Dataset Viewer
Auto-converted to Parquet
chemical_formula_hill
string
chemical_formula_reduced
string
chemical_formula_anonymous
string
atomic_numbers
sequence
elements
sequence
elements_ratios
sequence
nelements
int32
nsites
int32
cell
sequence
positions
sequence
pbc
sequence
dimension_types
sequence
nperiodic_dimensions
int32
structure_hash
string
multiplicity
int32
software
string
method
string
adsorption_energy
float64
atomic_forces
sequence
atomization_energy
float64
cauchy_stress
sequence
cauchy_stress_volume_normalized
bool
electronic_band_gap
float64
electronic_band_gap_type
string
energy
float64
formation_energy
float64
max_force_norm
float64
mean_force_norm
float64
property_object_metadata
string
property_object_metadata_id
string
property_object_last_modified
timestamp[ns]
property_object_hash
string
property_object_id
string
configuration_metadata
string
configuration_metadata_id
string
configuration_labels
sequence
configuration_names
sequence
configuration_dataset_ids
sequence
configuration_last_modified
timestamp[ns]
configuration_hash
string
configuration_id
string
dataset_name
string
dataset_authors
sequence
dataset_description
string
dataset_elements
sequence
dataset_nelements
int32
dataset_nproperty_objects
int64
dataset_nconfigurations
int32
dataset_nsites
int64
dataset_adsorption_energy_count
int64
dataset_atomic_forces_count
int64
dataset_atomization_energy_count
int64
dataset_cauchy_stress_count
int64
dataset_electronic_band_gap_count
int64
dataset_energy_count
int64
dataset_energy_mean
float64
dataset_energy_variance
float64
dataset_formation_energy_count
int64
dataset_last_modified
timestamp[ns]
dataset_dimension_types
sequence
dataset_nperiodic_dimensions
sequence
dataset_publication_year
string
dataset_total_elements_ratios
sequence
dataset_license
string
dataset_links
string
dataset_doi
string
dataset_hash
string
dataset_id
string
dataset_extended_id
string
Ni8Ti16
NiTi2
A2B
[ 28, 28, 28, 28, 28, 28, 28, 28, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
24
[ [ 0, 5.65076, 5.65076 ], [ 5.65076, 0, 5.65076 ], [ 5.65076, 5.65076, 0 ] ]
[ [ 0.95585, 4.69491, 4.69491 ], [ 4.69491, 0.95585, 4.69491 ], [ 0.95585, 0.95585, 0.95585 ], [ 4.69491, 4.69491, 0.95585 ], [ 3.78123, 7.52029, 3.78123 ], [ 7.52029, 3.78123, 3.78123 ], [ 7.52029, 7.52029, 7.52029 ], [ 3.78123, 3.78123, 7.52029 ], [ 5.65076, 3.60843, 5.65076 ], [ 5.65076, 7.69309, 5.65076 ], [ 7.69309, 5.65076, 5.65076 ], [ 3.60843, 5.65076, 5.65076 ], [ 5.65076, 5.65076, 3.60843 ], [ 5.65076, 5.65076, 7.69309 ], [ 4.86771, 2.82538, 2.82538 ], [ 0.78305, 2.82538, 2.82538 ], [ 2.82538, 0.78305, 2.82538 ], [ 2.82538, 4.86771, 2.82538 ], [ 2.82538, 2.82538, 4.86771 ], [ 2.82538, 2.82538, 0.78305 ], [ 9.88883, 7.06345, 7.06345 ], [ 7.06345, 9.88883, 7.06345 ], [ 9.88883, 9.88883, 9.88883 ], [ 7.06345, 7.06345, 9.88883 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5547906958520626504065544366076301645019306786281149025322413005955892748645148235830213157806380640154559540372733722452501503783666649186245809103504851
1
VASP
DFT
null
[ [ 0.273377, -0.273462, -0.273462 ], [ -0.273497, 0.273775, -0.273556 ], [ 0.273024, 0.273306, 0.27315 ], [ -0.273136, -0.273207, 0.273273 ], [ 0.273468, -0.273118, 0.273262 ], [ -0.273628, 0.273723, 0.273598 ], [ -0.273618, -0.273414, -0.273512 ], [ 0.273561, 0.273455, -0.273286 ], [ 0.000019, -0.682294, -0.000073 ], [ 0.000151, 0.682174, -0.00004 ], [ 0.682117, -0.000033, 0.000084 ], [ -0.682036, -0.000145, -0.0003 ], [ -0.00011, -0.000143, -0.682375 ], [ 0.000358, -0.000121, 0.682562 ], [ 0.682657, 0.000152, 0.000197 ], [ -0.682926, 0.000359, 0.000133 ], [ 0.00026, -0.682809, 0.000499 ], [ 0.000063, 0.682318, -0.000158 ], [ 0.000229, -0.00004, 0.682788 ], [ 0.000095, 0.000572, -0.682726 ], [ 0.000178, -0.000387, -0.000109 ], [ -0.000465, -0.000288, 0.000027 ], [ 0.000198, -0.000199, 0.000071 ], [ -0.000339, -0.000174, -0.000046 ] ]
null
[ [ 0.025037938688663205, 0.0000025590187416121356, 5.617358213294933e-7 ], [ 0.0000025590187416121356, 0.025036690386838034, -5.617358213294933e-7 ], [ 5.617358213294933e-7, -5.617358213294933e-7, 0.025040809782861117 ] ]
true
null
null
-175.246623
null
0.499164
0.682926
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:26:41
11651616037096579396407593485605792837056272221580033984440725314653532241095842963285213406624841371238877627245646682854402104584234366075156068151098095
PO_1165161603709657939640759
null
null
null
[ "train_2nd_stage_32" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9290999103656592129998125348658135377646103363298118406366295693998852290023384854113686983982105988341028466892550688741370906091499883832035023099749813
CO_9290999103656592129998125
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni3Ti3
Al2NiTi
A2BC
[ 13, 13, 13, 13, 13, 13, 28, 28, 28, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.5, 0.25, 0.25 ]
3
12
[ [ 0.006148, 4.19242, 0.098028 ], [ -4.61277, 0.007888, 3.79254 ], [ 2.48217, 0.058114, 4.44877 ] ]
[ [ 2.2748, 4.07281, 4.32015 ], [ 0.01638, 0.08938, 4.28233 ], [ -2.40083, 0.18264, 4.02703 ], [ -3.51673, 1.99745, 3.653 ], [ -1.09049, 2.1973, 4.27108 ], [ -1.12271, 0.08459, 6.22702 ], [ 1.21257, 2.09683, 4.41433 ], [ -1.78091, 3.05043, 6.2112 ], [ -1.96562, 2.90762, 2.07843 ], [ 1.10939, 1.26867, 2.35526 ], [ -1.20203, 0.77962, 1.98179 ], [ 0.63447, 2.62507, 2.35239 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2692768901754879495704871355568040252980595541099489015145320579885276111166852986759102784210255334509726126811050501534622840628862013391801252877263308
1
VASP
DFT
null
[ [ -0.721866, 0.905854, 4.133411 ], [ 0.488526, -0.609925, -1.395975 ], [ 0.169604, -4.084694, 1.719385 ], [ -1.182826, 1.34619, -0.78016 ], [ -0.283873, -0.714775, -0.17737 ], [ 13.077733, 29.404557, 1.509198 ], [ 1.320239, 0.436187, 4.027895 ], [ -13.650666, -26.180821, -3.369818 ], [ 1.457942, -1.424012, 0.354759 ], [ 19.848053, -53.333463, -3.005943 ], [ 0.654122, -0.005455, 0.507216 ], [ -21.176987, 54.260357, -3.522598 ] ]
null
[ [ 0.5383474510877096, -0.05341458543894388, -0.014809353533165724 ], [ -0.05341458543894388, 0.9945648184557505, 0.024782099229593253 ], [ -0.014809353533165724, 0.024782099229593253, 0.34434387122970556 ] ]
true
null
null
-33.706211
null
16.458539
58.35289
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:16:13
1605308064391881352285388218830580641632611280264150148194571706069193323359244673750996222615022710898366098093825448855269162490645428500262867856511177
PO_1605308064391881352285388
null
null
null
[ "train_1st_stage_1901", "train_1st_stage_1701", "train_1st_stage_1501", "train_1st_stage_1301" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10402188761750282688458641502566311182527489471182923828364671829290480780004100332409646279110187398319717345715785702958745647275497239402838905996598732
CO_1040218876175028268845864
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
NiTi2
NiTi2
A2B
[ 28, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
3
[ [ 0.127241, 2.06521, 2.0667 ], [ 5.39243, 1.74937, 0 ], [ 0.127241, 2.06521, -2.0667 ] ]
[ [ 0, 0.00001, 0 ], [ 1.74085, 1.96842, 0 ], [ 3.90607, 3.91138, 0 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
1719867743039587702840291971776675335888126622349965610492327870769729587098764951029611133281931977419553355629571471634251863931607325680353723899937937
1
VASP
DFT
null
[ [ 0.000149, -0.000029, 0.000004 ], [ 0.535771, -0.029879, -0.000001 ], [ -0.53592, 0.029908, -0.000003 ] ]
null
[ [ 0.010973259609306615, -0.00028280277849377045, 0 ], [ -0.00028280277849377045, 0.0029174686107116114, 6.241509125883259e-8 ], [ 0, 6.241509125883259e-8, 0.002620560021593345 ] ]
true
null
null
-21.954849
null
0.357836
0.536754
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:40:57
1752252702009341799884774200124723257997570684616442793394931451966877629586649150633912772763265073344400105851078505661436123808794036499341099946428145
PO_1752252702009341799884774
null
null
null
[ "train_1st_stage_963" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4045894948105836400801883882661280099750542108539161280643557365320430414308053736951552297943111117291174037331311646018422199894000833892125177679571792
CO_4045894948105836400801883
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni8Ti4
AlNi4Ti2
A4B2C
[ 13, 13, 28, 28, 28, 28, 28, 28, 28, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.14285714285714285, 0.5714285714285714, 0.2857142857142857 ]
3
14
[ [ 1.78568, -2.10462, 1.10008 ], [ 1.78628, 2.10418, 1.10848 ], [ 0.003762, 0.001284, 23.809 ] ]
[ [ 1.21704, 0.0003, 10.2312 ], [ 1.2189, 0.00094, 22.1357 ], [ 3.32439, -0.00033, 2.89503 ], [ 3.32628, 0.00031, 14.7995 ], [ 1.81751, 0.00002, 5.31269 ], [ 1.81941, 0.00066, 17.2172 ], [ 0.20662, 0.00037, 7.88521 ], [ 0.2085, 0.00101, 19.7897 ], [ 2.31384, 0.00029, 12.4481 ], [ 2.3157, 0.00093, 24.3526 ], [ 2.76908, 0.00001, 7.75205 ], [ 2.77097, 0.00065, 19.6565 ], [ 0.85999, 0.00006, 2.88322 ], [ 0.86188, 0.0007, 14.7877 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
13067754245299251831441955935877008607331741596008936448151232644518084463447677258981473425927075936831215813389414138287561098929986622109600002696410827
1
VASP
DFT
null
[ [ -0.158967, 0.001745, 0.284695 ], [ -0.158964, 0.001744, 0.284732 ], [ 0.157015, 0.000527, -0.25798 ], [ 0.157055, 0.000519, -0.257877 ], [ 0.006463, -0.001751, -0.00127 ], [ 0.006362, -0.001747, -0.001308 ], [ 0.008515, 0.001218, -0.005645 ], [ 0.008819, 0.00122, -0.006208 ], [ -0.045692, -0.002342, 0.073927 ], [ -0.045695, -0.002345, 0.07405 ], [ 0.116296, 0.00174, -0.207693 ], [ 0.116309, 0.001738, -0.207554 ], [ -0.083718, -0.001137, 0.113984 ], [ -0.083798, -0.001131, 0.114146 ] ]
null
[ [ -0.0007288834357206468, -0.0003948378673033749, -0.008672015194593458 ], [ -0.0003948378673033749, -0.00429153684477481, 0.0007636486415518166 ], [ -0.008672015194593458, 0.0007636486415518166, 0.004039567121362903 ] ]
true
null
null
-88.512581
null
0.158843
0.326106
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:32:29
2819138508615876038843205394585709542651934930031575771200711906210109491544196787838476418759295067715025750499230021408541568303815086128278592884529945
PO_2819138508615876038843205
null
null
null
[ "train_2nd_stage_571" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7477738833998824520868049127403659169561926867894015880630401232669800367234636536802883462752282448076984998023350803578329288162627606288629046850860984
CO_7477738833998824520868049
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni4Ti4
NiTi
AB
[ 28, 28, 28, 28, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.5, 0.5 ]
2
8
[ [ -1.65042, -2.85861, 0 ], [ -3.30083, 0, 0 ], [ 0, 0, -11.9206 ] ]
[ [ 0, 0, -8.94043 ], [ 0, 0, -2.98014 ], [ -1.65042, -0.95287, -2.98014 ], [ -3.30083, -1.90574, -8.94043 ], [ -1.65042, -0.95287, -10.4186 ], [ -3.30083, -1.90574, -4.4583 ], [ -3.30083, -1.90574, -1.50199 ], [ -1.65042, -0.95287, -7.46228 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11547906235804317619483572669712046204609447970360310391758482641079719588463664257732355005113890783185572886173409435469587858212613008371069104967375461
1
VASP
DFT
null
[ [ 0.000207, -0.000087, -0.000267 ], [ -0.00021, 0.000137, 0.000727 ], [ 0.000275, -0.000143, 0.000555 ], [ -0.000277, 0.000104, -0.000308 ], [ 0.000042, -0.000008, -4.056446 ], [ -0.000032, 0.000004, -4.056244 ], [ -0.000044, 0.000001, 4.05626 ], [ 0.00004, -0.000007, 4.055724 ] ]
null
[ [ 0.33055026089168604, -0.0000029335092891651313, -6.241509125883259e-8 ], [ -0.0000029335092891651313, 0.3305491998351347, -1.8724527377649775e-7 ], [ -6.241509125883259e-8, -1.8724527377649775e-7, 0.10540223706152833 ] ]
true
null
null
-44.34871
null
2.028357
4.056446
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:20:24
12900176842464229520995599832950693948089634309076159151059015386693227463390159233774270082134566297524631148975052241542638101208404057128859537450879068
PO_1290017684246422952099559
null
null
null
[ "train_1st_stage_2173" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
3376000619151055187026747870937817459350477006844773209264562184522106567736433249708943278063544335978770050191138203228058253390304249480437529385945795
CO_3376000619151055187026747
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni5Ti4
Ni5Ti4
A5B4
[ 28, 28, 28, 28, 28, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.5555555555555556, 0.4444444444444444 ]
2
9
[ [ 8.00434, -0.007349, -0.134695 ], [ -0.00734, 8.00433, -0.134695 ], [ 4.04672, 4.04674, 1.7157 ] ]
[ [ 8.00434, -0.00732, -0.13469 ], [ 6.73318, 6.73319, 1.62477 ], [ 2.68409, 5.31291, -0.13469 ], [ 9.35963, 6.73081, 1.58101 ], [ 5.31055, 5.31053, -0.17846 ], [ 8.0018, 2.51692, -0.1768 ], [ 4.04193, 9.5268, 1.62311 ], [ 2.51694, 8.00178, -0.1768 ], [ 9.52679, 4.04194, 1.62311 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
1046663910984088411687490002815162980776253545050718195333619185524074359360184473414453110544892838795322539335655644046636379438595247900292952423164167
1
VASP
DFT
null
[ [ -0.000168, -0.000048, -0.000013 ], [ 0.024726, 0.02518, 0.018796 ], [ 0.026704, -0.026464, -0.000038 ], [ -0.026585, 0.026748, 0.00003 ], [ -0.025438, -0.024779, -0.018746 ], [ 0.003437, -0.220423, 0.0313 ], [ -0.003425, 0.220262, -0.031308 ], [ -0.219963, 0.003128, 0.031255 ], [ 0.220713, -0.003603, -0.031275 ] ]
null
[ [ 0.011652210972020195, -0.00031931560688018746, 0.0028983071776951495 ], [ -0.00031931560688018746, 0.011660387348975104, 0.0029036748755434092 ], [ 0.0028983071776951495, 0.0029036748755434092, -0.009064918194067809 ] ]
true
null
null
-61.684745
null
0.116214
0.222947
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:14:04
4746803743592623075729687190702784991134384924598066447018284638947899909040231959394982779331807526477468050225366512004876753328773966232609550746509539
PO_4746803743592623075729687
null
null
null
[ "train_2nd_stage_558" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
13340178898911923522075893073806536020492233630860418736526486480261275615224737726236186488364359702992483728946166692841950045634850132073267815792731906
CO_1334017889891192352207589
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2NiTi3
Al2NiTi3
A3B2C
[ 13, 13, 28, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.3333333333333333, 0.16666666666666666, 0.5 ]
3
6
[ [ 1.946, -6.18363, 0 ], [ 1.946, 6.18363, 0 ], [ 0, 0, 3.949 ] ]
[ [ 1.946, -4.13146, 1.9745 ], [ 1.946, 4.13146, 1.9745 ], [ 0, 0, 0 ], [ 1.946, -1.95109, 0 ], [ 1.946, 1.95109, 0 ], [ 1.946, 0, 1.9745 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11711798457628025417337330798896393592163554033118431483306346730961755742326555824821520966244723882223817916968541074832474421482018098288186571663020463
1
VASP
DFT
null
[ [ -0.000001, -0.01557, 0 ], [ -0.000001, 0.01574, 0 ], [ 0, 0.000062, -0.000001 ], [ -0.000001, -0.384794, -0.000003 ], [ 0.000003, 0.384285, 0.000003 ], [ 0, 0.000277, 0.000001 ] ]
null
[ [ 0.019069370756854824, 0, -6.241509125883259e-8 ], [ 0, 0.002400421994723442, 6.241509125883259e-8 ], [ -6.241509125883259e-8, 6.241509125883259e-8, 0.022889736077716705 ] ]
true
null
null
-38.180057
null
0.133455
0.384794
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:59:31
5062720539578700127089379098030282453806339235391596293238586329779534554382023524602997689877917889913575289666450535255699609888103189464417540876613940
PO_5062720539578700127089379
null
null
null
[ "train_2nd_stage_246" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11668337818714920363489477690043024302059877094426234461829375997784131385042845054418210577541128686651528553087392537494884877928220667071423863399217588
CO_1166833781871492036348947
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni4Ti2
Al2Ni2Ti
A2B2C
[ 13, 13, 13, 13, 28, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.4, 0.4, 0.2 ]
3
10
[ [ 1.845892, 2.794613, 2.220236 ], [ 4.468632, 2.374416, -6.703889 ], [ -2.271673, 2.864853, -1.717357 ] ]
[ [ -2.12206, 2.90171, -1.87204 ], [ -0.03348, 3.25268, -4.05019 ], [ 2.05494, 3.60362, -6.22824 ], [ 2.02529, 3.21757, -2.0814 ], [ -0.197, 4.46765, -1.80732 ], [ 1.97567, 4.83235, -4.0726 ], [ 0.12912, 1.6568, -2.17663 ], [ 2.07555, 1.98372, -4.20634 ], [ -0.10535, 2.85966, 0.14041 ], [ 4.15575, 3.57542, -4.30313 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2073148999743604287692175066224563365191427809736820642162944777416343272879759690098926582112459042541809473069652545665739595536507634674158793323909180
1
VASP
DFT
null
[ [ -0.003098, -0.000478, 0.003037 ], [ -0.000076, 0.000032, 0.000011 ], [ 0.003005, 0.000391, -0.002956 ], [ 0.000002, -0.000048, 0.000067 ], [ -0.005224, -0.000907, 0.005281 ], [ 0.005726, 0.00091, -0.005805 ], [ -0.00011, 0.000174, 0.000143 ], [ -0.000145, -0.000023, 0.000086 ], [ -0.014829, -0.002495, 0.015474 ], [ 0.014749, 0.002445, -0.015337 ] ]
null
[ [ -0.001915456735642313, 0.00002053456502415592, -0.00014511508717678575 ], [ 0.00002053456502415592, -0.0020475894838372618, -0.00003139479090319279 ], [ -0.00014511508717678575, -0.00003139479090319279, -0.0018981677553636164 ] ]
true
null
null
-57.98113
null
0.006787
0.021577
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:04:25
10910701808989085469874039595771973820858159567573649794816244592017856293918877885090504203124418592174289850889571504737032522035428790356326273193895365
PO_1091070180898908546987403
null
null
null
[ "train_1st_stage_154", "train_1st_stage_208" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6229958730763516019073806309137874035491260822015710607075424963693375279725847182326818350294327103997532293548167734578006081539231018193117844186825751
CO_6229958730763516019073806
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlTi
AlTi
AB
[ 13, 22 ]
[ "Al", "Ti" ]
[ 0.5, 0.5 ]
2
2
[ [ -1.42586, 1.42586, 2.01647 ], [ 1.42586, -1.42586, 2.01647 ], [ 2.77719, 2.77719, 0 ] ]
[ [ 0, 0, 0 ], [ 1.38859, 1.38859, 2.01647 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5297280849350226512702568679574182344637535513631225903821677279643119171321521645108564184306142791593104480287475146976916383014899740227134356988492790
1
VASP
DFT
null
[ [ -0.000032, -0.000032, 0 ], [ 0.000032, 0.000032, 0 ] ]
null
[ [ -0.0022403272856445365, -0.002090406236440821, 1.2483018251766518e-7 ], [ -0.002090406236440821, -0.00224014004037076, -1.2483018251766518e-7 ], [ 1.2483018251766518e-7, -1.2483018251766518e-7, -0.00014985863411245702 ] ]
true
null
null
-12.37051
null
0.000045
0.000045
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:32:21
1412246087802132137212975689439245405920080619139154756710778965710164438583134858419545125518647729646460710639314944999555737544158889976675447333497130
PO_1412246087802132137212975
null
null
null
[ "train_1st_stage_834" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
8450891579907255886784031600943132530014885803167071591424599789445362862097570519839227827407816026262048339796278072371448397716013287049510670500541424
CO_8450891579907255886784031
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
NiTi5
NiTi5
A5B
[ 28, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.16666666666666666, 0.8333333333333334 ]
2
6
[ [ 2.63936, -4.5715, 0 ], [ 2.63936, 4.5715, 0 ], [ 0, 0, 4.33339 ] ]
[ [ 0, 0, 0 ], [ 1.31968, 2.28575, 2.16669 ], [ 2.63936, 1.52383, 0 ], [ 1.31968, -2.28575, 2.16669 ], [ 2.63936, 0, 2.16669 ], [ 2.63936, -1.52383, 0 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6871309081307656513475797616867641386186026260781365914731560382763158599404268474041999612110737735712297442786611110262569528394080855161572342303635177
1
VASP
DFT
null
[ [ -0.000004, -0.000036, 0.000008 ], [ -0.000068, 0.000016, 0.000021 ], [ 0.000083, 0.000181, -0.000036 ], [ -0.000059, -0.000098, 0.000024 ], [ 0.000009, 0.000035, 0.000023 ], [ 0.000039, -0.000098, -0.00004 ] ]
null
[ [ -0.004841975534586455, 4.36905638811828e-7, -6.241509125883259e-8 ], [ 4.36905638811828e-7, -0.004835359534913018, -6.241509125883259e-8 ], [ -6.241509125883259e-8, -6.241509125883259e-8, 0.020458168952455107 ] ]
true
null
null
-40.604893
null
0.000097
0.000202
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:12:54
1534349062144136831430857575367552792159296040944099573000625390065212764189824327898626571432339793521306323204310808087406496279023115104587236948358384
PO_1534349062144136831430857
null
null
null
[ "train_1st_stage_2353" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11102860560667472884217102908702225473582735936237669701411428463204428091369319088618066436753757331188497299383476092509449160792503149148289500634591889
CO_1110286056066747288421710
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al5Ti3
Al5Ti3
A5B3
[ 13, 13, 13, 13, 13, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.625, 0.375 ]
2
8
[ [ -2.78582, -2.78582, 0 ], [ -1.25691, 1.25691, -6.09826 ], [ 2.9466, -2.9466, -3.85778 ] ]
[ [ 1.67988, -1.67988, -9.91761 ], [ -1.33882, -1.44701, -2.00679 ], [ 0.118, -0.118, -4.052 ], [ 0.24424, -0.24424, -8.03802 ], [ 1.55364, -1.55364, -5.93159 ], [ -1.29874, -1.48708, -6.12439 ], [ 0.13448, -2.92031, -3.93568 ], [ 0.3108, -3.09662, -7.84522 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9716258395615806305295235674811414177123836336437113605553299231887280892026726166999493046782303216938998062156580453684352580574926043485996999624108361
1
VASP
DFT
null
[ [ -0.024458, 0.024428, 0.11975 ], [ -0.000091, 0.000137, -0.000165 ], [ 0.024232, -0.024262, -0.119543 ], [ 0.086999, -0.087026, -0.025226 ], [ -0.086879, 0.086849, 0.024968 ], [ -0.015492, 0.015485, -0.028118 ], [ -0.000135, 0.000203, -0.000255 ], [ 0.015824, -0.015814, 0.028589 ] ]
null
[ [ -0.006711619593244785, -0.008170197860872443, -0.001909464886881465 ], [ -0.008170197860872443, -0.006711619593244785, 0.0019090903963339119 ], [ -0.001909464886881465, 0.0019090903963339119, 0.0008670704477677021 ] ]
true
null
null
-45.44575
null
0.071563
0.125613
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:26:34
6949061312211805882374211876882798450576891664934879727203112628801438250336283280390764718777275763527660619049981014715122555303999478062178180671129112
PO_6949061312211805882374211
null
null
null
[ "train_1st_stage_678" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5784888342222427286205626934673219068154179227441686092971623946385272104107175099195975804886048644268653770732534111849042545492923745584177642685220011
CO_5784888342222427286205626
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni
Al3Ni
A3B
[ 13, 13, 13, 28 ]
[ "Al", "Ni" ]
[ 0.75, 0.25 ]
2
4
[ [ 0, 0, -2.79432 ], [ 0, 2.79432, 0 ], [ 7.17964, 0, 0 ] ]
[ [ 6.86456, 0, 0 ], [ 1.79491, 1.39716, -1.39716 ], [ 3.90489, 0, 0 ], [ 5.38473, 1.39716, -1.39716 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12870246162548290038815878308436142320168375744848705807289552112103574571127046740903514431302114034961712445573294761292848346622599488608189261221326948
1
VASP
DFT
null
[ [ 0.35729, 0, 0 ], [ -0.000022, 0, 0 ], [ -0.357232, 0, 0 ], [ -0.000036, 0, 0 ] ]
null
[ [ -0.013915257350882948, 0, 0 ], [ 0, -0.005476424937232488, 0 ], [ 0, 0, -0.005476424937232488 ] ]
true
null
null
-17.827044
null
0.178645
0.35729
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:39:44
3546732125668552416348699763397345124331054685357391157062882810867074292839591722593368773476636262631179295335585661757965445925496731846432664746821394
PO_3546732125668552416348699
null
null
null
[ "train_2nd_stage_12" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7336177761200221291898178868646572150245287304543679387176161750725402154507041168850274242266577827852821938566147863285875003983483002241117884766645214
CO_7336177761200221291898178
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al5Ti5
AlTi
AB
[ 13, 13, 13, 13, 13, 22, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.5, 0.5 ]
2
10
[ [ 2.671835, -2.951095, 0.180272 ], [ -3.49716, -3.350146, -3.002159 ], [ 3.51282, 0.083244, -6.63356 ] ]
[ [ 5.8361, -3.19664, -6.7495 ], [ 1.79518, -3.99642, -4.00628 ], [ 0.72331, -2.16261, -2.15126 ], [ 0.19519, -2.87916, -6.04161 ], [ 1.26707, -4.71297, -7.89662 ], [ 3.01566, -3.03789, -6.39556 ], [ 4.08753, -4.87171, -8.25057 ], [ 0.0466, -5.6715, -5.50736 ], [ -1.02527, -3.83767, -3.65228 ], [ 1.94379, -1.20407, -4.54053 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7564575073759104201537746033761945164840702915678668421460475474365451563957949253273851908399724282425360194029678730028107414956548674120070643472822326
1
VASP
DFT
null
[ [ 0.001302, 0.001172, -0.000393 ], [ -0.000464, -0.000312, 0.001145 ], [ 0.000621, 0.000461, -0.00117 ], [ -0.001378, -0.001259, 0.000308 ], [ -0.000066, -0.000047, 0.000145 ], [ -0.000095, -0.000081, -0.000261 ], [ -0.000307, -0.000503, -0.002487 ], [ -0.000331, -0.000382, -0.000269 ], [ 0.0003, 0.000324, -0.000179 ], [ 0.000418, 0.000628, 0.003161 ] ]
null
[ [ 0.000053115242661266524, 0.00023099825274893937, -0.00008756837303614211 ], [ 0.00023099825274893937, -0.00001210852770421352, -0.00008575833538963597 ], [ -0.00008756837303614211, -0.00008575833538963597, -0.0002829900237675469 ] ]
true
null
null
-61.911533
null
0.001367
0.00325
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:21:26
3419914282008174464263008765476790296224888487101039690678102459809104750679518969770672079518229549945502931550836463722856695982149267384983222798005440
PO_3419914282008174464263008
null
null
null
[ "train_1st_stage_374" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5233811834567745243069824933349475459101833374425947612680478250779100239172743512219747633939674806155620462617259245339464436900147298958872519645482174
CO_5233811834567745243069824
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlTi2
AlTi2
A2B
[ 13, 22, 22 ]
[ "Al", "Ti" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
3
[ [ 1.89337, -3.27941, 0 ], [ 1.89337, 3.27941, 0 ], [ 0, 0, 4.10444 ] ]
[ [ 0, 0, 0 ], [ 1.89337, 1.09314, 2.05222 ], [ 1.89337, -1.09314, 2.05222 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9069711161661376494645561305231427492092231495339743832844649399375104582208786982824335750252979481702949540722526372825365261122586744996591999672783380
1
VASP
DFT
null
[ [ 0, 0.000002, 0.000006 ], [ -0.000002, 0.000105, -0.000008 ], [ 0.000002, -0.000107, 0.000002 ] ]
null
[ [ 0.03906504388308198, 1.2483018251766518e-7, 6.241509125883259e-8 ], [ 1.2483018251766518e-7, 0.03906479422271695, 0 ], [ 6.241509125883259e-8, 0, -0.04108567004749543 ] ]
true
null
null
-16.391822
null
0.000073
0.000107
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:17:19
926961697814541074518446569927876902184638973260782599026037626787843673102205900564026598373558441616157109085574808720438617330806906317402963532584659
PO_9269616978145410745184465
null
null
null
[ "train_1st_stage_2032" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11023421386861702735677824989125071166153915208030616052221185719475575857126432948176505765665079062978488996356785360361562300894633284649358057729563311
CO_1102342138686170273567782
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni4Ti2
Al3Ni2Ti
A3B2C
[ 13, 13, 13, 13, 13, 13, 28, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.5, 0.3333333333333333, 0.16666666666666666 ]
3
12
[ [ 4.74778, 2.46047, 0.07053 ], [ -0.5327, 2.76022, 3.95155 ], [ 0.560662, -2.74979, 3.98971 ] ]
[ [ 5.00619, -0.23743, 4.2224 ], [ 4.47643, 2.50986, 3.82931 ], [ 2.03577, -0.84455, 4.15325 ], [ 1.49534, 1.90482, 3.84803 ], [ 1.84195, 1.20112, 2.01342 ], [ 0.61395, 1.58926, 5.96627 ], [ 2.94823, 0.69843, 4.22144 ], [ 2.50808, 3.46229, 3.98227 ], [ 2.13414, 2.27481, 5.98797 ], [ 4.88384, 1.7781, 6.02967 ], [ 2.62485, 0.22818, 5.81961 ], [ 3.13418, 2.78807, 2.04282 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7154241571786144662902491226309510130110677389046671831009691052099965835434594296024022774168684584198045734533298192745107490233540670918168986732209506
1
VASP
DFT
null
[ [ 0.93531, 0.620876, -0.933974 ], [ 1.067823, 0.15082, 0.929118 ], [ -9.608215, -4.148485, -5.514339 ], [ -9.227737, 0.925626, 2.606013 ], [ -3.152848, -7.411241, 0.203204 ], [ -16.4678, -7.513901, -0.240184 ], [ 8.083224, 9.023755, -10.563164 ], [ 5.675838, 4.884278, 2.57273 ], [ 18.183964, 2.261521, 0.889742 ], [ 0.707413, -0.289633, -0.343491 ], [ 237.282226, -37.813608, 52.937005 ], [ -233.479198, 39.309992, -42.54266 ] ]
null
[ [ -1.8003123142314672, 0.3663790822929976, -0.32607147877313475 ], [ 0.3663790822929976, -0.04166101235871935, 0.04268480710063798 ], [ -0.32607147877313475, 0.04268480710063798, -0.13380285120685242 ] ]
true
null
null
-27.42959
null
48.356333
246.038717
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:17:51
5295315507213531137165801677601083457512852218276714705366877503608984934723007947004855342771274602879553538965454407191480772083717242456432672301088371
PO_5295315507213531137165801
null
null
null
[ "train_1st_stage_1644", "train_1st_stage_1444", "train_1st_stage_1244", "train_1st_stage_1844" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6706149864156503222567412740277742872358987370119337952221381128432809544329119107749191359360318544524053781075070122308422548402918375780060442676702949
CO_6706149864156503222567412
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni6
AlNi
AB
[ 13, 13, 13, 13, 13, 13, 28, 28, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.5, 0.5 ]
2
12
[ [ 2.58559, 0.589912, -0.930742 ], [ -2.38488, 3.9515, 0.12303 ], [ -0.026182, 0.008641, 12.6638 ] ]
[ [ 2.29822, 0.72288, 2.59891 ], [ -2.12369, 3.82717, 9.25716 ], [ 0.63266, 1.8463, 7.17141 ], [ 1.20741, 1.58034, 0.11213 ], [ -1.03288, 2.96971, 11.7439 ], [ -0.45813, 2.70375, 4.68464 ], [ -1.81325, 3.46383, 1.40191 ], [ 1.98778, 1.08622, 10.4542 ], [ 1.49166, 1.22565, 4.92064 ], [ 0.34843, 2.20098, 2.3629 ], [ -0.17389, 2.34907, 9.49315 ], [ -1.31713, 3.32441, 6.93543 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2341405943482745304763451407019447651424443193702316889297428466767211840713088734862785962584125532164895416944346806213714972687222812762531724162878176
1
VASP
DFT
null
[ [ 0.026162, -0.135905, -0.01246 ], [ -0.026206, 0.136032, 0.012417 ], [ 0.026242, -0.136052, -0.012365 ], [ -0.026093, 0.136037, 0.012529 ], [ 0.026221, -0.135967, -0.011822 ], [ -0.02619, 0.135802, 0.012304 ], [ -0.016031, -0.060692, -0.084133 ], [ 0.01602, 0.060732, 0.083729 ], [ -0.015943, -0.060533, -0.083812 ], [ 0.015959, 0.060657, 0.084024 ], [ -0.01609, -0.060747, -0.084309 ], [ 0.015951, 0.060637, 0.083898 ] ]
null
[ [ -0.009474798098364563, -0.0019711934121364504, 0.004036820857347514 ], [ -0.0019711934121364504, -0.005015676733559786, -0.0014254358541692185 ], [ 0.004036820857347514, -0.0014254358541692185, -0.0008360501474120624 ] ]
true
null
null
-62.273102
null
0.121922
0.13911
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:55:19
5784052755880275543652512180565993183150249861210208226523235091461808999539118230351253145036194429734455211329434270393430241030910507506975139087923856
PO_5784052755880275543652512
null
null
null
[ "train_2nd_stage_309" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5712279992381473287478588783355524281742793401761517562951431190969913827732601031921293585846947567176563213606105456594027157544850666987055959267317612
CO_5712279992381473287478588
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi8Ti3
AlNi8Ti3
A8B3C
[ 13, 28, 28, 28, 28, 28, 28, 28, 28, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.08333333333333333, 0.6666666666666666, 0.25 ]
3
12
[ [ 3.6312, -0.506167, -0.489436 ], [ -1.08786, 2.1733, 3.65707 ], [ 1.05331, -9.41531, 3.55704 ] ]
[ [ 2.09669, 0.09133, 1.48309 ], [ 1.10871, -9.08102, 3.62109 ], [ 0.50678, 0.35455, 3.39156 ], [ 2.06562, -1.78424, 3.19182 ], [ 0.01672, -3.35203, 3.58329 ], [ 1.59877, -5.37444, 3.42936 ], [ 3.18107, -7.44839, 3.3314 ], [ 1.58266, -3.65981, 1.54634 ], [ 0.03283, -5.06666, 5.46631 ], [ -0.00518, -1.72128, 1.74009 ], [ 2.07942, -3.52967, 5.09014 ], [ 1.62067, -7.00519, 5.27257 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
1712800646397023952221305119695749367391103003366229932132579062340392007497399181893548575980917751909926018510222530534866765563090879047794265513371162
1
VASP
DFT
null
[ [ 0.000124, 0.000676, -0.000105 ], [ 0.018944, 0.072161, 0.075305 ], [ -0.018599, -0.07254, -0.075045 ], [ -0.000401, -0.026608, 0.007015 ], [ -0.011395, -0.059961, -0.0217 ], [ 0.011091, 0.059792, 0.022175 ], [ 0.000137, 0.026642, -0.007025 ], [ 0.010781, 0.047676, 0.023667 ], [ -0.010472, -0.04753, -0.023792 ], [ -0.003367, 0.017592, -0.043758 ], [ 0.000025, 0.000375, -0.000011 ], [ 0.00313, -0.018275, 0.043274 ] ]
null
[ [ 0.006554271148181269, -0.0005211660120112521, -0.002608139418432837 ], [ -0.0005211660120112521, 0.005280067060132202, -0.0013089692938802369 ], [ -0.002608139418432837, -0.0013089692938802369, -0.011870039640513521 ] ]
true
null
null
-76.901538
null
0.050043
0.106018
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:36:46
10864009057931681229700164884398275701334942771670378190742002764147180935011592986538953367324214361430216986174275757386587490507265226765701343490575502
PO_1086400905793168122970016
null
null
null
[ "train_1st_stage_1144" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5958088989651347869972169004421322281678007652290895677629631972974431908240846219905451652223266780877263481562000824241343902159121497975754220585192899
CO_5958088989651347869972169
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni8Ti2
AlNi4Ti
A4BC
[ 13, 13, 28, 28, 28, 28, 28, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.16666666666666666, 0.6666666666666666, 0.16666666666666666 ]
3
12
[ [ 0, 0, 4.14655 ], [ 3.85368, 2.24889, 0 ], [ -3.87825, 6.72187, 0 ] ]
[ [ -3.69006, 6.71251, 0 ], [ 1.14914, 6.48016, 0 ], [ 1.17837, 2.23534, 0 ], [ 2.55866, 4.49052, 0 ], [ -0.02616, 4.37834, 0 ], [ -1.25656, 6.89437, 0 ], [ 1.30766, 0.77983, 2.07327 ], [ -0.0657, 2.96618, 2.07327 ], [ 1.2593, 5.23824, 2.07327 ], [ 0.04395, 7.54186, 2.07327 ], [ 2.41875, 3.02943, 2.07327 ], [ -1.17113, 5.32668, 2.07327 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9917805638658775824066496208269025597287377327042383540924669503371816225332736162997540657590128752648455259358269394476074343297869828197585920499419242
1
VASP
DFT
null
[ [ -0.204043, 0.039762, -0.000051 ], [ 0.083906, 0.184427, -0.000053 ], [ 0.235416, 0.209112, -0.000039 ], [ 0.073017, -0.31778, -0.000039 ], [ -0.20306, -0.148966, -0.00004 ], [ -0.092234, -0.126185, -0.000043 ], [ 0.05199, 0.01312, 0.000046 ], [ 0.120385, 0.015228, 0.000042 ], [ 0.118799, -0.116936, 0.000051 ], [ 0.072254, -0.052646, 0.000043 ], [ -0.083819, -0.039649, 0.000041 ], [ -0.17261, 0.340515, 0.000041 ] ]
null
[ [ -0.0015110693593763367, -0.002815170276138385, 0 ], [ -0.002815170276138385, -0.009249167543463882, 0 ], [ 0, 0, -0.01573465726107792 ] ]
true
null
null
-71.956674
null
0.197094
0.381765
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:56:54
1665911040429222025878564456664665825888543301149625650657999355197924755091622412483277556943720288274183647403659853651307432723579625027628385061468968
PO_1665911040429222025878564
null
null
null
[ "train_1st_stage_554" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9076215376461056512263080345664544762663156380314731617860835336112103487155322068539761480516147614455144776465686471972882960492778071827725514199819727
CO_9076215376461056512263080
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni2Ti2
NiTi
AB
[ 28, 28, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.5, 0.5 ]
2
4
[ [ 2.63234, 0, 0 ], [ 0, 2.63234, 0 ], [ 0, 0, 8.11637 ] ]
[ [ 0.65808, 0.65808, 4.93476 ], [ 1.97425, 1.97425, 3.18162 ], [ 0.65808, 0.65808, 1.05513 ], [ 1.97425, 1.97425, 7.06125 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5896816468930446200199871434443141616049915049573908243778353267208177181005975428228823794093072831651815226427938683989976894612992969490689654867941853
1
VASP
DFT
null
[ [ -0.000008, -0.000011, 0.140973 ], [ 0.000011, 0.000009, -0.141103 ], [ -0.000014, -0.000009, 1.057588 ], [ 0.000011, 0.000011, -1.057458 ] ]
null
[ [ -0.0024957922541669385, 6.241509125883259e-8, 0 ], [ 6.241509125883259e-8, -0.0024957922541669385, -1.8724527377649775e-7 ], [ 0, -1.8724527377649775e-7, -0.022926685811741936 ] ]
true
null
null
-26.736026
null
0.599281
1.057588
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:26:27
2036185919486381646035796535914536033364242562605167454456295624062885138365508096558520945750490173941847806830755612758899943030942668725126375426691146
PO_2036185919486381646035796
null
null
null
[ "train_1st_stage_2314" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11117920352247868396788445253643461256750982042060795594936937099064893463074153577890375709861415051340450639785644602142735821766104297503114813452605179
CO_1111792035224786839678844
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al10Ti8
Al5Ti4
A5B4
[ 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.5555555555555556, 0.4444444444444444 ]
2
18
[ [ 7.9976, 0, 0 ], [ -3.9988, 6.92612, 0 ], [ 0, 0, 5.44842 ] ]
[ [ 2.47601, 0, 1.36211 ], [ -1.238, 2.14428, 1.36211 ], [ 2.7608, 4.78184, 1.36211 ], [ 5.52159, 0, 4.08632 ], [ 5.2368, 4.78184, 4.08632 ], [ 1.238, 2.14428, 4.08632 ], [ 0, 4.61742, 0 ], [ 3.9988, 2.30871, 2.72421 ], [ 3.9988, 2.30871, 0 ], [ 0, 4.61742, 2.72421 ], [ 0, 0, 0 ], [ 0, 0, 2.72421 ], [ 5.14452, 0, 1.36211 ], [ 5.42534, 4.45528, 1.36211 ], [ 1.42654, 2.47084, 1.36211 ], [ 2.85308, 0, 4.08632 ], [ -1.42654, 2.47084, 4.08632 ], [ 2.57226, 4.45528, 4.08632 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
1137646608085697397552274921852121672290807579331723128053105228795422379677778187349211680904376630326205218605135274741570352989029710407403011045244140
1
VASP
DFT
null
[ [ -0.210878, 0.000047, -0.000004 ], [ 0.105449, -0.182889, 0.000006 ], [ 0.105296, 0.182732, -0.000004 ], [ 0.210927, -0.000677, -0.000017 ], [ -0.105958, 0.182895, -0.000015 ], [ -0.104947, -0.182496, -0.000014 ], [ 0.000461, 0.00021, 0.000008 ], [ -0.00027, 0.000067, 0.000022 ], [ -0.000271, 0.000064, 0.000009 ], [ 0.000463, 0.000207, 0.000021 ], [ -0.000218, 0.00002, 0.000197 ], [ -0.000021, -0.000151, -0.000092 ], [ 0.11305, -0.000161, -0.000141 ], [ -0.056665, 0.098149, -0.0001 ], [ -0.056389, -0.097854, -0.00011 ], [ -0.113042, 0.000155, 0.000076 ], [ 0.056748, -0.098429, 0.000065 ], [ 0.056264, 0.098108, 0.000094 ] ]
null
[ [ 0.04490928095310277, 0.000003183169654200462, 1.8724527377649775e-7 ], [ 0.000003183169654200462, 0.04490634744381361, 6.865660038471584e-7 ], [ 1.8724527377649775e-7, 6.865660038471584e-7, 0.03781099986950952 ] ]
true
null
null
-104.941356
null
0.108157
0.211371
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:24:23
127840670670398625384184145060485306322130010438788458880080498164896044074443613294634222914272904719880120122795480917450714608052245476635128007801724
PO_1278406706703986253841841
null
null
null
[ "train_2nd_stage_339" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7086175722827041563410213623641665812802399349945668025797278924170878785600381609616884278724509762843296612599806202137557666798840564175359849070180582
CO_7086175722827041563410213
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al10Ni4
Al5Ni2
A5B2
[ 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.7142857142857143, 0.2857142857142857 ]
2
14
[ [ -4.14504, 2.28283, -0.045211 ], [ -0.173938, -5.13636, 4.26148 ], [ 2.638, 4.87182, 4.13969 ] ]
[ [ -0.26092, 0.06805, 0.07532 ], [ 0.52505, -0.56838, 4.20376 ], [ -0.32799, 4.92996, 4.05094 ], [ 1.09449, 2.1236, 4.70232 ], [ -1.43721, -2.4933, 3.69006 ], [ -2.57206, 3.00354, 1.97101 ], [ -1.56971, 0.42853, 2.61775 ], [ -1.46341, 0.68345, 5.74519 ], [ 0.13301, 3.01345, 2.13508 ], [ -0.89397, 3.37543, 6.24374 ], [ -3.13117, -0.68757, 4.30075 ], [ -1.32652, 2.58412, 4.04668 ], [ 0.9576, 0.22293, 6.40082 ], [ 0.12425, -1.3772, 2.00706 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9348763493686727191782973100230329226599882049213588618219449066580313433411891917156061090003557007248176362948173157567267797035372277961956964576686792
1
VASP
DFT
null
[ [ -0.008392, -0.022714, -0.044729 ], [ 0.072772, -0.041792, -0.00228 ], [ 0.021488, 0.019123, 0.047539 ], [ -0.096597, 0.049092, 0.128913 ], [ -0.090438, 0.057399, -0.129643 ], [ 0.008639, 0.022998, 0.044809 ], [ 0.090597, -0.05711, 0.12967 ], [ 0.096734, -0.048763, -0.129039 ], [ -0.021405, -0.018941, -0.047408 ], [ -0.072494, 0.042056, 0.002166 ], [ 0.014331, -0.453432, 0.249588 ], [ 0.390721, 0.229847, -0.241395 ], [ -0.391601, -0.230124, 0.241529 ], [ -0.014354, 0.452359, -0.24972 ] ]
null
[ [ -0.006717424196731856, -0.006932007280479722, 0.0035433047307639252 ], [ -0.006932007280479722, -0.014706555877862428, 0.006531364809689277 ], [ 0.0035433047307639252, 0.006531364809689277, 0.016234789387334945 ] ]
true
null
null
-64.915018
null
0.222615
0.517784
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:32:52
1581833422179569144973812982182182032718295190188246392071546460549120059267330046954533944758650294607982941768274507175101116827292988938221109787799905
PO_1581833422179569144973812
null
null
null
[ "train_1st_stage_509" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4756434243847630153883835311194679719930151514641874283246142878099701881342555832872210497991323216504989629507452040512057449075216594940601139053563983
CO_4756434243847630153883835
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni8
AlNi4
A4B
[ 13, 13, 28, 28, 28, 28, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.2, 0.8 ]
2
10
[ [ 0.155031, 3.547414, -0.155032 ], [ 2.508123, -0.000001, 2.508113 ], [ 6.333027, 1.227302, -6.333003 ] ]
[ [ 6.33394, 1.22873, -6.31971 ], [ 2.67402, 3.32895, -2.65982 ], [ 1.33746, 1.66519, -1.32327 ], [ 3.85348, 1.44544, -3.83939 ], [ 5.15427, 3.11227, -5.14011 ], [ 7.66525, 3.00254, -5.14292 ], [ 2.66906, 3.43889, -0.14675 ], [ 3.85077, 1.55514, -1.32852 ], [ 5.18593, 3.21908, -2.66373 ], [ 6.32998, 1.33863, -3.80771 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11354357699210095460234668519120164940880614294806496207308474873371477405659645668546015104896385253335162376347906903194149666040304539250089047232071204
1
VASP
DFT
null
[ [ 0.018039, -0.001513, -0.01793 ], [ -0.017698, 0.001448, 0.017573 ], [ -0.000232, 0.000031, 0.000329 ], [ 0.013737, -0.001107, -0.013953 ], [ -0.013441, 0.001105, 0.013324 ], [ 0.017157, -0.001573, -0.017038 ], [ -0.000354, 0.000022, 0.000528 ], [ -0.017109, 0.001575, 0.017071 ], [ 0.010346, -0.000923, -0.010418 ], [ -0.010445, 0.000935, 0.010515 ] ]
null
[ [ -0.0012174687700947883, 0.000003495245110494624, 0.00010966331534176883 ], [ 0.000003495245110494624, -0.0012943017474344111, -0.0000039321507493064525 ], [ 0.00010966331534176883, -0.0000039321507493064525, -0.0012179056757336002 ] ]
true
null
null
-54.663659
null
0.016808
0.025479
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:26:56
676418412414647072850001843690702287472459815021070715088388075319363171436701647969549319129311595877659519574763955731501532011930146932372489472049070
PO_6764184124146470728500018
null
null
null
[ "train_1st_stage_309" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
3959166379776783587704937723680768297263750427103014181275209058166613026891926098753976153785255908536057466809072196874113929500731766099903787021439288
CO_3959166379776783587704937
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni3Ti6
AlNiTi2
A2BC
[ 13, 13, 13, 28, 28, 28, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.25, 0.25, 0.5 ]
3
12
[ [ 3.8287, -0.383421, 2.39663 ], [ -0.821516, 5.46682, 0.048037 ], [ -3.86331, 0.497528, 2.41811 ] ]
[ [ 3.00614, 0.15778, 2.41754 ], [ 1.12956, 3.99085, 2.45946 ], [ -3.01103, 4.15192, 2.41543 ], [ 0.34011, 0.81098, 2.45133 ], [ -1.53499, 2.22924, 2.47729 ], [ 2.85671, 1.91012, 2.37818 ], [ 1.12747, 0.44103, 1.1827 ], [ 0.98095, 0.44572, 3.67499 ], [ 1.10051, 1.78818, 3.56706 ], [ 1.18137, 1.57529, 1.28408 ], [ -0.93198, 3.71798, 1.20685 ], [ -1.0241, 3.91662, 3.57181 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5992879716124701684208817568305929389003188802935095752539637459344319653355273155864539244292586959514992503619919475423066047077830124049162831412169061
1
VASP
DFT
null
[ [ 4.407914, -4.825982, 1.712644 ], [ -6.868914, -5.411, -0.482699 ], [ 4.007037, 2.696542, -0.470704 ], [ -54.835765, -6.694573, -9.246383 ], [ 16.61448, -3.114761, 1.082967 ], [ 3.093381, -0.03428, -1.563582 ], [ 28.849898, 298.87984, 3.740489 ], [ 12.00166, -81.845792, 37.300379 ], [ 3.808429, 83.880962, 3.561401 ], [ -14.561893, -300.744727, -37.18429 ], [ 2.865834, 10.395015, 5.413394 ], [ 0.617938, 6.818757, -3.863615 ] ]
null
[ [ 0.3797088860878727, 0.07151851956420709, -0.03321038349282097 ], [ 0.07151851956420709, -1.4367524591955398, -0.24953235168315843 ], [ -0.03321038349282097, -0.24953235168315843, 0.7701610321737632 ] ]
true
null
null
21.556598
null
74.59764
303.384428
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:23:47
9354803034333529129783661382152988124630223778521832217943460526454746511986901662181789799656366244035421887305496994438939626891889793696235058489236442
PO_9354803034333529129783661
null
null
null
[ "train_1st_stage_1772", "train_1st_stage_1972", "train_1st_stage_1572", "train_1st_stage_1372" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7226284319250846031044881052949832895377246058937983165292788671270794495995057639339683690664931046293151588409135122384142643774781322534720852732913488
CO_7226284319250846031044881
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi2Ti2
AlNi2Ti2
A2B2C
[ 13, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.2, 0.4, 0.4 ]
3
5
[ [ -1.91171, 1.91171, 4.9738 ], [ 1.91171, -1.91171, 4.9738 ], [ 1.91171, 1.91171, -4.9738 ] ]
[ [ 0, 0, 0 ], [ 1.91171, 0, 2.4869 ], [ 0, 1.91171, 2.4869 ], [ 0, 0, 3.7781 ], [ 0, 0, 6.16951 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
13176980577463271896582806038431705607485695106130013141537639140473010218748758611044080955485775242085091506983014141124411117378476624948353165307460626
1
VASP
DFT
null
[ [ -0.000001, 0, -0.000292 ], [ 0.000226, -0.000228, 0.00018 ], [ -0.000226, 0.000226, 0.000204 ], [ 0.00086, 0.000858, 1.1193 ], [ -0.000859, -0.000857, -1.119392 ] ]
null
[ [ 0.02492889952423403, 0.000027400225062627503, 0.0000035576602017534568 ], [ 0.000027400225062627503, 0.02493077197697179, 0.0000035576602017534568 ], [ 0.0000035576602017534568, 0.0000035576602017534568, 0.036173352705060266 ] ]
true
null
null
-29.12446
null
0.447947
1.119393
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:03:12
5689737253154245644313956827997227043677065311484864343940621751405842865283892966169320517245241554970714292795645632299420544895966637175221797538435920
PO_5689737253154245644313956
null
null
null
[ "train_1st_stage_2331" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7414307493402416981287485613411138544969269976385531426592919314105904456924842056468448936535900167511373606845423502938224253636320569482009132284830931
CO_7414307493402416981287485
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni6Ti2
Ni3Ti
A3B
[ 28, 28, 28, 28, 28, 28, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.75, 0.25 ]
2
8
[ [ 4.56248, 0, 0 ], [ 0, 4.56248, 0 ], [ 0, 0, 4.56248 ] ]
[ [ 0, 1.14062, 2.28124 ], [ 0, 3.42186, 2.28124 ], [ 1.14062, 2.28124, 0 ], [ 2.28124, 0, 1.14062 ], [ 2.28124, 0, 3.42186 ], [ 3.42186, 2.28124, 0 ], [ 0, 0, 0 ], [ 2.28124, 2.28124, 2.28124 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7346188432447607020942341465701405324742300029102053810364637306670469840426335951846906122352491544300843059318616970463179337969572596384225474709844713
1
VASP
DFT
null
[ [ 0.000031, -0.000183, 0.000014 ], [ 0.000026, 0.000243, 0.000014 ], [ 0.000056, 0.000571, -0.000016 ], [ -0.000047, -0.000579, 0.000028 ], [ -0.000042, -0.000577, -0.000026 ], [ -0.000045, 0.000585, -0.000014 ], [ 0.00018, -0.001002, -0.000019 ], [ -0.000159, 0.000943, 0.000019 ] ]
null
[ [ -0.011082361188827054, -4.36905638811828e-7, 6.241509125883259e-8 ], [ -4.36905638811828e-7, -0.011049281190459873, 0 ], [ 6.241509125883259e-8, 0, -0.011065633944369687 ] ]
true
null
null
-51.036865
null
0.000591
0.001018
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:13:50
5624762010090185296318966887864220841114338495207843033907921654127063202208003889537378731151821200286761833578387822341052398081801645319630408774444502
PO_5624762010090185296318966
null
null
null
[ "train_2nd_stage_244" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7531217641571562060068824684172306810476297796473375478448575548802517300404855890594924872889470312701489568197960155879431959287781373966809651635967091
CO_7531217641571562060068824
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni
Al4Ni
A4B
[ 13, 13, 13, 13, 28 ]
[ "Al", "Ni" ]
[ 0.8, 0.2 ]
2
5
[ [ 0.232825, 2.71183, 0.115711 ], [ 5.0678, -1.71759, -1.7933 ], [ -1.60329, 1.71606, -5.13173 ] ]
[ [ 4.49997, 1.06636, -1.80263 ], [ 1.71937, 1.26042, -0.87183 ], [ 3.58627, -0.12244, -4.26659 ], [ 1.0385, 2.78346, -3.22008 ], [ 1.85117, 1.42702, -5.13507 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5771558266998873181152428023735203423570883473207818251806820644229949163379656871098069565235462545259040615501139857705133409150755509915886795529633017
1
VASP
DFT
null
[ [ 0.183479, 0.000036, -0.366888 ], [ -0.35076, 0.048718, -0.175492 ], [ 0.350642, -0.048671, 0.175435 ], [ -0.183643, -0.000022, 0.366873 ], [ 0.000282, -0.000061, 0.000072 ] ]
null
[ [ 0.0007527884156727797, 0.0011767741305940295, 0.000053489733208819514 ], [ 0.0011767741305940295, 0.020863118064542413, 0.0005834562730875669 ], [ 0.000053489733208819514, 0.0005834562730875669, 0.0006739581554128742 ] ]
true
null
null
-21.340151
null
0.322218
0.410269
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:31:49
11124154402367922944576634825865533107019795843682695536773736584496400890041529025239819911311495932372773911868937816244682883311381362293457909774891874
PO_1112415440236792294457663
null
null
null
[ "train_1st_stage_778" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
1750615273916540735794395195841304198689282487053000971913639106000075300694903387104956618470125010135844991527554538819603530064724182238910842275624876
CO_1750615273916540735794395
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al5Ni4Ti3
Al5Ni4Ti3
A5B4C3
[ 13, 13, 13, 13, 13, 28, 28, 28, 28, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.4166666666666667, 0.3333333333333333, 0.25 ]
3
12
[ [ 2.41139, -0.266862, 4.34443 ], [ -1.34721, 6.41723, 0.15639 ], [ -2.48825, 0.576278, 4.33418 ] ]
[ [ 0.41748, 6.01199, 4.24541 ], [ -1.32952, 2.20774, 4.39699 ], [ -3.25247, 4.99632, 4.46101 ], [ 0.45401, 2.98052, 6.59542 ], [ 0.21933, 2.86768, 2.50843 ], [ -1.9552, 6.59151, 4.32078 ], [ 1.63727, 1.82857, 4.44715 ], [ 0.26595, 4.01415, 4.53354 ], [ 1.03826, 0.75649, 2.26819 ], [ 0.85912, 0.60268, 6.57335 ], [ -0.76868, 5.28033, 2.64521 ], [ -0.95952, 5.45576, 6.13151 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
19791337758936707260288723075210346970004018254594507262423355080536873812299195985539472877626378473407108464491202581320749510564262217257147020624084
1
VASP
DFT
null
[ [ 2.625793, 6.176856, 4.091952 ], [ 3.945876, 1.088639, 1.946583 ], [ 32.0056, -0.908031, -1.435985 ], [ -4.669178, 0.410814, -0.869353 ], [ 2.4334, -1.30635, -0.667815 ], [ 2.680899, 1.396259, 1.446158 ], [ -4.536933, 1.50372, -0.228885 ], [ -30.942374, -6.454404, 2.116653 ], [ 0.600837, 4.211306, -1.370328 ], [ 3.885644, 9.458205, 0.293843 ], [ -5.094232, -4.050131, -3.646222 ], [ -2.935332, -11.526883, -1.6766 ] ]
null
[ [ 0.6134219456462062, 0.07485117336197246, 0.026035019771523057 ], [ 0.07485117336197246, 0.5148656454543117, 0.0157271050350356 ], [ 0.026035019771523057, 0.0157271050350356, 0.23130733228085312 ] ]
true
null
null
-44.564259
null
10.503226
32.050663
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:25:50
11122916274585961185082933335909783890103415577055777100860187498560173431573842095458384353139636482114576986015350212380379338402521806644015991985972700
PO_1112291627458596118508293
null
null
null
[ "train_1st_stage_1604", "train_1st_stage_2004", "train_1st_stage_1804", "train_1st_stage_1404" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
13362651258214946530655273790922990444084408151852942295594721984675269758651436469103392980456209165847378128605135651681603380196903372827641635279575971
CO_1336265125821494653065527
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni3Ti5
Ni3Ti5
A5B3
[ 28, 28, 28, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.375, 0.625 ]
2
8
[ [ 2.29378, 3.02714, 1.8287 ], [ 4.13331, -3.25256, 0.199564 ], [ 4.38304, -0.665318, -4.39649 ] ]
[ [ 4.32447, -0.6685, -4.31773 ], [ 8.67717, -0.5549, -0.24873 ], [ 4.3093, -0.27904, -0.08499 ], [ 2.24265, 1.34724, -0.18477 ], [ 4.43417, 1.01458, -2.38301 ], [ 2.14545, -1.62139, -0.00714 ], [ 6.47315, 1.06331, -0.16284 ], [ 6.50082, -0.6117, -2.28323 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
850726250833571400510103239878173297531377525710130435069503717664897451408659341415474817291143088283913462868824745260156352313361740429527453643942133
1
VASP
DFT
null
[ [ 0.220619, -0.266875, 0.164932 ], [ -0.220921, 0.266909, -0.164582 ], [ -0.000208, 0.000031, 0.000195 ], [ 0.000588, -0.000894, 0.000709 ], [ -0.000736, 0.000907, -0.000618 ], [ -0.478029, 0.198272, 0.271367 ], [ 0.477285, -0.198088, -0.270622 ], [ 0.001402, -0.000262, -0.001381 ] ]
null
[ [ -0.015394557428808537, -0.004161338964408886, 0.00019592097146147548 ], [ -0.004161338964408886, -0.014813660174462583, -0.004570532302701792 ], [ 0.00019592097146147548, -0.004570532302701792, -0.013408946130591298 ] ]
true
null
null
-57.144526
null
0.242459
0.584349
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:16:49
6322142662157156806315939942916741117477075065549174074513246688586805988890355223635086938354414148326516776021740009129081676120091359883154459476177508
PO_6322142662157156806315939
null
null
null
[ "train_1st_stage_524" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10017700951539793225346115357099237942459941164110438167686118221458416037390657345018078895946625152851419590243597253968250478439116554477884536078722705
CO_1001770095153979322534611
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNiTi2
AlNiTi2
A2BC
[ 13, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.25, 0.25, 0.5 ]
3
4
[ [ 1.49209, -2.58438, 0 ], [ 1.49209, 2.58438, 0 ], [ 0, 0, 8.01838 ] ]
[ [ 1.49209, 0.86163, 4.00919 ], [ 0, 0, 0 ], [ 0, 0, 2.4857 ], [ 0, 0, 5.53268 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
8682859725326559211638554082370685957802019051276833117283627405645499759849825428512488420265328569931329319006302348535044907979167708492170404942770543
1
VASP
DFT
null
[ [ -0.000005, -0.002093, 0.000735 ], [ -0.000009, 0.00003, -0.000392 ], [ 0.00001, 0.001026, -7.559393 ], [ 0.000003, 0.001038, 7.55905 ] ]
null
[ [ 0.03250902511234547, -3.120754562941629e-7, -6.241509125883259e-8 ], [ -3.120754562941629e-7, 0.03255084322348889, 1.8724527377649775e-7 ], [ -6.241509125883259e-8, 1.8724527377649775e-7, 0.1131272904915428 ] ]
true
null
null
-20.296634
null
3.780264
7.559393
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:55:55
198693802407400274907865876124221266978569863978036758509279159553424811720298734294426490139878172322506709510079979934969229946306852061740877711337224
PO_1986938024074002749078658
null
null
null
[ "train_1st_stage_2055" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5091905331889334810594098434633836152130551130357235874525260577990761658584948516819744846398157538907111403379012712143385879208316004429346028403997741
CO_5091905331889334810594098
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni5
Al3Ni5
A5B3
[ 13, 13, 13, 28, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.375, 0.625 ]
2
8
[ [ -1.88896, -1.889, 0.000125 ], [ -1.1463, 1.14589, -5.85181 ], [ 2.98565, -2.98586, -4.2802 ] ]
[ [ 1.03525, -4.79634, -4.47469 ], [ -1.69442, -2.0667, -3.99712 ], [ -1.43845, -2.32291, -7.79975 ], [ -0.7585, -1.11353, -2.14282 ], [ -0.74139, -1.13088, -5.85154 ], [ 0.57198, -2.4441, -4.03434 ], [ -0.20159, -3.55964, -6.13721 ], [ 0.91377, -2.78615, -8.24022 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6151695435177425408315410238761768622676253696114564982759296651512834214003053847346033883132070105280002876339832824657458542670449004415739193964534653
1
VASP
DFT
null
[ [ -0.110015, 0.11033, 0.699054 ], [ -0.000251, 0.000478, -0.000307 ], [ 0.110702, -0.110522, -0.698585 ], [ -0.18234, 0.182198, 0.818643 ], [ 0.181666, -0.181982, -0.818509 ], [ 0.692182, -0.692241, 0.056341 ], [ -0.000106, 0.00013, -0.000082 ], [ -0.691838, 0.691609, -0.056555 ] ]
null
[ [ 0.07932340189594157, 0.00204178488035019, -0.002764988542766283 ], [ 0.00204178488035019, 0.07932234083939019, 0.0027651757880400598 ], [ -0.002764988542766283, 0.0027651757880400598, 0.07794895917133082 ] ]
true
null
null
-41.805206
null
0.638693
0.980555
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:14:41
7666165470300190892267015436398694659871242617143605053329432802925695158880212883119521874810934752239468426670633196954253484889607677826111098385815106
PO_7666165470300190892267015
null
null
null
[ "train_2nd_stage_809" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12883966709331691565475673759223705417535746330094749558329175624792426999746381679677368391979616004242248985597294072307966617729582753219393197231683519
CO_1288396670933169156547567
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al5Ni4Ti3
Al5Ni4Ti3
A5B4C3
[ 13, 13, 13, 13, 13, 28, 28, 28, 28, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.4166666666666667, 0.3333333333333333, 0.25 ]
3
12
[ [ 3.27563, 2.03312, 0.029292 ], [ 0.052901, 3.86923, 3.85753 ], [ -0.070285, -4.03017, 3.99479 ] ]
[ [ 0.97303, 3.88595, 3.69783 ], [ 2.97592, 2.23073, 4.15137 ], [ 1.5905, -1.94156, 4.1368 ], [ 2.05175, -0.06574, 3.35904 ], [ 1.57014, 2.08719, 2.15924 ], [ 1.16165, 1.73791, 4.24784 ], [ 2.33714, 4.20447, 4.34972 ], [ 0.65261, 0.43515, 2.08447 ], [ 1.84751, 2.57143, 5.91186 ], [ 1.6805, 1.0243, 5.59294 ], [ 2.54645, 0.44794, 5.84417 ], [ 0.57812, 2.4396, 5.54916 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3370170759990476265187160211059111976615350752297404607204148287137687619922296512034493632062953602629885033920333758784350057951245298786026265856098171
1
VASP
DFT
null
[ [ -21.669733, -3.003895, -12.675415 ], [ 8.946429, -3.604976, -3.373844 ], [ -3.034103, 3.659679, -2.658607 ], [ 7.861025, 7.493532, 8.939942 ], [ 3.756012, 6.274723, 3.146109 ], [ -3.479621, -6.836451, -36.699106 ], [ 14.761575, 1.984524, 7.274893 ], [ -7.073675, 5.317347, -1.441129 ], [ 45.455587, 22.201183, 15.989731 ], [ 33.493314, -52.506527, 16.043264 ], [ -23.535686, 12.861553, -6.307868 ], [ -55.481124, 6.159307, 11.762031 ] ]
null
[ [ 0.2952617669354023, 0.1632471080931154, 0.12265595281366373 ], [ 0.1632471080931154, 0.43154493145378947, 0.19260854015327797 ], [ 0.12265595281366373, 0.19260854015327797, 0.35661985862376655 ] ]
true
null
null
-1.662004
null
27.331517
64.312703
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:33:54
7532231908407800264658588158808490531494868810739451205026355830742482079043865610110220782103181554623646108832341851638491655296012598837370815071215336
PO_7532231908407800264658588
null
null
null
[ "train_1st_stage_1616", "train_1st_stage_2016", "train_1st_stage_1816", "train_1st_stage_1416" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
253010203389326199537695704924962169627654474014132855610455328155869841817661005907731547055146371194183940828853735465257798938383851855643605515367677
CO_2530102033893261995376957
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni6Ti6
NiTi
AB
[ 28, 28, 28, 28, 28, 28, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.5, 0.5 ]
2
12
[ [ 0.00002, -0.411576, -4.18179 ], [ 3.99037, 5.00374, 1.61869 ], [ 3.99047, -5.00368, -1.61866 ] ]
[ [ 4.03685, -4.75424, -1.64321 ], [ 2.04159, 1.59932, -0.15739 ], [ 4.03677, 2.94922, -0.29025 ], [ 4.0368, 1.02122, -2.21165 ], [ 6.03199, 1.59936, -0.15738 ], [ 4.03684, -3.23782, -3.90362 ], [ 1.68803, -0.09435, -2.10185 ], [ 1.68805, -2.12229, -4.01341 ], [ 4.03681, 0.08177, -0.00804 ], [ 4.03683, -1.88681, -1.92544 ], [ 6.38559, -0.09431, -2.10184 ], [ 6.38562, -2.12226, -4.01339 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7271574011924923063048734675443574665798730371050687496890213640764881521065655435304386917394154234651932543631683530993878539654461386177945780211554026
1
VASP
DFT
null
[ [ -0.000604, -0.430599, 0.042837 ], [ -0.000382, 0.000684, 0.00006 ], [ -0.00061, 0.430392, -0.042499 ], [ 0.000111, 0.157151, -0.016415 ], [ 0.000897, 0.000194, 0.000098 ], [ -0.000176, -0.156099, 0.016385 ], [ 0.360674, -0.177815, 0.016779 ], [ 0.360265, 0.177895, -0.017137 ], [ -0.000483, -0.498173, 0.047601 ], [ 0.000818, 0.497197, -0.04759 ], [ -0.360345, -0.178891, 0.016979 ], [ -0.360165, 0.178065, -0.017098 ] ]
null
[ [ 0.005142566614088993, 0.0000011234716426589865, -1.8724527377649775e-7 ], [ 0.0000011234716426589865, 0.02021050587034006, -0.0018544771914824336 ], [ -1.8724527377649775e-7, -0.0018544771914824336, 0.001859907304421952 ] ]
true
null
null
-83.572094
null
0.315936
0.500442
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:02:47
3382449848965183101375486477637298282042565007893688494117913469652585195186177208908119028173709019720965153607023865194652885383773296784238980335717917
PO_3382449848965183101375486
null
null
null
[ "train_2nd_stage_686" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11640001418005887750476898433678368702462438128451207201297994093452312286720751810507159107272481849077804509244468474324598043621694379892822495699260020
CO_1164000141800588775047689
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni3Ti5
Al4Ni3Ti5
A5B4C3
[ 13, 13, 13, 13, 28, 28, 28, 22, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.3333333333333333, 0.25, 0.4166666666666667 ]
3
12
[ [ -4.31324, 2.37059, 0.216257 ], [ -0.103632, -4.92067, -0.216257 ], [ -1.28687, 2.22893, 8.36758 ] ]
[ [ -3.76795, -2.81236, 0.04838 ], [ -4.15775, 2.96297, 4.27958 ], [ -2.06305, -0.68849, 4.06333 ], [ -1.56961, -1.54315, 0.04837 ], [ -3.73106, -0.33783, 0.15231 ], [ -1.9963, 1.75764, 4.17565 ], [ -2.91549, -1.75042, 2.05585 ], [ -2.88355, -1.80578, 6.69266 ], [ -1.44628, 0.80499, 1.66723 ], [ -1.3505, 0.63908, 6.23964 ], [ -4.28108, 0.61483, 2.66073 ], [ -4.23434, 0.53385, 5.78663 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6377624202356496300605641569055995060175134280537904635509412406034417113019892409405115069127240661644484806387160687629525517300676678970127482961246526
1
VASP
DFT
null
[ [ 0.175546, 0.213593, 0.082651 ], [ 0.272709, 0.044813, -0.082483 ], [ -0.175158, -0.213723, -0.082525 ], [ -0.272707, -0.045214, 0.082683 ], [ 0.130907, -0.226693, 0.140277 ], [ -0.131029, 0.226728, -0.139906 ], [ -0.000151, 0.000142, -0.000012 ], [ 0.024226, -0.041944, -0.214842 ], [ -0.156213, 0.270379, 0.12543 ], [ 0.000148, -0.000128, -0.000055 ], [ 0.156332, -0.270653, -0.124222 ], [ -0.02461, 0.042701, 0.213003 ] ]
null
[ [ -0.0034082384732798117, -0.0023687151283639553, -0.0018598448893306933 ], [ -0.0023687151283639553, -0.0006794506834436515, 0.0032198073127693966 ], [ -0.0018598448893306933, 0.0032198073127693966, 0.00784801115979435 ] ]
true
null
null
-75.732971
null
0.238326
0.336512
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:43:36
9335917264571393292623741210427370723896829115865857794543388976399984475338764401304662957273267619513645029284331935059422253771727126602972484540589169
PO_9335917264571393292623741
null
null
null
[ "train_1st_stage_1101" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6093969709845994428458044689839734810731813313874550635767518761334835702544288526004842119145322098905503321068405440838651995082539046553445093443006195
CO_6093969709845994428458044
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni6Ti4
AlNi3Ti2
A3B2C
[ 13, 13, 28, 28, 28, 28, 28, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.16666666666666666, 0.5, 0.3333333333333333 ]
3
12
[ [ 3.69047, -0.902405, -0.011816 ], [ -1.00926, 5.44914, 3.39175 ], [ 1.03663, -5.59246, 3.42787 ] ]
[ [ 1.01134, -5.42394, 3.41636 ], [ 0.96892, 2.11616, 1.77844 ], [ 0.06185, 0.42255, 3.43138 ], [ 3.1949, -4.02877, 3.48004 ], [ 2.46422, 1.42267, 3.20276 ], [ 1.52987, -2.10059, 3.38779 ], [ 0.6065, 3.23802, 3.45999 ], [ 0.37957, 1.67796, 5.05093 ], [ 2.09253, -0.11546, 1.81682 ], [ 1.91094, 0.25258, 5.04223 ], [ 2.93361, -2.40042, 5.03768 ], [ 3.39766, -2.66284, 1.75509 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7740254448229565424904637660010686278831460813751122945985223501588668508458277647813359660664441265988924761107437433810017565591499145634791331852719729
1
VASP
DFT
null
[ [ 0.947026, 0.569705, 0.503771 ], [ -27.302251, -28.092562, 2.235617 ], [ 0.33497, -3.520266, -2.544532 ], [ 0.599973, -2.272611, 0.453956 ], [ -1.394334, 0.864526, 0.671311 ], [ 0.048982, 2.097976, -1.206866 ], [ 1.998697, 4.893176, 2.678659 ], [ -0.892317, 2.57313, 3.178128 ], [ -1.628848, -3.371932, -1.093775 ], [ -0.633657, -7.126974, -0.287556 ], [ 27.052762, 29.342099, -4.452459 ], [ 0.868997, 4.043733, -0.136255 ] ]
null
[ [ 0.37817116548452884, 0.17512925626133316, -0.024068632321413538 ], [ 0.17512925626133316, 0.4371886912506869, 0.022202233847500665 ], [ -0.024068632321413538, 0.022202233847500665, 0.327286638184853 ] ]
true
null
null
-53.853777
null
9.738774
40.157628
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:13:04
4768476323524205550092694501463464112662819055715312579072766150006610589778365493892603572127245545262578306809946569702133468005770992231238084884574435
PO_4768476323524205550092694
null
null
null
[ "train_1st_stage_1693", "train_1st_stage_1493", "train_1st_stage_1293", "train_1st_stage_1893" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
1345146792986233156104982610785915418781444165605077467439190274623814181554480436604728013882517648642152543562176945002556299424257191216419780541921196
CO_1345146792986233156104982
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi8
AlNi8
A8B
[ 13, 28, 28, 28, 28, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.1111111111111111, 0.8888888888888888 ]
2
9
[ [ 5.28004, 1.76068, 0.00187 ], [ 0.001869, 1.76068, 5.28004 ], [ 5.27616, -0.001316, 5.27616 ] ]
[ [ 5.28191, 3.52136, 5.28191 ], [ 7.06238, 1.75973, 5.27872 ], [ 3.49569, 1.76031, 5.27935 ], [ 7.03989, 3.52077, 7.03989 ], [ 5.27872, 1.75973, 7.06238 ], [ 3.52132, 1.76068, 1.76059 ], [ 5.27935, 1.76031, 3.49569 ], [ 3.51817, -0.00072, 3.51817 ], [ 1.76059, 1.76068, 3.52132 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5493174910356457784777241471677714365570538070845086899370229937001330480557349040886542430779463759471087519052681687877122139274321884545853267544078821
1
VASP
DFT
null
[ [ -0.000088, 0.000018, 0.000036 ], [ -0.144808, 0.00211, -0.000954 ], [ 0.145134, -0.002117, 0.000955 ], [ 0.095203, 0.000543, 0.094958 ], [ -0.001039, 0.002113, -0.145077 ], [ -0.094299, 0.000029, 0.094266 ], [ 0.000867, -0.002116, 0.144862 ], [ -0.094994, -0.000607, -0.095098 ], [ 0.094024, 0.000028, -0.093949 ] ]
null
[ [ -0.008027204886798459, 0.0007220801907734341, -0.0001827513872058618 ], [ 0.0007220801907734341, -0.007844141424136301, 0.0007221426058646929 ], [ -0.0001827513872058618, 0.0007221426058646929, -0.008020526472033763 ] ]
true
null
null
-49.002927
null
0.12391
0.145153
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:03:17
4747853210544445176818940766140846253935944800550261033138589785590529148763301201143235831441198677002126731732796213209842027363067948557954235623460774
PO_4747853210544445176818940
null
null
null
[ "train_2nd_stage_530" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12790193892982326827805150594948515567672674755574441094238135438066380497483985853168209512117667009547430217345379246003093533906973516137810883102673673
CO_1279019389298232682780515
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al5Ni2Ti3
Al5Ni2Ti3
A5B3C2
[ 13, 13, 13, 13, 13, 28, 28, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.5, 0.2, 0.3 ]
3
10
[ [ 0.000003, 2.0135, 2.0135 ], [ 17.942012, 0.000013, 0.000014 ], [ 0, 2.013524, -2.013524 ] ]
[ [ 0.63382, 4.01293, -0.01386 ], [ 3.57667, 4.01292, -0.01388 ], [ 6.5192, 4.01294, -0.01385 ], [ 10.52988, 4.01297, -0.01382 ], [ 14.56509, 4.01297, -0.01383 ], [ 2.1071, 1.99938, -0.01389 ], [ 5.04623, 1.99938, -0.01388 ], [ 8.50885, 1.99943, -0.01384 ], [ 12.54744, 1.99944, -0.01383 ], [ 16.58608, 1.99943, -0.01384 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10336393940748809353318501935507951253917489888638417608653361960948547638212805301959043350484510531089681799266639678677908130007531999764862674106436673
1
VASP
DFT
null
[ [ 0.003907, -0.000006, -0.000039 ], [ -0.001163, -0.000048, 0.000015 ], [ -0.001705, -0.00002, -0.000029 ], [ -0.010981, -0.000024, -0.000014 ], [ 0.009909, -0.000022, -0.000012 ], [ 0.006657, 0.000027, 0.000026 ], [ -0.006536, 0.000028, -0.000025 ], [ -0.003716, -0.000015, 0.00001 ], [ 0.000021, 0.000073, 0.00003 ], [ 0.003607, 0.000009, 0.000037 ] ]
null
[ [ -0.0001725777273306721, 3.744905475529955e-7, 3.744905475529955e-7 ], [ 3.744905475529955e-7, -0.0007958548286413743, 0.0000011234716426589865 ], [ 3.744905475529955e-7, 0.0000011234716426589865, -0.0007959796588238919 ] ]
true
null
null
-58.278754
null
0.004826
0.010981
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:24:31
10654925748395430880306794305951397503083746356322538508082652520527237933472458387784479940324734951809482150958294072459513969706475306045845343344285923
PO_1065492574839543088030679
null
null
null
[ "train_1st_stage_103" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12190307071671850390447054066240471844934659097763295700209607154873040840095991192617714299297960028161875928633549182370165867156555188610586200480165097
CO_1219030707167185039044705
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni2
Ni
A
[ 28, 28 ]
[ "Ni" ]
[ 1 ]
1
2
[ [ 2.46994, 0, 0 ], [ -1.23497, 2.13903, 0 ], [ 0, 0, 4.12666 ] ]
[ [ 0, 0, 0 ], [ 1.23497, 0.71301, 2.06333 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12426550378544046516676623272875381911723418675884852626242651716880589960494282306572084096158207410545320290020440140800661521346982808752596686590127059
1
VASP
DFT
null
[ [ -0.000002, 0.000004, -0.000001 ], [ 0.000002, -0.000004, 0.000001 ] ]
null
[ [ 0.000728446530081835, 6.241509125883259e-8, 0 ], [ 6.241509125883259e-8, 0.000728446530081835, 0 ], [ 0, 0, 0.002580115042457621 ] ]
true
null
null
-10.771483
null
0.000005
0.000005
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:58:38
2011508082306826913216910295958064799061006724280482108958423361739294915441253495231966083614549414605953561672602393557527783150901467128140178704467384
PO_2011508082306826913216910
null
null
null
[ "train_1st_stage_715" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
1134572511813420449009719169409527309665651131328932453428845808397936975688968038126574308666181051669685786213791044454195957013561197224968364361871025
CO_1134572511813420449009719
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al16Ti8
Al2Ti
A2B
[ 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.6666666666666666, 0.3333333333333333 ]
2
24
[ [ 0, 5.85543, 5.85543 ], [ 5.85543, 0, 5.85543 ], [ 5.85543, 5.85543, 0 ] ]
[ [ 5.85543, 2.92772, 2.92772 ], [ 2.92772, 5.85543, 2.92772 ], [ 2.92772, 2.92772, 5.85543 ], [ 5.85543, 5.85543, 5.85543 ], [ 4.39157, 4.39157, 0.84201 ], [ 4.39157, 0.84201, 4.39157 ], [ 0.84201, 4.39157, 4.39157 ], [ 7.94114, 4.39157, 4.39157 ], [ 4.39157, 7.94114, 4.39157 ], [ 4.39157, 4.39157, 7.94114 ], [ 7.31929, 7.31929, 10.8689 ], [ 7.31929, 10.8689, 7.31929 ], [ 10.8689, 7.31929, 7.31929 ], [ 3.76973, 7.31929, 7.31929 ], [ 7.31929, 3.76973, 7.31929 ], [ 7.31929, 7.31929, 3.76973 ], [ 3.46407, 3.46407, 3.46407 ], [ 5.31908, 5.31908, 3.46407 ], [ 5.31908, 3.46407, 5.31908 ], [ 3.46407, 5.31908, 5.31908 ], [ 8.24679, 8.24679, 8.24679 ], [ 6.39179, 6.39179, 8.24679 ], [ 6.39179, 8.24679, 6.39179 ], [ 8.24679, 6.39179, 6.39179 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11099081685506920053404544170574920364014428288900413233445541724580224825982393755347825773479242793754732333129308287275741713195960426158900984053791864
1
VASP
DFT
null
[ [ -0.000042, 0.000112, 0.000148 ], [ 0.000107, -0.00004, 0.00007 ], [ 0.000056, -0.000028, 0.000069 ], [ -0.000028, -0.000107, -0.000066 ], [ 0.000029, -0.000007, -0.230779 ], [ -0.000011, -0.230806, 0.000129 ], [ -0.230848, -0.000054, 0.00013 ], [ 0.230709, 0.000036, 0.000125 ], [ 0.000073, 0.230752, 0.000125 ], [ 0.000027, -0.000013, 0.230773 ], [ -0.000081, 0.000003, 0.230701 ], [ -0.000046, 0.230602, 0.000039 ], [ 0.230623, -0.000019, -0.000009 ], [ -0.230772, -0.000057, 0.000004 ], [ -0.000093, -0.230797, -0.000047 ], [ -0.00006, -0.00008, -0.2307 ], [ -1.721645, -1.721719, -1.721659 ], [ 1.722218, 1.72208, -1.721986 ], [ 1.7216, -1.721705, 1.721644 ], [ -1.721616, 1.72158, 1.721704 ], [ 1.721583, 1.721595, 1.721628 ], [ -1.721515, -1.721567, 1.721699 ], [ -1.721943, 1.721967, -1.721991 ], [ 1.721674, -1.721728, -1.72175 ] ]
null
[ [ 0.10081260574090134, 0.000004306641296859447, -0.0000015603772814708146 ], [ 0.000004306641296859447, 0.10081772377838458, 2.4966036503533035e-7 ], [ -0.0000015603772814708146, 2.4966036503533035e-7, 0.10081884725002724 ] ]
true
null
null
-124.404483
null
1.10944
2.982755
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:25:16
7751285636880308753239418898520619661957278383611840414665528183075794697015045607190634384102406009260561152259304695176929440782565098528305103978004074
PO_7751285636880308753239418
null
null
null
[ "train_1st_stage_2289" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6995676528709873482285563312812569748091077766797156365262043413781519330277449146634427218002222100794234781265304526851778943215014999350682177779124012
CO_6995676528709873482285563
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ti2
AlTi
AB
[ 13, 13, 22, 22 ]
[ "Al", "Ti" ]
[ 0.5, 0.5 ]
2
4
[ [ 3.91242, 0, 0 ], [ 0, 0, 3.91241 ], [ 0, -4.15909, 0 ] ]
[ [ 0, -3.8125, 0 ], [ 1.95621, -3.8125, 1.9562 ], [ 1.95621, -1.73296, 0 ], [ 0, -1.73296, 1.9562 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9332398816228396278620372199144147369574070009948957752459975837789302843127231104829834083186723076729499915661444270012911709634967172730217047743847259
1
VASP
DFT
null
[ [ -0.000012, -0.000091, -0.000026 ], [ 0.000005, -0.000092, 0.000025 ], [ 0.000004, 0.000093, -0.000044 ], [ 0.000003, 0.00009, 0.000045 ] ]
null
[ [ -0.008288474458807931, 6.241509125883259e-8, 3.744905475529955e-7 ], [ 6.241509125883259e-8, 0.0019753128081595336, 0 ], [ 3.744905475529955e-7, 0, -0.008288848949355485 ] ]
true
null
null
-24.735166
null
0.000099
0.000103
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:39:55
12907892616186685770768115923724175694937751392674892763211574993829026547627278966323904641617611218067992100902940460819380685282992869942977008722993367
PO_1290789261618668577076811
null
null
null
[ "train_2nd_stage_212" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7351054842872532299857970199829151947138181530739579539680451840445766493977617641554908772046490002137135091970051706286069433375845838899880939797112523
CO_7351054842872532299857970
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
End of preview. Expand in Data Studio

Dataset

AlNiTi CMS 2019

Description

This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.

Additional details stored in dataset columns prepended with "dataset_".

Dataset authors

Konstantin Gubaev, Evgeny V. Podryabinkin, Gus L.W. Hart, Alexander V. Shapeev

Publication

https://doi.org/10.1016/j.commatsci.2018.09.031

Original data link

https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data

License

CC-BY-4.0

Number of unique molecular configurations

2684

Number of atoms

25067

Elements included

Al, Ni, Ti

Properties included

energy, atomic forces, cauchy stress

Cite this dataset

Gubaev, K., Podryabinkin, E. V., Hart, G. L., and Shapeev, A. V. AlNiTi CMS 2019. ColabFit, 2023. https://doi.org/10.60732/7b56ca82

Downloads last month
13