Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
[{'expected': SplitInfo(name='train', num_bytes=1900000000, num_examples=40000, shard_lengths=None, dataset_name=None), 'recorded': SplitInfo(name='train', num_bytes=715205534, num_examples=10000, shard_lengths=[7000, 3000], dataset_name='short-metaworld-vla')}]
Error code: UnexpectedError
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
image
image | state
sequence | action
sequence | prompt
string | task_name
string |
---|---|---|---|---|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
|
null | null | null | null |
End of preview.
Short-MetaWorld Dataset
Overview
Short-MetaWorld is a curated dataset from Meta-World containing Multi-Task 10 (MT10) and Meta-Learning 10 (ML10) tasks with 100 successful trajectories per task and 20 steps per trajectory. This dataset is specifically designed for multi-task robot learning, imitation learning, and vision-language robotics research.
π Quick Start
from short_metaworld_loader import load_short_metaworld
from torch.utils.data import DataLoader
# Load the dataset
dataset = load_short_metaworld("./", image_size=224)
# Create a DataLoader
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)
# Get a sample
sample = dataset[0]
print(f"Image shape: {sample['image'].shape}")
print(f"State: {sample['state']}")
print(f"Action: {sample['action']}")
print(f"Task: {sample['task_name']}")
print(f"Prompt: {sample['prompt']}")
π Dataset Structure
short-MetaWorld/
βββ README.txt # Original dataset documentation
βββ short-MetaWorld/
β βββ img_only/ # 224x224 RGB images
β β βββ button-press-topdown-v2/
β β β βββ 0/ # Trajectory 0
β β β β βββ 0.jpg # Step 0
β β β β βββ 1.jpg # Step 1
β β β β βββ ...
β β β βββ 1/ # Trajectory 1
β β β βββ ...
β β βββ door-open-v2/
β β βββ ...
β βββ r3m-processed/ # R3M processed features
β βββ r3m_MT10_20/
β βββ button-press-topdown-v2.pkl
β βββ door-open-v2.pkl
β βββ ...
βββ r3m-processed/ # Additional R3M data
βββ r3m_MT10_20/
βββ mt50_task_prompts.json # Task descriptions & prompts
βββ short_metaworld_loader.py # Dataset loader
βββ requirements.txt
π― Tasks Included
Multi-Task 10 (MT10)
button-press-topdown-v2
- Press button from abovedoor-open-v2
- Open door by pulling handledrawer-close-v2
- Close drawerdrawer-open-v2
- Open drawerpeg-insert-side-v2
- Insert peg into holepick-place-v2
- Pick up object and place on target
Meta-Learning 10 (ML10)
Additional tasks for meta-learning evaluation.
π Data Format
- Images: 224Γ224 RGB images in JPEG format
- States: 7-dimensional robot state vectors (joint positions)
- Actions: 4-dimensional continuous control actions
- Prompts: Natural language task descriptions in 3 styles:
simple
: Brief task descriptiondetailed
: Comprehensive task explanationtask_specific
: Context-specific variations
- R3M Features: Pre-processed visual representations using R3M model
πΎ Loading the Dataset
The dataset comes with a comprehensive loader (short_metaworld_loader.py
):
# Load specific tasks
mt10_tasks = [
"reach-v2", "push-v2", "pick-place-v2", "door-open-v2",
"drawer-open-v2", "drawer-close-v2", "button-press-topdown-v2",
"button-press-v2", "button-press-wall-v2", "button-press-topdown-wall-v2"
]
dataset = load_short_metaworld("./", tasks=mt10_tasks)
# Load all available tasks
dataset = load_short_metaworld("./")
# Get dataset statistics
stats = dataset.get_dataset_stats()
print(f"Total steps: {stats['total_steps']}")
print(f"Tasks: {stats['tasks']}")
# Get task-specific prompts
task_info = dataset.get_task_info("pick-place-v2")
print(task_info['detailed']) # Detailed task description
π¬ Research Applications
This dataset is designed for:
- Multi-task Reinforcement Learning: Train policies across multiple manipulation tasks
- Imitation Learning: Learn from demonstration trajectories
- Vision-Language Robotics: Connect visual observations with natural language instructions
- Meta-Learning: Adapt quickly to new manipulation tasks
- Robot Policy Training: End-to-end visuomotor control
π Dataset Statistics
- Total trajectories: 2,000 (100 per task Γ 20 tasks)
- Total steps: ~40,000 (20 steps per trajectory)
- Image resolution: 224Γ224 RGB
- State dimension: 7 (robot joint positions)
- Action dimension: 4 (continuous control)
- Dataset size: ~1.9GB
π οΈ Installation
pip install torch torchvision Pillow numpy
π Citation
If you use this dataset, please cite:
@inproceedings{yu2020meta,
title={Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning},
author={Yu, Tianhe and Quillen, Deirdre and He, Zhanpeng and Julian, Ryan and Hausman, Karol and Finn, Chelsea and Levine, Sergey},
booktitle={Conference on robot learning},
pages={1094--1100},
year={2020},
organization={PMLR}
}
@inproceedings{nair2022r3m,
title={R3M: A Universal Visual Representation for Robot Manipulation},
author={Nair, Suraj and Rajeswaran, Aravind and Kumar, Vikash and Finn, Chelsea and Gupta, Abhinav},
booktitle={Conference on Robot Learning},
pages={892--902},
year={2023},
organization={PMLR}
}
π§ Contact
- Original dataset: [email protected]
- Questions about this upload: Open an issue in the dataset repository
βοΈ License
MIT License - See LICENSE file for details.
- Downloads last month
- 327