python_code
stringlengths
0
66.4k
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import math import torch import torch.nn.functional as F from torch.autograd import grad def gPenalty(inputs, loss, lam, q): # Gradient penalty bs, c, h, w = inputs.size() d_in = c * h * w g = grad(loss, inputs, create_graph=True)[0] * bs g = g.view(bs, -1) qnorms = g.norm(q, 1).mean() lam = lam * math.pow(d_in, 1. - 1. / q) return lam * qnorms.mean() / 2. def advAugment(net, inputs, targets, loss, lam, q): # Single-step adversarial augmentation (e.g. FGSM) bs, c, h, w = inputs.size() d_in = c * h * w g = grad(loss, inputs, retain_graph=True)[0] * bs g = g.view(bs, -1).detach() if q == 1: lam = lam dx = lam * g.sign() else: p = 1. / (1. - 1. / q) lam = lam * math.pow(d_in, 1. - 1. / q) dx = g.sign() * g.abs().pow(q - 1) # sign when q uneven pnorms = dx.norm(p, 1, keepdim=True) dx = lam * dx / pnorms dx = dx.view_as(inputs) advInputs = (inputs + dx).detach() advOutputs = net(advInputs) advLoss = F.cross_entropy(advOutputs, targets) return (advLoss - loss) / 2. def pgd(net, inputs, targets, loss, lam, steps, step_size, random_start=True, train=True): # Projected gradient descent (i.e. iterative FGSM) with random starts bs, c, h, w = inputs.size() if random_start: if torch.cuda.is_available(): noise = torch.cuda.FloatTensor(bs, c, h, w).uniform_(-lam, lam) else: noise = torch.FloatTensor(bs, c, h, w).uniform_(-lam, lam) else: if torch.cuda.is_available(): noise = torch.cuda.FloatTensor(bs, c, h, w).fill_(0) else: noise = torch.FloatTensor(bs, c, h, w).fill_(0) advInputs = (inputs + noise).detach() advInputs.requires_grad = True advOutputs = net(advInputs) advLoss = F.cross_entropy(advOutputs, targets) for i in range(steps): retain_graph = ((i + 1 == steps) and train) g = grad(advLoss, advInputs, retain_graph=retain_graph)[0] * bs g = g.view(bs, -1).detach() dx = step_size * g.sign() dx = dx.view_as(advInputs) advInputs = advInputs + dx advInputs = inputs + torch.clamp(advInputs - inputs, -lam, lam) advInputs = advInputs.detach() advInputs.requires_grad = True advOutputs = net(advInputs) advLoss = F.cross_entropy(advOutputs, targets) return advLoss - loss, advOutputs def crossLip(inputs, outputs, lam): gk = [] n, K, cLpen = outputs.size(0), outputs.size(1), 0. for k in range(K): gk.append(grad(outputs[:, k].sum(), inputs, create_graph=True)[0]) for l in range(K): for m in range(l + 1, K): cLpen += (gk[l] - gk[m]) ** 2 cLpen = 2. / n / K ** 2 * cLpen.sum() return lam * cLpen def addPenalty(net, inputs, outputs, targets, loss, args): if args.penalty == 'grad': penalty = gPenalty(inputs, loss, args.lam, args.q) elif args.penalty == 'adv': penalty = advAugment(net, inputs, targets, loss, args.lam, args.q) elif args.penalty == 'pgd': penalty, _ = pgd( # uses linf attacks net, inputs, targets, loss, args.lam, args.steps, step_size=args.lam / (.75 * args.steps)) elif args.penalty == 'crossLip': penalty = crossLip(inputs, outputs, args.lam) else: raise NotImplementedError("Unknown penalty %r" % args.penalty) return penalty
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # """ Some utilities """ import os import math import warnings import configargparse import torch from nets import ConvNet def argument_parser(): parser = configargparse.ArgParser( description='First-order vulnerability and input dimension') parser.add( '--config', required=True, is_config_file=True, help='configuration file path') parser.add_argument( '--name', type=str, help='Experiment name. Results will be saved/loaded from directory ' './results/name (which will be created if needed).') parser.add_argument( '--datapath', type=str, default=None, help="Data location. Default: '~/datasets/' + `dataset`") parser.add_argument( '--dataset', type=str, default='cifar', help='mnist, cifar, imgnet12 (default: cifar)') parser.add_argument( '--img_size', type=int, default=None, help='only for imgnet. Resize img to 32, 64, 128 or 256.') parser.add_argument( '--n_layers', type=int, default=5, help='number of hidden layers') parser.add_argument( '--bs', type=int, default=128, help='batch size') parser.add_argument( '--epochs', type=int, default=200, help='number of training epochs') parser.add_argument( '--no_BN', action='store_true', help='Do not use batch norms (except before the very 1st layer)') parser.add_argument( '--no_act', action='store_true', help='No activation functions (f.ex. no ReLUs)') parser.add_argument( '--raw_inputs', action='store_true', help='Do not normalize inputs (hence no bn as first network layer)') parser.add_argument( '--log_step', type=int, default=None, help='print training info every log_step batches (default: None)') # training parser.add_argument( '--lr', type=float, default=.01, help='Initial learning rate') parser.add_argument( '--no_training', action='store_true', help='Do not train the network') parser.add_argument( '--crop', action='store_true', help='Use cropping instead of resizing image.') # Penalties/Regularizers penalties = ['grad', 'adv', 'pgd', 'crossLip'] parser.add_argument( '--lam', type=float, default=0., help='global regularization weight') parser.add_argument( '--penalty', type=str, choices=penalties, default=None, help='penalty type:' + ' | '.join(penalties)) parser.add_argument( '--q', type=int, default=None, help="defense-norm q; dual of attack-norm p. " "For FGSM, use penalty='adv' and 'q=1'") parser.add_argument( '--steps', type=int, default=None, help='number of optimization steps per attack when using PGD') # Vulnerability.py specific parser.add_argument( '--n_attacks', type=int, default=-1, help='number of attack iterations; -1 for whole dataset') parser.add_argument( '--log_vul', action='store_true', help='Print detailed logs of vulnerability computation') # ConvNet specific pooltypes = ['avgpool', 'maxpool', 'weightpool', 'subsamp'] last_layers = ['maxpool', 'avgpool', 'fc', 'weightpool'] parser.add_argument( '--poolings', nargs='*', type=int, default=[], help='Where to do poolings. Should be a list of ' 'integers smaller than n_layers. Defaults to None. (ConvNet)') parser.add_argument( '--pooltype', type=str, choices=pooltypes, default='subsamp', help='penalty type:' + ' | '.join(penalties) + 'default: subsamp') parser.add_argument( '--dilations', nargs='*', type=int, default=None, help='Dilations to use for each layer. List of n_layers int. ' 'Defaults to 1 for all layers. (ConvNet)') parser.add_argument( '--last_layers', type=str, choices=last_layers, default='avgpool', help='penalty type:' + ' | '.join(last_layers)) args = parser.parse_args() if args.datapath is None: args.datapath = os.path.join('~/datasets/', args.dataset) args.datapath = os.path.expanduser(args.datapath) # DATASET SPECIFIC SETTINGS if args.dataset == 'mnist': if args.img_size is None: args.img_size = 32 elif args.img_size not in {32, 64, 128, 256, 512}: raise Exception( "img_size must be 32, 64, 128, 256. " "But provided %r" % args.img_size) args.categories = 10 args.in_planes = 1 elif args.dataset == 'cifar': if args.img_size is None: args.img_size = 32 elif args.img_size not in {32, 64, 128, 256, 512}: raise Exception( "img_size must be 32, 64, 128, 256, or 512. " "But provided %r" % args.img_size) args.categories = 10 args.in_planes = 3 elif args.dataset == 'imgnet12': if args.img_size is None: args.img_size = 256 elif args.img_size not in {32, 64, 128, 256}: raise Exception( "img_size must be 32, 64, 128, or 256. " "But provided %r" % args.img_size) if args.bs > 32: raise Exception( "With imgnet12, Batchsize bs should be <= 32. " "Otherwise, you'll probably run out of GPU memory") args.categories = 12 args.in_planes = 3 else: raise NotImplementedError("Dataset unknown") # NETWORK DOUBLE-CHECKS/WARNINGS if args.no_BN and args.raw_inputs: warnings.warn( "no_BN also removes the first BN layer before the net " "which serves as normalization of data when using raw_inputs. " "Thus data input data stays unnormalized between 0 and 1") if args.dilations is None: dilation = 1 if args.crop else int(args.img_size / 32) args.dilations = [dilation] * args.n_layers elif len(args.dilations) == 1: args.dilations = args.dilations * args.n_layers elif len(args.dilations) != args.n_layers: raise Exception( 'Argument dilations must be single integer, or a list of ' 'integers of length n_layers') # PENALTY/REGULARIZATION WARNINGS if (args.lam, args.penalty, args.q) != (0., None, None): if args.lam == 0.: warnings.warn( "Arguments penalty and/or q are given, but lam = 0. " "Set lam > 0., otherwise not penalty is used") elif args.penalty is None: raise Exception("Argument lam > 0., but no penalty is defined.") elif (args.penalty in {'adv', 'grad'}) and (args.q is None): raise Exception( "If argument penalty is 'adv' or 'grad', q must be in " "[1, infty]") if (args.penalty == 'pgd') and (args.steps is None): raise Exception( "Arguments steps must be specified with " "penalty-option pgd") return parser, args def create_net(args): net = ConvNet( args.categories, args.n_layers, args.img_size, args.poolings, args.pooltype, args.no_BN, args.no_act, args.dilations, normalize_inputs=(not args.raw_inputs), last_layers=args.last_layers, in_planes=args.in_planes) return net def initialize_params(m, no_act=False, distribution='normal'): # gain = sqrt 2 for ReLU gain = 1. if no_act else math.sqrt(2) try: # if last layer, then gain = 1. if m.unit_gain: # test if module as attribute 'last' gain = 1. except AttributeError: pass if type(m) in {torch.nn.Conv2d, torch.nn.Linear}: if m.bias is not None: torch.nn.init.constant_(m.bias, 0.) out_ = m.weight.data.size(0) in_ = m.weight.data.view(out_, -1).size(1) sigma = gain / math.sqrt(in_) if distribution is 'uniform': xmax = math.sqrt(3) * sigma torch.nn.init.uniform_(m.weight, a=-xmax, b=xmax) elif distribution is 'normal': torch.nn.init.normal_(m.weight, std=sigma) else: raise NotImplementedError( "Argument distribution must be 'uniform' or 'normal'. " "Got: '%r'" % distribution) elif type(m) == torch.nn.BatchNorm2d: if m.affine: torch.nn.init.constant_(m.bias, 0.) torch.nn.init.constant_(m.weight, 1.) if m.track_running_stats: torch.nn.init.constant_(m.running_mean, 0.) torch.nn.init.constant_(m.running_var, 1.)
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import time import torch import torch.nn.functional as F from torch.autograd import grad from data import CIFAR10, IMGNET12, MNIST from vulnerability import compute_vulnerability from utils import argument_parser, create_net, initialize_params from penalties import addPenalty, pgd # NB: Logger cannot be pushed to utils.py, because of eval(name) class Logger(object): def __init__(self): self.logs = dict() def log(self, step, delta_time, *args): for name in args: if type(name) != str: raise Exception( "Logger takes strings as inputs. " "But got %s" % type(name)) if name not in self.logs: self.logs[name] = [] self.logs[name].append([eval(name), step, delta_time]) def get_logs(self): return self.logs def set_logs(self, logs): self.logs = logs # logs : dict return def grad_norms(loss, inputs, train=False): bs = inputs.size(0) g = grad(loss, inputs, retain_graph=train)[0] * bs g = g.view(bs, -1) norm1, norm2 = g.norm(1, 1).mean(), g.norm(2, 1).mean() return norm1.item(), norm2.item() def do_epoch(epoch, net, optimizer, loader, mode, args): if mode not in {'train', 'eval', 'test', 'init'}: # 'init' -> for initialization of batchnorms # 'train' -> training (but no logging of vul & dam) # 'eval' -> compute acc & gnorms but not vul & dam on validation # 'test' -> compute all logged values on test set raise Exception('Argument mode must be train, eval or init') net.eval() if mode in {'eval', 'test'} else net.train() device = next(net.parameters()).device cum_loss = cum_pen = cum_norm1 = cum_norm2 = total = correct = 0. advVul = advCorrect = cum_dam = 0. predictedAdv = None for i, (inputs, targets) in enumerate(loader): optimizer.zero_grad() inputs, targets = inputs.to(device), targets.to(device) inputs.requires_grad = True outputs = net(inputs) loss = F.cross_entropy(outputs, targets) norm1, norm2 = grad_norms(loss, inputs, mode == 'train') if mode == 'train': if args.lam > 0.: penalty = addPenalty(net, inputs, outputs, targets, loss, args) loss += penalty cum_pen += penalty.item() cum_loss += loss.item() loss.backward() optimizer.step() elif mode == 'test': # compute adv vul & damage using custom PGD eps = .004 advDam, advOutputs = pgd( net, inputs, targets, loss, lam=eps, steps=10, step_size=eps / (.75 * 10), random_start=False, train=False) # Compute logging info cum_norm1 += norm1 cum_norm2 += norm2 cum_loss += loss.item() total += targets.size(0) _, predicted = torch.max(outputs.data, 1) correct += predicted.eq(targets.data).float().cpu().sum().item() if mode == 'test': cum_dam += advDam.item() / eps _, predictedAdv = torch.max(advOutputs.data, 1) advVul += predicted.size(0) - ( predictedAdv.eq(predicted.data).float().cpu().sum().item()) advCorrect += predictedAdv.eq( targets.data).float().cpu().sum().item() results = { 'acc': 100 * correct / total, # accuracy 'loss': cum_loss / (i + 1), # loss 'pen': cum_pen / (i + 1), # penalty 'norm1': cum_norm1 / (i + 1), # avg l1-gradient norm 'norm2': cum_norm2 / (i + 1), # avg l2-gradient norm 'av': 100 * advVul / total, # adversarial vulnerability 'da': cum_dam / (i + 1), # adversarial damage 'aa': 100 * advCorrect / total # adversarial accuracy } if args.log_step is not None and i % args.log_step == 0: print("Epoch: %03d Batch: %04d Mode: %-5s Acc: %4.1f Loss: %4.2f " "Pen: %5.3f gNorm1: %6.2f gNorm2: %6.3f Vul: %4.1f " "Dam: %6.2f AdAcc %4.1f" % ( epoch, i, mode, *[ results[i] for i in ['acc', 'loss', 'pen', 'norm1', 'norm2', 'av', 'da', 'aa']])) return results if __name__ == '__main__': parser, args = argument_parser() logger = Logger() args.path = os.path.join('results', args.name) net = create_net(args) # print(net) if not os.path.exists(args.path): os.makedirs(args.path, exist_ok=True) # requires Python >= 3.2 if os.path.isfile(os.path.join(args.path, 'last.pt')): print('> Loading last saved state/network...') state = torch.load(os.path.join(args.path, 'last.pt')) net.load_state_dict(state['state_dict']) lr = state['lr'] optimizer = torch.optim.SGD(net.parameters(), lr=lr, momentum=0.9) optimizer.load_state_dict(state['optimizer']) best_va_acc = state['best_va_acc'] start_ep = state['epoch'] + 1 logger.set_logs(state['logs']) else: # initialize new net print('> Initializing new network...') net.apply(lambda m: initialize_params(m, args.no_act, 'normal')) lr = args.lr optimizer = torch.optim.SGD(net.parameters(), lr=lr, momentum=0.9) best_va_acc = -1. start_ep = -1 print('> Done.') device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') net = net.to(device) torch.backends.cudnn.benchmark = True print('> Loading dataset...') if args.dataset == 'mnist': tr_loader, va_loader, te_loader = MNIST( root=args.datapath, bs=args.bs, valid_size=.1, size=args.img_size, normalize=(not args.raw_inputs)) elif args.dataset == 'cifar': tr_loader, va_loader, te_loader = CIFAR10( root=args.datapath, bs=args.bs, valid_size=.1, size=args.img_size, normalize=(not args.raw_inputs)) elif args.dataset == 'imgnet12': tr_loader, va_loader, te_loader = IMGNET12( root=args.datapath, bs=args.bs, valid_size=.1, size=args.img_size, normalize=(not args.raw_inputs)) else: raise NotImplementedError print('> Done.') print('> Starting training.') time_start = time.time() epochs = 0 if args.no_training else args.epochs for epoch in range(start_ep, epochs): time_start = time.time() if epoch % 30 == 0 and epoch > 0: # reload best parameters on validation set net.load_state_dict( torch.load(os.path.join( args.path, 'best.pt'))['state_dict']) # update learning rate lr *= .5 for param_group in optimizer.param_groups: param_group['lr'] = lr mode = 'init' if epoch < 0 else 'train' tr_res = do_epoch(epoch, net, optimizer, tr_loader, mode, args) va_res = do_epoch(epoch, net, optimizer, va_loader, 'eval', args) te_res = do_epoch(epoch, net, optimizer, te_loader, 'test', args) time_per_epoch = time.time() - time_start print("epoch %3d lr %.1e te_norm1 %7.3f te_norm2 %6.4f tr_loss %6.3f " "tr_acc %5.2f te_acc %5.2f te_aa %5.2f te_av %5.2f te_da %6.3f " "va_acc %5.2f be_va_acc %5.2f time %d" % ( epoch, lr, te_res['norm1'], te_res['norm2'], tr_res['loss'], tr_res['acc'], te_res['acc'], te_res['aa'], te_res['av'], te_res['da'], va_res['acc'], best_va_acc, time_per_epoch)) # Log and save results logger.log(epoch, time_per_epoch, 'lr', 'tr_res', 'va_res', 'te_res') state = { 'lr': lr, 'epoch': epoch, 'state_dict': net.state_dict(), 'optimizer': optimizer.state_dict(), 'args': args, 'logs': logger.get_logs(), 'best_va_acc': best_va_acc } torch.save(state, os.path.join(args.path, 'last.pt')) if va_res['acc'] > best_va_acc: best_va_acc = va_res['acc'] torch.save(state, os.path.join(args.path, 'best.pt')) print('> Finished Training') # Compute adversarial vulnerability with foolbox print('\n> Starting attacks.') attacks = {'l1'} # attacks = {'l1', 'l2', 'itl1', 'itl2', 'deepFool', 'pgd', 'boundary'} for attack in attacks: vulnerability = compute_vulnerability( args, attack, net, args.n_attacks) torch.save(vulnerability, os.path.join(args.path, 'vulnerability_%s.pt' % attack))
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import math import time import numpy as np import scipy.stats as st from functools import partial import torch from torch.autograd import grad import foolbox from foolbox.distances import Linfinity, MSE from data import CIFAR10, IMGNET12, MNIST def do_pass(net, loader, args, means, stds): correct = total = 0. device = next(net.parameters()).device means = torch.FloatTensor(means).to(device) stds = torch.FloatTensor(stds).to(device) for i, (inputs, targets) in enumerate(loader): inputs, targets = inputs.to(device), targets.to(device) inputs = (inputs - means) / stds outputs = net(inputs) _, predicted = torch.max(outputs.data, 1) total += targets.size(0) correct += predicted.eq(targets.data).float().sum().item() if args.log_step is not None and i % args.log_step == 0: print("Batch: %03d Acc: %4.1f" % (i, 100 * correct / total)) return 100 * correct / total def classify(net, x, args, means, stds): device = next(net.parameters()).device x = x.to(device).view(1, 3, args.img_size, args.img_size) means = torch.FloatTensor(means).to(device) stds = torch.FloatTensor(stds).to(device) x = ((x - means) / stds).detach() x.requires_grad = True y = net(x) g = grad(y.sum(), x)[0].view(x.size(0), -1).norm().item() _, top_indices = y.data.cpu().view(-1).topk(2) return top_indices[0].item(), g def myPrint(string, args): if args.log_vul: print(string) def conf95(a): return st.t.interval( 0.95, len(a) - 1, loc=np.nanmean(a), scale=st.sem(a, nan_policy='omit')) def compute_vulnerability(args, attack_name, net, n_attacks=-1): """ Computes vulnerability using foolbox package of net Parameters ---------- args : :class:`argparse.ArgumentParser` The arguments passed to main.py attack_name : string The attack type. Must be one of {'l1', 'l2', 'itl1', 'itl2', 'pgd', 'deepfool'} net : :class:`torch.nn.Module` The network whose vulnerability is computed. n_attacks : int The number of attacks to use for the computation of vulnerbaility. If -1 or greater than dataset-size, uses the entire dataset. Default: -1. """ print('\nStarting attacks of type ' + attack_name) # Reload data without normalizing it print('> Loading dataset %s...' % args.dataset) if args.dataset == 'mnist': _, loader = MNIST( root=args.datapath, bs=args.bs, valid_size=0., size=args.img_size, normalize=False) elif args.dataset == 'cifar': _, loader = CIFAR10( root=args.datapath, bs=args.bs, valid_size=0., size=args.img_size, normalize=False) elif args.dataset == 'imgnet12': _, loader = IMGNET12( root=args.datapath, bs=args.bs, valid_size=0., size=args.img_size, normalize=False) else: raise NotImplementedError print('> Done.') # Image-normalizations (must be same as in data.py) if args.raw_inputs: means = [0., 0., 0.] stds = [1., 1., 1.] elif args.dataset == "mnist": means = [0.1307] stds = [0.3081] elif args.dataset == "cifar": means = [0.4914, 0.4822, 0.4465] stds = [0.2023, 0.1994, 0.2010] elif args.dataset == "imgnet12": means = [.453, .443, .403] stds = { 256: [.232, .226, .225], 128: [.225, .218, .218], 64: [.218, .211, .211], 32: [.206, .200, .200] }[args.img_size] else: raise NotImplementedError means = np.array(means).reshape(-1, 1, 1) stds = np.array(stds).reshape(-1, 1, 1) net.eval() print('> Computing test accuracy...') te_acc = do_pass(net, loader, args, means, stds) print('> Done. Computed test accuracy: %5.2f' % te_acc) # construct attack bounds = (0, 1) model = foolbox.models.PyTorchModel(net, bounds=bounds, preprocessing=(means, stds), num_classes=args.categories) # Choosing attack type if attack_name == 'l1': # vulnerability increases like sqrt(d) \propto img_size # therefore, we divide the linfty-threshold by img_size attack = partial(foolbox.attacks.FGSM(model, distance=Linfinity), epsilons=1000, max_epsilon=1. / args.img_size) elif attack_name == 'l2': # to be visually constant, the l2-threshold increases like sqrt d; # but vulnerability also increases like sqrt d; # therefore, use constant max_epsilon accross dimension d attack = partial(foolbox.attacks.GradientAttack(model, distance=MSE), epsilons=1000, max_epsilon=1.) elif attack_name == 'itl1': it, eps = 10, 1. / args.img_size attack = partial( foolbox.attacks.LinfinityBasicIterativeAttack( model, distance=Linfinity), iterations=it, epsilon=eps, stepsize=eps / (.75 * it), binary_search=True) elif attack_name == 'itl2': it, eps = 10, 1. attack = partial( foolbox.attacks.L2BasicIterativeAttack( model, distance=MSE), iterations=it, epsilon=eps, stepsize=eps / (.75 * it), binary_search=True) elif attack_name == 'pgd': it, eps = 10, 1. / args.img_size attack = partial(foolbox.attacks.RandomPGD(model, distance=Linfinity), iterations=it, epsilon=eps, stepsize=eps / (.75 * it), binary_search=True) elif attack_name == 'deepFool': attack = foolbox.attacks.DeepFoolAttack(model, distance=MSE) elif attack_name == 'boundary': attack = partial(foolbox.attacks.BoundaryAttack(model, distance=MSE), iterations=2000, log_every_n_steps=np.Infinity, verbose=False) else: raise NotImplementedError( "attack_name must be 'l1', 'l2', 'itl1', 'itl2', " "'deepFool' or 'boundary'") n_iterations = 0 results = {} results['l2_snr'] = [] results['clean_grad'] = [] results['dirty_grad'] = [] results['l2_norm'] = [] results['linf_norm'] = [] n_fooled = 0 print('> Creating empty image-tensors') n_saved = 64 if (n_attacks == -1) else min(n_attacks, 64) clean_images = torch.zeros(n_saved, 3, args.img_size, args.img_size) dirty_images = torch.zeros(n_saved, 3, args.img_size, args.img_size) print('> Done.') myPrint(("{:>15} " * 5).format( "clean_grad", "dirty_grad", "linf_norm", "l2_norm", "l2_snr"), args) t0 = time.time() for i, (images, labels) in enumerate(loader): if n_iterations == n_attacks: break for i, clean_image in enumerate(images): clean_label, clean_grad = classify(net, clean_image, args, means, stds) dirty_image_np = attack(clean_image.numpy(), clean_label) if dirty_image_np is not None: # i.e. if adversarial was found dirty_image = torch.Tensor(dirty_image_np) _, dirty_grad = classify(net, dirty_image, args, means, stds) if i < n_saved: # only save n_saved first images dirty_images[i] = dirty_image.clone() clean_images[i] = clean_image.clone() l2_norm = (clean_image - dirty_image).norm().item() linf_norm = (clean_image - dirty_image).abs().max().item() l2_snr = 20. * math.log10( clean_image.norm().item() / (l2_norm + 1e-6)) else: l2_snr = dirty_grad = l2_norm = linf_norm = np.NaN results['l2_snr'].append(l2_snr) results['clean_grad'].append(clean_grad) results['dirty_grad'].append(dirty_grad) results['l2_norm'].append(l2_norm) results['linf_norm'].append(linf_norm) fmt_str = "{:>15.6f} " * 5 if ((attack.func._default_distance == MSE and l2_norm < .005 * np.sqrt(args.img_size)) or (attack.func._default_distance == Linfinity and linf_norm < .005)): fmt_str += " * fooled!" n_fooled += 1 myPrint(fmt_str.format(clean_grad, dirty_grad, linf_norm, l2_norm, l2_snr), args) n_iterations += 1 if n_iterations == n_attacks: break # Printing summary summary = {} print("\n Summary for network in '{}' of test accuracy {}".format( args.path, te_acc)) for key, value in results.items(): low95, high95 = conf95(value) print("{:>10} mean:{:>10.5f} std:{:>10.5f} conf95:({:>10.5f}, " "{:>10.5f}) minmax:({:>10.5f}, {:>10.5f})".format( key, np.nanmean(value), np.nanstd(value), low95, high95, np.nanmin(value), np.nanmax(value))) summary[key] = [np.nanmean(value), np.nanstd(value), low95, high95] percent = 100 * n_fooled / float(n_iterations) print("{:>10} {:10d}s".format("Time", int(time.time() - t0))) print("{:>10} {:10.1f}%".format("percent", percent)) # Preparing the output output = dict() output['summary'] = summary output['results'] = results output['clean_images'] = clean_images output['dirty_images'] = dirty_images output['percent'] = percent output['te_acc'] = te_acc return output
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import numpy as np from PIL import Image import torch from torch.utils.data.sampler import SubsetRandomSampler import torchvision.transforms as transforms import torchvision.datasets as datasets def IMGNET12(root='~/datasets/imgnet12/', bs=32, bs_test=None, num_workers=32, valid_size=.1, size=256, crop=False, normalize=False): # Datafolder '~/datasets/imgnet12/' should contain folders train/ and val/, # each of which whould contain 12 subfolders (1 per class) with .jpg files root = os.path.expanduser(root) # original means = [.485, .456, .406] # original stds = [0.229, 0.224, 0.225] means = [.453, .443, .403] stds = { 256: [.232, .226, .225], 128: [.225, .218, .218], 64: [.218, .211, .211], 32: [.206, .200, .200] } if normalize: normalize = transforms.Normalize(mean=means, std=stds[size]) else: normalize = transforms.Normalize((0., 0., 0), (1., 1., 1.)) if bs_test is None: bs_test = bs if crop: tr_downsamplingOp = transforms.RandomCrop(size) te_downsamplingOp = transforms.CenterCrop(size) else: tr_downsamplingOp = transforms.Resize(size) te_downsamplingOp = transforms.Resize(size) preprocess = [transforms.Resize(256), transforms.CenterCrop(256)] tr_transforms = transforms.Compose([ *preprocess, tr_downsamplingOp, transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize, ]) te_transforms = transforms.Compose([ *preprocess, te_downsamplingOp, transforms.ToTensor(), normalize, ]) tr_dataset = datasets.ImageFolder(root + '/train', transform=tr_transforms) te_dataset = datasets.ImageFolder(root + '/val', transform=te_transforms) # Split training in train and valid set num_train = len(tr_dataset) indices = list(range(num_train)) split = int(np.floor(valid_size * num_train)) np.random.seed(42) np.random.shuffle(indices) tr_idx, va_idx = indices[split:], indices[:split] tr_sampler = SubsetRandomSampler(tr_idx) va_sampler = SubsetRandomSampler(va_idx) tr_loader = torch.utils.data.DataLoader( tr_dataset, batch_size=bs, num_workers=num_workers, pin_memory=True, sampler=tr_sampler) va_loader = torch.utils.data.DataLoader( tr_dataset, batch_size=bs_test, num_workers=num_workers, pin_memory=True, sampler=va_sampler) te_loader = torch.utils.data.DataLoader( te_dataset, batch_size=bs_test, shuffle=False, num_workers=num_workers, pin_memory=True) if valid_size > 0.: return tr_loader, va_loader, te_loader else: return tr_loader, te_loader def CIFAR10(root='~/datasets/cifar10/', bs=128, bs_test=None, augment_training=True, valid_size=0., size=32, num_workers=1, normalize=False): root = os.path.expanduser(root) if bs_test is None: bs_test = bs if normalize: normalize = transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)) else: normalize = transforms.Normalize((0., 0., 0), (1., 1., 1.)) transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.Resize(size, Image.NEAREST), transforms.ToTensor(), normalize ]) transform_test = transforms.Compose([ transforms.Resize(size, Image.NEAREST), transforms.ToTensor(), normalize ]) transform_valid = transform_test if augment_training is False: transform_train = transform_test dataset_tr = datasets.CIFAR10(root=root, train=True, transform=transform_train) dataset_va = datasets.CIFAR10(root=root, train=True, transform=transform_valid) dataset_te = datasets.CIFAR10(root=root, train=False, transform=transform_test) # Split training in train and valid set num_train = len(dataset_tr) indices = list(range(num_train)) split = int(np.floor(valid_size * num_train)) np.random.seed(42) np.random.shuffle(indices) train_idx, valid_idx = indices[split:], indices[:split] train_sampler = SubsetRandomSampler(train_idx) valid_sampler = SubsetRandomSampler(valid_idx) loader_tr = torch.utils.data.DataLoader(dataset_tr, batch_size=bs, sampler=train_sampler, num_workers=num_workers) loader_va = torch.utils.data.DataLoader(dataset_va, batch_size=bs, sampler=valid_sampler, num_workers=num_workers) # add pin_memory loader_te = torch.utils.data.DataLoader(dataset_te, batch_size=bs_test, shuffle=False, num_workers=num_workers) if valid_size > 0: return loader_tr, loader_va, loader_te else: return loader_tr, loader_te def MNIST(root='~/datasets/mnist/', bs=128, bs_test=None, augment_training=True, valid_size=0., size=32, num_workers=1, normalize=False): root = os.path.expanduser(root) if bs_test is None: bs_test = bs if normalize: normalize = transforms.Normalize((0.1307,), (0.3081,)) else: normalize = transforms.Normalize((0.,), (1.,)) transform = transforms.Compose([ transforms.Resize(32, Image.BILINEAR), transforms.Resize(size, Image.NEAREST), transforms.Grayscale(num_output_channels=1), transforms.ToTensor(), normalize ]) dataset_tr = datasets.MNIST(root=root, train=True, transform=transform) dataset_va = datasets.MNIST(root=root, train=True, transform=transform) dataset_te = datasets.MNIST(root=root, train=False, transform=transform) # Split training in train and valid set num_train = len(dataset_tr) indices = list(range(num_train)) split = int(np.floor(valid_size * num_train)) np.random.seed(42) np.random.shuffle(indices) train_idx, valid_idx = indices[split:], indices[:split] train_sampler = SubsetRandomSampler(train_idx) valid_sampler = SubsetRandomSampler(valid_idx) loader_tr = torch.utils.data.DataLoader(dataset_tr, batch_size=bs, sampler=train_sampler, num_workers=num_workers) loader_va = torch.utils.data.DataLoader(dataset_va, batch_size=bs, sampler=valid_sampler, num_workers=num_workers) # add pin_memory loader_te = torch.utils.data.DataLoader(dataset_te, batch_size=bs_test, shuffle=False, num_workers=num_workers) if valid_size > 0: return loader_tr, loader_va, loader_te else: return loader_tr, loader_te
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from functools import reduce import torch.nn as nn import torch.nn.functional as F class Identity(nn.Module): def __init__(self): super(Identity, self).__init__() def forward(self, x): return x class FlexibleAvgPool2d(nn.Module): def __init__(self): super().__init__() def forward(self, inputs): return F.avg_pool2d(inputs, kernel_size=inputs.size(2)) class WeightPool(nn.Module): def __init__(self, in_planes, kernel_size): super(WeightPool, self).__init__() self.conv = nn.Conv2d(in_planes, in_planes, kernel_size=kernel_size, stride=kernel_size, groups=in_planes, bias=False) self.conv.unit_gain = True def forward(self, x): return self.conv(x) class WeightPoolOut(nn.Module): def __init__(self, in_planes, plane_size, categories, unit_gain=False): super(WeightPoolOut, self).__init__() self.in_planes = in_planes self.conv = nn.Conv2d(in_planes, in_planes, kernel_size=plane_size, groups=in_planes, bias=False) self.linear = nn.Linear(in_planes, categories) self.linear.unit_gain = unit_gain def forward(self, x): out = self.conv(x) out = out.view(-1, self.in_planes) return self.linear(out) class MaxPoolOut(nn.Module): def __init__(self, in_planes, plane_size, categories, unit_gain=False): super(MaxPoolOut, self).__init__() self.in_planes = in_planes self.maxpool = nn.MaxPool2d(kernel_size=plane_size) self.linear = nn.Linear(in_planes, categories) self.linear.unit_gain = unit_gain def forward(self, x): out = self.maxpool(x) out = out.view(-1, self.in_planes) return self.linear(out) class AvgPoolOut(nn.Module): def __init__(self, in_planes, plane_size, categories, unit_gain=False): super(AvgPoolOut, self).__init__() self.in_planes = in_planes self.avgpool = nn.AvgPool2d(kernel_size=plane_size) self.linear = nn.Linear(in_planes, categories) self.linear.unit_gain = unit_gain def forward(self, x): out = self.avgpool(x) out = out.view(-1, self.in_planes) return self.linear(out) class FCout(nn.Module): def __init__(self, in_planes, plane_size, categories, unit_gain=False): super(FCout, self).__init__() if type(plane_size) == tuple and len(plane_size) == 2: plane_size = reduce(lambda x, y: x * y, plane_size) else: plane_size = plane_size ** 2 print('Plane size = ', plane_size) self.in_planes = in_planes self.plane_size = plane_size self.linear = nn.Linear(in_planes * plane_size, categories) self.linear.unit_gain = unit_gain def forward(self, x): out = x.view(-1, self.in_planes * self.plane_size) return self.linear(out) class ConvLayer(nn.Module): def __init__(self, in_planes, planes, pooltype=None, no_BN=False, no_act=False, dilation=1): super(ConvLayer, self).__init__() self.pad = nn.ReflectionPad2d(dilation) if pooltype is None: # Usual conv self.conv = nn.Conv2d(in_planes, planes, 3, padding=0, stride=1, dilation=dilation) elif pooltype == 'avgpool': # Average Pool self.conv = nn.Sequential( nn.Conv2d(in_planes, planes, 3, dilation=dilation), nn.AvgPool2d(2)) elif pooltype == 'subsamp': # Strided Conv self.conv = nn.Conv2d( in_planes, planes, 3, stride=2, dilation=dilation) elif pooltype == 'maxpool': # Max Pool self.conv = nn.Sequential( nn.Conv2d(in_planes, planes, 3, dilation=dilation), nn.MaxPool2d(2)) elif pooltype == 'weightpool': self.conv = nn.Sequential( nn.Conv2d(in_planes, planes, 3, dilation=dilation), WeightPool(planes, 2)) else: raise NotImplementedError if no_act: self.act = lambda x: x else: self.act = nn.ReLU() if no_BN: self.bn = lambda x: x # Identity() else: self.bn = nn.BatchNorm2d(planes) def forward(self, x): out = self.act(self.bn(self.conv(self.pad(x)))) return out class ConvNet(nn.Module): def __init__( self, categories=10, n_layers=3, in_size=32, poolings=None, pooltype='avgpool', no_BN=False, no_act=False, dilations=1, normalize_inputs=False, last_layers='maxpool', in_planes=3): # last_layers in {'maxpool', 'fc', 'weightpool'} super(ConvNet, self).__init__() poolings = [] if poolings is None else poolings if type(dilations) != list: dilations = [dilations] * n_layers self.in_planes = in_planes if normalize_inputs or no_BN: self.bn = (lambda x: x) else: self.bn = nn.BatchNorm2d(self.in_planes) self.layers = self._make_layers( ConvLayer, 64, n_layers, poolings, pooltype, no_BN, no_act, dilations) # compute input-size to last layers from input-size of the net # self.in_planes is changed by _make_layers to the nbr of out-planes out_size = int(in_size / (2 ** (len(poolings)))) self.last_layers = self._make_last_layers( out_size, categories, last_layers) def _make_layers(self, block, planes, num_blocks, poolings, pooltype, no_BN, no_act, dilations): # pooltypes = [0] + [0] * (num_blocks - 1) pooltypes = [None] * num_blocks for pool in poolings: pooltypes[pool] = pooltype layers = [] for pool, dilation in zip(pooltypes, dilations): layers.append(block(self.in_planes, planes, pool, no_BN, no_act, dilation)) self.in_planes = planes return nn.Sequential(*layers) def _make_last_layers(self, in_size, categories, last_layers): if last_layers == 'maxpool': last_layers = MaxPoolOut( self.in_planes, in_size, categories, unit_gain=True) elif last_layers == 'avgpool': last_layers = AvgPoolOut( self.in_planes, in_size, categories, unit_gain=True) elif last_layers == 'weightpool': last_layers = WeightPoolOut( self.in_planes, in_size, categories, unit_gain=True) elif last_layers == 'fc': last_layers = FCout( self.in_planes, in_size, categories, unit_gain=True) else: raise NotImplementedError( 'Argument last_layers must be maxpool, fc, weightpool. ' 'But got: %s' % last_layers) return last_layers def forward(self, x): out = self.layers(self.bn(x)) out = self.last_layers(out) return out
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import detectron2.utils.comm as comm from detectron2.checkpoint import DetectionCheckpointer from detectron2.config import get_cfg from detectron2.engine import default_argument_parser, default_setup, launch from adapteacher import add_ateacher_config from adapteacher.engine.trainer import ATeacherTrainer, BaselineTrainer # hacky way to register from adapteacher.modeling.meta_arch.rcnn import TwoStagePseudoLabGeneralizedRCNN, DAobjTwoStagePseudoLabGeneralizedRCNN from adapteacher.modeling.meta_arch.vgg import build_vgg_backbone # noqa from adapteacher.modeling.proposal_generator.rpn import PseudoLabRPN from adapteacher.modeling.roi_heads.roi_heads import StandardROIHeadsPseudoLab import adapteacher.data.datasets.builtin from adapteacher.modeling.meta_arch.ts_ensemble import EnsembleTSModel def setup(args): """ Create configs and perform basic setups. """ cfg = get_cfg() add_ateacher_config(cfg) cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() default_setup(cfg, args) return cfg def main(args): cfg = setup(args) if cfg.SEMISUPNET.Trainer == "ateacher": Trainer = ATeacherTrainer elif cfg.SEMISUPNET.Trainer == "baseline": Trainer = BaselineTrainer else: raise ValueError("Trainer Name is not found.") if args.eval_only: if cfg.SEMISUPNET.Trainer == "ateacher": model = Trainer.build_model(cfg) model_teacher = Trainer.build_model(cfg) ensem_ts_model = EnsembleTSModel(model_teacher, model) DetectionCheckpointer( ensem_ts_model, save_dir=cfg.OUTPUT_DIR ).resume_or_load(cfg.MODEL.WEIGHTS, resume=args.resume) res = Trainer.test(cfg, ensem_ts_model.modelTeacher) else: model = Trainer.build_model(cfg) DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load( cfg.MODEL.WEIGHTS, resume=args.resume ) res = Trainer.test(cfg, model) return res trainer = Trainer(cfg) trainer.resume_or_load(resume=args.resume) return trainer.train() if __name__ == "__main__": args = default_argument_parser().parse_args() print("Command Line Args:", args) launch( main, args.num_gpus, num_machines=args.num_machines, machine_rank=args.machine_rank, dist_url=args.dist_url, args=(args,), )
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from detectron2.config import CfgNode as CN def add_ateacher_config(cfg): """ Add config for semisupnet. """ _C = cfg _C.TEST.VAL_LOSS = True _C.MODEL.RPN.UNSUP_LOSS_WEIGHT = 1.0 _C.MODEL.RPN.LOSS = "CrossEntropy" _C.MODEL.ROI_HEADS.LOSS = "CrossEntropy" _C.SOLVER.IMG_PER_BATCH_LABEL = 1 _C.SOLVER.IMG_PER_BATCH_UNLABEL = 1 _C.SOLVER.FACTOR_LIST = (1,) _C.DATASETS.TRAIN_LABEL = ("coco_2017_train",) _C.DATASETS.TRAIN_UNLABEL = ("coco_2017_train",) _C.DATASETS.CROSS_DATASET = True _C.TEST.EVALUATOR = "COCOeval" _C.SEMISUPNET = CN() # Output dimension of the MLP projector after `res5` block _C.SEMISUPNET.MLP_DIM = 128 # Semi-supervised training _C.SEMISUPNET.Trainer = "ateacher" _C.SEMISUPNET.BBOX_THRESHOLD = 0.7 _C.SEMISUPNET.PSEUDO_BBOX_SAMPLE = "thresholding" _C.SEMISUPNET.TEACHER_UPDATE_ITER = 1 _C.SEMISUPNET.BURN_UP_STEP = 12000 _C.SEMISUPNET.EMA_KEEP_RATE = 0.0 _C.SEMISUPNET.UNSUP_LOSS_WEIGHT = 4.0 _C.SEMISUPNET.SUP_LOSS_WEIGHT = 0.5 _C.SEMISUPNET.LOSS_WEIGHT_TYPE = "standard" _C.SEMISUPNET.DIS_TYPE = "res4" _C.SEMISUPNET.DIS_LOSS_WEIGHT = 0.1 # dataloader # supervision level _C.DATALOADER.SUP_PERCENT = 100.0 # 5 = 5% dataset as labeled set _C.DATALOADER.RANDOM_DATA_SEED = 0 # random seed to read data _C.DATALOADER.RANDOM_DATA_SEED_PATH = "dataseed/COCO_supervision.txt" _C.EMAMODEL = CN() _C.EMAMODEL.SUP_CONSIST = True
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from .config import add_ateacher_config
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from detectron2.checkpoint.c2_model_loading import align_and_update_state_dicts from detectron2.checkpoint import DetectionCheckpointer # for load_student_model from typing import Any from fvcore.common.checkpoint import _strip_prefix_if_present, _IncompatibleKeys class DetectionTSCheckpointer(DetectionCheckpointer): def _load_model(self, checkpoint): if checkpoint.get("__author__", None) == "Caffe2": # pretrained model weight: only update student model if checkpoint.get("matching_heuristics", False): self._convert_ndarray_to_tensor(checkpoint["model"]) # convert weights by name-matching heuristics model_state_dict = self.model.modelStudent.state_dict() align_and_update_state_dicts( model_state_dict, checkpoint["model"], c2_conversion=checkpoint.get("__author__", None) == "Caffe2", ) checkpoint["model"] = model_state_dict # for non-caffe2 models, use standard ways to load it incompatible = self._load_student_model(checkpoint) model_buffers = dict(self.model.modelStudent.named_buffers(recurse=False)) for k in ["pixel_mean", "pixel_std"]: # Ignore missing key message about pixel_mean/std. # Though they may be missing in old checkpoints, they will be correctly # initialized from config anyway. if k in model_buffers: try: incompatible.missing_keys.remove(k) except ValueError: pass return incompatible else: # whole model if checkpoint.get("matching_heuristics", False): self._convert_ndarray_to_tensor(checkpoint["model"]) # convert weights by name-matching heuristics model_state_dict = self.model.state_dict() align_and_update_state_dicts( model_state_dict, checkpoint["model"], c2_conversion=checkpoint.get("__author__", None) == "Caffe2", ) checkpoint["model"] = model_state_dict # for non-caffe2 models, use standard ways to load it incompatible = super()._load_model(checkpoint) model_buffers = dict(self.model.named_buffers(recurse=False)) for k in ["pixel_mean", "pixel_std"]: # Ignore missing key message about pixel_mean/std. # Though they may be missing in old checkpoints, they will be correctly # initialized from config anyway. if k in model_buffers: try: incompatible.missing_keys.remove(k) except ValueError: pass return incompatible def _load_student_model(self, checkpoint: Any) -> _IncompatibleKeys: # pyre-ignore checkpoint_state_dict = checkpoint.pop("model") self._convert_ndarray_to_tensor(checkpoint_state_dict) # if the state_dict comes from a model that was wrapped in a # DataParallel or DistributedDataParallel during serialization, # remove the "module" prefix before performing the matching. _strip_prefix_if_present(checkpoint_state_dict, "module.") # work around https://github.com/pytorch/pytorch/issues/24139 model_state_dict = self.model.modelStudent.state_dict() incorrect_shapes = [] for k in list(checkpoint_state_dict.keys()): if k in model_state_dict: shape_model = tuple(model_state_dict[k].shape) shape_checkpoint = tuple(checkpoint_state_dict[k].shape) if shape_model != shape_checkpoint: incorrect_shapes.append((k, shape_checkpoint, shape_model)) checkpoint_state_dict.pop(k) # pyre-ignore incompatible = self.model.modelStudent.load_state_dict( checkpoint_state_dict, strict=False ) return _IncompatibleKeys( missing_keys=incompatible.missing_keys, unexpected_keys=incompatible.unexpected_keys, incorrect_shapes=incorrect_shapes, ) # class DetectionCheckpointer(Checkpointer): # """ # Same as :class:`Checkpointer`, but is able to handle models in detectron & detectron2 # model zoo, and apply conversions for legacy models. # """ # def __init__(self, model, save_dir="", *, save_to_disk=None, **checkpointables): # is_main_process = comm.is_main_process() # super().__init__( # model, # save_dir, # save_to_disk=is_main_process if save_to_disk is None else save_to_disk, # **checkpointables, # ) # def _load_file(self, filename): # if filename.endswith(".pkl"): # with PathManager.open(filename, "rb") as f: # data = pickle.load(f, encoding="latin1") # if "model" in data and "__author__" in data: # # file is in Detectron2 model zoo format # self.logger.info("Reading a file from '{}'".format(data["__author__"])) # return data # else: # # assume file is from Caffe2 / Detectron1 model zoo # if "blobs" in data: # # Detection models have "blobs", but ImageNet models don't # data = data["blobs"] # data = {k: v for k, v in data.items() if not k.endswith("_momentum")} # return {"model": data, "__author__": "Caffe2", "matching_heuristics": True} # loaded = super()._load_file(filename) # load native pth checkpoint # if "model" not in loaded: # loaded = {"model": loaded} # return loaded # def _load_model(self, checkpoint): # if checkpoint.get("matching_heuristics", False): # self._convert_ndarray_to_tensor(checkpoint["model"]) # # convert weights by name-matching heuristics # model_state_dict = self.model.state_dict() # align_and_update_state_dicts( # model_state_dict, # checkpoint["model"], # c2_conversion=checkpoint.get("__author__", None) == "Caffe2", # ) # checkpoint["model"] = model_state_dict # # for non-caffe2 models, use standard ways to load it # super()._load_model(checkpoint)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import torch from detectron2.config import CfgNode from detectron2.solver.lr_scheduler import WarmupCosineLR, WarmupMultiStepLR from .lr_scheduler import WarmupTwoStageMultiStepLR def build_lr_scheduler( cfg: CfgNode, optimizer: torch.optim.Optimizer ) -> torch.optim.lr_scheduler._LRScheduler: """ Build a LR scheduler from config. """ name = cfg.SOLVER.LR_SCHEDULER_NAME if name == "WarmupMultiStepLR": return WarmupMultiStepLR( optimizer, cfg.SOLVER.STEPS, cfg.SOLVER.GAMMA, warmup_factor=cfg.SOLVER.WARMUP_FACTOR, warmup_iters=cfg.SOLVER.WARMUP_ITERS, warmup_method=cfg.SOLVER.WARMUP_METHOD, ) elif name == "WarmupCosineLR": return WarmupCosineLR( optimizer, cfg.SOLVER.MAX_ITER, warmup_factor=cfg.SOLVER.WARMUP_FACTOR, warmup_iters=cfg.SOLVER.WARMUP_ITERS, warmup_method=cfg.SOLVER.WARMUP_METHOD, ) elif name == "WarmupTwoStageMultiStepLR": return WarmupTwoStageMultiStepLR( optimizer, cfg.SOLVER.STEPS, factor_list=cfg.SOLVER.FACTOR_LIST, gamma=cfg.SOLVER.GAMMA, warmup_factor=cfg.SOLVER.WARMUP_FACTOR, warmup_iters=cfg.SOLVER.WARMUP_ITERS, warmup_method=cfg.SOLVER.WARMUP_METHOD, ) else: raise ValueError("Unknown LR scheduler: {}".format(name))
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from bisect import bisect_right from typing import List import torch from detectron2.solver.lr_scheduler import _get_warmup_factor_at_iter class WarmupTwoStageMultiStepLR(torch.optim.lr_scheduler._LRScheduler): def __init__( self, optimizer: torch.optim.Optimizer, milestones: List[int], factor_list: List[int], gamma: float = 0.1, warmup_factor: float = 0.001, warmup_iters: int = 1000, warmup_method: str = "linear", last_epoch: int = -1, ): if not list(milestones) == sorted(milestones): raise ValueError( "Milestones should be a list of" " increasing integers. Got {}", milestones, ) if len(milestones) + 1 != len(factor_list): raise ValueError("Length of milestones should match length of factor_list.") self.milestones = milestones self.gamma = gamma self.warmup_factor = warmup_factor self.warmup_iters = warmup_iters self.warmup_method = warmup_method self.factor_list = factor_list super().__init__(optimizer, last_epoch) def get_lr(self) -> List[float]: warmup_factor = _get_warmup_factor_at_iter( self.warmup_method, self.last_epoch, self.warmup_iters, self.warmup_factor ) return [ base_lr * warmup_factor * self.factor_list[bisect_right(self.milestones, self.last_epoch)] for base_lr in self.base_lrs ] def _compute_values(self) -> List[float]: # The new interface return self.get_lr()
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import numpy as np import torch import torch.nn as nn from torch.nn import functional as F from detectron2.modeling.meta_arch.build import META_ARCH_REGISTRY from detectron2.modeling.meta_arch.rcnn import GeneralizedRCNN from detectron2.config import configurable # from detectron2.modeling.meta_arch.build import META_ARCH_REGISTRY # from detectron2.modeling.meta_arch.rcnn import GeneralizedRCNN import logging from typing import Dict, Tuple, List, Optional from collections import OrderedDict from detectron2.modeling.proposal_generator import build_proposal_generator from detectron2.modeling.backbone import build_backbone, Backbone from detectron2.modeling.roi_heads import build_roi_heads from detectron2.utils.events import get_event_storage from detectron2.structures import ImageList ############### Image discriminator ############## class FCDiscriminator_img(nn.Module): def __init__(self, num_classes, ndf1=256, ndf2=128): super(FCDiscriminator_img, self).__init__() self.conv1 = nn.Conv2d(num_classes, ndf1, kernel_size=3, padding=1) self.conv2 = nn.Conv2d(ndf1, ndf2, kernel_size=3, padding=1) self.conv3 = nn.Conv2d(ndf2, ndf2, kernel_size=3, padding=1) self.classifier = nn.Conv2d(ndf2, 1, kernel_size=3, padding=1) self.leaky_relu = nn.LeakyReLU(negative_slope=0.2, inplace=True) def forward(self, x): x = self.conv1(x) x = self.leaky_relu(x) x = self.conv2(x) x = self.leaky_relu(x) x = self.conv3(x) x = self.leaky_relu(x) x = self.classifier(x) return x ################################# ################ Gradient reverse function class GradReverse(torch.autograd.Function): @staticmethod def forward(ctx, x): return x.view_as(x) @staticmethod def backward(ctx, grad_output): return grad_output.neg() def grad_reverse(x): return GradReverse.apply(x) ####################### @META_ARCH_REGISTRY.register() class DAobjTwoStagePseudoLabGeneralizedRCNN(GeneralizedRCNN): @configurable def __init__( self, *, backbone: Backbone, proposal_generator: nn.Module, roi_heads: nn.Module, pixel_mean: Tuple[float], pixel_std: Tuple[float], input_format: Optional[str] = None, vis_period: int = 0, dis_type: str, # dis_loss_weight: float = 0, ): """ Args: backbone: a backbone module, must follow detectron2's backbone interface proposal_generator: a module that generates proposals using backbone features roi_heads: a ROI head that performs per-region computation pixel_mean, pixel_std: list or tuple with #channels element, representing the per-channel mean and std to be used to normalize the input image input_format: describe the meaning of channels of input. Needed by visualization vis_period: the period to run visualization. Set to 0 to disable. """ super(GeneralizedRCNN, self).__init__() self.backbone = backbone self.proposal_generator = proposal_generator self.roi_heads = roi_heads self.input_format = input_format self.vis_period = vis_period if vis_period > 0: assert input_format is not None, "input_format is required for visualization!" self.register_buffer("pixel_mean", torch.tensor(pixel_mean).view(-1, 1, 1), False) self.register_buffer("pixel_std", torch.tensor(pixel_std).view(-1, 1, 1), False) assert ( self.pixel_mean.shape == self.pixel_std.shape ), f"{self.pixel_mean} and {self.pixel_std} have different shapes!" # @yujheli: you may need to build your discriminator here self.dis_type = dis_type self.D_img = None # self.D_img = FCDiscriminator_img(self.backbone._out_feature_channels['res4']) # Need to know the channel # self.D_img = None self.D_img = FCDiscriminator_img(self.backbone._out_feature_channels[self.dis_type]) # Need to know the channel # self.bceLoss_func = nn.BCEWithLogitsLoss() def build_discriminator(self): self.D_img = FCDiscriminator_img(self.backbone._out_feature_channels[self.dis_type]).to(self.device) # Need to know the channel @classmethod def from_config(cls, cfg): backbone = build_backbone(cfg) return { "backbone": backbone, "proposal_generator": build_proposal_generator(cfg, backbone.output_shape()), "roi_heads": build_roi_heads(cfg, backbone.output_shape()), "input_format": cfg.INPUT.FORMAT, "vis_period": cfg.VIS_PERIOD, "pixel_mean": cfg.MODEL.PIXEL_MEAN, "pixel_std": cfg.MODEL.PIXEL_STD, "dis_type": cfg.SEMISUPNET.DIS_TYPE, # "dis_loss_ratio": cfg.xxx, } def preprocess_image_train(self, batched_inputs: List[Dict[str, torch.Tensor]]): """ Normalize, pad and batch the input images. """ images = [x["image"].to(self.device) for x in batched_inputs] images = [(x - self.pixel_mean) / self.pixel_std for x in images] images = ImageList.from_tensors(images, self.backbone.size_divisibility) images_t = [x["image_unlabeled"].to(self.device) for x in batched_inputs] images_t = [(x - self.pixel_mean) / self.pixel_std for x in images_t] images_t = ImageList.from_tensors(images_t, self.backbone.size_divisibility) return images, images_t def forward( self, batched_inputs, branch="supervised", given_proposals=None, val_mode=False ): """ Args: batched_inputs: a list, batched outputs of :class:`DatasetMapper` . Each item in the list contains the inputs for one image. For now, each item in the list is a dict that contains: * image: Tensor, image in (C, H, W) format. * instances (optional): groundtruth :class:`Instances` * proposals (optional): :class:`Instances`, precomputed proposals. Other information that's included in the original dicts, such as: * "height", "width" (int): the output resolution of the model, used in inference. See :meth:`postprocess` for details. Returns: list[dict]: Each dict is the output for one input image. The dict contains one key "instances" whose value is a :class:`Instances`. The :class:`Instances` object has the following keys: "pred_boxes", "pred_classes", "scores", "pred_masks", "pred_keypoints" """ if self.D_img == None: self.build_discriminator() if (not self.training) and (not val_mode): # only conduct when testing mode return self.inference(batched_inputs) source_label = 0 target_label = 1 if branch == "domain": # self.D_img.train() # source_label = 0 # target_label = 1 # images = self.preprocess_image(batched_inputs) images_s, images_t = self.preprocess_image_train(batched_inputs) features = self.backbone(images_s.tensor) # import pdb # pdb.set_trace() features_s = grad_reverse(features[self.dis_type]) D_img_out_s = self.D_img(features_s) loss_D_img_s = F.binary_cross_entropy_with_logits(D_img_out_s, torch.FloatTensor(D_img_out_s.data.size()).fill_(source_label).to(self.device)) features_t = self.backbone(images_t.tensor) features_t = grad_reverse(features_t[self.dis_type]) # features_t = grad_reverse(features_t['p2']) D_img_out_t = self.D_img(features_t) loss_D_img_t = F.binary_cross_entropy_with_logits(D_img_out_t, torch.FloatTensor(D_img_out_t.data.size()).fill_(target_label).to(self.device)) # import pdb # pdb.set_trace() losses = {} losses["loss_D_img_s"] = loss_D_img_s losses["loss_D_img_t"] = loss_D_img_t return losses, [], [], None # self.D_img.eval() images = self.preprocess_image(batched_inputs) if "instances" in batched_inputs[0]: gt_instances = [x["instances"].to(self.device) for x in batched_inputs] else: gt_instances = None features = self.backbone(images.tensor) # TODO: remove the usage of if else here. This needs to be re-organized if branch == "supervised": features_s = grad_reverse(features[self.dis_type]) D_img_out_s = self.D_img(features_s) loss_D_img_s = F.binary_cross_entropy_with_logits(D_img_out_s, torch.FloatTensor(D_img_out_s.data.size()).fill_(source_label).to(self.device)) # Region proposal network proposals_rpn, proposal_losses = self.proposal_generator( images, features, gt_instances ) # roi_head lower branch _, detector_losses = self.roi_heads( images, features, proposals_rpn, compute_loss=True, targets=gt_instances, branch=branch, ) # visualization if self.vis_period > 0: storage = get_event_storage() if storage.iter % self.vis_period == 0: self.visualize_training(batched_inputs, proposals_rpn, branch) losses = {} losses.update(detector_losses) losses.update(proposal_losses) losses["loss_D_img_s"] = loss_D_img_s*0.001 return losses, [], [], None elif branch == "supervised_target": # features_t = grad_reverse(features_t[self.dis_type]) # D_img_out_t = self.D_img(features_t) # loss_D_img_t = F.binary_cross_entropy_with_logits(D_img_out_t, torch.FloatTensor(D_img_out_t.data.size()).fill_(target_label).to(self.device)) # Region proposal network proposals_rpn, proposal_losses = self.proposal_generator( images, features, gt_instances ) # roi_head lower branch _, detector_losses = self.roi_heads( images, features, proposals_rpn, compute_loss=True, targets=gt_instances, branch=branch, ) # visualization if self.vis_period > 0: storage = get_event_storage() if storage.iter % self.vis_period == 0: self.visualize_training(batched_inputs, proposals_rpn, branch) losses = {} losses.update(detector_losses) losses.update(proposal_losses) # losses["loss_D_img_t"] = loss_D_img_t*0.001 # losses["loss_D_img_s"] = loss_D_img_s*0.001 return losses, [], [], None elif branch == "unsup_data_weak": """ unsupervised weak branch: input image without any ground-truth label; output proposals of rpn and roi-head """ # Region proposal network proposals_rpn, _ = self.proposal_generator( images, features, None, compute_loss=False ) # roi_head lower branch (keep this for further production) # notice that we do not use any target in ROI head to do inference! proposals_roih, ROI_predictions = self.roi_heads( images, features, proposals_rpn, targets=None, compute_loss=False, branch=branch, ) # if self.vis_period > 0: # storage = get_event_storage() # if storage.iter % self.vis_period == 0: # self.visualize_training(batched_inputs, proposals_rpn, branch) return {}, proposals_rpn, proposals_roih, ROI_predictions elif branch == "unsup_data_strong": raise NotImplementedError() elif branch == "val_loss": raise NotImplementedError() def visualize_training(self, batched_inputs, proposals, branch=""): """ This function different from the original one: - it adds "branch" to the `vis_name`. A function used to visualize images and proposals. It shows ground truth bounding boxes on the original image and up to 20 predicted object proposals on the original image. Users can implement different visualization functions for different models. Args: batched_inputs (list): a list that contains input to the model. proposals (list): a list that contains predicted proposals. Both batched_inputs and proposals should have the same length. """ from detectron2.utils.visualizer import Visualizer storage = get_event_storage() max_vis_prop = 20 for input, prop in zip(batched_inputs, proposals): img = input["image"] img = convert_image_to_rgb(img.permute(1, 2, 0), self.input_format) v_gt = Visualizer(img, None) v_gt = v_gt.overlay_instances(boxes=input["instances"].gt_boxes) anno_img = v_gt.get_image() box_size = min(len(prop.proposal_boxes), max_vis_prop) v_pred = Visualizer(img, None) v_pred = v_pred.overlay_instances( boxes=prop.proposal_boxes[0:box_size].tensor.cpu().numpy() ) prop_img = v_pred.get_image() vis_img = np.concatenate((anno_img, prop_img), axis=1) vis_img = vis_img.transpose(2, 0, 1) vis_name = ( "Left: GT bounding boxes " + branch + "; Right: Predicted proposals " + branch ) storage.put_image(vis_name, vis_img) break # only visualize one image in a batch @META_ARCH_REGISTRY.register() class TwoStagePseudoLabGeneralizedRCNN(GeneralizedRCNN): def forward( self, batched_inputs, branch="supervised", given_proposals=None, val_mode=False ): if (not self.training) and (not val_mode): return self.inference(batched_inputs) images = self.preprocess_image(batched_inputs) if "instances" in batched_inputs[0]: gt_instances = [x["instances"].to(self.device) for x in batched_inputs] else: gt_instances = None features = self.backbone(images.tensor) if branch == "supervised": # Region proposal network proposals_rpn, proposal_losses = self.proposal_generator( images, features, gt_instances ) # # roi_head lower branch _, detector_losses = self.roi_heads( images, features, proposals_rpn, gt_instances, branch=branch ) losses = {} losses.update(detector_losses) losses.update(proposal_losses) return losses, [], [], None elif branch == "unsup_data_weak": # Region proposal network proposals_rpn, _ = self.proposal_generator( images, features, None, compute_loss=False ) # roi_head lower branch (keep this for further production) # notice that we do not use any target in ROI head to do inference ! proposals_roih, ROI_predictions = self.roi_heads( images, features, proposals_rpn, targets=None, compute_loss=False, branch=branch, ) return {}, proposals_rpn, proposals_roih, ROI_predictions elif branch == "val_loss": # Region proposal network proposals_rpn, proposal_losses = self.proposal_generator( images, features, gt_instances, compute_val_loss=True ) # roi_head lower branch _, detector_losses = self.roi_heads( images, features, proposals_rpn, gt_instances, branch=branch, compute_val_loss=True, ) losses = {} losses.update(detector_losses) losses.update(proposal_losses) return losses, [], [], None
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import torch.nn as nn import copy import torch from typing import Union, List, Dict, Any, cast from detectron2.modeling.backbone import ( ResNet, Backbone, build_resnet_backbone, BACKBONE_REGISTRY ) from detectron2.modeling.backbone.fpn import FPN, LastLevelMaxPool, LastLevelP6P7 def make_layers(cfg: List[Union[str, int]], batch_norm: bool = False) -> nn.Sequential: layers: List[nn.Module] = [] in_channels = 3 for v in cfg: if v == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: v = cast(int, v) conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1) if batch_norm: layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)] else: layers += [conv2d, nn.ReLU(inplace=True)] in_channels = v return nn.Sequential(*layers) cfgs: Dict[str, List[Union[str, int]]] = { 'vgg11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'vgg13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'vgg16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'], 'vgg19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'], } class vgg_backbone(Backbone): """ Backbone (bottom-up) for FBNet. Hierarchy: trunk0: xif0_0 xif0_1 ... trunk1: xif1_0 xif1_1 ... ... Output features: The outputs from each "stage", i.e. trunkX. """ def __init__(self, cfg): super().__init__() self.vgg = make_layers(cfgs['vgg16'],batch_norm=True) self._initialize_weights() # self.stage_names_index = {'vgg1':3, 'vgg2':8 , 'vgg3':15, 'vgg4':22, 'vgg5':29} _out_feature_channels = [64, 128, 256, 512, 512] _out_feature_strides = [2, 4, 8, 16, 32] # stages, shape_specs = build_fbnet( # cfg, # name="trunk", # in_channels=cfg.MODEL.FBNET_V2.STEM_IN_CHANNELS # ) # nn.Sequential(*list(self.vgg.features._modules.values())[:14]) self.stages = [nn.Sequential(*list(self.vgg._modules.values())[0:7]),\ nn.Sequential(*list(self.vgg._modules.values())[7:14]),\ nn.Sequential(*list(self.vgg._modules.values())[14:24]),\ nn.Sequential(*list(self.vgg._modules.values())[24:34]),\ nn.Sequential(*list(self.vgg._modules.values())[34:]),] self._out_feature_channels = {} self._out_feature_strides = {} self._stage_names = [] for i, stage in enumerate(self.stages): name = "vgg{}".format(i) self.add_module(name, stage) self._stage_names.append(name) self._out_feature_channels[name] = _out_feature_channels[i] self._out_feature_strides[name] = _out_feature_strides[i] self._out_features = self._stage_names del self.vgg def forward(self, x): features = {} for name, stage in zip(self._stage_names, self.stages): x = stage(x) # if name in self._out_features: # outputs[name] = x features[name] = x # import pdb # pdb.set_trace() return features def _initialize_weights(self) -> None: for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.constant_(m.bias, 0) @BACKBONE_REGISTRY.register() #already register in baseline model def build_vgg_backbone(cfg, _): return vgg_backbone(cfg) @BACKBONE_REGISTRY.register() #already register in baseline model def build_vgg_fpn_backbone(cfg, _): # backbone = FPN( # bottom_up=build_vgg_backbone(cfg), # in_features=cfg.MODEL.FPN.IN_FEATURES, # out_channels=cfg.MODEL.FPN.OUT_CHANNELS, # norm=cfg.MODEL.FPN.NORM, # top_block=LastLevelMaxPool(), # ) bottom_up = vgg_backbone(cfg) in_features = cfg.MODEL.FPN.IN_FEATURES out_channels = cfg.MODEL.FPN.OUT_CHANNELS backbone = FPN( bottom_up=bottom_up, in_features=in_features, out_channels=out_channels, norm=cfg.MODEL.FPN.NORM, top_block=LastLevelMaxPool(), # fuse_type=cfg.MODEL.FPN.FUSE_TYPE, ) # return backbone return backbone
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from torch.nn.parallel import DataParallel, DistributedDataParallel import torch.nn as nn class EnsembleTSModel(nn.Module): def __init__(self, modelTeacher, modelStudent): super(EnsembleTSModel, self).__init__() if isinstance(modelTeacher, (DistributedDataParallel, DataParallel)): modelTeacher = modelTeacher.module if isinstance(modelStudent, (DistributedDataParallel, DataParallel)): modelStudent = modelStudent.module self.modelTeacher = modelTeacher self.modelStudent = modelStudent
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from typing import Dict, Optional import torch from detectron2.structures import ImageList, Instances from detectron2.modeling.proposal_generator import RPN from detectron2.modeling.proposal_generator.build import PROPOSAL_GENERATOR_REGISTRY @PROPOSAL_GENERATOR_REGISTRY.register() class PseudoLabRPN(RPN): """ Region Proposal Network, introduced by :paper:`Faster R-CNN`. """ def forward( self, images: ImageList, features: Dict[str, torch.Tensor], gt_instances: Optional[Instances] = None, compute_loss: bool = True, compute_val_loss: bool = False, ): features = [features[f] for f in self.in_features] anchors = self.anchor_generator(features) pred_objectness_logits, pred_anchor_deltas = self.rpn_head(features) pred_objectness_logits = [ # (N, A, Hi, Wi) -> (N, Hi, Wi, A) -> (N, Hi*Wi*A) score.permute(0, 2, 3, 1).flatten(1) for score in pred_objectness_logits ] pred_anchor_deltas = [ # (N, A*B, Hi, Wi) -> (N, A, B, Hi, Wi) -> (N, Hi, Wi, A, B) -> (N, Hi*Wi*A, B) x.view( x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1] ) .permute(0, 3, 4, 1, 2) .flatten(1, -2) for x in pred_anchor_deltas ] if (self.training and compute_loss) or compute_val_loss: gt_labels, gt_boxes = self.label_and_sample_anchors(anchors, gt_instances) losses = self.losses( anchors, pred_objectness_logits, gt_labels, pred_anchor_deltas, gt_boxes ) losses = {k: v * self.loss_weight.get(k, 1.0) for k, v in losses.items()} else: # inference losses = {} proposals = self.predict_proposals( anchors, pred_objectness_logits, pred_anchor_deltas, images.image_sizes ) return proposals, losses
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import torch from torch import nn from torch.nn import functional as F from detectron2.modeling.roi_heads.fast_rcnn import ( FastRCNNOutputLayers, FastRCNNOutputs, ) # focal loss class FastRCNNFocaltLossOutputLayers(FastRCNNOutputLayers): def __init__(self, cfg, input_shape): super(FastRCNNFocaltLossOutputLayers, self).__init__(cfg, input_shape) self.num_classes = cfg.MODEL.ROI_HEADS.NUM_CLASSES def losses(self, predictions, proposals): """ Args: predictions: return values of :meth:`forward()`. proposals (list[Instances]): proposals that match the features that were used to compute predictions. """ scores, proposal_deltas = predictions losses = FastRCNNFocalLoss( self.box2box_transform, scores, proposal_deltas, proposals, self.smooth_l1_beta, self.box_reg_loss_type, num_classes=self.num_classes, ).losses() return losses class FastRCNNFocalLoss(FastRCNNOutputs): """ A class that stores information about outputs of a Fast R-CNN head. It provides methods that are used to decode the outputs of a Fast R-CNN head. """ def __init__( self, box2box_transform, pred_class_logits, pred_proposal_deltas, proposals, smooth_l1_beta=0.0, box_reg_loss_type="smooth_l1", num_classes=80, ): super(FastRCNNFocalLoss, self).__init__( box2box_transform, pred_class_logits, pred_proposal_deltas, proposals, smooth_l1_beta, box_reg_loss_type, ) self.num_classes = num_classes def losses(self): return { "loss_cls": self.comput_focal_loss(), "loss_box_reg": self.box_reg_loss(), } def comput_focal_loss(self): if self._no_instances: return 0.0 * self.pred_class_logits.sum() else: FC_loss = FocalLoss( gamma=1.5, num_classes=self.num_classes, ) total_loss = FC_loss(input=self.pred_class_logits, target=self.gt_classes) total_loss = total_loss / self.gt_classes.shape[0] return total_loss class FocalLoss(nn.Module): def __init__( self, weight=None, gamma=1.0, num_classes=80, ): super(FocalLoss, self).__init__() assert gamma >= 0 self.gamma = gamma self.weight = weight self.num_classes = num_classes def forward(self, input, target): # focal loss CE = F.cross_entropy(input, target, reduction="none") p = torch.exp(-CE) loss = (1 - p) ** self.gamma * CE return loss.sum()
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import torch from typing import Dict, List, Optional, Tuple, Union from detectron2.structures import Boxes, ImageList, Instances, pairwise_iou from detectron2.modeling.proposal_generator.proposal_utils import ( add_ground_truth_to_proposals, ) from detectron2.utils.events import get_event_storage from detectron2.modeling.roi_heads.box_head import build_box_head from detectron2.layers import ShapeSpec from detectron2.modeling.roi_heads import ( ROI_HEADS_REGISTRY, StandardROIHeads, ) from detectron2.modeling.roi_heads.fast_rcnn import FastRCNNOutputLayers from adapteacher.modeling.roi_heads.fast_rcnn import FastRCNNFocaltLossOutputLayers import numpy as np from detectron2.modeling.poolers import ROIPooler @ROI_HEADS_REGISTRY.register() class StandardROIHeadsPseudoLab(StandardROIHeads): @classmethod def _init_box_head(cls, cfg, input_shape): # fmt: off in_features = cfg.MODEL.ROI_HEADS.IN_FEATURES pooler_resolution = cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION pooler_scales = tuple(1.0 / input_shape[k].stride for k in in_features) sampling_ratio = cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO pooler_type = cfg.MODEL.ROI_BOX_HEAD.POOLER_TYPE # fmt: on in_channels = [input_shape[f].channels for f in in_features] # Check all channel counts are equal assert len(set(in_channels)) == 1, in_channels in_channels = in_channels[0] box_pooler = ROIPooler( output_size=pooler_resolution, scales=pooler_scales, sampling_ratio=sampling_ratio, pooler_type=pooler_type, ) box_head = build_box_head( cfg, ShapeSpec( channels=in_channels, height=pooler_resolution, width=pooler_resolution ), ) if cfg.MODEL.ROI_HEADS.LOSS == "CrossEntropy": box_predictor = FastRCNNOutputLayers(cfg, box_head.output_shape) elif cfg.MODEL.ROI_HEADS.LOSS == "FocalLoss": box_predictor = FastRCNNFocaltLossOutputLayers(cfg, box_head.output_shape) else: raise ValueError("Unknown ROI head loss.") return { "box_in_features": in_features, "box_pooler": box_pooler, "box_head": box_head, "box_predictor": box_predictor, } def forward( self, images: ImageList, features: Dict[str, torch.Tensor], proposals: List[Instances], targets: Optional[List[Instances]] = None, compute_loss=True, branch="", compute_val_loss=False, ) -> Tuple[List[Instances], Dict[str, torch.Tensor]]: del images if self.training and compute_loss: # apply if training loss assert targets # 1000 --> 512 proposals = self.label_and_sample_proposals( proposals, targets, branch=branch ) elif compute_val_loss: # apply if val loss assert targets # 1000 --> 512 temp_proposal_append_gt = self.proposal_append_gt self.proposal_append_gt = False proposals = self.label_and_sample_proposals( proposals, targets, branch=branch ) # do not apply target on proposals self.proposal_append_gt = temp_proposal_append_gt del targets if (self.training and compute_loss) or compute_val_loss: losses, _ = self._forward_box( features, proposals, compute_loss, compute_val_loss, branch ) return proposals, losses else: pred_instances, predictions = self._forward_box( features, proposals, compute_loss, compute_val_loss, branch ) return pred_instances, predictions def _forward_box( self, features: Dict[str, torch.Tensor], proposals: List[Instances], compute_loss: bool = True, compute_val_loss: bool = False, branch: str = "", ) -> Union[Dict[str, torch.Tensor], List[Instances]]: features = [features[f] for f in self.box_in_features] box_features = self.box_pooler(features, [x.proposal_boxes for x in proposals]) box_features = self.box_head(box_features) predictions = self.box_predictor(box_features) del box_features if ( self.training and compute_loss ) or compute_val_loss: # apply if training loss or val loss losses = self.box_predictor.losses(predictions, proposals) if self.train_on_pred_boxes: with torch.no_grad(): pred_boxes = self.box_predictor.predict_boxes_for_gt_classes( predictions, proposals ) for proposals_per_image, pred_boxes_per_image in zip( proposals, pred_boxes ): proposals_per_image.proposal_boxes = Boxes(pred_boxes_per_image) return losses, predictions else: pred_instances, _ = self.box_predictor.inference(predictions, proposals) return pred_instances, predictions @torch.no_grad() def label_and_sample_proposals( self, proposals: List[Instances], targets: List[Instances], branch: str = "" ) -> List[Instances]: gt_boxes = [x.gt_boxes for x in targets] if self.proposal_append_gt: proposals = add_ground_truth_to_proposals(gt_boxes, proposals) proposals_with_gt = [] num_fg_samples = [] num_bg_samples = [] for proposals_per_image, targets_per_image in zip(proposals, targets): has_gt = len(targets_per_image) > 0 match_quality_matrix = pairwise_iou( targets_per_image.gt_boxes, proposals_per_image.proposal_boxes ) matched_idxs, matched_labels = self.proposal_matcher(match_quality_matrix) sampled_idxs, gt_classes = self._sample_proposals( matched_idxs, matched_labels, targets_per_image.gt_classes ) proposals_per_image = proposals_per_image[sampled_idxs] proposals_per_image.gt_classes = gt_classes if has_gt: sampled_targets = matched_idxs[sampled_idxs] for (trg_name, trg_value) in targets_per_image.get_fields().items(): if trg_name.startswith("gt_") and not proposals_per_image.has( trg_name ): proposals_per_image.set(trg_name, trg_value[sampled_targets]) else: gt_boxes = Boxes( targets_per_image.gt_boxes.tensor.new_zeros((len(sampled_idxs), 4)) ) proposals_per_image.gt_boxes = gt_boxes num_bg_samples.append((gt_classes == self.num_classes).sum().item()) num_fg_samples.append(gt_classes.numel() - num_bg_samples[-1]) proposals_with_gt.append(proposals_per_image) storage = get_event_storage() storage.put_scalar( "roi_head/num_target_fg_samples_" + branch, np.mean(num_fg_samples) ) storage.put_scalar( "roi_head/num_target_bg_samples_" + branch, np.mean(num_bg_samples) ) return proposals_with_gt
# Copyright (c) Facebook, Inc. and its affiliates. from .coco_evaluation import COCOEvaluator from .pascal_voc_evaluation import PascalVOCDetectionEvaluator # __all__ = [k for k in globals().keys() if not k.startswith("_")] __all__ = [ "COCOEvaluator", "PascalVOCDetectionEvaluator" ]
# Copyright (c) Facebook, Inc. and its affiliates. import contextlib import copy import io import itertools import json import logging import numpy as np import os import pickle from collections import OrderedDict import pycocotools.mask as mask_util import torch from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval from tabulate import tabulate import detectron2.utils.comm as comm from detectron2.config import CfgNode from detectron2.data import MetadataCatalog from detectron2.data.datasets.coco import convert_to_coco_dict from detectron2.evaluation.fast_eval_api import COCOeval_opt from detectron2.structures import Boxes, BoxMode, pairwise_iou from detectron2.utils.file_io import PathManager from detectron2.utils.logger import create_small_table from detectron2.evaluation import DatasetEvaluator from iopath.common.file_io import file_lock logger = logging.getLogger(__name__) def convert_to_coco_json(dataset_name, output_file, allow_cached=True): """ Converts dataset into COCO format and saves it to a json file. dataset_name must be registered in DatasetCatalog and in detectron2's standard format. Args: dataset_name: reference from the config file to the catalogs must be registered in DatasetCatalog and in detectron2's standard format output_file: path of json file that will be saved to allow_cached: if json file is already present then skip conversion """ # TODO: The dataset or the conversion script *may* change, # a checksum would be useful for validating the cached data PathManager.mkdirs(os.path.dirname(output_file)) with file_lock(output_file): if PathManager.exists(output_file) and allow_cached: logger.warning( f"Using previously cached COCO format annotations at '{output_file}'. " "You need to clear the cache file if your dataset has been modified." ) else: logger.info(f"Converting annotations of dataset '{dataset_name}' to COCO format ...)") coco_dict = convert_to_coco_dict(dataset_name) logger.info(f"Caching COCO format annotations at '{output_file}' ...") tmp_file = output_file #+ ".tmp" # with PathManager.open(tmp_file, "w") as f: # json.dump(coco_dict, f) # shutil.move(tmp_file, output_file) with PathManager.open(tmp_file, "w") as f: json.dump(coco_dict, f) class COCOEvaluator(DatasetEvaluator): """ Evaluate AR for object proposals, AP for instance detection/segmentation, AP for keypoint detection outputs using COCO's metrics. See http://cocodataset.org/#detection-eval and http://cocodataset.org/#keypoints-eval to understand its metrics. The metrics range from 0 to 100 (instead of 0 to 1), where a -1 or NaN means the metric cannot be computed (e.g. due to no predictions made). In addition to COCO, this evaluator is able to support any bounding box detection, instance segmentation, or keypoint detection dataset. """ def __init__( self, dataset_name, tasks=None, distributed=True, output_dir=None, *, use_fast_impl=True, kpt_oks_sigmas=(), ): """ Args: dataset_name (str): name of the dataset to be evaluated. It must have either the following corresponding metadata: "json_file": the path to the COCO format annotation Or it must be in detectron2's standard dataset format so it can be converted to COCO format automatically. tasks (tuple[str]): tasks that can be evaluated under the given configuration. A task is one of "bbox", "segm", "keypoints". By default, will infer this automatically from predictions. distributed (True): if True, will collect results from all ranks and run evaluation in the main process. Otherwise, will only evaluate the results in the current process. output_dir (str): optional, an output directory to dump all results predicted on the dataset. The dump contains two files: 1. "instances_predictions.pth" a file that can be loaded with `torch.load` and contains all the results in the format they are produced by the model. 2. "coco_instances_results.json" a json file in COCO's result format. use_fast_impl (bool): use a fast but **unofficial** implementation to compute AP. Although the results should be very close to the official implementation in COCO API, it is still recommended to compute results with the official API for use in papers. The faster implementation also uses more RAM. kpt_oks_sigmas (list[float]): The sigmas used to calculate keypoint OKS. See http://cocodataset.org/#keypoints-eval When empty, it will use the defaults in COCO. Otherwise it should be the same length as ROI_KEYPOINT_HEAD.NUM_KEYPOINTS. """ self._logger = logging.getLogger(__name__) self._distributed = distributed self._output_dir = output_dir self._use_fast_impl = use_fast_impl if tasks is not None and isinstance(tasks, CfgNode): kpt_oks_sigmas = ( tasks.TEST.KEYPOINT_OKS_SIGMAS if not kpt_oks_sigmas else kpt_oks_sigmas ) self._logger.warn( "COCO Evaluator instantiated using config, this is deprecated behavior." " Please pass in explicit arguments instead." ) self._tasks = None # Infering it from predictions should be better else: self._tasks = tasks self._cpu_device = torch.device("cpu") self._metadata = MetadataCatalog.get(dataset_name) if not hasattr(self._metadata, "json_file"): self._logger.info( f"'{dataset_name}' is not registered by `register_coco_instances`." " Therefore trying to convert it to COCO format ..." ) cache_path = os.path.join(output_dir, f"{dataset_name}_coco_format.json") self._metadata.json_file = cache_path convert_to_coco_json(dataset_name, cache_path) json_file = PathManager.get_local_path(self._metadata.json_file) with contextlib.redirect_stdout(io.StringIO()): self._coco_api = COCO(json_file) # Test set json files do not contain annotations (evaluation must be # performed using the COCO evaluation server). self._do_evaluation = "annotations" in self._coco_api.dataset if self._do_evaluation: self._kpt_oks_sigmas = kpt_oks_sigmas def reset(self): self._predictions = [] def process(self, inputs, outputs): """ Args: inputs: the inputs to a COCO model (e.g., GeneralizedRCNN). It is a list of dict. Each dict corresponds to an image and contains keys like "height", "width", "file_name", "image_id". outputs: the outputs of a COCO model. It is a list of dicts with key "instances" that contains :class:`Instances`. """ for input, output in zip(inputs, outputs): prediction = {"image_id": input["image_id"]} if "instances" in output: instances = output["instances"].to(self._cpu_device) prediction["instances"] = instances_to_coco_json(instances, input["image_id"]) if "proposals" in output: prediction["proposals"] = output["proposals"].to(self._cpu_device) if len(prediction) > 1: self._predictions.append(prediction) def evaluate(self, img_ids=None): """ Args: img_ids: a list of image IDs to evaluate on. Default to None for the whole dataset """ if self._distributed: comm.synchronize() predictions = comm.gather(self._predictions, dst=0) predictions = list(itertools.chain(*predictions)) if not comm.is_main_process(): return {} else: predictions = self._predictions if len(predictions) == 0: self._logger.warning("[COCOEvaluator] Did not receive valid predictions.") return {} if self._output_dir: PathManager.mkdirs(self._output_dir) file_path = os.path.join(self._output_dir, "instances_predictions.pth") with PathManager.open(file_path, "wb") as f: torch.save(predictions, f) self._results = OrderedDict() if "proposals" in predictions[0]: self._eval_box_proposals(predictions) if "instances" in predictions[0]: self._eval_predictions(predictions, img_ids=img_ids) # Copy so the caller can do whatever with results return copy.deepcopy(self._results) def _tasks_from_predictions(self, predictions): """ Get COCO API "tasks" (i.e. iou_type) from COCO-format predictions. """ tasks = {"bbox"} for pred in predictions: if "segmentation" in pred: tasks.add("segm") if "keypoints" in pred: tasks.add("keypoints") return sorted(tasks) def _eval_predictions(self, predictions, img_ids=None): """ Evaluate predictions. Fill self._results with the metrics of the tasks. """ self._logger.info("Preparing results for COCO format ...") coco_results = list(itertools.chain(*[x["instances"] for x in predictions])) tasks = self._tasks or self._tasks_from_predictions(coco_results) # unmap the category ids for COCO if hasattr(self._metadata, "thing_dataset_id_to_contiguous_id"): dataset_id_to_contiguous_id = self._metadata.thing_dataset_id_to_contiguous_id all_contiguous_ids = list(dataset_id_to_contiguous_id.values()) num_classes = len(all_contiguous_ids) assert min(all_contiguous_ids) == 0 and max(all_contiguous_ids) == num_classes - 1 reverse_id_mapping = {v: k for k, v in dataset_id_to_contiguous_id.items()} for result in coco_results: category_id = result["category_id"] assert category_id < num_classes, ( f"A prediction has class={category_id}, " f"but the dataset only has {num_classes} classes and " f"predicted class id should be in [0, {num_classes - 1}]." ) result["category_id"] = reverse_id_mapping[category_id] if self._output_dir: file_path = os.path.join(self._output_dir, "coco_instances_results.json") self._logger.info("Saving results to {}".format(file_path)) with PathManager.open(file_path, "w") as f: f.write(json.dumps(coco_results)) f.flush() if not self._do_evaluation: self._logger.info("Annotations are not available for evaluation.") return self._logger.info( "Evaluating predictions with {} COCO API...".format( "unofficial" if self._use_fast_impl else "official" ) ) for task in sorted(tasks): assert task in {"bbox", "segm", "keypoints"}, f"Got unknown task: {task}!" coco_eval = ( _evaluate_predictions_on_coco( self._coco_api, coco_results, task, kpt_oks_sigmas=self._kpt_oks_sigmas, use_fast_impl=self._use_fast_impl, img_ids=img_ids, ) if len(coco_results) > 0 else None # cocoapi does not handle empty results very well ) res = self._derive_coco_results( coco_eval, task, class_names=self._metadata.get("thing_classes") ) self._results[task] = res def _eval_box_proposals(self, predictions): """ Evaluate the box proposals in predictions. Fill self._results with the metrics for "box_proposals" task. """ if self._output_dir: # Saving generated box proposals to file. # Predicted box_proposals are in XYXY_ABS mode. bbox_mode = BoxMode.XYXY_ABS.value ids, boxes, objectness_logits = [], [], [] for prediction in predictions: ids.append(prediction["image_id"]) boxes.append(prediction["proposals"].proposal_boxes.tensor.numpy()) objectness_logits.append(prediction["proposals"].objectness_logits.numpy()) proposal_data = { "boxes": boxes, "objectness_logits": objectness_logits, "ids": ids, "bbox_mode": bbox_mode, } with PathManager.open(os.path.join(self._output_dir, "box_proposals.pkl"), "wb") as f: pickle.dump(proposal_data, f) if not self._do_evaluation: self._logger.info("Annotations are not available for evaluation.") return self._logger.info("Evaluating bbox proposals ...") res = {} areas = {"all": "", "small": "s", "medium": "m", "large": "l"} for limit in [100, 1000]: for area, suffix in areas.items(): stats = _evaluate_box_proposals(predictions, self._coco_api, area=area, limit=limit) key = "AR{}@{:d}".format(suffix, limit) res[key] = float(stats["ar"].item() * 100) self._logger.info("Proposal metrics: \n" + create_small_table(res)) self._results["box_proposals"] = res def _derive_coco_results(self, coco_eval, iou_type, class_names=None): """ Derive the desired score numbers from summarized COCOeval. Args: coco_eval (None or COCOEval): None represents no predictions from model. iou_type (str): class_names (None or list[str]): if provided, will use it to predict per-category AP. Returns: a dict of {metric name: score} """ metrics = { "bbox": ["AP", "AP50", "AP75", "APs", "APm", "APl"], "segm": ["AP", "AP50", "AP75", "APs", "APm", "APl"], "keypoints": ["AP", "AP50", "AP75", "APm", "APl"], }[iou_type] if coco_eval is None: self._logger.warn("No predictions from the model!") return {metric: float("nan") for metric in metrics} # the standard metrics results = { metric: float(coco_eval.stats[idx] * 100 if coco_eval.stats[idx] >= 0 else "nan") for idx, metric in enumerate(metrics) } self._logger.info( "Evaluation results for {}: \n".format(iou_type) + create_small_table(results) ) if not np.isfinite(sum(results.values())): self._logger.info("Some metrics cannot be computed and is shown as NaN.") if class_names is None or len(class_names) <= 1: return results # Compute per-category AP # from https://github.com/facebookresearch/Detectron/blob/a6a835f5b8208c45d0dce217ce9bbda915f44df7/detectron/datasets/json_dataset_evaluator.py#L222-L252 # noqa precisions = coco_eval.eval["precision"] # precision has dims (iou, recall, cls, area range, max dets) assert len(class_names) == precisions.shape[2] results_per_category = [] for idx, name in enumerate(class_names): # area range index 0: all area ranges # max dets index -1: typically 100 per image precision = precisions[:, :, idx, 0, -1] precision = precision[precision > -1] ap = np.mean(precision) if precision.size else float("nan") results_per_category.append(("{}".format(name), float(ap * 100))) # tabulate it N_COLS = min(6, len(results_per_category) * 2) results_flatten = list(itertools.chain(*results_per_category)) results_2d = itertools.zip_longest(*[results_flatten[i::N_COLS] for i in range(N_COLS)]) table = tabulate( results_2d, tablefmt="pipe", floatfmt=".3f", headers=["category", "AP"] * (N_COLS // 2), numalign="left", ) self._logger.info("Per-category {} AP: \n".format(iou_type) + table) # results.update({"AP-" + name: ap for name, ap in results_per_category}) results_per_category_AP50 = [] for idx, name in enumerate(class_names): # area range index 0: all area ranges # max dets index -1: typically 100 per image t = np.where(.5 == coco_eval.params.iouThrs)[0] precisions_50 = precisions[t] precisions_50 = precisions_50[:, :, idx, 0, -1] precisions_50 = precisions_50[precisions_50 > -1] ap = np.mean(precisions_50) if precisions_50.size else float("nan") results_per_category_AP50.append(("{}".format(name), float(ap * 100))) # tabulate it N_COLS = min(6, len(results_per_category_AP50) * 2) results_flatten = list(itertools.chain(*results_per_category_AP50)) results_2d = itertools.zip_longest(*[results_flatten[i::N_COLS] for i in range(N_COLS)]) table = tabulate( results_2d, tablefmt="pipe", floatfmt=".3f", headers=["category", "AP50"] * (N_COLS // 2), numalign="left", ) self._logger.info("Per-category {} AP50: \n".format(iou_type) + table) results.update({"AP50-" + name: ap for name, ap in results_per_category_AP50}) return results def instances_to_coco_json(instances, img_id): """ Dump an "Instances" object to a COCO-format json that's used for evaluation. Args: instances (Instances): img_id (int): the image id Returns: list[dict]: list of json annotations in COCO format. """ num_instance = len(instances) if num_instance == 0: return [] boxes = instances.pred_boxes.tensor.numpy() boxes = BoxMode.convert(boxes, BoxMode.XYXY_ABS, BoxMode.XYWH_ABS) boxes = boxes.tolist() scores = instances.scores.tolist() classes = instances.pred_classes.tolist() has_mask = instances.has("pred_masks") if has_mask: # use RLE to encode the masks, because they are too large and takes memory # since this evaluator stores outputs of the entire dataset rles = [ mask_util.encode(np.array(mask[:, :, None], order="F", dtype="uint8"))[0] for mask in instances.pred_masks ] for rle in rles: # "counts" is an array encoded by mask_util as a byte-stream. Python3's # json writer which always produces strings cannot serialize a bytestream # unless you decode it. Thankfully, utf-8 works out (which is also what # the pycocotools/_mask.pyx does). rle["counts"] = rle["counts"].decode("utf-8") has_keypoints = instances.has("pred_keypoints") if has_keypoints: keypoints = instances.pred_keypoints results = [] for k in range(num_instance): result = { "image_id": img_id, "category_id": classes[k], "bbox": boxes[k], "score": scores[k], } if has_mask: result["segmentation"] = rles[k] if has_keypoints: # In COCO annotations, # keypoints coordinates are pixel indices. # However our predictions are floating point coordinates. # Therefore we subtract 0.5 to be consistent with the annotation format. # This is the inverse of data loading logic in `datasets/coco.py`. keypoints[k][:, :2] -= 0.5 result["keypoints"] = keypoints[k].flatten().tolist() results.append(result) return results # inspired from Detectron: # https://github.com/facebookresearch/Detectron/blob/a6a835f5b8208c45d0dce217ce9bbda915f44df7/detectron/datasets/json_dataset_evaluator.py#L255 # noqa def _evaluate_box_proposals(dataset_predictions, coco_api, thresholds=None, area="all", limit=None): """ Evaluate detection proposal recall metrics. This function is a much faster alternative to the official COCO API recall evaluation code. However, it produces slightly different results. """ # Record max overlap value for each gt box # Return vector of overlap values areas = { "all": 0, "small": 1, "medium": 2, "large": 3, "96-128": 4, "128-256": 5, "256-512": 6, "512-inf": 7, } area_ranges = [ [0 ** 2, 1e5 ** 2], # all [0 ** 2, 32 ** 2], # small [32 ** 2, 96 ** 2], # medium [96 ** 2, 1e5 ** 2], # large [96 ** 2, 128 ** 2], # 96-128 [128 ** 2, 256 ** 2], # 128-256 [256 ** 2, 512 ** 2], # 256-512 [512 ** 2, 1e5 ** 2], ] # 512-inf assert area in areas, "Unknown area range: {}".format(area) area_range = area_ranges[areas[area]] gt_overlaps = [] num_pos = 0 for prediction_dict in dataset_predictions: predictions = prediction_dict["proposals"] # sort predictions in descending order # TODO maybe remove this and make it explicit in the documentation inds = predictions.objectness_logits.sort(descending=True)[1] predictions = predictions[inds] ann_ids = coco_api.getAnnIds(imgIds=prediction_dict["image_id"]) anno = coco_api.loadAnns(ann_ids) gt_boxes = [ BoxMode.convert(obj["bbox"], BoxMode.XYWH_ABS, BoxMode.XYXY_ABS) for obj in anno if obj["iscrowd"] == 0 ] gt_boxes = torch.as_tensor(gt_boxes).reshape(-1, 4) # guard against no boxes gt_boxes = Boxes(gt_boxes) gt_areas = torch.as_tensor([obj["area"] for obj in anno if obj["iscrowd"] == 0]) if len(gt_boxes) == 0 or len(predictions) == 0: continue valid_gt_inds = (gt_areas >= area_range[0]) & (gt_areas <= area_range[1]) gt_boxes = gt_boxes[valid_gt_inds] num_pos += len(gt_boxes) if len(gt_boxes) == 0: continue if limit is not None and len(predictions) > limit: predictions = predictions[:limit] overlaps = pairwise_iou(predictions.proposal_boxes, gt_boxes) _gt_overlaps = torch.zeros(len(gt_boxes)) for j in range(min(len(predictions), len(gt_boxes))): # find which proposal box maximally covers each gt box # and get the iou amount of coverage for each gt box max_overlaps, argmax_overlaps = overlaps.max(dim=0) # find which gt box is 'best' covered (i.e. 'best' = most iou) gt_ovr, gt_ind = max_overlaps.max(dim=0) assert gt_ovr >= 0 # find the proposal box that covers the best covered gt box box_ind = argmax_overlaps[gt_ind] # record the iou coverage of this gt box _gt_overlaps[j] = overlaps[box_ind, gt_ind] assert _gt_overlaps[j] == gt_ovr # mark the proposal box and the gt box as used overlaps[box_ind, :] = -1 overlaps[:, gt_ind] = -1 # append recorded iou coverage level gt_overlaps.append(_gt_overlaps) gt_overlaps = ( torch.cat(gt_overlaps, dim=0) if len(gt_overlaps) else torch.zeros(0, dtype=torch.float32) ) gt_overlaps, _ = torch.sort(gt_overlaps) if thresholds is None: step = 0.05 thresholds = torch.arange(0.5, 0.95 + 1e-5, step, dtype=torch.float32) recalls = torch.zeros_like(thresholds) # compute recall for each iou threshold for i, t in enumerate(thresholds): recalls[i] = (gt_overlaps >= t).float().sum() / float(num_pos) # ar = 2 * np.trapz(recalls, thresholds) ar = recalls.mean() return { "ar": ar, "recalls": recalls, "thresholds": thresholds, "gt_overlaps": gt_overlaps, "num_pos": num_pos, } def _evaluate_predictions_on_coco( coco_gt, coco_results, iou_type, kpt_oks_sigmas=None, use_fast_impl=True, img_ids=None ): """ Evaluate the coco results using COCOEval API. """ assert len(coco_results) > 0 if iou_type == "segm": coco_results = copy.deepcopy(coco_results) # When evaluating mask AP, if the results contain bbox, cocoapi will # use the box area as the area of the instance, instead of the mask area. # This leads to a different definition of small/medium/large. # We remove the bbox field to let mask AP use mask area. for c in coco_results: c.pop("bbox", None) coco_dt = coco_gt.loadRes(coco_results) coco_eval = (COCOeval_opt if use_fast_impl else COCOeval)(coco_gt, coco_dt, iou_type) if img_ids is not None: coco_eval.params.imgIds = img_ids if iou_type == "keypoints": # Use the COCO default keypoint OKS sigmas unless overrides are specified if kpt_oks_sigmas: assert hasattr(coco_eval.params, "kpt_oks_sigmas"), "pycocotools is too old!" coco_eval.params.kpt_oks_sigmas = np.array(kpt_oks_sigmas) # COCOAPI requires every detection and every gt to have keypoints, so # we just take the first entry from both num_keypoints_dt = len(coco_results[0]["keypoints"]) // 3 num_keypoints_gt = len(next(iter(coco_gt.anns.values()))["keypoints"]) // 3 num_keypoints_oks = len(coco_eval.params.kpt_oks_sigmas) assert num_keypoints_oks == num_keypoints_dt == num_keypoints_gt, ( f"[COCOEvaluator] Prediction contain {num_keypoints_dt} keypoints. " f"Ground truth contains {num_keypoints_gt} keypoints. " f"The length of cfg.TEST.KEYPOINT_OKS_SIGMAS is {num_keypoints_oks}. " "They have to agree with each other. For meaning of OKS, please refer to " "http://cocodataset.org/#keypoints-eval." ) coco_eval.evaluate() coco_eval.accumulate() coco_eval.summarize() return coco_eval
# -*- coding: utf-8 -*- # Copyright (c) Facebook, Inc. and its affiliates. import logging import numpy as np import os import tempfile import xml.etree.ElementTree as ET from collections import OrderedDict, defaultdict from functools import lru_cache import torch from detectron2.data import MetadataCatalog from detectron2.utils import comm from detectron2.utils.file_io import PathManager from detectron2.evaluation import DatasetEvaluator class PascalVOCDetectionEvaluator(DatasetEvaluator): """ Evaluate Pascal VOC style AP for Pascal VOC dataset. It contains a synchronization, therefore has to be called from all ranks. Note that the concept of AP can be implemented in different ways and may not produce identical results. This class mimics the implementation of the official Pascal VOC Matlab API, and should produce similar but not identical results to the official API. """ def __init__(self, dataset_name, target_classnames=None): """ Args: dataset_name (str): name of the dataset, e.g., "voc_2007_test" """ self._dataset_name = dataset_name meta = MetadataCatalog.get(dataset_name) # Too many tiny files, download all to local for speed. annotation_dir_local = PathManager.get_local_path( os.path.join(meta.dirname, "Annotations/") ) self._anno_file_template = os.path.join(annotation_dir_local, "{}.xml") self._image_set_path = os.path.join(meta.dirname, "ImageSets", "Main", meta.split + ".txt") self._class_names = meta.thing_classes assert meta.year in [2007, 2012], meta.year self._is_2007 = meta.year == 2007 self._cpu_device = torch.device("cpu") self._logger = logging.getLogger(__name__) if target_classnames == None: self.target_classnames = self._class_names else: self.target_classnames = target_classnames def reset(self): self._predictions = defaultdict(list) # class name -> list of prediction strings def process(self, inputs, outputs): for input, output in zip(inputs, outputs): image_id = input["image_id"] instances = output["instances"].to(self._cpu_device) boxes = instances.pred_boxes.tensor.numpy() scores = instances.scores.tolist() classes = instances.pred_classes.tolist() for box, score, cls in zip(boxes, scores, classes): xmin, ymin, xmax, ymax = box # The inverse of data loading logic in `datasets/pascal_voc.py` xmin += 1 ymin += 1 self._predictions[cls].append( f"{image_id} {score:.3f} {xmin:.1f} {ymin:.1f} {xmax:.1f} {ymax:.1f}" ) def evaluate(self): """ Returns: dict: has a key "segm", whose value is a dict of "AP", "AP50", and "AP75". """ all_predictions = comm.gather(self._predictions, dst=0) if not comm.is_main_process(): return predictions = defaultdict(list) for predictions_per_rank in all_predictions: for clsid, lines in predictions_per_rank.items(): predictions[clsid].extend(lines) del all_predictions self._logger.info( "Evaluating {} using {} metric. " "Note that results do not use the official Matlab API.".format( self._dataset_name, 2007 if self._is_2007 else 2012 ) ) with tempfile.TemporaryDirectory(prefix="pascal_voc_eval_") as dirname: res_file_template = os.path.join(dirname, "{}.txt") aps = defaultdict(list) # iou -> ap per class for cls_id, cls_name in enumerate(self._class_names): if cls_name not in self.target_classnames: continue lines = predictions.get(cls_id, [""]) with open(res_file_template.format(cls_name), "w") as f: f.write("\n".join(lines)) for thresh in range(50, 100, 5): rec, prec, ap = voc_eval( res_file_template, self._anno_file_template, self._image_set_path, cls_name, ovthresh=thresh / 100.0, use_07_metric=self._is_2007, ) aps[thresh].append(ap * 100) ret = OrderedDict() mAP = {iou: np.mean(x) for iou, x in aps.items()} ret["bbox"] = {"AP": np.mean(list(mAP.values())), "AP50": mAP[50], "AP75": mAP[75]} #Add the codes for AP50 for idx, name in enumerate(self.target_classnames): ret["bbox"].update({"AP50-" + name: aps[50][idx]}) return ret ############################################################################## # # Below code is modified from # https://github.com/rbgirshick/py-faster-rcnn/blob/master/lib/datasets/voc_eval.py # -------------------------------------------------------- # Fast/er R-CNN # Licensed under The MIT License [see LICENSE for details] # Written by Bharath Hariharan # -------------------------------------------------------- """Python implementation of the PASCAL VOC devkit's AP evaluation code.""" @lru_cache(maxsize=None) def parse_rec(filename): """Parse a PASCAL VOC xml file.""" with PathManager.open(filename) as f: tree = ET.parse(f) objects = [] for obj in tree.findall("object"): obj_struct = {} obj_struct["name"] = obj.find("name").text obj_struct["pose"] = obj.find("pose").text obj_struct["truncated"] = int(obj.find("truncated").text) obj_struct["difficult"] = int(obj.find("difficult").text) bbox = obj.find("bndbox") obj_struct["bbox"] = [ int(bbox.find("xmin").text), int(bbox.find("ymin").text), int(bbox.find("xmax").text), int(bbox.find("ymax").text), ] objects.append(obj_struct) return objects def voc_ap(rec, prec, use_07_metric=False): """Compute VOC AP given precision and recall. If use_07_metric is true, uses the VOC 07 11-point method (default:False). """ if use_07_metric: # 11 point metric ap = 0.0 for t in np.arange(0.0, 1.1, 0.1): if np.sum(rec >= t) == 0: p = 0 else: p = np.max(prec[rec >= t]) ap = ap + p / 11.0 else: # correct AP calculation # first append sentinel values at the end mrec = np.concatenate(([0.0], rec, [1.0])) mpre = np.concatenate(([0.0], prec, [0.0])) # compute the precision envelope for i in range(mpre.size - 1, 0, -1): mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) # to calculate area under PR curve, look for points # where X axis (recall) changes value i = np.where(mrec[1:] != mrec[:-1])[0] # and sum (\Delta recall) * prec ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) return ap def voc_eval(detpath, annopath, imagesetfile, classname, ovthresh=0.5, use_07_metric=False): """rec, prec, ap = voc_eval(detpath, annopath, imagesetfile, classname, [ovthresh], [use_07_metric]) Top level function that does the PASCAL VOC evaluation. detpath: Path to detections detpath.format(classname) should produce the detection results file. annopath: Path to annotations annopath.format(imagename) should be the xml annotations file. imagesetfile: Text file containing the list of images, one image per line. classname: Category name (duh) [ovthresh]: Overlap threshold (default = 0.5) [use_07_metric]: Whether to use VOC07's 11 point AP computation (default False) """ # assumes detections are in detpath.format(classname) # assumes annotations are in annopath.format(imagename) # assumes imagesetfile is a text file with each line an image name # first load gt # read list of images with PathManager.open(imagesetfile, "r") as f: lines = f.readlines() imagenames = [x.strip() for x in lines] # load annots recs = {} for imagename in imagenames: recs[imagename] = parse_rec(annopath.format(imagename)) # extract gt objects for this class class_recs = {} npos = 0 for imagename in imagenames: R = [obj for obj in recs[imagename] if obj["name"] == classname] bbox = np.array([x["bbox"] for x in R]) difficult = np.array([x["difficult"] for x in R]).astype(np.bool) # difficult = np.array([False for x in R]).astype(np.bool) # treat all "difficult" as GT det = [False] * len(R) npos = npos + sum(~difficult) class_recs[imagename] = {"bbox": bbox, "difficult": difficult, "det": det} # read dets detfile = detpath.format(classname) with open(detfile, "r") as f: lines = f.readlines() splitlines = [x.strip().split(" ") for x in lines] image_ids = [x[0] for x in splitlines] confidence = np.array([float(x[1]) for x in splitlines]) BB = np.array([[float(z) for z in x[2:]] for x in splitlines]).reshape(-1, 4) # sort by confidence sorted_ind = np.argsort(-confidence) BB = BB[sorted_ind, :] image_ids = [image_ids[x] for x in sorted_ind] # go down dets and mark TPs and FPs nd = len(image_ids) tp = np.zeros(nd) fp = np.zeros(nd) for d in range(nd): R = class_recs[image_ids[d]] bb = BB[d, :].astype(float) ovmax = -np.inf BBGT = R["bbox"].astype(float) if BBGT.size > 0: # compute overlaps # intersection ixmin = np.maximum(BBGT[:, 0], bb[0]) iymin = np.maximum(BBGT[:, 1], bb[1]) ixmax = np.minimum(BBGT[:, 2], bb[2]) iymax = np.minimum(BBGT[:, 3], bb[3]) iw = np.maximum(ixmax - ixmin + 1.0, 0.0) ih = np.maximum(iymax - iymin + 1.0, 0.0) inters = iw * ih # union uni = ( (bb[2] - bb[0] + 1.0) * (bb[3] - bb[1] + 1.0) + (BBGT[:, 2] - BBGT[:, 0] + 1.0) * (BBGT[:, 3] - BBGT[:, 1] + 1.0) - inters ) overlaps = inters / uni ovmax = np.max(overlaps) jmax = np.argmax(overlaps) if ovmax > ovthresh: if not R["difficult"][jmax]: if not R["det"][jmax]: tp[d] = 1.0 R["det"][jmax] = 1 else: fp[d] = 1.0 else: fp[d] = 1.0 # compute precision recall fp = np.cumsum(fp) tp = np.cumsum(tp) rec = tp / float(npos) # avoid divide by zero in case the first detection matches a difficult # ground truth prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps) ap = voc_ap(rec, prec, use_07_metric) return rec, prec, ap
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import logging import numpy as np import operator import json import torch.utils.data from detectron2.utils.comm import get_world_size from detectron2.data.common import ( DatasetFromList, MapDataset, ) from detectron2.data.dataset_mapper import DatasetMapper from detectron2.data.samplers import ( InferenceSampler, RepeatFactorTrainingSampler, TrainingSampler, ) from detectron2.data.build import ( trivial_batch_collator, worker_init_reset_seed, get_detection_dataset_dicts, build_batch_data_loader, ) from adapteacher.data.common import ( AspectRatioGroupedSemiSupDatasetTwoCrop, ) """ This file contains the default logic to build a dataloader for training or testing. """ def divide_label_unlabel( dataset_dicts, SupPercent, random_data_seed, random_data_seed_path ): num_all = len(dataset_dicts) num_label = int(SupPercent / 100.0 * num_all) # read from pre-generated data seed with open(random_data_seed_path) as COCO_sup_file: coco_random_idx = json.load(COCO_sup_file) labeled_idx = np.array(coco_random_idx[str(SupPercent)][str(random_data_seed)]) assert labeled_idx.shape[0] == num_label, "Number of READ_DATA is mismatched." label_dicts = [] unlabel_dicts = [] labeled_idx = set(labeled_idx) for i in range(len(dataset_dicts)): if i in labeled_idx: label_dicts.append(dataset_dicts[i]) else: unlabel_dicts.append(dataset_dicts[i]) return label_dicts, unlabel_dicts # uesed by supervised-only baseline trainer def build_detection_semisup_train_loader(cfg, mapper=None): dataset_dicts = get_detection_dataset_dicts( cfg.DATASETS.TRAIN, filter_empty=cfg.DATALOADER.FILTER_EMPTY_ANNOTATIONS, min_keypoints=cfg.MODEL.ROI_KEYPOINT_HEAD.MIN_KEYPOINTS_PER_IMAGE if cfg.MODEL.KEYPOINT_ON else 0, proposal_files=cfg.DATASETS.PROPOSAL_FILES_TRAIN if cfg.MODEL.LOAD_PROPOSALS else None, ) # Divide into labeled and unlabeled sets according to supervision percentage label_dicts, unlabel_dicts = divide_label_unlabel( dataset_dicts, cfg.DATALOADER.SUP_PERCENT, cfg.DATALOADER.RANDOM_DATA_SEED, cfg.DATALOADER.RANDOM_DATA_SEED_PATH, ) dataset = DatasetFromList(label_dicts, copy=False) if mapper is None: mapper = DatasetMapper(cfg, True) dataset = MapDataset(dataset, mapper) sampler_name = cfg.DATALOADER.SAMPLER_TRAIN logger = logging.getLogger(__name__) logger.info("Using training sampler {}".format(sampler_name)) if sampler_name == "TrainingSampler": sampler = TrainingSampler(len(dataset)) elif sampler_name == "RepeatFactorTrainingSampler": repeat_factors = ( RepeatFactorTrainingSampler.repeat_factors_from_category_frequency( label_dicts, cfg.DATALOADER.REPEAT_THRESHOLD ) ) sampler = RepeatFactorTrainingSampler(repeat_factors) else: raise ValueError("Unknown training sampler: {}".format(sampler_name)) # list num of labeled and unlabeled logger.info("Number of training samples " + str(len(dataset))) logger.info("Supervision percentage " + str(cfg.DATALOADER.SUP_PERCENT)) return build_batch_data_loader( dataset, sampler, cfg.SOLVER.IMS_PER_BATCH, aspect_ratio_grouping=cfg.DATALOADER.ASPECT_RATIO_GROUPING, num_workers=cfg.DATALOADER.NUM_WORKERS, ) # uesed by evaluation def build_detection_test_loader(cfg, dataset_name, mapper=None): dataset_dicts = get_detection_dataset_dicts( [dataset_name], filter_empty=False, proposal_files=[ cfg.DATASETS.PROPOSAL_FILES_TEST[ list(cfg.DATASETS.TEST).index(dataset_name) ] ] if cfg.MODEL.LOAD_PROPOSALS else None, ) dataset = DatasetFromList(dataset_dicts) if mapper is None: mapper = DatasetMapper(cfg, False) dataset = MapDataset(dataset, mapper) sampler = InferenceSampler(len(dataset)) batch_sampler = torch.utils.data.sampler.BatchSampler(sampler, 1, drop_last=False) data_loader = torch.utils.data.DataLoader( dataset, num_workers=cfg.DATALOADER.NUM_WORKERS, batch_sampler=batch_sampler, collate_fn=trivial_batch_collator, ) return data_loader # uesed by unbiased teacher trainer def build_detection_semisup_train_loader_two_crops(cfg, mapper=None): if cfg.DATASETS.CROSS_DATASET: # cross-dataset (e.g., coco-additional) label_dicts = get_detection_dataset_dicts( cfg.DATASETS.TRAIN_LABEL, filter_empty=cfg.DATALOADER.FILTER_EMPTY_ANNOTATIONS, min_keypoints=cfg.MODEL.ROI_KEYPOINT_HEAD.MIN_KEYPOINTS_PER_IMAGE if cfg.MODEL.KEYPOINT_ON else 0, proposal_files=cfg.DATASETS.PROPOSAL_FILES_TRAIN if cfg.MODEL.LOAD_PROPOSALS else None, ) unlabel_dicts = get_detection_dataset_dicts( cfg.DATASETS.TRAIN_UNLABEL, filter_empty=False, min_keypoints=cfg.MODEL.ROI_KEYPOINT_HEAD.MIN_KEYPOINTS_PER_IMAGE if cfg.MODEL.KEYPOINT_ON else 0, proposal_files=cfg.DATASETS.PROPOSAL_FILES_TRAIN if cfg.MODEL.LOAD_PROPOSALS else None, ) else: # different degree of supervision (e.g., COCO-supervision) dataset_dicts = get_detection_dataset_dicts( cfg.DATASETS.TRAIN, filter_empty=cfg.DATALOADER.FILTER_EMPTY_ANNOTATIONS, min_keypoints=cfg.MODEL.ROI_KEYPOINT_HEAD.MIN_KEYPOINTS_PER_IMAGE if cfg.MODEL.KEYPOINT_ON else 0, proposal_files=cfg.DATASETS.PROPOSAL_FILES_TRAIN if cfg.MODEL.LOAD_PROPOSALS else None, ) # Divide into labeled and unlabeled sets according to supervision percentage label_dicts, unlabel_dicts = divide_label_unlabel( dataset_dicts, cfg.DATALOADER.SUP_PERCENT, cfg.DATALOADER.RANDOM_DATA_SEED, cfg.DATALOADER.RANDOM_DATA_SEED_PATH, ) label_dataset = DatasetFromList(label_dicts, copy=False) # exclude the labeled set from unlabeled dataset unlabel_dataset = DatasetFromList(unlabel_dicts, copy=False) # include the labeled set in unlabel dataset # unlabel_dataset = DatasetFromList(dataset_dicts, copy=False) if mapper is None: mapper = DatasetMapper(cfg, True) label_dataset = MapDataset(label_dataset, mapper) unlabel_dataset = MapDataset(unlabel_dataset, mapper) sampler_name = cfg.DATALOADER.SAMPLER_TRAIN logger = logging.getLogger(__name__) logger.info("Using training sampler {}".format(sampler_name)) if sampler_name == "TrainingSampler": label_sampler = TrainingSampler(len(label_dataset)) unlabel_sampler = TrainingSampler(len(unlabel_dataset)) elif sampler_name == "RepeatFactorTrainingSampler": raise NotImplementedError("{} not yet supported.".format(sampler_name)) else: raise ValueError("Unknown training sampler: {}".format(sampler_name)) return build_semisup_batch_data_loader_two_crop( (label_dataset, unlabel_dataset), (label_sampler, unlabel_sampler), cfg.SOLVER.IMG_PER_BATCH_LABEL, cfg.SOLVER.IMG_PER_BATCH_UNLABEL, aspect_ratio_grouping=cfg.DATALOADER.ASPECT_RATIO_GROUPING, num_workers=cfg.DATALOADER.NUM_WORKERS, ) # batch data loader def build_semisup_batch_data_loader_two_crop( dataset, sampler, total_batch_size_label, total_batch_size_unlabel, *, aspect_ratio_grouping=False, num_workers=0 ): world_size = get_world_size() assert ( total_batch_size_label > 0 and total_batch_size_label % world_size == 0 ), "Total label batch size ({}) must be divisible by the number of gpus ({}).".format( total_batch_size_label, world_size ) assert ( total_batch_size_unlabel > 0 and total_batch_size_unlabel % world_size == 0 ), "Total unlabel batch size ({}) must be divisible by the number of gpus ({}).".format( total_batch_size_label, world_size ) batch_size_label = total_batch_size_label // world_size batch_size_unlabel = total_batch_size_unlabel // world_size label_dataset, unlabel_dataset = dataset label_sampler, unlabel_sampler = sampler if aspect_ratio_grouping: label_data_loader = torch.utils.data.DataLoader( label_dataset, sampler=label_sampler, num_workers=num_workers, batch_sampler=None, collate_fn=operator.itemgetter( 0 ), # don't batch, but yield individual elements worker_init_fn=worker_init_reset_seed, ) # yield individual mapped dict unlabel_data_loader = torch.utils.data.DataLoader( unlabel_dataset, sampler=unlabel_sampler, num_workers=num_workers, batch_sampler=None, collate_fn=operator.itemgetter( 0 ), # don't batch, but yield individual elements worker_init_fn=worker_init_reset_seed, ) # yield individual mapped dict return AspectRatioGroupedSemiSupDatasetTwoCrop( (label_data_loader, unlabel_data_loader), (batch_size_label, batch_size_unlabel), ) else: raise NotImplementedError("ASPECT_RATIO_GROUPING = False is not supported yet")
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from .build import ( build_detection_test_loader, build_detection_semisup_train_loader, )
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import logging import torchvision.transforms as transforms from adapteacher.data.transforms.augmentation_impl import ( GaussianBlur, ) def build_strong_augmentation(cfg, is_train): """ Create a list of :class:`Augmentation` from config. Now it includes resizing and flipping. Returns: list[Augmentation] """ logger = logging.getLogger(__name__) augmentation = [] if is_train: # This is simialr to SimCLR https://arxiv.org/abs/2002.05709 augmentation.append( transforms.RandomApply([transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)], p=0.8) ) augmentation.append(transforms.RandomGrayscale(p=0.2)) augmentation.append(transforms.RandomApply([GaussianBlur([0.1, 2.0])], p=0.5)) randcrop_transform = transforms.Compose( [ transforms.ToTensor(), transforms.RandomErasing( p=0.7, scale=(0.05, 0.2), ratio=(0.3, 3.3), value="random" ), transforms.RandomErasing( p=0.5, scale=(0.02, 0.2), ratio=(0.1, 6), value="random" ), transforms.RandomErasing( p=0.3, scale=(0.02, 0.2), ratio=(0.05, 8), value="random" ), transforms.ToPILImage(), ] ) augmentation.append(randcrop_transform) logger.info("Augmentations used in training: " + str(augmentation)) return transforms.Compose(augmentation)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import copy import logging import numpy as np from PIL import Image import torch import detectron2.data.detection_utils as utils import detectron2.data.transforms as T from detectron2.data.dataset_mapper import DatasetMapper from adapteacher.data.detection_utils import build_strong_augmentation class DatasetMapperTwoCropSeparate(DatasetMapper): """ This customized mapper produces two augmented images from a single image instance. This mapper makes sure that the two augmented images have the same cropping and thus the same size. A callable which takes a dataset dict in Detectron2 Dataset format, and map it into a format used by the model. This is the default callable to be used to map your dataset dict into training data. You may need to follow it to implement your own one for customized logic, such as a different way to read or transform images. See :doc:`/tutorials/data_loading` for details. The callable currently does the following: 1. Read the image from "file_name" 2. Applies cropping/geometric transforms to the image and annotations 3. Prepare data and annotations to Tensor and :class:`Instances` """ def __init__(self, cfg, is_train=True): self.augmentation = utils.build_augmentation(cfg, is_train) # include crop into self.augmentation if cfg.INPUT.CROP.ENABLED and is_train: self.augmentation.insert( 0, T.RandomCrop(cfg.INPUT.CROP.TYPE, cfg.INPUT.CROP.SIZE) ) logging.getLogger(__name__).info( "Cropping used in training: " + str(self.augmentation[0]) ) self.compute_tight_boxes = True else: self.compute_tight_boxes = False self.strong_augmentation = build_strong_augmentation(cfg, is_train) # fmt: off self.img_format = cfg.INPUT.FORMAT self.mask_on = cfg.MODEL.MASK_ON self.mask_format = cfg.INPUT.MASK_FORMAT self.keypoint_on = cfg.MODEL.KEYPOINT_ON self.load_proposals = cfg.MODEL.LOAD_PROPOSALS # fmt: on if self.keypoint_on and is_train: self.keypoint_hflip_indices = utils.create_keypoint_hflip_indices( cfg.DATASETS.TRAIN ) else: self.keypoint_hflip_indices = None if self.load_proposals: self.proposal_min_box_size = cfg.MODEL.PROPOSAL_GENERATOR.MIN_SIZE self.proposal_topk = ( cfg.DATASETS.PRECOMPUTED_PROPOSAL_TOPK_TRAIN if is_train else cfg.DATASETS.PRECOMPUTED_PROPOSAL_TOPK_TEST ) self.is_train = is_train def __call__(self, dataset_dict): """ Args: dataset_dict (dict): Metadata of one image, in Detectron2 Dataset format. Returns: dict: a format that builtin models in detectron2 accept """ dataset_dict = copy.deepcopy(dataset_dict) # it will be modified by code below image = utils.read_image(dataset_dict["file_name"], format=self.img_format) # utils.check_image_size(dataset_dict, image) if "sem_seg_file_name" in dataset_dict: sem_seg_gt = utils.read_image( dataset_dict.pop("sem_seg_file_name"), "L" ).squeeze(2) else: sem_seg_gt = None aug_input = T.StandardAugInput(image, sem_seg=sem_seg_gt) transforms = aug_input.apply_augmentations(self.augmentation) image_weak_aug, sem_seg_gt = aug_input.image, aug_input.sem_seg image_shape = image_weak_aug.shape[:2] # h, w if sem_seg_gt is not None: dataset_dict["sem_seg"] = torch.as_tensor(sem_seg_gt.astype("long")) if self.load_proposals: utils.transform_proposals( dataset_dict, image_shape, transforms, proposal_topk=self.proposal_topk, min_box_size=self.proposal_min_box_size, ) if not self.is_train: dataset_dict.pop("annotations", None) dataset_dict.pop("sem_seg_file_name", None) return dataset_dict if "annotations" in dataset_dict: for anno in dataset_dict["annotations"]: if not self.mask_on: anno.pop("segmentation", None) if not self.keypoint_on: anno.pop("keypoints", None) annos = [ utils.transform_instance_annotations( obj, transforms, image_shape, keypoint_hflip_indices=self.keypoint_hflip_indices, ) for obj in dataset_dict.pop("annotations") if obj.get("iscrowd", 0) == 0 ] instances = utils.annotations_to_instances( annos, image_shape, mask_format=self.mask_format ) if self.compute_tight_boxes and instances.has("gt_masks"): instances.gt_boxes = instances.gt_masks.get_bounding_boxes() bboxes_d2_format = utils.filter_empty_instances(instances) dataset_dict["instances"] = bboxes_d2_format # apply strong augmentation # We use torchvision augmentation, which is not compatiable with # detectron2, which use numpy format for images. Thus, we need to # convert to PIL format first. image_pil = Image.fromarray(image_weak_aug.astype("uint8"), "RGB") image_strong_aug = np.array(self.strong_augmentation(image_pil)) dataset_dict["image"] = torch.as_tensor( np.ascontiguousarray(image_strong_aug.transpose(2, 0, 1)) ) dataset_dict_key = copy.deepcopy(dataset_dict) dataset_dict_key["image"] = torch.as_tensor( np.ascontiguousarray(image_weak_aug.transpose(2, 0, 1)) ) assert dataset_dict["image"].size(1) == dataset_dict_key["image"].size(1) assert dataset_dict["image"].size(2) == dataset_dict_key["image"].size(2) return (dataset_dict, dataset_dict_key)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import logging from detectron2.data.common import MapDataset, AspectRatioGroupedDataset class MapDatasetTwoCrop(MapDataset): """ Map a function over the elements in a dataset. This customized MapDataset transforms an image with two augmentations as two inputs (queue and key). Args: dataset: a dataset where map function is applied. map_func: a callable which maps the element in dataset. map_func is responsible for error handling, when error happens, it needs to return None so the MapDataset will randomly use other elements from the dataset. """ def __getitem__(self, idx): retry_count = 0 cur_idx = int(idx) while True: data = self._map_func(self._dataset[cur_idx]) if data is not None: self._fallback_candidates.add(cur_idx) return data # _map_func fails for this idx, use a random new index from the pool retry_count += 1 self._fallback_candidates.discard(cur_idx) cur_idx = self._rng.sample(self._fallback_candidates, k=1)[0] if retry_count >= 3: logger = logging.getLogger(__name__) logger.warning( "Failed to apply `_map_func` for idx: {}, retry count: {}".format( idx, retry_count ) ) class AspectRatioGroupedDatasetTwoCrop(AspectRatioGroupedDataset): """ Batch data that have similar aspect ratio together. In this implementation, images whose aspect ratio < (or >) 1 will be batched together. This improves training speed because the images then need less padding to form a batch. It assumes the underlying dataset produces dicts with "width" and "height" keys. It will then produce a list of original dicts with length = batch_size, all with similar aspect ratios. """ def __init__(self, dataset, batch_size): """ Args: dataset: an iterable. Each element must be a dict with keys "width" and "height", which will be used to batch data. batch_size (int): """ self.dataset = dataset self.batch_size = batch_size self._buckets = [[] for _ in range(2)] self._buckets_key = [[] for _ in range(2)] # Hard-coded two aspect ratio groups: w > h and w < h. # Can add support for more aspect ratio groups, but doesn't seem useful def __iter__(self): for d in self.dataset: # d is a tuple with len = 2 # It's two images (same size) from the same image instance w, h = d[0]["width"], d[0]["height"] bucket_id = 0 if w > h else 1 # bucket = bucket for normal images bucket = self._buckets[bucket_id] bucket.append(d[0]) # buckets_key = bucket for augmented images buckets_key = self._buckets_key[bucket_id] buckets_key.append(d[1]) if len(bucket) == self.batch_size: yield (bucket[:], buckets_key[:]) del bucket[:] del buckets_key[:] class AspectRatioGroupedSemiSupDatasetTwoCrop(AspectRatioGroupedDataset): """ Batch data that have similar aspect ratio together. In this implementation, images whose aspect ratio < (or >) 1 will be batched together. This improves training speed because the images then need less padding to form a batch. It assumes the underlying dataset produces dicts with "width" and "height" keys. It will then produce a list of original dicts with length = batch_size, all with similar aspect ratios. """ def __init__(self, dataset, batch_size): """ Args: dataset: a tuple containing two iterable generators. (labeled and unlabeled data) Each element must be a dict with keys "width" and "height", which will be used to batch data. batch_size (int): """ self.label_dataset, self.unlabel_dataset = dataset self.batch_size_label = batch_size[0] self.batch_size_unlabel = batch_size[1] self._label_buckets = [[] for _ in range(2)] self._label_buckets_key = [[] for _ in range(2)] self._unlabel_buckets = [[] for _ in range(2)] self._unlabel_buckets_key = [[] for _ in range(2)] # Hard-coded two aspect ratio groups: w > h and w < h. # Can add support for more aspect ratio groups, but doesn't seem useful def __iter__(self): label_bucket, unlabel_bucket = [], [] for d_label, d_unlabel in zip(self.label_dataset, self.unlabel_dataset): # d is a tuple with len = 2 # It's two images (same size) from the same image instance # d[0] is with strong augmentation, d[1] is with weak augmentation # because we are grouping images with their aspect ratio # label and unlabel buckets might not have the same number of data # i.e., one could reach batch_size, while the other is still not if len(label_bucket) != self.batch_size_label: w, h = d_label[0]["width"], d_label[0]["height"] label_bucket_id = 0 if w > h else 1 label_bucket = self._label_buckets[label_bucket_id] label_bucket.append(d_label[0]) label_buckets_key = self._label_buckets_key[label_bucket_id] label_buckets_key.append(d_label[1]) if len(unlabel_bucket) != self.batch_size_unlabel: w, h = d_unlabel[0]["width"], d_unlabel[0]["height"] unlabel_bucket_id = 0 if w > h else 1 unlabel_bucket = self._unlabel_buckets[unlabel_bucket_id] unlabel_bucket.append(d_unlabel[0]) unlabel_buckets_key = self._unlabel_buckets_key[unlabel_bucket_id] unlabel_buckets_key.append(d_unlabel[1]) # yield the batch of data until all buckets are full if ( len(label_bucket) == self.batch_size_label and len(unlabel_bucket) == self.batch_size_unlabel ): # label_strong, label_weak, unlabed_strong, unlabled_weak yield ( label_bucket[:], label_buckets_key[:], unlabel_bucket[:], unlabel_buckets_key[:], ) del label_bucket[:] del label_buckets_key[:] del unlabel_bucket[:] del unlabel_buckets_key[:]
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import os import contextlib from detectron2.data import DatasetCatalog, MetadataCatalog from fvcore.common.timer import Timer # from fvcore.common.file_io import PathManager from iopath.common.file_io import PathManager from detectron2.data.datasets.pascal_voc import register_pascal_voc from detectron2.data.datasets.builtin_meta import _get_builtin_metadata from .cityscapes_foggy import load_cityscapes_instances import io import logging logger = logging.getLogger(__name__) JSON_ANNOTATIONS_DIR = "" _SPLITS_COCO_FORMAT = {} _SPLITS_COCO_FORMAT["coco"] = { "coco_2017_unlabel": ( "coco/unlabeled2017", "coco/annotations/image_info_unlabeled2017.json", ), "coco_2017_for_voc20": ( "coco", "coco/annotations/google/instances_unlabeledtrainval20class.json", ), } def register_coco_unlabel(root): for _, splits_per_dataset in _SPLITS_COCO_FORMAT.items(): for key, (image_root, json_file) in splits_per_dataset.items(): meta = {} register_coco_unlabel_instances( key, meta, os.path.join(root, json_file), os.path.join(root, image_root) ) def register_coco_unlabel_instances(name, metadata, json_file, image_root): """ Register a dataset in COCO's json annotation format for instance detection, instance segmentation and keypoint detection. (i.e., Type 1 and 2 in http://cocodataset.org/#format-data. `instances*.json` and `person_keypoints*.json` in the dataset). This is an example of how to register a new dataset. You can do something similar to this function, to register new datasets. Args: name (str): the name that identifies a dataset, e.g. "coco_2014_train". metadata (dict): extra metadata associated with this dataset. You can leave it as an empty dict. json_file (str): path to the json instance annotation file. image_root (str or path-like): directory which contains all the images. """ assert isinstance(name, str), name assert isinstance(json_file, (str, os.PathLike)), json_file assert isinstance(image_root, (str, os.PathLike)), image_root # 1. register a function which returns dicts DatasetCatalog.register( name, lambda: load_coco_unlabel_json(json_file, image_root, name) ) # 2. Optionally, add metadata about this dataset, # since they might be useful in evaluation, visualization or logging MetadataCatalog.get(name).set( json_file=json_file, image_root=image_root, evaluator_type="coco", **metadata ) def load_coco_unlabel_json( json_file, image_root, dataset_name=None, extra_annotation_keys=None ): from pycocotools.coco import COCO timer = Timer() json_file = PathManager.get_local_path(json_file) with contextlib.redirect_stdout(io.StringIO()): coco_api = COCO(json_file) if timer.seconds() > 1: logger.info( "Loading {} takes {:.2f} seconds.".format(json_file, timer.seconds()) ) id_map = None # sort indices for reproducible results img_ids = sorted(coco_api.imgs.keys()) imgs = coco_api.loadImgs(img_ids) logger.info("Loaded {} images in COCO format from {}".format(len(imgs), json_file)) dataset_dicts = [] for img_dict in imgs: record = {} record["file_name"] = os.path.join(image_root, img_dict["file_name"]) record["height"] = img_dict["height"] record["width"] = img_dict["width"] image_id = record["image_id"] = img_dict["id"] dataset_dicts.append(record) return dataset_dicts _root = os.getenv("DETECTRON2_DATASETS", "datasets") register_coco_unlabel(_root) # ==== Predefined splits for raw cityscapes foggy images =========== _RAW_CITYSCAPES_SPLITS = { # "cityscapes_foggy_{task}_train": ("cityscape_foggy/leftImg8bit/train/", "cityscape_foggy/gtFine/train/"), # "cityscapes_foggy_{task}_val": ("cityscape_foggy/leftImg8bit/val/", "cityscape_foggy/gtFine/val/"), # "cityscapes_foggy_{task}_test": ("cityscape_foggy/leftImg8bit/test/", "cityscape_foggy/gtFine/test/"), "cityscapes_foggy_train": ("cityscapes_foggy/leftImg8bit/train/", "cityscapes_foggy/gtFine/train/"), "cityscapes_foggy_val": ("cityscapes_foggy/leftImg8bit/val/", "cityscapes_foggy/gtFine/val/"), "cityscapes_foggy_test": ("cityscapes_foggy/leftImg8bit/test/", "cityscapes_foggy/gtFine/test/"), } def register_all_cityscapes_foggy(root): # root = "manifold://mobile_vision_dataset/tree/yujheli/dataset" for key, (image_dir, gt_dir) in _RAW_CITYSCAPES_SPLITS.items(): meta = _get_builtin_metadata("cityscapes") image_dir = os.path.join(root, image_dir) gt_dir = os.path.join(root, gt_dir) # inst_key = key.format(task="instance_seg") inst_key = key # DatasetCatalog.register( # inst_key, # lambda x=image_dir, y=gt_dir: load_cityscapes_instances( # x, y, from_json=True, to_polygons=True # ), # ) DatasetCatalog.register( inst_key, lambda x=image_dir, y=gt_dir: load_cityscapes_instances( x, y, from_json=False, to_polygons=False ), ) # MetadataCatalog.get(inst_key).set( # image_dir=image_dir, gt_dir=gt_dir, evaluator_type="cityscapes_instance", **meta # ) # MetadataCatalog.get(inst_key).set( # image_dir=image_dir, gt_dir=gt_dir, evaluator_type="pascal_voc", **meta # ) MetadataCatalog.get(inst_key).set( image_dir=image_dir, gt_dir=gt_dir, evaluator_type="coco", **meta ) # ==== Predefined splits for Clipart (PASCAL VOC format) =========== def register_all_clipart(root): # root = "manifold://mobile_vision_dataset/tree/yujheli/dataset" SPLITS = [ ("Clipart1k_train", "clipart", "train"), ("Clipart1k_test", "clipart", "test"), ] for name, dirname, split in SPLITS: year = 2012 register_pascal_voc(name, os.path.join(root, dirname), split, year) MetadataCatalog.get(name).evaluator_type = "pascal_voc" # MetadataCatalog.get(name).evaluator_type = "coco" # ==== Predefined splits for Watercolor (PASCAL VOC format) =========== def register_all_water(root): # root = "manifold://mobile_vision_dataset/tree/yujheli/dataset" SPLITS = [ ("Watercolor_train", "watercolor", "train"), ("Watercolor_test", "watercolor", "test"), ] for name, dirname, split in SPLITS: year = 2012 # register_pascal_voc(name, os.path.join(root, dirname), split, year, class_names=["person", "dog","bicycle", "bird", "car", "cat"]) register_pascal_voc(name, os.path.join(root, dirname), split, year) MetadataCatalog.get(name).evaluator_type = "pascal_voc_water" # MetadataCatalog.get(name).thing_classes = ["person", "dog","bike", "bird", "car", "cat"] # MetadataCatalog.get(name).thing_classes = ["person", "dog","bicycle", "bird", "car", "cat"] # MetadataCatalog.get(name).evaluator_type = "coco" register_all_cityscapes_foggy(_root) register_all_clipart(_root) register_all_water(_root)
# Copyright (c) Facebook, Inc. and its affiliates. import functools import json import logging import multiprocessing as mp import numpy as np import os from itertools import chain import pycocotools.mask as mask_util from PIL import Image from detectron2.structures import BoxMode from detectron2.utils.comm import get_world_size from detectron2.utils.file_io import PathManager from detectron2.utils.logger import setup_logger try: import cv2 # noqa except ImportError: # OpenCV is an optional dependency at the moment pass logger = logging.getLogger(__name__) load_only_002 = False def _get_cityscapes_files(image_dir, gt_dir): files = [] # scan through the directory cities = PathManager.ls(image_dir) logger.info(f"{len(cities)} cities found in '{image_dir}'.") for city in cities: city_img_dir = os.path.join(image_dir, city) city_gt_dir = os.path.join(gt_dir, city) for basename in PathManager.ls(city_img_dir): if load_only_002 and '0.02.png' not in basename: continue image_file = os.path.join(city_img_dir, basename) # suffix = "leftImg8bit.png" # assert basename.endswith(suffix), basename # basename = basename[: -len(suffix)] suffix = 'leftImg8bit_foggy' basename = basename.split(suffix)[0] instance_file = os.path.join(city_gt_dir, basename + "gtFine_instanceIds.png") label_file = os.path.join(city_gt_dir, basename + "gtFine_labelIds.png") json_file = os.path.join(city_gt_dir, basename + "gtFine_polygons.json") files.append((image_file, instance_file, label_file, json_file)) assert len(files), "No images found in {}".format(image_dir) for f in files[0]: assert PathManager.isfile(f), f return files def load_cityscapes_instances(image_dir, gt_dir, from_json=True, to_polygons=True): """ Args: image_dir (str): path to the raw dataset. e.g., "~/cityscapes/leftImg8bit/train". gt_dir (str): path to the raw annotations. e.g., "~/cityscapes/gtFine/train". from_json (bool): whether to read annotations from the raw json file or the png files. to_polygons (bool): whether to represent the segmentation as polygons (COCO's format) instead of masks (cityscapes's format). Returns: list[dict]: a list of dicts in Detectron2 standard format. (See `Using Custom Datasets </tutorials/datasets.html>`_ ) """ if from_json: assert to_polygons, ( "Cityscapes's json annotations are in polygon format. " "Converting to mask format is not supported now." ) files = _get_cityscapes_files(image_dir, gt_dir) logger.info("Preprocessing cityscapes annotations ...") # This is still not fast: all workers will execute duplicate works and will # take up to 10m on a 8GPU server. pool = mp.Pool(processes=max(mp.cpu_count() // get_world_size() // 2, 4)) ret = pool.map( functools.partial(_cityscapes_files_to_dict, from_json=from_json, to_polygons=to_polygons), files, ) logger.info("Loaded {} images from {}".format(len(ret), image_dir)) pool.close() # Map cityscape ids to contiguous ids from cityscapesscripts.helpers.labels import labels labels = [l for l in labels if l.hasInstances and not l.ignoreInEval] dataset_id_to_contiguous_id = {l.id: idx for idx, l in enumerate(labels)} for dict_per_image in ret: for anno in dict_per_image["annotations"]: anno["category_id"] = dataset_id_to_contiguous_id[anno["category_id"]] return ret def load_cityscapes_semantic(image_dir, gt_dir): """ Args: image_dir (str): path to the raw dataset. e.g., "~/cityscapes/leftImg8bit/train". gt_dir (str): path to the raw annotations. e.g., "~/cityscapes/gtFine/train". Returns: list[dict]: a list of dict, each has "file_name" and "sem_seg_file_name". """ ret = [] # gt_dir is small and contain many small files. make sense to fetch to local first gt_dir = PathManager.get_local_path(gt_dir) for image_file, _, label_file, json_file in _get_cityscapes_files(image_dir, gt_dir): label_file = label_file.replace("labelIds", "labelTrainIds") with PathManager.open(json_file, "r") as f: jsonobj = json.load(f) ret.append( { "file_name": image_file, "sem_seg_file_name": label_file, "height": jsonobj["imgHeight"], "width": jsonobj["imgWidth"], } ) assert len(ret), f"No images found in {image_dir}!" assert PathManager.isfile( ret[0]["sem_seg_file_name"] ), "Please generate labelTrainIds.png with cityscapesscripts/preparation/createTrainIdLabelImgs.py" # noqa return ret def _cityscapes_files_to_dict(files, from_json, to_polygons): """ Parse cityscapes annotation files to a instance segmentation dataset dict. Args: files (tuple): consists of (image_file, instance_id_file, label_id_file, json_file) from_json (bool): whether to read annotations from the raw json file or the png files. to_polygons (bool): whether to represent the segmentation as polygons (COCO's format) instead of masks (cityscapes's format). Returns: A dict in Detectron2 Dataset format. """ from cityscapesscripts.helpers.labels import id2label, name2label image_file, instance_id_file, _, json_file = files annos = [] if from_json: from shapely.geometry import MultiPolygon, Polygon with PathManager.open(json_file, "r") as f: jsonobj = json.load(f) ret = { "file_name": image_file, "image_id": os.path.basename(image_file), "height": jsonobj["imgHeight"], "width": jsonobj["imgWidth"], } # `polygons_union` contains the union of all valid polygons. polygons_union = Polygon() # CityscapesScripts draw the polygons in sequential order # and each polygon *overwrites* existing ones. See # (https://github.com/mcordts/cityscapesScripts/blob/master/cityscapesscripts/preparation/json2instanceImg.py) # noqa # We use reverse order, and each polygon *avoids* early ones. # This will resolve the ploygon overlaps in the same way as CityscapesScripts. for obj in jsonobj["objects"][::-1]: if "deleted" in obj: # cityscapes data format specific continue label_name = obj["label"] try: label = name2label[label_name] except KeyError: if label_name.endswith("group"): # crowd area label = name2label[label_name[: -len("group")]] else: raise if label.id < 0: # cityscapes data format continue # Cityscapes's raw annotations uses integer coordinates # Therefore +0.5 here poly_coord = np.asarray(obj["polygon"], dtype="f4") + 0.5 # CityscapesScript uses PIL.ImageDraw.polygon to rasterize # polygons for evaluation. This function operates in integer space # and draws each pixel whose center falls into the polygon. # Therefore it draws a polygon which is 0.5 "fatter" in expectation. # We therefore dilate the input polygon by 0.5 as our input. poly = Polygon(poly_coord).buffer(0.5, resolution=4) if not label.hasInstances or label.ignoreInEval: # even if we won't store the polygon it still contributes to overlaps resolution polygons_union = polygons_union.union(poly) continue # Take non-overlapping part of the polygon poly_wo_overlaps = poly.difference(polygons_union) if poly_wo_overlaps.is_empty: continue polygons_union = polygons_union.union(poly) anno = {} anno["iscrowd"] = label_name.endswith("group") anno["category_id"] = label.id if isinstance(poly_wo_overlaps, Polygon): poly_list = [poly_wo_overlaps] elif isinstance(poly_wo_overlaps, MultiPolygon): poly_list = poly_wo_overlaps.geoms else: raise NotImplementedError("Unknown geometric structure {}".format(poly_wo_overlaps)) poly_coord = [] for poly_el in poly_list: # COCO API can work only with exterior boundaries now, hence we store only them. # TODO: store both exterior and interior boundaries once other parts of the # codebase support holes in polygons. poly_coord.append(list(chain(*poly_el.exterior.coords))) anno["segmentation"] = poly_coord (xmin, ymin, xmax, ymax) = poly_wo_overlaps.bounds anno["bbox"] = (xmin, ymin, xmax, ymax) anno["bbox_mode"] = BoxMode.XYXY_ABS annos.append(anno) else: # See also the official annotation parsing scripts at # https://github.com/mcordts/cityscapesScripts/blob/master/cityscapesscripts/evaluation/instances2dict.py # noqa with PathManager.open(instance_id_file, "rb") as f: inst_image = np.asarray(Image.open(f), order="F") # ids < 24 are stuff labels (filtering them first is about 5% faster) flattened_ids = np.unique(inst_image[inst_image >= 24]) ret = { "file_name": image_file, "image_id": os.path.basename(image_file), "height": inst_image.shape[0], "width": inst_image.shape[1], } for instance_id in flattened_ids: # For non-crowd annotations, instance_id // 1000 is the label_id # Crowd annotations have <1000 instance ids label_id = instance_id // 1000 if instance_id >= 1000 else instance_id label = id2label[label_id] if not label.hasInstances or label.ignoreInEval: continue anno = {} anno["iscrowd"] = instance_id < 1000 anno["category_id"] = label.id mask = np.asarray(inst_image == instance_id, dtype=np.uint8, order="F") inds = np.nonzero(mask) ymin, ymax = inds[0].min(), inds[0].max() xmin, xmax = inds[1].min(), inds[1].max() anno["bbox"] = (xmin, ymin, xmax, ymax) if xmax <= xmin or ymax <= ymin: continue anno["bbox_mode"] = BoxMode.XYXY_ABS if to_polygons: # This conversion comes from D4809743 and D5171122, # when Mask-RCNN was first developed. contours = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)[ -2 ] polygons = [c.reshape(-1).tolist() for c in contours if len(c) >= 3] # opencv's can produce invalid polygons if len(polygons) == 0: continue anno["segmentation"] = polygons else: anno["segmentation"] = mask_util.encode(mask[:, :, None])[0] annos.append(anno) ret["annotations"] = annos return ret
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import random from PIL import ImageFilter class GaussianBlur: """ Gaussian blur augmentation in SimCLR https://arxiv.org/abs/2002.05709 Adapted from MoCo: https://github.com/facebookresearch/moco/blob/master/moco/loader.py Note that this implementation does not seem to be exactly the same as described in SimCLR. """ def __init__(self, sigma=[0.1, 2.0]): self.sigma = sigma def __call__(self, x): sigma = random.uniform(self.sigma[0], self.sigma[1]) x = x.filter(ImageFilter.GaussianBlur(radius=sigma)) return x
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from detectron2.engine.hooks import HookBase import detectron2.utils.comm as comm import torch import numpy as np from contextlib import contextmanager class LossEvalHook(HookBase): def __init__(self, eval_period, model, data_loader, model_output, model_name=""): self._model = model self._period = eval_period self._data_loader = data_loader self._model_output = model_output self._model_name = model_name def _do_loss_eval(self): record_acc_dict = {} with inference_context(self._model), torch.no_grad(): for _, inputs in enumerate(self._data_loader): record_dict = self._get_loss(inputs, self._model) # accumulate the losses for loss_type in record_dict.keys(): if loss_type not in record_acc_dict.keys(): record_acc_dict[loss_type] = record_dict[loss_type] else: record_acc_dict[loss_type] += record_dict[loss_type] # average for loss_type in record_acc_dict.keys(): record_acc_dict[loss_type] = record_acc_dict[loss_type] / len( self._data_loader ) # divide loss and other metrics loss_acc_dict = {} for key in record_acc_dict.keys(): if key[:4] == "loss": loss_acc_dict[key] = record_acc_dict[key] # only output the results of major node if comm.is_main_process(): total_losses_reduced = sum(loss for loss in loss_acc_dict.values()) self.trainer.storage.put_scalar( "val_total_loss_val" + self._model_name, total_losses_reduced ) record_acc_dict = { "val_" + k + self._model_name: record_acc_dict[k] for k in record_acc_dict.keys() } if len(record_acc_dict) > 1: self.trainer.storage.put_scalars(**record_acc_dict) def _get_loss(self, data, model): if self._model_output == "loss_only": record_dict = model(data) elif self._model_output == "loss_proposal": record_dict, _, _, _ = model(data, branch="val_loss", val_mode=True) elif self._model_output == "meanteacher": record_dict, _, _, _, _ = model(data) metrics_dict = { k: v.detach().cpu().item() if isinstance(v, torch.Tensor) else float(v) for k, v in record_dict.items() } return metrics_dict def _write_losses(self, metrics_dict): # gather metrics among all workers for logging # This assumes we do DDP-style training, which is currently the only # supported method in detectron2. comm.synchronize() all_metrics_dict = comm.gather(metrics_dict, dst=0) if comm.is_main_process(): # average the rest metrics metrics_dict = { "val_" + k: np.mean([x[k] for x in all_metrics_dict]) for k in all_metrics_dict[0].keys() } total_losses_reduced = sum(loss for loss in metrics_dict.values()) self.trainer.storage.put_scalar("val_total_loss_val", total_losses_reduced) if len(metrics_dict) > 1: self.trainer.storage.put_scalars(**metrics_dict) def _detect_anomaly(self, losses, loss_dict): if not torch.isfinite(losses).all(): raise FloatingPointError( "Loss became infinite or NaN at iteration={}!\nloss_dict = {}".format( self.trainer.iter, loss_dict ) ) def after_step(self): next_iter = self.trainer.iter + 1 is_final = next_iter == self.trainer.max_iter if is_final or (self._period > 0 and next_iter % self._period == 0): self._do_loss_eval() @contextmanager def inference_context(model): """ A context where the model is temporarily changed to eval mode, and restored to previous mode afterwards. Args: model: a torch Module """ training_mode = model.training model.eval() yield model.train(training_mode)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from detectron2.structures import pairwise_iou class OpenMatchTrainerProbe: def __init__(self, cfg): self.BOX_AP = 0.5 self.NUM_CLASSES = cfg.MODEL.ROI_HEADS.NUM_CLASSES # self.bbox_stat_list = ['compute_fp_gtoutlier', 'compute_num_box', 'compute_ood_acc'] def bbox_stat(self, unlabel_gt, unlabel_pseudo, name, bbox_stat_list): stats = {} sum_gpu_names = [] for metric in bbox_stat_list: stats_per, sum_gpu_names_per = getattr( self, metric)(unlabel_gt, unlabel_pseudo, name) stats.update(stats_per) sum_gpu_names.extend(sum_gpu_names_per) return stats, sum_gpu_names def compute_fp_gtoutlier(self, unlabel_gt, unlabel_pseudo, name): num_gt_ood_object = 0 num_gt_fp_ood_object = 0 sum_iou = 0.0 sum_gpu_names = [] results = {} if len(unlabel_gt) != 0: for gt, pseudo in zip(unlabel_gt, unlabel_pseudo): # import pdb; pdb. set_trace() if name == "pred": pp_boxes = pseudo.pred_boxes elif name == "pseudo_conf" or name == "pseudo_ood": # filter predicted ood box when evaluating this metric pseudo = pseudo[pseudo.gt_classes != -1] pp_boxes = pseudo.gt_boxes else: raise ValueError("Unknown name for probe roi bbox.") if len(gt) != 0 and len(pseudo) != 0: max_iou, max_idx = pairwise_iou( gt.gt_boxes.to('cuda'), pp_boxes).max(1) ood_idx = (gt.gt_classes == -1) num_gt_ood_object += ood_idx.sum().item() num_gt_fp_ood_object += (max_iou[ood_idx] > self.BOX_AP).sum().item() sum_iou += max_iou[ood_idx].sum().item() elif len(gt) != 0 and len(pseudo) == 0: ood_idx = (gt.gt_classes == -1) num_gt_ood_object += ood_idx.shape[0] results = {'Analysis_'+name+'/num_gt_ood_object': num_gt_ood_object, 'Analysis_'+name+'/num_gt_fp_ood_object': num_gt_fp_ood_object, 'Analysis_'+name+'/sum_iou': sum_iou} sum_gpu_names.extend(list(results.keys())) return results, sum_gpu_names def compute_num_box(self, unlabel_gt, unlabel_pseudo, name, processed=False): num_bbox = 0.0 size_bbox = 0.0 avg_conf = 0.0 # measure in and out box for openset SS-OD num_bbox_in = 0.0 num_bbox_out = 0.0 num_bg = 0.0 # when ground-truth is missing in unlabeled data if len(unlabel_gt) == 0: for pp_roi in unlabel_pseudo: if name == "pred": pp_boxes = pp_roi.pred_boxes pp_classes = pp_roi.pred_classes pp_scores = pp_roi.scores elif name == "pseudo_conf" or name == "pseudo_ood": pp_boxes = pp_roi.gt_boxes pp_classes = pp_roi.gt_classes pp_scores = pp_roi.scores elif name == "gt": pp_boxes = pp_roi.gt_boxes pp_classes = pp_roi.gt_classes else: raise ValueError("Unknown name for probe roi bbox.") # all boxes (in + out boxes) if len(pp_roi) != 0: # bbox number and size num_bbox += len(pp_roi) size_bbox += pp_boxes.area().mean().item() # average box confidence if name != "gt": avg_conf += pp_scores.mean() else: num_bbox += 0 size_bbox += torch.tensor(0).cuda() num_valid_img = len(unlabel_pseudo) else: # with ground-truth num_valid_img = 0 for gt, pp_roi in zip(unlabel_gt, unlabel_pseudo): if name == "pred": pp_boxes = pp_roi.pred_boxes pp_classes = pp_roi.pred_classes pp_scores = pp_roi.scores elif name == "pseudo_conf" or name == "pseudo_ood": # filter out ood pseudo-box when doing analysis pp_roi = pp_roi[pp_roi.gt_classes != -1] pp_boxes = pp_roi.gt_boxes pp_classes = pp_roi.gt_classes pp_scores = pp_roi.scores elif name == "gt": pp_boxes = pp_roi.gt_boxes pp_classes = pp_roi.gt_classes else: raise ValueError("Unknown name for probe roi bbox.") # all boxes (in + out boxes) if len(pp_roi) != 0: # bbox number and size num_bbox += len(pp_roi) size_bbox += pp_boxes.area().mean().item() # average box confidence if name != "gt": avg_conf += pp_scores.mean() else: num_bbox += 0 size_bbox += torch.tensor(0).cuda() # in and out class if name == "gt": pp_roi_in = pp_roi[pp_classes != -1] num_bbox_in += len(pp_roi_in) pp_roi_out = pp_roi[pp_classes == -1] num_bbox_out += len(pp_roi_out) num_valid_img += 1 elif name == "pred" or name == "pseudo_conf" or name == "pseudo_ood": if len(gt.gt_boxes.to('cuda'))>0 and len(pp_boxes) > 0: max_iou, max_idx = pairwise_iou(gt.gt_boxes.to('cuda'), pp_boxes).max(0) # for the ground-truth label for each pseudo-box gtclass4pseudo = gt.gt_classes[max_idx] matchgtbox = max_iou > 0.5 # compute the number of boxes (background, inlier, outlier) num_bg += (~matchgtbox).sum().item() num_bbox_in += (gtclass4pseudo[matchgtbox] != -1).sum().item() num_bbox_out += (gtclass4pseudo[matchgtbox] == -1).sum().item() num_valid_img += 1 else: raise ValueError("Unknown name for probe roi bbox.") box_probe = {} if processed == True: name = name+"processed" if num_bbox == 0: return box_probe, [] if num_valid_img >0 : box_probe["Analysis_" + name + "/Num_bbox"] = num_bbox / \ num_valid_img box_probe["Analysis_" + name + "/Size_bbox"] = size_bbox / \ num_valid_img box_probe["Analysis_" + name + "/Num_bbox_inlier"] = num_bbox_in / num_valid_img box_probe["Analysis_" + name + "/Num_bbox_outlier"] = num_bbox_out / num_valid_img if name != "gt": # prediciton, background number box_probe["Analysis_" + name + "/Conf"] = avg_conf / \ num_valid_img box_probe["Analysis_" + name + "/Num_bbox_background"] = num_bg / num_valid_img box_probe["Analysis_" + name + "/background_fp_ratio"] = num_bg / num_bbox box_probe["Analysis_" + name + "/background_tp_ratio"] = num_bbox_in / num_bbox else: box_probe["Analysis_" + name + "/Num_bbox"] = 0.0 box_probe["Analysis_" + name + "/Size_bbox"] = 0.0 box_probe["Analysis_" + name + "/Num_bbox_inlier"] = 0.0 box_probe["Analysis_" + name + "/Num_bbox_outlier"] = 0.0 if name != "gt": # prediciton, background number box_probe["Analysis_" + name + "/Conf"] = 0.0 box_probe["Analysis_" + name + "/Num_bbox_background"] = 0.0 box_probe["Analysis_" + name + "/background_fp_ratio"] = num_bg / num_bbox box_probe["Analysis_" + name + "/background_tp_ratio"] = num_bbox_in / num_bbox return box_probe, [] def compute_ood_acc(self, unlabel_gt, unlabel_pseudo, name, BOX_IOU=0.5): results = {} sum_gpu_names = [] if len(unlabel_gt) != 0: for metric in ['acc_outlier', 'recall_outlier']: for samples in ['_fg', '_all']: for fraction_part in ['_nume', '_deno']: results[metric+samples+fraction_part] = 0.0 for gt, pred in zip(unlabel_gt, unlabel_pseudo): if name == "pred": pp_boxes = pred.pred_boxes pp_ood_scores = pred.ood_scores elif name == "pseudo_conf" or name == "pseudo_ood": # assume these outlier are suppressed pred = pred[pred.gt_classes != -1] pp_boxes = pred.gt_boxes pp_ood_scores = pred.ood_scores else: raise ValueError("Unknown name for probe roi bbox.") if len(gt) != 0 and len(pred) != 0: # find the most overlapped ground-truth box for each pseudo-box max_iou, max_idx = pairwise_iou( gt.gt_boxes.to('cuda'), pp_boxes).max(0) # ignore background instances find_fg_mask = max_iou > BOX_IOU if find_fg_mask.sum() > 0: gt_corres = gt[max_idx].gt_classes.to("cuda") gt_outlier = (gt_corres[find_fg_mask] == -1) pred_outlier = pp_ood_scores[find_fg_mask][:, 0] > 0.5 # accurcay of ood detection (foreground) # acc_outlier_fg = (pred_outlier == gt_outlier).sum() /find_fg_mask.sum() results['acc_outlier_fg_nume'] += ( pred_outlier == gt_outlier).sum() results['acc_outlier_fg_deno'] += find_fg_mask.sum() # recall of ood detection (foreground) # recall_outlier_fg = (pred_outlier[gt_outlier] == gt_outlier[gt_outlier]).sum() /gt_outlier.sum() results['recall_outlier_fg_nume'] += ( pred_outlier[gt_outlier] == gt_outlier[gt_outlier]).sum() results['recall_outlier_fg_deno'] += gt_outlier.sum() # Regard backgound gt as outlier gt_corres = gt[max_idx].gt_classes.to("cuda") # convert all background gt as outlier gt_corres[~find_fg_mask] = -1 gt_outlier = gt_corres == -1 pred_outlier = pp_ood_scores[:, 0] > 0.5 # accurcay of ood detection (all) # acc_outlier_all = (pred_outlier == gt_outlier).sum() /len(pred) results['acc_outlier_all_nume'] += ( pred_outlier == gt_outlier).sum() results['acc_outlier_all_deno'] += len(pred) # recall of ood detection (all) # recall_outlier_all = (pred_outlier[gt_outlier] == gt_outlier[gt_outlier]).sum() /gt_outlier.sum() results['recall_outlier_all_nume'] += ( pred_outlier[gt_outlier] == gt_outlier[gt_outlier]).sum() results['recall_outlier_all_deno'] += gt_outlier.sum() results = {'Analysis_'+name+'/'+k: v for k, v in results.items()} sum_gpu_names.extend(list(results.keys())) return results, sum_gpu_names import torch def probe( cfg, proposals_roih_unsup_k, unlabel_data_k, pesudo_proposals_roih_unsup_k, record_dict, ): """ Probe for research development """ # [probe] roi result from weak branch (before pseudo-labeling) record_roih = probe_roih_bbox( proposals_roih_unsup_k, cfg.MODEL.ROI_HEADS.NUM_CLASSES, "roih" ) record_dict.update(record_roih) # [probe] roi result after pseudo-labeling from weak branch record_roih_pseudo = probe_roih_bbox( pesudo_proposals_roih_unsup_k, cfg.MODEL.ROI_HEADS.NUM_CLASSES, "roih_pseudo" ) record_dict.update(record_roih_pseudo) return record_dict def probe_roih_bbox(proposals_roih, num_cls, name=""): num_bbox = 0.0 size_bbox = 0.0 avg_conf = 0.0 pred_cls_list = [] for pp_roi in proposals_roih: if name == "roih": pp_boxes = pp_roi.pred_boxes pp_classes = pp_roi.pred_classes pp_scores = pp_roi.scores elif name == "roih_pseudo": pp_boxes = pp_roi.gt_boxes pp_classes = pp_roi.gt_classes pp_scores = pp_roi.scores elif name == "gt": pp_boxes = pp_roi.gt_boxes pp_classes = pp_roi.gt_classes else: raise ValueError(f"Unknown name for probe roi bbox '{name}'") device = pp_classes.device if pp_roi: # bbox number and size num_bbox += len(pp_roi) size_bbox += pp_boxes.area().mean() if name != "gt": avg_conf += pp_scores.mean() # ratio of majority class all_idx, cls_count = torch.unique(pp_classes, return_counts=True) major_cls_idx = all_idx[torch.argmax(cls_count)] major_cls_ratio = torch.max(cls_count).float() / pp_classes.numel() # cls_sum pred_cls_list.append(pp_classes) else: num_bbox += 0 size_bbox += torch.tensor(0).to(device) major_cls_idx = torch.tensor(0).to(device) major_cls_ratio = torch.tensor(0).to(device) # boxes monitor box_probe = {} box_probe["bbox_probe_" + name + "/Num_bbox"] = num_bbox / len(proposals_roih) box_probe["bbox_probe_" + name + "/Size_bbox"] = size_bbox.item() / len( proposals_roih ) if name != "gt": box_probe["bbox_probe_" + name + "/Conf"] = avg_conf / len(proposals_roih) box_probe["bbox_probe_" + name + "/Ratio_major_cls_idx"] = major_cls_idx.item() box_probe["bbox_probe_" + name + "/Ratio_major_cls"] = major_cls_ratio.item() return box_probe
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import os import time import logging import torch from torch.nn.parallel import DistributedDataParallel from fvcore.nn.precise_bn import get_bn_modules import numpy as np from collections import OrderedDict import detectron2.utils.comm as comm from detectron2.checkpoint import DetectionCheckpointer from detectron2.engine import DefaultTrainer, SimpleTrainer, TrainerBase from detectron2.engine.train_loop import AMPTrainer from detectron2.utils.events import EventStorage from detectron2.evaluation import verify_results, DatasetEvaluators # from detectron2.evaluation import COCOEvaluator, verify_results, DatasetEvaluators from detectron2.data.dataset_mapper import DatasetMapper from detectron2.engine import hooks from detectron2.structures.boxes import Boxes from detectron2.structures.instances import Instances from detectron2.utils.env import TORCH_VERSION from detectron2.data import MetadataCatalog from adapteacher.data.build import ( build_detection_semisup_train_loader, build_detection_test_loader, build_detection_semisup_train_loader_two_crops, ) from adapteacher.data.dataset_mapper import DatasetMapperTwoCropSeparate from adapteacher.engine.hooks import LossEvalHook from adapteacher.modeling.meta_arch.ts_ensemble import EnsembleTSModel from adapteacher.checkpoint.detection_checkpoint import DetectionTSCheckpointer from adapteacher.solver.build import build_lr_scheduler from adapteacher.evaluation import PascalVOCDetectionEvaluator, COCOEvaluator from .probe import OpenMatchTrainerProbe import copy # Supervised-only Trainer class BaselineTrainer(DefaultTrainer): def __init__(self, cfg): """ Args: cfg (CfgNode): Use the custom checkpointer, which loads other backbone models with matching heuristics. """ cfg = DefaultTrainer.auto_scale_workers(cfg, comm.get_world_size()) model = self.build_model(cfg) optimizer = self.build_optimizer(cfg, model) data_loader = self.build_train_loader(cfg) if comm.get_world_size() > 1: model = DistributedDataParallel( model, device_ids=[comm.get_local_rank()], broadcast_buffers=False ) TrainerBase.__init__(self) self._trainer = (AMPTrainer if cfg.SOLVER.AMP.ENABLED else SimpleTrainer)( model, data_loader, optimizer ) self.scheduler = self.build_lr_scheduler(cfg, optimizer) self.checkpointer = DetectionCheckpointer( model, cfg.OUTPUT_DIR, optimizer=optimizer, scheduler=self.scheduler, ) self.start_iter = 0 self.max_iter = cfg.SOLVER.MAX_ITER self.cfg = cfg self.register_hooks(self.build_hooks()) def resume_or_load(self, resume=True): """ If `resume==True` and `cfg.OUTPUT_DIR` contains the last checkpoint (defined by a `last_checkpoint` file), resume from the file. Resuming means loading all available states (eg. optimizer and scheduler) and update iteration counter from the checkpoint. ``cfg.MODEL.WEIGHTS`` will not be used. Otherwise, this is considered as an independent training. The method will load model weights from the file `cfg.MODEL.WEIGHTS` (but will not load other states) and start from iteration 0. Args: resume (bool): whether to do resume or not """ checkpoint = self.checkpointer.resume_or_load( self.cfg.MODEL.WEIGHTS, resume=resume ) if resume and self.checkpointer.has_checkpoint(): self.start_iter = checkpoint.get("iteration", -1) + 1 # The checkpoint stores the training iteration that just finished, thus we start # at the next iteration (or iter zero if there's no checkpoint). if isinstance(self.model, DistributedDataParallel): # broadcast loaded data/model from the first rank, because other # machines may not have access to the checkpoint file if TORCH_VERSION >= (1, 7): self.model._sync_params_and_buffers() self.start_iter = comm.all_gather(self.start_iter)[0] def train_loop(self, start_iter: int, max_iter: int): """ Args: start_iter, max_iter (int): See docs above """ logger = logging.getLogger(__name__) logger.info("Starting training from iteration {}".format(start_iter)) self.iter = self.start_iter = start_iter self.max_iter = max_iter with EventStorage(start_iter) as self.storage: try: self.before_train() for self.iter in range(start_iter, max_iter): self.before_step() self.run_step() self.after_step() except Exception: logger.exception("Exception during training:") raise finally: self.after_train() def run_step(self): self._trainer.iter = self.iter assert self.model.training, "[SimpleTrainer] model was changed to eval mode!" start = time.perf_counter() data = next(self._trainer._data_loader_iter) data_time = time.perf_counter() - start record_dict, _, _, _ = self.model(data, branch="supervised") num_gt_bbox = 0.0 for element in data: num_gt_bbox += len(element["instances"]) num_gt_bbox = num_gt_bbox / len(data) record_dict["bbox_num/gt_bboxes"] = num_gt_bbox loss_dict = {} for key in record_dict.keys(): if key[:4] == "loss" and key[-3:] != "val": loss_dict[key] = record_dict[key] losses = sum(loss_dict.values()) metrics_dict = record_dict metrics_dict["data_time"] = data_time self._write_metrics(metrics_dict) self.optimizer.zero_grad() losses.backward() self.optimizer.step() @classmethod def build_evaluator(cls, cfg, dataset_name, output_folder=None): if output_folder is None: output_folder = os.path.join(cfg.OUTPUT_DIR, "inference") evaluator_list = [] evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type if evaluator_type == "coco": evaluator_list.append(COCOEvaluator( dataset_name, output_dir=output_folder)) elif evaluator_type == "pascal_voc": return PascalVOCDetectionEvaluator(dataset_name) elif evaluator_type == "pascal_voc_water": return PascalVOCDetectionEvaluator(dataset_name, target_classnames=["bicycle", "bird", "car", "cat", "dog", "person"]) if len(evaluator_list) == 0: raise NotImplementedError( "no Evaluator for the dataset {} with the type {}".format( dataset_name, evaluator_type ) ) elif len(evaluator_list) == 1: return evaluator_list[0] return DatasetEvaluators(evaluator_list) @classmethod def build_train_loader(cls, cfg): return build_detection_semisup_train_loader(cfg, mapper=None) @classmethod def build_test_loader(cls, cfg, dataset_name): """ Returns: iterable """ return build_detection_test_loader(cfg, dataset_name) def build_hooks(self): """ Build a list of default hooks, including timing, evaluation, checkpointing, lr scheduling, precise BN, writing events. Returns: list[HookBase]: """ cfg = self.cfg.clone() cfg.defrost() cfg.DATALOADER.NUM_WORKERS = 0 ret = [ hooks.IterationTimer(), hooks.LRScheduler(self.optimizer, self.scheduler), hooks.PreciseBN( cfg.TEST.EVAL_PERIOD, self.model, self.build_train_loader(cfg), cfg.TEST.PRECISE_BN.NUM_ITER, ) if cfg.TEST.PRECISE_BN.ENABLED and get_bn_modules(self.model) else None, ] if comm.is_main_process(): ret.append( hooks.PeriodicCheckpointer( self.checkpointer, cfg.SOLVER.CHECKPOINT_PERIOD ) ) def test_and_save_results(): self._last_eval_results = self.test(self.cfg, self.model) return self._last_eval_results ret.append(hooks.EvalHook(cfg.TEST.EVAL_PERIOD, test_and_save_results)) if comm.is_main_process(): ret.append(hooks.PeriodicWriter(self.build_writers(), period=20)) return ret def _write_metrics(self, metrics_dict: dict): """ Args: metrics_dict (dict): dict of scalar metrics """ metrics_dict = { k: v.detach().cpu().item() if isinstance(v, torch.Tensor) else float(v) for k, v in metrics_dict.items() } # gather metrics among all workers for logging # This assumes we do DDP-style training, which is currently the only # supported method in detectron2. all_metrics_dict = comm.gather(metrics_dict) if comm.is_main_process(): if "data_time" in all_metrics_dict[0]: data_time = np.max([x.pop("data_time") for x in all_metrics_dict]) self.storage.put_scalar("data_time", data_time) metrics_dict = { k: np.mean([x[k] for x in all_metrics_dict]) for k in all_metrics_dict[0].keys() } loss_dict = {} for key in metrics_dict.keys(): if key[:4] == "loss": loss_dict[key] = metrics_dict[key] total_losses_reduced = sum(loss for loss in loss_dict.values()) self.storage.put_scalar("total_loss", total_losses_reduced) if len(metrics_dict) > 1: self.storage.put_scalars(**metrics_dict) # Adaptive Teacher Trainer class ATeacherTrainer(DefaultTrainer): def __init__(self, cfg): """ Args: cfg (CfgNode): Use the custom checkpointer, which loads other backbone models with matching heuristics. """ cfg = DefaultTrainer.auto_scale_workers(cfg, comm.get_world_size()) data_loader = self.build_train_loader(cfg) # create an student model model = self.build_model(cfg) optimizer = self.build_optimizer(cfg, model) # create an teacher model model_teacher = self.build_model(cfg) self.model_teacher = model_teacher # For training, wrap with DDP. But don't need this for inference. if comm.get_world_size() > 1: model = DistributedDataParallel( model, device_ids=[comm.get_local_rank()], broadcast_buffers=False ) TrainerBase.__init__(self) self._trainer = (AMPTrainer if cfg.SOLVER.AMP.ENABLED else SimpleTrainer)( model, data_loader, optimizer ) self.scheduler = self.build_lr_scheduler(cfg, optimizer) # Ensemble teacher and student model is for model saving and loading ensem_ts_model = EnsembleTSModel(model_teacher, model) self.checkpointer = DetectionTSCheckpointer( ensem_ts_model, cfg.OUTPUT_DIR, optimizer=optimizer, scheduler=self.scheduler, ) self.start_iter = 0 self.max_iter = cfg.SOLVER.MAX_ITER self.cfg = cfg self.probe = OpenMatchTrainerProbe(cfg) self.register_hooks(self.build_hooks()) def resume_or_load(self, resume=True): """ If `resume==True` and `cfg.OUTPUT_DIR` contains the last checkpoint (defined by a `last_checkpoint` file), resume from the file. Resuming means loading all available states (eg. optimizer and scheduler) and update iteration counter from the checkpoint. ``cfg.MODEL.WEIGHTS`` will not be used. Otherwise, this is considered as an independent training. The method will load model weights from the file `cfg.MODEL.WEIGHTS` (but will not load other states) and start from iteration 0. Args: resume (bool): whether to do resume or not """ checkpoint = self.checkpointer.resume_or_load( self.cfg.MODEL.WEIGHTS, resume=resume ) if resume and self.checkpointer.has_checkpoint(): self.start_iter = checkpoint.get("iteration", -1) + 1 # The checkpoint stores the training iteration that just finished, thus we start # at the next iteration (or iter zero if there's no checkpoint). if isinstance(self.model, DistributedDataParallel): # broadcast loaded data/model from the first rank, because other # machines may not have access to the checkpoint file if TORCH_VERSION >= (1, 7): self.model._sync_params_and_buffers() self.start_iter = comm.all_gather(self.start_iter)[0] @classmethod def build_evaluator(cls, cfg, dataset_name, output_folder=None): if output_folder is None: output_folder = os.path.join(cfg.OUTPUT_DIR, "inference") evaluator_list = [] evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type if evaluator_type == "coco": evaluator_list.append(COCOEvaluator( dataset_name, output_dir=output_folder)) elif evaluator_type == "pascal_voc": return PascalVOCDetectionEvaluator(dataset_name) elif evaluator_type == "pascal_voc_water": return PascalVOCDetectionEvaluator(dataset_name, target_classnames=["bicycle", "bird", "car", "cat", "dog", "person"]) if len(evaluator_list) == 0: raise NotImplementedError( "no Evaluator for the dataset {} with the type {}".format( dataset_name, evaluator_type ) ) elif len(evaluator_list) == 1: return evaluator_list[0] return DatasetEvaluators(evaluator_list) @classmethod def build_train_loader(cls, cfg): mapper = DatasetMapperTwoCropSeparate(cfg, True) return build_detection_semisup_train_loader_two_crops(cfg, mapper) @classmethod def build_lr_scheduler(cls, cfg, optimizer): return build_lr_scheduler(cfg, optimizer) def train(self): self.train_loop(self.start_iter, self.max_iter) if hasattr(self, "_last_eval_results") and comm.is_main_process(): verify_results(self.cfg, self._last_eval_results) return self._last_eval_results def train_loop(self, start_iter: int, max_iter: int): logger = logging.getLogger(__name__) logger.info("Starting training from iteration {}".format(start_iter)) self.iter = self.start_iter = start_iter self.max_iter = max_iter with EventStorage(start_iter) as self.storage: try: self.before_train() for self.iter in range(start_iter, max_iter): self.before_step() self.run_step_full_semisup() self.after_step() except Exception: logger.exception("Exception during training:") raise finally: self.after_train() # ===================================================== # ================== Pseduo-labeling ================== # ===================================================== def threshold_bbox(self, proposal_bbox_inst, thres=0.7, proposal_type="roih"): if proposal_type == "rpn": valid_map = proposal_bbox_inst.objectness_logits > thres # create instances containing boxes and gt_classes image_shape = proposal_bbox_inst.image_size new_proposal_inst = Instances(image_shape) # create box new_bbox_loc = proposal_bbox_inst.proposal_boxes.tensor[valid_map, :] new_boxes = Boxes(new_bbox_loc) # add boxes to instances new_proposal_inst.gt_boxes = new_boxes new_proposal_inst.objectness_logits = proposal_bbox_inst.objectness_logits[ valid_map ] elif proposal_type == "roih": valid_map = proposal_bbox_inst.scores > thres # create instances containing boxes and gt_classes image_shape = proposal_bbox_inst.image_size new_proposal_inst = Instances(image_shape) # create box new_bbox_loc = proposal_bbox_inst.pred_boxes.tensor[valid_map, :] new_boxes = Boxes(new_bbox_loc) # add boxes to instances new_proposal_inst.gt_boxes = new_boxes new_proposal_inst.gt_classes = proposal_bbox_inst.pred_classes[valid_map] new_proposal_inst.scores = proposal_bbox_inst.scores[valid_map] return new_proposal_inst def process_pseudo_label( self, proposals_rpn_unsup_k, cur_threshold, proposal_type, psedo_label_method="" ): list_instances = [] num_proposal_output = 0.0 for proposal_bbox_inst in proposals_rpn_unsup_k: # thresholding if psedo_label_method == "thresholding": proposal_bbox_inst = self.threshold_bbox( proposal_bbox_inst, thres=cur_threshold, proposal_type=proposal_type ) else: raise ValueError("Unkown pseudo label boxes methods") num_proposal_output += len(proposal_bbox_inst) list_instances.append(proposal_bbox_inst) num_proposal_output = num_proposal_output / len(proposals_rpn_unsup_k) return list_instances, num_proposal_output def remove_label(self, label_data): for label_datum in label_data: if "instances" in label_datum.keys(): del label_datum["instances"] return label_data def add_label(self, unlabled_data, label): for unlabel_datum, lab_inst in zip(unlabled_data, label): unlabel_datum["instances"] = lab_inst return unlabled_data def get_label(self, label_data): label_list = [] for label_datum in label_data: if "instances" in label_datum.keys(): label_list.append(copy.deepcopy(label_datum["instances"])) return label_list # def get_label_test(self, label_data): # label_list = [] # for label_datum in label_data: # if "instances" in label_datum.keys(): # label_list.append(label_datum["instances"]) # ===================================================== # =================== Training Flow =================== # ===================================================== def run_step_full_semisup(self): self._trainer.iter = self.iter assert self.model.training, "[UBTeacherTrainer] model was changed to eval mode!" start = time.perf_counter() data = next(self._trainer._data_loader_iter) # data_q and data_k from different augmentations (q:strong, k:weak) # label_strong, label_weak, unlabed_strong, unlabled_weak label_data_q, label_data_k, unlabel_data_q, unlabel_data_k = data data_time = time.perf_counter() - start # burn-in stage (supervised training with labeled data) if self.iter < self.cfg.SEMISUPNET.BURN_UP_STEP: # input both strong and weak supervised data into model label_data_q.extend(label_data_k) record_dict, _, _, _ = self.model( label_data_q, branch="supervised") # weight losses loss_dict = {} for key in record_dict.keys(): if key[:4] == "loss": loss_dict[key] = record_dict[key] * 1 losses = sum(loss_dict.values()) else: if self.iter == self.cfg.SEMISUPNET.BURN_UP_STEP: # update copy the the whole model self._update_teacher_model(keep_rate=0.00) # self.model.build_discriminator() elif ( self.iter - self.cfg.SEMISUPNET.BURN_UP_STEP ) % self.cfg.SEMISUPNET.TEACHER_UPDATE_ITER == 0: self._update_teacher_model( keep_rate=self.cfg.SEMISUPNET.EMA_KEEP_RATE) record_dict = {} ######################## For probe ################################# # import pdb; pdb. set_trace() gt_unlabel_k = self.get_label(unlabel_data_k) # gt_unlabel_q = self.get_label_test(unlabel_data_q) # 0. remove unlabeled data labels unlabel_data_q = self.remove_label(unlabel_data_q) unlabel_data_k = self.remove_label(unlabel_data_k) # 1. generate the pseudo-label using teacher model with torch.no_grad(): ( _, proposals_rpn_unsup_k, proposals_roih_unsup_k, _, ) = self.model_teacher(unlabel_data_k, branch="unsup_data_weak") ######################## For probe ################################# # import pdb; pdb. set_trace() # probe_metrics = ['compute_fp_gtoutlier', 'compute_num_box'] # probe_metrics = ['compute_num_box'] # analysis_pred, _ = self.probe.compute_num_box(gt_unlabel_k,proposals_roih_unsup_k,'pred') # record_dict.update(analysis_pred) ######################## For probe END ################################# # 2. Pseudo-labeling cur_threshold = self.cfg.SEMISUPNET.BBOX_THRESHOLD joint_proposal_dict = {} joint_proposal_dict["proposals_rpn"] = proposals_rpn_unsup_k #Process pseudo labels and thresholding ( pesudo_proposals_rpn_unsup_k, nun_pseudo_bbox_rpn, ) = self.process_pseudo_label( proposals_rpn_unsup_k, cur_threshold, "rpn", "thresholding" ) # analysis_pred, _ = self.probe.compute_num_box(gt_unlabel_k,pesudo_proposals_rpn_unsup_k,'pred',True) # record_dict.update(analysis_pred) joint_proposal_dict["proposals_pseudo_rpn"] = pesudo_proposals_rpn_unsup_k # Pseudo_labeling for ROI head (bbox location/objectness) pesudo_proposals_roih_unsup_k, _ = self.process_pseudo_label( proposals_roih_unsup_k, cur_threshold, "roih", "thresholding" ) joint_proposal_dict["proposals_pseudo_roih"] = pesudo_proposals_roih_unsup_k # 3. add pseudo-label to unlabeled data unlabel_data_q = self.add_label( unlabel_data_q, joint_proposal_dict["proposals_pseudo_roih"] ) unlabel_data_k = self.add_label( unlabel_data_k, joint_proposal_dict["proposals_pseudo_roih"] ) all_label_data = label_data_q + label_data_k all_unlabel_data = unlabel_data_q # 4. input both strongly and weakly augmented labeled data into student model record_all_label_data, _, _, _ = self.model( all_label_data, branch="supervised" ) record_dict.update(record_all_label_data) # 5. input strongly augmented unlabeled data into model record_all_unlabel_data, _, _, _ = self.model( all_unlabel_data, branch="supervised_target" ) new_record_all_unlabel_data = {} for key in record_all_unlabel_data.keys(): new_record_all_unlabel_data[key + "_pseudo"] = record_all_unlabel_data[ key ] record_dict.update(new_record_all_unlabel_data) # 6. input weakly labeled data (source) and weakly unlabeled data (target) to student model # give sign to the target data for i_index in range(len(unlabel_data_k)): # unlabel_data_item = {} for k, v in unlabel_data_k[i_index].items(): # label_data_k[i_index][k + "_unlabeled"] = v label_data_k[i_index][k + "_unlabeled"] = v # unlabel_data_k[i_index] = unlabel_data_item all_domain_data = label_data_k # all_domain_data = label_data_k + unlabel_data_k record_all_domain_data, _, _, _ = self.model(all_domain_data, branch="domain") record_dict.update(record_all_domain_data) # weight losses loss_dict = {} for key in record_dict.keys(): if key.startswith("loss"): if key == "loss_rpn_loc_pseudo" or key == "loss_box_reg_pseudo": # pseudo bbox regression <- 0 loss_dict[key] = record_dict[key] * 0 elif key[-6:] == "pseudo": # unsupervised loss loss_dict[key] = ( record_dict[key] * self.cfg.SEMISUPNET.UNSUP_LOSS_WEIGHT ) elif ( key == "loss_D_img_s" or key == "loss_D_img_t" ): # set weight for discriminator # import pdb # pdb.set_trace() loss_dict[key] = record_dict[key] * self.cfg.SEMISUPNET.DIS_LOSS_WEIGHT #Need to modify defaults and yaml else: # supervised loss loss_dict[key] = record_dict[key] * 1 losses = sum(loss_dict.values()) metrics_dict = record_dict metrics_dict["data_time"] = data_time self._write_metrics(metrics_dict) self.optimizer.zero_grad() losses.backward() self.optimizer.step() def _write_metrics(self, metrics_dict: dict): metrics_dict = { k: v.detach().cpu().item() if isinstance(v, torch.Tensor) else float(v) for k, v in metrics_dict.items() } # gather metrics among all workers for logging # This assumes we do DDP-style training, which is currently the only # supported method in detectron2. all_metrics_dict = comm.gather(metrics_dict) # all_hg_dict = comm.gather(hg_dict) if comm.is_main_process(): if "data_time" in all_metrics_dict[0]: # data_time among workers can have high variance. The actual latency # caused by data_time is the maximum among workers. data_time = np.max([x.pop("data_time") for x in all_metrics_dict]) self.storage.put_scalar("data_time", data_time) # average the rest metrics metrics_dict = { k: np.mean([x[k] for x in all_metrics_dict]) for k in all_metrics_dict[0].keys() } # append the list loss_dict = {} for key in metrics_dict.keys(): if key[:4] == "loss": loss_dict[key] = metrics_dict[key] total_losses_reduced = sum(loss for loss in loss_dict.values()) self.storage.put_scalar("total_loss", total_losses_reduced) if len(metrics_dict) > 1: self.storage.put_scalars(**metrics_dict) @torch.no_grad() def _update_teacher_model(self, keep_rate=0.9996): if comm.get_world_size() > 1: student_model_dict = { key[7:]: value for key, value in self.model.state_dict().items() } else: student_model_dict = self.model.state_dict() new_teacher_dict = OrderedDict() for key, value in self.model_teacher.state_dict().items(): if key in student_model_dict.keys(): new_teacher_dict[key] = ( student_model_dict[key] * (1 - keep_rate) + value * keep_rate ) else: raise Exception("{} is not found in student model".format(key)) self.model_teacher.load_state_dict(new_teacher_dict) @torch.no_grad() def _copy_main_model(self): # initialize all parameters if comm.get_world_size() > 1: rename_model_dict = { key[7:]: value for key, value in self.model.state_dict().items() } self.model_teacher.load_state_dict(rename_model_dict) else: self.model_teacher.load_state_dict(self.model.state_dict()) @classmethod def build_test_loader(cls, cfg, dataset_name): return build_detection_test_loader(cfg, dataset_name) def build_hooks(self): cfg = self.cfg.clone() cfg.defrost() cfg.DATALOADER.NUM_WORKERS = 0 # save some memory and time for PreciseBN ret = [ hooks.IterationTimer(), hooks.LRScheduler(self.optimizer, self.scheduler), hooks.PreciseBN( # Run at the same freq as (but before) evaluation. cfg.TEST.EVAL_PERIOD, self.model, # Build a new data loader to not affect training self.build_train_loader(cfg), cfg.TEST.PRECISE_BN.NUM_ITER, ) if cfg.TEST.PRECISE_BN.ENABLED and get_bn_modules(self.model) else None, ] # Do PreciseBN before checkpointer, because it updates the model and need to # be saved by checkpointer. # This is not always the best: if checkpointing has a different frequency, # some checkpoints may have more precise statistics than others. if comm.is_main_process(): ret.append( hooks.PeriodicCheckpointer( self.checkpointer, cfg.SOLVER.CHECKPOINT_PERIOD ) ) def test_and_save_results_student(): self._last_eval_results_student = self.test(self.cfg, self.model) _last_eval_results_student = { k + "_student": self._last_eval_results_student[k] for k in self._last_eval_results_student.keys() } return _last_eval_results_student def test_and_save_results_teacher(): self._last_eval_results_teacher = self.test( self.cfg, self.model_teacher) return self._last_eval_results_teacher ret.append(hooks.EvalHook(cfg.TEST.EVAL_PERIOD, test_and_save_results_student)) ret.append(hooks.EvalHook(cfg.TEST.EVAL_PERIOD, test_and_save_results_teacher)) if comm.is_main_process(): # run writers in the end, so that evaluation metrics are written ret.append(hooks.PeriodicWriter(self.build_writers(), period=20)) return ret
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # from d2go.config import CfgNode as CN def add_aut_config(cfg): """ Add config for SemiSupSegRunner. """ _C = cfg #New added for discriminator _C.UNBIASEDTEACHER.DIS_LOSS_WEIGHT = 0.1 _C.UNBIASEDTEACHER.DIS_TYPE = "concate" #["concate","p2","multi"] _C.UNBIASEDTEACHER.ISAUG = "Yes"
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import logging import os from collections import OrderedDict from functools import lru_cache import d2go.utils.abnormal_checker as abnormal_checker import detectron2.utils.comm as comm from d2go.config import CONFIG_SCALING_METHOD_REGISTRY, temp_defrost from d2go.data.dataset_mappers import D2GoDatasetMapper, build_dataset_mapper from d2go.data.transforms.build import build_transform_gen from d2go.data.utils import maybe_subsample_n_images from d2go.modeling import build_model, kmeans_anchors, model_ema from d2go.runner import GeneralizedRCNNRunner from d2go.utils.flop_calculator import add_print_flops_callback from d2go.utils.misc import get_tensorboard_log_dir from d2go.utils.helper import TensorboardXWriter, D2Trainer from detectron2.checkpoint import PeriodicCheckpointer from detectron2.engine import hooks from detectron2.utils.events import CommonMetricPrinter, JSONWriter, TensorboardXWriter from torch.nn.parallel import DataParallel, DistributedDataParallel from detectron2.evaluation import ( DatasetEvaluators, ) from detectron2.data import ( MetadataCatalog, ) from ..evaluation import ( COCOEvaluator, PascalVOCDetectionEvaluator, ) from d2go.projects.unbiased_teacher.checkpoint import EnsembleTSModel from ..config.defaults import add_aut_config # from ..config.defaults import add_ut_config # from ..data.build import ( # build_detection_semisup_train_loader_two_crops, # build_uru_detection_semisup_train_loader, # inject_uru_dataset, # ) from d2go.projects.unbiased_teacher.data.build import ( build_detection_semisup_train_loader_two_crops, build_uru_detection_semisup_train_loader, ) from d2go.projects.unbiased_teacher.runner.runner import UnbiasedTeacherRunner from d2go.projects.unbiased_teacher.data.dataset_mapper import DatasetMapperTwoCropSeparate # noqa from ..data import builtin # noqa; for registering COCO unlabel dataset from d2go.projects.unbiased_teacher.engine.trainer import UnbiasedTeacherTrainer from d2go.projects.unbiased_teacher.modeling.meta_arch.rcnn import TwoStagePseudoLabGeneralizedRCNN # noqa from d2go.projects.unbiased_teacher.modeling.proposal_generator.rpn import PseudoLabRPN # noqa from d2go.projects.unbiased_teacher.modeling.roi_heads.roi_heads import StandardROIHeadsPseudoLab # noqa from d2go.projects.unbiased_teacher.solver.build import ut_build_lr_scheduler #For DA object detection from ..engine.trainer import DAobjTrainer from ..modeling.meta_arch.daobj_rcnn import DAobjTwoStagePseudoLabGeneralizedRCNN # noqa #For VGG model architecture from ..modeling.meta_arch.vgg import build_vgg_backbone,build_vgg_fpn_backbone # noqa ALL_TB_WRITERS = [] @lru_cache() def _get_tbx_writer(log_dir): ret = TensorboardXWriter(log_dir) ALL_TB_WRITERS.append(ret) return ret class BaseUnbiasedTeacherRunner(UnbiasedTeacherRunner): def get_default_cfg(self): cfg = super().get_default_cfg() add_aut_config(cfg) # add_pointrend_config(cfg) # cfg = CN(cfg) # upgrade from D2's CfgNode to D2Go's CfgNode return cfg @staticmethod def get_evaluator(cfg, dataset_name, output_folder): evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type if evaluator_type in ["coco"]: # D2 is in the process of reducing the use of cfg. dataset_evaluators = COCOEvaluator( dataset_name, output_dir=output_folder, kpt_oks_sigmas=cfg.TEST.KEYPOINT_OKS_SIGMAS, ) elif evaluator_type in ["pascal_voc"]: dataset_evaluators = PascalVOCDetectionEvaluator(dataset_name) elif evaluator_type in ["pascal_voc_water"]: dataset_evaluators = PascalVOCDetectionEvaluator(dataset_name, target_classnames=["bicycle", "bird", "car", "cat", "dog", "person"]) else: dataset_evaluators = D2Trainer.build_evaluator( cfg, dataset_name, output_folder ) if not isinstance(dataset_evaluators, DatasetEvaluators): dataset_evaluators = DatasetEvaluators([dataset_evaluators]) return dataset_evaluators # class DAobjUnbiasedTeacherRunner(UnbiasedTeacherRunner): class DAobjUnbiasedTeacherRunner(BaseUnbiasedTeacherRunner): def get_default_cfg(self): cfg = super().get_default_cfg() # add_aut_config(cfg) # add_pointrend_config(cfg) # cfg = CN(cfg) # upgrade from D2's CfgNode to D2Go's CfgNode return cfg def build_model(self, cfg, eval_only=False): """ Build both Student and Teacher models Student: regular model Teacher: model that is updated by EMA """ # build_model might modify the cfg, thus clone cfg = cfg.clone() model = build_model(cfg) model_teacher = build_model(cfg) if cfg.MODEL.FROZEN_LAYER_REG_EXP: raise NotImplementedError() if cfg.QUANTIZATION.QAT.ENABLED: raise NotImplementedError() if eval_only: raise NotImplementedError() return EnsembleTSModel(model_teacher, model) def do_train(self, cfg, model, resume): # NOTE: d2go's train_net applies DDP layer by default # we need to strip it away and only put DDP on model_student if isinstance(model, (DistributedDataParallel, DataParallel)): model = model.module model_teacher, model_student = model.model_teacher, model.model_student if comm.get_world_size() > 1: model_student = DistributedDataParallel( model_student, device_ids=None if cfg.MODEL.DEVICE == "cpu" else [comm.get_local_rank()], broadcast_buffers=False, find_unused_parameters=cfg.MODEL.DDP_FIND_UNUSED_PARAMETERS, ) add_print_flops_callback(cfg, model_student, disable_after_callback=True) optimizer = self.build_optimizer(cfg, model_student) scheduler = self.build_lr_scheduler(cfg, optimizer) checkpointer = self.build_checkpointer( cfg, model, save_dir=cfg.OUTPUT_DIR, optimizer=optimizer, scheduler=scheduler, ) checkpoint = checkpointer.resume_or_load( cfg.MODEL.WEIGHTS, resume=resume or cfg.UNBIASEDTEACHER.RESUME_FROM_ANOTHER ) start_iter = ( checkpoint.get("iteration", -1) if resume and checkpointer.has_checkpoint() or cfg.UNBIASEDTEACHER.RESUME_FROM_ANOTHER else -1 ) # The checkpoint stores the training iteration that just finished, thus we start # at the next iteration (or iter zero if there's no checkpoint). start_iter += 1 max_iter = cfg.SOLVER.MAX_ITER periodic_checkpointer = PeriodicCheckpointer( checkpointer, cfg.SOLVER.CHECKPOINT_PERIOD, max_iter=max_iter ) # if resume from a pre-trained checkpoint, we modify the BURN_IN_STEP # so that the weights of the Student will be copied to the Teacher # at the 1st iteration when the training started if cfg.UNBIASEDTEACHER.RESUME_FROM_ANOTHER: cfg.defrost() cfg.UNBIASEDTEACHER.BURN_IN_STEP = start_iter cfg.freeze() data_loader = self.build_detection_train_loader(cfg) def _get_model_with_abnormal_checker(model): if not cfg.ABNORMAL_CHECKER.ENABLED: return model tbx_writer = _get_tbx_writer(get_tensorboard_log_dir(cfg.OUTPUT_DIR)) writers = abnormal_checker.get_writers(cfg, tbx_writer) checker = abnormal_checker.AbnormalLossChecker(start_iter, writers) ret = abnormal_checker.AbnormalLossCheckerWrapper(model, checker) return ret trainer = DAobjTrainer( cfg, _get_model_with_abnormal_checker(model_student), _get_model_with_abnormal_checker(model_teacher), data_loader, optimizer, ) trainer_hooks = [ hooks.IterationTimer(), self._create_after_step_hook( cfg, model_student, optimizer, scheduler, periodic_checkpointer ), hooks.EvalHook( cfg.TEST.EVAL_PERIOD, lambda: self.do_test(cfg, model, train_iter=trainer.iter), ), kmeans_anchors.compute_kmeans_anchors_hook(self, cfg), self._create_qat_hook(cfg) if cfg.QUANTIZATION.QAT.ENABLED else None, ] if comm.is_main_process(): tbx_writer = _get_tbx_writer(get_tensorboard_log_dir(cfg.OUTPUT_DIR)) writers = [ CommonMetricPrinter(max_iter), JSONWriter(os.path.join(cfg.OUTPUT_DIR, "metrics.json")), tbx_writer, ] trainer_hooks.append( hooks.PeriodicWriter(writers, period=cfg.WRITER_PERIOD) ) trainer.register_hooks(trainer_hooks) trainer.train(start_iter, max_iter) trained_cfg = cfg.clone() with temp_defrost(trained_cfg): trained_cfg.MODEL.WEIGHTS = checkpointer.get_checkpoint_file() return {"model_final": trained_cfg}
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # from .runner import SemiSupSegRunner, SemiSupHandTrackingRunner # noqa from .runner import BaseUnbiasedTeacherRunner # noqa from .runner import DAobjUnbiasedTeacherRunner # noqa
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import torch.nn as nn import copy import torch from typing import Union, List, Dict, Any, cast from detectron2.modeling.backbone import ( ResNet, Backbone, build_resnet_backbone, BACKBONE_REGISTRY ) from detectron2.modeling.backbone.fpn import FPN, LastLevelMaxPool, LastLevelP6P7 def make_layers(cfg: List[Union[str, int]], batch_norm: bool = False) -> nn.Sequential: layers: List[nn.Module] = [] in_channels = 3 for v in cfg: if v == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: v = cast(int, v) conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1) if batch_norm: layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)] else: layers += [conv2d, nn.ReLU(inplace=True)] in_channels = v return nn.Sequential(*layers) cfgs: Dict[str, List[Union[str, int]]] = { 'vgg11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'vgg13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'vgg16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'], 'vgg19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'], } class vgg_backbone(Backbone): """ Backbone (bottom-up) for FBNet. Hierarchy: trunk0: xif0_0 xif0_1 ... trunk1: xif1_0 xif1_1 ... ... Output features: The outputs from each "stage", i.e. trunkX. """ def __init__(self, cfg): super().__init__() self.vgg = make_layers(cfgs['vgg16'],batch_norm=True) self._initialize_weights() # self.stage_names_index = {'vgg1':3, 'vgg2':8 , 'vgg3':15, 'vgg4':22, 'vgg5':29} _out_feature_channels = [64, 128, 256, 512, 512] _out_feature_strides = [2, 4, 8, 16, 32] # stages, shape_specs = build_fbnet( # cfg, # name="trunk", # in_channels=cfg.MODEL.FBNET_V2.STEM_IN_CHANNELS # ) # nn.Sequential(*list(self.vgg.features._modules.values())[:14]) self.stages = [nn.Sequential(*list(self.vgg._modules.values())[0:7]),\ nn.Sequential(*list(self.vgg._modules.values())[7:14]),\ nn.Sequential(*list(self.vgg._modules.values())[14:24]),\ nn.Sequential(*list(self.vgg._modules.values())[24:34]),\ nn.Sequential(*list(self.vgg._modules.values())[34:]),] self._out_feature_channels = {} self._out_feature_strides = {} self._stage_names = [] for i, stage in enumerate(self.stages): name = "vgg{}".format(i) self.add_module(name, stage) self._stage_names.append(name) self._out_feature_channels[name] = _out_feature_channels[i] self._out_feature_strides[name] = _out_feature_strides[i] self._out_features = self._stage_names del self.vgg def forward(self, x): features = {} for name, stage in zip(self._stage_names, self.stages): x = stage(x) # if name in self._out_features: # outputs[name] = x features[name] = x # import pdb # pdb.set_trace() return features def _initialize_weights(self) -> None: for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.constant_(m.bias, 0) @BACKBONE_REGISTRY.register() #already register in baseline model def build_vgg_backbone(cfg, _): return vgg_backbone(cfg) @BACKBONE_REGISTRY.register() #already register in baseline model def build_vgg_fpn_backbone(cfg, _): # backbone = FPN( # bottom_up=build_vgg_backbone(cfg), # in_features=cfg.MODEL.FPN.IN_FEATURES, # out_channels=cfg.MODEL.FPN.OUT_CHANNELS, # norm=cfg.MODEL.FPN.NORM, # top_block=LastLevelMaxPool(), # ) bottom_up = vgg_backbone(cfg) in_features = cfg.MODEL.FPN.IN_FEATURES out_channels = cfg.MODEL.FPN.OUT_CHANNELS backbone = FPN( bottom_up=bottom_up, in_features=in_features, out_channels=out_channels, norm=cfg.MODEL.FPN.NORM, top_block=LastLevelMaxPool(), # fuse_type=cfg.MODEL.FPN.FUSE_TYPE, ) # return backbone return backbone
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import numpy as np import torch import torch.nn as nn from torch.nn import functional as F from detectron2.data.detection_utils import convert_image_to_rgb from detectron2.modeling import META_ARCH_REGISTRY, GeneralizedRCNN from detectron2.utils.events import get_event_storage import logging from typing import Dict, Tuple, List, Optional from collections import OrderedDict from detectron2.config import configurable # from detectron2.modeling.meta_arch.build import META_ARCH_REGISTRY # from detectron2.modeling.meta_arch.rcnn import GeneralizedRCNN from detectron2.modeling.proposal_generator import build_proposal_generator from detectron2.modeling.backbone import build_backbone, Backbone from detectron2.modeling.roi_heads import build_roi_heads from detectron2.utils.events import get_event_storage from detectron2.structures import ImageList ############### Image discriminator ############## class FCDiscriminator_img(nn.Module): def __init__(self, num_classes, ndf1=256, ndf2=128): super(FCDiscriminator_img, self).__init__() self.conv1 = nn.Conv2d(num_classes, ndf1, kernel_size=3, padding=1) self.conv2 = nn.Conv2d(ndf1, ndf2, kernel_size=3, padding=1) self.conv3 = nn.Conv2d(ndf2, ndf2, kernel_size=3, padding=1) self.classifier = nn.Conv2d(ndf2, 1, kernel_size=3, padding=1) self.leaky_relu = nn.LeakyReLU(negative_slope=0.2, inplace=True) def forward(self, x): x = self.conv1(x) x = self.leaky_relu(x) x = self.conv2(x) x = self.leaky_relu(x) x = self.conv3(x) x = self.leaky_relu(x) x = self.classifier(x) return x ################################# ################ Gradient reverse function class GradReverse(torch.autograd.Function): @staticmethod def forward(ctx, x): return x.view_as(x) @staticmethod def backward(ctx, grad_output): return grad_output.neg() def grad_reverse(x): return GradReverse.apply(x) ####################### @META_ARCH_REGISTRY.register() class DAobjTwoStagePseudoLabGeneralizedRCNN(GeneralizedRCNN): @configurable def __init__( self, *, backbone: Backbone, proposal_generator: nn.Module, roi_heads: nn.Module, pixel_mean: Tuple[float], pixel_std: Tuple[float], input_format: Optional[str] = None, vis_period: int = 0, dis_type: str, # dis_loss_weight: float = 0, ): """ Args: backbone: a backbone module, must follow detectron2's backbone interface proposal_generator: a module that generates proposals using backbone features roi_heads: a ROI head that performs per-region computation pixel_mean, pixel_std: list or tuple with #channels element, representing the per-channel mean and std to be used to normalize the input image input_format: describe the meaning of channels of input. Needed by visualization vis_period: the period to run visualization. Set to 0 to disable. """ super(GeneralizedRCNN, self).__init__() self.backbone = backbone self.proposal_generator = proposal_generator self.roi_heads = roi_heads self.input_format = input_format self.vis_period = vis_period if vis_period > 0: assert input_format is not None, "input_format is required for visualization!" self.register_buffer("pixel_mean", torch.tensor(pixel_mean).view(-1, 1, 1), False) self.register_buffer("pixel_std", torch.tensor(pixel_std).view(-1, 1, 1), False) assert ( self.pixel_mean.shape == self.pixel_std.shape ), f"{self.pixel_mean} and {self.pixel_std} have different shapes!" # @yujheli: you may need to build your discriminator here self.dis_type = dis_type # self.D_img = FCDiscriminator_img(self.backbone._out_feature_channels['res4']) # Need to know the channel if self.dis_type == "multi": self.D_img_dict = {} for k,v in self.backbone._out_feature_channels.items(): self.D_img_dict[k] = FCDiscriminator_img(v) self.add_module("D_"+k, self.D_img_dict[k]) else: self.D_img = FCDiscriminator_img(self.backbone._out_feature_channels[self.dis_type]) # Need to know the channel # self.bceLoss_func = nn.BCEWithLogitsLoss() @classmethod def from_config(cls, cfg): backbone = build_backbone(cfg) return { "backbone": backbone, "proposal_generator": build_proposal_generator(cfg, backbone.output_shape()), "roi_heads": build_roi_heads(cfg, backbone.output_shape()), "input_format": cfg.INPUT.FORMAT, "vis_period": cfg.VIS_PERIOD, "pixel_mean": cfg.MODEL.PIXEL_MEAN, "pixel_std": cfg.MODEL.PIXEL_STD, "dis_type": cfg.UNBIASEDTEACHER.DIS_TYPE, # "dis_loss_ratio": cfg.xxx, } def preprocess_image_train(self, batched_inputs: List[Dict[str, torch.Tensor]]): """ Normalize, pad and batch the input images. """ images = [x["image"].to(self.device) for x in batched_inputs] images = [(x - self.pixel_mean) / self.pixel_std for x in images] images = ImageList.from_tensors(images, self.backbone.size_divisibility) images_t = [x["image_unlabeled"].to(self.device) for x in batched_inputs] images_t = [(x - self.pixel_mean) / self.pixel_std for x in images_t] images_t = ImageList.from_tensors(images_t, self.backbone.size_divisibility) return images, images_t def forward( self, batched_inputs, branch="supervised", given_proposals=None, val_mode=False ): """ Args: batched_inputs: a list, batched outputs of :class:`DatasetMapper` . Each item in the list contains the inputs for one image. For now, each item in the list is a dict that contains: * image: Tensor, image in (C, H, W) format. * instances (optional): groundtruth :class:`Instances` * proposals (optional): :class:`Instances`, precomputed proposals. Other information that's included in the original dicts, such as: * "height", "width" (int): the output resolution of the model, used in inference. See :meth:`postprocess` for details. Returns: list[dict]: Each dict is the output for one input image. The dict contains one key "instances" whose value is a :class:`Instances`. The :class:`Instances` object has the following keys: "pred_boxes", "pred_classes", "scores", "pred_masks", "pred_keypoints" """ if (not self.training) and (not val_mode): # only conduct when testing mode return self.inference(batched_inputs) if branch == "domain": source_label = 0 target_label = 1 # images = self.preprocess_image(batched_inputs) images_s, images_t = self.preprocess_image_train(batched_inputs) features = self.backbone(images_s.tensor) # import pdb # pdb.set_trace() if self.dis_type == "multi": loss_D_img_s = 0 for k, v in features.items(): features_s = grad_reverse(v) D_img_out_s = self.D_img_dict[k](features_s) loss_D_img_s += F.binary_cross_entropy_with_logits(D_img_out_s, torch.FloatTensor(D_img_out_s.data.size()).fill_(source_label).to(self.device)) loss_D_img_s /= len(features) # features_s = grad_reverse(torch.cat((features['p2'],features['p3'],features['p4'],features['p5']),dim=1)) else: features_s = grad_reverse(features[self.dis_type]) D_img_out_s = self.D_img(features_s) loss_D_img_s = F.binary_cross_entropy_with_logits(D_img_out_s, torch.FloatTensor(D_img_out_s.data.size()).fill_(source_label).to(self.device)) features_t = self.backbone(images_t.tensor) if self.dis_type == "multi": loss_D_img_t = 0 for k, v in features_t.items(): features_tt = grad_reverse(v) D_img_out_t = self.D_img_dict[k](features_tt) loss_D_img_t += F.binary_cross_entropy_with_logits(D_img_out_t, torch.FloatTensor(D_img_out_t.data.size()).fill_(target_label).to(self.device)) loss_D_img_t /= len(features_t) else: features_t = grad_reverse(features_t[self.dis_type]) # features_t = grad_reverse(features_t['p2']) D_img_out_t = self.D_img(features_t) loss_D_img_t = F.binary_cross_entropy_with_logits(D_img_out_t, torch.FloatTensor(D_img_out_t.data.size()).fill_(target_label).to(self.device)) # import pdb # pdb.set_trace() losses = {} losses["loss_D_img_s"] = loss_D_img_s losses["loss_D_img_t"] = loss_D_img_t return losses, [], [], None images = self.preprocess_image(batched_inputs) if "instances" in batched_inputs[0]: gt_instances = [x["instances"].to(self.device) for x in batched_inputs] else: gt_instances = None features = self.backbone(images.tensor) # TODO: remove the usage of if else here. This needs to be re-organized if branch.startswith("supervised"): # Region proposal network proposals_rpn, proposal_losses = self.proposal_generator( images, features, gt_instances ) # roi_head lower branch _, detector_losses = self.roi_heads( images, features, proposals_rpn, compute_loss=True, targets=gt_instances, branch=branch, ) # visualization if self.vis_period > 0: storage = get_event_storage() if storage.iter % self.vis_period == 0: self.visualize_training(batched_inputs, proposals_rpn, branch) losses = {} losses.update(detector_losses) losses.update(proposal_losses) return losses, [], [], None elif branch == "unsup_data_weak": """ unsupervised weak branch: input image without any ground-truth label; output proposals of rpn and roi-head """ # Region proposal network proposals_rpn, _ = self.proposal_generator( images, features, None, compute_loss=False ) # roi_head lower branch (keep this for further production) # notice that we do not use any target in ROI head to do inference! proposals_roih, ROI_predictions = self.roi_heads( images, features, proposals_rpn, targets=None, compute_loss=False, branch=branch, ) # if self.vis_period > 0: # storage = get_event_storage() # if storage.iter % self.vis_period == 0: # self.visualize_training(batched_inputs, proposals_rpn, branch) return {}, proposals_rpn, proposals_roih, ROI_predictions elif branch == "unsup_data_strong": raise NotImplementedError() elif branch == "val_loss": raise NotImplementedError() def visualize_training(self, batched_inputs, proposals, branch=""): """ This function different from the original one: - it adds "branch" to the `vis_name`. A function used to visualize images and proposals. It shows ground truth bounding boxes on the original image and up to 20 predicted object proposals on the original image. Users can implement different visualization functions for different models. Args: batched_inputs (list): a list that contains input to the model. proposals (list): a list that contains predicted proposals. Both batched_inputs and proposals should have the same length. """ from detectron2.utils.visualizer import Visualizer storage = get_event_storage() max_vis_prop = 20 for input, prop in zip(batched_inputs, proposals): img = input["image"] img = convert_image_to_rgb(img.permute(1, 2, 0), self.input_format) v_gt = Visualizer(img, None) v_gt = v_gt.overlay_instances(boxes=input["instances"].gt_boxes) anno_img = v_gt.get_image() box_size = min(len(prop.proposal_boxes), max_vis_prop) v_pred = Visualizer(img, None) v_pred = v_pred.overlay_instances( boxes=prop.proposal_boxes[0:box_size].tensor.cpu().numpy() ) prop_img = v_pred.get_image() vis_img = np.concatenate((anno_img, prop_img), axis=1) vis_img = vis_img.transpose(2, 0, 1) vis_name = ( "Left: GT bounding boxes " + branch + "; Right: Predicted proposals " + branch ) storage.put_image(vis_name, vis_img) break # only visualize one image in a batch
# Copyright (c) Facebook, Inc. and its affiliates. from .coco_evaluation import COCOEvaluator from .pascal_voc_evaluation import PascalVOCDetectionEvaluator # __all__ = [k for k in globals().keys() if not k.startswith("_")] __all__ = [ "COCOEvaluator", "PascalVOCDetectionEvaluator" ]
# Copyright (c) Facebook, Inc. and its affiliates. import contextlib import copy import io import itertools import json import logging import numpy as np import os import pickle from collections import OrderedDict import pycocotools.mask as mask_util import torch from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval from tabulate import tabulate import detectron2.utils.comm as comm from detectron2.config import CfgNode from detectron2.data import MetadataCatalog from detectron2.data.datasets.coco import convert_to_coco_dict from detectron2.evaluation.fast_eval_api import COCOeval_opt from detectron2.structures import Boxes, BoxMode, pairwise_iou from detectron2.utils.file_io import PathManager from detectron2.utils.logger import create_small_table from detectron2.evaluation import DatasetEvaluator from iopath.common.file_io import file_lock logger = logging.getLogger(__name__) def convert_to_coco_json(dataset_name, output_file, allow_cached=True): """ Converts dataset into COCO format and saves it to a json file. dataset_name must be registered in DatasetCatalog and in detectron2's standard format. Args: dataset_name: reference from the config file to the catalogs must be registered in DatasetCatalog and in detectron2's standard format output_file: path of json file that will be saved to allow_cached: if json file is already present then skip conversion """ # TODO: The dataset or the conversion script *may* change, # a checksum would be useful for validating the cached data PathManager.mkdirs(os.path.dirname(output_file)) with file_lock(output_file): if PathManager.exists(output_file) and allow_cached: logger.warning( f"Using previously cached COCO format annotations at '{output_file}'. " "You need to clear the cache file if your dataset has been modified." ) else: logger.info(f"Converting annotations of dataset '{dataset_name}' to COCO format ...)") coco_dict = convert_to_coco_dict(dataset_name) logger.info(f"Caching COCO format annotations at '{output_file}' ...") tmp_file = output_file #+ ".tmp" # with PathManager.open(tmp_file, "w") as f: # json.dump(coco_dict, f) # shutil.move(tmp_file, output_file) with PathManager.open(tmp_file, "w") as f: json.dump(coco_dict, f) class COCOEvaluator(DatasetEvaluator): """ Evaluate AR for object proposals, AP for instance detection/segmentation, AP for keypoint detection outputs using COCO's metrics. See http://cocodataset.org/#detection-eval and http://cocodataset.org/#keypoints-eval to understand its metrics. The metrics range from 0 to 100 (instead of 0 to 1), where a -1 or NaN means the metric cannot be computed (e.g. due to no predictions made). In addition to COCO, this evaluator is able to support any bounding box detection, instance segmentation, or keypoint detection dataset. """ def __init__( self, dataset_name, tasks=None, distributed=True, output_dir=None, *, use_fast_impl=True, kpt_oks_sigmas=(), ): """ Args: dataset_name (str): name of the dataset to be evaluated. It must have either the following corresponding metadata: "json_file": the path to the COCO format annotation Or it must be in detectron2's standard dataset format so it can be converted to COCO format automatically. tasks (tuple[str]): tasks that can be evaluated under the given configuration. A task is one of "bbox", "segm", "keypoints". By default, will infer this automatically from predictions. distributed (True): if True, will collect results from all ranks and run evaluation in the main process. Otherwise, will only evaluate the results in the current process. output_dir (str): optional, an output directory to dump all results predicted on the dataset. The dump contains two files: 1. "instances_predictions.pth" a file that can be loaded with `torch.load` and contains all the results in the format they are produced by the model. 2. "coco_instances_results.json" a json file in COCO's result format. use_fast_impl (bool): use a fast but **unofficial** implementation to compute AP. Although the results should be very close to the official implementation in COCO API, it is still recommended to compute results with the official API for use in papers. The faster implementation also uses more RAM. kpt_oks_sigmas (list[float]): The sigmas used to calculate keypoint OKS. See http://cocodataset.org/#keypoints-eval When empty, it will use the defaults in COCO. Otherwise it should be the same length as ROI_KEYPOINT_HEAD.NUM_KEYPOINTS. """ self._logger = logging.getLogger(__name__) self._distributed = distributed self._output_dir = output_dir self._use_fast_impl = use_fast_impl if tasks is not None and isinstance(tasks, CfgNode): kpt_oks_sigmas = ( tasks.TEST.KEYPOINT_OKS_SIGMAS if not kpt_oks_sigmas else kpt_oks_sigmas ) self._logger.warn( "COCO Evaluator instantiated using config, this is deprecated behavior." " Please pass in explicit arguments instead." ) self._tasks = None # Infering it from predictions should be better else: self._tasks = tasks self._cpu_device = torch.device("cpu") self._metadata = MetadataCatalog.get(dataset_name) if not hasattr(self._metadata, "json_file"): self._logger.info( f"'{dataset_name}' is not registered by `register_coco_instances`." " Therefore trying to convert it to COCO format ..." ) cache_path = os.path.join(output_dir, f"{dataset_name}_coco_format.json") self._metadata.json_file = cache_path convert_to_coco_json(dataset_name, cache_path) json_file = PathManager.get_local_path(self._metadata.json_file) with contextlib.redirect_stdout(io.StringIO()): self._coco_api = COCO(json_file) # Test set json files do not contain annotations (evaluation must be # performed using the COCO evaluation server). self._do_evaluation = "annotations" in self._coco_api.dataset if self._do_evaluation: self._kpt_oks_sigmas = kpt_oks_sigmas def reset(self): self._predictions = [] def process(self, inputs, outputs): """ Args: inputs: the inputs to a COCO model (e.g., GeneralizedRCNN). It is a list of dict. Each dict corresponds to an image and contains keys like "height", "width", "file_name", "image_id". outputs: the outputs of a COCO model. It is a list of dicts with key "instances" that contains :class:`Instances`. """ for input, output in zip(inputs, outputs): prediction = {"image_id": input["image_id"]} if "instances" in output: instances = output["instances"].to(self._cpu_device) prediction["instances"] = instances_to_coco_json(instances, input["image_id"]) if "proposals" in output: prediction["proposals"] = output["proposals"].to(self._cpu_device) if len(prediction) > 1: self._predictions.append(prediction) def evaluate(self, img_ids=None): """ Args: img_ids: a list of image IDs to evaluate on. Default to None for the whole dataset """ if self._distributed: comm.synchronize() predictions = comm.gather(self._predictions, dst=0) predictions = list(itertools.chain(*predictions)) if not comm.is_main_process(): return {} else: predictions = self._predictions if len(predictions) == 0: self._logger.warning("[COCOEvaluator] Did not receive valid predictions.") return {} if self._output_dir: PathManager.mkdirs(self._output_dir) file_path = os.path.join(self._output_dir, "instances_predictions.pth") with PathManager.open(file_path, "wb") as f: torch.save(predictions, f) self._results = OrderedDict() if "proposals" in predictions[0]: self._eval_box_proposals(predictions) if "instances" in predictions[0]: self._eval_predictions(predictions, img_ids=img_ids) # Copy so the caller can do whatever with results return copy.deepcopy(self._results) def _tasks_from_predictions(self, predictions): """ Get COCO API "tasks" (i.e. iou_type) from COCO-format predictions. """ tasks = {"bbox"} for pred in predictions: if "segmentation" in pred: tasks.add("segm") if "keypoints" in pred: tasks.add("keypoints") return sorted(tasks) def _eval_predictions(self, predictions, img_ids=None): """ Evaluate predictions. Fill self._results with the metrics of the tasks. """ self._logger.info("Preparing results for COCO format ...") coco_results = list(itertools.chain(*[x["instances"] for x in predictions])) tasks = self._tasks or self._tasks_from_predictions(coco_results) # unmap the category ids for COCO if hasattr(self._metadata, "thing_dataset_id_to_contiguous_id"): dataset_id_to_contiguous_id = self._metadata.thing_dataset_id_to_contiguous_id all_contiguous_ids = list(dataset_id_to_contiguous_id.values()) num_classes = len(all_contiguous_ids) assert min(all_contiguous_ids) == 0 and max(all_contiguous_ids) == num_classes - 1 reverse_id_mapping = {v: k for k, v in dataset_id_to_contiguous_id.items()} for result in coco_results: category_id = result["category_id"] assert category_id < num_classes, ( f"A prediction has class={category_id}, " f"but the dataset only has {num_classes} classes and " f"predicted class id should be in [0, {num_classes - 1}]." ) result["category_id"] = reverse_id_mapping[category_id] if self._output_dir: file_path = os.path.join(self._output_dir, "coco_instances_results.json") self._logger.info("Saving results to {}".format(file_path)) with PathManager.open(file_path, "w") as f: f.write(json.dumps(coco_results)) f.flush() if not self._do_evaluation: self._logger.info("Annotations are not available for evaluation.") return self._logger.info( "Evaluating predictions with {} COCO API...".format( "unofficial" if self._use_fast_impl else "official" ) ) for task in sorted(tasks): assert task in {"bbox", "segm", "keypoints"}, f"Got unknown task: {task}!" coco_eval = ( _evaluate_predictions_on_coco( self._coco_api, coco_results, task, kpt_oks_sigmas=self._kpt_oks_sigmas, use_fast_impl=self._use_fast_impl, img_ids=img_ids, ) if len(coco_results) > 0 else None # cocoapi does not handle empty results very well ) res = self._derive_coco_results( coco_eval, task, class_names=self._metadata.get("thing_classes") ) self._results[task] = res def _eval_box_proposals(self, predictions): """ Evaluate the box proposals in predictions. Fill self._results with the metrics for "box_proposals" task. """ if self._output_dir: # Saving generated box proposals to file. # Predicted box_proposals are in XYXY_ABS mode. bbox_mode = BoxMode.XYXY_ABS.value ids, boxes, objectness_logits = [], [], [] for prediction in predictions: ids.append(prediction["image_id"]) boxes.append(prediction["proposals"].proposal_boxes.tensor.numpy()) objectness_logits.append(prediction["proposals"].objectness_logits.numpy()) proposal_data = { "boxes": boxes, "objectness_logits": objectness_logits, "ids": ids, "bbox_mode": bbox_mode, } with PathManager.open(os.path.join(self._output_dir, "box_proposals.pkl"), "wb") as f: pickle.dump(proposal_data, f) if not self._do_evaluation: self._logger.info("Annotations are not available for evaluation.") return self._logger.info("Evaluating bbox proposals ...") res = {} areas = {"all": "", "small": "s", "medium": "m", "large": "l"} for limit in [100, 1000]: for area, suffix in areas.items(): stats = _evaluate_box_proposals(predictions, self._coco_api, area=area, limit=limit) key = "AR{}@{:d}".format(suffix, limit) res[key] = float(stats["ar"].item() * 100) self._logger.info("Proposal metrics: \n" + create_small_table(res)) self._results["box_proposals"] = res def _derive_coco_results(self, coco_eval, iou_type, class_names=None): """ Derive the desired score numbers from summarized COCOeval. Args: coco_eval (None or COCOEval): None represents no predictions from model. iou_type (str): class_names (None or list[str]): if provided, will use it to predict per-category AP. Returns: a dict of {metric name: score} """ metrics = { "bbox": ["AP", "AP50", "AP75", "APs", "APm", "APl"], "segm": ["AP", "AP50", "AP75", "APs", "APm", "APl"], "keypoints": ["AP", "AP50", "AP75", "APm", "APl"], }[iou_type] if coco_eval is None: self._logger.warn("No predictions from the model!") return {metric: float("nan") for metric in metrics} # the standard metrics results = { metric: float(coco_eval.stats[idx] * 100 if coco_eval.stats[idx] >= 0 else "nan") for idx, metric in enumerate(metrics) } self._logger.info( "Evaluation results for {}: \n".format(iou_type) + create_small_table(results) ) if not np.isfinite(sum(results.values())): self._logger.info("Some metrics cannot be computed and is shown as NaN.") if class_names is None or len(class_names) <= 1: return results # Compute per-category AP # from https://github.com/facebookresearch/Detectron/blob/a6a835f5b8208c45d0dce217ce9bbda915f44df7/detectron/datasets/json_dataset_evaluator.py#L222-L252 # noqa precisions = coco_eval.eval["precision"] # precision has dims (iou, recall, cls, area range, max dets) assert len(class_names) == precisions.shape[2] results_per_category = [] for idx, name in enumerate(class_names): # area range index 0: all area ranges # max dets index -1: typically 100 per image precision = precisions[:, :, idx, 0, -1] precision = precision[precision > -1] ap = np.mean(precision) if precision.size else float("nan") results_per_category.append(("{}".format(name), float(ap * 100))) # tabulate it N_COLS = min(6, len(results_per_category) * 2) results_flatten = list(itertools.chain(*results_per_category)) results_2d = itertools.zip_longest(*[results_flatten[i::N_COLS] for i in range(N_COLS)]) table = tabulate( results_2d, tablefmt="pipe", floatfmt=".3f", headers=["category", "AP"] * (N_COLS // 2), numalign="left", ) self._logger.info("Per-category {} AP: \n".format(iou_type) + table) # results.update({"AP-" + name: ap for name, ap in results_per_category}) results_per_category_AP50 = [] for idx, name in enumerate(class_names): # area range index 0: all area ranges # max dets index -1: typically 100 per image t = np.where(.5 == coco_eval.params.iouThrs)[0] precisions_50 = precisions[t] precisions_50 = precisions_50[:, :, idx, 0, -1] precisions_50 = precisions_50[precisions_50 > -1] ap = np.mean(precisions_50) if precisions_50.size else float("nan") results_per_category_AP50.append(("{}".format(name), float(ap * 100))) # tabulate it N_COLS = min(6, len(results_per_category_AP50) * 2) results_flatten = list(itertools.chain(*results_per_category_AP50)) results_2d = itertools.zip_longest(*[results_flatten[i::N_COLS] for i in range(N_COLS)]) table = tabulate( results_2d, tablefmt="pipe", floatfmt=".3f", headers=["category", "AP50"] * (N_COLS // 2), numalign="left", ) self._logger.info("Per-category {} AP50: \n".format(iou_type) + table) results.update({"AP50-" + name: ap for name, ap in results_per_category_AP50}) return results def instances_to_coco_json(instances, img_id): """ Dump an "Instances" object to a COCO-format json that's used for evaluation. Args: instances (Instances): img_id (int): the image id Returns: list[dict]: list of json annotations in COCO format. """ num_instance = len(instances) if num_instance == 0: return [] boxes = instances.pred_boxes.tensor.numpy() boxes = BoxMode.convert(boxes, BoxMode.XYXY_ABS, BoxMode.XYWH_ABS) boxes = boxes.tolist() scores = instances.scores.tolist() classes = instances.pred_classes.tolist() has_mask = instances.has("pred_masks") if has_mask: # use RLE to encode the masks, because they are too large and takes memory # since this evaluator stores outputs of the entire dataset rles = [ mask_util.encode(np.array(mask[:, :, None], order="F", dtype="uint8"))[0] for mask in instances.pred_masks ] for rle in rles: # "counts" is an array encoded by mask_util as a byte-stream. Python3's # json writer which always produces strings cannot serialize a bytestream # unless you decode it. Thankfully, utf-8 works out (which is also what # the pycocotools/_mask.pyx does). rle["counts"] = rle["counts"].decode("utf-8") has_keypoints = instances.has("pred_keypoints") if has_keypoints: keypoints = instances.pred_keypoints results = [] for k in range(num_instance): result = { "image_id": img_id, "category_id": classes[k], "bbox": boxes[k], "score": scores[k], } if has_mask: result["segmentation"] = rles[k] if has_keypoints: # In COCO annotations, # keypoints coordinates are pixel indices. # However our predictions are floating point coordinates. # Therefore we subtract 0.5 to be consistent with the annotation format. # This is the inverse of data loading logic in `datasets/coco.py`. keypoints[k][:, :2] -= 0.5 result["keypoints"] = keypoints[k].flatten().tolist() results.append(result) return results # inspired from Detectron: # https://github.com/facebookresearch/Detectron/blob/a6a835f5b8208c45d0dce217ce9bbda915f44df7/detectron/datasets/json_dataset_evaluator.py#L255 # noqa def _evaluate_box_proposals(dataset_predictions, coco_api, thresholds=None, area="all", limit=None): """ Evaluate detection proposal recall metrics. This function is a much faster alternative to the official COCO API recall evaluation code. However, it produces slightly different results. """ # Record max overlap value for each gt box # Return vector of overlap values areas = { "all": 0, "small": 1, "medium": 2, "large": 3, "96-128": 4, "128-256": 5, "256-512": 6, "512-inf": 7, } area_ranges = [ [0 ** 2, 1e5 ** 2], # all [0 ** 2, 32 ** 2], # small [32 ** 2, 96 ** 2], # medium [96 ** 2, 1e5 ** 2], # large [96 ** 2, 128 ** 2], # 96-128 [128 ** 2, 256 ** 2], # 128-256 [256 ** 2, 512 ** 2], # 256-512 [512 ** 2, 1e5 ** 2], ] # 512-inf assert area in areas, "Unknown area range: {}".format(area) area_range = area_ranges[areas[area]] gt_overlaps = [] num_pos = 0 for prediction_dict in dataset_predictions: predictions = prediction_dict["proposals"] # sort predictions in descending order # TODO maybe remove this and make it explicit in the documentation inds = predictions.objectness_logits.sort(descending=True)[1] predictions = predictions[inds] ann_ids = coco_api.getAnnIds(imgIds=prediction_dict["image_id"]) anno = coco_api.loadAnns(ann_ids) gt_boxes = [ BoxMode.convert(obj["bbox"], BoxMode.XYWH_ABS, BoxMode.XYXY_ABS) for obj in anno if obj["iscrowd"] == 0 ] gt_boxes = torch.as_tensor(gt_boxes).reshape(-1, 4) # guard against no boxes gt_boxes = Boxes(gt_boxes) gt_areas = torch.as_tensor([obj["area"] for obj in anno if obj["iscrowd"] == 0]) if len(gt_boxes) == 0 or len(predictions) == 0: continue valid_gt_inds = (gt_areas >= area_range[0]) & (gt_areas <= area_range[1]) gt_boxes = gt_boxes[valid_gt_inds] num_pos += len(gt_boxes) if len(gt_boxes) == 0: continue if limit is not None and len(predictions) > limit: predictions = predictions[:limit] overlaps = pairwise_iou(predictions.proposal_boxes, gt_boxes) _gt_overlaps = torch.zeros(len(gt_boxes)) for j in range(min(len(predictions), len(gt_boxes))): # find which proposal box maximally covers each gt box # and get the iou amount of coverage for each gt box max_overlaps, argmax_overlaps = overlaps.max(dim=0) # find which gt box is 'best' covered (i.e. 'best' = most iou) gt_ovr, gt_ind = max_overlaps.max(dim=0) assert gt_ovr >= 0 # find the proposal box that covers the best covered gt box box_ind = argmax_overlaps[gt_ind] # record the iou coverage of this gt box _gt_overlaps[j] = overlaps[box_ind, gt_ind] assert _gt_overlaps[j] == gt_ovr # mark the proposal box and the gt box as used overlaps[box_ind, :] = -1 overlaps[:, gt_ind] = -1 # append recorded iou coverage level gt_overlaps.append(_gt_overlaps) gt_overlaps = ( torch.cat(gt_overlaps, dim=0) if len(gt_overlaps) else torch.zeros(0, dtype=torch.float32) ) gt_overlaps, _ = torch.sort(gt_overlaps) if thresholds is None: step = 0.05 thresholds = torch.arange(0.5, 0.95 + 1e-5, step, dtype=torch.float32) recalls = torch.zeros_like(thresholds) # compute recall for each iou threshold for i, t in enumerate(thresholds): recalls[i] = (gt_overlaps >= t).float().sum() / float(num_pos) # ar = 2 * np.trapz(recalls, thresholds) ar = recalls.mean() return { "ar": ar, "recalls": recalls, "thresholds": thresholds, "gt_overlaps": gt_overlaps, "num_pos": num_pos, } def _evaluate_predictions_on_coco( coco_gt, coco_results, iou_type, kpt_oks_sigmas=None, use_fast_impl=True, img_ids=None ): """ Evaluate the coco results using COCOEval API. """ assert len(coco_results) > 0 if iou_type == "segm": coco_results = copy.deepcopy(coco_results) # When evaluating mask AP, if the results contain bbox, cocoapi will # use the box area as the area of the instance, instead of the mask area. # This leads to a different definition of small/medium/large. # We remove the bbox field to let mask AP use mask area. for c in coco_results: c.pop("bbox", None) coco_dt = coco_gt.loadRes(coco_results) coco_eval = (COCOeval_opt if use_fast_impl else COCOeval)(coco_gt, coco_dt, iou_type) if img_ids is not None: coco_eval.params.imgIds = img_ids if iou_type == "keypoints": # Use the COCO default keypoint OKS sigmas unless overrides are specified if kpt_oks_sigmas: assert hasattr(coco_eval.params, "kpt_oks_sigmas"), "pycocotools is too old!" coco_eval.params.kpt_oks_sigmas = np.array(kpt_oks_sigmas) # COCOAPI requires every detection and every gt to have keypoints, so # we just take the first entry from both num_keypoints_dt = len(coco_results[0]["keypoints"]) // 3 num_keypoints_gt = len(next(iter(coco_gt.anns.values()))["keypoints"]) // 3 num_keypoints_oks = len(coco_eval.params.kpt_oks_sigmas) assert num_keypoints_oks == num_keypoints_dt == num_keypoints_gt, ( f"[COCOEvaluator] Prediction contain {num_keypoints_dt} keypoints. " f"Ground truth contains {num_keypoints_gt} keypoints. " f"The length of cfg.TEST.KEYPOINT_OKS_SIGMAS is {num_keypoints_oks}. " "They have to agree with each other. For meaning of OKS, please refer to " "http://cocodataset.org/#keypoints-eval." ) coco_eval.evaluate() coco_eval.accumulate() coco_eval.summarize() return coco_eval
# -*- coding: utf-8 -*- # Copyright (c) Facebook, Inc. and its affiliates. import logging import numpy as np import os import tempfile import xml.etree.ElementTree as ET from collections import OrderedDict, defaultdict from functools import lru_cache import torch from detectron2.data import MetadataCatalog from detectron2.utils import comm from detectron2.utils.file_io import PathManager from detectron2.evaluation import DatasetEvaluator class PascalVOCDetectionEvaluator(DatasetEvaluator): """ Evaluate Pascal VOC style AP for Pascal VOC dataset. It contains a synchronization, therefore has to be called from all ranks. Note that the concept of AP can be implemented in different ways and may not produce identical results. This class mimics the implementation of the official Pascal VOC Matlab API, and should produce similar but not identical results to the official API. """ def __init__(self, dataset_name, target_classnames=None): """ Args: dataset_name (str): name of the dataset, e.g., "voc_2007_test" """ self._dataset_name = dataset_name meta = MetadataCatalog.get(dataset_name) # Too many tiny files, download all to local for speed. annotation_dir_local = PathManager.get_local_path( os.path.join(meta.dirname, "Annotations/") ) self._anno_file_template = os.path.join(annotation_dir_local, "{}.xml") self._image_set_path = os.path.join(meta.dirname, "ImageSets", "Main", meta.split + ".txt") self._class_names = meta.thing_classes assert meta.year in [2007, 2012], meta.year self._is_2007 = meta.year == 2007 self._cpu_device = torch.device("cpu") self._logger = logging.getLogger(__name__) if target_classnames == None: self.target_classnames = self._class_names else: self.target_classnames = target_classnames def reset(self): self._predictions = defaultdict(list) # class name -> list of prediction strings def process(self, inputs, outputs): for input, output in zip(inputs, outputs): image_id = input["image_id"] instances = output["instances"].to(self._cpu_device) boxes = instances.pred_boxes.tensor.numpy() scores = instances.scores.tolist() classes = instances.pred_classes.tolist() for box, score, cls in zip(boxes, scores, classes): xmin, ymin, xmax, ymax = box # The inverse of data loading logic in `datasets/pascal_voc.py` xmin += 1 ymin += 1 self._predictions[cls].append( f"{image_id} {score:.3f} {xmin:.1f} {ymin:.1f} {xmax:.1f} {ymax:.1f}" ) def evaluate(self): """ Returns: dict: has a key "segm", whose value is a dict of "AP", "AP50", and "AP75". """ all_predictions = comm.gather(self._predictions, dst=0) if not comm.is_main_process(): return predictions = defaultdict(list) for predictions_per_rank in all_predictions: for clsid, lines in predictions_per_rank.items(): predictions[clsid].extend(lines) del all_predictions self._logger.info( "Evaluating {} using {} metric. " "Note that results do not use the official Matlab API.".format( self._dataset_name, 2007 if self._is_2007 else 2012 ) ) with tempfile.TemporaryDirectory(prefix="pascal_voc_eval_") as dirname: res_file_template = os.path.join(dirname, "{}.txt") aps = defaultdict(list) # iou -> ap per class for cls_id, cls_name in enumerate(self._class_names): if cls_name not in self.target_classnames: continue lines = predictions.get(cls_id, [""]) with open(res_file_template.format(cls_name), "w") as f: f.write("\n".join(lines)) for thresh in range(50, 100, 5): rec, prec, ap = voc_eval( res_file_template, self._anno_file_template, self._image_set_path, cls_name, ovthresh=thresh / 100.0, use_07_metric=self._is_2007, ) aps[thresh].append(ap * 100) ret = OrderedDict() mAP = {iou: np.mean(x) for iou, x in aps.items()} ret["bbox"] = {"AP": np.mean(list(mAP.values())), "AP50": mAP[50], "AP75": mAP[75]} #Add the codes for AP50 for idx, name in enumerate(self.target_classnames): ret["bbox"].update({"AP50-" + name: aps[50][idx]}) return ret ############################################################################## # # Below code is modified from # https://github.com/rbgirshick/py-faster-rcnn/blob/master/lib/datasets/voc_eval.py # -------------------------------------------------------- # Fast/er R-CNN # Licensed under The MIT License [see LICENSE for details] # Written by Bharath Hariharan # -------------------------------------------------------- """Python implementation of the PASCAL VOC devkit's AP evaluation code.""" @lru_cache(maxsize=None) def parse_rec(filename): """Parse a PASCAL VOC xml file.""" with PathManager.open(filename) as f: tree = ET.parse(f) objects = [] for obj in tree.findall("object"): obj_struct = {} obj_struct["name"] = obj.find("name").text obj_struct["pose"] = obj.find("pose").text obj_struct["truncated"] = int(obj.find("truncated").text) obj_struct["difficult"] = int(obj.find("difficult").text) bbox = obj.find("bndbox") obj_struct["bbox"] = [ int(bbox.find("xmin").text), int(bbox.find("ymin").text), int(bbox.find("xmax").text), int(bbox.find("ymax").text), ] objects.append(obj_struct) return objects def voc_ap(rec, prec, use_07_metric=False): """Compute VOC AP given precision and recall. If use_07_metric is true, uses the VOC 07 11-point method (default:False). """ if use_07_metric: # 11 point metric ap = 0.0 for t in np.arange(0.0, 1.1, 0.1): if np.sum(rec >= t) == 0: p = 0 else: p = np.max(prec[rec >= t]) ap = ap + p / 11.0 else: # correct AP calculation # first append sentinel values at the end mrec = np.concatenate(([0.0], rec, [1.0])) mpre = np.concatenate(([0.0], prec, [0.0])) # compute the precision envelope for i in range(mpre.size - 1, 0, -1): mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) # to calculate area under PR curve, look for points # where X axis (recall) changes value i = np.where(mrec[1:] != mrec[:-1])[0] # and sum (\Delta recall) * prec ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) return ap def voc_eval(detpath, annopath, imagesetfile, classname, ovthresh=0.5, use_07_metric=False): """rec, prec, ap = voc_eval(detpath, annopath, imagesetfile, classname, [ovthresh], [use_07_metric]) Top level function that does the PASCAL VOC evaluation. detpath: Path to detections detpath.format(classname) should produce the detection results file. annopath: Path to annotations annopath.format(imagename) should be the xml annotations file. imagesetfile: Text file containing the list of images, one image per line. classname: Category name (duh) [ovthresh]: Overlap threshold (default = 0.5) [use_07_metric]: Whether to use VOC07's 11 point AP computation (default False) """ # assumes detections are in detpath.format(classname) # assumes annotations are in annopath.format(imagename) # assumes imagesetfile is a text file with each line an image name # first load gt # read list of images with PathManager.open(imagesetfile, "r") as f: lines = f.readlines() imagenames = [x.strip() for x in lines] # load annots recs = {} for imagename in imagenames: recs[imagename] = parse_rec(annopath.format(imagename)) # extract gt objects for this class class_recs = {} npos = 0 for imagename in imagenames: R = [obj for obj in recs[imagename] if obj["name"] == classname] bbox = np.array([x["bbox"] for x in R]) difficult = np.array([x["difficult"] for x in R]).astype(np.bool) # difficult = np.array([False for x in R]).astype(np.bool) # treat all "difficult" as GT det = [False] * len(R) npos = npos + sum(~difficult) class_recs[imagename] = {"bbox": bbox, "difficult": difficult, "det": det} # read dets detfile = detpath.format(classname) with open(detfile, "r") as f: lines = f.readlines() splitlines = [x.strip().split(" ") for x in lines] image_ids = [x[0] for x in splitlines] confidence = np.array([float(x[1]) for x in splitlines]) BB = np.array([[float(z) for z in x[2:]] for x in splitlines]).reshape(-1, 4) # sort by confidence sorted_ind = np.argsort(-confidence) BB = BB[sorted_ind, :] image_ids = [image_ids[x] for x in sorted_ind] # go down dets and mark TPs and FPs nd = len(image_ids) tp = np.zeros(nd) fp = np.zeros(nd) for d in range(nd): R = class_recs[image_ids[d]] bb = BB[d, :].astype(float) ovmax = -np.inf BBGT = R["bbox"].astype(float) if BBGT.size > 0: # compute overlaps # intersection ixmin = np.maximum(BBGT[:, 0], bb[0]) iymin = np.maximum(BBGT[:, 1], bb[1]) ixmax = np.minimum(BBGT[:, 2], bb[2]) iymax = np.minimum(BBGT[:, 3], bb[3]) iw = np.maximum(ixmax - ixmin + 1.0, 0.0) ih = np.maximum(iymax - iymin + 1.0, 0.0) inters = iw * ih # union uni = ( (bb[2] - bb[0] + 1.0) * (bb[3] - bb[1] + 1.0) + (BBGT[:, 2] - BBGT[:, 0] + 1.0) * (BBGT[:, 3] - BBGT[:, 1] + 1.0) - inters ) overlaps = inters / uni ovmax = np.max(overlaps) jmax = np.argmax(overlaps) if ovmax > ovthresh: if not R["difficult"][jmax]: if not R["det"][jmax]: tp[d] = 1.0 R["det"][jmax] = 1 else: fp[d] = 1.0 else: fp[d] = 1.0 # compute precision recall fp = np.cumsum(fp) tp = np.cumsum(tp) rec = tp / float(npos) # avoid divide by zero in case the first detection matches a difficult # ground truth prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps) ap = voc_ap(rec, prec, use_07_metric) return rec, prec, ap
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import contextlib import io import logging import os import json from detectron2.data import DatasetCatalog, MetadataCatalog from d2go.data.utils import CallFuncWithJsonFile from detectron2.utils.file_io import PathManager from fvcore.common.timer import Timer from detectron2.data.datasets.pascal_voc import register_pascal_voc from detectron2.data.datasets.builtin_meta import _get_builtin_metadata from .cityscapes_foggy import load_cityscapes_instances logger = logging.getLogger(__name__) _SPLITS_COCO_FORMAT = {} _SPLITS_COCO_FORMAT["coco"] = { "coco_2017_unlabel": ( "memcache_manifold://mobile_vision_dataset/tree/coco_unlabel2017", "memcache_manifold://mobile_vision_dataset/tree/coco_unlabel2017/coco_jsons/image_info_unlabeled2017.json", ), "goi_v5_unlabel": ( "memcache_manifold://portal_ai_data/tree/goi_v5/train", "memcache_manifold://mobile_vision_dataset/tree/goi/v5/coco_jsons/openimages_v5_train_unlabel.json", ), } def register_coco_unlabel(): for _, splits_per_dataset in _SPLITS_COCO_FORMAT.items(): for key, (image_root, json_file) in splits_per_dataset.items(): meta = {} register_coco_unlabel_instances(key, meta, json_file, image_root) def register_coco_unlabel_instances(name, metadata, json_file, image_root): """ Register a dataset in COCO's json annotation format for instance detection, instance segmentation and keypoint detection. (i.e., Type 1 and 2 in http://cocodataset.org/#format-data. `instances*.json` and `person_keypoints*.json` in the dataset). This is an example of how to register a new dataset. You can do something similar to this function, to register new datasets. Args: name (str): the name that identifies a dataset, e.g. "coco_2014_train". metadata (dict): extra metadata associated with this dataset. You can leave it as an empty dict. json_file (str): path to the json instance annotation file. image_root (str or path-like): directory which contains all the images. """ assert isinstance(name, str), name assert isinstance(json_file, (str, os.PathLike)), json_file assert isinstance(image_root, (str, os.PathLike)), image_root # 1. register a function which returns dicts DatasetCatalog.register( name, lambda: load_coco_unlabel_json(json_file, image_root, name) ) # 2. Optionally, add metadata about this dataset, # since they might be useful in evaluation, visualization or logging MetadataCatalog.get(name).set( json_file=json_file, image_root=image_root, evaluator_type="coco", **metadata ) def load_coco_unlabel_json( json_file, image_root, dataset_name=None, extra_annotation_keys=None ): """ Load a json file with COCO's instances annotation format. Currently supports instance detection, instance segmentation, and person keypoints annotations. Args: json_file (str): full path to the json file in COCO instances annotation format. image_root (str or path-like): the directory where the images in this json file exists. dataset_name (str): the name of the dataset (e.g., coco_2017_train). If provided, this function will also put "thing_classes" into the metadata associated with this dataset. extra_annotation_keys (list[str]): list of per-annotation keys that should also be loaded into the dataset dict (besides "iscrowd", "bbox", "keypoints", "category_id", "segmentation"). The values for these keys will be returned as-is. For example, the densepose annotations are loaded in this way. Returns: list[dict]: a list of dicts in Detectron2 standard dataset dicts format. (See `Using Custom Datasets </tutorials/datasets.html>`_ ) Notes: 1. This function does not read the image files. The results do not have the "image" field. """ from pycocotools.coco import COCO timer = Timer() json_file = PathManager.get_local_path(json_file) with contextlib.redirect_stdout(io.StringIO()): coco_api = COCO(json_file) if timer.seconds() > 1: logger.info( "Loading {} takes {:.2f} seconds.".format(json_file, timer.seconds()) ) # sort indices for reproducible results img_ids = sorted(coco_api.imgs.keys()) imgs = coco_api.loadImgs(img_ids) logger.info( "Loaded {} unlabeled images in COCO format from {}".format(len(imgs), json_file) ) dataset_dicts = [] for img_dict in imgs: record = {} record["file_name"] = os.path.join(image_root, img_dict["file_name"]) record["height"] = img_dict["height"] record["width"] = img_dict["width"] record["image_id"] = img_dict["id"] dataset_dicts.append(record) return dataset_dicts _UNLABELED_DATASETS = { # 1-2 people images extracted from UGC ig images or ig profiles using fetch_image flow "UGC_unlabel_ig_1M_20210514_1or2people": "manifold://pai_mobile/tree/datasets/semi_supervised/unlabeled_UGC/sweep_4m_20210514_20210515_1or2people.json", # hand non-UGC long range frames extracted from collected videos "hand_nonUGC_long_range_384K_20210521": "manifold://pai_mobile/tree/datasets/hand_unlabeled_nonUGC/long_range.json", # hand non-UGC short range images cropped from the annotated bounding boxes in long-range videos "hand_nonUGC_short_range_183K_20210521": "manifold://pai_mobile/tree/datasets/hand_unlabeled_nonUGC/short_range.json", } def load_json(json_file): """ Simply load and return the json_file """ with PathManager.open(json_file, "r") as f: json_data = json.load(f) return json_data def register_unlabeled(): """ Register the unlabeled datasets The json_file needs to be in D2's format """ for name, json_file in _UNLABELED_DATASETS.items(): # 1. register a function which returns dicts DatasetCatalog.register( name, CallFuncWithJsonFile( func=load_json, json_file=json_file ) ) # 2. Optionally, add metadata about this dataset, # since they might be useful in evaluation, visualization or logging MetadataCatalog.get(name).set( json_file=json_file, image_root="", evaluator_type="coco" ) # ==== Predefined splits for raw cityscapes foggy images =========== _RAW_CITYSCAPES_SPLITS = { # "cityscapes_foggy_{task}_train": ("cityscape_foggy/leftImg8bit/train/", "cityscape_foggy/gtFine/train/"), # "cityscapes_foggy_{task}_val": ("cityscape_foggy/leftImg8bit/val/", "cityscape_foggy/gtFine/val/"), # "cityscapes_foggy_{task}_test": ("cityscape_foggy/leftImg8bit/test/", "cityscape_foggy/gtFine/test/"), "cityscapes_foggy_train": ("cityscape_foggy/leftImg8bit/train/", "cityscape_foggy/gtFine/train/"), "cityscapes_foggy_val": ("cityscape_foggy/leftImg8bit/val/", "cityscape_foggy/gtFine/val/"), "cityscapes_foggy_test": ("cityscape_foggy/leftImg8bit/test/", "cityscape_foggy/gtFine/test/"), } def register_all_cityscapes_foggy(): root = "manifold://mobile_vision_dataset/tree/yujheli/dataset" for key, (image_dir, gt_dir) in _RAW_CITYSCAPES_SPLITS.items(): meta = _get_builtin_metadata("cityscapes") image_dir = os.path.join(root, image_dir) gt_dir = os.path.join(root, gt_dir) # inst_key = key.format(task="instance_seg") inst_key = key # DatasetCatalog.register( # inst_key, # lambda x=image_dir, y=gt_dir: load_cityscapes_instances( # x, y, from_json=True, to_polygons=True # ), # ) DatasetCatalog.register( inst_key, lambda x=image_dir, y=gt_dir: load_cityscapes_instances( x, y, from_json=False, to_polygons=False ), ) # MetadataCatalog.get(inst_key).set( # image_dir=image_dir, gt_dir=gt_dir, evaluator_type="cityscapes_instance", **meta # ) # MetadataCatalog.get(inst_key).set( # image_dir=image_dir, gt_dir=gt_dir, evaluator_type="pascal_voc", **meta # ) MetadataCatalog.get(inst_key).set( image_dir=image_dir, gt_dir=gt_dir, evaluator_type="coco", **meta ) # ==== Predefined splits for Clipart (PASCAL VOC format) =========== def register_all_clipart(): root = "manifold://mobile_vision_dataset/tree/yujheli/dataset" SPLITS = [ ("Clipart1k_train", "clipart", "train"), ("Clipart1k_test", "clipart", "test"), ] for name, dirname, split in SPLITS: year = 2012 register_pascal_voc(name, os.path.join(root, dirname), split, year) MetadataCatalog.get(name).evaluator_type = "pascal_voc" # MetadataCatalog.get(name).evaluator_type = "coco" register_all_cityscapes_foggy() register_all_clipart() # register_coco_unlabel() # register_unlabeled() def register_all_water(): root = "manifold://mobile_vision_dataset/tree/yujheli/dataset" #Need to modify to the correct folder containing the dataset. SPLITS = [ ("Watercolor_train", "watercolor", "train"), ("Watercolor_test", "watercolor", "test"), ] for name, dirname, split in SPLITS: year = 2012 # register_pascal_voc(name, os.path.join(root, dirname), split, year, class_names=["person", "dog","bicycle", "bird", "car", "cat"]) register_pascal_voc(name, os.path.join(root, dirname), split, year) MetadataCatalog.get(name).evaluator_type = "pascal_voc_water" register_all_water() def register_all_clipart_ws(): root = "manifold://mobile_vision_dataset/tree/yujheli/dataset" SPLITS = [ ("Clipart1k_train_w", "clipart", "train"), ("Clipart1k_test_w", "clipart", "test"), ] for name, dirname, split in SPLITS: year = 2012 register_pascal_voc(name, os.path.join(root, dirname), split, year) MetadataCatalog.get(name).evaluator_type = "pascal_voc_water" # MetadataCatalog.get(name).evaluator_type = "coco" register_all_clipart_ws()
# Copyright (c) Facebook, Inc. and its affiliates. import functools import json import logging import multiprocessing as mp import numpy as np import os from itertools import chain import pycocotools.mask as mask_util from PIL import Image from detectron2.structures import BoxMode from detectron2.utils.comm import get_world_size from detectron2.utils.file_io import PathManager from detectron2.utils.logger import setup_logger try: import cv2 # noqa except ImportError: # OpenCV is an optional dependency at the moment pass logger = logging.getLogger(__name__) def _get_cityscapes_files(image_dir, gt_dir): files = [] # scan through the directory cities = PathManager.ls(image_dir) logger.info(f"{len(cities)} cities found in '{image_dir}'.") for city in cities: city_img_dir = os.path.join(image_dir, city) city_gt_dir = os.path.join(gt_dir, city) for basename in PathManager.ls(city_img_dir): image_file = os.path.join(city_img_dir, basename) # suffix = "leftImg8bit.png" # assert basename.endswith(suffix), basename # basename = basename[: -len(suffix)] suffix = 'leftImg8bit_foggy' basename = basename.split(suffix)[0] instance_file = os.path.join(city_gt_dir, basename + "gtFine_instanceIds.png") label_file = os.path.join(city_gt_dir, basename + "gtFine_labelIds.png") json_file = os.path.join(city_gt_dir, basename + "gtFine_polygons.json") files.append((image_file, instance_file, label_file, json_file)) assert len(files), "No images found in {}".format(image_dir) for f in files[0]: assert PathManager.isfile(f), f return files def load_cityscapes_instances(image_dir, gt_dir, from_json=True, to_polygons=True): """ Args: image_dir (str): path to the raw dataset. e.g., "~/cityscapes/leftImg8bit/train". gt_dir (str): path to the raw annotations. e.g., "~/cityscapes/gtFine/train". from_json (bool): whether to read annotations from the raw json file or the png files. to_polygons (bool): whether to represent the segmentation as polygons (COCO's format) instead of masks (cityscapes's format). Returns: list[dict]: a list of dicts in Detectron2 standard format. (See `Using Custom Datasets </tutorials/datasets.html>`_ ) """ if from_json: assert to_polygons, ( "Cityscapes's json annotations are in polygon format. " "Converting to mask format is not supported now." ) files = _get_cityscapes_files(image_dir, gt_dir) logger.info("Preprocessing cityscapes annotations ...") # This is still not fast: all workers will execute duplicate works and will # take up to 10m on a 8GPU server. pool = mp.Pool(processes=max(mp.cpu_count() // get_world_size() // 2, 4)) ret = pool.map( functools.partial(_cityscapes_files_to_dict, from_json=from_json, to_polygons=to_polygons), files, ) logger.info("Loaded {} images from {}".format(len(ret), image_dir)) # Map cityscape ids to contiguous ids from cityscapesscripts.helpers.labels import labels labels = [l for l in labels if l.hasInstances and not l.ignoreInEval] dataset_id_to_contiguous_id = {l.id: idx for idx, l in enumerate(labels)} for dict_per_image in ret: for anno in dict_per_image["annotations"]: anno["category_id"] = dataset_id_to_contiguous_id[anno["category_id"]] return ret def load_cityscapes_semantic(image_dir, gt_dir): """ Args: image_dir (str): path to the raw dataset. e.g., "~/cityscapes/leftImg8bit/train". gt_dir (str): path to the raw annotations. e.g., "~/cityscapes/gtFine/train". Returns: list[dict]: a list of dict, each has "file_name" and "sem_seg_file_name". """ ret = [] # gt_dir is small and contain many small files. make sense to fetch to local first gt_dir = PathManager.get_local_path(gt_dir) for image_file, _, label_file, json_file in _get_cityscapes_files(image_dir, gt_dir): label_file = label_file.replace("labelIds", "labelTrainIds") with PathManager.open(json_file, "r") as f: jsonobj = json.load(f) ret.append( { "file_name": image_file, "sem_seg_file_name": label_file, "height": jsonobj["imgHeight"], "width": jsonobj["imgWidth"], } ) assert len(ret), f"No images found in {image_dir}!" assert PathManager.isfile( ret[0]["sem_seg_file_name"] ), "Please generate labelTrainIds.png with cityscapesscripts/preparation/createTrainIdLabelImgs.py" # noqa return ret def _cityscapes_files_to_dict(files, from_json, to_polygons): """ Parse cityscapes annotation files to a instance segmentation dataset dict. Args: files (tuple): consists of (image_file, instance_id_file, label_id_file, json_file) from_json (bool): whether to read annotations from the raw json file or the png files. to_polygons (bool): whether to represent the segmentation as polygons (COCO's format) instead of masks (cityscapes's format). Returns: A dict in Detectron2 Dataset format. """ from cityscapesscripts.helpers.labels import id2label, name2label image_file, instance_id_file, _, json_file = files annos = [] if from_json: from shapely.geometry import MultiPolygon, Polygon with PathManager.open(json_file, "r") as f: jsonobj = json.load(f) ret = { "file_name": image_file, "image_id": os.path.basename(image_file), "height": jsonobj["imgHeight"], "width": jsonobj["imgWidth"], } # `polygons_union` contains the union of all valid polygons. polygons_union = Polygon() # CityscapesScripts draw the polygons in sequential order # and each polygon *overwrites* existing ones. See # (https://github.com/mcordts/cityscapesScripts/blob/master/cityscapesscripts/preparation/json2instanceImg.py) # noqa # We use reverse order, and each polygon *avoids* early ones. # This will resolve the ploygon overlaps in the same way as CityscapesScripts. for obj in jsonobj["objects"][::-1]: if "deleted" in obj: # cityscapes data format specific continue label_name = obj["label"] try: label = name2label[label_name] except KeyError: if label_name.endswith("group"): # crowd area label = name2label[label_name[: -len("group")]] else: raise if label.id < 0: # cityscapes data format continue # Cityscapes's raw annotations uses integer coordinates # Therefore +0.5 here poly_coord = np.asarray(obj["polygon"], dtype="f4") + 0.5 # CityscapesScript uses PIL.ImageDraw.polygon to rasterize # polygons for evaluation. This function operates in integer space # and draws each pixel whose center falls into the polygon. # Therefore it draws a polygon which is 0.5 "fatter" in expectation. # We therefore dilate the input polygon by 0.5 as our input. poly = Polygon(poly_coord).buffer(0.5, resolution=4) if not label.hasInstances or label.ignoreInEval: # even if we won't store the polygon it still contributes to overlaps resolution polygons_union = polygons_union.union(poly) continue # Take non-overlapping part of the polygon poly_wo_overlaps = poly.difference(polygons_union) if poly_wo_overlaps.is_empty: continue polygons_union = polygons_union.union(poly) anno = {} anno["iscrowd"] = label_name.endswith("group") anno["category_id"] = label.id if isinstance(poly_wo_overlaps, Polygon): poly_list = [poly_wo_overlaps] elif isinstance(poly_wo_overlaps, MultiPolygon): poly_list = poly_wo_overlaps.geoms else: raise NotImplementedError("Unknown geometric structure {}".format(poly_wo_overlaps)) poly_coord = [] for poly_el in poly_list: # COCO API can work only with exterior boundaries now, hence we store only them. # TODO: store both exterior and interior boundaries once other parts of the # codebase support holes in polygons. poly_coord.append(list(chain(*poly_el.exterior.coords))) anno["segmentation"] = poly_coord (xmin, ymin, xmax, ymax) = poly_wo_overlaps.bounds anno["bbox"] = (xmin, ymin, xmax, ymax) anno["bbox_mode"] = BoxMode.XYXY_ABS annos.append(anno) else: # See also the official annotation parsing scripts at # https://github.com/mcordts/cityscapesScripts/blob/master/cityscapesscripts/evaluation/instances2dict.py # noqa with PathManager.open(instance_id_file, "rb") as f: inst_image = np.asarray(Image.open(f), order="F") # ids < 24 are stuff labels (filtering them first is about 5% faster) flattened_ids = np.unique(inst_image[inst_image >= 24]) ret = { "file_name": image_file, "image_id": os.path.basename(image_file), "height": inst_image.shape[0], "width": inst_image.shape[1], } for instance_id in flattened_ids: # For non-crowd annotations, instance_id // 1000 is the label_id # Crowd annotations have <1000 instance ids label_id = instance_id // 1000 if instance_id >= 1000 else instance_id label = id2label[label_id] if not label.hasInstances or label.ignoreInEval: continue anno = {} anno["iscrowd"] = instance_id < 1000 anno["category_id"] = label.id mask = np.asarray(inst_image == instance_id, dtype=np.uint8, order="F") inds = np.nonzero(mask) ymin, ymax = inds[0].min(), inds[0].max() xmin, xmax = inds[1].min(), inds[1].max() anno["bbox"] = (xmin, ymin, xmax, ymax) if xmax <= xmin or ymax <= ymin: continue anno["bbox_mode"] = BoxMode.XYXY_ABS if to_polygons: # This conversion comes from D4809743 and D5171122, # when Mask-RCNN was first developed. contours = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)[ -2 ] polygons = [c.reshape(-1).tolist() for c in contours if len(c) >= 3] # opencv's can produce invalid polygons if len(polygons) == 0: continue anno["segmentation"] = polygons else: anno["segmentation"] = mask_util.encode(mask[:, :, None])[0] annos.append(anno) ret["annotations"] = annos return ret
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from detectron2.structures import pairwise_iou class OpenMatchTrainerProbe: def __init__(self, cfg): self.BOX_AP = 0.5 self.NUM_CLASSES = cfg.MODEL.ROI_HEADS.NUM_CLASSES # self.bbox_stat_list = ['compute_fp_gtoutlier', 'compute_num_box', 'compute_ood_acc'] def bbox_stat(self, unlabel_gt, unlabel_pseudo, name, bbox_stat_list): stats = {} sum_gpu_names = [] for metric in bbox_stat_list: stats_per, sum_gpu_names_per = getattr( self, metric)(unlabel_gt, unlabel_pseudo, name) stats.update(stats_per) sum_gpu_names.extend(sum_gpu_names_per) return stats, sum_gpu_names def compute_fp_gtoutlier(self, unlabel_gt, unlabel_pseudo, name): num_gt_ood_object = 0 num_gt_fp_ood_object = 0 sum_iou = 0.0 sum_gpu_names = [] results = {} if len(unlabel_gt) != 0: for gt, pseudo in zip(unlabel_gt, unlabel_pseudo): # import pdb; pdb. set_trace() if name == "pred": pp_boxes = pseudo.pred_boxes elif name == "pseudo_conf" or name == "pseudo_ood": # filter predicted ood box when evaluating this metric pseudo = pseudo[pseudo.gt_classes != -1] pp_boxes = pseudo.gt_boxes else: raise ValueError("Unknown name for probe roi bbox.") if len(gt) != 0 and len(pseudo) != 0: max_iou, max_idx = pairwise_iou( gt.gt_boxes.to('cuda'), pp_boxes).max(1) ood_idx = (gt.gt_classes == -1) num_gt_ood_object += ood_idx.sum().item() num_gt_fp_ood_object += (max_iou[ood_idx] > self.BOX_AP).sum().item() sum_iou += max_iou[ood_idx].sum().item() elif len(gt) != 0 and len(pseudo) == 0: ood_idx = (gt.gt_classes == -1) num_gt_ood_object += ood_idx.shape[0] results = {'Analysis_'+name+'/num_gt_ood_object': num_gt_ood_object, 'Analysis_'+name+'/num_gt_fp_ood_object': num_gt_fp_ood_object, 'Analysis_'+name+'/sum_iou': sum_iou} sum_gpu_names.extend(list(results.keys())) return results, sum_gpu_names def compute_num_box(self, unlabel_gt, unlabel_pseudo, name): num_bbox = 0.0 size_bbox = 0.0 avg_conf = 0.0 # measure in and out box for openset SS-OD num_bbox_in = 0.0 num_bbox_out = 0.0 num_bg = 0.0 # when ground-truth is missing in unlabeled data if len(unlabel_gt) == 0: for pp_roi in unlabel_pseudo: if name == "pred": pp_boxes = pp_roi.pred_boxes pp_classes = pp_roi.pred_classes pp_scores = pp_roi.scores elif name == "pseudo_conf" or name == "pseudo_ood": pp_boxes = pp_roi.gt_boxes pp_classes = pp_roi.gt_classes pp_scores = pp_roi.scores elif name == "gt": pp_boxes = pp_roi.gt_boxes pp_classes = pp_roi.gt_classes else: raise ValueError("Unknown name for probe roi bbox.") # all boxes (in + out boxes) if len(pp_roi) != 0: # bbox number and size num_bbox += len(pp_roi) size_bbox += pp_boxes.area().mean().item() # average box confidence if name != "gt": avg_conf += pp_scores.mean() else: num_bbox += 0 size_bbox += torch.tensor(0).cuda() num_valid_img = len(unlabel_pseudo) else: # with ground-truth num_valid_img = 0 for gt, pp_roi in zip(unlabel_gt, unlabel_pseudo): if name == "pred": pp_boxes = pp_roi.pred_boxes pp_classes = pp_roi.pred_classes pp_scores = pp_roi.scores elif name == "pseudo_conf" or name == "pseudo_ood": # filter out ood pseudo-box when doing analysis pp_roi = pp_roi[pp_roi.gt_classes != -1] pp_boxes = pp_roi.gt_boxes pp_classes = pp_roi.gt_classes pp_scores = pp_roi.scores elif name == "gt": pp_boxes = pp_roi.gt_boxes pp_classes = pp_roi.gt_classes else: raise ValueError("Unknown name for probe roi bbox.") # all boxes (in + out boxes) if len(pp_roi) != 0: # bbox number and size num_bbox += len(pp_roi) size_bbox += pp_boxes.area().mean().item() # average box confidence if name != "gt": avg_conf += pp_scores.mean() else: num_bbox += 0 size_bbox += torch.tensor(0).cuda() # in and out class if name == "gt": pp_roi_in = pp_roi[pp_classes != -1] num_bbox_in += len(pp_roi_in) pp_roi_out = pp_roi[pp_classes == -1] num_bbox_out += len(pp_roi_out) num_valid_img += 1 elif name == "pred" or name == "pseudo_conf" or name == "pseudo_ood": if len(gt.gt_boxes.to('cuda'))>0 and len(pp_boxes) > 0: max_iou, max_idx = pairwise_iou(gt.gt_boxes.to('cuda'), pp_boxes).max(0) # for the ground-truth label for each pseudo-box gtclass4pseudo = gt.gt_classes[max_idx] matchgtbox = max_iou > 0.5 # compute the number of boxes (background, inlier, outlier) num_bg += (~matchgtbox).sum().item() num_bbox_in += (gtclass4pseudo[matchgtbox] != -1).sum().item() num_bbox_out += (gtclass4pseudo[matchgtbox] == -1).sum().item() num_valid_img += 1 else: raise ValueError("Unknown name for probe roi bbox.") box_probe = {} if num_valid_img >0 : box_probe["Analysis_" + name + "/Num_bbox"] = num_bbox / \ num_valid_img box_probe["Analysis_" + name + "/Size_bbox"] = size_bbox / \ num_valid_img box_probe["Analysis_" + name + "/Num_bbox_inlier"] = num_bbox_in / num_valid_img box_probe["Analysis_" + name + "/Num_bbox_outlier"] = num_bbox_out / num_valid_img if name != "gt": # prediciton, background number box_probe["Analysis_" + name + "/Conf"] = avg_conf / \ num_valid_img box_probe["Analysis_" + name + "/Num_bbox_background"] = num_bg / num_valid_img box_probe["Analysis_" + name + "/background_fp_ratio"] = num_bg / num_bbox box_probe["Analysis_" + name + "/background_tp_ratio"] = num_bbox_in / num_bbox else: box_probe["Analysis_" + name + "/Num_bbox"] = 0.0 box_probe["Analysis_" + name + "/Size_bbox"] = 0.0 box_probe["Analysis_" + name + "/Num_bbox_inlier"] = 0.0 box_probe["Analysis_" + name + "/Num_bbox_outlier"] = 0.0 if name != "gt": # prediciton, background number box_probe["Analysis_" + name + "/Conf"] = 0.0 box_probe["Analysis_" + name + "/Num_bbox_background"] = 0.0 box_probe["Analysis_" + name + "/background_fp_ratio"] = num_bg / num_bbox box_probe["Analysis_" + name + "/background_tp_ratio"] = num_bbox_in / num_bbox return box_probe, [] def compute_ood_acc(self, unlabel_gt, unlabel_pseudo, name, BOX_IOU=0.5): results = {} sum_gpu_names = [] if len(unlabel_gt) != 0: for metric in ['acc_outlier', 'recall_outlier']: for samples in ['_fg', '_all']: for fraction_part in ['_nume', '_deno']: results[metric+samples+fraction_part] = 0.0 for gt, pred in zip(unlabel_gt, unlabel_pseudo): if name == "pred": pp_boxes = pred.pred_boxes pp_ood_scores = pred.ood_scores elif name == "pseudo_conf" or name == "pseudo_ood": # assume these outlier are suppressed pred = pred[pred.gt_classes != -1] pp_boxes = pred.gt_boxes pp_ood_scores = pred.ood_scores else: raise ValueError("Unknown name for probe roi bbox.") if len(gt) != 0 and len(pred) != 0: # find the most overlapped ground-truth box for each pseudo-box max_iou, max_idx = pairwise_iou( gt.gt_boxes.to('cuda'), pp_boxes).max(0) # ignore background instances find_fg_mask = max_iou > BOX_IOU if find_fg_mask.sum() > 0: gt_corres = gt[max_idx].gt_classes.to("cuda") gt_outlier = (gt_corres[find_fg_mask] == -1) pred_outlier = pp_ood_scores[find_fg_mask][:, 0] > 0.5 # accurcay of ood detection (foreground) # acc_outlier_fg = (pred_outlier == gt_outlier).sum() /find_fg_mask.sum() results['acc_outlier_fg_nume'] += ( pred_outlier == gt_outlier).sum() results['acc_outlier_fg_deno'] += find_fg_mask.sum() # recall of ood detection (foreground) # recall_outlier_fg = (pred_outlier[gt_outlier] == gt_outlier[gt_outlier]).sum() /gt_outlier.sum() results['recall_outlier_fg_nume'] += ( pred_outlier[gt_outlier] == gt_outlier[gt_outlier]).sum() results['recall_outlier_fg_deno'] += gt_outlier.sum() # Regard backgound gt as outlier gt_corres = gt[max_idx].gt_classes.to("cuda") # convert all background gt as outlier gt_corres[~find_fg_mask] = -1 gt_outlier = gt_corres == -1 pred_outlier = pp_ood_scores[:, 0] > 0.5 # accurcay of ood detection (all) # acc_outlier_all = (pred_outlier == gt_outlier).sum() /len(pred) results['acc_outlier_all_nume'] += ( pred_outlier == gt_outlier).sum() results['acc_outlier_all_deno'] += len(pred) # recall of ood detection (all) # recall_outlier_all = (pred_outlier[gt_outlier] == gt_outlier[gt_outlier]).sum() /gt_outlier.sum() results['recall_outlier_all_nume'] += ( pred_outlier[gt_outlier] == gt_outlier[gt_outlier]).sum() results['recall_outlier_all_deno'] += gt_outlier.sum() results = {'Analysis_'+name+'/'+k: v for k, v in results.items()} sum_gpu_names.extend(list(results.keys())) return results, sum_gpu_names
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import logging import time from collections import OrderedDict from typing import Dict import detectron2.utils.comm as comm import numpy as np import torch from detectron2.engine import SimpleTrainer from detectron2.structures import BitMasks, Boxes, Instances, Keypoints from detectron2.utils.events import get_event_storage from d2go.projects.unbiased_teacher.engine.trainer import UnbiasedTeacherTrainer from d2go.projects.unbiased_teacher.utils.probe import probe import copy logger = logging.getLogger(__name__) class DAobjTrainer(UnbiasedTeacherTrainer): """ A trainer for Teacher-Student mutual learning following this paper: "Unbiased Teacher for Semi-Supervised Object Detection" It assumes that every step, you: For Teacher: 1. Perform a forward pass on a weakly augmented unlabeled data from the data_loader. 2. Generate pseudo-labels on the weakly augmented unlabeled data For Student: 1. Perform a forward pass on a strongly augmented unlabeled data from the data_loader. 2. Perform a forward pass on a labeled data from the data_loader. 1. Use pseudo-labels generated from the Teacher as target and compute the loss on a strongly augmented unlabeled data 2. Compute the gradients with the above losses on labeled and unlabeled data. 3. Update the Student model with the optimizer. 4. EMA update the Teacher model """ # def __init__(self, cfg, model, model_teacher, data_loader, optimizer): # """ # Args: # model: a torch Module. Takes a data from data_loader and returns a # dict of losses. # data_loader: an iterable. Contains data to be used to call model. # optimizer: a torch optimizer. # """ # super().__init__(model, data_loader, optimizer) # self.cfg = cfg # self.model_teacher = model_teacher def run_step(self): assert ( self.model.training ), "Student model was changed to eval mode during training" start = time.perf_counter() data = next(self._data_loader_iter) # q (queue): strongly augmented, k (key): weakly augmented #TODO Need to further use the weak samples for domain adaptation label_data_q, label_data_k, unlabel_data_q, unlabel_data_k = data data_time = time.perf_counter() - start if ( self.cfg.UNBIASEDTEACHER.BURN_IN_STEP != 0 and self.iter < self.cfg.UNBIASEDTEACHER.BURN_IN_STEP ): # Burn-In stage. Supervisedly train the Student model. losses, loss_dict, record_dict = self.burn_in(label_data_q, label_data_k) else: # Copy the Student model to the Teacher (using keep_rate = 0) if self.iter == self.cfg.UNBIASEDTEACHER.BURN_IN_STEP: logger.info("Copying Student weights to the Teacher .....") self._update_teacher_model(keep_rate=0.0) elif ( self.iter - self.cfg.UNBIASEDTEACHER.BURN_IN_STEP ) % self.cfg.UNBIASEDTEACHER.TEACHER_UPDATE_ITER == 0: self._update_teacher_model( keep_rate=self.cfg.UNBIASEDTEACHER.EMA.KEEP_RATE ) # Teacher-Student Mutual Learning losses, loss_dict, record_dict = self.teacher_student_learning( label_data_q, label_data_k, unlabel_data_q, unlabel_data_k ) self.optimizer.zero_grad() losses.backward() self._write_metrics(record_dict, data_time) """ If you need gradient clipping/scaling or other processing, you can wrap the optimizer with your custom `step()` method. But it is suboptimal as explained in https://arxiv.org/abs/2006.15704 Sec 3.2.4 """ self.optimizer.step() def burn_in(self, label_data_q, label_data_k): """ Perform Burn-In stage with labeled data """ # combine label_data_q + label_data_k label_data_q.extend(label_data_k) record_dict, _, _, _ = self.model(label_data_q, branch="supervised") # weight losses loss_dict = self.weight_losses(record_dict) losses = sum(loss_dict.values()) return losses, loss_dict, record_dict def teacher_student_learning( self, label_data_q, label_data_k, unlabel_data_q, unlabel_data_k ): """ Perform Teacher-Student Mutual Learning with labeled and unlabeled data """ # q (queue): strongly augmented, k (key): weakly augmented record_dict = {} ######################## For probe ################################# # import pdb; pdb. set_trace() gt_unlabel_k = self.get_label(unlabel_data_k) # 0. remove potential ground-truth labels in the unlabeled data unlabel_data_q = self.remove_label(unlabel_data_q) unlabel_data_k = self.remove_label(unlabel_data_k) # 1. generate the pseudo-label using teacher model # TODO: why is the Teacher not in .eval() mode? with torch.no_grad(): ( _, proposals_rpn_unsup_k, proposals_roih_unsup_k, _, ) = self.model_teacher(unlabel_data_k, branch="unsup_data_weak") ######################## For probe ################################# # import pdb; pdb. set_trace() # analysis_pred, _ = self.probe.compute_num_box(gt_unlabel_k,proposals_roih_unsup_k,'pred') # record_dict.update(analysis_pred) # 2. Pseudo-labeling # Pseudo-labeling for RPN head (bbox location/objectness) joint_proposal_dict = {} ## No need this joint_proposal_dict["proposals_rpn"] = proposals_rpn_unsup_k ( pesudo_proposals_rpn_unsup_k, nun_pseudo_bbox_rpn, ) = self.process_pseudo_label( proposals_rpn_unsup_k, self.cfg.UNBIASEDTEACHER.BBOX_THRESHOLD, self.cfg.UNBIASEDTEACHER.MASK_THRESHOLD, self.cfg.UNBIASEDTEACHER.KEYPOINT_THRESHOLD, "rpn", "thresholding", ) joint_proposal_dict["proposals_pseudo_rpn"] = pesudo_proposals_rpn_unsup_k ## No need this end # Pseudo-labeling for ROI head (bbox location/objectness) pesudo_proposals_roih_unsup_k, _ = self.process_pseudo_label( proposals_roih_unsup_k, self.cfg.UNBIASEDTEACHER.BBOX_THRESHOLD, self.cfg.UNBIASEDTEACHER.MASK_THRESHOLD, self.cfg.UNBIASEDTEACHER.KEYPOINT_THRESHOLD, "roih", "thresholding", ) joint_proposal_dict["proposals_pseudo_roih"] = pesudo_proposals_roih_unsup_k ######################## For probe ################################# analysis_pred, _ = self.probe.compute_num_box(gt_unlabel_k,pesudo_proposals_roih_unsup_k,'pred') record_dict.update(analysis_pred) # Probe for analysis (usually for research development) if self.cfg.UNBIASEDTEACHER.PROBE: record_dict = probe( self.cfg, proposals_roih_unsup_k, unlabel_data_k, pesudo_proposals_roih_unsup_k, record_dict, ) # 3. add pseudo-label to unlabeled data unlabel_data_q = self.add_label( unlabel_data_q, joint_proposal_dict["proposals_pseudo_roih"] ) unlabel_data_k = self.add_label( unlabel_data_k, joint_proposal_dict["proposals_pseudo_roih"] ) # all_label_data = label_data_q + label_data_k if self.cfg.UNBIASEDTEACHER.ISAUG == "No": all_label_data = label_data_k all_unlabel_data = unlabel_data_k else: all_label_data = label_data_q + label_data_k all_unlabel_data = unlabel_data_q # 4. input both strongly and weakly augmented labeled data into student model # all_unlabel_data = unlabel_data_q record_all_label_data, _, _, _ = self.model(all_label_data, branch="supervised") record_dict.update(record_all_label_data) # 5. input strongly augmented unlabeled data into model record_all_unlabel_data, _, _, _ = self.model( all_unlabel_data, branch="supervised-pseudo" ) # rename unsupervised loss # NOTE: names of the recorded output from model are hard-coded # we rename them accordingly for unlabeled data new_record_all_unlabel_data = {} for key in record_all_unlabel_data.keys(): new_record_all_unlabel_data[key + "_pseudo"] = record_all_unlabel_data[key] record_dict.update(new_record_all_unlabel_data) # 6. input weakly labeled data (source) and weakly unlabeled data (target) to student model # give sign to the target data for i_index in range(len(unlabel_data_k)): # unlabel_data_item = {} for k, v in unlabel_data_k[i_index].items(): # label_data_k[i_index][k + "_unlabeled"] = v label_data_k[i_index][k + "_unlabeled"] = v # unlabel_data_k[i_index] = unlabel_data_item all_domain_data = label_data_k # all_domain_data = label_data_k + unlabel_data_k record_all_domain_data, _, _, _ = self.model(all_domain_data, branch="domain") record_dict.update(record_all_domain_data) # 7. distill teacher # for distill back to teacher with torch.no_grad(): ( _, proposals_rpn_unsup_dis, proposals_roih_unsup_dis, _, ) = self.model(unlabel_data_k, branch="unsup_data_weak") pesudo_proposals_roih_unsup_k, _ = self.process_pseudo_label( proposals_roih_unsup_dis, self.cfg.UNBIASEDTEACHER.BBOX_THRESHOLD, self.cfg.UNBIASEDTEACHER.MASK_THRESHOLD, self.cfg.UNBIASEDTEACHER.KEYPOINT_THRESHOLD, "roih", "thresholding", ) unlabel_data_k = self.remove_label(unlabel_data_k) unlabel_data_k = self.add_label( unlabel_data_k, pesudo_proposals_roih_unsup_k ) record_distill_data, _, _, _ = self.model_teacher( unlabel_data_k, branch="supervised-pseudo" ) new_record_all_distill_data = {} for key in record_distill_data.keys(): new_record_all_distill_data[key + "_distill"] = record_distill_data[key] record_dict.update(new_record_all_distill_data) # weighting losses loss_dict = self.weight_losses(record_dict) #Add discriminator loss here #loss_dict.update(...) losses = sum(loss_dict.values()) return losses, loss_dict, record_dict def weight_losses(self, record_dict): loss_dict = {} REGRESSION_LOSS_WEIGHT = 0 for key in record_dict.keys(): if key.startswith("loss"): if key == "loss_rpn_cls_pseudo": loss_dict[key] = ( record_dict[key] * self.cfg.UNBIASEDTEACHER.UNSUP_LOSS_WEIGHT_RPN_CLS ) elif ( key == "loss_rpn_loc_pseudo" or key == "loss_box_reg_pseudo" ): # set pseudo bbox regression to 0 loss_dict[key] = record_dict[key] * REGRESSION_LOSS_WEIGHT elif ( key == "loss_rpn_loc_distill" or key == "loss_box_reg_distill" ): # set pseudo bbox regression to 0 loss_dict[key] = record_dict[key] * REGRESSION_LOSS_WEIGHT elif key.endswith("mask_pseudo"): # unsupervised loss for segmentation loss_dict[key] = ( record_dict[key] * self.cfg.UNBIASEDTEACHER.UNSUP_LOSS_WEIGHT_MASK ) elif key.endswith("keypoint_pseudo"): # unsupervised loss for keypoint loss_dict[key] = ( record_dict[key] * self.cfg.UNBIASEDTEACHER.UNSUP_LOSS_WEIGHT_KEYPOINT ) elif key.endswith("pseudo"): # unsupervised loss loss_dict[key] = ( record_dict[key] * self.cfg.UNBIASEDTEACHER.UNSUP_LOSS_WEIGHT ) elif ( key == "loss_D_img_s" or key == "loss_D_img_t" ): # set weight for discriminator # import pdb # pdb.set_trace() loss_dict[key] = record_dict[key] * self.cfg.UNBIASEDTEACHER.DIS_LOSS_WEIGHT #Need to modify defaults and yaml else: # supervised loss loss_dict[key] = record_dict[key] * 1 return loss_dict def threshold_bbox( self, proposal_bbox_inst, thres=0.7, mask_thres=0.5, keypoint_thres=0.5, proposal_type="roih", ): if proposal_type == "rpn": valid_map = proposal_bbox_inst.objectness_logits > thres # create instances containing boxes and gt_classes image_shape = proposal_bbox_inst.image_size new_proposal_inst = Instances(image_shape) # create box new_bbox_loc = proposal_bbox_inst.proposal_boxes.tensor[valid_map, :] new_boxes = Boxes(new_bbox_loc) # add boxes to instances new_proposal_inst.gt_boxes = new_boxes new_proposal_inst.pred_boxes = new_boxes new_proposal_inst.objectness_logits = proposal_bbox_inst.objectness_logits[ valid_map ] elif proposal_type == "roih": valid_map = proposal_bbox_inst.scores > thres # create instances containing boxes and gt_classes image_shape = proposal_bbox_inst.image_size new_proposal_inst = Instances(image_shape) # create box new_bbox_loc = proposal_bbox_inst.pred_boxes.tensor[valid_map, :] new_boxes = Boxes(new_bbox_loc) # add boxes to instances new_proposal_inst.gt_boxes = new_boxes new_proposal_inst.pred_boxes = new_boxes new_proposal_inst.gt_classes = proposal_bbox_inst.pred_classes[valid_map] new_proposal_inst.pred_classes = proposal_bbox_inst.pred_classes[valid_map] new_proposal_inst.scores = proposal_bbox_inst.scores[valid_map] if self.cfg.MODEL.MASK_ON and new_boxes: # put predicted output into gt_masks with thresholding new_masks = proposal_bbox_inst.pred_masks[valid_map].squeeze(1) new_masks = new_masks >= mask_thres new_proposal_inst.gt_masks = BitMasks(new_masks) if self.cfg.MODEL.KEYPOINT_ON and new_boxes: # we use the keypoint score as the basis for thresholding new_keypoints = proposal_bbox_inst.pred_keypoints[valid_map, :] invalid_keypoints = new_keypoints[:, :, 2] < keypoint_thres # (x, y, visibility): visibility flag = 0 -> not labeled (in which case x=y=0) new_keypoints[invalid_keypoints] = torch.FloatTensor([0, 0, 0]).to( new_keypoints.device ) new_proposal_inst.gt_keypoints = Keypoints(new_keypoints) return new_proposal_inst
# Copyright (c) Facebook, Inc. and its affiliates. import torch import datetime import logging import math import time import sys from torch.distributed.distributed_c10d import reduce from utils.ap_calculator import APCalculator from utils.misc import SmoothedValue from utils.dist import ( all_gather_dict, all_reduce_average, is_primary, reduce_dict, barrier, ) def compute_learning_rate(args, curr_epoch_normalized): assert curr_epoch_normalized <= 1.0 and curr_epoch_normalized >= 0.0 if ( curr_epoch_normalized <= (args.warm_lr_epochs / args.max_epoch) and args.warm_lr_epochs > 0 ): # Linear Warmup curr_lr = args.warm_lr + curr_epoch_normalized * args.max_epoch * ( (args.base_lr - args.warm_lr) / args.warm_lr_epochs ) else: # Cosine Learning Rate Schedule curr_lr = args.final_lr + 0.5 * (args.base_lr - args.final_lr) * ( 1 + math.cos(math.pi * curr_epoch_normalized) ) return curr_lr def adjust_learning_rate(args, optimizer, curr_epoch): curr_lr = compute_learning_rate(args, curr_epoch) for param_group in optimizer.param_groups: param_group["lr"] = curr_lr return curr_lr def train_one_epoch( args, curr_epoch, model, optimizer, criterion, dataset_config, dataset_loader, logger, ): ap_calculator = APCalculator( dataset_config=dataset_config, ap_iou_thresh=[0.25, 0.5], class2type_map=dataset_config.class2type, exact_eval=False, ) curr_iter = curr_epoch * len(dataset_loader) max_iters = args.max_epoch * len(dataset_loader) net_device = next(model.parameters()).device time_delta = SmoothedValue(window_size=10) loss_avg = SmoothedValue(window_size=10) model.train() barrier() for batch_idx, batch_data_label in enumerate(dataset_loader): curr_time = time.time() curr_lr = adjust_learning_rate(args, optimizer, curr_iter / max_iters) for key in batch_data_label: batch_data_label[key] = batch_data_label[key].to(net_device) # Forward pass optimizer.zero_grad() inputs = { "point_clouds": batch_data_label["point_clouds"], "point_cloud_dims_min": batch_data_label["point_cloud_dims_min"], "point_cloud_dims_max": batch_data_label["point_cloud_dims_max"], } outputs = model(inputs) # Compute loss loss, loss_dict = criterion(outputs, batch_data_label) loss_reduced = all_reduce_average(loss) loss_dict_reduced = reduce_dict(loss_dict) if not math.isfinite(loss_reduced.item()): logging.info(f"Loss in not finite. Training will be stopped.") sys.exit(1) loss.backward() if args.clip_gradient > 0: torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip_gradient) optimizer.step() if curr_iter % args.log_metrics_every == 0: # This step is slow. AP is computed approximately and locally during training. # It will gather outputs and ground truth across all ranks. # It is memory intensive as point_cloud ground truth is a large tensor. # If GPU memory is not an issue, uncomment the following lines. # outputs["outputs"] = all_gather_dict(outputs["outputs"]) # batch_data_label = all_gather_dict(batch_data_label) ap_calculator.step_meter(outputs, batch_data_label) time_delta.update(time.time() - curr_time) loss_avg.update(loss_reduced.item()) # logging if is_primary() and curr_iter % args.log_every == 0: mem_mb = torch.cuda.max_memory_allocated() / (1024 ** 2) eta_seconds = (max_iters - curr_iter) * time_delta.avg eta_str = str(datetime.timedelta(seconds=int(eta_seconds))) print( f"Epoch [{curr_epoch}/{args.max_epoch}]; Iter [{curr_iter}/{max_iters}]; Loss {loss_avg.avg:0.2f}; LR {curr_lr:0.2e}; Iter time {time_delta.avg:0.2f}; ETA {eta_str}; Mem {mem_mb:0.2f}MB" ) logger.log_scalars(loss_dict_reduced, curr_iter, prefix="Train_details/") train_dict = {} train_dict["lr"] = curr_lr train_dict["memory"] = mem_mb train_dict["loss"] = loss_avg.avg train_dict["batch_time"] = time_delta.avg logger.log_scalars(train_dict, curr_iter, prefix="Train/") curr_iter += 1 barrier() return ap_calculator @torch.no_grad() def evaluate( args, curr_epoch, model, criterion, dataset_config, dataset_loader, logger, curr_train_iter, ): # ap calculator is exact for evaluation. This is slower than the ap calculator used during training. ap_calculator = APCalculator( dataset_config=dataset_config, ap_iou_thresh=[0.25, 0.5], class2type_map=dataset_config.class2type, exact_eval=True, ) curr_iter = 0 net_device = next(model.parameters()).device num_batches = len(dataset_loader) time_delta = SmoothedValue(window_size=10) loss_avg = SmoothedValue(window_size=10) model.eval() barrier() epoch_str = f"[{curr_epoch}/{args.max_epoch}]" if curr_epoch > 0 else "" for batch_idx, batch_data_label in enumerate(dataset_loader): curr_time = time.time() for key in batch_data_label: batch_data_label[key] = batch_data_label[key].to(net_device) inputs = { "point_clouds": batch_data_label["point_clouds"], "point_cloud_dims_min": batch_data_label["point_cloud_dims_min"], "point_cloud_dims_max": batch_data_label["point_cloud_dims_max"], } outputs = model(inputs) # Compute loss loss_str = "" if criterion is not None: loss, loss_dict = criterion(outputs, batch_data_label) loss_reduced = all_reduce_average(loss) loss_dict_reduced = reduce_dict(loss_dict) loss_avg.update(loss_reduced.item()) loss_str = f"Loss {loss_avg.avg:0.2f};" # Memory intensive as it gathers point cloud GT tensor across all ranks outputs["outputs"] = all_gather_dict(outputs["outputs"]) batch_data_label = all_gather_dict(batch_data_label) ap_calculator.step_meter(outputs, batch_data_label) time_delta.update(time.time() - curr_time) if is_primary() and curr_iter % args.log_every == 0: mem_mb = torch.cuda.max_memory_allocated() / (1024 ** 2) print( f"Evaluate {epoch_str}; Batch [{curr_iter}/{num_batches}]; {loss_str} Iter time {time_delta.avg:0.2f}; Mem {mem_mb:0.2f}MB" ) test_dict = {} test_dict["memory"] = mem_mb test_dict["batch_time"] = time_delta.avg if criterion is not None: test_dict["loss"] = loss_avg.avg curr_iter += 1 barrier() if is_primary(): if criterion is not None: logger.log_scalars( loss_dict_reduced, curr_train_iter, prefix="Test_details/" ) logger.log_scalars(test_dict, curr_train_iter, prefix="Test/") return ap_calculator
# Copyright (c) Facebook, Inc. and its affiliates. import torch def build_optimizer(args, model): params_with_decay = [] params_without_decay = [] for name, param in model.named_parameters(): if param.requires_grad is False: continue if args.filter_biases_wd and (len(param.shape) == 1 or name.endswith("bias")): params_without_decay.append(param) else: params_with_decay.append(param) if args.filter_biases_wd: param_groups = [ {"params": params_without_decay, "weight_decay": 0.0}, {"params": params_with_decay, "weight_decay": args.weight_decay}, ] else: param_groups = [ {"params": params_with_decay, "weight_decay": args.weight_decay}, ] optimizer = torch.optim.AdamW(param_groups, lr=args.base_lr) return optimizer
# Copyright (c) Facebook, Inc. and its affiliates. import torch import torch.nn as nn import numpy as np import torch.nn.functional as F from utils.box_util import generalized_box3d_iou from utils.dist import all_reduce_average from utils.misc import huber_loss from scipy.optimize import linear_sum_assignment class Matcher(nn.Module): def __init__(self, cost_class, cost_objectness, cost_giou, cost_center): """ Parameters: cost_class: Returns: """ super().__init__() self.cost_class = cost_class self.cost_objectness = cost_objectness self.cost_giou = cost_giou self.cost_center = cost_center @torch.no_grad() def forward(self, outputs, targets): batchsize = outputs["sem_cls_prob"].shape[0] nqueries = outputs["sem_cls_prob"].shape[1] ngt = targets["gt_box_sem_cls_label"].shape[1] nactual_gt = targets["nactual_gt"] # classification cost: batch x nqueries x ngt matrix pred_cls_prob = outputs["sem_cls_prob"] gt_box_sem_cls_labels = ( targets["gt_box_sem_cls_label"] .unsqueeze(1) .expand(batchsize, nqueries, ngt) ) class_mat = -torch.gather(pred_cls_prob, 2, gt_box_sem_cls_labels) # objectness cost: batch x nqueries x 1 objectness_mat = -outputs["objectness_prob"].unsqueeze(-1) # center cost: batch x nqueries x ngt center_mat = outputs["center_dist"].detach() # giou cost: batch x nqueries x ngt giou_mat = -outputs["gious"].detach() final_cost = ( self.cost_class * class_mat + self.cost_objectness * objectness_mat + self.cost_center * center_mat + self.cost_giou * giou_mat ) final_cost = final_cost.detach().cpu().numpy() assignments = [] # auxiliary variables useful for batched loss computation batch_size, nprop = final_cost.shape[0], final_cost.shape[1] per_prop_gt_inds = torch.zeros( [batch_size, nprop], dtype=torch.int64, device=pred_cls_prob.device ) proposal_matched_mask = torch.zeros( [batch_size, nprop], dtype=torch.float32, device=pred_cls_prob.device ) for b in range(batchsize): assign = [] if nactual_gt[b] > 0: assign = linear_sum_assignment(final_cost[b, :, : nactual_gt[b]]) assign = [ torch.from_numpy(x).long().to(device=pred_cls_prob.device) for x in assign ] per_prop_gt_inds[b, assign[0]] = assign[1] proposal_matched_mask[b, assign[0]] = 1 assignments.append(assign) return { "assignments": assignments, "per_prop_gt_inds": per_prop_gt_inds, "proposal_matched_mask": proposal_matched_mask, } class SetCriterion(nn.Module): def __init__(self, matcher, dataset_config, loss_weight_dict): super().__init__() self.dataset_config = dataset_config self.matcher = matcher self.loss_weight_dict = loss_weight_dict semcls_percls_weights = torch.ones(dataset_config.num_semcls + 1) semcls_percls_weights[-1] = loss_weight_dict["loss_no_object_weight"] del loss_weight_dict["loss_no_object_weight"] self.register_buffer("semcls_percls_weights", semcls_percls_weights) self.loss_functions = { "loss_sem_cls": self.loss_sem_cls, "loss_angle": self.loss_angle, "loss_center": self.loss_center, "loss_size": self.loss_size, "loss_giou": self.loss_giou, # this isn't used during training and is logged for debugging. # thus, this loss does not have a loss_weight associated with it. "loss_cardinality": self.loss_cardinality, } @torch.no_grad() def loss_cardinality(self, outputs, targets, assignments): # Count the number of predictions that are objects # Cardinality is the error between predicted #objects and ground truth objects pred_logits = outputs["sem_cls_logits"] # Count the number of predictions that are NOT "no-object" (which is the last class) pred_objects = (pred_logits.argmax(-1) != pred_logits.shape[-1] - 1).sum(1) card_err = F.l1_loss(pred_objects.float(), targets["nactual_gt"]) return {"loss_cardinality": card_err} def loss_sem_cls(self, outputs, targets, assignments): # # Not vectorized version # pred_logits = outputs["sem_cls_logits"] # assign = assignments["assignments"] # sem_cls_targets = torch.ones((pred_logits.shape[0], pred_logits.shape[1]), # dtype=torch.int64, device=pred_logits.device) # # initialize to background/no-object class # sem_cls_targets *= (pred_logits.shape[-1] - 1) # # use assignments to compute labels for matched boxes # for b in range(pred_logits.shape[0]): # if len(assign[b]) > 0: # sem_cls_targets[b, assign[b][0]] = targets["gt_box_sem_cls_label"][b, assign[b][1]] # sem_cls_targets = sem_cls_targets.view(-1) # pred_logits = pred_logits.reshape(sem_cls_targets.shape[0], -1) # loss = F.cross_entropy(pred_logits, sem_cls_targets, self.semcls_percls_weights, reduction="mean") pred_logits = outputs["sem_cls_logits"] gt_box_label = torch.gather( targets["gt_box_sem_cls_label"], 1, assignments["per_prop_gt_inds"] ) gt_box_label[assignments["proposal_matched_mask"].int() == 0] = ( pred_logits.shape[-1] - 1 ) loss = F.cross_entropy( pred_logits.transpose(2, 1), gt_box_label, self.semcls_percls_weights, reduction="mean", ) return {"loss_sem_cls": loss} def loss_angle(self, outputs, targets, assignments): angle_logits = outputs["angle_logits"] angle_residual = outputs["angle_residual_normalized"] if targets["num_boxes_replica"] > 0: gt_angle_label = targets["gt_angle_class_label"] gt_angle_residual = targets["gt_angle_residual_label"] gt_angle_residual_normalized = gt_angle_residual / ( np.pi / self.dataset_config.num_angle_bin ) # # Non vectorized version # assignments = assignments["assignments"] # p_angle_logits = [] # p_angle_resid = [] # t_angle_labels = [] # t_angle_resid = [] # for b in range(angle_logits.shape[0]): # if len(assignments[b]) > 0: # p_angle_logits.append(angle_logits[b, assignments[b][0]]) # p_angle_resid.append(angle_residual[b, assignments[b][0], gt_angle_label[b][assignments[b][1]]]) # t_angle_labels.append(gt_angle_label[b, assignments[b][1]]) # t_angle_resid.append(gt_angle_residual_normalized[b, assignments[b][1]]) # p_angle_logits = torch.cat(p_angle_logits) # p_angle_resid = torch.cat(p_angle_resid) # t_angle_labels = torch.cat(t_angle_labels) # t_angle_resid = torch.cat(t_angle_resid) # angle_cls_loss = F.cross_entropy(p_angle_logits, t_angle_labels, reduction="sum") # angle_reg_loss = huber_loss(p_angle_resid.flatten() - t_angle_resid.flatten()).sum() gt_angle_label = torch.gather( gt_angle_label, 1, assignments["per_prop_gt_inds"] ) angle_cls_loss = F.cross_entropy( angle_logits.transpose(2, 1), gt_angle_label, reduction="none" ) angle_cls_loss = ( angle_cls_loss * assignments["proposal_matched_mask"] ).sum() gt_angle_residual_normalized = torch.gather( gt_angle_residual_normalized, 1, assignments["per_prop_gt_inds"] ) gt_angle_label_one_hot = torch.zeros_like( angle_residual, dtype=torch.float32 ) gt_angle_label_one_hot.scatter_(2, gt_angle_label.unsqueeze(-1), 1) angle_residual_for_gt_class = torch.sum( angle_residual * gt_angle_label_one_hot, -1 ) angle_reg_loss = huber_loss( angle_residual_for_gt_class - gt_angle_residual_normalized, delta=1.0 ) angle_reg_loss = ( angle_reg_loss * assignments["proposal_matched_mask"] ).sum() angle_cls_loss /= targets["num_boxes"] angle_reg_loss /= targets["num_boxes"] else: angle_cls_loss = torch.zeros(1, device=angle_logits.device).squeeze() angle_reg_loss = torch.zeros(1, device=angle_logits.device).squeeze() return {"loss_angle_cls": angle_cls_loss, "loss_angle_reg": angle_reg_loss} def loss_center(self, outputs, targets, assignments): center_dist = outputs["center_dist"] if targets["num_boxes_replica"] > 0: # # Non vectorized version # assign = assignments["assignments"] # center_loss = torch.zeros(1, device=center_dist.device).squeeze() # for b in range(center_dist.shape[0]): # if len(assign[b]) > 0: # center_loss += center_dist[b, assign[b][0], assign[b][1]].sum() # select appropriate distances by using proposal to gt matching center_loss = torch.gather( center_dist, 2, assignments["per_prop_gt_inds"].unsqueeze(-1) ).squeeze(-1) # zero-out non-matched proposals center_loss = center_loss * assignments["proposal_matched_mask"] center_loss = center_loss.sum() if targets["num_boxes"] > 0: center_loss /= targets["num_boxes"] else: center_loss = torch.zeros(1, device=center_dist.device).squeeze() return {"loss_center": center_loss} def loss_giou(self, outputs, targets, assignments): gious_dist = 1 - outputs["gious"] # # Non vectorized version # giou_loss = torch.zeros(1, device=gious_dist.device).squeeze() # assign = assignments["assignments"] # for b in range(gious_dist.shape[0]): # if len(assign[b]) > 0: # giou_loss += gious_dist[b, assign[b][0], assign[b][1]].sum() # select appropriate gious by using proposal to gt matching giou_loss = torch.gather( gious_dist, 2, assignments["per_prop_gt_inds"].unsqueeze(-1) ).squeeze(-1) # zero-out non-matched proposals giou_loss = giou_loss * assignments["proposal_matched_mask"] giou_loss = giou_loss.sum() if targets["num_boxes"] > 0: giou_loss /= targets["num_boxes"] return {"loss_giou": giou_loss} def loss_size(self, outputs, targets, assignments): gt_box_sizes = targets["gt_box_sizes_normalized"] pred_box_sizes = outputs["size_normalized"] if targets["num_boxes_replica"] > 0: # # Non vectorized version # p_sizes = [] # t_sizes = [] # assign = assignments["assignments"] # for b in range(pred_box_sizes.shape[0]): # if len(assign[b]) > 0: # p_sizes.append(pred_box_sizes[b, assign[b][0]]) # t_sizes.append(gt_box_sizes[b, assign[b][1]]) # p_sizes = torch.cat(p_sizes) # t_sizes = torch.cat(t_sizes) # size_loss = F.l1_loss(p_sizes, t_sizes, reduction="sum") # construct gt_box_sizes as [batch x nprop x 3] matrix by using proposal to gt matching gt_box_sizes = torch.stack( [ torch.gather( gt_box_sizes[:, :, x], 1, assignments["per_prop_gt_inds"] ) for x in range(gt_box_sizes.shape[-1]) ], dim=-1, ) size_loss = F.l1_loss(pred_box_sizes, gt_box_sizes, reduction="none").sum( dim=-1 ) # zero-out non-matched proposals size_loss *= assignments["proposal_matched_mask"] size_loss = size_loss.sum() size_loss /= targets["num_boxes"] else: size_loss = torch.zeros(1, device=pred_box_sizes.device).squeeze() return {"loss_size": size_loss} def single_output_forward(self, outputs, targets): gious = generalized_box3d_iou( outputs["box_corners"], targets["gt_box_corners"], targets["nactual_gt"], rotated_boxes=torch.any(targets["gt_box_angles"] > 0).item(), needs_grad=(self.loss_weight_dict["loss_giou_weight"] > 0), ) outputs["gious"] = gious center_dist = torch.cdist( outputs["center_normalized"], targets["gt_box_centers_normalized"], p=1 ) outputs["center_dist"] = center_dist assignments = self.matcher(outputs, targets) losses = {} for k in self.loss_functions: loss_wt_key = k + "_weight" if ( loss_wt_key in self.loss_weight_dict and self.loss_weight_dict[loss_wt_key] > 0 ) or loss_wt_key not in self.loss_weight_dict: # only compute losses with loss_wt > 0 # certain losses like cardinality are only logged and have no loss weight curr_loss = self.loss_functions[k](outputs, targets, assignments) losses.update(curr_loss) final_loss = 0 for k in self.loss_weight_dict: if self.loss_weight_dict[k] > 0: losses[k.replace("_weight", "")] *= self.loss_weight_dict[k] final_loss += losses[k.replace("_weight", "")] return final_loss, losses def forward(self, outputs, targets): nactual_gt = targets["gt_box_present"].sum(axis=1).long() num_boxes = torch.clamp(all_reduce_average(nactual_gt.sum()), min=1).item() targets["nactual_gt"] = nactual_gt targets["num_boxes"] = num_boxes targets[ "num_boxes_replica" ] = nactual_gt.sum().item() # number of boxes on this worker for dist training loss, loss_dict = self.single_output_forward(outputs["outputs"], targets) if "aux_outputs" in outputs: for k in range(len(outputs["aux_outputs"])): interm_loss, interm_loss_dict = self.single_output_forward( outputs["aux_outputs"][k], targets ) loss += interm_loss for interm_key in interm_loss_dict: loss_dict[f"{interm_key}_{k}"] = interm_loss_dict[interm_key] return loss, loss_dict def build_criterion(args, dataset_config): matcher = Matcher( cost_class=args.matcher_cls_cost, cost_giou=args.matcher_giou_cost, cost_center=args.matcher_center_cost, cost_objectness=args.matcher_objectness_cost, ) loss_weight_dict = { "loss_giou_weight": args.loss_giou_weight, "loss_sem_cls_weight": args.loss_sem_cls_weight, "loss_no_object_weight": args.loss_no_object_weight, "loss_angle_cls_weight": args.loss_angle_cls_weight, "loss_angle_reg_weight": args.loss_angle_reg_weight, "loss_center_weight": args.loss_center_weight, "loss_size_weight": args.loss_size_weight, } criterion = SetCriterion(matcher, dataset_config, loss_weight_dict) return criterion
# Copyright (c) Facebook, Inc. and its affiliates. import argparse import os import sys import pickle import numpy as np import torch from torch.multiprocessing import set_start_method from torch.utils.data import DataLoader, DistributedSampler # 3DETR codebase specific imports from datasets import build_dataset from engine import evaluate, train_one_epoch from models import build_model from optimizer import build_optimizer from criterion import build_criterion from utils.dist import init_distributed, is_distributed, is_primary, get_rank, barrier from utils.misc import my_worker_init_fn from utils.io import save_checkpoint, resume_if_possible from utils.logger import Logger def make_args_parser(): parser = argparse.ArgumentParser("3D Detection Using Transformers", add_help=False) ##### Optimizer ##### parser.add_argument("--base_lr", default=5e-4, type=float) parser.add_argument("--warm_lr", default=1e-6, type=float) parser.add_argument("--warm_lr_epochs", default=9, type=int) parser.add_argument("--final_lr", default=1e-6, type=float) parser.add_argument("--lr_scheduler", default="cosine", type=str) parser.add_argument("--weight_decay", default=0.1, type=float) parser.add_argument("--filter_biases_wd", default=False, action="store_true") parser.add_argument( "--clip_gradient", default=0.1, type=float, help="Max L2 norm of the gradient" ) ##### Model ##### parser.add_argument( "--model_name", default="3detr", type=str, help="Name of the model", choices=["3detr"], ) ### Encoder parser.add_argument( "--enc_type", default="vanilla", choices=["masked", "maskedv2", "vanilla"] ) # Below options are only valid for vanilla encoder parser.add_argument("--enc_nlayers", default=3, type=int) parser.add_argument("--enc_dim", default=256, type=int) parser.add_argument("--enc_ffn_dim", default=128, type=int) parser.add_argument("--enc_dropout", default=0.1, type=float) parser.add_argument("--enc_nhead", default=4, type=int) parser.add_argument("--enc_pos_embed", default=None, type=str) parser.add_argument("--enc_activation", default="relu", type=str) ### Decoder parser.add_argument("--dec_nlayers", default=8, type=int) parser.add_argument("--dec_dim", default=256, type=int) parser.add_argument("--dec_ffn_dim", default=256, type=int) parser.add_argument("--dec_dropout", default=0.1, type=float) parser.add_argument("--dec_nhead", default=4, type=int) ### MLP heads for predicting bounding boxes parser.add_argument("--mlp_dropout", default=0.3, type=float) parser.add_argument( "--nsemcls", default=-1, type=int, help="Number of semantic object classes. Can be inferred from dataset", ) ### Other model params parser.add_argument("--preenc_npoints", default=2048, type=int) parser.add_argument( "--pos_embed", default="fourier", type=str, choices=["fourier", "sine"] ) parser.add_argument("--nqueries", default=256, type=int) parser.add_argument("--use_color", default=False, action="store_true") ##### Set Loss ##### ### Matcher parser.add_argument("--matcher_giou_cost", default=2, type=float) parser.add_argument("--matcher_cls_cost", default=1, type=float) parser.add_argument("--matcher_center_cost", default=0, type=float) parser.add_argument("--matcher_objectness_cost", default=0, type=float) ### Loss Weights parser.add_argument("--loss_giou_weight", default=0, type=float) parser.add_argument("--loss_sem_cls_weight", default=1, type=float) parser.add_argument( "--loss_no_object_weight", default=0.2, type=float ) # "no object" or "background" class for detection parser.add_argument("--loss_angle_cls_weight", default=0.1, type=float) parser.add_argument("--loss_angle_reg_weight", default=0.5, type=float) parser.add_argument("--loss_center_weight", default=5.0, type=float) parser.add_argument("--loss_size_weight", default=1.0, type=float) ##### Dataset ##### parser.add_argument( "--dataset_name", required=True, type=str, choices=["scannet", "sunrgbd"] ) parser.add_argument( "--dataset_root_dir", type=str, default=None, help="Root directory containing the dataset files. \ If None, default values from scannet.py/sunrgbd.py are used", ) parser.add_argument( "--meta_data_dir", type=str, default=None, help="Root directory containing the metadata files. \ If None, default values from scannet.py/sunrgbd.py are used", ) parser.add_argument("--dataset_num_workers", default=4, type=int) parser.add_argument("--batchsize_per_gpu", default=8, type=int) ##### Training ##### parser.add_argument("--start_epoch", default=-1, type=int) parser.add_argument("--max_epoch", default=720, type=int) parser.add_argument("--eval_every_epoch", default=10, type=int) parser.add_argument("--seed", default=0, type=int) ##### Testing ##### parser.add_argument("--test_only", default=False, action="store_true") parser.add_argument("--test_ckpt", default=None, type=str) ##### I/O ##### parser.add_argument("--checkpoint_dir", default=None, type=str) parser.add_argument("--log_every", default=10, type=int) parser.add_argument("--log_metrics_every", default=20, type=int) parser.add_argument("--save_separate_checkpoint_every_epoch", default=100, type=int) ##### Distributed Training ##### parser.add_argument("--ngpus", default=1, type=int) parser.add_argument("--dist_url", default="tcp://localhost:12345", type=str) return parser def do_train( args, model, model_no_ddp, optimizer, criterion, dataset_config, dataloaders, best_val_metrics, ): """ Main training loop. This trains the model for `args.max_epoch` epochs and tests the model after every `args.eval_every_epoch`. We always evaluate the final checkpoint and report both the final AP and best AP on the val set. """ num_iters_per_epoch = len(dataloaders["train"]) num_iters_per_eval_epoch = len(dataloaders["test"]) print(f"Model is {model}") print(f"Training started at epoch {args.start_epoch} until {args.max_epoch}.") print(f"One training epoch = {num_iters_per_epoch} iters.") print(f"One eval epoch = {num_iters_per_eval_epoch} iters.") final_eval = os.path.join(args.checkpoint_dir, "final_eval.txt") final_eval_pkl = os.path.join(args.checkpoint_dir, "final_eval.pkl") if os.path.isfile(final_eval): print(f"Found final eval file {final_eval}. Skipping training.") return logger = Logger(args.checkpoint_dir) for epoch in range(args.start_epoch, args.max_epoch): if is_distributed(): dataloaders["train_sampler"].set_epoch(epoch) aps = train_one_epoch( args, epoch, model, optimizer, criterion, dataset_config, dataloaders["train"], logger, ) # latest checkpoint is always stored in checkpoint.pth save_checkpoint( args.checkpoint_dir, model_no_ddp, optimizer, epoch, args, best_val_metrics, filename="checkpoint.pth", ) metrics = aps.compute_metrics() metric_str = aps.metrics_to_str(metrics, per_class=False) metrics_dict = aps.metrics_to_dict(metrics) curr_iter = epoch * len(dataloaders["train"]) if is_primary(): print("==" * 10) print(f"Epoch [{epoch}/{args.max_epoch}]; Metrics {metric_str}") print("==" * 10) logger.log_scalars(metrics_dict, curr_iter, prefix="Train/") if ( epoch > 0 and args.save_separate_checkpoint_every_epoch > 0 and epoch % args.save_separate_checkpoint_every_epoch == 0 ): # separate checkpoints are stored as checkpoint_{epoch}.pth save_checkpoint( args.checkpoint_dir, model_no_ddp, optimizer, epoch, args, best_val_metrics, ) if epoch % args.eval_every_epoch == 0 or epoch == (args.max_epoch - 1): ap_calculator = evaluate( args, epoch, model, criterion, dataset_config, dataloaders["test"], logger, curr_iter, ) metrics = ap_calculator.compute_metrics() ap25 = metrics[0.25]["mAP"] metric_str = ap_calculator.metrics_to_str(metrics, per_class=True) metrics_dict = ap_calculator.metrics_to_dict(metrics) if is_primary(): print("==" * 10) print(f"Evaluate Epoch [{epoch}/{args.max_epoch}]; Metrics {metric_str}") print("==" * 10) logger.log_scalars(metrics_dict, curr_iter, prefix="Test/") if is_primary() and ( len(best_val_metrics) == 0 or best_val_metrics[0.25]["mAP"] < ap25 ): best_val_metrics = metrics filename = "checkpoint_best.pth" save_checkpoint( args.checkpoint_dir, model_no_ddp, optimizer, epoch, args, best_val_metrics, filename=filename, ) print( f"Epoch [{epoch}/{args.max_epoch}] saved current best val checkpoint at {filename}; ap25 {ap25}" ) # always evaluate last checkpoint epoch = args.max_epoch - 1 curr_iter = epoch * len(dataloaders["train"]) ap_calculator = evaluate( args, epoch, model, criterion, dataset_config, dataloaders["test"], logger, curr_iter, ) metrics = ap_calculator.compute_metrics() metric_str = ap_calculator.metrics_to_str(metrics) if is_primary(): print("==" * 10) print(f"Evaluate Final [{epoch}/{args.max_epoch}]; Metrics {metric_str}") print("==" * 10) with open(final_eval, "w") as fh: fh.write("Training Finished.\n") fh.write("==" * 10) fh.write("Final Eval Numbers.\n") fh.write(metric_str) fh.write("\n") fh.write("==" * 10) fh.write("Best Eval Numbers.\n") fh.write(ap_calculator.metrics_to_str(best_val_metrics)) fh.write("\n") with open(final_eval_pkl, "wb") as fh: pickle.dump(metrics, fh) def test_model(args, model, model_no_ddp, criterion, dataset_config, dataloaders): if args.test_ckpt is None or not os.path.isfile(args.test_ckpt): f"Please specify a test checkpoint using --test_ckpt. Found invalid value {args.test_ckpt}" sys.exit(1) sd = torch.load(args.test_ckpt, map_location=torch.device("cpu")) model_no_ddp.load_state_dict(sd["model"]) logger = Logger() criterion = None # do not compute loss for speed-up; Comment out to see test loss epoch = -1 curr_iter = 0 ap_calculator = evaluate( args, epoch, model, criterion, dataset_config, dataloaders["test"], logger, curr_iter, ) metrics = ap_calculator.compute_metrics() metric_str = ap_calculator.metrics_to_str(metrics) if is_primary(): print("==" * 10) print(f"Test model; Metrics {metric_str}") print("==" * 10) def main(local_rank, args): if args.ngpus > 1: print( "Initializing Distributed Training. This is in BETA mode and hasn't been tested thoroughly. Use at your own risk :)" ) print("To get the maximum speed-up consider reducing evaluations on val set by setting --eval_every_epoch to greater than 50") init_distributed( local_rank, global_rank=local_rank, world_size=args.ngpus, dist_url=args.dist_url, dist_backend="nccl", ) print(f"Called with args: {args}") torch.cuda.set_device(local_rank) np.random.seed(args.seed + get_rank()) torch.manual_seed(args.seed + get_rank()) if torch.cuda.is_available(): torch.cuda.manual_seed_all(args.seed + get_rank()) datasets, dataset_config = build_dataset(args) model, _ = build_model(args, dataset_config) model = model.cuda(local_rank) model_no_ddp = model if is_distributed(): model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model) model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[local_rank] ) criterion = build_criterion(args, dataset_config) criterion = criterion.cuda(local_rank) dataloaders = {} if args.test_only: dataset_splits = ["test"] else: dataset_splits = ["train", "test"] for split in dataset_splits: if split == "train": shuffle = True else: shuffle = False if is_distributed(): sampler = DistributedSampler(datasets[split], shuffle=shuffle) elif shuffle: sampler = torch.utils.data.RandomSampler(datasets[split]) else: sampler = torch.utils.data.SequentialSampler(datasets[split]) dataloaders[split] = DataLoader( datasets[split], sampler=sampler, batch_size=args.batchsize_per_gpu, num_workers=args.dataset_num_workers, worker_init_fn=my_worker_init_fn, ) dataloaders[split + "_sampler"] = sampler if args.test_only: criterion = None # faster evaluation test_model(args, model, model_no_ddp, criterion, dataset_config, dataloaders) else: assert ( args.checkpoint_dir is not None ), f"Please specify a checkpoint dir using --checkpoint_dir" if is_primary() and not os.path.isdir(args.checkpoint_dir): os.makedirs(args.checkpoint_dir, exist_ok=True) optimizer = build_optimizer(args, model_no_ddp) loaded_epoch, best_val_metrics = resume_if_possible( args.checkpoint_dir, model_no_ddp, optimizer ) args.start_epoch = loaded_epoch + 1 do_train( args, model, model_no_ddp, optimizer, criterion, dataset_config, dataloaders, best_val_metrics, ) def launch_distributed(args): world_size = args.ngpus if world_size == 1: main(local_rank=0, args=args) else: torch.multiprocessing.spawn(main, nprocs=world_size, args=(args,)) if __name__ == "__main__": parser = make_args_parser() args = parser.parse_args() try: set_start_method("spawn") except RuntimeError: pass launch_distributed(args)
# Copyright (c) Facebook, Inc. and its affiliates. """ Modified from https://github.com/facebookresearch/votenet Dataset for 3D object detection on SUN RGB-D (with support of vote supervision). A sunrgbd oriented bounding box is parameterized by (cx,cy,cz), (l,w,h) -- (dx,dy,dz) in upright depth coord (Z is up, Y is forward, X is right ward), heading angle (from +X rotating to -Y) and semantic class Point clouds are in **upright_depth coordinate (X right, Y forward, Z upward)** Return heading class, heading residual, size class and size residual for 3D bounding boxes. Oriented bounding box is parameterized by (cx,cy,cz), (l,w,h), heading_angle and semantic class label. (cx,cy,cz) is in upright depth coordinate (l,h,w) are *half length* of the object sizes The heading angle is a rotation rad from +X rotating towards -Y. (+X is 0, -Y is pi/2) Author: Charles R. Qi Date: 2019 """ import os import sys import numpy as np from torch.utils.data import Dataset import scipy.io as sio # to load .mat files for depth points import utils.pc_util as pc_util from utils.random_cuboid import RandomCuboid from utils.pc_util import shift_scale_points, scale_points from utils.box_util import ( flip_axis_to_camera_tensor, get_3d_box_batch_tensor, flip_axis_to_camera_np, get_3d_box_batch_np, ) MEAN_COLOR_RGB = np.array([0.5, 0.5, 0.5]) # sunrgbd color is in 0~1 DATA_PATH_V1 = "" ## Replace with path to dataset DATA_PATH_V2 = "" ## Not used in the codebase. class SunrgbdDatasetConfig(object): def __init__(self): self.num_semcls = 10 self.num_angle_bin = 12 self.max_num_obj = 64 self.type2class = { "bed": 0, "table": 1, "sofa": 2, "chair": 3, "toilet": 4, "desk": 5, "dresser": 6, "night_stand": 7, "bookshelf": 8, "bathtub": 9, } self.class2type = {self.type2class[t]: t for t in self.type2class} self.type2onehotclass = { "bed": 0, "table": 1, "sofa": 2, "chair": 3, "toilet": 4, "desk": 5, "dresser": 6, "night_stand": 7, "bookshelf": 8, "bathtub": 9, } def angle2class(self, angle): """Convert continuous angle to discrete class [optinal] also small regression number from class center angle to current angle. angle is from 0-2pi (or -pi~pi), class center at 0, 1*(2pi/N), 2*(2pi/N) ... (N-1)*(2pi/N) returns class [0,1,...,N-1] and a residual number such that class*(2pi/N) + number = angle """ num_class = self.num_angle_bin angle = angle % (2 * np.pi) assert angle >= 0 and angle <= 2 * np.pi angle_per_class = 2 * np.pi / float(num_class) shifted_angle = (angle + angle_per_class / 2) % (2 * np.pi) class_id = int(shifted_angle / angle_per_class) residual_angle = shifted_angle - ( class_id * angle_per_class + angle_per_class / 2 ) return class_id, residual_angle def class2angle(self, pred_cls, residual, to_label_format=True): """Inverse function to angle2class""" num_class = self.num_angle_bin angle_per_class = 2 * np.pi / float(num_class) angle_center = pred_cls * angle_per_class angle = angle_center + residual if to_label_format and angle > np.pi: angle = angle - 2 * np.pi return angle def class2angle_batch(self, pred_cls, residual, to_label_format=True): num_class = self.num_angle_bin angle_per_class = 2 * np.pi / float(num_class) angle_center = pred_cls * angle_per_class angle = angle_center + residual if to_label_format: mask = angle > np.pi angle[mask] = angle[mask] - 2 * np.pi return angle def class2anglebatch_tensor(self, pred_cls, residual, to_label_format=True): return self.class2angle_batch(pred_cls, residual, to_label_format) def box_parametrization_to_corners(self, box_center_unnorm, box_size, box_angle): box_center_upright = flip_axis_to_camera_tensor(box_center_unnorm) boxes = get_3d_box_batch_tensor(box_size, box_angle, box_center_upright) return boxes def box_parametrization_to_corners_np(self, box_center_unnorm, box_size, box_angle): box_center_upright = flip_axis_to_camera_np(box_center_unnorm) boxes = get_3d_box_batch_np(box_size, box_angle, box_center_upright) return boxes def my_compute_box_3d(self, center, size, heading_angle): R = pc_util.rotz(-1 * heading_angle) l, w, h = size x_corners = [-l, l, l, -l, -l, l, l, -l] y_corners = [w, w, -w, -w, w, w, -w, -w] z_corners = [h, h, h, h, -h, -h, -h, -h] corners_3d = np.dot(R, np.vstack([x_corners, y_corners, z_corners])) corners_3d[0, :] += center[0] corners_3d[1, :] += center[1] corners_3d[2, :] += center[2] return np.transpose(corners_3d) class SunrgbdDetectionDataset(Dataset): def __init__( self, dataset_config, split_set="train", root_dir=None, num_points=20000, use_color=False, use_height=False, use_v1=True, augment=False, use_random_cuboid=True, random_cuboid_min_points=30000, ): assert num_points <= 50000 assert split_set in ["train", "val", "trainval"] self.dataset_config = dataset_config self.use_v1 = use_v1 if root_dir is None: root_dir = DATA_PATH_V1 if use_v1 else DATA_PATH_V2 self.data_path = root_dir + "_%s" % (split_set) if split_set in ["train", "val"]: self.scan_names = sorted( list( set([os.path.basename(x)[0:6] for x in os.listdir(self.data_path)]) ) ) elif split_set in ["trainval"]: # combine names from both sub_splits = ["train", "val"] all_paths = [] for sub_split in sub_splits: data_path = self.data_path.replace("trainval", sub_split) basenames = sorted( list(set([os.path.basename(x)[0:6] for x in os.listdir(data_path)])) ) basenames = [os.path.join(data_path, x) for x in basenames] all_paths.extend(basenames) all_paths.sort() self.scan_names = all_paths self.num_points = num_points self.augment = augment self.use_color = use_color self.use_height = use_height self.use_random_cuboid = use_random_cuboid self.random_cuboid_augmentor = RandomCuboid( min_points=random_cuboid_min_points, aspect=0.75, min_crop=0.75, max_crop=1.0, ) self.center_normalizing_range = [ np.zeros((1, 3), dtype=np.float32), np.ones((1, 3), dtype=np.float32), ] self.max_num_obj = 64 def __len__(self): return len(self.scan_names) def __getitem__(self, idx): scan_name = self.scan_names[idx] if scan_name.startswith("/"): scan_path = scan_name else: scan_path = os.path.join(self.data_path, scan_name) point_cloud = np.load(scan_path + "_pc.npz")["pc"] # Nx6 bboxes = np.load(scan_path + "_bbox.npy") # K,8 if not self.use_color: point_cloud = point_cloud[:, 0:3] else: assert point_cloud.shape[1] == 6 point_cloud = point_cloud[:, 0:6] point_cloud[:, 3:] = point_cloud[:, 3:] - MEAN_COLOR_RGB if self.use_height: floor_height = np.percentile(point_cloud[:, 2], 0.99) height = point_cloud[:, 2] - floor_height point_cloud = np.concatenate( [point_cloud, np.expand_dims(height, 1)], 1 ) # (N,4) or (N,7) # ------------------------------- DATA AUGMENTATION ------------------------------ if self.augment: if np.random.random() > 0.5: # Flipping along the YZ plane point_cloud[:, 0] = -1 * point_cloud[:, 0] bboxes[:, 0] = -1 * bboxes[:, 0] bboxes[:, 6] = np.pi - bboxes[:, 6] # Rotation along up-axis/Z-axis rot_angle = (np.random.random() * np.pi / 3) - np.pi / 6 # -30 ~ +30 degree rot_mat = pc_util.rotz(rot_angle) point_cloud[:, 0:3] = np.dot(point_cloud[:, 0:3], np.transpose(rot_mat)) bboxes[:, 0:3] = np.dot(bboxes[:, 0:3], np.transpose(rot_mat)) bboxes[:, 6] -= rot_angle # Augment RGB color if self.use_color: rgb_color = point_cloud[:, 3:6] + MEAN_COLOR_RGB rgb_color *= ( 1 + 0.4 * np.random.random(3) - 0.2 ) # brightness change for each channel rgb_color += ( 0.1 * np.random.random(3) - 0.05 ) # color shift for each channel rgb_color += np.expand_dims( (0.05 * np.random.random(point_cloud.shape[0]) - 0.025), -1 ) # jittering on each pixel rgb_color = np.clip(rgb_color, 0, 1) # randomly drop out 30% of the points' colors rgb_color *= np.expand_dims( np.random.random(point_cloud.shape[0]) > 0.3, -1 ) point_cloud[:, 3:6] = rgb_color - MEAN_COLOR_RGB # Augment point cloud scale: 0.85x-1.15x scale_ratio = np.random.random() * 0.3 + 0.85 scale_ratio = np.expand_dims(np.tile(scale_ratio, 3), 0) point_cloud[:, 0:3] *= scale_ratio bboxes[:, 0:3] *= scale_ratio bboxes[:, 3:6] *= scale_ratio if self.use_height: point_cloud[:, -1] *= scale_ratio[0, 0] if self.use_random_cuboid: point_cloud, bboxes, _ = self.random_cuboid_augmentor( point_cloud, bboxes ) # ------------------------------- LABELS ------------------------------ angle_classes = np.zeros((self.max_num_obj,), dtype=np.float32) angle_residuals = np.zeros((self.max_num_obj,), dtype=np.float32) raw_angles = np.zeros((self.max_num_obj,), dtype=np.float32) raw_sizes = np.zeros((self.max_num_obj, 3), dtype=np.float32) label_mask = np.zeros((self.max_num_obj)) label_mask[0 : bboxes.shape[0]] = 1 max_bboxes = np.zeros((self.max_num_obj, 8)) max_bboxes[0 : bboxes.shape[0], :] = bboxes target_bboxes_mask = label_mask target_bboxes = np.zeros((self.max_num_obj, 6)) for i in range(bboxes.shape[0]): bbox = bboxes[i] semantic_class = bbox[7] raw_angles[i] = bbox[6] % 2 * np.pi box3d_size = bbox[3:6] * 2 raw_sizes[i, :] = box3d_size angle_class, angle_residual = self.dataset_config.angle2class(bbox[6]) angle_classes[i] = angle_class angle_residuals[i] = angle_residual corners_3d = self.dataset_config.my_compute_box_3d( bbox[0:3], bbox[3:6], bbox[6] ) # compute axis aligned box xmin = np.min(corners_3d[:, 0]) ymin = np.min(corners_3d[:, 1]) zmin = np.min(corners_3d[:, 2]) xmax = np.max(corners_3d[:, 0]) ymax = np.max(corners_3d[:, 1]) zmax = np.max(corners_3d[:, 2]) target_bbox = np.array( [ (xmin + xmax) / 2, (ymin + ymax) / 2, (zmin + zmax) / 2, xmax - xmin, ymax - ymin, zmax - zmin, ] ) target_bboxes[i, :] = target_bbox point_cloud, choices = pc_util.random_sampling( point_cloud, self.num_points, return_choices=True ) point_cloud_dims_min = point_cloud.min(axis=0) point_cloud_dims_max = point_cloud.max(axis=0) mult_factor = point_cloud_dims_max - point_cloud_dims_min box_sizes_normalized = scale_points( raw_sizes.astype(np.float32)[None, ...], mult_factor=1.0 / mult_factor[None, ...], ) box_sizes_normalized = box_sizes_normalized.squeeze(0) box_centers = target_bboxes.astype(np.float32)[:, 0:3] box_centers_normalized = shift_scale_points( box_centers[None, ...], src_range=[ point_cloud_dims_min[None, ...], point_cloud_dims_max[None, ...], ], dst_range=self.center_normalizing_range, ) box_centers_normalized = box_centers_normalized.squeeze(0) box_centers_normalized = box_centers_normalized * target_bboxes_mask[..., None] # re-encode angles to be consistent with VoteNet eval angle_classes = angle_classes.astype(np.int64) angle_residuals = angle_residuals.astype(np.float32) raw_angles = self.dataset_config.class2angle_batch( angle_classes, angle_residuals ) box_corners = self.dataset_config.box_parametrization_to_corners_np( box_centers[None, ...], raw_sizes.astype(np.float32)[None, ...], raw_angles.astype(np.float32)[None, ...], ) box_corners = box_corners.squeeze(0) ret_dict = {} ret_dict["point_clouds"] = point_cloud.astype(np.float32) ret_dict["gt_box_corners"] = box_corners.astype(np.float32) ret_dict["gt_box_centers"] = box_centers.astype(np.float32) ret_dict["gt_box_centers_normalized"] = box_centers_normalized.astype( np.float32 ) target_bboxes_semcls = np.zeros((self.max_num_obj)) target_bboxes_semcls[0 : bboxes.shape[0]] = bboxes[:, -1] # from 0 to 9 ret_dict["gt_box_sem_cls_label"] = target_bboxes_semcls.astype(np.int64) ret_dict["gt_box_present"] = target_bboxes_mask.astype(np.float32) ret_dict["scan_idx"] = np.array(idx).astype(np.int64) ret_dict["gt_box_sizes"] = raw_sizes.astype(np.float32) ret_dict["gt_box_sizes_normalized"] = box_sizes_normalized.astype(np.float32) ret_dict["gt_box_angles"] = raw_angles.astype(np.float32) ret_dict["gt_angle_class_label"] = angle_classes ret_dict["gt_angle_residual_label"] = angle_residuals ret_dict["point_cloud_dims_min"] = point_cloud_dims_min ret_dict["point_cloud_dims_max"] = point_cloud_dims_max return ret_dict
# Copyright (c) Facebook, Inc. and its affiliates. from .scannet import ScannetDetectionDataset, ScannetDatasetConfig from .sunrgbd import SunrgbdDetectionDataset, SunrgbdDatasetConfig DATASET_FUNCTIONS = { "scannet": [ScannetDetectionDataset, ScannetDatasetConfig], "sunrgbd": [SunrgbdDetectionDataset, SunrgbdDatasetConfig], } def build_dataset(args): dataset_builder = DATASET_FUNCTIONS[args.dataset_name][0] dataset_config = DATASET_FUNCTIONS[args.dataset_name][1]() dataset_dict = { "train": dataset_builder( dataset_config, split_set="train", root_dir=args.dataset_root_dir, meta_data_dir=args.meta_data_dir, use_color=args.use_color, augment=True ), "test": dataset_builder( dataset_config, split_set="val", root_dir=args.dataset_root_dir, use_color=args.use_color, augment=False ), } return dataset_dict, dataset_config
# Copyright (c) Facebook, Inc. and its affiliates. """ Modified from https://github.com/facebookresearch/votenet Dataset for object bounding box regression. An axis aligned bounding box is parameterized by (cx,cy,cz) and (dx,dy,dz) where (cx,cy,cz) is the center point of the box, dx is the x-axis length of the box. """ import os import sys import numpy as np import torch import utils.pc_util as pc_util from torch.utils.data import Dataset from utils.box_util import (flip_axis_to_camera_np, flip_axis_to_camera_tensor, get_3d_box_batch_np, get_3d_box_batch_tensor) from utils.pc_util import scale_points, shift_scale_points from utils.random_cuboid import RandomCuboid IGNORE_LABEL = -100 MEAN_COLOR_RGB = np.array([109.8, 97.2, 83.8]) DATASET_ROOT_DIR = "" ## Replace with path to dataset DATASET_METADATA_DIR = "" ## Replace with path to dataset class ScannetDatasetConfig(object): def __init__(self): self.num_semcls = 18 self.num_angle_bin = 1 self.max_num_obj = 64 self.type2class = { "cabinet": 0, "bed": 1, "chair": 2, "sofa": 3, "table": 4, "door": 5, "window": 6, "bookshelf": 7, "picture": 8, "counter": 9, "desk": 10, "curtain": 11, "refrigerator": 12, "showercurtrain": 13, "toilet": 14, "sink": 15, "bathtub": 16, "garbagebin": 17, } self.class2type = {self.type2class[t]: t for t in self.type2class} self.nyu40ids = np.array( [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34, 36, 39] ) self.nyu40id2class = { nyu40id: i for i, nyu40id in enumerate(list(self.nyu40ids)) } # Semantic Segmentation Classes. Not used in 3DETR self.num_class_semseg = 20 self.type2class_semseg = { "wall": 0, "floor": 1, "cabinet": 2, "bed": 3, "chair": 4, "sofa": 5, "table": 6, "door": 7, "window": 8, "bookshelf": 9, "picture": 10, "counter": 11, "desk": 12, "curtain": 13, "refrigerator": 14, "showercurtrain": 15, "toilet": 16, "sink": 17, "bathtub": 18, "garbagebin": 19, } self.class2type_semseg = { self.type2class_semseg[t]: t for t in self.type2class_semseg } self.nyu40ids_semseg = np.array( [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34, 36, 39] ) self.nyu40id2class_semseg = { nyu40id: i for i, nyu40id in enumerate(list(self.nyu40ids_semseg)) } def angle2class(self, angle): raise ValueError("ScanNet does not have rotated bounding boxes.") def class2anglebatch_tensor(self, pred_cls, residual, to_label_format=True): zero_angle = torch.zeros( (pred_cls.shape[0], pred_cls.shape[1]), dtype=torch.float32, device=pred_cls.device, ) return zero_angle def class2anglebatch(self, pred_cls, residual, to_label_format=True): zero_angle = np.zeros(pred_cls.shape[0], dtype=np.float32) return zero_angle def param2obb( self, center, heading_class, heading_residual, size_class, size_residual, box_size=None, ): heading_angle = self.class2angle(heading_class, heading_residual) if box_size is None: box_size = self.class2size(int(size_class), size_residual) obb = np.zeros((7,)) obb[0:3] = center obb[3:6] = box_size obb[6] = heading_angle * -1 return obb def box_parametrization_to_corners(self, box_center_unnorm, box_size, box_angle): box_center_upright = flip_axis_to_camera_tensor(box_center_unnorm) boxes = get_3d_box_batch_tensor(box_size, box_angle, box_center_upright) return boxes def box_parametrization_to_corners_np(self, box_center_unnorm, box_size, box_angle): box_center_upright = flip_axis_to_camera_np(box_center_unnorm) boxes = get_3d_box_batch_np(box_size, box_angle, box_center_upright) return boxes @staticmethod def rotate_aligned_boxes(input_boxes, rot_mat): centers, lengths = input_boxes[:, 0:3], input_boxes[:, 3:6] new_centers = np.dot(centers, np.transpose(rot_mat)) dx, dy = lengths[:, 0] / 2.0, lengths[:, 1] / 2.0 new_x = np.zeros((dx.shape[0], 4)) new_y = np.zeros((dx.shape[0], 4)) for i, crnr in enumerate([(-1, -1), (1, -1), (1, 1), (-1, 1)]): crnrs = np.zeros((dx.shape[0], 3)) crnrs[:, 0] = crnr[0] * dx crnrs[:, 1] = crnr[1] * dy crnrs = np.dot(crnrs, np.transpose(rot_mat)) new_x[:, i] = crnrs[:, 0] new_y[:, i] = crnrs[:, 1] new_dx = 2.0 * np.max(new_x, 1) new_dy = 2.0 * np.max(new_y, 1) new_lengths = np.stack((new_dx, new_dy, lengths[:, 2]), axis=1) return np.concatenate([new_centers, new_lengths], axis=1) class ScannetDetectionDataset(Dataset): def __init__( self, dataset_config, split_set="train", root_dir=None, meta_data_dir=None, num_points=40000, use_color=False, use_height=False, augment=False, use_random_cuboid=True, random_cuboid_min_points=30000, ): self.dataset_config = dataset_config assert split_set in ["train", "val"] if root_dir is None: root_dir = DATASET_ROOT_DIR if meta_data_dir is None: meta_data_dir = DATASET_METADATA_DIR self.data_path = root_dir all_scan_names = list( set( [ os.path.basename(x)[0:12] for x in os.listdir(self.data_path) if x.startswith("scene") ] ) ) if split_set == "all": self.scan_names = all_scan_names elif split_set in ["train", "val", "test"]: split_filenames = os.path.join(meta_data_dir, f"scannetv2_{split_set}.txt") with open(split_filenames, "r") as f: self.scan_names = f.read().splitlines() # remove unavailiable scans num_scans = len(self.scan_names) self.scan_names = [ sname for sname in self.scan_names if sname in all_scan_names ] print(f"kept {len(self.scan_names)} scans out of {num_scans}") else: raise ValueError(f"Unknown split name {split_set}") self.num_points = num_points self.use_color = use_color self.use_height = use_height self.augment = augment self.use_random_cuboid = use_random_cuboid self.random_cuboid_augmentor = RandomCuboid(min_points=random_cuboid_min_points) self.center_normalizing_range = [ np.zeros((1, 3), dtype=np.float32), np.ones((1, 3), dtype=np.float32), ] def __len__(self): return len(self.scan_names) def __getitem__(self, idx): scan_name = self.scan_names[idx] mesh_vertices = np.load(os.path.join(self.data_path, scan_name) + "_vert.npy") instance_labels = np.load( os.path.join(self.data_path, scan_name) + "_ins_label.npy" ) semantic_labels = np.load( os.path.join(self.data_path, scan_name) + "_sem_label.npy" ) instance_bboxes = np.load(os.path.join(self.data_path, scan_name) + "_bbox.npy") if not self.use_color: point_cloud = mesh_vertices[:, 0:3] # do not use color for now pcl_color = mesh_vertices[:, 3:6] else: point_cloud = mesh_vertices[:, 0:6] point_cloud[:, 3:] = (point_cloud[:, 3:] - MEAN_COLOR_RGB) / 256.0 pcl_color = point_cloud[:, 3:] if self.use_height: floor_height = np.percentile(point_cloud[:, 2], 0.99) height = point_cloud[:, 2] - floor_height point_cloud = np.concatenate([point_cloud, np.expand_dims(height, 1)], 1) # ------------------------------- LABELS ------------------------------ MAX_NUM_OBJ = self.dataset_config.max_num_obj target_bboxes = np.zeros((MAX_NUM_OBJ, 6), dtype=np.float32) target_bboxes_mask = np.zeros((MAX_NUM_OBJ), dtype=np.float32) angle_classes = np.zeros((MAX_NUM_OBJ,), dtype=np.int64) angle_residuals = np.zeros((MAX_NUM_OBJ,), dtype=np.float32) raw_sizes = np.zeros((MAX_NUM_OBJ, 3), dtype=np.float32) raw_angles = np.zeros((MAX_NUM_OBJ,), dtype=np.float32) if self.augment and self.use_random_cuboid: ( point_cloud, instance_bboxes, per_point_labels, ) = self.random_cuboid_augmentor( point_cloud, instance_bboxes, [instance_labels, semantic_labels] ) instance_labels = per_point_labels[0] semantic_labels = per_point_labels[1] point_cloud, choices = pc_util.random_sampling( point_cloud, self.num_points, return_choices=True ) instance_labels = instance_labels[choices] semantic_labels = semantic_labels[choices] sem_seg_labels = np.ones_like(semantic_labels) * IGNORE_LABEL for _c in self.dataset_config.nyu40ids_semseg: sem_seg_labels[ semantic_labels == _c ] = self.dataset_config.nyu40id2class_semseg[_c] pcl_color = pcl_color[choices] target_bboxes_mask[0 : instance_bboxes.shape[0]] = 1 target_bboxes[0 : instance_bboxes.shape[0], :] = instance_bboxes[:, 0:6] # ------------------------------- DATA AUGMENTATION ------------------------------ if self.augment: if np.random.random() > 0.5: # Flipping along the YZ plane point_cloud[:, 0] = -1 * point_cloud[:, 0] target_bboxes[:, 0] = -1 * target_bboxes[:, 0] if np.random.random() > 0.5: # Flipping along the XZ plane point_cloud[:, 1] = -1 * point_cloud[:, 1] target_bboxes[:, 1] = -1 * target_bboxes[:, 1] # Rotation along up-axis/Z-axis rot_angle = (np.random.random() * np.pi / 18) - np.pi / 36 # -5 ~ +5 degree rot_mat = pc_util.rotz(rot_angle) point_cloud[:, 0:3] = np.dot(point_cloud[:, 0:3], np.transpose(rot_mat)) target_bboxes = self.dataset_config.rotate_aligned_boxes( target_bboxes, rot_mat ) raw_sizes = target_bboxes[:, 3:6] point_cloud_dims_min = point_cloud.min(axis=0)[:3] point_cloud_dims_max = point_cloud.max(axis=0)[:3] box_centers = target_bboxes.astype(np.float32)[:, 0:3] box_centers_normalized = shift_scale_points( box_centers[None, ...], src_range=[ point_cloud_dims_min[None, ...], point_cloud_dims_max[None, ...], ], dst_range=self.center_normalizing_range, ) box_centers_normalized = box_centers_normalized.squeeze(0) box_centers_normalized = box_centers_normalized * target_bboxes_mask[..., None] mult_factor = point_cloud_dims_max - point_cloud_dims_min box_sizes_normalized = scale_points( raw_sizes.astype(np.float32)[None, ...], mult_factor=1.0 / mult_factor[None, ...], ) box_sizes_normalized = box_sizes_normalized.squeeze(0) box_corners = self.dataset_config.box_parametrization_to_corners_np( box_centers[None, ...], raw_sizes.astype(np.float32)[None, ...], raw_angles.astype(np.float32)[None, ...], ) box_corners = box_corners.squeeze(0) ret_dict = {} ret_dict["point_clouds"] = point_cloud.astype(np.float32) ret_dict["gt_box_corners"] = box_corners.astype(np.float32) ret_dict["gt_box_centers"] = box_centers.astype(np.float32) ret_dict["gt_box_centers_normalized"] = box_centers_normalized.astype( np.float32 ) ret_dict["gt_angle_class_label"] = angle_classes.astype(np.int64) ret_dict["gt_angle_residual_label"] = angle_residuals.astype(np.float32) target_bboxes_semcls = np.zeros((MAX_NUM_OBJ)) target_bboxes_semcls[0 : instance_bboxes.shape[0]] = [ self.dataset_config.nyu40id2class[int(x)] for x in instance_bboxes[:, -1][0 : instance_bboxes.shape[0]] ] ret_dict["gt_box_sem_cls_label"] = target_bboxes_semcls.astype(np.int64) ret_dict["gt_box_present"] = target_bboxes_mask.astype(np.float32) ret_dict["scan_idx"] = np.array(idx).astype(np.int64) ret_dict["pcl_color"] = pcl_color ret_dict["gt_box_sizes"] = raw_sizes.astype(np.float32) ret_dict["gt_box_sizes_normalized"] = box_sizes_normalized.astype(np.float32) ret_dict["gt_box_angles"] = raw_angles.astype(np.float32) ret_dict["point_cloud_dims_min"] = point_cloud_dims_min.astype(np.float32) ret_dict["point_cloud_dims_max"] = point_cloud_dims_max.astype(np.float32) return ret_dict
# Copyright (c) Facebook, Inc. and its affiliates. import torch import numpy as np from collections import deque from typing import List from utils.dist import is_distributed, barrier, all_reduce_sum def my_worker_init_fn(worker_id): np.random.seed(np.random.get_state()[1][0] + worker_id) @torch.jit.ignore def to_list_1d(arr) -> List[float]: arr = arr.detach().cpu().numpy().tolist() return arr @torch.jit.ignore def to_list_3d(arr) -> List[List[List[float]]]: arr = arr.detach().cpu().numpy().tolist() return arr def huber_loss(error, delta=1.0): """ Ref: https://github.com/charlesq34/frustum-pointnets/blob/master/models/model_util.py x = error = pred - gt or dist(pred,gt) 0.5 * |x|^2 if |x|<=d 0.5 * d^2 + d * (|x|-d) if |x|>d """ abs_error = torch.abs(error) quadratic = torch.clamp(abs_error, max=delta) linear = abs_error - quadratic loss = 0.5 * quadratic ** 2 + delta * linear return loss # From https://github.com/facebookresearch/detr/blob/master/util/misc.py class SmoothedValue(object): """Track a series of values and provide access to smoothed values over a window or the global series average. """ def __init__(self, window_size=20, fmt=None): if fmt is None: fmt = "{median:.4f} ({global_avg:.4f})" self.deque = deque(maxlen=window_size) self.total = 0.0 self.count = 0 self.fmt = fmt def update(self, value, n=1): self.deque.append(value) self.count += n self.total += value * n def synchronize_between_processes(self): """ Warning: does not synchronize the deque! """ if not is_distributed(): return t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda") barrier() all_reduce_sum(t) t = t.tolist() self.count = int(t[0]) self.total = t[1] @property def median(self): d = torch.tensor(list(self.deque)) return d.median().item() @property def avg(self): d = torch.tensor(list(self.deque), dtype=torch.float32) return d.mean().item() @property def global_avg(self): return self.total / self.count @property def max(self): return max(self.deque) @property def value(self): return self.deque[-1] def __str__(self): return self.fmt.format( median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value, )
# Copyright (c) Facebook, Inc. and its affiliates. from setuptools import setup, Extension from Cython.Build import cythonize import numpy as np # hacky way to find numpy include path # replace with actual path if this does not work np_include_path = np.__file__.replace("__init__.py", "core/include/") INCLUDE_PATH = [ np_include_path ] setup( ext_modules = cythonize( Extension( "box_intersection", sources=["box_intersection.pyx"], include_dirs=INCLUDE_PATH )), )
# Copyright (c) Facebook, Inc. and its affiliates. """ Generic Code for Object Detection Evaluation Input: For each class: For each image: Predictions: box, score Groundtruths: box Output: For each class: precision-recal and average precision Author: Charles R. Qi Ref: https://raw.githubusercontent.com/rbgirshick/py-faster-rcnn/master/lib/datasets/voc_eval.py """ import numpy as np from utils.box_util import box3d_iou def voc_ap(rec, prec, use_07_metric=False): """ap = voc_ap(rec, prec, [use_07_metric]) Compute VOC AP given precision and recall. If use_07_metric is true, uses the VOC 07 11 point method (default:False). """ if use_07_metric: # 11 point metric ap = 0.0 for t in np.arange(0.0, 1.1, 0.1): if np.sum(rec >= t) == 0: p = 0 else: p = np.max(prec[rec >= t]) ap = ap + p / 11.0 else: # correct AP calculation # first append sentinel values at the end mrec = np.concatenate(([0.0], rec, [1.0])) mpre = np.concatenate(([0.0], prec, [0.0])) # compute the precision envelope for i in range(mpre.size - 1, 0, -1): mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) # to calculate area under PR curve, look for points # where X axis (recall) changes value i = np.where(mrec[1:] != mrec[:-1])[0] # and sum (\Delta recall) * prec ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) return ap def get_iou_obb(bb1, bb2): iou3d, iou2d = box3d_iou(bb1, bb2) return iou3d def get_iou_main(get_iou_func, args): return get_iou_func(*args) def eval_det_cls( pred, gt, ovthresh=0.25, use_07_metric=False, get_iou_func=get_iou_obb ): """Generic functions to compute precision/recall for object detection for a single class. Input: pred: map of {img_id: [(bbox, score)]} where bbox is numpy array gt: map of {img_id: [bbox]} ovthresh: scalar, iou threshold use_07_metric: bool, if True use VOC07 11 point method Output: rec: numpy array of length nd prec: numpy array of length nd ap: scalar, average precision """ # construct gt objects class_recs = {} # {img_id: {'bbox': bbox list, 'det': matched list}} npos = 0 for img_id in gt.keys(): bbox = np.array(gt[img_id]) det = [False] * len(bbox) npos += len(bbox) class_recs[img_id] = {"bbox": bbox, "det": det} # pad empty list to all other imgids for img_id in pred.keys(): if img_id not in gt: class_recs[img_id] = {"bbox": np.array([]), "det": []} # construct dets image_ids = [] confidence = [] BB = [] for img_id in pred.keys(): for box, score in pred[img_id]: image_ids.append(img_id) confidence.append(score) BB.append(box) confidence = np.array(confidence) BB = np.array(BB) # (nd,4 or 8,3 or 6) # sort by confidence sorted_ind = np.argsort(-confidence) sorted_scores = np.sort(-confidence) BB = BB[sorted_ind, ...] image_ids = [image_ids[x] for x in sorted_ind] # go down dets and mark TPs and FPs nd = len(image_ids) tp = np.zeros(nd) fp = np.zeros(nd) for d in range(nd): # if d%100==0: print(d) R = class_recs[image_ids[d]] bb = BB[d, ...].astype(float) ovmax = -np.inf BBGT = R["bbox"].astype(float) if BBGT.size > 0: # compute overlaps for j in range(BBGT.shape[0]): iou = get_iou_main(get_iou_func, (bb, BBGT[j, ...])) if iou > ovmax: ovmax = iou jmax = j # print d, ovmax if ovmax > ovthresh: if not R["det"][jmax]: tp[d] = 1.0 R["det"][jmax] = 1 else: fp[d] = 1.0 else: fp[d] = 1.0 # compute precision recall fp = np.cumsum(fp) tp = np.cumsum(tp) if npos == 0: rec = np.zeros_like(tp) else: rec = tp / float(npos) # print('NPOS: ', npos) # avoid divide by zero in case the first detection matches a difficult # ground truth prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps) ap = voc_ap(rec, prec, use_07_metric) return rec, prec, ap def eval_det_cls_wrapper(arguments): pred, gt, ovthresh, use_07_metric, get_iou_func = arguments rec, prec, ap = eval_det_cls(pred, gt, ovthresh, use_07_metric, get_iou_func) return (rec, prec, ap) def eval_det(pred_all, gt_all, ovthresh=0.25, use_07_metric=False, get_iou_func=None): """Generic functions to compute precision/recall for object detection for multiple classes. Input: pred_all: map of {img_id: [(classname, bbox, score)]} gt_all: map of {img_id: [(classname, bbox)]} ovthresh: scalar, iou threshold use_07_metric: bool, if true use VOC07 11 point method Output: rec: {classname: rec} prec: {classname: prec_all} ap: {classname: scalar} """ pred = {} # map {classname: pred} gt = {} # map {classname: gt} for img_id in pred_all.keys(): for classname, bbox, score in pred_all[img_id]: if classname not in pred: pred[classname] = {} if img_id not in pred[classname]: pred[classname][img_id] = [] if classname not in gt: gt[classname] = {} if img_id not in gt[classname]: gt[classname][img_id] = [] pred[classname][img_id].append((bbox, score)) for img_id in gt_all.keys(): for classname, bbox in gt_all[img_id]: if classname not in gt: gt[classname] = {} if img_id not in gt[classname]: gt[classname][img_id] = [] gt[classname][img_id].append(bbox) rec = {} prec = {} ap = {} for classname in gt.keys(): # print('Computing AP for class: ', classname) rec[classname], prec[classname], ap[classname] = eval_det_cls( pred[classname], gt[classname], ovthresh, use_07_metric, get_iou_func ) # print(classname, ap[classname]) return rec, prec, ap from multiprocessing import Pool def eval_det_multiprocessing( pred_all, gt_all, ovthresh=0.25, use_07_metric=False, get_iou_func=get_iou_obb ): """Generic functions to compute precision/recall for object detection for multiple classes. Input: pred_all: map of {img_id: [(classname, bbox, score)]} gt_all: map of {img_id: [(classname, bbox)]} ovthresh: scalar, iou threshold use_07_metric: bool, if true use VOC07 11 point method Output: rec: {classname: rec} prec: {classname: prec_all} ap: {classname: scalar} """ pred = {} # map {classname: pred} gt = {} # map {classname: gt} for img_id in pred_all.keys(): for classname, bbox, score in pred_all[img_id]: if classname not in pred: pred[classname] = {} if img_id not in pred[classname]: pred[classname][img_id] = [] if classname not in gt: gt[classname] = {} if img_id not in gt[classname]: gt[classname][img_id] = [] pred[classname][img_id].append((bbox, score)) for img_id in gt_all.keys(): for classname, bbox in gt_all[img_id]: if classname not in gt: gt[classname] = {} if img_id not in gt[classname]: gt[classname][img_id] = [] gt[classname][img_id].append(bbox) rec = {} prec = {} ap = {} p = Pool(processes=10) ret_values = p.map( eval_det_cls_wrapper, [ (pred[classname], gt[classname], ovthresh, use_07_metric, get_iou_func) for classname in gt.keys() if classname in pred ], ) p.close() for i, classname in enumerate(gt.keys()): if classname in pred: rec[classname], prec[classname], ap[classname] = ret_values[i] else: rec[classname] = 0 prec[classname] = 0 ap[classname] = 0 # print(classname, ap[classname]) return rec, prec, ap
# Copyright (c) Facebook, Inc. and its affiliates. """ Utility functions for processing point clouds. Author: Charles R. Qi and Or Litany """ import os import sys import torch # Point cloud IO import numpy as np from plyfile import PlyData, PlyElement # Mesh IO import trimesh # ---------------------------------------- # Point Cloud Sampling # ---------------------------------------- def random_sampling(pc, num_sample, replace=None, return_choices=False): """Input is NxC, output is num_samplexC""" if replace is None: replace = pc.shape[0] < num_sample choices = np.random.choice(pc.shape[0], num_sample, replace=replace) if return_choices: return pc[choices], choices else: return pc[choices] # ---------------------------------------- # Simple Point manipulations # ---------------------------------------- def shift_scale_points(pred_xyz, src_range, dst_range=None): """ pred_xyz: B x N x 3 src_range: [[B x 3], [B x 3]] - min and max XYZ coords dst_range: [[B x 3], [B x 3]] - min and max XYZ coords """ if dst_range is None: dst_range = [ torch.zeros((src_range[0].shape[0], 3), device=src_range[0].device), torch.ones((src_range[0].shape[0], 3), device=src_range[0].device), ] if pred_xyz.ndim == 4: src_range = [x[:, None] for x in src_range] dst_range = [x[:, None] for x in dst_range] assert src_range[0].shape[0] == pred_xyz.shape[0] assert dst_range[0].shape[0] == pred_xyz.shape[0] assert src_range[0].shape[-1] == pred_xyz.shape[-1] assert src_range[0].shape == src_range[1].shape assert dst_range[0].shape == dst_range[1].shape assert src_range[0].shape == dst_range[1].shape src_diff = src_range[1][:, None, :] - src_range[0][:, None, :] dst_diff = dst_range[1][:, None, :] - dst_range[0][:, None, :] prop_xyz = ( ((pred_xyz - src_range[0][:, None, :]) * dst_diff) / src_diff ) + dst_range[0][:, None, :] return prop_xyz def scale_points(pred_xyz, mult_factor): if pred_xyz.ndim == 4: mult_factor = mult_factor[:, None] scaled_xyz = pred_xyz * mult_factor[:, None, :] return scaled_xyz def rotate_point_cloud(points, rotation_matrix=None): """Input: (n,3), Output: (n,3)""" # Rotate in-place around Z axis. if rotation_matrix is None: rotation_angle = np.random.uniform() * 2 * np.pi sinval, cosval = np.sin(rotation_angle), np.cos(rotation_angle) rotation_matrix = np.array( [[cosval, sinval, 0], [-sinval, cosval, 0], [0, 0, 1]] ) ctr = points.mean(axis=0) rotated_data = np.dot(points - ctr, rotation_matrix) + ctr return rotated_data, rotation_matrix def rotate_pc_along_y(pc, rot_angle): """Input ps is NxC points with first 3 channels as XYZ z is facing forward, x is left ward, y is downward """ cosval = np.cos(rot_angle) sinval = np.sin(rot_angle) rotmat = np.array([[cosval, -sinval], [sinval, cosval]]) pc[:, [0, 2]] = np.dot(pc[:, [0, 2]], np.transpose(rotmat)) return pc def roty(t): """Rotation about the y-axis.""" c = np.cos(t) s = np.sin(t) return np.array([[c, 0, s], [0, 1, 0], [-s, 0, c]]) def roty_batch(t): """Rotation about the y-axis. t: (x1,x2,...xn) return: (x1,x2,...,xn,3,3) """ input_shape = t.shape output = np.zeros(tuple(list(input_shape) + [3, 3])) c = np.cos(t) s = np.sin(t) output[..., 0, 0] = c output[..., 0, 2] = s output[..., 1, 1] = 1 output[..., 2, 0] = -s output[..., 2, 2] = c return output def rotz(t): """Rotation about the z-axis.""" c = np.cos(t) s = np.sin(t) return np.array([[c, -s, 0], [s, c, 0], [0, 0, 1]]) def point_cloud_to_bbox(points): """Extract the axis aligned box from a pcl or batch of pcls Args: points: Nx3 points or BxNx3 output is 6 dim: xyz pos of center and 3 lengths """ which_dim = len(points.shape) - 2 # first dim if a single cloud and second if batch mn, mx = points.min(which_dim), points.max(which_dim) lengths = mx - mn cntr = 0.5 * (mn + mx) return np.concatenate([cntr, lengths], axis=which_dim) def write_bbox(scene_bbox, out_filename): """Export scene bbox to meshes Args: scene_bbox: (N x 6 numpy array): xyz pos of center and 3 lengths out_filename: (string) filename Note: To visualize the boxes in MeshLab. 1. Select the objects (the boxes) 2. Filters -> Polygon and Quad Mesh -> Turn into Quad-Dominant Mesh 3. Select Wireframe view. """ def convert_box_to_trimesh_fmt(box): ctr = box[:3] lengths = box[3:] trns = np.eye(4) trns[0:3, 3] = ctr trns[3, 3] = 1.0 box_trimesh_fmt = trimesh.creation.box(lengths, trns) return box_trimesh_fmt scene = trimesh.scene.Scene() for box in scene_bbox: scene.add_geometry(convert_box_to_trimesh_fmt(box)) mesh_list = trimesh.util.concatenate(scene.dump()) # save to ply file trimesh.io.export.export_mesh(mesh_list, out_filename, file_type="ply") return def write_oriented_bbox(scene_bbox, out_filename, colors=None): """Export oriented (around Z axis) scene bbox to meshes Args: scene_bbox: (N x 7 numpy array): xyz pos of center and 3 lengths (dx,dy,dz) and heading angle around Z axis. Y forward, X right, Z upward. heading angle of positive X is 0, heading angle of positive Y is 90 degrees. out_filename: (string) filename """ def heading2rotmat(heading_angle): pass rotmat = np.zeros((3, 3)) rotmat[2, 2] = 1 cosval = np.cos(heading_angle) sinval = np.sin(heading_angle) rotmat[0:2, 0:2] = np.array([[cosval, -sinval], [sinval, cosval]]) return rotmat def convert_oriented_box_to_trimesh_fmt(box): ctr = box[:3] lengths = box[3:6] trns = np.eye(4) trns[0:3, 3] = ctr trns[3, 3] = 1.0 trns[0:3, 0:3] = heading2rotmat(box[6]) box_trimesh_fmt = trimesh.creation.box(lengths, trns) return box_trimesh_fmt if colors is not None: if colors.shape[0] != len(scene_bbox): colors = [colors for _ in range(len(scene_bbox))] colors = np.array(colors).astype(np.uint8) assert colors.shape[0] == len(scene_bbox) assert colors.shape[1] == 4 scene = trimesh.scene.Scene() for idx, box in enumerate(scene_bbox): box_tr = convert_oriented_box_to_trimesh_fmt(box) if colors is not None: box_tr.visual.main_color[:] = colors[idx] box_tr.visual.vertex_colors[:] = colors[idx] for facet in box_tr.facets: box_tr.visual.face_colors[facet] = colors[idx] scene.add_geometry(box_tr) mesh_list = trimesh.util.concatenate(scene.dump()) # save to ply file trimesh.io.export.export_mesh(mesh_list, out_filename, file_type="ply") return def write_oriented_bbox_camera_coord(scene_bbox, out_filename): """Export oriented (around Y axis) scene bbox to meshes Args: scene_bbox: (N x 7 numpy array): xyz pos of center and 3 lengths (dx,dy,dz) and heading angle around Y axis. Z forward, X rightward, Y downward. heading angle of positive X is 0, heading angle of negative Z is 90 degrees. out_filename: (string) filename """ def heading2rotmat(heading_angle): pass rotmat = np.zeros((3, 3)) rotmat[1, 1] = 1 cosval = np.cos(heading_angle) sinval = np.sin(heading_angle) rotmat[0, :] = np.array([cosval, 0, sinval]) rotmat[2, :] = np.array([-sinval, 0, cosval]) return rotmat def convert_oriented_box_to_trimesh_fmt(box): ctr = box[:3] lengths = box[3:6] trns = np.eye(4) trns[0:3, 3] = ctr trns[3, 3] = 1.0 trns[0:3, 0:3] = heading2rotmat(box[6]) box_trimesh_fmt = trimesh.creation.box(lengths, trns) return box_trimesh_fmt scene = trimesh.scene.Scene() for box in scene_bbox: scene.add_geometry(convert_oriented_box_to_trimesh_fmt(box)) mesh_list = trimesh.util.concatenate(scene.dump()) # save to ply file trimesh.io.export.export_mesh(mesh_list, out_filename, file_type="ply") return def write_lines_as_cylinders(pcl, filename, rad=0.005, res=64): """Create lines represented as cylinders connecting pairs of 3D points Args: pcl: (N x 2 x 3 numpy array): N pairs of xyz pos filename: (string) filename for the output mesh (ply) file rad: radius for the cylinder res: number of sections used to create the cylinder """ scene = trimesh.scene.Scene() for src, tgt in pcl: # compute line vec = tgt - src M = trimesh.geometry.align_vectors([0, 0, 1], vec, False) vec = tgt - src # compute again since align_vectors modifies vec in-place! M[:3, 3] = 0.5 * src + 0.5 * tgt height = np.sqrt(np.dot(vec, vec)) scene.add_geometry( trimesh.creation.cylinder( radius=rad, height=height, sections=res, transform=M ) ) mesh_list = trimesh.util.concatenate(scene.dump()) trimesh.io.export.export_mesh(mesh_list, "%s.ply" % (filename), file_type="ply")
# Copyright (c) Facebook, Inc. and its affiliates. import torch import os from utils.dist import is_primary def save_checkpoint( checkpoint_dir, model_no_ddp, optimizer, epoch, args, best_val_metrics, filename=None, ): if not is_primary(): return if filename is None: filename = f"checkpoint_{epoch:04d}.pth" checkpoint_name = os.path.join(checkpoint_dir, filename) sd = { "model": model_no_ddp.state_dict(), "optimizer": optimizer.state_dict(), "epoch": epoch, "args": args, "best_val_metrics": best_val_metrics, } torch.save(sd, checkpoint_name) def resume_if_possible(checkpoint_dir, model_no_ddp, optimizer): """ Resume if checkpoint is available. Return - epoch of loaded checkpoint. """ epoch = -1 best_val_metrics = {} if not os.path.isdir(checkpoint_dir): return epoch, best_val_metrics last_checkpoint = os.path.join(checkpoint_dir, "checkpoint.pth") if not os.path.isfile(last_checkpoint): return epoch, best_val_metrics sd = torch.load(last_checkpoint, map_location=torch.device("cpu")) epoch = sd["epoch"] best_val_metrics = sd["best_val_metrics"] print(f"Found checkpoint at {epoch}. Resuming.") model_no_ddp.load_state_dict(sd["model"]) optimizer.load_state_dict(sd["optimizer"]) print( f"Loaded model and optimizer state at {epoch}. Loaded best val metrics so far." ) return epoch, best_val_metrics
# Copyright (c) Facebook, Inc. and its affiliates. import os from urllib import request import torch import pickle ## Define the weights you want and where to store them dataset = "scannet" encoder = "_masked" # or "" epoch = 1080 base_url = "https://dl.fbaipublicfiles.com/3detr/checkpoints" local_dir = "/tmp/" ### Downloading the weights weights_file = f"{dataset}{encoder}_ep{epoch}.pth" metrics_file = f"{dataset}{encoder}_ep{epoch}_metrics.pkl" local_weights = os.path.join(local_dir, weights_file) local_metrics = os.path.join(local_dir, metrics_file) url = os.path.join(base_url, weights_file) request.urlretrieve(url, local_weights) print(f"Downloaded weights from {url} to {local_weights}") url = os.path.join(base_url, metrics_file) request.urlretrieve(url, local_metrics) print(f"Downloaded metrics from {url} to {local_metrics}") # weights can be simply loaded with pytorch weights = torch.load(local_weights, map_location=torch.device("cpu")) print("Weights loaded successfully.") # metrics can be loaded with pickle with open(local_metrics, "rb") as fh: metrics = pickle.load(fh) print("Metrics loaded successfully.")
# Copyright (c) Facebook, Inc. and its affiliates. import numpy as np # boxes are axis aigned 2D boxes of shape (n,5) in FLOAT numbers with (x1,y1,x2,y2,score) """ Ref: https://www.pyimagesearch.com/2015/02/16/faster-non-maximum-suppression-python/ Ref: https://github.com/vickyboy47/nms-python/blob/master/nms.py """ def nms_2d(boxes, overlap_threshold): x1 = boxes[:, 0] y1 = boxes[:, 1] x2 = boxes[:, 2] y2 = boxes[:, 3] score = boxes[:, 4] area = (x2 - x1) * (y2 - y1) I = np.argsort(score) pick = [] while I.size != 0: last = I.size i = I[-1] pick.append(i) suppress = [last - 1] for pos in range(last - 1): j = I[pos] xx1 = max(x1[i], x1[j]) yy1 = max(y1[i], y1[j]) xx2 = min(x2[i], x2[j]) yy2 = min(y2[i], y2[j]) w = xx2 - xx1 h = yy2 - yy1 if w > 0 and h > 0: o = w * h / area[j] print("Overlap is", o) if o > overlap_threshold: suppress.append(pos) I = np.delete(I, suppress) return pick def nms_2d_faster(boxes, overlap_threshold, old_type=False): x1 = boxes[:, 0] y1 = boxes[:, 1] x2 = boxes[:, 2] y2 = boxes[:, 3] score = boxes[:, 4] area = (x2 - x1) * (y2 - y1) I = np.argsort(score) pick = [] while I.size != 0: last = I.size i = I[-1] pick.append(i) xx1 = np.maximum(x1[i], x1[I[: last - 1]]) yy1 = np.maximum(y1[i], y1[I[: last - 1]]) xx2 = np.minimum(x2[i], x2[I[: last - 1]]) yy2 = np.minimum(y2[i], y2[I[: last - 1]]) w = np.maximum(0, xx2 - xx1) h = np.maximum(0, yy2 - yy1) if old_type: o = (w * h) / area[I[: last - 1]] else: inter = w * h o = inter / (area[i] + area[I[: last - 1]] - inter) I = np.delete( I, np.concatenate(([last - 1], np.where(o > overlap_threshold)[0])) ) return pick def nms_3d_faster(boxes, overlap_threshold, old_type=False): x1 = boxes[:, 0] y1 = boxes[:, 1] z1 = boxes[:, 2] x2 = boxes[:, 3] y2 = boxes[:, 4] z2 = boxes[:, 5] score = boxes[:, 6] area = (x2 - x1) * (y2 - y1) * (z2 - z1) I = np.argsort(score) pick = [] while I.size != 0: last = I.size i = I[-1] pick.append(i) xx1 = np.maximum(x1[i], x1[I[: last - 1]]) yy1 = np.maximum(y1[i], y1[I[: last - 1]]) zz1 = np.maximum(z1[i], z1[I[: last - 1]]) xx2 = np.minimum(x2[i], x2[I[: last - 1]]) yy2 = np.minimum(y2[i], y2[I[: last - 1]]) zz2 = np.minimum(z2[i], z2[I[: last - 1]]) l = np.maximum(0, xx2 - xx1) w = np.maximum(0, yy2 - yy1) h = np.maximum(0, zz2 - zz1) if old_type: o = (l * w * h) / area[I[: last - 1]] else: inter = l * w * h o = inter / (area[i] + area[I[: last - 1]] - inter) I = np.delete( I, np.concatenate(([last - 1], np.where(o > overlap_threshold)[0])) ) return pick def nms_3d_faster_samecls(boxes, overlap_threshold, old_type=False): x1 = boxes[:, 0] y1 = boxes[:, 1] z1 = boxes[:, 2] x2 = boxes[:, 3] y2 = boxes[:, 4] z2 = boxes[:, 5] score = boxes[:, 6] cls = boxes[:, 7] area = (x2 - x1) * (y2 - y1) * (z2 - z1) I = np.argsort(score) pick = [] while I.size != 0: last = I.size i = I[-1] pick.append(i) xx1 = np.maximum(x1[i], x1[I[: last - 1]]) yy1 = np.maximum(y1[i], y1[I[: last - 1]]) zz1 = np.maximum(z1[i], z1[I[: last - 1]]) xx2 = np.minimum(x2[i], x2[I[: last - 1]]) yy2 = np.minimum(y2[i], y2[I[: last - 1]]) zz2 = np.minimum(z2[i], z2[I[: last - 1]]) cls1 = cls[i] cls2 = cls[I[: last - 1]] l = np.maximum(0, xx2 - xx1) w = np.maximum(0, yy2 - yy1) h = np.maximum(0, zz2 - zz1) if old_type: o = (l * w * h) / area[I[: last - 1]] else: inter = l * w * h o = inter / (area[i] + area[I[: last - 1]] - inter) o = o * (cls1 == cls2) I = np.delete( I, np.concatenate(([last - 1], np.where(o > overlap_threshold)[0])) ) return pick
# Copyright (c) Facebook, Inc. and its affiliates. import torch try: from tensorboardX import SummaryWriter except ImportError: print("Cannot import tensorboard. Will log to txt files only.") SummaryWriter = None from utils.dist import is_primary class Logger(object): def __init__(self, log_dir=None) -> None: self.log_dir = log_dir if SummaryWriter is not None and is_primary(): self.writer = SummaryWriter(self.log_dir) else: self.writer = None def log_scalars(self, scalar_dict, step, prefix=None): if self.writer is None: return for k in scalar_dict: v = scalar_dict[k] if isinstance(v, torch.Tensor): v = v.detach().cpu().item() if prefix is not None: k = prefix + k self.writer.add_scalar(k, v, step)
# Copyright (c) Facebook, Inc. and its affiliates. import numpy as np def check_aspect(crop_range, aspect_min): xy_aspect = np.min(crop_range[:2]) / np.max(crop_range[:2]) xz_aspect = np.min(crop_range[[0, 2]]) / np.max(crop_range[[0, 2]]) yz_aspect = np.min(crop_range[1:]) / np.max(crop_range[1:]) return ( (xy_aspect >= aspect_min) or (xz_aspect >= aspect_min) or (yz_aspect >= aspect_min) ) class RandomCuboid(object): """ RandomCuboid augmentation from DepthContrast [https://arxiv.org/abs/2101.02691] We slightly modify this operation to account for object detection. This augmentation randomly crops a cuboid from the input and ensures that the cropped cuboid contains at least one bounding box """ def __init__( self, min_points, aspect=0.8, min_crop=0.5, max_crop=1.0, box_filter_policy="center", ): self.aspect = aspect self.min_crop = min_crop self.max_crop = max_crop self.min_points = min_points self.box_filter_policy = box_filter_policy def __call__(self, point_cloud, target_boxes, per_point_labels=None): range_xyz = np.max(point_cloud[:, 0:3], axis=0) - np.min( point_cloud[:, 0:3], axis=0 ) for _ in range(100): crop_range = self.min_crop + np.random.rand(3) * ( self.max_crop - self.min_crop ) if not check_aspect(crop_range, self.aspect): continue sample_center = point_cloud[np.random.choice(len(point_cloud)), 0:3] new_range = range_xyz * crop_range / 2.0 max_xyz = sample_center + new_range min_xyz = sample_center - new_range upper_idx = ( np.sum((point_cloud[:, 0:3] <= max_xyz).astype(np.int32), 1) == 3 ) lower_idx = ( np.sum((point_cloud[:, 0:3] >= min_xyz).astype(np.int32), 1) == 3 ) new_pointidx = (upper_idx) & (lower_idx) if np.sum(new_pointidx) < self.min_points: continue new_point_cloud = point_cloud[new_pointidx, :] # filtering policy is the only modification from DepthContrast if self.box_filter_policy == "center": # remove boxes whose center does not lie within the new_point_cloud new_boxes = target_boxes if ( target_boxes.sum() > 0 ): # ground truth contains no bounding boxes. Common in SUNRGBD. box_centers = target_boxes[:, 0:3] new_pc_min_max = np.min(new_point_cloud[:, 0:3], axis=0), np.max( new_point_cloud[:, 0:3], axis=0 ) keep_boxes = np.logical_and( np.all(box_centers >= new_pc_min_max[0], axis=1), np.all(box_centers <= new_pc_min_max[1], axis=1), ) if keep_boxes.sum() == 0: # current data augmentation removes all boxes in the pointcloud. fail! continue new_boxes = target_boxes[keep_boxes] if per_point_labels is not None: new_per_point_labels = [x[new_pointidx] for x in per_point_labels] else: new_per_point_labels = None # if we are here, all conditions are met. return boxes return new_point_cloud, new_boxes, new_per_point_labels # fallback return point_cloud, target_boxes, per_point_labels
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ Utilities for bounding box manipulation and GIoU. """ import torch from torchvision.ops.boxes import box_area from typing import List try: from box_intersection import batch_intersect except ImportError: print("Could not import cythonized batch_intersection") batch_intersect = None import numpy as np from scipy.spatial import ConvexHull def polygon_clip(subjectPolygon, clipPolygon): """ Clip a polygon with another polygon. Ref: https://rosettacode.org/wiki/Sutherland-Hodgman_polygon_clipping#Python Args: subjectPolygon: a list of (x,y) 2d points, any polygon. clipPolygon: a list of (x,y) 2d points, has to be *convex* Note: **points have to be counter-clockwise ordered** Return: a list of (x,y) vertex point for the intersection polygon. """ def inside(p): return(cp2[0]-cp1[0])*(p[1]-cp1[1]) > (cp2[1]-cp1[1])*(p[0]-cp1[0]) # diff_cp = cp2 - cp1 # diff_p = p - cp1 # diff_p = diff_p[[1, 0]] # mult = diff_cp * diff_p # return mult[0] > mult[1] def computeIntersection(): dc = [ cp1[0] - cp2[0], cp1[1] - cp2[1] ] dp = [ s[0] - e[0], s[1] - e[1] ] n1 = cp1[0] * cp2[1] - cp1[1] * cp2[0] n2 = s[0] * e[1] - s[1] * e[0] n3 = 1.0 / (dc[0] * dp[1] - dc[1] * dp[0]) return [(n1*dp[0] - n2*dc[0]) * n3, (n1*dp[1] - n2*dc[1]) * n3] # dc = cp1 - cp2 # dp = s - e # n1 = cp1[0] * cp2[1] - cp1[1] * cp2[0] # n2 = s[0] * e[1] - s[1] * e[0] # n3 = 1.0 / (dc[0] * dp[1] - dc[1] * dp[0]) # return (n1 * dp - n2 * dc) * n3 outputList = subjectPolygon cp1 = clipPolygon[-1] for clipVertex in clipPolygon: cp2 = clipVertex inputList = outputList outputList = [] s = inputList[-1] for subjectVertex in inputList: e = subjectVertex if inside(e): if not inside(s): outputList.append(computeIntersection()) outputList.append(e) elif inside(s): outputList.append(computeIntersection()) s = e cp1 = cp2 if len(outputList) == 0: return None return(outputList) def helper_computeIntersection(cp1: torch.Tensor, cp2: torch.Tensor, s: torch.Tensor, e: torch.Tensor): dc = [ cp1[0] - cp2[0], cp1[1] - cp2[1] ] dp = [ s[0] - e[0], s[1] - e[1] ] n1 = cp1[0] * cp2[1] - cp1[1] * cp2[0] n2 = s[0] * e[1] - s[1] * e[0] n3 = 1.0 / (dc[0] * dp[1] - dc[1] * dp[0]) # return [(n1*dp[0] - n2*dc[0]) * n3, (n1*dp[1] - n2*dc[1]) * n3] return torch.stack([(n1*dp[0] - n2*dc[0]) * n3, (n1*dp[1] - n2*dc[1]) * n3]) def helper_inside(cp1: torch.Tensor, cp2: torch.Tensor, p: torch.Tensor): ineq = (cp2[0]-cp1[0])*(p[1]-cp1[1]) > (cp2[1]-cp1[1])*(p[0]-cp1[0]) return ineq.item() def polygon_clip_unnest(subjectPolygon: torch.Tensor, clipPolygon: torch.Tensor): """ Clip a polygon with another polygon. Ref: https://rosettacode.org/wiki/Sutherland-Hodgman_polygon_clipping#Python Args: subjectPolygon: a list of (x,y) 2d points, any polygon. clipPolygon: a list of (x,y) 2d points, has to be *convex* Note: **points have to be counter-clockwise ordered** Return: a list of (x,y) vertex point for the intersection polygon. """ outputList = [subjectPolygon[x] for x in range(subjectPolygon.shape[0])] cp1 = clipPolygon[-1] for clipVertex in clipPolygon: cp2 = clipVertex inputList = outputList.copy() outputList.clear() s = inputList[-1] for subjectVertex in inputList: e = subjectVertex if helper_inside(cp1, cp2, e): if not helper_inside(cp1, cp2, s): outputList.append(helper_computeIntersection(cp1, cp2, s, e)) outputList.append(e) elif helper_inside(cp1, cp2, s): outputList.append(helper_computeIntersection(cp1, cp2, s, e)) s = e cp1 = cp2 if len(outputList) == 0: # return None break return outputList def poly_area(x,y): """ Ref: http://stackoverflow.com/questions/24467972/calculate-area-of-polygon-given-x-y-coordinates """ return 0.5*np.abs(np.dot(x,np.roll(y,1))-np.dot(y,np.roll(x,1))) def poly_area_tensor(x, y): return 0.5*torch.abs(torch.dot(x,torch.roll(y,1))-torch.dot(y,torch.roll(x,1))) def box3d_vol_tensor(corners): EPS = 1e-6 reshape = False B, K = corners.shape[0], corners.shape[1] if len(corners.shape) == 4: # batch x prop x 8 x 3 reshape = True corners = corners.view(-1, 8, 3) a = torch.sqrt((corners[:, 0, :] - corners[:, 1, :]).pow(2).sum(dim=1).clamp(min=EPS)) b = torch.sqrt((corners[:, 1, :] - corners[:, 2, :]).pow(2).sum(dim=1).clamp(min=EPS)) c = torch.sqrt((corners[:, 0, :] - corners[:, 4, :]).pow(2).sum(dim=1).clamp(min=EPS)) vols = a * b * c if reshape: vols = vols.view(B, K) return vols def convex_hull_intersection(p1, p2): """ Compute area of two convex hull's intersection area. p1,p2 are a list of (x,y) tuples of hull vertices. return a list of (x,y) for the intersection and its volume """ inter_p = polygon_clip(p1,p2) if inter_p is not None: hull_inter = ConvexHull(inter_p) return inter_p, hull_inter.volume else: return None, 0.0 def box3d_vol(corners): ''' corners: (8,3) no assumption on axis direction ''' a = np.sqrt(np.sum((corners[0,:] - corners[1,:])**2)) b = np.sqrt(np.sum((corners[1,:] - corners[2,:])**2)) c = np.sqrt(np.sum((corners[0,:] - corners[4,:])**2)) return a*b*c def enclosing_box3d_vol(corners1, corners2): """ volume of enclosing axis-aligned box """ assert len(corners1.shape) == 4 assert len(corners2.shape)== 4 assert corners1.shape[0] == corners2.shape[0] assert corners1.shape[2] == 8 assert corners1.shape[3] == 3 assert corners2.shape[2] == 8 assert corners2.shape[3] == 3 EPS = 1e-6 corners1 = corners1.clone() corners2 = corners2.clone() # flip Y axis, since it is negative corners1[:, :, :, 1] *= -1 corners2[:, :, :, 1] *= -1 # min_a = torch.min(corners1[:, :, 0, :][:, :, None, :] , corners2[:, :, 0, :][:, None, :, :]) # max_a = torch.max(corners1[:, :, 1, :][:, :, None, :] , corners2[:, :, 1, :][:, None, :, :]) # a = (max_a - min_a).pow(2).sum(dim=3).clamp(min=EPS).sqrt() # min_b = torch.min(corners1[:, :, 1, :][:, :, None, :] , corners2[:, :, 1, :][:, None, :, :]) # max_b = torch.max(corners1[:, :, 2, :][:, :, None, :] , corners2[:, :, 2, :][:, None, :, :]) # b = (max_b - min_b).pow(2).sum(dim=3).clamp(min=EPS).sqrt() # min_c = torch.min(corners1[:, :, 0, :][:, :, None, :] , corners2[:, :, 0, :][:, None, :, :]) # max_c = torch.max(corners1[:, :, 4, :][:, :, None, :] , corners2[:, :, 4, :][:, None, :, :]) # c = (max_c - min_c).pow(2).sum(dim=3).clamp(min=EPS).sqrt() # vol = a * b * c al_xmin = torch.min( torch.min(corners1[:, :, :, 0], dim=2).values[:, :, None], torch.min(corners2[:, :, :, 0], dim=2).values[:, None, :]) al_ymin = torch.max( torch.max(corners1[:, :, :, 1], dim=2).values[:, :, None], torch.max(corners2[:, :, :, 1], dim=2).values[:, None, :]) al_zmin = torch.min( torch.min(corners1[:, :, :, 2], dim=2).values[:, :, None], torch.min(corners2[:, :, :, 2], dim=2).values[:, None, :]) al_xmax = torch.max( torch.max(corners1[:, :, :, 0], dim=2).values[:, :, None], torch.max(corners2[:, :, :, 0], dim=2).values[:, None, :]) al_ymax = torch.min( torch.min(corners1[:, :, :, 1], dim=2).values[:, :, None], torch.min(corners2[:, :, :, 1], dim=2).values[:, None, :]) al_zmax = torch.max( torch.max(corners1[:, :, :, 2], dim=2).values[:, :, None], torch.max(corners2[:, :, :, 2], dim=2).values[:, None, :]) diff_x = torch.abs(al_xmax - al_xmin) diff_y = torch.abs(al_ymax - al_ymin) diff_z = torch.abs(al_zmax - al_zmin) vol = diff_x * diff_y * diff_z return vol def is_clockwise(p): x = p[:,0] y = p[:,1] return np.dot(x,np.roll(y,1))-np.dot(y,np.roll(x,1)) > 0 def box3d_iou(corners1, corners2): ''' Compute 3D bounding box IoU. Input: corners1: numpy array (8,3), assume up direction is negative Y corners2: numpy array (8,3), assume up direction is negative Y Output: iou: 3D bounding box IoU iou_2d: bird's eye view 2D bounding box IoU todo (rqi): add more description on corner points' orders. ''' rect1 = [(corners1[i,0], corners1[i,2]) for i in range(3,-1,-1)] rect2 = [(corners2[i,0], corners2[i,2]) for i in range(3,-1,-1)] inter, inter_area = convex_hull_intersection(rect1, rect2) # corner points are in counter clockwise order # area1 = poly_area(np.array(rect1)[:,0], np.array(rect1)[:,1]) # area2 = poly_area(np.array(rect2)[:,0], np.array(rect2)[:,1]) # iou_2d = inter_area/(area1+area2-inter_area) ymax = min(corners1[0,1], corners2[0,1]) ymin = max(corners1[4,1], corners2[4,1]) inter_vol = inter_area * max(0.0, ymax-ymin) vol1 = box3d_vol(corners1) vol2 = box3d_vol(corners2) union = (vol1 + vol2 - inter_vol) iou = inter_vol / union return iou, union @torch.jit.ignore def to_list_1d(arr) -> List[float]: arr = arr.detach().cpu().numpy().tolist() return arr @torch.jit.ignore def to_list_3d(arr) -> List[List[List[float]]]: arr = arr.detach().cpu().numpy().tolist() return arr def generalized_box3d_iou_tensor_non_diff(corners1: torch.Tensor, corners2: torch.Tensor, nums_k2: torch.Tensor, rotated_boxes: bool = True, return_inter_vols_only: bool = False, approximate: bool = True): if batch_intersect is None: return generalized_box3d_iou_tensor_jit(corners1, corners2, nums_k2, rotated_boxes, return_inter_vols_only) else: assert len(corners1.shape) == 4 assert len(corners2.shape)== 4 assert corners1.shape[2] == 8 assert corners1.shape[3] == 3 assert corners1.shape[0] == corners2.shape[0] assert corners1.shape[2] == corners2.shape[2] assert corners1.shape[3] == corners2.shape[3] B, K1 = corners1.shape[0], corners1.shape[1] _, K2 = corners2.shape[0], corners2.shape[1] # # box height. Y is negative, so max is torch.min ymax = torch.min(corners1[:, :, 0,1][:, :, None], corners2[:, :, 0,1][:, None, :]) ymin = torch.max(corners1[:, :, 4,1][:, :, None], corners2[:, :, 4,1][:, None, :]) height = (ymax - ymin).clamp(min=0) EPS = 1e-8 idx = torch.arange(start=3, end=-1, step=-1, device=corners1.device) idx2 = torch.tensor([0,2], dtype=torch.int64, device=corners1.device) rect1 = corners1[:, :, idx, :] rect2 = corners2[:, :, idx, :] rect1 = rect1[:, :, :, idx2] rect2 = rect2[:, :, :, idx2] lt = torch.max(rect1[:, :, 1][:, :, None, :], rect2[:, :, 1][:, None, : ,:]) rb = torch.min(rect1[:, :, 3][:, :, None, :], rect2[:, :, 3][:, None, : ,:]) wh = (rb - lt).clamp(min=0) non_rot_inter_areas = wh[:, :, :, 0] * wh[:, :, :, 1] non_rot_inter_areas = non_rot_inter_areas.view(B, K1, K2) if nums_k2 is not None: for b in range(B): non_rot_inter_areas[b, :, nums_k2[b]:] = 0 enclosing_vols = enclosing_box3d_vol(corners1, corners2) # vols of boxes vols1 = box3d_vol_tensor(corners1).clamp(min=EPS) vols2 = box3d_vol_tensor(corners2).clamp(min=EPS) sum_vols = vols1[:, :, None] + vols2[:, None, :] # filter malformed boxes good_boxes = (enclosing_vols > 2*EPS) * (sum_vols > 4*EPS) if rotated_boxes: inter_areas = np.zeros((B, K1, K2), dtype=np.float32) rect1 = rect1.cpu().detach().numpy() rect2 = rect2.cpu().detach().numpy() nums_k2_np = nums_k2.cpu().numpy() non_rot_inter_areas_np = non_rot_inter_areas.cpu().detach().numpy() batch_intersect(rect1, rect2, non_rot_inter_areas_np, nums_k2_np, inter_areas, approximate) inter_areas = torch.from_numpy(inter_areas) else: inter_areas = non_rot_inter_areas inter_areas = inter_areas.to(corners1.device) ### gIOU = iou - (1 - sum_vols/enclose_vol) inter_vols = inter_areas * height if return_inter_vols_only: return inter_vols union_vols = (sum_vols - inter_vols).clamp(min=EPS) ious = inter_vols / union_vols giou_second_term = - (1 - union_vols / enclosing_vols) gious = ious + giou_second_term gious *= good_boxes if nums_k2 is not None: mask = torch.zeros((B, K1, K2), device=height.device, dtype=torch.float32) for b in range(B): mask[b,:,:nums_k2[b]] = 1 gious *= mask return gious def generalized_box3d_iou_tensor(corners1: torch.Tensor, corners2: torch.Tensor, nums_k2: torch.Tensor, rotated_boxes: bool = True, return_inter_vols_only: bool = False, no_grad: bool = False): """ Input: corners1: torch Tensor (B, K1, 8, 3), assume up direction is negative Y corners2: torch Tensor (B, K2, 8, 3), assume up direction is negative Y Assumes that the box is only rotated along Z direction Returns: B x K1 x K2 matrix of generalized IOU by approximating the boxes to be axis aligned The return IOU is differentiable """ assert len(corners1.shape) == 4 assert len(corners2.shape)== 4 assert corners1.shape[2] == 8 assert corners1.shape[3] == 3 assert corners1.shape[0] == corners2.shape[0] assert corners1.shape[2] == corners2.shape[2] assert corners1.shape[3] == corners2.shape[3] B, K1 = corners1.shape[0], corners1.shape[1] _, K2 = corners2.shape[0], corners2.shape[1] # # box height. Y is negative, so max is torch.min ymax = torch.min(corners1[:, :, 0,1][:, :, None], corners2[:, :, 0,1][:, None, :]) ymin = torch.max(corners1[:, :, 4,1][:, :, None], corners2[:, :, 4,1][:, None, :]) height = (ymax - ymin).clamp(min=0) EPS = 1e-8 idx = torch.arange(start=3, end=-1, step=-1, device=corners1.device) idx2 = torch.tensor([0,2], dtype=torch.int64, device=corners1.device) rect1 = corners1[:, :, idx, :] rect2 = corners2[:, :, idx, :] rect1 = rect1[:, :, :, idx2] rect2 = rect2[:, :, :, idx2] lt = torch.max(rect1[:, :, 1][:, :, None, :], rect2[:, :, 1][:, None, : ,:]) rb = torch.min(rect1[:, :, 3][:, :, None, :], rect2[:, :, 3][:, None, : ,:]) wh = (rb - lt).clamp(min=0) non_rot_inter_areas = wh[:, :, :, 0] * wh[:, :, :, 1] non_rot_inter_areas = non_rot_inter_areas.view(B, K1, K2) if nums_k2 is not None: for b in range(B): non_rot_inter_areas[b, :, nums_k2[b]:] = 0 enclosing_vols = enclosing_box3d_vol(corners1, corners2) # vols of boxes vols1 = box3d_vol_tensor(corners1).clamp(min=EPS) vols2 = box3d_vol_tensor(corners2).clamp(min=EPS) sum_vols = vols1[:, :, None] + vols2[:, None, :] # filter malformed boxes good_boxes = (enclosing_vols > 2*EPS) * (sum_vols > 4*EPS) if rotated_boxes: inter_areas = torch.zeros((B, K1, K2), dtype=torch.float32) rect1 = rect1.cpu() rect2 = rect2.cpu() nums_k2_np = to_list_1d(nums_k2) non_rot_inter_areas_np = to_list_3d(non_rot_inter_areas) for b in range(B): for k1 in range(K1): for k2 in range(K2): if nums_k2 is not None and k2 >= nums_k2_np[b]: break if non_rot_inter_areas_np[b][k1][k2] == 0: continue ##### compute volume of intersection # inter = polygon_clip(rect1[b, k1], rect2[b, k2]) inter = polygon_clip_unnest(rect1[b, k1], rect2[b, k2]) # if inter is None: # if len(inter) == 0: # # area = torch.zeros(1, dtype=torch.float32, device=inter_areas.device).squeeze() # # area = 0 # continue # else: if len(inter) > 0: # inter = torch.stack(inter) # xs = inter[:, 0] # ys = inter[:, 1] xs = torch.stack([x[0] for x in inter]) ys = torch.stack([x[1] for x in inter]) # area = poly_area_tensor(xs, ys) inter_areas[b,k1,k2] = torch.abs(torch.dot(xs,torch.roll(ys,1))-torch.dot(ys,torch.roll(xs,1))) inter_areas.mul_(0.5) else: inter_areas = non_rot_inter_areas inter_areas = inter_areas.to(corners1.device) ### gIOU = iou - (1 - sum_vols/enclose_vol) inter_vols = inter_areas * height if return_inter_vols_only: return inter_vols union_vols = (sum_vols - inter_vols).clamp(min=EPS) ious = inter_vols / union_vols giou_second_term = - (1 - union_vols / enclosing_vols) gious = ious + giou_second_term gious *= good_boxes if nums_k2 is not None: mask = torch.zeros((B, K1, K2), device=height.device, dtype=torch.float32) for b in range(B): mask[b,:,:nums_k2[b]] = 1 gious *= mask return gious generalized_box3d_iou_tensor_jit = torch.jit.script(generalized_box3d_iou_tensor) def enclosing_box3d_convex_hull(corners1, corners2, nums_k2, mask, enclosing_vols=None): B, K1 = corners1.shape[0], corners1.shape[1] _, K2 = corners2.shape[0], corners2.shape[1] if enclosing_vols is None: enclosing_vols = np.zeros((B, K1, K2)).astype(np.float32) for b in range(B): for k1 in range(K1): for k2 in range(K2): if nums_k2 is not None and k2 >= nums_k2[b]: break if mask is not None and mask[b,k1,k2] <= 0: continue hull = ConvexHull(np.vstack([corners1[b, k1], corners2[b, k2]])) enclosing_vols[b, k1, k2] = hull.volume return enclosing_vols enclosing_box3d_convex_hull_numba = autojit(enclosing_box3d_convex_hull) # enclosing_box3d_convex_hull_numba = enclosing_box3d_convex_hull def generalized_box3d_iou_convex_hull_nondiff_tensor(corners1: torch.Tensor, corners2: torch.Tensor, nums_k2: torch.Tensor, rotated_boxes: bool = True): """ Input: corners1: torch Tensor (B, K1, 8, 3), assume up direction is negative Y corners2: torch Tensor (B, K2, 8, 3), assume up direction is negative Y Assumes that the box is only rotated along Z direction Returns: B x K1 x K2 matrix of generalized IOU by approximating the boxes to be axis aligned The return IOU is differentiable """ assert len(corners1.shape) == 4 assert len(corners2.shape)== 4 assert corners1.shape[2] == 8 assert corners1.shape[3] == 3 assert corners1.shape[0] == corners2.shape[0] assert corners1.shape[2] == corners2.shape[2] assert corners1.shape[3] == corners2.shape[3] B, K1 = corners1.shape[0], corners1.shape[1] _, K2 = corners2.shape[0], corners2.shape[1] EPS = 1e-8 # vols of boxes vols1 = box3d_vol_tensor(corners1).clamp(min=EPS) vols2 = box3d_vol_tensor(corners2).clamp(min=EPS) sum_vols = vols1[:, :, None] + vols2[:, None, :] inter_vols = generalized_box3d_iou_tensor_jit(corners1, corners2, nums_k2, rotated_boxes, return_inter_vols_only=True) enclosing_vols = enclosing_box3d_vol(corners1, corners2) if rotated_boxes: corners1_np = corners1.detach().cpu().numpy() corners2_np = corners2.detach().cpu().numpy() mask = inter_vols.detach().cpu().numpy() nums_k2 = nums_k2.cpu().numpy() enclosing_vols_np = enclosing_vols.detach().cpu().numpy() enclosing_vols = enclosing_box3d_convex_hull_numba(corners1_np, corners2_np, nums_k2, mask, enclosing_vols_np) enclosing_vols = torch.from_numpy(enclosing_vols).to(corners1.device) union_vols = (sum_vols - inter_vols).clamp(min=EPS) ious = inter_vols / union_vols giou_second_term = - (1 - union_vols / enclosing_vols) gious = ious + giou_second_term good_boxes = (enclosing_vols > 2*EPS) * (sum_vols > 4*EPS) gious *= good_boxes if nums_k2 is not None: mask = torch.zeros((B, K1, K2), device=corners1.device, dtype=torch.float32) for b in range(B): mask[b,:,:nums_k2[b]] = 1 gious *= mask return gious def generalized_box3d_iou(corners1, corners2, nums_k2=None): """ Input: corners1: torch Tensor (B, K1, 8, 3), assume up direction is negative Y corners2: torch Tensor (B, K2, 8, 3), assume up direction is negative Y mask: Returns: B x K1 x K2 matrix of generalized IOU """ # GenIOU = IOU - (C - sum_of_vols)/ C # where C = vol of convex_hull containing all points # degenerate boxes gives inf / nan results # so do an early check #TODO: assert corners1.ndim == 4 assert corners2.ndim == 4 assert corners1.shape[0] == corners2.shape[0] B, K1, _ , _ = corners1.shape _, K2, _, _ = corners2.shape gious = torch.zeros((B, K1, K2), dtype=torch.float32) corners1_np = corners1.detach().cpu().numpy() corners2_np = corners2.detach().cpu().numpy() for b in range(B): for i in range(K1): for j in range(K2): if nums_k2 is not None and j >= nums_k2[b]: break iou, sum_of_vols = box3d_iou(corners1_np[b, i], corners2_np[b, j]) hull = ConvexHull(np.vstack([corners1_np[b, i], corners2_np[b, j]])) C = hull.volume giou = iou - (C - sum_of_vols) / C gious[b, i, j] = giou return gious # ----------------------------------------------------------- # Convert from box parameters to # ----------------------------------------------------------- def roty(t): """Rotation about the y-axis.""" c = np.cos(t) s = np.sin(t) return np.array([[c, 0, s], [0, 1, 0], [-s, 0, c]]) def roty_batch(t): """Rotation about the y-axis. t: (x1,x2,...xn) return: (x1,x2,...,xn,3,3) """ input_shape = t.shape output = np.zeros(tuple(list(input_shape)+[3,3])) c = np.cos(t) s = np.sin(t) output[...,0,0] = c output[...,0,2] = s output[...,1,1] = 1 output[...,2,0] = -s output[...,2,2] = c return output def get_3d_box(box_size, heading_angle, center): ''' box_size is array(l,w,h), heading_angle is radius clockwise from pos x axis, center is xyz of box center output (8,3) array for 3D box cornders Similar to utils/compute_orientation_3d ''' R = roty(heading_angle) l,w,h = box_size x_corners = [l/2,l/2,-l/2,-l/2,l/2,l/2,-l/2,-l/2]; y_corners = [h/2,h/2,h/2,h/2,-h/2,-h/2,-h/2,-h/2]; z_corners = [w/2,-w/2,-w/2,w/2,w/2,-w/2,-w/2,w/2]; corners_3d = np.dot(R, np.vstack([x_corners,y_corners,z_corners])) corners_3d[0,:] = corners_3d[0,:] + center[0]; corners_3d[1,:] = corners_3d[1,:] + center[1]; corners_3d[2,:] = corners_3d[2,:] + center[2]; corners_3d = np.transpose(corners_3d) return corners_3d def get_3d_box_batch(box_size, heading_angle, center): ''' box_size: [x1,x2,...,xn,3] -- box dimensions without flipping [X, Y, Z] -- l, w, h heading_angle: [x1,x2,...,xn] -- theta in radians center: [x1,x2,...,xn,3] -- center point has been flipped to camera axis [X, -Z, Y] Return: [x1,x3,...,xn,8,3] ''' input_shape = heading_angle.shape R = roty_batch(heading_angle) l = np.expand_dims(box_size[...,0], -1) # [x1,...,xn,1] w = np.expand_dims(box_size[...,1], -1) h = np.expand_dims(box_size[...,2], -1) corners_3d = np.zeros(tuple(list(input_shape)+[8,3])) corners_3d[...,:,0] = np.concatenate((l/2,l/2,-l/2,-l/2,l/2,l/2,-l/2,-l/2), -1) corners_3d[...,:,1] = np.concatenate((h/2,h/2,h/2,h/2,-h/2,-h/2,-h/2,-h/2), -1) corners_3d[...,:,2] = np.concatenate((w/2,-w/2,-w/2,w/2,w/2,-w/2,-w/2,w/2), -1) tlist = [i for i in range(len(input_shape))] tlist += [len(input_shape)+1, len(input_shape)] corners_3d = np.matmul(corners_3d, np.transpose(R, tuple(tlist))) corners_3d += np.expand_dims(center, -2) return corners_3d def roty_batch_tensor(t): input_shape = t.shape output = torch.zeros(tuple(list(input_shape)+[3,3]), dtype=torch.float32, device=t.device) c = torch.cos(t) s = torch.sin(t) output[...,0,0] = c output[...,0,2] = s output[...,1,1] = 1 output[...,2,0] = -s output[...,2,2] = c return output def flip_axis_to_camera_tensor(pc): ''' Flip X-right,Y-forward,Z-up to X-right,Y-down,Z-forward Input and output are both (N,3) array ''' pc2 = torch.clone(pc) pc2[...,[0,1,2]] = pc2[...,[0,2,1]] # cam X,Y,Z = depth X,-Z,Y pc2[...,1] *= -1 return pc2 def get_3d_box_batch_tensor(box_size, heading_angle, center): assert isinstance(box_size, torch.Tensor) assert isinstance(heading_angle, torch.Tensor) assert isinstance(center, torch.Tensor) reshape_final = False if heading_angle.ndim == 2: assert box_size.ndim == 3 assert center.ndim == 3 bsize = box_size.shape[0] nprop = box_size.shape[1] box_size = box_size.view(-1, box_size.shape[-1]) heading_angle = heading_angle.view(-1) center = center.reshape(-1, 3) reshape_final = True input_shape = heading_angle.shape R = roty_batch_tensor(heading_angle) l = torch.unsqueeze(box_size[...,0], -1) # [x1,...,xn,1] w = torch.unsqueeze(box_size[...,1], -1) h = torch.unsqueeze(box_size[...,2], -1) corners_3d = torch.zeros(tuple(list(input_shape)+[8,3]), device=box_size.device, dtype=torch.float32) corners_3d[...,:,0] = torch.cat((l/2,l/2,-l/2,-l/2,l/2,l/2,-l/2,-l/2), -1) corners_3d[...,:,1] = torch.cat((h/2,h/2,h/2,h/2,-h/2,-h/2,-h/2,-h/2), -1) corners_3d[...,:,2] = torch.cat((w/2,-w/2,-w/2,w/2,w/2,-w/2,-w/2,w/2), -1) tlist = [i for i in range(len(input_shape))] tlist += [len(input_shape)+1, len(input_shape)] corners_3d = torch.matmul(corners_3d, R.permute(tlist)) corners_3d += torch.unsqueeze(center, -2) if reshape_final: corners_3d = corners_3d.reshape(bsize, nprop, 8, 3) return corners_3d def box_cxcywh_to_xyxy(x): x_c, y_c, w, h = x.unbind(-1) b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)] return torch.stack(b, dim=-1) def box_xyxy_to_cxcywh(x): x0, y0, x1, y1 = x.unbind(-1) b = [(x0 + x1) / 2, (y0 + y1) / 2, (x1 - x0), (y1 - y0)] return torch.stack(b, dim=-1) if __name__=='__main__': # Function for polygon ploting import matplotlib from matplotlib.patches import Polygon from matplotlib.collections import PatchCollection import matplotlib.pyplot as plt def plot_polys(plist,scale=500.0): fig, ax = plt.subplots() patches = [] for p in plist: poly = Polygon(np.array(p)/scale, True) patches.append(poly) pc = PatchCollection(patches, cmap=matplotlib.cm.jet, alpha=0.5) colors = 100*np.random.rand(len(patches)) pc.set_array(np.array(colors)) ax.add_collection(pc) plt.show() # Demo on ConvexHull points = np.random.rand(30, 2) # 30 random points in 2-D hull = ConvexHull(points) # **In 2D "volume" is is area, "area" is perimeter print(('Hull area: ', hull.volume)) for simplex in hull.simplices: print(simplex) # Demo on convex hull overlaps sub_poly = [(0,0),(300,0),(300,300),(0,300)] clip_poly = [(150,150),(300,300),(150,450),(0,300)] inter_poly = polygon_clip(sub_poly, clip_poly) print(poly_area(np.array(inter_poly)[:,0], np.array(inter_poly)[:,1])) # Test convex hull interaction function rect1 = [(50,0),(50,300),(300,300),(300,0)] rect2 = [(150,150),(300,300),(150,450),(0,300)] plot_polys([rect1, rect2]) inter, area = convex_hull_intersection(rect1, rect2) print((inter, area)) if inter is not None: print(poly_area(np.array(inter)[:,0], np.array(inter)[:,1])) print('------------------') rect1 = [(0.30026005199835404, 8.9408694211408424), \ (-1.1571105364358421, 9.4686676477075533), \ (0.1777082043006144, 13.154404877812102), \ (1.6350787927348105, 12.626606651245391)] rect1 = [rect1[0], rect1[3], rect1[2], rect1[1]] rect2 = [(0.23908745901608636, 8.8551095691132886), \ (-1.2771419487733995, 9.4269062966181956), \ (0.13138836963152717, 13.161896351296868), \ (1.647617777421013, 12.590099623791961)] rect2 = [rect2[0], rect2[3], rect2[2], rect2[1]] plot_polys([rect1, rect2]) inter, area = convex_hull_intersection(rect1, rect2) print((inter, area))
# Copyright (c) Facebook, Inc. and its affiliates. """ Helper functions for calculating 2D and 3D bounding box IoU. Collected and written by Charles R. Qi Last modified: Apr 2021 by Ishan Misra """ import torch import numpy as np from scipy.spatial import ConvexHull, Delaunay from utils.misc import to_list_1d, to_list_3d try: from utils.box_intersection import box_intersection except ImportError: print( "Could not import cythonized box intersection. Consider compiling box_intersection.pyx for faster training." ) box_intersection = None def in_hull(p, hull): if not isinstance(hull, Delaunay): hull = Delaunay(hull) return hull.find_simplex(p) >= 0 def extract_pc_in_box3d(pc, box3d): """pc: (N,3), box3d: (8,3)""" box3d_roi_inds = in_hull(pc[:, 0:3], box3d) return pc[box3d_roi_inds, :], box3d_roi_inds def polygon_clip(subjectPolygon, clipPolygon): """Clip a polygon with another polygon. Ref: https://rosettacode.org/wiki/Sutherland-Hodgman_polygon_clipping#Python Args: subjectPolygon: a list of (x,y) 2d points, any polygon. clipPolygon: a list of (x,y) 2d points, has to be *convex* Note: **points have to be counter-clockwise ordered** Return: a list of (x,y) vertex point for the intersection polygon. """ def inside(p): return (cp2[0] - cp1[0]) * (p[1] - cp1[1]) > (cp2[1] - cp1[1]) * (p[0] - cp1[0]) def computeIntersection(): dc = [cp1[0] - cp2[0], cp1[1] - cp2[1]] dp = [s[0] - e[0], s[1] - e[1]] n1 = cp1[0] * cp2[1] - cp1[1] * cp2[0] n2 = s[0] * e[1] - s[1] * e[0] n3 = 1.0 / (dc[0] * dp[1] - dc[1] * dp[0]) return [(n1 * dp[0] - n2 * dc[0]) * n3, (n1 * dp[1] - n2 * dc[1]) * n3] outputList = subjectPolygon cp1 = clipPolygon[-1] for clipVertex in clipPolygon: cp2 = clipVertex inputList = outputList outputList = [] s = inputList[-1] for subjectVertex in inputList: e = subjectVertex if inside(e): if not inside(s): outputList.append(computeIntersection()) outputList.append(e) elif inside(s): outputList.append(computeIntersection()) s = e cp1 = cp2 if len(outputList) == 0: return None return outputList def poly_area(x, y): """Ref: http://stackoverflow.com/questions/24467972/calculate-area-of-polygon-given-x-y-coordinates""" return 0.5 * np.abs(np.dot(x, np.roll(y, 1)) - np.dot(y, np.roll(x, 1))) def convex_hull_intersection(p1, p2): """Compute area of two convex hull's intersection area. p1,p2 are a list of (x,y) tuples of hull vertices. return a list of (x,y) for the intersection and its volume """ inter_p = polygon_clip(p1, p2) if inter_p is not None: hull_inter = ConvexHull(inter_p) return inter_p, hull_inter.volume else: return None, 0.0 def box3d_vol(corners): """corners: (8,3) no assumption on axis direction""" a = np.sqrt(np.sum((corners[0, :] - corners[1, :]) ** 2)) b = np.sqrt(np.sum((corners[1, :] - corners[2, :]) ** 2)) c = np.sqrt(np.sum((corners[0, :] - corners[4, :]) ** 2)) return a * b * c def is_clockwise(p): x = p[:, 0] y = p[:, 1] return np.dot(x, np.roll(y, 1)) - np.dot(y, np.roll(x, 1)) > 0 def box3d_iou(corners1, corners2): """Compute 3D bounding box IoU. Input: corners1: numpy array (8,3), assume up direction is negative Y corners2: numpy array (8,3), assume up direction is negative Y Output: iou: 3D bounding box IoU iou_2d: bird's eye view 2D bounding box IoU todo (rqi): add more description on corner points' orders. """ # corner points are in counter clockwise order rect1 = [(corners1[i, 0], corners1[i, 2]) for i in range(3, -1, -1)] rect2 = [(corners2[i, 0], corners2[i, 2]) for i in range(3, -1, -1)] area1 = poly_area(np.array(rect1)[:, 0], np.array(rect1)[:, 1]) area2 = poly_area(np.array(rect2)[:, 0], np.array(rect2)[:, 1]) inter, inter_area = convex_hull_intersection(rect1, rect2) iou_2d = inter_area / (area1 + area2 - inter_area) ymax = min(corners1[0, 1], corners2[0, 1]) ymin = max(corners1[4, 1], corners2[4, 1]) inter_vol = inter_area * max(0.0, ymax - ymin) vol1 = box3d_vol(corners1) vol2 = box3d_vol(corners2) iou = inter_vol / (vol1 + vol2 - inter_vol) return iou, iou_2d def get_iou(bb1, bb2): """ Calculate the Intersection over Union (IoU) of two 2D bounding boxes. Parameters ---------- bb1 : dict Keys: {'x1', 'x2', 'y1', 'y2'} The (x1, y1) position is at the top left corner, the (x2, y2) position is at the bottom right corner bb2 : dict Keys: {'x1', 'x2', 'y1', 'y2'} The (x, y) position is at the top left corner, the (x2, y2) position is at the bottom right corner Returns ------- float in [0, 1] """ assert bb1["x1"] < bb1["x2"] assert bb1["y1"] < bb1["y2"] assert bb2["x1"] < bb2["x2"] assert bb2["y1"] < bb2["y2"] # determine the coordinates of the intersection rectangle x_left = max(bb1["x1"], bb2["x1"]) y_top = max(bb1["y1"], bb2["y1"]) x_right = min(bb1["x2"], bb2["x2"]) y_bottom = min(bb1["y2"], bb2["y2"]) if x_right < x_left or y_bottom < y_top: return 0.0 # The intersection of two axis-aligned bounding boxes is always an # axis-aligned bounding box intersection_area = (x_right - x_left) * (y_bottom - y_top) # compute the area of both AABBs bb1_area = (bb1["x2"] - bb1["x1"]) * (bb1["y2"] - bb1["y1"]) bb2_area = (bb2["x2"] - bb2["x1"]) * (bb2["y2"] - bb2["y1"]) # compute the intersection over union by taking the intersection # area and dividing it by the sum of prediction + ground-truth # areas - the interesection area iou = intersection_area / float(bb1_area + bb2_area - intersection_area) assert iou >= 0.0 assert iou <= 1.0 return iou def box2d_iou(box1, box2): """Compute 2D bounding box IoU. Input: box1: tuple of (xmin,ymin,xmax,ymax) box2: tuple of (xmin,ymin,xmax,ymax) Output: iou: 2D IoU scalar """ return get_iou( {"x1": box1[0], "y1": box1[1], "x2": box1[2], "y2": box1[3]}, {"x1": box2[0], "y1": box2[1], "x2": box2[2], "y2": box2[3]}, ) # ----------------------------------------------------------- # Convert from box parameters to # ----------------------------------------------------------- def roty(t): """Rotation about the y-axis.""" c = np.cos(t) s = np.sin(t) return np.array([[c, 0, s], [0, 1, 0], [-s, 0, c]]) def roty_batch(t): """Rotation about the y-axis. t: (x1,x2,...xn) return: (x1,x2,...,xn,3,3) """ input_shape = t.shape output = np.zeros(tuple(list(input_shape) + [3, 3])) c = np.cos(t) s = np.sin(t) output[..., 0, 0] = c output[..., 0, 2] = s output[..., 1, 1] = 1 output[..., 2, 0] = -s output[..., 2, 2] = c return output def get_3d_box(box_size, heading_angle, center): """box_size is array(l,w,h), heading_angle is radius clockwise from pos x axis, center is xyz of box center output (8,3) array for 3D box cornders Similar to utils/compute_orientation_3d """ R = roty(heading_angle) l, w, h = box_size x_corners = [l / 2, l / 2, -l / 2, -l / 2, l / 2, l / 2, -l / 2, -l / 2] y_corners = [h / 2, h / 2, h / 2, h / 2, -h / 2, -h / 2, -h / 2, -h / 2] z_corners = [w / 2, -w / 2, -w / 2, w / 2, w / 2, -w / 2, -w / 2, w / 2] corners_3d = np.dot(R, np.vstack([x_corners, y_corners, z_corners])) corners_3d[0, :] = corners_3d[0, :] + center[0] corners_3d[1, :] = corners_3d[1, :] + center[1] corners_3d[2, :] = corners_3d[2, :] + center[2] corners_3d = np.transpose(corners_3d) return corners_3d def flip_axis_to_camera_np(pc): """Flip X-right,Y-forward,Z-up to X-right,Y-down,Z-forward Input and output are both (N,3) array """ pc2 = pc.copy() pc2[..., [0, 1, 2]] = pc2[..., [0, 2, 1]] # cam X,Y,Z = depth X,-Z,Y pc2[..., 1] *= -1 return pc2 def get_3d_box_batch_np(box_size, angle, center): input_shape = angle.shape R = roty_batch(angle) l = np.expand_dims(box_size[..., 0], -1) # [x1,...,xn,1] w = np.expand_dims(box_size[..., 1], -1) h = np.expand_dims(box_size[..., 2], -1) corners_3d = np.zeros(tuple(list(input_shape) + [8, 3])) corners_3d[..., :, 0] = np.concatenate( (l / 2, l / 2, -l / 2, -l / 2, l / 2, l / 2, -l / 2, -l / 2), -1 ) corners_3d[..., :, 1] = np.concatenate( (h / 2, h / 2, h / 2, h / 2, -h / 2, -h / 2, -h / 2, -h / 2), -1 ) corners_3d[..., :, 2] = np.concatenate( (w / 2, -w / 2, -w / 2, w / 2, w / 2, -w / 2, -w / 2, w / 2), -1 ) tlist = [i for i in range(len(input_shape))] tlist += [len(input_shape) + 1, len(input_shape)] corners_3d = np.matmul(corners_3d, np.transpose(R, tuple(tlist))) corners_3d += np.expand_dims(center, -2) return corners_3d def flip_axis_to_camera_tensor(pc): """Flip X-right,Y-forward,Z-up to X-right,Y-down,Z-forward Input and output are both (N,3) array """ pc2 = torch.clone(pc) pc2[..., [0, 1, 2]] = pc2[..., [0, 2, 1]] # cam X,Y,Z = depth X,-Z,Y pc2[..., 1] *= -1 return pc2 def roty_batch_tensor(t): input_shape = t.shape output = torch.zeros( tuple(list(input_shape) + [3, 3]), dtype=torch.float32, device=t.device ) c = torch.cos(t) s = torch.sin(t) output[..., 0, 0] = c output[..., 0, 2] = s output[..., 1, 1] = 1 output[..., 2, 0] = -s output[..., 2, 2] = c return output def get_3d_box_batch_tensor(box_size, angle, center): assert isinstance(box_size, torch.Tensor) assert isinstance(angle, torch.Tensor) assert isinstance(center, torch.Tensor) reshape_final = False if angle.ndim == 2: assert box_size.ndim == 3 assert center.ndim == 3 bsize = box_size.shape[0] nprop = box_size.shape[1] box_size = box_size.reshape(-1, box_size.shape[-1]) angle = angle.reshape(-1) center = center.reshape(-1, 3) reshape_final = True input_shape = angle.shape R = roty_batch_tensor(angle) l = torch.unsqueeze(box_size[..., 0], -1) # [x1,...,xn,1] w = torch.unsqueeze(box_size[..., 1], -1) h = torch.unsqueeze(box_size[..., 2], -1) corners_3d = torch.zeros( tuple(list(input_shape) + [8, 3]), device=box_size.device, dtype=torch.float32 ) corners_3d[..., :, 0] = torch.cat( (l / 2, l / 2, -l / 2, -l / 2, l / 2, l / 2, -l / 2, -l / 2), -1 ) corners_3d[..., :, 1] = torch.cat( (h / 2, h / 2, h / 2, h / 2, -h / 2, -h / 2, -h / 2, -h / 2), -1 ) corners_3d[..., :, 2] = torch.cat( (w / 2, -w / 2, -w / 2, w / 2, w / 2, -w / 2, -w / 2, w / 2), -1 ) tlist = [i for i in range(len(input_shape))] tlist += [len(input_shape) + 1, len(input_shape)] corners_3d = torch.matmul(corners_3d, R.permute(tlist)) corners_3d += torch.unsqueeze(center, -2) if reshape_final: corners_3d = corners_3d.reshape(bsize, nprop, 8, 3) return corners_3d def get_3d_box_batch(box_size, angle, center): """box_size: [x1,x2,...,xn,3] angle: [x1,x2,...,xn] center: [x1,x2,...,xn,3] Return: [x1,x3,...,xn,8,3] """ input_shape = angle.shape R = roty_batch(angle) l = np.expand_dims(box_size[..., 0], -1) # [x1,...,xn,1] w = np.expand_dims(box_size[..., 1], -1) h = np.expand_dims(box_size[..., 2], -1) corners_3d = np.zeros(tuple(list(input_shape) + [8, 3])) corners_3d[..., :, 0] = np.concatenate( (l / 2, l / 2, -l / 2, -l / 2, l / 2, l / 2, -l / 2, -l / 2), -1 ) corners_3d[..., :, 1] = np.concatenate( (h / 2, h / 2, h / 2, h / 2, -h / 2, -h / 2, -h / 2, -h / 2), -1 ) corners_3d[..., :, 2] = np.concatenate( (w / 2, -w / 2, -w / 2, w / 2, w / 2, -w / 2, -w / 2, w / 2), -1 ) tlist = [i for i in range(len(input_shape))] tlist += [len(input_shape) + 1, len(input_shape)] corners_3d = np.matmul(corners_3d, np.transpose(R, tuple(tlist))) corners_3d += np.expand_dims(center, -2) return corners_3d ####### GIoU related operations. Differentiable ############# def helper_computeIntersection( cp1: torch.Tensor, cp2: torch.Tensor, s: torch.Tensor, e: torch.Tensor ): dc = [cp1[0] - cp2[0], cp1[1] - cp2[1]] dp = [s[0] - e[0], s[1] - e[1]] n1 = cp1[0] * cp2[1] - cp1[1] * cp2[0] n2 = s[0] * e[1] - s[1] * e[0] n3 = 1.0 / (dc[0] * dp[1] - dc[1] * dp[0]) # return [(n1*dp[0] - n2*dc[0]) * n3, (n1*dp[1] - n2*dc[1]) * n3] return torch.stack([(n1 * dp[0] - n2 * dc[0]) * n3, (n1 * dp[1] - n2 * dc[1]) * n3]) def helper_inside(cp1: torch.Tensor, cp2: torch.Tensor, p: torch.Tensor): ineq = (cp2[0] - cp1[0]) * (p[1] - cp1[1]) > (cp2[1] - cp1[1]) * (p[0] - cp1[0]) return ineq.item() def polygon_clip_unnest(subjectPolygon: torch.Tensor, clipPolygon: torch.Tensor): """Clip a polygon with another polygon. Ref: https://rosettacode.org/wiki/Sutherland-Hodgman_polygon_clipping#Python Args: subjectPolygon: a list of (x,y) 2d points, any polygon. clipPolygon: a list of (x,y) 2d points, has to be *convex* Note: **points have to be counter-clockwise ordered** Return: a list of (x,y) vertex point for the intersection polygon. """ outputList = [subjectPolygon[x] for x in range(subjectPolygon.shape[0])] cp1 = clipPolygon[-1] for clipVertex in clipPolygon: cp2 = clipVertex inputList = outputList.copy() outputList.clear() s = inputList[-1] for subjectVertex in inputList: e = subjectVertex if helper_inside(cp1, cp2, e): if not helper_inside(cp1, cp2, s): outputList.append(helper_computeIntersection(cp1, cp2, s, e)) outputList.append(e) elif helper_inside(cp1, cp2, s): outputList.append(helper_computeIntersection(cp1, cp2, s, e)) s = e cp1 = cp2 if len(outputList) == 0: # return None break return outputList def box3d_vol_tensor(corners): EPS = 1e-6 reshape = False B, K = corners.shape[0], corners.shape[1] if len(corners.shape) == 4: # batch x prop x 8 x 3 reshape = True corners = corners.view(-1, 8, 3) a = torch.sqrt( (corners[:, 0, :] - corners[:, 1, :]).pow(2).sum(dim=1).clamp(min=EPS) ) b = torch.sqrt( (corners[:, 1, :] - corners[:, 2, :]).pow(2).sum(dim=1).clamp(min=EPS) ) c = torch.sqrt( (corners[:, 0, :] - corners[:, 4, :]).pow(2).sum(dim=1).clamp(min=EPS) ) vols = a * b * c if reshape: vols = vols.view(B, K) return vols def enclosing_box3d_vol(corners1, corners2): """ volume of enclosing axis-aligned box """ assert len(corners1.shape) == 4 assert len(corners2.shape) == 4 assert corners1.shape[0] == corners2.shape[0] assert corners1.shape[2] == 8 assert corners1.shape[3] == 3 assert corners2.shape[2] == 8 assert corners2.shape[3] == 3 EPS = 1e-6 corners1 = corners1.clone() corners2 = corners2.clone() # flip Y axis, since it is negative corners1[:, :, :, 1] *= -1 corners2[:, :, :, 1] *= -1 al_xmin = torch.min( torch.min(corners1[:, :, :, 0], dim=2).values[:, :, None], torch.min(corners2[:, :, :, 0], dim=2).values[:, None, :], ) al_ymin = torch.max( torch.max(corners1[:, :, :, 1], dim=2).values[:, :, None], torch.max(corners2[:, :, :, 1], dim=2).values[:, None, :], ) al_zmin = torch.min( torch.min(corners1[:, :, :, 2], dim=2).values[:, :, None], torch.min(corners2[:, :, :, 2], dim=2).values[:, None, :], ) al_xmax = torch.max( torch.max(corners1[:, :, :, 0], dim=2).values[:, :, None], torch.max(corners2[:, :, :, 0], dim=2).values[:, None, :], ) al_ymax = torch.min( torch.min(corners1[:, :, :, 1], dim=2).values[:, :, None], torch.min(corners2[:, :, :, 1], dim=2).values[:, None, :], ) al_zmax = torch.max( torch.max(corners1[:, :, :, 2], dim=2).values[:, :, None], torch.max(corners2[:, :, :, 2], dim=2).values[:, None, :], ) diff_x = torch.abs(al_xmax - al_xmin) diff_y = torch.abs(al_ymax - al_ymin) diff_z = torch.abs(al_zmax - al_zmin) vol = diff_x * diff_y * diff_z return vol def generalized_box3d_iou_tensor( corners1: torch.Tensor, corners2: torch.Tensor, nums_k2: torch.Tensor, rotated_boxes: bool = True, return_inter_vols_only: bool = False, ): """ Input: corners1: torch Tensor (B, K1, 8, 3), assume up direction is negative Y corners2: torch Tensor (B, K2, 8, 3), assume up direction is negative Y Assumes that the box is only rotated along Z direction Returns: B x K1 x K2 matrix of generalized IOU by approximating the boxes to be axis aligned """ assert len(corners1.shape) == 4 assert len(corners2.shape) == 4 assert corners1.shape[2] == 8 assert corners1.shape[3] == 3 assert corners1.shape[0] == corners2.shape[0] assert corners1.shape[2] == corners2.shape[2] assert corners1.shape[3] == corners2.shape[3] B, K1 = corners1.shape[0], corners1.shape[1] _, K2 = corners2.shape[0], corners2.shape[1] # # box height. Y is negative, so max is torch.min ymax = torch.min(corners1[:, :, 0, 1][:, :, None], corners2[:, :, 0, 1][:, None, :]) ymin = torch.max(corners1[:, :, 4, 1][:, :, None], corners2[:, :, 4, 1][:, None, :]) height = (ymax - ymin).clamp(min=0) EPS = 1e-8 idx = torch.arange(start=3, end=-1, step=-1, device=corners1.device) idx2 = torch.tensor([0, 2], dtype=torch.int64, device=corners1.device) rect1 = corners1[:, :, idx, :] rect2 = corners2[:, :, idx, :] rect1 = rect1[:, :, :, idx2] rect2 = rect2[:, :, :, idx2] lt = torch.max(rect1[:, :, 1][:, :, None, :], rect2[:, :, 1][:, None, :, :]) rb = torch.min(rect1[:, :, 3][:, :, None, :], rect2[:, :, 3][:, None, :, :]) wh = (rb - lt).clamp(min=0) non_rot_inter_areas = wh[:, :, :, 0] * wh[:, :, :, 1] non_rot_inter_areas = non_rot_inter_areas.view(B, K1, K2) if nums_k2 is not None: for b in range(B): non_rot_inter_areas[b, :, nums_k2[b] :] = 0 enclosing_vols = enclosing_box3d_vol(corners1, corners2) # vols of boxes vols1 = box3d_vol_tensor(corners1).clamp(min=EPS) vols2 = box3d_vol_tensor(corners2).clamp(min=EPS) sum_vols = vols1[:, :, None] + vols2[:, None, :] # filter malformed boxes good_boxes = (enclosing_vols > 2 * EPS) * (sum_vols > 4 * EPS) if rotated_boxes: inter_areas = torch.zeros((B, K1, K2), dtype=torch.float32) rect1 = rect1.cpu() rect2 = rect2.cpu() nums_k2_np = to_list_1d(nums_k2) non_rot_inter_areas_np = to_list_3d(non_rot_inter_areas) for b in range(B): for k1 in range(K1): for k2 in range(K2): if nums_k2 is not None and k2 >= nums_k2_np[b]: break if non_rot_inter_areas_np[b][k1][k2] == 0: continue ##### compute volume of intersection inter = polygon_clip_unnest(rect1[b, k1], rect2[b, k2]) if len(inter) > 0: xs = torch.stack([x[0] for x in inter]) ys = torch.stack([x[1] for x in inter]) inter_areas[b, k1, k2] = torch.abs( torch.dot(xs, torch.roll(ys, 1)) - torch.dot(ys, torch.roll(xs, 1)) ) inter_areas.mul_(0.5) else: inter_areas = non_rot_inter_areas inter_areas = inter_areas.to(corners1.device) ### gIOU = iou - (1 - sum_vols/enclose_vol) inter_vols = inter_areas * height if return_inter_vols_only: return inter_vols union_vols = (sum_vols - inter_vols).clamp(min=EPS) ious = inter_vols / union_vols giou_second_term = -(1 - union_vols / enclosing_vols) gious = ious + giou_second_term gious *= good_boxes if nums_k2 is not None: mask = torch.zeros((B, K1, K2), device=height.device, dtype=torch.float32) for b in range(B): mask[b, :, : nums_k2[b]] = 1 gious *= mask return gious generalized_box3d_iou_tensor_jit = torch.jit.script(generalized_box3d_iou_tensor) def generalized_box3d_iou_cython( corners1: torch.Tensor, corners2: torch.Tensor, nums_k2: torch.Tensor, rotated_boxes: bool = True, return_inter_vols_only: bool = False, ): """ Input: corners1: torch Tensor (B, K1, 8, 3), assume up direction is negative Y corners2: torch Tensor (B, K2, 8, 3), assume up direction is negative Y Assumes that the box is only rotated along Z direction Returns: B x K1 x K2 matrix of generalized IOU by approximating the boxes to be axis aligned """ assert len(corners1.shape) == 4 assert len(corners2.shape) == 4 assert corners1.shape[2] == 8 assert corners1.shape[3] == 3 assert corners1.shape[0] == corners2.shape[0] assert corners1.shape[2] == corners2.shape[2] assert corners1.shape[3] == corners2.shape[3] B, K1 = corners1.shape[0], corners1.shape[1] _, K2 = corners2.shape[0], corners2.shape[1] # # box height. Y is negative, so max is torch.min ymax = torch.min(corners1[:, :, 0, 1][:, :, None], corners2[:, :, 0, 1][:, None, :]) ymin = torch.max(corners1[:, :, 4, 1][:, :, None], corners2[:, :, 4, 1][:, None, :]) height = (ymax - ymin).clamp(min=0) EPS = 1e-8 idx = torch.arange(start=3, end=-1, step=-1, device=corners1.device) idx2 = torch.tensor([0, 2], dtype=torch.int64, device=corners1.device) rect1 = corners1[:, :, idx, :] rect2 = corners2[:, :, idx, :] rect1 = rect1[:, :, :, idx2] rect2 = rect2[:, :, :, idx2] lt = torch.max(rect1[:, :, 1][:, :, None, :], rect2[:, :, 1][:, None, :, :]) rb = torch.min(rect1[:, :, 3][:, :, None, :], rect2[:, :, 3][:, None, :, :]) wh = (rb - lt).clamp(min=0) non_rot_inter_areas = wh[:, :, :, 0] * wh[:, :, :, 1] non_rot_inter_areas = non_rot_inter_areas.view(B, K1, K2) if nums_k2 is not None: for b in range(B): non_rot_inter_areas[b, :, nums_k2[b] :] = 0 enclosing_vols = enclosing_box3d_vol(corners1, corners2) # vols of boxes vols1 = box3d_vol_tensor(corners1).clamp(min=EPS) vols2 = box3d_vol_tensor(corners2).clamp(min=EPS) sum_vols = vols1[:, :, None] + vols2[:, None, :] # filter malformed boxes good_boxes = (enclosing_vols > 2 * EPS) * (sum_vols > 4 * EPS) if rotated_boxes: inter_areas = np.zeros((B, K1, K2), dtype=np.float32) rect1 = rect1.cpu().numpy().astype(np.float32) rect2 = rect2.cpu().numpy().astype(np.float32) nums_k2_np = nums_k2.cpu().detach().numpy().astype(np.int32) non_rot_inter_areas_np = ( non_rot_inter_areas.cpu().detach().numpy().astype(np.float32) ) box_intersection( rect1, rect2, non_rot_inter_areas_np, nums_k2_np, inter_areas, True ) inter_areas = torch.from_numpy(inter_areas) else: inter_areas = non_rot_inter_areas inter_areas = inter_areas.to(corners1.device) ### gIOU = iou - (1 - sum_vols/enclose_vol) inter_vols = inter_areas * height if return_inter_vols_only: return inter_vols union_vols = (sum_vols - inter_vols).clamp(min=EPS) ious = inter_vols / union_vols giou_second_term = -(1 - union_vols / enclosing_vols) gious = ious + giou_second_term gious *= good_boxes if nums_k2 is not None: mask = torch.zeros((B, K1, K2), device=height.device, dtype=torch.float32) for b in range(B): mask[b, :, : nums_k2[b]] = 1 gious *= mask return gious def generalized_box3d_iou( corners1: torch.Tensor, corners2: torch.Tensor, nums_k2: torch.Tensor, rotated_boxes: bool = True, return_inter_vols_only: bool = False, needs_grad: bool = False, ): if needs_grad is True or box_intersection is None: context = torch.enable_grad if needs_grad else torch.no_grad with context(): return generalized_box3d_iou_tensor_jit( corners1, corners2, nums_k2, rotated_boxes, return_inter_vols_only ) else: # Cythonized implementation of GIoU with torch.no_grad(): return generalized_box3d_iou_cython( corners1, corners2, nums_k2, rotated_boxes, return_inter_vols_only )
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Helper functions and class to calculate Average Precisions for 3D object detection. """ import logging import os import sys from collections import OrderedDict import numpy as np import scipy.special as scipy_special import torch from utils.box_util import (extract_pc_in_box3d, flip_axis_to_camera_np, get_3d_box, get_3d_box_batch) from utils.eval_det import eval_det_multiprocessing, get_iou_obb from utils.nms import nms_2d_faster, nms_3d_faster, nms_3d_faster_samecls def flip_axis_to_depth(pc): pc2 = np.copy(pc) pc2[..., [0, 1, 2]] = pc2[..., [0, 2, 1]] # depth X,Y,Z = cam X,Z,-Y pc2[..., 2] *= -1 return pc2 def softmax(x): """Numpy function for softmax""" shape = x.shape probs = np.exp(x - np.max(x, axis=len(shape) - 1, keepdims=True)) probs /= np.sum(probs, axis=len(shape) - 1, keepdims=True) return probs # This is exactly the same as VoteNet so that we can compare evaluations. def parse_predictions( predicted_boxes, sem_cls_probs, objectness_probs, point_cloud, config_dict ): """Parse predictions to OBB parameters and suppress overlapping boxes Args: end_points: dict {point_clouds, center, heading_scores, heading_residuals, size_scores, size_residuals, sem_cls_scores} config_dict: dict {dataset_config, remove_empty_box, use_3d_nms, nms_iou, use_old_type_nms, conf_thresh, per_class_proposal} Returns: batch_pred_map_cls: a list of len == batch size (BS) [pred_list_i], i = 0, 1, ..., BS-1 where pred_list_i = [(pred_sem_cls, box_params, box_score)_j] where j = 0, ..., num of valid detections - 1 from sample input i """ sem_cls_probs = sem_cls_probs.detach().cpu().numpy() # B,num_proposal,10 pred_sem_cls_prob = np.max(sem_cls_probs, -1) # B,num_proposal pred_sem_cls = np.argmax(sem_cls_probs, -1) obj_prob = objectness_probs.detach().cpu().numpy() pred_corners_3d_upright_camera = predicted_boxes.detach().cpu().numpy() K = pred_corners_3d_upright_camera.shape[1] # K==num_proposal bsize = pred_corners_3d_upright_camera.shape[0] nonempty_box_mask = np.ones((bsize, K)) if config_dict["remove_empty_box"]: # ------------------------------------- # Remove predicted boxes without any point within them.. batch_pc = point_cloud.cpu().numpy()[:, :, 0:3] # B,N,3 for i in range(bsize): pc = batch_pc[i, :, :] # (N,3) for j in range(K): box3d = pred_corners_3d_upright_camera[i, j, :, :] # (8,3) box3d = flip_axis_to_depth(box3d) pc_in_box, inds = extract_pc_in_box3d(pc, box3d) if len(pc_in_box) < 5: nonempty_box_mask[i, j] = 0 if nonempty_box_mask[i].sum() == 0: nonempty_box_mask[i, obj_prob[i].argmax()] = 1 # ------------------------------------- if "no_nms" in config_dict and config_dict["no_nms"]: # pred_mask = np.ones((bsize, K)) pred_mask = nonempty_box_mask elif not config_dict["use_3d_nms"]: # ---------- NMS input: pred_with_prob in (B,K,7) ----------- pred_mask = np.zeros((bsize, K)) for i in range(bsize): boxes_2d_with_prob = np.zeros((K, 5)) for j in range(K): boxes_2d_with_prob[j, 0] = np.min( pred_corners_3d_upright_camera[i, j, :, 0] ) boxes_2d_with_prob[j, 2] = np.max( pred_corners_3d_upright_camera[i, j, :, 0] ) boxes_2d_with_prob[j, 1] = np.min( pred_corners_3d_upright_camera[i, j, :, 2] ) boxes_2d_with_prob[j, 3] = np.max( pred_corners_3d_upright_camera[i, j, :, 2] ) boxes_2d_with_prob[j, 4] = obj_prob[i, j] nonempty_box_inds = np.where(nonempty_box_mask[i, :] == 1)[0] assert len(nonempty_box_inds) > 0 pick = nms_2d_faster( boxes_2d_with_prob[nonempty_box_mask[i, :] == 1, :], config_dict["nms_iou"], config_dict["use_old_type_nms"], ) assert len(pick) > 0 pred_mask[i, nonempty_box_inds[pick]] = 1 # ---------- NMS output: pred_mask in (B,K) ----------- elif config_dict["use_3d_nms"] and (not config_dict["cls_nms"]): # ---------- NMS input: pred_with_prob in (B,K,7) ----------- pred_mask = np.zeros((bsize, K)) for i in range(bsize): boxes_3d_with_prob = np.zeros((K, 7)) for j in range(K): boxes_3d_with_prob[j, 0] = np.min( pred_corners_3d_upright_camera[i, j, :, 0] ) boxes_3d_with_prob[j, 1] = np.min( pred_corners_3d_upright_camera[i, j, :, 1] ) boxes_3d_with_prob[j, 2] = np.min( pred_corners_3d_upright_camera[i, j, :, 2] ) boxes_3d_with_prob[j, 3] = np.max( pred_corners_3d_upright_camera[i, j, :, 0] ) boxes_3d_with_prob[j, 4] = np.max( pred_corners_3d_upright_camera[i, j, :, 1] ) boxes_3d_with_prob[j, 5] = np.max( pred_corners_3d_upright_camera[i, j, :, 2] ) boxes_3d_with_prob[j, 6] = obj_prob[i, j] nonempty_box_inds = np.where(nonempty_box_mask[i, :] == 1)[0] assert len(nonempty_box_inds) > 0 pick = nms_3d_faster( boxes_3d_with_prob[nonempty_box_mask[i, :] == 1, :], config_dict["nms_iou"], config_dict["use_old_type_nms"], ) assert len(pick) > 0 pred_mask[i, nonempty_box_inds[pick]] = 1 # ---------- NMS output: pred_mask in (B,K) ----------- elif config_dict["use_3d_nms"] and config_dict["cls_nms"]: # ---------- NMS input: pred_with_prob in (B,K,8) ----------- pred_mask = np.zeros((bsize, K)) for i in range(bsize): boxes_3d_with_prob = np.zeros((K, 8)) for j in range(K): boxes_3d_with_prob[j, 0] = np.min( pred_corners_3d_upright_camera[i, j, :, 0] ) boxes_3d_with_prob[j, 1] = np.min( pred_corners_3d_upright_camera[i, j, :, 1] ) boxes_3d_with_prob[j, 2] = np.min( pred_corners_3d_upright_camera[i, j, :, 2] ) boxes_3d_with_prob[j, 3] = np.max( pred_corners_3d_upright_camera[i, j, :, 0] ) boxes_3d_with_prob[j, 4] = np.max( pred_corners_3d_upright_camera[i, j, :, 1] ) boxes_3d_with_prob[j, 5] = np.max( pred_corners_3d_upright_camera[i, j, :, 2] ) boxes_3d_with_prob[j, 6] = obj_prob[i, j] boxes_3d_with_prob[j, 7] = pred_sem_cls[ i, j ] # only suppress if the two boxes are of the same class!! nonempty_box_inds = np.where(nonempty_box_mask[i, :] == 1)[0] assert len(nonempty_box_inds) > 0 pick = nms_3d_faster_samecls( boxes_3d_with_prob[nonempty_box_mask[i, :] == 1, :], config_dict["nms_iou"], config_dict["use_old_type_nms"], ) assert len(pick) > 0 pred_mask[i, nonempty_box_inds[pick]] = 1 # ---------- NMS output: pred_mask in (B,K) ----------- batch_pred_map_cls = ( [] ) # a list (len: batch_size) of list (len: num of predictions per sample) of tuples of pred_cls, pred_box and conf (0-1) for i in range(bsize): if config_dict["per_class_proposal"]: assert config_dict["use_cls_confidence_only"] is False cur_list = [] for ii in range(config_dict["dataset_config"].num_semcls): cur_list += [ ( ii, pred_corners_3d_upright_camera[i, j], sem_cls_probs[i, j, ii] * obj_prob[i, j], ) for j in range(pred_corners_3d_upright_camera.shape[1]) if pred_mask[i, j] == 1 and obj_prob[i, j] > config_dict["conf_thresh"] ] batch_pred_map_cls.append(cur_list) elif config_dict["use_cls_confidence_only"]: batch_pred_map_cls.append( [ ( pred_sem_cls[i, j].item(), pred_corners_3d_upright_camera[i, j], sem_cls_probs[i, j, pred_sem_cls[i, j].item()], ) for j in range(pred_corners_3d_upright_camera.shape[1]) if pred_mask[i, j] == 1 and obj_prob[i, j] > config_dict["conf_thresh"] ] ) else: batch_pred_map_cls.append( [ ( pred_sem_cls[i, j].item(), pred_corners_3d_upright_camera[i, j], obj_prob[i, j], ) for j in range(pred_corners_3d_upright_camera.shape[1]) if pred_mask[i, j] == 1 and obj_prob[i, j] > config_dict["conf_thresh"] ] ) return batch_pred_map_cls def get_ap_config_dict( remove_empty_box=True, use_3d_nms=True, nms_iou=0.25, use_old_type_nms=False, cls_nms=True, per_class_proposal=True, use_cls_confidence_only=False, conf_thresh=0.05, no_nms=False, dataset_config=None, ): """ Default mAP evaluation settings for VoteNet """ config_dict = { "remove_empty_box": remove_empty_box, "use_3d_nms": use_3d_nms, "nms_iou": nms_iou, "use_old_type_nms": use_old_type_nms, "cls_nms": cls_nms, "per_class_proposal": per_class_proposal, "use_cls_confidence_only": use_cls_confidence_only, "conf_thresh": conf_thresh, "no_nms": no_nms, "dataset_config": dataset_config, } return config_dict class APCalculator(object): """Calculating Average Precision""" def __init__( self, dataset_config, ap_iou_thresh=[0.25, 0.5], class2type_map=None, exact_eval=True, ap_config_dict=None, ): """ Args: ap_iou_thresh: List of float between 0 and 1.0 IoU threshold to judge whether a prediction is positive. class2type_map: [optional] dict {class_int:class_name} """ self.ap_iou_thresh = ap_iou_thresh if ap_config_dict is None: ap_config_dict = get_ap_config_dict( dataset_config=dataset_config, remove_empty_box=exact_eval ) self.ap_config_dict = ap_config_dict self.class2type_map = class2type_map self.reset() def make_gt_list(self, gt_box_corners, gt_box_sem_cls_labels, gt_box_present): batch_gt_map_cls = [] bsize = gt_box_corners.shape[0] for i in range(bsize): batch_gt_map_cls.append( [ (gt_box_sem_cls_labels[i, j].item(), gt_box_corners[i, j]) for j in range(gt_box_corners.shape[1]) if gt_box_present[i, j] == 1 ] ) return batch_gt_map_cls def step_meter(self, outputs, targets): if "outputs" in outputs: outputs = outputs["outputs"] self.step( predicted_box_corners=outputs["box_corners"], sem_cls_probs=outputs["sem_cls_prob"], objectness_probs=outputs["objectness_prob"], point_cloud=targets["point_clouds"], gt_box_corners=targets["gt_box_corners"], gt_box_sem_cls_labels=targets["gt_box_sem_cls_label"], gt_box_present=targets["gt_box_present"], ) def step( self, predicted_box_corners, sem_cls_probs, objectness_probs, point_cloud, gt_box_corners, gt_box_sem_cls_labels, gt_box_present, ): """ Perform NMS on predicted boxes and threshold them according to score. Convert GT boxes """ gt_box_corners = gt_box_corners.cpu().detach().numpy() gt_box_sem_cls_labels = gt_box_sem_cls_labels.cpu().detach().numpy() gt_box_present = gt_box_present.cpu().detach().numpy() batch_gt_map_cls = self.make_gt_list( gt_box_corners, gt_box_sem_cls_labels, gt_box_present ) batch_pred_map_cls = parse_predictions( predicted_box_corners, sem_cls_probs, objectness_probs, point_cloud, self.ap_config_dict, ) self.accumulate(batch_pred_map_cls, batch_gt_map_cls) def accumulate(self, batch_pred_map_cls, batch_gt_map_cls): """Accumulate one batch of prediction and groundtruth. Args: batch_pred_map_cls: a list of lists [[(pred_cls, pred_box_params, score),...],...] batch_gt_map_cls: a list of lists [[(gt_cls, gt_box_params),...],...] should have the same length with batch_pred_map_cls (batch_size) """ bsize = len(batch_pred_map_cls) assert bsize == len(batch_gt_map_cls) for i in range(bsize): self.gt_map_cls[self.scan_cnt] = batch_gt_map_cls[i] self.pred_map_cls[self.scan_cnt] = batch_pred_map_cls[i] self.scan_cnt += 1 def compute_metrics(self): """Use accumulated predictions and groundtruths to compute Average Precision.""" overall_ret = OrderedDict() for ap_iou_thresh in self.ap_iou_thresh: ret_dict = OrderedDict() rec, prec, ap = eval_det_multiprocessing( self.pred_map_cls, self.gt_map_cls, ovthresh=ap_iou_thresh ) for key in sorted(ap.keys()): clsname = self.class2type_map[key] if self.class2type_map else str(key) ret_dict["%s Average Precision" % (clsname)] = ap[key] ap_vals = np.array(list(ap.values()), dtype=np.float32) ap_vals[np.isnan(ap_vals)] = 0 ret_dict["mAP"] = ap_vals.mean() rec_list = [] for key in sorted(ap.keys()): clsname = self.class2type_map[key] if self.class2type_map else str(key) try: ret_dict["%s Recall" % (clsname)] = rec[key][-1] rec_list.append(rec[key][-1]) except: ret_dict["%s Recall" % (clsname)] = 0 rec_list.append(0) ret_dict["AR"] = np.mean(rec_list) overall_ret[ap_iou_thresh] = ret_dict return overall_ret def __str__(self): overall_ret = self.compute_metrics() return self.metrics_to_str(overall_ret) def metrics_to_str(self, overall_ret, per_class=True): mAP_strs = [] AR_strs = [] per_class_metrics = [] for ap_iou_thresh in self.ap_iou_thresh: mAP = overall_ret[ap_iou_thresh]["mAP"] * 100 mAP_strs.append(f"{mAP:.2f}") ar = overall_ret[ap_iou_thresh]["AR"] * 100 AR_strs.append(f"{ar:.2f}") if per_class: # per-class metrics per_class_metrics.append("-" * 5) per_class_metrics.append(f"IOU Thresh={ap_iou_thresh}") for x in list(overall_ret[ap_iou_thresh].keys()): if x == "mAP" or x == "AR": pass else: met_str = f"{x}: {overall_ret[ap_iou_thresh][x]*100:.2f}" per_class_metrics.append(met_str) ap_header = [f"mAP{x:.2f}" for x in self.ap_iou_thresh] ap_str = ", ".join(ap_header) ap_str += ": " + ", ".join(mAP_strs) ap_str += "\n" ar_header = [f"AR{x:.2f}" for x in self.ap_iou_thresh] ap_str += ", ".join(ar_header) ap_str += ": " + ", ".join(AR_strs) if per_class: per_class_metrics = "\n".join(per_class_metrics) ap_str += "\n" ap_str += per_class_metrics return ap_str def metrics_to_dict(self, overall_ret): metrics_dict = {} for ap_iou_thresh in self.ap_iou_thresh: metrics_dict[f"mAP_{ap_iou_thresh}"] = ( overall_ret[ap_iou_thresh]["mAP"] * 100 ) metrics_dict[f"AR_{ap_iou_thresh}"] = overall_ret[ap_iou_thresh]["AR"] * 100 return metrics_dict def reset(self): self.gt_map_cls = {} # {scan_id: [(classname, bbox)]} self.pred_map_cls = {} # {scan_id: [(classname, bbox, score)]} self.scan_cnt = 0
# Copyright (c) Facebook, Inc. and its affiliates. import pickle import torch import torch.distributed as dist def is_distributed(): if not dist.is_available() or not dist.is_initialized(): return False return True def get_rank(): if not is_distributed(): return 0 return dist.get_rank() def is_primary(): return get_rank() == 0 def get_world_size(): if not is_distributed(): return 1 return dist.get_world_size() def barrier(): if not is_distributed(): return torch.distributed.barrier() def setup_print_for_distributed(is_primary): """ This function disables printing when not in primary process """ import builtins as __builtin__ builtin_print = __builtin__.print def print(*args, **kwargs): force = kwargs.pop('force', False) if is_primary or force: builtin_print(*args, **kwargs) __builtin__.print = print def init_distributed(gpu_id, global_rank, world_size, dist_url, dist_backend): torch.cuda.set_device(gpu_id) print( f"| distributed init (rank {global_rank}) (world {world_size}): {dist_url}", flush=True, ) torch.distributed.init_process_group( backend=dist_backend, init_method=dist_url, world_size=world_size, rank=global_rank, ) torch.distributed.barrier() setup_print_for_distributed(is_primary()) def all_reduce_sum(tensor): if not is_distributed(): return tensor dim_squeeze = False if tensor.ndim == 0: tensor = tensor[None, ...] dim_squeeze = True torch.distributed.all_reduce(tensor) if dim_squeeze: tensor = tensor.squeeze(0) return tensor def all_reduce_average(tensor): val = all_reduce_sum(tensor) return val / get_world_size() # Function from DETR - https://github.com/facebookresearch/detr/blob/master/util/misc.py def reduce_dict(input_dict, average=True): """ Args: input_dict (dict): all the values will be reduced average (bool): whether to do average or sum Reduce the values in the dictionary from all processes so that all processes have the averaged results. Returns a dict with the same fields as input_dict, after reduction. """ world_size = get_world_size() if world_size < 2: return input_dict with torch.no_grad(): names = [] values = [] # sort the keys so that they are consistent across processes for k in sorted(input_dict.keys()): names.append(k) values.append(input_dict[k]) values = torch.stack(values, dim=0) torch.distributed.all_reduce(values) if average: values /= world_size reduced_dict = {k: v for k, v in zip(names, values)} return reduced_dict # Function from https://github.com/facebookresearch/detr/blob/master/util/misc.py def all_gather_pickle(data, device): """ Run all_gather on arbitrary picklable data (not necessarily tensors) Args: data: any picklable object Returns: list[data]: list of data gathered from each rank """ world_size = get_world_size() if world_size == 1: return [data] # serialized to a Tensor buffer = pickle.dumps(data) storage = torch.ByteStorage.from_buffer(buffer) tensor = torch.ByteTensor(storage).to(device) # obtain Tensor size of each rank local_size = torch.tensor([tensor.numel()], device=device) size_list = [torch.tensor([0], device=device) for _ in range(world_size)] dist.all_gather(size_list, local_size) size_list = [int(size.item()) for size in size_list] max_size = max(size_list) # receiving Tensor from all ranks # we pad the tensor because torch all_gather does not support # gathering tensors of different shapes tensor_list = [] for _ in size_list: tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device=device)) if local_size != max_size: padding = torch.empty( size=(max_size - local_size,), dtype=torch.uint8, device=device ) tensor = torch.cat((tensor, padding), dim=0) dist.all_gather(tensor_list, tensor) data_list = [] for size, tensor in zip(size_list, tensor_list): buffer = tensor.cpu().numpy().tobytes()[:size] data_list.append(pickle.loads(buffer)) return data_list def all_gather_dict(data): """ Run all_gather on data which is a dictionary of Tensors """ assert isinstance(data, dict) gathered_dict = {} for item_key in data: if isinstance(data[item_key], torch.Tensor): if is_distributed(): data[item_key] = data[item_key].contiguous() tensor_list = [torch.empty_like(data[item_key]) for _ in range(get_world_size())] dist.all_gather(tensor_list, data[item_key]) gathered_tensor = torch.cat(tensor_list, dim=0) else: gathered_tensor = data[item_key] gathered_dict[item_key] = gathered_tensor return gathered_dict
# Copyright (c) Facebook, Inc. and its affiliates. import math from functools import partial import numpy as np import torch import torch.nn as nn from third_party.pointnet2.pointnet2_modules import PointnetSAModuleVotes from third_party.pointnet2.pointnet2_utils import furthest_point_sample from utils.pc_util import scale_points, shift_scale_points from models.helpers import GenericMLP from models.position_embedding import PositionEmbeddingCoordsSine from models.transformer import (MaskedTransformerEncoder, TransformerDecoder, TransformerDecoderLayer, TransformerEncoder, TransformerEncoderLayer) class BoxProcessor(object): """ Class to convert 3DETR MLP head outputs into bounding boxes """ def __init__(self, dataset_config): self.dataset_config = dataset_config def compute_predicted_center(self, center_offset, query_xyz, point_cloud_dims): center_unnormalized = query_xyz + center_offset center_normalized = shift_scale_points( center_unnormalized, src_range=point_cloud_dims ) return center_normalized, center_unnormalized def compute_predicted_size(self, size_normalized, point_cloud_dims): scene_scale = point_cloud_dims[1] - point_cloud_dims[0] scene_scale = torch.clamp(scene_scale, min=1e-1) size_unnormalized = scale_points(size_normalized, mult_factor=scene_scale) return size_unnormalized def compute_predicted_angle(self, angle_logits, angle_residual): if angle_logits.shape[-1] == 1: # special case for datasets with no rotation angle # we still use the predictions so that model outputs are used # in the backwards pass (DDP may complain otherwise) angle = angle_logits * 0 + angle_residual * 0 angle = angle.squeeze(-1).clamp(min=0) else: angle_per_cls = 2 * np.pi / self.dataset_config.num_angle_bin pred_angle_class = angle_logits.argmax(dim=-1).detach() angle_center = angle_per_cls * pred_angle_class angle = angle_center + angle_residual.gather( 2, pred_angle_class.unsqueeze(-1) ).squeeze(-1) mask = angle > np.pi angle[mask] = angle[mask] - 2 * np.pi return angle def compute_objectness_and_cls_prob(self, cls_logits): assert cls_logits.shape[-1] == self.dataset_config.num_semcls + 1 cls_prob = torch.nn.functional.softmax(cls_logits, dim=-1) objectness_prob = 1 - cls_prob[..., -1] return cls_prob[..., :-1], objectness_prob def box_parametrization_to_corners( self, box_center_unnorm, box_size_unnorm, box_angle ): return self.dataset_config.box_parametrization_to_corners( box_center_unnorm, box_size_unnorm, box_angle ) class Model3DETR(nn.Module): """ Main 3DETR model. Consists of the following learnable sub-models - pre_encoder: takes raw point cloud, subsamples it and projects into "D" dimensions Input is a Nx3 matrix of N point coordinates Output is a N'xD matrix of N' point features - encoder: series of self-attention blocks to extract point features Input is a N'xD matrix of N' point features Output is a N''xD matrix of N'' point features. N'' = N' for regular encoder; N'' = N'//2 for masked encoder - query computation: samples a set of B coordinates from the N'' points and outputs a BxD matrix of query features. - decoder: series of self-attention and cross-attention blocks to produce BxD box features Takes N''xD features from the encoder and BxD query features. - mlp_heads: Predicts bounding box parameters and classes from the BxD box features """ def __init__( self, pre_encoder, encoder, decoder, dataset_config, encoder_dim=256, decoder_dim=256, position_embedding="fourier", mlp_dropout=0.3, num_queries=256, ): super().__init__() self.pre_encoder = pre_encoder self.encoder = encoder if hasattr(self.encoder, "masking_radius"): hidden_dims = [encoder_dim] else: hidden_dims = [encoder_dim, encoder_dim] self.encoder_to_decoder_projection = GenericMLP( input_dim=encoder_dim, hidden_dims=hidden_dims, output_dim=decoder_dim, norm_fn_name="bn1d", activation="relu", use_conv=True, output_use_activation=True, output_use_norm=True, output_use_bias=False, ) self.pos_embedding = PositionEmbeddingCoordsSine( d_pos=decoder_dim, pos_type=position_embedding, normalize=True ) self.query_projection = GenericMLP( input_dim=decoder_dim, hidden_dims=[decoder_dim], output_dim=decoder_dim, use_conv=True, output_use_activation=True, hidden_use_bias=True, ) self.decoder = decoder self.build_mlp_heads(dataset_config, decoder_dim, mlp_dropout) self.num_queries = num_queries self.box_processor = BoxProcessor(dataset_config) def build_mlp_heads(self, dataset_config, decoder_dim, mlp_dropout): mlp_func = partial( GenericMLP, norm_fn_name="bn1d", activation="relu", use_conv=True, hidden_dims=[decoder_dim, decoder_dim], dropout=mlp_dropout, input_dim=decoder_dim, ) # Semantic class of the box # add 1 for background/not-an-object class semcls_head = mlp_func(output_dim=dataset_config.num_semcls + 1) # geometry of the box center_head = mlp_func(output_dim=3) size_head = mlp_func(output_dim=3) angle_cls_head = mlp_func(output_dim=dataset_config.num_angle_bin) angle_reg_head = mlp_func(output_dim=dataset_config.num_angle_bin) mlp_heads = [ ("sem_cls_head", semcls_head), ("center_head", center_head), ("size_head", size_head), ("angle_cls_head", angle_cls_head), ("angle_residual_head", angle_reg_head), ] self.mlp_heads = nn.ModuleDict(mlp_heads) def get_query_embeddings(self, encoder_xyz, point_cloud_dims): query_inds = furthest_point_sample(encoder_xyz, self.num_queries) query_inds = query_inds.long() query_xyz = [torch.gather(encoder_xyz[..., x], 1, query_inds) for x in range(3)] query_xyz = torch.stack(query_xyz) query_xyz = query_xyz.permute(1, 2, 0) # Gater op above can be replaced by the three lines below from the pointnet2 codebase # xyz_flipped = encoder_xyz.transpose(1, 2).contiguous() # query_xyz = gather_operation(xyz_flipped, query_inds.int()) # query_xyz = query_xyz.transpose(1, 2) pos_embed = self.pos_embedding(query_xyz, input_range=point_cloud_dims) query_embed = self.query_projection(pos_embed) return query_xyz, query_embed def _break_up_pc(self, pc): # pc may contain color/normals. xyz = pc[..., 0:3].contiguous() features = pc[..., 3:].transpose(1, 2).contiguous() if pc.size(-1) > 3 else None return xyz, features def run_encoder(self, point_clouds): xyz, features = self._break_up_pc(point_clouds) pre_enc_xyz, pre_enc_features, pre_enc_inds = self.pre_encoder(xyz, features) # xyz: batch x npoints x 3 # features: batch x channel x npoints # inds: batch x npoints # nn.MultiHeadAttention in encoder expects npoints x batch x channel features pre_enc_features = pre_enc_features.permute(2, 0, 1) # xyz points are in batch x npointx channel order enc_xyz, enc_features, enc_inds = self.encoder( pre_enc_features, xyz=pre_enc_xyz ) if enc_inds is None: # encoder does not perform any downsampling enc_inds = pre_enc_inds else: # use gather here to ensure that it works for both FPS and random sampling enc_inds = torch.gather(pre_enc_inds, 1, enc_inds.type(torch.int64)) return enc_xyz, enc_features, enc_inds def get_box_predictions(self, query_xyz, point_cloud_dims, box_features): """ Parameters: query_xyz: batch x nqueries x 3 tensor of query XYZ coords point_cloud_dims: List of [min, max] dims of point cloud min: batch x 3 tensor of min XYZ coords max: batch x 3 tensor of max XYZ coords box_features: num_layers x num_queries x batch x channel """ # box_features change to (num_layers x batch) x channel x num_queries box_features = box_features.permute(0, 2, 3, 1) num_layers, batch, channel, num_queries = ( box_features.shape[0], box_features.shape[1], box_features.shape[2], box_features.shape[3], ) box_features = box_features.reshape(num_layers * batch, channel, num_queries) # mlp head outputs are (num_layers x batch) x noutput x nqueries, so transpose last two dims cls_logits = self.mlp_heads["sem_cls_head"](box_features).transpose(1, 2) center_offset = ( self.mlp_heads["center_head"](box_features).sigmoid().transpose(1, 2) - 0.5 ) size_normalized = ( self.mlp_heads["size_head"](box_features).sigmoid().transpose(1, 2) ) angle_logits = self.mlp_heads["angle_cls_head"](box_features).transpose(1, 2) angle_residual_normalized = self.mlp_heads["angle_residual_head"]( box_features ).transpose(1, 2) # reshape outputs to num_layers x batch x nqueries x noutput cls_logits = cls_logits.reshape(num_layers, batch, num_queries, -1) center_offset = center_offset.reshape(num_layers, batch, num_queries, -1) size_normalized = size_normalized.reshape(num_layers, batch, num_queries, -1) angle_logits = angle_logits.reshape(num_layers, batch, num_queries, -1) angle_residual_normalized = angle_residual_normalized.reshape( num_layers, batch, num_queries, -1 ) angle_residual = angle_residual_normalized * ( np.pi / angle_residual_normalized.shape[-1] ) outputs = [] for l in range(num_layers): # box processor converts outputs so we can get a 3D bounding box ( center_normalized, center_unnormalized, ) = self.box_processor.compute_predicted_center( center_offset[l], query_xyz, point_cloud_dims ) angle_continuous = self.box_processor.compute_predicted_angle( angle_logits[l], angle_residual[l] ) size_unnormalized = self.box_processor.compute_predicted_size( size_normalized[l], point_cloud_dims ) box_corners = self.box_processor.box_parametrization_to_corners( center_unnormalized, size_unnormalized, angle_continuous ) # below are not used in computing loss (only for matching/mAP eval) # we compute them with no_grad() so that distributed training does not complain about unused variables with torch.no_grad(): ( semcls_prob, objectness_prob, ) = self.box_processor.compute_objectness_and_cls_prob(cls_logits[l]) box_prediction = { "sem_cls_logits": cls_logits[l], "center_normalized": center_normalized.contiguous(), "center_unnormalized": center_unnormalized, "size_normalized": size_normalized[l], "size_unnormalized": size_unnormalized, "angle_logits": angle_logits[l], "angle_residual": angle_residual[l], "angle_residual_normalized": angle_residual_normalized[l], "angle_continuous": angle_continuous, "objectness_prob": objectness_prob, "sem_cls_prob": semcls_prob, "box_corners": box_corners, } outputs.append(box_prediction) # intermediate decoder layer outputs are only used during training aux_outputs = outputs[:-1] outputs = outputs[-1] return { "outputs": outputs, # output from last layer of decoder "aux_outputs": aux_outputs, # output from intermediate layers of decoder } def forward(self, inputs, encoder_only=False): point_clouds = inputs["point_clouds"] enc_xyz, enc_features, enc_inds = self.run_encoder(point_clouds) enc_features = self.encoder_to_decoder_projection( enc_features.permute(1, 2, 0) ).permute(2, 0, 1) # encoder features: npoints x batch x channel # encoder xyz: npoints x batch x 3 if encoder_only: # return: batch x npoints x channels return enc_xyz, enc_features.transpose(0, 1) point_cloud_dims = [ inputs["point_cloud_dims_min"], inputs["point_cloud_dims_max"], ] query_xyz, query_embed = self.get_query_embeddings(enc_xyz, point_cloud_dims) # query_embed: batch x channel x npoint enc_pos = self.pos_embedding(enc_xyz, input_range=point_cloud_dims) # decoder expects: npoints x batch x channel enc_pos = enc_pos.permute(2, 0, 1) query_embed = query_embed.permute(2, 0, 1) tgt = torch.zeros_like(query_embed) box_features = self.decoder( tgt, enc_features, query_pos=query_embed, pos=enc_pos )[0] box_predictions = self.get_box_predictions( query_xyz, point_cloud_dims, box_features ) return box_predictions def build_preencoder(args): mlp_dims = [3 * int(args.use_color), 64, 128, args.enc_dim] preencoder = PointnetSAModuleVotes( radius=0.2, nsample=64, npoint=args.preenc_npoints, mlp=mlp_dims, normalize_xyz=True, ) return preencoder def build_encoder(args): if args.enc_type == "vanilla": encoder_layer = TransformerEncoderLayer( d_model=args.enc_dim, nhead=args.enc_nhead, dim_feedforward=args.enc_ffn_dim, dropout=args.enc_dropout, activation=args.enc_activation, ) encoder = TransformerEncoder( encoder_layer=encoder_layer, num_layers=args.enc_nlayers ) elif args.enc_type in ["masked"]: encoder_layer = TransformerEncoderLayer( d_model=args.enc_dim, nhead=args.enc_nhead, dim_feedforward=args.enc_ffn_dim, dropout=args.enc_dropout, activation=args.enc_activation, ) interim_downsampling = PointnetSAModuleVotes( radius=0.4, nsample=32, npoint=args.preenc_npoints // 2, mlp=[args.enc_dim, 256, 256, args.enc_dim], normalize_xyz=True, ) masking_radius = [math.pow(x, 2) for x in [0.4, 0.8, 1.2]] encoder = MaskedTransformerEncoder( encoder_layer=encoder_layer, num_layers=3, interim_downsampling=interim_downsampling, masking_radius=masking_radius, ) else: raise ValueError(f"Unknown encoder type {args.enc_type}") return encoder def build_decoder(args): decoder_layer = TransformerDecoderLayer( d_model=args.dec_dim, nhead=args.dec_nhead, dim_feedforward=args.dec_ffn_dim, dropout=args.dec_dropout, ) decoder = TransformerDecoder( decoder_layer, num_layers=args.dec_nlayers, return_intermediate=True ) return decoder def build_3detr(args, dataset_config): pre_encoder = build_preencoder(args) encoder = build_encoder(args) decoder = build_decoder(args) model = Model3DETR( pre_encoder, encoder, decoder, dataset_config, encoder_dim=args.enc_dim, decoder_dim=args.dec_dim, mlp_dropout=args.mlp_dropout, num_queries=args.nqueries, ) output_processor = BoxProcessor(dataset_config) return model, output_processor
# Copyright (c) Facebook, Inc. and its affiliates. from .model_3detr import build_3detr MODEL_FUNCS = { "3detr": build_3detr, } def build_model(args, dataset_config): model, processor = MODEL_FUNCS[args.model_name](args, dataset_config) return model, processor
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ Modified from DETR Transformer class. Copy-paste from torch.nn.Transformer with modifications: * positional encodings are passed in MHattention * extra LN at the end of encoder is removed * decoder returns a stack of activations from all decoding layers """ from typing import Optional import torch from torch import Tensor, nn from models.helpers import (ACTIVATION_DICT, NORM_DICT, WEIGHT_INIT_DICT, get_clones) class TransformerEncoder(nn.Module): def __init__(self, encoder_layer, num_layers, norm=None, weight_init_name="xavier_uniform"): super().__init__() self.layers = get_clones(encoder_layer, num_layers) self.num_layers = num_layers self.norm = norm self._reset_parameters(weight_init_name) def _reset_parameters(self, weight_init_name): func = WEIGHT_INIT_DICT[weight_init_name] for p in self.parameters(): if p.dim() > 1: func(p) def forward(self, src, mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, xyz: Optional [Tensor] = None, transpose_swap: Optional[bool] = False, ): if transpose_swap: bs, c, h, w = src.shape src = src.flatten(2).permute(2, 0, 1) if pos is not None: pos = pos.flatten(2).permute(2, 0, 1) output = src orig_mask = mask if orig_mask is not None and isinstance(orig_mask, list): assert len(orig_mask) == len(self.layers) elif orig_mask is not None: orig_mask = [mask for _ in range(len(self.layers))] for idx, layer in enumerate(self.layers): if orig_mask is not None: mask = orig_mask[idx] # mask must be tiled to num_heads of the transformer bsz, n, n = mask.shape nhead = layer.nhead mask = mask.unsqueeze(1) mask = mask.repeat(1, nhead, 1, 1) mask = mask.view(bsz * nhead, n, n) output = layer(output, src_mask=mask, src_key_padding_mask=src_key_padding_mask, pos=pos) if self.norm is not None: output = self.norm(output) if transpose_swap: output = output.permute(1, 2, 0).view(bs, c, h, w).contiguous() xyz_inds = None return xyz, output, xyz_inds class TransformerDecoder(nn.Module): def __init__(self, decoder_layer, num_layers, norm_fn_name="ln", return_intermediate=False, weight_init_name="xavier_uniform"): super().__init__() self.layers = get_clones(decoder_layer, num_layers) self.num_layers = num_layers self.norm = None if norm_fn_name is not None: self.norm = NORM_DICT[norm_fn_name](self.layers[0].linear2.out_features) self.return_intermediate = return_intermediate self._reset_parameters(weight_init_name) def _reset_parameters(self, weight_init_name): func = WEIGHT_INIT_DICT[weight_init_name] for p in self.parameters(): if p.dim() > 1: func(p) def forward(self, tgt, memory, tgt_mask: Optional[Tensor] = None, memory_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, query_pos: Optional[Tensor] = None, transpose_swap: Optional [bool] = False, return_attn_weights: Optional [bool] = False, ): if transpose_swap: bs, c, h, w = memory.shape memory = memory.flatten(2).permute(2, 0, 1) # memory: bs, c, t -> t, b, c if pos is not None: pos = pos.flatten(2).permute(2, 0, 1) output = tgt intermediate = [] attns = [] for layer in self.layers: output, attn = layer(output, memory, tgt_mask=tgt_mask, memory_mask=memory_mask, tgt_key_padding_mask=tgt_key_padding_mask, memory_key_padding_mask=memory_key_padding_mask, pos=pos, query_pos=query_pos, return_attn_weights=return_attn_weights) if self.return_intermediate: intermediate.append(self.norm(output)) if return_attn_weights: attns.append(attn) if self.norm is not None: output = self.norm(output) if self.return_intermediate: intermediate.pop() intermediate.append(output) if return_attn_weights: attns = torch.stack(attns) if self.return_intermediate: return torch.stack(intermediate), attns return output, attns class MaskedTransformerEncoder(TransformerEncoder): def __init__(self, encoder_layer, num_layers, masking_radius, interim_downsampling, norm=None, weight_init_name="xavier_uniform"): super().__init__(encoder_layer, num_layers, norm=norm, weight_init_name=weight_init_name) assert len(masking_radius) == num_layers self.masking_radius = masking_radius self.interim_downsampling = interim_downsampling def compute_mask(self, xyz, radius, dist=None): with torch.no_grad(): if dist is None or dist.shape[1] != xyz.shape[1]: dist = torch.cdist(xyz, xyz, p=2) # entries that are True in the mask do not contribute to self-attention # so points outside the radius are not considered mask = dist >= radius return mask, dist def forward(self, src, mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, xyz: Optional [Tensor] = None, transpose_swap: Optional[bool] = False, ): if transpose_swap: bs, c, h, w = src.shape src = src.flatten(2).permute(2, 0, 1) if pos is not None: pos = pos.flatten(2).permute(2, 0, 1) output = src xyz_dist = None xyz_inds = None for idx, layer in enumerate(self.layers): mask = None if self.masking_radius[idx] > 0: mask, xyz_dist = self.compute_mask(xyz, self.masking_radius[idx], xyz_dist) # mask must be tiled to num_heads of the transformer bsz, n, n = mask.shape nhead = layer.nhead mask = mask.unsqueeze(1) mask = mask.repeat(1, nhead, 1, 1) mask = mask.view(bsz * nhead, n, n) output = layer(output, src_mask=mask, src_key_padding_mask=src_key_padding_mask, pos=pos) if idx == 0 and self.interim_downsampling: # output is npoints x batch x channel. make batch x channel x npoints output = output.permute(1, 2, 0) xyz, output, xyz_inds = self.interim_downsampling(xyz, output) # swap back output = output.permute(2, 0, 1) if self.norm is not None: output = self.norm(output) if transpose_swap: output = output.permute(1, 2, 0).view(bs, c, h, w).contiguous() return xyz, output, xyz_inds def extra_repr(self): radius_str = ", ".join(["%.2f"%(x) for x in self.masking_radius]) return f"masking_radius={radius_str}" class TransformerEncoderLayer(nn.Module): def __init__(self, d_model, nhead=4, dim_feedforward=128, dropout=0.1, dropout_attn=None, activation="relu", normalize_before=True, norm_name="ln", use_ffn=True, ffn_use_bias=True): super().__init__() if dropout_attn is None: dropout_attn = dropout self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout_attn) self.use_ffn = use_ffn if self.use_ffn: # Implementation of Feedforward model self.linear1 = nn.Linear(d_model, dim_feedforward, bias=ffn_use_bias) self.dropout = nn.Dropout(dropout, inplace=True) self.linear2 = nn.Linear(dim_feedforward, d_model, bias=ffn_use_bias) self.norm2 = NORM_DICT[norm_name](d_model) self.norm2 = NORM_DICT[norm_name](d_model) self.dropout2 = nn.Dropout(dropout, inplace=True) self.norm1 = NORM_DICT[norm_name](d_model) self.dropout1 = nn.Dropout(dropout, inplace=True) self.activation = ACTIVATION_DICT[activation]() self.normalize_before = normalize_before self.nhead = nhead def with_pos_embed(self, tensor, pos: Optional[Tensor]): return tensor if pos is None else tensor + pos def forward_post(self, src, src_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None): q = k = self.with_pos_embed(src, pos) value = src src2 = self.self_attn(q, k, value=value, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0] src = src + self.dropout1(src2) if self.use_norm_fn_on_input: src = self.norm1(src) if self.use_ffn: src2 = self.linear2(self.dropout(self.activation(self.linear1(src)))) src = src + self.dropout2(src2) src = self.norm2(src) return src def forward_pre(self, src, src_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, return_attn_weights: Optional [Tensor] = False): src2 = self.norm1(src) value = src2 q = k = self.with_pos_embed(src2, pos) src2, attn_weights = self.self_attn(q, k, value=value, attn_mask=src_mask, key_padding_mask=src_key_padding_mask) src = src + self.dropout1(src2) if self.use_ffn: src2 = self.norm2(src) src2 = self.linear2(self.dropout(self.activation(self.linear1(src2)))) src = src + self.dropout2(src2) if return_attn_weights: return src, attn_weights return src def forward(self, src, src_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, return_attn_weights: Optional [Tensor] = False): if self.normalize_before: return self.forward_pre(src, src_mask, src_key_padding_mask, pos, return_attn_weights) return self.forward_post(src, src_mask, src_key_padding_mask, pos) def extra_repr(self): st = "" if hasattr(self.self_attn, "dropout"): st += f"attn_dr={self.self_attn.dropout}" return st class TransformerDecoderLayer(nn.Module): def __init__(self, d_model, nhead=4, dim_feedforward=256, dropout=0.1, dropout_attn=None, activation="relu", normalize_before=True, norm_fn_name="ln"): super().__init__() if dropout_attn is None: dropout_attn = dropout self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) self.norm1 = NORM_DICT[norm_fn_name](d_model) self.norm2 = NORM_DICT[norm_fn_name](d_model) self.norm3 = NORM_DICT[norm_fn_name](d_model) self.dropout1 = nn.Dropout(dropout, inplace=True) self.dropout2 = nn.Dropout(dropout, inplace=True) self.dropout3 = nn.Dropout(dropout, inplace=True) # Implementation of Feedforward model self.linear1 = nn.Linear(d_model, dim_feedforward) self.dropout = nn.Dropout(dropout, inplace=True) self.linear2 = nn.Linear(dim_feedforward, d_model) self.activation = ACTIVATION_DICT[activation]() self.normalize_before = normalize_before def with_pos_embed(self, tensor, pos: Optional[Tensor]): return tensor if pos is None else tensor + pos def forward_post(self, tgt, memory, tgt_mask: Optional[Tensor] = None, memory_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, query_pos: Optional[Tensor] = None, return_attn_weights: Optional [bool] = False): q = k = self.with_pos_embed(tgt, query_pos) tgt2 = self.self_attn(q, k, value=tgt, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask)[0] tgt = tgt + self.dropout1(tgt2) tgt = self.norm1(tgt) tgt2, attn = self.multihead_attn(query=self.with_pos_embed(tgt, query_pos), key=self.with_pos_embed(memory, pos), value=memory, attn_mask=memory_mask, key_padding_mask=memory_key_padding_mask) tgt = tgt + self.dropout2(tgt2) tgt = self.norm2(tgt) tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt)))) tgt = tgt + self.dropout3(tgt2) tgt = self.norm3(tgt) if return_attn_weights: return tgt, attn return tgt, None def forward_pre(self, tgt, memory, tgt_mask: Optional[Tensor] = None, memory_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, query_pos: Optional[Tensor] = None, return_attn_weights: Optional [bool] = False): tgt2 = self.norm1(tgt) q = k = self.with_pos_embed(tgt2, query_pos) tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask)[0] tgt = tgt + self.dropout1(tgt2) tgt2 = self.norm2(tgt) tgt2, attn = self.multihead_attn(query=self.with_pos_embed(tgt2, query_pos), key=self.with_pos_embed(memory, pos), value=memory, attn_mask=memory_mask, key_padding_mask=memory_key_padding_mask) tgt = tgt + self.dropout2(tgt2) tgt2 = self.norm3(tgt) tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2)))) tgt = tgt + self.dropout3(tgt2) if return_attn_weights: return tgt, attn return tgt, None def forward(self, tgt, memory, tgt_mask: Optional[Tensor] = None, memory_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, query_pos: Optional[Tensor] = None, return_attn_weights: Optional [bool] = False): if self.normalize_before: return self.forward_pre(tgt, memory, tgt_mask, memory_mask, tgt_key_padding_mask, memory_key_padding_mask, pos, query_pos, return_attn_weights) return self.forward_post(tgt, memory, tgt_mask, memory_mask, tgt_key_padding_mask, memory_key_padding_mask, pos, query_pos, return_attn_weights)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ Various positional encodings for the transformer. """ import math import torch from torch import nn import numpy as np from utils.pc_util import shift_scale_points class PositionEmbeddingCoordsSine(nn.Module): def __init__( self, temperature=10000, normalize=False, scale=None, pos_type="fourier", d_pos=None, d_in=3, gauss_scale=1.0, ): super().__init__() self.temperature = temperature self.normalize = normalize if scale is not None and normalize is False: raise ValueError("normalize should be True if scale is passed") if scale is None: scale = 2 * math.pi assert pos_type in ["sine", "fourier"] self.pos_type = pos_type self.scale = scale if pos_type == "fourier": assert d_pos is not None assert d_pos % 2 == 0 # define a gaussian matrix input_ch -> output_ch B = torch.empty((d_in, d_pos // 2)).normal_() B *= gauss_scale self.register_buffer("gauss_B", B) self.d_pos = d_pos def get_sine_embeddings(self, xyz, num_channels, input_range): # clone coords so that shift/scale operations do not affect original tensor orig_xyz = xyz xyz = orig_xyz.clone() ncoords = xyz.shape[1] if self.normalize: xyz = shift_scale_points(xyz, src_range=input_range) ndim = num_channels // xyz.shape[2] if ndim % 2 != 0: ndim -= 1 # automatically handle remainder by assiging it to the first dim rems = num_channels - (ndim * xyz.shape[2]) assert ( ndim % 2 == 0 ), f"Cannot handle odd sized ndim={ndim} where num_channels={num_channels} and xyz={xyz.shape}" final_embeds = [] prev_dim = 0 for d in range(xyz.shape[2]): cdim = ndim if rems > 0: # add remainder in increments of two to maintain even size cdim += 2 rems -= 2 if cdim != prev_dim: dim_t = torch.arange(cdim, dtype=torch.float32, device=xyz.device) dim_t = self.temperature ** (2 * (dim_t // 2) / cdim) # create batch x cdim x nccords embedding raw_pos = xyz[:, :, d] if self.scale: raw_pos *= self.scale pos = raw_pos[:, :, None] / dim_t pos = torch.stack( (pos[:, :, 0::2].sin(), pos[:, :, 1::2].cos()), dim=3 ).flatten(2) final_embeds.append(pos) prev_dim = cdim final_embeds = torch.cat(final_embeds, dim=2).permute(0, 2, 1) return final_embeds def get_fourier_embeddings(self, xyz, num_channels=None, input_range=None): # Follows - https://people.eecs.berkeley.edu/~bmild/fourfeat/index.html if num_channels is None: num_channels = self.gauss_B.shape[1] * 2 bsize, npoints = xyz.shape[0], xyz.shape[1] assert num_channels > 0 and num_channels % 2 == 0 d_in, max_d_out = self.gauss_B.shape[0], self.gauss_B.shape[1] d_out = num_channels // 2 assert d_out <= max_d_out assert d_in == xyz.shape[-1] # clone coords so that shift/scale operations do not affect original tensor orig_xyz = xyz xyz = orig_xyz.clone() ncoords = xyz.shape[1] if self.normalize: xyz = shift_scale_points(xyz, src_range=input_range) xyz *= 2 * np.pi xyz_proj = torch.mm(xyz.view(-1, d_in), self.gauss_B[:, :d_out]).view( bsize, npoints, d_out ) final_embeds = [xyz_proj.sin(), xyz_proj.cos()] # return batch x d_pos x npoints embedding final_embeds = torch.cat(final_embeds, dim=2).permute(0, 2, 1) return final_embeds def forward(self, xyz, num_channels=None, input_range=None): assert isinstance(xyz, torch.Tensor) assert xyz.ndim == 3 # xyz is batch x npoints x 3 if self.pos_type == "sine": with torch.no_grad(): return self.get_sine_embeddings(xyz, num_channels, input_range) elif self.pos_type == "fourier": with torch.no_grad(): return self.get_fourier_embeddings(xyz, num_channels, input_range) else: raise ValueError(f"Unknown {self.pos_type}") def extra_repr(self): st = f"type={self.pos_type}, scale={self.scale}, normalize={self.normalize}" if hasattr(self, "gauss_B"): st += ( f", gaussB={self.gauss_B.shape}, gaussBsum={self.gauss_B.sum().item()}" ) return st
# Copyright (c) Facebook, Inc. and its affiliates. import torch.nn as nn from functools import partial import copy class BatchNormDim1Swap(nn.BatchNorm1d): """ Used for nn.Transformer that uses a HW x N x C rep """ def forward(self, x): """ x: HW x N x C permute to N x C x HW Apply BN on C permute back """ hw, n, c = x.shape x = x.permute(1, 2, 0) x = super(BatchNormDim1Swap, self).forward(x) # x: n x c x hw -> hw x n x c x = x.permute(2, 0, 1) return x NORM_DICT = { "bn": BatchNormDim1Swap, "bn1d": nn.BatchNorm1d, "id": nn.Identity, "ln": nn.LayerNorm, } ACTIVATION_DICT = { "relu": nn.ReLU, "gelu": nn.GELU, "leakyrelu": partial(nn.LeakyReLU, negative_slope=0.1), } WEIGHT_INIT_DICT = { "xavier_uniform": nn.init.xavier_uniform_, } class GenericMLP(nn.Module): def __init__( self, input_dim, hidden_dims, output_dim, norm_fn_name=None, activation="relu", use_conv=False, dropout=None, hidden_use_bias=False, output_use_bias=True, output_use_activation=False, output_use_norm=False, weight_init_name=None, ): super().__init__() activation = ACTIVATION_DICT[activation] norm = None if norm_fn_name is not None: norm = NORM_DICT[norm_fn_name] if norm_fn_name == "ln" and use_conv: norm = lambda x: nn.GroupNorm(1, x) # easier way to use LayerNorm if dropout is not None: if not isinstance(dropout, list): dropout = [dropout for _ in range(len(hidden_dims))] layers = [] prev_dim = input_dim for idx, x in enumerate(hidden_dims): if use_conv: layer = nn.Conv1d(prev_dim, x, 1, bias=hidden_use_bias) else: layer = nn.Linear(prev_dim, x, bias=hidden_use_bias) layers.append(layer) if norm: layers.append(norm(x)) layers.append(activation()) if dropout is not None: layers.append(nn.Dropout(p=dropout[idx])) prev_dim = x if use_conv: layer = nn.Conv1d(prev_dim, output_dim, 1, bias=output_use_bias) else: layer = nn.Linear(prev_dim, output_dim, bias=output_use_bias) layers.append(layer) if output_use_norm: layers.append(norm(output_dim)) if output_use_activation: layers.append(activation()) self.layers = nn.Sequential(*layers) if weight_init_name is not None: self.do_weight_init(weight_init_name) def do_weight_init(self, weight_init_name): func = WEIGHT_INIT_DICT[weight_init_name] for (_, param) in self.named_parameters(): if param.dim() > 1: # skips batchnorm/layernorm func(param) def forward(self, x): output = self.layers(x) return output def get_clones(module, N): return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
# Copyright (c) Facebook, Inc. and its affiliates. ''' Modified based on Ref: https://github.com/erikwijmans/Pointnet2_PyTorch ''' import torch import torch.nn as nn from typing import List, Tuple class SharedMLP(nn.Sequential): def __init__( self, args: List[int], *, bn: bool = False, activation=nn.ReLU(inplace=True), preact: bool = False, first: bool = False, name: str = "" ): super().__init__() for i in range(len(args) - 1): self.add_module( name + 'layer{}'.format(i), Conv2d( args[i], args[i + 1], bn=(not first or not preact or (i != 0)) and bn, activation=activation if (not first or not preact or (i != 0)) else None, preact=preact ) ) class _BNBase(nn.Sequential): def __init__(self, in_size, batch_norm=None, name=""): super().__init__() self.add_module(name + "bn", batch_norm(in_size)) nn.init.constant_(self[0].weight, 1.0) nn.init.constant_(self[0].bias, 0) class BatchNorm1d(_BNBase): def __init__(self, in_size: int, *, name: str = ""): super().__init__(in_size, batch_norm=nn.BatchNorm1d, name=name) class BatchNorm2d(_BNBase): def __init__(self, in_size: int, name: str = ""): super().__init__(in_size, batch_norm=nn.BatchNorm2d, name=name) class BatchNorm3d(_BNBase): def __init__(self, in_size: int, name: str = ""): super().__init__(in_size, batch_norm=nn.BatchNorm3d, name=name) class _ConvBase(nn.Sequential): def __init__( self, in_size, out_size, kernel_size, stride, padding, activation, bn, init, conv=None, batch_norm=None, bias=True, preact=False, name="" ): super().__init__() bias = bias and (not bn) conv_unit = conv( in_size, out_size, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias ) init(conv_unit.weight) if bias: nn.init.constant_(conv_unit.bias, 0) if bn: if not preact: bn_unit = batch_norm(out_size) else: bn_unit = batch_norm(in_size) if preact: if bn: self.add_module(name + 'bn', bn_unit) if activation is not None: self.add_module(name + 'activation', activation) self.add_module(name + 'conv', conv_unit) if not preact: if bn: self.add_module(name + 'bn', bn_unit) if activation is not None: self.add_module(name + 'activation', activation) class Conv1d(_ConvBase): def __init__( self, in_size: int, out_size: int, *, kernel_size: int = 1, stride: int = 1, padding: int = 0, activation=nn.ReLU(inplace=True), bn: bool = False, init=nn.init.kaiming_normal_, bias: bool = True, preact: bool = False, name: str = "" ): super().__init__( in_size, out_size, kernel_size, stride, padding, activation, bn, init, conv=nn.Conv1d, batch_norm=BatchNorm1d, bias=bias, preact=preact, name=name ) class Conv2d(_ConvBase): def __init__( self, in_size: int, out_size: int, *, kernel_size: Tuple[int, int] = (1, 1), stride: Tuple[int, int] = (1, 1), padding: Tuple[int, int] = (0, 0), activation=nn.ReLU(inplace=True), bn: bool = False, init=nn.init.kaiming_normal_, bias: bool = True, preact: bool = False, name: str = "" ): super().__init__( in_size, out_size, kernel_size, stride, padding, activation, bn, init, conv=nn.Conv2d, batch_norm=BatchNorm2d, bias=bias, preact=preact, name=name ) class Conv3d(_ConvBase): def __init__( self, in_size: int, out_size: int, *, kernel_size: Tuple[int, int, int] = (1, 1, 1), stride: Tuple[int, int, int] = (1, 1, 1), padding: Tuple[int, int, int] = (0, 0, 0), activation=nn.ReLU(inplace=True), bn: bool = False, init=nn.init.kaiming_normal_, bias: bool = True, preact: bool = False, name: str = "" ): super().__init__( in_size, out_size, kernel_size, stride, padding, activation, bn, init, conv=nn.Conv3d, batch_norm=BatchNorm3d, bias=bias, preact=preact, name=name ) class FC(nn.Sequential): def __init__( self, in_size: int, out_size: int, *, activation=nn.ReLU(inplace=True), bn: bool = False, init=None, preact: bool = False, name: str = "" ): super().__init__() fc = nn.Linear(in_size, out_size, bias=not bn) if init is not None: init(fc.weight) if not bn: nn.init.constant_(fc.bias, 0) if preact: if bn: self.add_module(name + 'bn', BatchNorm1d(in_size)) if activation is not None: self.add_module(name + 'activation', activation) self.add_module(name + 'fc', fc) if not preact: if bn: self.add_module(name + 'bn', BatchNorm1d(out_size)) if activation is not None: self.add_module(name + 'activation', activation) def set_bn_momentum_default(bn_momentum): def fn(m): if isinstance(m, (nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d)): m.momentum = bn_momentum return fn class BNMomentumScheduler(object): def __init__( self, model, bn_lambda, last_epoch=-1, setter=set_bn_momentum_default ): if not isinstance(model, nn.Module): raise RuntimeError( "Class '{}' is not a PyTorch nn Module".format( type(model).__name__ ) ) self.model = model self.setter = setter self.lmbd = bn_lambda self.step(last_epoch + 1) self.last_epoch = last_epoch def step(self, epoch=None): if epoch is None: epoch = self.last_epoch + 1 self.last_epoch = epoch self.model.apply(self.setter(self.lmbd(epoch)))
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from setuptools import setup from torch.utils.cpp_extension import BuildExtension, CUDAExtension import glob import os.path as osp this_dir = osp.dirname(osp.abspath(__file__)) _ext_src_root = "_ext_src" _ext_sources = glob.glob("{}/src/*.cpp".format(_ext_src_root)) + glob.glob( "{}/src/*.cu".format(_ext_src_root) ) _ext_headers = glob.glob("{}/include/*".format(_ext_src_root)) setup( name='pointnet2', ext_modules=[ CUDAExtension( name='pointnet2._ext', sources=_ext_sources, extra_compile_args={ "cxx": ["-O2", "-I{}".format("{}/include".format(_ext_src_root))], "nvcc": ["-O2", "-I{}".format("{}/include".format(_ext_src_root))], }, include_dirs=[osp.join(this_dir, _ext_src_root, "include")], ) ], cmdclass={ 'build_ext': BuildExtension } )
# Copyright (c) Facebook, Inc. and its affiliates. ''' Modified based on: https://github.com/erikwijmans/Pointnet2_PyTorch ''' from __future__ import ( division, absolute_import, with_statement, print_function, unicode_literals, ) import torch from torch.autograd import Function import torch.nn as nn import pytorch_utils as pt_utils import sys try: import builtins except: import __builtin__ as builtins try: import pointnet2._ext as _ext except ImportError: if not getattr(builtins, "__POINTNET2_SETUP__", False): raise ImportError( "Could not import _ext module.\n" "Please see the setup instructions in the README: " "https://github.com/erikwijmans/Pointnet2_PyTorch/blob/master/README.rst" ) if False: # Workaround for type hints without depending on the `typing` module from typing import * class RandomDropout(nn.Module): def __init__(self, p=0.5, inplace=False): super(RandomDropout, self).__init__() self.p = p self.inplace = inplace def forward(self, X): theta = torch.Tensor(1).uniform_(0, self.p)[0] return pt_utils.feature_dropout_no_scaling(X, theta, self.train, self.inplace) class FurthestPointSampling(Function): @staticmethod def forward(ctx, xyz, npoint): # type: (Any, torch.Tensor, int) -> torch.Tensor r""" Uses iterative furthest point sampling to select a set of npoint features that have the largest minimum distance Parameters ---------- xyz : torch.Tensor (B, N, 3) tensor where N > npoint npoint : int32 number of features in the sampled set Returns ------- torch.Tensor (B, npoint) tensor containing the set """ fps_inds = _ext.furthest_point_sampling(xyz, npoint) ctx.mark_non_differentiable(fps_inds) return fps_inds @staticmethod def backward(xyz, a=None): return None, None furthest_point_sample = FurthestPointSampling.apply class GatherOperation(Function): @staticmethod def forward(ctx, features, idx): # type: (Any, torch.Tensor, torch.Tensor) -> torch.Tensor r""" Parameters ---------- features : torch.Tensor (B, C, N) tensor idx : torch.Tensor (B, npoint) tensor of the features to gather Returns ------- torch.Tensor (B, C, npoint) tensor """ _, C, N = features.size() ctx.for_backwards = (idx, C, N) return _ext.gather_points(features, idx) @staticmethod def backward(ctx, grad_out): idx, C, N = ctx.for_backwards grad_features = _ext.gather_points_grad(grad_out.contiguous(), idx, N) return grad_features, None gather_operation = GatherOperation.apply class ThreeNN(Function): @staticmethod def forward(ctx, unknown, known): # type: (Any, torch.Tensor, torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor] r""" Find the three nearest neighbors of unknown in known Parameters ---------- unknown : torch.Tensor (B, n, 3) tensor of known features known : torch.Tensor (B, m, 3) tensor of unknown features Returns ------- dist : torch.Tensor (B, n, 3) l2 distance to the three nearest neighbors idx : torch.Tensor (B, n, 3) index of 3 nearest neighbors """ dist2, idx = _ext.three_nn(unknown, known) return torch.sqrt(dist2), idx @staticmethod def backward(ctx, a=None, b=None): return None, None three_nn = ThreeNN.apply class ThreeInterpolate(Function): @staticmethod def forward(ctx, features, idx, weight): # type(Any, torch.Tensor, torch.Tensor, torch.Tensor) -> Torch.Tensor r""" Performs weight linear interpolation on 3 features Parameters ---------- features : torch.Tensor (B, c, m) Features descriptors to be interpolated from idx : torch.Tensor (B, n, 3) three nearest neighbors of the target features in features weight : torch.Tensor (B, n, 3) weights Returns ------- torch.Tensor (B, c, n) tensor of the interpolated features """ B, c, m = features.size() n = idx.size(1) ctx.three_interpolate_for_backward = (idx, weight, m) return _ext.three_interpolate(features, idx, weight) @staticmethod def backward(ctx, grad_out): # type: (Any, torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor] r""" Parameters ---------- grad_out : torch.Tensor (B, c, n) tensor with gradients of ouputs Returns ------- grad_features : torch.Tensor (B, c, m) tensor with gradients of features None None """ idx, weight, m = ctx.three_interpolate_for_backward grad_features = _ext.three_interpolate_grad( grad_out.contiguous(), idx, weight, m ) return grad_features, None, None three_interpolate = ThreeInterpolate.apply class GroupingOperation(Function): @staticmethod def forward(ctx, features, idx): # type: (Any, torch.Tensor, torch.Tensor) -> torch.Tensor r""" Parameters ---------- features : torch.Tensor (B, C, N) tensor of features to group idx : torch.Tensor (B, npoint, nsample) tensor containing the indicies of features to group with Returns ------- torch.Tensor (B, C, npoint, nsample) tensor """ B, nfeatures, nsample = idx.size() _, C, N = features.size() ctx.for_backwards = (idx, N) return _ext.group_points(features, idx) @staticmethod def backward(ctx, grad_out): # type: (Any, torch.tensor) -> Tuple[torch.Tensor, torch.Tensor] r""" Parameters ---------- grad_out : torch.Tensor (B, C, npoint, nsample) tensor of the gradients of the output from forward Returns ------- torch.Tensor (B, C, N) gradient of the features None """ idx, N = ctx.for_backwards grad_features = _ext.group_points_grad(grad_out.contiguous(), idx, N) return grad_features, None grouping_operation = GroupingOperation.apply class BallQuery(Function): @staticmethod def forward(ctx, radius, nsample, xyz, new_xyz): # type: (Any, float, int, torch.Tensor, torch.Tensor) -> torch.Tensor r""" Parameters ---------- radius : float radius of the balls nsample : int maximum number of features in the balls xyz : torch.Tensor (B, N, 3) xyz coordinates of the features new_xyz : torch.Tensor (B, npoint, 3) centers of the ball query Returns ------- torch.Tensor (B, npoint, nsample) tensor with the indicies of the features that form the query balls """ inds = _ext.ball_query(new_xyz, xyz, radius, nsample) ctx.mark_non_differentiable(inds) return inds @staticmethod def backward(ctx, a=None): return None, None, None, None ball_query = BallQuery.apply class QueryAndGroup(nn.Module): r""" Groups with a ball query of radius Parameters --------- radius : float32 Radius of ball nsample : int32 Maximum number of features to gather in the ball """ def __init__(self, radius, nsample, use_xyz=True, ret_grouped_xyz=False, normalize_xyz=False, sample_uniformly=False, ret_unique_cnt=False): # type: (QueryAndGroup, float, int, bool) -> None super(QueryAndGroup, self).__init__() self.radius, self.nsample, self.use_xyz = radius, nsample, use_xyz self.ret_grouped_xyz = ret_grouped_xyz self.normalize_xyz = normalize_xyz self.sample_uniformly = sample_uniformly self.ret_unique_cnt = ret_unique_cnt if self.ret_unique_cnt: assert(self.sample_uniformly) def forward(self, xyz, new_xyz, features=None): # type: (QueryAndGroup, torch.Tensor. torch.Tensor, torch.Tensor) -> Tuple[Torch.Tensor] r""" Parameters ---------- xyz : torch.Tensor xyz coordinates of the features (B, N, 3) new_xyz : torch.Tensor centriods (B, npoint, 3) features : torch.Tensor Descriptors of the features (B, C, N) Returns ------- new_features : torch.Tensor (B, 3 + C, npoint, nsample) tensor """ idx = ball_query(self.radius, self.nsample, xyz, new_xyz) if self.sample_uniformly: unique_cnt = torch.zeros((idx.shape[0], idx.shape[1])) for i_batch in range(idx.shape[0]): for i_region in range(idx.shape[1]): unique_ind = torch.unique(idx[i_batch, i_region, :]) num_unique = unique_ind.shape[0] unique_cnt[i_batch, i_region] = num_unique sample_ind = torch.randint(0, num_unique, (self.nsample - num_unique,), dtype=torch.long) all_ind = torch.cat((unique_ind, unique_ind[sample_ind])) idx[i_batch, i_region, :] = all_ind xyz_trans = xyz.transpose(1, 2).contiguous() grouped_xyz = grouping_operation(xyz_trans, idx) # (B, 3, npoint, nsample) grouped_xyz -= new_xyz.transpose(1, 2).unsqueeze(-1) if self.normalize_xyz: grouped_xyz /= self.radius if features is not None: grouped_features = grouping_operation(features, idx) if self.use_xyz: new_features = torch.cat( [grouped_xyz, grouped_features], dim=1 ) # (B, C + 3, npoint, nsample) else: new_features = grouped_features else: assert ( self.use_xyz ), "Cannot have not features and not use xyz as a feature!" new_features = grouped_xyz ret = [new_features] if self.ret_grouped_xyz: ret.append(grouped_xyz) if self.ret_unique_cnt: ret.append(unique_cnt) if len(ret) == 1: return ret[0] else: return tuple(ret) class GroupAll(nn.Module): r""" Groups all features Parameters --------- """ def __init__(self, use_xyz=True, ret_grouped_xyz=False): # type: (GroupAll, bool) -> None super(GroupAll, self).__init__() self.use_xyz = use_xyz def forward(self, xyz, new_xyz, features=None): # type: (GroupAll, torch.Tensor, torch.Tensor, torch.Tensor) -> Tuple[torch.Tensor] r""" Parameters ---------- xyz : torch.Tensor xyz coordinates of the features (B, N, 3) new_xyz : torch.Tensor Ignored features : torch.Tensor Descriptors of the features (B, C, N) Returns ------- new_features : torch.Tensor (B, C + 3, 1, N) tensor """ grouped_xyz = xyz.transpose(1, 2).unsqueeze(2) if features is not None: grouped_features = features.unsqueeze(2) if self.use_xyz: new_features = torch.cat( [grouped_xyz, grouped_features], dim=1 ) # (B, 3 + C, 1, N) else: new_features = grouped_features else: new_features = grouped_xyz if self.ret_grouped_xyz: return new_features, grouped_xyz else: return new_features
# Copyright (c) Facebook, Inc. and its affiliates. ''' Testing customized ops. ''' import torch from torch.autograd import gradcheck import numpy as np import os import sys BASE_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append(BASE_DIR) import pointnet2_utils def test_interpolation_grad(): batch_size = 1 feat_dim = 2 m = 4 feats = torch.randn(batch_size, feat_dim, m, requires_grad=True).float().cuda() def interpolate_func(inputs): idx = torch.from_numpy(np.array([[[0,1,2],[1,2,3]]])).int().cuda() weight = torch.from_numpy(np.array([[[1,1,1],[2,2,2]]])).float().cuda() interpolated_feats = pointnet2_utils.three_interpolate(inputs, idx, weight) return interpolated_feats assert (gradcheck(interpolate_func, feats, atol=1e-1, rtol=1e-1)) if __name__=='__main__': test_interpolation_grad()
# Copyright (c) Facebook, Inc. and its affiliates. ''' Pointnet2 layers. Modified based on: https://github.com/erikwijmans/Pointnet2_PyTorch Extended with the following: 1. Uniform sampling in each local region (sample_uniformly) 2. Return sampled points indices to support votenet. ''' import torch import torch.nn as nn import torch.nn.functional as F import os import sys BASE_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append(BASE_DIR) import pointnet2_utils import pytorch_utils as pt_utils from typing import List class _PointnetSAModuleBase(nn.Module): def __init__(self): super().__init__() self.npoint = None self.groupers = None self.mlps = None def forward(self, xyz: torch.Tensor, features: torch.Tensor = None) -> (torch.Tensor, torch.Tensor): r""" Parameters ---------- xyz : torch.Tensor (B, N, 3) tensor of the xyz coordinates of the features features : torch.Tensor (B, N, C) tensor of the descriptors of the the features Returns ------- new_xyz : torch.Tensor (B, npoint, 3) tensor of the new features' xyz new_features : torch.Tensor (B, npoint, \sum_k(mlps[k][-1])) tensor of the new_features descriptors """ new_features_list = [] xyz_flipped = xyz.transpose(1, 2).contiguous() new_xyz = pointnet2_utils.gather_operation( xyz_flipped, pointnet2_utils.furthest_point_sample(xyz, self.npoint) ).transpose(1, 2).contiguous() if self.npoint is not None else None for i in range(len(self.groupers)): new_features = self.groupers[i]( xyz, new_xyz, features ) # (B, C, npoint, nsample) new_features = self.mlps[i]( new_features ) # (B, mlp[-1], npoint, nsample) new_features = F.max_pool2d( new_features, kernel_size=[1, new_features.size(3)] ) # (B, mlp[-1], npoint, 1) new_features = new_features.squeeze(-1) # (B, mlp[-1], npoint) new_features_list.append(new_features) return new_xyz, torch.cat(new_features_list, dim=1) class PointnetSAModuleMSG(_PointnetSAModuleBase): r"""Pointnet set abstrction layer with multiscale grouping Parameters ---------- npoint : int Number of features radii : list of float32 list of radii to group with nsamples : list of int32 Number of samples in each ball query mlps : list of list of int32 Spec of the pointnet before the global max_pool for each scale bn : bool Use batchnorm """ def __init__( self, *, npoint: int, radii: List[float], nsamples: List[int], mlps: List[List[int]], bn: bool = True, use_xyz: bool = True, sample_uniformly: bool = False ): super().__init__() assert len(radii) == len(nsamples) == len(mlps) self.npoint = npoint self.groupers = nn.ModuleList() self.mlps = nn.ModuleList() for i in range(len(radii)): radius = radii[i] nsample = nsamples[i] self.groupers.append( pointnet2_utils.QueryAndGroup(radius, nsample, use_xyz=use_xyz, sample_uniformly=sample_uniformly) if npoint is not None else pointnet2_utils.GroupAll(use_xyz) ) mlp_spec = mlps[i] if use_xyz: mlp_spec[0] += 3 self.mlps.append(pt_utils.SharedMLP(mlp_spec, bn=bn)) class PointnetSAModule(PointnetSAModuleMSG): r"""Pointnet set abstrction layer Parameters ---------- npoint : int Number of features radius : float Radius of ball nsample : int Number of samples in the ball query mlp : list Spec of the pointnet before the global max_pool bn : bool Use batchnorm """ def __init__( self, *, mlp: List[int], npoint: int = None, radius: float = None, nsample: int = None, bn: bool = True, use_xyz: bool = True ): super().__init__( mlps=[mlp], npoint=npoint, radii=[radius], nsamples=[nsample], bn=bn, use_xyz=use_xyz ) class PointnetSAModuleVotes(nn.Module): ''' Modified based on _PointnetSAModuleBase and PointnetSAModuleMSG with extra support for returning point indices for getting their GT votes ''' def __init__( self, *, mlp: List[int], npoint: int = None, radius: float = None, nsample: int = None, bn: bool = True, use_xyz: bool = True, pooling: str = 'max', sigma: float = None, # for RBF pooling normalize_xyz: bool = False, # noramlize local XYZ with radius sample_uniformly: bool = False, ret_unique_cnt: bool = False ): super().__init__() self.npoint = npoint self.radius = radius self.nsample = nsample self.pooling = pooling self.mlp_module = None self.use_xyz = use_xyz self.sigma = sigma if self.sigma is None: self.sigma = self.radius/2 self.normalize_xyz = normalize_xyz self.ret_unique_cnt = ret_unique_cnt if npoint is not None: self.grouper = pointnet2_utils.QueryAndGroup(radius, nsample, use_xyz=use_xyz, ret_grouped_xyz=True, normalize_xyz=normalize_xyz, sample_uniformly=sample_uniformly, ret_unique_cnt=ret_unique_cnt) else: self.grouper = pointnet2_utils.GroupAll(use_xyz, ret_grouped_xyz=True) mlp_spec = mlp if use_xyz and len(mlp_spec)>0: mlp_spec[0] += 3 self.mlp_module = pt_utils.SharedMLP(mlp_spec, bn=bn) def forward(self, xyz: torch.Tensor, features: torch.Tensor = None, inds: torch.Tensor = None) -> (torch.Tensor, torch.Tensor): r""" Parameters ---------- xyz : torch.Tensor (B, N, 3) tensor of the xyz coordinates of the features features : torch.Tensor (B, C, N) tensor of the descriptors of the the features inds : torch.Tensor (B, npoint) tensor that stores index to the xyz points (values in 0-N-1) Returns ------- new_xyz : torch.Tensor (B, npoint, 3) tensor of the new features' xyz new_features : torch.Tensor (B, \sum_k(mlps[k][-1]), npoint) tensor of the new_features descriptors inds: torch.Tensor (B, npoint) tensor of the inds """ xyz_flipped = xyz.transpose(1, 2).contiguous() if inds is None: inds = pointnet2_utils.furthest_point_sample(xyz, self.npoint) else: assert(inds.shape[1] == self.npoint) new_xyz = pointnet2_utils.gather_operation( xyz_flipped, inds ).transpose(1, 2).contiguous() if self.npoint is not None else None if not self.ret_unique_cnt: grouped_features, grouped_xyz = self.grouper( xyz, new_xyz, features ) # (B, C, npoint, nsample) else: grouped_features, grouped_xyz, unique_cnt = self.grouper( xyz, new_xyz, features ) # (B, C, npoint, nsample), (B,3,npoint,nsample), (B,npoint) new_features = self.mlp_module( grouped_features ) # (B, mlp[-1], npoint, nsample) if self.pooling == 'max': new_features = F.max_pool2d( new_features, kernel_size=[1, new_features.size(3)] ) # (B, mlp[-1], npoint, 1) elif self.pooling == 'avg': new_features = F.avg_pool2d( new_features, kernel_size=[1, new_features.size(3)] ) # (B, mlp[-1], npoint, 1) elif self.pooling == 'rbf': # Use radial basis function kernel for weighted sum of features (normalized by nsample and sigma) # Ref: https://en.wikipedia.org/wiki/Radial_basis_function_kernel rbf = torch.exp(-1 * grouped_xyz.pow(2).sum(1,keepdim=False) / (self.sigma**2) / 2) # (B, npoint, nsample) new_features = torch.sum(new_features * rbf.unsqueeze(1), -1, keepdim=True) / float(self.nsample) # (B, mlp[-1], npoint, 1) new_features = new_features.squeeze(-1) # (B, mlp[-1], npoint) if not self.ret_unique_cnt: return new_xyz, new_features, inds else: return new_xyz, new_features, inds, unique_cnt class PointnetSAModuleMSGVotes(nn.Module): ''' Modified based on _PointnetSAModuleBase and PointnetSAModuleMSG with extra support for returning point indices for getting their GT votes ''' def __init__( self, *, mlps: List[List[int]], npoint: int, radii: List[float], nsamples: List[int], bn: bool = True, use_xyz: bool = True, sample_uniformly: bool = False ): super().__init__() assert(len(mlps) == len(nsamples) == len(radii)) self.npoint = npoint self.groupers = nn.ModuleList() self.mlps = nn.ModuleList() for i in range(len(radii)): radius = radii[i] nsample = nsamples[i] self.groupers.append( pointnet2_utils.QueryAndGroup(radius, nsample, use_xyz=use_xyz, sample_uniformly=sample_uniformly) if npoint is not None else pointnet2_utils.GroupAll(use_xyz) ) mlp_spec = mlps[i] if use_xyz: mlp_spec[0] += 3 self.mlps.append(pt_utils.SharedMLP(mlp_spec, bn=bn)) def forward(self, xyz: torch.Tensor, features: torch.Tensor = None, inds: torch.Tensor = None) -> (torch.Tensor, torch.Tensor): r""" Parameters ---------- xyz : torch.Tensor (B, N, 3) tensor of the xyz coordinates of the features features : torch.Tensor (B, C, C) tensor of the descriptors of the the features inds : torch.Tensor (B, npoint) tensor that stores index to the xyz points (values in 0-N-1) Returns ------- new_xyz : torch.Tensor (B, npoint, 3) tensor of the new features' xyz new_features : torch.Tensor (B, \sum_k(mlps[k][-1]), npoint) tensor of the new_features descriptors inds: torch.Tensor (B, npoint) tensor of the inds """ new_features_list = [] xyz_flipped = xyz.transpose(1, 2).contiguous() if inds is None: inds = pointnet2_utils.furthest_point_sample(xyz, self.npoint) new_xyz = pointnet2_utils.gather_operation( xyz_flipped, inds ).transpose(1, 2).contiguous() if self.npoint is not None else None for i in range(len(self.groupers)): new_features = self.groupers[i]( xyz, new_xyz, features ) # (B, C, npoint, nsample) new_features = self.mlps[i]( new_features ) # (B, mlp[-1], npoint, nsample) new_features = F.max_pool2d( new_features, kernel_size=[1, new_features.size(3)] ) # (B, mlp[-1], npoint, 1) new_features = new_features.squeeze(-1) # (B, mlp[-1], npoint) new_features_list.append(new_features) return new_xyz, torch.cat(new_features_list, dim=1), inds class PointnetFPModule(nn.Module): r"""Propigates the features of one set to another Parameters ---------- mlp : list Pointnet module parameters bn : bool Use batchnorm """ def __init__(self, *, mlp: List[int], bn: bool = True): super().__init__() self.mlp = pt_utils.SharedMLP(mlp, bn=bn) def forward( self, unknown: torch.Tensor, known: torch.Tensor, unknow_feats: torch.Tensor, known_feats: torch.Tensor ) -> torch.Tensor: r""" Parameters ---------- unknown : torch.Tensor (B, n, 3) tensor of the xyz positions of the unknown features known : torch.Tensor (B, m, 3) tensor of the xyz positions of the known features unknow_feats : torch.Tensor (B, C1, n) tensor of the features to be propigated to known_feats : torch.Tensor (B, C2, m) tensor of features to be propigated Returns ------- new_features : torch.Tensor (B, mlp[-1], n) tensor of the features of the unknown features """ if known is not None: dist, idx = pointnet2_utils.three_nn(unknown, known) dist_recip = 1.0 / (dist + 1e-8) norm = torch.sum(dist_recip, dim=2, keepdim=True) weight = dist_recip / norm interpolated_feats = pointnet2_utils.three_interpolate( known_feats, idx, weight ) else: interpolated_feats = known_feats.expand( *known_feats.size()[0:2], unknown.size(1) ) if unknow_feats is not None: new_features = torch.cat([interpolated_feats, unknow_feats], dim=1) #(B, C2 + C1, n) else: new_features = interpolated_feats new_features = new_features.unsqueeze(-1) new_features = self.mlp(new_features) return new_features.squeeze(-1) class PointnetLFPModuleMSG(nn.Module): ''' Modified based on _PointnetSAModuleBase and PointnetSAModuleMSG learnable feature propagation layer.''' def __init__( self, *, mlps: List[List[int]], radii: List[float], nsamples: List[int], post_mlp: List[int], bn: bool = True, use_xyz: bool = True, sample_uniformly: bool = False ): super().__init__() assert(len(mlps) == len(nsamples) == len(radii)) self.post_mlp = pt_utils.SharedMLP(post_mlp, bn=bn) self.groupers = nn.ModuleList() self.mlps = nn.ModuleList() for i in range(len(radii)): radius = radii[i] nsample = nsamples[i] self.groupers.append( pointnet2_utils.QueryAndGroup(radius, nsample, use_xyz=use_xyz, sample_uniformly=sample_uniformly) ) mlp_spec = mlps[i] if use_xyz: mlp_spec[0] += 3 self.mlps.append(pt_utils.SharedMLP(mlp_spec, bn=bn)) def forward(self, xyz2: torch.Tensor, xyz1: torch.Tensor, features2: torch.Tensor, features1: torch.Tensor) -> torch.Tensor: r""" Propagate features from xyz1 to xyz2. Parameters ---------- xyz2 : torch.Tensor (B, N2, 3) tensor of the xyz coordinates of the features xyz1 : torch.Tensor (B, N1, 3) tensor of the xyz coordinates of the features features2 : torch.Tensor (B, C2, N2) tensor of the descriptors of the the features features1 : torch.Tensor (B, C1, N1) tensor of the descriptors of the the features Returns ------- new_features1 : torch.Tensor (B, \sum_k(mlps[k][-1]), N1) tensor of the new_features descriptors """ new_features_list = [] for i in range(len(self.groupers)): new_features = self.groupers[i]( xyz1, xyz2, features1 ) # (B, C1, N2, nsample) new_features = self.mlps[i]( new_features ) # (B, mlp[-1], N2, nsample) new_features = F.max_pool2d( new_features, kernel_size=[1, new_features.size(3)] ) # (B, mlp[-1], N2, 1) new_features = new_features.squeeze(-1) # (B, mlp[-1], N2) if features2 is not None: new_features = torch.cat([new_features, features2], dim=1) #(B, mlp[-1] + C2, N2) new_features = new_features.unsqueeze(-1) new_features = self.post_mlp(new_features) new_features_list.append(new_features) return torch.cat(new_features_list, dim=1).squeeze(-1) if __name__ == "__main__": from torch.autograd import Variable torch.manual_seed(1) torch.cuda.manual_seed_all(1) xyz = Variable(torch.randn(2, 9, 3).cuda(), requires_grad=True) xyz_feats = Variable(torch.randn(2, 9, 6).cuda(), requires_grad=True) test_module = PointnetSAModuleMSG( npoint=2, radii=[5.0, 10.0], nsamples=[6, 3], mlps=[[9, 3], [9, 6]] ) test_module.cuda() print(test_module(xyz, xyz_feats)) for _ in range(1): _, new_features = test_module(xyz, xyz_feats) new_features.backward( torch.cuda.FloatTensor(*new_features.size()).fill_(1) ) print(new_features) print(xyz.grad)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import pickle import numpy as np import os np.random.seed(1234) # we want 500 for training, 100 for test for wach class n = 500 def get_total(data): data_x, data_y = [], [] for k, v in data.items(): for i in range(len(v)): data_x.append(v[i]) data_y.append(k) d = {} d['images'] = data_x d['labels'] = data_y return d # loading the pickled data with open(os.path.join('../data/miniimagenet/data.pkl'), 'rb') as f: data_dict = pickle.load(f) data = data_dict['images'] labels = data_dict['labels'] # split data into classes, 600 images per class class_dict = {} for i in range(len(set(labels))): class_dict[i] = [] for i in range(len(data)): class_dict[labels[i]].append(data[i]) # Split data for each class to 500 and 100 x_train, x_test = {}, {} for i in range(len(set(labels))): np.random.shuffle(class_dict[i]) x_test[i] = class_dict[i][n:] x_train[i] = class_dict[i][:n] # mix the data d_train = get_total(x_train) d_test = get_total(x_test) with open(os.path.join('../data/miniimagenet/train.pkl'), 'wb') as f: pickle.dump(d_train, f) with open(os.path.join('../data/miniimagenet/test.pkl'), 'wb') as f: pickle.dump(d_test, f)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import sys, time, os import numpy as np import torch import copy import utils from copy import deepcopy from tqdm import tqdm sys.path.append('../') from networks.discriminator import Discriminator class ACL(object): def __init__(self, model, args, network): self.args=args self.nepochs=args.nepochs self.sbatch=args.batch_size # optimizer & adaptive lr self.e_lr=args.e_lr self.d_lr=args.d_lr if not args.experiment == 'multidatasets': self.e_lr=[args.e_lr] * args.ntasks self.d_lr=[args.d_lr] * args.ntasks else: self.e_lr = [self.args.lrs[i][1] for i in range(len(args.lrs))] self.d_lr = [self.args.lrs[i][1]/10. for i in range(len(args.lrs))] print ("d_lrs : ", self.d_lr) self.lr_min=args.lr_min self.lr_factor=args.lr_factor self.lr_patience=args.lr_patience self.samples=args.samples self.device=args.device self.checkpoint=args.checkpoint self.adv_loss_reg=args.adv self.diff_loss_reg=args.orth self.s_steps=args.s_step self.d_steps=args.d_step self.diff=args.diff self.network=network self.inputsize=args.inputsize self.taskcla=args.taskcla self.num_tasks=args.ntasks # Initialize generator and discriminator self.model=model self.discriminator=self.get_discriminator(0) self.discriminator.get_size() self.latent_dim=args.latent_dim self.task_loss=torch.nn.CrossEntropyLoss().to(self.device) self.adversarial_loss_d=torch.nn.CrossEntropyLoss().to(self.device) self.adversarial_loss_s=torch.nn.CrossEntropyLoss().to(self.device) self.diff_loss=DiffLoss().to(self.device) self.optimizer_S=self.get_S_optimizer(0) self.optimizer_D=self.get_D_optimizer(0) self.use_memory = True if self.args.use_memory == 'yes' else False self.task_encoded={} self.mu=0.0 self.sigma=1.0 print() def get_discriminator(self, task_id): discriminator=Discriminator(self.args, task_id).to(self.args.device) return discriminator def get_S_optimizer(self, task_id, e_lr=None): if e_lr is None: e_lr=self.e_lr[task_id] optimizer_S=torch.optim.SGD(self.model.parameters(), momentum=self.args.mom, weight_decay=self.args.e_wd, lr=e_lr) return optimizer_S def get_D_optimizer(self, task_id, d_lr=None): if d_lr is None: d_lr=self.d_lr[task_id] optimizer_D=torch.optim.SGD(self.discriminator.parameters(), weight_decay=self.args.d_wd, lr=d_lr) return optimizer_D def train(self, task_id, dataset): if task_id > 0: self.model = self.prepare_model(task_id) self.discriminator=self.get_discriminator(task_id) best_loss=np.inf best_model=utils.get_model(self.model) best_loss_d=np.inf best_model_d=utils.get_model(self.discriminator) dis_lr_update=True d_lr=self.d_lr[task_id] patience_d=self.lr_patience self.optimizer_D=self.get_D_optimizer(task_id, d_lr) e_lr=self.e_lr[task_id] patience=self.lr_patience self.optimizer_S=self.get_S_optimizer(task_id, e_lr) for e in range(self.nepochs): # Train clock0=time.time() self.train_epoch(dataset['train'], task_id) clock1=time.time() train_res=self.eval_(dataset['train'], task_id) utils.report_tr(train_res, e, self.sbatch, clock0, clock1) # lowering the learning rate in the beginning if it predicts random chance for the first 5 epochs if (self.args.experiment == 'cifar100' or self.args.experiment == 'miniimagenet') and e == 4: random_chance=20. threshold=random_chance + 2 if train_res['acc_t'] < threshold: # Restore best validation model d_lr=self.d_lr[task_id] / 10. self.optimizer_D=self.get_D_optimizer(task_id, d_lr) print("Performance on task {} is {} so Dis's lr is decreased to {}".format(task_id, train_res[ 'acc_t'], d_lr), end=" ") e_lr=self.e_lr[task_id] / 10. self.optimizer_S=self.get_S_optimizer(task_id, e_lr) self.discriminator=self.get_discriminator(task_id) if task_id > 0: self.model=self.load_checkpoint(task_id - 1) else: self.model=self.network.Net(self.args).to(self.args.device) # Valid valid_res=self.eval_(dataset['valid'], task_id) utils.report_val(valid_res) # Adapt lr for S and D if valid_res['loss_tot'] < best_loss: best_loss=valid_res['loss_tot'] best_model=utils.get_model(self.model) patience=self.lr_patience print(' *', end='') else: patience-=1 if patience <= 0: e_lr/=self.lr_factor print(' lr={:.1e}'.format(e_lr), end='') if e_lr < self.lr_min: print() break patience=self.lr_patience self.optimizer_S=self.get_S_optimizer(task_id, e_lr) if train_res['loss_a'] < best_loss_d: best_loss_d=train_res['loss_a'] best_model_d=utils.get_model(self.discriminator) patience_d=self.lr_patience else: patience_d-=1 if patience_d <= 0 and dis_lr_update: d_lr/=self.lr_factor print(' Dis lr={:.1e}'.format(d_lr)) if d_lr < self.lr_min: dis_lr_update=False print("Dis lr reached minimum value") print() patience_d=self.lr_patience self.optimizer_D=self.get_D_optimizer(task_id, d_lr) print() # Restore best validation model (early-stopping) self.model.load_state_dict(copy.deepcopy(best_model)) self.discriminator.load_state_dict(copy.deepcopy(best_model_d)) self.save_all_models(task_id) def train_epoch(self, train_loader, task_id): self.model.train() self.discriminator.train() for data, target, tt, td in train_loader: x=data.to(device=self.device) y=target.to(device=self.device, dtype=torch.long) tt=tt.to(device=self.device) if self.use_memory: # Detaching samples in the batch which do not belong to the current task before feeding them to P t_current = task_id * torch.ones_like(tt) body_mask = torch.eq(t_current, tt).cpu().numpy() # x_task_module=data.to(device=self.device) x_task_module = data.clone() for index in range(x.size(0)): if body_mask[index] == 0: x_task_module[index] = x_task_module[index].detach() x_task_module = x_task_module.to(device=self.device) # Discriminator's real and fake task labels t_real_D=td.to(self.device) t_fake_D=torch.zeros_like(t_real_D).to(self.device) # ================================================================== # # Train Shared Module # # ================================================================== # # training S for s_steps for s_step in range(self.s_steps): self.optimizer_S.zero_grad() self.model.zero_grad() if self.use_memory: output=self.model(x, x_task_module, tt) else: output = self.model(x, x) # task_loss=self.task_loss(output, y) task_loss=self.task_loss(output['out'], y) shared_out, private_out = output['shared'], output['private'] dis_out_gen_training=self.discriminator.forward(shared_out) adv_loss=self.adversarial_loss_s(dis_out_gen_training, t_real_D) if self.diff == 'yes': diff_loss=self.diff_loss(shared_out, private_out) else: diff_loss=torch.tensor(0).to(device=self.device, dtype=torch.float32) self.diff_loss_reg=0 total_loss=task_loss + self.adv_loss_reg * adv_loss + self.diff_loss_reg * diff_loss total_loss.backward(retain_graph=True) self.optimizer_S.step() # ================================================================== # # Train Discriminator # # ================================================================== # # training discriminator for d_steps for d_step in range(self.d_steps): self.optimizer_D.zero_grad() self.discriminator.zero_grad() # training discriminator on real data if self.use_memory: output=self.model(x, x_task_module, tt) else: output = self.model(x, x) # training discriminator on real data shared_out, private_out = output['shared'], output['private'] dis_real_out=self.discriminator.forward(shared_out.detach()) dis_real_loss=self.adversarial_loss_d(dis_real_out, t_real_D) if self.args.experiment == 'miniimagenet': dis_real_loss*=self.args.adv dis_real_loss.backward(retain_graph=True) # training discriminator on fake data z_fake=torch.as_tensor(np.random.normal(self.mu, self.sigma, (x.size(0), self.latent_dim)), dtype=torch.float32, device=self.device) dis_fake_out=self.discriminator.forward(z_fake) dis_fake_loss=self.adversarial_loss_d(dis_fake_out, t_fake_D) if self.args.experiment == 'miniimagenet': dis_fake_loss*=self.args.adv dis_fake_loss.backward(retain_graph=True) self.optimizer_D.step() return def eval_(self, data_loader, task_id): loss_a, loss_t, loss_d, loss_total=0, 0, 0, 0 correct_d, correct_t = 0, 0 num=0 batch=0 self.model.eval() self.discriminator.eval() res={} with torch.no_grad(): for batch, (data, target, tt, td) in enumerate(data_loader): x=data.to(device=self.device) y=target.to(device=self.device, dtype=torch.long) tt=tt.to(device=self.device) t_real_D=td.to(self.device) # Forward output = self.model(x, x) shared_out, private_out = output['shared'], output['private'] _, pred=output['out'].max(1) correct_t+=pred.eq(y.view_as(pred)).sum().item() # Discriminator's performance: output_d=self.discriminator(shared_out) _, pred_d=output_d.max(1) correct_d+=pred_d.eq(t_real_D.view_as(pred_d)).sum().item() # Loss values task_loss=self.task_loss(output['out'], y) adv_loss=self.adversarial_loss_d(output_d, t_real_D) if self.diff == 'yes': diff_loss=self.diff_loss(shared_out, private_out) else: diff_loss=torch.tensor(0).to(device=self.device, dtype=torch.float32) self.diff_loss_reg=0 total_loss = task_loss + self.adv_loss_reg * adv_loss + self.diff_loss_reg * diff_loss loss_t+=task_loss loss_a+=adv_loss loss_d+=diff_loss loss_total+=total_loss num+=x.size(0) res['loss_t'], res['acc_t']=loss_t.item() / (batch + 1), 100 * correct_t / num res['loss_a'], res['acc_d']=loss_a.item() / (batch + 1), 100 * correct_d / num res['loss_d']=loss_d.item() / (batch + 1) res['loss_tot']=loss_total.item() / (batch + 1) res['size']=self.loader_size(data_loader) return res # def test(self, data_loader, task_id, model): loss_a, loss_t, loss_d, loss_total=0, 0, 0, 0 correct_d, correct_t=0, 0 num=0 batch=0 model.eval() self.discriminator.eval() res={} with torch.no_grad(): for batch, (data, target, tt, td) in enumerate(data_loader): x=data.to(device=self.device) y=target.to(device=self.device, dtype=torch.long) t_real_D=td.to(self.device) # Forward output = model(x, x) # shared_out, private_out = self.model.get_encoded_ftrs(x, x) shared_out, private_out = output['shared'], output['private'] _, pred=output['out'].max(1) correct_t+=pred.eq(y.view_as(pred)).sum().item() # Discriminator's performance: output_d=self.discriminator(shared_out) _, pred_d=output_d.max(1) correct_d+=pred_d.eq(t_real_D.view_as(pred_d)).sum().item() if self.diff == 'yes': diff_loss=self.diff_loss(shared_out, private_out) else: diff_loss=torch.tensor(0).to(device=self.device, dtype=torch.float32) self.diff_loss_reg=0 # Loss values adv_loss=self.adversarial_loss_d(output_d, t_real_D) task_loss=self.task_loss(output['out'], y) total_loss=task_loss + self.adv_loss_reg * adv_loss + self.diff_loss_reg * diff_loss loss_t+=task_loss loss_a+=adv_loss loss_d+=diff_loss loss_total+=total_loss num+=x.size(0) res['loss_t'], res['acc_t']=loss_t.item() / (batch + 1), 100 * correct_t / num res['loss_a'], res['acc_d']=loss_a.item() / (batch + 1), 100 * correct_d / num res['loss_d']=loss_d.item() / (batch + 1) res['loss_tot']=loss_total.item() / (batch + 1) res['size']=self.loader_size(data_loader) return res def save_all_models(self, task_id): print("Saving all models for task {} ...".format(task_id+1)) dis=utils.get_model(self.discriminator) torch.save({'model_state_dict': dis, }, os.path.join(self.checkpoint, 'discriminator_{}.pth.tar'.format(task_id))) model=utils.get_model(self.model) torch.save({'model_state_dict': model, }, os.path.join(self.checkpoint, 'model_{}.pth.tar'.format(task_id))) def load_model(self, task_id): # Load a previous model net=self.network.Net(self.args) checkpoint=torch.load(os.path.join(self.checkpoint, 'model_{}.pth.tar'.format(task_id))) net.load_state_dict(checkpoint['model_state_dict']) # # Change the previous shared module with the current one current_shared_module=deepcopy(self.model.shared.state_dict()) net.shared.load_state_dict(current_shared_module) net=net.to(self.args.device) return net def load_checkpoint(self, task_id): print("Loading checkpoint for task {} ...".format(task_id)) # Load a previous model net=self.network.Net(self.args) checkpoint=torch.load(os.path.join(self.checkpoint, 'model_{}.pth.tar'.format(task_id))) net.load_state_dict(checkpoint['model_state_dict']) net=net.to(self.args.device) return net def prepare_model(self, task_id): # Load a previous model and grab its shared module old_net = self.load_checkpoint(task_id-1) old_shared_module = old_net.shared.state_dict() # Instantiate a new model and replace its shared module model = self.network.Net(self.args) model.shared.load_state_dict(old_shared_module) model = model.to(self.device) return model def loader_size(self, data_loader): return data_loader.dataset.__len__() def get_tsne_embeddings_first_ten_tasks(self, dataset, model): from tensorboardX import SummaryWriter model.eval() tag_ = '_diff_{}'.format(self.args.diff) all_images, all_shared, all_private = [], [], [] # Test final model on first 10 tasks: writer = SummaryWriter() for t in range(10): for itr, (data, _, tt, td) in enumerate(dataset[t]['tsne']): x = data.to(device=self.device) tt = tt.to(device=self.device) output = model.forward(x, x, tt, t) shared_out, private_out = model.get_encoded_ftrs(x, x, t) all_shared.append(shared_out) all_private.append(private_out) all_images.append(x) print (torch.stack(all_shared).size()) tag = ['Shared10_{}_{}'.format(tag_,i) for i in range(1,11)] writer.add_embedding(mat=torch.stack(all_shared,dim=1).data, label_img=torch.stack(all_images,dim=1).data, metadata=list(range(1,11)), tag=tag)#, metadata_header=list(range(1,11))) tag = ['Private10_{}_{}'.format(tag_, i) for i in range(1, 11)] writer.add_embedding(mat=torch.stack(all_private,dim=1).data, label_img=torch.stack(all_images,dim=1).data, metadata=list(range(1,11)), tag=tag)#,metadata_header=list(range(1,11))) writer.close() def get_tsne_embeddings_last_three_tasks(self, dataset, model): from tensorboardX import SummaryWriter # Test final model on last 3 tasks: model.eval() tag = '_diff_{}'.format(self.args.diff) for t in [17,18,19]: all_images, all_labels, all_shared, all_private = [], [], [], [] writer = SummaryWriter() for itr, (data, target, tt, td) in enumerate(dataset[t]['tsne']): x = data.to(device=self.device) y = target.to(device=self.device, dtype=torch.long) tt = tt.to(device=self.device) output = model.forward(x, x, tt, t) shared_out, private_out = model.get_encoded_ftrs(x, x, t) # print (shared_out.size()) all_shared.append(shared_out) all_private.append(private_out) all_images.append(x) all_labels.append(y) writer.add_embedding(mat=torch.stack(all_shared,dim=1).data, label_img=torch.stack(all_images,dim=1).data, metadata=list(range(1,6)), tag='Shared_{}_{}'.format(t, tag)) # ,metadata_header=list(range(1,6))) writer.add_embedding(mat=torch.stack(all_private,dim=1).data, label_img=torch.stack(all_images,dim=1).data, metadata=list(range(1,6)), tag='Private_{}_{}'.format(t, tag)) # ,metadata_header=list(range(1,6))) writer.close() def inference(self, data_loader, task_id, model): loss_a, loss_t, loss_d, loss_total = 0, 0, 0, 0 correct_d, correct_t = 0, 0 num = 0 batch = 0 model.eval() self.discriminator.eval() res = {} with torch.no_grad(): for batch, (data, target, tt, td) in enumerate(data_loader): x = data.to(device=self.device) y = target.to(device=self.device, dtype=torch.long) tt = tt.to(device=self.device) # Forward output = model.forward(x, x, tt, task_id) shared_out, task_out = model.get_encoded_ftrs(x, x, task_id) _, pred = output.max(1) correct_t += pred.eq(y.view_as(pred)).sum().item() if self.diff == 'yes': diff_loss = self.diff_loss(shared_out, task_out) else: diff_loss = torch.tensor(0).to(device=self.device, dtype=torch.float32) self.diff_loss_reg = 0 # Loss values task_loss = self.task_loss(output, y) total_loss = task_loss + self.diff_loss_reg * diff_loss loss_t += task_loss # loss_a += adv_loss loss_d += diff_loss loss_total += total_loss num += x.size(0) res['loss_t'], res['acc_t'] = loss_t.item() / (batch + 1), 100 * correct_t / num res['loss_d'] = loss_d.item() / (batch + 1) res['loss_tot'] = loss_total.item() / (batch + 1) res['size'] = self.loader_size(data_loader) return res # class DiffLoss(torch.nn.Module): # From: Domain Separation Networks (https://arxiv.org/abs/1608.06019) # Konstantinos Bousmalis, George Trigeorgis, Nathan Silberman, Dilip Krishnan, Dumitru Erhan def __init__(self): super(DiffLoss, self).__init__() def forward(self, D1, D2): D1=D1.view(D1.size(0), -1) D1_norm=torch.norm(D1, p=2, dim=1, keepdim=True).detach() D1_norm=D1.div(D1_norm.expand_as(D1) + 1e-6) D2=D2.view(D2.size(0), -1) D2_norm=torch.norm(D2, p=2, dim=1, keepdim=True).detach() D2_norm=D2.div(D2_norm.expand_as(D2) + 1e-6) # return torch.mean((D1_norm.mm(D2_norm.t()).pow(2))) return torch.mean((D1_norm.mm(D2_norm.t()).pow(2)))
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os import numpy as np from copy import deepcopy import pickle import time import uuid from subprocess import call ######################################################################################################################## def human_format(num): magnitude=0 while abs(num)>=1000: magnitude+=1 num/=1000.0 return '%.1f%s'%(num,['','K','M','G','T','P'][magnitude]) def report_tr(res, e, sbatch, clock0, clock1): # Training performance print( '| Epoch {:3d}, time={:5.1f}ms/{:5.1f}ms | Train losses={:.3f} | T: loss={:.3f}, acc={:5.2f}% | D: loss={:.3f}, acc={:5.1f}%, ' 'Diff loss:{:.3f} |'.format( e + 1, 1000 * sbatch * (clock1 - clock0) / res['size'], 1000 * sbatch * (time.time() - clock1) / res['size'], res['loss_tot'], res['loss_t'], res['acc_t'], res['loss_a'], res['acc_d'], res['loss_d']), end='') def report_val(res): # Validation performance print(' Valid losses={:.3f} | T: loss={:.6f}, acc={:5.2f}%, | D: loss={:.3f}, acc={:5.2f}%, Diff loss={:.3f} |'.format( res['loss_tot'], res['loss_t'], res['acc_t'], res['loss_a'], res['acc_d'], res['loss_d']), end='') ######################################################################################################################## def get_model(model): return deepcopy(model.state_dict()) ######################################################################################################################## def compute_conv_output_size(Lin,kernel_size,stride=1,padding=0,dilation=1): return int(np.floor((Lin+2*padding-dilation*(kernel_size-1)-1)/float(stride)+1)) ######################################################################################################################## def save_print_log(taskcla, acc, lss, output_path): print('*'*100) print('Accuracies =') for i in range(acc.shape[0]): print('\t',end=',') for j in range(acc.shape[1]): print('{:5.4f}% '.format(acc[i,j]),end=',') print() print ('ACC: {:5.4f}%'.format((np.mean(acc[acc.shape[0]-1,:])))) print() print ('BWD Transfer = ') print () print ("Diagonal R_ii") for i in range(acc.shape[0]): print('\t',end='') print('{:5.2f}% '.format(np.diag(acc)[i]), end=',') print() print ("Last row") for i in range(acc.shape[0]): print('\t', end=',') print('{:5.2f}% '.format(acc[-1][i]), end=',') print() # BWT calculated based on GEM paper (https://arxiv.org/abs/1706.08840) gem_bwt = sum(acc[-1]-np.diag(acc))/ (len(acc[-1])-1) # BWT calculated based on our UCB paper (https://openreview.net/pdf?id=HklUCCVKDB) ucb_bwt = (acc[-1] - np.diag(acc)).mean() print ('BWT: {:5.2f}%'.format(gem_bwt)) # print ('BWT (UCB paper): {:5.2f}%'.format(ucb_bwt)) print('*'*100) print('Done!') logs = {} # save results logs['name'] = output_path logs['taskcla'] = taskcla logs['acc'] = acc logs['loss'] = lss logs['gem_bwt'] = gem_bwt logs['ucb_bwt'] = ucb_bwt logs['rii'] = np.diag(acc) logs['rij'] = acc[-1] # pickle with open(os.path.join(output_path, 'logs.p'), 'wb') as output: pickle.dump(logs, output) print ("Log file saved in ", os.path.join(output_path, 'logs.p')) def print_log_acc_bwt(taskcla, acc, lss, output_path, run_id): print('*'*100) print('Accuracies =') for i in range(acc.shape[0]): print('\t',end=',') for j in range(acc.shape[1]): print('{:5.4f}% '.format(acc[i,j]),end=',') print() avg_acc = np.mean(acc[acc.shape[0]-1,:]) print ('ACC: {:5.4f}%'.format(avg_acc)) print() print() # BWT calculated based on GEM paper (https://arxiv.org/abs/1706.08840) gem_bwt = sum(acc[-1]-np.diag(acc))/ (len(acc[-1])-1) # BWT calculated based on UCB paper (https://arxiv.org/abs/1906.02425) ucb_bwt = (acc[-1] - np.diag(acc)).mean() print ('BWT: {:5.2f}%'.format(gem_bwt)) # print ('BWT (UCB paper): {:5.2f}%'.format(ucb_bwt)) print('*'*100) print('Done!') logs = {} # save results logs['name'] = output_path logs['taskcla'] = taskcla logs['acc'] = acc logs['loss'] = lss logs['gem_bwt'] = gem_bwt logs['ucb_bwt'] = ucb_bwt logs['rii'] = np.diag(acc) logs['rij'] = acc[-1] # pickle path = os.path.join(output_path, 'logs_run_id_{}.p'.format(run_id)) with open(path, 'wb') as output: pickle.dump(logs, output) print ("Log file saved in ", path) return avg_acc, gem_bwt def print_running_acc_bwt(acc, task_num): print() acc = acc[:task_num+1,:task_num+1] avg_acc = np.mean(acc[acc.shape[0] - 1, :]) gem_bwt = sum(acc[-1] - np.diag(acc)) / (len(acc[-1]) - 1) print('ACC: {:5.4f}% || BWT: {:5.2f}% '.format(avg_acc, gem_bwt)) print() def make_directories(args): uid = uuid.uuid4().hex if args.checkpoint is None: os.mkdir('checkpoints') args.checkpoint = os.path.join('./checkpoints/',uid) os.mkdir(args.checkpoint) else: if not os.path.exists(args.checkpoint): os.mkdir(args.checkpoint) args.checkpoint = os.path.join(args.checkpoint, uid) os.mkdir(args.checkpoint) def some_sanity_checks(args): # Making sure the chosen experiment matches with the number of tasks performed in the paper: datasets_tasks = {} datasets_tasks['mnist5']=[5] datasets_tasks['pmnist']=[10,20,30,40] datasets_tasks['cifar100']=[20] datasets_tasks['miniimagenet']=[20] datasets_tasks['multidatasets']=[5] if not args.ntasks in datasets_tasks[args.experiment]: raise Exception("Chosen number of tasks ({}) does not match with {} experiment".format(args.ntasks,args.experiment)) # Making sure if memory usage is happenning: if args.use_memory == 'yes' and not args.samples > 0: raise Exception("Flags required to use memory: --use_memory yes --samples n where n>0") if args.use_memory == 'no' and args.samples > 0: raise Exception("Flags required to use memory: --use_memory yes --samples n where n>0") def save_code(args): cwd = os.getcwd() des = os.path.join(args.checkpoint, 'code') + '/' if not os.path.exists(des): os.mkdir(des) def get_folder(folder): return os.path.join(cwd,folder) folders = [get_folder(item) for item in ['dataloaders', 'networks', 'configs', 'main.py', 'acl.py', 'utils.py']] for folder in folders: call('cp -rf {} {}'.format(folder, des),shell=True) def print_time(): from datetime import datetime # datetime object containing current date and time now = datetime.now() # dd/mm/YY H:M:S dt_string = now.strftime("%d/%m/%Y %H:%M:%S") print("Job finished at =", dt_string)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os,argparse,time import numpy as np from omegaconf import OmegaConf from copy import deepcopy import torch import torch.backends.cudnn as cudnn import torch.optim import torch.utils.data import torch.utils.data.distributed import utils tstart=time.time() # Arguments parser = argparse.ArgumentParser(description='Adversarial Continual Learning...') # Load the config file parser.add_argument('--config', type=str, default='./configs/config_mnist5.yml') flags = parser.parse_args() args = OmegaConf.load(flags.config) print() ######################################################################################################################## # Args -- Experiment if args.experiment=='pmnist': from dataloaders import pmnist as datagenerator elif args.experiment=='mnist5': from dataloaders import mnist5 as datagenerator elif args.experiment=='cifar100': from dataloaders import cifar100 as datagenerator elif args.experiment=='miniimagenet': from dataloaders import miniimagenet as datagenerator elif args.experiment=='multidatasets': from dataloaders import mulitidatasets as datagenerator else: raise NotImplementedError from acl import ACL as approach # Args -- Network if args.experiment == 'mnist5' or args.experiment == 'pmnist': from networks import mlp_acl as network elif args.experiment == 'cifar100' or args.experiment == 'miniimagenet' or args.experiment == 'multidatasets': if args.arch == 'alexnet': from networks import alexnet_acl as network elif args.arch == 'resnet': from networks import resnet_acl as network else: raise NotImplementedError else: raise NotImplementedError ######################################################################################################################## def run(args, run_id): np.random.seed(args.seed) torch.manual_seed(args.seed) if torch.cuda.is_available(): torch.cuda.manual_seed(args.seed) # Faster run but not deterministic: # torch.backends.cudnn.benchmark = True # To get deterministic results that match with paper at cost of lower speed: torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False # Data loader print('Instantiate data generators and model...') dataloader = datagenerator.DatasetGen(args) args.taskcla, args.inputsize = dataloader.taskcla, dataloader.inputsize if args.experiment == 'multidatasets': args.lrs = dataloader.lrs # Model net = network.Net(args) net = net.to(args.device) net.print_model_size() # print (net) # Approach appr=approach(net,args,network=network) # Loop tasks acc=np.zeros((len(args.taskcla),len(args.taskcla)),dtype=np.float32) lss=np.zeros((len(args.taskcla),len(args.taskcla)),dtype=np.float32) for t,ncla in args.taskcla: print('*'*250) dataset = dataloader.get(t) print(' '*105, 'Dataset {:2d} ({:s})'.format(t+1,dataset[t]['name'])) print('*'*250) # Train appr.train(t,dataset[t]) print('-'*250) print() for u in range(t+1): # Load previous model and replace the shared module with the current one test_model = appr.load_model(u) test_res = appr.test(dataset[u]['test'], u, model=test_model) print('>>> Test on task {:2d} - {:15s}: loss={:.3f}, acc={:5.1f}% <<<'.format(u, dataset[u]['name'], test_res['loss_t'], test_res['acc_t'])) acc[t, u] = test_res['acc_t'] lss[t, u] = test_res['loss_t'] # Save print() print('Saved accuracies at '+os.path.join(args.checkpoint,args.output)) np.savetxt(os.path.join(args.checkpoint,args.output),acc,'%.6f') # Extract embeddings to plot in tensorboard for miniimagenet if args.tsne == 'yes' and args.experiment == 'miniimagenet': appr.get_tsne_embeddings_first_ten_tasks(dataset, model=appr.load_model(t)) appr.get_tsne_embeddings_last_three_tasks(dataset, model=appr.load_model(t)) avg_acc, gem_bwt = utils.print_log_acc_bwt(args.taskcla, acc, lss, output_path=args.checkpoint, run_id=run_id) return avg_acc, gem_bwt ####################################################################################################################### def main(args): utils.make_directories(args) utils.some_sanity_checks(args) utils.save_code(args) print('=' * 100) print('Arguments =') for arg in vars(args): print('\t' + arg + ':', getattr(args, arg)) print('=' * 100) accuracies, forgetting = [], [] for n in range(args.num_runs): args.seed = n args.output = '{}_{}_tasks_seed_{}.txt'.format(args.experiment, args.ntasks, args.seed) print ("args.output: ", args.output) print (" >>>> Run #", n) acc, bwt = run(args, n) accuracies.append(acc) forgetting.append(bwt) print('*' * 100) print ("Average over {} runs: ".format(args.num_runs)) print ('AVG ACC: {:5.4f}% \pm {:5.4f}'.format(np.array(accuracies).mean(), np.array(accuracies).std())) print ('AVG BWT: {:5.2f}% \pm {:5.4f}'.format(np.array(forgetting).mean(), np.array(forgetting).std())) print ("All Done! ") print('[Elapsed time = {:.1f} min]'.format((time.time()-tstart)/(60))) utils.print_time() def test_trained_model(args, final_model_id): args.seed = 0 print('Instantiate data generators and model...') dataloader = datagenerator.DatasetGen(args) args.taskcla, args.inputsize = dataloader.taskcla, dataloader.inputsize if args.experiment == 'multidatasets': args.lrs = dataloader.lrs def get_model(final_model_id, test_data_id): # Load the test model test_net = network.Net(args) checkpoint_test = torch.load(os.path.join(args.checkpoint, 'model_{}.pth.tar'.format(test_data_id))) test_net.load_state_dict(checkpoint_test['model_state_dict']) # Load your final trained model net = network.Net(args) checkpoint = torch.load(os.path.join(args.checkpoint, 'model_{}.pth.tar'.format(final_model_id))) net.load_state_dict(checkpoint['model_state_dict']) # # Change the shared module with the final model's shared module final_shared = deepcopy(net.shared.state_dict()) test_net.shared.load_state_dict(final_shared) test_net = test_net.to(args.device) return test_net for t,ncla in args.taskcla: print('*'*250) dataset = dataloader.get(t) print(' '*105, 'Dataset {:2d} ({:s})'.format(t+1,dataset[t]['name'])) print('*'*250) # Model test_model = get_model(final_model_id, test_data_id=t) # Approach appr = approach(test_model, args, network=network) # Test test_res = appr.inference(dataset[t]['test'], t, model=test_model) print('>>> Test on task {:2d} - {:15s}: loss={:.3f}, acc={:5.4f}% <<<'.format(t, dataset[t]['name'], test_res['loss_t'], test_res['acc_t'])) ####################################################################################################################### if __name__ == '__main__': main(args) # test_trained_model(args, final_model_id=4)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import print_function from PIL import Image import os import os.path import sys if sys.version_info[0] == 2: import cPickle as pickle else: import pickle import torch.utils.data as data import numpy as np import torch from torchvision import datasets, transforms from utils import * class iCIFAR10(datasets.CIFAR10): def __init__(self, root, classes, memory_classes, memory, task_num, train, transform=None, target_transform=None, download=True): super(iCIFAR10, self).__init__(root, transform=transform, target_transform=target_transform, download=True) self.train = train # training set or test set if not isinstance(classes, list): classes = [classes] self.class_mapping = {c: i for i, c in enumerate(classes)} self.class_indices = {} for cls in classes: self.class_indices[self.class_mapping[cls]] = [] if self.train: train_data = [] train_labels = [] train_tt = [] # task module labels train_td = [] # disctiminator labels for i in range(len(self.data)): if self.targets[i] in classes: train_data.append(self.data[i]) train_labels.append(self.class_mapping[self.targets[i]]) train_tt.append(task_num) train_td.append(task_num+1) self.class_indices[self.class_mapping[self.targets[i]]].append(i) if memory_classes: for task_id in range(task_num): for i in range(len(memory[task_id]['x'])): if memory[task_id]['y'][i] in range(len(memory_classes[task_id])): train_data.append(memory[task_id]['x'][i]) train_labels.append(memory[task_id]['y'][i]) train_tt.append(memory[task_id]['tt'][i]) train_td.append(memory[task_id]['td'][i]) self.train_data = np.array(train_data) self.train_labels = train_labels self.train_tt = train_tt self.train_td = train_td if not self.train: f = self.test_list[0][0] file = os.path.join(self.root, self.base_folder, f) fo = open(file, 'rb') if sys.version_info[0] == 2: entry = pickle.load(fo) else: entry = pickle.load(fo, encoding='latin1') self.test_data = entry['data'] if 'labels' in entry: self.test_labels = entry['labels'] else: self.test_labels = entry['fine_labels'] fo.close() self.test_data = self.test_data.reshape((10000, 3, 32, 32)) self.test_data = self.test_data.transpose((0, 2, 3, 1)) # convert to HWC test_data = [] test_labels = [] test_tt = [] # task module labels test_td = [] # disctiminator labels for i in range(len(self.test_data)): if self.test_labels[i] in classes: test_data.append(self.test_data[i]) test_labels.append(self.class_mapping[self.test_labels[i]]) test_tt.append(task_num) test_td.append(task_num + 1) self.class_indices[self.class_mapping[self.test_labels[i]]].append(i) self.test_data = np.array(test_data) self.test_labels = test_labels self.test_tt = test_tt self.test_td = test_td def __getitem__(self, index): if self.train: img, target, tt, td = self.train_data[index], self.train_labels[index], self.train_tt[index], self.train_td[index] else: img, target, tt, td = self.test_data[index], self.test_labels[index], self.test_tt[index], self.test_td[index] # doing this so that it is consistent with all other datasets # to return a PIL Image try: img = Image.fromarray(img) except: pass try: if self.transform is not None: img = self.transform(img) except: pass try: if self.target_transform is not None: target = self.target_transform(target) except: pass return img, target, tt, td def __len__(self): if self.train: return len(self.train_data) else: return len(self.test_data) class iCIFAR100(iCIFAR10): """`CIFAR100 <https://www.cs.toronto.edu/~kriz/cifar.html>`_ Dataset. This is a subclass of the `CIFAR10` Dataset. """ base_folder = 'cifar-100-python' url = "https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz" filename = "cifar-100-python.tar.gz" tgz_md5 = 'eb9058c3a382ffc7106e4002c42a8d85' train_list = [ ['train', '16019d7e3df5f24257cddd939b257f8d'], ] test_list = [ ['test', 'f0ef6b0ae62326f3e7ffdfab6717acfc'], ] meta = { 'filename': 'meta', 'key': 'fine_label_names', 'md5': '7973b15100ade9c7d40fb424638fde48', } class DatasetGen(object): """docstring for DatasetGen""" def __init__(self, args): super(DatasetGen, self).__init__() self.seed = args.seed self.batch_size=args.batch_size self.pc_valid=args.pc_valid self.root = args.data_dir self.latent_dim = args.latent_dim self.num_tasks = args.ntasks self.num_classes = 100 self.num_samples = args.samples self.inputsize = [3,32,32] mean=[x/255 for x in [125.3,123.0,113.9]] std=[x/255 for x in [63.0,62.1,66.7]] self.transformation = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean, std)]) self.taskcla = [[t, int(self.num_classes/self.num_tasks)] for t in range(self.num_tasks)] self.indices = {} self.dataloaders = {} self.idx={} self.num_workers = args.workers self.pin_memory = True np.random.seed(self.seed) task_ids = np.split(np.random.permutation(self.num_classes),self.num_tasks) self.task_ids = [list(arr) for arr in task_ids] self.train_set = {} self.test_set = {} self.train_split = {} self.task_memory = {} for i in range(self.num_tasks): self.task_memory[i] = {} self.task_memory[i]['x'] = [] self.task_memory[i]['y'] = [] self.task_memory[i]['tt'] = [] self.task_memory[i]['td'] = [] self.use_memory = args.use_memory def get(self, task_id): self.dataloaders[task_id] = {} sys.stdout.flush() if task_id == 0: memory_classes = None memory=None else: memory_classes = self.task_ids memory = self.task_memory self.train_set[task_id] = iCIFAR100(root=self.root, classes=self.task_ids[task_id], memory_classes=memory_classes, memory=memory, task_num=task_id, train=True, download=True, transform=self.transformation) self.test_set[task_id] = iCIFAR100(root=self.root, classes=self.task_ids[task_id], memory_classes=None, memory=None, task_num=task_id, train=False, download=True, transform=self.transformation) split = int(np.floor(self.pc_valid * len(self.train_set[task_id]))) train_split, valid_split = torch.utils.data.random_split(self.train_set[task_id], [len(self.train_set[task_id]) - split, split]) self.train_split[task_id] = train_split train_loader = torch.utils.data.DataLoader(train_split, batch_size=self.batch_size, num_workers=self.num_workers, pin_memory=self.pin_memory,shuffle=True) valid_loader = torch.utils.data.DataLoader(valid_split, batch_size=int(self.batch_size * self.pc_valid), num_workers=self.num_workers, pin_memory=self.pin_memory,shuffle=True) test_loader = torch.utils.data.DataLoader(self.test_set[task_id], batch_size=self.batch_size, num_workers=self.num_workers, pin_memory=self.pin_memory,shuffle=True) self.dataloaders[task_id]['train'] = train_loader self.dataloaders[task_id]['valid'] = valid_loader self.dataloaders[task_id]['test'] = test_loader self.dataloaders[task_id]['name'] = 'CIFAR100-{}-{}'.format(task_id,self.task_ids[task_id]) print ("Training set size: {} images of {}x{}".format(len(train_loader.dataset),self.inputsize[1],self.inputsize[1])) print ("Validation set size: {} images of {}x{}".format(len(valid_loader.dataset),self.inputsize[1],self.inputsize[1])) print ("Train+Val set size: {} images of {}x{}".format(len(valid_loader.dataset)+len(train_loader.dataset),self.inputsize[1],self.inputsize[1])) print ("Test set size: {} images of {}x{}".format(len(test_loader.dataset),self.inputsize[1],self.inputsize[1])) if self.use_memory == 'yes' and self.num_samples > 0 : self.update_memory(task_id) return self.dataloaders def update_memory(self, task_id): num_samples_per_class = self.num_samples // len(self.task_ids[task_id]) mem_class_mapping = {i: i for i, c in enumerate(self.task_ids[task_id])} # Looping over each class in the current task for i in range(len(self.task_ids[task_id])): # Getting all samples for this class data_loader = torch.utils.data.DataLoader(self.train_split[task_id], batch_size=1, num_workers=self.num_workers, pin_memory=self.pin_memory) # Randomly choosing num_samples_per_class for this class randind = torch.randperm(len(data_loader.dataset))[:num_samples_per_class] # Adding the selected samples to memory for ind in randind: self.task_memory[task_id]['x'].append(data_loader.dataset[ind][0]) self.task_memory[task_id]['y'].append(mem_class_mapping[i]) self.task_memory[task_id]['tt'].append(data_loader.dataset[ind][2]) self.task_memory[task_id]['td'].append(data_loader.dataset[ind][3]) print ('Memory updated by adding {} images'.format(len(self.task_memory[task_id]['x'])))
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # https://github.com/pytorch/vision/blob/8635be94d1216f10fb8302da89233bd86445e449/torchvision/datasets/utils.py import os import os.path import hashlib import gzip import errno import tarfile import zipfile import numpy as np import torch import codecs from torch.utils.model_zoo import tqdm def gen_bar_updater(): pbar = tqdm(total=None) def bar_update(count, block_size, total_size): if pbar.total is None and total_size: pbar.total = total_size progress_bytes = count * block_size pbar.update(progress_bytes - pbar.n) return bar_update def calculate_md5(fpath, chunk_size=1024 * 1024): md5 = hashlib.md5() with open(fpath, 'rb') as f: for chunk in iter(lambda: f.read(chunk_size), b''): md5.update(chunk) return md5.hexdigest() def check_md5(fpath, md5, **kwargs): return md5 == calculate_md5(fpath, **kwargs) def check_integrity(fpath, md5=None): if not os.path.isfile(fpath): return False if md5 is None: return True return check_md5(fpath, md5) def makedir_exist_ok(dirpath): """ Python2 support for os.makedirs(.., exist_ok=True) """ try: os.makedirs(dirpath) except OSError as e: if e.errno == errno.EEXIST: pass else: raise def download_url(url, root, filename=None, md5=None): """Download a file from a url and place it in root. Args: url (str): URL to download file from root (str): Directory to place downloaded file in filename (str, optional): Name to save the file under. If None, use the basename of the URL md5 (str, optional): MD5 checksum of the download. If None, do not check """ from six.moves import urllib root = os.path.expanduser(root) if not filename: filename = os.path.basename(url) fpath = os.path.join(root, filename) makedir_exist_ok(root) # downloads file if check_integrity(fpath, md5): print('Using downloaded and verified file: ' + fpath) else: try: print('Downloading ' + url + ' to ' + fpath) urllib.request.urlretrieve( url, fpath, reporthook=gen_bar_updater() ) except (urllib.error.URLError, IOError) as e: if url[:5] == 'https': url = url.replace('https:', 'http:') print('Failed download. Trying https -> http instead.' ' Downloading ' + url + ' to ' + fpath) urllib.request.urlretrieve( url, fpath, reporthook=gen_bar_updater() ) else: raise e def list_dir(root, prefix=False): """List all directories at a given root Args: root (str): Path to directory whose folders need to be listed prefix (bool, optional): If true, prepends the path to each result, otherwise only returns the name of the directories found """ root = os.path.expanduser(root) directories = list( filter( lambda p: os.path.isdir(os.path.join(root, p)), os.listdir(root) ) ) if prefix is True: directories = [os.path.join(root, d) for d in directories] return directories def list_files(root, suffix, prefix=False): """List all files ending with a suffix at a given root Args: root (str): Path to directory whose folders need to be listed suffix (str or tuple): Suffix of the files to match, e.g. '.png' or ('.jpg', '.png'). It uses the Python "str.endswith" method and is passed directly prefix (bool, optional): If true, prepends the path to each result, otherwise only returns the name of the files found """ root = os.path.expanduser(root) files = list( filter( lambda p: os.path.isfile(os.path.join(root, p)) and p.endswith(suffix), os.listdir(root) ) ) if prefix is True: files = [os.path.join(root, d) for d in files] return files def download_file_from_google_drive(file_id, root, filename=None, md5=None): """Download a Google Drive file from and place it in root. Args: file_id (str): id of file to be downloaded root (str): Directory to place downloaded file in filename (str, optional): Name to save the file under. If None, use the id of the file. md5 (str, optional): MD5 checksum of the download. If None, do not check """ # Based on https://stackoverflow.com/questions/38511444/python-download-files-from-google-drive-using-url import requests url = "https://docs.google.com/uc?export=download" root = os.path.expanduser(root) if not filename: filename = file_id fpath = os.path.join(root, filename) makedir_exist_ok(root) if os.path.isfile(fpath) and check_integrity(fpath, md5): print('Using downloaded and verified file: ' + fpath) else: session = requests.Session() response = session.get(url, params={'id': file_id}, stream=True) token = _get_confirm_token(response) if token: params = {'id': file_id, 'confirm': token} response = session.get(url, params=params, stream=True) _save_response_content(response, fpath) def _get_confirm_token(response): for key, value in response.cookies.items(): if key.startswith('download_warning'): return value return None def _save_response_content(response, destination, chunk_size=32768): with open(destination, "wb") as f: pbar = tqdm(total=None) progress = 0 for chunk in response.iter_content(chunk_size): if chunk: # filter out keep-alive new chunks f.write(chunk) progress += len(chunk) pbar.update(progress - pbar.n) pbar.close() def _is_tar(filename): return filename.endswith(".tar") def _is_targz(filename): return filename.endswith(".tar.gz") def _is_gzip(filename): return filename.endswith(".gz") and not filename.endswith(".tar.gz") def _is_zip(filename): return filename.endswith(".zip") def extract_archive(from_path, to_path=None, remove_finished=False): if to_path is None: to_path = os.path.dirname(from_path) if _is_tar(from_path): with tarfile.open(from_path, 'r') as tar: tar.extractall(path=to_path) elif _is_targz(from_path): with tarfile.open(from_path, 'r:gz') as tar: tar.extractall(path=to_path) elif _is_gzip(from_path): to_path = os.path.join(to_path, os.path.splitext(os.path.basename(from_path))[0]) with open(to_path, "wb") as out_f, gzip.GzipFile(from_path) as zip_f: out_f.write(zip_f.read()) elif _is_zip(from_path): with zipfile.ZipFile(from_path, 'r') as z: z.extractall(to_path) else: raise ValueError("Extraction of {} not supported".format(from_path)) if remove_finished: os.remove(from_path) def download_and_extract_archive(url, download_root, extract_root=None, filename=None, md5=None, remove_finished=False): download_root = os.path.expanduser(download_root) if extract_root is None: extract_root = download_root if not filename: filename = os.path.basename(url) download_url(url, download_root, filename, md5) archive = os.path.join(download_root, filename) print("Extracting {} to {}".format(archive, extract_root)) extract_archive(archive, extract_root, remove_finished) def iterable_to_str(iterable): return "'" + "', '".join([str(item) for item in iterable]) + "'" def verify_str_arg(value, arg=None, valid_values=None, custom_msg=None): if not isinstance(value, torch._six.string_classes): if arg is None: msg = "Expected type str, but got type {type}." else: msg = "Expected type str for argument {arg}, but got type {type}." msg = msg.format(type=type(value), arg=arg) raise ValueError(msg) if valid_values is None: return value if value not in valid_values: if custom_msg is not None: msg = custom_msg else: msg = ("Unknown value '{value}' for argument {arg}. " "Valid values are {{{valid_values}}}.") msg = msg.format(value=value, arg=arg, valid_values=iterable_to_str(valid_values)) raise ValueError(msg) return value def get_int(b): return int(codecs.encode(b, 'hex'), 16) def open_maybe_compressed_file(path): """Return a file object that possibly decompresses 'path' on the fly. Decompression occurs when argument `path` is a string and ends with '.gz' or '.xz'. """ if not isinstance(path, torch._six.string_classes): return path if path.endswith('.gz'): import gzip return gzip.open(path, 'rb') if path.endswith('.xz'): import lzma return lzma.open(path, 'rb') return open(path, 'rb') def read_sn3_pascalvincent_tensor(path, strict=True): """Read a SN3 file in "Pascal Vincent" format (Lush file 'libidx/idx-io.lsh'). Argument may be a filename, compressed filename, or file object. """ # typemap if not hasattr(read_sn3_pascalvincent_tensor, 'typemap'): read_sn3_pascalvincent_tensor.typemap = { 8: (torch.uint8, np.uint8, np.uint8), 9: (torch.int8, np.int8, np.int8), 11: (torch.int16, np.dtype('>i2'), 'i2'), 12: (torch.int32, np.dtype('>i4'), 'i4'), 13: (torch.float32, np.dtype('>f4'), 'f4'), 14: (torch.float64, np.dtype('>f8'), 'f8')} # read with open_maybe_compressed_file(path) as f: data = f.read() # parse magic = get_int(data[0:4]) nd = magic % 256 ty = magic // 256 assert nd >= 1 and nd <= 3 assert ty >= 8 and ty <= 14 m = read_sn3_pascalvincent_tensor.typemap[ty] s = [get_int(data[4 * (i + 1): 4 * (i + 2)]) for i in range(nd)] parsed = np.frombuffer(data, dtype=m[1], offset=(4 * (nd + 1))) assert parsed.shape[0] == np.prod(s) or not strict return torch.from_numpy(parsed.astype(m[2], copy=False)).view(*s) def read_label_file(path): with open(path, 'rb') as f: x = read_sn3_pascalvincent_tensor(f, strict=False) assert(x.dtype == torch.uint8) assert(x.ndimension() == 1) return x.long() def read_image_file(path): with open(path, 'rb') as f: x = read_sn3_pascalvincent_tensor(f, strict=False) assert(x.dtype == torch.uint8) assert(x.ndimension() == 3) return x
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import print_function from PIL import Image import os import os.path import sys if sys.version_info[0] == 2: import cPickle as pickle else: import pickle import torch.utils.data as data import numpy as np import torch from torchvision import transforms from utils import * class MiniImageNet(torch.utils.data.Dataset): def __init__(self, root, train): super(MiniImageNet, self).__init__() if train: self.name='train' else: self.name='test' root = os.path.join(root, 'miniimagenet') with open(os.path.join(root,'{}.pkl'.format(self.name)), 'rb') as f: data_dict = pickle.load(f) self.data = data_dict['images'] self.labels = data_dict['labels'] def __len__(self): return len(self.data) def __getitem__(self, i): img, label = self.data[i], self.labels[i] return img, label class iMiniImageNet(MiniImageNet): def __init__(self, root, classes, memory_classes, memory, task_num, train, transform=None): super(iMiniImageNet, self).__init__(root=root, train=train) self.transform = transform if not isinstance(classes, list): classes = [classes] self.class_mapping = {c: i for i, c in enumerate(classes)} self.class_indices = {} for cls in classes: self.class_indices[self.class_mapping[cls]] = [] data = [] labels = [] tt = [] # task module labels td = [] # disctiminator labels for i in range(len(self.data)): if self.labels[i] in classes: data.append(self.data[i]) labels.append(self.class_mapping[self.labels[i]]) tt.append(task_num) td.append(task_num+1) self.class_indices[self.class_mapping[self.labels[i]]].append(i) if memory_classes: for task_id in range(task_num): for i in range(len(memory[task_id]['x'])): if memory[task_id]['y'][i] in range(len(memory_classes[task_id])): data.append(memory[task_id]['x'][i]) labels.append(memory[task_id]['y'][i]) tt.append(memory[task_id]['tt'][i]) td.append(memory[task_id]['td'][i]) self.data = np.array(data) self.labels = labels self.tt = tt self.td = td def __getitem__(self, index): img, target, tt, td = self.data[index], self.labels[index], self.tt[index], self.td[index] # doing this so that it is consistent with all other datasets # to return a PIL Image if not torch.is_tensor(img): img = Image.fromarray(img) img = self.transform(img) return img, target, tt, td def __len__(self): return len(self.data) class DatasetGen(object): """docstring for DatasetGen""" def __init__(self, args): super(DatasetGen, self).__init__() self.seed = args.seed self.batch_size=args.batch_size self.pc_valid=args.pc_valid self.root = args.data_dir self.latent_dim = args.latent_dim self.use_memory = args.use_memory self.num_tasks = args.ntasks self.num_classes = 100 self.num_samples = args.samples self.inputsize = [3,84,84] mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] self.transformation = transforms.Compose([ transforms.Resize((84,84)), transforms.ToTensor(), transforms.Normalize(mean=mean, std=std)]) self.taskcla = [[t, int(self.num_classes/self.num_tasks)] for t in range(self.num_tasks)] self.indices = {} self.dataloaders = {} self.idx={} self.num_workers = args.workers self.pin_memory = True np.random.seed(self.seed) task_ids = np.split(np.random.permutation(self.num_classes),self.num_tasks) self.task_ids = [list(arr) for arr in task_ids] self.train_set = {} self.train_split = {} self.test_set = {} self.task_memory = {} for i in range(self.num_tasks): self.task_memory[i] = {} self.task_memory[i]['x'] = [] self.task_memory[i]['y'] = [] self.task_memory[i]['tt'] = [] self.task_memory[i]['td'] = [] def get(self, task_id): self.dataloaders[task_id] = {} sys.stdout.flush() if task_id == 0: memory_classes = None memory=None else: memory_classes = self.task_ids memory = self.task_memory self.train_set[task_id] = iMiniImageNet(root=self.root, classes=self.task_ids[task_id], memory_classes=memory_classes, memory=memory, task_num=task_id, train=True, transform=self.transformation) self.test_set[task_id] = iMiniImageNet(root=self.root, classes=self.task_ids[task_id], memory_classes=None, memory=None, task_num=task_id, train=False, transform=self.transformation) split = int(np.floor(self.pc_valid * len(self.train_set[task_id]))) train_split, valid_split = torch.utils.data.random_split(self.train_set[task_id], [len(self.train_set[task_id]) - split, split]) self.train_split[task_id] = train_split train_loader = torch.utils.data.DataLoader(train_split, batch_size=self.batch_size, num_workers=self.num_workers, pin_memory=self.pin_memory,shuffle=True) valid_loader = torch.utils.data.DataLoader(valid_split, batch_size=int(self.batch_size * self.pc_valid), num_workers=self.num_workers, pin_memory=self.pin_memory,shuffle=True) test_loader = torch.utils.data.DataLoader(self.test_set[task_id], batch_size=self.batch_size, num_workers=self.num_workers, pin_memory=self.pin_memory, shuffle=True) self.dataloaders[task_id]['train'] = train_loader self.dataloaders[task_id]['valid'] = valid_loader self.dataloaders[task_id]['test'] = test_loader self.dataloaders[task_id]['name'] = 'iMiniImageNet-{}-{}'.format(task_id,self.task_ids[task_id]) self.dataloaders[task_id]['tsne'] = torch.utils.data.DataLoader(self.test_set[task_id], batch_size=len(test_loader.dataset), num_workers=self.num_workers, pin_memory=self.pin_memory, shuffle=True) print ("Task ID: ", task_id) print ("Training set size: {} images of {}x{}".format(len(train_loader.dataset),self.inputsize[1],self.inputsize[1])) print ("Validation set size: {} images of {}x{}".format(len(valid_loader.dataset),self.inputsize[1],self.inputsize[1])) print ("Train+Val set size: {} images of {}x{}".format(len(valid_loader.dataset)+len(train_loader.dataset),self.inputsize[1],self.inputsize[1])) print ("Test set size: {} images of {}x{}".format(len(test_loader.dataset),self.inputsize[1],self.inputsize[1])) if self.use_memory == 'yes' and self.num_samples > 0 : self.update_memory(task_id) return self.dataloaders def update_memory(self, task_id): num_samples_per_class = self.num_samples // len(self.task_ids[task_id]) mem_class_mapping = {i: i for i, c in enumerate(self.task_ids[task_id])} for i in range(len(self.task_ids[task_id])): data_loader = torch.utils.data.DataLoader(self.train_split[task_id], batch_size=1, num_workers=self.num_workers, pin_memory=self.pin_memory) randind = torch.randperm(len(data_loader.dataset))[:num_samples_per_class] # randomly sample some data for ind in randind: self.task_memory[task_id]['x'].append(data_loader.dataset[ind][0]) self.task_memory[task_id]['y'].append(mem_class_mapping[i]) self.task_memory[task_id]['tt'].append(data_loader.dataset[ind][2]) self.task_memory[task_id]['td'].append(data_loader.dataset[ind][3]) print ('Memory updated by adding {} images'.format(len(self.task_memory[task_id]['x'])))
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import print_function import os.path import sys import warnings import urllib.request if sys.version_info[0] == 2: import cPickle as pickle else: import pickle import torch.utils.data as data import numpy as np import torch from torchvision import datasets, transforms from .utils import * # from scipy.imageio import imread import pandas as pd import os import torch from PIL import Image import scipy.io as sio from collections import defaultdict from itertools import chain from collections import OrderedDict class CIFAR10_(datasets.CIFAR10): base_folder = 'cifar-10-batches-py' url = "https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz" filename = "cifar-10-python.tar.gz" tgz_md5 = 'c58f30108f718f92721af3b95e74349a' train_list = [ ['data_batch_1', 'c99cafc152244af753f735de768cd75f'], ['data_batch_2', 'd4bba439e000b95fd0a9bffe97cbabec'], ['data_batch_3', '54ebc095f3ab1f0389bbae665268c751'], ['data_batch_4', '634d18415352ddfa80567beed471001a'], ['data_batch_5', '482c414d41f54cd18b22e5b47cb7c3cb'], ] test_list = [ ['test_batch', '40351d587109b95175f43aff81a1287e'], ] meta = { 'filename': 'batches.meta', 'key': 'label_names', 'md5': '5ff9c542aee3614f3951f8cda6e48888', } num_classes = 10 def __init__(self, root, task_num, num_samples_per_class, train, transform, target_transform, download=True): # root, task_num, train, transform = None, download = False): super(CIFAR10_, self).__init__(root, task_num, transform=transform, target_transform=target_transform, download=download) # print(self.train) # self.train = train # training set or test set self.train = train # training set or test set self.transform = transform self.target_transform=target_transform if download: self.download() if not self._check_integrity(): raise RuntimeError('Dataset not found or corrupted.' + ' You can use download=True to download it') if self.train: downloaded_list = self.train_list else: downloaded_list = self.test_list if not num_samples_per_class: self.data = [] self.targets = [] # now load the picked numpy arrays for file_name, checksum in downloaded_list: file_path = os.path.join(self.root, self.base_folder, file_name) with open(file_path, 'rb') as f: if sys.version_info[0] == 2: entry = pickle.load(f) else: entry = pickle.load(f, encoding='latin1') self.data.append(entry['data']) if 'labels' in entry: self.targets.extend(entry['labels']) else: self.targets.extend(entry['fine_labels']) else: x, y, tt, td = [], [], [], [] for l in range(self.num_classes): indices_with_label_l = np.where(np.array(self.targets)==l) x_with_label_l = [self.data[item] for item in indices_with_label_l[0]] y_with_label_l = [l]*len(x_with_label_l) # If we need a subset of the dataset with num_samples_per_class we use this and then concatenate it with a complete dataset shuffled_indices = np.random.permutation(len(x_with_label_l))[:num_samples_per_class] x_with_label_l = [x_with_label_l[item] for item in shuffled_indices] y_with_label_l = [y_with_label_l[item] for item in shuffled_indices] x.append(x_with_label_l) y.append(y_with_label_l) self.data = np.array(sum(x,[])) self.targets = sum(y,[]) self.data = np.vstack(self.data).reshape(-1, 3, 32, 32) self.data = self.data.transpose((0, 2, 3, 1)) # convert to HWC self.tt = [task_num for _ in range(len(self.data))] self.td = [task_num + 1 for _ in range(len(self.data))] self._load_meta() def __getitem__(self, index): img, target, tt, td = self.data[index], self.targets[index], self.tt[index], self.td[index] # doing this so that it is consistent with all other datasets # to return a PIL Image try: img = Image.fromarray(img) except: pass try: if self.transform is not None: img = self.transform(img) except: pass try: if self.target_transform is not None: tt = self.target_transform(tt) if self.target_transform is not None: td = self.target_transform(td) except: pass return img, target, tt, td def __len__(self): # if self.train: return len(self.data) # else: # return len(self.test_data) def report_size(self): print("CIFAR10 size at train={} time: {} ".format(self.train,self.__len__())) def _load_meta(self): path = os.path.join(self.root, self.base_folder, self.meta['filename']) if not check_integrity(path, self.meta['md5']): raise RuntimeError('Dataset metadata file not found or corrupted.' + ' You can use download=True to download it') with open(path, 'rb') as infile: if sys.version_info[0] == 2: data = pickle.load(infile) else: data = pickle.load(infile, encoding='latin1') self.classes = data[self.meta['key']] self.class_to_idx = {_class: i for i, _class in enumerate(self.classes)} class CIFAR100_(CIFAR10_): """`CIFAR100 <https://www.cs.toronto.edu/~kriz/cifar.html>`_ Dataset. This is a subclass of the `CIFAR10` Dataset. """ base_folder = 'cifar-100-python' url = "https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz" filename = "cifar-100-python.tar.gz" tgz_md5 = 'eb9058c3a382ffc7106e4002c42a8d85' train_list = [ ['train', '16019d7e3df5f24257cddd939b257f8d'], ] test_list = [ ['test', 'f0ef6b0ae62326f3e7ffdfab6717acfc'], ] meta = { 'filename': 'meta', 'key': 'fine_label_names', 'md5': '7973b15100ade9c7d40fb424638fde48', } num_classes = 100 class SVHN_(torch.utils.data.Dataset): url = "" filename = "" file_md5 = "" split_list = { 'train': ["http://ufldl.stanford.edu/housenumbers/train_32x32.mat", "train_32x32.mat", "e26dedcc434d2e4c54c9b2d4a06d8373"], 'test': ["http://ufldl.stanford.edu/housenumbers/test_32x32.mat", "test_32x32.mat", "eb5a983be6a315427106f1b164d9cef3"], 'extra': ["http://ufldl.stanford.edu/housenumbers/extra_32x32.mat", "extra_32x32.mat", "a93ce644f1a588dc4d68dda5feec44a7"]} def __init__(self, root, task_num, num_samples_per_class, train,transform=None, target_transform=None, download=True): self.root = os.path.expanduser(root) # root, task_num, train, transform = None, download = False): # print(self.train) # self.train = train # training set or test set self.train = train # training set or test set self.transform = transform self.target_transform=target_transform if self.train: split="train" else: split="test" self.num_classes = 10 self.split = verify_str_arg(split, "split", tuple(self.split_list.keys())) self.url = self.split_list[split][0] self.filename = self.split_list[split][1] self.file_md5 = self.split_list[split][2] if download: self.download() if not self._check_integrity(): raise RuntimeError('Dataset not found or corrupted.' + ' You can use download=True to download it') # import here rather than at top of file because this is # an optional dependency for torchvision import scipy.io as sio # reading(loading) mat file as array loaded_mat = sio.loadmat(os.path.join(self.root, self.filename)) self.data = loaded_mat['X'] # loading from the .mat file gives an np array of type np.uint8 # converting to np.int64, so that we have a LongTensor after # the conversion from the numpy array # the squeeze is needed to obtain a 1D tensor self.targets = loaded_mat['y'].astype(np.int64).squeeze() self.data = np.transpose(self.data, (3, 2, 0, 1)) if num_samples_per_class: x, y, tt, td = [], [], [], [] for l in range(self.num_classes+1): indices_with_label_l = np.where(np.array(self.targets)==l) x_with_label_l = [self.data[item] for item in indices_with_label_l[0]] y_with_label_l = [l]*len(x_with_label_l) # If we need a subset of the dataset with num_samples_per_class we use this and then concatenate it with a complete dataset shuffled_indices = np.random.permutation(len(x_with_label_l))[:num_samples_per_class] x_with_label_l = [x_with_label_l[item] for item in shuffled_indices] y_with_label_l = [y_with_label_l[item] for item in shuffled_indices] x.append(x_with_label_l) y.append(y_with_label_l) self.data = np.array(sum(x,[])) self.targets = np.array(sum(y,[])).astype(np.int64) # the svhn dataset assigns the class label "10" to the digit 0 # this makes it inconsistent with several loss functions # which expect the class labels to be in the range [0, C-1] np.place(self.targets, self.targets == 10, 0) # print ("svhn: ", self.data.shape) self.tt = [task_num for _ in range(len(self.data))] self.td = [task_num+1 for _ in range(len(self.data))] def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ img, target, tt, td = self.data[index], int(self.targets[index]), self.tt[index], self.td[index] # doing this so that it is consistent with all other datasets # to return a PIL Image try: img = Image.fromarray(np.transpose(img, (1, 2, 0))) except: pass try: if self.transform is not None: img = self.transform(img) except: pass try: if self.target_transform is not None: tt = self.target_transform(tt) if self.target_transform is not None: td = self.target_transform(td) except: pass return img, target, tt, td def __len__(self): return len(self.data) def _check_integrity(self): root = self.root md5 = self.split_list[self.split][2] fpath = os.path.join(root, self.filename) return check_integrity(fpath, md5) def download(self): md5 = self.split_list[self.split][2] download_url(self.url, self.root, self.filename, md5) def extra_repr(self): return "Split: {split}".format(**self.__dict__) class MNIST_RGB(datasets.MNIST): def __init__(self, root, task_num, num_samples_per_class, train=True, transform=None, target_transform=None, download=False): super(MNIST_RGB, self).__init__(root, task_num, transform=transform, target_transform=target_transform, download=download) self.train = train # training set or test set self.target_transform=target_transform self.transform=transform self.num_classes=10 if download: self.download() if not self._check_exists(): raise RuntimeError('Dataset not found.' + ' You can use download=True to download it') if self.train: data_file = self.training_file else: data_file = self.test_file # self.data, self.targets = torch.load(os.path.join(self.processed_folder, data_file)) self.data, self.targets = torch.load(os.path.join(self.processed_folder, data_file)) self.data=np.array(self.data).astype(np.float32) self.targets=list(np.array(self.targets)) if num_samples_per_class: x, y, tt, td = [], [], [], [] for l in range(self.num_classes): indices_with_label_l = np.where(np.array(self.targets)==l) x_with_label_l = [self.data[item] for item in indices_with_label_l[0]] # y_with_label_l = [l]*len(x_with_label_l) # If we need a subset of the dataset with num_samples_per_class we use this and then concatenate it with a complete dataset shuffled_indices = np.random.permutation(len(x_with_label_l))[:num_samples_per_class] x_with_label_l = [x_with_label_l[item] for item in shuffled_indices] y_with_label_l = [l]*len(shuffled_indices) x.append(x_with_label_l) y.append(y_with_label_l) self.data = np.array(sum(x,[])) self.targets = sum(y,[]) self.tt = [task_num for _ in range(len(self.data))] self.td = [task_num+1 for _ in range(len(self.data))] def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ img, target, tt, td = self.data[index], int(self.targets[index]), self.tt[index], self.td[index] # doing this so that it is consistent with all other datasets # to return a PIL Image try: img = Image.fromarray(img, mode='L').convert('RGB') except: pass try: if self.transform is not None: img = self.transform(img) except: pass try: if self.target_transform is not None: tt = self.target_transform(tt) if self.target_transform is not None: td = self.target_transform(td) except: pass return img, target, tt, td def __len__(self): return len(self.data) @property def raw_folder(self): return os.path.join(self.root, self.__class__.__name__, 'raw') @property def processed_folder(self): return os.path.join(self.root, self.__class__.__name__, 'processed') @property def class_to_idx(self): return {_class: i for i, _class in enumerate(self.classes)} def _check_exists(self): return (os.path.exists(os.path.join(self.processed_folder, self.training_file)) and os.path.exists(os.path.join(self.processed_folder, self.test_file))) def download(self): """Download the MNIST data if it doesn't exist in processed_folder already.""" if self._check_exists(): return makedir_exist_ok(self.raw_folder) makedir_exist_ok(self.processed_folder) # download files for url in self.urls: filename = url.rpartition('/')[2] download_and_extract_archive(url, download_root=self.raw_folder, filename=filename) # process and save as torch files print('Processing...') training_set = ( read_image_file(os.path.join(self.raw_folder, 'train-images-idx3-ubyte')), read_label_file(os.path.join(self.raw_folder, 'train-labels-idx1-ubyte')) ) test_set = ( read_image_file(os.path.join(self.raw_folder, 't10k-images-idx3-ubyte')), read_label_file(os.path.join(self.raw_folder, 't10k-labels-idx1-ubyte')) ) with open(os.path.join(self.processed_folder, self.training_file), 'wb') as f: torch.save(training_set, f) with open(os.path.join(self.processed_folder, self.test_file), 'wb') as f: torch.save(test_set, f) print('Done!') def extra_repr(self): return "Split: {}".format("Train" if self.train is True else "Test") class FashionMNIST_(MNIST_RGB): """`Fashion MNIST <https://github.com/zalandoresearch/fashion-mnist>`_ Dataset. """ urls = [ 'http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz', 'http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz', 'http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz', 'http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz', ] class notMNIST_(torch.utils.data.Dataset): def __init__(self, root, task_num, num_samples_per_class, train,transform=None, target_transform=None, download=False): self.root = os.path.expanduser(root) self.transform = transform self.target_transform=target_transform self.train = train self.url = "https://github.com/facebookresearch/Adversarial-Continual-Learning/raw/master/data/notMNIST.zip" self.filename = 'notMNIST.zip' fpath = os.path.join(root, self.filename) if not os.path.isfile(fpath): if not download: raise RuntimeError('Dataset not found. You can use download=True to download it') else: print('Downloading from '+self.url) download_url(self.url, root, filename=self.filename) import zipfile zip_ref = zipfile.ZipFile(fpath, 'r') zip_ref.extractall(root) zip_ref.close() if self.train: fpath = os.path.join(root, 'notMNIST', 'Train') else: fpath = os.path.join(root, 'notMNIST', 'Test') X, Y = [], [] folders = os.listdir(fpath) for folder in folders: folder_path = os.path.join(fpath, folder) for ims in os.listdir(folder_path): try: img_path = os.path.join(folder_path, ims) X.append(np.array(Image.open(img_path).convert('RGB'))) Y.append(ord(folder) - 65) # Folders are A-J so labels will be 0-9 except: print("File {}/{} is broken".format(folder, ims)) self.data = np.array(X) self.targets = Y self.num_classes = len(set(self.targets)) if num_samples_per_class: x, y, tt, td = [], [], [], [] for l in range(self.num_classes): indices_with_label_l = np.where(np.array(self.targets)==l) x_with_label_l = [self.data[item] for item in indices_with_label_l[0]] # If we need a subset of the dataset with num_samples_per_class we use this and then concatenate it with a complete dataset shuffled_indices = np.random.permutation(len(x_with_label_l))[:num_samples_per_class] x_with_label_l = [x_with_label_l[item] for item in shuffled_indices] y_with_label_l = [l]*len(shuffled_indices) x.append(x_with_label_l) y.append(y_with_label_l) self.data = np.array(sum(x,[])) self.labels = sum(y,[]) self.tt = [task_num for _ in range(len(self.data))] self.td = [task_num + 1 for _ in range(len(self.data))] def __getitem__(self, index): img, target, tt, td = self.data[index], self.targets[index], self.tt[index], self.td[index] img = Image.fromarray(img)#.convert('RGB') img = self.transform(img) return img, target, tt, td def __len__(self): return len(self.data) def download(self): """Download the notMNIST data if it doesn't exist in processed_folder already.""" import errno root = os.path.expanduser(self.root) fpath = os.path.join(root, self.filename) try: os.makedirs(root) except OSError as e: if e.errno == errno.EEXIST: pass else: raise urllib.request.urlretrieve(self.url, fpath) import zipfile zip_ref = zipfile.ZipFile(fpath, 'r') zip_ref.extractall(root) zip_ref.close()
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch import utils class Shared(torch.nn.Module): def __init__(self,args): super(Shared, self).__init__() self.ncha,size,_=args.inputsize self.taskcla=args.taskcla self.latent_dim = args.latent_dim if args.experiment == 'cifar100': hiddens = [64, 128, 256, 1024, 1024, 512] elif args.experiment == 'miniimagenet': hiddens = [64, 128, 256, 512, 512, 512] # ---------------------------------- elif args.experiment == 'multidatasets': hiddens = [64, 128, 256, 1024, 1024, 512] else: raise NotImplementedError self.conv1=torch.nn.Conv2d(self.ncha,hiddens[0],kernel_size=size//8) s=utils.compute_conv_output_size(size,size//8) s=s//2 self.conv2=torch.nn.Conv2d(hiddens[0],hiddens[1],kernel_size=size//10) s=utils.compute_conv_output_size(s,size//10) s=s//2 self.conv3=torch.nn.Conv2d(hiddens[1],hiddens[2],kernel_size=2) s=utils.compute_conv_output_size(s,2) s=s//2 self.maxpool=torch.nn.MaxPool2d(2) self.relu=torch.nn.ReLU() self.drop1=torch.nn.Dropout(0.2) self.drop2=torch.nn.Dropout(0.5) self.fc1=torch.nn.Linear(hiddens[2]*s*s,hiddens[3]) self.fc2=torch.nn.Linear(hiddens[3],hiddens[4]) self.fc3=torch.nn.Linear(hiddens[4],hiddens[5]) self.fc4=torch.nn.Linear(hiddens[5], self.latent_dim) def forward(self, x_s): x_s = x_s.view_as(x_s) h = self.maxpool(self.drop1(self.relu(self.conv1(x_s)))) h = self.maxpool(self.drop1(self.relu(self.conv2(h)))) h = self.maxpool(self.drop2(self.relu(self.conv3(h)))) h = h.view(x_s.size(0), -1) h = self.drop2(self.relu(self.fc1(h))) h = self.drop2(self.relu(self.fc2(h))) h = self.drop2(self.relu(self.fc3(h))) h = self.drop2(self.relu(self.fc4(h))) return h class Private(torch.nn.Module): def __init__(self, args): super(Private, self).__init__() self.ncha,self.size,_=args.inputsize self.taskcla=args.taskcla self.latent_dim = args.latent_dim self.num_tasks = args.ntasks self.device = args.device if args.experiment == 'cifar100': hiddens=[32,32] flatten=1152 elif args.experiment == 'miniimagenet': # hiddens=[8,8] # flatten=1800 hiddens=[16,16] flatten=3600 elif args.experiment == 'multidatasets': hiddens=[32,32] flatten=1152 else: raise NotImplementedError self.task_out = torch.nn.Sequential() self.task_out.add_module('conv1', torch.nn.Conv2d(self.ncha, hiddens[0], kernel_size=self.size // 8)) self.task_out.add_module('relu1', torch.nn.ReLU(inplace=True)) self.task_out.add_module('drop1', torch.nn.Dropout(0.2)) self.task_out.add_module('maxpool1', torch.nn.MaxPool2d(2)) self.task_out.add_module('conv2', torch.nn.Conv2d(hiddens[0], hiddens[1], kernel_size=self.size // 10)) self.task_out.add_module('relu2', torch.nn.ReLU(inplace=True)) self.task_out.add_module('dropout2', torch.nn.Dropout(0.5)) self.task_out.add_module('maxpool2', torch.nn.MaxPool2d(2)) self.linear = torch.nn.Sequential() self.linear.add_module('linear1', torch.nn.Linear(flatten, self.latent_dim)) self.linear.add_module('relu3', torch.nn.ReLU(inplace=True)) def forward(self, x): x = x.view_as(x) out = self.task_out(x) out = out.view(out.size(0), -1) out = self.linear(out) return out # def forward(self, x, task_id): # x = x.view_as(x) # out = self.task_out[2*task_id].forward(x) # out = out.view(out.size(0),-1) # out = self.task_out[2*task_id+1].forward(out) # return out class Net(torch.nn.Module): def __init__(self, args): super(Net, self).__init__() self.ncha,size,_=args.inputsize self.taskcla=args.taskcla self.latent_dim = args.latent_dim self.ntasks = args.ntasks self.samples = args.samples self.image_size = self.ncha*size*size self.args=args self.hidden1 = args.head_units self.hidden2 = args.head_units//2 self.shared = Shared(args) self.private = Private(args) self.head = torch.nn.Sequential( torch.nn.Linear(2*self.latent_dim, self.hidden1), torch.nn.ReLU(inplace=True), torch.nn.Dropout(), torch.nn.Linear(self.hidden1, self.hidden2), torch.nn.ReLU(inplace=True), torch.nn.Linear(self.hidden2, self.taskcla[0][1]) ) def forward(self, x_s, x_p, tt=None): x_s = x_s.view_as(x_s) x_p = x_p.view_as(x_p) # x_s = self.shared(x_s) # x_p = self.private(x_p) # # x = torch.cat([x_p, x_s], dim=1) # if self.args.experiment == 'multidatasets': # # if no memory is used this is faster: # y=[] # for i,_ in self.taskcla: # y.append(self.head[i](x)) # return y[task_id] # else: # return torch.stack([self.head[tt[i]].forward(x[i]) for i in range(x.size(0))]) # if torch.is_tensor(tt): # return torch.stack([self.head[tt[i]].forward(x[i]) for i in range(x.size(0))]) # else: # return self.head(x) output = {} output['shared'] = self.shared(x_s) output['private'] = self.private(x_p) concat_features = torch.cat([output['private'], output['shared']], dim=1) if torch.is_tensor(tt): output['out'] = torch.stack([self.head[tt[i]].forward(concat_features[i]) for i in range( concat_features.size(0))]) else: output['out'] = self.head(concat_features) return output # def get_encoded_ftrs(self, x_s, x_p, task_id=None): # return self.shared(x_s), self.private(x_p) def print_model_size(self): count_P = sum(p.numel() for p in self.private.parameters() if p.requires_grad) count_S = sum(p.numel() for p in self.shared.parameters() if p.requires_grad) count_H = sum(p.numel() for p in self.head.parameters() if p.requires_grad) print("Size of the network for one task including (S+P+p)") print('Num parameters in S = %s ' % (self.pretty_print(count_S))) print('Num parameters in P = %s ' % (self.pretty_print(count_P))) print('Num parameters in p = %s ' % (self.pretty_print(count_H))) print('Num parameters in P+p = %s ' % self.pretty_print(count_P + count_H)) print('--------------------------> Architecture size in total for all tasks: %s parameters (%sB)' % ( self.pretty_print(count_S + self.ntasks*count_P + self.ntasks*count_H), self.pretty_print(4 * (count_S + self.ntasks*count_P + self.ntasks*count_H)))) classes_per_task = self.taskcla[0][1] print("--------------------------> Memory size: %s samples per task (%sB)" % (self.samples*classes_per_task, self.pretty_print( self.ntasks * 4 * self.samples * classes_per_task* self.image_size))) print("------------------------------------------------------------------------------") print(" TOTAL: %sB" % self.pretty_print( 4 * (count_S + self.ntasks *count_P + self.ntasks *count_H) + self.ntasks * 4 * self.samples * classes_per_task * self.image_size)) def pretty_print(self, num): magnitude = 0 while abs(num) >= 1000: magnitude += 1 num /= 1000.0 return '%.1f%s' % (num, ['', 'K', 'M', 'G', 'T', 'P'][magnitude])
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn class Shared(torch.nn.Module): def __init__(self,args): super(Shared, self).__init__() self.taskcla=args.taskcla self.latent_dim = args.latent_dim ncha,size,_ = args.inputsize self.pretrained = False if args.experiment == 'cifar100': hiddens = [64, 128, 256] elif args.experiment == 'miniimagenet': hiddens = [1024, 512, 256] else: raise NotImplementedError # Small resnet resnet = resnet18_small(self.latent_dim, shared=True) self.features = torch.nn.Sequential(*list(resnet.children())[:-2]) if args.experiment == 'miniimagenet': # num_ftrs = 4608 num_ftrs = 2304 # without average pool (-2) elif args.experiment == 'cifar100': # num_ftrs = 25088 # without average pool num_ftrs = 256 else: raise NotImplementedError self.relu=torch.nn.ReLU() self.drop1=torch.nn.Dropout(0.2) self.drop2=torch.nn.Dropout(0.5) self.fc1=torch.nn.Linear(num_ftrs,hiddens[0]) self.fc2=torch.nn.Linear(hiddens[0],hiddens[1]) self.fc3=torch.nn.Linear(hiddens[1],hiddens[1]) self.fc4=torch.nn.Linear(hiddens[1], self.latent_dim) def forward(self, x): x = x.view_as(x) x = self.features(x) x = torch.flatten(x, 1) x = self.drop2(self.relu(self.fc1(x))) x = self.drop2(self.relu(self.fc2(x))) x = self.drop2(self.relu(self.fc3(x))) x = self.drop2(self.relu(self.fc4(x))) return x class Net(torch.nn.Module): def __init__(self, args): super(Net, self).__init__() ncha,size,_=args.inputsize self.image_size = ncha * size * size self.taskcla = args.taskcla self.latent_dim = args.latent_dim self.ntasks = args.ntasks self.samples = args.samples self.image_size = ncha * size * size self.use_memory = args.use_memory self.hidden1 = args.head_units self.hidden2 = args.head_units self.shared = Shared(args) self.private = resnet18_small(self.latent_dim, shared=False) self.head = torch.nn.Sequential( torch.nn.Linear(2*self.latent_dim, self.hidden1), torch.nn.ReLU(inplace=True), torch.nn.Dropout(), torch.nn.Linear(self.hidden1, self.hidden2), torch.nn.ReLU(inplace=True), torch.nn.Linear(self.hidden2, self.taskcla[0][1]) ) def forward(self, x_s, x_p, tt=None): x_s = x_s.view_as(x_s) x_p = x_p.view_as(x_p) # x_s = self.shared(x_s) # x_p = self.private(x_p) # x = torch.cat([x_p, x_s], dim=1) # if self.args.experiment == 'multidatasets': # # if no memory is used this is faster: # y=[] # for i,_ in self.taskcla: # y.append(self.head[i](x)) # return y[task_id] # else: # return torch.stack([self.head[tt[i]].forward(x[i]) for i in range(x.size(0))]) output = {} output['shared'] = self.shared(x_s) output['private'] = self.private(x_p) concat_features = torch.cat([output['private'], output['shared']], dim=1) if torch.is_tensor(tt): output['out'] = torch.stack([self.head[tt[i]].forward(concat_features[i]) for i in range( concat_features.size(0))]) else: output['out'] = self.head(concat_features) return output # output['shared'] = self.shared(x_s) # output['private'] = self.private(x_p) # # concat_features = torch.cat([output['private'], output['shared']], dim=1) # # if torch.is_tensor(tt): # # output['out'] = torch.stack([self.head[tt[i]].forward(concat_features[i]) for i in range(concat_features.size(0))]) # else: # if self.use_memory == 'no': # output['out'] = self.head.forward(concat_features) # # elif self.use_memory == 'yes': # y = [] # for i, _ in self.taskcla: # y.append(self.head[i](concat_features)) # output['out'] = y[task_id] # # return output # def get_encoded_ftrs(self, x_s, x_p, task_id=None): # return self.shared(x_s), self.private(x_p) def print_model_size(self): count_P = sum(p.numel() for p in self.private.parameters() if p.requires_grad) count_S = sum(p.numel() for p in self.shared.parameters() if p.requires_grad) count_H = sum(p.numel() for p in self.head.parameters() if p.requires_grad) print("Size of the network for one task including (S+P+p)") print('Num parameters in S = %s ' % (self.pretty_print(count_S))) print('Num parameters in P = %s ' % (self.pretty_print(count_P))) print('Num parameters in p = %s ' % (self.pretty_print(count_H))) print('Num parameters in P+p = %s ' % self.pretty_print(count_P + count_H)) print('--------------------------> Architecture size in total for all tasks: %s parameters (%sB)' % ( self.pretty_print(count_S + self.ntasks*count_P + self.ntasks*count_H), self.pretty_print(4 * (count_S + self.ntasks*count_P + self.ntasks*count_H)))) classes_per_task = self.taskcla[0][1] print("--------------------------> Memory size: %s samples per task (%sB)" % (self.samples*classes_per_task, self.pretty_print( self.ntasks * 4 * self.samples * classes_per_task* self.image_size))) print("------------------------------------------------------------------------------") print(" TOTAL: %sB" % self.pretty_print( 4 * (count_S + self.ntasks *count_P + self.ntasks *count_H) + self.ntasks * 4 * self.samples * classes_per_task * self.image_size)) def pretty_print(self, num): magnitude = 0 while abs(num) >= 1000: magnitude += 1 num /= 1000.0 return '%.1f%s' % (num, ['', 'K', 'M', 'G', 'T', 'P'][magnitude]) class _CustomDataParallel(torch.nn.DataParallel): def __init__(self, model): super(_CustomDataParallel, self).__init__(model) def __getattr__(self, name): try: return super(_CustomDataParallel, self).__getattr__(name) except AttributeError: return getattr(self.module, name) def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation) def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None): super(BasicBlock, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d if groups != 1 or base_width != 64: raise ValueError('BasicBlock only supports groups=1 and base_width=64') if dilation > 1: raise NotImplementedError("Dilation > 1 not supported in BasicBlock") # Both self.conv1 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = norm_layer(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = norm_layer(planes) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class Bottleneck(nn.Module): # Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2) # while original implementation places the stride at the first 1x1 convolution(self.conv1) # according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385. # This variant is also known as ResNet V1.5 and improves accuracy according to # https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch. expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None): super(Bottleneck, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d width = int(planes * (base_width / 64.)) * groups # Both self.conv2 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv1x1(inplanes, width) self.bn1 = norm_layer(width) self.conv2 = conv3x3(width, width, stride, groups, dilation) self.bn2 = norm_layer(width) self.conv3 = conv1x1(width, planes * self.expansion) self.bn3 = norm_layer(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, shared, block, layers, num_classes, zero_init_residual=False, groups=1, width_per_group=64, replace_stride_with_dilation=None, norm_layer=None): super(ResNet, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d self._norm_layer = norm_layer self.inplanes = 64 self.dilation = 1 # small resnet if shared: hiddens = [32, 64, 128, 256] else: hiddens = [16, 32, 32, 64] # original resnet # hiddens = [64, 128, 256, 512] if replace_stride_with_dilation is None: # each element in the tuple indicates if we should replace # the 2x2 stride with a dilated convolution instead replace_stride_with_dilation = [False, False, False] if len(replace_stride_with_dilation) != 3: raise ValueError("replace_stride_with_dilation should be None " "or a 3-element tuple, got {}".format(replace_stride_with_dilation)) self.groups = groups self.base_width = width_per_group self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = norm_layer(self.inplanes) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, hiddens[0], layers[0]) self.layer2 = self._make_layer(block, hiddens[1], layers[1], stride=2, dilate=replace_stride_with_dilation[0]) self.layer3 = self._make_layer(block, hiddens[2], layers[2], stride=2, dilate=replace_stride_with_dilation[1]) self.layer4 = self._make_layer(block, hiddens[3], layers[3], stride=2, dilate=replace_stride_with_dilation[2]) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(hiddens[3] * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # Zero-initialize the last BN in each residual branch, # so that the residual branch starts with zeros, and each residual block behaves like an identity. # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 if zero_init_residual: for m in self.modules(): if isinstance(m, Bottleneck): nn.init.constant_(m.bn3.weight, 0) elif isinstance(m, BasicBlock): nn.init.constant_(m.bn2.weight, 0) def _make_layer(self, block, planes, blocks, stride=1, dilate=False): norm_layer = self._norm_layer downsample = None previous_dilation = self.dilation if dilate: self.dilation *= stride stride = 1 if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), norm_layer(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer)) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append(block(self.inplanes, planes, groups=self.groups, base_width=self.base_width, dilation=self.dilation, norm_layer=norm_layer)) return nn.Sequential(*layers) def _forward_impl(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.fc(x) x = self.relu(x) return x def forward(self, x): return self._forward_impl(x) def resnet18_small(latend_dim, shared): # r"""ResNet-18 model from # `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ return ResNet(shared, BasicBlock, [2, 2, 2, 2], num_classes=latend_dim)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch class Private(torch.nn.Module): def __init__(self, args): super(Private, self).__init__() self.ncha,self.size,_=args.inputsize self.taskcla=args.taskcla self.latent_dim = args.latent_dim self.num_tasks = args.ntasks self.nhid = args.units self.device = args.device self.task_out = torch.nn.ModuleList() for _ in range(self.num_tasks): self.linear = torch.nn.Sequential() self.linear.add_module('linear', torch.nn.Linear(self.ncha*self.size*self.size, self.latent_dim)) self.linear.add_module('relu', torch.nn.ReLU(inplace=True)) self.task_out.append(self.linear) def forward(self, x_p, task_id): x_p = x_p.view(x_p.size(0), -1) return self.task_out[task_id].forward(x_p) class Shared(torch.nn.Module): def __init__(self,args): super(Shared, self).__init__() ncha,self.size,_=args.inputsize self.taskcla=args.taskcla self.latent_dim = args.latent_dim self.nhid = args.units self.nlayers = args.nlayers self.relu=torch.nn.ReLU() self.drop=torch.nn.Dropout(0.2) self.fc1=torch.nn.Linear(ncha*self.size*self.size, self.nhid) if self.nlayers == 3: self.fc2 = torch.nn.Linear(self.nhid, self.nhid) self.fc3=torch.nn.Linear(self.nhid,self.latent_dim) else: self.fc2 = torch.nn.Linear(self.nhid,self.latent_dim) def forward(self, x_s): h = x_s.view(x_s.size(0), -1) h = self.drop(self.relu(self.fc1(h))) h = self.drop(self.relu(self.fc2(h))) if self.nlayers == 3: h = self.drop(self.relu(self.fc3(h))) return h class Net(torch.nn.Module): def __init__(self, args): super(Net, self).__init__() ncha,size,_=args.inputsize self.taskcla=args.taskcla self.latent_dim = args.latent_dim self.num_tasks = args.ntasks self.device = args.device if args.experiment == 'mnist5': self.hidden1 = 28 self.hidden2 = 14 elif args.experiment == 'pmnist': self.hidden1 = 28 self.hidden2 = 28 self.samples = args.samples self.shared = Shared(args) self.private = Private(args) self.head = torch.nn.ModuleList() for i in range(self.num_tasks): self.head.append( torch.nn.Sequential( torch.nn.Linear(2 * self.latent_dim, self.hidden1), torch.nn.ReLU(inplace=True), torch.nn.Dropout(), torch.nn.Linear(self.hidden1, self.hidden2), torch.nn.ReLU(inplace=True), torch.nn.Linear(self.hidden2, self.taskcla[i][1]) )) def forward(self,x_s, x_p, tt, task_id): h_s = x_s.view(x_s.size(0), -1) h_p = x_s.view(x_p.size(0), -1) x_s = self.shared(h_s) x_p = self.private(h_p, task_id) x = torch.cat([x_p, x_s], dim=1) return torch.stack([self.head[tt[i]].forward(x[i]) for i in range(x.size(0))]) def get_encoded_ftrs(self, x_s, x_p, task_id): return self.shared(x_s), self.private(x_p, task_id) def print_model_size(self): count_P = sum(p.numel() for p in self.private.parameters() if p.requires_grad) count_S = sum(p.numel() for p in self.shared.parameters() if p.requires_grad) count_H = sum(p.numel() for p in self.head.parameters() if p.requires_grad) print('Num parameters in S = %s ' % (self.pretty_print(count_S))) print('Num parameters in P = %s, per task = %s ' % (self.pretty_print(count_P),self.pretty_print(count_P/self.num_tasks))) print('Num parameters in p = %s, per task = %s ' % (self.pretty_print(count_H),self.pretty_print(count_H/self.num_tasks))) print('Num parameters in P+p = %s ' % self.pretty_print(count_P+count_H)) print('--------------------------> Total architecture size: %s parameters (%sB)' % (self.pretty_print(count_S + count_P + count_H), self.pretty_print(4*(count_S + count_P + count_H)))) def pretty_print(self, num): magnitude=0 while abs(num) >= 1000: magnitude+=1 num/=1000.0 return '%.2f%s' % (num, ['', 'K', 'M', 'G', 'T', 'P'][magnitude])
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch import utils class Discriminator(torch.nn.Module): def __init__(self,args,task_id): super(Discriminator, self).__init__() self.num_tasks=args.ntasks self.units=args.units self.latent_dim=args.latent_dim if args.diff == 'yes': self.dis = torch.nn.Sequential( GradientReversal(args.lam), torch.nn.Linear(self.latent_dim, args.units), torch.nn.LeakyReLU(), torch.nn.Linear(args.units, args.units), torch.nn.Linear(args.units, task_id + 2) ) else: self.dis = torch.nn.Sequential( torch.nn.Linear(self.latent_dim, args.units), torch.nn.LeakyReLU(), torch.nn.Linear(args.units, args.units), torch.nn.Linear(args.units, task_id + 2) ) def forward(self, z): return self.dis(z) def pretty_print(self, num): magnitude=0 while abs(num) >= 1000: magnitude+=1 num/=1000.0 return '%.1f%s' % (num, ['', 'K', 'M', 'G', 'T', 'P'][magnitude]) def get_size(self): count=sum(p.numel() for p in self.dis.parameters() if p.requires_grad) print('Num parameters in D = %s ' % (self.pretty_print(count))) class GradientReversalFunction(torch.autograd.Function): """ From: https://github.com/jvanvugt/pytorch-domain-adaptation/blob/cb65581f20b71ff9883dd2435b2275a1fd4b90df/utils.py#L26 Gradient Reversal Layer from: Unsupervised Domain Adaptation by Backpropagation (Ganin & Lempitsky, 2015) Forward pass is the identity function. In the backward pass, the upstream gradients are multiplied by -lambda (i.e. gradient is reversed) """ @staticmethod def forward(ctx, x, lambda_): ctx.lambda_ = lambda_ return x.clone() @staticmethod def backward(ctx, grads): lambda_ = ctx.lambda_ lambda_ = grads.new_tensor(lambda_) dx = -lambda_ * grads return dx, None class GradientReversal(torch.nn.Module): def __init__(self, lambda_): super(GradientReversal, self).__init__() self.lambda_ = lambda_ def forward(self, x): return GradientReversalFunction.apply(x, self.lambda_)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import pickle import numpy as np import os np.random.seed(1234) # we want 500 for training, 100 for test for wach class n = 500 def get_total(data): data_x, data_y = [], [] for k, v in data.items(): for i in range(len(v)): data_x.append(v[i]) data_y.append(k) d = {} d['images'] = data_x d['labels'] = data_y return d # loading the pickled data with open(os.path.join('../data/miniimagenet/data.pkl'), 'rb') as f: data_dict = pickle.load(f) data = data_dict['images'] labels = data_dict['labels'] # split data into classes, 600 images per class class_dict = {} for i in range(len(set(labels))): class_dict[i] = [] for i in range(len(data)): class_dict[labels[i]].append(data[i]) # Split data for each class to 500 and 100 x_train, x_test = {}, {} for i in range(len(set(labels))): np.random.shuffle(class_dict[i]) x_test[i] = class_dict[i][n:] x_train[i] = class_dict[i][:n] # mix the data d_train = get_total(x_train) d_test = get_total(x_test) with open(os.path.join('../data/miniimagenet/train.pkl'), 'wb') as f: pickle.dump(d_train, f) with open(os.path.join('../data/miniimagenet/test.pkl'), 'wb') as f: pickle.dump(d_test, f)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import sys, time, os import numpy as np import torch import copy import utils from copy import deepcopy from tqdm import tqdm sys.path.append('../') from networks.discriminator import Discriminator class ACL(object): def __init__(self, model, args, network): self.args=args self.nepochs=args.nepochs self.sbatch=args.batch_size # optimizer & adaptive lr self.e_lr=args.e_lr self.d_lr=args.d_lr if not args.experiment == 'multidatasets': self.e_lr=[args.e_lr] * args.ntasks self.d_lr=[args.d_lr] * args.ntasks else: self.e_lr = [self.args.lrs[i][1] for i in range(len(args.lrs))] self.d_lr = [self.args.lrs[i][1]/10. for i in range(len(args.lrs))] print ("d_lrs : ", self.d_lr) self.lr_min=args.lr_min self.lr_factor=args.lr_factor self.lr_patience=args.lr_patience self.samples=args.samples self.device=args.device self.checkpoint=args.checkpoint self.adv_loss_reg=args.adv self.diff_loss_reg=args.orth self.s_steps=args.s_step self.d_steps=args.d_step self.diff=args.diff self.network=network self.inputsize=args.inputsize self.taskcla=args.taskcla self.num_tasks=args.ntasks # Initialize generator and discriminator self.model=model self.discriminator=self.get_discriminator(0) self.discriminator.get_size() self.latent_dim=args.latent_dim self.task_loss=torch.nn.CrossEntropyLoss().to(self.device) self.adversarial_loss_d=torch.nn.CrossEntropyLoss().to(self.device) self.adversarial_loss_s=torch.nn.CrossEntropyLoss().to(self.device) self.diff_loss=DiffLoss().to(self.device) self.optimizer_S=self.get_S_optimizer(0) self.optimizer_D=self.get_D_optimizer(0) self.task_encoded={} self.mu=0.0 self.sigma=1.0 print() def get_discriminator(self, task_id): discriminator=Discriminator(self.args, task_id).to(self.args.device) return discriminator def get_S_optimizer(self, task_id, e_lr=None): if e_lr is None: e_lr=self.e_lr[task_id] optimizer_S=torch.optim.SGD(self.model.parameters(), momentum=self.args.mom, weight_decay=self.args.e_wd, lr=e_lr) return optimizer_S def get_D_optimizer(self, task_id, d_lr=None): if d_lr is None: d_lr=self.d_lr[task_id] optimizer_D=torch.optim.SGD(self.discriminator.parameters(), weight_decay=self.args.d_wd, lr=d_lr) return optimizer_D def train(self, task_id, dataset): self.discriminator=self.get_discriminator(task_id) best_loss=np.inf best_model=utils.get_model(self.model) best_loss_d=np.inf best_model_d=utils.get_model(self.discriminator) dis_lr_update=True d_lr=self.d_lr[task_id] patience_d=self.lr_patience self.optimizer_D=self.get_D_optimizer(task_id, d_lr) e_lr=self.e_lr[task_id] patience=self.lr_patience self.optimizer_S=self.get_S_optimizer(task_id, e_lr) for e in range(self.nepochs): # Train clock0=time.time() self.train_epoch(dataset['train'], task_id) clock1=time.time() train_res=self.eval_(dataset['train'], task_id) utils.report_tr(train_res, e, self.sbatch, clock0, clock1) # lowering the learning rate in the beginning if it predicts random chance for the first 5 epochs if (self.args.experiment == 'cifar100' or self.args.experiment == 'miniimagenet') and e == 4: random_chance=20. threshold=random_chance + 2 if train_res['acc_t'] < threshold: # Restore best validation model d_lr=self.d_lr[task_id] / 10. self.optimizer_D=self.get_D_optimizer(task_id, d_lr) print("Performance on task {} is {} so Dis's lr is decreased to {}".format(task_id, train_res[ 'acc_t'], d_lr), end=" ") e_lr=self.e_lr[task_id] / 10. self.optimizer_S=self.get_S_optimizer(task_id, e_lr) self.discriminator=self.get_discriminator(task_id) if task_id > 0: self.model=self.load_checkpoint(task_id - 1) else: self.model=self.network.Net(self.args).to(self.args.device) # Valid valid_res=self.eval_(dataset['valid'], task_id) utils.report_val(valid_res) # Adapt lr for S and D if valid_res['loss_tot'] < best_loss: best_loss=valid_res['loss_tot'] best_model=utils.get_model(self.model) patience=self.lr_patience print(' *', end='') else: patience-=1 if patience <= 0: e_lr/=self.lr_factor print(' lr={:.1e}'.format(e_lr), end='') if e_lr < self.lr_min: print() break patience=self.lr_patience self.optimizer_S=self.get_S_optimizer(task_id, e_lr) if train_res['loss_a'] < best_loss_d: best_loss_d=train_res['loss_a'] best_model_d=utils.get_model(self.discriminator) patience_d=self.lr_patience else: patience_d-=1 if patience_d <= 0 and dis_lr_update: d_lr/=self.lr_factor print(' Dis lr={:.1e}'.format(d_lr)) if d_lr < self.lr_min: dis_lr_update=False print("Dis lr reached minimum value") print() patience_d=self.lr_patience self.optimizer_D=self.get_D_optimizer(task_id, d_lr) print() # Restore best validation model (early-stopping) self.model.load_state_dict(copy.deepcopy(best_model)) self.discriminator.load_state_dict(copy.deepcopy(best_model_d)) self.save_all_models(task_id) def train_epoch(self, train_loader, task_id): self.model.train() self.discriminator.train() for data, target, tt, td in train_loader: x=data.to(device=self.device) y=target.to(device=self.device, dtype=torch.long) tt=tt.to(device=self.device) # Detaching samples in the batch which do not belong to the current task before feeding them to P t_current=task_id * torch.ones_like(tt) body_mask=torch.eq(t_current, tt).cpu().numpy() # x_task_module=data.to(device=self.device) x_task_module=data.clone() for index in range(x.size(0)): if body_mask[index] == 0: x_task_module[index]=x_task_module[index].detach() x_task_module=x_task_module.to(device=self.device) # Discriminator's real and fake task labels t_real_D=td.to(self.device) t_fake_D=torch.zeros_like(t_real_D).to(self.device) # ================================================================== # # Train Shared Module # # ================================================================== # # training S for s_steps for s_step in range(self.s_steps): self.optimizer_S.zero_grad() self.model.zero_grad() output=self.model(x, x_task_module, tt, task_id) task_loss=self.task_loss(output, y) shared_encoded, task_encoded=self.model.get_encoded_ftrs(x, x_task_module, task_id) dis_out_gen_training=self.discriminator.forward(shared_encoded, t_real_D, task_id) adv_loss=self.adversarial_loss_s(dis_out_gen_training, t_real_D) if self.diff == 'yes': diff_loss=self.diff_loss(shared_encoded, task_encoded) else: diff_loss=torch.tensor(0).to(device=self.device, dtype=torch.float32) self.diff_loss_reg=0 total_loss=task_loss + self.adv_loss_reg * adv_loss + self.diff_loss_reg * diff_loss total_loss.backward(retain_graph=True) self.optimizer_S.step() # ================================================================== # # Train Discriminator # # ================================================================== # # training discriminator for d_steps for d_step in range(self.d_steps): self.optimizer_D.zero_grad() self.discriminator.zero_grad() # training discriminator on real data output=self.model(x, x_task_module, tt, task_id) shared_encoded, task_out=self.model.get_encoded_ftrs(x, x_task_module, task_id) dis_real_out=self.discriminator.forward(shared_encoded.detach(), t_real_D, task_id) dis_real_loss=self.adversarial_loss_d(dis_real_out, t_real_D) if self.args.experiment == 'miniimagenet': dis_real_loss*=self.adv_loss_reg dis_real_loss.backward(retain_graph=True) # training discriminator on fake data z_fake=torch.as_tensor(np.random.normal(self.mu, self.sigma, (x.size(0), self.latent_dim)),dtype=torch.float32, device=self.device) dis_fake_out=self.discriminator.forward(z_fake, t_real_D, task_id) dis_fake_loss=self.adversarial_loss_d(dis_fake_out, t_fake_D) if self.args.experiment == 'miniimagenet': dis_fake_loss*=self.adv_loss_reg dis_fake_loss.backward(retain_graph=True) self.optimizer_D.step() return def eval_(self, data_loader, task_id): loss_a, loss_t, loss_d, loss_total=0, 0, 0, 0 correct_d, correct_t = 0, 0 num=0 batch=0 self.model.eval() self.discriminator.eval() res={} with torch.no_grad(): for batch, (data, target, tt, td) in enumerate(data_loader): x=data.to(device=self.device) y=target.to(device=self.device, dtype=torch.long) tt=tt.to(device=self.device) t_real_D=td.to(self.device) # Forward output=self.model(x, x, tt, task_id) shared_out, task_out=self.model.get_encoded_ftrs(x, x, task_id) _, pred=output.max(1) correct_t+=pred.eq(y.view_as(pred)).sum().item() # Discriminator's performance: output_d=self.discriminator.forward(shared_out, t_real_D, task_id) _, pred_d=output_d.max(1) correct_d+=pred_d.eq(t_real_D.view_as(pred_d)).sum().item() # Loss values task_loss=self.task_loss(output, y) adv_loss=self.adversarial_loss_d(output_d, t_real_D) if self.diff == 'yes': diff_loss=self.diff_loss(shared_out, task_out) else: diff_loss=torch.tensor(0).to(device=self.device, dtype=torch.float32) self.diff_loss_reg=0 total_loss = task_loss + self.adv_loss_reg * adv_loss + self.diff_loss_reg * diff_loss loss_t+=task_loss loss_a+=adv_loss loss_d+=diff_loss loss_total+=total_loss num+=x.size(0) res['loss_t'], res['acc_t']=loss_t.item() / (batch + 1), 100 * correct_t / num res['loss_a'], res['acc_d']=loss_a.item() / (batch + 1), 100 * correct_d / num res['loss_d']=loss_d.item() / (batch + 1) res['loss_tot']=loss_total.item() / (batch + 1) res['size']=self.loader_size(data_loader) return res # def test(self, data_loader, task_id, model): loss_a, loss_t, loss_d, loss_total=0, 0, 0, 0 correct_d, correct_t=0, 0 num=0 batch=0 model.eval() self.discriminator.eval() res={} with torch.no_grad(): for batch, (data, target, tt, td) in enumerate(data_loader): x=data.to(device=self.device) y=target.to(device=self.device, dtype=torch.long) tt=tt.to(device=self.device) t_real_D=td.to(self.device) # Forward output=model.forward(x, x, tt, task_id) shared_out, task_out=model.get_encoded_ftrs(x, x, task_id) _, pred=output.max(1) correct_t+=pred.eq(y.view_as(pred)).sum().item() # Discriminator's performance: output_d=self.discriminator.forward(shared_out, tt, task_id) _, pred_d=output_d.max(1) correct_d+=pred_d.eq(t_real_D.view_as(pred_d)).sum().item() if self.diff == 'yes': diff_loss=self.diff_loss(shared_out, task_out) else: diff_loss=torch.tensor(0).to(device=self.device, dtype=torch.float32) self.diff_loss_reg=0 # Loss values adv_loss=self.adversarial_loss_d(output_d, t_real_D) task_loss=self.task_loss(output, y) total_loss=task_loss + self.adv_loss_reg * adv_loss + self.diff_loss_reg * diff_loss loss_t+=task_loss loss_a+=adv_loss loss_d+=diff_loss loss_total+=total_loss num+=x.size(0) res['loss_t'], res['acc_t']=loss_t.item() / (batch + 1), 100 * correct_t / num res['loss_a'], res['acc_d']=loss_a.item() / (batch + 1), 100 * correct_d / num res['loss_d']=loss_d.item() / (batch + 1) res['loss_tot']=loss_total.item() / (batch + 1) res['size']=self.loader_size(data_loader) return res def save_all_models(self, task_id): print("Saving all models for task {} ...".format(task_id+1)) dis=utils.get_model(self.discriminator) torch.save({'model_state_dict': dis, }, os.path.join(self.checkpoint, 'discriminator_{}.pth.tar'.format(task_id))) model=utils.get_model(self.model) torch.save({'model_state_dict': model, }, os.path.join(self.checkpoint, 'model_{}.pth.tar'.format(task_id))) def load_model(self, task_id): # Load a previous model net=self.network.Net(self.args) checkpoint=torch.load(os.path.join(self.checkpoint, 'model_{}.pth.tar'.format(task_id))) net.load_state_dict(checkpoint['model_state_dict']) # # Change the previous shared module with the current one current_shared_module=deepcopy(self.model.shared.state_dict()) net.shared.load_state_dict(current_shared_module) net=net.to(self.args.device) return net def load_checkpoint(self, task_id): print("Loading checkpoint for task {} ...".format(task_id)) # Load a previous model net=self.network.Net(self.args) checkpoint=torch.load(os.path.join(self.checkpoint, 'model_{}.pth.tar'.format(task_id))) net.load_state_dict(checkpoint['model_state_dict']) net=net.to(self.args.device) return net def loader_size(self, data_loader): return data_loader.dataset.__len__() def get_tsne_embeddings_first_ten_tasks(self, dataset, model): from tensorboardX import SummaryWriter model.eval() tag_ = '_diff_{}'.format(self.args.diff) all_images, all_shared, all_private = [], [], [] # Test final model on first 10 tasks: writer = SummaryWriter() for t in range(10): for itr, (data, _, tt, td) in enumerate(dataset[t]['tsne']): x = data.to(device=self.device) tt = tt.to(device=self.device) output = model.forward(x, x, tt, t) shared_out, private_out = model.get_encoded_ftrs(x, x, t) all_shared.append(shared_out) all_private.append(private_out) all_images.append(x) print (torch.stack(all_shared).size()) tag = ['Shared10_{}_{}'.format(tag_,i) for i in range(1,11)] writer.add_embedding(mat=torch.stack(all_shared,dim=1).data, label_img=torch.stack(all_images,dim=1).data, metadata=list(range(1,11)), tag=tag)#, metadata_header=list(range(1,11))) tag = ['Private10_{}_{}'.format(tag_, i) for i in range(1, 11)] writer.add_embedding(mat=torch.stack(all_private,dim=1).data, label_img=torch.stack(all_images,dim=1).data, metadata=list(range(1,11)), tag=tag)#,metadata_header=list(range(1,11))) writer.close() def get_tsne_embeddings_last_three_tasks(self, dataset, model): from tensorboardX import SummaryWriter # Test final model on last 3 tasks: model.eval() tag = '_diff_{}'.format(self.args.diff) for t in [17,18,19]: all_images, all_labels, all_shared, all_private = [], [], [], [] writer = SummaryWriter() for itr, (data, target, tt, td) in enumerate(dataset[t]['tsne']): x = data.to(device=self.device) y = target.to(device=self.device, dtype=torch.long) tt = tt.to(device=self.device) output = model.forward(x, x, tt, t) shared_out, private_out = model.get_encoded_ftrs(x, x, t) # print (shared_out.size()) all_shared.append(shared_out) all_private.append(private_out) all_images.append(x) all_labels.append(y) writer.add_embedding(mat=torch.stack(all_shared,dim=1).data, label_img=torch.stack(all_images,dim=1).data, metadata=list(range(1,6)), tag='Shared_{}_{}'.format(t, tag)) # ,metadata_header=list(range(1,6))) writer.add_embedding(mat=torch.stack(all_private,dim=1).data, label_img=torch.stack(all_images,dim=1).data, metadata=list(range(1,6)), tag='Private_{}_{}'.format(t, tag)) # ,metadata_header=list(range(1,6))) writer.close() # class DiffLoss(torch.nn.Module): # From: Domain Separation Networks (https://arxiv.org/abs/1608.06019) # Konstantinos Bousmalis, George Trigeorgis, Nathan Silberman, Dilip Krishnan, Dumitru Erhan def __init__(self): super(DiffLoss, self).__init__() def forward(self, D1, D2): D1=D1.view(D1.size(0), -1) D1_norm=torch.norm(D1, p=2, dim=1, keepdim=True).detach() D1_norm=D1.div(D1_norm.expand_as(D1) + 1e-6) D2=D2.view(D2.size(0), -1) D2_norm=torch.norm(D2, p=2, dim=1, keepdim=True).detach() D2_norm=D2.div(D2_norm.expand_as(D2) + 1e-6) # return torch.mean((D1_norm.mm(D2_norm.t()).pow(2))) return torch.mean((D1_norm.mm(D2_norm.t()).pow(2)))
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os import numpy as np from copy import deepcopy import pickle import time import uuid from subprocess import call ######################################################################################################################## def human_format(num): magnitude=0 while abs(num)>=1000: magnitude+=1 num/=1000.0 return '%.1f%s'%(num,['','K','M','G','T','P'][magnitude]) def report_tr(res, e, sbatch, clock0, clock1): # Training performance print( '| Epoch {:3d}, time={:5.1f}ms/{:5.1f}ms | Train losses={:.3f} | T: loss={:.3f}, acc={:5.2f}% | D: loss={:.3f}, acc={:5.1f}%, ' 'Diff loss:{:.3f} |'.format( e + 1, 1000 * sbatch * (clock1 - clock0) / res['size'], 1000 * sbatch * (time.time() - clock1) / res['size'], res['loss_tot'], res['loss_t'], res['acc_t'], res['loss_a'], res['acc_d'], res['loss_d']), end='') def report_val(res): # Validation performance print(' Valid losses={:.3f} | T: loss={:.6f}, acc={:5.2f}%, | D: loss={:.3f}, acc={:5.2f}%, Diff loss={:.3f} |'.format( res['loss_tot'], res['loss_t'], res['acc_t'], res['loss_a'], res['acc_d'], res['loss_d']), end='') ######################################################################################################################## def get_model(model): return deepcopy(model.state_dict()) ######################################################################################################################## def compute_conv_output_size(Lin,kernel_size,stride=1,padding=0,dilation=1): return int(np.floor((Lin+2*padding-dilation*(kernel_size-1)-1)/float(stride)+1)) ######################################################################################################################## def save_print_log(taskcla, acc, lss, output_path): print('*'*100) print('Accuracies =') for i in range(acc.shape[0]): print('\t',end=',') for j in range(acc.shape[1]): print('{:5.4f}% '.format(acc[i,j]),end=',') print() print ('ACC: {:5.4f}%'.format((np.mean(acc[acc.shape[0]-1,:])))) print() print ('BWD Transfer = ') print () print ("Diagonal R_ii") for i in range(acc.shape[0]): print('\t',end='') print('{:5.2f}% '.format(np.diag(acc)[i]), end=',') print() print ("Last row") for i in range(acc.shape[0]): print('\t', end=',') print('{:5.2f}% '.format(acc[-1][i]), end=',') print() # BWT calculated based on GEM paper (https://arxiv.org/abs/1706.08840) gem_bwt = sum(acc[-1]-np.diag(acc))/ (len(acc[-1])-1) # BWT calculated based on our UCB paper (https://openreview.net/pdf?id=HklUCCVKDB) ucb_bwt = (acc[-1] - np.diag(acc)).mean() print ('BWT: {:5.2f}%'.format(gem_bwt)) # print ('BWT (UCB paper): {:5.2f}%'.format(ucb_bwt)) print('*'*100) print('Done!') logs = {} # save results logs['name'] = output_path logs['taskcla'] = taskcla logs['acc'] = acc logs['loss'] = lss logs['gem_bwt'] = gem_bwt logs['ucb_bwt'] = ucb_bwt logs['rii'] = np.diag(acc) logs['rij'] = acc[-1] # pickle with open(os.path.join(output_path, 'logs.p'), 'wb') as output: pickle.dump(logs, output) print ("Log file saved in ", os.path.join(output_path, 'logs.p')) def print_log_acc_bwt(taskcla, acc, lss, output_path, run_id): print('*'*100) print('Accuracies =') for i in range(acc.shape[0]): print('\t',end=',') for j in range(acc.shape[1]): print('{:5.4f}% '.format(acc[i,j]),end=',') print() avg_acc = np.mean(acc[acc.shape[0]-1,:]) print ('ACC: {:5.4f}%'.format(avg_acc)) print() print() # BWT calculated based on GEM paper (https://arxiv.org/abs/1706.08840) gem_bwt = sum(acc[-1]-np.diag(acc))/ (len(acc[-1])-1) # BWT calculated based on UCB paper (https://arxiv.org/abs/1906.02425) ucb_bwt = (acc[-1] - np.diag(acc)).mean() print ('BWT: {:5.2f}%'.format(gem_bwt)) # print ('BWT (UCB paper): {:5.2f}%'.format(ucb_bwt)) print('*'*100) print('Done!') logs = {} # save results logs['name'] = output_path logs['taskcla'] = taskcla logs['acc'] = acc logs['loss'] = lss logs['gem_bwt'] = gem_bwt logs['ucb_bwt'] = ucb_bwt logs['rii'] = np.diag(acc) logs['rij'] = acc[-1] # pickle path = os.path.join(output_path, 'logs_run_id_{}.p'.format(run_id)) with open(path, 'wb') as output: pickle.dump(logs, output) print ("Log file saved in ", path) return avg_acc, gem_bwt def print_running_acc_bwt(acc, task_num): print() acc = acc[:task_num+1,:task_num+1] avg_acc = np.mean(acc[acc.shape[0] - 1, :]) gem_bwt = sum(acc[-1] - np.diag(acc)) / (len(acc[-1]) - 1) print('ACC: {:5.4f}% || BWT: {:5.2f}% '.format(avg_acc, gem_bwt)) print() def make_directories(args): uid = uuid.uuid4().hex if args.checkpoint is None: os.mkdir('checkpoints') args.checkpoint = os.path.join('./checkpoints/',uid) os.mkdir(args.checkpoint) else: if not os.path.exists(args.checkpoint): os.mkdir(args.checkpoint) args.checkpoint = os.path.join(args.checkpoint, uid) os.mkdir(args.checkpoint) def some_sanity_checks(args): # Making sure the chosen experiment matches with the number of tasks performed in the paper: datasets_tasks = {} datasets_tasks['mnist5']=[5] datasets_tasks['pmnist']=[10,20,30,40] datasets_tasks['cifar100']=[20] datasets_tasks['miniimagenet']=[20] datasets_tasks['multidatasets']=[5] if not args.ntasks in datasets_tasks[args.experiment]: raise Exception("Chosen number of tasks ({}) does not match with {} experiment".format(args.ntasks,args.experiment)) # Making sure if memory usage is happenning: if args.use_memory == 'yes' and not args.samples > 0: raise Exception("Flags required to use memory: --use_memory yes --samples n where n>0") if args.use_memory == 'no' and args.samples > 0: raise Exception("Flags required to use memory: --use_memory yes --samples n where n>0") def save_code(args): cwd = os.getcwd() des = os.path.join(args.checkpoint, 'code') + '/' if not os.path.exists(des): os.mkdir(des) def get_folder(folder): return os.path.join(cwd,folder) folders = [get_folder(item) for item in ['dataloaders', 'networks', 'configs', 'main.py', 'acl.py', 'utils.py']] for folder in folders: call('cp -rf {} {}'.format(folder, des),shell=True) def print_time(): from datetime import datetime # datetime object containing current date and time now = datetime.now() # dd/mm/YY H:M:S dt_string = now.strftime("%d/%m/%Y %H:%M:%S") print("Job finished at =", dt_string)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os,argparse,time import numpy as np from omegaconf import OmegaConf import torch import torch.backends.cudnn as cudnn import torch.optim import torch.utils.data import torch.utils.data.distributed import utils tstart=time.time() # Arguments parser = argparse.ArgumentParser(description='Adversarial Continual Learning...') # Load the config file parser.add_argument('--config', type=str, default='./configs/config_mnist5.yml') flags = parser.parse_args() args = OmegaConf.load(flags.config) print() ######################################################################################################################## # Args -- Experiment if args.experiment=='pmnist': from dataloaders import pmnist as datagenerator elif args.experiment=='mnist5': from dataloaders import mnist5 as datagenerator elif args.experiment=='cifar100': from dataloaders import cifar100 as datagenerator elif args.experiment=='miniimagenet': from dataloaders import miniimagenet as datagenerator elif args.experiment=='multidatasets': from dataloaders import mulitidatasets as datagenerator else: raise NotImplementedError from acl import ACL as approach # Args -- Network if args.experiment == 'mnist5' or args.experiment == 'pmnist': from networks import mlp_acl as network elif args.experiment == 'cifar100' or args.experiment == 'miniimagenet' or args.experiment == 'multidatasets': from networks import alexnet_acl as network else: raise NotImplementedError ######################################################################################################################## def run(args, run_id): np.random.seed(args.seed) torch.manual_seed(args.seed) if torch.cuda.is_available(): torch.cuda.manual_seed(args.seed) # Faster run but not deterministic: # torch.backends.cudnn.benchmark = True # To get deterministic results that match with paper at cost of lower speed: torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False # Data loader print('Instantiate data generators and model...') dataloader = datagenerator.DatasetGen(args) args.taskcla, args.inputsize = dataloader.taskcla, dataloader.inputsize if args.experiment == 'multidatasets': args.lrs = dataloader.lrs # Model net = network.Net(args) net = net.to(args.device) net.print_model_size() # print (net) # Approach appr=approach(net,args,network=network) # Loop tasks acc=np.zeros((len(args.taskcla),len(args.taskcla)),dtype=np.float32) lss=np.zeros((len(args.taskcla),len(args.taskcla)),dtype=np.float32) for t,ncla in args.taskcla: print('*'*250) dataset = dataloader.get(t) print(' '*105, 'Dataset {:2d} ({:s})'.format(t+1,dataset[t]['name'])) print('*'*250) # Train appr.train(t,dataset[t]) print('-'*250) print() for u in range(t+1): # Load previous model and replace the shared module with the current one test_model = appr.load_model(u) test_res = appr.test(dataset[u]['test'], u, model=test_model) print('>>> Test on task {:2d} - {:15s}: loss={:.3f}, acc={:5.1f}% <<<'.format(u, dataset[u]['name'], test_res['loss_t'], test_res['acc_t'])) acc[t, u] = test_res['acc_t'] lss[t, u] = test_res['loss_t'] # Save print() print('Saved accuracies at '+os.path.join(args.checkpoint,args.output)) np.savetxt(os.path.join(args.checkpoint,args.output),acc,'%.6f') # Extract embeddings to plot in tensorboard for miniimagenet if args.tsne == 'yes' and args.experiment == 'miniimagenet': appr.get_tsne_embeddings_first_ten_tasks(dataset, model=appr.load_model(t)) appr.get_tsne_embeddings_last_three_tasks(dataset, model=appr.load_model(t)) avg_acc, gem_bwt = utils.print_log_acc_bwt(args.taskcla, acc, lss, output_path=args.checkpoint, run_id=run_id) return avg_acc, gem_bwt ####################################################################################################################### def main(args): utils.make_directories(args) utils.some_sanity_checks(args) utils.save_code(args) print('=' * 100) print('Arguments =') for arg in vars(args): print('\t' + arg + ':', getattr(args, arg)) print('=' * 100) accuracies, forgetting = [], [] for n in range(args.num_runs): args.seed = n args.output = '{}_{}_tasks_seed_{}.txt'.format(args.experiment, args.ntasks, args.seed) print ("args.output: ", args.output) print (" >>>> Run #", n) acc, bwt = run(args, n) accuracies.append(acc) forgetting.append(bwt) print('*' * 100) print ("Average over {} runs: ".format(args.num_runs)) print ('AVG ACC: {:5.4f}% \pm {:5.4f}'.format(np.array(accuracies).mean(), np.array(accuracies).std())) print ('AVG BWT: {:5.2f}% \pm {:5.4f}'.format(np.array(forgetting).mean(), np.array(forgetting).std())) print ("All Done! ") print('[Elapsed time = {:.1f} min]'.format((time.time()-tstart)/(60))) utils.print_time() ####################################################################################################################### if __name__ == '__main__': main(args)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import print_function from PIL import Image import os import os.path import sys if sys.version_info[0] == 2: import cPickle as pickle else: import pickle import torch.utils.data as data import numpy as np import torch from torchvision import datasets, transforms from utils import * class iCIFAR10(datasets.CIFAR10): def __init__(self, root, classes, memory_classes, memory, task_num, train, transform=None, target_transform=None, download=True): super(iCIFAR10, self).__init__(root, transform=transform, target_transform=target_transform, download=True) self.train = train # training set or test set if not isinstance(classes, list): classes = [classes] self.class_mapping = {c: i for i, c in enumerate(classes)} self.class_indices = {} for cls in classes: self.class_indices[self.class_mapping[cls]] = [] if self.train: train_data = [] train_labels = [] train_tt = [] # task module labels train_td = [] # disctiminator labels for i in range(len(self.data)): if self.targets[i] in classes: train_data.append(self.data[i]) train_labels.append(self.class_mapping[self.targets[i]]) train_tt.append(task_num) train_td.append(task_num+1) self.class_indices[self.class_mapping[self.targets[i]]].append(i) if memory_classes: for task_id in range(task_num): for i in range(len(memory[task_id]['x'])): if memory[task_id]['y'][i] in range(len(memory_classes[task_id])): train_data.append(memory[task_id]['x'][i]) train_labels.append(memory[task_id]['y'][i]) train_tt.append(memory[task_id]['tt'][i]) train_td.append(memory[task_id]['td'][i]) self.train_data = np.array(train_data) self.train_labels = train_labels self.train_tt = train_tt self.train_td = train_td if not self.train: f = self.test_list[0][0] file = os.path.join(self.root, self.base_folder, f) fo = open(file, 'rb') if sys.version_info[0] == 2: entry = pickle.load(fo) else: entry = pickle.load(fo, encoding='latin1') self.test_data = entry['data'] if 'labels' in entry: self.test_labels = entry['labels'] else: self.test_labels = entry['fine_labels'] fo.close() self.test_data = self.test_data.reshape((10000, 3, 32, 32)) self.test_data = self.test_data.transpose((0, 2, 3, 1)) # convert to HWC test_data = [] test_labels = [] test_tt = [] # task module labels test_td = [] # disctiminator labels for i in range(len(self.test_data)): if self.test_labels[i] in classes: test_data.append(self.test_data[i]) test_labels.append(self.class_mapping[self.test_labels[i]]) test_tt.append(task_num) test_td.append(task_num + 1) self.class_indices[self.class_mapping[self.test_labels[i]]].append(i) self.test_data = np.array(test_data) self.test_labels = test_labels self.test_tt = test_tt self.test_td = test_td def __getitem__(self, index): if self.train: img, target, tt, td = self.train_data[index], self.train_labels[index], self.train_tt[index], self.train_td[index] else: img, target, tt, td = self.test_data[index], self.test_labels[index], self.test_tt[index], self.test_td[index] # doing this so that it is consistent with all other datasets # to return a PIL Image try: img = Image.fromarray(img) except: pass try: if self.transform is not None: img = self.transform(img) except: pass try: if self.target_transform is not None: target = self.target_transform(target) except: pass return img, target, tt, td def __len__(self): if self.train: return len(self.train_data) else: return len(self.test_data) class iCIFAR100(iCIFAR10): """`CIFAR100 <https://www.cs.toronto.edu/~kriz/cifar.html>`_ Dataset. This is a subclass of the `CIFAR10` Dataset. """ base_folder = 'cifar-100-python' url = "https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz" filename = "cifar-100-python.tar.gz" tgz_md5 = 'eb9058c3a382ffc7106e4002c42a8d85' train_list = [ ['train', '16019d7e3df5f24257cddd939b257f8d'], ] test_list = [ ['test', 'f0ef6b0ae62326f3e7ffdfab6717acfc'], ] meta = { 'filename': 'meta', 'key': 'fine_label_names', 'md5': '7973b15100ade9c7d40fb424638fde48', } class DatasetGen(object): """docstring for DatasetGen""" def __init__(self, args): super(DatasetGen, self).__init__() self.seed = args.seed self.batch_size=args.batch_size self.pc_valid=args.pc_valid self.root = args.data_dir self.latent_dim = args.latent_dim self.num_tasks = args.ntasks self.num_classes = 100 self.num_samples = args.samples self.inputsize = [3,32,32] mean=[x/255 for x in [125.3,123.0,113.9]] std=[x/255 for x in [63.0,62.1,66.7]] self.transformation = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean, std)]) self.taskcla = [[t, int(self.num_classes/self.num_tasks)] for t in range(self.num_tasks)] self.indices = {} self.dataloaders = {} self.idx={} self.num_workers = args.workers self.pin_memory = True np.random.seed(self.seed) task_ids = np.split(np.random.permutation(self.num_classes),self.num_tasks) self.task_ids = [list(arr) for arr in task_ids] self.train_set = {} self.test_set = {} self.train_split = {} self.task_memory = {} for i in range(self.num_tasks): self.task_memory[i] = {} self.task_memory[i]['x'] = [] self.task_memory[i]['y'] = [] self.task_memory[i]['tt'] = [] self.task_memory[i]['td'] = [] self.use_memory = args.use_memory def get(self, task_id): self.dataloaders[task_id] = {} sys.stdout.flush() if task_id == 0: memory_classes = None memory=None else: memory_classes = self.task_ids memory = self.task_memory self.train_set[task_id] = iCIFAR100(root=self.root, classes=self.task_ids[task_id], memory_classes=memory_classes, memory=memory, task_num=task_id, train=True, download=True, transform=self.transformation) self.test_set[task_id] = iCIFAR100(root=self.root, classes=self.task_ids[task_id], memory_classes=None, memory=None, task_num=task_id, train=False, download=True, transform=self.transformation) split = int(np.floor(self.pc_valid * len(self.train_set[task_id]))) train_split, valid_split = torch.utils.data.random_split(self.train_set[task_id], [len(self.train_set[task_id]) - split, split]) self.train_split[task_id] = train_split train_loader = torch.utils.data.DataLoader(train_split, batch_size=self.batch_size, num_workers=self.num_workers, pin_memory=self.pin_memory,shuffle=True) valid_loader = torch.utils.data.DataLoader(valid_split, batch_size=int(self.batch_size * self.pc_valid), num_workers=self.num_workers, pin_memory=self.pin_memory,shuffle=True) test_loader = torch.utils.data.DataLoader(self.test_set[task_id], batch_size=self.batch_size, num_workers=self.num_workers, pin_memory=self.pin_memory,shuffle=True) self.dataloaders[task_id]['train'] = train_loader self.dataloaders[task_id]['valid'] = valid_loader self.dataloaders[task_id]['test'] = test_loader self.dataloaders[task_id]['name'] = 'CIFAR100-{}-{}'.format(task_id,self.task_ids[task_id]) print ("Training set size: {} images of {}x{}".format(len(train_loader.dataset),self.inputsize[1],self.inputsize[1])) print ("Validation set size: {} images of {}x{}".format(len(valid_loader.dataset),self.inputsize[1],self.inputsize[1])) print ("Train+Val set size: {} images of {}x{}".format(len(valid_loader.dataset)+len(train_loader.dataset),self.inputsize[1],self.inputsize[1])) print ("Test set size: {} images of {}x{}".format(len(test_loader.dataset),self.inputsize[1],self.inputsize[1])) if self.use_memory == 'yes' and self.num_samples > 0 : self.update_memory(task_id) return self.dataloaders def update_memory(self, task_id): num_samples_per_class = self.num_samples // len(self.task_ids[task_id]) mem_class_mapping = {i: i for i, c in enumerate(self.task_ids[task_id])} # Looping over each class in the current task for i in range(len(self.task_ids[task_id])): # Getting all samples for this class data_loader = torch.utils.data.DataLoader(self.train_split[task_id], batch_size=1, num_workers=self.num_workers, pin_memory=self.pin_memory) # Randomly choosing num_samples_per_class for this class randind = torch.randperm(len(data_loader.dataset))[:num_samples_per_class] # Adding the selected samples to memory for ind in randind: self.task_memory[task_id]['x'].append(data_loader.dataset[ind][0]) self.task_memory[task_id]['y'].append(mem_class_mapping[i]) self.task_memory[task_id]['tt'].append(data_loader.dataset[ind][2]) self.task_memory[task_id]['td'].append(data_loader.dataset[ind][3]) print ('Memory updated by adding {} images'.format(len(self.task_memory[task_id]['x'])))
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import print_function import sys if sys.version_info[0] == 2: import cPickle as pickle else: import pickle import torch.utils.data as data import torch.utils.data from .datasets_utils import * from utils import * from torchvision import transforms mean_datasets = { 'CIFAR10': [x/255 for x in [125.3,123.0,113.9]], 'notMNIST': (0.4254,), 'MNIST': (0.1,) , 'SVHN':[0.4377,0.4438,0.4728] , 'FashionMNIST': (0.2190,), } std_datasets = { 'CIFAR10': [x/255 for x in [63.0,62.1,66.7]], 'notMNIST': (0.4501,), 'MNIST': (0.2752,), 'SVHN': [0.198,0.201,0.197], 'FashionMNIST': (0.3318,) } classes_datasets = { 'CIFAR10': 10, 'notMNIST': 10, 'MNIST': 10, 'SVHN': 10, 'FashionMNIST': 10, } lr_datasets = { 'CIFAR10': 0.001, 'notMNIST': 0.01, 'MNIST': 0.01, 'SVHN': 0.001, 'FashionMNIST': 0.01, } gray_datasets = { 'CIFAR10': False, 'notMNIST': True, 'MNIST': True, 'SVHN': False, 'FashionMNIST': True, } class DatasetGen(object): """docstring for DatasetGen""" def __init__(self, args): super(DatasetGen, self).__init__() self.seed = args.seed self.batch_size=args.batch_size self.pc_valid=args.pc_valid self.root = args.data_dir self.latent_dim = args.latent_dim self.num_tasks = args.ntasks self.num_samples = args.samples self.inputsize = [3,32,32] self.indices = {} self.dataloaders = {} self.idx={} self.num_workers = args.workers self.pin_memory = True np.random.seed(self.seed) self.datasets_idx = list(np.random.permutation(self.num_tasks)) print('Task order =', [list(classes_datasets.keys())[item] for item in self.datasets_idx]) self.datasets_names = [list(classes_datasets.keys())[item] for item in self.datasets_idx] self.taskcla = [] self.lrs = [] for i in range(self.num_tasks): t = self.datasets_idx[i] self.taskcla.append([i, list(classes_datasets.values())[t]]) self.lrs.append([i, list(lr_datasets.values())[t]]) print('Learning Rates =', self.lrs) print('taskcla =', self.taskcla) self.train_set = {} self.train_split = {} self.test_set = {} self.args=args self.dataloaders, self.memory_set = {}, {} self.memoryloaders = {} self.dataloaders, self.memory_set, self.indices = {}, {}, {} self.memoryloaders = {} self.saliency_loaders, self.saliency_set = {}, {} for i in range(self.num_tasks): self.dataloaders[i] = {} self.memory_set[i] = {} self.memoryloaders[i] = {} self.indices[i] = {} # self.saliency_set = {} self.saliency_loaders[i] = {} self.download = True self.train_set = {} self.test_set = {} self.train_split = {} self.task_memory = {} for i in range(self.num_tasks): self.task_memory[i] = {} self.task_memory[i]['x'] = [] self.task_memory[i]['y'] = [] self.task_memory[i]['tt'] = [] self.task_memory[i]['td'] = [] self.use_memory = args.use_memory def get_dataset(self, dataset_idx, task_num, num_samples_per_class=False, normalize=True): dataset_name = list(mean_datasets.keys())[dataset_idx] nspc = num_samples_per_class if normalize: transformation = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean_datasets[dataset_name],std_datasets[dataset_name])]) mnist_transformation = transforms.Compose([ transforms.Pad(padding=2, fill=0), transforms.ToTensor(), transforms.Normalize(mean_datasets[dataset_name], std_datasets[dataset_name])]) else: transformation = transforms.Compose([transforms.ToTensor()]) mnist_transformation = transforms.Compose([ transforms.Pad(padding=2, fill=0), transforms.ToTensor(), ]) # target_transormation = transforms.Compose([transforms.ToTensor()]) target_transormation = None if dataset_idx == 0: trainset = CIFAR10_(root=self.root, task_num=task_num, num_samples_per_class=nspc, train=True, download=self.download, target_transform = target_transormation, transform=transformation) testset = CIFAR10_(root=self.root, task_num=task_num, num_samples_per_class=nspc, train=False, download=self.download, target_transform = target_transormation, transform=transformation) if dataset_idx == 1: trainset = notMNIST_(root=self.root, task_num=task_num, num_samples_per_class=nspc, train=True, download=self.download, target_transform = target_transormation, transform=mnist_transformation) testset = notMNIST_(root=self.root, task_num=task_num, num_samples_per_class=nspc, train=False, download=self.download, target_transform = target_transormation, transform=mnist_transformation) if dataset_idx == 2: trainset = MNIST_RGB(root=self.root, train=True, num_samples_per_class=nspc, task_num=task_num, download=self.download, target_transform = target_transormation, transform=mnist_transformation) testset = MNIST_RGB(root=self.root, train=False, num_samples_per_class=nspc, task_num=task_num, download=self.download, target_transform = target_transormation, transform=mnist_transformation) if dataset_idx == 3: trainset = SVHN_(root=self.root, train=True, num_samples_per_class=nspc, task_num=task_num, download=self.download, target_transform = target_transormation, transform=transformation) testset = SVHN_(root=self.root, train=False, num_samples_per_class=nspc, task_num=task_num, download=self.download, target_transform = target_transormation, transform=transformation) if dataset_idx == 4: trainset = FashionMNIST_(root=self.root, num_samples_per_class=nspc, task_num=task_num, train=True, download=self.download, target_transform = target_transormation, transform=mnist_transformation) testset = FashionMNIST_(root=self.root, num_samples_per_class=nspc, task_num=task_num, train=False, download=self.download, target_transform = target_transormation, transform=mnist_transformation) return trainset, testset def get(self, task_id): self.dataloaders[task_id] = {} sys.stdout.flush() current_dataset_idx = self.datasets_idx[task_id] dataset_name = list(mean_datasets.keys())[current_dataset_idx] self.train_set[task_id], self.test_set[task_id] = self.get_dataset(current_dataset_idx,task_id) self.num_classes = classes_datasets[dataset_name] split = int(np.floor(self.pc_valid * len(self.train_set[task_id]))) train_split, valid_split = torch.utils.data.random_split(self.train_set[task_id], [len(self.train_set[task_id]) - split, split]) self.train_split[task_id] = train_split train_loader = torch.utils.data.DataLoader(train_split, batch_size=self.batch_size, num_workers=self.num_workers, pin_memory=self.pin_memory,shuffle=True) valid_loader = torch.utils.data.DataLoader(valid_split, batch_size=int(self.batch_size * self.pc_valid), num_workers=self.num_workers, pin_memory=self.pin_memory,shuffle=True) test_loader = torch.utils.data.DataLoader(self.test_set[task_id], batch_size=self.batch_size, num_workers=self.num_workers, pin_memory=self.pin_memory,shuffle=True) self.dataloaders[task_id]['train'] = train_loader self.dataloaders[task_id]['valid'] = valid_loader self.dataloaders[task_id]['test'] = test_loader self.dataloaders[task_id]['name'] = '{} - {} classes - {} images'.format(dataset_name, classes_datasets[dataset_name], len(self.train_set[task_id])) self.dataloaders[task_id]['classes'] = self.num_classes print ("Training set size: {} images of {}x{}".format(len(train_loader.dataset),self.inputsize[1],self.inputsize[1])) print ("Validation set size: {} images of {}x{}".format(len(valid_loader.dataset),self.inputsize[1],self.inputsize[1])) print ("Train+Val set size: {} images of {}x{}".format(len(valid_loader.dataset)+len(train_loader.dataset),self.inputsize[1],self.inputsize[1])) print ("Test set size: {} images of {}x{}".format(len(test_loader.dataset),self.inputsize[1],self.inputsize[1])) if self.use_memory == 'yes' and self.num_samples > 0 : self.update_memory(task_id) return self.dataloaders def update_memory(self, task_id): num_samples_per_class = self.num_samples // len(self.task_ids[task_id]) mem_class_mapping = {i: i for i, c in enumerate(self.task_ids[task_id])} # Looping over each class in the current task for i in range(len(self.task_ids[task_id])): # Getting all samples for this class data_loader = torch.utils.data.DataLoader(self.train_split[task_id], batch_size=1, num_workers=self.num_workers, pin_memory=self.pin_memory) # Randomly choosing num_samples_per_class for this class randind = torch.randperm(len(data_loader.dataset))[:num_samples_per_class] # Adding the selected samples to memory for ind in randind: self.task_memory[task_id]['x'].append(data_loader.dataset[ind][0]) self.task_memory[task_id]['y'].append(mem_class_mapping[i]) self.task_memory[task_id]['tt'].append(data_loader.dataset[ind][2]) self.task_memory[task_id]['td'].append(data_loader.dataset[ind][3]) print('Memory updated by adding {} images'.format(len(self.task_memory[task_id]['x']))) def report_size(self,dataset_name,task_id): print("Dataset {} size: {} ".format(dataset_name, len(self.train_set[task_id])))
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # https://github.com/pytorch/vision/blob/8635be94d1216f10fb8302da89233bd86445e449/torchvision/datasets/utils.py import os import os.path import hashlib import gzip import errno import tarfile import zipfile import numpy as np import torch import codecs from torch.utils.model_zoo import tqdm def gen_bar_updater(): pbar = tqdm(total=None) def bar_update(count, block_size, total_size): if pbar.total is None and total_size: pbar.total = total_size progress_bytes = count * block_size pbar.update(progress_bytes - pbar.n) return bar_update def calculate_md5(fpath, chunk_size=1024 * 1024): md5 = hashlib.md5() with open(fpath, 'rb') as f: for chunk in iter(lambda: f.read(chunk_size), b''): md5.update(chunk) return md5.hexdigest() def check_md5(fpath, md5, **kwargs): return md5 == calculate_md5(fpath, **kwargs) def check_integrity(fpath, md5=None): if not os.path.isfile(fpath): return False if md5 is None: return True return check_md5(fpath, md5) def makedir_exist_ok(dirpath): """ Python2 support for os.makedirs(.., exist_ok=True) """ try: os.makedirs(dirpath) except OSError as e: if e.errno == errno.EEXIST: pass else: raise def download_url(url, root, filename=None, md5=None): """Download a file from a url and place it in root. Args: url (str): URL to download file from root (str): Directory to place downloaded file in filename (str, optional): Name to save the file under. If None, use the basename of the URL md5 (str, optional): MD5 checksum of the download. If None, do not check """ from six.moves import urllib root = os.path.expanduser(root) if not filename: filename = os.path.basename(url) fpath = os.path.join(root, filename) makedir_exist_ok(root) # downloads file if check_integrity(fpath, md5): print('Using downloaded and verified file: ' + fpath) else: try: print('Downloading ' + url + ' to ' + fpath) urllib.request.urlretrieve( url, fpath, reporthook=gen_bar_updater() ) except (urllib.error.URLError, IOError) as e: if url[:5] == 'https': url = url.replace('https:', 'http:') print('Failed download. Trying https -> http instead.' ' Downloading ' + url + ' to ' + fpath) urllib.request.urlretrieve( url, fpath, reporthook=gen_bar_updater() ) else: raise e def list_dir(root, prefix=False): """List all directories at a given root Args: root (str): Path to directory whose folders need to be listed prefix (bool, optional): If true, prepends the path to each result, otherwise only returns the name of the directories found """ root = os.path.expanduser(root) directories = list( filter( lambda p: os.path.isdir(os.path.join(root, p)), os.listdir(root) ) ) if prefix is True: directories = [os.path.join(root, d) for d in directories] return directories def list_files(root, suffix, prefix=False): """List all files ending with a suffix at a given root Args: root (str): Path to directory whose folders need to be listed suffix (str or tuple): Suffix of the files to match, e.g. '.png' or ('.jpg', '.png'). It uses the Python "str.endswith" method and is passed directly prefix (bool, optional): If true, prepends the path to each result, otherwise only returns the name of the files found """ root = os.path.expanduser(root) files = list( filter( lambda p: os.path.isfile(os.path.join(root, p)) and p.endswith(suffix), os.listdir(root) ) ) if prefix is True: files = [os.path.join(root, d) for d in files] return files def download_file_from_google_drive(file_id, root, filename=None, md5=None): """Download a Google Drive file from and place it in root. Args: file_id (str): id of file to be downloaded root (str): Directory to place downloaded file in filename (str, optional): Name to save the file under. If None, use the id of the file. md5 (str, optional): MD5 checksum of the download. If None, do not check """ # Based on https://stackoverflow.com/questions/38511444/python-download-files-from-google-drive-using-url import requests url = "https://docs.google.com/uc?export=download" root = os.path.expanduser(root) if not filename: filename = file_id fpath = os.path.join(root, filename) makedir_exist_ok(root) if os.path.isfile(fpath) and check_integrity(fpath, md5): print('Using downloaded and verified file: ' + fpath) else: session = requests.Session() response = session.get(url, params={'id': file_id}, stream=True) token = _get_confirm_token(response) if token: params = {'id': file_id, 'confirm': token} response = session.get(url, params=params, stream=True) _save_response_content(response, fpath) def _get_confirm_token(response): for key, value in response.cookies.items(): if key.startswith('download_warning'): return value return None def _save_response_content(response, destination, chunk_size=32768): with open(destination, "wb") as f: pbar = tqdm(total=None) progress = 0 for chunk in response.iter_content(chunk_size): if chunk: # filter out keep-alive new chunks f.write(chunk) progress += len(chunk) pbar.update(progress - pbar.n) pbar.close() def _is_tar(filename): return filename.endswith(".tar") def _is_targz(filename): return filename.endswith(".tar.gz") def _is_gzip(filename): return filename.endswith(".gz") and not filename.endswith(".tar.gz") def _is_zip(filename): return filename.endswith(".zip") def extract_archive(from_path, to_path=None, remove_finished=False): if to_path is None: to_path = os.path.dirname(from_path) if _is_tar(from_path): with tarfile.open(from_path, 'r') as tar: tar.extractall(path=to_path) elif _is_targz(from_path): with tarfile.open(from_path, 'r:gz') as tar: tar.extractall(path=to_path) elif _is_gzip(from_path): to_path = os.path.join(to_path, os.path.splitext(os.path.basename(from_path))[0]) with open(to_path, "wb") as out_f, gzip.GzipFile(from_path) as zip_f: out_f.write(zip_f.read()) elif _is_zip(from_path): with zipfile.ZipFile(from_path, 'r') as z: z.extractall(to_path) else: raise ValueError("Extraction of {} not supported".format(from_path)) if remove_finished: os.remove(from_path) def download_and_extract_archive(url, download_root, extract_root=None, filename=None, md5=None, remove_finished=False): download_root = os.path.expanduser(download_root) if extract_root is None: extract_root = download_root if not filename: filename = os.path.basename(url) download_url(url, download_root, filename, md5) archive = os.path.join(download_root, filename) print("Extracting {} to {}".format(archive, extract_root)) extract_archive(archive, extract_root, remove_finished) def iterable_to_str(iterable): return "'" + "', '".join([str(item) for item in iterable]) + "'" def verify_str_arg(value, arg=None, valid_values=None, custom_msg=None): if not isinstance(value, torch._six.string_classes): if arg is None: msg = "Expected type str, but got type {type}." else: msg = "Expected type str for argument {arg}, but got type {type}." msg = msg.format(type=type(value), arg=arg) raise ValueError(msg) if valid_values is None: return value if value not in valid_values: if custom_msg is not None: msg = custom_msg else: msg = ("Unknown value '{value}' for argument {arg}. " "Valid values are {{{valid_values}}}.") msg = msg.format(value=value, arg=arg, valid_values=iterable_to_str(valid_values)) raise ValueError(msg) return value def get_int(b): return int(codecs.encode(b, 'hex'), 16) def open_maybe_compressed_file(path): """Return a file object that possibly decompresses 'path' on the fly. Decompression occurs when argument `path` is a string and ends with '.gz' or '.xz'. """ if not isinstance(path, torch._six.string_classes): return path if path.endswith('.gz'): import gzip return gzip.open(path, 'rb') if path.endswith('.xz'): import lzma return lzma.open(path, 'rb') return open(path, 'rb') def read_sn3_pascalvincent_tensor(path, strict=True): """Read a SN3 file in "Pascal Vincent" format (Lush file 'libidx/idx-io.lsh'). Argument may be a filename, compressed filename, or file object. """ # typemap if not hasattr(read_sn3_pascalvincent_tensor, 'typemap'): read_sn3_pascalvincent_tensor.typemap = { 8: (torch.uint8, np.uint8, np.uint8), 9: (torch.int8, np.int8, np.int8), 11: (torch.int16, np.dtype('>i2'), 'i2'), 12: (torch.int32, np.dtype('>i4'), 'i4'), 13: (torch.float32, np.dtype('>f4'), 'f4'), 14: (torch.float64, np.dtype('>f8'), 'f8')} # read with open_maybe_compressed_file(path) as f: data = f.read() # parse magic = get_int(data[0:4]) nd = magic % 256 ty = magic // 256 assert nd >= 1 and nd <= 3 assert ty >= 8 and ty <= 14 m = read_sn3_pascalvincent_tensor.typemap[ty] s = [get_int(data[4 * (i + 1): 4 * (i + 2)]) for i in range(nd)] parsed = np.frombuffer(data, dtype=m[1], offset=(4 * (nd + 1))) assert parsed.shape[0] == np.prod(s) or not strict return torch.from_numpy(parsed.astype(m[2], copy=False)).view(*s) def read_label_file(path): with open(path, 'rb') as f: x = read_sn3_pascalvincent_tensor(f, strict=False) assert(x.dtype == torch.uint8) assert(x.ndimension() == 1) return x.long() def read_image_file(path): with open(path, 'rb') as f: x = read_sn3_pascalvincent_tensor(f, strict=False) assert(x.dtype == torch.uint8) assert(x.ndimension() == 3) return x
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import print_function from PIL import Image import os import os.path import sys if sys.version_info[0] == 2: import cPickle as pickle else: import pickle import torch.utils.data as data import numpy as np import torch from torchvision import transforms from utils import * class MiniImageNet(torch.utils.data.Dataset): def __init__(self, root, train): super(MiniImageNet, self).__init__() if train: self.name='train' else: self.name='test' root = os.path.join(root, 'miniimagenet') with open(os.path.join(root,'{}.pkl'.format(self.name)), 'rb') as f: data_dict = pickle.load(f) self.data = data_dict['images'] self.labels = data_dict['labels'] def __len__(self): return len(self.data) def __getitem__(self, i): img, label = self.data[i], self.labels[i] return img, label class iMiniImageNet(MiniImageNet): def __init__(self, root, classes, memory_classes, memory, task_num, train, transform=None): super(iMiniImageNet, self).__init__(root=root, train=train) self.transform = transform if not isinstance(classes, list): classes = [classes] self.class_mapping = {c: i for i, c in enumerate(classes)} self.class_indices = {} for cls in classes: self.class_indices[self.class_mapping[cls]] = [] data = [] labels = [] tt = [] # task module labels td = [] # disctiminator labels for i in range(len(self.data)): if self.labels[i] in classes: data.append(self.data[i]) labels.append(self.class_mapping[self.labels[i]]) tt.append(task_num) td.append(task_num+1) self.class_indices[self.class_mapping[self.labels[i]]].append(i) if memory_classes: for task_id in range(task_num): for i in range(len(memory[task_id]['x'])): if memory[task_id]['y'][i] in range(len(memory_classes[task_id])): data.append(memory[task_id]['x'][i]) labels.append(memory[task_id]['y'][i]) tt.append(memory[task_id]['tt'][i]) td.append(memory[task_id]['td'][i]) self.data = np.array(data) self.labels = labels self.tt = tt self.td = td def __getitem__(self, index): img, target, tt, td = self.data[index], self.labels[index], self.tt[index], self.td[index] # doing this so that it is consistent with all other datasets # to return a PIL Image if not torch.is_tensor(img): img = Image.fromarray(img) img = self.transform(img) return img, target, tt, td def __len__(self): return len(self.data) class DatasetGen(object): """docstring for DatasetGen""" def __init__(self, args): super(DatasetGen, self).__init__() self.seed = args.seed self.batch_size=args.batch_size self.pc_valid=args.pc_valid self.root = args.data_dir self.latent_dim = args.latent_dim self.use_memory = args.use_memory self.num_tasks = args.ntasks self.num_classes = 100 self.num_samples = args.samples self.inputsize = [3,84,84] mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] self.transformation = transforms.Compose([ transforms.Resize((84,84)), transforms.ToTensor(), transforms.Normalize(mean=mean, std=std)]) self.taskcla = [[t, int(self.num_classes/self.num_tasks)] for t in range(self.num_tasks)] self.indices = {} self.dataloaders = {} self.idx={} self.num_workers = args.workers self.pin_memory = True np.random.seed(self.seed) task_ids = np.split(np.random.permutation(self.num_classes),self.num_tasks) self.task_ids = [list(arr) for arr in task_ids] self.train_set = {} self.train_split = {} self.test_set = {} self.task_memory = {} for i in range(self.num_tasks): self.task_memory[i] = {} self.task_memory[i]['x'] = [] self.task_memory[i]['y'] = [] self.task_memory[i]['tt'] = [] self.task_memory[i]['td'] = [] def get(self, task_id): self.dataloaders[task_id] = {} sys.stdout.flush() if task_id == 0: memory_classes = None memory=None else: memory_classes = self.task_ids memory = self.task_memory self.train_set[task_id] = iMiniImageNet(root=self.root, classes=self.task_ids[task_id], memory_classes=memory_classes, memory=memory, task_num=task_id, train=True, transform=self.transformation) self.test_set[task_id] = iMiniImageNet(root=self.root, classes=self.task_ids[task_id], memory_classes=None, memory=None, task_num=task_id, train=False, transform=self.transformation) split = int(np.floor(self.pc_valid * len(self.train_set[task_id]))) train_split, valid_split = torch.utils.data.random_split(self.train_set[task_id], [len(self.train_set[task_id]) - split, split]) self.train_split[task_id] = train_split train_loader = torch.utils.data.DataLoader(train_split, batch_size=self.batch_size, num_workers=self.num_workers, pin_memory=self.pin_memory,shuffle=True) valid_loader = torch.utils.data.DataLoader(valid_split, batch_size=int(self.batch_size * self.pc_valid), num_workers=self.num_workers, pin_memory=self.pin_memory,shuffle=True) test_loader = torch.utils.data.DataLoader(self.test_set[task_id], batch_size=self.batch_size, num_workers=self.num_workers, pin_memory=self.pin_memory, shuffle=True) self.dataloaders[task_id]['train'] = train_loader self.dataloaders[task_id]['valid'] = valid_loader self.dataloaders[task_id]['test'] = test_loader self.dataloaders[task_id]['name'] = 'iMiniImageNet-{}-{}'.format(task_id,self.task_ids[task_id]) self.dataloaders[task_id]['tsne'] = torch.utils.data.DataLoader(self.test_set[task_id], batch_size=len(test_loader.dataset), num_workers=self.num_workers, pin_memory=self.pin_memory, shuffle=True) print ("Task ID: ", task_id) print ("Training set size: {} images of {}x{}".format(len(train_loader.dataset),self.inputsize[1],self.inputsize[1])) print ("Validation set size: {} images of {}x{}".format(len(valid_loader.dataset),self.inputsize[1],self.inputsize[1])) print ("Train+Val set size: {} images of {}x{}".format(len(valid_loader.dataset)+len(train_loader.dataset),self.inputsize[1],self.inputsize[1])) print ("Test set size: {} images of {}x{}".format(len(test_loader.dataset),self.inputsize[1],self.inputsize[1])) if self.use_memory == 'yes' and self.num_samples > 0 : self.update_memory(task_id) return self.dataloaders def update_memory(self, task_id): num_samples_per_class = self.num_samples // len(self.task_ids[task_id]) mem_class_mapping = {i: i for i, c in enumerate(self.task_ids[task_id])} for i in range(len(self.task_ids[task_id])): data_loader = torch.utils.data.DataLoader(self.train_split[task_id], batch_size=1, num_workers=self.num_workers, pin_memory=self.pin_memory) randind = torch.randperm(len(data_loader.dataset))[:num_samples_per_class] # randomly sample some data for ind in randind: self.task_memory[task_id]['x'].append(data_loader.dataset[ind][0]) self.task_memory[task_id]['y'].append(mem_class_mapping[i]) self.task_memory[task_id]['tt'].append(data_loader.dataset[ind][2]) self.task_memory[task_id]['td'].append(data_loader.dataset[ind][3]) print ('Memory updated by adding {} images'.format(len(self.task_memory[task_id]['x'])))
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import print_function from PIL import Image import torch import numpy as np import os.path import sys import torch.utils.data as data from torchvision import datasets, transforms class iMNIST(datasets.MNIST): def __init__(self, root, classes, memory_classes, memory, task_num, train, transform=None, target_transform=None, download=True): super(iMNIST, self).__init__(root, task_num, transform=transform, target_transform=target_transform, download=download) self.train = train # training set or test set self.root = root self.target_transform=target_transform self.transform=transform if download: self.download() if not self._check_exists(): raise RuntimeError('Dataset not found.' + ' You can use download=True to download it') if self.train: data_file = self.training_file else: data_file = self.test_file self.data, self.targets = torch.load(os.path.join(self.processed_folder, data_file)) self.data=np.array(self.data).astype(np.float32) self.targets=list(np.array(self.targets)) self.train = train # training set or test set if not isinstance(classes, list): classes = [classes] self.class_mapping = {c: i for i, c in enumerate(classes)} self.class_indices = {} for cls in classes: self.class_indices[self.class_mapping[cls]] = [] data = [] targets = [] tt = [] # task module labels td = [] # discriminator labels for i in range(len(self.data)): if self.targets[i] in classes: data.append(self.data[i]) targets.append(self.class_mapping[self.targets[i]]) tt.append(task_num) td.append(task_num+1) self.class_indices[self.class_mapping[self.targets[i]]].append(i) if self.train: if memory_classes: for task_id in range(task_num): for i in range(len(memory[task_id]['x'])): if memory[task_id]['y'][i] in range(len(memory_classes[task_id])): data.append(memory[task_id]['x'][i]) targets.append(memory[task_id]['y'][i]) tt.append(memory[task_id]['tt'][i]) td.append(memory[task_id]['td'][i]) self.data = data.copy() self.targets = targets.copy() self.tt = tt.copy() self.td = td.copy() def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ img, target, tt, td = self.data[index], int(self.targets[index]), self.tt[index], self.td[index] # doing this so that it is consistent with all other datasets # to return a PIL Image try: img = Image.fromarray(img.numpy(), mode='L') except: pass try: if self.transform is not None: img = self.transform(img) except: pass try: if self.target_transform is not None: tt = self.target_transform(tt) if self.target_transform is not None: td = self.target_transform(td) except: pass return img, target, tt, td def __len__(self): return len(self.data) class DatasetGen(object): """docstring for DatasetGen""" def __init__(self, args): super(DatasetGen, self).__init__() self.seed = args.seed self.batch_size=args.batch_size self.pc_valid=args.pc_valid self.root = args.data_dir self.latent_dim = args.latent_dim self.num_tasks = args.ntasks self.num_classes = 10 self.num_samples = args.samples self.inputsize = [1,28,28] mean = (0.1307,) std = (0.3081,) self.transformation = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean, std)]) self.taskcla = [[t, int(self.num_classes/self.num_tasks)] for t in range(self.num_tasks)] self.indices = {} self.dataloaders = {} self.idx={} self.num_workers = args.workers self.pin_memory = True np.random.seed(self.seed) self.task_ids = [[0,1], [2,3], [4,5], [6,7], [8,9]] self.train_set = {} self.test_set = {} self.task_memory = {} for i in range(self.num_tasks): self.task_memory[i] = {} self.task_memory[i]['x'] = [] self.task_memory[i]['y'] = [] self.task_memory[i]['tt'] = [] self.task_memory[i]['td'] = [] def get(self, task_id): self.dataloaders[task_id] = {} sys.stdout.flush() if task_id == 0: memory_classes = None memory=None else: memory_classes = self.task_ids memory = self.task_memory self.train_set[task_id] = iMNIST(root=self.root, classes=self.task_ids[task_id], memory_classes=memory_classes, memory=memory, task_num=task_id, train=True, download=True, transform=self.transformation) self.test_set[task_id] = iMNIST(root=self.root, classes=self.task_ids[task_id], memory_classes=None, memory=None, task_num=task_id, train=False, download=True, transform=self.transformation) split = int(np.floor(self.pc_valid * len(self.train_set[task_id]))) train_split, valid_split = torch.utils.data.random_split(self.train_set[task_id], [len(self.train_set[task_id]) - split, split]) train_loader = torch.utils.data.DataLoader(train_split, batch_size=self.batch_size, num_workers=self.num_workers, pin_memory=self.pin_memory, drop_last=True,shuffle=True) valid_loader = torch.utils.data.DataLoader(valid_split, batch_size=int(self.batch_size * self.pc_valid),shuffle=True, num_workers=self.num_workers, pin_memory=self.pin_memory, drop_last=True) test_loader = torch.utils.data.DataLoader(self.test_set[task_id], batch_size=self.batch_size, num_workers=self.num_workers, pin_memory=self.pin_memory, drop_last=True,shuffle=True) self.dataloaders[task_id]['train'] = train_loader self.dataloaders[task_id]['valid'] = valid_loader self.dataloaders[task_id]['test'] = test_loader self.dataloaders[task_id]['name'] = '5Split-MNIST-{}-{}'.format(task_id,self.task_ids[task_id]) print ("Training set size: {} images of {}x{}".format(len(train_loader.dataset),self.inputsize[1],self.inputsize[1])) print ("Validation set size: {} images of {}x{}".format(len(valid_loader.dataset),self.inputsize[1],self.inputsize[1])) print ("Test set size: {} images of {}x{}".format(len(test_loader.dataset),self.inputsize[1],self.inputsize[1])) return self.dataloaders def update_memory(self, task_id): num_samples_per_class = self.num_samples // len(self.task_ids[task_id]) mem_class_mapping = {i: i for i, c in enumerate(self.task_ids[task_id])} # Looping over each class in the current task for i in range(len(self.task_ids[task_id])): dataset = iMNIST(root=self.root, classes=self.task_ids[task_id][i], memory_classes=None, memory=None, task_num=task_id, train=True, download=True, transform=self.transformation) data_loader = torch.utils.data.DataLoader(dataset, shuffle=True, batch_size=1, num_workers=self.num_workers, pin_memory=self.pin_memory) # Randomly choosing num_samples_per_class for this class randind = torch.randperm(len(data_loader.dataset))[:num_samples_per_class] # Adding the selected samples to memory for ind in randind: self.task_memory[task_id]['x'].append(data_loader.dataset[ind][0]) self.task_memory[task_id]['y'].append(mem_class_mapping[i]) self.task_memory[task_id]['tt'].append(data_loader.dataset[ind][2]) self.task_memory[task_id]['td'].append(data_loader.dataset[ind][3])
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch import sys, os import numpy as np from PIL import Image import torch.utils.data as data from torchvision import datasets, transforms from sklearn.utils import shuffle from utils import * class PermutedMNIST(datasets.MNIST): def __init__(self, root, task_num, train=True, permute_idx=None, transform=None): super(PermutedMNIST, self).__init__(root, train, download=True) if self.train: data_file = self.training_file else: data_file = self.test_file self.data, self.targets = torch.load(os.path.join(self.processed_folder, data_file)) self.data = torch.stack([img.float().view(-1)[permute_idx] for img in self.data]) self.tl = (task_num) * torch.ones(len(self.data),dtype=torch.long) self.td = (task_num+1) * torch.ones(len(self.data),dtype=torch.long) def __getitem__(self, index): img, target, tl, td = self.data[index], self.targets[index], self.tl[index], self.td[index] if self.transform is not None: img = self.transform(img) if self.target_transform is not None: print ("We are transforming") target = self.target_transform(target) return img, target, tl, td def __len__(self): return self.data.size(0) class DatasetGen(object): def __init__(self, args): super(DatasetGen, self).__init__() self.seed = args.seed self.batch_size=args.batch_size self.pc_valid=args.pc_valid self.num_samples = args.samples self.num_tasks = args.ntasks self.root = args.data_dir self.use_memory = args.use_memory self.inputsize = [1, 28, 28] mean = (0.1307,) std = (0.3081,) self.transformation = transforms.Compose([transforms.ToTensor(),transforms.Normalize(mean, std)]) self.taskcla = [[t, 10] for t in range(self.num_tasks)] self.train_set, self.test_set = {}, {} self.indices = {} self.dataloaders = {} self.idx={} self.get_idx() self.pin_memory = True self.num_workers = args.workers self.task_memory = [] def get(self, task_id): self.dataloaders[task_id] = {} sys.stdout.flush() if task_id == 0: self.train_set[task_id] = PermutedMNIST(root=self.root, task_num=task_id, train=True, permute_idx=self.idx[task_id], transform=self.transformation) if self.use_memory == 'yes' and self.num_samples > 0: indices=torch.randperm(len(self.train_set[task_id]))[:self.num_samples] rand_subset=torch.utils.data.Subset(self.train_set[task_id], indices) self.task_memory.append(rand_subset) else: if self.use_memory == 'yes' and self.num_samples > 0: current_dataset = PermutedMNIST(root=self.root, task_num=task_id, train=True, permute_idx=self.idx[task_id], transform=self.transformation) d = [] d.append(current_dataset) for m in self.task_memory: d.append(m) self.train_set[task_id] = torch.utils.data.ConcatDataset(d) indices=torch.randperm(len(current_dataset))[:self.num_samples] rand_subset=torch.utils.data.Subset(current_dataset, indices) self.task_memory.append(rand_subset) else: self.train_set[task_id] = PermutedMNIST(root=self.root, task_num=task_id, train=True, permute_idx=self.idx[task_id], transform=self.transformation) self.test_set[task_id] = PermutedMNIST(root=self.root, task_num=task_id, train=False, permute_idx=self.idx[task_id], transform=self.transformation) split = int(np.floor(self.pc_valid * len(self.train_set[task_id]))) train_split, valid_split = torch.utils.data.random_split(self.train_set[task_id], [len(self.train_set[task_id]) - split, split]) train_loader = torch.utils.data.DataLoader(train_split, batch_size=self.batch_size, num_workers=self.num_workers, pin_memory=self.pin_memory,shuffle=True) valid_loader = torch.utils.data.DataLoader(valid_split, batch_size=self.batch_size, num_workers=self.num_workers, pin_memory=self.pin_memory,shuffle=True) test_loader = torch.utils.data.DataLoader(self.test_set[task_id], batch_size=self.batch_size, num_workers=self.num_workers, pin_memory=self.pin_memory,shuffle=True) self.dataloaders[task_id]['train'] = train_loader self.dataloaders[task_id]['valid'] = valid_loader self.dataloaders[task_id]['test'] = test_loader self.dataloaders[task_id]['name'] = 'pmnist-{}'.format(task_id+1) print ("Training set size: {} images of {}x{}".format(len(train_loader.dataset),self.inputsize[1],self.inputsize[1])) print ("Validation set size: {} images of {}x{}".format(len(valid_loader.dataset),self.inputsize[1],self.inputsize[1])) print ("Train+Val set size: {} images of {}x{}".format(len(valid_loader.dataset)+len(train_loader.dataset),self.inputsize[1],self.inputsize[1])) print ("Test set size: {} images of {}x{}".format(len(test_loader.dataset),self.inputsize[1],self.inputsize[1])) return self.dataloaders def get_idx(self): for i in range(len(self.taskcla)): idx = list(range(self.inputsize[1] * self.inputsize[2])) self.idx[i] = shuffle(idx, random_state=self.seed * 100 + i)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import print_function import os.path import sys import warnings import urllib.request if sys.version_info[0] == 2: import cPickle as pickle else: import pickle import torch.utils.data as data import numpy as np import torch from torchvision import datasets, transforms from .utils import * # from scipy.imageio import imread import pandas as pd import os import torch from PIL import Image import scipy.io as sio from collections import defaultdict from itertools import chain from collections import OrderedDict class CIFAR10_(datasets.CIFAR10): base_folder = 'cifar-10-batches-py' url = "https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz" filename = "cifar-10-python.tar.gz" tgz_md5 = 'c58f30108f718f92721af3b95e74349a' train_list = [ ['data_batch_1', 'c99cafc152244af753f735de768cd75f'], ['data_batch_2', 'd4bba439e000b95fd0a9bffe97cbabec'], ['data_batch_3', '54ebc095f3ab1f0389bbae665268c751'], ['data_batch_4', '634d18415352ddfa80567beed471001a'], ['data_batch_5', '482c414d41f54cd18b22e5b47cb7c3cb'], ] test_list = [ ['test_batch', '40351d587109b95175f43aff81a1287e'], ] meta = { 'filename': 'batches.meta', 'key': 'label_names', 'md5': '5ff9c542aee3614f3951f8cda6e48888', } num_classes = 10 def __init__(self, root, task_num, num_samples_per_class, train, transform, target_transform, download=True): # root, task_num, train, transform = None, download = False): super(CIFAR10_, self).__init__(root, task_num, transform=transform, target_transform=target_transform, download=download) # print(self.train) # self.train = train # training set or test set self.train = train # training set or test set self.transform = transform self.target_transform=target_transform if download: self.download() if not self._check_integrity(): raise RuntimeError('Dataset not found or corrupted.' + ' You can use download=True to download it') if self.train: downloaded_list = self.train_list else: downloaded_list = self.test_list if not num_samples_per_class: self.data = [] self.targets = [] # now load the picked numpy arrays for file_name, checksum in downloaded_list: file_path = os.path.join(self.root, self.base_folder, file_name) with open(file_path, 'rb') as f: if sys.version_info[0] == 2: entry = pickle.load(f) else: entry = pickle.load(f, encoding='latin1') self.data.append(entry['data']) if 'labels' in entry: self.targets.extend(entry['labels']) else: self.targets.extend(entry['fine_labels']) else: x, y, tt, td = [], [], [], [] for l in range(self.num_classes): indices_with_label_l = np.where(np.array(self.targets)==l) x_with_label_l = [self.data[item] for item in indices_with_label_l[0]] y_with_label_l = [l]*len(x_with_label_l) # If we need a subset of the dataset with num_samples_per_class we use this and then concatenate it with a complete dataset shuffled_indices = np.random.permutation(len(x_with_label_l))[:num_samples_per_class] x_with_label_l = [x_with_label_l[item] for item in shuffled_indices] y_with_label_l = [y_with_label_l[item] for item in shuffled_indices] x.append(x_with_label_l) y.append(y_with_label_l) self.data = np.array(sum(x,[])) self.targets = sum(y,[]) self.data = np.vstack(self.data).reshape(-1, 3, 32, 32) self.data = self.data.transpose((0, 2, 3, 1)) # convert to HWC self.tt = [task_num for _ in range(len(self.data))] self.td = [task_num + 1 for _ in range(len(self.data))] self._load_meta() def __getitem__(self, index): img, target, tt, td = self.data[index], self.targets[index], self.tt[index], self.td[index] # doing this so that it is consistent with all other datasets # to return a PIL Image try: img = Image.fromarray(img) except: pass try: if self.transform is not None: img = self.transform(img) except: pass try: if self.target_transform is not None: tt = self.target_transform(tt) if self.target_transform is not None: td = self.target_transform(td) except: pass return img, target, tt, td def __len__(self): # if self.train: return len(self.data) # else: # return len(self.test_data) def report_size(self): print("CIFAR10 size at train={} time: {} ".format(self.train,self.__len__())) def _load_meta(self): path = os.path.join(self.root, self.base_folder, self.meta['filename']) if not check_integrity(path, self.meta['md5']): raise RuntimeError('Dataset metadata file not found or corrupted.' + ' You can use download=True to download it') with open(path, 'rb') as infile: if sys.version_info[0] == 2: data = pickle.load(infile) else: data = pickle.load(infile, encoding='latin1') self.classes = data[self.meta['key']] self.class_to_idx = {_class: i for i, _class in enumerate(self.classes)} class CIFAR100_(CIFAR10_): """`CIFAR100 <https://www.cs.toronto.edu/~kriz/cifar.html>`_ Dataset. This is a subclass of the `CIFAR10` Dataset. """ base_folder = 'cifar-100-python' url = "https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz" filename = "cifar-100-python.tar.gz" tgz_md5 = 'eb9058c3a382ffc7106e4002c42a8d85' train_list = [ ['train', '16019d7e3df5f24257cddd939b257f8d'], ] test_list = [ ['test', 'f0ef6b0ae62326f3e7ffdfab6717acfc'], ] meta = { 'filename': 'meta', 'key': 'fine_label_names', 'md5': '7973b15100ade9c7d40fb424638fde48', } num_classes = 100 class SVHN_(torch.utils.data.Dataset): url = "" filename = "" file_md5 = "" split_list = { 'train': ["http://ufldl.stanford.edu/housenumbers/train_32x32.mat", "train_32x32.mat", "e26dedcc434d2e4c54c9b2d4a06d8373"], 'test': ["http://ufldl.stanford.edu/housenumbers/test_32x32.mat", "test_32x32.mat", "eb5a983be6a315427106f1b164d9cef3"], 'extra': ["http://ufldl.stanford.edu/housenumbers/extra_32x32.mat", "extra_32x32.mat", "a93ce644f1a588dc4d68dda5feec44a7"]} def __init__(self, root, task_num, num_samples_per_class, train,transform=None, target_transform=None, download=True): self.root = os.path.expanduser(root) # root, task_num, train, transform = None, download = False): # print(self.train) # self.train = train # training set or test set self.train = train # training set or test set self.transform = transform self.target_transform=target_transform if self.train: split="train" else: split="test" self.num_classes = 10 self.split = verify_str_arg(split, "split", tuple(self.split_list.keys())) self.url = self.split_list[split][0] self.filename = self.split_list[split][1] self.file_md5 = self.split_list[split][2] if download: self.download() if not self._check_integrity(): raise RuntimeError('Dataset not found or corrupted.' + ' You can use download=True to download it') # import here rather than at top of file because this is # an optional dependency for torchvision import scipy.io as sio # reading(loading) mat file as array loaded_mat = sio.loadmat(os.path.join(self.root, self.filename)) self.data = loaded_mat['X'] # loading from the .mat file gives an np array of type np.uint8 # converting to np.int64, so that we have a LongTensor after # the conversion from the numpy array # the squeeze is needed to obtain a 1D tensor self.targets = loaded_mat['y'].astype(np.int64).squeeze() self.data = np.transpose(self.data, (3, 2, 0, 1)) if num_samples_per_class: x, y, tt, td = [], [], [], [] for l in range(self.num_classes+1): indices_with_label_l = np.where(np.array(self.targets)==l) x_with_label_l = [self.data[item] for item in indices_with_label_l[0]] y_with_label_l = [l]*len(x_with_label_l) # If we need a subset of the dataset with num_samples_per_class we use this and then concatenate it with a complete dataset shuffled_indices = np.random.permutation(len(x_with_label_l))[:num_samples_per_class] x_with_label_l = [x_with_label_l[item] for item in shuffled_indices] y_with_label_l = [y_with_label_l[item] for item in shuffled_indices] x.append(x_with_label_l) y.append(y_with_label_l) self.data = np.array(sum(x,[])) self.targets = np.array(sum(y,[])).astype(np.int64) # the svhn dataset assigns the class label "10" to the digit 0 # this makes it inconsistent with several loss functions # which expect the class labels to be in the range [0, C-1] np.place(self.targets, self.targets == 10, 0) # print ("svhn: ", self.data.shape) self.tt = [task_num for _ in range(len(self.data))] self.td = [task_num+1 for _ in range(len(self.data))] def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ img, target, tt, td = self.data[index], int(self.targets[index]), self.tt[index], self.td[index] # doing this so that it is consistent with all other datasets # to return a PIL Image try: img = Image.fromarray(np.transpose(img, (1, 2, 0))) except: pass try: if self.transform is not None: img = self.transform(img) except: pass try: if self.target_transform is not None: tt = self.target_transform(tt) if self.target_transform is not None: td = self.target_transform(td) except: pass return img, target, tt, td def __len__(self): return len(self.data) def _check_integrity(self): root = self.root md5 = self.split_list[self.split][2] fpath = os.path.join(root, self.filename) return check_integrity(fpath, md5) def download(self): md5 = self.split_list[self.split][2] download_url(self.url, self.root, self.filename, md5) def extra_repr(self): return "Split: {split}".format(**self.__dict__) class MNIST_RGB(datasets.MNIST): def __init__(self, root, task_num, num_samples_per_class, train=True, transform=None, target_transform=None, download=False): super(MNIST_RGB, self).__init__(root, task_num, transform=transform, target_transform=target_transform, download=download) self.train = train # training set or test set self.target_transform=target_transform self.transform=transform self.num_classes=10 if download: self.download() if not self._check_exists(): raise RuntimeError('Dataset not found.' + ' You can use download=True to download it') if self.train: data_file = self.training_file else: data_file = self.test_file # self.data, self.targets = torch.load(os.path.join(self.processed_folder, data_file)) self.data, self.targets = torch.load(os.path.join(self.processed_folder, data_file)) self.data=np.array(self.data).astype(np.float32) self.targets=list(np.array(self.targets)) if num_samples_per_class: x, y, tt, td = [], [], [], [] for l in range(self.num_classes): indices_with_label_l = np.where(np.array(self.targets)==l) x_with_label_l = [self.data[item] for item in indices_with_label_l[0]] # y_with_label_l = [l]*len(x_with_label_l) # If we need a subset of the dataset with num_samples_per_class we use this and then concatenate it with a complete dataset shuffled_indices = np.random.permutation(len(x_with_label_l))[:num_samples_per_class] x_with_label_l = [x_with_label_l[item] for item in shuffled_indices] y_with_label_l = [l]*len(shuffled_indices) x.append(x_with_label_l) y.append(y_with_label_l) self.data = np.array(sum(x,[])) self.targets = sum(y,[]) self.tt = [task_num for _ in range(len(self.data))] self.td = [task_num+1 for _ in range(len(self.data))] def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ img, target, tt, td = self.data[index], int(self.targets[index]), self.tt[index], self.td[index] # doing this so that it is consistent with all other datasets # to return a PIL Image try: img = Image.fromarray(img, mode='L').convert('RGB') except: pass try: if self.transform is not None: img = self.transform(img) except: pass try: if self.target_transform is not None: tt = self.target_transform(tt) if self.target_transform is not None: td = self.target_transform(td) except: pass return img, target, tt, td def __len__(self): return len(self.data) @property def raw_folder(self): return os.path.join(self.root, self.__class__.__name__, 'raw') @property def processed_folder(self): return os.path.join(self.root, self.__class__.__name__, 'processed') @property def class_to_idx(self): return {_class: i for i, _class in enumerate(self.classes)} def _check_exists(self): return (os.path.exists(os.path.join(self.processed_folder, self.training_file)) and os.path.exists(os.path.join(self.processed_folder, self.test_file))) def download(self): """Download the MNIST data if it doesn't exist in processed_folder already.""" if self._check_exists(): return makedir_exist_ok(self.raw_folder) makedir_exist_ok(self.processed_folder) # download files for url in self.urls: filename = url.rpartition('/')[2] download_and_extract_archive(url, download_root=self.raw_folder, filename=filename) # process and save as torch files print('Processing...') training_set = ( read_image_file(os.path.join(self.raw_folder, 'train-images-idx3-ubyte')), read_label_file(os.path.join(self.raw_folder, 'train-labels-idx1-ubyte')) ) test_set = ( read_image_file(os.path.join(self.raw_folder, 't10k-images-idx3-ubyte')), read_label_file(os.path.join(self.raw_folder, 't10k-labels-idx1-ubyte')) ) with open(os.path.join(self.processed_folder, self.training_file), 'wb') as f: torch.save(training_set, f) with open(os.path.join(self.processed_folder, self.test_file), 'wb') as f: torch.save(test_set, f) print('Done!') def extra_repr(self): return "Split: {}".format("Train" if self.train is True else "Test") class FashionMNIST_(MNIST_RGB): """`Fashion MNIST <https://github.com/zalandoresearch/fashion-mnist>`_ Dataset. """ urls = [ 'http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz', 'http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz', 'http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz', 'http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz', ] class notMNIST_(torch.utils.data.Dataset): def __init__(self, root, task_num, num_samples_per_class, train,transform=None, target_transform=None, download=False): self.root = os.path.expanduser(root) self.transform = transform self.target_transform=target_transform self.train = train self.url = "https://github.com/facebookresearch/Adversarial-Continual-Learning/raw/master/data/notMNIST.zip" self.filename = 'notMNIST.zip' fpath = os.path.join(root, self.filename) if not os.path.isfile(fpath): if not download: raise RuntimeError('Dataset not found. You can use download=True to download it') else: print('Downloading from '+self.url) download_url(self.url, root, filename=self.filename) import zipfile zip_ref = zipfile.ZipFile(fpath, 'r') zip_ref.extractall(root) zip_ref.close() if self.train: fpath = os.path.join(root, 'notMNIST', 'Train') else: fpath = os.path.join(root, 'notMNIST', 'Test') X, Y = [], [] folders = os.listdir(fpath) for folder in folders: folder_path = os.path.join(fpath, folder) for ims in os.listdir(folder_path): try: img_path = os.path.join(folder_path, ims) X.append(np.array(Image.open(img_path).convert('RGB'))) Y.append(ord(folder) - 65) # Folders are A-J so labels will be 0-9 except: print("File {}/{} is broken".format(folder, ims)) self.data = np.array(X) self.targets = Y self.num_classes = len(set(self.targets)) if num_samples_per_class: x, y, tt, td = [], [], [], [] for l in range(self.num_classes): indices_with_label_l = np.where(np.array(self.targets)==l) x_with_label_l = [self.data[item] for item in indices_with_label_l[0]] # If we need a subset of the dataset with num_samples_per_class we use this and then concatenate it with a complete dataset shuffled_indices = np.random.permutation(len(x_with_label_l))[:num_samples_per_class] x_with_label_l = [x_with_label_l[item] for item in shuffled_indices] y_with_label_l = [l]*len(shuffled_indices) x.append(x_with_label_l) y.append(y_with_label_l) self.data = np.array(sum(x,[])) self.labels = sum(y,[]) self.tt = [task_num for _ in range(len(self.data))] self.td = [task_num + 1 for _ in range(len(self.data))] def __getitem__(self, index): img, target, tt, td = self.data[index], self.targets[index], self.tt[index], self.td[index] img = Image.fromarray(img)#.convert('RGB') img = self.transform(img) return img, target, tt, td def __len__(self): return len(self.data) def download(self): """Download the notMNIST data if it doesn't exist in processed_folder already.""" import errno root = os.path.expanduser(self.root) fpath = os.path.join(root, self.filename) try: os.makedirs(root) except OSError as e: if e.errno == errno.EEXIST: pass else: raise urllib.request.urlretrieve(self.url, fpath) import zipfile zip_ref = zipfile.ZipFile(fpath, 'r') zip_ref.extractall(root) zip_ref.close()
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch import utils class Shared(torch.nn.Module): def __init__(self,args): super(Shared, self).__init__() self.ncha,size,_=args.inputsize self.taskcla=args.taskcla self.latent_dim = args.latent_dim if args.experiment == 'cifar100': hiddens = [64, 128, 256, 1024, 1024, 512] elif args.experiment == 'miniimagenet': hiddens = [64, 128, 256, 512, 512, 512] # ---------------------------------- elif args.experiment == 'multidatasets': hiddens = [64, 128, 256, 1024, 1024, 512] else: raise NotImplementedError self.conv1=torch.nn.Conv2d(self.ncha,hiddens[0],kernel_size=size//8) s=utils.compute_conv_output_size(size,size//8) s=s//2 self.conv2=torch.nn.Conv2d(hiddens[0],hiddens[1],kernel_size=size//10) s=utils.compute_conv_output_size(s,size//10) s=s//2 self.conv3=torch.nn.Conv2d(hiddens[1],hiddens[2],kernel_size=2) s=utils.compute_conv_output_size(s,2) s=s//2 self.maxpool=torch.nn.MaxPool2d(2) self.relu=torch.nn.ReLU() self.drop1=torch.nn.Dropout(0.2) self.drop2=torch.nn.Dropout(0.5) self.fc1=torch.nn.Linear(hiddens[2]*s*s,hiddens[3]) self.fc2=torch.nn.Linear(hiddens[3],hiddens[4]) self.fc3=torch.nn.Linear(hiddens[4],hiddens[5]) self.fc4=torch.nn.Linear(hiddens[5], self.latent_dim) def forward(self, x_s): x_s = x_s.view_as(x_s) h = self.maxpool(self.drop1(self.relu(self.conv1(x_s)))) h = self.maxpool(self.drop1(self.relu(self.conv2(h)))) h = self.maxpool(self.drop2(self.relu(self.conv3(h)))) h = h.view(x_s.size(0), -1) h = self.drop2(self.relu(self.fc1(h))) h = self.drop2(self.relu(self.fc2(h))) h = self.drop2(self.relu(self.fc3(h))) h = self.drop2(self.relu(self.fc4(h))) return h class Private(torch.nn.Module): def __init__(self, args): super(Private, self).__init__() self.ncha,self.size,_=args.inputsize self.taskcla=args.taskcla self.latent_dim = args.latent_dim self.num_tasks = args.ntasks self.device = args.device if args.experiment == 'cifar100': hiddens=[32,32] flatten=1152 elif args.experiment == 'miniimagenet': # hiddens=[8,8] # flatten=1800 hiddens=[16,16] flatten=3600 elif args.experiment == 'multidatasets': hiddens=[32,32] flatten=1152 else: raise NotImplementedError self.task_out = torch.nn.ModuleList() for _ in range(self.num_tasks): self.conv = torch.nn.Sequential() self.conv.add_module('conv1',torch.nn.Conv2d(self.ncha, hiddens[0], kernel_size=self.size // 8)) self.conv.add_module('relu1', torch.nn.ReLU(inplace=True)) self.conv.add_module('drop1', torch.nn.Dropout(0.2)) self.conv.add_module('maxpool1', torch.nn.MaxPool2d(2)) self.conv.add_module('conv2', torch.nn.Conv2d(hiddens[0], hiddens[1], kernel_size=self.size // 10)) self.conv.add_module('relu2', torch.nn.ReLU(inplace=True)) self.conv.add_module('dropout2', torch.nn.Dropout(0.5)) self.conv.add_module('maxpool2', torch.nn.MaxPool2d(2)) self.task_out.append(self.conv) self.linear = torch.nn.Sequential() self.linear.add_module('linear1', torch.nn.Linear(flatten,self.latent_dim)) self.linear.add_module('relu3', torch.nn.ReLU(inplace=True)) self.task_out.append(self.linear) def forward(self, x, task_id): x = x.view_as(x) out = self.task_out[2*task_id].forward(x) out = out.view(out.size(0),-1) out = self.task_out[2*task_id+1].forward(out) return out class Net(torch.nn.Module): def __init__(self, args): super(Net, self).__init__() self.ncha,size,_=args.inputsize self.taskcla=args.taskcla self.latent_dim = args.latent_dim self.num_tasks = args.ntasks self.samples = args.samples self.image_size = self.ncha*size*size self.args=args self.hidden1 = args.head_units self.hidden2 = args.head_units//2 self.shared = Shared(args) self.private = Private(args) self.head = torch.nn.ModuleList() for i in range(self.num_tasks): self.head.append( torch.nn.Sequential( torch.nn.Linear(2*self.latent_dim, self.hidden1), torch.nn.ReLU(inplace=True), torch.nn.Dropout(), torch.nn.Linear(self.hidden1, self.hidden2), torch.nn.ReLU(inplace=True), torch.nn.Linear(self.hidden2, self.taskcla[i][1]) )) def forward(self, x_s, x_p, tt, task_id): x_s = x_s.view_as(x_s) x_p = x_p.view_as(x_p) x_s = self.shared(x_s) x_p = self.private(x_p, task_id) x = torch.cat([x_p, x_s], dim=1) if self.args.experiment == 'multidatasets': # if no memory is used this is faster: y=[] for i,_ in self.taskcla: y.append(self.head[i](x)) return y[task_id] else: return torch.stack([self.head[tt[i]].forward(x[i]) for i in range(x.size(0))]) def get_encoded_ftrs(self, x_s, x_p, task_id): return self.shared(x_s), self.private(x_p, task_id) def print_model_size(self): count_P = sum(p.numel() for p in self.private.parameters() if p.requires_grad) count_S = sum(p.numel() for p in self.shared.parameters() if p.requires_grad) count_H = sum(p.numel() for p in self.head.parameters() if p.requires_grad) print('Num parameters in S = %s ' % (self.pretty_print(count_S))) print('Num parameters in P = %s, per task = %s ' % (self.pretty_print(count_P),self.pretty_print(count_P/self.num_tasks))) print('Num parameters in p = %s, per task = %s ' % (self.pretty_print(count_H),self.pretty_print(count_H/self.num_tasks))) print('Num parameters in P+p = %s ' % self.pretty_print(count_P+count_H)) print('--------------------------> Architecture size: %s parameters (%sB)' % (self.pretty_print(count_S + count_P + count_H), self.pretty_print(4*(count_S + count_P + count_H)))) print("--------------------------> Memory size: %s samples per task (%sB)" % (self.samples, self.pretty_print(self.num_tasks*4*self.samples*self.image_size))) print("------------------------------------------------------------------------------") print(" TOTAL: %sB" % self.pretty_print(4*(count_S + count_P + count_H)+self.num_tasks*4*self.samples*self.image_size)) def pretty_print(self, num): magnitude=0 while abs(num) >= 1000: magnitude+=1 num/=1000.0 return '%.1f%s' % (num, ['', 'K', 'M', 'G', 'T', 'P'][magnitude])
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch class Private(torch.nn.Module): def __init__(self, args): super(Private, self).__init__() self.ncha,self.size,_=args.inputsize self.taskcla=args.taskcla self.latent_dim = args.latent_dim self.num_tasks = args.ntasks self.nhid = args.units self.device = args.device self.task_out = torch.nn.ModuleList() for _ in range(self.num_tasks): self.linear = torch.nn.Sequential() self.linear.add_module('linear', torch.nn.Linear(self.ncha*self.size*self.size, self.latent_dim)) self.linear.add_module('relu', torch.nn.ReLU(inplace=True)) self.task_out.append(self.linear) def forward(self, x_p, task_id): x_p = x_p.view(x_p.size(0), -1) return self.task_out[task_id].forward(x_p) class Shared(torch.nn.Module): def __init__(self,args): super(Shared, self).__init__() ncha,self.size,_=args.inputsize self.taskcla=args.taskcla self.latent_dim = args.latent_dim self.nhid = args.units self.nlayers = args.nlayers self.relu=torch.nn.ReLU() self.drop=torch.nn.Dropout(0.2) self.fc1=torch.nn.Linear(ncha*self.size*self.size, self.nhid) if self.nlayers == 3: self.fc2 = torch.nn.Linear(self.nhid, self.nhid) self.fc3=torch.nn.Linear(self.nhid,self.latent_dim) else: self.fc2 = torch.nn.Linear(self.nhid,self.latent_dim) def forward(self, x_s): h = x_s.view(x_s.size(0), -1) h = self.drop(self.relu(self.fc1(h))) h = self.drop(self.relu(self.fc2(h))) if self.nlayers == 3: h = self.drop(self.relu(self.fc3(h))) return h class Net(torch.nn.Module): def __init__(self, args): super(Net, self).__init__() ncha,size,_=args.inputsize self.taskcla=args.taskcla self.latent_dim = args.latent_dim self.num_tasks = args.ntasks self.device = args.device if args.experiment == 'mnist5': self.hidden1 = 28 self.hidden2 = 14 elif args.experiment == 'pmnist': self.hidden1 = 28 self.hidden2 = 28 self.samples = args.samples self.shared = Shared(args) self.private = Private(args) self.head = torch.nn.ModuleList() for i in range(self.num_tasks): self.head.append( torch.nn.Sequential( torch.nn.Linear(2 * self.latent_dim, self.hidden1), torch.nn.ReLU(inplace=True), torch.nn.Dropout(), torch.nn.Linear(self.hidden1, self.hidden2), torch.nn.ReLU(inplace=True), torch.nn.Linear(self.hidden2, self.taskcla[i][1]) )) def forward(self,x_s, x_p, tt, task_id): h_s = x_s.view(x_s.size(0), -1) h_p = x_s.view(x_p.size(0), -1) x_s = self.shared(h_s) x_p = self.private(h_p, task_id) x = torch.cat([x_p, x_s], dim=1) return torch.stack([self.head[tt[i]].forward(x[i]) for i in range(x.size(0))]) def get_encoded_ftrs(self, x_s, x_p, task_id): return self.shared(x_s), self.private(x_p, task_id) def print_model_size(self): count_P = sum(p.numel() for p in self.private.parameters() if p.requires_grad) count_S = sum(p.numel() for p in self.shared.parameters() if p.requires_grad) count_H = sum(p.numel() for p in self.head.parameters() if p.requires_grad) print('Num parameters in S = %s ' % (self.pretty_print(count_S))) print('Num parameters in P = %s, per task = %s ' % (self.pretty_print(count_P),self.pretty_print(count_P/self.num_tasks))) print('Num parameters in p = %s, per task = %s ' % (self.pretty_print(count_H),self.pretty_print(count_H/self.num_tasks))) print('Num parameters in P+p = %s ' % self.pretty_print(count_P+count_H)) print('--------------------------> Total architecture size: %s parameters (%sB)' % (self.pretty_print(count_S + count_P + count_H), self.pretty_print(4*(count_S + count_P + count_H)))) def pretty_print(self, num): magnitude=0 while abs(num) >= 1000: magnitude+=1 num/=1000.0 return '%.2f%s' % (num, ['', 'K', 'M', 'G', 'T', 'P'][magnitude])
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch import utils class Discriminator(torch.nn.Module): def __init__(self,args,task_id): super(Discriminator, self).__init__() self.num_tasks=args.ntasks self.units=args.units self.latent_dim=args.latent_dim if args.diff == 'yes': self.dis = torch.nn.Sequential( GradientReversal(args.lam), torch.nn.Linear(self.latent_dim, args.units), torch.nn.LeakyReLU(), torch.nn.Linear(args.units, args.units), torch.nn.Linear(args.units, task_id + 2) ) else: self.dis = torch.nn.Sequential( torch.nn.Linear(self.latent_dim, args.units), torch.nn.LeakyReLU(), torch.nn.Linear(args.units, args.units), torch.nn.Linear(args.units, task_id + 2) ) def forward(self, z, labels, task_id): return self.dis(z) def pretty_print(self, num): magnitude=0 while abs(num) >= 1000: magnitude+=1 num/=1000.0 return '%.1f%s' % (num, ['', 'K', 'M', 'G', 'T', 'P'][magnitude]) def get_size(self): count=sum(p.numel() for p in self.dis.parameters() if p.requires_grad) print('Num parameters in D = %s ' % (self.pretty_print(count))) class GradientReversalFunction(torch.autograd.Function): """ From: https://github.com/jvanvugt/pytorch-domain-adaptation/blob/cb65581f20b71ff9883dd2435b2275a1fd4b90df/utils.py#L26 Gradient Reversal Layer from: Unsupervised Domain Adaptation by Backpropagation (Ganin & Lempitsky, 2015) Forward pass is the identity function. In the backward pass, the upstream gradients are multiplied by -lambda (i.e. gradient is reversed) """ @staticmethod def forward(ctx, x, lambda_): ctx.lambda_ = lambda_ return x.clone() @staticmethod def backward(ctx, grads): lambda_ = ctx.lambda_ lambda_ = grads.new_tensor(lambda_) dx = -lambda_ * grads return dx, None class GradientReversal(torch.nn.Module): def __init__(self, lambda_): super(GradientReversal, self).__init__() self.lambda_ = lambda_ def forward(self, x): return GradientReversalFunction.apply(x, self.lambda_)