Datasets:
File size: 9,569 Bytes
8eaaf68 a70e21e 8eaaf68 a70e21e 8eaaf68 a70e21e 8eaaf68 a70e21e 8eaaf68 a70e21e 8eaaf68 a70e21e 8eaaf68 a70e21e 8eaaf68 a70e21e 8eaaf68 a70e21e 8eaaf68 a70e21e 8eaaf68 a70e21e 8eaaf68 a70e21e 8eaaf68 a70e21e 8eaaf68 a70e21e 8eaaf68 a70e21e 8eaaf68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
---
license: apache-2.0
task_categories:
- robotics
tags:
- LeRobot
- gaze
- foveated-vision
- robot-learning
- simulation
library_name: lerobot
configs:
- config_name: default
data_files: data/*/*.parquet
---
This dataset was created using [LeRobot](https://github.com/huggingface/lerobot).
## Dataset Description
This dataset, presented in the paper [Look, Focus, Act: Efficient and Robust Robot Learning via Human Gaze and Foveated Vision Transformers](https://huggingface.co/papers/2507.15833), provides a simulation benchmark and dataset for training robot policies that incorporate human gaze. It includes bimanual robot demonstrations with synchronized human eye-tracking data collected using the AV-ALOHA simulation platform for the peg insertion task. This dataset is part of a larger effort to explore how human-like active gaze can enhance robot learning efficiency and robustness.
- **Homepage:** [https://ian-chuang.github.io/gaze-av-aloha/](https://ian-chuang.github.io/gaze-av-aloha/)
- **Paper:** [https://huggingface.co/papers/2507.15833](https://huggingface.co/papers/2507.15833)
- **Code:** [https://github.com/ian-chuang/gaze-av-aloha](https://github.com/ian-chuang/gaze-av-aloha)
- **License:** apache-2.0
## Dataset Structure
[meta/info.json](meta/info.json):
```json
{
"codebase_version": "v2.1",
"robot_type": null,
"total_episodes": 100,
"total_frames": 17741,
"total_tasks": 1,
"total_videos": 600,
"total_chunks": 1,
"chunks_size": 1000,
"fps": 25,
"splits": {
"train": "0:100"
},
"data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet",
"video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4",
"features": {
"observation.images.zed_cam_left": {
"dtype": "video",
"shape": [
480,
640,
3
],
"names": [
"height",
"width",
"channel"
],
"info": {
"video.height": 480,
"video.width": 640,
"video.codec": "av1",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": false,
"video.fps": 25,
"video.channels": 3,
"has_audio": false
}
},
"observation.images.zed_cam_right": {
"dtype": "video",
"shape": [
480,
640,
3
],
"names": [
"height",
"width",
"channel"
],
"info": {
"video.height": 480,
"video.width": 640,
"video.codec": "av1",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": false,
"video.fps": 25,
"video.channels": 3,
"has_audio": false
}
},
"observation.images.wrist_cam_left": {
"dtype": "video",
"shape": [
480,
640,
3
],
"names": [
"height",
"width",
"channel"
],
"info": {
"video.height": 480,
"video.width": 640,
"video.codec": "av1",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": false,
"video.fps": 25,
"video.channels": 3,
"has_audio": false
}
},
\"observation.images.wrist_cam_right\": {
\"dtype\": \"video\",
\"shape\": [
480,
640,
3
],
\"names\": [
\"height\",
\"width\",
\"channel\"
],
\"info\": {
\"video.height\": 480,
\"video.width\": 640,
\"video.codec\": \"av1\",
\"video.pix_fmt\": \"yuv420p\",
\"video.is_depth_map\": false,
\"video.fps\": 25,
\"video.channels\": 3,
\"has_audio\": false
}
},
\"observation.images.overhead_cam\": {
\"dtype\": \"video\",
\"shape\": [
480,
640,
3
],
\"names\": [
\"height\",
\"width\",
\"channel\"
],
\"info\": {
\"video.height\": 480,
\"video.width\": 640,
\"video.codec\": \"av1\",
\"video.pix_fmt\": \"yuv420p\",
\"video.is_depth_map\": false,
\"video.fps\": 25,
\"video.channels\": 3,
\"has_audio\": false
}
},
\"observation.images.worms_eye_cam\": {
\"dtype\": \"video\",
\"shape\": [
480,
640,
3
],
\"names\": [
\"height\",
\"width\",
\"channel\"
],
\"info\": {
\"video.height\": 480,
\"video.width\": 640,
\"video.codec\": \"av1\",
\"video.pix_fmt\": \"yuv420p\",
\"video.is_depth_map\": false,
\"video.fps\": 25,
\"video.channels\": 3,
\"has_audio\": false
}
},
\"observation.state\": {
"dtype": "float32",
"shape": [
21
],
"names": null
},
"observation.environment_state": {
"dtype": "float32",
"shape": [
14
],
"names": null
},
"action": {
"dtype": "float32",
"shape": [
21
],
"names": null
},
"left_eye": {
"dtype": "float32",
"shape": [
2
],
"names": null
},
"right_eye": {
"dtype": "float32",
"shape": [
2
],
"names": null
},
"left_arm_pose": {
"dtype": "float32",
"shape": [
16
],
"names": null
},
"right_arm_pose": {
"dtype": "float32",
"shape": [
16
],
"names": null
},
"middle_arm_pose": {
"dtype": "float32",
"shape": [
16
],
"names": null
},
"timestamp": {
"dtype": "float32",
"shape": [
1
],
"names": null
},
"frame_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"episode_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"task_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
}
}
}
```
## Sample Usage
This dataset is provided in LeRobot format for ease of sharing and visualization. For faster access during training, it is recommended to convert the dataset to a custom `AVAlohaDataset` format based on Zarr.
1. **Install Dependencies:**
First, ensure you have the `lerobot` library and other necessary dependencies installed as described in the official GitHub repository.
```bash
# Install LeRobot (if not already installed)
pip install git+https://github.com/huggingface/lerobot.git
# Clone the gaze-av-aloha repository for scripts and set up environment
git clone https://github.com/ian-chuang/gaze-av-aloha.git
cd gaze-av-aloha
# Follow additional installation steps from the repo's README, e.g., conda env setup
conda create -n gaze python=3.10
conda activate gaze
pip install -e ./gym_av_aloha
pip install -e ./gaze_av_aloha
```
2. **Convert Dataset to Zarr Format:**
Use the conversion script provided in the GitHub repository to convert this dataset to the Zarr format:
```bash
python gym_av_aloha/scripts/convert_lerobot_to_avaloha.py --repo_id iantc104/av_aloha_sim_peg_insertion
```
Converted datasets will be saved under `gym_av_aloha/outputs/`.
For more detailed usage, including training and evaluating policies, please refer to the [project's GitHub repository](https://github.com/ian-chuang/gaze-av-aloha).
## Citation
**BibTeX:**
```bibtex
@misc{chuang2025lookfocusactefficient,
title={Look, Focus, Act: Efficient and Robust Robot Learning via Human Gaze and Foveated Vision Transformers},
author={Ian Chuang and Andrew Lee and Dechen Gao and Jinyu Zou and Iman Soltani},
year={2025},
eprint={2507.15833},
archivePrefix={arXiv},
primaryClass={cs.RO},
url={https://arxiv.org/abs/2507.15833},
}
``` |