python_code
stringlengths
0
456k
from functools import partial import pytest import torch import torch.multiprocessing as mp import torch.nn as nn from colossalai.auto_parallel.tensor_shard.node_handler import BinaryElementwiseHandler from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType, StrategiesVector from colossalai.device.device_mesh import DeviceMesh from colossalai.fx import ColoGraphModule, ColoTracer from colossalai.initialize import launch from colossalai.logging import disable_existing_loggers from colossalai.testing import assert_close, parameterize, rerun_if_address_is_in_use from colossalai.testing.pytest_wrapper import run_on_environment_flag from colossalai.utils import free_port from tests.test_auto_parallel.test_tensor_shard.test_node_handler.utils import numerical_test_for_node_strategy def check_binary_elementwise_handler_with_tensor(rank, op, other_dim, world_size, port): disable_existing_loggers() launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') class BinaryElementwiseOpModel(nn.Module): def __init__(self, op): super().__init__() self.op = op def forward(self, x1, x2): out = self.op(x1, x2) return out model = BinaryElementwiseOpModel(op).cuda() physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) x1 = torch.rand(4, 4).cuda() x2 = torch.rand([4] * other_dim).cuda() # the index of binary-elementwise node in computation graph node_index = 2 # strategy number of binary-elementwise node strategy_number = 9 # construct input args input_args = [x1, x2] # construct meta arg names meta_arg_names = ['x1', 'x2'] numerical_test_for_node_strategy(model=model, device_mesh=device_mesh, node_index=node_index, strategy_number=strategy_number, input_args=input_args, meta_arg_names=meta_arg_names) tracer = ColoTracer() meta_args = {'x1': torch.rand(4, 4).to('meta'), 'x2': torch.rand([4] * other_dim).to('meta')} graph = tracer.trace(model, meta_args=meta_args) gm = ColoGraphModule(model, graph) op_node = list(graph.nodes)[2] strategies_vector = StrategiesVector(op_node) # build handler handler = BinaryElementwiseHandler(node=op_node, device_mesh=device_mesh, strategies_vector=strategies_vector) # check operation data mapping mapping = handler.get_operation_data_mapping() for name, op_data in mapping.items(): op_data: OperationData # make sure they have valid values assert op_data.logical_shape is not None assert op_data.data is not None assert mapping['input'].name == "x1" assert mapping['input'].data.is_meta assert mapping['input'].data.shape == torch.Size([4, 4]) assert mapping['input'].type == OperationDataType.ARG assert mapping['input'].logical_shape == torch.Size([4, 4]) assert mapping['other'].name == "x2" assert mapping['other'].data.is_meta assert mapping['other'].data.shape == torch.Size([4] * other_dim) assert mapping['other'].type == OperationDataType.ARG assert mapping['other'].logical_shape == torch.Size([4, 4]) assert mapping['output'].name == str(op_node) assert mapping['output'].data.is_meta assert mapping['output'].data.shape == torch.Size([4, 4]) assert mapping['output'].type == OperationDataType.OUTPUT assert mapping['output'].logical_shape == torch.Size([4, 4]) strategies_vector = handler.register_strategy(compute_resharding_cost=False) strategy_name_list = [val.name for val in strategies_vector] # one strategy will be converted to different physical sharding spec assert len(strategy_name_list) == 9 # check if the sharding strategy is correct assert '[S0, S1] = [S0, S1] <binary-elementwise-op> [S0, S1]' in strategy_name_list assert '[S1, S0] = [S1, S0] <binary-elementwise-op> [S1, S0]' in strategy_name_list assert '[S01, R] = [S01, R] <binary-elementwise-op> [S01, R]' in strategy_name_list assert '[R, S01] = [R, S01] <binary-elementwise-op> [R, S01]' in strategy_name_list assert '[S0, R] = [S0, R] <binary-elementwise-op> [S0, R]' in strategy_name_list assert '[R, S0] = [R, S0] <binary-elementwise-op> [R, S0]' in strategy_name_list assert '[S1, R] = [S1, R] <binary-elementwise-op> [S1, R]' in strategy_name_list assert '[R, S1] = [R, S1] <binary-elementwise-op> [R, S1]' in strategy_name_list assert '[R, R] = [R, R] <binary-elementwise-op> [R, R]' in strategy_name_list for strategy in strategies_vector: input_sharding_spec = strategy.get_sharding_spec_by_name('x1') other_sharding_spec = strategy.get_sharding_spec_by_name('x2') output_sharding_spec = strategy.get_sharding_spec_by_name(str(op_node)) # make sure the sharding spec is the same for input and output assert input_sharding_spec.sharding_sequence == output_sharding_spec.sharding_sequence # since the dim of the other can change, we make sure at least its last dim sharding is the same if len(other_sharding_spec.sharding_sequence) == 2: assert input_sharding_spec.sharding_sequence == other_sharding_spec.sharding_sequence elif len(other_sharding_spec.sharding_sequence) == 1: assert input_sharding_spec.sharding_sequence[-1] == other_sharding_spec.sharding_sequence[-1] class BEOpModelWithNodeConst(nn.Module): def __init__(self, op): super().__init__() self.op = op def forward(self, x1): const = x1.dim() out = self.op(x1, const) return out class BEOpModelWithIntConst(nn.Module): def __init__(self, op, const): super().__init__() self.op = op self.const = const def forward(self, x1): out = self.op(x1, self.const) return out def check_binary_elementwise_handler_with_int(rank, op, other_dim, model_cls, world_size, port): disable_existing_loggers() launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) if model_cls == BEOpModelWithNodeConst: model = model_cls(op).cuda() else: model = model_cls(op, other_dim).cuda() x1 = torch.rand(4, 4).cuda() # the index of binary-elementwise node in computation graph node_index = 1 # strategy number of binary-elementwise node strategy_number = 9 # construct input args input_args = [x1] # construct meta arg names meta_arg_names = ['x1'] numerical_test_for_node_strategy(model=model, device_mesh=device_mesh, node_index=node_index, strategy_number=strategy_number, input_args=input_args, meta_arg_names=meta_arg_names) tracer = ColoTracer() meta_args = {'x1': torch.rand(4, 4).to('meta')} graph = tracer.trace(model, meta_args=meta_args) print(graph) # assert False gm = ColoGraphModule(model, graph) if model_cls == BEOpModelWithNodeConst: op_node = list(graph.nodes)[2] else: op_node = list(graph.nodes)[1] strategies_vector = StrategiesVector(op_node) # build handler handler = BinaryElementwiseHandler(node=op_node, device_mesh=device_mesh, strategies_vector=strategies_vector) # check operation data mapping mapping = handler.get_operation_data_mapping() assert mapping['input'].name == "x1" assert mapping['input'].data.is_meta assert mapping['input'].data.shape == torch.Size([4, 4]) assert mapping['input'].type == OperationDataType.ARG assert mapping['input'].logical_shape == torch.Size([4, 4]) assert mapping['output'].name == str(op_node) assert mapping['output'].data.is_meta assert mapping['output'].data.shape == torch.Size([4, 4]) assert mapping['output'].type == OperationDataType.OUTPUT assert mapping['output'].logical_shape == torch.Size([4, 4]) strategies_vector = handler.register_strategy(compute_resharding_cost=False) strategy_name_list = [val.name for val in strategies_vector] # one strategy will be converted to different physical sharding spec assert len(strategy_name_list) == 9 # check if the sharding strategy is correct assert '[S0, S1] = [S0, S1] <binary-elementwise-op> [S0, S1]' in strategy_name_list assert '[S1, S0] = [S1, S0] <binary-elementwise-op> [S1, S0]' in strategy_name_list assert '[S01, R] = [S01, R] <binary-elementwise-op> [S01, R]' in strategy_name_list assert '[R, S01] = [R, S01] <binary-elementwise-op> [R, S01]' in strategy_name_list assert '[S0, R] = [S0, R] <binary-elementwise-op> [S0, R]' in strategy_name_list assert '[R, S0] = [R, S0] <binary-elementwise-op> [R, S0]' in strategy_name_list assert '[S1, R] = [S1, R] <binary-elementwise-op> [S1, R]' in strategy_name_list assert '[R, S1] = [R, S1] <binary-elementwise-op> [R, S1]' in strategy_name_list assert '[R, R] = [R, R] <binary-elementwise-op> [R, R]' in strategy_name_list for strategy in strategies_vector: input_sharding_spec = strategy.get_sharding_spec_by_name('x1') output_sharding_spec = strategy.get_sharding_spec_by_name(str(op_node)) # make sure the sharding spec is the same for input and output assert input_sharding_spec.sharding_sequence == output_sharding_spec.sharding_sequence @run_on_environment_flag(name='AUTO_PARALLEL') @parameterize('op', [torch.add]) @parameterize('other_dim', [1, 2]) @pytest.mark.dist @rerun_if_address_is_in_use() def test_binary_elementwise_handler_with_tensor(op, other_dim): world_size = 4 run_func_tensor = partial(check_binary_elementwise_handler_with_tensor, op=op, other_dim=other_dim, world_size=world_size, port=free_port()) mp.spawn(run_func_tensor, nprocs=world_size) @run_on_environment_flag(name='AUTO_PARALLEL') @parameterize('op', [torch.add]) @parameterize('other_dim', [1, 2]) @parameterize('model_cls', [BEOpModelWithNodeConst, BEOpModelWithIntConst]) @pytest.mark.dist @rerun_if_address_is_in_use() def test_binary_elementwise_handler_with_int(op, model_cls, other_dim): world_size = 4 run_func_int = partial(check_binary_elementwise_handler_with_int, op=op, model_cls=model_cls, other_dim=other_dim, world_size=world_size, port=free_port()) mp.spawn(run_func_int, nprocs=world_size) if __name__ == '__main__': test_binary_elementwise_handler_with_tensor() test_binary_elementwise_handler_with_int()
from functools import partial import pytest import torch import torch.multiprocessing as mp import torch.nn as nn from colossalai.auto_parallel.tensor_shard.node_handler.embedding_handler import ( EmbeddingFunctionHandler, EmbeddingModuleHandler, ) from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType, StrategiesVector from colossalai.device.device_mesh import DeviceMesh from colossalai.fx import ColoGraphModule, ColoTracer from colossalai.initialize import launch from colossalai.logging import disable_existing_loggers from colossalai.testing import assert_close, parameterize, rerun_if_address_is_in_use from colossalai.testing.pytest_wrapper import run_on_environment_flag from colossalai.utils import free_port from tests.test_auto_parallel.test_tensor_shard.test_node_handler.utils import numerical_test_for_node_strategy NUM_EMBEDDINGS = 16 EMBEDDING_DIMS = 32 class EmbeddingModule(nn.Module): def __init__(self, num_embeddings, embedding_dims): super().__init__() self.embedding = nn.Embedding(num_embeddings, embedding_dims) def forward(self, input): x = self.embedding(input) return x def check_embedding_module_handler(rank, world_size, port): disable_existing_loggers() launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') model = EmbeddingModule(num_embeddings=NUM_EMBEDDINGS, embedding_dims=EMBEDDING_DIMS).cuda() # graph(): # %input_1 : torch.Tensor [#users=1] = placeholder[target=input] # %embedding : [#users=1] = call_module[target=embedding](args = (%input_1,), kwargs = {}) # return embedding input = torch.rand(4, 16, 16) * NUM_EMBEDDINGS input = input.to(torch.int64).cuda() physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) # index of embedding node in computation graph node_index = 1 # total number of embedding strategies strategy_number = 19 numerical_test_for_node_strategy(model=model, device_mesh=device_mesh, node_index=node_index, strategy_number=strategy_number, input_args=[input], meta_arg_names=['input']) tracer = ColoTracer() graph = tracer.trace(model, meta_args={"input": torch.rand(4, 16, 16).to('meta')}) gm = ColoGraphModule(model, graph) embedding_node = list(graph.nodes)[1] strategies_vector = StrategiesVector(embedding_node) # build handler handler = EmbeddingModuleHandler(node=embedding_node, device_mesh=device_mesh, strategies_vector=strategies_vector) # check operation data mapping mapping = handler.get_operation_data_mapping() for name, op_data in mapping.items(): op_data: OperationData # make sure they have valid values assert op_data.logical_shape is not None assert op_data.data is not None assert mapping['input'].name == "input_1" # assert mapping['input'].data.is_meta assert mapping['input'].data.shape == torch.Size([4, 16, 16]) assert mapping['input'].type == OperationDataType.ARG assert mapping['input'].logical_shape == torch.Size([1024]) assert mapping['other'].name == "weight" assert mapping['other'].data.shape == torch.Size([NUM_EMBEDDINGS, EMBEDDING_DIMS]) assert mapping['other'].type == OperationDataType.PARAM assert mapping['other'].logical_shape == torch.Size([NUM_EMBEDDINGS, EMBEDDING_DIMS]) assert mapping['output'].name == "embedding" assert mapping['output'].data.shape == torch.Size([4, 16, 16, EMBEDDING_DIMS]) assert mapping['output'].type == OperationDataType.OUTPUT assert mapping['output'].logical_shape == torch.Size([1024, EMBEDDING_DIMS]) strategies_vector = handler.register_strategy(compute_resharding_cost=False) strategy_name_list = [val.name for val in strategies_vector] # RR = RR x RR assert 'RR = R x RR' in strategy_name_list # SR = SR x RR assert 'S0R = S0 x RR_0' in strategy_name_list assert 'S0R = S0 x RR_1' in strategy_name_list assert 'S0R = S0 x RR_2' in strategy_name_list assert 'S1R = S1 x RR_0' in strategy_name_list assert 'S1R = S1 x RR_1' in strategy_name_list assert 'S1R = S1 x RR_2' in strategy_name_list # SS = SR x RS assert 'S0S1 = S0 x RS1_0' in strategy_name_list assert 'S0S1 = S0 x RS1_1' in strategy_name_list assert 'S0S1 = S0 x RS1_2' in strategy_name_list assert 'S1S0 = S1 x RS0_0' in strategy_name_list assert 'S1S0 = S1 x RS0_1' in strategy_name_list assert 'S1S0 = S1 x RS0_2' in strategy_name_list # RS= RR x RS assert 'RS0 = R x RS0' in strategy_name_list assert 'RS1 = R x RS1' in strategy_name_list # S01R = S01R x RR assert 'S01R = S01 x RR_0' in strategy_name_list assert 'S01R = S01 x RR_1' in strategy_name_list assert 'S01R = S01 x RR_2' in strategy_name_list # RS01 = RR x RS01 assert 'RS01 = R x RS01' in strategy_name_list for strategy in strategies_vector: input_sharding_spec = strategy.get_sharding_spec_by_name('input_1') weight_sharding_spec = strategy.get_sharding_spec_by_name('weight') output_sharding_spec = strategy.get_sharding_spec_by_name('embedding') # make sure the sharding matches across different operation data assert output_sharding_spec.sharding_sequence[-1] == weight_sharding_spec.sharding_sequence[-1] assert input_sharding_spec.sharding_sequence == output_sharding_spec.sharding_sequence[:-1] class EmbeddingFunction(nn.Module): def __init__(self): super().__init__() def forward(self, input, others): x = nn.functional.embedding(input, others) return x def check_embedding_function_handler(rank, world_size, port): disable_existing_loggers() launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') model = EmbeddingFunction().cuda() physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) input = torch.rand(4, 16, 16) * NUM_EMBEDDINGS input = input.to(torch.int64).cuda() others = torch.rand(NUM_EMBEDDINGS, EMBEDDING_DIMS).cuda() input_args = [input, others] meta_arg_names = ['input', 'others'] input_kwargs = {} # total number of embedding strategies strategy_number = 19 node_index = 2 numerical_test_for_node_strategy(model=model, device_mesh=device_mesh, node_index=node_index, strategy_number=strategy_number, input_args=input_args, meta_arg_names=meta_arg_names, input_kwargs=input_kwargs) tracer = ColoTracer() # graph(): # %input_1 : torch.Tensor [#users=1] = placeholder[target=input] # %others : torch.Tensor [#users=1] = placeholder[target=others] # %embedding : [#users=1] = call_function[target=torch.nn.functional.embedding](args = (%input_1, %others), kwargs = {padding_idx: None, max_norm: None, norm_type: 2.0, scale_grad_by_freq: False, sparse: False}) # return embedding meta_args = { "input": torch.rand(4, 16, 16).to('meta'), "others": torch.rand(NUM_EMBEDDINGS, EMBEDDING_DIMS).to('meta') } graph = tracer.trace(model, meta_args=meta_args) gm = ColoGraphModule(model, graph) embedding_node = list(graph.nodes)[2] strategies_vector = StrategiesVector(embedding_node) # build handler handler = EmbeddingFunctionHandler(node=embedding_node, device_mesh=device_mesh, strategies_vector=strategies_vector) # check operation data mapping mapping = handler.get_operation_data_mapping() for name, op_data in mapping.items(): op_data: OperationData # make sure they have valid values assert op_data.logical_shape is not None assert op_data.data is not None assert mapping['input'].name == "input_1" assert mapping['input'].data.is_meta assert mapping['input'].data.shape == torch.Size([4, 16, 16]) assert mapping['input'].type == OperationDataType.ARG assert mapping['input'].logical_shape == torch.Size([1024]) assert mapping['other'].name == "others" assert mapping['other'].data.is_meta assert mapping['other'].data.shape == torch.Size([NUM_EMBEDDINGS, EMBEDDING_DIMS]) assert mapping['other'].type == OperationDataType.ARG assert mapping['other'].logical_shape == torch.Size([NUM_EMBEDDINGS, EMBEDDING_DIMS]) assert mapping['output'].name == "embedding" assert mapping['output'].data.is_meta assert mapping['output'].data.shape == torch.Size([4, 16, 16, EMBEDDING_DIMS]) assert mapping['output'].type == OperationDataType.OUTPUT assert mapping['output'].logical_shape == torch.Size([1024, EMBEDDING_DIMS]) handler.register_strategy(compute_resharding_cost=False) strategy_name_list = [val.name for val in strategies_vector] # RR = RR x RR assert 'RR = R x RR' in strategy_name_list # SR = SR x RR assert 'S0R = S0 x RR_0' in strategy_name_list assert 'S0R = S0 x RR_1' in strategy_name_list assert 'S0R = S0 x RR_2' in strategy_name_list assert 'S1R = S1 x RR_0' in strategy_name_list assert 'S1R = S1 x RR_1' in strategy_name_list assert 'S1R = S1 x RR_2' in strategy_name_list # SS = SR x RS assert 'S0S1 = S0 x RS1_0' in strategy_name_list assert 'S0S1 = S0 x RS1_1' in strategy_name_list assert 'S0S1 = S0 x RS1_2' in strategy_name_list assert 'S1S0 = S1 x RS0_0' in strategy_name_list assert 'S1S0 = S1 x RS0_1' in strategy_name_list assert 'S1S0 = S1 x RS0_2' in strategy_name_list # RS= RR x RS assert 'RS0 = R x RS0' in strategy_name_list assert 'RS1 = R x RS1' in strategy_name_list # S01R = S01R x RR assert 'S01R = S01 x RR_0' in strategy_name_list assert 'S01R = S01 x RR_1' in strategy_name_list assert 'S01R = S01 x RR_2' in strategy_name_list # RS01 = RR x RS01 assert 'RS01 = R x RS01' in strategy_name_list for strategy in strategies_vector: input_sharding_spec = strategy.get_sharding_spec_by_name('input_1') weight_sharding_spec = strategy.get_sharding_spec_by_name('others') output_sharding_spec = strategy.get_sharding_spec_by_name('embedding') # make sure the sharding matches across different operation data assert output_sharding_spec.sharding_sequence[-1] == weight_sharding_spec.sharding_sequence[-1] assert input_sharding_spec.sharding_sequence == output_sharding_spec.sharding_sequence[:-1] @run_on_environment_flag(name='AUTO_PARALLEL') @pytest.mark.dist @rerun_if_address_is_in_use() def test_embedding_module_handler(): world_size = 4 run_func = partial(check_embedding_module_handler, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) @run_on_environment_flag(name='AUTO_PARALLEL') @pytest.mark.dist @rerun_if_address_is_in_use() def test_embedding_function_handler(): world_size = 4 run_func = partial(check_embedding_function_handler, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_embedding_module_handler() test_embedding_function_handler()
from functools import partial import pytest import torch import torch.multiprocessing as mp import torch.nn as nn from colossalai.auto_parallel.tensor_shard.node_handler import BMMFunctionHandler from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType, StrategiesVector from colossalai.device.device_mesh import DeviceMesh from colossalai.fx import ColoGraphModule, ColoTracer from colossalai.initialize import launch from colossalai.logging import disable_existing_loggers from colossalai.testing import assert_close, parameterize, rerun_if_address_is_in_use from colossalai.testing.pytest_wrapper import run_on_environment_flag from colossalai.utils import free_port from tests.test_auto_parallel.test_tensor_shard.test_node_handler.utils import numerical_test_for_node_strategy class AddBMMTensorMethodModule(nn.Module): def __init__(self, using_kwargs): super().__init__() self.using_kwargs = using_kwargs def forward(self, bias, x1, x2): if self.using_kwargs: output = bias.addbmm(x1, x2, alpha=2, beta=3) else: output = bias.addbmm(x1, x2) return output class AddBMMTorchFunctionModule(nn.Module): def __init__(self, using_kwargs): super().__init__() self.using_kwargs = using_kwargs def forward(self, bias, x1, x2): if self.using_kwargs: output = torch.addbmm(bias, x1, x2, alpha=2, beta=3) else: output = torch.addbmm(bias, x1, x2) return output def check_2d_device_mesh(rank, module, bias_shape, using_kwargs, world_size, port): disable_existing_loggers() launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') model = module(using_kwargs).cuda() physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) x1 = torch.rand(4, 8, 16).cuda() x2 = torch.rand(4, 16, 8).cuda() bias = torch.rand(bias_shape).cuda() # the index of addbmm node in computation graph node_index = 3 # strategy number of addbmm node on 2d device mesh strategy_number = 7 # construct input args input_args = [bias, x1, x2] # construct meta arg names meta_arg_names = ['bias', 'x1', 'x2'] numerical_test_for_node_strategy(model=model, device_mesh=device_mesh, node_index=node_index, strategy_number=strategy_number, input_args=input_args, meta_arg_names=meta_arg_names) tracer = ColoTracer() # graph(): # %bias : torch.Tensor [#users=1] = placeholder[target=bias] # %x1 : torch.Tensor [#users=1] = placeholder[target=x1] # %x2 : torch.Tensor [#users=1] = placeholder[target=x2] # %bmm : [#users=1] = call_function[target=torch.bmm](args = (%x1, %x2), kwargs = {}) # %sum_1 : [#users=1] = call_function[target=torch.sum](args = (%bmm, 0), kwargs = {}) # %add : [#users=1] = call_function[target=operator.add](args = (%sum_1, %bias), kwargs = {}) # return add graph = tracer.trace(model, meta_args={ 'bias': torch.rand(*bias_shape).to('meta'), "x1": torch.rand(4, 8, 16).to('meta'), 'x2': torch.rand(4, 16, 8).to('meta') }) gm = ColoGraphModule(model, graph) bmm_mod_node = list(graph.nodes)[3] strategies_vector = StrategiesVector(bmm_mod_node) # build handler handler = BMMFunctionHandler(node=bmm_mod_node, device_mesh=device_mesh, strategies_vector=strategies_vector) # check operation data mapping mapping = handler.get_operation_data_mapping() for name, op_data in mapping.items(): op_data: OperationData # make sure they have valid values assert op_data.logical_shape is not None assert op_data.data is not None assert mapping['input'].name == "x1" assert mapping['input'].data.is_meta assert mapping['input'].data.shape == torch.Size([4, 8, 16]) assert mapping['input'].type == OperationDataType.ARG assert mapping['input'].logical_shape == torch.Size([4, 8, 16]) assert mapping['other'].name == "x2" assert mapping['other'].data.is_meta assert mapping['other'].data.shape == torch.Size([4, 16, 8]) assert mapping['other'].type == OperationDataType.ARG assert mapping['other'].logical_shape == torch.Size([4, 16, 8]) assert mapping['output'].name == "bmm" assert mapping['output'].data.is_meta assert mapping['output'].data.shape == torch.Size([4, 8, 8]) assert mapping['output'].type == OperationDataType.OUTPUT strategies_vector = handler.register_strategy(compute_resharding_cost=False) strategy_name_list = [val.name for val in strategies_vector] for name in strategy_name_list: print(name) # one batch dim assert 'Sb0 = Sb0 x Sb0' not in strategy_name_list # two batch dim assert 'Sb01 = Sb01 x Sb01' in strategy_name_list # SbSi = SbSi x Sb assert 'Sb0Si1 = Sb0Si1 x Sb0' in strategy_name_list assert 'Sb1Si0 = Sb1Si0 x Sb1' in strategy_name_list # SbSj = SbR x SbSj assert 'Sb0Sj1 = Sb0R x Sb0Sj1' in strategy_name_list assert 'Sb1Sj0 = Sb1R x Sb1Sj0' in strategy_name_list # SbR = SbSk x SbSk assert 'Sb0R = Sb0Sk1 x Sb0Sk1' in strategy_name_list assert 'Sb1R = Sb1Sk0 x Sb1Sk0' in strategy_name_list for strategy in strategies_vector: input_sharding_spec = strategy.get_sharding_spec_by_name('x1') other_sharding_spec = strategy.get_sharding_spec_by_name('x2') output_sharding_spec = strategy.get_sharding_spec_by_name('bmm') # make sure the sharding matches across different operation data assert input_sharding_spec.sharding_sequence[0] == output_sharding_spec.sharding_sequence[0] assert other_sharding_spec.sharding_sequence[1] == input_sharding_spec.sharding_sequence[-1] assert other_sharding_spec.sharding_sequence[-1] == output_sharding_spec.sharding_sequence[-1] def check_1d_device_mesh(rank, module, bias_shape, using_kwargs, world_size, port): disable_existing_loggers() launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') physical_mesh_id = torch.arange(0, 4) mesh_shape = (1, 4) device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) model = module(using_kwargs).cuda() x1 = torch.rand(4, 8, 16).cuda() x2 = torch.rand(4, 16, 8).cuda() bias = torch.rand(bias_shape).cuda() # the index of addbmm node in computation graph node_index = 3 # strategy number of addbmm node on 2d device mesh strategy_number = 1 # construct input args input_args = [bias, x1, x2] # construct meta arg names meta_arg_names = ['bias', 'x1', 'x2'] numerical_test_for_node_strategy(model=model, device_mesh=device_mesh, node_index=node_index, strategy_number=strategy_number, input_args=input_args, meta_arg_names=meta_arg_names) tracer = ColoTracer() # graph(): # %bias : torch.Tensor [#users=1] = placeholder[target=bias] # %x1 : torch.Tensor [#users=1] = placeholder[target=x1] # %x2 : torch.Tensor [#users=1] = placeholder[target=x2] # %bmm : [#users=1] = call_function[target=torch.bmm](args = (%x1, %x2), kwargs = {}) # %sum_1 : [#users=1] = call_function[target=torch.sum](args = (%bmm, 0), kwargs = {}) # %add : [#users=1] = call_function[target=operator.add](args = (%sum_1, %bias), kwargs = {}) # return add graph = tracer.trace(model, meta_args={ 'bias': torch.rand(*bias_shape).to('meta'), "x1": torch.rand(4, 8, 16).to('meta'), 'x2': torch.rand(4, 16, 8).to('meta') }) gm = ColoGraphModule(model, graph) bmm_mod_node = list(graph.nodes)[3] strategies_vector = StrategiesVector(bmm_mod_node) # build handler handler = BMMFunctionHandler(node=bmm_mod_node, device_mesh=device_mesh, strategies_vector=strategies_vector) # check operation data mapping mapping = handler.get_operation_data_mapping() for name, op_data in mapping.items(): op_data: OperationData # make sure they have valid values assert op_data.logical_shape is not None assert op_data.data is not None assert mapping['input'].name == "x1" assert mapping['input'].data.is_meta assert mapping['input'].data.shape == torch.Size([4, 8, 16]) assert mapping['input'].type == OperationDataType.ARG assert mapping['input'].logical_shape == torch.Size([4, 8, 16]) assert mapping['other'].name == "x2" assert mapping['other'].data.is_meta assert mapping['other'].data.shape == torch.Size([4, 16, 8]) assert mapping['other'].type == OperationDataType.ARG assert mapping['other'].logical_shape == torch.Size([4, 16, 8]) assert mapping['output'].name == "bmm" assert mapping['output'].data.is_meta assert mapping['output'].data.shape == torch.Size([4, 8, 8]) assert mapping['output'].type == OperationDataType.OUTPUT strategies_vector = handler.register_strategy(compute_resharding_cost=False) strategy_name_list = [val.name for val in strategies_vector] assert len(strategy_name_list) == 1 # one batch dim assert 'Sb0 = Sb0 x Sb0' in strategy_name_list for strategy in strategies_vector: input_sharding_spec = strategy.get_sharding_spec_by_name('x1') other_sharding_spec = strategy.get_sharding_spec_by_name('x2') output_sharding_spec = strategy.get_sharding_spec_by_name('bmm') # make sure the sharding matches across different operation data assert input_sharding_spec.sharding_sequence[0] == output_sharding_spec.sharding_sequence[0] assert other_sharding_spec.sharding_sequence[1] == input_sharding_spec.sharding_sequence[-1] assert other_sharding_spec.sharding_sequence[-1] == output_sharding_spec.sharding_sequence[-1] @pytest.mark.skip("skip due to bias cases not ready") @run_on_environment_flag(name='AUTO_PARALLEL') @pytest.mark.dist @parameterize('module', [AddBMMTorchFunctionModule, AddBMMTensorMethodModule]) @parameterize('bias_shape', [[8], [1, 8], [8, 8]]) @parameterize('using_kwargs', [True, False]) @rerun_if_address_is_in_use() def test_2d_device_mesh(module, bias_shape, using_kwargs): world_size = 4 run_func = partial(check_2d_device_mesh, module=module, bias_shape=bias_shape, world_size=world_size, using_kwargs=using_kwargs, port=free_port()) mp.spawn(run_func, nprocs=world_size) @pytest.mark.skip("skip due to bias cases not ready") @run_on_environment_flag(name='AUTO_PARALLEL') @pytest.mark.dist @parameterize('module', [AddBMMTorchFunctionModule, AddBMMTensorMethodModule]) @parameterize('bias_shape', [[8], [1, 8], [8, 8]]) @parameterize('using_kwargs', [True, False]) @rerun_if_address_is_in_use() def test_1d_device_mesh(module, bias_shape, using_kwargs): world_size = 4 run_func = partial(check_1d_device_mesh, module=module, bias_shape=bias_shape, using_kwargs=using_kwargs, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_1d_device_mesh() test_2d_device_mesh()
from functools import partial import pytest import torch import torch.multiprocessing as mp import torch.nn as nn from colossalai.auto_parallel.tensor_shard.node_handler.default_reshape_handler import DefaultReshapeHandler from colossalai.auto_parallel.tensor_shard.node_handler.getitem_handler import GetItemHandler from colossalai.auto_parallel.tensor_shard.node_handler.linear_handler import LinearFunctionHandler from colossalai.auto_parallel.tensor_shard.node_handler.placeholder_handler import PlaceholderHandler from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType, StrategiesVector from colossalai.device.device_mesh import DeviceMesh from colossalai.fx import ColoGraphModule, ColoTracer from colossalai.fx.tracer.meta_patch.patched_module import linear from colossalai.initialize import launch from colossalai.logging import disable_existing_loggers from colossalai.testing import assert_close, parameterize, rerun_if_address_is_in_use from colossalai.testing.pytest_wrapper import run_on_environment_flag from colossalai.utils import free_port from tests.test_auto_parallel.test_tensor_shard.test_node_handler.utils import numerical_test_for_node_strategy class GetItemFromTensorModel(nn.Module): def __init__(self, getitem_index): super().__init__() self.getitem_index = getitem_index def forward(self, input, other): linear_node = nn.functional.linear(input, other, bias=None) x = linear_node[self.getitem_index] return x def check_getitem_from_tensor_handler(rank, getitem_index, world_size, port): disable_existing_loggers() launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') model = GetItemFromTensorModel(getitem_index=getitem_index) input = torch.rand(8, 16, 64, 32).to('cuda') other = torch.rand(64, 32).to('cuda') # index of linear node in computation graph node_index = 2 # total number of linear strategies strategy_number = 23 physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) numerical_test_for_node_strategy(model=model, device_mesh=device_mesh, node_index=node_index, strategy_number=strategy_number, input_args=[input, other], meta_arg_names=['input', 'other'], node_type='following') tracer = ColoTracer() graph = tracer.trace(model, meta_args={ "input": torch.rand(8, 16, 64, 32).to('meta'), "other": torch.rand(64, 32).to('meta'), }) gm = ColoGraphModule(model, graph) linear_mod_node = list(graph.nodes)[2] getitem_mod_node = list(graph.nodes)[3] getitem_strategies_vector = StrategiesVector(getitem_mod_node) linear_strategies_vector = StrategiesVector(linear_mod_node) # build handler linear_handler = LinearFunctionHandler(node=linear_mod_node, device_mesh=device_mesh, strategies_vector=linear_strategies_vector) linear_handler.register_strategy(compute_resharding_cost=False) setattr(linear_mod_node, 'strategies_vector', linear_strategies_vector) getitem_handler = GetItemHandler(node=getitem_mod_node, device_mesh=device_mesh, strategies_vector=getitem_strategies_vector) getitem_handler.register_strategy(compute_resharding_cost=False) # check operation data mapping mapping = getitem_handler.get_operation_data_mapping() for name, op_data in mapping.items(): op_data: OperationData # make sure they have valid values assert op_data.data is not None # getitem is a following strategy handler, so the number of strategies is equal to the predecessor node. assert len(getitem_strategies_vector) == len(linear_strategies_vector) @run_on_environment_flag(name='AUTO_PARALLEL') @pytest.mark.dist @rerun_if_address_is_in_use() # @parameterize('getitem_index', [slice(0, 2), (slice(None), slice(None))]) @parameterize('getitem_index', [1, (1, 4), slice(0, 2), (slice(None), slice(None))]) def test_getitem_from_tensor_handler(getitem_index): world_size = 4 run_func = partial(check_getitem_from_tensor_handler, getitem_index=getitem_index, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) class GetItemFromTupleModel(nn.Module): def __init__(self): super().__init__() def forward(self, input): split_node = torch.split(input, 2, 0) x = split_node[1] return x @run_on_environment_flag(name='AUTO_PARALLEL') def test_getitem_from_tuple_handler(): model = GetItemFromTupleModel() tracer = ColoTracer() # graph(): # %input_1 : torch.Tensor [#users=1] = placeholder[target=input] # %split : [#users=1] = call_function[target=torch.functional.split](args = (%conv2d, 2), kwargs = {dim: 0}) # %getitem : [#users=1] = call_function[target=operator.getitem](args = (%split, 1), kwargs = {}) # return getitem graph = tracer.trace(model, meta_args={ "input": torch.rand(4, 4, 64, 64).to('meta'), }) gm = ColoGraphModule(model, graph) physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) device_mesh = DeviceMesh(physical_mesh_id, mesh_shape) input_node = list(graph.nodes)[0] split_node = list(graph.nodes)[1] getitem_node = list(graph.nodes)[2] input_strategies_vector = StrategiesVector(input_node) getitem_strategies_vector = StrategiesVector(getitem_node) split_strategies_vector = StrategiesVector(split_node) # build handler input_handler = PlaceholderHandler( node=input_node, device_mesh=device_mesh, strategies_vector=input_strategies_vector, placeholder_option='replicated', ) input_handler.register_strategy(compute_resharding_cost=False) setattr(input_node, 'strategies_vector', input_strategies_vector) split_handler = DefaultReshapeHandler(node=split_node, device_mesh=device_mesh, strategies_vector=split_strategies_vector) split_handler.register_strategy(compute_resharding_cost=False) setattr(split_node, 'strategies_vector', split_strategies_vector) getitem_handler = GetItemHandler(node=getitem_node, device_mesh=device_mesh, strategies_vector=getitem_strategies_vector) getitem_handler.register_strategy(compute_resharding_cost=False) setattr(getitem_node, 'strategies_vector', getitem_strategies_vector) # check operation data mapping mapping = getitem_handler.get_operation_data_mapping() for name, op_data in mapping.items(): op_data: OperationData # make sure they have valid values assert op_data.data is not None assert mapping['input'].name == "split" assert mapping['input'].type == OperationDataType.ARG assert mapping['input'].logical_shape == (torch.Size([2, 4, 64, 64]), torch.Size([2, 4, 64, 64])) assert mapping['index'].name == "index" assert isinstance(mapping['index'].data, int) assert mapping['index'].type == OperationDataType.ARG assert mapping['output'].name == "getitem" assert mapping['output'].data.is_meta assert mapping['output'].data.shape == torch.Size([2, 4, 64, 64]) assert mapping['output'].type == OperationDataType.OUTPUT # getitem is a following strategy handler, so the number of strategies is equal to the predecessor node. assert len(getitem_strategies_vector) == len(split_strategies_vector) if __name__ == '__main__': test_getitem_from_tensor_handler() test_getitem_from_tuple_handler()
from functools import partial import pytest import torch import torch.multiprocessing as mp import torch.nn as nn from colossalai.auto_parallel.tensor_shard.node_handler.conv_handler import ConvFunctionHandler, ConvModuleHandler from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType, StrategiesVector from colossalai.device.device_mesh import DeviceMesh from colossalai.fx import ColoGraphModule, ColoTracer from colossalai.initialize import launch from colossalai.logging import disable_existing_loggers from colossalai.testing import assert_close, parameterize, rerun_if_address_is_in_use from colossalai.testing.pytest_wrapper import run_on_environment_flag from colossalai.utils import free_port from tests.test_auto_parallel.test_tensor_shard.test_node_handler.utils import numerical_test_for_node_strategy def check_conv_module_handler(rank, bias, world_size, port): disable_existing_loggers() launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') model = nn.Sequential(nn.Conv2d(4, 16, 3, padding=1, bias=bias)).cuda() # graph(): # %input_1 : torch.Tensor [#users=1] = placeholder[target=input] # %_0 : [#users=1] = call_module[target=0](args = (%input_1,), kwargs = {}) # return _0 input = torch.rand(4, 4, 64, 64).cuda() physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) # index of conv node in computation graph node_index = 1 # total number of conv strategies strategy_number = 16 numerical_test_for_node_strategy(model=model, device_mesh=device_mesh, node_index=node_index, strategy_number=strategy_number, input_args=[input], meta_arg_names=['input']) tracer = ColoTracer() graph = tracer.trace(model, meta_args={"input": torch.rand(4, 4, 64, 64).to('meta')}) gm = ColoGraphModule(model, graph) conv_mod_node = list(graph.nodes)[1] strategies_vector = StrategiesVector(conv_mod_node) # build handler handler = ConvModuleHandler(node=conv_mod_node, device_mesh=device_mesh, strategies_vector=strategies_vector) # check operation data mapping mapping = handler.get_operation_data_mapping() for name, op_data in mapping.items(): op_data: OperationData # make sure they have valid values assert op_data.logical_shape is not None assert op_data.data is not None assert mapping['input'].name == "input_1" # assert mapping['input'].data.is_meta assert mapping['input'].data.shape == torch.Size([4, 4, 64, 64]) assert mapping['input'].type == OperationDataType.ARG assert mapping['input'].logical_shape == torch.Size([4, 4, 64, 64]) assert mapping['other'].name == "weight" # assert mapping['other'].data.is_meta assert mapping['other'].data.shape == torch.Size([16, 4, 3, 3]) assert mapping['other'].type == OperationDataType.PARAM assert mapping['other'].logical_shape == torch.Size([4, 16, 3, 3]) if bias: assert mapping['bias'].name == "bias" # assert mapping['bias'].data.is_meta assert mapping['bias'].data.shape == torch.Size([16]) assert mapping['bias'].type == OperationDataType.PARAM assert mapping['bias'].logical_shape == torch.Size([16]) assert mapping['output'].name == "_0" # assert mapping['output'].data.is_meta assert mapping['output'].data.shape == torch.Size([4, 16, 64, 64]) assert mapping['output'].type == OperationDataType.OUTPUT strategies_vector = handler.register_strategy(compute_resharding_cost=False) strategy_name_list = [val.name for val in strategies_vector] # SS = SR x RS assert 'S0S1 = S0R x RS1' in strategy_name_list assert 'S1S0 = S1R x RS0' in strategy_name_list # SR = SR x RR assert 'S0R = S0R x RR' in strategy_name_list assert 'S1R = S1R x RR' in strategy_name_list # SR = SS x SR assert 'S0R = S0S1 x S1R' in strategy_name_list assert 'S1R = S1S0 x S0R' in strategy_name_list # RS = RS x SS assert 'RS0 = RS1 x S1S0' in strategy_name_list assert 'RS1 = RS0 x S0S1' in strategy_name_list # RR = RS x SR assert 'RR = RS0 x S0R' in strategy_name_list assert 'RR = RS1 x S1R' in strategy_name_list # RS= RR x RS assert 'RS0 = RR x RS0' in strategy_name_list assert 'RS1 = RR x RS1' in strategy_name_list # RR = RR x RR assert 'RR = RR x RR' in strategy_name_list # S01R = S01R x RR assert 'S01R = S01R x RR' in strategy_name_list # RR = RS01 x S01R assert 'RR = RS01 x S01R' in strategy_name_list # RS01 = RR x RS01 assert 'RS01 = RR x RS01' in strategy_name_list for strategy in strategies_vector: input_sharding_spec = strategy.get_sharding_spec_by_name('input_1') weight_sharding_spec = strategy.get_sharding_spec_by_name('weight') output_sharding_spec = strategy.get_sharding_spec_by_name('_0') if bias: bias_sharding_spec = strategy.get_sharding_spec_by_name('bias') # make sure the sharding matches across different operation data assert output_sharding_spec.sharding_sequence[1] == weight_sharding_spec.sharding_sequence[0] assert input_sharding_spec.sharding_sequence[0] == output_sharding_spec.sharding_sequence[0] assert input_sharding_spec.sharding_sequence[2:] == output_sharding_spec.sharding_sequence[2:] assert input_sharding_spec.sharding_sequence[1] == weight_sharding_spec.sharding_sequence[1] if bias: assert bias_sharding_spec.sharding_sequence[-1] == weight_sharding_spec.sharding_sequence[0] assert bias_sharding_spec.sharding_sequence[-1] == output_sharding_spec.sharding_sequence[1] class ConvModel(nn.Module): def __init__(self): super().__init__() def forward(self, input, others, bias=None): x = nn.functional.conv2d(input, others, bias=bias, padding=1) return x def check_conv_function_handler(rank, bias, world_size, port): disable_existing_loggers() launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') model = ConvModel().cuda() physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) input = torch.rand(4, 4, 64, 64).cuda() others = torch.rand(16, 4, 3, 3).cuda() input_args = [input, others] meta_arg_names = ['input', 'others'] input_kwargs = {} # total number of conv strategies strategy_number = 16 node_index = 2 if bias: bias_tensor = torch.rand(16).cuda() input_kwargs['bias'] = bias_tensor node_index += 1 numerical_test_for_node_strategy(model=model, device_mesh=device_mesh, node_index=node_index, strategy_number=strategy_number, input_args=input_args, meta_arg_names=meta_arg_names, input_kwargs=input_kwargs) tracer = ColoTracer() # graph(): # %input_1 : torch.Tensor [#users=1] = placeholder[target=input] # %others : torch.Tensor [#users=1] = placeholder[target=others] # %conv2d : [#users=1] = call_function[target=torch.conv2d](args = (%input_1, %others), kwargs = {}) # return conv2d meta_args = {"input": torch.rand(4, 4, 64, 64).to('meta'), "others": torch.rand(16, 4, 3, 3).to('meta')} if bias: meta_args['bias'] = torch.rand(16).to('meta') graph = tracer.trace(model, meta_args=meta_args) gm = ColoGraphModule(model, graph) if bias: conv_mod_node = list(graph.nodes)[3] else: conv_mod_node = list(graph.nodes)[2] strategies_vector = StrategiesVector(conv_mod_node) # build handler handler = ConvFunctionHandler(node=conv_mod_node, device_mesh=device_mesh, strategies_vector=strategies_vector) # check operation data mapping mapping = handler.get_operation_data_mapping() for name, op_data in mapping.items(): op_data: OperationData # make sure they have valid values assert op_data.logical_shape is not None assert op_data.data is not None assert mapping['input'].name == "input_1" assert mapping['input'].data.is_meta assert mapping['input'].data.shape == torch.Size([4, 4, 64, 64]) assert mapping['input'].type == OperationDataType.ARG assert mapping['input'].logical_shape == torch.Size([4, 4, 64, 64]) assert mapping['other'].name == "others" assert mapping['other'].data.is_meta assert mapping['other'].data.shape == torch.Size([16, 4, 3, 3]) assert mapping['other'].type == OperationDataType.ARG assert mapping['other'].logical_shape == torch.Size([4, 16, 3, 3]) if bias: assert mapping['bias'].name == "bias" assert mapping['bias'].data.is_meta assert mapping['bias'].data.shape == torch.Size([16]) assert mapping['bias'].type == OperationDataType.ARG assert mapping['bias'].logical_shape == torch.Size([16]) assert mapping['output'].name == "conv2d" assert mapping['output'].data.is_meta assert mapping['output'].data.shape == torch.Size([4, 16, 64, 64]) assert mapping['output'].type == OperationDataType.OUTPUT handler.register_strategy(compute_resharding_cost=False) strategy_name_list = [val.name for val in strategies_vector] # SS = SR x RS assert 'S0S1 = S0R x RS1' in strategy_name_list assert 'S1S0 = S1R x RS0' in strategy_name_list # SR = SR x RR assert 'S0R = S0R x RR' in strategy_name_list assert 'S1R = S1R x RR' in strategy_name_list # SR = SS x SR assert 'S0R = S0S1 x S1R' in strategy_name_list assert 'S1R = S1S0 x S0R' in strategy_name_list # RS = RS x SS assert 'RS0 = RS1 x S1S0' in strategy_name_list assert 'RS1 = RS0 x S0S1' in strategy_name_list # RR = RS x SR assert 'RR = RS0 x S0R' in strategy_name_list assert 'RR = RS1 x S1R' in strategy_name_list # RS= RR x RS assert 'RS0 = RR x RS0' in strategy_name_list assert 'RS1 = RR x RS1' in strategy_name_list # RR = RR x RR assert 'RR = RR x RR' in strategy_name_list # S01R = S01R x RR assert 'S01R = S01R x RR' in strategy_name_list # RR = RS01 x S01R assert 'RR = RS01 x S01R' in strategy_name_list # RS01 = RR x RS01 assert 'RS01 = RR x RS01' in strategy_name_list for strategy in strategies_vector: input_sharding_spec = strategy.get_sharding_spec_by_name('input_1') weight_sharding_spec = strategy.get_sharding_spec_by_name('others') output_sharding_spec = strategy.get_sharding_spec_by_name('conv2d') if bias: bias_sharding_spec = strategy.get_sharding_spec_by_name('bias') # make sure the sharding matches across different operation data assert output_sharding_spec.sharding_sequence[1] == weight_sharding_spec.sharding_sequence[0] assert input_sharding_spec.sharding_sequence[0] == output_sharding_spec.sharding_sequence[0] assert input_sharding_spec.sharding_sequence[2:] == output_sharding_spec.sharding_sequence[2:] assert input_sharding_spec.sharding_sequence[1] == weight_sharding_spec.sharding_sequence[1] if bias: assert bias_sharding_spec.sharding_sequence[-1] == weight_sharding_spec.sharding_sequence[0] assert bias_sharding_spec.sharding_sequence[-1] == output_sharding_spec.sharding_sequence[1] @run_on_environment_flag(name='AUTO_PARALLEL') @pytest.mark.dist # We temporarily ban the bias option before doing bias add # before all reduce communication may encounter correctness issue. # @parameterize('bias', [True, False]) @rerun_if_address_is_in_use() def test_conv_module_handler(bias=False): world_size = 4 run_func = partial(check_conv_module_handler, bias=bias, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) @run_on_environment_flag(name='AUTO_PARALLEL') @pytest.mark.dist # We temporarily ban the bias option before doing bias add # before all reduce communication may encounter correctness issue. # @parameterize('bias', [True, False]) @rerun_if_address_is_in_use() def test_conv_function_handler(bias=False): world_size = 4 run_func = partial(check_conv_function_handler, bias=bias, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_conv_module_handler() test_conv_function_handler()
from functools import partial import pytest import torch import torch.multiprocessing as mp import torch.nn as nn from colossalai.auto_parallel.tensor_shard.node_handler.layer_norm_handler import LayerNormModuleHandler from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType, StrategiesVector from colossalai.device.device_mesh import DeviceMesh from colossalai.fx import ColoGraphModule, ColoTracer from colossalai.fx.tracer.meta_patch.patched_module import linear from colossalai.initialize import launch from colossalai.logging import disable_existing_loggers from colossalai.testing import assert_close, parameterize, rerun_if_address_is_in_use from colossalai.testing.pytest_wrapper import run_on_environment_flag from colossalai.utils import free_port from tests.test_auto_parallel.test_tensor_shard.test_node_handler.utils import numerical_test_for_node_strategy def check_ln_module_handler(rank, world_size, port): disable_existing_loggers() launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') model = nn.Sequential(nn.LayerNorm(16)).cuda() physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) input = torch.rand(4, 16).cuda() # the index of bn node in computation graph node_index = 1 # the total number of ln strategies strategy_number = 4 # construct input args input_args = [input] # construct meta arg names meta_arg_names = ['input'] numerical_test_for_node_strategy(model=model, device_mesh=device_mesh, node_index=node_index, strategy_number=strategy_number, input_args=input_args, meta_arg_names=meta_arg_names) tracer = ColoTracer() # graph(): # %input_1 : torch.Tensor [#users=1] = placeholder[target=input] # %_0 : [#users=1] = call_module[target=0](args = (%input_1,), kwargs = {}) # return _0 graph = tracer.trace(model, meta_args={"input": torch.rand(4, 16).to('meta')}) gm = ColoGraphModule(model, graph) ln_mod_node = list(graph.nodes)[1] strategies_vector = StrategiesVector(ln_mod_node) # build handler handler = LayerNormModuleHandler(node=ln_mod_node, device_mesh=device_mesh, strategies_vector=strategies_vector) # check operation data mapping mapping = handler.get_operation_data_mapping() for name, op_data in mapping.items(): op_data: OperationData # make sure they have valid values assert op_data.logical_shape is not None assert op_data.data is not None assert mapping['input'].name == "input_1" assert mapping['input'].data.shape == torch.Size([4, 16]) assert mapping['input'].type == OperationDataType.ARG assert mapping['input'].logical_shape == torch.Size([4, 16]) assert mapping['other'].name == "weight" assert mapping['other'].data.shape == torch.Size([16]) assert mapping['other'].type == OperationDataType.PARAM assert mapping['other'].logical_shape == torch.Size([16]) assert mapping['bias'].name == "bias" assert mapping['bias'].data.shape == torch.Size([16]) assert mapping['bias'].type == OperationDataType.PARAM assert mapping['bias'].logical_shape == torch.Size([16]) assert mapping['output'].name == "_0" assert mapping['output'].data.shape == torch.Size([4, 16]) assert mapping['output'].type == OperationDataType.OUTPUT strategies_vector = handler.register_strategy(compute_resharding_cost=False) strategy_name_list = [val.name for val in strategies_vector] # SR = SR x R assert '[S0, R] = [S0, R] x [R]' in strategy_name_list assert '[S1, R] = [S1, R] x [R]' in strategy_name_list # RR = RR x R assert 'RR = RR x R' in strategy_name_list # S01R = S01R x R assert '[S01, R] = [S01, R] x [R]' in strategy_name_list @run_on_environment_flag(name='AUTO_PARALLEL') @pytest.mark.dist @rerun_if_address_is_in_use() def test_ln_module_handler(): world_size = 4 run_func = partial(check_ln_module_handler, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_ln_module_handler()
from functools import partial import pytest import torch import torch.multiprocessing as mp import torch.nn as nn from colossalai.auto_parallel.tensor_shard.node_handler import BMMFunctionHandler from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType, StrategiesVector from colossalai.device.device_mesh import DeviceMesh from colossalai.fx import ColoGraphModule, ColoTracer from colossalai.initialize import launch from colossalai.logging import disable_existing_loggers from colossalai.testing import assert_close, parameterize, rerun_if_address_is_in_use from colossalai.testing.pytest_wrapper import run_on_environment_flag from colossalai.utils import free_port from tests.test_auto_parallel.test_tensor_shard.test_node_handler.utils import numerical_test_for_node_strategy class BMMTensorMethodModule(nn.Module): def forward(self, x1, x2): return x1.bmm(x2) class BMMTorchFunctionModule(nn.Module): def forward(self, x1, x2): return torch.bmm(x1, x2) def check_2d_device_mesh(rank, module, world_size, port): disable_existing_loggers() launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') model = module().cuda() physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) x1 = torch.rand(4, 8, 16).cuda() x2 = torch.rand(4, 16, 8).cuda() # the index of bmm node in computation graph node_index = 2 # strategy number of bmm node on 2d device mesh strategy_number = 7 # construct input args input_args = [x1, x2] # construct meta arg names meta_arg_names = ['x1', 'x2'] numerical_test_for_node_strategy(model=model, device_mesh=device_mesh, node_index=node_index, strategy_number=strategy_number, input_args=input_args, meta_arg_names=meta_arg_names) tracer = ColoTracer() graph = tracer.trace(model, meta_args={ "x1": torch.rand(4, 8, 16).to('meta'), 'x2': torch.rand(4, 16, 8).to('meta') }) gm = ColoGraphModule(model, graph) linear_mod_node = list(graph.nodes)[2] strategies_vector = StrategiesVector(linear_mod_node) # build handler handler = BMMFunctionHandler(node=linear_mod_node, device_mesh=device_mesh, strategies_vector=strategies_vector) # check operation data mapping mapping = handler.get_operation_data_mapping() for name, op_data in mapping.items(): op_data: OperationData # make sure they have valid values assert op_data.logical_shape is not None assert op_data.data is not None assert mapping['input'].name == "x1" assert mapping['input'].data.is_meta assert mapping['input'].data.shape == torch.Size([4, 8, 16]) assert mapping['input'].type == OperationDataType.ARG assert mapping['input'].logical_shape == torch.Size([4, 8, 16]) assert mapping['other'].name == "x2" assert mapping['other'].data.is_meta assert mapping['other'].data.shape == torch.Size([4, 16, 8]) assert mapping['other'].type == OperationDataType.ARG assert mapping['other'].logical_shape == torch.Size([4, 16, 8]) assert mapping['output'].name == "bmm" assert mapping['output'].data.is_meta assert mapping['output'].data.shape == torch.Size([4, 8, 8]) assert mapping['output'].type == OperationDataType.OUTPUT strategies_vector = handler.register_strategy(compute_resharding_cost=False) strategy_name_list = [val.name for val in strategies_vector] # one batch dim assert 'Sb0 = Sb0 x Sb0' not in strategy_name_list # two batch dim assert 'Sb01 = Sb01 x Sb01' in strategy_name_list # SbSi = SbSi x Sb assert 'Sb0Si1 = Sb0Si1 x Sb0' in strategy_name_list assert 'Sb1Si0 = Sb1Si0 x Sb1' in strategy_name_list # SbSj = SbR x SbSj assert 'Sb0Sj1 = Sb0R x Sb0Sj1' in strategy_name_list assert 'Sb1Sj0 = Sb1R x Sb1Sj0' in strategy_name_list # SbR = SbSk x SbSk assert 'Sb0R = Sb0Sk1 x Sb0Sk1' in strategy_name_list assert 'Sb1R = Sb1Sk0 x Sb1Sk0' in strategy_name_list for strategy in strategies_vector: input_sharding_spec = strategy.get_sharding_spec_by_name('x1') other_sharding_spec = strategy.get_sharding_spec_by_name('x2') output_sharding_spec = strategy.get_sharding_spec_by_name('bmm') # make sure the sharding matches across different operation data assert input_sharding_spec.sharding_sequence[:-1] == output_sharding_spec.sharding_sequence[:-1] assert other_sharding_spec.sharding_sequence[1] == input_sharding_spec.sharding_sequence[-1] assert other_sharding_spec.sharding_sequence[-1] == output_sharding_spec.sharding_sequence[-1] def check_1d_device_mesh(rank, module, world_size, port): disable_existing_loggers() launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') model = module().cuda() physical_mesh_id = torch.arange(0, 4) mesh_shape = (1, 4) device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) x1 = torch.rand(4, 8, 16).cuda() x2 = torch.rand(4, 16, 8).cuda() # the index of bmm node in computation graph node_index = 2 # strategy number of bmm node on 1d device mesh strategy_number = 1 # construct input args input_args = [x1, x2] # construct meta arg names meta_arg_names = ['x1', 'x2'] numerical_test_for_node_strategy(model=model, device_mesh=device_mesh, node_index=node_index, strategy_number=strategy_number, input_args=input_args, meta_arg_names=meta_arg_names) tracer = ColoTracer() graph = tracer.trace(model, meta_args={ "x1": torch.rand(4, 8, 16).to('meta'), 'x2': torch.rand(4, 16, 8).to('meta') }) gm = ColoGraphModule(model, graph) linear_mod_node = list(graph.nodes)[2] strategies_vector = StrategiesVector(linear_mod_node) # build handler handler = BMMFunctionHandler(node=linear_mod_node, device_mesh=device_mesh, strategies_vector=strategies_vector) # check operation data mapping mapping = handler.get_operation_data_mapping() for name, op_data in mapping.items(): op_data: OperationData # make sure they have valid values assert op_data.logical_shape is not None assert op_data.data is not None assert mapping['input'].name == "x1" assert mapping['input'].data.is_meta assert mapping['input'].data.shape == torch.Size([4, 8, 16]) assert mapping['input'].type == OperationDataType.ARG assert mapping['input'].logical_shape == torch.Size([4, 8, 16]) assert mapping['other'].name == "x2" assert mapping['other'].data.is_meta assert mapping['other'].data.shape == torch.Size([4, 16, 8]) assert mapping['other'].type == OperationDataType.ARG assert mapping['other'].logical_shape == torch.Size([4, 16, 8]) assert mapping['output'].name == "bmm" assert mapping['output'].data.is_meta assert mapping['output'].data.shape == torch.Size([4, 8, 8]) assert mapping['output'].type == OperationDataType.OUTPUT strategies_vector = handler.register_strategy(compute_resharding_cost=False) strategy_name_list = [val.name for val in strategies_vector] assert len(strategy_name_list) == 1 # one batch dim assert 'Sb0 = Sb0 x Sb0' in strategy_name_list for strategy in strategies_vector: input_sharding_spec = strategy.get_sharding_spec_by_name('x1') other_sharding_spec = strategy.get_sharding_spec_by_name('x2') output_sharding_spec = strategy.get_sharding_spec_by_name('bmm') # make sure the sharding matches across different operation data assert input_sharding_spec.sharding_sequence[:-1] == output_sharding_spec.sharding_sequence[:-1] assert other_sharding_spec.sharding_sequence[1] == input_sharding_spec.sharding_sequence[-1] assert other_sharding_spec.sharding_sequence[-1] == output_sharding_spec.sharding_sequence[-1] @run_on_environment_flag(name='AUTO_PARALLEL') @parameterize('module', [BMMTensorMethodModule, BMMTorchFunctionModule]) @pytest.mark.dist @rerun_if_address_is_in_use() def test_bmm_handler(module): world_size = 4 run_func_2d = partial(check_2d_device_mesh, module=module, world_size=world_size, port=free_port()) mp.spawn(run_func_2d, nprocs=world_size) run_func_1d = partial(check_1d_device_mesh, module=module, world_size=world_size, port=free_port()) mp.spawn(run_func_1d, nprocs=world_size) if __name__ == '__main__': test_bmm_handler()
from functools import partial import pytest import torch import torch.multiprocessing as mp import torch.nn as nn from colossalai.auto_parallel.tensor_shard.node_handler.batch_norm_handler import BatchNormModuleHandler from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType, StrategiesVector from colossalai.device.device_mesh import DeviceMesh from colossalai.fx import ColoGraphModule, ColoTracer from colossalai.initialize import launch from colossalai.logging import disable_existing_loggers from colossalai.testing import assert_close, parameterize, rerun_if_address_is_in_use from colossalai.testing.pytest_wrapper import run_on_environment_flag from colossalai.utils import free_port from tests.test_auto_parallel.test_tensor_shard.test_node_handler.utils import numerical_test_for_node_strategy def check_bn_module_handler(rank, world_size, port): disable_existing_loggers() launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') model = nn.Sequential(nn.BatchNorm2d(16)).cuda() physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) input = torch.rand(4, 16, 64, 64).cuda() # the index of bn node in computation graph node_index = 1 # the total number of bn strategies without sync bn mode # TODO: add sync bn stategies after related passes ready strategy_number = 4 numerical_test_for_node_strategy(model=model, device_mesh=device_mesh, node_index=node_index, strategy_number=strategy_number, input_args=[input], meta_arg_names=['input']) tracer = ColoTracer() # graph(): # %input_1 : torch.Tensor [#users=1] = placeholder[target=input] # %_0 : [#users=1] = call_module[target=0](args = (%input_1,), kwargs = {}) # return _0 graph = tracer.trace(model, meta_args={"input": torch.rand(4, 16, 64, 64).to('meta')}) gm = ColoGraphModule(model, graph) bn_mod_node = list(graph.nodes)[1] strategies_vector = StrategiesVector(bn_mod_node) # build handler handler = BatchNormModuleHandler(node=bn_mod_node, device_mesh=device_mesh, strategies_vector=strategies_vector) # check operation data mapping mapping = handler.get_operation_data_mapping() for name, op_data in mapping.items(): op_data: OperationData # make sure they have valid values assert op_data.logical_shape is not None assert op_data.data is not None assert mapping['input'].name == "input_1" assert mapping['input'].data.shape == torch.Size([4, 16, 64, 64]) assert mapping['input'].type == OperationDataType.ARG assert mapping['input'].logical_shape == torch.Size([4, 16, 64, 64]) assert mapping['other'].name == "weight" assert mapping['other'].data.shape == torch.Size([16]) assert mapping['other'].type == OperationDataType.PARAM assert mapping['other'].logical_shape == torch.Size([16]) assert mapping['bias'].name == "bias" assert mapping['bias'].data.shape == torch.Size([16]) assert mapping['bias'].type == OperationDataType.PARAM assert mapping['bias'].logical_shape == torch.Size([16]) assert mapping['output'].name == "_0" assert mapping['output'].data.shape == torch.Size([4, 16, 64, 64]) assert mapping['output'].type == OperationDataType.OUTPUT strategies_vector = handler.register_strategy(compute_resharding_cost=False) strategy_name_list = [val.name for val in strategies_vector] # RS = RS x S assert 'RS0 = RS0 x S0' in strategy_name_list assert 'RS1 = RS1 x S1' in strategy_name_list # RR = RR x R assert 'RR = RR x R' in strategy_name_list # RS01 = RS01 x S01 assert 'RS01 = RS01 x S01' in strategy_name_list # temporarily skip the sync bn test # TODO: test sync bn after the implicit runtime pass completed # SR = SR x R WITH SYNC_BN # assert 'S0R = S0R x R WITH SYNC_BN' in strategy_name_list # assert 'S1R = S1R x R WITH SYNC_BN' in strategy_name_list # SS = SS x S WITH SYNC_BN # assert 'S0S1 = S0S1 x S1 WITH SYNC_BN' in strategy_name_list # assert 'S1S0 = S1S0 x S0 WITH SYNC_BN' in strategy_name_list # S01R = S01R x R WITH SYNC_BN # assert 'S01R = S01R x R WITH SYNC_BN' in strategy_name_list @run_on_environment_flag(name='AUTO_PARALLEL') @pytest.mark.dist @rerun_if_address_is_in_use() def test_bn_module_handler(): world_size = 4 run_func = partial(check_bn_module_handler, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_bn_module_handler()
from typing import Optional, Tuple, Union import torch import torch.nn as nn from transformers.activations import ACT2FN from transformers.models.gpt2.modeling_gpt2 import BaseModelOutputWithPastAndCrossAttentions, GPT2PreTrainedModel from transformers.pytorch_utils import Conv1D class GPT2MLP(nn.Module): def __init__(self, intermediate_size, config): super().__init__() embed_dim = config.hidden_size self.c_fc = Conv1D(intermediate_size, embed_dim) self.c_proj = Conv1D(embed_dim, intermediate_size) self.act = ACT2FN[config.activation_function] # We temporarily banned the Dropout layer because the rng state need # to process to get the correct result. # self.dropout = nn.Dropout(config.resid_pdrop) def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor: hidden_states = self.c_fc(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.c_proj(hidden_states) # TODO: the rng state need to be fixed for distributed runtime # hidden_states = self.dropout(hidden_states) return hidden_states # The reason Why we don't import GPT2Attention from transformers directly is that: # 1. The tracer will not work correctly when we feed meta_args and concrete_args at same time, # so we have to build the customized GPT2Attention class and remove the conditional branch manually. # 2. The order of split and view op has been changed in the customized GPT2Attention class, the new # order is same as megatron-lm gpt model. class GPT2Attention(nn.Module): def __init__(self, config, layer_idx=None): super().__init__() max_positions = config.max_position_embeddings self.register_buffer( "bias", torch.tril(torch.ones((max_positions, max_positions), dtype=torch.uint8)).view(1, 1, max_positions, max_positions), ) self.register_buffer("masked_bias", torch.tensor(-1e4)) self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads self.split_size = self.embed_dim self.scale_attn_weights = config.scale_attn_weights # Layer-wise attention scaling, reordering, and upcasting self.scale_attn_by_inverse_layer_idx = config.scale_attn_by_inverse_layer_idx self.layer_idx = layer_idx self.c_attn = Conv1D(3 * self.embed_dim, self.embed_dim) self.c_proj = Conv1D(self.embed_dim, self.embed_dim) self.attn_dropout = nn.Dropout(config.attn_pdrop) self.resid_dropout = nn.Dropout(config.resid_pdrop) self.pruned_heads = set() def _attn(self, query, key, value, attention_mask=None, head_mask=None): attn_weights = torch.matmul(query, key.transpose(-1, -2)) if self.scale_attn_weights: attn_weights = attn_weights / (value.size(-1)**0.5) # Layer-wise attention scaling if self.scale_attn_by_inverse_layer_idx: attn_weights = attn_weights / float(self.layer_idx + 1) # if only "normal" attention layer implements causal mask query_length, key_length = query.size(-2), key.size(-2) causal_mask = self.bias[:, :, key_length - query_length:key_length, :key_length].to(torch.bool) attn_weights = torch.where(causal_mask, attn_weights, self.masked_bias.to(attn_weights.dtype)) if attention_mask is not None: # Apply the attention mask attn_weights = attn_weights + attention_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1) # Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op otherwise attn_weights = attn_weights.type(value.dtype) # attn_weights = self.attn_dropout(attn_weights) # Mask heads if we want to if head_mask is not None: attn_weights = attn_weights * head_mask attn_output = torch.matmul(attn_weights, value) return attn_output, attn_weights def _split_heads(self, tensor, num_heads, attn_head_size): new_shape = tensor.size()[:-1] + (num_heads, attn_head_size) tensor = tensor.view(new_shape) return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features) def _merge_heads(self, tensor, num_heads, attn_head_size): tensor = tensor.permute(0, 2, 1, 3).contiguous() new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,) return tensor.view(new_shape) def forward( self, hidden_states: Optional[Tuple[torch.FloatTensor]], attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]: # query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2) qkv = self.c_attn(hidden_states) # query = self._split_heads(query, self.num_heads, self.head_dim) # key = self._split_heads(key, self.num_heads, self.head_dim) # value = self._split_heads(value, self.num_heads, self.head_dim) query, key, value = self._split_heads(qkv, self.num_heads, 3 * self.head_dim).split(self.head_dim, dim=3) present = (key, value) attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask) attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim) attn_output = self.c_proj(attn_output) # attn_output = self.resid_dropout(attn_output) return attn_output class GPT2Block(nn.Module): def __init__(self, config, layer_idx=None): super().__init__() hidden_size = config.hidden_size inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) self.attn = GPT2Attention(config, layer_idx=layer_idx) self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) self.mlp = GPT2MLP(inner_dim, config) def forward( self, hidden_states: Optional[Tuple[torch.FloatTensor]], attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, ) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]: residual = hidden_states # %transformer_h_0_ln_1 hidden_states = self.ln_1(hidden_states) attn_outputs = self.attn( hidden_states, attention_mask=attention_mask, head_mask=head_mask, ) # residual connection hidden_states = attn_outputs + residual residual = hidden_states hidden_states = self.ln_2(hidden_states) feed_forward_hidden_states = self.mlp(hidden_states) # residual connection hidden_states = residual + feed_forward_hidden_states return hidden_states class GPT2Model(GPT2PreTrainedModel): _keys_to_ignore_on_load_missing = ["attn.masked_bias"] def __init__(self, config): super().__init__(config) self.embed_dim = config.hidden_size self.wte = nn.Embedding(config.vocab_size, self.embed_dim) self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim) self.drop = nn.Dropout(config.embd_pdrop) self.h = nn.ModuleList([GPT2Block(config, layer_idx=i) for i in range(config.num_hidden_layers)]) self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) # Initialize weights and apply final processing self.post_init() def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) batch_size = input_ids.shape[0] device = input_ids.device past_length = 0 past_key_values = tuple([None] * len(self.h)) position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device) position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1]) # GPT2Attention mask. attention_mask = attention_mask.view(batch_size, -1) attention_mask = attention_mask[:, None, None, :] attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility attention_mask = (1.0 - attention_mask) * -10000.0 encoder_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # head_mask has shape n_layer x batch x n_heads x N x N head_mask = self.get_head_mask(head_mask, self.config.n_layer) inputs_embeds = self.wte(input_ids) position_embeds = self.wpe(position_ids) # add_2 hidden_states = inputs_embeds + position_embeds # comment to run pipeline # add_3 output_shape = input_shape + (hidden_states.size(-1),) for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): outputs = block(hidden_states, attention_mask=attention_mask, head_mask=head_mask[i]) hidden_states = outputs hidden_states = self.ln_f(hidden_states) # comment to run pipeline hidden_states = hidden_states.view(output_shape) return hidden_states class GPT2LMHeadModel(GPT2PreTrainedModel): _keys_to_ignore_on_load_missing = [r"attn.masked_bias", r"attn.bias", r"lm_head.weight"] def __init__(self, config): super().__init__(config) self.transformer = GPT2Model(config) self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) # Model parallel self.model_parallel = False self.device_map = None # Initialize weights and apply final processing self.post_init() def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, ): transformer_outputs = self.transformer( input_ids=input_ids, attention_mask=attention_mask, ) lm_logits = self.lm_head(transformer_outputs) return lm_logits class GPTLMLoss(nn.Module): def __init__(self): super().__init__() self.loss_fn = nn.CrossEntropyLoss() def forward(self, logits, labels): shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens return self.loss_fn(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
import torch import torch.nn as nn import transformers from torch.fx import GraphModule from colossalai.auto_parallel.tensor_shard.constants import BATCHNORM_MODULE_OP from colossalai.auto_parallel.tensor_shard.options import SolverOptions from colossalai.auto_parallel.tensor_shard.solver import CostGraph, GraphAnalyser, Solver, StrategiesConstructor from colossalai.device.device_mesh import DeviceMesh from colossalai.fx.tracer.tracer import ColoTracer from colossalai.tensor.shape_consistency import ShapeConsistencyManager from colossalai.testing import parameterize from colossalai.testing.pytest_wrapper import run_on_environment_flag from tests.test_auto_parallel.test_tensor_shard.test_gpt.gpt_modules import GPT2MLP, GPT2Attention, GPT2Block, GPT2Model BATCH_SIZE = 1 SEQ_LENGTH = 32 HIDDEN_DIM = 768 @run_on_environment_flag(name='AUTO_PARALLEL') @parameterize('model_cls', [GPT2Block, GPT2Attention, GPT2MLP, GPT2Model]) def test_self_attention_block(model_cls): config = transformers.GPT2Config(n_position=64, n_layer=4, n_head=16, n_embd=HIDDEN_DIM) if model_cls == GPT2MLP: model = model_cls(intermediate_size=4 * config.hidden_size, config=config) else: model = model_cls(config=config) physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) # [[0, 1] # [2, 3]] device_mesh = DeviceMesh(physical_mesh_id, mesh_shape) shape_consistency_manager = ShapeConsistencyManager() tracer = ColoTracer() if model_cls == GPT2MLP: input_sample = { 'hidden_states': torch.rand(BATCH_SIZE, SEQ_LENGTH, HIDDEN_DIM).to('meta'), } elif model_cls in (GPT2Attention, GPT2Block): input_sample = { 'hidden_states': torch.rand(BATCH_SIZE, SEQ_LENGTH, HIDDEN_DIM).to('meta'), 'attention_mask': torch.rand(1, SEQ_LENGTH).to('meta'), } else: input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64) attention_mask = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64) kwargs = dict(input_ids=input_ids, attention_mask=attention_mask) input_sample = {k: v.to('meta') for k, v in kwargs.items()} graph = tracer.trace(root=model, meta_args=input_sample) gm = GraphModule(model, graph, model.__class__.__name__) print(gm.graph) gm.recompile() graph_analyser = GraphAnalyser(gm) liveness_list = graph_analyser.liveness_analysis() solver_options = SolverOptions() strategies_constructor = StrategiesConstructor(graph, device_mesh, solver_options) strategies_constructor.build_strategies_and_cost() cost_graph = CostGraph(strategies_constructor.leaf_strategies) cost_graph.simplify_graph() solver = Solver(gm.graph, strategies_constructor, cost_graph, graph_analyser, memory_budget=-1) ret = solver.call_solver_serialized_args() strategies_list = solver.last_s_val nodes = [strategies_vector.node for strategies_vector in strategies_constructor.leaf_strategies] computation_cost = 0 communication_cost = 0 memory_cost = 0 for index, node in enumerate(nodes): print(node.name, node.strategies_vector[strategies_list[index]].name) computation_cost += node.strategies_vector[strategies_list[index]].compute_cost.total communication_cost += node.strategies_vector[strategies_list[index]].communication_cost.total node_memory_cost = node.strategies_vector[strategies_list[index]].memory_cost.total if isinstance(node_memory_cost, tuple): node_memory_cost = node_memory_cost[0] memory_cost += node_memory_cost.activation + node_memory_cost.parameter print(f'computation cost is {computation_cost}') print(f'communication cost is {communication_cost}') print(f'memory cost is {memory_cost}') if __name__ == '__main__': test_self_attention_block()
import copy import random from functools import partial from typing import Dict import numpy as np import pytest import torch import torch.multiprocessing as mp import transformers from torch.fx import GraphModule from colossalai.auto_parallel.tensor_shard.initialize import ( ModuleWrapper, build_strategy_constructor, solve_solution, transform_to_sharded_model, ) from colossalai.auto_parallel.tensor_shard.sharding_strategy import ShardingSpec from colossalai.device.device_mesh import DeviceMesh from colossalai.fx.tracer.tracer import ColoTracer from colossalai.initialize import launch from colossalai.logging import disable_existing_loggers from colossalai.tensor.shape_consistency import to_global from colossalai.testing import assert_close, assert_close_loose, parameterize, rerun_if_address_is_in_use from colossalai.testing.pytest_wrapper import run_on_environment_flag from colossalai.utils import free_port from tests.test_auto_parallel.test_tensor_shard.test_gpt.gpt_modules import GPT2MLP, GPT2Attention, GPT2Block, GPT2Model BATCH_SIZE = 1 SEQ_LENGTH = 32 HIDDEN_DIM = 768 seed = 128 torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed) random.seed(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False def _check_module_grad(module: torch.nn.Module, origin_param_dict: Dict[str, torch.Tensor], best_sharding_spec_dict: Dict[str, ShardingSpec]): for name, param in module.named_parameters(): param_grad = param.grad name = name.replace('module.', '') origin_param_grad = origin_param_dict[name].grad atoms = name.split('.') new_name = '_'.join(atoms) if new_name in best_sharding_spec_dict: param_sharding_spec = best_sharding_spec_dict[new_name] grad_to_compare = copy.deepcopy(param_grad) param_grad_global = to_global(grad_to_compare, param_sharding_spec) try: assert_close_loose(param_grad_global, origin_param_grad, rtol=1e-03, atol=1e-03) except: difference = param_grad_global - origin_param_grad avg_diff = difference.abs().sum() / difference.numel() assert avg_diff < 0.001 print(f'{name} param has {avg_diff} average difference') def check_attention_layer(rank, model_cls, world_size, port): disable_existing_loggers() launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') config = transformers.GPT2Config(n_position=64, n_layer=1, n_head=16, n_embd=HIDDEN_DIM) if model_cls == GPT2MLP: model = model_cls(intermediate_size=4 * config.hidden_size, config=config).to('cuda') else: model = model_cls(config=config).to('cuda') test_model = copy.deepcopy(model) input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64) token_type_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64) attention_mask = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64) hidden_states = torch.rand((BATCH_SIZE, SEQ_LENGTH, HIDDEN_DIM), dtype=torch.float32) if model_cls == GPT2MLP: input_sample = (hidden_states.to('cuda'),) test_input_sample = copy.deepcopy(input_sample) meta_input_sample = { 'hidden_states': hidden_states.to('meta'), } elif model_cls in (GPT2Attention, GPT2Block): input_sample = ( hidden_states.to('cuda'), attention_mask.to('cuda'), ) test_input_sample = copy.deepcopy(input_sample) meta_input_sample = { 'hidden_states': hidden_states.to('meta'), 'attention_mask': attention_mask.to('meta'), } else: input_sample = ( input_ids.to('cuda'), attention_mask.to('cuda'), ) test_input_sample = copy.deepcopy(input_sample) meta_input_sample = { 'input_ids': input_ids.to('meta'), 'attention_mask': attention_mask.to('meta'), } physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) # [[0, 1] # [2, 3]] device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) tracer = ColoTracer() graph = tracer.trace(root=model, meta_args=meta_input_sample) gm = GraphModule(model, graph, model.__class__.__name__) gm.recompile() strategies_constructor = build_strategy_constructor(graph, device_mesh, 'standard', 'replicated', 'standard') solution = solve_solution(gm, strategies_constructor, memory_budget=-1) gm, sharding_spec_dicts = transform_to_sharded_model(gm, solution, device_mesh, strategies_constructor) gm = ModuleWrapper(gm, *sharding_spec_dicts) nodes = [strategies_vector.node for strategies_vector in strategies_constructor.leaf_strategies] best_sharding_spec_dict = {} for index, node in enumerate(nodes): best_sharding_spec_dict[node.name] = node.sharding_spec cuda_rng_state = torch.cuda.get_rng_state() cpu_rng_state = torch.get_rng_state() origin_output = test_model(*test_input_sample) torch.cuda.set_rng_state(cuda_rng_state) torch.set_rng_state(cpu_rng_state) output = gm(*input_sample) assert_close(output, origin_output, rtol=1e-03, atol=1e-03) #*******************backward starting******************* cuda_rng_state = torch.cuda.get_rng_state() cpu_rng_state = torch.get_rng_state() output.sum().backward() torch.set_rng_state(cpu_rng_state) torch.cuda.set_rng_state(cuda_rng_state) origin_output.sum().backward() origin_param_dict = dict(test_model.named_parameters()) if rank == 0: print("*******************backward starting*******************") _check_module_grad(gm, origin_param_dict, best_sharding_spec_dict) if rank == 0: print("*******************backward finished*******************") #*******************backward finished******************* #*******************strategy selected******************* if rank == 0: print("*******************strategy selected*******************") nodes = [strategies_vector.node for strategies_vector in strategies_constructor.leaf_strategies] computation_cost = 0 communication_cost = 0 memory_cost = 0 for index, node in enumerate(nodes): print(node.name, node.strategies_vector[solution[index]].name) computation_cost += node.strategies_vector[solution[index]].compute_cost.total communication_cost += node.strategies_vector[solution[index]].communication_cost.total node_memory_cost = node.strategies_vector[solution[index]].memory_cost.total if isinstance(node_memory_cost, tuple): node_memory_cost = node_memory_cost[0] memory_cost += node_memory_cost.activation + node_memory_cost.parameter print(f'computation cost is {computation_cost}') print(f'communication cost is {communication_cost}') print(f'memory cost is {memory_cost}') @run_on_environment_flag(name='AUTO_PARALLEL') @pytest.mark.dist @parameterize('model_cls', [GPT2MLP, GPT2Block, GPT2Attention, GPT2Model]) @rerun_if_address_is_in_use() def test_mlp_layer(model_cls): world_size = 4 run_func = partial(check_attention_layer, model_cls=model_cls, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_mlp_layer()
import torch import torch.nn.functional as F from colossalai.auto_parallel.passes.runtime_preparation_pass import node_args_converting_pass from colossalai.device.device_mesh import DeviceMesh from colossalai.fx.graph_module import ColoGraphModule from colossalai.fx.tracer import ColoTracer from colossalai.tensor.sharding_spec import ShardingSpec class TestModule(torch.nn.Module): def forward(self, x): x = x.view(4, 4, 2) return x def insert_narrow(gm, x_node): graph = gm.graph with graph.inserting_after(x_node): shard_node = graph.create_node('call_method', 'narrow', args=(x_node, 0, 0, 2), kwargs={}) view_node = list(x_node.users.keys())[0] new_args = list(view_node.args) new_args[0] = shard_node view_node.args = tuple(new_args) return gm def test_node_args_converting_pass(): model = TestModule() physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) device_mesh = DeviceMesh(physical_mesh_id, mesh_shape) meta_args = {'x': torch.rand(4, 8).to('meta')} input = torch.rand(4, 8) tracer = ColoTracer() graph = tracer.trace(root=model, meta_args=meta_args) x_node = list(graph.nodes)[0] view_node = list(graph.nodes)[1] sharding_spec = ShardingSpec(device_mesh, entire_shape=(4, 8), dim_partition_dict={0: [0]}) setattr(x_node, 'sharding_spec', sharding_spec) setattr(view_node, 'sharding_spec', sharding_spec) gm = ColoGraphModule(model, graph) gm = node_args_converting_pass(gm, device_mesh) gm = insert_narrow(gm, x_node) gm.recompile() output = gm(input) assert output.shape == torch.Size([2, 4, 2]) if __name__ == '__main__': test_node_args_converting_pass()
import torch import torch.nn.functional as F from colossalai.auto_parallel.passes.runtime_preparation_pass import size_value_converting_pass from colossalai.device.device_mesh import DeviceMesh from colossalai.fx.graph_module import ColoGraphModule from colossalai.fx.tracer import ColoTracer from colossalai.tensor.sharding_spec import ShardingSpec class TestModule(torch.nn.Module): def forward(self, x): size = x.size() return size def insert_narrow(gm, x_node): graph = gm.graph with graph.inserting_after(x_node): shard_node = graph.create_node('call_method', 'narrow', args=(x_node, 0, 0, 2), kwargs={}) size_node = list(x_node.users.keys())[0] size_node.args = (shard_node,) return gm def recover_narrow(gm, narrow_node): graph = gm.graph size_node = list(graph.nodes)[2] x_node = narrow_node.args[0] size_node.args = (x_node,) graph.erase_node(narrow_node) return gm def test_size_value_converting_pass(): model = TestModule() physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) device_mesh = DeviceMesh(physical_mesh_id, mesh_shape) meta_args = {'x': torch.rand(4, 8).to('meta')} input = torch.rand(4, 8) tracer = ColoTracer() graph = tracer.trace(root=model, meta_args=meta_args) x_node = list(graph.nodes)[0] x_sharding_spec = ShardingSpec(device_mesh, entire_shape=(4, 8), dim_partition_dict={0: [0]}) setattr(x_node, 'sharding_spec', x_sharding_spec) gm = ColoGraphModule(model, graph) gm = insert_narrow(gm, x_node) gm.recompile() size = gm(input) assert size == torch.Size([2, 8]) narrow_node = list(gm.graph.nodes)[1] gm = recover_narrow(gm, narrow_node) gm = size_value_converting_pass(gm, device_mesh) gm = insert_narrow(gm, x_node) gm.recompile() size = gm(input) assert size == torch.Size([4, 8]) if __name__ == '__main__': test_size_value_converting_pass()
import pytest from functools import partial import numpy as np import random import torch import torch.multiprocessing as mp import colossalai from colossalai.utils import free_port from colossalai.testing import rerun_if_address_is_in_use from colossalai.tensor import ColoParameter, ProcessGroup, ShardSpec, ComputePattern, ComputeSpec, \ ColoTensor, ColoTensorSpec from colossalai.nn.parallel.layers import CachedParamMgr, CachedEmbeddingBag, ParallelCachedEmbeddingBag, EvictionStrategy, \ ParallelCachedEmbeddingBagTablewise, TablewiseEmbeddingBagConfig from typing import List NUM_EMBED, EMBED_DIM = 10, 8 BATCH_SIZE = 8 def set_seed(seed): """ To achieve reproducible results, it's necessary to fix random seeds """ random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) def synthesize_1d_sparse_feature( batch_size, num_embed, device, ): indices_in_batch = batch_size * 2 indices = torch.randint(low=0, high=num_embed, size=(indices_in_batch,), device=device, dtype=torch.long) offsets = torch.from_numpy( np.array([ 0, *np.sort(np.random.randint(low=0, high=indices_in_batch, size=(indices_in_batch - 1,))), indices_in_batch ])).to(device).long() return indices, offsets @pytest.mark.skip def test_cachemgr(): model = torch.nn.EmbeddingBag(10000, 128) # 10 chunks, 5 in cuda mgr = CachedParamMgr(model.weight.detach(), 5) assert mgr.cuda_row_num == 5 mgr._admit(1) assert not mgr._chunk_in_cuda(2) assert mgr._chunk_in_cuda(1) # print(mgr.cached_chunk_table) mgr._admit(8) # now 3 chunk is available assert mgr.cuda_available_chunk_num == 3 mgr._evict() assert mgr.cuda_available_chunk_num == 4 mgr._prepare_rows_on_cuda(torch.tensor([9, 6, 5], dtype=torch.long, device=0)) mgr._prepare_rows_on_cuda(torch.tensor([3, 4, 5], dtype=torch.long, device=0)) # print(mgr.cached_chunk_table) # mgr.print_comm_stats() mgr.flush() assert mgr.cuda_available_chunk_num == 5 def test_reorder_with_freq(): num_embed = 100 chunk_size = 1 num_chunk = 5 idx_map = torch.randint(10000, size=(num_embed,)) sorted_idx = torch.argsort(idx_map, descending=True).tolist() chunkid, offset_in_chunk = [], [] for i in range(num_embed): idx = sorted_idx.index(i) chunkid.append(idx // chunk_size) offset_in_chunk.append(idx % chunk_size) dev = torch.device('cuda') chunkid = torch.tensor(chunkid, dtype=torch.long, device=dev) offset_in_chunk = torch.tensor(offset_in_chunk, dtype=torch.long, device=dev) weight = torch.rand(num_embed, 2) mgr = CachedParamMgr(weight, num_chunk) mgr.reorder(idx_map) indices = mgr.idx_map.index_select(0, torch.arange(num_embed, dtype=torch.long, device=dev)) mgr_chunk_id = torch.div(indices, chunk_size, rounding_mode='floor') mgr_offsets = torch.remainder(indices, chunk_size) assert torch.allclose(chunkid, mgr_chunk_id), f"chunk id: {chunkid}, mgr: {mgr_chunk_id}" assert torch.allclose(offset_in_chunk, mgr_offsets), \ f"offset in chunk: {offset_in_chunk}, mgr: {mgr_offsets}" @pytest.mark.parametrize('use_LFU', [True, False]) def test_freq_aware_embed(use_LFU: bool): device = torch.device('cuda', 0) evict_strategy = EvictionStrategy.LFU if use_LFU else EvictionStrategy.DATASET model = CachedEmbeddingBag(NUM_EMBED, EMBED_DIM, mode='mean', include_last_offset=True, cache_ratio=min(BATCH_SIZE * 2 / NUM_EMBED, 1.0), ids_freq_mapping=None, evict_strategy=evict_strategy).to(device) assert model.weight.shape[0] == NUM_EMBED ref_model = torch.nn.EmbeddingBag.from_pretrained(model.weight.detach().to(device), mode='mean', include_last_offset=True, freeze=False) assert torch.allclose(ref_model.weight.detach(), model.weight.detach().to(device)) optimizer = torch.optim.SGD(model.parameters(), lr=1e-3) ref_optimizer = torch.optim.SGD(ref_model.parameters(), lr=1e-3) for i in range(5): indices, offsets = synthesize_1d_sparse_feature(BATCH_SIZE, NUM_EMBED, device) res = model(indices, offsets) ref_res = ref_model(indices, offsets) assert torch.allclose(res, ref_res), f"model result: {res}, reference: {ref_res}" grad = torch.rand_like(res) # comparing gradient here is nontrivial res.backward(grad) ref_res.backward(grad) optimizer.step() optimizer.zero_grad() ref_optimizer.step() ref_optimizer.zero_grad() model.cache_weight_mgr.flush() model_weight = model.weight.detach().to(device) ref_weight = ref_model.weight.detach() assert torch.allclose(model_weight, ref_weight), \ f"model weight: {model_weight[10:18, :8]}, reference: {ref_weight[10:18, :8]}" @pytest.mark.parametrize('init_freq', [True, False]) def test_lfu_strategy(init_freq: bool): # minimal test to check behavior Bag = CachedEmbeddingBag(5, 5, cache_ratio=3 / 5, buffer_size=0, pin_weight=True, ids_freq_mapping=[4, 2, 1, 3, 1] if init_freq else None, warmup_ratio=1.0, evict_strategy=EvictionStrategy.LFU) # print('cached_idx_map: ', Bag.cache_weight_mgr.cached_idx_map) offsets = torch.tensor([0], device="cuda:0") # prepare frequency learning info: Bag.forward(torch.tensor([2], device="cuda:0"), offsets) Bag.forward(torch.tensor([1, 2], device="cuda:0"), offsets) Bag.forward(torch.tensor([0, 2], device="cuda:0"), offsets) Bag.forward(torch.tensor([0, 1, 2], device="cuda:0"), offsets) Bag.forward(torch.tensor([0, 1, 2], device="cuda:0"), offsets) Bag.forward(torch.tensor([0, 1, 2], device="cuda:0"), offsets) Bag.forward(torch.tensor([0, 1, 2], device="cuda:0"), offsets) Bag.forward(torch.tensor([0, 2], device="cuda:0"), offsets) Bag.forward(torch.tensor([0, 2], device="cuda:0"), offsets) Bag.forward(torch.tensor([0, 2], device="cuda:0"), offsets) Bag.forward(torch.tensor([0, 2], device="cuda:0"), offsets) Bag.forward(torch.tensor([0], device="cuda:0"), offsets) Bag.forward(torch.tensor([0], device="cuda:0"), offsets) Bag.forward(torch.tensor([0], device="cuda:0"), offsets) Bag.forward(torch.tensor([0], device="cuda:0"), offsets) # check strategy Bag.forward(torch.tensor([0, 1, 2], device="cuda:0"), offsets) Bag.forward(torch.tensor([0, 1, 2], device="cuda:0"), offsets) Bag.forward(torch.tensor([3], device="cuda:0"), offsets) # miss, evict 1 Bag.forward(torch.tensor([2], device="cuda:0"), offsets) # hit Bag.forward(torch.tensor([4], device="cuda:0"), offsets) # miss, evict 3 Bag.forward(torch.tensor([2], device="cuda:0"), offsets) # hit Bag.forward(torch.tensor([0], device="cuda:0"), offsets) # hit assert torch.allclose(torch.Tensor(Bag.cache_weight_mgr.num_hits_history[-6:]), torch.Tensor([3, 0, 1, 0, 1, 1])), \ "LFU strategy behavior failed" def gather_tensor(tensor, rank, world_size): gather_list = [] if rank == 0: gather_list = [torch.empty_like(tensor) for _ in range(world_size)] torch.distributed.gather(tensor, gather_list, dst=0) return gather_list def run_parallel_freq_aware_embed_tablewise(rank, world_size): if world_size != 2: return device = torch.device('cuda', torch.cuda.current_device()) # initialize weight # 3 feature tables. idx: 0~5, 6~10, 11~17 weight_tables = torch.rand(18, 5) weight_table1 = weight_tables[0:6] weight_table2 = weight_tables[6:11] weight_table3 = weight_tables[11:18] embedding_bag_config_list: List[TablewiseEmbeddingBagConfig] = [] embedding_bag_config_list.append( TablewiseEmbeddingBagConfig(num_embeddings=6, cuda_row_num=4, assigned_rank=0, initial_weight=weight_table1.clone().detach().cpu())) embedding_bag_config_list.append( TablewiseEmbeddingBagConfig(num_embeddings=5, cuda_row_num=4, assigned_rank=0, initial_weight=weight_table2.clone().detach().cpu())) embedding_bag_config_list.append( TablewiseEmbeddingBagConfig(num_embeddings=7, cuda_row_num=4, assigned_rank=1, initial_weight=weight_table3.clone().detach().cpu())) if rank == 0: _weight = torch.cat([weight_table1, weight_table2], 0) else: _weight = weight_table3 model = ParallelCachedEmbeddingBagTablewise( embedding_bag_config_list, embedding_dim=5, _weight=_weight, include_last_offset=True, cache_ratio=0.5, buffer_size=0, evict_strategy=EvictionStrategy.LFU, ) # explain ''' batch feature 1 feature 2 feature 3 input0 [1,2,3] [6,7] [] input1 [] [9] [13,15] input2 [1,5] [6,8] [11] ↑ ↑ ↑ rank 0 rank 0 rank 1 in KJT format ''' res = model(torch.tensor([1, 2, 3, 1, 5, 6, 7, 9, 6, 8, 13, 15, 11], device=device), torch.tensor([0, 3, 3, 5, 7, 8, 10, 10, 12, 13], device=device), already_split_along_rank=False) optimizer = torch.optim.SGD(model.parameters(), lr=1e-2) rand_grad = torch.rand(3, 5 * 3, dtype=res.dtype, device=res.device) if rank == 0: fake_grad = rand_grad[0:2] else: fake_grad = rand_grad[2:] res.backward(fake_grad) optimizer.step() optimizer.zero_grad() # check correctness if rank == 0: ref_model = torch.nn.EmbeddingBag.from_pretrained(weight_tables.detach().clone(), include_last_offset=True, freeze=False).to(device) ref_optimizer = torch.optim.SGD(ref_model.parameters(), lr=1e-2) ref_fake_grad = torch.cat(rand_grad.split(5, 1), 0) ref_res = ref_model(torch.tensor([1, 2, 3, 1, 5, 6, 7, 9, 6, 8, 13, 15, 11], device=device), torch.tensor([0, 3, 3, 5, 7, 8, 10, 10, 12, 13], device=device)) ref_res.backward(ref_fake_grad) ref_optimizer.step() ref_optimizer.zero_grad() model.cache_weight_mgr.flush() recover_weight = model.cache_weight_mgr.weight.to(device) ref_weight = ref_model.weight.detach()[:11] assert torch.allclose(recover_weight, ref_weight), f"{recover_weight - ref_weight}" def run_parallel_freq_aware_embed_columnwise(rank, world_size): device = torch.device('cuda', torch.cuda.current_device()) num_embed = 100 embed_dim = 16 batch_size = 4 set_seed(4321) weight = torch.rand(num_embed, embed_dim) coloweight = ColoTensor(weight.clone().detach().cpu(), spec=None) # initialize the tensor spec for the embedding weight parameter, # which is an ColoParameter. coloweight.set_process_group(ProcessGroup(tp_degree=world_size)) coloweight.set_tensor_spec(ShardSpec(dims=[-1], num_partitions=[world_size]), ComputeSpec(ComputePattern.TP1D)) model = ParallelCachedEmbeddingBag.from_pretrained( coloweight, include_last_offset=True, freeze=False, cache_ratio=batch_size * 2 / num_embed, ) assert model.cache_weight_mgr.weight.device.type == 'cpu' assert model.cache_weight_mgr.cuda_cached_weight.requires_grad weight_in_rank = torch.tensor_split(weight, world_size, -1)[rank] print(f"model weight: {model.cache_weight_mgr.weight.shape}, ref weight: {weight_in_rank.shape}") assert torch.allclose(weight_in_rank, model.cache_weight_mgr.weight.detach()), f"{weight_in_rank - model.cache_weight_mgr.weight}" optimizer = torch.optim.SGD(model.parameters(), lr=1e-3) if rank == 0: ref_model = torch.nn.EmbeddingBag.from_pretrained(weight.detach().clone(), include_last_offset=True, freeze=False).to(device) ref_optimizer = torch.optim.SGD(ref_model.parameters(), lr=1e-3) set_seed(4321) for i in range(5): indices, offsets = synthesize_1d_sparse_feature(batch_size, num_embed, device) res = model(indices, offsets) grad = torch.rand(batch_size * 2, embed_dim, dtype=res.dtype, device=res.device) grad_in_rank = torch.tensor_split(grad, world_size, 0)[rank] res.backward(grad_in_rank) optimizer.step() optimizer.zero_grad() res_list = gather_tensor(res.detach(), rank, world_size) if rank == 0: ref_res = ref_model(indices, offsets) recover_res = torch.cat(res_list, dim=0) assert torch.allclose(ref_res, recover_res) ref_res.backward(grad) ref_optimizer.step() ref_optimizer.zero_grad() model.cache_weight_mgr.flush() weight_list = gather_tensor(model.cache_weight_mgr.weight.detach().cuda(), rank, world_size) if rank == 0: recover_weight = torch.cat(weight_list, dim=1) assert torch.allclose(recover_weight, ref_model.weight.detach()), f"{recover_weight - ref_model.weight}" def run_dist(rank, world_size, port): colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') # run_parallel_freq_aware_embed_columnwise(rank, world_size) run_parallel_freq_aware_embed_tablewise(rank, world_size) @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 4]) @rerun_if_address_is_in_use() def test_parallel_freq_aware_embed(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': # test_freq_aware_embed(True) test_parallel_freq_aware_embed(2) # test_lfu_strategy(False)
#!/usr/bin/env python # -*- encoding: utf-8 -*- from functools import partial import pytest import torch import torch.multiprocessing as mp from checks_1d.check_layer_1d import * from colossalai.core import global_context as gpc from colossalai.initialize import launch from colossalai.logging import disable_existing_loggers from colossalai.testing import rerun_if_address_is_in_use from colossalai.utils import free_port CONFIG = dict(parallel=dict(pipeline=dict(size=1), tensor=dict(size=4, mode='1d')),) def check_layer(rank, world_size, port): disable_existing_loggers() launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') check_linear_col() check_linear_row() check_embed() check_vocab_parallel_embed() check_classifier_no_given_weight() check_vocab_parallel_classifier_no_given_weight() check_classifier_given_embed_weight() check_vocab_parallel_classifier_given_embed_weight() check_vocab_parallel_loss() check_linear_row_stream_inference() gpc.destroy() torch.cuda.empty_cache() @pytest.mark.dist @rerun_if_address_is_in_use() def test_1d(): world_size = 4 run_func = partial(check_layer, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_1d()
#!/usr/bin/env python # -*- encoding: utf-8 -*- import torch DEPTH = 4 BATCH_SIZE = 8 SEQ_LENGTH = 8 IMG_SIZE = 16 HIDDEN_SIZE = 8 NUM_CLASSES = 8 VOCAB_SIZE = 16 def check_equal(A, B): assert torch.allclose(A, B, rtol=1e-3, atol=1e-1) == True
import torch import torch.distributed as dist from torch.nn import Parameter from colossalai.context.parallel_mode import ParallelMode from colossalai.core import global_context as gpc from colossalai.global_variables import tensor_parallel_env as env from colossalai.nn import ( Classifier1D, Embedding1D, Linear1D_Col, Linear1D_Row, VanillaClassifier, VocabParallelClassifier1D, VocabParallelCrossEntropyLoss1D, VocabParallelEmbedding1D, ) from colossalai.utils import get_current_device, print_rank_0 from .common import BATCH_SIZE, DEPTH, HIDDEN_SIZE, NUM_CLASSES, SEQ_LENGTH, VOCAB_SIZE, check_equal def check_linear_col(): device = get_current_device() dtype = torch.float32 INPUT_SIZE = HIDDEN_SIZE OUTPUT_SIZE = 2 * HIDDEN_SIZE i = gpc.get_local_rank(ParallelMode.PARALLEL_1D) layer = Linear1D_Col(INPUT_SIZE, OUTPUT_SIZE) A_shape = (BATCH_SIZE, SEQ_LENGTH, INPUT_SIZE) A_master = torch.randn(A_shape, dtype=dtype, device=device) dist.broadcast(A_master, src=0) A = A_master.clone() A.requires_grad = True W_shape = (OUTPUT_SIZE, INPUT_SIZE) W_master = torch.randn(W_shape, dtype=dtype, device=device) dist.broadcast(W_master, src=0) W = torch.chunk(W_master, DEPTH, dim=0)[i] W = W.clone() W.requires_grad = True B_shape = (OUTPUT_SIZE) B_master = torch.randn(B_shape, dtype=dtype, device=device) dist.broadcast(B_master, src=0) B = torch.chunk(B_master, DEPTH, dim=0)[i] B = B.clone() B.requires_grad = True layer.weight = Parameter(W) layer.bias = Parameter(B) out = layer(A) A_master = A_master.clone() A_master.requires_grad = True W_master = W_master.clone() W_master.requires_grad = True B_master = B_master.clone() B_master.requires_grad = True C_master = torch.matmul(A_master, W_master.transpose(0, 1)) + B_master C = torch.chunk(C_master, DEPTH, dim=-1)[i] check_equal(out, C) print_rank_0('linear_col forward: pass') grad_shape = C_master.shape grad_master = torch.randn(grad_shape, dtype=dtype, device=get_current_device()) dist.broadcast(grad_master, src=0) grad = torch.chunk(grad_master, DEPTH, dim=-1)[i] grad = grad.clone() out.backward(grad) grad_master = grad_master.clone() C_master.backward(grad_master) A_grad = A_master.grad check_equal(A_grad, A.grad) W_grad = W_master.grad W_grad = torch.chunk(W_grad, DEPTH, dim=0)[i] check_equal(W_grad, layer.weight.grad) B_grad = B_master.grad B_grad = torch.chunk(B_grad, DEPTH, dim=0)[i] check_equal(B_grad, layer.bias.grad) print_rank_0('linear_col backward: pass') def check_linear_row(): device = get_current_device() dtype = torch.float32 INPUT_SIZE = HIDDEN_SIZE OUTPUT_SIZE = 2 * HIDDEN_SIZE i = gpc.get_local_rank(ParallelMode.PARALLEL_1D) layer = Linear1D_Row(OUTPUT_SIZE, INPUT_SIZE) A_shape = (BATCH_SIZE, SEQ_LENGTH, OUTPUT_SIZE) A_master = torch.randn(A_shape, dtype=dtype, device=device) dist.broadcast(A_master, src=0) A = torch.chunk(A_master, DEPTH, dim=-1)[i] A = A.clone() A.requires_grad = True W_shape = (INPUT_SIZE, OUTPUT_SIZE) W_master = torch.randn(W_shape, dtype=dtype, device=device) dist.broadcast(W_master, src=0) W = torch.chunk(W_master, DEPTH, dim=-1)[i] W = W.clone() W.requires_grad = True B_shape = (INPUT_SIZE) B_master = torch.randn(B_shape, dtype=dtype, device=device) dist.broadcast(B_master, src=0) B = B_master.clone() B.requires_grad = True layer.weight = Parameter(W) layer.bias = Parameter(B) out = layer(A) A_master = A_master.clone() A_master.requires_grad = True W_master = W_master.clone() W_master.requires_grad = True B_master = B_master.clone() B_master.requires_grad = True C_master = torch.matmul(A_master, W_master.transpose(0, 1)) + B_master C = C_master.clone() check_equal(out, C) print_rank_0('linear_row forward: pass') grad_shape = C_master.shape grad_master = torch.randn(grad_shape, dtype=dtype, device=get_current_device()) dist.broadcast(grad_master, src=0) grad = grad_master.clone() out.backward(grad) grad_master = grad_master.clone() C_master.backward(grad_master) A_grad = A_master.grad A_grad = torch.chunk(A_grad, DEPTH, dim=-1)[i] check_equal(A_grad, A.grad) W_grad = W_master.grad W_grad = torch.chunk(W_grad, DEPTH, dim=-1)[i] check_equal(W_grad, layer.weight.grad) B_grad = B_master.grad check_equal(B_grad, layer.bias.grad) print_rank_0('linear_row backward: pass') def check_embed(): device = get_current_device() dtype = torch.float32 i = gpc.get_local_rank(ParallelMode.PARALLEL_1D) embed = Embedding1D(VOCAB_SIZE, HIDDEN_SIZE) embed = embed.to(dtype).to(device) embed_master = torch.nn.Embedding(VOCAB_SIZE, HIDDEN_SIZE) embed_master = embed_master.to(dtype).to(device) weight_master = embed_master.weight.data torch.distributed.broadcast(weight_master, src=0) weight = torch.chunk(weight_master, DEPTH, dim=-1)[i] embed.weight.data.copy_(weight) A_shape = (BATCH_SIZE, SEQ_LENGTH) A_master = torch.randint(VOCAB_SIZE, A_shape, device=device) torch.distributed.broadcast(A_master, src=0) A = A_master.clone() out = embed(A) A_master = A_master.clone() C_master = embed_master(A_master) C = C_master.clone() check_equal(out, C) print_rank_0('embed forward: pass') grad_shape = C_master.shape grad_master = torch.randn(grad_shape, dtype=dtype, device=device) torch.distributed.broadcast(grad_master, src=0) grad = grad_master.clone() out.backward(grad) grad_master = grad_master.clone() C_master.backward(grad_master) B_grad = embed_master.weight.grad B_grad = torch.chunk(B_grad, DEPTH, dim=-1)[i] check_equal(B_grad, embed.weight.grad) print_rank_0('embed backward: pass') def check_vocab_parallel_embed(): device = get_current_device() dtype = torch.float32 i = gpc.get_local_rank(ParallelMode.PARALLEL_1D) embed = VocabParallelEmbedding1D(VOCAB_SIZE, HIDDEN_SIZE) embed = embed.to(dtype).to(device) embed_master = torch.nn.Embedding(VOCAB_SIZE, HIDDEN_SIZE) embed_master = embed_master.to(dtype).to(device) weight_master = embed_master.weight.data torch.distributed.broadcast(weight_master, src=0) weight = torch.chunk(weight_master, DEPTH, dim=0)[i] embed.weight.data.copy_(weight) A_shape = (BATCH_SIZE, SEQ_LENGTH) A_master = torch.randint(VOCAB_SIZE, A_shape, device=device) torch.distributed.broadcast(A_master, src=0) A = A_master.clone() out = embed(A) A_master = A_master.clone() C_master = embed_master(A_master) C = C_master.clone() check_equal(out, C) print_rank_0('vocab parallel embed forward: pass') grad_shape = C_master.shape grad_master = torch.randn(grad_shape, dtype=dtype, device=device) torch.distributed.broadcast(grad_master, src=0) grad = grad_master.clone() out.backward(grad) grad_master = grad_master.clone() C_master.backward(grad_master) B_grad = embed_master.weight.grad B_grad = torch.chunk(B_grad, DEPTH, dim=0)[i] check_equal(B_grad, embed.weight.grad) print_rank_0('vocab parallel embed backward: pass') def check_classifier_no_given_weight(): device = get_current_device() dtype = torch.float32 i = gpc.get_local_rank(ParallelMode.PARALLEL_1D) env.parallel_input_1d = False parallel_input_1d = env.parallel_input_1d layer = Classifier1D(HIDDEN_SIZE, NUM_CLASSES, bias=True) layer.to(dtype).to(device) layer_master = VanillaClassifier(HIDDEN_SIZE, NUM_CLASSES, bias=True) layer_master = layer_master.to(dtype).to(device) W_master = layer_master.weight.data dist.broadcast(W_master, src=0) W = torch.chunk(W_master, DEPTH, dim=-1)[i] layer.weight.data.copy_(W) B_master = layer_master.bias.data dist.broadcast(B_master, src=0) B = B_master.clone() layer.bias.data.copy_(B) A_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE) A_master = torch.randn(A_shape, dtype=dtype, device=device) dist.broadcast(A_master, src=0) if parallel_input_1d: A = torch.chunk(A_master, DEPTH, dim=-1)[i] A = A.clone() else: A = A_master.clone() A.requires_grad = True out = layer(A) A_master = A_master.clone() A_master.requires_grad = True C_master = layer_master(A_master) C = C_master.clone() check_equal(out, C) print_rank_0('classifier (no given weight) forward: pass') grad_shape = C_master.shape grad_master = torch.randn(grad_shape, dtype=dtype, device=device) dist.broadcast(grad_master, src=0) grad = grad_master.clone() out.backward(grad) grad_master = grad_master.clone() C_master.backward(grad_master) A_grad = A_master.grad if parallel_input_1d: A_grad = torch.chunk(A_grad, DEPTH, dim=-1)[i] check_equal(A_grad, A.grad) W_grad = layer_master.weight.grad W_grad = torch.chunk(W_grad, DEPTH, dim=-1)[i] check_equal(W_grad, layer.weight.grad) B_grad = layer_master.bias.grad check_equal(B_grad, layer.bias.grad) print_rank_0('classifier (no given weight) backward: pass') def check_vocab_parallel_classifier_no_given_weight(): device = get_current_device() dtype = torch.float32 i = gpc.get_local_rank(ParallelMode.PARALLEL_1D) layer = VocabParallelClassifier1D(HIDDEN_SIZE, VOCAB_SIZE, bias=True) layer.to(dtype).to(device) layer_master = VanillaClassifier(HIDDEN_SIZE, VOCAB_SIZE, bias=True) layer_master = layer_master.to(dtype).to(device) W_master = layer_master.weight.data dist.broadcast(W_master, src=0) W = torch.chunk(W_master, DEPTH, dim=0)[i] layer.weight.data.copy_(W) B_master = layer_master.bias.data dist.broadcast(B_master, src=0) B = torch.chunk(B_master, DEPTH, dim=0)[i] layer.bias.data.copy_(B) A_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE) A_master = torch.randn(A_shape, dtype=dtype, device=device) dist.broadcast(A_master, src=0) A = A_master.clone() A.requires_grad = True out = layer(A) A_master = A_master.clone() A_master.requires_grad = True C_master = layer_master(A_master) C = torch.chunk(C_master, DEPTH, dim=-1)[i] check_equal(out, C) print_rank_0('vocab parallel classifier (no given weight) forward: pass') grad_shape = C_master.shape grad_master = torch.randn(grad_shape, dtype=dtype, device=device) dist.broadcast(grad_master, src=0) grad = torch.chunk(grad_master, DEPTH, dim=-1)[i] grad = grad.clone() out.backward(grad) grad_master = grad_master.clone() C_master.backward(grad_master) A_grad = A_master.grad check_equal(A_grad, A.grad) W_grad = layer_master.weight.grad W_grad = torch.chunk(W_grad, DEPTH, dim=0)[i] check_equal(W_grad, layer.weight.grad) B_grad = layer_master.bias.grad B_grad = torch.chunk(B_grad, DEPTH, dim=0)[i] check_equal(B_grad, layer.bias.grad) print_rank_0('vocab parallel classifier (no given weight) backward: pass') def check_classifier_given_embed_weight(): device = get_current_device() dtype = torch.float32 i = gpc.get_local_rank(ParallelMode.PARALLEL_1D) embed = Embedding1D(VOCAB_SIZE, HIDDEN_SIZE) embed = embed.to(dtype).to(device) embed_master = torch.nn.Embedding(VOCAB_SIZE, HIDDEN_SIZE) embed_master = embed_master.to(dtype).to(device) weight_master = embed_master.weight.data torch.distributed.broadcast(weight_master, src=0) weight = torch.chunk(weight_master, DEPTH, dim=-1)[i] embed.weight.data.copy_(weight) env.parallel_input_1d = False layer = Classifier1D(HIDDEN_SIZE, NUM_CLASSES, weight=embed.weight, bias=False) layer.to(dtype).to(device) layer_master = VanillaClassifier(HIDDEN_SIZE, NUM_CLASSES, weight=embed_master.weight, bias=False) layer_master = layer_master.to(dtype).to(device) A_shape = (BATCH_SIZE, SEQ_LENGTH) A_master = torch.randint(VOCAB_SIZE, A_shape, device=device) torch.distributed.broadcast(A_master, src=0) A = A_master.clone() out = layer(embed(A)) A_master = A_master.clone() C_master = layer_master(embed_master(A_master)) C = C_master.clone() check_equal(out, C) print_rank_0('classifier (given embed weight) forward: pass') grad_shape = C_master.shape grad_master = torch.randn(grad_shape, dtype=dtype, device=device) dist.broadcast(grad_master, src=0) grad = grad_master.clone() out.backward(grad) grad_master = grad_master.clone() C_master.backward(grad_master) W_grad = embed_master.weight.grad W_grad = torch.chunk(W_grad, DEPTH, dim=-1)[i] check_equal(W_grad, embed.weight.grad) print_rank_0('classifier (given embed weight) backward: pass') def check_vocab_parallel_classifier_given_embed_weight(): device = get_current_device() dtype = torch.float32 i = gpc.get_local_rank(ParallelMode.PARALLEL_1D) embed = VocabParallelEmbedding1D(VOCAB_SIZE, HIDDEN_SIZE) embed = embed.to(dtype).to(device) embed_master = torch.nn.Embedding(VOCAB_SIZE, HIDDEN_SIZE) embed_master = embed_master.to(dtype).to(device) weight_master = embed_master.weight.data torch.distributed.broadcast(weight_master, src=0) weight = torch.chunk(weight_master, DEPTH, dim=0)[i] embed.weight.data.copy_(weight) env.parallel_input_1d = False layer = VocabParallelClassifier1D(HIDDEN_SIZE, NUM_CLASSES, weight=embed.weight, bias=False) layer.to(dtype).to(device) layer_master = VanillaClassifier(HIDDEN_SIZE, NUM_CLASSES, weight=embed_master.weight, bias=False) layer_master = layer_master.to(dtype).to(device) A_shape = (BATCH_SIZE, SEQ_LENGTH) A_master = torch.randint(VOCAB_SIZE, A_shape, device=device) torch.distributed.broadcast(A_master, src=0) A = A_master.clone() out = layer(embed(A)) A_master = A_master.clone() C_master = layer_master(embed_master(A_master)) C = torch.chunk(C_master, DEPTH, dim=-1)[i] check_equal(out, C) print_rank_0('vocab parallel classifier (given embed weight) forward: pass') grad_shape = C_master.shape grad_master = torch.randn(grad_shape, dtype=dtype, device=device) dist.broadcast(grad_master, src=0) grad = torch.chunk(grad_master, DEPTH, dim=-1)[i] grad = grad.clone() out.backward(grad) grad_master = grad_master.clone() C_master.backward(grad_master) W_grad = embed_master.weight.grad W_grad = torch.chunk(W_grad, DEPTH, dim=0)[i] check_equal(W_grad, embed.weight.grad) print_rank_0('vocab parallel classifier (given embed weight) backward: pass') def check_vocab_parallel_loss(): device = get_current_device() dtype = torch.float32 i = gpc.get_local_rank(ParallelMode.PARALLEL_1D) criterion = VocabParallelCrossEntropyLoss1D() criterion_master = torch.nn.CrossEntropyLoss() out_shape = (BATCH_SIZE, SEQ_LENGTH, NUM_CLASSES) out_master = torch.randn(out_shape, dtype=dtype, device=device) target_master = torch.randint(NUM_CLASSES, (BATCH_SIZE, SEQ_LENGTH), dtype=torch.long, device=device) torch.distributed.broadcast(out_master, src=0) torch.distributed.broadcast(target_master, src=0) out = torch.chunk(out_master, DEPTH, dim=-1)[i] out = out.clone() out.requires_grad = True loss = criterion(out, target_master) out_master = out_master.clone() out_master.requires_grad = True loss_master = criterion_master(out_master, target_master) check_equal(loss, loss_master) print_rank_0('vocab parallel loss forward: pass') loss.backward() loss_master.backward() out_grad = out_master.grad out_grad = torch.chunk(out_grad, DEPTH, dim=-1)[i] check_equal(out_grad, out.grad) print_rank_0('vocab parallel loss backward: pass') @torch.no_grad() def check_linear_row_stream_inference(): device = get_current_device() dtype = torch.float32 INPUT_SIZE = HIDDEN_SIZE OUTPUT_SIZE = 2 * HIDDEN_SIZE i = gpc.get_local_rank(ParallelMode.PARALLEL_1D) stream_chunk_num = 4 assert HIDDEN_SIZE % stream_chunk_num == 0 layer = Linear1D_Row(OUTPUT_SIZE, INPUT_SIZE, stream_chunk_num=stream_chunk_num) A_shape = (BATCH_SIZE, SEQ_LENGTH, OUTPUT_SIZE) A_master = torch.randn(A_shape, dtype=dtype, device=device) dist.broadcast(A_master, src=0) A = torch.chunk(A_master, DEPTH, dim=-1)[i] A = A.clone() W_shape = (INPUT_SIZE, OUTPUT_SIZE) W_master = torch.randn(W_shape, dtype=dtype, device=device) dist.broadcast(W_master, src=0) W = torch.chunk(W_master, DEPTH, dim=-1)[i] W = W.clone() B_shape = (INPUT_SIZE) B_master = torch.randn(B_shape, dtype=dtype, device=device) dist.broadcast(B_master, src=0) B = B_master.clone() layer.weight = Parameter(W) layer.bias = Parameter(B) layer.chunk_weight() layer.eval() out = layer(A) A_master = A_master.clone() W_master = W_master.clone() B_master = B_master.clone() C_master = torch.matmul(A_master, W_master.transpose(0, 1)) + B_master C = C_master.clone() check_equal(out, C) print_rank_0('linear_row forward: pass')
#!/usr/bin/env python # -*- encoding: utf-8 -*- from functools import partial import pytest import torch import torch.multiprocessing as mp from colossalai.core import global_context as gpc from colossalai.initialize import launch from colossalai.logging import disable_existing_loggers from colossalai.utils import free_port from colossalai.testing import rerun_if_address_is_in_use from checks_2d.check_layer_2d import (check_classifier_given_embed_weight, check_classifier_no_given_weight, check_embed, check_layernorm, check_linear, check_loss, check_patch_embed, check_vocab_parallel_classifier_given_embed_weight, check_vocab_parallel_classifier_no_given_weight, check_vocab_parallel_embed, check_vocab_parallel_loss) from checks_2d.check_operation_2d import check_AB, check_ABT, check_ATB CONFIG = dict(parallel=dict(pipeline=dict(size=1), tensor=dict(size=4, mode='2d')),) def check_operations(): check_AB() check_ABT() check_ATB() def check_layer(): check_linear() check_layernorm() check_embed() check_patch_embed() check_vocab_parallel_embed() check_classifier_no_given_weight() check_vocab_parallel_classifier_no_given_weight() check_classifier_given_embed_weight() check_vocab_parallel_classifier_given_embed_weight() check_loss() check_vocab_parallel_loss() def check_layer_and_operation(rank, world_size, port): disable_existing_loggers() launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') torch.backends.cuda.matmul.allow_tf32 = False torch.backends.cudnn.allow_tf32 = False torch.backends.cudnn.deterministic = True # check_operations() check_layer() gpc.destroy() torch.cuda.empty_cache() @pytest.mark.dist @rerun_if_address_is_in_use() def test_2d(): world_size = 4 run_func = partial(check_layer_and_operation, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_2d()
#!/usr/bin/env python # -*- encoding: utf-8 -*- import torch DEPTH = 2 BATCH_SIZE = 8 SEQ_LENGTH = 8 HIDDEN_SIZE = 8 NUM_CLASSES = 8 VOCAB_SIZE = 16 IMG_SIZE = 16 def check_equal(A, B): assert torch.allclose(A, B, rtol=1e-3, atol=1e-2)
#!/usr/bin/env python # -*- encoding: utf-8 -*- import torch from colossalai.context.parallel_mode import ParallelMode from colossalai.core import global_context as gpc from colossalai.nn.layer.parallel_2d._operation import Matmul_AB_2D, Matmul_ABT_2D, Matmul_ATB_2D from colossalai.utils import get_current_device from colossalai.utils import print_rank_0 from .common import check_equal, BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE, DEPTH def check_AB(): data_parallel_rank = 0 if not gpc.is_initialized(ParallelMode.DATA) else gpc.get_local_rank(ParallelMode.DATA) pipeline_parallel_rank = 0 if not gpc.is_initialized(ParallelMode.PIPELINE) else gpc.get_local_rank( ParallelMode.PIPELINE) pipeline_parallel_size = 1 if not gpc.is_initialized(ParallelMode.PIPELINE) else gpc.get_world_size( ParallelMode.PIPELINE) tensor_parallel_size = gpc.get_world_size(ParallelMode.TENSOR) dtype = torch.float j = gpc.get_local_rank(ParallelMode.PARALLEL_2D_ROW) i = gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL) A_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE) A_master = torch.randn(A_shape, dtype=dtype, device=get_current_device()) torch.distributed.broadcast(A_master, src=0) A = torch.chunk(A_master, DEPTH, dim=0)[i] A = torch.chunk(A, DEPTH, dim=-1)[j] A = A.clone() A.requires_grad = True B_shape = (HIDDEN_SIZE, 4 * HIDDEN_SIZE) B_master = torch.randn(B_shape, dtype=dtype, device=get_current_device()) torch.distributed.broadcast(B_master, src=0) B = torch.chunk(B_master, DEPTH, dim=0)[i] B = torch.chunk(B, DEPTH, dim=-1)[j] B = B.clone() B.requires_grad = True out_shape = (BATCH_SIZE // DEPTH, SEQ_LENGTH, 4 * HIDDEN_SIZE // DEPTH) out = Matmul_AB_2D.apply(A, B, DEPTH, out_shape, i, j, ParallelMode.PARALLEL_2D_ROW, ParallelMode.PARALLEL_2D_COL, data_parallel_rank, pipeline_parallel_rank, pipeline_parallel_size, tensor_parallel_size) C_shape = (BATCH_SIZE, SEQ_LENGTH, 4 * HIDDEN_SIZE) A_master = A_master.clone() A_master.requires_grad = True B_master = B_master.clone() B_master.requires_grad = True C_master = torch.matmul(A_master, B_master) C = torch.chunk(C_master, DEPTH, dim=0)[i] C = torch.chunk(C, DEPTH, dim=-1)[j] # check forward correctness check_equal(out, C) print_rank_0('AB forward: pass') grad_shape = C_master.shape grad_master = torch.randn(grad_shape, dtype=dtype, device=get_current_device()) torch.distributed.broadcast(grad_master, src=0) grad = torch.chunk(grad_master, DEPTH, dim=0)[i] grad = torch.chunk(grad, DEPTH, dim=-1)[j] out.backward(grad) C_master.backward(grad_master) A_grad = A_master.grad A_grad = torch.chunk(A_grad, DEPTH, dim=0)[i] A_grad = torch.chunk(A_grad, DEPTH, dim=-1)[j] # check backward correctness check_equal(A_grad, A.grad) B_grad = B_master.grad B_grad = torch.chunk(B_grad, DEPTH, dim=0)[i] B_grad = torch.chunk(B_grad, DEPTH, dim=-1)[j] # check backward correctness check_equal(B_grad, B.grad) print_rank_0('AB backward: pass') def check_ABT(): data_parallel_rank = 0 if not gpc.is_initialized(ParallelMode.DATA) else gpc.get_local_rank(ParallelMode.DATA) pipeline_parallel_rank = 0 if not gpc.is_initialized(ParallelMode.PIPELINE) else gpc.get_local_rank( ParallelMode.PIPELINE) pipeline_parallel_size = 1 if not gpc.is_initialized(ParallelMode.PIPELINE) else gpc.get_world_size( ParallelMode.PIPELINE) tensor_parallel_size = gpc.get_world_size(ParallelMode.TENSOR) dtype = torch.float device = get_current_device() j = gpc.get_local_rank(ParallelMode.PARALLEL_2D_ROW) i = gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL) C_shape = (BATCH_SIZE, SEQ_LENGTH, 4 * HIDDEN_SIZE) C_master = torch.randn(C_shape, dtype=dtype, device=device) torch.distributed.broadcast(C_master, src=0) C = torch.chunk(C_master, DEPTH, dim=0)[i] C = torch.chunk(C, DEPTH, dim=-1)[j] C = C.clone() C.requires_grad = True B_shape = (HIDDEN_SIZE, 4 * HIDDEN_SIZE) B_master = torch.randn(B_shape, dtype=dtype, device=device) torch.distributed.broadcast(B_master, src=0) B = torch.chunk(B_master, DEPTH, dim=0)[i] B = torch.chunk(B, DEPTH, dim=-1)[j] B = B.clone() B.requires_grad = True out = Matmul_ABT_2D.apply(C, B, DEPTH, (BATCH_SIZE // DEPTH, SEQ_LENGTH, HIDDEN_SIZE // DEPTH), i, j, ParallelMode.PARALLEL_2D_ROW, ParallelMode.PARALLEL_2D_COL, data_parallel_rank, pipeline_parallel_rank, pipeline_parallel_size, tensor_parallel_size) A_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE) C_master = C_master.clone() C_master.requires_grad = True B_master = B_master.clone() B_master.requires_grad = True A_master = torch.matmul(C_master, B_master.transpose(0, 1)) A = torch.chunk(A_master, DEPTH, dim=0)[i] A = torch.chunk(A, DEPTH, dim=-1)[j] check_equal(out, A) print_rank_0('ABT forward: pass') grad_shape = A_master.shape grad_master = torch.randn(grad_shape, dtype=dtype, device=device) torch.distributed.broadcast(grad_master, src=0) grad = torch.chunk(grad_master, DEPTH, dim=0)[i] grad = torch.chunk(grad, DEPTH, dim=-1)[j] # backward out.backward(grad) A_master.backward(grad_master) C_grad = C_master.grad C_grad = torch.chunk(C_grad, DEPTH, dim=0)[i] C_grad = torch.chunk(C_grad, DEPTH, dim=-1)[j] check_equal(C_grad, C.grad) B_grad = B_master.grad B_grad = torch.chunk(B_grad, DEPTH, dim=0)[i] B_grad = torch.chunk(B_grad, DEPTH, dim=-1)[j] check_equal(B_grad, B.grad) print_rank_0('ABT backward: pass') def check_ATB(): data_parallel_rank = 0 if not gpc.is_initialized(ParallelMode.DATA) else gpc.get_local_rank(ParallelMode.DATA) pipeline_parallel_rank = 0 if not gpc.is_initialized(ParallelMode.PIPELINE) else gpc.get_local_rank( ParallelMode.PIPELINE) pipeline_parallel_size = 1 if not gpc.is_initialized(ParallelMode.PIPELINE) else gpc.get_world_size( ParallelMode.PIPELINE) tensor_parallel_size = gpc.get_world_size(ParallelMode.TENSOR) device = get_current_device() dtype = torch.float j = gpc.get_local_rank(ParallelMode.PARALLEL_2D_ROW) i = gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL) A_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE) A_master = torch.randn(A_shape, dtype=dtype, device=device) torch.distributed.broadcast(A_master, src=0) A = torch.chunk(A_master, DEPTH, dim=0)[i] A = torch.chunk(A, DEPTH, dim=-1)[j] A = A.clone() A.requires_grad = True C_shape = (BATCH_SIZE, SEQ_LENGTH, 4 * HIDDEN_SIZE) C_master = torch.randn(C_shape, dtype=dtype, device=device) torch.distributed.broadcast(C_master, src=0) C = torch.chunk(C_master, DEPTH, dim=0)[i] C = torch.chunk(C, DEPTH, dim=-1)[j] C = C.clone() C.requires_grad = True out = Matmul_ATB_2D.apply(A, C, DEPTH, (HIDDEN_SIZE // DEPTH, 4 * HIDDEN_SIZE // DEPTH), i, j, ParallelMode.PARALLEL_2D_ROW, ParallelMode.PARALLEL_2D_COL, data_parallel_rank, pipeline_parallel_rank, pipeline_parallel_size, tensor_parallel_size) B_shape = (HIDDEN_SIZE, 4 * HIDDEN_SIZE) A_master = A_master.clone() A_master.requires_grad = True C_master = C_master.clone() C_master.requires_grad = True B_master = torch.matmul( A_master.view(-1, A_master.shape[-1]).transpose(0, 1), C_master.view(-1, C_master.shape[-1])) B = torch.chunk(B_master, DEPTH, dim=0)[i] B = torch.chunk(B, DEPTH, dim=-1)[j] check_equal(out, B) print_rank_0('ATB forward: pass') grad_shape = B_master.shape grad_master = torch.randn(grad_shape, dtype=dtype, device=device) torch.distributed.broadcast(grad_master, src=0) grad = torch.chunk(grad_master, DEPTH, dim=0)[i] grad = torch.chunk(grad, DEPTH, dim=-1)[j] out.backward(grad) B_master.backward(grad_master) A_grad = A_master.grad A_grad = torch.chunk(A_grad, DEPTH, dim=0)[i] A_grad = torch.chunk(A_grad, DEPTH, dim=-1)[j] check_equal(A_grad, A.grad) C_grad = C_master.grad C_grad = torch.chunk(C_grad, DEPTH, dim=0)[i] C_grad = torch.chunk(C_grad, DEPTH, dim=-1)[j] check_equal(C_grad, C.grad) print_rank_0('ATB backward: pass')
import torch from colossalai.context.parallel_mode import ParallelMode from colossalai.core import global_context as gpc from colossalai.nn import (Classifier2D, CrossEntropyLoss2D, Embedding2D, LayerNorm2D, Linear2D, PatchEmbedding2D, VanillaClassifier, VanillaPatchEmbedding, VocabParallelClassifier2D, VocabParallelCrossEntropyLoss2D, VocabParallelEmbedding2D) from colossalai.utils import get_current_device, print_rank_0 from .common import (BATCH_SIZE, DEPTH, HIDDEN_SIZE, IMG_SIZE, NUM_CLASSES, SEQ_LENGTH, VOCAB_SIZE, check_equal) def check_linear(): device = get_current_device() dtype = torch.float32 INPUT_SIZE = HIDDEN_SIZE OUTPUT_SIZE = HIDDEN_SIZE j = gpc.get_local_rank(ParallelMode.PARALLEL_2D_ROW) i = gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL) layer = Linear2D(INPUT_SIZE, OUTPUT_SIZE) A_shape = (BATCH_SIZE, SEQ_LENGTH, INPUT_SIZE) A_master = torch.randn(A_shape, dtype=dtype, device=device) torch.distributed.broadcast(A_master, src=0) A = torch.chunk(A_master, DEPTH, dim=0)[i] A = torch.chunk(A, DEPTH, dim=-1)[j] A = A.clone() A.requires_grad = True W_shape = (INPUT_SIZE, OUTPUT_SIZE) W_master = torch.randn(W_shape, dtype=dtype, device=device) torch.distributed.broadcast(W_master, src=0) W = torch.chunk(W_master, DEPTH, dim=0)[i] W = torch.chunk(W, DEPTH, dim=-1)[j] W = W.clone() W.requires_grad = True B_shape = (OUTPUT_SIZE) B_master = torch.randn(B_shape, dtype=dtype, device=device) torch.distributed.broadcast(B_master, src=0) B = torch.chunk(B_master, DEPTH, dim=-1)[j] B = torch.chunk(B, DEPTH, dim=-1)[i] B = B.clone() B.requires_grad = True layer.weight.data.copy_(W) layer.bias.data.copy_(B) out = layer(A) A_master = A_master.clone() A_master.requires_grad = True W_master = W_master.clone() W_master.requires_grad = True B_master = B_master.clone() B_master.requires_grad = True C_master = torch.matmul(A_master, W_master) + B_master C = torch.chunk(C_master, DEPTH, dim=0)[i] C = torch.chunk(C, DEPTH, dim=-1)[j] check_equal(out, C) print_rank_0('linear forward: pass') grad_shape = C_master.shape grad_master = torch.randn(grad_shape, dtype=dtype, device=get_current_device()) torch.distributed.broadcast(grad_master, src=0) grad = torch.chunk(grad_master, DEPTH, dim=0)[i] grad = torch.chunk(grad, DEPTH, dim=-1)[j] grad = grad.clone() out.backward(grad) grad_master = grad_master.clone() C_master.backward(grad_master) A_grad = A_master.grad A_grad = torch.chunk(A_grad, DEPTH, dim=0)[i] A_grad = torch.chunk(A_grad, DEPTH, dim=-1)[j] check_equal(A_grad, A.grad) W_grad = W_master.grad W_grad = torch.chunk(W_grad, DEPTH, dim=0)[i] W_grad = torch.chunk(W_grad, DEPTH, dim=-1)[j] check_equal(W_grad, layer.weight.grad) B_grad = B_master.grad B_grad = torch.chunk(B_grad, DEPTH, dim=-1)[j] B_grad = torch.chunk(B_grad, DEPTH, dim=-1)[i] # if i == 0: check_equal(B_grad, layer.bias.grad) print_rank_0('linear backward: pass') def check_layernorm(): device = get_current_device() dtype = torch.float32 INPUT_SIZE = HIDDEN_SIZE EPS = 1e-12 j = gpc.get_local_rank(ParallelMode.PARALLEL_2D_ROW) i = gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL) layernorm = LayerNorm2D(INPUT_SIZE) A_shape = (BATCH_SIZE, SEQ_LENGTH, INPUT_SIZE) A_master = torch.randn(A_shape, dtype=dtype, device=device) torch.distributed.broadcast(A_master, src=0) A = torch.chunk(A_master, DEPTH, dim=0)[i] A = torch.chunk(A, DEPTH, dim=-1)[j] A = A.clone() A.requires_grad = True out = layernorm(A) A_master = A_master.clone() A_master.requires_grad = True E_master = torch.sum(A_master, dim=-1, keepdim=True) E_master /= INPUT_SIZE V_master = torch.sum(A_master * A_master, dim=-1, keepdim=True) V_master /= INPUT_SIZE V_master = V_master - E_master * E_master V_master = 1.0 / torch.sqrt(V_master + EPS) C_master = (A_master - E_master) * V_master C = torch.chunk(C_master, DEPTH, dim=0)[i] C = torch.chunk(C, DEPTH, dim=-1)[j] check_equal(out, C) print_rank_0('layer norm forward: pass') grad_shape = C_master.shape grad_master = torch.randn(grad_shape, dtype=dtype, device=get_current_device()) torch.distributed.broadcast(grad_master, src=0) grad = torch.chunk(grad_master, DEPTH, dim=0)[i] grad = torch.chunk(grad, DEPTH, dim=-1)[j] out.backward(grad) C_master.backward(grad_master) A_grad = A_master.grad A_grad = torch.chunk(A_grad, DEPTH, dim=0)[i] A_grad = torch.chunk(A_grad, DEPTH, dim=-1)[j] check_equal(A_grad, A.grad) print_rank_0('layer norm backward: pass') def check_embed(): device = get_current_device() dtype = torch.float32 j = gpc.get_local_rank(ParallelMode.PARALLEL_2D_ROW) i = gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL) embed = Embedding2D(VOCAB_SIZE, HIDDEN_SIZE) embed = embed.to(dtype).to(device) embed_master = torch.nn.Embedding(VOCAB_SIZE, HIDDEN_SIZE) embed_master = embed_master.to(dtype).to(device) weight_master = embed_master.weight.data torch.distributed.broadcast(weight_master, src=0) weight = torch.chunk(weight_master, DEPTH, dim=-1)[j] weight = torch.chunk(weight, DEPTH, dim=-1)[i] embed.weight.data.copy_(weight) A_shape = (BATCH_SIZE, SEQ_LENGTH) A_master = torch.randint(VOCAB_SIZE, A_shape, device=device) torch.distributed.broadcast(A_master, src=0) A = A_master.clone() out = embed(A) A_master = A_master.clone() C_master = embed_master(A_master) C = torch.chunk(C_master, DEPTH, dim=0)[i] C = torch.chunk(C, DEPTH, dim=-1)[j] check_equal(out, C) print_rank_0('embed forward: pass') grad_shape = C_master.shape grad_master = torch.randn(grad_shape, dtype=dtype, device=device) torch.distributed.broadcast(grad_master, src=0) grad = torch.chunk(grad_master, DEPTH, dim=0)[i] grad = torch.chunk(grad, DEPTH, dim=-1)[j] grad = grad.clone() out.backward(grad) grad_master = grad_master.clone() C_master.backward(grad_master) B_grad = embed_master.weight.grad B_grad = torch.chunk(B_grad, DEPTH, dim=-1)[j] B_grad = torch.chunk(B_grad, DEPTH, dim=-1)[i] check_equal(B_grad, embed.weight.grad) print_rank_0('embed backward: pass') def check_patch_embed(): device = get_current_device() dtype = torch.float32 j = gpc.get_local_rank(ParallelMode.PARALLEL_2D_ROW) i = gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL) layer = PatchEmbedding2D(IMG_SIZE, 4, 3, HIDDEN_SIZE, dtype=dtype) torch.nn.init.ones_(layer.cls_token) torch.nn.init.ones_(layer.pos_embed) layer = layer.to(device) layer_master = VanillaPatchEmbedding(IMG_SIZE, 4, 3, HIDDEN_SIZE, dtype=dtype) torch.nn.init.ones_(layer_master.cls_token) torch.nn.init.ones_(layer_master.pos_embed) layer_master = layer_master.to(device) proj_weight_master = layer_master.weight.data torch.distributed.broadcast(proj_weight_master, src=0) proj_weight = torch.chunk(proj_weight_master, DEPTH, dim=0)[j] proj_weight = torch.chunk(proj_weight, DEPTH, dim=0)[i] layer.weight.data.copy_(proj_weight) proj_bias_master = layer_master.bias.data torch.distributed.broadcast(proj_bias_master, src=0) proj_bias = torch.chunk(proj_bias_master, DEPTH, dim=0)[j] proj_bias = torch.chunk(proj_bias, DEPTH, dim=0)[i] layer.bias.data.copy_(proj_bias) A_shape = (BATCH_SIZE, 3, IMG_SIZE, IMG_SIZE) A_master = torch.randn(A_shape, dtype=dtype, device=device) torch.distributed.broadcast(A_master, src=0) A = A_master.clone() out = layer(A) A_master = A_master.clone() C_master = layer_master(A_master) C = torch.chunk(C_master, DEPTH, dim=0)[i] C = torch.chunk(C, DEPTH, dim=-1)[j] check_equal(out, C) print_rank_0('patch embed forward: pass') grad_shape = C_master.shape grad_master = torch.randn(grad_shape, dtype=dtype, device=device) torch.distributed.broadcast(grad_master, src=0) grad = torch.chunk(grad_master, DEPTH, dim=0)[i] grad = torch.chunk(grad, DEPTH, dim=-1)[j] grad = grad.clone() out.backward(grad) grad_master = grad_master.clone() C_master.backward(grad_master) cls_grad_master = layer_master.cls_token.grad cls_grad = torch.chunk(cls_grad_master, DEPTH, dim=-1)[j] cls_grad = torch.chunk(cls_grad, DEPTH, dim=-1)[i] check_equal(cls_grad, layer.cls_token.grad) pos_grad_master = layer_master.pos_embed.grad pos_grad = torch.chunk(pos_grad_master, DEPTH, dim=-1)[j] pos_grad = torch.chunk(pos_grad, DEPTH, dim=-1)[i] check_equal(pos_grad, layer.pos_embed.grad) B_grad = layer_master.weight.grad B_grad = torch.chunk(B_grad, DEPTH, dim=0)[j] B_grad = torch.chunk(B_grad, DEPTH, dim=0)[i] check_equal(B_grad, layer.weight.grad) bias_grad = layer_master.bias.grad bias_grad = torch.chunk(bias_grad, DEPTH)[j] bias_grad = torch.chunk(bias_grad, DEPTH)[i] check_equal(bias_grad, layer.bias.grad) print_rank_0('patch embed backward: pass') def check_vocab_parallel_embed(): device = get_current_device() dtype = torch.float32 j = gpc.get_local_rank(ParallelMode.PARALLEL_2D_ROW) i = gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL) embed = VocabParallelEmbedding2D(VOCAB_SIZE, HIDDEN_SIZE) embed = embed.to(dtype).to(device) embed_master = torch.nn.Embedding(VOCAB_SIZE, HIDDEN_SIZE) embed_master = embed_master.to(dtype).to(device) weight_master = embed_master.weight.data torch.distributed.broadcast(weight_master, src=0) weight = torch.chunk(weight_master, DEPTH, dim=-1)[j] weight = torch.chunk(weight, DEPTH, dim=0)[i] embed.weight.data.copy_(weight) A_shape = (BATCH_SIZE, SEQ_LENGTH) A_master = torch.randint(VOCAB_SIZE, A_shape, device=device) torch.distributed.broadcast(A_master, src=0) A = A_master.clone() out = embed(A) A_master = A_master.clone() C_master = embed_master(A_master) C = torch.chunk(C_master, DEPTH, dim=0)[i] C = torch.chunk(C, DEPTH, dim=-1)[j] check_equal(out, C) print_rank_0('vocab parallel embed forward: pass') grad_shape = C_master.shape grad_master = torch.randn(grad_shape, dtype=dtype, device=device) torch.distributed.broadcast(grad_master, src=0) grad = torch.chunk(grad_master, DEPTH, dim=0)[i] grad = torch.chunk(grad, DEPTH, dim=-1)[j] grad = grad.clone() out.backward(grad) grad_master = grad_master.clone() C_master.backward(grad_master) B_grad = embed_master.weight.grad B_grad = torch.chunk(B_grad, DEPTH, dim=-1)[j] B_grad = torch.chunk(B_grad, DEPTH, dim=0)[i] check_equal(B_grad, embed.weight.grad) print_rank_0('vocab parallel embed backward: pass') def check_classifier_no_given_weight(): device = get_current_device() dtype = torch.float32 INPUT_SIZE = HIDDEN_SIZE OUTPUT_SIZE = NUM_CLASSES j = gpc.get_local_rank(ParallelMode.PARALLEL_2D_ROW) i = gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL) layer = Classifier2D(INPUT_SIZE, OUTPUT_SIZE) A_shape = (BATCH_SIZE, SEQ_LENGTH, INPUT_SIZE) A_master = torch.randint(5, A_shape, dtype=dtype, device=device) torch.distributed.broadcast(A_master, src=0) A = torch.chunk(A_master, DEPTH, dim=0)[i] A = torch.chunk(A, DEPTH, dim=-1)[j] A = A.clone() A.requires_grad = True W_shape = (OUTPUT_SIZE, INPUT_SIZE) W_master = torch.randint(5, W_shape, dtype=dtype, device=device) torch.distributed.broadcast(W_master, src=0) W = torch.chunk(W_master, DEPTH, dim=-1)[j] W = torch.chunk(W, DEPTH, dim=-1)[i] W = W.clone() layer.weight.data.copy_(W) # W.requires_grad = True B_shape = (OUTPUT_SIZE, ) B_master = torch.randint(5, B_shape, dtype=dtype, device=device) torch.distributed.broadcast(B_master, src=0) # B = torch.chunk(B_master, DEPTH, dim=0)[j] B = B_master.clone() layer.bias.data.copy_(B) out = layer(A) A_master = A_master.clone() A_master.requires_grad = True W_master = W_master.clone() W_master.requires_grad = True B_master = B_master.clone() B_master.requires_grad = True C_master = torch.matmul(A_master, W_master.transpose(0, 1)) + B_master C = torch.chunk(C_master, DEPTH, dim=0)[i] # C = torch.chunk(C, DEPTH, dim=-1)[j] check_equal(out, C) print_rank_0('classifier (no given weight) forward: pass') grad_shape = C_master.shape grad_master = torch.randn(grad_shape, dtype=dtype, device=get_current_device()) torch.distributed.broadcast(grad_master, src=0) grad = torch.chunk(grad_master, DEPTH, dim=0)[i] # grad = torch.chunk(grad, DEPTH, dim=-1)[j] grad = grad.clone() out.backward(grad) grad_master = grad_master.clone() C_master.backward(grad_master) A_grad = A_master.grad A_grad = torch.chunk(A_grad, DEPTH, dim=0)[i] A_grad = torch.chunk(A_grad, DEPTH, dim=-1)[j] check_equal(A_grad, A.grad) W_grad = W_master.grad W_grad = torch.chunk(W_grad, DEPTH, dim=-1)[j] W_grad = torch.chunk(W_grad, DEPTH, dim=-1)[i] check_equal(W_grad, layer.weight.grad) B_grad = B_master.grad # B_grad = torch.chunk(B_grad, DEPTH, dim=0)[j] # if i == 0: check_equal(B_grad, layer.bias.grad) print_rank_0('classifier (no given weight) backward: pass') def check_vocab_parallel_classifier_no_given_weight(): device = get_current_device() dtype = torch.float32 j = gpc.get_local_rank(ParallelMode.PARALLEL_2D_ROW) i = gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL) layer = VocabParallelClassifier2D(HIDDEN_SIZE, VOCAB_SIZE, bias=True) layer = layer.to(dtype).to(device) layer_master = VanillaClassifier(HIDDEN_SIZE, VOCAB_SIZE, bias=True) layer_master = layer_master.to(dtype).to(device) weight_master = layer_master.weight.data torch.distributed.broadcast(weight_master, src=0) weight = torch.chunk(weight_master, DEPTH, dim=0)[i] weight = torch.chunk(weight, DEPTH, dim=-1)[j] layer.weight.data.copy_(weight) bias_master = layer_master.bias.data torch.distributed.broadcast(bias_master, src=0) bias = torch.chunk(bias_master, DEPTH)[j] bias = torch.chunk(bias, DEPTH)[i] layer.bias.data.copy_(bias) A_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE) A_master = torch.randn(A_shape, dtype=dtype, device=device) torch.distributed.broadcast(A_master, src=0) A = torch.chunk(A_master, DEPTH, dim=0)[i] A = torch.chunk(A, DEPTH, dim=-1)[j] A = A.clone() A.requires_grad = True out = layer(A) A_master = A_master.clone() A_master.requires_grad = True C_master = layer_master(A_master) C = torch.chunk(C_master, DEPTH, dim=0)[i] C = torch.chunk(C, DEPTH, dim=-1)[j] check_equal(out, C) print_rank_0('vocab parallel classifier (no given weight) forward: pass') grad_shape = C_master.shape grad_master = torch.randn(grad_shape, dtype=dtype, device=device) torch.distributed.broadcast(grad_master, src=0) grad = torch.chunk(grad_master, DEPTH, dim=0)[i] grad = torch.chunk(grad, DEPTH, dim=-1)[j] grad = grad.clone() out.backward(grad) grad_master = grad_master.clone() C_master.backward(grad_master) A_grad = A_master.grad A_grad = torch.chunk(A_grad, DEPTH, dim=0)[i] A_grad = torch.chunk(A_grad, DEPTH, dim=-1)[j] check_equal(A_grad, A.grad) W_grad = layer_master.weight.grad W_grad = torch.chunk(W_grad, DEPTH, dim=0)[i] W_grad = torch.chunk(W_grad, DEPTH, dim=-1)[j] check_equal(W_grad, layer.weight.grad) B_grad = layer_master.bias.grad B_grad = torch.chunk(B_grad, DEPTH)[j] B_grad = torch.chunk(B_grad, DEPTH)[i] check_equal(B_grad, layer.bias.grad) print_rank_0('vocab parallel classifier (no given weight) backward: pass') def check_classifier_given_embed_weight(): device = get_current_device() dtype = torch.float32 j = gpc.get_local_rank(ParallelMode.PARALLEL_2D_ROW) i = gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL) embed = Embedding2D(VOCAB_SIZE, HIDDEN_SIZE) embed = embed.to(dtype).to(device) embed_master = torch.nn.Embedding(VOCAB_SIZE, HIDDEN_SIZE) embed_master = embed_master.to(dtype).to(device) weight_master = embed_master.weight.data torch.distributed.broadcast(weight_master, src=0) weight = torch.chunk(weight_master, DEPTH, dim=-1)[j] weight = torch.chunk(weight, DEPTH, dim=-1)[i] embed.weight.data.copy_(weight) layer = Classifier2D(HIDDEN_SIZE, VOCAB_SIZE, weight=embed.weight, bias=False) layer = layer.to(dtype).to(device) layer_master = VanillaClassifier(HIDDEN_SIZE, VOCAB_SIZE, weight=embed_master.weight, bias=False) layer_master = layer_master.to(dtype).to(device) A_shape = (BATCH_SIZE, SEQ_LENGTH) A_master = torch.randint(VOCAB_SIZE, A_shape, device=device) torch.distributed.broadcast(A_master, src=0) A = A_master.clone() out = layer(embed(A)) A_master = A_master.clone() C_master = layer_master(embed_master(A_master)) C = torch.chunk(C_master, DEPTH, dim=0)[i] check_equal(out, C) print_rank_0('classifier (given embed weight) forward: pass') grad_shape = C_master.shape grad_master = torch.randn(grad_shape, dtype=dtype, device=device) torch.distributed.broadcast(grad_master, src=0) grad = torch.chunk(grad_master, DEPTH, dim=0)[i] grad = grad.clone() out.backward(grad) grad_master = grad_master.clone() C_master.backward(grad_master) W_grad = embed_master.weight.grad W_grad = torch.chunk(W_grad, DEPTH, dim=-1)[j] W_grad = torch.chunk(W_grad, DEPTH, dim=-1)[i] check_equal(W_grad, embed.weight.grad) print_rank_0('classifier (given embed weight) backward: pass') def check_vocab_parallel_classifier_given_embed_weight(): device = get_current_device() dtype = torch.float32 j = gpc.get_local_rank(ParallelMode.PARALLEL_2D_ROW) i = gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL) embed = VocabParallelEmbedding2D(VOCAB_SIZE, HIDDEN_SIZE) embed = embed.to(dtype).to(device) embed_master = torch.nn.Embedding(VOCAB_SIZE, HIDDEN_SIZE) embed_master = embed_master.to(dtype).to(device) weight_master = embed_master.weight.data torch.distributed.broadcast(weight_master, src=0) weight = torch.chunk(weight_master, DEPTH, dim=-1)[j] weight = torch.chunk(weight, DEPTH, dim=0)[i] embed.weight.data.copy_(weight) layer = VocabParallelClassifier2D(HIDDEN_SIZE, VOCAB_SIZE, weight=embed.weight, bias=False) layer = layer.to(dtype).to(device) layer_master = VanillaClassifier(HIDDEN_SIZE, VOCAB_SIZE, weight=embed_master.weight, bias=False) layer_master = layer_master.to(dtype).to(device) A_shape = (BATCH_SIZE, SEQ_LENGTH) A_master = torch.randint(VOCAB_SIZE, A_shape, device=device) torch.distributed.broadcast(A_master, src=0) A = A_master.clone() out = layer(embed(A)) A_master = A_master.clone() C_master = layer_master(embed_master(A_master)) C = torch.chunk(C_master, DEPTH, dim=0)[i] C = torch.chunk(C, DEPTH, dim=-1)[j] check_equal(out, C) print_rank_0('vocab parallel classifier (given embed weight) forward: pass') grad_shape = C_master.shape grad_master = torch.randn(grad_shape, dtype=dtype, device=device) torch.distributed.broadcast(grad_master, src=0) grad = torch.chunk(grad_master, DEPTH, dim=0)[i] grad = torch.chunk(grad, DEPTH, dim=-1)[j] grad = grad.clone() out.backward(grad) grad_master = grad_master.clone() C_master.backward(grad_master) W_grad = embed_master.weight.grad W_grad = torch.chunk(W_grad, DEPTH, dim=-1)[j] W_grad = torch.chunk(W_grad, DEPTH, dim=0)[i] check_equal(W_grad, embed.weight.grad) print_rank_0('vocab parallel classifier (given embed weight) backward: pass') def check_loss(): device = get_current_device() dtype = torch.float32 j = gpc.get_local_rank(ParallelMode.PARALLEL_2D_ROW) i = gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL) criterion = CrossEntropyLoss2D() criterion_master = torch.nn.CrossEntropyLoss() out_shape = (BATCH_SIZE, NUM_CLASSES) out_master = torch.randn(out_shape, dtype=dtype, device=device) target_master = torch.randint(NUM_CLASSES, (BATCH_SIZE, ), dtype=torch.long, device=device) torch.distributed.broadcast(out_master, src=0) torch.distributed.broadcast(target_master, src=0) out = torch.chunk(out_master, DEPTH, dim=0)[i] out = out.clone() out.requires_grad = True loss = criterion(out, target_master) out_master = out_master.clone() out_master.requires_grad = True loss_master = criterion_master(out_master, target_master) check_equal(loss, loss_master) print_rank_0('cross entropy loss forward: pass') loss.backward() loss_master.backward() out_grad = out_master.grad out_grad = torch.chunk(out_grad, DEPTH, dim=0)[i] check_equal(out_grad, out.grad) print_rank_0('cross entropy loss backward: pass') def check_vocab_parallel_loss(): device = get_current_device() dtype = torch.float32 j = gpc.get_local_rank(ParallelMode.PARALLEL_2D_ROW) i = gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL) criterion = VocabParallelCrossEntropyLoss2D() criterion_master = torch.nn.CrossEntropyLoss() out_shape = (BATCH_SIZE, NUM_CLASSES) out_master = torch.randn(out_shape, dtype=dtype, device=device) target_master = torch.randint(NUM_CLASSES, (BATCH_SIZE, ), dtype=torch.long, device=device) torch.distributed.broadcast(out_master, src=0) torch.distributed.broadcast(target_master, src=0) out = torch.chunk(out_master, DEPTH, dim=0)[i] out = torch.chunk(out, DEPTH, dim=-1)[j] out = out.clone() out.requires_grad = True loss = criterion(out, target_master) out_master = out_master.clone() out_master.requires_grad = True loss_master = criterion_master(out_master, target_master) check_equal(loss, loss_master) print_rank_0('vocab parallel cross entropy loss forward: pass') loss.backward() loss_master.backward() out_grad = out_master.grad out_grad = torch.chunk(out_grad, DEPTH, dim=0)[i] out_grad = torch.chunk(out_grad, DEPTH, dim=-1)[j] check_equal(out_grad, out.grad) print_rank_0('vocab parallel cross entropy loss backward: pass') # def check_attention(): # device = get_current_device() # dtype = torch.float32 # INPUT_SIZE = HIDDEN_SIZE # NUM_ATTENTION_HEADS = 2 # j = gpc.get_local_rank(ParallelMode.PARALLEL_2D_ROW) # i = gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL) # layer = TransformerSelfAttention2D( # HIDDEN_SIZE, # NUM_ATTENTION_HEADS, # attention_dropout_prob=0.5, # hidden_dropout_prob=0.5, # ) # A_shape = (BATCH_SIZE, SEQ_LENGTH, INPUT_SIZE) # A_master = torch.randn(A_shape, dtype=dtype, device=device) # torch.distributed.broadcast(A_master, src=0) # A = torch.chunk(A_master, DEPTH, dim=0)[i] # A = torch.chunk(A, DEPTH, dim=-1)[j] # A = A.clone() # A.requires_grad = True # mask_shape = (BATCH_SIZE // DEPTH, NUM_ATTENTION_HEADS // DEPTH, SEQ_LENGTH, SEQ_LENGTH) # attention_mask = torch.zeros(mask_shape, dtype=dtype, device=device) # out = layer(A, attention_mask) # assert out.shape == (BATCH_SIZE // DEPTH, SEQ_LENGTH, INPUT_SIZE // DEPTH) # print_rank_0('self attention forward: pass') # grad_shape = out.shape # grad = torch.randn(grad_shape, dtype=dtype, device=device) # out.backward(grad) # assert A.grad.shape == A.shape # print_rank_0('self attention backward: pass') # def check_mlp(): # device = get_current_device() # dtype = torch.float32 # INPUT_SIZE = HIDDEN_SIZE # j = gpc.get_local_rank(ParallelMode.PARALLEL_2D_ROW) # i = gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL) # layer = TransformerMLP2D( # HIDDEN_SIZE, # dropout_prob=0.5, # act_func='gelu', # ) # A_shape = (BATCH_SIZE, SEQ_LENGTH, INPUT_SIZE) # A_master = torch.randn(A_shape, dtype=dtype, device=device) # torch.distributed.broadcast(A_master, src=0) # A = torch.chunk(A_master, DEPTH, dim=0)[i] # A = torch.chunk(A, DEPTH, dim=-1)[j] # A = A.clone() # A.requires_grad = True # out = layer(A) # assert out.shape == (BATCH_SIZE // DEPTH, SEQ_LENGTH, INPUT_SIZE // DEPTH) # print_rank_0('mlp forward: pass') # grad_shape = out.shape # grad = torch.randn(grad_shape, dtype=dtype, device=device) # out.backward(grad) # assert A.grad.shape == A.shape # print_rank_0('mlp backward: pass') # def check_transformerlayer(): # device = get_current_device() # dtype = torch.float32 # INPUT_SIZE = HIDDEN_SIZE # NUM_ATTENTION_HEADS = 2 # j = gpc.get_local_rank(ParallelMode.PARALLEL_2D_ROW) # i = gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL) # layer = TransformerLayer2D(HIDDEN_SIZE, # NUM_ATTENTION_HEADS, # act_func='gelu', # attention_dropout_prob=0.5, # hidden_dropout_prob=0.5) # A_shape = (BATCH_SIZE, SEQ_LENGTH, INPUT_SIZE) # A_master = torch.randn(A_shape, dtype=dtype, device=device) # torch.distributed.broadcast(A_master, src=0) # A = torch.chunk(A_master, DEPTH, dim=0)[i] # A = torch.chunk(A, DEPTH, dim=-1)[j] # A = A.clone() # A.requires_grad = True # mask_shape = (BATCH_SIZE // DEPTH, NUM_ATTENTION_HEADS // DEPTH, SEQ_LENGTH, SEQ_LENGTH) # attention_mask = torch.zeros(mask_shape, dtype=dtype, device=device) # out = layer(A, attention_mask) # assert out.shape == (BATCH_SIZE // DEPTH, SEQ_LENGTH, INPUT_SIZE // DEPTH) # print_rank_0('transformerlayer forward: pass') # grad_shape = out.shape # grad = torch.randn(grad_shape, dtype=dtype, device=device) # out.backward(grad) # assert A.grad.shape == A.shape # print_rank_0('transformerlayer backward: pass')
import colossalai import colossalai.nn as col_nn import torch import torch.distributed as dist import torch.multiprocessing as mp import pytest from colossalai.core import global_context as gpc from colossalai.context import ParallelMode from colossalai.testing import rerun_if_address_is_in_use from functools import partial CONFIG = dict(parallel=dict(tensor=dict(size=4, mode='sequence'))) def check_ring_qk(rank, world_size): # params batch_size = 4 num_heads = 4 seq_length = 32 attention_head_size = 32 sub_seq_length = seq_length // world_size # create master tensors q = torch.rand(batch_size * num_heads, seq_length, attention_head_size).cuda() k = torch.rand(batch_size * num_heads, seq_length, attention_head_size).cuda() dist.broadcast(q, src=0, group=gpc.get_group(ParallelMode.SEQUENCE)) dist.broadcast(k, src=0, group=gpc.get_group(ParallelMode.SEQUENCE)) # create distributed tensors sub_q = q.clone()[:, rank * sub_seq_length:(rank + 1) * sub_seq_length].contiguous() sub_k = k.clone()[:, rank * sub_seq_length:(rank + 1) * sub_seq_length].contiguous() # set autograd attributes q.requires_grad = True k.requires_grad = True q.retain_grad() k.retain_grad() sub_q.requires_grad = True sub_k.requires_grad = True sub_q.retain_grad() sub_k.retain_grad() # compute master attention scores a = torch.matmul(q, k.transpose(2, 1)) # compute distributed attention scores ring_qk = colossalai.nn.layer.parallel_sequence.RingQK.apply sub_a = ring_qk(sub_q, sub_k, batch_size, num_heads, sub_seq_length) # check master and distributed attetion scores sub_master_a = a[:, rank * sub_seq_length:(rank + 1) * sub_seq_length] assert torch.allclose(sub_a, sub_master_a, rtol=1e-5, atol=1e-2) # run master backward a.retain_grad() a.mean().backward() # run distributed backward partial_master_a_grad = a.grad[:, rank * sub_seq_length:(rank + 1) * sub_seq_length] torch.autograd.backward(sub_a, partial_master_a_grad) # check master and distributed grads partial_master_q_grad = q.grad[:, rank * sub_seq_length:(rank + 1) * sub_seq_length] assert torch.allclose(sub_q.grad, partial_master_q_grad, rtol=1e-5, atol=1e-2), \ 'attention score cannot match' def check_ring_av(rank, world_size): # params batch_size = 4 num_heads = 4 seq_length = 16 attention_head_size = 32 sub_seq_length = seq_length // world_size # create master tensors a = torch.rand(batch_size * num_heads, seq_length, seq_length).cuda() v = torch.rand(batch_size * num_heads, seq_length, attention_head_size).cuda() dist.broadcast(a, src=0, group=gpc.get_group(ParallelMode.SEQUENCE)) dist.broadcast(v, src=0, group=gpc.get_group(ParallelMode.SEQUENCE)) # create distributed tensors sub_a = a.clone()[:, rank * sub_seq_length:(rank + 1) * sub_seq_length].contiguous() sub_v = v.clone()[:, rank * sub_seq_length:(rank + 1) * sub_seq_length].contiguous() # set autograd attributes a.requires_grad = True v.requires_grad = True a.retain_grad() v.retain_grad() sub_a.requires_grad = True sub_v.requires_grad = True sub_a.retain_grad() sub_v.retain_grad() # compute master attention scores out = torch.matmul(a, v) # compute distributed attention scores ring_av = colossalai.nn.layer.parallel_sequence.RingAV.apply sub_out = ring_av(sub_a, sub_v, batch_size, num_heads, attention_head_size, sub_seq_length) # print(f'master output shape: {out.shape}, partial output shape: {sub_out.shape}') # check master and distributed output sub_master_out = out[:, rank * sub_seq_length:(rank + 1) * sub_seq_length] assert torch.allclose(sub_out, sub_master_out, rtol=1e-5, atol=1e-2) # # run master backward out.retain_grad() out.mean().backward() # # run distributed backward partial_master_out_grad = out.grad[:, rank * sub_seq_length:(rank + 1) * sub_seq_length] torch.autograd.backward(sub_out, partial_master_out_grad) # # check master and distributed grads partial_master_a_grad = a.grad[:, rank * sub_seq_length:(rank + 1) * sub_seq_length] assert torch.allclose(sub_a.grad, partial_master_a_grad, rtol=1e-5, atol=1e-2), \ 'attention output cannot match' def run_test(rank, world_size): colossalai.launch(rank=rank, world_size=world_size, config=CONFIG, host='localhost', port=29500) # check_ring_qk(rank, world_size) check_ring_av(rank, world_size) gpc.destroy() torch.cuda.empty_cache() @pytest.mark.dist @rerun_if_address_is_in_use() def test_sequence(): world_size = 4 run_func = partial(run_test, world_size=world_size) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_sequence()
import torch from colossalai.context import ParallelMode from colossalai.core import global_context as gpc from colossalai.nn import TransformerSelfAttentionRing from colossalai.utils import get_current_device def check_selfattention(): WORLD_SIZE = gpc.get_world_size(ParallelMode.SEQUENCE) SUB_SEQ_LENGTH = 8 BATCH = 4 HIDDEN_SIZE = 16 layer = TransformerSelfAttentionRing(16, 8, 8, 0.1) layer = layer.to(get_current_device()) hidden_states = torch.rand(SUB_SEQ_LENGTH, BATCH, HIDDEN_SIZE).to(get_current_device()) attention_mask = torch.randint(low=0, high=2, size=(BATCH, 1, 1, 1, SUB_SEQ_LENGTH * WORLD_SIZE)).to(get_current_device()) out = layer(hidden_states, attention_mask)
from functools import partial import pytest import torch import torch.multiprocessing as mp from colossalai.core import global_context as gpc from colossalai.initialize import launch from colossalai.logging import disable_existing_loggers from colossalai.utils import free_port from colossalai.testing import rerun_if_address_is_in_use from checks_2p5d.check_layer_2p5d import * from checks_2p5d.check_operation_2p5d import check_AB, check_ABT, check_ATB CONFIG = dict(parallel=dict( pipeline=dict(size=1), tensor=dict(size=4, mode='2.5d', depth=1), ),) def check_operations(): check_AB() check_ABT() check_ATB() def check_layer(): check_linear() check_layernorm() check_embed() check_patch_embed() check_vocab_parallel_embed() check_classifier_no_given_weight() check_vocab_parallel_classifier_no_given_weight() check_classifier_given_embed_weight() check_vocab_parallel_classifier_given_embed_weight() check_loss() check_vocab_parallel_loss() def check_layer_and_operation(rank, world_size, port): disable_existing_loggers() launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') torch.backends.cuda.matmul.allow_tf32 = False torch.backends.cudnn.allow_tf32 = False torch.backends.cudnn.deterministic = True check_operations() check_layer() gpc.destroy() torch.cuda.empty_cache() @pytest.mark.dist @rerun_if_address_is_in_use() def test_2p5d(): world_size = 4 run_func = partial(check_layer_and_operation, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_2p5d()
import torch from colossalai.context.parallel_mode import ParallelMode from colossalai.core import global_context as gpc from colossalai.nn import (Classifier2p5D, CrossEntropyLoss2p5D, Embedding2p5D, LayerNorm2p5D, Linear2p5D, PatchEmbedding2p5D, VanillaClassifier, VanillaPatchEmbedding, VocabParallelClassifier2p5D, VocabParallelCrossEntropyLoss2p5D, VocabParallelEmbedding2p5D) from colossalai.utils import get_current_device, print_rank_0 from torch.nn import Parameter from .common import * def check_linear(): device = get_current_device() dtype = torch.float32 INPUT_SIZE = HIDDEN_SIZE OUTPUT_SIZE = 2 * HIDDEN_SIZE i = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_COL) j = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_ROW) k = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_DEP) layer = Linear2p5D(INPUT_SIZE, OUTPUT_SIZE, dtype=dtype, skip_bias_add=False) A_shape = (BATCH_SIZE, SEQ_LENGTH, INPUT_SIZE) A_master = torch.randn(A_shape, dtype=dtype, device=device) torch.distributed.broadcast(A_master, src=0) A = torch.chunk(A_master, TESSERACT_DIM, dim=0)[i] A = torch.chunk(A, TESSERACT_DIM, dim=-1)[j] A = A.clone() A.requires_grad = True W_shape = (INPUT_SIZE, OUTPUT_SIZE) W_master = torch.randn(W_shape, dtype=dtype, device=device) torch.distributed.broadcast(W_master, src=0) W = torch.chunk(W_master, TESSERACT_DIM, dim=0)[i] W = torch.chunk(W, TESSERACT_DIM, dim=-1)[j] W = W.clone() W.requires_grad = True B_shape = (OUTPUT_SIZE) B_master = torch.randn(B_shape, dtype=dtype, device=device) torch.distributed.broadcast(B_master, src=0) B = torch.chunk(B_master, TESSERACT_DIM, dim=0)[j] B = B.clone() B.requires_grad = True layer.weight = Parameter(W) layer.bias = Parameter(B) out = layer(A) bias = layer.bias A_master = A_master.clone() A_master.requires_grad = True W_master = W_master.clone() W_master.requires_grad = True B_master = B_master.clone() B_master.requires_grad = True C_master = torch.matmul(A_master, W_master) + B_master C = torch.chunk(C_master, TESSERACT_DIM, dim=0)[i] C = torch.chunk(C, TESSERACT_DIM, dim=-1)[j] check_equal(out, C) print_rank_0('linear forward: pass') grad_shape = C_master.shape grad_master = torch.randn(grad_shape, dtype=dtype, device=get_current_device()) torch.distributed.broadcast(grad_master, src=0) grad = torch.chunk(grad_master, TESSERACT_DIM, dim=0)[i] grad = torch.chunk(grad, TESSERACT_DIM, dim=-1)[j] grad = grad.clone() out.backward(grad) grad_master = grad_master.clone() C_master.backward(grad_master) A_grad = A_master.grad A_grad = torch.chunk(A_grad, TESSERACT_DIM, dim=0)[i] A_grad = torch.chunk(A_grad, TESSERACT_DIM, dim=-1)[j] check_equal(A_grad, A.grad) W_grad = W_master.grad W_grad = torch.chunk(W_grad, TESSERACT_DIM, dim=0)[i] W_grad = torch.chunk(W_grad, TESSERACT_DIM, dim=-1)[j] check_equal(W_grad, layer.weight.grad) B_grad = B_master.grad B_grad = torch.chunk(B_grad, TESSERACT_DIM, dim=0)[j] if i == 0: check_equal(B_grad, layer.bias.grad) print_rank_0('linear backward: pass') def check_layernorm(): device = get_current_device() dtype = torch.float32 INPUT_SIZE = HIDDEN_SIZE EPS = 1e-12 i = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_COL) j = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_ROW) k = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_DEP) layernorm = LayerNorm2p5D(INPUT_SIZE, dtype=dtype) A_shape = (BATCH_SIZE, SEQ_LENGTH, INPUT_SIZE) A_master = torch.randn(A_shape, dtype=dtype, device=device) torch.distributed.broadcast(A_master, src=0) A = torch.chunk(A_master, TESSERACT_DIM, dim=0)[i] A = torch.chunk(A, TESSERACT_DIM, dim=-1)[j] A = A.clone() A.requires_grad = True out = layernorm(A) A_master = A_master.clone() A_master.requires_grad = True E_master = torch.sum(A_master, dim=-1, keepdim=True) E_master /= INPUT_SIZE V_master = torch.sum(A_master * A_master, dim=-1, keepdim=True) V_master /= INPUT_SIZE V_master = V_master - E_master * E_master V_master = 1.0 / torch.sqrt(V_master + EPS) C_master = (A_master - E_master) * V_master C = torch.chunk(C_master, TESSERACT_DIM, dim=0)[i] C = torch.chunk(C, TESSERACT_DIM, dim=-1)[j] check_equal(out, C) print_rank_0('layer norm forward: pass') grad_shape = C_master.shape grad_master = torch.randn(grad_shape, dtype=dtype, device=get_current_device()) torch.distributed.broadcast(grad_master, src=0) grad = torch.chunk(grad_master, TESSERACT_DIM, dim=0)[i] grad = torch.chunk(grad, TESSERACT_DIM, dim=-1)[j] out.backward(grad) C_master.backward(grad_master) A_grad = A_master.grad A_grad = torch.chunk(A_grad, TESSERACT_DIM, dim=0)[i] A_grad = torch.chunk(A_grad, TESSERACT_DIM, dim=-1)[j] check_equal(A_grad, A.grad) print_rank_0('layer norm backward: pass') def check_embed(): device = get_current_device() dtype = torch.float32 i = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_COL) j = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_ROW) k = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_DEP) embed = Embedding2p5D(VOCAB_SIZE, HIDDEN_SIZE) embed = embed.to(dtype).to(device) embed_master = torch.nn.Embedding(VOCAB_SIZE, HIDDEN_SIZE) embed_master = embed_master.to(dtype).to(device) weight_master = embed_master.weight.data torch.distributed.broadcast(weight_master, src=0) weight = torch.chunk(weight_master, TESSERACT_DIM, dim=-1)[j] weight = torch.chunk(weight, TESSERACT_DIM, dim=-1)[i] embed.weight.data.copy_(weight) A_shape = (BATCH_SIZE, SEQ_LENGTH) A_master = torch.randint(VOCAB_SIZE, A_shape, device=device) torch.distributed.broadcast(A_master, src=0) A = A_master.clone() out = embed(A) A_master = A_master.clone() C_master = embed_master(A_master) C = torch.chunk(C_master, TESSERACT_DIM, dim=0)[i] C = torch.chunk(C, TESSERACT_DIM, dim=-1)[j] check_equal(out, C) print_rank_0('embed forward: pass') grad_shape = C_master.shape grad_master = torch.randn(grad_shape, dtype=dtype, device=device) torch.distributed.broadcast(grad_master, src=0) grad = torch.chunk(grad_master, TESSERACT_DIM, dim=0)[i] grad = torch.chunk(grad, TESSERACT_DIM, dim=-1)[j] grad = grad.clone() out.backward(grad) grad_master = grad_master.clone() C_master.backward(grad_master) B_grad = embed_master.weight.grad B_grad = torch.chunk(B_grad, TESSERACT_DIM, dim=-1)[j] B_grad = torch.chunk(B_grad, TESSERACT_DIM, dim=-1)[i] check_equal(B_grad, embed.weight.grad) print_rank_0('embed backward: pass') def check_patch_embed(): device = get_current_device() dtype = torch.float32 i = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_COL) j = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_ROW) k = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_DEP) layer = PatchEmbedding2p5D(IMG_SIZE, 4, 3, HIDDEN_SIZE, dtype=dtype) torch.nn.init.ones_(layer.cls_token) torch.nn.init.ones_(layer.pos_embed) layer = layer.to(device) layer_master = VanillaPatchEmbedding(IMG_SIZE, 4, 3, HIDDEN_SIZE, dtype=dtype) torch.nn.init.ones_(layer_master.cls_token) torch.nn.init.ones_(layer_master.pos_embed) layer_master = layer_master.to(device) proj_weight_master = layer_master.weight.data torch.distributed.broadcast(proj_weight_master, src=0) proj_weight = torch.chunk(proj_weight_master, TESSERACT_DIM, dim=0)[j] proj_weight = torch.chunk(proj_weight, TESSERACT_DIM, dim=0)[i] layer.weight.data.copy_(proj_weight) proj_bias_master = layer_master.bias.data torch.distributed.broadcast(proj_bias_master, src=0) proj_bias = torch.chunk(proj_bias_master, TESSERACT_DIM, dim=0)[j] proj_bias = torch.chunk(proj_bias, TESSERACT_DIM, dim=0)[i] layer.bias.data.copy_(proj_bias) A_shape = (BATCH_SIZE, 3, IMG_SIZE, IMG_SIZE) A_master = torch.randn(A_shape, dtype=dtype, device=device) torch.distributed.broadcast(A_master, src=0) A = A_master.clone() out = layer(A) A_master = A_master.clone() C_master = layer_master(A_master) C = torch.chunk(C_master, TESSERACT_DIM, dim=0)[i] C = torch.chunk(C, TESSERACT_DIM, dim=-1)[j] check_equal(out, C) print_rank_0('patch embed forward: pass') grad_shape = C_master.shape grad_master = torch.randn(grad_shape, dtype=dtype, device=device) torch.distributed.broadcast(grad_master, src=0) grad = torch.chunk(grad_master, TESSERACT_DIM, dim=0)[i] grad = torch.chunk(grad, TESSERACT_DIM, dim=-1)[j] grad = grad.clone() out.backward(grad) grad_master = grad_master.clone() C_master.backward(grad_master) cls_grad_master = layer_master.cls_token.grad cls_grad = torch.chunk(cls_grad_master, TESSERACT_DIM, dim=-1)[j] cls_grad = torch.chunk(cls_grad, TESSERACT_DIM, dim=-1)[i] check_equal(cls_grad, layer.cls_token.grad) pos_grad_master = layer_master.pos_embed.grad pos_grad = torch.chunk(pos_grad_master, TESSERACT_DIM, dim=-1)[j] pos_grad = torch.chunk(pos_grad, TESSERACT_DIM, dim=-1)[i] check_equal(pos_grad, layer.pos_embed.grad) B_grad = layer_master.weight.grad B_grad = torch.chunk(B_grad, TESSERACT_DIM, dim=0)[j] B_grad = torch.chunk(B_grad, TESSERACT_DIM, dim=0)[i] check_equal(B_grad, layer.weight.grad) bias_grad = layer_master.bias.grad bias_grad = torch.chunk(bias_grad, TESSERACT_DIM)[j] bias_grad = torch.chunk(bias_grad, TESSERACT_DIM)[i] check_equal(bias_grad, layer.bias.grad) print_rank_0('patch embed backward: pass') def check_vocab_parallel_embed(): device = get_current_device() dtype = torch.float32 i = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_COL) j = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_ROW) k = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_DEP) embed = VocabParallelEmbedding2p5D(VOCAB_SIZE, HIDDEN_SIZE) embed = embed.to(dtype).to(device) embed_master = torch.nn.Embedding(VOCAB_SIZE, HIDDEN_SIZE) embed_master = embed_master.to(dtype).to(device) weight_master = embed_master.weight.data torch.distributed.broadcast(weight_master, src=0) weight = torch.chunk(weight_master, TESSERACT_DIM, dim=-1)[j] weight = torch.chunk(weight, TESSERACT_DIM, dim=0)[i] embed.weight.data.copy_(weight) A_shape = (BATCH_SIZE, SEQ_LENGTH) A_master = torch.randint(VOCAB_SIZE, A_shape, device=device) torch.distributed.broadcast(A_master, src=0) A = A_master.clone() out = embed(A) A_master = A_master.clone() C_master = embed_master(A_master) C = torch.chunk(C_master, TESSERACT_DIM, dim=0)[i] C = torch.chunk(C, TESSERACT_DIM, dim=-1)[j] check_equal(out, C) print_rank_0('vocab parallel embed forward: pass') grad_shape = C_master.shape grad_master = torch.randn(grad_shape, dtype=dtype, device=device) torch.distributed.broadcast(grad_master, src=0) grad = torch.chunk(grad_master, TESSERACT_DIM, dim=0)[i] grad = torch.chunk(grad, TESSERACT_DIM, dim=-1)[j] grad = grad.clone() out.backward(grad) grad_master = grad_master.clone() C_master.backward(grad_master) B_grad = embed_master.weight.grad B_grad = torch.chunk(B_grad, TESSERACT_DIM, dim=-1)[j] B_grad = torch.chunk(B_grad, TESSERACT_DIM, dim=0)[i] check_equal(B_grad, embed.weight.grad) print_rank_0('vocab parallel embed backward: pass') def check_classifier_no_given_weight(): device = get_current_device() dtype = torch.float32 INPUT_SIZE = HIDDEN_SIZE OUTPUT_SIZE = NUM_CLASSES j = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_ROW) i = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_COL) layer = Classifier2p5D(INPUT_SIZE, OUTPUT_SIZE) A_shape = (BATCH_SIZE, SEQ_LENGTH, INPUT_SIZE) A_master = torch.randint(5, A_shape, dtype=dtype, device=device) torch.distributed.broadcast(A_master, src=0) A = torch.chunk(A_master, TESSERACT_DIM, dim=0)[i] A = torch.chunk(A, TESSERACT_DIM, dim=-1)[j] A = A.clone() A.requires_grad = True W_shape = (OUTPUT_SIZE, INPUT_SIZE) W_master = torch.randint(5, W_shape, dtype=dtype, device=device) torch.distributed.broadcast(W_master, src=0) # W = torch.chunk(W_master, TESSERACT_DIM, dim=-1)[j] W = torch.chunk(W_master, TESSERACT_DIM, dim=-1)[j] W = torch.chunk(W, TESSERACT_DIM, dim=-1)[i] W = W.clone() layer.weight.data.copy_(W) # W.requires_grad = True B_shape = (OUTPUT_SIZE, ) B_master = torch.randint(5, B_shape, dtype=dtype, device=device) torch.distributed.broadcast(B_master, src=0) # B = torch.chunk(B_master, TESSERACT_DIM, dim=0)[j] B = B_master.clone() layer.bias.data.copy_(B) out = layer(A) A_master = A_master.clone() A_master.requires_grad = True W_master = W_master.clone() W_master.requires_grad = True B_master = B_master.clone() B_master.requires_grad = True C_master = torch.matmul(A_master, W_master.transpose(0, 1)) + B_master C = torch.chunk(C_master, TESSERACT_DIM, dim=0)[i] # C = torch.chunk(C, TESSERACT_DIM, dim=-1)[j] check_equal(out, C) print_rank_0('classifier (no given weight) forward: pass') grad_shape = C_master.shape grad_master = torch.randn(grad_shape, dtype=dtype, device=get_current_device()) torch.distributed.broadcast(grad_master, src=0) grad = torch.chunk(grad_master, TESSERACT_DIM, dim=0)[i] # grad = torch.chunk(grad, TESSERACT_DIM, dim=-1)[j] grad = grad.clone() out.backward(grad) grad_master = grad_master.clone() C_master.backward(grad_master) A_grad = A_master.grad A_grad = torch.chunk(A_grad, TESSERACT_DIM, dim=0)[i] A_grad = torch.chunk(A_grad, TESSERACT_DIM, dim=-1)[j] check_equal(A_grad, A.grad) W_grad = W_master.grad W_grad = torch.chunk(W_grad, TESSERACT_DIM, dim=-1)[j] W_grad = torch.chunk(W_grad, TESSERACT_DIM, dim=-1)[i] check_equal(W_grad, layer.weight.grad) B_grad = B_master.grad # B_grad = torch.chunk(B_grad, TESSERACT_DIM, dim=0)[j] # if i == 0: check_equal(B_grad, layer.bias.grad) print_rank_0('classifier (no given weight) backward: pass') def check_vocab_parallel_classifier_no_given_weight(): device = get_current_device() dtype = torch.float32 i = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_COL) j = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_ROW) k = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_DEP) layer = VocabParallelClassifier2p5D(HIDDEN_SIZE, VOCAB_SIZE, bias=True) layer = layer.to(dtype).to(device) layer_master = VanillaClassifier(HIDDEN_SIZE, VOCAB_SIZE, bias=True) layer_master = layer_master.to(dtype).to(device) weight_master = layer_master.weight.data torch.distributed.broadcast(weight_master, src=0) weight = torch.chunk(weight_master, TESSERACT_DIM, dim=0)[i] weight = torch.chunk(weight, TESSERACT_DIM, dim=-1)[j] layer.weight.data.copy_(weight) bias_master = layer_master.bias.data torch.distributed.broadcast(bias_master, src=0) bias = torch.chunk(bias_master, TESSERACT_DIM)[j] layer.bias.data.copy_(bias) A_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE) A_master = torch.randn(A_shape, dtype=dtype, device=device) torch.distributed.broadcast(A_master, src=0) A = torch.chunk(A_master, TESSERACT_DIM, dim=0)[i] A = torch.chunk(A, TESSERACT_DIM, dim=-1)[j] A = A.clone() A.requires_grad = True out = layer(A) A_master = A_master.clone() A_master.requires_grad = True C_master = layer_master(A_master) C = torch.chunk(C_master, TESSERACT_DIM, dim=0)[i] C = torch.chunk(C, TESSERACT_DIM, dim=-1)[j] check_equal(out, C) print_rank_0('vocab parallel classifier (no given weight) forward: pass') grad_shape = C_master.shape grad_master = torch.randn(grad_shape, dtype=dtype, device=device) torch.distributed.broadcast(grad_master, src=0) grad = torch.chunk(grad_master, TESSERACT_DIM, dim=0)[i] grad = torch.chunk(grad, TESSERACT_DIM, dim=-1)[j] grad = grad.clone() out.backward(grad) grad_master = grad_master.clone() C_master.backward(grad_master) A_grad = A_master.grad A_grad = torch.chunk(A_grad, TESSERACT_DIM, dim=0)[i] A_grad = torch.chunk(A_grad, TESSERACT_DIM, dim=-1)[j] check_equal(A_grad, A.grad) W_grad = layer_master.weight.grad W_grad = torch.chunk(W_grad, TESSERACT_DIM, dim=0)[i] W_grad = torch.chunk(W_grad, TESSERACT_DIM, dim=-1)[j] check_equal(W_grad, layer.weight.grad) B_grad = layer_master.bias.grad B_grad = torch.chunk(B_grad, TESSERACT_DIM)[j] if i == 0: check_equal(B_grad, layer.bias.grad) print_rank_0('vocab parallel classifier (no given weight) backward: pass') def check_classifier_given_embed_weight(): device = get_current_device() dtype = torch.float32 i = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_COL) j = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_ROW) k = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_DEP) embed = Embedding2p5D(VOCAB_SIZE, HIDDEN_SIZE) embed = embed.to(dtype).to(device) embed_master = torch.nn.Embedding(VOCAB_SIZE, HIDDEN_SIZE) embed_master = embed_master.to(dtype).to(device) weight_master = embed_master.weight.data torch.distributed.broadcast(weight_master, src=0) weight = torch.chunk(weight_master, TESSERACT_DIM, dim=-1)[j] weight = torch.chunk(weight, TESSERACT_DIM, dim=-1)[i] embed.weight.data.copy_(weight) layer = Classifier2p5D(HIDDEN_SIZE, VOCAB_SIZE, weight=embed.weight, bias=False) layer = layer.to(dtype).to(device) layer_master = VanillaClassifier(HIDDEN_SIZE, VOCAB_SIZE, weight=embed_master.weight, bias=False) layer_master = layer_master.to(dtype).to(device) A_shape = (BATCH_SIZE, SEQ_LENGTH) A_master = torch.randint(VOCAB_SIZE, A_shape, device=device) torch.distributed.broadcast(A_master, src=0) A = A_master.clone() out = layer(embed(A)) A_master = A_master.clone() C_master = layer_master(embed_master(A_master)) C = torch.chunk(C_master, TESSERACT_DIM, dim=0)[i] check_equal(out, C) print_rank_0('classifier (given embed weight) forward: pass') grad_shape = C_master.shape grad_master = torch.randn(grad_shape, dtype=dtype, device=device) torch.distributed.broadcast(grad_master, src=0) grad = torch.chunk(grad_master, TESSERACT_DIM, dim=0)[i] grad = grad.clone() out.backward(grad) grad_master = grad_master.clone() C_master.backward(grad_master) W_grad = embed_master.weight.grad W_grad = torch.chunk(W_grad, TESSERACT_DIM, dim=-1)[j] W_grad = torch.chunk(W_grad, TESSERACT_DIM, dim=-1)[i] check_equal(W_grad, embed.weight.grad) print_rank_0('classifier (given embed weight) backward: pass') def check_vocab_parallel_classifier_given_embed_weight(): device = get_current_device() dtype = torch.float32 i = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_COL) j = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_ROW) k = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_DEP) embed = VocabParallelEmbedding2p5D(VOCAB_SIZE, HIDDEN_SIZE) embed = embed.to(dtype).to(device) embed_master = torch.nn.Embedding(VOCAB_SIZE, HIDDEN_SIZE) embed_master = embed_master.to(dtype).to(device) weight_master = embed_master.weight.data torch.distributed.broadcast(weight_master, src=0) weight = torch.chunk(weight_master, TESSERACT_DIM, dim=-1)[j] weight = torch.chunk(weight, TESSERACT_DIM, dim=0)[i] embed.weight.data.copy_(weight) layer = VocabParallelClassifier2p5D(HIDDEN_SIZE, VOCAB_SIZE, weight=embed.weight, bias=False) layer = layer.to(dtype).to(device) layer_master = VanillaClassifier(HIDDEN_SIZE, VOCAB_SIZE, weight=embed_master.weight, bias=False) layer_master = layer_master.to(dtype).to(device) A_shape = (BATCH_SIZE, SEQ_LENGTH) A_master = torch.randint(VOCAB_SIZE, A_shape, device=device) torch.distributed.broadcast(A_master, src=0) A = A_master.clone() out = layer(embed(A)) A_master = A_master.clone() C_master = layer_master(embed_master(A_master)) C = torch.chunk(C_master, TESSERACT_DIM, dim=0)[i] C = torch.chunk(C, TESSERACT_DIM, dim=-1)[j] check_equal(out, C) print_rank_0('vocab parallel classifier (given embed weight) forward: pass') grad_shape = C_master.shape grad_master = torch.randn(grad_shape, dtype=dtype, device=device) torch.distributed.broadcast(grad_master, src=0) grad = torch.chunk(grad_master, TESSERACT_DIM, dim=0)[i] grad = torch.chunk(grad, TESSERACT_DIM, dim=-1)[j] grad = grad.clone() out.backward(grad) grad_master = grad_master.clone() C_master.backward(grad_master) W_grad = embed_master.weight.grad W_grad = torch.chunk(W_grad, TESSERACT_DIM, dim=-1)[j] W_grad = torch.chunk(W_grad, TESSERACT_DIM, dim=0)[i] check_equal(W_grad, embed.weight.grad) print_rank_0('vocab parallel classifier (given embed weight) backward: pass') def check_loss(): device = get_current_device() dtype = torch.float32 i = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_COL) j = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_ROW) k = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_DEP) criterion = CrossEntropyLoss2p5D() criterion_master = torch.nn.CrossEntropyLoss() out_shape = (BATCH_SIZE, NUM_CLASSES) out_master = torch.randn(out_shape, dtype=dtype, device=device) target_master = torch.randint(NUM_CLASSES, (BATCH_SIZE, ), dtype=torch.long, device=device) torch.distributed.broadcast(out_master, src=0) torch.distributed.broadcast(target_master, src=0) out = torch.chunk(out_master, TESSERACT_DIM, dim=0)[i] out = out.clone() out.requires_grad = True loss = criterion(out, target_master) out_master = out_master.clone() out_master.requires_grad = True loss_master = criterion_master(out_master, target_master) check_equal(loss, loss_master) print_rank_0('cross entropy loss forward: pass') loss.backward() loss_master.backward() out_grad = out_master.grad out_grad = torch.chunk(out_grad, TESSERACT_DIM, dim=0)[i] check_equal(out_grad, out.grad) print_rank_0('cross entropy loss backward: pass') def check_vocab_parallel_loss(): device = get_current_device() dtype = torch.float32 i = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_COL) j = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_ROW) k = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_DEP) criterion = VocabParallelCrossEntropyLoss2p5D() criterion_master = torch.nn.CrossEntropyLoss() out_shape = (BATCH_SIZE, NUM_CLASSES) out_master = torch.randn(out_shape, dtype=dtype, device=device) target_master = torch.randint(NUM_CLASSES, (BATCH_SIZE, ), dtype=torch.long, device=device) torch.distributed.broadcast(out_master, src=0) torch.distributed.broadcast(target_master, src=0) out = torch.chunk(out_master, TESSERACT_DIM, dim=0)[i] out = torch.chunk(out, TESSERACT_DIM, dim=-1)[j] out = out.clone() out.requires_grad = True loss = criterion(out, target_master) out_master = out_master.clone() out_master.requires_grad = True loss_master = criterion_master(out_master, target_master) check_equal(loss, loss_master) print_rank_0('vocab parallel cross entropy loss forward: pass') loss.backward() loss_master.backward() out_grad = out_master.grad out_grad = torch.chunk(out_grad, TESSERACT_DIM, dim=0)[i] out_grad = torch.chunk(out_grad, TESSERACT_DIM, dim=-1)[j] check_equal(out_grad, out.grad) print_rank_0('vocab parallel cross entropy loss backward: pass') # def check_attention(): # device = get_current_device() # dtype = torch.float32 # INPUT_SIZE = HIDDEN_SIZE # NUM_ATTENTION_HEADS = 2 # i = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_COL) # j = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_ROW) # k = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_DEP) # layer = TransformerSelfAttention2p5D( # HIDDEN_SIZE, NUM_ATTENTION_HEADS, # attention_dropout_prob=0.5, # hidden_dropout_prob=0.5, # dtype=dtype, # ) # A_shape = (BATCH_SIZE, SEQ_LENGTH, INPUT_SIZE) # A_master = torch.randn(A_shape, dtype=dtype, device=device) # torch.distributed.broadcast(A_master, src=0) # A = torch.chunk(A_master, TESSERACT_DIM, dim=0)[i] # A = torch.chunk(A, TESSERACT_DIM, dim=-1)[j] # A = A.clone() # A.requires_grad = True # mask_shape = (BATCH_SIZE // TESSERACT_DIM, NUM_ATTENTION_HEADS // TESSERACT_DIM, SEQ_LENGTH, SEQ_LENGTH) # attention_mask = torch.zeros(mask_shape, dtype=dtype, device=device) # out = layer(A, attention_mask) # assert out.shape == (BATCH_SIZE // TESSERACT_DIM, SEQ_LENGTH, INPUT_SIZE // TESSERACT_DIM) # print_rank_0('self attention forward: pass') # grad_shape = out.shape # grad = torch.randn(grad_shape, dtype=dtype, device=device) # out.backward(grad) # assert A.grad.shape == A.shape # print_rank_0('self attention backward: pass') # def check_mlp(): # device = get_current_device() # dtype = torch.float32 # INPUT_SIZE = HIDDEN_SIZE # i = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_COL) # j = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_ROW) # k = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_DEP) # layer = TransformerMLP2p5D( # HIDDEN_SIZE, # mlp_ratio=1, # dropout_prob=0.5, # act_func='gelu', # dtype=dtype, # ) # A_shape = (BATCH_SIZE, SEQ_LENGTH, INPUT_SIZE) # A_master = torch.randn(A_shape, dtype=dtype, device=device) # torch.distributed.broadcast(A_master, src=0) # A = torch.chunk(A_master, TESSERACT_DIM, dim=0)[i] # A = torch.chunk(A, TESSERACT_DIM, dim=-1)[j] # A = A.clone() # A.requires_grad = True # out = layer(A) # assert out.shape == (BATCH_SIZE // TESSERACT_DIM, SEQ_LENGTH, INPUT_SIZE // TESSERACT_DIM) # print_rank_0('mlp forward: pass') # grad_shape = out.shape # grad = torch.randn(grad_shape, dtype=dtype, device=device) # out.backward(grad) # assert A.grad.shape == A.shape # print_rank_0('mlp backward: pass') # def check_transformerlayer(): # device = get_current_device() # dtype = torch.float32 # INPUT_SIZE = HIDDEN_SIZE # NUM_ATTENTION_HEADS = 2 # i = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_COL) # j = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_ROW) # k = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_DEP) # layer = TransformerLayer2p5D( # HIDDEN_SIZE, # NUM_ATTENTION_HEADS, # act_func='gelu', # attention_dropout_prob=0.5, # hidden_dropout_prob=0.5, # dtype=dtype, # ) # A_shape = (BATCH_SIZE, SEQ_LENGTH, INPUT_SIZE) # A_master = torch.randn(A_shape, dtype=dtype, device=device) # torch.distributed.broadcast(A_master, src=0) # A = torch.chunk(A_master, TESSERACT_DIM, dim=0)[i] # A = torch.chunk(A, TESSERACT_DIM, dim=-1)[j] # A = A.clone() # A.requires_grad = True # mask_shape = (BATCH_SIZE // TESSERACT_DIM, NUM_ATTENTION_HEADS // TESSERACT_DIM, SEQ_LENGTH, SEQ_LENGTH) # attention_mask = torch.zeros(mask_shape, dtype=dtype, device=device) # out = layer(A, attention_mask) # assert out.shape == (BATCH_SIZE // TESSERACT_DIM, SEQ_LENGTH, INPUT_SIZE // TESSERACT_DIM) # print_rank_0('transformerlayer forward: pass') # grad_shape = out.shape # grad = torch.randn(grad_shape, dtype=dtype, device=device) # out.backward(grad) # assert A.grad.shape == A.shape # print_rank_0('transformerlayer backward: pass')
import torch from colossalai.context import ParallelMode from colossalai.core import global_context as gpc from colossalai.nn.layer.parallel_2p5d._operation import Matmul_AB_2p5D, Matmul_ABT_2p5D, \ Matmul_ATB_2p5D from colossalai.utils import get_current_device from colossalai.utils import print_rank_0 from .common import * def check_AB(): data_parallel_rank = 0 if not gpc.is_initialized(ParallelMode.DATA) else gpc.get_local_rank(ParallelMode.DATA) pipeline_parallel_rank = 0 if not gpc.is_initialized(ParallelMode.PIPELINE) else gpc.get_local_rank( ParallelMode.PIPELINE) pipeline_parallel_size = 1 if not gpc.is_initialized(ParallelMode.PIPELINE) else gpc.get_world_size( ParallelMode.PIPELINE) tensor_parallel_size = gpc.get_world_size(ParallelMode.TENSOR) dtype = torch.float i = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_COL) j = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_ROW) k = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_DEP) A_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE) A_master = torch.randn(A_shape, dtype=dtype, device=get_current_device()) torch.distributed.broadcast(A_master, src=0) A = torch.chunk(A_master, TESSERACT_DIM, dim=0)[i] A = torch.chunk(A, TESSERACT_DIM, dim=-1)[j] A = A.clone() A.requires_grad = True B_shape = (HIDDEN_SIZE, 4 * HIDDEN_SIZE) B_master = torch.randn(B_shape, dtype=dtype, device=get_current_device()) torch.distributed.broadcast(B_master, src=0) B = torch.chunk(B_master, TESSERACT_DIM, dim=0)[i] B = torch.chunk(B, TESSERACT_DIM, dim=-1)[j] B = B.clone() B.requires_grad = True out_shape = (BATCH_SIZE // TESSERACT_DIM, SEQ_LENGTH, 4 * HIDDEN_SIZE // TESSERACT_DIM) out = Matmul_AB_2p5D.apply(A, B, TESSERACT_DIM, out_shape, i, j, k, ParallelMode.PARALLEL_2P5D_ROW, ParallelMode.PARALLEL_2P5D_COL, data_parallel_rank, pipeline_parallel_rank, pipeline_parallel_size, tensor_parallel_size) C_shape = (BATCH_SIZE, SEQ_LENGTH, 4 * HIDDEN_SIZE) A_master = A_master.clone() A_master.requires_grad = True B_master = B_master.clone() B_master.requires_grad = True C_master = torch.matmul(A_master, B_master) C = torch.chunk(C_master, TESSERACT_DIM, dim=0)[i] C = torch.chunk(C, TESSERACT_DIM, dim=-1)[j] # check forward correctness check_equal(out, C) print_rank_0('AB forward: pass') grad_shape = C_master.shape grad_master = torch.randn(grad_shape, dtype=dtype, device=get_current_device()) torch.distributed.broadcast(grad_master, src=0) grad = torch.chunk(grad_master, TESSERACT_DIM, dim=0)[i] grad = torch.chunk(grad, TESSERACT_DIM, dim=-1)[j] out.backward(grad) C_master.backward(grad_master) A_grad = A_master.grad A_grad = torch.chunk(A_grad, TESSERACT_DIM, dim=0)[i] A_grad = torch.chunk(A_grad, TESSERACT_DIM, dim=-1)[j] # check backward correctness check_equal(A_grad, A.grad) B_grad = B_master.grad B_grad = torch.chunk(B_grad, TESSERACT_DIM, dim=0)[i] B_grad = torch.chunk(B_grad, TESSERACT_DIM, dim=-1)[j] # check backward correctness check_equal(B_grad, B.grad) print_rank_0('AB backward: pass') def check_ABT(): data_parallel_rank = 0 if not gpc.is_initialized(ParallelMode.DATA) else gpc.get_local_rank(ParallelMode.DATA) pipeline_parallel_rank = 0 if not gpc.is_initialized(ParallelMode.PIPELINE) else gpc.get_local_rank( ParallelMode.PIPELINE) pipeline_parallel_size = 1 if not gpc.is_initialized(ParallelMode.PIPELINE) else gpc.get_world_size( ParallelMode.PIPELINE) tensor_parallel_size = gpc.get_world_size(ParallelMode.TENSOR) dtype = torch.float device = get_current_device() i = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_COL) j = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_ROW) k = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_DEP) C_shape = (BATCH_SIZE, SEQ_LENGTH, 4 * HIDDEN_SIZE) C_master = torch.randn(C_shape, dtype=dtype, device=device) torch.distributed.broadcast(C_master, src=0) C = torch.chunk(C_master, TESSERACT_DIM, dim=0)[i] C = torch.chunk(C, TESSERACT_DIM, dim=-1)[j] C = C.clone() C.requires_grad = True B_shape = (HIDDEN_SIZE, 4 * HIDDEN_SIZE) B_master = torch.randn(B_shape, dtype=dtype, device=device) torch.distributed.broadcast(B_master, src=0) B = torch.chunk(B_master, TESSERACT_DIM, dim=0)[i] B = torch.chunk(B, TESSERACT_DIM, dim=-1)[j] B = B.clone() B.requires_grad = True out = Matmul_ABT_2p5D.apply(C, B, TESSERACT_DIM, (BATCH_SIZE // TESSERACT_DIM, SEQ_LENGTH, HIDDEN_SIZE // TESSERACT_DIM), i, j, k, ParallelMode.PARALLEL_2P5D_ROW, ParallelMode.PARALLEL_2P5D_COL, data_parallel_rank, pipeline_parallel_rank, pipeline_parallel_size, tensor_parallel_size) A_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE) C_master = C_master.clone() C_master.requires_grad = True B_master = B_master.clone() B_master.requires_grad = True A_master = torch.matmul(C_master, B_master.transpose(0, 1)) A = torch.chunk(A_master, TESSERACT_DIM, dim=0)[i] A = torch.chunk(A, TESSERACT_DIM, dim=-1)[j] check_equal(out, A) print_rank_0('ABT forward: pass') grad_shape = A_master.shape grad_master = torch.randn(grad_shape, dtype=dtype, device=device) torch.distributed.broadcast(grad_master, src=0) grad = torch.chunk(grad_master, TESSERACT_DIM, dim=0)[i] grad = torch.chunk(grad, TESSERACT_DIM, dim=-1)[j] # backward out.backward(grad) A_master.backward(grad_master) C_grad = C_master.grad C_grad = torch.chunk(C_grad, TESSERACT_DIM, dim=0)[i] C_grad = torch.chunk(C_grad, TESSERACT_DIM, dim=-1)[j] check_equal(C_grad, C.grad) B_grad = B_master.grad B_grad = torch.chunk(B_grad, TESSERACT_DIM, dim=0)[i] B_grad = torch.chunk(B_grad, TESSERACT_DIM, dim=-1)[j] check_equal(B_grad, B.grad) print_rank_0('ABT backward: pass') def check_ATB(): data_parallel_rank = 0 if not gpc.is_initialized(ParallelMode.DATA) else gpc.get_local_rank(ParallelMode.DATA) pipeline_parallel_rank = 0 if not gpc.is_initialized(ParallelMode.PIPELINE) else gpc.get_local_rank( ParallelMode.PIPELINE) pipeline_parallel_size = 1 if not gpc.is_initialized(ParallelMode.PIPELINE) else gpc.get_world_size( ParallelMode.PIPELINE) tensor_parallel_size = gpc.get_world_size(ParallelMode.TENSOR) device = get_current_device() dtype = torch.float i = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_COL) j = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_ROW) k = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_DEP) A_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE) A_master = torch.randn(A_shape, dtype=dtype, device=device) torch.distributed.broadcast(A_master, src=0) A = torch.chunk(A_master, TESSERACT_DIM, dim=0)[i] A = torch.chunk(A, TESSERACT_DIM, dim=-1)[j] A = A.clone() A.requires_grad = True C_shape = (BATCH_SIZE, SEQ_LENGTH, 4 * HIDDEN_SIZE) C_master = torch.randn(C_shape, dtype=dtype, device=device) torch.distributed.broadcast(C_master, src=0) C = torch.chunk(C_master, TESSERACT_DIM, dim=0)[i] C = torch.chunk(C, TESSERACT_DIM, dim=-1)[j] C = C.clone() C.requires_grad = True out = Matmul_ATB_2p5D.apply(A, C, TESSERACT_DIM, (HIDDEN_SIZE // TESSERACT_DIM, 4 * HIDDEN_SIZE // TESSERACT_DIM), i, j, k, ParallelMode.PARALLEL_2P5D_ROW, ParallelMode.PARALLEL_2P5D_COL, data_parallel_rank, pipeline_parallel_rank, pipeline_parallel_size, tensor_parallel_size) B_shape = (HIDDEN_SIZE, 4 * HIDDEN_SIZE) A_master = A_master.clone() A_master.requires_grad = True C_master = C_master.clone() C_master.requires_grad = True B_master = torch.matmul( A_master.view(-1, A_master.shape[-1]).transpose(0, 1), C_master.view(-1, C_master.shape[-1])) B = torch.chunk(B_master, TESSERACT_DIM, dim=0)[i] B = torch.chunk(B, TESSERACT_DIM, dim=-1)[j] check_equal(out, B) print_rank_0('ATB forward: pass') grad_shape = B_master.shape grad_master = torch.randn(grad_shape, dtype=dtype, device=device) torch.distributed.broadcast(grad_master, src=0) grad = torch.chunk(grad_master, TESSERACT_DIM, dim=0)[i] grad = torch.chunk(grad, TESSERACT_DIM, dim=-1)[j] out.backward(grad) B_master.backward(grad_master) A_grad = A_master.grad A_grad = torch.chunk(A_grad, TESSERACT_DIM, dim=0)[i] A_grad = torch.chunk(A_grad, TESSERACT_DIM, dim=-1)[j] check_equal(A_grad, A.grad) C_grad = C_master.grad C_grad = torch.chunk(C_grad, TESSERACT_DIM, dim=0)[i] C_grad = torch.chunk(C_grad, TESSERACT_DIM, dim=-1)[j] check_equal(C_grad, C.grad) print_rank_0('ATB backward: pass')
import torch TESSERACT_DIM = 2 TESSERACT_DEP = 2 BATCH_SIZE = 8 SEQ_LENGTH = 8 HIDDEN_SIZE = 8 NUM_CLASSES = 8 VOCAB_SIZE = 16 IMG_SIZE = 16 def check_equal(A, B): assert torch.allclose(A, B, rtol=1e-5, atol=1e-2)
#!/usr/bin/env python # -*- encoding: utf-8 -*- from functools import partial import pytest import torch import torch.multiprocessing as mp from colossalai.core import global_context as gpc from colossalai.initialize import launch from colossalai.logging import disable_existing_loggers from colossalai.utils import free_port from colossalai.testing import rerun_if_address_is_in_use, skip_if_not_enough_gpus from checks_3d.check_layer_3d import (check_classifier_no_given_weight, check_embed, check_layernorm, check_linear, check_loss, check_patch_embed, check_vocab_parallel_classifier_given_embed_weight, check_vocab_parallel_classifier_no_given_weight, check_vocab_parallel_embed, check_vocab_parallel_loss) CONFIG = dict( parallel=dict( pipeline=1, tensor=dict(mode='3d', size=8), ), seed=42, ) def check_layer(): check_linear() check_layernorm() check_classifier_no_given_weight() check_vocab_parallel_classifier_no_given_weight() check_vocab_parallel_classifier_given_embed_weight() check_embed() check_patch_embed() check_vocab_parallel_embed() check_loss() check_vocab_parallel_loss() def check_layer_and_operation(rank, world_size, port): disable_existing_loggers() launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') torch.backends.cuda.matmul.allow_tf32 = False torch.backends.cudnn.allow_tf32 = False torch.backends.cudnn.deterministic = True check_layer() gpc.destroy() torch.cuda.empty_cache() @pytest.mark.dist @skip_if_not_enough_gpus(min_gpus=8) @rerun_if_address_is_in_use() def test_3d(): world_size = 8 run_func = partial(check_layer_and_operation, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_3d()
#!/usr/bin/env python # -*- encoding: utf-8 -*- import torch DEPTH = 2 BATCH_SIZE = 8 SEQ_LENGTH = 8 HIDDEN_SIZE = 8 NUM_CLASSES = 8 NUM_BLOCKS = 2 IMG_SIZE = 16 VOCAB_SIZE = 16 def check_equal(A, B): eq = torch.allclose(A, B, rtol=1e-3, atol=1e-2) assert eq, f"\nA = {A}\nB = {B}" return eq
#!/usr/bin/env python # -*- encoding: utf-8 -*- import time import torch from colossalai.constants import INPUT_GROUP_3D, OUTPUT_GROUP_3D, WEIGHT_GROUP_3D from colossalai.core import global_context from colossalai.logging import get_dist_logger from colossalai.nn import ( Classifier3D, CrossEntropyLoss3D, Embedding3D, LayerNorm3D, Linear3D, PatchEmbedding3D, VanillaClassifier, VanillaPatchEmbedding, VocabParallelClassifier3D, VocabParallelCrossEntropyLoss3D, VocabParallelEmbedding3D, ) from colossalai.nn.layer.parallel_3d._utils import get_parallel_mode_from_env from colossalai.utils import get_current_device, print_rank_0 from .common import BATCH_SIZE, DEPTH, HIDDEN_SIZE, IMG_SIZE, NUM_CLASSES, SEQ_LENGTH, VOCAB_SIZE, check_equal def check_linear(): rank = torch.distributed.get_rank() logger = get_dist_logger() device = get_current_device() INPUT_SIZE = HIDDEN_SIZE OUTPUT_SIZE = 2 * HIDDEN_SIZE input_parallel_mode = get_parallel_mode_from_env(INPUT_GROUP_3D) weight_parallel_mode = get_parallel_mode_from_env(WEIGHT_GROUP_3D) output_parallel_mode = get_parallel_mode_from_env(OUTPUT_GROUP_3D) j = global_context.get_local_rank(input_parallel_mode) i = global_context.get_local_rank(weight_parallel_mode) k = global_context.get_local_rank(output_parallel_mode) layer = Linear3D(INPUT_SIZE, OUTPUT_SIZE, bias=True) layer = layer.to(device) layer_master = torch.nn.Linear(INPUT_SIZE, OUTPUT_SIZE) layer_master = layer_master.to(device) weight_master = layer_master.weight.data.transpose(0, 1).contiguous() torch.distributed.broadcast(weight_master, src=0) weight = torch.chunk(weight_master, DEPTH, dim=0)[k] weight = torch.chunk(weight, DEPTH, dim=-1)[j] weight = torch.chunk(weight, DEPTH, dim=0)[i] layer.weight.data.copy_(weight) bias_master = layer_master.bias.data torch.distributed.broadcast(bias_master, src=0) bias = torch.chunk(bias_master, DEPTH)[j] layer.bias.data.copy_(bias) A_shape = (BATCH_SIZE, SEQ_LENGTH, INPUT_SIZE) A_master = torch.randn(A_shape, device=device) torch.distributed.broadcast(A_master, src=0) A = torch.chunk(A_master, DEPTH, dim=0)[i] A = torch.chunk(A, DEPTH, dim=-1)[k] A = torch.chunk(A, DEPTH, dim=0)[j] A = A.clone() A.requires_grad = True fwd_start = time.time() out = layer(A) torch.cuda.synchronize() fwd_end = time.time() print_rank_0( 'linear forward: {0} --> {1} | {2:.3f} s'.format(tuple(A.shape), tuple(out.shape), fwd_end - fwd_start), logger) A_master = A_master.clone() A_master.requires_grad = True C_master = layer_master(A_master) C = torch.chunk(C_master, DEPTH, dim=0)[i] C = torch.chunk(C, DEPTH, dim=-1)[j] C = torch.chunk(C, DEPTH, dim=0)[k] logger.info('Rank {} linear forward: {}'.format(rank, check_equal(out, C))) grad_shape = C_master.shape grad_master = torch.randn(grad_shape, device=get_current_device()) torch.distributed.broadcast(grad_master, src=0) grad = torch.chunk(grad_master, DEPTH, dim=0)[i] grad = torch.chunk(grad, DEPTH, dim=-1)[j] grad = torch.chunk(grad, DEPTH, dim=0)[k] bwd_start = time.time() out.backward(grad) torch.cuda.synchronize() bwd_end = time.time() print_rank_0('linear backward: {:.3f} s'.format(bwd_end - bwd_start), logger) C_master.backward(grad_master) A_grad = A_master.grad A_grad = torch.chunk(A_grad, DEPTH, dim=0)[i] A_grad = torch.chunk(A_grad, DEPTH, dim=-1)[k] A_grad = torch.chunk(A_grad, DEPTH, dim=0)[j] logger.info('Rank {} linear backward (input_grad): {}'.format(rank, check_equal(A_grad, A.grad))) B_grad = layer_master.weight.grad.transpose(0, 1) B_grad = torch.chunk(B_grad, DEPTH, dim=0)[k] B_grad = torch.chunk(B_grad, DEPTH, dim=-1)[j] B_grad = torch.chunk(B_grad, DEPTH, dim=0)[i] logger.info('Rank {} linear backward (weight_grad): {}'.format(rank, check_equal(B_grad, layer.weight.grad))) bias_grad = layer_master.bias.grad bias_grad = torch.chunk(bias_grad, DEPTH)[j] logger.info('Rank {} linear backward (bias_grad): {}'.format(rank, check_equal(bias_grad, layer.bias.grad))) return fwd_end - fwd_start, bwd_end - bwd_start def check_layernorm(): rank = torch.distributed.get_rank() logger = get_dist_logger() device = get_current_device() INPUT_SIZE = HIDDEN_SIZE input_parallel_mode = get_parallel_mode_from_env(INPUT_GROUP_3D) weight_parallel_mode = get_parallel_mode_from_env(WEIGHT_GROUP_3D) output_parallel_mode = get_parallel_mode_from_env(OUTPUT_GROUP_3D) j = global_context.get_local_rank(input_parallel_mode) i = global_context.get_local_rank(weight_parallel_mode) k = global_context.get_local_rank(output_parallel_mode) norm = LayerNorm3D(INPUT_SIZE, eps=1e-6) norm = norm.to(device) norm_master = torch.nn.LayerNorm(INPUT_SIZE, eps=1e-6) norm_master = norm_master.to(device) weight_master = norm_master.weight.data torch.distributed.broadcast(weight_master, src=0) weight = torch.chunk(weight_master, DEPTH)[k] norm.weight.data.copy_(weight) bias_master = norm_master.bias.data torch.distributed.broadcast(bias_master, src=0) bias = torch.chunk(bias_master, DEPTH)[k] norm.bias.data.copy_(bias) A_shape = (BATCH_SIZE, SEQ_LENGTH, INPUT_SIZE) A_master = torch.randn(A_shape, device=device) torch.distributed.broadcast(A_master, src=0) A = torch.chunk(A_master, DEPTH, dim=0)[i] A = torch.chunk(A, DEPTH, dim=-1)[k] A = torch.chunk(A, DEPTH, dim=0)[j] A = A.clone() A.requires_grad = True fwd_start = time.time() out = norm(A) torch.cuda.synchronize() fwd_end = time.time() print_rank_0( 'layer norm forward: pass | {0} --> {1} | {2:.3f} s'.format(tuple(A.shape), tuple(out.shape), fwd_end - fwd_start), logger) A_master = A_master.clone() A_master.requires_grad = True C_master = norm_master(A_master) C = torch.chunk(C_master, DEPTH, dim=0)[i] C = torch.chunk(C, DEPTH, dim=-1)[k] C = torch.chunk(C, DEPTH, dim=0)[j] logger.info('Rank {} layernorm forward: {}'.format(rank, check_equal(out, C))) grad_shape = C_master.shape grad_master = torch.randn(grad_shape, device=device) torch.distributed.broadcast(grad_master, src=0) grad = torch.chunk(grad_master, DEPTH, dim=0)[i] grad = torch.chunk(grad, DEPTH, dim=-1)[k] grad = torch.chunk(grad, DEPTH, dim=0)[j] bwd_start = time.time() out.backward(grad) torch.cuda.synchronize() bwd_end = time.time() print_rank_0('layer norm backward: pass | {:.3f} s'.format(bwd_end - bwd_start), logger) C_master.backward(grad_master) A_grad = A_master.grad A_grad = torch.chunk(A_grad, DEPTH, dim=0)[i] A_grad = torch.chunk(A_grad, DEPTH, dim=-1)[k] A_grad = torch.chunk(A_grad, DEPTH, dim=0)[j] logger.info('Rank {} layernorm backward (input_grad): {}'.format(rank, check_equal(A_grad, A.grad))) bias_grad = norm_master.weight.grad bias_grad = torch.chunk(bias_grad, DEPTH)[k] logger.info('Rank {} layernorm backward (weight_grad): {}'.format(rank, check_equal(bias_grad, norm.weight.grad))) bias_grad = norm_master.bias.grad bias_grad = torch.chunk(bias_grad, DEPTH)[k] logger.info('Rank {} layernorm backward (bias_grad): {}'.format(rank, check_equal(bias_grad, norm.bias.grad))) return fwd_end - fwd_start, bwd_end - bwd_start def check_classifier_no_given_weight(): rank = torch.distributed.get_rank() logger = get_dist_logger() device = get_current_device() INPUT_SIZE = HIDDEN_SIZE input_parallel_mode = get_parallel_mode_from_env(INPUT_GROUP_3D) weight_parallel_mode = get_parallel_mode_from_env(WEIGHT_GROUP_3D) output_parallel_mode = get_parallel_mode_from_env(OUTPUT_GROUP_3D) j = global_context.get_local_rank(input_parallel_mode) i = global_context.get_local_rank(weight_parallel_mode) k = global_context.get_local_rank(output_parallel_mode) layer = Classifier3D(INPUT_SIZE, NUM_CLASSES, bias=True) layer = layer.to(device) layer_master = VanillaClassifier(INPUT_SIZE, NUM_CLASSES, bias=True) layer_master = layer_master.to(device) weight_master = layer_master.weight.data torch.distributed.broadcast(weight_master, src=0) weight = torch.chunk(weight_master, DEPTH, dim=-1)[k] layer.weight.data.copy_(weight) bias_master = layer_master.bias.data torch.distributed.broadcast(bias_master, src=0) layer.bias.data.copy_(bias_master) A_shape = (BATCH_SIZE, SEQ_LENGTH, INPUT_SIZE) A_master = torch.randn(A_shape, device=device) torch.distributed.broadcast(A_master, src=0) A = torch.chunk(A_master, DEPTH, dim=0)[i] A = torch.chunk(A, DEPTH, dim=-1)[k] A = torch.chunk(A, DEPTH, dim=0)[j] A = A.clone() A.requires_grad = True fwd_start = time.time() out = layer(A) torch.cuda.synchronize() fwd_end = time.time() print_rank_0( 'classifier (no given weight) forward: pass | {0} --> {1} | {2:.3f} s'.format( tuple(A.shape), tuple(out.shape), fwd_end - fwd_start), logger) A_master = A_master.clone() A_master.requires_grad = True C_master = layer_master(A_master) C = torch.chunk(C_master, DEPTH, dim=0)[i] C = torch.chunk(C, DEPTH, dim=0)[j] logger.info('Rank {} classifier (no given weight) forward: {}'.format(rank, check_equal(out, C))) grad_shape = C_master.shape grad_master = torch.randn(grad_shape, device=get_current_device()) torch.distributed.broadcast(grad_master, src=0) grad = torch.chunk(grad_master, DEPTH, dim=0)[i] grad = torch.chunk(grad, DEPTH, dim=0)[j] grad = grad.clone() bwd_start = time.time() out.backward(grad) torch.cuda.synchronize() bwd_end = time.time() print_rank_0('classifier (no given weight) backward: pass | {:.3f} s'.format(bwd_end - bwd_start), logger) grad_master = grad_master.clone() C_master.backward(grad_master) A_grad = A_master.grad A_grad = torch.chunk(A_grad, DEPTH, dim=0)[i] A_grad = torch.chunk(A_grad, DEPTH, dim=-1)[k] A_grad = torch.chunk(A_grad, DEPTH, dim=0)[j] logger.info('Rank {} classifier (no given weight) backward (input_grad): {}'.format( rank, check_equal(A_grad, A.grad))) B_grad = layer_master.weight.grad B_grad = torch.chunk(B_grad, DEPTH, dim=-1)[k] if j == k: logger.info('Rank {} classifier (no given weight) backward (weight_grad): {}'.format( rank, check_equal(B_grad, layer.weight.grad))) else: logger.info('Rank {} classifier (no given weight) backward (weight_grad): {}'.format( rank, layer.weight.grad is None)) bias_grad = layer_master.bias.grad logger.info('Rank {} classifier (no given weight) backward (bias_grad): {}'.format( rank, check_equal(bias_grad, layer.bias.grad))) return fwd_end - fwd_start, bwd_end - bwd_start def check_vocab_parallel_classifier_no_given_weight(): rank = torch.distributed.get_rank() logger = get_dist_logger() device = get_current_device() INPUT_SIZE = HIDDEN_SIZE input_parallel_mode = get_parallel_mode_from_env(INPUT_GROUP_3D) weight_parallel_mode = get_parallel_mode_from_env(WEIGHT_GROUP_3D) output_parallel_mode = get_parallel_mode_from_env(OUTPUT_GROUP_3D) j = global_context.get_local_rank(input_parallel_mode) i = global_context.get_local_rank(weight_parallel_mode) k = global_context.get_local_rank(output_parallel_mode) layer = VocabParallelClassifier3D(INPUT_SIZE, VOCAB_SIZE, bias=True) layer = layer.to(device) layer_master = VanillaClassifier(INPUT_SIZE, VOCAB_SIZE, bias=True) layer_master = layer_master.to(device) weight_master = layer_master.weight.data torch.distributed.broadcast(weight_master, src=0) weight = torch.chunk(weight_master, DEPTH, dim=0)[j] weight = torch.chunk(weight, DEPTH, dim=0)[i] weight = torch.chunk(weight, DEPTH, dim=-1)[k] layer.weight.data.copy_(weight) bias_master = layer_master.bias.data torch.distributed.broadcast(bias_master, src=0) bias = torch.chunk(bias_master, DEPTH)[j] layer.bias.data.copy_(bias) A_shape = (BATCH_SIZE, SEQ_LENGTH, INPUT_SIZE) A_master = torch.randn(A_shape, device=device) torch.distributed.broadcast(A_master, src=0) A = torch.chunk(A_master, DEPTH, dim=0)[i] A = torch.chunk(A, DEPTH, dim=-1)[k] A = torch.chunk(A, DEPTH, dim=0)[j] A = A.clone() A.requires_grad = True fwd_start = time.time() out = layer(A) torch.cuda.synchronize() fwd_end = time.time() print_rank_0( 'vocab parallel classifier (no given weight) forward: pass | {0} --> {1} | {2:.3f} s'.format( tuple(A.shape), tuple(out.shape), fwd_end - fwd_start), logger) A_master = A_master.clone() A_master.requires_grad = True C_master = layer_master(A_master) C = torch.chunk(C_master, DEPTH, dim=0)[i] C = torch.chunk(C, DEPTH, dim=-1)[j] C = torch.chunk(C, DEPTH, dim=0)[k] logger.info('Rank {} vocab parallel classifier (no given weight) forward: {}'.format(rank, check_equal(out, C))) grad_shape = C_master.shape grad_master = torch.randn(grad_shape, device=device) torch.distributed.broadcast(grad_master, src=0) grad = torch.chunk(grad_master, DEPTH, dim=0)[i] grad = torch.chunk(grad, DEPTH, dim=-1)[j] grad = torch.chunk(grad, DEPTH, dim=0)[k] grad = grad.clone() bwd_start = time.time() out.backward(grad) torch.cuda.synchronize() bwd_end = time.time() print_rank_0('vocab parallel classifier (no given weight) backward: pass | {:.3f} s'.format(bwd_end - bwd_start), logger) grad_master = grad_master.clone() C_master.backward(grad_master) A_grad = A_master.grad A_grad = torch.chunk(A_grad, DEPTH, dim=0)[i] A_grad = torch.chunk(A_grad, DEPTH, dim=-1)[k] A_grad = torch.chunk(A_grad, DEPTH, dim=0)[j] logger.info('Rank {} vocab parallel classifier (no given weight) backward (input_grad): {}'.format( rank, check_equal(A_grad, A.grad))) B_grad = layer_master.weight.grad B_grad = torch.chunk(B_grad, DEPTH, dim=0)[j] B_grad = torch.chunk(B_grad, DEPTH, dim=0)[i] B_grad = torch.chunk(B_grad, DEPTH, dim=-1)[k] logger.info('Rank {} vocab parallel classifier (no given weight) backward (weight_grad): {}'.format( rank, check_equal(B_grad, layer.weight.grad))) bias_grad = layer_master.bias.grad bias_grad = torch.chunk(bias_grad, DEPTH)[j] logger.info('Rank {} vocab parallel classifier (no given weight) backward (bias_grad): {}'.format( rank, check_equal(bias_grad, layer.bias.grad))) return fwd_end - fwd_start, bwd_end - bwd_start def check_classifier_given_embed_weight(): rank = torch.distributed.get_rank() logger = get_dist_logger() device = get_current_device() dtype = torch.float32 input_parallel_mode = get_parallel_mode_from_env(INPUT_GROUP_3D) weight_parallel_mode = get_parallel_mode_from_env(WEIGHT_GROUP_3D) output_parallel_mode = get_parallel_mode_from_env(OUTPUT_GROUP_3D) j = global_context.get_local_rank(input_parallel_mode) i = global_context.get_local_rank(weight_parallel_mode) k = global_context.get_local_rank(output_parallel_mode) embed = Embedding3D(VOCAB_SIZE, HIDDEN_SIZE) embed = embed.to(dtype).to(device) embed_master = torch.nn.Embedding(VOCAB_SIZE, HIDDEN_SIZE) embed_master = embed_master.to(dtype).to(device) weight_master = embed_master.weight.data torch.distributed.broadcast(weight_master, src=0) weight = torch.chunk(weight_master, DEPTH, dim=-1)[k] embed.weight.data.copy_(weight) layer = Classifier3D(HIDDEN_SIZE, VOCAB_SIZE, weight=embed.weight, bias=False) layer = layer.to(dtype).to(device) layer_master = VanillaClassifier(HIDDEN_SIZE, VOCAB_SIZE, weight=embed_master.weight, bias=False) layer_master = layer_master.to(dtype).to(device) A_shape = (BATCH_SIZE, SEQ_LENGTH) A_master = torch.randint(VOCAB_SIZE, A_shape, device=device) torch.distributed.broadcast(A_master, src=0) A = A_master.clone() fwd_start = time.time() out = layer(embed(A)) torch.cuda.synchronize() fwd_end = time.time() print_rank_0( 'classifier (given embed weight) forward: pass | {0} --> {1} | {2:.3f} s'.format( tuple(A.shape), tuple(out.shape), fwd_end - fwd_start), logger) A_master = A_master.clone() C_master = layer_master(embed_master(A_master)) C = torch.chunk(C_master, DEPTH, dim=0)[i] C = torch.chunk(C, DEPTH, dim=0)[j] logger.info('Rank {} classifier (given embed weight) forward: {}'.format(rank, check_equal(out, C))) grad_shape = C_master.shape grad_master = torch.randn(grad_shape, dtype=dtype, device=get_current_device()) torch.distributed.broadcast(grad_master, src=0) grad = torch.chunk(grad_master, DEPTH, dim=0)[i] grad = torch.chunk(grad, DEPTH, dim=0)[j] grad = grad.clone() bwd_start = time.time() out.backward(grad) torch.cuda.synchronize() bwd_end = time.time() print_rank_0('classifier (given embed weight) backward: pass | {:.3f} s'.format(bwd_end - bwd_start), logger) grad_master = grad_master.clone() C_master.backward(grad_master) B_grad = embed_master.weight.grad B_grad = torch.chunk(B_grad, DEPTH, dim=-1)[k] if j == k: logger.info('Rank {} classifier (given embed weight) backward (weight_grad): {}'.format( rank, check_equal(B_grad, embed.weight.grad))) else: logger.info('Rank {} classifier (given embed weight) backward (weight_grad): {}'.format( rank, embed.weight.grad is None)) return fwd_end - fwd_start, bwd_end - bwd_start def check_vocab_parallel_classifier_given_embed_weight(): rank = torch.distributed.get_rank() logger = get_dist_logger() device = get_current_device() input_parallel_mode = get_parallel_mode_from_env(INPUT_GROUP_3D) weight_parallel_mode = get_parallel_mode_from_env(WEIGHT_GROUP_3D) output_parallel_mode = get_parallel_mode_from_env(OUTPUT_GROUP_3D) j = global_context.get_local_rank(input_parallel_mode) i = global_context.get_local_rank(weight_parallel_mode) k = global_context.get_local_rank(output_parallel_mode) embed = VocabParallelEmbedding3D(VOCAB_SIZE, HIDDEN_SIZE) embed = embed.to(device) embed_master = torch.nn.Embedding(VOCAB_SIZE, HIDDEN_SIZE) embed_master = embed_master.to(device) weight_master = embed_master.weight.data torch.distributed.broadcast(weight_master, src=0) weight = torch.chunk(weight_master, DEPTH, dim=0)[j] weight = torch.chunk(weight, DEPTH, dim=0)[i] weight = torch.chunk(weight, DEPTH, dim=-1)[k] embed.weight.data.copy_(weight) layer = VocabParallelClassifier3D(HIDDEN_SIZE, VOCAB_SIZE, weight=embed.weight, bias=False) layer = layer.to(device) layer_master = VanillaClassifier(HIDDEN_SIZE, VOCAB_SIZE, weight=embed_master.weight, bias=False) layer_master = layer_master.to(device) A_shape = (BATCH_SIZE, SEQ_LENGTH) A_master = torch.randint(VOCAB_SIZE, A_shape, device=device) torch.distributed.broadcast(A_master, src=0) A = A_master.clone() fwd_start = time.time() out = layer(embed(A)) torch.cuda.synchronize() fwd_end = time.time() print_rank_0( 'vocab parallel classifier (given embed weight) forward: pass | {0} --> {1} | {2:.3f} s'.format( tuple(A.shape), tuple(out.shape), fwd_end - fwd_start), logger) A_master = A_master.clone() C_master = layer_master(embed_master(A_master)) C = torch.chunk(C_master, DEPTH, dim=0)[i] C = torch.chunk(C, DEPTH, dim=-1)[j] C = torch.chunk(C, DEPTH, dim=0)[k] logger.info('Rank {} vocab parallel classifier (given embed weight) forward: {}'.format(rank, check_equal(out, C))) grad_shape = C_master.shape grad_master = torch.randn(grad_shape, device=device) torch.distributed.broadcast(grad_master, src=0) grad = torch.chunk(grad_master, DEPTH, dim=0)[i] grad = torch.chunk(grad, DEPTH, dim=-1)[j] grad = torch.chunk(grad, DEPTH, dim=0)[k] grad = grad.clone() bwd_start = time.time() out.backward(grad) torch.cuda.synchronize() bwd_end = time.time() print_rank_0('vocab parallel classifier (given embed weight) backward: pass | {:.3f} s'.format(bwd_end - bwd_start), logger) grad_master = grad_master.clone() C_master.backward(grad_master) B_grad = embed_master.weight.grad B_grad = torch.chunk(B_grad, DEPTH, dim=0)[j] B_grad = torch.chunk(B_grad, DEPTH, dim=0)[i] B_grad = torch.chunk(B_grad, DEPTH, dim=-1)[k] logger.info('Rank {} vocab parallel embed backward (weight_grad): {}'.format(rank, check_equal(B_grad, embed.weight.grad))) return fwd_end - fwd_start, bwd_end - bwd_start def check_patch_embed(): rank = torch.distributed.get_rank() device = get_current_device() logger = get_dist_logger() dtype = torch.float32 input_parallel_mode = get_parallel_mode_from_env(INPUT_GROUP_3D) weight_parallel_mode = get_parallel_mode_from_env(WEIGHT_GROUP_3D) output_parallel_mode = get_parallel_mode_from_env(OUTPUT_GROUP_3D) j = global_context.get_local_rank(input_parallel_mode) i = global_context.get_local_rank(weight_parallel_mode) k = global_context.get_local_rank(output_parallel_mode) layer = PatchEmbedding3D(IMG_SIZE, 4, 3, HIDDEN_SIZE) torch.nn.init.ones_(layer.cls_token) torch.nn.init.ones_(layer.pos_embed) layer = layer.to(device) layer_master = VanillaPatchEmbedding(IMG_SIZE, 4, 3, HIDDEN_SIZE) torch.nn.init.ones_(layer_master.cls_token) torch.nn.init.ones_(layer_master.pos_embed) layer_master = layer_master.to(device) proj_weight_master = layer_master.weight.data torch.distributed.broadcast(proj_weight_master, src=0) proj_weight = torch.chunk(proj_weight_master, DEPTH, dim=0)[k] layer.weight.data.copy_(proj_weight) proj_bias_master = layer_master.bias.data torch.distributed.broadcast(proj_bias_master, src=0) proj_bias = torch.chunk(proj_bias_master, DEPTH)[k] layer.bias.data.copy_(proj_bias) A_shape = (BATCH_SIZE, 3, IMG_SIZE, IMG_SIZE) A_master = torch.randn(A_shape, device=device) torch.distributed.broadcast(A_master, src=0) A = A_master.clone() fwd_start = time.time() out = layer(A) torch.cuda.synchronize() fwd_end = time.time() print_rank_0( 'patch embed forward: pass | {0} --> {1} | {2:.3f} s'.format(tuple(A.shape), tuple(out.shape), fwd_end - fwd_start), logger) A_master = A_master.clone() C_master = layer_master(A_master) C = torch.chunk(C_master, DEPTH, dim=0)[i] C = torch.chunk(C, DEPTH, dim=-1)[k] C = torch.chunk(C, DEPTH, dim=0)[j] logger.info('Rank {} patch embed forward: {}'.format(rank, check_equal(out, C))) grad_shape = C_master.shape grad_master = torch.randn(grad_shape, device=device) torch.distributed.broadcast(grad_master, src=0) grad = torch.chunk(grad_master, DEPTH, dim=0)[i] grad = torch.chunk(grad, DEPTH, dim=-1)[k] grad = torch.chunk(grad, DEPTH, dim=0)[j] grad = grad.clone() bwd_start = time.time() out.backward(grad) torch.cuda.synchronize() bwd_end = time.time() print_rank_0('patch embed backward: pass | {:.3f} s'.format(bwd_end - bwd_start), logger) grad_master = grad_master.clone() C_master.backward(grad_master) cls_grad_master = layer_master.cls_token.grad cls_grad = torch.chunk(cls_grad_master, DEPTH, dim=-1)[k] logger.info('Rank {} patch embed backward (cls_grad): {}'.format(rank, check_equal(cls_grad, layer.cls_token.grad))) pos_grad_master = layer_master.pos_embed.grad pos_grad = torch.chunk(pos_grad_master, DEPTH, dim=-1)[k] logger.info('Rank {} patch embed backward (pos_embed_grad): {}'.format(rank, check_equal(pos_grad, layer.pos_embed.grad))) B_grad = layer_master.weight.grad B_grad = torch.chunk(B_grad, DEPTH, dim=0)[k] logger.info('Rank {} patch embed backward (proj_weight_grad): {}'.format(rank, check_equal(B_grad, layer.weight.grad))) bias_grad = layer_master.bias.grad bias_grad = torch.chunk(bias_grad, DEPTH)[k] logger.info('Rank {} patch embed backward (proj_bias_grad): {}'.format(rank, check_equal(bias_grad, layer.bias.grad))) return fwd_end - fwd_start, bwd_end - bwd_start def check_embed(): rank = torch.distributed.get_rank() device = get_current_device() logger = get_dist_logger() dtype = torch.float32 input_parallel_mode = get_parallel_mode_from_env(INPUT_GROUP_3D) weight_parallel_mode = get_parallel_mode_from_env(WEIGHT_GROUP_3D) output_parallel_mode = get_parallel_mode_from_env(OUTPUT_GROUP_3D) j = global_context.get_local_rank(input_parallel_mode) i = global_context.get_local_rank(weight_parallel_mode) k = global_context.get_local_rank(output_parallel_mode) layer = Embedding3D(VOCAB_SIZE, HIDDEN_SIZE) layer = layer.to(device) layer_master = torch.nn.Embedding(VOCAB_SIZE, HIDDEN_SIZE) layer_master = layer_master.to(device) weight_master = layer_master.weight.data torch.distributed.broadcast(weight_master, src=0) weight = torch.chunk(weight_master, DEPTH, dim=-1)[k] layer.weight.data.copy_(weight) A_shape = (BATCH_SIZE, SEQ_LENGTH) A_master = torch.randint(VOCAB_SIZE, A_shape, device=device) torch.distributed.broadcast(A_master, src=0) A = A_master.clone() fwd_start = time.time() out = layer(A) torch.cuda.synchronize() fwd_end = time.time() logger.info('embed forward: pass | {0} --> {1} | {2:.3f} s'.format(tuple(A.shape), tuple(out.shape), fwd_end - fwd_start), ranks=[0]) A_master = A_master.clone() C_master = layer_master(A_master) C = torch.chunk(C_master, DEPTH, dim=0)[i] C = torch.chunk(C, DEPTH, dim=-1)[k] C = torch.chunk(C, DEPTH, dim=0)[j] logger.info('Rank {} embed forward: {}'.format(rank, check_equal(out, C))) grad_shape = C_master.shape grad_master = torch.randn(grad_shape, device=device) torch.distributed.broadcast(grad_master, src=0) grad = torch.chunk(grad_master, DEPTH, dim=0)[i] grad = torch.chunk(grad, DEPTH, dim=-1)[k] grad = torch.chunk(grad, DEPTH, dim=0)[j] grad = grad.clone() bwd_start = time.time() out.backward(grad) torch.cuda.synchronize() bwd_end = time.time() logger.info('embed backward: pass | {:.3f} s'.format(bwd_end - bwd_start), ranks=[0]) grad_master = grad_master.clone() C_master.backward(grad_master) B_grad = layer_master.weight.grad B_grad = torch.chunk(B_grad, DEPTH, dim=-1)[k] logger.info('Rank {} embed backward (weight_grad): {}'.format(rank, check_equal(B_grad, layer.weight.grad))) return fwd_end - fwd_start, bwd_end - bwd_start def check_vocab_parallel_embed(): rank = torch.distributed.get_rank() device = get_current_device() logger = get_dist_logger() dtype = torch.float32 input_parallel_mode = get_parallel_mode_from_env(INPUT_GROUP_3D) weight_parallel_mode = get_parallel_mode_from_env(WEIGHT_GROUP_3D) output_parallel_mode = get_parallel_mode_from_env(OUTPUT_GROUP_3D) j = global_context.get_local_rank(input_parallel_mode) i = global_context.get_local_rank(weight_parallel_mode) k = global_context.get_local_rank(output_parallel_mode) layer = VocabParallelEmbedding3D(VOCAB_SIZE, HIDDEN_SIZE) layer = layer.to(device) layer_master = torch.nn.Embedding(VOCAB_SIZE, HIDDEN_SIZE) layer_master = layer_master.to(device) weight_master = layer_master.weight.data torch.distributed.broadcast(weight_master, src=0) weight = torch.chunk(weight_master, DEPTH, dim=0)[j] weight = torch.chunk(weight, DEPTH, dim=0)[i] weight = torch.chunk(weight, DEPTH, dim=-1)[k] layer.weight.data.copy_(weight) A_shape = (BATCH_SIZE, SEQ_LENGTH) A_master = torch.randint(VOCAB_SIZE, A_shape, device=device) torch.distributed.broadcast(A_master, src=0) A = A_master.clone() fwd_start = time.time() out = layer(A) torch.cuda.synchronize() fwd_end = time.time() logger.info('vocab parallel embed forward: pass | {0} --> {1} | {2:.3f} s'.format( tuple(A.shape), tuple(out.shape), fwd_end - fwd_start), ranks=[0]) A_master = A_master.clone() C_master = layer_master(A_master) C = torch.chunk(C_master, DEPTH, dim=0)[i] C = torch.chunk(C, DEPTH, dim=-1)[k] C = torch.chunk(C, DEPTH, dim=0)[j] logger.info('Rank {} vocab parallel embed forward: {}'.format(rank, check_equal(out, C))) grad_shape = C_master.shape grad_master = torch.randn(grad_shape, device=device) torch.distributed.broadcast(grad_master, src=0) grad = torch.chunk(grad_master, DEPTH, dim=0)[i] grad = torch.chunk(grad, DEPTH, dim=-1)[k] grad = torch.chunk(grad, DEPTH, dim=0)[j] grad = grad.clone() bwd_start = time.time() out.backward(grad) torch.cuda.synchronize() bwd_end = time.time() logger.info('vocab parallel embed backward: pass | {:.3f} s'.format(bwd_end - bwd_start), ranks=[0]) grad_master = grad_master.clone() C_master.backward(grad_master) B_grad = layer_master.weight.grad B_grad = torch.chunk(B_grad, DEPTH, dim=0)[j] B_grad = torch.chunk(B_grad, DEPTH, dim=0)[i] B_grad = torch.chunk(B_grad, DEPTH, dim=-1)[k] logger.info('Rank {} vocab parallel embed backward (weight_grad): {}'.format(rank, check_equal(B_grad, layer.weight.grad))) return fwd_end - fwd_start, bwd_end - bwd_start def check_loss(): rank = torch.distributed.get_rank() logger = get_dist_logger() device = get_current_device() input_parallel_mode = get_parallel_mode_from_env(INPUT_GROUP_3D) weight_parallel_mode = get_parallel_mode_from_env(WEIGHT_GROUP_3D) j = global_context.get_local_rank(input_parallel_mode) i = global_context.get_local_rank(weight_parallel_mode) criterion = CrossEntropyLoss3D() criterion_master = torch.nn.CrossEntropyLoss() out_shape = (BATCH_SIZE, NUM_CLASSES) out_master = torch.randn(out_shape, device=device) target_master = torch.randint(NUM_CLASSES, (BATCH_SIZE,), dtype=torch.long, device=device) torch.distributed.broadcast(out_master, src=0) torch.distributed.broadcast(target_master, src=0) out = torch.chunk(out_master, DEPTH, dim=0)[i] out = torch.chunk(out, DEPTH, dim=0)[j] out = out.clone() out.requires_grad = True fwd_start = time.time() loss = criterion(out, target_master) fwd_end = time.time() logger.info('cross entropy loss forward: pass | {0} --> {1} | {2:.3f} s'.format(tuple(out.shape), tuple(loss.shape), fwd_end - fwd_start), ranks=[0]) out_master = out_master.clone() out_master.requires_grad = True loss_master = criterion_master(out_master, target_master) logger.info('Rank {} cross entropy loss forward: {}'.format(rank, check_equal(loss, loss_master))) bwd_start = time.time() loss.backward() bwd_end = time.time() logger.info('cross entropy loss backward: pass | {:.3f} s'.format(bwd_end - bwd_start), ranks=[0]) loss_master.backward() out_grad = out_master.grad out_grad = torch.chunk(out_grad, DEPTH, dim=0)[i] out_grad = torch.chunk(out_grad, DEPTH, dim=0)[j] logger.info('Rank {} cross entropy loss backward: {}'.format(rank, check_equal(out_grad, out.grad))) return fwd_end - fwd_start, bwd_end - bwd_start def check_vocab_parallel_loss(): rank = torch.distributed.get_rank() logger = get_dist_logger() device = get_current_device() dtype = torch.float32 input_parallel_mode = get_parallel_mode_from_env(INPUT_GROUP_3D) weight_parallel_mode = get_parallel_mode_from_env(WEIGHT_GROUP_3D) output_parallel_mode = get_parallel_mode_from_env(OUTPUT_GROUP_3D) j = global_context.get_local_rank(input_parallel_mode) i = global_context.get_local_rank(weight_parallel_mode) k = global_context.get_local_rank(output_parallel_mode) criterion = VocabParallelCrossEntropyLoss3D() criterion_master = torch.nn.CrossEntropyLoss() out_shape = (BATCH_SIZE, NUM_CLASSES) out_master = torch.randn(out_shape, device=device) target_master = torch.randint(NUM_CLASSES, (BATCH_SIZE,), dtype=torch.long, device=device) torch.distributed.broadcast(out_master, src=0) torch.distributed.broadcast(target_master, src=0) out = torch.chunk(out_master, DEPTH, dim=0)[i] out = torch.chunk(out, DEPTH, dim=-1)[k] out = torch.chunk(out, DEPTH, dim=0)[j] out = out.clone() out.requires_grad = True fwd_start = time.time() loss = criterion(out, target_master) fwd_end = time.time() logger.info('vocab parallel cross entropy loss forward: pass | {0} --> {1} | {2:.3f} s'.format( tuple(out.shape), tuple(loss.shape), fwd_end - fwd_start), ranks=[0]) out_master = out_master.clone() out_master.requires_grad = True loss_master = criterion_master(out_master, target_master) logger.info('Rank {} vocab parallel cross entropy loss forward: {}'.format(rank, check_equal(loss, loss_master))) bwd_start = time.time() loss.backward() bwd_end = time.time() logger.info('vocab parallel cross entropy loss backward: pass | {:.3f} s'.format(bwd_end - bwd_start), ranks=[0]) loss_master.backward() out_grad = out_master.grad out_grad = torch.chunk(out_grad, DEPTH, dim=0)[i] out_grad = torch.chunk(out_grad, DEPTH, dim=-1)[k] out_grad = torch.chunk(out_grad, DEPTH, dim=0)[j] logger.info('Rank {} vocab parallel cross entropy loss backward: {}'.format(rank, check_equal(out_grad, out.grad))) return fwd_end - fwd_start, bwd_end - bwd_start
import pytest import torch from colossalai.gemini.stateful_tensor import TensorState, StatefulTensor @pytest.mark.dist def test_gemini_manager(): # reset the manager, in case that there exists memory information left manager = StatefulTensor.GST_MGR manager.reset() # occupation 8 st1 = StatefulTensor(torch.empty(2, 2, dtype=torch.float16, device='cuda')) # occupation 60 st2 = StatefulTensor(torch.empty(3, 5, dtype=torch.float32, device='cpu')) # occupation 28 t1 = torch.empty(7, device='cuda') # occupation 12 t2 = torch.empty(3, device='cpu') st3 = StatefulTensor(t1, TensorState.HOLD_AFTER_FWD) st4 = StatefulTensor(None, TensorState.FREE) assert manager.total_number == 4 assert manager.total_mem['cpu'] == 60 assert manager.total_mem['cuda'] == 36 assert manager.state_mem['cpu'][TensorState.HOLD] == 60 assert manager.state_mem['cuda'][TensorState.HOLD] == 8 assert manager.state_mem['cuda'][TensorState.HOLD_AFTER_FWD] == 28 st4.payload_reset(t2) st3.payload_reset(t2) assert manager.total_number == 4 assert manager.total_mem['cpu'] == 84 assert manager.total_mem['cuda'] == 8 assert manager.state_mem['cpu'][TensorState.HOLD] == 72 assert manager.state_mem['cuda'][TensorState.HOLD] == 8 assert manager.state_mem['cpu'][TensorState.HOLD_AFTER_FWD] == 12 assert manager.state_mem['cuda'][TensorState.HOLD_AFTER_FWD] == 0 st1.move_to(torch.device('cpu')) st2.move_to(torch.device('cpu')) st3.move_to(torch.device('cuda', 0)) assert manager.total_number == 4 assert manager.total_mem['cpu'] == 80 assert manager.total_mem['cuda'] == 12 assert manager.state_mem['cpu'][TensorState.HOLD] == 80 assert manager.state_mem['cuda'][TensorState.HOLD] == 0 assert manager.state_mem['cpu'][TensorState.HOLD_AFTER_FWD] == 0 assert manager.state_mem['cuda'][TensorState.HOLD_AFTER_FWD] == 12 st1.trans_state(TensorState.COMPUTE) st2.trans_state(TensorState.COMPUTE) st2.trans_state(TensorState.HOLD_AFTER_BWD) assert manager.total_number == 4 assert manager.total_mem['cpu'] == 80 assert manager.total_mem['cuda'] == 12 assert manager.state_mem['cpu'][TensorState.HOLD] == 12 assert manager.state_mem['cuda'][TensorState.HOLD] == 0 assert manager.state_mem['cpu'][TensorState.HOLD_AFTER_FWD] == 0 assert manager.state_mem['cuda'][TensorState.HOLD_AFTER_FWD] == 12 assert manager.state_mem['cpu'][TensorState.HOLD_AFTER_BWD] == 60 assert manager.state_mem['cuda'][TensorState.HOLD_AFTER_BWD] == 0 assert manager.state_mem['cpu'][TensorState.COMPUTE] == 8 assert manager.state_mem['cuda'][TensorState.COMPUTE] == 0 if __name__ == '__main__': test_gemini_manager()
import copy import torch from colossalai.gemini.paramhooks import BaseParamHookMgr from tests.components_to_test.registry import non_distributed_component_funcs def allclose(tensor_a: torch.Tensor, tensor_b: torch.Tensor, loose=False) -> bool: if loose: return torch.allclose(tensor_a, tensor_b, atol=1e-3, rtol=1e-3) return torch.allclose(tensor_a, tensor_b) def run_model(model, inputs, label, criterion, use_param_hook=False): if use_param_hook: class HooKWrapper: def __init__(self) -> None: self.hook_triggered_times = 0 def wrapper_func(self): def hook(param, grad) -> torch.Tensor or None: self.hook_triggered_times += 1 return grad return hook hookwrapper = HooKWrapper() param_list = [p for p in model.parameters()] hook_mgr = BaseParamHookMgr(param_list) hook_mgr.register_backward_hooks(hookwrapper.wrapper_func()) model.zero_grad(set_to_none=True) with torch.cuda.amp.autocast(): if criterion: y = model(inputs) loss = criterion(y, label) else: loss = model(inputs, label) loss = loss.float() loss.backward() if use_param_hook: hook_mgr.remove_hooks() return hookwrapper.hook_triggered_times def test_base_param_hook(): test_models = ['repeated_computed_layers', 'resnet18', 'hanging_param_model', 'inline_op_model'] # test_models = ['bert'] for model_name in test_models: get_components_func = non_distributed_component_funcs.get_callable(model_name) model_builder, train_dataloader, _, _, criterion = get_components_func() torch.manual_seed(0) model = model_builder(checkpoint=True).cuda() model.train() for i, (inputs, label) in enumerate(train_dataloader): if i > 0: break model_copy = copy.deepcopy(model) run_model(model, inputs.cuda(), label.cuda(), criterion, False) ret2 = run_model(model_copy, inputs.cuda(), label.cuda(), criterion, True) # Make sure param hook has only be fired once in case of parameter sharing assert ret2 == len(list(model.parameters())) for p, p_copy in zip(model.parameters(), model_copy.parameters()): assert allclose(p.grad, p_copy.grad), f"{p.grad} vs {p_copy.grad}" if __name__ == '__main__': test_base_param_hook()
from copy import deepcopy import numpy as np import torch from colossalai.gemini.memory_tracer.runtime_mem_tracer import RuntimeMemTracer from colossalai.utils.model.colo_init_context import ColoInitContext from tests.components_to_test import run_fwd_bwd from tests.components_to_test.registry import non_distributed_component_funcs def test_runtime_mem_tracer(): test_models = ['gpt2', 'bert', 'simple_net', 'repeated_computed_layers', 'nested_model', 'albert'] for model_name in test_models: get_components_func = non_distributed_component_funcs.get_callable(model_name) model_builder, train_dataloader, _, _, criterion = get_components_func() with ColoInitContext(device='cpu'): model = model_builder(checkpoint=False) model_bk = deepcopy(model) runtime_mem_tracer = RuntimeMemTracer(model) for i, (data, label) in enumerate(train_dataloader): if i > 1: break data = data.cuda() label = label.cuda() run_fwd_bwd(runtime_mem_tracer, data, label, criterion, optimizer=runtime_mem_tracer) for p1, p2 in zip(model_bk.parameters(), model.parameters()): torch.allclose(p1.to(torch.half), p2) non_model_data_list = runtime_mem_tracer._memstats.non_model_data_list('cuda') cuda_non_model_data_list = np.array(non_model_data_list) / 1024**2 print("cuda_non_model_data_list", len(cuda_non_model_data_list)) print(non_model_data_list) cnt1 = 0 for p in runtime_mem_tracer.parameters_in_runtime_order(): cnt1 += 1 cnt2 = 0 for p in model.parameters(): cnt2 += 1 assert cnt2 == cnt1, f'visited param number {cnt1} vs real param number {cnt2}' del model if __name__ == '__main__': test_runtime_mem_tracer()
from functools import partial from typing import Callable import pytest import torch import torch.distributed as dist import torch.multiprocessing as mp from torch.nn.parallel import DistributedDataParallel as DDP from torch.testing import assert_close import colossalai from colossalai.amp import convert_to_apex_amp from colossalai.gemini.chunk import ChunkManager, init_chunk_manager, search_chunk_configuration from colossalai.gemini.gemini_mgr import GeminiManager from colossalai.nn.optimizer import HybridAdam from colossalai.nn.optimizer.zero_optimizer import ZeroOptimizer from colossalai.nn.parallel import ZeroDDP, zero_model_wrapper from colossalai.testing import parameterize, rerun_if_address_is_in_use from colossalai.utils import free_port from colossalai.utils.cuda import get_current_device from colossalai.utils.model.colo_init_context import ColoInitContext, post_process_colo_init_ctx from tests.components_to_test import run_fwd_bwd from tests.components_to_test.registry import non_distributed_component_funcs from tests.test_tensor.common_utils import debug_print, set_seed def check_param(model: ZeroDDP, torch_model: torch.nn.Module): zero_dict = model.state_dict(only_rank_0=False) torch_dict = torch_model.state_dict() for key, value in torch_dict.items(): # key is 'module.model.PARAMETER', so we truncate it key = key[7:] assert key in zero_dict, "{} not in ZeRO dictionary.".format(key) temp_zero_value = zero_dict[key].to(device=value.device, dtype=value.dtype) # debug_print([0], "max range: ", key, torch.max(torch.abs(value - temp_zero_value))) assert_close(value, temp_zero_value, rtol=1e-3, atol=4e-3) def multi_chunk_init(model: torch.nn.Module, placement_policy: str): world_size = dist.get_world_size() config_dict, *_ = search_chunk_configuration(model, search_range_mb=1, search_interval_byte=100) config_dict[world_size]['chunk_size'] = 5000 config_dict[world_size]['keep_gathered'] = False if placement_policy != 'cuda': init_device = torch.device('cpu') else: init_device = None chunk_manager = ChunkManager(config_dict, init_device=init_device) gemini_manager = GeminiManager(placement_policy, chunk_manager) model = ZeroDDP(model, gemini_manager, pin_memory=True) return model def single_chunk_init(model: torch.nn.Module, placement_policy: str): gemini_config = dict( device=get_current_device(), placement_policy=placement_policy, pin_memory=True, ) model = zero_model_wrapper(model=model, zero_stage=3, gemini_config=gemini_config) return model @parameterize('placement_policy', ['cuda', 'cpu', 'auto', 'const']) @parameterize('model_name', ['gpt2']) @parameterize('model_init_func', [single_chunk_init, multi_chunk_init]) def exam_inference(placement_policy: str, model_name: str, model_init_func: Callable): set_seed(19360226) get_components_func = non_distributed_component_funcs.get_callable(model_name) model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() torch_model = model_builder().cuda() amp_config = dict(opt_level='O2', keep_batchnorm_fp32=False, loss_scale=128) torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-3) torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config) torch_model = DDP(torch_model, device_ids=[dist.get_rank()]) init_dev = get_current_device() with ColoInitContext(device=init_dev): model = model_builder() for torch_p, p in zip(torch_model.parameters(), model.parameters()): p.data.copy_(torch_p.data) model = model_init_func(model, placement_policy) optimizer = HybridAdam(model.parameters(), lr=1e-3) zero_optim = ZeroOptimizer(optimizer, model, initial_scale=128) model.eval() torch_model.eval() set_seed(dist.get_rank() * 3 + 128) train_dataloader = iter(train_dataloader) def train_iter(): input_ids, label = next(train_dataloader) input_ids, label = input_ids.cuda(), label.cuda() zero_optim.zero_grad() torch_optim.zero_grad() torch_loss = run_fwd_bwd(torch_model, input_ids, label, criterion, torch_optim) loss = run_fwd_bwd(model, input_ids, label, criterion, zero_optim) assert_close(torch_loss, loss) zero_optim.step() torch_optim.step() check_param(model, torch_model) def inference_iter(): input_ids, label = next(train_dataloader) input_ids, label = input_ids.cuda(), label.cuda() with torch.no_grad(): torch_output = torch_model(input_ids) torch_loss = criterion(torch_output.float(), label) zero_output = model(input_ids) zero_loss = criterion(zero_output.float(), label) assert_close(torch_loss, zero_loss) train_iter() inference_iter() train_iter() def run_dist(rank, world_size, port): config = {} colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') exam_inference() @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 4]) @rerun_if_address_is_in_use() def test_inference(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_inference(1)
from functools import partial import pytest import torch import torch.distributed as dist import torch.multiprocessing as mp import colossalai from colossalai.gemini.chunk import init_chunk_manager, search_chunk_configuration from colossalai.tensor import ComputePattern, ComputeSpec, ProcessGroup, ShardSpec from colossalai.testing import rerun_if_address_is_in_use from colossalai.utils import free_port, get_current_device from colossalai.utils.model.colo_init_context import ColoInitContext from tests.components_to_test.registry import non_distributed_component_funcs def init_1d_row_spec(model, pg: ProcessGroup): tensor_spec = (ShardSpec([0], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D)) for n, p in model.named_parameters(): if 'weight' in n and 'ln' not in n: p.set_process_group(pg) p.set_tensor_spec(*tensor_spec) def exam_search_chunk_size(): world_size = torch.distributed.get_world_size() pg_tp = ProcessGroup(tp_degree=world_size) get_components_func = non_distributed_component_funcs.get_callable('gpt2') model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() # make sure torch_model and model has the same parameter values with ColoInitContext(device=get_current_device()): model = model_builder() init_1d_row_spec(model, pg_tp) config_dict, *_ = search_chunk_configuration(model, search_range_mb=1, search_interval_byte=16, min_chunk_size_mb=0, filter_exlarge_params=True) for key in config_dict: chunk_size = config_dict[key]['chunk_size'] if world_size == 1: assert chunk_size == 31616 else: assert chunk_size == 1024 def exam_search_strict_ddp(): world_size = torch.distributed.get_world_size() default_shard_pg = ProcessGroup(tp_degree=world_size) default_shard_spec = ShardSpec([-1], [world_size]) get_components_func = non_distributed_component_funcs.get_callable('gpt2') model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() # get the chunk configuration over replicated models with ColoInitContext(device=get_current_device()): ddp_model = model_builder() re_dict, re_total, re_wasted = search_chunk_configuration(ddp_model, search_range_mb=1, search_interval_byte=16, min_chunk_size_mb=0, filter_exlarge_params=True, strict_ddp_flag=False) # get the chunk configuration over sharded ddp models with ColoInitContext(device=get_current_device(), default_pg=default_shard_pg, default_dist_spec=default_shard_spec): sharded_ddp_model = model_builder() sh_dict, sh_total, sh_wasted = search_chunk_configuration(sharded_ddp_model, search_range_mb=1, search_interval_byte=16, min_chunk_size_mb=0, filter_exlarge_params=True, strict_ddp_flag=True) assert re_dict == sh_dict for key in re_dict: assert re_dict[key] == sh_dict[key] assert re_total == sh_total assert re_wasted == sh_wasted def exam_chunk_manager(): world_size = torch.distributed.get_world_size() default_shard_pg = ProcessGroup(tp_degree=world_size) default_shard_spec = ShardSpec([-1], [world_size]) get_components_func = non_distributed_component_funcs.get_callable('gpt2') model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() with ColoInitContext(device=get_current_device(), default_pg=default_shard_pg, default_dist_spec=default_shard_spec): sharded_ddp_model = model_builder() chunk_manager = init_chunk_manager(sharded_ddp_model, get_current_device(), hidden_dim=16, search_range_mb=1, min_chunk_size_mb=0, filter_exlarge_params=True, strict_ddp_flag=True) config_dict = chunk_manager.dp_degree_chunk_size_dict assert len(config_dict) == 1 assert config_dict[world_size] == 31616 def run_dist(rank, world_size, port): colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') exam_search_chunk_size() exam_search_strict_ddp() exam_chunk_manager() @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 4]) @rerun_if_address_is_in_use() def test_search(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_search(4)
from functools import partial import pytest import torch import torch.distributed as dist import torch.multiprocessing as mp import colossalai from colossalai.gemini import TensorState from colossalai.gemini.chunk import Chunk from colossalai.tensor import ColoParameter from colossalai.tensor import ProcessGroup as ColoProcessGroup from colossalai.testing import parameterize, rerun_if_address_is_in_use from colossalai.utils import free_port, get_current_device def dist_sum(x): temp = torch.tensor([x], device=get_current_device()) dist.all_reduce(temp) return temp.item() def add_param(param_list, param_cp_list, *args, **kwargs): param = ColoParameter(torch.randn(*args, **kwargs)) param_list.append(param) param_cp_list.append(param.clone()) def check_euqal(param, param_cp): if param.device != param_cp.device: temp = param.data.to(param_cp.device) else: temp = param.data return torch.equal(temp, param_cp.data) @parameterize('init_device', [None, torch.device('cpu')]) @parameterize('keep_gathered', [True, False]) @parameterize('pin_memory', [True, False]) def exam_chunk_basic(init_device, keep_gathered, pin_memory): world_size = torch.distributed.get_world_size() pg = ColoProcessGroup() my_chunk = Chunk(chunk_size=1024, process_group=pg, dtype=torch.float32, init_device=init_device, cpu_shard_init=True, keep_gathered=keep_gathered, pin_memory=pin_memory) param_list = [] param_cp_list = [] add_param(param_list, param_cp_list, 8, 8, 8, device='cuda') add_param(param_list, param_cp_list, 4, 4) add_param(param_list, param_cp_list, 4, 8, 2, device='cuda') add_param(param_list, param_cp_list, 1, 1, 5) for param in param_list: my_chunk.append_tensor(param) assert my_chunk.utilized_size == 597 for param, param_cp in zip(param_list, param_cp_list): check_euqal(param, param_cp) my_chunk.close_chunk() if keep_gathered is False: assert my_chunk.cpu_shard.size(0) == 1024 // world_size assert my_chunk.device_type == 'cpu' assert my_chunk.can_move my_chunk.shard_move(get_current_device()) else: assert my_chunk.cuda_global_chunk.size(0) == 1024 assert my_chunk.device_type == 'cuda' assert not my_chunk.can_move assert dist_sum(my_chunk.valid_end) == my_chunk.utilized_size flag = my_chunk.has_inf_or_nan assert not flag, "has_inf_or_nan is {}".format(flag) my_chunk.access_chunk() assert my_chunk.device_type == 'cuda' for param, param_cp in zip(param_list, param_cp_list): check_euqal(param, param_cp) assert my_chunk.tensor_state_cnter[TensorState.HOLD] == 4 my_chunk.tensor_trans_state(param_list[0], TensorState.COMPUTE) assert my_chunk.tensor_state_cnter[TensorState.HOLD] == 3 assert my_chunk.tensor_state_cnter[TensorState.COMPUTE] == 1 assert not my_chunk.can_release for param in param_list: my_chunk.tensor_trans_state(param, TensorState.COMPUTE) my_chunk.tensor_trans_state(param, TensorState.HOLD_AFTER_BWD) my_chunk.tensor_trans_state(param, TensorState.READY_FOR_REDUCE) assert my_chunk.tensor_state_cnter[TensorState.READY_FOR_REDUCE] == 4 assert my_chunk.can_reduce my_chunk.reduce() assert my_chunk.tensor_state_cnter[TensorState.HOLD] == 4 if keep_gathered is False: assert my_chunk.cuda_shard.size(0) == 1024 // world_size assert my_chunk.device_type == 'cuda' assert my_chunk.can_move else: assert my_chunk.cuda_global_chunk.size(0) == 1024 assert my_chunk.device_type == 'cuda' assert not my_chunk.can_move def run_dist(rank, world_size, port): colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') exam_chunk_basic() @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 2, 4]) @rerun_if_address_is_in_use() def test_chunk_function(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_chunk_function(4)
from functools import partial import pytest import torch import torch.distributed as dist import torch.multiprocessing as mp from torch.nn.parallel import DistributedDataParallel as DDP from torch.testing import assert_close import colossalai from colossalai.amp import convert_to_apex_amp from colossalai.gemini.chunk import ChunkManager, init_chunk_manager, search_chunk_configuration from colossalai.gemini.gemini_mgr import GeminiManager from colossalai.nn.optimizer import HybridAdam from colossalai.nn.optimizer.zero_optimizer import ZeroOptimizer from colossalai.nn.parallel import ZeroDDP from colossalai.tensor import ColoParameter, ColoTensor from colossalai.testing import parameterize, rerun_if_address_is_in_use from colossalai.utils import free_port from colossalai.utils.cuda import get_current_device from colossalai.utils.model.colo_init_context import ColoInitContext, post_process_colo_init_ctx from tests.components_to_test import run_fwd_bwd from tests.components_to_test.registry import non_distributed_component_funcs from tests.test_tensor.common_utils import debug_print, set_seed # this model is large enough to slice to chunks TEST_MODELS = ['gpt2'] # these models are too small, all parameters in these models are compacted into one chunk EXAMPLE_MODELS = ['albert', 'beit', 'bert', 'hanging_param_model', 'nested_model', 'repeated_computed_layers'] def check_param(model: ZeroDDP, torch_model: torch.nn.Module): zero_dict = model.state_dict(only_rank_0=False) torch_dict = torch_model.state_dict() for key, value in torch_dict.items(): # key is 'module.model.PARAMETER', so we truncate it key = key[7:] assert key in zero_dict, "{} not in ZeRO dictionary.".format(key) temp_zero_value = zero_dict[key].to(device=value.device, dtype=value.dtype) # debug_print([0], "max range: ", key, torch.max(torch.abs(value - temp_zero_value))) assert_close(value, temp_zero_value, rtol=1e-3, atol=4e-3) @parameterize('placement_policy', ['cuda', 'cpu', 'auto', 'const']) @parameterize('model_name', TEST_MODELS) def exam_model_step(placement_policy, model_name: str): set_seed(42) get_components_func = non_distributed_component_funcs.get_callable(model_name) model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() torch_model = model_builder().cuda() amp_config = dict(opt_level='O2', keep_batchnorm_fp32=False, loss_scale=128) torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-3) torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config) torch_model = DDP(torch_model, device_ids=[dist.get_rank()]) init_dev = get_current_device() with ColoInitContext(device=init_dev): model = model_builder() for torch_p, p in zip(torch_model.parameters(), model.parameters()): p.data.copy_(torch_p.data) world_size = torch.distributed.get_world_size() config_dict, *_ = search_chunk_configuration(model, search_range_mb=1, search_interval_byte=100) config_dict[world_size]['chunk_size'] = 5000 config_dict[world_size]['keep_gathered'] = False if placement_policy != 'cuda': init_device = torch.device('cpu') else: init_device = None chunk_manager = ChunkManager(config_dict, init_device=init_device) gemini_manager = GeminiManager(placement_policy, chunk_manager) model = ZeroDDP(model, gemini_manager, pin_memory=True) optimizer = HybridAdam(model.parameters(), lr=1e-3) zero_optim = ZeroOptimizer(optimizer, model, initial_scale=128) model.eval() torch_model.eval() set_seed(dist.get_rank() * 3 + 128) for i, (input_ids, label) in enumerate(train_dataloader): if i > 2: break input_ids, label = input_ids.cuda(), label.cuda() zero_optim.zero_grad() torch_optim.zero_grad() torch_loss = run_fwd_bwd(torch_model, input_ids, label, criterion, torch_optim) loss = run_fwd_bwd(model, input_ids, label, criterion, zero_optim) assert_close(torch_loss, loss) zero_optim.step() torch_optim.step() check_param(model, torch_model) @parameterize('placement_policy', ['cuda', 'cpu', 'auto', 'const']) @parameterize('model_name', EXAMPLE_MODELS) def exam_tiny_example(placement_policy, model_name: str): set_seed(2008) get_components_func = non_distributed_component_funcs.get_callable(model_name) model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() torch_model = model_builder().cuda() amp_config = dict(opt_level='O2', keep_batchnorm_fp32=False, loss_scale=2) torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-3) torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config) torch_model = DDP(torch_model, device_ids=[dist.get_rank()]) init_dev = get_current_device() with ColoInitContext(device=init_dev): model = model_builder() for torch_p, p in zip(torch_model.parameters(), model.parameters()): p.data.copy_(torch_p.data) chunk_manager = init_chunk_manager(model=model, init_device=get_current_device(), search_range_mb=1) gemini_manager = GeminiManager(placement_policy, chunk_manager) model = ZeroDDP(model, gemini_manager, pin_memory=True) optimizer = HybridAdam(model.parameters(), lr=1e-3) zero_optim = ZeroOptimizer(optimizer, model, initial_scale=2) model.eval() torch_model.eval() set_seed(dist.get_rank() * 3 + 128) for i, (input_ids, label) in enumerate(train_dataloader): if i > 2: break input_ids = input_ids.cuda() label = label.cuda() zero_optim.zero_grad() torch_optim.zero_grad() torch_loss = run_fwd_bwd(torch_model, input_ids, label, criterion, torch_optim) loss = run_fwd_bwd(model, input_ids, label, criterion, zero_optim) assert_close(torch_loss, loss, rtol=1.5e-6, atol=2e-5) # atol should be 2e-5 for torch lower than 1.12 zero_optim.step() torch_optim.step() check_param(model, torch_model) def run_dist(rank, world_size, port): config = {} colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') exam_model_step() exam_tiny_example() @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 4]) @rerun_if_address_is_in_use() def test_optim(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_optim(1)
from functools import partial import pytest import torch import torch.multiprocessing as mp from torch.nn.parallel import DistributedDataParallel as DDP from torch.testing import assert_close import colossalai from colossalai.amp import convert_to_apex_amp from colossalai.gemini.chunk import ChunkManager, search_chunk_configuration from colossalai.gemini.gemini_mgr import GeminiManager from colossalai.nn.optimizer import HybridAdam from colossalai.nn.optimizer.zero_optimizer import ZeroOptimizer from colossalai.nn.parallel import ZeroDDP from colossalai.tensor import ProcessGroup from colossalai.testing import parameterize, rerun_if_address_is_in_use from colossalai.utils import free_port from colossalai.utils.cuda import get_current_device from colossalai.utils.model.colo_init_context import ColoInitContext from tests.components_to_test import run_fwd_bwd from tests.components_to_test.registry import non_distributed_component_funcs from tests.test_tensor.common_utils import set_seed def check_grad(model: ZeroDDP, torch_model: torch.nn.Module): chunk_manager = model.chunk_manager param_list = [p for p in model.parameters()] chunk_list = chunk_manager.get_chunks(param_list) for chunk in chunk_list: chunk_manager.access_chunk(chunk) for (p0, p1) in zip(model.parameters(), torch_model.parameters()): assert_close(p0, p1.grad, rtol=1e-3, atol=5e-5) @parameterize('init_device', [get_current_device()]) @parameterize('placement_policy', ['cuda', 'cpu', 'auto', 'const']) @parameterize('keep_gather', [False, True]) @parameterize('model_name', ['gpt2', 'bert', 'albert']) @parameterize('use_grad_checkpoint', [False, True]) def exam_gpt_fwd_bwd(placement_policy, keep_gather, model_name: str, use_grad_checkpoint: bool = False, init_device=get_current_device()): get_components_func = non_distributed_component_funcs.get_callable(model_name) model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() set_seed(42) with ColoInitContext(device=init_device): model = model_builder(use_grad_checkpoint) set_seed(42) torch_model = model_builder(use_grad_checkpoint).cuda() for torch_p, p in zip(torch_model.parameters(), model.parameters()): torch_p.data.copy_(p.data) world_size = torch.distributed.get_world_size() config_dict, *_ = search_chunk_configuration(model, search_range_mb=1, search_interval_byte=100) config_dict[world_size]['chunk_size'] = 5000 config_dict[world_size]['keep_gathered'] = keep_gather chunk_manager = ChunkManager(config_dict) gemini_manager = GeminiManager(placement_policy, chunk_manager) model = ZeroDDP(model, gemini_manager, pin_memory=True) optimizer = HybridAdam(model.parameters(), lr=1e-3) zero_optim = ZeroOptimizer(optimizer, model, initial_scale=1) pg = ProcessGroup() amp_config = dict(opt_level='O2', keep_batchnorm_fp32=False, loss_scale=1) torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-3) torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config) torch_model = DDP(torch_model, device_ids=[pg.rank()], process_group=pg.dp_process_group()) set_seed(pg.dp_local_rank()) for i, (input_ids, label) in enumerate(train_dataloader): # you can only test a single fwd + bwd. # after bwd param is grad for Gemini, due to the chunk reuse optimization. if i > 0: break input_ids, label = input_ids.cuda(), label.cuda() torch_optim.zero_grad() zero_optim.zero_grad() # set random seed is same as torch_model.eval() set_seed(42) torch_loss = run_fwd_bwd(torch_model, input_ids, label, criterion, torch_optim) set_seed(42) loss = run_fwd_bwd(model, input_ids, label, criterion, zero_optim) assert torch.equal(torch_loss, loss) check_grad(model, torch_model) def run_dist(rank, world_size, port): config = {} colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') exam_gpt_fwd_bwd() @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 4]) @rerun_if_address_is_in_use() def test_gpt(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_gpt(4)
from functools import partial from time import time import pytest import torch import torch.distributed as dist import torch.multiprocessing as mp from torch.nn.parallel import DistributedDataParallel as DDP from torch.testing import assert_close import colossalai from colossalai.amp import convert_to_apex_amp from colossalai.gemini.chunk import ChunkManager, search_chunk_configuration from colossalai.gemini.gemini_mgr import GeminiManager from colossalai.nn.optimizer import HybridAdam from colossalai.nn.optimizer.zero_optimizer import ZeroOptimizer from colossalai.nn.parallel import ZeroDDP from colossalai.testing import parameterize, rerun_if_address_is_in_use from colossalai.utils import free_port from colossalai.utils.cuda import get_current_device from colossalai.utils.model.colo_init_context import ColoInitContext from tests.components_to_test import run_fwd_bwd from tests.components_to_test.registry import non_distributed_component_funcs from tests.test_tensor.common_utils import debug_print, set_seed def check_param(model: ZeroDDP, torch_model: torch.nn.Module): zero_dict = model.state_dict(only_rank_0=False) torch_dict = torch_model.state_dict() for key, value in torch_dict.items(): # key is 'module.model.PARAMETER', so we truncate it key = key[7:] assert key in zero_dict, "{} not in ZeRO dictionary.".format(key) temp_zero_value = zero_dict[key].to(device=value.device, dtype=value.dtype) # debug_print([0], "max range: ", key, torch.max(torch.abs(value - temp_zero_value))) assert_close(value, temp_zero_value, rtol=1e-3, atol=4e-3) @parameterize('placement_policy', ['cuda', 'cpu', 'auto', 'const']) @parameterize('model_name', ['gpt2']) def exam_grad_clipping(placement_policy, model_name: str): set_seed(1912) get_components_func = non_distributed_component_funcs.get_callable(model_name) model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() torch_model = model_builder().cuda() amp_config = dict(opt_level='O2', keep_batchnorm_fp32=False, loss_scale=32) torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-3) torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config) torch_model = DDP(torch_model, device_ids=[dist.get_rank()]) init_dev = get_current_device() with ColoInitContext(device=init_dev): model = model_builder() for torch_p, p in zip(torch_model.parameters(), model.parameters()): p.data.copy_(torch_p.data) world_size = torch.distributed.get_world_size() config_dict, *_ = search_chunk_configuration(model, search_range_mb=1, search_interval_byte=100) config_dict[world_size]['chunk_size'] = 5000 config_dict[world_size]['keep_gathered'] = False if placement_policy != 'cuda': init_device = torch.device('cpu') else: init_device = None chunk_manager = ChunkManager(config_dict, init_device=init_device) gemini_manager = GeminiManager(placement_policy, chunk_manager) model = ZeroDDP(model, gemini_manager, pin_memory=True) optimizer = HybridAdam(model.parameters(), lr=1e-3) zero_optim = ZeroOptimizer(optimizer, model, initial_scale=32, clipping_norm=1.0) model.train() torch_model.train() set_seed(dist.get_rank() * 3 + 128) for i, (data, label) in enumerate(train_dataloader): if i > 2: break data = data.cuda() label = label.cuda() zero_optim.zero_grad() torch_optim.zero_grad() torch_loss = run_fwd_bwd(torch_model, data, label, criterion, torch_optim) loss = run_fwd_bwd(model, data, label, criterion, zero_optim) assert_close(torch_loss, loss) import apex.amp as apex_amp torch.nn.utils.clip_grad_norm_(apex_amp.master_params(torch_optim), 1.0) torch_optim.step() zero_optim.step() check_param(model, torch_model) def run_dist(rank, world_size, port): config = {} colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') exam_grad_clipping() @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 2]) @rerun_if_address_is_in_use() def test_grad_clip(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_grad_clip(2)
import os from functools import partial import pytest import torch import torch.multiprocessing as mp import colossalai from colossalai.nn.parallel import GeminiDDP from colossalai.nn.parallel.utils import get_static_torch_model from colossalai.tensor import ColoParameter from colossalai.testing import parameterize, rerun_if_address_is_in_use from colossalai.utils import free_port from colossalai.utils.cuda import get_current_device from colossalai.utils.model.colo_init_context import ColoInitContext from tests.components_to_test.registry import non_distributed_component_funcs @parameterize('model_name', ['hanging_param_model', 'resnet18', 'gpt2']) def run_convert_torch_module(model_name: str): get_components_func = non_distributed_component_funcs.get_callable(model_name) model_builder, _, _, _, _ = get_components_func() with ColoInitContext(device=torch.device("cpu")): model = model_builder(checkpoint=False) model = GeminiDDP(model, device=get_current_device(), placement_policy='auto', pin_memory=True) pytorch_model = get_static_torch_model(model, only_rank_0=False) for n, p in pytorch_model.named_parameters(): assert type(p) == torch.nn.Parameter, f"type error: {n} is a {type(p)}" # get the static model should not change the original model for n, p in model.named_parameters(): assert isinstance(p, ColoParameter) for (pn, pm), (cn, cm) in zip(pytorch_model.named_modules(), model.named_modules()): assert pn == cn assert id(pm) != id(cm) for pp, cp in zip(pm.parameters(recurse=False), cm.parameters(recurse=False)): assert id(pp) != id(cp) assert pp.shape == cp.shape def run_dist(rank, world_size, port): config = {} colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') run_convert_torch_module() @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 4]) @rerun_if_address_is_in_use() def test_convert_torch_module(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_convert_torch_module(2)
from functools import partial import pytest import torch import torch.distributed as dist import torch.multiprocessing as mp from torch.testing import assert_close import colossalai from colossalai.gemini.chunk import ChunkManager, search_chunk_configuration from colossalai.gemini.gemini_mgr import GeminiManager from colossalai.nn.parallel import ZeroDDP from colossalai.testing import parameterize, rerun_if_address_is_in_use from colossalai.utils import free_port from colossalai.utils.cuda import get_current_device from colossalai.utils.model.colo_init_context import ColoInitContext from tests.components_to_test.registry import non_distributed_component_funcs from tests.test_tensor.common_utils import debug_print, set_seed def ignore_the_first_parameter(model: torch.nn.Module): for name, param in model.named_parameters(): print(f"parameter `{name}` is set ignored") ZeroDDP.set_params_to_ignore([param]) return @parameterize('placement_policy', ['cuda', 'cpu', 'auto']) @parameterize('keep_gathered', [True, False]) @parameterize('model_name', ['gpt2', 'bert']) def exam_state_dict(placement_policy, keep_gathered, model_name: str): set_seed(431) get_components_func = non_distributed_component_funcs.get_callable(model_name) model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() with ColoInitContext(device=get_current_device()): model = model_builder() torch_model = model_builder() for torch_p, p in zip(torch_model.parameters(), model.parameters()): torch_p.data.copy_(p.data) world_size = torch.distributed.get_world_size() config_dict, *_ = search_chunk_configuration(model, search_range_mb=1, search_interval_byte=100) config_dict[world_size]['chunk_size'] = 5000 config_dict[world_size]['keep_gathered'] = keep_gathered chunk_manager = ChunkManager(config_dict) gemini_manager = GeminiManager(placement_policy, chunk_manager) model = ZeroDDP(model, gemini_manager, pin_memory=True) model.train() zero_dict = model.state_dict(only_rank_0=False) torch_dict = torch_model.state_dict() for key, value in torch_dict.items(): assert key in zero_dict, "{} not in ZeRO dictionary.".format(key) temp_zero_value = zero_dict[key].to(device=value.device, dtype=value.dtype) assert_close(value, temp_zero_value, rtol=1e-3, atol=1e-5) @parameterize('placement_policy', ['cuda', 'cpu', 'auto']) @parameterize('keep_gathered', [True, False]) @parameterize('model_name', ['gpt2', 'bert']) def exam_load_state_dict(placement_policy, keep_gathered, model_name: str): set_seed(431) get_components_func = non_distributed_component_funcs.get_callable(model_name) model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() with ColoInitContext(device=get_current_device()): model = model_builder() set_seed(451) torch_model = model_builder() # get a different model world_size = torch.distributed.get_world_size() config_dict, *_ = search_chunk_configuration(model, search_range_mb=1, search_interval_byte=100) config_dict[world_size]['chunk_size'] = 5000 config_dict[world_size]['keep_gathered'] = keep_gathered if placement_policy != 'cuda': init_device = torch.device('cpu') else: init_device = None chunk_manager = ChunkManager(config_dict, init_device=init_device) gemini_manager = GeminiManager(placement_policy, chunk_manager) model = ZeroDDP(model, gemini_manager, pin_memory=True) torch_dict = torch_model.state_dict() model.load_state_dict(torch_dict, strict=False) zero_dict = model.state_dict(only_rank_0=False) for key, value in torch_dict.items(): assert key in zero_dict, "{} not in ZeRO dictionary.".format(key) temp_zero_value = zero_dict[key].to(device=value.device, dtype=value.dtype) assert_close(value, temp_zero_value, rtol=1e-3, atol=1e-5) def run_dist(rank, world_size, port): config = {} colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') exam_state_dict() exam_load_state_dict() @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 4]) @rerun_if_address_is_in_use() def test_zero_ddp(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_zero_ddp(1)
from functools import partial import pytest import torch import torch.multiprocessing as mp import colossalai from colossalai.gemini.chunk import ChunkManager from colossalai.tensor import ColoTensor, ColoTensorSpec, ProcessGroup from colossalai.testing import parameterize, rerun_if_address_is_in_use from colossalai.utils import free_port from tests.test_tensor.common_utils import debug_print CUDA_MEM_0 = {False: 512, True: 1024} CUDA_MEM_1 = {False: 0, True: 1024} CPU_MEM = {True: {True: 0, False: 0}, False: {True: 512, False: 0}} @parameterize('keep_gathered', [True, False]) @parameterize('pin_memory', [True, False]) def exam_chunk_memory(keep_gathered, pin_memory): pg = ProcessGroup() debug_print([0], "keep_gathered: {}, pin_memory: {}".format(keep_gathered, pin_memory)) params = [ColoTensor(torch.rand(8, 8), spec=ColoTensorSpec(pg)) for _ in range(3)] config = {2: dict(chunk_size=128, keep_gathered=keep_gathered)} chunk_manager = ChunkManager(config) assert chunk_manager.total_mem['cpu'] == 0 assert chunk_manager.total_mem['cuda'] == 0 for p in params: chunk_manager.register_tensor(p, 'param', 2, pin_memory=pin_memory) chunk_manager.close_all_groups() assert chunk_manager.total_mem['cpu'] == CPU_MEM[keep_gathered][pin_memory] assert chunk_manager.total_mem['cuda'] == CUDA_MEM_0[keep_gathered] chunks = chunk_manager.get_chunks(params) for chunk in chunks: chunk_manager.access_chunk(chunk) assert chunk_manager.total_mem['cpu'] == CPU_MEM[keep_gathered][pin_memory] assert chunk_manager.total_mem['cuda'] == CUDA_MEM_0[True] for chunk in chunks: chunk_manager.release_chunk(chunk) assert chunk_manager.total_mem['cpu'] == CPU_MEM[keep_gathered][pin_memory] assert chunk_manager.total_mem['cuda'] == CUDA_MEM_0[keep_gathered] for chunk in chunks: chunk_manager.move_chunk(chunk, torch.device('cpu')) assert chunk_manager.total_mem['cpu'] == CPU_MEM[keep_gathered][True] assert chunk_manager.total_mem['cuda'] == CUDA_MEM_1[keep_gathered] def run_dist(rank, world_size, port): colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') exam_chunk_memory() @pytest.mark.dist @pytest.mark.parametrize('world_size', [2]) @rerun_if_address_is_in_use() def test_chunk_manager(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_chunk_manager(2)
from functools import partial import pytest import torch import torch.multiprocessing as mp import colossalai from colossalai.gemini.chunk import ChunkManager, search_chunk_configuration from colossalai.gemini.gemini_mgr import GeminiManager from colossalai.gemini.memory_tracer.runtime_mem_tracer import RuntimeMemTracer from colossalai.nn.optimizer.gemini_optimizer import GeminiAdamOptimizer from colossalai.nn.parallel import GeminiDDP, ZeroDDP from colossalai.tensor import ProcessGroup from colossalai.testing import parameterize, rerun_if_address_is_in_use from colossalai.utils import free_port from colossalai.utils.model.colo_init_context import ColoInitContext from tests.components_to_test import run_fwd_bwd from tests.components_to_test.registry import non_distributed_component_funcs from tests.test_tensor.common_utils import set_seed # run gemini use the runtime memory tracer @parameterize('placement_policy', ['auto']) @parameterize('keep_gather', [False]) @parameterize('model_name', ['repeated_computed_layers', 'bert', 'albert', 'gpt2']) @parameterize('use_grad_checkpoint', [False, True]) def run_gemini_use_rmt(placement_policy, keep_gather, model_name: str, use_grad_checkpoint: bool = False): set_seed(42) get_components_func = non_distributed_component_funcs.get_callable(model_name) model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() with ColoInitContext(device='cpu'): model = model_builder(use_grad_checkpoint) print(f'model_name {model_name}') runtime_mem_tracer = RuntimeMemTracer(model) for i, (input_ids, label) in enumerate(train_dataloader): if i > 0: break input_ids, label = input_ids.cuda(), label.cuda() # mem tracing if i == 0: run_fwd_bwd(runtime_mem_tracer, input_ids, label, criterion, runtime_mem_tracer) memstats = runtime_mem_tracer.memstats() runtime_tracer_non_model_data = runtime_mem_tracer._memstats._non_model_data_cuda_list print('runtime tracer non model data points: ', len(runtime_tracer_non_model_data)) print('runtime tracer: ', runtime_tracer_non_model_data) print([memstats.param_used_step(p) for p in model.parameters()]) if model_name == 'repeated_computed_layers': for idx, p in enumerate(model.parameters()): step_list = memstats.param_used_step(p) if idx < 4: assert len(step_list) == 4 if model_name == 'repeated_computed_layers': for idx, p in enumerate(model.parameters()): step_list = memstats.param_used_step(p) if idx < 4: assert len(step_list) == 4 world_size = torch.distributed.get_world_size() config_dict, *_ = search_chunk_configuration(model, search_range_mb=1, search_interval_byte=100) config_dict[world_size]['chunk_size'] = 5000 config_dict[world_size]['keep_gathered'] = keep_gather chunk_manager = ChunkManager(config_dict) gemini_manager = GeminiManager(placement_policy, chunk_manager, memstats) model = ZeroDDP(model, gemini_manager, pin_memory=True) pg = ProcessGroup() set_seed(pg.dp_local_rank()) for i, (input_ids, label) in enumerate(train_dataloader): # you can only test a single fwd + bwd. # after bwd param is grad for Gemini, due to the chunk reuse optimization. # print(f'iteration {i}') if i > 4: break input_ids, label = input_ids.cuda(), label.cuda() set_seed(42) loss = run_fwd_bwd(model, input_ids, label, criterion, model) gemini_non_model_data = gemini_manager._mem_stats_collector._memstats.non_model_data_list('cuda') # print('gemini non model data:', gemini_non_model_data) assert len(gemini_non_model_data) == len(runtime_tracer_non_model_data), \ f'model_name {model_name} {len(gemini_non_model_data)} vs {len(runtime_tracer_non_model_data)}' def run_dist(rank, world_size, port): config = {} colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') run_gemini_use_rmt() @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 4]) @rerun_if_address_is_in_use() def test_gemini_use_rmt(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_gemini_use_rmt(1)
from functools import partial import pytest import torch import torch.distributed as dist import torch.multiprocessing as mp import colossalai from colossalai.gemini.chunk import ChunkManager, search_chunk_configuration from colossalai.gemini.gemini_mgr import GeminiManager from colossalai.nn.optimizer import HybridAdam from colossalai.nn.optimizer.zero_optimizer import ZeroOptimizer from colossalai.nn.parallel import ZeroDDP from colossalai.testing import parameterize, rerun_if_address_is_in_use from colossalai.utils import free_port from colossalai.utils.cuda import get_current_device from colossalai.utils.model.colo_init_context import ColoInitContext from tests.components_to_test.registry import non_distributed_component_funcs from tests.test_tensor.common_utils import debug_print, set_seed @parameterize('placement_policy', ['cuda', 'cpu', 'auto']) @parameterize('keep_gathered', [True, False]) def exam_zero_optim_state_dict(placement_policy, keep_gathered): set_seed(431) get_components_func = non_distributed_component_funcs.get_callable('gpt2') model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() with ColoInitContext(device=get_current_device()): model = model_builder() set_seed(451) torch_model = model_builder() # get a different model world_size = torch.distributed.get_world_size() config_dict, *_ = search_chunk_configuration(model, search_range_mb=1, search_interval_byte=100) config_dict[world_size]['chunk_size'] = 5000 config_dict[world_size]['keep_gathered'] = keep_gathered if placement_policy != 'cuda': init_device = torch.device('cpu') else: init_device = None chunk_manager = ChunkManager(config_dict, init_device=init_device) gemini_manager = GeminiManager(placement_policy, chunk_manager) model = ZeroDDP(model, gemini_manager, pin_memory=True) optimizer = HybridAdam(model.parameters()) optim = ZeroOptimizer(optimizer, model, initial_scale=32) # initialize the link between chunk16 and chunk32 set_seed(dist.get_rank() * 3 + 128) model.train() for i, (input_ids, label) in enumerate(train_dataloader): if i > 0: break optim.zero_grad() logits = model(input_ids) logits = logits.float() loss = criterion(logits, input_ids) optim.backward(loss) optim.step() optim_state_dict = optim.state_dict() optim.load_state_dict(optim_state_dict) new_state = optim.state_dict()['state'] org_state = optim_state_dict['state'] for k, v in org_state.items(): w = new_state[k] for n, m in v.items(): if isinstance(m, torch.Tensor): o = w[n] if m.device != o.device: o = o.to(m.device) assert torch.equal(m, o) else: assert m == w[n] def run_dist(rank, world_size, port): config = {} colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') exam_zero_optim_state_dict() @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 4]) @rerun_if_address_is_in_use() def test_zero_optim(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_zero_optim(1)
#!/usr/bin/env python # -*- encoding: utf-8 -*- train_data = dict( dataset=dict( type='CIFAR10Dataset', root='/path/to/data', download=True, transform_pipeline=[ dict(type='RandomResizedCrop', size=224), dict(type='RandomHorizontalFlip'), dict(type='ToTensor'), dict(type='Normalize', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)) ] ), dataloader=dict( batch_size=64, pin_memory=True, num_workers=4, sampler=dict( type='DataParallelSampler', shuffle=True, ) ) )
#!/usr/bin/env python # -*- encoding: utf-8 -*- from pathlib import Path import pytest from colossalai.context.config import Config @pytest.mark.cpu def test_load_config(): filename = Path(__file__).parent.joinpath('sample_config.py') config = Config.from_file(filename) assert config.train_data, 'cannot access train data as attribute' assert config.train_data.dataset, 'cannot access grandchild attribute' assert isinstance(config.train_data.dataset.transform_pipeline[0], dict), \ f'expected attribute transform_pipeline elements to be a dict, but found {type(config.train_data.dataset.transform_pipeline)}'
import torch from functools import partial import pytest import torch.distributed as dist import torch.multiprocessing as mp from torch.distributed import ReduceOp from colossalai.core import global_context as gpc from colossalai.initialize import launch from colossalai.utils import free_port from colossalai.testing import rerun_if_address_is_in_use from colossalai.device.device_mesh import DeviceMesh def check_layer(rank, world_size, port): launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') physical_mesh_id = torch.arange(0, 4) assert rank == gpc.get_global_rank() tensor_to_check = torch.tensor([2, 2, 2, 2]).cuda() mesh_shape = (2, 2) # [[0, 1, # [2, 3]] device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) logical_pg_dict = {0: [[0, 2], [1, 3]], 1: [[0, 1], [2, 3]]} logical_process_groups = device_mesh.process_groups_dict for mesh_dim, pgs in logical_pg_dict.items(): for index, pg in enumerate(pgs): if rank in pg: tensor = torch.ones(4).cuda() group = logical_process_groups[mesh_dim][index][1] dist.all_reduce(tensor, op=ReduceOp.SUM, group=group) assert tensor.equal(tensor_to_check) gpc.destroy() @pytest.mark.dist @rerun_if_address_is_in_use() def test_logical_pg(): world_size = 4 run_func = partial(check_layer, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_logical_pg()
from functools import partial import pytest import torch.multiprocessing as mp from colossalai.device import AlphaBetaProfiler from colossalai.initialize import launch from colossalai.logging import disable_existing_loggers from colossalai.testing import parameterize, rerun_if_address_is_in_use from colossalai.utils import free_port def check_extract_alpha_beta(rank, physical_devices, world_size, port): disable_existing_loggers() launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') profiler = AlphaBetaProfiler(physical_devices) mesh_alpha, mesh_beta = profiler.extract_alpha_beta_for_device_mesh() for alpha in mesh_alpha: assert alpha > 0 and alpha < 1e-3 for beta in mesh_beta: assert beta > 0 and beta < 1e-10 @pytest.mark.skip(reason="Skip because assertion may fail for CI devices") @pytest.mark.dist @parameterize('physical_devices', [[0, 1, 2, 3], [0, 3]]) @rerun_if_address_is_in_use() def test_profile_alpha_beta(physical_devices): world_size = 4 run_func = partial(check_extract_alpha_beta, physical_devices=physical_devices, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_profile_alpha_beta()
from functools import partial import pytest import torch.multiprocessing as mp from colossalai.device import AlphaBetaProfiler from colossalai.initialize import launch from colossalai.logging import disable_existing_loggers from colossalai.testing import parameterize, rerun_if_address_is_in_use from colossalai.utils import free_port def check_alpha_beta(rank, physical_devices, world_size, port): disable_existing_loggers() launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') profiler = AlphaBetaProfiler(physical_devices) ab_dict = profiler.profile_ab() for _, (alpha, beta) in ab_dict.items(): assert alpha > 0 and alpha < 1e-4 and beta > 0 and beta < 1e-10 @pytest.mark.skip(reason="Skip because assertion fails for CI devices") @pytest.mark.dist @parameterize('physical_devices', [[0, 1, 2, 3], [0, 3]]) @rerun_if_address_is_in_use() def test_profile_alpha_beta(physical_devices): world_size = 4 run_func = partial(check_alpha_beta, physical_devices=physical_devices, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_profile_alpha_beta()
from functools import partial import pytest import torch.multiprocessing as mp from colossalai.device import AlphaBetaProfiler from colossalai.initialize import launch from colossalai.logging import disable_existing_loggers from colossalai.testing import parameterize, rerun_if_address_is_in_use from colossalai.utils import free_port def check_alpha_beta(rank, physical_devices, world_size, port): disable_existing_loggers() launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') profiler = AlphaBetaProfiler(physical_devices) best_logical_mesh = profiler.search_best_logical_mesh() if physical_devices == [0, 1, 2, 3]: assert best_logical_mesh == [[0, 1], [2, 3]] elif physical_devices == [0, 3]: assert best_logical_mesh == [[0, 3]] @pytest.mark.skip(reason="Skip because assertion may fail for CI devices") @pytest.mark.dist @parameterize('physical_devices', [[0, 1, 2, 3], [0, 3]]) @rerun_if_address_is_in_use() def test_profile_alpha_beta(physical_devices): world_size = 4 run_func = partial(check_alpha_beta, physical_devices=physical_devices, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_profile_alpha_beta()
from colossalai.device.device_mesh import DeviceMesh import torch def test_device_mesh(): physical_mesh_id = torch.arange(0, 16).reshape(2, 8) mesh_shape = (4, 4) # [[0, 1, 2, 3], # [4, 5, 6, 7], # [8, 9, 10,11], # [12,13,14,15]] device_mesh = DeviceMesh(physical_mesh_id, mesh_shape) assert device_mesh.convert_map[5] == [1, 1] assert device_mesh.convert_map[11] == [2, 3] assert device_mesh.global_rank_to_process_groups_with_logical_rank(0)[0] == [[0, 0], [1, 0], [2, 0], [3, 0]] assert device_mesh.global_rank_to_process_groups_with_logical_rank(2)[1] == [[0, 0], [0, 1], [0, 2], [0, 3]] assert device_mesh.global_rank_to_process_groups_with_global_rank(2)[1] == [0, 1, 2, 3] if __name__ == '__main__': test_device_mesh()
import torch import pytest import os import torch.multiprocessing as mp import torch.distributed.rpc as rpc from torch import nn from torch._C._distributed_rpc import _is_current_rpc_agent_set from colossalai import launch from colossalai.logging import disable_existing_loggers from colossalai.pipeline.pipeline_process_group import ppg from colossalai.pipeline.rpc._pipeline_schedule import OneFOneBPipelineEngine from colossalai.fx.passes.adding_split_node_pass import split_with_split_nodes_pass, balanced_split_pass from colossalai.fx import ColoTracer from colossalai.pipeline.middleware.adaptor import get_fx_topology from rpc_test_utils import MLP, DAG_MLP from functools import partial from colossalai.testing import parameterize, rerun_if_address_is_in_use # global variable for model created batch_size = 16 dim = 10 rpc_is_initialized = _is_current_rpc_agent_set def create_partition_module(pp_rank: int, stage_num: int, model, data_kwargs): model.eval() tracer = ColoTracer() meta_args = {k: v.to('meta') for k, v in data_kwargs.items()} graph = tracer.trace(root=model, meta_args=meta_args) gm = torch.fx.GraphModule(model, graph, model.__class__.__name__) annotated_model = balanced_split_pass(gm, stage_num) top_module, split_submodules = split_with_split_nodes_pass(annotated_model, merge_output=True) topo = get_fx_topology(top_module) for submodule in split_submodules: if isinstance(submodule, torch.fx.GraphModule): setattr(submodule, '_topo', topo) return split_submodules[pp_rank+1] def partition(model, data_kwargs: dict, pp_rank: int, chunk: int, stage_num: int): torch.manual_seed(1024) partition = create_partition_module(pp_rank, stage_num, model, data_kwargs) return partition def run_master(model_cls, world_size, forward_only): torch.manual_seed(100) epoch = 3 device = 'cuda' stage_num = world_size chunk = 1 num_microbatches = 8 use_checkpoint = 'store_true' if model_cls == MLP: def data_gen(): x = torch.zeros((batch_size, dim)) kwargs = dict(x=x) return kwargs model = model_cls(dim, stage_num * 3) if forward_only: labels = None else: labels = 1 elif model_cls == DAG_MLP: def data_gen(): x = torch.zeros((batch_size, dim)) y = torch.zeros((batch_size, dim)) kwargs = dict(x=x, y=y) return kwargs model = model_cls(dim, stage_num * 3) if forward_only: labels = None else: labels = 1 else: pass data_kwargs = data_gen() engine = OneFOneBPipelineEngine(partition_fn=partial(partition, model, data_kwargs), stage_num=stage_num, num_microbatches=num_microbatches, device=device, chunk=chunk, checkpoint=use_checkpoint,) if not forward_only: engine.initialize_optimizer(getattr(torch.optim, 'SGD'), lr=1e-3) for _ in range(epoch): input_x = torch.randn((batch_size, dim), device=device) input_y = torch.randn((batch_size, dim), device=device) logits = engine.forward_backward({'x': input_x, 'y': input_y}, labels=labels, forward_only=forward_only) def run_worker(rank, model_cls, world_size, forward_only, master_func): master_addr = 'localhost' master_port = 29020 os.environ['MASTER_ADDR'] = master_addr os.environ['MASTER_PORT'] = str(master_port) disable_existing_loggers() launch(dict(), rank, world_size, master_addr, master_port, 'nccl', verbose=False) ppg.set_global_info(rank=rank, world_size=world_size, dp_degree=1, tp_degree=1, num_worker_threads=128, device='cuda') # in rpc mode, only rank 0 is needed to be coded if rank == 0: master_func(model_cls, world_size, forward_only) # barrier here if rpc_is_initialized(): rpc.shutdown() @pytest.mark.skip("skip due to CI torch version 1.11") @parameterize('model_cls', [MLP, DAG_MLP]) @parameterize('forward_only', [True, False]) @pytest.mark.dist @rerun_if_address_is_in_use() def test_pp_middleware_fwd(model_cls, forward_only): world_size = 4 master_func = run_master mp.spawn(run_worker, args=(model_cls, world_size, forward_only, master_func), nprocs=world_size) if __name__ == "__main__": test_pp_middleware_fwd()
import torch import torch.multiprocessing as mp from colossalai.pipeline.pipelinable import PipelinableContext from colossalai.testing import rerun_on_exception NUM_CHUNKS = 1 PIPELINE_SIZE = 2 class MLP(torch.nn.Module): def __init__(self, dim: int = 256): super().__init__() intermediate_dim = dim * 4 self.dense_1 = torch.nn.Linear(dim, intermediate_dim) self.activation = torch.nn.GELU() self.dense_2 = torch.nn.Linear(intermediate_dim, dim) self.dropout = torch.nn.Dropout(0.1) def forward(self, x): x = self.dense_1(x) x = self.activation(x) x = self.dense_2(x) x = self.dropout(x) return x def run_pipelinable(rank): pipelinable = PipelinableContext() with pipelinable: model = MLP() assert pipelinable.policy == "balanced" pipelinable.policy = "uniform" assert pipelinable.policy == "uniform" pipelinable.to_layer_list() assert pipelinable.layers_count == len(list(model.children())) pipeline_model_part_0 = pipelinable.partition(NUM_CHUNKS, PIPELINE_SIZE, 0) assert isinstance(pipeline_model_part_0, torch.nn.Module) pipeline_model_part_1 = pipelinable.partition(NUM_CHUNKS, PIPELINE_SIZE, 1) assert isinstance(pipeline_model_part_1, torch.nn.Module) layers_count_in_part_0 = len(list(pipeline_model_part_0._module_list)) layers_count_in_part_1 = len(list(pipeline_model_part_1._module_list)) assert layers_count_in_part_0 + layers_count_in_part_1 == pipelinable.layers_count @rerun_on_exception(exception_type=mp.ProcessRaisedException, pattern=".*Address already in use.*") def test_pipelinable(): mp.spawn(run_pipelinable, nprocs=1) if __name__ == '__main__': test_pipelinable()
import torch from torch import nn from torch import autograd from colossalai.pipeline.rpc._pipeline_schedule import FillDrainPipelineEngine, OneFOneBPipelineEngine from colossalai.testing import assert_close from rpc_test_utils import rpc_run, parse_args, RpcTestModel feat_num = 100 h = 100 def partition(pp_rank: int, chunk: int, stage_num: int): torch.manual_seed(1024) partition = RpcTestModel(pp_rank, stage_num, feat_num, h) return partition def run_master(args): torch.manual_seed(100) device = args.device stage_num = args.world_size chunk = args.chunk actual_stage_num = stage_num * chunk use_checkpoint = args.use_checkpoint num_microbatches = args.num_microbatches sample_num = 1024 batch_size = 1024 assert sample_num % batch_size == 0 input_sample = torch.randn((sample_num, feat_num), device=device) engine = OneFOneBPipelineEngine(partition_fn=partition, stage_num=stage_num, num_microbatches=num_microbatches, device=device, chunk=chunk, checkpoint=use_checkpoint) forward_result = engine.forward_backward(input_sample) cuda_rpc_result = [] single_result = [] actual_stage_num = engine._get_actual_stage_num() # compute forward result and backward grad of parameters in cuda rpc cuda_rpc_result.append(sum(forward_result[0])) grad = engine.remote_grad() for stage_id in range(actual_stage_num): for p in grad[stage_id]: cuda_rpc_result.append(p) # compute forward result and backward grad of parameters just in rank_0 test_model = nn.Sequential( *[partition(pp_rank, chunk, actual_stage_num) for pp_rank in range(actual_stage_num)]).to(device) input_sample = input_sample.requires_grad_() out_val = test_model(input_sample).sum() autograd.backward(out_val) single_result.append(out_val) for p in test_model.parameters(): single_result.append(p.grad) assert len(cuda_rpc_result) == len(single_result) for r_c, r_s in zip(cuda_rpc_result, single_result): assert_close(r_c, r_s, 0.001, 0.001) if __name__ == "__main__": args = parse_args() rpc_run(args, run_master)
import argparse import os import warnings import torch import torch.distributed as dist import torch.distributed.rpc as rpc import torch.multiprocessing as mp from colossalai import launch from colossalai.logging import disable_existing_loggers from colossalai.pipeline.pipeline_process_group import ppg from torch import nn from torch._C._distributed_rpc import _is_current_rpc_agent_set from torch.optim import SGD, Adam, Optimizer, RMSprop rpc_is_initialized = _is_current_rpc_agent_set def color_debug(text, prefix=' ', color='blue'): color = color.upper() print(getattr(Back, color), prefix, Style.RESET_ALL, text) class MLP(nn.Module): def __init__(self, dim: int, layers: int): super().__init__() self.layers = torch.nn.ModuleList() for _ in range(layers): self.layers.append(nn.Linear(dim, dim, bias=False)) def forward(self, x): for layer in self.layers: x = layer(x) return x.sum() class DAG_MLP(nn.Module): def __init__(self, dim: int, layers: int): super().__init__() self.layers = torch.nn.ModuleList() self.dag_layer = nn.Linear(dim, dim, bias=False) for _ in range(layers): self.layers.append(nn.Linear(dim, dim, bias=False)) def forward(self, x, y): for layer in self.layers: x = layer(x) y = self.dag_layer(y) return x.sum(), y.sum() class RpcTestModel(nn.Module): def __init__(self, stage_id, actual_stage_num, feat_num, h) -> None: super().__init__() self.rank = stage_id self.is_last_rank = stage_id == actual_stage_num - 1 self.linear_name = f'linear_{stage_id}' if stage_id == 0: linear = nn.Linear(feat_num, h) elif stage_id == actual_stage_num - 1: linear = nn.Linear(h, 1) else: linear = nn.Linear(h, h) setattr(self, self.linear_name, linear) def forward(self, x) -> torch.Tensor: linear: nn.Module = getattr(self, self.linear_name) out: torch.Tensor = linear(x) if self.is_last_rank: out = out.sum() return out def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--epoch', type=int, default=1) parser.add_argument('--world_size', type=int, default=2) parser.add_argument('--batch_size', type=int, default=16) parser.add_argument('--dp_degree', type=int, default=1) parser.add_argument('--tp_degree', type=int, default=1) parser.add_argument('--num_microbatches', type=int, default=2) parser.add_argument('--chunk', type=int, default=1) parser.add_argument('--use_checkpoint', action='store_true') parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'RMSprop'], default='SGD') parser.add_argument('--device', type=str, choices=['cpu', 'cuda'], default='cuda') parser.add_argument('--master_addr', type=str, default='localhost') parser.add_argument('--master_port', type=str, default='29020') parser.add_argument('--num_worker_threads', type=str, default=128) return parser.parse_args() def pg_parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--world_size', type=int, default=4) parser.add_argument('--dp_degree', type=int, default=2) parser.add_argument('--tp_degree', type=int, default=1) parser.add_argument('--chunk', type=int, default=1) parser.add_argument('--num_worker_threads', type=str, default=128) parser.add_argument('--device', type=str, choices=['cpu', 'cuda'], default='cuda') parser.add_argument('--master_addr', type=str, default='localhost') parser.add_argument('--master_port', type=str, default='29020') return parser.parse_args() def run_worker(rank, args, master_func): os.environ['MASTER_ADDR'] = args.master_addr os.environ['MASTER_PORT'] = args.master_port device = args.device world_size = args.world_size dp_degree = args.dp_degree tp_degree = args.tp_degree num_worker_threads = args.num_worker_threads host = args.master_addr port = args.master_port backend = 'nccl' if device == 'cuda' else 'gloo' disable_existing_loggers() launch(dict(), rank, world_size, host, int(port), backend, verbose=False) ppg.set_global_info(rank=rank, world_size=world_size, dp_degree=dp_degree, tp_degree=tp_degree, num_worker_threads=num_worker_threads, device=device) # in rpc mode, only rank 0 is needed to be coded if rank == 0: master_func(args) # barrier here if rpc_is_initialized(): rpc.shutdown() else: warnings.warn("RPC has not been initialized") def rpc_run(args, master_func): world_size = args.world_size assert args.num_microbatches >= args.world_size, "num_microbatches cannot be fewer than world_size!" mp.spawn(run_worker, args=(args, master_func), nprocs=world_size)
import os import torch.distributed.rpc as rpc import torch.multiprocessing as mp import pytest from colossalai.pipeline.pipeline_process_group import ppg from colossalai.initialize import launch from colossalai.logging import disable_existing_loggers from rpc_test_utils import pg_parse_args, rpc_is_initialized def run_worker(rank, args): os.environ['MASTER_ADDR'] = args.master_addr os.environ['MASTER_PORT'] = args.master_port device = args.device world_size = args.world_size dp_degree = args.dp_degree tp_degree = args.tp_degree num_worker_threads = args.num_worker_threads host = args.master_addr port = args.master_port backend = 'nccl' if device == 'cuda' else 'gloo' disable_existing_loggers() launch(dict(), rank, world_size, host, int(port), backend, verbose=False) ppg.set_global_info(rank=rank, world_size=world_size, dp_degree=dp_degree, tp_degree=tp_degree, num_worker_threads=num_worker_threads, device=device) if rpc_is_initialized(): rpc.shutdown() if __name__ == "__main__": args = pg_parse_args() world_size = args.world_size mp.spawn(run_worker, args=(args,), nprocs=world_size)
import torch from torch import nn from colossalai.pipeline.rpc._pipeline_schedule import FillDrainPipelineEngine, OneFOneBPipelineEngine from rpc_test_utils import rpc_run, parse_args, RpcTestModel # global variable for model created feat_num = 100 h = 100 def partition(pp_rank: int, chunk: int, stage_num: int): torch.manual_seed(1024) partition = RpcTestModel(pp_rank, stage_num, feat_num, h) return partition def run_master(args): torch.manual_seed(100) epoch = args.epoch device = args.device stage_num = args.world_size chunk = args.chunk num_microbatches = args.num_microbatches use_checkpoint = args.use_checkpoint sample_num = 1024 batch_size = 1024 assert sample_num % batch_size == 0 input_sample = torch.randn((sample_num, feat_num), device=device) engine = OneFOneBPipelineEngine(partition_fn=partition, stage_num=stage_num, num_microbatches=num_microbatches, device=device, chunk=chunk, checkpoint=use_checkpoint) for _ in range(epoch): _ = engine.forward_backward(input_sample, forward_only=False) if __name__ == "__main__": args = parse_args() rpc_run(args, run_master)
import torch from torch import nn import torch.autograd as autograd from colossalai.pipeline.rpc import ChimeraPipelineEngine from colossalai.testing import assert_close from rpc_test_utils import rpc_run, parse_args, RpcTestModel # global variable for model created feat_num = 100 h = 100 def partition(pp_rank: int, chunk: int, stage_num: int): torch.manual_seed(1024) partition = RpcTestModel(pp_rank, stage_num, feat_num, h) return partition def run_master(args): torch.manual_seed(100) epoch = args.epoch device = args.device stage_num = args.world_size chunk = 1 num_microbatches = args.num_microbatches use_checkpoint = False sample_num = 1024 batch_size = 1024 assert sample_num % batch_size == 0 engine = ChimeraPipelineEngine(partition_fn=partition, stage_num=stage_num, num_microbatches=num_microbatches, device=device, checkpoint=use_checkpoint) engine.initialize_optimizer(torch.optim.Adam, lr=1e-3) input_sample = torch.randn((sample_num, feat_num), device=device) forward_result = engine.forward_backward(input_sample) cuda_rpc_result = [] single_result = [] actual_stage_num = engine._get_actual_stage_num() # compute forward result and backward grad of parameters in cuda rpc cuda_rpc_result.append(sum(forward_result[0])) grad = engine.remote_grad() for stage_id in range(actual_stage_num): for p in grad[stage_id]: cuda_rpc_result.append(p) # compute forward result and backward grad of parameters just in rank_0 test_model = nn.Sequential( *[partition(pp_rank, chunk, actual_stage_num) for pp_rank in range(actual_stage_num)]).to(device) # input_sample = input_sample[len(input_sample) // 2:] input_sample = input_sample.requires_grad_() out_val = test_model(input_sample).sum() autograd.backward(out_val) single_result.append(out_val) for p in test_model.parameters(): single_result.append(p.grad) # print("my") # print(cuda_rpc_result[1]) # print("answer:") # print(single_result[1]) # assert len(cuda_rpc_result) == len(single_result) # for r_c, r_s in zip(cuda_rpc_result, single_result): # assert_close(r_c, r_s, 0.001, 0.001) if __name__ == "__main__": args = parse_args() rpc_run(args, run_master)
import os from typing import Callable, List, Optional, Type, Union import time import pytest import torch import torch.nn as nn from titans.dataloader.cifar10 import build_cifar from torchvision.models import resnet50 from torchvision.models.resnet import BasicBlock, Bottleneck, conv1x1 from tqdm import tqdm from rpc_test_utils import rpc_run, parse_args import colossalai import colossalai.nn as col_nn from colossalai.logging import disable_existing_loggers, get_dist_logger from colossalai.trainer import Trainer, hooks from colossalai.utils import MultiTimer, get_dataloader from colossalai.context import ParallelMode from colossalai.pipeline.pipelinable import PipelinableContext, PipelinableModel from colossalai.pipeline.rpc import OneFOneBPipelineEngine, ChimeraPipelineEngine from colossalai.pipeline.pipeline_process_group import ppg def flatten(x): return torch.flatten(x, 1) def partition(pp_rank: int, chunk: int, stage_num: int): pipelinable = PipelinableContext() # build model partitions with pipelinable: # input : [B, 3, 32, 32] _ = resnet50() pipelinable.policy = "customized" exec_seq = [ 'conv1', 'bn1', 'relu', 'maxpool', 'layer1', 'layer2', 'layer3', 'layer4', 'avgpool', (flatten, "behind"), 'fc' ] pipelinable.to_layer_list(exec_seq) partition = pipelinable.partition(chunk, stage_num, pp_rank) return partition def run_master(args): batch_size = args.batch_size chunk = args.chunk device = args.device world_size = args.world_size stage_num = world_size num_microbatches = args.num_microbatches # build dataloader root = os.environ.get('DATA', './data') train_dataloader, test_dataloader = build_cifar(batch_size, root, padding=4, crop=32, resize=32) criterion = nn.CrossEntropyLoss() pp_engine = OneFOneBPipelineEngine(partition_fn=partition, stage_num=stage_num, num_microbatches=num_microbatches, device=device, chunk=chunk, criterion=criterion, checkpoint=False) pp_engine.initialize_optimizer(torch.optim.Adam, lr=1e-3) s = time.time() for bx, by in tqdm(train_dataloader): pp_engine.forward_backward(bx, labels=by, forward_only=False) cost_time = time.time() - s print("total cost time :", cost_time) print("cost time per batch:", cost_time / len(train_dataloader)) @pytest.mark.skip("Test for performance, no need for CI") def main(): args = parse_args() # this is due to limitation of partition function args.world_size = 2 args.chunk = 1 rpc_run(args, run_master) if __name__ == '__main__': main()
import torch from torch import nn from torch import autograd from torch.optim import SGD, Adam, RMSprop, Optimizer from colossalai.pipeline.rpc._pipeline_schedule import FillDrainPipelineEngine, OneFOneBPipelineEngine from colossalai.testing import assert_close from rpc_test_utils import rpc_run, parse_args, RpcTestModel # global variable for model created feat_num = 100 h = 100 def partition(pp_rank: int, chunk: int, stage_num: int): torch.manual_seed(1024) partition = RpcTestModel(pp_rank, stage_num, feat_num, h) return partition def run_master(args): torch.manual_seed(100) device = args.device stage_num = args.world_size chunk = args.chunk actual_stage_num = stage_num * chunk use_checkpoint = args.use_checkpoint num_microbatches = args.num_microbatches optimizer_class = globals()[args.optimizer] lr = 1e-3 sample_num = 1024 batch_size = 1024 assert sample_num % batch_size == 0 input_sample = torch.randn((sample_num, feat_num), device=device) engine = OneFOneBPipelineEngine(partition_fn=partition, stage_num=stage_num, num_microbatches=num_microbatches, device=device, chunk=chunk, checkpoint=use_checkpoint) engine.initialize_optimizer(optimizer_class, lr=lr) _ = engine.forward_backward(input_sample) cuda_rpc_result = [] single_result = [] actual_stage_num = engine._get_actual_stage_num() # compute parameters after updating in cuda rpc parameters = engine.remote_parameters() for stage_id in range(actual_stage_num): for p in parameters[stage_id]: cuda_rpc_result.append(p) # compute forward result and backward grad of parameters just in rank_0 test_model = nn.Sequential( *[partition(pp_rank, chunk, actual_stage_num) for pp_rank in range(actual_stage_num)]).to(device) optimizer: Optimizer = optimizer_class(test_model.parameters(), lr=lr) input_sample = input_sample.requires_grad_() out_val = test_model(input_sample).sum() autograd.backward(out_val) optimizer.step() optimizer.zero_grad() for p in test_model.parameters(): single_result.append(p) assert len(cuda_rpc_result) == len(single_result) for r_c, r_s in zip(cuda_rpc_result, single_result): assert_close(r_c, r_s, 0.001, 0.001) if __name__ == "__main__": args = parse_args() rpc_run(args, run_master)
from functools import partial import pytest import torch import torch.multiprocessing as mp from torch.nn.parallel import DistributedDataParallel as DDP import colossalai from colossalai.amp import convert_to_apex_amp from colossalai.gemini.chunk import search_chunk_configuration from colossalai.nn.optimizer.gemini_optimizer import GeminiAdamOptimizer from colossalai.nn.parallel import GeminiDDP, ZeroDDP from colossalai.tensor import ColoTensor, ColoTensorSpec, ComputePattern, ComputeSpec, ProcessGroup, ShardSpec from colossalai.testing import parameterize, rerun_if_address_is_in_use from colossalai.utils import free_port from colossalai.utils.cuda import get_current_device from colossalai.utils.model.colo_init_context import ColoInitContext from tests.components_to_test.registry import non_distributed_component_funcs from tests.test_tensor.common_utils import set_seed, tensor_shard_equal from tests.test_tensor.model.test_gpt2 import init_megatron_spec def check_param(model: ZeroDDP, torch_model: torch.nn.Module, pg: ProcessGroup): zero_dict = model.state_dict(only_rank_0=False) torch_dict = torch_model.state_dict() for key, value in torch_dict.items(): # key is 'module.model.PARAMETER', so we truncate it key = key[7:] assert key in zero_dict, "{} not in ZeRO dictionary.".format(key) temp_zero_value = zero_dict[key].to(device=value.device, dtype=value.dtype) # debug_print([0], "max range: ", key, torch.max(torch.abs(value - temp_zero_value))) assert tensor_shard_equal(value, temp_zero_value, pg.tp_local_rank(), pg.tp_world_size()), \ "parameter '{}' has problem.".format(key) def run_fwd_bwd(model, criterion, optimizer, input_ids): optimizer.zero_grad() logits = model(input_ids) logits = logits.float() loss = criterion(logits, input_ids) optimizer.backward(loss) return logits def init_1d_row_spec(model, pg: ProcessGroup): spec = (ShardSpec([0], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D)) for n, p in model.named_parameters(): p.set_process_group(pg) if 'weight' in n and 'ln' not in n: p.set_tensor_spec(*spec) def init_1d_col_spec(model, pg: ProcessGroup): spec = (ShardSpec([-1], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D)) for n, p in model.named_parameters(): p.set_process_group(pg) if 'ln' not in n and ('weight' in n or 'bias' in n): p.set_tensor_spec(*spec) @parameterize('placement_policy', ['cuda', 'cpu']) def run_gpt(placement_policy, tp_init_spec_func=None): set_seed(42) get_components_func = non_distributed_component_funcs.get_callable('gpt2') model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() with ColoInitContext(device=get_current_device()): model = model_builder() model = model.cuda() torch_model = model_builder().cuda() for torch_p, p in zip(torch_model.parameters(), model.parameters()): torch_p.data.copy_(p.data) world_size = torch.distributed.get_world_size() # world size, dp = 2, tp =2, construct a hybrid parallelism. if world_size == 4: pg = ProcessGroup(tp_degree=2) else: pg = ProcessGroup(tp_degree=world_size) if tp_init_spec_func: tp_init_spec_func(model, pg) dp_world_size = pg.dp_world_size() config_dict, *_ = search_chunk_configuration(model, search_range_mb=1, search_interval_byte=100) config_dict[dp_world_size]['chunk_size'] = 5000 config_dict[dp_world_size]['keep_gathered'] = False if placement_policy != 'cuda': init_device = torch.device('cpu') else: init_device = None model = GeminiDDP(model, init_device, placement_policy, True, False) # The same as the following 3 lines # chunk_manager = ChunkManager(config_dict, init_device=init_device) # gemini_manager = GeminiManager(placement_policy, chunk_manager) # model = ZeroDDP(model, gemini_manager, pin_memory=True) zero_optim = GeminiAdamOptimizer(model, lr=1e-3, initial_scale=1) # The same as the following 2 lines # optimizer = HybridAdam(model.parameters(), lr=1e-3) # zero_optim = ZeroOptimizer(optimizer, model, initial_scale=1) amp_config = dict(opt_level='O2', keep_batchnorm_fp32=False, loss_scale=1) torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-3) torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config) torch_model = DDP(torch_model, device_ids=[pg.rank()], process_group=pg.dp_process_group()) check_param(model, torch_model, pg) model.eval() torch_model.eval() set_seed(pg.dp_local_rank()) for i, (input_ids, label) in enumerate(train_dataloader): if i > 2: break input_ids_colo = ColoTensor.from_torch_tensor(input_ids, ColoTensorSpec(pg)) zero_logits = run_fwd_bwd(model, criterion, zero_optim, input_ids_colo) torch_logits = run_fwd_bwd(torch_model, criterion, torch_optim, input_ids) assert torch.allclose(zero_logits, torch_logits, rtol=1e-3, atol=1e-2) zero_optim.step() torch_optim.step() check_param(model, torch_model, pg) def run_dist(rank, world_size, port): config = {} colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') if world_size == 4: run_gpt(tp_init_spec_func=init_megatron_spec) else: run_gpt(tp_init_spec_func=init_1d_col_spec) run_gpt(tp_init_spec_func=init_1d_row_spec) @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 4]) @rerun_if_address_is_in_use() def test_gpt(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_gpt(4)
from functools import partial import pytest import torch import torch.multiprocessing as mp import torch.nn.functional as F import colossalai from colossalai.device.device_mesh import DeviceMesh from colossalai.nn._ops._utils import gather_forward_split_backward from colossalai.tensor import ColoParameter, ColoTensor, ProcessGroup from colossalai.tensor.sharding_spec import ShardingSpec from colossalai.testing import rerun_if_address_is_in_use from colossalai.utils import free_port def run_dist(rank, world_size, port): config = {} colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') # create mlp vars x = ColoTensor.from_torch_tensor(torch.rand(4, 4, 8, requires_grad=True)).cuda() w = ColoParameter.from_torch_tensor(torch.rand(16, 8, requires_grad=True)).cuda() b = ColoParameter.from_torch_tensor(torch.rand(16, requires_grad=True)).cuda() # run normal forward out = F.linear(x, w, b) # create mesh meta # the mesh is in the following topo # [[0, 1], # [2, 3]] physical_mesh_id = torch.arange(0, 4).reshape(2, 2) mesh_shape = (2, 2) device_mesh = DeviceMesh(physical_mesh_id, mesh_shape) row_id = rank // 2 column_id = rank % 2 # create pg row_process_group = None col_process_group = None row_to_ranks = {0: [0, 1], 1: [2, 3]} col_to_ranks = {0: [0, 2], 1: [1, 3]} for idx in range(2): # row ranks row_ranks = row_to_ranks[idx] row_pg = ProcessGroup(ranks=row_ranks, tp_degree=2) # col ranks col_ranks = col_to_ranks[idx] col_pg = ProcessGroup(ranks=col_ranks, tp_degree=2) if rank in row_ranks: row_process_group = row_pg if rank in col_ranks: col_process_group = col_pg ######################## # RRR x RS0 -> RRS0 # ######################## # w will be transposed in F.linear x_replica = x.detach().clone() w_shard = torch.chunk(w.detach().clone(), chunks=2, dim=0)[row_id] b_shard = torch.chunk(b.detach().clone(), chunks=2, dim=0)[row_id] # adding sharding spec x_replica.sharding_spec = ShardingSpec(device_mesh, x.shape, dim_partition_dict={}) w_shard.sharding_spec = ShardingSpec(device_mesh, w.shape, dim_partition_dict={0: [0]}) b_shard.sharding_spec = ShardingSpec(device_mesh, b.shape, dim_partition_dict={0: [0]}) # check sharding spec assert str(x_replica.sharding_spec.sharding_sequence) == "[R, R, R]" assert str(w_shard.sharding_spec.sharding_sequence) == "[S0, R]" assert str(b_shard.sharding_spec.sharding_sequence) == "[S0]" w_shard.pg_axis0 = col_process_group w_shard.pg_axis1 = row_process_group out_shard = F.linear(x_replica, w_shard, b_shard) assert str(out_shard.sharding_spec.sharding_sequence) == "[R, R, S0]" # each row only has a mini-batch expected_out_shard = torch.chunk(out, chunks=2, dim=2)[row_id] assert torch.allclose(out_shard, expected_out_shard) ######################## # S0RR x RS1 -> S0RS1 # ######################## # w will be transposed in F.linear x_shard = torch.chunk(x.detach().clone(), chunks=2, dim=0)[row_id] w_shard = torch.chunk(w.detach().clone(), chunks=2, dim=0)[column_id] b_shard = torch.chunk(b.detach().clone(), chunks=2, dim=0)[column_id] # adding sharding spec x_shard.sharding_spec = ShardingSpec(device_mesh, x.shape, dim_partition_dict={0: [0]}) w_shard.sharding_spec = ShardingSpec(device_mesh, w.shape, dim_partition_dict={0: [1]}) b_shard.sharding_spec = ShardingSpec(device_mesh, b.shape, dim_partition_dict={0: [1]}) # check sharding spec assert str(x_shard.sharding_spec.sharding_sequence) == "[S0, R, R]" assert str(w_shard.sharding_spec.sharding_sequence) == "[S1, R]" assert str(b_shard.sharding_spec.sharding_sequence) == "[S1]" w_shard.pg_axis0 = col_process_group w_shard.pg_axis1 = row_process_group out_shard = F.linear(x_shard, w_shard, b_shard) # each row only has a mini-batch expected_out_shard = torch.chunk(out, chunks=2, dim=0)[row_id] expected_out_shard = torch.chunk(expected_out_shard, chunks=2, dim=2)[column_id] assert torch.allclose(out_shard, expected_out_shard) ######################## # S0RS1 x S1R -> S0RR # ######################## # w will be transposed in F.linear x_shard = torch.chunk(x.clone(), chunks=2, dim=0)[row_id] x_shard = torch.chunk(x_shard, chunks=2, dim=2)[column_id] w_shard = torch.chunk(w.clone(), chunks=2, dim=1)[column_id] b_replica = b.clone() # adding sharding spec x_shard.sharding_spec = ShardingSpec(device_mesh, x.shape, dim_partition_dict={0: [0], 2: [1]}) w_shard.sharding_spec = ShardingSpec(device_mesh, w.shape, dim_partition_dict={1: [1]}) b_replica.sharding_spec = ShardingSpec(device_mesh, b.shape, dim_partition_dict={}) # check sharding spec assert str(x_shard.sharding_spec.sharding_sequence) == "[S0, R, S1]" assert str(w_shard.sharding_spec.sharding_sequence) == "[R, S1]" assert str(b_replica.sharding_spec.sharding_sequence) == "[R]" w_shard.pg_axis0 = col_process_group w_shard.pg_axis1 = row_process_group out_shard = F.linear(x_shard, w_shard, b_replica) # each row only has a mini-batch expected_out_shard = torch.chunk(out, chunks=2, dim=0)[row_id] assert torch.allclose(out_shard, expected_out_shard) ######################## # RRS0 x S0R -> RRR # ######################## # w will be transposed in F.linear x_shard = torch.chunk(x.clone(), chunks=2, dim=2)[row_id] w_shard = torch.chunk(w.clone(), chunks=2, dim=1)[row_id] b_replica = b.clone() # adding sharding spec x_shard.sharding_spec = ShardingSpec(device_mesh, x.shape, dim_partition_dict={2: [0]}) w_shard.sharding_spec = ShardingSpec(device_mesh, w.shape, dim_partition_dict={1: [0]}) b_replica.sharding_spec = ShardingSpec(device_mesh, b.shape, dim_partition_dict={}) # check sharding spec assert str(x_shard.sharding_spec.sharding_sequence) == "[R, R, S0]" assert str(w_shard.sharding_spec.sharding_sequence) == "[R, S0]" assert str(b_replica.sharding_spec.sharding_sequence) == "[R]" w_shard.pg_axis0 = col_process_group w_shard.pg_axis1 = row_process_group out_shard = F.linear(x_shard, w_shard, b_replica) # each row only has a mini-batch expected_out_shard = out assert torch.allclose(out_shard, expected_out_shard) ######################## # RS0S1 x S1R -> RS0R # ######################## # w will be transposed in F.linear x_shard = torch.chunk(x.clone(), chunks=2, dim=1)[row_id] x_shard = torch.chunk(x_shard, chunks=2, dim=2)[column_id] w_shard = torch.chunk(w.clone(), chunks=2, dim=1)[column_id] b_replica = b.clone() # adding sharding spec x_shard.sharding_spec = ShardingSpec(device_mesh, x.shape, dim_partition_dict={1: [0], 2: [1]}) w_shard.sharding_spec = ShardingSpec(device_mesh, w.shape, dim_partition_dict={1: [1]}) b_replica.sharding_spec = ShardingSpec(device_mesh, b.shape, dim_partition_dict={}) # check sharding spec assert str(x_shard.sharding_spec.sharding_sequence) == "[R, S0, S1]" assert str(w_shard.sharding_spec.sharding_sequence) == "[R, S1]" assert str(b_replica.sharding_spec.sharding_sequence) == "[R]" w_shard.pg_axis0 = col_process_group w_shard.pg_axis1 = row_process_group out_shard = F.linear(x_shard, w_shard, b_replica) # each row only has a mini-batch expected_out_shard = torch.chunk(out, chunks=2, dim=1)[row_id] assert torch.allclose(out_shard, expected_out_shard) ######################## # RRS0 x S0S1 -> RRS1 # ######################## # w will be transposed in F.linear x_shard = torch.chunk(x.clone(), chunks=2, dim=2)[row_id] w_shard = torch.chunk(w.clone(), chunks=2, dim=1)[row_id] w_shard = torch.chunk(w_shard, chunks=2, dim=0)[column_id] b_shard = torch.chunk(b.clone(), chunks=2, dim=0)[column_id] # adding sharding spec x_shard.sharding_spec = ShardingSpec(device_mesh, x.shape, dim_partition_dict={2: [0]}) w_shard.sharding_spec = ShardingSpec(device_mesh, w.shape, dim_partition_dict={0: [1], 1: [0]}) b_shard.sharding_spec = ShardingSpec(device_mesh, b.shape, dim_partition_dict={0: [1]}) # check sharding spec assert str(x_shard.sharding_spec.sharding_sequence) == "[R, R, S0]" assert str(w_shard.sharding_spec.sharding_sequence) == "[S1, S0]" assert str(b_shard.sharding_spec.sharding_sequence) == "[S1]" w_shard.pg_axis0 = col_process_group w_shard.pg_axis1 = row_process_group out_shard = F.linear(x_shard, w_shard, b_shard) # each row only has a mini-batch expected_out_shard = torch.chunk(out, chunks=2, dim=2)[column_id] assert torch.allclose(out_shard, expected_out_shard) @pytest.mark.dist @pytest.mark.parametrize('world_size', [4]) @rerun_if_address_is_in_use() def test_sharded_mlp(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_sharded_mlp(4)
from colossalai.tensor import ColoParameter, ColoTensor, ColoTensorSpec, ProcessGroup import torch import pytest from common_utils import tensor_equal import colossalai from colossalai.utils import free_port @pytest.mark.skip def test_multiinheritance(): colossalai.launch(config={}, rank=0, world_size=1, host='localhost', port=free_port(), backend='nccl') colo_param = ColoParameter(None, requires_grad=True) assert colo_param.dist_spec.placement.value == 'r' assert isinstance(colo_param, ColoTensor) assert isinstance(colo_param, torch.nn.Parameter) # __deepcopy__ overload import copy colo_param2 = copy.deepcopy(colo_param) assert isinstance(colo_param2, ColoParameter) assert tensor_equal(colo_param.data, colo_param2.data) assert colo_param.requires_grad == colo_param2.requires_grad # __repr__ overload assert 'ColoParameter' in str(colo_param) # __torch_function__ clone_param = torch.clone(colo_param) assert isinstance(clone_param, ColoTensor) if __name__ == '__main__': test_multiinheritance()
from functools import partial import pytest import torch import torch.distributed as dist import torch.multiprocessing as mp from torch.distributed import ReduceOp from colossalai.core import global_context as gpc from colossalai.device.device_mesh import DeviceMesh from colossalai.initialize import launch from colossalai.logging import disable_existing_loggers from colossalai.tensor.shape_consistency import CollectiveCommPattern, CommSpec from colossalai.tensor.sharding_spec import ShardingSpec from colossalai.testing import rerun_if_address_is_in_use from colossalai.utils import free_port def check_all_gather(device_mesh, rank): # tensor to comm if rank in (0, 2): sharded_tensor_to_comm = torch.ones(2, 2).cuda() else: sharded_tensor_to_comm = torch.zeros(2, 2).cuda() # tensor to check tensor_to_check = torch.cat((torch.ones(2, 2), torch.zeros(2, 2)), 1).cuda() # test all gather dim_partition_dict = {1: [1]} # DistSpec: # shard_sequence: R,S1 # device_mesh_shape: (2, 2) sharding_spec = ShardingSpec(device_mesh, tensor_to_check.shape, dim_partition_dict=dim_partition_dict) # CommSpec:(comm_pattern:allgather, gather_dim:1, logical_process_axis:1) comm_spec = CommSpec(CollectiveCommPattern.GATHER_FWD_SPLIT_BWD, sharding_spec, gather_dim=1, logical_process_axis=1) sharded_tensor_to_comm = sharded_tensor_to_comm = comm_spec.covert_spec_to_action(sharded_tensor_to_comm) assert sharded_tensor_to_comm.equal(tensor_to_check) def check_shard(device_mesh, rank): # tensor to comm sharded_tensor_to_comm_0 = torch.zeros(2, 2).cuda() sharded_tensor_to_comm_1 = torch.ones(2, 2).cuda() # tensor([[0., 0., 1., 1.], # [0., 0., 1., 1.]]) tensor_to_shard = torch.cat((sharded_tensor_to_comm_0, sharded_tensor_to_comm_1), 1) # test shard dim_partition_dict = {} # DistSpec: # shard_sequence: R,R # device_mesh_shape: (2, 2) sharding_spec = ShardingSpec(device_mesh, tensor_to_shard.shape, dim_partition_dict=dim_partition_dict) # CommSpec:(comm_pattern:shard, shard_dim:1, logical_process_axis:1) comm_spec = CommSpec(CollectiveCommPattern.SPLIT_FWD_GATHER_BWD, sharding_spec, shard_dim=1, logical_process_axis=1) tensor_to_shard = comm_spec.covert_spec_to_action(tensor_to_shard) if rank in (0, 2): assert tensor_to_shard.equal(sharded_tensor_to_comm_0) if rank in (1, 3): assert tensor_to_shard.equal(sharded_tensor_to_comm_1) def check_all_to_all(device_mesh, rank): # tensor to comm if rank in (0, 1): sharded_tensor_0 = torch.zeros(2, 1) sharded_tensor_1 = torch.ones(2, 1) # tensor([[0., 1.], # [0., 1.]]) tensor_to_comm = torch.cat((sharded_tensor_0, sharded_tensor_1), 1).cuda() if rank in (2, 3): sharded_tensor_0 = torch.ones(2, 1) * 2 sharded_tensor_1 = torch.ones(2, 1) * 3 # tensor([[2., 3.], # [2., 3.]]) tensor_to_comm = torch.cat((sharded_tensor_0, sharded_tensor_1), 1).cuda() if rank in (0, 1): # tensor([[0.], # [0.], # [2.], # [2.]]) tensor_to_check = torch.tensor([[0], [0], [2], [2]], dtype=tensor_to_comm.dtype).cuda() if rank in (2, 3): # tensor([[1.], # [1.], # [3.], # [3.]]) tensor_to_check = torch.tensor([[1], [1], [3], [3]], dtype=tensor_to_comm.dtype).cuda() # test shard dim_partition_dict = {0: [0]} # DistSpec: # shard_sequence: S0,R # device_mesh_shape: (2, 2) sharding_spec = ShardingSpec(device_mesh, torch.Size((4, 2)), dim_partition_dict=dim_partition_dict) # CommSpec:(comm_pattern:shard, shard_dim:1, logical_process_axis:1) comm_spec = CommSpec(CollectiveCommPattern.ALL2ALL_FWD_ALL2ALL_BWD, sharding_spec, gather_dim=0, shard_dim=1, logical_process_axis=0) tensor_to_comm = comm_spec.covert_spec_to_action(tensor_to_comm) assert tensor_to_comm.equal(tensor_to_check) def check_all_reduce_fwd(device_mesh, rank): # tensor to comm tensor_to_comm = torch.ones(2, 2).cuda() * rank # reduce through logical process axis 0 # tensor to check if rank in (0, 2): # tensor([[2., 2.], # [2., 2.]]) tensor_to_check = torch.tensor([[2, 2], [2, 2]], dtype=tensor_to_comm.dtype).cuda() if rank in (1, 3): # tensor([[4., 4.], # [4., 4.]]) tensor_to_check = torch.tensor([[4, 4], [4, 4]], dtype=tensor_to_comm.dtype).cuda() dim_partition_dict = {} # DistSpec: # shard_sequence: R,R # device_mesh_shape: (2, 2) sharding_spec = ShardingSpec(device_mesh, tensor_to_comm.shape, dim_partition_dict=dim_partition_dict) comm_spec = CommSpec(CollectiveCommPattern.ALLREDUCE_FWD_IDENTITY_BWD, sharding_spec, logical_process_axis=0) tensor_to_comm = comm_spec.covert_spec_to_action(tensor_to_comm) assert tensor_to_comm.equal(tensor_to_check) def check_all_reduce_bwd(device_mesh, rank): # tensor to comm tensor_to_comm = torch.ones(2, 2).cuda() * rank tensor_to_check = torch.ones(2, 2).cuda() * rank dim_partition_dict = {} # DistSpec: # shard_sequence: R,R # device_mesh_shape: (2, 2) sharding_spec = ShardingSpec(device_mesh, tensor_to_comm.shape, dim_partition_dict=dim_partition_dict) comm_spec = CommSpec(CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD, sharding_spec, logical_process_axis=0) tensor_to_comm = comm_spec.covert_spec_to_action(tensor_to_comm) assert tensor_to_comm.equal(tensor_to_check) def check_all_reduce_in_flatten_device_mesh(device_mesh, rank): # tensor to comm tensor_to_comm = torch.ones(2, 2).cuda() * rank # reduce through logical process axis 0 at flatten device mesh # tensor to check # tensor([[6., 6.], # [6., 6.]]) tensor_to_check = torch.tensor([[6, 6], [6, 6]], dtype=tensor_to_comm.dtype).cuda() dim_partition_dict = {} # DistSpec: # shard_sequence: R,R # device_mesh_shape: (2, 2) sharding_spec = ShardingSpec(device_mesh, tensor_to_comm.shape, dim_partition_dict=dim_partition_dict) # CommSpec:(comm_pattern:all_reduce, logical_process_axis:[0, 1]) comm_spec = CommSpec(CollectiveCommPattern.ALLREDUCE_FWD_IDENTITY_BWD, sharding_spec, logical_process_axis=[0, 1]) tensor_to_comm = comm_spec.covert_spec_to_action(tensor_to_comm) assert tensor_to_comm.equal(tensor_to_check) def check_comm(rank, world_size, port): disable_existing_loggers() launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') physical_mesh_id = torch.arange(0, 4) assert rank == gpc.get_global_rank() mesh_shape = (2, 2) # [[0, 1, # [2, 3]] device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) # test all gather check_all_gather(device_mesh, rank) # test shard check_shard(device_mesh, rank) # test all to all check_all_to_all(device_mesh, rank) # test all reduce check_all_reduce_fwd(device_mesh, rank) check_all_reduce_bwd(device_mesh, rank) # test all reduce in 1D flatten device mesh check_all_reduce_in_flatten_device_mesh(device_mesh, rank) gpc.destroy() @pytest.mark.dist @rerun_if_address_is_in_use() def test_comm_spec(): world_size = 4 run_func = partial(check_comm, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_comm_spec()
from functools import partial import pytest import torch import torch.multiprocessing as mp import colossalai from colossalai.tensor import ( ColoParameter, ColoTensorSpec, ComputePattern, ComputeSpec, ProcessGroup, ReplicaSpec, ShardSpec, ) from colossalai.testing import parameterize, rerun_if_address_is_in_use from colossalai.utils import free_port from colossalai.utils.cuda import get_current_device from colossalai.utils.model.colo_init_context import ColoInitContext from tests.components_to_test.registry import non_distributed_component_funcs from tests.test_tensor.common_utils import set_seed def run_colo_init_context(rank: int, world_size: int, port: int): colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') # make sure seed of each process is the same, so the params are consistent among processes and the params are exactly replicated. set_seed(42) get_components_func = non_distributed_component_funcs.get_callable('gpt2') model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() # keep parameters replicated during init with ColoInitContext(device=get_current_device()): model1 = model_builder() # shard the parameters during init set_seed(42) shard_spec = ReplicaSpec() # If using ShardSpec, the assertations will failed. # But it is not a bug, the initialized values are not consist with the original one. # shard_spec = ShardSpec(dims=[0], num_partitions=[world_size]) default_pg = ProcessGroup(tp_degree=world_size) with ColoInitContext(device=get_current_device(), default_pg=default_pg, default_dist_spec=shard_spec): model2 = model_builder() # reshard both models new_shard = ShardSpec(dims=[-1], num_partitions=[world_size]) for p1, p2 in zip(model1.parameters(), model2.parameters()): p1: ColoParameter = p1 p1.set_process_group(ProcessGroup(tp_degree=world_size)) p1.set_dist_spec(new_shard) p2.set_dist_spec(new_shard) for p1, p2 in zip(model1.parameters(), model2.parameters()): assert (torch.allclose(p1, p2)) @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 4]) @rerun_if_address_is_in_use() def test_colo_init_context(world_size): run_func = partial(run_colo_init_context, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_colo_init_context(2)
from functools import partial import pytest import torch import torch.multiprocessing as mp from colossalai.core import global_context as gpc from colossalai.device.device_mesh import DeviceMesh from colossalai.initialize import launch from colossalai.logging import disable_existing_loggers from colossalai.tensor.shape_consistency import CollectiveCommPattern, CommSpec from colossalai.tensor.sharding_spec import ShardingSpec from colossalai.tensor.utils import mix_gather_simulator from colossalai.utils import free_port def check_mix_gather_S0S1(device_mesh, rank): tensor_to_check = torch.arange(64).reshape((8, 8)).cuda() (f, b) = (0, 1) f_target_pair = (f, [0]) b_target_pair = (b, [1]) gather_dim, logical_process_axes = mix_gather_simulator(f_target_pair, b_target_pair) tensor_slice = [4, 2] # (4, 2) rank_slice = 4 f_start = (rank // rank_slice) * tensor_slice[0] b_start = (rank % rank_slice) * tensor_slice[1] tensor_to_comm = tensor_to_check[f_start:f_start + tensor_slice[0], b_start:b_start + tensor_slice[1]].contiguous().cuda() dim_partition_dict = {0: [0], 1: [1]} # DistSpec: # shard_sequence: S0,S1 # device_mesh_shape: (2, 4) source_spec = ShardingSpec(device_mesh, tensor_to_check.shape, dim_partition_dict=dim_partition_dict) comm_spec = CommSpec(CollectiveCommPattern.MIXGATHER_FWD_SPLIT_BWD, sharding_spec=source_spec, gather_dim=gather_dim, logical_process_axis=logical_process_axes, forward_only=True, mix_gather=True) tensor_to_comm = comm_spec.covert_spec_to_action(tensor_to_comm) assert tensor_to_comm.equal(tensor_to_check) def check_two_all_gather_S0S1(device_mesh, rank): tensor_width = 8 tensor_to_check = torch.arange(int(tensor_width * tensor_width)).reshape((tensor_width, tensor_width)).cuda() dim_partition_dict = {0: [0], 1: [1]} tensor_slice = [tensor_width // 2, tensor_width // 4] # (4, 2) rank_slice = 4 f_start = (rank // rank_slice) * tensor_slice[0] b_start = (rank % rank_slice) * tensor_slice[1] tensor_to_comm = tensor_to_check[f_start:f_start + tensor_slice[0], b_start:b_start + tensor_slice[1]].contiguous().cuda() # DistSpec: # shard_sequence: S0,S1 # device_mesh_shape: (2, 4) sharding_spec = ShardingSpec(device_mesh, tensor_to_check.shape, dim_partition_dict=dim_partition_dict) # CommSpec:(comm_pattern:allgather, gather_dim:0, logical_process_axis:0) comm_spec = CommSpec(CollectiveCommPattern.GATHER_FWD_SPLIT_BWD, sharding_spec, gather_dim=0, logical_process_axis=0) tensor_to_comm = comm_spec.covert_spec_to_action(tensor_to_comm) dim_partition_dict = {1: [1]} # DistSpec: # shard_sequence: R,S1 # device_mesh_shape: (2, 4) sharding_spec = ShardingSpec(device_mesh, tensor_to_check.shape, dim_partition_dict=dim_partition_dict) # CommSpec:(comm_pattern:allgather, gather_dim:1, logical_process_axis:1) comm_spec = CommSpec(CollectiveCommPattern.GATHER_FWD_SPLIT_BWD, sharding_spec, gather_dim=1, logical_process_axis=1) tensor_to_comm = comm_spec.covert_spec_to_action(tensor_to_comm) assert tensor_to_comm.equal(tensor_to_check) def check_mix_gather_S1S0(device_mesh, rank): tensor_to_check = torch.arange(64).reshape((8, 8)).cuda() (f, b) = (0, 1) f_target_pair = (f, [1]) b_target_pair = (b, [0]) gather_dim, logical_process_axes = mix_gather_simulator(f_target_pair, b_target_pair) tensor_slice = [2, 4] rank_slice = 4 f_start = (rank % rank_slice) * tensor_slice[0] b_start = (rank // rank_slice) * tensor_slice[1] tensor_to_comm = tensor_to_check[f_start:f_start + tensor_slice[0], b_start:b_start + tensor_slice[1]].contiguous().cuda() dim_partition_dict = {0: [1], 1: [0]} # DistSpec: # shard_sequence: S1,S0 # device_mesh_shape: (2, 4) source_spec = ShardingSpec(device_mesh, tensor_to_check.shape, dim_partition_dict=dim_partition_dict) comm_spec = CommSpec(CollectiveCommPattern.MIXGATHER_FWD_SPLIT_BWD, sharding_spec=source_spec, gather_dim=gather_dim, logical_process_axis=logical_process_axes, forward_only=True, mix_gather=True) tensor_to_comm = comm_spec.covert_spec_to_action(tensor_to_comm) assert tensor_to_comm.equal(tensor_to_check) def check_two_all_gather_S1S0(device_mesh, rank): tensor_width = 8 tensor_to_check = torch.arange(int(tensor_width * tensor_width)).reshape((tensor_width, tensor_width)).cuda() tensor_slice = [tensor_width // 4, tensor_width // 2] # (4, 2) rank_slice = 4 f_start = (rank % rank_slice) * tensor_slice[0] b_start = (rank // rank_slice) * tensor_slice[1] tensor_to_comm = tensor_to_check[f_start:f_start + tensor_slice[0], b_start:b_start + tensor_slice[1]].contiguous().cuda() dim_partition_dict = {0: [1], 1: [0]} # DistSpec: # shard_sequence: S1,S0 # device_mesh_shape: (2, 4) sharding_spec = ShardingSpec(device_mesh, tensor_to_check.shape, dim_partition_dict=dim_partition_dict) # CommSpec:(comm_pattern:allgather, gather_dim:0, logical_process_axis:1) comm_spec = CommSpec(CollectiveCommPattern.GATHER_FWD_SPLIT_BWD, sharding_spec, gather_dim=0, logical_process_axis=1) tensor_to_comm = comm_spec.covert_spec_to_action(tensor_to_comm) dim_partition_dict = {1: [0]} # DistSpec: # shard_sequence: R,S0 # device_mesh_shape: (2, 4) sharding_spec = ShardingSpec(device_mesh, tensor_to_check.shape, dim_partition_dict=dim_partition_dict) # CommSpec:(comm_pattern:allgather, gather_dim:1, logical_process_axis:0) comm_spec = CommSpec(CollectiveCommPattern.GATHER_FWD_SPLIT_BWD, sharding_spec, gather_dim=1, logical_process_axis=0) tensor_to_comm = comm_spec.covert_spec_to_action(tensor_to_comm) assert tensor_to_comm.equal(tensor_to_check) def check_mix_gather_S01R(device_mesh, rank): tensor_to_check = torch.arange(64).reshape((8, 8)).cuda() (f, b) = (0, 1) f_target_pair = (f, [0, 1]) b_target_pair = (b, []) gather_dim, logical_process_axes = mix_gather_simulator(f_target_pair, b_target_pair) tensor_to_comm = tensor_to_check[rank:rank + 1, :].contiguous().cuda() dim_partition_dict = {0: [0, 1]} # DistSpec: # shard_sequence: S01,R # device_mesh_shape: (2, 4) source_spec = ShardingSpec(device_mesh, tensor_to_check.shape, dim_partition_dict=dim_partition_dict) comm_spec = CommSpec(CollectiveCommPattern.MIXGATHER_FWD_SPLIT_BWD, sharding_spec=source_spec, gather_dim=gather_dim, logical_process_axis=logical_process_axes, forward_only=True, mix_gather=True) tensor_to_comm = comm_spec.covert_spec_to_action(tensor_to_comm) assert tensor_to_comm.equal(tensor_to_check) def check_two_all_gather_S01R(device_mesh, rank): tensor_width = 8 tensor_to_check = torch.arange(int(tensor_width * tensor_width)).reshape((tensor_width, tensor_width)).cuda() rank_stride = tensor_width // 8 tensor_to_comm = tensor_to_check[rank:rank + rank_stride, :].contiguous().cuda() dim_partition_dict = {0: [0, 1]} # DistSpec: # shard_sequence: S01, R # device_mesh_shape: (2, 4) sharding_spec = ShardingSpec(device_mesh, tensor_to_check.shape, dim_partition_dict=dim_partition_dict) # CommSpec:(comm_pattern:allgather, gather_dim:0, logical_process_axis:0) comm_spec = CommSpec(CollectiveCommPattern.GATHER_FWD_SPLIT_BWD, sharding_spec, gather_dim=0, logical_process_axis=1) tensor_to_comm = comm_spec.covert_spec_to_action(tensor_to_comm) dim_partition_dict = {0: [0]} # DistSpec: # shard_sequence: S1, R # device_mesh_shape: (2, 4) sharding_spec = ShardingSpec(device_mesh, tensor_to_check.shape, dim_partition_dict=dim_partition_dict) # CommSpec:(comm_pattern:allgather, gather_dim:0, logical_process_axis:1) comm_spec = CommSpec(CollectiveCommPattern.GATHER_FWD_SPLIT_BWD, sharding_spec, gather_dim=0, logical_process_axis=0) tensor_to_comm = comm_spec.covert_spec_to_action(tensor_to_comm) assert tensor_to_comm.equal(tensor_to_check) def check_mix_gather_RS01(device_mesh, rank): tensor_to_check = torch.arange(64).reshape((8, 8)).cuda() (f, b) = (0, 1) f_target_pair = (f, []) b_target_pair = (b, [0, 1]) gather_dim, logical_process_axes = mix_gather_simulator(f_target_pair, b_target_pair) tensor_to_comm = tensor_to_check[:, rank:rank + 1].contiguous().cuda() dim_partition_dict = {1: [0, 1]} # DistSpec: # shard_sequence: R, S01 # device_mesh_shape: (2, 4) source_spec = ShardingSpec(device_mesh, tensor_to_check.shape, dim_partition_dict=dim_partition_dict) comm_spec = CommSpec(CollectiveCommPattern.MIXGATHER_FWD_SPLIT_BWD, sharding_spec=source_spec, gather_dim=gather_dim, logical_process_axis=logical_process_axes, forward_only=True, mix_gather=True) tensor_to_comm = comm_spec.covert_spec_to_action(tensor_to_comm) assert tensor_to_comm.equal(tensor_to_check) def check_two_all_gather_RS01(device_mesh, rank): tensor_width = 8 tensor_to_check = torch.arange(int(tensor_width * tensor_width)).reshape((tensor_width, tensor_width)).cuda() rank_stride = tensor_width // 8 tensor_to_comm = tensor_to_check[:, rank:rank + rank_stride].contiguous().cuda() dim_partition_dict = {1: [0, 1]} # DistSpec: # shard_sequence: R, S01 # device_mesh_shape: (2, 4) sharding_spec = ShardingSpec(device_mesh, tensor_to_check.shape, dim_partition_dict=dim_partition_dict) # CommSpec:(comm_pattern:allgather, gather_dim:1, logical_process_axis:0) comm_spec = CommSpec(CollectiveCommPattern.GATHER_FWD_SPLIT_BWD, sharding_spec, gather_dim=1, logical_process_axis=1) tensor_to_comm = comm_spec.covert_spec_to_action(tensor_to_comm) dim_partition_dict = {1: [0]} # DistSpec: # shard_sequence: R, S1 # device_mesh_shape: (2, 4) sharding_spec = ShardingSpec(device_mesh, tensor_to_check.shape, dim_partition_dict=dim_partition_dict) # CommSpec:(comm_pattern:allgather, gather_dim:1, logical_process_axis:1) comm_spec = CommSpec(CollectiveCommPattern.GATHER_FWD_SPLIT_BWD, sharding_spec, gather_dim=1, logical_process_axis=0) tensor_to_comm = comm_spec.covert_spec_to_action(tensor_to_comm) assert tensor_to_comm.equal(tensor_to_check) def check_comm(rank, world_size, port): disable_existing_loggers() launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') physical_mesh_id = torch.arange(0, 8) assert rank == gpc.get_global_rank() mesh_shape = (2, 4) # [[0, 1, 2, 3], # [4, 5, 6, 7]] device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True, need_flatten=True) check_mix_gather_S0S1(device_mesh, rank) check_two_all_gather_S0S1(device_mesh, rank) check_mix_gather_S1S0(device_mesh, rank) check_two_all_gather_S1S0(device_mesh, rank) check_mix_gather_S01R(device_mesh, rank) check_two_all_gather_S01R(device_mesh, rank) check_mix_gather_RS01(device_mesh, rank) check_two_all_gather_RS01(device_mesh, rank) @pytest.mark.skip(reason="Skip because the check functions assume 8 GPUS but CI only have 4 GPUs") def test_mix_gather(): world_size = 8 run_func = partial(check_comm, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_mix_gather()
from functools import partial import pytest import torch import torch.multiprocessing as mp from colossalai.device.device_mesh import DeviceMesh from colossalai.initialize import launch from colossalai.logging import disable_existing_loggers from colossalai.tensor.shape_consistency import CollectiveCommPattern, ShapeConsistencyManager from colossalai.tensor.sharding_spec import ShardingSpec from colossalai.testing import rerun_if_address_is_in_use from colossalai.utils import free_port def check_apply(rank, world_size, port): disable_existing_loggers() launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) # [[0, 1, # [2, 3]] device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) entire_shape = torch.Size((4, 2)) shape_consistency_manager = ShapeConsistencyManager() dim_partition_source = {0: [0]} dim_partition_target = {1: [0]} # DistSpec: # shard_sequence: S0,R # device_mesh_shape: (2, 2) sharding_spec_source = ShardingSpec(device_mesh, entire_shape, dim_partition_source) # DistSpec: # shard_sequence: R,S0 # device_mesh_shape: (2, 2) sharding_spec_target = ShardingSpec(device_mesh, entire_shape, dim_partition_target) if rank in (0, 1): sharded_tensor_0 = torch.zeros(2, 1) sharded_tensor_1 = torch.ones(2, 1) # tensor([[0., 1.], # [0., 1.]]) tensor_to_comm = torch.cat((sharded_tensor_0, sharded_tensor_1), 1).cuda() if rank in (2, 3): sharded_tensor_0 = torch.ones(2, 1) * 2 sharded_tensor_1 = torch.ones(2, 1) * 3 # tensor([[2., 3.], # [2., 3.]]) tensor_to_comm = torch.cat((sharded_tensor_0, sharded_tensor_1), 1).cuda() if rank in (0, 1): # tensor([[0.], # [0.], # [2.], # [2.]]) tensor_to_check = torch.tensor([[0], [0], [2], [2]], dtype=tensor_to_comm.dtype).cuda() if rank in (2, 3): # tensor([[1.], # [1.], # [3.], # [3.]]) tensor_to_check = torch.tensor([[1], [1], [3], [3]], dtype=tensor_to_comm.dtype).cuda() tensor_to_comm.sharding_spec = sharding_spec_source tensor_to_comm = shape_consistency_manager.apply(tensor_to_comm, sharding_spec_target) assert tensor_to_comm.equal(tensor_to_check) assert str(tensor_to_comm.sharding_spec.sharding_sequence) == str(sharding_spec_target.sharding_sequence) @pytest.mark.dist @rerun_if_address_is_in_use() def test_apply(): world_size = 4 run_func = partial(check_apply, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_apply()
import torch import pytest from functools import partial import torch.multiprocessing as mp import torch.distributed as dist import colossalai from colossalai.testing import rerun_if_address_is_in_use from colossalai.utils.cuda import get_current_device from colossalai.utils import free_port from colossalai.tensor import ComputePattern, ComputeSpec, ColoTensor, ShardSpec, ProcessGroup, ColoTensorSpec from colossalai.utils.checkpoint.utils import gather_tensor, scatter_tensor from tests.test_tensor.common_utils import tensor_shard_equal def run_dist(rank, world_size, port, dp_degree, tp_degree): colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') pg = ProcessGroup(dp_degree=dp_degree, tp_degree=tp_degree) x = torch.randn(4, 4) param = ColoTensor(torch.nn.Parameter(x), spec=ColoTensorSpec(pg)) spec = ShardSpec([-1], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D) param.set_tensor_spec(*spec) gather_tensor(param) if dist.get_rank() == 0: assert torch.all(x == param) else: assert tensor_shard_equal(x, param.data, pg.tp_local_rank(), pg.tp_world_size()) dist.barrier() scatter_tensor(param, spec[0]) assert tensor_shard_equal(x, param.data, pg.tp_local_rank(), pg.tp_world_size()) assert param.requires_grad is True dist.barrier() @pytest.mark.dist @pytest.mark.parametrize('world_size', [4]) @rerun_if_address_is_in_use() def test_checkpoint(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port(), dp_degree=2, tp_degree=world_size // 2) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_checkpoint(world_size=4)
import torch from colossalai.device.device_mesh import DeviceMesh from colossalai.tensor.sharding_spec import ShardingSpec, _DimSpec def test_sharding_spec(): physical_mesh_id = torch.arange(0, 16).reshape(2, 8) mesh_shape = (4, 4) # [[0, 1, 2, 3], # [4, 5, 6, 7], # [8, 9, 10,11], # [12,13,14,15]] device_mesh = DeviceMesh(physical_mesh_id, mesh_shape) entire_shape = torch.Size((16, 8, 6)) dim_partition_dict = {0: [0, 1]} # DistSpec: # shard_sequence: S01,R,R # device_mesh_shape: (4, 4) sharding_spec = ShardingSpec(device_mesh, entire_shape, dim_partition_dict) assert str(sharding_spec.sharding_sequence) == "[S01, R, R]" if __name__ == '__main__': test_sharding_spec()
from colossalai.tensor.shape_consistency import ShapeConsistencyManager, CollectiveCommPattern import torch from colossalai.tensor.sharding_spec import _DimSpec, ShardingSpec from colossalai.device.device_mesh import DeviceMesh physical_mesh_id = torch.arange(0, 16).reshape(2, 8) mesh_shape = (4, 4) # [[0, 1, 2, 3], # [4, 5, 6, 7], # [8, 9, 10,11], # [12,13,14,15]] device_mesh = DeviceMesh(physical_mesh_id, mesh_shape) entire_shape = torch.Size((64, 32, 16)) shape_consistency_manager = ShapeConsistencyManager() def test_one_step_transform(): dim_partition_dict = {0: [0], 1: [1]} # DistSpec: # shard_sequence: S0,S1,R # device_mesh_shape: (4, 4) sharding_spec = ShardingSpec(device_mesh, entire_shape, dim_partition_dict) # {DistSpec: # shard_sequence: R,S1,R # device_mesh_shape: (4, 4): (CommSpec:(comm_pattern:allgather, gather_dim:0, logical_process_axis:0), 0), DistSpec: # shard_sequence: S0,R,R # device_mesh_shape: (4, 4): (CommSpec:(comm_pattern:allgather, gather_dim:1, logical_process_axis:1), 0)} rst_dict = shape_consistency_manager.get_all_all_gather_spec(sharding_spec, { "forward": 0, "backward": 0, "total": 0 }) assert '[R, S1, R]' in [ str(all_gather_sharding_spec.sharding_sequence) for all_gather_sharding_spec in rst_dict.keys() ] assert '[S0, R, R]' in [ str(all_gather_sharding_spec.sharding_sequence) for all_gather_sharding_spec in rst_dict.keys() ] dim_partition_dict_all2all = {0: [0], 1: [1]} # DistSpec: # shard_sequence: S0,S1,R # device_mesh_shape: (4, 4) sharding_spec_all2all = ShardingSpec(device_mesh, entire_shape, dim_partition_dict_all2all) # {DistSpec: # shard_sequence: S01,R,R # device_mesh_shape: (4, 4): (CommSpec:(comm_pattern:all2all, gather_dim:1, shard_dim:0, logical_process_axis: 1), 0), DistSpec: # shard_sequence: R,S1,S0 # device_mesh_shape: (4, 4): (CommSpec:(comm_pattern:all2all, gather_dim:0, shard_dim:2, logical_process_axis: 0), 0), DistSpec: # shard_sequence: S0,R,S1 # device_mesh_shape: (4, 4): (CommSpec:(comm_pattern:all2all, gather_dim:1, shard_dim:2, logical_process_axis: 1), 0)} rst_dict_all2all = shape_consistency_manager.get_all_all_to_all_spec(sharding_spec_all2all, { "forward": 0, "backward": 0, "total": 0 }) assert '[S01, R, R]' in [ str(all2all_sharding_spec.sharding_sequence) for all2all_sharding_spec in rst_dict_all2all.keys() ] assert '[R, S1, S0]' in [ str(all2all_sharding_spec.sharding_sequence) for all2all_sharding_spec in rst_dict_all2all.keys() ] assert '[S0, R, S1]' in [ str(all2all_sharding_spec.sharding_sequence) for all2all_sharding_spec in rst_dict_all2all.keys() ] dim_partition_shard = {0: [0]} # DistSpec: # shard_sequence: S0,R,R # device_mesh_shape: (4, 4) sharding_spec_shard = ShardingSpec(device_mesh, entire_shape, dim_partition_shard) # {DistSpec: # shard_sequence: S01,R,R # device_mesh_shape: (4, 4): (CommSpec:(comm_pattern:shard, shard_dim:0, logical_process_axis:1), 0), DistSpec: # shard_sequence: S0,S1,R # device_mesh_shape: (4, 4): (CommSpec:(comm_pattern:shard, shard_dim:1, logical_process_axis:1), 0), DistSpec: # shard_sequence: S0,R,S1 # device_mesh_shape: (4, 4): (CommSpec:(comm_pattern:shard, shard_dim:2, logical_process_axis:1), 0)} rst_dict_shard = shape_consistency_manager.get_all_shard_spec(sharding_spec_shard, { "forward": 0, "backward": 0, "total": 0 }) assert '[S01, R, R]' in [ str(shard_sharding_spec.sharding_sequence) for shard_sharding_spec in rst_dict_shard.keys() ] assert '[S0, S1, R]' in [ str(shard_sharding_spec.sharding_sequence) for shard_sharding_spec in rst_dict_shard.keys() ] assert '[S0, R, S1]' in [ str(shard_sharding_spec.sharding_sequence) for shard_sharding_spec in rst_dict_shard.keys() ] def test_shape_consistency(): dim_partition_source = {1: [0, 1]} dim_partition_target = {0: [0, 1]} # DistSpec: # shard_sequence: R,S01,R # device_mesh_shape: (4, 4) sharding_spec_source = ShardingSpec(device_mesh, entire_shape, dim_partition_source) # DistSpec: # shard_sequence: S01,R,R # device_mesh_shape: (4, 4) sharding_spec_target = ShardingSpec(device_mesh, entire_shape, dim_partition_target) transform_path, comm_action_sequence, total_cost = shape_consistency_manager.shape_consistency( sharding_spec_source, sharding_spec_target) transform_path_str = '->'.join([str(sharding_spec.sharding_sequence) for sharding_spec in transform_path]) assert transform_path_str == '[R, S01, R]->[R, S0, R]->[S0, R, R]->[S01, R, R]' # all-gather(S01) -> S0 assert comm_action_sequence[0].comm_pattern == CollectiveCommPattern.GATHER_FWD_SPLIT_BWD assert comm_action_sequence[0].gather_dim == 1 assert comm_action_sequence[0].logical_process_axis == 1 # all-to-all(R, S0) -> [S0, R] assert comm_action_sequence[1].comm_pattern == CollectiveCommPattern.ALL2ALL_FWD_ALL2ALL_BWD assert comm_action_sequence[1].gather_dim == 1 assert comm_action_sequence[1].shard_dim == 0 assert comm_action_sequence[1].logical_process_axis == 0 # shard(S0) -> [S01] assert comm_action_sequence[2].comm_pattern == CollectiveCommPattern.SPLIT_FWD_GATHER_BWD assert comm_action_sequence[2].shard_dim == 0 assert comm_action_sequence[2].logical_process_axis == 1 assert shape_consistency_manager.cached_spec_pairs_transform_path[('[R, S01, R]', '[S01, R, R]')][0] == transform_path assert shape_consistency_manager.cached_spec_pairs_transform_path[('[R, S01, R]', '[S01, R, R]')][1] == comm_action_sequence if __name__ == '__main__': test_one_step_transform() test_shape_consistency()
from ._utils import *
import os import random import numpy as np import torch import torch.distributed as dist from torch.testing import assert_close from colossalai.context import ParallelMode from colossalai.core import global_context as gpc from colossalai.tensor import ComputePattern, ComputeSpec, ShardSpec def set_seed(seed): random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False def check_equal(A, B): assert torch.allclose(A, B, rtol=1e-3, atol=1e-1) == True def replace_parameter_add_grad(layer, weight=None, bias=None): if weight is not None: delattr(layer, 'weight') setattr(layer, 'weight', weight) layer.weight.requires_grad = True if bias is not None: delattr(layer, 'bias') setattr(layer, 'bias', bias) layer.bias.requires_grad = True def broadcast_tensor_chunk(tensor, chunk_size=1, local_rank=0): dist.broadcast(tensor, src=0) tensor_chunk = torch.chunk(tensor, chunk_size, dim=-1)[local_rank] return tensor_chunk.clone() def tensor_equal(t_a: torch.Tensor, t_b: torch.Tensor, rtol: float = 1e-3, atol: float = 1e-1): assert_close(t_a, t_b, rtol=rtol, atol=atol) return True def tensor_shard_equal(tensor: torch.Tensor, shard: torch.Tensor, rank: int, world_size: int, rtol: float = 1e-3, atol: float = 1e-1): assert tensor.ndim == shard.ndim if tensor.shape == shard.shape: return tensor_equal(tensor, shard, rtol, atol) else: dims_not_eq = torch.nonzero(torch.tensor(tensor.shape) != torch.tensor(shard.shape)) if dims_not_eq.numel() == 1: # 1D shard dim = dims_not_eq.item() if world_size is None: world_size = gpc.get_world_size(ParallelMode.PARALLEL_1D) if rank is None: rank = gpc.get_local_rank(ParallelMode.PARALLEL_1D) return tensor_equal(tensor.chunk(world_size, dim)[rank], shard, rtol, atol) else: raise NotImplementedError def split_param_single_dim_tp1d(dim, param, pg): spec = (ShardSpec([dim], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D)) if param.process_group.tp_world_size() == 1: param.set_process_group(pg) param.set_tensor_spec(*spec) def split_param_row_tp1d(param, pg): split_param_single_dim_tp1d(0, param, pg) def split_param_col_tp1d(param, pg): split_param_single_dim_tp1d(-1, param, pg) def debug_print(ranks, *args): if dist.get_rank() in ranks: print(*args) dist.barrier()
import torch import pytest from colossalai.tensor import ColoTensor from numpy import allclose import colossalai from colossalai.utils import free_port from colossalai.tensor import ColoTensorSpec from colossalai.core import global_context as gpc import torch.multiprocessing as mp from colossalai.testing import rerun_if_address_is_in_use from colossalai.utils import free_port from colossalai.tensor import distspec, ColoTensor, ProcessGroup, ShardSpec, ReplicaSpec from functools import partial def _run_tensor_indexing(): pg = ProcessGroup() torch_t = torch.randn(2, 3) colo_t = ColoTensor(torch_t, ColoTensorSpec(pg)) assert allclose(torch_t[:, 1], colo_t[:, 1]) def _run_wrapped_tensor_func(): pg = ProcessGroup() t_ref = torch.randn(4, 5) t = ColoTensor.from_torch_tensor(t_ref.clone(), ColoTensorSpec(pg)) # non-func attr assert t.is_cuda == t_ref.is_cuda # return 1 torch.Tensor t_abs = t.abs() assert isinstance(t_abs, ColoTensor) and torch.equal(t_abs, t_ref.abs()) # return 1 non-torch.Tensor assert t.dim() == t_ref.dim() # return >1 torch.Tensor assert isinstance(t, ColoTensor) t_split1, t_split2 = t.split(2) assert isinstance(t_split1, ColoTensor) and isinstance(t_split2, ColoTensor), f"{type(t_split1)} {type(t_split2)}" def _run_operand(world_size): pg = ProcessGroup() t_ref = torch.randn(4, 5) t = ColoTensor.from_torch_tensor(t_ref.clone(), ColoTensorSpec(pg)) t_ref_res = t_ref + t_ref t_res = t + t assert isinstance(t_res, ColoTensor) assert torch.allclose(t_ref_res, t_res) pg = ProcessGroup(tp_degree=world_size) t = ColoTensor.from_torch_tensor(t_ref.clone(), ColoTensorSpec(pg)) t.set_dist_spec(ShardSpec([0], [world_size])) t_new = torch.zeros_like(t) assert isinstance(t_new, ColoTensor) assert t_new.is_sharded() #### Test Distributed init a Colotensor def _run_view(world_size): t_ref = torch.randn(4, 5) rank = gpc.get_global_rank() pg = ProcessGroup(rank, list(range(world_size)), tp_degree=world_size) t = ColoTensor.from_torch_tensor( t_ref, ColoTensorSpec(pg, dist_attr=ShardSpec(dims=[0], num_partitions=[pg.tp_world_size()]))) assert t.size_global()[0] == 4 * world_size assert t.size_global(1) == 5 assert t.size_global() == torch.Size([4 * world_size, 5]) t = t.view(4 * 5 * world_size) assert t.shape == torch.Size([4 * 5 * world_size]) def _run_tensor_shard_init(world_size): t_ref = torch.randn(4, 5) pg = ProcessGroup(tp_degree=world_size) shard_attr = ShardSpec(dims=[0], num_partitions=[pg.tp_world_size()]) tensor_spec = ColoTensorSpec(pg, dist_attr=shard_attr) t = ColoTensor.from_torch_tensor(t_ref.clone(), tensor_spec) t.set_dist_spec(ReplicaSpec()) assert t.shape == torch.Size((4 * world_size, 5)), f"{t.shape} vs ({4 * world_size, 5})" def _run_tensor_replicated_init(world_size): t_ref = torch.randn(4 * world_size, 5) pg = ProcessGroup() spec = ColoTensorSpec(pg) t = ColoTensor.from_torch_tensor(t_ref.clone(), spec) assert t.shape == torch.Size((4 * world_size, 5)), f"{t.shape}" def _run_process_group(world_size): pg1 = ProcessGroup() pg2 = ProcessGroup() assert pg1 == pg2 def _run_redistributed(world_size): if world_size != 4: return pg1 = ProcessGroup(tp_degree=2, dp_degree=2) pg2 = ProcessGroup(tp_degree=4, dp_degree=1) spec1 = ColoTensorSpec(pg1) t1 = ColoTensor.from_torch_tensor(torch.randn(2, 3, 4), spec1) t1 = t1.redistribute(ShardSpec([0], [pg1.tp_world_size()])) assert t1.is_sharded() t1 = t1.redistribute(ShardSpec([-1], [pg2.tp_world_size()]), pg2) assert t1.is_sharded() pg3 = ProcessGroup(tp_degree=1, dp_degree=4) t1 = t1.redistribute(ReplicaSpec(), pg3) assert t1.is_replicate() def _run_set_tensor_spec(world_size): if world_size != 4: return pg = ProcessGroup(tp_degree=2, dp_degree=2) spec1 = ColoTensorSpec(pg) t1 = ColoTensor.from_torch_tensor(torch.randn(2, 3, 4), spec1) dist_spec2 = ShardSpec([-1], [pg.tp_world_size()]) assert t1.is_replicate() t1.set_dist_spec(dist_spec2) assert t1.is_shard_1dcol() def run_dist_tests(rank, world_size, port): colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') _run_tensor_shard_init(world_size) _run_tensor_replicated_init(world_size) _run_view(world_size) _run_process_group(world_size) _run_tensor_indexing() _run_operand(world_size) _run_wrapped_tensor_func() _run_redistributed(world_size) _run_set_tensor_spec(world_size) @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 2]) @rerun_if_address_is_in_use() def test_dist_cases(world_size): run_func = partial(run_dist_tests, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_dist_cases(4)
import math import torch import torch.distributed as dist import pytest import colossalai import torch.multiprocessing as mp from colossalai.testing import rerun_if_address_is_in_use from colossalai.utils import free_port from colossalai.tensor import DistSpecManager, ProcessGroup, ShardSpec, ReplicaSpec from functools import partial def run(): group = ProcessGroup(tp_degree=dist.get_world_size()) rank = dist.get_rank() size = dist.get_world_size() depth = int(math.sqrt(size)) assert depth == math.sqrt(size) x = torch.rand(8, 8).cuda() old_dist_spec = ReplicaSpec() row_spec = ShardSpec([0], [size]) col_spec = ShardSpec([-1], [size]) mat_spec = ShardSpec([0, 1], [depth, depth]) row_shard = DistSpecManager._shard_as(x, old_dist_spec, row_spec, group) assert torch.equal(x.chunk(size, 0)[rank], row_shard) assert torch.equal(x, DistSpecManager._gather(row_shard, row_spec, group)) col_shard = DistSpecManager._all_to_all(row_shard, row_spec, col_spec, group) assert torch.equal(x.chunk(size, -1)[rank], col_shard) assert torch.equal(x, DistSpecManager._gather(col_shard, col_spec, group)) mat_shard = DistSpecManager._shard_as(x, old_dist_spec, mat_spec, group) assert torch.equal(x.chunk(depth, 0)[rank // depth].chunk(depth, 1)[rank % depth], mat_shard) assert torch.equal(x, DistSpecManager._gather(mat_shard, mat_spec, group)) def check_mem(): pg = ProcessGroup(tp_degree=dist.get_world_size()) size = dist.get_world_size() assert torch.cuda.memory_allocated() == 0 x = torch.rand(32, 32).cuda() orig_mem = x.numel() * x.element_size() assert torch.cuda.memory_allocated() == orig_mem old_dist_spec = ReplicaSpec() row_spec = ShardSpec([0], [size]) x.data = DistSpecManager._shard_as(x, old_dist_spec, row_spec, pg) assert x.size(0) == 32 // size and x.size(1) == 32 assert torch.cuda.memory_allocated() == orig_mem // size x.data = DistSpecManager._gather(x, row_spec, pg) assert torch.cuda.memory_allocated() == orig_mem def run_dist(rank, world_size, port): colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') check_mem() run() @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 4]) @rerun_if_address_is_in_use() def test_dist_spec_mgr(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_dist_spec_mgr(4)
from functools import partial import pytest import torch import torch.multiprocessing as mp from torch.nn.parallel import DistributedDataParallel as DDP import colossalai from colossalai.nn.parallel.data_parallel import ColoDDP from colossalai.tensor import ColoTensor, ColoTensorSpec, ComputePattern, ComputeSpec, ProcessGroup, ShardSpec from colossalai.testing import rerun_if_address_is_in_use from colossalai.utils import free_port from colossalai.utils.cuda import get_current_device from colossalai.utils.model.colo_init_context import ColoInitContext from tests.components_to_test.registry import non_distributed_component_funcs from tests.test_tensor.common_utils import ( debug_print, set_seed, split_param_col_tp1d, split_param_row_tp1d, tensor_equal, tensor_shard_equal, ) def init_1d_row_spec(model, pg: ProcessGroup): tensor_spec = (ShardSpec([0], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D)) for n, p in model.named_parameters(): p.set_process_group(pg) if 'weight' in n and 'ln' not in n: p.set_tensor_spec(*tensor_spec) def init_1d_col_spec(model, pg: ProcessGroup): spec = (ShardSpec([-1], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D)) for n, p in model.named_parameters(): p.set_process_group(pg) if 'ln' not in n and ('weight' in n or 'bias' in n): p.set_tensor_spec(*spec) def init_megatron_spec(model, pg: ProcessGroup): for mn, module in model.named_modules(): # debug_print([0], mn) for pn, param in module.named_parameters(recurse=False): # debug_print([0], '\t', pn, param.compute_spec, param.shape) param.set_process_group(pg) if 'mlp.c_fc' in mn: if 'weight' in pn or 'bias' in pn: split_param_col_tp1d(param, pg) param.compute_spec.set_output_replicate(False) else: raise RuntimeError elif 'mlp.c_proj' in mn: if 'weight' in pn: split_param_row_tp1d(param, pg) else: assert 'bias' in pn elif 'wte' in mn or 'wpe' in mn: assert 'weight' in pn split_param_col_tp1d(param, pg) elif 'c_attn' in mn or 'c_proj' in mn: split_param_col_tp1d(param, pg) # debug_print([0], '\t', param.compute_spec, param.shape) def check_param_equal(model, torch_model, pg: ProcessGroup): for p, torch_p in zip(model.parameters(), torch_model.parameters()): assert pg.tp_local_rank() is not None, f"{pg.rank()} {pg.tp_world_size()} {pg._tp_degree} {pg.tp_local_rank()}1" assert pg.tp_world_size() is not None assert tensor_shard_equal(torch_p, p, pg.tp_local_rank(), pg.tp_world_size()) def check_grad_equal(model, torch_model, pg: ProcessGroup): for p, torch_p in zip(model.parameters(), torch_model.parameters()): assert tensor_shard_equal(torch_p.grad, p.grad, pg.tp_local_rank(), pg.tp_world_size()) def run_gpt(init_spec_func, use_ddp): world_size = torch.distributed.get_world_size() # build a PG with TP and DP hybrid pg = ProcessGroup(dp_degree=(2 if (use_ddp and world_size >= 2) else 1)) # set seed make processes of the same tp group use the same seed # set_seed(pg.tp_local_rank()) get_components_func = non_distributed_component_funcs.get_callable('gpt2') model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() # make sure torch_model and model has the same parameter values with ColoInitContext(device=get_current_device()): model = model_builder() model = model.cuda() torch_model = model_builder().cuda() if use_ddp: torch_model = DDP(torch_model, device_ids=[pg.rank()], process_group=pg.dp_process_group()) model = ColoDDP(model, process_group=pg) for torch_p, p in zip(torch_model.parameters(), model.parameters()): torch_p.data.copy_(p) init_spec_func(model, pg) check_param_equal(model, torch_model, pg) # close the dropout in eval mode model.eval() torch_model.eval() set_seed(pg.dp_local_rank()) torch.distributed.barrier() for i, (input_ids, label) in enumerate(train_dataloader): colo_input = ColoTensor.from_torch_tensor(input_ids, ColoTensorSpec(pg)) logits = model(colo_input) torch_logits = torch_model(input_ids) assert tensor_equal(torch_logits, logits), f"{torch_logits - logits}" loss = criterion(logits, input_ids) torch_loss = criterion(torch_logits, input_ids) if use_ddp: model.backward(loss) else: loss.backward() torch_loss.backward() check_grad_equal(model, torch_model, pg) if i > 0: break set_seed(313) def run_dist(rank, world_size, port, use_ddp): if use_ddp and world_size == 1: return colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') # Comments below tests for speed concern # run_gpt(init_1d_row_spec, use_ddp) # run_gpt(init_1d_col_spec, use_ddp) run_gpt(init_megatron_spec, use_ddp) @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 4]) @pytest.mark.parametrize('use_ddp', [False, True]) @rerun_if_address_is_in_use() def test_gpt(world_size, use_ddp): run_func = partial(run_dist, world_size=world_size, port=free_port(), use_ddp=use_ddp) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_gpt(4, use_ddp=False)
from functools import partial import pytest import torch import torch.multiprocessing as mp import colossalai from colossalai.nn.optimizer import ColossalaiOptimizer from colossalai.tensor import ColoTensor, ProcessGroup from colossalai.tensor.colo_parameter import ColoParameter from colossalai.testing import rerun_if_address_is_in_use from colossalai.utils import free_port from colossalai.utils.cuda import get_current_device from colossalai.utils.model.colo_init_context import ColoInitContext from tests.components_to_test.registry import non_distributed_component_funcs from tests.test_tensor.common_utils import ( check_equal, set_seed, split_param_col_tp1d, split_param_row_tp1d, tensor_shard_equal, ) def run_1d_hybrid_tp(model_name): # A simple net with two stacked nn.Linear get_components_func = non_distributed_component_funcs.get_callable(model_name) model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() rank = torch.distributed.get_rank() world_size = torch.distributed.get_world_size() set_seed(1) with ColoInitContext(device=get_current_device()): model = model_builder(checkpoint=True) if rank == 0: model_torch = model_builder(checkpoint=True) model_torch = model_torch.cuda() optimizer_torch = ColossalaiOptimizer(torch.optim.SGD(model_torch.parameters(), lr=0.1)) # Make two models have the same init params for p1, p2 in zip(model.parameters(), model_torch.parameters()): p2.data.copy_(p1.data) else: model_torch = None optimizer_torch = None pg = ProcessGroup(tp_degree=world_size) if 'bert' == model_name: for name, p in model.named_parameters(): if not isinstance(p, ColoTensor): continue # num_class = type_vocab_size = 2 | (8, 2) if 'classifier' in name and 'weight' in name: split_param_col_tp1d(p, pg) # num_class = vocab_size = 30524 | (30524, 8) elif 'word_embeddings' in name and 'weight' in name: split_param_row_tp1d(p, pg) # num_class = seq_len = 512 | (512, 8) elif 'position_embeddings' in name and 'weight' in name: split_param_row_tp1d(p, pg) # num_class = type_vocab_size = 2 | (2, 8) elif 'token_type_embeddings' in name and 'weight' in name: split_param_col_tp1d(p, pg) elif "simple_net" == model_name: # A naive way to set spec for all weights in Linear for name, p in model.named_parameters(): if not isinstance(p, ColoTensor): continue if 'embed' in name and 'weight' in name: split_param_col_tp1d(p, pg) if 'proj1' in name and ('weight' in name or 'bias' in name): split_param_row_tp1d(p, pg) if 'proj2' in name and 'weight' in name: split_param_col_tp1d(p, pg) if 'classifier' in name and ('weight' in name or 'bias' in name): split_param_row_tp1d(p, pg) model = model.cuda() model.eval() if rank == 0: model_torch.eval() colo_optimizer = ColossalaiOptimizer(torch.optim.SGD(model.parameters(), lr=0.1)) for i, (data, label) in enumerate(train_dataloader): # Zero grad colo_optimizer.zero_grad() if rank == 0: optimizer_torch.zero_grad() torch.distributed.barrier() data = data.to(get_current_device()) label = label.to(get_current_device()) torch.distributed.broadcast(data, 0, group=pg.tp_process_group()) torch.distributed.broadcast(label, 0, group=pg.tp_process_group()) # Bcast rank0 data to all processes if criterion: output = model(data) loss = criterion(output, label) else: output = model(data, label) loss = output # Test output if rank == 0: if criterion: output_torch = model_torch(data) loss_torch = criterion(output_torch, label) else: output_torch = model_torch(data, label) loss_torch = output_torch assert torch.allclose(loss, loss_torch, rtol=1e-2), f"model_name {model_name} failed" torch.distributed.barrier() loss.backward() colo_optimizer.step() if rank == 0: loss_torch.backward() optimizer_torch.step() with torch.no_grad(): # check param for p, torch_p in zip(model.parameters(), model_torch.parameters()): assert tensor_shard_equal(torch_p, p, pg.tp_local_rank(), pg.tp_world_size()) torch.distributed.barrier() if i > 5: break # Test the overrided parameters() and named_parameters() member functions def test_model_parameters(): colossalai.launch(config={}, rank=0, world_size=1, host='localhost', port=free_port(), backend='nccl') # build a module with 2 Linear, 4 parameters in total. class Net(torch.nn.Module): def __init__(self): super().__init__() self.fcs = torch.nn.Sequential(torch.nn.Linear(2, 3), torch.nn.Linear(3, 2)) self.extra_param = torch.nn.Parameter(torch.randn(2)) with ColoInitContext(device=get_current_device()): model = Net() param_cnt = 0 for name, p in model.named_parameters(): param_cnt += 1 assert param_cnt == 5 for name, colo_p in model.named_parameters(): assert colo_p.is_model_data() param_cnt = 0 for name, p in model.named_parameters(recurse=False): param_cnt += 1 assert param_cnt == 1 param_cnt = 0 for p in model.fcs[0].parameters(recurse=False): param_cnt += 1 assert param_cnt == 2 def test_colo_optimizer(): get_components_func = non_distributed_component_funcs.get_callable('simple_net') model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() set_seed(1) with ColoInitContext(device=get_current_device()): model = model_builder(checkpoint=True) colo_optimizer = ColossalaiOptimizer(torch.optim.SGD(model.parameters(), lr=0.1)) for i, (data, label) in enumerate(train_dataloader): colo_optimizer.zero_grad() data = data.to(get_current_device()) label = label.to(get_current_device()) # Bcast rank0 data to all processes if criterion: output = model(data) loss = criterion(output, label) else: output = model(data, label) loss = output loss.backward() colo_optimizer.step() if i > 5: break def run_1d_row_tp(model_name: str): # A simple net with two stacked nn.Linear get_components_func = non_distributed_component_funcs.get_callable(model_name) model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() rank = torch.distributed.get_rank() set_seed(1) with ColoInitContext(device=get_current_device()): model = model_builder(checkpoint=True) world_size = torch.distributed.get_world_size() pg = ProcessGroup(tp_degree=world_size) set_seed(1) if rank == 0: model_torch = model_builder(checkpoint=True) model_torch = model_torch.cuda() # A naive way to set spec for all weights in Linear for mo_name, module in model.named_modules(): # print(mo_name) for pa_name, param in module.named_parameters(recurse=False): # print('\t', pa_name, param.shape) if not isinstance(param, ColoTensor): continue if 'weight' in pa_name: if 'embed' in mo_name and 'token' not in mo_name and 'LayerNorm' not in mo_name: split_param_row_tp1d(param, pg) elif 'LayerNorm' not in mo_name and 'ln' not in mo_name: split_param_col_tp1d(param, pg) model = model.cuda() for i, (data, label) in enumerate(train_dataloader): data = data.to(get_current_device()) label = label.to(get_current_device()) torch.distributed.broadcast(data, 0, group=pg.tp_process_group()) torch.distributed.broadcast(label, 0, group=pg.tp_process_group()) # Bcast rank0 data to all processes if criterion: output = model(data) loss = criterion(output, label) else: output = model(data, label) loss = output # For reference if rank == 0: if criterion: output_torch = model_torch(data) loss_torch = criterion(output_torch, label) else: output_torch = model_torch(data, label) loss_torch = output_torch assert torch.allclose(loss, loss_torch, rtol=1e-2) torch.distributed.barrier() loss.backward() if rank == 0: loss_torch.backward() torch.distributed.barrier() if i > 5: break def _run_pretrain_load(): from transformers import BertForMaskedLM set_seed(1) model_pretrained = BertForMaskedLM.from_pretrained('bert-base-uncased') with ColoInitContext(device=get_current_device()): model = BertForMaskedLM.from_pretrained('bert-base-uncased') model_pretrained = model_pretrained.cuda() model = model.cuda() dict_pretrained = {} dict_col = {} c_ref = 0 for name, param in model_pretrained.named_parameters(): dict_pretrained[name] = param c_ref += 1 c1 = 0 c2 = 0 for name, param in model.named_parameters(): if isinstance(param, ColoParameter): c1 += 1 else: c2 += 1 dict_col[name] = param assert c_ref == c1 assert c2 == 0 if model_pretrained.cls.predictions.decoder.bias is model_pretrained.cls.predictions.bias: assert model.cls.predictions.decoder.bias is model.cls.predictions.bias for name, param in dict_pretrained.items(): check_equal(param, dict_col[name]) def run_model_dist(rank, world_size, port): colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') # Comment below test for speed consideration # for name in ['bert', 'simple_net']: # run_1d_row_tp(name) for name in ['bert', 'simple_net']: run_1d_hybrid_tp(name) @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 4]) @rerun_if_address_is_in_use() def test_model(world_size): run_func = partial(run_model_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) def run_pretrain_load_dist(rank, world_size, port): colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') _run_pretrain_load() # The test case has to download huggingface pretrained models from the internet # So we manually trigger the test. @pytest.mark.skip @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 4]) @rerun_if_address_is_in_use() def test_pretrain_load(world_size): run_func = partial(run_pretrain_load_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': # test_model_parameters() # test_colo_optgimizer() test_model(4) # test_pretrain_load(4)
from copy import deepcopy from functools import partial import pytest import torch import torch.multiprocessing as mp import colossalai from colossalai.nn.parallel.layers import check_colo_module, init_colo_module from colossalai.tensor import ( ColoTensor, ColoTensorSpec, ComputePattern, ComputeSpec, ProcessGroup, ReplicaSpec, ShardSpec, distspec, ) from colossalai.testing import rerun_if_address_is_in_use from colossalai.utils import free_port from colossalai.utils.cuda import get_current_device from colossalai.utils.model.colo_init_context import ColoInitContext from tests.components_to_test.registry import non_distributed_component_funcs from tests.test_tensor.common_utils import set_seed, tensor_equal, tensor_shard_equal def run_model_with_spec(mode, model_name): get_components_func = non_distributed_component_funcs.get_callable(model_name) model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() world_size = torch.distributed.get_world_size() pg = ProcessGroup(tp_degree=world_size) rank = pg.rank() set_seed(1) with ColoInitContext(device=get_current_device()): model = model_builder(checkpoint=False) if rank == 0: model_seq = model_builder(checkpoint=False) model_seq = model_seq.cuda() # Make two models have the same init params for p1, p2 in zip(model.parameters(), model_seq.parameters()): p2.data.copy_(p1.data) compute_spec = ComputeSpec(ComputePattern.TP1D) # Not all layers in Bert can be mod by 4. # e.g. row shard for all layers is invalid because the first dim of some layer is the classification type size 2. if 'bert' == model_name: if 'col' == mode: init_colo_module(model.bert.embeddings, compute_spec, pg=pg, recursive=True, mode=mode) init_colo_module(model.bert.encoder, compute_spec, pg=pg, recursive=True, mode=mode) init_colo_module(model.classifier, compute_spec, pg=pg, recursive=True, mode='row') elif 'row' == mode: init_colo_module(model.bert.embeddings, compute_spec, pg=pg, recursive=True, mode='col') init_colo_module(model.bert.encoder, compute_spec, pg=pg, recursive=True, mode=mode) init_colo_module(model.classifier, compute_spec, pg=pg, recursive=True, mode=mode) elif 'simple_net' == model_name: init_colo_module(model, compute_spec, pg=pg, recursive=True, mode=mode) model = model.cuda() for i, (data, label) in enumerate(train_dataloader): data = data.to(get_current_device()) label = label.to(get_current_device()) torch.distributed.broadcast(data, 0, group=pg.tp_process_group()) torch.distributed.broadcast(label, 0, group=pg.tp_process_group()) if criterion: output = model(data) loss = criterion(output, label) else: output = model(data, label) loss = output # For reference if rank == 0: if criterion: output_seq = model_seq(data) loss_seq = criterion(output_seq, label) else: output_seq = model_seq(data, label) loss_seq = output_seq if rank == 0: with torch.no_grad(): assert torch.allclose(loss, loss_seq, rtol=1e-2) loss.backward() if rank == 0: loss_seq.backward() with torch.no_grad(): # check param for p1, p2 in zip(model.parameters(), model_seq.parameters()): if p1.size() == p2.size(): assert torch.allclose(p1, p2) else: if p1.size(-1) < p2.size(-1): # col world_size = p2.size(-1) // p1.size(-1) split_p2 = torch.chunk(p2, world_size, dim=-1)[0] elif p1.size(0) < p2.size(0): # row world_size = p2.size(0) // p1.size(0) split_p2 = torch.chunk(p2, world_size, dim=0)[0] assert torch.allclose(p1, split_p2) if i > 3: break def run_linear_with_spec(mode): with ColoInitContext(device=get_current_device()): model = torch.nn.Linear(4, 8) model_handy = deepcopy(model) world_size = torch.distributed.get_world_size() pg = ProcessGroup(tp_degree=world_size) compute_spec = ComputeSpec(ComputePattern.TP1D) init_colo_module(model, compute_spec, pg=pg, recursive=True, mode=mode) x = torch.rand(2, 4).cuda() colo_x = ColoTensor.from_torch_tensor(x, ColoTensorSpec(pg)) out = model(x) colo_out = model_handy(colo_x) assert tensor_equal(out, colo_out) grad = torch.rand_like(out) out.backward(grad) colo_out.backward(grad) assert tensor_shard_equal(model_handy.weight.grad, model.weight.grad, pg.tp_local_rank(), pg.tp_world_size()) assert tensor_shard_equal(model_handy.bias.grad, model.bias.grad, pg.tp_local_rank(), pg.tp_world_size()) def run_check_shared_param(): from transformers import BertConfig, BertForMaskedLM hidden_dim = 8 num_head = 4 sequence_length = 12 num_layer = 2 vocab_size = 24 world_size = torch.distributed.get_world_size() pg = ProcessGroup(tp_degree=world_size) rank = pg.rank() config = BertConfig(vocab_size=vocab_size, hidden_size=hidden_dim, intermediate_size=hidden_dim * 4, num_attention_heads=num_head, max_position_embeddings=sequence_length, num_hidden_layers=num_layer, hidden_dropout_prob=0., attention_probs_dropout_prob=0.) with ColoInitContext(device=get_current_device()): model = BertForMaskedLM(config) model = model.cuda() compute_spec = ComputeSpec(ComputePattern.TP1D) # model.cls.predictions.decoder and model.cls.predictions share the bias, so they should have the same spec assert len(model.cls.predictions.decoder.bias.shared_param_modules) == 2 # They are all Linear, so both row is allowed. This should pass check. init_colo_module(model, compute_spec, pg=pg, recursive=True, mode='row') # This should be detected by check because you can not set weight as row while set bias as col. col_spec = (ShardSpec([0], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D)) # TODO(jiaruifang) optimize this line if not model.cls.predictions.bias.has_initialized: model.cls.predictions.bias.pg = pg model.cls.predictions.bias.dist_spec = ReplicaSpec() model.cls.predictions.bias.has_initialized = True model.cls.predictions.bias.set_tensor_spec(*col_spec) try: check_colo_module(model.cls.predictions.decoder, pg=pg, recursive=False) except Exception as e: assert 'incorrectly sharded' in str(e) def run_dist(rank, world_size, port): config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),)) colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') run_linear_with_spec('col') run_linear_with_spec('row') def run_dist_model(rank, world_size, port): config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),)) colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') for model_name in ['simple_net', 'bert']: run_model_with_spec('col', model_name) run_model_with_spec('row', model_name) def run_dist_check(rank, world_size, port): config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),)) colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') run_check_shared_param() @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 4]) @pytest.mark.skip("for higher testing speed") @rerun_if_address_is_in_use() def test_module_linear_1d(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 4]) @pytest.mark.skip("for higher testing speed") @rerun_if_address_is_in_use() def test_module_model(world_size): run_func = partial(run_dist_model, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 2]) @pytest.mark.skip("for higher testing speed") @rerun_if_address_is_in_use() def test_module_check(world_size): run_func = partial(run_dist_check, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_module_linear_1d(4)
import copy from functools import partial import pytest import torch import torch.multiprocessing as mp import colossalai from colossalai.amp import convert_to_apex_amp, convert_to_naive_amp from colossalai.testing import assert_close_loose, rerun_if_address_is_in_use from colossalai.utils import free_port from tests.components_to_test.registry import non_distributed_component_funcs def check_equal(a, b): """ This function checks if two tensors are equal within tolerance """ assert torch.allclose(a.float(), b.float(), rtol=1e-4, atol=1e-3), f'a = {a}, b = {b}' def run_naive_amp(): """ In this test, we compare the naive fp16 optimizer implemented in colossalai and fp32 torch optimizer """ torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True # create layer test_models = ['repeated_computed_layers', 'nested_model', 'resnet18'] for test_name in test_models: get_component_func = non_distributed_component_funcs.get_callable(test_name) model_builder, train_dataloader, _, optim_class, _ = get_component_func() # create model naive_amp_model = model_builder(checkpoint=True).cuda() apex_amp_model = copy.deepcopy(naive_amp_model) # create optimizer # we use SGD here, since the correctness of gradient clipping can't be tested with Adam naive_amp_optimizer = torch.optim.SGD(naive_amp_model.parameters(), lr=1e-3) apex_amp_optimizer = torch.optim.SGD(apex_amp_model.parameters(), lr=1e-3) # inject naive and apex amp naive_amp_config = dict(initial_scale=128, clip_grad_norm=1.0) naive_amp_model, naive_amp_optimizer = convert_to_naive_amp(naive_amp_model, naive_amp_optimizer, naive_amp_config) apex_amp_config = dict(opt_level='O2', loss_scale=128, keep_batchnorm_fp32=False) apex_amp_model, apex_amp_optimizer = convert_to_apex_amp(apex_amp_model, apex_amp_optimizer, apex_amp_config) # create data data_iter = iter(train_dataloader) data, label = next(data_iter) data = data.cuda() # forward pass naive_amp_output = naive_amp_model(data) apex_amp_output = apex_amp_model(data) assert_close_loose(naive_amp_output, apex_amp_output) # backward # use sum() to get big gradient naive_amp_optimizer.backward(naive_amp_output.sum()) apex_amp_optimizer.backward(apex_amp_output.sum()) # check grad for naive_amp_param, apex_amp_param in zip(naive_amp_model.parameters(), apex_amp_model.parameters()): assert_close_loose(naive_amp_param.grad, apex_amp_param.grad) # clip gradient apex_amp_optimizer.clip_grad_norm(model=apex_amp_model, max_norm=1.0) # step naive_amp_optimizer.step() apex_amp_optimizer.step() # check updated param for naive_amp_param, apex_amp_param in zip(naive_amp_model.parameters(), apex_amp_model.parameters()): assert_close_loose(naive_amp_param, apex_amp_param) def run_dist(rank, world_size, port): colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host='localhost') run_naive_amp() @pytest.mark.dist @rerun_if_address_is_in_use() def test_naive_amp(): world_size = 1 run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_naive_amp()
import copy from functools import partial import pytest import torch import torch.multiprocessing as mp import colossalai from colossalai.amp import convert_to_apex_amp, convert_to_torch_amp from colossalai.testing import assert_close_loose, rerun_if_address_is_in_use from colossalai.utils import free_port from tests.components_to_test.registry import non_distributed_component_funcs def run_torch_amp(): """ In this test, we compare the torch amp and apex amp implemented in colossalai """ torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True # create layer test_models = ['resnet18', 'simple_net'] for test_name in test_models: get_component_func = non_distributed_component_funcs.get_callable(test_name) model_builder, train_dataloader, _, optim_class, _ = get_component_func() # create model torch_amp_model = model_builder(checkpoint=True).cuda() apex_amp_model = copy.deepcopy(torch_amp_model) # create optimizer # we use SGD here, since the correctness of gradient clipping can't be tested with Adam torch_amp_optimizer = torch.optim.SGD(torch_amp_model.parameters(), lr=1e-3) apex_amp_optimizer = torch.optim.SGD(apex_amp_model.parameters(), lr=1e-3) # inject torch and apex amp torch_amp_config = dict(init_scale=128, enabled=True) torch_amp_model, torch_amp_optimizer, _ = convert_to_torch_amp(torch_amp_model, torch_amp_optimizer, amp_config=torch_amp_config) apex_amp_config = dict(opt_level='O1', loss_scale=128) apex_amp_model, apex_amp_optimizer = convert_to_apex_amp(apex_amp_model, apex_amp_optimizer, apex_amp_config) # create data data_iter = iter(train_dataloader) data, label = next(data_iter) data = data.cuda() # forward pass torch_amp_output = torch_amp_model(data) apex_amp_output = apex_amp_model(data) assert_close_loose(torch_amp_output, apex_amp_output) for torch_amp_param, apex_amp_param in zip(torch_amp_model.parameters(), apex_amp_model.parameters()): assert_close_loose(torch_amp_param, apex_amp_param) # backward # use sum() to get big gradient torch_amp_optimizer.backward(torch_amp_output.sum()) apex_amp_optimizer.backward(apex_amp_output.sum()) # check grad # In apex amp, grad is not scaled before backward, but torch amp does for torch_amp_param, apex_amp_param in zip(torch_amp_model.parameters(), apex_amp_model.parameters()): assert_close_loose(torch_amp_param.grad, apex_amp_param.grad * apex_amp_config['loss_scale']) # clip gradient apex_amp_optimizer.clip_grad_norm(model=apex_amp_model, max_norm=1.0) torch_amp_optimizer.clip_grad_norm(model=torch_amp_model, max_norm=1.0) # step torch_amp_optimizer.step() apex_amp_optimizer.step() # check updated param and grad for torch_amp_param, apex_amp_param in zip(torch_amp_model.parameters(), apex_amp_model.parameters()): assert_close_loose(torch_amp_param.grad, apex_amp_param.grad) assert_close_loose(torch_amp_param, apex_amp_param) def run_dist(rank, world_size, port): colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host='localhost') run_torch_amp() @pytest.mark.dist @rerun_if_address_is_in_use() def test_torch_amp(): world_size = 1 run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_torch_amp()
import os from functools import partial from pathlib import Path import colossalai import pytest import torch import torch.multiprocessing as mp from colossalai.amp import AMP_TYPE from colossalai.trainer import Trainer, hooks from colossalai.context import ParallelMode from colossalai.testing import rerun_if_address_is_in_use, skip_if_not_enough_gpus from colossalai.utils import free_port from colossalai.core import global_context as gpc from colossalai.logging import get_dist_logger from colossalai.nn import CrossEntropyLoss from colossalai.nn.lr_scheduler import CosineAnnealingWarmupLR from colossalai.utils import get_dataloader from colossalai.pipeline.pipelinable import PipelinableContext from torchvision.datasets import CIFAR10 from torchvision import transforms BATCH_SIZE = 4 NUM_EPOCHS = 60 WARMUP_EPOCHS = 5 CONFIG = dict(NUM_MICRO_BATCHES=2, parallel=dict(pipeline=2, tensor=dict(size=2, mode='1d')), fp16=dict(mode=AMP_TYPE.NAIVE), gradient_accumulation=2) def run_trainer(rank, world_size, port): colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') logger = get_dist_logger() # get logger logger = get_dist_logger() pipelinable = PipelinableContext() try: from titans.model.vit import vit_tiny_patch4_32 except ImportError: logger.warning('skip the test_cifar_with_data_pipeline_tensor test because titan is not installed') logger.warning('please install titan from https://github.com/hpcaitech/Titans') return with pipelinable: model = vit_tiny_patch4_32() pipelinable.to_layer_list() pipelinable.policy = "uniform" model = pipelinable.partition(1, gpc.pipeline_parallel_size, gpc.get_local_rank(ParallelMode.PIPELINE)) # craete dataloaders root = Path(os.environ['DATA']) transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4, pad_if_needed=True), transforms.AutoAugment(policy=transforms.AutoAugmentPolicy.CIFAR10), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) train_dataset = CIFAR10(root=root, train=True, download=True, transform=transform_train) train_dataloader = get_dataloader(dataset=train_dataset, shuffle=True, batch_size=BATCH_SIZE, pin_memory=True) # create loss function criterion = CrossEntropyLoss(label_smoothing=0.1) # create optimizer optimizer = torch.optim.AdamW(model.parameters(), lr=0.001, weight_decay=0) # create lr scheduler lr_scheduler = CosineAnnealingWarmupLR(optimizer=optimizer, total_steps=NUM_EPOCHS, warmup_steps=WARMUP_EPOCHS) # intiailize engine, train_dataloader, *_ = colossalai.initialize(model=model, optimizer=optimizer, criterion=criterion, train_dataloader=train_dataloader) logger = get_dist_logger() trainer = Trainer(engine=engine, logger=logger) hook_list = [ hooks.LRSchedulerHook(lr_scheduler=lr_scheduler, by_epoch=False), ] trainer.fit(train_dataloader=train_dataloader, epochs=NUM_EPOCHS, max_steps=2, hooks=hook_list, display_progress=True) @pytest.mark.dist @skip_if_not_enough_gpus(min_gpus=8) @rerun_if_address_is_in_use() def test_hybrid_parallel(): world_size = 8 run_func = partial(run_trainer, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_hybrid_parallel()
import os from functools import partial from pathlib import Path import colossalai import pytest import torch import torch.multiprocessing as mp from colossalai.amp import AMP_TYPE from colossalai.trainer import Trainer, hooks from colossalai.context import ParallelMode from colossalai.testing import rerun_if_address_is_in_use, skip_if_not_enough_gpus from colossalai.utils import free_port from colossalai.core import global_context as gpc from colossalai.logging import get_dist_logger from colossalai.nn import CrossEntropyLoss from colossalai.nn.lr_scheduler import CosineAnnealingWarmupLR from colossalai.utils import get_dataloader from colossalai.pipeline.pipelinable import PipelinableContext from colossalai.logging import disable_existing_loggers from torchvision.datasets import CIFAR10 from torchvision import transforms from colossalai.engine.schedule._pipeline_schedule_v2 import PipelineScheduleV2 disable_existing_loggers() BATCH_SIZE = 4 NUM_EPOCHS = 10 WARMUP_EPOCHS = 5 CONFIG = dict(NUM_MICRO_BATCHES=2, parallel=dict(pipeline=2, tensor=dict(size=1, mode='1d')), fp16=dict(mode=AMP_TYPE.NAIVE), gradient_accumulation=2) def run_trainer(rank, world_size, port): disable_existing_loggers() colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') disable_existing_loggers() # get logger logger = get_dist_logger() pipelinable = PipelinableContext() try: from titans.model.vit import vit_tiny_patch4_32 except ImportError: logger.warning('skip the test_cifar_with_data_pipeline_tensor test because titan is not installed') logger.warning('please install titan from https://github.com/hpcaitech/Titans') return with pipelinable: model = vit_tiny_patch4_32() pipelinable.to_layer_list() pipelinable.policy = "uniform" model = pipelinable.partition(1, gpc.pipeline_parallel_size, gpc.get_local_rank(ParallelMode.PIPELINE)) # craete dataloaders root = Path(os.environ['DATA']) transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4, pad_if_needed=True), transforms.AutoAugment(policy=transforms.AutoAugmentPolicy.CIFAR10), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) train_dataset = CIFAR10(root=root, train=True, download=True, transform=transform_train) train_dataloader = get_dataloader(dataset=train_dataset, shuffle=True, batch_size=BATCH_SIZE, pin_memory=True) # create loss function criterion = CrossEntropyLoss(label_smoothing=0.1) # create optimizer optimizer = torch.optim.AdamW(model.parameters(), lr=0.001, weight_decay=0) # create lr scheduler lr_scheduler = CosineAnnealingWarmupLR(optimizer=optimizer, total_steps=NUM_EPOCHS, warmup_steps=WARMUP_EPOCHS) # intiailize engine, train_dataloader, *_ = colossalai.initialize(model=model, optimizer=optimizer, criterion=criterion, train_dataloader=train_dataloader) engine._schedule = PipelineScheduleV2(num_microbatches=gpc.config.NUM_MICRO_BATCHES) logger = get_dist_logger() trainer = Trainer(engine=engine, logger=logger) hook_list = [ hooks.LRSchedulerHook(lr_scheduler=lr_scheduler, by_epoch=False), ] trainer.fit(train_dataloader=train_dataloader, max_steps=2, epochs=NUM_EPOCHS, hooks=hook_list, display_progress=True) @pytest.mark.dist @rerun_if_address_is_in_use() def test_hybrid_parallel(): world_size = 2 run_func = partial(run_trainer, world_size=world_size, port=free_port()) disable_existing_loggers() mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_hybrid_parallel()
#!/usr/bin/env python # -*- encoding: utf-8 -*- from functools import partial import pytest import torch import torch.multiprocessing as mp from colossalai.core import global_context as gpc from colossalai.logging import disable_existing_loggers from colossalai.initialize import launch from colossalai.utils import free_port from colossalai.testing import rerun_if_address_is_in_use from torch.fx import symbolic_trace from colossalai.fx.passes import column_shard_linear_pass class MLP(torch.nn.Module): def __init__(self, dim: int): super().__init__() self.linear1 = torch.nn.Linear(dim, dim) self.linear2 = torch.nn.Linear(dim, dim) self.linear3 = torch.nn.Linear(dim, dim) self.linear4 = torch.nn.Linear(dim, dim) def forward(self, x): x = self.linear1(x) x = self.linear2(x) x = self.linear3(x) x = self.linear4(x) return x CONFIG = dict(parallel=dict(tensor=dict(mode='1d', size=2))) def check_layer(rank, world_size, port): disable_existing_loggers() launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') input_tensor = torch.rand(2, 16).cuda() model = MLP(16).cuda() symbolic_traced = symbolic_trace(model) output = model(input_tensor) splitted_gm = column_shard_linear_pass(symbolic_traced) new_output = splitted_gm(input_tensor) assert output.equal(new_output) gpc.destroy() torch.cuda.empty_cache() @pytest.mark.dist @rerun_if_address_is_in_use() def test_1d(): world_size = 2 run_func = partial(check_layer, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_1d()
import colossalai import torch from colossalai.fx.passes.utils import get_leaf, get_top, assign_bfs_level_to_nodes from colossalai.fx import ColoTracer from torch.fx import GraphModule from colossalai.fx.passes.meta_info_prop import MetaInfoProp, TensorMetadata class MLP(torch.nn.Module): def __init__(self, dim: int): super().__init__() self.linear1 = torch.nn.Linear(dim, dim) self.linear2 = torch.nn.Linear(dim, dim) self.linear3 = torch.nn.Linear(dim, dim) self.linear4 = torch.nn.Linear(dim, dim) self.linear5 = torch.nn.Linear(dim, dim) def forward(self, x): l1 = self.linear1(x) l2 = self.linear2(x) l3 = self.linear3(l1) l4 = self.linear4(l2) l5 = self.linear5(l3) return l4, l5 def test_graph_manipulation(): model = MLP(4) tracer = ColoTracer() graph = tracer.trace(model) nodes = list(graph.nodes) x, l1, l2, l3, l4, l5, output = nodes leaf_nodes = set(get_leaf(graph)) top_nodes = set(get_top(graph)) compare_dict = {x: None, l1: 0, l2: 0, l3: 1, l4: 1, l5: 2, output: None} assign_bfs_level_to_nodes(graph) assert leaf_nodes == set([l4, l5]) assert top_nodes == set([l1, l2]) for node in graph.nodes: if node.op in ('placeholder', 'output'): assert not hasattr(node, 'bfs_level') else: assert node.bfs_level == compare_dict[node] if __name__ == '__main__': test_graph_manipulation()
import torch import torch.nn as nn from colossalai.fx.proxy import ColoProxy from colossalai.fx.tracer.tracer import ColoTracer from torch.fx import GraphModule import pytest class Conv1D(nn.Module): def __init__(self, nf, nx): super().__init__() self.nf = nf w = torch.empty(nx, nf) nn.init.normal_(w, std=0.02) self.weight = nn.Parameter(w) self.bias = nn.Parameter(torch.zeros(nf)) def forward(self, x): size_out = x.shape[:-1] + (self.nf,) x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight) x = x.view(size_out) return x def test_coloproxy(): tracer = ColoTracer() model = Conv1D(3, 3) input_sample = {'x': torch.rand(3, 3).to('meta')} graph = tracer.trace(root=model, meta_args=input_sample) gm = GraphModule(model, graph, model.__class__.__name__) gm.recompile() node = list(gm.graph.nodes)[0] proxy = ColoProxy(node=node, tracer=tracer) proxy.meta_data = torch.empty(4, 2, device='meta') assert len(proxy) == 4 assert proxy.shape[0] == 4 and proxy.shape[1] == 2 assert proxy.dim() == 2 assert proxy.dtype == torch.float32 assert proxy.size(0) == 4 if __name__ == '__main__': test_coloproxy()
from functools import partial import pytest import torch import torch.distributed as dist import torch.multiprocessing as mp import torch.nn as nn import colossalai from colossalai.fx import ColoTracer from colossalai.fx.passes.shard_1d_pass import transformer_mlp_pass from colossalai.tensor import ProcessGroup from colossalai.testing import rerun_if_address_is_in_use from colossalai.utils import free_port from colossalai.utils.model.lazy_init_context import LazyInitContext class MLP(torch.nn.Module): def __init__(self, dim: int): super().__init__() self.linear1 = torch.nn.Linear(dim, dim) self.linear2 = torch.nn.Linear(dim, dim) self.dropout = torch.nn.Dropout(0) self.relu = torch.nn.ReLU() def forward(self, x): x = self.linear1(x) x = self.dropout(x) x = self.relu(x) x = self.linear2(x) return x def run_workflow(world_size, dev): # initailization with LazyInitContext() as ctx: model = MLP(16) for param in model.parameters(): assert param.is_meta # tracing tracer = ColoTracer() graph = tracer.trace(model) gm = torch.fx.GraphModule(model, graph, model.__class__.__name__) # annotate annotated_gm = transformer_mlp_pass(gm, process_group=ProcessGroup(tp_degree=world_size)) annotated_gm.recompile() # materialization and sharding ctx.lazy_init_parameters(annotated_gm, device=dev) for param in model.parameters(): assert not param.is_meta # # check sharding assert list(model.linear1.weight.shape) == [16 // world_size, 16] assert list(model.linear1.bias.shape) == [16 // world_size] assert list(model.linear2.weight.shape) == [16, 16 // world_size] # test forward to make sure that IR transform will produce the same results # like how ColoTensor would do it normally data = torch.rand(4, 16, device=dev) non_fx_out = model(data) fx_out = annotated_gm(data) assert torch.equal(non_fx_out, fx_out), f'{non_fx_out} vs {fx_out}' def run_dist(rank, world_size, dev, port): colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') run_workflow(world_size, dev) @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 2]) @pytest.mark.parametrize('dev', ['cuda', 'cpu']) @rerun_if_address_is_in_use() def test_complete_workflow(world_size, dev): if dev == 'cpu' and world_size > 1: return run_func = partial(run_dist, world_size=world_size, dev=dev, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_complete_workflow(1, 'cuda')
import torch from colossalai.fx._compatibility import is_compatible_with_meta from colossalai.fx.passes.meta_info_prop import MetaInfoProp, TensorMetadata from torch.fx import symbolic_trace if is_compatible_with_meta(): from colossalai.fx.profiler import MetaTensor BATCH_SIZE = 2 DIM_IN = 4 DIM_OUT = 16 def meta_check(meta_info_spec: TensorMetadata, orig_tensor: torch.Tensor): assert meta_info_spec.shape == orig_tensor.shape assert meta_info_spec.dtype == orig_tensor.dtype assert meta_info_spec.stride == orig_tensor.stride() assert meta_info_spec.numel == orig_tensor.numel() def test_meta_info_prop(): model = torch.nn.Linear(DIM_IN, DIM_OUT) input_sample = torch.rand(BATCH_SIZE, DIM_IN, device='meta') if is_compatible_with_meta(): input_sample = MetaTensor(input_sample, fake_device='cpu') orig_output = model(input_sample) gm = symbolic_trace(model) MetaInfoProp(gm).run(input_sample) for node in gm.graph.nodes: if node.op == 'placeholder': meta_check(node.meta['tensor_meta'], input_sample) if node.op == 'output': meta_check(node.meta['tensor_meta'], orig_output) if __name__ == '__main__': test_meta_info_prop()
import colossalai import colossalai.nn as col_nn import pytest import torch import torch.nn as nn from colossalai.fx._compatibility import is_compatible_with_meta from colossalai.fx.passes.adding_split_node_pass import (split_with_split_nodes_pass, uniform_split_pass) from colossalai.fx.passes.meta_info_prop import MetaInfoProp from colossalai.fx.passes.utils import get_comm_size from torch.fx import symbolic_trace is_compatible = is_compatible_with_meta() if is_compatible: from colossalai.fx.profiler import MetaTensor MODEL_DIM = 16 BATCH_SIZE = 8 PIPELINE_SIZE = 2 class MLP(torch.nn.Module): def __init__(self, dim: int): super().__init__() self.linear1 = torch.nn.Linear(dim, dim) self.linear2 = torch.nn.Linear(dim, dim) self.linear3 = torch.nn.Linear(dim, dim) self.linear4 = torch.nn.Linear(dim, dim) def forward(self, x): x = self.linear1(x) x = self.linear2(x) x = self.linear3(x) x = self.linear4(x) return x def test_comm_size_compute(): model = MLP(MODEL_DIM) input_sample = torch.rand(BATCH_SIZE, MODEL_DIM, device='meta') gm = symbolic_trace(model) if is_compatible: input_sample = MetaTensor(input_sample, fake_device=next(gm.parameters()).device) MetaInfoProp(gm).run(input_sample) annotated_model = uniform_split_pass(gm, PIPELINE_SIZE) split_model, split_submodules = split_with_split_nodes_pass(annotated_model) submodule_list = list(split_model.children()) comm_size = get_comm_size(submodule_list[0], submodule_list[1]) # the shape of tensor send from partition 0 to partition 1 is (8, 16) assert comm_size == 128 if __name__ == '__main__': test_comm_size_compute()
import torch import torch.nn as nn import colossalai import colossalai.nn as col_nn from torch.fx import symbolic_trace from colossalai.fx.passes.adding_split_node_pass import split_with_split_nodes_pass, balanced_split_pass, \ uniform_split_pass, balanced_split_pass_v2 import pytest MODEL_DIM = 16 BATCH_SIZE = 8 PIPELINE_SIZE = 2 class MLP(torch.nn.Module): def __init__(self, dim: int): super().__init__() self.linear1 = torch.nn.Linear(dim, dim) self.linear2 = torch.nn.Linear(dim, dim) self.linear3 = torch.nn.Linear(dim, dim) self.linear4 = torch.nn.Linear(dim, dim) def forward(self, x): x = self.linear1(x) x = self.linear2(x) x = self.linear3(x) x = self.linear4(x) return x def pipeline_pass_test_helper(model, data, pass_func): origin_output = model(data) symbolic_traced = symbolic_trace(model) annotated_model = pass_func(symbolic_traced, PIPELINE_SIZE) split_model, split_submodules = split_with_split_nodes_pass(annotated_model) output = split_model(data) assert output.equal(origin_output) def test_pipeline_passes(): model = MLP(MODEL_DIM) data = torch.rand(BATCH_SIZE, MODEL_DIM) pipeline_pass_test_helper(model, data, balanced_split_pass) pipeline_pass_test_helper(model, data, balanced_split_pass_v2) pipeline_pass_test_helper(model, data, uniform_split_pass) if __name__ == '__main__': test_pipeline_passes()
import copy import colossalai import pytest import torch import torch.fx import torch.multiprocessing as mp import torchvision.models as tm from colossalai.core import global_context as gpc from colossalai.fx import ColoGraphModule, ColoTracer from colossalai.fx._compatibility import is_compatible_with_meta from colossalai.fx.passes.algorithms import solver_rotor from colossalai.fx.passes.algorithms.operation import Sequence from colossalai.fx.passes.meta_info_prop import MetaInfoProp from colossalai.utils import free_port if is_compatible_with_meta(): from colossalai.fx.profiler.tensor import MetaTensor try: from colossalai.fx.codegen import ActivationCheckpointCodeGen withcodegen = True except: from colossalai.fx.codegen import python_code_with_activation_checkpoint withcodegen = False def _run_C_solver_consistency_test(rank=0): colossalai.launch(config={}, rank=rank, world_size=1, host='localhost', port=free_port(), backend='nccl') for M, mem_budget in [(tm.resnet50, 4000), (tm.densenet121, 8080)]: model = M() data = torch.rand(128, 3, 224, 224, device='meta') tracer = ColoTracer() graph = tracer.trace(model, meta_args={"x": data}) graph.set_codegen(ActivationCheckpointCodeGen()) gm = ColoGraphModule(model, graph, model.__class__.__name__) if is_compatible_with_meta(): data_meta = MetaTensor(data, fake_device=next(gm.parameters()).device) MetaInfoProp(gm).run(data_meta) # python solver gm = solver_rotor(gm, data_meta, mem_budget * 1024 * 1024, force_python=True) sequence_python: Sequence = copy.deepcopy(gm.__sequence__) opt_python = copy.deepcopy(gm.__opttable__) # C solver gm = solver_rotor(gm, data_meta, mem_budget * 1024 * 1024) sequence_C: Sequence = copy.deepcopy(gm.__sequence__) opt_C = copy.deepcopy(gm.__opttable__) # make sure the opt_tables are the same for m in range(len(opt_python)): for d in range(1, len(opt_python[0])): for i in range(len(opt_python[0]) - d): assert opt_python[m][i][i + d] == opt_C[m][i][i + d], \ f"item ({m}, {i}, {i + d}) is not consistent with python version!\npython version: {opt_python[m][i][i + d]}\nC version: {opt_C[m][i][i + d]}" sequence_python = sequence_python.list_operations() sequence_C = sequence_C.list_operations() # make sure the sequences are the same assert len(sequence_python) == len(sequence_C) and \ all(python_op.__repr__() == C_op.__repr__() for (python_op, C_op) in zip(sequence_python, sequence_C)) gpc.destroy() @pytest.mark.skipif(not withcodegen, reason="torch version is less than 1.12.0") def test_C_solver_consistency(): mp.spawn(_run_C_solver_consistency_test, nprocs=1) if __name__ == '__main__': _run_C_solver_consistency_test(rank=0)
import pytest import torch import torchvision.models as tm from colossalai.fx import ColoTracer from colossalai.fx._compatibility import is_compatible_with_meta from colossalai.fx.graph_module import ColoGraphModule from colossalai.fx.passes.algorithms import linearize, solver_rotor from colossalai.fx.passes.algorithms.operation import (ForwardCheck, ForwardEnable, ForwardNograd, Loss) from colossalai.fx.passes.meta_info_prop import MetaInfoProp if is_compatible_with_meta(): from colossalai.fx.profiler.tensor import MetaTensor try: from colossalai.fx.codegen import ActivationCheckpointCodeGen with_codegen = True except: # fall back to older pytorch version from colossalai.fx.codegen import python_code_with_activation_checkpoint with_codegen = False @pytest.mark.skip(reason='TODO: modify the logger') @pytest.mark.skipif(not with_codegen, reason="torch version is lower than 1.12.0") def test_linearize(): MODEL_DICT = {tm.resnet18: [2100, 3000], tm.densenet121: [8100, 17000]} tracer = ColoTracer() for M, budgets in MODEL_DICT.items(): for budget in budgets: model = M() graph = tracer.trace(model) graph.set_codegen(ActivationCheckpointCodeGen()) gm = ColoGraphModule(model, graph, model.__class__.__name__) MetaInfoProp(gm).run(MetaTensor(torch.rand(128, 3, 224, 224, device="meta"), fake_device='cpu')) node_list = linearize(gm) gm = solver_rotor(gm, data=torch.rand(128, 3, 224, 224, device="meta"), mem_limit=budget * 1024**2) op_list = gm.__sequence__.list_operations() loss_op = next(op for op in op_list if isinstance(op, Loss)) op_list = op_list[:op_list.index(loss_op)] in_ckpt = False ckpt_idx = 0 for idx, op in enumerate(op_list): if in_ckpt: if isinstance(op, ForwardNograd): for n in node_list[idx]: assert hasattr(n, "activation_checkpoint"), f"{n} is not annotated!" assert n.activation_checkpoint[ 0] == ckpt_idx, f"{n} ckpt_idx {n.activation_checkpoint[0]} wrong, should be {ckpt_idx}!" continue if isinstance(op, ForwardEnable): for n in node_list[idx]: assert getattr(n, "activation_checkpoint", None) == None, f"{n} should not be annotated!" in_ckpt = False ckpt_idx += 1 continue if isinstance(op, ForwardCheck): ckpt_idx += 1 for n in node_list[idx]: assert hasattr(n, "activation_checkpoint"), f"{n} is not annotated!" assert n.activation_checkpoint[ 0] == ckpt_idx, f"{n} ckpt_idx {n.activation_checkpoint[0]} wrong, should be {ckpt_idx}!" continue else: if isinstance(op, ForwardCheck): in_ckpt = True for n in node_list[idx]: assert hasattr(n, "activation_checkpoint"), f"{n} is not annotated!" assert n.activation_checkpoint[ 0] == ckpt_idx, f"{n} ckpt_idx {n.activation_checkpoint[0]} wrong, should be {ckpt_idx}!" del model del gm del node_list @pytest.mark.skip(reason="torch11 meta tensor not implemented") @pytest.mark.skipif(with_codegen, reason="torch version is equal to or higher than 1.12.0") def test_linearize_torch11(): MODEL_DICT = {tm.resnet18: [2100, 3000], tm.densenet121: [8100, 17000]} tracer = ColoTracer() for M, budgets in MODEL_DICT.items(): for budget in budgets: model = M() graph = tracer.trace(model) gm = ColoGraphModule(model, graph, model.__class__.__name__) gm.graph._python_code = python_code_with_activation_checkpoint.__get__(graph) node_list = linearize(gm) gm = solver_rotor(gm, data=torch.rand(128, 3, 224, 224, device="meta"), mem_limit=budget * 1024**2) op_list = gm.__sequence__.list_operations() loss_op = next(op for op in op_list if isinstance(op, Loss)) op_list = op_list[:op_list.index(loss_op)] in_ckpt = False ckpt_idx = 0 for idx, op in enumerate(op_list): if in_ckpt: if isinstance(op, ForwardNograd): for n in node_list[idx]: assert hasattr(n, "activation_checkpoint"), f"{n} is not annotated!" assert n.activation_checkpoint == ckpt_idx, f"{n} ckpt_idx wrong, should be {ckpt_idx}!" continue if isinstance(op, ForwardEnable): for n in node_list[idx]: assert getattr(n, "activation_checkpoint", None) == None, f"{n} should not be annotated!" in_ckpt = False ckpt_idx += 1 continue if isinstance(op, ForwardCheck): ckpt_idx += 1 for n in node_list[idx]: assert hasattr(n, "activation_checkpoint"), f"{n} is not annotated!" assert n.activation_checkpoint == ckpt_idx, f"{n} ckpt_idx wrong, should be {ckpt_idx}!" continue else: if isinstance(op, ForwardCheck): in_ckpt = True for n in node_list[idx]: assert hasattr(n, "activation_checkpoint"), f"{n} is not annotated!" assert n.activation_checkpoint == ckpt_idx, f"{n} ckpt_idx wrong, should be {ckpt_idx}!" del model del gm del node_list if __name__ == "__main__": test_linearize()
import copy import re from typing import Callable import pytest import torch import torch.multiprocessing as mp import torchvision.models as tm from torch.fx import GraphModule import colossalai from colossalai.core import global_context as gpc from colossalai.fx import ColoTracer from colossalai.fx._compatibility import is_compatible_with_meta from colossalai.fx.graph_module import ColoGraphModule from colossalai.fx.passes.algorithms import chen_greedy, solver_rotor from colossalai.fx.passes.meta_info_prop import MetaInfoProp from colossalai.utils import free_port if is_compatible_with_meta(): from colossalai.fx.profiler.tensor import MetaTensor try: from colossalai.fx.codegen import ActivationCheckpointCodeGen with_codegen = True except: # fall back to older pytorch version from colossalai.fx.codegen import python_code_with_activation_checkpoint with_codegen = False SOLVERS = [chen_greedy, solver_rotor] def _is_activation_checkpoint_available(gm: GraphModule): for n in gm.graph.nodes: if hasattr(n, 'activation_checkpoint') and getattr(n, 'activation_checkpoint') is not None: return True def _is_all_gradient_close(m: torch.nn.Module, gm: GraphModule): for m_p, gm_p in zip(m.parameters(), gm.parameters()): if not torch.allclose(m_p.grad, gm_p.grad): return False return True def _is_graph_linearized(gm: GraphModule): code = gm.code # find patterns like r' return output_1, output_2', which is not expected on a linearized graph pattern = re.compile(r' return [a-zA-Z0-9_]+(, [a-zA-Z0-9_]+)+') if pattern.findall(code): return False else: return True def check_backward_consistency(m: torch.nn.Module, gm: GraphModule, solver: Callable[[GraphModule], GraphModule], model_cls: Callable[[], torch.nn.Module]): criterion = torch.nn.MSELoss() m.cuda() data = torch.rand(2, 3, 32, 32).cuda() label = torch.rand(2, 5).cuda() loss = criterion(m(data), label) loss.backward() loss = criterion(gm(data), label) loss.backward() assert _is_all_gradient_close(m, gm), f'Solver {solver} did not work correctly in backward pass on {model_cls}' def _run_ckpt_solver(rank): colossalai.launch(config={}, rank=rank, world_size=1, host='localhost', port=free_port(), backend='nccl') MODEL_LIST = [tm.densenet121] torch.backends.cudnn.deterministic = True tracer = ColoTracer(trace_act_ckpt=False) data = torch.rand(8, 3, 224, 224, device='meta') for solver in SOLVERS: for model_cls in MODEL_LIST: m = model_cls(num_classes=5) graph = tracer.trace(root=m) gm = ColoGraphModule(copy.deepcopy(m), graph, m.__class__.__name__) MetaInfoProp(gm.cuda()).run(MetaTensor(data).cuda()) codegen = ActivationCheckpointCodeGen() gm.graph.set_codegen(codegen) if solver == solver_rotor: gm = solver(gm, data, mem_limit=500 * 1024 * 1024, mem_slots=500) else: gm = solver(gm) assert _is_graph_linearized(gm), f"Solver {solver} did not solve {model_cls} in a linearized manner." assert _is_activation_checkpoint_available( gm), f"Solver {solver} did not annotate {model_cls} with any activation checkpoints" check_backward_consistency(m, gm, solver, model_cls) gpc.destroy() @pytest.mark.skip("TODO(super-dainiu): refactor all tests.") @pytest.mark.skipif(not with_codegen, reason='torch version is lower than 1.12.0') def test_ckpt_solver(): mp.spawn(_run_ckpt_solver, nprocs=1) def _run_ckpt_solver_torch11(rank): colossalai.launch(config={}, rank=rank, world_size=1, host='localhost', port=free_port(), backend='nccl') MODEL_LIST = [tm.densenet121] torch.backends.cudnn.deterministic = True tracer = ColoTracer(trace_act_ckpt=False) data = torch.rand(8, 3, 32, 32, device='meta') for solver in SOLVERS: for model_cls in MODEL_LIST: m = model_cls(num_classes=5) graph = tracer.trace(root=m) gm = ColoGraphModule(copy.deepcopy(m), graph, m.__class__.__name__) MetaInfoProp(gm).run(data) gm.graph._python_code = python_code_with_activation_checkpoint.__get__(graph) if solver == solver_rotor: gm = solver(gm, data, mem_limit=500 * 1024 * 1024, mem_slots=500, force_python=True) else: gm = solver(gm) assert _is_graph_linearized(gm), f"Solver {solver} did not solve {model_cls} in a linearized manner." assert _is_activation_checkpoint_available( gm), f"Solver {solver} did not annotate {model_cls} with any activation checkpoints" check_backward_consistency(m, gm, solver, model_cls) gpc.destroy() @pytest.mark.skipif(with_codegen, reason='torch version is equal to or higher than 1.12.0') @pytest.mark.skip(reason="currently torch11 ColoGraphModule is not done") def test_ckpt_solver_torch11(): mp.spawn(_run_ckpt_solver_torch11, nprocs=1) if __name__ == '__main__': _run_ckpt_solver(rank=0) test_ckpt_solver() test_ckpt_solver_torch11()
import torch from torch.nn import functional as F from colossalai.fx.tracer.meta_patch import patched_function def test_conv(): # test F.conv_1d data_1d = torch.rand(3, 16, 10) weight_1d = torch.rand(3, 16, 3) out_1d = F.conv1d(data_1d, weight_1d) patched_out_1d = patched_function.torch_nn_functional_conv1d(data_1d, weight_1d) assert out_1d.shape == patched_out_1d.shape # test F.conv_transpose1d weight_1d = torch.transpose(weight_1d, 0, 1) out_transpose_1d = F.conv_transpose1d(data_1d, weight_1d) patched_out_transpose_1d = patched_function.torch_nn_functional_convtranspose1d(data_1d, weight_1d) assert out_transpose_1d.shape == patched_out_transpose_1d.shape # test F.conv2d data_2d = torch.rand(3, 16, 10, 10) weight_2d = torch.rand(3, 16, 3, 3) out_2d = F.conv2d(data_2d, weight_2d) patched_out_2d = patched_function.torch_nn_functional_conv2d(data_2d, weight_2d) assert out_2d.shape == patched_out_2d.shape # test F.conv_transpose2d weight_2d = torch.transpose(weight_2d, 0, 1) out_transpose_2d = F.conv_transpose2d(data_2d, weight_2d) patched_out_transpose_2d = patched_function.torch_nn_functional_convtranspose2d(data_2d, weight_2d) assert out_transpose_2d.shape == patched_out_transpose_2d.shape # test F.conv3d data_3d = torch.rand(3, 16, 10, 10, 10) weight_3d = torch.rand(3, 16, 3, 3, 3) out_3d = F.conv3d(data_3d, weight_3d) patched_out_3d = patched_function.torch_nn_functional_conv3d(data_3d, weight_3d) assert out_3d.shape == patched_out_3d.shape # test F.conv_transpose3d weight_3d = torch.transpose(weight_3d, 0, 1) out_transpose_3d = F.conv_transpose3d(data_3d, weight_3d) patched_out_transpose_3d = patched_function.torch_nn_functional_convtranspose3d(data_3d, weight_3d) assert out_transpose_3d.shape == patched_out_transpose_3d.shape if __name__ == '__main__': test_conv()
import torch import torch.nn as nn from torch.fx import GraphModule from torch.utils.checkpoint import checkpoint from colossalai.fx import ColoTracer class MLP(torch.nn.Module): def __init__(self): super().__init__() self.linear1 = torch.nn.Linear(4, 4) self.linear2 = torch.nn.Linear(4, 4) def forward(self, x): x = self.linear1(x) x = self.linear2(x) return x # Simple module for demonstration class MyModule(torch.nn.Module): def __init__(self): super().__init__() self.mlp_1 = MLP() self.mlp_2 = MLP() self.output = torch.nn.Linear(4, 4) def forward(self, x): x = checkpoint(self.mlp_1, x) x = checkpoint(self.mlp_2, x) x = self.output(x) return x def test_activation_checkpoint_annotation(): module = MyModule() # test tracing with activation checkpoint tracer = ColoTracer(trace_act_ckpt=True) graph = tracer.trace(module) gm = GraphModule(module, graph) for node in gm.graph.nodes: if node.name in ['mlp_1_linear1', 'mlp_1_linear2']: assert node.meta.get('activation_checkpoint', -1) == 0 for node in gm.graph.nodes: if node.name in ['mlp_2_linear1', 'mlp_2_linear2']: assert node.meta.get('activation_checkpoint', -1) == 1 tracer = ColoTracer(trace_act_ckpt=False) graph = tracer.trace(module) gm = GraphModule(module, graph) for node in gm.graph.nodes: assert not hasattr(node, 'activation_checkpoint') if __name__ == '__main__': test_activation_checkpoint_annotation()
import torch from colossalai.fx import ColoGraphModule, ColoTracer class LinearModel(torch.nn.Module): def __init__(self, in_features, out_features): super().__init__() self.linear = torch.nn.Linear(in_features, out_features) def forward(self, x): x = self.linear(x) x = x * 2 return x class ConvModel(torch.nn.Module): def __init__(self, in_channels, out_channels, kernel_size, bias=True): super().__init__() self.conv = torch.nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, bias=bias) def forward(self, x): x = self.conv(x) x = x * 2 return x def test_linear_module(): model = LinearModel(3, 6) tracer = ColoTracer() # graph(): # %x : torch.Tensor [#users=1] = placeholder[target=x] # %linear_weight : [#users=1] = get_attr[target=linear.weight] # %linear_bias : [#users=1] = get_attr[target=linear.bias] # %linear : [#users=1] = call_function[target=torch._C._nn.linear](args = (%x, %linear_weight), kwargs = {}) # %add : [#users=1] = call_function[target=operator.add](args = (%linear, %linear_bias), kwargs = {}) # %mul : [#users=1] = call_function[target=operator.mul](args = (%add, 2), kwargs = {}) # return mul graph = tracer.trace(root=model, meta_args={'x': torch.rand(3, 3).to('meta')}) # def forward(self, x : torch.Tensor): # linear_weight = self.linear.weight # linear_bias = self.linear.bias # linear = torch._C._nn.linear(x, linear_weight); x = linear_weight = None # add = linear + linear_bias; linear = linear_bias = None # mul = add * 2; add = None # return mul gm = ColoGraphModule(model, graph) gm.recompile() node_list = list(graph.nodes) for node in node_list: if node.op == 'output': continue assert hasattr(node, '_meta_data') weight_node = node_list[1] bias_node = node_list[2] linear_node = node_list[3] add_node = node_list[4] assert weight_node._meta_data.shape == (6, 3) assert bias_node._meta_data.shape == (6,) assert linear_node._meta_data.shape == (3, 6) assert add_node._meta_data.shape == (3, 6) def test_conv_module(): model = ConvModel(3, 6, 2) tracer = ColoTracer() # graph(): # %x : torch.Tensor [#users=1] = placeholder[target=x] # %conv_weight : [#users=1] = get_attr[target=conv.weight] # %conv_bias : [#users=1] = get_attr[target=conv.bias] # %conv2d : [#users=1] = call_function[target=torch.conv2d](args = (%x, %conv_weight), kwargs = {}) # %view : [#users=1] = call_method[target=view](args = (%conv_bias, [1, -1, 1, 1]), kwargs = {}) # %add : [#users=1] = call_function[target=operator.add](args = (%conv2d, %view), kwargs = {}) # %mul : [#users=1] = call_function[target=operator.mul](args = (%add, 2), kwargs = {}) # return mul graph = tracer.trace(root=model, meta_args={'x': torch.rand(4, 3, 64, 64).to('meta')}) # def forward(self, x : torch.Tensor): # conv_weight = self.conv.weight # conv_bias = self.conv.bias # conv2d = torch.conv2d(x, conv_weight); x = conv_weight = None # view = conv_bias.view([1, -1, 1, 1]); conv_bias = None # add = conv2d + view; conv2d = view = None # mul = add * 2; add = None # return mul gm = ColoGraphModule(model, graph) gm.recompile() node_list = list(graph.nodes) for node in node_list: if node.op == 'output': continue assert hasattr(node, '_meta_data') weight_node = node_list[1] bias_node = node_list[2] conv_node = node_list[3] view_node = node_list[4] add_node = node_list[5] assert weight_node._meta_data.shape == (6, 3, 2, 2) assert bias_node._meta_data.shape == (6,) assert conv_node._meta_data.shape == (4, 6, 63, 63) assert view_node._meta_data.shape == (6, 1, 1) assert add_node._meta_data.shape == (4, 6, 63, 63) if __name__ == '__main__': test_linear_module() test_conv_module()