002 ] ]
null
[ [ 0.004079762440133591, -1.2483018251766518e-7, -0.000002059698011541475 ], [ -1.2483018251766518e-7, -0.0009970810828598504, 0 ], [ -0.000002059698011541475, 0, 0.004079700025042333 ] ]
true
null
null
-26.282091
null
0.000032
0.000053
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:33:55
2373424324196754411519637293926677592025534778624102976307110642746029106857508966311183389226781837515113580930381052992998983206599648563875774495282392
PO_2373424324196754411519637
null
null
null
[ "train_1st_stage_1128" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12473880418719134260884525800023263371726754214829289838665467378363047742662542023286812467733371317118379516135416359627200454878487511389163212360526909
CO_1247388041871913426088452
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni3Ti3
Al2Ni3Ti3
A3B3C2
[ 13, 13, 28, 28, 28, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.25, 0.375, 0.375 ]
3
8
[ [ 0, 1.94264, 1.94264 ], [ 3.88528, 0, 0 ], [ 0, 7.77057, -7.77057 ] ]
[ [ 0.07338, 0, 0 ], [ 0.00044, 3.88528, -3.88528 ], [ 1.9452, 1.94264, 0 ], [ 0.02766, 1.94264, -1.94264 ], [ 1.99484, 3.88528, -1.94264 ], [ 1.95927, 5.82792, -3.88528 ], [ 0.00908, 5.82792, -5.82792 ], [ 1.99554, 7.77057, -5.82792 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
8816958790577976036254605900210586563787182508138462107120524426707981536037760569657944113084783013727062861305389075396954429022031506240532500008992944
1
VASP
DFT
null
[ [ -0.175245, 1.586555, -1.586525 ], [ 0.115065, -1.595638, 1.595636 ], [ 0.103989, -0.17321, 0.173213 ], [ 0.003775, 0.000364, -0.000363 ], [ -0.080663, 0.175713, -0.175714 ], [ -0.07539, -0.483186, 0.483205 ], [ 0.233682, 0.000911, -0.000841 ], [ -0.125213, 0.488491, -0.488612 ] ]
null
[ [ -0.053270781068683534, -0.0011707198667419226, 0.0011707822818331816 ], [ -0.0011707198667419226, -0.04851181760547133, 0.017834800251755115 ], [ 0.0011707822818331816, 0.017834800251755115, -0.04851175519038007 ] ]
true
null
null
-47.952649
null
0.833072
2.259503
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:39:37
2231855209140014525328414207698296313374973826952183335333648635037290944435413528187354844779330654008882786372677892842430528985325509240065407813816899
PO_2231855209140014525328414
null
null
null
[ "train_1st_stage_2358" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
8494213909030171438942979171769733450756910125538958600190055404587148508790082223636727217044115635440125130754671542937958678976265489979492046179575115
CO_8494213909030171438942979
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni5Ti
Al2Ni5Ti
A5B2C
[ 13, 13, 28, 28, 28, 28, 28, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.25, 0.625, 0.125 ]
3
8
[ [ 0, 0, 3.87012 ], [ 2.56051, -5.88763, 0 ], [ 2.28402, 4.47766, 0 ] ]
[ [ 4.5297, -1.5451, 0 ], [ 1.70518, 0.73299, 1.93506 ], [ 3.4247, -3.83094, 0 ], [ 2.0993, -0.78166, 0 ], [ 3.30518, 1.42186, 0 ], [ 2.55274, 3.04792, 1.93506 ], [ 3.98025, -0.23638, 1.93506 ], [ 2.53344, -2.40344, 1.93506 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
661314061285771717012181042720279310797727225468046894156946008495745901760323476915098913181439401518743708386246176188674228420333762866006823615032484
1
VASP
DFT
null
[ [ -0.007164, -0.012636, -0.000001 ], [ -0.213726, -0.092748, 0 ], [ 0.055859, 0.101048, 0 ], [ 0.100607, -0.021985, 0 ], [ 0.014215, 0.006805, 0.000001 ], [ -0.05516, 0.09289, 0.000001 ], [ 0.033822, -0.102547, 0 ], [ 0.071548, 0.029172, -0.000001 ] ]
null
[ [ 0.005273825551006318, 0.0012248337508633305, 0 ], [ 0.0012248337508633305, -0.001680276671779032, 6.241509125883259e-8 ], [ 0, 6.241509125883259e-8, -0.0021829678167776694 ] ]
true
null
null
-46.793676
null
0.096874
0.232983
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:45:46
13142733521513919232547748986891975709474783027024943927892013530250067026082027783888182425233788606700775756450216524633109099606543365783308776099988300
PO_1314273352151391923254774
null
null
null
[ "train_1st_stage_634" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
1500688771699834237907460913965525121445764245024877899296166120230591604985350754134578873619053722896819154813811671275796372492248832882692786806297854
CO_1500688771699834237907460
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni6Ti
Al2Ni6Ti
A6B2C
[ 13, 13, 28, 28, 28, 28, 28, 28, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.2222222222222222, 0.6666666666666666, 0.1111111111111111 ]
3
9
[ [ 0.138009, 3.49324, 0.285557 ], [ 5.25704, 0.007198, -2.62871 ], [ -4.02497, -1.27714, -3.97424 ] ]
[ [ 0.01423, 0.00036, -0.01132 ], [ 2.50806, 0.12012, -2.68164 ], [ 1.38637, 1.80096, -1.15872 ], [ 3.99719, 1.9092, -3.74458 ], [ 0.0059, 0.20765, -2.5431 ], [ 1.37424, 2.01799, -3.80771 ], [ -2.62265, 0.31424, -2.57667 ], [ -0.05826, 0.42436, -5.1632 ], [ -1.12476, 2.09831, -3.58261 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5459142841296594986956132426192821331369100856813011974972125090641178788769936269567135309359799733149000669077659769565076398697591638235354849936518062
1
VASP
DFT
null
[ [ -0.210826, 0.006535, 0.021428 ], [ 0.047692, 0.023251, -0.308094 ], [ 0.105072, 0.001588, -0.062281 ], [ 0.16135, -0.031854, 0.316425 ], [ -0.028489, 0.007399, -0.075343 ], [ -0.097964, -0.019359, 0.281155 ], [ -0.226391, 0.010554, -0.019782 ], [ 0.347145, -0.025316, 0.136459 ], [ -0.097591, 0.027203, -0.289965 ] ]
null
[ [ 0.005287432040900743, -0.0000356390171087934, -0.0004250467714726498 ], [ -0.0000356390171087934, 0.0032958288939226544, 0.00038678632053098545 ], [ -0.0004250467714726498, 0.00038678632053098545, -0.001090454059383064 ] ]
true
null
null
-52.200979
null
0.254575
0.37386
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:19:07
5326346653424348301955934030445201106706777285891177389807524548595051713323971255540741349652601058470060624314483168821681513530609467564796561642001163
PO_5326346653424348301955934
null
null
null
[ "train_1st_stage_501" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6094460416006266385334490859199400044674891562563640292167283274398598964831450080910723730377268935635436157011374441615168559789679993045537039310718390
CO_6094460416006266385334490
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni4Ti2
Al3Ni2Ti
A3B2C
[ 13, 13, 13, 13, 13, 13, 28, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.5, 0.3333333333333333, 0.16666666666666666 ]
3
12
[ [ 2.6187, -0.418659, 0.103492 ], [ -1.07403, 5.64333, 3.97631 ], [ 1.09027, -5.66476, 3.97154 ] ]
[ [ 0.25395, 0.29582, 7.53275 ], [ 0.1104, 0.28842, 4.0887 ], [ 1.36028, 0.17877, 2.06299 ], [ 0.1194, 2.4304, 1.98453 ], [ 2.59745, -1.49439, 6.06243 ], [ 2.6083, -2.29083, 2.11081 ], [ 2.46075, -3.83165, 4.40677 ], [ 1.40979, 1.80777, 3.68963 ], [ 1.26042, -1.95644, 4.06802 ], [ 0.13809, 3.70907, 3.94662 ], [ 1.61498, 0.56875, 6.277 ], [ -0.24907, 1.63815, 5.99753 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3358176866085619699745990999314841536120864776571064516940364813192745386300692165567911130424175726337065437299119901481627674907418192349530627328745096
1
VASP
DFT
null
[ [ -1.733034, -2.833021, 10.910199 ], [ -2.06142, -1.958262, -1.101885 ], [ -0.116875, -2.954912, -1.804064 ], [ 0.079259, -0.676093, 0.793887 ], [ 0.621611, -3.923667, -2.546218 ], [ -1.020093, 1.614402, -0.401054 ], [ -0.027713, -1.768504, -0.699289 ], [ -1.036158, -1.049429, 1.23677 ], [ 1.859105, 4.824022, -1.099072 ], [ 2.335802, 4.939837, 1.399297 ], [ -156.318178, -135.334663, 33.022158 ], [ 157.417695, 139.12029, -39.710729 ] ]
null
[ [ 0.8081309408656178, 0.7042576238795657, -0.17435505946935861 ], [ 0.7042576238795657, 0.6416034828212118, -0.13195573899613852 ], [ -0.17435505946935861, -0.13195573899613852, 0.07879749233699467 ] ]
true
null
null
-41.737928
null
38.631027
213.803012
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:39:12
10613747687114934232155615574236590633379960466389475698311836403111424461647583367193227441534432373475612814443593705170621996433719018590044912905938528
PO_1061374768711493423215561
null
null
null
[ "train_1st_stage_1758", "train_1st_stage_1958", "train_1st_stage_1558", "train_1st_stage_1358" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12892765145970101449862535875287811346263044456678959948629707201747727389561470717399121838592611079758547325975686119437393128056648702584109878099862400
CO_1289276514597010144986253
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni4Ti2
Al2Ni2Ti
A2B2C
[ 13, 13, 13, 13, 28, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.4, 0.4, 0.2 ]
3
10
[ [ 2.67225, 0, 0 ], [ 0, 7.41473, -0.000559 ], [ 0, -0.000563, 6.71383 ] ]
[ [ 1.33613, 4.99641, 1.05245 ], [ 1.33613, 2.41712, 5.66557 ], [ 1.33613, 1.28932, 2.3045 ], [ 1.33613, 6.1243, 4.40376 ], [ 0, 6.59151, 2.33813 ], [ 0, 0.82482, 4.37301 ], [ 0, 2.88368, 1.01785 ], [ 0, 4.5325, 5.69768 ], [ 0, 7.41264, 6.71153 ], [ 0, 3.7056, 3.35852 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10212427822827236565903487334309651898216730833864361773084309814685672744566541424291726091418428847404812304799781823186163684521046567794147960512022633
1
VASP
DFT
null
[ [ -0.000031, -0.103588, -0.055256 ], [ -0.000029, 0.104753, 0.045095 ], [ -0.00003, -0.10782, 0.052789 ], [ -0.000029, 0.103644, -0.041351 ], [ 0.000023, -0.034059, 0.196245 ], [ 0.000021, 0.032982, -0.192758 ], [ 0.000023, -0.031269, -0.196055 ], [ 0.000022, 0.033573, 0.192145 ], [ 0.000017, 0.000263, -0.002665 ], [ 0.000013, 0.001522, 0.00181 ] ]
null
[ [ -0.0027679220520554484, -3.120754562941629e-7, -6.241509125883259e-8 ], [ -3.120754562941629e-7, -0.00176484912043475, -0.00003894701694551153 ], [ -6.241509125883259e-8, -0.00003894701694551153, -0.023001521506161277 ] ]
true
null
null
-57.486901
null
0.125646
0.199179
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:20:37
1430654785166774799336680765196831486656261465597049824508038540446821253605116582886109429876379872934849950895138003611680133289942810464777699371795910
PO_1430654785166774799336680
null
null
null
[ "train_2nd_stage_598" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5752882328043291171961953192067090272891629876348956696912384762280030341825839352470766128624632961287337326667606436660510571404489055811224170883204368
CO_5752882328043291171961953
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ti2
AlTi
AB
[ 13, 13, 22, 22 ]
[ "Al", "Ti" ]
[ 0.5, 0.5 ]
2
4
[ [ -1.84426, 4.30525, -2.18442 ], [ -1.84426, 2.18442, -4.30525 ], [ 0.265509, -8.75119, 8.75119 ] ]
[ [ -3.38123, -2.30017, 2.30017 ], [ 0.15735, -6.52473, 6.52473 ], [ -3.61146, 4.28671, -4.28671 ], [ 0.12208, -4.36042, 4.36042 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9495870188186790103828194730791387092967707265165248115512585919825083906853962153048510900717667846828512977288456855891231798292962131057797264191647894
1
VASP
DFT
null
[ [ -0.059251, 0.120035, -0.120034 ], [ 0.058955, -0.119946, 0.119946 ], [ -0.317253, -0.030473, 0.030477 ], [ 0.317549, 0.030384, -0.030388 ] ]
null
[ [ 0.004276182732325137, 0.004932789492368057, -0.004932727077276797 ], [ 0.004932789492368057, -0.005436042373188023, 0.0003548297938064632 ], [ -0.004932727077276797, 0.0003548297938064632, -0.005435917543005505 ] ]
true
null
null
-24.383561
null
0.249998
0.320443
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:41:53
6779255498451790584731122977216450268933095654959826100638583677808269640004252266978909879262256222610919962433417131256683441338419997773520283962291695
PO_6779255498451790584731122
null
null
null
[ "train_2nd_stage_606" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9665474572871911478182667831876142150661102656035678216911988699478531970692455532510406438998845844869191971650039446275150254777236223581157865053014627
CO_9665474572871911478182667
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni4Ti8
NiTi2
A2B
[ 28, 28, 28, 28, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
12
[ [ 1.84539, -3.848, -1.85042 ], [ -0.019816, 1.89654, -5.60515 ], [ 5.59297, 1.89536, 0.022796 ] ]
[ [ 0.02758, 1.90201, -5.59607 ], [ 3.75013, -1.93745, -1.84438 ], [ 5.60603, -0.03315, -1.85229 ], [ 5.61471, 1.88299, -3.71093 ], [ 1.83078, 0.1217, -1.78869 ], [ 3.82396, 1.90462, -1.79788 ], [ 1.81728, -1.80345, -3.65608 ], [ 3.75615, -0.02928, -3.71622 ], [ 1.89135, 1.89287, -3.73415 ], [ 5.66285, -0.18502, -5.63716 ], [ 1.81949, -0.01966, -5.65057 ], [ 3.80703, 1.738, -5.6483 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2564859953560456649602919031037691787115864654713929317825666595929765867117671107698376545246435557581202666923334778812653493219648078513144039991378541
1
VASP
DFT
null
[ [ 0.045274, -0.02187, 0.077069 ], [ 0.016863, -0.011466, -0.017905 ], [ -0.052719, 0.045425, -0.014522 ], [ 0.031749, -0.012641, -0.008234 ], [ -0.692014, -0.34859, 0.530907 ], [ 0.646865, -0.169419, 0.744017 ], [ -0.582147, -0.303358, 0.681359 ], [ 0.867074, -0.008264, 0.974715 ], [ -1.00245, 0.011551, -0.870114 ], [ 0.676536, 0.469834, -0.772985 ], [ -0.735816, -0.149047, -0.674303 ], [ 0.780785, 0.497847, -0.650004 ] ]
null
[ [ 0.09198586353507725, -0.0063634057991117585, -0.010874331689661364 ], [ -0.0063634057991117585, 0.10126623862417054, 0.006252119691397259 ], [ -0.010874331689661364, 0.006252119691397259, 0.09106031014680002 ] ]
true
null
null
-85.60109
null
0.751106
1.327455
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:10:01
4330507329548701755583770609232596605375699227064757372691630131058530438882014773397365191959972556234679108777434959487159404606071090059288759569429348
PO_4330507329548701755583770
null
null
null
[ "train_1st_stage_2197" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4276170920713933786349048591464407529378856939575385234084640186830185181967154629733705679811724409275467700313157507144031362078935689709518013493293076
CO_4276170920713933786349048
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al5NiTi6
Al5NiTi6
A6B5C
[ 13, 13, 13, 13, 13, 28, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.4166666666666667, 0.08333333333333333, 0.5 ]
3
12
[ [ 3.91895, -0.595361, 0 ], [ -1.07487, 6.11875, 0 ], [ 0, 0, 8.09709 ] ]
[ [ 0.04762, 0.3134, 0 ], [ 0.06187, 0.40727, 4.04855 ], [ 2.30349, 1.96607, 0 ], [ 0.6404, 4.21409, 0 ], [ 0.62615, 4.12023, 4.04855 ], [ 2.30349, 1.96607, 4.04854 ], [ 2.01017, 0.03599, 2.07685 ], [ 2.01017, 0.03599, 6.02024 ], [ 0.34401, 2.26375, 2.04876 ], [ 0.34401, 2.26375, 6.04833 ], [ 2.5968, 3.89615, 2.07686 ], [ 2.5968, 3.89615, 6.02023 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
8197496941802053059192262261638746863568426168511768948557488196177387215847980286255887338937407200808903025526478342981801206584959592239083848796635617
1
VASP
DFT
null
[ [ 0.006669, 0.040194, -0.000187 ], [ 0.017798, 0.118262, 0.00005 ], [ 0.000037, 0.0002, -0.000031 ], [ -0.006642, -0.040205, 0.000051 ], [ -0.017799, -0.1183, -0.000263 ], [ -0.000102, -0.000183, -0.000079 ], [ -0.005666, -0.044418, 0.02162 ], [ -0.005625, -0.044162, -0.021434 ], [ 0.000204, -0.000024, -0.137121 ], [ 0.000162, -0.000327, 0.1371 ], [ 0.005493, 0.044598, 0.02154 ], [ 0.005471, 0.044366, -0.021246 ] ]
null
[ [ 0.009247482335999894, -0.0008076512808892935, -6.241509125883259e-8 ], [ -0.0008076512808892935, 0.0024623377652522043, -3.120754562941629e-7 ], [ -6.241509125883259e-8, -3.120754562941629e-7, 0.0014142635528338874 ] ]
true
null
null
-75.850863
null
0.066152
0.137121
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:14:04
4607646225061792231613215093830464816883535534944529185237083500734296047353046763072313509527048020022499634621825480537176314207695193431079487863679957
PO_4607646225061792231613215
null
null
null
[ "train_1st_stage_1072", "train_1st_stage_870" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10461350041702344293289070901645757480862286432198749507849034760158412903366893534625582121314972954923469583190472299078840993702372782750556479661311285
CO_1046135004170234429328907
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni8Ti6
Ni4Ti3
A4B3
[ 28, 28, 28, 28, 28, 28, 28, 28, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.5714285714285714, 0.42857142857142855 ]
2
14
[ [ 2.85731, 0.086372, 0.03767 ], [ 1.14843, 6.00507, 7.60414 ], [ 0.069261, -4.47301, 5.00268 ] ]
[ [ 2.91734, -4.04928, 4.967 ], [ 2.79792, 0.20518, 4.27114 ], [ 2.74563, 0.03664, 8.62268 ], [ 2.62619, 4.2911, 7.92681 ], [ 2.88272, -1.81278, 2.46566 ], [ 2.83254, -2.03133, 6.77248 ], [ 2.71099, 2.27314, 6.12134 ], [ 2.66082, 2.05459, 10.4282 ], [ 1.43272, -2.05437, 4.5205 ], [ 1.30848, 2.31423, 3.92674 ], [ 1.2535, 2.20982, 8.33567 ], [ 1.39809, 0.18213, 2.01914 ], [ 1.34312, 0.07773, 6.42807 ], [ 1.21887, 4.44633, 5.83431 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12663946900886981899574271152597075723006789188765089411953286882915664828800838138477315981001094814939474960565860252990320206880092045630778971696682212
1
VASP
DFT
null
[ [ -0.003662, 0.076097, 0.067112 ], [ 0.001889, -0.040936, -0.036769 ], [ -0.001951, 0.040581, 0.036357 ], [ 0.003804, -0.075731, -0.065927 ], [ -0.003661, 0.07463, 0.066847 ], [ 0.001913, -0.040548, -0.036658 ], [ -0.0019, 0.039796, 0.036871 ], [ 0.003777, -0.0744, -0.066932 ], [ 0.000886, -0.035304, -0.031541 ], [ -0.000111, -0.000494, -0.000402 ], [ -0.000876, 0.036099, 0.032021 ], [ 0.000903, -0.035816, -0.032383 ], [ -0.000164, 0.000379, -0.000259 ], [ -0.000846, 0.035647, 0.031664 ] ]
null
[ [ -0.007528695552914162, -0.0002814296464860761, 0.00008294965628298849 ], [ -0.0002814296464860761, 0.0023737707507559204, -0.006287384217958499 ], [ 0.00008294965628298849, -0.006287384217958499, 0.0036447916691507874 ] ]
true
null
null
-96.074676
null
0.058121
0.101529
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:14:35
11177653615419657976055708981506707309780754688538240163764442642900671617063283778207984171460642335841114743926688514454586475707306179553009805271446411
PO_1117765361541965797605570
null
null
null
[ "train_1st_stage_521" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12439576956697383872205413046018398858326584834972461050387529879716581891509417870856747965406647574825115194168361221236439081073609269757207741977549976
CO_1243957695669738387220541
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni2Ti4
Al2NiTi2
A2B2C
[ 13, 13, 13, 13, 28, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.4, 0.2, 0.4 ]
3
10
[ [ 0.000003, 4.044842, 0.000001 ], [ 5.155616, -0.000009, -7.749871 ], [ -2.806727, 0.000004, -2.928416 ] ]
[ [ 4.93761, 0.00083, -7.54393 ], [ -1.57441, 2.02326, -4.11235 ], [ -0.10926, 0.00083, -5.51629 ], [ 1.34109, 2.02325, -6.90621 ], [ 2.49365, 0.00084, -8.01076 ], [ 3.78515, 2.02325, -6.43946 ], [ 3.56657, 2.02325, -9.03895 ], [ -0.15066, 0.00083, -2.66712 ], [ 1.2737, 2.02325, -4.03304 ], [ 2.71219, 0.00083, -5.41122 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11629362633959877099187330364478693008648374415974876150559871930472528561494350979436380308220543503284982687878526773806780126441752291803808732072418494
1
VASP
DFT
null
[ [ -0.002754, -0.000005, 0.002677 ], [ -0.005078, 0.000004, 0.005323 ], [ 0.00621, 0.000009, -0.006422 ], [ 0.00174, 0, -0.001669 ], [ 0.002118, 0.000008, -0.003111 ], [ -0.003278, -0.000013, 0.004489 ], [ -0.010868, -0.000007, 0.010693 ], [ -0.002634, 0.000003, 0.002408 ], [ 0.005336, 0, -0.005135 ], [ 0.009207, 0.000001, -0.009252 ] ]
null
[ [ 0.0019188895656615489, 0, 0.0000748981095105991 ], [ 0, 0.002091030387353409, 0 ], [ 0.0000748981095105991, 0, 0.0019249438295136556 ] ]
true
null
null
-61.962672
null
0.007114
0.015246
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:19:54
6861446247219956248001137480174521779600062322908099308460527778146823639825334970656604946346861904407047504291628954091408064765629983797203974092443496
PO_6861446247219956248001137
null
null
null
[ "train_1st_stage_330" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4941673170801410703903786113135259599443130189463281437437630043553717556931981425544161150842975959832465461255765053601568069700591616351532826084126034
CO_4941673170801410703903786
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni2
Al3Ni2
A3B2
[ 13, 13, 13, 28, 28 ]
[ "Al", "Ni" ]
[ 0.6, 0.4 ]
2
5
[ [ -0.000261, 2.991747, 0.0087 ], [ 2.991858, -0.000283, 0.008752 ], [ 1.518864, 1.518694, -7.156866 ] ]
[ [ 1.50762, 1.54692, -6.98606 ], [ 1.48999, 1.52938, -1.54518 ], [ 1.49881, 1.53815, -4.26569 ], [ 2.98963, 3.02895, -2.7954 ], [ 2.99959, 3.03877, -5.71846 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5753226632316665108742999763455482171017093591931486452047274237453265674293727279461296175702614894467465777149372979953211163943080995742346028188795597
1
VASP
DFT
null
[ [ 0.000676, 0.000529, 0.044235 ], [ -0.000687, -0.000608, -0.044633 ], [ -0.000013, -0.000044, 0.00055 ], [ -0.000696, -0.000468, 0.018358 ], [ 0.00072, 0.000591, -0.01851 ] ]
null
[ [ -0.00017551123661983722, 0.000019785583929049927, -8.73811277623656e-7 ], [ 0.000019785583929049927, -0.00017844474590900236, -0.000001622792372729647 ], [ -8.73811277623656e-7, -0.000001622792372729647, 0.000760527886988875 ] ]
true
null
null
-24.747926
null
0.02527
0.044642
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:36:24
5064095045536997610004069324555236345074828916969746899997236931964680202572580434445216655592619629067540794103303038779894317670199607691050688018605086
PO_5064095045536997610004069
null
null
null
[ "train_1st_stage_50" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9121404787197593048911698559701545281206295654407023113623802059547376947841028356546597085150424118191380058500518211520592600505901499937700842340113173
CO_9121404787197593048911698
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al8Ni2Ti2
Al4NiTi
A4BC
[ 13, 13, 13, 13, 13, 13, 13, 13, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.6666666666666666, 0.16666666666666666, 0.16666666666666666 ]
3
12
[ [ 0, 0, 3.95998 ], [ 3.42947, 1.98, 0 ], [ -5.53844, 9.59285, 0 ] ]
[ [ 2.97512, 2.10697, 0 ], [ 1.4661, 4.72066, 0 ], [ -1.2695, 5.49883, 0 ], [ -0.54861, 8.21024, 0 ], [ -3.2572, 8.94163, 0 ], [ 1.26038, 1.11695, 1.97999 ], [ -0.24865, 3.73066, 1.97999 ], [ -2.26334, 7.22024, 1.97999 ], [ 0.50587, 2.42381, 0 ], [ 2.2206, 3.41381, 1.97999 ], [ 0.43351, 6.50915, 1.97999 ], [ -1.53074, 9.91133, 1.97999 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9475574992572250291955449334713453486996528606480736350940262467156233080891863145212953292263408692555887688129481451566405388920753038570515939574487228
1
VASP
DFT
null
[ [ 0.027586, -0.048192, 0 ], [ -0.027987, 0.048131, 0.000001 ], [ 0.198216, -0.343449, 0.000001 ], [ -0.000037, -0.000236, 0 ], [ -0.1983, 0.34331, -0.000001 ], [ 0.027646, -0.048013, 0 ], [ -0.027876, 0.048128, 0 ], [ -0.000053, -0.000239, 0.000001 ], [ 0.000425, 0.000327, 0.000001 ], [ 0.000431, 0.000262, -0.000001 ], [ -0.186817, 0.323499, -0.000003 ], [ 0.186765, -0.323529, 0.000002 ] ]
null
[ [ -0.005242992495924454, 0.012258635998691014, 6.241509125883259e-8 ], [ 0.012258635998691014, -0.019400357985800414, 0 ], [ 6.241509125883259e-8, 0, 0.0018250172684082645 ] ]
true
null
null
-62.019596
null
0.146991
0.396544
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:19:35
4936098751921831955059313684048701720540734678707680894267374986007097177664319873626471681728553420104342977309202026098718587362025345594701749409574084
PO_4936098751921831955059313
null
null
null
[ "train_1st_stage_1051" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5863866904602850409481535072385828918353692606520459904683286048665528490898410499523780231107521507657923024987088372115687577754583415632156559763436035
CO_5863866904602850409481535
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi9Ti2
AlNi9Ti2
A9B2C
[ 13, 28, 28, 28, 28, 28, 28, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.08333333333333333, 0.75, 0.16666666666666666 ]
3
12
[ [ 0.000004, -0.000006, 3.59159 ], [ 6.515671, 4.68637, 0 ], [ -4.119422, 2.970979, 0.000009 ] ]
[ [ -2.38304, 3.54661, 1.79529 ], [ -0.03271, 0.295, 3.59108 ], [ 1.44527, 2.34181, 3.59108 ], [ 2.93443, 4.40417, 3.59108 ], [ -2.09196, 1.78021, 3.59108 ], [ -0.61406, 3.82706, 3.59109 ], [ 0.87473, 5.88966, 3.59109 ], [ 3.22138, 2.63237, 1.79528 ], [ -0.32334, 2.06107, 1.79529 ], [ 2.64753, 6.17601, 1.79529 ], [ 4.70955, 4.69366, 1.79528 ], [ 1.15931, 4.11471, 1.79529 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5910340878585806926879390736314649464489766987015536538779288483451519052266312306655577996239276336595507990905363826444998101819880027138936016546954238
1
VASP
DFT
null
[ [ -0.001551, -0.002015, -0.000026 ], [ -0.001066, 0.003436, -0.000013 ], [ -0.0042, 0.000374, 0.000006 ], [ -0.000242, 0.000452, 0.00001 ], [ 0.002973, 0.000638, 0.00002 ], [ 0.002366, -0.004221, -0.000033 ], [ 0.000527, -0.000149, -0.00003 ], [ -0.002167, -0.002729, -0.000001 ], [ -0.000322, -0.000444, 0.000017 ], [ 0.002609, 0.00329, 0.000035 ], [ -0.002111, -0.001232, -0.000008 ], [ 0.003184, 0.002601, 0.000024 ] ]
null
[ [ 0.002173480722906327, -0.0000521166012011252, 6.241509125883259e-8 ], [ -0.0000521166012011252, 0.002134970611599627, 0 ], [ 6.241509125883259e-8, 0, 0.0020978960473918805 ] ]
true
null
null
-74.37929
null
0.002841
0.004839
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:08:02
1266146530984054419990645012213534875064614836930275548514661941393148049193720896630841847178219989128413177077557309522920178143185064693299163739085753
PO_1266146530984054419990645
null
null
null
[ "train_1st_stage_197" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6595573036429394018291356433055904785009744996438979406174982257878229594513381722734075689198229523439847912159264365542608330439421024408665002226809654
CO_6595573036429394018291356
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi6Ti3
AlNi6Ti3
A6B3C
[ 13, 28, 28, 28, 28, 28, 28, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.1, 0.6, 0.3 ]
3
10
[ [ -0.916371, 2.351, 2.97465 ], [ 3.99388, 0.284746, -1.57054 ], [ -3.69793, 5.42469, -5.38393 ] ]
[ [ -0.76804, 7.99103, -3.97098 ], [ 0.42609, 2.26741, 0.89292 ], [ -0.43546, 1.82475, -1.57367 ], [ 0.21466, 4.25317, -0.73116 ], [ -2.21929, 4.00345, -1.26377 ], [ -0.0598, 6.20399, -2.34717 ], [ -1.24653, 5.69921, -4.86039 ], [ 1.92589, 2.33292, -1.26531 ], [ -0.58455, 3.74345, -3.11602 ], [ -2.66223, 5.87068, -2.86817 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
959703246609701063701363601847872775576767947217022023010061297651195082396159683719427560773038511378041877971294381990349879597057759425105879831066624
1
VASP
DFT
null
[ [ 0.139665, 0.122959, -0.055839 ], [ 0.170935, 0.158539, -0.07766 ], [ -0.035867, 0.103706, -0.089668 ], [ -0.073778, -0.018166, -0.01327 ], [ 0.059086, -0.066119, 0.052175 ], [ -0.218381, -0.042458, -0.042439 ], [ 0.057389, 0.041558, 0.001583 ], [ -0.129367, -0.395346, 0.306312 ], [ 0.163448, 0.117878, -0.043005 ], [ -0.13313, -0.022551, -0.038188 ] ]
null
[ [ -0.005518867199288495, 0.0005352094075444894, -0.000053489733208819514 ], [ 0.0005352094075444894, -0.004683253957515243, -0.0045219109466111615 ], [ -0.000053489733208819514, -0.0045219109466111615, -0.006164176827813565 ] ]
true
null
null
-64.579335
null
0.192206
0.516586
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:38:26
8210956258629019937541221274407322870289475150171785568402218454822333835992442090219189799144396516321450730283657543836045595459475536861134615451291718
PO_8210956258629019937541221
null
null
null
[ "train_1st_stage_1149" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
2264423836572148762358953428731555653608412095386073561662566486911927941882824967967784098012834821208308417848067371736028376990589660226999149941035511
CO_2264423836572148762358953
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni5Ti4
Al3Ni5Ti4
A5B4C3
[ 13, 13, 13, 28, 28, 28, 28, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.25, 0.4166666666666667, 0.3333333333333333 ]
3
12
[ [ 2.88897, -0.194726, -0.121378 ], [ -0.034723, 3.09264, -0.130357 ], [ -0.001812, -0.021278, 12.9788 ] ]
[ [ 2.81345, 0.52303, 0.11194 ], [ 2.4909, 0.74502, 8.96476 ], [ 0.05892, 1.17866, 1.46543 ], [ 2.85233, 0.10121, 3.13208 ], [ 1.30723, 2.42719, 0.30563 ], [ 1.54389, 1.51388, 4.60644 ], [ 1.49823, 1.81877, 8.50787 ], [ 1.27529, 2.84566, 1.83675 ], [ 1.47914, 2.88728, 5.39931 ], [ 1.59259, 0.25483, 11.2634 ], [ 0.23052, 1.63402, 7.26111 ], [ 0.40645, 1.32238, 10.5106 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11890873306409875283576996694404273448268016347708904120361487308423875437390835127091990829684251280887047540034859376830179941827368056236579250245209102
1
VASP
DFT
null
[ [ -1.886616, -10.159145, -43.696587 ], [ 3.479795, -23.954559, -2.857941 ], [ 0.631665, 19.265727, 41.17648 ], [ -0.319188, 0.137306, 10.518825 ], [ 0.605995, -12.303048, -22.880096 ], [ 0.858568, -11.37278, -13.276601 ], [ -8.055193, 19.892724, 0.745423 ], [ 2.773712, 2.071397, 20.106555 ], [ -0.467019, 12.063654, 12.307089 ], [ 2.860166, -5.939626, 2.004779 ], [ -4.027571, -0.080023, -15.993492 ], [ 3.545685, 10.378372, 11.845563 ] ]
null
[ [ 0.7292285287602169, -0.03612523066969971, 0.16501894770377115 ], [ -0.03612523066969971, 0.7517668678741465, 0.13471598399196913 ], [ 0.16501894770377115, 0.13471598399196913, 1.2732512592659098 ] ]
true
null
null
-7.283751
null
22.283076
45.465039
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:12:56
8663746877913164568982046204153336706924903847019045710841445771199901596941939988667704537650864536500679974192796950240726745753034643207643131614318205
PO_8663746877913164568982046
null
null
null
[ "train_1st_stage_1975", "train_1st_stage_1775", "train_1st_stage_1575", "train_1st_stage_1375" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12442246319029830339906321019387633087370635409640666158470853398452830749266740472826740973324762252476189844141064589241963824214075837159308417489923496
CO_1244224631902983033990632
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni6Ti2
Ni3Ti
A3B
[ 28, 28, 28, 28, 28, 28, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.75, 0.25 ]
2
8
[ [ 0, 0, 4.12878 ], [ 2.65223, 4.57844, 0 ], [ -2.65223, 4.57844, 0 ] ]
[ [ 0, 0.75136, 1.0322 ], [ 0, 8.40553, 3.09659 ], [ -1.38089, 3.03397, 1.0322 ], [ 1.38089, 6.12292, 3.09659 ], [ 1.38089, 3.03397, 1.0322 ], [ -1.38089, 6.12292, 3.09659 ], [ 0, 5.31745, 3.09659 ], [ 0, 3.83944, 1.0322 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7783727219744471123867974979865002225201503023939836054695568196120800025202425720888379976410046668137592070690846257077314995352330395517593630068152740
1
VASP
DFT
null
[ [ -0.000412, 0.066332, 0 ], [ -0.000444, -0.066229, -0.000001 ], [ -15.695349, -9.240356, -0.000001 ], [ 15.694475, 9.240397, -0.000001 ], [ 15.694302, -9.240173, -0.000001 ], [ -15.694761, 9.240215, -0.000001 ], [ -0.000022, -15.056402, -0.000001 ], [ 0.002211, 15.056216, 0.000006 ] ]
null
[ [ 0.5072699160933856, 0.000013668904985684336, 6.241509125883259e-8 ], [ 0.000013668904985684336, 0.16461362410113628, 0 ], [ 6.241509125883259e-8, 0, 0.02924271855658824 ] ]
true
null
null
-31.046373
null
12.887063
18.213406
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:22:32
4556835571686343357471179767133222117361841216215185540277110663016706011673126135106965294193018896975054688745310306346111094485479885689420094812963516
PO_4556835571686343357471179
null
null
null
[ "train_1st_stage_2360" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12862436692171527367882263013462646781675820470325754770764349164867750630736751220874793388229983795489427166749808367422568031595980963857896717149434622
CO_1286243669217152736788226
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni6Ti8
Ni3Ti4
A4B3
[ 28, 28, 28, 28, 28, 28, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.42857142857142855, 0.5714285714285714 ]
2
14
[ [ -0.717415, -4.791916, -0.406856 ], [ 3.279465, 0.233013, 3.582579 ], [ -7.383863, 2.424123, 4.34345 ] ]
[ [ -6.64474, 1.46503, 3.87709 ], [ -0.02208, 0.1075, 3.44611 ], [ -4.93863, -0.22017, 4.39521 ], [ 1.65359, -3.75932, 2.24929 ], [ -2.38705, -2.92583, 2.57913 ], [ -4.09286, -1.24052, 2.06073 ], [ -2.45235, -0.47242, 3.75126 ], [ 0.02089, -2.43434, 3.74473 ], [ -4.43678, -2.68003, 4.27997 ], [ -0.36138, -3.20164, 0.85434 ], [ -1.31509, 1.45235, 5.75838 ], [ 1.61047, -1.21766, 1.95077 ], [ -1.28675, -0.68317, 1.25859 ], [ -3.29949, -0.75523, 6.28688 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
1586112588493536707436394913272232939108208744244583069487607384319884440518789992350250159238798089433649985519384077204451908003329786999907577137446290
1
VASP
DFT
null
[ [ 0.004983, 0.006189, 0.004006 ], [ 0.010216, -0.016641, -0.001922 ], [ 0.016793, -0.006503, 0.004827 ], [ -0.008097, 0.01548, 0.002508 ], [ -0.004865, -0.005779, -0.004863 ], [ -0.018302, 0.007053, -0.004821 ], [ 0.004305, -0.015596, -0.02692 ], [ -0.028887, -0.014775, 0.004838 ], [ -0.021865, -0.013259, -0.001145 ], [ -0.000365, -0.01521, -0.020988 ], [ 0.020264, 0.012947, 0.002683 ], [ 0.030709, 0.015696, -0.006185 ], [ 0.001599, 0.015251, 0.018186 ], [ -0.006486, 0.015146, 0.029795 ] ]
null
[ [ -0.00025371734596715443, 0.000903645691245378, -0.0006372580817526806 ], [ 0.000903645691245378, -0.000672897098861474, 0.00018587214176880341 ], [ -0.0006372580817526806, 0.00018587214176880341, 0.0005835811032700847 ] ]
true
null
null
-100.181705
null
0.023343
0.035038
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:13:55
947754755010200299685679023411653570157690024022706803107801160933962083709337783206815568303018310860166141578665922345006796562649444595470333655421815
PO_9477547550102002996856790
null
null
null
[ "train_1st_stage_256" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
1103929891469325148815758648681301266132328368483929323107014517243839736404889062982019703012294229169420753836668003729634611137152969555049031458933669
CO_1103929891469325148815758
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni8
AlNi2
A2B
[ 13, 13, 13, 13, 28, 28, 28, 28, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
12
[ [ 2.8163, 0, -2.8163 ], [ 0, 8.66141, 0 ], [ 2.8163, 0, 2.8163 ] ]
[ [ 5.63259, 0, 0 ], [ 5.63259, 2.89523, 0 ], [ 5.63259, 5.76618, 0 ], [ 2.8163, 0, 0 ], [ 4.22444, 1.42532, 1.40815 ], [ 4.22444, 4.3307, 1.40815 ], [ 4.22444, 7.23609, 1.40815 ], [ 4.22444, 1.42532, -1.40815 ], [ 2.8163, 2.89016, 0 ], [ 4.22444, 4.3307, -1.40815 ], [ 2.8163, 5.77124, 0 ], [ 4.22444, 7.23609, -1.40815 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3027179825667076516624836841633900040635789009945163299771470976232049889749197941107607776932022622444985143173774592981879886534153631347911425247060725
1
VASP
DFT
null
[ [ 0.000031, -0.000115, 0 ], [ 0.000009, -0.066558, 0 ], [ 0.000009, 0.066665, 0 ], [ -0.000105, -0.000121, 0 ], [ 0.000055, 0.097422, 0.000057 ], [ 0.00004, 0.000127, 0.000041 ], [ 0.000019, -0.0975, 0.000021 ], [ 0.000054, 0.097488, -0.000021 ], [ -0.000076, 0.236536, 0.000009 ], [ 0.00004, 0.000141, -0.000041 ], [ -0.000094, -0.236665, -0.000009 ], [ 0.000019, -0.097419, -0.000056 ] ]
null
[ [ -0.006788078080036854, 0, -0.0000011234716426589865 ], [ 0, -0.02200469008366646, 0 ], [ -0.0000011234716426589865, 0, -0.006788078080036854 ] ]
true
null
null
-64.415094
null
0.083069
0.236665
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:15:47
9891108047120311690058056887844707425920687357755238134599959607628741087760584171131941085524691048254870120425472103339733875882426371785138448911142479
PO_9891108047120311690058056
null
null
null
[ "train_1st_stage_615" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
3930089922334376519160110759399127859799594524988925218883938778760734790935997372687722132764746974594561779243110164938648009990507173469254186799948056
CO_3930089922334376519160110
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni
Al4Ni
A4B
[ 13, 13, 13, 13, 28 ]
[ "Al", "Ni" ]
[ 0.8, 0.2 ]
2
5
[ [ -1.68234, 1.95391, 5.08039 ], [ 1.95391, -1.68234, 5.08039 ], [ 2.08412, 2.08412, -3.07194 ] ]
[ [ 0.2609, 2.09478, 3.54442 ], [ 2.09478, 0.2609, 3.54442 ], [ 1.53652, 1.53652, 1.06273 ], [ 0.81915, 0.81915, 6.02612 ], [ 0, 0, 0 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10633965520833537693979143040768363972096955774217293165867728816401349126529078387569776307356243377705768949507927718721574585060073886794973973826833841
1
VASP
DFT
null
[ [ 0.18083, -0.180821, 0.000004 ], [ -0.180821, 0.180831, 0.000003 ], [ 0.057604, 0.057604, -0.087421 ], [ -0.05755, -0.057549, 0.087432 ], [ -0.000064, -0.000064, -0.000018 ] ]
null
[ [ 0.008066838469747817, 0.004075455798836732, -0.0068071146828707985 ], [ 0.004075455798836732, 0.008066776054656558, -0.0068071146828707985 ], [ -0.0068071146828707985, -0.0068071146828707985, -0.009420184893513083 ] ]
true
null
null
-20.946482
null
0.150098
0.255727
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:15:02
10221441636558412176171217317570201157428177855566671325214999816387648232098482889313975323910066226460238007745008013276560706961665054576136982985283192
PO_1022144163655841217617121
null
null
null
[ "train_2nd_stage_225" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7559899028182774100300103643721935216664644933017362764051685342361508265895384844393792293681286592508335504444841979968635951763027107042430280223627638
CO_7559899028182774100300103
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3NiTi4
Al3NiTi4
A4B3C
[ 13, 13, 13, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.375, 0.125, 0.5 ]
3
8
[ [ 3.97752, 0.062508, 4.03299 ], [ 0.007055, 4.00343, -3.93215 ], [ -0.004325, 3.88276, 3.87668 ] ]
[ [ 0.03972, 3.88453, 3.87811 ], [ 2.03288, 5.90974, 3.93282 ], [ 2.03289, 3.91632, 5.89119 ], [ 0.00347, 1.94056, 1.94084 ], [ 0.05076, 5.88669, 1.91376 ], [ 2.03695, 3.97327, 1.98995 ], [ 2.03815, 1.97531, 3.95012 ], [ 0.06189, 3.95292, -0.02362 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12240666792841762886655782683830921104360563779375228989955305422608683179013003148804370893874027597470260887054749443077368217640192127995709027063399719
1
VASP
DFT
null
[ [ -0.001182, -0.036162, -0.021098 ], [ 0.007112, 0.041519, 0.013464 ], [ 0.024567, 0.00139, 0.013342 ], [ 0.077593, 0.000499, -0.009575 ], [ 0.006681, 0.01535, 0.013566 ], [ -0.032872, -0.021974, 0.030187 ], [ -0.038516, 0.025878, -0.016722 ], [ -0.043382, -0.026499, -0.023163 ] ]
null
[ [ 0.020011838634863194, -0.009084891023270635, -0.009823323967953884 ], [ -0.009084891023270635, 0.014897982962753265, 0.008211703896559567 ], [ -0.009823323967953884, 0.008211703896559567, 0.011876343564730664 ] ]
true
null
null
-49.102614
null
0.046095
0.078183
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:23:27
2764534570123258095203294056582002420316266775451584297343347740846784308971658959063134314574219442972732431650319455177380443924856027593349521990039692
PO_2764534570123258095203294
null
null
null
[ "train_1st_stage_2203" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10375576748581226972066767525899581830210597330815341477421905137409753997407736998665531183020732948739267478596549392577875359684241167151942163495583279
CO_1037557674858122697206676
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ti4
AlTi2
A2B
[ 13, 13, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
6
[ [ 0, 3.7077, 3.7077 ], [ 3.7077, 0, 3.7077 ], [ 3.7077, 3.7077, 0 ] ]
[ [ 0.92692, 0.92692, 0.92692 ], [ 6.48848, 6.48848, 6.48848 ], [ 3.7077, 3.7077, 3.7077 ], [ 3.7077, 1.85385, 1.85385 ], [ 1.85385, 3.7077, 1.85385 ], [ 1.85385, 1.85385, 3.7077 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
13384073966947746335018247980529160472355079693091729806756746219480192216030660396570701841014925709380057542116185233775618295252270338679839784846502187
1
VASP
DFT
null
[ [ -0.000109, -0.000095, 0.000036 ], [ 0.000099, 0.000073, -0.000048 ], [ 0.000001, 0.000009, -0.000006 ], [ 0, 0, 0.000003 ], [ 0.00001, -0.000003, 0.000015 ], [ -0.000001, 0.000015, 0 ] ]
null
[ [ 0.0019007891891964872, 0.0000025590187416121356, 0.000027462640153886337 ], [ 0.0000025590187416121356, 0.001900976434470264, 0.0000329551681846636 ], [ 0.000027462640153886337, 0.0000329551681846636, 0.001900539528831452 ] ]
true
null
null
-38.105085
null
0.000055
0.000149
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:48:16
8490104577290901142628510241514291455318520588390810275875654398667609799904915724556951418493519197156504418080152141981474379708124456895523870997283623
PO_8490104577290901142628510
null
null
null
[ "train_1st_stage_2077" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12827745491098919763226126296561290401416796335129450059115701594506043108131294800129300631793313852557798003415017557193395454267244584732530776860498414
CO_1282774549109891976322612
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni5Ti3
Ni5Ti3
A5B3
[ 28, 28, 28, 28, 28, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.625, 0.375 ]
2
8
[ [ 0.388818, 3.93547, -0.253124 ], [ 3.68361, 1.12997, -6.07036 ], [ -2.72161, -0.037029, -2.88005 ] ]
[ [ -2.2204, 3.88366, -3.19654 ], [ -1.28367, 1.72365, -4.1288 ], [ 0.04206, 3.49911, -5.31398 ], [ -1.05918, 1.92794, -1.63435 ], [ 1.21343, 1.55635, -3.74322 ], [ 0.94941, 1.34614, -6.20197 ], [ 0.27161, 3.70989, -2.81526 ], [ 2.8885, 3.26816, -5.24591 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3461644069288660249355550914209543539371627984525072398577606805236515967116136416479521510391929956394572428213420706666184640357267002142854731437235850
1
VASP
DFT
null
[ [ -0.164237, 0.026095, 0.176811 ], [ -0.000467, 0.000067, 0.000041 ], [ 0.164455, -0.026368, -0.17712 ], [ -0.175011, 0.01161, 0.167966 ], [ 0.175552, -0.0121, -0.167954 ], [ 0.476152, -0.080269, -0.442362 ], [ 0.000023, 0.000139, 0.00007 ], [ -0.476468, 0.080825, 0.442549 ] ]
null
[ [ -0.01719292345324928, -0.000441025034834911, -0.003404119077256729 ], [ -0.000441025034834911, -0.018460324296351135, -0.002787894881258275 ], [ -0.003404119077256729, -0.002787894881258275, -0.012385026558490149 ] ]
true
null
null
-53.381656
null
0.285344
0.655289
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:24:03
4213023150517882492651417053447965833589272521882720442773148080945008993959982569323318640980244442038828594970724468639140949515171457313237694809258384
PO_4213023150517882492651417
null
null
null
[ "train_2nd_stage_838" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4690888963561794733453779292599226370657618140175032830545032443698319937409120081216058040071218449741003933065229077237684073141827043413851130824882512
CO_4690888963561794733453779
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni2Ti2
NiTi
AB
[ 28, 28, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.5, 0.5 ]
2
4
[ [ 3.54125, 0, 0 ], [ 0, 3.54125, 0 ], [ 0, 0, 4.48469 ] ]
[ [ 0.88531, 0.88531, 1.05031 ], [ 2.65594, 2.65594, 3.43437 ], [ 0.88531, 2.65594, 0 ], [ 2.65594, 0.88531, 0 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6292098289665027065225375334734931606791120819719472634748792942303484213715418995722141752545893496123460837098450147114023810455777684081703285221653363
1
VASP
DFT
null
[ [ 0.000038, 0.000038, 9.816522 ], [ -0.000036, -0.000035, -9.816265 ], [ 0.000062, -0.000069, -0.000019 ], [ -0.000063, 0.000066, -0.000238 ] ]
null
[ [ 0.20642455750905936, 0, 5.617358213294933e-7 ], [ 0, 0.206425431320337, 6.241509125883258e-7 ], [ 5.617358213294933e-7, 6.241509125883258e-7, 0.08169898268434402 ] ]
true
null
null
-19.026043
null
4.908284
9.816522
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:17:16
11356043252993221773566712991212732931864704017442264499208892253335929246588690308840306883798362069755452201072051200623719780812410783294753399651115042
PO_1135604325299322177356671
null
null
null
[ "train_1st_stage_2158" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
3334322584670821986485260966345348125676832834552044109542022418342917316496825992405929055481861666355095246111482147348344811079348965946746171747682939
CO_3334322584670821986485260
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni2Ti3
Ni2Ti3
A3B2
[ 28, 28, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.4, 0.6 ]
2
5
[ [ 1.65941, 0.958061, 7.70425 ], [ -1.65941, 0.958061, 7.70425 ], [ 0, -1.91612, 7.70425 ] ]
[ [ 0, 0, 9.22199 ], [ 0, 0, 13.8908 ], [ 0, 0, 0 ], [ 0, 0, 4.80745 ], [ 0, 0, 18.3053 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2441521469946542692702281462419970537399241473355315659914978917846201774400143388636218043036711693477166457694401126534729097836663311010032042997164014
1
VASP
DFT
null
[ [ 0, -0.000002, -0.534937 ], [ -0.000001, 0.00001, 0.534578 ], [ 0.000001, -0.000005, -0.000574 ], [ 0.000005, -0.000013, 0.534428 ], [ -0.000006, 0.000009, -0.533495 ] ]
null
[ [ 0.014266154993940105, 6.241509125883259e-8, 6.241509125883259e-8 ], [ 6.241509125883259e-8, 0.01426627982412262, 1.2483018251766518e-7 ], [ 6.241509125883259e-8, 1.2483018251766518e-7, 0.043409945630883094 ] ]
true
null
null
-33.501834
null
0.427602
0.534937
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:25:02
7924848122308392473621370846406910473553052962767144091036519829050821753763844408856299431062842783724646304057706773164378606209104631379761073638077223
PO_7924848122308392473621370
null
null
null
[ "train_1st_stage_2255" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7005639637698843716878366143532353438936222593517255406650266594689879396400446811371274452040681192798854012333219504155155904006040975689785301848203163
CO_7005639637698843716878366
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni7Ti2
Al3Ni7Ti2
A7B3C2
[ 13, 13, 13, 28, 28, 28, 28, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.25, 0.5833333333333334, 0.16666666666666666 ]
3
12
[ [ 3.84166, 0.000276, 0.000793 ], [ -0.000942, 3.24466, 3.4283 ], [ -0.001155, -3.46204, 6.78782 ] ]
[ [ 0.02642, -2.94991, 6.95532 ], [ 1.948, 0.58265, 2.08237 ], [ 1.94745, -0.12009, 4.99258 ], [ 0.02689, 0.20656, 3.5923 ], [ 0.02631, -0.10634, 6.47632 ], [ 1.9472, -1.69365, 6.74741 ], [ 1.94755, 2.27368, 3.70392 ], [ 1.94794, -1.5317, 3.11621 ], [ 0.02595, -1.33404, 8.66117 ], [ 0.02676, -1.86581, 4.93608 ], [ 1.94678, 0.02417, 8.19264 ], [ 0.02643, 1.82149, 5.22522 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11839681208318723743716206301461067862744796695959889318461538642094028365720807679520559077748257272808740180259631192225983270218266401156581935506319648
1
VASP
DFT
null
[ [ 0.000256, 0.120148, -0.467949 ], [ 0.000132, 0.43627, 0.127757 ], [ 0.000249, -0.202102, -0.262 ], [ 0.000005, 0.108911, -0.545053 ], [ -0.000191, -0.258017, 0.612432 ], [ -0.000038, -0.723614, -0.209668 ], [ -0.000108, -0.403555, -0.020103 ], [ -0.00028, -0.212379, 0.285049 ], [ -0.000164, -0.781272, 0.416209 ], [ 0.000167, 1.01851, -0.844102 ], [ -0.000199, 0.406199, 1.137011 ], [ 0.000171, 0.4909, -0.229583 ] ]
null
[ [ 0.1433699612251888, -0.0000049932073007066064, -0.0000013731320076943167 ], [ -0.0000049932073007066064, 0.1623762927398722, 0.02331727945283971 ], [ -0.0000013731320076943167, 0.02331727945283971, 0.14387683418130176 ] ]
true
null
null
-69.259155
null
0.663273
1.322827
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:24:01
7161440596344950838266365166870046696669698702620586983422748892424343308714526895974459128848469703866245276437515262037687608400920154563884752557943246
PO_7161440596344950838266365
null
null
null
[ "train_2nd_stage_637" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6655440051823581362894210904829149787530570910343492460917152951193559389786374063230381264695850504666164395342710582892445142829401964121963537316922410
CO_6655440051823581362894210
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni6Ti2
Ni3Ti
A3B
[ 28, 28, 28, 28, 28, 28, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.75, 0.25 ]
2
8
[ [ 0, 0, 4.13046 ], [ 2.63996, 4.57254, 0 ], [ -2.63996, 4.57254, 0 ] ]
[ [ 0, 0.75063, 1.03262 ], [ 0, 8.39444, 3.09785 ], [ -1.34432, 3.04686, 1.03262 ], [ 1.34432, 6.09821, 3.09785 ], [ 1.34432, 3.04686, 1.03262 ], [ -1.34432, 6.09821, 3.09785 ], [ 0, 5.34063, 3.09785 ], [ 0, 3.80444, 1.03262 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4341047411233570532590338416784497356946383384717469820785177286606576472377655417775791409358708825779987879318124962900712671386223440802588507180493518
1
VASP
DFT
null
[ [ 0.000073, 0.052123, 0 ], [ 0.000049, -0.052072, -0.000001 ], [ -19.275701, -10.774621, -0.000001 ], [ 19.275821, 10.774671, -0.000001 ], [ 19.27588, -10.774616, 0 ], [ -19.275376, 10.774547, 0 ], [ -0.000422, -18.227924, 0.000002 ], [ -0.000324, 18.227892, 0 ] ]
null
[ [ 0.6139560315821081, 0.000003245584745459294, 0 ], [ 0.000003245584745459294, 0.19041864426137056, 0 ], [ 0, 0, 0.02954824042830022 ] ]
true
null
null
-26.803608
null
15.611341
22.082842
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:23:41
13096992555342360616389815736737346337558142248821045524630917397380404121909124858264280302850560974465708586427318554835575244525442264691194745678562628
PO_1309699255534236061638981
null
null
null
[ "train_1st_stage_2027" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12426009574054214174415676127130384389952721394032135823611630314664178775776643459973053535346827038960608032930344681188655092755780325027699224923533906
CO_1242600957405421417441567
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al11Ti
Al11Ti
A11B
[ 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 22 ]
[ "Al", "Ti" ]
[ 0.9166666666666666, 0.08333333333333333 ]
2
12
[ [ -2.84565, 0, -2.82804 ], [ 2.85907, 0, -5.71872 ], [ 0, -8.08643, 0 ] ]
[ [ 2.8496, -0.01868, -5.70923 ], [ -1.4314, -6.06482, -4.24983 ], [ 0.00894, -4.04344, -5.69784 ], [ 1.43121, -2.02161, -7.12757 ], [ 0.01394, -0.01868, -2.85841 ], [ 1.43177, -6.06482, -4.28382 ], [ 2.8496, -4.02454, -5.70923 ], [ -1.41332, -2.02161, -4.26811 ], [ 0.00894, -8.08621, -5.69784 ], [ -1.40978, -6.06482, -1.42714 ], [ 0.01394, -4.02454, -2.85841 ], [ 1.43177, -2.02161, -4.28382 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
309609400871971705490136704191114310134088400125444296309983079571596770259042776162591661462421146401853650757990718950249586949806067887321889930281886
1
VASP
DFT
null
[ [ -0.020149, -0.122337, 0.014395 ], [ 0.109175, -0.000023, -0.117754 ], [ -0.000008, 0.126761, -0.000031 ], [ -0.147964, 0.000005, 0.149743 ], [ 0.020147, -0.122345, -0.014447 ], [ -0.000009, -0.000016, -0.000037 ], [ -0.020153, 0.122343, 0.014403 ], [ 0.147942, 0.00001, -0.149788 ], [ -0.000017, -0.126741, -0.000024 ], [ -0.109198, -0.000018, 0.117733 ], [ 0.020144, 0.122354, -0.014446 ], [ 0.00009, 0.000006, 0.000255 ] ]
null
[ [ 0.005405334148288678, 1.2483018251766518e-7, 0.00492991839817015 ], [ 1.2483018251766518e-7, -0.003303443535056232, 0 ], [ 0.00492991839817015, 0, 0.005894543633575408 ] ]
true
null
null
-49.990502
null
0.124611
0.210531
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:24:58
9107944261339690251691005203454385495805573307861205433832436616368453887494517341573115346338358860522689228083589409491195118387401948273096303736609739
PO_9107944261339690251691005
null
null
null
[ "train_1st_stage_921" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9345238051744412508848569072805493968504215226090965550873813773411687866633139682454450246861290008415702392547291573939519125562740165815706265272198915
CO_9345238051744412508848569
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al5Ni5Ti2
Al5Ni5Ti2
A5B5C2
[ 13, 13, 13, 13, 13, 28, 28, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.4166666666666667, 0.4166666666666667, 0.16666666666666666 ]
3
12
[ [ 3.87454, -0.734145, 0.021478 ], [ -1.02931, 5.83605, -0.009084 ], [ 0.001911, -0.006379, 7.81412 ] ]
[ [ 0.21223, 0.8714, 0.00909 ], [ 0.24924, 0.2585, 3.89412 ], [ 2.13907, 2.23865, 7.81554 ], [ 0.6935, 4.43055, 0.02257 ], [ 1.19667, 2.86645, 3.91664 ], [ 2.08437, 1.80292, 3.91752 ], [ 2.02151, -0.11682, 1.88298 ], [ 2.01485, -0.13568, 5.94836 ], [ 0.26561, 2.08535, 1.79354 ], [ 0.30499, 2.07844, 6.01425 ], [ 2.63204, 3.38479, 1.94642 ], [ 2.63782, 3.40982, 5.892 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7722526744908411491734435133879963595130002506538372686663524646414979619638039629816607194683202146453659144532675363189056400826343335984763227058799892
1
VASP
DFT
null
[ [ -2.18093, -3.667046, -0.165396 ], [ -0.565905, 0.125826, 0.014381 ], [ 0.742342, -3.400425, -0.009642 ], [ 0.149685, -1.302988, -0.216018 ], [ -22.144937, 24.711698, -0.05524 ], [ 21.064849, -24.726462, 0.047902 ], [ 0.011893, 0.723946, 0.67665 ], [ 0.054917, 0.666244, -0.552826 ], [ 0.161189, 0.889224, 1.41177 ], [ 0.008691, 0.733013, -1.141689 ], [ 1.315479, 2.65323, 1.459485 ], [ 1.382727, 2.593739, -1.469378 ] ]
null
[ [ 0.08087597729100504, -0.08462587597383571, -0.002929514723324566 ], [ -0.08462587597383571, 0.15626348353216463, 0.001046763495501881 ], [ -0.002929514723324566, 0.001046763495501881, 0.07523078194700868 ] ]
true
null
null
-52.170924
null
7.233641
33.182364
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:38:50
5528743542113938010466533109885009853539430864267208890656916621305994135993180447254306338209702486626640361072900853388895123091610236554140296329634907
PO_5528743542113938010466533
null
null
null
[ "train_1st_stage_1633", "train_1st_stage_1433", "train_1st_stage_1233", "train_1st_stage_1833" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12150242453732868480731255553251658077855879685793978078052787864616758476282302997224563535706833369526938671895295877859325853666372097858881276840093773
CO_1215024245373286848073125
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al8Ti4
Al2Ti
A2B
[ 13, 13, 13, 13, 13, 13, 13, 13, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.6666666666666666, 0.3333333333333333 ]
2
12
[ [ 3.936639, 0, 0 ], [ -0.000001, 4.012101, -0.000001 ], [ 0, 0.000003, 12.097974 ] ]
[ [ 0.00468, 0.32789, 0.00869 ], [ 0.00468, 0.32789, 4.0047 ], [ 0.00469, 0.32789, 8.05568 ], [ 1.973, 2.33394, 0.01042 ], [ 1.973, 2.33394, 4.00297 ], [ 1.973, 0.32789, 2.00671 ], [ 1.973, 0.32789, 6.0991 ], [ 1.973, 0.32789, 10.01226 ], [ 1.97302, 2.33395, 8.05569 ], [ 0.0047, 2.33396, 2.00671 ], [ 0.00468, 2.33394, 5.90557 ], [ 0.00467, 2.33394, 10.20581 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6778609969667406768628027859277844060337663043421842835126852529763608846667124921404740657449747400893411282152762926952073638814786006724322927062470265
1
VASP
DFT
null
[ [ 0.000004, -0.000002, 0.001983 ], [ 0.000005, 0.000006, -0.002021 ], [ 0.000023, 0.000019, -0.000076 ], [ -0.000014, -0.000005, 0.002996 ], [ -0.000009, 0.000007, -0.002993 ], [ 0.000022, 0.000029, -0.000184 ], [ -0.000014, -0.000004, -0.008933 ], [ -0.000023, -0.000001, 0.008893 ], [ -0.000038, -0.000047, 0.000141 ], [ -0.000003, -0.000019, -0.000272 ], [ 0.000012, 0.000015, -0.009252 ], [ 0.000035, 0.000001, 0.009718 ] ]
null
[ [ 0.0002049711596940062, -2.4966036503533035e-7, 6.241509125883259e-8 ], [ -2.4966036503533035e-7, -0.00014249365334391477, -1.2483018251766518e-7 ], [ 6.241509125883259e-8, -1.2483018251766518e-7, 0.000041755696052158994 ] ]
true
null
null
-66.058758
null
0.003957
0.009718
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:51:13
11464261700613717030793117003199505765048070915911240023727413750307984000695279296984392646225942528533896266192269835104435302379430845048799455745412016
PO_1146426170061371703079311
null
null
null
[ "train_1st_stage_292" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
85644891936383066372038043106326748653997190347165412351966292444745723585181567684253119828720081420242244869864253932277885704728228020624009900781518
CO_8564489193638306637203804
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni7Ti2
Al3Ni7Ti2
A7B3C2
[ 13, 13, 13, 28, 28, 28, 28, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.25, 0.5833333333333334, 0.16666666666666666 ]
3
12
[ [ 3.14893, 1.36227, 1.20386 ], [ 0.138737, 4.9727, 0.172691 ], [ 0.192897, 0.238714, 7.82195 ] ]
[ [ 2.95531, 5.99731, 1.26225 ], [ 1.69546, 5.40924, 2.91916 ], [ 3.17671, 5.32353, 7.06606 ], [ 2.98319, 6.22058, 5.29668 ], [ 0.93835, 1.82157, 8.07521 ], [ 0.9285, 2.46562, 4.27111 ], [ 1.75179, 4.05959, 0.79164 ], [ 2.17098, 4.07519, 4.68924 ], [ 2.71997, 2.75784, 3.07798 ], [ 0.79846, 3.3762, 2.22517 ], [ 1.68675, 0.93438, 6.13783 ], [ 2.52506, 3.12325, 6.9371 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
362360343118240093933359216401444094819651508259927103185797296144638433486463538371374329166915083673770725414413709679587593092818203693280489650422101
1
VASP
DFT
null
[ [ 0.838639, 2.00579, -0.222519 ], [ -1.00946, 0.867726, 2.442188 ], [ 19.136831, -7.687993, 10.349148 ], [ 15.520751, 6.449161, -17.304907 ], [ 1.168422, 1.984802, -1.506977 ], [ 0.014443, -3.195071, 1.097262 ], [ 4.49924, 3.048983, -3.236109 ], [ -2.372125, 1.765191, 1.443019 ], [ 0.717783, -2.542982, 0.976988 ], [ -5.042243, -2.09078, 3.713633 ], [ -31.912725, 1.375331, 2.802977 ], [ -1.559558, -1.980159, -0.554704 ] ]
null
[ [ 0.6088610252675584, 0.036631541889991355, -0.14155898735231376 ], [ 0.036631541889991355, 0.30393914982784404, -0.0969483626108845 ], [ -0.14155898735231376, -0.0969483626108845, 0.5431276980970411 ] ]
true
null
null
-44.750639
null
9.331354
32.065094
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:17:03
12053882767348147739375690580834994013974475858536123051975331777805224472591388727107802137016606198286639428539088737761261863446848496603648975957544109
PO_1205388276734814773937569
null
null
null
[ "train_1st_stage_1970", "train_1st_stage_1770", "train_1st_stage_1570", "train_1st_stage_1370" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12611166869384805823588974799552999154276618920554819193124201261959699161439197897115517053583092007544388422145775248030508757980484723176919074044126783
CO_1261116686938480582358897
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ti4
AlTi2
A2B
[ 13, 13, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
6
[ [ -3.22971, 3.20281, 2.62778 ], [ 3.20281, -3.22971, 2.62778 ], [ 3.22962, 3.22962, -2.59484 ] ]
[ [ -0.00672, -0.00672, 1.31389 ], [ -0.02017, -0.02017, 3.94167 ], [ 1.0024, 4.21866, 0.02674 ], [ 2.20032, -1.01594, 2.63398 ], [ 0.98897, 2.20029, 2.64425 ], [ 2.21374, 1.00242, 0.01647 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5759634702876803290987003175118006909449048514229454368921709775097493019799372399428467331259394396051117588747670273083410443486114323265172321542365730
1
VASP
DFT
null
[ [ -0.000441, -0.001033, 0.000004 ], [ -0.00129, -0.00021, -0.000021 ], [ -0.315701, -0.315726, -0.00414 ], [ 0.316625, 0.316741, 0.004157 ], [ -0.315424, 0.315929, -0.000004 ], [ 0.316231, -0.315702, 0.000004 ] ]
null
[ [ 0.018087144465714574, -0.00001454271626330799, -0.00004219260169097083 ], [ -0.00001454271626330799, 0.018086395484619468, -0.00004213018659971199 ], [ -0.00004219260169097083, -0.00004213018659971199, 0.02719113450691041 ] ]
true
null
null
-39.574386
null
0.298348
0.447877
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:43:15
12058235219713169893691083492033175340971444025842027550433642634291611829990136133293441657013088084646623806703771811124087542091331453452922633356711971
PO_1205823521971316989369108
null
null
null
[ "train_2nd_stage_355" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
2913707018637622329254764836084028994417551637085751492648444121528727728015162082938982268359381365618112026042296109139881629396870818218878437491994388
CO_2913707018637622329254764
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni8Ti3
Ni8Ti3
A8B3
[ 28, 28, 28, 28, 28, 28, 28, 28, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.7272727272727273, 0.2727272727272727 ]
2
11
[ [ 0.25084, 2.17876, 2.89125 ], [ 8.4542, 2.84834, -2.87754 ], [ -0.823511, 2.10525, -3.79458 ] ]
[ [ -0.5611, 4.26847, -0.89262 ], [ 1.62423, 1.86867, 0.7286 ], [ 2.95873, 1.61048, -1.46983 ], [ 4.53501, 3.52039, -0.76819 ], [ 5.86951, 3.26221, -2.96663 ], [ 7.48217, 5.14641, -2.24874 ], [ 1.9892, 3.88976, -0.82708 ], [ 4.93187, 5.52512, -2.31428 ], [ 0.50525, 1.97125, -1.53019 ], [ 3.33512, 3.61806, -3.0163 ], [ 6.16499, 5.26488, -4.50241 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10500781491980416855773491528241205683344965293275819892143872187260434640176457329986852587367669425658361403372186152724381753846930167857116220818533979
1
VASP
DFT
null
[ [ 0.09113, 0.108212, -0.08909 ], [ -0.0188, 0.119271, -0.088986 ], [ 0.082485, -0.00878, -0.000505 ], [ -0.083839, 0.009218, 0.000087 ], [ 0.018834, -0.118787, 0.088943 ], [ -0.089994, -0.108562, 0.089623 ], [ 0.024443, 0.035556, -0.029918 ], [ -0.024212, -0.035525, 0.030337 ], [ -0.176738, -0.03383, 0.042679 ], [ -0.000645, -0.000129, -0.000279 ], [ 0.177336, 0.033357, -0.042891 ] ]
null
[ [ 0.010218411495622293, 0.004869750250196636, -0.0030885483758520712 ], [ 0.004869750250196636, 0.0023000585279792395, 0.0076492190941349686 ], [ -0.0030885483758520712, 0.0076492190941349686, 0.007713506638131566 ] ]
true
null
null
-71.877487
null
0.116127
0.185473
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:21:50
4067962218520900552303225781070210270560870213567537212733902615703714450176166751495835723352621943024675246564159360327799595262379863218468693801589739
PO_4067962218520900552303225
null
null
null
[ "train_1st_stage_1179" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6829288535283244348733165162851708729657419688158821412291084731655875439485988684800228336532529917435110294229207350741320321797251182416424069431161819
CO_6829288535283244348733165
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni8Ti2
AlNi4Ti
A4BC
[ 13, 13, 28, 28, 28, 28, 28, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.16666666666666666, 0.6666666666666666, 0.16666666666666666 ]
3
12
[ [ -3.86263, 2.26786, 0.049029 ], [ 0.028998, -4.51097, 0.083338 ], [ -1.2726, 2.18385, 8.36003 ] ]
[ [ -0.08264, 0.00234, 0.03303 ], [ -3.84225, 2.5107, 4.20712 ], [ -3.88956, 2.1716, 8.40344 ], [ -2.42324, -0.02808, 4.24863 ], [ -2.60012, -0.08981, 8.42282 ], [ -1.35152, -2.27678, 4.27326 ], [ -2.53807, -1.56886, 2.14445 ], [ -2.47345, -1.52693, 6.39138 ], [ -1.32229, 0.68317, 2.08821 ], [ -1.23897, 0.72918, 6.33792 ], [ -3.85301, 0.5516, 2.23784 ], [ -3.74175, 0.69981, 6.28007 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4411521201272109330842024069259018265151920158311857050422614481368002676724028542011237097547867787372308100751598671555494561011525629947036206552668331
1
VASP
DFT
null
[ [ -0.144533, 0.092957, -0.058497 ], [ -0.000129, -0.079677, -0.002496 ], [ -0.035314, 0.046883, 0.027165 ], [ -0.1729, 0.23311, -0.009526 ], [ -0.069562, -0.052138, -0.060724 ], [ 0.108602, 0.073412, 0.024406 ], [ -0.014315, -0.076094, 0.036013 ], [ 0.002325, 0.000837, -0.118559 ], [ 0.084999, -0.118979, 0.100613 ], [ 0.22811, 0.070376, -0.020651 ], [ -0.000767, -0.135629, -0.022595 ], [ 0.013486, -0.055058, 0.104849 ] ]
null
[ [ 0.004689245806276092, 0.0010810917956942392, 0.0012766382766081616 ], [ 0.0010810917956942392, 0.014221216128233745, 0.005962576083047535 ], [ 0.0012766382766081616, 0.005962576083047535, 0.004441083403430973 ] ]
true
null
null
-72.156895
null
0.144455
0.290388
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:31:03
9748564153363944152897150572202969702778418317852965422135157936875963431272292797200105255293604410097740437661616780284649171717846918124901715195956167
PO_9748564153363944152897150
null
null
null
[ "train_1st_stage_1079", "train_1st_stage_877" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12361778148325518451948143238366222881001971197311871107586996481784829309369709286284321660808352939039095735805928843187653113132564275473084538823461355
CO_1236177814832551845194814
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni9Ti
Ni9Ti
A9B
[ 28, 28, 28, 28, 28, 28, 28, 28, 28, 22 ]
[ "Ni", "Ti" ]
[ 0.9, 0.1 ]
2
10
[ [ 1.23706, 4.37029, -1.4386 ], [ 4.19998, -4.25669, -1.4279 ], [ -1.32543, 1.43171, -4.35272 ] ]
[ [ -1.02649, 1.72106, -4.06874 ], [ 1.28028, 1.3009, -1.62681 ], [ 1.50816, -1.24797, -1.28474 ], [ 2.51719, -0.23056, -3.17236 ], [ 2.86125, -2.83205, -2.88323 ], [ 0.2424, 3.19345, -2.6048 ], [ 1.25143, 4.21085, -4.49242 ], [ 1.47932, 1.66198, -4.15035 ], [ 2.46065, 2.67353, -6.06114 ], [ 2.81707, 0.06895, -5.77889 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4374417473361511448739651980745160728475042199664299681017349353983776006031753576861750921095440082214593108158671174557900719682296583789607673885502907
1
VASP
DFT
null
[ [ 0.249567, -0.117664, -0.106391 ], [ 0.377518, -0.143472, 0.003815 ], [ -0.260841, 0.118366, 0.285788 ], [ -0.219065, 0.08888, 0.094244 ], [ 0.000628, 0.000387, 0.000056 ], [ 0.219299, -0.089502, -0.093612 ], [ 0.261208, -0.11799, -0.28603 ], [ -0.377492, 0.143768, -0.003314 ], [ -0.250226, 0.117523, 0.105955 ], [ -0.000597, -0.000295, -0.000511 ] ]
null
[ [ 0.005022916884145811, 0.0014932186432763106, 0.0010262289304777254 ], [ 0.0014932186432763106, 0.0006841318152880639, 0.006446542700668524 ], [ 0.0010262289304777254, 0.006446542700668524, 0.0005236626156616054 ] ]
true
null
null
-57.780311
null
0.271993
0.404925
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:54:20
5774199344069094569916143860403089188059516490277518923623652578934445244038931029285987611114925126264545917267442804439675258304631065813133621503033023
PO_5774199344069094569916143
null
null
null
[ "train_2nd_stage_843" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
2858961192233658912983402067108317727595440127102518889681280067490059660063188169675133814344514878762903378151112813692087506605512273432394108810854431
CO_2858961192233658912983402
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3NiTi4
Al3NiTi4
A4B3C
[ 13, 13, 13, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.375, 0.125, 0.5 ]
3
8
[ [ 0, 0, 4.4952 ], [ 2.73876, -4.71276, 0 ], [ 2.73794, 4.70802, 0 ] ]
[ [ 0.2155, -0.09231, 0 ], [ 1.48333, 2.33016, 0 ], [ 2.92359, 0.02755, 0 ], [ 1.40057, -2.35568, 0 ], [ 1.28173, 0.81096, 2.2476 ], [ 2.63872, 3.15292, 2.2476 ], [ 4.03193, 0.79845, 2.2476 ], [ 2.63804, -1.54615, 2.2476 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10731410055961896303250741515829632631622207261132443236619723401302671667923934996875445425863972925976402685472112797321651301446988227504725902694123716
1
VASP
DFT
null
[ [ -0.532284, 0.32775, -0.000002 ], [ -0.64567, -0.175127, -0.000001 ], [ -0.690972, -0.152821, -0.000002 ], [ 0.071728, -0.147485, 0 ], [ 0.694953, -0.0354, -0.000003 ], [ 0.112609, 0.078477, -0.000001 ], [ 0.681415, 0.06069, 0.000002 ], [ 0.308221, 0.043917, 0.000006 ] ]
null
[ [ 0.027737079310151423, 0.020033247011164976, 1.2483018251766518e-7 ], [ 0.020033247011164976, 0.0425962400861417, 0 ], [ 1.2483018251766518e-7, 0, 0.07473083706602543 ] ]
true
null
null
-48.968696
null
0.499291
0.70767
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:21:16
10999638248126769922505246150205573876234316039078471116829685772761497002206223112607248212778402998927734719914539221017015199056624600269618666894798788
PO_1099963824812676992250524
null
null
null
[ "train_1st_stage_2227" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
8611048139631660956955073766759046143476564305552346473807734675996817304827301761807038469381285606411262433682659807813329508282994657910642594007595814
CO_8611048139631660956955073
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
NiTi2
NiTi2
A2B
[ 28, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
3
[ [ 0.135158, 2.04727, 2.04649 ], [ 5.3034, 1.71899, 0 ], [ 0.135158, 2.04727, -2.04649 ] ]
[ [ 0.27032, 4.09454, 0 ], [ 1.77022, 1.94465, 0 ], [ 3.80349, 3.86889, 0 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
1982847220950956614719164940896904159263064863587991132182093748340554741180768762599557775453965181953232968782352009312494008434906261225503812272979683
1
VASP
DFT
null
[ [ -0.000151, 0.000027, 0.000001 ], [ -0.199378, 0.009477, 0 ], [ 0.199529, -0.009504, -0.000001 ] ]
null
[ [ 0.002703197602420039, -0.0001820024061107558, -6.241509125883259e-8 ], [ -0.0001820024061107558, -0.005209350761735943, 6.241509125883259e-8 ], [ -6.241509125883259e-8, 6.241509125883259e-8, -0.00575485865933814 ] ]
true
null
null
-21.979865
null
0.133171
0.199755
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:50:16
6656385301704816451424075782823494129785757851564042345809966093411357477595075354178525482250616065767930075046965327354601730801875281004439825862220731
PO_6656385301704816451424075
null
null
null
[ "train_1st_stage_1112" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5599842896532794518912296051867984955039816694759716986118957928235898250249385978394750281965714946552215128719900877569287538931267280710693956674822412
CO_5599842896532794518912296
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni4Ti8
NiTi2
A2B
[ 28, 28, 28, 28, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
12
[ [ 2.92784, -2.94785, -0.023523 ], [ -2.92626, -2.9502, -0.032936 ], [ -0.00083, -2.88845, -8.67931 ] ]
[ [ -2.89034, -2.95446, -0.10987 ], [ 1.48291, -4.4016, -1.48127 ], [ 0.02118, -5.85692, -5.82395 ], [ 0.02449, -2.92843, -2.8346 ], [ 0.04435, -5.8869, -2.89726 ], [ 1.48522, -4.38789, -4.24759 ], [ 1.49094, -4.37708, -7.22605 ], [ 0.00907, -2.93817, -0.06976 ], [ -1.42504, -4.42935, -1.48738 ], [ -1.43992, -4.39393, -4.39375 ], [ 0.02257, -2.90889, -5.79506 ], [ -1.44224, -4.36796, -7.373 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3941807170559693623878447852590600273636579088660965341906806481717624513394170148633552822951828135907407083982633154435568016024919160959513015085555444
1
VASP
DFT
null
[ [ -0.05171, -0.016758, 0.62222 ], [ 0.058769, -0.028439, -0.001176 ], [ 0.019164, -0.000441, 0.000365 ], [ -0.022304, 0.037054, -0.62918 ], [ -0.079355, 0.035544, 1.073498 ], [ -0.007002, 0.005539, -0.070776 ], [ -0.019348, -0.004295, 0.540037 ], [ 0.073939, -0.020858, -1.085131 ], [ -0.026187, 0.01643, 0.008032 ], [ 0.048023, -0.037028, -0.538994 ], [ -0.000419, 0.006367, -0.004808 ], [ 0.00643, 0.006885, 0.085913 ] ]
null
[ [ 0.13904771615551462, -0.00009068912759908374, -0.00048190691960944636 ], [ -0.00009068912759908374, 0.13685582298068694, -0.0015757938090117463 ], [ -0.00048190691960944636, -0.0015757938090117463, 0.1429096499271549 ] ]
true
null
null
-83.925538
null
0.398756
1.087847
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:17:21
11902344577105702273275838875252012861420818269088840057244125656787534280541584337938688337203111116391307849155174667535850438591662112020520270065524021
PO_1190234457710570227327583
null
null
null
[ "train_1st_stage_2136" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5430380982233412203250980635039252025775414338985799329732501849594650951325414454833565106814233547466773155749917810824861977046711221206407674134271239
CO_5430380982233412203250980
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
NiTi8
NiTi8
A8B
[ 28, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.1111111111111111, 0.8888888888888888 ]
2
9
[ [ -0.006123, 0.006123, 4.01878 ], [ 6.01002, -0.013918, 2.00276 ], [ -0.013918, 6.01002, -2.00276 ] ]
[ [ 5.9961, 5.9961, 0 ], [ 2.01613, 2.01613, 0 ], [ 3.97997, 3.97997, 0 ], [ 1.94267, 6.00683, 0.00386 ], [ 3.98046, 2.01563, 2.0078 ], [ -0.01073, 4.05343, 0.00386 ], [ 4.04731, -0.00461, 4.01492 ], [ 6.00071, 1.94879, 4.01492 ], [ 2.00951, 3.98659, 2.01098 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12145138018605651347060495825489759132681524902409869255707305123213265051519047923526327325931351294691155317201599240168299269222192441791114323940415885
1
VASP
DFT
null
[ [ 0.000014, -0.000115, 0 ], [ -0.213718, -0.213201, 0.000007 ], [ 0.213255, 0.213482, -0.000007 ], [ 0.205163, -0.003949, 0.000422 ], [ 0.195062, -0.19513, 0.007446 ], [ 0.004065, -0.205421, 0.000425 ], [ -0.204849, 0.004647, -0.000426 ], [ -0.003634, 0.204905, -0.000426 ], [ -0.195357, 0.194782, -0.007441 ] ]
null
[ [ -0.009924935736523262, -0.0019186399052965135, -0.0008471600336561345 ], [ -0.0019186399052965135, -0.009923312944150534, 0.000847347278929911 ], [ -0.0008471600336561345, 0.000847347278929911, -0.0061090643022320154 ] ]
true
null
null
-67.981687
null
0.21958
0.301878
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:57:11
8150995734838016653295455496447902640677340172510492994532807878386713937922519970274866673149181902791169656168456094274123546827454179902789653890894466
PO_8150995734838016653295455
null
null
null
[ "train_1st_stage_954" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5654146422371420693878974878961129883946784559549576745985995938762943187791960395150759108914646593823387465894772593531720536407683975839383253875707366
CO_5654146422371420693878974
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni5
Al6Ni5
A6B5
[ 13, 13, 13, 13, 13, 13, 28, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.5454545454545454, 0.45454545454545453 ]
2
11
[ [ -2.833074, -2.933072, 0.054431 ], [ 4.477925, -1.568155, -4.285754 ], [ 4.963073, -4.771085, 1.238633 ] ]
[ [ 2.03724, -4.90691, -3.96755 ], [ 3.35007, -6.10746, -0.25847 ], [ 4.1281, -4.05571, -2.01112 ], [ 2.21212, -2.18531, -0.93828 ], [ 5.12016, -7.83775, -1.39781 ], [ 5.94784, -5.83535, -3.21307 ], [ 3.58037, -6.37496, -2.72754 ], [ -0.07316, -2.7992, -0.16742 ], [ 3.76381, -3.66011, 0.39569 ], [ 1.75364, -4.5871, -1.44743 ], [ 2.57643, -2.58098, -3.3451 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
8521345065768270269263491487925618008946771600910336592339472414062393414853250309389694654539060803711240566876855464644285659955745644481616701677804381
1
VASP
DFT
null
[ [ -0.005987, 0.006066, 0.001559 ], [ -0.000593, 0.00027, 0.000876 ], [ 0.005244, -0.004993, 0.007973 ], [ -0.005229, 0.005019, -0.007897 ], [ 0.000601, -0.000296, -0.001006 ], [ 0.005982, -0.006089, -0.001709 ], [ 0.001572, -0.001778, 0.000657 ], [ -0.001603, 0.001832, -0.000621 ], [ 0.001582, -0.002176, -0.007815 ], [ -0.000011, 0.000047, 0.000033 ], [ -0.001559, 0.002097, 0.007952 ] ]
null
[ [ 0.0002547159874272958, 0.000013793735168202, 0.00006815727965464518 ], [ 0.000013793735168202, 0.0002504093461304363, -0.00007121561912632798 ], [ 0.00006815727965464518, -0.00007121561912632798, 0.000316881418321093 ] ]
true
null
null
-56.818906
null
0.005712
0.01077
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:26:31
8562852688908955691146832193327860347305157504211731710741277211183691694012381558666754579303757983811156594236767767597342054934794245793983643195013213
PO_8562852688908955691146832
null
null
null
[ "train_1st_stage_391" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
1456492642246103183291082815427013597627383368777819344825055383490525061541765019294824588041555828590711691450975482524203685796741243327979942004976935
CO_1456492642246103183291082
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni6
Al2Ni3
A3B2
[ 13, 13, 13, 13, 28, 28, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.4, 0.6 ]
2
10
[ [ 1.86986, 2.77129, 2.22708 ], [ 6.03857, 0.495072, -2.06332 ], [ -0.173276, 3.16497, -3.79287 ] ]
[ [ 5.82047, 3.65524, -5.81257 ], [ 3.93833, 2.93596, 0.28547 ], [ 5.8218, 3.4369, -1.91926 ], [ 1.89652, 3.11131, -1.84116 ], [ 1.8832, 1.56328, 0.09634 ], [ 3.94514, 1.80079, -1.93043 ], [ 1.83835, 4.31452, 0.33319 ], [ 3.74898, 4.5916, -1.61577 ], [ 3.8585, 3.38328, -3.82687 ], [ 5.83787, 4.94623, -3.81089 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5193554954563661484561882612165795349258326939595820769432570181534421221136575967997364237714195042453757023313097067688521662858610615485613428039757340
1
VASP
DFT
null
[ [ 0.029271, 0.024752, -0.054385 ], [ -0.124252, 0.13948, -0.068652 ], [ 0.123934, -0.139154, 0.068683 ], [ -0.029224, -0.024841, 0.054309 ], [ 0.045767, -0.035408, 0.002722 ], [ -0.000075, -0.000549, 0.000184 ], [ -0.045575, 0.035616, -0.001913 ], [ 0.013217, 0.00661, -0.019336 ], [ -0.000039, -0.000438, 0.000054 ], [ -0.013024, -0.00607, 0.018334 ] ]
null
[ [ -0.015885077631011702, 0.0007045415501297021, 0.002410907730054926 ], [ 0.0007045415501297021, -0.012721693560740292, 0.0002358042147758695 ], [ 0.002410907730054926, 0.0002358042147758695, -0.014462450455949134 ] ]
true
null
null
-53.397783
null
0.069509
0.199013
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:56:22
3796822097493635097329692375311454020848676584846309691858234793125959822443414941755757172615760762159440878552418136083540164343301996621280588057465798
PO_3796822097493635097329692
null
null
null
[ "train_1st_stage_1143" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11068426863782727444005559227984512966149317333592101336223605357930281138049118041060410598267184459417662647316615975042116655156500012512267124867173508
CO_1106842686378272744400555
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni4
Al3Ni2
A3B2
[ 13, 13, 13, 13, 13, 13, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.6, 0.4 ]
2
10
[ [ -4.32268, 0.060071, 2.35741 ], [ 4.32268, 0.060071, 2.35741 ], [ 0, 6.21628, -2.51734 ] ]
[ [ -0.00001, 1.44358, 1.85038 ], [ 0, 4.86881, -0.59586 ], [ -2.16134, 1.76067, 0.66281 ], [ -2.16133, 4.55173, 0.59171 ], [ 0.00001, 0.10813, 4.24334 ], [ 2.16132, 3.1562, 0.62726 ], [ -2.16134, 0.78588, 3.04661 ], [ 2.16134, 5.58659, 0.56532 ], [ 0, 2.41837, -0.53342 ], [ 0, 3.89402, 1.78794 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
8177374400129521090937969453957846874908497341926203847563643436351427451421771115881789193724659078917886780574482134331438872023964473360257940206729945
1
VASP
DFT
null
[ [ 0.001099, -0.063113, 0.000198 ], [ 0.001078, 0.063208, -0.000317 ], [ -0.001082, 0.063189, -0.000325 ], [ -0.001088, -0.063168, 0.000226 ], [ 0.000545, -0.000085, -0.000068 ], [ -0.00052, 0.000025, -0.000082 ], [ -0.00042, 0.304758, -0.010947 ], [ -0.000389, -0.304788, 0.011127 ], [ 0.00038, -0.304782, 0.011142 ], [ 0.000397, 0.304756, -0.010955 ] ]
null
[ [ -0.011726734590983242, 6.241509125883259e-8, -6.241509125883259e-8 ], [ 6.241509125883259e-8, -0.03481220439488765, 0.0012062340536681984 ], [ -6.241509125883259e-8, 0.0012062340536681984, -0.0012876857477609749 ] ]
true
null
null
-48.334641
null
0.147369
0.304991
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:55:44
4479651227089715611063759956490994103690622839285787044417944717657189796902813225118279299658477625414976848134082928880676476776041264003064623740910049
PO_4479651227089715611063759
null
null
null
[ "train_2nd_stage_170" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5021239709457516042049638187133980773209714230266593854073067134948007263835706660931105121380201618660933971634482856850804168178753176886202629523224793
CO_5021239709457516042049638
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4NiTi5
Al4NiTi5
A5B4C
[ 13, 13, 13, 13, 28, 22, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.4, 0.1, 0.5 ]
3
10
[ [ 0, 2.86053, 0 ], [ 2.86053, 0, 0.000001 ], [ 0, 0, -18.9376 ] ]
[ [ 0, 0, -18.7413 ], [ 0, 0, -3.72349 ], [ 0, 0, -7.63909 ], [ 0, 0, -11.5589 ], [ 0, 0, -15.1501 ], [ 1.43026, 1.43026, -1.76649 ], [ 1.43026, 1.43026, -5.68129 ], [ 1.43026, 1.43026, -9.59609 ], [ 1.43026, 1.43026, -13.514 ], [ 1.43026, 1.43026, -16.7862 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5428459087878936446073523930952196601045317957184418332336567466631126622140770122259072300487821727781857317372377508273204948886351770440001474711134929
1
VASP
DFT
null
[ [ -0.000024, -0.000025, 0.096996 ], [ -0.000022, -0.000025, 0.035176 ], [ -0.000025, -0.000025, -0.035819 ], [ -0.000025, -0.000025, -0.097304 ], [ -0.000016, -0.000017, -0.000034 ], [ 0.000038, 0.000031, -0.021263 ], [ 0.000032, 0.000019, 0.000638 ], [ 0.000013, 0.00002, 0.022292 ], [ 0.000015, 0.000023, 0.136879 ], [ 0.000013, 0.000025, -0.13756 ] ]
null
[ [ 0.0016543119938153576, 3.744905475529955e-7, 3.744905475529955e-7 ], [ 3.744905475529955e-7, 0.0016539999183590635, 4.993207300706607e-7 ], [ 3.744905475529955e-7, 4.993207300706607e-7, -0.02060996245439659 ] ]
true
null
null
-63.451894
null
0.058397
0.13756
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:05:03
11156395320641460224592519088687068186383981848325795196944300811075224223772212089845335097749734802130339722408032913129431337188051752773132647828362703
PO_1115639532064146022459251
null
null
null
[ "train_1st_stage_465" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5691335401716491104944018335955995129272085041149240040844382658115950319734104463309215229743564976279671596599467050885373475781588455695093675938261474
CO_5691335401716491104944018
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni4Ti2
Al2Ni2Ti
A2B2C
[ 13, 13, 13, 13, 28, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.4, 0.4, 0.2 ]
3
10
[ [ 1.84891, 2.799184, 2.223864 ], [ 4.476633, 2.378103, -6.715164 ], [ -2.275005, 2.869041, -1.719845 ] ]
[ [ -2.12605, 2.9058, -1.87384 ], [ -0.033, 3.25751, -4.05664 ], [ 2.05995, 3.6092, -6.2394 ], [ 2.02895, 3.2226, -2.0848 ], [ -0.19576, 4.47465, -1.81116 ], [ 1.97849, 4.8396, -4.07811 ], [ 0.12944, 1.65923, -2.17994 ], [ 2.07969, 1.98678, -4.21357 ], [ -0.10525, 2.8641, 0.14072 ], [ 4.1631, 3.58106, -4.31037 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7203530116482937663751732723528248386395004637436815954874114892129186535637013294389081303725717331931407427504174782628976845845086569422954955328948050
1
VASP
DFT
null
[ [ 0.009919, 0.001758, -0.010469 ], [ 0.001674, 0.000317, -0.00176 ], [ -0.012623, -0.002146, 0.01323 ], [ 0.002354, 0.000379, -0.002426 ], [ -0.014487, -0.002506, 0.015304 ], [ 0.014161, 0.002438, -0.014777 ], [ 0.003378, 0.000549, -0.003545 ], [ -0.00289, -0.000484, 0.002947 ], [ -0.003228, -0.000537, 0.003291 ], [ 0.001742, 0.000232, -0.001794 ] ]
null
[ [ 0.003142475014699703, 0.00003570143220005224, -0.00015054520011630417 ], [ 0.00003570143220005224, 0.0030016041537285175, -0.000012732678616801848 ], [ -0.00015054520011630417, -0.000012732678616801848, 0.0031565808253241987 ] ]
true
null
null
-57.978504
null
0.009686
0.021222
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:23:32
12354187533244222810328887091126327411457939937969938829338845842809248437774457505303991456705589840974463752944460243507077565736218204935394390797997389
PO_1235418753324422281032888
null
null
null
[ "train_1st_stage_282", "train_1st_stage_331" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6458453702355754335136918654299854865370041854164086851637442102373994863958431754013720849521612340430330652684463740415053779564094412435548433422904492
CO_6458453702355754335136918
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ti2
AlTi
AB
[ 13, 13, 22, 22 ]
[ "Al", "Ti" ]
[ 0.5, 0.5 ]
2
4
[ [ 2.87822, 0, 0 ], [ 0, 4.98523, 0 ], [ 0, 0, 4.70012 ] ]
[ [ 0.00107, 0, 0 ], [ 1.45952, 0.83087, 2.35006 ], [ 1.46967, 2.49261, 0 ], [ 0.00095, 3.32348, 2.35006 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
8450921225435776067123909363243341091981778650463324455805685520197901547759677085627693916796027583032161158263302123926121130788420576035784178828687127
1
VASP
DFT
null
[ [ 0.078052, -0.087076, -0.000003 ], [ -0.060914, 0.087271, 0.000002 ], [ -0.129803, 0.483937, 0 ], [ 0.112666, -0.484133, 0.000001 ] ]
null
[ [ -0.006367275534769805, 0.0006694018537509794, 1.2483018251766518e-7 ], [ 0.0006694018537509794, -0.00227971120822886, 6.241509125883259e-8 ], [ 1.2483018251766518e-7, 6.241509125883259e-8, -0.0016930717654870925 ] ]
true
null
null
-23.773212
null
0.305369
0.501043
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:12:17
4066997312349279321153110158597160873206567610799164921040905656731788584273930676229340613285314096674955643303515082926539588234832701359201011088900782
PO_4066997312349279321153110
null
null
null
[ "train_1st_stage_2057" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
2031175124485816019268640812298634968609954135571990656533875238746047151918784046276519163640834793575070758260095463225510426222509908539690743364608909
CO_2031175124485816019268640
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni6Ti3
AlNi2Ti
A2BC
[ 13, 13, 13, 28, 28, 28, 28, 28, 28, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.25, 0.5, 0.25 ]
3
12
[ [ 0, 0, 3.28449 ], [ 3.92479, 1.96419, 0 ], [ -4.71801, 8.0897, 0 ] ]
[ [ -1.37188, 9.19461, 0 ], [ -0.86556, 6.14759, 1.64224 ], [ 0.2935, 8.03434, 1.64224 ], [ -0.12714, 1.31669, 0 ], [ 1.42888, 3.52188, 0 ], [ -0.3975, 6.54614, 0 ], [ -2.27721, 5.22632, 0 ], [ -2.41252, 7.59052, 0 ], [ 1.27105, 6.20213, 1.64224 ], [ -2.78617, 8.60405, 1.64224 ], [ 2.65217, 3.40807, 1.64224 ], [ -0.72746, 4.55389, 1.64224 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7269142811512004938562137389005249907189329711577026316270989862558337093647656760897980415691800251740645001891721193726873345095507095830751596648133932
1
VASP
DFT
null
[ [ 8.038115, 7.141492, -0.000082 ], [ -12.086465, 17.707961, 0.000384 ], [ -0.611089, 6.332659, 0.000075 ], [ 6.274557, 2.175901, -0.000087 ], [ -5.41041, -0.097873, -0.000061 ], [ 4.405118, 3.747597, -0.000413 ], [ 4.030238, 5.257272, -0.000254 ], [ -2.706293, -9.780115, -0.000131 ], [ -2.913783, -10.931348, 0.00021 ], [ -7.428454, 4.559491, 0.000185 ], [ -0.748139, 0.444827, 0.000147 ], [ 9.156605, -26.557864, 0.000026 ] ]
null
[ [ 0.4071781422414324, 0.06830283164746077, -0.0000018100376465061448 ], [ 0.06830283164746077, 0.5402579770311425, -0.0000015603772814708146 ], [ -0.0000018100376465061448, -0.0000015603772814708146, 0.7057311817690956 ] ]
true
null
null
-40.310286
null
10.179458
28.092055
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:25:58
1408873885219769438065517589251086294346134722085616557245335080202776417100496230644877340278151993359363557191505933423734666956915741427890264447673633
PO_1408873885219769438065517
null
null
null
[ "train_1st_stage_1969", "train_1st_stage_1769", "train_1st_stage_1569", "train_1st_stage_1369" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11602115064017943243970050998382534633269857420984737804065997348283521290616135057902583693334302940986493077396078750708371892630337773520797546053888637
CO_1160211506401794324397005
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni4
AlNi2
A2B
[ 13, 13, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
6
[ [ 2.37536, -2.37536, 0.536394 ], [ -2.61457, -2.61457, 0 ], [ 1.81056, -1.81056, -5.23101 ] ]
[ [ 1.79797, -1.79798, -5.11994 ], [ 1.28828, -3.90286, -1.40775 ], [ 2.79195, -2.79196, -3.14159 ], [ -0.11568, -2.4989, 0.23351 ], [ 1.39137, -1.39138, -1.53019 ], [ 0.29431, -2.90888, -3.3861 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10367686648706385822222597574083977034107485410483844192330666897981215733402192279655566459078698652052523448910607411073434097990288276371954055988394614
1
VASP
DFT
null
[ [ -0.003211, 0.003212, 0.022759 ], [ 0.003295, -0.003286, -0.02342 ], [ -0.00217, 0.002189, 0.034051 ], [ -0.019286, 0.019273, 0.16496 ], [ 0.019365, -0.019353, -0.165518 ], [ 0.002007, -0.002036, -0.032831 ] ]
null
[ [ -0.0007667069810234994, -0.001758794856582643, -0.0002840510803189471 ], [ -0.001758794856582643, -0.0007666445659322406, 0.00028411349541020587 ], [ -0.0002840510803189471, 0.00028411349541020587, 0.0024640229727161925 ] ]
true
null
null
-32.227853
null
0.074866
0.167767
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:19:26
11648887077834991224701541276254958608892885516419514716926421203186732193130962070870068669925110515040639472272304991671118708996000132665783592762662762
PO_1164888707783499122470154
null
null
null
[ "train_1st_stage_1081", "train_1st_stage_879", "train_1st_stage_680" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
8167228247572738624144318513984435439790003714843926011745004498843614311414782158591984817648229247577119133942449559668671249865663884402670479283958336
CO_8167228247572738624144318
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni6Ti
Al2Ni6Ti
A6B2C
[ 13, 13, 28, 28, 28, 28, 28, 28, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.2222222222222222, 0.6666666666666666, 0.1111111111111111 ]
3
9
[ [ 2.53441, -2.56975, 0.306687 ], [ 0.141681, -3.26033, -7.10333 ], [ 1.30892, 3.586, -2.17088 ] ]
[ [ 0.0783, 0.06219, -0.12592 ], [ 2.54224, -0.48447, -3.68993 ], [ 1.38147, 1.13013, -1.95218 ], [ 1.32612, -1.44855, -1.70699 ], [ 2.59099, -2.94727, -3.3309 ], [ 1.34205, 0.66224, -5.55211 ], [ 1.31209, -1.89544, -5.33832 ], [ 2.70314, -3.28252, -7.06727 ], [ 2.66366, -0.77268, -7.10647 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6116494886391637326326093576628429216885590527320722861040146019934998850004328263041055407259347513388450056351231981449263686551483262650356251897750621
1
VASP
DFT
null
[ [ -0.039024, -0.049339, -0.078463 ], [ 0.0843, 0.103817, 0.203158 ], [ 0.050431, 0.054835, 0.044062 ], [ -0.085938, -0.102138, -0.154258 ], [ 0.023415, 0.02249, -0.014084 ], [ 0.107979, 0.102523, -0.023237 ], [ -0.012872, 0.000515, 0.092886 ], [ -0.136154, -0.119374, 0.124987 ], [ 0.007863, -0.013328, -0.19505 ] ]
null
[ [ -0.001838374097937655, 0.0026191868895856503, 0.0018672098700992354 ], [ 0.0026191868895856503, -0.0012162828833608703, 0.002059261105902663 ], [ 0.0018672098700992354, 0.002059261105902663, -0.001592208978012819 ] ]
true
null
null
-52.355294
null
0.147765
0.243223
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:13:26
2546365921721181144533812051987741861395472776210886960330779143466346114180588904455226129173237384725000345878085219731406939829031162229508325204203835
PO_2546365921721181144533812
null
null
null
[ "train_1st_stage_993" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10318337588499701069614892326077971259970839542349522077271698319033874848063085150891286140421242580310500912804980064386868372933785305115178079986104134
CO_1031833758849970106961489
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi2Ti
AlNi2Ti
A2BC
[ 13, 28, 28, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.25, 0.5, 0.25 ]
3
4
[ [ 1.59404, -2.76096, 0 ], [ 1.59404, 2.76096, 0 ], [ 0, 0, 6.30073 ] ]
[ [ 0, 0, 0 ], [ 1.59404, 0.9205, 1.9904 ], [ 1.59404, -0.9205, 4.31033 ], [ 0, 0, 3.15036 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5842200688115228005095139926742267245879844081454450310011310382837669909379419548637181176932578592349538930732338177496252864753751149882729566527296622
1
VASP
DFT
null
[ [ 0, 0, 0.000113 ], [ 0, -0.001599, -4.471603 ], [ 0.000001, 0.001599, 4.471092 ], [ -0.000001, -0.000001, 0.000397 ] ]
null
[ [ 0.05131743837264711, 6.241509125883259e-8, 0 ], [ 6.241509125883259e-8, 0.05136418727599998, 0.000015603772814708145 ], [ 0, 0.000015603772814708145, 0.03624768907874954 ] ]
true
null
null
-20.949395
null
2.235801
4.471603
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:00:46
2928984716621384629866911205265081520355940339097087532358655438756661012313424033009236640105631866114126161005388204515196827393233559884110920280717548
PO_2928984716621384629866911
null
null
null
[ "train_1st_stage_2053" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
225584577068216606221549358258429902226955629355966847893130633160887742010959488384303471182128494201843931154846461316615274297043245668097986293192111
CO_2255845770682166062215493
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni
Al4Ni
A4B
[ 13, 13, 13, 13, 28 ]
[ "Al", "Ni" ]
[ 0.8, 0.2 ]
2
5
[ [ -2.67715, 2.67715, -2.67715 ], [ 2.67715, 2.67715, 2.67715 ], [ 2.67715, -2.67715, -2.67715 ] ]
[ [ 1.33858, 1.33858, 1.33858 ], [ 1.33858, 1.33858, -1.33858 ], [ -1.33858, 1.33858, -1.33858 ], [ 1.33858, -1.33858, -1.33858 ], [ 0, 0, 0 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11212592707435663119037139934360177548475263178437147414269877711520502535145887928730958185624750469103577098741105036739023632560578559587051918990926722
1
VASP
DFT
null
[ [ -0.000052, -0.000052, -0.000112 ], [ -0.000109, -0.000109, 0.000109 ], [ 0.000112, -0.000052, 0.000052 ], [ -0.000052, 0.000112, 0.000052 ], [ 0.000102, 0.000102, -0.000102 ] ]
null
[ [ 0.04487501506800167, 1.2483018251766518e-7, -6.241509125883259e-8 ], [ 1.2483018251766518e-7, 0.04487501506800167, -6.241509125883259e-8 ], [ -6.241509125883259e-8, -6.241509125883259e-8, 0.04487501506800167 ] ]
true
null
null
-20.458754
null
0.000153
0.000189
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:19:20
304299738116177808566716582610536252707507601367866154487581964152402523764961249976292048190634466643165871399985100146184814919885577566489752371856391
PO_3042997381161778085667165
null
null
null
[ "train_1st_stage_2154" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9821733944619499789792463888182772602970294448279384784072121662045066388508096783707978388643582314558963110288513646872227754780265454495924607769119672
CO_9821733944619499789792463
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ti
Al2Ti
A2B
[ 13, 13, 22 ]
[ "Al", "Ti" ]
[ 0.6666666666666666, 0.3333333333333333 ]
2
3
[ [ 4.32239, 0, 0 ], [ 0, 4.32239, 0 ], [ 0, 0, 2.68639 ] ]
[ [ 0, 2.1612, 1.3432 ], [ 2.1612, 0, 1.3432 ], [ 0, 0, 0 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11517703556591839530228109792558600582362158219734866999251051938947777928810348144500369893379406097685482196211785015108906393838394490073535872930466613
1
VASP
DFT
null
[ [ 0.000001, -0.000079, -0.000037 ], [ -0.000079, 0.000001, -0.000037 ], [ 0.000078, 0.000078, 0.000073 ] ]
null
[ [ 0.03450206380642251, 0, 0 ], [ 0, 0.03450206380642251, 0 ], [ 0, 0, 0.062175979044219995 ] ]
true
null
null
-14.766717
null
0.000102
0.000132
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:05:07
9969047981266819378668584778748382791224493375442042823883479653770540990378660404616158569157738434306740047311720641948844869470698084151258665972131768
PO_9969047981266819378668584
null
null
null
[ "train_1st_stage_2180" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9470093275405272670324200645345543613155913383031014593894338269785007166207367332303087000670453243002687788346120450051347555353855738396996860849297025
CO_9470093275405272670324200
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni2Ti7
Ni2Ti7
A7B2
[ 28, 28, 22, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.2222222222222222, 0.7777777777777778 ]
2
9
[ [ 3.15493, 0.000548, -3.09639 ], [ -1.56458, 4.67358, 1.55454 ], [ 6.04458, 0.004197, 3.03785 ] ]
[ [ 0.03414, 0.28561, -0.00437 ], [ 1.62143, 1.27319, -1.54742 ], [ 6.06891, 3.1334, 3.02487 ], [ 2.82566, 3.1161, -0.34135 ], [ 1.72115, 4.45644, 1.64136 ], [ 1.69613, 1.76387, 1.62508 ], [ 4.43527, 1.77829, 1.42623 ], [ 6.46873, 3.11734, 0.29247 ], [ 4.43549, 4.46279, 1.41953 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5266554750657758129856889534138217631248761889809833103199129843727703716106113310908781420352442060733531375911921645314780255141150022303285130466942066
1
VASP
DFT
null
[ [ 0.026619, -0.167375, 0.005796 ], [ 0.007957, 0.188359, 0.036393 ], [ 0.310072, 0.063453, 0.284709 ], [ -0.428992, 0.008236, -0.79824 ], [ -0.819472, 1.620553, -0.356818 ], [ -0.686812, -1.621593, -0.275957 ], [ 0.579796, -1.700224, 0.130834 ], [ 0.342841, -0.056774, 0.779227 ], [ 0.66799, 1.665365, 0.194056 ] ]
null
[ [ 0.061324387539084486, -0.0007621506793616046, -0.0006857546076607935 ], [ -0.0007621506793616046, 0.02766942135122685, -0.0005138010312427098 ], [ -0.0006857546076607935, -0.0005138010312427098, 0.05718464419625115 ] ]
true
null
null
-65.474754
null
1.087322
1.850688
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:39:31
5437751044127631207297826299107673771429066585748059458160843133238847673674400519000514952457707702132849327939553208653811610542937895194662309052205272
PO_5437751044127631207297826
null
null
null
[ "train_1st_stage_2239" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
8735954022081058684038245215547128282835933673556958093381489572691399606328033317606332625929455602624375377761207877961646685584092211126223482094822670
CO_8735954022081058684038245
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlTi3
AlTi3
A3B
[ 13, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.25, 0.75 ]
2
4
[ [ -1.83483, 4.46193, 2.03879 ], [ 2.03879, 4.46193, -1.83483 ], [ -2.03778, -4.37344, -2.03778 ] ]
[ [ -1.83381, 4.55043, -1.83381 ], [ -1.88531, 2.27521, 0.0515 ], [ -1.9358, 0.08849, -1.9358 ], [ 0.0515, 2.27521, -1.88531 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
8422809402581492820800845364170075264718309894445302121762567657077314212205779158380252334648190133558043439642000116918813936035630271079250003107273355
1
VASP
DFT
null
[ [ -0.000063, -0.00005, -0.000062 ], [ -0.000299, 0.000021, 0.000315 ], [ 0.000046, 0.000016, 0.000052 ], [ 0.000316, 0.000013, -0.000305 ] ]
null
[ [ -0.005531475047722779, 0.00044214850647757, 0.000013231999346872506 ], [ 0.00044214850647757, 0.014040025118309353, 0.0004420860913863112 ], [ 0.000013231999346872506, 0.0004420860913863112, -0.005531350217540261 ] ]
true
null
null
-28.160609
null
0.000262
0.000439
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:42:24
1803104731954801523795611035697389859659772560739718711843651817959640180956659080716582056056831444370660288904821981197649785933381329929806311773098347
PO_1803104731954801523795611
null
null
null
[ "train_2nd_stage_240" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9919985779760731806953422209497355137745850906723323676773518605143231999090679051722249668206189093069760822065943407200694357552264385273377062248610457
CO_9919985779760731806953422
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
NiTi3
NiTi3
A3B
[ 28, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.25, 0.75 ]
2
4
[ [ 0, 2.08822, 2.08822 ], [ 7.11959, 0, 0 ], [ 0, 2.08822, -2.08822 ] ]
[ [ 0, 0, 0 ], [ 1.5082, 2.08822, 0 ], [ 3.5598, 0, 0 ], [ 5.61139, 2.08822, 0 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4335463903195905236942663619706881517907404405817185710643453424371755276856007467155548779656368807063178044892171845191752981504775285009508036048667116
1
VASP
DFT
null
[ [ -0.000214, 0.000001, -0.000002 ], [ 0.851152, 0.000008, -0.000005 ], [ 0.000077, -0.000008, 0.000006 ], [ -0.851014, -0.000001, 0.000001 ] ]
null
[ [ 0.006969393920143763, 1.2483018251766518e-7, -6.241509125883259e-8 ], [ 1.2483018251766518e-7, 0.0014045892136887682, -1.2483018251766518e-7 ], [ -6.241509125883259e-8, -1.2483018251766518e-7, 0.0014044643835062506 ] ]
true
null
null
-29.677451
null
0.425614
0.851152
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:59:32
11442539280566986021943239476479474104298059633819257000414963958866806879939500968612965014214829314587340064894334168115626300603383674037691443142759697
PO_1144253928056698602194323
null
null
null
[ "train_1st_stage_625" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4699591284653614193078202711214359400629057943842114585355554390466465532254533166285374150218567190831613785322799253988232114710373344283506682370990090
CO_4699591284653614193078202
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni2Ti2
NiTi
AB
[ 28, 28, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.5, 0.5 ]
2
4
[ [ 2.73319, -0.503065, 0.572494 ], [ 1.62121, -1.64327, 4.88199 ], [ -0.484088, -3.96655, -1.17441 ] ]
[ [ 2.29881, -0.71473, 0.81708 ], [ 1.64404, -3.1215, 1.83029 ], [ 2.41199, -3.98642, 4.43512 ], [ 3.15209, -1.49305, 3.09406 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3966826502420882664453162557806102752718153883917845297743702769011153806688531177248877125434228242440798097001018763027222409051799829359016672859806983
1
VASP
DFT
null
[ [ -0.008988, -0.008954, 0.034122 ], [ 0.008927, 0.009179, -0.034457 ], [ 0.005153, 0.004203, -0.016651 ], [ -0.005093, -0.004428, 0.016986 ] ]
null
[ [ 0.0017880675343830358, -0.000025278111959827193, -0.000028398866522768823 ], [ -0.000025278111959827193, 0.0015473949424889774, -0.00011559274901135793 ], [ -0.000028398866522768823, -0.00011559274901135793, 0.0019131473772657363 ] ]
true
null
null
-28.132015
null
0.027343
0.036759
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:19:35
2408457873248446204904748371727101962534395869965096640398213385984374751183425866231731162799159060474463488329713373814275175582452032260043289586171500
PO_2408457873248446204904748
null
null
null
[ "train_1st_stage_56" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10293235940501074007136972199514258796117586744785786659123524976701222057944923240284212777880909807604126421980284194706587530931077346859688397695283700
CO_1029323594050107400713697
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni3Ti6
NiTi2
A2B
[ 28, 28, 28, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
9
[ [ 0.124127, 2.154756, 2.067801 ], [ 4.980502, -2.151114, 4.10457 ], [ 1.063353, 4.383215, -6.794319 ] ]
[ [ 0.107, 0.15454, -0.13804 ], [ 2.93652, 2.21382, -2.45505 ], [ 4.70397, -0.10979, 2.02182 ], [ 1.59901, 2.2034, -0.20311 ], [ 4.39911, 4.37898, -2.63939 ], [ 1.315, 4.24499, -2.31474 ], [ 2.58901, 4.46459, -4.78034 ], [ 3.40906, 2.11786, 1.93762 ], [ 4.68288, 2.33764, -0.52793 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5911914951172271257123235832176487839131231942641618555134484203927764211274409095151459575272752892908991660783592090001403610228997293833172270170770610
1
VASP
DFT
null
[ [ -0.005681, -0.007025, 0.007498 ], [ -0.000172, 0.000376, -0.00045 ], [ 0.00515, 0.006922, -0.007357 ], [ -0.001663, 0.000911, -0.000775 ], [ 0.00087, -0.00007, -0.000026 ], [ 0.00309, 0.000849, -0.001048 ], [ 0.005977, -0.002454, 0.002142 ], [ -0.004661, 0.000737, -0.000361 ], [ -0.002911, -0.000246, 0.000377 ] ]
null
[ [ -0.0025148288570008824, -0.0000948085236221667, 0.00010666739096134488 ], [ -0.0000948085236221667, -0.0021830926469601874, -0.0002009141787621821 ], [ 0.00010666739096134488, -0.0002009141787621821, -0.0021769135529255625 ] ]
true
null
null
-65.764082
null
0.004941
0.011741
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:15:21
2720478382036741435896407534762612542971510167750588766705487072752968278665885963061397628801351727513262107334689197533296517164650747631694724847812992
PO_2720478382036741435896407
null
null
null
[ "train_1st_stage_108" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
1446762982792175177218978290132941159909360313187894845500872868388165505851673691218514038045961790897275144097988449357931954577548208061733097333691955
CO_1446762982792175177218978
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni6
Al2Ni3
A3B2
[ 13, 13, 13, 13, 28, 28, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.4, 0.6 ]
2
10
[ [ -4.23073, 0.046074, 2.32018 ], [ 4.23073, 0.046074, 2.32018 ], [ 0, 6.03873, -2.44101 ] ]
[ [ -1.86248, 0.70238, 2.90741 ], [ 1.86249, 5.45233, 0.49199 ], [ 0.25287, 2.38689, -0.60768 ], [ -0.25288, 3.72174, 1.6869 ], [ 0.32378, 1.27859, 1.84999 ], [ -0.32378, 4.8346, -0.54171 ], [ -1.79159, 1.81524, 0.67879 ], [ -2.43914, 4.29795, 0.62949 ], [ 0, 6.12474, 1.89038 ], [ 2.11536, 3.0593, 0.7907 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2953253727953542843676452220792698642261506584135034430618294207441308936761619962160001850366121987245893011442367709854349486383302548862314002398229902
1
VASP
DFT
null
[ [ 0.053138, -0.009799, -0.024508 ], [ -0.052564, 0.009735, -0.024349 ], [ 0.052347, 0.00889, -0.02437 ], [ -0.052985, -0.010984, -0.024276 ], [ 0.078189, -0.003768, -0.003554 ], [ -0.077312, 0.002658, -0.003957 ], [ 0.077654, 0.00153, -0.003975 ], [ -0.078517, -0.002629, -0.003951 ], [ 0.000452, 0.002189, 0.056733 ], [ -0.000402, 0.00218, 0.056206 ] ]
null
[ [ -0.0002852993821441237, 0.000011047471152813368, 0.000009299848597566054 ], [ 0.000011047471152813368, 0.006633912804627538, -0.00010254799493826192 ], [ 0.000009299848597566054, -0.00010254799493826192, -0.0009017732385076131 ] ]
true
null
null
-53.006339
null
0.066108
0.07866
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:29:20
13115940582642809359101648658932945995780458618972757860529138666642494915149853682738170645070434309798730871829607658391346400234726356850995852146826509
PO_1311594058264280935910164
null
null
null
[ "train_2nd_stage_332" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9344976854439972208358106228423907333867845092256629646469410954736888737058281906720323942724490739478640166567622337676602080109705729560745924524581560
CO_9344976854439972208358106
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni5Ti4
Al3Ni5Ti4
A5B4C3
[ 13, 13, 13, 28, 28, 28, 28, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.25, 0.4166666666666667, 0.3333333333333333 ]
3
12
[ [ 4.24538, 2.44414, 0.073516 ], [ -0.0315, 4.83263, -0.00315 ], [ 0.005992, 0.005226, 7.97726 ] ]
[ [ 0.6964, 4.40055, 7.8804 ], [ 2.09609, 4.40723, 4.12983 ], [ 1.41599, 0.91299, 2.01876 ], [ 4.20165, 3.26704, 4.0582 ], [ 0.68548, 2.0583, 0.02114 ], [ 2.13151, 2.07031, 4.01488 ], [ 2.84528, 5.672, 0.04977 ], [ 1.41932, 0.86467, 6.00742 ], [ 2.8352, 3.26802, 1.52868 ], [ 2.83431, 3.13041, 6.52362 ], [ 4.21158, 5.69409, 2.57929 ], [ 4.22029, 5.55523, 5.5618 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
420442939825551383593087733379721453147686836817748502254707558220201356570548114881096092951412089945158008869621013801530585380767141527379224158798232
1
VASP
DFT
null
[ [ 0.107749, 0.217045, 0.259669 ], [ -0.110861, 0.215357, -0.25972 ], [ 0.001514, -0.177182, -0.000451 ], [ 0.18912, 0.210779, 0.098626 ], [ 0.104762, -0.190858, -0.003221 ], [ -0.102185, -0.191433, 0.003599 ], [ -0.191426, 0.207654, -0.098465 ], [ 0.001572, -0.194199, 0.000039 ], [ 0.067505, 0.015535, -0.085154 ], [ 0.031468, -0.064311, -0.313861 ], [ -0.068149, 0.015033, 0.085046 ], [ -0.031069, -0.063421, 0.313892 ] ]
null
[ [ 0.014971695185529947, 0.00009399712743580186, 0.002227969097575288 ], [ 0.00009399712743580186, -0.0008053419225127168, 0.000020596980115414753 ], [ 0.002227969097575288, 0.000020596980115414753, 0.013815954940690146 ] ]
true
null
null
-75.70345
null
0.248241
0.355171
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:18:21
12923304818874542935894110000727120260586082592513149425243376783104560532107773649160166627148497335199044604391937237099503662472555350610755685192158340
PO_1292330481887454293589411
null
null
null
[ "train_1st_stage_1024" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12343212481525862964542362696631821408678756173039622429182297294187950143759468799272202069074424579425781933141287515498806387076002518888842910429251891
CO_1234321248152586296454236
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni4
Al3Ni2
A3B2
[ 13, 13, 13, 13, 13, 13, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.6, 0.4 ]
2
10
[ [ 3.027748, -0.081306, 2.650269 ], [ -1.903811, -4.332852, 5.105608 ], [ 3.39876, -2.367997, -3.954725 ] ]
[ [ 5.60688, -3.23327, -0.4263 ], [ 0.0799, -2.68822, 2.85077 ], [ 1.00409, -4.40773, 4.80046 ], [ 3.80742, -1.97913, 1.66748 ], [ 1.72783, -3.83651, 0.93358 ], [ 2.75491, -5.62745, 2.76293 ], [ 1.49388, -1.38153, 1.27284 ], [ 0.32205, -5.11602, 2.50225 ], [ 3.19325, -2.56553, -0.70452 ], [ 4.16067, -4.34791, 1.19426 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5101721252403046724803135485075216794092733403489053142063863328330719229072062588837019984020874341523886357925124608883417023487116920665588893650014238
1
VASP
DFT
null
[ [ 0.01138, -0.008466, -0.013408 ], [ 0.003266, 0.000213, -0.002481 ], [ -0.00333, -0.000235, 0.002507 ], [ -0.011409, 0.008546, 0.013493 ], [ -0.001151, 0.00349, 0.001934 ], [ 0.00111, -0.003466, -0.001905 ], [ 0.000007, -0.000061, 0.000048 ], [ -0.003196, -0.00918, 0.002567 ], [ -0.000023, -0.000024, 0.000082 ], [ 0.003346, 0.009184, -0.002836 ] ]
null
[ [ 0.0009980797243199918, 0.000011484376791625196, -0.00008088995827144702 ], [ 0.000011484376791625196, 0.0011476886980674133, -0.00003395380964480493 ], [ -0.00008088995827144702, -0.00003395380964480493, 0.0010329697603336792 ] ]
true
null
null
-49.968721
null
0.007609
0.019628
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:09:11
6424173584203770461029032898723183840802681359167800140645458607185009498145587473319845155795795055347063797143476881575336770887259261357415741212132914
PO_6424173584203770461029032
null
null
null
[ "train_1st_stage_348" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
13026596493219471307145140465543104382730016589640128188276951706440684509473953092463575773601791526940235537395103334800805556739168168408638154159892714
CO_1302659649321947130714514
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al8Ni2
Al4Ni
A4B
[ 13, 13, 13, 13, 13, 13, 13, 13, 28, 28 ]
[ "Al", "Ni" ]
[ 0.8, 0.2 ]
2
10
[ [ -2.70065, -2.70088, -0.000896 ], [ -2.29576, 2.29727, -5.06209 ], [ 5.18151, -5.18057, -1.40932 ] ]
[ [ -4.61754, -0.75438, -4.47741 ], [ 3.09084, -5.76228, -2.05184 ], [ -2.9052, -2.46707, -3.01348 ], [ -1.82928, -0.8416, -4.97825 ], [ -1.15826, -4.21427, -1.88182 ], [ 0.72787, -3.39875, -4.25191 ], [ -1.74167, -3.62968, -5.47999 ], [ 0.55903, -5.93095, -3.15232 ], [ 1.33647, -4.00811, -1.91989 ], [ 2.48223, -5.15291, -4.38385 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5914362431872316105680834800424170858529075750836083299825339989679679325488481391298350465453473546814138353559727196882990451814819779206991602765210156
1
VASP
DFT
null
[ [ -0.228687, 0.228916, -0.313584 ], [ 0.240445, -0.240092, -0.075067 ], [ 0.385022, -0.384895, 0.358416 ], [ 0.000069, 0.000164, 0.000102 ], [ -0.384812, 0.385197, -0.358334 ], [ -0.240289, 0.240422, 0.075071 ], [ 0.228876, -0.228688, 0.313651 ], [ 0.000152, 0.000083, -0.000015 ], [ -0.123428, 0.122445, -0.298784 ], [ 0.122654, -0.123551, 0.298543 ] ]
null
[ [ 0.011010583833879395, 0.0025173878757424944, 0.005322821397644501 ], [ 0.0025173878757424944, 0.011017699154282903, -0.005317266454522465 ], [ 0.005322821397644501, -0.005317266454522465, 0.010266034210252782 ] ]
true
null
null
-42.893542
null
0.359258
0.651813
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:44:46
2126223029129638352813043208006545255793893918077280265887305849932492221962512767882458901583507719770703708646773709741577444868394411279613711406368662
PO_2126223029129638352813043
null
null
null
[ "train_2nd_stage_851" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5024563993538784737477952669937474033051148708339975854298403974393508523800910893872892583790060929422610669205176841735663339917418797026792462505613308
CO_5024563993538784737477952
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni8
Al3Ni8
A8B3
[ 13, 13, 13, 28, 28, 28, 28, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.2727272727272727, 0.7272727272727273 ]
2
11
[ [ 0.046376, 2.7167, -2.76899 ], [ 2.82154, -0.045281, 2.69995 ], [ 6.85256, -4.1092, -4.1069 ] ]
[ [ 6.81806, -4.04767, -4.04534 ], [ 4.30806, 1.24985, -1.49041 ], [ 6.97383, -1.42155, -1.4179 ], [ 1.42754, 1.36419, -1.37781 ], [ 2.84604, -0.0528, -0.05103 ], [ 2.78034, 0.00361, -2.73816 ], [ 4.16573, -1.3801, -1.37816 ], [ 5.64628, -0.09602, -2.83608 ], [ 5.47989, -2.70178, -2.69966 ], [ 6.96036, -1.41772, -4.15759 ], [ 8.34584, -2.8014, -2.79756 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4978531141593922690116655271927218853490323569761513082349427466968751684523460977039922449877178797464221064976280850551896091992911770230041988984174438
1
VASP
DFT
null
[ [ 0.080589, -0.141681, -0.097439 ], [ -0.079965, 0.1421, 0.097882 ], [ 0.000221, 0.000303, 0.000279 ], [ -0.030659, 0.052302, 0.033711 ], [ 0.030189, -0.052536, -0.033902 ], [ 0.245559, -0.28941, -0.271113 ], [ 0.005344, -0.034311, -0.012635 ], [ -0.29007, 0.344563, 0.313972 ], [ 0.289316, -0.3447, -0.314052 ], [ -0.004797, 0.03454, 0.012807 ], [ -0.245727, 0.288831, 0.270491 ] ]
null
[ [ 0.10675795525876146, -0.02241631761051846, -0.009026907403491179 ], [ -0.02241631761051846, 0.11068842080060391, 0.026454449184782416 ], [ -0.009026907403491179, 0.026454449184782416, 0.1076446240451844 ] ]
true
null
null
-58.271183
null
0.238499
0.549038
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:29:16
2331051950165467394444091404069732760011668771900898931121322949748732351445116774981356509588979431237035478585344763240230588270741585791096225642185999
PO_2331051950165467394444091
null
null
null
[ "train_2nd_stage_749" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
2654196286024373571323386138035768564012480585500435819518919554771775119181953534177949264664504784399513069101764507442461223175349434491869198339559989
CO_2654196286024373571323386
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ti8
AlTi4
A4B
[ 13, 13, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.2, 0.8 ]
2
10
[ [ 0.036796, 2.23871, 2.34372 ], [ -1.94976, 4.1334, -6.16134 ], [ -6.71829, -0.207682, 0.305036 ] ]
[ [ -0.01031, 0.02183, -0.01971 ], [ -4.99915, 2.00145, 0.40539 ], [ -3.51667, 2.08459, -1.9351 ], [ -1.76045, 4.13965, -1.68595 ], [ -7.03503, 3.96974, -3.68686 ], [ -5.29082, 6.20688, -3.60835 ], [ -1.64249, 2.19275, 0.17821 ], [ -6.64619, 1.97779, -1.7849 ], [ -5.17, 4.26018, -1.74726 ], [ -3.45127, 4.07962, -3.84336 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11983354316728489406728886411608227362684423412476687372746959945200620223409571607831013390949859949532436786481539166633614089555691309733065840777265012
1
VASP
DFT
null
[ [ 0.263918, 0.119109, -0.122929 ], [ -0.294589, -0.086351, 0.108525 ], [ 0.5757, -0.310394, 0.282782 ], [ 0.047571, -0.040192, 0.029512 ], [ 0.601405, 0.315455, -0.273953 ], [ 0.286511, 0.121414, -0.114507 ], [ -0.25694, -0.143546, 0.109238 ], [ -0.616418, -0.295985, 0.293331 ], [ -0.028622, 0.02287, -0.033384 ], [ -0.578535, 0.297619, -0.278615 ] ]
null
[ [ 0.030877619457022103, -0.0053440425286725044, 0.005540837311411603 ], [ -0.0053440425286725044, 0.052586711668486726, -0.008950823407246662 ], [ 0.005540837311411603, -0.008950823407246662, 0.05165834960110285 ] ]
true
null
null
-70.52978
null
0.430082
0.744057
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:40:51
3257944647606786296037942085528124305146306250947723673612348666781605091467270263448906890316892017494940855517588525205584646803379094335260657497607239
PO_3257944647606786296037942
null
null
null
[ "train_1st_stage_2248" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
8153113159664302775957328964742260971187821046294780505302580893223593119047460975112632852942689341294825361718084853458024271545073179524092843259129154
CO_8153113159664302775957328
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNiTi2
AlNiTi2
A2BC
[ 13, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.25, 0.25, 0.5 ]
3
4
[ [ -0.073557, 2.98943, 0.101814 ], [ 1.58102, 1.55497, -4.71799 ], [ -3.15739, 0.025242, -3.16405 ] ]
[ [ -1.40053, 1.46554, -1.74598 ], [ -0.13028, 3.03252, -2.99769 ], [ 1.45507, 1.52482, -4.59211 ], [ -1.60862, 1.60907, -4.69357 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
50211558927162139825492512628144685556607755812967361386140630866982232701601882016892575013685606559568083950800129735365730403095784719085451835336142
1
VASP
DFT
null
[ [ -0.327432, 0.224265, 0.331148 ], [ 0.44358, 0.072736, -0.443543 ], [ 0.022269, -0.120542, -0.024615 ], [ -0.138418, -0.176458, 0.13701 ] ]
null
[ [ 0.004469856760501295, -0.0020924035193611032, 0.005520677236935001 ], [ -0.0020924035193611032, 0.0020132611836449037, 0.0023099825274893937 ], [ 0.005520677236935001, 0.0023099825274893937, 0.004520600229694726 ] ]
true
null
null
-26.240416
null
0.384053
0.631494
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:13:42
5778511847161063266446385742893419506108574608782263877647553568034528948863522313792696004871314730726850619367739307799066587904050143922872053901766594
PO_5778511847161063266446385
null
null
null
[ "train_2nd_stage_562" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
3803308518954275665517884486654108869058204450459069479110394347204569492128690589356993894245740069100728306033361827143123844149352167404404871267981655
CO_3803308518954275665517884
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0