python_code
stringlengths
0
456k
#!/usr/bin/env python import confu parser = confu.standard_parser() parser.add_argument("--backend", dest="backend", default="auto", choices=["auto", "psimd", "scalar"]) parser.add_argument("--inference-only", dest="inference_only", default=False, action="store_true", help="Build only inference/forward pass functions to reduce library size") parser.add_argument("--convolution-only", dest="convolution_only", default=False, action="store_true", help="Build only convolution functions to reduce library size") def main(args): options = parser.parse_args(args) backend = options.backend if backend == "auto": if options.target.is_x86_64: backend = "x86_64" elif options.target.is_arm or options.target.is_arm64: backend = "arm" elif options.target.is_emscripten: backend = "scalar" else: backend = "psimd" build = confu.Build.from_options(options) macros = dict() if backend == "psimd": macros["NNP_BACKEND_PSIMD"] = 1 if backend == "scalar": macros["NNP_BACKEND_SCALAR"] = 1 export_macros = dict() export_macros["NNP_CONVOLUTION_ONLY"] = int(options.convolution_only) export_macros["NNP_INFERENCE_ONLY"] = int(options.inference_only) macros.update(export_macros) build.export_cpath("include", ["nnpack.h"]) with build.options(source_dir="src", macros=macros, deps={ (build.deps.pthreadpool, build.deps.cpuinfo, build.deps.fxdiv, build.deps.fp16): any, build.deps.psimd: backend == "psimd" or backend == "arm", }, extra_include_dirs={ ("src", "src/ref"): any, "src/x86_64-fma": options.target.is_x86_64 }): nnpack_objects = [ build.cc("init.c"), build.cc("convolution-inference.c"), ] if not options.convolution_only: # Fully-connected, pooling, Softmax, ReLU layers nnpack_objects += [ build.cc("fully-connected-inference.c"), build.cc("pooling-output.c"), build.cc("softmax-output.c"), build.cc("relu-output.c"), ] if not options.inference_only: # Training functions for fully-connected and ReLU layers nnpack_objects += [ build.cc("fully-connected-output.c"), build.cc("relu-input-gradient.c"), ] if not options.inference_only: # Training functions for convolutional layer nnpack_objects += [ build.cc("convolution-output.c"), build.cc("convolution-input-gradient.c"), build.cc("convolution-kernel-gradient.c"), ] if backend == "x86_64": arch_nnpack_objects = [ # Transformations build.peachpy("x86_64-fma/2d-fourier-8x8.py"), build.peachpy("x86_64-fma/2d-fourier-16x16.py"), build.peachpy("x86_64-fma/2d-winograd-8x8-3x3.py"), # Tuple GEMM build.peachpy("x86_64-fma/blas/s8gemm.py"), build.peachpy("x86_64-fma/blas/c8gemm.py"), build.peachpy("x86_64-fma/blas/s4c6gemm.py"), # Direct convolution build.peachpy("x86_64-fma/blas/conv1x1.py"), # BLAS microkernels build.peachpy("x86_64-fma/blas/sgemm.py"), ] if not options.convolution_only: arch_nnpack_objects += [ # Activations build.peachpy("x86_64-fma/softmax.py"), build.cc("x86_64-fma/softmax.c"), build.peachpy("x86_64-fma/relu.py"), # Pooling build.peachpy("x86_64-fma/max-pooling.py"), # BLAS microkernels build.peachpy("x86_64-fma/blas/sdotxf.py"), build.peachpy("x86_64-fma/blas/shdotxf.py"), ] elif backend == "scalar": arch_nnpack_objects = [ # Transformations build.cc("scalar/2d-fourier-8x8.c"), build.cc("scalar/2d-fourier-16x16.c"), build.cc("scalar/2d-winograd-8x8-3x3.c"), # Tuple GEMM build.cc("scalar/blas/s2gemm.c"), build.cc("scalar/blas/cgemm-conjb.c"), # Direct convolution build.cc("scalar/blas/conv1x1.c"), # BLAS microkernels build.cc("scalar/blas/sgemm.c"), ] if not options.inference_only: arch_nnpack_objects += [ # Tuple GEMM build.cc("scalar/blas/s2gemm-transc.c"), build.cc("scalar/blas/cgemm.c"), build.cc("scalar/blas/cgemm-conjb-transc.c"), ] if not options.convolution_only: arch_nnpack_objects += [ # Activations build.cc("scalar/relu.c"), build.cc("scalar/softmax.c"), # BLAS microkernels build.cc("scalar/blas/sdotxf.c"), build.cc("scalar/blas/shdotxf.c"), ] elif backend == "arm": from confu import arm with build.options(isa=arm.neon+arm.fp16 if options.target.is_arm else None): arch_nnpack_objects = [ # Transformations build.cc("psimd/2d-fourier-8x8.c"), build.cc("psimd/2d-fourier-16x16.c"), build.cc("neon/2d-winograd-8x8-3x3.c"), build.cc("neon/2d-winograd-8x8-3x3-fp16.c"), # Tuple GEMM build.cc("neon/blas/h4gemm.c"), build.cc("neon/blas/s4gemm.c"), build.cc("neon/blas/c4gemm-conjb.c"), build.cc("neon/blas/s4c2gemm-conjb.c"), # Direct convolution build.cc("neon/blas/conv1x1.c"), # BLAS microkernels build.cc("neon/blas/sgemm.c"), ] if not options.inference_only: arch_nnpack_objects += [ # Transformations build.cc("psimd/2d-winograd-8x8-3x3.c"), # Tuple GEMM build.cc("neon/blas/c4gemm.c"), build.cc("neon/blas/s4c2gemm.c"), build.cc("neon/blas/c4gemm-conjb-transc.c"), build.cc("neon/blas/s4c2gemm-conjb-transc.c"), ] if not options.convolution_only: arch_nnpack_objects += [ # ReLU and Softmax build.cc("neon/relu.c"), build.cc("psimd/softmax.c"), # BLAS microkernels build.cc("neon/blas/sdotxf.c"), build.cc("psimd/blas/shdotxf.c"), ] if options.target.is_arm: # Functions implemented in assembly arch_nnpack_objects += [ build.cc("neon/blas/h4gemm-aarch32.S"), build.cc("neon/blas/s4gemm-aarch32.S"), build.cc("neon/blas/sgemm-aarch32.S"), ] elif backend == "psimd": arch_nnpack_objects = [ # Transformations build.cc("psimd/2d-fourier-8x8.c"), build.cc("psimd/2d-fourier-16x16.c"), build.cc("psimd/2d-winograd-8x8-3x3.c"), # Tuple GEMM build.cc("psimd/blas/s4gemm.c"), build.cc("psimd/blas/c4gemm-conjb.c"), build.cc("psimd/blas/s4c2gemm-conjb.c"), # Direct convolution build.cc("psimd/blas/conv1x1.c"), # BLAS microkernels build.cc("psimd/blas/sgemm.c"), ] if not options.inference_only: arch_nnpack_objects += [ # Tuple GEMM build.cc("psimd/blas/c4gemm.c"), build.cc("psimd/blas/s4c2gemm.c"), build.cc("psimd/blas/c4gemm-conjb-transc.c"), build.cc("psimd/blas/s4c2gemm-conjb-transc.c"), ] if not options.convolution_only: arch_nnpack_objects += [ # Activations build.cc("psimd/relu.c"), build.cc("psimd/softmax.c"), # BLAS microkernels build.cc("psimd/blas/sdotxf.c"), build.cc("psimd/blas/shdotxf.c"), ] reference_layer_objects = [ build.cc("ref/convolution-output.c"), build.cc("ref/convolution-input-gradient.c"), build.cc("ref/convolution-kernel.c"), build.cc("ref/fully-connected-output.c"), build.cc("ref/max-pooling-output.c"), build.cc("ref/softmax-output.c"), build.cc("ref/relu-output.c"), build.cc("ref/relu-input-gradient.c"), ] reference_fft_objects = [ build.cc("ref/fft/aos.c"), build.cc("ref/fft/soa.c"), build.cc("ref/fft/forward-real.c"), build.cc("ref/fft/forward-dualreal.c"), build.cc("ref/fft/inverse-real.c"), build.cc("ref/fft/inverse-dualreal.c"), ] if backend == "x86_64": arch_fft_stub_objects = [ build.peachpy("x86_64-fma/fft-soa.py"), build.peachpy("x86_64-fma/fft-aos.py"), build.peachpy("x86_64-fma/fft-dualreal.py"), build.peachpy("x86_64-fma/ifft-dualreal.py"), build.peachpy("x86_64-fma/fft-real.py"), build.peachpy("x86_64-fma/ifft-real.py"), ] arch_winograd_stub_objects = [ build.peachpy("x86_64-fma/winograd-f6k3.py"), ] arch_math_stub_objects = [ ] elif backend == "scalar": arch_fft_stub_objects = [ build.cc("scalar/fft-aos.c"), build.cc("scalar/fft-soa.c"), build.cc("scalar/fft-real.c"), build.cc("scalar/fft-dualreal.c"), ] arch_winograd_stub_objects = [ build.cc("scalar/winograd-f6k3.c"), ] elif backend == "psimd" or backend == "arm": arch_fft_stub_objects = [ build.cc("psimd/fft-aos.c"), build.cc("psimd/fft-soa.c"), build.cc("psimd/fft-real.c"), build.cc("psimd/fft-dualreal.c"), ] if backend == "psimd": arch_winograd_stub_objects = [ build.cc("psimd/winograd-f6k3.c"), ] else: # ARM NEON Winograd transform optionally uses FP16 storage with build.options(isa=arm.neon+arm.fp16 if options.target.is_arm else None): arch_winograd_stub_objects = [ build.cc("neon/winograd-f6k3.c"), ] arch_math_stub_objects = [ build.cc("psimd/exp.c"), ] fft_objects = reference_fft_objects + arch_fft_stub_objects nnpack_objects = nnpack_objects + arch_nnpack_objects build.static_library("nnpack", nnpack_objects) # Build tests for micro-kernels. Link to the micro-kernels implementations with build.options(source_dir="test", extra_include_dirs="test", deps={ (build.deps.googletest, build.deps.cpuinfo, build.deps.clog, build.deps.fp16): any, "log": build.target.is_android}): build.unittest("fourier-reference-test", reference_fft_objects + [build.cxx("fourier/reference.cc")]) if backend == "x86_64": build.smoketest("fourier-test", reference_fft_objects + arch_fft_stub_objects + [build.cxx("fourier/x86_64-avx2.cc")]) build.smoketest("winograd-test", arch_winograd_stub_objects + arch_nnpack_objects + [build.cxx("winograd/x86_64-fma3.cc")]) build.smoketest("sgemm-test", arch_nnpack_objects + [build.cxx("sgemm/x86_64-fma3.cc")]) elif backend == "psimd": build.smoketest("fourier-test", reference_fft_objects + arch_fft_stub_objects + [build.cxx("fourier/psimd.cc")]) build.smoketest("winograd-test", arch_winograd_stub_objects + arch_nnpack_objects + [build.cxx("winograd/psimd.cc")]) build.smoketest("sgemm-test", arch_nnpack_objects + [build.cxx("sgemm/psimd.cc")]) elif backend == "arm": # No ARM-specific Fourier implementation; use PSIMD build.smoketest("fourier-test", reference_fft_objects + arch_fft_stub_objects + [build.cxx("fourier/psimd.cc")]) build.smoketest("winograd-test", arch_winograd_stub_objects + arch_nnpack_objects + [build.cxx("winograd/neon.cc")]) build.smoketest("sgemm-test", arch_nnpack_objects + [build.cxx("sgemm/neon.cc")]) build.smoketest("sxgemm-test", arch_nnpack_objects + [build.cxx("sxgemm/neon.cc")]) build.smoketest("hxgemm-test", arch_nnpack_objects + [build.cxx("hxgemm/neon.cc")]) elif backend == "scalar": build.smoketest("fourier-test", reference_fft_objects + arch_fft_stub_objects + [build.cxx("fourier/scalar.cc")]) build.smoketest("winograd-test", arch_winograd_stub_objects + arch_nnpack_objects + [build.cxx("winograd/scalar.cc")]) build.smoketest("sgemm-test", arch_nnpack_objects + [build.cxx("sgemm/scalar.cc")]) # Build test for layers. Link to the library. with build.options(source_dir="test", include_dirs="test", deps={ (build, build.deps.pthreadpool, build.deps.cpuinfo, build.deps.clog, build.deps.googletest.core, build.deps.fp16): any, "rt": build.target.is_linux, "log": build.target.is_android, }): if not options.inference_only: build.smoketest("convolution-output-smoketest", reference_layer_objects + [build.cxx("convolution-output/smoke.cc")]) build.unittest("convolution-output-alexnet-test", reference_layer_objects + [build.cxx("convolution-output/alexnet.cc")]) build.unittest("convolution-output-vgg-a-test", reference_layer_objects + [build.cxx("convolution-output/vgg-a.cc")]) build.unittest("convolution-output-overfeat-fast-test", reference_layer_objects + [build.cxx("convolution-output/overfeat-fast.cc")]) build.smoketest("convolution-input-gradient-smoketest", reference_layer_objects + [build.cxx("convolution-input-gradient/smoke.cc")]) build.unittest("convolution-input-gradient-alexnet-test", reference_layer_objects + [build.cxx("convolution-input-gradient/alexnet.cc")]) build.unittest("convolution-input-gradient-vgg-a-test", reference_layer_objects + [build.cxx("convolution-input-gradient/vgg-a.cc")]) build.unittest("convolution-input-gradient-overfeat-fast-test", reference_layer_objects + [build.cxx("convolution-input-gradient/overfeat-fast.cc")]) build.smoketest("convolution-kernel-gradient-smoketest", reference_layer_objects + [build.cxx("convolution-kernel-gradient/smoke.cc")]) build.unittest("convolution-kernel-gradient-alexnet-test", reference_layer_objects + [build.cxx("convolution-kernel-gradient/alexnet.cc")]) build.unittest("convolution-kernel-gradient-vgg-a-test", reference_layer_objects + [build.cxx("convolution-kernel-gradient/vgg-a.cc")]) build.unittest("convolution-kernel-gradient-overfeat-fast-test", reference_layer_objects + [build.cxx("convolution-kernel-gradient/overfeat-fast.cc")]) build.smoketest("convolution-inference-smoketest", reference_layer_objects + [build.cxx("convolution-inference/smoke.cc")]) build.unittest("convolution-inference-alexnet-test", reference_layer_objects + [build.cxx("convolution-inference/alexnet.cc")]) build.unittest("convolution-inference-vgg-a-test", reference_layer_objects + [build.cxx("convolution-inference/vgg-a.cc")]) build.unittest("convolution-inference-overfeat-fast-test", reference_layer_objects + [build.cxx("convolution-inference/overfeat-fast.cc")]) if not options.convolution_only: build.unittest("fully-connected-inference-alexnet-test", reference_layer_objects + [build.cxx("fully-connected-inference/alexnet.cc")]) build.unittest("fully-connected-inference-vgg-a-test", reference_layer_objects + [build.cxx("fully-connected-inference/vgg-a.cc")]) build.unittest("fully-connected-inference-overfeat-fast-test", reference_layer_objects + [build.cxx("fully-connected-inference/overfeat-fast.cc")]) if not options.inference_only: build.smoketest("fully-connected-output-smoketest", reference_layer_objects + [build.cxx("fully-connected-output/smoke.cc")]) build.unittest("fully-connected-output-alexnet-test", reference_layer_objects + [build.cxx("fully-connected-output/alexnet.cc")]) build.unittest("fully-connected-output-vgg-a-test", reference_layer_objects + [build.cxx("fully-connected-output/vgg-a.cc")]) build.unittest("fully-connected-output-overfeat-fast-test", reference_layer_objects + [build.cxx("fully-connected-output/overfeat-fast.cc")]) build.smoketest("max-pooling-output-smoketest", reference_layer_objects + [build.cxx("max-pooling-output/smoke.cc")]) build.unittest("max-pooling-output-vgg-a-test", reference_layer_objects + [build.cxx("max-pooling-output/vgg-a.cc")]) build.unittest("max-pooling-output-overfeat-fast", reference_layer_objects + [build.cxx("max-pooling-output/overfeat-fast.cc")]) build.unittest("relu-output-alexnet-test", reference_layer_objects + [build.cxx("relu-output/alexnet.cc")]) build.unittest("relu-output-vgg-a-test", reference_layer_objects + [build.cxx("relu-output/vgg-a.cc")]) build.unittest("relu-output-overfeat-fast-test", reference_layer_objects + [build.cxx("relu-output/overfeat-fast.cc")]) if not options.inference_only: build.unittest("relu-input-gradient-alexnet-test", reference_layer_objects + [build.cxx("relu-input-gradient/alexnet.cc")]) build.unittest("relu-input-gradient-vgg-a-test", reference_layer_objects + [build.cxx("relu-input-gradient/vgg-a.cc")]) build.unittest("relu-input-gradient-overfeat-fast-test", reference_layer_objects + [build.cxx("relu-input-gradient/overfeat-fast.cc")]) build.smoketest("softmax-output-smoketest", reference_layer_objects + [build.cxx("softmax-output/smoke.cc")]) build.unittest("softmax-output-imagenet-test", reference_layer_objects + [build.cxx("softmax-output/imagenet.cc")]) # Build automatic benchmarks with build.options(source_dir="bench", extra_include_dirs=["bench", "test"], macros=macros, deps={ (build, build.deps.pthreadpool, build.deps.cpuinfo, build.deps.clog, build.deps.fp16, build.deps.googlebenchmark): all, "rt": build.target.is_linux, "log": build.target.is_android}): build.benchmark("convolution-inference-bench", build.cxx("convolution-inference.cc")) build.benchmark("sgemm-bench", build.cxx("sgemm.cc")) build.benchmark("sxgemm-bench", build.cxx("sxgemm.cc")) build.benchmark("hxgemm-bench", build.cxx("hxgemm.cc")) build.benchmark("conv1x1-bench", build.cxx("conv1x1.cc")) build.benchmark("winograd-bench", build.cxx("winograd.cc")) # Build benchmarking utilities if not options.inference_only and not build.target.is_android: with build.options(source_dir="bench", extra_include_dirs="bench", macros=macros, deps={ (build, build.deps.pthreadpool, build.deps.cpuinfo, build.deps.clog): all, "rt": build.target.is_linux, "log": build.target.is_android}): support_objects = [build.cc("median.c")] if build.target.is_x86_64: support_objects += [build.peachpy("memread.py")] else: support_objects += [build.cc("memread.c")] if build.target.is_linux and build.target.is_x86_64: support_objects += [build.cc("perf_counter.c")] build.executable("transform-benchmark", [build.cc("transform.c")] + support_objects) build.executable("convolution-benchmark", [build.cc("convolution.c")] + support_objects) if not options.convolution_only: build.executable("fully-connected-benchmark", [build.cc("fully-connected.c")] + support_objects) build.executable("pooling-benchmark", [build.cc("pooling.c")] + support_objects) build.executable("relu-benchmark", [build.cc("relu.c")] + support_objects) return build if __name__ == "__main__": import sys main(sys.argv[1:]).generate()
#!/usr/bin/env python from __future__ import print_function def extract_time(line, prefix): if line.startswith(prefix): line = line[len(prefix):].lstrip() line = line[:line.index(" ms")].rstrip() return line def convolution(mode, batch_size, input_channels, output_channels, image_size, kernel_size, padding, algorithm, transform_strategy=None, threads=None, verbose=False, use_selldr=False): import subprocess if use_selldr: import os import sys nacl_sdk_dir = os.getenv("NACL_SDK_ROOT") if nacl_sdk_dir is None: print("Error: can not find Native Client SDK: set NACL_SDK_ROOT envorinment variable and try again", file=sys.stderr) sys.exit(1) benchmark_args = [os.path.join(nacl_sdk_dir, "tools", "sel_ldr.py"), "--", "bin/convolution-benchmark"] else: benchmark_args = ["bin/convolution-benchmark"] benchmark_args += [ "-m", mode, "-b", str(batch_size), "-ic", str(input_channels), "-oc", str(output_channels), "-is", str(image_size[0]), str(image_size[1]), "-ip", str(padding), "-ks", str(kernel_size[0]), str(kernel_size[1]), "-a", algorithm ] if mode == "inference" and transform_strategy is not None: benchmark_args += ["-ts", transform_strategy] if threads is not None: benchmark_args += ["-t", str(threads)] benchmark = subprocess.Popen(benchmark_args, stdout=subprocess.PIPE) benchmark_stdout, _ = benchmark.communicate() if benchmark.returncode == 0: output_lines = [line for line in benchmark_stdout.splitlines() if len(line)] total, input_transform, kernel_transform, output_transform, block_multiplication, overhead = None, None, None, None, None, None for output_line in output_lines: total = total or extract_time(output_line, "Time:") input_transform = input_transform or extract_time(output_line, "Input transform:") kernel_transform = kernel_transform or extract_time(output_line, "Kernel transform:") output_transform = output_transform or extract_time(output_line, "Output transform:") block_multiplication = block_multiplication or extract_time(output_line, "Block multiplication:") overhead = overhead or extract_time(output_line, "Overhead:") if verbose: return (total, input_transform, kernel_transform, output_transform, block_multiplication, overhead) else: return (total,) def fully_connected(mode, batch_size, input_channels, output_channels, threads=None, verbose=False, use_selldr=False): import subprocess if use_selldr: import os import sys nacl_sdk_dir = os.getenv("NACL_SDK_ROOT") if nacl_sdk_dir is None: print("Error: can not find Native Client SDK: set NACL_SDK_ROOT envorinment variable and try again", file=sys.stderr) sys.exit(1) benchmark_args = [os.path.join(nacl_sdk_dir, "tools", "sel_ldr.py"), "--", "bin/fully-connected-benchmark"] else: benchmark_args = ["bin/fully-connected-benchmark"] benchmark_args += [ "-m", mode, "-b", str(batch_size), "-ic", str(input_channels), "-oc", str(output_channels) ] if threads is not None: benchmark_args += ["-t", str(threads)] benchmark = subprocess.Popen(benchmark_args, stdout=subprocess.PIPE) benchmark_stdout, _ = benchmark.communicate() if benchmark.returncode == 0: output_lines = [line for line in benchmark_stdout.splitlines() if len(line)] total, input_transform, kernel_transform, block_multiplication, overhead = None, None, None, None, None for output_line in output_lines: total = total or extract_time(output_line, "Time:") input_transform = input_transform or extract_time(output_line, "Input packing:") kernel_transform = kernel_transform or extract_time(output_line, "Kernel packing:") block_multiplication = block_multiplication or extract_time(output_line, "Block multiplication:") overhead = overhead or extract_time(output_line, "Overhead:") if verbose: return (total, input_transform, kernel_transform, block_multiplication, overhead) else: return (total,) overfeat_fast_layers = [ ("conv2", 96, 256, (24, 24), (5, 5), 0), ("conv3", 256, 512, (12, 12), (3, 3), 1), ("conv4", 512, 1024, (12, 12), (3, 3), 1), ("conv5", 1024, 1024, (12, 12), (3, 3), 1), ("fc6", 36864, 3072), ("fc7", 3072, 4096), ("fc8", 4096, 1000), ] alexnet_layers = [ ("conv2", 64, 192, (27, 27), (5, 5), 2), ("conv3", 192, 384, (13, 13), (3, 3), 1), ("conv4", 384, 256, (13, 13), (3, 3), 1), ("conv5", 256, 256, (13, 13), (3, 3), 1), ("fc6", 12544, 4096), ("fc7", 4096, 4096), ("fc8", 4096, 1000), ] vgg_a_layers = [ ("conv1", 3, 64, (224, 224), (3, 3), 1), ("conv2", 64, 128, (112, 112), (3, 3), 1), ("conv3.1", 128, 256, (56, 56), (3, 3), 1), ("conv3.2", 256, 256, (56, 56), (3, 3), 1), ("conv4.1", 256, 512, (28, 28), (3, 3), 1), ("conv4.2", 512, 512, (28, 28), (3, 3), 1), ("conv5", 512, 512, (14, 14), (3, 3), 1), ("fc6", 25088, 4096), ("fc7", 4096, 4096), ("fc8", 4096, 1000), ] if __name__ == "__main__": import argparse parser = argparse.ArgumentParser( description="NNPACK benchmarking script") parser.add_argument("--enable-selldr", dest="use_selldr", action="store_true") parser.add_argument("-l", "--layer", dest="layer", required=True, choices=["convolution", "fully-connected", "pooling"]) parser.add_argument("-n", "--network", dest="network", required=True, choices=["vgg-a", "alexnet", "overfeat-fast"]) parser.add_argument("-m", "--mode", dest="mode", required=True, choices=["inference", "output", "input-gradient", "kernel-gradient"]) parser.add_argument("--transform-strategy", dest="transform_strategy", default="compute", choices=["compute", "precompute"]) parser.add_argument("-b", "--batch", dest="batch", type=int) parser.add_argument("-t", "--threads", dest="threads") parser.add_argument("-v", "--verbose", dest="verbose", action="store_true", default=False) options = parser.parse_args() network_layers, default_batch = { "vgg-a": (vgg_a_layers, 64), "alexnet": (alexnet_layers, 128), "overfeat-fast": (overfeat_fast_layers, 128) }[options.network] layer_prefix = { "convolution": "conv", "fully-connected": "fc", "pooling": "pool" }[options.layer] network_layers = [layer for layer in network_layers if layer[0].startswith(layer_prefix)] batch = default_batch if options.batch is not None: batch = options.batch if batch != 1 and options.mode == "inference": raise ValueError("Non-unit batch {batch} is not allowed in inference mode".format(batch=batch)) elif options.mode == "inference": batch = 1 if options.transform_strategy is not None: if options.layer != "convolution": raise ValueError("Transform strategy {transform_strategy} is meaningless for non-convolutional layers".format(transform_strategy=transform_strategy)) elif options.mode != "inference": raise ValueError("Transform strategy {transform_strategy} is meaningless in non-inference mode".format(transform_strategy=transform_strategy)) if options.layer == "convolution": for name, input_channels, output_channels, image_size, kernel_size, padding in network_layers: measurements = [name] for algorithm in ["implicit-gemm", "ft8x8", "ft16x16", "wt8x8"]: if algorithm.startswith("wt") and kernel_size != (3, 3): continue measurements += list(convolution(options.mode, batch, input_channels, output_channels, image_size, kernel_size, padding, algorithm, transform_strategy=options.transform_strategy, threads=options.threads, verbose=options.verbose, use_selldr=options.use_selldr)) print("\t".join(map(str, measurements))) elif options.layer == "fully-connected": for name, input_channels, output_channels in network_layers: measurements = fully_connected(options.mode, batch, input_channels, output_channels, threads=options.threads, verbose=options.verbose, use_selldr=options.use_selldr) print("{name}\t{measurements}".format(name=name, measurements="\t".join(measurements)))
arg_mem = Argument(ptr(), "mem") arg_len = Argument(size_t, "n") with Function("read_memory", (arg_mem, arg_len)): reg_mem = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_mem, arg_mem) reg_len = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_len, arg_len) main_loop = Loop() SUB(reg_len, 64) JB(main_loop.end) with main_loop: MOVAPS(xmm0, [reg_mem]) ADD(reg_mem, 64) SUB(reg_len, 64) JAE(main_loop.begin) RETURN()
import fft.complex_soa arg_t = Argument(ptr(const_float_), name="t") arg_f = Argument(ptr(float_), name="f") with Function("nnp_fft16_soa__avx2", (arg_t, arg_f), target=uarch.default + isa.fma3 + isa.avx2): reg_t = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_t, arg_t) reg_f = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_f, arg_f) ymm_real = YMMRegister(), YMMRegister() ymm_imag = YMMRegister(), YMMRegister() for i, ymm_data in enumerate(ymm_real + ymm_imag): VMOVUPS(ymm_data, [reg_t + i * YMMRegister.size]) fft.complex_soa.fft16_within_rows(ymm_real, ymm_imag) for i, ymm_data in enumerate(ymm_real + ymm_imag): VMOVUPS([reg_f + i * YMMRegister.size], ymm_data) RETURN() with Function("nnp_fft8_soa__avx2", (arg_t, arg_f), target=uarch.default + isa.fma3 + isa.avx2): reg_t = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_t, arg_t) reg_f = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_f, arg_f) ymm_real, ymm_imag = YMMRegister(), YMMRegister() VMOVUPS(ymm_real, [reg_t]) VMOVUPS(ymm_imag, [reg_t + YMMRegister.size]) fft.complex_soa.fft8_within_rows(ymm_real, ymm_imag) VMOVUPS([reg_f], ymm_real) VMOVUPS([reg_f + YMMRegister.size], ymm_imag) RETURN() with Function("nnp_ifft8_soa__avx2", (arg_t, arg_f), target=uarch.default + isa.fma3 + isa.avx2): reg_t = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_t, arg_t) reg_f = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_f, arg_f) ymm_real, ymm_imag = YMMRegister(), YMMRegister() VMOVUPS(ymm_real, [reg_t]) VMOVUPS(ymm_imag, [reg_t + YMMRegister.size]) fft.complex_soa.fft8_within_rows(ymm_real, ymm_imag, transformation="inverse") VMOVUPS([reg_f], ymm_real) VMOVUPS([reg_f + YMMRegister.size], ymm_imag) RETURN() with Function("nnp_ifft16_soa__avx2", (arg_f, arg_t), target=uarch.default + isa.fma3 + isa.avx2): reg_f = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_f, arg_f) reg_t = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_t, arg_t) ymm_real = YMMRegister(), YMMRegister() ymm_imag = YMMRegister(), YMMRegister() for i, ymm_data in enumerate(ymm_real + ymm_imag): VMOVUPS(ymm_data, [reg_f + i * YMMRegister.size]) fft.complex_soa.ifft16_within_rows(ymm_real, ymm_imag) for i, ymm_data in enumerate(ymm_real + ymm_imag): VMOVUPS([reg_t + i * YMMRegister.size], ymm_data) RETURN()
from __future__ import absolute_import from __future__ import division import fft16x16 import fft.complex_soa import fft.two_real_to_two_complex_soa_perm_planar import fft.two_complex_soa_perm_to_two_real_planar arg_t_pointer = Argument(ptr(const_float_), name="t") arg_f_pointer = Argument(ptr(float_), name="f") arg_x_pointer = Argument(ptr(const_float_), name="x") arg_t_stride = Argument(size_t, name="stride_t") arg_f_stride = Argument(size_t, name="stride_f") arg_row_count = Argument(uint32_t, name="row_count") arg_column_count = Argument(uint32_t, name="column_count") arg_row_offset = Argument(uint32_t, name="row_offset") arg_column_offset = Argument(uint32_t, name="column_offset") for post_operation in ["stream", "store"]: fft16x16_arguments = (arg_t_pointer, arg_f_pointer, arg_t_stride, arg_f_stride, arg_row_count, arg_column_count, arg_row_offset, arg_column_offset) with Function("nnp_fft16x16_with_offset_and_{post_operation}__avx2".format(post_operation=post_operation), fft16x16_arguments, target=uarch.default + isa.fma3 + isa.avx2): reg_t0 = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_t0, arg_t_pointer) reg_f = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_f, arg_f_pointer) reg_t_stride = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_t_stride, arg_t_stride) reg_f_stride = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_f_stride, arg_f_stride) reg_row_end = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_row_end, arg_row_count) reg_column_end = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_column_end, arg_column_count) reg_row_start = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_row_start, arg_row_offset) ADD(reg_row_end, reg_row_start) reg_column_start = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_column_start, arg_column_offset) ADD(reg_column_end, reg_column_start) ymm_column_start, ymm_column_end = YMMRegister(), YMMRegister() VMOVD(ymm_column_start.as_xmm, reg_column_start.as_dword) VMOVD(ymm_column_end.as_xmm, reg_column_end.as_dword) VPBROADCASTD(ymm_column_start, ymm_column_start.as_xmm) VPBROADCASTD(ymm_column_end, ymm_column_end.as_xmm) ymm_column_01234567 = YMMRegister() VMOVDQA(ymm_column_01234567, Constant.uint32x8(0, 1, 2, 3, 4, 5, 6, 7)) ymm_column_start_gt_01234567, ymm_column_end_gt_01234567 = YMMRegister(), YMMRegister() VPCMPGTD(ymm_column_start_gt_01234567, ymm_column_start, ymm_column_01234567) VPCMPGTD(ymm_column_end_gt_01234567, ymm_column_end, ymm_column_01234567) ymm_column_89ABCDEF = YMMRegister() VMOVDQA(ymm_column_89ABCDEF, Constant.uint32x8(8, 9, 10, 11, 12, 13, 14, 15)) ymm_column_start_gt_89ABCDEF, ymm_column_end_gt_89ABCDEF = YMMRegister(), YMMRegister() VPCMPGTD(ymm_column_start_gt_89ABCDEF, ymm_column_start, ymm_column_89ABCDEF) VPCMPGTD(ymm_column_end_gt_89ABCDEF, ymm_column_end, ymm_column_89ABCDEF) ymm_load_mask_columns_0_to_8 = YMMRegister() VPANDN(ymm_load_mask_columns_0_to_8, ymm_column_start_gt_01234567, ymm_column_end_gt_01234567) ymm_load_mask_columns_8_to_16 = YMMRegister() VPANDN(ymm_load_mask_columns_8_to_16, ymm_column_start_gt_89ABCDEF, ymm_column_end_gt_89ABCDEF) load_mask_columns_8_to_16 = LocalVariable(ymm_load_mask_columns_8_to_16) VMOVDQA(load_mask_columns_8_to_16, ymm_load_mask_columns_8_to_16) # data points to the first element, which is loaded into lane `reg_column_start` # However, VMASKMOVPS expects pointer to the first lane, even if it is not loaded. # Adjust the pointer by subtracting column_offset, in bytes SHL(reg_column_start, 2) SUB(reg_t0, reg_column_start.as_qword) # Multiply stride by sizeof(float) to convert from elements to bytes SHL(reg_t_stride, 2) # t8_offset = stride * (8 - row_start) reg_t8_offset = GeneralPurposeRegister64() MOV(reg_t8_offset.as_dword, 8) SUB(reg_t8_offset.as_dword, reg_row_start) IMUL(reg_t8_offset, reg_t_stride) reg_t8 = GeneralPurposeRegister64() LEA(reg_t8, [reg_t0 + reg_t8_offset * 1]) CMP(reg_row_start, 8) CMOVAE(reg_t8, reg_t0) reg_t0_column_8, reg_t8_column_8 = GeneralPurposeRegister64(), GeneralPurposeRegister64() LEA(reg_t0_column_8, [reg_t0 + YMMRegister.size]) LEA(reg_t8_column_8, [reg_t8 + YMMRegister.size]) vfft_columns_0_to_8 = [LocalVariable(YMMRegister.size) for _ in range(16)] vfft_columns_8_to_16 = [YMMRegister() if i < 4 else LocalVariable(YMMRegister.size) for i in range(16)] fft16x16.forward_vfft(reg_t0, reg_t8, reg_t_stride, data_out=vfft_columns_0_to_8, reg_row_start=reg_row_start, reg_row_end=reg_row_end, ymm_load_mask=ymm_load_mask_columns_0_to_8) ymm_load_mask_columns_8_to_16 = YMMRegister() VMOVDQA(ymm_load_mask_columns_8_to_16, load_mask_columns_8_to_16) fft16x16.forward_vfft(reg_t0_column_8, reg_t8_column_8, reg_t_stride, data_out=vfft_columns_8_to_16, reg_row_start=reg_row_start, reg_row_end=reg_row_end, ymm_load_mask=ymm_load_mask_columns_8_to_16) for row_batch_start, row_batch_end in [(0, 2), (2, 5), (5, 8)]: ymm_wr_list = [(YMMRegister(), YMMRegister()) for _ in range(row_batch_start, row_batch_end)] ymm_wi_list = [(YMMRegister(), YMMRegister()) for _ in range(row_batch_start, row_batch_end)] for row_offset, (ymm_wr, ymm_wi) in enumerate(zip(ymm_wr_list, ymm_wi_list)): row = row_batch_start + row_offset VMOVAPS(ymm_wr[0], vfft_columns_0_to_8[row*2+0]) VMOVAPS(ymm_wr[1], vfft_columns_8_to_16[row*2+0]) VMOVAPS(ymm_wi[0], vfft_columns_0_to_8[row*2+1]) VMOVAPS(ymm_wi[1], vfft_columns_8_to_16[row*2+1]) fft.complex_soa.fft16_within_rows(ymm_wr_list, ymm_wi_list, bit_reversal=False) if row_batch_start == 0: fft.two_real_to_two_complex_soa_perm_planar.fft16_within_rows_postprocess(ymm_wr_list[0], ymm_wi_list[0], bit_reversal=True) VSTOREPS = {"store": VMOVAPS, "stream": VMOVNTPS}[post_operation] for row_batch_offset, (ymm_wr, ymm_wi) in enumerate(zip(ymm_wr_list, ymm_wi_list)): row = row_batch_start + row_batch_offset for column in range(2): VSTOREPS([reg_f], ymm_wr[column]) VSTOREPS([reg_f + YMMRegister.size], ymm_wi[column]) if row + 1 != 8 or column + 1 != 2: ADD(reg_f, reg_f_stride) RETURN() arg_f_pointer = Argument(ptr(const_float_), name="f_pointer") arg_t_pointer = Argument(ptr(float_), name="t_pointer") arg_bias = Argument(ptr(const_float_), name="bias_pointer") arg_f_stride = Argument(size_t, name="f_stride") arg_t_stride = Argument(size_t, name="t_stride") arg_row_count = Argument(uint32_t, name="row_count") arg_column_count = Argument(uint32_t, name="column_count") arg_row_offset = Argument(uint32_t, name="row_offset") arg_column_offset = Argument(uint32_t, name="column_offset") for with_offset, with_bias, with_relu in [(True, False, False), (False, True, False), (False, True, True)]: if with_bias: ifft16x16_arguments = (arg_f_pointer, arg_t_pointer, arg_bias, arg_f_stride, arg_t_stride, arg_row_count, arg_column_count) else: ifft16x16_arguments = (arg_f_pointer, arg_t_pointer, arg_f_stride, arg_t_stride, arg_row_count, arg_column_count) if with_offset: ifft16x16_arguments += (arg_row_offset, arg_column_offset) with Function("nnp_ifft16x16{with_offset}{with_bias}{with_relu}__avx2".format( with_offset="_with_offset" if with_offset else "", with_bias="_with_bias" if with_bias else "", with_relu="_with_relu" if with_relu else ""), ifft16x16_arguments, target=uarch.default + isa.fma3 + isa.avx2): reg_f = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_f, arg_f_pointer) reg_t0 = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_t0, arg_t_pointer) if with_bias: reg_bias = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_bias, arg_bias) reg_f_stride = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_f_stride, arg_f_stride) reg_t_stride = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_t_stride, arg_t_stride) reg_row_end = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_row_end, arg_row_count) reg_column_end = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_column_end, arg_column_count) if with_offset: reg_row_start = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_row_start, arg_row_offset) ADD(reg_row_end, reg_row_start) reg_column_start = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_column_start, arg_column_offset) ADD(reg_column_end, reg_column_start) else: reg_row_start = None if with_offset: ymm_column_start, ymm_column_end = YMMRegister(), YMMRegister() VMOVD(ymm_column_start.as_xmm, reg_column_start.as_dword) VMOVD(ymm_column_end.as_xmm, reg_column_end.as_dword) VPBROADCASTD(ymm_column_start, ymm_column_start.as_xmm) VPBROADCASTD(ymm_column_end, ymm_column_end.as_xmm) ymm_column_01234567 = YMMRegister() VMOVDQA(ymm_column_01234567, Constant.uint32x8(0, 1, 2, 3, 4, 5, 6, 7)) ymm_column_start_gt_01234567, ymm_column_end_gt_01234567 = YMMRegister(), YMMRegister() VPCMPGTD(ymm_column_start_gt_01234567, ymm_column_start, ymm_column_01234567) VPCMPGTD(ymm_column_end_gt_01234567, ymm_column_end, ymm_column_01234567) ymm_column_89ABCDEF = YMMRegister() VMOVDQA(ymm_column_89ABCDEF, Constant.uint32x8(8, 9, 10, 11, 12, 13, 14, 15)) ymm_column_start_gt_89ABCDEF, ymm_column_end_gt_89ABCDEF = YMMRegister(), YMMRegister() VPCMPGTD(ymm_column_start_gt_89ABCDEF, ymm_column_start, ymm_column_89ABCDEF) VPCMPGTD(ymm_column_end_gt_89ABCDEF, ymm_column_end, ymm_column_89ABCDEF) ymm_store_mask_columns_0_to_8 = YMMRegister() VPANDN(ymm_store_mask_columns_0_to_8, ymm_column_start_gt_01234567, ymm_column_end_gt_01234567) store_mask_columns_0_to_8 = LocalVariable(ymm_store_mask_columns_0_to_8) VMOVDQA(store_mask_columns_0_to_8, ymm_store_mask_columns_0_to_8) ymm_store_mask_columns_8_to_16 = YMMRegister() VPANDN(ymm_store_mask_columns_8_to_16, ymm_column_start_gt_89ABCDEF, ymm_column_end_gt_89ABCDEF) store_mask_columns_8_to_16 = LocalVariable(ymm_store_mask_columns_8_to_16) VMOVDQA(store_mask_columns_8_to_16, ymm_store_mask_columns_8_to_16) SHL(reg_column_start, 2) SUB(reg_t0, reg_column_start.as_qword) else: ymm_column_end = YMMRegister() VMOVD(ymm_column_end.as_xmm, reg_column_end.as_dword) VPBROADCASTD(ymm_column_end, ymm_column_end.as_xmm) ymm_store_mask_columns_0_to_8, ymm_store_mask_columns_8_to_16 = YMMRegister(), YMMRegister() VPCMPGTD(ymm_store_mask_columns_0_to_8, ymm_column_end, Constant.uint32x8(0, 1, 2, 3, 4, 5, 6, 7)) VPCMPGTD(ymm_store_mask_columns_8_to_16, ymm_column_end, Constant.uint32x8(8, 9, 10, 11, 12, 13, 14, 15)) store_mask_columns_0_to_8 = LocalVariable(ymm_store_mask_columns_0_to_8) VMOVDQA(store_mask_columns_0_to_8, ymm_store_mask_columns_0_to_8) store_mask_columns_8_to_16 = LocalVariable(ymm_store_mask_columns_8_to_16) VMOVDQA(store_mask_columns_8_to_16, ymm_store_mask_columns_8_to_16) # Multiply stride by sizeof(float) to convert from elements to bytes SHL(reg_t_stride, 2) vfft_columns_0_to_8 = [YMMRegister() if i > 10 else LocalVariable(YMMRegister.size) for i in range(16)] vfft_columns_8_to_16 = [LocalVariable(YMMRegister.size) for _ in range(16)] for row_batch_start, row_batch_end in [(0, 2), (2, 5), (5, 8)]: ymm_wr_list = [(YMMRegister(), YMMRegister()) for _ in range(row_batch_start, row_batch_end)] ymm_wi_list = [(YMMRegister(), YMMRegister()) for _ in range(row_batch_start, row_batch_end)] for row_offset, (ymm_wr, ymm_wi) in enumerate(zip(ymm_wr_list, ymm_wi_list)): row = row_batch_start + row_offset VMOVAPS(ymm_wr[0], [reg_f]) VMOVAPS(ymm_wi[0], [reg_f + YMMRegister.size]) ADD(reg_f, reg_f_stride) if with_bias and row == 0: ymm_bias = YMMRegister() VMOVSS(ymm_bias.as_xmm, [reg_bias]) VFMADD231PS(ymm_wr[0], ymm_bias, Constant.float32x8(256.0)) VMOVAPS(ymm_wr[1], [reg_f]) VMOVAPS(ymm_wi[1], [reg_f + YMMRegister.size]) if row + 1 != 8: ADD(reg_f, reg_f_stride) if row_batch_start == 0: fft.two_complex_soa_perm_to_two_real_planar.ifft16_within_rows_preprocess(ymm_wr_list[0], ymm_wi_list[0], bit_reversal=True) fft.complex_soa.ifft16_within_rows(ymm_wr_list, ymm_wi_list, bit_reversal=False) for row_offset, (ymm_wr, ymm_wi) in enumerate(zip(ymm_wr_list, ymm_wi_list)): row = row_batch_start + row_offset VMOVAPS(vfft_columns_0_to_8[row*2+0], ymm_wr[0]) VMOVAPS(vfft_columns_8_to_16[row*2+0], ymm_wr[1]) VMOVAPS(vfft_columns_0_to_8[row*2+1], ymm_wi[0]) VMOVAPS(vfft_columns_8_to_16[row*2+1], ymm_wi[1]) if reg_row_start is not None: # t8_offset = stride * (8 - row_start) reg_t8_offset = GeneralPurposeRegister64() MOV(reg_t8_offset.as_dword, 8) SUB(reg_t8_offset.as_dword, reg_row_start) IMUL(reg_t8_offset, reg_t_stride) reg_t8 = GeneralPurposeRegister64() LEA(reg_t8, [reg_t0 + reg_t8_offset * 1]) CMP(reg_row_start, 8) CMOVAE(reg_t8, reg_t0) else: reg_t8 = GeneralPurposeRegister64() LEA(reg_t8, [reg_t0 + reg_t_stride * 8]) reg_t0_column_8, reg_t8_column_8 = GeneralPurposeRegister64(), GeneralPurposeRegister64() LEA(reg_t0_column_8, [reg_t0 + YMMRegister.size]) LEA(reg_t8_column_8, [reg_t8 + YMMRegister.size]) fft16x16.inverse_vfft(reg_t0, reg_t8, reg_t_stride, data_in=vfft_columns_0_to_8, reg_row_start=reg_row_start, reg_row_end=reg_row_end, store_mask=store_mask_columns_0_to_8, relu=with_relu) with Block() as store_columns_8_to_16: CMP(reg_column_end, 8) JB(store_columns_8_to_16.end) fft16x16.inverse_vfft(reg_t0_column_8, reg_t8_column_8, reg_t_stride, data_in=vfft_columns_8_to_16, \ reg_row_start=reg_row_start, reg_row_end=reg_row_end, store_mask=store_mask_columns_8_to_16, relu=with_relu) RETURN()
from __future__ import absolute_import from __future__ import division from peachpy import * from peachpy.x86_64 import * from common import butterfly, sqrt2_over_2 from common import butterfly, sqrt2_over_2, cos_npi_over_8, interleave def fft8_bitreverse(n): return int(format(n, "03b")[::-1], 2) def load_ymm_variable(variable): assert isinstance(variable, (YMMRegister, LocalVariable)) ymm_variable = variable if isinstance(variable, LocalVariable): assert variable.size == YMMRegister.size ymm_variable = YMMRegister() VMOVAPS(ymm_variable, variable) return ymm_variable def store_ymm_result(variable, result): assert isinstance(result, YMMRegister) if isinstance(variable, YMMRegister): SWAP.REGISTERS(variable, result) else: VMOVAPS(variable, result) def forward_vfft(reg_t0, reg_t8, reg_t_stride, data_out, reg_row_start=None, reg_row_end=None, ymm_load_mask=None): assert isinstance(reg_t0, GeneralPurposeRegister64) assert isinstance(reg_t8, GeneralPurposeRegister64) assert isinstance(reg_t_stride, GeneralPurposeRegister64) assert isinstance(data_out, list) and len(data_out) == 16 assert ymm_load_mask is None or isinstance(ymm_load_mask, YMMRegister) out_real, out_imag = data_out[0::2], data_out[1::2] real, imag = [YMMRegister() for _ in range(8)], [YMMRegister() for _ in range(8)] imag[0] = LocalVariable(YMMRegister.size) imag[4] = LocalVariable(YMMRegister.size) data = interleave(real, imag) for i, (data_lo, data_hi) in enumerate(zip(data[0:8], data[8:16])): row_lo = i row_hi = row_lo + 8 ymm_data_lo, ymm_data_hi = data_lo, data_hi if isinstance(data_lo, LocalVariable): ymm_data_lo = YMMRegister() if isinstance(data_hi, LocalVariable): ymm_data_hi = YMMRegister() VXORPS(ymm_data_lo, ymm_data_lo, ymm_data_lo) skip_data_lo = Label() if reg_row_start: CMP(reg_row_start, row_lo) JA(skip_data_lo) if reg_row_end: CMP(reg_row_end, row_lo) JBE(skip_data_lo) if ymm_load_mask is None: VMOVUPS(ymm_data_lo, [reg_t0]) else: VMASKMOVPS(ymm_data_lo, ymm_load_mask, [reg_t0]) if i + 1 != 8: ADD(reg_t0, reg_t_stride) LABEL(skip_data_lo) VMOVAPS(ymm_data_hi, ymm_data_lo) skip_data_hi = Label() if reg_row_start: CMP(reg_row_start, row_hi) JA(skip_data_hi) if reg_row_end: CMP(reg_row_end, row_hi) JBE(skip_data_hi) if ymm_load_mask is None: VMOVUPS(ymm_data_hi, [reg_t8]) butterfly(ymm_data_lo, ymm_data_hi) else: ymm_temp_hi = YMMRegister() VMASKMOVPS(ymm_temp_hi, ymm_load_mask, [reg_t8]) VSUBPS(ymm_data_hi, ymm_data_lo, ymm_temp_hi) VADDPS(ymm_data_lo, ymm_data_lo, ymm_temp_hi) if i + 1 != 8: ADD(reg_t8, reg_t_stride) LABEL(skip_data_hi) if isinstance(data_lo, LocalVariable): VMOVAPS(data_lo, ymm_data_lo) if isinstance(data_hi, LocalVariable): VMOVAPS(data_hi, ymm_data_hi) # FFT8: multiplication by twiddle factors fft4_scale_b, fft4_negate_b = {}, {} fft2_scale_b, fft2_negate_b = {}, {} # w6.re, w6.im = w6.im, -w6.re SWAP.REGISTERS(real[6], imag[6]) fft4_negate_b[id(imag[6])] = True # w5.re, w5.im = SQRT2_OVER_2 * (w5.re + w5.im), SQRT2_OVER_2 * (w5.im - w5.re) butterfly(imag[5], real[5]) SWAP.REGISTERS(real[5], imag[5]) # w7.re, w7.im = -SQRT2_OVER_2 * (w7.re - w7.im), -SQRT2_OVER_2 * (w7.re + w7.im) butterfly(real[7], imag[7], negate_b=True) fft4_negate_b[id(real[7])] = True fft4_negate_b[id(imag[7])] = True # Propogate multiplication by sqrt2_over_2 until the last butterfly in FFT2 ymm_sqrt2_over_2 = YMMRegister() fft2_scale_b[id(real[5])] = ymm_sqrt2_over_2 fft2_scale_b[id(imag[5])] = ymm_sqrt2_over_2 fft2_scale_b[id(real[7])] = ymm_sqrt2_over_2 fft2_scale_b[id(imag[7])] = ymm_sqrt2_over_2 # 2x FFT4: butterfly for data_lo, data_hi in zip(data[0:4] + data[8:12], data[4:8] + data[12:16]): butterfly(data_lo, data_hi, negate_b=fft4_negate_b.get(id(data_hi), False), scale_b=fft4_scale_b.get(id(data_hi))) # 2x FFT4: multiplication by twiddle factors # w3.re, w3.im = w3.im, -w3.re # w7.re, w7.im = w7.im, -w7.re SWAP.REGISTERS(real[3], imag[3]) SWAP.REGISTERS(real[7], imag[7]) fft2_negate_b[id(imag[3])] = True fft2_negate_b[id(imag[7])] = True # 4x FFT2: butterfly # Process the first two elements separately ymm_real0, ymm_real1 = butterfly(real[0], real[1], writeback=False) store_ymm_result(out_real[4], ymm_real1) # bit-reversal: 1->4 ymm_imag0, ymm_imag1 = butterfly(imag[0], imag[1], negate_out_b=True, writeback=False) store_ymm_result(out_imag[4], ymm_imag1) # bit-reversal: 1->4 VMOVAPS(ymm_sqrt2_over_2, Constant.float32x8(sqrt2_over_2)) for i, (data_lo, data_hi) in enumerate(zip(data[4:6] + data[8:10] + data[12:14], data[6:8] + data[10:12] + data[14:16])): butterfly(data_lo, data_hi, negate_b=fft2_negate_b.get(id(data_hi), False), scale_b=fft2_scale_b.get(id(data_hi))) butterfly(ymm_real0, ymm_imag0) store_ymm_result(out_real[0], ymm_real0) store_ymm_result(out_imag[0], ymm_imag0) # Bit reversal for i in range(8): new_i = fft8_bitreverse(i) if new_i > i: real[i], real[new_i] = real[new_i], real[i] imag[i], imag[new_i] = imag[new_i], imag[i] data = interleave(real, imag) ymm_two_g2_real, ymm_two_g2_imag = YMMRegister(), YMMRegister() ymm_two_h2_real, ymm_two_h2_imag = YMMRegister(), YMMRegister() VADDPS(ymm_two_g2_real, real[2], real[6]) VSUBPS(ymm_two_h2_imag, real[6], real[2]) VSUBPS(ymm_two_g2_imag, imag[2], imag[6]) VADDPS(ymm_two_h2_real, imag[2], imag[6]) ymm_two_g1_real, ymm_two_g1_imag = YMMRegister(), YMMRegister() ymm_two_h1_real, ymm_two_h1_imag = YMMRegister(), YMMRegister() ymm_real1 = load_ymm_variable(real[1]) VADDPS(ymm_two_g1_real, ymm_real1, real[7]) VSUBPS(ymm_two_h1_imag, real[7], ymm_real1) ymm_imag1 = load_ymm_variable(imag[1]) VSUBPS(ymm_two_g1_imag, ymm_imag1, imag[7]) VADDPS(ymm_two_h1_real, ymm_imag1, imag[7]) ymm_two_h2_add, ymm_two_h2_sub = YMMRegister(), YMMRegister() VADDPS(ymm_two_h2_add, ymm_two_h2_real, ymm_two_h2_imag) VSUBPS(ymm_two_h2_sub, ymm_two_h2_imag, ymm_two_h2_real) ymm_two_g3_real, ymm_two_g3_imag = YMMRegister(), YMMRegister() ymm_two_h3_real, ymm_two_h3_imag = YMMRegister(), YMMRegister() VADDPS(ymm_two_g3_real, real[3], real[5]) VSUBPS(ymm_two_h3_imag, real[5], real[3]) VSUBPS(ymm_two_g3_imag, imag[3], imag[5]) VADDPS(ymm_two_h3_real, imag[3], imag[5]) # const float two_w2_real = two_g2_real + SQRT2_OVER_2 * (two_h2_real + two_h2_imag); # const float two_w2_imag = two_g2_imag + SQRT2_OVER_2 * (two_h2_imag - two_h2_real); # const float two_w6_real = two_g2_real - SQRT2_OVER_2 * (two_h2_real + two_h2_imag); # const float two_w6_imag = -two_g2_imag + SQRT2_OVER_2 * (two_h2_imag - two_h2_real); ymm_sqrt2_over_2 = YMMRegister() VMOVAPS(ymm_sqrt2_over_2, Constant.float32x8(sqrt2_over_2)) ymm_two_w2_real, ymm_two_w6_real = YMMRegister(), ymm_two_g2_real VMOVAPS(ymm_two_w2_real, ymm_two_g2_real) VFMADD231PS(ymm_two_w2_real, ymm_two_h2_add, ymm_sqrt2_over_2) VFNMADD231PS(ymm_two_w6_real, ymm_two_h2_add, ymm_sqrt2_over_2) ymm_two_w2_imag, ymm_two_w6_imag = YMMRegister(), ymm_two_g2_imag VMOVAPS(ymm_two_w2_imag, ymm_two_g2_imag) VFMADD231PS(ymm_two_w2_imag, ymm_two_h2_sub, ymm_sqrt2_over_2) VFMSUB231PS(ymm_two_w6_imag, ymm_two_h2_sub, ymm_sqrt2_over_2) ymm_half = YMMRegister() VMOVAPS(ymm_half, Constant.float32x8(0.5)) VMULPS(ymm_two_w2_real, ymm_two_w2_real, ymm_half) store_ymm_result(out_real[2], ymm_two_w2_real) VMULPS(ymm_two_w6_real, ymm_two_w6_real, ymm_half) store_ymm_result(out_real[6], ymm_two_w6_real) VMULPS(ymm_two_w2_imag, ymm_two_w2_imag, ymm_half) store_ymm_result(out_imag[2], ymm_two_w2_imag) VMULPS(ymm_two_w6_imag, ymm_two_w6_imag, ymm_half) store_ymm_result(out_imag[6], ymm_two_w6_imag) # const float two_w1_real = two_g1_real + two_h1_real * COS_1PI_OVER_8 + two_h1_imag * COS_3PI_OVER_8; # const float two_w1_imag = two_g1_imag + two_h1_imag * COS_1PI_OVER_8 - two_h1_real * COS_3PI_OVER_8; # const float two_w7_real = two_g1_real - two_h1_real * COS_1PI_OVER_8 - two_h1_imag * COS_3PI_OVER_8; # const float two_w7_imag = -two_g1_imag + two_h1_imag * COS_1PI_OVER_8 - two_h1_real * COS_3PI_OVER_8; # const float two_w3_real = two_g3_real + two_h3_real * COS_3PI_OVER_8 + two_h3_imag * COS_1PI_OVER_8; # const float two_w3_imag = two_g3_imag + two_h3_imag * COS_3PI_OVER_8 - two_h3_real * COS_1PI_OVER_8; # const float two_w5_real = two_g3_real - two_h3_real * COS_3PI_OVER_8 - two_h3_imag * COS_1PI_OVER_8; # const float two_w5_imag = -two_g3_imag + two_h3_imag * COS_3PI_OVER_8 - two_h3_real * COS_1PI_OVER_8; ymm_cos_1pi_over_8 = YMMRegister() VMOVAPS(ymm_cos_1pi_over_8, Constant.float32x8(cos_npi_over_8[1])) ymm_two_w1_real, ymm_two_w7_real = YMMRegister(), ymm_two_g1_real VMOVAPS(ymm_two_w1_real, ymm_two_g1_real) VFMADD231PS(ymm_two_w1_real, ymm_two_h1_real, ymm_cos_1pi_over_8) VFNMADD231PS(ymm_two_w7_real, ymm_two_h1_real, ymm_cos_1pi_over_8) ymm_two_w1_imag, ymm_two_w7_imag = YMMRegister(), ymm_two_g1_imag VMOVAPS(ymm_two_w1_imag, ymm_two_g1_imag) VFMADD231PS(ymm_two_w1_imag, ymm_two_h1_imag, ymm_cos_1pi_over_8) VFMSUB231PS(ymm_two_w7_imag, ymm_two_h1_imag, ymm_cos_1pi_over_8) ymm_two_w3_real, ymm_two_w5_real = YMMRegister(), ymm_two_g3_real VMOVAPS(ymm_two_w3_real, ymm_two_g3_real) VFMADD231PS(ymm_two_w3_real, ymm_two_h3_imag, ymm_cos_1pi_over_8) VFNMADD231PS(ymm_two_w5_real, ymm_two_h3_imag, ymm_cos_1pi_over_8) ymm_two_w3_imag, ymm_two_w5_imag = YMMRegister(), ymm_two_g3_imag VMOVAPS(ymm_two_w3_imag, ymm_two_g3_imag) VFNMADD231PS(ymm_two_w3_imag, ymm_two_h3_real, ymm_cos_1pi_over_8) VFNMSUB231PS(ymm_two_w5_imag, ymm_two_h3_real, ymm_cos_1pi_over_8) ymm_cos_3pi_over_8 = YMMRegister() VMOVAPS(ymm_cos_3pi_over_8, Constant.float32x8(cos_npi_over_8[3])) VFMADD231PS(ymm_two_w1_real, ymm_two_h1_imag, ymm_cos_3pi_over_8) VFNMADD231PS(ymm_two_w7_real, ymm_two_h1_imag, ymm_cos_3pi_over_8) VFNMADD231PS(ymm_two_w1_imag, ymm_two_h1_real, ymm_cos_3pi_over_8) VFNMADD231PS(ymm_two_w7_imag, ymm_two_h1_real, ymm_cos_3pi_over_8) VFMADD231PS(ymm_two_w3_real, ymm_two_h3_real, ymm_cos_3pi_over_8) VFNMADD231PS(ymm_two_w5_real, ymm_two_h3_real, ymm_cos_3pi_over_8) VFMADD231PS(ymm_two_w3_imag, ymm_two_h3_imag, ymm_cos_3pi_over_8) VFMADD231PS(ymm_two_w5_imag, ymm_two_h3_imag, ymm_cos_3pi_over_8) ymm_half = YMMRegister() VMOVAPS(ymm_half, Constant.float32x8(0.5)) VMULPS(ymm_two_w1_real, ymm_two_w1_real, ymm_half) store_ymm_result(out_real[1], ymm_two_w1_real) VMULPS(ymm_two_w7_real, ymm_two_w7_real, ymm_half) store_ymm_result(out_real[7], ymm_two_w7_real) VMULPS(ymm_two_w1_imag, ymm_two_w1_imag, ymm_half) store_ymm_result(out_imag[1], ymm_two_w1_imag) VMULPS(ymm_two_w7_imag, ymm_two_w7_imag, ymm_half) store_ymm_result(out_imag[7], ymm_two_w7_imag) VMULPS(ymm_two_w3_real, ymm_two_w3_real, ymm_half) store_ymm_result(out_real[3], ymm_two_w3_real) VMULPS(ymm_two_w5_real, ymm_two_w5_real, ymm_half) store_ymm_result(out_real[5], ymm_two_w5_real) VMULPS(ymm_two_w3_imag, ymm_two_w3_imag, ymm_half) store_ymm_result(out_imag[3], ymm_two_w3_imag) VMULPS(ymm_two_w5_imag, ymm_two_w5_imag, ymm_half) store_ymm_result(out_imag[5], ymm_two_w5_imag) def inverse_vfft(reg_t0, reg_t8, reg_t_stride, data_in, reg_row_start=None, reg_row_end=None, store_mask=None, relu=False): assert isinstance(reg_t0, GeneralPurposeRegister64) assert isinstance(reg_t8, GeneralPurposeRegister64) assert isinstance(reg_t_stride, GeneralPurposeRegister64) assert isinstance(data_in, list) and len(data_in) == 16 assert reg_row_end is None or isinstance(reg_row_end, GeneralPurposeRegister32) assert store_mask is None or isinstance(store_mask, LocalVariable) and store_mask.size == YMMRegister.size in_real, in_imag = data_in[0::2], data_in[1::2] ymm_scale_factor = YMMRegister() VMOVAPS(ymm_scale_factor, Constant.float32x8(0.0625)) ymm_W1_real, ymm_W1_imag = YMMRegister(), YMMRegister() VMULPS(ymm_W1_real, ymm_scale_factor, in_real[1]) VMULPS(ymm_W1_imag, ymm_scale_factor, in_imag[1]) ymm_W2_real, ymm_W2_imag = YMMRegister(), YMMRegister() VMULPS(ymm_W2_real, ymm_scale_factor, in_real[2]) VMULPS(ymm_W2_imag, ymm_scale_factor, in_imag[2]) ymm_W3_real, ymm_W3_imag = YMMRegister(), YMMRegister() VMULPS(ymm_W3_real, ymm_scale_factor, in_real[3]) VMULPS(ymm_W3_imag, ymm_scale_factor, in_imag[3]) # G[n].real, H[n].real = W[n].real + W[8-n].real, W[n].real - W[8-n].real # G[n].imag, H[n].imag = W[n].imag - W[8-n].imag, W[n].imag + W[8-n].imag ymm_W7_real, ymm_W7_imag = YMMRegister(), YMMRegister() VMOVUPS(ymm_W7_real, in_real[7]) ymm_G1_real, ymm_H1_real = butterfly(ymm_W1_real, ymm_W7_real, scale_b=ymm_scale_factor) VMOVUPS(ymm_W7_imag, in_imag[7]) ymm_G1_imag, ymm_H1_imag = butterfly(ymm_W1_imag, ymm_W7_imag, scale_b=ymm_scale_factor, negate_b=True) ymm_W6_real, ymm_W6_imag = YMMRegister(), YMMRegister() VMOVUPS(ymm_W6_real, in_real[6]) ymm_G2_real, ymm_H2_real = butterfly(ymm_W2_real, ymm_W6_real, scale_b=ymm_scale_factor) VMOVUPS(ymm_W6_imag, in_imag[6]) ymm_G2_imag, ymm_H2_imag = butterfly(ymm_W2_imag, ymm_W6_imag, scale_b=ymm_scale_factor, negate_b=True) ymm_W5_real, ymm_W5_imag = YMMRegister(), YMMRegister() VMOVUPS(ymm_W5_real, in_real[5]) ymm_G3_real, ymm_H3_real = butterfly(ymm_W3_real, ymm_W5_real, scale_b=ymm_scale_factor) VMOVUPS(ymm_W5_imag, in_imag[5]) ymm_G3_imag, ymm_H3_imag = butterfly(ymm_W3_imag, ymm_W5_imag, scale_b=ymm_scale_factor, negate_b=True) # H[2]+, H[2]- = H[2].real + H[2].imag, H[2].real - H[2].imag ymm_H2_add, ymm_H2_sub = butterfly(ymm_H2_real, ymm_H2_imag) # w[ n].real = G[ n].real - H[ n].real * cos((N-n)*pi/2N) - H[ n].imag * cos(n*pi/2N) # w[2N-n].real = G[ n].real + H[ n].real * cos((N-n)*pi/2N) + H[ n].imag * cos(n*pi/2N) # w[ n].imag = G[ n].imag + H[ n].real * cos(n*pi/2N) - H[ n].imag * cos((N-n)*pi/2N) # w[2N-n].imag = -G[ n].imag + H[ n].real * cos(n*pi/2N) - H[ n].imag * cos((N-n)*pi/2N) # w[ N-n].real = G[N-n].real - H[N-n].real * cos(n*pi/2N) - H[N-n].imag * cos((N-n)*pi/2N) # w[ N+n].real = G[N-n].real + H[N-n].real * cos(n*pi/2N) + H[N-n].imag * cos((N-n)*pi/2N) # w[ N-n].imag = G[N-n].imag + H[N-n].real * cos((N-n)*pi/2N) - H[N-n].imag * cos(n*pi/2N) # w[ N+n].imag = -G[N-n].imag + H[N-n].real * cos((N-n)*pi/2N) - H[N-n].imag * cos(n*pi/2N) ymm_cos_1pi_over_8, ymm_cos_3pi_over_8 = YMMRegister(), YMMRegister() VMOVAPS(ymm_cos_3pi_over_8, Constant.float32x8(cos_npi_over_8[3])) VMOVAPS(ymm_cos_1pi_over_8, Constant.float32x8(cos_npi_over_8[1])) ymm_w1_real, ymm_w7_real = YMMRegister(), ymm_G1_real VMOVAPS(ymm_w1_real, ymm_G1_real) VFNMADD231PS(ymm_w1_real, ymm_H1_real, ymm_cos_3pi_over_8) VFMADD231PS(ymm_w7_real, ymm_H1_real, ymm_cos_3pi_over_8) ymm_w1_imag, ymm_w7_imag = YMMRegister(), ymm_G1_imag VMOVAPS(ymm_w1_imag, ymm_G1_imag) VFMADD231PS(ymm_w1_imag, ymm_H1_real, ymm_cos_1pi_over_8) VFMSUB231PS(ymm_w7_imag, ymm_H1_real, ymm_cos_1pi_over_8) ymm_w3_real, ymm_w5_real = YMMRegister(), ymm_G3_real VMOVAPS(ymm_w3_real, ymm_G3_real) VFNMADD231PS(ymm_w3_real, ymm_H3_real, ymm_cos_1pi_over_8) VFMADD231PS(ymm_w5_real, ymm_H3_real, ymm_cos_1pi_over_8) ymm_w3_imag, ymm_w5_imag = YMMRegister(), ymm_G3_imag VMOVAPS(ymm_w3_imag, ymm_G3_imag) VFMADD231PS(ymm_w3_imag, ymm_H3_real, ymm_cos_3pi_over_8) VFMSUB231PS(ymm_w5_imag, ymm_H3_real, ymm_cos_3pi_over_8) ymm_sqrt2_over_2 = YMMRegister() VMOVAPS(ymm_sqrt2_over_2, Constant.float32x8(sqrt2_over_2)) # w[ N/2].real = G[N/2].real - H[N/2]+ * sqrt(2)/2 # w[ N/2].imag = G[N/2].imag + H[N/2]- * sqrt(2)/2 # w[3N/2].real = G[N/2].real + H[N/2]+ * sqrt(2)/2 # w[3N/2].imag = -G[N/2].imag + H[N/2]- * sqrt(2)/2 ymm_w2_real, ymm_w6_real = YMMRegister(), ymm_G2_real VMOVAPS(ymm_w2_real, ymm_G2_real) VFNMADD231PS(ymm_w2_real, ymm_H2_add, ymm_sqrt2_over_2) VFMADD231PS(ymm_w6_real, ymm_H2_add, ymm_sqrt2_over_2) ymm_w2_imag, ymm_w6_imag = YMMRegister(), ymm_G2_imag VMOVAPS(ymm_w2_imag, ymm_G2_imag) VFMADD231PS(ymm_w2_imag, ymm_H2_sub, ymm_sqrt2_over_2) VFMSUB231PS(ymm_w6_imag, ymm_H2_sub, ymm_sqrt2_over_2) # w[ n].real = G[ n].real - H[ n].real * cos((N-n)*pi/2N) - H[ n].imag * cos(n*pi/2N) # w[2N-n].real = G[ n].real + H[ n].real * cos((N-n)*pi/2N) + H[ n].imag * cos(n*pi/2N) # w[ n].imag = G[ n].imag + H[ n].real * cos(n*pi/2N) - H[ n].imag * cos((N-n)*pi/2N) # w[2N-n].imag = -G[ n].imag + H[ n].real * cos(n*pi/2N) - H[ n].imag * cos((N-n)*pi/2N) # w[ N-n].real = G[N-n].real - H[N-n].real * cos(n*pi/2N) - H[N-n].imag * cos((N-n)*pi/2N) # w[ N+n].real = G[N-n].real + H[N-n].real * cos(n*pi/2N) + H[N-n].imag * cos((N-n)*pi/2N) # w[ N-n].imag = G[N-n].imag + H[N-n].real * cos((N-n)*pi/2N) - H[N-n].imag * cos(n*pi/2N) # w[ N+n].imag = -G[N-n].imag + H[N-n].real * cos((N-n)*pi/2N) - H[N-n].imag * cos(n*pi/2N) ymm_cos_1pi_over_8, ymm_cos_3pi_over_8 = YMMRegister(), YMMRegister() VMOVAPS(ymm_cos_1pi_over_8, Constant.float32x8(cos_npi_over_8[1])) VMOVAPS(ymm_cos_3pi_over_8, Constant.float32x8(cos_npi_over_8[3])) VFNMADD231PS(ymm_w1_real, ymm_H1_imag, ymm_cos_1pi_over_8) VFMADD231PS(ymm_w7_real, ymm_H1_imag, ymm_cos_1pi_over_8) VFNMADD231PS(ymm_w1_imag, ymm_H1_imag, ymm_cos_3pi_over_8) VFNMADD231PS(ymm_w7_imag, ymm_H1_imag, ymm_cos_3pi_over_8) VFNMADD231PS(ymm_w3_real, ymm_H3_imag, ymm_cos_3pi_over_8) VFMADD231PS(ymm_w5_real, ymm_H3_imag, ymm_cos_3pi_over_8) VFNMADD231PS(ymm_w3_imag, ymm_H3_imag, ymm_cos_1pi_over_8) VFNMADD231PS(ymm_w5_imag, ymm_H3_imag, ymm_cos_1pi_over_8) data = [ LocalVariable(YMMRegister.size), YMMRegister(), ymm_w1_real, ymm_w1_imag, ymm_w2_real, ymm_w2_imag, ymm_w3_real, ymm_w3_imag, LocalVariable(YMMRegister.size), LocalVariable(YMMRegister.size), ymm_w5_real, ymm_w5_imag, ymm_w6_real, ymm_w6_imag, ymm_w7_real, ymm_w7_imag ] real, imag = data[0::2], data[1::2] # TODO: optimize ymm_w0_real, ymm_w0_imag = YMMRegister(), imag[0] VMOVUPS(ymm_w0_real, in_real[0]) VMOVUPS(ymm_w0_imag, in_imag[0]) VMULPS(ymm_w0_real, ymm_w0_real, Constant.float32x8(0.0625)) butterfly(ymm_w0_real, ymm_w0_imag, scale_b=Constant.float32x8(0.0625)) VMOVAPS(real[0], ymm_w0_real) # TODO: optimize ymm_w4_real, ymm_w4_imag = YMMRegister(), YMMRegister() VMOVUPS(ymm_w4_real, in_real[4]) VMOVUPS(ymm_w4_imag, in_imag[4]) VMULPS(ymm_w4_real, ymm_w4_real, Constant.float32x8(0.125)) VMULPS(ymm_w4_imag, ymm_w4_imag, Constant.float32x8(-0.125)) VMOVAPS(real[4], ymm_w4_real) VMOVAPS(imag[4], ymm_w4_imag) # Bit reversal for i in range(8): new_i = fft8_bitreverse(i) if new_i > i: real[i], real[new_i] = real[new_i], real[i] imag[i], imag[new_i] = imag[new_i], imag[i] data = interleave(real, imag) # 4x FFT2: butterfly for i, (data_lo, data_hi) in enumerate(zip(data[0:2] + data[4:6] + data[8:10] + data[12:14], data[2:4] + data[6:8] + data[10:12] + data[14:16])): butterfly(data_lo, data_hi) # 2x FFT4: multiplication by twiddle factors fft4_scale_b, fft4_negate_b = {}, {} fft8_scale_b, fft8_negate_b = {}, {} # w3.re, w3.im = -w3.im, w3.re # w7.re, w7.im = -w7.im, w7.re SWAP.REGISTERS(real[3], imag[3]) fft4_negate_b[id(real[3])] = True SWAP.REGISTERS(real[7], imag[7]) fft4_negate_b[id(real[7])] = True # 2x FFT4: butterfly for data_lo, data_hi in zip(data[0:4] + data[8:12], data[4:8] + data[12:16]): butterfly(data_lo, data_hi, negate_b=fft4_negate_b.get(id(data_hi), False)) # FFT8: multiplication by twiddle factors # w6.re, w6.im = -w6.im, w6.re SWAP.REGISTERS(real[6], imag[6]) fft8_negate_b[id(real[6])] = True # w5.re, w5.im = SQRT2_OVER_2 * (w5.re - w5.im), SQRT2_OVER_2 * (w5.re + w5.im) butterfly(real[5], imag[5], negate_b=True) fft8_scale_b[id(real[5])] = Constant.float32x8(sqrt2_over_2) fft8_scale_b[id(imag[5])] = Constant.float32x8(sqrt2_over_2) # w7.re, w7.im = -SQRT2_OVER_2 * (w7.re + w7.im), SQRT2_OVER_2 * (w7.re - w7.im) butterfly(real[7], imag[7]) fft8_scale_b[id(real[7])] = Constant.float32x8(sqrt2_over_2) fft8_negate_b[id(real[7])] = True fft8_scale_b[id(imag[7])] = Constant.float32x8(sqrt2_over_2) ymm_store_mask = YMMRegister() if store_mask: VMOVAPS(ymm_store_mask, store_mask) # FFT8: butterfly with Block() as store_data: for i, (data_lo, data_hi) in enumerate(zip(data[0:8], data[8:16])): row_lo = i row_hi = row_lo + 8 ymm_data_lo, ymm_data_hi = \ butterfly(data_lo, data_hi, scale_b=fft8_scale_b.get(id(data_hi)), negate_b=fft8_negate_b.get(id(data_hi), False), writeback=False) if relu: ymm_zero = YMMRegister() VMOVAPS(ymm_zero, Constant.float32x8(-0.0)) with Block() as store_data_lo: if reg_row_start: CMP(reg_row_start, row_lo) JA(store_data_lo.end) if reg_row_end: CMP(reg_row_end, row_lo) JBE(store_data_lo.end) elif reg_row_end: CMP(reg_row_end, row_lo) JBE(store_data.end) if relu: VMAXPS(ymm_data_lo, ymm_zero, ymm_data_lo) if store_mask: VMASKMOVPS([reg_t0], ymm_store_mask, ymm_data_lo) else: VMOVUPS([reg_t0], ymm_data_lo) if i + 1 != 8: ADD(reg_t0, reg_t_stride) with Block() as store_data_hi: if reg_row_start: CMP(reg_row_start, row_hi) JA(store_data_hi.end) if reg_row_end: CMP(reg_row_end, row_hi) JBE(store_data_hi.end) if relu: VMAXPS(ymm_data_hi, ymm_zero, ymm_data_hi) if store_mask: VMASKMOVPS([reg_t8], ymm_store_mask, ymm_data_hi) else: VMOVUPS([reg_t8], ymm_data_hi) if i + 1 != 8: ADD(reg_t8, reg_t_stride)
from __future__ import absolute_import from __future__ import division import fft.complex_soa arg_t = Argument(ptr(const_float_), name="t") arg_f = Argument(ptr(float_), name="f") with Function("nnp_fft4_8aos__fma3", (arg_t, arg_f), target=uarch.default + isa.fma3): reg_t = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_t, arg_t) reg_f = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_f, arg_f) ymm_data = [YMMRegister() for _ in range(8)] ymm_real, ymm_imag = ymm_data[0::2], ymm_data[1::2] for i, ymm_i in enumerate(ymm_data): VMOVUPS(ymm_i, [reg_t + i * YMMRegister.size]) fft.complex_soa.fft4_across_rows(ymm_real, ymm_imag) for i, ymm_i in enumerate(ymm_data): VMOVUPS([reg_f + i * YMMRegister.size], ymm_i) RETURN() from common import butterfly, sqrt2_over_2 def fft8_bitreverse(n): return int(format(n, "03b")[::-1], 2) with Function("nnp_fft8_8aos__fma3", (arg_t, arg_f), target=uarch.default + isa.fma3): reg_t = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_t, arg_t) reg_f = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_f, arg_f) data = [YMMRegister() for _ in range(16)] data[0] = LocalVariable(data[0]) data[8] = LocalVariable(data[8]) real, imag = data[0::2], data[1::2] for i, (data_lo, data_hi) in enumerate(zip(data[0:8], data[8:16])): ymm_data_lo, ymm_data_hi = data_lo, data_hi if isinstance(data_lo, LocalVariable): ymm_data_lo = YMMRegister() if isinstance(data_hi, LocalVariable): ymm_data_hi = YMMRegister() VMOVUPS(ymm_data_lo, [reg_t + i * YMMRegister.size]) VMOVUPS(ymm_data_hi, [reg_t + (i + 8) * YMMRegister.size]) butterfly(ymm_data_lo, ymm_data_hi) if isinstance(data_lo, LocalVariable): VMOVAPS(data_lo, ymm_data_lo) if isinstance(data_hi, LocalVariable): VMOVAPS(data_hi, ymm_data_hi) # FFT8: multiplication by twiddle factors fft4_scale_b, fft4_negate_b = {}, {} fft2_scale_b, fft2_negate_b = {}, {} # w6.re, w6.im = w6.im, -w6.re SWAP.REGISTERS(real[6], imag[6]) fft4_negate_b[id(imag[6])] = True # w5.re, w5.im = SQRT2_OVER_2 * (w5.re + w5.im), SQRT2_OVER_2 * (w5.im - w5.re) butterfly(imag[5], real[5]) SWAP.REGISTERS(real[5], imag[5]) # w7.re, w7.im = -SQRT2_OVER_2 * (w7.re - w7.im), -SQRT2_OVER_2 * (w7.re + w7.im) butterfly(real[7], imag[7], negate_b=True) fft4_negate_b[id(real[7])] = True fft4_negate_b[id(imag[7])] = True # Propogate multiplication by sqrt2_over_2 until the last butterfly in FFT2 ymm_sqrt2_over_2 = YMMRegister() fft2_scale_b[id(real[5])] = ymm_sqrt2_over_2 fft2_scale_b[id(imag[5])] = ymm_sqrt2_over_2 fft2_scale_b[id(real[7])] = ymm_sqrt2_over_2 fft2_scale_b[id(imag[7])] = ymm_sqrt2_over_2 # 2x FFT4: butterfly for data_lo, data_hi in zip(data[0:4] + data[8:12], data[4:8] + data[12:16]): butterfly(data_lo, data_hi, negate_b=fft4_negate_b.get(id(data_hi), False), scale_b=fft4_scale_b.get(id(data_hi))) # 2x FFT4: multiplication by twiddle factors # w3.re, w3.im = w3.im, -w3.re # w7.re, w7.im = w7.im, -w7.re SWAP.REGISTERS(real[3], imag[3]) SWAP.REGISTERS(real[7], imag[7]) fft2_negate_b[id(imag[3])] = True fft2_negate_b[id(imag[7])] = True # 4x FFT2: butterfly for i, (data_lo, data_hi) in enumerate(zip(data[0:2] + data[4:6] + data[8:10] + data[12:14], data[2:4] + data[6:8] + data[10:12] + data[14:16])): ymm_data_lo, ymm_data_hi = \ butterfly(data_lo, data_hi, negate_b=fft2_negate_b.get(id(data_hi), False), scale_b=fft2_scale_b.get(id(data_hi)), writeback=False) index_lo = (i // 2) * 2 index_hi = index_lo + 1 VMOVUPS([reg_f + (fft8_bitreverse(index_lo) * 2 + i % 2) * YMMRegister.size], ymm_data_lo) VMOVUPS([reg_f + (fft8_bitreverse(index_hi) * 2 + i % 2) * YMMRegister.size], ymm_data_hi) if i == 0: VMOVAPS(ymm_sqrt2_over_2, Constant.float32x8(sqrt2_over_2)) RETURN() with Function("nnp_ifft8_8aos__fma3", (arg_t, arg_f), target=uarch.default + isa.fma3): reg_t = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_t, arg_t) reg_f = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_f, arg_f) data = [YMMRegister() for _ in range(16)] data[0] = LocalVariable(data[0]) data[8] = LocalVariable(data[8]) real, imag = data[0::2], data[1::2] for i, (data_lo, data_hi) in enumerate(zip(data[0:8], data[8:16])): ymm_data_lo, ymm_data_hi = data_lo, data_hi if isinstance(data_lo, LocalVariable): ymm_data_lo = YMMRegister() if isinstance(data_hi, LocalVariable): ymm_data_hi = YMMRegister() VMOVUPS(ymm_data_lo, [reg_t + i * YMMRegister.size]) VMOVUPS(ymm_data_hi, [reg_t + (i + 8) * YMMRegister.size]) butterfly(ymm_data_lo, ymm_data_hi) if isinstance(data_lo, LocalVariable): VMOVAPS(data_lo, ymm_data_lo) if isinstance(data_hi, LocalVariable): VMOVAPS(data_hi, ymm_data_hi) # FFT8: multiplication by twiddle factors fft4_scale_b, fft4_negate_b = {}, {} fft2_scale_b, fft2_negate_b = {}, {} # w6.re, w6.im = -w6.im, w6.re SWAP.REGISTERS(real[6], imag[6]) fft4_negate_b[id(real[6])] = True # w5.re, w5.im = SQRT2_OVER_2 * (w5.re - w5.im), SQRT2_OVER_2 * (w5.re + w5.im) butterfly(real[5], imag[5], negate_b=True) # w7.re, w7.im = -SQRT2_OVER_2 * (w7.re + w7.im), SQRT2_OVER_2 * (w7.re - w7.im) butterfly(real[7], imag[7]) fft4_negate_b[id(real[7])] = True # Propogate multiplication by sqrt2_over_2 until the last butterfly in FFT2 fft2_scale_b[id(real[5])] = Constant.float32x8(sqrt2_over_2) fft2_scale_b[id(imag[5])] = Constant.float32x8(sqrt2_over_2) fft2_scale_b[id(real[7])] = Constant.float32x8(sqrt2_over_2) fft2_scale_b[id(imag[7])] = Constant.float32x8(sqrt2_over_2) # 2x FFT4: butterfly for data_lo, data_hi in zip(data[0:4] + data[8:12], data[4:8] + data[12:16]): butterfly(data_lo, data_hi, negate_b=fft4_negate_b.get(id(data_hi), False), scale_b=fft4_scale_b.get(id(data_hi))) # 2x FFT4: multiplication by twiddle factors # w3.re, w3.im = -w3.im, w3.re # w7.re, w7.im = -w7.im, w7.re SWAP.REGISTERS(real[3], imag[3]) SWAP.REGISTERS(real[7], imag[7]) fft2_negate_b[id(real[3])] = True fft2_negate_b[id(real[7])] = True # 4x FFT2: butterfly for i, (data_lo, data_hi) in enumerate(zip(data[0:2] + data[4:6] + data[8:10] + data[12:14], data[2:4] + data[6:8] + data[10:12] + data[14:16])): ymm_data_lo, ymm_data_hi = \ butterfly(data_lo, data_hi, negate_b=fft2_negate_b.get(id(data_hi), False), scale_b=fft2_scale_b.get(id(data_hi)), writeback=False) index_lo = (i // 2) * 2 index_hi = index_lo + 1 VMULPS(ymm_data_lo, ymm_data_lo, Constant.float32x8(0.125)) VMULPS(ymm_data_hi, ymm_data_hi, Constant.float32x8(0.125)) VMOVUPS([reg_f + (fft8_bitreverse(index_lo) * 2 + i % 2) * YMMRegister.size], ymm_data_lo) VMOVUPS([reg_f + (fft8_bitreverse(index_hi) * 2 + i % 2) * YMMRegister.size], ymm_data_hi) RETURN()
import fft.complex_soa import fft.two_real_to_two_complex_soa_perm_planar arg_t = Argument(ptr(const_float_), name="t") arg_f = Argument(ptr(float_), name="f") with Function("nnp_fft8_dualreal__avx2", (arg_t, arg_f), target=uarch.default + isa.fma3 + isa.avx2): reg_t = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_t, arg_t) reg_f = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_f, arg_f) ymm_seq_a, ymm_seq_b = YMMRegister(), YMMRegister() VMOVUPS(ymm_seq_a, [reg_t]) VMOVUPS(ymm_seq_b, [reg_t + YMMRegister.size]) fft.complex_soa.fft8_within_rows(ymm_seq_a, ymm_seq_b) ymm_wr, ymm_wi = ymm_seq_a, ymm_seq_b fft.two_real_to_two_complex_soa_perm_planar.fft8_within_rows_postprocess(ymm_wr, ymm_wi) ymm_xhr, ymm_xhi = ymm_wr, ymm_wi VMOVUPS([reg_f], ymm_xhr) VMOVUPS([reg_f + YMMRegister.size], ymm_xhi) RETURN() with Function("nnp_fft16_dualreal__avx2", (arg_t, arg_f), target=uarch.default + isa.fma3 + isa.avx2): reg_t = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_t, arg_t) reg_f = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_f, arg_f) ymm_seq_a = YMMRegister(), YMMRegister() ymm_seq_b = YMMRegister(), YMMRegister() for i, ymm_a in enumerate(ymm_seq_a + ymm_seq_b): VMOVUPS(ymm_a, [reg_t + i * YMMRegister.size]) fft.complex_soa.fft16_within_rows(ymm_seq_a, ymm_seq_b) ymm_wr, ymm_wi = ymm_seq_a, ymm_seq_b fft.two_real_to_two_complex_soa_perm_planar.fft16_within_rows_postprocess(ymm_wr, ymm_wi) for i, ymm_w in enumerate(ymm_wr + ymm_wi): VMOVUPS([reg_f + i * YMMRegister.size], ymm_w) RETURN()
import fft.complex_soa_perm_to_real from common import butterfly, cos_npi_over_8, sqrt2_over_2 def fft8_bitreverse(n): return int(format(n, "03b")[::-1], 2) arg_f = Argument(ptr(const_float_), name="f") arg_t = Argument(ptr(float_), name="t") with Function("nnp_ifft8_8real__fma3", (arg_f, arg_t), target=uarch.default + isa.fma3): reg_f = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_f, arg_f) reg_t = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_t, arg_t) ymm_data = [YMMRegister() for _ in range(8)] ymm_real, ymm_imag = ymm_data[0::2], ymm_data[1::2] for i, ymm_i in enumerate(ymm_data): VMOVUPS(ymm_i, [reg_f + i * YMMRegister.size]) fft.complex_soa_perm_to_real.ifft8_across_rows(ymm_data) for i, ymm_i in enumerate(ymm_data): VMOVUPS([reg_t + i * YMMRegister.size], ymm_i) RETURN() import fft16x16 with Function("nnp_ifft16_8real__fma3", (arg_f, arg_t), target=uarch.default + isa.fma3): reg_f = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_f, arg_f) reg_t0 = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_t0, arg_t) reg_stride = GeneralPurposeRegister64() MOV(reg_stride, YMMRegister.size) reg_t8 = GeneralPurposeRegister64() LEA(reg_t8, [reg_t0 + 8 * YMMRegister.size]) fft16x16.inverse_vfft(reg_t0, reg_t8, reg_stride, data_in=[yword[reg_f + YMMRegister.size * i] for i in range(16)]) RETURN()
from __future__ import absolute_import from __future__ import division import winograd.o6x6k3x3 import block8x8 from common import _MM_SHUFFLE for post_operation in ["store", "stream"]: arg_d_pointer = Argument(ptr(const_float_), name="d_pointer") arg_wd_pointer = Argument(ptr(float_), name="wd_pointer") arg_d_stride = Argument(size_t, name="d_stride") arg_wd_stride = Argument(size_t, name="wd_stride") arg_row_count = Argument(uint32_t, name="row_count") arg_column_count = Argument(uint32_t, name="column_count") arg_row_offset = Argument(uint32_t, name="row_offset") arg_column_offset = Argument(uint32_t, name="column_offset") with Function("nnp_iwt8x8_3x3_with_offset_and_{post_operation}__avx2".format(post_operation=post_operation), (arg_d_pointer, arg_wd_pointer, arg_d_stride, arg_wd_stride, arg_row_count, arg_column_count, arg_row_offset, arg_column_offset), target=uarch.default + isa.fma3 + isa.avx2): reg_d = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_d, arg_d_pointer) reg_wd = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_wd, arg_wd_pointer) reg_stride_d = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_stride_d, arg_d_stride) reg_stride_wd = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_stride_wd, arg_wd_stride) reg_row_cnt = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_row_cnt, arg_row_count) reg_col_cnt = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_col_cnt, arg_column_count) reg_row_off = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_row_off, arg_row_offset) reg_col_off = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_col_off, arg_column_offset) ymm_data = [YMMRegister() for _ in range(8)] block8x8.load_with_padding(ymm_data, reg_d, reg_stride_d, reg_row_off, reg_row_cnt, reg_col_off, reg_col_cnt) ymm_data = winograd.o6x6k3x3.input_transform(ymm_data) winograd.o6x6k3x3.transpose8x8(ymm_data) ymm_data = winograd.o6x6k3x3.input_transform(ymm_data) VSTOREPS = {"store": VMOVAPS, "stream": VMOVNTPS}[post_operation] for ymm_row in ymm_data: VSTOREPS([reg_wd], ymm_row) if ymm_row is not ymm_data[-1]: ADD(reg_wd, reg_stride_wd) RETURN() for reverse_kernel in [False, True]: for post_operation in ["store", "stream"]: arg_g_pointer = Argument(ptr(const_float_), name="d_pointer") arg_wg_pointer = Argument(ptr(float_), name="wd_pointer") arg_g_stride = Argument(size_t, name="d_stride") arg_wg_stride = Argument(size_t, name="wd_stride") arg_row_count = Argument(uint32_t, name="row_count") arg_column_count = Argument(uint32_t, name="column_count") arg_row_offset = Argument(uint32_t, name="row_offset") arg_column_offset = Argument(uint32_t, name="column_offset") kwt_arguments = (arg_g_pointer, arg_wg_pointer, arg_g_stride, arg_wg_stride, arg_row_count, arg_column_count, arg_row_offset, arg_column_offset) with Function("nnp_kwt8x8_3{reverse}x3{reverse}_and_{post_operation}__avx2".format( reverse="R" if reverse_kernel else "", post_operation=post_operation), kwt_arguments, target=uarch.default + isa.fma3 + isa.avx2): reg_g = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_g, arg_g_pointer) reg_wg = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_wg, arg_wg_pointer) reg_stride_g = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_stride_g, arg_g_stride) reg_stride_wg = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_stride_wg, arg_wg_stride) # stride is in elements; multiply by sizeof(float) to get stride in bytes SHL(reg_stride_g, 2) xmm_load_mask = XMMRegister() VMOVAPS(xmm_load_mask.as_ymm, Constant.float32x8(-0.0, -0.0, -0.0, +0.0, +0.0, +0.0, +0.0, +0.0)) xmm_g = [XMMRegister() for _ in range(3)] for xmm in xmm_g: VMASKMOVPS(xmm, xmm_load_mask, [reg_g]) if xmm is not xmm_g[-1]: ADD(reg_g, reg_stride_g) if reverse_kernel: xmm_g = xmm_g[::-1] ymm_wg_rows = winograd.o6x6k3x3.kernel_transform([xmm.as_ymm for xmm in xmm_g], rescale_coefficients=False) ymm_g_rows = winograd.o6x6k3x3.transpose8x3([ymm.as_xmm for ymm in ymm_wg_rows]) if reverse_kernel: ymm_g_rows = ymm_g_rows[::-1] ymm_wg_rows = winograd.o6x6k3x3.kernel_transform(ymm_g_rows, rescale_coefficients=False) rcp_9 = float.fromhex("0x1.C71C72p-4") rcp_81 = float.fromhex("0x1.948B10p-7") rcp_90 = float.fromhex("0x1.6C16C2p-7") rcp_180 = float.fromhex("0x1.6C16C2p-8") rcp_810 = float.fromhex("0x1.43A274p-10") rcp_1620 = float.fromhex("0x1.43A274p-11") rcp_8100 = float.fromhex("0x1.02E85Cp-13") rcp_16200 = float.fromhex("0x1.02E85Cp-14") rcp_32400 = float.fromhex("0x1.02E85Cp-15") ymm_edge_scale = YMMRegister() VMOVAPS(ymm_edge_scale, Constant.float32x8( 1.0, -2.0 * rcp_9, -2.0 * rcp_9, rcp_90, rcp_90, rcp_180, rcp_180, 1.0)) VMULPS(ymm_wg_rows[0], ymm_wg_rows[0], ymm_edge_scale) VMULPS(ymm_wg_rows[7], ymm_wg_rows[7], ymm_edge_scale) ymm_row12_scale = YMMRegister() VMOVAPS(ymm_row12_scale, Constant.float32x8(-2.0 * rcp_9, 4.0 * rcp_81, 4.0 * rcp_81, -2.0 * rcp_810, -2.0 * rcp_810, -2.0 * rcp_1620, -2.0 * rcp_1620, -2.0 * rcp_9)) VMULPS(ymm_wg_rows[1], ymm_wg_rows[1], ymm_row12_scale) VMULPS(ymm_wg_rows[2], ymm_wg_rows[2], ymm_row12_scale) ymm_row34_scale = YMMRegister() VMOVAPS(ymm_row34_scale, Constant.float32x8( rcp_90, -2.0 * rcp_810, -2.0 * rcp_810, rcp_8100, rcp_8100, rcp_16200, rcp_16200, rcp_90)) VMULPS(ymm_wg_rows[3], ymm_wg_rows[3], ymm_row34_scale) VMULPS(ymm_wg_rows[4], ymm_wg_rows[4], ymm_row34_scale) ymm_row56_scale = YMMRegister() VMOVAPS(ymm_row56_scale, Constant.float32x8( rcp_180, -2.0 * rcp_1620, -2.0 * rcp_1620, rcp_16200, rcp_16200, rcp_32400, rcp_32400, rcp_180)) VMULPS(ymm_wg_rows[5], ymm_wg_rows[5], ymm_row56_scale) VMULPS(ymm_wg_rows[6], ymm_wg_rows[6], ymm_row56_scale) # Write output with stride VSTOREPS = {"store": VMOVAPS, "stream": VMOVNTPS}[post_operation] for ymm_wg_row in ymm_wg_rows: VSTOREPS([reg_wg], ymm_wg_row) if ymm_wg_row is not ymm_wg_rows[-1]: ADD(reg_wg, reg_stride_wg) RETURN() arg_m_pointer = Argument(ptr(const_float_), name="m_pointer") arg_s_pointer = Argument(ptr(float_), name="s_pointer") arg_bias = Argument(ptr(const_float_), name="bias_pointer") arg_m_stride = Argument(size_t, name="m_stride") arg_s_stride = Argument(size_t, name="s_stride") arg_row_count = Argument(uint32_t, name="row_count") arg_column_count = Argument(uint32_t, name="column_count") arg_row_offset = Argument(uint32_t, name="row_offset") arg_column_offset = Argument(uint32_t, name="column_offset") for with_offset, with_bias, with_relu in [(True, False, False), (False, True, False), (False, True, True)]: if with_bias: owt8x8_arguments = (arg_m_pointer, arg_s_pointer, arg_bias, arg_m_stride, arg_s_stride, arg_row_count, arg_column_count) else: owt8x8_arguments = (arg_m_pointer, arg_s_pointer, arg_m_stride, arg_s_stride, arg_row_count, arg_column_count) if with_offset: # Note: the version with offset has offset arguments, but they are never used (assumed 0). owt8x8_arguments += (arg_row_offset, arg_column_offset) with Function("nnp_owt8x8_3x3{with_bias}{with_relu}__avx2".format( with_bias="_with_bias" if with_bias else "", with_relu="_with_relu" if with_relu else ""), owt8x8_arguments, target=uarch.default + isa.fma3 + isa.avx2): reg_m = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_m, arg_m_pointer) reg_s = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_s, arg_s_pointer) if with_bias: reg_bias = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_bias, arg_bias) xmm_bias = XMMRegister() VINSERTPS(xmm_bias, xmm_bias, [reg_bias], 0b1101 | 1<<4) reg_m_stride = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_m_stride, arg_m_stride) reg_s_stride = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_s_stride, arg_s_stride) reg_row_count = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_row_count, arg_row_count) reg_column_count = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_column_count, arg_column_count) ymm_m = [YMMRegister() for _ in range(8)] for ymm in ymm_m: if with_bias and ymm is ymm_m[1]: VADDPS(ymm, xmm_bias.as_ymm, [reg_m]) else: VMOVAPS(ymm, [reg_m]) if ymm is not ymm_m[-1]: ADD(reg_m, reg_m_stride) ymm_t = winograd.o6x6k3x3.output_transform(ymm_m) ymm_tt = winograd.o6x6k3x3.transpose6x8(ymm_t) ymm_s = winograd.o6x6k3x3.output_transform(ymm_tt) block8x8.store_packed(ymm_s, reg_s, reg_s_stride, reg_row_count, reg_column_count, None, None, with_relu) RETURN()
from __future__ import absolute_import from __future__ import division import block8x8 import fft.complex_soa import fft.real_to_complex_soa_perm import fft.complex_soa_perm_to_real import fft.two_real_to_two_complex_soa_perm_planar import fft.two_complex_soa_perm_to_two_real_planar arg_t_pointer = Argument(ptr(const_float_), name="t_pointer") arg_f_pointer = Argument(ptr(float_), name="f_pointer") arg_x_pointer = Argument(ptr(const_float_), name="x_pointer") arg_t_stride = Argument(size_t, name="t_stride") arg_f_stride = Argument(size_t, name="f_stride") arg_row_offset = Argument(uint32_t, name="row_offset") arg_row_count = Argument(uint32_t, name="row_count") arg_column_offset = Argument(uint32_t, name="column_offset") arg_column_count = Argument(uint32_t, name="column_count") for post_operation in ["stream", "store"]: fft8x8_arguments = (arg_t_pointer, arg_f_pointer, arg_t_stride, arg_f_stride, arg_row_count, arg_column_count, arg_row_offset, arg_column_offset) with Function("nnp_fft8x8_with_offset_and_{post_operation}__avx2".format(post_operation=post_operation), fft8x8_arguments, target=uarch.default + isa.fma3 + isa.avx2): reg_t = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_t, arg_t_pointer) reg_f = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_f, arg_f_pointer) reg_inct = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_inct, arg_t_stride) reg_incf = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_incf, arg_f_stride) reg_row_cnt = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_row_cnt, arg_row_count) reg_col_cnt = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_col_cnt, arg_column_count) reg_row_off = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_row_off, arg_row_offset) reg_col_off = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_col_off, arg_column_offset) ymm_data = [YMMRegister(i) for i in range(8)] ymm_real, ymm_imag = ymm_data[0::2], ymm_data[1::2] block8x8.load_with_padding(ymm_data, reg_t, reg_inct, reg_row_off, reg_row_cnt, reg_col_off, reg_col_cnt) fft.real_to_complex_soa_perm.fft8_across_rows(ymm_data) fft.complex_soa.fft8_within_rows(ymm_real, ymm_imag) fft.two_real_to_two_complex_soa_perm_planar.fft8_within_rows_postprocess(ymm_real[0], ymm_imag[0]) VSTOREPS = {"store": VMOVAPS, "stream": VMOVNTPS}[post_operation] for ymm_re, ymm_im in zip(ymm_real, ymm_imag): VSTOREPS([reg_f], ymm_re) VSTOREPS([reg_f + YMMRegister.size], ymm_im) if ymm_re is not ymm_real[-1]: ADD(reg_f, reg_incf) RETURN() arg_f_pointer = Argument(ptr(const_float_), name="f_pointer") arg_t_pointer = Argument(ptr(float_), name="t_pointer") arg_bias = Argument(ptr(const_float_), name="bias_pointer") arg_f_stride = Argument(size_t, name="f_stride") arg_t_stride = Argument(size_t, name="t_stride") arg_row_offset = Argument(uint32_t, name="row_offset") arg_row_count = Argument(uint32_t, name="row_count") arg_column_offset = Argument(uint32_t, name="column_offset") arg_column_count = Argument(uint32_t, name="column_count") for with_offset, with_bias, with_relu in [(True, False, False), (False, True, False), (False, True, True)]: if with_bias: ifft8x8_arguments = (arg_f_pointer, arg_t_pointer, arg_bias, arg_f_stride, arg_t_stride, arg_row_count, arg_column_count) else: ifft8x8_arguments = (arg_f_pointer, arg_t_pointer, arg_f_stride, arg_t_stride, arg_row_count, arg_column_count) if with_offset: ifft8x8_arguments += arg_row_offset, arg_column_offset with Function("nnp_ifft8x8{with_offset}{with_bias}{with_relu}__avx2".format( with_offset="_with_offset" if with_offset else "", with_bias="_with_bias" if with_bias else "", with_relu="_with_relu" if with_relu else ""), ifft8x8_arguments, target=uarch.default + isa.fma3 + isa.avx2): reg_f = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_f, arg_f_pointer) reg_t = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_t, arg_t_pointer) if with_bias: reg_bias = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_bias, arg_bias) reg_f_stride = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_f_stride, arg_f_stride) reg_t_stride = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_t_stride, arg_t_stride) reg_row_count = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_row_count, arg_row_count) reg_column_end = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_column_end, arg_column_count) if with_offset: reg_row_start = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_row_start, arg_row_offset) reg_column_start = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_column_start, arg_column_offset) ADD(reg_column_end, reg_column_start) else: reg_row_start = None reg_column_start = None ymm_data = [YMMRegister(i) for i in range(8)] ymm_real, ymm_imag = ymm_data[0::2], ymm_data[1::2] if with_bias: ymm_bias = YMMRegister() VMOVSS(ymm_bias.as_xmm, [reg_bias]) for ymm_re, ymm_im in zip(ymm_real, ymm_imag): VMOVAPS(ymm_re, [reg_f]) VMOVAPS(ymm_im, [reg_f + YMMRegister.size]) if with_bias and ymm_re is ymm_real[0]: VFMADD231PS(ymm_re, ymm_bias, Constant.float32x8(64.0)) if ymm_im is not ymm_imag[-1]: ADD(reg_f, reg_f_stride) fft.two_complex_soa_perm_to_two_real_planar.ifft8_within_rows_preprocess(ymm_real[0], ymm_imag[0]) fft.complex_soa.fft8_within_rows(ymm_real, ymm_imag, transformation="inverse") fft.complex_soa_perm_to_real.ifft8_across_rows(ymm_data) block8x8.store_packed(ymm_data, reg_t, reg_t_stride, reg_row_count, reg_column_end, reg_row_start, reg_column_start, with_relu) RETURN()
import fft.complex_soa import fft.two_complex_soa_perm_to_two_real_planar arg_f = Argument(ptr(const_float_), name="f") arg_t = Argument(ptr(float_), name="t") with Function("nnp_ifft8_dualreal__avx2", (arg_f, arg_t), target=uarch.default + isa.fma3 + isa.avx2): reg_f = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_f, arg_f) reg_t = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_t, arg_t) ymm_xhr, ymm_xhi = YMMRegister(), YMMRegister() VMOVUPS(ymm_xhr, [reg_f]) VMOVUPS(ymm_xhi, [reg_f + YMMRegister.size]) fft.two_complex_soa_perm_to_two_real_planar.ifft8_within_rows_preprocess(ymm_xhr, ymm_xhi) ymm_wr, ymm_wi = ymm_xhr, ymm_xhi fft.complex_soa.fft8_within_rows(ymm_wr, ymm_wi, transformation="inverse") ymm_seq_a, ymm_seq_b = ymm_wr, ymm_wi VMOVUPS([reg_t], ymm_seq_a) VMOVUPS([reg_t + YMMRegister.size], ymm_seq_b) RETURN() with Function("nnp_ifft16_dualreal__avx2", (arg_f, arg_t), target=uarch.default + isa.fma3 + isa.avx2): reg_f = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_f, arg_f) reg_t = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_t, arg_t) ymm_wr = YMMRegister(), YMMRegister() ymm_wi = YMMRegister(), YMMRegister() for i, ymm_w in enumerate(ymm_wr + ymm_wi): VMOVUPS(ymm_w, [reg_f + i * YMMRegister.size]) fft.two_complex_soa_perm_to_two_real_planar.ifft16_within_rows_preprocess(ymm_wr, ymm_wi) fft.complex_soa.ifft16_within_rows(ymm_wr, ymm_wi) for i, ymm_w in enumerate(ymm_wr + ymm_wi): VMOVUPS([reg_t + i * YMMRegister.size], ymm_w) RETURN()
import fft.real_to_complex_soa_perm arg_t = Argument(ptr(const_float_), name="t") arg_f = Argument(ptr(float_), name="f") with Function("nnp_fft8_8real__fma3", (arg_t, arg_f), target=uarch.default + isa.fma3): reg_t = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_t, arg_t) reg_f = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_f, arg_f) ymm_data = [YMMRegister() for _ in range(8)] for i, ymm_i in enumerate(ymm_data): VMOVUPS(ymm_i, [reg_t + i * YMMRegister.size]) fft.real_to_complex_soa_perm.fft8_across_rows(ymm_data) for i, ymm_i in enumerate(ymm_data): VMOVUPS([reg_f + i * YMMRegister.size], ymm_i) RETURN() import fft16x16 with Function("nnp_fft16_8real__fma3", (arg_t, arg_f), target=uarch.default + isa.fma3): reg_t0 = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_t0, arg_t) reg_f = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_f, arg_f) reg_stride = GeneralPurposeRegister64() MOV(reg_stride, YMMRegister.size) reg_t8 = GeneralPurposeRegister64() LEA(reg_t8, [reg_t0 + 8 * YMMRegister.size]) fft16x16.forward_vfft(reg_t0, reg_t8, reg_stride, data_out=[yword[reg_f + YMMRegister.size * i] for i in range(16)]) RETURN()
from __future__ import absolute_import from __future__ import division from peachpy import * from peachpy.x86_64 import * def load_with_padding(ymm_data, reg_data, reg_stride, reg_row_offset, reg_row_count, reg_column_offset, reg_column_count): assert isinstance(ymm_data, list) and all(isinstance(ymm_row, YMMRegister) for ymm_row in ymm_data) assert isinstance(reg_data, GeneralPurposeRegister64) assert isinstance(reg_stride, GeneralPurposeRegister64) assert isinstance(reg_row_offset, GeneralPurposeRegister32) assert isinstance(reg_row_count, GeneralPurposeRegister32) assert isinstance(reg_column_offset, GeneralPurposeRegister32) assert isinstance(reg_column_count, GeneralPurposeRegister32) reg_column_end = GeneralPurposeRegister64() LEA(reg_column_end, [reg_column_offset.as_qword + reg_column_count.as_qword * 1]) ymm_before_column_end_mask = YMMRegister() VMOVD(ymm_before_column_end_mask.as_xmm, reg_column_end.as_dword) ymm_before_column_start_mask = YMMRegister() VMOVD(ymm_before_column_start_mask.as_xmm, reg_column_offset.as_dword) ymm_column_index_mask = YMMRegister() VMOVAPD(ymm_column_index_mask, Constant.uint32x8(0, 1, 2, 3, 4, 5, 6, 7)) VPBROADCASTD(ymm_before_column_end_mask, ymm_before_column_end_mask.as_xmm) VPCMPGTD(ymm_before_column_end_mask, ymm_before_column_end_mask, ymm_column_index_mask) VPBROADCASTD(ymm_before_column_start_mask, ymm_before_column_start_mask.as_xmm) VPCMPGTD(ymm_before_column_start_mask, ymm_before_column_start_mask, ymm_column_index_mask) ymm_load_mask = YMMRegister() VPANDN(ymm_load_mask, ymm_before_column_start_mask, ymm_before_column_end_mask) # Multiply by sizeof(float) to get offset in bytes SHL(reg_column_offset, 2) # data points to the first element, which is loaded into lane `reg_column_offset` # However, VMASKMOVPS expects pointer to the first lane, even if it is not loaded. # Adjust the pointer by subtracting column_offset, in bytes SUB(reg_data, reg_column_offset.as_qword) # stride is in elements; multiply by sizeof(float) to get stride in bytes SHL(reg_stride, 2) # Zero all elements. Rows which are not loaded are initialized here. for ymm_row in ymm_data: VXORPS(ymm_row, ymm_row, ymm_row) with Block() as load_rows: for i, ymm_row in enumerate(ymm_data): with Block() as load_row: CMP(reg_row_offset, i) JA(load_row.end) VMASKMOVPS(ymm_row, ymm_load_mask, [reg_data]) if i + 1 != len(ymm_data): ADD(reg_data, reg_stride) SUB(reg_row_count, 1) JZ(load_rows.end) def store_packed(ymm_data, reg_data, reg_stride, reg_row_count, reg_column_end, reg_row_offset=None, reg_column_start=None, relu=False): assert isinstance(ymm_data, list) and all(isinstance(ymm_row, YMMRegister) for ymm_row in ymm_data) assert isinstance(reg_data, GeneralPurposeRegister64) assert isinstance(reg_stride, GeneralPurposeRegister64) assert isinstance(reg_row_count, GeneralPurposeRegister32) assert isinstance(reg_column_end, GeneralPurposeRegister32) assert reg_row_offset is None or isinstance(reg_row_offset, GeneralPurposeRegister32) assert reg_column_start is None or isinstance(reg_column_start, GeneralPurposeRegister32) if reg_column_start is None: ymm_store_mask = YMMRegister() VMOVD(ymm_store_mask.as_xmm, reg_column_end) VPBROADCASTD(ymm_store_mask, ymm_store_mask.as_xmm) VPCMPGTD(ymm_store_mask, ymm_store_mask, Constant.uint32x8(0, 1, 2, 3, 4, 5, 6, 7)) else: ymm_before_column_end_mask = YMMRegister() VMOVD(ymm_before_column_end_mask.as_xmm, reg_column_end) ymm_before_column_start_mask = YMMRegister() VMOVD(ymm_before_column_start_mask.as_xmm, reg_column_start) SHL(reg_column_start, 2) SUB(reg_data, reg_column_start.as_qword) ymm_column_index_mask = YMMRegister() VMOVDQA(ymm_column_index_mask, Constant.uint32x8(0, 1, 2, 3, 4, 5, 6, 7)) VPBROADCASTD(ymm_before_column_end_mask, ymm_before_column_end_mask.as_xmm) VPCMPGTD(ymm_before_column_end_mask, ymm_before_column_end_mask, ymm_column_index_mask) VPBROADCASTD(ymm_before_column_start_mask, ymm_before_column_start_mask.as_xmm) VPCMPGTD(ymm_before_column_start_mask, ymm_before_column_start_mask, ymm_column_index_mask) ymm_store_mask = YMMRegister() VPANDN(ymm_store_mask, ymm_before_column_start_mask, ymm_before_column_end_mask) # stride is in elements; multiply by sizeof(float) to get stride in bytes SHL(reg_stride, 2) if relu: ymm_zero = YMMRegister() VMOVAPS(ymm_zero, Constant.float32x8(-0.0)) with Block() as store_rows: for i, ymm_row in enumerate(ymm_data): with Block() as store_row: if reg_row_offset is not None: CMP(reg_row_offset, i) JA(store_row.end) if relu: VMAXPS(ymm_row, ymm_zero, ymm_row) VMASKMOVPS([reg_data], ymm_store_mask, ymm_row) if ymm_row is not ymm_data[-1]: ADD(reg_data, reg_stride) SUB(reg_row_count, 1) JZ(store_rows.end)
import winograd.o6x6k3x3 arg_d_pointer = Argument(ptr(const_float_), name="d") arg_w_pointer = Argument(ptr(float_), name="w") with Function("nnp_iwt_f6k3__fma3", (arg_d_pointer, arg_w_pointer), target=uarch.default + isa.fma3): reg_d = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_d, arg_d_pointer) reg_w = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_w, arg_w_pointer) ymm_data = [YMMRegister() for _ in range(8)] for i, ymm_row in enumerate(ymm_data): VMOVUPS(ymm_row, [reg_d + i * YMMRegister.size]) ymm_data = winograd.o6x6k3x3.input_transform(ymm_data) for i, ymm_row in enumerate(ymm_data): VMOVUPS([reg_w + i * YMMRegister.size], ymm_row) RETURN() arg_g_pointer = Argument(ptr(const_float_), name="g") arg_w_pointer = Argument(ptr(float_), name="w") with Function("nnp_kwt_f6k3__fma3", (arg_g_pointer, arg_w_pointer), target=uarch.default + isa.fma3): reg_g = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_g, arg_g_pointer) reg_w = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_w, arg_w_pointer) ymm_data = [YMMRegister() for _ in range(3)] for i, ymm_row in enumerate(ymm_data): VMOVUPS(ymm_row, [reg_g + i * YMMRegister.size]) ymm_data = winograd.o6x6k3x3.kernel_transform(ymm_data) for i, ymm_row in enumerate(ymm_data): VMOVUPS([reg_w + i * YMMRegister.size], ymm_row) RETURN() arg_m_pointer = Argument(ptr(const_float_), name="m") arg_s_pointer = Argument(ptr(float_), name="s") with Function("nnp_owt_f6k3__fma3", (arg_m_pointer, arg_s_pointer), target=uarch.default + isa.fma3): reg_m = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_m, arg_m_pointer) reg_s = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_s, arg_s_pointer) ymm_m = [YMMRegister() for _ in range(8)] for i, ymm_row in enumerate(ymm_m): VMOVUPS(ymm_row, [reg_m + i * YMMRegister.size]) ymm_s = winograd.o6x6k3x3.output_transform(ymm_m) for i, ymm_row in enumerate(ymm_s): VMOVUPS([reg_s + i * YMMRegister.size], ymm_row) RETURN()
from common import _MM_SHUFFLE arg_src_pointer = Argument(ptr(const_float_), name="src_pointer") arg_dst_pointer = Argument(ptr(float_), name="dst_pointer") arg_src_stride = Argument(size_t, name="src_stride") arg_src_row_offset = Argument(uint32_t, name="src_row_offset") arg_src_row_count = Argument(uint32_t, name="src_row_count") arg_src_column_offset = Argument(uint32_t, name="src_column_offset") arg_src_column_count = Argument(uint32_t, name="src_column_count") arg_dst_column_count = Argument(uint32_t, name="dst_column_count") with Function("nnp_maxpool_2x2_2x2__avx2", (arg_src_pointer, arg_dst_pointer, arg_src_stride, arg_src_row_offset, arg_src_row_count, arg_src_column_offset, arg_src_column_count, arg_dst_column_count), target=uarch.default + isa.fma3 + isa.avx2): reg_src_ptr = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_src_ptr, arg_src_pointer) reg_dst_ptr = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_dst_ptr, arg_dst_pointer) reg_src_stride = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_src_stride, arg_src_stride) reg_src_row_index = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_src_row_index, arg_src_row_offset) reg_src_row_count = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_src_row_count, arg_src_row_count) reg_src_column_start = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_src_column_start, arg_src_column_offset) reg_src_column_end = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_src_column_end, arg_src_column_count) ADD(reg_src_column_end, reg_src_column_start) reg_dst_column_count = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_dst_column_count, arg_dst_column_count) ymm_src_column_start, ymm_src_column_end, ymm_dst_column_count = YMMRegister(), YMMRegister(), YMMRegister() VMOVD(ymm_src_column_start.as_xmm, reg_src_column_start) VMOVD(ymm_src_column_end.as_xmm, reg_src_column_end) VMOVD(ymm_dst_column_count.as_xmm, reg_dst_column_count) VPBROADCASTD(ymm_src_column_start, ymm_src_column_start.as_xmm) VPBROADCASTD(ymm_src_column_end, ymm_src_column_end.as_xmm) VPBROADCASTD(ymm_dst_column_count, ymm_dst_column_count.as_xmm) ymm_column_01234567, ymm_column_89ABCDEF = YMMRegister(), YMMRegister() VMOVDQA(ymm_column_01234567, Constant.uint32x8(0, 1, 2, 3, 4, 5, 6, 7)) VMOVDQA(ymm_column_89ABCDEF, Constant.uint32x8(8, 9, 10, 11, 12, 13, 14, 15)) ymm_src_column_start_gt_01234567, ymm_src_column_end_gt_01234567 = YMMRegister(), YMMRegister() VPCMPGTD(ymm_src_column_start_gt_01234567, ymm_src_column_start, ymm_column_01234567) VPCMPGTD(ymm_src_column_end_gt_01234567, ymm_src_column_end, ymm_column_01234567) ymm_src_column_start_gt_89ABCDEF, ymm_src_column_end_gt_89ABCDEF = YMMRegister(), YMMRegister() VPCMPGTD(ymm_src_column_start_gt_89ABCDEF, ymm_src_column_start, ymm_column_89ABCDEF) VPCMPGTD(ymm_src_column_end_gt_89ABCDEF, ymm_src_column_end, ymm_column_89ABCDEF) ymm_src_mask_columns_0_to_8, ymm_src_mask_columns_8_to_16 = YMMRegister(), YMMRegister() VPANDN(ymm_src_mask_columns_0_to_8, ymm_src_column_start_gt_01234567, ymm_src_column_end_gt_01234567) VPANDN(ymm_src_mask_columns_8_to_16, ymm_src_column_start_gt_89ABCDEF, ymm_src_column_end_gt_89ABCDEF) ymm_dst_mask_columns_0_to_8 = YMMRegister() VPCMPGTD(ymm_dst_mask_columns_0_to_8, ymm_dst_column_count, ymm_column_01234567) # data points to the first element, which is loaded into lane `reg_column_start` # However, VMASKMOVPS expects pointer to the first lane, even if it is not loaded. # Adjust the pointer by subtracting column_offset, in bytes SHL(reg_src_column_start, 2) SUB(reg_src_ptr, reg_src_column_start.as_qword) # Multiply stride by sizeof(float) to convert from elements to bytes SHL(reg_src_stride, 2) ymm_row0 = YMMRegister(), YMMRegister() ymm_row1 = YMMRegister(), YMMRegister() ymm_minus_inf = YMMRegister() VMOVAPS(ymm_minus_inf, Constant.float32x8(-float("inf"))) VMOVAPS(ymm_row0[0], ymm_minus_inf) VMOVAPS(ymm_row0[1], ymm_minus_inf) VMOVAPS(ymm_row1[0], ymm_minus_inf) VMOVAPS(ymm_row1[1], ymm_minus_inf) NEG(reg_src_row_index) with Block() as load_row0: CMP(reg_src_row_index, reg_src_row_count) JAE(load_row0.end) VMASKMOVPS(ymm_row0[0], ymm_src_mask_columns_0_to_8, [reg_src_ptr]) VBLENDVPS(ymm_row0[0], ymm_minus_inf, ymm_row0[0], ymm_src_mask_columns_0_to_8) VMASKMOVPS(ymm_row0[1], ymm_src_mask_columns_8_to_16, [reg_src_ptr + YMMRegister.size]) VBLENDVPS(ymm_row0[1], ymm_minus_inf, ymm_row0[1], ymm_src_mask_columns_8_to_16) ADD(reg_src_ptr, reg_src_stride) with Block() as load_row1: INC(reg_src_row_index) CMP(reg_src_row_index, reg_src_row_count) JAE(load_row1.end) VMASKMOVPS(ymm_row1[0], ymm_src_mask_columns_0_to_8, [reg_src_ptr]) VBLENDVPS(ymm_row1[0], ymm_minus_inf, ymm_row1[0], ymm_src_mask_columns_0_to_8) VMASKMOVPS(ymm_row1[1], ymm_src_mask_columns_8_to_16, [reg_src_ptr + YMMRegister.size]) VBLENDVPS(ymm_row1[1], ymm_minus_inf, ymm_row1[1], ymm_src_mask_columns_8_to_16) # ymm_row[0] = ( x7 x6 x5 x4 x3 x2 x1 x0 ) # ymm_row[1] = ( x15 x14 x13 x12 x11 x10 x9 x8 ) ymm_row = YMMRegister(), YMMRegister() VMAXPS(ymm_row[0], ymm_row0[0], ymm_row1[0]) VMAXPS(ymm_row[1], ymm_row0[1], ymm_row1[1]) # ymm_row[0] = ( x14 x12 x6 x4 x10 x8 x2 x0 ) # ymm_row[1] = ( x15 x13 x7 x5 x11 x9 x3 x1 ) ymm_tmp = YMMRegister() VSHUFPS(ymm_tmp, ymm_row[0], ymm_row[1], _MM_SHUFFLE(2, 0, 2, 0)) VSHUFPS(ymm_row[1], ymm_row[0], ymm_row[1], _MM_SHUFFLE(3, 1, 3, 1)) SWAP.REGISTERS(ymm_row[0], ymm_tmp) # ymm_out = ( y7 y6 y3 y2 y5 y4 y1 y0 ) ymm_out = YMMRegister() VMAXPS(ymm_out, ymm_row[0], ymm_row[1]) VPERMPD(ymm_out, ymm_out, _MM_SHUFFLE(3, 1, 2, 0)) VMASKMOVPS([reg_dst_ptr], ymm_dst_mask_columns_0_to_8, ymm_out) RETURN()
from __future__ import absolute_import from __future__ import division from peachpy import * from peachpy.x86_64 import * sqrt2_over_2 = float.fromhex("0x1.6A09E6p-1") cos_1pi_over_8 = float.fromhex("0x1.D906BCp-1") cos_3pi_over_8 = float.fromhex("0x1.87DE2Ap-2") tan_1pi_over_8 = float.fromhex("0x1.A8279Ap-2") tan_3pi_over_8 = float.fromhex("0x1.3504F4p+1") cos_npi_over_8 = [ 1.0, cos_1pi_over_8, sqrt2_over_2, cos_3pi_over_8, 0.0, -cos_3pi_over_8, -sqrt2_over_2, -cos_1pi_over_8, ] cos_npi_over_4 = [ 1.0, sqrt2_over_2, 0.0, -sqrt2_over_2 ] sin_npi_over_8 = [ 0.0, cos_3pi_over_8, sqrt2_over_2, cos_1pi_over_8, 1.0, cos_1pi_over_8, sqrt2_over_2, cos_3pi_over_8 ] sin_npi_over_4 = [ 0.0, sqrt2_over_2, 1.0, sqrt2_over_2 ] def _MM_SHUFFLE(z, y, x, w): assert z & ~0b11 == 0 assert y & ~0b11 == 0 assert x & ~0b11 == 0 assert w & ~0b11 == 0 return (z << 6) | (y << 4) | (x << 2) | w def _MM_SHUFFLE2(x, y): assert x & ~1 == 0 assert y & ~1 == 0 return (x << 1) | y def butterfly(a, b, negate_a=False, negate_b=False, scale_a=None, scale_b=None, negate_out_b=False, writeback=True): assert isinstance(a, YMMRegister) or isinstance(a, LocalVariable) and a.size == YMMRegister.size assert isinstance(b, YMMRegister) or isinstance(b, LocalVariable) and b.size == YMMRegister.size assert isinstance(negate_a, bool) assert isinstance(negate_b, bool) assert isinstance(negate_out_b, bool) assert scale_b is None or \ isinstance(scale_b, YMMRegister) or \ isinstance(scale_b, (LocalVariable, Constant)) and scale_b.size == YMMRegister.size assert scale_a is None or \ isinstance(scale_a, YMMRegister) or \ isinstance(scale_a, (LocalVariable, Constant)) and scale_a.size == YMMRegister.size assert scale_a is None or scale_b is None assert isinstance(writeback, bool) assert not negate_out_b or not negate_a and not negate_b and scale_a is None and scale_b is None ymm_a, ymm_b = a, b if isinstance(a, LocalVariable): ymm_a = YMMRegister() VMOVAPS(ymm_a, a) if isinstance(b, LocalVariable): ymm_b = YMMRegister() VMOVAPS(ymm_b, b) if scale_b is None and scale_a is None: assert not negate_a, "Negation of a is supported only in combination with scaling" ymm_new_a = YMMRegister() VADDPS(ymm_new_a, ymm_a, ymm_b) ymm_new_b = YMMRegister() if not negate_out_b: VSUBPS(ymm_new_b, ymm_a, ymm_b) else: VSUBPS(ymm_new_b, ymm_b, ymm_a) if not negate_b: SWAP.REGISTERS(ymm_new_a, ymm_a) SWAP.REGISTERS(ymm_new_b, ymm_b) else: SWAP.REGISTERS(ymm_new_a, ymm_b) SWAP.REGISTERS(ymm_new_b, ymm_a) elif scale_a is not None: ymm_a_copy = YMMRegister() VMOVAPS(ymm_a_copy, ymm_a) if not negate_a and not negate_b: VFMADD132PS(ymm_a, ymm_b, scale_a) VFMSUB132PS(ymm_a_copy, ymm_b, scale_a) elif not negate_a and negate_b: VFMSUB132PS(ymm_a, ymm_b, scale_a) VFMADD132PS(ymm_a_copy, ymm_b, scale_a) elif negate_a and not negate_b: VFMMADD132PS(ymm_a, ymm_b, scale_a) VFNMSUB132PS(ymm_a_copy, ymm_b, scale_a) elif negate_a and negate_b: VFNMSUB132PS(ymm_a, ymm_b, scale_a) VFNMADD132PS(ymm_a_copy, ymm_b, scale_a) SWAP.REGISTERS(ymm_b, ymm_a_copy) elif scale_b is not None: ymm_a_copy = YMMRegister() VMOVAPS(ymm_a_copy, ymm_a) if not negate_a and not negate_b: VFMADD231PS(ymm_a, ymm_b, scale_b) VFNMADD231PS(ymm_a_copy, ymm_b, scale_b) elif not negate_a and negate_b: VFNMADD231PS(ymm_a, ymm_b, scale_b) VFMADD231PS(ymm_a_copy, ymm_b, scale_b) elif negate_a and not negate_b: VFMSUB231PS(ymm_a, ymm_b, scale_b) VFNMSUB231PS(ymm_a_copy, ymm_b, scale_b) elif negate_a and negate_b: VFNMSUB231PS(ymm_a, ymm_b, scale_b) VFMSUB231PS(ymm_a_copy, ymm_b, scale_b) SWAP.REGISTERS(ymm_b, ymm_a_copy) if writeback and isinstance(a, LocalVariable): VMOVAPS(a, ymm_a) if writeback and isinstance(b, LocalVariable): VMOVAPS(b, ymm_b) return ymm_a, ymm_b def transpose2x2x128(ymm_a, ymm_b, use_blend=True): # ymm_a = (a.lo, a.hi) # ymm_b = (b.lo, b.hi) if use_blend: # ymm_ab = (a.hi, b.lo) ymm_ab = YMMRegister() VPERM2F128(ymm_ab, ymm_a, ymm_b, 0x21) # ymm_a = (a.lo, b.lo) VBLENDPS(ymm_a, ymm_a, ymm_ab, 0xF0) # ymm_b = (a.hi, b.hi) VBLENDPS(ymm_b, ymm_b, ymm_ab, 0x0F) else: # ymm_new_a = (a.lo, b.lo) ymm_new_a = YMMRegister() VINSERTF128(ymm_new_a, ymm_a, ymm_b.as_xmm, 1) # ymm_new_b = (a.hi, b.hi) ymm_new_b = YMMRegister() VPERM2F128(ymm_new_b, ymm_a, ymm_b, 0x31) SWAP.REGISTERS(ymm_a, ymm_new_a) SWAP.REGISTERS(ymm_b, ymm_new_b) def transpose2x2x2x64(ymm_a, ymm_b, use_blend=True): # ymm_a = (a0, a1, a2, a3) # ymm_b = (b0, b1, a2, b3) if use_blend: # ymm_ab = (a1, b0, a3, b2) ymm_ab = YMMRegister() VSHUFPD(ymm_ab, ymm_a, ymm_b, 0b0101) # ymm_a = (a0, b0, a2, b2) VBLENDPS(ymm_a, ymm_a, ymm_ab, 0b11001100) # ymm_b = (a1, b1, a3, b3) VBLENDPS(ymm_b, ymm_b, ymm_ab, 0b00110011) else: # ymm_new_a = (a0, b0, a2, b2) ymm_new_a = YMMRegister() VUNPCKLPD(ymm_new_a, ymm_a, ymm_b) # ymm_new_b = (a1, b1, a3, b3) ymm_new_b = YMMRegister() VUNPCKHPD(ymm_new_b, ymm_a, ymm_b) SWAP.REGISTERS(ymm_a, ymm_new_a) SWAP.REGISTERS(ymm_b, ymm_new_b) def compute_masks(masks, reg_column_offset, reg_column_count): assert isinstance(masks, list) and all(isinstance(mask, (YMMRegister, LocalVariable)) for mask in masks) assert isinstance(reg_column_offset, GeneralPurposeRegister64) assert isinstance(reg_column_count, GeneralPurposeRegister64) def interleave(sequence_a, sequence_b): assert isinstance(sequence_a, list) and isinstance(sequence_b, list) or isinstance(sequence_a, tuple) and isinstance(sequence_b, tuple) if isinstance(sequence_a, list): return list(sum(zip(sequence_a, sequence_b), ())) else: return sum(zip(sequence_a, sequence_b), ())
arg_input = Argument(ptr(const_float_), "input") arg_output = Argument(ptr(float_), "output") arg_length = Argument(size_t, "length") arg_negative_slope = Argument(float_, "negative_slope") with Function("nnp_relu__avx2", (arg_input, arg_output, arg_length, arg_negative_slope), target=uarch.default + isa.avx2): reg_input = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_input, arg_input) reg_output = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_output, arg_output) reg_length = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_length, arg_length) ymm_negative_slope = YMMRegister() LOAD.ARGUMENT(ymm_negative_slope.as_xmm, arg_negative_slope) VBROADCASTSS(ymm_negative_slope, ymm_negative_slope.as_xmm) loop = Loop() TEST(reg_length, reg_length) JZ(loop.end) with loop: # Load (unaligned!) data and update input pointer ymm_data = YMMRegister() VMOVUPS(ymm_data, [reg_input]) ADD(reg_input, YMMRegister.size) # Scale data with negative slope (for negative inputs) ymm_scaled_data = YMMRegister() VMULPS(ymm_scaled_data, ymm_data, ymm_negative_slope) # Select scaled data if input is negative VBLENDVPS(ymm_data, ymm_data, ymm_scaled_data, ymm_data) # Stream (aligned!) data to memory and update output pointer VMOVNTPS([reg_output], ymm_data) ADD(reg_output, YMMRegister.size) SUB(reg_length, YMMRegister.size // float_.size) JNZ(loop.begin) RETURN() arg_data = Argument(ptr(float_), "data") arg_length = Argument(size_t, "length") arg_negative_slope = Argument(float_, "negative_slope") with Function("nnp_inplace_relu__avx2", (arg_data, arg_length, arg_negative_slope), target=uarch.default + isa.avx2): reg_data = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_data, arg_data) reg_length = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_length, arg_length) ymm_negative_slope = YMMRegister() LOAD.ARGUMENT(ymm_negative_slope.as_xmm, arg_negative_slope) VBROADCASTSS(ymm_negative_slope, ymm_negative_slope.as_xmm) loop = Loop() TEST(reg_length, reg_length) JZ(loop.end) with loop: # Load data ymm_data = YMMRegister() VMOVAPS(ymm_data, [reg_data]) # Scale data with negative slope (for negative inputs) ymm_scaled_data = YMMRegister() VMULPS(ymm_scaled_data, ymm_data, ymm_negative_slope) # Select scaled data if input is negative VBLENDVPS(ymm_data, ymm_data, ymm_scaled_data, ymm_data) # Store data back to the same location and update pointer VMOVAPS([reg_data], ymm_data) ADD(reg_data, YMMRegister.size) SUB(reg_length, YMMRegister.size // float_.size) JNZ(loop.begin) RETURN() arg_output_gradient = Argument(ptr(const_float_), "output_gradient") arg_input = Argument(ptr(const_float_), "input") arg_input_gradient = Argument(ptr(float_), "input_gradient") arg_length = Argument(size_t, "length") arg_negative_slope = Argument(float_, "negative_slope") with Function("nnp_grad_relu__avx2", (arg_output_gradient, arg_input, arg_input_gradient, arg_length, arg_negative_slope), target=uarch.default + isa.avx2): reg_output_gradient = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_output_gradient, arg_output_gradient) reg_input = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_input, arg_input) reg_input_gradient = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_input_gradient, arg_input_gradient) reg_length = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_length, arg_length) ymm_negative_slope = YMMRegister() LOAD.ARGUMENT(ymm_negative_slope.as_xmm, arg_negative_slope) VBROADCASTSS(ymm_negative_slope, ymm_negative_slope.as_xmm) loop = Loop() TEST(reg_length, reg_length) JZ(loop.end) with loop: # Load (unaligned!) gradient and update output gradient pointer ymm_gradient = YMMRegister() VMOVUPS(ymm_gradient, [reg_output_gradient]) ADD(reg_output_gradient, YMMRegister.size) # Load (unaligned!) data and update input pointer ymm_data = YMMRegister() VMOVUPS(ymm_data, [reg_input]) ADD(reg_input, YMMRegister.size) # Scale gradient with negative slope (for negative inputs) ymm_scaled_gradient = YMMRegister() VMULPS(ymm_scaled_gradient, ymm_gradient, ymm_negative_slope) # Select scaled gradient if input is negative VBLENDVPS(ymm_gradient, ymm_gradient, ymm_scaled_gradient, ymm_data) # Stream (aligned!) gradient to memory and update input gradient pointer VMOVAPS([reg_input_gradient], ymm_gradient) ADD(reg_input_gradient, YMMRegister.size) SUB(reg_length, YMMRegister.size // float_.size) JNZ(loop.begin) RETURN()
from __future__ import absolute_import from __future__ import division from peachpy import * from peachpy.x86_64 import * log2e = float.fromhex("+0x1.715476p+3") magic_bias = float.fromhex("+0x1.800000p+23") zero_cutoff = float.fromhex("-0x1.9FE368p+6") inf_cutoff = float.fromhex("+0x1.62E42Ep+6") minus_ln2_hi = float.fromhex("-0x1.62E430p-4") minus_ln2_lo = float.fromhex("+0x1.05C610p-32") plus_inf = float("inf") c2 = float.fromhex("0x1.00088Ap-1") c3 = float.fromhex("0x1.555A86p-3") t0 = float.fromhex("0x1.000000p+0") t1 = float.fromhex("0x1.172B84p+0") t2 = float.fromhex("0x1.306FE0p+0") t3 = float.fromhex("0x1.4BFDAEp+0") t4 = float.fromhex("0x1.6A09E6p+0") t5 = float.fromhex("0x1.8ACE54p+0") t6 = float.fromhex("0x1.AE89FAp+0") t7 = float.fromhex("0x1.D5818Ep+0") min_exponent = (-126 << 23) & 0xFFFFFFFF max_exponent = 127 << 23 default_exponent = 0x3F800000 mantissa_mask = 0x007FFFF8 x_arg = Argument(m256, "x") with Function("_mm256_exp_ps", (x_arg,), m256, target=uarch.default + isa.fma3 + isa.avx2): ymm_x = YMMRegister() LOAD.ARGUMENT(ymm_x, x_arg) ymm_magic_bias = YMMRegister() VMOVAPS(ymm_magic_bias, Constant.float32x8(magic_bias)) ymm_t = YMMRegister() VMOVAPS(ymm_t, ymm_x) VFMADD132PS(ymm_t, ymm_magic_bias, Constant.float32x8(log2e)) ymm_e1, ymm_e2 = YMMRegister(), YMMRegister() VPAND(ymm_e2, ymm_t, Constant.uint32x8(mantissa_mask)) VPSLLD(ymm_e2, ymm_e2, 20) ymm_tf = YMMRegister() VPERMPS(ymm_tf, ymm_t, Constant.float32x8(t0, t1, t2, t3, t4, t5, t6, t7)) VSUBPS(ymm_t, ymm_t, ymm_magic_bias) # rx = fma(t, minus_ln2_lo, fma(t, minus_ln2_hi, x)) # rx := t * minus_ln2_hi + x # rx := t * minus_ln2_lo + rx ymm_rx = YMMRegister() VMOVAPS(ymm_rx, ymm_x) VFMADD231PS(ymm_rx, ymm_t, Constant.float32x8(minus_ln2_hi)) VFMADD231PS(ymm_rx, ymm_t, Constant.float32x8(minus_ln2_lo)) VPMAXSD(ymm_e1, ymm_e2, Constant.uint32x8(min_exponent)) VPMINSD(ymm_e1, ymm_e1, Constant.uint32x8(max_exponent)) ymm_default_exponent = YMMRegister() VMOVDQA(ymm_default_exponent, Constant.uint32x8(default_exponent)) VPSUBD(ymm_e2, ymm_e2, ymm_e1) VPADDD(ymm_e1, ymm_e1, ymm_default_exponent) VPADDD(ymm_e2, ymm_e2, ymm_default_exponent) # rf = fma(rx, rx * fma(rx, c3, c2), rx) # rf := rx * c3 + c2 # rf := rx * rf # rf := rx * rf + rx ymm_rf = YMMRegister() VMOVAPS(ymm_rf, Constant.float32x8(c2)) VFMADD231PS(ymm_rf, ymm_rx, Constant.float32x8(c3)) VMULPS(ymm_rf, ymm_rf, ymm_rx) VFMADD213PS(ymm_rf, ymm_rx, ymm_rx) # f = fma(tf, rf, tf) VFMADD231PS(ymm_tf, ymm_tf, ymm_rf) ymm_f = ymm_tf VMULPS(ymm_f, ymm_f, ymm_e1) VMULPS(ymm_f, ymm_f, ymm_e2) RETURN(ymm_f)
from common import _MM_SHUFFLE from vecmath.exp import simd_exp arg_n = Argument(size_t, "n") arg_v = Argument(ptr(const_float_), "v") with Function("max__avx", (arg_n, arg_v), float_, target=uarch.default + isa.avx): reg_n = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_n, arg_n) reg_v = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_v, arg_v) unroll_loop = Loop() vector_loop = Loop() final_block = Block() simd_width = YMMRegister.size // float_.size unroll_factor = 4 # Initialize reduction registers with the first element (v[0]) ymm_ms = [YMMRegister() for _ in range(unroll_factor)] VBROADCASTSS(ymm_ms[0], [reg_v]) for ymm_m in ymm_ms[1:]: VMOVAPS(ymm_m, ymm_ms[0]) # Unrolled vectorized loop SUB(reg_n, simd_width * unroll_factor) JB(unroll_loop.end) with unroll_loop: for i, ymm_m in enumerate(ymm_ms): VMAXPS(ymm_m, ymm_m, [reg_v + i * YMMRegister.size]) SUB(reg_v, -unroll_factor * YMMRegister.size) SUB(reg_n, simd_width * unroll_factor) JAE(unroll_loop.begin) VMAXPS(ymm_ms[0], ymm_ms[0], ymm_ms[1]) VMAXPS(ymm_ms[2], ymm_ms[2], ymm_ms[3]) VMAXPS(ymm_ms[0], ymm_ms[0], ymm_ms[2]) ymm_m = ymm_ms[0] ADD(reg_n, simd_width * unroll_factor) JZ(final_block.end) # Vectorized loop without unrolling SUB(reg_n, simd_width) JB(vector_loop.end) with vector_loop: VMAXPS(ymm_m, ymm_m, [reg_v]) ADD(reg_v, YMMRegister.size) SUB(reg_n, simd_width) JAE(vector_loop.begin) ADD(reg_n, simd_width) JZ(final_block.end) # Process remainder: 0 < reg_n < simd_width with final_block: reg_mask = GeneralPurposeRegister64() LEA(reg_mask, Constant.uint32x16(*([0xFFFFFFFF] * 8 + [0x00000000] * 8))) NEG(reg_n) LEA(reg_mask, [reg_mask + reg_n * 4 + 16]) ymm_mask = YMMRegister() VMOVUPS(ymm_mask, [reg_mask]) ymm_temp = YMMRegister() VMASKMOVPS(ymm_temp, ymm_mask, [reg_v]) VBLENDVPS(ymm_temp, ymm_temp, ymm_m, ymm_mask) VMAXPS(ymm_m, ymm_m, ymm_temp) ymm_temp = YMMRegister() VPERM2F128(ymm_temp, ymm_m, ymm_m, 0x01) VMAXPS(ymm_m, ymm_m, ymm_temp) VPERMILPS(ymm_temp, ymm_m, _MM_SHUFFLE(1, 0, 3, 2)) VMAXPS(ymm_m, ymm_m, ymm_temp) VPERMILPS(ymm_temp, ymm_m, _MM_SHUFFLE(2, 3, 0, 1)) VMAXPS(ymm_m, ymm_m, ymm_temp) RETURN(ymm_m.as_xmm) arg_n = Argument(size_t, "n") arg_v = Argument(ptr(const_float_), "v") arg_c = Argument(float_, "c") with Function("sum_exp_minus_c__avx2", (arg_n, arg_v, arg_c), float_, target=uarch.default + isa.avx2): reg_n = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_n, arg_n) reg_v = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_v, arg_v) ymm_c = YMMRegister() LOAD.ARGUMENT(ymm_c.as_xmm, arg_c) VBROADCASTSS(ymm_c, ymm_c.as_xmm) unroll_loop = Loop() vector_loop = Loop() final_block = Block() simd_width = YMMRegister.size // float_.size unroll_factor = 3 # Clear reduction registers ymm_sums = [YMMRegister() for _ in range(unroll_factor)] for ymm_sum in ymm_sums: VXORPS(ymm_sum.as_xmm, ymm_sum.as_xmm, ymm_sum.as_xmm) # Unrolled vectorized loop SUB(reg_n, simd_width * unroll_factor) JB(unroll_loop.end) with unroll_loop: ymm_xs = [YMMRegister() for _ in ymm_sums] for i, ymm_x in enumerate(ymm_xs): VMOVUPS(ymm_x, [reg_v + i * YMMRegister.size]) VSUBPS(ymm_x, ymm_x, ymm_c) ymm_ys = simd_exp(ymm_xs) for ymm_sum, ymm_y in zip(ymm_sums, ymm_ys): VADDPS(ymm_sum, ymm_sum, ymm_y) SUB(reg_v, -unroll_factor * YMMRegister.size) SUB(reg_n, simd_width * unroll_factor) JAE(unroll_loop.begin) VADDPS(ymm_sums[0], ymm_sums[0], ymm_sums[1]) VADDPS(ymm_sums[0], ymm_sums[0], ymm_sums[2]) ymm_sum = ymm_sums[0] ADD(reg_n, simd_width * unroll_factor) JZ(final_block.end) # Vectorized loop without unrolling SUB(reg_n, simd_width) JB(vector_loop.end) with vector_loop: ymm_x = YMMRegister() VMOVUPS(ymm_x, [reg_v]) VSUBPS(ymm_x, ymm_x, ymm_c) ymm_y = simd_exp([ymm_x])[0] VADDPS(ymm_sum, ymm_sum, ymm_y) ADD(reg_v, YMMRegister.size) SUB(reg_n, simd_width) JAE(vector_loop.begin) ADD(reg_n, simd_width) JZ(final_block.end) # Process remainder: 0 < reg_n < simd_width with final_block: ymm_mask = YMMRegister() VMOVD(ymm_mask.as_xmm, reg_n.as_dword) VPBROADCASTD(ymm_mask, ymm_mask.as_xmm) VPCMPGTD(ymm_mask, ymm_mask, Constant.uint32x8(0, 1, 2, 3, 4, 5, 6, 7)) ymm_x = YMMRegister() VMASKMOVPS(ymm_x, ymm_mask, [reg_v]) VSUBPS(ymm_x, ymm_x, ymm_c) ymm_y = simd_exp([ymm_x])[0] VANDPS(ymm_y, ymm_y, ymm_mask) VADDPS(ymm_sum, ymm_sum, ymm_y) ymm_temp = YMMRegister() VPERM2F128(ymm_temp, ymm_sum, ymm_sum, 0x01) VADDPS(ymm_sum, ymm_sum, ymm_temp) VPERMILPS(ymm_temp, ymm_sum, _MM_SHUFFLE(1, 0, 3, 2)) VADDPS(ymm_sum, ymm_sum, ymm_temp) VPERMILPS(ymm_temp, ymm_sum, _MM_SHUFFLE(2, 3, 0, 1)) VADDPS(ymm_sum, ymm_sum, ymm_temp) RETURN(ymm_sum.as_xmm) def scaled_exp_minus_c(reg_n, reg_x, reg_y, ymm_scale, ymm_c): unroll_loop = Loop() vector_loop = Loop() final_block = Block() simd_width = YMMRegister.size // float_.size unroll_factor = 3 # Unrolled vectorized loop SUB(reg_n, simd_width * unroll_factor) JB(unroll_loop.end) with unroll_loop: ymm_xs = [YMMRegister() for _ in range(unroll_factor)] for i, ymm_x in enumerate(ymm_xs): VMOVUPS(ymm_x, [reg_x + i * YMMRegister.size]) VSUBPS(ymm_x, ymm_x, ymm_c) if reg_x != reg_y: SUB(reg_x, -unroll_factor * YMMRegister.size) ymm_ys = simd_exp(ymm_xs) for i, ymm_y in enumerate(ymm_ys): VMULPS(ymm_y, ymm_y, ymm_scale) VMOVUPS([reg_y + i * YMMRegister.size], ymm_y) SUB(reg_y, -unroll_factor * YMMRegister.size) SUB(reg_n, simd_width * unroll_factor) JAE(unroll_loop.begin) ADD(reg_n, simd_width * unroll_factor) JZ(final_block.end) # Vectorized loop without unrolling SUB(reg_n, simd_width) JB(vector_loop.end) with vector_loop: ymm_x = YMMRegister() VMOVUPS(ymm_x, [reg_x]) if reg_x != reg_y: ADD(reg_x, YMMRegister.size) VSUBPS(ymm_x, ymm_x, ymm_c) ymm_y = simd_exp([ymm_x])[0] VMULPS(ymm_y, ymm_y, ymm_scale) VMOVUPS([reg_y], ymm_y) ADD(reg_y, YMMRegister.size) SUB(reg_n, simd_width) JAE(vector_loop.begin) ADD(reg_n, simd_width) JZ(final_block.end) # Process remainder: 0 < reg_n < simd_width with final_block: ymm_mask = YMMRegister() VMOVD(ymm_mask.as_xmm, reg_n.as_dword) VPBROADCASTD(ymm_mask, ymm_mask.as_xmm) VPCMPGTD(ymm_mask, ymm_mask, Constant.uint32x8(0, 1, 2, 3, 4, 5, 6, 7)) ymm_x = YMMRegister() VMASKMOVPS(ymm_x, ymm_mask, [reg_x]) VSUBPS(ymm_x, ymm_x, ymm_c) ymm_y = simd_exp([ymm_x])[0] VMULPS(ymm_y, ymm_y, ymm_scale) VMASKMOVPS([reg_y], ymm_mask, ymm_y) arg_n = Argument(size_t, "n") arg_v = Argument(ptr(const_float_), "v") arg_scale = Argument(float_, "scale") arg_c = Argument(float_, "c") with Function("inplace_scaled_exp_minus_c__avx2", (arg_n, arg_v, arg_scale, arg_c), target=uarch.default + isa.avx2): reg_n = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_n, arg_n) reg_v = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_v, arg_v) ymm_scale = YMMRegister() LOAD.ARGUMENT(ymm_scale.as_xmm, arg_scale) VBROADCASTSS(ymm_scale, ymm_scale.as_xmm) ymm_c = YMMRegister() LOAD.ARGUMENT(ymm_c.as_xmm, arg_c) VBROADCASTSS(ymm_c, ymm_c.as_xmm) scaled_exp_minus_c(reg_n, reg_v, reg_v, ymm_scale, ymm_c) RETURN() arg_n = Argument(size_t, "n") arg_x = Argument(ptr(const_float_), "x") arg_y = Argument(ptr(float_), "y") arg_scale = Argument(float_, "scale") arg_c = Argument(float_, "c") with Function("scaled_exp_minus_c__avx2", (arg_n, arg_x, arg_y, arg_scale, arg_c), target=uarch.default + isa.avx2): reg_n = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_n, arg_n) reg_x = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_x, arg_x) reg_y = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_y, arg_y) ymm_scale = YMMRegister() LOAD.ARGUMENT(ymm_scale.as_xmm, arg_scale) VBROADCASTSS(ymm_scale, ymm_scale.as_xmm) ymm_c = YMMRegister() LOAD.ARGUMENT(ymm_c.as_xmm, arg_c) VBROADCASTSS(ymm_c, ymm_c.as_xmm) scaled_exp_minus_c(reg_n, reg_x, reg_y, ymm_scale, ymm_c) RETURN()
from __future__ import absolute_import from __future__ import division mr, nr = 3, 4 arg_k = Argument(size_t, "k") arg_update = Argument(size_t, "update") arg_a = Argument(ptr(const_float_), "a") arg_b = Argument(ptr(const_float_), "b") arg_c = Argument(ptr(float_), "c") arg_row_stride = Argument(size_t, "row_stride_c") with Function("nnp_s8gemm_only_{mr}x{nr}__fma3".format(mr=mr, nr=nr), (arg_k, arg_update, arg_a, arg_b, arg_c, arg_row_stride), target=uarch.default + isa.fma3): reg_k = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_k, arg_k) reg_update = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_update, arg_update) reg_a = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_a, arg_a) reg_b = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_b, arg_b) reg_c = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_c, arg_c) reg_row_stride = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_row_stride, arg_row_stride) SHL(reg_row_stride, 2) with Block() as prefetch_c: for m in range(mr): PREFETCHT0([reg_c]) if m + 1 != mr: ADD(reg_c, reg_row_stride) ymm_c = [[YMMRegister() for n in range(nr)] for m in range(mr)] VZEROALL() ymm_a = [YMMRegister() for m in range(mr)] ymm_b_n = YMMRegister() with Loop() as loop: for m in range(mr): VMOVAPS(ymm_a[m], [reg_a + m * YMMRegister.size]) SUB(reg_a, -mr * YMMRegister.size) for n in range(nr): VMOVAPS(ymm_b_n, [reg_b + n * YMMRegister.size]) for m in range(mr): VFMADD231PS(ymm_c[m][n], ymm_a[m], ymm_b_n) SUB(reg_b, -nr * YMMRegister.size) DEC(reg_k) JNZ(loop.begin) store_c = Block() # Check if we need to update C or overwrite it TEST(reg_update, reg_update) JZ(store_c.begin) with Block() as update_c: for m in reversed(range(mr)): for n in range(nr): VADDPS(ymm_c[m][n], ymm_c[m][n], [reg_c + n * YMMRegister.size]) VMOVAPS([reg_c + n * YMMRegister.size], ymm_c[m][n]) if m != 0: SUB(reg_c, reg_row_stride) RETURN() with store_c: for m in reversed(range(mr)): for n in range(nr): VMOVAPS([reg_c + n * YMMRegister.size], ymm_c[m][n]) if m != 0: SUB(reg_c, reg_row_stride) RETURN() arg_mr = Argument(uint32_t, "mr") arg_nr = Argument(uint32_t, "nr") arg_k = Argument(size_t, "k") arg_update = Argument(size_t, "update") arg_a = Argument(ptr(const_float_), "a") arg_b = Argument(ptr(const_float_), "b") arg_c = Argument(ptr(float_), "c") arg_row_stride = Argument(size_t, "row_stride_c") with Function("nnp_s8gemm_upto_{mr}x{nr}__fma3".format(mr=mr, nr=nr), (arg_mr, arg_nr, arg_k, arg_update, arg_a, arg_b, arg_c, arg_row_stride), target=uarch.default + isa.fma3): reg_mr = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_mr, arg_mr) reg_nr = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_nr, arg_nr) reg_k = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_k, arg_k) reg_update = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_update, arg_update) reg_a = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_a, arg_a) reg_b = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_b, arg_b) reg_c = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_c, arg_c) reg_row_stride = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_row_stride, arg_row_stride) SHL(reg_row_stride, 2) ymm_c = [[YMMRegister() for n in range(nr)] for m in range(mr)] VZEROALL() ymm_a = [YMMRegister() for m in range(mr)] ymm_b_n = YMMRegister() with Loop() as loop: with Block() as load_a: for m in range(mr): VMOVAPS(ymm_a[m], [reg_a]) ADD(reg_a, YMMRegister.size) if m + 1 != mr: CMP(reg_mr, m + 1) JE(load_a.end) with Block() as load_b: for n in range(nr): VMOVAPS(ymm_b_n, [reg_b]) ADD(reg_b, YMMRegister.size) for m in range(mr): VFMADD231PS(ymm_c[m][n], ymm_a[m], ymm_b_n) if n + 1 != nr: CMP(reg_nr, n + 1) JE(load_b.end) DEC(reg_k) JNE(loop.begin) store_c = Block() # Check if we need to update C or overwrite it TEST(reg_update, reg_update) JZ(store_c.begin) with Block() as update_c: for m in range(mr): with Block() as update_c_row: for n in range(nr): VADDPS(ymm_c[m][n], ymm_c[m][n], [reg_c + n * YMMRegister.size]) VMOVAPS([reg_c + n * YMMRegister.size], ymm_c[m][n]) if n + 1 != nr: CMP(reg_nr, n + 1) JE(update_c_row.end) if m + 1 != mr: CMP(reg_mr, m + 1) JE(update_c.end) ADD(reg_c, reg_row_stride) RETURN() with store_c: for m in range(mr): with Block() as store_c_row: for n in range(nr): VMOVAPS([reg_c + n * YMMRegister.size], ymm_c[m][n]) if n + 1 != nr: CMP(reg_nr, n + 1) JE(store_c_row.end) if m + 1 != mr: CMP(reg_mr, m + 1) JE(store_c.end) ADD(reg_c, reg_row_stride) RETURN()
from __future__ import absolute_import from __future__ import division mr, nr = 2, 4 arg_input_channels = Argument(size_t, "input_channels") arg_image_size = Argument(size_t, "image_size") arg_input = Argument(ptr(const_float_), "input") arg_kernel = Argument(ptr(const_float_), "kernel") arg_output = Argument(ptr(float_), "output") with Function("nnp_conv1x1_only_{mr}x{nr}__fma3".format(mr=mr, nr=nr), (arg_input_channels, arg_image_size, arg_input, arg_kernel, arg_output), target=uarch.default + isa.fma3): reg_input_channels = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_input_channels, arg_input_channels) SHL(reg_input_channels, 2) reg_image_size = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_image_size, arg_image_size) SHL(reg_image_size, 2) reg_inputs = [GeneralPurposeRegister64() for m in range(mr)] LOAD.ARGUMENT(reg_inputs[0], arg_input) for m in range(1, mr): LEA(reg_inputs[m], [reg_inputs[m - 1] + reg_image_size * 1]) reg_kernel = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_kernel, arg_kernel) reg_outputs = [GeneralPurposeRegister64() for n in range(nr)] LOAD.ARGUMENT(reg_outputs[0], arg_output) for n in range(1, nr): LEA(reg_outputs[n], [reg_outputs[n - 1] + reg_image_size * 1]) ymm_kernel = [[YMMRegister() for n in range(nr)] for m in range(mr)] for n in range(nr): for m in range(mr): VBROADCASTSS(ymm_kernel[m][n], [reg_kernel + m * float_.size]) if n + 1 != nr: ADD(reg_kernel, reg_input_channels) main_loop = Loop() final_block = Block() SUB(reg_image_size, YMMRegister.size) JB(main_loop.end) with main_loop: # Load vectors from different channels of the output image ymm_outputs = [YMMRegister() for n in range(nr)] for reg_output, ymm_output in zip(reg_outputs, ymm_outputs): VMOVUPS(ymm_output, [reg_output]) for m, reg_input in enumerate(reg_inputs): # Load vector for a channel of the input image ymm_input = YMMRegister() VMOVUPS(ymm_input, [reg_input]) ADD(reg_input, YMMRegister.size) # Update all outputs using the input and corresponding kernel elements for n, (reg_output, ymm_output) in enumerate(zip(reg_outputs, ymm_outputs)): VFMADD231PS(ymm_output, ymm_kernel[m][n], ymm_input) if reg_input is reg_inputs[-1]: VMOVUPS([reg_output], ymm_output) ADD(reg_output, YMMRegister.size) SUB(reg_image_size, YMMRegister.size) JAE(main_loop.begin) ADD(reg_image_size, YMMRegister.size) JZ(final_block.end) with final_block: reg_mask, ymm_mask = GeneralPurposeRegister64(), YMMRegister() LEA(reg_mask, Constant.uint32x16(*([0xFFFFFFFF] * 8 + [0x00000000] * 8))) SUB(reg_mask, reg_image_size) VMOVDQU(ymm_mask, [reg_mask + YMMRegister.size]) # Load vectors from different channels of the output image ymm_outputs = [YMMRegister() for n in range(nr)] for reg_output, ymm_output in zip(reg_outputs, ymm_outputs): VMASKMOVPS(ymm_output, ymm_mask, [reg_output]) for m, reg_input in enumerate(reg_inputs): # Load vector for a channel of the input image ymm_input = YMMRegister() VMASKMOVPS(ymm_input, ymm_mask, [reg_input]) # Update all outputs using the input and corresponding kernel elements for n, (reg_output, ymm_output) in enumerate(zip(reg_outputs, ymm_outputs)): VFMADD231PS(ymm_output, ymm_kernel[m][n], ymm_input) if reg_input is reg_inputs[-1]: VMASKMOVPS([reg_output], ymm_mask, ymm_output) RETURN() arg_mr = Argument(uint32_t, "mr") arg_nr = Argument(uint32_t, "nr") arg_input_channels = Argument(size_t, "input_channels") arg_image_size = Argument(size_t, "image_size") arg_input = Argument(ptr(const_float_), "input") arg_kernel = Argument(ptr(const_float_), "kernel") arg_output = Argument(ptr(float_), "output") with Function("nnp_conv1x1_upto_{mr}x{nr}__fma3".format(mr=mr, nr=nr), (arg_mr, arg_nr, arg_input_channels, arg_image_size, arg_input, arg_kernel, arg_output), target=uarch.default + isa.fma3): reg_mr = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_mr, arg_mr) reg_nr = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_nr, arg_nr) reg_input_channels = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_input_channels, arg_input_channels) SHL(reg_input_channels, 2) reg_image_size = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_image_size, arg_image_size) SHL(reg_image_size, 2) reg_inputs = [GeneralPurposeRegister64() for m in range(mr)] LOAD.ARGUMENT(reg_inputs[0], arg_input) for m in range(1, mr): LEA(reg_inputs[m], [reg_inputs[m - 1] + reg_image_size * 1]) reg_kernel = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_kernel, arg_kernel) reg_outputs = [GeneralPurposeRegister64() for n in range(nr)] LOAD.ARGUMENT(reg_outputs[0], arg_output) for n in range(1, nr): LEA(reg_outputs[n], [reg_outputs[n - 1] + reg_image_size * 1]) VZEROALL() ymm_inputs = [YMMRegister() for m in range(mr)] ymm_kernel = [[YMMRegister() for n in range(nr)] for m in range(mr)] with Block() as load_kernels: for n in range(nr): with Block() as load_kernels_row: for m in range(mr): VBROADCASTSS(ymm_kernel[m][n], [reg_kernel + m * float_.size]) if m + 1 != mr: CMP(reg_mr, m + 1) JE(load_kernels_row.end) if n + 1 != nr: CMP(reg_nr, n + 1) JE(load_kernels.end) ADD(reg_kernel, reg_input_channels) main_loop = Loop() final_block = Block() SUB(reg_image_size, YMMRegister.size) JB(main_loop.end) with main_loop: # Load vectors from different channels of the output image ymm_outputs = [YMMRegister() for n in range(nr)] with Block() as load_outputs: for n, (reg_output, ymm_output) in enumerate(zip(reg_outputs, ymm_outputs)): VMOVUPS(ymm_output, [reg_output]) if n + 1 != nr: CMP(reg_nr, n + 1) JE(load_outputs.end) with Block() as load_inputs: for m, (ymm_input, reg_input) in enumerate(zip(ymm_inputs, reg_inputs)): # Load vector for a channel of the input image VMOVUPS(ymm_input, [reg_input]) ADD(reg_input, YMMRegister.size) # Update all outputs using the input and corresponding kernel elements for n, ymm_output in enumerate(ymm_outputs): VFMADD231PS(ymm_output, ymm_kernel[m][n], ymm_input) if m + 1 != mr: CMP(reg_mr, m + 1) JE(load_inputs.end) # Store vectors to different channels of the output image with Block() as store_outputs: for n, (reg_output, ymm_output) in enumerate(zip(reg_outputs, ymm_outputs)): VMOVUPS([reg_output], ymm_output) ADD(reg_output, YMMRegister.size) if n + 1 != nr: CMP(reg_nr, n + 1) JE(store_outputs.end) SUB(reg_image_size, YMMRegister.size) JAE(main_loop.begin) ADD(reg_image_size, YMMRegister.size) JZ(final_block.end) with final_block: reg_mask, ymm_mask = GeneralPurposeRegister64(), YMMRegister() LEA(reg_mask, Constant.uint32x16(*([0xFFFFFFFF] * 8 + [0x00000000] * 8))) SUB(reg_mask, reg_image_size) VMOVDQU(ymm_mask, [reg_mask + YMMRegister.size]) # Load vectors from different channels of the output image ymm_outputs = [YMMRegister() for n in range(nr)] with Block() as load_outputs: for n, (reg_output, ymm_output) in enumerate(zip(reg_outputs, ymm_outputs)): VMASKMOVPS(ymm_output, ymm_mask, [reg_output]) if n + 1 != nr: CMP(reg_nr, n + 1) JE(load_outputs.end) with Block() as load_inputs: for m, (ymm_input, reg_input) in enumerate(zip(ymm_inputs, reg_inputs)): # Load vector for a channel of the input image VMASKMOVPS(ymm_inputs[m], ymm_mask, [reg_input]) # Update all outputs using the input and corresponding kernel elements for n, (reg_output, ymm_output) in enumerate(zip(reg_outputs, ymm_outputs)): VFMADD231PS(ymm_output, ymm_kernel[m][n], ymm_inputs[m]) if m + 1 != mr: CMP(reg_mr, m + 1) JE(load_inputs.end) # Store vectors to different channels of the output image with Block() as store_outputs: for n, (reg_output, ymm_output) in enumerate(zip(reg_outputs, ymm_outputs)): VMASKMOVPS([reg_output], ymm_mask, ymm_output) if n + 1 != nr: CMP(reg_nr, n + 1) JE(store_outputs.end) RETURN()
from __future__ import absolute_import from __future__ import division simd_width = YMMRegister.size // float_.size for fusion_factor in range(1, 8 + 1): arg_x = Argument(ptr(const_float_), "x") arg_y = Argument(ptr(const_float_), "y") arg_stride_y = Argument(size_t, "stride_y") arg_sum = Argument(ptr(float_), "sum") arg_n = Argument(size_t, "n") with Function("nnp_sdotxf{fusion_factor}__avx2".format(fusion_factor=fusion_factor), (arg_x, arg_y, arg_stride_y, arg_sum, arg_n), target=uarch.default + isa.fma3 + isa.avx2): reg_x = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_x, arg_x) reg_ys = [GeneralPurposeRegister64() for m in range(fusion_factor)] LOAD.ARGUMENT(reg_ys[0], arg_y) reg_stride_y = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_stride_y, arg_stride_y) SHL(reg_stride_y, 2) reg_sum = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_sum, arg_sum) reg_n = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_n, arg_n) ymm_accs = [YMMRegister() for m in range(fusion_factor)] VZEROALL() for m in range(1, fusion_factor): LEA(reg_ys[m], [reg_ys[m - 1] + reg_stride_y * 1]) main_loop = Loop() end_block = Block() SUB(reg_n, YMMRegister.size // float_.size) JB(main_loop.end) with main_loop: ymm_x = YMMRegister() VMOVUPS(ymm_x, [reg_x]) ADD(reg_x, YMMRegister.size) for reg_y, ymm_acc in zip(reg_ys, ymm_accs): VFMADD231PS(ymm_acc, ymm_x, [reg_y]) ADD(reg_y, YMMRegister.size) SUB(reg_n, YMMRegister.size // float_.size) JAE(main_loop.begin) ADD(reg_n, YMMRegister.size // float_.size) JE(end_block.end) with end_block: ymm_mask = YMMRegister() VMOVD(ymm_mask.as_xmm, reg_n.as_dword) VPBROADCASTD(ymm_mask, ymm_mask.as_xmm) VPCMPGTD(ymm_mask, ymm_mask, Constant.uint32x8(0, 1, 2, 3, 4, 5, 6, 7)) ymm_x = YMMRegister() VMASKMOVPS(ymm_x, ymm_mask, [reg_x]) for reg_y, ymm_acc in zip(reg_ys, ymm_accs): ymm_y = YMMRegister() VMASKMOVPS(ymm_y, ymm_mask, [reg_y]) VFMADD231PS(ymm_acc, ymm_x, ymm_y) # Reduce the SIMD registers into a single elements xmm_tmp = XMMRegister() for i, ymm_acc in enumerate(ymm_accs): VEXTRACTF128(xmm_tmp, ymm_acc, 1) VADDPS(ymm_acc.as_xmm, ymm_acc.as_xmm, xmm_tmp) VHADDPS(ymm_acc, ymm_acc, ymm_acc) VHADDPS(ymm_acc, ymm_acc, ymm_acc) VMOVSS([reg_sum + i * float_.size], ymm_acc.as_xmm) RETURN()
from __future__ import absolute_import from __future__ import division from fp16.avx import fp16_alt_xmm_to_fp32_xmm from fp16.avx2 import fp16_alt_xmm_to_fp32_ymm simd_width = YMMRegister.size // float_.size for fusion_factor in range(1, 8 + 1): arg_x = Argument(ptr(const_float_), "x") arg_y = Argument(ptr(const_float_), "y") arg_stride_y = Argument(size_t, "stride_y") arg_sum = Argument(ptr(float_), "sum") arg_n = Argument(size_t, "n") with Function("nnp_shdotxf{fusion_factor}__avx2".format(fusion_factor=fusion_factor), (arg_x, arg_y, arg_stride_y, arg_sum, arg_n), target=uarch.default + isa.fma3 + isa.avx2): reg_x = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_x, arg_x) reg_ys = [GeneralPurposeRegister64() for m in range(fusion_factor)] LOAD.ARGUMENT(reg_ys[0], arg_y) reg_stride_y = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_stride_y, arg_stride_y) ADD(reg_stride_y, reg_stride_y) reg_sum = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_sum, arg_sum) reg_n = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_n, arg_n) ymm_accs = [YMMRegister() for m in range(fusion_factor)] VZEROALL() for m in range(1, fusion_factor): LEA(reg_ys[m], [reg_ys[m - 1] + reg_stride_y * 1]) main_loop = Loop() edge_loop = Loop() SUB(reg_n, XMMRegister.size // uint16_t.size) JB(main_loop.end) with main_loop: ymm_x = YMMRegister() VMOVUPS(ymm_x, [reg_x]) ADD(reg_x, YMMRegister.size) for reg_y, ymm_acc in zip(reg_ys, ymm_accs): xmm_half = XMMRegister() VMOVUPS(xmm_half, [reg_y]) ADD(reg_y, XMMRegister.size) ymm_y = fp16_alt_xmm_to_fp32_ymm(xmm_half) VFMADD231PS(ymm_acc, ymm_x, ymm_y) SUB(reg_n, YMMRegister.size // float_.size) JAE(main_loop.begin) ADD(reg_n, XMMRegister.size // uint16_t.size) JE(edge_loop.end) with edge_loop: xmm_x = XMMRegister() VMOVSS(xmm_x, [reg_x]) ADD(reg_x, YMMRegister.size) for reg_y, ymm_acc in zip(reg_ys, ymm_accs): reg_half = GeneralPurposeRegister32() MOVZX(reg_half, word[reg_y]) xmm_half = XMMRegister() VMOVD(xmm_half, reg_half) ADD(reg_y, uint16_t.size) ymm_y = fp16_alt_xmm_to_fp32_ymm(xmm_half) VFMADD231PS(ymm_acc, xmm_x.as_ymm, ymm_y) SUB(reg_n, 1) JAE(edge_loop.begin) # Reduce the SIMD registers into a single elements xmm_tmp = XMMRegister() for i, ymm_acc in enumerate(ymm_accs): VEXTRACTF128(xmm_tmp, ymm_acc, 1) VADDPS(ymm_acc.as_xmm, ymm_acc.as_xmm, xmm_tmp) VHADDPS(ymm_acc, ymm_acc, ymm_acc) VHADDPS(ymm_acc, ymm_acc, ymm_acc) VMOVSS([reg_sum + i * float_.size], ymm_acc.as_xmm) RETURN()
from __future__ import absolute_import from __future__ import division from common import _MM_SHUFFLE simd_width = YMMRegister.size // float_.size mr = 4 nr = 3 * simd_width arg_k = Argument(size_t, "k") arg_update = Argument(size_t, "update") arg_a = Argument(ptr(const_float_), "a") arg_b = Argument(ptr(const_float_), "b") arg_c = Argument(ptr(float_), "c") arg_row_stride = Argument(size_t, "row_stride_c") with Function("nnp_sgemm_only_{mr}x{nr}__fma3".format(mr=mr, nr=nr), (arg_k, arg_update, arg_a, arg_b, arg_c, arg_row_stride), target=uarch.default + isa.fma3): reg_k = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_k, arg_k) reg_update = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_update, arg_update) reg_a = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_a, arg_a) reg_b = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_b, arg_b) reg_c = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_c, arg_c) reg_row_stride = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_row_stride, arg_row_stride) SHL(reg_row_stride, 2) with Block() as prefetch_c: for m in range(mr): PREFETCHT0([reg_c]) if m + 1 != mr: ADD(reg_c, reg_row_stride) ymm_c = [[YMMRegister() for n in range(0, nr, simd_width)] for m in range(mr)] VZEROALL() ymm_b = [YMMRegister() for n in range(0, nr, simd_width)] ymm_a_m = YMMRegister() with Loop() as loop: for n in range(nr // simd_width): VMOVAPS(ymm_b[n], [reg_b + n * YMMRegister.size]) ADD(reg_b, nr * float_.size) for m in range(mr): VBROADCASTSS(ymm_a_m, [reg_a + m * float_.size]) for n in range(nr // simd_width): VFMADD231PS(ymm_c[m][n], ymm_a_m, ymm_b[n]) ADD(reg_a, mr * float_.size) DEC(reg_k) JNE(loop.begin) store_c = Block() # Check if we need to update C or overwrite it TEST(reg_update, reg_update) JZ(store_c.begin) with Block() as load_and_store_c: for m in reversed(range(mr)): for n in range(nr // simd_width): VADDPS(ymm_c[m][n], ymm_c[m][n], [reg_c + n * YMMRegister.size]) VMOVUPS([reg_c + n * YMMRegister.size], ymm_c[m][n]) if m != 0: SUB(reg_c, reg_row_stride) RETURN() with store_c: for m in reversed(range(mr)): for n in range(nr // simd_width): VMOVUPS([reg_c + n * YMMRegister.size], ymm_c[m][n]) if m != 0: SUB(reg_c, reg_row_stride) RETURN() arg_mr = Argument(uint32_t, "mr") arg_nr = Argument(uint32_t, "nr") arg_k = Argument(size_t, "k") arg_update = Argument(size_t, "update") arg_a = Argument(ptr(const_float_), "a") arg_b = Argument(ptr(const_float_), "b") arg_c = Argument(ptr(float_), "c") arg_row_stride = Argument(size_t, "row_stride_c") with Function("nnp_sgemm_upto_{mr}x{nr}__fma3".format(mr=mr, nr=nr), (arg_mr, arg_nr, arg_k, arg_update, arg_a, arg_b, arg_c, arg_row_stride), target=uarch.default + isa.fma3): reg_mr = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_mr, arg_mr) reg_nr = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_nr, arg_nr) reg_k = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_k, arg_k) reg_update = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_update, arg_update) reg_a = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_a, arg_a) reg_b = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_b, arg_b) reg_c = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_c, arg_c) reg_row_stride = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_row_stride, arg_row_stride) SHL(reg_row_stride, 2) ymm_c = [[YMMRegister() for n in range(0, nr, simd_width)] for m in range(mr)] VZEROALL() ymm_b = [YMMRegister() for n in range(0, nr, simd_width)] ymm_a_m = YMMRegister() with Loop() as loop: with Block() as load_b: for n in range(nr // simd_width): VMOVAPS(ymm_b[n], [reg_b]) ADD(reg_b, YMMRegister.size) if n + 1 != nr // simd_width: CMP(reg_nr, (n + 1) * simd_width) JBE(load_b.end) with Block() as multiply_by_a: for m in range(mr): VBROADCASTSS(ymm_a_m, [reg_a]) ADD(reg_a, float_.size) for n in range(nr // simd_width): VFMADD231PS(ymm_c[m][n], ymm_a_m, ymm_b[n]) if m + 1 != mr: CMP(reg_mr, m + 1) JE(multiply_by_a.end) DEC(reg_k) JNE(loop.begin) store_c = Block() # Load mask reg_mask_index = GeneralPurposeRegister32() LEA(reg_mask_index, [reg_nr.as_qword - 1]) AND(reg_mask_index, simd_width - 1) NEG(reg_mask_index.as_qword) const_mask_table = Constant.uint32x16(*([0xFFFFFFFF] * 8 + [0x00000000] * 8)) reg_mask = GeneralPurposeRegister64() LEA(reg_mask, const_mask_table) LEA(reg_mask, [reg_mask + reg_mask_index.as_qword * 4 + 32 - 4]) ymm_mask = YMMRegister() VMOVDQU(ymm_mask, [reg_mask]) # Check if we need to update C or overwrite it TEST(reg_update, reg_update) JZ(store_c.begin) with Block() as update_c: for m in range(mr): reg_c_mn = GeneralPurposeRegister64() MOV(reg_c_mn, reg_c) ymm_c_mn = YMMRegister() with Block() as update_c_full_registers: for n in range(nr // simd_width): # Copy the current accumulator register into a fixed register ymm_c_mn. # If a partial register is to be stored, the storing code would expect it there. VMOVAPS(ymm_c_mn, ymm_c[m][n]) if n + 1 != nr // simd_width: CMP(reg_nr, (n + 1) * simd_width) JBE(update_c_full_registers.end) VADDPS(ymm_c[m][n], ymm_c[m][n], [reg_c_mn]) VMOVUPS([reg_c_mn], ymm_c[m][n]) ADD(reg_c_mn, YMMRegister.size) # Update (potentially) partial register # Important: ymm_c_mn is the content of the register and [reg_c_mn] is the address of the tuple of C ymm_temp = YMMRegister() VMASKMOVPS(ymm_temp, ymm_mask, [reg_c_mn]) VADDPS(ymm_c_mn, ymm_c_mn, ymm_temp) VMASKMOVPS([reg_c_mn], ymm_mask, ymm_c_mn) if m + 1 != mr: CMP(reg_mr, m + 1) JE(update_c.end) ADD(reg_c, reg_row_stride) RETURN() with store_c: for m in range(mr): reg_c_mn = GeneralPurposeRegister64() MOV(reg_c_mn, reg_c) ymm_c_mn = YMMRegister() with Block() as store_c_full_registers: for n in range(nr // simd_width): # Copy the current accumulator register into a fixed register ymm_c_mn. # If a partial register is to be stored, the storing code would expect it there. VMOVAPS(ymm_c_mn, ymm_c[m][n]) if n + 1 != nr // simd_width: CMP(reg_nr, (n + 1) * simd_width) JBE(store_c_full_registers.end) VMOVUPS([reg_c_mn], ymm_c[m][n]) ADD(reg_c_mn, YMMRegister.size) # Store (potentially) partial register # Important: ymm_c_mn is the content of the register and [reg_c_mn] is the address of the tuple of C VMASKMOVPS([reg_c_mn], ymm_mask, ymm_c_mn) if m + 1 != mr: CMP(reg_mr, m + 1) JE(store_c.end) ADD(reg_c, reg_row_stride) RETURN()
from __future__ import absolute_import from __future__ import division mr, nr = 2, 2 for conjugate_b, transpose_c in [(False, False), (True, False), (True, True)]: arg_k = Argument(size_t, "k") arg_update = Argument(size_t, "update") arg_a = Argument(ptr(const_float_), "a") arg_b = Argument(ptr(const_float_), "b") arg_c = Argument(ptr(float_), "c") arg_row_stride = Argument(size_t, "row_stride_c") with Function("nnp_c8gemm{conjb}{transc}_only_{mr}x{nr}__fma3".format(mr=mr, nr=nr, conjb="_conjb" if conjugate_b else "", transc="_transc" if transpose_c else ""), (arg_k, arg_update, arg_a, arg_b, arg_c, arg_row_stride), target=uarch.default + isa.fma3): reg_k = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_k, arg_k) reg_update = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_update, arg_update) reg_a = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_a, arg_a) reg_b = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_b, arg_b) reg_c = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_c, arg_c) reg_row_stride = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_row_stride, arg_row_stride) SHL(reg_row_stride, 2) with Block() as prefetch_c: if not transpose_c: for m in range(mr): PREFETCHT0([reg_c]) if m + 1 != mr: ADD(reg_c, reg_row_stride) else: for n in range(nr): PREFETCHT0([reg_c]) if n + 1 != nr: ADD(reg_c, reg_row_stride) ymm_c_re = [[YMMRegister() for n in range(nr)] for m in range(mr)] ymm_c_im = [[YMMRegister() for n in range(nr)] for m in range(mr)] VZEROALL() ymm_a = [YMMRegister() for m in range(2*mr)] ymm_a_re, ymm_a_im = ymm_a[0::2], ymm_a[1::2] ymm_b = [YMMRegister() for n in range(2*nr)] ymm_b_re, ymm_b_im = ymm_b[0::2], ymm_b[1::2] with Loop() as loop: for i, ymm in enumerate(ymm_a): VMOVAPS(ymm, [reg_a + i * YMMRegister.size]) SUB(reg_a, -YMMRegister.size * 2 * mr) for j, ymm in enumerate(ymm_b): VMOVAPS(ymm, [reg_b + j * YMMRegister.size]) SUB(reg_b, -YMMRegister.size * 2 * nr) for n in range(nr): for m in range(mr): VFMADD231PS(ymm_c_re[m][n], ymm_a_re[m], ymm_b_re[n]) VFMADD231PS(ymm_c_im[m][n], ymm_a_im[m], ymm_b_re[n]) for n in range(nr): for m in range(mr): if conjugate_b: VFMADD231PS(ymm_c_re[m][n], ymm_a_im[m], ymm_b_im[n]) VFNMADD231PS(ymm_c_im[m][n], ymm_a_re[m], ymm_b_im[n]) else: VFNMADD231PS(ymm_c_re[m][n], ymm_a_im[m], ymm_b_im[n]) VFMADD231PS(ymm_c_im[m][n], ymm_a_re[m], ymm_b_im[n]) DEC(reg_k) JNZ(loop.begin) store_c = Block() # Check if we need to update C or overwrite it TEST(reg_update, reg_update) JZ(store_c.begin) if transpose_c: mr, nr = nr, mr ymm_c_re = [list(ymm_column) for ymm_column in zip(*ymm_c_re)] ymm_c_im = [list(ymm_column) for ymm_column in zip(*ymm_c_im)] with Block() as update_c: for m in reversed(range(mr)): for n in range(nr): VADDPS(ymm_c_re[m][n], ymm_c_re[m][n], [reg_c + (2*n+0) * YMMRegister.size]) VADDPS(ymm_c_im[m][n], ymm_c_im[m][n], [reg_c + (2*n+1) * YMMRegister.size]) VMOVAPS([reg_c + (2*n+0) * YMMRegister.size], ymm_c_re[m][n]) VMOVAPS([reg_c + (2*n+1) * YMMRegister.size], ymm_c_im[m][n]) if m != 0: SUB(reg_c, reg_row_stride) RETURN() with store_c: for m in reversed(range(mr)): for n in range(nr): VMOVAPS([reg_c + (2*n+0) * YMMRegister.size], ymm_c_re[m][n]) VMOVAPS([reg_c + (2*n+1) * YMMRegister.size], ymm_c_im[m][n]) if m != 0: SUB(reg_c, reg_row_stride) RETURN() arg_mr = Argument(uint32_t, "mr") arg_nr = Argument(uint32_t, "nr") arg_k = Argument(size_t, "k") arg_update = Argument(size_t, "update") arg_a = Argument(ptr(const_float_), "a") arg_b = Argument(ptr(const_float_), "b") arg_c = Argument(ptr(float_), "c") arg_row_stride = Argument(size_t, "row_stride_c") with Function("nnp_c8gemm{conjb}{transc}_upto_{mr}x{nr}__fma3".format(mr=mr, nr=nr, conjb="_conjb" if conjugate_b else "", transc="_transc" if transpose_c else ""), (arg_mr, arg_nr, arg_k, arg_update, arg_a, arg_b, arg_c, arg_row_stride), target=uarch.default + isa.fma3): reg_mr = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_mr, arg_mr) reg_nr = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_nr, arg_nr) reg_k = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_k, arg_k) reg_update = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_update, arg_update) reg_a = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_a, arg_a) reg_b = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_b, arg_b) reg_c = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_c, arg_c) reg_row_stride = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_row_stride, arg_row_stride) SHL(reg_row_stride, 2) ymm_c_re, ymm_c_im = tuple([[YMMRegister() for n in range(nr)] for m in range(mr)] for c in range(2)) VZEROALL() ymm_a_re, ymm_a_im = tuple([YMMRegister() for m in range(mr)] for c in range(2)) ymm_b_re, ymm_b_im = tuple([YMMRegister() for n in range(nr)] for c in range(2)) with Loop() as loop: with Block() as load_a: for m, (ymm_re, ymm_im) in enumerate(zip(ymm_a_re, ymm_a_im)): VMOVAPS(ymm_re, [reg_a]) VMOVAPS(ymm_im, [reg_a + YMMRegister.size]) ADD(reg_a, 2 * YMMRegister.size) if m + 1 != mr: CMP(reg_mr, m + 1) JE(load_a.end) with Block() as load_b: for n, (ymm_re, ymm_im) in enumerate(zip(ymm_b_re, ymm_b_im)): VMOVAPS(ymm_re, [reg_b]) VMOVAPS(ymm_im, [reg_b + YMMRegister.size]) ADD(reg_b, 2 * YMMRegister.size) with Block() as mutiply_by_bn: for m in range(mr): VFMADD231PS(ymm_c_re[m][n], ymm_a_re[m], ymm_b_re[n]) VFMADD231PS(ymm_c_im[m][n], ymm_a_im[m], ymm_b_re[n]) if conjugate_b: VFMADD231PS(ymm_c_re[m][n], ymm_a_im[m], ymm_b_im[n]) VFNMADD231PS(ymm_c_im[m][n], ymm_a_re[m], ymm_b_im[n]) else: VFNMADD231PS(ymm_c_re[m][n], ymm_a_im[m], ymm_b_im[n]) VFMADD231PS(ymm_c_im[m][n], ymm_a_re[m], ymm_b_im[n]) if m + 1 != mr: CMP(reg_mr, m + 1) JE(mutiply_by_bn.end) if n + 1 != nr: CMP(reg_nr, n + 1) JE(load_b.end) DEC(reg_k) JNZ(loop.begin) store_c = Block() # Check if we need to update C or overwrite it TEST(reg_update, reg_update) JZ(store_c.begin) if transpose_c: mr, nr = nr, mr reg_mr, reg_nr = reg_nr, reg_mr ymm_c_re = [list(ymm_column) for ymm_column in zip(*ymm_c_re)] ymm_c_im = [list(ymm_column) for ymm_column in zip(*ymm_c_im)] with Block() as update_c: for m in range(mr): with Block() as update_c_row: for n in range(nr): VADDPS(ymm_c_re[m][n], ymm_c_re[m][n], [reg_c + (2*n+0) * YMMRegister.size]) VADDPS(ymm_c_im[m][n], ymm_c_im[m][n], [reg_c + (2*n+1) * YMMRegister.size]) VMOVAPS([reg_c + (2*n+0) * YMMRegister.size], ymm_c_re[m][n]) VMOVAPS([reg_c + (2*n+1) * YMMRegister.size], ymm_c_im[m][n]) if n + 1 != nr: CMP(reg_nr, n + 1) JE(update_c_row.end) if m + 1 != mr: CMP(reg_mr, m + 1) JE(update_c.end) ADD(reg_c, reg_row_stride) RETURN() with store_c: for m in range(mr): with Block() as store_c_row: for n in range(nr): VMOVAPS([reg_c + (2*n+0) * YMMRegister.size], ymm_c_re[m][n]) VMOVAPS([reg_c + (2*n+1) * YMMRegister.size], ymm_c_im[m][n]) if n + 1 != nr: CMP(reg_nr, n + 1) JE(store_c_row.end) if m + 1 != mr: CMP(reg_mr, m + 1) JE(store_c.end) ADD(reg_c, reg_row_stride) RETURN()
from __future__ import absolute_import from __future__ import division mr, nr = 2, 2 for conjugate_b, transpose_c in [(False, False), (True, False), (True, True)]: arg_k = Argument(size_t, "k") arg_update = Argument(size_t, "update") arg_a = Argument(ptr(const_float_), "a") arg_b = Argument(ptr(const_float_), "b") arg_c = Argument(ptr(float_), "c") arg_row_stride = Argument(size_t, "row_stride_c") with Function("nnp_s4c6gemm{conjb}{transc}_only_{mr}x{nr}__fma3".format(mr=mr, nr=nr, conjb="_conjb" if conjugate_b else "", transc="_transc" if transpose_c else ""), (arg_k, arg_update, arg_a, arg_b, arg_c, arg_row_stride), target=uarch.default + isa.fma3): reg_k = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_k, arg_k) reg_update = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_update, arg_update) reg_a = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_a, arg_a) reg_b = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_b, arg_b) reg_c = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_c, arg_c) reg_row_stride = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_row_stride, arg_row_stride) SHL(reg_row_stride, 2) with Block() as prefetch_c: if not transpose_c: for m in range(mr): PREFETCHT0([reg_c]) if m + 1 != mr: ADD(reg_c, reg_row_stride) else: for n in range(nr): PREFETCHT0([reg_c]) if n + 1 != nr: ADD(reg_c, reg_row_stride) ymm_c_re, ymm_c_im = tuple([[YMMRegister() for n in range(nr)] for m in range(mr)] for c in range(2)) VZEROALL() ymm_a_re, ymm_a_im = tuple([YMMRegister() for m in range(2*mr)] for c in range(2)) ymm_b_re, ymm_b_im = tuple([YMMRegister() for n in range(2*nr)] for c in range(2)) with Loop() as loop: for m in range(mr): VMOVAPS(ymm_a_re[m], [reg_a + (2*m+0) * YMMRegister.size]) VMOVAPS(ymm_a_im[m], [reg_a + (2*m+1) * YMMRegister.size]) SUB(reg_a, -YMMRegister.size * 2 * mr) for n in range(nr): VMOVAPS(ymm_b_re[n], [reg_b + (2*n+0) * YMMRegister.size]) for m in range(mr): VFMADD231PS(ymm_c_re[m][n], ymm_a_re[m], ymm_b_re[n]) VMOVAPS(ymm_b_im[n], [reg_b + (2*n+1) * YMMRegister.size]) VBLENDPS(ymm_b_re[n], ymm_b_re[n], ymm_b_im[n], 0b00000011) for m in range(mr): VFMADD231PS(ymm_c_im[m][n], ymm_a_im[m], ymm_b_re[n]) SUB(reg_b, -YMMRegister.size * 2 * nr) ymm_zero_columns01_mask = YMMRegister() VMOVAPS(ymm_zero_columns01_mask, Constant.uint32x8(0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF)) for n in range(nr): VANDPS(ymm_b_im[n], ymm_b_im[n], ymm_zero_columns01_mask) for m in range(mr): if conjugate_b: VFMADD231PS(ymm_c_re[m][n], ymm_a_im[m], ymm_b_im[n]) VFNMADD231PS(ymm_c_im[m][n], ymm_a_re[m], ymm_b_im[n]) else: VFNMADD231PS(ymm_c_re[m][n], ymm_a_im[m], ymm_b_im[n]) VFMADD231PS(ymm_c_im[m][n], ymm_a_re[m], ymm_b_im[n]) DEC(reg_k) JNZ(loop.begin) store_c = Block() # Check if we need to update C or overwrite it TEST(reg_update, reg_update) JZ(store_c.begin) if transpose_c: mr, nr = nr, mr ymm_c_re = [list(ymm_column) for ymm_column in zip(*ymm_c_re)] ymm_c_im = [list(ymm_column) for ymm_column in zip(*ymm_c_im)] with Block() as update_c: for m in reversed(range(mr)): for n in range(nr): VADDPS(ymm_c_re[m][n], ymm_c_re[m][n], [reg_c + (2*n+0) * YMMRegister.size]) VADDPS(ymm_c_im[m][n], ymm_c_im[m][n], [reg_c + (2*n+1) * YMMRegister.size]) VMOVAPS([reg_c + (2*n+0) * YMMRegister.size], ymm_c_re[m][n]) VMOVAPS([reg_c + (2*n+1) * YMMRegister.size], ymm_c_im[m][n]) if m != 0: SUB(reg_c, reg_row_stride) RETURN() with store_c: for m in reversed(range(mr)): for n in range(nr): VMOVAPS([reg_c + (2*n+0) * YMMRegister.size], ymm_c_re[m][n]) VMOVAPS([reg_c + (2*n+1) * YMMRegister.size], ymm_c_im[m][n]) if m != 0: SUB(reg_c, reg_row_stride) RETURN() arg_mr = Argument(uint32_t, "mr") arg_nr = Argument(uint32_t, "nr") arg_k = Argument(size_t, "k") arg_update = Argument(size_t, "update") arg_a = Argument(ptr(const_float_), "a") arg_b = Argument(ptr(const_float_), "b") arg_c = Argument(ptr(float_), "c") arg_row_stride = Argument(size_t, "row_stride_c") with Function("nnp_s4c6gemm{conjb}{transc}_upto_{mr}x{nr}__fma3".format(mr=mr, nr=nr, conjb="_conjb" if conjugate_b else "", transc="_transc" if transpose_c else ""), (arg_mr, arg_nr, arg_k, arg_update, arg_a, arg_b, arg_c, arg_row_stride), target=uarch.default + isa.fma3): reg_mr = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_mr, arg_mr) reg_nr = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_nr, arg_nr) reg_k = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_k, arg_k) reg_update = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_update, arg_update) reg_a = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_a, arg_a) reg_b = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_b, arg_b) reg_c = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_c, arg_c) reg_row_stride = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_row_stride, arg_row_stride) SHL(reg_row_stride, 2) ymm_c_re, ymm_c_im = tuple([[YMMRegister() for n in range(nr)] for m in range(mr)] for c in range(2)) VZEROALL() ymm_a_re, ymm_a_im = tuple([YMMRegister() for m in range(mr)] for c in range(2)) ymm_b_re, ymm_b_im = tuple([YMMRegister() for n in range(nr)] for c in range(2)) with Loop() as loop: with Block() as load_a: for m, (ymm_re, ymm_im) in enumerate(zip(ymm_a_re, ymm_a_im)): VMOVAPS(ymm_re, [reg_a]) VMOVAPS(ymm_im, [reg_a + YMMRegister.size]) ADD(reg_a, 2 * YMMRegister.size) if m + 1 != mr: CMP(reg_mr, m + 1) JE(load_a.end) with Block() as load_b: for n in range(nr): VMOVAPS(ymm_b_re[n], [reg_b]) for m in range(mr): VFMADD231PS(ymm_c_re[m][n], ymm_a_re[m], ymm_b_re[n]) VMOVAPS(ymm_b_im[n], [reg_b + YMMRegister.size]) VBLENDPS(ymm_b_re[n], ymm_b_re[n], ymm_b_im[n], 0b00000011) for m in range(mr): VFMADD231PS(ymm_c_im[m][n], ymm_a_im[m], ymm_b_re[n]) ADD(reg_b, YMMRegister.size * 2) if n + 1 != nr: CMP(reg_nr, n + 1) JE(load_b.end) ymm_zero_columns01_mask = YMMRegister() VMOVAPS(ymm_zero_columns01_mask, Constant.uint32x8(0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF)) for n in range(nr): VANDPS(ymm_b_im[n], ymm_b_im[n], ymm_zero_columns01_mask) for m in range(mr): if conjugate_b: VFMADD231PS(ymm_c_re[m][n], ymm_a_im[m], ymm_b_im[n]) VFNMADD231PS(ymm_c_im[m][n], ymm_a_re[m], ymm_b_im[n]) else: VFNMADD231PS(ymm_c_re[m][n], ymm_a_im[m], ymm_b_im[n]) VFMADD231PS(ymm_c_im[m][n], ymm_a_re[m], ymm_b_im[n]) DEC(reg_k) JNZ(loop.begin) store_c = Block() # Check if we need to update C or overwrite it TEST(reg_update, reg_update) JZ(store_c.begin) if transpose_c: mr, nr = nr, mr reg_mr, reg_nr = reg_nr, reg_mr ymm_c_re = [list(ymm_column) for ymm_column in zip(*ymm_c_re)] ymm_c_im = [list(ymm_column) for ymm_column in zip(*ymm_c_im)] with Block() as update_c: for m in range(mr): with Block() as update_c_row: for n in range(nr): VADDPS(ymm_c_re[m][n], ymm_c_re[m][n], [reg_c + (2*n+0) * YMMRegister.size]) VADDPS(ymm_c_im[m][n], ymm_c_im[m][n], [reg_c + (2*n+1) * YMMRegister.size]) VMOVAPS([reg_c + (2*n+0) * YMMRegister.size], ymm_c_re[m][n]) VMOVAPS([reg_c + (2*n+1) * YMMRegister.size], ymm_c_im[m][n]) if n + 1 != nr: CMP(reg_nr, n + 1) JE(update_c_row.end) if m + 1 != mr: CMP(reg_mr, m + 1) JE(update_c.end) ADD(reg_c, reg_row_stride) RETURN() with store_c: for m in range(mr): with Block() as store_c_row: for n in range(nr): VMOVAPS([reg_c + (2*n+0) * YMMRegister.size], ymm_c_re[m][n]) VMOVAPS([reg_c + (2*n+1) * YMMRegister.size], ymm_c_im[m][n]) if n + 1 != nr: CMP(reg_nr, n + 1) JE(store_c_row.end) if m + 1 != mr: CMP(reg_mr, m + 1) JE(store_c.end) ADD(reg_c, reg_row_stride) RETURN()
from __future__ import absolute_import from __future__ import division from peachpy import * from peachpy.x86_64 import * from common import sqrt2_over_2 from common import butterfly import fft.complex_soa def fft8_across_rows(ymm_data): assert isinstance(ymm_data, list) and len(ymm_data) == 8 ymm_real = ymm_data[0::2] ymm_imag = ymm_data[1::2] fft.complex_soa.fft4_across_rows(ymm_real, ymm_imag) butterfly(ymm_real[0], ymm_imag[0]) # const float two_gdata1_real = crealf(data1) + crealf(data3); # const float two_gdata1_imag = cimagf(data1) - cimagf(data3); ymm_two_gdata1_real, ymm_two_gdata1_imag = YMMRegister(), YMMRegister() VADDPS(ymm_two_gdata1_real, ymm_real[1], ymm_real[3]) VSUBPS(ymm_two_gdata1_imag, ymm_imag[1], ymm_imag[3]) # const float two_hdata1_real = cimagf(data1) + cimagf(data3); # const float two_hdata1_imag = crealf(data3) - crealf(data1); ymm_two_hdata1_real, ymm_two_hdata1_imag = YMMRegister(), YMMRegister() VADDPS(ymm_two_hdata1_real, ymm_imag[1], ymm_imag[3]) VSUBPS(ymm_two_hdata1_imag, ymm_real[3], ymm_real[1]) # const float two_hdata1_real_plus_imag = two_hdata1_real + two_hdata1_imag; # const float two_hdata1_real_minus_imag = two_hdata1_real - two_hdata1_imag; ymm_two_hdata1_plus, ymm_two_hdata1_minus = YMMRegister(), YMMRegister() VADDPS(ymm_two_hdata1_plus, ymm_two_hdata1_real, ymm_two_hdata1_imag) VSUBPS(ymm_two_hdata1_minus, ymm_two_hdata1_real, ymm_two_hdata1_imag) ymm_sqrt2_over_2 = YMMRegister() VMOVAPS(ymm_sqrt2_over_2, Constant.float32x8(sqrt2_over_2)) # const float two_data1_real = two_gdata1_real + SQRT2_OVER_2 * two_hdata1_real_plus_imag; # const float two_data1_imag = two_gdata1_imag - SQRT2_OVER_2 * two_hdata1_real_minus_imag; # const float two_data3_real = two_gdata1_real - SQRT2_OVER_2 * two_hdata1_real_plus_imag; # const float two_data3_imag = -two_gdata1_imag - SQRT2_OVER_2 * two_hdata1_real_minus_imag; ymm_two_data1_real, ymm_two_data1_imag = YMMRegister(), YMMRegister() ymm_two_data3_real, ymm_two_data3_imag = YMMRegister(), YMMRegister() VMOVAPS(ymm_two_data3_real, ymm_two_gdata1_real) VMOVAPS(ymm_two_data3_imag, ymm_two_gdata1_imag) VFMADD231PS(ymm_two_gdata1_real, ymm_two_hdata1_plus, ymm_sqrt2_over_2) VFNMADD231PS(ymm_two_gdata1_imag, ymm_two_hdata1_minus, ymm_sqrt2_over_2) SWAP.REGISTERS(ymm_two_data1_real, ymm_two_gdata1_real) SWAP.REGISTERS(ymm_two_data1_imag, ymm_two_gdata1_imag) VFNMADD231PS(ymm_two_data3_real, ymm_two_hdata1_plus, ymm_sqrt2_over_2) VFNMSUB231PS(ymm_two_data3_imag, ymm_two_hdata1_minus, ymm_sqrt2_over_2) # /* Store outputs */ # fdata[0] = crealf(data0) + cimagf(data0); # fdata[1] = crealf(data0) - cimagf(data0); # fdata[2] = 0.5f * two_data1_real; # fdata[3] = 0.5f * two_data1_imag; # fdata[4] = crealf(data2); # fdata[5] = -cimagf(data2); # fdata[6] = 0.5f * two_data3_real; # fdata[7] = 0.5f * two_data3_imag; ymm_half = YMMRegister() VMOVAPS(ymm_half, Constant.float32x8(0.5)) VMULPS(ymm_real[1], ymm_two_data1_real, ymm_half) VMULPS(ymm_imag[1], ymm_two_data1_imag, ymm_half) VXORPS(ymm_imag[2], ymm_imag[2], Constant.float32x8(-0.0)) VMULPS(ymm_real[3], ymm_two_data3_real, ymm_half) VMULPS(ymm_imag[3], ymm_two_data3_imag, ymm_half)
from __future__ import absolute_import from __future__ import division from peachpy import * from peachpy.x86_64 import * from common import interleave def ifft8_within_rows_preprocess(ymm_wr, ymm_wi): assert isinstance(ymm_wr, YMMRegister) assert isinstance(ymm_wi, YMMRegister) # w0.re, w1.re, w2.re, w3.re, w4.re, w5.re, w6.re, w7.re = \ # = f0.re, f2.re - f3.im, f4.re - f5.im, f6.re - f7.im, f0.im, f6.re + f7.im, f4.re + f5.im, f2.re + f3.im # w0.im, w1.im, w2.im, w3.im, w4.im, w5.im, w6.im, w7.im = \ # = f1.re, f3.re + f2.im, f5.re + f4.im, f7.re + f6.im, f1.im, f7.re - f6.im, f5.re - f4.im, f3.re - f2.im ymm_shuffle_02461642 = YMMRegister() VMOVDQA(ymm_shuffle_02461642, Constant.uint32x8(0, 2, 4, 6, 1, 6, 4, 2)) ymm_shuffle_13570753 = YMMRegister() VMOVDQA(ymm_shuffle_13570753, Constant.uint32x8(1, 3, 5, 7, 0, 7, 5, 3)) ymm_wr_02461642 = YMMRegister() VPERMPS(ymm_wr_02461642, ymm_shuffle_02461642, ymm_wr) ymm_wr_13570753 = YMMRegister() VPERMPS(ymm_wr_13570753, ymm_shuffle_13570753, ymm_wr) ymm_wi_02461642 = YMMRegister() VPERMPS(ymm_wi_02461642, ymm_shuffle_02461642, ymm_wi) ymm_wi_13570753 = YMMRegister() VPERMPS(ymm_wi_13570753, ymm_shuffle_13570753, ymm_wi) # wr02461642 = f0.re, f2.re - f3.im, f4.re - f5.im, f6.re - f7.im, -, f6.re + f7.im, f4.re + f5.im, f2.re + f3.im VFMADD231PS(ymm_wr_02461642, ymm_wi_13570753, Constant.float32x8(0.0, -1.0, -1.0, -1.0, 0.0, +1.0, +1.0, +1.0)) # wi13570753 = f1.re, f3.re + f2.im, f5.re + f4.im, f7.re + f6.im, -, f7.re - f6.im, f5.re - f4.im, f3.re - f2.im VFMADD231PS(ymm_wr_13570753, ymm_wi_02461642, Constant.float32x8(0.0, +1.0, +1.0, +1.0, 0.0, -1.0, -1.0, -1.0)) VBLENDPS(ymm_wr_02461642, ymm_wr_02461642, ymm_wi_13570753, 0b00010000) VBLENDPS(ymm_wr_13570753, ymm_wr_13570753, ymm_wi_02461642, 0b00010000) SWAP.REGISTERS(ymm_wr_02461642, ymm_wr) SWAP.REGISTERS(ymm_wr_13570753, ymm_wi) def ifft16_within_rows_preprocess(ymm_wr, ymm_wi, bit_reversal=False): assert isinstance(ymm_wr, (list, tuple)) and len(ymm_wr) == 2 and all(isinstance(reg, YMMRegister) for reg in ymm_wr) assert isinstance(ymm_wi, (list, tuple)) and len(ymm_wi) == 2 and all(isinstance(reg, YMMRegister) for reg in ymm_wi) # w0.re, w1.re, w2.re, w3.re, w4.re, w5.re, w6.re, w7.re = \ # = f0.re, f2.re - f3.im, f4.re - f5.im, f6.re - f7.im, f8.re - f9.im, f10.re - f11.im, f12.re - f13.im, f14.re - f15.im # w8.re, w9.re, w10.re, w11.re, w12.re, w13.re, w14.re, w15.re = \ # = f0.im, f14.re + f15.im, f12.re + f13.im, f10.re + f11.im, f8.re + f9.im, f6.re + f7.im, f4.re + f5.im, f2.re + f3.im # # w0.im, w1.im, w2.im, w3.im, w4.im, w5.im, w6.im, w7.im = \ # = f1.re, f3.re + f2.im, f5.re + f4.im, f7.re + f6.im, r9.re + f8.im, f11.re + f10.im, f13.re + f12.im, f15.re + f14.im # w8.im, w9.im, w10.im, w11.im, w12.im, w13.im, w14.im, w15.im = \ # = f1.im, f15.re - f14.im, f13.re - f12.im, f11.re - f10.im, f9.re - f8.im, f7.re - f6.im, f5.re - f4.im, f3.re - f2.im # Step 1.A: # w0.re, w1.re, w2.re, w3.re, -, w13.re, w14.re, w15.re = \ # = f0.re, f2.re - f3.im, f4.re - f5.im, f6.re - f7.im, -, f6.re + f7.im, f4.re + f5.im, f2.re + f3.im # w0.im, w1.im, w2.im, w3.im, -, w13.im, w14.im, w15.im = \ # = f1.re, f3.re + f2.im, f5.re + f4.im, f7.re + f6.im, -, f7.re - f6.im, f5.re - f4.im, f3.re - f2.im ymm_shuffle_02461642 = YMMRegister() VMOVDQA(ymm_shuffle_02461642, Constant.uint32x8(0, 2, 4, 6, 1, 6, 4, 2)) ymm_shuffle_13570753 = YMMRegister() VMOVDQA(ymm_shuffle_13570753, Constant.uint32x8(1, 3, 5, 7, 0, 7, 5, 3)) ymm_fr_02461642, ymm_fi_13570753 = YMMRegister(), YMMRegister() VPERMPS(ymm_fr_02461642, ymm_shuffle_02461642, ymm_wr[0]) VPERMPS(ymm_fi_13570753, ymm_shuffle_13570753, ymm_wi[0]) VFMADD231PS(ymm_fr_02461642, ymm_fi_13570753, Constant.float32x8(0.0, -1.0, -1.0, -1.0, 0.0, +1.0, +1.0, +1.0)) ymm_fr_13570753, ymm_fi_02461642 = YMMRegister(), YMMRegister() VPERMPS(ymm_fr_13570753, ymm_shuffle_13570753, ymm_wr[0]) VPERMPS(ymm_fi_02461642, ymm_shuffle_02461642, ymm_wi[0]) VFMADD231PS(ymm_fr_13570753, ymm_fi_02461642, Constant.float32x8(0.0, +1.0, +1.0, +1.0, 0.0, -1.0, -1.0, -1.0)) ymm_wr_0123xDEF, ymm_wi_0123xDEF = ymm_fr_02461642, ymm_fr_13570753 # Step 1.B: # -, w9.re, w10.re, w11.re, w4.re, w5.re, w6.re, w7.re = \ # = -, f14.re + f15.im, f12.re + f13.im, f10.re + f11.im, r8.re - r9.im, r10.re - r11.im, r12.re - r13.im, r14.re - f15.im # -, w9.im, w10.im, w11.im, w4.im, w5.im, w6.im, w7.im = \ # = -, f15.re - f14.im, f13.re - f12.im, f11.re - f10.im, r9.re + f8.im, f11.re + f10.im, f13.re + f12.im, f15.re + f14.im ymm_shuffle_06420246 = YMMRegister() VMOVDQA(ymm_shuffle_06420246, Constant.uint32x8(0, 6, 4, 2, 0, 2, 4, 6)) ymm_shuffle_17531357 = YMMRegister() VMOVDQA(ymm_shuffle_17531357, Constant.uint32x8(1, 7, 5, 3, 1, 3, 5, 7)) ymm_wr_xxxxCxxx, ymm_wi_xxxxCxxx = YMMRegister(), YMMRegister() ymm_wr_0123CDEF, ymm_wi_0123CDEF = YMMRegister(), YMMRegister() ymm_fr_8ECA8ACE, ymm_fi_9FDB9BDF = YMMRegister(), YMMRegister() VPERMPS(ymm_fr_8ECA8ACE, ymm_shuffle_06420246, ymm_wr[1]) VPERMPS(ymm_fi_9FDB9BDF, ymm_shuffle_17531357, ymm_wi[1]) VADDPS(ymm_wr_xxxxCxxx, ymm_fr_8ECA8ACE, ymm_fi_9FDB9BDF) VFMADD231PS(ymm_fr_8ECA8ACE, ymm_fi_9FDB9BDF, Constant.float32x8(0.0, +1.0, +1.0, +1.0, -1.0, -1.0, -1.0, -1.0)) VBLENDPS(ymm_wr_0123CDEF, ymm_wr_0123xDEF, ymm_wr_xxxxCxxx, 0b00010000) ymm_fr_9FDB9BDF, ymm_fi_8ECA8ACE = YMMRegister(), YMMRegister() VPERMPS(ymm_fr_9FDB9BDF, ymm_shuffle_17531357, ymm_wr[1]) VPERMPS(ymm_fi_8ECA8ACE, ymm_shuffle_06420246, ymm_wi[1]) VSUBPS(ymm_wi_xxxxCxxx, ymm_fr_9FDB9BDF, ymm_fi_8ECA8ACE) VFMADD231PS(ymm_fr_9FDB9BDF, ymm_fi_8ECA8ACE, Constant.float32x8(0.0, -1.0, -1.0, -1.0, +1.0, +1.0, +1.0, +1.0)) VBLENDPS(ymm_wi_0123CDEF, ymm_wi_0123xDEF, ymm_wi_xxxxCxxx, 0b00010000) ymm_wr_x9AB4567, ymm_wi_x9AB4567 = ymm_fr_8ECA8ACE, ymm_fr_9FDB9BDF ymm_wr_89AB4567, ymm_wi_89AB4567 = YMMRegister(), YMMRegister() VBLENDPS(ymm_wr_89AB4567, ymm_wr_x9AB4567, ymm_fi_02461642, 0b00000001) VBLENDPS(ymm_wi_89AB4567, ymm_wi_x9AB4567, ymm_fi_13570753, 0b00000001) ymm_wr_01234567, ymm_wr_89ABCDEF = YMMRegister(), YMMRegister() VBLENDPS(ymm_wr_01234567, ymm_wr_0123CDEF, ymm_wr_89AB4567, 0xF0) VBLENDPS(ymm_wr_89ABCDEF, ymm_wr_0123CDEF, ymm_wr_89AB4567, 0x0F) ymm_wi_01234567, ymm_wi_89ABCDEF = YMMRegister(), YMMRegister() VBLENDPS(ymm_wi_01234567, ymm_wi_0123CDEF, ymm_wi_89AB4567, 0xF0) VBLENDPS(ymm_wi_89ABCDEF, ymm_wi_0123CDEF, ymm_wi_89AB4567, 0x0F) SWAP.REGISTERS(ymm_wr[0], ymm_wr_01234567) SWAP.REGISTERS(ymm_wi[0], ymm_wi_01234567) SWAP.REGISTERS(ymm_wr[1], ymm_wr_89ABCDEF) SWAP.REGISTERS(ymm_wi[1], ymm_wi_89ABCDEF) if bit_reversal: # Bit reversal # w[0] = x0 x8 x4 x12 x2 x10 x6 x14 # w[1] = x1 x9 x5 x13 x3 x11 x7 x15 ymm_bit_reversal_mask = YMMRegister() VMOVDQA(ymm_bit_reversal_mask, Constant.uint32x8(0, 2, 4, 6, 1, 3, 5, 7)) for ymm in interleave(ymm_wr, ymm_wi): VPERMPS(ymm, ymm_bit_reversal_mask, ymm)
from __future__ import absolute_import from __future__ import division from peachpy import * from peachpy.x86_64 import * from common import sqrt2_over_2 from common import butterfly import fft.complex_soa def ifft8_across_rows(ymm_data, bias=None): assert isinstance(ymm_data, list) and len(ymm_data) == 8 ymm_real = ymm_data[0::2] ymm_imag = ymm_data[1::2] if bias is None: # Do 1/N scaling before IFFT ymm_one_eighth = YMMRegister() VMOVAPS(ymm_one_eighth, Constant.float32x8(0.125)) for ymm_row in ymm_data: if ymm_row is ymm_real[2]: VMULPS(ymm_row, ymm_row, Constant.float32x8(0.25)) elif ymm_row is ymm_imag[2]: VMULPS(ymm_row, ymm_row, Constant.float32x8(-0.25)) else: VMULPS(ymm_row, ymm_row, ymm_one_eighth) else: # Do 1/N scaling after FFT (merge with bias addition) VMULPS(ymm_real[2], ymm_real[2], Constant.float32x8(2.0)) VMULPS(ymm_imag[2], ymm_imag[2], Constant.float32x8(-2.0)) butterfly(ymm_real[0], ymm_imag[0]) # H1.real, H1.imag = W1.real - W3.real, W1.imag + W3.imag ymm_h1_real, ymm_h1_imag = YMMRegister(), YMMRegister() VSUBPS(ymm_h1_real, ymm_real[1], ymm_real[3]) VADDPS(ymm_h1_imag, ymm_imag[1], ymm_imag[3]) # G1.real, G1.imag = W1.real + W3.real, W1.imag - W3.imag ymm_g1_real, ymm_g1_imag = YMMRegister(), YMMRegister() VADDPS(ymm_g1_real, ymm_real[1], ymm_real[3]) VSUBPS(ymm_g1_imag, ymm_imag[1], ymm_imag[3]) # H1+, H1- = H1.real + H1.imag, H1.real - H1.imag ymm_h1_plus, ymm_h1_minus = YMMRegister(), YMMRegister() VADDPS(ymm_h1_plus, ymm_h1_real, ymm_h1_imag) VSUBPS(ymm_h1_minus, ymm_h1_real, ymm_h1_imag) ymm_sqrt2_over_2 = YMMRegister() VMOVAPS(ymm_sqrt2_over_2, Constant.float32x8(sqrt2_over_2)) # w1.real = G1.real - SQRT2_OVER_2 * H1.plus; # w3.real = G1.real + SQRT2_OVER_2 * H1.plus; VMOVAPS(ymm_real[1], ymm_g1_real) VFNMADD231PS(ymm_real[1], ymm_h1_plus, ymm_sqrt2_over_2) VFMADD231PS(ymm_g1_real, ymm_h1_plus, ymm_sqrt2_over_2) SWAP.REGISTERS(ymm_real[3], ymm_g1_real) # w1.imag = G1.imag + SQRT2_OVER_2 * H1.minus; # w3.imag = -G1.imag + SQRT2_OVER_2 * H1.minus; VMOVAPS(ymm_imag[1], ymm_g1_imag) VFMADD231PS(ymm_imag[1], ymm_h1_minus, ymm_sqrt2_over_2) VFMSUB231PS(ymm_g1_imag, ymm_h1_minus, ymm_sqrt2_over_2) SWAP.REGISTERS(ymm_imag[3], ymm_g1_imag) fft.complex_soa.fft4_across_rows(ymm_real, ymm_imag, transformation="inverse") if bias is not None: ymm_bias = bias if not isinstance(bias, YMMRegister): ymm_bias = YMMRegister() VMOVAPS(ymm_bias, bias) ymm_one_eighth = YMMRegister() VMOVAPS(ymm_one_eighth, Constant.float32x8(0.125)) # 1/N scaling for ymm_row in ymm_data: VFMADD132PS(ymm_row, ymm_bias, ymm_one_eighth)
from __future__ import absolute_import from __future__ import division from peachpy import * from peachpy.x86_64 import * def fft8_within_rows_postprocess(ymm_wr, ymm_wi): assert isinstance(ymm_wr, YMMRegister) assert isinstance(ymm_wi, YMMRegister) ymm_shuffle_44112233 = YMMRegister() VMOVDQA(ymm_shuffle_44112233, Constant.uint32x8(4, 4, 1, 1, 2, 2, 3, 3)) ymm_shuffle_00776655 = YMMRegister() VMOVDQA(ymm_shuffle_00776655, Constant.uint32x8(0, 0, 7, 7, 6, 6, 5, 5)) ymm_wr_44112233 = YMMRegister() VPERMPS(ymm_wr_44112233, ymm_shuffle_44112233, ymm_wr) ymm_wr_00776655 = YMMRegister() VPERMPS(ymm_wr_00776655, ymm_shuffle_00776655, ymm_wr) ymm_wi_44112233 = YMMRegister() VPERMPS(ymm_wi_44112233, ymm_shuffle_44112233, ymm_wi) ymm_wi_00776655 = YMMRegister() VPERMPS(ymm_wi_00776655, ymm_shuffle_00776655, ymm_wi) # wr44776655 = wr0, -, wr7 + wr1, wr7 - wr1, wr6 + wr2, wr6 - wr2, wr5 + wr3, wr5 - wr3 VFMADD231PS(ymm_wr_00776655, ymm_wr_44112233, Constant.float32x8(0.0, 0.0, +1.0, -1.0, +1.0, -1.0, +1.0, -1.0)) # wi00112233 = _, wi4, wi1 - wi7, wi1 + wi7, wi2 - wi6, wi2 + wi6, wi3 - wi5, wi3 + wi5 VFMADD231PS(ymm_wi_44112233, ymm_wi_00776655, Constant.float32x8(0.0, 0.0, -1.0, +1.0, -1.0, +1.0, -1.0, +1.0)) # xhr = wr0, -, wr1 + wr7, wi1 + wi7, wr2 + wr6, wi2 + wi6, wr3 + wr5, wi3 + wi5 ymm_xhr = YMMRegister() VBLENDPS(ymm_xhr, ymm_wr_00776655, ymm_wi_44112233, 0b10101010) # xhI = -, wi4, wi1 - wi7, wr7 - wr1, wi2 - wi6, wr6 - wr2, wi3 - wi5, wr5 - wr3 ymm_xhi = YMMRegister() VBLENDPS(ymm_xhi, ymm_wr_00776655, ymm_wi_44112233, 0b01010110) # xhr = wr0, wi0, wr1 + wr7, wi1 + wi7, wr2 + wr6, wi2 + wi6, wr3 + wr5, wi3 + wi5 VBLENDPS(ymm_xhr, ymm_xhr, ymm_wi_00776655, 0b00000010) # xhI = wr4, wi4, wi1 - wi7, wr7 - wr1, wi2 - wi6, wr6 - wr2, wi3 - wi5, wr5 - wr3 VBLENDPS(ymm_xhi, ymm_xhi, ymm_wr_44112233, 0b00000001) ymm_scale_factor = YMMRegister() VMOVAPS(ymm_scale_factor, Constant.float32x8(1.0, 1.0, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5)) VMULPS(ymm_xhr, ymm_xhr, ymm_scale_factor) VMULPS(ymm_xhi, ymm_xhi, ymm_scale_factor) # wRe[0], wIm[0], (wRe[1] + wRe[7]) / 2, (wIm[1] + wIm[7]) / 2, # (wRe[2] + wRe[6]) / 2, (wIm[2] + wIm[6]) / 2, (wRe[3] + wRe[5]) / 2, (wIm[3] + wIm[5]) / 2 # wRe[4], wIm[4], (wIm[1] - wIm[7]) / 2, (wRe[7] - wRe[1]) / 2, # (wIm[2] - wIm[6]) / 2, (wRe[6] - wRe[2]) / 2, (wIm[3] - wIm[5]) / 2, (wRe[5] - wRe[3]) / 2 SWAP.REGISTERS(ymm_xhr, ymm_wr) SWAP.REGISTERS(ymm_xhi, ymm_wi) def fft16_within_rows_postprocess(ymm_wr, ymm_wi, bit_reversal=False): assert isinstance(ymm_wr, (list, tuple)) and len(ymm_wr) == 2 and all(isinstance(reg, YMMRegister) for reg in ymm_wr) assert isinstance(ymm_wi, (list, tuple)) and len(ymm_wi) == 2 and all(isinstance(reg, YMMRegister) for reg in ymm_wi) if bit_reversal: ymm_shuffle_00112233 = YMMRegister() VMOVDQA(ymm_shuffle_00112233, Constant.uint32x8(0, 0, 4, 4, 1, 1, 5, 5)) ymm_shuffle_44556677 = YMMRegister() VMOVDQA(ymm_shuffle_44556677, Constant.uint32x8(2, 2, 6, 6, 3, 3, 7, 7)) ymm_shuffle_44332211 = YMMRegister() VMOVDQA(ymm_shuffle_44332211, Constant.uint32x8(2, 2, 5, 5, 1, 1, 4, 4)) ymm_shuffle_00776655 = YMMRegister() VMOVDQA(ymm_shuffle_00776655, Constant.uint32x8(0, 0, 7, 7, 3, 3, 6, 6)) else: ymm_shuffle_00112233 = YMMRegister() VMOVDQA(ymm_shuffle_00112233, Constant.uint32x8(0, 0, 1, 1, 2, 2, 3, 3)) ymm_shuffle_44556677 = YMMRegister() VMOVDQA(ymm_shuffle_44556677, Constant.uint32x8(4, 4, 5, 5, 6, 6, 7, 7)) ymm_shuffle_44332211 = YMMRegister() VMOVDQA(ymm_shuffle_44332211, Constant.uint32x8(4, 4, 3, 3, 2, 2, 1, 1)) ymm_shuffle_00776655 = YMMRegister() VMOVDQA(ymm_shuffle_00776655, Constant.uint32x8(0, 0, 7, 7, 6, 6, 5, 5)) ymm_wr_00112233, ymm_wr_44556677 = YMMRegister(), YMMRegister() VPERMPS(ymm_wr_00112233, ymm_shuffle_00112233, ymm_wr[0]) VPERMPS(ymm_wr_44556677, ymm_shuffle_44556677, ymm_wr[0]) ymm_wr_CCBBAA99, ymm_wr_88FFEEDD = YMMRegister(), YMMRegister() VPERMPS(ymm_wr_CCBBAA99, ymm_shuffle_44332211, ymm_wr[1]) VPERMPS(ymm_wr_88FFEEDD, ymm_shuffle_00776655, ymm_wr[1]) ymm_wi_00112233, ymm_wi_44556677 = YMMRegister(), YMMRegister() VPERMPS(ymm_wi_00112233, ymm_shuffle_00112233, ymm_wi[0]) VPERMPS(ymm_wi_44556677, ymm_shuffle_44556677, ymm_wi[0]) ymm_wi_CCBBAA99, ymm_wi_88FFEEDD = YMMRegister(), YMMRegister() VPERMPS(ymm_wi_CCBBAA99, ymm_shuffle_44332211, ymm_wi[1]) VPERMPS(ymm_wi_88FFEEDD, ymm_shuffle_00776655, ymm_wi[1]) # wr88FFEEDD = wr8, -, wr15 + wr1, wr15 - wr1, wr14 + wr2, wr14 - wr2, wr13 + wr3, wr13 - wr3 VFMADD231PS(ymm_wr_88FFEEDD, ymm_wr_00112233, Constant.float32x8(0.0, 0.0, +1.0, -1.0, +1.0, -1.0, +1.0, -1.0)) # wrCCBBAA99 = wr12 + wr4, wr12 - wr4, wr11 + wr5, wr11 - wr5, wr10 + wr6, wr10 - wr6, wr9 + wr7, wr9 - wr7 VFMADD231PS(ymm_wr_CCBBAA99, ymm_wr_44556677, Constant.float32x8(+1.0, -1.0, +1.0, -1.0, +1.0, -1.0, +1.0, -1.0)) # wi00112233 = _, wi0, wi1 - wi15, wi1 + wi15, wi2 - wi14, wi2 + wi14, wi3 - wi13, wi3 + wi13 VFMADD231PS(ymm_wi_00112233, ymm_wi_88FFEEDD, Constant.float32x8(0.0, 0.0, -1.0, +1.0, -1.0, +1.0, -1.0, +1.0)) # wi44556677 = wi4 - wi12, wi4 + wi12, wi5 - wi11, wi5 + wi11, wi6 - wi10, wi6 + wi10, wi7 - wi9, wi7 + wi9 VADDSUBPS(ymm_wi_44556677, ymm_wi_44556677, ymm_wi_CCBBAA99) # xhr_lo = -, wi0, wr1 + wr15, wi1 + wi15, wr2 + wr14, wi2 + wi14, wr3 + wr13, wi3 + wi13 ymm_xhr_lo, ymm_xhr_hi = YMMRegister(), YMMRegister() VBLENDPS(ymm_xhr_lo, ymm_wr_88FFEEDD, ymm_wi_00112233, 0b10101010) VBLENDPS(ymm_xhr_hi, ymm_wr_CCBBAA99, ymm_wi_44556677, 0b10101010) # xhi_lo = wr8, -, wi1 - wi15, wr15 - wr1, wi2 - wi14, wr14 - wr2, wi3 - wi13, wr13 - wr3 ymm_xhi_lo, ymm_xhi_hi = YMMRegister(), YMMRegister() VBLENDPS(ymm_xhi_lo, ymm_wr_88FFEEDD, ymm_wi_00112233, 0b01010110) VBLENDPS(ymm_xhi_hi, ymm_wr_CCBBAA99, ymm_wi_44556677, 0b01010101) # xhr_lo = wr0, wi0, wr1 + wr15, wi1 + wi15, wr2 + wr14, wi2 + wi14, wr3 + wr13, wi3 + wi13 VBLENDPS(ymm_xhr_lo, ymm_xhr_lo, ymm_wr_00112233, 0b00000001) # xhi_lo = wr8, wi8, wi1 - wi7, wr7 - wr1, wi2 - wi6, wr6 - wr2, wi3 - wi5, wr5 - wr3 VBLENDPS(ymm_xhi_lo, ymm_xhi_lo, ymm_wi_88FFEEDD, 0b00000010) ymm_scale_factor_lo = YMMRegister() VMOVAPS(ymm_scale_factor_lo, Constant.float32x8(1.0, 1.0, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5)) VMULPS(ymm_xhr_lo, ymm_xhr_lo, ymm_scale_factor_lo) VMULPS(ymm_xhi_lo, ymm_xhi_lo, ymm_scale_factor_lo) ymm_scale_factor_hi = YMMRegister() VMOVAPS(ymm_scale_factor_hi, Constant.float32x8(0.5)) VMULPS(ymm_xhr_hi, ymm_xhr_hi, ymm_scale_factor_hi) VMULPS(ymm_xhi_hi, ymm_xhi_hi, ymm_scale_factor_hi) # wRe[0], wIm[0], (wRe[1] + wRe[15]) / 2, (wIm[1] + wIm[15]) / 2, # (wRe[2] + wRe[14]) / 2, (wIm[2] + wIm[14]) / 2, (wRe[3] + wRe[13]) / 2, (wIm[3] + wIm[13]) / 2 # (wRe[4] + wRe[12]) / 2, (wIm[4] + wIm[12]) / 2, (wRe[5] + wRe[11]) / 2, (wIm[5] + wIm[11]) / 2, # (wRe[6] + wRe[10]) / 2, (wIm[6] + wIm[10]) / 2, (wRe[7] + wRe[9]) / 2, (wIm[7] + wIm[9]) / 2 # wRe[8], wIm[8], (wIm[1] - wIm[15]) / 2, (wRe[15] - wRe[1]) / 2, # (wIm[2] - wIm[14]) / 2, (wRe[14] - wRe[2]) / 2, (wIm[3] - wIm[13]) / 2, (wRe[13] - wRe[3]) / 2 # (wIm[4] - wIm[12]) / 2, (wRe[12] - wRe[4]) / 2, (wIm[5] - wIm[11]) / 2, (wRe[11] - wRe[5]) / 2, # (wIm[6] - wIm[10]) / 2, (wRe[6] - wRe[10]) / 2, (wIm[7] - wIm[9]) / 2, (wRe[13] - wRe[3]) / 2 SWAP.REGISTERS(ymm_xhr_lo, ymm_wr[0]) SWAP.REGISTERS(ymm_xhr_hi, ymm_wr[1]) SWAP.REGISTERS(ymm_xhi_lo, ymm_wi[0]) SWAP.REGISTERS(ymm_xhi_hi, ymm_wi[1])
from __future__ import absolute_import from __future__ import division from peachpy import * from peachpy.x86_64 import * from common import cos_npi_over_8, sin_npi_over_8, cos_npi_over_4, sin_npi_over_4 from common import _MM_SHUFFLE from common import butterfly, transpose2x2x128, transpose2x2x2x64, interleave def fft8_within_rows(ymm_real_rows, ymm_imag_rows, transformation="forward"): if isinstance(ymm_real_rows, YMMRegister) and isinstance(ymm_imag_rows, YMMRegister): return fft8_within_rows([ymm_real_rows], [ymm_imag_rows], transformation) assert isinstance(ymm_real_rows, list) and all(isinstance(ymm_real, YMMRegister) for ymm_real in ymm_real_rows) assert isinstance(ymm_imag_rows, list) and all(isinstance(ymm_imag, YMMRegister) for ymm_imag in ymm_imag_rows) assert transformation in {"forward", "inverse"} ymm_fft8_butterfly_factor = YMMRegister() VMOVAPS(ymm_fft8_butterfly_factor, Constant.float32x8(+1.0, +1.0, +1.0, +1.0, -1.0, -1.0, -1.0, -1.0)) # FFT8: Butterfly for ymm_real, ymm_imag in zip(ymm_real_rows, ymm_imag_rows): ymm_real_flipped = YMMRegister() VPERM2F128(ymm_real_flipped, ymm_real, ymm_real, 0x01) VFMADD132PS(ymm_real, ymm_real_flipped, ymm_fft8_butterfly_factor) ymm_imag_flipped = YMMRegister() VPERM2F128(ymm_imag_flipped, ymm_imag, ymm_imag, 0x01) VFMADD132PS(ymm_imag, ymm_imag_flipped, ymm_fft8_butterfly_factor) # FFT8: Multiplication by twiddle factors ymm_fft8_cos_twiddle_factor = YMMRegister() VMOVAPS(ymm_fft8_cos_twiddle_factor, Constant.float32x8(1.0, 1.0, 1.0, 1.0, cos_npi_over_4[0], cos_npi_over_4[1], cos_npi_over_4[2], cos_npi_over_4[3])) ymm_fft8_sin_twiddle_factor = YMMRegister() VMOVAPS(ymm_fft8_sin_twiddle_factor, Constant.float32x8(0.0, 0.0, 0.0, 0.0, sin_npi_over_4[0], sin_npi_over_4[1], sin_npi_over_4[2], sin_npi_over_4[3])) for ymm_real, ymm_imag in zip(ymm_real_rows, ymm_imag_rows): ymm_new_real, ymm_new_imag = YMMRegister(), YMMRegister() VMULPS(ymm_new_real, ymm_real, ymm_fft8_cos_twiddle_factor) VMULPS(ymm_new_imag, ymm_imag, ymm_fft8_cos_twiddle_factor) if transformation == "forward": VFMADD231PS(ymm_new_real, ymm_imag, ymm_fft8_sin_twiddle_factor) VFNMADD231PS(ymm_new_imag, ymm_real, ymm_fft8_sin_twiddle_factor) else: VFNMADD231PS(ymm_new_real, ymm_imag, ymm_fft8_sin_twiddle_factor) VFMADD231PS(ymm_new_imag, ymm_real, ymm_fft8_sin_twiddle_factor) SWAP.REGISTERS(ymm_real, ymm_new_real) SWAP.REGISTERS(ymm_imag, ymm_new_imag) # 2x FFT4: Butterfly ymm_fft4_butterfly_factor = YMMRegister() VMOVAPS(ymm_fft4_butterfly_factor, Constant.float32x8(+1.0, +1.0, -1.0, -1.0, +1.0, +1.0, -1.0, -1.0)) for ymm_real, ymm_imag in zip(ymm_real_rows, ymm_imag_rows): ymm_real_flipped = YMMRegister() VPERMILPS(ymm_real_flipped, ymm_real, _MM_SHUFFLE(1, 0, 3, 2)) VFMADD132PS(ymm_real, ymm_real_flipped, ymm_fft4_butterfly_factor) ymm_imag_flipped = YMMRegister() VPERMILPS(ymm_imag_flipped, ymm_imag, _MM_SHUFFLE(1, 0, 3, 2)) VFMADD132PS(ymm_imag, ymm_imag_flipped, ymm_fft4_butterfly_factor) # 2x FFT4: Multiplication by twiddle factors for ymm_real, ymm_imag in zip(ymm_real_rows, ymm_imag_rows): ymm_new_real, ymm_new_imag = YMMRegister(), YMMRegister() VBLENDPS(ymm_new_real, ymm_real, ymm_imag, 0b10001000) VBLENDPS(ymm_new_imag, ymm_imag, ymm_real, 0b10001000) if transformation == "forward": VXORPS(ymm_new_imag, ymm_new_imag, Constant.float32x8(+0.0, +0.0, +0.0, -0.0, +0.0, +0.0, +0.0, -0.0)) else: VXORPS(ymm_new_real, ymm_new_real, Constant.float32x8(+0.0, +0.0, +0.0, -0.0, +0.0, +0.0, +0.0, -0.0)) SWAP.REGISTERS(ymm_real, ymm_new_real) SWAP.REGISTERS(ymm_imag, ymm_new_imag) # 4x FFT2: Butterfly ymm_fft2_butterfly_factor = YMMRegister() VMOVAPS(ymm_fft2_butterfly_factor, Constant.float32x8(+1.0, -1.0, +1.0, -1.0, +1.0, -1.0, +1.0, -1.0)) for ymm_real, ymm_imag in zip(ymm_real_rows, ymm_imag_rows): ymm_real_flipped = YMMRegister() VPERMILPS(ymm_real_flipped, ymm_real, _MM_SHUFFLE(2, 3, 0, 1)) VFMADD132PS(ymm_real, ymm_real_flipped, ymm_fft2_butterfly_factor) ymm_imag_flipped = YMMRegister() VPERMILPS(ymm_imag_flipped, ymm_imag, _MM_SHUFFLE(2, 3, 0, 1)) VFMADD132PS(ymm_imag, ymm_imag_flipped, ymm_fft2_butterfly_factor) # Bit reversal ymm_bit_reversal_mask = YMMRegister() VMOVAPS(ymm_bit_reversal_mask, Constant.uint32x8(0, 4, 2, 6, 1, 5, 3, 7)) for ymm_real, ymm_imag in zip(ymm_real_rows, ymm_imag_rows): VPERMPS(ymm_real, ymm_bit_reversal_mask, ymm_real) VPERMPS(ymm_imag, ymm_bit_reversal_mask, ymm_imag) # Scale if transformation == "inverse": ymm_scale_factor = YMMRegister() VMOVAPS(ymm_scale_factor, Constant.float32x8(0.125)) for ymm_real, ymm_imag in zip(ymm_real_rows, ymm_imag_rows): VMULPS(ymm_real, ymm_real, ymm_scale_factor) VMULPS(ymm_imag, ymm_imag, ymm_scale_factor) def fft16_within_rows(ymm_real_rows, ymm_imag_rows, bit_reversal=True): if isinstance(ymm_real_rows, tuple) and isinstance(ymm_imag_rows, tuple): return fft16_within_rows([ymm_real_rows], [ymm_imag_rows]) assert isinstance(ymm_real_rows, list) and all(isinstance(ymm_real, tuple) and all(isinstance(ymm, YMMRegister) for ymm in ymm_real) for ymm_real in ymm_real_rows) assert isinstance(ymm_imag_rows, list) and all(isinstance(ymm_imag, tuple) and all(isinstance(ymm, YMMRegister) for ymm in ymm_imag) for ymm_imag in ymm_imag_rows) # FFT16: Butterfly for ymm_real, ymm_imag in zip(ymm_real_rows, ymm_imag_rows): butterfly(ymm_real[0], ymm_real[1]) butterfly(ymm_imag[0], ymm_imag[1]) # FFT16: Multiplication by twiddle factors ymm_fft16_cos_twiddle_factor, ymm_fft16_sin_twiddle_factor = YMMRegister(), YMMRegister() VMOVAPS(ymm_fft16_cos_twiddle_factor, Constant.float32x8(*cos_npi_over_8)) VMOVAPS(ymm_fft16_sin_twiddle_factor, Constant.float32x8(*sin_npi_over_8)) for ymm_real, ymm_imag in zip(ymm_real_rows, ymm_imag_rows): ymm_new_real1, ymm_new_imag1 = YMMRegister(), YMMRegister() VMULPS(ymm_new_real1, ymm_real[1], ymm_fft16_cos_twiddle_factor) VMULPS(ymm_new_imag1, ymm_imag[1], ymm_fft16_cos_twiddle_factor) VFMADD231PS(ymm_new_real1, ymm_imag[1], ymm_fft16_sin_twiddle_factor) VFNMADD231PS(ymm_new_imag1, ymm_real[1], ymm_fft16_sin_twiddle_factor) SWAP.REGISTERS(ymm_real[1], ymm_new_real1) SWAP.REGISTERS(ymm_imag[1], ymm_new_imag1) # 2x FFT8: Butterfly for ymm_real, ymm_imag in zip(ymm_real_rows, ymm_imag_rows): transpose2x2x128(ymm_real[0], ymm_real[1]) transpose2x2x128(ymm_imag[0], ymm_imag[1]) # w[0] = x0 x1 x2 x3 x8 x9 x10 x11 # w[1] = x4 x5 x6 x7 x12 x13 x14 x15 for ymm_real, ymm_imag in zip(ymm_real_rows, ymm_imag_rows): butterfly(ymm_real[0], ymm_real[1]) butterfly(ymm_imag[0], ymm_imag[1]) # 2x FFT8: Multiplication by twiddle factors ymm_fft8_cos_twiddle_factor, ymm_fft8_sin_twiddle_factor = YMMRegister(), YMMRegister() VMOVAPS(ymm_fft8_cos_twiddle_factor, Constant.float32x8(*(cos_npi_over_4 * 2))) VMOVAPS(ymm_fft8_sin_twiddle_factor, Constant.float32x8(*(sin_npi_over_4 * 2))) for ymm_real, ymm_imag in zip(ymm_real_rows, ymm_imag_rows): ymm_new_real1, ymm_new_imag1 = YMMRegister(), YMMRegister() VMULPS(ymm_new_real1, ymm_real[1], ymm_fft8_cos_twiddle_factor) VMULPS(ymm_new_imag1, ymm_imag[1], ymm_fft8_cos_twiddle_factor) VFMADD231PS(ymm_new_real1, ymm_imag[1], ymm_fft8_sin_twiddle_factor) VFNMADD231PS(ymm_new_imag1, ymm_real[1], ymm_fft8_sin_twiddle_factor) SWAP.REGISTERS(ymm_real[1], ymm_new_real1) SWAP.REGISTERS(ymm_imag[1], ymm_new_imag1) # 4x FFT4: Butterfly for ymm_real, ymm_imag in zip(ymm_real_rows, ymm_imag_rows): transpose2x2x2x64(ymm_real[0], ymm_real[1]) transpose2x2x2x64(ymm_imag[0], ymm_imag[1]) # w[0] = x0 x1 x4 x5 x8 x9 x12 x13 # w[1] = x2 x3 x6 x7 x10 x11 x14 x15 for ymm_real, ymm_imag in zip(ymm_real_rows, ymm_imag_rows): butterfly(ymm_real[0], ymm_real[1]) butterfly(ymm_imag[0], ymm_imag[1]) # 4x FFT4: Multiplication by twiddle factors and 8x FFT2: Butterfly ymm_fft4_twiddle_factor = YMMRegister() VMOVAPS(ymm_fft4_twiddle_factor, Constant.float32x8(+1.0, +1.0, -1.0, -1.0, +1.0, +1.0, -1.0, -1.0)) for ymm_real, ymm_imag in zip(ymm_real_rows, ymm_imag_rows): ymm_new_real = YMMRegister(), YMMRegister() VSHUFPS(ymm_new_real[0], ymm_real[0], ymm_real[1], _MM_SHUFFLE(2, 0, 2, 0)) VSHUFPS(ymm_new_real[1], ymm_real[0], ymm_imag[1], _MM_SHUFFLE(3, 1, 3, 1)) butterfly(ymm_new_real[0], ymm_new_real[1]) ymm_new_imag = YMMRegister(), YMMRegister() VSHUFPS(ymm_new_imag[0], ymm_imag[0], ymm_imag[1], _MM_SHUFFLE(2, 0, 2, 0)) VSHUFPS(ymm_new_imag[1], ymm_imag[0], ymm_real[1], _MM_SHUFFLE(3, 1, 3, 1)) butterfly(ymm_new_imag[0], ymm_new_imag[1], scale_b=ymm_fft4_twiddle_factor) SWAP.REGISTERS(ymm_real[0], ymm_new_real[0]) SWAP.REGISTERS(ymm_real[1], ymm_new_real[1]) SWAP.REGISTERS(ymm_imag[0], ymm_new_imag[0]) SWAP.REGISTERS(ymm_imag[1], ymm_new_imag[1]) # w[0] = x0 x4 x2 x6 x8 x12 x10 x14 # w[1] = x1 x5 x3 x7 x9 x11 x13 x15 if bit_reversal: # Bit reversal ymm_bit_reversal_mask = YMMRegister() VMOVDQA(ymm_bit_reversal_mask, Constant.uint32x8(0, 4, 1, 5, 2, 6, 3, 7)) for ymm_real, ymm_imag in zip(ymm_real_rows, ymm_imag_rows): for i in range(2): VPERMPS(ymm_real[i], ymm_bit_reversal_mask, ymm_real[i]) VPERMPS(ymm_imag[i], ymm_bit_reversal_mask, ymm_imag[i]) def ifft16_within_rows(ymm_real_rows, ymm_imag_rows, bit_reversal=True): if isinstance(ymm_real_rows, tuple) and isinstance(ymm_imag_rows, tuple): return ifft16_within_rows([ymm_real_rows], [ymm_imag_rows]) assert isinstance(ymm_real_rows, list) and all(isinstance(ymm_real, tuple) and all(isinstance(ymm, YMMRegister) for ymm in ymm_real) for ymm_real in ymm_real_rows) assert isinstance(ymm_imag_rows, list) and all(isinstance(ymm_imag, tuple) and all(isinstance(ymm, YMMRegister) for ymm in ymm_imag) for ymm_imag in ymm_imag_rows) if bit_reversal: # Bit reversal # w[0] = x0 x8 x4 x12 x2 x10 x6 x14 # w[1] = x1 x9 x5 x13 x3 x11 x7 x15 ymm_bit_reversal_mask = YMMRegister() VMOVDQA(ymm_bit_reversal_mask, Constant.uint32x8(0, 2, 4, 6, 1, 3, 5, 7)) for ymm_real, ymm_imag in zip(ymm_real_rows, ymm_imag_rows): for i in range(2): VPERMPS(ymm_real[i], ymm_bit_reversal_mask, ymm_real[i]) VPERMPS(ymm_imag[i], ymm_bit_reversal_mask, ymm_imag[i]) # 8x FFT2: Butterfly # w[0] = x0 x4 x2 x6 x8 x12 x10 x14 # w[1] = x1 x5 x3 x7 x9 x13 x11 x15 for ymm_real, ymm_imag in zip(ymm_real_rows, ymm_imag_rows): butterfly(ymm_real[0], ymm_real[1]) butterfly(ymm_imag[0], ymm_imag[1]) ymm_new_real = YMMRegister(), YMMRegister() VUNPCKLPS(ymm_new_real[0], ymm_real[0], ymm_real[1]) VUNPCKHPS(ymm_new_real[1], ymm_real[0], ymm_imag[1]) ymm_new_imag = YMMRegister(), YMMRegister() VUNPCKLPS(ymm_new_imag[0], ymm_imag[0], ymm_imag[1]) VUNPCKHPS(ymm_new_imag[1], ymm_imag[0], ymm_real[1]) SWAP.REGISTERS(ymm_imag[0], ymm_new_imag[0]) SWAP.REGISTERS(ymm_imag[1], ymm_new_imag[1]) SWAP.REGISTERS(ymm_real[0], ymm_new_real[0]) SWAP.REGISTERS(ymm_real[1], ymm_new_real[1]) # w[0] = x0 x1 x4 x5 x8 x9 x12 x13 # w[1] = x2 x3 x6 x7 x10 x11 x14 x15 # 4x FFT4: Butterfly and multiplication by twiddle factors ymm_fft4_twiddle_factor = YMMRegister() VMOVAPS(ymm_fft4_twiddle_factor, Constant.float32x8(+1.0, -1.0, +1.0, -1.0, +1.0, -1.0, +1.0, -1.0)) for ymm_real, ymm_imag in zip(ymm_real_rows, ymm_imag_rows): butterfly(ymm_real[0], ymm_real[1], scale_b=ymm_fft4_twiddle_factor) butterfly(ymm_imag[0], ymm_imag[1]) for ymm_real, ymm_imag in zip(ymm_real_rows, ymm_imag_rows): transpose2x2x2x64(ymm_real[0], ymm_real[1]) transpose2x2x2x64(ymm_imag[0], ymm_imag[1]) # w[0] = x0 x1 x2 x3 x8 x9 x10 x11 # w[1] = x4 x5 x6 x7 x12 x13 x14 x15 # 2x FFT8: Multiplication by twiddle factors ymm_fft8_cos_twiddle_factor, ymm_fft8_sin_twiddle_factor = YMMRegister(), YMMRegister() VMOVAPS(ymm_fft8_cos_twiddle_factor, Constant.float32x8(*(cos_npi_over_4 * 2))) VMOVAPS(ymm_fft8_sin_twiddle_factor, Constant.float32x8(*(sin_npi_over_4 * 2))) for ymm_real, ymm_imag in zip(ymm_real_rows, ymm_imag_rows): ymm_new_real1, ymm_new_imag1 = YMMRegister(), YMMRegister() VMULPS(ymm_new_real1, ymm_real[1], ymm_fft8_cos_twiddle_factor) VMULPS(ymm_new_imag1, ymm_imag[1], ymm_fft8_cos_twiddle_factor) VFNMADD231PS(ymm_new_real1, ymm_imag[1], ymm_fft8_sin_twiddle_factor) VFMADD231PS(ymm_new_imag1, ymm_real[1], ymm_fft8_sin_twiddle_factor) SWAP.REGISTERS(ymm_real[1], ymm_new_real1) SWAP.REGISTERS(ymm_imag[1], ymm_new_imag1) # 2x FFT8: Butterfly for ymm_real, ymm_imag in zip(ymm_real_rows, ymm_imag_rows): butterfly(ymm_real[0], ymm_real[1]) butterfly(ymm_imag[0], ymm_imag[1]) for ymm_real, ymm_imag in zip(ymm_real_rows, ymm_imag_rows): transpose2x2x128(ymm_real[0], ymm_real[1]) transpose2x2x128(ymm_imag[0], ymm_imag[1]) # w[0] = x0 x1 x2 x3 x4 x5 x6 x7 # w[1] = x8 x9 x10 x11 x12 x13 x14 x15 # FFT16: Multiplication by twiddle factors and scale scale_factor = 0.0625 ymm_fft16_cos_scale_twiddle_factor, ymm_fft16_sin_scale_twiddle_factor = YMMRegister(), YMMRegister() VMOVAPS(ymm_fft16_cos_scale_twiddle_factor, Constant.float32x8(*[cos * scale_factor for cos in cos_npi_over_8])) VMOVAPS(ymm_fft16_sin_scale_twiddle_factor, Constant.float32x8(*[sin * scale_factor for sin in sin_npi_over_8])) for ymm_real, ymm_imag in zip(ymm_real_rows, ymm_imag_rows): ymm_new_real1, ymm_new_imag1 = YMMRegister(), YMMRegister() VMULPS(ymm_new_real1, ymm_real[1], ymm_fft16_cos_scale_twiddle_factor) VMULPS(ymm_new_imag1, ymm_imag[1], ymm_fft16_cos_scale_twiddle_factor) VFNMADD231PS(ymm_new_real1, ymm_imag[1], ymm_fft16_sin_scale_twiddle_factor) VFMADD231PS(ymm_new_imag1, ymm_real[1], ymm_fft16_sin_scale_twiddle_factor) SWAP.REGISTERS(ymm_real[1], ymm_new_real1) SWAP.REGISTERS(ymm_imag[1], ymm_new_imag1) # FFT16: Butterfly and scale ymm_scale_factor = YMMRegister() VMOVAPS(ymm_scale_factor, Constant.float32x8(scale_factor)) for ymm_real, ymm_imag in zip(ymm_real_rows, ymm_imag_rows): butterfly(ymm_real[0], ymm_real[1], scale_a=ymm_scale_factor) butterfly(ymm_imag[0], ymm_imag[1], scale_a=ymm_scale_factor) def fft4_across_rows(ymm_real, ymm_imag, transformation="forward"): assert isinstance(ymm_real, list) and len(ymm_real) == 4 assert isinstance(ymm_imag, list) and len(ymm_imag) == 4 assert transformation in {"forward", "inverse"} ymm_data = sum(zip(ymm_real, ymm_imag), ()) # FFT-4 Butterfly for i in range(4): butterfly(ymm_data[i], ymm_data[i + 4]) # Multiply by FFT-4 twiddle factors SWAP.REGISTERS(ymm_real[3], ymm_imag[3]) # 2x FFT-2 Butterfly butterfly(ymm_data[0], ymm_data[2]) butterfly(ymm_data[1], ymm_data[3]) if transformation == "forward": butterfly(ymm_data[4], ymm_data[6]) butterfly(ymm_data[5], ymm_data[7], negate_b=True) else: butterfly(ymm_data[4], ymm_data[6], negate_b=True) butterfly(ymm_data[5], ymm_data[7]) # Bit reversal: not needed SWAP.REGISTERS(ymm_real[1], ymm_real[2]) SWAP.REGISTERS(ymm_imag[1], ymm_imag[2])
from __future__ import absolute_import from __future__ import division from peachpy import * from peachpy.x86_64 import * log2e = float.fromhex("+0x1.715476p+3") magic_bias = float.fromhex("+0x1.800000p+23") zero_cutoff = float.fromhex("-0x1.9FE368p+6") inf_cutoff = float.fromhex("+0x1.62E42Ep+6") minus_ln2_hi = float.fromhex("-0x1.62E430p-4") minus_ln2_lo = float.fromhex("+0x1.05C610p-32") plus_inf = float("inf") c2 = float.fromhex("0x1.00088Ap-1") c3 = float.fromhex("0x1.555A86p-3") t0 = float.fromhex("0x1.000000p+0") t1 = float.fromhex("0x1.172B84p+0") t2 = float.fromhex("0x1.306FE0p+0") t3 = float.fromhex("0x1.4BFDAEp+0") t4 = float.fromhex("0x1.6A09E6p+0") t5 = float.fromhex("0x1.8ACE54p+0") t6 = float.fromhex("0x1.AE89FAp+0") t7 = float.fromhex("0x1.D5818Ep+0") min_exponent = (-126 << 23) & 0xFFFFFFFF max_exponent = 127 << 23 default_exponent = 0x3F800000 mantissa_mask = 0x007FFFF8 def simd_exp(ymm_xs): assert isinstance(ymm_xs, list) and all(isinstance(ymm_x, YMMRegister) for ymm_x in ymm_xs) ymm_magic_bias = YMMRegister() VMOVAPS(ymm_magic_bias, Constant.float32x8(magic_bias)) ymm_ys = [YMMRegister() for _ in ymm_xs] var_e2s = [LocalVariable(YMMRegister.size) for _ in ymm_xs] if len(ymm_xs) > 1: const_log2e, const_mantissa_mask, const_lut = None, None, None const_minus_ln2_hi, const_minus_ln2_lo = None, None else: const_lut = Constant.float32x8(t0, t1, t2, t3, t4, t5, t6, t7) const_log2e = Constant.float32x8(log2e) const_mantissa_mask = Constant.uint32x8(mantissa_mask) const_minus_ln2_hi = Constant.float32x8(minus_ln2_hi) const_minus_ln2_lo = Constant.float32x8(minus_ln2_lo) for ymm_y, ymm_x, var_e2 in zip(ymm_ys, ymm_xs, var_e2s): ymm_t = YMMRegister() VMOVAPS(ymm_t, ymm_x) if const_log2e is None: const_log2e = YMMRegister() VMOVAPS(const_log2e, Constant.float32x8(log2e)) VFMADD132PS(ymm_t, ymm_magic_bias, const_log2e) if const_mantissa_mask is None: const_mantissa_mask = YMMRegister() VMOVDQA(const_mantissa_mask, Constant.uint32x8(mantissa_mask)) ymm_e2 = YMMRegister() VPAND(ymm_e2, ymm_t, const_mantissa_mask) VPSLLD(ymm_e2, ymm_e2, 20) VMOVDQA(var_e2, ymm_e2) if const_lut is None: const_lut = YMMRegister() VMOVAPS(const_lut, Constant.float32x8(t0, t1, t2, t3, t4, t5, t6, t7)) VPERMPS(ymm_y, ymm_t, const_lut) VSUBPS(ymm_t, ymm_t, ymm_magic_bias) # x = fma(t, minus_ln2_lo, fma(t, minus_ln2_hi, x)) # x := t * minus_ln2_hi + x # x := t * minus_ln2_lo + rx if const_minus_ln2_hi is None: const_minus_ln2_hi = YMMRegister() VMOVAPS(const_minus_ln2_hi, Constant.float32x8(minus_ln2_hi)) VFMADD231PS(ymm_x, ymm_t, const_minus_ln2_hi) if const_minus_ln2_lo is None: const_minus_ln2_lo = YMMRegister() VMOVAPS(const_minus_ln2_lo, Constant.float32x8(minus_ln2_lo)) VFMADD231PS(ymm_x, ymm_t, const_minus_ln2_lo) if len(ymm_xs) > 1: const_c3 = YMMRegister() VMOVAPS(const_c3, Constant.float32x8(c3)) else: const_c3 = Constant.float32x8(c3) for ymm_x, ymm_y in zip(ymm_xs, ymm_ys): # rf = fma(rx, rx * fma(rx, c3, c2), rx) # rf := rx * c3 + c2 # rf := rx * rf # rf := rx * rf + rx ymm_rf = YMMRegister() VMOVAPS(ymm_rf, Constant.float32x8(c2)) VFMADD231PS(ymm_rf, ymm_x, const_c3) VMULPS(ymm_rf, ymm_rf, ymm_x) VFMADD213PS(ymm_rf, ymm_x, ymm_x) # y = fma(y, rf, y) VFMADD231PS(ymm_y, ymm_y, ymm_rf) if len(ymm_xs) > 1: const_min_exponent, const_max_exponent = YMMRegister(), YMMRegister() VMOVDQA(const_min_exponent, Constant.uint32x8(min_exponent)) VMOVDQA(const_max_exponent, Constant.uint32x8(max_exponent)) else: const_min_exponent = Constant.uint32x8(min_exponent) const_max_exponent = Constant.uint32x8(max_exponent) ymm_default_exponent = YMMRegister() VMOVDQA(ymm_default_exponent, Constant.uint32x8(default_exponent)) for ymm_x, ymm_y, var_e2 in zip(ymm_xs, ymm_ys, var_e2s): ymm_e1, ymm_e2 = YMMRegister(), YMMRegister() VMOVDQA(ymm_e2, var_e2) VPMAXSD(ymm_e1, ymm_e2, const_min_exponent) VPMINSD(ymm_e1, ymm_e1, const_max_exponent) VPSUBD(ymm_e2, ymm_e2, ymm_e1) VPADDD(ymm_e1, ymm_e1, ymm_default_exponent) VPADDD(ymm_e2, ymm_e2, ymm_default_exponent) VMULPS(ymm_y, ymm_y, ymm_e1) VMULPS(ymm_y, ymm_y, ymm_e2) return ymm_ys
from __future__ import absolute_import from __future__ import division from peachpy import * from peachpy.x86_64 import * from common import _MM_SHUFFLE from common import transpose2x2x128, transpose2x2x2x64, butterfly def input_transform(ymm_d): assert isinstance(ymm_d, list) and len(ymm_d) == 8 and all(isinstance(ymm, YMMRegister) for ymm in ymm_d) ymm_wd = [YMMRegister() for _ in range(8)] # wd0 = (d0 - d6) + 5.25 * (d4 - d2) # wd1 = (d6 + d2 - 4.25 * d4) + (d1 + d5 - 4.25 * d3) # wd2 = (d6 + d2 - 4.25 * d4) - (d1 + d5 - 4.25 * d3) # wd3 = (d6 + 0.25 * d2 - 1.25 * d4) + 2.0 * (d5 + 0.25 * d1 - 1.25 * d3) # wd4 = (d6 + 0.25 * d2 - 1.25 * d4) - 2.0 * (d5 + 0.25 * d1 - 1.25 * d3) # wd5 = (d6 - 5.0 * d4 + 4.0 * d2) + 2.0 * (d1 + 0.25 * d5 - 1.25 * d3) # wd6 = (d6 - 5.0 * d4 + 4.0 * d2) - 2.0 * (d1 + 0.25 * d5 - 1.25 * d3) # wd7 = (d7 - d1) + 5.25 * (d3 - d5) ymm_0_25 = YMMRegister() VMOVAPS(ymm_0_25, Constant.float32x8(0.25)) # Compute wd0 := d0 - d6 VSUBPS(ymm_wd[0], ymm_d[0], ymm_d[6]) ymm_d4_sub_d2 = YMMRegister() VSUBPS(ymm_d4_sub_d2, ymm_d[4], ymm_d[2]) # Compute wd7 := d7 - d1 VSUBPS(ymm_wd[7], ymm_d[7], ymm_d[1]) ymm_d3_sub_d5 = YMMRegister() VSUBPS(ymm_d3_sub_d5, ymm_d[3], ymm_d[5]) # Compute wd1 := d2 + d6 VADDPS(ymm_wd[1], ymm_d[2], ymm_d[6]) # Compute wd2 := d1 + d5 VADDPS(ymm_wd[2], ymm_d[1], ymm_d[5]) # Compute wd4 := d5 + 0.25 * d1 VMOVAPS(ymm_wd[4], ymm_d[5]) VFMADD231PS(ymm_wd[4], ymm_d[1], ymm_0_25) # Compute wd5 := d6 - 5.0 * d4 VMOVAPS(ymm_wd[5], Constant.float32x8(5.0)) VFNMADD132PS(ymm_wd[5], ymm_d[6], ymm_d[4]) # Compute wd3 := d6 + 0.25 * d2 VFMADD231PS(ymm_d[6], ymm_d[2], ymm_0_25) SWAP.REGISTERS(ymm_wd[3], ymm_d[6]) # Compute wd6 := d1 + 0.25 * d5 VFMADD231PS(ymm_d[1], ymm_d[5], ymm_0_25) SWAP.REGISTERS(ymm_wd[6], ymm_d[1]) ymm_5_25 = YMMRegister() VMOVAPS(ymm_5_25, Constant.float32x8(5.25)) # Compute wd0 := (d0 - d6) + 5.25 * (d4 - d2) VFMADD231PS(ymm_wd[0], ymm_d4_sub_d2, ymm_5_25) # Compute wd7 := (d7 - d1) + 5.25 * (d3 - d5) VFMADD231PS(ymm_wd[7], ymm_d3_sub_d5, ymm_5_25) ymm_4_25 = YMMRegister() VMOVAPS(ymm_4_25, Constant.float32x8(4.25)) # Compute # wd1 := (d6 + d2) - 4.25 * d4 # wd2 := (d1 + d5) - 4.25 * d3 VFNMADD231PS(ymm_wd[1], ymm_d[4], ymm_4_25) VFNMADD231PS(ymm_wd[2], ymm_d[3], ymm_4_25) ymm_1_25 = YMMRegister() VMOVAPS(ymm_1_25, Constant.float32x8(1.25)) # Compute # wd3 := (d6 + 0.25 * d2) - 1.25 * d4 # wd4 := (d5 + 0.25 * d1) - 1.25 * d3 # wd6 := (d1 + 0.25 * d5) - 1.25 * d3 # wd5 := (d6 - 5.0 * d4) + 4.0 * d2 VFNMADD231PS(ymm_wd[3], ymm_d[4], ymm_1_25) VFNMADD231PS(ymm_wd[4], ymm_d[3], ymm_1_25) VFMADD231PS(ymm_wd[5], ymm_d[2], Constant.float32x8(4.0)) VFNMADD231PS(ymm_wd[6], ymm_d[3], ymm_1_25) ymm_2 = YMMRegister() VMOVAPS(ymm_2, Constant.float32x8(2.0)) butterfly(ymm_wd[1], ymm_wd[2]) butterfly(ymm_wd[3], ymm_wd[4], scale_b=ymm_2) butterfly(ymm_wd[5], ymm_wd[6], scale_b=ymm_2) return ymm_wd def kernel_transform(g, rescale_coefficients=True): assert isinstance(g, list) and len(g) == 3 and \ (all(isinstance(reg, XMMRegister) for reg in g) or all(isinstance(reg, YMMRegister) for reg in g)) minus_2_over_9 = float.fromhex("-0x1.C71C72p-3") rcp_90 = float.fromhex( "0x1.6C16C2p-7") rcp_180 = float.fromhex( "0x1.6C16C2p-8") if isinstance(g[0], XMMRegister): wg = [XMMRegister() for _ in range(8)] const_2 = Constant.float32x4(2.0) const_4 = Constant.float32x4(4.0) const_minus_2_over_9 = Constant.float32x4(minus_2_over_9) const_rcp_90 = Constant.float32x4(rcp_90) const_rcp_180 = Constant.float32x4(rcp_180) else: wg = [YMMRegister() for _ in range(8)] const_2 = Constant.float32x8(2.0) const_4 = Constant.float32x8(4.0) const_minus_2_over_9 = Constant.float32x8(minus_2_over_9) const_rcp_90 = Constant.float32x8(rcp_90) const_rcp_180 = Constant.float32x8(rcp_180) # wg[0] = g0 # wg[1] = ((g0 + g2) + g1) * (-2.0 / 9) # wg[2] = ((g0 + g2) - g1) * (-2.0 / 9) # wg[3] = ((g0 + 4 * g2) + 2 * g1) * (1.0 / 90) # wg[4] = ((g0 + 4 * g2) - 2 * g1) * (1.0 / 90) # wg[5] = ((g2 + 4 * g0) + 2 * g1) * (1.0 / 180) # wg[6] = ((g2 + 4 * g0) - 2 * g1) * (1.0 / 180) # wg[7] = g2 # Compute wg[1] := g0 + g2 VADDPS(wg[1], g[0], g[2]) # Compute # wg[3] := g0 + 4 * g2 # wg[5] := g2 + 4 * g0 VMOVAPS(wg[3], const_4) VMOVAPS(wg[5], wg[3]) VFMADD132PS(wg[3], g[0], g[2]) VFMADD132PS(wg[5], g[2], g[0]) # Compute wg[1] and wg[2] VSUBPS(wg[2], wg[1], g[1]) VADDPS(wg[1], wg[1], g[1]) var_2 = YMMRegister() if isinstance(g[0], YMMRegister) else XMMRegister() VMOVAPS(var_2, const_2) # Compute wg[3] and wg[4] VMOVAPS(wg[4], wg[3]) VFNMADD231PS(wg[4], g[1], var_2) VFMADD231PS(wg[3], g[1], var_2) # Compute wg[5] and wg[6] VMOVAPS(wg[6], wg[5]) VFNMADD231PS(wg[6], g[1], var_2) VFMADD231PS(wg[5], g[1], var_2) SWAP.REGISTERS(wg[0], g[0]) SWAP.REGISTERS(wg[7], g[2]) if rescale_coefficients: VMULPS(wg[1], wg[1], const_minus_2_over_9) VMULPS(wg[2], wg[2], const_minus_2_over_9) VMULPS(wg[3], wg[3], const_rcp_90) VMULPS(wg[4], wg[4], const_rcp_90) VMULPS(wg[5], wg[5], const_rcp_180) VMULPS(wg[6], wg[6], const_rcp_180) return wg def output_transform(ymm_m): assert isinstance(ymm_m, list) and len(ymm_m) == 8 and all(isinstance(ymm, YMMRegister) for ymm in ymm_m) ymm_s = [YMMRegister() for _ in range(6)] # s0 = m0 + (m1 + m2) + (m3 + m4) + 32 * (m5 + m6) # s1 = (m1 - m2) + 2 * (m3 - m4) + 16 * (m5 - m6) # s2 = (m1 + m2) + 4 * (m3 + m4) + 8 * (m5 + m6) # s3 = (m1 - m2) + 8 * (m3 - m4) + 4 * (m5 - m6) # s4 = (m1 + m2) + 16 * (m3 + m4) + 2 * (m5 + m6) # s5 = (m1 - m2) + 32 * (m3 - m4) + (m5 - m6) + m7 ymm_m1_add_m2, ymm_m1_sub_m2 = YMMRegister(), YMMRegister() VADDPS(ymm_m1_add_m2, ymm_m[1], ymm_m[2]) VSUBPS(ymm_m1_sub_m2, ymm_m[1], ymm_m[2]) ymm_m3_add_m4, ymm_m3_sub_m4 = YMMRegister(), YMMRegister() VADDPS(ymm_m3_add_m4, ymm_m[3], ymm_m[4]) VSUBPS(ymm_m3_sub_m4, ymm_m[3], ymm_m[4]) ymm_m5_add_m6, ymm_m5_sub_m6 = YMMRegister(), YMMRegister() VADDPS(ymm_m5_add_m6, ymm_m[5], ymm_m[6]) VSUBPS(ymm_m5_sub_m6, ymm_m[5], ymm_m[6]) VADDPS(ymm_s[0], ymm_m[0], ymm_m1_add_m2) VADDPS(ymm_s[5], ymm_m[7], ymm_m1_sub_m2) ymm_16 = YMMRegister() VMOVAPS(ymm_16, Constant.float32x8(16.0)) VMOVAPS(ymm_s[1], ymm_m1_sub_m2) VFMADD231PS(ymm_s[1], ymm_m5_sub_m6, ymm_16) VFMADD132PS(ymm_16, ymm_m1_add_m2, ymm_m3_add_m4) SWAP.REGISTERS(ymm_s[4], ymm_16) ymm_8 = YMMRegister() VMOVAPS(ymm_8, Constant.float32x8(8.0)) VMOVAPS(ymm_s[2], ymm_m1_add_m2) VFMADD231PS(ymm_s[2], ymm_m5_add_m6, ymm_8) VFMADD132PS(ymm_8, ymm_m1_sub_m2, ymm_m3_sub_m4) SWAP.REGISTERS(ymm_s[3], ymm_8) ymm_32 = YMMRegister() VMOVAPS(ymm_32, Constant.float32x8(32.0)) VFMADD231PS(ymm_s[0], ymm_m5_add_m6, ymm_32) VFMADD231PS(ymm_s[5], ymm_m3_sub_m4, ymm_32) ymm_2, ymm_4 = YMMRegister(), YMMRegister() VMOVAPS(ymm_2, Constant.float32x8(2.0)) VADDPS(ymm_s[0], ymm_s[0], ymm_m3_add_m4) VMOVAPS(ymm_4, Constant.float32x8(4.0)) VFMADD231PS(ymm_s[1], ymm_m3_sub_m4, ymm_2) VFMADD231PS(ymm_s[4], ymm_m5_add_m6, ymm_2) VFMADD231PS(ymm_s[2], ymm_m3_add_m4, ymm_4) VFMADD231PS(ymm_s[3], ymm_m5_sub_m6, ymm_4) VADDPS(ymm_s[5], ymm_s[5], ymm_m5_sub_m6) return ymm_s def transpose8x8(ymm_rows): assert isinstance(ymm_rows, list) and len(ymm_rows) == 8 and all(isinstance(ymm_row, YMMRegister) for ymm_row in ymm_rows) # ymm_rows[0] = ( g07, g06, g05, g04, g03, g02, g01, g00 ) # ymm_rows[1] = ( g17, g16, g15, g14, g13, g12, g11, g10 ) # ymm_rows[2] = ( g27, g26, g25, g24, g23, g22, g21, g20 ) # ymm_rows[3] = ( g37, g36, g35, g34, g33, g32, g31, g30 ) # ymm_rows[4] = ( g47, g46, g45, g44, g43, g42, g41, g40 ) # ymm_rows[5] = ( g57, g56, g55, g54, g53, g52, g51, g50 ) # ymm_rows[6] = ( g67, g66, g65, g64, g63, g62, g61, g60 ) # ymm_rows[7] = ( g77, g76, g75, g74, g73, g72, g71, g70 ) for ymm_even_row, ymm_odd_row in zip(ymm_rows[0::2], ymm_rows[1::2]): ymm_temp = YMMRegister() VUNPCKLPS(ymm_temp, ymm_even_row, ymm_odd_row) VUNPCKHPS(ymm_odd_row, ymm_even_row, ymm_odd_row) SWAP.REGISTERS(ymm_even_row, ymm_temp) # ymm_rows[0] = ( g15, g05, g14, g04, g11, g01, g10, g00 ) # ymm_rows[1] = ( g17, g07, g16, g06, g13, g03, g12, g02 ) # ymm_rows[2] = ( g35, g25, g34, g24, g31, g21, g30, g20 ) # ymm_rows[3] = ( g37, g27, g36, g26, g33, g23, g32, g22 ) # ymm_rows[4] = ( g55, g45, g54, g44, g51, g41, g50, g40 ) # ymm_rows[5] = ( g57, g47, g56, g46, g53, g43, g52, g42 ) # ymm_rows[6] = ( g75, g65, g74, g64, g71, g61, g70, g60 ) # ymm_rows[7] = ( g77, g67, g76, g66, g73, g63, g72, g62 ) transpose2x2x2x64(ymm_rows[0], ymm_rows[2]) transpose2x2x2x64(ymm_rows[1], ymm_rows[3]) transpose2x2x2x64(ymm_rows[4], ymm_rows[6]) transpose2x2x2x64(ymm_rows[5], ymm_rows[7]) # ymm_rows[0] = ( g34, g24, g14, g04, g30, g20, g10, g00 ) # ymm_rows[1] = ( g36, g26, g16, g06, g32, g22, g12, g02 ) # ymm_rows[2] = ( g35, g25, g15, g05, g31, g21, g11, g01 ) # ymm_rows[3] = ( g37, g27, g17, g07, g33, g23, g13, g03 ) # ymm_rows[4] = ( g74, g64, g54, g44, g70, g60, g50, g40 ) # ymm_rows[5] = ( g76, g66, g56, g46, g72, g62, g52, g42 ) # ymm_rows[6] = ( g75, g65, g55, g45, g71, g61, g51, g41 ) # ymm_rows[7] = ( g77, g67, g57, g47, g73, g63, g53, g43 ) transpose2x2x128(ymm_rows[0], ymm_rows[4]) transpose2x2x128(ymm_rows[1], ymm_rows[5]) transpose2x2x128(ymm_rows[2], ymm_rows[6]) transpose2x2x128(ymm_rows[3], ymm_rows[7]) SWAP.REGISTERS(ymm_rows[1], ymm_rows[2]) SWAP.REGISTERS(ymm_rows[5], ymm_rows[6]) def transpose6x8(ymm_rows): assert isinstance(ymm_rows, list) and len(ymm_rows) == 6 and all(isinstance(ymm_row, YMMRegister) for ymm_row in ymm_rows) # ymm_rows[0] = ( g07, g06, g05, g04, g03, g02, g01, g00 ) # ymm_rows[1] = ( g17, g16, g15, g14, g13, g12, g11, g10 ) # ymm_rows[2] = ( g27, g26, g25, g24, g23, g22, g21, g20 ) # ymm_rows[3] = ( g37, g36, g35, g34, g33, g32, g31, g30 ) # ymm_rows[4] = ( g47, g46, g45, g44, g43, g42, g41, g40 ) # ymm_rows[5] = ( g57, g56, g55, g54, g53, g52, g51, g50 ) for ymm_even_row, ymm_odd_row in zip(ymm_rows[0::2], ymm_rows[1::2]): ymm_temp = YMMRegister() VUNPCKLPS(ymm_temp, ymm_even_row, ymm_odd_row) VUNPCKHPS(ymm_odd_row, ymm_even_row, ymm_odd_row) SWAP.REGISTERS(ymm_even_row, ymm_temp) # ymm_rows[0] = ( g15, g05, g14, g04, g11, g01, g10, g00 ) # ymm_rows[1] = ( g17, g07, g16, g06, g13, g03, g12, g02 ) # ymm_rows[2] = ( g35, g25, g34, g24, g31, g21, g30, g20 ) # ymm_rows[3] = ( g37, g27, g36, g26, g33, g23, g32, g22 ) # ymm_rows[4] = ( g55, g45, g54, g44, g51, g41, g50, g40 ) # ymm_rows[5] = ( g57, g47, g56, g46, g53, g43, g52, g42 ) ymm_zero_rows = [YMMRegister(), YMMRegister()] for ymm_zero in ymm_zero_rows: VXORPS(ymm_zero, ymm_zero, ymm_zero) ymm_rows += ymm_zero_rows # ymm_rows[6] = ( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ) # ymm_rows[7] = ( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ) transpose2x2x2x64(ymm_rows[0], ymm_rows[2]) transpose2x2x2x64(ymm_rows[1], ymm_rows[3]) transpose2x2x2x64(ymm_rows[4], ymm_rows[6]) transpose2x2x2x64(ymm_rows[5], ymm_rows[7]) # ymm_rows[0] = ( g34, g24, g14, g04, g30, g20, g10, g00 ) # ymm_rows[1] = ( g36, g26, g16, g06, g32, g22, g12, g02 ) # ymm_rows[2] = ( g35, g25, g15, g05, g31, g21, g11, g01 ) # ymm_rows[3] = ( g37, g27, g17, g07, g33, g23, g13, g03 ) # ymm_rows[4] = ( 0.0, 0.0, g54, g44, 0.0, 0.0, g50, g40 ) # ymm_rows[5] = ( 0.0, 0.0, g56, g46, 0.0, 0.0, g52, g42 ) # ymm_rows[6] = ( 0.0, 0.0, g55, g45, 0.0, 0.0, g51, g41 ) # ymm_rows[7] = ( 0.0, 0.0, g57, g47, 0.0, 0.0, g53, g43 ) transpose2x2x128(ymm_rows[0], ymm_rows[4]) transpose2x2x128(ymm_rows[1], ymm_rows[5]) transpose2x2x128(ymm_rows[2], ymm_rows[6]) transpose2x2x128(ymm_rows[3], ymm_rows[7]) SWAP.REGISTERS(ymm_rows[1], ymm_rows[2]) SWAP.REGISTERS(ymm_rows[5], ymm_rows[6]) return ymm_rows def transpose8x3(xmm_rows): assert isinstance(xmm_rows, list) and len(xmm_rows) == 8 and all(isinstance(xmm_row, XMMRegister) for xmm_row in xmm_rows) # xmm_rows[0] = ( 0.0, g02, g01, g00 ) # xmm_rows[1] = ( 0.0, g12, g11, g10 ) # xmm_rows[2] = ( 0.0, g22, g21, g20 ) # xmm_rows[3] = ( 0.0, g32, g31, g30 ) # xmm_rows[4] = ( 0.0, g42, g41, g40 ) # xmm_rows[5] = ( 0.0, g52, g51, g50 ) # xmm_rows[6] = ( 0.0, g62, g61, g60 ) # xmm_rows[7] = ( 0.0, g72, g71, g70 ) ymm_rows = [YMMRegister() for _ in range(4)] VINSERTF128(ymm_rows[0], xmm_rows[0].as_ymm, xmm_rows[4], 1) VINSERTF128(ymm_rows[1], xmm_rows[1].as_ymm, xmm_rows[5], 1) VINSERTF128(ymm_rows[2], xmm_rows[2].as_ymm, xmm_rows[6], 1) VINSERTF128(ymm_rows[3], xmm_rows[3].as_ymm, xmm_rows[7], 1) # ymm_rows[0] = ( 0.0, g42, g41, g40, 0.0, g02, g01, g00 ) # ymm_rows[1] = ( 0.0, g52, g51, g50, 0.0, g12, g11, g10 ) # ymm_rows[2] = ( 0.0, g62, g61, g60, 0.0, g22, g21, g20 ) # ymm_rows[3] = ( 0.0, g72, g71, g70, 0.0, g32, g31, g30 ) ymm_new_rows = [YMMRegister() for _ in range(4)] VUNPCKLPS(ymm_new_rows[0], ymm_rows[0], ymm_rows[1]) VUNPCKHPS(ymm_new_rows[1], ymm_rows[0], ymm_rows[1]) VUNPCKLPS(ymm_new_rows[2], ymm_rows[2], ymm_rows[3]) VUNPCKHPS(ymm_new_rows[3], ymm_rows[2], ymm_rows[3]) for ymm_row, ymm_new_row in zip(ymm_rows, ymm_new_rows): SWAP.REGISTERS(ymm_row, ymm_new_row) # ymm_rows[0] = ( g51, g41, g50, g40, g11, g01, g10, g00 ) # ymm_rows[1] = ( 0.0, 0.0, g52, g42, 0.0, 0.0, g12, g02 ) # ymm_rows[2] = ( g71, g61, g70, g60, g31, g21, g30, g20 ) # ymm_rows[3] = ( 0.0, 0.0, g72, g62, 0.0, 0.0, g32, g22 ) # ymm_rows[0] = ( g70, g60, g50, g40, g30, g20, g10, g00 ) # ymm_rows[2] = ( g71, g61, g51, g41, g31, g21, g11, g01 ) transpose2x2x2x64(ymm_rows[0], ymm_rows[2]) # ymm_rows[1] = ( g72, g62, g52, g42, g32, g22, g12, g02 ) VUNPCKLPD(ymm_rows[1], ymm_rows[1], ymm_rows[3]) SWAP.REGISTERS(ymm_rows[1], ymm_rows[2]) return ymm_rows[0:3] if __name__ == "__main__": import numpy numpy.set_printoptions(linewidth=120) import ctypes arg_i = Argument(ptr(const_float_)) arg_o = Argument(ptr(float_)) with Function("transpose8x3", (arg_i, arg_o)) as transpose8x3_asm: reg_i = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_i, arg_i) reg_o = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_o, arg_o) xmm_load_mask = XMMRegister() VMOVAPS(xmm_load_mask, Constant.float32x4(-0.0, -0.0, -0.0, +0.0)) xmm_data = [XMMRegister() for i in range(8)] for i, xmm in enumerate(xmm_data): VMASKMOVPS(xmm, xmm_load_mask, [reg_i + i * 12]) ymm_data = transpose8x3(xmm_data) for i, ymm in enumerate(ymm_data): VMOVUPS([reg_o + i * 32], ymm) RETURN() with Function("transpose8x8", (arg_i, arg_o)) as transpose8x8_asm: reg_i = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_i, arg_i) reg_o = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_o, arg_o) ymm_data = [YMMRegister() for i in range(8)] for i, ymm in enumerate(ymm_data): VMOVUPS(ymm, [reg_i + i * 32]) transpose8x8(ymm_data) for i, ymm in enumerate(ymm_data): VMOVUPS([reg_o + i * 32], ymm) RETURN() transpose8x3_fn = transpose8x3_asm.finalize(abi.detect()).encode().load() transpose8x8_fn = transpose8x8_asm.finalize(abi.detect()).encode().load() i = numpy.random.random(8 * 3).astype(numpy.float32) o = numpy.empty(8 * 3, numpy.float32) transpose8x3_fn( i.ctypes.data_as(ctypes.POINTER(ctypes.c_float)), o.ctypes.data_as(ctypes.POINTER(ctypes.c_float))) # print(i.reshape([8, 3])) # print(o.reshape([3, 8]).T) i = numpy.random.random(8 * 8).astype(numpy.float32) o = numpy.empty(8 * 8, numpy.float32) transpose8x8_fn( i.ctypes.data_as(ctypes.POINTER(ctypes.c_float)), o.ctypes.data_as(ctypes.POINTER(ctypes.c_float))) print(i.reshape([8, 8])) print(o.reshape([8, 8]).T)
#!/usr/bin/env python ''' This module contains some common routines used by other samples. ''' import numpy as np import cv2 as cv # built-in modules import os import itertools as it from contextlib import contextmanager image_extensions = ['.bmp', '.jpg', '.jpeg', '.png', '.tif', '.tiff', '.pbm', '.pgm', '.ppm'] class Bunch(object): def __init__(self, **kw): self.__dict__.update(kw) def __str__(self): return str(self.__dict__) def splitfn(fn): path, fn = os.path.split(fn) name, ext = os.path.splitext(fn) return path, name, ext def anorm2(a): return (a*a).sum(-1) def anorm(a): return np.sqrt( anorm2(a) ) def homotrans(H, x, y): xs = H[0, 0]*x + H[0, 1]*y + H[0, 2] ys = H[1, 0]*x + H[1, 1]*y + H[1, 2] s = H[2, 0]*x + H[2, 1]*y + H[2, 2] return xs/s, ys/s def to_rect(a): a = np.ravel(a) if len(a) == 2: a = (0, 0, a[0], a[1]) return np.array(a, np.float64).reshape(2, 2) def rect2rect_mtx(src, dst): src, dst = to_rect(src), to_rect(dst) cx, cy = (dst[1] - dst[0]) / (src[1] - src[0]) tx, ty = dst[0] - src[0] * (cx, cy) M = np.float64([[ cx, 0, tx], [ 0, cy, ty], [ 0, 0, 1]]) return M def lookat(eye, target, up = (0, 0, 1)): fwd = np.asarray(target, np.float64) - eye fwd /= anorm(fwd) right = np.cross(fwd, up) right /= anorm(right) down = np.cross(fwd, right) R = np.float64([right, down, fwd]) tvec = -np.dot(R, eye) return R, tvec def mtx2rvec(R): w, u, vt = cv.SVDecomp(R - np.eye(3)) p = vt[0] + u[:,0]*w[0] # same as np.dot(R, vt[0]) c = np.dot(vt[0], p) s = np.dot(vt[1], p) axis = np.cross(vt[0], vt[1]) return axis * np.arctan2(s, c) def draw_str(dst, (x, y), s): cv.putText(dst, s, (x+1, y+1), cv.FONT_HERSHEY_PLAIN, 1.0, (0, 0, 0), thickness = 2, lineType=cv.LINE_AA) cv.putText(dst, s, (x, y), cv.FONT_HERSHEY_PLAIN, 1.0, (255, 255, 255), lineType=cv.LINE_AA) class Sketcher: def __init__(self, windowname, dests, colors_func): self.prev_pt = None self.windowname = windowname self.dests = dests self.colors_func = colors_func self.dirty = False self.show() cv.setMouseCallback(self.windowname, self.on_mouse) def show(self): cv.imshow(self.windowname, self.dests[0]) def on_mouse(self, event, x, y, flags, param): pt = (x, y) if event == cv.EVENT_LBUTTONDOWN: self.prev_pt = pt elif event == cv.EVENT_LBUTTONUP: self.prev_pt = None if self.prev_pt and flags & cv.EVENT_FLAG_LBUTTON: for dst, color in zip(self.dests, self.colors_func()): cv.line(dst, self.prev_pt, pt, color, 5) self.dirty = True self.prev_pt = pt self.show() # palette data from matplotlib/_cm.py _jet_data = {'red': ((0., 0, 0), (0.35, 0, 0), (0.66, 1, 1), (0.89,1, 1), (1, 0.5, 0.5)), 'green': ((0., 0, 0), (0.125,0, 0), (0.375,1, 1), (0.64,1, 1), (0.91,0,0), (1, 0, 0)), 'blue': ((0., 0.5, 0.5), (0.11, 1, 1), (0.34, 1, 1), (0.65,0, 0), (1, 0, 0))} cmap_data = { 'jet' : _jet_data } def make_cmap(name, n=256): data = cmap_data[name] xs = np.linspace(0.0, 1.0, n) channels = [] eps = 1e-6 for ch_name in ['blue', 'green', 'red']: ch_data = data[ch_name] xp, yp = [], [] for x, y1, y2 in ch_data: xp += [x, x+eps] yp += [y1, y2] ch = np.interp(xs, xp, yp) channels.append(ch) return np.uint8(np.array(channels).T*255) def nothing(*arg, **kw): pass def clock(): return cv.getTickCount() / cv.getTickFrequency() @contextmanager def Timer(msg): print msg, '...', start = clock() try: yield finally: print "%.2f ms" % ((clock()-start)*1000) class StatValue: def __init__(self, smooth_coef = 0.5): self.value = None self.smooth_coef = smooth_coef def update(self, v): if self.value is None: self.value = v else: c = self.smooth_coef self.value = c * self.value + (1.0-c) * v class RectSelector: def __init__(self, win, callback): self.win = win self.callback = callback cv.setMouseCallback(win, self.onmouse) self.drag_start = None self.drag_rect = None def onmouse(self, event, x, y, flags, param): x, y = np.int16([x, y]) # BUG if event == cv.EVENT_LBUTTONDOWN: self.drag_start = (x, y) if self.drag_start: if flags & cv.EVENT_FLAG_LBUTTON: xo, yo = self.drag_start x0, y0 = np.minimum([xo, yo], [x, y]) x1, y1 = np.maximum([xo, yo], [x, y]) self.drag_rect = None if x1-x0 > 0 and y1-y0 > 0: self.drag_rect = (x0, y0, x1, y1) else: rect = self.drag_rect self.drag_start = None self.drag_rect = None if rect: self.callback(rect) def draw(self, vis): if not self.drag_rect: return False x0, y0, x1, y1 = self.drag_rect cv.rectangle(vis, (x0, y0), (x1, y1), (0, 255, 0), 2) return True @property def dragging(self): return self.drag_rect is not None def grouper(n, iterable, fillvalue=None): '''grouper(3, 'ABCDEFG', 'x') --> ABC DEF Gxx''' args = [iter(iterable)] * n return it.izip_longest(fillvalue=fillvalue, *args) def mosaic(w, imgs): '''Make a grid from images. w -- number of grid columns imgs -- images (must have same size and format) ''' imgs = iter(imgs) img0 = imgs.next() pad = np.zeros_like(img0) imgs = it.chain([img0], imgs) rows = grouper(w, imgs, pad) return np.vstack(map(np.hstack, rows)) def getsize(img): h, w = img.shape[:2] return w, h def mdot(*args): return reduce(np.dot, args) def draw_keypoints(vis, keypoints, color = (0, 255, 255)): for kp in keypoints: x, y = kp.pt cv.circle(vis, (int(x), int(y)), 2, color)
#!/usr/bin/env python ''' This example shows the functionalities of lines extraction finished by LSDDetector class. USAGE: lsd_lines_extraction.py [<path_to_input_image>] ''' import sys import cv2 as cv if __name__ == '__main__': print(__doc__) if len(sys.argv) > 1: fname = sys.argv[1] else : fname = '../data/corridor.jpg' img = cv.imread(fname) if img is None: print('Failed to load image file:', fname) sys.exit(1) gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) lsd = cv.line_descriptor_LSDDetector.createLSDDetector() lines = lsd.detect(gray, 2, 1) for kl in lines: if kl.octave == 0: # cv.line only accepts integer coordinate pt1 = (int(kl.startPointX), int(kl.startPointY)) pt2 = (int(kl.endPointX), int(kl.endPointY)) cv.line(img, pt1, pt2, [255, 0, 0], 2) cv.imshow('output', img) cv.waitKey(0) cv.destroyAllWindows()
#!/usr/bin/env python ''' This sample demonstrates SEEDS Superpixels segmentation Use [space] to toggle output mode Usage: seeds.py [<video source>] ''' import numpy as np import cv2 as cv # relative module import video # built-in module import sys if __name__ == '__main__': print __doc__ try: fn = sys.argv[1] except: fn = 0 def nothing(*arg): pass cv.namedWindow('SEEDS') cv.createTrackbar('Number of Superpixels', 'SEEDS', 400, 1000, nothing) cv.createTrackbar('Iterations', 'SEEDS', 4, 12, nothing) seeds = None display_mode = 0 num_superpixels = 400 prior = 2 num_levels = 4 num_histogram_bins = 5 cap = video.create_capture(fn) while True: flag, img = cap.read() converted_img = cv.cvtColor(img, cv.COLOR_BGR2HSV) height,width,channels = converted_img.shape num_superpixels_new = cv.getTrackbarPos('Number of Superpixels', 'SEEDS') num_iterations = cv.getTrackbarPos('Iterations', 'SEEDS') if not seeds or num_superpixels_new != num_superpixels: num_superpixels = num_superpixels_new seeds = cv.ximgproc.createSuperpixelSEEDS(width, height, channels, num_superpixels, num_levels, prior, num_histogram_bins) color_img = np.zeros((height,width,3), np.uint8) color_img[:] = (0, 0, 255) seeds.iterate(converted_img, num_iterations) # retrieve the segmentation result labels = seeds.getLabels() # labels output: use the last x bits to determine the color num_label_bits = 2 labels &= (1<<num_label_bits)-1 labels *= 1<<(16-num_label_bits) mask = seeds.getLabelContourMask(False) # stitch foreground & background together mask_inv = cv.bitwise_not(mask) result_bg = cv.bitwise_and(img, img, mask=mask_inv) result_fg = cv.bitwise_and(color_img, color_img, mask=mask) result = cv.add(result_bg, result_fg) if display_mode == 0: cv.imshow('SEEDS', result) elif display_mode == 1: cv.imshow('SEEDS', mask) else: cv.imshow('SEEDS', labels) ch = cv.waitKey(1) if ch == 27: break elif ch & 0xff == ord(' '): display_mode = (display_mode + 1) % 3 cv.destroyAllWindows()
#!/usr/bin/env python ''' Video capture sample. Sample shows how VideoCapture class can be used to acquire video frames from a camera of a movie file. Also the sample provides an example of procedural video generation by an object, mimicking the VideoCapture interface (see Chess class). 'create_capture' is a convinience function for capture creation, falling back to procedural video in case of error. Usage: video.py [--shotdir <shot path>] [source0] [source1] ...' sourceN is an - integer number for camera capture - name of video file - synth:<params> for procedural video Synth examples: synth:bg=../cpp/lena.jpg:noise=0.1 synth:class=chess:bg=../cpp/lena.jpg:noise=0.1:size=640x480 Keys: ESC - exit SPACE - save current frame to <shot path> directory ''' import numpy as np from numpy import pi, sin, cos import cv2 as cv # built-in modules from time import clock # local modules import common class VideoSynthBase(object): def __init__(self, size=None, noise=0.0, bg = None, **params): self.bg = None self.frame_size = (640, 480) if bg is not None: self.bg = cv.imread(bg, 1) h, w = self.bg.shape[:2] self.frame_size = (w, h) if size is not None: w, h = map(int, size.split('x')) self.frame_size = (w, h) self.bg = cv.resize(self.bg, self.frame_size) self.noise = float(noise) def render(self, dst): pass def read(self, dst=None): w, h = self.frame_size if self.bg is None: buf = np.zeros((h, w, 3), np.uint8) else: buf = self.bg.copy() self.render(buf) if self.noise > 0.0: noise = np.zeros((h, w, 3), np.int8) cv.randn(noise, np.zeros(3), np.ones(3)*255*self.noise) buf = cv.add(buf, noise, dtype=cv.CV_8UC3) return True, buf def isOpened(self): return True class Chess(VideoSynthBase): def __init__(self, **kw): super(Chess, self).__init__(**kw) w, h = self.frame_size self.grid_size = sx, sy = 10, 7 white_quads = [] black_quads = [] for i, j in np.ndindex(sy, sx): q = [[j, i, 0], [j+1, i, 0], [j+1, i+1, 0], [j, i+1, 0]] [white_quads, black_quads][(i + j) % 2].append(q) self.white_quads = np.float32(white_quads) self.black_quads = np.float32(black_quads) fx = 0.9 self.K = np.float64([[fx*w, 0, 0.5*(w-1)], [0, fx*w, 0.5*(h-1)], [0.0,0.0, 1.0]]) self.dist_coef = np.float64([-0.2, 0.1, 0, 0]) self.t = 0 def draw_quads(self, img, quads, color = (0, 255, 0)): img_quads = cv.projectPoints(quads.reshape(-1, 3), self.rvec, self.tvec, self.K, self.dist_coef) [0] img_quads.shape = quads.shape[:2] + (2,) for q in img_quads: cv.fillConvexPoly(img, np.int32(q*4), color, cv.LINE_AA, shift=2) def render(self, dst): t = self.t self.t += 1.0/30.0 sx, sy = self.grid_size center = np.array([0.5*sx, 0.5*sy, 0.0]) phi = pi/3 + sin(t*3)*pi/8 c, s = cos(phi), sin(phi) ofs = np.array([sin(1.2*t), cos(1.8*t), 0]) * sx * 0.2 eye_pos = center + np.array([cos(t)*c, sin(t)*c, s]) * 15.0 + ofs target_pos = center + ofs R, self.tvec = common.lookat(eye_pos, target_pos) self.rvec = common.mtx2rvec(R) self.draw_quads(dst, self.white_quads, (245, 245, 245)) self.draw_quads(dst, self.black_quads, (10, 10, 10)) classes = dict(chess=Chess) presets = dict( empty = 'synth:', lena = 'synth:bg=../cpp/lena.jpg:noise=0.1', chess = 'synth:class=chess:bg=../cpp/lena.jpg:noise=0.1:size=640x480' ) def create_capture(source = 0, fallback = presets['chess']): '''source: <int> or '<int>|<filename>|synth [:<param_name>=<value> [:...]]' ''' source = str(source).strip() chunks = source.split(':') # handle drive letter ('c:', ...) if len(chunks) > 1 and len(chunks[0]) == 1 and chunks[0].isalpha(): chunks[1] = chunks[0] + ':' + chunks[1] del chunks[0] source = chunks[0] try: source = int(source) except ValueError: pass params = dict( s.split('=') for s in chunks[1:] ) cap = None if source == 'synth': Class = classes.get(params.get('class', None), VideoSynthBase) try: cap = Class(**params) except: pass else: cap = cv.VideoCapture(source) if 'size' in params: w, h = map(int, params['size'].split('x')) cap.set(cv.CAP_PROP_FRAME_WIDTH, w) cap.set(cv.CAP_PROP_FRAME_HEIGHT, h) if cap is None or not cap.isOpened(): print 'Warning: unable to open video source: ', source if fallback is not None: return create_capture(fallback, None) return cap if __name__ == '__main__': import sys import getopt print __doc__ args, sources = getopt.getopt(sys.argv[1:], '', 'shotdir=') args = dict(args) shotdir = args.get('--shotdir', '.') if len(sources) == 0: sources = [ 0 ] caps = map(create_capture, sources) shot_idx = 0 while True: imgs = [] for i, cap in enumerate(caps): ret, img = cap.read() imgs.append(img) cv.imshow('capture %d' % i, img) ch = 0xFF & cv.waitKey(1) if ch == 27: break if ch == ord(' '): for i, img in enumerate(imgs): fn = '%s/shot_%d_%03d.bmp' % (shotdir, i, shot_idx) cv.imwrite(fn, img) print fn, 'saved' shot_idx += 1 cv.destroyAllWindows()
import numpy as np import cv2 as cv # aruco config adict = cv.aruco.Dictionary_get(cv.aruco.DICT_4X4_50) cv.imshow("marker", cv.aruco.drawMarker(adict, 0, 400)) marker_len = 5 # rapid config obj_points = np.float32([[-0.5, 0.5, 0], [0.5, 0.5, 0], [0.5, -0.5, 0], [-0.5, -0.5, 0]]) * marker_len tris = np.int32([[0, 2, 1], [0, 3, 2]]) # note CCW order for culling line_len = 10 # random calibration data. your mileage may vary. imsize = (800, 600) K = cv.getDefaultNewCameraMatrix(np.diag([800, 800, 1]), imsize, True) # video capture cap = cv.VideoCapture(0) cap.set(cv.CAP_PROP_FRAME_WIDTH, imsize[0]) cap.set(cv.CAP_PROP_FRAME_HEIGHT, imsize[1]) rot, trans = None, None while cv.waitKey(1) != 27: img = cap.read()[1] # detection with aruco if rot is None: corners, ids = cv.aruco.detectMarkers(img, adict)[:2] if ids is not None: rvecs, tvecs = cv.aruco.estimatePoseSingleMarkers(corners, marker_len, K, None)[:2] rot, trans = rvecs[0].ravel(), tvecs[0].ravel() # tracking and refinement with rapid if rot is not None: for i in range(5): # multiple iterations ratio, rot, trans = cv.rapid.rapid(img, 40, line_len, obj_points, tris, K, rot, trans)[:3] if ratio < 0.8: # bad quality, force re-detect rot, trans = None, None break # drawing cv.putText(img, "detecting" if rot is None else "tracking", (0, 20), cv.FONT_HERSHEY_SIMPLEX, 1.0, (0, 255, 255)) if rot is not None: cv.drawFrameAxes(img, K, None, rot, trans, marker_len) cv.imshow("tracking", img)
#!/usr/bin/env python # Python 2/3 compatibility from __future__ import print_function import os, numpy import cv2 as cv from tests_common import NewOpenCVTests class structured_light_test(NewOpenCVTests): def test_unwrap(self): paramsPsp = cv.structured_light_SinusoidalPattern_Params(); paramsFtp = cv.structured_light_SinusoidalPattern_Params(); paramsFaps = cv.structured_light_SinusoidalPattern_Params(); paramsPsp.methodId = cv.structured_light.PSP; paramsFtp.methodId = cv.structured_light.FTP; paramsFaps.methodId = cv.structured_light.FAPS; sinusPsp = cv.structured_light.SinusoidalPattern_create(paramsPsp) sinusFtp = cv.structured_light.SinusoidalPattern_create(paramsFtp) sinusFaps = cv.structured_light.SinusoidalPattern_create(paramsFaps) captures = [] for i in range(0,3): capture = self.get_sample('/cv/structured_light/data/capture_sin_%d.jpg'%i, cv.IMREAD_GRAYSCALE) if capture is None: raise unittest.SkipTest("Missing files with test data") captures.append(capture) rows,cols = captures[0].shape unwrappedPhaseMapPspRef = self.get_sample('/cv/structured_light/data/unwrappedPspTest.jpg', cv.IMREAD_GRAYSCALE) unwrappedPhaseMapFtpRef = self.get_sample('/cv/structured_light/data/unwrappedFtpTest.jpg', cv.IMREAD_GRAYSCALE) unwrappedPhaseMapFapsRef = self.get_sample('/cv/structured_light/data/unwrappedFapsTest.jpg', cv.IMREAD_GRAYSCALE) wrappedPhaseMap,shadowMask = sinusPsp.computePhaseMap(captures); unwrappedPhaseMap = sinusPsp.unwrapPhaseMap(wrappedPhaseMap, (cols, rows), shadowMask=shadowMask) unwrappedPhaseMap8 = unwrappedPhaseMap*1 + 128 unwrappedPhaseMap8 = numpy.uint8(unwrappedPhaseMap8) sumOfDiff = 0 count = 0 for i in range(rows): for j in range(cols): ref = int(unwrappedPhaseMapPspRef[i, j]) comp = int(unwrappedPhaseMap8[i, j]) sumOfDiff += (ref - comp) count += 1 ratio = sumOfDiff/float(count) self.assertLessEqual(ratio, 0.2) wrappedPhaseMap,shadowMask = sinusFtp.computePhaseMap(captures); unwrappedPhaseMap = sinusFtp.unwrapPhaseMap(wrappedPhaseMap, (cols, rows), shadowMask=shadowMask) unwrappedPhaseMap8 = unwrappedPhaseMap*1 + 128 unwrappedPhaseMap8 = numpy.uint8(unwrappedPhaseMap8) sumOfDiff = 0 count = 0 for i in range(rows): for j in range(cols): ref = int(unwrappedPhaseMapFtpRef[i, j]) comp = int(unwrappedPhaseMap8[i, j]) sumOfDiff += (ref - comp) count += 1 ratio = sumOfDiff/float(count) self.assertLessEqual(ratio, 0.2) wrappedPhaseMap,shadowMask2 = sinusFaps.computePhaseMap(captures); unwrappedPhaseMap = sinusFaps.unwrapPhaseMap(wrappedPhaseMap, (cols, rows), shadowMask=shadowMask) unwrappedPhaseMap8 = unwrappedPhaseMap*1 + 128 unwrappedPhaseMap8 = numpy.uint8(unwrappedPhaseMap8) sumOfDiff = 0 count = 0 for i in range(rows): for j in range(cols): ref = int(unwrappedPhaseMapFapsRef[i, j]) comp = int(unwrappedPhaseMap8[i, j]) sumOfDiff += (ref - comp) count += 1 ratio = sumOfDiff/float(count) self.assertLessEqual(ratio, 0.2) if __name__ == '__main__': NewOpenCVTests.bootstrap()
import cv2 as cv N = 2 modelname = "parasaurolophus_6700" scenename = "rs1_normals" detector = cv.ppf_match_3d_PPF3DDetector(0.025, 0.05) print('Loading model...') pc = cv.ppf_match_3d.loadPLYSimple("data/%s.ply" % modelname, 1) print('Training...') detector.trainModel(pc) print('Loading scene...') pcTest = cv.ppf_match_3d.loadPLYSimple("data/%s.ply" % scenename, 1) print('Matching...') results = detector.match(pcTest, 1.0/40.0, 0.05) print('Performing ICP...') icp = cv.ppf_match_3d_ICP(100) _, results = icp.registerModelToScene(pc, pcTest, results[:N]) print("Poses: ") for i, result in enumerate(results): #result.printPose() print("\n-- Pose to Model Index %d: NumVotes = %d, Residual = %f\n%s\n" % (result.modelIndex, result.numVotes, result.residual, result.pose)) if i == 0: pct = cv.ppf_match_3d.transformPCPose(pc, result.pose) cv.ppf_match_3d.writePLY(pct, "%sPCTrans.ply" % modelname)
import cv2 as cv import numpy as np def rotation(theta): tx, ty, tz = theta Rx = np.array([[1, 0, 0], [0, np.cos(tx), -np.sin(tx)], [0, np.sin(tx), np.cos(tx)]]) Ry = np.array([[np.cos(ty), 0, -np.sin(ty)], [0, 1, 0], [np.sin(ty), 0, np.cos(ty)]]) Rz = np.array([[np.cos(tz), -np.sin(tz), 0], [np.sin(tz), np.cos(tz), 0], [0, 0, 1]]) return np.dot(Rx, np.dot(Ry, Rz)) width = 20 height = 10 max_deg = np.pi / 12 cloud, rotated_cloud = [None]*3, [None]*3 retval, residual, pose = [None]*3, [None]*3, [None]*3 noise = np.random.normal(0.0, 0.1, height * width * 3).reshape((-1, 3)) noise2 = np.random.normal(0.0, 1.0, height * width) x, y = np.meshgrid( range(-width//2, width//2), range(-height//2, height//2), sparse=False, indexing='xy' ) z = np.zeros((height, width)) cloud[0] = np.dstack((x, y, z)).reshape((-1, 3)).astype(np.float32) cloud[1] = noise.astype(np.float32) + cloud[0] cloud[2] = cloud[1] cloud[2][:, 2] += noise2.astype(np.float32) R = rotation([ 0, #np.random.uniform(-max_deg, max_deg), np.random.uniform(-max_deg, max_deg), 0, #np.random.uniform(-max_deg, max_deg) ]) t = np.zeros((3, 1)) Rt = np.vstack(( np.hstack((R, t)), np.array([0, 0, 0, 1]) )).astype(np.float32) icp = cv.ppf_match_3d_ICP(100) I = np.eye(4) print("Unaligned error:\t%.6f" % np.linalg.norm(I - Rt)) for i in range(3): rotated_cloud[i] = np.matmul(Rt[0:3,0:3], cloud[i].T).T + Rt[:3,3].T retval[i], residual[i], pose[i] = icp.registerModelToScene(rotated_cloud[i], cloud[i]) print("ICP error:\t\t%.6f" % np.linalg.norm(I - np.matmul(pose[0], Rt)))
#!/usr/bin/env python import os import cv2 as cv import numpy as np from tests_common import NewOpenCVTests, unittest class cudafilters_test(NewOpenCVTests): def setUp(self): super(cudafilters_test, self).setUp() if not cv.cuda.getCudaEnabledDeviceCount(): self.skipTest("No CUDA-capable device is detected") def test_existence(self): #Test at least the existence of wrapped functions for now _filter = cv.cuda.createBoxFilter(cv.CV_8UC1, -1, (3, 3)) _filter = cv.cuda.createLinearFilter(cv.CV_8UC4, -1, np.eye(3)) _filter = cv.cuda.createLaplacianFilter(cv.CV_16UC1, -1, ksize=3) _filter = cv.cuda.createSeparableLinearFilter(cv.CV_8UC1, -1, np.eye(3), np.eye(3)) _filter = cv.cuda.createDerivFilter(cv.CV_8UC1, -1, 1, 1, 3) _filter = cv.cuda.createSobelFilter(cv.CV_8UC1, -1, 1, 1) _filter = cv.cuda.createScharrFilter(cv.CV_8UC1, -1, 1, 0) _filter = cv.cuda.createGaussianFilter(cv.CV_8UC1, -1, (3, 3), 16) _filter = cv.cuda.createMorphologyFilter(cv.MORPH_DILATE, cv.CV_32FC1, np.eye(3)) _filter = cv.cuda.createBoxMaxFilter(cv.CV_8UC1, (3, 3)) _filter = cv.cuda.createBoxMinFilter(cv.CV_8UC1, (3, 3)) _filter = cv.cuda.createRowSumFilter(cv.CV_8UC1, cv.CV_32FC1, 3) _filter = cv.cuda.createColumnSumFilter(cv.CV_8UC1, cv.CV_32FC1, 3) _filter = cv.cuda.createMedianFilter(cv.CV_8UC1, 3) self.assertTrue(True) #It is sufficient that no exceptions have been there def test_laplacian(self): npMat = (np.random.random((128, 128)) * 255).astype(np.uint16) cuMat = cv.cuda_GpuMat() cuMat.upload(npMat) self.assertTrue(np.allclose(cv.cuda.createLaplacianFilter(cv.CV_16UC1, -1, ksize=3).apply(cuMat).download(), cv.Laplacian(npMat, cv.CV_16UC1, ksize=3))) if __name__ == '__main__': NewOpenCVTests.bootstrap()
#!/usr/bin/python import cv2 as cv import numpy as np import sys img1 = cv.imread(sys.argv[1]) img1 = img1.astype(np.float32) shift = np.array([5., 5.]) mapTest = cv.reg_MapShift(shift) img2 = mapTest.warp(img1) mapper = cv.reg_MapperGradShift() mappPyr = cv.reg_MapperPyramid(mapper) resMap = mappPyr.calculate(img1, img2) mapShift = cv.reg.MapTypeCaster_toShift(resMap) print(mapShift.getShift())
#!/usr/bin/env python from __future__ import print_function import os, sys, argparse, json import numpy as np import scipy.io import cv2 as cv import timeit from learn_color_balance import load_ground_truth def load_json(path): f = open(path, "r") data = json.load(f) return data def save_json(obj, path): tmp_file = path + ".bak" f = open(tmp_file, "w") json.dump(obj, f, indent=2) f.flush() os.fsync(f.fileno()) f.close() try: os.rename(tmp_file, path) except: os.remove(path) os.rename(tmp_file, path) def parse_sequence(input_str): if len(input_str) == 0: return [] else: return [o.strip() for o in input_str.split(",") if o] def stretch_to_8bit(arr, clip_percentile = 2.5): arr = np.clip(arr * (255.0 / np.percentile(arr, 100 - clip_percentile)), 0, 255) return arr.astype(np.uint8) def evaluate(im, algo, gt_illuminant, i, range_thresh, bin_num, dst_folder, model_folder): new_im = None start_time = timeit.default_timer() if algo=="grayworld": inst = cv.xphoto.createGrayworldWB() inst.setSaturationThreshold(0.95) new_im = inst.balanceWhite(im) elif algo=="nothing": new_im = im elif algo.split(":")[0]=="learning_based": model_path = "" if len(algo.split(":"))>1: model_path = os.path.join(model_folder, algo.split(":")[1]) inst = cv.xphoto.createLearningBasedWB(model_path) inst.setRangeMaxVal(range_thresh) inst.setSaturationThreshold(0.98) inst.setHistBinNum(bin_num) new_im = inst.balanceWhite(im) elif algo=="GT": gains = gt_illuminant / min(gt_illuminant) g1 = float(1.0 / gains[2]) g2 = float(1.0 / gains[1]) g3 = float(1.0 / gains[0]) new_im = cv.xphoto.applyChannelGains(im, g1, g2, g3) time = 1000*(timeit.default_timer() - start_time) #time in ms if len(dst_folder)>0: if not os.path.exists(dst_folder): os.makedirs(dst_folder) im_name = ("%04d_" % i) + algo.replace(":","_") + ".jpg" cv.imwrite(os.path.join(dst_folder, im_name), stretch_to_8bit(new_im)) #recover the illuminant from the color balancing result, assuming the standard model: estimated_illuminant = [0, 0, 0] eps = 0.01 estimated_illuminant[2] = np.percentile((im[:,:,0] + eps) / (new_im[:,:,0] + eps), 50) estimated_illuminant[1] = np.percentile((im[:,:,1] + eps) / (new_im[:,:,1] + eps), 50) estimated_illuminant[0] = np.percentile((im[:,:,2] + eps) / (new_im[:,:,2] + eps), 50) res = np.arccos(np.dot(gt_illuminant,estimated_illuminant)/ (np.linalg.norm(gt_illuminant) * np.linalg.norm(estimated_illuminant))) return (time, (res / np.pi) * 180) def build_html_table(out, state, stat_list, img_range): stat_dict = {'mean': ('Mean error', lambda arr: np.mean(arr)), 'median': ('Median error',lambda arr: np.percentile(arr, 50)), 'p05': ('5<sup>th</sup> percentile',lambda arr: np.percentile(arr, 5)), 'p20': ('20<sup>th</sup> percentile',lambda arr: np.percentile(arr, 20)), 'p80': ('80<sup>th</sup> percentile',lambda arr: np.percentile(arr, 80)), 'p95': ('95<sup>th</sup> percentile',lambda arr: np.percentile(arr, 95)) } html_out = ['<style type="text/css">\n', ' html, body {font-family: Lucida Console, Courier New, Courier;font-size: 16px;color:#3e4758;}\n', ' .tbl{background:none repeat scroll 0 0 #FFFFFF;border-collapse:collapse;font-family:"Lucida Sans Unicode","Lucida Grande",Sans-Serif;font-size:14px;margin:20px;text-align:left;width:480px;margin-left: auto;margin-right: auto;white-space:nowrap;}\n', ' .tbl span{display:block;white-space:nowrap;}\n', ' .tbl thead tr:last-child th {padding-bottom:5px;}\n', ' .tbl tbody tr:first-child td {border-top:3px solid #6678B1;}\n', ' .tbl th{border:none;color:#003399;font-size:16px;font-weight:normal;white-space:nowrap;padding:3px 10px;}\n', ' .tbl td{border:none;border-bottom:1px solid #CCCCCC;color:#666699;padding:6px 8px;white-space:nowrap;}\n', ' .tbl tbody tr:hover td{color:#000099;}\n', ' .tbl caption{font:italic 16px "Trebuchet MS",Verdana,Arial,Helvetica,sans-serif;padding:0 0 5px;text-align:right;white-space:normal;}\n', ' .firstingroup {border-top:2px solid #6678B1;}\n', '</style>\n\n'] html_out += ['<table class="tbl">\n', ' <thead>\n', ' <tr>\n', ' <th align="center" valign="top"> Algorithm Name </th>\n', ' <th align="center" valign="top"> Average Time </th>\n'] for stat in stat_list: if stat not in stat_dict.keys(): print("Error: unsupported statistic " + stat) sys.exit(1) html_out += [' <th align="center" valign="top"> ' + stat_dict[stat][0] + ' </th>\n'] html_out += [' </tr>\n', ' </thead>\n', ' <tbody>\n'] for algorithm in state.keys(): arr = [state[algorithm][file]["angular_error"] for file in state[algorithm].keys() if file>=img_range[0] and file<=img_range[1]] average_time = "%.2f ms" % np.mean([state[algorithm][file]["time"] for file in state[algorithm].keys() if file>=img_range[0] and file<=img_range[1]]) html_out += [' <tr>\n', ' <td>' + algorithm + '</td>\n', ' <td>' + average_time + '</td>\n'] for stat in stat_list: html_out += [' <td> ' + "%.2f&deg" % stat_dict[stat][1](arr) + ' </td>\n'] html_out += [' </tr>\n'] html_out += [' </tbody>\n', '</table>\n'] f = open(out, 'w') f.writelines(html_out) f.close() if __name__ == '__main__': parser = argparse.ArgumentParser( description=("A benchmarking script for color balance algorithms"), formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument( "-a", "--algorithms", metavar="ALGORITHMS", default="", help=("Comma-separated list of color balance algorithms to evaluate. " "Currently available: GT,learning_based,grayworld,nothing. " "Use a colon to set a specific model for the learning-based " "algorithm, e.g. learning_based:model1.yml,learning_based:model2.yml")) parser.add_argument( "-i", "--input_folder", metavar="INPUT_FOLDER", default="", help=("Folder containing input images to evaluate on. Assumes minimally " "processed png images like in the Gehler-Shi (http://www.cs.sfu.ca/~colour/data/shi_gehler/) " "or NUS 8-camera (http://www.comp.nus.edu.sg/~whitebal/illuminant/illuminant.html) datasets")) parser.add_argument( "-g", "--ground_truth", metavar="GROUND_TRUTH", default="real_illum_568..mat", help=("Path to the mat file containing ground truth illuminations. Currently " "supports formats supplied by the Gehler-Shi and NUS 8-camera datasets.")) parser.add_argument( "-o", "--out", metavar="OUT", default="./white_balance_eval_result.html", help="Path to the output html table") parser.add_argument( "-s", "--state", metavar="STATE_JSON", default="./WB_evaluation_state.json", help=("Path to a json file that stores the current evaluation state")) parser.add_argument( "-t", "--stats", metavar="STATS", default="mean,median,p05,p20,p80,p95", help=("Comma-separated list of error statistics to compute and list " "in the output table. All the available ones are used by default")) parser.add_argument( "-b", "--input_bit_depth", metavar="INPUT_BIT_DEPTH", default="", help=("Assumed bit depth for input images. Should be specified in order to " "use full bit depth for evaluation (for instance, -b 12 for 12 bit images). " "Otherwise, input images are converted to 8 bit prior to the evaluation.")) parser.add_argument( "-d", "--dst_folder", metavar="DST_FOLDER", default="", help=("If specified, this folder will be used to store the color correction results")) parser.add_argument( "-r", "--range", metavar="RANGE", default="0,0", help=("Comma-separated range of images from the dataset to evaluate on (for instance: 0,568). " "All available images are used by default.")) parser.add_argument( "-m", "--model_folder", metavar="MODEL_FOLDER", default="", help=("Path to the folder containing models for the learning-based color balance algorithm (optional)")) args, other_args = parser.parse_known_args() if not os.path.exists(args.input_folder): print("Error: " + args.input_folder + (" does not exist. Please, correctly " "specify the -i parameter")) sys.exit(1) if not os.path.exists(args.ground_truth): print("Error: " + args.ground_truth + (" does not exist. Please, correctly " "specify the -g parameter")) sys.exit(1) state = {} if os.path.isfile(args.state): state = load_json(args.state) algorithm_list = parse_sequence(args.algorithms) img_range = list(map(int, parse_sequence(args.range))) if len(img_range)!=2: print("Error: Please specify the -r parameter in form <first_image_index>,<last_image_index>") sys.exit(1) img_files = sorted(os.listdir(args.input_folder)) (gt_illuminants,black_levels) = load_ground_truth(args.ground_truth) for algorithm in algorithm_list: i = 0 if algorithm not in state.keys(): state[algorithm] = {} sz = len(img_files) for file in img_files: if file not in state[algorithm].keys() and\ ((i>=img_range[0] and i<img_range[1]) or img_range[0]==img_range[1]==0): cur_path = os.path.join(args.input_folder, file) im = cv.imread(cur_path, -1).astype(np.float32) im -= black_levels[i] range_thresh = 255 if len(args.input_bit_depth)>0: range_thresh = 2**int(args.input_bit_depth) - 1 im = np.clip(im, 0, range_thresh).astype(np.uint16) else: im = stretch_to_8bit(im) (time,angular_err) = evaluate(im, algorithm, gt_illuminants[i], i, range_thresh, 256 if range_thresh > 255 else 64, args.dst_folder, args.model_folder) state[algorithm][file] = {"angular_error": angular_err, "time": time} sys.stdout.write("Algorithm: %-20s Done: [%3d/%3d]\r" % (algorithm, i, sz)), sys.stdout.flush() save_json(state, args.state) i+=1 save_json(state, args.state) build_html_table(args.out, state, parse_sequence(args.stats), [img_files[img_range[0]], img_files[img_range[1]-1]])
#!/usr/bin/env python from __future__ import print_function import os, sys, argparse import numpy as np import scipy.io from sklearn.tree import DecisionTreeRegressor import cv2 as cv import random def parse_sequence(input_str): if len(input_str) == 0: return [] else: return [o.strip() for o in input_str.split(",") if o] def convert_to_8bit(arr, clip_percentile = 2.5): arr = np.clip(arr * (255.0 / np.percentile(arr, 100 - clip_percentile)), 0, 255) return arr.astype(np.uint8) def learn_regression_tree_ensemble(img_features, gt_illuminants, num_trees, max_tree_depth): eps = 0.001 inst = [[img_features[i], gt_illuminants[i][0] / (sum(gt_illuminants[i]) + eps), gt_illuminants[i][1] / (sum(gt_illuminants[i]) + eps)] for i in range(len(img_features))] inst.sort(key = lambda obj: obj[1]) #sort by r chromaticity stride = int(np.ceil(len(inst) / float(num_trees+1))) sz = 2*stride dst_model = [] for tree_idx in range(num_trees): #local group in the training data is additionally weighted by num_trees local_group_range = range(tree_idx*stride, min(tree_idx*stride+sz, len(inst))) X = num_trees * [inst[i][0] for i in local_group_range] y_r = num_trees * [inst[i][1] for i in local_group_range] y_g = num_trees * [inst[i][2] for i in local_group_range] #add the rest of the training data: X = X + [inst[i][0] for i in range(len(inst)) if i not in local_group_range] y_r = y_r + [inst[i][1] for i in range(len(inst)) if i not in local_group_range] y_g = y_g + [inst[i][2] for i in range(len(inst)) if i not in local_group_range] local_model = [] for feature_idx in range(len(X[0])): tree_r = DecisionTreeRegressor(max_depth = max_tree_depth, random_state = 1234) tree_r.fit([el[feature_idx][0] for el in X], y_r) tree_g = DecisionTreeRegressor(max_depth = max_tree_depth, random_state = 1234) tree_g.fit([el[feature_idx][0] for el in X], y_g) local_model.append([tree_r, tree_g]) dst_model.append(local_model) return dst_model def get_tree_node_lists(tree, tree_depth): dst_feature_idx = (2**tree_depth-1) * [0] dst_thresh_vals = (2**tree_depth-1) * [.5] dst_leaf_vals = (2**tree_depth) * [-1] leaf_idx_offset = (2**tree_depth-1) left = tree.tree_.children_left right = tree.tree_.children_right threshold = tree.tree_.threshold value = tree.tree_.value feature = tree.tree_.feature def recurse(left, right, threshold, feature, node, dst_idx, cur_depth): if (threshold[node] != -2): dst_feature_idx[dst_idx] = feature[node] dst_thresh_vals[dst_idx] = threshold[node] if left[node] != -1: recurse (left, right, threshold, feature, left[node], 2*dst_idx+1, cur_depth + 1) if right[node] != -1: recurse (left, right, threshold, feature, right[node], 2*dst_idx+2, cur_depth + 1) else: range_start = 2**(tree_depth - cur_depth) * dst_idx + (2**(tree_depth - cur_depth) - 1) - leaf_idx_offset range_end = 2**(tree_depth - cur_depth) * dst_idx + (2**(tree_depth - cur_depth+1) - 2) - leaf_idx_offset + 1 dst_leaf_vals[range_start:range_end] = (range_end - range_start) * [value[node][0][0]] recurse(left, right, threshold, feature, 0, 0, 0) return (dst_feature_idx, dst_thresh_vals, dst_leaf_vals) def generate_code(model, input_params, use_YML, out_file): feature_idx = [] thresh_vals = [] leaf_vals = [] depth = int(input_params["--max_tree_depth"]) for local_model in model: for feature in local_model: (local_feature_idx, local_thresh_vals, local_leaf_vals) = get_tree_node_lists(feature[0], depth) feature_idx += local_feature_idx thresh_vals += local_thresh_vals leaf_vals += local_leaf_vals (local_feature_idx, local_thresh_vals, local_leaf_vals) = get_tree_node_lists(feature[1], depth) feature_idx += local_feature_idx thresh_vals += local_thresh_vals leaf_vals += local_leaf_vals if use_YML: fs = cv.FileStorage(out_file, 1) fs.write("num_trees", len(model)) fs.write("num_tree_nodes", 2**depth) fs.write("feature_idx", np.array(feature_idx).astype(np.uint8)) fs.write("thresh_vals", np.array(thresh_vals).astype(np.float32)) fs.write("leaf_vals", np.array(leaf_vals).astype(np.float32)) fs.release() else: res = "/* This file was automatically generated by learn_color_balance.py script\n" +\ " * using the following parameters:\n" for key in input_params: res += " " + key + " " + input_params[key] res += "\n */\n" res += "const int num_features = 4;\n" res += "const int _num_trees = " + str(len(model)) + ";\n" res += "const int _num_tree_nodes = " + str(2**depth) + ";\n" res += "unsigned char _feature_idx[_num_trees*num_features*2*(_num_tree_nodes-1)] = {" + str(feature_idx[0]) for i in range(1,len(feature_idx)): res += "," + str(feature_idx[i]) res += "};\n" res += "float _thresh_vals[_num_trees*num_features*2*(_num_tree_nodes-1)] = {" + ("%.3ff" % thresh_vals[0])[1:] for i in range(1,len(thresh_vals)): res += "," + ("%.3ff" % thresh_vals[i])[1:] res += "};\n" res += "float _leaf_vals[_num_trees*num_features*2*_num_tree_nodes] = {" + ("%.3ff" % leaf_vals[0])[1:] for i in range(1,len(leaf_vals)): res += "," + ("%.3ff" % leaf_vals[i])[1:] res += "};\n" f = open(out_file,"w") f.write(res) f.close() def load_ground_truth(gt_path): gt = scipy.io.loadmat(gt_path) base_gt_illuminants = [] black_levels = [] if "groundtruth_illuminants" in gt.keys() and "darkness_level" in gt.keys(): #NUS 8-camera dataset format base_gt_illuminants = gt["groundtruth_illuminants"] black_levels = len(base_gt_illuminants) * [gt["darkness_level"][0][0]] elif "real_rgb" in gt.keys(): #Gehler-Shi dataset format base_gt_illuminants = gt["real_rgb"] black_levels = 87 * [0] + (len(base_gt_illuminants) - 87) * [129] else: print("Error: unknown ground-truth format, only formats of Gehler-Shi and NUS 8-camera datasets are supported") sys.exit(1) return (base_gt_illuminants, black_levels) if __name__ == '__main__': parser = argparse.ArgumentParser( description=("A tool for training the learning-based " "color balance algorithm. Currently supports " "training only on the Gehler-Shi and NUS 8-camera datasets."), formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument( "-i", "--input_folder", metavar="INPUT_FOLDER", default="", help=("Folder containing the training dataset. Assumes minimally " "processed png images like in the Gehler-Shi (http://www.cs.sfu.ca/~colour/data/shi_gehler/) " "or NUS 8-camera (http://www.comp.nus.edu.sg/~whitebal/illuminant/illuminant.html) datasets")) parser.add_argument( "-g", "--ground_truth", metavar="GROUND_TRUTH", default="real_illum_568..mat", help=("Path to the mat file containing ground truth illuminations. Currently " "supports formats supplied by the Gehler-Shi and NUS 8-camera datasets.")) parser.add_argument( "-r", "--range", metavar="RANGE", default="0,0", help="Range of images from the input dataset to use for training") parser.add_argument( "-o", "--out", metavar="OUT", default="color_balance_model.yml", help="Path to the output learnt model. Either a .yml (for loading during runtime) " "or .hpp (for compiling with the main code) file ") parser.add_argument( "--hist_bin_num", metavar="HIST_BIN_NUM", default="64", help=("Size of one dimension of a three-dimensional RGB histogram employed in the " "feature extraction step.")) parser.add_argument( "--num_trees", metavar="NUM_TREES", default="20", help=("Parameter to control the size of the regression tree ensemble")) parser.add_argument( "--max_tree_depth", metavar="MAX_TREE_DEPTH", default="4", help=("Maxmimum depth of regression trees constructed during training.")) parser.add_argument( "-a", "--num_augmented", metavar="NUM_AUGMENTED", default="2", help=("Number of augmented samples per one training image. Training set " "augmentation tends to improve the learnt model robustness.")) args, other_args = parser.parse_known_args() if not os.path.exists(args.input_folder): print("Error: " + args.input_folder + (" does not exist. Please, correctly " "specify the -i parameter")) sys.exit(1) if not os.path.exists(args.ground_truth): print("Error: " + args.ground_truth + (" does not exist. Please, correctly " "specify the -g parameter")) sys.exit(1) img_range = list(map(int,parse_sequence(args.range))) if len(img_range)!=2: print("Error: Please specify the -r parameter in form <first_image_index>,<last_image_index>") sys.exit(1) use_YML = None if args.out.endswith(".yml"): use_YML = True elif args.out.endswith(".hpp"): use_YML = False else: print("Error: Only .hpp and .yml are supported as output formats") sys.exit(1) hist_bin_num = int(args.hist_bin_num) num_trees = int(args.num_trees) max_tree_depth = int(args.max_tree_depth) img_files = sorted(os.listdir(args.input_folder)) (base_gt_illuminants,black_levels) = load_ground_truth(args.ground_truth) features = [] gt_illuminants = [] i=0 sz = len(img_files) random.seed(1234) inst = cv.xphoto.createLearningBasedWB() inst.setRangeMaxVal(255) inst.setSaturationThreshold(0.98) inst.setHistBinNum(hist_bin_num) for file in img_files: if (i>=img_range[0] and i<img_range[1]) or (img_range[0]==img_range[1]==0): cur_path = os.path.join(args.input_folder,file) im = cv.imread(cur_path, -1).astype(np.float32) im -= black_levels[i] im_8bit = convert_to_8bit(im) cur_img_features = inst.extractSimpleFeatures(im_8bit, None) features.append(cur_img_features.tolist()) gt_illuminants.append(base_gt_illuminants[i].tolist()) for iter in range(int(args.num_augmented)): R_coef = random.uniform(0.2, 5.0) G_coef = random.uniform(0.2, 5.0) B_coef = random.uniform(0.2, 5.0) im_8bit = im im_8bit[:,:,0] *= B_coef im_8bit[:,:,1] *= G_coef im_8bit[:,:,2] *= R_coef im_8bit = convert_to_8bit(im) cur_img_features = inst.extractSimpleFeatures(im_8bit, None) features.append(cur_img_features.tolist()) illum = base_gt_illuminants[i] illum[0] *= R_coef illum[1] *= G_coef illum[2] *= B_coef gt_illuminants.append(illum.tolist()) sys.stdout.write("Computing features: [%3d/%3d]\r" % (i, sz)), sys.stdout.flush() i+=1 print("\nLearning the model...") model = learn_regression_tree_ensemble(features, gt_illuminants, num_trees, max_tree_depth) print("Writing the model...") generate_code(model,{"-r":args.range, "--hist_bin_num": args.hist_bin_num, "--num_trees": args.num_trees, "--max_tree_depth": args.max_tree_depth, "--num_augmented": args.num_augmented}, use_YML, args.out) print("Done")
#!/usr/bin/env python3 # SPDX-License-Identifier: BSD-3-Clause # # Copyright (c) 2019, Josh Chien. All rights reserved. from argparse import ArgumentParser import numpy as np from PIL import Image import io import warnings import os import cairo from cairosvg import svg2png import math import tempfile def SaveArucoDictBytesList(filePath = "arucoDictBytesList.npz"): import numpy as np # cv2 is optional dependency try: import cv2 from cv2 import aruco # Name, Flag dictInfo = \ [ ("DICT_4X4_1000", aruco.DICT_4X4_1000), ("DICT_5X5_1000", aruco.DICT_5X5_1000), ("DICT_6X6_1000", aruco.DICT_6X6_1000), ("DICT_7X7_1000", aruco.DICT_7X7_1000), ("DICT_ARUCO_ORIGINAL", aruco.DICT_ARUCO_ORIGINAL), ("DICT_APRILTAG_16h5", aruco.DICT_APRILTAG_16h5), ("DICT_APRILTAG_25h9", aruco.DICT_APRILTAG_25h9), ("DICT_APRILTAG_36h10", aruco.DICT_APRILTAG_36h10), ("DICT_APRILTAG_36h11", aruco.DICT_APRILTAG_36h11), ] arucoDictBytesList = {} for name, flag in dictInfo: arucoDict = aruco.Dictionary_get(flag) arucoDictBytesList[name] = arucoDict.bytesList np.savez_compressed(filePath, **arucoDictBytesList) return arucoDictBytesList except Exception as e: warnings.warn(str(e)) return None return None class MarkerPrinter: debugMode = None # "LINE" "BLOCK" # Static Vars # SVG https://oreillymedia.github.io/Using_SVG/guide/units.html # for PDF and SVG, 1 pixel = 1/72 inch, 1 cm = 1/2.54 inch, 1pixl = 2.54/72 cm, 1cm = 72/2.54 pixels ptPerMeter = 72 / 2.54 * 100 surface = { ".SVG": cairo.SVGSurface, ".PDF": cairo.PDFSurface, ".PS": cairo.PSSurface } if (os.path.isfile("arucoDictBytesList.npz")): arucoDictBytesList = np.load("arucoDictBytesList.npz") else: warnings.warn("Missing build-in arucoDictBytesList.npz, generate it again") arucoDictBytesList = SaveArucoDictBytesList(filePath = "arucoDictBytesList.npz") arucoDictMarkerSize = \ { "DICT_4X4_1000": 4, "DICT_5X5_1000": 5, "DICT_6X6_1000": 6, "DICT_7X7_1000": 7, "DICT_ARUCO_ORIGINAL": 5, "DICT_APRILTAG_16h5": 4, "DICT_APRILTAG_25h9": 5, "DICT_APRILTAG_36h10": 6, "DICT_APRILTAG_36h11": 6, } def ArucoBits(dictionary, markerID): bytesList = MarkerPrinter.arucoDictBytesList[dictionary][markerID].ravel() markerSize = MarkerPrinter.arucoDictMarkerSize[dictionary] arucoBits = np.zeros(shape = (markerSize, markerSize), dtype = bool) base2List = np.array( [128, 64, 32, 16, 8, 4, 2, 1], dtype = np.uint8) currentByteIdx = 0 currentByte = bytesList[currentByteIdx] currentBit = 0 for row in range(markerSize): for col in range(markerSize): if(currentByte >= base2List[currentBit]): arucoBits[row, col] = True currentByte -= base2List[currentBit] currentBit = currentBit + 1 if(currentBit == 8): currentByteIdx = currentByteIdx + 1 currentByte = bytesList[currentByteIdx] if(8 * (currentByteIdx + 1) > arucoBits.size): currentBit = 8 * (currentByteIdx + 1) - arucoBits.size else: currentBit = 0; return arucoBits def __DrawBlock(context, dictionary = None, markerLength = None, borderBits = 1, chessboardSize = (1, 1), squareLength = None, firstMarkerID = 0, blockX = 0, blockY = 0, originX = 0, originY = 0, pageBorderX = 0, pageBorderY = 0, mode = "CHESS" ): if(squareLength is None): squareLength = markerLength if(markerLength is None): markerLength = squareLength if((squareLength is None) or (markerLength is None)): raise ValueError("lenght is None") dawMarkerBlock = False if ((mode == "ARUCO") or (mode == "ARUCOGRID")): dawMarkerBlock = True elif(chessboardSize[1] % 2 == 0): dawMarkerBlock = (( blockX % 2 == 0 ) == ( blockY % 2 == 0 )) else: dawMarkerBlock = (( blockX % 2 == 0 ) != ( blockY % 2 == 0 )) if(dawMarkerBlock): if (mode != "CHESS"): if(dictionary is None): raise ValueError("dictionary is None") if (mode == "CHARUCO"): originX = (blockX - originX) * squareLength + (squareLength - markerLength)*0.5 + pageBorderX originY = (blockY - originY) * squareLength + (squareLength - markerLength)*0.5 + pageBorderY else: originX = (blockX - originX) * squareLength + pageBorderX originY = (blockY - originY) * squareLength + pageBorderY context.set_source_rgba(0.0, 0.0, 0.0, 1.0) context.rectangle(originX, originY, markerLength, markerLength) context.fill() # Generate marker if (mode == "CHARUCO"): markerID = firstMarkerID + (blockY * chessboardSize[0] + blockX) // 2 elif (mode == "ARUCO"): markerID = firstMarkerID elif (mode == "ARUCOGRID"): markerID = firstMarkerID + (blockY * chessboardSize[0] + blockX) marker = MarkerPrinter.ArucoBits(dictionary, markerID) markerSize = marker.shape[0] unitLength = markerLength / (float)(markerSize + borderBits * 2) markerBitMap = np.zeros(shape = (markerSize+borderBits*2, markerSize+borderBits*2), dtype = bool) markerBitMap[borderBits:-borderBits,borderBits:-borderBits] = marker markerBitMap = np.swapaxes(markerBitMap, 0, 1) # Compute edges hEdges = np.zeros(shape = (markerSize+1,markerSize+1), dtype = bool) vEdges = np.zeros(shape = (markerSize+1,markerSize+1), dtype = bool) for mx in range(markerSize): for my in range(markerSize+1): if ( markerBitMap[mx + borderBits, my + borderBits - 1] ^ markerBitMap[mx + borderBits, my + borderBits]): hEdges[mx, my] = True for mx in range(markerSize+1): for my in range(markerSize): if ( markerBitMap[mx + borderBits - 1, my + borderBits] ^ markerBitMap[mx + borderBits, my + borderBits]): vEdges[mx, my] = True # Use for debug, check edge or position is correct or not if(MarkerPrinter.debugMode is not None): if(MarkerPrinter.debugMode.upper() == "LINE"): context.set_source_rgba(1.0, 1.0, 1.0, 1.0) context.set_line_width(unitLength * 0.1) for mx in range(markerSize+1): for my in range(markerSize+1): if(hEdges[mx, my]): context.move_to(originX + unitLength * (mx + borderBits ), originY + unitLength * (my + borderBits )) context.line_to(originX + unitLength * (mx + borderBits + 1), originY + unitLength * (my + borderBits )) context.stroke() if(vEdges[mx, my]): context.move_to(originX + unitLength * (mx + borderBits ), originY + unitLength * (my + borderBits )) context.line_to(originX + unitLength * (mx + borderBits ), originY + unitLength * (my + borderBits + 1)) context.stroke() elif(MarkerPrinter.debugMode.upper() == "BLOCK"): context.set_source_rgba(1.0, 1.0, 1.0, 1.0) for mx in range(markerSize): for my in range(markerSize): if(markerBitMap[mx + borderBits, my + borderBits]): context.rectangle( originX + unitLength * (mx + borderBits), originY + unitLength * (my + borderBits), unitLength, unitLength) context.fill() else: while(True): found = False # Find start position sx = 0 sy = 0 for my in range(markerSize): for mx in range(markerSize): if(hEdges[mx, my]): found = True sx = mx sy = my if(markerBitMap[sx + borderBits, sy + borderBits - 1]): context.set_source_rgba(0.0, 0.0, 0.0, 1.0) else: context.set_source_rgba(1.0, 1.0, 1.0, 1.0) break if(found): break context.move_to (originX + unitLength * (sx + borderBits), originY + unitLength * (sy + borderBits)) # Use wall follower maze solving algorithm to draw white part cx = sx cy = sy cd = 3 # 0 right, 1 down, 2 left, 3 up while(True): nd = (cd + 1)%4 moved = False if(nd == 0): if(hEdges[cx, cy]): hEdges[cx, cy] = False cx = cx + 1 moved = True elif(nd == 1): if(vEdges[cx, cy]): vEdges[cx, cy] = False cy = cy + 1 moved = True elif(nd == 2): if(hEdges[cx - 1, cy]): hEdges[cx - 1, cy] = False cx = cx - 1 moved = True elif(nd == 3): if(vEdges[cx, cy - 1]): vEdges[cx, cy - 1] = False cy = cy - 1 moved = True if((cx == sx) and (cy == sy)): context.close_path () break else: if(moved): context.line_to(originX + unitLength * (cx + borderBits), originY + unitLength * (cy + borderBits)) cd = nd if (found): context.fill() else: break else: originX = (blockX - originX) * squareLength + pageBorderX originY = (blockY - originY) * squareLength + pageBorderY context.set_source_rgba(0.0, 0.0, 0.0, 1.0) context.rectangle(originX, originY, squareLength, squareLength) context.fill() def __CheckChessMarkerImage(chessboardSize, squareLength, subSize=None, pageBorder=(0,0)): if(len(chessboardSize) != 2): raise ValueError("len(chessboardSize) != 2") else: sizeX, sizeY = chessboardSize if(len(pageBorder) != 2): raise ValueError("len(pageBorder) != 2") else: pageBorderX, pageBorderY = pageBorder if(sizeX <= 1): raise ValueError("sizeX <= 1") if(sizeY <= 1): raise ValueError("sizeY <= 1") if(squareLength <= 0): raise ValueError("squareLength <= 0") if(pageBorderX < 0): raise ValueError("pageBorderX < 0") if(pageBorderY < 0): raise ValueError("pageBorderY < 0") if(subSize is not None): subSizeX, subSizeY = subSize if(subSizeX < 0): raise ValueError("subSizeX < 0") if(subSizeY < 0): raise ValueError("subSizeY < 0") def PreviewChessMarkerImage(chessboardSize, squareLength, pageBorder=(0, 0), dpi=96): MarkerPrinter.__CheckChessMarkerImage(chessboardSize, squareLength, pageBorder=pageBorder) squareLength = squareLength * MarkerPrinter.ptPerMeter pageBorder = (pageBorder[0] * MarkerPrinter.ptPerMeter, pageBorder[1] * MarkerPrinter.ptPerMeter) prevImage = None with tempfile.TemporaryDirectory() as tmpdirname: with MarkerPrinter.surface[".SVG"] ( os.path.join(tmpdirname, "tempSVG.svg"), chessboardSize[0] * squareLength + pageBorder[0] * 2, chessboardSize[1] * squareLength + pageBorder[1] * 2) as surface: context = cairo.Context(surface) context.set_source_rgba(0.5, 0.5, 0.5, 1.0) context.rectangle(0, 0, chessboardSize[0] * squareLength + pageBorder[0] * 2, chessboardSize[1] * squareLength + pageBorder[1] * 2) context.fill() context.set_source_rgba(1.0, 1.0, 1.0, 1.0) context.rectangle(pageBorder[0], pageBorder[1], chessboardSize[0] * squareLength, chessboardSize[1] * squareLength) context.fill() for bx in range(chessboardSize[0]): for by in range(chessboardSize[1]): MarkerPrinter.__DrawBlock( context = context, chessboardSize = chessboardSize, squareLength = squareLength, blockX = bx, blockY = by, pageBorderX = pageBorder[0], pageBorderY = pageBorder[1], mode = "CHESS") with open(os.path.join(tmpdirname, "tempSVG.svg")) as file: prevImage = Image.open(io.BytesIO(svg2png(bytestring=file.read(), dpi=dpi))) return prevImage def GenChessMarkerImage(filePath, chessboardSize, squareLength, subSize=None, pageBorder=(0, 0)): MarkerPrinter.__CheckChessMarkerImage(chessboardSize, squareLength, subSize=subSize, pageBorder=pageBorder) squareLength = squareLength * MarkerPrinter.ptPerMeter pageBorder = (pageBorder[0] * MarkerPrinter.ptPerMeter, pageBorder[1] * MarkerPrinter.ptPerMeter) # Check path, nameExt = os.path.split(filePath) name, ext = os.path.splitext(nameExt) if(len(path) > 0): if not(os.path.isdir(path)): os.makedirs(path) if((ext.upper() != ".SVG") and (ext.upper() != ".PS") and (ext.upper() != ".PDF")): raise ValueError("file extention is not supported, should be: svg, ps, pdf") # Draw with MarkerPrinter.surface[ext.upper()] ( filePath, chessboardSize[0] * squareLength + pageBorder[0] * 2, chessboardSize[1] * squareLength + pageBorder[1] * 2) as surface: context = cairo.Context(surface) context.set_source_rgba(0.5, 0.5, 0.5, 1.0) context.rectangle(0, 0, chessboardSize[0] * squareLength + pageBorder[0] * 2, chessboardSize[1] * squareLength + pageBorder[1] * 2) context.fill() context.set_source_rgba(1.0, 1.0, 1.0, 1.0) context.rectangle(pageBorder[0], pageBorder[1], chessboardSize[0] * squareLength, chessboardSize[1] * squareLength) context.fill() for bx in range(chessboardSize[0]): for by in range(chessboardSize[1]): MarkerPrinter.__DrawBlock( context = context, chessboardSize = chessboardSize, squareLength = squareLength, blockX = bx, blockY = by, pageBorderX = pageBorder[0], pageBorderY = pageBorder[1], mode = "CHESS" ) if(subSize is not None): subDivide = (\ chessboardSize[0] // subSize[0] + int(chessboardSize[0] % subSize[0] > 0), chessboardSize[1] // subSize[1] + int(chessboardSize[1] % subSize[1] > 0)) subChessboardBlockX = np.clip ( np.arange(0, subSize[0] * subDivide[0] + 1, subSize[0]), 0, chessboardSize[0]) subChessboardBlockY = np.clip ( np.arange(0, subSize[1] * subDivide[1] + 1, subSize[1]), 0, chessboardSize[1]) subChessboardSliceX = subChessboardBlockX.astype(np.float) * squareLength subChessboardSliceY = subChessboardBlockY.astype(np.float) * squareLength for subXID in range(subDivide[0]): for subYID in range(subDivide[1]): subName = name + \ "_X" + str(subChessboardBlockX[subXID]) + "_" + str(subChessboardBlockX[subXID+1]) + \ "_Y" + str(subChessboardBlockY[subYID]) + "_" + str(subChessboardBlockY[subYID+1]) with MarkerPrinter.surface[ext.upper()]( os.path.join(path, subName + ext), subChessboardSliceX[subXID+1] - subChessboardSliceX[subXID] + pageBorder[0] * 2, subChessboardSliceY[subYID+1] - subChessboardSliceY[subYID] + pageBorder[1] * 2) as surface: context = cairo.Context(surface) context.set_source_rgba(0.5, 0.5, 0.5, 1.0) context.rectangle(0, 0, subChessboardSliceX[subXID+1] - subChessboardSliceX[subXID] + pageBorder[0] * 2, subChessboardSliceY[subYID+1] - subChessboardSliceY[subYID] + pageBorder[1] * 2) context.fill() context.set_source_rgba(1.0, 1.0, 1.0, 1.0) context.rectangle(pageBorder[0], pageBorder[1], subChessboardSliceX[subXID+1] - subChessboardSliceX[subXID], subChessboardSliceY[subYID+1] - subChessboardSliceY[subYID]) context.fill() for bx in range(subChessboardBlockX[subXID+1] - subChessboardBlockX[subXID]): for by in range(subChessboardBlockY[subYID+1] - subChessboardBlockY[subYID]): MarkerPrinter.__DrawBlock( context = context, chessboardSize = chessboardSize, squareLength = squareLength, blockX = subChessboardBlockX[subXID] + bx, blockY = subChessboardBlockY[subYID] + by, originX = subChessboardBlockX[subXID], originY = subChessboardBlockY[subYID], pageBorderX = pageBorder[0], pageBorderY = pageBorder[1], mode = "CHESS" ) def __CheckArucoMarkerImage(dictionary, markerID, markerLength, borderBits=1, pageBorder=(0, 0)): if(len(pageBorder) != 2): raise ValueError("len(pageBorder) != 2") else: pageBorderX, pageBorderY = pageBorder if not (dictionary in MarkerPrinter.arucoDictBytesList): raise ValueError("dictionary is not support") if(MarkerPrinter.arucoDictBytesList[dictionary].shape[0] <= markerID ): raise ValueError("markerID is not in aruce dictionary") if(markerID < 0): raise ValueError("markerID < 0") if(markerLength <= 0): raise ValueError("markerLength <= 0") if(borderBits <= 0): raise ValueError("borderBits <= 0") if(pageBorderX < 0): raise ValueError("pageBorderX < 0") if(pageBorderY < 0): raise ValueError("pageBorderY < 0") def PreviewArucoMarkerImage(dictionary, markerID, markerLength, borderBits=1, pageBorder=(0, 0), dpi=96): MarkerPrinter.__CheckArucoMarkerImage(dictionary, markerID, markerLength, borderBits=borderBits, pageBorder=pageBorder) markerLength = markerLength * MarkerPrinter.ptPerMeter pageBorder = (pageBorder[0] * MarkerPrinter.ptPerMeter, pageBorder[1] * MarkerPrinter.ptPerMeter) prevImage = None with tempfile.TemporaryDirectory() as tmpdirname: with MarkerPrinter.surface[".SVG"] ( os.path.join(tmpdirname, "tempSVG.svg"), markerLength + pageBorder[0] * 2, markerLength + pageBorder[1] * 2) as surface: context = cairo.Context(surface) context.set_source_rgba(0.5, 0.5, 0.5, 1.0) context.rectangle(0, 0, markerLength + pageBorder[0] * 2, markerLength + pageBorder[1] * 2) context.fill() context.set_source_rgba(1.0, 1.0, 1.0, 1.0) context.rectangle(pageBorder[0], pageBorder[1], markerLength, markerLength) context.fill() MarkerPrinter.__DrawBlock( context = context, dictionary = dictionary, markerLength = markerLength, borderBits = borderBits, firstMarkerID = markerID, pageBorderX = pageBorder[0], pageBorderY = pageBorder[1], mode = "ARUCO") with open(os.path.join(tmpdirname, "tempSVG.svg")) as file: prevImage = Image.open(io.BytesIO(svg2png(bytestring=file.read(), dpi=dpi))) return prevImage def GenArucoMarkerImage(filePath, dictionary, markerID, markerLength, borderBits=1, pageBorder=(0, 0)): MarkerPrinter.__CheckArucoMarkerImage(dictionary, markerID, markerLength, borderBits=borderBits, pageBorder=pageBorder) markerLength = markerLength * MarkerPrinter.ptPerMeter pageBorder = (pageBorder[0] * MarkerPrinter.ptPerMeter, pageBorder[1] * MarkerPrinter.ptPerMeter) # Check path, nameExt = os.path.split(filePath) name, ext = os.path.splitext(nameExt) if(len(path) > 0): if not(os.path.isdir(path)): os.makedirs(path) if((ext.upper() != ".SVG") and (ext.upper() != ".PS") and (ext.upper() != ".PDF")): raise ValueError("file extention is not supported, should be: svg, ps, pdf") # Draw with MarkerPrinter.surface[ext.upper()] ( filePath, markerLength + pageBorder[0] * 2, markerLength + pageBorder[1] * 2) as surface: context = cairo.Context(surface) context.set_source_rgba(0.5, 0.5, 0.5, 1.0) context.rectangle(0, 0, markerLength + pageBorder[0] * 2, markerLength + pageBorder[1] * 2) context.fill() context.set_source_rgba(1.0, 1.0, 1.0, 1.0) context.rectangle(pageBorder[0], pageBorder[1], markerLength, markerLength) context.fill() MarkerPrinter.__DrawBlock( context = context, dictionary = dictionary, markerLength = markerLength, borderBits = borderBits, firstMarkerID = markerID, pageBorderX = pageBorder[0], pageBorderY = pageBorder[1], mode = "ARUCO") def __CheckCharucoMarkerImage(dictionary, chessboardSize, squareLength, markerLength, borderBits=1, subSize=None, pageBorder=(0, 0)): if(len(chessboardSize) != 2): raise ValueError("len(chessboardSize) != 2") else: sizeX, sizeY = chessboardSize if(len(pageBorder) != 2): raise ValueError("len(pageBorder) != 2") else: pageBorderX, pageBorderY = pageBorder if not (dictionary in MarkerPrinter.arucoDictBytesList): raise ValueError("dictionary is not support") if(MarkerPrinter.arucoDictBytesList[dictionary].shape[0] < (( sizeX * sizeY ) // 2)): raise ValueError("aruce dictionary is not enough for your board size") if(sizeX <= 1): raise ValueError("sizeX <= 1") if(sizeY <= 1): raise ValueError("sizeY <= 1") if(squareLength <= 0): raise ValueError("squareLength <= 0") if(markerLength <= 0): raise ValueError("markerLength <= 0") if(squareLength < markerLength): raise ValueError("squareLength < markerLength") if(borderBits <= 0): raise ValueError("borderBits <= 0") if(pageBorderX < 0): raise ValueError("pageBorderX < 0") if(pageBorderY < 0): raise ValueError("pageBorderY < 0") if(subSize is not None): subSizeX, subSizeY = subSize if(subSizeX < 0): raise ValueError("subSizeX < 0") if(subSizeY < 0): raise ValueError("subSizeY < 0") def PreviewCharucoMarkerImage(dictionary, chessboardSize, squareLength, markerLength, borderBits=1, pageBorder=(0, 0), dpi=96): MarkerPrinter.__CheckCharucoMarkerImage(dictionary, chessboardSize, squareLength, markerLength, borderBits=borderBits, pageBorder=pageBorder) squareLength = squareLength * MarkerPrinter.ptPerMeter markerLength = markerLength * MarkerPrinter.ptPerMeter pageBorder = (pageBorder[0] * MarkerPrinter.ptPerMeter, pageBorder[1] * MarkerPrinter.ptPerMeter) prevImage = None with tempfile.TemporaryDirectory() as tmpdirname: with MarkerPrinter.surface[".SVG"] ( os.path.join(tmpdirname, "tempSVG.svg"), chessboardSize[0] * squareLength + pageBorder[0] * 2, chessboardSize[1] * squareLength + pageBorder[1] * 2) as surface: context = cairo.Context(surface) context.set_source_rgba(0.5, 0.5, 0.5, 1.0) context.rectangle(0, 0, chessboardSize[0] * squareLength + pageBorder[0] * 2, chessboardSize[1] * squareLength + pageBorder[1] * 2) context.fill() context.set_source_rgba(1.0, 1.0, 1.0, 1.0) context.rectangle(pageBorder[0], pageBorder[1], chessboardSize[0] * squareLength, chessboardSize[1] * squareLength) context.fill() for bx in range(chessboardSize[0]): for by in range(chessboardSize[1]): MarkerPrinter.__DrawBlock( context = context, dictionary = dictionary, markerLength = markerLength, borderBits = borderBits, chessboardSize = chessboardSize, squareLength = squareLength, blockX = bx, blockY = by, pageBorderX = pageBorder[0], pageBorderY = pageBorder[1], mode = "CHARUCO") with open(os.path.join(tmpdirname, "tempSVG.svg")) as file: prevImage = Image.open(io.BytesIO(svg2png(bytestring=file.read(), dpi=dpi))) return prevImage def GenCharucoMarkerImage(filePath, dictionary, chessboardSize, squareLength, markerLength, borderBits=1, subSize=None, pageBorder=(0, 0)): MarkerPrinter.__CheckCharucoMarkerImage(dictionary, chessboardSize, squareLength, markerLength, borderBits=borderBits, subSize=subSize, pageBorder=pageBorder) squareLength = squareLength * MarkerPrinter.ptPerMeter markerLength = markerLength * MarkerPrinter.ptPerMeter pageBorder = (pageBorder[0] * MarkerPrinter.ptPerMeter, pageBorder[1] * MarkerPrinter.ptPerMeter) # Check path, nameExt = os.path.split(filePath) name, ext = os.path.splitext(nameExt) if(len(path) > 0): if not(os.path.isdir(path)): os.makedirs(path) if((ext.upper() != ".SVG") and (ext.upper() != ".PS") and (ext.upper() != ".PDF")): raise ValueError("file extention is not supported, should be: svg, ps, pdf") # Draw with MarkerPrinter.surface[ext.upper()] ( filePath, chessboardSize[0] * squareLength + pageBorder[0] * 2, chessboardSize[1] * squareLength + pageBorder[1] * 2) as surface: context = cairo.Context(surface) context.set_source_rgba(0.5, 0.5, 0.5, 1.0) context.rectangle(0, 0, chessboardSize[0] * squareLength + pageBorder[0] * 2, chessboardSize[1] * squareLength + pageBorder[1] * 2) context.fill() context.set_source_rgba(1.0, 1.0, 1.0, 1.0) context.rectangle(pageBorder[0], pageBorder[1], chessboardSize[0] * squareLength, chessboardSize[1] * squareLength) context.fill() for bx in range(chessboardSize[0]): for by in range(chessboardSize[1]): MarkerPrinter.__DrawBlock( context = context, dictionary = dictionary, markerLength = markerLength, borderBits = borderBits, chessboardSize = chessboardSize, squareLength = squareLength, blockX = bx, blockY = by, pageBorderX = pageBorder[0], pageBorderY = pageBorder[1], mode = "CHARUCO") if(subSize is not None): subDivide = (\ chessboardSize[0] // subSize[0] + int(chessboardSize[0] % subSize[0] > 0), chessboardSize[1] // subSize[1] + int(chessboardSize[1] % subSize[1] > 0)) subChessboardBlockX = np.clip ( np.arange(0, subSize[0] * subDivide[0] + 1, subSize[0]), 0, chessboardSize[0]) subChessboardBlockY = np.clip ( np.arange(0, subSize[1] * subDivide[1] + 1, subSize[1]), 0, chessboardSize[1]) subChessboardSliceX = subChessboardBlockX.astype(np.float) * squareLength subChessboardSliceY = subChessboardBlockY.astype(np.float) * squareLength for subXID in range(subDivide[0]): for subYID in range(subDivide[1]): subName = name + \ "_X" + str(subChessboardBlockX[subXID]) + "_" + str(subChessboardBlockX[subXID+1]) + \ "_Y" + str(subChessboardBlockY[subYID]) + "_" + str(subChessboardBlockY[subYID+1]) with MarkerPrinter.surface[ext.upper()]( os.path.join(path, subName + ext), subChessboardSliceX[subXID+1] - subChessboardSliceX[subXID] + pageBorder[0] * 2, subChessboardSliceY[subYID+1] - subChessboardSliceY[subYID] + pageBorder[1] * 2) as surface: context = cairo.Context(surface) context.set_source_rgba(0.5, 0.5, 0.5, 1.0) context.rectangle(0, 0, subChessboardSliceX[subXID+1] - subChessboardSliceX[subXID] + pageBorder[0] * 2, subChessboardSliceY[subYID+1] - subChessboardSliceY[subYID] + pageBorder[1] * 2) context.fill() context.set_source_rgba(1.0, 1.0, 1.0, 1.0) context.rectangle(pageBorder[0], pageBorder[1], subChessboardSliceX[subXID+1] - subChessboardSliceX[subXID], subChessboardSliceY[subYID+1] - subChessboardSliceY[subYID]) context.fill() for bx in range(subChessboardBlockX[subXID+1] - subChessboardBlockX[subXID]): for by in range(subChessboardBlockY[subYID+1] - subChessboardBlockY[subYID]): MarkerPrinter.__DrawBlock( context = context, dictionary = dictionary, markerLength = markerLength, borderBits = borderBits, chessboardSize = chessboardSize, squareLength = squareLength, blockX = subChessboardBlockX[subXID] + bx, blockY = subChessboardBlockY[subYID] + by, originX = subChessboardBlockX[subXID], originY = subChessboardBlockY[subYID], pageBorderX = pageBorder[0], pageBorderY = pageBorder[1], mode = "CHARUCO") def __CheckArucoGridMarkerImage(dictionary, chessboardSize, markerLength, markerSeparation, firstMarker, borderBits=1, subSize=None, pageBorder=(0, 0)): if(len(chessboardSize) != 2): raise ValueError("len(chessboardSize) != 2") else: sizeX, sizeY = chessboardSize if(len(pageBorder) != 2): raise ValueError("len(pageBorder) != 2") else: pageBorderX, pageBorderY = pageBorder if not (dictionary in MarkerPrinter.arucoDictBytesList): raise ValueError("dictionary is not support") if(MarkerPrinter.arucoDictBytesList[dictionary].shape[0] < (( sizeX * sizeY ) + firstMarker)): raise ValueError("aruce dictionary is not enough for your board size and firstMarker") if(sizeX <= 1): raise ValueError("sizeX <= 1") if(sizeY <= 1): raise ValueError("sizeY <= 1") if(markerLength <= 0): raise ValueError("markerLength <= 0") if(markerSeparation <= 0): raise ValueError("markerSeparation <= 0") if(borderBits <= 0): raise ValueError("borderBits <= 0") if(pageBorderX < 0): raise ValueError("pageBorderX < 0") if(pageBorderY < 0): raise ValueError("pageBorderY < 0") if(subSize is not None): subSizeX, subSizeY = subSize if(subSizeX < 0): raise ValueError("subSizeX < 0") if(subSizeY < 0): raise ValueError("subSizeY < 0") def PreviewArucoGridMarkerImage(dictionary, chessboardSize, markerLength, markerSeparation, firstMarker, borderBits=1, pageBorder=(0, 0), dpi=96): MarkerPrinter.__CheckArucoGridMarkerImage(dictionary, chessboardSize, markerLength, markerSeparation, firstMarker, borderBits=borderBits, pageBorder=pageBorder) markerLength = markerLength * MarkerPrinter.ptPerMeter markerSeparation = markerSeparation * MarkerPrinter.ptPerMeter pageBorder = (pageBorder[0] * MarkerPrinter.ptPerMeter, pageBorder[1] * MarkerPrinter.ptPerMeter) prevImage = None with tempfile.TemporaryDirectory() as tmpdirname: with MarkerPrinter.surface[".SVG"] ( os.path.join(tmpdirname, "tempSVG.svg"), chessboardSize[0] * markerLength + (chessboardSize[0] - 1) * markerSeparation + pageBorder[0] * 2, chessboardSize[1] * markerLength + (chessboardSize[1] - 1) * markerSeparation + pageBorder[1] * 2) as surface: context = cairo.Context(surface) context.set_source_rgba(0.5, 0.5, 0.5, 1.0) context.rectangle(0, 0, chessboardSize[0] * markerLength + (chessboardSize[0] - 1) * markerSeparation + pageBorder[0] * 2, chessboardSize[1] * markerLength + (chessboardSize[1] - 1) * markerSeparation + pageBorder[1] * 2) context.fill() context.set_source_rgba(1.0, 1.0, 1.0, 1.0) context.rectangle(pageBorder[0], pageBorder[1], chessboardSize[0] * markerLength + (chessboardSize[0] - 1) * markerSeparation, chessboardSize[1] * markerLength + (chessboardSize[1] - 1) * markerSeparation) context.fill() for bx in range(chessboardSize[0]): for by in range(chessboardSize[1]): MarkerPrinter.__DrawBlock( context = context, dictionary = dictionary, markerLength = markerLength, borderBits = borderBits, chessboardSize = chessboardSize, squareLength = markerLength + markerSeparation, firstMarkerID = firstMarker, blockX = bx, blockY = by, pageBorderX = pageBorder[0], pageBorderY = pageBorder[1], mode = "ARUCOGRID") with open(os.path.join(tmpdirname, "tempSVG.svg")) as file: prevImage = Image.open(io.BytesIO(svg2png(bytestring=file.read(), dpi=dpi))) return prevImage def GenArucoGridMarkerImage(filePath, dictionary, chessboardSize, markerLength, markerSeparation, firstMarker, borderBits=1, subSize=None, pageBorder=(0, 0)): MarkerPrinter.__CheckArucoGridMarkerImage(dictionary, chessboardSize, markerLength, markerSeparation, firstMarker, borderBits=borderBits, subSize=subSize, pageBorder=pageBorder) markerLength = markerLength * MarkerPrinter.ptPerMeter markerSeparation = markerSeparation * MarkerPrinter.ptPerMeter pageBorder = (pageBorder[0] * MarkerPrinter.ptPerMeter, pageBorder[1] * MarkerPrinter.ptPerMeter) # Check path, nameExt = os.path.split(filePath) name, ext = os.path.splitext(nameExt) if(len(path) > 0): if not(os.path.isdir(path)): os.makedirs(path) if((ext.upper() != ".SVG") and (ext.upper() != ".PS") and (ext.upper() != ".PDF")): raise ValueError("file extention is not supported, should be: svg, ps, pdf") # Draw with MarkerPrinter.surface[ext.upper()] ( filePath, chessboardSize[0] * markerLength + (chessboardSize[0] - 1) * markerSeparation + pageBorder[0] * 2, chessboardSize[1] * markerLength + (chessboardSize[1] - 1) * markerSeparation + pageBorder[1] * 2) as surface: context = cairo.Context(surface) context.set_source_rgba(0.5, 0.5, 0.5, 1.0) context.rectangle(0, 0, chessboardSize[0] * markerLength + (chessboardSize[0] - 1) * markerSeparation + pageBorder[0] * 2, chessboardSize[1] * markerLength + (chessboardSize[1] - 1) * markerSeparation + pageBorder[1] * 2) context.fill() context.set_source_rgba(1.0, 1.0, 1.0, 1.0) context.rectangle(pageBorder[0], pageBorder[1], chessboardSize[0] * markerLength + (chessboardSize[0] - 1) * markerSeparation, chessboardSize[1] * markerLength + (chessboardSize[1] - 1) * markerSeparation) context.fill() for bx in range(chessboardSize[0]): for by in range(chessboardSize[1]): MarkerPrinter.__DrawBlock( context = context, dictionary = dictionary, markerLength = markerLength, borderBits = borderBits, chessboardSize = chessboardSize, squareLength = markerLength + markerSeparation, firstMarkerID = firstMarker, blockX = bx, blockY = by, pageBorderX = pageBorder[0], pageBorderY = pageBorder[1], mode = "ARUCOGRID") if(subSize is not None): subDivide = (\ chessboardSize[0] // subSize[0] + int(chessboardSize[0] % subSize[0] > 0), chessboardSize[1] // subSize[1] + int(chessboardSize[1] % subSize[1] > 0)) subChessboardBlockX = np.clip ( np.arange(0, subSize[0] * subDivide[0] + 1, subSize[0]), 0, chessboardSize[0]) subChessboardBlockY = np.clip ( np.arange(0, subSize[1] * subDivide[1] + 1, subSize[1]), 0, chessboardSize[1]) subChessboardSliceX = subChessboardBlockX.astype(np.float) * (markerLength + markerSeparation) subChessboardSliceY = subChessboardBlockY.astype(np.float) * (markerLength + markerSeparation) subChessboardSliceX[-1] -= markerSeparation subChessboardSliceY[-1] -= markerSeparation for subXID in range(subDivide[0]): for subYID in range(subDivide[1]): subName = name + \ "_X" + str(subChessboardBlockX[subXID]) + "_" + str(subChessboardBlockX[subXID+1]) + \ "_Y" + str(subChessboardBlockY[subYID]) + "_" + str(subChessboardBlockY[subYID+1]) with MarkerPrinter.surface[ext.upper()]( os.path.join(path, subName + ext), subChessboardSliceX[subXID+1] - subChessboardSliceX[subXID] + pageBorder[0] * 2, subChessboardSliceY[subYID+1] - subChessboardSliceY[subYID] + pageBorder[1] * 2) as surface: context = cairo.Context(surface) context.set_source_rgba(0.5, 0.5, 0.5, 1.0) context.rectangle(0, 0, subChessboardSliceX[subXID+1] - subChessboardSliceX[subXID] + pageBorder[0] * 2, subChessboardSliceY[subYID+1] - subChessboardSliceY[subYID] + pageBorder[1] * 2) context.fill() context.set_source_rgba(1.0, 1.0, 1.0, 1.0) context.rectangle(pageBorder[0], pageBorder[1], subChessboardSliceX[subXID+1] - subChessboardSliceX[subXID], subChessboardSliceY[subYID+1] - subChessboardSliceY[subYID]) context.fill() for bx in range(subChessboardBlockX[subXID+1] - subChessboardBlockX[subXID]): for by in range(subChessboardBlockY[subYID+1] - subChessboardBlockY[subYID]): MarkerPrinter.__DrawBlock( context = context, dictionary = dictionary, markerLength = markerLength, borderBits = borderBits, chessboardSize = chessboardSize, squareLength = markerLength + markerSeparation, firstMarkerID = firstMarker, blockX = subChessboardBlockX[subXID] + bx, blockY = subChessboardBlockY[subYID] + by, originX = subChessboardBlockX[subXID], originY = subChessboardBlockY[subYID], pageBorderX = pageBorder[0], pageBorderY = pageBorder[1], mode = "ARUCOGRID") if __name__ == '__main__': parser = ArgumentParser() # Save marker image parameters chessGroup = parser.add_argument_group('chess', 'Chessboard') arucoGroup = parser.add_argument_group('aruco', 'ArUco') arucoGridGroup = parser.add_argument_group('aruco_grid', 'ArUco grid') charucoGroup = parser.add_argument_group('charuco', 'ChArUco') exclusiveGroup = parser.add_mutually_exclusive_group() exclusiveGroup.add_argument( "--chess", action='store_true', default=False, help="Choose to save chessboard marker") exclusiveGroup.add_argument( "--aruco", action='store_true', default=False, help="Choose to save ArUco marker") exclusiveGroup.add_argument( "--aruco_grid", action='store_true', default=False, help="Choose to save ArUco grid marker") exclusiveGroup.add_argument( "--charuco", action='store_true', default=False, help="Choose to save ChArUco marker") # Utility functions parameters exclusiveGroup.add_argument( "--generate", dest="arucoDataFileName", help="Generate aruco data to FILE", metavar="FILE") exclusiveGroup.add_argument( "--list_dictionary", action='store_true', default=False, help="List predefined aruco dictionary") # Parameters # fileName parser.add_argument( "--file", dest="fileName", default="./image.pdf", help="Save marker image to FILE", metavar="FILE") for group in [chessGroup, arucoGroup, arucoGridGroup, charucoGroup]: group.add_argument( "--" + group.title + "_file", dest="fileName", help="Save marker image to FILE", metavar="FILE") # dictionary parser.add_argument( "--dictionary", dest="dictionary", default="DICT_ARUCO_ORIGINAL", help="Generate marker via predefined DICTIONARY aruco dictionary", metavar="DICTIONARY") for group in [arucoGroup, arucoGridGroup, charucoGroup]: group.add_argument( "--" + group.title + "_dictionary", dest="dictionary", help="Generate marker via predefined DICTIONARY aruco dictionary", metavar="DICTIONARY") # size parser.add_argument( "--size_x", dest="sizeX", default="16", help="Save marker image with N board width", metavar="N") parser.add_argument( "--size_y", dest="sizeY", default="9", help="Save marker image with N board height", metavar="N") for group in [chessGroup, arucoGridGroup, charucoGroup]: group.add_argument( "--" + group.title + "_size_x", dest="sizeX", help="Save marker image with N board width", metavar="N") group.add_argument( "--" + group.title + "_size_y", dest="sizeY", help="Save marker image with N board height", metavar="N") # length parser.add_argument( "--square_length", dest="squareLength", default="0.09", help="Save marker image with L square length (Unit: meter)", metavar="L") parser.add_argument( "--marker_length", dest="markerLength", default="0.07", help="Save marker image with L marker length (Unit: meter)", metavar="L") parser.add_argument( "--marker_separation", dest="markerSeparation", default="0.02", help="Save marker image with L separation length (Unit: meter)", metavar="L") for group in [chessGroup, charucoGroup]: group.add_argument( "--" + group.title + "_square_length", dest="squareLength", help="Save marker image with L blocks length (Unit: meter)", metavar="L") for group in [arucoGroup, arucoGridGroup, charucoGroup]: group.add_argument( "--" + group.title + "_marker_length", dest="markerLength", help="Save marker image with L marker length (Unit: meter)", metavar="L") for group in [arucoGridGroup]: group.add_argument( "--" + group.title + "_marker_separation", dest="markerSeparation", help="Save marker image with L gap length (Unit: meter)", metavar="L") # else parser.add_argument( "--marker_id", dest="markerID", default="0", help="Save marker image with ID marker", metavar="ID") parser.add_argument( "--first_marker", dest="firstMarker", default="0", help="Save marker image that start with ID marker", metavar="ID") parser.add_argument( "--border_bits", dest="borderBits", default="1", help="Save marker image with N border size", metavar="N") for group in [arucoGroup]: group.add_argument( "--" + group.title + "_marker_id", dest="markerID", help="Save marker image with ID marker", metavar="ID") for group in [arucoGridGroup]: group.add_argument( "--" + group.title + "_first_marker", dest="firstMarker", help="Save marker image that start with ID marker", metavar="ID") for group in [arucoGroup, arucoGridGroup, charucoGroup]: group.add_argument( "--" + group.title + "_border_bits", dest="borderBits", help="Save marker image with N border size", metavar="N") # sub size parser.add_argument( "--sub_size_x", dest="subSizeX", default="0", help="Save marker image with N chuck width", metavar="N") parser.add_argument( "--sub_size_y", dest="subSizeY", default="0", help="Save marker image with N chuck height", metavar="N") for group in [chessGroup, arucoGridGroup, charucoGroup]: group.add_argument( "--" + group.title + "_sub_size_x", dest="subSizeX", help="Save marker image with N chuck width", metavar="N") group.add_argument( "--" + group.title + "_sub_size_y", dest="subSizeY", help="Save marker image with N chuck height", metavar="N") # page border parser.add_argument( "--page_border_x", dest="pageBorderX", default="0", help="Save with page border width L length (Unit: meter)", metavar="L") parser.add_argument( "--page_border_y", dest="pageBorderY", default="0", help="Save with page border height L length (Unit: meter)", metavar="L") for group in [chessGroup, arucoGroup, arucoGridGroup, charucoGroup]: group.add_argument( "--" + group.title + "_page_border_x", dest="pageBorderX", default="0", help="Save with page border width L length (Unit: meter)", metavar="L") group.add_argument( "--" + group.title + "_page_border_y", dest="pageBorderY", default="0", help="Save with page border height L length (Unit: meter)", metavar="L") # Run args = parser.parse_args() if(args.arucoDataFileName is not None): print("Generate aruco data to: " + args.arucoDataFileName) SaveArucoDictBytesList(args.arucoDataFileName) elif(args.list_dictionary): print("List predefined aruco dictionary") for i in MarkerPrinter.arucoDictBytesList.keys(): print(i) elif(args.chess): try: sizeX = int(args.sizeX) sizeY = int(args.sizeY) squareLength = float(args.squareLength) subSizeX = int(args.subSizeX) subSizeY = int(args.subSizeY) pageBorderX = float(args.pageBorderX) pageBorderY = float(args.pageBorderY) except ValueError as e: warnings.warn(str(e)) else: print("Save chessboard marker with parms: " + \ str({ \ "fileName": args.fileName, \ "sizeX": sizeX, \ "sizeY": sizeY, \ "squareLength": squareLength, \ "subSizeX": subSizeX, \ "subSizeY": subSizeY, \ "pageBorderX": pageBorderX, \ "pageBorderY": pageBorderY, \ })) subSize = None if(subSizeX > 0): if(subSizeY > 0): subSize = (subSizeX, subSizeY) else: subSize = (subSizeX, sizeY) else: if(subSizeY > 0): subSize = (sizeX, subSizeY) else: subSize = None # Gen MarkerPrinter.GenChessMarkerImage(args.fileName, (sizeX, sizeY), squareLength, subSize = subSize, pageBorder = (pageBorderX, pageBorderY)) elif(args.aruco): try: markerLength = float(args.markerLength) markerID = int(args.markerID) borderBits = int(args.borderBits) pageBorderX = float(args.pageBorderX) pageBorderY = float(args.pageBorderY) except ValueError as e: warnings.warn(str(e)) else: print("Save ArUco marker with parms: " + \ str({ \ "fileName": args.fileName, \ "dictionary": args.dictionary, \ "markerLength": markerLength, \ "markerID": markerID, \ "borderBits": borderBits, \ "pageBorderX": pageBorderX, \ "pageBorderY": pageBorderY, \ })) # Gen MarkerPrinter.GenArucoMarkerImage(args.fileName, args.dictionary, markerID, markerLength, borderBits=borderBits, pageBorder = (pageBorderX, pageBorderY)) elif(args.aruco_grid): try: sizeX = int(args.sizeX) sizeY = int(args.sizeY) markerLength = float(args.markerLength) markerSeparation = float(args.markerSeparation) firstMarker = int(args.firstMarker) borderBits = int(args.borderBits) subSizeX = int(args.subSizeX) subSizeY = int(args.subSizeY) pageBorderX = float(args.pageBorderX) pageBorderY = float(args.pageBorderY) except ValueError as e: warnings.warn(str(e)) else: print("Save ArUco grid marker with parms: " + \ str({ \ "fileName": args.fileName, \ "dictionary": args.dictionary, \ "sizeX": sizeX, \ "sizeY": sizeY, \ "markerLength": markerLength, \ "markerSeparation": markerSeparation, \ "firstMarker": firstMarker, \ "borderBits": borderBits, \ "subSizeX": subSizeX, \ "subSizeY": subSizeY, \ "pageBorderX": pageBorderX, \ "pageBorderY": pageBorderY, \ })) subSize = None if(subSizeX > 0): if(subSizeY > 0): subSize = (subSizeX, subSizeY) else: subSize = (subSizeX, sizeY) else: if(subSizeY > 0): subSize = (sizeX, subSizeY) else: subSize = None # Gen MarkerPrinter.GenArucoGridMarkerImage(args.fileName, args.dictionary, (sizeX, sizeY), markerLength, markerSeparation, firstMarker, borderBits=borderBits, subSize=subSize, pageBorder = (pageBorderX, pageBorderY)) elif(args.charuco): try: sizeX = int(args.sizeX) sizeY = int(args.sizeY) squareLength = float(args.squareLength) markerLength = float(args.markerLength) borderBits = int(args.borderBits) subSizeX = int(args.subSizeX) subSizeY = int(args.subSizeY) pageBorderX = float(args.pageBorderX) pageBorderY = float(args.pageBorderY) except ValueError as e: warnings.warn(str(e)) else: print("Save ChArUco marker with parms: " + \ str({ \ "fileName": args.fileName, \ "dictionary": args.dictionary, \ "sizeX": sizeX, \ "sizeY": sizeY, \ "squareLength": squareLength, \ "markerLength": markerLength, \ "borderBits": borderBits, \ "subSizeX": subSizeX, \ "subSizeY": subSizeY, \ "pageBorderX": pageBorderX, \ "pageBorderY": pageBorderY, \ })) subSize = None if(subSizeX > 0): if(subSizeY > 0): subSize = (subSizeX, subSizeY) else: subSize = (subSizeX, sizeY) else: if(subSizeY > 0): subSize = (sizeX, subSizeY) else: subSize = None # Gen MarkerPrinter.GenCharucoMarkerImage(args.fileName, args.dictionary, (sizeX, sizeY), squareLength, markerLength, borderBits=borderBits, subSize=subSize, pageBorder = (pageBorderX, pageBorderY)) else: parser.print_help()
#!/usr/bin/env python3 # SPDX-License-Identifier: BSD-3-Clause # # Copyright (c) 2019, Josh Chien. All rights reserved. from MarkerPrinter import * import tkinter as tk from tkinter import ttk, filedialog, messagebox import time import PIL.Image import PIL.ImageTk class MarkerPrinterGUI: def VisDPI(self, shape): scale0 = float(self.displayShape[0]) / float(shape[0]) scale1 = float(self.displayShape[1]) / float(shape[1]) if(scale0 > scale1): return scale1 * 96.0 else: return scale0 * 96.0 def OnShowingHelpGithub(self): messagebox.showinfo("Github", "https://github.com/dogod621/OpenCVMarkerPrinter") def OnCloseWindow(self): if(self.window is not None): if messagebox.askokcancel("Quit", "Do you want to quit?"): self.window.destroy() self.window = None def OnSelectCharucoMarkerDictionary(self, pDictName): self.charucoMarkerDictionaryStr.set(pDictName) def __SaveMarker(GenMarkerImageCallback, *args, **kwargs): if(kwargs.get("subSize",None) is not None): subSizeX, subSizeY = kwargs["subSize"] kwargs["subSize"] = None if(subSizeX > 0): if(subSizeY > 0): kwargs["subSize"] = (subSizeX, subSizeY) else: kwargs["subSize"] = (subSizeX, sizeY) else: if(subSizeY > 0): kwargs["subSize"] = (sizeX, subSizeY) else: kwargs["subSize"] = None try: askFileName = filedialog.asksaveasfilename(initialdir = os.path.abspath("./"), title = "Output", filetypes = (\ ("scalable vector graphics files","*.svg"), \ ("portable document format files","*.pdf"), \ ("post script files","*.ps")), defaultextension="*.*") if (askFileName): GenMarkerImageCallback(askFileName, *args, **kwargs) except Exception as e: warnings.warn(str(e)) messagebox.showinfo("Error", "Save marker failed") return def OnPreviewOrSaveCharucoMarker(self, askSave = False): try: sizeX = int(self.charucoMarkerChessboardSizeXStr.get()) sizeY = int(self.charucoMarkerChessboardSizeYStr.get()) squareLength = float(self.charucoMarkerSquareLengthStr.get()) markerLength = float(self.charucoMarkerMarkerLengthStr.get()) borderBits = int(self.charucoMarkerBorderBitsStr.get()) dictionary = self.charucoMarkerDictionaryStr.get() subSizeX = int(self.charucoMarkerSaveSubSizeXStr.get()) subSizeY = int(self.charucoMarkerSaveSubSizeYStr.get()) pageBorderX = float(self.charucoMarkerSavePageBorderXStr.get()) pageBorderY = float(self.charucoMarkerSavePageBorderYStr.get()) except ValueError as e: warnings.warn(str(e)) messagebox.showinfo("Error", "Enter invalid parameters") return except Exception as e: warnings.warn(str(e)) messagebox.showinfo("Error", "Fail to get parameters") return # Preview try: dpi = self.VisDPI(((sizeY * squareLength + pageBorderY * 2) * MarkerPrinter.ptPerMeter, (sizeX * squareLength + pageBorderX * 2) * MarkerPrinter.ptPerMeter)) tkImage = PIL.ImageTk.PhotoImage(image = MarkerPrinter.PreviewCharucoMarkerImage(dictionary, (sizeX, sizeY), squareLength, markerLength, borderBits=borderBits, pageBorder = (pageBorderX, pageBorderY), dpi=dpi)) self.charucoMarkerImageLabel.imgtk = tkImage self.charucoMarkerImageLabel.config(image=tkImage) except Exception as e: warnings.warn(str(e)) messagebox.showinfo("Error", "create marker failed") return # Save if(askSave): MarkerPrinterGUI.__SaveMarker(MarkerPrinter.GenCharucoMarkerImage, \ dictionary, (sizeX, sizeY), squareLength, markerLength, borderBits=borderBits, subSize = (subSizeX, subSizeY), pageBorder = (pageBorderX, pageBorderY)) def OnPreviewCharucoMarker(self): self.OnPreviewOrSaveCharucoMarker(askSave = False) def OnSaveCharucoMarker(self): self.OnPreviewOrSaveCharucoMarker(askSave = True) def InitCharucoMarkerTab(self): self.charucoMarkerUIFrame = ttk.Frame(self.charucoMarkerTab) self.charucoMarkerImageTab = ttk.Frame(self.charucoMarkerTab) self.charucoMarkerUIFrame2 = ttk.Frame(self.charucoMarkerTab) self.charucoMarkerUIFrame.grid(row=0, column=0, sticky = tk.NSEW) self.charucoMarkerImageTab.grid(row=1, column=0, sticky = tk.NSEW) self.charucoMarkerUIFrame2.grid(row=2, column=0, sticky = tk.NSEW) self.charucoMarkerImageLabel = tk.Label(self.charucoMarkerImageTab) self.charucoMarkerImageLabel.grid(row=0, column=0, sticky = tk.NSEW) tk.Label(self.charucoMarkerUIFrame, text="dictionary").grid(row=0, column=0, sticky = tk.NSEW) tk.Label(self.charucoMarkerUIFrame, text="chessboardSizeX").grid(row=0, column=1, sticky = tk.NSEW) tk.Label(self.charucoMarkerUIFrame, text="chessboardSizeY").grid(row=0, column=2, sticky = tk.NSEW) tk.Label(self.charucoMarkerUIFrame, text="squareLength (Unit: Meter)").grid(row=0, column=3, sticky = tk.NSEW) tk.Label(self.charucoMarkerUIFrame, text="markerLength (Unit: Meter)").grid(row=0, column=4, sticky = tk.NSEW) tk.Label(self.charucoMarkerUIFrame, text="borderBits").grid(row=0, column=5, sticky = tk.NSEW) self.charucoMarkerDictionaryStr = tk.StringVar() self.charucoMarkerChessboardSizeXStr = tk.StringVar() self.charucoMarkerChessboardSizeXStr.set("16") self.charucoMarkerChessboardSizeYStr = tk.StringVar() self.charucoMarkerChessboardSizeYStr.set("9") self.charucoMarkerSquareLengthStr = tk.StringVar() self.charucoMarkerSquareLengthStr.set("0.09") self.charucoMarkerMarkerLengthStr = tk.StringVar() self.charucoMarkerMarkerLengthStr.set("0.07") self.charucoMarkerBorderBitsStr = tk.StringVar() self.charucoMarkerBorderBitsStr.set("1") self.charucoMarkerDictionaryMenue = tk.OptionMenu(self.charucoMarkerUIFrame, self.charucoMarkerDictionaryStr, "DICT_ARUCO_ORIGINAL", command = self.OnSelectCharucoMarkerDictionary) self.charucoMarkerDictionaryMenue.grid(row=1, column=0, sticky = tk.NSEW) tk.Entry(self.charucoMarkerUIFrame, textvariable=self.charucoMarkerChessboardSizeXStr).grid(row=1, column=1, sticky = tk.NSEW) tk.Entry(self.charucoMarkerUIFrame, textvariable=self.charucoMarkerChessboardSizeYStr).grid(row=1, column=2, sticky = tk.NSEW) tk.Entry(self.charucoMarkerUIFrame, textvariable=self.charucoMarkerSquareLengthStr).grid(row=1, column=3, sticky = tk.NSEW) tk.Entry(self.charucoMarkerUIFrame, textvariable=self.charucoMarkerMarkerLengthStr).grid(row=1, column=4, sticky = tk.NSEW) tk.Entry(self.charucoMarkerUIFrame, textvariable=self.charucoMarkerBorderBitsStr).grid(row=1, column=5, sticky = tk.NSEW) tk.Button(self.charucoMarkerUIFrame2, text = "Preview", command = self.OnPreviewCharucoMarker).grid(row=1, column=0, sticky = tk.NSEW) tk.Button(self.charucoMarkerUIFrame2, text = "Save", command = self.OnSaveCharucoMarker).grid(row=1, column=1, sticky = tk.NSEW) tk.Label(self.charucoMarkerUIFrame2, text="Save opetions:").grid(row=0, column=2, sticky = tk.NSEW) tk.Label(self.charucoMarkerUIFrame2, text="(set 0 as disable)").grid(row=1, column=2, sticky = tk.NSEW) tk.Label(self.charucoMarkerUIFrame2, text="subSizeX").grid(row=0, column=3, sticky = tk.NSEW) tk.Label(self.charucoMarkerUIFrame2, text="subSizeY").grid(row=0, column=4, sticky = tk.NSEW) tk.Label(self.charucoMarkerUIFrame2, text="Divide to chunks, chunk sizeX").grid(row=2, column=3, sticky = tk.NSEW) tk.Label(self.charucoMarkerUIFrame2, text="Divide to chunks, chunk sizeY").grid(row=2, column=4, sticky = tk.NSEW) tk.Label(self.charucoMarkerUIFrame2, text="pageBorderX (Unit: Meter)").grid(row=0, column=5, sticky = tk.NSEW) tk.Label(self.charucoMarkerUIFrame2, text="pageBorderY (Unit: Meter)").grid(row=0, column=6, sticky = tk.NSEW) tk.Label(self.charucoMarkerUIFrame2, text="Border or page").grid(row=2, column=5, sticky = tk.NSEW) tk.Label(self.charucoMarkerUIFrame2, text="Border or page").grid(row=2, column=6, sticky = tk.NSEW) self.charucoMarkerSaveSubSizeXStr = tk.StringVar() self.charucoMarkerSaveSubSizeXStr.set("0") self.charucoMarkerSaveSubSizeYStr = tk.StringVar() self.charucoMarkerSaveSubSizeYStr.set("0") self.charucoMarkerSavePageBorderXStr = tk.StringVar() self.charucoMarkerSavePageBorderXStr.set("0.02") self.charucoMarkerSavePageBorderYStr = tk.StringVar() self.charucoMarkerSavePageBorderYStr.set("0.02") tk.Entry(self.charucoMarkerUIFrame2, textvariable=self.charucoMarkerSaveSubSizeXStr).grid(row=1, column=3, sticky = tk.NSEW) tk.Entry(self.charucoMarkerUIFrame2, textvariable=self.charucoMarkerSaveSubSizeYStr).grid(row=1, column=4, sticky = tk.NSEW) tk.Entry(self.charucoMarkerUIFrame2, textvariable=self.charucoMarkerSavePageBorderXStr).grid(row=1, column=5, sticky = tk.NSEW) tk.Entry(self.charucoMarkerUIFrame2, textvariable=self.charucoMarkerSavePageBorderYStr).grid(row=1, column=6, sticky = tk.NSEW) self.charucoMarkerDictionaryMenue['menu'].delete(0, 'end') for dictName in self.dictList: self.charucoMarkerDictionaryMenue['menu'].add_command(label=dictName, command=tk._setit(self.charucoMarkerDictionaryStr, dictName, self.OnSelectCharucoMarkerDictionary)) self.OnSelectCharucoMarkerDictionary("DICT_ARUCO_ORIGINAL") def OnSelectArucoGridMarkerDictionary(self, pDictName): self.arucoGridMarkerDictionaryStr.set(pDictName) def OnPreviewOrSaveArucoGridMarker(self, askSave = False): try: markersX = int(self.arucoGridMarkerMarkersXStr.get()) markersY = int(self.arucoGridMarkerMarkersYStr.get()) markerLength = float(self.arucoGridMarkerMarkerLengthStr.get()) markerSeparation = float(self.arucoGridMarkerMarkerSeparationStr.get()) borderBits = int(self.arucoGridMarkerBorderBitsStr.get()) firstMarker = int(self.arucoGridMarkerFirstMarkerStr.get()) dictionary = self.arucoGridMarkerDictionaryStr.get() subSizeX = int(self.arucoGridMarkerSaveSubSizeXStr.get()) subSizeY = int(self.arucoGridMarkerSaveSubSizeYStr.get()) pageBorderX = float(self.arucoGridMarkerSavePageBorderXStr.get()) pageBorderY = float(self.arucoGridMarkerSavePageBorderYStr.get()) except ValueError as e: warnings.warn(str(e)) messagebox.showinfo("Error", "Enter invalid parameters") return except Exception as e: warnings.warn(str(e)) messagebox.showinfo("Error", "Fail to get parameters") return # Preview try: dpi=self.VisDPI(((markersY * markerLength + (markersY - 1) * markerSeparation + pageBorderY * 2) * MarkerPrinter.ptPerMeter, (markersX * markerLength + (markersX - 1) * markerSeparation + pageBorderX * 2) * MarkerPrinter.ptPerMeter)) tkImage = PIL.ImageTk.PhotoImage(image = MarkerPrinter.PreviewArucoGridMarkerImage(dictionary, (markersX, markersY), markerLength, markerSeparation, firstMarker, borderBits=borderBits, pageBorder = (pageBorderX, pageBorderY), dpi=dpi)) self.arucoGridMarkerImageLabel.imgtk = tkImage self.arucoGridMarkerImageLabel.config(image=tkImage) except Exception as e: warnings.warn(str(e)) messagebox.showinfo("Error", "create marker failed") return # Save if(askSave): MarkerPrinterGUI.__SaveMarker(MarkerPrinter.GenArucoGridMarkerImage, \ dictionary, (markersX, markersY), markerLength, markerSeparation, firstMarker, borderBits=borderBits, subSize = (subSizeX, subSizeY), pageBorder = (pageBorderX, pageBorderY)) def OnPreviewArucoGridMarker(self): self.OnPreviewOrSaveArucoGridMarker(askSave = False) def OnSaveArucoGridMarker(self): self.OnPreviewOrSaveArucoGridMarker(askSave = True) def InitArucoGridMarkerTab(self): self.arucoGridMarkerUIFrame = ttk.Frame(self.arucoGridMarkerTab) self.arucoGridMarkerImageTab = ttk.Frame(self.arucoGridMarkerTab) self.arucoGridMarkerUIFrame2 = ttk.Frame(self.arucoGridMarkerTab) self.arucoGridMarkerUIFrame.grid(row=0, column=0, sticky = tk.NSEW) self.arucoGridMarkerImageTab.grid(row=1, column=0, sticky = tk.NSEW) self.arucoGridMarkerUIFrame2.grid(row=2, column=0, sticky = tk.NSEW) self.arucoGridMarkerImageLabel = tk.Label(self.arucoGridMarkerImageTab) self.arucoGridMarkerImageLabel.grid(row=0, column=0, sticky = tk.NSEW) tk.Label(self.arucoGridMarkerUIFrame, text="dictionary").grid(row=0, column=0, sticky = tk.NSEW) tk.Label(self.arucoGridMarkerUIFrame, text="markersX").grid(row=0, column=1, sticky = tk.NSEW) tk.Label(self.arucoGridMarkerUIFrame, text="markersY").grid(row=0, column=2, sticky = tk.NSEW) tk.Label(self.arucoGridMarkerUIFrame, text="markerLength (Unit: Meter)").grid(row=0, column=3, sticky = tk.NSEW) tk.Label(self.arucoGridMarkerUIFrame, text="markerSeparation (Unit: Meter)").grid(row=0, column=4, sticky = tk.NSEW) tk.Label(self.arucoGridMarkerUIFrame, text="firstMarker").grid(row=0, column=5, sticky = tk.NSEW) tk.Label(self.arucoGridMarkerUIFrame, text="borderBits").grid(row=0, column=6, sticky = tk.NSEW) self.arucoGridMarkerDictionaryStr = tk.StringVar() self.arucoGridMarkerMarkersXStr = tk.StringVar() self.arucoGridMarkerMarkersXStr.set("16") self.arucoGridMarkerMarkersYStr = tk.StringVar() self.arucoGridMarkerMarkersYStr.set("9") self.arucoGridMarkerMarkerLengthStr = tk.StringVar() self.arucoGridMarkerMarkerLengthStr.set("0.07") self.arucoGridMarkerMarkerSeparationStr = tk.StringVar() self.arucoGridMarkerMarkerSeparationStr.set("0.02") self.arucoGridMarkerFirstMarkerStr = tk.StringVar() self.arucoGridMarkerFirstMarkerStr.set("0") self.arucoGridMarkerBorderBitsStr = tk.StringVar() self.arucoGridMarkerBorderBitsStr.set("1") self.arucoGridMarkerDictionaryMenue = tk.OptionMenu(self.arucoGridMarkerUIFrame, self.arucoGridMarkerDictionaryStr, "DICT_ARUCO_ORIGINAL", command = self.OnSelectArucoGridMarkerDictionary) self.arucoGridMarkerDictionaryMenue.grid(row=1, column=0, sticky = tk.NSEW) tk.Entry(self.arucoGridMarkerUIFrame, textvariable=self.arucoGridMarkerMarkersXStr).grid(row=1, column=1, sticky = tk.NSEW) tk.Entry(self.arucoGridMarkerUIFrame, textvariable=self.arucoGridMarkerMarkersYStr).grid(row=1, column=2, sticky = tk.NSEW) tk.Entry(self.arucoGridMarkerUIFrame, textvariable=self.arucoGridMarkerMarkerLengthStr).grid(row=1, column=3, sticky = tk.NSEW) tk.Entry(self.arucoGridMarkerUIFrame, textvariable=self.arucoGridMarkerMarkerSeparationStr).grid(row=1, column=4, sticky = tk.NSEW) tk.Entry(self.arucoGridMarkerUIFrame, textvariable=self.arucoGridMarkerFirstMarkerStr).grid(row=1, column=5, sticky = tk.NSEW) tk.Entry(self.arucoGridMarkerUIFrame, textvariable=self.arucoGridMarkerBorderBitsStr).grid(row=1, column=6, sticky = tk.NSEW) tk.Button(self.arucoGridMarkerUIFrame2, text = "Preview", command = self.OnPreviewArucoGridMarker).grid(row=1, column=0, sticky = tk.NSEW) tk.Button(self.arucoGridMarkerUIFrame2, text = "Save", command = self.OnSaveArucoGridMarker).grid(row=1, column=1, sticky = tk.NSEW) tk.Label(self.arucoGridMarkerUIFrame2, text="Save opetions:").grid(row=0, column=2, sticky = tk.NSEW) tk.Label(self.arucoGridMarkerUIFrame2, text="(set 0 as disable)").grid(row=1, column=2, sticky = tk.NSEW) tk.Label(self.arucoGridMarkerUIFrame2, text="subSizeX").grid(row=0, column=3, sticky = tk.NSEW) tk.Label(self.arucoGridMarkerUIFrame2, text="subSizeY").grid(row=0, column=4, sticky = tk.NSEW) tk.Label(self.arucoGridMarkerUIFrame2, text="Divide to chunks, chunk sizeX").grid(row=2, column=3, sticky = tk.NSEW) tk.Label(self.arucoGridMarkerUIFrame2, text="Divide to chunks, chunk sizeY").grid(row=2, column=4, sticky = tk.NSEW) tk.Label(self.arucoGridMarkerUIFrame2, text="pageBorderX (Unit: Meter)").grid(row=0, column=5, sticky = tk.NSEW) tk.Label(self.arucoGridMarkerUIFrame2, text="pageBorderY (Unit: Meter)").grid(row=0, column=6, sticky = tk.NSEW) tk.Label(self.arucoGridMarkerUIFrame2, text="Border or page").grid(row=2, column=5, sticky = tk.NSEW) tk.Label(self.arucoGridMarkerUIFrame2, text="Border or page").grid(row=2, column=6, sticky = tk.NSEW) self.arucoGridMarkerSaveSubSizeXStr = tk.StringVar() self.arucoGridMarkerSaveSubSizeXStr.set("0") self.arucoGridMarkerSaveSubSizeYStr = tk.StringVar() self.arucoGridMarkerSaveSubSizeYStr.set("0") self.arucoGridMarkerSavePageBorderXStr = tk.StringVar() self.arucoGridMarkerSavePageBorderXStr.set("0.02") self.arucoGridMarkerSavePageBorderYStr = tk.StringVar() self.arucoGridMarkerSavePageBorderYStr.set("0.02") tk.Entry(self.arucoGridMarkerUIFrame2, textvariable=self.arucoGridMarkerSaveSubSizeXStr).grid(row=1, column=3, sticky = tk.NSEW) tk.Entry(self.arucoGridMarkerUIFrame2, textvariable=self.arucoGridMarkerSaveSubSizeYStr).grid(row=1, column=4, sticky = tk.NSEW) tk.Entry(self.arucoGridMarkerUIFrame2, textvariable=self.arucoGridMarkerSavePageBorderXStr).grid(row=1, column=5, sticky = tk.NSEW) tk.Entry(self.arucoGridMarkerUIFrame2, textvariable=self.arucoGridMarkerSavePageBorderYStr).grid(row=1, column=6, sticky = tk.NSEW) self.arucoGridMarkerDictionaryMenue['menu'].delete(0, 'end') for dictName in self.dictList: self.arucoGridMarkerDictionaryMenue['menu'].add_command(label=dictName, command=tk._setit(self.arucoGridMarkerDictionaryStr, dictName, self.OnSelectArucoGridMarkerDictionary)) self.OnSelectArucoGridMarkerDictionary("DICT_ARUCO_ORIGINAL") def OnSelectArucoMarkerDictionary(self, pDictName): self.arucoMarkerDictionaryStr.set(pDictName) def OnPreviewOrSaveArucoMarker(self, askSave = False): try: markerID = int(self.arucoMarkerMarkerIDStr.get()) markerLength = float(self.arucoMarkerMarkerLengthStr.get()) borderBits = int(self.arucoMarkerBorderBitsStr.get()) dictionary = self.arucoMarkerDictionaryStr.get() pageBorderX = float(self.arucoMarkerSavePageBorderXStr.get()) pageBorderY = float(self.arucoMarkerSavePageBorderYStr.get()) except ValueError as e: warnings.warn(str(e)) messagebox.showinfo("Error", "Enter invalid parameters") return except Exception as e: warnings.warn(str(e)) messagebox.showinfo("Error", "Fail to get parameters") return # Preview try: dpi=self.VisDPI(((markerLength + pageBorderY * 2) * MarkerPrinter.ptPerMeter, (markerLength + pageBorderX * 2) * MarkerPrinter.ptPerMeter)) tkImage = PIL.ImageTk.PhotoImage(image = MarkerPrinter.PreviewArucoMarkerImage(dictionary, markerID, markerLength, borderBits=borderBits, pageBorder = (pageBorderX, pageBorderY), dpi=dpi)) self.arucoMarkerImageLabel.imgtk = tkImage self.arucoMarkerImageLabel.config(image=tkImage) except Exception as e: warnings.warn(str(e)) messagebox.showinfo("Error", "create marker failed") return # Save if(askSave): MarkerPrinterGUI.__SaveMarker(MarkerPrinter.GenArucoMarkerImage, \ dictionary, markerID, markerLength, borderBits=borderBits, pageBorder = (pageBorderX, pageBorderY)) def OnPreviewArucoMarker(self): self.OnPreviewOrSaveArucoMarker(askSave = False) def OnSaveArucoMarker(self): self.OnPreviewOrSaveArucoMarker(askSave = True) def InitArucoMarkerTab(self): self.arucoMarkerUIFrame = ttk.Frame(self.arucoMarkerTab) self.arucoMarkerImageTab = ttk.Frame(self.arucoMarkerTab) self.arucoMarkerUIFrame2 = ttk.Frame(self.arucoMarkerTab) self.arucoMarkerUIFrame.grid(row=0, column=0, sticky = tk.NSEW) self.arucoMarkerImageTab.grid(row=1, column=0, sticky = tk.NSEW) self.arucoMarkerUIFrame2.grid(row=2, column=0, sticky = tk.NSEW) self.arucoMarkerImageLabel = tk.Label(self.arucoMarkerImageTab) self.arucoMarkerImageLabel.grid(row=0, column=0, sticky = tk.NSEW) tk.Label(self.arucoMarkerUIFrame, text="dictionary").grid(row=0, column=0, sticky = tk.NSEW) tk.Label(self.arucoMarkerUIFrame, text="markerID").grid(row=0, column=1, sticky = tk.NSEW) tk.Label(self.arucoMarkerUIFrame, text="markerLength (Unit: Meter)").grid(row=0, column=2, sticky = tk.NSEW) tk.Label(self.arucoMarkerUIFrame, text="borderBits").grid(row=0, column=3, sticky = tk.NSEW) self.arucoMarkerDictionaryStr = tk.StringVar() self.arucoMarkerMarkerIDStr = tk.StringVar() self.arucoMarkerMarkerIDStr.set("0") self.arucoMarkerMarkerLengthStr = tk.StringVar() self.arucoMarkerMarkerLengthStr.set("0.07") self.arucoMarkerBorderBitsStr = tk.StringVar() self.arucoMarkerBorderBitsStr.set("1") self.arucoMarkerDictionaryMenue = tk.OptionMenu(self.arucoMarkerUIFrame, self.arucoMarkerDictionaryStr, "DICT_ARUCO_ORIGINAL", command = self.OnSelectArucoMarkerDictionary) self.arucoMarkerDictionaryMenue.grid(row=1, column=0, sticky = tk.NSEW) tk.Entry(self.arucoMarkerUIFrame, textvariable=self.arucoMarkerMarkerIDStr).grid(row=1, column=1, sticky = tk.NSEW) tk.Entry(self.arucoMarkerUIFrame, textvariable=self.arucoMarkerMarkerLengthStr).grid(row=1, column=2, sticky = tk.NSEW) tk.Entry(self.arucoMarkerUIFrame, textvariable=self.arucoMarkerBorderBitsStr).grid(row=1, column=3, sticky = tk.NSEW) tk.Button(self.arucoMarkerUIFrame2, text = "Preview", command = self.OnPreviewArucoMarker).grid(row=0, column=0, sticky = tk.NSEW) tk.Button(self.arucoMarkerUIFrame2, text = "Save", command = self.OnSaveArucoMarker).grid(row=0, column=1, sticky = tk.NSEW) tk.Label(self.arucoMarkerUIFrame2, text="Save opetions:").grid(row=0, column=2, sticky = tk.NSEW) tk.Label(self.arucoMarkerUIFrame2, text="(set 0 as disable)").grid(row=1, column=2, sticky = tk.NSEW) tk.Label(self.arucoMarkerUIFrame2, text="pageBorderX (Unit: Meter)").grid(row=0, column=3, sticky = tk.NSEW) tk.Label(self.arucoMarkerUIFrame2, text="pageBorderY (Unit: Meter)").grid(row=0, column=4, sticky = tk.NSEW) tk.Label(self.arucoMarkerUIFrame2, text="Border or page").grid(row=2, column=3, sticky = tk.NSEW) tk.Label(self.arucoMarkerUIFrame2, text="Border or page").grid(row=2, column=4, sticky = tk.NSEW) self.arucoMarkerSavePageBorderXStr = tk.StringVar() self.arucoMarkerSavePageBorderXStr.set("0.02") self.arucoMarkerSavePageBorderYStr = tk.StringVar() self.arucoMarkerSavePageBorderYStr.set("0.02") tk.Entry(self.arucoMarkerUIFrame2, textvariable=self.arucoMarkerSavePageBorderXStr).grid(row=1, column=3, sticky = tk.NSEW) tk.Entry(self.arucoMarkerUIFrame2, textvariable=self.arucoMarkerSavePageBorderYStr).grid(row=1, column=4, sticky = tk.NSEW) self.arucoMarkerDictionaryMenue['menu'].delete(0, 'end') for dictName in self.dictList: self.arucoMarkerDictionaryMenue['menu'].add_command(label=dictName, command=tk._setit(self.arucoMarkerDictionaryStr, dictName, self.OnSelectArucoMarkerDictionary)) self.OnSelectArucoMarkerDictionary("DICT_ARUCO_ORIGINAL") def OnPreviewOrSaveChessMarker(self, askSave = False): try: sizeX = int(self.chessMarkerChessboardSizeXStr.get()) sizeY = int(self.chessMarkerChessboardSizeYStr.get()) squareLength = float(self.chessMarkerSquareLengthStr.get()) subSizeX = int(self.chessMarkerSaveSubSizeXStr.get()) subSizeY = int(self.chessMarkerSaveSubSizeYStr.get()) pageBorderX = float(self.chessMarkerSavePageBorderXStr.get()) pageBorderY = float(self.chessMarkerSavePageBorderYStr.get()) except ValueError as e: warnings.warn(str(e)) messagebox.showinfo("Error", "Enter invalid parameters") return except Exception as e: warnings.warn(str(e)) messagebox.showinfo("Error", "Fail to get parameters") return # Preview try: dpi=self.VisDPI(((sizeY * squareLength + pageBorderY * 2) * MarkerPrinter.ptPerMeter, (sizeX * squareLength + pageBorderX * 2) * MarkerPrinter.ptPerMeter)) tkImage = PIL.ImageTk.PhotoImage(image = MarkerPrinter.PreviewChessMarkerImage((sizeX, sizeY), squareLength, pageBorder = (pageBorderX, pageBorderY), dpi=dpi)) self.chessMarkerImageLabel.imgtk = tkImage self.chessMarkerImageLabel.config(image=tkImage) except Exception as e: warnings.warn(str(e)) messagebox.showinfo("Error", "create marker failed") return # Save if(askSave): MarkerPrinterGUI.__SaveMarker(MarkerPrinter.GenChessMarkerImage, \ (sizeX, sizeY), squareLength, subSize = (subSizeX, subSizeY), pageBorder = (pageBorderX, pageBorderY)) def OnPreviewChessMarker(self): self.OnPreviewOrSaveChessMarker(askSave = False) def OnSaveChessMarker(self): self.OnPreviewOrSaveChessMarker(askSave = True) def InitChessMarkerTab(self): self.chessMarkerUIFrame = ttk.Frame(self.chessMarkerTab) self.chessMarkerImageTab = ttk.Frame(self.chessMarkerTab) self.chessMarkerUIFrame2 = ttk.Frame(self.chessMarkerTab) self.chessMarkerUIFrame.grid(row=0, column=0, sticky = tk.NSEW) self.chessMarkerImageTab.grid(row=1, column=0, sticky = tk.NSEW) self.chessMarkerUIFrame2.grid(row=2, column=0, sticky = tk.NSEW) self.chessMarkerImageLabel = tk.Label(self.chessMarkerImageTab) self.chessMarkerImageLabel.grid(row=0, column=0, sticky = tk.NSEW) tk.Label(self.chessMarkerUIFrame, text="chessboardSizeX").grid(row=0, column=0, sticky = tk.NSEW) tk.Label(self.chessMarkerUIFrame, text="chessboardSizeY").grid(row=0, column=1, sticky = tk.NSEW) tk.Label(self.chessMarkerUIFrame, text="squareLength (Unit: Meter)").grid(row=0, column=2, sticky = tk.NSEW) self.chessMarkerChessboardSizeXStr = tk.StringVar() self.chessMarkerChessboardSizeXStr.set("16") self.chessMarkerChessboardSizeYStr = tk.StringVar() self.chessMarkerChessboardSizeYStr.set("9") self.chessMarkerSquareLengthStr = tk.StringVar() self.chessMarkerSquareLengthStr.set("0.09") tk.Entry(self.chessMarkerUIFrame, textvariable=self.chessMarkerChessboardSizeXStr).grid(row=1, column=0, sticky = tk.NSEW) tk.Entry(self.chessMarkerUIFrame, textvariable=self.chessMarkerChessboardSizeYStr).grid(row=1, column=1, sticky = tk.NSEW) tk.Entry(self.chessMarkerUIFrame, textvariable=self.chessMarkerSquareLengthStr).grid(row=1, column=2, sticky = tk.NSEW) tk.Button(self.chessMarkerUIFrame2, text = "Preview", command = self.OnPreviewChessMarker).grid(row=1, column=0, sticky = tk.NSEW) tk.Button(self.chessMarkerUIFrame2, text = "Save", command = self.OnSaveChessMarker).grid(row=1, column=1, sticky = tk.NSEW) tk.Label(self.chessMarkerUIFrame2, text="Save opetions:").grid(row=0, column=2, sticky = tk.NSEW) tk.Label(self.chessMarkerUIFrame2, text="(set 0 as disable)").grid(row=1, column=2, sticky = tk.NSEW) tk.Label(self.chessMarkerUIFrame2, text="subSizeX").grid(row=0, column=3, sticky = tk.NSEW) tk.Label(self.chessMarkerUIFrame2, text="subSizeY").grid(row=0, column=4, sticky = tk.NSEW) tk.Label(self.chessMarkerUIFrame2, text="Divide to chunks, chunk sizeX").grid(row=2, column=3, sticky = tk.NSEW) tk.Label(self.chessMarkerUIFrame2, text="Divide to chunks, chunk sizeY").grid(row=2, column=4, sticky = tk.NSEW) tk.Label(self.chessMarkerUIFrame2, text="pageBorderX (Unit: Meter)").grid(row=0, column=5, sticky = tk.NSEW) tk.Label(self.chessMarkerUIFrame2, text="pageBorderY (Unit: Meter)").grid(row=0, column=6, sticky = tk.NSEW) tk.Label(self.chessMarkerUIFrame2, text="Border or page").grid(row=2, column=5, sticky = tk.NSEW) tk.Label(self.chessMarkerUIFrame2, text="Border or page").grid(row=2, column=6, sticky = tk.NSEW) self.chessMarkerSaveSubSizeXStr = tk.StringVar() self.chessMarkerSaveSubSizeXStr.set("0") self.chessMarkerSaveSubSizeYStr = tk.StringVar() self.chessMarkerSaveSubSizeYStr.set("0") self.chessMarkerSavePageBorderXStr = tk.StringVar() self.chessMarkerSavePageBorderXStr.set("0.02") self.chessMarkerSavePageBorderYStr = tk.StringVar() self.chessMarkerSavePageBorderYStr.set("0.02") tk.Entry(self.chessMarkerUIFrame2, textvariable=self.chessMarkerSaveSubSizeXStr).grid(row=1, column=3, sticky = tk.NSEW) tk.Entry(self.chessMarkerUIFrame2, textvariable=self.chessMarkerSaveSubSizeYStr).grid(row=1, column=4, sticky = tk.NSEW) tk.Entry(self.chessMarkerUIFrame2, textvariable=self.chessMarkerSavePageBorderXStr).grid(row=1, column=5, sticky = tk.NSEW) tk.Entry(self.chessMarkerUIFrame2, textvariable=self.chessMarkerSavePageBorderYStr).grid(row=1, column=6, sticky = tk.NSEW) def Update(self): time.sleep(0) self.window.after(self.delay, self.Update) def __init__(self, pDelay=15, pDisplayShape=(int(400), int(1200))): self.delay = pDelay self.displayShape = pDisplayShape self.dictList = MarkerPrinter.arucoDictBytesList.keys() # GUI self.window = tk.Tk() self.notebook = ttk.Notebook(self.window) self.notebook.grid(row=0, column=0, sticky = tk.NSEW) self.window.title("MarkerPrinterGUI") self.window.config(cursor="arrow") self.window.protocol("WM_DELETE_WINDOW", self.OnCloseWindow) # Menues self.menu = tk.Menu(self.window) self.helpMenu = tk.Menu(self.menu, tearoff=0) self.menu.add_cascade(label="Help", menu=self.helpMenu) self.helpMenu.add_command(label="Github", command=self.OnShowingHelpGithub) self.helpMenu.add_command(label="DEBUG_LINE_MODE", command=self.On_DEBUG_LINE_MODE) self.helpMenu.add_command(label="DEBUG_BLOCK_MODE", command=self.On_DEBUG_BLOCK_MODE) self.helpMenu.add_command(label="CLOSE_DEBUG_MODE", command=self.On_CLOSE_DEBUG_MODE) self.window.config(menu=self.menu) self.charucoMarkerTab = ttk.Frame(self.notebook) self.arucoMarkerTab = ttk.Frame(self.notebook) self.arucoGridMarkerTab = ttk.Frame(self.notebook) self.chessMarkerTab = ttk.Frame(self.notebook) self.notebook.add(self.charucoMarkerTab, text='ChArUco Marker') self.notebook.add(self.arucoMarkerTab, text='ArUco Marker') self.notebook.add(self.arucoGridMarkerTab, text='ArUcoGrid Marker') self.notebook.add(self.chessMarkerTab, text='Chessboard Marker') self.InitCharucoMarkerTab() self.InitArucoMarkerTab() self.InitArucoGridMarkerTab() self.InitChessMarkerTab() self.Update() self.window.mainloop() def On_DEBUG_LINE_MODE(self): messagebox.showinfo("Note", "You enabled the debug mode: \"LINE\"") MarkerPrinter.debugMode = "LINE" def On_DEBUG_BLOCK_MODE(self): messagebox.showinfo("Note", "You enabled the debug mode: \"BLOCK\"") MarkerPrinter.debugMode = "BLOCK" def On_CLOSE_DEBUG_MODE(self): messagebox.showinfo("Note", "You closed the debug mode") MarkerPrinter.debugMode = None if __name__ == '__main__': MarkerPrinterGUI()
#!/usr/bin/env python # Python 2/3 compatibility from __future__ import print_function import os import cv2 as cv from tests_common import NewOpenCVTests SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) MODULE_DIR = os.path.join(SCRIPT_DIR, '../../../') class shape_test(NewOpenCVTests): def test_computeDistance(self): a = cv.imread(os.path.join(MODULE_DIR, 'samples/data/shape_sample/1.png'), cv.IMREAD_GRAYSCALE) b = cv.imread(os.path.join(MODULE_DIR, 'samples/data/shape_sample/2.png'), cv.IMREAD_GRAYSCALE) if a is None or b is None: raise unittest.SkipTest("Missing files with test data") ca, _ = cv.findContours(a, cv.RETR_CCOMP, cv.CHAIN_APPROX_TC89_KCOS) cb, _ = cv.findContours(b, cv.RETR_CCOMP, cv.CHAIN_APPROX_TC89_KCOS) hd = cv.createHausdorffDistanceExtractor() sd = cv.createShapeContextDistanceExtractor() d1 = hd.computeDistance(ca[0], cb[0]) d2 = sd.computeDistance(ca[0], cb[0]) self.assertAlmostEqual(d1, 26.4196891785, 3, "HausdorffDistanceExtractor") self.assertAlmostEqual(d2, 0.25804194808, 3, "ShapeContextDistanceExtractor") if __name__ == '__main__': NewOpenCVTests.bootstrap()
#!/usr/bin/env python import os import cv2 as cv from tests_common import NewOpenCVTests, unittest class test_dnn_superres(NewOpenCVTests): @unittest.skipIf('OPENCV_TEST_DATA_PATH' not in os.environ, "OPENCV_TEST_DATA_PATH is not defined") def test_single_output(self): # Get test data paths dnn_superres_test_path = os.environ['OPENCV_TEST_DATA_PATH'] + "/cv/dnn_superres/" img_path = dnn_superres_test_path + "butterfly.png" espcn_path = dnn_superres_test_path + "ESPCN_x2.pb" # Create an SR object sr = cv.dnn_superres.DnnSuperResImpl_create() # Read image image = cv.imread(img_path) inp_h, inp_w, inp_c = image.shape # Read the desired model sr.readModel(espcn_path) # Set the desired model and scale to get correct pre- and post-processing sr.setModel("espcn", 2) # Upscale the image result = sr.upsample(image) out_h, out_w, out_c = result.shape # CHECK... # if result is not empty self.assertFalse(result is None) # upsampled image is correct size self.assertEqual(out_h, inp_h*2) self.assertEqual(out_w, inp_w*2) self.assertEqual(out_c, inp_c) # get functions work self.assertEqual(sr.getScale(), 2) self.assertEqual(sr.getAlgorithm(), "espcn") if __name__ == '__main__': NewOpenCVTests.bootstrap()
#!/usr/bin/env python import os import cv2 as cv import numpy as np from tests_common import NewOpenCVTests, unittest class cudaobjdetect_test(NewOpenCVTests): def setUp(self): super(cudaobjdetect_test, self).setUp() if not cv.cuda.getCudaEnabledDeviceCount(): self.skipTest("No CUDA-capable device is detected") @unittest.skipIf('OPENCV_TEST_DATA_PATH' not in os.environ, "OPENCV_TEST_DATA_PATH is not defined") def test_hog(self): img_path = os.environ['OPENCV_TEST_DATA_PATH'] + '/gpu/caltech/image_00000009_0.png' npMat = cv.cvtColor(cv.imread(img_path),cv.COLOR_BGR2BGRA) cuMat = cv.cuda_GpuMat(npMat) cuHog = cv.cuda.HOG_create() cuHog.setSVMDetector(cuHog.getDefaultPeopleDetector()) loc, conf = cuHog.detect(cuMat) self.assertTrue(len(loc) == len(conf) and len(loc) > 0 and len(loc[0]) == 2) loc = cuHog.detectWithoutConf(cuMat) self.assertTrue(len(loc) > 0 and len(loc[0]) == 2) loc = cuHog.detectMultiScaleWithoutConf(cuMat) self.assertTrue(len(loc) > 0 and len(loc[0]) == 4) cuHog.setGroupThreshold(0) loc, conf = cuHog.detectMultiScale(cuMat) self.assertTrue(len(loc) == len(conf) and len(loc) > 0 and len(loc[0]) == 4) if __name__ == '__main__': NewOpenCVTests.bootstrap()
#!/usr/bin/env python import os import cv2 as cv import numpy as np from tests_common import NewOpenCVTests, unittest class cudabgsegm_test(NewOpenCVTests): def setUp(self): super(cudabgsegm_test, self).setUp() if not cv.cuda.getCudaEnabledDeviceCount(): self.skipTest("No CUDA-capable device is detected") def test_cudabgsegm(self): lr = 0.05 sz = (128,128,1) npMat = (np.random.random(sz) * 255).astype(np.uint8) cuMat = cv.cuda_GpuMat(npMat) cuMatBg = cv.cuda_GpuMat(cuMat.size(),cuMat.type()) cuMatFg = cv.cuda_GpuMat(cuMat.size(),cuMat.type()) mog = cv.cuda.createBackgroundSubtractorMOG() mog.apply(cuMat, lr, cv.cuda.Stream_Null(), cuMatFg) mog.getBackgroundImage(cv.cuda.Stream_Null(),cuMatBg) self.assertTrue(sz[:2] == cuMatFg.size() == cuMatBg.size()) self.assertTrue(sz[2] == cuMatFg.channels() == cuMatBg.channels()) self.assertTrue(cv.CV_8UC1 == cuMatFg.type() == cuMatBg.type()) mog = cv.cuda.createBackgroundSubtractorMOG() self.assertTrue(np.allclose(cuMatFg.download(),mog.apply(cuMat, lr, cv.cuda.Stream_Null()).download())) self.assertTrue(np.allclose(cuMatBg.download(),mog.getBackgroundImage(cv.cuda.Stream_Null()).download())) mog2 = cv.cuda.createBackgroundSubtractorMOG2() mog2.apply(cuMat, lr, cv.cuda.Stream_Null(), cuMatFg) mog2.getBackgroundImage(cv.cuda.Stream_Null(),cuMatBg) self.assertTrue(sz[:2] == cuMatFg.size() == cuMatBg.size()) self.assertTrue(sz[2] == cuMatFg.channels() == cuMatBg.channels()) self.assertTrue(cv.CV_8UC1 == cuMatFg.type() == cuMatBg.type()) mog2 = cv.cuda.createBackgroundSubtractorMOG2() self.assertTrue(np.allclose(cuMatFg.download(),mog2.apply(cuMat, lr, cv.cuda.Stream_Null()).download())) self.assertTrue(np.allclose(cuMatBg.download(),mog2.getBackgroundImage(cv.cuda.Stream_Null()).download())) if __name__ == '__main__': NewOpenCVTests.bootstrap()
#!/usr/bin/env python import os import cv2 as cv import numpy as np from tests_common import NewOpenCVTests, unittest class cudacodec_test(NewOpenCVTests): def setUp(self): super(cudacodec_test, self).setUp() if not cv.cuda.getCudaEnabledDeviceCount(): self.skipTest("No CUDA-capable device is detected") @unittest.skipIf('OPENCV_TEST_DATA_PATH' not in os.environ, "OPENCV_TEST_DATA_PATH is not defined") def test_reader(self): #Test the functionality but not the results of the video reader vid_path = os.environ['OPENCV_TEST_DATA_PATH'] + '/cv/video/1920x1080.avi' try: reader = cv.cudacodec.createVideoReader(vid_path) ret, gpu_mat = reader.nextFrame() self.assertTrue(ret) self.assertTrue('GpuMat' in str(type(gpu_mat)), msg=type(gpu_mat)) #TODO: print(cv.utils.dumpInputArray(gpu_mat)) # - no support for GpuMat # not checking output, therefore sepearate tests for different signatures is unecessary ret, _gpu_mat2 = reader.nextFrame(gpu_mat) #TODO: self.assertTrue(gpu_mat == gpu_mat2) self.assertTrue(ret) except cv.error as e: notSupported = (e.code == cv.Error.StsNotImplemented or e.code == cv.Error.StsUnsupportedFormat or e.code == cv.Error.GPU_API_CALL_ERROR) self.assertTrue(notSupported) if e.code == cv.Error.StsNotImplemented: self.skipTest("NVCUVID is not installed") elif e.code == cv.Error.StsUnsupportedFormat: self.skipTest("GPU hardware video decoder missing or video format not supported") elif e.code == cv.Error.GPU_API_CALL_ERRROR: self.skipTest("GPU hardware video decoder is missing") else: self.skipTest(e.err) def test_writer_existence(self): #Test at least the existence of wrapped functions for now try: _writer = cv.cudacodec.createVideoWriter("tmp", (128, 128), 30) except cv.error as e: self.assertEqual(e.code, cv.Error.StsNotImplemented) self.skipTest("NVCUVENC is not installed") self.assertTrue(True) #It is sufficient that no exceptions have been there if __name__ == '__main__': NewOpenCVTests.bootstrap()
import random import numpy as np import cv2 as cv frame1 = cv.imread(cv.samples.findFile('lena.jpg')) if frame1 is None: print("image not found") exit() frame = np.vstack((frame1,frame1)) facemark = cv.face.createFacemarkLBF() try: facemark.loadModel(cv.samples.findFile('lbfmodel.yaml')) except cv.error: print("Model not found\nlbfmodel.yaml can be download at") print("https://raw.githubusercontent.com/kurnianggoro/GSOC2017/master/data/lbfmodel.yaml") cascade = cv.CascadeClassifier(cv.samples.findFile('lbpcascade_frontalface_improved.xml')) if cascade.empty() : print("cascade not found") exit() faces = cascade.detectMultiScale(frame, 1.05, 3, cv.CASCADE_SCALE_IMAGE, (30, 30)) ok, landmarks = facemark.fit(frame, faces=faces) cv.imshow("Image", frame) for marks in landmarks: couleur = (random.randint(0,255), random.randint(0,255), random.randint(0,255)) cv.face.drawFacemarks(frame, marks, couleur) cv.imshow("Image Landmarks", frame) cv.waitKey()
#!/usr/bin/env python import sys import os.path # This is a tiny script to help you creating a CSV file from a face # database with a similar hierarchie: # # philipp@mango:~/facerec/data/at$ tree # . # |-- README # |-- s1 # | |-- 1.pgm # | |-- ... # | |-- 10.pgm # |-- s2 # | |-- 1.pgm # | |-- ... # | |-- 10.pgm # ... # |-- s40 # | |-- 1.pgm # | |-- ... # | |-- 10.pgm # if __name__ == "__main__": if len(sys.argv) != 2: print "usage: create_csv <base_path>" sys.exit(1) BASE_PATH=sys.argv[1] SEPARATOR=";" label = 0 for dirname, dirnames, filenames in os.walk(BASE_PATH): for subdirname in dirnames: subject_path = os.path.join(dirname, subdirname) for filename in os.listdir(subject_path): abs_path = "%s/%s" % (subject_path, filename) print "%s%s%d" % (abs_path, SEPARATOR, label) label = label + 1
#!/usr/bin/env python # Software License Agreement (BSD License) # # Copyright (c) 2012, Philipp Wagner # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of the author nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import sys, math, Image def Distance(p1,p2): dx = p2[0] - p1[0] dy = p2[1] - p1[1] return math.sqrt(dx*dx+dy*dy) def ScaleRotateTranslate(image, angle, center = None, new_center = None, scale = None, resample=Image.BICUBIC): if (scale is None) and (center is None): return image.rotate(angle=angle, resample=resample) nx,ny = x,y = center sx=sy=1.0 if new_center: (nx,ny) = new_center if scale: (sx,sy) = (scale, scale) cosine = math.cos(angle) sine = math.sin(angle) a = cosine/sx b = sine/sx c = x-nx*a-ny*b d = -sine/sy e = cosine/sy f = y-nx*d-ny*e return image.transform(image.size, Image.AFFINE, (a,b,c,d,e,f), resample=resample) def CropFace(image, eye_left=(0,0), eye_right=(0,0), offset_pct=(0.2,0.2), dest_sz = (70,70)): # calculate offsets in original image offset_h = math.floor(float(offset_pct[0])*dest_sz[0]) offset_v = math.floor(float(offset_pct[1])*dest_sz[1]) # get the direction eye_direction = (eye_right[0] - eye_left[0], eye_right[1] - eye_left[1]) # calc rotation angle in radians rotation = -math.atan2(float(eye_direction[1]),float(eye_direction[0])) # distance between them dist = Distance(eye_left, eye_right) # calculate the reference eye-width reference = dest_sz[0] - 2.0*offset_h # scale factor scale = float(dist)/float(reference) # rotate original around the left eye image = ScaleRotateTranslate(image, center=eye_left, angle=rotation) # crop the rotated image crop_xy = (eye_left[0] - scale*offset_h, eye_left[1] - scale*offset_v) crop_size = (dest_sz[0]*scale, dest_sz[1]*scale) image = image.crop((int(crop_xy[0]), int(crop_xy[1]), int(crop_xy[0]+crop_size[0]), int(crop_xy[1]+crop_size[1]))) # resize it image = image.resize(dest_sz, Image.ANTIALIAS) return image def readFileNames(): try: inFile = open('path_to_created_csv_file.csv') except: raise IOError('There is no file named path_to_created_csv_file.csv in current directory.') return False picPath = [] picIndex = [] for line in inFile.readlines(): if line != '': fields = line.rstrip().split(';') picPath.append(fields[0]) picIndex.append(int(fields[1])) return (picPath, picIndex) if __name__ == "__main__": [images, indexes]=readFileNames() if not os.path.exists("modified"): os.makedirs("modified") for img in images: image = Image.open(img) CropFace(image, eye_left=(252,364), eye_right=(420,366), offset_pct=(0.1,0.1), dest_sz=(200,200)).save("modified/"+img.rstrip().split('/')[1]+"_10_10_200_200.jpg") CropFace(image, eye_left=(252,364), eye_right=(420,366), offset_pct=(0.2,0.2), dest_sz=(200,200)).save("modified/"+img.rstrip().split('/')[1]+"_20_20_200_200.jpg") CropFace(image, eye_left=(252,364), eye_right=(420,366), offset_pct=(0.3,0.3), dest_sz=(200,200)).save("modified/"+img.rstrip().split('/')[1]+"_30_30_200_200.jpg") CropFace(image, eye_left=(252,364), eye_right=(420,366), offset_pct=(0.2,0.2)).save("modified/"+img.rstrip().split('/')[1]+"_20_20_70_70.jpg")
#!/usr/bin/env python import os import cv2 as cv import numpy as np from tests_common import NewOpenCVTests, unittest class cudaimgproc_test(NewOpenCVTests): def setUp(self): super(cudaimgproc_test, self).setUp() if not cv.cuda.getCudaEnabledDeviceCount(): self.skipTest("No CUDA-capable device is detected") def test_cudaimgproc(self): npC1 = (np.random.random((128, 128)) * 255).astype(np.uint8) npC3 = (np.random.random((128, 128, 3)) * 255).astype(np.uint8) npC4 = (np.random.random((128, 128, 4)) * 255).astype(np.uint8) cuC1 = cv.cuda_GpuMat() cuC3 = cv.cuda_GpuMat() cuC4 = cv.cuda_GpuMat() cuC1.upload(npC1) cuC3.upload(npC3) cuC4.upload(npC4) cv.cuda.cvtColor(cuC3, cv.COLOR_RGB2HSV) cv.cuda.demosaicing(cuC1, cv.cuda.COLOR_BayerGR2BGR_MHT) cv.cuda.gammaCorrection(cuC3) cv.cuda.alphaComp(cuC4, cuC4, cv.cuda.ALPHA_XOR) cv.cuda.calcHist(cuC1) cv.cuda.equalizeHist(cuC1) cv.cuda.evenLevels(3, 0, 255) cv.cuda.meanShiftFiltering(cuC4, 10, 5) cv.cuda.meanShiftProc(cuC4, 10, 5) cv.cuda.bilateralFilter(cuC3, 3, 16, 3) cv.cuda.blendLinear cuRes = cv.cuda.meanShiftSegmentation(cuC4, 10, 5, 5) cuDst = cv.cuda_GpuMat(cuC4.size(),cuC4.type()) cv.cuda.meanShiftSegmentation(cuC4, 10, 5, 5, cuDst) self.assertTrue(np.allclose(cuRes.download(),cuDst.download())) clahe = cv.cuda.createCLAHE() clahe.apply(cuC1, cv.cuda_Stream.Null()) histLevels = cv.cuda.histEven(cuC3, 20, 0, 255) cv.cuda.histRange(cuC1, histLevels) detector = cv.cuda.createCannyEdgeDetector(0, 100) detector.detect(cuC1) detector = cv.cuda.createHoughLinesDetector(3, np.pi / 180, 20) detector.detect(cuC1) detector = cv.cuda.createHoughSegmentDetector(3, np.pi / 180, 20, 5) detector.detect(cuC1) detector = cv.cuda.createHoughCirclesDetector(3, 20, 10, 10, 20, 100) detector.detect(cuC1) detector = cv.cuda.createGeneralizedHoughBallard() #BUG: detect accept only Mat! #Even if generate_gpumat_decls is set to True, it only wraps overload CUDA functions. #The problem is that Mat and GpuMat are not fully compatible to enable system-wide overloading #detector.detect(cuC1, cuC1, cuC1) detector = cv.cuda.createGeneralizedHoughGuil() #BUG: same as above.. #detector.detect(cuC1, cuC1, cuC1) detector = cv.cuda.createHarrisCorner(cv.CV_8UC1, 15, 5, 1) detector.compute(cuC1) detector = cv.cuda.createMinEigenValCorner(cv.CV_8UC1, 15, 5, 1) detector.compute(cuC1) detector = cv.cuda.createGoodFeaturesToTrackDetector(cv.CV_8UC1) detector.detect(cuC1) matcher = cv.cuda.createTemplateMatching(cv.CV_8UC1, cv.TM_CCOEFF_NORMED) matcher.match(cuC3, cuC3) self.assertTrue(True) #It is sufficient that no exceptions have been there def test_cvtColor(self): npMat = (np.random.random((128, 128, 3)) * 255).astype(np.uint8) cuMat = cv.cuda_GpuMat() cuMat.upload(npMat) self.assertTrue(np.allclose(cv.cuda.cvtColor(cuMat, cv.COLOR_BGR2HSV).download(), cv.cvtColor(npMat, cv.COLOR_BGR2HSV))) if __name__ == '__main__': NewOpenCVTests.bootstrap()
#!/usr/bin/env python import os import cv2 as cv import numpy as np from tests_common import NewOpenCVTests, unittest class xfeatures2d_test(NewOpenCVTests): def setUp(self): super(xfeatures2d_test, self).setUp() if not cv.cuda.getCudaEnabledDeviceCount(): self.skipTest("No CUDA-capable device is detected") @unittest.skipIf('OPENCV_TEST_DATA_PATH' not in os.environ, "OPENCV_TEST_DATA_PATH is not defined") def test_surf(self): img_path = os.environ['OPENCV_TEST_DATA_PATH'] + "/gpu/features2d/aloe.png" hessianThreshold = 100 nOctaves = 3 nOctaveLayers = 2 extended = False keypointsRatio = 0.05 upright = False npMat = cv.cvtColor(cv.imread(img_path),cv.COLOR_BGR2GRAY) cuMat = cv.cuda_GpuMat(npMat) try: cuSurf = cv.cuda_SURF_CUDA.create(hessianThreshold,nOctaves,nOctaveLayers,extended,keypointsRatio,upright) surf = cv.xfeatures2d_SURF.create(hessianThreshold,nOctaves,nOctaveLayers,extended,upright) except cv.error as e: self.assertEqual(e.code, cv.Error.StsNotImplemented) self.skipTest("OPENCV_ENABLE_NONFREE is not enabled in this build.") cuKeypoints = cuSurf.detect(cuMat,cv.cuda_GpuMat()) keypointsHost = cuSurf.downloadKeypoints(cuKeypoints) keypoints = surf.detect(npMat) self.assertTrue(len(keypointsHost) == len(keypoints)) cuKeypoints, cuDescriptors = cuSurf.detectWithDescriptors(cuMat,cv.cuda_GpuMat(),cuKeypoints,useProvidedKeypoints=True) keypointsHost = cuSurf.downloadKeypoints(cuKeypoints) descriptorsHost = cuDescriptors.download() keypoints, descriptors = surf.compute(npMat,keypoints) self.assertTrue(len(keypointsHost) == len(keypoints) and descriptorsHost.shape == descriptors.shape) if __name__ == '__main__': NewOpenCVTests.bootstrap()
#!/usr/bin/env python # Python 2/3 compatibility from __future__ import print_function import os import numpy as np import cv2 as cv from tests_common import NewOpenCVTests class sift_compatibility_test(NewOpenCVTests): def test_create(self): sift = cv.xfeatures2d.SIFT_create() self.assertFalse(sift is None) img1 = np.zeros((100, 100, 3), dtype=np.uint8) kp1_, des1_ = sift.detectAndCompute(img1, None) if __name__ == '__main__': NewOpenCVTests.bootstrap()
#!/usr/bin/python """ /********************************************************************* * Software License Agreement (BSD License) * * Copyright (c) 2016 * * Balint Cristian <cristian dot balint at gmail dot com> * * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. *********************************************************************/ /* export-boostdesc.py */ /* Export C headers from binary data */ // [http://infoscience.epfl.ch/record/186246/files/boostDesc_1.0.tar.gz] """ import sys import struct def float_to_hex(f): return struct.unpack( '<I', struct.pack('<f', f) )[0] def main(): # usage if ( len(sys.argv) < 3 ): print( "Usage: %s <binary-type (BGM, LBGM, BINBOOST)> <boostdesc-binary-filename>" % sys.argv[0] ) sys.exit(0) if ( ( sys.argv[1] != "BGM" ) and ( sys.argv[1] != "LBGM" ) and ( sys.argv[1] != "BINBOOST" ) ): print( "Invalid type [%s]" % sys.argv[1] ) sys.exit(0) # enum literals Assign = [ "ASSIGN_HARD", "ASSIGN_BILINEAR", "ASSIGN_SOFT", "ASSIGN_HARD_MAGN", "ASSIGN_SOFT_MAGN" ] # open binary data file f = open( sys.argv[2], 'rb' ) # header print "/*" print " *" print " * Header exported from binary." print " * [%s %s %s]" % ( sys.argv[0], sys.argv[1], sys.argv[2] ) print " *" print " */" # ini nDim = 1; nWLs = 0; # dimensionality (where is the case) if ( ( sys.argv[1] == "LBGM" ) or ( sys.argv[1] == "BINBOOST" ) ): nDim = struct.unpack( '<i', f.read(4) )[0] print print "// dimensionality of learner" print "static const int nDim = %i;" % nDim # week learners (where is the case) if ( sys.argv[1] != "BINBOOST" ): nWLs = struct.unpack( '<i', f.read(4) )[0] # common header orientQuant = struct.unpack( '<i', f.read(4) )[0] patchSize = struct.unpack( '<i', f.read(4) )[0] iGradAssignType = struct.unpack( '<i', f.read(4) )[0] print print "// orientations" print "static const int orientQuant = %i;" % orientQuant print print "// patch size" print "static const int patchSize = %i;" % patchSize print print "// gradient assignment type" print "static const int iGradAssignType = %s;" % Assign[iGradAssignType] arr_thresh = "" arr_orient = "" arr__y_min = "" arr__y_max = "" arr__x_min = "" arr__x_max = "" arr__alpha = "" arr___beta = "" dims = nDim if ( sys.argv[1] == "LBGM" ): dims = 1 # iterate each dimension for d in range( 0, dims ): if ( sys.argv[1] == "BINBOOST" ): nWLs = struct.unpack( '<i', f.read(4) )[0] if ( d == 0 ): print print "// number of weak learners" print "static const int nWLs = %i;" % nWLs # iterate each members for i in range( 0, nWLs ): # unpack structure array thresh = struct.unpack( '<f', f.read(4) )[0] orient = struct.unpack( '<i', f.read(4) )[0] y_min = struct.unpack( '<i', f.read(4) )[0] y_max = struct.unpack( '<i', f.read(4) )[0] x_min = struct.unpack( '<i', f.read(4) )[0] x_max = struct.unpack( '<i', f.read(4) )[0] alpha = struct.unpack( '<f', f.read(4) )[0] beta = 0 if ( sys.argv[1] == "BINBOOST" ): beta = struct.unpack( '<f', f.read(4) )[0] # first entry if ( d*dims + i == 0 ): arr_thresh += "\n" arr_thresh += "// threshold array (%s x %s)\n" % (dims,nWLs) arr_thresh += "static const unsigned int thresh[] =\n{\n" arr_orient += "\n" arr_orient += "// orientation array (%s x %s)\n" % (dims,nWLs) arr_orient += "static const int orient[] =\n{\n" arr__y_min += "\n" arr__y_min += "// Y min array (%s x %s)\n" % (dims,nWLs) arr__y_min += "static const int y_min[] =\n{\n" arr__y_max += "\n" arr__y_max += "// Y max array (%s x %s)\n" % (dims,nWLs) arr__y_max += "static const int y_max[] =\n{\n" arr__x_min += "\n" arr__x_min += "// X min array (%s x %s)\n" % (dims,nWLs) arr__x_min += "static const int x_min[] =\n{\n" arr__x_max += "\n" arr__x_max += "// X max array (%s x %s)\n" % (dims,nWLs) arr__x_max += "static const int x_max[] =\n{\n" arr__alpha += "\n" arr__alpha += "// alpha array (%s x %s)\n" % (dims,nWLs) arr__alpha += "static const unsigned int alpha[] =\n{\n" if ( sys.argv[1] == "BINBOOST" ): arr___beta += "\n" arr___beta += "// beta array (%s x %s)\n" % (dims,nWLs) arr___beta += "static const unsigned int beta[] =\n{\n" # last entry if ( i == nWLs - 1 ) and ( d == dims - 1): arr_thresh += " 0x%08x\n};" % float_to_hex(thresh) arr_orient += " 0x%02x\n};" % orient arr__y_min += " 0x%02x\n};" % y_min arr__y_max += " 0x%02x\n};" % y_max arr__x_min += " 0x%02x\n};" % x_min arr__x_max += " 0x%02x\n};" % x_max arr__alpha += " 0x%08x\n};" % float_to_hex(alpha) if ( sys.argv[1] == "BINBOOST" ): arr___beta += " 0x%08x\n};" % float_to_hex(beta) break # align entries if ( (d*dims + i + 1) % 8 ): arr_thresh += " 0x%08x," % float_to_hex(thresh) arr_orient += " 0x%02x," % orient arr__y_min += " 0x%02x," % y_min arr__y_max += " 0x%02x," % y_max arr__x_min += " 0x%02x," % x_min arr__x_max += " 0x%02x," % x_max arr__alpha += " 0x%08x," % float_to_hex(alpha) if ( sys.argv[1] == "BINBOOST" ): arr___beta += " 0x%08x," % float_to_hex(beta) else: arr_thresh += " 0x%08x,\n" % float_to_hex(thresh) arr_orient += " 0x%02x,\n" % orient arr__y_min += " 0x%02x,\n" % y_min arr__y_max += " 0x%02x,\n" % y_max arr__x_min += " 0x%02x,\n" % x_min arr__x_max += " 0x%02x,\n" % x_max arr__alpha += " 0x%08x,\n" % float_to_hex(alpha) if ( sys.argv[1] == "BINBOOST" ): arr___beta += " 0x%08x,\n" % float_to_hex(beta) # extra array (when LBGM) if ( sys.argv[1] == "LBGM" ): arr___beta += "\n" arr___beta += "// beta array (%s x %s)\n" % (nWLs,nDim) arr___beta += "static const unsigned int beta[] =\n{\n" for i in range( 0, nWLs ): for d in range( 0, nDim ): beta = struct.unpack( '<f', f.read(4) )[0] # last entry if ( i == nWLs-1 ) and ( d == nDim-1 ): arr___beta += " 0x%08x\n};" % float_to_hex(beta) break # align entries if ( (i*nDim + d + 1) % 8 ): arr___beta += " 0x%08x," % float_to_hex(beta) else: arr___beta += " 0x%08x,\n" % float_to_hex(beta) # release f.close() # dump on screen print arr_thresh print arr_orient print arr__y_min print arr__y_max print arr__x_min print arr__x_max print arr__alpha if ( ( sys.argv[1] == "LBGM" ) or ( sys.argv[1] == "BINBOOST" ) ): print arr___beta if __name__ == "__main__": main()
#!/usr/bin/env python import os import cv2 as cv import numpy as np from tests_common import NewOpenCVTests, unittest def create_affine_transform_matrix(size,angle): return np.array([[np.cos(angle), -np.sin(angle), size[1]/2], [np.sin(angle), np.cos(angle), 0]]) def create_perspective_transform_matrix(size,angle): return np.vstack([create_affine_transform_matrix(size,angle),[0, 0, 1]]) class cudawarping_test(NewOpenCVTests): def setUp(self): super(cudawarping_test, self).setUp() if not cv.cuda.getCudaEnabledDeviceCount(): self.skipTest("No CUDA-capable device is detected") def test_resize(self): dstSz = (256,256) interp = cv.INTER_NEAREST npMat = (np.random.random((128,128,3))*255).astype(np.uint8) cuMat = cv.cuda_GpuMat(npMat) cuMatDst = cv.cuda_GpuMat(dstSz,cuMat.type()) self.assertTrue(np.allclose(cv.cuda.resize(cuMat,dstSz,interpolation=interp).download(), cv.resize(npMat,dstSz,interpolation=interp))) cv.cuda.resize(cuMat,dstSz,cuMatDst,interpolation=interp) self.assertTrue(np.allclose(cuMatDst.download(),cv.resize(npMat,dstSz,interpolation=interp))) def test_warp(self): npMat = (np.random.random((128,128,3))*255).astype(np.uint8) size = npMat.shape[:2] M1 = create_affine_transform_matrix(size,np.pi/2) cuMat = cv.cuda_GpuMat(npMat) cuMatDst = cv.cuda_GpuMat(size,cuMat.type()) borderType = cv.BORDER_REFLECT101 self.assertTrue(np.allclose(cv.cuda.warpAffine(cuMat,M1,size,borderMode=borderType).download(), cv.warpAffine(npMat,M1,size, borderMode=borderType))) cv.cuda.warpAffine(cuMat,M1,size,cuMatDst,borderMode=borderType) self.assertTrue(np.allclose(cuMatDst.download(),cv.warpAffine(npMat,M1,size,borderMode=borderType))) interpolation = cv.INTER_NEAREST flags = interpolation | cv.WARP_INVERSE_MAP dst_gold = cv.warpAffine(npMat, M1, size, flags = flags) cuMaps = cv.cuda.buildWarpAffineMaps(M1,True,size) dst = cv.remap(npMat, cuMaps[0].download(), cuMaps[1].download(),interpolation) self.assertTrue(np.allclose(dst,dst_gold)) xmap = cv.cuda_GpuMat(size,cv.CV_32FC1) ymap = cv.cuda_GpuMat(size,cv.CV_32FC1) cv.cuda.buildWarpAffineMaps(M1,True,size,xmap,ymap) dst = cv.remap(npMat, xmap.download(), ymap.download(),interpolation) self.assertTrue(np.allclose(dst,dst_gold)) M2 = create_perspective_transform_matrix(size,np.pi/2) np.allclose(cv.cuda.warpPerspective(cuMat,M2,size,borderMode=borderType).download(), cv.warpPerspective(npMat,M2,size,borderMode=borderType)) cv.cuda.warpPerspective(cuMat,M2,size,cuMatDst,borderMode=borderType) self.assertTrue(np.allclose(cuMatDst.download(),cv.warpPerspective(npMat,M2,size,borderMode=borderType))) dst_gold = cv.warpPerspective(npMat, M2, size, flags = flags) cuMaps = cv.cuda.buildWarpPerspectiveMaps(M2,True,size) dst = cv.remap(npMat, cuMaps[0].download(), cuMaps[1].download(),interpolation) self.assertTrue(np.allclose(dst,dst_gold)) cv.cuda.buildWarpPerspectiveMaps(M2,True,size,xmap,ymap) dst = cv.remap(npMat, xmap.download(), ymap.download(),interpolation) self.assertTrue(np.allclose(dst,dst_gold)) if __name__ == '__main__': NewOpenCVTests.bootstrap()
#!/usr/bin/env python # Python 2/3 compatibility from __future__ import print_function import os import cv2 as cv import numpy as np from tests_common import NewOpenCVTests, unittest class intensity_transform_test(NewOpenCVTests): def setUp(self): super(intensity_transform_test, self).setUp() try: result_ = cv.intensity_transform.BIMEF(None) except cv.error as e: if e.code == cv.Error.StsNotImplemented: self.skipTest('BIMEF is not implemented (missing Eigen dependency)') @unittest.skipIf('OPENCV_TEST_DATA_PATH' not in os.environ, "OPENCV_TEST_DATA_PATH is not defined") def test_BIMEF(self): filenames = ['P1000205_resize', 'P1010676_resize', 'P1010815_resize'] for f in filenames: img = self.get_sample('cv/intensity_transform/BIMEF/{}.png'.format(f)) self.assertTrue(img.size > 0) img_ref = self.get_sample('cv/intensity_transform/BIMEF/{}_ref.png'.format(f)) self.assertTrue(img_ref.size > 0) img_BIMEF = cv.intensity_transform.BIMEF(img) self.assertTrue(img_BIMEF.size > 0) self.assertTrue(img_BIMEF.shape == img_ref.shape) self.assertTrue(img_BIMEF.dtype == img_ref.dtype) RMSE = np.sqrt(cv.norm(img_BIMEF, img_ref, cv.NORM_L2SQR) / (img_ref.shape[0]*img_ref.shape[1]*img_ref.shape[2])) max_RMSE_threshold = 9.0 self.assertLessEqual(RMSE, max_RMSE_threshold) print('BIMEF RMSE:', RMSE) if __name__ == '__main__': NewOpenCVTests.bootstrap()
import argparse import glob import os import subprocess FRAME_DIST = 2 assert (FRAME_DIST >= 1) def execute(cmd): popen = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) for stdout_line in iter(popen.stdout.readline, ''): print(stdout_line.rstrip()) for stderr_line in iter(popen.stderr.readline, ''): print(stderr_line.rstrip()) popen.stdout.close() popen.stderr.close() return_code = popen.wait() if return_code != 0: raise subprocess.CalledProcessError(return_code, cmd) def main(): parser = argparse.ArgumentParser( description='Train Global Patch Collider using MPI Sintel dataset') parser.add_argument( '--bin_path', help='Path to the training executable (example_optflow_gpc_train)', required=True) parser.add_argument('--dataset_path', help='Path to the directory with frames', required=True) parser.add_argument('--gt_path', help='Path to the directory with ground truth flow', required=True) parser.add_argument('--descriptor_type', help='Descriptor type', type=int, default=0) args = parser.parse_args() seq = glob.glob(os.path.join(args.dataset_path, '*')) seq.sort() input_files = [] for s in seq: seq_name = os.path.basename(s) frames = glob.glob(os.path.join(s, 'frame*.png')) frames.sort() for i in range(0, len(frames) - 1, FRAME_DIST): gt_flow = os.path.join(args.gt_path, seq_name, os.path.basename(frames[i])[0:-4] + '.flo') assert (os.path.isfile(gt_flow)) input_files += [frames[i], frames[i + 1], gt_flow] execute([args.bin_path, '--descriptor-type=%d' % args.descriptor_type] + input_files) if __name__ == '__main__': main()
#!/usr/bin/env python from __future__ import print_function import os, sys, shutil import argparse import json, re from subprocess import check_output import datetime import matplotlib.pyplot as plt def load_json(path): f = open(path, "r") data = json.load(f) return data def save_json(obj, path): tmp_file = path + ".bak" f = open(tmp_file, "w") json.dump(obj, f, indent=2) f.flush() os.fsync(f.fileno()) f.close() try: os.rename(tmp_file, path) except: os.remove(path) os.rename(tmp_file, path) def parse_evaluation_result(input_str, i): res = {} res['frame_number'] = i + 1 res['error'] = {} regex = "([A-Za-z. \\[\\].0-9]+):[ ]*([0-9]*\.[0-9]+|[0-9]+)" for elem in re.findall(regex,input_str): if "Time" in elem[0]: res['time'] = float(elem[1]) elif "Average" in elem[0]: res['error']['average'] = float(elem[1]) elif "deviation" in elem[0]: res['error']['std'] = float(elem[1]) else: res['error'][elem[0]] = float(elem[1]) return res def evaluate_sequence(sequence, algorithm, dataset, executable, img_files, gt_files, state, state_path): if "eval_results" not in state[dataset][algorithm][-1].keys(): state[dataset][algorithm][-1]["eval_results"] = {} elif sequence in state[dataset][algorithm][-1]["eval_results"].keys(): return res = [] for i in range(len(img_files) - 1): sys.stdout.write("Algorithm: %-20s Sequence: %-10s Done: [%3d/%3d]\r" % (algorithm, sequence, i, len(img_files) - 1)), sys.stdout.flush() res_string = check_output([executable, img_files[i], img_files[i + 1], algorithm, gt_files[i]]) res.append(parse_evaluation_result(res_string, i)) state[dataset][algorithm][-1]["eval_results"][sequence] = res save_json(state, state_path) #############################DATSET DEFINITIONS################################ def evaluate_mpi_sintel(source_dir, algorithm, evaluation_executable, state, state_path): evaluation_result = {} img_dir = os.path.join(source_dir, 'mpi_sintel', 'training', 'final') gt_dir = os.path.join(source_dir, 'mpi_sintel', 'training', 'flow') sequences = [f for f in os.listdir(img_dir) if os.path.isdir(os.path.join(img_dir, f))] for seq in sequences: img_files = sorted([os.path.join(img_dir, seq, f) for f in os.listdir(os.path.join(img_dir, seq)) if f.endswith(".png")]) gt_files = sorted([os.path.join(gt_dir, seq, f) for f in os.listdir(os.path.join(gt_dir, seq)) if f.endswith(".flo")]) evaluation_result[seq] = evaluate_sequence(seq, algorithm, 'mpi_sintel', evaluation_executable, img_files, gt_files, state, state_path) return evaluation_result def evaluate_middlebury(source_dir, algorithm, evaluation_executable, state, state_path): evaluation_result = {} img_dir = os.path.join(source_dir, 'middlebury', 'other-data') gt_dir = os.path.join(source_dir, 'middlebury', 'other-gt-flow') sequences = [f for f in os.listdir(gt_dir) if os.path.isdir(os.path.join(gt_dir, f))] for seq in sequences: img_files = sorted([os.path.join(img_dir, seq, f) for f in os.listdir(os.path.join(img_dir, seq)) if f.endswith(".png")]) gt_files = sorted([os.path.join(gt_dir, seq, f) for f in os.listdir(os.path.join(gt_dir, seq)) if f.endswith(".flo")]) evaluation_result[seq] = evaluate_sequence(seq, algorithm, 'middlebury', evaluation_executable, img_files, gt_files, state, state_path) return evaluation_result dataset_eval_functions = { "mpi_sintel": evaluate_mpi_sintel, "middlebury": evaluate_middlebury } ############################################################################### def create_dir(dir): if not os.path.exists(dir): os.makedirs(dir) def parse_sequence(input_str): if len(input_str) == 0: return [] else: return [o.strip() for o in input_str.split(",") if o] def build_chart(dst_folder, state, dataset): fig = plt.figure(figsize=(16, 10)) markers = ["o", "s", "h", "^", "D"] marker_idx = 0 colors = ["b", "g", "r"] color_idx = 0 for algo in state[dataset].keys(): for eval_instance in state[dataset][algo]: name = algo + "--" + eval_instance["timestamp"] average_time = 0.0 average_error = 0.0 num_elem = 0 for seq in eval_instance["eval_results"].keys(): for frame in eval_instance["eval_results"][seq]: average_time += frame["time"] average_error += frame["error"]["average"] num_elem += 1 average_time /= num_elem average_error /= num_elem marker_style = colors[color_idx] + markers[marker_idx] color_idx += 1 if color_idx >= len(colors): color_idx = 0 marker_idx += 1 if marker_idx >= len(markers): marker_idx = 0 plt.gca().plot([average_time], [average_error], marker_style, markersize=14, label=name) plt.gca().set_ylabel('Average Endpoint Error (EPE)', fontsize=20) plt.gca().set_xlabel('Average Runtime (seconds per frame)', fontsize=20) plt.gca().set_xscale("log") plt.gca().set_title('Evaluation on ' + dataset, fontsize=20) plt.gca().legend() fig.savefig(os.path.join(dst_folder, "evaluation_results_" + dataset + ".png"), bbox_inches='tight') plt.close() if __name__ == '__main__': parser = argparse.ArgumentParser( description='Optical flow benchmarking script', formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument( "bin_path", default="./optflow-example-optical_flow_evaluation", help="Path to the optical flow evaluation executable") parser.add_argument( "-a", "--algorithms", metavar="ALGORITHMS", default="", help=("Comma-separated list of optical-flow algorithms to evaluate " "(example: -a farneback,tvl1,deepflow). Note that previously " "evaluated algorithms are also included in the output charts")) parser.add_argument( "-d", "--datasets", metavar="DATASETS", default="mpi_sintel", help=("Comma-separated list of datasets for evaluation (currently only " "'mpi_sintel' and 'middlebury' are supported)")) parser.add_argument( "-f", "--dataset_folder", metavar="DATASET_FOLDER", default="./OF_datasets", help=("Path to a folder containing datasets. To enable evaluation on " "MPI Sintel dataset, please download it using the following links: " "http://files.is.tue.mpg.de/sintel/MPI-Sintel-training_images.zip and " "http://files.is.tue.mpg.de/sintel/MPI-Sintel-training_extras.zip and " "unzip these archives into the 'mpi_sintel' folder. To enable evaluation " "on the Middlebury dataset use the following links: " "http://vision.middlebury.edu/flow/data/comp/zip/other-color-twoframes.zip, " "http://vision.middlebury.edu/flow/data/comp/zip/other-gt-flow.zip. " "These should be unzipped into 'middlebury' folder")) parser.add_argument( "-o", "--out", metavar="OUT_DIR", default="./OF_evaluation_results", help="Output directory where to store benchmark results") parser.add_argument( "-s", "--state", metavar="STATE_JSON", default="./OF_evaluation_state.json", help=("Path to a json file that stores the current evaluation state and " "previous evaluation results")) args, other_args = parser.parse_known_args() if not os.path.isfile(args.bin_path): print("Error: " + args.bin_path + " does not exist") sys.exit(1) if not os.path.exists(args.dataset_folder): print("Error: " + args.dataset_folder + (" does not exist. Please, correctly " "specify the -f parameter")) sys.exit(1) state = {} if os.path.isfile(args.state): state = load_json(args.state) algorithm_list = parse_sequence(args.algorithms) dataset_list = parse_sequence(args.datasets) for dataset in dataset_list: if dataset not in dataset_eval_functions.keys(): print("Error: unsupported dataset " + dataset) sys.exit(1) if dataset not in os.listdir(args.dataset_folder): print("Error: " + os.path.join(args.dataset_folder, dataset) + (" does not exist. " "Please, download the dataset and follow the naming conventions " "(use -h for more information)")) sys.exit(1) for dataset in dataset_list: if dataset not in state.keys(): state[dataset] = {} for algorithm in algorithm_list: if algorithm in state[dataset].keys(): last_eval_instance = state[dataset][algorithm][-1] if "finished" not in last_eval_instance.keys(): print(("Continuing an unfinished evaluation of " + algorithm + " started at " + last_eval_instance["timestamp"])) else: state[dataset][algorithm].append({"timestamp": datetime.datetime.now().strftime("%Y-%m-%d--%H-%M")}) else: state[dataset][algorithm] = [{"timestamp": datetime.datetime.now().strftime("%Y-%m-%d--%H-%M")}] save_json(state, args.state) dataset_eval_functions[dataset](args.dataset_folder, algorithm, args.bin_path, state, args.state) state[dataset][algorithm][-1]["finished"] = True save_json(state, args.state) save_json(state, args.state) create_dir(args.out) for dataset in dataset_list: build_chart(args.out, state, dataset)
import argparse import glob import os import subprocess def execute(cmd): popen = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) for stdout_line in iter(popen.stdout.readline, ''): print(stdout_line.rstrip()) for stderr_line in iter(popen.stderr.readline, ''): print(stderr_line.rstrip()) popen.stdout.close() popen.stderr.close() return_code = popen.wait() if return_code != 0: raise subprocess.CalledProcessError(return_code, cmd) def main(): parser = argparse.ArgumentParser( description='Train Global Patch Collider using Middlebury dataset') parser.add_argument( '--bin_path', help='Path to the training executable (example_optflow_gpc_train)', required=True) parser.add_argument('--dataset_path', help='Path to the directory with frames', required=True) parser.add_argument('--gt_path', help='Path to the directory with ground truth flow', required=True) parser.add_argument('--descriptor_type', help='Descriptor type', type=int, default=0) args = parser.parse_args() seq = glob.glob(os.path.join(args.dataset_path, '*')) seq.sort() input_files = [] for s in seq: if os.path.isdir(s): seq_name = os.path.basename(s) frames = glob.glob(os.path.join(s, 'frame*.png')) frames.sort() assert (len(frames) == 2) assert (os.path.basename(frames[0]) == 'frame10.png') assert (os.path.basename(frames[1]) == 'frame11.png') gt_flow = os.path.join(args.gt_path, seq_name, 'flow10.flo') if os.path.isfile(gt_flow): input_files += [frames[0], frames[1], gt_flow] execute([args.bin_path, '--descriptor-type=%d' % args.descriptor_type] + input_files) if __name__ == '__main__': main()
#!/usr/bin/env python import numpy as np import cv2 as cv MHI_DURATION = 0.5 DEFAULT_THRESHOLD = 32 MAX_TIME_DELTA = 0.25 MIN_TIME_DELTA = 0.05 # (empty) trackbar callback def nothing(dummy): pass def draw_motion_comp(vis, rect, angle, color): x, y, w, h = rect cv.rectangle(vis, (x, y), (x+w, y+h), (0, 255, 0)) r = min(w//2, h//2) cx, cy = x+w//2, y+h//2 angle = angle*np.pi/180 cv.circle(vis, (cx, cy), r, color, 3) cv.line(vis, (cx, cy), (int(cx+np.cos(angle)*r), int(cy+np.sin(angle)*r)), color, 3) if __name__ == '__main__': import sys try: video_src = sys.argv[1] except: video_src = 0 cv.namedWindow('motempl') visuals = ['input', 'frame_diff', 'motion_hist', 'grad_orient'] cv.createTrackbar('visual', 'motempl', 2, len(visuals)-1, nothing) cv.createTrackbar('threshold', 'motempl', DEFAULT_THRESHOLD, 255, nothing) cam = cv.VideoCapture(video_src) if not cam.isOpened(): print("could not open video_src " + str(video_src) + " !\n") sys.exit(1) ret, frame = cam.read() if ret == False: print("could not read from " + str(video_src) + " !\n") sys.exit(1) h, w = frame.shape[:2] prev_frame = frame.copy() motion_history = np.zeros((h, w), np.float32) hsv = np.zeros((h, w, 3), np.uint8) hsv[:,:,1] = 255 while True: ret, frame = cam.read() if ret == False: break frame_diff = cv.absdiff(frame, prev_frame) gray_diff = cv.cvtColor(frame_diff, cv.COLOR_BGR2GRAY) thrs = cv.getTrackbarPos('threshold', 'motempl') ret, motion_mask = cv.threshold(gray_diff, thrs, 1, cv.THRESH_BINARY) timestamp = cv.getTickCount() / cv.getTickFrequency() cv.motempl.updateMotionHistory(motion_mask, motion_history, timestamp, MHI_DURATION) mg_mask, mg_orient = cv.motempl.calcMotionGradient( motion_history, MAX_TIME_DELTA, MIN_TIME_DELTA, apertureSize=5 ) seg_mask, seg_bounds = cv.motempl.segmentMotion(motion_history, timestamp, MAX_TIME_DELTA) visual_name = visuals[cv.getTrackbarPos('visual', 'motempl')] if visual_name == 'input': vis = frame.copy() elif visual_name == 'frame_diff': vis = frame_diff.copy() elif visual_name == 'motion_hist': vis = np.uint8(np.clip((motion_history-(timestamp-MHI_DURATION)) / MHI_DURATION, 0, 1)*255) vis = cv.cvtColor(vis, cv.COLOR_GRAY2BGR) elif visual_name == 'grad_orient': hsv[:,:,0] = mg_orient/2 hsv[:,:,2] = mg_mask*255 vis = cv.cvtColor(hsv, cv.COLOR_HSV2BGR) for i, rect in enumerate([(0, 0, w, h)] + list(seg_bounds)): x, y, rw, rh = rect area = rw*rh if area < 64**2: continue silh_roi = motion_mask [y:y+rh,x:x+rw] orient_roi = mg_orient [y:y+rh,x:x+rw] mask_roi = mg_mask [y:y+rh,x:x+rw] mhi_roi = motion_history[y:y+rh,x:x+rw] if cv.norm(silh_roi, cv.NORM_L1) < area*0.05: continue angle = cv.motempl.calcGlobalOrientation(orient_roi, mask_roi, mhi_roi, timestamp, MHI_DURATION) color = ((255, 0, 0), (0, 0, 255))[i == 0] draw_motion_comp(vis, rect, angle, color) cv.putText(vis, visual_name, (20, 20), cv.FONT_HERSHEY_PLAIN, 1.0, (200,0,0)) cv.imshow('motempl', vis) prev_frame = frame.copy() if 0xFF & cv.waitKey(5) == 27: break # cleanup the camera and close any open windows cam.release() cv.destroyAllWindows()
#!/usr/bin/env python import os import sys import numpy as np import cv2 as cv import struct import argparse from math import sqrt argparser = argparse.ArgumentParser( description='''Use this script to generate prior for using with PCAFlow. Basis size here must match corresponding parameter in the PCAFlow. Gamma should be selected experimentally.''') argparser.add_argument('-f', '--files', nargs='+', help='List of optical flow .flo files for learning. You can pass a directory here and it will be scanned recursively for .flo files.', required=True) argparser.add_argument('-o', '--output', help='Output file for prior', required=True) argparser.add_argument('--width', type=int, help='Size of the basis first dimension', required=True, default=18) argparser.add_argument('--height', type=int, help='Size of the basis second dimension', required=True, default=14) argparser.add_argument( '-g', '--gamma', type=float, help='Amount of regularization. The greater this parameter, the bigger will be an impact of the regularization.', required=True) args = argparser.parse_args() basis_size = (args.height, args.width) gamma = args.gamma def find_flo(pp): f = [] for p in pp: if os.path.isfile(p): f.append(p) else: for root, subdirs, files in os.walk(p): f += map(lambda x: os.path.join(root, x), filter(lambda x: x.split('.')[-1] == 'flo', files)) return list(set(f)) def load_flo(flo): with open(flo, 'rb') as f: magic = np.fromfile(f, np.float32, count=1)[0] if 202021.25 != magic: print('Magic number incorrect. Invalid .flo file') else: w = np.fromfile(f, np.int32, count=1)[0] h = np.fromfile(f, np.int32, count=1)[0] print('Reading %dx%d flo file %s' % (w, h, flo)) data = np.fromfile(f, np.float32, count=2 * w * h) # Reshape data into 3D array (columns, rows, bands) flow = np.reshape(data, (h, w, 2)) return flow[:, :, 0], flow[:, :, 1] def get_w(m): s = m.shape w = cv.dct(m) w *= 2.0 / sqrt(s[0] * s[1]) #w[0,0] *= 0.5 w[:, 0] *= sqrt(0.5) w[0, :] *= sqrt(0.5) w = w[0:basis_size[0], 0:basis_size[1]].transpose().flatten() return w w1 = [] w2 = [] for flo in find_flo(args.files): x, y = load_flo(flo) w1.append(get_w(x)) w2.append(get_w(y)) w1mean = sum(w1) / len(w1) w2mean = sum(w2) / len(w2) for i in xrange(len(w1)): w1[i] -= w1mean for i in xrange(len(w2)): w2[i] -= w2mean Q1 = sum([w1[i].reshape(-1, 1).dot(w1[i].reshape(1, -1)) for i in xrange(len(w1))]) / len(w1) Q2 = sum([w2[i].reshape(-1, 1).dot(w2[i].reshape(1, -1)) for i in xrange(len(w2))]) / len(w2) Q1 = np.matrix(Q1) Q2 = np.matrix(Q2) if len(w1) > 1: while True: try: L1 = np.linalg.cholesky(Q1) break except np.linalg.linalg.LinAlgError: mev = min(np.linalg.eig(Q1)[0]).real assert (mev < 0) print('Q1', mev) if -mev < 1e-6: mev = -1e-6 Q1 += (-mev * 1.000001) * np.identity(Q1.shape[0]) while True: try: L2 = np.linalg.cholesky(Q2) break except np.linalg.linalg.LinAlgError: mev = min(np.linalg.eig(Q2)[0]).real assert (mev < 0) print('Q2', mev) if -mev < 1e-6: mev = -1e-6 Q2 += (-mev * 1.000001) * np.identity(Q2.shape[0]) else: L1 = np.identity(Q1.shape[0]) L2 = np.identity(Q2.shape[0]) L1 = np.linalg.inv(L1) * gamma L2 = np.linalg.inv(L2) * gamma assert (L1.shape == L2.shape) assert (L1.shape[0] == L1.shape[1]) f = open(args.output, 'wb') f.write(struct.pack('I', L1.shape[0])) f.write(struct.pack('I', L1.shape[1])) for i in xrange(L1.shape[0]): for j in xrange(L1.shape[1]): f.write(struct.pack('f', L1[i, j])) for i in xrange(L2.shape[0]): for j in xrange(L2.shape[1]): f.write(struct.pack('f', L2[i, j])) b1 = L1.dot(w1mean.reshape(-1, 1)) b2 = L2.dot(w2mean.reshape(-1, 1)) assert (L1.shape[0] == b1.shape[0]) for i in xrange(b1.shape[0]): f.write(struct.pack('f', b1[i, 0])) for i in xrange(b2.shape[0]): f.write(struct.pack('f', b2[i, 0])) f.close()
import argparse import cv2 as cv import glob import numpy as np import os import time # This tool is intended for evaluation of different background subtraction algorithms presented in OpenCV. # Several presets with different settings are available. You can see them below. # This tool measures quality metrics as well as speed. ALGORITHMS_TO_EVALUATE = [ (cv.bgsegm.createBackgroundSubtractorMOG, 'MOG', {}), (cv.bgsegm.createBackgroundSubtractorGMG, 'GMG', {}), (cv.bgsegm.createBackgroundSubtractorCNT, 'CNT', {}), (cv.bgsegm.createBackgroundSubtractorLSBP, 'LSBP-vanilla', {'nSamples': 20, 'LSBPRadius': 4, 'Tlower': 2.0, 'Tupper': 200.0, 'Tinc': 1.0, 'Tdec': 0.05, 'Rscale': 5.0, 'Rincdec': 0.05, 'LSBPthreshold': 8}), (cv.bgsegm.createBackgroundSubtractorLSBP, 'LSBP-speed', {'nSamples': 10, 'LSBPRadius': 16, 'Tlower': 2.0, 'Tupper': 32.0, 'Tinc': 1.0, 'Tdec': 0.05, 'Rscale': 10.0, 'Rincdec': 0.005, 'LSBPthreshold': 8}), (cv.bgsegm.createBackgroundSubtractorLSBP, 'LSBP-quality', {'nSamples': 20, 'LSBPRadius': 16, 'Tlower': 2.0, 'Tupper': 32.0, 'Tinc': 1.0, 'Tdec': 0.05, 'Rscale': 10.0, 'Rincdec': 0.005, 'LSBPthreshold': 8}), (cv.bgsegm.createBackgroundSubtractorLSBP, 'LSBP-camera-motion-compensation', {'mc': 1}), (cv.bgsegm.createBackgroundSubtractorGSOC, 'GSOC', {}), (cv.bgsegm.createBackgroundSubtractorGSOC, 'GSOC-camera-motion-compensation', {'mc': 1}) ] def contains_relevant_files(root): return os.path.isdir(os.path.join(root, 'groundtruth')) and os.path.isdir(os.path.join(root, 'input')) def find_relevant_dirs(root): relevant_dirs = [] for d in sorted(os.listdir(root)): d = os.path.join(root, d) if os.path.isdir(d): if contains_relevant_files(d): relevant_dirs += [d] else: relevant_dirs += find_relevant_dirs(d) return relevant_dirs def load_sequence(root): gt_dir, frames_dir = os.path.join(root, 'groundtruth'), os.path.join(root, 'input') gt = sorted(glob.glob(os.path.join(gt_dir, '*.png'))) f = sorted(glob.glob(os.path.join(frames_dir, '*.jpg'))) assert(len(gt) == len(f)) return gt, f def evaluate_algorithm(gt, frames, algo, algo_arguments): bgs = algo(**algo_arguments) mask = [] t_start = time.time() for i in range(len(gt)): frame = np.uint8(cv.imread(frames[i], cv.IMREAD_COLOR)) mask.append(bgs.apply(frame)) average_duration = (time.time() - t_start) / len(gt) average_precision, average_recall, average_f1, average_accuracy = [], [], [], [] for i in range(len(gt)): gt_mask = np.uint8(cv.imread(gt[i], cv.IMREAD_GRAYSCALE)) roi = ((gt_mask == 255) | (gt_mask == 0)) if roi.sum() > 0: gt_answer, answer = gt_mask[roi], mask[i][roi] tp = ((answer == 255) & (gt_answer == 255)).sum() tn = ((answer == 0) & (gt_answer == 0)).sum() fp = ((answer == 255) & (gt_answer == 0)).sum() fn = ((answer == 0) & (gt_answer == 255)).sum() if tp + fp > 0: average_precision.append(float(tp) / (tp + fp)) if tp + fn > 0: average_recall.append(float(tp) / (tp + fn)) if tp + fn + fp > 0: average_f1.append(2.0 * tp / (2.0 * tp + fn + fp)) average_accuracy.append(float(tp + tn) / (tp + tn + fp + fn)) return average_duration, np.mean(average_precision), np.mean(average_recall), np.mean(average_f1), np.mean(average_accuracy) def evaluate_on_sequence(seq, summary): gt, frames = load_sequence(seq) category, video_name = os.path.basename(os.path.dirname(seq)), os.path.basename(seq) print('=== %s:%s ===' % (category, video_name)) for algo, algo_name, algo_arguments in ALGORITHMS_TO_EVALUATE: print('Algorithm name: %s' % algo_name) sec_per_step, precision, recall, f1, accuracy = evaluate_algorithm(gt, frames, algo, algo_arguments) print('Average accuracy: %.3f' % accuracy) print('Average precision: %.3f' % precision) print('Average recall: %.3f' % recall) print('Average F1: %.3f' % f1) print('Average sec. per step: %.4f' % sec_per_step) print('') if category not in summary: summary[category] = {} if algo_name not in summary[category]: summary[category][algo_name] = [] summary[category][algo_name].append((precision, recall, f1, accuracy)) def main(): parser = argparse.ArgumentParser(description='Evaluate all background subtractors using Change Detection 2014 dataset') parser.add_argument('--dataset_path', help='Path to the directory with dataset. It may contain multiple inner directories. It will be scanned recursively.', required=True) parser.add_argument('--algorithm', help='Test particular algorithm instead of all.') args = parser.parse_args() dataset_dirs = find_relevant_dirs(args.dataset_path) assert len(dataset_dirs) > 0, ("Passed directory must contain at least one sequence from the Change Detection dataset. There is no relevant directories in %s. Check that this directory is correct." % (args.dataset_path)) if args.algorithm is not None: global ALGORITHMS_TO_EVALUATE ALGORITHMS_TO_EVALUATE = filter(lambda a: a[1].lower() == args.algorithm.lower(), ALGORITHMS_TO_EVALUATE) summary = {} for seq in dataset_dirs: evaluate_on_sequence(seq, summary) for category in summary: for algo_name in summary[category]: summary[category][algo_name] = np.mean(summary[category][algo_name], axis=0) for category in summary: print('=== SUMMARY for %s (Precision, Recall, F1, Accuracy) ===' % category) for algo_name in summary[category]: print('%05s: %.3f %.3f %.3f %.3f' % ((algo_name,) + tuple(summary[category][algo_name]))) if __name__ == '__main__': main()
import cv2 as cv import argparse def main(): argparser = argparse.ArgumentParser(description='Vizualization of the SyntheticSequenceGenerator.') argparser.add_argument('-b', '--background', help='Background image.', required=True) argparser.add_argument('-o', '--obj', help='Object image. It must be strictly smaller than background.', required=True) args = argparser.parse_args() bg = cv.imread(args.background) obj = cv.imread(args.obj) generator = cv.bgsegm.createSyntheticSequenceGenerator(bg, obj) while True: frame, mask = generator.getNextFrame() cv.imshow('Generated frame', frame) cv.imshow('Generated mask', mask) k = cv.waitKey(int(1000.0 / 30)) if k == 27: break if __name__ == '__main__': main()
import numpy as np import cv2 as cv import argparse import os def main(): argparser = argparse.ArgumentParser(description='Vizualization of the LSBP/GSOC background subtraction algorithm.') argparser.add_argument('-g', '--gt', help='Directory with ground-truth frames', required=True) argparser.add_argument('-f', '--frames', help='Directory with input frames', required=True) argparser.add_argument('-l', '--lsbp', help='Display LSBP instead of GSOC', default=False) args = argparser.parse_args() gt = map(lambda x: os.path.join(args.gt, x), os.listdir(args.gt)) gt.sort() f = map(lambda x: os.path.join(args.frames, x), os.listdir(args.frames)) f.sort() gt = np.uint8(map(lambda x: cv.imread(x, cv.IMREAD_GRAYSCALE), gt)) f = np.uint8(map(lambda x: cv.imread(x, cv.IMREAD_COLOR), f)) if not args.lsbp: bgs = cv.bgsegm.createBackgroundSubtractorGSOC() else: bgs = cv.bgsegm.createBackgroundSubtractorLSBP() for i in xrange(f.shape[0]): cv.imshow('Frame', f[i]) cv.imshow('Ground-truth', gt[i]) mask = bgs.apply(f[i]) bg = bgs.getBackgroundImage() cv.imshow('BG', bg) cv.imshow('Output mask', mask) k = cv.waitKey(0) if k == 27: break if __name__ == '__main__': main()
#!/usr/bin/env python import cv2 as cv import numpy as np from tests_common import NewOpenCVTests class disparity_test(NewOpenCVTests): def test_disp(self): # readGT ret,GT = cv.ximgproc.readGT(self.find_file("cv/disparityfilter/GT.png")) self.assertEqual(ret, 0) # returns 0 on success! self.assertFalse(np.shape(GT) == ()) # computeMSE left = cv.imread(self.find_file("cv/disparityfilter/disparity_left_raw.png"), cv.IMREAD_UNCHANGED) self.assertFalse(np.shape(left) == ()) left = np.asarray(left, dtype=np.int16) mse = cv.ximgproc.computeMSE(GT, left, (0, 0, GT.shape[1], GT.shape[0])) # computeBadPixelPercent bad = cv.ximgproc.computeBadPixelPercent(GT, left, (0, 0, GT.shape[1], GT.shape[0]), 24) if __name__ == '__main__': NewOpenCVTests.bootstrap()
#!/usr/bin/env python # -*- coding: utf-8 -*- ''' This sample demonstrates structured edge detection and edgeboxes. Usage: edgeboxes_demo.py [<model>] [<input_image>] ''' import cv2 as cv import numpy as np import sys if __name__ == '__main__': print(__doc__) model = sys.argv[1] im = cv.imread(sys.argv[2]) edge_detection = cv.ximgproc.createStructuredEdgeDetection(model) rgb_im = cv.cvtColor(im, cv.COLOR_BGR2RGB) edges = edge_detection.detectEdges(np.float32(rgb_im) / 255.0) orimap = edge_detection.computeOrientation(edges) edges = edge_detection.edgesNms(edges, orimap) edge_boxes = cv.ximgproc.createEdgeBoxes() edge_boxes.setMaxBoxes(30) boxes = edge_boxes.getBoundingBoxes(edges, orimap) boxes, scores = edge_boxes.getBoundingBoxes(edges, orimap) if len(boxes) > 0: boxes_scores = zip(boxes, scores) for b_s in boxes_scores: box = b_s[0] x, y, w, h = box cv.rectangle(im, (x, y), (x+w, y+h), (0, 255, 0), 1, cv.LINE_AA) score = b_s[1][0] cv.putText(im, "{:.2f}".format(score), (x, y), cv.FONT_HERSHEY_PLAIN, 0.8, (255, 255, 255), 1, cv.LINE_AA) print("Box at (x,y)=({:d},{:d}); score={:f}".format(x, y, score)) cv.imshow("edges", edges) cv.imshow("edgeboxes", im) cv.waitKey(0) cv.destroyAllWindows()
# USAGE - How to run this code ? # python find_shapes.py --image shapes.png #python findredlinedpolygonfromgooglemaps.py --image stanford.png import numpy as np import argparse import cv2 as cv # construct the argument parse and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-i", "--image", help = "path to the image file") args = vars(ap.parse_args()) # load the image image = cv.imread(args["image"]) lower = np.array([20,0,155]) upper = np.array([255,120,250]) shapeMask = cv.inRange(image, lower, upper) # find the contours in the mask (cnts, _) = cv.findContours(shapeMask.copy(), cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE) cv.imshow("Mask", shapeMask) # loop over the contours for c in cnts: cv.drawContours(image, [c], -1, (0, 255, 0), 2) cv.imshow("Image", image) cv.waitKey(0)
import sys import numpy as np import cv2 as cv def AddSlider(sliderName,windowName,minSlider,maxSlider,valDefault, update=[]): if update is None: cv.createTrackbar(sliderName, windowName, valDefault,maxSlider-minSlider+1) else: cv.createTrackbar(sliderName, windowName, valDefault,maxSlider-minSlider+1, update) cv.setTrackbarMin(sliderName, windowName, minSlider) cv.setTrackbarMax(sliderName, windowName, maxSlider) cv.setTrackbarPos(sliderName, windowName, valDefault) class Filtrage: def __init__(self): self.s =0 self.alpha = 100 self.omega = 100 self.updateFiltre=True self.img=[] self.dximg=[] self.dyimg=[] self.module=[] def DericheFilter(self): self.dximg = cv.ximgproc.GradientDericheX( self.img, self.alpha/100., self.omega/1000. ) self.dyimg = cv.ximgproc.GradientDericheY( self.img, self.alpha/100., self.omega/1000. ) dx2=self.dximg*self.dximg dy2=self.dyimg*self.dyimg self.module = np.sqrt(dx2+dy2) cv.normalize(src=self.module,dst=self.module,norm_type=cv.NORM_MINMAX) def SlideBarDeriche(self): cv.destroyWindow(self.filename) cv.namedWindow(self.filename) AddSlider("alpha",self.filename,1,400,self.alpha,self.UpdateAlpha) AddSlider("omega",self.filename,1,1000,self.omega,self.UpdateOmega) def UpdateOmega(self,x ): self.updateFiltre=True self.omega=x def UpdateAlpha(self,x ): self.updateFiltre=True self.alpha=x def run(self,argv): # Load the source image self.filename = argv[0] if len(argv) > 0 else "../doc/pics/corridor_fld.jpg" self.img=cv.imread(self.filename,cv.IMREAD_GRAYSCALE) if self.img is None: print ('cannot read file') return self.SlideBarDeriche() while True: cv.imshow(self.filename,self.img) if self.updateFiltre: self.DericheFilter() cv.imshow("module",self.module) self.updateFiltre =False code = cv.waitKey(10) if code==27: break if __name__ == '__main__': Filtrage().run(sys.argv[1:])
#!/usr/bin/env python ''' A program demonstrating the use and capabilities of a particular image segmentation algorithm described in Jasper R. R. Uijlings, Koen E. A. van de Sande, Theo Gevers, Arnold W. M. Smeulders: "Selective Search for Object Recognition" International Journal of Computer Vision, Volume 104 (2), page 154-171, 2013 Usage: ./selectivesearchsegmentation_demo.py input_image (single|fast|quality) Use "a" to display less rects, 'd' to display more rects, "q" to quit. ''' import cv2 as cv import sys if __name__ == '__main__': img = cv.imread(sys.argv[1]) cv.setUseOptimized(True) cv.setNumThreads(8) gs = cv.ximgproc.segmentation.createSelectiveSearchSegmentation() gs.setBaseImage(img) if (sys.argv[2][0] == 's'): gs.switchToSingleStrategy() elif (sys.argv[2][0] == 'f'): gs.switchToSelectiveSearchFast() elif (sys.argv[2][0] == 'q'): gs.switchToSelectiveSearchQuality() else: print(__doc__) sys.exit(1) rects = gs.process() nb_rects = 10 while True: wimg = img.copy() for i in range(len(rects)): if (i < nb_rects): x, y, w, h = rects[i] cv.rectangle(wimg, (x, y), (x+w, y+h), (0, 255, 0), 1, cv.LINE_AA) cv.imshow("Output", wimg); c = cv.waitKey() if (c == 100): nb_rects += 10 elif (c == 97 and nb_rects > 10): nb_rects -= 10 elif (c == 113): break cv.destroyAllWindows()
import numpy as np import cv2 as cv import math class ThParameters: def __init__(self): self.levelNoise=6 self.angle=45 self.scale10=5 self.origin=10 self.xg=150 self.yg=150 self.update=True def UpdateShape(x ): p.update = True def union(a,b): x = min(a[0], b[0]) y = min(a[1], b[1]) w = max(a[0]+a[2], b[0]+b[2]) - x h = max(a[1]+a[3], b[1]+b[3]) - y return (x, y, w, h) def intersection(a,b): x = max(a[0], b[0]) y = max(a[1], b[1]) w = min(a[0]+a[2], b[0]+b[2]) - x h = min(a[1]+a[3], b[1]+b[3]) - y if w<0 or h<0: return () # or (0,0,0,0) ? return (x, y, w, h) def NoisyPolygon(pRef,n): # vector<Point> c p = pRef; # vector<vector<Point> > contour; p = p+n*np.random.random_sample((p.shape[0],p.shape[1]))-n/2.0 if (n==0): return p c = np.empty(shape=[0, 2]) minX = p[0][0] maxX = p[0][0] minY = p[0][1] maxY = p[0][1] for i in range( 0,p.shape[0]): next = i + 1; if (next == p.shape[0]): next = 0; u = p[next] - p[i] d = int(cv.norm(u)) a = np.arctan2(u[1], u[0]) step = 1 if (n != 0): step = d // n for j in range( 1,int(d),int(max(step, 1))): while True: pAct = (u*j) / (d) r = n*np.random.random_sample() theta = a + 2*math.pi*np.random.random_sample() # pNew = Point(Point2d(r*cos(theta) + pAct.x + p[i].x, r*sin(theta) + pAct.y + p[i].y)); pNew = np.array([(r*np.cos(theta) + pAct[0] + p[i][0], r*np.sin(theta) + pAct[1] + p[i][1])]) if (pNew[0][0]>=0 and pNew[0][1]>=0): break if (pNew[0][0]<minX): minX = pNew[0][0] if (pNew[0][0]>maxX): maxX = pNew[0][0] if (pNew[0][1]<minY): minY = pNew[0][1] if (pNew[0][1]>maxY): maxY = pNew[0][1] c = np.append(c,pNew,axis = 0) return c #static vector<Point> NoisyPolygon(vector<Point> pRef, double n); #static void UpdateShape(int , void *r); #static void AddSlider(String sliderName, String windowName, int minSlider, int maxSlider, int valDefault, int *valSlider, void(*f)(int, void *), void *r); def AddSlider(sliderName,windowName,minSlider,maxSlider,valDefault, update): cv.createTrackbar(sliderName, windowName, valDefault,maxSlider-minSlider+1, update) cv.setTrackbarMin(sliderName, windowName, minSlider) cv.setTrackbarMax(sliderName, windowName, maxSlider) cv.setTrackbarPos(sliderName, windowName, valDefault) # vector<Point> ctrRef; # vector<Point> ctrRotate, ctrNoisy, ctrNoisyRotate, ctrNoisyRotateShift; # // build a shape with 5 vertex ctrRef = np.array([(250,250),(400, 250),(400, 300),(250, 300),(180, 270)]) cg = np.mean(ctrRef,axis=0) p=ThParameters() cv.namedWindow("FD Curve matching"); # A rotation with center at (150,150) of angle 45 degrees and a scaling of 5/10 AddSlider("Noise", "FD Curve matching", 0, 20, p.levelNoise, UpdateShape) AddSlider("Angle", "FD Curve matching", 0, 359, p.angle, UpdateShape) AddSlider("Scale", "FD Curve matching", 5, 100, p.scale10, UpdateShape) AddSlider("Origin", "FD Curve matching", 0, 100, p.origin, UpdateShape) AddSlider("Xg", "FD Curve matching", 150, 450, p.xg, UpdateShape) AddSlider("Yg", "FD Curve matching", 150, 450, p.yg, UpdateShape) code = 0 img = np.zeros((300,512,3), np.uint8) print ("******************** PRESS g TO MATCH CURVES *************\n") while (code!=27): code = cv.waitKey(60) if p.update: p.levelNoise=cv.getTrackbarPos('Noise','FD Curve matching') p.angle=cv.getTrackbarPos('Angle','FD Curve matching') p.scale10=cv.getTrackbarPos('Scale','FD Curve matching') p.origin=cv.getTrackbarPos('Origin','FD Curve matching') p.xg=cv.getTrackbarPos('Xg','FD Curve matching') p.yg=cv.getTrackbarPos('Yg','FD Curve matching') r = cv.getRotationMatrix2D((p.xg, p.yg), angle=p.angle, scale=10.0/ p.scale10); ctrNoisy= NoisyPolygon(ctrRef,p.levelNoise) ctrNoisy1 = np.reshape(ctrNoisy,(ctrNoisy.shape[0],1,2)) ctrNoisyRotate = cv.transform(ctrNoisy1,r) ctrNoisyRotateShift = np.empty([ctrNoisyRotate.shape[0],1,2],dtype=np.int32) for i in range(0,ctrNoisy.shape[0]): k=(i+(p.origin*ctrNoisy.shape[0])//100)% ctrNoisyRotate.shape[0] ctrNoisyRotateShift[i] = ctrNoisyRotate[k] # To draw contour using drawcontours cc= np.reshape(ctrNoisyRotateShift,[ctrNoisyRotateShift.shape[0],2]) c = [ ctrRef,cc] p.update = False; rglobal =(0,0,0,0) for i in range(0,2): r = cv.boundingRect(c[i]) rglobal = union(rglobal,r) r = list(rglobal) r[2] = r[2]+10 r[3] = r[3]+10 rglobal = tuple(r) img = np.zeros((2 * rglobal[3], 2 * rglobal[2], 3), np.uint8) cv.drawContours(img, c, 0, (255,0,0),1); cv.drawContours(img, c, 1, (0, 255, 0),1); cv.circle(img, tuple(c[0][0]), 5, (255, 0, 0),3); cv.circle(img, tuple(c[1][0]), 5, (0, 255, 0),3); cv.imshow("FD Curve matching", img); if code == ord('d') : cv.destroyWindow("FD Curve matching"); cv.namedWindow("FD Curve matching"); # A rotation with center at (150,150) of angle 45 degrees and a scaling of 5/10 AddSlider("Noise", "FD Curve matching", 0, 20, p.levelNoise, UpdateShape) AddSlider("Angle", "FD Curve matching", 0, 359, p.angle, UpdateShape) AddSlider("Scale", "FD Curve matching", 5, 100, p.scale10, UpdateShape) AddSlider("Origin%%", "FD Curve matching", 0, 100, p.origin, UpdateShape) AddSlider("Xg", "FD Curve matching", 150, 450, p.xg, UpdateShape) AddSlider("Yg", "FD Curve matching", 150, 450, p.yg, UpdateShape) if code == ord('g'): fit = cv.ximgproc.createContourFitting(1024,16); # sampling contour we want 256 points cn= np.reshape(ctrRef,[ctrRef.shape[0],1,2]) ctrRef2d = cv.ximgproc.contourSampling(cn, 256) ctrRot2d = cv.ximgproc.contourSampling(ctrNoisyRotateShift, 256) fit.setFDSize(16) c1 = ctrRef2d c2 = ctrRot2d alphaPhiST, dist = fit.estimateTransformation(ctrRot2d, ctrRef2d) print( "Transform *********\n Origin = ", 1-alphaPhiST[0,0] ," expected ", p.origin / 100. ,"\n") print( "Angle = ", alphaPhiST[0,1] * 180 / math.pi ," expected " , p.angle,"\n") print( "Scale = " ,alphaPhiST[0,2] ," expected " , p.scale10 / 10.0 , "\n") dst = cv.ximgproc.transformFD(ctrRot2d, alphaPhiST,cn, False); ctmp= np.reshape(dst,[dst.shape[0],2]) cdst=ctmp.astype(int) c = [ ctrRef,cc,cdst] cv.drawContours(img, c, 2, (0,0,255),1); cv.circle(img, (int(c[2][0][0]),int(c[2][0][1])), 5, (0, 0, 255),5); cv.imshow("FD Curve matching", img);
import collections from textwrap import fill from filters import * try: # Python 2.7+ basestring except NameError: # Python 3.3+ basestring = str valid_types = ( 'int', 'bool', 'float', 'double', 'size_t', 'char', 'Mat', 'Scalar', 'String', 'TermCriteria', 'Size', 'Point', 'Point2f', 'Point2d', 'Rect', 'RotatedRect', 'RNG', 'DMatch', 'Moments', 'vector_Mat', 'vector_Point', 'vector_int', 'vector_float', 'vector_double', 'vector_String', 'vector_uchar', 'vector_Rect', 'vector_DMatch', 'vector_KeyPoint', 'vector_Point2f', 'vector_vector_char', 'vector_vector_DMatch', 'vector_vector_KeyPoint', 'Ptr_StereoBM', 'Ptr_StereoSGBM', 'Ptr_FeatureDetector', 'Ptr_CLAHE', 'Ptr_LineSegmentDetector', 'Ptr_AlignMTB', 'Ptr_CalibrateDebevec', 'Ptr_CalibrateRobertson', 'Ptr_DenseOpticalFlow', 'Ptr_DualTVL1OpticalFlow', 'Ptr_MergeDebevec', 'Ptr_MergeMertens', 'Ptr_MergeRobertson', 'Ptr_Stitcher', 'Ptr_Tonemap', 'Ptr_TonemapDrago', 'Ptr_TonemapDurand', 'Ptr_TonemapMantiuk', 'Ptr_TonemapReinhard', 'Ptr_float', # Not supported: #vector_vector_KeyPoint ) class ParseTree(object): """ The ParseTree class produces a semantic tree of C++ definitions given the output of the CppHeaderParser (from opencv/modules/python/src2/hdr_parser.py) The full hierarchy is as follows: Namespaces | |- name |- Classes | |- name |- Methods |- Constants |- Methods | |- name |- static (T/F) |- return type |- required Arguments | |- name |- const (T/F) |- reference ('&'/'*') |- type |- input |- output (pass return by reference) |- default value |- optional Arguments |- Constants | |- name |- const (T/F) |- reference ('&'/'*') |- type |- value The semantic tree contains substantial information for easily introspecting information about objects. How many methods does the 'core' namespace have? Does the 'randn' method have any return by reference (output) arguments? How many required and optional arguments does the 'add' method have? Is the variable passed by reference or raw pointer? Individual definitions from the parse tree (Classes, Functions, Constants) are passed to the Jinja2 template engine where they are manipulated to produce Matlab mex sources. A common call tree for constructing and using a ParseTree object is: # parse a set of definitions into a dictionary of namespaces parser = CppHeaderParser() ns['core'] = parser.parse('path/to/opencv/core.hpp') # refactor into a semantic tree parse_tree = ParseTree() parse_tree.build(ns) # iterate over the tree for namespace in parse_tree.namespaces: for clss in namespace.classes: # do stuff for method in namespace.methods: # do stuff Calling 'print' on a ParseTree object will reconstruct the definitions to produce an output resembling the original C++ code. """ def __init__(self, namespaces=None): self.namespaces = namespaces if namespaces else [] def __str__(self): return '\n\n\n'.join(ns.__str__() for ns in self.namespaces) def build(self, namespaces): babel = Translator() for name, definitions in namespaces.items(): class_tree = {} methods = [] constants = [] for defn in definitions: try: obj = babel.translate(defn) except Exception as e: print(e) obj = None if obj is None: continue if type(obj) is Class or obj.clss: self.insertIntoClassTree(obj, class_tree) elif type(obj) is Method: methods.append(obj) elif type(obj) is Constant: constants.append(obj) else: raise TypeError('Unexpected object type: '+str(type(obj))) self.namespaces.append(Namespace(name, constants, list(class_tree.values()), methods)) def insertIntoClassTree(self, obj, class_tree): cname = obj.name if type(obj) is Class else obj.clss if not cname: return if not cname in class_tree: # add a new class to the tree class_tree[cname] = Class(cname) # insert the definition into the class val = class_tree[cname] if type(obj) is Method: val.methods.append(obj) elif type(obj) is Constant: val.constants.append(obj) else: raise TypeError('Unexpected object type: '+str(type(obj))) class Translator(object): """ The Translator class does the heavy lifting of translating the nested list representation of the hdr_parser into individual definitions that are inserted into the ParseTree. Translator consists of a top-level method: translate() along with a number of helper methods: translateClass(), translateMethod(), translateArgument(), translateConstant(), translateName(), and translateClassName() """ def translate(self, defn): # --- class --- # classes have 'class' prefixed on their name if 'class' in defn[0].split(' ') or 'struct' in defn[0].split(' '): return self.translateClass(defn) # --- operators! --- #TODO: implement operators: http://www.mathworks.com.au/help/matlab/matlab_oop/implementing-operators-for-your-class.html if 'operator' in defn[0]: return # --- constant --- elif convertibleToInt(defn[1]): return self.translateConstant(defn) # --- function --- # functions either need to have input arguments, or not uppercase names elif defn[3] or not self.translateName(defn[0]).split('_')[0].isupper(): return self.translateMethod(defn) # --- constant --- else: return self.translateConstant(defn) def translateClass(self, defn): return Class() def translateMethod(self, defn, class_tree=None): name = self.translateName(defn[0]) clss = self.translateClassName(defn[0]) rtp = defn[1] static = True if 'S' in ''.join(defn[2]) else False args = defn[3] req = [] opt = [] for arg in args: if arg: a = self.translateArgument(arg) opt.append(a) if a.default else req.append(a) return Method(name, clss, static, '', rtp, False, req, opt) def translateConstant(self, defn): const = True if 'const' in defn[0] else False name = self.translateName(defn[0]) clss = self.translateClassName(defn[0]) tp = 'int' val = defn[1] return Constant(name, clss, tp, const, '', val) def translateArgument(self, defn): modifiers = defn[3] ref = '*' if '*' in defn[0] else '' ref = '&' if '&' in defn[0] or '/Ref' in modifiers else ref const = '/C' in modifiers tp = " ".join([word for word in defn[0].replace(ref, '').split() if not ' const ' in ' '+word+' ']) name = defn[1] default = defn[2] if defn[2] else '' I = True if '/I' in modifiers or not '/O' in modifiers else False O = True if '/O' in modifiers else False return Argument(name, tp, const, I, O, ref, default) def translateName(self, name): return name.split(' ')[-1].split('.')[-1] def translateClassName(self, name): name = name.split(' ')[-1] parts = name.split('.') return parts[-2] if len(parts) > 1 and not parts[-2] == 'cv' else '' class Namespace(object): """ Namespace | |- name |- Constants |- Methods |- Constants """ def __init__(self, name='', constants=None, classes=None, methods=None): self.name = name self.constants = constants if constants else [] self.classes = classes if classes else [] self.methods = methods if methods else [] def __str__(self): return 'namespace '+self.name+' {\n\n'+\ ('\n'.join(c.__str__() for c in self.constants)+'\n\n' if self.constants else '')+\ ('\n'.join(f.__str__() for f in self.methods)+'\n\n' if self.methods else '')+\ ('\n\n'.join(o.__str__() for o in self.classes) if self.classes else '')+'\n};' class Class(object): """ Class | |- name |- Methods |- Constants """ def __init__(self, name='', namespace='', constants=None, methods=None): self.name = name self.namespace = namespace self.constants = constants if constants else [] self.methods = methods if methods else [] def __str__(self): return 'class '+self.name+' {\n\t'+\ ('\n\t'.join(c.__str__() for c in self.constants)+'\n\n\t' if self.constants else '')+\ ('\n\t'.join(f.__str__() for f in self.methods) if self.methods else '')+'\n};' class Method(object): """ Method int VideoWriter::read( cv::Mat& frame, const cv::Mat& mask=cv::Mat() ); --- ----- ---- -------- ---------------- rtp class name required optional name the method name clss the class the method belongs to ('' if free) static static? namespace the namespace the method belongs to ('' if free) rtp the return type const const? req list of required arguments opt list of optional arguments """ def __init__(self, name='', clss='', static=False, namespace='', rtp='', const=False, req=None, opt=None): self.name = name self.clss = clss self.constructor = True if name == clss else False self.static = static self.const = const self.namespace = namespace self.rtp = rtp self.req = req if req else [] self.opt = opt if opt else [] def __str__(self): return (self.rtp+' ' if self.rtp else '')+self.name+'('+\ ', '.join(arg.__str__() for arg in self.req+self.opt)+\ ')'+(' const' if self.const else '')+';' class Argument(object): """ Argument const cv::Mat& mask=cv::Mat() ----- ---- --- ---- ------- const tp ref name default name the argument name tp the argument type const const? I is the argument treated as an input? O is the argument treated as an output (return by reference) ref is the argument passed by reference? ('*'/'&') default the default value of the argument ('' if required) """ def __init__(self, name='', tp='', const=False, I=True, O=False, ref='', default=''): self.name = name self.tp = tp self.ref = ref self.I = I self.O = O self.const = const self.default = default if not tp in valid_types: raise Exception("Non-supported argument type: {} (name: {})".format(tp, name)) def __str__(self): return ('const ' if self.const else '')+self.tp+self.ref+\ ' '+self.name+('='+self.default if self.default else '') class Constant(object): """ Constant DFT_COMPLEX_OUTPUT = 12; ---- ------- name default name the name of the constant clss the class that the constant belongs to ('' if free) tp the type of the constant ('' if int) const const? ref is the constant a reference? ('*'/'&') default default value, required for constants """ def __init__(self, name='', clss='', tp='', const=False, ref='', default=''): self.name = name self.clss = clss self.tp = tp self.ref = ref self.const = const self.default = default def __str__(self): return ('const ' if self.const else '')+self.tp+self.ref+\ ' '+self.name+('='+self.default if self.default else '')+';' def constants(tree): """ recursive generator to strip all Constant objects from the ParseTree and place them into a flat dictionary of { name, value (default) } """ if isinstance(tree, dict) and 'constants' in tree and isinstance(tree['constants'], list): for node in tree['constants']: yield (node['name'], node['default']) if isinstance(tree, dict): for key, val in tree.items(): for gen in constants(val): yield gen if isinstance(tree, list): for val in tree: for gen in constants(val): yield gen def todict(obj): """ Recursively convert a Python object graph to sequences (lists) and mappings (dicts) of primitives (bool, int, float, string, ...) """ if isinstance(obj, basestring): return obj elif isinstance(obj, dict): return dict((key, todict(val)) for key, val in obj.items()) elif isinstance(obj, collections.Iterable): return [todict(val) for val in obj] elif hasattr(obj, '__dict__'): return todict(vars(obj)) elif hasattr(obj, '__slots__'): return todict(dict((name, getattr(obj, name)) for name in getattr(obj, '__slots__'))) return obj
#!/usr/bin/env python import sys, re, os, time from string import Template from parse_tree import ParseTree, todict, constants from filters import * updated_files = [] def update_file(fname, content): if fname in updated_files: print('ERROR(gen_matlab.py): attemption to write file multiple times: {}'.format(fname)) return updated_files.append(fname) if os.path.exists(fname): with open(fname, 'rb') as f: old_content = f.read() if old_content == content: #print('Up-to-date: {}'.format(fname)) return print('Updating: {}'.format(fname)) else: print('Writing: {}'.format(fname)) with open(fname, 'wb') as f: f.write(content) class MatlabWrapperGenerator(object): """ MatlabWrapperGenerator is a class for generating Matlab mex sources from a set of C++ headers. MatlabWrapperGenerator objects can be default constructed. Given an instance, the gen() method performs the translation. """ def gen(self, module_roots, modules, extras, output_dir): """ Generate a set of Matlab mex source files by parsing exported symbols in a set of C++ headers. The headers can be input in one (or both) of two methods: 1. specify module_root and modules Given a path to the OpenCV module root and a list of module names, the headers to parse are implicitly constructed. 2. specifiy header locations explicitly in extras Each element in the list of extras must be of the form: 'namespace=/full/path/to/extra/header.hpp' where 'namespace' is the namespace in which the definitions should be added. The output_dir specifies the directory to write the generated sources to. """ # dynamically import the parsers from jinja2 import Environment, FileSystemLoader import hdr_parser # parse each of the files and store in a dictionary # as a separate "namespace" parser = hdr_parser.CppHeaderParser() ns = dict((key, []) for key in modules) path_template = Template('${module}/include/opencv2/${module}.hpp') for module in modules: for module_root in module_roots: # construct a header path from the module root and a path template header = os.path.join(module_root, path_template.substitute(module=module)) if os.path.isfile(header): break else: raise Exception('no header found for module %s!' % module) # parse the definitions ns[module] = parser.parse(header) for extra in extras: module = extra.split("=")[0] header = extra.split("=")[1] ns[module] = ns[module] + parser.parse(header) if module in ns else parser.parse(header) # cleanify the parser output parse_tree = ParseTree() parse_tree.build(ns) # setup the template engine template_dir = os.path.join(os.path.dirname(__file__), 'templates') jtemplate = Environment(loader=FileSystemLoader(template_dir), trim_blocks=True, lstrip_blocks=True) # add the custom filters jtemplate.filters['formatMatlabConstant'] = formatMatlabConstant jtemplate.filters['convertibleToInt'] = convertibleToInt jtemplate.filters['toUpperCamelCase'] = toUpperCamelCase jtemplate.filters['toLowerCamelCase'] = toLowerCamelCase jtemplate.filters['toUnderCase'] = toUnderCase jtemplate.filters['matlabURL'] = matlabURL jtemplate.filters['stripTags'] = stripTags jtemplate.filters['filename'] = filename jtemplate.filters['comment'] = comment jtemplate.filters['inputs'] = inputs jtemplate.filters['ninputs'] = ninputs jtemplate.filters['outputs'] = outputs jtemplate.filters['noutputs'] = noutputs jtemplate.filters['qualify'] = qualify jtemplate.filters['slugify'] = slugify jtemplate.filters['only'] = only jtemplate.filters['void'] = void jtemplate.filters['not'] = flip # load the templates tfunction = jtemplate.get_template('template_function_base.cpp') tclassm = jtemplate.get_template('template_class_base.m') tclassc = jtemplate.get_template('template_class_base.cpp') tconst = jtemplate.get_template('template_map_base.m') # create the build directory output_source_dir = output_dir+'/src' output_private_dir = output_source_dir+'/private' output_class_dir = output_dir+'/+cv' output_map_dir = output_dir+'/map' if not os.path.isdir(output_source_dir): os.makedirs(output_source_dir) if not os.path.isdir(output_private_dir): os.makedirs(output_private_dir) if not os.path.isdir(output_class_dir): os.makedirs(output_class_dir) if not os.path.isdir(output_map_dir): os.makedirs(output_map_dir) # populate templates for namespace in parse_tree.namespaces: # functions for method in namespace.methods: populated = tfunction.render(fun=method, time=time, includes=namespace.name) update_file(output_source_dir+'/'+method.name+'.cpp', populated.encode('utf-8')) # classes for clss in namespace.classes: # cpp converter populated = tclassc.render(clss=clss, time=time) update_file(output_private_dir+'/'+clss.name+'Bridge.cpp', populated.encode('utf-8')) # matlab classdef populated = tclassm.render(clss=clss, time=time) update_file(output_class_dir+'/'+clss.name+'.m', populated.encode('utf-8')) # create a global constants lookup table const = dict(constants(todict(parse_tree.namespaces))) populated = tconst.render(constants=const, time=time) update_file(output_dir+'/cv.m', populated.encode('utf-8')) if __name__ == "__main__": """ Usage: python gen_matlab.py --hdrparser /path/to/hdr_parser/dir --moduleroot [ /path/to/opencv/modules /path/to/opencv_contrib/modules etc ] --modules [core imgproc objdetect etc] --extra namespace=/path/to/extra/header.hpp --outdir /path/to/output/generated/srcs gen_matlab.py is the main control script for generating matlab source files from given set of headers. Internally, gen_matlab: 1. constructs the headers to parse from the module root and list of modules 2. parses the headers using CppHeaderParser 3. refactors the definitions using ParseTree 4. populates the templates for classes, function, enums from the definitions gen_matlab.py requires the following inputs: --hdrparser the path to the header parser directory (opencv/modules/python/src2) --moduleroot (optional) paths to the opencv directories containing the modules --modules (optional - required if --moduleroot specified) the modules to produce bindings for. The path to the include directories as well as the namespaces are constructed from the modules and the moduleroot --extra extra headers explicitly defined to parse. This must be in the format "namepsace=/path/to/extra/header.hpp". For example, the core module requires the extra header: "core=/opencv/modules/core/include/opencv2/core/core/base.hpp" --outdir the output directory to put the generated matlab sources. In the OpenCV build this is "${CMAKE_CURRENT_BUILD_DIR}/src" """ # parse the input options from argparse import ArgumentParser parser = ArgumentParser() parser.add_argument('--hdrparser') parser.add_argument('--moduleroot', nargs='*', default=[], required=False) parser.add_argument('--modules', nargs='*', default=[], required=False) parser.add_argument('--extra', nargs='*', default=[], required=False) parser.add_argument('--outdir') args = parser.parse_args() # add the hdr_parser module to the path sys.path.append(args.hdrparser) # create the generator mwg = MatlabWrapperGenerator() mwg.gen(args.moduleroot, args.modules, args.extra, args.outdir)
#!/usr/bin/env python def substitute(cv, output_dir): # setup the template engine template_dir = os.path.join(os.path.dirname(__file__), 'templates') jtemplate = Environment(loader=FileSystemLoader(template_dir), trim_blocks=True, lstrip_blocks=True) # add the filters jtemplate.filters['cellarray'] = cellarray jtemplate.filters['split'] = split jtemplate.filters['csv'] = csv # load the template template = jtemplate.get_template('template_cvmex_base.m') # create the build directory output_dir = output_dir+'/+cv' if not os.path.isdir(output_dir): os.mkdir(output_dir) # populate template populated = template.render(cv=cv, time=time) with open(os.path.join(output_dir, 'mex.m'), 'wb') as f: f.write(populated.encode('utf-8')) if __name__ == "__main__": """ Usage: python cvmex.py --opts [-list -of -opts] --include_dirs [-list -of -opencv_include_directories] --lib_dir opencv_lib_directory --libs [-lopencv_core -lopencv_imgproc ...] --flags [-Wall -opencv_build_flags ...] --outdir /path/to/generated/output cvmex.py generates a custom mex compiler that automatically links OpenCV libraries to built sources where appropriate. The calling syntax is the same as the builtin mex compiler, with added cv qualification: >> cv.mex(..., ...); """ # parse the input options import sys, re, os, time from argparse import ArgumentParser parser = ArgumentParser() parser.add_argument('--opts') parser.add_argument('--include_dirs') parser.add_argument('--lib_dir') parser.add_argument('--libs') parser.add_argument('--flags') parser.add_argument('--outdir') cv = parser.parse_args() from filters import * from jinja2 import Environment, FileSystemLoader # populate the mex base template substitute(cv, cv.outdir)
#!/usr/bin/env python def substitute(build, output_dir): # setup the template engine template_dir = os.path.join(os.path.dirname(__file__), 'templates') jtemplate = Environment(loader=FileSystemLoader(template_dir), trim_blocks=True, lstrip_blocks=True) # add the filters jtemplate.filters['csv'] = csv jtemplate.filters['stripExtraSpaces'] = stripExtraSpaces # load the template template = jtemplate.get_template('template_build_info.m') # create the build directory output_dir = output_dir+'/+cv' if not os.path.isdir(output_dir): os.mkdir(output_dir) # populate template populated = template.render(build=build, time=time) with open(os.path.join(output_dir, 'buildInformation.m'), 'wb') as f: f.write(populated.encode('utf-8')) if __name__ == "__main__": """ Usage: python build_info.py --os os_version_string --arch [bitness processor] --compiler [id version] --mex_arch arch_string --mex_script /path/to/mex/script --cxx_flags [-list -of -flags -to -passthrough] --opencv_version version_string --commit commit_hash_if_using_git --modules [core imgproc highgui etc] --configuration Debug/Release --outdir /path/to/write/build/info build_info.py generates a Matlab function that can be invoked with a call to >> cv.buildInformation(); This function prints a summary of the user's OS, OpenCV and Matlab build given the information passed to this module. build_info.py invokes Jinja2 on the template_build_info.m template. """ # parse the input options import sys, re, os, time from argparse import ArgumentParser parser = ArgumentParser() parser.add_argument('--os') parser.add_argument('--arch', nargs=2) parser.add_argument('--compiler', nargs='+') parser.add_argument('--mex_arch') parser.add_argument('--mex_script') parser.add_argument('--mex_opts', default=['-largeArrayDims'], nargs='*') parser.add_argument('--cxx_flags', default=[], nargs='*') parser.add_argument('--opencv_version', default='', nargs='?') parser.add_argument('--commit', default='Not in working git tree', nargs='?') parser.add_argument('--modules', nargs='+') parser.add_argument('--configuration') parser.add_argument('--outdir') build = parser.parse_args() from filters import * from jinja2 import Environment, FileSystemLoader # populate the build info template substitute(build, build.outdir)
from textwrap import TextWrapper import re, os # precompile a URL matching regular expression urlexpr = re.compile(r"((https?):((//)|(\\\\))+[\w\d:#@%/;$()~_?\+-=\\\.&]*)", re.MULTILINE|re.UNICODE) def inputs(args): '''Keeps only the input arguments in a list of elements. ''' try: return [arg for arg in args['only'] if arg.I and not arg.O] except: return [arg for arg in args if arg.I] def ninputs(fun): '''Counts the number of input arguments in the input list''' return len(inputs(fun.req)) + len(inputs(fun.opt)) def outputs(args): '''Determines whether any of the given arguments is an output reference, and returns a list of only those elements. In OpenCV, output references are preceded by CV_OUT or has *OutputArray* type ''' try: return [arg for arg in args['only'] if arg.O and not arg.I] except: return [arg for arg in args if arg.O] def only(args): '''Returns exclusively the arguments which are only inputs or only outputs''' d = {}; d['only'] = args return d def void(arg): '''Is the input 'void' ''' return arg == 'void' def flip(arg): '''flip the sign of the input''' return not arg def noutputs(fun): '''Counts the number of output arguments in the input list''' return int(not void(fun.rtp)) + len(outputs(fun.req)) + len(outputs(fun.opt)) def convertibleToInt(string): '''Can the input string be evaluated to an integer?''' salt = '1+' try: exec(salt+string) return True except: return False def binaryToDecimal(string): '''Attempt to convert the input string to floating point representation''' try: return str(eval(string)) except: return string def formatMatlabConstant(string, table): ''' Given a string representing a Constant, and a table of all Constants, attempt to resolve the Constant into a valid Matlab expression For example, the input DEPENDENT_VALUE = 1 << FIXED_VALUE needs to be converted to DEPENDENT_VALUE = bitshift(1, cv.FIXED_VALUE); ''' # split the string into expressions words = re.split('(\W+)', string) # add a 'cv' prefix if an expression is also a key in the lookup table words = ''.join([('cv.'+word if word in table else word) for word in words]) # attempt to convert arithmetic expressions and binary/hex to decimal words = binaryToDecimal(words) # convert any remaining bitshifts to Matlab 'bitshift' methods shift = re.sub('[\(\) ]', '', words).split('<<') words = 'bitshift('+shift[0]+', '+shift[1]+')' if len(shift) == 2 else words return words def matlabURL(string): """This filter is used to construct a Matlab specific URL that calls the system browser instead of the (insanely bad) builtin Matlab browser""" return re.sub(urlexpr, '<a href="matlab: web(\'\\1\', \'-browser\')">\\1</a>', string) def capitalizeFirst(text): '''Capitalize only the first character of the text string''' return text[0].upper() + text[1:] def toUpperCamelCase(text): '''variable_name --> VariableName''' return ''.join([capitalizeFirst(word) for word in text.split('_')]) def toLowerCamelCase(text): '''variable_name --> variableName''' upper_camel = toUpperCamelCase(test) return upper_camel[0].lower() + upper_camel[1:] def toUnderCase(text): '''VariableName --> variable_name''' s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', text) return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower() def stripTags(text): ''' strip or convert html tags from a text string <code>content</code> --> content <anything> --> '' &lt --> < &gt --> > &le --> <= &ge --> >= ''' upper = lambda pattern: pattern.group(1).upper() text = re.sub('<code>(.*?)</code>', upper, text) text = re.sub('<([^=\s].*?)>', '', text) text = re.sub('&lt', '<', text) text = re.sub('&gt', '>', text) text = re.sub('&le', '<=', text) text = re.sub('&ge', '>=', text) return text def qualify(text, name): '''Adds uppercase 'CV.' qualification to any occurrences of name in text''' return re.sub(name.upper(), 'CV.'+name.upper(), text) def slugify(text): '''A_Function_name --> a-function-name''' return text.lower().replace('_', '-') def filename(fullpath): '''Returns only the filename without an extension from a file path eg. /path/to/file.txt --> file ''' return os.path.splitext(os.path.basename(fullpath))[0] def split(text, delimiter=' '): '''Split a text string into a list using the specified delimiter''' return text.split(delimiter) def csv(items, sep=', '): '''format a list with a separator (comma if not specified)''' return sep.join(item for item in items) def cellarray(items, escape='\''): '''format a list of items as a matlab cell array''' return '{' + ', '.join(escape+item+escape for item in items) + '}' def stripExtraSpaces(text): '''Removes superfluous whitespace from a string, including the removal of all leading and trailing whitespace''' return ' '.join(text.split()) def comment(text, wrap=80, escape='% ', escape_first='', escape_last=''): '''comment filter Takes a string in text, and wraps it to wrap characters in length with preceding comment escape sequence on each line. escape_first and escape_last can be used for languages which define block comments. Examples: C++ inline comment comment(80, '// ') C block comment: comment(80, ' * ', '/*', ' */') Matlab comment: comment(80, '% ') Matlab block comment: comment(80, '', '%{', '%}') Python docstrings: comment(80, '', '\'\'\'', '\'\'\'') ''' tw = TextWrapper(width=wrap-len(escape)) if escape_first: escape_first = escape_first+'\n' if escape_last: escape_last = '\n'+escape_last escapn = '\n'+escape lines = text.split('\n') wlines = (tw.wrap(line) for line in lines) return escape_first+escape+escapn.join(escapn.join(line) for line in wlines)+escape_last
import numpy as np import cv2 as cv import sys if len(sys.argv) != 2: print('Input video name is missing') exit() print('Select 3 tracking targets') cv.namedWindow("tracking") camera = cv.VideoCapture(sys.argv[1]) tracker = cv.MultiTracker_create() init_once = False ok, image=camera.read() if not ok: print('Failed to read video') exit() bbox1 = cv.selectROI('tracking', image) bbox2 = cv.selectROI('tracking', image) bbox3 = cv.selectROI('tracking', image) while camera.isOpened(): ok, image=camera.read() if not ok: print 'no image to read' break if not init_once: ok = tracker.add(cv.TrackerMIL_create(), image, bbox1) ok = tracker.add(cv.TrackerMIL_create(), image, bbox2) ok = tracker.add(cv.TrackerMIL_create(), image, bbox3) init_once = True ok, boxes = tracker.update(image) print ok, boxes for newbox in boxes: p1 = (int(newbox[0]), int(newbox[1])) p2 = (int(newbox[0] + newbox[2]), int(newbox[1] + newbox[3])) cv.rectangle(image, p1, p2, (200,0,0)) cv.imshow('tracking', image) k = cv.waitKey(1) if k == 27 : break # esc pressed
import numpy as np import cv2 as cv import sys if len(sys.argv) != 2: print('Input video name is missing') exit() cv.namedWindow("tracking") camera = cv.VideoCapture(sys.argv[1]) ok, image=camera.read() if not ok: print('Failed to read video') exit() bbox = cv.selectROI("tracking", image) tracker = cv.TrackerMIL_create() init_once = False while camera.isOpened(): ok, image=camera.read() if not ok: print 'no image to read' break if not init_once: ok = tracker.init(image, bbox) init_once = True ok, newbox = tracker.update(image) print ok, newbox if ok: p1 = (int(newbox[0]), int(newbox[1])) p2 = (int(newbox[0] + newbox[2]), int(newbox[1] + newbox[3])) cv.rectangle(image, p1, p2, (200,0,0)) cv.imshow("tracking", image) k = cv.waitKey(1) & 0xff if k == 27 : break # esc pressed
#!/usr/bin/env python # This file is part of OpenCV project. # It is subject to the license terms in the LICENSE file found in the top-level directory # of this distribution and at http://opencv.org/license.html # Copyright (C) 2020 by Archit Rungta import hdr_parser, sys, re, os from string import Template from pprint import pprint from collections import namedtuple import json import os, shutil from io import StringIO forbidden_arg_types = ["void*"] ignored_arg_types = ["RNG*"] pass_by_val_types = ["Point*", "Point2f*", "Rect*", "String*", "double*", "float*", "int*"] def get_char(c): if c.isalpha(): return c if ord(c)%52 < 26: return chr(ord('a')+ord(c)%26) return chr(ord('A')+ord(c)%26) def get_var(inp): out = '' for c in inp: out = out+get_char(c) return out def normalize_name(name): return name.replace('.', '::') def normalize_class_name(name): _, classes, name = split_decl_name(normalize_name(name)) return "_".join(classes+[name]) def normalize_full_name(name): ns, classes, name = split_decl_name(normalize_name(name)) return "::".join(ns)+'::'+'_'.join(classes+[name]) def split_decl_name(name): chunks = name.split('::') namespace = chunks[:-1] classes = [] while namespace and '::'.join(namespace) not in namespaces: classes.insert(0, namespace.pop()) ns = '::'.join(namespace) if ns not in namespaces and ns: assert(0) return namespace, classes, chunks[-1] def handle_cpp_arg(inp): def handle_vector(match): return handle_cpp_arg("%svector<%s>" % (match.group(1), match.group(2))) def handle_ptr(match): return handle_cpp_arg("%sPtr<%s>" % (match.group(1), match.group(2))) inp = re.sub("(.*)vector_(.*)", handle_vector, inp) inp = re.sub("(.*)Ptr_(.*)", handle_ptr, inp) return inp.replace("String", "string") def get_template_arg(inp): inp = inp.replace(' ','').replace('*', '').replace('cv::', '').replace('std::', '') def handle_vector(match): return get_template_arg("%s" % (match.group(1))) def handle_ptr(match): return get_template_arg("%s" % (match.group(1))) inp = re.sub("vector<(.*)>", handle_vector, inp) inp = re.sub("Ptr<(.*)>", handle_ptr, inp) ns, cl, n = split_decl_name(inp) inp = "::".join(cl+[n]) # print(inp) return inp.replace("String", "string") def registered_tp_search(tp): found = False if not tp: return True for tpx in registered_types: if re.findall(tpx, tp): found = True break return found namespaces = {} type_paths = {} enums = {} classes = {} functions = {} registered_types = ["int", "Size.*", "Rect.*", "Scalar", "RotatedRect", "Point.*", "explicit", "string", "bool", "uchar", "Vec.*", "float", "double", "char", "Mat", "size_t", "RNG", "DescriptorExtractor", "FeatureDetector", "TermCriteria"] class ClassProp(object): """ Helper class to store field information(type, name and flags) of classes and structs """ def __init__(self, decl): self.tp = decl[0] self.name = decl[1] self.readonly = True if "/RW" in decl[3]: self.readonly = False class ClassInfo(object): def __init__(self, name, decl=None): self.name = name self.mapped_name = normalize_class_name(name) self.ismap = False #CV_EXPORTS_W_MAP self.isalgorithm = False #if class inherits from cv::Algorithm self.methods = {} #Dictionary of methods self.props = [] #Collection of ClassProp associated with this class self.base = None #name of base class if current class inherits another class self.constructors = [] #Array of constructors for this class self.add_decl(decl) classes[name] = self def add_decl(self, decl): if decl: # print(decl) bases = decl[1].split(',') if len(bases[0].split()) > 1: bases[0] = bases[0].split()[1] bases = [x.replace(' ','') for x in bases] # print(bases) if len(bases) > 1: # Clear the set a bit bases = list(set(bases)) bases.remove('cv::class') bases_clear = [] for bb in bases: if self.name not in bb: bases_clear.append(bb) bases = bases_clear if len(bases) > 1: print("Note: Class %s has more than 1 base class (not supported by CxxWrap)" % (self.name,)) print(" Bases: ", " ".join(bases)) print(" Only the first base class will be used") if len(bases) >= 1: self.base = bases[0].replace('.', '::') if "cv::Algorithm" in bases: self.isalgorithm = True for m in decl[2]: if m.startswith("="): self.mapped_name = m[1:] # if m == "/Map": # self.ismap = True self.props = [ClassProp(p) for p in decl[3]] # return code for functions and setters and getters if simple class or functions and map type def get_prop_func_cpp(self, mode, propname): return "jlopencv_" + self.mapped_name + "_"+mode+"_"+propname argumentst = [] default_values = [] class ArgInfo(object): """ Helper class to parse and contain information about function arguments """ def sec(self, arg_tuple): self.isbig = arg_tuple[0] in ["Mat", "vector_Mat", "cuda::GpuMat", "GpuMat", "vector_GpuMat", "UMat", "vector_UMat"] # or self.tp.startswith("vector") self.tp = handle_cpp_arg(arg_tuple[0]) #C++ Type of argument argumentst.append(self.tp) self.name = arg_tuple[1] #Name of argument # TODO: Handle default values nicely self.default_value = arg_tuple[2] #Default value self.inputarg = True #Input argument self.outputarg = False #output argument self.ref = False for m in arg_tuple[3]: if m == "/O": self.inputarg = False self.outputarg = True elif m == "/IO": self.inputarg = True self.outputarg = True elif m == '/Ref': self.ref = True if self.tp in pass_by_val_types: self.outputarg = True def __init__(self, name, tp = None): if not tp: self.sec(name) else: self.name = name self.tp = tp class FuncVariant(object): """ Helper class to parse and contain information about different overloaded versions of same function """ def __init__(self, classname, name, mapped_name, decl, namespace, istatic=False): self.classname = classname self.name = name self.mapped_name = mapped_name self.isconstructor = name.split('::')[-1]==classname.split('::')[-1] self.isstatic = istatic self.namespace = namespace self.rettype = decl[4] if self.rettype == "void" or not self.rettype: self.rettype = "" else: self.rettype = handle_cpp_arg(self.rettype) self.args = [] for ainfo in decl[3]: a = ArgInfo(ainfo) if a.default_value and ('(' in a.default_value or ':' in a.default_value): default_values.append(a.default_value) assert not a.tp in forbidden_arg_types, 'Forbidden type "{}" for argument "{}" in "{}" ("{}")'.format(a.tp, a.name, self.name, self.classname) if a.tp in ignored_arg_types: continue self.args.append(a) self.init_proto() if name not in functions: functions[name]= [] functions[name].append(self) if not registered_tp_search(get_template_arg(self.rettype)): namespaces[namespace].register_types.append(get_template_arg(self.rettype)) for arg in self.args: if not registered_tp_search(get_template_arg(arg.tp)): namespaces[namespace].register_types.append(get_template_arg(arg.tp)) def get_wrapper_name(self): """ Return wrapping function name """ name = self.name.replace('::', '_') if self.classname: classname = self.classname.replace('::', '_') + "_" else: classname = "" return "jlopencv_" + self.namespace.replace('::','_') + '_' + classname + name def init_proto(self): # string representation of argument list, with '[', ']' symbols denoting optional arguments, e.g. # "src1, src2[, dst[, mask]]" for cv.add prototype = "" inlist = [] optlist = [] outlist = [] deflist = [] biglist = [] # This logic can almost definitely be simplified for a in self.args: if a.isbig and not (a.inputarg and not a.default_value): optlist.append(a) if a.outputarg: outlist.append(a) if a.inputarg and not a.default_value: inlist.append(a) elif a.inputarg and a.default_value and not a.isbig: optlist.append(a) elif not (a.isbig and not (a.inputarg and not a.default_value)): deflist.append(a) if self.rettype: outlist = [ArgInfo("retval", self.rettype)] + outlist if self.isconstructor: assert outlist == [] or outlist[0].tp == "explicit" outlist = [ArgInfo("retval", self.classname)] self.outlist = outlist self.optlist = optlist self.deflist = deflist self.inlist = inlist self.prototype = prototype class NameSpaceInfo(object): def __init__(self, name): self.funcs = {} self.classes = {} #Dictionary of classname : ClassInfo objects self.enums = {} self.consts = {} self.register_types = [] self.name = name def add_func(decl): """ Creates functions based on declaration and add to appropriate classes and/or namespaces """ decl[0] = decl[0].replace('.', '::') namespace, classes, barename = split_decl_name(decl[0]) name = "::".join(namespace+classes+[barename]) full_classname = "::".join(namespace + classes) classname = "::".join(classes) namespace = '::'.join(namespace) is_static = False isphantom = False mapped_name = '' for m in decl[2]: if m == "/S": is_static = True elif m == "/phantom": print("phantom not supported yet ") return elif m.startswith("="): mapped_name = m[1:] elif m.startswith("/mappable="): print("Mappable not supported yet") return # if m == "/V": # print("skipping ", name) # return if classname and full_classname not in namespaces[namespace].classes: # print("HH1") # print(namespace, classname) namespaces[namespace].classes[full_classname] = ClassInfo(full_classname) assert(0) if is_static: # Add it as global function func_map = namespaces[namespace].funcs if name not in func_map: func_map[name] = [] if not mapped_name: mapped_name = "_".join(classes + [barename]) func_map[name].append(FuncVariant("", name, mapped_name, decl, namespace, True)) else: if classname: func = FuncVariant(full_classname, name, barename, decl, namespace, False) if func.isconstructor: namespaces[namespace].classes[full_classname].constructors.append(func) else: func_map = namespaces[namespace].classes[full_classname].methods if name not in func_map: func_map[name] = [] func_map[name].append(func) else: func_map = namespaces[namespace].funcs if name not in func_map: func_map[name] = [] if not mapped_name: mapped_name = barename func_map[name].append(FuncVariant("", name, mapped_name, decl, namespace, False)) def add_class(stype, name, decl): """ Creates class based on name and declaration. Add it to list of classes and to JSON file """ # print("n", name) name = name.replace('.', '::') classinfo = ClassInfo(name, decl) namespace, classes, barename = split_decl_name(name) namespace = '::'.join(namespace) if classinfo.name in classes: namespaces[namespace].classes[name].add_decl(decl) else: namespaces[namespace].classes[name] = classinfo def add_const(name, decl, tp = ''): name = name.replace('.','::') namespace, classes, barename = split_decl_name(name) namespace = '::'.join(namespace) mapped_name = '_'.join(classes+[barename]) ns = namespaces[namespace] if mapped_name in ns.consts: print("Generator error: constant %s (name=%s) already exists" \ % (name, name)) sys.exit(-1) ns.consts[name] = mapped_name def add_enum(name, decl): name = name.replace('.', '::') mapped_name = normalize_class_name(name) # print(name) if mapped_name.endswith("<unnamed>"): mapped_name = None else: enums[name.replace(".", "::")] = mapped_name const_decls = decl[3] if mapped_name: namespace, classes, name2 = split_decl_name(name) namespace = '::'.join(namespace) mapped_name = '_'.join(classes+[name2]) # print(mapped_name) namespaces[namespace].enums[name] = (name.replace(".", "::"),mapped_name) for decl in const_decls: name = decl[0] add_const(name.replace("const ", "", ).strip(), decl, "int") def gen_tree(srcfiles): parser = hdr_parser.CppHeaderParser(generate_umat_decls=False, generate_gpumat_decls=False) allowed_func_list = [] with open("funclist.csv", "r") as f: allowed_func_list = f.readlines() allowed_func_list = [x[:-1] for x in allowed_func_list] count = 0 # step 1: scan the headers and build more descriptive maps of classes, consts, functions for hdr in srcfiles: decls = parser.parse(hdr) for ns in parser.namespaces: ns = ns.replace('.', '::') if ns not in namespaces: namespaces[ns] = NameSpaceInfo(ns) count += len(decls) if len(decls) == 0: continue if hdr.find('opencv2/') >= 0: #Avoid including the shadow files # code_include.write( '#include "{0}"\n'.format(hdr[hdr.rindex('opencv2/'):]) ) pass for decl in decls: name = decl[0] if name.startswith("struct") or name.startswith("class"): # class/struct p = name.find(" ") stype = name[:p] name = name[p+1:].strip() add_class(stype, name, decl) elif name.startswith("const"): # constant assert(0) add_const(name.replace("const ", "").strip(), decl) elif name.startswith("enum"): # enum add_enum(name.rsplit(" ", 1)[1], decl) else: # function if decl[0] in allowed_func_list: add_func(decl) # step 1.5 check if all base classes exist # print(classes) for name, classinfo in classes.items(): if classinfo.base: base = classinfo.base # print(base) if base not in classes: print("Generator error: unable to resolve base %s for %s" % (classinfo.base, classinfo.name)) sys.exit(-1) base_instance = classes[base] classinfo.base = base classinfo.isalgorithm |= base_instance.isalgorithm # wrong processing of 'isalgorithm' flag: # doesn't work for trees(graphs) with depth > 2 classes[name] = classinfo # tree-based propagation of 'isalgorithm' processed = dict() def process_isalgorithm(classinfo): if classinfo.isalgorithm or classinfo in processed: return classinfo.isalgorithm res = False if classinfo.base: res = process_isalgorithm(classes[classinfo.base]) #assert not (res == True or classinfo.isalgorithm is False), "Internal error: " + classinfo.name + " => " + classinfo.base classinfo.isalgorithm |= res res = classinfo.isalgorithm processed[classinfo] = True return res for name, classinfo in classes.items(): process_isalgorithm(classinfo) for name, ns in namespaces.items(): if name.split('.')[-1] == '': continue ns.registered = [] for name, cl in ns.classes.items(): registered_types.append(get_template_arg(name)) ns.registered.append(cl.mapped_name) nss, clss, bs = split_decl_name(name) type_paths[bs] = [name.replace("::", ".")] type_paths["::".join(clss+[bs])] = [name.replace("::", ".")] for e1,e2 in ns.enums.items(): registered_types.append(get_template_arg(e2[0])) registered_types.append(get_template_arg(e2[0]).replace('::', '_')) #whyyy typedef ns.registered.append(e2[1]) ns.register_types = list(set(ns.register_types)) ns.register_types = [tp for tp in ns.register_types if not registered_tp_search(tp) and not tp in ns.registered] for tp in ns.register_types: registered_types.append(get_template_arg(tp)) ns.registered.append(get_template_arg(tp)) default_valuesr = list(set(default_values)) # registered_types = registered_types + ns.register_types return namespaces, default_valuesr
#!/usr/bin/python # This file is part of OpenCV project. # It is subject to the license terms in the LICENSE file found in the top-level directory # of this distribution and at http://opencv.org/license.html # Copyright (C) 2020 by Archit Rungta import sys import subprocess import os mod_path = sys.argv[1] hdr_list = [ mod_path+"/core/include/opencv2/core.hpp", mod_path+"/core/include/opencv2/core/base.hpp", mod_path+"/core/include/opencv2/core/bindings_utils.hpp", mod_path+"/core/include/opencv2/core/optim.hpp", mod_path+"/core/include/opencv2/core/persistence.hpp", mod_path+"/core/include/opencv2/core/types.hpp", mod_path+"/core/include/opencv2/core/utility.hpp"] for module in sys.argv[2:]: if module=='opencv_imgproc': hdr_list.append(mod_path+"/imgproc/include/opencv2/imgproc.hpp") elif module =='opencv_dnn': hdr_list.append(mod_path+"/dnn/include/opencv2/dnn/dnn.hpp") elif module == 'opencv_imgcodecs': hdr_list.append(mod_path+"/imgcodecs/include/opencv2/imgcodecs.hpp") elif module =='opencv_videoio': hdr_list.append(mod_path+"/videoio/include/opencv2/videoio.hpp") elif module =='opencv_highgui': hdr_list.append(mod_path+"/highgui/include/opencv2/highgui.hpp") if not os.path.exists('autogen_cpp'): os.makedirs('autogen_cpp') os.makedirs('autogen_jl') subprocess.call([sys.executable, 'gen3_cpp.py', str(';'.join(hdr_list))]) subprocess.call([sys.executable, 'gen3_julia_cxx.py', str(';'.join(hdr_list))]) subprocess.call([sys.executable, 'gen3_julia.py', str(';'.join(hdr_list))])
#!/usr/bin/env python # This file is part of OpenCV project. # It is subject to the license terms in the LICENSE file found in the top-level directory # of this distribution and at http://opencv.org/license.html # Copyright (C) 2020 by Archit Rungta from __future__ import unicode_literals # Needed for python2 import hdr_parser, sys, re, os from string import Template from pprint import pprint from collections import namedtuple if sys.version_info[0] >= 3: from io import StringIO else: from cStringIO import StringIO import os, shutil from parse_tree import * jl_cpp_argmap = {} jl_cpp_defmap = {} julia_types = ["Int32", "Float32", "Float64", "Bool", "String", "Array", "Any"] cv_types = ["UMat","Size" ] submodule_template = Template('') root_template = Template('') with open("binding_templates_jl/template_cv2_submodule_cxx.jl", "r") as f: submodule_template = Template(f.read()) with open("binding_templates_jl/template_cv2_root.jl", "r") as f: root_template = Template(f.read()) with open("typemap.txt", 'r') as f: tmp = f.readlines() for ln in tmp: ln = ln.strip('\n').split(':') jl_cpp_argmap[ln[0]] = ln[1] with open("defval.txt", 'r') as f: tmp = f.readlines() for ln in tmp: ln = ln.strip('\n').split('|') if ln[0] not in jl_cpp_defmap: jl_cpp_defmap[ln[0]] = {} jl_cpp_defmap[ln[0]][ln[1]] = ln[2] def handle_def_arg(inp, tp = '', ns=''): tp = tp.strip() inp = inp.strip() out = '' if tp in julia_types: out = inp elif not inp or inp=='Mat()': if tp=='Mat' or tp=='InputArray': out= 'CxxMat()' out = tp+'()' elif inp=="String()": out= '""' elif '(' in inp or ':' in inp: out = "cpp_to_julia("+get_var(inp)+"())" else: print("Default not found") if inp in jl_cpp_defmap[tp]: out = jl_cpp_defmap[tp][inp] elif inp != '': print(inp+" not found") # print(inp, tp, out) return out def handle_jl_arg(inp): if not inp: return '' inp = inp.replace('std::', '') if inp in jl_cpp_argmap: return jl_cpp_argmap[inp] inp = inp.replace('cv::', '') return inp # return outs class ClassInfo(ClassInfo): def get_jl_code(self): if self.ismap: return '' return self.overload_get()+self.overload_set() def overload_get(self): stra = "function Base.getproperty(m::%s, s::Symbol)\n" %(self.mapped_name) if self.isalgorithm: stra = "function Base.getproperty(m::cv_Ptr{%s}, s::Symbol)\n" %(self.mapped_name) for prop in self.props: stra = stra + " if s==:" + prop.name+"\n" stra = stra + " return cpp_to_julia(%s(m))\n"%self.get_prop_func_cpp("get", prop.name) stra = stra + " end\n" stra = stra + " return Base.getfield(m, s)\nend\n" return stra def overload_set(self): stra = "function Base.setproperty!(m::%s, s::Symbol, v)\n" %(self.mapped_name) if self.isalgorithm: stra = "function Base.setproperty!(m::cv_Ptr{%s}, s::Symbol, v)\n" %(self.mapped_name) for prop in self.props: if not prop.readonly: continue stra = stra + " if s==:" + prop.name+"\n" stra = stra + " %s(m, julia_to_cpp(v))\n"%(self.get_prop_func_cpp("set", prop.name)) stra = stra + " end\n" stra = stra + " return Base.setfield!(m, s, v)\nend\n" return stra class FuncVariant(FuncVariant): def get_argument_full(self, classname='', isalgo = False): arglist = self.inlist + self.optlist argnamelist = [arg.name+"::"+(handle_jl_arg(arg.tp) if handle_jl_arg(arg.tp) not in pass_by_val_types else handle_jl_arg(arg.tp)[:-1]) for arg in arglist] argstr = ", ".join(argnamelist) return argstr def get_argument_opt(self, ns=''): # [print(arg.default_value,":",handle_def_arg(arg.default_value, handle_jl_arg(arg.tp))) for arg in self.optlist] str2 = ", ".join(["%s::%s = %s(%s)" % (arg.name, handle_jl_arg(arg.tp), handle_jl_arg(arg.tp) if (arg.tp == 'int' or arg.tp=='float' or arg.tp=='double') else '', handle_def_arg(arg.default_value, handle_jl_arg(arg.tp), ns)) for arg in self.optlist]) return str2 def get_argument_def(self, classname, isalgo): arglist = self.inlist argnamelist = [arg.name+"::"+(handle_jl_arg(arg.tp) if handle_jl_arg(arg.tp) not in pass_by_val_types else handle_jl_arg(arg.tp)[:-1]) for arg in arglist] argstr = ", ".join(argnamelist) return argstr def get_return(self, classname=''): argstr = '' arglist = self.inlist + self.optlist return "return cpp_to_julia(%s(%s))" %(self.get_wrapper_name(), ",".join(["julia_to_cpp(%s)" % (x.name) for x in arglist])) def get_algo_tp(self, classname, isalgo): if not isalgo or not classname: return '' return ' where {T <: %s}' % classname def get_complete_code(self, classname='', isalgo = False, iscons = False, gen_default = True, ns = ''): if classname and not iscons: if isalgo: self.inlist = [ArgInfo("cobj", "cv_Ptr{T}")] + self.inlist else: self.inlist = [ArgInfo("cobj", classname)] + self.inlist map_name = self.mapped_name if ns!='cv': map_name = '%s_%s' %(ns.split('::')[-1], map_name) outstr = 'function %s(%s)%s\n\t%s\nend\n' % (map_name, self.get_argument_full(classname, isalgo), self.get_algo_tp(classname, isalgo),self.get_return()) str2 = ", ".join([x.name for x in self.inlist + self.optlist]) # outstr = outstr + if self.get_argument_opt() != '' and gen_default: outstr = outstr + ('%s(%s; %s)%s = %s(%s)\n' % (map_name, self.get_argument_def(classname, isalgo), self.get_argument_opt(ns), self.get_algo_tp(classname, isalgo), map_name, str2)) if iscons and len(self.inlist+self.optlist)==0 and ns=='cv': return '' return outstr def gen(srcfiles): namespaces, _ = gen_tree(srcfiles) jl_code = StringIO() for name, ns in namespaces.items(): cv_types.extend(ns.registered) jl_code = StringIO() nsname = name for e1,e2 in ns.enums.items(): # jl_code.write('\n const {0} = Int32'.format(e2[0])) jl_code.write('\n const {0} = Int32 \n'.format(e2[1])) # Do not duplicate functions. This should prevent overwriting of Mat function by UMat functions function_signatures = [] for cname, cl in ns.classes.items(): cl.__class__ = ClassInfo jl_code.write(cl.get_jl_code()) for mname, fs in cl.methods.items(): for f in fs: f.__class__ = FuncVariant sign = (f.name, f.mapped_name, f.classname, [x.tp for x in f.inlist+f.optlist]) if sign in function_signatures: print("Skipping entirely: ", f.name) continue sign2 = (f.name, f.mapped_name, f.classname, [x.tp for x in f.inlist]) gend = True if sign2 in function_signatures: print("Skipping default declaration: ", f.name) gend = False jl_code.write('\n%s' % f.get_complete_code(classname = cl.mapped_name, isalgo = cl.isalgorithm, gen_default = gend, ns=nsname)) function_signatures.append(sign) function_signatures.append(sign2) for f in cl.constructors: f.__class__ = FuncVariant jl_code.write('\n%s' % f.get_complete_code(classname = cl.mapped_name, isalgo = cl.isalgorithm, iscons = True, ns=nsname)) for mname, fs in ns.funcs.items(): for f in fs: f.__class__ = FuncVariant sign = (f.name, f.mapped_name, f.classname, [x.tp for x in f.inlist+f.optlist]) if sign in function_signatures: print("Skipping entirely: ", f.name) continue gend = True sign2 = (f.name, f.mapped_name, f.classname, [x.tp for x in f.inlist]) if sign2 in function_signatures: print("Skipping default declaration: ", f.name) gend = False jl_code.write('\n%s' % f.get_complete_code(gen_default = gend, ns=nsname)) function_signatures.append(sign) function_signatures.append(sign2) imports = '' for namex in namespaces: if namex.startswith(name) and len(namex.split('::')) == 1 + len(name.split('::')): imports = imports + '\ninclude("%s_cxx_wrap.jl")'%namex.replace('::', '_') code = '' if name == 'cv': code = root_template.substitute(modname = name, code = jl_code.getvalue(), submodule_imports = imports) else: code = submodule_template.substitute(code = jl_code.getvalue(), submodule_imports = imports) with open ('autogen_jl/%s_cxx_wrap.jl' % ns.name.replace('::', '_'), 'w') as fd: fd.write(code) srcfiles = hdr_parser.opencv_hdr_list if len(sys.argv) > 1: srcfiles = [l.strip() for l in sys.argv[1].split(';')] gen(srcfiles)
#!/usr/bin/env python # This file is part of OpenCV project. # It is subject to the license terms in the LICENSE file found in the top-level directory # of this distribution and at http://opencv.org/license.html # Copyright (C) 2020 by Archit Rungta from __future__ import unicode_literals # Needed for python2 import hdr_parser, sys, re, os from string import Template from pprint import pprint from collections import namedtuple import os, shutil if sys.version_info[0] >= 3: from io import StringIO else: from cStringIO import StringIO from parse_tree import * mod_template = "" with open("binding_templates_cpp/cv_core.cpp", "r") as f: mod_template = Template(f.read()) def normalize_name(name): return name.replace('.', '::') def normalize_class_name(name): _, classes, name = split_decl_name(normalize_name(name)) return "_".join(classes+[name]) def normalize_full_name(name): ns, classes, name = split_decl_name(normalize_name(name)) return "::".join(ns)+'::'+'_'.join(classes+[name]) def split_decl_name(name): chunks = name.split('::') namespace = chunks[:-1] classes = [] while namespace and '::'.join(namespace) not in namespaces: classes.insert(0, namespace.pop()) ns = '::'.join(namespace) if ns not in namespaces and ns: assert(0) return namespace, classes, chunks[-1] def registered_tp_search(tp): found = False if not tp: return True for tpx in registered_types: if re.findall(tpx, tp): found = True break return found namespaces = {} enums = [] classes = {} functions = {} registered_types = ["int", "Size.*", "Rect.*", "Scalar", "RotatedRect", "Point.*", "explicit", "string", "bool", "uchar", "Vec.*", "float", "double", "char", "Mat", "size_t", "RNG", "TermCriteria"] class ClassInfo(ClassInfo): def get_cpp_code_header(self): if self.ismap: return 'mod.map_type<%s>("%s");\n'%(self.name, self.mapped_name) if not self.base: return 'mod.add_type<%s>("%s");\n' % (self.name, self.mapped_name) else: return 'mod.add_type<%s>("%s", jlcxx::julia_base_type<%s>());\n' % (self.name, self.mapped_name, self.base) def get_cpp_code_body(self): if self.ismap: return '' cpp_code = StringIO() for cons in self.constructors: cons.__class__ = FuncVariant cpp_code.write(cons.get_cons_code(self.name, self.mapped_name)) #add get/set cpp_code.write('\n') cpp_code.write(self.get_setters()) cpp_code.write('\n') cpp_code.write(self.get_getters()) cpp_code.write(';') return cpp_code.getvalue() # return code for functions and setters and getters if simple class or functions and map type def get_prop_func_cpp(self, mode, propname): return "jlopencv_" + self.mapped_name + "_"+mode+"_"+propname def get_getters(self): stra = "" for prop in self.props: if not self.isalgorithm: stra = stra + '\nmod.method("%s", [](const %s &cobj) {return %scobj.%s;});' % (self.get_prop_func_cpp("get", prop.name), self.name, '(int)' if prop.tp in enums else '', prop.name) else: stra = stra + '\nmod.method("%s", [](const cv::Ptr<%s> &cobj) {return %scobj->%s;});' % (self.get_prop_func_cpp("get", prop.name), self.name,'(int)' if prop.tp in enums else '', prop.name) return stra def get_setters(self): stra = "" for prop in self.props: if prop.readonly: continue if not self.isalgorithm: stra = stra + '\nmod.method("%s", [](%s &cobj,const force_enum_int<%s>::Type &v) {cobj.%s=(%s)v;});' % (self.get_prop_func_cpp("set", prop.name), self.name, prop.tp, prop.name, prop.tp) else: stra = stra + '\nmod.method("%s", [](cv::Ptr<%s> cobj, const force_enum_int<%s>::Type &v) {cobj->%s=(%s)v;});' % (self.get_prop_func_cpp("set", prop.name), self.name, prop.tp, prop.name, prop.tp) return stra class FuncVariant(FuncVariant): def get_return(self): if len(self.outlist)==0: return ";" elif len(self.outlist)==1: return "return %s;" % ( ('(int)' if self.outlist[0].tp in enums else '') + self.outlist[0].name) return "return make_tuple(%s);" % ",".join(["move(%s)" % (('(int)' if x.tp in enums else '') +x.name) for x in self.outlist]) def get_argument(self, isalgo): args = self.inlist + self.optlist if self.classname!="" and not self.isconstructor and not self.isstatic: if isalgo: args = [ArgInfo("cobj", ("cv::Ptr<%s>" % self.classname))] + args else: args = [ArgInfo("cobj", self.classname)] + args argnamelist = [] for arg in args: if arg.tp in pass_by_val_types: print("PATHWAY NOT TESTED") argnamelist.append(arg.tp[:-1] +"& "+arg.name) elif arg.tp in enums: argnamelist.append("int& " + arg.name) else: if arg.tp=='bool': # Bool pass-by-reference is broken argnamelist.append(arg.tp+" " +arg.name) else: argnamelist.append(arg.tp + "& "+arg.name) # argnamelist = [(arg.tp if arg.tp not in pass_by_val_types else arg.tp[:-1]) +"& "+arg.name for arg in args] argstr = ", ".join(argnamelist) return argstr def get_def_outtypes(self): outstr = "" for arg in self.deflist: outstr = outstr + "%s %s;"%(arg.tp if arg.tp not in pass_by_val_types else arg.tp[:-1], arg.name) return outstr def get_retval(self, isalgo): if self.rettype: stra = "auto retval = " else: stra = "" arlist = [] for x in self.args: if x.tp in pass_by_val_types: arlist.append("&"+x.name) elif x.tp in enums: arlist.append("(%s)%s" %(x.tp, x.name)) else: arlist.append(x.name) argstr = ", ".join(arlist) if self.classname and not self.isstatic: stra = stra + "cobj%s%s(%s); " %("->" if isalgo else ".",self.name.split('::')[-1], argstr) else: stra = stra + "%s(%s);" % (self.name, argstr) return stra def get_cons_code(self, name, mapped_name): # if self.get_argument(False) == '': # return '' arglist = [] for x in self.args: if x.tp in pass_by_val_types: arglist.append("&"+x.name) elif x.tp in enums: arglist.append("(%s)%s" %(x.tp, x.name)) else: arglist.append(x.name) return 'mod.method("%s", [](%s) { %s return jlcxx::create<%s>(%s);});' % (self.get_wrapper_name(), self.get_argument(False), self.get_def_outtypes(), name, " ,".join(arglist)) def get_complete_code(self, classname, isalgo=False): outstr = '.method("%s", [](%s) {%s %s %s})' % (self.get_wrapper_name(), self.get_argument(isalgo),self.get_def_outtypes(), self.get_retval(isalgo), self.get_return()) return outstr def gen(srcfiles): namespaces, default_values = gen_tree(srcfiles) cpp_code = StringIO() include_code = StringIO() nsi = sorted(namespaces.items(), key =lambda x: x[0]) for name, ns in nsi: cpp_code.write("using namespace %s;\n" % name.replace(".", "::")) if name.split('.')[-1] == '': continue nsname = name nsprefix = '_'.join(nsname.split('::')[1:]) def sort_classes(classes): class_inherits = [] class_inherits_names = set() class_noinherits = [] parent = {} for name, cl in classes: if cl.base: class_inherits.append((name, cl)) parent[name] = cl.base class_inherits_names.add(name) else: class_noinherits.append((name,cl)) final_order = class_noinherits while len(class_inherits)>0: for cli in class_inherits: if parent[cli[0]] not in class_inherits_names: final_order.append(cli) class_inherits.remove(cli) class_inherits_names.remove(cli[0]) return final_order sorted_cls = sort_classes(ns.classes.items()) for name, cl in sorted_cls: cl.__class__ = ClassInfo cpp_code.write(cl.get_cpp_code_header()) if cl.base: include_code.write(""" template <> struct SuperType<%s> { typedef %s type; }; """ % (cl.name.replace('.', '::'), cl.base.replace('.', '::'))) for e1,e2 in ns.enums.items(): # cpp_code.write('\n mod.add_bits<{0}>("{1}", jlcxx::julia_type("CppEnum"));'.format(e2[0], e2[1])) enums.append(e2[0]) enums.append(e2[1]) enums.append(e2[0].replace("cv::", "")) for tp in ns.register_types: cpp_code.write(' mod.add_type<%s>("%s");\n' %(tp, normalize_class_name(tp))) for name, ns in namespaces.items(): nsname = name.replace("::", "_") for name, cl in ns.classes.items(): cl.__class__ = ClassInfo cpp_code.write(cl.get_cpp_code_body()) for mname, fs in cl.methods.items(): for f in fs: f.__class__ = FuncVariant cpp_code.write('\n mod%s;' % f.get_complete_code(cl.name, cl.isalgorithm)) # for f in cl.constructors: # cpp_code.write('\n %s; \n' % f.get_cons_code(cl.name, cl.mapped_name)) for mname, fs in ns.funcs.items(): for f in fs: f.__class__ = FuncVariant cpp_code.write('\n mod%s;' % f.get_complete_code("", False)) for mapname, name in sorted(ns.consts.items()): cpp_code.write(' mod.set_const("%s_%s", (force_enum_int<decltype(%s)>::Type)%s);\n'%(nsname, name, mapname, mapname)) compat_name = re.sub(r"([a-z])([A-Z])", r"\1_\2", name).upper() if name != compat_name: cpp_code.write(' mod.set_const("%s_%s", (force_enum_int<decltype(%s)>::Type)%s);\n'%(nsname, compat_name, mapname, mapname)) default_values = list(set(default_values)) for val in default_values: # val = handle_cpp_arg(val) cpp_code.write(' mod.method("%s", [](){return (force_enum_int<decltype(%s)>::Type)%s;});\n'%(get_var(val), val, val)) with open ('autogen_cpp/cv_core.cpp', 'w') as fd: fd.write(mod_template.substitute(include_code = include_code.getvalue(), cpp_code=cpp_code.getvalue())) srcfiles = hdr_parser.opencv_hdr_list if len(sys.argv) > 1: srcfiles = [l.strip() for l in sys.argv[1].split(';')] gen(srcfiles)
#!/usr/bin/env python # This file is part of OpenCV project. # It is subject to the license terms in the LICENSE file found in the top-level directory # of this distribution and at http://opencv.org/license.html # Copyright (C) 2020 by Archit Rungta from __future__ import unicode_literals # Needed for python2 import hdr_parser, sys, re, os from string import Template from pprint import pprint from collections import namedtuple if sys.version_info[0] >= 3: from io import StringIO else: from cStringIO import StringIO import os, shutil from parse_tree import * submodule_template = Template('') root_template = Template('') with open("binding_templates_jl/template_cv2_submodule.jl", "r") as f: submodule_template = Template(f.read()) with open("binding_templates_jl/template_cv2_root.jl", "r") as f: root_template = Template(f.read()) class FuncVariant(FuncVariant): def get_complete_code(self, classname='', isalgo = False, iscons = False, gen_default = True, ns = ''): return 'const %s = OpenCV.%s_%s' %(self.mapped_name, ns, self.mapped_name) def gen(srcfiles): namespaces, _ = gen_tree(srcfiles) jl_code = StringIO() for name, ns in namespaces.items(): # cv_types.extend(ns.registered) jl_code = StringIO() nsname = '_'.join(name.split('::')[1:]) # Do not duplicate functions. This should prevent overwriting of Mat function by UMat functions function_signatures = [] if name != 'cv': for cname, cl in ns.classes.items(): cl.__class__ = ClassInfo for mname, fs in cl.methods.items(): for f in fs: f.__class__ = FuncVariant if f.mapped_name in function_signatures: print("Skipping entirely: ", f.name) continue jl_code.write('\n%s' % f.get_complete_code(isalgo = cl.isalgorithm, ns=nsname)) function_signatures.append(f.mapped_name) for f in cl.constructors: f.__class__ = FuncVariant jl_code.write('\n%s' % f.get_complete_code(classname = cl.mapped_name, isalgo = cl.isalgorithm, iscons = True, ns=nsname)) break for mname, fs in ns.funcs.items(): for f in fs: f.__class__ = FuncVariant if f.mapped_name in function_signatures: continue jl_code.write('\n%s' % f.get_complete_code(ns=nsname)) function_signatures.append(f.mapped_name) jl_code.write('\n') for mapname, cname in sorted(ns.consts.items()): jl_code.write(' const %s = OpenCV.%s_%s\n'%(cname, name.replace('::', '_'), cname)) compat_name = re.sub(r"([a-z])([A-Z])", r"\1_\2", cname).upper() if cname != compat_name: jl_code.write(' const %s = OpenCV.%s_%s;\n'%(compat_name, name.replace('::', '_'), compat_name)) imports = '' for namex in namespaces: if namex.startswith(name) and len(namex.split('::')) == 1 + len(name.split('::')): imports = imports + '\ninclude("%s_wrap.jl")'%namex.replace('::', '_') code = '' if name == 'cv': code = root_template.substitute(modname = name, code = jl_code.getvalue(), submodule_imports = imports) else: code = submodule_template.substitute(modname = name.split('::')[-1], code = jl_code.getvalue(), submodule_imports = imports) with open ('autogen_jl/%s_wrap.jl' % ns.name.replace('::', '_'), 'w') as fd: fd.write(code) srcfiles = hdr_parser.opencv_hdr_list if len(sys.argv) > 1: srcfiles = [l.strip() for l in sys.argv[1].split(';')] gen(srcfiles)
#!/usr/bin/env python # Python 2/3 compatibility from __future__ import print_function import os, numpy import cv2 as cv from tests_common import NewOpenCVTests class rgbd_test(NewOpenCVTests): def test_computeRgbdPlane(self): depth_image = self.get_sample('/cv/rgbd/depth.png', cv.IMREAD_ANYDEPTH) if depth_image is None: raise unittest.SkipTest("Missing files with test data") K = numpy.array([[525, 0, 320.5], [0, 525, 240.5], [0, 0, 1]]) points3d = cv.rgbd.depthTo3d(depth_image, K) normals_computer = normals_computer = cv.rgbd.RgbdNormals_create(480, 640, 5, K) normals = normals_computer.apply(points3d) rgbd_plane = cv.rgbd.RgbdPlane_create(cv.rgbd.RgbdPlane_RGBD_PLANE_METHOD_DEFAULT, 40, 1600, 0.01, 0, 0, 0) _, planes_coeff = rgbd_plane.apply(points3d, normals) planes_coeff_expected = \ numpy.asarray([[[-0.02447728, -0.8678335 , -0.49625182, 4.02800846]], [[-0.05055107, -0.86144137, -0.50533485, 3.95456314]], [[-0.03294908, -0.86964548, -0.49257591, 3.97052431]], [[-0.02886586, -0.87153459, -0.48948362, 7.77550507]], [[-0.04455929, -0.87659335, -0.47916424, 3.93200684]], [[-0.21514639, 0.18835169, -0.95824611, 7.59479475]], [[-0.01006953, -0.86679155, -0.49856904, 4.01355648]], [[-0.00876531, -0.87571168, -0.48275498, 3.96768975]], [[-0.06395926, -0.86951321, -0.48975089, 4.08618736]], [[-0.01403128, -0.87593341, -0.48222789, 7.74559402]], [[-0.01143177, -0.87495202, -0.4840748 , 7.75355816]]], dtype=numpy.float32) eps = 0.05 self.assertLessEqual(cv.norm(planes_coeff, planes_coeff_expected, cv.NORM_L2), eps) if __name__ == '__main__': NewOpenCVTests.bootstrap()
#!/usr/bin/env python import os import cv2 as cv import numpy as np from tests_common import NewOpenCVTests, unittest class cudafeatures2d_test(NewOpenCVTests): def setUp(self): super(cudafeatures2d_test, self).setUp() if not cv.cuda.getCudaEnabledDeviceCount(): self.skipTest("No CUDA-capable device is detected") def test_cudafeatures2d(self): npMat1 = self.get_sample("samples/data/right01.jpg") npMat2 = self.get_sample("samples/data/right02.jpg") cuMat1 = cv.cuda_GpuMat() cuMat2 = cv.cuda_GpuMat() cuMat1.upload(npMat1) cuMat2.upload(npMat2) cuMat1 = cv.cuda.cvtColor(cuMat1, cv.COLOR_RGB2GRAY) cuMat2 = cv.cuda.cvtColor(cuMat2, cv.COLOR_RGB2GRAY) fast = cv.cuda_FastFeatureDetector.create() _kps = fast.detectAsync(cuMat1) orb = cv.cuda_ORB.create() _kps1, descs1 = orb.detectAndComputeAsync(cuMat1, None) _kps2, descs2 = orb.detectAndComputeAsync(cuMat2, None) self.assertTrue(len(orb.convert(_kps1)) == _kps1.size()[0]) self.assertTrue(len(orb.convert(_kps2)) == _kps2.size()[0]) bf = cv.cuda_DescriptorMatcher.createBFMatcher(cv.NORM_HAMMING) matches = bf.match(descs1, descs2) self.assertGreater(len(matches), 0) matches = bf.knnMatch(descs1, descs2, 2) self.assertGreater(len(matches), 0) matches = bf.radiusMatch(descs1, descs2, 0.1) self.assertGreater(len(matches), 0) self.assertTrue(True) #It is sufficient that no exceptions have been there if __name__ == '__main__': NewOpenCVTests.bootstrap()
#!/usr/bin/python import sys import os import cv2 as cv import numpy as np print('\ntextdetection.py') print(' A demo script of the Extremal Region Filter algorithm described in:') print(' Neumann L., Matas J.: Real-Time Scene Text Localization and Recognition, CVPR 2012\n') if (len(sys.argv) < 2): print(' (ERROR) You must call this script with an argument (path_to_image_to_be_processed)\n') quit() pathname = os.path.dirname(sys.argv[0]) img = cv.imread(str(sys.argv[1])) # for visualization vis = img.copy() # Extract channels to be processed individually channels = cv.text.computeNMChannels(img) # Append negative channels to detect ER- (bright regions over dark background) cn = len(channels)-1 for c in range(0,cn): channels.append((255-channels[c])) # Apply the default cascade classifier to each independent channel (could be done in parallel) print("Extracting Class Specific Extremal Regions from "+str(len(channels))+" channels ...") print(" (...) this may take a while (...)") for channel in channels: erc1 = cv.text.loadClassifierNM1(pathname+'/trained_classifierNM1.xml') er1 = cv.text.createERFilterNM1(erc1,16,0.00015,0.13,0.2,True,0.1) erc2 = cv.text.loadClassifierNM2(pathname+'/trained_classifierNM2.xml') er2 = cv.text.createERFilterNM2(erc2,0.5) regions = cv.text.detectRegions(channel,er1,er2) rects = cv.text.erGrouping(img,channel,[r.tolist() for r in regions]) #rects = cv.text.erGrouping(img,channel,[x.tolist() for x in regions], cv.text.ERGROUPING_ORIENTATION_ANY,'../../GSoC2014/opencv_contrib/modules/text/samples/trained_classifier_erGrouping.xml',0.5) #Visualization for r in range(0,np.shape(rects)[0]): rect = rects[r] cv.rectangle(vis, (rect[0],rect[1]), (rect[0]+rect[2],rect[1]+rect[3]), (0, 0, 0), 2) cv.rectangle(vis, (rect[0],rect[1]), (rect[0]+rect[2],rect[1]+rect[3]), (255, 255, 255), 1) #Visualization cv.imshow("Text detection result", vis) cv.waitKey(0)
# -*- coding: utf-8 -*- #!/usr/bin/python import sys import os import cv2 as cv import numpy as np def main(): print('\nDeeptextdetection.py') print(' A demo script of text box alogorithm of the paper:') print(' * Minghui Liao et al.: TextBoxes: A Fast Text Detector with a Single Deep Neural Network https://arxiv.org/abs/1611.06779\n') if (len(sys.argv) < 2): print(' (ERROR) You must call this script with an argument (path_to_image_to_be_processed)\n') quit() if not os.path.isfile('TextBoxes_icdar13.caffemodel') or not os.path.isfile('textbox.prototxt'): print " Model files not found in current directory. Aborting" print " See the documentation of text::TextDetectorCNN class to get download links." quit() img = cv.imread(str(sys.argv[1])) textSpotter = cv.text.TextDetectorCNN_create("textbox.prototxt", "TextBoxes_icdar13.caffemodel") rects, outProbs = textSpotter.detect(img); vis = img.copy() thres = 0.6 for r in range(np.shape(rects)[0]): if outProbs[r] > thres: rect = rects[r] cv.rectangle(vis, (rect[0],rect[1]), (rect[0] + rect[2], rect[1] + rect[3]), (255, 0, 0), 2) cv.imshow("Text detection result", vis) cv.waitKey() if __name__ == "__main__": main()
#!/usr/bin/python import sys import os import cv2 as cv import numpy as np print('\ndetect_er_chars.py') print(' A simple demo script using the Extremal Region Filter algorithm described in:') print(' Neumann L., Matas J.: Real-Time Scene Text Localization and Recognition, CVPR 2012\n') if (len(sys.argv) < 2): print(' (ERROR) You must call this script with an argument (path_to_image_to_be_processed)\n') quit() pathname = os.path.dirname(sys.argv[0]) img = cv.imread(str(sys.argv[1])) gray = cv.imread(str(sys.argv[1]),0) erc1 = cv.text.loadClassifierNM1(pathname+'/trained_classifierNM1.xml') er1 = cv.text.createERFilterNM1(erc1) erc2 = cv.text.loadClassifierNM2(pathname+'/trained_classifierNM2.xml') er2 = cv.text.createERFilterNM2(erc2) regions = cv.text.detectRegions(gray,er1,er2) #Visualization rects = [cv.boundingRect(p.reshape(-1, 1, 2)) for p in regions] for rect in rects: cv.rectangle(img, rect[0:2], (rect[0]+rect[2],rect[1]+rect[3]), (0, 0, 0), 2) for rect in rects: cv.rectangle(img, rect[0:2], (rect[0]+rect[2],rect[1]+rect[3]), (255, 255, 255), 1) cv.imshow("Text detection result", img) cv.waitKey(0)
from skimage import io, transform from multiprocessing.dummy import Pool as ThreadPool def rescale(root_new, root_old, img_path, ann_path, out_shape): try: img = io.imread(root_old+"/"+img_path) except Exception as E: print E h, w, _ = img.shape f_h, f_w = float(out_shape)/h, float(out_shape)/w trans_img = transform.rescale(img, (f_h, f_w)) num_objs = 0 with open(root_old+"/"+ann_path, 'r') as f: ann = f.readline() ann = ann.rstrip() ann = ann.split(' ') ann = [float(i) for i in ann] num_objs = len(ann) / 5 for idx in xrange(num_objs): ann[idx * 5 + 0] = int(f_w * ann[idx * 5 + 0]) ann[idx * 5 + 1] = int(f_h * ann[idx * 5 + 1]) ann[idx * 5 + 2] = int(f_w * ann[idx * 5 + 2]) ann[idx * 5 + 3] = int(f_h * ann[idx * 5 + 3]) # Write the new annotations to file with open(root_new+"/"+ann_path, 'w') as f_new: for val in ann: f_new.write(str(val)+' ') # Save the new image io.imwrite(root_new+"/"+img_path, trans_img) def preprocess(): source = '/users2/Datasets/PASCAL_VOC/VOCdevkit/VOC2012_Resize/source.txt' root_old = '/users2/Datasets/PASCAL_VOC/VOCdevkit/VOC2012' root_new = '/users2/Datasets/PASCAL_VOC/VOCdevkit/VOC2012_Resize' out_shape = 416 with open(source, 'r') as src: lines = src.readlines() print 'Processing {} images and annotations'.format(len(lines)) for line in lines: line = line.rstrip() line = line.split(' ') img_path = line[0] ann_path = line[1] rescale(root_new, root_old, img_path, ann_path, out_shape) if __name__ == '__main__': preprocess()
import argparse import sys import os import time import numpy as np from sklearn.cluster import KMeans import matplotlib.pyplot as plt def k_means(K, data, max_iter, n_jobs, image_file): X = np.array(data) np.random.shuffle(X) begin = time.time() print 'Running kmeans' kmeans = KMeans(n_clusters=K, max_iter=max_iter, n_jobs=n_jobs, verbose=1).fit(X) print 'K-Means took {} seconds to complete'.format(time.time()-begin) step_size = 0.2 xmin, xmax = X[:, 0].min()-1, X[:, 0].max()+1 ymin, ymax = X[:, 1].min()-1, X[:, 1].max()+1 xx, yy = np.meshgrid(np.arange(xmin, xmax, step_size), np.arange(ymin, ymax, step_size)) preds = kmeans.predict(np.c_[xx.ravel(), yy.ravel()]) preds = preds.reshape(xx.shape) plt.figure() plt.clf() plt.imshow(preds, interpolation='nearest', extent=(xx.min(), xx.max(), yy.min(), yy.max()), cmap=plt.cm.Paired, aspect='auto', origin='lower') plt.plot(X[:, 0], X[:, 1], 'k.', markersize=2) centroids = kmeans.cluster_centers_ plt.scatter(centroids[:, 0], centroids[:, 1], marker='x', s=169, linewidths=5, color='r', zorder=10) plt.title("Anchor shapes generated using K-Means") plt.xlim(xmin, xmax) plt.ylim(ymin, ymax) print 'Mean centroids are:' for i, center in enumerate(centroids): print '{}: {}, {}'.format(i, center[0], center[1]) # plt.xticks(()) # plt.yticks(()) plt.show() def pre_process(directory, data_list): if not os.path.exists(directory): print "Path {} doesn't exist".format(directory) return files = os.listdir(directory) print 'Loading data...' for i, f in enumerate(files): # Progress bar sys.stdout.write('\r') percentage = (i+1.0) / len(files) progress = int(percentage * 30) bar = [progress*'=', ' '*(29-progress), percentage*100] sys.stdout.write('[{}>{}] {:.0f}%'.format(*bar)) sys.stdout.flush() with open(directory+"/"+f, 'r') as ann: l = ann.readline() l = l.rstrip() l = l.split(' ') l = [float(i) for i in l] if len(l) % 5 != 0: sys.stderr.write('File {} contains incorrect number of annotations'.format(f)) return num_objs = len(l) / 5 for obj in range(num_objs): xmin = l[obj * 5 + 0] ymin = l[obj * 5 + 1] xmax = l[obj * 5 + 2] ymax = l[obj * 5 + 3] w = xmax - xmin h = ymax - ymin data_list.append([w, h]) if w > 1000 or h > 1000: sys.stdout.write("[{}, {}]".format(w, h)) sys.stdout.write('\nProcessed {} files containing {} objects'.format(len(files), len(data_list))) return data_list def main(): parser = argparse.ArgumentParser("Parse hyperparameters") parser.add_argument("clusters", help="Number of clusters", type=int) parser.add_argument("dir", help="Directory containing annotations") parser.add_argument("image_file", help="File to generate the final cluster of image") parser.add_argument('-jobs', help="Number of jobs for parallel computation", default=1) parser.add_argument('-iter', help="Max Iterations to run algorithm for", default=1000) p = parser.parse_args(sys.argv[1:]) K = p.clusters directory = p.dir data_list = [] pre_process(directory, data_list ) sys.stdout.write('\nDone collecting data\n') k_means(K, data_list, int(p.iter), int(p.jobs), p.image_file) print 'Done !' if __name__=='__main__': try: main() except Exception as E: print E