Dataset Viewer
Auto-converted to Parquet
python_code
stringlengths
0
66.4k
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import math import torch import torch.nn.functional as F from torch.autograd import grad def gPenalty(inputs, loss, lam, q): # Gradient penalty bs, c, h, w = inputs.size() d_in = c * h * w g = grad(loss, inputs, create_graph=True)[0] * bs g = g.view(bs, -1) qnorms = g.norm(q, 1).mean() lam = lam * math.pow(d_in, 1. - 1. / q) return lam * qnorms.mean() / 2. def advAugment(net, inputs, targets, loss, lam, q): # Single-step adversarial augmentation (e.g. FGSM) bs, c, h, w = inputs.size() d_in = c * h * w g = grad(loss, inputs, retain_graph=True)[0] * bs g = g.view(bs, -1).detach() if q == 1: lam = lam dx = lam * g.sign() else: p = 1. / (1. - 1. / q) lam = lam * math.pow(d_in, 1. - 1. / q) dx = g.sign() * g.abs().pow(q - 1) # sign when q uneven pnorms = dx.norm(p, 1, keepdim=True) dx = lam * dx / pnorms dx = dx.view_as(inputs) advInputs = (inputs + dx).detach() advOutputs = net(advInputs) advLoss = F.cross_entropy(advOutputs, targets) return (advLoss - loss) / 2. def pgd(net, inputs, targets, loss, lam, steps, step_size, random_start=True, train=True): # Projected gradient descent (i.e. iterative FGSM) with random starts bs, c, h, w = inputs.size() if random_start: if torch.cuda.is_available(): noise = torch.cuda.FloatTensor(bs, c, h, w).uniform_(-lam, lam) else: noise = torch.FloatTensor(bs, c, h, w).uniform_(-lam, lam) else: if torch.cuda.is_available(): noise = torch.cuda.FloatTensor(bs, c, h, w).fill_(0) else: noise = torch.FloatTensor(bs, c, h, w).fill_(0) advInputs = (inputs + noise).detach() advInputs.requires_grad = True advOutputs = net(advInputs) advLoss = F.cross_entropy(advOutputs, targets) for i in range(steps): retain_graph = ((i + 1 == steps) and train) g = grad(advLoss, advInputs, retain_graph=retain_graph)[0] * bs g = g.view(bs, -1).detach() dx = step_size * g.sign() dx = dx.view_as(advInputs) advInputs = advInputs + dx advInputs = inputs + torch.clamp(advInputs - inputs, -lam, lam) advInputs = advInputs.detach() advInputs.requires_grad = True advOutputs = net(advInputs) advLoss = F.cross_entropy(advOutputs, targets) return advLoss - loss, advOutputs def crossLip(inputs, outputs, lam): gk = [] n, K, cLpen = outputs.size(0), outputs.size(1), 0. for k in range(K): gk.append(grad(outputs[:, k].sum(), inputs, create_graph=True)[0]) for l in range(K): for m in range(l + 1, K): cLpen += (gk[l] - gk[m]) ** 2 cLpen = 2. / n / K ** 2 * cLpen.sum() return lam * cLpen def addPenalty(net, inputs, outputs, targets, loss, args): if args.penalty == 'grad': penalty = gPenalty(inputs, loss, args.lam, args.q) elif args.penalty == 'adv': penalty = advAugment(net, inputs, targets, loss, args.lam, args.q) elif args.penalty == 'pgd': penalty, _ = pgd( # uses linf attacks net, inputs, targets, loss, args.lam, args.steps, step_size=args.lam / (.75 * args.steps)) elif args.penalty == 'crossLip': penalty = crossLip(inputs, outputs, args.lam) else: raise NotImplementedError("Unknown penalty %r" % args.penalty) return penalty
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # """ Some utilities """ import os import math import warnings import configargparse import torch from nets import ConvNet def argument_parser(): parser = configargparse.ArgParser( description='First-order vulnerability and input dimension') parser.add( '--config', required=True, is_config_file=True, help='configuration file path') parser.add_argument( '--name', type=str, help='Experiment name. Results will be saved/loaded from directory ' './results/name (which will be created if needed).') parser.add_argument( '--datapath', type=str, default=None, help="Data location. Default: '~/datasets/' + `dataset`") parser.add_argument( '--dataset', type=str, default='cifar', help='mnist, cifar, imgnet12 (default: cifar)') parser.add_argument( '--img_size', type=int, default=None, help='only for imgnet. Resize img to 32, 64, 128 or 256.') parser.add_argument( '--n_layers', type=int, default=5, help='number of hidden layers') parser.add_argument( '--bs', type=int, default=128, help='batch size') parser.add_argument( '--epochs', type=int, default=200, help='number of training epochs') parser.add_argument( '--no_BN', action='store_true', help='Do not use batch norms (except before the very 1st layer)') parser.add_argument( '--no_act', action='store_true', help='No activation functions (f.ex. no ReLUs)') parser.add_argument( '--raw_inputs', action='store_true', help='Do not normalize inputs (hence no bn as first network layer)') parser.add_argument( '--log_step', type=int, default=None, help='print training info every log_step batches (default: None)') # training parser.add_argument( '--lr', type=float, default=.01, help='Initial learning rate') parser.add_argument( '--no_training', action='store_true', help='Do not train the network') parser.add_argument( '--crop', action='store_true', help='Use cropping instead of resizing image.') # Penalties/Regularizers penalties = ['grad', 'adv', 'pgd', 'crossLip'] parser.add_argument( '--lam', type=float, default=0., help='global regularization weight') parser.add_argument( '--penalty', type=str, choices=penalties, default=None, help='penalty type:' + ' | '.join(penalties)) parser.add_argument( '--q', type=int, default=None, help="defense-norm q; dual of attack-norm p. " "For FGSM, use penalty='adv' and 'q=1'") parser.add_argument( '--steps', type=int, default=None, help='number of optimization steps per attack when using PGD') # Vulnerability.py specific parser.add_argument( '--n_attacks', type=int, default=-1, help='number of attack iterations; -1 for whole dataset') parser.add_argument( '--log_vul', action='store_true', help='Print detailed logs of vulnerability computation') # ConvNet specific pooltypes = ['avgpool', 'maxpool', 'weightpool', 'subsamp'] last_layers = ['maxpool', 'avgpool', 'fc', 'weightpool'] parser.add_argument( '--poolings', nargs='*', type=int, default=[], help='Where to do poolings. Should be a list of ' 'integers smaller than n_layers. Defaults to None. (ConvNet)') parser.add_argument( '--pooltype', type=str, choices=pooltypes, default='subsamp', help='penalty type:' + ' | '.join(penalties) + 'default: subsamp') parser.add_argument( '--dilations', nargs='*', type=int, default=None, help='Dilations to use for each layer. List of n_layers int. ' 'Defaults to 1 for all layers. (ConvNet)') parser.add_argument( '--last_layers', type=str, choices=last_layers, default='avgpool', help='penalty type:' + ' | '.join(last_layers)) args = parser.parse_args() if args.datapath is None: args.datapath = os.path.join('~/datasets/', args.dataset) args.datapath = os.path.expanduser(args.datapath) # DATASET SPECIFIC SETTINGS if args.dataset == 'mnist': if args.img_size is None: args.img_size = 32 elif args.img_size not in {32, 64, 128, 256, 512}: raise Exception( "img_size must be 32, 64, 128, 256. " "But provided %r" % args.img_size) args.categories = 10 args.in_planes = 1 elif args.dataset == 'cifar': if args.img_size is None: args.img_size = 32 elif args.img_size not in {32, 64, 128, 256, 512}: raise Exception( "img_size must be 32, 64, 128, 256, or 512. " "But provided %r" % args.img_size) args.categories = 10 args.in_planes = 3 elif args.dataset == 'imgnet12': if args.img_size is None: args.img_size = 256 elif args.img_size not in {32, 64, 128, 256}: raise Exception( "img_size must be 32, 64, 128, or 256. " "But provided %r" % args.img_size) if args.bs > 32: raise Exception( "With imgnet12, Batchsize bs should be <= 32. " "Otherwise, you'll probably run out of GPU memory") args.categories = 12 args.in_planes = 3 else: raise NotImplementedError("Dataset unknown") # NETWORK DOUBLE-CHECKS/WARNINGS if args.no_BN and args.raw_inputs: warnings.warn( "no_BN also removes the first BN layer before the net " "which serves as normalization of data when using raw_inputs. " "Thus data input data stays unnormalized between 0 and 1") if args.dilations is None: dilation = 1 if args.crop else int(args.img_size / 32) args.dilations = [dilation] * args.n_layers elif len(args.dilations) == 1: args.dilations = args.dilations * args.n_layers elif len(args.dilations) != args.n_layers: raise Exception( 'Argument dilations must be single integer, or a list of ' 'integers of length n_layers') # PENALTY/REGULARIZATION WARNINGS if (args.lam, args.penalty, args.q) != (0., None, None): if args.lam == 0.: warnings.warn( "Arguments penalty and/or q are given, but lam = 0. " "Set lam > 0., otherwise not penalty is used") elif args.penalty is None: raise Exception("Argument lam > 0., but no penalty is defined.") elif (args.penalty in {'adv', 'grad'}) and (args.q is None): raise Exception( "If argument penalty is 'adv' or 'grad', q must be in " "[1, infty]") if (args.penalty == 'pgd') and (args.steps is None): raise Exception( "Arguments steps must be specified with " "penalty-option pgd") return parser, args def create_net(args): net = ConvNet( args.categories, args.n_layers, args.img_size, args.poolings, args.pooltype, args.no_BN, args.no_act, args.dilations, normalize_inputs=(not args.raw_inputs), last_layers=args.last_layers, in_planes=args.in_planes) return net def initialize_params(m, no_act=False, distribution='normal'): # gain = sqrt 2 for ReLU gain = 1. if no_act else math.sqrt(2) try: # if last layer, then gain = 1. if m.unit_gain: # test if module as attribute 'last' gain = 1. except AttributeError: pass if type(m) in {torch.nn.Conv2d, torch.nn.Linear}: if m.bias is not None: torch.nn.init.constant_(m.bias, 0.) out_ = m.weight.data.size(0) in_ = m.weight.data.view(out_, -1).size(1) sigma = gain / math.sqrt(in_) if distribution is 'uniform': xmax = math.sqrt(3) * sigma torch.nn.init.uniform_(m.weight, a=-xmax, b=xmax) elif distribution is 'normal': torch.nn.init.normal_(m.weight, std=sigma) else: raise NotImplementedError( "Argument distribution must be 'uniform' or 'normal'. " "Got: '%r'" % distribution) elif type(m) == torch.nn.BatchNorm2d: if m.affine: torch.nn.init.constant_(m.bias, 0.) torch.nn.init.constant_(m.weight, 1.) if m.track_running_stats: torch.nn.init.constant_(m.running_mean, 0.) torch.nn.init.constant_(m.running_var, 1.)
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import time import torch import torch.nn.functional as F from torch.autograd import grad from data import CIFAR10, IMGNET12, MNIST from vulnerability import compute_vulnerability from utils import argument_parser, create_net, initialize_params from penalties import addPenalty, pgd # NB: Logger cannot be pushed to utils.py, because of eval(name) class Logger(object): def __init__(self): self.logs = dict() def log(self, step, delta_time, *args): for name in args: if type(name) != str: raise Exception( "Logger takes strings as inputs. " "But got %s" % type(name)) if name not in self.logs: self.logs[name] = [] self.logs[name].append([eval(name), step, delta_time]) def get_logs(self): return self.logs def set_logs(self, logs): self.logs = logs # logs : dict return def grad_norms(loss, inputs, train=False): bs = inputs.size(0) g = grad(loss, inputs, retain_graph=train)[0] * bs g = g.view(bs, -1) norm1, norm2 = g.norm(1, 1).mean(), g.norm(2, 1).mean() return norm1.item(), norm2.item() def do_epoch(epoch, net, optimizer, loader, mode, args): if mode not in {'train', 'eval', 'test', 'init'}: # 'init' -> for initialization of batchnorms # 'train' -> training (but no logging of vul & dam) # 'eval' -> compute acc & gnorms but not vul & dam on validation # 'test' -> compute all logged values on test set raise Exception('Argument mode must be train, eval or init') net.eval() if mode in {'eval', 'test'} else net.train() device = next(net.parameters()).device cum_loss = cum_pen = cum_norm1 = cum_norm2 = total = correct = 0. advVul = advCorrect = cum_dam = 0. predictedAdv = None for i, (inputs, targets) in enumerate(loader): optimizer.zero_grad() inputs, targets = inputs.to(device), targets.to(device) inputs.requires_grad = True outputs = net(inputs) loss = F.cross_entropy(outputs, targets) norm1, norm2 = grad_norms(loss, inputs, mode == 'train') if mode == 'train': if args.lam > 0.: penalty = addPenalty(net, inputs, outputs, targets, loss, args) loss += penalty cum_pen += penalty.item() cum_loss += loss.item() loss.backward() optimizer.step() elif mode == 'test': # compute adv vul & damage using custom PGD eps = .004 advDam, advOutputs = pgd( net, inputs, targets, loss, lam=eps, steps=10, step_size=eps / (.75 * 10), random_start=False, train=False) # Compute logging info cum_norm1 += norm1 cum_norm2 += norm2 cum_loss += loss.item() total += targets.size(0) _, predicted = torch.max(outputs.data, 1) correct += predicted.eq(targets.data).float().cpu().sum().item() if mode == 'test': cum_dam += advDam.item() / eps _, predictedAdv = torch.max(advOutputs.data, 1) advVul += predicted.size(0) - ( predictedAdv.eq(predicted.data).float().cpu().sum().item()) advCorrect += predictedAdv.eq( targets.data).float().cpu().sum().item() results = { 'acc': 100 * correct / total, # accuracy 'loss': cum_loss / (i + 1), # loss 'pen': cum_pen / (i + 1), # penalty 'norm1': cum_norm1 / (i + 1), # avg l1-gradient norm 'norm2': cum_norm2 / (i + 1), # avg l2-gradient norm 'av': 100 * advVul / total, # adversarial vulnerability 'da': cum_dam / (i + 1), # adversarial damage 'aa': 100 * advCorrect / total # adversarial accuracy } if args.log_step is not None and i % args.log_step == 0: print("Epoch: %03d Batch: %04d Mode: %-5s Acc: %4.1f Loss: %4.2f " "Pen: %5.3f gNorm1: %6.2f gNorm2: %6.3f Vul: %4.1f " "Dam: %6.2f AdAcc %4.1f" % ( epoch, i, mode, *[ results[i] for i in ['acc', 'loss', 'pen', 'norm1', 'norm2', 'av', 'da', 'aa']])) return results if __name__ == '__main__': parser, args = argument_parser() logger = Logger() args.path = os.path.join('results', args.name) net = create_net(args) # print(net) if not os.path.exists(args.path): os.makedirs(args.path, exist_ok=True) # requires Python >= 3.2 if os.path.isfile(os.path.join(args.path, 'last.pt')): print('> Loading last saved state/network...') state = torch.load(os.path.join(args.path, 'last.pt')) net.load_state_dict(state['state_dict']) lr = state['lr'] optimizer = torch.optim.SGD(net.parameters(), lr=lr, momentum=0.9) optimizer.load_state_dict(state['optimizer']) best_va_acc = state['best_va_acc'] start_ep = state['epoch'] + 1 logger.set_logs(state['logs']) else: # initialize new net print('> Initializing new network...') net.apply(lambda m: initialize_params(m, args.no_act, 'normal')) lr = args.lr optimizer = torch.optim.SGD(net.parameters(), lr=lr, momentum=0.9) best_va_acc = -1. start_ep = -1 print('> Done.') device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') net = net.to(device) torch.backends.cudnn.benchmark = True print('> Loading dataset...') if args.dataset == 'mnist': tr_loader, va_loader, te_loader = MNIST( root=args.datapath, bs=args.bs, valid_size=.1, size=args.img_size, normalize=(not args.raw_inputs)) elif args.dataset == 'cifar': tr_loader, va_loader, te_loader = CIFAR10( root=args.datapath, bs=args.bs, valid_size=.1, size=args.img_size, normalize=(not args.raw_inputs)) elif args.dataset == 'imgnet12': tr_loader, va_loader, te_loader = IMGNET12( root=args.datapath, bs=args.bs, valid_size=.1, size=args.img_size, normalize=(not args.raw_inputs)) else: raise NotImplementedError print('> Done.') print('> Starting training.') time_start = time.time() epochs = 0 if args.no_training else args.epochs for epoch in range(start_ep, epochs): time_start = time.time() if epoch % 30 == 0 and epoch > 0: # reload best parameters on validation set net.load_state_dict( torch.load(os.path.join( args.path, 'best.pt'))['state_dict']) # update learning rate lr *= .5 for param_group in optimizer.param_groups: param_group['lr'] = lr mode = 'init' if epoch < 0 else 'train' tr_res = do_epoch(epoch, net, optimizer, tr_loader, mode, args) va_res = do_epoch(epoch, net, optimizer, va_loader, 'eval', args) te_res = do_epoch(epoch, net, optimizer, te_loader, 'test', args) time_per_epoch = time.time() - time_start print("epoch %3d lr %.1e te_norm1 %7.3f te_norm2 %6.4f tr_loss %6.3f " "tr_acc %5.2f te_acc %5.2f te_aa %5.2f te_av %5.2f te_da %6.3f " "va_acc %5.2f be_va_acc %5.2f time %d" % ( epoch, lr, te_res['norm1'], te_res['norm2'], tr_res['loss'], tr_res['acc'], te_res['acc'], te_res['aa'], te_res['av'], te_res['da'], va_res['acc'], best_va_acc, time_per_epoch)) # Log and save results logger.log(epoch, time_per_epoch, 'lr', 'tr_res', 'va_res', 'te_res') state = { 'lr': lr, 'epoch': epoch, 'state_dict': net.state_dict(), 'optimizer': optimizer.state_dict(), 'args': args, 'logs': logger.get_logs(), 'best_va_acc': best_va_acc } torch.save(state, os.path.join(args.path, 'last.pt')) if va_res['acc'] > best_va_acc: best_va_acc = va_res['acc'] torch.save(state, os.path.join(args.path, 'best.pt')) print('> Finished Training') # Compute adversarial vulnerability with foolbox print('\n> Starting attacks.') attacks = {'l1'} # attacks = {'l1', 'l2', 'itl1', 'itl2', 'deepFool', 'pgd', 'boundary'} for attack in attacks: vulnerability = compute_vulnerability( args, attack, net, args.n_attacks) torch.save(vulnerability, os.path.join(args.path, 'vulnerability_%s.pt' % attack))
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import math import time import numpy as np import scipy.stats as st from functools import partial import torch from torch.autograd import grad import foolbox from foolbox.distances import Linfinity, MSE from data import CIFAR10, IMGNET12, MNIST def do_pass(net, loader, args, means, stds): correct = total = 0. device = next(net.parameters()).device means = torch.FloatTensor(means).to(device) stds = torch.FloatTensor(stds).to(device) for i, (inputs, targets) in enumerate(loader): inputs, targets = inputs.to(device), targets.to(device) inputs = (inputs - means) / stds outputs = net(inputs) _, predicted = torch.max(outputs.data, 1) total += targets.size(0) correct += predicted.eq(targets.data).float().sum().item() if args.log_step is not None and i % args.log_step == 0: print("Batch: %03d Acc: %4.1f" % (i, 100 * correct / total)) return 100 * correct / total def classify(net, x, args, means, stds): device = next(net.parameters()).device x = x.to(device).view(1, 3, args.img_size, args.img_size) means = torch.FloatTensor(means).to(device) stds = torch.FloatTensor(stds).to(device) x = ((x - means) / stds).detach() x.requires_grad = True y = net(x) g = grad(y.sum(), x)[0].view(x.size(0), -1).norm().item() _, top_indices = y.data.cpu().view(-1).topk(2) return top_indices[0].item(), g def myPrint(string, args): if args.log_vul: print(string) def conf95(a): return st.t.interval( 0.95, len(a) - 1, loc=np.nanmean(a), scale=st.sem(a, nan_policy='omit')) def compute_vulnerability(args, attack_name, net, n_attacks=-1): """ Computes vulnerability using foolbox package of net Parameters ---------- args : :class:`argparse.ArgumentParser` The arguments passed to main.py attack_name : string The attack type. Must be one of {'l1', 'l2', 'itl1', 'itl2', 'pgd', 'deepfool'} net : :class:`torch.nn.Module` The network whose vulnerability is computed. n_attacks : int The number of attacks to use for the computation of vulnerbaility. If -1 or greater than dataset-size, uses the entire dataset. Default: -1. """ print('\nStarting attacks of type ' + attack_name) # Reload data without normalizing it print('> Loading dataset %s...' % args.dataset) if args.dataset == 'mnist': _, loader = MNIST( root=args.datapath, bs=args.bs, valid_size=0., size=args.img_size, normalize=False) elif args.dataset == 'cifar': _, loader = CIFAR10( root=args.datapath, bs=args.bs, valid_size=0., size=args.img_size, normalize=False) elif args.dataset == 'imgnet12': _, loader = IMGNET12( root=args.datapath, bs=args.bs, valid_size=0., size=args.img_size, normalize=False) else: raise NotImplementedError print('> Done.') # Image-normalizations (must be same as in data.py) if args.raw_inputs: means = [0., 0., 0.] stds = [1., 1., 1.] elif args.dataset == "mnist": means = [0.1307] stds = [0.3081] elif args.dataset == "cifar": means = [0.4914, 0.4822, 0.4465] stds = [0.2023, 0.1994, 0.2010] elif args.dataset == "imgnet12": means = [.453, .443, .403] stds = { 256: [.232, .226, .225], 128: [.225, .218, .218], 64: [.218, .211, .211], 32: [.206, .200, .200] }[args.img_size] else: raise NotImplementedError means = np.array(means).reshape(-1, 1, 1) stds = np.array(stds).reshape(-1, 1, 1) net.eval() print('> Computing test accuracy...') te_acc = do_pass(net, loader, args, means, stds) print('> Done. Computed test accuracy: %5.2f' % te_acc) # construct attack bounds = (0, 1) model = foolbox.models.PyTorchModel(net, bounds=bounds, preprocessing=(means, stds), num_classes=args.categories) # Choosing attack type if attack_name == 'l1': # vulnerability increases like sqrt(d) \propto img_size # therefore, we divide the linfty-threshold by img_size attack = partial(foolbox.attacks.FGSM(model, distance=Linfinity), epsilons=1000, max_epsilon=1. / args.img_size) elif attack_name == 'l2': # to be visually constant, the l2-threshold increases like sqrt d; # but vulnerability also increases like sqrt d; # therefore, use constant max_epsilon accross dimension d attack = partial(foolbox.attacks.GradientAttack(model, distance=MSE), epsilons=1000, max_epsilon=1.) elif attack_name == 'itl1': it, eps = 10, 1. / args.img_size attack = partial( foolbox.attacks.LinfinityBasicIterativeAttack( model, distance=Linfinity), iterations=it, epsilon=eps, stepsize=eps / (.75 * it), binary_search=True) elif attack_name == 'itl2': it, eps = 10, 1. attack = partial( foolbox.attacks.L2BasicIterativeAttack( model, distance=MSE), iterations=it, epsilon=eps, stepsize=eps / (.75 * it), binary_search=True) elif attack_name == 'pgd': it, eps = 10, 1. / args.img_size attack = partial(foolbox.attacks.RandomPGD(model, distance=Linfinity), iterations=it, epsilon=eps, stepsize=eps / (.75 * it), binary_search=True) elif attack_name == 'deepFool': attack = foolbox.attacks.DeepFoolAttack(model, distance=MSE) elif attack_name == 'boundary': attack = partial(foolbox.attacks.BoundaryAttack(model, distance=MSE), iterations=2000, log_every_n_steps=np.Infinity, verbose=False) else: raise NotImplementedError( "attack_name must be 'l1', 'l2', 'itl1', 'itl2', " "'deepFool' or 'boundary'") n_iterations = 0 results = {} results['l2_snr'] = [] results['clean_grad'] = [] results['dirty_grad'] = [] results['l2_norm'] = [] results['linf_norm'] = [] n_fooled = 0 print('> Creating empty image-tensors') n_saved = 64 if (n_attacks == -1) else min(n_attacks, 64) clean_images = torch.zeros(n_saved, 3, args.img_size, args.img_size) dirty_images = torch.zeros(n_saved, 3, args.img_size, args.img_size) print('> Done.') myPrint(("{:>15} " * 5).format( "clean_grad", "dirty_grad", "linf_norm", "l2_norm", "l2_snr"), args) t0 = time.time() for i, (images, labels) in enumerate(loader): if n_iterations == n_attacks: break for i, clean_image in enumerate(images): clean_label, clean_grad = classify(net, clean_image, args, means, stds) dirty_image_np = attack(clean_image.numpy(), clean_label) if dirty_image_np is not None: # i.e. if adversarial was found dirty_image = torch.Tensor(dirty_image_np) _, dirty_grad = classify(net, dirty_image, args, means, stds) if i < n_saved: # only save n_saved first images dirty_images[i] = dirty_image.clone() clean_images[i] = clean_image.clone() l2_norm = (clean_image - dirty_image).norm().item() linf_norm = (clean_image - dirty_image).abs().max().item() l2_snr = 20. * math.log10( clean_image.norm().item() / (l2_norm + 1e-6)) else: l2_snr = dirty_grad = l2_norm = linf_norm = np.NaN results['l2_snr'].append(l2_snr) results['clean_grad'].append(clean_grad) results['dirty_grad'].append(dirty_grad) results['l2_norm'].append(l2_norm) results['linf_norm'].append(linf_norm) fmt_str = "{:>15.6f} " * 5 if ((attack.func._default_distance == MSE and l2_norm < .005 * np.sqrt(args.img_size)) or (attack.func._default_distance == Linfinity and linf_norm < .005)): fmt_str += " * fooled!" n_fooled += 1 myPrint(fmt_str.format(clean_grad, dirty_grad, linf_norm, l2_norm, l2_snr), args) n_iterations += 1 if n_iterations == n_attacks: break # Printing summary summary = {} print("\n Summary for network in '{}' of test accuracy {}".format( args.path, te_acc)) for key, value in results.items(): low95, high95 = conf95(value) print("{:>10} mean:{:>10.5f} std:{:>10.5f} conf95:({:>10.5f}, " "{:>10.5f}) minmax:({:>10.5f}, {:>10.5f})".format( key, np.nanmean(value), np.nanstd(value), low95, high95, np.nanmin(value), np.nanmax(value))) summary[key] = [np.nanmean(value), np.nanstd(value), low95, high95] percent = 100 * n_fooled / float(n_iterations) print("{:>10} {:10d}s".format("Time", int(time.time() - t0))) print("{:>10} {:10.1f}%".format("percent", percent)) # Preparing the output output = dict() output['summary'] = summary output['results'] = results output['clean_images'] = clean_images output['dirty_images'] = dirty_images output['percent'] = percent output['te_acc'] = te_acc return output
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import numpy as np from PIL import Image import torch from torch.utils.data.sampler import SubsetRandomSampler import torchvision.transforms as transforms import torchvision.datasets as datasets def IMGNET12(root='~/datasets/imgnet12/', bs=32, bs_test=None, num_workers=32, valid_size=.1, size=256, crop=False, normalize=False): # Datafolder '~/datasets/imgnet12/' should contain folders train/ and val/, # each of which whould contain 12 subfolders (1 per class) with .jpg files root = os.path.expanduser(root) # original means = [.485, .456, .406] # original stds = [0.229, 0.224, 0.225] means = [.453, .443, .403] stds = { 256: [.232, .226, .225], 128: [.225, .218, .218], 64: [.218, .211, .211], 32: [.206, .200, .200] } if normalize: normalize = transforms.Normalize(mean=means, std=stds[size]) else: normalize = transforms.Normalize((0., 0., 0), (1., 1., 1.)) if bs_test is None: bs_test = bs if crop: tr_downsamplingOp = transforms.RandomCrop(size) te_downsamplingOp = transforms.CenterCrop(size) else: tr_downsamplingOp = transforms.Resize(size) te_downsamplingOp = transforms.Resize(size) preprocess = [transforms.Resize(256), transforms.CenterCrop(256)] tr_transforms = transforms.Compose([ *preprocess, tr_downsamplingOp, transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize, ]) te_transforms = transforms.Compose([ *preprocess, te_downsamplingOp, transforms.ToTensor(), normalize, ]) tr_dataset = datasets.ImageFolder(root + '/train', transform=tr_transforms) te_dataset = datasets.ImageFolder(root + '/val', transform=te_transforms) # Split training in train and valid set num_train = len(tr_dataset) indices = list(range(num_train)) split = int(np.floor(valid_size * num_train)) np.random.seed(42) np.random.shuffle(indices) tr_idx, va_idx = indices[split:], indices[:split] tr_sampler = SubsetRandomSampler(tr_idx) va_sampler = SubsetRandomSampler(va_idx) tr_loader = torch.utils.data.DataLoader( tr_dataset, batch_size=bs, num_workers=num_workers, pin_memory=True, sampler=tr_sampler) va_loader = torch.utils.data.DataLoader( tr_dataset, batch_size=bs_test, num_workers=num_workers, pin_memory=True, sampler=va_sampler) te_loader = torch.utils.data.DataLoader( te_dataset, batch_size=bs_test, shuffle=False, num_workers=num_workers, pin_memory=True) if valid_size > 0.: return tr_loader, va_loader, te_loader else: return tr_loader, te_loader def CIFAR10(root='~/datasets/cifar10/', bs=128, bs_test=None, augment_training=True, valid_size=0., size=32, num_workers=1, normalize=False): root = os.path.expanduser(root) if bs_test is None: bs_test = bs if normalize: normalize = transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)) else: normalize = transforms.Normalize((0., 0., 0), (1., 1., 1.)) transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.Resize(size, Image.NEAREST), transforms.ToTensor(), normalize ]) transform_test = transforms.Compose([ transforms.Resize(size, Image.NEAREST), transforms.ToTensor(), normalize ]) transform_valid = transform_test if augment_training is False: transform_train = transform_test dataset_tr = datasets.CIFAR10(root=root, train=True, transform=transform_train) dataset_va = datasets.CIFAR10(root=root, train=True, transform=transform_valid) dataset_te = datasets.CIFAR10(root=root, train=False, transform=transform_test) # Split training in train and valid set num_train = len(dataset_tr) indices = list(range(num_train)) split = int(np.floor(valid_size * num_train)) np.random.seed(42) np.random.shuffle(indices) train_idx, valid_idx = indices[split:], indices[:split] train_sampler = SubsetRandomSampler(train_idx) valid_sampler = SubsetRandomSampler(valid_idx) loader_tr = torch.utils.data.DataLoader(dataset_tr, batch_size=bs, sampler=train_sampler, num_workers=num_workers) loader_va = torch.utils.data.DataLoader(dataset_va, batch_size=bs, sampler=valid_sampler, num_workers=num_workers) # add pin_memory loader_te = torch.utils.data.DataLoader(dataset_te, batch_size=bs_test, shuffle=False, num_workers=num_workers) if valid_size > 0: return loader_tr, loader_va, loader_te else: return loader_tr, loader_te def MNIST(root='~/datasets/mnist/', bs=128, bs_test=None, augment_training=True, valid_size=0., size=32, num_workers=1, normalize=False): root = os.path.expanduser(root) if bs_test is None: bs_test = bs if normalize: normalize = transforms.Normalize((0.1307,), (0.3081,)) else: normalize = transforms.Normalize((0.,), (1.,)) transform = transforms.Compose([ transforms.Resize(32, Image.BILINEAR), transforms.Resize(size, Image.NEAREST), transforms.Grayscale(num_output_channels=1), transforms.ToTensor(), normalize ]) dataset_tr = datasets.MNIST(root=root, train=True, transform=transform) dataset_va = datasets.MNIST(root=root, train=True, transform=transform) dataset_te = datasets.MNIST(root=root, train=False, transform=transform) # Split training in train and valid set num_train = len(dataset_tr) indices = list(range(num_train)) split = int(np.floor(valid_size * num_train)) np.random.seed(42) np.random.shuffle(indices) train_idx, valid_idx = indices[split:], indices[:split] train_sampler = SubsetRandomSampler(train_idx) valid_sampler = SubsetRandomSampler(valid_idx) loader_tr = torch.utils.data.DataLoader(dataset_tr, batch_size=bs, sampler=train_sampler, num_workers=num_workers) loader_va = torch.utils.data.DataLoader(dataset_va, batch_size=bs, sampler=valid_sampler, num_workers=num_workers) # add pin_memory loader_te = torch.utils.data.DataLoader(dataset_te, batch_size=bs_test, shuffle=False, num_workers=num_workers) if valid_size > 0: return loader_tr, loader_va, loader_te else: return loader_tr, loader_te
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from functools import reduce import torch.nn as nn import torch.nn.functional as F class Identity(nn.Module): def __init__(self): super(Identity, self).__init__() def forward(self, x): return x class FlexibleAvgPool2d(nn.Module): def __init__(self): super().__init__() def forward(self, inputs): return F.avg_pool2d(inputs, kernel_size=inputs.size(2)) class WeightPool(nn.Module): def __init__(self, in_planes, kernel_size): super(WeightPool, self).__init__() self.conv = nn.Conv2d(in_planes, in_planes, kernel_size=kernel_size, stride=kernel_size, groups=in_planes, bias=False) self.conv.unit_gain = True def forward(self, x): return self.conv(x) class WeightPoolOut(nn.Module): def __init__(self, in_planes, plane_size, categories, unit_gain=False): super(WeightPoolOut, self).__init__() self.in_planes = in_planes self.conv = nn.Conv2d(in_planes, in_planes, kernel_size=plane_size, groups=in_planes, bias=False) self.linear = nn.Linear(in_planes, categories) self.linear.unit_gain = unit_gain def forward(self, x): out = self.conv(x) out = out.view(-1, self.in_planes) return self.linear(out) class MaxPoolOut(nn.Module): def __init__(self, in_planes, plane_size, categories, unit_gain=False): super(MaxPoolOut, self).__init__() self.in_planes = in_planes self.maxpool = nn.MaxPool2d(kernel_size=plane_size) self.linear = nn.Linear(in_planes, categories) self.linear.unit_gain = unit_gain def forward(self, x): out = self.maxpool(x) out = out.view(-1, self.in_planes) return self.linear(out) class AvgPoolOut(nn.Module): def __init__(self, in_planes, plane_size, categories, unit_gain=False): super(AvgPoolOut, self).__init__() self.in_planes = in_planes self.avgpool = nn.AvgPool2d(kernel_size=plane_size) self.linear = nn.Linear(in_planes, categories) self.linear.unit_gain = unit_gain def forward(self, x): out = self.avgpool(x) out = out.view(-1, self.in_planes) return self.linear(out) class FCout(nn.Module): def __init__(self, in_planes, plane_size, categories, unit_gain=False): super(FCout, self).__init__() if type(plane_size) == tuple and len(plane_size) == 2: plane_size = reduce(lambda x, y: x * y, plane_size) else: plane_size = plane_size ** 2 print('Plane size = ', plane_size) self.in_planes = in_planes self.plane_size = plane_size self.linear = nn.Linear(in_planes * plane_size, categories) self.linear.unit_gain = unit_gain def forward(self, x): out = x.view(-1, self.in_planes * self.plane_size) return self.linear(out) class ConvLayer(nn.Module): def __init__(self, in_planes, planes, pooltype=None, no_BN=False, no_act=False, dilation=1): super(ConvLayer, self).__init__() self.pad = nn.ReflectionPad2d(dilation) if pooltype is None: # Usual conv self.conv = nn.Conv2d(in_planes, planes, 3, padding=0, stride=1, dilation=dilation) elif pooltype == 'avgpool': # Average Pool self.conv = nn.Sequential( nn.Conv2d(in_planes, planes, 3, dilation=dilation), nn.AvgPool2d(2)) elif pooltype == 'subsamp': # Strided Conv self.conv = nn.Conv2d( in_planes, planes, 3, stride=2, dilation=dilation) elif pooltype == 'maxpool': # Max Pool self.conv = nn.Sequential( nn.Conv2d(in_planes, planes, 3, dilation=dilation), nn.MaxPool2d(2)) elif pooltype == 'weightpool': self.conv = nn.Sequential( nn.Conv2d(in_planes, planes, 3, dilation=dilation), WeightPool(planes, 2)) else: raise NotImplementedError if no_act: self.act = lambda x: x else: self.act = nn.ReLU() if no_BN: self.bn = lambda x: x # Identity() else: self.bn = nn.BatchNorm2d(planes) def forward(self, x): out = self.act(self.bn(self.conv(self.pad(x)))) return out class ConvNet(nn.Module): def __init__( self, categories=10, n_layers=3, in_size=32, poolings=None, pooltype='avgpool', no_BN=False, no_act=False, dilations=1, normalize_inputs=False, last_layers='maxpool', in_planes=3): # last_layers in {'maxpool', 'fc', 'weightpool'} super(ConvNet, self).__init__() poolings = [] if poolings is None else poolings if type(dilations) != list: dilations = [dilations] * n_layers self.in_planes = in_planes if normalize_inputs or no_BN: self.bn = (lambda x: x) else: self.bn = nn.BatchNorm2d(self.in_planes) self.layers = self._make_layers( ConvLayer, 64, n_layers, poolings, pooltype, no_BN, no_act, dilations) # compute input-size to last layers from input-size of the net # self.in_planes is changed by _make_layers to the nbr of out-planes out_size = int(in_size / (2 ** (len(poolings)))) self.last_layers = self._make_last_layers( out_size, categories, last_layers) def _make_layers(self, block, planes, num_blocks, poolings, pooltype, no_BN, no_act, dilations): # pooltypes = [0] + [0] * (num_blocks - 1) pooltypes = [None] * num_blocks for pool in poolings: pooltypes[pool] = pooltype layers = [] for pool, dilation in zip(pooltypes, dilations): layers.append(block(self.in_planes, planes, pool, no_BN, no_act, dilation)) self.in_planes = planes return nn.Sequential(*layers) def _make_last_layers(self, in_size, categories, last_layers): if last_layers == 'maxpool': last_layers = MaxPoolOut( self.in_planes, in_size, categories, unit_gain=True) elif last_layers == 'avgpool': last_layers = AvgPoolOut( self.in_planes, in_size, categories, unit_gain=True) elif last_layers == 'weightpool': last_layers = WeightPoolOut( self.in_planes, in_size, categories, unit_gain=True) elif last_layers == 'fc': last_layers = FCout( self.in_planes, in_size, categories, unit_gain=True) else: raise NotImplementedError( 'Argument last_layers must be maxpool, fc, weightpool. ' 'But got: %s' % last_layers) return last_layers def forward(self, x): out = self.layers(self.bn(x)) out = self.last_layers(out) return out
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import detectron2.utils.comm as comm from detectron2.checkpoint import DetectionCheckpointer from detectron2.config import get_cfg from detectron2.engine import default_argument_parser, default_setup, launch from adapteacher import add_ateacher_config from adapteacher.engine.trainer import ATeacherTrainer, BaselineTrainer # hacky way to register from adapteacher.modeling.meta_arch.rcnn import TwoStagePseudoLabGeneralizedRCNN, DAobjTwoStagePseudoLabGeneralizedRCNN from adapteacher.modeling.meta_arch.vgg import build_vgg_backbone # noqa from adapteacher.modeling.proposal_generator.rpn import PseudoLabRPN from adapteacher.modeling.roi_heads.roi_heads import StandardROIHeadsPseudoLab import adapteacher.data.datasets.builtin from adapteacher.modeling.meta_arch.ts_ensemble import EnsembleTSModel def setup(args): """ Create configs and perform basic setups. """ cfg = get_cfg() add_ateacher_config(cfg) cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() default_setup(cfg, args) return cfg def main(args): cfg = setup(args) if cfg.SEMISUPNET.Trainer == "ateacher": Trainer = ATeacherTrainer elif cfg.SEMISUPNET.Trainer == "baseline": Trainer = BaselineTrainer else: raise ValueError("Trainer Name is not found.") if args.eval_only: if cfg.SEMISUPNET.Trainer == "ateacher": model = Trainer.build_model(cfg) model_teacher = Trainer.build_model(cfg) ensem_ts_model = EnsembleTSModel(model_teacher, model) DetectionCheckpointer( ensem_ts_model, save_dir=cfg.OUTPUT_DIR ).resume_or_load(cfg.MODEL.WEIGHTS, resume=args.resume) res = Trainer.test(cfg, ensem_ts_model.modelTeacher) else: model = Trainer.build_model(cfg) DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load( cfg.MODEL.WEIGHTS, resume=args.resume ) res = Trainer.test(cfg, model) return res trainer = Trainer(cfg) trainer.resume_or_load(resume=args.resume) return trainer.train() if __name__ == "__main__": args = default_argument_parser().parse_args() print("Command Line Args:", args) launch( main, args.num_gpus, num_machines=args.num_machines, machine_rank=args.machine_rank, dist_url=args.dist_url, args=(args,), )
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from detectron2.config import CfgNode as CN def add_ateacher_config(cfg): """ Add config for semisupnet. """ _C = cfg _C.TEST.VAL_LOSS = True _C.MODEL.RPN.UNSUP_LOSS_WEIGHT = 1.0 _C.MODEL.RPN.LOSS = "CrossEntropy" _C.MODEL.ROI_HEADS.LOSS = "CrossEntropy" _C.SOLVER.IMG_PER_BATCH_LABEL = 1 _C.SOLVER.IMG_PER_BATCH_UNLABEL = 1 _C.SOLVER.FACTOR_LIST = (1,) _C.DATASETS.TRAIN_LABEL = ("coco_2017_train",) _C.DATASETS.TRAIN_UNLABEL = ("coco_2017_train",) _C.DATASETS.CROSS_DATASET = True _C.TEST.EVALUATOR = "COCOeval" _C.SEMISUPNET = CN() # Output dimension of the MLP projector after `res5` block _C.SEMISUPNET.MLP_DIM = 128 # Semi-supervised training _C.SEMISUPNET.Trainer = "ateacher" _C.SEMISUPNET.BBOX_THRESHOLD = 0.7 _C.SEMISUPNET.PSEUDO_BBOX_SAMPLE = "thresholding" _C.SEMISUPNET.TEACHER_UPDATE_ITER = 1 _C.SEMISUPNET.BURN_UP_STEP = 12000 _C.SEMISUPNET.EMA_KEEP_RATE = 0.0 _C.SEMISUPNET.UNSUP_LOSS_WEIGHT = 4.0 _C.SEMISUPNET.SUP_LOSS_WEIGHT = 0.5 _C.SEMISUPNET.LOSS_WEIGHT_TYPE = "standard" _C.SEMISUPNET.DIS_TYPE = "res4" _C.SEMISUPNET.DIS_LOSS_WEIGHT = 0.1 # dataloader # supervision level _C.DATALOADER.SUP_PERCENT = 100.0 # 5 = 5% dataset as labeled set _C.DATALOADER.RANDOM_DATA_SEED = 0 # random seed to read data _C.DATALOADER.RANDOM_DATA_SEED_PATH = "dataseed/COCO_supervision.txt" _C.EMAMODEL = CN() _C.EMAMODEL.SUP_CONSIST = True
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from .config import add_ateacher_config
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from detectron2.checkpoint.c2_model_loading import align_and_update_state_dicts from detectron2.checkpoint import DetectionCheckpointer # for load_student_model from typing import Any from fvcore.common.checkpoint import _strip_prefix_if_present, _IncompatibleKeys class DetectionTSCheckpointer(DetectionCheckpointer): def _load_model(self, checkpoint): if checkpoint.get("__author__", None) == "Caffe2": # pretrained model weight: only update student model if checkpoint.get("matching_heuristics", False): self._convert_ndarray_to_tensor(checkpoint["model"]) # convert weights by name-matching heuristics model_state_dict = self.model.modelStudent.state_dict() align_and_update_state_dicts( model_state_dict, checkpoint["model"], c2_conversion=checkpoint.get("__author__", None) == "Caffe2", ) checkpoint["model"] = model_state_dict # for non-caffe2 models, use standard ways to load it incompatible = self._load_student_model(checkpoint) model_buffers = dict(self.model.modelStudent.named_buffers(recurse=False)) for k in ["pixel_mean", "pixel_std"]: # Ignore missing key message about pixel_mean/std. # Though they may be missing in old checkpoints, they will be correctly # initialized from config anyway. if k in model_buffers: try: incompatible.missing_keys.remove(k) except ValueError: pass return incompatible else: # whole model if checkpoint.get("matching_heuristics", False): self._convert_ndarray_to_tensor(checkpoint["model"]) # convert weights by name-matching heuristics model_state_dict = self.model.state_dict() align_and_update_state_dicts( model_state_dict, checkpoint["model"], c2_conversion=checkpoint.get("__author__", None) == "Caffe2", ) checkpoint["model"] = model_state_dict # for non-caffe2 models, use standard ways to load it incompatible = super()._load_model(checkpoint) model_buffers = dict(self.model.named_buffers(recurse=False)) for k in ["pixel_mean", "pixel_std"]: # Ignore missing key message about pixel_mean/std. # Though they may be missing in old checkpoints, they will be correctly # initialized from config anyway. if k in model_buffers: try: incompatible.missing_keys.remove(k) except ValueError: pass return incompatible def _load_student_model(self, checkpoint: Any) -> _IncompatibleKeys: # pyre-ignore checkpoint_state_dict = checkpoint.pop("model") self._convert_ndarray_to_tensor(checkpoint_state_dict) # if the state_dict comes from a model that was wrapped in a # DataParallel or DistributedDataParallel during serialization, # remove the "module" prefix before performing the matching. _strip_prefix_if_present(checkpoint_state_dict, "module.") # work around https://github.com/pytorch/pytorch/issues/24139 model_state_dict = self.model.modelStudent.state_dict() incorrect_shapes = [] for k in list(checkpoint_state_dict.keys()): if k in model_state_dict: shape_model = tuple(model_state_dict[k].shape) shape_checkpoint = tuple(checkpoint_state_dict[k].shape) if shape_model != shape_checkpoint: incorrect_shapes.append((k, shape_checkpoint, shape_model)) checkpoint_state_dict.pop(k) # pyre-ignore incompatible = self.model.modelStudent.load_state_dict( checkpoint_state_dict, strict=False ) return _IncompatibleKeys( missing_keys=incompatible.missing_keys, unexpected_keys=incompatible.unexpected_keys, incorrect_shapes=incorrect_shapes, ) # class DetectionCheckpointer(Checkpointer): # """ # Same as :class:`Checkpointer`, but is able to handle models in detectron & detectron2 # model zoo, and apply conversions for legacy models. # """ # def __init__(self, model, save_dir="", *, save_to_disk=None, **checkpointables): # is_main_process = comm.is_main_process() # super().__init__( # model, # save_dir, # save_to_disk=is_main_process if save_to_disk is None else save_to_disk, # **checkpointables, # ) # def _load_file(self, filename): # if filename.endswith(".pkl"): # with PathManager.open(filename, "rb") as f: # data = pickle.load(f, encoding="latin1") # if "model" in data and "__author__" in data: # # file is in Detectron2 model zoo format # self.logger.info("Reading a file from '{}'".format(data["__author__"])) # return data # else: # # assume file is from Caffe2 / Detectron1 model zoo # if "blobs" in data: # # Detection models have "blobs", but ImageNet models don't # data = data["blobs"] # data = {k: v for k, v in data.items() if not k.endswith("_momentum")} # return {"model": data, "__author__": "Caffe2", "matching_heuristics": True} # loaded = super()._load_file(filename) # load native pth checkpoint # if "model" not in loaded: # loaded = {"model": loaded} # return loaded # def _load_model(self, checkpoint): # if checkpoint.get("matching_heuristics", False): # self._convert_ndarray_to_tensor(checkpoint["model"]) # # convert weights by name-matching heuristics # model_state_dict = self.model.state_dict() # align_and_update_state_dicts( # model_state_dict, # checkpoint["model"], # c2_conversion=checkpoint.get("__author__", None) == "Caffe2", # ) # checkpoint["model"] = model_state_dict # # for non-caffe2 models, use standard ways to load it # super()._load_model(checkpoint)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import torch from detectron2.config import CfgNode from detectron2.solver.lr_scheduler import WarmupCosineLR, WarmupMultiStepLR from .lr_scheduler import WarmupTwoStageMultiStepLR def build_lr_scheduler( cfg: CfgNode, optimizer: torch.optim.Optimizer ) -> torch.optim.lr_scheduler._LRScheduler: """ Build a LR scheduler from config. """ name = cfg.SOLVER.LR_SCHEDULER_NAME if name == "WarmupMultiStepLR": return WarmupMultiStepLR( optimizer, cfg.SOLVER.STEPS, cfg.SOLVER.GAMMA, warmup_factor=cfg.SOLVER.WARMUP_FACTOR, warmup_iters=cfg.SOLVER.WARMUP_ITERS, warmup_method=cfg.SOLVER.WARMUP_METHOD, ) elif name == "WarmupCosineLR": return WarmupCosineLR( optimizer, cfg.SOLVER.MAX_ITER, warmup_factor=cfg.SOLVER.WARMUP_FACTOR, warmup_iters=cfg.SOLVER.WARMUP_ITERS, warmup_method=cfg.SOLVER.WARMUP_METHOD, ) elif name == "WarmupTwoStageMultiStepLR": return WarmupTwoStageMultiStepLR( optimizer, cfg.SOLVER.STEPS, factor_list=cfg.SOLVER.FACTOR_LIST, gamma=cfg.SOLVER.GAMMA, warmup_factor=cfg.SOLVER.WARMUP_FACTOR, warmup_iters=cfg.SOLVER.WARMUP_ITERS, warmup_method=cfg.SOLVER.WARMUP_METHOD, ) else: raise ValueError("Unknown LR scheduler: {}".format(name))
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from bisect import bisect_right from typing import List import torch from detectron2.solver.lr_scheduler import _get_warmup_factor_at_iter class WarmupTwoStageMultiStepLR(torch.optim.lr_scheduler._LRScheduler): def __init__( self, optimizer: torch.optim.Optimizer, milestones: List[int], factor_list: List[int], gamma: float = 0.1, warmup_factor: float = 0.001, warmup_iters: int = 1000, warmup_method: str = "linear", last_epoch: int = -1, ): if not list(milestones) == sorted(milestones): raise ValueError( "Milestones should be a list of" " increasing integers. Got {}", milestones, ) if len(milestones) + 1 != len(factor_list): raise ValueError("Length of milestones should match length of factor_list.") self.milestones = milestones self.gamma = gamma self.warmup_factor = warmup_factor self.warmup_iters = warmup_iters self.warmup_method = warmup_method self.factor_list = factor_list super().__init__(optimizer, last_epoch) def get_lr(self) -> List[float]: warmup_factor = _get_warmup_factor_at_iter( self.warmup_method, self.last_epoch, self.warmup_iters, self.warmup_factor ) return [ base_lr * warmup_factor * self.factor_list[bisect_right(self.milestones, self.last_epoch)] for base_lr in self.base_lrs ] def _compute_values(self) -> List[float]: # The new interface return self.get_lr()
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import numpy as np import torch import torch.nn as nn from torch.nn import functional as F from detectron2.modeling.meta_arch.build import META_ARCH_REGISTRY from detectron2.modeling.meta_arch.rcnn import GeneralizedRCNN from detectron2.config import configurable # from detectron2.modeling.meta_arch.build import META_ARCH_REGISTRY # from detectron2.modeling.meta_arch.rcnn import GeneralizedRCNN import logging from typing import Dict, Tuple, List, Optional from collections import OrderedDict from detectron2.modeling.proposal_generator import build_proposal_generator from detectron2.modeling.backbone import build_backbone, Backbone from detectron2.modeling.roi_heads import build_roi_heads from detectron2.utils.events import get_event_storage from detectron2.structures import ImageList ############### Image discriminator ############## class FCDiscriminator_img(nn.Module): def __init__(self, num_classes, ndf1=256, ndf2=128): super(FCDiscriminator_img, self).__init__() self.conv1 = nn.Conv2d(num_classes, ndf1, kernel_size=3, padding=1) self.conv2 = nn.Conv2d(ndf1, ndf2, kernel_size=3, padding=1) self.conv3 = nn.Conv2d(ndf2, ndf2, kernel_size=3, padding=1) self.classifier = nn.Conv2d(ndf2, 1, kernel_size=3, padding=1) self.leaky_relu = nn.LeakyReLU(negative_slope=0.2, inplace=True) def forward(self, x): x = self.conv1(x) x = self.leaky_relu(x) x = self.conv2(x) x = self.leaky_relu(x) x = self.conv3(x) x = self.leaky_relu(x) x = self.classifier(x) return x ################################# ################ Gradient reverse function class GradReverse(torch.autograd.Function): @staticmethod def forward(ctx, x): return x.view_as(x) @staticmethod def backward(ctx, grad_output): return grad_output.neg() def grad_reverse(x): return GradReverse.apply(x) ####################### @META_ARCH_REGISTRY.register() class DAobjTwoStagePseudoLabGeneralizedRCNN(GeneralizedRCNN): @configurable def __init__( self, *, backbone: Backbone, proposal_generator: nn.Module, roi_heads: nn.Module, pixel_mean: Tuple[float], pixel_std: Tuple[float], input_format: Optional[str] = None, vis_period: int = 0, dis_type: str, # dis_loss_weight: float = 0, ): """ Args: backbone: a backbone module, must follow detectron2's backbone interface proposal_generator: a module that generates proposals using backbone features roi_heads: a ROI head that performs per-region computation pixel_mean, pixel_std: list or tuple with #channels element, representing the per-channel mean and std to be used to normalize the input image input_format: describe the meaning of channels of input. Needed by visualization vis_period: the period to run visualization. Set to 0 to disable. """ super(GeneralizedRCNN, self).__init__() self.backbone = backbone self.proposal_generator = proposal_generator self.roi_heads = roi_heads self.input_format = input_format self.vis_period = vis_period if vis_period > 0: assert input_format is not None, "input_format is required for visualization!" self.register_buffer("pixel_mean", torch.tensor(pixel_mean).view(-1, 1, 1), False) self.register_buffer("pixel_std", torch.tensor(pixel_std).view(-1, 1, 1), False) assert ( self.pixel_mean.shape == self.pixel_std.shape ), f"{self.pixel_mean} and {self.pixel_std} have different shapes!" # @yujheli: you may need to build your discriminator here self.dis_type = dis_type self.D_img = None # self.D_img = FCDiscriminator_img(self.backbone._out_feature_channels['res4']) # Need to know the channel # self.D_img = None self.D_img = FCDiscriminator_img(self.backbone._out_feature_channels[self.dis_type]) # Need to know the channel # self.bceLoss_func = nn.BCEWithLogitsLoss() def build_discriminator(self): self.D_img = FCDiscriminator_img(self.backbone._out_feature_channels[self.dis_type]).to(self.device) # Need to know the channel @classmethod def from_config(cls, cfg): backbone = build_backbone(cfg) return { "backbone": backbone, "proposal_generator": build_proposal_generator(cfg, backbone.output_shape()), "roi_heads": build_roi_heads(cfg, backbone.output_shape()), "input_format": cfg.INPUT.FORMAT, "vis_period": cfg.VIS_PERIOD, "pixel_mean": cfg.MODEL.PIXEL_MEAN, "pixel_std": cfg.MODEL.PIXEL_STD, "dis_type": cfg.SEMISUPNET.DIS_TYPE, # "dis_loss_ratio": cfg.xxx, } def preprocess_image_train(self, batched_inputs: List[Dict[str, torch.Tensor]]): """ Normalize, pad and batch the input images. """ images = [x["image"].to(self.device) for x in batched_inputs] images = [(x - self.pixel_mean) / self.pixel_std for x in images] images = ImageList.from_tensors(images, self.backbone.size_divisibility) images_t = [x["image_unlabeled"].to(self.device) for x in batched_inputs] images_t = [(x - self.pixel_mean) / self.pixel_std for x in images_t] images_t = ImageList.from_tensors(images_t, self.backbone.size_divisibility) return images, images_t def forward( self, batched_inputs, branch="supervised", given_proposals=None, val_mode=False ): """ Args: batched_inputs: a list, batched outputs of :class:`DatasetMapper` . Each item in the list contains the inputs for one image. For now, each item in the list is a dict that contains: * image: Tensor, image in (C, H, W) format. * instances (optional): groundtruth :class:`Instances` * proposals (optional): :class:`Instances`, precomputed proposals. Other information that's included in the original dicts, such as: * "height", "width" (int): the output resolution of the model, used in inference. See :meth:`postprocess` for details. Returns: list[dict]: Each dict is the output for one input image. The dict contains one key "instances" whose value is a :class:`Instances`. The :class:`Instances` object has the following keys: "pred_boxes", "pred_classes", "scores", "pred_masks", "pred_keypoints" """ if self.D_img == None: self.build_discriminator() if (not self.training) and (not val_mode): # only conduct when testing mode return self.inference(batched_inputs) source_label = 0 target_label = 1 if branch == "domain": # self.D_img.train() # source_label = 0 # target_label = 1 # images = self.preprocess_image(batched_inputs) images_s, images_t = self.preprocess_image_train(batched_inputs) features = self.backbone(images_s.tensor) # import pdb # pdb.set_trace() features_s = grad_reverse(features[self.dis_type]) D_img_out_s = self.D_img(features_s) loss_D_img_s = F.binary_cross_entropy_with_logits(D_img_out_s, torch.FloatTensor(D_img_out_s.data.size()).fill_(source_label).to(self.device)) features_t = self.backbone(images_t.tensor) features_t = grad_reverse(features_t[self.dis_type]) # features_t = grad_reverse(features_t['p2']) D_img_out_t = self.D_img(features_t) loss_D_img_t = F.binary_cross_entropy_with_logits(D_img_out_t, torch.FloatTensor(D_img_out_t.data.size()).fill_(target_label).to(self.device)) # import pdb # pdb.set_trace() losses = {} losses["loss_D_img_s"] = loss_D_img_s losses["loss_D_img_t"] = loss_D_img_t return losses, [], [], None # self.D_img.eval() images = self.preprocess_image(batched_inputs) if "instances" in batched_inputs[0]: gt_instances = [x["instances"].to(self.device) for x in batched_inputs] else: gt_instances = None features = self.backbone(images.tensor) # TODO: remove the usage of if else here. This needs to be re-organized if branch == "supervised": features_s = grad_reverse(features[self.dis_type]) D_img_out_s = self.D_img(features_s) loss_D_img_s = F.binary_cross_entropy_with_logits(D_img_out_s, torch.FloatTensor(D_img_out_s.data.size()).fill_(source_label).to(self.device)) # Region proposal network proposals_rpn, proposal_losses = self.proposal_generator( images, features, gt_instances ) # roi_head lower branch _, detector_losses = self.roi_heads( images, features, proposals_rpn, compute_loss=True, targets=gt_instances, branch=branch, ) # visualization if self.vis_period > 0: storage = get_event_storage() if storage.iter % self.vis_period == 0: self.visualize_training(batched_inputs, proposals_rpn, branch) losses = {} losses.update(detector_losses) losses.update(proposal_losses) losses["loss_D_img_s"] = loss_D_img_s*0.001 return losses, [], [], None elif branch == "supervised_target": # features_t = grad_reverse(features_t[self.dis_type]) # D_img_out_t = self.D_img(features_t) # loss_D_img_t = F.binary_cross_entropy_with_logits(D_img_out_t, torch.FloatTensor(D_img_out_t.data.size()).fill_(target_label).to(self.device)) # Region proposal network proposals_rpn, proposal_losses = self.proposal_generator( images, features, gt_instances ) # roi_head lower branch _, detector_losses = self.roi_heads( images, features, proposals_rpn, compute_loss=True, targets=gt_instances, branch=branch, ) # visualization if self.vis_period > 0: storage = get_event_storage() if storage.iter % self.vis_period == 0: self.visualize_training(batched_inputs, proposals_rpn, branch) losses = {} losses.update(detector_losses) losses.update(proposal_losses) # losses["loss_D_img_t"] = loss_D_img_t*0.001 # losses["loss_D_img_s"] = loss_D_img_s*0.001 return losses, [], [], None elif branch == "unsup_data_weak": """ unsupervised weak branch: input image without any ground-truth label; output proposals of rpn and roi-head """ # Region proposal network proposals_rpn, _ = self.proposal_generator( images, features, None, compute_loss=False ) # roi_head lower branch (keep this for further production) # notice that we do not use any target in ROI head to do inference! proposals_roih, ROI_predictions = self.roi_heads( images, features, proposals_rpn, targets=None, compute_loss=False, branch=branch, ) # if self.vis_period > 0: # storage = get_event_storage() # if storage.iter % self.vis_period == 0: # self.visualize_training(batched_inputs, proposals_rpn, branch) return {}, proposals_rpn, proposals_roih, ROI_predictions elif branch == "unsup_data_strong": raise NotImplementedError() elif branch == "val_loss": raise NotImplementedError() def visualize_training(self, batched_inputs, proposals, branch=""): """ This function different from the original one: - it adds "branch" to the `vis_name`. A function used to visualize images and proposals. It shows ground truth bounding boxes on the original image and up to 20 predicted object proposals on the original image. Users can implement different visualization functions for different models. Args: batched_inputs (list): a list that contains input to the model. proposals (list): a list that contains predicted proposals. Both batched_inputs and proposals should have the same length. """ from detectron2.utils.visualizer import Visualizer storage = get_event_storage() max_vis_prop = 20 for input, prop in zip(batched_inputs, proposals): img = input["image"] img = convert_image_to_rgb(img.permute(1, 2, 0), self.input_format) v_gt = Visualizer(img, None) v_gt = v_gt.overlay_instances(boxes=input["instances"].gt_boxes) anno_img = v_gt.get_image() box_size = min(len(prop.proposal_boxes), max_vis_prop) v_pred = Visualizer(img, None) v_pred = v_pred.overlay_instances( boxes=prop.proposal_boxes[0:box_size].tensor.cpu().numpy() ) prop_img = v_pred.get_image() vis_img = np.concatenate((anno_img, prop_img), axis=1) vis_img = vis_img.transpose(2, 0, 1) vis_name = ( "Left: GT bounding boxes " + branch + "; Right: Predicted proposals " + branch ) storage.put_image(vis_name, vis_img) break # only visualize one image in a batch @META_ARCH_REGISTRY.register() class TwoStagePseudoLabGeneralizedRCNN(GeneralizedRCNN): def forward( self, batched_inputs, branch="supervised", given_proposals=None, val_mode=False ): if (not self.training) and (not val_mode): return self.inference(batched_inputs) images = self.preprocess_image(batched_inputs) if "instances" in batched_inputs[0]: gt_instances = [x["instances"].to(self.device) for x in batched_inputs] else: gt_instances = None features = self.backbone(images.tensor) if branch == "supervised": # Region proposal network proposals_rpn, proposal_losses = self.proposal_generator( images, features, gt_instances ) # # roi_head lower branch _, detector_losses = self.roi_heads( images, features, proposals_rpn, gt_instances, branch=branch ) losses = {} losses.update(detector_losses) losses.update(proposal_losses) return losses, [], [], None elif branch == "unsup_data_weak": # Region proposal network proposals_rpn, _ = self.proposal_generator( images, features, None, compute_loss=False ) # roi_head lower branch (keep this for further production) # notice that we do not use any target in ROI head to do inference ! proposals_roih, ROI_predictions = self.roi_heads( images, features, proposals_rpn, targets=None, compute_loss=False, branch=branch, ) return {}, proposals_rpn, proposals_roih, ROI_predictions elif branch == "val_loss": # Region proposal network proposals_rpn, proposal_losses = self.proposal_generator( images, features, gt_instances, compute_val_loss=True ) # roi_head lower branch _, detector_losses = self.roi_heads( images, features, proposals_rpn, gt_instances, branch=branch, compute_val_loss=True, ) losses = {} losses.update(detector_losses) losses.update(proposal_losses) return losses, [], [], None
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import torch.nn as nn import copy import torch from typing import Union, List, Dict, Any, cast from detectron2.modeling.backbone import ( ResNet, Backbone, build_resnet_backbone, BACKBONE_REGISTRY ) from detectron2.modeling.backbone.fpn import FPN, LastLevelMaxPool, LastLevelP6P7 def make_layers(cfg: List[Union[str, int]], batch_norm: bool = False) -> nn.Sequential: layers: List[nn.Module] = [] in_channels = 3 for v in cfg: if v == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: v = cast(int, v) conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1) if batch_norm: layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)] else: layers += [conv2d, nn.ReLU(inplace=True)] in_channels = v return nn.Sequential(*layers) cfgs: Dict[str, List[Union[str, int]]] = { 'vgg11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'vgg13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'vgg16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'], 'vgg19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'], } class vgg_backbone(Backbone): """ Backbone (bottom-up) for FBNet. Hierarchy: trunk0: xif0_0 xif0_1 ... trunk1: xif1_0 xif1_1 ... ... Output features: The outputs from each "stage", i.e. trunkX. """ def __init__(self, cfg): super().__init__() self.vgg = make_layers(cfgs['vgg16'],batch_norm=True) self._initialize_weights() # self.stage_names_index = {'vgg1':3, 'vgg2':8 , 'vgg3':15, 'vgg4':22, 'vgg5':29} _out_feature_channels = [64, 128, 256, 512, 512] _out_feature_strides = [2, 4, 8, 16, 32] # stages, shape_specs = build_fbnet( # cfg, # name="trunk", # in_channels=cfg.MODEL.FBNET_V2.STEM_IN_CHANNELS # ) # nn.Sequential(*list(self.vgg.features._modules.values())[:14]) self.stages = [nn.Sequential(*list(self.vgg._modules.values())[0:7]),\ nn.Sequential(*list(self.vgg._modules.values())[7:14]),\ nn.Sequential(*list(self.vgg._modules.values())[14:24]),\ nn.Sequential(*list(self.vgg._modules.values())[24:34]),\ nn.Sequential(*list(self.vgg._modules.values())[34:]),] self._out_feature_channels = {} self._out_feature_strides = {} self._stage_names = [] for i, stage in enumerate(self.stages): name = "vgg{}".format(i) self.add_module(name, stage) self._stage_names.append(name) self._out_feature_channels[name] = _out_feature_channels[i] self._out_feature_strides[name] = _out_feature_strides[i] self._out_features = self._stage_names del self.vgg def forward(self, x): features = {} for name, stage in zip(self._stage_names, self.stages): x = stage(x) # if name in self._out_features: # outputs[name] = x features[name] = x # import pdb # pdb.set_trace() return features def _initialize_weights(self) -> None: for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.constant_(m.bias, 0) @BACKBONE_REGISTRY.register() #already register in baseline model def build_vgg_backbone(cfg, _): return vgg_backbone(cfg) @BACKBONE_REGISTRY.register() #already register in baseline model def build_vgg_fpn_backbone(cfg, _): # backbone = FPN( # bottom_up=build_vgg_backbone(cfg), # in_features=cfg.MODEL.FPN.IN_FEATURES, # out_channels=cfg.MODEL.FPN.OUT_CHANNELS, # norm=cfg.MODEL.FPN.NORM, # top_block=LastLevelMaxPool(), # ) bottom_up = vgg_backbone(cfg) in_features = cfg.MODEL.FPN.IN_FEATURES out_channels = cfg.MODEL.FPN.OUT_CHANNELS backbone = FPN( bottom_up=bottom_up, in_features=in_features, out_channels=out_channels, norm=cfg.MODEL.FPN.NORM, top_block=LastLevelMaxPool(), # fuse_type=cfg.MODEL.FPN.FUSE_TYPE, ) # return backbone return backbone
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from torch.nn.parallel import DataParallel, DistributedDataParallel import torch.nn as nn class EnsembleTSModel(nn.Module): def __init__(self, modelTeacher, modelStudent): super(EnsembleTSModel, self).__init__() if isinstance(modelTeacher, (DistributedDataParallel, DataParallel)): modelTeacher = modelTeacher.module if isinstance(modelStudent, (DistributedDataParallel, DataParallel)): modelStudent = modelStudent.module self.modelTeacher = modelTeacher self.modelStudent = modelStudent
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from typing import Dict, Optional import torch from detectron2.structures import ImageList, Instances from detectron2.modeling.proposal_generator import RPN from detectron2.modeling.proposal_generator.build import PROPOSAL_GENERATOR_REGISTRY @PROPOSAL_GENERATOR_REGISTRY.register() class PseudoLabRPN(RPN): """ Region Proposal Network, introduced by :paper:`Faster R-CNN`. """ def forward( self, images: ImageList, features: Dict[str, torch.Tensor], gt_instances: Optional[Instances] = None, compute_loss: bool = True, compute_val_loss: bool = False, ): features = [features[f] for f in self.in_features] anchors = self.anchor_generator(features) pred_objectness_logits, pred_anchor_deltas = self.rpn_head(features) pred_objectness_logits = [ # (N, A, Hi, Wi) -> (N, Hi, Wi, A) -> (N, Hi*Wi*A) score.permute(0, 2, 3, 1).flatten(1) for score in pred_objectness_logits ] pred_anchor_deltas = [ # (N, A*B, Hi, Wi) -> (N, A, B, Hi, Wi) -> (N, Hi, Wi, A, B) -> (N, Hi*Wi*A, B) x.view( x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1] ) .permute(0, 3, 4, 1, 2) .flatten(1, -2) for x in pred_anchor_deltas ] if (self.training and compute_loss) or compute_val_loss: gt_labels, gt_boxes = self.label_and_sample_anchors(anchors, gt_instances) losses = self.losses( anchors, pred_objectness_logits, gt_labels, pred_anchor_deltas, gt_boxes ) losses = {k: v * self.loss_weight.get(k, 1.0) for k, v in losses.items()} else: # inference losses = {} proposals = self.predict_proposals( anchors, pred_objectness_logits, pred_anchor_deltas, images.image_sizes ) return proposals, losses
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import torch from torch import nn from torch.nn import functional as F from detectron2.modeling.roi_heads.fast_rcnn import ( FastRCNNOutputLayers, FastRCNNOutputs, ) # focal loss class FastRCNNFocaltLossOutputLayers(FastRCNNOutputLayers): def __init__(self, cfg, input_shape): super(FastRCNNFocaltLossOutputLayers, self).__init__(cfg, input_shape) self.num_classes = cfg.MODEL.ROI_HEADS.NUM_CLASSES def losses(self, predictions, proposals): """ Args: predictions: return values of :meth:`forward()`. proposals (list[Instances]): proposals that match the features that were used to compute predictions. """ scores, proposal_deltas = predictions losses = FastRCNNFocalLoss( self.box2box_transform, scores, proposal_deltas, proposals, self.smooth_l1_beta, self.box_reg_loss_type, num_classes=self.num_classes, ).losses() return losses class FastRCNNFocalLoss(FastRCNNOutputs): """ A class that stores information about outputs of a Fast R-CNN head. It provides methods that are used to decode the outputs of a Fast R-CNN head. """ def __init__( self, box2box_transform, pred_class_logits, pred_proposal_deltas, proposals, smooth_l1_beta=0.0, box_reg_loss_type="smooth_l1", num_classes=80, ): super(FastRCNNFocalLoss, self).__init__( box2box_transform, pred_class_logits, pred_proposal_deltas, proposals, smooth_l1_beta, box_reg_loss_type, ) self.num_classes = num_classes def losses(self): return { "loss_cls": self.comput_focal_loss(), "loss_box_reg": self.box_reg_loss(), } def comput_focal_loss(self): if self._no_instances: return 0.0 * self.pred_class_logits.sum() else: FC_loss = FocalLoss( gamma=1.5, num_classes=self.num_classes, ) total_loss = FC_loss(input=self.pred_class_logits, target=self.gt_classes) total_loss = total_loss / self.gt_classes.shape[0] return total_loss class FocalLoss(nn.Module): def __init__( self, weight=None, gamma=1.0, num_classes=80, ): super(FocalLoss, self).__init__() assert gamma >= 0 self.gamma = gamma self.weight = weight self.num_classes = num_classes def forward(self, input, target): # focal loss CE = F.cross_entropy(input, target, reduction="none") p = torch.exp(-CE) loss = (1 - p) ** self.gamma * CE return loss.sum()
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import torch from typing import Dict, List, Optional, Tuple, Union from detectron2.structures import Boxes, ImageList, Instances, pairwise_iou from detectron2.modeling.proposal_generator.proposal_utils import ( add_ground_truth_to_proposals, ) from detectron2.utils.events import get_event_storage from detectron2.modeling.roi_heads.box_head import build_box_head from detectron2.layers import ShapeSpec from detectron2.modeling.roi_heads import ( ROI_HEADS_REGISTRY, StandardROIHeads, ) from detectron2.modeling.roi_heads.fast_rcnn import FastRCNNOutputLayers from adapteacher.modeling.roi_heads.fast_rcnn import FastRCNNFocaltLossOutputLayers import numpy as np from detectron2.modeling.poolers import ROIPooler @ROI_HEADS_REGISTRY.register() class StandardROIHeadsPseudoLab(StandardROIHeads): @classmethod def _init_box_head(cls, cfg, input_shape): # fmt: off in_features = cfg.MODEL.ROI_HEADS.IN_FEATURES pooler_resolution = cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION pooler_scales = tuple(1.0 / input_shape[k].stride for k in in_features) sampling_ratio = cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO pooler_type = cfg.MODEL.ROI_BOX_HEAD.POOLER_TYPE # fmt: on in_channels = [input_shape[f].channels for f in in_features] # Check all channel counts are equal assert len(set(in_channels)) == 1, in_channels in_channels = in_channels[0] box_pooler = ROIPooler( output_size=pooler_resolution, scales=pooler_scales, sampling_ratio=sampling_ratio, pooler_type=pooler_type, ) box_head = build_box_head( cfg, ShapeSpec( channels=in_channels, height=pooler_resolution, width=pooler_resolution ), ) if cfg.MODEL.ROI_HEADS.LOSS == "CrossEntropy": box_predictor = FastRCNNOutputLayers(cfg, box_head.output_shape) elif cfg.MODEL.ROI_HEADS.LOSS == "FocalLoss": box_predictor = FastRCNNFocaltLossOutputLayers(cfg, box_head.output_shape) else: raise ValueError("Unknown ROI head loss.") return { "box_in_features": in_features, "box_pooler": box_pooler, "box_head": box_head, "box_predictor": box_predictor, } def forward( self, images: ImageList, features: Dict[str, torch.Tensor], proposals: List[Instances], targets: Optional[List[Instances]] = None, compute_loss=True, branch="", compute_val_loss=False, ) -> Tuple[List[Instances], Dict[str, torch.Tensor]]: del images if self.training and compute_loss: # apply if training loss assert targets # 1000 --> 512 proposals = self.label_and_sample_proposals( proposals, targets, branch=branch ) elif compute_val_loss: # apply if val loss assert targets # 1000 --> 512 temp_proposal_append_gt = self.proposal_append_gt self.proposal_append_gt = False proposals = self.label_and_sample_proposals( proposals, targets, branch=branch ) # do not apply target on proposals self.proposal_append_gt = temp_proposal_append_gt del targets if (self.training and compute_loss) or compute_val_loss: losses, _ = self._forward_box( features, proposals, compute_loss, compute_val_loss, branch ) return proposals, losses else: pred_instances, predictions = self._forward_box( features, proposals, compute_loss, compute_val_loss, branch ) return pred_instances, predictions def _forward_box( self, features: Dict[str, torch.Tensor], proposals: List[Instances], compute_loss: bool = True, compute_val_loss: bool = False, branch: str = "", ) -> Union[Dict[str, torch.Tensor], List[Instances]]: features = [features[f] for f in self.box_in_features] box_features = self.box_pooler(features, [x.proposal_boxes for x in proposals]) box_features = self.box_head(box_features) predictions = self.box_predictor(box_features) del box_features if ( self.training and compute_loss ) or compute_val_loss: # apply if training loss or val loss losses = self.box_predictor.losses(predictions, proposals) if self.train_on_pred_boxes: with torch.no_grad(): pred_boxes = self.box_predictor.predict_boxes_for_gt_classes( predictions, proposals ) for proposals_per_image, pred_boxes_per_image in zip( proposals, pred_boxes ): proposals_per_image.proposal_boxes = Boxes(pred_boxes_per_image) return losses, predictions else: pred_instances, _ = self.box_predictor.inference(predictions, proposals) return pred_instances, predictions @torch.no_grad() def label_and_sample_proposals( self, proposals: List[Instances], targets: List[Instances], branch: str = "" ) -> List[Instances]: gt_boxes = [x.gt_boxes for x in targets] if self.proposal_append_gt: proposals = add_ground_truth_to_proposals(gt_boxes, proposals) proposals_with_gt = [] num_fg_samples = [] num_bg_samples = [] for proposals_per_image, targets_per_image in zip(proposals, targets): has_gt = len(targets_per_image) > 0 match_quality_matrix = pairwise_iou( targets_per_image.gt_boxes, proposals_per_image.proposal_boxes ) matched_idxs, matched_labels = self.proposal_matcher(match_quality_matrix) sampled_idxs, gt_classes = self._sample_proposals( matched_idxs, matched_labels, targets_per_image.gt_classes ) proposals_per_image = proposals_per_image[sampled_idxs] proposals_per_image.gt_classes = gt_classes if has_gt: sampled_targets = matched_idxs[sampled_idxs] for (trg_name, trg_value) in targets_per_image.get_fields().items(): if trg_name.startswith("gt_") and not proposals_per_image.has( trg_name ): proposals_per_image.set(trg_name, trg_value[sampled_targets]) else: gt_boxes = Boxes( targets_per_image.gt_boxes.tensor.new_zeros((len(sampled_idxs), 4)) ) proposals_per_image.gt_boxes = gt_boxes num_bg_samples.append((gt_classes == self.num_classes).sum().item()) num_fg_samples.append(gt_classes.numel() - num_bg_samples[-1]) proposals_with_gt.append(proposals_per_image) storage = get_event_storage() storage.put_scalar( "roi_head/num_target_fg_samples_" + branch, np.mean(num_fg_samples) ) storage.put_scalar( "roi_head/num_target_bg_samples_" + branch, np.mean(num_bg_samples) ) return proposals_with_gt
# Copyright (c) Facebook, Inc. and its affiliates. from .coco_evaluation import COCOEvaluator from .pascal_voc_evaluation import PascalVOCDetectionEvaluator # __all__ = [k for k in globals().keys() if not k.startswith("_")] __all__ = [ "COCOEvaluator", "PascalVOCDetectionEvaluator" ]
# Copyright (c) Facebook, Inc. and its affiliates. import contextlib import copy import io import itertools import json import logging import numpy as np import os import pickle from collections import OrderedDict import pycocotools.mask as mask_util import torch from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval from tabulate import tabulate import detectron2.utils.comm as comm from detectron2.config import CfgNode from detectron2.data import MetadataCatalog from detectron2.data.datasets.coco import convert_to_coco_dict from detectron2.evaluation.fast_eval_api import COCOeval_opt from detectron2.structures import Boxes, BoxMode, pairwise_iou from detectron2.utils.file_io import PathManager from detectron2.utils.logger import create_small_table from detectron2.evaluation import DatasetEvaluator from iopath.common.file_io import file_lock logger = logging.getLogger(__name__) def convert_to_coco_json(dataset_name, output_file, allow_cached=True): """ Converts dataset into COCO format and saves it to a json file. dataset_name must be registered in DatasetCatalog and in detectron2's standard format. Args: dataset_name: reference from the config file to the catalogs must be registered in DatasetCatalog and in detectron2's standard format output_file: path of json file that will be saved to allow_cached: if json file is already present then skip conversion """ # TODO: The dataset or the conversion script *may* change, # a checksum would be useful for validating the cached data PathManager.mkdirs(os.path.dirname(output_file)) with file_lock(output_file): if PathManager.exists(output_file) and allow_cached: logger.warning( f"Using previously cached COCO format annotations at '{output_file}'. " "You need to clear the cache file if your dataset has been modified." ) else: logger.info(f"Converting annotations of dataset '{dataset_name}' to COCO format ...)") coco_dict = convert_to_coco_dict(dataset_name) logger.info(f"Caching COCO format annotations at '{output_file}' ...") tmp_file = output_file #+ ".tmp" # with PathManager.open(tmp_file, "w") as f: # json.dump(coco_dict, f) # shutil.move(tmp_file, output_file) with PathManager.open(tmp_file, "w") as f: json.dump(coco_dict, f) class COCOEvaluator(DatasetEvaluator): """ Evaluate AR for object proposals, AP for instance detection/segmentation, AP for keypoint detection outputs using COCO's metrics. See http://cocodataset.org/#detection-eval and http://cocodataset.org/#keypoints-eval to understand its metrics. The metrics range from 0 to 100 (instead of 0 to 1), where a -1 or NaN means the metric cannot be computed (e.g. due to no predictions made). In addition to COCO, this evaluator is able to support any bounding box detection, instance segmentation, or keypoint detection dataset. """ def __init__( self, dataset_name, tasks=None, distributed=True, output_dir=None, *, use_fast_impl=True, kpt_oks_sigmas=(), ): """ Args: dataset_name (str): name of the dataset to be evaluated. It must have either the following corresponding metadata: "json_file": the path to the COCO format annotation Or it must be in detectron2's standard dataset format so it can be converted to COCO format automatically. tasks (tuple[str]): tasks that can be evaluated under the given configuration. A task is one of "bbox", "segm", "keypoints". By default, will infer this automatically from predictions. distributed (True): if True, will collect results from all ranks and run evaluation in the main process. Otherwise, will only evaluate the results in the current process. output_dir (str): optional, an output directory to dump all results predicted on the dataset. The dump contains two files: 1. "instances_predictions.pth" a file that can be loaded with `torch.load` and contains all the results in the format they are produced by the model. 2. "coco_instances_results.json" a json file in COCO's result format. use_fast_impl (bool): use a fast but **unofficial** implementation to compute AP. Although the results should be very close to the official implementation in COCO API, it is still recommended to compute results with the official API for use in papers. The faster implementation also uses more RAM. kpt_oks_sigmas (list[float]): The sigmas used to calculate keypoint OKS. See http://cocodataset.org/#keypoints-eval When empty, it will use the defaults in COCO. Otherwise it should be the same length as ROI_KEYPOINT_HEAD.NUM_KEYPOINTS. """ self._logger = logging.getLogger(__name__) self._distributed = distributed self._output_dir = output_dir self._use_fast_impl = use_fast_impl if tasks is not None and isinstance(tasks, CfgNode): kpt_oks_sigmas = ( tasks.TEST.KEYPOINT_OKS_SIGMAS if not kpt_oks_sigmas else kpt_oks_sigmas ) self._logger.warn( "COCO Evaluator instantiated using config, this is deprecated behavior." " Please pass in explicit arguments instead." ) self._tasks = None # Infering it from predictions should be better else: self._tasks = tasks self._cpu_device = torch.device("cpu") self._metadata = MetadataCatalog.get(dataset_name) if not hasattr(self._metadata, "json_file"): self._logger.info( f"'{dataset_name}' is not registered by `register_coco_instances`." " Therefore trying to convert it to COCO format ..." ) cache_path = os.path.join(output_dir, f"{dataset_name}_coco_format.json") self._metadata.json_file = cache_path convert_to_coco_json(dataset_name, cache_path) json_file = PathManager.get_local_path(self._metadata.json_file) with contextlib.redirect_stdout(io.StringIO()): self._coco_api = COCO(json_file) # Test set json files do not contain annotations (evaluation must be # performed using the COCO evaluation server). self._do_evaluation = "annotations" in self._coco_api.dataset if self._do_evaluation: self._kpt_oks_sigmas = kpt_oks_sigmas def reset(self): self._predictions = [] def process(self, inputs, outputs): """ Args: inputs: the inputs to a COCO model (e.g., GeneralizedRCNN). It is a list of dict. Each dict corresponds to an image and contains keys like "height", "width", "file_name", "image_id". outputs: the outputs of a COCO model. It is a list of dicts with key "instances" that contains :class:`Instances`. """ for input, output in zip(inputs, outputs): prediction = {"image_id": input["image_id"]} if "instances" in output: instances = output["instances"].to(self._cpu_device) prediction["instances"] = instances_to_coco_json(instances, input["image_id"]) if "proposals" in output: prediction["proposals"] = output["proposals"].to(self._cpu_device) if len(prediction) > 1: self._predictions.append(prediction) def evaluate(self, img_ids=None): """ Args: img_ids: a list of image IDs to evaluate on. Default to None for the whole dataset """ if self._distributed: comm.synchronize() predictions = comm.gather(self._predictions, dst=0) predictions = list(itertools.chain(*predictions)) if not comm.is_main_process(): return {} else: predictions = self._predictions if len(predictions) == 0: self._logger.warning("[COCOEvaluator] Did not receive valid predictions.") return {} if self._output_dir: PathManager.mkdirs(self._output_dir) file_path = os.path.join(self._output_dir, "instances_predictions.pth") with PathManager.open(file_path, "wb") as f: torch.save(predictions, f) self._results = OrderedDict() if "proposals" in predictions[0]: self._eval_box_proposals(predictions) if "instances" in predictions[0]: self._eval_predictions(predictions, img_ids=img_ids) # Copy so the caller can do whatever with results return copy.deepcopy(self._results) def _tasks_from_predictions(self, predictions): """ Get COCO API "tasks" (i.e. iou_type) from COCO-format predictions. """ tasks = {"bbox"} for pred in predictions: if "segmentation" in pred: tasks.add("segm") if "keypoints" in pred: tasks.add("keypoints") return sorted(tasks) def _eval_predictions(self, predictions, img_ids=None): """ Evaluate predictions. Fill self._results with the metrics of the tasks. """ self._logger.info("Preparing results for COCO format ...") coco_results = list(itertools.chain(*[x["instances"] for x in predictions])) tasks = self._tasks or self._tasks_from_predictions(coco_results) # unmap the category ids for COCO if hasattr(self._metadata, "thing_dataset_id_to_contiguous_id"): dataset_id_to_contiguous_id = self._metadata.thing_dataset_id_to_contiguous_id all_contiguous_ids = list(dataset_id_to_contiguous_id.values()) num_classes = len(all_contiguous_ids) assert min(all_contiguous_ids) == 0 and max(all_contiguous_ids) == num_classes - 1 reverse_id_mapping = {v: k for k, v in dataset_id_to_contiguous_id.items()} for result in coco_results: category_id = result["category_id"] assert category_id < num_classes, ( f"A prediction has class={category_id}, " f"but the dataset only has {num_classes} classes and " f"predicted class id should be in [0, {num_classes - 1}]." ) result["category_id"] = reverse_id_mapping[category_id] if self._output_dir: file_path = os.path.join(self._output_dir, "coco_instances_results.json") self._logger.info("Saving results to {}".format(file_path)) with PathManager.open(file_path, "w") as f: f.write(json.dumps(coco_results)) f.flush() if not self._do_evaluation: self._logger.info("Annotations are not available for evaluation.") return self._logger.info( "Evaluating predictions with {} COCO API...".format( "unofficial" if self._use_fast_impl else "official" ) ) for task in sorted(tasks): assert task in {"bbox", "segm", "keypoints"}, f"Got unknown task: {task}!" coco_eval = ( _evaluate_predictions_on_coco( self._coco_api, coco_results, task, kpt_oks_sigmas=self._kpt_oks_sigmas, use_fast_impl=self._use_fast_impl, img_ids=img_ids, ) if len(coco_results) > 0 else None # cocoapi does not handle empty results very well ) res = self._derive_coco_results( coco_eval, task, class_names=self._metadata.get("thing_classes") ) self._results[task] = res def _eval_box_proposals(self, predictions): """ Evaluate the box proposals in predictions. Fill self._results with the metrics for "box_proposals" task. """ if self._output_dir: # Saving generated box proposals to file. # Predicted box_proposals are in XYXY_ABS mode. bbox_mode = BoxMode.XYXY_ABS.value ids, boxes, objectness_logits = [], [], [] for prediction in predictions: ids.append(prediction["image_id"]) boxes.append(prediction["proposals"].proposal_boxes.tensor.numpy()) objectness_logits.append(prediction["proposals"].objectness_logits.numpy()) proposal_data = { "boxes": boxes, "objectness_logits": objectness_logits, "ids": ids, "bbox_mode": bbox_mode, } with PathManager.open(os.path.join(self._output_dir, "box_proposals.pkl"), "wb") as f: pickle.dump(proposal_data, f) if not self._do_evaluation: self._logger.info("Annotations are not available for evaluation.") return self._logger.info("Evaluating bbox proposals ...") res = {} areas = {"all": "", "small": "s", "medium": "m", "large": "l"} for limit in [100, 1000]: for area, suffix in areas.items(): stats = _evaluate_box_proposals(predictions, self._coco_api, area=area, limit=limit) key = "AR{}@{:d}".format(suffix, limit) res[key] = float(stats["ar"].item() * 100) self._logger.info("Proposal metrics: \n" + create_small_table(res)) self._results["box_proposals"] = res def _derive_coco_results(self, coco_eval, iou_type, class_names=None): """ Derive the desired score numbers from summarized COCOeval. Args: coco_eval (None or COCOEval): None represents no predictions from model. iou_type (str): class_names (None or list[str]): if provided, will use it to predict per-category AP. Returns: a dict of {metric name: score} """ metrics = { "bbox": ["AP", "AP50", "AP75", "APs", "APm", "APl"], "segm": ["AP", "AP50", "AP75", "APs", "APm", "APl"], "keypoints": ["AP", "AP50", "AP75", "APm", "APl"], }[iou_type] if coco_eval is None: self._logger.warn("No predictions from the model!") return {metric: float("nan") for metric in metrics} # the standard metrics results = { metric: float(coco_eval.stats[idx] * 100 if coco_eval.stats[idx] >= 0 else "nan") for idx, metric in enumerate(metrics) } self._logger.info( "Evaluation results for {}: \n".format(iou_type) + create_small_table(results) ) if not np.isfinite(sum(results.values())): self._logger.info("Some metrics cannot be computed and is shown as NaN.") if class_names is None or len(class_names) <= 1: return results # Compute per-category AP # from https://github.com/facebookresearch/Detectron/blob/a6a835f5b8208c45d0dce217ce9bbda915f44df7/detectron/datasets/json_dataset_evaluator.py#L222-L252 # noqa precisions = coco_eval.eval["precision"] # precision has dims (iou, recall, cls, area range, max dets) assert len(class_names) == precisions.shape[2] results_per_category = [] for idx, name in enumerate(class_names): # area range index 0: all area ranges # max dets index -1: typically 100 per image precision = precisions[:, :, idx, 0, -1] precision = precision[precision > -1] ap = np.mean(precision) if precision.size else float("nan") results_per_category.append(("{}".format(name), float(ap * 100))) # tabulate it N_COLS = min(6, len(results_per_category) * 2) results_flatten = list(itertools.chain(*results_per_category)) results_2d = itertools.zip_longest(*[results_flatten[i::N_COLS] for i in range(N_COLS)]) table = tabulate( results_2d, tablefmt="pipe", floatfmt=".3f", headers=["category", "AP"] * (N_COLS // 2), numalign="left", ) self._logger.info("Per-category {} AP: \n".format(iou_type) + table) # results.update({"AP-" + name: ap for name, ap in results_per_category}) results_per_category_AP50 = [] for idx, name in enumerate(class_names): # area range index 0: all area ranges # max dets index -1: typically 100 per image t = np.where(.5 == coco_eval.params.iouThrs)[0] precisions_50 = precisions[t] precisions_50 = precisions_50[:, :, idx, 0, -1] precisions_50 = precisions_50[precisions_50 > -1] ap = np.mean(precisions_50) if precisions_50.size else float("nan") results_per_category_AP50.append(("{}".format(name), float(ap * 100))) # tabulate it N_COLS = min(6, len(results_per_category_AP50) * 2) results_flatten = list(itertools.chain(*results_per_category_AP50)) results_2d = itertools.zip_longest(*[results_flatten[i::N_COLS] for i in range(N_COLS)]) table = tabulate( results_2d, tablefmt="pipe", floatfmt=".3f", headers=["category", "AP50"] * (N_COLS // 2), numalign="left", ) self._logger.info("Per-category {} AP50: \n".format(iou_type) + table) results.update({"AP50-" + name: ap for name, ap in results_per_category_AP50}) return results def instances_to_coco_json(instances, img_id): """ Dump an "Instances" object to a COCO-format json that's used for evaluation. Args: instances (Instances): img_id (int): the image id Returns: list[dict]: list of json annotations in COCO format. """ num_instance = len(instances) if num_instance == 0: return [] boxes = instances.pred_boxes.tensor.numpy() boxes = BoxMode.convert(boxes, BoxMode.XYXY_ABS, BoxMode.XYWH_ABS) boxes = boxes.tolist() scores = instances.scores.tolist() classes = instances.pred_classes.tolist() has_mask = instances.has("pred_masks") if has_mask: # use RLE to encode the masks, because they are too large and takes memory # since this evaluator stores outputs of the entire dataset rles = [ mask_util.encode(np.array(mask[:, :, None], order="F", dtype="uint8"))[0] for mask in instances.pred_masks ] for rle in rles: # "counts" is an array encoded by mask_util as a byte-stream. Python3's # json writer which always produces strings cannot serialize a bytestream # unless you decode it. Thankfully, utf-8 works out (which is also what # the pycocotools/_mask.pyx does). rle["counts"] = rle["counts"].decode("utf-8") has_keypoints = instances.has("pred_keypoints") if has_keypoints: keypoints = instances.pred_keypoints results = [] for k in range(num_instance): result = { "image_id": img_id, "category_id": classes[k], "bbox": boxes[k], "score": scores[k], } if has_mask: result["segmentation"] = rles[k] if has_keypoints: # In COCO annotations, # keypoints coordinates are pixel indices. # However our predictions are floating point coordinates. # Therefore we subtract 0.5 to be consistent with the annotation format. # This is the inverse of data loading logic in `datasets/coco.py`. keypoints[k][:, :2] -= 0.5 result["keypoints"] = keypoints[k].flatten().tolist() results.append(result) return results # inspired from Detectron: # https://github.com/facebookresearch/Detectron/blob/a6a835f5b8208c45d0dce217ce9bbda915f44df7/detectron/datasets/json_dataset_evaluator.py#L255 # noqa def _evaluate_box_proposals(dataset_predictions, coco_api, thresholds=None, area="all", limit=None): """ Evaluate detection proposal recall metrics. This function is a much faster alternative to the official COCO API recall evaluation code. However, it produces slightly different results. """ # Record max overlap value for each gt box # Return vector of overlap values areas = { "all": 0, "small": 1, "medium": 2, "large": 3, "96-128": 4, "128-256": 5, "256-512": 6, "512-inf": 7, } area_ranges = [ [0 ** 2, 1e5 ** 2], # all [0 ** 2, 32 ** 2], # small [32 ** 2, 96 ** 2], # medium [96 ** 2, 1e5 ** 2], # large [96 ** 2, 128 ** 2], # 96-128 [128 ** 2, 256 ** 2], # 128-256 [256 ** 2, 512 ** 2], # 256-512 [512 ** 2, 1e5 ** 2], ] # 512-inf assert area in areas, "Unknown area range: {}".format(area) area_range = area_ranges[areas[area]] gt_overlaps = [] num_pos = 0 for prediction_dict in dataset_predictions: predictions = prediction_dict["proposals"] # sort predictions in descending order # TODO maybe remove this and make it explicit in the documentation inds = predictions.objectness_logits.sort(descending=True)[1] predictions = predictions[inds] ann_ids = coco_api.getAnnIds(imgIds=prediction_dict["image_id"]) anno = coco_api.loadAnns(ann_ids) gt_boxes = [ BoxMode.convert(obj["bbox"], BoxMode.XYWH_ABS, BoxMode.XYXY_ABS) for obj in anno if obj["iscrowd"] == 0 ] gt_boxes = torch.as_tensor(gt_boxes).reshape(-1, 4) # guard against no boxes gt_boxes = Boxes(gt_boxes) gt_areas = torch.as_tensor([obj["area"] for obj in anno if obj["iscrowd"] == 0]) if len(gt_boxes) == 0 or len(predictions) == 0: continue valid_gt_inds = (gt_areas >= area_range[0]) & (gt_areas <= area_range[1]) gt_boxes = gt_boxes[valid_gt_inds] num_pos += len(gt_boxes) if len(gt_boxes) == 0: continue if limit is not None and len(predictions) > limit: predictions = predictions[:limit] overlaps = pairwise_iou(predictions.proposal_boxes, gt_boxes) _gt_overlaps = torch.zeros(len(gt_boxes)) for j in range(min(len(predictions), len(gt_boxes))): # find which proposal box maximally covers each gt box # and get the iou amount of coverage for each gt box max_overlaps, argmax_overlaps = overlaps.max(dim=0) # find which gt box is 'best' covered (i.e. 'best' = most iou) gt_ovr, gt_ind = max_overlaps.max(dim=0) assert gt_ovr >= 0 # find the proposal box that covers the best covered gt box box_ind = argmax_overlaps[gt_ind] # record the iou coverage of this gt box _gt_overlaps[j] = overlaps[box_ind, gt_ind] assert _gt_overlaps[j] == gt_ovr # mark the proposal box and the gt box as used overlaps[box_ind, :] = -1 overlaps[:, gt_ind] = -1 # append recorded iou coverage level gt_overlaps.append(_gt_overlaps) gt_overlaps = ( torch.cat(gt_overlaps, dim=0) if len(gt_overlaps) else torch.zeros(0, dtype=torch.float32) ) gt_overlaps, _ = torch.sort(gt_overlaps) if thresholds is None: step = 0.05 thresholds = torch.arange(0.5, 0.95 + 1e-5, step, dtype=torch.float32) recalls = torch.zeros_like(thresholds) # compute recall for each iou threshold for i, t in enumerate(thresholds): recalls[i] = (gt_overlaps >= t).float().sum() / float(num_pos) # ar = 2 * np.trapz(recalls, thresholds) ar = recalls.mean() return { "ar": ar, "recalls": recalls, "thresholds": thresholds, "gt_overlaps": gt_overlaps, "num_pos": num_pos, } def _evaluate_predictions_on_coco( coco_gt, coco_results, iou_type, kpt_oks_sigmas=None, use_fast_impl=True, img_ids=None ): """ Evaluate the coco results using COCOEval API. """ assert len(coco_results) > 0 if iou_type == "segm": coco_results = copy.deepcopy(coco_results) # When evaluating mask AP, if the results contain bbox, cocoapi will # use the box area as the area of the instance, instead of the mask area. # This leads to a different definition of small/medium/large. # We remove the bbox field to let mask AP use mask area. for c in coco_results: c.pop("bbox", None) coco_dt = coco_gt.loadRes(coco_results) coco_eval = (COCOeval_opt if use_fast_impl else COCOeval)(coco_gt, coco_dt, iou_type) if img_ids is not None: coco_eval.params.imgIds = img_ids if iou_type == "keypoints": # Use the COCO default keypoint OKS sigmas unless overrides are specified if kpt_oks_sigmas: assert hasattr(coco_eval.params, "kpt_oks_sigmas"), "pycocotools is too old!" coco_eval.params.kpt_oks_sigmas = np.array(kpt_oks_sigmas) # COCOAPI requires every detection and every gt to have keypoints, so # we just take the first entry from both num_keypoints_dt = len(coco_results[0]["keypoints"]) // 3 num_keypoints_gt = len(next(iter(coco_gt.anns.values()))["keypoints"]) // 3 num_keypoints_oks = len(coco_eval.params.kpt_oks_sigmas) assert num_keypoints_oks == num_keypoints_dt == num_keypoints_gt, ( f"[COCOEvaluator] Prediction contain {num_keypoints_dt} keypoints. " f"Ground truth contains {num_keypoints_gt} keypoints. " f"The length of cfg.TEST.KEYPOINT_OKS_SIGMAS is {num_keypoints_oks}. " "They have to agree with each other. For meaning of OKS, please refer to " "http://cocodataset.org/#keypoints-eval." ) coco_eval.evaluate() coco_eval.accumulate() coco_eval.summarize() return coco_eval
# -*- coding: utf-8 -*- # Copyright (c) Facebook, Inc. and its affiliates. import logging import numpy as np import os import tempfile import xml.etree.ElementTree as ET from collections import OrderedDict, defaultdict from functools import lru_cache import torch from detectron2.data import MetadataCatalog from detectron2.utils import comm from detectron2.utils.file_io import PathManager from detectron2.evaluation import DatasetEvaluator class PascalVOCDetectionEvaluator(DatasetEvaluator): """ Evaluate Pascal VOC style AP for Pascal VOC dataset. It contains a synchronization, therefore has to be called from all ranks. Note that the concept of AP can be implemented in different ways and may not produce identical results. This class mimics the implementation of the official Pascal VOC Matlab API, and should produce similar but not identical results to the official API. """ def __init__(self, dataset_name, target_classnames=None): """ Args: dataset_name (str): name of the dataset, e.g., "voc_2007_test" """ self._dataset_name = dataset_name meta = MetadataCatalog.get(dataset_name) # Too many tiny files, download all to local for speed. annotation_dir_local = PathManager.get_local_path( os.path.join(meta.dirname, "Annotations/") ) self._anno_file_template = os.path.join(annotation_dir_local, "{}.xml") self._image_set_path = os.path.join(meta.dirname, "ImageSets", "Main", meta.split + ".txt") self._class_names = meta.thing_classes assert meta.year in [2007, 2012], meta.year self._is_2007 = meta.year == 2007 self._cpu_device = torch.device("cpu") self._logger = logging.getLogger(__name__) if target_classnames == None: self.target_classnames = self._class_names else: self.target_classnames = target_classnames def reset(self): self._predictions = defaultdict(list) # class name -> list of prediction strings def process(self, inputs, outputs): for input, output in zip(inputs, outputs): image_id = input["image_id"] instances = output["instances"].to(self._cpu_device) boxes = instances.pred_boxes.tensor.numpy() scores = instances.scores.tolist() classes = instances.pred_classes.tolist() for box, score, cls in zip(boxes, scores, classes): xmin, ymin, xmax, ymax = box # The inverse of data loading logic in `datasets/pascal_voc.py` xmin += 1 ymin += 1 self._predictions[cls].append( f"{image_id} {score:.3f} {xmin:.1f} {ymin:.1f} {xmax:.1f} {ymax:.1f}" ) def evaluate(self): """ Returns: dict: has a key "segm", whose value is a dict of "AP", "AP50", and "AP75". """ all_predictions = comm.gather(self._predictions, dst=0) if not comm.is_main_process(): return predictions = defaultdict(list) for predictions_per_rank in all_predictions: for clsid, lines in predictions_per_rank.items(): predictions[clsid].extend(lines) del all_predictions self._logger.info( "Evaluating {} using {} metric. " "Note that results do not use the official Matlab API.".format( self._dataset_name, 2007 if self._is_2007 else 2012 ) ) with tempfile.TemporaryDirectory(prefix="pascal_voc_eval_") as dirname: res_file_template = os.path.join(dirname, "{}.txt") aps = defaultdict(list) # iou -> ap per class for cls_id, cls_name in enumerate(self._class_names): if cls_name not in self.target_classnames: continue lines = predictions.get(cls_id, [""]) with open(res_file_template.format(cls_name), "w") as f: f.write("\n".join(lines)) for thresh in range(50, 100, 5): rec, prec, ap = voc_eval( res_file_template, self._anno_file_template, self._image_set_path, cls_name, ovthresh=thresh / 100.0, use_07_metric=self._is_2007, ) aps[thresh].append(ap * 100) ret = OrderedDict() mAP = {iou: np.mean(x) for iou, x in aps.items()} ret["bbox"] = {"AP": np.mean(list(mAP.values())), "AP50": mAP[50], "AP75": mAP[75]} #Add the codes for AP50 for idx, name in enumerate(self.target_classnames): ret["bbox"].update({"AP50-" + name: aps[50][idx]}) return ret ############################################################################## # # Below code is modified from # https://github.com/rbgirshick/py-faster-rcnn/blob/master/lib/datasets/voc_eval.py # -------------------------------------------------------- # Fast/er R-CNN # Licensed under The MIT License [see LICENSE for details] # Written by Bharath Hariharan # -------------------------------------------------------- """Python implementation of the PASCAL VOC devkit's AP evaluation code.""" @lru_cache(maxsize=None) def parse_rec(filename): """Parse a PASCAL VOC xml file.""" with PathManager.open(filename) as f: tree = ET.parse(f) objects = [] for obj in tree.findall("object"): obj_struct = {} obj_struct["name"] = obj.find("name").text obj_struct["pose"] = obj.find("pose").text obj_struct["truncated"] = int(obj.find("truncated").text) obj_struct["difficult"] = int(obj.find("difficult").text) bbox = obj.find("bndbox") obj_struct["bbox"] = [ int(bbox.find("xmin").text), int(bbox.find("ymin").text), int(bbox.find("xmax").text), int(bbox.find("ymax").text), ] objects.append(obj_struct) return objects def voc_ap(rec, prec, use_07_metric=False): """Compute VOC AP given precision and recall. If use_07_metric is true, uses the VOC 07 11-point method (default:False). """ if use_07_metric: # 11 point metric ap = 0.0 for t in np.arange(0.0, 1.1, 0.1): if np.sum(rec >= t) == 0: p = 0 else: p = np.max(prec[rec >= t]) ap = ap + p / 11.0 else: # correct AP calculation # first append sentinel values at the end mrec = np.concatenate(([0.0], rec, [1.0])) mpre = np.concatenate(([0.0], prec, [0.0])) # compute the precision envelope for i in range(mpre.size - 1, 0, -1): mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) # to calculate area under PR curve, look for points # where X axis (recall) changes value i = np.where(mrec[1:] != mrec[:-1])[0] # and sum (\Delta recall) * prec ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) return ap def voc_eval(detpath, annopath, imagesetfile, classname, ovthresh=0.5, use_07_metric=False): """rec, prec, ap = voc_eval(detpath, annopath, imagesetfile, classname, [ovthresh], [use_07_metric]) Top level function that does the PASCAL VOC evaluation. detpath: Path to detections detpath.format(classname) should produce the detection results file. annopath: Path to annotations annopath.format(imagename) should be the xml annotations file. imagesetfile: Text file containing the list of images, one image per line. classname: Category name (duh) [ovthresh]: Overlap threshold (default = 0.5) [use_07_metric]: Whether to use VOC07's 11 point AP computation (default False) """ # assumes detections are in detpath.format(classname) # assumes annotations are in annopath.format(imagename) # assumes imagesetfile is a text file with each line an image name # first load gt # read list of images with PathManager.open(imagesetfile, "r") as f: lines = f.readlines() imagenames = [x.strip() for x in lines] # load annots recs = {} for imagename in imagenames: recs[imagename] = parse_rec(annopath.format(imagename)) # extract gt objects for this class class_recs = {} npos = 0 for imagename in imagenames: R = [obj for obj in recs[imagename] if obj["name"] == classname] bbox = np.array([x["bbox"] for x in R]) difficult = np.array([x["difficult"] for x in R]).astype(np.bool) # difficult = np.array([False for x in R]).astype(np.bool) # treat all "difficult" as GT det = [False] * len(R) npos = npos + sum(~difficult) class_recs[imagename] = {"bbox": bbox, "difficult": difficult, "det": det} # read dets detfile = detpath.format(classname) with open(detfile, "r") as f: lines = f.readlines() splitlines = [x.strip().split(" ") for x in lines] image_ids = [x[0] for x in splitlines] confidence = np.array([float(x[1]) for x in splitlines]) BB = np.array([[float(z) for z in x[2:]] for x in splitlines]).reshape(-1, 4) # sort by confidence sorted_ind = np.argsort(-confidence) BB = BB[sorted_ind, :] image_ids = [image_ids[x] for x in sorted_ind] # go down dets and mark TPs and FPs nd = len(image_ids) tp = np.zeros(nd) fp = np.zeros(nd) for d in range(nd): R = class_recs[image_ids[d]] bb = BB[d, :].astype(float) ovmax = -np.inf BBGT = R["bbox"].astype(float) if BBGT.size > 0: # compute overlaps # intersection ixmin = np.maximum(BBGT[:, 0], bb[0]) iymin = np.maximum(BBGT[:, 1], bb[1]) ixmax = np.minimum(BBGT[:, 2], bb[2]) iymax = np.minimum(BBGT[:, 3], bb[3]) iw = np.maximum(ixmax - ixmin + 1.0, 0.0) ih = np.maximum(iymax - iymin + 1.0, 0.0) inters = iw * ih # union uni = ( (bb[2] - bb[0] + 1.0) * (bb[3] - bb[1] + 1.0) + (BBGT[:, 2] - BBGT[:, 0] + 1.0) * (BBGT[:, 3] - BBGT[:, 1] + 1.0) - inters ) overlaps = inters / uni ovmax = np.max(overlaps) jmax = np.argmax(overlaps) if ovmax > ovthresh: if not R["difficult"][jmax]: if not R["det"][jmax]: tp[d] = 1.0 R["det"][jmax] = 1 else: fp[d] = 1.0 else: fp[d] = 1.0 # compute precision recall fp = np.cumsum(fp) tp = np.cumsum(tp) rec = tp / float(npos) # avoid divide by zero in case the first detection matches a difficult # ground truth prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps) ap = voc_ap(rec, prec, use_07_metric) return rec, prec, ap
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import logging import numpy as np import operator import json import torch.utils.data from detectron2.utils.comm import get_world_size from detectron2.data.common import ( DatasetFromList, MapDataset, ) from detectron2.data.dataset_mapper import DatasetMapper from detectron2.data.samplers import ( InferenceSampler, RepeatFactorTrainingSampler, TrainingSampler, ) from detectron2.data.build import ( trivial_batch_collator, worker_init_reset_seed, get_detection_dataset_dicts, build_batch_data_loader, ) from adapteacher.data.common import ( AspectRatioGroupedSemiSupDatasetTwoCrop, ) """ This file contains the default logic to build a dataloader for training or testing. """ def divide_label_unlabel( dataset_dicts, SupPercent, random_data_seed, random_data_seed_path ): num_all = len(dataset_dicts) num_label = int(SupPercent / 100.0 * num_all) # read from pre-generated data seed with open(random_data_seed_path) as COCO_sup_file: coco_random_idx = json.load(COCO_sup_file) labeled_idx = np.array(coco_random_idx[str(SupPercent)][str(random_data_seed)]) assert labeled_idx.shape[0] == num_label, "Number of READ_DATA is mismatched." label_dicts = [] unlabel_dicts = [] labeled_idx = set(labeled_idx) for i in range(len(dataset_dicts)): if i in labeled_idx: label_dicts.append(dataset_dicts[i]) else: unlabel_dicts.append(dataset_dicts[i]) return label_dicts, unlabel_dicts # uesed by supervised-only baseline trainer def build_detection_semisup_train_loader(cfg, mapper=None): dataset_dicts = get_detection_dataset_dicts( cfg.DATASETS.TRAIN, filter_empty=cfg.DATALOADER.FILTER_EMPTY_ANNOTATIONS, min_keypoints=cfg.MODEL.ROI_KEYPOINT_HEAD.MIN_KEYPOINTS_PER_IMAGE if cfg.MODEL.KEYPOINT_ON else 0, proposal_files=cfg.DATASETS.PROPOSAL_FILES_TRAIN if cfg.MODEL.LOAD_PROPOSALS else None, ) # Divide into labeled and unlabeled sets according to supervision percentage label_dicts, unlabel_dicts = divide_label_unlabel( dataset_dicts, cfg.DATALOADER.SUP_PERCENT, cfg.DATALOADER.RANDOM_DATA_SEED, cfg.DATALOADER.RANDOM_DATA_SEED_PATH, ) dataset = DatasetFromList(label_dicts, copy=False) if mapper is None: mapper = DatasetMapper(cfg, True) dataset = MapDataset(dataset, mapper) sampler_name = cfg.DATALOADER.SAMPLER_TRAIN logger = logging.getLogger(__name__) logger.info("Using training sampler {}".format(sampler_name)) if sampler_name == "TrainingSampler": sampler = TrainingSampler(len(dataset)) elif sampler_name == "RepeatFactorTrainingSampler": repeat_factors = ( RepeatFactorTrainingSampler.repeat_factors_from_category_frequency( label_dicts, cfg.DATALOADER.REPEAT_THRESHOLD ) ) sampler = RepeatFactorTrainingSampler(repeat_factors) else: raise ValueError("Unknown training sampler: {}".format(sampler_name)) # list num of labeled and unlabeled logger.info("Number of training samples " + str(len(dataset))) logger.info("Supervision percentage " + str(cfg.DATALOADER.SUP_PERCENT)) return build_batch_data_loader( dataset, sampler, cfg.SOLVER.IMS_PER_BATCH, aspect_ratio_grouping=cfg.DATALOADER.ASPECT_RATIO_GROUPING, num_workers=cfg.DATALOADER.NUM_WORKERS, ) # uesed by evaluation def build_detection_test_loader(cfg, dataset_name, mapper=None): dataset_dicts = get_detection_dataset_dicts( [dataset_name], filter_empty=False, proposal_files=[ cfg.DATASETS.PROPOSAL_FILES_TEST[ list(cfg.DATASETS.TEST).index(dataset_name) ] ] if cfg.MODEL.LOAD_PROPOSALS else None, ) dataset = DatasetFromList(dataset_dicts) if mapper is None: mapper = DatasetMapper(cfg, False) dataset = MapDataset(dataset, mapper) sampler = InferenceSampler(len(dataset)) batch_sampler = torch.utils.data.sampler.BatchSampler(sampler, 1, drop_last=False) data_loader = torch.utils.data.DataLoader( dataset, num_workers=cfg.DATALOADER.NUM_WORKERS, batch_sampler=batch_sampler, collate_fn=trivial_batch_collator, ) return data_loader # uesed by unbiased teacher trainer def build_detection_semisup_train_loader_two_crops(cfg, mapper=None): if cfg.DATASETS.CROSS_DATASET: # cross-dataset (e.g., coco-additional) label_dicts = get_detection_dataset_dicts( cfg.DATASETS.TRAIN_LABEL, filter_empty=cfg.DATALOADER.FILTER_EMPTY_ANNOTATIONS, min_keypoints=cfg.MODEL.ROI_KEYPOINT_HEAD.MIN_KEYPOINTS_PER_IMAGE if cfg.MODEL.KEYPOINT_ON else 0, proposal_files=cfg.DATASETS.PROPOSAL_FILES_TRAIN if cfg.MODEL.LOAD_PROPOSALS else None, ) unlabel_dicts = get_detection_dataset_dicts( cfg.DATASETS.TRAIN_UNLABEL, filter_empty=False, min_keypoints=cfg.MODEL.ROI_KEYPOINT_HEAD.MIN_KEYPOINTS_PER_IMAGE if cfg.MODEL.KEYPOINT_ON else 0, proposal_files=cfg.DATASETS.PROPOSAL_FILES_TRAIN if cfg.MODEL.LOAD_PROPOSALS else None, ) else: # different degree of supervision (e.g., COCO-supervision) dataset_dicts = get_detection_dataset_dicts( cfg.DATASETS.TRAIN, filter_empty=cfg.DATALOADER.FILTER_EMPTY_ANNOTATIONS, min_keypoints=cfg.MODEL.ROI_KEYPOINT_HEAD.MIN_KEYPOINTS_PER_IMAGE if cfg.MODEL.KEYPOINT_ON else 0, proposal_files=cfg.DATASETS.PROPOSAL_FILES_TRAIN if cfg.MODEL.LOAD_PROPOSALS else None, ) # Divide into labeled and unlabeled sets according to supervision percentage label_dicts, unlabel_dicts = divide_label_unlabel( dataset_dicts, cfg.DATALOADER.SUP_PERCENT, cfg.DATALOADER.RANDOM_DATA_SEED, cfg.DATALOADER.RANDOM_DATA_SEED_PATH, ) label_dataset = DatasetFromList(label_dicts, copy=False) # exclude the labeled set from unlabeled dataset unlabel_dataset = DatasetFromList(unlabel_dicts, copy=False) # include the labeled set in unlabel dataset # unlabel_dataset = DatasetFromList(dataset_dicts, copy=False) if mapper is None: mapper = DatasetMapper(cfg, True) label_dataset = MapDataset(label_dataset, mapper) unlabel_dataset = MapDataset(unlabel_dataset, mapper) sampler_name = cfg.DATALOADER.SAMPLER_TRAIN logger = logging.getLogger(__name__) logger.info("Using training sampler {}".format(sampler_name)) if sampler_name == "TrainingSampler": label_sampler = TrainingSampler(len(label_dataset)) unlabel_sampler = TrainingSampler(len(unlabel_dataset)) elif sampler_name == "RepeatFactorTrainingSampler": raise NotImplementedError("{} not yet supported.".format(sampler_name)) else: raise ValueError("Unknown training sampler: {}".format(sampler_name)) return build_semisup_batch_data_loader_two_crop( (label_dataset, unlabel_dataset), (label_sampler, unlabel_sampler), cfg.SOLVER.IMG_PER_BATCH_LABEL, cfg.SOLVER.IMG_PER_BATCH_UNLABEL, aspect_ratio_grouping=cfg.DATALOADER.ASPECT_RATIO_GROUPING, num_workers=cfg.DATALOADER.NUM_WORKERS, ) # batch data loader def build_semisup_batch_data_loader_two_crop( dataset, sampler, total_batch_size_label, total_batch_size_unlabel, *, aspect_ratio_grouping=False, num_workers=0 ): world_size = get_world_size() assert ( total_batch_size_label > 0 and total_batch_size_label % world_size == 0 ), "Total label batch size ({}) must be divisible by the number of gpus ({}).".format( total_batch_size_label, world_size ) assert ( total_batch_size_unlabel > 0 and total_batch_size_unlabel % world_size == 0 ), "Total unlabel batch size ({}) must be divisible by the number of gpus ({}).".format( total_batch_size_label, world_size ) batch_size_label = total_batch_size_label // world_size batch_size_unlabel = total_batch_size_unlabel // world_size label_dataset, unlabel_dataset = dataset label_sampler, unlabel_sampler = sampler if aspect_ratio_grouping: label_data_loader = torch.utils.data.DataLoader( label_dataset, sampler=label_sampler, num_workers=num_workers, batch_sampler=None, collate_fn=operator.itemgetter( 0 ), # don't batch, but yield individual elements worker_init_fn=worker_init_reset_seed, ) # yield individual mapped dict unlabel_data_loader = torch.utils.data.DataLoader( unlabel_dataset, sampler=unlabel_sampler, num_workers=num_workers, batch_sampler=None, collate_fn=operator.itemgetter( 0 ), # don't batch, but yield individual elements worker_init_fn=worker_init_reset_seed, ) # yield individual mapped dict return AspectRatioGroupedSemiSupDatasetTwoCrop( (label_data_loader, unlabel_data_loader), (batch_size_label, batch_size_unlabel), ) else: raise NotImplementedError("ASPECT_RATIO_GROUPING = False is not supported yet")
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from .build import ( build_detection_test_loader, build_detection_semisup_train_loader, )
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import logging import torchvision.transforms as transforms from adapteacher.data.transforms.augmentation_impl import ( GaussianBlur, ) def build_strong_augmentation(cfg, is_train): """ Create a list of :class:`Augmentation` from config. Now it includes resizing and flipping. Returns: list[Augmentation] """ logger = logging.getLogger(__name__) augmentation = [] if is_train: # This is simialr to SimCLR https://arxiv.org/abs/2002.05709 augmentation.append( transforms.RandomApply([transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)], p=0.8) ) augmentation.append(transforms.RandomGrayscale(p=0.2)) augmentation.append(transforms.RandomApply([GaussianBlur([0.1, 2.0])], p=0.5)) randcrop_transform = transforms.Compose( [ transforms.ToTensor(), transforms.RandomErasing( p=0.7, scale=(0.05, 0.2), ratio=(0.3, 3.3), value="random" ), transforms.RandomErasing( p=0.5, scale=(0.02, 0.2), ratio=(0.1, 6), value="random" ), transforms.RandomErasing( p=0.3, scale=(0.02, 0.2), ratio=(0.05, 8), value="random" ), transforms.ToPILImage(), ] ) augmentation.append(randcrop_transform) logger.info("Augmentations used in training: " + str(augmentation)) return transforms.Compose(augmentation)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import copy import logging import numpy as np from PIL import Image import torch import detectron2.data.detection_utils as utils import detectron2.data.transforms as T from detectron2.data.dataset_mapper import DatasetMapper from adapteacher.data.detection_utils import build_strong_augmentation class DatasetMapperTwoCropSeparate(DatasetMapper): """ This customized mapper produces two augmented images from a single image instance. This mapper makes sure that the two augmented images have the same cropping and thus the same size. A callable which takes a dataset dict in Detectron2 Dataset format, and map it into a format used by the model. This is the default callable to be used to map your dataset dict into training data. You may need to follow it to implement your own one for customized logic, such as a different way to read or transform images. See :doc:`/tutorials/data_loading` for details. The callable currently does the following: 1. Read the image from "file_name" 2. Applies cropping/geometric transforms to the image and annotations 3. Prepare data and annotations to Tensor and :class:`Instances` """ def __init__(self, cfg, is_train=True): self.augmentation = utils.build_augmentation(cfg, is_train) # include crop into self.augmentation if cfg.INPUT.CROP.ENABLED and is_train: self.augmentation.insert( 0, T.RandomCrop(cfg.INPUT.CROP.TYPE, cfg.INPUT.CROP.SIZE) ) logging.getLogger(__name__).info( "Cropping used in training: " + str(self.augmentation[0]) ) self.compute_tight_boxes = True else: self.compute_tight_boxes = False self.strong_augmentation = build_strong_augmentation(cfg, is_train) # fmt: off self.img_format = cfg.INPUT.FORMAT self.mask_on = cfg.MODEL.MASK_ON self.mask_format = cfg.INPUT.MASK_FORMAT self.keypoint_on = cfg.MODEL.KEYPOINT_ON self.load_proposals = cfg.MODEL.LOAD_PROPOSALS # fmt: on if self.keypoint_on and is_train: self.keypoint_hflip_indices = utils.create_keypoint_hflip_indices( cfg.DATASETS.TRAIN ) else: self.keypoint_hflip_indices = None if self.load_proposals: self.proposal_min_box_size = cfg.MODEL.PROPOSAL_GENERATOR.MIN_SIZE self.proposal_topk = ( cfg.DATASETS.PRECOMPUTED_PROPOSAL_TOPK_TRAIN if is_train else cfg.DATASETS.PRECOMPUTED_PROPOSAL_TOPK_TEST ) self.is_train = is_train def __call__(self, dataset_dict): """ Args: dataset_dict (dict): Metadata of one image, in Detectron2 Dataset format. Returns: dict: a format that builtin models in detectron2 accept """ dataset_dict = copy.deepcopy(dataset_dict) # it will be modified by code below image = utils.read_image(dataset_dict["file_name"], format=self.img_format) # utils.check_image_size(dataset_dict, image) if "sem_seg_file_name" in dataset_dict: sem_seg_gt = utils.read_image( dataset_dict.pop("sem_seg_file_name"), "L" ).squeeze(2) else: sem_seg_gt = None aug_input = T.StandardAugInput(image, sem_seg=sem_seg_gt) transforms = aug_input.apply_augmentations(self.augmentation) image_weak_aug, sem_seg_gt = aug_input.image, aug_input.sem_seg image_shape = image_weak_aug.shape[:2] # h, w if sem_seg_gt is not None: dataset_dict["sem_seg"] = torch.as_tensor(sem_seg_gt.astype("long")) if self.load_proposals: utils.transform_proposals( dataset_dict, image_shape, transforms, proposal_topk=self.proposal_topk, min_box_size=self.proposal_min_box_size, ) if not self.is_train: dataset_dict.pop("annotations", None) dataset_dict.pop("sem_seg_file_name", None) return dataset_dict if "annotations" in dataset_dict: for anno in dataset_dict["annotations"]: if not self.mask_on: anno.pop("segmentation", None) if not self.keypoint_on: anno.pop("keypoints", None) annos = [ utils.transform_instance_annotations( obj, transforms, image_shape, keypoint_hflip_indices=self.keypoint_hflip_indices, ) for obj in dataset_dict.pop("annotations") if obj.get("iscrowd", 0) == 0 ] instances = utils.annotations_to_instances( annos, image_shape, mask_format=self.mask_format ) if self.compute_tight_boxes and instances.has("gt_masks"): instances.gt_boxes = instances.gt_masks.get_bounding_boxes() bboxes_d2_format = utils.filter_empty_instances(instances) dataset_dict["instances"] = bboxes_d2_format # apply strong augmentation # We use torchvision augmentation, which is not compatiable with # detectron2, which use numpy format for images. Thus, we need to # convert to PIL format first. image_pil = Image.fromarray(image_weak_aug.astype("uint8"), "RGB") image_strong_aug = np.array(self.strong_augmentation(image_pil)) dataset_dict["image"] = torch.as_tensor( np.ascontiguousarray(image_strong_aug.transpose(2, 0, 1)) ) dataset_dict_key = copy.deepcopy(dataset_dict) dataset_dict_key["image"] = torch.as_tensor( np.ascontiguousarray(image_weak_aug.transpose(2, 0, 1)) ) assert dataset_dict["image"].size(1) == dataset_dict_key["image"].size(1) assert dataset_dict["image"].size(2) == dataset_dict_key["image"].size(2) return (dataset_dict, dataset_dict_key)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import logging from detectron2.data.common import MapDataset, AspectRatioGroupedDataset class MapDatasetTwoCrop(MapDataset): """ Map a function over the elements in a dataset. This customized MapDataset transforms an image with two augmentations as two inputs (queue and key). Args: dataset: a dataset where map function is applied. map_func: a callable which maps the element in dataset. map_func is responsible for error handling, when error happens, it needs to return None so the MapDataset will randomly use other elements from the dataset. """ def __getitem__(self, idx): retry_count = 0 cur_idx = int(idx) while True: data = self._map_func(self._dataset[cur_idx]) if data is not None: self._fallback_candidates.add(cur_idx) return data # _map_func fails for this idx, use a random new index from the pool retry_count += 1 self._fallback_candidates.discard(cur_idx) cur_idx = self._rng.sample(self._fallback_candidates, k=1)[0] if retry_count >= 3: logger = logging.getLogger(__name__) logger.warning( "Failed to apply `_map_func` for idx: {}, retry count: {}".format( idx, retry_count ) ) class AspectRatioGroupedDatasetTwoCrop(AspectRatioGroupedDataset): """ Batch data that have similar aspect ratio together. In this implementation, images whose aspect ratio < (or >) 1 will be batched together. This improves training speed because the images then need less padding to form a batch. It assumes the underlying dataset produces dicts with "width" and "height" keys. It will then produce a list of original dicts with length = batch_size, all with similar aspect ratios. """ def __init__(self, dataset, batch_size): """ Args: dataset: an iterable. Each element must be a dict with keys "width" and "height", which will be used to batch data. batch_size (int): """ self.dataset = dataset self.batch_size = batch_size self._buckets = [[] for _ in range(2)] self._buckets_key = [[] for _ in range(2)] # Hard-coded two aspect ratio groups: w > h and w < h. # Can add support for more aspect ratio groups, but doesn't seem useful def __iter__(self): for d in self.dataset: # d is a tuple with len = 2 # It's two images (same size) from the same image instance w, h = d[0]["width"], d[0]["height"] bucket_id = 0 if w > h else 1 # bucket = bucket for normal images bucket = self._buckets[bucket_id] bucket.append(d[0]) # buckets_key = bucket for augmented images buckets_key = self._buckets_key[bucket_id] buckets_key.append(d[1]) if len(bucket) == self.batch_size: yield (bucket[:], buckets_key[:]) del bucket[:] del buckets_key[:] class AspectRatioGroupedSemiSupDatasetTwoCrop(AspectRatioGroupedDataset): """ Batch data that have similar aspect ratio together. In this implementation, images whose aspect ratio < (or >) 1 will be batched together. This improves training speed because the images then need less padding to form a batch. It assumes the underlying dataset produces dicts with "width" and "height" keys. It will then produce a list of original dicts with length = batch_size, all with similar aspect ratios. """ def __init__(self, dataset, batch_size): """ Args: dataset: a tuple containing two iterable generators. (labeled and unlabeled data) Each element must be a dict with keys "width" and "height", which will be used to batch data. batch_size (int): """ self.label_dataset, self.unlabel_dataset = dataset self.batch_size_label = batch_size[0] self.batch_size_unlabel = batch_size[1] self._label_buckets = [[] for _ in range(2)] self._label_buckets_key = [[] for _ in range(2)] self._unlabel_buckets = [[] for _ in range(2)] self._unlabel_buckets_key = [[] for _ in range(2)] # Hard-coded two aspect ratio groups: w > h and w < h. # Can add support for more aspect ratio groups, but doesn't seem useful def __iter__(self): label_bucket, unlabel_bucket = [], [] for d_label, d_unlabel in zip(self.label_dataset, self.unlabel_dataset): # d is a tuple with len = 2 # It's two images (same size) from the same image instance # d[0] is with strong augmentation, d[1] is with weak augmentation # because we are grouping images with their aspect ratio # label and unlabel buckets might not have the same number of data # i.e., one could reach batch_size, while the other is still not if len(label_bucket) != self.batch_size_label: w, h = d_label[0]["width"], d_label[0]["height"] label_bucket_id = 0 if w > h else 1 label_bucket = self._label_buckets[label_bucket_id] label_bucket.append(d_label[0]) label_buckets_key = self._label_buckets_key[label_bucket_id] label_buckets_key.append(d_label[1]) if len(unlabel_bucket) != self.batch_size_unlabel: w, h = d_unlabel[0]["width"], d_unlabel[0]["height"] unlabel_bucket_id = 0 if w > h else 1 unlabel_bucket = self._unlabel_buckets[unlabel_bucket_id] unlabel_bucket.append(d_unlabel[0]) unlabel_buckets_key = self._unlabel_buckets_key[unlabel_bucket_id] unlabel_buckets_key.append(d_unlabel[1]) # yield the batch of data until all buckets are full if ( len(label_bucket) == self.batch_size_label and len(unlabel_bucket) == self.batch_size_unlabel ): # label_strong, label_weak, unlabed_strong, unlabled_weak yield ( label_bucket[:], label_buckets_key[:], unlabel_bucket[:], unlabel_buckets_key[:], ) del label_bucket[:] del label_buckets_key[:] del unlabel_bucket[:] del unlabel_buckets_key[:]
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import os import contextlib from detectron2.data import DatasetCatalog, MetadataCatalog from fvcore.common.timer import Timer # from fvcore.common.file_io import PathManager from iopath.common.file_io import PathManager from detectron2.data.datasets.pascal_voc import register_pascal_voc from detectron2.data.datasets.builtin_meta import _get_builtin_metadata from .cityscapes_foggy import load_cityscapes_instances import io import logging logger = logging.getLogger(__name__) JSON_ANNOTATIONS_DIR = "" _SPLITS_COCO_FORMAT = {} _SPLITS_COCO_FORMAT["coco"] = { "coco_2017_unlabel": ( "coco/unlabeled2017", "coco/annotations/image_info_unlabeled2017.json", ), "coco_2017_for_voc20": ( "coco", "coco/annotations/google/instances_unlabeledtrainval20class.json", ), } def register_coco_unlabel(root): for _, splits_per_dataset in _SPLITS_COCO_FORMAT.items(): for key, (image_root, json_file) in splits_per_dataset.items(): meta = {} register_coco_unlabel_instances( key, meta, os.path.join(root, json_file), os.path.join(root, image_root) ) def register_coco_unlabel_instances(name, metadata, json_file, image_root): """ Register a dataset in COCO's json annotation format for instance detection, instance segmentation and keypoint detection. (i.e., Type 1 and 2 in http://cocodataset.org/#format-data. `instances*.json` and `person_keypoints*.json` in the dataset). This is an example of how to register a new dataset. You can do something similar to this function, to register new datasets. Args: name (str): the name that identifies a dataset, e.g. "coco_2014_train". metadata (dict): extra metadata associated with this dataset. You can leave it as an empty dict. json_file (str): path to the json instance annotation file. image_root (str or path-like): directory which contains all the images. """ assert isinstance(name, str), name assert isinstance(json_file, (str, os.PathLike)), json_file assert isinstance(image_root, (str, os.PathLike)), image_root # 1. register a function which returns dicts DatasetCatalog.register( name, lambda: load_coco_unlabel_json(json_file, image_root, name) ) # 2. Optionally, add metadata about this dataset, # since they might be useful in evaluation, visualization or logging MetadataCatalog.get(name).set( json_file=json_file, image_root=image_root, evaluator_type="coco", **metadata ) def load_coco_unlabel_json( json_file, image_root, dataset_name=None, extra_annotation_keys=None ): from pycocotools.coco import COCO timer = Timer() json_file = PathManager.get_local_path(json_file) with contextlib.redirect_stdout(io.StringIO()): coco_api = COCO(json_file) if timer.seconds() > 1: logger.info( "Loading {} takes {:.2f} seconds.".format(json_file, timer.seconds()) ) id_map = None # sort indices for reproducible results img_ids = sorted(coco_api.imgs.keys()) imgs = coco_api.loadImgs(img_ids) logger.info("Loaded {} images in COCO format from {}".format(len(imgs), json_file)) dataset_dicts = [] for img_dict in imgs: record = {} record["file_name"] = os.path.join(image_root, img_dict["file_name"]) record["height"] = img_dict["height"] record["width"] = img_dict["width"] image_id = record["image_id"] = img_dict["id"] dataset_dicts.append(record) return dataset_dicts _root = os.getenv("DETECTRON2_DATASETS", "datasets") register_coco_unlabel(_root) # ==== Predefined splits for raw cityscapes foggy images =========== _RAW_CITYSCAPES_SPLITS = { # "cityscapes_foggy_{task}_train": ("cityscape_foggy/leftImg8bit/train/", "cityscape_foggy/gtFine/train/"), # "cityscapes_foggy_{task}_val": ("cityscape_foggy/leftImg8bit/val/", "cityscape_foggy/gtFine/val/"), # "cityscapes_foggy_{task}_test": ("cityscape_foggy/leftImg8bit/test/", "cityscape_foggy/gtFine/test/"), "cityscapes_foggy_train": ("cityscapes_foggy/leftImg8bit/train/", "cityscapes_foggy/gtFine/train/"), "cityscapes_foggy_val": ("cityscapes_foggy/leftImg8bit/val/", "cityscapes_foggy/gtFine/val/"), "cityscapes_foggy_test": ("cityscapes_foggy/leftImg8bit/test/", "cityscapes_foggy/gtFine/test/"), } def register_all_cityscapes_foggy(root): # root = "manifold://mobile_vision_dataset/tree/yujheli/dataset" for key, (image_dir, gt_dir) in _RAW_CITYSCAPES_SPLITS.items(): meta = _get_builtin_metadata("cityscapes") image_dir = os.path.join(root, image_dir) gt_dir = os.path.join(root, gt_dir) # inst_key = key.format(task="instance_seg") inst_key = key # DatasetCatalog.register( # inst_key, # lambda x=image_dir, y=gt_dir: load_cityscapes_instances( # x, y, from_json=True, to_polygons=True # ), # ) DatasetCatalog.register( inst_key, lambda x=image_dir, y=gt_dir: load_cityscapes_instances( x, y, from_json=False, to_polygons=False ), ) # MetadataCatalog.get(inst_key).set( # image_dir=image_dir, gt_dir=gt_dir, evaluator_type="cityscapes_instance", **meta # ) # MetadataCatalog.get(inst_key).set( # image_dir=image_dir, gt_dir=gt_dir, evaluator_type="pascal_voc", **meta # ) MetadataCatalog.get(inst_key).set( image_dir=image_dir, gt_dir=gt_dir, evaluator_type="coco", **meta ) # ==== Predefined splits for Clipart (PASCAL VOC format) =========== def register_all_clipart(root): # root = "manifold://mobile_vision_dataset/tree/yujheli/dataset" SPLITS = [ ("Clipart1k_train", "clipart", "train"), ("Clipart1k_test", "clipart", "test"), ] for name, dirname, split in SPLITS: year = 2012 register_pascal_voc(name, os.path.join(root, dirname), split, year) MetadataCatalog.get(name).evaluator_type = "pascal_voc" # MetadataCatalog.get(name).evaluator_type = "coco" # ==== Predefined splits for Watercolor (PASCAL VOC format) =========== def register_all_water(root): # root = "manifold://mobile_vision_dataset/tree/yujheli/dataset" SPLITS = [ ("Watercolor_train", "watercolor", "train"), ("Watercolor_test", "watercolor", "test"), ] for name, dirname, split in SPLITS: year = 2012 # register_pascal_voc(name, os.path.join(root, dirname), split, year, class_names=["person", "dog","bicycle", "bird", "car", "cat"]) register_pascal_voc(name, os.path.join(root, dirname), split, year) MetadataCatalog.get(name).evaluator_type = "pascal_voc_water" # MetadataCatalog.get(name).thing_classes = ["person", "dog","bike", "bird", "car", "cat"] # MetadataCatalog.get(name).thing_classes = ["person", "dog","bicycle", "bird", "car", "cat"] # MetadataCatalog.get(name).evaluator_type = "coco" register_all_cityscapes_foggy(_root) register_all_clipart(_root) register_all_water(_root)
# Copyright (c) Facebook, Inc. and its affiliates. import functools import json import logging import multiprocessing as mp import numpy as np import os from itertools import chain import pycocotools.mask as mask_util from PIL import Image from detectron2.structures import BoxMode from detectron2.utils.comm import get_world_size from detectron2.utils.file_io import PathManager from detectron2.utils.logger import setup_logger try: import cv2 # noqa except ImportError: # OpenCV is an optional dependency at the moment pass logger = logging.getLogger(__name__) load_only_002 = False def _get_cityscapes_files(image_dir, gt_dir): files = [] # scan through the directory cities = PathManager.ls(image_dir) logger.info(f"{len(cities)} cities found in '{image_dir}'.") for city in cities: city_img_dir = os.path.join(image_dir, city) city_gt_dir = os.path.join(gt_dir, city) for basename in PathManager.ls(city_img_dir): if load_only_002 and '0.02.png' not in basename: continue image_file = os.path.join(city_img_dir, basename) # suffix = "leftImg8bit.png" # assert basename.endswith(suffix), basename # basename = basename[: -len(suffix)] suffix = 'leftImg8bit_foggy' basename = basename.split(suffix)[0] instance_file = os.path.join(city_gt_dir, basename + "gtFine_instanceIds.png") label_file = os.path.join(city_gt_dir, basename + "gtFine_labelIds.png") json_file = os.path.join(city_gt_dir, basename + "gtFine_polygons.json") files.append((image_file, instance_file, label_file, json_file)) assert len(files), "No images found in {}".format(image_dir) for f in files[0]: assert PathManager.isfile(f), f return files def load_cityscapes_instances(image_dir, gt_dir, from_json=True, to_polygons=True): """ Args: image_dir (str): path to the raw dataset. e.g., "~/cityscapes/leftImg8bit/train". gt_dir (str): path to the raw annotations. e.g., "~/cityscapes/gtFine/train". from_json (bool): whether to read annotations from the raw json file or the png files. to_polygons (bool): whether to represent the segmentation as polygons (COCO's format) instead of masks (cityscapes's format). Returns: list[dict]: a list of dicts in Detectron2 standard format. (See `Using Custom Datasets </tutorials/datasets.html>`_ ) """ if from_json: assert to_polygons, ( "Cityscapes's json annotations are in polygon format. " "Converting to mask format is not supported now." ) files = _get_cityscapes_files(image_dir, gt_dir) logger.info("Preprocessing cityscapes annotations ...") # This is still not fast: all workers will execute duplicate works and will # take up to 10m on a 8GPU server. pool = mp.Pool(processes=max(mp.cpu_count() // get_world_size() // 2, 4)) ret = pool.map( functools.partial(_cityscapes_files_to_dict, from_json=from_json, to_polygons=to_polygons), files, ) logger.info("Loaded {} images from {}".format(len(ret), image_dir)) pool.close() # Map cityscape ids to contiguous ids from cityscapesscripts.helpers.labels import labels labels = [l for l in labels if l.hasInstances and not l.ignoreInEval] dataset_id_to_contiguous_id = {l.id: idx for idx, l in enumerate(labels)} for dict_per_image in ret: for anno in dict_per_image["annotations"]: anno["category_id"] = dataset_id_to_contiguous_id[anno["category_id"]] return ret def load_cityscapes_semantic(image_dir, gt_dir): """ Args: image_dir (str): path to the raw dataset. e.g., "~/cityscapes/leftImg8bit/train". gt_dir (str): path to the raw annotations. e.g., "~/cityscapes/gtFine/train". Returns: list[dict]: a list of dict, each has "file_name" and "sem_seg_file_name". """ ret = [] # gt_dir is small and contain many small files. make sense to fetch to local first gt_dir = PathManager.get_local_path(gt_dir) for image_file, _, label_file, json_file in _get_cityscapes_files(image_dir, gt_dir): label_file = label_file.replace("labelIds", "labelTrainIds") with PathManager.open(json_file, "r") as f: jsonobj = json.load(f) ret.append( { "file_name": image_file, "sem_seg_file_name": label_file, "height": jsonobj["imgHeight"], "width": jsonobj["imgWidth"], } ) assert len(ret), f"No images found in {image_dir}!" assert PathManager.isfile( ret[0]["sem_seg_file_name"] ), "Please generate labelTrainIds.png with cityscapesscripts/preparation/createTrainIdLabelImgs.py" # noqa return ret def _cityscapes_files_to_dict(files, from_json, to_polygons): """ Parse cityscapes annotation files to a instance segmentation dataset dict. Args: files (tuple): consists of (image_file, instance_id_file, label_id_file, json_file) from_json (bool): whether to read annotations from the raw json file or the png files. to_polygons (bool): whether to represent the segmentation as polygons (COCO's format) instead of masks (cityscapes's format). Returns: A dict in Detectron2 Dataset format. """ from cityscapesscripts.helpers.labels import id2label, name2label image_file, instance_id_file, _, json_file = files annos = [] if from_json: from shapely.geometry import MultiPolygon, Polygon with PathManager.open(json_file, "r") as f: jsonobj = json.load(f) ret = { "file_name": image_file, "image_id": os.path.basename(image_file), "height": jsonobj["imgHeight"], "width": jsonobj["imgWidth"], } # `polygons_union` contains the union of all valid polygons. polygons_union = Polygon() # CityscapesScripts draw the polygons in sequential order # and each polygon *overwrites* existing ones. See # (https://github.com/mcordts/cityscapesScripts/blob/master/cityscapesscripts/preparation/json2instanceImg.py) # noqa # We use reverse order, and each polygon *avoids* early ones. # This will resolve the ploygon overlaps in the same way as CityscapesScripts. for obj in jsonobj["objects"][::-1]: if "deleted" in obj: # cityscapes data format specific continue label_name = obj["label"] try: label = name2label[label_name] except KeyError: if label_name.endswith("group"): # crowd area label = name2label[label_name[: -len("group")]] else: raise if label.id < 0: # cityscapes data format continue # Cityscapes's raw annotations uses integer coordinates # Therefore +0.5 here poly_coord = np.asarray(obj["polygon"], dtype="f4") + 0.5 # CityscapesScript uses PIL.ImageDraw.polygon to rasterize # polygons for evaluation. This function operates in integer space # and draws each pixel whose center falls into the polygon. # Therefore it draws a polygon which is 0.5 "fatter" in expectation. # We therefore dilate the input polygon by 0.5 as our input. poly = Polygon(poly_coord).buffer(0.5, resolution=4) if not label.hasInstances or label.ignoreInEval: # even if we won't store the polygon it still contributes to overlaps resolution polygons_union = polygons_union.union(poly) continue # Take non-overlapping part of the polygon poly_wo_overlaps = poly.difference(polygons_union) if poly_wo_overlaps.is_empty: continue polygons_union = polygons_union.union(poly) anno = {} anno["iscrowd"] = label_name.endswith("group") anno["category_id"] = label.id if isinstance(poly_wo_overlaps, Polygon): poly_list = [poly_wo_overlaps] elif isinstance(poly_wo_overlaps, MultiPolygon): poly_list = poly_wo_overlaps.geoms else: raise NotImplementedError("Unknown geometric structure {}".format(poly_wo_overlaps)) poly_coord = [] for poly_el in poly_list: # COCO API can work only with exterior boundaries now, hence we store only them. # TODO: store both exterior and interior boundaries once other parts of the # codebase support holes in polygons. poly_coord.append(list(chain(*poly_el.exterior.coords))) anno["segmentation"] = poly_coord (xmin, ymin, xmax, ymax) = poly_wo_overlaps.bounds anno["bbox"] = (xmin, ymin, xmax, ymax) anno["bbox_mode"] = BoxMode.XYXY_ABS annos.append(anno) else: # See also the official annotation parsing scripts at # https://github.com/mcordts/cityscapesScripts/blob/master/cityscapesscripts/evaluation/instances2dict.py # noqa with PathManager.open(instance_id_file, "rb") as f: inst_image = np.asarray(Image.open(f), order="F") # ids < 24 are stuff labels (filtering them first is about 5% faster) flattened_ids = np.unique(inst_image[inst_image >= 24]) ret = { "file_name": image_file, "image_id": os.path.basename(image_file), "height": inst_image.shape[0], "width": inst_image.shape[1], } for instance_id in flattened_ids: # For non-crowd annotations, instance_id // 1000 is the label_id # Crowd annotations have <1000 instance ids label_id = instance_id // 1000 if instance_id >= 1000 else instance_id label = id2label[label_id] if not label.hasInstances or label.ignoreInEval: continue anno = {} anno["iscrowd"] = instance_id < 1000 anno["category_id"] = label.id mask = np.asarray(inst_image == instance_id, dtype=np.uint8, order="F") inds = np.nonzero(mask) ymin, ymax = inds[0].min(), inds[0].max() xmin, xmax = inds[1].min(), inds[1].max() anno["bbox"] = (xmin, ymin, xmax, ymax) if xmax <= xmin or ymax <= ymin: continue anno["bbox_mode"] = BoxMode.XYXY_ABS if to_polygons: # This conversion comes from D4809743 and D5171122, # when Mask-RCNN was first developed. contours = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)[ -2 ] polygons = [c.reshape(-1).tolist() for c in contours if len(c) >= 3] # opencv's can produce invalid polygons if len(polygons) == 0: continue anno["segmentation"] = polygons else: anno["segmentation"] = mask_util.encode(mask[:, :, None])[0] annos.append(anno) ret["annotations"] = annos return ret
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import random from PIL import ImageFilter class GaussianBlur: """ Gaussian blur augmentation in SimCLR https://arxiv.org/abs/2002.05709 Adapted from MoCo: https://github.com/facebookresearch/moco/blob/master/moco/loader.py Note that this implementation does not seem to be exactly the same as described in SimCLR. """ def __init__(self, sigma=[0.1, 2.0]): self.sigma = sigma def __call__(self, x): sigma = random.uniform(self.sigma[0], self.sigma[1]) x = x.filter(ImageFilter.GaussianBlur(radius=sigma)) return x
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from detectron2.engine.hooks import HookBase import detectron2.utils.comm as comm import torch import numpy as np from contextlib import contextmanager class LossEvalHook(HookBase): def __init__(self, eval_period, model, data_loader, model_output, model_name=""): self._model = model self._period = eval_period self._data_loader = data_loader self._model_output = model_output self._model_name = model_name def _do_loss_eval(self): record_acc_dict = {} with inference_context(self._model), torch.no_grad(): for _, inputs in enumerate(self._data_loader): record_dict = self._get_loss(inputs, self._model) # accumulate the losses for loss_type in record_dict.keys(): if loss_type not in record_acc_dict.keys(): record_acc_dict[loss_type] = record_dict[loss_type] else: record_acc_dict[loss_type] += record_dict[loss_type] # average for loss_type in record_acc_dict.keys(): record_acc_dict[loss_type] = record_acc_dict[loss_type] / len( self._data_loader ) # divide loss and other metrics loss_acc_dict = {} for key in record_acc_dict.keys(): if key[:4] == "loss": loss_acc_dict[key] = record_acc_dict[key] # only output the results of major node if comm.is_main_process(): total_losses_reduced = sum(loss for loss in loss_acc_dict.values()) self.trainer.storage.put_scalar( "val_total_loss_val" + self._model_name, total_losses_reduced ) record_acc_dict = { "val_" + k + self._model_name: record_acc_dict[k] for k in record_acc_dict.keys() } if len(record_acc_dict) > 1: self.trainer.storage.put_scalars(**record_acc_dict) def _get_loss(self, data, model): if self._model_output == "loss_only": record_dict = model(data) elif self._model_output == "loss_proposal": record_dict, _, _, _ = model(data, branch="val_loss", val_mode=True) elif self._model_output == "meanteacher": record_dict, _, _, _, _ = model(data) metrics_dict = { k: v.detach().cpu().item() if isinstance(v, torch.Tensor) else float(v) for k, v in record_dict.items() } return metrics_dict def _write_losses(self, metrics_dict): # gather metrics among all workers for logging # This assumes we do DDP-style training, which is currently the only # supported method in detectron2. comm.synchronize() all_metrics_dict = comm.gather(metrics_dict, dst=0) if comm.is_main_process(): # average the rest metrics metrics_dict = { "val_" + k: np.mean([x[k] for x in all_metrics_dict]) for k in all_metrics_dict[0].keys() } total_losses_reduced = sum(loss for loss in metrics_dict.values()) self.trainer.storage.put_scalar("val_total_loss_val", total_losses_reduced) if len(metrics_dict) > 1: self.trainer.storage.put_scalars(**metrics_dict) def _detect_anomaly(self, losses, loss_dict): if not torch.isfinite(losses).all(): raise FloatingPointError( "Loss became infinite or NaN at iteration={}!\nloss_dict = {}".format( self.trainer.iter, loss_dict ) ) def after_step(self): next_iter = self.trainer.iter + 1 is_final = next_iter == self.trainer.max_iter if is_final or (self._period > 0 and next_iter % self._period == 0): self._do_loss_eval() @contextmanager def inference_context(model): """ A context where the model is temporarily changed to eval mode, and restored to previous mode afterwards. Args: model: a torch Module """ training_mode = model.training model.eval() yield model.train(training_mode)
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
28