File size: 9,569 Bytes
8eaaf68
 
 
 
 
 
a70e21e
 
 
 
 
8eaaf68
 
 
 
 
 
 
 
 
a70e21e
8eaaf68
a70e21e
 
 
8eaaf68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a70e21e
 
 
8eaaf68
 
 
 
a70e21e
 
 
 
8eaaf68
a70e21e
 
 
 
 
 
 
 
 
8eaaf68
 
a70e21e
 
 
8eaaf68
 
 
 
a70e21e
 
 
 
8eaaf68
a70e21e
 
 
 
 
 
 
 
 
8eaaf68
 
a70e21e
 
 
8eaaf68
 
 
 
a70e21e
 
 
 
8eaaf68
a70e21e
 
 
 
 
 
 
 
 
8eaaf68
 
a70e21e
8eaaf68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a70e21e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8eaaf68
 
 
 
 
 
a70e21e
 
 
 
 
 
 
 
 
8eaaf68
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
---
license: apache-2.0
task_categories:
- robotics
tags:
- LeRobot
- gaze
- foveated-vision
- robot-learning
- simulation
library_name: lerobot
configs:
- config_name: default
  data_files: data/*/*.parquet
---

This dataset was created using [LeRobot](https://github.com/huggingface/lerobot).

## Dataset Description

This dataset, presented in the paper [Look, Focus, Act: Efficient and Robust Robot Learning via Human Gaze and Foveated Vision Transformers](https://huggingface.co/papers/2507.15833), provides a simulation benchmark and dataset for training robot policies that incorporate human gaze. It includes bimanual robot demonstrations with synchronized human eye-tracking data collected using the AV-ALOHA simulation platform for the peg insertion task. This dataset is part of a larger effort to explore how human-like active gaze can enhance robot learning efficiency and robustness.

- **Homepage:** [https://ian-chuang.github.io/gaze-av-aloha/](https://ian-chuang.github.io/gaze-av-aloha/)
- **Paper:** [https://huggingface.co/papers/2507.15833](https://huggingface.co/papers/2507.15833)
- **Code:** [https://github.com/ian-chuang/gaze-av-aloha](https://github.com/ian-chuang/gaze-av-aloha)
- **License:** apache-2.0

## Dataset Structure

[meta/info.json](meta/info.json):
```json
{
    "codebase_version": "v2.1",
    "robot_type": null,
    "total_episodes": 100,
    "total_frames": 17741,
    "total_tasks": 1,
    "total_videos": 600,
    "total_chunks": 1,
    "chunks_size": 1000,
    "fps": 25,
    "splits": {
        "train": "0:100"
    },
    "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet",
    "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4",
    "features": {
        "observation.images.zed_cam_left": {
            "dtype": "video",
            "shape": [
                480,
                640,
                3
            ],
            "names": [
                "height",
                "width",
                "channel"
            ],
            "info": {
                "video.height": 480,
                "video.width": 640,
                "video.codec": "av1",
                "video.pix_fmt": "yuv420p",
                "video.is_depth_map": false,
                "video.fps": 25,
                "video.channels": 3,
                "has_audio": false
            }
        },
        "observation.images.zed_cam_right": {
            "dtype": "video",
            "shape": [
                480,
                640,
                3
            ],
            "names": [
                "height",
                "width",
                "channel"
            ],
            "info": {
                "video.height": 480,
                "video.width": 640,
                "video.codec": "av1",
                "video.pix_fmt": "yuv420p",
                "video.is_depth_map": false,
                "video.fps": 25,
                "video.channels": 3,
                "has_audio": false
            }
        },
        "observation.images.wrist_cam_left": {
            "dtype": "video",
            "shape": [
                480,
                640,
                3
            ],
            "names": [
                "height",
                "width",
                "channel"
            ],
            "info": {
                "video.height": 480,
                "video.width": 640,
                "video.codec": "av1",
                "video.pix_fmt": "yuv420p",
                "video.is_depth_map": false,
                "video.fps": 25,
                "video.channels": 3,
                "has_audio": false
            }
        },
        \"observation.images.wrist_cam_right\": {
            \"dtype\": \"video\",
            \"shape\": [
                480,
                640,
                3
            ],
            \"names\": [
                \"height\",
                \"width\",
                \"channel\"
            ],
            \"info\": {
                \"video.height\": 480,
                \"video.width\": 640,
                \"video.codec\": \"av1\",
                \"video.pix_fmt\": \"yuv420p\",
                \"video.is_depth_map\": false,
                \"video.fps\": 25,
                \"video.channels\": 3,
                \"has_audio\": false
            }
        },
        \"observation.images.overhead_cam\": {
            \"dtype\": \"video\",
            \"shape\": [
                480,
                640,
                3
            ],
            \"names\": [
                \"height\",
                \"width\",
                \"channel\"
            ],
            \"info\": {
                \"video.height\": 480,
                \"video.width\": 640,
                \"video.codec\": \"av1\",
                \"video.pix_fmt\": \"yuv420p\",
                \"video.is_depth_map\": false,
                \"video.fps\": 25,
                \"video.channels\": 3,
                \"has_audio\": false
            }
        },
        \"observation.images.worms_eye_cam\": {
            \"dtype\": \"video\",
            \"shape\": [
                480,
                640,
                3
            ],
            \"names\": [
                \"height\",
                \"width\",
                \"channel\"
            ],
            \"info\": {
                \"video.height\": 480,
                \"video.width\": 640,
                \"video.codec\": \"av1\",
                \"video.pix_fmt\": \"yuv420p\",
                \"video.is_depth_map\": false,
                \"video.fps\": 25,
                \"video.channels\": 3,
                \"has_audio\": false
            }
        },
        \"observation.state\": {
            "dtype": "float32",
            "shape": [
                21
            ],
            "names": null
        },
        "observation.environment_state": {
            "dtype": "float32",
            "shape": [
                14
            ],
            "names": null
        },
        "action": {
            "dtype": "float32",
            "shape": [
                21
            ],
            "names": null
        },
        "left_eye": {
            "dtype": "float32",
            "shape": [
                2
            ],
            "names": null
        },
        "right_eye": {
            "dtype": "float32",
            "shape": [
                2
            ],
            "names": null
        },
        "left_arm_pose": {
            "dtype": "float32",
            "shape": [
                16
            ],
            "names": null
        },
        "right_arm_pose": {
            "dtype": "float32",
            "shape": [
                16
            ],
            "names": null
        },
        "middle_arm_pose": {
            "dtype": "float32",
            "shape": [
                16
            ],
            "names": null
        },
        "timestamp": {
            "dtype": "float32",
            "shape": [
                1
            ],
            "names": null
        },
        "frame_index": {
            "dtype": "int64",
            "shape": [
                1
            ],
            "names": null
        },
        "episode_index": {
            "dtype": "int64",
            "shape": [
                1
            ],
            "names": null
        },
        "index": {
            "dtype": "int64",
            "shape": [
                1
            ],
            "names": null
        },
        "task_index": {
            "dtype": "int64",
            "shape": [
                1
            ],
            "names": null
        }
    }
}
```

## Sample Usage

This dataset is provided in LeRobot format for ease of sharing and visualization. For faster access during training, it is recommended to convert the dataset to a custom `AVAlohaDataset` format based on Zarr.

1.  **Install Dependencies:**
    First, ensure you have the `lerobot` library and other necessary dependencies installed as described in the official GitHub repository.

    ```bash
    # Install LeRobot (if not already installed)
    pip install git+https://github.com/huggingface/lerobot.git

    # Clone the gaze-av-aloha repository for scripts and set up environment
    git clone https://github.com/ian-chuang/gaze-av-aloha.git
    cd gaze-av-aloha
    # Follow additional installation steps from the repo's README, e.g., conda env setup
    conda create -n gaze python=3.10
    conda activate gaze
    pip install -e ./gym_av_aloha
    pip install -e ./gaze_av_aloha
    ```

2.  **Convert Dataset to Zarr Format:**
    Use the conversion script provided in the GitHub repository to convert this dataset to the Zarr format:

    ```bash
    python gym_av_aloha/scripts/convert_lerobot_to_avaloha.py --repo_id iantc104/av_aloha_sim_peg_insertion
    ```

    Converted datasets will be saved under `gym_av_aloha/outputs/`.

For more detailed usage, including training and evaluating policies, please refer to the [project's GitHub repository](https://github.com/ian-chuang/gaze-av-aloha).

## Citation

**BibTeX:**

```bibtex
@misc{chuang2025lookfocusactefficient,
      title={Look, Focus, Act: Efficient and Robust Robot Learning via Human Gaze and Foveated Vision Transformers}, 
      author={Ian Chuang and Andrew Lee and Dechen Gao and Jinyu Zou and Iman Soltani},
      year={2025},
      eprint={2507.15833},
      archivePrefix={arXiv},
      primaryClass={cs.RO},
      url={https://arxiv.org/abs/2507.15833}, 
}
```