chemical_formula_hill
string
chemical_formula_reduced
string
chemical_formula_anonymous
string
atomic_numbers
list
elements
list
elements_ratios
list
nelements
int32
nsites
int32
cell
list
positions
list
pbc
list
dimension_types
list
nperiodic_dimensions
int32
structure_hash
string
multiplicity
int32
software
string
method
string
adsorption_energy
float64
atomic_forces
list
atomization_energy
float64
cauchy_stress
list
cauchy_stress_volume_normalized
bool
electronic_band_gap
float64
electronic_band_gap_type
string
energy
float64
formation_energy
float64
max_force_norm
float64
mean_force_norm
float64
property_object_metadata
string
property_object_metadata_id
string
property_object_last_modified
timestamp[ns]
property_object_hash
string
property_object_id
string
configuration_metadata
string
configuration_metadata_id
string
configuration_labels
list
configuration_names
list
configuration_dataset_ids
list
configuration_last_modified
timestamp[ns]
configuration_hash
string
configuration_id
string
dataset_name
string
dataset_authors
list
dataset_description
string
dataset_elements
list
dataset_nelements
int32
dataset_nproperty_objects
int64
dataset_nconfigurations
int32
dataset_nsites
int64
dataset_adsorption_energy_count
int64
dataset_atomic_forces_count
int64
dataset_atomization_energy_count
int64
dataset_cauchy_stress_count
int64
dataset_electronic_band_gap_count
int64
dataset_energy_count
int64
dataset_energy_mean
float64
dataset_energy_variance
float64
dataset_formation_energy_count
int64
dataset_last_modified
timestamp[ns]
dataset_dimension_types
list
dataset_nperiodic_dimensions
list
dataset_publication_year
string
dataset_total_elements_ratios
list
dataset_license
string
dataset_links
string
dataset_doi
string
dataset_hash
string
dataset_id
string
dataset_extended_id
string
Ni4Ti2
Ni2Ti
A2B
[ 28, 28, 28, 28, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.6666666666666666, 0.3333333333333333 ]
2
6
[ [ 1.89109, -5.11968, 0 ], [ 1.89109, 5.11968, 0 ], [ 0, 0, 3.80278 ] ]
[ [ 1.89109, -0.84181, 0.95069 ], [ 1.89109, 0.84181, 2.85208 ], [ 1.89109, 2.60944, 0.95069 ], [ 1.89109, -2.60944, 2.85208 ], [ 1.89109, -4.15397, 0.95069 ], [ 1.89109, 4.15397, 2.85208 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12300591333986173067676159715209793328217816269347862460291036816784513448557238771068189320914570524597208685317610542089700571357075901473423559066862497
1
VASP
DFT
null
[ [ -0.000001, -0.004499, -0.000027 ], [ 0, 0.004786, 0.000026 ], [ 0, -0.095774, -0.000031 ], [ -0.000001, 0.095726, 0.000031 ], [ 0.000001, 0.360666, -0.000039 ], [ 0.000001, -0.360905, 0.00004 ] ]
null
[ [ 0.01706297523324839, 0, 0 ], [ 0, -0.025558293304488097, -1.2483018251766518e-7 ], [ 0, -1.2483018251766518e-7, -0.000737746378679401 ] ]
true
null
null
-39.622131
null
0.153726
0.360905
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:55:05
4274757300144710127236681587959436860407989579629042616432853307809994332759738450758999400307551842632843560253634193806086633547026824537710539533326603
PO_4274757300144710127236681
null
null
null
[ "train_2nd_stage_531" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10169845634436414381984953223369231367062549475784849051204617872714829876787811908271508976750619478737910994826619416077449638781951007465045549306554698
CO_1016984563443641438198495
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
NiTi9
NiTi9
A9B
[ 28, 22, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.1, 0.9 ]
2
10
[ [ 3.80193, 0, 0 ], [ 0, 2.05625, -6.16875 ], [ 0, 6.16875, 2.05625 ] ]
[ [ 0, 0, 0 ], [ 1.90097, 2.05509, 0.00534 ], [ 0, 4.16507, 0.03847 ], [ 1.90097, 6.17409, 0.00116 ], [ 0, 2.01778, -2.00368 ], [ 1.90097, 4.1125, -2.05625 ], [ 0, 6.20722, -2.10882 ], [ 1.90097, 2.05091, -4.11366 ], [ 0, 4.05993, -4.15097 ], [ 1.90097, 6.16992, -4.11784 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
1977456082906640812703821268686131636107049138188919591139503644404789346806497214870553136661878696041836312351677536104028685572178100569811614583808841
1
VASP
DFT
null
[ [ 0.000011, -0.000436, -0.000216 ], [ -0.000027, 0.035228, 0.039223 ], [ 0.000029, 0.118991, -0.168945 ], [ -0.000029, 0.037666, -0.034867 ], [ 0.000039, 0.169346, 0.117339 ], [ -0.000034, 0.000845, 0.000282 ], [ 0.000027, -0.169976, -0.11866 ], [ -0.000021, -0.039904, 0.034354 ], [ 0.000032, -0.116982, 0.170383 ], [ -0.000027, -0.034777, -0.038892 ] ]
null
[ [ -0.02308353493607538, 6.241509125883259e-8, 6.241509125883259e-8 ], [ 6.241509125883259e-8, -0.011832715415940739, -4.36905638811828e-7 ], [ 6.241509125883259e-8, -4.36905638811828e-7, -0.011835024774317316 ] ]
true
null
null
-75.700866
null
0.10369
0.207297
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:00:58
1989524140904894829811787408521184497399640160608434374352179307578515458433050958528439061389916693078502915976093378474257592251718868948741984106127129
PO_1989524140904894829811787
null
null
null
[ "train_1st_stage_840" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11154748355376110367193056364169849979511913858071405086409228792021309488165056289938884831646488561289092845553522985221119604146156522324375212381274380
CO_1115474835537611036719305
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNiTi2
AlNiTi2
A2BC
[ 13, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.25, 0.25, 0.5 ]
3
4
[ [ 0, 3.9313, 0 ], [ 3.9313, 0, 0 ], [ 0, 0, -3.8305 ] ]
[ [ 0, 0, 0 ], [ 1.96565, 1.96565, 0 ], [ 1.96565, 0, -1.91525 ], [ 0, 1.96565, -1.91525 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
841092577187236389146941396856248218448064572907606803605307197901918324603061329551057826101459629428697803740935878657863175833692732833405614880119481
1
VASP
DFT
null
[ [ -0.000001, 0.000001, 0.000001 ], [ -0.000001, 0, 0.000001 ], [ 0.000002, 0.000001, -0.000003 ], [ 0.000001, -0.000003, 0.000001 ] ]
null
[ [ 0.00463906407290399, -6.241509125883259e-8, 6.241509125883259e-8 ], [ -6.241509125883259e-8, 0.004639251318177767, -6.241509125883259e-8 ], [ 6.241509125883259e-8, -6.241509125883259e-8, -0.002203377551619308 ] ]
true
null
null
-26.252359
null
0.000003
0.000004
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:34:20
636060979907389284864822515377213211858969354622671297566168016780466317287088497072870631452337672552912358384783529995044329395008482153979280000524338
PO_6360609799073892848648225
null
null
null
[ "train_1st_stage_456" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6858153232984617832058164700248787451166715863079108443218025843940902776226633706658697788578921337865212525045223902816761212026711432959464993589477665
CO_6858153232984617832058164
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni2Ti4
NiTi2
A2B
[ 28, 28, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
6
[ [ 2.69542, 0.041312, 0.028961 ], [ -1.31234, 2.35532, -0.022487 ], [ -0.001825, 0.000819, 13.3766 ] ]
[ [ -0.62755, 1.99263, 13.3516 ], [ 0.69989, 1.18714, 6.70333 ], [ -1.20915, 2.29851, 4.52467 ], [ -1.19984, 2.27961, 8.84526 ], [ 1.26054, 0.88741, 2.15345 ], [ 1.33773, 0.86342, 11.209 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5617350472738092378355469715312581762963905552310378338597194180892250466266912056106870430025888257521544058329166207847798179023515515296531506949157316
1
VASP
DFT
null
[ [ 0.037848, -0.030051, -0.036839 ], [ -0.046708, 0.027767, 0.044955 ], [ 0.026019, -0.008783, 0.239847 ], [ 0.089129, 0.012242, -0.414632 ], [ -0.024695, 0.017081, -0.245613 ], [ -0.081593, -0.018256, 0.412283 ] ]
null
[ [ 0.018362395018166028, 0.01486895994531791, -0.00017763334972263753 ], [ 0.01486895994531791, 0.03717598873104215, -0.00021258580082758377 ], [ -0.00017763334972263753, -0.00021258580082758377, -0.011403736493718784 ] ]
true
null
null
-42.290733
null
0.244184
0.42428
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:03:13
6609967238394809778222357001629689523483787389405835737872795508092662591778775649830643339435167117513096126987826940574433430586159877328039201773839238
PO_6609967238394809778222357
null
null
null
[ "train_1st_stage_2288" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5086431627014536257117730009352677070018851549173241945320799436187666524900501226287943723347176748239984866660287831535290820637906513709187846191763545
CO_5086431627014536257117730
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni10Ti2
Ni5Ti
A5B
[ 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.8333333333333334, 0.16666666666666666 ]
2
12
[ [ 1.83521, 1.82792, -3.56842 ], [ 3.61519, 5.43356, 1.78486 ], [ 3.58397, -3.56652, -0.010453 ] ]
[ [ 3.66715, 5.4348, 1.71609 ], [ 1.83095, 1.81112, 0.04429 ], [ 3.6415, 3.62232, -0.07544 ], [ 1.85547, 0.05049, -1.7701 ], [ 3.62475, 1.84324, -1.77771 ], [ 5.43124, 3.6573, -1.7979 ], [ 5.3653, 3.62213, 1.76291 ], [ 3.57927, 0.05031, 0.06825 ], [ 5.38982, 1.86151, -0.05148 ], [ 3.55362, -1.76217, -1.72328 ], [ 5.30677, -0.04668, -1.7874 ], [ 7.33318, 1.98071, -1.79867 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12821331111978014559520330548271889175138063936715063227274703984688508393774995397198090439029854178971725277123826210727750277223092961715815342015794258
1
VASP
DFT
null
[ [ -0.020528, -0.085941, 0.091091 ], [ 0.042051, 0.001836, 0.048629 ], [ -0.008588, -0.000769, -0.01121 ], [ -0.020178, -0.032924, -0.139957 ], [ -0.051673, -0.072393, -0.09885 ], [ 0.051965, 0.072128, 0.098565 ], [ 0.020578, 0.033353, 0.14036 ], [ 0.008011, 0.000641, 0.011118 ], [ -0.042147, -0.002218, -0.048349 ], [ 0.020929, 0.08619, -0.090533 ], [ -0.033826, -0.056244, 0.071118 ], [ 0.033406, 0.056341, -0.071981 ] ]
null
[ [ 0.007116880780788384, 0.005329999133139267, -0.00021826557413213754 ], [ 0.005329999133139267, 0.007406174728773075, 0.0014123286850048636 ], [ -0.00021826557413213754, 0.0014123286850048636, 0.009283807919112534 ] ]
true
null
null
-73.334414
null
0.096726
0.145729
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:04:36
12140100838271284046916370096039546207129387991461886104183093942340980761028269257556126955740680316677664678623733001205350259933173872284357866757424894
PO_1214010083827128404691637
null
null
null
[ "train_1st_stage_1080", "train_1st_stage_878", "train_1st_stage_679" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
2786949526043477157929577900504200670944227052336237945621987512785846731054039115726179030359207861588971707867698676416782596734748237619917956528490956
CO_2786949526043477157929577
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni4
Ni
A
[ 28, 28, 28, 28 ]
[ "Ni" ]
[ 1 ]
1
4
[ [ 1.85714, -3.14748, 0 ], [ 1.85714, 3.14748, 0 ], [ 0, 0, 3.71922 ] ]
[ [ 1.85714, -2.17239, 0.30126 ], [ 1.85714, 2.17239, 3.41796 ], [ 1.85714, 0.97509, 1.55835 ], [ 1.85714, -0.97509, 2.16087 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10219547537443668089865318148498366723029787572067188794569952612730018722415814878784607017112634140052040457658701633227910214701851965895879773572433999
1
VASP
DFT
null
[ [ 0, 0.456268, -0.225832 ], [ 0, -0.456314, 0.22519 ], [ -0.000002, 0.456179, 0.226278 ], [ 0.000002, -0.456133, -0.225636 ] ]
null
[ [ 0.06205327097480513, 0, 0 ], [ 0, 0.08542953268888444, 0.000005554943122036099 ], [ 0, 0.000005554943122036099, 0.06262898777657659 ] ]
true
null
null
-18.198134
null
0.509015
0.509216
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:15:29
3078784482549157718357763065228876548993002656351995399788362780682801060029854455671970593268744166172725640834323762068818077716248901703632844542909611
PO_3078784482549157718357763
null
null
null
[ "train_1st_stage_2190" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7069351966861848741119613927428537923694296437559967474276515984025773913794084062727906370458517100634376783936872302290742377522119718542322925758375439
CO_7069351966861848741119613
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni7
Al4Ni7
A7B4
[ 13, 13, 13, 13, 28, 28, 28, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.36363636363636365, 0.6363636363636364 ]
2
11
[ [ 0.002671, 1.99068, 2.00062 ], [ 2.79944, -0.086327, 0.083603 ], [ 2.12077, 12.5363, -10.4447 ] ]
[ [ 0.02473, 2.00859, 1.98026 ], [ 2.95635, 3.99124, 0.01744 ], [ 1.75066, 6.20191, -4.16383 ], [ 3.34853, 10.3435, -6.2838 ], [ 1.48921, 2.00458, -0.00146 ], [ 1.61771, 4.02747, -2.00602 ], [ 3.08883, 6.13254, -2.1088 ], [ 3.21441, 8.17365, -4.13218 ], [ 1.88478, 8.3718, -6.31545 ], [ 2.01035, 10.4129, -8.33883 ], [ 3.48147, 12.518, -8.44161 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7564142285688938942999066020707146918731551577636115426929247131871441157980539566009386655369985053116660400456836832022346084211342199207471673713673116
1
VASP
DFT
null
[ [ -0.014039, -0.271675, 0.286017 ], [ 0.014152, 0.27223, -0.286087 ], [ 0.000045, -0.003103, 0.005459 ], [ -0.000046, 0.003012, -0.004684 ], [ -0.000393, -0.000344, 0.000006 ], [ 0.006587, 0.284112, -0.285451 ], [ -0.010372, -0.2117, 0.216228 ], [ 0.01195, 0.204037, -0.208503 ], [ -0.012223, -0.204509, 0.208815 ], [ 0.01051, 0.211811, -0.21664 ], [ -0.006171, -0.283872, 0.284839 ] ]
null
[ [ 0.006831643813735519, -0.0011163563222554795, 0.0007521018496689326 ], [ -0.0011163563222554795, -0.002951047929808863, 0.004890659305768344 ], [ 0.0007521018496689326, 0.004890659305768344, -0.0005944413291491215 ] ]
true
null
null
-58.553894
null
0.254337
0.402797
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:09:11
12743431146654130108833293704519361365206056853331471532984493659679784934118461569435331347001851864989362058099566819334900047648109944278217501234616844
PO_1274343114665413010883329
null
null
null
[ "train_2nd_stage_961" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
3880814928452795846186722408259206497464662018938565133100848687175688791605140832265817706737075405493691671336385244788175578121255096258236978513706338
CO_3880814928452795846186722
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni4
Al3Ni2
A3B2
[ 13, 13, 13, 13, 13, 13, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.6, 0.4 ]
2
10
[ [ 0, 2.841616, 0 ], [ 2.841616, 0, 0 ], [ 0, 0, -16.154192 ] ]
[ [ 0, 0, -15.66228 ], [ 1.42081, 1.42081, -1.61545 ], [ 0, 0, -3.72284 ], [ 0, 0, -6.72546 ], [ 0, 0, -9.69241 ], [ 0, 0, -12.65943 ], [ 1.42081, 1.42081, -5.24773 ], [ 1.42081, 1.42081, -8.19356 ], [ 1.42081, 1.42081, -11.19152 ], [ 1.42081, 1.42081, -14.13721 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3949058913098825162189415677463876805110530457751663918365474347955234006121564115914941291138237600259638783148074827792650275017942964673336925222604766
1
VASP
DFT
null
[ [ 0.000001, 0.000001, 0.016163 ], [ -0.000001, -0.000001, -0.000068 ], [ 0.000001, 0.000001, -0.014851 ], [ 0.000003, 0.000003, 0.010291 ], [ 0.000003, 0.000002, -0.001769 ], [ 0.000003, 0.000003, -0.009288 ], [ -0.000001, -0.000001, -0.027698 ], [ -0.000003, -0.000003, 0.001795 ], [ -0.000003, -0.000003, -0.001934 ], [ -0.000001, -0.000001, 0.02736 ] ]
null
[ [ 0.0005173586914444633, 0, 0 ], [ 0, 0.0005173586914444633, 0 ], [ 0, 0, -0.000737371888131848 ] ]
true
null
null
-49.455478
null
0.011122
0.027698
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:39:21
13051283288860561778562240423795635813721139848908774614208128755056501319986070537713226057893427573641474215193000018136770113677945094692321075970858620
PO_1305128328886056177856224
null
null
null
[ "train_1st_stage_10" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9829087322747523625677146797599135476957881599462753597234725745777467267963041690150085852989879236017961376497370804135921488154715583075466833123179857
CO_9829087322747523625677146
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al7Ti
Al7Ti
A7B
[ 13, 13, 13, 13, 13, 13, 13, 22 ]
[ "Al", "Ti" ]
[ 0.875, 0.125 ]
2
8
[ [ 1.34355, 4.96231, -1.20281 ], [ 4.96213, 1.3441, 1.20311 ], [ 3.1634, -3.16316, -2.8879 ] ]
[ [ 7.8262, -1.47769, -1.48292 ], [ 1.90135, 1.29401, -1.49728 ], [ 6.24782, 0.09806, -0.05268 ], [ 3.42841, -0.23294, -2.96328 ], [ 6.01722, 0.33174, -2.68587 ], [ 4.95258, 4.54875, -1.56495 ], [ 4.44131, 1.90993, -1.25562 ], [ 6.57633, 2.92522, -2.94863 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7518547539601720014310763497781824955663355831574422813988995453779055293045682505296832994688174979727262090201610786016632565224346862979327372270811009
1
VASP
DFT
null
[ [ 0.146547, -0.14503, -0.4422 ], [ -0.615622, 0.615446, -0.038142 ], [ -0.380139, -0.395026, -0.020121 ], [ 0.0731, -0.072814, -0.219161 ], [ 0.144732, -0.146604, -0.442481 ], [ 0.413683, -0.413511, 0.644215 ], [ 0.394769, 0.380002, -0.020086 ], [ -0.17707, 0.177538, 0.537976 ] ]
null
[ [ 0.06905599455368111, 0.00611736550936944, -0.005713851944381088 ], [ 0.00611736550936944, 0.06905986428933915, 0.005708858737080381 ], [ -0.005713851944381088, 0.005708858737080381, 0.07443623783528373 ] ]
true
null
null
-34.139239
null
0.581268
0.871332
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:35:53
8554511843074304194018910617388993371659088600173188087040761871159829795756610631700170920281172943527245531057624689475444318708288921681918926557446070
PO_8554511843074304194018910
null
null
null
[ "train_2nd_stage_672" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
1216095245446892724409386533883900656745193637205728730982100097198041455947830491326451359648502159047099123990375440917619692517086962221446765684328244
CO_1216095245446892724409386
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ti12
AlTi6
A6B
[ 13, 13, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.14285714285714285, 0.8571428571428571 ]
2
14
[ [ 0.013308, -5.01701, -0.062516 ], [ 2.93365, -0.046937, 4.3921 ], [ -7.08425, 2.43328, 4.55919 ] ]
[ [ -7.03938, -2.58028, 4.48562 ], [ -2.75697, -0.05994, 4.48002 ], [ 0.10444, -0.16843, 4.42908 ], [ -5.61415, -0.08101, 4.43459 ], [ 1.5419, -2.53389, 4.3826 ], [ -1.32046, -2.54194, 4.4165 ], [ -4.18212, -2.58732, 4.53069 ], [ 1.47369, -4.21321, 2.169 ], [ -1.35155, -4.23283, 2.18209 ], [ -1.25651, 0.7415, 6.65009 ], [ -4.10937, 0.77566, 6.71512 ], [ 0.08896, -1.67525, 2.13886 ], [ -2.8056, -1.68483, 2.28893 ], [ -2.75793, -1.72904, 6.66422 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
8596565841205698142612554989176507255351093659740151664490735364328789553000068346962809953721217758773466171709635881119493796644269292563431910453986042
1
VASP
DFT
null
[ [ 0.087535, 0.15687, 0.077248 ], [ -0.08733, 0.157648, -0.074488 ], [ -0.003264, 0.453365, 0.007557 ], [ 0.183414, -0.027607, 0.520924 ], [ -0.074147, -0.330873, -0.154743 ], [ 0.07302, -0.334127, 0.148787 ], [ -0.18052, -0.016287, -0.525112 ], [ 0.000135, -0.03361, -0.035888 ], [ -0.001595, -0.16173, -0.001506 ], [ 0.001236, -0.034131, 0.034158 ], [ -0.049215, 0.092478, -0.093084 ], [ -0.064739, -0.005986, 0.056041 ], [ 0.063048, -0.00538, -0.054972 ], [ 0.052421, 0.08937, 0.095078 ] ]
null
[ [ 0.06270763079156273, 0.0000011234716426589865, 0.000024591545955980036 ], [ 0.0000011234716426589865, 0.0538224056452291, -0.0005506259350854211 ], [ 0.000024591545955980036, -0.0005506259350854211, 0.09913682295569295 ] ]
true
null
null
-102.593055
null
0.243414
0.555514
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:22:43
4039845502983450530012353626640420407947675299576925933138232043401793497240014562465166237806750422435519349847843425000559463243152801943511389740688878
PO_4039845502983450530012353
null
null
null
[ "train_2nd_stage_804" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7683072469136875578691948033035933058997488744330527113043177941499444074832493417023270373280315292204390713409183238274417308042801631096266996897781300
CO_7683072469136875578691948
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi6Ti
AlNi6Ti
A6BC
[ 13, 28, 28, 28, 28, 28, 28, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.125, 0.75, 0.125 ]
3
8
[ [ 2.6648, -3.40017, 0.528074 ], [ -2.51328, -0.42496, -2.59849 ], [ 2.56876, 2.89197, -5.5069 ] ]
[ [ 0, 0, 0 ], [ 1.39764, -2.20307, -3.54095 ], [ 2.66847, -0.62952, -5.02743 ], [ 1.3538, -1.84964, -1.00691 ], [ 1.36649, 0.91648, -6.57041 ], [ 0.05182, -0.30365, -2.54988 ], [ 1.32264, 1.2699, -4.03637 ], [ 0.10351, -0.67906, -5.0879 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
1843815322983524724714236748005627253430226407695609962090611242466066413219692196744089311885358314352967675511673059639864859036165943799050447529983402
1
VASP
DFT
null
[ [ -0.00002, -0.000147, 0.000083 ], [ -0.068775, -0.095083, 0.081435 ], [ 0.016676, 0.123002, -0.035177 ], [ -0.135749, -0.202975, 0.168957 ], [ 0.135681, 0.202965, -0.168911 ], [ -0.016731, -0.12301, 0.035157 ], [ 0.068863, 0.095056, -0.08142 ], [ 0.000055, 0.000192, -0.000124 ] ]
null
[ [ 0.0007158386816475509, 0.00044146194047372286, 0.0009872194984409549 ], [ 0.00044146194047372286, -0.002340753167479998, 0.00023936187497762296 ], [ 0.0009872194984409549, 0.00023936187497762296, 0.0007954803380938213 ] ]
true
null
null
-47.610208
null
0.142244
0.29694
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:27:56
4749939947910523380126554091106344183531429230391039409321301282921653952189259428827842117470473441879200437153844852509925765934603332084600662325382370
PO_4749939947910523380126554
null
null
null
[ "train_1st_stage_548" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10217645699389653728020025139519485527277028289137561226524227455363069257943551669324465627031837680944042694021988974437342215545348540017252655951862955
CO_1021764569938965372802002
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni4Ti2
Ni2Ti
A2B
[ 28, 28, 28, 28, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.6666666666666666, 0.3333333333333333 ]
2
6
[ [ 1.9704, -4.57582, 0 ], [ 1.9704, 4.57582, 0 ], [ 0, 0, 4.07172 ] ]
[ [ 1.9704, -0.72042, 1.01793 ], [ 1.9704, 0.72042, 3.05379 ], [ 1.9704, 2.30843, 1.01793 ], [ 1.9704, -2.30843, 3.05379 ], [ 1.9704, -3.6416, 1.01793 ], [ 1.9704, 3.6416, 3.05379 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2550645777514907259659966036640973270963461401156836077197073476679663220049170410033704578505603801914458047243567705093788850266151645937642617675933494
1
VASP
DFT
null
[ [ 0, 0.033239, -0.000001 ], [ 0, -0.033109, 0 ], [ 0, -0.046796, 0 ], [ 0, 0.047115, 0 ], [ 0, -0.417046, 0 ], [ 0, 0.416599, 0.000001 ] ]
null
[ [ -0.011422773096552727, 0, 0 ], [ 0, -0.010741512375462569, 0 ], [ 0, 0, -0.008763702963652682 ] ]
true
null
null
-39.275005
null
0.165651
0.417046
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:38:43
5615630250846482485962057235204634129596284780770172677873617601266054431304860702080852946568109644769215594677212490047561611715337610516379241875302206
PO_5615630250846482485962057
null
null
null
[ "train_2nd_stage_56" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
2679591671819470370963336503875949024912983305678766665445532383230150054096351391486738810639755969784406184898963677826331703266013340428068423997329949
CO_2679591671819470370963336
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni3Ti7
Ni3Ti7
A7B3
[ 28, 28, 28, 22, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.3, 0.7 ]
2
10
[ [ -0.000002, 2.117519, 2.117516 ], [ 16.56037, -0.000038, 0.000005 ], [ 0.000005, 2.117518, -2.117515 ] ]
[ [ 0.08127, 4.23226, -0.00117 ], [ 4.95955, 2.11473, -0.00117 ], [ 9.83727, 4.23224, -0.00115 ], [ 1.61657, 2.1147, -0.00119 ], [ 3.42357, 4.23223, -0.00118 ], [ 6.49581, 4.23222, -0.00117 ], [ 8.30282, 2.1147, -0.00116 ], [ 11.37389, 2.11467, -0.00116 ], [ 13.239, 4.23217, -0.00117 ], [ 15.10509, 2.11466, -0.00117 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7248989560329721894952137656094553553656237556449196291035655605798305424944981200966987990081653544606214974180761410868989685769057302642106423831878972
1
VASP
DFT
null
[ [ -0.012849, -0.000006, -0.000005 ], [ 0.000341, 0.000023, 0.00002 ], [ 0.014491, 0.000013, -0.000002 ], [ -0.012062, 0.000026, 0.000038 ], [ -0.007966, -0.000019, -0.000007 ], [ 0.009246, -0.000015, -0.000004 ], [ 0.008592, 0.000012, -0.000003 ], [ -0.023614, -0.000046, -0.000033 ], [ 0.002358, 0.00002, -0.000004 ], [ 0.021464, -0.000009, 0.000001 ] ]
null
[ [ 0.00006428754399659755, -8.113961863648235e-7, -5.617358213294933e-7 ], [ -8.113961863648235e-7, 0.00024085983716783493, 6.241509125883259e-8 ], [ -5.617358213294933e-7, 6.241509125883259e-8, 0.00024023568625524663 ] ]
true
null
null
-73.850907
null
0.011298
0.023614
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:29:33
5846536700045630696818262755988619961707782898288564541796247830537411524114737244910459285191053403413012258824500247604439274936354235996816876190038321
PO_5846536700045630696818262
null
null
null
[ "train_1st_stage_259" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
2265987842616795379264531135143652873317532533534633153284332131823024378492515916238600099644328818718086786204331396743647164556437615009452905247102215
CO_2265987842616795379264531
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni2Ti2
NiTi
AB
[ 28, 28, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.5, 0.5 ]
2
4
[ [ 4.24854, 0, 0 ], [ 0, 4.24854, 0 ], [ 0, 0, 3.00417 ] ]
[ [ 1.06213, 3.1864, 0 ], [ 3.1864, 1.06213, 0 ], [ 1.06213, 1.06213, 1.50209 ], [ 3.1864, 3.1864, 1.50208 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7245614984070417425328156710183076207785657110727380289730131752614715637009833590287902484126855796697787941362180053298368173778532280249324923920947271
1
VASP
DFT
null
[ [ -0.000004, 0.000001, 0.000002 ], [ -0.000002, -0.000004, 0.000004 ], [ 0.000006, -0.000005, -0.000028 ], [ 0, 0.000007, 0.000023 ] ]
null
[ [ 0.0009986414601413213, 0, 6.241509125883259e-8 ], [ 0, 0.0009977676488636977, -6.241509125883259e-8 ], [ 6.241509125883259e-8, -6.241509125883259e-8, -0.0006019311401001813 ] ]
true
null
null
-28.02467
null
0.000016
0.000029
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:21:21
1860105743266869739545024606285838123984099522719825004165532915413150752456020731674347484525017903600997300987988915744245616203244373002303582892132030
PO_1860105743266869739545024
null
null
null
[ "train_2nd_stage_46" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4223591212016312094165675079190602610679542451274418140133119692572091856523825270175582970523694783991144232789511525298893506255951921640835870196718196
CO_4223591212016312094165675
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi
AlNi
AB
[ 13, 28 ]
[ "Al", "Ni" ]
[ 0.5, 0.5 ]
2
2
[ [ 0, 2.87935, 0 ], [ 2.87935, 0, 0 ], [ 0, 0, -2.87935 ] ]
[ [ 0, 0, 0 ], [ 1.43967, 1.43967, -1.43967 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10655899116834040660212589941143529771782249542955307397059084918106319205551956589660382544208084901660184279347152682044759941058004102848308109792280478
1
VASP
DFT
null
[ [ -0.00003, -0.00003, 0.00003 ], [ 0.00003, 0.00003, -0.00003 ] ]
null
[ [ -0.0022653557372393283, 0, 0 ], [ 0, -0.0022652933221480693, 0 ], [ 0, 0, -0.0022653557372393283 ] ]
true
null
null
-10.535029
null
0.000052
0.000052
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:21:51
7300190950449051287167123886034393713484016161615737825349049450427627983254568701057471753308225448970017144837846288070157577144286357761199486343058424
PO_7300190950449051287167123
null
null
null
[ "train_1st_stage_545" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12415699839164911091554814510660733747602230047516082596123004892053406323584518526821833010932301585936621776597478446074558425447248085449634907807479823
CO_1241569983916491109155481
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi3
AlNi3
A3B
[ 13, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.25, 0.75 ]
2
4
[ [ 3.6613, 0, 0 ], [ 0, 3.6613, 0 ], [ 0, 0, 3.6613 ] ]
[ [ 0, 0, 0 ], [ 1.83065, 0, 0 ], [ 0, 1.83065, 0 ], [ 0, 0, 1.83065 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
8177597277984382650019544257968371495770604102045733739991237130968594019714926541049136051167044519195849380861882750742938985898295809665351862853764105
1
VASP
DFT
null
[ [ -0.000001, 0, 0 ], [ 0.000001, 0, 0 ], [ 0, 0, 0 ], [ 0, 0, 0 ] ]
null
[ [ 0.170448186832012, 6.241509125883259e-8, 1.2483018251766518e-7 ], [ 6.241509125883259e-8, 0.17028921559457572, 0 ], [ 1.2483018251766518e-7, 0, 0.17035724804404784 ] ]
true
null
null
-8.780446
null
0.000001
0.000001
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:56:18
317204172596480558823293064567321520688477288159211134982345806186345725758498021645324581661971193421528897319835946907483966722205344057239885652429897
PO_3172041725964805588232930
null
null
null
[ "train_1st_stage_1479", "train_1st_stage_1279", "train_1st_stage_1679", "train_1st_stage_1879" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
2156999724657943844920798161027206672659602777528150651804887947922612669131776826195372210920206790063015942442515954903750621763306550978654092366380024
CO_2156999724657943844920798
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni8Ti6
Ni4Ti3
A4B3
[ 28, 28, 28, 28, 28, 28, 28, 28, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.5714285714285714, 0.42857142857142855 ]
2
14
[ [ 2.92841, -0.549452, 4.12502 ], [ -4.50134, 2.08499, 4.41162 ], [ -2.62844, -4.33387, 4.75844 ] ]
[ [ -6.70913, -1.86796, 8.84796 ], [ -0.3071, 0.03713, 4.12535 ], [ -3.09338, 0.17887, 4.67365 ], [ -0.612, -2.21271, 5.5109 ], [ -1.9601, -1.95523, 7.92372 ], [ 0.89077, -0.24232, 6.31168 ], [ -3.9021, -0.2034, 7.13109 ], [ -2.91515, -2.20841, 10.5378 ], [ -2.62811, 0.21249, 9.23464 ], [ -4.35008, -2.24244, 8.58706 ], [ -1.35371, -4.18415, 6.88305 ], [ -1.48399, -0.02387, 6.52031 ], [ -1.91661, -1.76065, 3.42374 ], [ -3.48405, -2.26483, 5.71371 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
1204978454991537754622028985241658364431663610686568324698443725494724846630339017814869936916421902408331744426249864687269607975074222287203913627877898
1
VASP
DFT
null
[ [ -0.138911, -0.125763, -0.090243 ], [ 0.262834, -0.03119, -0.069502 ], [ -0.196946, -0.020604, 0.044681 ], [ 0.018921, 0.025919, 0.150836 ], [ -0.053887, -0.191917, -0.059978 ], [ 0.111805, 0.122103, -0.066292 ], [ -0.278658, 0.155193, -0.026221 ], [ 0.107107, 0.060722, -0.11811 ], [ 0.371801, 0.060313, -0.089689 ], [ -0.150444, 0.191455, 0.059605 ], [ -0.212937, 0.130992, 0.45266 ], [ 0.303627, -0.074597, -0.206092 ], [ -0.123538, -0.103577, -0.000469 ], [ -0.020774, -0.199048, 0.018814 ] ]
null
[ [ -0.013828437958941911, -0.011060016586156393, 0.009326000520803505 ], [ -0.011060016586156393, -0.01847393078624556, 0.0012471159384427337 ], [ 0.009326000520803505, 0.0012471159384427337, 0.0005370818602822543 ] ]
true
null
null
-96.340069
null
0.257691
0.517109
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:45:35
3644280787299910604577759544307075589207803107432556259393375072997864218974759078618174844653825448473772055295100474449356801998085479295224053554425574
PO_3644280787299910604577759
null
null
null
[ "train_1st_stage_784" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7221606276792065572867324932791570122063004156666090753932844786859516823881685617177855824107397478655618407549541823967372839031670648797460458691344043
CO_7221606276792065572867324
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni4Ti4
NiTi
AB
[ 28, 28, 28, 28, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.5, 0.5 ]
2
8
[ [ -1.68514, -2.91874, 0 ], [ -3.37027, 0, 0 ], [ 0, 0, -11.9907 ] ]
[ [ -1.68514, -0.97291, -10.5287 ], [ -3.37027, -1.94583, -4.53333 ], [ -3.37027, -1.94583, -1.46202 ], [ -1.68514, -0.97291, -7.45737 ], [ 0, 0, -8.99302 ], [ 0, 0, -2.99767 ], [ -1.68514, -0.97291, -2.99767 ], [ -3.37027, -1.94583, -8.99302 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11839206811684122222100652228320650249143998122966529048218562028550737947409590624217390159716164991921021868231584089409370349122912099723977707879530218
1
VASP
DFT
null
[ [ 0.000029, -0.000011, -2.50111 ], [ -0.000037, 0.000023, -2.500352 ], [ -0.00004, 0.000025, 2.500902 ], [ 0.00003, -0.000013, 2.500864 ], [ -0.000028, 0.000077, -0.0002 ], [ 0.000048, -0.000028, 0.000048 ], [ 0.000022, -0.000018, 0.000066 ], [ -0.000023, -0.000055, -0.000217 ] ]
null
[ [ 0.25067055328735455, -2.4966036503533035e-7, 0 ], [ -2.4966036503533035e-7, 0.25066961706098567, -2.4966036503533035e-7 ], [ 0, -2.4966036503533035e-7, 0.035578287224998555 ] ]
true
null
null
-37.277175
null
1.250477
2.50111
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:37:33
13223068250910679397977566763590957702397893466961436359147197447797430387936462751629201175789005356738198920802530642536358854349129468176732483739303896
PO_1322306825091067939797756
null
null
null
[ "train_1st_stage_2240" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
13093085603405214793059057009603460134147264811014290188742528444946035167638341166955902908604834471480319695968651384995472589377471285090995500612663918
CO_1309308560340521479305905
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni4Ti5
Al3Ni4Ti5
A5B4C3
[ 13, 13, 13, 28, 28, 28, 28, 22, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.25, 0.3333333333333333, 0.4166666666666667 ]
3
12
[ [ 0, 4.92542, 0 ], [ -5.61667, 0, 4.36097 ], [ 2.99486, 0, 3.91416 ] ]
[ [ 2.20524, 4.49472, 3.90306 ], [ -1.95654, 4.49472, 4.22314 ], [ -4.18141, 3.14809, 4.2865 ], [ 0.12435, 0.83876, 4.0631 ], [ 2.29313, 2.01448, 3.91213 ], [ -2.04443, 2.01448, 4.21406 ], [ -2.68398, 3.32926, 6.24358 ], [ -4.12318, 0.83082, 5.84051 ], [ -1.37308, 0.99992, 2.10602 ], [ -1.24478, 0.83082, 6.64665 ], [ 0.10075, 3.27822, 2.53857 ], [ 0.14795, 3.27822, 5.58762 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
1647046770418575236893887142571609369713074801683670306697639980950199011239461603968600319559812933234036651305061583550955144887377147272758846526046776
1
VASP
DFT
null
[ [ 0.252066, -0.272936, -0.154334 ], [ -0.252069, -0.272736, 0.154125 ], [ 0.001639, 0.197682, -0.000774 ], [ -0.00096, -0.03871, -0.000387 ], [ -0.023461, 0.074505, -0.01858 ], [ 0.023381, 0.075699, 0.01988 ], [ 0.000046, 0.239356, -0.00083 ], [ 0.203242, 0.005752, 0.09366 ], [ -0.000965, -0.111002, 0.001495 ], [ -0.201602, 0.00572, -0.095204 ], [ 0.14155, 0.048473, 0.149567 ], [ -0.142868, 0.048197, -0.148618 ] ]
null
[ [ 0.015572627684169988, -0.000026151923237450853, -0.003461166470667302 ], [ -0.000026151923237450853, 0.004425479630616265, 0.000020909055571708916 ], [ -0.003461166470667302, 0.000020909055571708916, 0.014804672401321313 ] ]
true
null
null
-77.507019
null
0.201943
0.402306
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:30:34
1715074962770250569025908171864804401826454670853459508894335675245207037457501149625278545054935807362013688605144976375854336800994745071598639252606335
PO_1715074962770250569025908
null
null
null
[ "train_1st_stage_1018" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4229646881926133529921801673631073173707460979621674965200062302124944517455251263772051459517341917866716332712757970496333740369340676105278682743595340
CO_4229646881926133529921801
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni2Ti2
NiTi
AB
[ 28, 28, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.5, 0.5 ]
2
4
[ [ 2.8239, 0.000067, 0.000008 ], [ -0.000047, 4.59954, -0.000068 ], [ -0.000009, 0.000072, 4.17149 ] ]
[ [ 2.78455, 0.07406, 0.0217 ], [ 2.78453, 2.97884, 2.1074 ], [ 1.37261, 2.55098, 0.02172 ], [ 1.37258, 0.50201, 2.10749 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7655598203364305964464250914756809228765422298949389054415672559439056403184589330452770006588580135359389387297314957285903609851241138615851317584043732
1
VASP
DFT
null
[ [ 0.000009, -0.003233, -0.000023 ], [ 0.000038, 0.00348, -0.00013 ], [ -0.000011, -0.023968, 0.000036 ], [ -0.000035, 0.023721, 0.000117 ] ]
null
[ [ 0.0015598779607407438, -1.8724527377649775e-7, -6.241509125883259e-8 ], [ -1.8724527377649775e-7, 0.0012901823514113284, -3.120754562941629e-7 ], [ -6.241509125883259e-8, -3.120754562941629e-7, 0.0010316590434172436 ] ]
true
null
null
-28.133304
null
0.013601
0.023968
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:23:04
11622990515785935776727069797477479103420002010718832994531118400769466813892511125610925984039717019575544331028207189046683350293274309563998415352442546
PO_1162299051578593577672706
null
null
null
[ "train_1st_stage_59" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
135390728115613994769866511158979247656317278676004978027421596781315602137493087563328961192583424149066816086554115580926091946023177309313907912946274
CO_1353907281156139947698665
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni4Ti8
NiTi2
A2B
[ 28, 28, 28, 28, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
12
[ [ -0.000005, 2.09616, 2.09616 ], [ 9.0652, 0, 0 ], [ 0, 4.55466, -4.55466 ] ]
[ [ 0.08191, 0, 0 ], [ 3.02173, 2.27733, -2.27733 ], [ 5.96156, 0, 0 ], [ 3.02173, 0, 0 ], [ 1.59017, 2.12404, -0.02788 ], [ 4.45329, 4.52678, -2.43062 ], [ 7.55433, 2.01137, 0.08479 ], [ 9.05289, 2.27733, -2.27733 ], [ 1.59017, 4.52678, -2.43062 ], [ 4.45329, 2.12404, -0.02788 ], [ 6.05577, 4.37349, -0.18117 ], [ 7.55433, 4.63945, -2.54329 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9925467675013434239210378710269192971141811090321434532753494690217281685922713421515583727462323328441860331150946937263368845967375324345719448599169238
1
VASP
DFT
null
[ [ 0.586034, 0.000006, -0.000006 ], [ 0.000001, -0.00004, 0.000044 ], [ -0.586123, 0.000069, -0.000073 ], [ -0.000039, 0.000197, -0.000192 ], [ -0.212935, 0.419075, -0.419073 ], [ 0.213283, -0.418887, 0.418873 ], [ -0.000148, 0.656985, -0.656973 ], [ -0.475487, -0.000093, 0.000085 ], [ -0.21365, -0.419007, 0.41901 ], [ 0.21342, 0.419424, -0.419441 ], [ 0.475483, -0.000585, 0.000595 ], [ 0.000159, -0.657141, 0.657149 ] ]
null
[ [ -0.01064146098417466, 0.000011109886244072198, -0.000012046112612954688 ], [ 0.000011109886244072198, -0.017696051503886732, -0.005518367878558424 ], [ -0.000012046112612954688, -0.005518367878558424, -0.017696051503886732 ] ]
true
null
null
-87.131564
null
0.541798
0.929343
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:15:22
7731907737296290119512625585864418781318637966367912347718481827046036267422123170159988219755142575151607797450436137873700805631146978821535774736211043
PO_7731907737296290119512625
null
null
null
[ "train_1st_stage_599" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11469471308503332266157825524430028052709986475050567911675621827637384165013377708645953687015710937064909722466845346548500520981474360133527166160332370
CO_1146947130850333226615782
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi9Ti2
AlNi9Ti2
A9B2C
[ 13, 28, 28, 28, 28, 28, 28, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.08333333333333333, 0.75, 0.16666666666666666 ]
3
12
[ [ 0.000004, -0.000006, 3.592441 ], [ 6.517383, 4.687552, 0 ], [ -4.120539, 2.97178, 0.000009 ] ]
[ [ -2.38368, 3.54758, 1.79572 ], [ -0.03273, 0.29499, 3.59193 ], [ 1.44573, 2.34246, 3.59193 ], [ 2.93518, 4.40529, 3.59193 ], [ -2.0926, 1.78064, 3.59193 ], [ -0.61424, 3.82817, 3.59194 ], [ 0.87492, 5.89118, 3.59194 ], [ 3.22228, 2.6331, 1.79571 ], [ -0.32343, 2.06162, 1.79571 ], [ 2.64813, 6.17752, 1.79571 ], [ 4.71084, 4.6949, 1.79571 ], [ 1.15952, 4.11571, 1.79571 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6026616574877659781397244404931989637139157741559126454229469750532322789630537779015989448844482552670984742819080806740128074934757648700374715870928410
1
VASP
DFT
null
[ [ -0.000723, -0.000945, -0.000003 ], [ -0.002391, 0.004446, 0.000006 ], [ -0.004833, 0.001001, -0.000003 ], [ 0.000097, 0.000151, 0.000002 ], [ 0.004241, -0.000412, 0.000002 ], [ 0.003015, -0.004761, -0.000007 ], [ 0.00015, 0.000114, -0.000001 ], [ -0.001381, -0.001263, -0.000004 ], [ -0.000119, -0.000146, 0 ], [ 0.001631, 0.001575, 0.000006 ], [ -0.003396, -0.002509, 0.000002 ], [ 0.003709, 0.00275, 0.000001 ] ]
null
[ [ 0.001941920734336058, -0.00007283841149905762, 0 ], [ -0.00007283841149905762, 0.0018443035316072437, 6.241509125883259e-8 ], [ 0, 6.241509125883259e-8, 0.0019823032983805225 ] ]
true
null
null
-74.382631
null
0.002884
0.005635
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:20:48
7642316323046355793297426416013300933605186552501156798689831112560518514815076240096175125130087643841614858394169814404186389066068189691653970244721074
PO_7642316323046355793297426
null
null
null
[ "train_1st_stage_321" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4612146234251183378369859582175228449594217862845128389628462158360114746715187257840206834226689721571772605725974422231231168452127844670767643671561044
CO_4612146234251183378369859
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni4Ti2
Al2Ni2Ti
A2B2C
[ 13, 13, 13, 13, 28, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.4, 0.4, 0.2 ]
3
10
[ [ 2.05896, 4.63644, 0.08948 ], [ -2.05896, 4.63644, 0.08948 ], [ 0, 1.69496, 6.92813 ] ]
[ [ 1.02947, 6.92592, 2.58885 ], [ 1.02947, 3.19443, 1.05417 ], [ -1.02947, 4.04192, 4.51824 ], [ -1.02947, 7.7734, 6.05292 ], [ -1.02947, 5.36402, 6.64238 ], [ -1.02947, 6.45129, 3.92877 ], [ 1.02947, 5.60381, 0.46471 ], [ 1.02947, 4.51654, 3.17832 ], [ -1.02948, 5.06018, 1.82151 ], [ 1.02948, 5.90765, 5.28558 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10227220542546691730489389822920507381957930504043851383037738319863487408144416704056689393259382473427377888535084774162068388296088519709876964171330607
1
VASP
DFT
null
[ [ 0.000082, 0.10888, -0.025607 ], [ 0.000082, -0.108838, 0.025692 ], [ -0.000082, -0.109001, 0.025698 ], [ -0.000082, 0.108855, -0.025792 ], [ -0.000084, -0.668096, 0.161536 ], [ -0.000084, 0.668198, -0.161518 ], [ 0.000085, 0.667942, -0.161612 ], [ 0.000084, -0.668128, 0.161619 ], [ -0.000083, 0.000052, 0.00014 ], [ 0.000082, 0.000136, -0.000156 ] ]
null
[ [ -0.0425252741273804, 0, 0 ], [ 0, 0.009637639071458856, -0.012717698994899725 ], [ 0, -0.012717698994899725, -0.03895101151135209 ] ]
true
null
null
-56.642959
null
0.319733
0.687442
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:01:06
8737540072692552601363643161188884992576144497201355943266922246492104514967731662969917146095521866737337812358781879457893279200289613625634916811909553
PO_8737540072692552601363643
null
null
null
[ "train_2nd_stage_104" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
185451861879304369430190201947372916783149258018531746636049099075117999678145420104777940203992544735496022192826247387442322237660855569609638559217028
CO_1854518618793043694301902
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni9Ti5
Ni9Ti5
A9B5
[ 28, 28, 28, 28, 28, 28, 28, 28, 28, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.6428571428571429, 0.35714285714285715 ]
2
14
[ [ -0.030728, -4.46392, 0.093582 ], [ 2.63491, -0.051905, 4.25449 ], [ -6.54514, 2.25933, 4.27748 ] ]
[ [ -6.54533, -2.18894, 4.38281 ], [ 0.12427, -0.09577, 4.30504 ], [ -2.66778, 0.05865, 4.25769 ], [ -5.29519, 0.05962, 4.27459 ], [ -1.35023, -2.08328, 4.34635 ], [ -5.23649, -1.50279, 6.49358 ], [ -0.00295, -1.54575, 2.18106 ], [ -2.63469, -1.54084, 2.18786 ], [ -2.65601, -1.52154, 6.45081 ], [ 1.23527, -2.33321, 4.39396 ], [ -3.97332, -2.04537, 4.28155 ], [ -1.171, -3.81959, 2.47041 ], [ -1.26872, 0.60626, 6.15703 ], [ -4.03271, 0.72248, 6.42437 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6550298744897359518678983782490701190477076768608141996491118426225716881933375685456837777697217129509388179789538092961984822632404817398954276999989726
1
VASP
DFT
null
[ [ -0.040886, 0.183657, -0.011248 ], [ 0.11211, 0.047318, 0.175503 ], [ -0.276413, 0.070751, 0.005637 ], [ -0.030669, 0.008816, -0.050328 ], [ -0.101655, -0.093456, -0.068104 ], [ 0.045504, -0.104897, 0.003854 ], [ 0.026174, -0.106624, -0.022102 ], [ 0.056148, -0.073478, 0.119507 ], [ 0.117453, -0.049609, -0.105934 ], [ -0.155833, 0.154339, -0.022607 ], [ -0.008329, -0.073112, 0.105201 ], [ 0.117846, 0.076009, -0.160625 ], [ 0.027866, 0.074783, 0.077728 ], [ 0.110685, -0.114496, -0.046483 ] ]
null
[ [ 0.0009378491612552184, 0.001647446333776886, 0.00356496276743074 ], [ 0.001647446333776886, -0.005003942696403125, 0.004732499464518462 ], [ 0.00356496276743074, 0.004732499464518462, 0.007175800626936723 ] ]
true
null
null
-93.722506
null
0.163118
0.28538
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:23:00
8494446436563962989119197038697685080379411169689672009360737706642371345150303795133012090465192970158990750435937413798201385307969981667036688098819521
PO_8494446436563962989119197
null
null
null
[ "train_1st_stage_854" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9653138873459355012898889086402833679561494070377642799079773125854586763597992196674157807055346033573918183342814945700689646346255100581124132491332417
CO_9653138873459355012898889
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni3Ti3
Al4Ni3Ti3
A4B3C3
[ 13, 13, 13, 13, 28, 28, 28, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.4, 0.3, 0.3 ]
3
10
[ [ 0.000001, 2.87799, -0.003582 ], [ 2.878, 0.000001, -0.022388 ], [ 0.000108, 0.000017, -17.0235 ] ]
[ [ 2.87786, 2.87797, -0.26811 ], [ 0.00016, 0.00003, -3.16255 ], [ 2.87764, 2.87793, -7.15166 ], [ 0.00049, 0.00008, -13.3025 ], [ 1.43901, 1.439, -1.71533 ], [ 1.43944, 1.43906, -8.56313 ], [ 1.43869, 1.43894, -11.891 ], [ 1.43911, 1.43901, -5.13291 ], [ 0.00007, 0.00001, -10.2141 ], [ 1.43901, 1.439, -15.3212 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5156883423902616462374023712960759741475680556607751551100475423948256231388316445728312527916254302519413702676700838067430356745926979018819434427939733
1
VASP
DFT
null
[ [ 0.00211, 0.00038, -0.025382 ], [ -0.002147, -0.000379, 0.025813 ], [ 0.013967, 0.002285, 0.156672 ], [ -0.014011, -0.002313, -0.156239 ], [ -0.000009, -0.000013, -0.000344 ], [ -0.026567, -0.004225, -0.138645 ], [ 0.026593, 0.004282, 0.138044 ], [ -0.006389, -0.00101, -0.060369 ], [ 0.000008, -0.000025, 0.000613 ], [ 0.006447, 0.001018, 0.059836 ] ]
null
[ [ 0.007112698969674043, -0.000018287621738837944, -0.004534019474315375 ], [ -0.000018287621738837944, 0.007119190139164962, -0.0007257626811577052 ], [ -0.004534019474315375, -0.0007257626811577052, 0.0011789586587880887 ] ]
true
null
null
-59.998033
null
0.076931
0.15731
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:29:14
3981804751509461202117948667183972956906465856618154465109755281703250922665292273132649446568003231435740591705216096368848751846895453985370155340805076
PO_3981804751509461202117948
null
null
null
[ "train_1st_stage_960" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10707167561826216440800993778598955809676994289608836115741534386667939787459149473648459009579948966385358487982159460904138571549517476174661037818928192
CO_1070716756182621644080099
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al11Ni
Al11Ni
A11B
[ 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 28 ]
[ "Al", "Ni" ]
[ 0.9166666666666666, 0.08333333333333333 ]
2
12
[ [ -0.067482, 2.85823, -0.008288 ], [ 8.15773, 1.60735, -5.23241 ], [ -4.27514, -1.54659, -5.42919 ] ]
[ [ 3.54092, 0.05361, -10.3478 ], [ 1.30137, 1.45654, -1.41917 ], [ 3.01558, 2.92173, -3.20855 ], [ 4.93988, 1.53208, -4.98887 ], [ 6.53184, 2.9938, -6.99366 ], [ 0.2525, -0.00439, -3.57096 ], [ 2.06341, 1.46301, -5.38895 ], [ 3.65538, 2.92472, -7.39374 ], [ -2.57806, -0.07227, -3.94165 ], [ -0.86385, 1.39291, -5.73102 ], [ 0.84667, -0.00163, -7.45575 ], [ 2.16006, 1.45511, -8.9059 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5302206161165223042843613007878626010599420892129739229492325673903329778113627185873882801102211299230977904128509064882663612501367421708456353680594025
1
VASP
DFT
null
[ [ 0.020987, 0.000312, -0.228592 ], [ -0.11237, 0.000732, 0.056022 ], [ -0.046057, 0.001373, 0.051523 ], [ -0.018743, 0.001136, -0.084401 ], [ -0.03821, 0.000069, -0.019066 ], [ -0.000009, 0.000009, 0.00003 ], [ 0.038127, -0.000073, 0.018984 ], [ 0.018662, -0.001127, 0.084376 ], [ 0.045951, -0.001398, -0.051525 ], [ 0.112362, -0.000703, -0.056134 ], [ -0.021065, -0.000302, 0.228809 ], [ 0.000364, -0.000027, -0.000025 ] ]
null
[ [ 0.004613848376035422, -0.0007905495458843734, 0.0033999372661423872 ], [ -0.0007905495458843734, 0.009444714024377805, -0.0002051584049677827 ], [ 0.0033999372661423872, -0.0002051584049677827, -0.015593599154832955 ] ]
true
null
null
-47.417159
null
0.092271
0.229777
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:47:26
4400489459671162035650301620058750870779851782844859055163796180672931408411756075128378694413882546547531509825643437093112455632713641702859384000887416
PO_4400489459671162035650301
null
null
null
[ "train_1st_stage_510" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
394907333221655893579994810792211656196047511618492152022765493638541993752663908378471508977337051183631003858111516933281414272877435383204776654559702
CO_3949073332216558935799948
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni8Ti6
Ni4Ti3
A4B3
[ 28, 28, 28, 28, 28, 28, 28, 28, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.5714285714285714, 0.42857142857142855 ]
2
14
[ [ -0.232274, -4.39572, -0.112983 ], [ 3.55341, -0.280333, 3.60134 ], [ -7.19447, 2.47426, 4.33154 ] ]
[ [ -6.87216, -1.38798, 4.55314 ], [ -0.02617, -0.09398, 3.57393 ], [ -2.37077, 0.58597, 4.25817 ], [ 1.89849, -1.83336, 3.85028 ], [ -0.62432, -0.12672, 6.0441 ], [ -4.77577, 0.12258, 4.91298 ], [ -2.19569, -1.50572, 2.86468 ], [ -2.76894, -1.54428, 5.54312 ], [ -3.06326, 0.56244, 6.7507 ], [ -0.55069, -2.2805, 4.57479 ], [ -4.48175, -2.05285, 3.80001 ], [ 1.94665, -4.09558, 2.30107 ], [ -1.67785, 0.61737, 1.76583 ], [ 0.26426, -1.78748, 1.76597 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4678077729961152837874882447779030455794936322468208463485831088516088291341659546940728511490968684985239641505099538785314378103256015190223496537105041
1
VASP
DFT
null
[ [ -0.013034, 0.163885, -0.17906 ], [ 0.003792, -0.039163, -0.06029 ], [ -0.000324, -0.008855, -0.00039 ], [ 0.029088, 0.151688, 0.187491 ], [ 0.00856, 0.162491, 0.004158 ], [ -0.008386, -0.041476, 0.058887 ], [ 0.051675, -0.117077, -0.13975 ], [ -0.063983, -0.118403, 0.133908 ], [ -0.004922, -0.06999, -0.467897 ], [ -0.17924, 0.012126, -0.094481 ], [ 0.181471, -0.012209, 0.092353 ], [ -0.155389, 0.015304, -0.048216 ], [ -0.003707, -0.094226, 0.464522 ], [ 0.1544, -0.004094, 0.048766 ] ]
null
[ [ 0.01250311591115186, -0.0011684105083653458, 0.00418518152926976 ], [ -0.0011684105083653458, -0.00778915372873727, 0.000010298490057707376 ], [ 0.00418518152926976, 0.000010298490057707376, -0.0164980562422647 ] ]
true
null
null
-95.919907
null
0.204355
0.473997
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:33:49
9559681178536829602469898558142801146261477093877554707518879058005594990756641285180617660174967754745067171041362415910914579411506684620475770606128541
PO_9559681178536829602469898
null
null
null
[ "train_1st_stage_600" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5361539696117298419192559725083718378688290389685069386537037210497710726216805841378212579932601878206009017608183376521685578723936249340835448671792199
CO_5361539696117298419192559
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni6Ti3
AlNi2Ti
A2BC
[ 13, 13, 13, 28, 28, 28, 28, 28, 28, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.25, 0.5, 0.25 ]
3
12
[ [ 2.927264, -0.337394, 2.946687 ], [ -1.915024, 9.117357, 0 ], [ -2.927256, 0.337393, 2.94669 ] ]
[ [ 0.53654, 1.16983, 1.46922 ], [ -2.05331, 4.43386, 1.46922 ], [ -1.71589, 7.36053, 4.41591 ], [ -0.08355, 8.65516, 2.94255 ], [ -3.01082, 8.99254, 2.94257 ], [ -0.75839, 2.80187, 2.94255 ], [ 2.16887, 2.46447, 2.94257 ], [ -0.42096, 5.72849, 2.94257 ], [ -3.34822, 6.06589, 2.94255 ], [ 0.53655, 1.16983, 4.41591 ], [ -2.05331, 4.43387, 4.41591 ], [ -1.7159, 7.36053, 1.46922 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4737500202346484846755090344750360842150319836844132716773755784216605005175663605625549515592900391575440018824310983046097542366489273106279925459189057
1
VASP
DFT
null
[ [ -0.000047, -0.000188, 0.000001 ], [ -0.000059, 0.000118, 0.000021 ], [ -0.000072, 0.000033, -0.000001 ], [ 0.00013, -0.000309, -0.000687 ], [ 0.00015, -0.000255, 0.000557 ], [ -0.000261, -0.000022, -0.000663 ], [ -0.000263, 0.000073, 0.000632 ], [ 0.000293, 0.000267, 0.000753 ], [ 0.000288, 0.000376, -0.000545 ], [ 0.000295, -0.000151, -0.000025 ], [ 0.000025, -0.00002, 0.000035 ], [ -0.000479, 0.000078, -0.000078 ] ]
null
[ [ -0.00068594185293457, 0.000029584753256686643, 0.0000014355470989531495 ], [ 0.000029584753256686643, -0.00007389946805045777, -1.2483018251766518e-7 ], [ 0.0000014355470989531495, -1.2483018251766518e-7, -0.0007388698503220601 ] ]
true
null
null
-75.075026
null
0.000471
0.000851
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:13:38
4826813677381654385826069609492681215154801487469939197417773746566832646778349749257810143675122462930233403899968372785661874993028706801918865064779970
PO_4826813677381654385826069
null
null
null
[ "train_1st_stage_358" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
1794085169132451483027440576641857974831942801687714417976579097999643654142432809217309506799326768320452699462263522826151119616452980665927853727669261
CO_1794085169132451483027440
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni2Ti
Ni2Ti
A2B
[ 28, 28, 22 ]
[ "Ni", "Ti" ]
[ 0.6666666666666666, 0.3333333333333333 ]
2
3
[ [ -2.84085, 2.84085, 0 ], [ 0, -2.84085, -2.84085 ], [ -1.53643, -1.53643, 1.53643 ] ]
[ [ -2.85631, -0.01546, -2.82538 ], [ -2.90272, -0.06187, 0.06187 ], [ -1.45909, -1.45909, -1.38176 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10934415379316396438009332596155177215365516500925174607277096564252014351572829325886480569547977333553224316391448933903422315075246058986632866963039503
1
VASP
DFT
null
[ [ -0.038234, -0.038232, 0.038174 ], [ 0.038119, 0.038139, -0.03811 ], [ 0.000115, 0.000094, -0.000064 ] ]
null
[ [ -0.00020877848026079499, 0.003786349096125819, -0.003786536341399596 ], [ 0.003786349096125819, -0.00020877848026079499, -0.003786349096125819 ], [ -0.003786536341399596, -0.003786349096125819, -0.0002086536500782773 ] ]
true
null
null
-19.679515
null
0.044127
0.066187
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:33:32
1026324195947766603409204257095068428812756540660410470813973685034898931123544941626232005359212666606562806654757882175352179146299050198777239007067388
PO_1026324195947766603409204
null
null
null
[ "train_2nd_stage_69" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
13110795948703291518130255734923627954959226863453107723853527404038747923549445214604786313087553639857822070812697118737125325765615684129005616695650395
CO_1311079594870329151813025
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi5Ti2
AlNi5Ti2
A5B2C
[ 13, 28, 28, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.125, 0.625, 0.25 ]
3
8
[ [ 3.80421, -0.821663, -0.356251 ], [ -1.15122, 2.51285, 3.2168 ], [ 1.11527, -5.89456, 3.52512 ] ]
[ [ 2.1494, 0.00803, 1.39659 ], [ 1.192, -5.55452, 3.5727 ], [ 0.41787, 0.4977, 3.10186 ], [ 1.9331, -1.80502, 3.05607 ], [ 3.48098, -4.07347, 3.26224 ], [ 0.22933, -1.27199, 4.94568 ], [ 3.63161, -2.46453, 1.37979 ], [ 1.78246, -3.41396, 4.9385 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10457405034950725528475984379601904865391836983975820372995528350735357866562538867468867582323576389025930631536236144976060937237425260794427431846789085
1
VASP
DFT
null
[ [ -0.000091, -0.000255, 0.000205 ], [ 0.002674, 0.020224, -0.024797 ], [ -0.002433, -0.020208, 0.024578 ], [ 0.031848, 0.118491, 0.216359 ], [ -0.031651, -0.118511, -0.216142 ], [ -0.000199, 0.000018, -0.000072 ], [ -0.037123, -0.015811, -0.228207 ], [ 0.036975, 0.016052, 0.228076 ] ]
null
[ [ 0.004536828153422022, -0.0013655797816519981, 0.0007533501514941092 ], [ -0.0013655797816519981, -0.0006036787626554287, -0.0028149206157733492 ], [ 0.0007533501514941092, -0.0028149206157733492, -0.012899826231193 ] ]
true
null
null
-50.663804
null
0.128148
0.248728
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:25:36
11451046255553891505621203162607868596766897394764936032838113119930924581912054761778357000716091439426818929199722055774961974913365301850657642695272024
PO_1145104625555389150562120
null
null
null
[ "train_1st_stage_1109" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5344537579096701916521481882963490431055012298507242980607688862252218604291175364976336125764432525002320149218513432326574182075968241147152115372449742
CO_5344537579096701916521481
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni8Ti6
Ni4Ti3
A4B3
[ 28, 28, 28, 28, 28, 28, 28, 28, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.5714285714285714, 0.42857142857142855 ]
2
14
[ [ 3.66016, -5.5995, 0.026832 ], [ 3.66017, 5.59948, 0.026824 ], [ -4.93908, 0.00001, 4.51191 ] ]
[ [ 2.38125, -0.00001, 4.56556 ], [ 1.19062, 0, 2.28278 ], [ 2.35716, 3.87793, 1.86309 ], [ -2.25427, -0.87515, 4.26826 ], [ 3.70114, -3.00278, 1.16211 ], [ 0.02409, -3.87793, 2.70248 ], [ 4.63552, 0.87514, 0.29731 ], [ -1.31989, 3.00278, 3.40345 ], [ 1.35672, 2.18271, 3.46541 ], [ 0.21221, -1.43745, 4.06235 ], [ 3.56424, -0.74526, 2.31405 ], [ 1.02453, -2.18271, 1.10015 ], [ 2.16904, 1.43745, 0.50321 ], [ -1.18299, 0.74526, 2.25152 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11058375616687740558111489458439515953010323711504896218697947407343513744245628178850177286250990056848477540338287516691477162021028801612826248558139780
1
VASP
DFT
null
[ [ 0.000138, -0.000184, 0.000043 ], [ 0.000682, -0.000006, -0.0004 ], [ -0.264497, -0.397171, 0.384124 ], [ 0.587624, -0.159114, -0.06058 ], [ -0.02072, 0.555547, 0.256895 ], [ 0.264332, 0.396815, -0.384234 ], [ -0.58828, 0.15923, 0.060783 ], [ 0.021098, -0.555106, -0.256748 ], [ -0.154305, 0.617995, -0.159332 ], [ -0.543649, -0.363671, 0.044313 ], [ 0.403705, -0.254541, -0.449616 ], [ 0.153572, -0.616909, 0.158935 ], [ 0.543852, 0.363699, -0.044094 ], [ -0.403551, 0.253414, 0.449912 ] ]
null
[ [ 0.01727693416608367, 0.000004556301661894778, 0.007684171545239913 ], [ 0.000004556301661894778, 0.013266452477247382, -0.000005242867665741937 ], [ 0.007684171545239913, -0.000005242867665741937, 0.02800140722163258 ] ]
true
null
null
-96.298953
null
0.54349
0.656593
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:14:12
2621667859550451745571568083267429292038824692958675969032130643070989126645500795004644501418454586076738788276890028735751858330017955296247323494345530
PO_2621667859550451745571568
null
null
null
[ "train_2nd_stage_387" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
1489024135089887543635606260680975596689510770609867301221101495673218752170946035292334621445205339567131996296982707832910279972928473228192331122223729
CO_1489024135089887543635606
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni4Ti4
AlNiTi
ABC
[ 13, 13, 13, 13, 28, 28, 28, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.3333333333333333, 0.3333333333333333, 0.3333333333333333 ]
3
12
[ [ 4.01626, 0, 0 ], [ 0, 4.78018, 0 ], [ 0, 0, 9.33945 ] ]
[ [ 1.8119, 3.58513, 5.90067 ], [ 2.20436, 1.19504, 3.43878 ], [ 2.20436, 1.19504, 1.23094 ], [ 1.8119, 3.58513, 8.10851 ], [ 3.76428, 3.58513, 3.04633 ], [ 0.25198, 1.19504, 6.29312 ], [ 0.25198, 1.19504, 7.71605 ], [ 3.76428, 3.58513, 1.6234 ], [ 2.89976, 3.58513, 8.78916 ], [ 1.11651, 1.19504, 0.5503 ], [ 1.11651, 1.19504, 4.11943 ], [ 2.89976, 3.58513, 5.22002 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2234364579466433801888581798908992527123576949205124872355029380732878707793758356718344147181209036705581974379859118093437208635995872639389331413100763
1
VASP
DFT
null
[ [ -48.253584, -0.000001, 25.374875 ], [ 48.254238, 0.000003, -25.375816 ], [ 48.253832, -0.000001, 25.375246 ], [ -48.254103, -0.000002, -25.375406 ], [ 0.34263, 0.000004, 30.092443 ], [ -0.342536, 0, -30.095175 ], [ -0.342437, 0.000003, 30.094971 ], [ 0.34261, 0, -30.092676 ], [ 48.277708, 0.000003, 29.426153 ], [ -48.277345, -0.000005, -29.425407 ], [ -48.278264, -0.000006, 29.426353 ], [ 48.277252, 0.000002, -29.425563 ] ]
null
[ [ 1.188574514992698, -3.120754562941629e-7, -0.0000035576602017534568 ], [ -3.120754562941629e-7, -0.1638436091202761, -6.241509125883259e-8 ], [ -0.0000035576602017534568, -6.241509125883259e-8, 1.0181078532936736 ] ]
true
null
null
37.70549
null
47.051208
56.539376
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:13:20
11714625458880519979815448312149677609317320172104034213728770616464726690525978544262539047760997290081200310789680236882111722663409352887694863069981700
PO_1171462545888051997981544
null
null
null
[ "train_1st_stage_2312" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5959770905494590063457803868292405029579859511710142422616598311121395877437781300112916273583259739292171295787009823669367809982113859296496422912364030
CO_5959770905494590063457803
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ti4
Al3Ti4
A4B3
[ 13, 13, 13, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.42857142857142855, 0.5714285714285714 ]
2
7
[ [ -0.001325, 1.9725, 2.0051 ], [ 3.98977, 0.004522, -0.001816 ], [ 1.98318, 7.94175, -5.95661 ] ]
[ [ 3.9884, 2.00394, 1.96861 ], [ 3.98529, 3.96366, 0.01521 ], [ 3.98218, 5.92338, -1.93819 ], [ 1.99266, 1.92499, -0.10334 ], [ 1.98948, 4.02531, -1.86952 ], [ 1.98639, 5.92022, -3.94599 ], [ 3.97893, 7.97183, -3.98348 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3679153731416659810364291872225191171004139157506249434615382466941695880801701199924889934771815421194974274472309926453795632563966172969353580007131646
1
VASP
DFT
null
[ [ 0.000297, -0.485505, 0.128517 ], [ 0, 0.00008, -0.000203 ], [ -0.000293, 0.484722, -0.127984 ], [ -0.001071, 0.432942, 0.296858 ], [ 0.001128, -0.432987, -0.296158 ], [ -0.000532, -0.077373, 0.136369 ], [ 0.000472, 0.078122, -0.137399 ] ]
null
[ [ -0.012458364290719278, 0.000011297131517848697, 0.000008550867502460062 ], [ 0.000011297131517848697, -0.024826476359478284, -0.001864026700445035 ], [ 0.000008550867502460062, -0.001864026700445035, -0.020514966685500645 ] ]
true
null
null
-44.861019
null
0.338307
0.524942
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:57:42
7611146401957156211209936272958221958774791010758425348245421904271340870406867568299377618936587243910655558700407932173166789873382543982743431192891315
PO_7611146401957156211209936
null
null
null
[ "train_1st_stage_443" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12301069067055038328798454087927801077578492385240020866490250010407457342872497890812191405685589290492154399382663272550550074404554623053011489658030362
CO_1230106906705503832879845
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
NiTi4
NiTi4
A4B
[ 28, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.2, 0.8 ]
2
5
[ [ -0.001186, 2.97131, 0.089321 ], [ 2.97131, -0.001186, 0.089321 ], [ 1.74585, 1.74585, -8.5854 ] ]
[ [ 2.97012, 2.97012, 0.17864 ], [ 1.53156, 1.53156, -1.4606 ], [ 3.07119, 3.07119, -3.18532 ], [ 1.64477, 1.64477, -5.22143 ], [ 3.1844, 3.1844, -6.94616 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6352085409270812935185753728696913091234058783201473381869807403611907352158813848666036500660647399533202514328217189490759381642450485837250174653948261
1
VASP
DFT
null
[ [ -0.000014, -0.000015, 0.000007 ], [ -0.009958, -0.009966, 0.307468 ], [ 0.00141, 0.00142, -0.031332 ], [ -0.001401, -0.001404, 0.031032 ], [ 0.009962, 0.009964, -0.307175 ] ]
null
[ [ -0.006379134402108983, 0.00012582882397780648, 0.0000664720721906567 ], [ 0.00012582882397780648, -0.006379259232291502, 0.00006653448728191553 ], [ 0.0000664720721906567, 0.00006653448728191553, -0.007347816618446064 ] ]
true
null
null
-37.512525
null
0.13556
0.307791
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:21:36
8939398351781515301566708421491165054206645062514626819726569025917653186459993060268472837788473232903619316154715150609251597123812978344247779082423440
PO_8939398351781515301566708
null
null
null
[ "train_1st_stage_899" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7080686271297129580576387235192219006463841414631670644283996981803510172606487867834307741837381244683042377746990244977397478998490039374517164781023672
CO_7080686271297129580576387
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni2Ti4
Al3Ni2Ti4
A4B3C2
[ 13, 13, 13, 28, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.3333333333333333, 0.2222222222222222, 0.4444444444444444 ]
3
9
[ [ -0.610025, 4.02384, -0.172619 ], [ 4.4833, -1.44523, -1.46985 ], [ -3.78645, 1.20856, -6.50943 ] ]
[ [ -3.5172, 1.25358, -6.41161 ], [ 2.94038, 0.3252, -2.81061 ], [ 1.12822, 2.05061, -4.2492 ], [ -0.28257, 3.84088, -5.59462 ], [ -2.71644, 3.48716, -5.2388 ], [ 1.27847, 2.1939, -1.44023 ], [ -0.49103, 3.92557, -2.88377 ], [ -1.65138, 1.63831, -4.03706 ], [ -0.73761, 1.66588, -6.62375 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12575884760631971978610694245073514625892246217659493021164996330672081745017069506263103053704989907908646179726160349650003761709727032008656275688883539
1
VASP
DFT
null
[ [ 0.002173, 0.015282, 0.34789 ], [ 0.000061, 0.000049, 0.000191 ], [ -0.002212, -0.015195, -0.347517 ], [ 0.367057, 0.075194, 0.449171 ], [ -0.367046, -0.075785, -0.449394 ], [ -0.013419, -0.002097, -0.001642 ], [ 0.013416, 0.002464, 0.001533 ], [ 0.222494, 0.020805, -0.252075 ], [ -0.222523, -0.020718, 0.251844 ] ]
null
[ [ -0.005797550581759182, -0.0014663177389437538, 0.003078187470703105 ], [ -0.0014663177389437538, 0.004589007169714407, 0.0001189631639393349 ], [ 0.003078187470703105, 0.0001189631639393349, -0.003424965717737179 ] ]
true
null
null
-57.362346
null
0.285263
0.585168
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:46:20
4660957757988791797417105964526753250483239885139752035971875963368792619859964440380036262553372846550097365960200190182601009340393878856288457426221653
PO_4660957757988791797417105
null
null
null
[ "train_1st_stage_1110" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7190783297902345316506302828581778343276166169660565426984681944065499800003362533979916564430830624298341289255939406708329953871222153780199026629158496
CO_7190783297902345316506302
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2NiTi
Al2NiTi
A2BC
[ 13, 13, 28, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.5, 0.25, 0.25 ]
3
4
[ [ 1.50881, -2.61333, 0 ], [ 1.50881, 2.61333, 0 ], [ 0, 0, 7.7428 ] ]
[ [ 0, 0, 2.40027 ], [ 0, 0, 5.34253 ], [ 1.50881, 0.87128, 3.8714 ], [ 0, 0, 0 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10245094456157931365911490394542567111634893877955169752692026485954134947968448867870778397870404622901400078689978425151282566694541472044250786048238718
1
VASP
DFT
null
[ [ 0, 0.000859, -0.352096 ], [ 0, 0.000858, 0.352132 ], [ -0.000002, -0.001684, -0.000006 ], [ 0.000001, -0.000034, -0.00003 ] ]
null
[ [ 0.003996563123485568, 6.241509125883259e-8, 0 ], [ 6.241509125883259e-8, 0.004014289009403076, 0 ], [ 0, 0, 0.09214059054630788 ] ]
true
null
null
-19.108137
null
0.17649
0.352133
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:40:59
10882627657192030856758734231698902467477351023916424084595750415945400258679246709843784892519648368651221472476692818141174526254220562733488443526091390
PO_1088262765719203085675873
null
null
null
[ "train_1st_stage_2112" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
8094214519724657014137969544797522507034958302454601013997270956387758844694744110361992586113965205218701949280224091721087024683111094722037075962147230
CO_8094214519724657014137969
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni4Ti5
Ni4Ti5
A5B4
[ 28, 28, 28, 28, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.4444444444444444, 0.5555555555555556 ]
2
9
[ [ 0.004118, 2.118295, 2.129823 ], [ 2.99968, -0.115901, 0.107733 ], [ 2.23185, 10.831642, -8.661503 ] ]
[ [ 3.02253, 2.10732, 2.12815 ], [ 3.17601, 4.17158, 0.07472 ], [ 3.33867, 6.36761, -2.1107 ], [ 3.49208, 8.43163, -4.16391 ], [ 1.59826, 2.15207, -0.03131 ], [ 1.75541, 4.26848, -2.13679 ], [ 1.91266, 6.38462, -4.2422 ], [ 2.07241, 8.53892, -6.38577 ], [ 3.67031, 10.82916, -6.54907 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
8339558841673228241820466129317033191281943342178767185824646982930064297730381844929974409407844887283382602256270620581212306286247143112201722311667382
1
VASP
DFT
null
[ [ -0.000548, -0.009167, 0.008922 ], [ -0.000162, -0.005448, 0.005519 ], [ 0.000342, 0.005593, -0.005336 ], [ 0.000589, 0.010235, -0.010012 ], [ 0.000236, -0.001412, 0.001807 ], [ -0.000105, -0.002129, 0.002095 ], [ -0.000267, 0.00259, -0.002968 ], [ 0.000271, 0.002301, -0.002083 ], [ -0.000356, -0.002563, 0.002056 ] ]
null
[ [ -0.0022412010969221604, -8.113961863648235e-7, -0.0000026838489241298007 ], [ -8.113961863648235e-7, -0.00222678321084137, -0.0000164775840923318 ], [ -0.0000026838489241298007, -0.0000164775840923318, -0.002223724871369687 ] ]
true
null
null
-64.024607
null
0.006477
0.01433
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:42:16
1538558052971344601242036915779105993487531068260028505305194021674359549088432619884742180869312647843846039284381378624019202824144373318235896682199354
PO_1538558052971344601242036
null
null
null
[ "train_1st_stage_135" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7303368042188300583215831163062234867291779300717113423496328435917441893161987695022723821787465452207551751787561450195635366045600011105379751094684330
CO_7303368042188300583215831
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni3Ti9
NiTi3
A3B
[ 28, 28, 28, 22, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.25, 0.75 ]
2
12
[ [ 0.002343, 2.02662, 2.11683 ], [ 4.5454, -4.88458, 2.64285 ], [ 5.51111, 6.64497, -4.33935 ] ]
[ [ 4.57419, -2.50672, 4.42338 ], [ 1.98121, 1.81011, 0.29339 ], [ 4.88047, 1.7504, 0.34734 ], [ 3.43107, 3.90942, 0.31048 ], [ 5.10152, 4.32088, -2.11385 ], [ 1.29934, 0.04905, 1.98015 ], [ 3.58097, -0.33013, 0.31211 ], [ 6.38787, 3.84938, 0.36468 ], [ 8.29444, 4.13971, -1.94394 ], [ 5.13396, -0.76652, 2.75672 ], [ 6.64215, -0.30026, 0.28012 ], [ 8.56428, 2.04531, 0.06091 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
566248922473718597114792101816844649058031297527503184496811677283297102811584407182819861107218937085413189764945934820402220441580132022042571785407620
1
VASP
DFT
null
[ [ -0.477256, -0.185286, 0.178132 ], [ 0.45218, 0.182383, -0.174747 ], [ 0.310752, -0.077528, 0.073466 ], [ -0.068839, 0.836733, -0.801451 ], [ -0.232601, -0.032035, 0.031056 ], [ 0.15019, -0.47968, 0.4591 ], [ -0.290879, -0.643036, 0.615997 ], [ 0.422333, 0.237588, -0.227903 ], [ -0.468933, 0.380376, -0.364032 ], [ 0.015618, 0.333439, -0.318938 ], [ 0.406007, -0.421315, 0.402996 ], [ -0.218571, -0.13164, 0.126324 ] ]
null
[ [ 0.02075414131520449, -0.005435792712822988, 0.0051860075176051405 ], [ -0.005435792712822988, 0.021138867937723935, -0.01119589423982687 ], [ 0.0051860075176051405, -0.01119589423982687, 0.02014097545867772 ] ]
true
null
null
-88.236597
null
0.591755
1.160683
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:24:21
12274054017977383651230536539314276818739751401767988573372350755503969883278703851292058776970961554534717626174474075545516522572216807406334070407624596
PO_1227405401797738365123053
null
null
null
[ "train_1st_stage_704" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
8854189440115811999520604144838629418736097402118679517212620522605415927190262421966251827427385792305756714083149889701663013144464198721826097303999539
CO_8854189440115811999520604
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni6Ti4
AlNi3Ti2
A3B2C
[ 13, 13, 28, 28, 28, 28, 28, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.16666666666666666, 0.5, 0.3333333333333333 ]
3
12
[ [ 4.94818, 3.06666, -0.002244 ], [ -0.352564, 3.74191, 3.85763 ], [ 0.353153, -3.73375, 3.84993 ] ]
[ [ 2.09326, 0.63775, 1.92359 ], [ 2.58842, 3.22574, 1.94538 ], [ 0.35972, -3.47194, 3.92435 ], [ -0.01838, 0.27221, 3.77483 ], [ 1.5228, -1.24069, 3.84236 ], [ 1.14283, 2.51918, 3.8617 ], [ 3.66435, 1.46837, 3.97017 ], [ 3.29962, 5.20011, 3.74578 ], [ 1.89969, 0.54429, 5.77123 ], [ 3.54594, 2.81625, 5.76779 ], [ -0.02511, 1.87751, 1.93136 ], [ 5.07051, 1.62271, 1.92147 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10695402496881530006611372361203585641929516340266304941659650501383042707588966680925215688387492573254075521114422082990942866889764431662983726006052785
1
VASP
DFT
null
[ [ -0.460792, 0.168574, 0.029702 ], [ 24.696525, -23.487093, 0.523584 ], [ -0.823222, 2.659781, -0.323571 ], [ -0.15599, 2.223521, 0.322646 ], [ 2.946728, -1.300623, -0.274827 ], [ 3.500752, -1.853938, 0.265397 ], [ -1.653456, -2.164884, -1.450958 ], [ -1.588008, -1.930871, 1.306976 ], [ -24.633855, 24.506325, -0.587616 ], [ -0.342625, 1.423915, 0.146908 ], [ -0.986622, -0.52444, -0.050523 ], [ -0.499434, 0.279734, 0.092282 ] ]
null
[ [ 0.23908406540642987, -0.21889846315750208, 0.0013568416688757615 ], [ -0.21889846315750208, 0.27205596083555084, -0.002983878267811009 ], [ 0.0013568416688757615, -0.002983878267811009, 0.033820054104237246 ] ]
true
null
null
-59.85974
null
7.555461
34.75244
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:52:49
3719367701562632342085541076055378329518218885689257390764760474086859241481650650750174751150721871993356130605412777326001864773094966331304459817018142
PO_3719367701562632342085541
null
null
null
[ "train_1st_stage_1646", "train_1st_stage_1246", "train_1st_stage_1446", "train_1st_stage_1846" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5598428539239131995244180717232890603742556231160897283078168077468850736108902156383124219087449128687125301254976245979644353345838128012621128940549539
CO_5598428539239131995244180
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni8Ti
Ni8Ti
A8B
[ 28, 28, 28, 28, 28, 28, 28, 28, 22 ]
[ "Ni", "Ti" ]
[ 0.8888888888888888, 0.1111111111111111 ]
2
9
[ [ 0.000194, 3.42481, 0.497027 ], [ 3.58813, 1.2157, 3.77753 ], [ 3.58769, -1.21606, -3.77785 ] ]
[ [ 7.05907, 3.42445, 0.49672 ], [ 4.80533, 3.11267, 2.71373 ], [ 5.97248, 1.55057, 1.39644 ], [ 4.80497, 0.31167, -2.21714 ], [ 2.55143, 3.42468, 0.49692 ], [ 3.63781, 1.87376, -0.89985 ], [ 5.97242, 1.87364, -0.89994 ], [ 3.63789, 1.55068, 1.39654 ], [ 4.80525, 3.42457, 0.49683 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10982442914178335685281922439368064825267738076320010609019492018262231209202915788284247605180824682175828166503438743060659932428918562046916566533536495
1
VASP
DFT
null
[ [ 2.936383, 0.000024, -0.000761 ], [ -0.000767, -0.460298, 2.992128 ], [ 1.229988, -0.192311, 1.253528 ], [ 0.000409, 0.460033, -2.991531 ], [ -2.937023, 0.000057, 0.00072 ], [ -1.229314, 0.192455, -1.254377 ], [ 1.229901, 0.192292, -1.254213 ], [ -1.230087, -0.19226, 1.255199 ], [ 0.000511, 0.000009, -0.000692 ] ]
null
[ [ 0.1384328026764326, -6.865660038471584e-7, 0.0000049932073007066064 ], [ -6.865660038471584e-7, 0.13933725976386435, -0.0038830924875770103 ], [ 0.0000049932073007066064, -0.0038830924875770103, 0.1464699315627412 ] ]
true
null
null
-50.914903
null
2.110763
3.027326
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:27:04
2677144208425069964168667478297713274664330509362363446077851156908910589529389030555893098845397950155625172857785574559358618262247064850468281779811563
PO_2677144208425069964168667
null
null
null
[ "train_2nd_stage_771" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
3642794809174448177758249366850312145143644390745521781010712847016255543627588187065181467477822184371375530057872620024832048047384899956622670536028611
CO_3642794809174448177758249
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ti2
Al2Ti
A2B
[ 13, 13, 13, 13, 22, 22 ]
[ "Al", "Ti" ]
[ 0.6666666666666666, 0.3333333333333333 ]
2
6
[ [ 2.9395, -2.576678, 0.411609 ], [ 2.068425, 1.903851, -2.84964 ], [ 6.070025, 4.178637, 1.573777 ] ]
[ [ 6.03688, 4.11301, 1.51615 ], [ 4.81594, -0.45846, 0.38748 ], [ 6.72532, 1.72513, 0.42067 ], [ 4.38039, 1.78179, -1.24316 ], [ 2.55634, -0.28204, -1.13423 ], [ 6.20429, 3.84543, -1.35233 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
1730478952593465464961448064666838957927116504038867305461248926876273380272501824681341021100824347690526438089925377109904377725966133740374779614621745
1
VASP
DFT
null
[ [ 0.001897, 0.002431, 0.003033 ], [ 0.00133, 0.001932, 0.002256 ], [ -0.003309, -0.004431, -0.005447 ], [ 0.001119, 0.001637, 0.001918 ], [ -0.003121, -0.004135, -0.005095 ], [ 0.002084, 0.002567, 0.003335 ] ]
null
[ [ -0.00006004331779099694, -0.00007134044930884563, 0.00012845025781067746 ], [ -0.00007134044930884563, -0.00006085471397736177, 0.00012601606925158296 ], [ 0.00012845025781067746, 0.00012601606925158296, -0.0001330065594725722 ] ]
true
null
null
-33.207941
null
0.005011
0.007762
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:00:38
12448990872081114654629489360839014316754718785843316844565817069010673735989132034461252544358747581750165537419362734142974585521679808920384713810020541
PO_1244899087208111465462948
null
null
null
[ "train_1st_stage_40" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
894536332578288313556160952138480502622790745060078785204987708619063918145179972941337058989776878713699770263831872530311646591183455514840754867751353
CO_8945363325782883135561609
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni4Ti4
NiTi
AB
[ 28, 28, 28, 28, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.5, 0.5 ]
2
8
[ [ 2.07338, 4.11424, 2.01946 ], [ 3.78361, -1.61312, -2.2129 ], [ 0.257661, 3.3528, -3.69061 ] ]
[ [ 3.79006, -1.31262, -2.02445 ], [ 1.97291, 1.75429, -0.19483 ], [ 4.98419, 2.5263, -2.41046 ], [ 3.10969, 5.38237, -1.47984 ], [ 3.66715, 3.71667, 0.42531 ], [ 3.52793, 0.71452, -3.65746 ], [ 2.49254, 3.07998, -2.2524 ], [ 4.42683, 4.19188, -4.31576 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10862053636970531362044885678027625888915411168908023796931715019036390151407552560587145893557169561865336611427664091397880230577500729807838254145477463
1
VASP
DFT
null
[ [ -0.006147, 0.030504, 0.076939 ], [ 0.006389, -0.030609, -0.07743 ], [ -0.163445, -0.000836, -0.149137 ], [ 0.163962, 0.001007, 0.149461 ], [ -0.316895, 0.141627, -0.189865 ], [ -0.154983, -0.109423, -0.041909 ], [ 0.155062, 0.108888, 0.042049 ], [ 0.316056, -0.141157, 0.18989 ] ]
null
[ [ -0.010782456675328364, 0.00298812249401661, -0.0014598265694528352 ], [ 0.00298812249401661, 0.004050552177424459, -0.0017748355350361632 ], [ -0.0014598265694528352, -0.0017748355350361632, -0.003454051150263795 ] ]
true
null
null
-56.268958
null
0.223556
0.395638
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:57:06
12441661896058340005705917173262728136447487028020301434539685504607936607207837378505716419815133315839880453304086104984383410232227031819604768858342353
PO_1244166189605834000570591
null
null
null
[ "train_1st_stage_1206" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
13011353041610049810010540004585990979981136449392474807989031819849685158421687602005836830739579472322227711333977373746069307768403359093491801214002560
CO_1301135304161004981001054
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni10Ti4
AlNi5Ti2
A5B2C
[ 13, 13, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.125, 0.625, 0.25 ]
3
16
[ [ 3.90319, 0, 0 ], [ 0, 5.11318, 0 ], [ 0, 0, 10.0704 ] ]
[ [ 0.00001, 0, 5.03521 ], [ 0.00001, 2.55659, 0 ], [ 0, 0, 0 ], [ 0, 2.55659, 5.03521 ], [ 0, 2.97207, 7.55721 ], [ 0, 2.14111, 2.51321 ], [ 0, 4.6977, 2.522 ], [ 0, 0.41548, 7.54842 ], [ 1.95159, 1.59936, 8.92849 ], [ 1.95159, 3.51382, 1.14194 ], [ 1.95159, 0.95723, 3.89328 ], [ 1.95159, 4.15595, 6.17715 ], [ 1.95159, 1.64885, 6.42818 ], [ 1.95159, 3.46433, 3.64224 ], [ 1.95159, 0.90774, 1.39297 ], [ 1.95159, 4.20544, 8.67745 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
556924758477269205882179453547214041834961255883219144665583441848656672816403036684566523696127986458267855355602554741020778917944578448168266994060941
1
VASP
DFT
null
[ [ -0.000122, -0.000386, -0.000614 ], [ -0.000123, -0.000181, -0.000143 ], [ -0.00002, -0.000268, -0.000347 ], [ -0.00002, 0.000327, -0.000792 ], [ -0.000026, 0.089962, -0.20618 ], [ -0.000026, -0.088768, 0.206803 ], [ -0.000027, -0.089349, -0.206578 ], [ -0.000026, 0.088554, 0.207141 ], [ 0.000058, 0.110148, 0.130343 ], [ 0.000058, -0.110241, -0.130059 ], [ 0.000057, -0.110155, 0.12985 ], [ 0.000057, 0.110386, -0.130026 ], [ 0.000039, -0.074066, 0.048535 ], [ 0.00004, 0.07419, -0.048464 ], [ 0.000041, 0.073774, 0.049306 ], [ 0.00004, -0.073925, -0.048775 ] ]
null
[ [ 0.0117589407780728, 0, -6.241509125883259e-8 ], [ 0, 0.020023073351289784, 0.000008862942958754226 ], [ -6.241509125883259e-8, 0.000008862942958754226, 0.020663077697057854 ] ]
true
null
null
-100.295477
null
0.121194
0.225276
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:27:18
12468146707511525461243176314248039683178487416770295469562014360304981090297164407776407984874998676751698436737678284807251886680372334503503769386330067
PO_1246814670751152546124317
null
null
null
[ "train_2nd_stage_274" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9667653225153568665046852912671208590717923418539379026714536764819661086071546745518356685220559197433515368839432972629138568679164950165373493537424774
CO_9667653225153568665046852
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni2Ti2
AlNiTi
ABC
[ 13, 13, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.3333333333333333, 0.3333333333333333, 0.3333333333333333 ]
3
6
[ [ 3.77503, 0, 0 ], [ 0, 3.77503, 0 ], [ 0, 0, 6.35736 ] ]
[ [ 0.94376, 0.94376, 4.86251 ], [ 2.83127, 2.83127, 1.49485 ], [ 2.83127, 0.94376, 0 ], [ 0.94376, 2.83127, 0 ], [ 0.94376, 0.94376, 2.14441 ], [ 2.83127, 2.83127, 4.21295 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9911864553345928361553090631684817098561724514945078175552761312051257421051270345598311474958929684840763233794793338591443999119366313174261066638641193
1
VASP
DFT
null
[ [ -0.000009, -0.00001, -0.092005 ], [ 0.00001, 0.000009, 0.092055 ], [ 0.000008, -0.000008, 0.000254 ], [ -0.000008, 0.000008, 0.000246 ], [ -0.000004, -0.000004, -0.378486 ], [ 0.000004, 0.000006, 0.377936 ] ]
null
[ [ 0.01507530423701961, -6.241509125883259e-8, 0 ], [ -6.241509125883259e-8, 0.015074680086107023, 0 ], [ 0, 0, 0.005585276856387892 ] ]
true
null
null
-36.075371
null
0.15683
0.378486
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:11:48
8124359839834430387657620504276471445209619658487594896950710713840096532928593046142194913806654385393634855317923215929116618356546104056225477984734191
PO_8124359839834430387657620
null
null
null
[ "train_2nd_stage_93" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12844508579748401682619150930676611550739109667981629661449767045157879987505267851383484454403900850132482804608890324551361834842377221686336229073205006
CO_1284450857974840168261915
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNiTi6
AlNiTi6
A6BC
[ 13, 28, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.125, 0.125, 0.75 ]
3
8
[ [ 3.96542, -0.02835, 0.00276 ], [ -0.00276, -0.02835, -3.96542 ], [ 2.02367, 8.0861, -2.02367 ] ]
[ [ 3.96328, -0.02956, -3.96328 ], [ 3.98325, 3.90898, -3.98325 ], [ 1.9943, 2.02561, -3.97703 ], [ 2.00843, 6.02636, -3.99295 ], [ 1.98227, 0.01912, -1.98227 ], [ 3.97703, 2.02561, -1.9943 ], [ 2.00144, 4.00065, -2.00144 ], [ 3.99295, 6.02636, -2.00843 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7128092614028272884435177320093273363982339779763466696461743724662145348755085323319746418609350201239431969943360069678397668159161520190936853732381412
1
VASP
DFT
null
[ [ -0.001947, -0.220967, 0.001949 ], [ -0.002698, 0.212699, 0.002698 ], [ -0.00078, 0.054122, -0.00426 ], [ 0.00375, -0.073431, -0.002195 ], [ -0.00554, -0.135838, 0.005539 ], [ 0.004259, 0.054244, 0.000778 ], [ 0.000758, 0.182264, -0.00076 ], [ 0.002198, -0.073093, -0.003749 ] ]
null
[ [ 0.005415008487433797, -0.00025858572308534337, 0.00024179606353671738 ], [ -0.00025858572308534337, -0.002380012259881804, 0.00025839847781156686 ], [ 0.00024179606353671738, 0.00025839847781156686, 0.005428552562236964 ] ]
true
null
null
-57.473616
null
0.125943
0.220984
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:30:33
8708533055124547408218632919309747680858273251939811819652125005573973692223310208926130126733398591367012150528708416937202615385382756174684190068545543
PO_8708533055124547408218632
null
null
null
[ "train_1st_stage_910" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7814020624683154144794739721281780105993204608861298326206347808991393037747784584792661839029888959967030123219985467950199854114265899855215076661767359
CO_7814020624683154144794739
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ti10
AlTi5
A5B
[ 13, 13, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.16666666666666666, 0.8333333333333334 ]
2
12
[ [ 1.73588, -4.34398, -1.72059 ], [ -4.36067, -0.425172, -3.48934 ], [ 4.35743, 4.30084, -3.79923 ] ]
[ [ -0.30157, -0.21836, -0.37848 ], [ -0.06989, -2.28688, -4.93875 ], [ 1.85404, -0.25153, -5.39955 ], [ -0.51401, -2.50438, -2.15015 ], [ -2.02053, -0.22099, -4.93113 ], [ -0.0808, 1.83875, -5.43373 ], [ 1.85889, 3.87728, -5.91824 ], [ 2.12708, -2.08168, -3.19823 ], [ -0.2939, -0.46833, -7.17208 ], [ -2.7116, -2.70943, -3.87545 ], [ 0.14255, -0.00086, -3.16709 ], [ 2.13192, 2.04713, -3.71691 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2764071471434272054530838659782552363376903509074791204755918728120277809879746468165470269678965423314926720978828446038204263569765708280248554730890079
1
VASP
DFT
null
[ [ 0.071891, -0.283238, 0.016321 ], [ -0.071694, 0.283732, -0.016542 ], [ -0.030245, 0.129614, -0.027984 ], [ -0.045578, -0.28075, 0.109137 ], [ -0.065872, 0.131102, -0.102097 ], [ -0.164159, 0.096569, 0.163209 ], [ -0.211428, 0.229861, 0.239932 ], [ 0.21143, -0.228783, -0.239487 ], [ 0.163368, -0.096855, -0.162725 ], [ 0.065765, -0.13148, 0.100603 ], [ 0.046479, 0.280505, -0.109006 ], [ 0.030044, -0.130277, 0.028639 ] ]
null
[ [ -0.038965741472889184, 0.008346146003131091, -0.012545183682660313 ], [ 0.008346146003131091, -0.027232203636958725, -0.014304977180703098 ], [ -0.012545183682660313, -0.014304977180703098, -0.030357888992109804 ] ]
true
null
null
-87.352119
null
0.259355
0.393834
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:22:07
9203665146274214467304537564132380368996008632756693383993515056657909075840366280949349019581745296893856368384422328064021530198994985139586752789552393
PO_9203665146274214467304537
null
null
null
[ "train_1st_stage_422" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4200018197725516887656237473453989471233652459693306738386027132424618801173909035268358688370999848575779716841536274017981317967412521628738402747392364
CO_4200018197725516887656237
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni2Ti
Ni2Ti
A2B
[ 28, 28, 22 ]
[ "Ni", "Ti" ]
[ 0.6666666666666666, 0.3333333333333333 ]
2
3
[ [ 0.004034, 1.94943, 1.8684 ], [ 3.59651, -0.007648, 0.000221 ], [ 1.80606, 3.60154, -1.81043 ] ]
[ [ 3.60059, 1.96168, 1.84786 ], [ 1.80216, 1.82787, 0.04016 ], [ 3.6044, 3.69555, 0.0388 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7637816410531827228361710183788327411303374790017618750281555592118509615065529457704672886587852745834634961541231782086369610851287177374930037863677449
1
VASP
DFT
null
[ [ 0.000275, -0.066873, 0.071312 ], [ -0.000308, 0.066942, -0.071352 ], [ 0.000034, -0.00007, 0.000041 ] ]
null
[ [ 0.005138572048248427, -0.000023343244130803382, 0.000021907697031850237 ], [ -0.000023343244130803382, -0.004646616298946309, 0.003266618631213521 ], [ 0.000021907697031850237, 0.003266618631213521, -0.004988650999044711 ] ]
true
null
null
-19.911132
null
0.06523
0.097839
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:09:13
10441220739249908601629387237588258218523446605330577228190286127290490193671145665594947782146855800629214133048832009018789233912952440066980103935341635
PO_1044122073924990860162938
null
null
null
[ "train_1st_stage_546" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
1302950234968601972434113303491826803593606008320144635590994644120771168548715227880823446390378193252339502368831456341413987369218375161505155657951459
CO_1302950234968601972434113
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al8Ti4
Al2Ti
A2B
[ 13, 13, 13, 13, 13, 13, 13, 13, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.6666666666666666, 0.3333333333333333 ]
2
12
[ [ 4.14183, -3.84129, 0.07528 ], [ -0.019169, 3.89144, -3.93395 ], [ 4.13555, 6.02478, 2.04156 ] ]
[ [ 4.10408, 9.83834, -1.87678 ], [ 1.88936, 1.97116, -0.00537 ], [ 4.13217, 4.02717, 0.08231 ], [ 4.14382, 2.03272, -1.81418 ], [ 2.24718, -1.87519, 0.08042 ], [ 4.14885, 0.17385, 0.05944 ], [ 4.1091, 7.97947, -0.00316 ], [ 4.12076, 5.98502, -1.89965 ], [ 2.11263, 0.03651, -1.91732 ], [ 6.06376, 3.94516, -1.96598 ], [ 6.33099, 2.22573, 0.22392 ], [ 2.00474, 3.9509, -1.94159 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3332131932021074328246072274998636412638884760014533447983139104748296699085172991824817868664476588138761151495000449024721126176717852443466454502110991
1
VASP
DFT
null
[ [ 0.107231, 0.016772, -0.236613 ], [ 0.566197, 0.034771, 0.006492 ], [ -0.005974, -0.042565, 0.044567 ], [ -0.144688, 0.204926, -0.015063 ], [ -0.566198, -0.033979, -0.005775 ], [ -0.107011, -0.017281, 0.237112 ], [ 0.144957, -0.204326, 0.014516 ], [ 0.006066, 0.042823, -0.04433 ], [ -0.127449, 0.125223, 0.104238 ], [ 0.449447, 0.08379, 0.068726 ], [ -0.449415, -0.084035, -0.068951 ], [ 0.126838, -0.126118, -0.104919 ] ]
null
[ [ 0.021649111308764894, 0.006584916957989355, 0.00679744034372568 ], [ 0.006584916957989355, -0.011823477982434433, 0.005247299137221314 ], [ 0.00679744034372568, 0.005247299137221314, -0.012653349035811869 ] ]
true
null
null
-65.984594
null
0.301717
0.567301
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:27:23
8517898977041316059518756538866300829595501579517971957805169359750578308114253727668784612554561982362130272655200861378092652948780852460058293641238251
PO_8517898977041316059518756
null
null
null
[ "train_1st_stage_894" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
8394464682288840315486859127587623598643285634910035014695788623713104147742910150653302004980701477911578301285039753792568321699736626893010478509270978
CO_8394464682288840315486859
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
NiTi7
NiTi7
A7B
[ 28, 22, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.125, 0.875 ]
2
8
[ [ 0, 0, 4.07218 ], [ 4.07218, 0, 0 ], [ 0, 7.91157, 0 ] ]
[ [ 0, 0, 0 ], [ 2.03609, 1.87305, 0 ], [ 0, 3.95579, 0 ], [ 2.03609, 6.03852, 0 ], [ 2.03609, 0, 2.03609 ], [ 0, 1.87305, 2.03609 ], [ 2.03609, 3.95579, 2.03609 ], [ 0, 6.03852, 2.03609 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10452346708320065397786171035938856428022483484849446224330671300459870718184557161288271207990432554061263234039752314080320368750745028611747128356255459
1
VASP
DFT
null
[ [ 0, 0.000006, -0.000001 ], [ -0.000002, 0.28136, 0.000002 ], [ 0.000003, 0.000028, 0.000001 ], [ 0.000007, -0.281383, 0.000003 ], [ -0.000004, 0.000057, -0.000004 ], [ 0, 0.28115, -0.000002 ], [ -0.000003, 0.000011, 0.000002 ], [ 0, -0.28123, -0.000002 ] ]
null
[ [ 0.011469771660270628, -1.2483018251766518e-7, 6.241509125883259e-8 ], [ -1.2483018251766518e-7, 0.0021086938581796584, 0 ], [ 6.241509125883259e-8, 0, 0.01144929951033773 ] ]
true
null
null
-60.242193
null
0.140653
0.281383
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:11:10
4112602386221990102542185100030303548124154065633056673619718178612374794414205307723602947671884780588890646618084676261665710429842237554736215368840786
PO_4112602386221990102542185
null
null
null
[ "train_1st_stage_673" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4895606403997805476813030936768902435731040801792911915491371049874076041195967480149970777883883198072896594798816760325551896955256588404383940714838096
CO_4895606403997805476813030
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni2Ti4
Al2NiTi2
A2B2C
[ 13, 13, 13, 13, 28, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.4, 0.2, 0.4 ]
3
10
[ [ 6.11966, -0.00016, 0.000707 ], [ -0.000115, 6.11932, 0.000725 ], [ -0.000474, -0.000491, 4.07532 ] ]
[ [ 1.22125, 3.69315, 1.83447 ], [ 4.89787, 2.42556, 1.83475 ], [ 2.42575, 1.22118, 1.83432 ], [ 3.69337, 4.89752, 1.83491 ], [ 6.1193, 6.11893, 1.83531 ], [ 3.05934, 3.05914, 3.87226 ], [ 1.8556, 5.39952, 3.87241 ], [ 4.26303, 0.71871, 3.87213 ], [ 0.71875, 1.85539, 3.87186 ], [ 5.3999, 4.26284, 3.87269 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
1422923505741965592634053071037085895324500756092467018901921398857286932239487528699613167328230507824202492070129792449900819541195045617403366212858317
1
VASP
DFT
null
[ [ -0.034735, 0.106119, 0.000209 ], [ 0.03466, -0.106313, 0.000147 ], [ -0.106009, -0.034444, 0.000152 ], [ 0.106076, 0.034711, 0.000126 ], [ 0.000042, 0.000062, 0.000109 ], [ -0.000032, -0.000025, 0.000123 ], [ -0.267922, 0.26486, -0.000216 ], [ 0.268262, -0.264916, -0.000182 ], [ -0.26511, -0.267233, -0.000295 ], [ 0.264768, 0.267178, -0.000173 ] ]
null
[ [ 0.008556047955034547, 0.000005242867665741937, -0.0000024341885590944705 ], [ 0.000005242867665741937, 0.008540569012402357, -0.0000027462640153886334 ], [ -0.0000024341885590944705, -0.0000027462640153886334, 0.02387757972707025 ] ]
true
null
null
-60.705044
null
0.195315
0.377021
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:49:05
968540162600217489151854053268241606792646367151348965351176654725589079232219886744404947680658864173570208072712561474781712460126502607987605228940688
PO_9685401626002174891518540
null
null
null
[ "train_2nd_stage_91" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11578234998468476930810796478678020594773658559551853084246337360682765115513347255381270047402717770999289804697707715951642168276146620702375387080778321
CO_1157823499846847693081079
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni7Ti2
Al3Ni7Ti2
A7B3C2
[ 13, 13, 13, 28, 28, 28, 28, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.25, 0.5833333333333334, 0.16666666666666666 ]
3
12
[ [ 3.917, -0.650316, -0.788238 ], [ -1.07709, 2.60133, 2.92316 ], [ 1.15863, -10.0844, 3.7064 ] ]
[ [ 1.2475, -9.75709, 3.65426 ], [ 2.354, -0.41745, 1.44066 ], [ 1.82228, -7.0613, 4.29638 ], [ 0.68377, 1.17929, 2.22355 ], [ 2.37398, -2.25044, 3.06464 ], [ 0.12964, -3.41421, 3.26264 ], [ 1.80231, -5.2283, 2.6724 ], [ 3.49251, -8.65804, 3.51349 ], [ 0.10922, -1.5381, 1.60058 ], [ 0.15006, -5.29033, 4.9247 ], [ 1.78255, -3.4182, 1.06877 ], [ 3.47083, -6.66187, 1.74512 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4801857133937765734828141953782624920298046290580411775149924380313603113943411375532695446551666426198427792216543053667730503111945773096947776773017687
1
VASP
DFT
null
[ [ 0, -0.000791, 0.000719 ], [ 0.006238, -0.274526, 0.255176 ], [ -0.006283, 0.275204, -0.255895 ], [ 0.001244, 0.027867, -0.026178 ], [ -0.004736, 0.237062, -0.208092 ], [ 0.000128, -0.001083, 0.001235 ], [ 0.004878, -0.2381, 0.20883 ], [ -0.001578, -0.026892, 0.025131 ], [ 0.003464, -0.021321, 0.027605 ], [ -0.003318, 0.022466, -0.028197 ], [ 0.010811, 0.429539, -0.349559 ], [ -0.010848, -0.429428, 0.349226 ] ]
null
[ [ 0.03603984682485763, 0.00043359763897510994, 0.000574468499946295 ], [ 0.00043359763897510994, 0.03129573815336502, 0.0035760102385835536 ], [ 0.000574468499946295, 0.0035760102385835536, 0.03339394627621319 ] ]
true
null
null
-71.431143
null
0.219958
0.553906
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:29:06
6202862475637416809109423607372211572288486318796175308092556732075331567767989026732919526460817996353644111576422092665615223201841673406585508256499868
PO_6202862475637416809109423
null
null
null
[ "train_2nd_stage_810" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9782987050768646342016903611703245202654267932249809309525785987488773967063767127545306613012451825330750825850790882548091695856334350803890100320042305
CO_9782987050768646342016903
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni7Ti3
Al2Ni7Ti3
A7B3C2
[ 13, 13, 28, 28, 28, 28, 28, 28, 28, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.16666666666666666, 0.5833333333333334, 0.25 ]
3
12
[ [ 0.041647, 4.39162, 0.000956 ], [ -4.75209, -0.013671, 3.63587 ], [ 2.81867, 0.021141, 3.93542 ] ]
[ [ -3.97505, 3.86, 3.86341 ], [ -2.65294, 2.43316, 5.18247 ], [ 0.20895, 4.27146, 3.98704 ], [ -2.07844, 0.44459, 3.6752 ], [ -3.87981, 1.64877, 3.76449 ], [ 1.5211, 2.66175, 3.72719 ], [ -0.33383, 1.96905, 3.59107 ], [ -0.93096, 1.04965, 5.64777 ], [ 0.20342, 3.01985, 1.80133 ], [ -2.83465, 1.29657, 6.12501 ], [ -1.08498, 0.768, 1.51519 ], [ -2.75748, 2.93838, 2.26669 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6419980383258632822912937634578344518748673458505009270466272581044333855743046919370973502090864540173548844433284698173694599772706854914241979960480632
1
VASP
DFT
null
[ [ -2.298852, 4.883849, -3.807711 ], [ 11.400053, 26.052011, -19.922309 ], [ -1.295044, 0.068938, -0.884343 ], [ 1.749982, -0.917806, -0.456655 ], [ -2.859917, -0.471295, 0.509696 ], [ 5.08546, 5.613995, 5.773532 ], [ -5.800405, -0.387585, 1.597355 ], [ 4.585076, -3.581095, -2.475985 ], [ -6.32138, 0.232672, 5.121586 ], [ -8.410936, -31.882393, 17.990485 ], [ 0.059369, 0.502043, 0.643925 ], [ 4.106595, -0.113335, -4.089576 ] ]
null
[ [ 0.38642038085093494, -0.00367244155457845, -0.1023498894386064 ], [ -0.00367244155457845, 0.49454073272169424, -0.10254911840990459 ], [ -0.1023498894386064, -0.10254911840990459, 0.449798224892435 ] ]
true
null
null
-49.588214
null
10.171659
37.561794
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:19:52
6785285642808428106954009497094492073224898561101949047853712258793789053327249967895639740096131735217328510203220227380681685759362334338799300810380848
PO_6785285642808428106954009
null
null
null
[ "train_1st_stage_1977", "train_1st_stage_1777", "train_1st_stage_1577", "train_1st_stage_1377" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9018458582312868245705229173030888989444196095957423352310731887678056758804207809019475125713342942253487397358258168502744059106761597502095681585896179
CO_9018458582312868245705229
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni2Ti
Ni2Ti
A2B
[ 28, 28, 22 ]
[ "Ni", "Ti" ]
[ 0.6666666666666666, 0.3333333333333333 ]
2
3
[ [ 2.0264, -3.50983, 0 ], [ 2.0264, 3.50983, 0 ], [ 0, -0.000001, 2.5886 ] ]
[ [ 2.0264, 1.16994, 0.83446 ], [ 2.0264, -1.16994, 1.75414 ], [ 0, 0, 0 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2164287359135334191767955063719105939681998249494689162260682550839195374844304278409563447775957292576887789721949619318706606401233829614645607626872479
1
VASP
DFT
null
[ [ -0.000001, 0.000028, -0.065235 ], [ -0.000002, -0.000034, 0.06527 ], [ 0.000003, 0.000005, -0.000035 ] ]
null
[ [ -0.0025744352691530674, 0, 0 ], [ 0, -0.00257374870314922, -6.241509125883259e-8 ], [ 0, -6.241509125883259e-8, 0.0006987369466426306 ] ]
true
null
null
-19.702971
null
0.043513
0.06527
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:38:12
12213748600678703214474577041403939787241539593582909855506372606700402977290715961065601236948731721776092329604694672571461429938596713758085269978934671
PO_1221374860067870321447457
null
null
null
[ "train_2nd_stage_416" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
3821165802209694559697080032945086659661295318396512139649157369328299180021337038018680658685179204994806223035046340948107507865964485210110834081094006
CO_3821165802209694559697080
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni3Ti9
NiTi3
A3B
[ 28, 28, 28, 22, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.25, 0.75 ]
2
12
[ [ 4.07238, 0, 0 ], [ 0, 4.63419, -3.05324 ], [ 0, 6.19834, 5.72888 ] ]
[ [ 0, 10.3756, 2.43661 ], [ 2.03619, 2.72571, 0.30983 ], [ 0, 8.29824, 0.596 ], [ 0, 4.56865, 0.44675 ], [ 2.03619, 6.41195, 0.4741 ], [ 2.03619, 6.72554, 4.46801 ], [ 0, 2.42208, -1.3979 ], [ 2.03619, 4.54796, -1.54794 ], [ 0, 1.91134, 1.50031 ], [ 2.03619, 4.36336, 2.39528 ], [ 0, 6.3847, 2.57005 ], [ 2.03619, 8.57721, 2.27608 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7208881152742186562477163322866157277336394207723689994138194376480491380711405438903132505977381516852070298672123377861797380546598139894120994751769441
1
VASP
DFT
null
[ [ 0.000001, -0.114215, -0.157459 ], [ 0, -0.080399, 0.024428 ], [ 0.000002, 0.228402, 0.101647 ], [ 0, 0.071009, 0.096468 ], [ 0.000003, 0.214542, -0.011883 ], [ 0.000002, 0.301858, 0.180227 ], [ -0.000001, 0.041647, -0.183207 ], [ 0, -0.249602, -0.084969 ], [ -0.000001, 0.053188, -0.085401 ], [ -0.000001, -0.100459, -0.263014 ], [ 0.000001, -0.265781, 0.51134 ], [ -0.000007, -0.100189, -0.128175 ] ]
null
[ [ -0.0051654729525809845, 6.241509125883259e-8, 0 ], [ 6.241509125883259e-8, -0.009099745814990238, -0.0036054077465664637 ], [ 0, -0.0036054077465664637, 0.009596882016866839 ] ]
true
null
null
-88.100443
null
0.232288
0.576288
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:52:32
3064314221594803443383946850498357266792909876618467765135222821646023477699987084313717595797473770447962762333922624719536192808903925667922526260666135
PO_3064314221594803443383946
null
null
null
[ "train_1st_stage_1076", "train_1st_stage_874" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
3334717036383098295176814930681573501088117902600335326431840560103728328335554514841113422103818688366660834524382923979636682503368808511660794925741523
CO_3334717036383098295176814
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni5
Al3Ni5
A5B3
[ 13, 13, 13, 28, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.375, 0.625 ]
2
8
[ [ 2.664037, 0.000001, -2.664038 ], [ 2.647392, 3.326563, 2.647399 ], [ 2.647399, -3.326575, 2.647393 ] ]
[ [ 7.79308, -0.00305, 2.47418 ], [ 5.45499, -0.00306, 0.13609 ], [ 2.6446, -0.00299, -0.01024 ], [ 3.96829, -1.66633, 1.31343 ], [ 3.9683, 1.66022, 1.31345 ], [ 3.97661, -1.49191, -1.34226 ], [ 3.97663, 1.48586, -1.34225 ], [ 5.292, -0.00308, 2.63714 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10890468891825868062937389294064503013184261973810768854924274495265925181204116761971518682611859939552036553190760377223916490578964832575373237497979371
1
VASP
DFT
null
[ [ -0.013911, 0.000201, -0.013839 ], [ 0.013851, -0.000053, 0.013919 ], [ -0.000017, -0.000034, 0.000063 ], [ 0.000015, -0.00003, -0.000044 ], [ 0.000084, -0.000011, 0.000035 ], [ 0.000032, 0.027979, -0.000004 ], [ -0.000093, -0.028161, -0.000113 ], [ 0.000039, 0.000108, -0.000017 ] ]
null
[ [ 0.0009725519519951292, 0.000001622792372729647, -0.000029397507982910144 ], [ 0.000001622792372729647, 0.0013269448401627807, 0.0000015603772814708146 ], [ -0.000029397507982910144, 0.0000015603772814708146, 0.0009726143670863881 ] ]
true
null
null
-43.126829
null
0.011967
0.028161
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:21:25
13022548535127698085953939209155314367975853699479297563820542633385198696851724167214250887429779176630582055120967208200229783067324183238231516932408978
PO_1302254853512769808595393
null
null
null
[ "train_1st_stage_356" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5678962952041415941007735134282351054989667371908673593468164403644516597548317378288782937220679332536291157078846917434344590614555047740088045795328768
CO_5678962952041415941007735
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni2
Ni
A
[ 28, 28 ]
[ "Ni" ]
[ 1 ]
1
2
[ [ 3.47476, 0.124321, 0.084592 ], [ 2.11637, 2.75869, 0.084593 ], [ 2.11637, 1.09129, 2.53508 ] ]
[ [ 1.94349, 1.00215, 0.6819 ], [ 5.76399, 2.97215, 2.02237 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4231997204114943739593363641686954192405937320790276325827816467641289016913413445487234921500409130244053232229693228071217161701494676193358698407988780
1
VASP
DFT
null
[ [ -0.350184, -0.180584, -0.122849 ], [ 0.350184, 0.180584, 0.122849 ] ]
null
[ [ 0.016703152232141222, 0.007577067248639758, 0.0051556113681620885 ], [ 0.007577067248639758, 0.005915452689147117, 0.002658508397078715 ], [ 0.0051556113681620885, 0.002658508397078715, 0.003817494226663977 ] ]
true
null
null
-9.638256
null
0.412712
0.412712
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:02:06
8388233127010158638882900500872646741525888612813664675582985733083448108278072547249261270376039928895583176884629230639747101165252948274158433710458674
PO_8388233127010158638882900
null
null
null
[ "train_1st_stage_2264" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7918215574567134005732884105527913626870953959091272253928370480390768191594105978902306772315613416741712671887538621028637525288355365213351890643648798
CO_7918215574567134005732884
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni4Ti4
AlNiTi
ABC
[ 13, 13, 13, 13, 28, 28, 28, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.3333333333333333, 0.3333333333333333, 0.3333333333333333 ]
3
12
[ [ 5.0102, 0, 0 ], [ 0, 5.12609, 0 ], [ 0, 0, 6.94474 ] ]
[ [ 3.75765, 0.65306, 0.16945 ], [ 1.25255, 4.47303, 6.77529 ], [ 3.75765, 4.47303, 3.64182 ], [ 1.25255, 0.65306, 3.30292 ], [ 3.75765, 1.86436, 2.77373 ], [ 1.25255, 3.26173, 4.17101 ], [ 3.75765, 3.26173, 6.2461 ], [ 1.25255, 1.86436, 0.69864 ], [ 0, 0.53311, 5.20856 ], [ 2.5051, 4.59298, 1.73619 ], [ 0, 4.59298, 1.73619 ], [ 2.5051, 0.53311, 5.20856 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2532995637055390224124922845398808038607373506062671741829956994846851403860049281601146270631270921939648180431314573747448879491264266554887600979894884
1
VASP
DFT
null
[ [ 0.000175, 4.111869, 2.224487 ], [ -0.00015, -4.112184, -2.22424 ], [ 0.000164, -4.11216, 2.224532 ], [ -0.000143, 4.111995, -2.224345 ], [ -0.000077, -0.391067, 0.196641 ], [ 0.000083, 0.39089, -0.196753 ], [ -0.000043, 0.390715, 0.196663 ], [ 0.000083, -0.391065, -0.196618 ], [ 0.000133, 3.241786, 0.000006 ], [ -0.000163, -3.241252, -0.000159 ], [ 0.000091, -3.241551, -0.000169 ], [ -0.000154, 3.242024, -0.000046 ] ]
null
[ [ 0.15271818151848043, -2.4966036503533035e-7, 0.0000026214338328709683 ], [ -2.4966036503533035e-7, -0.07232448563763239, -6.865660038471584e-7 ], [ 0.0000026214338328709683, -6.865660038471584e-7, 0.2806754225233044 ] ]
true
null
null
-58.509911
null
2.784803
4.675297
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:15:41
9992025633966948910740498272368659165810898482644604226070620109581504336043828666797298474044812901967633753760148187862586960318158165817749944030117705
PO_9992025633966948910740498
null
null
null
[ "train_1st_stage_2254" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
2642942927408824285540242500120434084882571384758327985134011462358884802607533260591800399714087863179501661999627052947529665143813878418283088548455232
CO_2642942927408824285540242
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ti4
AlTi2
A2B
[ 13, 13, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
6
[ [ -1.38166, 2.61911, -4.759 ], [ 1.38166, 2.61911, -4.759 ], [ 0, -10.217, 4.90899 ] ]
[ [ 0, 0.0219, -4.68308 ], [ 0, -6.73229, 2.4619 ], [ 0, -0.10981, 0.00466 ], [ 0, -5.06834, 0.05035 ], [ 0, -1.64206, -2.27154 ], [ 0, 3.61637, -7.13483 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6973737379143639561573006589176184278312502219949154081126340146838860507994792118846701584867454353273461617251420331673339336080142614332119422909188493
1
VASP
DFT
null
[ [ 0, -0.119004, 0.117521 ], [ 0, 0.119121, -0.117155 ], [ 0.000002, 0.433722, -0.198661 ], [ -0.000006, -0.099613, 0.583301 ], [ 0.000003, 0.098506, -0.584256 ], [ 0.000001, -0.432732, 0.19925 ] ]
null
[ [ -0.02598621117015865, 0, 0 ], [ 0, 0.00732403646867645, 0.0022098063060189675 ], [ 0, 0.0022098063060189675, 0.011455166528916061 ] ]
true
null
null
-40.294758
null
0.412005
0.592502
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:17:01
5032656278077657914101027606065580455016076663622284468152162868124461448943099792169288873626785459376679922417889881246773327471630438279564292491628449
PO_5032656278077657914101027
null
null
null
[ "train_2nd_stage_411" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10736198039864790059400535169219000916219565854823703452817324969338689874507661412174502901337494424985402561493506199712144707099841464170534193948816273
CO_1073619803986479005940053
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni5Ti
Al3Ni5Ti
A5B3C
[ 13, 13, 13, 28, 28, 28, 28, 28, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.3333333333333333, 0.5555555555555556, 0.1111111111111111 ]
3
9
[ [ -1.18972, 2.61124, 2.65534 ], [ 3.82414, -0.565214, -0.612626 ], [ -0.097501, 5.24423, -5.1772 ] ]
[ [ 0.01235, 0.08587, -0.07385 ], [ 2.16701, 1.68446, -0.69075 ], [ 0.48247, 3.77882, -0.6138 ], [ 0.48261, 2.0648, 1.07033 ], [ 0.00905, 1.73715, -1.70799 ], [ 2.13216, 3.42298, -2.40664 ], [ -0.05694, 3.5458, -3.49422 ], [ 2.05963, 5.17712, -4.1403 ], [ 0.39787, 5.61088, -2.43936 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6313223488418089958116697368603978796004996241745232240489757056363029853525086275604036112801631305349343917859755378646414200834791932986423390561834555
1
VASP
DFT
null
[ [ -0.092294, -0.828672, 0.769935 ], [ -0.109114, -0.230662, 0.257884 ], [ -0.000572, 0.513279, -0.626421 ], [ 0.101639, 0.7222, -0.713453 ], [ -0.032629, 0.541515, -0.465691 ], [ -0.148001, -0.547273, 0.550935 ], [ 0.028755, -0.068834, 0.048314 ], [ 0.075658, 0.203298, -0.205329 ], [ 0.176557, -0.304852, 0.383828 ] ]
null
[ [ 0.10147545401007015, -0.000456691222740878, -0.002412468107336397 ], [ -0.000456691222740878, 0.0995031995413823, 0.005621415194226756 ], [ -0.002412468107336397, 0.005621415194226756, 0.10017235173476824 ] ]
true
null
null
-50.277717
null
0.637983
1.134908
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:40:28
10963450249498421150564000535103318144568253252032147434032281975254295052796704920435311645698313875634663332341414614254011155445566137070974106482358176
PO_1096345024949842115056400
null
null
null
[ "train_2nd_stage_730" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4567323290634501709091957707067286830567334518227145019403882401563539142119008827382820925954441294407012634915671082297696050334324018369164278100003008
CO_4567323290634501709091957
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ti
Al4Ti
A4B
[ 13, 13, 13, 13, 22 ]
[ "Al", "Ti" ]
[ 0.8, 0.2 ]
2
5
[ [ 6.45131, -0.009468, 0.028581 ], [ -0.010106, 6.45165, 0.02853 ], [ 3.24263, 3.24152, 1.95795 ] ]
[ [ 4.56071, 5.81222, 1.97308 ], [ 7.11913, 4.55755, 1.98065 ], [ 5.12312, 3.87148, 0.04198 ], [ 2.5647, 5.12615, 0.03441 ], [ 0, 0, 0 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
8325158851621773711960451485150893687221302183843713366086998015111829337112264701803148106383333962709711293141735270196804540124698357471784537850924941
1
VASP
DFT
null
[ [ -0.048995, -0.183077, -0.017597 ], [ 0.171465, -0.044473, 0.068122 ], [ 0.049007, 0.183083, 0.017604 ], [ -0.171462, 0.044475, -0.068139 ], [ -0.000015, -0.000007, 0.00001 ] ]
null
[ [ -0.0034195356047976603, -0.0005976869138945807, 0.003232539991386198 ], [ -0.0005976869138945807, -0.003316425874038069, 0.002837015558078976 ], [ 0.003232539991386198, 0.002837015558078976, 0.0002448544030084002 ] ]
true
null
null
-23.860199
null
0.152055
0.190344
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:59:02
7489000008461137247680693501213911503065736483050584407326384692875916095988898246616354571951738094697532744926934827727395299118966766000313535582511653
PO_7489000008461137247680693
null
null
null
[ "train_2nd_stage_475" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12245735872062215934382655024268068800963780793438074184369706560789737604037492332983506300271204189598326015514360683706885364980457499852161377134933843
CO_1224573587206221593438265
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al10Ni6
Al5Ni3
A5B3
[ 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 28, 28, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.625, 0.375 ]
2
16
[ [ -4.79476, 4.42821, 2.50113 ], [ 4.42821, -4.79476, 2.50114 ], [ 4.81053, 4.81053, -2.54196 ] ]
[ [ -0.14151, 4.46997, 1.22406 ], [ 4.58919, -0.02229, 1.2383 ], [ 0.68992, 2.00255, 0.19122 ], [ 3.75775, 2.44513, 2.27114 ], [ 5.3216, 2.62685, -0.06598 ], [ -0.87393, 1.82083, 2.52834 ], [ 2.62841, 3.94103, -0.22999 ], [ 1.81927, 0.50665, 2.69235 ], [ -2.79065, 3.73755, 2.52834 ], [ 7.23833, 0.71012, -0.06598 ], [ -0.06519, -0.11438, 1.25159 ], [ -0.29766, -0.24847, 3.75273 ], [ 1.53134, 6.14283, 0.31167 ], [ 2.91634, -1.69515, 2.15069 ], [ 1.34596, 2.91844, 2.48175 ], [ 3.10172, 1.52923, -0.01938 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9424572918308540875647377958095967220284756260818760960406920839569290637697291255631202208334339589123594348841003217228531438548092628250675049284484443
1
VASP
DFT
null
[ [ 0.041345, 0.041385, -0.104858 ], [ -0.041652, -0.041645, 0.104749 ], [ -0.091292, 0.016915, -0.094516 ], [ 0.091214, -0.016899, 0.094371 ], [ -0.008869, 0.023993, 0.020309 ], [ 0.009147, -0.023818, -0.020181 ], [ -0.016879, 0.091133, 0.094399 ], [ 0.017004, -0.091365, -0.094415 ], [ -0.023796, 0.009246, -0.020243 ], [ 0.024036, -0.008876, 0.020307 ], [ -0.048018, 0.048045, 0.000009 ], [ 0.048096, -0.047978, -0.00001 ], [ -0.232382, -0.232412, 0.089798 ], [ 0.232198, 0.232244, -0.089626 ], [ 0.034555, -0.034596, -0.000035 ], [ -0.034708, 0.034628, -0.000058 ] ]
null
[ [ -0.022879125512202704, -0.002224536267556052, 0.0021472663845776173 ], [ -0.002224536267556052, -0.022880124153662848, 0.002147016724212582 ], [ 0.0021472663845776173, 0.002147016724212582, -0.01219778128471365 ] ]
true
null
null
-77.438297
null
0.113451
0.340706
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:25:01
12644932222028052275377582097755379750007532394092079883889077838842576248791865942770034937584658202415978854574440480235891325202814264554656282332513127
PO_1264493222202805227537758
null
null
null
[ "train_2nd_stage_118" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
8315616078338701350442282517462822240418386109496304732565806758476881108742371985531846628982171014991974104802512665527882957431274820572158214523419860
CO_8315616078338701350442282
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlTi2
AlTi2
A2B
[ 13, 22, 22 ]
[ "Al", "Ti" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
3
[ [ -2.02258, 0, 2.02258 ], [ 2.02258, 2.02258, 0 ], [ -3.97982, 3.97982, -3.97982 ] ]
[ [ 0, 0, 0 ], [ -1.98488, 4.00745, -1.98488 ], [ -1.99494, 1.99494, 0.02763 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
626167397094916065888949890556116933370157248737993269160922405696460630277071206714192456124892090063247887419498286080785164184010934561084898175421692
1
VASP
DFT
null
[ [ 0.000255, -0.000274, 0.000247 ], [ 0.28312, -0.283096, 0.283113 ], [ -0.283375, 0.283369, -0.28336 ] ]
null
[ [ -0.008993515329667703, -0.0027987551071373116, 0.002798692692046053 ], [ -0.0027987551071373116, -0.008993889820215257, -0.0027991295976848647 ], [ 0.002798692692046053, -0.0027991295976848647, -0.008993889820215257 ] ]
true
null
null
-19.795945
null
0.327206
0.490808
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:21:29
3620418519450444504093783504436887767514064822212870693643975008401487207457682598153606452407645499249341673001201112278923439423308843267031200636867591
PO_3620418519450444504093783
null
null
null
[ "train_2nd_stage_193" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
3971920104275907393940948800387858795131213587558427915559222457181919090219115781948062172765844399351725659613990535877642433583824637947757293619052949
CO_3971920104275907393940948
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
NiTi4
NiTi4
A4B
[ 28, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.2, 0.8 ]
2
5
[ [ 0.251712, 2.12162, 2.07657 ], [ 5.10597, 1.85736, -0.318986 ], [ -1.79364, 2.29092, -4.30189 ] ]
[ [ 5.10596, 1.85736, -0.31899 ], [ 1.64779, 2.06807, -0.16156 ], [ 3.65889, 3.97853, -0.20181 ], [ -0.09485, 2.29137, -2.34249 ], [ 1.91624, 4.20183, -2.38274 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
8703723313185048174298345847563729076528855792791977705950117851196895845402244207685337947942126929634257442325014982734918128771629931576744631402411387
1
VASP
DFT
null
[ [ 0.000143, 0.000562, -0.000575 ], [ 0.076827, -0.075601, 0.081455 ], [ 0.177423, 0.054987, -0.123675 ], [ -0.176976, -0.055026, 0.123657 ], [ -0.077416, 0.075078, -0.080863 ] ]
null
[ [ -0.001788691685295624, 0.0026154419841101207, -0.0005289678984186062 ], [ 0.0026154419841101207, -0.005827821901019716, -0.0014470938908360334 ], [ -0.0005289678984186062, -0.0014470938908360334, -0.0040526742905272585 ] ]
true
null
null
-37.446777
null
0.143333
0.223155
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:48:39
12961845363509511777335130686218437246388273821610071724287008002833946548335890275704242192422009710296637696520971108305696718594447984198056028847370566
PO_1296184536350951177733513
null
null
null
[ "train_1st_stage_950" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
8611315723718732835676897099307124339002919165841388128257626108719054429349579138176082694042640544248862243586391234598256569741449929250929414523025051
CO_8611315723718732835676897
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni7Ti
Al4Ni7Ti
A7B4C
[ 13, 13, 13, 13, 28, 28, 28, 28, 28, 28, 28, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.3333333333333333, 0.5833333333333334, 0.08333333333333333 ]
3
12
[ [ 2.33585, -0.041601, -0.124481 ], [ -1.1227, 5.79121, 3.63565 ], [ 1.07836, -5.66135, 3.63229 ] ]
[ [ -0.01631, 0.26431, 7.15688 ], [ 0.05165, 2.388, 1.81047 ], [ 0.01728, 2.66651, 5.53003 ], [ 2.32655, -1.19857, 1.80017 ], [ 0.27484, 0.13112, 3.8056 ], [ 2.29782, -3.67013, 3.57465 ], [ 1.18581, 2.07262, 3.61027 ], [ 1.14637, -1.76695, 3.5856 ], [ 0.02892, 4.07501, 3.80056 ], [ 1.18298, 0.4944, 1.77866 ], [ 2.33176, -1.41585, 5.44961 ], [ 0.92139, 0.39373, 4.65967 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7858843680826240225450502383108986030960374153864289119952983630101209998138422231245579440211251702554533705981114708617273099062573861764426006348334539
2
VASP
DFT
null
[ [ -1.128827, 1.437541, -2.123669 ], [ -0.016127, 1.152817, 0.534393 ], [ -0.617298, -3.496618, -1.068063 ], [ -0.018167, -1.11839, 0.646627 ], [ -17.346116, -7.184574, -28.877373 ], [ -0.063898, -2.033317, -0.426503 ], [ 0.996388, 4.523973, -1.891891 ], [ 1.230001, -1.647661, 0.587561 ], [ 0.138335, -0.647851, -1.345249 ], [ 0.957228, 2.806566, -0.801947 ], [ -0.495555, -1.857508, 1.403689 ], [ 16.364035, 8.065022, 33.362425 ] ]
null
[ [ 0.7335929040164909, 0.025253832489327506, 0.09192463433055233 ], [ 0.025253832489327506, 0.6698875679911557, 0.014540968640752744 ], [ 0.09192463433055233, 0.014540968640752744, 0.6706796779143215 ] ]
true
null
null
-24.653608
null
8.142839
38.024698
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:36:22
4655394324896245002337858749382213623142376858701937103911720467363867720172434026397685270569786333230333322788369990995444525174466709055162675746755725
PO_4655394324896245002337858
null
null
null
[ "train_1st_stage_1773", "train_1st_stage_1973", "train_1st_stage_1573", "train_1st_stage_1373" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
1255832410664411166759235501944388983018836561149602040876399173439973267218821767310312819884681939437934601387273158850067237910455520396395591913638954
CO_1255832410664411166759235
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni4Ti2
Al3Ni2Ti
A3B2C
[ 13, 13, 13, 13, 13, 13, 28, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.5, 0.3333333333333333, 0.16666666666666666 ]
3
12
[ [ 0, 0, 4.00906 ], [ 3.47439, 2.00784, 0 ], [ -5.0711, 8.77511, 0 ] ]
[ [ 3.00646, 2.14924, 0 ], [ 1.50193, 4.75268, 0 ], [ -0.02543, 7.39564, 0 ], [ -2.76602, 8.12802, 0 ], [ 1.26555, 1.15173, 2.00453 ], [ -0.23721, 3.75213, 2.00453 ], [ 0.47886, 2.51304, 0 ], [ -0.94896, 4.98375, 0 ], [ 2.3068, 3.35991, 2.00453 ], [ 0.71981, 6.10608, 2.00453 ], [ -1.77352, 6.41057, 2.00453 ], [ -1.08864, 9.23545, 2.00453 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
13223263782706995638160913384894799161114527212405977644120812755609897635860875986594232718909035272907544356517750348146188411095711398927491431365733678
1
VASP
DFT
null
[ [ -0.066245, 0.114507, -0.000001 ], [ -0.002109, 0.003612, -0.000001 ], [ 0.004951, -0.008604, -0.000001 ], [ 0.056788, -0.098319, -0.000001 ], [ -0.073778, 0.127599, -0.000001 ], [ 0.013716, -0.023805, -0.000001 ], [ -0.083284, 0.144492, 0 ], [ -0.160027, 0.27717, 0 ], [ 0.064089, -0.110347, -0.000001 ], [ 0.109015, -0.188665, 0 ], [ -0.03342, 0.057527, 0.000006 ], [ 0.170304, -0.295167, 0.000001 ] ]
null
[ [ 0.0008987148990359303, 0.006305921500062374, 0 ], [ 0.006305921500062374, -0.006368711081868759, -6.241509125883259e-8 ], [ 0, -6.241509125883259e-8, -0.003862932413100407 ] ]
true
null
null
-66.54488
null
0.139537
0.340774
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:48:30
3937702478765970952087537738820898700500808575551463288907059518940974137027627582080070621717626765934927247404575985009864974044683491086173205914846208
PO_3937702478765970952087537
null
null
null
[ "train_1st_stage_991" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
1428472536330795757641629661794003042752204803339162939731932730357666932716280310897625803981945819193646565048815490825596534815668236461325903386996610
CO_1428472536330795757641629
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni6
AlNi2
A2B
[ 13, 13, 13, 28, 28, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
9
[ [ -2.82518, -2.82518, 0 ], [ 0, 2.82518, -2.82518 ], [ 4.33608, -4.33608, -4.33608 ] ]
[ [ 4.18475, -4.21495, -4.22171 ], [ 0.07922, -0.05077, -2.9067 ], [ 1.62759, -1.55184, -4.44647 ], [ -1.356, -1.44229, -1.41439 ], [ -1.41807, -1.40961, -4.1917 ], [ 0.05703, -2.91362, -2.92397 ], [ 2.77194, -2.81184, -2.80735 ], [ 1.50651, -4.32399, -4.34714 ], [ 3.01254, -3.01544, -5.84082 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4370414795561249330642196502368811939797694664413634702636388060117365884227807409667171356650778622154835521521450710903716078405134226179294254399783243
1
VASP
DFT
null
[ [ 0.608709, -0.21029, -0.131627 ], [ -0.010064, -0.241985, 0.360438 ], [ -0.503857, -0.611335, 0.119374 ], [ -0.315389, 0.160472, -0.121586 ], [ -0.32639, 0.466363, -0.067136 ], [ 0.257572, 0.107416, 0.128399 ], [ 0.72414, 0.174318, -0.475199 ], [ -0.166195, 0.033555, 0.153964 ], [ -0.268526, 0.121486, 0.033372 ] ]
null
[ [ -0.007725115845105709, 0.0009843484042430484, 0.0035558501641069513 ], [ 0.0009843484042430484, -0.00967814646568584, 0.0012403126934955211 ], [ 0.0035558501641069513, 0.0012403126934955211, -0.00852646320177786 ] ]
true
null
null
-48.125708
null
0.506268
0.883504
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:20:11
9109066379000267183882494750713918945338310213166560650858617422508460475336323077605355767929176096803055470684123440727037985224205042975526506592093086
PO_9109066379000267183882494
null
null
null
[ "train_1st_stage_1211" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6046176117990057249723927806389147156906777007066093286678879378607301963546973221913045564130950640101789509167373825245214185342328255550308783004762850
CO_6046176117990057249723927
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni3Ti9
NiTi3
A3B
[ 28, 28, 28, 22, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.25, 0.75 ]
2
12
[ [ 0.00031, 2.10093, 2.10093 ], [ 20.6618, 0.000005, 0.000001 ], [ -0.000445, 2.10093, -2.10093 ] ]
[ [ 0.23682, 2.10093, 2.10093 ], [ 5.16538, 2.10094, 0 ], [ 10.0944, 0.00001, 0 ], [ 1.80126, 2.10092, 0 ], [ 3.60102, 4.20184, 0 ], [ 6.72974, 0.00003, 0 ], [ 8.5295, 2.10095, 0 ], [ 11.6533, 2.10097, 0 ], [ 13.5232, 0.00004, -0.00001 ], [ 15.4963, 2.10094, 0 ], [ 17.4693, 4.20183, 0.00001 ], [ 19.3392, 2.10091, 0 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
796456503807969582731790818923085899078905361277883538916548617732320703995680104915912762439732498167468571460360346125279830560153715303604343743258222
1
VASP
DFT
null
[ [ -0.044531, -0.000086, 0.000057 ], [ 0.0005, -0.000022, 0.000001 ], [ 0.042886, 0.000077, -0.000048 ], [ -0.224427, -0.000155, 0.000782 ], [ 0.233807, 0.000249, -0.000759 ], [ -0.235033, -0.000219, 0.000732 ], [ 0.225682, 0.000151, -0.000766 ], [ -0.125131, -0.000115, 0.000356 ], [ -0.053892, 0.000007, -0.000329 ], [ 0.000006, -0.000011, 0 ], [ 0.055646, 0.000025, 0.00034 ], [ 0.124486, 0.000099, -0.000367 ] ]
null
[ [ 0.0006697763442985325, -0.000018350036830096778, 0.00010610565514001539 ], [ -0.000018350036830096778, -0.004456999251701976, -4.993207300706607e-7 ], [ 0.00010610565514001539, -4.993207300706607e-7, -0.004457248912067011 ] ]
true
null
null
-89.374766
null
0.113837
0.235034
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:07:23
11605217438678291848787960047935016365312790549282517677086049986795042179947130354699709095269498810404840519035970013019703860945773585025069241413188623
PO_1160521743867829184878796
null
null
null
[ "train_1st_stage_1036" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
1393377645143439237469798682704416424460598778945026766508429463544526815399336035658857791111596760750010283647367676455798367073263656020509282501161032
CO_1393377645143439237469798
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni6Ti2
Ni3Ti
A3B
[ 28, 28, 28, 28, 28, 28, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.75, 0.25 ]
2
8
[ [ -4.75788, 4.31586, 1.53197 ], [ -1.76181, -4.72297, -0.563373 ], [ -1.57242, 2.84586, 3.89314 ] ]
[ [ -0.49051, -0.04998, 0.34393 ], [ -4.4524, 3.6882, 4.2293 ], [ -1.39405, -2.47225, 0.05501 ], [ -5.35593, 1.26593, 3.94038 ], [ -4.58996, -0.12039, 2.04393 ], [ -1.25649, 1.33634, 2.24038 ], [ -3.68802, 2.23695, 2.29461 ], [ -2.15843, -1.021, 1.9897 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10552564797130996565708121664106296353239835430759588667737564200642481399886400895165265808532338171184472903423679603004678125867096366728721677165611152
1
VASP
DFT
null
[ [ 0.000838, 0.01655, 0.009224 ], [ 0.011284, 0.01439, -0.005494 ], [ -0.0112, -0.014601, 0.005181 ], [ -0.000765, -0.016343, -0.009293 ], [ -0.01143, 0.002269, 0.016274 ], [ 0.010764, -0.002289, -0.015479 ], [ 0.000345, -0.000085, -0.000706 ], [ 0.000164, 0.000109, 0.000291 ] ]
null
[ [ -0.008583011274458362, 0.004996952206182136, -0.008029077339536223 ], [ 0.004996952206182136, -0.00005486286521651383, 0.003719440118296351 ], [ -0.008029077339536223, 0.003719440118296351, -0.0037372284193051184 ] ]
true
null
null
-52.23531
null
0.014518
0.020016
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:25:37
3057340794470996849249403805757328175931962637572836923638015231327716398198123601491964694097826531997857214940628705200202666546288398857321762775897604
PO_3057340794470996849249403
null
null
null
[ "train_2nd_stage_873" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7261866819050624924159032004724465944768859844124359436387252769073934136160511708941514933528895890750538009262011362986489667054364506224367813365835454
CO_7261866819050624924159032
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni2Ti6
NiTi3
A3B
[ 28, 28, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.25, 0.75 ]
2
8
[ [ 3.39988, 4.66456, 0 ], [ -3.39988, 4.66456, 0 ], [ 0, 0, 3.87582 ] ]
[ [ 0, 2.96723, 0.96896 ], [ 0, 6.36189, 2.90687 ], [ -1.43392, 3.65427, 2.90687 ], [ 0, 1.09061, 2.90687 ], [ -1.43392, 5.67484, 0.96896 ], [ 1.43392, 3.65427, 2.90687 ], [ 0, 8.2385, 0.96896 ], [ 1.43392, 5.67484, 0.96896 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6733559733121564643347000928044886446880843341939233964216693420288082949752625685908503699047224592678307974469447857235568848329685396745560317945640049
1
VASP
DFT
null
[ [ 0.000103, 0.431404, 0.000023 ], [ -0.000183, -0.431314, -0.000022 ], [ 0.185438, -0.411015, -0.000027 ], [ -0.000274, -0.753253, -0.000024 ], [ 0.185363, 0.411606, 0.000024 ], [ -0.185074, -0.411145, -0.000024 ], [ -0.000688, 0.752881, 0.000018 ], [ -0.184684, 0.410836, 0.000032 ] ]
null
[ [ 0.0037829786811978423, 0.0000036200752930122895, -1.8724527377649775e-7 ], [ 0.0000036200752930122895, 0.00017307704806074275, -1.2483018251766518e-7 ], [ -1.8724527377649775e-7, -1.2483018251766518e-7, -0.013044566827822233 ] ]
true
null
null
-58.891281
null
0.521562
0.753253
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:07:39
1246075731000427558079300034540137239892809399022140779231368815007942898941859121124881084119704462384004284041879611493502805663537340334230323174593716
PO_1246075731000427558079300
null
null
null
[ "train_2nd_stage_89" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4735505365364408666578225288387250239383058532727319657076037286974678585667546803868524288393172735532070915977720920723155371328889166575758136008569139
CO_4735505365364408666578225
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni5Ti
Al2Ni5Ti
A5B2C
[ 13, 13, 28, 28, 28, 28, 28, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.25, 0.625, 0.125 ]
3
8
[ [ 3.77187, -0.035489, -0.012621 ], [ 1.88294, 3.55126, -5.50972 ], [ -1.85735, 3.31011, 2.10512 ] ]
[ [ 1.91343, 3.22874, 1.87955 ], [ 1.89982, 3.45882, -1.49566 ], [ 1.89622, 1.56636, 0.07388 ], [ 0.02069, 3.36152, 0.19825 ], [ 3.77438, 1.81109, -1.79511 ], [ 0.02433, 5.19284, -1.5803 ], [ 1.9, 5.08146, -3.53292 ], [ 3.77677, 3.46435, -3.61548 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5808125197686773860780727426010142850005067112211671897866878725819551314993969805414622714387988668571620828346991092211208712295332046462231753200346017
1
VASP
DFT
null
[ [ 0.000839, -0.101656, 0.201234 ], [ -0.000804, 0.101771, -0.201313 ], [ 0.001304, -0.130621, -0.042842 ], [ -0.000021, 0.00001, 0.00006 ], [ -0.001286, 0.130608, 0.042928 ], [ -0.014418, -0.155936, -0.001868 ], [ 0.01436, 0.155794, 0.001706 ], [ 0.000027, 0.000031, 0.000096 ] ]
null
[ [ -0.0006714615517625208, -0.0014253734390779595, 0.0002353048940457988 ], [ -0.0014253734390779595, -0.0011435068869530718, 0.0032234898031536677 ], [ 0.0002353048940457988, 0.0032234898031536677, 0.0035061053363736614 ] ]
true
null
null
-46.734385
null
0.129905
0.225577
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:26:21
12792968626353621201012920042013091841191273756743950129302205569012868718568348800048923760663642439418894918024136742828524259563188025296743391131153462
PO_1279296862635362120101292
null
null
null
[ "train_1st_stage_645" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9913421377648044352531133508586903655439215124009089915768670651609387372074045073920956870928767109101372131194876506306183772336029950660904059175334541
CO_9913421377648044352531133
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al7Ni2Ti
Al7Ni2Ti
A7B2C
[ 13, 13, 13, 13, 13, 13, 13, 28, 28, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.7, 0.2, 0.1 ]
3
10
[ [ 1.59728, 2.67275, 2.34956 ], [ 7.13458, 1.01089, -2.74314 ], [ 0.326926, 3.37946, -4.07019 ] ]
[ [ 7.34185, 4.31827, -6.61379 ], [ 2.15091, 1.52243, 0.08349 ], [ 4.24719, 3.22359, -0.03565 ], [ 4.7462, 2.25201, -2.50435 ], [ 7.01676, 3.84652, -2.62041 ], [ 2.00695, 3.30854, -1.85365 ], [ 5.21707, 3.84536, -4.6374 ], [ 2.06174, 4.04136, 0.51327 ], [ 6.75957, 5.78529, -4.65476 ], [ 4.41065, 4.91333, -2.07075 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10478829147502574190484699391608515532908871655218346158050253808367978952940628098616100133766636633793777899568367925047999036775875968262881767622652927
1
VASP
DFT
null
[ [ 0.129568, -0.223807, 0.16635 ], [ 0.368462, -0.330579, 0.136084 ], [ 0.000018, 0.000005, 0.000049 ], [ -0.368484, 0.33043, -0.136032 ], [ -0.129484, 0.223686, -0.166195 ], [ 0.103083, 0.247214, -0.35207 ], [ -0.103015, -0.247474, 0.352342 ], [ -0.010366, -0.1169, 0.131369 ], [ 0.009894, 0.117729, -0.131932 ], [ 0.000325, -0.000304, 0.000035 ] ]
null
[ [ 0.0221095474369813, 0.0002628923643822028, 0.005865208540683757 ], [ 0.0002628923643822028, 0.03654416076222899, -0.0032587543297149077 ], [ 0.005865208540683757, -0.0032587543297149077, 0.03299991980509618 ] ]
true
null
null
-48.42587
null
0.28803
0.513386
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:22:04
1022745318693258833532189041469124212269603807861211737296447815635004031019313984813602918753802198970281235410207418119505816321018709227727676333060305
PO_1022745318693258833532189
null
null
null
[ "train_2nd_stage_867" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6088916472123028383186922260795216715583467624095549290196882327503825617409940448460916269170726772735920446614031187399422764379808369867606368297775666
CO_6088916472123028383186922
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni2Ti5
Al3Ni2Ti5
A5B3C2
[ 13, 13, 13, 28, 28, 22, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.3, 0.2, 0.5 ]
3
10
[ [ 3.991623, -0.000003, 0 ], [ 0.000001, 0.067293, -4.02613 ], [ 0.000003, 9.413479, -1.856433 ] ]
[ [ 3.98759, 0.36238, -4.01788 ], [ 1.99178, 5.5829, -3.93075 ], [ 1.99178, 3.45543, -1.95262 ], [ 1.99177, 1.89081, -3.99234 ], [ 3.98756, 1.9665, -1.97765 ], [ 3.98759, 3.50378, -3.96546 ], [ 3.9876, 7.63151, -3.89654 ], [ 1.99177, 0.33807, -2.00464 ], [ 3.9876, 5.51931, -1.91815 ], [ 1.99177, 7.70346, -1.88172 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
8068217934128416079833953847009204342846596235010060585506730216890881054305911318288783451287398329729359815302854156503579476177579574335177195486548122
1
VASP
DFT
null
[ [ -0.000013, 0.003569, 0.000006 ], [ 0.000043, -0.001155, -0.000029 ], [ -0.000039, 0.003486, 0.000117 ], [ 0.000021, 0.00296, 0.000129 ], [ -0.000071, -0.00292, -0.000181 ], [ 0.000012, 0.002763, -0.00007 ], [ -0.000013, -0.005227, -0.000062 ], [ 0.000004, -0.000463, 0.000043 ], [ 0.000026, -0.001637, 0.000071 ], [ 0.000029, -0.001374, -0.000024 ] ]
null
[ [ -0.0005076219372080853, 0, -1.2483018251766518e-7 ], [ 0, -0.0003588243596470285, -0.00000193486782902381 ], [ -1.2483018251766518e-7, -0.00000193486782902381, -0.0002479751575713418 ] ]
true
null
null
-65.457937
null
0.002557
0.005227
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:27:38
11997284520745571335236108160789891939535422517608325667005737354102406185803917658348109417604373451073363363269933317541335435355525054049685820204935109
PO_1199728452074557133523610
null
null
null
[ "train_1st_stage_72" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9839650412066163208831346029447284036767134871451523215826651201795885392370111483628892298715259050540041621582239367916822552665130754316624267284632839
CO_9839650412066163208831346
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni8Ti2
Ni4Ti
A4B
[ 28, 28, 28, 28, 28, 28, 28, 28, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.8, 0.2 ]
2
10
[ [ 2.599734, -2.46019, 0.300362 ], [ 2.078525, 1.925991, -2.215381 ], [ 6.742432, 5.103812, 4.922444 ] ]
[ [ 4.69816, -0.51777, -1.86732 ], [ 4.31702, -0.61795, 0.60823 ], [ 6.02214, 1.21716, 0.88311 ], [ 7.74245, 3.07235, 1.18977 ], [ 7.38418, 3.00168, 3.71197 ], [ 2.3467, -0.26692, -0.93556 ], [ 4.04415, 1.55886, -0.67536 ], [ 5.40332, 3.33946, 2.14728 ], [ 3.67772, 1.47726, 1.82956 ], [ 7.12883, 5.20179, 2.46517 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11589904441438989224506503350086740404580478680110879677119810983586738534316831994154342667454320147658336214746356930826044205855915323569653104055219568
1
VASP
DFT
null
[ [ 0.000678, 0.001051, 0.001564 ], [ -0.001251, -0.001167, -0.00175 ], [ -0.000758, -0.000836, -0.000986 ], [ 0.000365, 0.000316, 0.000519 ], [ 0.000767, 0.0006, 0.000715 ], [ 0.001022, 0.001209, 0.001669 ], [ -0.000888, -0.000799, -0.00134 ], [ 0.000417, 0.000255, 0.000533 ], [ -0.006562, -0.008461, -0.013164 ], [ 0.006209, 0.007832, 0.01224 ] ]
null
[ [ -0.002699889602583321, -0.0000058670185783302625, -0.00002802437597521583 ], [ -0.0000058670185783302625, -0.00267105383042174, -0.000022843923400732723 ], [ -0.00002802437597521583, -0.000022843923400732723, -0.0026512058314014314 ] ]
true
null
null
-63.107979
null
0.004546
0.016969
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:17:12
10105413339661341916431447134063833960341433863120564205643305103174894346402279637464681575931309450237859847811823225922141373873185295359631304785502627
PO_1010541333966134191643144
null
null
null
[ "train_1st_stage_262" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
2379108770437569176992484236609748053702913144505928413057760991523407479206945112004854444521416226415346885633930654073104382801796937611357930362315461
CO_2379108770437569176992484
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni6
AlNi3
A3B
[ 13, 13, 28, 28, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.25, 0.75 ]
2
8
[ [ 4.50398, 0, 0 ], [ 0, 4.50398, 0 ], [ 0, 0, 4.50398 ] ]
[ [ 0, 0, 0 ], [ 2.25199, 2.25199, 2.25199 ], [ 3.37798, 2.25199, 0 ], [ 1.126, 2.25199, 0 ], [ 0, 3.37798, 2.25199 ], [ 0, 1.126, 2.25199 ], [ 2.25199, 0, 1.126 ], [ 2.25199, 0, 3.37798 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
845406407451131258653729453900933877155642231654682062936730945232514141230858964333693446692998055814138009314272765150786051298381167780283823358642687
1
VASP
DFT
null
[ [ -0.000496, -0.000125, -0.000221 ], [ 0.000474, 0.000144, 0.000237 ], [ 0.00018, 0.000183, -0.000078 ], [ -0.000163, 0.000166, -0.000075 ], [ -0.000151, 0.00009, 0.000078 ], [ -0.000162, -0.000115, 0.000085 ], [ 0.000159, -0.000169, -0.000216 ], [ 0.000159, -0.000173, 0.000189 ] ]
null
[ [ -0.012216817887547594, -6.241509125883259e-8, 0 ], [ -6.241509125883259e-8, -0.012215632000813678, 0 ], [ 0, 0, -0.012220001057201795 ] ]
true
null
null
-42.4283
null
0.000331
0.000557
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:18:43
10563877270665015540258272547347480956089087429836210403120534753705542995018413162714115184935456874811663374185820365006039729111010571435850135003540202
PO_1056387727066501554025827
null
null
null
[ "train_2nd_stage_71" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
1705349247280158824850852283535026240604612727351101064229428124838821456908060915326276192534656730130225375586357732537209134633506489519708716368718965
CO_1705349247280158824850852
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al7Ni4Ti
Al7Ni4Ti
A7B4C
[ 13, 13, 13, 13, 13, 13, 13, 28, 28, 28, 28, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.5833333333333334, 0.3333333333333333, 0.08333333333333333 ]
3
12
[ [ 2.98442, -0.246653, 4.29445 ], [ -1.21152, 6.40816, -0.002812 ], [ -2.98465, 0.241952, 4.30031 ] ]
[ [ -0.08305, 0.30961, 0.07068 ], [ -0.07515, 0.30934, 4.23129 ], [ 0.34484, 4.45611, 4.5269 ], [ -2.63948, 4.70533, 4.06154 ], [ 0.27671, 2.42183, 6.44194 ], [ -0.04895, 2.29051, 2.14718 ], [ -0.36875, 5.35315, 2.14722 ], [ -1.35857, 2.63675, 4.31149 ], [ 1.6304, 2.39229, 4.27975 ], [ 1.28997, 0.21233, 2.1453 ], [ -1.49577, 4.47419, 6.4415 ], [ 1.2271, -0.03899, 6.44899 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12231474355273966318056974343241841945427366144283002110634258961821871263805237826738926551086911072239267080910898317230449639113442300211385547476405090
1
VASP
DFT
null
[ [ 0.236012, 2.107194, -0.398511 ], [ 0.215424, 2.101588, 0.377578 ], [ -0.641282, -1.78466, 0.409048 ], [ -0.633743, -1.780386, -0.385462 ], [ -1.103475, 0.528911, 0.001816 ], [ 0.499069, 0.74194, 0.013394 ], [ -12.949519, -30.453114, 0.108634 ], [ -0.103342, -0.69971, 0.030482 ], [ -0.096744, -0.698142, -0.036427 ], [ 11.869552, 31.281014, -0.110939 ], [ 1.162955, -1.543072, 0.003895 ], [ 1.545095, 0.198437, -0.013508 ] ]
null
[ [ 0.03986757712648805, 0.09564888041087562, 0.00009249916524558989 ], [ 0.09564888041087562, 0.28568367186100435, -0.0012658404658203834 ], [ 0.00009249916524558989, -0.0012658404658203834, 0.006721793253119975 ] ]
true
null
null
-47.856484
null
6.811974
33.457442
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:37:34
1064282393333567717725329859895069728621500610707708976287623594269417022001192229951885374490574071117268475242938128191396378174611506137686632472782089
PO_1064282393333567717725329
null
null
null
[ "train_1st_stage_1624", "train_1st_stage_1824", "train_1st_stage_1424", "train_1st_stage_1224" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10483062051773148636144919368599230548651466924411580072328281055159610784274279426122189849507588944875515273250750199575526943359948782564464600824880347
CO_1048306205177314863614491
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni6Ti6
Al2Ni3Ti3
A3B3C2
[ 13, 13, 13, 13, 28, 28, 28, 28, 28, 28, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.25, 0.375, 0.375 ]
3
16
[ [ 7.9082, 0.027395, 0.015328 ], [ 1.81947, 4.63869, -0.205011 ], [ 1.82612, 0.525534, 6.08137 ] ]
[ [ 7.23496, 1.44205, 3.96606 ], [ 4.31883, 3.74957, 1.92562 ], [ 9.79995, 3.40106, 3.93357 ], [ 1.75384, 1.79056, 1.95812 ], [ 5.92909, 1.79583, 1.93426 ], [ 5.6247, 3.39579, 3.95743 ], [ 9.81334, 4.58569, 1.80292 ], [ 1.74045, 0.60593, 4.08876 ], [ 7.86455, 4.37078, -0.17938 ], [ 3.68924, 0.82084, 6.07106 ], [ 4.08592, 1.3173, 0.46495 ], [ 7.46786, 3.87432, 5.42674 ], [ 7.48793, 3.8343, 2.19501 ], [ 4.06586, 1.35732, 3.69668 ], [ 7.59263, 1.55704, 0.16408 ], [ 3.96116, 3.63458, 5.72761 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9270437595714237598597240338121243739393930612469752926999572648201464067512925882129297117093419249491779339592322242727758361223717491382472041551493845
1
VASP
DFT
null
[ [ 0.012837, -0.112726, 0.219959 ], [ -0.012463, 0.11304, -0.220521 ], [ -0.065864, 0.054275, 0.138075 ], [ 0.06287, -0.054209, -0.137451 ], [ -0.003144, -0.181095, -0.123143 ], [ 0.004588, 0.181251, 0.122869 ], [ 0.052307, 0.096152, -0.109942 ], [ -0.053044, -0.095748, 0.109689 ], [ -0.19033, -0.092934, -0.245457 ], [ 0.190127, 0.092651, 0.246258 ], [ 0.325734, -0.276537, -0.201235 ], [ -0.322991, 0.274855, 0.200526 ], [ -0.518264, 0.088492, -0.051853 ], [ 0.519112, -0.089344, 0.052205 ], [ 0.143061, 0.263212, -0.545512 ], [ -0.144535, -0.261335, 0.545533 ] ]
null
[ [ -0.034174197332039864, -0.003952934974695644, 0.008636188932210888 ], [ -0.003952934974695644, -0.018248986797348727, 0.011370968570807896 ], [ 0.008636188932210888, 0.011370968570807896, -0.025779117897361845 ] ]
true
null
null
-100.232741
null
0.341177
0.622359
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:57:37
1783829263691956920262556959453464367916945502344550700478540166847133657547755386590530051681336089111616145680529686764689121941085513924594226594759245
PO_1783829263691956920262556
null
null
null
[ "train_2nd_stage_260" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
996242274110051852452733812875160417337906164384909309731503636663557802403859991435772575602327951066717957581204412090637652266704306104809043636143292
CO_9962422741100518524527338
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al5Ti3
Al5Ti3
A5B3
[ 13, 13, 13, 13, 13, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.625, 0.375 ]
2
8
[ [ 1.99406, 4.05228, 2.01037 ], [ 3.97592, -3.98963, -0.005216 ], [ 3.97607, 0.011552, -3.97126 ] ]
[ [ 9.94416, 0.0742, -1.96423 ], [ 5.96697, -1.9606, 0.00715 ], [ 1.98993, 0.00579, -1.98751 ], [ 3.97901, 0.03422, 0.00976 ], [ 5.96704, 0.03999, -1.97587 ], [ 3.97908, 2.0348, -1.97326 ], [ 3.92688, 1.9772, 1.95226 ], [ 4.03114, -1.90877, -1.93274 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7501137965868744319142034295760662047486245488881485247695368829866696516571581482189184411657279054744405602273684456772911784740540789703574842174632062
1
VASP
DFT
null
[ [ 0.0632, -0.000917, -0.062912 ], [ -0.00005, 0.000008, -0.000015 ], [ -0.063189, 0.000849, 0.062937 ], [ 0.000014, -0.000018, 0.000009 ], [ 0.000024, -0.000002, 0.000021 ], [ 0.000243, 0.000078, 0.000181 ], [ -0.278492, -0.097502, -0.278069 ], [ 0.27825, 0.097504, 0.277848 ] ]
null
[ [ -0.0005438851052294671, -0.0015465835463026126, 0.002250500945519726 ], [ -0.0015465835463026126, -0.011646531198715641, -0.0015935196949292544 ], [ 0.002250500945519726, -0.0015935196949292544, -0.00015566323759952846 ] ]
true
null
null
-45.380051
null
0.123671
0.405446
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:30:52
11706440881486399372164895067006160002437590142601111272100063061673889057143873708138351289812531727502243789322120399797468674594515175492938223178113148
PO_1170644088148639937216489
null
null
null
[ "train_1st_stage_902" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11171109331303252365418066285095609776339980819967933592332869466698278928540742155169396421699021475814228885769034606625590018863302565703837817662768203
CO_1117110933130325236541806
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni4Ti6
Al3Ni2Ti3
A3B3C2
[ 13, 13, 13, 13, 13, 13, 28, 28, 28, 28, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.375, 0.25, 0.375 ]
3
16
[ [ 7.30966, -0.896012, 0.10046 ], [ -1.33018, 7.22666, 0.008226 ], [ 0.366831, -1.57621, 4.74202 ] ]
[ [ 3.56289, 0.31163, 1.16809 ], [ 2.78341, 4.44281, 3.68262 ], [ 4.33438, 2.86453, 1.76073 ], [ 2.01193, 1.8899, 3.08997 ], [ 5.40651, 4.9029, 3.75906 ], [ 0.93979, -0.14846, 1.09165 ], [ 4.127, 2.5323, 4.35349 ], [ 2.2193, 2.22213, 0.49722 ], [ -0.80195, 4.7847, 1.73067 ], [ 7.14826, -0.03027, 3.12004 ], [ 4.78424, 0.16311, 3.69146 ], [ 1.56207, 4.59133, 1.15925 ], [ 6.80443, 1.37241, 0.98359 ], [ -0.45812, 3.38202, 3.86711 ], [ 4.17737, 5.69402, 1.45432 ], [ 2.16894, -0.93958, 3.39639 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9019563463420099450332708765593280350364609948590335770582106562017218489212025411884846577240352404343693142674681267974427955249110913200231253948229973
1
VASP
DFT
null
[ [ -0.003609, -0.0889, 0.033753 ], [ 0.003008, 0.089462, -0.033624 ], [ 0.003339, 0.032248, 0.221939 ], [ -0.003153, -0.032578, -0.221587 ], [ 0.085075, -0.202444, 0.168964 ], [ -0.08366, 0.201354, -0.169586 ], [ 0.260227, -0.020147, -0.110334 ], [ -0.259994, 0.020265, 0.109692 ], [ 0.352805, -0.369651, -0.114 ], [ -0.352518, 0.369484, 0.113718 ], [ 0.21275, 0.079198, -0.052892 ], [ -0.213877, -0.07907, 0.053031 ], [ 0.129593, 0.305807, 0.00443 ], [ -0.130102, -0.304799, -0.004046 ], [ 0.190122, 0.120933, 0.012934 ], [ -0.190006, -0.121163, -0.012392 ] ]
null
[ [ 0.02826660894439136, 0.005444156335051672, 0.0068461865299988284 ], [ 0.005444156335051672, 0.024234219558523222, 0.00948284964513695 ], [ 0.0068461865299988284, 0.00948284964513695, 0.007554722645969095 ] ]
true
null
null
-96.540606
null
0.274223
0.523554
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:59:13
7074865772837482825282667313752836127919995517182260036135842449770291194059166507200120197220273033305268444917300157109351059292060637713898148240653369
PO_7074865772837482825282667
null
null
null
[ "train_2nd_stage_190" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9237803376279432633291635700789950442511694798310840397224354549841763543125937184030423559117731931301301632297514969965106096074675831087987664473483518
CO_9237803376279432633291635
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni10Ti8
Ni5Ti4
A5B4
[ 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.5555555555555556, 0.4444444444444444 ]
2
18
[ [ 7.31982, 0, 0 ], [ -3.65991, 6.33915, 0 ], [ 0, 0, 5.11873 ] ]
[ [ 2.30927, 0, 1.27968 ], [ -1.15463, 1.99988, 1.27968 ], [ 2.50528, 4.33926, 1.27968 ], [ 5.01055, 0, 3.83905 ], [ 4.81454, 4.33926, 3.83905 ], [ 1.15463, 1.99988, 3.83905 ], [ 0, 4.2261, 0 ], [ 3.65991, 2.11305, 2.55936 ], [ 3.65991, 2.11305, 0 ], [ 0, 4.2261, 2.55936 ], [ 0, 0, 0 ], [ 0, 0, 2.55936 ], [ 4.73368, 0, 1.27968 ], [ -2.36684, 4.09949, 1.27968 ], [ 1.29307, 2.23966, 1.27968 ], [ 2.58614, 0, 3.83905 ], [ 6.02675, 2.23966, 3.83905 ], [ 2.36684, 4.09949, 3.83905 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11354938741056495463085061781140653354404719936445050910847138528572284976243045051289002267358262832715173288104558162910689319759736346824769272825322658
1
VASP
DFT
null
[ [ 0.163065, -0.000435, 0.000231 ], [ -0.082276, 0.141497, 0.000229 ], [ -0.081074, -0.141033, 0.000231 ], [ -0.163003, 0.000115, -0.000254 ], [ 0.081825, -0.141121, -0.00025 ], [ 0.082386, 0.141544, -0.000276 ], [ -0.0005, 0.000116, 0.000085 ], [ -0.000107, -0.000162, -0.000098 ], [ -0.000131, -0.000165, 0.000079 ], [ -0.000524, 0.000111, -0.000079 ], [ 0.000715, -0.000251, 0.000175 ], [ 0.001051, -0.000076, -0.000118 ], [ -0.395018, 0.000903, 0.000918 ], [ 0.197142, -0.341581, 0.000737 ], [ 0.197365, 0.340858, 0.000819 ], [ 0.393027, 0.000864, -0.000837 ], [ -0.196935, 0.341759, -0.000779 ], [ -0.197008, -0.342939, -0.000815 ] ]
null
[ [ -0.012175187021677953, -0.000021720451758073738, -4.36905638811828e-7 ], [ -0.000021720451758073738, -0.012204834190025899, 5.617358213294933e-7 ], [ -4.36905638811828e-7, 5.617358213294933e-7, -0.0047337477663436395 ] ]
true
null
null
-123.10616
null
0.186051
0.3955
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:45:36
4870807516362677817031654104928297992060827184818704459498499653715985196722227412457470602317645390376773298664813717252546344674218535160491338049203363
PO_4870807516362677817031654
null
null
null
[ "train_2nd_stage_431" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
8136483547119470078070795127431931606416622128775682618952152668688364108453882366857599910823385548018372364465640400888309784302662583179980683138226789
CO_8136483547119470078070795
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2NiTi7
Al2NiTi7
A7B2C
[ 13, 13, 28, 22, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.2, 0.1, 0.7 ]
3
10
[ [ 3.94614, 0, 0 ], [ 0, 0.001667, -3.96387 ], [ 0, 9.89312, -1.97778 ] ]
[ [ 0, 9.86636, -1.97779 ], [ 0, 3.96581, -3.9622 ], [ 0, 7.99181, -3.96051 ], [ 1.97307, 1.90149, -3.96307 ], [ 1.97307, 6.01278, -3.96134 ], [ 1.97307, 9.81499, -3.95974 ], [ 0, 1.91297, -1.98113 ], [ 1.97307, 3.93345, -1.98028 ], [ 0, 5.99656, -1.97941 ], [ 1.97307, 7.96997, -1.97858 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12308612750495373317616244743159596138756741206778417503219749545725270809323543357051223801119991414048627261957562007408590831196888959773496458557337002
1
VASP
DFT
null
[ [ -0.000001, -0.67634, -0.00084 ], [ -0.000001, 0.027771, 0.000348 ], [ 0, 0.457985, 0.00009 ], [ 0, 0.052674, 0.000118 ], [ -0.000003, -0.226714, 0.000315 ], [ 0.000003, -0.141319, -0.001641 ], [ 0.000004, 0.623426, 0.001332 ], [ -0.000004, 0.461489, 0.000218 ], [ 0, -0.194633, 0.000119 ], [ 0.000001, -0.384339, -0.00006 ] ]
null
[ [ -0.02340815582571257, -3.744905475529955e-7, 0 ], [ -3.744905475529955e-7, -0.022401525233890118, 0.00002234460267066206 ], [ 0, 0.00002234460267066206, -0.0190204373253079 ] ]
true
null
null
-69.859549
null
0.32467
0.676341
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:36:22
4945909387940218832015192381763158316754765203260536303808082277502697601574211912625948275685802924668107130083156577387870420769702074337444875470120914
PO_4945909387940218832015192
null
null
null
[ "train_1st_stage_1006" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
3146610475652961393399992204260750027048573260911585468774192371804577207595722658045857806524720998292318854444241056205585615099595063521259688457234406
CO_3146610475652961393399992
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni2Ti6
NiTi3
A3B
[ 28, 28, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.25, 0.75 ]
2
8
[ [ 5.24485, 0, 0 ], [ 0, 4.51507, 0 ], [ 0, 0, 5.29889 ] ]
[ [ 0, 0, 3.54901 ], [ 2.62243, 2.25754, 1.74988 ], [ 0, 2.25754, 2.04763 ], [ 1.30328, 0, 0.75742 ], [ 1.31915, 2.25754, 4.54147 ], [ 2.62243, 0, 3.25126 ], [ 3.94158, 0, 0.75742 ], [ 3.9257, 2.25754, 4.54147 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
8035709696895278100914528295313515403049159081290315649228498423369608071719851107640631606269975827598202118103613780276674844493012440140319870414369273
1
VASP
DFT
null
[ [ 0.000979, 0.000015, -0.128926 ], [ -0.000569, -0.000016, 0.129478 ], [ 0.002207, -0.000032, 0.083182 ], [ 0.419434, 0.000035, -0.268072 ], [ -0.418108, -0.000035, 0.265423 ], [ -0.001719, 0.000034, -0.082014 ], [ -0.419799, 0.000034, -0.263745 ], [ 0.417575, -0.000036, 0.264673 ] ]
null
[ [ 0.009725894010498845, 6.241509125883259e-8, 0.000010423320240225041 ], [ 6.241509125883259e-8, 0.022215153771391244, 1.2483018251766518e-7 ], [ 0.000010423320240225041, 1.2483018251766518e-7, 0.03200140317513738 ] ]
true
null
null
-58.528154
null
0.300855
0.497783
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:18:52
1002537707507386094625689902501331823594837959290476961521995847520341766498558232429825934947003454947942507715373836443349634626128831213831528484106334
PO_1002537707507386094625689
null
null
null
[ "train_2nd_stage_252" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7820906754668740970411783407909831993914740993523898820256899237618014081126837627865617957203225104648380925879781257073631814144592465269579297427519691
CO_7820906754668740970411783
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ti12
AlTi3
A3B
[ 13, 13, 13, 13, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.25, 0.75 ]
2
16
[ [ 5.30005, 0, 0 ], [ 0, 9.35157, 0 ], [ 0, 0, 5.46249 ] ]
[ [ 5.0483, 2.33789, 1.99959 ], [ 2.90178, 7.01368, 4.73084 ], [ 2.39827, 2.33789, 0.73165 ], [ 0.25175, 7.01368, 3.46289 ], [ 5.226, 2.33789, 4.73622 ], [ 2.72408, 7.01368, 2.00498 ], [ 2.57597, 2.33789, 3.4575 ], [ 0.07405, 7.01368, 0.72626 ], [ 1.26274, 0.07212, 2.07158 ], [ 1.38729, 9.27946, 4.80282 ], [ 3.91276, 4.60367, 0.65967 ], [ 4.03732, 4.74791, 3.39091 ], [ 4.03732, 9.27946, 3.39091 ], [ 3.91276, 0.07212, 0.65967 ], [ 1.38729, 4.74791, 4.80282 ], [ 1.26274, 4.60367, 2.07158 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
1976506745255869852675685690100096915046367761700274696526465600808173325899391276071235330454917578554203714508716606821059915484265444777408513258292198
1
VASP
DFT
null
[ [ -0.28567, -0.000284, 0.430104 ], [ 0.285849, 0.000008, 0.430181 ], [ -0.285434, 0.000328, -0.429933 ], [ 0.285703, 0.000561, -0.430727 ], [ -0.148179, -0.000126, -0.478902 ], [ 0.147781, 0.000262, -0.478047 ], [ -0.147021, -0.00012, 0.47882 ], [ 0.147172, -0.000284, 0.479162 ], [ 0.061909, 0.035934, -0.106478 ], [ -0.061582, -0.037262, -0.106988 ], [ 0.061355, -0.035985, 0.106971 ], [ -0.06234, 0.037173, 0.106185 ], [ -0.062345, -0.037019, 0.105901 ], [ 0.061858, 0.035156, 0.107391 ], [ -0.061318, 0.037413, -0.106236 ], [ 0.062261, -0.035756, -0.107404 ] ]
null
[ [ 0.04279197381232939, -0.0000016852074639884797, -0.000004868377118188941 ], [ -0.0000016852074639884797, 0.01109265967888476, 0.000015978263362261143 ], [ -0.000004868377118188941, 0.000015978263362261143, -0.03191196234936348 ] ]
true
null
null
-111.487205
null
0.318655
0.516868
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:37:16
7177008626541353788308190452928215937876664483275205538843867692101809257615177342482752359871482538886601804167141002314813711605452487352044449993673904
PO_7177008626541353788308190
null
null
null
[ "train_2nd_stage_251" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5215069571205227309059619719513236661791219579591563328226653170950011201770997036865375263724899073417665837615986288992185814538886957976720879979600952
CO_5215069571205227309059619
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni5Ti5
NiTi
AB
[ 28, 28, 28, 28, 28, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.5, 0.5 ]
2
10
[ [ -1.340771, 2.176996, 1.510878 ], [ 7.929158, 7.889923, 1.470299 ], [ -0.42958, 2.251864, -3.613013 ] ]
[ [ -1.40477, 3.54273, -1.68924 ], [ 0.70704, 3.33396, 0.47067 ], [ 2.3889, 5.3773, -0.98291 ], [ 4.50058, 5.16874, 1.17688 ], [ 4.84209, 9.389, 1.23442 ], [ -0.51905, 1.32843, -0.63794 ], [ 1.16267, 3.3716, -2.09142 ], [ 1.93289, 5.33964, 1.57909 ], [ 3.61502, 7.383, 0.12571 ], [ 5.29748, 9.42648, -1.32754 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5314390635130348650803328419166053972490274966882228945266885788906461976321778525156246964454024725626272398919583888839085393732916188732821146484073527
1
VASP
DFT
null
[ [ -0.001833, -0.000822, -0.000298 ], [ 0.000514, 0.000248, -0.000004 ], [ -0.000136, -0.000111, 0.000096 ], [ -0.00051, -0.000217, -0.000231 ], [ 0.001555, 0.000708, 0.00039 ], [ -0.007442, -0.003227, -0.001974 ], [ -0.000827, -0.000914, 0.000608 ], [ 0.003376, 0.001993, 0.000172 ], [ 0.002339, 0.000972, 0.000541 ], [ 0.002963, 0.00137, 0.000701 ] ]
null
[ [ -0.00033373349296097777, -0.0005828945372662375, -0.0002775599108280285 ], [ -0.0005828945372662375, -0.0000770202226133994, -0.00014954655865616286 ], [ -0.0002775599108280285, -0.00014954655865616286, -0.0003400374171781199 ] ]
true
null
null
-70.05814
null
0.002473
0.008348
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:51:00
7443077557273756674136250235400573346530228954205167560495788987201093381237265635932330394273452933982765392057553132630073862826008777229834270679529764
PO_7443077557273756674136250
null
null
null
[ "train_1st_stage_269" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
2552594402684773914581832550670747365057296548915881648613731028569112595669259037375123841212998352466436741784805018325899570161003682984312429761140774
CO_2552594402684773914581832
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni4Ti4
AlNiTi
ABC
[ 13, 13, 13, 13, 28, 28, 28, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.3333333333333333, 0.3333333333333333, 0.3333333333333333 ]
3
12
[ [ 4.5104, 0, 0 ], [ 0, 4.98615, 0 ], [ 0, 0, 7.96445 ] ]
[ [ 1.41976, 3.73961, 4.58507 ], [ 3.09064, 1.24654, 3.37939 ], [ 3.09064, 1.24654, 0.60284 ], [ 1.41976, 3.73961, 7.36161 ], [ 4.41493, 3.73961, 2.62437 ], [ 0.09547, 1.24654, 5.34009 ], [ 0.09547, 1.24654, 6.60659 ], [ 4.41493, 3.73961, 1.35786 ], [ 2.86061, 3.73961, 4.84338 ], [ 1.64979, 1.24654, 3.12107 ], [ 1.64979, 1.24654, 0.86116 ], [ 2.86061, 3.73961, 7.1033 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3798824825313985656622462650873822929653871330924138560299318291056221375816631537804611775965155559600434905354541022939630830780464067363900207917054356
1
VASP
DFT
null
[ [ -35.0303, 0.000009, -6.021996 ], [ 35.030341, -0.000009, 6.022345 ], [ 35.030698, -0.00001, -6.022001 ], [ -35.029388, 0.000011, 6.022189 ], [ 0.100582, -0.000003, 36.537144 ], [ -0.10075, 0.000002, -36.547342 ], [ -0.100632, 0.000004, 36.546804 ], [ 0.100697, -0.000002, -36.538256 ], [ 35.061351, 0, 5.352 ], [ -35.061984, 0.000002, -5.351132 ], [ -35.061301, -0.000002, 5.351435 ], [ 35.060686, -0.000002, -5.351189 ] ]
null
[ [ 1.180011601377625, -6.241509125883259e-8, -0.0000011234716426589865 ], [ -6.241509125883259e-8, -0.17439001192046352, -6.241509125883259e-8 ], [ -0.0000011234716426589865, -6.241509125883259e-8, 0.5609741075557705 ] ]
true
null
null
15.453346
null
35.851318
36.547481
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:53:25
3897028654397154726273679094156033994154212861648541188828817826081394049012614180928864651349157493755272640179002414954945508733642032577026577550360614
PO_3897028654397154726273679
null
null
null
[ "train_1st_stage_2104" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10367158670826701889751972944995317831728459025464050810608719404973022811714832220768682016196542346446172047838249027329842081834337673114234221157809357
CO_1036715867082670188975197
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni2Ti
Al3Ni2Ti
A3B2C
[ 13, 13, 13, 28, 28, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.5, 0.3333333333333333, 0.16666666666666666 ]
3
6
[ [ 0.000003, 2.872655, 0.000001 ], [ 2.872625, 0.000003, -0.000002 ], [ 0.000016, -0.000004, -9.769595 ] ]
[ [ 2.86146, 0.00259, -0.34738 ], [ 2.86146, 0.00259, -3.26164 ], [ 2.86147, 0.00258, -6.17601 ], [ 1.42515, 1.43892, -1.80842 ], [ 1.42515, 1.43892, -4.71473 ], [ 1.42518, 1.43891, -8.1464 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4305612738556603462978438105027909847390986130532813000685378660505207315861212282657479441801039859522117801032536427742205058773403279132586285796939934
1
VASP
DFT
null
[ [ -0.000032, -0.000007, 0.006346 ], [ -0.000061, 0.000005, -0.00296 ], [ -0.000044, 0.000036, -0.003054 ], [ 0.000027, -0.000011, -0.003182 ], [ 0.000032, -0.000007, 0.003146 ], [ 0.000078, -0.000015, -0.000296 ] ]
null
[ [ 0.000788427432781573, 1.2483018251766518e-7, -1.8724527377649775e-7 ], [ 1.2483018251766518e-7, 0.0007884898478728319, 1.2483018251766518e-7 ], [ -1.8724527377649775e-7, 1.2483018251766518e-7, 0.0008331166381228971 ] ]
true
null
null
-33.50754
null
0.003166
0.006346
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:34:21
4820907115115867895748803425943408552783030906012701040660670843649368327523634193838552753938436618132136581770803341110583727185549449185697227788582900
PO_4820907115115867895748803
null
null
null
[ "train_1st_stage_144" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6835266492512848678852102742449354751330075401105455218684960445807963424328274670297242967998641827100781180288545560931839549812463045512811436879486569
CO_6835266492512848678852102
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ti2
AlTi
AB
[ 13, 13, 22, 22 ]
[ "Al", "Ti" ]
[ 0.5, 0.5 ]
2
4
[ [ 1.91146, -3.31075, 0 ], [ 1.91146, 3.31075, 0 ], [ 0, 0, 5.32839 ] ]
[ [ 1.91146, 1.10358, 1.3321 ], [ 1.91146, -1.10358, 3.99629 ], [ 0, 0, 0 ], [ 0, 0, 2.66419 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4010758350013394559874228929196935921258164864104711418702812041723965094081055616684976828107009822523103589887225513709934381250392180571944455912320318
1
VASP
DFT
null
[ [ -0.000005, 0.000041, -0.000257 ], [ 0, -0.000048, 0.000212 ], [ 0.000012, 0.000012, -0.000015 ], [ -0.000007, -0.000005, 0.000059 ] ]
null
[ [ 0.0397333222651903, -6.241509125883259e-8, 6.241509125883259e-8 ], [ -6.241509125883259e-8, 0.03973251086900394, -6.241509125883259e-8 ], [ 6.241509125883259e-8, -6.241509125883259e-8, 0.054733353902151755 ] ]
true
null
null
-20.615759
null
0.00014
0.00026
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:23:37
9365893007932559629418799544532143630962295797793596828902518456422624081753995088786756960433487452388678909711476082854401904065518041186312912521060013
PO_9365893007932559629418799
null
null
null
[ "train_1st_stage_2187" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7186063681319428466168272623852706273456235718528940258353397930540542836423868829884082254609159932257243628580001295726196370074790507488811881607423984
CO_7186063681319428466168272
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni8Ti2
AlNi4Ti
A4BC
[ 13, 13, 28, 28, 28, 28, 28, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.16666666666666666, 0.6666666666666666, 0.16666666666666666 ]
3
12
[ [ -3.84961, 2.24618, 0.030141 ], [ 0.024471, -4.50561, 0.080531 ], [ -1.26794, 2.177, 8.3391 ] ]
[ [ -0.07355, 0.00234, 0.01854 ], [ -3.82494, 2.5461, 4.18511 ], [ -3.86276, 2.1533, 8.38419 ], [ -2.3376, -0.09327, 4.22302 ], [ -1.31556, -2.27619, 0.07263 ], [ -1.43089, -2.34172, 4.23848 ], [ -2.54723, -1.57499, 2.11322 ], [ -2.48416, -1.52801, 6.3826 ], [ -1.30808, 0.67907, 2.05905 ], [ -1.22576, 0.72763, 6.33015 ], [ -3.84649, 0.56863, 2.29282 ], [ -3.75489, 0.68375, 6.17394 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9217264834676777723278112089199379107308383242923832640922230018906696229090260026579475698225410431946098712116564455642990004045703785559058506946708645
1
VASP
DFT
null
[ [ -0.017949, -0.008531, 0.002084 ], [ -0.010663, -0.00739, 0.019825 ], [ -0.136798, -0.033876, -0.048178 ], [ -0.287739, 0.261321, 0.029161 ], [ -0.036392, 0.049365, -0.168868 ], [ 0.207414, 0.147326, 0.145306 ], [ 0.045651, 0.00239, 0.073425 ], [ 0.049883, -0.041132, -0.187727 ], [ 0.014457, -0.049335, 0.182386 ], [ 0.042209, 0.026968, -0.054659 ], [ 0.006334, -0.232574, -0.451103 ], [ 0.123594, -0.114534, 0.458347 ] ]
null
[ [ -0.006837198756857556, 0.0018037961373802613, 0.002187149627892011 ], [ 0.0018037961373802613, -0.0023547341479219766, 0.004054921233812576 ], [ 0.002187149627892011, 0.004054921233812576, 0.0027411459779054094 ] ]
true
null
null
-72.032124
null
0.216635
0.507567
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:41:08
11073298227206086076933024856686279535268969161721070712661548050247830600101732524513700105896170288250454250146574934101331397389716847228715445715046504
PO_1107329822720608607693302
null
null
null
[ "train_1st_stage_428" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5369891018400283745005293290832939139590521239266678339111768779258603091593869221550218279625932142335647974351545621308390907354718678312223600241718504
CO_5369891018400283745005293
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni6Ti2
AlNi3Ti
A3BC
[ 13, 13, 28, 28, 28, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.2, 0.6, 0.2 ]
3
10
[ [ 1.75083, 3.51781, -0.50511 ], [ 5.99779, -1.11857, -2.74341 ], [ -0.460567, -0.457109, -4.88005 ] ]
[ [ -0.41836, -0.45848, -4.85989 ], [ 5.68449, 1.03629, -4.48177 ], [ 1.86007, 1.17804, -1.05122 ], [ 3.73882, 2.27632, -2.48348 ], [ 3.86665, -0.14315, -3.41049 ], [ 5.76662, -1.32892, -5.18053 ], [ 3.5085, 2.04778, -4.9235 ], [ 5.49734, 0.78814, -6.90454 ], [ 1.86303, 0.84562, -3.40766 ], [ 3.40314, -0.26783, -5.93407 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4801752438516101783016781726315989053395706736247138631897807199747153022648606223066171356672868446813959989997849995564582006707855045631233912575804005
1
VASP
DFT
null
[ [ 0.072881, 0.004819, 0.206382 ], [ -0.074016, -0.004081, -0.205544 ], [ -0.932271, 0.484368, 0.343848 ], [ -0.00039, 0.000239, 0.000833 ], [ 0.933238, -0.485396, -0.344975 ], [ -0.323497, 0.173569, 0.144665 ], [ -0.000783, 0.00038, 0.000132 ], [ 0.325107, -0.173806, -0.144517 ], [ -1.855282, 0.818474, -0.75582 ], [ 1.855011, -0.818566, 0.754997 ] ]
null
[ [ 0.05944425774509467, -0.01408839681403495, 0.0014541467961482813 ], [ -0.01408839681403495, 0.04276001728560487, 0.0041846822085396885 ], [ 0.0014541467961482813, 0.0041846822085396885, 0.05593671686162205 ] ]
true
null
null
-60.536442
null
0.776996
2.164078
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:18:45
7079114972049006913084968941685893317377097037142509730605624891283939839217618342464036693249446772123817950817858511991954719620460111245231627672280189
PO_7079114972049006913084968
null
null
null
[ "train_2nd_stage_828" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5094619199801203936434253828869662983832274363330526129810883916803565212872216399457537889047027290475856684596278696854624022865663661508499230050603427
CO_5094619199801203936434253
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni10Ti4
Ni5Ti2
A5B2
[ 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.7142857142857143, 0.2857142857142857 ]
2
14
[ [ 2.82973, 0.308399, 3.68364 ], [ -3.9496, 2.51553, 4.26 ], [ -2.45349, -4.51347, 3.69921 ] ]
[ [ 2.32468, 0.40805, 3.64965 ], [ 0.04729, 1.1449, 3.9156 ], [ -1.72707, -0.48171, 3.99299 ], [ -1.50392, 0.45336, 8.44432 ], [ -0.85497, -2.67707, 3.08609 ], [ -0.63182, -1.74199, 7.53737 ], [ -2.23012, 1.88169, 4.18156 ], [ -1.42656, -2.97787, 5.33122 ], [ -1.36757, 0.99071, 2.07377 ], [ -0.93234, 0.75419, 6.19917 ], [ 0.56019, -0.80325, 2.27412 ], [ 0.42017, -1.06848, 5.22506 ], [ -2.77906, -1.15519, 6.30533 ], [ -2.91911, -1.42043, 9.25629 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11530057179422187242909910428133583540777782744162509458307172178345246276080539774607998638350988072277544027646610924988092703803532588794100820994110683
1
VASP
DFT
null
[ [ -0.159941, -0.185066, -0.159735 ], [ 0.00009, -0.000334, 0.00064 ], [ 0.224385, -0.126686, 0.135712 ], [ 0.048154, 0.006661, 0.047982 ], [ -0.047128, -0.00607, -0.049257 ], [ -0.225601, 0.126646, -0.135073 ], [ 0.158601, 0.184883, 0.160105 ], [ 0.384818, 0.087642, -0.060822 ], [ 0.000514, -0.000293, 0.001057 ], [ -0.384157, -0.087803, 0.061583 ], [ 0.220079, 0.275083, -0.261077 ], [ -0.304247, 0.119028, 0.292415 ], [ 0.304979, -0.119271, -0.293623 ], [ -0.220548, -0.274418, 0.260095 ] ]
null
[ [ -0.003304754251972667, -0.0066760429912272505, 0.007934456061187832 ], [ -0.0066760429912272505, 0.023180340742617832, 0.0044100631030753335 ], [ 0.007934456061187832, 0.0044100631030753335, -0.00895737699182884 ] ]
true
null
null
-91.402403
null
0.275576
0.439832
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:38:30
12516176130019743991032657598526791281118515393862042472253109023349785541558997358028125777547907704855912647186676934194859977535503484323823649416018778
PO_1251617613001974399103265
null
null
null
[ "train_2nd_stage_891" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
8913771440947400440417064416621838080690236086333457144623965610208257018077669564770619344198883432437996989290834395051575966996947477855483634568589853
CO_8913771440947400440417064
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni2Ti2
AlNiTi
ABC
[ 13, 13, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.3333333333333333, 0.3333333333333333, 0.3333333333333333 ]
3
6
[ [ 2.10248, -3.64157, 0 ], [ 2.10248, 3.64157, 0 ], [ 0, 0, 5.39281 ] ]
[ [ 0, 0, 0 ], [ 0, 0, 2.6964 ], [ 2.10248, 1.21387, 4.0446 ], [ 2.10248, -1.21387, 1.3482 ], [ 2.10248, 1.21384, 1.3482 ], [ 2.10248, -1.21384, 4.0446 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3445258428934885226462530460635221925484284531363281523801576310603592609453854654135564120208596766448719820692247505251497083758863162840013501432978412
1
VASP
DFT
null
[ [ -0.000001, 0, -0.000117 ], [ -0.000001, 0, 0.000091 ], [ -0.000002, 0.000057, 0.000023 ], [ 0, -0.000052, -0.000019 ], [ 0.000001, 0.000119, -0.000004 ], [ 0.000003, -0.000126, 0.000026 ] ]
null
[ [ -0.011333394685870078, -6.241509125883259e-8, -6.241509125883259e-8 ], [ -6.241509125883259e-8, -0.011334206082056444, -6.241509125883259e-8 ], [ -6.241509125883259e-8, -6.241509125883259e-8, 0.007753639541810995 ] ]
true
null
null
-37.312149
null
0.000095
0.000129
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:51:54
3348493013356278565036207257951302722281371691599137471021749588639183329163901222629422576688143896801375511447626972772349129740828922849473351235428384
PO_3348493013356278565036207
null
null
null
[ "train_2nd_stage_427" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6950530834897945491616777078171548609187419881415887801233169611981286583852441120996300717973917442698783978311946117640788976993548170892108778218782004
CO_6950530834897945491616777
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni12Ti2
Ni6Ti
A6B
[ 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.8571428571428571, 0.14285714285714285 ]
2
14
[ [ 0.011153, -4.35704, 0.032814 ], [ 2.44757, 0.011496, 4.17276 ], [ -6.29391, 2.18458, 4.14427 ] ]
[ [ 2.38013, -0.00735, 4.19482 ], [ -0.09543, 0.03929, 4.1033 ], [ -2.53133, -0.01853, 4.18025 ], [ -5.04669, -0.05407, 4.18288 ], [ 1.22716, -2.1825, 4.15499 ], [ -1.30618, -2.19417, 4.1345 ], [ 1.21108, -3.61041, 2.14617 ], [ -1.25655, -3.56576, 2.0898 ], [ -1.33548, 0.76722, 6.23236 ], [ -3.77139, 0.70941, 6.30932 ], [ 0.04697, -1.42853, 2.07352 ], [ -2.54949, -1.41417, 6.31093 ], [ -3.85886, -2.27593, 4.3168 ], [ -2.44437, -1.3439, 1.95587 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2711555751808551373663952400521904731563680048669926543087073500600304983268040364577018769587798849228206643757271451189336324840159198961282634615280725
1
VASP
DFT
null
[ [ 0.002922, -0.126813, -0.073488 ], [ 0.090163, -0.018688, 0.05431 ], [ 0.116095, -0.1162, -0.11487 ], [ 0.048497, 0.045522, 0.140726 ], [ -0.029523, 0.044646, 0.153232 ], [ 0.051052, 0.070734, 0.014888 ], [ 0.029239, -0.04484, -0.152455 ], [ -0.048923, -0.046003, -0.140628 ], [ -0.115408, 0.115709, 0.114703 ], [ -0.089891, 0.018382, -0.054523 ], [ -0.002804, 0.126881, 0.073155 ], [ -0.051175, -0.069906, -0.015116 ], [ -0.022391, 0.235349, 0.064229 ], [ 0.022146, -0.234771, -0.064162 ] ]
null
[ [ -0.015385632070758526, 0.0024577814635903094, 0.002110379065643647 ], [ 0.0024577814635903094, -0.014714045688813487, 0.0016055658075422095 ], [ 0.002110379065643647, 0.0016055658075422095, 0.004658038260646675 ] ]
true
null
null
-83.953656
null
0.157715
0.244981
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:40:37
13067865138972453901528650092554963249330496546913307084751785902061014616901660430933026854711599292820667763122771522029060282589975767565136124760163919
PO_1306786513897245390152865
null
null
null
[ "train_1st_stage_598" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
1499106153340368028909106987036048643767454045631272751182904622272225885772166145266448079914369159380884762191261705371421375478013101848361432421919175
CO_1499106153340368028909106
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni6Ti2
Al3Ni3Ti
A3B3C
[ 13, 13, 13, 13, 13, 13, 28, 28, 28, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.42857142857142855, 0.42857142857142855, 0.14285714285714285 ]
3
14
[ [ 3.83411, -6.64088, 0 ], [ 3.83411, 6.64088, 0 ], [ 0, 0, 3.89877 ] ]
[ [ 1.31357, -0.22977, 0.97469 ], [ 3.37632, -5.38841, 0.97469 ], [ 6.81245, -1.02269, 0.97469 ], [ 6.35466, 0.22977, 2.92408 ], [ 4.2919, 5.38841, 2.92408 ], [ 0.85577, 1.02269, 2.92408 ], [ 1.68931, 1.9989, 0.97469 ], [ 5.09247, 0.46353, 0.97469 ], [ 4.72056, 4.17844, 0.97469 ], [ 5.97891, -1.9989, 2.92408 ], [ 2.57576, -0.46353, 2.92408 ], [ 2.94767, -4.17844, 2.92408 ], [ 3.83411, -2.21407, 0.97469 ], [ 3.83411, 2.21407, 2.92408 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9875124266464515289865649724738575191894255811358990331624951433698279826408259055956231942726705903183711160054753626156773009454781131731767368575381283
1
VASP
DFT
null
[ [ 5.940609, -1.074809, 0.000052 ], [ -2.03986, 5.681251, 0.000052 ], [ -3.901079, -4.607469, 0.000051 ], [ -5.940701, 1.074562, -0.000052 ], [ 2.039815, -5.68162, -0.000051 ], [ 3.901272, 4.606651, -0.00005 ], [ 1.655198, 2.625424, 0.000013 ], [ -3.09984, 0.120788, 0.00001 ], [ 1.445732, -2.745586, 0.000012 ], [ -1.655277, -2.625137, -0.000016 ], [ 3.099885, -0.120272, -0.000008 ], [ -1.445973, 2.745376, -0.000012 ], [ 0.000313, -0.000009, -0.000002 ], [ -0.000093, 0.000851, 0.000001 ] ]
null
[ [ 0.1399598502991712, 0.0000354517718350169, 0 ], [ 0.0000354517718350169, 0.14002775791846084, 1.2483018251766518e-7 ], [ 0, 1.2483018251766518e-7, 0.2188168866332268 ] ]
true
null
null
-63.208267
null
3.917108
6.037151
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:37:02
3795580091017854719022244456101494821564940021495232275989898210948984095345664015354690955370819369079989582828642181377625821520222328164737493819427837
PO_3795580091017854719022244
null
null
null
[ "train_1st_stage_2387" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
930994305551250856211938305953966546209908621012389773192334154838974526226400266891360311933345121786517904897579243670425166708658053733277726441254620
CO_9309943055512508562119383
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlTi5
AlTi5
A5B
[ 13, 22, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.16666666666666666, 0.8333333333333334 ]
2
6
[ [ 4.96555, 0, 0 ], [ 7.44833, 4.30029, 0 ], [ 0, 0, 4.71744 ] ]
[ [ 6.62073, 2.86686, 2.35872 ], [ 7.43114, 4.27053, 0 ], [ 7.43114, 1.4632, 0 ], [ 4.99992, 2.86686, 0 ], [ 1.65518, 0, 2.35872 ], [ 4.13796, 1.43343, 2.35872 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2931812397020969820380347743853062629639892618744793043283812351639064372424901180279799916442704290774461975183242576395978839320443245882086635932341348
1
VASP
DFT
null
[ [ -0.000031, 0.000216, 0.000001 ], [ -0.108356, -0.186943, 0.000002 ], [ -0.106965, 0.187321, 0 ], [ 0.214381, -0.000563, 0.000001 ], [ -0.00055, -0.000573, -0.000001 ], [ 0.001521, 0.000542, -0.000003 ] ]
null
[ [ -0.0071772361740356765, -0.00004194294132593549, 6.241509125883259e-8 ], [ -0.00004194294132593549, -0.007097656932680664, 0 ], [ 6.241509125883259e-8, 0, 0.006982813164764413 ] ]
true
null
null
-43.788161
null
0.108132
0.216076
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:17:52
10678760979415099483205246452607550639850125533941229895194658527773146308040248005008641070351525508578129033341522083015002293869314524810393416798736976
PO_1067876097941509948320524
null
null
null
[ "train_2nd_stage_33" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
3943194591273287288353834109489398462009012131795529883097561351838658809298754260320405650459887995581795166741602234672510090214534549700708019410572671
CO_3943194591273287288353834
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni4
AlNi2
A2B
[ 13, 13, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
6
[ [ -0.529928, 3.674277, 0.079969 ], [ 3.92489, -1.288108, -1.031175 ], [ -0.218173, 0.07798, -5.015458 ] ]
[ [ -0.10696, 0.08482, -4.9206 ], [ 2.30293, 0.37789, -2.44466 ], [ 0.94211, 2.02948, -1.1349 ], [ 3.27085, 2.41418, -3.39346 ], [ 0.83303, 2.06847, -3.64262 ], [ 2.32008, 0.43469, -4.92301 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5370977801453793167929886797515911764590987732013650422844443706526076991924778755563146215661689698298433682914753593414266944399310031583657484407459613
1
VASP
DFT
null
[ [ -0.001564, -0.00016, 0.000176 ], [ 0.001576, 0.000166, -0.000244 ], [ -0.000025, -0.000008, 0.00003 ], [ 0.003582, 0.000549, -0.001765 ], [ -0.000064, -0.000008, -0.000077 ], [ -0.003504, -0.00054, 0.001879 ] ]
null
[ [ -0.00010722912678267438, 0.0000039321507493064525, -0.00010504459858861524 ], [ 0.0000039321507493064525, -0.00013787493659076115, -0.000020596980115414753 ], [ -0.00010504459858861524, -0.000020596980115414753, 0.00006484927981792705 ] ]
true
null
null
-32.472043
null
0.001895
0.004031
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:22:42
7162007059681990467506438506357685653234415936334599586252968537394803920379088314118970541396288497696106976346998765989122451512024323604454295998736591
PO_7162007059681990467506438
null
null
null
[ "train_1st_stage_177" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
8640878923458093429278173798324274696906222118889165742805364695792582908847325270413255704628166070757904549641745302659055331989339746682430447844330305
CO_8640878923458093429278173
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni3Ti4
Al2Ni3Ti4
A4B3C2
[ 13, 13, 28, 28, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.2222222222222222, 0.3333333333333333, 0.4444444444444444 ]
3
9
[ [ 3.80625, -0.030379, -0.061459 ], [ 1.83984, 0.130767, -5.48903 ], [ 0.015745, 5.8749, 1.93548 ] ]
[ [ 1.88384, 0.17741, -5.4479 ], [ 1.93421, 5.86066, 0.04294 ], [ 1.9441, 1.82034, -0.05802 ], [ 3.83142, 4.05687, 0.08067 ], [ 3.79349, 0.06688, -3.70063 ], [ 3.81404, 2.04284, -1.7536 ], [ 1.91725, 3.94461, -1.68714 ], [ 1.88697, 2.09398, -3.71773 ], [ 3.80101, 3.96576, -3.71277 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12815921034465285580311666264998624392858900212889318590224106137823876270685264735920204149795949292683905918517565827381085543934046354830739870361858660
1
VASP
DFT
null
[ [ 0.015092, -1.069237, 0.641422 ], [ -0.063772, 1.074536, -0.642395 ], [ -0.011946, -0.258132, -0.030571 ], [ 0.02006, 0.258996, 0.029288 ], [ 0.032866, -0.000176, 0.000614 ], [ 0.069312, -0.349279, -0.010108 ], [ 0.003812, 0.438883, 0.087685 ], [ 0.024181, -0.441073, -0.088626 ], [ -0.089604, 0.345482, 0.012692 ] ]
null
[ [ 0.028280589924833333, 0.0016497556921534627, 0.0018086645144984503 ], [ 0.0016497556921534627, 0.039554752689098784, -0.0032176851996665963 ], [ 0.0018086645144984503, -0.0032176851996665963, 0.04134381886494196 ] ]
true
null
null
-57.487089
null
0.518499
1.253541
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:42:04
2940480604443916845673801637261351065669092209076676395656502354088971877396111441956569969275196502597425007987521581108343141147436404678087929395685124
PO_2940480604443916845673801
null
null
null
[ "train_1st_stage_2216" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
2701563116224992896356713585970874517402572846492108067902112565643485349853160667044187777648989639962352106426494460134736229094974226467077641477005912
CO_2701563116224992896356713
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al8Ni2Ti2
Al4NiTi
A4BC
[ 13, 13, 13, 13, 13, 13, 13, 13, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.6666666666666666, 0.16666666666666666, 0.16666666666666666 ]
3
12
[ [ 3.78807, 0, 0 ], [ 0, 6.53249, 0 ], [ 0, 0, 7.33907 ] ]
[ [ 0, 0, 7.33893 ], [ 0, 0, 3.66939 ], [ 1.89404, 0.35027, 1.83486 ], [ 1.89404, 6.18221, 5.50439 ], [ 1.89404, 2.0714, 6.90255 ], [ 1.89404, 2.07143, 4.10602 ], [ 1.89404, 4.46106, 0.43648 ], [ 1.89404, 4.46108, 3.23302 ], [ 0, 5.16179, 1.83482 ], [ 0, 1.37069, 5.50435 ], [ 0, 2.43867, 1.83479 ], [ 0, 4.09382, 5.50432 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5825711932117185463302213476316444181798358608361909740366726725160794543207924075387248684469114926086314434446103986581449474158205488396048537234708859
1
VASP
DFT
null
[ [ 0.000038, -0.001181, 0.002747 ], [ 0.000038, 0.000882, 0.002701 ], [ -0.000043, 0.266602, -0.001425 ], [ -0.000044, -0.267098, -0.001392 ], [ -0.000028, 0.176645, -0.040696 ], [ -0.000028, 0.176268, 0.041216 ], [ -0.000027, -0.176207, 0.040921 ], [ -0.000028, -0.17647, -0.040451 ], [ 0.000045, -0.124555, -0.001687 ], [ 0.000048, 0.124565, -0.001648 ], [ 0.000015, 0.072429, -0.000144 ], [ 0.000014, -0.071881, -0.000142 ] ]
null
[ [ -0.013036390450867325, 6.241509125883259e-8, 6.241509125883259e-8 ], [ 6.241509125883259e-8, -0.0001032969760333679, -3.120754562941629e-7 ], [ 6.241509125883259e-8, -3.120754562941629e-7, -0.02895030385404061 ] ]
true
null
null
-60.045754
null
0.138102
0.267102
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:20:38
8957100849525325706522462947002749751256231553652552712327534398746264207402056000350138281885761451941503593007315015030368437540647668128115459204765850
PO_8957100849525325706522462
null
null
null
[ "train_2nd_stage_515" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
8689822669134827436006528202070155885020156355349967195988225480649970044280123750414854265318168794703921533291112166503602299814276992873900471629172255
CO_8689822669134827436006528
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni8Ti4
Ni2Ti
A2B
[ 28, 28, 28, 28, 28, 28, 28, 28, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.6666666666666666, 0.3333333333333333 ]
2
12
[ [ -2.99481, 0, -2.99481 ], [ 2.73122, 6.75566, -2.73122 ], [ 1.8664, -4.41629, -1.8664 ] ]
[ [ 4.48765, 2.15722, -4.48765 ], [ 0.84669, 2.05518, -0.8467 ], [ 2.62407, 2.09398, -2.62408 ], [ 1.78265, -0.10406, -1.78266 ], [ 1.17342, 0.58144, -4.16823 ], [ 0.332, -1.6166, -3.32681 ], [ 0.24298, 2.83849, -3.2378 ], [ 1.19964, 5.07582, -4.19446 ], [ 0.96377, -2.21329, -0.96378 ], [ 3.55565, -0.10846, -3.55565 ], [ 1.9923, 2.69067, -4.98711 ], [ -0.59958, 0.58584, -2.39524 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5209128240456497108744418630863291750668840480878696174657887779392783191400031199873757522946483341788947023487596589800986554572785360676070777159521096
1
VASP
DFT
null
[ [ -0.041353, 0.210318, 0.041315 ], [ -0.047572, 0.11018, 0.0476 ], [ 0.107259, 0.156015, -0.107225 ], [ 0.06116, -0.059077, -0.061111 ], [ -0.060518, 0.059678, 0.060477 ], [ -0.106867, -0.156019, 0.106818 ], [ 0.048147, -0.109872, -0.04813 ], [ 0.04039, -0.21032, -0.040349 ], [ 0.236934, 0.393761, -0.236867 ], [ 0.118812, 0.267698, -0.118849 ], [ -0.236702, -0.394673, 0.236644 ], [ -0.11969, -0.267688, 0.119677 ] ]
null
[ [ -0.003466471753424303, -0.007599848756949231, 0.004295406580432858 ], [ -0.007599848756949231, -0.00010666739096134488, 0.007599848756949231 ], [ 0.004295406580432858, 0.007599848756949231, -0.0034667214137893377 ] ]
true
null
null
-79.947581
null
0.250472
0.517489
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:15:53
9026820500422171420552200801389875717215051284572675967675205562153726097879835180982800715874548226017643485903545220898092950956168485427819429700942923
PO_9026820500422171420552200
null
null
null
[ "train_1st_stage_1162" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
2612251028882958908763581349928714197396579257378453831124093768794263624891551577553942860921787033011307769930983975379528846209065780906817345388744808
CO_2612251028882958908763581
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al7Ti
Al7Ti
A7B
[ 13, 13, 13, 13, 13, 13, 13, 22 ]
[ "Al", "Ti" ]
[ 0.875, 0.125 ]
2
8
[ [ 0, 4.01162, 4.01162 ], [ 4.01162, 0, 4.01162 ], [ 4.01162, 4.01162, 0 ] ]
[ [ 8.02323, 6.01742, 6.01742 ], [ 6.01742, 8.02323, 6.01742 ], [ 6.01742, 6.01742, 8.02323 ], [ 4.01162, 6.01742, 6.01742 ], [ 6.01742, 4.01162, 6.01742 ], [ 6.01742, 6.01742, 4.01162 ], [ 4.01162, 4.01162, 4.01162 ], [ 8.02323, 8.02323, 8.02323 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6004111006694355407328413018157063513645588587675355750040276489235960515451176639581934788180422797022795960626639017038108186899933685422357367239746920
1
VASP
DFT
null
[ [ 0.000024, 0.000012, 0.000012 ], [ 0.000012, 0.000024, 0.000011 ], [ 0.000012, 0.000012, 0.000024 ], [ -0.000075, 0.000032, 0.000033 ], [ 0.000033, -0.000075, 0.000032 ], [ 0.000033, 0.000033, -0.000076 ], [ -0.00004, -0.00004, -0.00004 ], [ 0.000001, 0.000003, 0.000005 ] ]
null
[ [ -0.0034145423974969538, -2.4966036503533035e-7, -2.4966036503533035e-7 ], [ -2.4966036503533035e-7, -0.003414355152223177, -1.2483018251766518e-7 ], [ -2.4966036503533035e-7, -1.2483018251766518e-7, -0.003414355152223177 ] ]
true
null
null
-35.152804
null
0.000054
0.000089
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:14:56
1848935499070533956821337693763384316855331151908426367881112384557497456118693189218275034218684422554363571036067186807612977237463324066326742526446917
PO_1848935499070533956821337
null
null
null
[ "train_2nd_stage_398" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11574427126901526187934168674169623302308156549238008929775627069835541773688957025707489077215472581813503359974328915087555453829119292446143664733866891
CO_1157442712690152618793416
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni2Ti3
Al3Ni2Ti3
A3B3C2
[ 13, 13, 13, 28, 28, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.375, 0.25, 0.375 ]
3
8
[ [ 3.29065, -5.69957, 0 ], [ 3.29065, 5.69957, 0 ], [ 0, 0, 3.22133 ] ]
[ [ 5.77955, 1.38866, 0 ], [ 5.77955, -1.38866, 0 ], [ 1.60349, 0, 0 ], [ 3.29065, 1.89986, 0 ], [ 3.29065, -1.89986, 0 ], [ 4.65442, 3.33745, 1.61066 ], [ 4.65442, -3.33745, 1.61066 ], [ 3.85375, 0, 1.61066 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9276182208423590480947470275424772692516831906600474587609283844517271162837765328737561828230882324349101147308356331663862344139049668815468503104196612
1
VASP
DFT
null
[ [ 0.195789, -0.340655, -0.000018 ], [ 0.197003, 0.341218, -0.000017 ], [ -0.392735, -0.0005, -0.000021 ], [ -0.000014, -0.000014, -0.000022 ], [ -0.000083, 0.000266, -0.000025 ], [ -0.00884, 0.015324, 0.000032 ], [ -0.008697, -0.015668, 0.000039 ], [ 0.017577, 0.000028, 0.000031 ] ]
null
[ [ -0.008750720624670846, 0.000011546791882884028, 6.241509125883259e-8 ], [ 0.000011546791882884028, -0.00873648998386383, 1.2483018251766518e-7 ], [ 6.241509125883259e-8, 1.2483018251766518e-7, 0.020278038999082117 ] ]
true
null
null
-49.24004
null
0.154144
0.394005
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:27:32
213513572344844336453152877187072080576848635369169219936168035782851251538055363916101911395962722817844199709783191942796273155979188339330399627033843
PO_2135135723448443364531528
null
null
null
[ "train_2nd_stage_413" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9133020576387332392516501351495568212633260624598416886887796184686061972317414492376140836499218349323770565532726503471885326880078834010732148809979005
CO_9133020576387332392516501
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni4
Al3Ni2
A3B2
[ 13, 13, 13, 13, 13, 13, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.6, 0.4 ]
2
10
[ [ 3.028505, -0.081315, 2.650925 ], [ -1.90421, -4.333721, 5.106775 ], [ 3.39957, -2.368568, -3.955665 ] ]
[ [ 5.60837, -3.23409, -0.42653 ], [ 0.07999, -2.68876, 2.8514 ], [ 1.00436, -4.40864, 4.8016 ], [ 3.80825, -1.97947, 1.66803 ], [ 1.72827, -3.8373, 0.9338 ], [ 2.75564, -5.62869, 2.76354 ], [ 1.49426, -1.38182, 1.27314 ], [ 0.32214, -5.11721, 2.50283 ], [ 3.19403, -2.56611, -0.70469 ], [ 4.16176, -4.34874, 1.1945 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5784150496933850145963107104894226855326486026572429365608890967841507419844118530638313565330459077751482764028185192781945228912680187083973910638515966
1
VASP
DFT
null
[ [ 0.008984, -0.006773, -0.010599 ], [ 0.00267, 0.00077, -0.001906 ], [ -0.00272, -0.000725, 0.001915 ], [ -0.009002, 0.006819, 0.010694 ], [ -0.000573, 0.003184, 0.001214 ], [ 0.000574, -0.003142, -0.001214 ], [ -0.000031, -0.000073, 0.000024 ], [ -0.003171, -0.009094, 0.002579 ], [ -0.000022, -0.000044, 0.000077 ], [ 0.003292, 0.009078, -0.002786 ] ]
null
[ [ 0.0009615668959335747, 0.00002708814960633334, -0.000041755696052158994 ], [ 0.00002708814960633334, 0.0010966955685089473, -0.00004506369588887712 ], [ -0.000041755696052158994, -0.00004506369588887712, 0.0009800417629461892 ] ]
true
null
null
-49.968931
null
0.006485
0.015553
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:17:14
3731804998572501752598482122620712386887665620658290697475583547668476124383600961399019085232648207488478014266577365960491339637031623321845588133432854
PO_3731804998572501752598482
null
null
null
[ "train_1st_stage_69" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
3688577138650241106628295574036273783395063701291415847674974744379955454936897203361011371497511223632347470902171863788452997045546283485818214259166581
CO_3688577138650241106628295
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0