Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
[{'expected': SplitInfo(name='train', num_bytes=1900000000, num_examples=40000, shard_lengths=None, dataset_name=None), 'recorded': SplitInfo(name='train', num_bytes=715205534, num_examples=10000, shard_lengths=[7000, 3000], dataset_name='short-metaworld-vla')}]
Error code:   UnexpectedError

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

image
image
state
sequence
action
sequence
prompt
string
task_name
string
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
End of preview.

Short-MetaWorld Dataset

Overview

Short-MetaWorld is a curated dataset from Meta-World containing Multi-Task 10 (MT10) and Meta-Learning 10 (ML10) tasks with 100 successful trajectories per task and 20 steps per trajectory. This dataset is specifically designed for multi-task robot learning, imitation learning, and vision-language robotics research.

πŸš€ Quick Start

from short_metaworld_loader import load_short_metaworld
from torch.utils.data import DataLoader

# Load the dataset
dataset = load_short_metaworld("./", image_size=224)

# Create a DataLoader
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)

# Get a sample
sample = dataset[0]
print(f"Image shape: {sample['image'].shape}")
print(f"State: {sample['state']}")
print(f"Action: {sample['action']}")
print(f"Task: {sample['task_name']}")
print(f"Prompt: {sample['prompt']}")

πŸ“ Dataset Structure

short-MetaWorld/
β”œβ”€β”€ README.txt                     # Original dataset documentation
β”œβ”€β”€ short-MetaWorld/
β”‚   β”œβ”€β”€ img_only/                    # 224x224 RGB images
β”‚   β”‚   β”œβ”€β”€ button-press-topdown-v2/
β”‚   β”‚   β”‚   β”œβ”€β”€ 0/                   # Trajectory 0
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ 0.jpg           # Step 0
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ 1.jpg           # Step 1
β”‚   β”‚   β”‚   β”‚   └── ...
β”‚   β”‚   β”‚   β”œβ”€β”€ 1/                   # Trajectory 1
β”‚   β”‚   β”‚   └── ...
β”‚   β”‚   β”œβ”€β”€ door-open-v2/
β”‚   β”‚   └── ...
β”‚   └── r3m-processed/              # R3M processed features
β”‚       └── r3m_MT10_20/
β”‚           β”œβ”€β”€ button-press-topdown-v2.pkl
β”‚           β”œβ”€β”€ door-open-v2.pkl
β”‚           └── ...
└── r3m-processed/                  # Additional R3M data
    └── r3m_MT10_20/
β”œβ”€β”€ mt50_task_prompts.json          # Task descriptions & prompts
β”œβ”€β”€ short_metaworld_loader.py       # Dataset loader
└── requirements.txt

🎯 Tasks Included

Multi-Task 10 (MT10)

  • button-press-topdown-v2 - Press button from above
  • door-open-v2 - Open door by pulling handle
  • drawer-close-v2 - Close drawer
  • drawer-open-v2 - Open drawer
  • peg-insert-side-v2 - Insert peg into hole
  • pick-place-v2 - Pick up object and place on target

Meta-Learning 10 (ML10)

Additional tasks for meta-learning evaluation.

πŸ“Š Data Format

  • Images: 224Γ—224 RGB images in JPEG format
  • States: 7-dimensional robot state vectors (joint positions)
  • Actions: 4-dimensional continuous control actions
  • Prompts: Natural language task descriptions in 3 styles:
    • simple: Brief task description
    • detailed: Comprehensive task explanation
    • task_specific: Context-specific variations
  • R3M Features: Pre-processed visual representations using R3M model

πŸ’Ύ Loading the Dataset

The dataset comes with a comprehensive loader (short_metaworld_loader.py):

# Load specific tasks
mt10_tasks = [
    "reach-v2", "push-v2", "pick-place-v2", "door-open-v2", 
    "drawer-open-v2", "drawer-close-v2", "button-press-topdown-v2",
    "button-press-v2", "button-press-wall-v2", "button-press-topdown-wall-v2"
]
dataset = load_short_metaworld("./", tasks=mt10_tasks)

# Load all available tasks
dataset = load_short_metaworld("./")

# Get dataset statistics
stats = dataset.get_dataset_stats()
print(f"Total steps: {stats['total_steps']}")
print(f"Tasks: {stats['tasks']}")

# Get task-specific prompts
task_info = dataset.get_task_info("pick-place-v2")
print(task_info['detailed'])  # Detailed task description

πŸ”¬ Research Applications

This dataset is designed for:

  • Multi-task Reinforcement Learning: Train policies across multiple manipulation tasks
  • Imitation Learning: Learn from demonstration trajectories
  • Vision-Language Robotics: Connect visual observations with natural language instructions
  • Meta-Learning: Adapt quickly to new manipulation tasks
  • Robot Policy Training: End-to-end visuomotor control

πŸ“ˆ Dataset Statistics

  • Total trajectories: 2,000 (100 per task Γ— 20 tasks)
  • Total steps: ~40,000 (20 steps per trajectory)
  • Image resolution: 224Γ—224 RGB
  • State dimension: 7 (robot joint positions)
  • Action dimension: 4 (continuous control)
  • Dataset size: ~1.9GB

πŸ› οΈ Installation

pip install torch torchvision Pillow numpy

πŸ“– Citation

If you use this dataset, please cite:

@inproceedings{yu2020meta,
  title={Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning},
  author={Yu, Tianhe and Quillen, Deirdre and He, Zhanpeng and Julian, Ryan and Hausman, Karol and Finn, Chelsea and Levine, Sergey},
  booktitle={Conference on robot learning},
  pages={1094--1100},
  year={2020},
  organization={PMLR}
}

@inproceedings{nair2022r3m,
  title={R3M: A Universal Visual Representation for Robot Manipulation},
  author={Nair, Suraj and Rajeswaran, Aravind and Kumar, Vikash and Finn, Chelsea and Gupta, Abhinav},
  booktitle={Conference on Robot Learning},
  pages={892--902},
  year={2023},
  organization={PMLR}
}

πŸ“§ Contact

  • Original dataset: [email protected]
  • Questions about this upload: Open an issue in the dataset repository

βš–οΈ License

MIT License - See LICENSE file for details.

Downloads last month
327