python_code
stringlengths
0
456k
import numpy as np import cv2 as cv # aruco adict = cv.aruco.Dictionary_get(cv.aruco.DICT_4X4_50) cv.imshow("marker", cv.aruco.drawMarker(adict, 0, 400)) # random calibration data. your mileage may vary. imsize = (800, 600) K = cv.getDefaultNewCameraMatrix(np.diag([800, 800, 1]), imsize, True) # AR scene cv.ovis.addResourceLocation("packs/Sinbad.zip") # shipped with Ogre win = cv.ovis.createWindow("arucoAR", imsize, flags=0) win.setCameraIntrinsics(K, imsize) win.createEntity("figure", "Sinbad.mesh", (0, 0, 5), (1.57, 0, 0)) win.createLightEntity("sun", (0, 0, 100)) # video capture cap = cv.VideoCapture(0) cap.set(cv.CAP_PROP_FRAME_WIDTH, imsize[0]) cap.set(cv.CAP_PROP_FRAME_HEIGHT, imsize[1]) while cv.ovis.waitKey(1) != 27: img = cap.read()[1] win.setBackground(img) corners, ids = cv.aruco.detectMarkers(img, adict)[:2] cv.waitKey(1) if ids is None: continue rvecs, tvecs = cv.aruco.estimatePoseSingleMarkers(corners, 5, K, None)[:2] win.setCameraPose(tvecs[0].ravel(), rvecs[0].ravel(), invert=True)
import numpy as np import cv2 as cv # add some external resources cv.ovis.addResourceLocation("packs/Sinbad.zip") # camera intrinsics imsize = (800, 600) K = np.diag([800, 800, 1]) K[:2, 2] = (400, 500) # offset pp # observer scene owin = cv.ovis.createWindow("VR", imsize) cv.ovis.createGridMesh("ground", (10, 10), (10, 10)) owin.createEntity("ground", "ground", rot=(1.57, 0, 0)) owin.createCameraEntity("cam", K, imsize, 5) owin.createEntity("sinbad", "Sinbad.mesh", tvec=(0, -5, 0), rot=(np.pi, 0, 0)) # externally defined mesh owin.createLightEntity("sun", (0, 0, -100)) # setup and play idle animation owin.setEntityProperty("sinbad", cv.ovis.ENTITY_ANIMBLEND_MODE, 1) # 1 = cumulative owin.playEntityAnimation("sinbad", "IdleBase") owin.playEntityAnimation("sinbad", "IdleTop") # interaction scene iwin = cv.ovis.createWindow("AR", imsize, cv.ovis.SCENE_SEPARATE | cv.ovis.SCENE_INTERACTIVE) iwin.createEntity("sinbad", "Sinbad.mesh", tvec=(0, -5, 0), rot=(np.pi, 0, 0)) iwin.createLightEntity("sun", (0, 0, -100)) iwin.setCameraIntrinsics(K, imsize) while cv.ovis.waitKey(1) != 27: R, t = iwin.getCameraPose() owin.setEntityPose("cam", t, R) del iwin # must be destroyed in reverse creation order
#!/usr/bin/env python import os import cv2 as cv import numpy as np from tests_common import NewOpenCVTests, unittest class cudaarithm_test(NewOpenCVTests): def setUp(self): super(cudaarithm_test, self).setUp() if not cv.cuda.getCudaEnabledDeviceCount(): self.skipTest("No CUDA-capable device is detected") def test_cudaarithm(self): npMat = (np.random.random((128, 128, 3)) * 255).astype(np.uint8) cuMat = cv.cuda_GpuMat(npMat) cuMatDst = cv.cuda_GpuMat(cuMat.size(),cuMat.type()) cuMatB = cv.cuda_GpuMat(cuMat.size(),cv.CV_8UC1) cuMatG = cv.cuda_GpuMat(cuMat.size(),cv.CV_8UC1) cuMatR = cv.cuda_GpuMat(cuMat.size(),cv.CV_8UC1) self.assertTrue(np.allclose(cv.cuda.merge(cv.cuda.split(cuMat)),npMat)) cv.cuda.split(cuMat,[cuMatB,cuMatG,cuMatR]) cv.cuda.merge([cuMatB,cuMatG,cuMatR],cuMatDst) self.assertTrue(np.allclose(cuMatDst.download(),npMat)) shift = (np.random.random((cuMat.channels(),)) * 8).astype(np.uint8).tolist() self.assertTrue(np.allclose(cv.cuda.rshift(cuMat,shift).download(),npMat >> shift)) cv.cuda.rshift(cuMat,shift,cuMatDst) self.assertTrue(np.allclose(cuMatDst.download(),npMat >> shift)) self.assertTrue(np.allclose(cv.cuda.lshift(cuMat,shift).download(),(npMat << shift).astype('uint8'))) cv.cuda.lshift(cuMat,shift,cuMatDst) self.assertTrue(np.allclose(cuMatDst.download(),(npMat << shift).astype('uint8'))) def test_arithmetic(self): npMat1 = np.random.random((128, 128, 3)) - 0.5 npMat2 = np.random.random((128, 128, 3)) - 0.5 cuMat1 = cv.cuda_GpuMat() cuMat2 = cv.cuda_GpuMat() cuMat1.upload(npMat1) cuMat2.upload(npMat2) cuMatDst = cv.cuda_GpuMat(cuMat1.size(),cuMat1.type()) self.assertTrue(np.allclose(cv.cuda.add(cuMat1, cuMat2).download(), cv.add(npMat1, npMat2))) cv.cuda.add(cuMat1, cuMat2, cuMatDst) self.assertTrue(np.allclose(cuMatDst.download(),cv.add(npMat1, npMat2))) self.assertTrue(np.allclose(cv.cuda.subtract(cuMat1, cuMat2).download(), cv.subtract(npMat1, npMat2))) cv.cuda.subtract(cuMat1, cuMat2, cuMatDst) self.assertTrue(np.allclose(cuMatDst.download(),cv.subtract(npMat1, npMat2))) self.assertTrue(np.allclose(cv.cuda.multiply(cuMat1, cuMat2).download(), cv.multiply(npMat1, npMat2))) cv.cuda.multiply(cuMat1, cuMat2, cuMatDst) self.assertTrue(np.allclose(cuMatDst.download(),cv.multiply(npMat1, npMat2))) self.assertTrue(np.allclose(cv.cuda.divide(cuMat1, cuMat2).download(), cv.divide(npMat1, npMat2))) cv.cuda.divide(cuMat1, cuMat2, cuMatDst) self.assertTrue(np.allclose(cuMatDst.download(),cv.divide(npMat1, npMat2))) self.assertTrue(np.allclose(cv.cuda.absdiff(cuMat1, cuMat2).download(), cv.absdiff(npMat1, npMat2))) cv.cuda.absdiff(cuMat1, cuMat2, cuMatDst) self.assertTrue(np.allclose(cuMatDst.download(),cv.absdiff(npMat1, npMat2))) self.assertTrue(np.allclose(cv.cuda.compare(cuMat1, cuMat2, cv.CMP_GE).download(), cv.compare(npMat1, npMat2, cv.CMP_GE))) cuMatDst1 = cv.cuda_GpuMat(cuMat1.size(),cv.CV_8UC3) cv.cuda.compare(cuMat1, cuMat2, cv.CMP_GE, cuMatDst1) self.assertTrue(np.allclose(cuMatDst1.download(),cv.compare(npMat1, npMat2, cv.CMP_GE))) self.assertTrue(np.allclose(cv.cuda.abs(cuMat1).download(), np.abs(npMat1))) cv.cuda.abs(cuMat1, cuMatDst) self.assertTrue(np.allclose(cuMatDst.download(),np.abs(npMat1))) self.assertTrue(np.allclose(cv.cuda.sqrt(cv.cuda.sqr(cuMat1)).download(), cv.cuda.abs(cuMat1).download())) cv.cuda.sqr(cuMat1, cuMatDst) cv.cuda.sqrt(cuMatDst, cuMatDst) self.assertTrue(np.allclose(cuMatDst.download(),cv.cuda.abs(cuMat1).download())) self.assertTrue(np.allclose(cv.cuda.log(cv.cuda.exp(cuMat1)).download(), npMat1)) cv.cuda.exp(cuMat1, cuMatDst) cv.cuda.log(cuMatDst, cuMatDst) self.assertTrue(np.allclose(cuMatDst.download(),npMat1)) self.assertTrue(np.allclose(cv.cuda.pow(cuMat1, 2).download(), cv.pow(npMat1, 2))) cv.cuda.pow(cuMat1, 2, cuMatDst) self.assertTrue(np.allclose(cuMatDst.download(),cv.pow(npMat1, 2))) def test_logical(self): npMat1 = (np.random.random((128, 128)) * 255).astype(np.uint8) npMat2 = (np.random.random((128, 128)) * 255).astype(np.uint8) cuMat1 = cv.cuda_GpuMat() cuMat2 = cv.cuda_GpuMat() cuMat1.upload(npMat1) cuMat2.upload(npMat2) cuMatDst = cv.cuda_GpuMat(cuMat1.size(),cuMat1.type()) self.assertTrue(np.allclose(cv.cuda.bitwise_or(cuMat1, cuMat2).download(), cv.bitwise_or(npMat1, npMat2))) cv.cuda.bitwise_or(cuMat1, cuMat2, cuMatDst) self.assertTrue(np.allclose(cuMatDst.download(),cv.bitwise_or(npMat1, npMat2))) self.assertTrue(np.allclose(cv.cuda.bitwise_and(cuMat1, cuMat2).download(), cv.bitwise_and(npMat1, npMat2))) cv.cuda.bitwise_and(cuMat1, cuMat2, cuMatDst) self.assertTrue(np.allclose(cuMatDst.download(),cv.bitwise_and(npMat1, npMat2))) self.assertTrue(np.allclose(cv.cuda.bitwise_xor(cuMat1, cuMat2).download(), cv.bitwise_xor(npMat1, npMat2))) cv.cuda.bitwise_xor(cuMat1, cuMat2, cuMatDst) self.assertTrue(np.allclose(cuMatDst.download(),cv.bitwise_xor(npMat1, npMat2))) self.assertTrue(np.allclose(cv.cuda.bitwise_not(cuMat1).download(), cv.bitwise_not(npMat1))) cv.cuda.bitwise_not(cuMat1, cuMatDst) self.assertTrue(np.allclose(cuMatDst.download(),cv.bitwise_not(npMat1))) self.assertTrue(np.allclose(cv.cuda.min(cuMat1, cuMat2).download(), cv.min(npMat1, npMat2))) cv.cuda.min(cuMat1, cuMat2, cuMatDst) self.assertTrue(np.allclose(cuMatDst.download(),cv.min(npMat1, npMat2))) self.assertTrue(np.allclose(cv.cuda.max(cuMat1, cuMat2).download(), cv.max(npMat1, npMat2))) cv.cuda.max(cuMat1, cuMat2, cuMatDst) self.assertTrue(np.allclose(cuMatDst.download(),cv.max(npMat1, npMat2))) def test_convolution(self): npMat = (np.random.random((128, 128)) * 255).astype(np.float32) npDims = np.array(npMat.shape) kernel = (np.random.random((3, 3)) * 1).astype(np.float32) kernelDims = np.array(kernel.shape) iS = (kernelDims/2).astype(int) iE = npDims - kernelDims + iS cuMat = cv.cuda_GpuMat(npMat) cuKernel= cv.cuda_GpuMat(kernel) cuMatDst = cv.cuda_GpuMat(tuple(npDims - kernelDims + 1), cuMat.type()) conv = cv.cuda.createConvolution() self.assertTrue(np.allclose(conv.convolve(cuMat,cuKernel,ccorr=True).download(), cv.filter2D(npMat,-1,kernel,anchor=(-1,-1))[iS[0]:iE[0]+1,iS[1]:iE[1]+1])) conv.convolve(cuMat,cuKernel,cuMatDst,True) self.assertTrue(np.allclose(cuMatDst.download(), cv.filter2D(npMat,-1,kernel,anchor=(-1,-1))[iS[0]:iE[0]+1,iS[1]:iE[1]+1])) if __name__ == '__main__': NewOpenCVTests.bootstrap()
#!/usr/bin/env python import subprocess import os import sys basedir = os.path.dirname(sys.argv[0]) readme = os.path.join(basedir, "README.md") with open(readme) as f: inp = f.read() out = "" it = iter(inp.splitlines(True)) for line in it: out += line if line.startswith("```cmdoutput"): # Get command. cmd = next(it) assert cmd.startswith("$ "), cmd real_cmd = cmd[2:].strip() out += cmd print("Running: " + real_cmd) out += subprocess.check_output(real_cmd, shell=True) # Skip pre-existing command output. line = next(it) while not line.startswith("```"): line = next(it) out += line with open(readme, "w") as f: f.write(out)
import os import re from datetime import datetime from setuptools import find_packages, setup from op_builder.utils import get_cuda_bare_metal_version try: import torch from torch.utils.cpp_extension import CUDA_HOME, BuildExtension, CUDAExtension print("\n\ntorch.__version__ = {}\n\n".format(torch.__version__)) TORCH_MAJOR = int(torch.__version__.split('.')[0]) TORCH_MINOR = int(torch.__version__.split('.')[1]) if TORCH_MAJOR < 1 or (TORCH_MAJOR == 1 and TORCH_MINOR < 10): raise RuntimeError("Colossal-AI requires Pytorch 1.10 or newer.\n" "The latest stable release can be obtained from https://pytorch.org/") TORCH_AVAILABLE = True except ImportError: TORCH_AVAILABLE = False CUDA_HOME = None # ninja build does not work unless include_dirs are abs path this_dir = os.path.dirname(os.path.abspath(__file__)) build_cuda_ext = False ext_modules = [] is_nightly = int(os.environ.get('NIGHTLY', '0')) == 1 if int(os.environ.get('CUDA_EXT', '0')) == 1: if not TORCH_AVAILABLE: raise ModuleNotFoundError( "PyTorch is not found while CUDA_EXT=1. You need to install PyTorch first in order to build CUDA extensions" ) if not CUDA_HOME: raise RuntimeError( "CUDA_HOME is not found while CUDA_EXT=1. You need to export CUDA_HOME environment vairable or install CUDA Toolkit first in order to build CUDA extensions" ) build_cuda_ext = True def check_cuda_torch_binary_vs_bare_metal(cuda_dir): raw_output, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(cuda_dir) torch_binary_major = torch.version.cuda.split(".")[0] torch_binary_minor = torch.version.cuda.split(".")[1] print("\nCompiling cuda extensions with") print(raw_output + "from " + cuda_dir + "/bin\n") if bare_metal_major != torch_binary_major: print(f'The detected CUDA version ({raw_output}) mismatches the version that was used to compile PyTorch ' f'({torch.version.cuda}). CUDA extension will not be installed.') return False if bare_metal_minor != torch_binary_minor: print("\nWarning: Cuda extensions are being compiled with a version of Cuda that does " "not match the version used to compile Pytorch binaries. " f"Pytorch binaries were compiled with Cuda {torch.version.cuda}.\n" "In some cases, a minor-version mismatch will not cause later errors: " "https://github.com/NVIDIA/apex/pull/323#discussion_r287021798. ") return True def check_cuda_availability(cuda_dir): if not torch.cuda.is_available(): # https://github.com/NVIDIA/apex/issues/486 # Extension builds after https://github.com/pytorch/pytorch/pull/23408 attempt to query # torch.cuda.get_device_capability(), which will fail if you are compiling in an environment # without visible GPUs (e.g. during an nvidia-docker build command). print( '\nWarning: Torch did not find available GPUs on this system.\n', 'If your intention is to cross-compile, this is not an error.\n' 'By default, Colossal-AI will cross-compile for Pascal (compute capabilities 6.0, 6.1, 6.2),\n' 'Volta (compute capability 7.0), Turing (compute capability 7.5),\n' 'and, if the CUDA version is >= 11.0, Ampere (compute capability 8.0).\n' 'If you wish to cross-compile for a single specific architecture,\n' 'export TORCH_CUDA_ARCH_LIST="compute capability" before running setup.py.\n') if os.environ.get("TORCH_CUDA_ARCH_LIST", None) is None: _, bare_metal_major, _ = get_cuda_bare_metal_version(cuda_dir) if int(bare_metal_major) == 11: os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0" else: os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5" return False if cuda_dir is None: print("nvcc was not found. CUDA extension will not be installed. If you're installing within a container from " "https://hub.docker.com/r/pytorch/pytorch, only images whose names contain 'devel' will provide nvcc.") return False return True def append_nvcc_threads(nvcc_extra_args): _, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(CUDA_HOME) if int(bare_metal_major) >= 11 and int(bare_metal_minor) >= 2: return nvcc_extra_args + ["--threads", "4"] return nvcc_extra_args def fetch_requirements(path): with open(path, 'r') as fd: return [r.strip() for r in fd.readlines()] def fetch_readme(): with open('README.md', encoding='utf-8') as f: return f.read() def get_version(): setup_file_path = os.path.abspath(__file__) project_path = os.path.dirname(setup_file_path) version_txt_path = os.path.join(project_path, 'version.txt') version_py_path = os.path.join(project_path, 'colossalai/version.py') with open(version_txt_path) as f: version = f.read().strip() # write version into version.py with open(version_py_path, 'w') as f: f.write(f"__version__ = '{version}'\n") if build_cuda_ext: torch_version = '.'.join(torch.__version__.split('.')[:2]) cuda_version = '.'.join(get_cuda_bare_metal_version(CUDA_HOME)[1:]) else: torch_version = None cuda_version = None if torch_version: f.write(f'torch = "{torch_version}"\n') else: f.write('torch = None\n') if cuda_version: f.write(f'cuda = "{cuda_version}"\n') else: f.write('cuda = None\n') return version if build_cuda_ext: build_cuda_ext = check_cuda_availability(CUDA_HOME) and check_cuda_torch_binary_vs_bare_metal(CUDA_HOME) if build_cuda_ext: # Set up macros for forward/backward compatibility hack around # https://github.com/pytorch/pytorch/commit/4404762d7dd955383acee92e6f06b48144a0742e # and # https://github.com/NVIDIA/apex/issues/456 # https://github.com/pytorch/pytorch/commit/eb7b39e02f7d75c26d8a795ea8c7fd911334da7e#diff-4632522f237f1e4e728cb824300403ac from op_builder import ALL_OPS for name, builder_cls in ALL_OPS.items(): print(f'===== Building Extension {name} =====') ext_modules.append(builder_cls().builder()) # always put not nightly branch as the if branch # otherwise github will treat colossalai-nightly as the project name # and it will mess up with the dependency graph insights if not is_nightly: version = get_version() package_name = 'colossalai' else: # use date as the nightly version version = datetime.today().strftime('%Y.%m.%d') package_name = 'colossalai-nightly' setup(name=package_name, version=version, packages=find_packages(exclude=( 'benchmark', 'docker', 'tests', 'docs', 'examples', 'tests', 'scripts', 'requirements', '*.egg-info', )), description='An integrated large-scale model training system with efficient parallelization techniques', long_description=fetch_readme(), long_description_content_type='text/markdown', license='Apache Software License 2.0', url='https://www.colossalai.org', project_urls={ 'Forum': 'https://github.com/hpcaitech/ColossalAI/discussions', 'Bug Tracker': 'https://github.com/hpcaitech/ColossalAI/issues', 'Examples': 'https://github.com/hpcaitech/ColossalAI-Examples', 'Documentation': 'http://colossalai.readthedocs.io', 'Github': 'https://github.com/hpcaitech/ColossalAI', }, ext_modules=ext_modules, cmdclass={'build_ext': BuildExtension} if ext_modules else {}, install_requires=fetch_requirements('requirements/requirements.txt'), entry_points=''' [console_scripts] colossalai=colossalai.cli:cli ''', python_requires='>=3.6', classifiers=[ 'Programming Language :: Python :: 3', 'License :: OSI Approved :: Apache Software License', 'Environment :: GPU :: NVIDIA CUDA', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'Topic :: System :: Distributed Computing', ], package_data={ 'colossalai': [ '_C/*.pyi', 'kernel/cuda_native/csrc/*', 'kernel/cuda_native/csrc/kernel/*', 'kernel/cuda_native/csrc/kernels/include/*' ] })
import os from .builder import Builder from .utils import append_nvcc_threads class ScaledMaskedSoftmaxBuilder(Builder): NAME = "scaled_masked_softmax" PREBUILT_IMPORT_PATH = "colossalai._C.scaled_masked_softmax" def __init__(self): super().__init__(name=ScaledMaskedSoftmaxBuilder.NAME, prebuilt_import_path=ScaledMaskedSoftmaxBuilder.PREBUILT_IMPORT_PATH) # necessary 4 functions def sources_files(self): ret = [ self.csrc_abs_path(fname) for fname in ['scaled_masked_softmax.cpp', 'scaled_masked_softmax_cuda.cu'] ] return ret def include_dirs(self): return [ self.csrc_abs_path("kernels/include"), self.get_cuda_home_include() ] def cxx_flags(self): return ['-O3'] + self.version_dependent_macros def nvcc_flags(self): extra_cuda_flags = [ '-std=c++14', '-U__CUDA_NO_HALF_OPERATORS__', '-U__CUDA_NO_HALF_CONVERSIONS__', '-U__CUDA_NO_HALF2_OPERATORS__', '-DTHRUST_IGNORE_CUB_VERSION_CHECK' ] ret = ['-O3', '--use_fast_math'] + self.version_dependent_macros + extra_cuda_flags return append_nvcc_threads(ret)
import os from .builder import Builder from .utils import append_nvcc_threads, get_cuda_cc_flag class LayerNormBuilder(Builder): NAME = "layernorm" PREBUILT_IMPORT_PATH = "colossalai._C.layernorm" def __init__(self): super().__init__(name=LayerNormBuilder.NAME, prebuilt_import_path=LayerNormBuilder.PREBUILT_IMPORT_PATH) def sources_files(self): ret = [self.csrc_abs_path(fname) for fname in ['layer_norm_cuda.cpp', 'layer_norm_cuda_kernel.cu']] return ret def include_dirs(self): ret = [self.csrc_abs_path('kernels/include'), self.get_cuda_home_include()] return ret def cxx_flags(self): return ['-O3'] + self.version_dependent_macros def nvcc_flags(self): extra_cuda_flags = ['-maxrregcount=50'] extra_cuda_flags.extend(get_cuda_cc_flag()) ret = ['-O3', '--use_fast_math'] + extra_cuda_flags + self.version_dependent_macros return append_nvcc_threads(ret)
import os from .builder import Builder from .utils import get_cuda_cc_flag class FusedOptimBuilder(Builder): NAME = "fused_optim" PREBUILT_IMPORT_PATH = "colossalai._C.fused_optim" def __init__(self): super().__init__(name=FusedOptimBuilder.NAME, prebuilt_import_path=FusedOptimBuilder.PREBUILT_IMPORT_PATH) def sources_files(self): ret = [ self.csrc_abs_path(fname) for fname in [ 'colossal_C_frontend.cpp', 'multi_tensor_sgd_kernel.cu', 'multi_tensor_scale_kernel.cu', 'multi_tensor_adam.cu', 'multi_tensor_l2norm_kernel.cu', 'multi_tensor_lamb.cu' ] ] return ret def include_dirs(self): ret = [self.csrc_abs_path('kernels/include'), self.get_cuda_home_include()] return ret def cxx_flags(self): version_dependent_macros = ['-DVERSION_GE_1_1', '-DVERSION_GE_1_3', '-DVERSION_GE_1_5'] return ['-O3'] + version_dependent_macros def nvcc_flags(self): extra_cuda_flags = ['-lineinfo'] extra_cuda_flags.extend(get_cuda_cc_flag()) return ['-O3', '--use_fast_math'] + extra_cuda_flags
import os from .builder import Builder from .utils import append_nvcc_threads, get_cuda_cc_flag class MultiHeadAttnBuilder(Builder): NAME = "multihead_attention" PREBUILT_IMPORT_PATH = "colossalai._C.multihead_attention" def __init__(self): super().__init__(name=MultiHeadAttnBuilder.NAME, prebuilt_import_path=MultiHeadAttnBuilder.PREBUILT_IMPORT_PATH) def include_dirs(self): ret = [self.csrc_abs_path("kernels/include"), self.get_cuda_home_include()] return ret def sources_files(self): ret = [ self.csrc_abs_path(fname) for fname in [ 'multihead_attention_1d.cpp', 'kernels/cublas_wrappers.cu', 'kernels/transform_kernels.cu', 'kernels/dropout_kernels.cu', 'kernels/normalize_kernels.cu', 'kernels/softmax_kernels.cu', 'kernels/general_kernels.cu', 'kernels/cuda_util.cu' ] ] return ret def cxx_flags(self): return ['-O3'] + self.version_dependent_macros def nvcc_flags(self): extra_cuda_flags = [ '-std=c++14', '-U__CUDA_NO_HALF_OPERATORS__', '-U__CUDA_NO_HALF_CONVERSIONS__', '-U__CUDA_NO_HALF2_OPERATORS__', '-DTHRUST_IGNORE_CUB_VERSION_CHECK' ] extra_cuda_flags.extend(get_cuda_cc_flag()) ret = ['-O3', '--use_fast_math'] + self.version_dependent_macros + extra_cuda_flags return append_nvcc_threads(ret)
from .cpu_adam import CPUAdamBuilder from .fused_optim import FusedOptimBuilder from .layernorm import LayerNormBuilder from .moe import MOEBuilder from .multi_head_attn import MultiHeadAttnBuilder from .scaled_masked_softmax import ScaledMaskedSoftmaxBuilder from .scaled_upper_triangle_masked_softmax import ScaledUpperTrainglemaskedSoftmaxBuilder ALL_OPS = { 'cpu_adam': CPUAdamBuilder, 'fused_optim': FusedOptimBuilder, 'moe': MOEBuilder, 'multi_head_attn': MultiHeadAttnBuilder, 'scaled_masked_softmax': ScaledMaskedSoftmaxBuilder, 'scaled_upper_triangle_masked_softmax': ScaledUpperTrainglemaskedSoftmaxBuilder, 'layernorm': LayerNormBuilder, } __all__ = [ 'ALL_OPS', 'CPUAdamBuilder', 'FusedOptimBuilder', 'MultiHeadAttnBuilder', 'ScaledMaskedSoftmaxBuilder', 'ScaledUpperTrainglemaskedSoftmaxBuilder', 'MOEBuilder', 'MultiTensorSGDBuilder', 'MultiTensorAdamBuilder', 'MultiTensorLambBuilder', 'MultiTensorScaleBuilder', 'MultiTensorL2NormBuilder' ]
import importlib import os import time from abc import ABC, abstractmethod from pathlib import Path from typing import List def print_rank_0(message): """ Print on only one process to avoid spamming. """ try: import torch.distributed as dist if not dist.is_initialized(): is_main_rank = True else: is_main_rank = dist.get_rank() == 0 except ImportError: is_main_rank = True if is_main_rank: print(message) class Builder(ABC): """ Builder is the base class to build extensions for PyTorch. Args: name (str): the name of the kernel to be built prebuilt_import_path (str): the path where the extension is installed during pip install """ def __init__(self, name: str, prebuilt_import_path: str): self.name = name self.prebuilt_import_path = prebuilt_import_path self.version_dependent_macros = ['-DVERSION_GE_1_1', '-DVERSION_GE_1_3', '-DVERSION_GE_1_5'] assert prebuilt_import_path.startswith('colossalai._C'), \ f'The prebuilt_import_path should start with colossalai._C, but got {self.prebuilt_import_path}' def relative_to_abs_path(self, code_path: str) -> str: """ This function takes in a path relative to the colossalai root directory and return the absolute path. """ op_builder_module_path = Path(__file__).parent # if we install from source # the current file path will be op_builder/builder.py # if we install via pip install colossalai # the current file path will be colossalai/kernel/op_builder/builder.py # this is because that the op_builder inside colossalai is a symlink # this symlink will be replaced with actual files if we install via pypi # thus we cannot tell the colossalai root directory by checking whether the op_builder # is a symlink, we can only tell whether it is inside or outside colossalai if str(op_builder_module_path).endswith('colossalai/kernel/op_builder'): root_path = op_builder_module_path.parent.parent else: root_path = op_builder_module_path.parent.joinpath('colossalai') code_abs_path = root_path.joinpath(code_path) return str(code_abs_path) def get_cuda_home_include(self): """ return include path inside the cuda home. """ from torch.utils.cpp_extension import CUDA_HOME if CUDA_HOME is None: raise RuntimeError("CUDA_HOME is None, please set CUDA_HOME to compile C++/CUDA kernels in ColossalAI.") cuda_include = os.path.join(CUDA_HOME, "include") return cuda_include def csrc_abs_path(self, path): return os.path.join(self.relative_to_abs_path('kernel/cuda_native/csrc'), path) # functions must be overrided begin @abstractmethod def sources_files(self) -> List[str]: """ This function should return a list of source files for extensions. """ raise NotImplementedError @abstractmethod def include_dirs(self) -> List[str]: """ This function should return a list of inlcude files for extensions. """ pass @abstractmethod def cxx_flags(self) -> List[str]: """ This function should return a list of cxx compilation flags for extensions. """ pass @abstractmethod def nvcc_flags(self) -> List[str]: """ This function should return a list of nvcc compilation flags for extensions. """ pass # functions must be overrided over def strip_empty_entries(self, args): ''' Drop any empty strings from the list of compile and link flags ''' return [x for x in args if len(x) > 0] def import_op(self): """ This function will import the op module by its string name. """ return importlib.import_module(self.prebuilt_import_path) def load(self, verbose=True): """ load the kernel during runtime. If the kernel is not built during pip install, it will build the kernel. If the kernel is built during runtime, it will be stored in `~/.cache/colossalai/torch_extensions/`. If the kernel is built during pip install, it can be accessed through `colossalai._C`. Warning: do not load this kernel repeatedly during model execution as it could slow down the training process. Args: verbose (bool, optional): show detailed info. Defaults to True. """ from torch.utils.cpp_extension import load start_build = time.time() try: op_module = self.import_op() if verbose: print_rank_0(f"OP {self.prebuilt_import_path} already exists, skip building.") except ImportError: # construct the build directory import torch torch_version_major = torch.__version__.split('.')[0] torch_version_minor = torch.__version__.split('.')[1] torch_cuda_version = torch.version.cuda home_directory = os.path.expanduser('~') extension_directory = f".cache/colossalai/torch_extensions/torch{torch_version_major}.{torch_version_minor}_cu{torch_cuda_version}" build_directory = os.path.join(home_directory, extension_directory) Path(build_directory).mkdir(parents=True, exist_ok=True) if verbose: print_rank_0( "=========================================================================================") print_rank_0(f"No pre-built kernel is found, build and load the {self.name} kernel during runtime now") print_rank_0( "=========================================================================================") # load the kernel op_module = load(name=self.name, sources=self.strip_empty_entries(self.sources_files()), extra_include_paths=self.strip_empty_entries(self.include_dirs()), extra_cflags=self.cxx_flags(), extra_cuda_cflags=self.nvcc_flags(), extra_ldflags=[], build_directory=build_directory, verbose=verbose) build_duration = time.time() - start_build if verbose: print_rank_0(f"Time to load {self.name} op: {build_duration} seconds") return op_module def builder(self) -> 'CUDAExtension': """ get a CUDAExtension instance used for setup.py """ from torch.utils.cpp_extension import CUDAExtension return CUDAExtension(name=self.prebuilt_import_path, sources=self.strip_empty_entries(self.sources_files()), include_dirs=self.strip_empty_entries(self.include_dirs()), extra_compile_args={ 'cxx': self.strip_empty_entries(self.cxx_flags()), 'nvcc': self.strip_empty_entries(self.nvcc_flags()) })
import os from .builder import Builder from .utils import append_nvcc_threads class CPUAdamBuilder(Builder): NAME = "cpu_adam" PREBUILT_IMPORT_PATH = "colossalai._C.cpu_adam" def __init__(self): super().__init__(name=CPUAdamBuilder.NAME, prebuilt_import_path=CPUAdamBuilder.PREBUILT_IMPORT_PATH) self.version_dependent_macros = ['-DVERSION_GE_1_1', '-DVERSION_GE_1_3', '-DVERSION_GE_1_5'] # necessary 4 functions def sources_files(self): ret = [ self.csrc_abs_path('cpu_adam.cpp'), ] return ret def include_dirs(self): return [ self.csrc_abs_path("includes"), self.get_cuda_home_include() ] def cxx_flags(self): extra_cxx_flags = ['-std=c++14', '-lcudart', '-lcublas', '-g', '-Wno-reorder', '-fopenmp', '-march=native'] return ['-O3'] + self.version_dependent_macros + extra_cxx_flags def nvcc_flags(self): extra_cuda_flags = [ '-std=c++14', '-U__CUDA_NO_HALF_OPERATORS__', '-U__CUDA_NO_HALF_CONVERSIONS__', '-U__CUDA_NO_HALF2_OPERATORS__', '-DTHRUST_IGNORE_CUB_VERSION_CHECK' ] ret = ['-O3', '--use_fast_math'] + self.version_dependent_macros + extra_cuda_flags return append_nvcc_threads(ret)
import re import subprocess from typing import List def get_cuda_bare_metal_version(cuda_dir): raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True) output = raw_output.split() release_idx = output.index("release") + 1 release = output[release_idx].split(".") bare_metal_major = release[0] bare_metal_minor = release[1][0] return raw_output, bare_metal_major, bare_metal_minor def get_cuda_cc_flag() -> List: """get_cuda_cc_flag cc flag for your GPU arch """ # only import torch when needed # this is to avoid importing torch when building on a machine without torch pre-installed # one case is to build wheel for pypi release import torch cc_flag = [] for arch in torch.cuda.get_arch_list(): res = re.search(r'sm_(\d+)', arch) if res: arch_cap = res[1] if int(arch_cap) >= 60: cc_flag.extend(['-gencode', f'arch=compute_{arch_cap},code={arch}']) return cc_flag def append_nvcc_threads(nvcc_extra_args): from torch.utils.cpp_extension import CUDA_HOME _, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(CUDA_HOME) if int(bare_metal_major) >= 11 and int(bare_metal_minor) >= 2: return nvcc_extra_args + ["--threads", "4"] return nvcc_extra_args
import os from .builder import Builder from .utils import append_nvcc_threads, get_cuda_cc_flag class ScaledUpperTrainglemaskedSoftmaxBuilder(Builder): NAME = "scaled_upper_triangle_masked_softmax" PREBUILT_IMPORT_PATH = "colossalai._C.scaled_upper_triangle_masked_softmax" def __init__(self): super().__init__(name=ScaledUpperTrainglemaskedSoftmaxBuilder.NAME, prebuilt_import_path=ScaledUpperTrainglemaskedSoftmaxBuilder.PREBUILT_IMPORT_PATH) def include_dirs(self): return [ self.csrc_abs_path("kernels/include"), self.get_cuda_home_include() ] def sources_files(self): ret = [ self.csrc_abs_path(fname) for fname in ['scaled_upper_triang_masked_softmax.cpp', 'scaled_upper_triang_masked_softmax_cuda.cu'] ] return ret def cxx_flags(self): return ['-O3'] + self.version_dependent_macros def nvcc_flags(self): extra_cuda_flags = [ '-U__CUDA_NO_HALF_OPERATORS__', '-U__CUDA_NO_HALF_CONVERSIONS__', '--expt-relaxed-constexpr', '--expt-extended-lambda' ] extra_cuda_flags.extend(get_cuda_cc_flag()) ret = ['-O3', '--use_fast_math'] + extra_cuda_flags return append_nvcc_threads(ret)
import os from .builder import Builder from .utils import append_nvcc_threads, get_cuda_cc_flag class MOEBuilder(Builder): NAME = "moe" PREBUILT_IMPORT_PATH = "colossalai._C.moe" def __init__(self): super().__init__(name=MOEBuilder.NAME, prebuilt_import_path=MOEBuilder.PREBUILT_IMPORT_PATH) def include_dirs(self): ret = [ self.csrc_abs_path("kernels/include"), self.get_cuda_home_include() ] return ret def sources_files(self): ret = [self.csrc_abs_path(fname) for fname in ['moe_cuda.cpp', 'moe_cuda_kernel.cu']] return ret def cxx_flags(self): return ['-O3'] + self.version_dependent_macros def nvcc_flags(self): extra_cuda_flags = [ '-U__CUDA_NO_HALF_OPERATORS__', '-U__CUDA_NO_HALF_CONVERSIONS__', '--expt-relaxed-constexpr', '--expt-extended-lambda' ] extra_cuda_flags.extend(get_cuda_cc_flag()) ret = ['-O3', '--use_fast_math'] + extra_cuda_flags return append_nvcc_threads(ret)
#!/usr/bin/env python # -*- encoding: utf-8 -*- from functools import partial from pathlib import Path import pytest import torch import torch.multiprocessing as mp from colossalai import launch from colossalai.context.parallel_mode import ParallelMode from colossalai.core import global_context as gpc from colossalai.utils import free_port from colossalai.context import reset_seeds from colossalai.global_variables import tensor_parallel_env as tp_env from colossalai.testing import rerun_if_address_is_in_use CONFIG_PATH_LIST = list(Path(__file__).parent.glob('configs/*.py')) def check_data_parallel_rank(rank): global_world_size = gpc.get_world_size(ParallelMode.GLOBAL) mp_size = gpc.get_world_size(ParallelMode.MODEL) num_dp_groups = global_world_size // mp_size dp_local_rank = gpc.get_local_rank(ParallelMode.DATA) assert gpc.get_world_size(ParallelMode.DATA) == num_dp_groups for group_idx in range(num_dp_groups): ranks_in_dp_group = range(group_idx * mp_size, (group_idx + 1) * mp_size) if rank in ranks_in_dp_group: assert dp_local_rank == group_idx def check_pipeline_parallel_rank(rank): mp_world_size = gpc.get_world_size(ParallelMode.MODEL) tp_world_size = gpc.get_world_size(ParallelMode.TENSOR) num_pipeline_stage = mp_world_size // tp_world_size pipeline_local_rank = gpc.get_local_rank(ParallelMode.PIPELINE) for stage_idx in range(num_pipeline_stage): ranks_in_current_stage = range(stage_idx * tp_world_size, (stage_idx + 1) * tp_world_size) if rank in ranks_in_current_stage: assert stage_idx == pipeline_local_rank def check_model_parallel_rank(rank): mp_size = gpc.get_world_size(ParallelMode.MODEL) rank_within_mp_group = rank % mp_size mp_local_rank = gpc.get_local_rank(ParallelMode.MODEL) assert rank_within_mp_group == mp_local_rank def check_tensor_parallel_rank(rank): if tp_env.mode == '2d': check_2d_tensor_parallel_rank(rank) elif tp_env == '2.5d': check_2p5d_tensor_parallel_rank(rank) elif tp_env == '3d': check_3d_tensor_parallel_rank(rank) def get_tp_info(): global_world_size = gpc.get_world_size(ParallelMode.GLOBAL) tp_world_size = gpc.get_world_size(ParallelMode.TENSOR) num_tp_groups = global_world_size // tp_world_size tp_local_rank = gpc.get_local_rank(ParallelMode.TENSOR) return tp_local_rank, tp_world_size, num_tp_groups def check_2d_tensor_parallel_rank(rank): tp_local_rank, tp_world_size, num_tp_groups = get_tp_info() for group_id in range(num_tp_groups): ranks_in_current_tp_group = range(group_id * tp_world_size, (group_id + 1) * tp_world_size) if rank in ranks_in_current_tp_group: col_local_rank = gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL) row_local_rank = gpc.get_local_rank(ParallelMode.PARALLEL_2D_ROW) assert col_local_rank == tp_local_rank // tp_env.summa_dim assert row_local_rank == tp_local_rank % tp_env.summa_dim def check_2p5d_tensor_parallel_rank(rank): tp_local_rank, tp_world_size, num_tp_groups = get_tp_info() for group_id in range(num_tp_groups): ranks_in_current_tp_group = range(group_id * tp_world_size, (group_id + 1) * tp_world_size) if rank in ranks_in_current_tp_group: rp_rank = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_ROW) cp_rank = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_COL) dp_rank = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_DEP) xp_rank = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_XZ) assert rp_rank == tp_local_rank % tp_env.summa_dim assert cp_rank == tp_local_rank // tp_env.tesseract_dim assert dp_rank == tp_local_rank // (tp_env.summa_dim**2) assert xp_rank == tp_local_rank // tp_env.summa_dim def check_3d_tensor_parallel_rank(rank): tp_local_rank, tp_world_size, num_tp_groups = get_tp_info() for group_id in range(num_tp_groups): ranks_in_current_tp_group = range(group_id * tp_world_size, (group_id + 1) * tp_world_size) if rank in ranks_in_current_tp_group: ip_rank = gpc.get_local_rank(ParallelMode.PARALLEL_3D_INPUT) wp_rank = gpc.get_local_rank(ParallelMode.PARALLEL_3D_WEIGHT) op_rank = gpc.get_local_rank(ParallelMode.PARALLEL_3D_OUTPUT) assert ip_rank == tp_local_rank % tp_env.depth_3d assert wp_rank == tp_local_rank // tp_env.depth_3d assert op_rank == tp_local_rank // (tp_env.depth_3d**2) def init_context(config_path, rank, world_size, backend, port, host): dist_args = dict(config=config_path, rank=rank, world_size=world_size, backend=backend, port=port, host=host, verbose=True) launch(**dist_args) check_tensor_parallel_rank(rank) check_data_parallel_rank(rank) check_pipeline_parallel_rank(rank) check_model_parallel_rank(rank) gpc.destroy() torch.cuda.empty_cache() def run_dist(rank, world_size, backend, port_list, host): for config_path, port in zip(CONFIG_PATH_LIST, port_list): init_context(config_path=config_path, rank=rank, world_size=world_size, backend=backend, port=port, host=host) reset_seeds() @pytest.mark.cpu @rerun_if_address_is_in_use() def test_context(): """ As no computation or communication is done, we can run this test on CPU. """ world_size = 32 port_list = [] for _ in range(len(CONFIG_PATH_LIST)): while True: port = free_port() if port not in port_list: port_list.append(port) break test_fn = partial(run_dist, world_size=world_size, backend='gloo', port_list=port_list, host='localhost') mp.spawn(test_fn, nprocs=world_size) if __name__ == '__main__': test_context()
#!/usr/bin/env python # -*- encoding: utf-8 -*- parallel = dict( pipeline=dict(size=2), tensor=dict( size=4, mode='2d' ) )
#!/usr/bin/env python # -*- encoding: utf-8 -*- parallel = dict( pipeline=dict(size=2), tensor=dict( size=8, mode='3d' ) )
#!/usr/bin/env python # -*- encoding: utf-8 -*- parallel = dict( pipeline=dict(size=2), tensor=dict( size=8, depth=2, mode='2.5d' ) )
#!/usr/bin/env python # -*- encoding: utf-8 -*- from functools import partial import colossalai import pytest import torch import torch.distributed as dist import torch.multiprocessing as mp from colossalai.context.parallel_mode import ParallelMode from colossalai.core import global_context as gpc from colossalai.testing import rerun_if_address_is_in_use from colossalai.utils import free_port from colossalai.zero.init_ctx import ZeroInitContext from colossalai.zero.shard_utils import TensorShardStrategy from torchvision.models import resnet50 def run_dist(rank, world_size, port): # this test only runs on resnet18 # as this model has sync batch normalization # need to configure cudnn deterministic so that # randomness of convolution layers will be disabled zero_config = dict(model_config=dict(shard_strategy=TensorShardStrategy())) colossalai.launch(config=dict(zero=zero_config, cudnn_determinstic=True, cudnn_benchmark=False), rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') with ZeroInitContext(target_device=torch.cuda.current_device(), shard_strategy=gpc.config.zero.model_config.shard_strategy, shard_param=True): model = resnet50() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) criterion = torch.nn.CrossEntropyLoss() engine, *args = colossalai.initialize(model, optimizer, criterion) # train for dummy iterations engine.train() for _ in range(2): data = torch.rand(4, 3, 128, 128).cuda().half() label = torch.randint(0, 10, size=(4,)).cuda() engine.zero_grad() out = engine(data) loss = engine.criterion(out, label) engine.backward(loss) engine.step() # test # need to make sure the batch norm stats are synchronized # so that given the same input, the model will produce the same # output on different ranks engine.eval() data = torch.rand(4, 3, 128, 128).cuda().half() dist.broadcast(data, src=0, group=gpc.get_group(ParallelMode.DATA)) # predict out = engine(data) # test if results are equal tensor_list = [torch.empty_like(out) for _ in range(world_size - 1)] tensor_list.insert(rank, out) dist.all_gather(tensor_list=tensor_list, tensor=out, group=gpc.get_group(ParallelMode.DATA)) assert torch.all(tensor_list[0] == tensor_list[1]), \ 'expected the output from different ranks to be the same, but got different values' @pytest.mark.dist @rerun_if_address_is_in_use() def test_sharded_optim_with_sync_bn(): """ This test is to make sure that buffers are synchronized between ranks when using ZeRO. An example of module buffer is the running stats of BatchNormalization layer, i.e. mean and var. If the buffers are not synchronized, the model will produce different output even though the input and parameters are the same. This is not wanted if we are doing predictions. """ world_size = 2 run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_sharded_optim_with_sync_bn()
from functools import partial import colossalai from colossalai.utils.cuda import get_current_device import pytest import torch import torch.multiprocessing as mp from colossalai.nn.optimizer import HybridAdam from colossalai.testing import parameterize, rerun_if_address_is_in_use from colossalai.utils import free_port from colossalai.zero.init_ctx import ZeroInitContext from colossalai.zero.shard_utils import BucketTensorShardStrategy from colossalai.zero.sharded_model import ShardedModelV2 from colossalai.zero.sharded_optim import ShardedOptimizerV2 from colossalai.zero.sharded_optim._utils import has_inf_or_nan from tests.components_to_test.registry import non_distributed_component_funcs from tests.test_zero.test_sharded_optim_v2 import _run_step from common import CONFIG @parameterize("cpu_offload", [True, False]) @parameterize("shard_strategy_class", [BucketTensorShardStrategy]) @parameterize("gpu_margin_mem_ratio", [0.0, 0.7]) def _run_test_found_inf(cpu_offload, shard_strategy_class, gpu_margin_mem_ratio): test_models = ['repeated_computed_layers'] shard_strategy = shard_strategy_class() for model_name in test_models: get_components_func = non_distributed_component_funcs.get_callable(model_name) model_builder, train_dataloader, _, optimizer_class, criterion = get_components_func() with ZeroInitContext(target_device=torch.device(f'cpu:0') if cpu_offload else get_current_device(), shard_strategy=shard_strategy, shard_param=True): zero_model = model_builder(checkpoint=True) zero_model = ShardedModelV2( zero_model, shard_strategy, tensor_placement_policy='cpu' if cpu_offload else 'cuda', reuse_fp16_shard=True, ) sharded_optim = HybridAdam(zero_model.parameters(), lr=1e-3) sharded_optim = ShardedOptimizerV2(zero_model, sharded_optim, gpu_margin_mem_ratio=gpu_margin_mem_ratio) for i, (data, label) in enumerate(train_dataloader): if i > 1: break assert zero_model.overflow_counter == 0 data, label = data.cuda(), label.cuda() _run_step(zero_model, sharded_optim, data, label, criterion, False) for param in zero_model.parameters(): assert not has_inf_or_nan(param.colo_attr.data_payload) def _run_dist(rank, world_size, port): colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') _run_test_found_inf() # use_cpuadam = True can be used with cpu_offload = False @pytest.mark.dist @pytest.mark.parametrize("world_size", [1, 2]) @rerun_if_address_is_in_use() def test_found_inf(world_size): run_func = partial(_run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_found_inf(world_size=2)
import pytest import colossalai from colossalai.utils.cuda import get_current_device from colossalai.gemini.tensor_utils import (colo_tensor_mem_usage, colo_model_data_tensor_move, colo_model_data_tensor_move_inline, colo_model_data_move_to_cpu, colo_model_tensor_clone) from colossalai.gemini.stateful_tensor import StatefulTensor from colossalai.utils import free_port from colossalai.testing import rerun_if_address_is_in_use import torch from functools import partial import torch.multiprocessing as mp def _run_colo_tensor_mem_usage(): for i in range(1): if i == 1: t1 = StatefulTensor(torch.randn(2, 2)) t2 = StatefulTensor(torch.randn(4, 4)) c1, g1 = colo_tensor_mem_usage(t1) c2, g2 = colo_tensor_mem_usage(t2) assert c1 * 4 == c2 assert g1 * 4 == g2 else: t1 = torch.randn(2, 2) t2 = torch.randn(4, 4) c1, g1 = colo_tensor_mem_usage(t1) c2, g2 = colo_tensor_mem_usage(t2) assert c1 * 4 == c2 assert g1 * 4 == g2 def _run_colo_model_data_tensor_move_inline(): for t in [StatefulTensor(torch.randn(2, 3)), torch.randn(2, 3)]: colo_model_data_tensor_move_inline(t, get_current_device()) assert t.device == get_current_device() def _run_colo_model_data_tensor_move(): for t in [(StatefulTensor(torch.ones(2, 3)), StatefulTensor(torch.zeros(2, 3).to(get_current_device()))), (torch.ones(2, 3), torch.zeros(2, 3).to(get_current_device()))]: cpu_t, cuda_t = t colo_model_data_tensor_move(cpu_t, cuda_t) assert cuda_t.device == get_current_device() def _run_colo_model_data_move_to_cpu(): for t in [StatefulTensor(torch.randn(2, 2)), torch.randn(4, 4)]: colo_model_data_move_to_cpu(t) assert t.device == torch.device("cpu") def _run_colo_model_tensor_clone(): for t in [ StatefulTensor(torch.randn(2, 2).cuda(torch.cuda.current_device())), torch.randn(4, 4).cuda(torch.cuda.current_device()) ]: if issubclass(type(t), StatefulTensor): assert t.payload.device == get_current_device() else: assert t.device == get_current_device() p = colo_model_tensor_clone(t, get_current_device()) assert p.device == get_current_device() for i in range(2): for j in range(2): if issubclass(type(t), StatefulTensor): assert t.payload.device == p.device assert t.payload[i][j] == p[i][j] else: assert t.device == p.device assert t[i][j] == p[i][j] def run_dist(rank, world_size, port): colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') _run_colo_tensor_mem_usage() _run_colo_model_data_tensor_move_inline() _run_colo_model_data_tensor_move() _run_colo_model_data_move_to_cpu() _run_colo_model_tensor_clone() @pytest.mark.dist @pytest.mark.parametrize("world_size", [2, 4]) @rerun_if_address_is_in_use() def test_zero_tensor_utils(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_zero_tensor_utils(world_size=2)
from copy import deepcopy from functools import partial import colossalai import pytest import torch import torch.multiprocessing as mp from colossalai.testing import parameterize, rerun_if_address_is_in_use from colossalai.utils import free_port from colossalai.zero.shard_utils import (BucketTensorShardStrategy, TensorShardStrategy) from colossalai.zero.sharded_param import ShardedTensor from colossalai.zero.sharded_param.sharded_param import ShardedParamV2 from tests.test_zero.common import CONFIG, allclose from colossalai.gemini.stateful_tensor import StatefulTensor @parameterize("shard_strategy_class", [TensorShardStrategy, BucketTensorShardStrategy]) def run_shard_tensor_with_strategy(shard_strategy_class, world_size): t = ShardedTensor(tensor=torch.randn(world_size * 2, 3)) assert list(t.origin_shape) == [world_size * 2, 3] assert list(t.shape) == [world_size * 2, 3] shard_strategy = shard_strategy_class() # test shard strategy shard_strategy.shard([t]) assert list(t.shape) == [6], f"{list(t.shape)} vs 6" shard_strategy.gather([t]) assert list(t.shape) == [world_size * 2, 3], f"{list(t.shape)} vs {[world_size * 2, 3]}" def _run_shard_tensor(rank, world_size, port): colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') run_shard_tensor_with_strategy(world_size=world_size) @pytest.mark.dist @pytest.mark.parametrize("world_size", [1, 2]) @rerun_if_address_is_in_use() def test_shard_tensor(world_size): run_func = partial(_run_shard_tensor, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) def _run_shard_param_v2(rank, world_size, port): colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') param = torch.nn.Parameter(torch.randn(2, 3)) param_ref = deepcopy(param) sparam = ShardedParamV2(param=param) allclose(sparam.data_payload, param_ref.data) # Test get memory usage sparam.saved_grad = StatefulTensor(torch.randn(2, 3)) cuda_mem_use, cpu_mem_use = sparam.get_memory_usage() assert cpu_mem_use == 2 * 3 * 4 * 2, f"cpu_mem_use: {cpu_mem_use}" sparam.set_data_none() assert (param.data.numel() == 0) cuda_mem_use, cpu_mem_use = sparam.get_memory_usage() # 4 is size of dummy tensor of param.data assert cpu_mem_use == 2 * 3 * 4 * 2 sparam.saved_grad = StatefulTensor(torch.randn(2, 3)) sparam.set_data_none() cuda_mem_use, cpu_mem_use = sparam.get_memory_usage() assert cpu_mem_use == 2 * 3 * 4 * 2 assert cuda_mem_use == 0 # append a grad to torch param param.data = sparam.data_payload param.grad = torch.randn(2, 3) cuda_mem_use, cpu_mem_use = sparam.get_memory_usage() assert cpu_mem_use == 2 * 3 * 4 * 2 + 2 * 3 * 4, f"cpu_mem_use {cpu_mem_use}" assert cuda_mem_use == 0 # reuse torch grad for sparam sparam.saved_grad = StatefulTensor(param.grad) cuda_mem_use, cpu_mem_use = sparam.get_memory_usage() assert cpu_mem_use == 2 * 3 * 4 * 2 assert cuda_mem_use == 0 @pytest.mark.dist @pytest.mark.parametrize("world_size", [1, 2]) @rerun_if_address_is_in_use() def test_shard_param_v2(world_size): run_func = partial(_run_shard_param_v2, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': # test_shard_tensor(2) test_shard_param_v2(2)
import pytest import colossalai import torch import torch.multiprocessing as mp from colossalai.testing import rerun_if_address_is_in_use from colossalai.utils.cuda import get_current_device from colossalai.utils import free_port from functools import partial from tests.test_tensor.common_utils import set_seed from tests.components_to_test.registry import non_distributed_component_funcs from colossalai.testing import parameterize from colossalai.nn.optimizer import HybridAdam from colossalai.zero.init_ctx import ZeroInitContext from colossalai.zero.shard_utils import TensorShardStrategy from colossalai.zero.sharded_model import ShardedModelV2 from colossalai.zero.sharded_optim import ShardedOptimizerV2 from colossalai.tensor import ProcessGroup def init_zero(model_builder, placement_policy): device = get_current_device() if placement_policy == 'cuda' else torch.device('cpu') shard_strategy = TensorShardStrategy() with ZeroInitContext(target_device=device, shard_strategy=shard_strategy, shard_param=True): model = model_builder() model = ShardedModelV2( model, shard_strategy, tensor_placement_policy=placement_policy, reuse_fp16_shard=True, ) optim = HybridAdam(model.parameters(), lr=1e-3) optim = ShardedOptimizerV2(model, optim, initial_scale=32) return model, optim def run_step(model, optim, criterion, data, label): optim.zero_grad() logits = model(data) loss = criterion(logits, label) optim.backward(loss) optim.step() def check_state_dict_eq(state_dict, other): for p, state in state_dict['state'].items(): other_state = other['state'][p] for k, v in state.items(): if isinstance(v, torch.Tensor): assert torch.allclose(v, other_state[k], atol=1e-3), f'{v} vs {other_state[k]}' else: assert v == other_state[k] @parameterize('placement_policy', ['cuda', 'cpu']) def run_nested_model(placement_policy): get_components_func = non_distributed_component_funcs.get_callable('simple_net') model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() set_seed(42) model, optim = init_zero(model_builder, placement_policy) set_seed(42) model_copy, optim_copy = init_zero(model_builder, placement_policy) model.train() model_copy.train() pg = ProcessGroup() set_seed(pg.dp_local_rank()) data_iter = iter(train_dataloader) data, label = map(lambda x: x.cuda(), next(data_iter)) run_step(model, optim, criterion, data, label) optim_copy.load_state_dict(optim.state_dict()) check_state_dict_eq(optim.state_dict(), optim_copy.state_dict()) data, label = map(lambda x: x.cuda(), next(data_iter)) run_step(model_copy, optim_copy, criterion, data, label) def run_dist(rank, world_size, port): colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') run_nested_model() @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 2]) @rerun_if_address_is_in_use() def test_sharded_optim_state_dist(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_sharded_optim_state_dist(2)
from functools import partial import pytest import torch import torch.distributed as dist import torch.multiprocessing as mp from common import CONFIG, check_sharded_model_params from torch.nn.parallel import DistributedDataParallel as DDP import colossalai from colossalai.amp import convert_to_apex_amp from colossalai.nn.optimizer import CPUAdam from colossalai.testing import parameterize, rerun_if_address_is_in_use from colossalai.utils import free_port from colossalai.utils.cuda import get_current_device from colossalai.zero.init_ctx import ZeroInitContext from colossalai.zero.shard_utils import BucketTensorShardStrategy, TensorShardStrategy from colossalai.zero.sharded_model import ShardedModelV2 from colossalai.zero.sharded_model.utils import col_model_deepcopy from colossalai.zero.sharded_optim import ShardedOptimizerV2 from colossalai.zero.sharded_optim._utils import has_inf_or_nan from tests.components_to_test.registry import non_distributed_component_funcs def _run_step(model, optimizer, data, label, criterion, enable_autocast=False): model.train() optimizer.zero_grad() with torch.cuda.amp.autocast(enabled=enable_autocast): if criterion: y = model(data) loss = criterion(y, label) else: loss = model(data, label) loss = loss.float() if isinstance(model, ShardedModelV2): optimizer.backward(loss) else: loss.backward() optimizer.step() @parameterize("cpu_offload", [True, False]) @parameterize("use_cpuadam", [True, False]) @parameterize("shard_strategy_class", [TensorShardStrategy, BucketTensorShardStrategy]) @parameterize("gpu_margin_mem_ratio", [0.0, 0.7]) def _run_test_sharded_optim_v2(cpu_offload, shard_strategy_class, use_cpuadam, gpu_margin_mem_ratio): test_models = ['repeated_computed_layers', 'resnet18', 'bert', 'hanging_param_model'] shard_strategy = shard_strategy_class() if use_cpuadam and cpu_offload is False: return if gpu_margin_mem_ratio > 0.0 and not (cpu_offload and use_cpuadam): return for model_name in test_models: get_components_func = non_distributed_component_funcs.get_callable(model_name) model_builder, train_dataloader, _, optimizer_class, criterion = get_components_func() with ZeroInitContext(target_device=torch.device(f'cpu:0') if cpu_offload else get_current_device(), shard_strategy=shard_strategy, shard_param=True): zero_model = model_builder(checkpoint=True) zero_model = ShardedModelV2( zero_model, shard_strategy, tensor_placement_policy='cpu' if cpu_offload else 'auto', reuse_fp16_shard=use_cpuadam, ) model = model_builder(checkpoint=True).half() col_model_deepcopy(zero_model, model) model = model.cuda().float() if use_cpuadam: optimizer_class = CPUAdam optim = optimizer_class(model.parameters(), lr=1e-3) sharded_optim = optimizer_class(zero_model.parameters(), lr=1e-3) sharded_optim = ShardedOptimizerV2(zero_model, sharded_optim, initial_scale=2**5, gpu_margin_mem_ratio=gpu_margin_mem_ratio) amp_config = dict(opt_level='O2', keep_batchnorm_fp32=False) apex_model, apex_optimizer = convert_to_apex_amp(model, optim, amp_config) if dist.get_world_size() > 1: apex_model = DDP(apex_model, device_ids=[torch.cuda.current_device()]) for i, (data, label) in enumerate(train_dataloader): if i > 5: break data, label = data.cuda(), label.cuda() _run_step(apex_model, apex_optimizer, data, label, criterion, False) _run_step(zero_model, sharded_optim, data, label, criterion, False) check_sharded_model_params(model, zero_model, loose=True, reuse_fp16_shard=use_cpuadam) for param in model.parameters(): assert not has_inf_or_nan(param) def _run_dist(rank, world_size, port): colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') _run_test_sharded_optim_v2() # use_cpuadam = True can be used with cpu_offload = False @pytest.mark.dist @pytest.mark.parametrize("world_size", [1, 2]) @rerun_if_address_is_in_use() def test_sharded_optim_v2(world_size): run_func = partial(_run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_sharded_optim_v2(world_size=2)
#!/usr/bin/env python # -*- encoding: utf-8 -*- from functools import partial import colossalai import pytest import torch import torch.distributed as dist import torch.multiprocessing as mp from colossalai.core import global_context as gpc from colossalai.testing import rerun_if_address_is_in_use from colossalai.utils import free_port from colossalai.zero.init_ctx import ZeroInitContext from colossalai.zero.sharded_model.utils import col_model_deepcopy from colossalai.zero.sharded_optim._utils import has_inf_or_nan from tests.components_to_test.registry import non_distributed_component_funcs from torch.nn.parallel import DistributedDataParallel as DDP from common import (MP_PARALLEL_CONFIG, ZERO_PARALLEL_CONFIG, check_params, check_sharded_model_params) def run_dist(rank, world_size, port, parallel_config): colossalai.launch(config=parallel_config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') test_models = ['repeated_computed_layers', 'resnet18', 'bert'] for model_name in test_models: get_components_func = non_distributed_component_funcs.get_callable(model_name) model_builder, train_dataloader, _, optimizer_class, criterion = get_components_func() with ZeroInitContext(target_device=torch.cuda.current_device(), shard_strategy=gpc.config.zero.model_config.shard_strategy, shard_param=True): colo_model = model_builder(checkpoint=True) colo_optimizer = optimizer_class(colo_model.parameters(), lr=1e-3) engine, train_dataloader, _, _ = colossalai.initialize(colo_model, optimizer=colo_optimizer, criterion=criterion, train_dataloader=train_dataloader) torch_model = model_builder(checkpoint=True).half() col_model_deepcopy(engine.model, torch_model) torch_model = torch_model.cuda().float() engine.train() torch_optimizer = optimizer_class(torch_model.parameters(), lr=1e-3) if dist.get_world_size() > 1: torch_model = DDP(torch_model, device_ids=[torch.cuda.current_device()]) i = 0 for data, label in train_dataloader: if i > 4: break data, label = data.cuda(), label.cuda() engine.zero_grad() torch_optimizer.zero_grad() if criterion: output = engine(data) loss = engine.criterion(output, label) torch_output = torch_model(data) torch_loss = engine.criterion(torch_output, label) else: loss = engine(data, label) torch_loss = torch_model(data, label) engine.backward(loss) engine.step() torch_loss.backward() for param in torch_model.parameters(): if param.grad is not None: assert not has_inf_or_nan(param.grad) torch_optimizer.step() i += 1 if parallel_config == MP_PARALLEL_CONFIG: check_params(torch_model, colo_model, loose=True) elif parallel_config == ZERO_PARALLEL_CONFIG: check_sharded_model_params(torch_model, colo_model, loose=True) # FIXME: enable this test in next PR @pytest.mark.skip @pytest.mark.dist @pytest.mark.parametrize("world_size", [2, 4]) @rerun_if_address_is_in_use() def test_mp_engine(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port(), parallel_config=MP_PARALLEL_CONFIG) mp.spawn(run_func, nprocs=world_size) @pytest.mark.dist @pytest.mark.parametrize("world_size", [1, 2]) @rerun_if_address_is_in_use() def test_zero_engine(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port(), parallel_config=ZERO_PARALLEL_CONFIG) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_zero_engine(world_size=4)
from functools import partial import torch import torch.distributed as dist from colossalai.logging import get_dist_logger from colossalai.utils import checkpoint from colossalai.zero.shard_utils import TensorShardStrategy from colossalai.zero.sharded_model import ShardedModelV2 LOGGER = get_dist_logger('zero_test') MP_PARALLEL_CONFIG = dict(fp16=dict(mode=None,), parallel=dict(pipeline=dict(size=1), tensor=dict(size=2, mode=None))) _ZERO_MODEL_CONFIG = dict(reduce_scatter_bucket_size_mb=25, fp32_reduce_scatter=False, tensor_placement_policy='cuda', gradient_predivide_factor=1.0, shard_strategy=TensorShardStrategy(), reuse_fp16_shard=False) _ZERO_OPTIMIZER_CONFIG = dict(initial_scale=2**5, min_scale=1, growth_factor=2, backoff_factor=0.5, growth_interval=1000, hysteresis=2, max_scale=2**32) ZERO_PARALLEL_CONFIG = dict(fp16=dict(mode=None,), zero=dict( model_config=_ZERO_MODEL_CONFIG, optimizer_config=_ZERO_OPTIMIZER_CONFIG, ), parallel=dict(pipeline=dict(size=1), tensor=dict(size=1, mode=None))) CONFIG = dict(fp16=dict(mode=None,), zero=dict(level=3, verbose=False, offload_optimizer_config=dict(device='cpu', pin_memory=True, buffer_count=5, fast_init=False), offload_param_config=dict(device='cpu', pin_memory=True, buffer_count=5, buffer_size=1e8, max_in_cpu=1e9)), parallel=dict(pipeline=dict(size=1), tensor=dict(size=1, mode=None))) def run_fwd_bwd(model, data, label, criterion, enable_autocast=False): model.train() with torch.cuda.amp.autocast(enabled=enable_autocast): if criterion: y = model(data) loss = criterion(y, label) else: loss = model(data, label) loss = loss.float() if isinstance(model, ShardedModelV2): model.backward(loss) else: loss.backward() def checkpoint_wrapper(module, enable=True): if enable: module.forward = partial(checkpoint, module.forward) return module def allclose(tensor_a: torch.Tensor, tensor_b: torch.Tensor, loose=False) -> bool: if loose: return torch.allclose(tensor_a, tensor_b, atol=1e-2, rtol=1e-3) return torch.allclose(tensor_a, tensor_b) def check_grads(model, zero_model, loose=False): for p, zero_p in zip(model.parameters(), zero_model.parameters()): zero_grad = zero_p.grad.clone().to(p.device) grad = p.grad.float() assert grad.dtype == zero_grad.dtype assert allclose(grad, zero_grad, loose=loose) def check_params(model, zero_model, loose=False): for p, zero_p in zip(model.parameters(), zero_model.parameters()): zero_p = zero_p.clone().to(p.device) # assert p.dtype == zero_p.dtype assert allclose(p.float(), zero_p.float(), loose=loose), f"diff {p.float() - zero_p.float()}" def check_grads_padding(model, zero_model, loose=False): rank = dist.get_rank() for (name, p), (zero_name, zero_p) in zip(model.named_parameters(), zero_model.named_parameters()): # zero_grad = zero_p.grad.clone().to(p.device) if zero_p.colo_attr.is_replicated: zero_grad = zero_p.colo_attr.grad_payload.clone().to(p.device) chunks = torch.flatten(p.grad).chunk(dist.get_world_size()) if rank >= len(chunks): continue grad = chunks[rank].float() if zero_grad.size(0) > grad.size(0): zero_grad = zero_grad[:grad.size(0)] else: zero_grad = zero_p.colo_attr.grad_payload grad = p.grad.to(zero_grad.dtype) assert grad.dtype == zero_grad.dtype assert allclose(grad, zero_grad, loose=loose), f'diff: {grad - zero_grad}' def check_params_padding(model, zero_model, loose=False): rank = dist.get_rank() for p, zero_p in zip(model.parameters(), zero_model.parameters()): zero_p = zero_p.clone().to(p.device) chunks = torch.flatten(p).chunk(dist.get_world_size()) if rank >= len(chunks): continue p = chunks[rank] if zero_p.size(0) > p.size(0): zero_p = zero_p[:p.size(0)] assert p.dtype == zero_p.dtype assert allclose(p, zero_p, loose=loose) def check_sharded_model_params(model, zero_model, loose=False, reuse_fp16_shard=False): rank = dist.get_rank() for (name, p), (zero_name, zero_p) in zip(model.named_parameters(), zero_model.named_parameters()): if zero_p.colo_attr.param_is_sharded: zero_p = zero_p.colo_attr.data_payload.to(p.device).float() chunks = torch.flatten(p).chunk(dist.get_world_size()) if rank >= len(chunks): continue p = chunks[rank].float() if zero_p.size(0) > p.size(0): zero_p = zero_p[:p.size(0)] else: zero_p = zero_p.colo_attr.data_payload.to(p.device) assert p.dtype == zero_p.dtype, "Parameter `{}`:\n{} vs {}".format(name, p.dtype, zero_p.dtype) assert allclose(p, zero_p, loose=loose), f'{p} vs {zero_p}'
#!/usr/bin/env python # -*- encoding: utf-8 -*- from functools import partial import pytest import torch import torch.multiprocessing as mp from common import CONFIG import colossalai from colossalai.gemini.memory_tracer.utils import colo_model_mem_usage from colossalai.logging import get_dist_logger from colossalai.testing import parameterize, rerun_if_address_is_in_use from colossalai.utils import free_port from colossalai.utils.cuda import get_current_device from colossalai.utils.memory import colo_device_memory_used from colossalai.zero.init_ctx import ZeroInitContext from colossalai.zero.shard_utils import BucketTensorShardStrategy, TensorShardStrategy from tests.components_to_test.registry import non_distributed_component_funcs @parameterize("init_device_type", ['cpu', 'cuda']) @parameterize("shard_strategy_class", [TensorShardStrategy, BucketTensorShardStrategy]) def run_model_test(init_device_type, shard_strategy_class): logger = get_dist_logger("test_zero_init") for name, get_components_func in non_distributed_component_funcs._registry.items(): # because the ZeroInitContext automatically turns parameters to fp16 # and the beit model use tensor.erfinv_() function to initialize weights # tensor.erfinv_() doesn't support Half in CPU, we omit the beit model if name == 'beit': continue model_builder, _, _, _, _ = get_components_func() if init_device_type == 'cuda': init_device = get_current_device() elif init_device_type == 'cpu': init_device = torch.device("cpu") else: continue model_numel_tensor = torch.zeros(1, dtype=torch.int) with ZeroInitContext(target_device=init_device, shard_strategy=shard_strategy_class(), shard_param=True, model_numel_tensor=model_numel_tensor): model = model_builder(checkpoint=True) for param in model.parameters(): assert hasattr(param, 'colo_attr') assert param.colo_attr.sharded_data_tensor.dtype == torch.half assert param.colo_attr.sharded_data_tensor.is_sharded assert param.colo_attr.data_payload.device.type == init_device.type, \ f'{param.colo_attr.data_payload.device.type} vs. {init_device.type}' cuda_mem_use, _ = colo_model_mem_usage(model) model_data_cuda_mem_MB = cuda_mem_use / 1e6 logger.info(f"Existing ZeRO Context.\nModel Data CUDA Memory {model_data_cuda_mem_MB} MB", ranks=[0]) sys_cuda_mem_MB = colo_device_memory_used(get_current_device()) / 1e6 logger.info(f"System CUDA Memory Usage {sys_cuda_mem_MB} MB", ranks=[0]) logger.info(f"Model Number Parameter {model_numel_tensor.numpy()[0]/1e6} M", ranks=[0]) def run_dist(rank, world_size, port): colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') run_model_test() @pytest.mark.dist @pytest.mark.parametrize("world_size", [1, 4]) @rerun_if_address_is_in_use() def test_zero_init_context(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_zero_init_context(1)
#!/usr/bin/env python # -*- encoding: utf-8 -*- from functools import partial import pytest import torch import torch.multiprocessing as mp from common import CONFIG, check_grads_padding, run_fwd_bwd from torch.nn.parallel import DistributedDataParallel as DDP import colossalai from colossalai.testing import parameterize, rerun_if_address_is_in_use from colossalai.utils import free_port from colossalai.zero.init_ctx import ZeroInitContext from colossalai.zero.shard_utils import BucketTensorShardStrategy from colossalai.zero.sharded_model import ShardedModelV2 from colossalai.zero.sharded_model._utils import cast_tensor_to_fp16 from colossalai.zero.sharded_model.utils import col_model_deepcopy from tests.components_to_test.registry import non_distributed_component_funcs @parameterize("enable_autocast", [True]) @parameterize("shard_strategy_class", [BucketTensorShardStrategy]) def run_model_test(enable_autocast, shard_strategy_class): test_models = ['repeated_computed_layers', 'resnet18', 'bert', 'hanging_param_model'] shard_strategy = shard_strategy_class() for model_name in test_models: get_components_func = non_distributed_component_funcs.get_callable(model_name) model_builder, train_dataloader, _, _, criterion = get_components_func() with ZeroInitContext(target_device=torch.device('cuda', torch.cuda.current_device()), shard_strategy=shard_strategy, shard_param=True): zero_model = model_builder(checkpoint=True) zero_model = ShardedModelV2(zero_model, shard_strategy) model = model_builder(checkpoint=True).half() col_model_deepcopy(zero_model, model) model = model.cuda() model = DDP(model, device_ids=[torch.cuda.current_device()]) for i, (data, label) in enumerate(train_dataloader): if i > 5: break data, label = cast_tensor_to_fp16(data).cuda(), label.cuda() run_fwd_bwd(model, data, label, criterion, enable_autocast) run_fwd_bwd(zero_model, data, label, criterion, enable_autocast) check_grads_padding(model, zero_model, loose=True) def run_dist(rank, world_size, port): colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') run_model_test() @pytest.mark.dist @pytest.mark.parametrize("world_size", [1, 2]) @rerun_if_address_is_in_use() def test_shard_model_v2(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_shard_model_v2(world_size=2)
#!/usr/bin/env python # -*- encoding: utf-8 -*- from copy import deepcopy from functools import partial import colossalai import pytest import torch import torch.multiprocessing as mp from colossalai.testing import parameterize, rerun_if_address_is_in_use from colossalai.utils import free_port from colossalai.zero.init_ctx import ZeroInitContext from colossalai.zero.shard_utils import (BucketTensorShardStrategy, TensorShardStrategy) from colossalai.zero.sharded_model import ShardedModelV2 from colossalai.zero.sharded_model.utils import col_model_deepcopy from tests.components_to_test.registry import non_distributed_component_funcs from common import CONFIG @parameterize("shard_strategy_class", [TensorShardStrategy, BucketTensorShardStrategy]) def run_zero_state_dict(shard_strategy_class): test_models = ['repeated_computed_layers', 'resnet18'] shard_strategy = shard_strategy_class() for model_name in test_models: get_components_func = non_distributed_component_funcs.get_callable(model_name) model_builder, train_dataloader, test_dataloader, optimizer, criterion = get_components_func() with ZeroInitContext(target_device=torch.device('cuda', torch.cuda.current_device()), shard_strategy=shard_strategy, shard_param=True): zero_model = model_builder(checkpoint=True) zero_model = ShardedModelV2(zero_model, shard_strategy) model = model_builder(checkpoint=True).half() col_model_deepcopy(zero_model, model) model = model.cuda() zero_state_dict = zero_model.state_dict() for key, val in model.state_dict().items(): assert torch.equal(val, zero_state_dict[key].to(val.device)) def run_dist(rank, world_size, port): colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') run_zero_state_dict() @pytest.mark.dist @pytest.mark.parametrize("world_size", [1, 2]) @rerun_if_address_is_in_use() def test_zero_state_dict(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_zero_state_dict(2)
from functools import partial import pytest import torch import torch.multiprocessing as mp import torch.nn as nn from torch.nn.parallel import DistributedDataParallel as DDP from torch.testing import assert_close import colossalai from colossalai.tensor import ProcessGroup from colossalai.testing import parameterize, rerun_if_address_is_in_use from colossalai.utils import free_port, get_current_device from colossalai.utils.model.colo_init_context import ColoInitContext from colossalai.zero import LowLevelZeroOptimizer from tests.test_tensor.common_utils import set_seed, split_param_col_tp1d, split_param_row_tp1d, tensor_shard_equal def strict_shard_equal(tensor, shard, tp_pg, rtol=1e-3, atol=1e-4): return tensor_shard_equal(tensor, shard, tp_pg.tp_local_rank(), tp_pg.tp_world_size(), rtol, atol) class MlpModel(nn.Module): def __init__(self): super(MlpModel, self).__init__() self.linear1 = nn.Linear(32, 128) self.act = nn.GELU() self.linear2 = nn.Linear(128, 32) def forward(self, x): y = self.linear1(x) y = self.act(y) y = self.linear2(y) return x + y @parameterize("overlap_flag", [False, True]) @parameterize("partition_flag", [False, True]) def exam_zero_with_tp(overlap_flag, partition_flag): set_seed(233010) tp_pg = ProcessGroup(tp_degree=2) with ColoInitContext(device=get_current_device(), default_pg=tp_pg): hybrid_model = MlpModel() torch_model = MlpModel().cuda() for pt, ph in zip(torch_model.parameters(), hybrid_model.parameters()): pt.data.copy_(ph.data) for name, param in hybrid_model.named_parameters(): if 'linear1' in name: split_param_row_tp1d(param, tp_pg) param.compute_spec.set_output_replicate(False) if 'linear2.weight' in name: split_param_col_tp1d(param, tp_pg) torch_model = DDP(torch_model, device_ids=[tp_pg.rank()], process_group=tp_pg.dp_process_group()) torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-2) # set to 1e-2 for torch-1.11 hybrid_optim = torch.optim.Adam(hybrid_model.parameters(), lr=1e-2) hybrid_optim = LowLevelZeroOptimizer(hybrid_optim, initial_scale=2, clip_grad_norm=1.0, overlap_communication=overlap_flag, partition_grad=partition_flag) dp_local_rank = tp_pg.dp_local_rank() set_seed(255 + dp_local_rank) data = torch.randn(8, 32, device=get_current_device()) torch_loss = torch_model(data).sum() hybrid_loss = hybrid_model(data).sum() assert_close(torch_loss, hybrid_loss) torch_loss.backward() torch.nn.utils.clip_grad_norm_(torch_model.parameters(), 1.0) hybrid_optim.backward(hybrid_loss) torch_optim.step() hybrid_optim.step() for (name, pt), ph in zip(torch_model.named_parameters(), hybrid_model.parameters()): assert strict_shard_equal(pt.data, ph.data, tp_pg) def run_dist(rank, world_size, port): colossalai.launch(config={}, rank=rank, world_size=world_size, port=port, host='localhost') exam_zero_with_tp() @pytest.mark.dist @rerun_if_address_is_in_use() def test_zero_with_tp(): world_size = 4 run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_zero_with_tp()
from functools import partial import pytest import torch import torch.distributed as dist import torch.multiprocessing as mp import torch.nn as nn import colossalai from colossalai.tensor import ProcessGroup from colossalai.utils import free_port, get_current_device from colossalai.utils.model.colo_init_context import ColoInitContext from colossalai.zero import LowLevelZeroOptimizer class MlpModel(nn.Module): def __init__(self): super(MlpModel, self).__init__() self.linear1 = nn.Linear(128, 256) self.linear2 = nn.Linear(256, 512) def forward(self, x): x = self.linear1(x) x = self.linear2(x) return x def exam_zero_init(): dp_2_tp_2_pg = ProcessGroup(dp_degree=2, tp_degree=2) model1 = MlpModel().cuda() with ColoInitContext(device=get_current_device(), default_pg=dp_2_tp_2_pg): model2 = MlpModel() optimizer1 = LowLevelZeroOptimizer(torch.optim.Adam(model1.parameters(), lr=1)) optimizer2 = LowLevelZeroOptimizer(torch.optim.Adam(model2.parameters(), lr=1)) assert optimizer1._local_rank == optimizer2._local_rank assert optimizer1._world_size == optimizer2._world_size assert optimizer1._dp_global_ranks == optimizer2._dp_global_ranks mp_group1 = optimizer1._mp_torch_group mp_group2 = optimizer2._mp_torch_group assert dist.get_world_size(mp_group1) == dist.get_world_size(mp_group2) assert dist.get_rank(mp_group1) == dist.get_rank(mp_group2) def run_dist(rank, world_size, port): config_dict = dict(parallel=dict(data=2, tensor=dict(size=2, mode='1d'))) colossalai.launch(config=config_dict, rank=rank, world_size=world_size, port=port, host='localhost') exam_zero_init() @pytest.mark.dist def test_zero_init(): world_size = 4 run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_zero_init()
import copy from functools import partial import pytest import torch import torch.multiprocessing as mp import torch.nn as nn from torch.nn.parallel import DistributedDataParallel as DDP from torch.testing import assert_close import colossalai from colossalai.testing.random import seed_all from colossalai.utils import free_port from colossalai.zero import LowLevelZeroOptimizer class MlpModel(nn.Module): def __init__(self): super(MlpModel, self).__init__() self.linear1 = nn.Linear(128, 256) self.linear2 = nn.Linear(256, 512) def forward(self, x): x = self.linear1(x) x = self.linear2(x) return x def exam_zero_1_2_grad_acc(): local_rank = torch.distributed.get_rank() seed_all(2009) # create model zero1_model = MlpModel().cuda() zero2_model = copy.deepcopy(zero1_model) # create optimizer zero1_optimizer = torch.optim.Adam(zero1_model.parameters(), lr=1) zero2_optimizer = torch.optim.Adam(zero2_model.parameters(), lr=1) zero1_optimizer = LowLevelZeroOptimizer(zero1_optimizer, overlap_communication=True, initial_scale=32, clip_grad_norm=1.0, verbose=True) zero2_optimizer = LowLevelZeroOptimizer(zero2_optimizer, overlap_communication=True, partition_grad=True, initial_scale=32, clip_grad_norm=1.0) # create data seed_all(2021 + local_rank) input_data1 = torch.randn(32, 128).cuda() input_data2 = torch.randn(32, 128).cuda() def fwd_bwd_func(number, cur_data): # zero-dp forward zero1_output = zero1_model(cur_data) zero2_output = zero2_model(cur_data) assert torch.equal(zero1_output, zero2_output) # zero-dp backward zero1_optimizer.backward(zero1_output.sum().float(), sync_grad=False) zero2_optimizer.backward(zero2_output.sum().float(), sync_grad=False) for (n, z1p), z2p in zip(zero1_model.named_parameters(), zero2_model.parameters()): if z2p.grad is not None: # print(local_rank, n, z1p.shape, torch.max(z2p.grad), torch.max(torch.abs(z1p.grad - z2p.grad))) assert torch.equal(z1p.grad, z2p.grad) zero1_optimizer._sync_grad() zero2_optimizer._sync_grad() fwd_bwd_func(0, input_data1) fwd_bwd_func(1, input_data2) # step zero1_optimizer.step() zero2_optimizer.step() # check updated param for z1p, z2p in zip(zero1_model.parameters(), zero2_model.parameters()): assert torch.equal(z1p.data, z2p.data) def exam_zero_1_grad_acc(): local_rank = torch.distributed.get_rank() grad_scale = 32 seed_all(2008) # create models zero_model = MlpModel() torch_model = copy.deepcopy(zero_model) seed_all(2008) zero_model = zero_model.cuda() torch_model = DDP(torch_model.cuda(), bucket_cap_mb=0) # create optimizer zero_optimizer = torch.optim.Adam(zero_model.parameters(), lr=1) # we only test stage 1 here # in `check_sharded_param_consistency.py`, we will test whether # level 1 and 2 will produce exactly the same results zero_optimizer = LowLevelZeroOptimizer(zero_optimizer, overlap_communication=False, initial_scale=grad_scale, reduce_bucket_size=262144, clip_grad_norm=1.0) torch_optimizer = torch.optim.Adam(torch_model.parameters(), lr=1) # create data seed_all(2022 + local_rank) input_data1 = torch.randn(32, 128).cuda() input_data2 = torch.randn(32, 128).cuda() def fwd_bwd_func(number, cur_data, check_flag): # zero-dp forward zero_output = zero_model(cur_data) # torch-ddp forward torch_output = torch_model(cur_data) assert torch.equal(zero_output, torch_output) # zero-dp backward zero_optimizer.backward(zero_output.sum().float(), sync_grad=False) # torch-ddp backward torch_output.sum().backward() if check_flag: # check grad for (n, p), z1p in zip(torch_model.named_parameters(), zero_model.parameters()): unscale_grad = z1p.grad / grad_scale # print(n, p.shape, torch.max(torch.abs(p.grad - unscale_grad))) assert torch.equal(p.grad, unscale_grad) zero_optimizer._sync_grad() fwd_bwd_func(0, input_data1, True) fwd_bwd_func(1, input_data2, False) zero_optimizer.step() torch.nn.utils.clip_grad_norm_(torch_model.parameters(), 1.0) torch_optimizer.step() # check updated param for (n, p), z1p in zip(torch_model.named_parameters(), zero_model.parameters()): # print(n, p.shape, torch.max(p.data), torch.max(z1p.data), torch.max(torch.abs(p.data - z1p.data))) assert_close(p.data, z1p.data) def run_dist(rank, world_size, port): colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host='localhost') exam_zero_1_grad_acc() exam_zero_1_2_grad_acc() @pytest.mark.dist def test_grad_accumulation(): world_size = 2 run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_grad_accumulation()
import copy from functools import partial import pytest import torch import torch.multiprocessing as mp import torch.nn as nn from torch.nn.parallel import DistributedDataParallel as DDP from torch.testing import assert_close import colossalai from colossalai.testing.random import seed_all from colossalai.utils import free_port from colossalai.zero import LowLevelZeroOptimizer class MlpModel(nn.Module): def __init__(self): super(MlpModel, self).__init__() self.linear1 = nn.Linear(128, 256) self.linear2 = nn.Linear(256, 512) def forward(self, x): x = self.linear1(x) x = self.linear2(x) return x def half_close(a, b, loose=False): rtol = None atol = None if loose: rtol = 5e-2 atol = 5e-4 a = a.detach().half() b = b.detach().half() assert_close(a, b, rtol=rtol, atol=atol) def exam_zero_1_2(): """ In this test, we want to test whether zero stage 1 and 2 deliver the same numerical results despite different communication pattern we use these prefixes to differentiate the zero stage oss: partition optimizer states pg: partition gradients and optimizer states """ local_rank = torch.distributed.get_rank() seed_all(2001) # create model zero1_model = MlpModel().cuda() zero2_model = copy.deepcopy(zero1_model) # create optimizer zero1_optimizer = torch.optim.Adam(zero1_model.parameters(), lr=1) zero2_optimizer = torch.optim.Adam(zero2_model.parameters(), lr=1) zero1_optimizer = LowLevelZeroOptimizer(zero1_optimizer, overlap_communication=True, initial_scale=128, verbose=True) zero2_optimizer = LowLevelZeroOptimizer(zero2_optimizer, overlap_communication=True, partition_grad=True, initial_scale=128) # create data seed_all(2001 + local_rank) input_data = torch.randn(32, 128).cuda() zero1_output = zero1_model(input_data) zero2_output = zero2_model(input_data) assert torch.equal(zero1_output, zero2_output) # zero-dp backward zero1_optimizer.backward(zero1_output.mean().float(), sync_grad=False) zero2_optimizer.backward(zero2_output.mean().float(), sync_grad=False) for (n, z1p), z2p in zip(zero1_model.named_parameters(), zero2_model.parameters()): if z2p.grad is not None: # print(local_rank, n, z1p.shape, torch.max(z2p.grad), torch.max(torch.abs(z1p.grad - z2p.grad))) assert torch.equal(z1p.grad, z2p.grad) zero1_optimizer._sync_grad() zero2_optimizer._sync_grad() # step zero1_optimizer.step() zero2_optimizer.step() # check updated param for z1p, z2p in zip(zero1_model.parameters(), zero2_model.parameters()): assert torch.equal(z1p.data, z2p.data) def exam_zero_1_torch_ddp(): """ In this test, two pairs of model and optimizers are created. 1. zero: use sharded optimizer and fp16 parameters 2. torch: use torch DDP and fp32 parameters We feed these two sets of models with the same input and check if the differences in model output and updated parameters are within tolerance. """ local_rank = torch.distributed.get_rank() seed_all(1453) # create models zero_model = MlpModel() torch_model = copy.deepcopy(zero_model) zero_model = zero_model.cuda().half() torch_model = DDP(torch_model.cuda(), bucket_cap_mb=0) torch_model = torch_model.cuda() # for (n, p), z1p in zip(torch_model.named_parameters(), zero_model.parameters()): # half_close(p.data, z1p.data) # create optimizer zero_optimizer = torch.optim.SGD(zero_model.parameters(), lr=1) # we only test stage 1 here # in `check_sharded_param_consistency.py`, we will test whether # level 1 and 2 will produce exactly the same results zero_optimizer = LowLevelZeroOptimizer(zero_optimizer, overlap_communication=True, initial_scale=1, reduce_bucket_size=262144) torch_optimizer = torch.optim.SGD(torch_model.parameters(), lr=1) seed_all(1453 + local_rank) # create input_data = torch.rand(32, 128).cuda() # zero-dp forward zero_output = zero_model(input_data.half()) # torch-ddp forward torch_output = torch_model(input_data) half_close(zero_output, torch_output, loose=True) # zero-dp backward zero_optimizer.backward(zero_output.mean().float(), sync_grad=False) # torch-ddp backward torch_output.mean().backward() # check grad for (n, p), z1p in zip(torch_model.named_parameters(), zero_model.parameters()): half_close(p.grad, z1p.grad, loose=True) # zero-dp step zero_optimizer._sync_grad() zero_optimizer.step() # torch ddp step torch_optimizer.step() # check updated param for (n, p), z1p in zip(torch_model.named_parameters(), zero_model.parameters()): # print(n, torch.max(torch.abs(p.data - z1p.data))) half_close(p.data, z1p.data, loose=True) def run_dist(rank, world_size, port): colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host='localhost') exam_zero_1_torch_ddp() exam_zero_1_2() @pytest.mark.dist def test_zero_1_2(): world_size = 2 run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_zero_1_2()
import pytest import torch from einops import rearrange from colossalai.kernel.cuda_native.flash_attention import HAS_FLASH_ATTN, HAS_MEM_EFF_ATTN, HAS_TRITON if HAS_FLASH_ATTN: from colossalai.kernel.cuda_native.flash_attention import ( MaskedFlashAttention, flash_attention_q_k_v, flash_attention_q_kv, flash_attention_qkv, ) if HAS_TRITON: from colossalai.kernel.cuda_native.flash_attention import triton_flash_attention if HAS_MEM_EFF_ATTN: from colossalai.kernel.cuda_native.flash_attention import LowerTriangularMask, MemoryEfficientAttention def baseline_attention(Z, N_CTX, H, q, k, v, sm_scale): M = torch.tril(torch.ones((N_CTX, N_CTX), device="cuda")) p = torch.matmul(q, k.transpose(2, 3)) * sm_scale for z in range(Z): for h in range(H): p[:, :, M == 0] = float("-inf") p = torch.softmax(p.float(), dim=-1).half() ref_out = torch.matmul(p, v) return ref_out @pytest.mark.skipif(HAS_TRITON == False, reason="triton is not available") @pytest.mark.parametrize('Z, H, N_CTX, D_HEAD', [(3, 4, 2, 16)]) def test_triton_flash_attention(Z, H, N_CTX, D_HEAD, dtype=torch.float16): torch.manual_seed(20) q = torch.empty((Z, H, N_CTX, D_HEAD), dtype=dtype, device="cuda").normal_(mean=0, std=.5).requires_grad_() k = torch.empty((Z, H, N_CTX, D_HEAD), dtype=dtype, device="cuda").normal_(mean=0, std=.5).requires_grad_() v = torch.empty((Z, H, N_CTX, D_HEAD), dtype=dtype, device="cuda").normal_(mean=0, std=.5).requires_grad_() sm_scale = 0.3 dout = torch.randn_like(q) ref_out = baseline_attention(Z, N_CTX, H, q, k, v, sm_scale) ref_out.backward(dout) ref_dv, v.grad = v.grad.clone(), None ref_dk, k.grad = k.grad.clone(), None ref_dq, q.grad = q.grad.clone(), None # triton implementation tri_out = triton_flash_attention(q, k, v, sm_scale) tri_out.backward(dout) tri_dv, v.grad = v.grad.clone(), None tri_dk, k.grad = k.grad.clone(), None tri_dq, q.grad = q.grad.clone(), None # compare assert torch.allclose(ref_out, tri_out, atol=1e-3) assert torch.allclose(ref_dv, tri_dv, atol=1e-3) assert torch.allclose(ref_dk, tri_dk, atol=1e-3) assert torch.allclose(ref_dq, tri_dq, atol=1e-3) @pytest.mark.skipif(HAS_FLASH_ATTN == False, reason="flash is not available") @pytest.mark.parametrize('Z, H, N_CTX, D_HEAD', [(3, 4, 2, 16)]) def test_flash_attention(Z, H, N_CTX, D_HEAD, dtype=torch.float16): torch.manual_seed(20) q = torch.randn((Z, H, N_CTX, D_HEAD), dtype=dtype, device="cuda").normal_(mean=0, std=.5).requires_grad_() k = torch.randn((Z, H, N_CTX, D_HEAD), dtype=dtype, device="cuda").normal_(mean=0, std=.5).requires_grad_() v = torch.randn((Z, H, N_CTX, D_HEAD), dtype=dtype, device="cuda").normal_(mean=0, std=.5).requires_grad_() sm_scale = 0.3 dout = torch.randn_like(q) # reference implementation ref_out = baseline_attention(Z, N_CTX, H, q, k, v, sm_scale) ref_out.backward(dout) ref_dv, v.grad = v.grad.clone(), None ref_dk, k.grad = k.grad.clone(), None ref_dq, q.grad = q.grad.clone(), None # flash implementation q, k, v = map(lambda x: rearrange(x, 'z h n d -> (z n) h d'), [q, k, v]) dout = rearrange(dout, 'z h n d -> (z n) h d').detach() for i in range(3): if i == 0: tri_out = flash_attention_q_k_v(q, k, v, sm_scale, Z, N_CTX, N_CTX, causal=True) elif i == 1: kv = torch.cat((k.unsqueeze(1), v.unsqueeze(1)), dim=1) tri_out = flash_attention_q_kv(q, kv, sm_scale, Z, N_CTX, N_CTX, causal=True) else: qkv = torch.cat((q.unsqueeze(1), k.unsqueeze(1), v.unsqueeze(1)), dim=1) tri_out = flash_attention_qkv(qkv, sm_scale, Z, N_CTX, causal=True) tri_out.backward(dout, retain_graph=True) if i == 0: tri_dq, tri_dk, tri_dv, = torch.autograd.grad(tri_out, (q, k, v), dout) tri_out, tri_dq, tri_dk, tri_dv = map(lambda x: rearrange(x, '(z n) h d -> z h n d', z=Z), (tri_out, tri_dq, tri_dk, tri_dv)) elif i == 1: tri_dq, tri_dkv, = torch.autograd.grad(tri_out, (q, kv), dout) tri_dk, tri_dv = torch.chunk(tri_dkv, 2, dim=1) tri_out, tri_dq, tri_dk, tri_dv = map(lambda x: rearrange(x, '(z n) h d -> z h n d', z=Z), (tri_out, tri_dq, tri_dk.squeeze(1), tri_dv.squeeze(1))) else: tri_dqkv, = torch.autograd.grad(tri_out, (qkv), dout) tri_dq, tri_dk, tri_dv = torch.chunk(tri_dqkv, 3, dim=1) tri_out, tri_dq, tri_dk, tri_dv = map(lambda x: rearrange(x, '(z n) h d -> z h n d', z=Z), (tri_out, tri_dq.squeeze(1), tri_dk.squeeze(1), tri_dv.squeeze(1))) # compare assert torch.allclose(ref_out, tri_out, atol=1e-3) assert torch.allclose(ref_dv, tri_dv, atol=1e-3) assert torch.allclose(ref_dk, tri_dk, atol=1e-3) assert torch.allclose(ref_dq, tri_dq, atol=1e-3) @pytest.mark.skipif(HAS_FLASH_ATTN == False, reason="flash is not available") @pytest.mark.parametrize('Z, H, N_CTX, D_HEAD', [(3, 4, 2, 16)]) def test_masked_flash_attention(Z, H, N_CTX, D_HEAD, dtype=torch.float16): attn = MaskedFlashAttention(N_CTX, D_HEAD, 0.1) qkv = torch.randn((Z, H, 3 * N_CTX * D_HEAD), dtype=dtype, device="cuda").normal_(mean=0, std=.5).requires_grad_() attention_mask = torch.randint(2, (Z, H)).cuda().bool() out = attn(qkv, attention_mask) dout = torch.rand_like(out) out.backward(dout) @pytest.mark.skipif(HAS_MEM_EFF_ATTN == False, reason="xformers is not available") @pytest.mark.parametrize('Z, H, N_CTX, D_HEAD', [(6, 8, 4, 16)]) def test_memory_efficient_attention(Z, H, N_CTX, D_HEAD, dtype=torch.float16): attn = MemoryEfficientAttention(N_CTX * D_HEAD, N_CTX, 0.1) q = torch.empty((Z, H, N_CTX, D_HEAD), dtype=dtype, device="cuda").normal_(mean=0, std=.5).requires_grad_() k = torch.empty((Z, H, N_CTX, D_HEAD), dtype=dtype, device="cuda").normal_(mean=0, std=.5).requires_grad_() v = torch.empty((Z, H, N_CTX, D_HEAD), dtype=dtype, device="cuda").normal_(mean=0, std=.5).requires_grad_() out = attn(q, k, v, attention_mask=LowerTriangularMask()) dout = torch.rand_like(out) out.backward(dout) if __name__ == '__main__': test_flash_attention(3, 4, 2, 16)
import torch from colossalai.utils.model.lazy_init_context import LazyInitContext from torchvision.models import resnet34 import random import numpy as np MANUAL_SEED = 0 random.seed(MANUAL_SEED) np.random.seed(MANUAL_SEED) torch.manual_seed(MANUAL_SEED) def test_lazy_init_with_meta(): ctx = LazyInitContext(to_meta=True) with ctx: model = resnet34(num_classes=10) for param in model.parameters(): assert param.is_meta for buffer in model.buffers(): assert buffer.is_meta ctx.lazy_init_parameters(model) for name, param in model.named_parameters(): assert not param.is_meta, name for buffer in model.buffers(): assert not buffer.is_meta def test_lazy_init_without_meta(): ctx = LazyInitContext(to_meta=False) with ctx: model = resnet34(num_classes=10) for param in model.parameters(): assert not param.is_meta for buffer in model.buffers(): assert not buffer.is_meta conv1_weight_before_init = model.conv1.weight.clone() ctx.lazy_init_parameters(model) conv1_weight_after_init = model.conv1.weight.clone() assert not torch.allclose(conv1_weight_after_init, conv1_weight_before_init) if __name__ == '__main__': test_lazy_init_with_meta() test_lazy_init_without_meta()
#!/usr/bin/env python # -*- encoding: utf-8 -*- import copy import colossalai from colossalai.zero.sharded_model.sharded_model_v2 import ShardedModelV2 import pytest import torch import torch.distributed as dist import torch.multiprocessing as mp import torch.nn as nn from colossalai.logging import disable_existing_loggers from colossalai.utils import checkpoint, clip_grad_norm_fp32, free_port from torch.nn.parallel import DistributedDataParallel as DDP from torch.nn.utils import clip_grad_norm_ from colossalai.zero.shard_utils.tensor_shard_strategy import TensorShardStrategy from functools import partial from colossalai.testing import parameterize, rerun_if_address_is_in_use def checkpoint_wrapper(module, enable=True): if enable: module.forward = partial(checkpoint, module.forward, False) return module class Net(nn.Module): def __init__(self, checkpoint=False) -> None: super().__init__() self.fc1 = nn.Linear(5, 5) self.fc2 = nn.Linear(5, 5) self.fc3 = nn.Linear(5, 1) if checkpoint: self.fc1 = checkpoint_wrapper(self.fc1) self.layers = [self.fc1, self.fc2, self.fc1, self.fc2, self.fc3] def forward(self, x): for layer in self.layers: x = layer(x) return x def run_step(model, optimizer, x, enable_autocast=False, norm_type=2.0): model.train() optimizer.zero_grad() with torch.cuda.amp.autocast(enabled=enable_autocast): y = model(x) loss = y.sum() loss = loss.float() loss.backward() clip_grad(model, norm_type) optimizer.step() def clip_grad(model, norm_type): if isinstance(model, DDP): clip_grad_norm_(model.parameters(), max_norm=1.0, norm_type=norm_type) else: clip_grad_norm_fp32(model.parameters(), max_norm=1.0, norm_type=norm_type) def allclose(tensor_a: torch.Tensor, tensor_b: torch.Tensor, loose=False) -> bool: if loose: return torch.allclose(tensor_a, tensor_b, atol=1e-3, rtol=1e-3) return torch.allclose(tensor_a, tensor_b) def check_grads(model, zero_model, loose=False): rank = dist.get_rank() for p, zero_p in zip(model.parameters(), zero_model.parameters()): zero_grad = zero_p.grad.clone().to(p.device) chunks = torch.flatten(p.grad).chunk(4) if rank >= len(chunks): continue grad = chunks[rank] if zero_p.zero_shard_padding > 0: zero_grad = zero_grad[:-zero_p.zero_shard_padding] assert grad.dtype == zero_grad.dtype assert allclose(grad, zero_grad, loose=loose) def check_params(model, zero_model, loose=False): rank = dist.get_rank() for p, zero_p in zip(model.parameters(), zero_model.parameters()): zero_shard_padding = zero_p.zero_shard_padding zero_p = zero_p.clone().to(p.device) chunks = torch.flatten(p).chunk(4) if rank >= len(chunks): continue p = chunks[rank] if zero_shard_padding > 0: zero_p = zero_p[:-zero_shard_padding] assert p.dtype == zero_p.dtype assert allclose(p, zero_p, loose=loose) def run_dist(rank, world_size, port): disable_existing_loggers() colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') @pytest.mark.dist @rerun_if_address_is_in_use() def test_zero_clip_grad(): world_size = 4 run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_zero_clip_grad()
from colossalai.tensor import distspec, ColoTensorSpec, ProcessGroup from colossalai.tensor.colo_parameter import ColoParameter import colossalai import pytest import torch import torch.multiprocessing as mp from colossalai.logging import disable_existing_loggers from colossalai.utils import free_port, get_current_device from torch.nn.utils import clip_grad_norm_ from functools import partial from colossalai.testing import parameterize, rerun_if_address_is_in_use from colossalai.utils.common import clip_grad_norm from torch.nn.parameter import Parameter def close(num: float, other: float, rtol: float = 1e-5, atol: float = 1e-8): return abs(num - other) <= atol + rtol * other def shard_param(p: ColoParameter) -> None: pg = p.get_process_group() p._redistribute(distspec.ShardSpec([0], [pg.tp_world_size()])) p.grad = p.grad.chunk(pg.tp_world_size(), 0)[pg.tp_local_rank()].clone().detach() def check_grad_equal(p: Parameter, colo_p: ColoParameter) -> None: pg = colo_p.get_process_group() if p.shape != colo_p.shape: grad = p.grad.chunk(pg.tp_world_size(), 0)[pg.tp_local_rank()] else: grad = p.grad assert torch.allclose(grad, colo_p.grad), f'diff: {torch.abs(grad - colo_p.grad)}' @parameterize('dtype', [torch.float]) @parameterize('device', ['mixed', 'cuda', 'cpu']) @parameterize('norm_type', [2.0, 3.0, float('inf')]) def run_grad_clip_norm(world_size: int, dtype: torch.dtype, device: str, norm_type: float): print(f'{world_size}, {dtype}, {device}, {norm_type}') cuda_device = get_current_device() devices = [cuda_device] * 4 if device == 'cpu': devices = [torch.device('cpu')] * 4 elif device == 'mixed': devices = [cuda_device] * 2 + [torch.device('cpu')] * 2 pg = ProcessGroup(tp_degree=world_size) params = [Parameter(torch.empty(4, 4, dtype=dtype, device=devices[i])) for i in range(4)] colo_params = [ ColoParameter(torch.empty(4, 4, dtype=dtype, device=devices[i]), spec=ColoTensorSpec(pg)) for i in range(4) ] for p, colo_p in zip(params, colo_params): grad = torch.rand_like(p) p.grad = grad colo_p.grad = grad.clone().detach() shard_param(colo_params[0]) shard_param(colo_params[2]) torch_norm = clip_grad_norm_(params, 1.0, norm_type=norm_type) colo_norm = clip_grad_norm(colo_params, 1.0, norm_type=norm_type) assert close(torch_norm, colo_norm), f'diff: {abs(torch_norm-colo_norm)}' for p, colo_p in zip(params, colo_params): check_grad_equal(p, colo_p) def run_dist(rank, world_size, port): disable_existing_loggers() colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') run_grad_clip_norm(world_size=world_size) @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 2]) @rerun_if_address_is_in_use() def test_zero_clip_grad(world_size: int): run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_zero_clip_grad(2)
from colossalai.utils import free_port from colossalai.testing import rerun_if_address_is_in_use from colossalai.zero.sharded_param import ShardedTensor from colossalai.gemini.tensor_utils import colo_model_data_tensor_move, colo_model_data_tensor_move_inline import colossalai import torch import torch.multiprocessing as mp def run_tensor_move(rank): colossalai.launch(config={}, rank=0, world_size=1, host='localhost', port=free_port(), backend='nccl') src_t = torch.ones(2, 3).cuda() tgt_t = torch.zeros(2, 3) colo_model_data_tensor_move(src_t, tgt_t) assert (torch.sum(tgt_t) == 6.0), f"{torch.sum(tgt_t.payload)} vs. 6.0" src_t = torch.ones(2, 3) tgt_t = torch.zeros(2, 3).cuda().half() colo_model_data_tensor_move(src_t, tgt_t) # the src_t has been removed assert (src_t.numel() == 0) assert (torch.sum(tgt_t) == 6.0), f"{torch.sum(tgt_t.payload)} vs. 6.0" src_t = ShardedTensor(torch.ones(2, 3)) tgt_t = ShardedTensor(torch.zeros(2, 3).cuda().half()) colo_model_data_tensor_move(src_t, tgt_t) assert (torch.sum(tgt_t.payload) == 6.0), f"{torch.sum(tgt_t.payload)} vs. 6.0" assert (tgt_t.device.type == 'cuda') colo_model_data_tensor_move_inline(tgt_t, torch.device('cpu')) assert (tgt_t.device.type == 'cpu') @rerun_if_address_is_in_use() def test_tensor_move(): mp.spawn(run_tensor_move, nprocs=1) if __name__ == '__main__': test_tensor_move()
import os, shutil import torch import pytest from copy import deepcopy from functools import partial import torch.multiprocessing as mp import torch.distributed as dist from torch.optim.lr_scheduler import CosineAnnealingLR from torch.optim.lr_scheduler import MultiplicativeLR from colossalai.nn.lr_scheduler import CosineAnnealingWarmupLR import colossalai from colossalai.testing import rerun_if_address_is_in_use from colossalai.utils.cuda import get_current_device from colossalai.utils import free_port from colossalai.utils.model.colo_init_context import ColoInitContext from colossalai.tensor import ComputePattern, ComputeSpec, ColoTensor, ShardSpec, ProcessGroup from colossalai.utils.checkpoint import save_checkpoint, load_checkpoint from colossalai.nn.optimizer import ColossalaiOptimizer from tests.components_to_test.registry import non_distributed_component_funcs def init_1d_row_linear(weight: ColoTensor, pg: ProcessGroup): spec = (ShardSpec([-1], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D)) weight.set_process_group(pg) weight.set_tensor_spec(*spec) def init_1d_col_linear(weight, pg): spec = (ShardSpec([0], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D)) weight.set_process_group(pg) weight.set_tensor_spec(*spec) def init_1d_row_embedding(weight, pg): spec = (ShardSpec([0], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D)) weight.set_process_group(pg) weight.set_tensor_spec(*spec) def init_1d_col_embedding(weight, pg): spec = (ShardSpec([-1], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D)) weight.set_process_group(pg) weight.set_tensor_spec(*spec) def init_1d_row_for_linear_weight_spec(model, pg: ProcessGroup): spec = (ShardSpec([-1], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D)) for name, p in model.named_parameters(): if not isinstance(p, ColoTensor): continue if 'embed' in name and 'weight' in name: init_1d_col_embedding(p, pg) if 'proj1' in name and ('weight' in name or 'bias' in name): init_1d_col_linear(p, pg) if 'proj2' in name and 'weight' in name: init_1d_row_linear(p, pg) if 'classifier' in name and ('weight' in name or 'bias' in name): init_1d_col_linear(p, pg) def check_param_equal(model, torch_model): for (n, p), (tn, tp) in zip(model.named_parameters(), torch_model.named_parameters()): assert torch.all(p.data == tp.data), "{} went wrong.\n {} vs {}\n{}".format(n, p, tp, p.shape) def remove(path): """ param <path> could either be relative or absolute. """ if os.path.isfile(path) or os.path.islink(path): os.remove(path) elif os.path.isdir(path): shutil.rmtree(path) else: raise ValueError("file {} is not a file or dir.".format(path)) def compare_optims(optim1, optim2): state1 = optim1.state_dict()['state'] state2 = optim2.state_dict()['state'] for k, p1 in state1.items(): if k not in state2: continue p2 = state2[k] for n, t1 in p1.items(): if n not in p2: continue t2 = p2[n] if isinstance(t1, ColoTensor): assert isinstance(t2, ColoTensor) assert torch.allclose(t1, t2, rtol=0, atol=0) def _run_checkpoint(model_name, init_spec_func, use_ddp, use_mp_reload, test_scheduler, pg): get_components_func = non_distributed_component_funcs.get_callable(model_name) model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() rank = torch.distributed.get_rank() world_size = torch.distributed.get_world_size() # set_seed(1) with ColoInitContext(device=get_current_device()): model = model_builder(checkpoint=True) if use_mp_reload: if 'bert' == model_name: for name, p in model.named_parameters(): if not isinstance(p, ColoTensor): continue # num_class = type_vocab_size = 2 | (8, 2) if 'classifier' in name and 'weight' in name: init_1d_row_linear(p, pg) # num_class = vocab_size = 30524 | (30524, 8) elif 'word_embeddings' in name and 'weight' in name: init_1d_row_embedding(p, pg) # num_class = seq_len = 512 | (512, 8) elif 'position_embeddings' in name and 'weight' in name: init_1d_row_embedding(p, pg) # num_class = type_vocab_size = 2 | (2, 8) elif 'token_type_embeddings' in name and 'weight' in name: init_1d_col_embedding(p, pg) elif p.process_group.tp_world_size() == 1: p.set_process_group(pg) elif "simple_net" == model_name: init_spec_func(model, pg) model_reload = deepcopy(model) model = model.cuda() model.eval() model_reload = model_reload.cuda() model_reload.eval() opt_class = torch.optim.Adam colo_optimizer = ColossalaiOptimizer(opt_class(model.parameters(), lr=0.1)) colo_optimizer_reload = ColossalaiOptimizer(opt_class(model_reload.parameters(), lr=0.1)) for i, (data, label) in enumerate(train_dataloader): # Zero grad colo_optimizer.zero_grad() colo_optimizer_reload.zero_grad() data = data.to(get_current_device()) label = label.to(get_current_device()) dist.broadcast(data, pg.tp_rank_list()[0], pg.tp_process_group()) dist.broadcast(label, pg.tp_rank_list()[0], pg.tp_process_group()) # Bcast rank0 data to all processes if criterion: output = model(data) output_reload = model_reload(data) loss = criterion(output, label) loss_reload = criterion(output_reload, label) else: loss = model(data, label) loss_reload = model_reload(data, label) loss.backward() loss_reload.backward() colo_optimizer.step() colo_optimizer_reload.step() if i > 2: break if not os.path.isdir('./checkpoint') and rank == 0: os.mkdir('./checkpoint') dist.barrier() save_checkpoint('./checkpoint', 0, model, colo_optimizer, None) load_checkpoint('./checkpoint', 0, model_reload, colo_optimizer_reload, None) check_param_equal(model, model_reload) compare_optims(colo_optimizer, colo_optimizer_reload) if rank == 0: remove('./checkpoint') dist.barrier() def run_dist(rank, world_size, port, use_ddp, use_mp_reload, test_scheduler): colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') pg = ProcessGroup(tp_degree=world_size) # the data loader of BERT is in DDP mode, causing the input data is not replicated in the TP context for model_name in ['bert']: _run_checkpoint(model_name, init_1d_row_for_linear_weight_spec, use_ddp, use_mp_reload, test_scheduler=test_scheduler, pg=pg) @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 2]) @pytest.mark.parametrize('use_ddp', [False]) @pytest.mark.parametrize('use_mp_reload', [True, False]) # @pytest.mark.parametrize('test_scheduler', ['colossalai_cosine_warmup', 'torch_cosine', 'torch_lambda']) @rerun_if_address_is_in_use() def test_checkpoint(world_size, use_ddp, use_mp_reload, test_scheduler=None): run_func = partial(run_dist, world_size=world_size, port=free_port(), use_ddp=use_ddp, use_mp_reload=use_mp_reload, test_scheduler=test_scheduler) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_checkpoint(2, use_ddp=False, use_mp_reload=True, test_scheduler="torch_cosine")
import pytest import colossalai from colossalai.utils.cuda import get_current_device from colossalai.utils.memory import colo_set_process_memory_fraction, colo_device_memory_capacity from colossalai.utils import free_port from functools import partial import torch.multiprocessing as mp def _run_colo_set_process_memory_fraction_and_colo_device_memory_capacity(): frac1 = colo_device_memory_capacity(get_current_device()) colo_set_process_memory_fraction(0.5) frac2 = colo_device_memory_capacity(get_current_device()) assert frac2 * 2 == frac1 def run_dist(rank, world_size, port): colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') _run_colo_set_process_memory_fraction_and_colo_device_memory_capacity() @pytest.mark.dist @pytest.mark.parametrize("world_size", [3, 4]) def test_memory_utils(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_memory_utils(world_size=2)
#!/usr/bin/env python # -*- encoding: utf-8 -*- import pytest import torch import torch.nn.functional as F from colossalai.context.parallel_mode import ParallelMode from colossalai.context.random import add_seed, seed, set_mode, reset_seeds from colossalai.utils.activation_checkpoint import checkpoint def forward(x, weight): out = torch.matmul(x, weight) with seed(ParallelMode.DATA): out_ = F.dropout(out, p=0.4, training=True) return out_ def forward_inplace_ckpt(x, weight, cpu_offload=False): out = torch.matmul(x, weight) bn = torch.nn.BatchNorm1d(4, affine=False) bn = bn.to(device="cuda") out = bn(out) def ckpt0(x): return F.relu(x, inplace=True) out = checkpoint(ckpt0, cpu_offload, out, use_reentrant=False) return out def forward_inplace(x, weight): out = torch.matmul(x, weight) bn = torch.nn.BatchNorm1d(4, affine=False) bn = bn.to(device="cuda") out = bn(out) out = F.relu(out, inplace=True) return out @pytest.mark.gpu @pytest.mark.parametrize("use_reentrant", [True, False]) @pytest.mark.parametrize("cpu_offload", [True, False]) def test_activation_checkpointing(cpu_offload, use_reentrant): # as seed manager is singleton # if we don't reset seeds here, # other tests might affect this test reset_seeds() # We put initilization here to avoid change cuda rng state below inputs = torch.rand(2, 2, requires_grad=True, device='cuda') weight = torch.rand(2, 4, requires_grad=True, device='cuda') # Get a copy of input tensors inputs_ = torch.empty(2, 2, requires_grad=True, device='cuda') inputs_.data.copy_(inputs.data) weight_ = torch.empty(2, 4, requires_grad=True, device='cuda') weight_.data.copy_(weight.data) add_seed(ParallelMode.GLOBAL, 1024) add_seed(ParallelMode.DATA, 1026) set_mode(ParallelMode.GLOBAL) global_cuda_rng_state = torch.cuda.get_rng_state() set_mode(ParallelMode.DATA) data_parallel_cuda_rng_state = torch.cuda.get_rng_state() set_mode(ParallelMode.GLOBAL) out = forward(inputs, weight) loss = out.sum() loss.backward() # Recover cuda rng states set_mode(ParallelMode.GLOBAL) torch.cuda.set_rng_state(global_cuda_rng_state) set_mode(ParallelMode.DATA) torch.cuda.set_rng_state(data_parallel_cuda_rng_state) set_mode(ParallelMode.GLOBAL) out = checkpoint(forward, cpu_offload, inputs_, weight_, use_reentrant=use_reentrant) loss = out.sum() loss.backward() assert torch.all(inputs.grad == inputs_.grad), 'Gradient of the input does not match' torch.cuda.empty_cache() # Extra test for use_reentrant=False if use_reentrant == False: # Recover cuda rng states set_mode(ParallelMode.GLOBAL) torch.cuda.set_rng_state(global_cuda_rng_state) set_mode(ParallelMode.DATA) torch.cuda.set_rng_state(data_parallel_cuda_rng_state) set_mode(ParallelMode.GLOBAL) out = forward_inplace(inputs, weight) loss = out.sum() loss.backward() # Recover cuda rng states set_mode(ParallelMode.GLOBAL) torch.cuda.set_rng_state(global_cuda_rng_state) set_mode(ParallelMode.DATA) torch.cuda.set_rng_state(data_parallel_cuda_rng_state) set_mode(ParallelMode.GLOBAL) out = forward_inplace_ckpt(inputs_, weight_, cpu_offload=cpu_offload) loss = out.sum() loss.backward() assert torch.all(inputs.grad == inputs_.grad), 'Gradient of the input does not match' torch.cuda.empty_cache() # as seed manager is singleton # if we don't reset seeds here, # other tests will fail if running together with this test # as other tests can't overwrite the seed set by this test reset_seeds() if __name__ == "__main__": test_activation_checkpointing(False, False)
#!/usr/bin/env python # -*- encoding: utf-8 -*- import pprint from functools import partial import colossalai.nn as col_nn import pytest import torch import torch.multiprocessing as mp import torch.nn as nn from colossalai.context.parallel_mode import ParallelMode from colossalai.core import global_context as gpc from colossalai.initialize import launch from colossalai.logging import disable_existing_loggers from colossalai.utils import free_port, get_current_device, is_using_pp from colossalai.utils.checkpointing import gather_pipeline_parallel_state_dict, load_checkpoint, save_checkpoint from colossalai.testing import rerun_on_exception, skip_if_not_enough_gpus def build_pipeline(model): from colossalai.pipeline.utils import partition_uniform pipeline_size = gpc.get_world_size(ParallelMode.PIPELINE) pipeline_rank = gpc.get_local_rank(ParallelMode.PIPELINE) depth = len(model) start, end = partition_uniform(depth, pipeline_size, 1)[pipeline_rank][0] layers = [] for i in range(depth): if start <= i < end: layers.append(model[i]) else: layers.append(nn.Identity()) return nn.Sequential(*tuple(layers)) def check_equal(A, B): assert torch.allclose(A, B, rtol=1e-3, atol=1e-2) def check_checkpoint_2p5d(rank, world_size, port): config = dict(parallel=dict(pipeline=dict(size=2), tensor=dict(size=4, depth=1, mode="2.5d")),) disable_existing_loggers() launch(config=config, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl") m1 = nn.Sequential(nn.Linear(4, 8), nn.Linear(8, 4)) sd1 = m1.state_dict() if gpc.get_global_rank() == 0: print(f"Rank {gpc.get_global_rank()}:\n{pprint.pformat(sd1)}\n") save_checkpoint("test.pt", 0, m1) m2 = nn.Sequential(col_nn.Linear(4, 8), col_nn.Linear(8, 4)) if is_using_pp(): m2 = build_pipeline(m2) load_checkpoint("test.pt", m2) sd2 = m2.state_dict() if is_using_pp() and gpc.get_local_rank(ParallelMode.TENSOR) == 0: sd2 = gather_pipeline_parallel_state_dict(sd2) print(f"Rank {gpc.get_global_rank()}:\n{pprint.pformat(sd2)}\n") if gpc.get_global_rank() == 0: for k, v in sd1.items(): assert k in sd2 check_equal(v, sd2[k].to(torch.device("cpu"))) @pytest.mark.dist @pytest.mark.skip("takes too long") @skip_if_not_enough_gpus(min_gpus=8) @rerun_on_exception(exception_type=mp.ProcessRaisedException, pattern=".*Address already in use.*") def test_checkpoint_2p5d(): world_size = 8 run_func = partial(check_checkpoint_2p5d, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == "__main__": test_checkpoint_2p5d()
#!/usr/bin/env python # -*- encoding: utf-8 -*- import pprint from functools import partial import colossalai.nn as col_nn import pytest import torch import torch.multiprocessing as mp import torch.nn as nn from colossalai.context.parallel_mode import ParallelMode from colossalai.core import global_context as gpc from colossalai.initialize import launch from colossalai.logging import disable_existing_loggers from colossalai.utils import free_port, get_current_device, is_using_pp from colossalai.utils.checkpointing import gather_pipeline_parallel_state_dict, load_checkpoint, save_checkpoint from colossalai.testing import rerun_on_exception, skip_if_not_enough_gpus def build_pipeline(model): from colossalai.pipeline.utils import partition_uniform pipeline_size = gpc.get_world_size(ParallelMode.PIPELINE) pipeline_rank = gpc.get_local_rank(ParallelMode.PIPELINE) depth = len(model) start, end = partition_uniform(depth, pipeline_size, 1)[pipeline_rank][0] layers = [] for i in range(depth): if start <= i < end: layers.append(model[i]) else: layers.append(nn.Identity()) return nn.Sequential(*tuple(layers)) def check_equal(A, B): assert torch.allclose(A, B, rtol=1e-3, atol=1e-2) def check_checkpoint_3d(rank, world_size, port): config = dict(parallel=dict(pipeline=dict(size=1), tensor=dict(size=8, mode="3d")),) disable_existing_loggers() launch(config=config, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl") m1 = nn.Sequential(nn.Linear(4, 8), nn.Linear(8, 4)) sd1 = m1.state_dict() if gpc.get_global_rank() == 0: print(f"Rank {gpc.get_global_rank()}:\n{pprint.pformat(sd1)}\n") save_checkpoint("test.pt", 0, m1) m2 = nn.Sequential(col_nn.Linear(4, 8), col_nn.Linear(8, 4)) if is_using_pp(): m2 = build_pipeline(m2) load_checkpoint("test.pt", m2) sd2 = m2.state_dict() if is_using_pp() and gpc.get_local_rank(ParallelMode.TENSOR) == 0: sd2 = gather_pipeline_parallel_state_dict(sd2) print(f"Rank {gpc.get_global_rank()}:\n{pprint.pformat(sd2)}\n") if gpc.get_global_rank() == 0: for k, v in sd1.items(): assert k in sd2 check_equal(v, sd2[k].to(torch.device("cpu"))) @pytest.mark.dist @pytest.mark.skip("takes too long") @skip_if_not_enough_gpus(min_gpus=8) @rerun_on_exception(exception_type=mp.ProcessRaisedException, pattern=".*Address already in use.*") def test_checkpoint_3d(): world_size = 8 run_func = partial(check_checkpoint_3d, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == "__main__": test_checkpoint_3d()
#!/usr/bin/env python # -*- encoding: utf-8 -*- import pprint from functools import partial import colossalai.nn as col_nn import pytest import torch import torch.multiprocessing as mp import torch.nn as nn from colossalai.context.parallel_mode import ParallelMode from colossalai.core import global_context as gpc from colossalai.initialize import launch from colossalai.logging import disable_existing_loggers from colossalai.utils import free_port, get_current_device, is_using_pp from colossalai.utils.checkpointing import gather_pipeline_parallel_state_dict, load_checkpoint, save_checkpoint from colossalai.testing import rerun_on_exception, skip_if_not_enough_gpus def build_pipeline(model): from colossalai.pipeline.utils import partition_uniform pipeline_size = gpc.get_world_size(ParallelMode.PIPELINE) pipeline_rank = gpc.get_local_rank(ParallelMode.PIPELINE) depth = len(model) start, end = partition_uniform(depth, pipeline_size, 1)[pipeline_rank][0] layers = [] for i in range(depth): if start <= i < end: layers.append(model[i]) else: layers.append(nn.Identity()) return nn.Sequential(*tuple(layers)) def check_equal(A, B): assert torch.allclose(A, B, rtol=1e-3, atol=1e-2) def check_checkpoint_2d(rank, world_size, port): config = dict(parallel=dict(pipeline=dict(size=2), tensor=dict(size=4, mode="2d")),) disable_existing_loggers() launch(config=config, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl") m1 = nn.Sequential(nn.Linear(4, 8), nn.Linear(8, 4)) sd1 = m1.state_dict() if gpc.get_global_rank() == 0: print(f"Rank {gpc.get_global_rank()}:\n{pprint.pformat(sd1)}\n") save_checkpoint("test.pt", 0, m1) m2 = nn.Sequential(col_nn.Linear(4, 8), col_nn.Linear(8, 4)) if is_using_pp(): m2 = build_pipeline(m2) load_checkpoint("test.pt", m2) sd2 = m2.state_dict() if is_using_pp() and gpc.get_local_rank(ParallelMode.TENSOR) == 0: sd2 = gather_pipeline_parallel_state_dict(sd2) print(f"Rank {gpc.get_global_rank()}:\n{pprint.pformat(sd2)}\n") if gpc.get_global_rank() == 0: for k, v in sd1.items(): assert k in sd2 check_equal(v, sd2[k].to(torch.device("cpu"))) @pytest.mark.dist @pytest.mark.skip("takes too long") @skip_if_not_enough_gpus(min_gpus=8) @rerun_on_exception(exception_type=mp.ProcessRaisedException, pattern=".*Address already in use.*") def test_checkpoint_2d(): world_size = 8 run_func = partial(check_checkpoint_2d, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == "__main__": test_checkpoint_2d()
#!/usr/bin/env python # -*- encoding: utf-8 -*- import pprint from functools import partial import colossalai.nn as col_nn import pytest import torch import torch.multiprocessing as mp import torch.nn as nn from colossalai.context.parallel_mode import ParallelMode from colossalai.core import global_context as gpc from colossalai.initialize import launch from colossalai.logging import disable_existing_loggers from colossalai.utils import free_port, is_using_pp from colossalai.utils.checkpointing import gather_pipeline_parallel_state_dict, load_checkpoint, save_checkpoint from colossalai.testing import rerun_on_exception, skip_if_not_enough_gpus def build_pipeline(model): from colossalai.pipeline.utils import partition_uniform pipeline_size = gpc.get_world_size(ParallelMode.PIPELINE) pipeline_rank = gpc.get_local_rank(ParallelMode.PIPELINE) depth = len(model) start, end = partition_uniform(depth, pipeline_size, 1)[pipeline_rank][0] layers = [] for i in range(depth): if start <= i < end: layers.append(model[i]) else: layers.append(nn.Identity()) return nn.Sequential(*tuple(layers)) def check_equal(A, B): assert torch.allclose(A, B, rtol=1e-3, atol=1e-2) def check_checkpoint_1d(rank, world_size, port): config = dict(parallel=dict(pipeline=dict(size=2), tensor=dict(size=4, mode="1d")),) disable_existing_loggers() launch(config=config, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl") m1 = nn.Sequential(nn.Linear(4, 8), nn.Linear(8, 4)) sd1 = m1.state_dict() if gpc.get_global_rank() == 0: print(f"Rank {gpc.get_global_rank()}:\n{pprint.pformat(sd1)}\n") save_checkpoint("test.pt", 0, m1) m2 = nn.Sequential(col_nn.Linear(4, 8), col_nn.Linear(8, 4)) if is_using_pp(): m2 = build_pipeline(m2) load_checkpoint("test.pt", m2) sd2 = m2.state_dict() if is_using_pp() and gpc.get_local_rank(ParallelMode.TENSOR) == 0: sd2 = gather_pipeline_parallel_state_dict(sd2) print(f"Rank {gpc.get_global_rank()}:\n{pprint.pformat(sd2)}\n") if gpc.get_global_rank() == 0: for k, v in sd1.items(): assert k in sd2 check_equal(v, sd2[k].to(torch.device("cpu"))) @pytest.mark.dist @pytest.mark.skip("takes too long") @skip_if_not_enough_gpus(min_gpus=8) @rerun_on_exception(exception_type=mp.ProcessRaisedException, pattern=".*Address already in use.*") def test_checkpoint_1d(): world_size = 8 run_func = partial(check_checkpoint_1d, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == "__main__": test_checkpoint_1d()
import os from functools import partial from tempfile import TemporaryDirectory from typing import Dict import colossalai import pytest import torch import torch.distributed as dist import torch.multiprocessing as mp import torch.nn as nn from colossalai.testing import rerun_if_address_is_in_use from colossalai.utils import free_port from colossalai.utils.checkpoint_io.constant import (GLOBAL_META_FILE_NAME, META_CKPT_FILE_NAME, MODEL_CKPT_FILE_NAME, OTHER_CKPT_FILE_NAME) from colossalai.utils.checkpoint_io.io import save from colossalai.utils.checkpoint_io.meta import ParamDistMeta from torch import Tensor from torch.optim import Adam def check_model_state_dict(a: Dict[str, Tensor], b: Dict[str, Tensor]) -> None: assert set(a.keys()) == set(b.keys()) for k, v in a.items(): assert torch.equal(v, b[k]) def check_optim_state_dict(a: dict, b: dict, ignore_param_gruops: bool = False) -> None: assert set(a['state'].keys()) == set(b['state'].keys()) for k, state in a['state'].items(): b_state = b['state'][k] for v1, v2 in zip(state.values(), b_state.values()): if isinstance(v1, Tensor): assert torch.equal(v1, v2) else: assert v1 == v2 if not ignore_param_gruops: assert a['param_groups'] == b['param_groups'] class DummyModel(nn.Module): def __init__(self) -> None: super().__init__() self.fc = nn.Linear(20, 1) def prepare_model_optim(): model = DummyModel() for p in model.parameters(): p.grad = torch.ones_like(p) optimizer = Adam(model.parameters(), lr=1e-3) optimizer.step() return model, optimizer def test_overwrite(): model = DummyModel() with TemporaryDirectory() as dir_name: with open(os.path.join(dir_name, MODEL_CKPT_FILE_NAME.replace('.bin', '-shard0.bin')), 'a') as f: pass with pytest.raises(RuntimeError, match=r'Save error: Checkpoint ".+" exists\. \(overwrite = False\)'): save(dir_name, model) def test_save_global(): model, optimizer = prepare_model_optim() with TemporaryDirectory() as dir_name: save(dir_name, model, optimizer) assert len(os.listdir(dir_name)) == 5 global_meta = torch.load(os.path.join(dir_name, GLOBAL_META_FILE_NAME)) assert len(global_meta['meta']) == 1 and global_meta['meta'][0] == META_CKPT_FILE_NAME meta = torch.load(os.path.join(dir_name, META_CKPT_FILE_NAME)) assert len(meta['model']) == 1 assert len(meta['optimizer']) == 1 model_state_dict = torch.load(os.path.join(dir_name, meta['model'][0])) check_model_state_dict(model.state_dict(), model_state_dict) optimizer_state_dict = torch.load(os.path.join(dir_name, meta['optimizer'][0])) check_optim_state_dict(optimizer.state_dict(), optimizer_state_dict) other_state_dict = torch.load(os.path.join(dir_name, OTHER_CKPT_FILE_NAME)) assert len(other_state_dict) == 0 def test_save_global_shard(): model, optimizer = prepare_model_optim() with TemporaryDirectory() as dir_name: save(dir_name, model, optimizer, max_shard_size_gb=80 / 1024**3) assert len(os.listdir(dir_name)) == 7 meta = torch.load(os.path.join(dir_name, META_CKPT_FILE_NAME)) assert len(meta['model']) == 2 and len(meta['optimizer']) == 2 model_state_dicts = [torch.load(os.path.join(dir_name, name)) for name in meta['model']] assert len(set(model_state_dicts[0].keys()) & set(model_state_dicts[1].keys())) == 0 check_model_state_dict(model.state_dict(), {**model_state_dicts[0], **model_state_dicts[1]}) optimizer_state_dicts = [torch.load(os.path.join(dir_name, name)) for name in meta['optimizer']] assert len(set(optimizer_state_dicts[0]['state'].keys()) & set(optimizer_state_dicts[1]['state'].keys())) == 0 assert 'param_groups' in optimizer_state_dicts[0] and 'param_groups' not in optimizer_state_dicts[1] check_optim_state_dict( optimizer.state_dict(), { 'state': { **optimizer_state_dicts[0]['state'], **optimizer_state_dicts[1]['state'] }, 'param_groups': optimizer_state_dicts[0]['param_groups'] }) def run_dist(rank, world_size, port, func): colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') func() def run_save_dist(dir_name): model, optmizer = prepare_model_optim() dist_metas = { 'fc.weight': ParamDistMeta(dist.get_rank(), dist.get_world_size(), 0, 1), 'fc.bias': ParamDistMeta(dist.get_rank(), dist.get_world_size(), 0, 1) } save(dir_name, model, optmizer, dist_meta=dist_metas) @pytest.mark.dist @rerun_if_address_is_in_use() def test_save_dist(): with TemporaryDirectory() as dir_name: fn = partial(run_save_dist, dir_name) world_size = 2 proc_fn = partial(run_dist, world_size=world_size, port=free_port(), func=fn) mp.spawn(proc_fn, nprocs=world_size) assert len(os.listdir(dir_name)) == 8 global_meta = torch.load(os.path.join(dir_name, GLOBAL_META_FILE_NAME)) assert len(global_meta['meta']) == 2 for rank, meta_name in enumerate(global_meta['meta']): meta = torch.load(os.path.join(dir_name, meta_name)) assert meta.get('dist_meta', None) is not None assert len(meta['model']) == 1 and len(meta['optimizer']) == 1 model_state_dict = torch.load(os.path.join(dir_name, meta['model'][0])) assert len(model_state_dict) == 2 optimizer_state_dict = torch.load(os.path.join(dir_name, meta['optimizer'][0])) assert len(optimizer_state_dict['state']) == 2 assert 'param_groups' in optimizer_state_dict if __name__ == '__main__': test_overwrite() test_save_global() test_save_global_shard() test_save_dist()
import torch import torch.nn as nn from colossalai.utils.checkpoint_io.meta import ParamDistMeta from colossalai.utils.checkpoint_io.utils import build_checkpoints from torch.optim import Adam class DummyModel(nn.Module): def __init__(self) -> None: super().__init__() self.fc = nn.Linear(20, 1) def test_global_model(): model = DummyModel() model_checkpoints, optimizer_checkpoints, meta = build_checkpoints(0, model) assert len(model_checkpoints) == 1 assert len(optimizer_checkpoints) == 0 assert meta['dist_meta'] is None orig_state_dict = model.state_dict() global_state_dict = model_checkpoints[0] assert set(orig_state_dict.keys()) == set(global_state_dict.keys()) for k, v in orig_state_dict.items(): assert torch.equal(v, global_state_dict[k]) def test_global_model_shard(): model = DummyModel() model_checkpoints, optimizer_checkpoints, meta = build_checkpoints(80, model) assert len(model_checkpoints) == 2 assert len(optimizer_checkpoints) == 0 assert meta['dist_meta'] is None orig_state_dict = model.state_dict() assert set(orig_state_dict.keys()) == set(model_checkpoints[0].keys()) | set(model_checkpoints[1].keys()) assert len(set(model_checkpoints[0].keys()) & set(model_checkpoints[1].keys())) == 0 for k, v in orig_state_dict.items(): for state_dict in model_checkpoints: if k in state_dict: assert torch.equal(v, state_dict[k]) def test_global_optimizer(): model = DummyModel() for p in model.parameters(): p.grad = torch.rand_like(p) optimizer = Adam(model.parameters(), lr=1e-3) optimizer.step() model_checkpoints, optimizer_checkpoints, meta = build_checkpoints(0, model, optimizer) assert len(optimizer_checkpoints) == 1 assert meta['param_to_os'] == {'fc.weight': 0, 'fc.bias': 1} for state in meta['paired_os'].values(): for k, is_paired in state.items(): if k == 'step': assert not is_paired else: assert is_paired orig_state_dict = optimizer.state_dict() state_dict = optimizer_checkpoints[0] for k, orig_state in orig_state_dict['state'].items(): state = state_dict['state'][k] for v1, v2 in zip(orig_state.values(), state.values()): if isinstance(v2, torch.Tensor): assert torch.equal(v1, v2) else: assert v2 == v2 assert orig_state_dict['param_groups'] == state_dict['param_groups'] def test_global_optimizer_shard(): model = DummyModel() for p in model.parameters(): p.grad = torch.rand_like(p) optimizer = Adam(model.parameters(), lr=1e-3) optimizer.step() model_checkpoints, optimizer_checkpoints, meta = build_checkpoints(80, model, optimizer) assert len(optimizer_checkpoints) == 2 assert 'param_groups' in optimizer_checkpoints[0] and 'param_groups' not in optimizer_checkpoints[1] orig_state_dict = optimizer.state_dict() assert set(orig_state_dict['state'].keys()) == set(optimizer_checkpoints[0]['state'].keys()) | set( optimizer_checkpoints[1]['state'].keys()) assert len(set(optimizer_checkpoints[0]['state'].keys()) & set(optimizer_checkpoints[1]['state'].keys())) == 0 for k, orig_state in orig_state_dict['state'].items(): state = optimizer_checkpoints[0]['state'][k] if k in optimizer_checkpoints[0][ 'state'] else optimizer_checkpoints[1]['state'][k] for v1, v2 in zip(orig_state.values(), state.values()): if isinstance(v2, torch.Tensor): assert torch.equal(v1, v2) else: assert v1 == v2 assert orig_state_dict['param_groups'] == optimizer_checkpoints[0]['param_groups'] def test_dist_model_optimizer(): model = DummyModel() for p in model.parameters(): p.grad = torch.rand_like(p) optimizer = Adam(model.parameters(), lr=1e-3) optimizer.step() dist_meta = {'fc.weight': ParamDistMeta(0, 2, 0, 1), 'fc.bias': ParamDistMeta(1, 2, 0, 1)} model_checkpoints, optimizer_checkpoints, meta = build_checkpoints(0, model, optimizer, dist_meta=dist_meta) assert dist_meta == meta['dist_meta'] assert len(model_checkpoints) == 1 assert len(optimizer_checkpoints) == 1 assert 'fc.weight' in model_checkpoints[0] and 'fc.bias' in model_checkpoints[0] assert 0 in optimizer_checkpoints[0]['state'] and 1 in optimizer_checkpoints[0]['state'] dist_meta = {'fc.weight': ParamDistMeta(1, 2, 0, 1), 'fc.bias': ParamDistMeta(1, 2, 0, 1)} model_checkpoints, optimizer_checkpoints, meta = build_checkpoints(0, model, optimizer, dist_meta=dist_meta) assert dist_meta == meta['dist_meta'] assert len(model_checkpoints) == 1 assert len(optimizer_checkpoints) == 1 if __name__ == '__main__': test_global_model() test_global_model_shard() test_global_optimizer() test_global_optimizer_shard() test_dist_model_optimizer()
import os from functools import partial from tempfile import TemporaryDirectory import colossalai import pytest import torch import torch.distributed as dist import torch.multiprocessing as mp import torch.nn as nn from colossalai.testing import rerun_if_address_is_in_use from colossalai.utils import free_port from colossalai.utils.checkpoint_io.constant import GLOBAL_META_FILE_NAME from colossalai.utils.checkpoint_io.io import redist, save from colossalai.utils.checkpoint_io.meta import (ParamDistMeta, ParamRedistMeta, PipelineRedistMeta, RankRedistMeta, RedistMeta) from torch.optim import Adam class DummyModel(nn.Module): def __init__(self) -> None: super().__init__() self.fc = nn.Linear(20, 1) def prepare_model_optim(shard: bool = False, zero: bool = False): model = DummyModel() if shard: model.fc.weight.data = model.fc.weight.chunk(2, 1)[dist.get_rank() % 2] if zero: dp_rank = dist.get_rank() // 2 model.fc.weight.data = model.fc.weight.reshape(-1).split([3, model.fc.weight.size(1) - 3], 0)[dp_rank] if dp_rank != 0: model.fc.bias.data = torch.empty(0, dtype=model.fc.bias.dtype) for p in model.parameters(): p.grad = torch.ones_like(p) optimizer = Adam(model.parameters(), lr=1e-3) optimizer.step() return model, optimizer def get_dist_metas(nprocs: int, zero: bool = False): dp_world_size = nprocs // 2 dist_metas = [] for rank in range(nprocs): if zero: dist_metas.append({ 'fc.weight': ParamDistMeta(rank // 2, dp_world_size, rank % 2, 2, tp_shard_dims=[1], tp_num_parts=[2], zero_numel=10, zero_orig_shape=[1, 10]), 'fc.bias': ParamDistMeta(rank // 2, dp_world_size, 0, 1, zero_numel=1, zero_orig_shape=[1]) }) else: dist_metas.append({ 'fc.weight': ParamDistMeta(rank // 2, dp_world_size, rank % 2, 2, tp_shard_dims=[1], tp_num_parts=[2]), 'fc.bias': ParamDistMeta(rank // 2, dp_world_size, 0, 1) }) return dist_metas def get_redist_meta(nprocs: int): dp_world_size = nprocs // 2 rank_meta = { 'fc.weight': {rank: RankRedistMeta(rank // 2, rank % 2, 0) for rank in range(nprocs)}, 'fc.bias': {rank: RankRedistMeta(rank // 2, 0, 0) for rank in range(nprocs)} } param_meta = { 'fc.weight': ParamRedistMeta(dp_world_size, 2, tp_shard_dims=[1], tp_num_parts=[2]), 'fc.bias': ParamRedistMeta(dp_world_size, 1) } return RedistMeta(rank_meta, [], param_meta) def check_checkpoint_shape(dir_name: str): global_meta = torch.load(os.path.join(dir_name, GLOBAL_META_FILE_NAME)) for meta_name in global_meta['meta']: meta = torch.load(os.path.join(dir_name, meta_name)) assert meta['dist_meta'] is not None assert len(meta['params']) == 2 assert len(meta['model']) == 1 and len(meta['optimizer']) == 1 model_state_dict = torch.load(os.path.join(dir_name, meta['model'][0])) assert len(model_state_dict) == 2 assert model_state_dict['fc.weight'].size(1) == 10 optimizer_state_dict = torch.load(os.path.join(dir_name, meta['optimizer'][0])) assert len(optimizer_state_dict['state']) == 2 assert 'param_groups' in optimizer_state_dict and 'state' in optimizer_state_dict assert optimizer_state_dict['state'][0]['exp_avg'].size(1) == 10 assert optimizer_state_dict['state'][0]['exp_avg_sq'].size(1) == 10 def test_global_to_dist(): model, optimizer = prepare_model_optim() with TemporaryDirectory() as dir_name: save(dir_name, model, optimizer) with TemporaryDirectory() as output_dir: redist(dir_name, output_dir, get_redist_meta(4), get_dist_metas(4)) check_checkpoint_shape(output_dir) def run_dist(rank, world_size, port, func): colossalai.launch(config={'parallel': { 'tensor': { 'mode': '1d', 'size': 2 } }}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') func() def run_save_dist(dir_name: str, zero: bool): model, optmizer = prepare_model_optim(shard=True, zero=zero) rank = dist.get_rank() save(dir_name, model, optmizer, dist_meta=get_dist_metas(4, zero)[rank]) @pytest.mark.dist @pytest.mark.parametrize("zero", [False, True]) @rerun_if_address_is_in_use() def test_dist_to_dist(zero: bool): with TemporaryDirectory() as dir_name: fn = partial(run_save_dist, dir_name, zero) world_size = 4 proc_fn = partial(run_dist, world_size=world_size, port=free_port(), func=fn) mp.spawn(proc_fn, nprocs=world_size) with TemporaryDirectory() as output_dir: redist(dir_name, output_dir, get_redist_meta(4), get_dist_metas(4)) if not zero: assert len(os.listdir(output_dir)) == 0 else: check_checkpoint_shape(output_dir) if __name__ == '__main__': test_global_to_dist() test_dist_to_dist(False) test_dist_to_dist(True)
from colossalai.utils.checkpoint_io.meta import ParamDistMeta from colossalai.utils.checkpoint_io.constant import GLOBAL_META_FILE_NAME from colossalai.utils.checkpoint_io.io import save, merge from colossalai.testing import rerun_if_address_is_in_use from colossalai.utils import free_port from tempfile import TemporaryDirectory from torch.optim import Adam from functools import partial import torch import os import pytest import colossalai import torch.nn as nn import torch.distributed as dist import torch.multiprocessing as mp class DummyModel(nn.Module): def __init__(self) -> None: super().__init__() self.fc = nn.Linear(20, 1) def prepare_model_optim(shard: bool = False, zero: bool = False): model = DummyModel() if shard: model.fc.weight.data = model.fc.weight.chunk(2, 1)[dist.get_rank() % 2] if zero: dp_rank = dist.get_rank() // 2 model.fc.weight.data = model.fc.weight.reshape(-1).split([3, model.fc.weight.size(1) - 3], 0)[dp_rank] if dp_rank != 0: model.fc.bias.data = torch.empty(0, dtype=model.fc.bias.dtype) for p in model.parameters(): p.grad = torch.ones_like(p) optimizer = Adam(model.parameters(), lr=1e-3) optimizer.step() return model, optimizer def test_merge_global(): model, optimizer = prepare_model_optim() with TemporaryDirectory() as dir_name: save(dir_name, model, optimizer) with TemporaryDirectory() as output_dir: merge(dir_name, output_dir) assert len(os.listdir(output_dir)) == 0 with TemporaryDirectory() as dir_name: save(dir_name, model, optimizer, max_shard_size_gb=80 / 1024**3) with TemporaryDirectory() as output_dir: merge(dir_name, output_dir) assert len(os.listdir(output_dir)) == 0 def run_dist(rank, world_size, port, func): colossalai.launch(config={'parallel': { 'tensor': { 'mode': '1d', 'size': 2 } }}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') func() def run_save_dist(dir_name: str, zero: bool): model, optmizer = prepare_model_optim(shard=True, zero=zero) rank = dist.get_rank() dp_world_size = dist.get_world_size() // 2 if not zero: dist_metas = { 'fc.weight': ParamDistMeta(rank // 2, dp_world_size, rank % 2, 2, tp_shard_dims=[1], tp_num_parts=[2]), 'fc.bias': ParamDistMeta(rank // 2, dp_world_size, 0, 1) } else: dist_metas = { 'fc.weight': ParamDistMeta(rank // 2, dp_world_size, rank % 2, 2, tp_shard_dims=[1], tp_num_parts=[2], zero_numel=10, zero_orig_shape=[1, 10]), 'fc.bias': ParamDistMeta(rank // 2, dp_world_size, 0, 1, zero_numel=1, zero_orig_shape=[1]) } save(dir_name, model, optmizer, dist_meta=dist_metas) @pytest.mark.dist @pytest.mark.parametrize("zero", [False, True]) @rerun_if_address_is_in_use() def test_merge_tp_dp(zero: bool): with TemporaryDirectory() as dir_name: fn = partial(run_save_dist, dir_name, zero) world_size = 4 proc_fn = partial(run_dist, world_size=world_size, port=free_port(), func=fn) mp.spawn(proc_fn, nprocs=world_size) with TemporaryDirectory() as output_dir: merge(dir_name, output_dir) assert len(os.listdir(output_dir)) == 5 global_meta = torch.load(os.path.join(output_dir, GLOBAL_META_FILE_NAME)) assert len(global_meta['meta']) == 1 meta = torch.load(os.path.join(output_dir, global_meta['meta'][0])) assert meta['dist_meta'] is None assert len(meta['params']) == 2 assert len(meta['model']) == 1 and len(meta['optimizer']) == 1 model_state_dict = torch.load(os.path.join(output_dir, meta['model'][0])) assert len(model_state_dict) == 2 assert model_state_dict['fc.weight'].size(1) == 20 optimizer_state_dict = torch.load(os.path.join(output_dir, meta['optimizer'][0])) assert len(optimizer_state_dict['state']) == 2 assert 'param_groups' in optimizer_state_dict and 'state' in optimizer_state_dict assert optimizer_state_dict['state'][0]['exp_avg'].size(1) == 20 assert optimizer_state_dict['state'][0]['exp_avg_sq'].size(1) == 20 if __name__ == '__main__': test_merge_global() test_merge_tp_dp(False) test_merge_tp_dp(True)
import torch from colossalai.utils.checkpoint_io.meta import ParamRedistMeta from colossalai.utils.checkpoint_io.distributed import flatten_zero_param, split_tp_param, unmerge_param def test_flatten_zero_param_even() -> None: redist_meta = ParamRedistMeta(4, 1, zero_start_dp_rank=0, zero_offsets=[0, 4, 8, 12]) orig_tensor = torch.rand(4, 4) tensors = list(orig_tensor.reshape(-1).chunk(4)) flat_tensors = flatten_zero_param(orig_tensor, redist_meta) assert len(tensors) == len(flat_tensors) for t, st in zip(tensors, flat_tensors): assert torch.equal(t, st) unmerged_tensors = unmerge_param(orig_tensor, redist_meta) assert len(unmerged_tensors) == 1 unmerged_tensors = unmerged_tensors[0] assert len(tensors) == len(unmerged_tensors) for t, tl in zip(tensors, unmerged_tensors): assert torch.equal(t, tl) def test_flatten_zero_param_uneven() -> None: redist_meta = ParamRedistMeta(4, 1, zero_start_dp_rank=1, zero_offsets=[0, 13]) orig_tensor = torch.rand(4, 4) tensors = list(orig_tensor.reshape(-1).split([13, 3])) flat_tensors = flatten_zero_param(orig_tensor, redist_meta) assert flat_tensors[0].size(0) == 0 and flat_tensors[-1].size(0) == 0 flat_tensors = flat_tensors[1:-1] assert len(tensors) == len(flat_tensors) for t, st in zip(tensors, flat_tensors): assert torch.equal(t, st) unmerged_tensors = unmerge_param(orig_tensor, redist_meta) assert len(unmerged_tensors) == 1 unmerged_tensors = unmerged_tensors[0] assert unmerged_tensors[0].size(0) == 0 and unmerged_tensors[-1].size(0) == 0 unmerged_tensors = unmerged_tensors[1:-1] assert len(tensors) == len(unmerged_tensors) for t, tl in zip(tensors, unmerged_tensors): assert torch.equal(t, tl) def test_split_tp_param_1d_row() -> None: redist_meta = ParamRedistMeta(1, 4, tp_shard_dims=[0], tp_num_parts=[4]) orig_tensor = torch.rand(4, 4) tensors = [t.contiguous() for t in orig_tensor.chunk(4, 0)] split_tensors = split_tp_param(orig_tensor, redist_meta) assert len(tensors) == len(split_tensors) for t, st in zip(tensors, split_tensors): assert torch.equal(t, st) unmerged_tensors = unmerge_param(orig_tensor, redist_meta) assert len(tensors) == len(unmerged_tensors) for t, tl in zip(tensors, unmerged_tensors): assert len(tl) == 1 assert torch.equal(t, tl[0]) def test_split_tp_param_1d_col() -> None: redist_meta = ParamRedistMeta(1, 4, tp_shard_dims=[1], tp_num_parts=[4]) orig_tensor = torch.rand(4, 4) tensors = [t.contiguous() for t in orig_tensor.chunk(4, 1)] split_tensors = split_tp_param(orig_tensor, redist_meta) assert len(tensors) == len(split_tensors) for t, st in zip(tensors, split_tensors): assert torch.equal(t, st) unmerged_tensors = unmerge_param(orig_tensor, redist_meta) assert len(tensors) == len(unmerged_tensors) for t, tl in zip(tensors, unmerged_tensors): assert len(tl) == 1 assert torch.equal(t, tl[0]) def test_split_tp_param_2d() -> None: redist_meta = ParamRedistMeta(1, 6, tp_shard_dims=[0, 1], tp_num_parts=[2, 3]) orig_tensor = torch.rand(4, 6) tensors = [t.contiguous() for tl in orig_tensor.chunk(2, 0) for t in tl.chunk(3, 1)] split_tensors = split_tp_param(orig_tensor, redist_meta) assert len(tensors) == len(split_tensors) for t, st in zip(tensors, split_tensors): assert torch.equal(t, st) unmerged_tensors = unmerge_param(orig_tensor, redist_meta) assert len(tensors) == len(unmerged_tensors) for t, tl in zip(tensors, unmerged_tensors): assert len(tl) == 1 assert torch.equal(t, tl[0]) def test_split_tp_param_2d_reverse() -> None: redist_meta = ParamRedistMeta(1, 6, tp_shard_dims=[1, 0], tp_num_parts=[3, 2]) orig_tensor = torch.rand(4, 6) tensors = [t.contiguous() for tl in orig_tensor.chunk(2, 0) for t in tl.chunk(3, 1)] split_tensors = split_tp_param(orig_tensor, redist_meta) assert len(tensors) == len(split_tensors) for t, st in zip(tensors, split_tensors): assert torch.equal(t, st) unmerged_tensors = unmerge_param(orig_tensor, redist_meta) assert len(tensors) == len(unmerged_tensors) for t, tl in zip(tensors, unmerged_tensors): assert len(tl) == 1 assert torch.equal(t, tl[0]) def test_unmerge_param_hybrid() -> None: redist_meta = ParamRedistMeta(2, 6, tp_shard_dims=[1, 0], tp_num_parts=[3, 2], zero_start_dp_rank=0, zero_offsets=[0, 1]) orig_tensor = torch.rand(4, 6) tensors = [ chunk for tl in orig_tensor.chunk(2, 0) for t in tl.chunk(3, 1) for chunk in t.contiguous().reshape(-1).split([1, 3]) ] unmerged_tensors = unmerge_param(orig_tensor, redist_meta) assert len(unmerged_tensors) == 6 and len(unmerged_tensors[0]) == 2 for tp_rank in range(6): for dp_rank in range(2): assert torch.equal(tensors[tp_rank * 2 + dp_rank], unmerged_tensors[tp_rank][dp_rank]) def test_unmerge_param_dummy() -> None: redist_meta = ParamRedistMeta(1, 1) orig_tensor = torch.rand(4, 6) unmerged_tensors = unmerge_param(orig_tensor, redist_meta) assert len(unmerged_tensors) == 1 and len(unmerged_tensors[0]) == 1 assert torch.equal(orig_tensor, unmerged_tensors[0][0]) if __name__ == '__main__': test_flatten_zero_param_even() test_flatten_zero_param_uneven() test_split_tp_param_1d_row() test_split_tp_param_1d_col() test_split_tp_param_2d() test_split_tp_param_2d_reverse() test_unmerge_param_hybrid() test_unmerge_param_dummy()
import torch from colossalai.utils.checkpoint_io.meta import ParamDistMeta from colossalai.utils.checkpoint_io.distributed import unflatten_zero_param, gather_tp_param, merge_param def test_unflatten_zero_param_even() -> None: dist_metas = [ParamDistMeta(i, 4, 0, 1, zero_numel=16, zero_orig_shape=[4, 4]) for i in range(4)] orig_tensor = torch.rand(4, 4) tensors = list(orig_tensor.reshape(-1).chunk(4)) unflattened_tensor = unflatten_zero_param(tensors, dist_metas) assert torch.equal(orig_tensor, unflattened_tensor) merged_tensor = merge_param(tensors, dist_metas) assert torch.equal(orig_tensor, merged_tensor) def test_unflatten_zero_param_uneven() -> None: dist_metas = [ParamDistMeta(i, 4, 0, 1, zero_numel=16, zero_orig_shape=[4, 4]) for i in range(1, 3)] orig_tensor = torch.rand(4, 4) tensors = list(orig_tensor.reshape(-1).split([13, 3])) unflattened_tensor = unflatten_zero_param(tensors, dist_metas) assert torch.equal(orig_tensor, unflattened_tensor) merged_tensor = merge_param(tensors, dist_metas) assert torch.equal(orig_tensor, merged_tensor) def test_gather_tp_param_1d_row() -> None: dist_metas = [ParamDistMeta(0, 1, i, 4, tp_shard_dims=[0], tp_num_parts=[4]) for i in range(4)] orig_tensor = torch.rand(4, 4) tensors = [t.contiguous() for t in orig_tensor.chunk(4, 0)] gathered_tensor = gather_tp_param(tensors, dist_metas) assert torch.equal(orig_tensor, gathered_tensor) merged_tensor = merge_param(tensors, dist_metas) assert torch.equal(orig_tensor, merged_tensor) def test_gather_tp_param_1d_col() -> None: dist_metas = [ParamDistMeta(0, 1, i, 4, tp_shard_dims=[1], tp_num_parts=[4]) for i in range(4)] orig_tensor = torch.rand(4, 4) tensors = [t.contiguous() for t in orig_tensor.chunk(4, 1)] gathered_tensor = gather_tp_param(tensors, dist_metas) assert torch.equal(orig_tensor, gathered_tensor) merged_tensor = merge_param(tensors, dist_metas) assert torch.equal(orig_tensor, merged_tensor) def test_gather_tp_param_2d() -> None: dist_metas = [ParamDistMeta(0, 1, i, 6, tp_shard_dims=[0, 1], tp_num_parts=[2, 3]) for i in range(6)] orig_tensor = torch.rand(4, 6) tensors = [t.contiguous() for tl in orig_tensor.chunk(2, 0) for t in tl.chunk(3, 1)] gathered_tensor = gather_tp_param(tensors, dist_metas) assert torch.equal(orig_tensor, gathered_tensor) merged_tensor = merge_param(tensors, dist_metas) assert torch.equal(orig_tensor, merged_tensor) def test_gather_tp_param_2d_reverse() -> None: dist_metas = [ParamDistMeta(0, 1, i, 6, tp_shard_dims=[1, 0], tp_num_parts=[3, 2]) for i in range(6)] orig_tensor = torch.rand(4, 6) tensors = [t.contiguous() for tl in orig_tensor.chunk(2, 0) for t in tl.chunk(3, 1)] gathered_tensor = gather_tp_param(tensors, dist_metas) assert torch.equal(orig_tensor, gathered_tensor) merged_tensor = merge_param(tensors, dist_metas) assert torch.equal(orig_tensor, merged_tensor) def test_merge_param_hybrid() -> None: dist_metas = [ ParamDistMeta(i % 2, 2, i // 2, 6, tp_shard_dims=[1, 0], tp_num_parts=[3, 2], zero_numel=4, zero_orig_shape=[2, 2]) for i in range(12) ] orig_tensor = torch.rand(4, 6) tensors = [ chunk for tl in orig_tensor.chunk(2, 0) for t in tl.chunk(3, 1) for chunk in t.contiguous().reshape(-1).split([1, 3]) ] merged_tensor = merge_param(tensors, dist_metas) assert torch.equal(orig_tensor, merged_tensor) def test_merge_param_dummy() -> None: dist_metas = [ParamDistMeta(0, 1, 0, 1)] orig_tensor = torch.rand(4, 6) merged_tensor = merge_param([orig_tensor], dist_metas) assert torch.equal(orig_tensor, merged_tensor) if __name__ == '__main__': test_unflatten_zero_param_even() test_unflatten_zero_param_uneven() test_gather_tp_param_1d_row() test_gather_tp_param_1d_col() test_gather_tp_param_2d() test_gather_tp_param_2d_reverse() test_merge_param_hybrid() test_merge_param_dummy()
from copy import deepcopy from functools import partial from tempfile import TemporaryDirectory from typing import Dict import colossalai import pytest import torch import torch.distributed as dist import torch.multiprocessing as mp import torch.nn as nn from colossalai.testing import rerun_if_address_is_in_use from colossalai.utils import free_port from colossalai.utils.checkpoint_io.io import load, save from colossalai.utils.checkpoint_io.meta import (ParamDistMeta, ParamRedistMeta, RankRedistMeta, RedistMeta) from torch import Tensor from torch.nn import Module from torch.optim import Adam, Optimizer def check_model_state_dict(a: Dict[str, Tensor], b: Dict[str, Tensor]) -> None: assert set(a.keys()) == set(b.keys()) for k, v in a.items(): assert torch.equal(v, b[k]) def check_optim_state_dict(a: dict, b: dict, ignore_param_gruops: bool = False) -> None: assert set(a['state'].keys()) == set(b['state'].keys()) for k, state in a['state'].items(): b_state = b['state'][k] for v1, v2 in zip(state.values(), b_state.values()): if isinstance(v1, Tensor): assert torch.equal(v1, v2) else: assert v1 == v2 if not ignore_param_gruops: assert a['param_groups'] == b['param_groups'] class DummyModel(nn.Module): def __init__(self) -> None: super().__init__() self.fc = nn.Linear(20, 1) def prepare_model_optim(shard: bool = False, zero: bool = False): model = DummyModel() if shard: model.fc.weight.data = model.fc.weight.chunk(2, 1)[dist.get_rank() % 2] if zero: dp_rank = dist.get_rank() // 2 model.fc.weight.data = model.fc.weight.reshape(-1).split([3, model.fc.weight.size(1) - 3], 0)[dp_rank] if dp_rank != 0: model.fc.bias.data = torch.empty(0, dtype=model.fc.bias.dtype) for p in model.parameters(): p.grad = torch.rand_like(p) optimizer = Adam(model.parameters(), lr=1e-3) optimizer.step() return model, optimizer def reset_model_optim(model: Module, optimizer: Optimizer, scalar: float = 0.0): with torch.no_grad(): for p in model.parameters(): p.fill_(scalar) for state in optimizer.state.values(): for v in state.values(): if isinstance(v, Tensor): v.fill_(scalar) def get_dist_metas(nprocs: int, zero: bool = False): dp_world_size = nprocs // 2 dist_metas = [] for rank in range(nprocs): if zero: dist_metas.append({ 'fc.weight': ParamDistMeta(rank // 2, dp_world_size, rank % 2, 2, tp_shard_dims=[1], tp_num_parts=[2], zero_numel=10, zero_orig_shape=[1, 10]), 'fc.bias': ParamDistMeta(rank // 2, dp_world_size, 0, 1, zero_numel=1, zero_orig_shape=[1]) }) else: dist_metas.append({ 'fc.weight': ParamDistMeta(rank // 2, dp_world_size, rank % 2, 2, tp_shard_dims=[1], tp_num_parts=[2]), 'fc.bias': ParamDistMeta(rank // 2, dp_world_size, 0, 1) }) return dist_metas def get_redist_meta(nprocs: int): dp_world_size = nprocs // 2 rank_meta = { 'fc.weight': {rank: RankRedistMeta(rank // 2, rank % 2, 0) for rank in range(nprocs)}, 'fc.bias': {rank: RankRedistMeta(rank // 2, 0, 0) for rank in range(nprocs)} } param_meta = { 'fc.weight': ParamRedistMeta(dp_world_size, 2, tp_shard_dims=[1], tp_num_parts=[2]), 'fc.bias': ParamRedistMeta(dp_world_size, 1) } return RedistMeta(rank_meta, [], param_meta) @pytest.mark.parametrize('max_shard_size_gb', [80 / 1024**3, 0]) def test_save_global_load_global(max_shard_size_gb: float): model, optimizer = prepare_model_optim() with TemporaryDirectory() as dir_name: save(dir_name, model, optimizer, max_shard_size_gb=max_shard_size_gb) new_model, new_optimizer = prepare_model_optim() load(dir_name, new_model, new_optimizer, max_shard_size_gb=max_shard_size_gb) check_model_state_dict(model.state_dict(), new_model.state_dict()) check_optim_state_dict(optimizer.state_dict(), new_optimizer.state_dict()) def run_dist(rank, world_size, port, func): colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') func() def launch_dist(fn, world_size: int): proc_fn = partial(run_dist, world_size=world_size, port=free_port(), func=fn) mp.spawn(proc_fn, nprocs=world_size) def save_dist(dir_name: str, zero: bool): model, optmizer = prepare_model_optim(shard=True, zero=zero) reset_model_optim(model, optmizer) world_size = dist.get_world_size() rank = dist.get_rank() save(dir_name, model, optmizer, dist_meta=get_dist_metas(world_size, zero)[rank]) def load_and_check_dist(dir_name: str): world_size = dist.get_world_size() model, optmizer = prepare_model_optim(shard=True) reset_model_optim(model, optmizer) model_state_dict = deepcopy(model.state_dict()) optimizer_state_dict = deepcopy(optmizer.state_dict()) reset_model_optim(model, optmizer, 1) load(dir_name, model, optmizer, get_redist_meta(world_size), get_dist_metas(world_size)) check_model_state_dict(model_state_dict, model.state_dict()) check_optim_state_dict(optimizer_state_dict, optmizer.state_dict()) @pytest.mark.dist @rerun_if_address_is_in_use() def test_save_global_load_dist(): model, optimizer = prepare_model_optim() reset_model_optim(model, optimizer) with TemporaryDirectory() as dir_name: save(dir_name, model, optimizer) fn = partial(load_and_check_dist, dir_name) launch_dist(fn, 4) @pytest.mark.dist @rerun_if_address_is_in_use() def test_save_dist_load_dist(): with TemporaryDirectory() as dir_name: # save tp + dp fn = partial(save_dist, dir_name, False) launch_dist(fn, 2) # load tp + dp fn = partial(load_and_check_dist, dir_name) launch_dist(fn, 2) with TemporaryDirectory() as dir_name: # save tp + zero fn = partial(save_dist, dir_name, True) launch_dist(fn, 4) # load tp + dp fn = partial(load_and_check_dist, dir_name) launch_dist(fn, 2) launch_dist(fn, 4) if __name__ == '__main__': test_save_global_load_global(80 / 1024**3) test_save_global_load_global(0) test_save_global_load_dist() test_save_dist_load_dist()
import copy import pytest import colossalai import torch import torch.multiprocessing as mp from colossalai.testing import rerun_if_address_is_in_use from colossalai.utils.cuda import get_current_device from colossalai.utils import free_port from colossalai.utils.model.colo_init_context import ColoInitContext from functools import partial from tests.components_to_test.registry import non_distributed_component_funcs from colossalai.nn.parallel import ColoDDP from collections import OrderedDict from colossalai.tensor import ProcessGroup, ColoParameter def check_state_dict_equal(state_dict: OrderedDict, other_state_dict: OrderedDict): for (k1, t1), (k2, t2) in zip(state_dict.items(), other_state_dict.items()): assert k1 == k2 if t1.device != t2.device: temp_t2 = t2.to(t1.device) else: temp_t2 = t2 assert torch.equal(t1, temp_t2), "\t{}\n\t{}".format(t1, temp_t2) def init_ddp(module: torch.nn.Module) -> ColoDDP: pg = ProcessGroup() return ColoDDP(module, process_group=pg) def run_ddp_state_dict(): get_components_func = non_distributed_component_funcs.get_callable('gpt2') model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() torch_model = model_builder().cuda() with ColoInitContext(device=get_current_device()): model = model_builder() model = init_ddp(model) torch_state_dict = torch_model.state_dict() for param in model.parameters(): if isinstance(param, ColoParameter): assert param.get_process_group() is not None model.load_state_dict(torch_state_dict) for param in model.parameters(): if isinstance(param, ColoParameter): assert param.get_process_group() is not None state_dict = model.state_dict() check_state_dict_equal(torch_state_dict, state_dict) def run_dist(rank, world_size, port): colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') run_ddp_state_dict() @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 2]) @rerun_if_address_is_in_use() def test_state_dict(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_state_dict(2)
import pytest import colossalai import torch import torch.multiprocessing as mp from colossalai.testing import rerun_if_address_is_in_use from colossalai.utils.cuda import get_current_device from colossalai.utils import free_port from functools import partial from colossalai.nn.parallel.reducer import Reducer import torch.distributed as dist from torch.distributed.distributed_c10d import _get_default_group REDUCE_CNT = 0 def check_eq(grad, grad_clone): global REDUCE_CNT print(f'Rank{dist.get_rank()} check {REDUCE_CNT}') REDUCE_CNT += 1 assert torch.allclose(grad, grad_clone) def run_reducer(): grads = [torch.rand(64, i + 1, device=get_current_device()) for i in range(10)] grads_clone = [g.clone().detach() for g in grads] for g in grads: dist.all_reduce(g) reducer = Reducer(bucket_size_mb=1) for g, g_clone in zip(grads, grads_clone): reducer.all_reduce_async(g_clone, _get_default_group(), partial(check_eq, g)) reducer.flush() def run_dist(rank, world_size, port): colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') run_reducer() @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 2]) @rerun_if_address_is_in_use() def test_reducer(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_reducer(2)
import os import random from functools import partial from typing import Callable, Type import numpy as np import pytest import torch import torch.distributed as dist import torch.multiprocessing as mp import colossalai from colossalai.gemini.chunk import ChunkManager, search_chunk_configuration from colossalai.gemini.gemini_mgr import GeminiManager from colossalai.nn.parallel import ColoDDP, ZeroDDP from colossalai.tensor import ProcessGroup from colossalai.testing import rerun_if_address_is_in_use from colossalai.utils import free_port from colossalai.utils.cuda import get_current_device from colossalai.utils.model.colo_init_context import ColoInitContext def set_seed(seed): random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True def init_ddp(module: torch.nn.Module) -> ColoDDP: pg = ProcessGroup() return ColoDDP(module, process_group=pg) def init_ddpv2(module: torch.nn.Module) -> ZeroDDP: chunk_config, *_ = search_chunk_configuration(module, 4, 1024) chunk_manager = ChunkManager(chunk_config) gemini_manager = GeminiManager('cuda', chunk_manager) return ZeroDDP(module, gemini_manager) class Net(torch.nn.Module): def __init__(self) -> None: super().__init__() self.fc1 = torch.nn.Linear(3, 3, bias=False) self.fc2 = torch.nn.Linear(3, 1, bias=False) def forward(self, x): return self.fc2(self.fc1(x)) def run_fwd_bwd(ddp_cls: Type[ColoDDP], init_ddp_func: Callable[[torch.nn.Module], ColoDDP]): with ColoInitContext(device=get_current_device()): model = Net().cuda() w1 = model.fc1.weight w2 = model.fc2.weight ddp_cls.set_params_to_ignore([w2]) model = init_ddp_func(model) x = torch.rand(2, 3, device=get_current_device()) logits = model(x) loss = torch.sum(logits) model.backward(loss) if ddp_cls is ZeroDDP: w1s_grad = w1 else: w1s_grad = w1.grad w1_grads = [torch.empty_like(w1) for _ in range(dist.get_world_size())] dist.all_gather(w1_grads, w1s_grad) assert torch.equal(w1_grads[0], w1_grads[1]) w2_grads = [torch.empty_like(w2) for _ in range(dist.get_world_size())] dist.all_gather(w2_grads, w2.grad) assert not torch.equal(w2_grads[0], w2_grads[1]) def run_dist(rank, world_size, port): colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') set_seed(dist.get_rank()) run_fwd_bwd(ColoDDP, init_ddp) run_fwd_bwd(ZeroDDP, init_ddpv2) @pytest.mark.dist @pytest.mark.parametrize('world_size', [2]) @rerun_if_address_is_in_use() def test_ddp_ignore_params(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_ddp_ignore_params(2)
#!/usr/bin/env python # -*- encoding: utf-8 -*- import os from pathlib import Path import pytest from torchvision import transforms, datasets from torch.utils.data import DataLoader @pytest.mark.cpu def test_cifar10_dataset(): # build transform transform_pipeline = [transforms.ToTensor()] transform_pipeline = transforms.Compose(transform_pipeline) # build dataset dataset = datasets.CIFAR10(root=Path(os.environ['DATA']), train=True, download=True, transform=transform_pipeline) # build dataloader dataloader = DataLoader(dataset=dataset, batch_size=4, shuffle=True, num_workers=2) data_iter = iter(dataloader) img, label = data_iter.next() if __name__ == '__main__': test_cifar10_dataset()
#!/usr/bin/env python # -*- encoding: utf-8 -*- import os from functools import partial from pathlib import Path import pytest import torch import torch.distributed as dist import torch.multiprocessing as mp import colossalai from torchvision import transforms, datasets from colossalai.context import ParallelMode, Config from colossalai.core import global_context as gpc from colossalai.utils import get_dataloader, free_port from colossalai.testing import rerun_if_address_is_in_use CONFIG = Config(dict( parallel=dict( pipeline=dict(size=1), tensor=dict(size=1, mode=None), ), seed=1024, )) def run_data_sampler(rank, world_size, port): dist_args = dict(config=CONFIG, rank=rank, world_size=world_size, backend='gloo', port=port, host='localhost') colossalai.launch(**dist_args) print('finished initialization') # build dataset transform_pipeline = [transforms.ToTensor()] transform_pipeline = transforms.Compose(transform_pipeline) dataset = datasets.CIFAR10(root=Path(os.environ['DATA']), train=True, download=True, transform=transform_pipeline) # build dataloader dataloader = get_dataloader(dataset, batch_size=8, add_sampler=True) data_iter = iter(dataloader) img, label = data_iter.next() img = img[0] if gpc.get_local_rank(ParallelMode.DATA) != 0: img_to_compare = img.clone() else: img_to_compare = img dist.broadcast(img_to_compare, src=0, group=gpc.get_group(ParallelMode.DATA)) if gpc.get_local_rank(ParallelMode.DATA) != 0: assert not torch.equal( img, img_to_compare), 'Same image was distributed across ranks but expected it to be different' torch.cuda.empty_cache() @pytest.mark.cpu @rerun_if_address_is_in_use() def test_data_sampler(): world_size = 4 test_func = partial(run_data_sampler, world_size=world_size, port=free_port()) mp.spawn(test_func, nprocs=world_size) if __name__ == '__main__': test_data_sampler()
#!/usr/bin/env python # -*- encoding: utf-8 -*- import os from functools import partial from pathlib import Path import pytest import torch import torch.distributed as dist import torch.multiprocessing as mp from torchvision import transforms, datasets import colossalai from colossalai.context import ParallelMode, Config from colossalai.core import global_context as gpc from colossalai.utils import get_dataloader, free_port from colossalai.testing import rerun_if_address_is_in_use from torchvision import transforms CONFIG = Config( dict( train_data=dict( dataset=dict( type='CIFAR10', root=Path(os.environ['DATA']), train=True, download=True, ), dataloader=dict(num_workers=2, batch_size=2, shuffle=True), ), parallel=dict( pipeline=dict(size=1), tensor=dict(size=1, mode=None), ), seed=1024, )) def run_data_sampler(rank, world_size, port): dist_args = dict(config=CONFIG, rank=rank, world_size=world_size, backend='gloo', port=port, host='localhost') colossalai.launch(**dist_args) # build dataset transform_pipeline = [transforms.ToTensor(), transforms.RandomCrop(size=32, padding=4)] transform_pipeline = transforms.Compose(transform_pipeline) dataset = datasets.CIFAR10(root=Path(os.environ['DATA']), train=True, download=True, transform=transform_pipeline) # build dataloader dataloader = get_dataloader(dataset, batch_size=8, add_sampler=False) data_iter = iter(dataloader) img, label = data_iter.next() img = img[0] if gpc.get_local_rank(ParallelMode.DATA) != 0: img_to_compare = img.clone() else: img_to_compare = img dist.broadcast(img_to_compare, src=0, group=gpc.get_group(ParallelMode.DATA)) if gpc.get_local_rank(ParallelMode.DATA) != 0: # this is without sampler # this should be false if data parallel sampler to given to the dataloader assert torch.equal(img, img_to_compare), 'Same image was distributed across ranks and expected it to be the same' torch.cuda.empty_cache() @pytest.mark.cpu @rerun_if_address_is_in_use() def test_data_sampler(): world_size = 4 test_func = partial(run_data_sampler, world_size=world_size, port=free_port()) mp.spawn(test_func, nprocs=world_size) if __name__ == '__main__': test_data_sampler()
import torch from colossalai.auto_parallel.tensor_shard.utils import ( get_broadcast_shape, is_broadcastable, recover_sharding_spec_for_broadcast_shape, ) from colossalai.device.device_mesh import DeviceMesh from colossalai.tensor.sharding_spec import ShardingSpec def test_is_broadcastable(): x1 = torch.rand(4, 4, 8) x2 = torch.rand(1, 8) assert is_broadcastable(x1.shape, x2.shape) x1 = torch.rand(4, 2, 8) x2 = torch.rand(2, 8) assert is_broadcastable(x1.shape, x2.shape) x1 = torch.rand(4, 2, 8) x2 = torch.rand(4, 8) assert not is_broadcastable(x1.shape, x2.shape) def test_get_broadcast_shape(): x1 = torch.rand(4, 4, 8) x2 = torch.rand(1, 8) assert get_broadcast_shape(x1.shape, x2.shape) == [4, 4, 8] x1 = torch.rand(4, 2, 8) x2 = torch.rand(2, 8) assert get_broadcast_shape(x1.shape, x2.shape) == [4, 2, 8] x1 = torch.rand(4, 2, 8) x2 = torch.rand(8) assert get_broadcast_shape(x1.shape, x2.shape) == [4, 2, 8] def test_recover_sharding_spec_for_broadcast_shape(): x1 = torch.rand(4, 1, 8) x2 = torch.rand(2, 8) physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) # [[0, 1] # [2, 3]] device_mesh = DeviceMesh(physical_mesh_id, mesh_shape) broadcast_shape = get_broadcast_shape(x1.shape, x2.shape) logical_sharding_spec_for_x1 = ShardingSpec(device_mesh=device_mesh, dim_partition_dict={ 0: [0], 1: [1] }, entire_shape=broadcast_shape) physical_sharding_spec_for_x1, removed_dims = recover_sharding_spec_for_broadcast_shape( logical_sharding_spec_for_x1, broadcast_shape, x1.shape) print(physical_sharding_spec_for_x1) assert physical_sharding_spec_for_x1.entire_shape == x1.shape # dim 1 for the physical tensor is of broadcast type MULTIPLE, so should ignore assert physical_sharding_spec_for_x1.dim_partition_dict == {0: [0]} assert physical_sharding_spec_for_x1.sharding_sequence == ['S0', 'R', 'R']
import torch from colossalai.auto_parallel.tensor_shard.options import SolverOptions from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationDataType from colossalai.auto_parallel.tensor_shard.solver import CostGraph, GraphAnalyser, Solver, StrategiesConstructor from colossalai.device.device_mesh import DeviceMesh from colossalai.fx import ColoGraphModule, ColoTracer from colossalai.testing.pytest_wrapper import run_on_environment_flag def _param_resharding_cost_assertion(node): for strategy in node.strategies_vector: for prev_node, resharding_cost in strategy.resharding_costs.items(): if strategy.get_op_data_by_name(str(prev_node)).type == OperationDataType.PARAM: for cost in resharding_cost: assert cost.fwd == 0 assert cost.bwd == 0 assert cost.total == 0 class LinearModel(torch.nn.Module): def __init__(self, in_features, out_features): super().__init__() self.linear = torch.nn.Linear(in_features, out_features) def forward(self, x): x = self.linear(x) x = x * 2 return x class ConvModel(torch.nn.Module): def __init__(self, in_channels, out_channels, kernel_size, bias=True): super().__init__() self.conv = torch.nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, bias=bias) def forward(self, x): x = self.conv(x) x = x * 2 return x @run_on_environment_flag(name='AUTO_PARALLEL') def test_linear_module(): model = LinearModel(4, 8) physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) # [[0, 1] # [2, 3]] device_mesh = DeviceMesh(physical_mesh_id, mesh_shape) tracer = ColoTracer() # graph(): # %x : torch.Tensor [#users=1] = placeholder[target=x] # %linear_weight : [#users=1] = get_attr[target=linear.weight] # %linear_bias : [#users=1] = get_attr[target=linear.bias] # %linear : [#users=1] = call_function[target=torch._C._nn.linear](args = (%x, %linear_weight), kwargs = {}) # %add : [#users=1] = call_function[target=operator.add](args = (%linear, %linear_bias), kwargs = {}) # %mul : [#users=1] = call_function[target=operator.mul](args = (%add, 2), kwargs = {}) # return mul graph = tracer.trace(root=model, meta_args={'x': torch.rand(4, 4).to('meta')}) # def forward(self, x : torch.Tensor): # linear_weight = self.linear.weight # linear_bias = self.linear.bias # linear = torch._C._nn.linear(x, linear_weight); x = linear_weight = None # add = linear + linear_bias; linear = linear_bias = None # mul = add * 2; add = None # return mul gm = ColoGraphModule(model, graph) gm.recompile() node_list = list(graph.nodes) solver_options = SolverOptions() strategies_constructor = StrategiesConstructor(graph, device_mesh, solver_options) strategies_constructor.build_strategies_and_cost() linear_node = node_list[3] _param_resharding_cost_assertion(linear_node) @run_on_environment_flag(name='AUTO_PARALLEL') def test_conv_module(): model = ConvModel(3, 6, 2) physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) # [[0, 1] # [2, 3]] device_mesh = DeviceMesh(physical_mesh_id, mesh_shape) tracer = ColoTracer() # graph(): # %x : torch.Tensor [#users=1] = placeholder[target=x] # %conv_weight : [#users=1] = get_attr[target=conv.weight] # %conv_bias : [#users=1] = get_attr[target=conv.bias] # %conv2d : [#users=1] = call_function[target=torch.conv2d](args = (%x, %conv_weight), kwargs = {}) # %view : [#users=1] = call_method[target=view](args = (%conv_bias, [1, -1, 1, 1]), kwargs = {}) # %add : [#users=1] = call_function[target=operator.add](args = (%conv2d, %view), kwargs = {}) # %mul : [#users=1] = call_function[target=operator.mul](args = (%add, 2), kwargs = {}) # return mul graph = tracer.trace(root=model, meta_args={'x': torch.rand(4, 3, 64, 64).to('meta')}) # def forward(self, x : torch.Tensor): # conv_weight = self.conv.weight # conv_bias = self.conv.bias # conv2d = torch.conv2d(x, conv_weight); x = conv_weight = None # view = conv_bias.view([1, -1, 1, 1]); conv_bias = None # add = conv2d + view; conv2d = view = None # mul = add * 2; add = None # return mul gm = ColoGraphModule(model, graph) gm.recompile() node_list = list(graph.nodes) conv_node = node_list[3] solver_options = SolverOptions() strategies_constructor = StrategiesConstructor(graph, device_mesh, solver_options) strategies_constructor.build_strategies_and_cost() _param_resharding_cost_assertion(conv_node) if __name__ == '__main__': test_linear_module() test_conv_module()
import torch import torch.nn as nn from colossalai.auto_parallel.tensor_shard.solver import GraphAnalyser from colossalai.fx import ColoGraphModule, ColoTracer class LinearModel(nn.Module): def __init__(self): super().__init__() self.linear1 = nn.Linear(4, 4) self.relu = nn.ReLU(inplace=True) self.linear2 = nn.Linear(4, 4) def forward(self, x1, x2): x1 = x1 * 2 x1 = self.linear1(x1) x1 = self.relu(x1) x1 = self.linear2(x1) out = x1 + x2 return out def test_liveness_analysis(): model = LinearModel() tracer = ColoTracer() graph = tracer.trace(model, meta_args={ 'x1': torch.rand(4, 4, device='meta'), 'x2': torch.rand(4, 4, device='meta') }) gm = ColoGraphModule(root=model, graph=graph, class_name=model.__class__.__name__) graph_analyser = GraphAnalyser(gm) liveness_list = graph_analyser.liveness_analysis() stage_count = len(liveness_list) # if a LiveStage is covered by another LiveStage, we just keep the larger one. assert stage_count == 1 # a variable named `relu` must exist # and this live var must have inplace = True assert liveness_list[0].all_live_vars.exists('relu') relu_var = liveness_list[0].all_live_vars.get('relu') assert relu_var.is_inplace # the unique vars must be fewer than the all vars since in-place ops exist all_live_vars = liveness_list[0].all_live_vars unique_live_vars = liveness_list[0].unique_live_vars assert len(unique_live_vars) + 1 == len(all_live_vars) if __name__ == '__main__': test_liveness_analysis()
import copy from functools import partial import pytest import torch import torch.multiprocessing as mp from torch.nn.parallel import DistributedDataParallel as DDP from colossalai.auto_parallel.tensor_shard.initialize import initialize_model from colossalai.device.device_mesh import DeviceMesh from colossalai.initialize import launch from colossalai.logging import disable_existing_loggers from colossalai.nn.optimizer import HybridAdam from colossalai.nn.parallel import zero_model_wrapper, zero_optim_wrapper from colossalai.tensor.process_group import ProcessGroup from colossalai.testing import assert_close, rerun_if_address_is_in_use from colossalai.testing.pytest_wrapper import run_on_environment_flag from colossalai.utils import free_port, get_current_device from colossalai.utils.model.colo_init_context import ColoInitContext, post_process_colo_init_ctx class MLP(torch.nn.Module): def __init__(self, in_features): super().__init__() self.linear_1 = torch.nn.Linear(in_features, 4 * in_features, bias=False) self.linear_2 = torch.nn.Linear(4 * in_features, in_features, bias=False) def forward(self, x): x = self.linear_1(x) x = self.linear_2(x) return x def check_auto_parallel_with_gemini(rank, world_size, port): disable_existing_loggers() launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') model = MLP(4).half().cuda() input = torch.rand(4, 4).half().cuda() output_compare = model(input) loss_compare = output_compare.sum() loss_compare.backward() grad_compare = copy.deepcopy(model.linear_1.weight.grad) physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) # [[0, 1] # [2, 3]] device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) meta_args = {'x': torch.rand(4, 4).half().to('meta')} gm, solution = initialize_model(model, meta_args=meta_args, device_mesh=device_mesh, return_solution=True, solver_preference='tp', shard_option='shard_last_axis') if rank == 0: msg = '| TP strategy combination chosen by auto-parallel solver |' msg_length = len(msg) print('=' * msg_length) print(msg) print('=' * msg_length) for strategy in solution: print(strategy) print('=' * msg_length) dp_process_group = ProcessGroup(rank=rank, ranks=[0, 1, 2, 3], tp_degree=2, dp_degree=2) gemini_config = dict(strict_ddp_mode=False, device=get_current_device(), placement_policy='cpu', pin_memory=True, search_range_mb=128) post_process_colo_init_ctx(gm, device=get_current_device(), default_pg=dp_process_group) gm = zero_model_wrapper(gm, zero_stage=3, gemini_config=gemini_config) optimizer = HybridAdam(gm.parameters(), betas=(0, 0)) optimizer = zero_optim_wrapper(gm, optimizer, initial_scale=1) output = gm(input) assert_close(output, output_compare) print(f'output on rank{rank} is correct') loss = output.sum() optimizer.zero_grad() optimizer.backward(loss) optimizer.step() if rank in (0, 2): assert_close(list(optimizer.optim.state.values())[0]['exp_avg'].half(), grad_compare.narrow(0, 0, 8).flatten()) if rank in (1, 3): assert_close(list(optimizer.optim.state.values())[0]['exp_avg'].half(), grad_compare.narrow(0, 8, 8).flatten()) print(f'gradient on rank{rank} is correct') @run_on_environment_flag(name='AUTO_PARALLEL') @pytest.mark.dist @rerun_if_address_is_in_use() def test_auto_parallel_with_gemini(): world_size = 4 run_func = partial(check_auto_parallel_with_gemini, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_auto_parallel_with_gemini()
import torch from torch.fx import GraphModule from torchvision.models import resnet50 from colossalai.auto_parallel.tensor_shard.constants import BATCHNORM_MODULE_OP from colossalai.auto_parallel.tensor_shard.options import SolverOptions from colossalai.auto_parallel.tensor_shard.solver import CostGraph, GraphAnalyser, Solver, StrategiesConstructor from colossalai.device.device_mesh import DeviceMesh from colossalai.fx.tracer.tracer import ColoTracer from colossalai.tensor.shape_consistency import ShapeConsistencyManager from colossalai.testing.pytest_wrapper import run_on_environment_flag @run_on_environment_flag(name='AUTO_PARALLEL') def test_cost_graph(): physical_mesh_id = torch.arange(0, 8) mesh_shape = (2, 4) # [[0, 1] # [2, 3]] device_mesh = DeviceMesh(physical_mesh_id, mesh_shape) shape_consistency_manager = ShapeConsistencyManager() tracer = ColoTracer() model = resnet50(num_classes=100000) input_sample = {'x': torch.rand(128, 3, 224, 224).to('meta')} graph = tracer.trace(root=model, meta_args=input_sample) # graph(): # %x : torch.Tensor [#users=1] = placeholder[target=x] # %conv1 : [#users=1] = call_module[target=conv1](args = (%x,), kwargs = {}) # %bn1 : [#users=1] = call_module[target=bn1](args = (%conv1,), kwargs = {}) # %relu : [#users=1] = call_module[target=relu](args = (%bn1,), kwargs = {}) # %maxpool : [#users=2] = call_module[target=maxpool](args = (%relu,), kwargs = {}) # %layer1_0_conv1 : [#users=1] = call_module[target=layer1.0.conv1](args = (%maxpool,), kwargs = {}) # %layer1_0_bn1 : [#users=1] = call_module[target=layer1.0.bn1](args = (%layer1_0_conv1,), kwargs = {}) # %layer1_0_relu : [#users=1] = call_module[target=layer1.0.relu](args = (%layer1_0_bn1,), kwargs = {}) # %layer1_0_conv2 : [#users=1] = call_module[target=layer1.0.conv2](args = (%layer1_0_relu,), kwargs = {}) # %layer1_0_bn2 : [#users=1] = call_module[target=layer1.0.bn2](args = (%layer1_0_conv2,), kwargs = {}) # %add : [#users=1] = call_function[target=operator.add](args = (%layer1_0_bn2, %maxpool), kwargs = {}) # %layer1_0_relu_1 : [#users=2] = call_module[target=layer1.0.relu](args = (%add,), kwargs = {}) # %layer1_1_conv1 : [#users=1] = call_module[target=layer1.1.conv1](args = (%layer1_0_relu_1,), kwargs = {}) # %layer1_1_bn1 : [#users=1] = call_module[target=layer1.1.bn1](args = (%layer1_1_conv1,), kwargs = {}) # %layer1_1_relu : [#users=1] = call_module[target=layer1.1.relu](args = (%layer1_1_bn1,), kwargs = {}) # %layer1_1_conv2 : [#users=1] = call_module[target=layer1.1.conv2](args = (%layer1_1_relu,), kwargs = {}) # %layer1_1_bn2 : [#users=1] = call_module[target=layer1.1.bn2](args = (%layer1_1_conv2,), kwargs = {}) # %add_1 : [#users=1] = call_function[target=operator.add](args = (%layer1_1_bn2, %layer1_0_relu_1), kwargs = {}) # ... # %avgpool : [#users=1] = call_module[target=avgpool](args = (%layer4_2_relu_1,), kwargs = {}) # %flatten : [#users=1] = call_function[target=torch.flatten](args = (%avgpool, 1), kwargs = {}) # %fc : [#users=1] = call_module[target=fc](args = (%flatten,), kwargs = {}) # return fc gm = GraphModule(model, graph, model.__class__.__name__) gm.recompile() graph_analyser = GraphAnalyser(gm) liveness_list = graph_analyser.liveness_analysis() solver_options = SolverOptions() strategies_constructor = StrategiesConstructor(graph, device_mesh, solver_options) strategies_constructor.build_strategies_and_cost() cost_graph = CostGraph(strategies_constructor.leaf_strategies) cost_graph.simplify_graph() solver = Solver(gm.graph, strategies_constructor, cost_graph, graph_analyser) ret = solver.call_solver_serialized_args() print(ret[0]) print(solver.last_s_val) strategies_list = solver.last_s_val computation_cost = 0 communication_cost = 0 communication_cost_bn = 0 memory_cost = 0 for index, node in enumerate(graph.nodes): if node.op == 'call_module': submod = node.graph.owning_module.get_submodule(node.target) if type(submod) in BATCHNORM_MODULE_OP: communication_cost_bn += node.strategies_vector[strategies_list[index]].communication_cost.total print(node.name, node.strategies_vector[strategies_list[index]].name) computation_cost += node.strategies_vector[strategies_list[index]].compute_cost.total communication_cost += node.strategies_vector[strategies_list[index]].communication_cost.total node_memory_cost = node.strategies_vector[strategies_list[index]].memory_cost.total if isinstance(node_memory_cost, tuple): node_memory_cost = node_memory_cost[0] memory_cost += node_memory_cost.activation + node_memory_cost.parameter print(f'computation cost is {computation_cost}') print(f'communication cost is {communication_cost}') print(f'memory cost is {memory_cost}') print(f'bn communication cost is {communication_cost_bn}') if __name__ == '__main__': test_cost_graph()
import copy from functools import partial import pytest import torch import torch.multiprocessing as mp from torch.nn.parallel import DistributedDataParallel as DDP from colossalai.auto_parallel.tensor_shard.initialize import initialize_model from colossalai.device.device_mesh import DeviceMesh from colossalai.initialize import launch from colossalai.logging import disable_existing_loggers from colossalai.testing import assert_close, rerun_if_address_is_in_use from colossalai.testing.pytest_wrapper import run_on_environment_flag from colossalai.utils import free_port class MLP(torch.nn.Module): def __init__(self, in_features): super().__init__() self.linear_1 = torch.nn.Linear(in_features, 4 * in_features, bias=False) self.linear_2 = torch.nn.Linear(4 * in_features, in_features, bias=False) def forward(self, x): x = self.linear_1(x) x = self.linear_2(x) return x def check_compatibility_with_ddp(rank, world_size, port): disable_existing_loggers() launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') model = MLP(4).cuda() input = torch.rand(4, 4).cuda() output_compare = model(input) loss_compare = output_compare.sum() loss_compare.backward() grad_compare = copy.deepcopy(model.linear_1.weight.grad) physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) # [[0, 1] # [2, 3]] device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) meta_args = {'x': torch.rand(4, 4).to('meta')} gm, solution = initialize_model(model, meta_args=meta_args, device_mesh=device_mesh, return_solution=True, solver_preference='tp', shard_option='shard_last_axis') msg = '| TP strategy combination chosen by auto-parallel solver |' msg_length = len(msg) if rank == 0: print('=' * msg_length) print(msg) print('=' * msg_length) for strategy in solution: print(strategy) print('=' * msg_length) dp_process_group = None for (ranks, process_group_handle) in device_mesh.process_groups_dict[0]: if rank in ranks: dp_process_group = process_group_handle assert dp_process_group is not None gm = DDP(gm, process_group=dp_process_group) output = gm(input) assert_close(output, output_compare) print(f'output on rank{rank} is correct') loss = output.sum() loss.backward() if rank in (0, 2): assert_close(gm.module.module.linear_1.weight.grad, grad_compare.narrow(0, 0, 8)) if rank in (1, 3): assert_close(gm.module.module.linear_1.weight.grad, grad_compare.narrow(0, 8, 8)) print(f'gradient on rank{rank} is correct') @run_on_environment_flag(name='AUTO_PARALLEL') @pytest.mark.dist @rerun_if_address_is_in_use() def test_compatibility_with_ddp(): world_size = 4 run_func = partial(check_compatibility_with_ddp, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_compatibility_with_ddp()
import copy from functools import partial import pytest import torch import torch.multiprocessing as mp import torch.nn as nn from colossalai.auto_parallel.tensor_shard.initialize import initialize_model from colossalai.device.device_mesh import DeviceMesh from colossalai.initialize import launch from colossalai.logging import disable_existing_loggers from colossalai.testing import assert_close, rerun_if_address_is_in_use from colossalai.testing.pytest_wrapper import run_on_environment_flag from colossalai.utils import free_port class ConvModel(nn.Module): def __init__(self, c_in, c_out): super().__init__() self.conv = nn.Conv2d(c_in, c_out, kernel_size=3, padding=1, bias=False) def forward(self, x): x = self.conv(x) x = torch.flatten(x) return x def check_apply(rank, world_size, port): disable_existing_loggers() launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') input = torch.rand(4, 4, 4, 4).cuda() test_input = copy.deepcopy(input) # graph(): # %x : torch.Tensor [#users=1] = placeholder[target=x] # %conv : [#users=1] = call_module[target=conv](args = (%mul,), kwargs = {}) # return conv model = ConvModel(4, 4).cuda() test_model = copy.deepcopy(model) physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) # [[0, 1] # [2, 3]] device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) meta_args = {'x': torch.rand(4, 4, 4, 4).to('meta')} gm = initialize_model(model, meta_args, device_mesh) output = gm(input) origin_output = test_model(test_input) assert output.equal(origin_output) origin_loss = origin_output.sum() loss = output.sum() origin_loss.backward() loss.backward() grad_0 = test_model.conv.weight.grad.narrow(0, 0, 1) grad_1 = test_model.conv.weight.grad.narrow(0, 1, 1) grad_2 = test_model.conv.weight.grad.narrow(0, 2, 1) grad_3 = test_model.conv.weight.grad.narrow(0, 3, 1) if rank == 0: assert_close(gm.module.conv.weight.grad.data, grad_0.data) elif rank == 1: assert_close(gm.module.conv.weight.grad.data, grad_1.data) elif rank == 2: assert_close(gm.module.conv.weight.grad.data, grad_2.data) elif rank == 3: assert_close(gm.module.conv.weight.grad.data, grad_3.data) else: raise ValueError(f'rank {rank} does not exist.') # skip this test due to pulp not installed in CI environment @run_on_environment_flag(name='AUTO_PARALLEL') @pytest.mark.dist @rerun_if_address_is_in_use() def test_apply(): world_size = 4 run_func = partial(check_apply, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_apply()
from functools import partial import pytest import torch import torch.multiprocessing as mp from colossalai.auto_parallel.tensor_shard.initialize import initialize_model from colossalai.device.device_mesh import DeviceMesh from colossalai.initialize import launch from colossalai.logging import disable_existing_loggers from colossalai.testing import assert_close, rerun_if_address_is_in_use from colossalai.testing.pytest_wrapper import run_on_environment_flag from colossalai.utils import free_port class LinearModel(torch.nn.Module): def __init__(self, in_features, out_features): super().__init__() self.linear = torch.nn.Linear(in_features, out_features) def forward(self, x): x = self.linear(x) x = x * 2 return x class ConvModel(torch.nn.Module): def __init__(self, in_channels, out_channels, kernel_size, bias=True): super().__init__() self.conv = torch.nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, bias=bias) def forward(self, x): x = self.conv(x) x = x * 2 return x def check_linear_module(rank, world_size, port): disable_existing_loggers() launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') model = LinearModel(4, 8).cuda() input = torch.rand(4, 4).cuda() output_compare = model(input) physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) # [[0, 1] # [2, 3]] device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) meta_args = {'x': torch.rand(4, 4).to('meta')} gm = initialize_model(model, meta_args=meta_args, device_mesh=device_mesh) output = gm(input) assert_close(output, output_compare) def check_conv_module(rank, world_size, port): disable_existing_loggers() launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') model = ConvModel(3, 6, 2).cuda() input = torch.rand(4, 3, 64, 64).cuda() output_compare = model(input) physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) # [[0, 1] # [2, 3]] device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) meta_args = {'x': torch.rand(4, 3, 64, 64).to('meta')} gm = initialize_model(model, meta_args=meta_args, device_mesh=device_mesh) output = gm(input) assert_close(output, output_compare) @run_on_environment_flag(name='AUTO_PARALLEL') @pytest.mark.dist @rerun_if_address_is_in_use() def test_bias_addition_module(): world_size = 4 run_func_linear = partial(check_linear_module, world_size=world_size, port=free_port()) mp.spawn(run_func_linear, nprocs=world_size) run_func_conv = partial(check_conv_module, world_size=world_size, port=free_port()) mp.spawn(run_func_conv, nprocs=world_size) if __name__ == '__main__': test_bias_addition_module()
from functools import partial from typing import Optional, Tuple, Union import pytest import torch import torch.multiprocessing as mp import torch.nn as nn from torch.utils.checkpoint import checkpoint from transformers.pytorch_utils import Conv1D from colossalai.auto_parallel.tensor_shard.initialize import initialize_model from colossalai.device.device_mesh import DeviceMesh from colossalai.fx.graph_module import ColoGraphModule from colossalai.fx.tracer import ColoTracer from colossalai.initialize import launch from colossalai.logging import disable_existing_loggers from colossalai.tensor.shape_consistency import ShapeConsistencyManager from colossalai.testing import rerun_if_address_is_in_use from colossalai.testing.pytest_wrapper import run_on_environment_flag from colossalai.utils import free_port HIDDEN_SIZE = 16 class GPT2MLPWithCkpt(nn.Module): def __init__(self, intermediate_size, hidden_size): super().__init__() embed_dim = hidden_size self.c_fc = Conv1D(intermediate_size, embed_dim) self.c_proj = Conv1D(embed_dim, intermediate_size) self.act = torch.nn.ReLU() def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor: hidden_states = self.c_fc(hidden_states) hidden_states = checkpoint(self.c_proj, hidden_states) hidden_states = self.act(hidden_states) return hidden_states def check_act_ckpt(rank, world_size, port): disable_existing_loggers() launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') model = GPT2MLPWithCkpt(intermediate_size=4 * HIDDEN_SIZE, hidden_size=HIDDEN_SIZE) input_sample = { 'hidden_states': torch.rand(1, 64, HIDDEN_SIZE).to('meta'), } physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) # [[0, 1] # [2, 3]] device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) gm = initialize_model(model, input_sample, device_mesh) code = gm.module.graph.python_code('self').src assert "runtime_comm_spec_apply_1 = colossalai_auto_parallel_passes_runtime_apply_pass_runtime_comm_spec_apply(linear_1, comm_actions_dict, 12, 'linear_1')" in code assert "view_3 = colossalai.utils.activation_checkpoint.checkpoint(self.checkpoint_0, False, view_1, comm_actions_dict, use_reentrant=True)" in code @run_on_environment_flag(name='AUTO_PARALLEL') @pytest.mark.dist @rerun_if_address_is_in_use() def test_mlp_layer(): world_size = 4 run_func = partial(check_act_ckpt, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_mlp_layer()
from functools import partial import pytest import torch import torch.multiprocessing as mp import torch.nn as nn from colossalai.auto_parallel.tensor_shard.node_handler import LinearModuleHandler from colossalai.auto_parallel.tensor_shard.sharding_strategy import ShardingStrategy, StrategiesVector from colossalai.device.device_mesh import DeviceMesh from colossalai.fx import ColoGraphModule, ColoTracer from colossalai.initialize import launch from colossalai.logging import disable_existing_loggers from colossalai.testing.pytest_wrapper import run_on_environment_flag from colossalai.testing.utils import parameterize, rerun_if_address_is_in_use from colossalai.utils import free_port from tests.test_auto_parallel.test_tensor_shard.test_metainfo.utils import mem_test_for_node_strategy if torch.__version__ >= '1.12.0': from colossalai.auto_parallel.meta_profiler import MetaInfo, meta_register class MyModule(nn.Module): def __init__(self, in_features=64, out_features=128): super().__init__() self.fc_weight = nn.Parameter(torch.randn(out_features, in_features)) def forward(self, input): return nn.functional.linear(input, self.fc_weight) def _linear_module_mem_test(rank, world_size, port): """This function is for linear memory test Test and print real memory cost and estimated, this test will not be executed except with the tag AUTO_PARALLEL Args: rank: device rank bias: indicate whether linear module need bias world_size: number of devices port: port for initializing process group """ disable_existing_loggers() launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') model = nn.Sequential(nn.Linear(64, 128, bias=False)).cuda() input = torch.rand(8, 8, 16, 64).cuda() input.requires_grad = True physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) # memory test mem_test_for_node_strategy(rank=rank, model=model, device_mesh=device_mesh, node_index=1, strategy_number=13, input_args=[input], meta_arg_names=["input"]) @run_on_environment_flag(name='AUTO_PARALLEL') @pytest.mark.dist @rerun_if_address_is_in_use() def test_linear_module_meta_concrete_info_match(): world_size = 4 run_func_module = partial(_linear_module_mem_test, world_size=world_size, port=free_port()) mp.spawn(run_func_module, nprocs=world_size) def _linear_function_mem_test(rank, world_size, port): """This function is for linear memory test Test and print real memory cost and estimated, this test will not be executed except with the tag AUTO_PARALLEL Args: rank: device rank bias: indicate whether linear module need bias world_size: number of devices port: port for initializing process group """ disable_existing_loggers() launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') model = MyModule().cuda() input = torch.rand(8, 8, 16, 64).cuda() input.requires_grad = True physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) # memory test mem_test_for_node_strategy(rank=rank, model=model, device_mesh=device_mesh, node_index=2, strategy_number=24, input_args=[input], meta_arg_names=["input"]) @run_on_environment_flag(name='AUTO_PARALLEL') @pytest.mark.dist @rerun_if_address_is_in_use() def test_linear_function_meta_concrete_info_match(): world_size = 4 run_func_module = partial(_linear_function_mem_test, world_size=world_size, port=free_port()) mp.spawn(run_func_module, nprocs=world_size) if __name__ == '__main__': # test_linear_module_meta_concrete_info_match() test_linear_function_meta_concrete_info_match()
from functools import partial import pytest import torch import torch.multiprocessing as mp import torch.nn as nn from colossalai.auto_parallel.meta_profiler import meta_register from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType from colossalai.device.device_mesh import DeviceMesh from colossalai.fx import ColoGraphModule, ColoTracer from colossalai.initialize import launch from colossalai.logging import disable_existing_loggers from colossalai.testing.pytest_wrapper import run_on_environment_flag from colossalai.testing.utils import parameterize, rerun_if_address_is_in_use from colossalai.utils import free_port from tests.test_auto_parallel.test_tensor_shard.test_metainfo.utils import mem_test_for_node_strategy, print_results def _ReLU_module_mem_test(rank, world_size, port): """This function is for ReLU memory test Test and print real memory cost and estimated, this test will not be executed except with the tag AUTO_PARALLEL Args: Args: rank: device rank bias: indicate whether conv module need bias world_size: number of devices port: port for initializing process group """ disable_existing_loggers() launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') model = nn.Sequential(nn.ReLU()).cuda() input = torch.rand(4, 128, 64, 64).cuda() input.requires_grad = True physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) # index of target node in computation graph node_index = 1 # total number of target node strategies strategy_number = 1 mem_test_for_node_strategy(rank=rank, model=model, device_mesh=device_mesh, node_index=node_index, strategy_number=strategy_number, input_args=[input], meta_arg_names=['input']) @run_on_environment_flag(name='AUTO_PARALLEL') @pytest.mark.dist @rerun_if_address_is_in_use() def test_ReLU_meta_concrete_info_match(): world_size = 4 run_func_module = partial(_ReLU_module_mem_test, world_size=world_size, port=free_port()) mp.spawn(run_func_module, nprocs=world_size) @pytest.mark.skipif(torch.__version__ < '1.12.0', reason="need pytorch 1.12.0 or higher for aten level operations") def test_sofmax_meta_info(): meta_func = meta_register.get(torch.nn.functional.softmax) # construct meta tensors input_tensor = torch.rand(256, 1024, device="meta") output_tensor = torch.rand(256, 1024, device="meta") softmax_dim = 0 # construct operation data input_data = OperationData(name='input', type=OperationDataType.ARG, data=input_tensor) output_data = OperationData(name='output', type=OperationDataType.OUTPUT, data=output_tensor) softmax_dim_data = OperationData(name='softmax_dim', type=OperationDataType.ARG, data=softmax_dim) # construct args and kwargs args = [input_data, softmax_dim_data, output_data] kwargs = {'inplace': False} # estimated results compute_cost, memory_cost, fwd_in, fwd_buffer, fwd_out = meta_func(*args, **kwargs) # actual results input_real_tensor = torch.rand(256, 1024, device="cuda") input_real_tensor.requires_grad = True # fwd torch.cuda.reset_peak_memory_stats() mem_stamp0 = torch.cuda.memory_allocated() output_real_tensor = torch.nn.functional.softmax(input_real_tensor, dim=softmax_dim) fwd_allocated = torch.cuda.memory_allocated() - mem_stamp0 fwd_peak = torch.cuda.max_memory_allocated() - mem_stamp0 # bwd upstream_grad = torch.rand_like(output_real_tensor) torch.cuda.reset_peak_memory_stats() mem_stamp0 = torch.cuda.memory_allocated() torch.autograd.backward(output_real_tensor, upstream_grad) bwd_allocated = torch.cuda.memory_allocated() - mem_stamp0 bwd_peak = torch.cuda.max_memory_allocated() - mem_stamp0 print_results([input_real_tensor], [output_real_tensor], compute_cost, memory_cost, fwd_allocated, fwd_peak, bwd_allocated, bwd_peak) if __name__ == '__main__': # test_ReLU_meta_concrete_info_match() test_sofmax_meta_info()
from functools import partial import pytest import torch import torch.multiprocessing as mp import torch.nn as nn from colossalai.device.device_mesh import DeviceMesh from colossalai.fx import ColoGraphModule, ColoTracer from colossalai.initialize import launch from colossalai.logging import disable_existing_loggers from colossalai.testing.pytest_wrapper import run_on_environment_flag from colossalai.testing.utils import parameterize, rerun_if_address_is_in_use from colossalai.utils import free_port from tests.test_auto_parallel.test_tensor_shard.test_metainfo.utils import mem_test_for_node_strategy def _adaptiveavgpool_module_mem_test(rank, world_size, port): """This function is for AdaptiveAvgPool memory test Test and print real memory cost and estimated, this test will not be executed except with the tag AUTO_PARALLEL Args: rank: device rank bias: indicate whether conv module need bias world_size: number of devices port: port for initializing process group """ disable_existing_loggers() launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') model = nn.Sequential(nn.AdaptiveAvgPool2d((16, 16))).cuda() input = torch.rand(4, 128, 64, 64).cuda() input.requires_grad = True physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) # index of target node in computation graph node_index = 1 # total number of target strategies strategy_number = 1 mem_test_for_node_strategy(rank=rank, model=model, device_mesh=device_mesh, node_index=node_index, strategy_number=strategy_number, input_args=[input], meta_arg_names=['input']) @run_on_environment_flag(name='AUTO_PARALLEL') @pytest.mark.dist @rerun_if_address_is_in_use() def test_adaptiveavgpool_meta_concrete_info_match(): world_size = 4 run_func_module = partial(_adaptiveavgpool_module_mem_test, world_size=world_size, port=free_port()) mp.spawn(run_func_module, nprocs=world_size) def _maxpool_module_mem_test(rank, world_size, port): """This function is for MaxPool memory test Test and print real memory cost and estimated, this test will not be executed except with the tag AUTO_PARALLEL Args: rank: device rank bias: indicate whether conv module need bias world_size: number of devices port: port for initializing process group """ disable_existing_loggers() launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') model = nn.Sequential(nn.MaxPool2d((16, 16))).cuda() input = torch.rand(4, 128, 64, 64).cuda() input.requires_grad = True physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) # index of target node in computation graph node_index = 1 # total number of target node strategies strategy_number = 9 mem_test_for_node_strategy(rank=rank, model=model, device_mesh=device_mesh, node_index=node_index, strategy_number=strategy_number, input_args=[input], meta_arg_names=['input']) @run_on_environment_flag(name='AUTO_PARALLEL') @pytest.mark.dist @rerun_if_address_is_in_use() def test_maxpool_meta_concrete_info_match(): world_size = 4 run_func_module = partial(_maxpool_module_mem_test, world_size=world_size, port=free_port()) mp.spawn(run_func_module, nprocs=world_size) if __name__ == '__main__': test_adaptiveavgpool_meta_concrete_info_match() test_maxpool_meta_concrete_info_match()
from functools import partial import pytest import torch import torch.multiprocessing as mp import torch.nn as nn from colossalai.device.device_mesh import DeviceMesh from colossalai.fx import ColoGraphModule, ColoTracer from colossalai.initialize import launch from colossalai.logging import disable_existing_loggers from colossalai.testing.pytest_wrapper import run_on_environment_flag from colossalai.testing.utils import parameterize, rerun_if_address_is_in_use from colossalai.utils import free_port from tests.test_auto_parallel.test_tensor_shard.test_metainfo.utils import mem_test_for_node_strategy class ConvFunctionModule(nn.Module): def __init__(self, in_channels=4, out_channels=64, kernel_size=3): super().__init__() self.conv_weight = nn.Parameter(torch.randn(out_channels, in_channels, kernel_size, kernel_size)) def forward(self, input): return nn.functional.conv2d(input, self.conv_weight) def _conv_module_mem_test(rank, bias, world_size, port): """This function is for conv memory test Test and print real memory cost and estimated, this test will not be executed except with the tag AUTO_PARALLEL Args: Args: rank: device rank bias: indicate whether conv module need bias world_size: number of devices port: port for initializing process group """ disable_existing_loggers() launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') model = nn.Sequential(nn.Conv2d(4, 64, 3, padding=1, bias=bias)).cuda() input = torch.rand(4, 4, 64, 64).cuda() input.requires_grad = True physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) # index of target node in computation graph node_index = 1 # total number of target node strategies strategy_number = 16 mem_test_for_node_strategy(rank=rank, model=model, device_mesh=device_mesh, node_index=node_index, strategy_number=strategy_number, input_args=[input], meta_arg_names=['input']) @run_on_environment_flag(name='AUTO_PARALLEL') @pytest.mark.dist @rerun_if_address_is_in_use() def test_conv_meta_concrete_info_match(bias=False): world_size = 4 run_func_module = partial(_conv_module_mem_test, bias=bias, world_size=world_size, port=free_port()) mp.spawn(run_func_module, nprocs=world_size) def _conv_function_mem_test(rank, world_size, port): """This function is for conv function memory test Test and print real memory cost and estimated, this test will not be executed except with the tag AUTO_PARALLEL Args: rank: device rank bias: indicate whether conv module need bias world_size: number of devices port: port for initializing process group """ disable_existing_loggers() launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') model = ConvFunctionModule().cuda() input = torch.rand(4, 4, 64, 64).cuda() input.requires_grad = True physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) # index of target node in computation graph node_index = 2 # total number of target node strategies strategy_number = 16 mem_test_for_node_strategy(rank=rank, model=model, device_mesh=device_mesh, node_index=node_index, strategy_number=strategy_number, input_args=[input], meta_arg_names=['input']) @run_on_environment_flag(name='AUTO_PARALLEL') @pytest.mark.dist @rerun_if_address_is_in_use() def test_conv_function_concrete_info_match(): world_size = 4 run_func_module = partial(_conv_function_mem_test, world_size=world_size, port=free_port()) mp.spawn(run_func_module, nprocs=world_size) if __name__ == '__main__': # test_conv_meta_concrete_info_match() test_conv_function_concrete_info_match()
from functools import partial import pytest import torch import torch.multiprocessing as mp import torch.nn as nn from colossalai.device.device_mesh import DeviceMesh from colossalai.fx import ColoGraphModule, ColoTracer from colossalai.initialize import launch from colossalai.logging import disable_existing_loggers from colossalai.testing.pytest_wrapper import run_on_environment_flag from colossalai.testing.utils import parameterize, rerun_if_address_is_in_use from colossalai.utils import free_port from tests.test_auto_parallel.test_tensor_shard.test_metainfo.utils import mem_test_for_node_strategy class BinaryElementwiseOpModule(nn.Module): def __init__(self, token=torch.add, shape=64) -> None: super().__init__() self.token = token self.param = nn.Parameter(torch.rand(shape)) def forward(self, input): return input + self.param def _binary_elementwise_mem_test(rank, world_size, port): """This function is for binary elementwise ops memory test Test and print real memory cost and estimated, this test will not be executed except with the tag AUTO_PARALLEL Args: rank: device rank bias: indicate whether conv module need bias world_size: number of devices port: port for initializing process group """ disable_existing_loggers() launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') model = BinaryElementwiseOpModule(token=torch.add, shape=1024).cuda() input = torch.rand(32, 1024).cuda() input.requires_grad = True physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) # index of target node in computation graph node_index = 2 # total number of target node strategies strategy_number = 9 mem_test_for_node_strategy(rank=rank, model=model, device_mesh=device_mesh, node_index=node_index, strategy_number=strategy_number, input_args=[input], meta_arg_names=['input']) @run_on_environment_flag(name='AUTO_PARALLEL') @pytest.mark.dist @rerun_if_address_is_in_use() def test_binary_elementwise_meta_concrete_info_match(): world_size = 4 run_func_module = partial(_binary_elementwise_mem_test, world_size=world_size, port=free_port()) mp.spawn(run_func_module, nprocs=world_size) if __name__ == '__main__': test_binary_elementwise_meta_concrete_info_match()
import copy from pprint import pprint from typing import Dict, List import torch from torch.fx import GraphModule from colossalai.auto_parallel.passes.runtime_apply_pass import runtime_apply_pass from colossalai.auto_parallel.passes.runtime_preparation_pass import runtime_preparation_pass from colossalai.auto_parallel.tensor_shard.options import SolverOptions from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationDataType, TrainCycleItem from colossalai.auto_parallel.tensor_shard.solver import StrategiesConstructor from colossalai.device.device_mesh import DeviceMesh from colossalai.fx.tracer.tracer import ColoTracer if torch.__version__ >= '1.12.0': from colossalai.auto_parallel.meta_profiler import MetaInfo def mem_test_for_node_strategy(rank: int, model: torch.nn.Module, device_mesh: DeviceMesh, node_index: int, strategy_number: int, input_args: List[torch.Tensor], meta_arg_names: List[str], input_kwargs: Dict[str, torch.Tensor] = {}): for strategy_index in range(strategy_number): # We need to copy the model to avoid do backward more than once in same graph model_to_shard, args_to_shard, kwargs_to_shard = copy.deepcopy(model), copy.deepcopy(input_args), copy.deepcopy( input_kwargs) tracer = ColoTracer() input_sample = {} for input_arg, meta_arg_name in zip(input_args, meta_arg_names): input_sample[meta_arg_name] = torch.rand(input_arg.shape).to('meta') for meta_kwarg_name, input_kwarg in input_kwargs.items(): input_sample[meta_kwarg_name] = torch.rand(input_kwarg.shape).to('meta') graph = tracer.trace(root=model_to_shard, meta_args=input_sample) gm = GraphModule(model_to_shard, graph, model_to_shard.__class__.__name__) solver_options = SolverOptions() strategies_constructor = StrategiesConstructor(graph, device_mesh, solver_options) strategies_constructor.build_strategies_and_cost() target_node = list(graph.nodes)[node_index] # solution construction # construct the strategy for the target node solution_len = len(strategies_constructor.leaf_strategies) solution = [0] * solution_len solution[node_index] = strategy_index # construct the strategy for the output node placeholder_strategy = list(graph.nodes)[-1].strategies_vector[0] output_key = next(key for key in target_node.strategies_vector[strategy_index].sharding_specs.keys() if key.type == OperationDataType.OUTPUT) placeholder_strategy.sharding_specs[output_key] = target_node.strategies_vector[strategy_index].sharding_specs[ output_key] gm, sharding_spec_dict, origin_spec_dict, comm_actions_dict = runtime_preparation_pass( gm, solution, device_mesh, strategies_constructor) gm = runtime_apply_pass(gm) gm.recompile() gm: GraphModule num_of_strategies = len(target_node.strategies_vector) if rank == 0: print("=======================") print(f"#strategy_index: {strategy_index + 1}/{num_of_strategies}") pprint(target_node.strategies_vector[strategy_index]) # warmup with torch.no_grad(): output = gm(*args_to_shard, sharding_spec_convert_dict=sharding_spec_dict, origin_node_sharding_spec_dict=origin_spec_dict, comm_actions_dict=comm_actions_dict, **kwargs_to_shard) del output # forward memory compare if rank == 0: torch.cuda.reset_peak_memory_stats() mem_stamp0 = torch.cuda.memory_allocated() output = gm(*args_to_shard, sharding_spec_convert_dict=sharding_spec_dict, origin_node_sharding_spec_dict=origin_spec_dict, comm_actions_dict=comm_actions_dict, **kwargs_to_shard) if rank == 0: # print forward memory allocated and peak memory stats in kb print( f"forward memory allocated: {(torch.cuda.memory_allocated() - mem_stamp0) / 1024} kb, peak memory stats: {(torch.cuda.max_memory_allocated() - mem_stamp0) / 1024} kb" ) # backward memory compare grad_tensors = torch.ones_like(output) torch.cuda.reset_peak_memory_stats() mem_stamp0 = torch.cuda.memory_allocated() torch.autograd.backward(output, grad_tensors) if rank == 0: # print backward memory allocated and peak memory stats in kb print( f"backward memory allocated: {(torch.cuda.memory_allocated() - mem_stamp0) / 1024} kb, peak memory stats: {(torch.cuda.max_memory_allocated() - mem_stamp0) / 1024} kb" ) # estimated memory if target_node.op == "call_module": metainfo = MetaInfo(target_node.strategies_vector[strategy_index], target_node.graph.owning_module.get_submodule(target_node.target)) else: metainfo = MetaInfo(target_node.strategies_vector[strategy_index], target_node.target) print("estimated memory:") print( f"forward activation: {metainfo.memory_cost.fwd.activation / 1024} kb, forward param: {metainfo.memory_cost.fwd.parameter / 1024} kb" ) print( f"forward temp: {metainfo.memory_cost.fwd.temp / 1024} kb, forward buffer: {metainfo.memory_cost.fwd.buffer / 1024} kb" ) print( f"backward activation: {metainfo.memory_cost.bwd.activation / 1024} kb, backward param: {metainfo.memory_cost.bwd.parameter / 1024} kb" ) print( f"backward temp: {metainfo.memory_cost.bwd.temp / 1024} kb, backward buffer: {metainfo.memory_cost.bwd.buffer / 1024} kb" ) print("=======================") def print_results(input: List[torch.Tensor], output: List[torch.Tensor], compute_cost: TrainCycleItem, memory_cost: TrainCycleItem, fwd_allocated, fwd_peak, bwd_allocated, bwd_peak): """Print the results of the meta information test. Args: input (List[torch.Tensor]): input tensors output (List[torch.Tensor]): output tensors compute_cost (TrainCycleItem): compute cost estimated by meta_func memory_cost (TrainCycleItem): memory cost estimated by meta_func fwd_allocated: real forward memory allocated fwd_peak: real forward peak memory stats bwd_allocated: real backward memory allocated bwd_peak: real backward peak memory stats """ print("=====================") print(f"input shapes: {[tensor.shape for tensor in input]}") print(f"output shapes: {[tensor.shape for tensor in output]}") # estimated results print("Estimated Results") # compute cost print("compute_cost:") print(f" fwd: {compute_cost.fwd}") print(f" bwd: {compute_cost.bwd}") # memory cost print("memory_cost:") # fwd print(f" fwd activation: {memory_cost.fwd.activation / 1024} KB") print(f" fwd buffer: {memory_cost.fwd.buffer / 1024} KB") print(f" fwd temp: {memory_cost.fwd.temp / 1024} KB") print(f" fwd parameter: {memory_cost.fwd.parameter / 1024} KB") # bwd print(f" bwd activation: {memory_cost.bwd.activation / 1024} KB") print(f" bwd buffer: {memory_cost.bwd.buffer / 1024} KB") print(f" bwd temp: {memory_cost.bwd.temp / 1024} KB") print(f" bwd parameter: {memory_cost.bwd.parameter / 1024} KB") # actual results print("Actual Results") print("memory_cost:") # fwd print(f" fwd allocated: {fwd_allocated / 1024} KB") print(f" fwd peak: {fwd_peak / 1024} KB") # bwd print(f" bwd allocated: {bwd_allocated / 1024} KB") print(f" bwd peak: {bwd_peak / 1024} KB")
from functools import partial import pytest import torch import torch.multiprocessing as mp import torch.nn as nn from colossalai.auto_parallel.tensor_shard.sharding_strategy import ( MemoryCost, OperationData, OperationDataType, ShardingStrategy, StrategiesVector, TrainCycleItem, ) from colossalai.device.device_mesh import DeviceMesh from colossalai.fx import ColoGraphModule, ColoTracer from colossalai.initialize import launch from colossalai.logging import disable_existing_loggers from colossalai.testing.pytest_wrapper import run_on_environment_flag from colossalai.testing.utils import parameterize, rerun_if_address_is_in_use from colossalai.utils import free_port from tests.test_auto_parallel.test_tensor_shard.test_metainfo.utils import mem_test_for_node_strategy, print_results if torch.__version__ >= '1.12.0': from colossalai.auto_parallel.meta_profiler import MetaInfo, meta_register def _batchnorm_module_mem_test(rank, world_size, port): """This function is for batchnorm memory test Test and print real memory cost and estimated, this test will not be executed except with the tag AUTO_PARALLEL Args: rank: device rank bias: indicate whether conv module need bias world_size: number of devices port: port for initializing process group """ disable_existing_loggers() launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') model = nn.Sequential(nn.BatchNorm2d(128)).cuda() input = torch.rand(4, 128, 64, 64).cuda() input.requires_grad = True physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) # index of target node in computation graph node_index = 1 # total number of target node strategies strategy_number = 9 mem_test_for_node_strategy(rank=rank, model=model, device_mesh=device_mesh, node_index=node_index, strategy_number=strategy_number, input_args=[input], meta_arg_names=['input']) @run_on_environment_flag(name='AUTO_PARALLEL') @pytest.mark.dist @rerun_if_address_is_in_use() def test_batchnorm_meta_concrete_info_match(): world_size = 4 run_func_module = partial(_batchnorm_module_mem_test, world_size=world_size, port=free_port()) mp.spawn(run_func_module, nprocs=world_size) @pytest.mark.skipif(torch.__version__ < '1.12.0', reason='need pytorch 1.12.0 or higher for aten level operations') @parameterize('tensor_shape', [ [256, 1024], [1024, 256], ]) def test_layernorm_meta_info(tensor_shape): meta_func = meta_register.get(torch.nn.LayerNorm) # construct input input_tensor = torch.rand(*tensor_shape, device="meta") output_tensor = torch.rand(*tensor_shape, device="meta") weight_tensor = torch.rand(tensor_shape[1], device="meta") bias_tensor = torch.rand(tensor_shape[1], device="meta") # construct operation data input_data = OperationData(name="input", type=OperationDataType.ARG, data=input_tensor) output_data = OperationData(name="output", type=OperationDataType.OUTPUT, data=output_tensor) weight_data = OperationData(name="weight", type=OperationDataType.PARAM, data=weight_tensor) bias_data = OperationData(name="bias", type=OperationDataType.PARAM, data=bias_tensor) # construct args and kwargs args = [input_data, output_data, weight_data, bias_data] kwargs = {'inplace': False} # estimated results compute_cost, memory_cost, fwd_in, fwd_buffer, fwd_out = meta_func(*args, **kwargs) # actual results input_real_tensor = torch.rand(*tensor_shape, device="cuda:0") input_real_tensor.requires_grad = True ln_module = torch.nn.LayerNorm(tensor_shape[1]).cuda() # fwd torch.cuda.reset_peak_memory_stats() mem_stamp0 = torch.cuda.memory_allocated() output_real_tensor = ln_module(input_real_tensor) fwd_allocated = torch.cuda.memory_allocated() - mem_stamp0 fwd_peak = torch.cuda.max_memory_allocated() - mem_stamp0 # bwd upstream_grad = torch.rand_like(output_real_tensor) torch.cuda.reset_peak_memory_stats() mem_stamp0 = torch.cuda.memory_allocated() torch.autograd.backward(output_real_tensor, upstream_grad) bwd_allocated = torch.cuda.memory_allocated() - mem_stamp0 bwd_peak = torch.cuda.max_memory_allocated() - mem_stamp0 compute_cost: TrainCycleItem memory_cost: TrainCycleItem print_results([input_real_tensor], [output_real_tensor], compute_cost, memory_cost, fwd_allocated, fwd_peak, bwd_allocated, bwd_peak) if __name__ == '__main__': test_batchnorm_meta_concrete_info_match() test_layernorm_meta_info()
from functools import partial import pytest import torch import torch.multiprocessing as mp import torch.nn as nn from colossalai.auto_parallel.tensor_shard.node_handler import LinearModuleHandler from colossalai.auto_parallel.tensor_shard.sharding_strategy import ( MemoryCost, OperationData, OperationDataType, ShardingStrategy, StrategiesVector, TrainCycleItem, ) from colossalai.device.device_mesh import DeviceMesh from colossalai.fx import ColoGraphModule, ColoTracer from colossalai.initialize import launch from colossalai.logging import disable_existing_loggers from colossalai.testing.pytest_wrapper import run_on_environment_flag from colossalai.testing.utils import parameterize, rerun_if_address_is_in_use from colossalai.utils import free_port from tests.test_auto_parallel.test_tensor_shard.test_metainfo.utils import print_results if torch.__version__ >= '1.12.0': from colossalai.auto_parallel.meta_profiler import MetaInfo, meta_register @pytest.mark.skipif(torch.__version__ < '1.12.0', reason="need pytorch 1.12.0 or higher for aten level operations") @parameterize( 'tensor_shapes', [ [[128], [128]], # dot product [[64, 128], [128]], # mat-vec [[128], [128, 64]], # vec-mat [[64, 64, 128], [128]], # batched mat-vec [[128], [64, 128, 64]], # vec-batched mat [[64, 128], [128, 192]], # mat-mat [[64, 64, 128], [128, 192]], # batched mat-mat [[64, 128], [64, 128, 192]], # mat-batched mat [[64, 64, 128], [64, 128, 192]], # batched mat-batched mat (matched batch dims) [[64, 1, 64, 128], [64, 128, 192]], # batched mat-batched mat (unmatched batch dims) ]) def test_matmul_function_meta_info(tensor_shapes): meta_func = meta_register.get(torch.matmul) # construct meta tensors input_tensor = torch.rand(*tensor_shapes[0], device="meta") other_tensor = torch.rand(*tensor_shapes[1], device="meta") output_tensor = torch.matmul(input_tensor, other_tensor) # construct operation data input_data = OperationData( name="input", data=input_tensor, type=OperationDataType.ARG, logical_shape=input_tensor.shape, ) other_data = OperationData( name="other", data=other_tensor, type=OperationDataType.ARG, logical_shape=other_tensor.shape, ) output_data = OperationData( name="output", data=output_tensor, type=OperationDataType.OUTPUT, logical_shape=output_tensor.shape, ) # construct args and kwargs args = [input_data, other_data, output_data] kwargs = {'inplace': False} # estimated results compute_cost, memory_cost, fwd_in, fwd_buffer, fwd_out = meta_func(*args, **kwargs) # actual results input_real_tensor = torch.rand(*tensor_shapes[0], device="cuda:0") other_real_tensor = torch.rand(*tensor_shapes[1], device="cuda:0") input_real_tensor.requires_grad = True other_real_tensor.requires_grad = True # fwd torch.cuda.reset_peak_memory_stats() mem_stamp0 = torch.cuda.memory_allocated() output_real_tensor = torch.matmul(input_real_tensor, other_real_tensor) fwd_allocated = torch.cuda.memory_allocated() - mem_stamp0 fwd_peak = torch.cuda.max_memory_allocated() - mem_stamp0 # bwd upstream_grad = torch.rand_like(output_real_tensor) torch.cuda.reset_peak_memory_stats() mem_stamp0 = torch.cuda.memory_allocated() torch.autograd.backward(output_real_tensor, upstream_grad) bwd_allocated = torch.cuda.memory_allocated() - mem_stamp0 bwd_peak = torch.cuda.max_memory_allocated() - mem_stamp0 compute_cost: TrainCycleItem memory_cost: TrainCycleItem print_results([input_real_tensor, other_real_tensor], [output_real_tensor], compute_cost, memory_cost, fwd_allocated, fwd_peak, bwd_allocated, bwd_peak) if __name__ == '__main__': test_matmul_function_meta_info()
import torch import torch.nn as nn from colossalai.auto_parallel.tensor_shard.node_handler.getattr_handler import GetattrHandler from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType, StrategiesVector from colossalai.device.device_mesh import DeviceMesh from colossalai.fx import ColoGraphModule, ColoTracer class GetattrModel(nn.Module): def __init__(self): super().__init__() self.conv = nn.Conv2d(4, 16, 3, padding=1, bias=False) def forward(self, input): weight = self.conv.weight return weight def test_getattr_handler(): model = GetattrModel() tracer = ColoTracer() # graph(): # %input_1 : torch.Tensor [#users=0] = placeholder[target=input] # %conv_weight : [#users=1] = get_attr[target=conv.weight] # return conv_weight graph = tracer.trace(model, meta_args={'input': torch.rand(4, 4, 64, 64).to('meta')}) gm = ColoGraphModule(model, graph) physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) device_mesh = DeviceMesh(physical_mesh_id, mesh_shape) getattr_node = list(graph.nodes)[1] getattr_strategies_vector = StrategiesVector(getattr_node) # build handler getattr_handler = GetattrHandler(node=getattr_node, device_mesh=device_mesh, strategies_vector=getattr_strategies_vector) getattr_handler.register_strategy(compute_resharding_cost=False) # check operation data mapping mapping = getattr_handler.get_operation_data_mapping() for name, op_data in mapping.items(): op_data: OperationData # make sure they have valid values assert op_data.data is not None assert mapping['output'].name == "conv_weight" assert mapping['output'].data.shape == torch.Size((16, 4, 3, 3)) assert mapping['output'].type == OperationDataType.OUTPUT strategy_name_list = [val.name for val in getattr_handler.strategies_vector] assert 'get_attr [S0, S1, R, R]' in strategy_name_list assert 'get_attr [S1, S0, R, R]' in strategy_name_list assert 'get_attr [S01, R, R, R]' in strategy_name_list assert 'get_attr [R, S01, R, R]' in strategy_name_list assert 'get_attr [S0, R, R, R]' in strategy_name_list assert 'get_attr [R, S0, R, R]' in strategy_name_list assert 'get_attr [S1, R, R, R]' in strategy_name_list assert 'get_attr [R, S1, R, R]' in strategy_name_list assert 'get_attr [R, R, R, R]' in strategy_name_list if __name__ == '__main__': test_getattr_handler()
from functools import partial import pytest import torch import torch.multiprocessing as mp import torch.nn as nn from colossalai.auto_parallel.tensor_shard.node_handler import SplitHandler from colossalai.auto_parallel.tensor_shard.node_handler.conv_handler import ConvFunctionHandler from colossalai.auto_parallel.tensor_shard.node_handler.linear_handler import LinearFunctionHandler from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType, StrategiesVector from colossalai.device.device_mesh import DeviceMesh from colossalai.fx import ColoGraphModule, ColoTracer from colossalai.initialize import launch from colossalai.logging import disable_existing_loggers from colossalai.testing import assert_close, parameterize, rerun_if_address_is_in_use from colossalai.testing.pytest_wrapper import run_on_environment_flag from colossalai.utils import free_port from tests.test_auto_parallel.test_tensor_shard.test_node_handler.utils import numerical_test_for_node_strategy class ConvSplitModel(nn.Module): def __init__(self, split_size, split_dim): super().__init__() self.split_size = split_size self.split_dim = split_dim def forward(self, input, other): conv_node = nn.functional.conv2d(input, other, bias=None) split_node = conv_node.split(self.split_size, dim=self.split_dim) return split_node class LinearSplitModel(nn.Module): def __init__(self, split_size, split_dim): super().__init__() self.split_size = split_size self.split_dim = split_dim def forward(self, input, other): linear_node = nn.functional.linear(input, other, bias=None) split_node = linear_node.split(self.split_size, dim=self.split_dim) return split_node def check_split_handler(rank, split_size, split_dim, model_cls, world_size, port): disable_existing_loggers() launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') model = model_cls(split_size=split_size, split_dim=split_dim).cuda() if model_cls.__name__ == 'ConvSplitModel': input = torch.rand(8, 8, 66, 66).to('cuda') other = torch.rand(16, 8, 3, 3).to('cuda') # index of conv node in computation graph node_index = 2 # total number of conv strategies strategy_number = 16 if model_cls.__name__ == 'LinearSplitModel': input = torch.rand(8, 16, 64, 32).to('cuda') other = torch.rand(64, 32).to('cuda') # index of linear node in computation graph node_index = 2 # total number of linear strategies strategy_number = 23 physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) numerical_test_for_node_strategy(model=model, device_mesh=device_mesh, node_index=node_index, strategy_number=strategy_number, input_args=[input, other], meta_arg_names=['input', 'other'], node_type='following') tracer = ColoTracer() if model_cls.__name__ == 'ConvSplitModel': # graph(): # %input_1 : torch.Tensor [#users=1] = placeholder[target=input] # %other : torch.Tensor [#users=1] = placeholder[target=other] # %conv2d : [#users=1] = call_function[target=torch.conv2d](args = (%input_1, %other), kwargs = {}) # %split : [#users=1] = call_method[target=split](args = (%conv2d,), kwargs = {}) # return split graph = tracer.trace(model, meta_args={ "input": torch.rand(8, 8, 66, 66).to('meta'), "other": torch.rand(16, 8, 3, 3).to('meta'), }) if model_cls.__name__ == 'LinearSplitModel': # graph(): # %input_1 : torch.Tensor [#users=1] = placeholder[target=input] # %other : torch.Tensor [#users=1] = placeholder[target=other] # %linear : [#users=1] = call_function[target=torch._C._nn.linear](args = (%input_1, %other), kwargs = {bias: None}) # %split : [#users=1] = call_method[target=split](args = (%linear,), kwargs = {}) # return split graph = tracer.trace(model, meta_args={ "input": torch.rand(8, 16, 64, 32).to('meta'), "other": torch.rand(64, 32).to('meta'), }) gm = ColoGraphModule(model, graph) previous_mod_node = list(graph.nodes)[2] split_node = list(graph.nodes)[3] split_strategies_vector = StrategiesVector(split_node) previous_strategies_vector = StrategiesVector(previous_mod_node) # build handler if model_cls.__name__ == 'ConvSplitModel': conv_handler = ConvFunctionHandler(node=previous_mod_node, device_mesh=device_mesh, strategies_vector=previous_strategies_vector) conv_handler.register_strategy(compute_resharding_cost=False) setattr(previous_mod_node, 'strategies_vector', previous_strategies_vector) if model_cls.__name__ == 'LinearSplitModel': assert len(previous_strategies_vector) == 0 linear_handler = LinearFunctionHandler(node=previous_mod_node, device_mesh=device_mesh, strategies_vector=previous_strategies_vector) linear_handler.register_strategy(compute_resharding_cost=False) setattr(previous_mod_node, 'strategies_vector', previous_strategies_vector) split_handler = SplitHandler(node=split_node, device_mesh=device_mesh, strategies_vector=split_strategies_vector) split_handler.register_strategy(compute_resharding_cost=False) # check operation data mapping mapping = split_handler.get_operation_data_mapping() for name, op_data in mapping.items(): op_data: OperationData # make sure they have valid values assert op_data.data is not None if model_cls.__name__ == 'ConvSplitModel': assert mapping['input'].name == "conv2d" else: assert mapping['input'].name == "linear" assert mapping['input'].data.is_meta assert mapping['input'].data.shape == torch.Size([8, 16, 64, 64]) assert mapping['input'].type == OperationDataType.ARG assert mapping['input'].logical_shape == torch.Size([8, 16, 64, 64]) assert mapping['output'].name == "split" split_items = torch.empty([8, 16, 64, 64]).split(split_size, split_dim) assert mapping['output'].logical_shape == tuple([item.shape for item in split_items]) assert mapping['output'].type == OperationDataType.OUTPUT # reshape handler is a following strategy handler, so the number of strategies is equal to the predecessor node. assert len(split_strategies_vector) == len(previous_strategies_vector) strategy_name_list = [strategy.name for strategy in split_strategies_vector] if model_cls.__name__ == 'ConvSplitModel': if split_dim == 0: assert '[R, S1, R, R]_0' in strategy_name_list assert '[R, S0, R, R]_1' in strategy_name_list assert '[R, R, R, R]_2' in strategy_name_list assert '[R, R, R, R]_3' in strategy_name_list assert '[R, R, R, R]_4' in strategy_name_list assert '[R, R, R, R]_5' in strategy_name_list assert '[R, S1, R, R]_6' in strategy_name_list assert '[R, S0, R, R]_7' in strategy_name_list assert '[R, R, R, R]_8' in strategy_name_list assert '[R, R, R, R]_9' in strategy_name_list assert '[R, S0, R, R]_10' in strategy_name_list assert '[R, S1, R, R]_11' in strategy_name_list assert '[R, R, R, R]_12' in strategy_name_list assert '[R, R, R, R]_13' in strategy_name_list assert '[R, R, R, R]_14' in strategy_name_list assert '[R, S01, R, R]_15' in strategy_name_list if split_dim == 1: assert '[S0, R, R, R]_0' in strategy_name_list assert '[S1, R, R, R]_1' in strategy_name_list assert '[S0, R, R, R]_2' in strategy_name_list assert '[S1, R, R, R]_3' in strategy_name_list assert '[S0, R, R, R]_4' in strategy_name_list assert '[S1, R, R, R]_5' in strategy_name_list assert '[R, R, R, R]_6' in strategy_name_list assert '[R, R, R, R]_7' in strategy_name_list assert '[R, R, R, R]_8' in strategy_name_list assert '[R, R, R, R]_9' in strategy_name_list assert '[R, R, R, R]_10' in strategy_name_list assert '[R, R, R, R]_11' in strategy_name_list assert '[R, R, R, R]_12' in strategy_name_list assert '[S01, R, R, R]_13' in strategy_name_list assert '[R, R, R, R]_14' in strategy_name_list assert '[R, R, R, R]_15' in strategy_name_list if model_cls.__name__ == 'LinearSplitModel': if split_dim == 0: assert '[R, R, R, S1]_11' in strategy_name_list assert '[R, S0, R, S1]_12' in strategy_name_list assert '[R, R, S0, S1]_13' in strategy_name_list assert '[R, R, R, S0]_14' in strategy_name_list assert '[R, S1, R, S0]_15' in strategy_name_list assert '[R, R, S1, S0]_16' in strategy_name_list assert '[R, R, R, R]_17' in strategy_name_list assert '[R, S0, R, R]_18' in strategy_name_list assert '[R, R, S0, R]_19' in strategy_name_list assert '[R, R, R, R]_20' in strategy_name_list assert '[R, S1, R, R]_21' in strategy_name_list assert '[R, R, S1, R]_22' in strategy_name_list assert '[R, R, R, S1]_10' in strategy_name_list assert '[R, R, R, S0]_9' in strategy_name_list assert '[R, R, R, R]_8' in strategy_name_list assert '[R, R, R, R]_7' in strategy_name_list assert '[R, R, R, S0]_6' in strategy_name_list assert '[R, R, R, S1]_5' in strategy_name_list assert '[R, R, R, R]_0' in strategy_name_list assert '[R, S01, R, R]_1' in strategy_name_list assert '[R, R, S01, R]_2' in strategy_name_list assert '[R, R, R, R]_3' in strategy_name_list assert '[R, R, R, S01]_4' in strategy_name_list if split_dim == 1: assert '[S0, R, R, S1]_11' in strategy_name_list assert '[R, R, R, S1]_12' in strategy_name_list assert '[R, R, S0, S1]_13' in strategy_name_list assert '[S1, R, R, S0]_14' in strategy_name_list assert '[R, R, R, S0]_15' in strategy_name_list assert '[R, R, S1, S0]_16' in strategy_name_list assert '[S0, R, R, R]_17' in strategy_name_list assert '[R, R, R, R]_18' in strategy_name_list assert '[R, R, S0, R]_19' in strategy_name_list assert '[S1, R, R, R]_20' in strategy_name_list assert '[R, R, R, R]_21' in strategy_name_list assert '[R, R, S1, R]_22' in strategy_name_list assert '[R, R, R, S1]_10' in strategy_name_list assert '[R, R, R, S0]_9' in strategy_name_list assert '[R, R, R, R]_8' in strategy_name_list assert '[R, R, R, R]_7' in strategy_name_list assert '[R, R, R, S0]_6' in strategy_name_list assert '[R, R, R, S1]_5' in strategy_name_list assert '[S01, R, R, R]_0' in strategy_name_list assert '[R, R, R, R]_1' in strategy_name_list assert '[R, R, S01, R]_2' in strategy_name_list assert '[R, R, R, R]_3' in strategy_name_list assert '[R, R, R, S01]_4' in strategy_name_list @run_on_environment_flag(name='AUTO_PARALLEL') @pytest.mark.dist @rerun_if_address_is_in_use() @parameterize('split_size', [2]) @parameterize('split_dim', [0, 1, 2]) @parameterize('model_cls', [ConvSplitModel, LinearSplitModel]) def test_split_handler(split_size, split_dim, model_cls): world_size = 4 run_func = partial(check_split_handler, split_size=split_size, split_dim=split_dim, model_cls=model_cls, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_split_handler()
import torch import torch.nn as nn from colossalai.auto_parallel.tensor_shard.node_handler import DefaultReshapeHandler from colossalai.auto_parallel.tensor_shard.node_handler.conv_handler import ConvFunctionHandler from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType, StrategiesVector from colossalai.device.device_mesh import DeviceMesh from colossalai.fx import ColoGraphModule, ColoTracer from colossalai.testing.pytest_wrapper import run_on_environment_flag class ReshapeModel(nn.Module): def __init__(self): super().__init__() def forward(self, input, other): conv_node = nn.functional.conv2d(input, other) reshape_node = conv_node.view(2, -1) return reshape_node @run_on_environment_flag(name='AUTO_PARALLEL') def test_reshape_handler(): model = ReshapeModel() tracer = ColoTracer() # graph(): # %input_1 : torch.Tensor [#users=1] = placeholder[target=input] # %other : torch.Tensor [#users=1] = placeholder[target=other] # %conv2d : [#users=1] = call_function[target=torch.conv2d](args = (%input_1, %other), kwargs = {}) # %view : [#users=1] = call_method[target=view](args = (%conv2d, 2, -1), kwargs = {}) # return view graph = tracer.trace(model, meta_args={ "input": torch.rand(4, 4, 64, 64).to('meta'), "other": torch.rand(4, 16, 3, 3).to('meta'), }) gm = ColoGraphModule(model, graph) physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) device_mesh = DeviceMesh(physical_mesh_id, mesh_shape) conv_mod_node = list(graph.nodes)[2] reshape_node = list(graph.nodes)[3] reshape_strategies_vector = StrategiesVector(reshape_node) conv_strategies_vector = StrategiesVector(conv_mod_node) # build handler conv_handler = ConvFunctionHandler(node=conv_mod_node, device_mesh=device_mesh, strategies_vector=conv_strategies_vector) conv_handler.register_strategy(compute_resharding_cost=False) setattr(conv_mod_node, 'strategies_vector', conv_strategies_vector) reshape_handler = DefaultReshapeHandler(node=reshape_node, device_mesh=device_mesh, strategies_vector=reshape_strategies_vector) reshape_handler.register_strategy(compute_resharding_cost=False) # check operation data mapping mapping = reshape_handler.get_operation_data_mapping() for name, op_data in mapping.items(): op_data: OperationData # make sure they have valid values assert op_data.data is not None assert mapping['input'].name == "conv2d" assert mapping['input'].data.is_meta assert mapping['input'].data.shape == torch.Size([4, 4, 62, 62]) assert mapping['input'].type == OperationDataType.ARG assert mapping['input'].logical_shape == torch.Size([4, 4, 62, 62]) assert mapping['output'].name == "view" assert mapping['output'].data.is_meta assert mapping['output'].data.shape == torch.Size([2, 30752]) assert mapping['output'].type == OperationDataType.OUTPUT # reshape handler is a following strategy handler, so the number of strategies is equal to the predecessor node. assert len(reshape_strategies_vector) == len(conv_strategies_vector) if __name__ == '__main__': test_reshape_handler()
import pytest import torch import torch.nn as nn from colossalai.auto_parallel.tensor_shard.node_handler.matmul_handler import ( MatMulHandler, MatMulType, _get_bmm_logical_shape, get_matmul_type, ) from colossalai.auto_parallel.tensor_shard.sharding_strategy import ( OperationData, OperationDataType, ShardingStrategy, StrategiesVector, ) from colossalai.device.device_mesh import DeviceMesh from colossalai.fx import ColoGraphModule, ColoTracer from colossalai.testing.utils import parameterize class MatMulModule(nn.Module): def forward(self, x1, x2): return torch.matmul(x1, x2) @pytest.mark.skipif(torch.__version__ < '1.12.0', reason="need pytorch 1.12.0 or higher for aten level operations") @parameterize( 'tensor_shapes', [ [[8], [8]], # dot product [[4, 8], [8]], # mat-vec product [[4, 8], [8, 16]], # mat-mat product [[8], [8, 16]], # mat-mat product [[8], [4, 8, 16]], # batched mat-mat product with padding + broadcasting [[4, 8, 16], [16]], # batched mat-mat product with padding + broadcasting [[4, 8, 16], [16, 32]], # batched mat-mat product with broadcasting [[4, 8, 16], [1, 16, 32]], # batched mat-mat product with broadcasting [[8, 16], [2, 4, 16, 32]], # batched mat-mat product with broadcasting [[4, 8, 16], [2, 4, 16, 32]], # batched mat-mat product with broadcasting [[1, 8, 16], [2, 4, 16, 32]], # batched mat-mat product with broadcasting [[1, 4, 8, 16], [2, 4, 16, 32]], # batched mat-mat product with broadcasting [[2, 1, 8, 16], [2, 4, 16, 32]], # batched mat-mat product with broadcasting [[2, 4, 8, 16], [2, 4, 16, 32]], # batched mat-mat product without broadcasting ]) def test_matmul_node_handler(tensor_shapes): input_shape, other_shape = tensor_shapes # get output shape x1 = torch.rand(*input_shape) x2 = torch.rand(*other_shape) output_shape = list(torch.matmul(x1, x2).shape) # get matmul type matmul_type = get_matmul_type(x1.dim(), x2.dim()) model = MatMulModule() tracer = ColoTracer() graph = tracer.trace(model, meta_args={"x1": x1.to('meta'), 'x2': x2.to('meta')}) gm = ColoGraphModule(model, graph) physical_mesh_id = torch.arange(0, 4) print(graph) mesh_shape = (2, 2) device_mesh = DeviceMesh(physical_mesh_id, mesh_shape) mod_node = list(graph.nodes)[2] strategies_vector = StrategiesVector(mod_node) # build handler handler = MatMulHandler(node=mod_node, device_mesh=device_mesh, strategies_vector=strategies_vector) # check operation data mapping mapping = handler.get_operation_data_mapping() for name, op_data in mapping.items(): op_data: OperationData # make sure they have valid values assert op_data.logical_shape is not None assert op_data.data is not None logical_input_shape = input_shape logical_other_shape = other_shape logical_output_shape = output_shape if matmul_type == MatMulType.MM and len(input_shape) == 1: logical_input_shape = [1] + input_shape elif matmul_type == MatMulType.BMM: logical_input_shape, logical_other_shape, logical_output_shape = _get_bmm_logical_shape( input_shape, other_shape, handler.transforms) else: logical_input_shape = input_shape # check input operation data assert mapping['input'].name == "x1" assert mapping['input'].data.is_meta assert mapping['input'].data.shape == torch.Size(input_shape) assert mapping['input'].type == OperationDataType.ARG assert mapping['input'].logical_shape == torch.Size(logical_input_shape) # check other operation data assert mapping['other'].name == "x2" assert mapping['other'].data.is_meta assert mapping['other'].data.shape == torch.Size(other_shape) assert mapping['other'].type == OperationDataType.ARG assert mapping['other'].logical_shape == torch.Size(logical_other_shape) # check output assert mapping['output'].name == "matmul" assert mapping['output'].data.is_meta assert mapping['output'].data.shape == torch.Size(output_shape) assert mapping['output'].type == OperationDataType.OUTPUT assert mapping['output'].logical_shape == torch.Size(logical_output_shape) strategies_vector = handler.register_strategy(compute_resharding_cost=False) strategy_name_list = [val.name for val in strategies_vector] # ensure there is no duplicate strategy if matmul_type != MatMulType.BMM: assert len(set(strategy_name_list)) == len(strategy_name_list), strategy_name_list for strategy in strategies_vector: strategy: ShardingStrategy input_sharding_spec = strategy.get_sharding_spec_by_name('x1') other_sharding_spec = strategy.get_sharding_spec_by_name('x2') output_sharding_spec = strategy.get_sharding_spec_by_name('matmul') if matmul_type == MatMulType.DOT: # dot product will produce a scaler # results should fulfill: # 1. the input and other operands have the same sharding spec # 2. the output has no sharding assert input_sharding_spec.sharding_sequence == other_sharding_spec.sharding_sequence assert len(output_sharding_spec.sharding_sequence) == 0 elif matmul_type == MatMulType.MV: # matrix-vector product should fulfill # 1. the last dim of the input and other operands should have the same sharding # 2. the first dim of the input and other should have the same sharding # 3. the output should have only 1 dim assert input_sharding_spec.sharding_sequence[-1] == other_sharding_spec.sharding_sequence[-1] assert input_sharding_spec.sharding_sequence[0] == output_sharding_spec.sharding_sequence[0] assert len(output_sharding_spec.sharding_sequence) == 1 elif matmul_type == MatMulType.MM: # matrix-matrix multiplication should fulfil # 1. if input is a 2D tensor, the 1st dim of input and output should have the same sharding # 2. the input's last dim and the first dim of the other should have the same sharding # 3. the last dim of the output and other should have the same sharding # 4. the input and output should have the same number of dims if len(input_shape) == 2: assert input_sharding_spec.sharding_sequence[0] == output_sharding_spec.sharding_sequence[0] assert input_sharding_spec.sharding_sequence[-1] == other_sharding_spec.sharding_sequence[0] assert output_sharding_spec.sharding_sequence[-1] == other_sharding_spec.sharding_sequence[-1] assert len(input_sharding_spec.sharding_sequence) == len(output_sharding_spec.sharding_sequence) elif matmul_type == MatMulType.BMM: # bmm should fulfil # 1. of the other tensor is not a 1d tensor, the last dim of other and output have the same sharding # 2. if the input has more than 2 dim, the second last dim of input and output have the same sharding # 3. if the other have more than 2 dim, the second last dim of other and the last dim of input should have the same sharding if len(other_shape) > 1: assert other_sharding_spec.sharding_sequence[-1] == output_sharding_spec.sharding_sequence[-1] if len(input_shape) > 1: assert input_sharding_spec.sharding_sequence[-2] == output_sharding_spec.sharding_sequence[-2] if len(other_shape) > 2: assert other_sharding_spec.sharding_sequence[-2] == input_sharding_spec.sharding_sequence[-1] if __name__ == '__main__': test_matmul_node_handler()
import torch import torch.nn as nn from colossalai.auto_parallel.tensor_shard.node_handler.output_handler import OutputHandler from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType, StrategiesVector from colossalai.device.device_mesh import DeviceMesh from colossalai.fx import ColoGraphModule, ColoTracer from colossalai.testing import assert_close, parameterize, rerun_if_address_is_in_use class OutputModel(nn.Module): def __init__(self): super().__init__() def forward(self, x): y = x * 2 return x, y @parameterize('output_option', ['distributed', 'replicated']) @rerun_if_address_is_in_use() def test_output_handler(output_option): model = OutputModel() tracer = ColoTracer() # graph(): # %x : torch.Tensor [#users=2] = placeholder[target=x] # %mul : [#users=1] = call_function[target=operator.mul](args = (%x, 2), kwargs = {}) # return (x, mul) graph = tracer.trace(model, meta_args={ "x": torch.rand(4, 4, 64, 64).to('meta'), }) gm = ColoGraphModule(model, graph) physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) device_mesh = DeviceMesh(physical_mesh_id, mesh_shape) output_node = list(graph.nodes)[2] output_strategies_vector = StrategiesVector(output_node) # build handler otuput_handler = OutputHandler(node=output_node, device_mesh=device_mesh, strategies_vector=output_strategies_vector, output_option=output_option) otuput_handler.register_strategy(compute_resharding_cost=False) # check operation data mapping mapping = otuput_handler.get_operation_data_mapping() for name, op_data in mapping.items(): op_data: OperationData # make sure they have valid values assert op_data.data is not None assert mapping['output'].name == "output" assert mapping['output'].type == OperationDataType.OUTPUT strategy_name_list = [val.name for val in otuput_handler.strategies_vector] if output_option == 'distributed': assert "Distributed Output" in strategy_name_list else: assert "Replica Output" in strategy_name_list if __name__ == '__main__': test_output_handler()
from functools import partial import pytest import torch import torch.multiprocessing as mp import torch.nn as nn import torch.nn.functional as F from colossalai.auto_parallel.tensor_shard.node_handler.linear_handler import LinearFunctionHandler from colossalai.auto_parallel.tensor_shard.node_handler.softmax_handler import SoftmaxHandler from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType, StrategiesVector from colossalai.device.device_mesh import DeviceMesh from colossalai.fx import ColoGraphModule, ColoTracer from colossalai.initialize import launch from colossalai.logging import disable_existing_loggers from colossalai.testing import assert_close, parameterize, rerun_if_address_is_in_use from colossalai.testing.pytest_wrapper import run_on_environment_flag from colossalai.utils import free_port from tests.test_auto_parallel.test_tensor_shard.test_node_handler.utils import numerical_test_for_node_strategy class LinearSplitModel(nn.Module): def __init__(self, softmax_dim): super().__init__() self.softmax_dim = softmax_dim def forward(self, input, other): linear_node = F.linear(input, other, bias=None) softmax_node = F.softmax(linear_node, self.softmax_dim) return softmax_node def check_split_handler(rank, softmax_dim, model_cls, world_size, port): disable_existing_loggers() launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') model = model_cls(softmax_dim=softmax_dim).cuda() input = torch.rand(8, 16, 64, 32).to('cuda') other = torch.rand(64, 32).to('cuda') # index of linear node in computation graph node_index = 2 # total number of linear strategies strategy_number = 23 physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) numerical_test_for_node_strategy(model=model, device_mesh=device_mesh, node_index=node_index, strategy_number=strategy_number, input_args=[input, other], meta_arg_names=['input', 'other'], node_type='following') tracer = ColoTracer() # graph(): # %input_1 : torch.Tensor [#users=1] = placeholder[target=input] # %other : torch.Tensor [#users=1] = placeholder[target=other] # %linear : [#users=1] = call_function[target=torch._C._nn.linear](args = (%input_1, %other), kwargs = {bias: None}) # %softmax : [#users=1] = call_method[target=split](args = (%linear,), kwargs = {}) # return split graph = tracer.trace(model, meta_args={ "input": torch.rand(8, 16, 64, 32).to('meta'), "other": torch.rand(64, 32).to('meta'), }) gm = ColoGraphModule(model, graph) previous_mod_node = list(graph.nodes)[2] split_node = list(graph.nodes)[3] split_strategies_vector = StrategiesVector(split_node) previous_strategies_vector = StrategiesVector(previous_mod_node) # build handler assert len(previous_strategies_vector) == 0 linear_handler = LinearFunctionHandler(node=previous_mod_node, device_mesh=device_mesh, strategies_vector=previous_strategies_vector) linear_handler.register_strategy(compute_resharding_cost=False) setattr(previous_mod_node, 'strategies_vector', previous_strategies_vector) softmax_handler = SoftmaxHandler(node=split_node, device_mesh=device_mesh, strategies_vector=split_strategies_vector) softmax_handler.register_strategy(compute_resharding_cost=False) # check operation data mapping mapping = softmax_handler.get_operation_data_mapping() for name, op_data in mapping.items(): op_data: OperationData # make sure they have valid values assert op_data.data is not None assert mapping['input'].name == "linear" assert mapping['input'].data.is_meta assert mapping['input'].data.shape == torch.Size([8, 16, 64, 64]) assert mapping['input'].type == OperationDataType.ARG assert mapping['input'].logical_shape == torch.Size([8, 16, 64, 64]) assert mapping['softmax_dim'].name == "softmax_dim" assert mapping['softmax_dim'].data == softmax_dim assert mapping['softmax_dim'].type == OperationDataType.ARG assert mapping['output'].name == "softmax" assert mapping['output'].data.shape == torch.Size([8, 16, 64, 64]) assert mapping['output'].logical_shape == torch.Size([8, 16, 64, 64]) assert mapping['output'].type == OperationDataType.OUTPUT # reshape handler is a following strategy handler, so the number of strategies is equal to the predecessor node. assert len(split_strategies_vector) == len(previous_strategies_vector) strategy_name_list = [strategy.name for strategy in split_strategies_vector] if softmax_dim == 0: assert '[R, R, R, S1] -> [R, R, R, S1]_11' in strategy_name_list assert '[R, S0, R, S1] -> [R, S0, R, S1]_12' in strategy_name_list assert '[R, R, S0, S1] -> [R, R, S0, S1]_13' in strategy_name_list assert '[R, R, R, S0] -> [R, R, R, S0]_14' in strategy_name_list assert '[R, S1, R, S0] -> [R, S1, R, S0]_15' in strategy_name_list assert '[R, R, S1, S0] -> [R, R, S1, S0]_16' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R]_17' in strategy_name_list assert '[R, S0, R, R] -> [R, S0, R, R]_18' in strategy_name_list assert '[R, R, S0, R] -> [R, R, S0, R]_19' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R]_20' in strategy_name_list assert '[R, S1, R, R] -> [R, S1, R, R]_21' in strategy_name_list assert '[R, R, S1, R] -> [R, R, S1, R]_22' in strategy_name_list assert '[R, R, R, S1] -> [R, R, R, S1]_10' in strategy_name_list assert '[R, R, R, S0] -> [R, R, R, S0]_9' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R]_8' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R]_7' in strategy_name_list assert '[R, R, R, S0] -> [R, R, R, S0]_6' in strategy_name_list assert '[R, R, R, S1] -> [R, R, R, S1]_5' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R]_0' in strategy_name_list assert '[R, S01, R, R] -> [R, S01, R, R]_1' in strategy_name_list assert '[R, R, S01, R] -> [R, R, S01, R]_2' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R]_3' in strategy_name_list assert '[R, R, R, S01] -> [R, R, R, S01]_4' in strategy_name_list if softmax_dim == 1: assert '[S0, R, R, S1] -> [S0, R, R, S1]_11' in strategy_name_list assert '[R, R, R, S1] -> [R, R, R, S1]_12' in strategy_name_list assert '[R, R, S0, S1] -> [R, R, S0, S1]_13' in strategy_name_list assert '[S1, R, R, S0] -> [S1, R, R, S0]_14' in strategy_name_list assert '[R, R, R, S0] -> [R, R, R, S0]_15' in strategy_name_list assert '[R, R, S1, S0] -> [R, R, S1, S0]_16' in strategy_name_list assert '[S0, R, R, R] -> [S0, R, R, R]_17' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R]_18' in strategy_name_list assert '[R, R, S0, R] -> [R, R, S0, R]_19' in strategy_name_list assert '[S1, R, R, R] -> [S1, R, R, R]_20' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R]_21' in strategy_name_list assert '[R, R, S1, R] -> [R, R, S1, R]_22' in strategy_name_list assert '[R, R, R, S1] -> [R, R, R, S1]_10' in strategy_name_list assert '[R, R, R, S0] -> [R, R, R, S0]_9' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R]_8' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R]_7' in strategy_name_list assert '[R, R, R, S0] -> [R, R, R, S0]_6' in strategy_name_list assert '[R, R, R, S1] -> [R, R, R, S1]_5' in strategy_name_list assert '[S01, R, R, R] -> [S01, R, R, R]_0' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R]_1' in strategy_name_list assert '[R, R, S01, R] -> [R, R, S01, R]_2' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R]_3' in strategy_name_list assert '[R, R, R, S01] -> [R, R, R, S01]_4' in strategy_name_list @run_on_environment_flag(name='AUTO_PARALLEL') @pytest.mark.dist @rerun_if_address_is_in_use() @parameterize('softmax_dim', [0, 1, 2, 3]) @parameterize('model_cls', [LinearSplitModel]) def test_split_handler(softmax_dim, model_cls): world_size = 4 run_func = partial(check_split_handler, softmax_dim=softmax_dim, model_cls=model_cls, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_split_handler()
import torch import torch.nn as nn from colossalai.auto_parallel.tensor_shard.node_handler.placeholder_handler import PlaceholderHandler from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType, StrategiesVector from colossalai.device.device_mesh import DeviceMesh from colossalai.fx import ColoGraphModule, ColoTracer from colossalai.testing import assert_close, parameterize, rerun_if_address_is_in_use class PlaceholderModel(nn.Module): def __init__(self): super().__init__() def forward(self, input): return input @parameterize('placeholder_option', ['distributed', 'replicated']) @rerun_if_address_is_in_use() def test_placeholder_handler(placeholder_option): model = PlaceholderModel() tracer = ColoTracer() # graph(): # %input_1 : torch.Tensor [#users=1] = placeholder[target=input] # return input_1 graph = tracer.trace(model, meta_args={ "input": torch.rand(4, 4, 64, 64).to('meta'), }) gm = ColoGraphModule(model, graph) physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) device_mesh = DeviceMesh(physical_mesh_id, mesh_shape) placeholder_node = list(graph.nodes)[0] placeholder_strategies_vector = StrategiesVector(placeholder_node) # build handler placeholder_handler = PlaceholderHandler(node=placeholder_node, device_mesh=device_mesh, strategies_vector=placeholder_strategies_vector, placeholder_option=placeholder_option) placeholder_handler.register_strategy(compute_resharding_cost=False) # check operation data mapping mapping = placeholder_handler.get_operation_data_mapping() strategy = placeholder_strategies_vector[0] strategy_sharding_spec = strategy.get_sharding_spec_by_name(mapping['output'].name) if placeholder_option == 'distributed': assert str(strategy_sharding_spec.sharding_sequence) == '[S01, R, R, R]' else: assert str(strategy_sharding_spec.sharding_sequence) == '[R, R, R, R]' for name, op_data in mapping.items(): op_data: OperationData # make sure they have valid values assert op_data.data is not None assert mapping['output'].name == "input_1" assert mapping['output'].data.is_meta assert mapping['output'].data.shape == torch.Size((4, 4, 64, 64)) assert mapping['output'].type == OperationDataType.OUTPUT strategy_name_list = [val.name for val in placeholder_handler.strategies_vector] if placeholder_option == 'replicated': assert "Replica Placeholder" in strategy_name_list else: assert "Distributed Placeholder" in strategy_name_list if __name__ == '__main__': test_placeholder_handler()
from functools import partial import torch import torch.multiprocessing as mp import torch.nn as nn from colossalai.auto_parallel.tensor_shard.node_handler import LinearFunctionHandler from colossalai.auto_parallel.tensor_shard.options import ShardOption from colossalai.auto_parallel.tensor_shard.sharding_strategy import StrategiesVector from colossalai.device.device_mesh import DeviceMesh from colossalai.fx import ColoGraphModule, ColoTracer from colossalai.testing import parameterize from colossalai.testing.pytest_wrapper import run_on_environment_flag from colossalai.testing.utils import parameterize class LinearModel(nn.Module): def __init__(self): super().__init__() def forward(self, input, others, bias=None): x = nn.functional.linear(input, others, bias=bias) return x def check_shard_option(shard_option): model = LinearModel().cuda() physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) device_mesh = DeviceMesh(physical_mesh_id, mesh_shape) tracer = ColoTracer() graph = tracer.trace(model, meta_args={ "input": torch.rand(4, 4, 4, 16).to('meta'), 'others': torch.rand(32, 16).to('meta') }) gm = ColoGraphModule(model, graph) linear_func_node = list(graph.nodes)[2] strategies_vector = StrategiesVector(linear_func_node) # build handler handler = LinearFunctionHandler(node=linear_func_node, device_mesh=device_mesh, strategies_vector=strategies_vector, shard_option=shard_option) strategies_vector = handler.register_strategy(compute_resharding_cost=False) strategy_name_list = [val.name for val in strategies_vector] if shard_option == ShardOption.SHARD_LAST_AXIS: # RR = RS x SR assert 'RR = RS1 x S1R' in strategy_name_list # RS= RR x RS assert 'RS1 = RR x RS1' in strategy_name_list return # SS = SR x RS assert 'S1S0 = S1R x RS0_0' in strategy_name_list assert 'S0S1 = S0R x RS1_1' in strategy_name_list assert 'S0S1 = S0R x RS1_2' in strategy_name_list assert 'S0S1 = S0R x RS1_0' in strategy_name_list assert 'S1S0 = S1R x RS0_1' in strategy_name_list assert 'S1S0 = S1R x RS0_2' in strategy_name_list # SR = SS x SR assert 'S0R = S0S1 x S1R_1' in strategy_name_list assert 'S0R = S0S1 x S1R_2' in strategy_name_list assert 'S1R = S1S0 x S0R_0' in strategy_name_list assert 'S0R = S0S1 x S1R_0' in strategy_name_list assert 'S1R = S1S0 x S0R_1' in strategy_name_list assert 'S1R = S1S0 x S0R_2' in strategy_name_list # RS = RS x SS assert 'RS0 = RS1 x S1S0' in strategy_name_list assert 'RS1 = RS0 x S0S1' in strategy_name_list # S01R = S01R x RR assert 'S01R = S01R x RR_0' in strategy_name_list assert 'S01R = S01R x RR_1' in strategy_name_list assert 'S01R = S01R x RR_2' in strategy_name_list # RR = RS01 x S01R assert 'RR = RS01 x S01R' in strategy_name_list # RS01 = RR x RS01 assert 'RS01 = RR x RS01' in strategy_name_list if shard_option == ShardOption.SHARD: # RR = RS x SR assert 'RR = RS0 x S0R' in strategy_name_list assert 'RR = RS1 x S1R' in strategy_name_list # RS= RR x RS assert 'RS0 = RR x RS0' in strategy_name_list assert 'RS1 = RR x RS1' in strategy_name_list if shard_option == ShardOption.STANDARD: # RR = RS x SR assert 'RR = RS0 x S0R' in strategy_name_list assert 'RR = RS1 x S1R' in strategy_name_list # RS= RR x RS assert 'RS0 = RR x RS0' in strategy_name_list assert 'RS1 = RR x RS1' in strategy_name_list # RR = RR x RR assert 'RR = RR x RR' in strategy_name_list @run_on_environment_flag(name='AUTO_PARALLEL') def test_shard_option(): # for shard_option in [ShardOption.STANDARD, ShardOption.SHARD, ShardOption.FULL_SHARD, ShardOption.SHARD_LAST_AXIS]: for shard_option in [ShardOption.SHARD_LAST_AXIS]: check_shard_option(shard_option) if __name__ == '__main__': test_shard_option()
from functools import partial import pytest import torch import torch.multiprocessing as mp import torch.nn as nn from colossalai.auto_parallel.tensor_shard.node_handler import PermuteHandler, TransposeHandler from colossalai.auto_parallel.tensor_shard.node_handler.conv_handler import ConvFunctionHandler from colossalai.auto_parallel.tensor_shard.node_handler.linear_handler import LinearFunctionHandler from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType, StrategiesVector from colossalai.device.device_mesh import DeviceMesh from colossalai.fx import ColoGraphModule, ColoTracer from colossalai.initialize import launch from colossalai.logging import disable_existing_loggers from colossalai.testing import assert_close, parameterize, rerun_if_address_is_in_use from colossalai.testing.pytest_wrapper import run_on_environment_flag from colossalai.utils import free_port from tests.test_auto_parallel.test_tensor_shard.test_node_handler.utils import numerical_test_for_node_strategy class ConvReshapeModel(nn.Module): def __init__(self, reshape_dims, call_function): super().__init__() self.reshape_dims = reshape_dims self.call_function = call_function def forward(self, input, other): conv_node = nn.functional.conv2d(input, other, bias=None) # permute_node = torch.permute(conv_node, self.permute_dims) if self.call_function == torch.permute: permute_node = self.call_function(conv_node, self.reshape_dims) else: permute_node = self.call_function(conv_node, *self.reshape_dims) return permute_node class LinearReshapeModel(nn.Module): def __init__(self, reshape_dims, call_function): super().__init__() self.reshape_dims = reshape_dims self.call_function = call_function def forward(self, input, other): linear_node = nn.functional.linear(input, other, bias=None) # permute_node = torch.permute(linear_node, self.tgt_shape) if self.call_function == torch.permute: permute_node = self.call_function(linear_node, self.reshape_dims) else: permute_node = self.call_function(linear_node, *self.reshape_dims) return permute_node def check_view_handler(rank, call_function, reshape_dims, model_cls, world_size, port): disable_existing_loggers() launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') if call_function == torch.permute: reshape_dims = reshape_dims[0] elif call_function == torch.transpose: reshape_dims = reshape_dims[1] model = model_cls(reshape_dims, call_function).cuda() if model_cls.__name__ == 'ConvReshapeModel': input = torch.rand(8, 8, 66, 66).to('cuda') other = torch.rand(16, 8, 3, 3).to('cuda') # index of conv node in computation graph node_index = 2 # total number of conv strategies strategy_number = 16 if model_cls.__name__ == 'LinearReshapeModel': input = torch.rand(8, 16, 64, 32).to('cuda') other = torch.rand(64, 32).to('cuda') # index of linear node in computation graph node_index = 2 # total number of linear strategies strategy_number = 23 physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) numerical_test_for_node_strategy(model=model, device_mesh=device_mesh, node_index=node_index, strategy_number=strategy_number, input_args=[input, other], meta_arg_names=['input', 'other'], node_type='following') tracer = ColoTracer() if model_cls.__name__ == 'ConvReshapeModel': # graph(): # %input_1 : torch.Tensor [#users=1] = placeholder[target=input] # %other : torch.Tensor [#users=1] = placeholder[target=other] # %conv2d : [#users=1] = call_function[target=torch.conv2d](args = (%input_1, %other), kwargs = {bias: None}) # %permute : [#users=1] = call_function[target=torch.permute](args = (%conv2d, (0, 2, 1, 3)), kwargs = {}) # return permute graph = tracer.trace(model, meta_args={ "input": torch.rand(8, 8, 66, 66).to('meta'), "other": torch.rand(16, 8, 3, 3).to('meta'), }) if model_cls.__name__ == 'LinearReshapeModel': # graph(): # %input_1 : torch.Tensor [#users=1] = placeholder[target=input] # %other : torch.Tensor [#users=1] = placeholder[target=other] # %linear : [#users=1] = call_function[target=torch._C._nn.linear](args = (%input_1, %other), kwargs = {bias: None}) # %permute : [#users=1] = call_method[target=view](args = (%linear, 32, 4, 32, 32, 4), kwargs = {}) # return permute graph = tracer.trace(model, meta_args={ "input": torch.rand(8, 16, 64, 32).to('meta'), "other": torch.rand(64, 32).to('meta'), }) gm = ColoGraphModule(model, graph) previous_mod_node = list(graph.nodes)[2] reshape_node = list(graph.nodes)[3] view_strategies_vector = StrategiesVector(reshape_node) previous_strategies_vector = StrategiesVector(previous_mod_node) # build handler if model_cls.__name__ == 'ConvReshapeModel': conv_handler = ConvFunctionHandler(node=previous_mod_node, device_mesh=device_mesh, strategies_vector=previous_strategies_vector) conv_handler.register_strategy(compute_resharding_cost=False) setattr(previous_mod_node, 'strategies_vector', previous_strategies_vector) if model_cls.__name__ == 'LinearReshapeModel': assert len(previous_strategies_vector) == 0 linear_handler = LinearFunctionHandler(node=previous_mod_node, device_mesh=device_mesh, strategies_vector=previous_strategies_vector) linear_handler.register_strategy(compute_resharding_cost=False) setattr(previous_mod_node, 'strategies_vector', previous_strategies_vector) if call_function == torch.permute: reshape_handler = PermuteHandler(node=reshape_node, device_mesh=device_mesh, strategies_vector=view_strategies_vector) else: reshape_handler = TransposeHandler(node=reshape_node, device_mesh=device_mesh, strategies_vector=view_strategies_vector) reshape_handler.register_strategy(compute_resharding_cost=False) # check operation data mapping mapping = reshape_handler.get_operation_data_mapping() for name, op_data in mapping.items(): op_data: OperationData # make sure they have valid values assert op_data.data is not None if model_cls.__name__ == 'ConvReshapeModel': assert mapping['input'].name == "conv2d" else: assert mapping['input'].name == "linear" assert mapping['input'].data.is_meta assert mapping['input'].data.shape == torch.Size([8, 16, 64, 64]) assert mapping['input'].type == OperationDataType.ARG assert mapping['input'].logical_shape == torch.Size([8, 16, 64, 64]) if call_function == torch.permute: assert mapping['output'].name == "permute" assert mapping['output'].data.is_meta assert mapping['output'].data.shape == torch.permute(torch.rand(8, 16, 64, 64), reshape_dims).shape assert mapping['output'].type == OperationDataType.OUTPUT else: assert mapping['output'].name == "transpose" assert mapping['output'].data.is_meta assert mapping['output'].data.shape == torch.transpose(torch.rand(8, 16, 64, 64), *reshape_dims).shape assert mapping['output'].type == OperationDataType.OUTPUT # reshape handler is a following strategy handler, so the number of strategies is equal to the predecessor node. assert len(view_strategies_vector) == len(previous_strategies_vector) strategy_name_list = [strategy.name for strategy in view_strategies_vector] if rank == 0: for name in strategy_name_list: print(name) if model_cls.__name__ == 'ConvReshapeModel': if reshape_dims in ((0, 2, 1, 3), (1, 2)): assert '[S0, S1, R, R] -> [S0, R, S1, R]_0' in strategy_name_list assert '[S1, S0, R, R] -> [S1, R, S0, R]_1' in strategy_name_list assert '[S0, R, R, R] -> [S0, R, R, R]_2' in strategy_name_list assert '[S1, R, R, R] -> [S1, R, R, R]_3' in strategy_name_list assert '[S0, R, R, R] -> [S0, R, R, R]_4' in strategy_name_list assert '[S1, R, R, R] -> [S1, R, R, R]_5' in strategy_name_list assert '[R, S1, R, R] -> [R, R, S1, R]_6' in strategy_name_list assert '[R, S0, R, R] -> [R, R, S0, R]_7' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R]_8' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R]_9' in strategy_name_list assert '[R, S0, R, R] -> [R, R, S0, R]_10' in strategy_name_list assert '[R, S1, R, R] -> [R, R, S1, R]_11' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R]_12' in strategy_name_list assert '[S01, R, R, R] -> [S01, R, R, R]_13' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R]_14' in strategy_name_list assert '[R, S01, R, R] -> [R, R, S01, R]_15' in strategy_name_list if reshape_dims == (2, 0, 1, 3): assert '[S0, S1, R, R] -> [R, S0, S1, R]_0' in strategy_name_list assert '[S1, S0, R, R] -> [R, S1, S0, R]_1' in strategy_name_list assert '[S0, R, R, R] -> [R, S0, R, R]_2' in strategy_name_list assert '[S1, R, R, R] -> [R, S1, R, R]_3' in strategy_name_list assert '[S0, R, R, R] -> [R, S0, R, R]_4' in strategy_name_list assert '[S1, R, R, R] -> [R, S1, R, R]_5' in strategy_name_list assert '[R, S1, R, R] -> [R, R, S1, R]_6' in strategy_name_list assert '[R, S0, R, R] -> [R, R, S0, R]_7' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R]_8' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R]_9' in strategy_name_list assert '[R, S0, R, R] -> [R, R, S0, R]_10' in strategy_name_list assert '[R, S1, R, R] -> [R, R, S1, R]_11' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R]_12' in strategy_name_list assert '[S01, R, R, R] -> [R, S01, R, R]_13' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R]_14' in strategy_name_list assert '[R, S01, R, R] -> [R, R, S01, R]_15' in strategy_name_list if reshape_dims == (1, 3): assert '[S0, S1, R, R] -> [S0, R, R, S1]_0' in strategy_name_list assert '[S1, S0, R, R] -> [S1, R, R, S0]_1' in strategy_name_list assert '[S0, R, R, R] -> [S0, R, R, R]_2' in strategy_name_list assert '[S1, R, R, R] -> [S1, R, R, R]_3' in strategy_name_list assert '[S0, R, R, R] -> [S0, R, R, R]_4' in strategy_name_list assert '[S1, R, R, R] -> [S1, R, R, R]_5' in strategy_name_list assert '[R, S1, R, R] -> [R, R, R, S1]_6' in strategy_name_list assert '[R, S0, R, R] -> [R, R, R, S0]_7' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R]_8' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R]_9' in strategy_name_list assert '[R, S0, R, R] -> [R, R, R, S0]_10' in strategy_name_list assert '[R, S1, R, R] -> [R, R, R, S1]_11' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R]_12' in strategy_name_list assert '[S01, R, R, R] -> [S01, R, R, R]_13' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R]_14' in strategy_name_list assert '[R, S01, R, R] -> [R, R, R, S01]_15' in strategy_name_list if model_cls.__name__ == 'LinearReshapeModel': if reshape_dims == ((0, 2, 1, 3), (1, 2)): assert '[S0, R, R, S1] -> [S0, R, R, S1]_11' in strategy_name_list assert '[R, S0, R, S1] -> [R, R, S0, S1]_12' in strategy_name_list assert '[R, R, S0, S1] -> [R, S0, R, S1]_13' in strategy_name_list assert '[S1, R, R, S0] -> [S1, R, R, S0]_14' in strategy_name_list assert '[R, S1, R, S0] -> [R, R, S1, S0]_15' in strategy_name_list assert '[R, R, S1, S0] -> [R, S1, R, S0]_16' in strategy_name_list assert '[S0, R, R, R] -> [S0, R, R, R]_17' in strategy_name_list assert '[R, S0, R, R] -> [R, R, S0, R]_18' in strategy_name_list assert '[R, R, S0, R] -> [R, S0, R, R]_19' in strategy_name_list assert '[S1, R, R, R] -> [S1, R, R, R]_20' in strategy_name_list assert '[R, S1, R, R] -> [R, R, S1, R]_21' in strategy_name_list assert '[R, R, S1, R] -> [R, S1, R, R]_22' in strategy_name_list assert '[R, R, R, S1] -> [R, R, R, S1]_10' in strategy_name_list assert '[R, R, R, S0] -> [R, R, R, S0]_9' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R]_8' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R]_7' in strategy_name_list assert '[R, R, R, S0] -> [R, R, R, S0]_6' in strategy_name_list assert '[R, R, R, S1] -> [R, R, R, S1]_5' in strategy_name_list assert '[S01, R, R, R] -> [S01, R, R, R]_0' in strategy_name_list assert '[R, S01, R, R] -> [R, R, S01, R]_1' in strategy_name_list assert '[R, R, S01, R] -> [R, S01, R, R]_2' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R]_3' in strategy_name_list assert '[R, R, R, S01] -> [R, R, R, S01]_4' in strategy_name_list if reshape_dims == (2, 0, 1, 3): assert '[S0, R, R, S1] -> [R, S0, R, S1]_11' in strategy_name_list assert '[R, S0, R, S1] -> [R, R, S0, S1]_12' in strategy_name_list assert '[R, R, S0, S1] -> [S0, R, R, S1]_13' in strategy_name_list assert '[S1, R, R, S0] -> [R, S1, R, S0]_14' in strategy_name_list assert '[R, S1, R, S0] -> [R, R, S1, S0]_15' in strategy_name_list assert '[R, R, S1, S0] -> [S1, R, R, S0]_16' in strategy_name_list assert '[S0, R, R, R] -> [R, S0, R, R]_17' in strategy_name_list assert '[R, S0, R, R] -> [R, R, S0, R]_18' in strategy_name_list assert '[R, R, S0, R] -> [S0, R, R, R]_19' in strategy_name_list assert '[S1, R, R, R] -> [R, S1, R, R]_20' in strategy_name_list assert '[R, S1, R, R] -> [R, R, S1, R]_21' in strategy_name_list assert '[R, R, S1, R] -> [S1, R, R, R]_22' in strategy_name_list assert '[R, R, R, S1] -> [R, R, R, S1]_10' in strategy_name_list assert '[R, R, R, S0] -> [R, R, R, S0]_9' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R]_8' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R]_7' in strategy_name_list assert '[R, R, R, S0] -> [R, R, R, S0]_6' in strategy_name_list assert '[R, R, R, S1] -> [R, R, R, S1]_5' in strategy_name_list assert '[S01, R, R, R] -> [R, S01, R, R]_0' in strategy_name_list assert '[R, S01, R, R] -> [R, R, S01, R]_1' in strategy_name_list assert '[R, R, S01, R] -> [S01, R, R, R]_2' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R]_3' in strategy_name_list assert '[R, R, R, S01] -> [R, R, R, S01]_4' in strategy_name_list if reshape_dims == (1, 3): assert '[S0, R, R, S1] -> [S0, S1, R, R]_11' in strategy_name_list assert '[R, S0, R, S1] -> [R, S1, R, S0]_12' in strategy_name_list assert '[R, R, S0, S1] -> [R, S1, S0, R]_13' in strategy_name_list assert '[S1, R, R, S0] -> [S1, S0, R, R]_14' in strategy_name_list assert '[R, S1, R, S0] -> [R, S0, R, S1]_15' in strategy_name_list assert '[R, R, S1, S0] -> [R, S0, S1, R]_16' in strategy_name_list assert '[S0, R, R, R] -> [S0, R, R, R]_17' in strategy_name_list assert '[R, S0, R, R] -> [R, R, R, S0]_18' in strategy_name_list assert '[R, R, S0, R] -> [R, R, S0, R]_19' in strategy_name_list assert '[S1, R, R, R] -> [S1, R, R, R]_20' in strategy_name_list assert '[R, S1, R, R] -> [R, R, R, S1]_21' in strategy_name_list assert '[R, R, S1, R] -> [R, R, S1, R]_22' in strategy_name_list assert '[R, R, R, S1] -> [R, S1, R, R]_10' in strategy_name_list assert '[R, R, R, S0] -> [R, S0, R, R]_9' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R]_8' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R]_7' in strategy_name_list assert '[R, R, R, S0] -> [R, S0, R, R]_6' in strategy_name_list assert '[R, R, R, S1] -> [R, S1, R, R]_5' in strategy_name_list assert '[S01, R, R, R] -> [S01, R, R, R]_0' in strategy_name_list assert '[R, S01, R, R] -> [R, R, R, S01]_1' in strategy_name_list assert '[R, R, S01, R] -> [R, R, S01, R]_2' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R]_3' in strategy_name_list assert '[R, R, R, S01] -> [R, S01, R, R]_4' in strategy_name_list @run_on_environment_flag(name='AUTO_PARALLEL') @pytest.mark.dist @rerun_if_address_is_in_use() @parameterize('call_function', [torch.permute, torch.transpose]) @parameterize('reshape_dims', [((0, 2, 1, 3), (1, 2)), ((2, 0, 1, 3), (1, 3))]) @parameterize('model_cls', [ConvReshapeModel, LinearReshapeModel]) def test_view_handler(call_function, reshape_dims, model_cls): world_size = 4 run_func = partial(check_view_handler, call_function=call_function, reshape_dims=reshape_dims, model_cls=model_cls, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_view_handler()
from faulthandler import disable from functools import partial from xml.dom import WrongDocumentErr import pytest import torch import torch.multiprocessing as mp import torch.nn as nn from typing_extensions import Self from colossalai.auto_parallel.tensor_shard.node_handler import LinearFunctionHandler from colossalai.auto_parallel.tensor_shard.sharding_strategy import ( OperationData, OperationDataType, ShardingStrategy, StrategiesVector, ) from colossalai.device.device_mesh import DeviceMesh from colossalai.fx import ColoGraphModule, ColoTracer from colossalai.initialize import launch from colossalai.logging import disable_existing_loggers from colossalai.testing import parameterize, rerun_if_address_is_in_use from colossalai.testing.pytest_wrapper import run_on_environment_flag from colossalai.utils import free_port from tests.test_auto_parallel.test_tensor_shard.test_node_handler.utils import numerical_test_for_node_strategy class AddmmModel(nn.Module): def __init__(self): super().__init__() def forward(self, input, m1, m2): x = torch.addmm(input, m1, m2, beta=3, alpha=2) return x class AddmmModel_with_param(nn.Module): def __init__(self, weight_shape, bias_shape): super().__init__() self.weight = torch.nn.Parameter(torch.rand(weight_shape)) self.bias = torch.nn.Parameter(torch.rand(bias_shape)) def forward(self, m1): x = torch.addmm(self.bias, m1, self.weight, beta=3, alpha=2) return x def check_addmm_function_handler(rank, input_shape, model_cls, world_size, port): disable_existing_loggers() launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') if model_cls == AddmmModel: model = AddmmModel().cuda() else: model = AddmmModel_with_param(weight_shape=(8, 16), bias_shape=input_shape).cuda() physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) if model_cls == AddmmModel: input = torch.rand(input_shape).cuda() m1 = torch.rand(4, 8).cuda() m2 = torch.rand(8, 16).cuda() # construct input args input_args = [input, m1, m2] # construct meta arg names meta_arg_names = ['input', 'm1', 'm2'] meta_args_for_tracer = {} for meta_arg, input_arg in zip(meta_arg_names, input_args): meta_args_for_tracer[meta_arg] = input_arg.to('meta') # the index of addmm node in computation graph node_index = 4 # strategy number of linear node strategy_number = 14 else: m1 = torch.rand(4, 8).cuda() # construct input args input_args = [m1] # construct meta arg names meta_arg_names = ['m1'] # the index of addmm node in computation graph meta_args_for_tracer = {} for meta_arg, input_arg in zip(meta_arg_names, input_args): meta_args_for_tracer[meta_arg] = input_arg.to('meta') node_index = 4 # strategy number of linear node strategy_number = 14 numerical_test_for_node_strategy(model=model, device_mesh=device_mesh, node_index=node_index, strategy_number=strategy_number, input_args=input_args, meta_arg_names=meta_arg_names, node_type='bias_module') tracer = ColoTracer() # graph(): # %input_1 : torch.Tensor [#users=1] = placeholder[target=input] # %m1 : torch.Tensor [#users=1] = placeholder[target=m1] # %m2 : torch.Tensor [#users=1] = placeholder[target=m2] # %transpose : [#users=1] = call_function[target=torch.transpose](args = (%m2, 0, 1), kwargs = {}) # %linear : [#users=1] = call_function[target=torch._C._nn.linear](args = (%m1, %transpose), kwargs = {}) # %mul : [#users=1] = call_function[target=operator.mul](args = (%input_1, 3), kwargs = {}) # %mul_1 : [#users=1] = call_function[target=operator.mul](args = (2, %linear), kwargs = {}) # %add : [#users=1] = call_function[target=operator.add](args = (%mul_1, %mul), kwargs = {}) # return add graph = tracer.trace(model, meta_args=meta_args_for_tracer) gm = ColoGraphModule(model, graph) # [input_1, m1, m2, addmm, output] node_list = list(graph.nodes) linear_node = node_list[4] strategies_vector = StrategiesVector(linear_node) # build handler handler = LinearFunctionHandler(node=linear_node, device_mesh=device_mesh, strategies_vector=strategies_vector) handler.register_strategy(compute_resharding_cost=False) strategy_name_list = [val.name for val in strategies_vector] # check operation data mapping mapping = handler.get_operation_data_mapping() assert mapping['input'].name == "m1" assert mapping['input'].data.shape == torch.Size([4, 8]) assert mapping['input'].type == OperationDataType.ARG assert mapping['input'].logical_shape == torch.Size([4, 8]) assert mapping['other'].name == "transpose" assert mapping['other'].data.shape == torch.Size([16, 8]) if model_cls == AddmmModel: assert mapping['other'].type == OperationDataType.ARG else: assert mapping['other'].type == OperationDataType.PARAM assert mapping['other'].logical_shape == torch.Size([8, 16]) assert mapping['output'].name == "linear" assert mapping['output'].data.shape == torch.Size([4, 16]) assert mapping['output'].type == OperationDataType.OUTPUT # SS = SR x RS assert 'S0S1 = S0R x RS1_0' in strategy_name_list assert 'S1S0 = S1R x RS0_0' in strategy_name_list # SR = SS x SR assert 'S0R = S0S1 x S1R_0' in strategy_name_list assert 'S1R = S1S0 x S0R_0' in strategy_name_list # RS = RS x SS assert 'RS0 = RS1 x S1S0' in strategy_name_list assert 'RS1 = RS0 x S0S1' in strategy_name_list # RR = RS x SR assert 'RR = RS0 x S0R' in strategy_name_list assert 'RR = RS1 x S1R' in strategy_name_list # RS= RR x RS assert 'RS0 = RR x RS0' in strategy_name_list assert 'RS1 = RR x RS1' in strategy_name_list # S01R = S01R x RR assert 'S01R = S01R x RR_0' in strategy_name_list # RR = RS01 x S01R assert 'RR = RS01 x S01R' in strategy_name_list # RS01 = RR x RS01 assert 'RS01 = RR x RS01' in strategy_name_list # RR = RR x RR assert 'RR = RR x RR' in strategy_name_list for strategy in strategies_vector: strategy: ShardingStrategy input_sharding_spec = strategy.get_sharding_spec_by_name('m1') weight_sharding_spec = strategy.get_sharding_spec_by_name('transpose') output_sharding_spec = strategy.get_sharding_spec_by_name('linear') # make sure the sharding matches across different operation data assert input_sharding_spec.sharding_sequence[:-1] == output_sharding_spec.sharding_sequence[:-1] assert weight_sharding_spec.sharding_sequence[1] == input_sharding_spec.sharding_sequence[1] assert weight_sharding_spec.sharding_sequence[0] == output_sharding_spec.sharding_sequence[1] @run_on_environment_flag(name='AUTO_PARALLEL') @pytest.mark.dist @parameterize('input_shape', [(16,), (4, 16)]) @parameterize('model_cls', [AddmmModel, AddmmModel_with_param]) @rerun_if_address_is_in_use() def test_addmm_handler(input_shape, model_cls): world_size = 4 run_func_function = partial(check_addmm_function_handler, input_shape=input_shape, model_cls=model_cls, world_size=world_size, port=free_port()) mp.spawn(run_func_function, nprocs=world_size) if __name__ == '__main__': test_addmm_handler()
import torch import torch.nn as nn from colossalai.auto_parallel.tensor_shard.node_handler.where_handler import \ WhereHandler from colossalai.auto_parallel.tensor_shard.sharding_strategy import (OperationData, OperationDataType, StrategiesVector) from colossalai.device.device_mesh import DeviceMesh from colossalai.fx import ColoGraphModule, ColoTracer from colossalai.fx.tracer.meta_patch.patched_module import linear class ConvModel(nn.Module): def __init__(self): super().__init__() def forward(self, condition, x, y): output = torch.where(condition, x, y) return output def test_where_handler(): model = ConvModel() tracer = ColoTracer() # graph(): # %condition : torch.Tensor [#users=1] = placeholder[target=condition] # %x : torch.Tensor [#users=1] = placeholder[target=x] # %y : torch.Tensor [#users=1] = placeholder[target=y] # %where : [#users=1] = call_function[target=torch.where](args = (%condition, %x, %y), kwargs = {}) # return where graph = tracer.trace(model, meta_args={ "condition": torch.rand(4, 4, 64, 64).to('meta'), "x": torch.rand(4, 1, 64, 64).to('meta'), "y": torch.rand(1, 4, 64, 64).to('meta') }) gm = ColoGraphModule(model, graph) physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) device_mesh = DeviceMesh(physical_mesh_id, mesh_shape) where_node = list(graph.nodes)[3] strategies_vector = StrategiesVector(where_node) # build handler handler = WhereHandler(node=where_node, device_mesh=device_mesh, strategies_vector=strategies_vector) # check operation data mapping mapping, _ = handler.get_operation_data_mapping() for name, op_data in mapping.items(): op_data: OperationData # make sure they have valid values assert op_data.logical_shape is not None assert op_data.data is not None assert mapping['condition'].name == "condition" assert mapping['condition'].data.is_meta assert mapping['condition'].data.shape == torch.Size([4, 4, 64, 64]) assert mapping['condition'].type == OperationDataType.ARG assert mapping['condition'].logical_shape == torch.Size([4, 4, 64, 64]) assert mapping['x'].name == "x" assert mapping['x'].data.is_meta assert mapping['x'].data.shape == torch.Size([4, 1, 64, 64]) assert mapping['x'].type == OperationDataType.ARG assert mapping['x'].logical_shape == torch.Size([4, 4, 64, 64]) assert mapping['y'].name == "y" assert mapping['y'].data.is_meta assert mapping['y'].data.shape == torch.Size([1, 4, 64, 64]) assert mapping['y'].type == OperationDataType.ARG assert mapping['y'].logical_shape == torch.Size([4, 4, 64, 64]) assert mapping['output'].name == "where" assert mapping['output'].data.is_meta assert mapping['output'].data.shape == torch.Size([4, 4, 64, 64]) assert mapping['output'].type == OperationDataType.OUTPUT handler.register_strategy(compute_resharding_cost=False) strategy_name_list = [val.name for val in strategies_vector] # 4*3 + 4*3/2*2 + 1 assert len(strategy_name_list) == 25 if __name__ == '__main__': test_where_handler()
import torch import torch.nn as nn from colossalai.auto_parallel.tensor_shard.node_handler.tensor_constructor_handler import TensorConstructorHandler from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType, StrategiesVector from colossalai.device.device_mesh import DeviceMesh from colossalai.fx import ColoGraphModule, ColoTracer from colossalai.testing.pytest_wrapper import run_on_environment_flag class TensorConstructorModel(nn.Module): def __init__(self): super().__init__() def forward(self, x): arange_node = torch.arange(x.size()[0]) x = x + arange_node return x @run_on_environment_flag(name='AUTO_PARALLEL') def test_where_handler(): model = TensorConstructorModel() tracer = ColoTracer() # graph(): # %x : torch.Tensor [#users=2] = placeholder[target=x] # %size : [#users=1] = call_method[target=size](args = (%x,), kwargs = {}) # %getitem : [#users=1] = call_function[target=operator.getitem](args = (%size, 0), kwargs = {}) # %arange : [#users=1] = call_function[target=torch.arange](args = (%getitem,), kwargs = {}) # %add : [#users=1] = call_function[target=operator.add](args = (%x, %arange), kwargs = {}) # return add graph = tracer.trace(model, meta_args={ "x": torch.rand(10).to('meta'), }) gm = ColoGraphModule(model, graph) physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) device_mesh = DeviceMesh(physical_mesh_id, mesh_shape) arange_node = list(graph.nodes)[3] strategies_vector = StrategiesVector(arange_node) # build handler handler = TensorConstructorHandler(node=arange_node, device_mesh=device_mesh, strategies_vector=strategies_vector) # check operation data mapping mapping = handler.get_operation_data_mapping() for name, op_data in mapping.items(): op_data: OperationData # make sure they have valid values assert op_data.logical_shape is not None assert op_data.data is not None assert mapping['output'].name == "arange" assert mapping['output'].data.is_meta assert mapping['output'].data.shape == torch.Size([10]) assert mapping['output'].type == OperationDataType.OUTPUT handler.register_strategy(compute_resharding_cost=False) strategy_name_list = [val.name for val in strategies_vector] assert 'Replica Tensor Constructor' in strategy_name_list if __name__ == '__main__': test_where_handler()
from faulthandler import disable from functools import partial from xml.dom import WrongDocumentErr import pytest import torch import torch.multiprocessing as mp import torch.nn as nn import torch.nn.functional as F from typing_extensions import Self from colossalai.auto_parallel.tensor_shard.node_handler import LinearFunctionHandler, LinearModuleHandler from colossalai.auto_parallel.tensor_shard.sharding_strategy import ( OperationData, OperationDataType, ShardingStrategy, StrategiesVector, ) from colossalai.device.device_mesh import DeviceMesh from colossalai.fx import ColoGraphModule, ColoTracer from colossalai.initialize import launch from colossalai.logging import disable_existing_loggers from colossalai.testing import assert_close, parameterize, rerun_if_address_is_in_use from colossalai.testing.pytest_wrapper import run_on_environment_flag from colossalai.testing.utils import parameterize from colossalai.utils import free_port from tests.test_auto_parallel.test_tensor_shard.test_node_handler.utils import numerical_test_for_node_strategy WEIGHT_SHAPE = (32, 16) class LinearModule(torch.nn.Module): def __init__(self, weight_shape): super().__init__() self.weight = torch.nn.Parameter(torch.rand(*weight_shape)) self.bias = torch.nn.Parameter(torch.rand(weight_shape[0])) def forward(self, x): x = F.linear(x, self.weight, bias=self.bias) return x def check_linear_module_handler(rank, world_size, port): disable_existing_loggers() launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') model = LinearModule(weight_shape=WEIGHT_SHAPE).cuda() physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) input = torch.rand(4, 4, 4, 16).cuda() # the index of linear node in computation graph node_index = 3 # strategy number of linear node strategy_number = 24 # construct input args input_args = [input] # construct meta arg names meta_arg_names = ['x'] numerical_test_for_node_strategy(model=model, device_mesh=device_mesh, node_index=node_index, strategy_number=strategy_number, input_args=input_args, meta_arg_names=meta_arg_names, node_type='bias_module') tracer = ColoTracer() # graph(): # %x : torch.Tensor [#users=1] = placeholder[target=x] # %weight : [#users=1] = get_attr[target=weight] # %bias : [#users=1] = get_attr[target=bias] # %linear : [#users=1] = call_function[target=torch._C._nn.linear](args = (%x, %weight), kwargs = {}) # %add : [#users=1] = call_function[target=operator.add](args = (%linear, %bias), kwargs = {}) # return add graph = tracer.trace(model, meta_args={"x": torch.rand(4, 4, 4, 16).to('meta')}) gm = ColoGraphModule(model, graph) linear_mod_node = list(graph.nodes)[3] strategies_vector = StrategiesVector(linear_mod_node) # build handler handler = LinearFunctionHandler(node=linear_mod_node, device_mesh=device_mesh, strategies_vector=strategies_vector) # check operation data mapping mapping = handler.get_operation_data_mapping() for name, op_data in mapping.items(): op_data: OperationData # make sure they have valid values assert op_data.logical_shape is not None assert op_data.data is not None assert mapping['input'].name == "x" assert mapping['input'].data.shape == torch.Size([4, 4, 4, 16]) assert mapping['input'].type == OperationDataType.ARG assert mapping['input'].logical_shape == torch.Size([64, 16]) assert mapping['other'].name == "weight" assert mapping['other'].data.shape == torch.Size([32, 16]) assert mapping['other'].type == OperationDataType.PARAM assert mapping['other'].logical_shape == torch.Size([16, 32]) assert 'bias' not in mapping assert mapping['output'].name == "linear" assert mapping['output'].data.shape == torch.Size([4, 4, 4, 32]) assert mapping['output'].type == OperationDataType.OUTPUT strategies_vector = handler.register_strategy(compute_resharding_cost=False) strategy_name_list = [val.name for val in strategies_vector] # SS = SR x RS assert 'S0S1 = S0R x RS1_0' in strategy_name_list assert 'S0S1 = S0R x RS1_1' in strategy_name_list assert 'S0S1 = S0R x RS1_2' in strategy_name_list assert 'S1S0 = S1R x RS0_0' in strategy_name_list assert 'S1S0 = S1R x RS0_1' in strategy_name_list assert 'S1S0 = S1R x RS0_2' in strategy_name_list # SR = SS x SR assert 'S0R = S0S1 x S1R_0' in strategy_name_list assert 'S0R = S0S1 x S1R_1' in strategy_name_list assert 'S0R = S0S1 x S1R_2' in strategy_name_list assert 'S1R = S1S0 x S0R_0' in strategy_name_list assert 'S1R = S1S0 x S0R_1' in strategy_name_list assert 'S1R = S1S0 x S0R_2' in strategy_name_list # RS = RS x SS assert 'RS0 = RS1 x S1S0' in strategy_name_list assert 'RS1 = RS0 x S0S1' in strategy_name_list # RR = RS x SR assert 'RR = RS0 x S0R' in strategy_name_list assert 'RR = RS1 x S1R' in strategy_name_list # RS= RR x RS assert 'RS0 = RR x RS0' in strategy_name_list assert 'RS1 = RR x RS1' in strategy_name_list # S01R = S01R x RR assert 'S01R = S01R x RR_0' in strategy_name_list assert 'S01R = S01R x RR_1' in strategy_name_list assert 'S01R = S01R x RR_2' in strategy_name_list # RR = RS01 x S01R assert 'RR = RS01 x S01R' in strategy_name_list # RS01 = RR x RS01 assert 'RS01 = RR x RS01' in strategy_name_list # RR = RR x RR assert 'RR = RR x RR' in strategy_name_list for strategy in strategies_vector: strategy: ShardingStrategy input_sharding_spec = strategy.get_sharding_spec_by_name('x') weight_sharding_spec = strategy.get_sharding_spec_by_name('weight') output_sharding_spec = strategy.get_sharding_spec_by_name('linear') # make sure the sharding matches across different operation data assert input_sharding_spec.sharding_sequence[:-1] == output_sharding_spec.sharding_sequence[:-1] assert weight_sharding_spec.sharding_sequence[1] == input_sharding_spec.sharding_sequence[-1] assert weight_sharding_spec.sharding_sequence[0] == output_sharding_spec.sharding_sequence[-1] @run_on_environment_flag(name='AUTO_PARALLEL') @pytest.mark.dist @rerun_if_address_is_in_use() def test_linear_handler(): world_size = 4 run_func_module = partial(check_linear_module_handler, world_size=world_size, port=free_port()) mp.spawn(run_func_module, nprocs=world_size) if __name__ == '__main__': test_linear_handler()
import torch import torch.nn as nn from colossalai.auto_parallel.tensor_shard.node_handler.conv_handler import ConvFunctionHandler from colossalai.auto_parallel.tensor_shard.node_handler.unary_elementwise_handler import UnaryElementwiseHandler from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType, StrategiesVector from colossalai.device.device_mesh import DeviceMesh from colossalai.fx import ColoGraphModule, ColoTracer from colossalai.fx.tracer.meta_patch.patched_module import linear from colossalai.testing.pytest_wrapper import run_on_environment_flag class ReLuModel(nn.Module): def __init__(self): super().__init__() self.act = torch.nn.ReLU() def forward(self, input, other): conv_node = nn.functional.conv2d(input, other) relu_node = self.act(conv_node) return relu_node @run_on_environment_flag(name='AUTO_PARALLEL') def test_elementwise_handler(): model = ReLuModel() tracer = ColoTracer() # graph(): # %input_1 : torch.Tensor [#users=1] = placeholder[target=input] # %other : torch.Tensor [#users=1] = placeholder[target=other] # %conv2d : [#users=1] = call_function[target=torch.conv2d](args = (%input_1, %other), kwargs = {}) # %act : [#users=1] = call_module[target=act](args = (%conv2d,), kwargs = {}) # return act graph = tracer.trace(model, meta_args={ "input": torch.rand(4, 4, 64, 64).to('meta'), "other": torch.rand(4, 16, 3, 3).to('meta'), }) gm = ColoGraphModule(model, graph) physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) device_mesh = DeviceMesh(physical_mesh_id, mesh_shape) conv_mod_node = list(graph.nodes)[2] relu_mod_node = list(graph.nodes)[3] relu_strategies_vector = StrategiesVector(relu_mod_node) conv_strategies_vector = StrategiesVector(conv_mod_node) # build handler conv_handler = ConvFunctionHandler(node=conv_mod_node, device_mesh=device_mesh, strategies_vector=conv_strategies_vector) conv_handler.register_strategy(compute_resharding_cost=False) setattr(conv_mod_node, 'strategies_vector', conv_strategies_vector) relu_handler = UnaryElementwiseHandler(node=relu_mod_node, device_mesh=device_mesh, strategies_vector=relu_strategies_vector) relu_handler.register_strategy(compute_resharding_cost=False) # check operation data mapping mapping = relu_handler.get_operation_data_mapping() for name, op_data in mapping.items(): op_data: OperationData # make sure they have valid values assert op_data.data is not None assert mapping['input'].name == "conv2d" assert mapping['input'].data.is_meta assert mapping['input'].data.shape == torch.Size([4, 4, 62, 62]) assert mapping['input'].type == OperationDataType.ARG assert mapping['input'].logical_shape == torch.Size([4, 4, 62, 62]) assert mapping['output'].name == "act" assert mapping['output'].data.is_meta assert mapping['output'].data.shape == torch.Size([4, 4, 62, 62]) assert mapping['output'].type == OperationDataType.OUTPUT # getitem is a following strategy handler, so the number of strategies is equal to the predecessor node. assert len(relu_strategies_vector) == len(conv_strategies_vector) if __name__ == '__main__': test_elementwise_handler()
import copy from typing import Dict, List import torch from torch.fx import GraphModule from colossalai.auto_parallel.passes.runtime_apply_pass import runtime_apply_pass from colossalai.auto_parallel.passes.runtime_preparation_pass import runtime_preparation_pass from colossalai.auto_parallel.tensor_shard.options import SolverOptions from colossalai.auto_parallel.tensor_shard.solver import StrategiesConstructor from colossalai.auto_parallel.tensor_shard.solver.cost_graph import CostGraph from colossalai.auto_parallel.tensor_shard.solver.graph_analysis import GraphAnalyser from colossalai.auto_parallel.tensor_shard.solver.solver import Solver from colossalai.device.device_mesh import DeviceMesh from colossalai.fx.tracer.tracer import ColoTracer from colossalai.tensor.shape_consistency import to_global from colossalai.testing.comparison import assert_close def _build_model_to_compare(model: torch.nn.Module, input_args: List[torch.Tensor], input_kwargs: Dict[str, torch.Tensor], grad_dict: Dict[any, torch.Tensor]): model_to_compare = copy.deepcopy(model) args_to_compare = [] kwargs_to_compare = {} for arg_index, input_tensor in enumerate(input_args): def wrapper(param, index): def hook_fn(grad): grad_dict[index] = grad param.register_hook(hook_fn) arg_to_compare = copy.deepcopy(input_tensor) # only Tensors of floating point and complex dtype can require gradients if arg_to_compare.dtype != torch.int64: arg_to_compare.requires_grad = True wrapper(arg_to_compare, arg_index) args_to_compare.append(arg_to_compare) for name, input_kwarg in input_kwargs.items(): def wrapper(param, name): def hook_fn(grad): grad_dict[name] = grad param.register_hook(hook_fn) kwarg_to_compare = copy.deepcopy(input_kwarg) # only Tensors of floating point and complex dtype can require gradients if kwarg_to_compare.dtype != torch.int64: kwarg_to_compare.requires_grad = True wrapper(kwarg_to_compare, name) kwargs_to_compare[name] = kwarg_to_compare return model_to_compare, args_to_compare, kwargs_to_compare def numerical_test_for_node_strategy(model: torch.nn.Module, device_mesh: DeviceMesh, node_index: int, strategy_number: int, input_args: List[torch.Tensor], meta_arg_names: List[str], input_kwargs: Dict[str, torch.Tensor] = {}, node_type: str = 'normal'): for strategy_index in range(strategy_number): print(f'#strategy_index: {strategy_index}') # We need to copy the model to avoid do backward more than once in same graph grad_to_compare_dict = {} grad_to_shard_dict = {} model_to_compare, args_to_compare, kwargs_to_compare = _build_model_to_compare( model, input_args, input_kwargs, grad_to_compare_dict) model_to_shard, args_to_shard, kwargs_to_shard = _build_model_to_compare(model, input_args, input_kwargs, grad_to_shard_dict) tracer = ColoTracer() input_sample = {} for input_arg, meta_arg_name in zip(input_args, meta_arg_names): input_sample[meta_arg_name] = torch.rand(input_arg.shape).to('meta') for meta_kwarg_name, input_kwarg in input_kwargs.items(): input_sample[meta_kwarg_name] = torch.rand(input_kwarg.shape).to('meta') graph = tracer.trace(root=model_to_shard, meta_args=input_sample) gm = GraphModule(model_to_shard, graph, model_to_shard.__class__.__name__) solver_options = SolverOptions() strategies_constructor = StrategiesConstructor(graph, device_mesh, solver_options) strategies_constructor.build_strategies_and_cost() target_node = [strategies_vector.node for strategies_vector in strategies_constructor.leaf_strategies ][node_index] if node_type == 'normal': solution_len = len(strategies_constructor.leaf_strategies) solution = [0] * solution_len solution[node_index] = strategy_index elif node_type == 'following': solution_len = len(strategies_constructor.leaf_strategies) solution = [0] * solution_len solution[node_index] = strategy_index solution[node_index + 1] = strategy_index else: node_vector = strategies_constructor.leaf_strategies[node_index] strategy_to_keep = node_vector[strategy_index] node_vector = [strategy_to_keep] # solution construction cost_graph = CostGraph(strategies_constructor.leaf_strategies) cost_graph.simplify_graph() graph_analyser = GraphAnalyser(gm) solver = Solver(gm.graph, strategies_constructor, cost_graph, graph_analyser, verbose=False) ret = solver.call_solver_serialized_args() solution = list(ret[0]) gm, sharding_spec_dict, origin_spec_dict, comm_actions_dict = runtime_preparation_pass( gm, solution, device_mesh, strategies_constructor) gm = runtime_apply_pass(gm) gm.recompile() # forward result compare output = gm(*args_to_shard, sharding_spec_convert_dict=sharding_spec_dict, origin_node_sharding_spec_dict=origin_spec_dict, comm_actions_dict=comm_actions_dict, **kwargs_to_shard) output_to_compare = model_to_compare(*args_to_compare, **kwargs_to_compare) assert_close_helper(output, output_to_compare, strategy_index=strategy_index, type='forward output') # backward result compare if isinstance(output, (tuple, list)): loss = output[0].sum() loss_to_compare = output_to_compare[0].sum() else: loss = output.sum() loss_to_compare = output_to_compare.sum() loss_to_compare.backward() loss.backward() for key in grad_to_shard_dict.keys(): grad_to_shard = grad_to_shard_dict[key] grad_to_compare = grad_to_compare_dict[key] assert_close_helper(grad_to_shard, grad_to_compare, strategy_index=strategy_index, type='input grad') # extract the strategy used in this iter strategy_in_use = target_node.strategies_vector[strategy_index] param_to_shard_dict = dict(gm.named_parameters()) param_to_compare_dict = dict(model_to_compare.named_parameters()) for name in param_to_shard_dict.keys(): param_name = name.split('.')[-1] if node_type == 'normal': param_sharding_spec = strategy_in_use.get_sharding_spec_by_name(param_name) else: if 'weight' in name: param_sharding_spec = None for node in list(graph.nodes): if 'weight' in node.name: param_sharding_spec = node.sharding_spec elif 'bias' in name: param_sharding_spec = None for node in list(graph.nodes): if 'bias' in node.name: param_sharding_spec = node.sharding_spec assert param_sharding_spec is not None grad_sharded = param_to_shard_dict[name].grad grad_to_compare = param_to_compare_dict[name].grad global_grad = to_global(grad_sharded, param_sharding_spec) assert_close_helper(global_grad, grad_to_compare, strategy_index=strategy_index, type='param grad') def assert_close_helper(first: torch.Tensor, second: torch.Tensor, rtol: float = 1e-2, atol: float = 1e-2, strategy_index: int = -1, type: str = 'not defined'): """ This method is used to check whether the average difference between two tensors is as close as expected. """ try: if isinstance(first, (tuple, list)): for first_element, second_element in zip(first, second): assert_close(first_element, second_element, rtol=rtol, atol=atol) else: assert_close(first, second, rtol=rtol, atol=atol) except: print(f'strategy index {strategy_index} encounter assert_close error on {type}')
from functools import partial import pytest import torch import torch.multiprocessing as mp import torch.nn as nn from colossalai.auto_parallel.tensor_shard.node_handler import ViewHandler from colossalai.auto_parallel.tensor_shard.node_handler.conv_handler import ConvFunctionHandler from colossalai.auto_parallel.tensor_shard.node_handler.linear_handler import LinearFunctionHandler from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType, StrategiesVector from colossalai.device.device_mesh import DeviceMesh from colossalai.fx import ColoGraphModule, ColoTracer from colossalai.initialize import launch from colossalai.logging import disable_existing_loggers from colossalai.testing import assert_close, parameterize, rerun_if_address_is_in_use from colossalai.testing.pytest_wrapper import run_on_environment_flag from colossalai.utils import free_port from tests.test_auto_parallel.test_tensor_shard.test_node_handler.utils import numerical_test_for_node_strategy class ConvViewModel(nn.Module): def __init__(self, tgt_shape): super().__init__() self.tgt_shape = tgt_shape def forward(self, input, other): conv_node = nn.functional.conv2d(input, other, bias=None) reshape_node = conv_node.view(*self.tgt_shape) return reshape_node class LinearViewModel(nn.Module): def __init__(self, tgt_shape): super().__init__() self.tgt_shape = tgt_shape def forward(self, input, other): linear_node = nn.functional.linear(input, other, bias=None) reshape_node = linear_node.view(*self.tgt_shape) return reshape_node def check_view_handler(rank, tgt_shape, model_cls, world_size, port): disable_existing_loggers() launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') model = model_cls(tgt_shape).cuda() if model_cls.__name__ == 'ConvViewModel': input = torch.rand(8, 8, 66, 66).to('cuda') other = torch.rand(16, 8, 3, 3).to('cuda') # index of conv node in computation graph node_index = 2 # total number of conv strategies strategy_number = 16 if model_cls.__name__ == 'LinearViewModel': input = torch.rand(8, 16, 64, 32).to('cuda') other = torch.rand(64, 32).to('cuda') # index of linear node in computation graph node_index = 2 # total number of linear strategies strategy_number = 23 physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) numerical_test_for_node_strategy(model=model, device_mesh=device_mesh, node_index=node_index, strategy_number=strategy_number, input_args=[input, other], meta_arg_names=['input', 'other'], node_type='following') tracer = ColoTracer() if model_cls.__name__ == 'ConvViewModel': # graph(): # %input_1 : torch.Tensor [#users=1] = placeholder[target=input] # %other : torch.Tensor [#users=1] = placeholder[target=other] # %conv2d : [#users=1] = call_function[target=torch.conv2d](args = (%input_1, %other), kwargs = {}) # %view : [#users=1] = call_method[target=view](args = (%conv2d, 2, -1), kwargs = {}) # return view graph = tracer.trace(model, meta_args={ "input": torch.rand(8, 8, 66, 66).to('meta'), "other": torch.rand(16, 8, 3, 3).to('meta'), }) if model_cls.__name__ == 'LinearViewModel': # graph(): # %input_1 : torch.Tensor [#users=1] = placeholder[target=input] # %other : torch.Tensor [#users=1] = placeholder[target=other] # %linear : [#users=1] = call_function[target=torch._C._nn.linear](args = (%input_1, %other), kwargs = {bias: None}) # %view : [#users=1] = call_method[target=view](args = (%linear, 32, 4, 32, 32, 4), kwargs = {}) # return view graph = tracer.trace(model, meta_args={ "input": torch.rand(8, 16, 64, 32).to('meta'), "other": torch.rand(64, 32).to('meta'), }) gm = ColoGraphModule(model, graph) previous_mod_node = list(graph.nodes)[2] view_node = list(graph.nodes)[3] view_strategies_vector = StrategiesVector(view_node) previous_strategies_vector = StrategiesVector(previous_mod_node) # build handler if model_cls.__name__ == 'ConvViewModel': conv_handler = ConvFunctionHandler(node=previous_mod_node, device_mesh=device_mesh, strategies_vector=previous_strategies_vector) conv_handler.register_strategy(compute_resharding_cost=False) setattr(previous_mod_node, 'strategies_vector', previous_strategies_vector) if model_cls.__name__ == 'LinearViewModel': assert len(previous_strategies_vector) == 0 linear_handler = LinearFunctionHandler(node=previous_mod_node, device_mesh=device_mesh, strategies_vector=previous_strategies_vector) linear_handler.register_strategy(compute_resharding_cost=False) setattr(previous_mod_node, 'strategies_vector', previous_strategies_vector) view_handler = ViewHandler(node=view_node, device_mesh=device_mesh, strategies_vector=view_strategies_vector) view_handler.register_strategy(compute_resharding_cost=False) # check operation data mapping mapping = view_handler.get_operation_data_mapping() for name, op_data in mapping.items(): op_data: OperationData # make sure they have valid values assert op_data.data is not None if model_cls.__name__ == 'ConvViewModel': assert mapping['input'].name == "conv2d" else: assert mapping['input'].name == "linear" assert mapping['input'].data.is_meta assert mapping['input'].data.shape == torch.Size([8, 16, 64, 64]) assert mapping['input'].type == OperationDataType.ARG assert mapping['input'].logical_shape == torch.Size([8, 16, 64, 64]) assert mapping['output'].name == "view" assert mapping['output'].data.is_meta assert mapping['output'].data.shape == torch.Size(tgt_shape) assert mapping['output'].type == OperationDataType.OUTPUT # reshape handler is a following strategy handler, so the number of strategies is equal to the predecessor node. assert len(view_strategies_vector) == len(previous_strategies_vector) strategy_name_list = [strategy.name for strategy in view_strategies_vector] if model_cls.__name__ == 'ConvViewModel': if tgt_shape == (32, 4, 64, 16, 4): assert '[S0, S1, R, R] -> FULLY REPLICATED_0' in strategy_name_list assert '[S1, S0, R, R] -> FULLY REPLICATED_1' in strategy_name_list assert '[S0, R, R, R] -> [S0, R, R, R, R]_2' in strategy_name_list assert '[S1, R, R, R] -> [S1, R, R, R, R]_3' in strategy_name_list assert '[S0, R, R, R] -> [S0, R, R, R, R]_4' in strategy_name_list assert '[S1, R, R, R] -> [S1, R, R, R, R]_5' in strategy_name_list assert '[R, S1, R, R] -> FULLY REPLICATED_6' in strategy_name_list assert '[R, S0, R, R] -> FULLY REPLICATED_7' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R, R]_8' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R, R]_9' in strategy_name_list assert '[R, S0, R, R] -> FULLY REPLICATED_10' in strategy_name_list assert '[R, S1, R, R] -> FULLY REPLICATED_11' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R, R]_12' in strategy_name_list assert '[S01, R, R, R] -> [S01, R, R, R, R]_13' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R, R]_14' in strategy_name_list assert '[R, S01, R, R] -> FULLY REPLICATED_15' in strategy_name_list if tgt_shape == (8, 4, 4, 64, 16, 4): assert '[S0, S1, R, R] -> [S0, S1, R, R, R, R]_0' in strategy_name_list assert '[S1, S0, R, R] -> [S1, S0, R, R, R, R]_1' in strategy_name_list assert '[S0, R, R, R] -> [S0, R, R, R, R, R]_2' in strategy_name_list assert '[S1, R, R, R] -> [S1, R, R, R, R, R]_3' in strategy_name_list assert '[S0, R, R, R] -> [S0, R, R, R, R, R]_4' in strategy_name_list assert '[S1, R, R, R] -> [S1, R, R, R, R, R]_5' in strategy_name_list assert '[R, S1, R, R] -> [R, S1, R, R, R, R]_6' in strategy_name_list assert '[R, S0, R, R] -> [R, S0, R, R, R, R]_7' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R, R, R]_8' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R, R, R]_9' in strategy_name_list assert '[R, S0, R, R] -> [R, S0, R, R, R, R]_10' in strategy_name_list assert '[R, S1, R, R] -> [R, S1, R, R, R, R]_11' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R, R, R]_12' in strategy_name_list assert '[S01, R, R, R] -> [S01, R, R, R, R, R]_13' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R, R, R]_14' in strategy_name_list assert '[R, S01, R, R] -> [R, S01, R, R, R, R]_15' in strategy_name_list if model_cls.__name__ == 'LinearViewModel': if tgt_shape == (32, 4, 64, 16, 4): for strategy in strategy_name_list: print(strategy) # print(strategy_name_list) assert '[S0, R, R, S1] -> [S0, R, R, S1, R]_11' in strategy_name_list assert '[R, S0, R, S1] -> FULLY REPLICATED_12' in strategy_name_list assert '[R, R, S0, S1] -> [R, R, S0, S1, R]_13' in strategy_name_list assert '[S1, R, R, S0] -> [S1, R, R, S0, R]_14' in strategy_name_list assert '[R, S1, R, S0] -> FULLY REPLICATED_15' in strategy_name_list assert '[R, R, S1, S0] -> [R, R, S1, S0, R]_16' in strategy_name_list assert '[S0, R, R, R] -> [S0, R, R, R, R]_17' in strategy_name_list assert '[R, S0, R, R] -> FULLY REPLICATED_18' in strategy_name_list assert '[R, R, S0, R] -> [R, R, S0, R, R]_19' in strategy_name_list assert '[S1, R, R, R] -> [S1, R, R, R, R]_20' in strategy_name_list assert '[R, S1, R, R] -> FULLY REPLICATED_21' in strategy_name_list assert '[R, R, S1, R] -> [R, R, S1, R, R]_22' in strategy_name_list assert '[R, R, R, S1] -> [R, R, R, S1, R]_10' in strategy_name_list assert '[R, R, R, S0] -> [R, R, R, S0, R]_9' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R, R]_8' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R, R]_7' in strategy_name_list assert '[R, R, R, S0] -> [R, R, R, S0, R]_6' in strategy_name_list assert '[R, R, R, S1] -> [R, R, R, S1, R]_5' in strategy_name_list assert '[S01, R, R, R] -> [S01, R, R, R, R]_0' in strategy_name_list assert '[R, S01, R, R] -> FULLY REPLICATED_1' in strategy_name_list assert '[R, R, S01, R] -> [R, R, S01, R, R]_2' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R, R]_3' in strategy_name_list assert '[R, R, R, S01] -> [R, R, R, S01, R]_4' in strategy_name_list if tgt_shape == (8, 4, 4, 64, 16, 4): assert '[S0, R, R, S1] -> [S0, R, R, R, S1, R]_11' in strategy_name_list assert '[R, S0, R, S1] -> [R, S0, R, R, S1, R]_12' in strategy_name_list assert '[R, R, S0, S1] -> [R, R, R, S0, S1, R]_13' in strategy_name_list assert '[S1, R, R, S0] -> [S1, R, R, R, S0, R]_14' in strategy_name_list assert '[R, S1, R, S0] -> [R, S1, R, R, S0, R]_15' in strategy_name_list assert '[R, R, S1, S0] -> [R, R, R, S1, S0, R]_16' in strategy_name_list assert '[S0, R, R, R] -> [S0, R, R, R, R, R]_17' in strategy_name_list assert '[R, S0, R, R] -> [R, S0, R, R, R, R]_18' in strategy_name_list assert '[R, R, S0, R] -> [R, R, R, S0, R, R]_19' in strategy_name_list assert '[S1, R, R, R] -> [S1, R, R, R, R, R]_20' in strategy_name_list assert '[R, S1, R, R] -> [R, S1, R, R, R, R]_21' in strategy_name_list assert '[R, R, S1, R] -> [R, R, R, S1, R, R]_22' in strategy_name_list assert '[R, R, R, S1] -> [R, R, R, R, S1, R]_10' in strategy_name_list assert '[R, R, R, S0] -> [R, R, R, R, S0, R]_9' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R, R, R]_8' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R, R, R]_7' in strategy_name_list assert '[R, R, R, S0] -> [R, R, R, R, S0, R]_6' in strategy_name_list assert '[R, R, R, S1] -> [R, R, R, R, S1, R]_5' in strategy_name_list assert '[S01, R, R, R] -> [S01, R, R, R, R, R]_0' in strategy_name_list assert '[R, S01, R, R] -> [R, S01, R, R, R, R]_1' in strategy_name_list assert '[R, R, S01, R] -> [R, R, R, S01, R, R]_2' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R, R, R]_3' in strategy_name_list assert '[R, R, R, S01] -> [R, R, R, R, S01, R]_4' in strategy_name_list @run_on_environment_flag(name='AUTO_PARALLEL') @pytest.mark.dist @rerun_if_address_is_in_use() @parameterize('tgt_shape', [(32, 4, 64, 16, 4), (8, 4, 4, 64, 16, 4)]) @parameterize('model_cls', [ConvViewModel, LinearViewModel]) def test_view_handler(tgt_shape, model_cls): world_size = 4 run_func = partial(check_view_handler, tgt_shape=tgt_shape, model_cls=model_cls, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_view_handler()
from functools import partial import pytest import torch import torch.multiprocessing as mp import torch.nn as nn from colossalai.auto_parallel.tensor_shard.node_handler import LinearFunctionHandler, LinearModuleHandler from colossalai.auto_parallel.tensor_shard.sharding_strategy import ( OperationData, OperationDataType, ShardingStrategy, StrategiesVector, ) from colossalai.device.device_mesh import DeviceMesh from colossalai.fx import ColoGraphModule, ColoTracer from colossalai.initialize import launch from colossalai.logging import disable_existing_loggers from colossalai.testing import assert_close, parameterize, rerun_if_address_is_in_use from colossalai.testing.pytest_wrapper import run_on_environment_flag from colossalai.testing.utils import parameterize from colossalai.utils import free_port from tests.test_auto_parallel.test_tensor_shard.test_node_handler.utils import numerical_test_for_node_strategy def check_linear_module_handler(rank, bias, input_shape, world_size, port): disable_existing_loggers() launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') model = nn.Sequential(nn.Linear(16, 32, bias=bias)).cuda() physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) input = torch.rand(input_shape).cuda() # the index of linear node in computation graph node_index = 1 # strategy number of linear node if input_shape == (1, 4, 4, 16): strategy_number = 19 else: strategy_number = 24 # construct input args input_args = [input] # construct meta arg names meta_arg_names = ['input'] numerical_test_for_node_strategy(model=model, device_mesh=device_mesh, node_index=node_index, strategy_number=strategy_number, input_args=input_args, meta_arg_names=meta_arg_names) tracer = ColoTracer() graph = tracer.trace(model, meta_args={"input": torch.rand(input_shape).to('meta')}) gm = ColoGraphModule(model, graph) linear_mod_node = list(graph.nodes)[1] strategies_vector = StrategiesVector(linear_mod_node) # build handler handler = LinearModuleHandler(node=linear_mod_node, device_mesh=device_mesh, strategies_vector=strategies_vector) # check operation data mapping mapping = handler.get_operation_data_mapping() for name, op_data in mapping.items(): op_data: OperationData # make sure they have valid values assert op_data.logical_shape is not None assert op_data.data is not None assert mapping['input'].name == "input_1" assert mapping['input'].data.shape == torch.Size(input_shape) assert mapping['input'].type == OperationDataType.ARG input_logical_shape = mapping['input'].data.view(-1, 16).shape assert mapping['input'].logical_shape == input_logical_shape assert mapping['other'].name == "weight" assert mapping['other'].data.shape == torch.Size([32, 16]) assert mapping['other'].type == OperationDataType.PARAM assert mapping['other'].logical_shape == torch.Size([16, 32]) if bias: assert mapping['bias'].name == "bias" assert mapping['bias'].data.shape == torch.Size([32]) assert mapping['bias'].type == OperationDataType.PARAM assert mapping['bias'].logical_shape == torch.Size([32]) assert mapping['output'].name == "_0" output_shape = input_shape[:-1] + (32,) assert mapping['output'].data.shape == torch.Size(output_shape) assert mapping['output'].type == OperationDataType.OUTPUT output_logical_shape = mapping['output'].data.view(-1, 32).shape assert mapping['output'].logical_shape == torch.Size(output_logical_shape) strategies_vector = handler.register_strategy(compute_resharding_cost=False) strategy_name_list = [val.name for val in strategies_vector] # First dimension cannot be shard if input shape is (1, 4, 4, 16) if input_shape != (1, 4, 4, 16): assert 'S1S0 = S1R x RS0_0' in strategy_name_list assert 'S0S1 = S0R x RS1_0' in strategy_name_list assert 'S1R = S1S0 x S0R_0' in strategy_name_list assert 'S0R = S0S1 x S1R_0' in strategy_name_list assert 'S01R = S01R x RR_0' in strategy_name_list # SS = SR x RS assert 'S0S1 = S0R x RS1_1' in strategy_name_list assert 'S0S1 = S0R x RS1_2' in strategy_name_list assert 'S1S0 = S1R x RS0_1' in strategy_name_list assert 'S1S0 = S1R x RS0_2' in strategy_name_list # SR = SS x SR assert 'S0R = S0S1 x S1R_1' in strategy_name_list assert 'S0R = S0S1 x S1R_2' in strategy_name_list assert 'S1R = S1S0 x S0R_1' in strategy_name_list assert 'S1R = S1S0 x S0R_2' in strategy_name_list # RS = RS x SS assert 'RS0 = RS1 x S1S0' in strategy_name_list assert 'RS1 = RS0 x S0S1' in strategy_name_list # RR = RS x SR assert 'RR = RS0 x S0R' in strategy_name_list assert 'RR = RS1 x S1R' in strategy_name_list # RS= RR x RS assert 'RS0 = RR x RS0' in strategy_name_list assert 'RS1 = RR x RS1' in strategy_name_list # S01R = S01R x RR assert 'S01R = S01R x RR_1' in strategy_name_list assert 'S01R = S01R x RR_2' in strategy_name_list # RR = RS01 x S01R assert 'RR = RS01 x S01R' in strategy_name_list # RS01 = RR x RS01 assert 'RS01 = RR x RS01' in strategy_name_list # RR = RR x RR assert 'RR = RR x RR' in strategy_name_list for strategy in strategies_vector: strategy: ShardingStrategy input_sharding_spec = strategy.get_sharding_spec_by_name('input_1') weight_sharding_spec = strategy.get_sharding_spec_by_name('weight') output_sharding_spec = strategy.get_sharding_spec_by_name('_0') if bias: bias_sharding_spec = strategy.get_sharding_spec_by_name('bias') # make sure the sharding matches across different operation data assert input_sharding_spec.sharding_sequence[:-1] == output_sharding_spec.sharding_sequence[:-1] assert weight_sharding_spec.sharding_sequence[1] == input_sharding_spec.sharding_sequence[-1] assert weight_sharding_spec.sharding_sequence[0] == output_sharding_spec.sharding_sequence[-1] if bias: assert bias_sharding_spec.sharding_sequence[-1] == output_sharding_spec.sharding_sequence[-1] class LinearModel(nn.Module): def __init__(self): super().__init__() def forward(self, input, others, bias=None): x = nn.functional.linear(input, others, bias=bias) return x def check_linear_function_handler(rank, bias, input_shape, world_size, port): disable_existing_loggers() launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') model = LinearModel().cuda() physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) input = torch.rand(input_shape).cuda() other = torch.rand(32, 16).cuda() # the index of linear node in computation graph node_index = 2 # strategy number of linear node if input_shape == (1, 4, 4, 16): strategy_number = 19 else: strategy_number = 24 # construct input args input_args = [input, other] # construct meta arg names meta_arg_names = ['input', 'others'] numerical_test_for_node_strategy(model=model, device_mesh=device_mesh, node_index=node_index, strategy_number=strategy_number, input_args=input_args, meta_arg_names=meta_arg_names) tracer = ColoTracer() graph = tracer.trace(model, meta_args={ "input": torch.rand(input_shape).to('meta'), 'others': torch.rand(32, 16).to('meta') }) gm = ColoGraphModule(model, graph) if bias: linear_func_node = list(graph.nodes)[3] else: linear_func_node = list(graph.nodes)[2] strategies_vector = StrategiesVector(linear_func_node) # build handler handler = LinearFunctionHandler(node=linear_func_node, device_mesh=device_mesh, strategies_vector=strategies_vector) # # check operation data mapping mapping = handler.get_operation_data_mapping() assert mapping['input'].name == "input_1" assert mapping['input'].data.shape == torch.Size(input_shape) assert mapping['input'].type == OperationDataType.ARG input_logical_shape = mapping['input'].data.view(-1, 16).shape assert mapping['input'].logical_shape == torch.Size(input_logical_shape) assert mapping['other'].name == "others" assert mapping['other'].data.shape == torch.Size([32, 16]) assert mapping['other'].type == OperationDataType.ARG assert mapping['other'].logical_shape == torch.Size([16, 32]) if bias: assert mapping['bias'].name == "bias" assert mapping['bias'].data.shape == torch.Size([32]) assert mapping['bias'].type == OperationDataType.ARG assert mapping['other'].logical_shape == torch.Size([16, 32]) assert mapping['output'].name == "linear" output_shape = input_shape[:-1] + (32,) assert mapping['output'].data.shape == torch.Size(output_shape) assert mapping['output'].type == OperationDataType.OUTPUT output_logical_shape = mapping['output'].data.view(-1, 32).shape assert mapping['output'].logical_shape == torch.Size(output_logical_shape) strategies_vector = handler.register_strategy(compute_resharding_cost=False) strategy_name_list = [val.name for val in strategies_vector] # First dimension cannot be shard if input shape is (1, 4, 4, 16) if input_shape != (1, 4, 4, 16): assert 'S1S0 = S1R x RS0_0' in strategy_name_list assert 'S0S1 = S0R x RS1_0' in strategy_name_list assert 'S1R = S1S0 x S0R_0' in strategy_name_list assert 'S0R = S0S1 x S1R_0' in strategy_name_list assert 'S01R = S01R x RR_0' in strategy_name_list # SS = SR x RS assert 'S0S1 = S0R x RS1_1' in strategy_name_list assert 'S0S1 = S0R x RS1_2' in strategy_name_list assert 'S1S0 = S1R x RS0_1' in strategy_name_list assert 'S1S0 = S1R x RS0_2' in strategy_name_list # SR = SS x SR assert 'S0R = S0S1 x S1R_1' in strategy_name_list assert 'S0R = S0S1 x S1R_2' in strategy_name_list assert 'S1R = S1S0 x S0R_1' in strategy_name_list assert 'S1R = S1S0 x S0R_2' in strategy_name_list # RS = RS x SS assert 'RS0 = RS1 x S1S0' in strategy_name_list assert 'RS1 = RS0 x S0S1' in strategy_name_list # RR = RS x SR assert 'RR = RS0 x S0R' in strategy_name_list assert 'RR = RS1 x S1R' in strategy_name_list # RS= RR x RS assert 'RS0 = RR x RS0' in strategy_name_list assert 'RS1 = RR x RS1' in strategy_name_list # S01R = S01R x RR assert 'S01R = S01R x RR_1' in strategy_name_list assert 'S01R = S01R x RR_2' in strategy_name_list # RR = RS01 x S01R assert 'RR = RS01 x S01R' in strategy_name_list # RS01 = RR x RS01 assert 'RS01 = RR x RS01' in strategy_name_list # RR = RR x RR assert 'RR = RR x RR' in strategy_name_list for strategy in strategies_vector: strategy: ShardingStrategy input_sharding_spec = strategy.get_sharding_spec_by_name('input_1') weight_sharding_spec = strategy.get_sharding_spec_by_name('others') output_sharding_spec = strategy.get_sharding_spec_by_name('linear') if bias: bias_sharding_spec = strategy.get_sharding_spec_by_name('bias') # make sure the sharding matches across different operation data assert input_sharding_spec.sharding_sequence[:-1] == output_sharding_spec.sharding_sequence[:-1] assert weight_sharding_spec.sharding_sequence[1] == input_sharding_spec.sharding_sequence[-1] assert weight_sharding_spec.sharding_sequence[0] == output_sharding_spec.sharding_sequence[-1] if bias: assert bias_sharding_spec.sharding_sequence[-1] == output_sharding_spec.sharding_sequence[-1] @run_on_environment_flag(name='AUTO_PARALLEL') @parameterize('input_shape', [(1, 4, 4, 16), (4, 4, 4, 16)]) @pytest.mark.dist @rerun_if_address_is_in_use() def test_linear_handler(input_shape, bias=False): world_size = 4 run_func_module = partial(check_linear_module_handler, bias=bias, input_shape=input_shape, world_size=world_size, port=free_port()) mp.spawn(run_func_module, nprocs=world_size) run_func_function = partial(check_linear_function_handler, bias=bias, input_shape=input_shape, world_size=world_size, port=free_port()) mp.spawn(run_func_function, nprocs=world_size) if __name__ == '__main__': test_linear_handler()
from functools import partial import pytest import torch import torch.multiprocessing as mp import torch.nn as nn from colossalai.auto_parallel.tensor_shard.node_handler.conv_handler import ConvFunctionHandler from colossalai.auto_parallel.tensor_shard.node_handler.linear_handler import LinearFunctionHandler from colossalai.auto_parallel.tensor_shard.node_handler.sum_handler import SumHandler from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType, StrategiesVector from colossalai.device.device_mesh import DeviceMesh from colossalai.fx import ColoGraphModule, ColoTracer from colossalai.initialize import launch from colossalai.logging import disable_existing_loggers from colossalai.testing import assert_close, parameterize, rerun_if_address_is_in_use from colossalai.testing.pytest_wrapper import run_on_environment_flag from colossalai.utils import free_port from tests.test_auto_parallel.test_tensor_shard.test_node_handler.utils import numerical_test_for_node_strategy class LinearSumModel(nn.Module): def __init__(self, sum_dims, keepdim): super().__init__() self.sum_dims = sum_dims self.keepdim = keepdim def forward(self, input, other): linear_node = nn.functional.linear(input, other, bias=None) if self.sum_dims is not None: sum_node = torch.sum(linear_node, self.sum_dims, keepdim=self.keepdim) else: sum_node = torch.sum(linear_node, keepdim=self.keepdim) return sum_node def check_sum_handler(rank, sum_dims, keepdim, world_size, port): disable_existing_loggers() launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') model = LinearSumModel(sum_dims=sum_dims, keepdim=keepdim).cuda() physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) input = torch.rand(8, 16, 64, 32).to('cuda') other = torch.rand(64, 32).to('cuda') # index of linear node in computation graph node_index = 2 # total number of linear strategies strategy_number = 24 numerical_test_for_node_strategy(model=model, device_mesh=device_mesh, node_index=node_index, strategy_number=strategy_number, input_args=[input, other], meta_arg_names=['input', 'other'], node_type='following') tracer = ColoTracer() # graph(): # %input_1 : torch.Tensor [#users=1] = placeholder[target=input] # %other : torch.Tensor [#users=1] = placeholder[target=other] # %linear : [#users=1] = call_function[target=torch._C._nn.linear](args = (%input_1, %other), kwargs = {bias: None}) # %sum_1 : [#users=1] = call_function[target=torch.sum](args = (%linear,), kwargs = {}) # return sum_1 graph = tracer.trace(model, meta_args={ "input": torch.rand(8, 16, 64, 32).to('meta'), "other": torch.rand(64, 32).to('meta'), }) gm = ColoGraphModule(model, graph) previous_mod_node = list(graph.nodes)[2] sum_node = list(graph.nodes)[3] sum_strategies_vector = StrategiesVector(sum_node) previous_strategies_vector = StrategiesVector(previous_mod_node) # build handler assert len(previous_strategies_vector) == 0 linear_handler = LinearFunctionHandler(node=previous_mod_node, device_mesh=device_mesh, strategies_vector=previous_strategies_vector) linear_handler.register_strategy(compute_resharding_cost=False) setattr(previous_mod_node, 'strategies_vector', previous_strategies_vector) sum_handler = SumHandler(node=sum_node, device_mesh=device_mesh, strategies_vector=sum_strategies_vector) sum_handler.register_strategy(compute_resharding_cost=False) # sum handler is a following strategy handler, so the number of strategies is equal to the predecessor node. assert len(sum_strategies_vector) == len(previous_strategies_vector) strategy_name_list = [strategy.name for strategy in sum_strategies_vector] # check operation data mapping mapping = sum_handler.get_operation_data_mapping() for name, op_data in mapping.items(): op_data: OperationData # make sure they have valid values assert op_data.data is not None assert mapping['input'].name == "linear" assert mapping['input'].data.is_meta assert mapping['input'].data.shape == torch.Size([8, 16, 64, 64]) assert mapping['input'].type == OperationDataType.ARG assert mapping['input'].logical_shape == torch.Size([8, 16, 64, 64]) assert mapping['output'].name == "sum_1" sum_node_shape = torch.empty([8, 16, 64, 64]).sum(sum_dims, keepdim=keepdim).shape assert mapping['output'].logical_shape == sum_node_shape assert mapping['output'].type == OperationDataType.OUTPUT # check strategy name if sum_dims == (0, 2) and keepdim == False: assert '[R, R, R, S1] -> [R, S1]_0' in strategy_name_list assert '[R, S0, R, S1] -> [S0, S1]_1' in strategy_name_list assert '[R, R, R, S1] -> [R, S1]_2' in strategy_name_list assert '[R, R, R, S0] -> [R, S0]_3' in strategy_name_list assert '[R, S1, R, S0] -> [S1, S0]_4' in strategy_name_list assert '[R, R, R, S0] -> [R, S0]_5' in strategy_name_list assert '[R, R, R, R] -> [R, R]_6' in strategy_name_list assert '[R, S0, R, R] -> [S0, R]_7' in strategy_name_list assert '[R, R, R, R] -> [R, R]_8' in strategy_name_list assert '[R, R, R, R] -> [R, R]_9' in strategy_name_list assert '[R, S1, R, R] -> [S1, R]_10' in strategy_name_list assert '[R, R, R, R] -> [R, R]_11' in strategy_name_list assert '[R, R, R, S1] -> [R, S1]_12' in strategy_name_list assert '[R, R, R, S0] -> [R, S0]_13' in strategy_name_list assert '[R, R, R, R] -> [R, R]_14' in strategy_name_list assert '[R, R, R, R] -> [R, R]_15' in strategy_name_list assert '[R, R, R, S0] -> [R, S0]_16' in strategy_name_list assert '[R, R, R, S1] -> [R, S1]_17' in strategy_name_list assert '[R, R, R, R] -> [R, R]_18' in strategy_name_list assert '[R, S01, R, R] -> [S01, R]_19' in strategy_name_list assert '[R, R, R, R] -> [R, R]_20' in strategy_name_list assert '[R, R, R, R] -> [R, R]_21' in strategy_name_list assert '[R, R, R, S01] -> [R, S01]_22' in strategy_name_list assert '[R, R, R, R] -> [R, R]_23' in strategy_name_list if sum_dims == (0, 2) and keepdim == True: assert '[R, R, R, S1] -> [R, R, R, S1]_0' in strategy_name_list assert '[R, S0, R, S1] -> [R, S0, R, S1]_1' in strategy_name_list assert '[R, R, R, S1] -> [R, R, R, S1]_2' in strategy_name_list assert '[R, R, R, S0] -> [R, R, R, S0]_3' in strategy_name_list assert '[R, S1, R, S0] -> [R, S1, R, S0]_4' in strategy_name_list assert '[R, R, R, S0] -> [R, R, R, S0]_5' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R]_6' in strategy_name_list assert '[R, S0, R, R] -> [R, S0, R, R]_7' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R]_8' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R]_9' in strategy_name_list assert '[R, S1, R, R] -> [R, S1, R, R]_10' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R]_11' in strategy_name_list assert '[R, R, R, S1] -> [R, R, R, S1]_12' in strategy_name_list assert '[R, R, R, S0] -> [R, R, R, S0]_13' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R]_14' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R]_15' in strategy_name_list assert '[R, R, R, S0] -> [R, R, R, S0]_16' in strategy_name_list assert '[R, R, R, S1] -> [R, R, R, S1]_17' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R]_18' in strategy_name_list assert '[R, S01, R, R] -> [R, S01, R, R]_19' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R]_20' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R]_21' in strategy_name_list assert '[R, R, R, S01] -> [R, R, R, S01]_22' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R]_23' in strategy_name_list if sum_dims == 1 and keepdim == False: assert '[S0, R, R, S1] -> [S0, R, S1]_0' in strategy_name_list assert '[R, R, R, S1] -> [R, R, S1]_1' in strategy_name_list assert '[R, R, S0, S1] -> [R, S0, S1]_2' in strategy_name_list assert '[S1, R, R, S0] -> [S1, R, S0]_3' in strategy_name_list assert '[R, R, R, S0] -> [R, R, S0]_4' in strategy_name_list assert '[R, R, S1, S0] -> [R, S1, S0]_5' in strategy_name_list assert '[S0, R, R, R] -> [S0, R, R]_6' in strategy_name_list assert '[R, R, R, R] -> [R, R, R]_7' in strategy_name_list assert '[R, R, S0, R] -> [R, S0, R]_8' in strategy_name_list assert '[S1, R, R, R] -> [S1, R, R]_9' in strategy_name_list assert '[R, R, R, R] -> [R, R, R]_10' in strategy_name_list assert '[R, R, S1, R] -> [R, S1, R]_11' in strategy_name_list assert '[R, R, R, S1] -> [R, R, S1]_12' in strategy_name_list assert '[R, R, R, S0] -> [R, R, S0]_13' in strategy_name_list assert '[R, R, R, R] -> [R, R, R]_14' in strategy_name_list assert '[R, R, R, R] -> [R, R, R]_15' in strategy_name_list assert '[R, R, R, S0] -> [R, R, S0]_16' in strategy_name_list assert '[R, R, R, S1] -> [R, R, S1]_17' in strategy_name_list assert '[S01, R, R, R] -> [S01, R, R]_18' in strategy_name_list assert '[R, R, R, R] -> [R, R, R]_19' in strategy_name_list assert '[R, R, S01, R] -> [R, S01, R]_20' in strategy_name_list assert '[R, R, R, R] -> [R, R, R]_21' in strategy_name_list assert '[R, R, R, S01] -> [R, R, S01]_22' in strategy_name_list assert '[R, R, R, R] -> [R, R, R]_23' in strategy_name_list if sum_dims == 1 and keepdim == True: assert '[S0, R, R, S1] -> [S0, R, R, S1]_0' in strategy_name_list assert '[R, R, R, S1] -> [R, R, R, S1]_1' in strategy_name_list assert '[R, R, S0, S1] -> [R, R, S0, S1]_2' in strategy_name_list assert '[S1, R, R, S0] -> [S1, R, R, S0]_3' in strategy_name_list assert '[R, R, R, S0] -> [R, R, R, S0]_4' in strategy_name_list assert '[R, R, S1, S0] -> [R, R, S1, S0]_5' in strategy_name_list assert '[S0, R, R, R] -> [S0, R, R, R]_6' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R]_7' in strategy_name_list assert '[R, R, S0, R] -> [R, R, S0, R]_8' in strategy_name_list assert '[S1, R, R, R] -> [S1, R, R, R]_9' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R]_10' in strategy_name_list assert '[R, R, S1, R] -> [R, R, S1, R]_11' in strategy_name_list assert '[R, R, R, S1] -> [R, R, R, S1]_12' in strategy_name_list assert '[R, R, R, S0] -> [R, R, R, S0]_13' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R]_14' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R]_15' in strategy_name_list assert '[R, R, R, S0] -> [R, R, R, S0]_16' in strategy_name_list assert '[R, R, R, S1] -> [R, R, R, S1]_17' in strategy_name_list assert '[S01, R, R, R] -> [S01, R, R, R]_18' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R]_19' in strategy_name_list assert '[R, R, S01, R] -> [R, R, S01, R]_20' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R]_21' in strategy_name_list assert '[R, R, R, S01] -> [R, R, R, S01]_22' in strategy_name_list assert '[R, R, R, R] -> [R, R, R, R]_23' in strategy_name_list @run_on_environment_flag(name='AUTO_PARALLEL') @pytest.mark.dist @rerun_if_address_is_in_use() @parameterize('sum_dims', [(0, 2), 1]) @parameterize('keepdim', [False, True]) def test_sum_handler(sum_dims, keepdim): world_size = 4 run_func = partial(check_sum_handler, sum_dims=sum_dims, keepdim=keepdim, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_sum_handler()
import pytest import torch import torch.nn as nn from colossalai.auto_parallel.tensor_shard.node_handler.normal_pooling_handler import NormPoolingHandler from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType, StrategiesVector from colossalai.device.device_mesh import DeviceMesh from colossalai.fx import ColoGraphModule, ColoTracer from colossalai.fx.tracer.meta_patch.patched_module import linear from colossalai.testing.pytest_wrapper import run_on_environment_flag @run_on_environment_flag(name='AUTO_PARALLEL') def test_norm_pool_handler(): model = nn.Sequential(nn.MaxPool2d(4, padding=1).to('meta')) tracer = ColoTracer() # graph(): # %input_1 : torch.Tensor [#users=1] = placeholder[target=input] # %_0 : [#users=1] = call_module[target=0](args = (%input_1,), kwargs = {}) # return _0 graph = tracer.trace(model, meta_args={"input": torch.rand(4, 4, 64, 64).to('meta')}) gm = ColoGraphModule(model, graph) physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) device_mesh = DeviceMesh(physical_mesh_id, mesh_shape) conv_mod_node = list(graph.nodes)[1] strategies_vector = StrategiesVector(conv_mod_node) # build handler handler = NormPoolingHandler(node=conv_mod_node, device_mesh=device_mesh, strategies_vector=strategies_vector) # check operation data mapping mapping = handler.get_operation_data_mapping() for name, op_data in mapping.items(): op_data: OperationData # make sure they have valid values assert op_data.data is not None assert mapping['input'].name == "input_1" assert mapping['input'].data.is_meta assert mapping['input'].data.shape == torch.Size([4, 4, 64, 64]) assert mapping['input'].type == OperationDataType.ARG assert mapping['input'].logical_shape == torch.Size([4, 4, 64, 64]) assert mapping['output'].name == "_0" assert mapping['output'].data.is_meta assert mapping['output'].data.shape == torch.Size([4, 4, 16, 16]) assert mapping['output'].type == OperationDataType.OUTPUT strategies_vector = handler.register_strategy(compute_resharding_cost=False) strategy_name_list = [val.name for val in strategies_vector] assert len(strategy_name_list) == 9 if __name__ == '__main__': test_norm_pool_handler()
from faulthandler import disable from functools import partial from xml.dom import WrongDocumentErr import pytest import torch import torch.multiprocessing as mp import torch.nn as nn from typing_extensions import Self from colossalai.auto_parallel.tensor_shard.node_handler import LinearFunctionHandler, LinearModuleHandler from colossalai.auto_parallel.tensor_shard.sharding_strategy import ( OperationData, OperationDataType, ShardingStrategy, StrategiesVector, ) from colossalai.device.device_mesh import DeviceMesh from colossalai.fx import ColoGraphModule, ColoTracer from colossalai.initialize import launch from colossalai.logging import disable_existing_loggers from colossalai.testing import assert_close, parameterize, rerun_if_address_is_in_use from colossalai.testing.pytest_wrapper import run_on_environment_flag from colossalai.testing.utils import parameterize from colossalai.utils import free_port from tests.test_auto_parallel.test_tensor_shard.test_node_handler.utils import numerical_test_for_node_strategy class LinearModule(torch.nn.Module): def __init__(self, in_features, out_features, bias): super().__init__() self.linear = torch.nn.Linear(in_features, out_features, bias=bias) def forward(self, x): x = self.linear(x) return x def check_linear_module_handler(rank, bias, world_size, port): disable_existing_loggers() launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') model = LinearModule(16, 32, bias=bias).cuda() physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) input = torch.rand(4, 4, 4, 16).cuda() # the index of linear node in computation graph node_index = 3 # strategy number of linear node strategy_number = 24 # construct input args input_args = [input] # construct meta arg names meta_arg_names = ['x'] numerical_test_for_node_strategy(model=model, device_mesh=device_mesh, node_index=node_index, strategy_number=strategy_number, input_args=input_args, meta_arg_names=meta_arg_names, node_type='bias_module') tracer = ColoTracer() graph = tracer.trace(model, meta_args={"x": torch.rand(4, 4, 4, 16).to('meta')}) gm = ColoGraphModule(model, graph) linear_mod_node = list(graph.nodes)[3] strategies_vector = StrategiesVector(linear_mod_node) # build handler handler = LinearFunctionHandler(node=linear_mod_node, device_mesh=device_mesh, strategies_vector=strategies_vector) # check operation data mapping mapping = handler.get_operation_data_mapping() for name, op_data in mapping.items(): op_data: OperationData # make sure they have valid values assert op_data.logical_shape is not None assert op_data.data is not None assert mapping['input'].name == "x" assert mapping['input'].data.shape == torch.Size([4, 4, 4, 16]) assert mapping['input'].type == OperationDataType.ARG assert mapping['input'].logical_shape == torch.Size([64, 16]) assert mapping['other'].name == "linear_weight" assert mapping['other'].data.shape == torch.Size([32, 16]) assert mapping['other'].type == OperationDataType.PARAM assert mapping['other'].logical_shape == torch.Size([16, 32]) assert 'bias' not in mapping assert mapping['output'].name == "linear" assert mapping['output'].data.shape == torch.Size([4, 4, 4, 32]) assert mapping['output'].type == OperationDataType.OUTPUT strategies_vector = handler.register_strategy(compute_resharding_cost=False) strategy_name_list = [val.name for val in strategies_vector] # SS = SR x RS assert 'S0S1 = S0R x RS1_0' in strategy_name_list assert 'S0S1 = S0R x RS1_1' in strategy_name_list assert 'S0S1 = S0R x RS1_2' in strategy_name_list assert 'S1S0 = S1R x RS0_0' in strategy_name_list assert 'S1S0 = S1R x RS0_1' in strategy_name_list assert 'S1S0 = S1R x RS0_2' in strategy_name_list # SR = SS x SR assert 'S0R = S0S1 x S1R_0' in strategy_name_list assert 'S0R = S0S1 x S1R_1' in strategy_name_list assert 'S0R = S0S1 x S1R_2' in strategy_name_list assert 'S1R = S1S0 x S0R_0' in strategy_name_list assert 'S1R = S1S0 x S0R_1' in strategy_name_list assert 'S1R = S1S0 x S0R_2' in strategy_name_list # RS = RS x SS assert 'RS0 = RS1 x S1S0' in strategy_name_list assert 'RS1 = RS0 x S0S1' in strategy_name_list # RR = RS x SR assert 'RR = RS0 x S0R' in strategy_name_list assert 'RR = RS1 x S1R' in strategy_name_list # RS= RR x RS assert 'RS0 = RR x RS0' in strategy_name_list assert 'RS1 = RR x RS1' in strategy_name_list # S01R = S01R x RR assert 'S01R = S01R x RR_0' in strategy_name_list assert 'S01R = S01R x RR_1' in strategy_name_list assert 'S01R = S01R x RR_2' in strategy_name_list # RR = RS01 x S01R assert 'RR = RS01 x S01R' in strategy_name_list # RS01 = RR x RS01 assert 'RS01 = RR x RS01' in strategy_name_list # RR = RR x RR assert 'RR = RR x RR' in strategy_name_list for strategy in strategies_vector: strategy: ShardingStrategy input_sharding_spec = strategy.get_sharding_spec_by_name('x') weight_sharding_spec = strategy.get_sharding_spec_by_name('linear_weight') output_sharding_spec = strategy.get_sharding_spec_by_name('linear') # make sure the sharding matches across different operation data assert input_sharding_spec.sharding_sequence[:-1] == output_sharding_spec.sharding_sequence[:-1] assert weight_sharding_spec.sharding_sequence[1] == input_sharding_spec.sharding_sequence[-1] assert weight_sharding_spec.sharding_sequence[0] == output_sharding_spec.sharding_sequence[-1] @run_on_environment_flag(name='AUTO_PARALLEL') @pytest.mark.dist @rerun_if_address_is_in_use() def test_linear_handler(bias=True): world_size = 4 run_func_module = partial(check_linear_module_handler, bias=bias, world_size=world_size, port=free_port()) mp.spawn(run_func_module, nprocs=world_size) if __name__ == '__main__': test_linear_handler()