python_code
stringlengths
0
66.4k
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import glob import argparse import numpy as np import resampy from scikits.audiolab import Sndfile, Format def load_wav(fname, rate=None): fp = Sndfile(fname, 'r') _signal = fp.read_frames(fp.nframes) _signal = _signal.reshape((-1, fp.channels)) _rate = fp.samplerate if _signal.ndim == 1: _signal.reshape((-1, 1)) if rate is not None and rate != _rate: signal = resampy.resample(_signal, _rate, rate, axis=0, filter='kaiser_best') else: signal = _signal rate = _rate return signal, rate def save_wav(fname, signal, rate): fp = Sndfile(fname, 'w', Format('wav'), signal.shape[1], rate) fp.write_frames(signal) fp.close() def reEncodeAudio(audio_path, new_rate): audio, audio_rate = load_wav(audio_path,new_rate) save_wav(audio_path, audio, new_rate) def main(): parser = argparse.ArgumentParser(description="re-encode all audios under a directory") parser.add_argument("--audio_dir_path", type=str, required=True) parser.add_argument("--new_rate", type=int, default=16000) args = parser.parse_args() audio_list = glob.glob(args.audio_dir_path + '/*.wav') print "Total number of audios to re-encode: ", len(audio_list) for audio_path in audio_list: reEncodeAudio(os.path.join(args.audio_dir_path, audio_path), args.new_rate) if __name__ == '__main__': main()
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os import time import torch from options.train_options import TrainOptions from data.data_loader import CreateDataLoader from models.models import ModelBuilder from models.audioVisual_model import AudioVisualModel from torch.autograd import Variable from tensorboardX import SummaryWriter def create_optimizer(nets, opt): (net_visual, net_audio) = nets param_groups = [{'params': net_visual.parameters(), 'lr': opt.lr_visual}, {'params': net_audio.parameters(), 'lr': opt.lr_audio}] if opt.optimizer == 'sgd': return torch.optim.SGD(param_groups, momentum=opt.beta1, weight_decay=opt.weight_decay) elif opt.optimizer == 'adam': return torch.optim.Adam(param_groups, betas=(opt.beta1,0.999), weight_decay=opt.weight_decay) def decrease_learning_rate(optimizer, decay_factor=0.94): for param_group in optimizer.param_groups: param_group['lr'] *= decay_factor #used to display validation loss def display_val(model, loss_criterion, writer, index, dataset_val, opt): losses = [] with torch.no_grad(): for i, val_data in enumerate(dataset_val): if i < opt.validation_batches: output = model.forward(val_data) loss = loss_criterion(output['binaural_spectrogram'], output['audio_gt']) losses.append(loss.item()) else: break avg_loss = sum(losses)/len(losses) if opt.tensorboard: writer.add_scalar('data/val_loss', avg_loss, index) print('val loss: %.3f' % avg_loss) return avg_loss #parse arguments opt = TrainOptions().parse() opt.device = torch.device("cuda") #construct data loader data_loader = CreateDataLoader(opt) dataset = data_loader.load_data() dataset_size = len(data_loader) print('#training clips = %d' % dataset_size) #create validation set data loader if validation_on option is set if opt.validation_on: #temperally set to val to load val data opt.mode = 'val' data_loader_val = CreateDataLoader(opt) dataset_val = data_loader_val.load_data() dataset_size_val = len(data_loader_val) print('#validation clips = %d' % dataset_size_val) opt.mode = 'train' #set it back if opt.tensorboard: from tensorboardX import SummaryWriter writer = SummaryWriter(comment=opt.name) else: writer = None # network builders builder = ModelBuilder() net_visual = builder.build_visual(weights=opt.weights_visual) net_audio = builder.build_audio( ngf=opt.unet_ngf, input_nc=opt.unet_input_nc, output_nc=opt.unet_output_nc, weights=opt.weights_audio) nets = (net_visual, net_audio) # construct our audio-visual model model = AudioVisualModel(nets, opt) model = torch.nn.DataParallel(model, device_ids=opt.gpu_ids) model.to(opt.device) # set up optimizer optimizer = create_optimizer(nets, opt) # set up loss function loss_criterion = torch.nn.MSELoss() if(len(opt.gpu_ids) > 0): loss_criterion.cuda(opt.gpu_ids[0]) # initialization total_steps = 0 data_loading_time = [] model_forward_time = [] model_backward_time = [] batch_loss = [] best_err = float("inf") for epoch in range(1, opt.niter+1): torch.cuda.synchronize() epoch_start_time = time.time() if(opt.measure_time): iter_start_time = time.time() for i, data in enumerate(dataset): if(opt.measure_time): torch.cuda.synchronize() iter_data_loaded_time = time.time() total_steps += opt.batchSize # forward pass model.zero_grad() output = model.forward(data) # compute loss loss = loss_criterion(output['binaural_spectrogram'], Variable(output['audio_gt'], requires_grad=False)) batch_loss.append(loss.item()) if(opt.measure_time): torch.cuda.synchronize() iter_data_forwarded_time = time.time() # update optimizer optimizer.zero_grad() loss.backward() optimizer.step() if(opt.measure_time): iter_model_backwarded_time = time.time() data_loading_time.append(iter_data_loaded_time - iter_start_time) model_forward_time.append(iter_data_forwarded_time - iter_data_loaded_time) model_backward_time.append(iter_model_backwarded_time - iter_data_forwarded_time) if(total_steps // opt.batchSize % opt.display_freq == 0): print('Display training progress at (epoch %d, total_steps %d)' % (epoch, total_steps)) avg_loss = sum(batch_loss) / len(batch_loss) print('Average loss: %.3f' % (avg_loss)) batch_loss = [] if opt.tensorboard: writer.add_scalar('data/loss', avg_loss, total_steps) if(opt.measure_time): print('average data loading time: ' + str(sum(data_loading_time)/len(data_loading_time))) print('average forward time: ' + str(sum(model_forward_time)/len(model_forward_time))) print('average backward time: ' + str(sum(model_backward_time)/len(model_backward_time))) data_loading_time = [] model_forward_time = [] model_backward_time = [] print('end of display \n') if(total_steps // opt.batchSize % opt.save_latest_freq == 0): print('saving the latest model (epoch %d, total_steps %d)' % (epoch, total_steps)) torch.save(net_visual.state_dict(), os.path.join('.', opt.checkpoints_dir, opt.name, 'visual_latest.pth')) torch.save(net_audio.state_dict(), os.path.join('.', opt.checkpoints_dir, opt.name, 'audio_latest.pth')) if(total_steps // opt.batchSize % opt.validation_freq == 0 and opt.validation_on): model.eval() opt.mode = 'val' print('Display validation results at (epoch %d, total_steps %d)' % (epoch, total_steps)) val_err = display_val(model, loss_criterion, writer, total_steps, dataset_val, opt) print('end of display \n') model.train() opt.mode = 'train' #save the model that achieves the smallest validation error if val_err < best_err: best_err = val_err print('saving the best model (epoch %d, total_steps %d) with validation error %.3f\n' % (epoch, total_steps, val_err)) torch.save(net_visual.state_dict(), os.path.join('.', opt.checkpoints_dir, opt.name, 'visual_best.pth')) torch.save(net_audio.state_dict(), os.path.join('.', opt.checkpoints_dir, opt.name, 'audio_best.pth')) if(opt.measure_time): iter_start_time = time.time() if(epoch % opt.save_epoch_freq == 0): print('saving the model at the end of epoch %d, total_steps %d' % (epoch, total_steps)) torch.save(net_visual.state_dict(), os.path.join('.', opt.checkpoints_dir, opt.name, str(epoch) + '_visual.pth')) torch.save(net_audio.state_dict(), os.path.join('.', opt.checkpoints_dir, opt.name, str(epoch) + '_audio.pth')) #decrease learning rate 6% every opt.learning_rate_decrease_itr epochs if(opt.learning_rate_decrease_itr > 0 and epoch % opt.learning_rate_decrease_itr == 0): decrease_learning_rate(optimizer, opt.decay_factor) print('decreased learning rate by ', opt.decay_factor)
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os import librosa import argparse import numpy as np from numpy import linalg as LA from scipy.signal import hilbert from data.audioVisual_dataset import generate_spectrogram import statistics as stat def normalize(samples): return samples / np.maximum(1e-20, np.max(np.abs(samples))) def STFT_L2_distance(predicted_binaural, gt_binaural): #channel1 predicted_spect_channel1 = librosa.core.stft(np.asfortranarray(predicted_binaural[0,:]), n_fft=512, hop_length=160, win_length=400, center=True) gt_spect_channel1 = librosa.core.stft(np.asfortranarray(gt_binaural[0,:]), n_fft=512, hop_length=160, win_length=400, center=True) real = np.expand_dims(np.real(predicted_spect_channel1), axis=0) imag = np.expand_dims(np.imag(predicted_spect_channel1), axis=0) predicted_realimag_channel1 = np.concatenate((real, imag), axis=0) real = np.expand_dims(np.real(gt_spect_channel1), axis=0) imag = np.expand_dims(np.imag(gt_spect_channel1), axis=0) gt_realimag_channel1 = np.concatenate((real, imag), axis=0) channel1_distance = np.mean(np.power((predicted_realimag_channel1 - gt_realimag_channel1), 2)) #channel2 predicted_spect_channel2 = librosa.core.stft(np.asfortranarray(predicted_binaural[1,:]), n_fft=512, hop_length=160, win_length=400, center=True) gt_spect_channel2 = librosa.core.stft(np.asfortranarray(gt_binaural[1,:]), n_fft=512, hop_length=160, win_length=400, center=True) real = np.expand_dims(np.real(predicted_spect_channel2), axis=0) imag = np.expand_dims(np.imag(predicted_spect_channel2), axis=0) predicted_realimag_channel2 = np.concatenate((real, imag), axis=0) real = np.expand_dims(np.real(gt_spect_channel2), axis=0) imag = np.expand_dims(np.imag(gt_spect_channel2), axis=0) gt_realimag_channel2 = np.concatenate((real, imag), axis=0) channel2_distance = np.mean(np.power((predicted_realimag_channel2 - gt_realimag_channel2), 2)) #sum the distance between two channels stft_l2_distance = channel1_distance + channel2_distance return float(stft_l2_distance) def Envelope_distance(predicted_binaural, gt_binaural): #channel1 pred_env_channel1 = np.abs(hilbert(predicted_binaural[0,:])) gt_env_channel1 = np.abs(hilbert(gt_binaural[0,:])) channel1_distance = np.sqrt(np.mean((gt_env_channel1 - pred_env_channel1)**2)) #channel2 pred_env_channel2 = np.abs(hilbert(predicted_binaural[1,:])) gt_env_channel2 = np.abs(hilbert(gt_binaural[1,:])) channel2_distance = np.sqrt(np.mean((gt_env_channel2 - pred_env_channel2)**2)) #sum the distance between two channels envelope_distance = channel1_distance + channel2_distance return float(envelope_distance) def main(): parser = argparse.ArgumentParser() parser.add_argument('--results_root', type=str, required=True) parser.add_argument('--audio_sampling_rate', default=16000, type=int, help='audio sampling rate') parser.add_argument('--real_mono', default=False, type=bool, help='whether the input predicted binaural audio is mono audio') parser.add_argument('--normalization', default=False, type=bool) args = parser.parse_args() stft_distance_list = [] envelope_distance_list = [] audioNames = os.listdir(args.results_root) index = 1 for audio_name in audioNames: if index % 10 == 0: print "Evaluating testing example " + str(index) + " :", audio_name #check whether input binaural is mono, replicate to two channels if it's mono if args.real_mono: mono_sound, audio_rate = librosa.load(os.path.join(args.results_root, audio_name, 'mixed_mono.wav'), sr=args.audio_sampling_rate) predicted_binaural = np.repeat(np.expand_dims(mono_sound, 0), 2, axis=0) if args.normalization: predicted_binaural = normalize(predicted_binaural) else: predicted_binaural, audio_rate = librosa.load(os.path.join(args.results_root, audio_name, 'predicted_binaural.wav'), sr=args.audio_sampling_rate, mono=False) if args.normalization: predicted_binaural = normalize(predicted_binaural) gt_binaural, audio_rate = librosa.load(os.path.join(args.results_root, audio_name, 'input_binaural.wav'), sr=args.audio_sampling_rate, mono=False) if args.normalization: gt_binaural = normalize(gt_binaural) #get results for this audio stft_distance_list.append(STFT_L2_distance(predicted_binaural, gt_binaural)) envelope_distance_list.append(Envelope_distance(predicted_binaural, gt_binaural)) index = index + 1 #print the results print "STFT L2 Distance: ", stat.mean(stft_distance_list), stat.stdev(stft_distance_list), stat.stdev(stft_distance_list) / np.sqrt(len(stft_distance_list)) print "Average Envelope Distance: ", stat.mean(envelope_distance_list), stat.stdev(envelope_distance_list), stat.stdev(envelope_distance_list) / np.sqrt(len(envelope_distance_list)) if __name__ == '__main__': main()
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os import argparse import librosa import numpy as np from PIL import Image import subprocess from options.test_options import TestOptions import torchvision.transforms as transforms import torch from models.models import ModelBuilder from models.audioVisual_model import AudioVisualModel from data.audioVisual_dataset import generate_spectrogram def audio_normalize(samples, desired_rms = 0.1, eps = 1e-4): rms = np.maximum(eps, np.sqrt(np.mean(samples**2))) samples = samples * (desired_rms / rms) return rms / desired_rms, samples def main(): #load test arguments opt = TestOptions().parse() opt.device = torch.device("cuda") # network builders builder = ModelBuilder() net_visual = builder.build_visual(weights=opt.weights_visual) net_audio = builder.build_audio( ngf=opt.unet_ngf, input_nc=opt.unet_input_nc, output_nc=opt.unet_output_nc, weights=opt.weights_audio) nets = (net_visual, net_audio) # construct our audio-visual model model = AudioVisualModel(nets, opt) model = torch.nn.DataParallel(model, device_ids=opt.gpu_ids) model.to(opt.device) model.eval() #load the audio to perform separation audio, audio_rate = librosa.load(opt.input_audio_path, sr=opt.audio_sampling_rate, mono=False) audio_channel1 = audio[0,:] audio_channel2 = audio[1,:] #define the transformation to perform on visual frames vision_transform_list = [transforms.Resize((224,448)), transforms.ToTensor()] vision_transform_list.append(transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])) vision_transform = transforms.Compose(vision_transform_list) #perform spatialization over the whole audio using a sliding window approach overlap_count = np.zeros((audio.shape)) #count the number of times a data point is calculated binaural_audio = np.zeros((audio.shape)) #perform spatialization over the whole spectrogram in a siliding-window fashion sliding_window_start = 0 data = {} samples_per_window = int(opt.audio_length * opt.audio_sampling_rate) while sliding_window_start + samples_per_window < audio.shape[-1]: sliding_window_end = sliding_window_start + samples_per_window normalizer, audio_segment = audio_normalize(audio[:,sliding_window_start:sliding_window_end]) audio_segment_channel1 = audio_segment[0,:] audio_segment_channel2 = audio_segment[1,:] audio_segment_mix = audio_segment_channel1 + audio_segment_channel2 data['audio_diff_spec'] = torch.FloatTensor(generate_spectrogram(audio_segment_channel1 - audio_segment_channel2)).unsqueeze(0) #unsqueeze to add a batch dimension data['audio_mix_spec'] = torch.FloatTensor(generate_spectrogram(audio_segment_channel1 + audio_segment_channel2)).unsqueeze(0) #unsqueeze to add a batch dimension #get the frame index for current window frame_index = int(round((((sliding_window_start + samples_per_window / 2.0) / audio.shape[-1]) * opt.input_audio_length + 0.05) * 10 )) image = Image.open(os.path.join(opt.video_frame_path, str(frame_index).zfill(6) + '.png')).convert('RGB') #image = image.transpose(Image.FLIP_LEFT_RIGHT) frame = vision_transform(image).unsqueeze(0) #unsqueeze to add a batch dimension data['frame'] = frame output = model.forward(data) predicted_spectrogram = output['binaural_spectrogram'][0,:,:,:].data[:].cpu().numpy() #ISTFT to convert back to audio reconstructed_stft_diff = predicted_spectrogram[0,:,:] + (1j * predicted_spectrogram[1,:,:]) reconstructed_signal_diff = librosa.istft(reconstructed_stft_diff, hop_length=160, win_length=400, center=True, length=samples_per_window) reconstructed_signal_left = (audio_segment_mix + reconstructed_signal_diff) / 2 reconstructed_signal_right = (audio_segment_mix - reconstructed_signal_diff) / 2 reconstructed_binaural = np.concatenate((np.expand_dims(reconstructed_signal_left, axis=0), np.expand_dims(reconstructed_signal_right, axis=0)), axis=0) * normalizer binaural_audio[:,sliding_window_start:sliding_window_end] = binaural_audio[:,sliding_window_start:sliding_window_end] + reconstructed_binaural overlap_count[:,sliding_window_start:sliding_window_end] = overlap_count[:,sliding_window_start:sliding_window_end] + 1 sliding_window_start = sliding_window_start + int(opt.hop_size * opt.audio_sampling_rate) #deal with the last segment normalizer, audio_segment = audio_normalize(audio[:,-samples_per_window:]) audio_segment_channel1 = audio_segment[0,:] audio_segment_channel2 = audio_segment[1,:] data['audio_diff_spec'] = torch.FloatTensor(generate_spectrogram(audio_segment_channel1 - audio_segment_channel2)).unsqueeze(0) #unsqueeze to add a batch dimension data['audio_mix_spec'] = torch.FloatTensor(generate_spectrogram(audio_segment_channel1 + audio_segment_channel2)).unsqueeze(0) #unsqueeze to add a batch dimension #get the frame index for last window frame_index = int(round(((opt.input_audio_length - opt.audio_length / 2.0) + 0.05) * 10)) image = Image.open(os.path.join(opt.video_frame_path, str(frame_index).zfill(6) + '.png')).convert('RGB') #image = image.transpose(Image.FLIP_LEFT_RIGHT) frame = vision_transform(image).unsqueeze(0) #unsqueeze to add a batch dimension data['frame'] = frame output = model.forward(data) predicted_spectrogram = output['binaural_spectrogram'][0,:,:,:].data[:].cpu().numpy() #ISTFT to convert back to audio reconstructed_stft_diff = predicted_spectrogram[0,:,:] + (1j * predicted_spectrogram[1,:,:]) reconstructed_signal_diff = librosa.istft(reconstructed_stft_diff, hop_length=160, win_length=400, center=True, length=samples_per_window) reconstructed_signal_left = (audio_segment_mix + reconstructed_signal_diff) / 2 reconstructed_signal_right = (audio_segment_mix - reconstructed_signal_diff) / 2 reconstructed_binaural = np.concatenate((np.expand_dims(reconstructed_signal_left, axis=0), np.expand_dims(reconstructed_signal_right, axis=0)), axis=0) * normalizer #add the spatialized audio to reconstructed_binaural binaural_audio[:,-samples_per_window:] = binaural_audio[:,-samples_per_window:] + reconstructed_binaural overlap_count[:,-samples_per_window:] = overlap_count[:,-samples_per_window:] + 1 #divide aggregated predicted audio by their corresponding counts predicted_binaural_audio = np.divide(binaural_audio, overlap_count) #check output directory if not os.path.isdir(opt.output_dir_root): os.mkdir(opt.output_dir_root) mixed_mono = (audio_channel1 + audio_channel2) / 2 librosa.output.write_wav(os.path.join(opt.output_dir_root, 'predicted_binaural.wav'), predicted_binaural_audio, opt.audio_sampling_rate) librosa.output.write_wav(os.path.join(opt.output_dir_root, 'mixed_mono.wav'), mixed_mono, opt.audio_sampling_rate) librosa.output.write_wav(os.path.join(opt.output_dir_root, 'input_binaural.wav'), audio, opt.audio_sampling_rate) if __name__ == '__main__': main()
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from .base_options import BaseOptions class TestOptions(BaseOptions): def initialize(self): BaseOptions.initialize(self) self.parser.add_argument('--input_audio_path', required=True, help='path to the input audio file') self.parser.add_argument('--video_frame_path', required=True, help='path to the input video frames') self.parser.add_argument('--output_dir_root', type=str, default='test_output', help='path to the output files') self.parser.add_argument('--input_audio_length', type=float, default=10, help='length of the testing video/audio') self.parser.add_argument('--hop_size', default=0.05, type=float, help='the hop length to perform audio spatialization in a sliding window approach') #model arguments self.parser.add_argument('--weights_visual', type=str, default='', help="weights for visual stream") self.parser.add_argument('--weights_audio', type=str, default='', help="weights for audio stream") self.parser.add_argument('--unet_ngf', type=int, default=64, help="unet base channel dimension") self.parser.add_argument('--unet_input_nc', type=int, default=2, help="input spectrogram number of channels") self.parser.add_argument('--unet_output_nc', type=int, default=2, help="output spectrogram number of channels") self.mode = "test" self.isTrain = False
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from .base_options import BaseOptions class TrainOptions(BaseOptions): def initialize(self): BaseOptions.initialize(self) self.parser.add_argument('--display_freq', type=int, default=50, help='frequency of displaying average loss') self.parser.add_argument('--save_epoch_freq', type=int, default=50, help='frequency of saving checkpoints at the end of epochs') self.parser.add_argument('--save_latest_freq', type=int, default=5000, help='frequency of saving the latest results') self.parser.add_argument('--niter', type=int, default=1000, help='# of epochs to train') self.parser.add_argument('--learning_rate_decrease_itr', type=int, default=-1, help='how often is the learning rate decreased by six percent') self.parser.add_argument('--decay_factor', type=float, default=0.94, help='learning rate decay factor') self.parser.add_argument('--tensorboard', type=bool, default=False, help='use tensorboard to visualize loss change ') self.parser.add_argument('--measure_time', type=bool, default=False, help='measure time of different steps during training') self.parser.add_argument('--validation_on', action='store_true', help='whether to test on validation set during training') self.parser.add_argument('--validation_freq', type=int, default=100, help='frequency of testing on validation set') self.parser.add_argument('--validation_batches', type=int, default=10, help='number of batches to test for validation') self.parser.add_argument('--enable_data_augmentation', type=bool, default=True, help='whether to augment input frame') #model arguments self.parser.add_argument('--weights_visual', type=str, default='', help="weights for visual stream") self.parser.add_argument('--weights_audio', type=str, default='', help="weights for audio stream") self.parser.add_argument('--unet_ngf', type=int, default=64, help="unet base channel dimension") self.parser.add_argument('--unet_input_nc', type=int, default=2, help="input spectrogram number of channels") self.parser.add_argument('--unet_output_nc', type=int, default=2, help="output spectrogram number of channels") #optimizer arguments self.parser.add_argument('--lr_visual', type=float, default=0.0001, help='learning rate for visual stream') self.parser.add_argument('--lr_audio', type=float, default=0.001, help='learning rate for unet') self.parser.add_argument('--optimizer', default='adam', type=str, help='adam or sgd for optimization') self.parser.add_argument('--beta1', default=0.9, type=float, help='momentum for sgd, beta1 for adam') self.parser.add_argument('--weight_decay', default=0.0005, type=float, help='weights regularizer') self.mode = "train" self.isTrain = True self.enable_data_augmentation = True
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse import os from util import util import torch class BaseOptions(): def __init__(self): self.parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) self.initialized = False def initialize(self): self.parser.add_argument('--hdf5FolderPath', help='path to the folder that contains train.h5, val.h5 and test.h5') self.parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU') self.parser.add_argument('--name', type=str, default='spatialAudioVisual', help='name of the experiment. It decides where to store models') self.parser.add_argument('--checkpoints_dir', type=str, default='checkpoints/', help='models are saved here') self.parser.add_argument('--model', type=str, default='audioVisual', help='chooses how datasets are loaded.') self.parser.add_argument('--batchSize', type=int, default=32, help='input batch size') self.parser.add_argument('--nThreads', default=16, type=int, help='# threads for loading data') self.parser.add_argument('--audio_sampling_rate', default=16000, type=int, help='audio sampling rate') self.parser.add_argument('--audio_length', default=0.63, type=float, help='audio length, default 0.63s') self.enable_data_augmentation = True self.initialized = True def parse(self): if not self.initialized: self.initialize() self.opt = self.parser.parse_args() self.opt.mode = self.mode self.opt.isTrain = self.isTrain self.opt.enable_data_augmentation = self.enable_data_augmentation str_ids = self.opt.gpu_ids.split(',') self.opt.gpu_ids = [] for str_id in str_ids: id = int(str_id) if id >= 0: self.opt.gpu_ids.append(id) # set gpu ids if len(self.opt.gpu_ids) > 0: torch.cuda.set_device(self.opt.gpu_ids[0]) #I should process the opt here, like gpu ids, etc. args = vars(self.opt) print('------------ Options -------------') for k, v in sorted(args.items()): print('%s: %s' % (str(k), str(v))) print('-------------- End ----------------') # save to the disk expr_dir = os.path.join(self.opt.checkpoints_dir, self.opt.name) util.mkdirs(expr_dir) file_name = os.path.join(expr_dir, 'opt.txt') with open(file_name, 'wt') as opt_file: opt_file.write('------------ Options -------------\n') for k, v in sorted(args.items()): opt_file.write('%s: %s\n' % (str(k), str(v))) opt_file.write('-------------- End ----------------\n') return self.opt
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os def mkdirs(paths): if isinstance(paths, list) and not isinstance(paths, str): for path in paths: mkdir(path) else: mkdir(paths) def mkdir(path): if not os.path.exists(path): os.makedirs(path)
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch import torchvision from .networks import VisualNet, AudioNet, weights_init class ModelBuilder(): # builder for visual stream def build_visual(self, weights=''): pretrained = True original_resnet = torchvision.models.resnet18(pretrained) net = VisualNet(original_resnet) if len(weights) > 0: print('Loading weights for visual stream') net.load_state_dict(torch.load(weights)) return net #builder for audio stream def build_audio(self, ngf=64, input_nc=2, output_nc=2, weights=''): #AudioNet: 5 layer UNet net = AudioNet(ngf, input_nc, output_nc) net.apply(weights_init) if len(weights) > 0: print('Loading weights for audio stream') net.load_state_dict(torch.load(weights)) return net
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os import numpy as np import torch from torch import optim import torch.nn.functional as F from . import networks,criterion from torch.autograd import Variable class AudioVisualModel(torch.nn.Module): def name(self): return 'AudioVisualModel' def __init__(self, nets, opt): super(AudioVisualModel, self).__init__() self.opt = opt #initialize model self.net_visual, self.net_audio = nets def forward(self, input, volatile=False): visual_input = input['frame'] audio_diff = input['audio_diff_spec'] audio_mix = input['audio_mix_spec'] audio_gt = Variable(audio_diff[:,:,:-1,:], requires_grad=False) input_spectrogram = Variable(audio_mix, requires_grad=False, volatile=volatile) visual_feature = self.net_visual(Variable(visual_input, requires_grad=False, volatile=volatile)) mask_prediction = self.net_audio(input_spectrogram, visual_feature) #complex masking to obtain the predicted spectrogram spectrogram_diff_real = input_spectrogram[:,0,:-1,:] * mask_prediction[:,0,:,:] - input_spectrogram[:,1,:-1,:] * mask_prediction[:,1,:,:] spectrogram_diff_img = input_spectrogram[:,0,:-1,:] * mask_prediction[:,1,:,:] + input_spectrogram[:,1,:-1,:] * mask_prediction[:,0,:,:] binaural_spectrogram = torch.cat((spectrogram_diff_real.unsqueeze(1), spectrogram_diff_img.unsqueeze(1)), 1) output = {'mask_prediction': mask_prediction, 'binaural_spectrogram': binaural_spectrogram, 'audio_gt': audio_gt} return output
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn import torch.nn.functional as F import functools def unet_conv(input_nc, output_nc, norm_layer=nn.BatchNorm2d): downconv = nn.Conv2d(input_nc, output_nc, kernel_size=4, stride=2, padding=1) downrelu = nn.LeakyReLU(0.2, True) downnorm = norm_layer(output_nc) return nn.Sequential(*[downconv, downnorm, downrelu]) def unet_upconv(input_nc, output_nc, outermost=False, norm_layer=nn.BatchNorm2d): upconv = nn.ConvTranspose2d(input_nc, output_nc, kernel_size=4, stride=2, padding=1) uprelu = nn.ReLU(True) upnorm = norm_layer(output_nc) if not outermost: return nn.Sequential(*[upconv, upnorm, uprelu]) else: return nn.Sequential(*[upconv, nn.Sigmoid()]) def create_conv(input_channels, output_channels, kernel, paddings, batch_norm=True, Relu=True, stride=1): model = [nn.Conv2d(input_channels, output_channels, kernel, stride = stride, padding = paddings)] if(batch_norm): model.append(nn.BatchNorm2d(output_channels)) if(Relu): model.append(nn.ReLU()) return nn.Sequential(*model) def weights_init(m): classname = m.__class__.__name__ if classname.find('Conv') != -1: m.weight.data.normal_(0.0, 0.02) elif classname.find('BatchNorm2d') != -1: m.weight.data.normal_(1.0, 0.02) m.bias.data.fill_(0) elif classname.find('Linear') != -1: m.weight.data.normal_(0.0, 0.02) class VisualNet(nn.Module): def __init__(self, original_resnet): super(VisualNet, self).__init__() layers = list(original_resnet.children())[0:-2] self.feature_extraction = nn.Sequential(*layers) #features before conv1x1 def forward(self, x): x = self.feature_extraction(x) return x class AudioNet(nn.Module): def __init__(self, ngf=64, input_nc=2, output_nc=2): super(AudioNet, self).__init__() #initialize layers self.audionet_convlayer1 = unet_conv(input_nc, ngf) self.audionet_convlayer2 = unet_conv(ngf, ngf * 2) self.audionet_convlayer3 = unet_conv(ngf * 2, ngf * 4) self.audionet_convlayer4 = unet_conv(ngf * 4, ngf * 8) self.audionet_convlayer5 = unet_conv(ngf * 8, ngf * 8) self.audionet_upconvlayer1 = unet_upconv(1296, ngf * 8) #1296 (audio-visual feature) = 784 (visual feature) + 512 (audio feature) self.audionet_upconvlayer2 = unet_upconv(ngf * 16, ngf *4) self.audionet_upconvlayer3 = unet_upconv(ngf * 8, ngf * 2) self.audionet_upconvlayer4 = unet_upconv(ngf * 4, ngf) self.audionet_upconvlayer5 = unet_upconv(ngf * 2, output_nc, True) #outermost layer use a sigmoid to bound the mask self.conv1x1 = create_conv(512, 8, 1, 0) #reduce dimension of extracted visual features def forward(self, x, visual_feat): audio_conv1feature = self.audionet_convlayer1(x) audio_conv2feature = self.audionet_convlayer2(audio_conv1feature) audio_conv3feature = self.audionet_convlayer3(audio_conv2feature) audio_conv4feature = self.audionet_convlayer4(audio_conv3feature) audio_conv5feature = self.audionet_convlayer5(audio_conv4feature) visual_feat = self.conv1x1(visual_feat) visual_feat = visual_feat.view(visual_feat.shape[0], -1, 1, 1) #flatten visual feature visual_feat = visual_feat.repeat(1, 1, audio_conv5feature.shape[-2], audio_conv5feature.shape[-1]) #tile visual feature audioVisual_feature = torch.cat((visual_feat, audio_conv5feature), dim=1) audio_upconv1feature = self.audionet_upconvlayer1(audioVisual_feature) audio_upconv2feature = self.audionet_upconvlayer2(torch.cat((audio_upconv1feature, audio_conv4feature), dim=1)) audio_upconv3feature = self.audionet_upconvlayer3(torch.cat((audio_upconv2feature, audio_conv3feature), dim=1)) audio_upconv4feature = self.audionet_upconvlayer4(torch.cat((audio_upconv3feature, audio_conv2feature), dim=1)) mask_prediction = self.audionet_upconvlayer5(torch.cat((audio_upconv4feature, audio_conv1feature), dim=1)) * 2 - 1 return mask_prediction
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn import torch.nn.functional as F class BaseLoss(nn.Module): def __init__(self): super(BaseLoss, self).__init__() def forward(self, preds, targets, weight=None): if isinstance(preds, list): N = len(preds) if weight is None: weight = preds[0].new_ones(1) errs = [self._forward(preds[n], targets[n], weight[n]) for n in range(N)] err = torch.mean(torch.stack(errs)) elif isinstance(preds, torch.Tensor): if weight is None: weight = preds.new_ones(1) err = self._forward(preds, targets, weight) return err class L1Loss(BaseLoss): def __init__(self): super(L1Loss, self).__init__() def _forward(self, pred, target, weight): return torch.mean(weight * torch.abs(pred - target)) class L2Loss(BaseLoss): def __init__(self): super(L2Loss, self).__init__() def _forward(self, pred, target, weight): return torch.mean(weight * torch.pow(pred - target, 2)) class MSELoss(BaseLoss): def __init__(self): super(MSELoss, self).__init__() def _forward(self, pred, target): return F.mse_loss(pred, target) class BCELoss(BaseLoss): def __init__(self): super(BCELoss, self).__init__() def _forward(self, pred, target, weight): return F.binary_cross_entropy(pred, target, weight=weight) class BCEWithLogitsLoss(BaseLoss): def __init__(self): super(BCEWithLogitsLoss, self).__init__() def _forward(self, pred, target, weight): return F.binary_cross_entropy_with_logits(pred, target, weight=weight)
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch.utils.data as data from PIL import Image import torchvision.transforms as transforms class BaseDataset(data.Dataset): def __init__(self): super(BaseDataset, self).__init__() def name(self): return 'BaseDataset' def initialize(self, opt): pass
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. def CreateDataLoader(opt): from data.custom_dataset_data_loader import CustomDatasetDataLoader data_loader = CustomDatasetDataLoader() print(data_loader.name()) data_loader.initialize(opt) return data_loader
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. class BaseDataLoader(): def __init__(self): pass def initialize(self, opt): self.opt = opt pass def load_data(): return None
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch.utils.data from data.base_data_loader import BaseDataLoader def CreateDataset(opt): dataset = None if opt.model == 'audioVisual': from data.audioVisual_dataset import AudioVisualDataset dataset = AudioVisualDataset() else: raise ValueError("Dataset [%s] not recognized." % opt.model) print("dataset [%s] was created" % (dataset.name())) dataset.initialize(opt) return dataset class CustomDatasetDataLoader(BaseDataLoader): def name(self): return 'CustomDatasetDataLoader' def initialize(self, opt): BaseDataLoader.initialize(self, opt) self.dataset = CreateDataset(opt) self.dataloader = torch.utils.data.DataLoader( self.dataset, batch_size=opt.batchSize, shuffle=True, num_workers=int(opt.nThreads)) def load_data(self): return self def __len__(self): return len(self.dataset) def __iter__(self): for i, data in enumerate(self.dataloader): yield data
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os.path import time import librosa import h5py import random import math import numpy as np import glob import torch from PIL import Image, ImageEnhance import torchvision.transforms as transforms from data.base_dataset import BaseDataset def normalize(samples, desired_rms = 0.1, eps = 1e-4): rms = np.maximum(eps, np.sqrt(np.mean(samples**2))) samples = samples * (desired_rms / rms) return samples def generate_spectrogram(audio): spectro = librosa.core.stft(audio, n_fft=512, hop_length=160, win_length=400, center=True) real = np.expand_dims(np.real(spectro), axis=0) imag = np.expand_dims(np.imag(spectro), axis=0) spectro_two_channel = np.concatenate((real, imag), axis=0) return spectro_two_channel def process_image(image, augment): image = image.resize((480,240)) w,h = image.size w_offset = w - 448 h_offset = h - 224 left = random.randrange(0, w_offset + 1) upper = random.randrange(0, h_offset + 1) image = image.crop((left, upper, left+448, upper+224)) if augment: enhancer = ImageEnhance.Brightness(image) image = enhancer.enhance(random.random()*0.6 + 0.7) enhancer = ImageEnhance.Color(image) image = enhancer.enhance(random.random()*0.6 + 0.7) return image class AudioVisualDataset(BaseDataset): def initialize(self, opt): self.opt = opt self.audios = [] #load hdf5 file here h5f_path = os.path.join(opt.hdf5FolderPath, opt.mode+".h5") h5f = h5py.File(h5f_path, 'r') self.audios = h5f['audio'][:] normalize = transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ) vision_transform_list = [transforms.ToTensor(), normalize] self.vision_transform = transforms.Compose(vision_transform_list) def __getitem__(self, index): #load audio audio, audio_rate = librosa.load(self.audios[index], sr=self.opt.audio_sampling_rate, mono=False) #randomly get a start time for the audio segment from the 10s clip audio_start_time = random.uniform(0, 9.9 - self.opt.audio_length) audio_end_time = audio_start_time + self.opt.audio_length audio_start = int(audio_start_time * self.opt.audio_sampling_rate) audio_end = audio_start + int(self.opt.audio_length * self.opt.audio_sampling_rate) audio = audio[:, audio_start:audio_end] audio = normalize(audio) audio_channel1 = audio[0,:] audio_channel2 = audio[1,:] #get the frame dir path based on audio path path_parts = self.audios[index].strip().split('/') path_parts[-1] = path_parts[-1][:-4] + '.mp4' path_parts[-2] = 'frames' frame_path = '/'.join(path_parts) # get the closest frame to the audio segment #frame_index = int(round((audio_start_time + audio_end_time) / 2.0 + 0.5)) #1 frame extracted per second frame_index = int(round(((audio_start_time + audio_end_time) / 2.0 + 0.05) * 10)) #10 frames extracted per second frame = process_image(Image.open(os.path.join(frame_path, str(frame_index).zfill(6) + '.png')).convert('RGB'), self.opt.enable_data_augmentation) frame = self.vision_transform(frame) #passing the spectrogram of the difference audio_diff_spec = torch.FloatTensor(generate_spectrogram(audio_channel1 - audio_channel2)) audio_mix_spec = torch.FloatTensor(generate_spectrogram(audio_channel1 + audio_channel2)) return {'frame': frame, 'audio_diff_spec':audio_diff_spec, 'audio_mix_spec':audio_mix_spec} def __len__(self): return len(self.audios) def name(self): return 'AudioVisualDataset'
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import gym import torch from collections import deque, defaultdict from gym import spaces import numpy as np from gym_minigrid.minigrid import OBJECT_TO_IDX, COLOR_TO_IDX # Helper functions and wrappers def _format_observation(obs): obs = torch.tensor(obs) return obs.view((1, 1) + obs.shape) # (...) -> (T,B,...). class Minigrid2Image(gym.ObservationWrapper): """Get MiniGrid observation to ignore language instruction.""" def __init__(self, env): gym.ObservationWrapper.__init__(self, env) self.observation_space = env.observation_space.spaces['image'] def observation(self, observation): return observation['image'] class Observation_WrapperSetup: """Environment wrapper to format observation items into torch.""" def __init__(self, gym_env, fix_seed=False, env_seed=1): self.gym_env = gym_env self.episode_return = None self.episode_step = None self.episode_win = None self.fix_seed = fix_seed self.env_seed = env_seed def initial(self): initial_reward = torch.zeros(1, 1) self.episode_return = torch.zeros(1, 1) self.episode_step = torch.zeros(1, 1, dtype=torch.int32) self.episode_win = torch.zeros(1, 1, dtype=torch.int32) initial_done = torch.ones(1, 1, dtype=torch.uint8) if self.fix_seed: self.gym_env.seed(seed=self.env_seed) initial_frame = _format_observation(self.gym_env.reset()) if self.gym_env.carrying: carried_col, carried_obj = torch.LongTensor([[COLOR_TO_IDX[self.gym_env.carrying.color]]]), torch.LongTensor([[OBJECT_TO_IDX[self.gym_env.carrying.type]]]) else: carried_col, carried_obj = torch.LongTensor([[5]]), torch.LongTensor([[1]]) return dict( frame=initial_frame, reward=initial_reward, done=initial_done, episode_return=self.episode_return, episode_step=self.episode_step, episode_win=self.episode_win, carried_col = carried_col, carried_obj = carried_obj) def step(self, action): frame, reward, done, _ = self.gym_env.step(action.item()) self.episode_step += 1 episode_step = self.episode_step self.episode_return += reward episode_return = self.episode_return if done and reward > 0: self.episode_win[0][0] = 1 else: self.episode_win[0][0] = 0 episode_win = self.episode_win if done: if self.fix_seed: self.gym_env.seed(seed=self.env_seed) frame = self.gym_env.reset() self.episode_return = torch.zeros(1, 1) self.episode_step = torch.zeros(1, 1, dtype=torch.int32) self.episode_win = torch.zeros(1, 1, dtype=torch.int32) frame = _format_observation(frame) reward = torch.tensor(reward).view(1, 1) done = torch.tensor(done).view(1, 1) if self.gym_env.carrying: carried_col, carried_obj = torch.LongTensor([[COLOR_TO_IDX[self.gym_env.carrying.color]]]), torch.LongTensor([[OBJECT_TO_IDX[self.gym_env.carrying.type]]]) else: carried_col, carried_obj = torch.LongTensor([[5]]), torch.LongTensor([[1]]) return dict( frame=frame, reward=reward, done=done, episode_return=episode_return, episode_step = episode_step, episode_win = episode_win, carried_col = carried_col, carried_obj = carried_obj ) def get_full_obs(self): env = self.gym_env.unwrapped full_grid = env.grid.encode() full_grid[env.agent_pos[0]][env.agent_pos[1]] = np.array([ OBJECT_TO_IDX['agent'], COLOR_TO_IDX['red'], env.agent_dir ]) return full_grid def close(self): self.gym_env.close() class FrameStack(gym.Wrapper): def __init__(self, env, k): """Stack k last frames. Returns lazy array, which is much more memory efficient.""" gym.Wrapper.__init__(self, env) self.k = k self.frames = deque([], maxlen=k) shp = env.observation_space.shape self.observation_space = spaces.Box( low=0, high=255, shape=(shp[:-1] + (shp[-1] * k,)), dtype=env.observation_space.dtype) def reset(self): ob = self.env.reset() for _ in range(self.k): self.frames.append(ob) return self._get_ob() def step(self, action): ob, reward, done, info = self.env.step(action) self.frames.append(ob) return self._get_ob(), reward, done, info def _get_ob(self): assert len(self.frames) == self.k return LazyFrames(list(self.frames)) class LazyFrames(object): def __init__(self, frames): """This object ensures that common frames between the observations are only stored once. It exists purely to optimize memory usage which can be huge for DQN's 1M frames replay buffers. This object should only be converted to numpy array before being passed to the model.""" self._frames = frames self._out = None def _force(self): if self._out is None: self._out = np.concatenate(self._frames, axis=-1) self._frames = None return self._out def __array__(self, dtype=None): out = self._force() if dtype is not None: out = out.astype(dtype) return out def __len__(self): return len(self._force()) def __getitem__(self, i): return self._force()[i]
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. """Naive profiling using timeit.""" import collections import timeit class Timings: """Not thread-safe.""" def __init__(self): self._means = collections.defaultdict(int) self._vars = collections.defaultdict(int) self._counts = collections.defaultdict(int) self.reset() def reset(self): self.last_time = timeit.default_timer() def time(self, name): """Save an update for event `name`. Nerd alarm: We could just store a collections.defaultdict(list) and compute means and standard deviations at the end. But thanks to the clever math in Sutton-Barto (http://www.incompleteideas.net/book/first/ebook/node19.html) and https://math.stackexchange.com/a/103025/5051 we can update both the means and the stds online. O(1) FTW! """ now = timeit.default_timer() x = now - self.last_time self.last_time = now n = self._counts[name] mean = self._means[name] + (x - self._means[name]) / (n + 1) var = ( n * self._vars[name] + n * (self._means[name] - mean) ** 2 + (x - mean) ** 2 ) / (n + 1) self._means[name] = mean self._vars[name] = var self._counts[name] += 1 def means(self): return self._means def vars(self): return self._vars def stds(self): return {k: v ** 0.5 for k, v in self._vars.items()} def summary(self, prefix=""): means = self.means() stds = self.stds() total = sum(means.values()) result = prefix for k in sorted(means, key=means.get, reverse=True): result += f"\n %s: %.6fms +- %.6fms (%.2f%%) " % ( k, 1000 * means[k], 1000 * stds[k], 100 * means[k] / total, ) result += "\nTotal: %.6fms" % (1000 * total) return result
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import copy import datetime import csv import json import logging import os import time from typing import Dict import git def gather_metadata() -> Dict: date_start = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f") # gathering git metadata try: repo = git.Repo(search_parent_directories=True) git_sha = repo.commit().hexsha git_data = dict( commit=git_sha, branch=None if repo.head.is_detached else repo.active_branch.name, is_dirty=repo.is_dirty(), path=repo.git_dir, ) except git.InvalidGitRepositoryError: git_data = None # gathering slurm metadata if "SLURM_JOB_ID" in os.environ: slurm_env_keys = [k for k in os.environ if k.startswith("SLURM")] slurm_data = {} for k in slurm_env_keys: d_key = k.replace("SLURM_", "").replace("SLURMD_", "").lower() slurm_data[d_key] = os.environ[k] else: slurm_data = None return dict( date_start=date_start, date_end=None, successful=False, git=git_data, slurm=slurm_data, env=os.environ.copy(), ) class FileWriter: def __init__( self, xpid: str = None, xp_args: dict = None, rootdir: str = "~/palaas", symlink_to_latest: bool = True, ): if not xpid: # make unique id xpid = "{proc}_{unixtime}".format( proc=os.getpid(), unixtime=int(time.time()) ) self.xpid = xpid self._tick = 0 # metadata gathering if xp_args is None: xp_args = {} self.metadata = gather_metadata() # we need to copy the args, otherwise when we close the file writer # (and rewrite the args) we might have non-serializable objects (or # other nasty stuff). self.metadata["args"] = copy.deepcopy(xp_args) self.metadata["xpid"] = self.xpid formatter = logging.Formatter("%(message)s") self._logger = logging.getLogger("palaas/out") # to stdout handler shandle = logging.StreamHandler() shandle.setFormatter(formatter) self._logger.addHandler(shandle) self._logger.setLevel(logging.INFO) rootdir = os.path.expandvars(os.path.expanduser(rootdir)) # to file handler self.basepath = os.path.join(rootdir, self.xpid) if not os.path.exists(self.basepath): self._logger.info("Creating log directory: %s", self.basepath) os.makedirs(self.basepath, exist_ok=True) else: self._logger.info("Found log directory: %s", self.basepath) if symlink_to_latest: # Add 'latest' as symlink unless it exists and is no symlink. symlink = os.path.join(rootdir, "latest") try: if os.path.islink(symlink): os.remove(symlink) if not os.path.exists(symlink): os.symlink(self.basepath, symlink) self._logger.info("Symlinked log directory: %s", symlink) except OSError: # os.remove() or os.symlink() raced. Don't do anything. pass self.paths = dict( msg="{base}/out.log".format(base=self.basepath), logs="{base}/logs.csv".format(base=self.basepath), fields="{base}/fields.csv".format(base=self.basepath), meta="{base}/meta.json".format(base=self.basepath), ) self._logger.info("Saving arguments to %s", self.paths["meta"]) if os.path.exists(self.paths["meta"]): self._logger.warning( "Path to meta file already exists. " "Not overriding meta." ) else: self._save_metadata() self._logger.info("Saving messages to %s", self.paths["msg"]) if os.path.exists(self.paths["msg"]): self._logger.warning( "Path to message file already exists. " "New data will be appended." ) fhandle = logging.FileHandler(self.paths["msg"]) fhandle.setFormatter(formatter) self._logger.addHandler(fhandle) self._logger.info("Saving logs data to %s", self.paths["logs"]) self._logger.info("Saving logs' fields to %s", self.paths["fields"]) if os.path.exists(self.paths["logs"]): self._logger.warning( "Path to log file already exists. " "New data will be appended." ) with open(self.paths["fields"], "r") as csvfile: reader = csv.reader(csvfile) self.fieldnames = list(reader)[0] else: self.fieldnames = ["_tick", "_time"] self._fieldfile = open(self.paths["fields"], "w") self._fieldwriter = csv.writer(self._fieldfile) self._logfile = open(self.paths["logs"], "a") self._logwriter = csv.DictWriter(self._logfile, fieldnames=self.fieldnames) def log(self, to_log: Dict, tick: int = None, verbose: bool = False) -> None: if tick is not None: raise NotImplementedError else: to_log["_tick"] = self._tick self._tick += 1 to_log["_time"] = time.time() old_len = len(self.fieldnames) for k in to_log: if k not in self.fieldnames: self.fieldnames.append(k) if old_len != len(self.fieldnames): self._fieldwriter.writerow(self.fieldnames) self._logger.info("Updated log fields: %s", self.fieldnames) if to_log["_tick"] == 0: self._logfile.write("# %s\n" % ",".join(self.fieldnames)) if verbose: self._logger.info( "LOG | %s", ", ".join(["{}: {}".format(k, to_log[k]) for k in sorted(to_log)]), ) self._logwriter.writerow(to_log) self._logfile.flush() def close(self, successful: bool = True) -> None: self.metadata["date_end"] = datetime.datetime.now().strftime( "%Y-%m-%d %H:%M:%S.%f" ) self.metadata["successful"] = successful self._save_metadata() for f in [self._logfile, self._fieldfile]: f.close() def _save_metadata(self) -> None: with open(self.paths["meta"], "w") as jsonfile: json.dump(self.metadata, jsonfile, indent=4, sort_keys=True)
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This file taken from # https://github.com/deepmind/scalable_agent/blob/ # cd66d00914d56c8ba2f0615d9cdeefcb169a8d70/vtrace.py # and modified. # # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Functions to compute V-trace off-policy actor critic targets. For details and theory see: "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Espeholt, Soyer, Munos et al. See https://arxiv.org/abs/1802.01561 for the full paper. """ import collections import torch import torch.nn.functional as F VTraceFromLogitsReturns = collections.namedtuple( "VTraceFromLogitsReturns", [ "vs", "pg_advantages", "log_rhos", "behavior_action_log_probs", "target_action_log_probs", ], ) VTraceReturns = collections.namedtuple("VTraceReturns", "vs pg_advantages") def action_log_probs(policy_logits, actions): return -F.nll_loss( F.log_softmax(torch.flatten(policy_logits, 0, -2), dim=-1), torch.flatten(actions), reduction="none", ).view_as(actions) def from_logits( behavior_policy_logits, target_policy_logits, actions, discounts, rewards, values, bootstrap_value, clip_rho_threshold=1.0, clip_pg_rho_threshold=1.0, ): """V-trace for softmax policies.""" target_action_log_probs = action_log_probs(target_policy_logits, actions) behavior_action_log_probs = action_log_probs(behavior_policy_logits, actions) log_rhos = target_action_log_probs - behavior_action_log_probs vtrace_returns = from_importance_weights( log_rhos=log_rhos, discounts=discounts, rewards=rewards, values=values, bootstrap_value=bootstrap_value, clip_rho_threshold=clip_rho_threshold, clip_pg_rho_threshold=clip_pg_rho_threshold, ) return VTraceFromLogitsReturns( log_rhos=log_rhos, behavior_action_log_probs=behavior_action_log_probs, target_action_log_probs=target_action_log_probs, **vtrace_returns._asdict(), ) @torch.no_grad() def from_importance_weights( log_rhos, discounts, rewards, values, bootstrap_value, clip_rho_threshold=1.0, clip_pg_rho_threshold=1.0, ): """V-trace from log importance weights.""" with torch.no_grad(): rhos = torch.exp(log_rhos) if clip_rho_threshold is not None: clipped_rhos = torch.clamp(rhos, max=clip_rho_threshold) else: clipped_rhos = rhos cs = torch.clamp(rhos, max=1.0) # Append bootstrapped value to get [v1, ..., v_t+1] values_t_plus_1 = torch.cat( [values[1:], torch.unsqueeze(bootstrap_value, 0)], dim=0 ) deltas = clipped_rhos * (rewards + discounts * values_t_plus_1 - values) acc = torch.zeros_like(bootstrap_value) result = [] for t in range(discounts.shape[0] - 1, -1, -1): acc = deltas[t] + discounts[t] * cs[t] * acc result.append(acc) result.reverse() vs_minus_v_xs = torch.stack(result) # Add V(x_s) to get v_s. vs = torch.add(vs_minus_v_xs, values) # Advantage for policy gradient. broadcasted_bootstrap_values = torch.ones_like(vs[0]) * bootstrap_value vs_t_plus_1 = torch.cat( [vs[1:], broadcasted_bootstrap_values.unsqueeze(0)], dim=0 ) if clip_pg_rho_threshold is not None: clipped_pg_rhos = torch.clamp(rhos, max=clip_pg_rho_threshold) else: clipped_pg_rhos = rhos pg_advantages = clipped_pg_rhos * (rewards + discounts * vs_t_plus_1 - values) # Make sure no gradients backpropagated through the returned values. return VTraceReturns(vs=vs, pg_advantages=pg_advantages)
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. """The environment class.""" import torch def _format_frame(frame): frame = torch.from_numpy(frame) return frame.view((1, 1) + frame.shape) # (...) -> (T,B,...). class Environment: def __init__(self, gym_env): self.gym_env = gym_env self.episode_return = None self.episode_step = None def initial(self): initial_reward = torch.zeros(1, 1) # This supports only single-tensor actions ATM. initial_last_action = torch.zeros(1, 1, dtype=torch.int64) self.episode_return = torch.zeros(1, 1) self.episode_step = torch.zeros(1, 1, dtype=torch.int32) initial_done = torch.ones(1, 1, dtype=torch.bool) initial_frame = _format_frame(self.gym_env.reset()) return dict( frame=initial_frame, reward=initial_reward, done=initial_done, episode_return=self.episode_return, episode_step=self.episode_step, last_action=initial_last_action, ) def step(self, action): frame, reward, done, unused_info = self.gym_env.step(action.item()) self.episode_step += 1 self.episode_return += reward episode_step = self.episode_step episode_return = self.episode_return if done: frame = self.gym_env.reset() self.episode_return = torch.zeros(1, 1) self.episode_step = torch.zeros(1, 1, dtype=torch.int32) frame = _format_frame(frame) reward = torch.tensor(reward).view(1, 1) done = torch.tensor(done).view(1, 1) return dict( frame=frame, reward=reward, done=done, episode_return=episode_return, episode_step=episode_step, last_action=action, ) def close(self): self.gym_env.close()
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree.
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # Must be run with OMP_NUM_THREADS=1 import random import argparse import logging import os import threading import time import timeit import traceback import pprint import typing import torch from torch import multiprocessing as mp from torch import nn from torch.nn import functional as F import gym import gym_minigrid.wrappers as wrappers from torch.distributions.normal import Normal from torchbeast.core import environment from torchbeast.core import file_writer from torchbeast.core import prof from torchbeast.core import vtrace from env_utils import Observation_WrapperSetup, FrameStack # Some Global Variables # We start t* at 7 steps. generator_batch = dict() generator_batch_aux = dict() generator_current_target = 7.0 generator_count = 0 # yapf: disable parser = argparse.ArgumentParser(description='PyTorch Scalable Agent') parser.add_argument('--env', type=str, default='MiniGrid-Empty-8x8-v0', help='Gym environment.') parser.add_argument('--mode', default='train', choices=['train', 'test', 'test_render'], help='Training or test mode.') parser.add_argument('--xpid', default=None, help='Experiment id (default: None).') # Training settings. parser.add_argument('--disable_checkpoint', action='store_true', help='Disable saving checkpoint.') parser.add_argument('--savedir', default='./experimentsMinigrid', help='Root dir where experiment data will be saved.') parser.add_argument('--total_frames', default=600000000, type=int, metavar='T', help='Total environment frames to train for.') parser.add_argument('--num_actors', default=4, type=int, metavar='N', help='Number of actors (default: 4).') parser.add_argument('--num_buffers', default=None, type=int, metavar='N', help='Number of shared-memory buffers.') parser.add_argument('--num_threads', default=4, type=int, metavar='N', help='Number learner threads.') parser.add_argument('--disable_cuda', action='store_true', help='Disable CUDA.') # Loss settings. parser.add_argument('--entropy_cost', default=0.0005, type=float, help='Entropy cost/multiplier.') parser.add_argument('--generator_entropy_cost', default=0.05, type=float, help='Entropy cost/multiplier.') parser.add_argument('--baseline_cost', default=0.5, type=float, help='Baseline cost/multiplier.') parser.add_argument('--discounting', default=0.99, type=float, help='Discounting factor.') parser.add_argument('--reward_clipping', default='abs_one', choices=['abs_one', 'soft_asymmetric', 'none'], help='Reward clipping.') # Optimizer settings. parser.add_argument('--learning_rate', default=0.001, type=float, metavar='LR', help='Learning rate.') parser.add_argument('--generator_learning_rate', default=0.002, type=float, metavar='LR', help='Learning rate.') parser.add_argument('--alpha', default=0.99, type=float, help='RMSProp smoothing constant.') parser.add_argument('--momentum', default=0, type=float, help='RMSProp momentum.') parser.add_argument('--epsilon', default=0.01, type=float, help='RMSProp epsilon.') # Other Hyperparameters parser.add_argument('--batch_size', default=8, type=int, metavar='B', help='Learner batch size (default: 4).') parser.add_argument('--generator_batch_size', default=32, type=int, metavar='BB', help='Learner batch size (default: 4).') parser.add_argument('--unroll_length', default=100, type=int, metavar='T', help='The unroll length (time dimension; default: 64).') parser.add_argument('--goal_dim', default=10, type=int, help='Size of Goal Embedding') parser.add_argument('--state_embedding_dim', default=256, type=int, help='Dimension of the state embedding representation used in the student') parser.add_argument('--generator_reward_negative', default= -0.1, type=float, help='Coefficient for the intrinsic reward') parser.add_argument('--generator_threshold', default=-0.5, type=float, help='Threshold mean reward for wich scheduler increases difficulty') parser.add_argument('--generator_counts', default=10, type=int, help='Number of time before generator increases difficulty') parser.add_argument('--generator_maximum', default=100, type=float, help='Maximum difficulty') parser.add_argument('--generator_reward_coef', default=1.0, type=float, help='Coefficient for the generator reward') # Map Layout parser.add_argument('--fix_seed', action='store_true', help='Fix the environment seed so that it is \ no longer procedurally generated but rather a layout every time.') parser.add_argument('--env_seed', default=1, type=int, help='The seed to set for the env if we are using a single fixed seed.') parser.add_argument('--inner', action='store_true', help='Exlucde outer wall') parser.add_argument('--num_input_frames', default=1, type=int, help='Number of input frames to the model and state embedding including the current frame \ When num_input_frames > 1, it will also take the previous num_input_frames - 1 frames as input.') # Ablations and other settings parser.add_argument("--use_lstm", action="store_true", help="Use LSTM in agent model.") parser.add_argument('--num_lstm_layers', default=1, type=int, help='Lstm layers.') parser.add_argument('--disable_use_embedding', action='store_true', help='Disable embeddings.') parser.add_argument('--no_extrinsic_rewards', action='store_true', help='Only intrinsic rewards.') parser.add_argument('--no_generator', action='store_true', help='Use vanilla policy-deprecated') parser.add_argument('--intrinsic_reward_coef', default=1.0, type=float, help='Coefficient for the intrinsic reward') parser.add_argument('--random_agent', action='store_true', help='Use a random agent to test the env.') parser.add_argument('--novelty', action='store_true', help='Discount rewards based on times goal has been proposed.') parser.add_argument('--novelty_bonus', default=0.1, type=float, help='Bonus you get for proposing objects if novelty') parser.add_argument('--novelty_coef', default=0.3, type=float, help='Modulates novelty bonus if novelty') parser.add_argument('--restart_episode', action='store_true', help='Restart Episode when reaching intrinsic goal.') parser.add_argument('--modify', action='store_true', help='Modify Goal instead of having to reach the goal') parser.add_argument('--no_boundary_awareness', action='store_true', help='Remove Episode Boundary Awareness') parser.add_argument('--generator_loss_form', type=str, default='threshold', help='[threshold,dummy,gaussian, linear]') parser.add_argument('--generator_target', default=5.0, type=float, help='Mean target for Gassian and Linear Rewards') parser.add_argument('--target_variance', default=15.0, type=float, help='Variance for the Gaussian Reward') # yapf: enable logging.basicConfig( format=( "[%(levelname)s:%(process)d %(module)s:%(lineno)d %(asctime)s] " "%(message)s" ), level=0, ) Buffers = typing.Dict[str, typing.List[torch.Tensor]] def compute_baseline_loss(advantages): # Take the mean over batch, sum over time. return 0.5 * torch.sum(torch.mean(advantages ** 2, dim=1)) def compute_entropy_loss(logits): # Regularizing Entropy Loss policy = F.softmax(logits, dim=-1) log_policy = F.log_softmax(logits, dim=-1) entropy_per_timestep = torch.sum(-policy * log_policy, dim=-1) return -torch.sum(torch.mean(entropy_per_timestep, dim=1)) def compute_policy_gradient_loss(logits, actions, advantages): # Main Policy Loss cross_entropy = F.nll_loss( F.log_softmax(torch.flatten(logits, 0, 1), dim=-1), target=torch.flatten(actions, 0, 1), reduction="none", ) cross_entropy = cross_entropy.view_as(advantages) advantages.requires_grad = False policy_gradient_loss_per_timestep = cross_entropy * advantages return torch.sum(torch.mean(policy_gradient_loss_per_timestep, dim=1)) def act( actor_index: int, free_queue: mp.SimpleQueue, full_queue: mp.SimpleQueue, model: torch.nn.Module, generator_model, buffers: Buffers, initial_agent_state_buffers, flags): """Defines and generates IMPALA actors in multiples threads.""" try: logging.info("Actor %i started.", actor_index) timings = prof.Timings() # Keep track of how fast things are. gym_env = create_env(flags) seed = actor_index ^ int.from_bytes(os.urandom(4), byteorder="little") gym_env.seed(seed) #gym_env = wrappers.FullyObsWrapper(gym_env) if flags.num_input_frames > 1: gym_env = FrameStack(gym_env, flags.num_input_frames) env = Observation_WrapperSetup(gym_env, fix_seed=flags.fix_seed, env_seed=flags.env_seed) env_output = env.initial() initial_frame = env_output['frame'] agent_state = model.initial_state(batch_size=1) generator_output = generator_model(env_output) goal = generator_output["goal"] agent_output, unused_state = model(env_output, agent_state, goal) while True: index = free_queue.get() if index is None: break # Write old rollout end. for key in env_output: buffers[key][index][0, ...] = env_output[key] for key in agent_output: buffers[key][index][0, ...] = agent_output[key] for key in generator_output: buffers[key][index][0, ...] = generator_output[key] buffers["initial_frame"][index][0, ...] = initial_frame for i, tensor in enumerate(agent_state): initial_agent_state_buffers[index][i][...] = tensor # Do new rollout for t in range(flags.unroll_length): aux_steps = 0 timings.reset() if flags.modify: new_frame = torch.flatten(env_output['frame'], 2, 3) old_frame = torch.flatten(initial_frame, 2, 3) ans = new_frame == old_frame ans = torch.sum(ans, 3) != 3 # Reached if the three elements of the frame are not the same. reached_condition = torch.squeeze(torch.gather(ans, 2, torch.unsqueeze(goal.long(),2))) else: agent_location = torch.flatten(env_output['frame'], 2, 3) agent_location = agent_location[:,:,:,0] agent_location = (agent_location == 10).nonzero() # select object id agent_location = agent_location[:,2] agent_location = agent_location.view(agent_output["action"].shape) reached_condition = goal == agent_location if reached_condition: # Generate new goal when reached intrinsic goal if flags.restart_episode: env_output = env.initial() else: env.episode_step = 0 initial_frame = env_output['frame'] with torch.no_grad(): generator_output = generator_model(env_output) goal = generator_output["goal"] if env_output['done'][0] == 1: # Generate a New Goal when episode finished initial_frame = env_output['frame'] with torch.no_grad(): generator_output = generator_model(env_output) goal = generator_output["goal"] with torch.no_grad(): agent_output, agent_state = model(env_output, agent_state, goal) timings.time("model") env_output = env.step(agent_output["action"]) timings.time("step") for key in env_output: buffers[key][index][t + 1, ...] = env_output[key] for key in agent_output: buffers[key][index][t + 1, ...] = agent_output[key] for key in generator_output: buffers[key][index][t + 1, ...] = generator_output[key] buffers["initial_frame"][index][t + 1, ...] = initial_frame timings.time("write") full_queue.put(index) if actor_index == 0: logging.info("Actor %i: %s", actor_index, timings.summary()) except KeyboardInterrupt: pass # Return silently. except Exception as e: logging.error("Exception in worker process %i", actor_index) traceback.print_exc() print() raise e def get_batch( flags, free_queue: mp.SimpleQueue, full_queue: mp.SimpleQueue, buffers: Buffers, initial_agent_state_buffers, timings, lock=threading.Lock()): """Returns a Batch with the history.""" with lock: timings.time("lock") indices = [full_queue.get() for _ in range(flags.batch_size)] timings.time("dequeue") batch = { key: torch.stack([buffers[key][m] for m in indices], dim=1) for key in buffers } initial_agent_state = ( torch.cat(ts, dim=1) for ts in zip(*[initial_agent_state_buffers[m] for m in indices]) ) timings.time("batch") for m in indices: free_queue.put(m) timings.time("enqueue") batch = {k: t.to(device=flags.device, non_blocking=True) for k, t in batch.items()} initial_agent_state = tuple(t.to(device=flags.device, non_blocking=True) for t in initial_agent_state) timings.time("device") return batch, initial_agent_state def reached_goal_func(frames, goals, initial_frames = None, done_aux = None): """Auxiliary function which evaluates whether agent has reached the goal.""" if flags.modify: new_frame = torch.flatten(frames, 2, 3) old_frame = torch.flatten(initial_frames, 2, 3) ans = new_frame == old_frame ans = torch.sum(ans, 3) != 3 # reached if the three elements are not the same reached = torch.squeeze(torch.gather(ans, 2, torch.unsqueeze(goals.long(),2))) if flags.no_boundary_awareness: reached = reached.float() * (1 - done_aux.float()) return reached else: agent_location = torch.flatten(frames, 2, 3) agent_location = agent_location[:,:,:,0] agent_location = (agent_location == 10).nonzero() # select object id agent_location = agent_location[:,2] agent_location = agent_location.view(goals.shape) return (goals == agent_location).float() def learn( actor_model, model, actor_generator_model, generator_model, batch, initial_agent_state, optimizer, generator_model_optimizer, scheduler, generator_scheduler, flags, max_steps=100.0, lock=threading.Lock() ): """Performs a learning (optimization) step for the policy, and for the generator whenever the generator batch is full.""" with lock: # Loading Batch next_frame = batch['frame'][1:].float().to(device=flags.device) initial_frames = batch['initial_frame'][1:].float().to(device=flags.device) done_aux = batch['done'][1:].float().to(device=flags.device) reached_goal = reached_goal_func(next_frame, batch['goal'][1:].to(device=flags.device), initial_frames = initial_frames, done_aux = done_aux) intrinsic_rewards = flags.intrinsic_reward_coef * reached_goal reached = reached_goal.type(torch.bool) intrinsic_rewards = intrinsic_rewards*(intrinsic_rewards - 0.9 * (batch["episode_step"][1:].float()/max_steps)) learner_outputs, unused_state = model(batch, initial_agent_state, batch['goal']) bootstrap_value = learner_outputs["baseline"][-1] batch = {key: tensor[1:] for key, tensor in batch.items()} learner_outputs = {key: tensor[:-1] for key, tensor in learner_outputs.items()} rewards = batch["reward"] # Student Rewards if flags.no_generator: total_rewards = rewards elif flags.no_extrinsic_rewards: total_rewards = intrinsic_rewards else: total_rewards = rewards + intrinsic_rewards if flags.reward_clipping == "abs_one": clipped_rewards = torch.clamp(total_rewards, -1, 1) elif flags.reward_clipping == "soft_asymmetric": squeezed = torch.tanh(total_rewards / 5.0) # Negative rewards are given less weight than positive rewards. clipped_rewards = torch.where(total_rewards < 0, 0.3 * squeezed, squeezed) * 5.0 elif flags.reward_clipping == "none": clipped_rewards = total_rewards discounts = (~batch["done"]).float() * flags.discounting clipped_rewards += 1.0 * (rewards>0.0).float() vtrace_returns = vtrace.from_logits( behavior_policy_logits=batch["policy_logits"], target_policy_logits=learner_outputs["policy_logits"], actions=batch["action"], discounts=discounts, rewards=clipped_rewards, values=learner_outputs["baseline"], bootstrap_value=bootstrap_value, ) # Student Loss # Compute loss as a weighted sum of the baseline loss, the policy # gradient loss and an entropy regularization term. pg_loss = compute_policy_gradient_loss( learner_outputs["policy_logits"], batch["action"], vtrace_returns.pg_advantages, ) baseline_loss = flags.baseline_cost * compute_baseline_loss( vtrace_returns.vs - learner_outputs["baseline"] ) entropy_loss = flags.entropy_cost * compute_entropy_loss( learner_outputs["policy_logits"] ) total_loss = pg_loss + baseline_loss + entropy_loss episode_returns = batch["episode_return"][batch["done"]] if torch.isnan(torch.mean(episode_returns)): aux_mean_episode = 0.0 else: aux_mean_episode = torch.mean(episode_returns).item() stats = { "episode_returns": tuple(episode_returns.cpu().numpy()), "mean_episode_return": aux_mean_episode, "total_loss": total_loss.item(), "pg_loss": pg_loss.item(), "baseline_loss": baseline_loss.item(), "entropy_loss": entropy_loss.item(), "gen_rewards": None, "gg_loss": None, "generator_baseline_loss": None, "generator_entropy_loss": None, "mean_intrinsic_rewards": None, "mean_episode_steps": None, "ex_reward": None, "generator_current_target": None, } if flags.no_generator: stats["gen_rewards"] = 0.0, stats["gg_loss"] = 0.0, stats["generator_baseline_loss"] = 0.0, stats["generator_entropy_loss"] = 0.0, stats["mean_intrinsic_rewards"] = 0.0, stats["mean_episode_steps"] = 0.0, stats["ex_reward"] = 0.0, stats["generator_current_target"] = 0.0, scheduler.step() optimizer.zero_grad() total_loss.backward() nn.utils.clip_grad_norm_(model.parameters(), 40.0) optimizer.step() actor_model.load_state_dict(model.state_dict()) # Generator: if not flags.no_generator: global generator_batch global generator_batch_aux global generator_current_target global generator_count global goal_count_dict # Loading Batch is_done = batch['done']==1 reached = reached_goal.type(torch.bool) if 'frame' in generator_batch.keys(): generator_batch['frame'] = torch.cat((generator_batch['frame'], batch['initial_frame'][is_done].float().to(device=flags.device)), 0) generator_batch['goal'] = torch.cat((generator_batch['goal'], batch['goal'][is_done].to(device=flags.device)), 0) generator_batch['episode_step'] = torch.cat((generator_batch['episode_step'], batch['episode_step'][is_done].float().to(device=flags.device)), 0) generator_batch['generator_logits'] = torch.cat((generator_batch['generator_logits'], batch['generator_logits'][is_done].float().to(device=flags.device)), 0) generator_batch['reached'] = torch.cat((generator_batch['reached'], torch.zeros(batch['goal'].shape)[is_done].float().to(device=flags.device)), 0) generator_batch['ex_reward'] = torch.cat((generator_batch['ex_reward'], batch['reward'][is_done].float().to(device=flags.device)), 0) generator_batch['carried_obj'] = torch.cat((generator_batch['carried_obj'], batch['carried_obj'][is_done].float().to(device=flags.device)), 0) generator_batch['carried_col'] = torch.cat((generator_batch['carried_col'], batch['carried_col'][is_done].float().to(device=flags.device)), 0) generator_batch['carried_obj'] = torch.cat((generator_batch['carried_obj'], batch['carried_obj'][reached].float().to(device=flags.device)), 0) generator_batch['carried_col'] = torch.cat((generator_batch['carried_col'], batch['carried_col'][reached].float().to(device=flags.device)), 0) generator_batch['ex_reward'] = torch.cat((generator_batch['ex_reward'], batch['reward'][reached].float().to(device=flags.device)), 0) generator_batch['frame'] = torch.cat((generator_batch['frame'], batch['initial_frame'][reached].float().to(device=flags.device)), 0) generator_batch['goal'] = torch.cat((generator_batch['goal'], batch['goal'][reached].to(device=flags.device)), 0) generator_batch['episode_step'] = torch.cat((generator_batch['episode_step'], batch['episode_step'][reached].float().to(device=flags.device)), 0) generator_batch['generator_logits'] = torch.cat((generator_batch['generator_logits'], batch['generator_logits'][reached].float().to(device=flags.device)), 0) generator_batch['reached'] = torch.cat((generator_batch['reached'], torch.ones(batch['goal'].shape)[reached].float().to(device=flags.device)), 0) else: generator_batch['frame'] = (batch['initial_frame'][is_done]).float().to(device=flags.device) # Notice we use initial_frame from batch generator_batch['goal'] = (batch['goal'][is_done]).to(device=flags.device) generator_batch['episode_step'] = (batch['episode_step'][is_done]).float().to(device=flags.device) generator_batch['generator_logits'] = (batch['generator_logits'][is_done]).float().to(device=flags.device) generator_batch['reached'] = (torch.zeros(batch['goal'].shape)[is_done]).float().to(device=flags.device) generator_batch['ex_reward'] = (batch['reward'][is_done]).float().to(device=flags.device) generator_batch['carried_obj'] = (batch['carried_obj'][is_done]).float().to(device=flags.device) generator_batch['carried_col'] = (batch['carried_col'][is_done]).float().to(device=flags.device) generator_batch['carried_obj'] = torch.cat((generator_batch['carried_obj'], batch['carried_obj'][reached].float().to(device=flags.device)), 0) generator_batch['carried_col'] = torch.cat((generator_batch['carried_col'], batch['carried_col'][reached].float().to(device=flags.device)), 0) generator_batch['ex_reward'] = torch.cat((generator_batch['ex_reward'], batch['reward'][reached].float().to(device=flags.device)), 0) generator_batch['frame'] = torch.cat((generator_batch['frame'], batch['initial_frame'][reached].float().to(device=flags.device)), 0) generator_batch['goal'] = torch.cat((generator_batch['goal'], batch['goal'][reached].to(device=flags.device)), 0) generator_batch['episode_step'] = torch.cat((generator_batch['episode_step'], batch['episode_step'][reached].float().to(device=flags.device)), 0) generator_batch['generator_logits'] = torch.cat((generator_batch['generator_logits'], batch['generator_logits'][reached].float().to(device=flags.device)), 0) generator_batch['reached'] = torch.cat((generator_batch['reached'], torch.ones(batch['goal'].shape)[reached].float().to(device=flags.device)), 0) if generator_batch['frame'].shape[0] >= flags.generator_batch_size: # Run Gradient step, keep batch residual in batch_aux for key in generator_batch: generator_batch_aux[key] = generator_batch[key][flags.generator_batch_size:] generator_batch[key] = generator_batch[key][:flags.generator_batch_size].unsqueeze(0) generator_outputs = generator_model(generator_batch) generator_bootstrap_value = generator_outputs["generator_baseline"][-1] # Generator Reward def distance2(episode_step, reached, targ=flags.generator_target): aux = flags.generator_reward_negative * torch.ones(episode_step.shape).to(device=flags.device) aux += (episode_step >= targ).float() * reached return aux if flags.generator_loss_form == 'gaussian': generator_target = flags.generator_target * torch.ones(generator_batch['episode_step'].shape).to(device=flags.device) gen_reward = Normal(generator_target, flags.target_variance*torch.ones(generator_target.shape).to(device=flags.device)) generator_rewards = flags.generator_reward_coef * (2 + gen_reward.log_prob(generator_batch['episode_step']) - gen_reward.log_prob(generator_target)) * generator_batch['reached'] -1 elif flags.generator_loss_form == 'linear': generator_rewards = (generator_batch['episode_step']/flags.generator_target * (generator_batch['episode_step'] <= flags.generator_target).float() + \ torch.exp ((-generator_batch['episode_step'] + flags.generator_target)/20.0) * (generator_batch['episode_step'] > flags.generator_target).float()) * \ 2*generator_batch['reached'] - 1 elif flags.generator_loss_form == 'dummy': generator_rewards = torch.tensor(distance2(generator_batch['episode_step'], generator_batch['reached'])).to(device=flags.device) elif flags.generator_loss_form == 'threshold': generator_rewards = torch.tensor(distance2(generator_batch['episode_step'], generator_batch['reached'], targ=generator_current_target)).to(device=flags.device) if torch.mean(generator_rewards).item() >= flags.generator_threshold: generator_count += 1 else: generator_count = 0 if generator_count >= flags.generator_counts and generator_current_target<=flags.generator_maximum: generator_current_target += 1.0 generator_count = 0 goal_count_dict *= 0.0 if flags.novelty: frames_aux = torch.flatten(generator_batch['frame'], 2, 3) frames_aux = frames_aux[:,:,:,0] object_ids =torch.zeros(generator_batch['goal'].shape).long() for i in range(object_ids.shape[1]): object_ids[0,i] = frames_aux[0,i,generator_batch['goal'][0,i]] goal_count_dict[object_ids[0,i]] += 1 bonus = (object_ids>2).float().to(device=flags.device) * flags.novelty_bonus generator_rewards += bonus if flags.reward_clipping == "abs_one": generator_clipped_rewards = torch.clamp(generator_rewards, -1, 1) if not flags.no_extrinsic_rewards: generator_clipped_rewards = 1.0 * (generator_batch['ex_reward'] > 0).float() + generator_clipped_rewards * (generator_batch['ex_reward'] <= 0).float() generator_discounts = torch.zeros(generator_batch['episode_step'].shape).float().to(device=flags.device) goals_aux = generator_batch["goal"] if flags.inner: goals_aux = goals_aux.float() goals_aux -= 2 * (torch.floor(goals_aux/generator_model.height)) goals_aux -= generator_model.height -1 goals_aux = goals_aux.long() generator_vtrace_returns = vtrace.from_logits( behavior_policy_logits=generator_batch["generator_logits"], target_policy_logits=generator_outputs["generator_logits"], actions=goals_aux, discounts=generator_discounts, rewards=generator_clipped_rewards, values=generator_outputs["generator_baseline"], bootstrap_value=generator_bootstrap_value, ) # Generator Loss gg_loss = compute_policy_gradient_loss( generator_outputs["generator_logits"], goals_aux, generator_vtrace_returns.pg_advantages, ) generator_baseline_loss = flags.baseline_cost * compute_baseline_loss( generator_vtrace_returns.vs - generator_outputs["generator_baseline"] ) generator_entropy_loss = flags.generator_entropy_cost * compute_entropy_loss( generator_outputs["generator_logits"] ) generator_total_loss = gg_loss + generator_entropy_loss +generator_baseline_loss intrinsic_rewards_gen = generator_batch['reached']*(1- 0.9 * (generator_batch["episode_step"].float()/max_steps)) stats["gen_rewards"] = torch.mean(generator_clipped_rewards).item() stats["gg_loss"] = gg_loss.item() stats["generator_baseline_loss"] = generator_baseline_loss.item() stats["generator_entropy_loss"] = generator_entropy_loss.item() stats["mean_intrinsic_rewards"] = torch.mean(intrinsic_rewards_gen).item() stats["mean_episode_steps"] = torch.mean(generator_batch["episode_step"]).item() stats["ex_reward"] = torch.mean(generator_batch['ex_reward']).item() stats["generator_current_target"] = generator_current_target generator_scheduler.step() generator_model_optimizer.zero_grad() generator_total_loss.backward() nn.utils.clip_grad_norm_(generator_model.parameters(), 40.0) generator_model_optimizer.step() actor_generator_model.load_state_dict(generator_model.state_dict()) if generator_batch_aux['frame'].shape[0]>0: generator_batch = {key: tensor[:] for key, tensor in generator_batch_aux.items()} else: generator_batch = dict() return stats def create_buffers(obs_shape, num_actions, flags, width, height, logits_size) -> Buffers: T = flags.unroll_length specs = dict( frame=dict(size=(T + 1, *obs_shape), dtype=torch.uint8), reward=dict(size=(T + 1,), dtype=torch.float32), done=dict(size=(T + 1,), dtype=torch.bool), episode_return=dict(size=(T + 1,), dtype=torch.float32), episode_step=dict(size=(T + 1,), dtype=torch.int32), last_action=dict(size=(T + 1,), dtype=torch.int64), policy_logits=dict(size=(T + 1, num_actions), dtype=torch.float32), baseline=dict(size=(T + 1,), dtype=torch.float32), generator_baseline=dict(size=(T + 1,), dtype=torch.float32), action=dict(size=(T + 1,), dtype=torch.int64), episode_win=dict(size=(T + 1,), dtype=torch.int32), generator_logits=dict(size=(T + 1, logits_size), dtype=torch.float32), goal=dict(size=(T + 1,), dtype=torch.int64), initial_frame=dict(size=(T + 1, *obs_shape), dtype=torch.uint8), carried_col =dict(size=(T + 1,), dtype=torch.int64), carried_obj =dict(size=(T + 1,), dtype=torch.int64), ) buffers: Buffers = {key: [] for key in specs} for _ in range(flags.num_buffers): for key in buffers: buffers[key].append(torch.empty(**specs[key]).share_memory_()) return buffers def train(flags): """Full training loop.""" if flags.xpid is None: flags.xpid = "torchbeast-%s" % time.strftime("%Y%m%d-%H%M%S") plogger = file_writer.FileWriter( xpid=flags.xpid, xp_args=flags.__dict__, rootdir=flags.savedir ) checkpointpath = os.path.expandvars( os.path.expanduser("%s/%s/%s" % (flags.savedir, flags.xpid, "model.tar")) ) if flags.num_buffers is None: # Set sensible default for num_buffers. flags.num_buffers = max(2 * flags.num_actors, flags.batch_size) if flags.num_actors >= flags.num_buffers: raise ValueError("num_buffers should be larger than num_actors") T = flags.unroll_length B = flags.batch_size flags.device = None if not flags.disable_cuda and torch.cuda.is_available(): logging.info("Using CUDA.") flags.device = torch.device("cuda") else: logging.info("Not using CUDA.") flags.device = torch.device("cpu") env = create_env(flags) #env = wrappers.FullyObsWrapper(env) if flags.num_input_frames > 1: env = FrameStack(env, flags.num_input_frames) generator_model = Generator(env.observation_space.shape, env.width, env.height, num_input_frames=flags.num_input_frames) model = Net(env.observation_space.shape, env.action_space.n, state_embedding_dim=flags.state_embedding_dim, num_input_frames=flags.num_input_frames, use_lstm=flags.use_lstm, num_lstm_layers=flags.num_lstm_layers) global goal_count_dict goal_count_dict = torch.zeros(11).float().to(device=flags.device) if flags.inner: logits_size = (env.width-2)*(env.height-2) else: logits_size = env.width * env.height buffers = create_buffers(env.observation_space.shape, model.num_actions, flags, env.width, env.height, logits_size) model.share_memory() generator_model.share_memory() # Add initial RNN state. initial_agent_state_buffers = [] for _ in range(flags.num_buffers): state = model.initial_state(batch_size=1) for t in state: t.share_memory_() initial_agent_state_buffers.append(state) actor_processes = [] ctx = mp.get_context("fork") free_queue = ctx.SimpleQueue() full_queue = ctx.SimpleQueue() for i in range(flags.num_actors): actor = ctx.Process( target=act, args=(i, free_queue, full_queue, model, generator_model, buffers, initial_agent_state_buffers, flags)) actor.start() actor_processes.append(actor) learner_model = Net(env.observation_space.shape, env.action_space.n, state_embedding_dim=flags.state_embedding_dim, num_input_frames=flags.num_input_frames, use_lstm=flags.use_lstm, num_lstm_layers=flags.num_lstm_layers).to( device=flags.device ) learner_generator_model = Generator(env.observation_space.shape, env.width, env.height, num_input_frames=flags.num_input_frames).to(device=flags.device) optimizer = torch.optim.RMSprop( learner_model.parameters(), lr=flags.learning_rate, momentum=flags.momentum, eps=flags.epsilon, alpha=flags.alpha, ) generator_model_optimizer = torch.optim.RMSprop( learner_generator_model.parameters(), lr=flags.generator_learning_rate, momentum=flags.momentum, eps=flags.epsilon, alpha=flags.alpha) def lr_lambda(epoch): return 1 - min(epoch * T * B, flags.total_frames) / flags.total_frames scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda) generator_scheduler = torch.optim.lr_scheduler.LambdaLR(generator_model_optimizer, lr_lambda) logger = logging.getLogger("logfile") stat_keys = [ "total_loss", "mean_episode_return", "pg_loss", "baseline_loss", "entropy_loss", "gen_rewards", "gg_loss", "generator_entropy_loss", "generator_baseline_loss", "mean_intrinsic_rewards", "mean_episode_steps", "ex_reward", "generator_current_target", ] logger.info("# Step\t%s", "\t".join(stat_keys)) frames, stats = 0, {} def batch_and_learn(i, lock=threading.Lock()): """Thread target for the learning process.""" nonlocal frames, stats timings = prof.Timings() while frames < flags.total_frames: timings.reset() batch, agent_state = get_batch(flags, free_queue, full_queue, buffers, initial_agent_state_buffers, timings) stats = learn(model, learner_model, generator_model, learner_generator_model, batch, agent_state, optimizer, generator_model_optimizer, scheduler, generator_scheduler, flags, env.max_steps) timings.time("learn") with lock: to_log = dict(frames=frames) to_log.update({k: stats[k] for k in stat_keys}) plogger.log(to_log) frames += T * B if i == 0: logging.info("Batch and learn: %s", timings.summary()) for m in range(flags.num_buffers): free_queue.put(m) threads = [] for i in range(flags.num_threads): thread = threading.Thread( target=batch_and_learn, name="batch-and-learn-%d" % i, args=(i,) ) thread.start() threads.append(thread) def checkpoint(): if flags.disable_checkpoint: return logging.info("Saving checkpoint to %s", checkpointpath) torch.save( { "model_state_dict": model.state_dict(), "generator_model_state_dict": generator_model.state_dict(), "optimizer_state_dict": optimizer.state_dict(), "generator_model_optimizer_state_dict": generator_model_optimizer.state_dict(), "scheduler_state_dict": scheduler.state_dict(), "generator_scheduler_state_dict": generator_scheduler.state_dict(), "flags": vars(flags), }, checkpointpath, ) timer = timeit.default_timer try: last_checkpoint_time = timer() while frames < flags.total_frames: start_frames = frames start_time = timer() time.sleep(5) if timer() - last_checkpoint_time > 10 * 60: # Save every 10 min. checkpoint() last_checkpoint_time = timer() fps = (frames - start_frames) / (timer() - start_time) if stats.get("episode_returns", None): mean_return = ( "Return per episode: %.1f. " % stats["mean_episode_return"] ) else: mean_return = "" total_loss = stats.get("total_loss", float("inf")) logging.info( "After %i frames: loss %f @ %.1f fps. %sStats:\n%s", frames, total_loss, fps, mean_return, pprint.pformat(stats), ) except KeyboardInterrupt: return # Try joining actors then quit. else: for thread in threads: thread.join() logging.info("Learning finished after %d frames.", frames) finally: for _ in range(flags.num_actors): free_queue.put(None) for actor in actor_processes: actor.join(timeout=1) checkpoint() plogger.close() def init(module, weight_init, bias_init, gain=1): weight_init(module.weight.data, gain=gain) bias_init(module.bias.data) return module class Generator(nn.Module): """Constructs the Teacher Policy which takes an initial observation and produces a goal.""" def __init__(self, observation_shape, width, height, num_input_frames, hidden_dim=256): super(Generator, self).__init__() self.observation_shape = observation_shape self.height = height self.width = width self.env_dim = self.width * self.height self.state_embedding_dim = 256 self.use_index_select = True self.obj_dim = 5 self.col_dim = 3 self.con_dim = 2 self.num_channels = (self.obj_dim + self.col_dim + self.con_dim) * num_input_frames if flags.disable_use_embedding: print("not_using_embedding") self.num_channels = 3*num_input_frames self.embed_object = nn.Embedding(11, self.obj_dim) self.embed_color = nn.Embedding(6, self.col_dim) self.embed_contains = nn.Embedding(4, self.con_dim) K = self.num_channels # number of input filters F = 3 # filter dimensions S = 1 # stride P = 1 # padding M = 16 # number of intermediate filters Y = 8 # number of output filters L = 4 # number of convnet layers E = 1 # output of last layer in_channels = [K] + [M] * 4 out_channels = [M] * 3 + [E] conv_extract = [ nn.Conv2d( in_channels=in_channels[i], out_channels=out_channels[i], kernel_size=(F, F), stride=S, padding=P, ) for i in range(L) ] def interleave(xs, ys): return [val for pair in zip(xs, ys) for val in pair] self.extract_representation = nn.Sequential( *interleave(conv_extract, [nn.ELU()] * len(conv_extract)) ) self.out_dim = self.env_dim * 16 + self.obj_dim + self.col_dim init_ = lambda m: init(m, nn.init.orthogonal_, lambda x: nn.init. constant_(x, 0)) if flags.inner: self.aux_env_dim = (self.height-2) * (self.width-2) else: self.aux_env_dim = self.env_dim self.baseline_teacher = init_(nn.Linear(self.aux_env_dim, 1)) def _select(self, embed, x): """Efficient function to get embedding from an index.""" if self.use_index_select: out = embed.weight.index_select(0, x.reshape(-1)) # handle reshaping x to 1-d and output back to N-d return out.reshape(x.shape +(-1,)) else: return embed(x) def create_embeddings(self, x, id): """Generates compositional embeddings.""" if id == 0: objects_emb = self._select(self.embed_object, x[:,:,:,id::3]) elif id == 1: objects_emb = self._select(self.embed_color, x[:,:,:,id::3]) elif id == 2: objects_emb = self._select(self.embed_contains, x[:,:,:,id::3]) embeddings = torch.flatten(objects_emb, 3, 4) return embeddings def convert_inner(self, goals): """Transform environment if using inner flag.""" goals = goals.float() goals += 2*(1+torch.floor(goals/(self.height-2))) goals += self.height - 1 goals = goals.long() return goals def agent_loc(self, frames): """Returns the location of an agent from an observation.""" T, B, height, width, *_ = frames.shape agent_location = torch.flatten(frames, 2, 3) agent_location = agent_location[:,:,:,0] agent_location = (agent_location == 10).nonzero() # select object id agent_location = agent_location[:,2] agent_location = agent_location.view(T,B,1) return agent_location def forward(self, inputs): """Main Function, takes an observation and returns a goal.""" x = inputs["frame"] T, B, *_ = x.shape carried_col = inputs["carried_col"] carried_obj = inputs["carried_obj"] x = torch.flatten(x, 0, 1) # Merge time and batch. if flags.disable_use_embedding: x = x.float() carried_obj = carried_obj.float() carried_col = carried_col.float() else: x = x.long() carried_obj = carried_obj.long() carried_col = carried_col.long() x = torch.cat([self.create_embeddings(x, 0), self.create_embeddings(x, 1), self.create_embeddings(x, 2)], dim = 3) carried_obj_emb = self._select(self.embed_object, carried_obj) carried_col_emb = self._select(self.embed_color, carried_col) x = x.transpose(1, 3) carried_obj_emb = carried_obj_emb.view(T * B, -1) carried_col_emb = carried_col_emb.view(T * B, -1) x = self.extract_representation(x) x = x.view(T * B, -1) generator_logits = x.view(T*B, -1) generator_baseline = self.baseline_teacher(generator_logits) goal = torch.multinomial(F.softmax(generator_logits, dim=1), num_samples=1) generator_logits = generator_logits.view(T, B, -1) generator_baseline = generator_baseline.view(T, B) goal = goal.view(T, B) if flags.inner: goal = self.convert_inner(goal) return dict(goal=goal, generator_logits=generator_logits, generator_baseline=generator_baseline) class MinigridNet(nn.Module): """Constructs the Student Policy which takes an observation and a goal and produces an action.""" def __init__(self, observation_shape, num_actions, state_embedding_dim=256, num_input_frames=1, use_lstm=False, num_lstm_layers=1): super(MinigridNet, self).__init__() self.observation_shape = observation_shape self.num_actions = num_actions self.state_embedding_dim = state_embedding_dim self.use_lstm = use_lstm self.num_lstm_layers = num_lstm_layers self.use_index_select = True self.obj_dim = 5 self.col_dim = 3 self.con_dim = 2 self.goal_dim = flags.goal_dim self.agent_loc_dim = 10 self.num_channels = (self.obj_dim + self.col_dim + self.con_dim + 1) * num_input_frames if flags.disable_use_embedding: print("not_using_embedding") self.num_channels = (3+1+1+1+1)*num_input_frames self.embed_object = nn.Embedding(11, self.obj_dim) self.embed_color = nn.Embedding(6, self.col_dim) self.embed_contains = nn.Embedding(4, self.con_dim) self.embed_goal = nn.Embedding(self.observation_shape[0]*self.observation_shape[1] + 1, self.goal_dim) self.embed_agent_loc = nn.Embedding(self.observation_shape[0]*self.observation_shape[1] + 1, self.agent_loc_dim) init_ = lambda m: init(m, nn.init.orthogonal_, lambda x: nn.init. constant_(x, 0), nn.init.calculate_gain('relu')) self.feat_extract = nn.Sequential( init_(nn.Conv2d(in_channels=self.num_channels, out_channels=32, kernel_size=(3, 3), stride=2, padding=1)), nn.ELU(), init_(nn.Conv2d(in_channels=32, out_channels=32, kernel_size=(3, 3), stride=2, padding=1)), nn.ELU(), init_(nn.Conv2d(in_channels=32, out_channels=32, kernel_size=(3, 3), stride=2, padding=1)), nn.ELU(), init_(nn.Conv2d(in_channels=32, out_channels=32, kernel_size=(3, 3), stride=2, padding=1)), nn.ELU(), init_(nn.Conv2d(in_channels=32, out_channels=32, kernel_size=(3, 3), stride=2, padding=1)), nn.ELU(), ) self.fc = nn.Sequential( init_(nn.Linear(32 + self.obj_dim + self.col_dim, self.state_embedding_dim)), nn.ReLU(), init_(nn.Linear(self.state_embedding_dim, self.state_embedding_dim)), nn.ReLU(), ) if use_lstm: self.core = nn.LSTM(self.state_embedding_dim, self.state_embedding_dim, self.num_lstm_layers) init_ = lambda m: init(m, nn.init.orthogonal_, lambda x: nn.init. constant_(x, 0)) self.policy = init_(nn.Linear(self.state_embedding_dim, self.num_actions)) self.baseline = init_(nn.Linear(self.state_embedding_dim, 1)) def initial_state(self, batch_size): """Initializes LSTM.""" if not self.use_lstm: return tuple() return tuple(torch.zeros(self.core.num_layers, batch_size, self.core.hidden_size) for _ in range(2)) def create_embeddings(self, x, id): """Generates compositional embeddings.""" if id == 0: objects_emb = self._select(self.embed_object, x[:,:,:,id::3]) elif id == 1: objects_emb = self._select(self.embed_color, x[:,:,:,id::3]) elif id == 2: objects_emb = self._select(self.embed_contains, x[:,:,:,id::3]) embeddings = torch.flatten(objects_emb, 3, 4) return embeddings def _select(self, embed, x): """Efficient function to get embedding from an index.""" if self.use_index_select: out = embed.weight.index_select(0, x.reshape(-1)) # handle reshaping x to 1-d and output back to N-d return out.reshape(x.shape +(-1,)) else: return embed(x) def agent_loc(self, frames): """Returns the location of an agent from an observation.""" T, B, *_ = frames.shape agent_location = torch.flatten(frames, 2, 3) agent_location = agent_location[:,:,:,0] agent_location = (agent_location == 10).nonzero() # select object id agent_location = agent_location[:,2] agent_location = agent_location.view(T,B,1) return agent_location def forward(self, inputs, core_state=(), goal=[]): """Main Function, takes an observation and a goal and returns and action.""" # -- [unroll_length x batch_size x height x width x channels] x = inputs["frame"] T, B, h, w, *_ = x.shape # -- [unroll_length*batch_size x height x width x channels] x = torch.flatten(x, 0, 1) # Merge time and batch. goal = torch.flatten(goal, 0, 1) # Creating goal_channel goal_channel = torch.zeros_like(x, requires_grad=False) goal_channel = torch.flatten(goal_channel, 1,2)[:,:,0] for i in range(goal.shape[0]): goal_channel[i,goal[i]] = 1.0 goal_channel = goal_channel.view(T*B, h, w, 1) carried_col = inputs["carried_col"] carried_obj = inputs["carried_obj"] if flags.disable_use_embedding: x = x.float() goal = goal.float() carried_obj = carried_obj.float() carried_col = carried_col.float() else: x = x.long() goal = goal.long() carried_obj = carried_obj.long() carried_col = carried_col.long() # -- [B x H x W x K] x = torch.cat([self.create_embeddings(x, 0), self.create_embeddings(x, 1), self.create_embeddings(x, 2), goal_channel.float()], dim = 3) carried_obj_emb = self._select(self.embed_object, carried_obj) carried_col_emb = self._select(self.embed_color, carried_col) if flags.no_generator: goal_emb = torch.zeros(goal_emb.shape, dtype=goal_emb.dtype, device=goal_emb.device, requires_grad = False) x = x.transpose(1, 3) x = self.feat_extract(x) x = x.view(T * B, -1) carried_obj_emb = carried_obj_emb.view(T * B, -1) carried_col_emb = carried_col_emb.view(T * B, -1) union = torch.cat([x, carried_obj_emb, carried_col_emb], dim=1) core_input = self.fc(union) if self.use_lstm: core_input = core_input.view(T, B, -1) core_output_list = [] notdone = (~inputs["done"]).float() for input, nd in zip(core_input.unbind(), notdone.unbind()): nd = nd.view(1, -1, 1) core_state = tuple(nd * s for s in core_state) output, core_state = self.core(input.unsqueeze(0), core_state) core_output_list.append(output) core_output = torch.flatten(torch.cat(core_output_list), 0, 1) else: core_output = core_input core_state = tuple() policy_logits = self.policy(core_output) baseline = self.baseline(core_output) if self.training: action = torch.multinomial(F.softmax(policy_logits, dim=1), num_samples=1) else: action = torch.argmax(policy_logits, dim=1) policy_logits = policy_logits.view(T, B, self.num_actions) baseline = baseline.view(T, B) action = action.view(T, B) return dict(policy_logits=policy_logits, baseline=baseline, action=action), core_state Net = MinigridNet GeneratorNet = Generator class Minigrid2Image(gym.ObservationWrapper): """Get MiniGrid observation to ignore language instruction.""" def __init__(self, env): gym.ObservationWrapper.__init__(self, env) self.observation_space = env.observation_space.spaces["image"] def observation(self, observation): return observation["image"] def create_env(flags): return Minigrid2Image(wrappers.FullyObsWrapper(gym.make(flags.env))) def main(flags): if flags.mode == "train": train(flags) else: test(flags) if __name__ == "__main__": flags = parser.parse_args() main(flags)
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # #!/usr/bin/env python3 import torch from torch import nn from torch.nn import functional as F class AdaptiveEmbedding(nn.Module): """ An adaptive embedding module from "Adaptive Input Representations for Neural Language Modeling" (https://arxiv.org/abs/1809.10853) """ def __init__(self, n_tokens, d_embed, d_proj, cutoffs, div_val=4): super(AdaptiveEmbedding, self).__init__() self.n_tokens = n_tokens self.d_embed = d_embed self.d_proj = d_proj assert 0 < min(cutoffs) <= max(cutoffs) < n_tokens self.cutoffs = cutoffs + [n_tokens] self.cutoff_ends = [0] + self.cutoffs self.div_val = div_val assert self.div_val > 1 assert len(self.cutoffs) > 1 self.emb_scale = d_proj ** 0.5 self.emb_layers = nn.ModuleList() self.emb_projs = nn.ParameterList() # embedding layers / projections for i in range(len(self.cutoffs)): l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] d_emb_i = d_embed // (div_val ** i) self.emb_layers.append(nn.Embedding(r_idx - l_idx, d_emb_i)) self.emb_projs.append(nn.Linear(d_emb_i, d_proj).weight) def forward(self, indices): param = self.emb_layers[0].weight.data idx_flat = indices.contiguous().view(-1) emb_flat = torch.zeros([idx_flat.size(0), self.d_proj], dtype=param.dtype, device=param.device) # for each cluster for i in range(len(self.cutoffs)): # find elements in that cluster l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] mask_i = (idx_flat >= l_idx) & (idx_flat < r_idx) # if there are no elements, continue indices_i = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue # add embeddings from this cluster idx_i = idx_flat.index_select(0, indices_i) - l_idx emb_i = self.emb_layers[i](idx_i) emb_i = F.linear(emb_i, self.emb_projs[i]) emb_flat = emb_flat.type_as(emb_i) if emb_flat.dtype != emb_i.dtype else emb_flat # small hack for AMP-O1 emb_flat.index_copy_(0, indices_i, emb_i) # reshape embeddings embed = emb_flat.view(*indices.size(), self.d_proj) # rescale embeddings embed.mul_(self.emb_scale) return embed class ProjectedAdaptiveLogSoftmax(nn.Module): """ An efficient softmax implementation from "Efficient softmax approximation for GPUs" (http://arxiv.org/abs/1609.04309). """ def __init__(self, n_tokens, d_embed, d_proj, cutoffs, div_val=4): super(ProjectedAdaptiveLogSoftmax, self).__init__() self.n_tokens = n_tokens self.d_embed = d_embed self.d_proj = d_proj assert 0 < min(cutoffs) <= max(cutoffs) < n_tokens self.cutoffs = cutoffs + [n_tokens] self.cutoff_ends = [0] + self.cutoffs self.div_val = div_val assert self.div_val > 1 assert len(self.cutoffs) > 1 self.shortlist_size = self.cutoffs[0] self.n_clusters = len(self.cutoffs) - 1 self.head_size = self.shortlist_size + self.n_clusters # clusters parameters self.cluster_proj = nn.Linear(self.d_embed, self.n_clusters) self.out_layers = nn.ModuleList() self.out_projs = nn.ParameterList() # output layers / projections for i in range(len(self.cutoffs)): l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] d_emb_i = d_embed // (div_val ** i) self.out_projs.append(nn.Linear(d_emb_i, d_proj).weight) self.out_layers.append(nn.Linear(d_emb_i, r_idx - l_idx)) def _compute_logit(self, hidden, weight, bias, proj): proj_hid = F.linear(hidden, proj.t().contiguous()) # TODO: .contiguous() not necessary? logit = F.linear(proj_hid, weight, bias=bias) return logit def forward(self, hidden, target): """ Input: - `hidden` FloatTensor(shape + (d_proj,)) - `target` LongTensor(shape) Output: - `nll` FloatTensor(shape) """ assert hidden.shape[-1] == self.d_proj assert hidden.shape[:-1] == target.shape shape = target.shape hidden = hidden.view(-1, self.d_proj) target = target.view(-1) # construct weights and biases weights, biases = [], [] for i in range(len(self.cutoffs)): weight_i = self.out_layers[i].weight bias_i = self.out_layers[i].bias if i == 0: weight_i = torch.cat([weight_i, self.cluster_proj.weight], dim=0) bias_i = torch.cat([bias_i, self.cluster_proj.bias], dim=0) weights.append(weight_i) biases.append(bias_i) # head / cluster assignments head_logit = self._compute_logit(hidden, weights[0], biases[0], self.out_projs[0]) head_logprob = F.log_softmax(head_logit.float(), dim=1) # final log-probabilities nll = torch.zeros_like(target, dtype=torch.float32, device=hidden.device) offset = 0 cutoff_values = [0] + self.cutoffs # for each cluster for i in range(len(cutoff_values) - 1): # select the target tokens in that cluster l_idx, r_idx = cutoff_values[i], cutoff_values[i + 1] mask_i = (target >= l_idx) & (target < r_idx) indices_i = mask_i.nonzero().squeeze() # if there are not any, there is nothing to do if indices_i.numel() == 0: continue # index in current cluster target_i = target.index_select(0, indices_i) - l_idx head_logprob_i = head_logprob.index_select(0, indices_i) if i == 0: # for targets in the head cluster, there is just the head score logprob_i = head_logprob_i.gather(1, target_i[:, None]).squeeze(1) else: # otherwise, we sum the cluster assignment (head) and target scores hidden_i = hidden.index_select(0, indices_i) tail_logit_i = self._compute_logit(hidden_i, weights[i], biases[i], self.out_projs[i]) tail_logprob_i = F.log_softmax(tail_logit_i.float(), dim=1) logprob_i = head_logprob_i[:, -i] + tail_logprob_i.gather(1, target_i[:, None]).squeeze(1) # populate output nll.index_copy_(0, indices_i, -logprob_i) offset += logprob_i.size(0) return nll.view(shape) def compute_dummy_loss(in_emb, out_emb): # hack to fix adaptive ou/in with distributed code dummy_loss = 0 * ( sum(x.weight[0, 0] for x in in_emb.emb_layers) + sum(x[0, 0] for x in in_emb.emb_projs) + sum(x[0, 0] for x in out_emb.out_projs) + sum(x.weight[0, 0] for x in out_emb.out_layers) + sum(x.bias[0] for x in out_emb.out_layers) ) return dummy_loss def build_adaptive_io(vocab_size, hidden_size, adapt_io_cutoffs, adapt_io_divval, adapt_io_tied, **kargs): in_emb = AdaptiveEmbedding( vocab_size, hidden_size, hidden_size, cutoffs=adapt_io_cutoffs, div_val=adapt_io_divval) out_emb = ProjectedAdaptiveLogSoftmax( vocab_size, hidden_size, hidden_size, cutoffs=adapt_io_cutoffs, div_val=adapt_io_divval) if adapt_io_tied: for i in range(len(adapt_io_cutoffs) + 1): out_emb.out_layers[i].weight = in_emb.emb_layers[i].weight out_emb.out_projs[i] = in_emb.emb_projs[i] return in_emb, out_emb
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # #!/usr/bin/env python3 # command-line arguments with their default values PARAMS_CONFIG = { # env-specific 'env_params': { '--distributed': { 'action': 'store_true', 'default': False, 'help': 'enable distributed training.' '(otherwise will use all available GPUs with dataparallel)', 'dest': 'distributed' }, '--local_rank': { 'type': int, 'default': 0, 'help': 'used in distributed training', 'dest': 'local_rank' }, }, # data-specific 'data_params': { '--data': { 'type': str, 'default': 'data/text8', 'help': 'data location ' '(must contain train.txt, valid.txt and test.txt)', 'dest': 'data_path' }, '--data-unit': { 'type': str, 'default': 'bpc', 'choices': ['bpc', 'ppl'], 'help': 'loss unit to log', 'dest': 'data_unit' }, }, # model-specific 'model_params': { '--hid-sz': { 'type': int, 'default': 256, 'help': 'hidden size (i.e. model size)', 'dest': 'hidden_size' }, '--inner-hid-sz': { 'type': int, 'default': 1024, 'help': 'inner hidden size of FF layer', 'dest': 'inner_hidden_size' }, '--nlayers': { 'type': int, 'default': 8, 'help': 'number of layers', 'dest': 'nb_layers' }, '--block-sz': { 'type': int, 'default': 64, 'help': 'block size ' '(the length of sequence to process in parallel)', 'dest': 'block_size' }, '--nheads': { 'type': int, 'default': 2, 'help': 'number of self-attention heads', 'dest': 'nb_heads' }, '--attn-span': { 'type': int, 'default': 32, 'help': 'length of the attention span', 'dest': 'attn_span' }, '--dropout': { 'type': float, 'default': 0.2, 'help': 'dropout rate of ReLU and attention', 'dest': 'dropout' }, '--emb-dropout': { 'type': float, 'default': 0., 'help': 'the dropout rate applied on I/O embeddings', 'dest': 'emb_dropout' }, }, # optimization-specific 'optim_params': { '--lr': { 'type': float, 'default': 0.03, 'help': 'learning rate', 'dest': 'lr' }, '--momentum': { 'type': float, 'default': 0.9, 'help': 'SGD momentum', 'dest': 'momentum' }, '--optim': { 'type': str, 'default': 'sgd', 'help': 'optimization method: sgd | adagrad', 'dest': 'optim' }, '--lr-warmup': { 'type': int, 'default': 0, 'help': 'linearly increase LR from 0 ' 'during first lr_warmup updates', 'dest': 'lr_warmup' }, '--grad-clip': { 'type': float, 'default': 0, 'help': '[only works with adagrad!] ' 'clip gradient of each module parameters by a given ' 'value', 'dest': 'grad_clip' }, }, # trainer-specific 'trainer_params': { '--batch-sz': { 'type': int, 'default': 64, 'help': 'batch size', 'dest': 'batch_size' }, '--batch-split': { 'type': int, 'default': 1, 'help': 'split a batch into smaller parts to fit in GPU memory', 'dest': 'batch_split' }, '--nbatches': { 'type': int, 'default': 1000, 'help': 'number of batches in each iteration', 'dest': 'nb_batches_per_iter' }, '--niter': { 'type': int, 'default': 1000, 'help': 'number of iterations to train', 'dest': 'nb_iter' }, '--checkpoint': { 'type': str, 'default': '', 'help': 'path to save/load model', 'dest': 'checkpoint_path' }, '--full-eval-mode': { 'action': 'store_true', 'default': False, 'help': 'do evaluation on the whole validation and the test data', 'dest': 'full_eval_mode' }, }, # adaptive I/O specific params 'adapt_io_params': { '--adapt-io': { 'action': 'store_true', 'default': False, 'help': 'enable adaptive input and output representations', 'dest': 'adapt_io_enabled' }, '--adapt-io-tied': { 'action': 'store_true', 'default': False, 'help': 'tie the input parameters with the output parameters', 'dest': 'adapt_io_tied' }, '--adapt-io-divval': { 'type': int, 'default': 4, 'help': 'dimension division value', 'dest': 'adapt_io_divval' }, '--adapt-io-cutoffs': { 'type': int, 'default': [20000, 40000, 200000], 'help': 'cutoffs values', 'dest': 'adapt_io_cutoffs' }, }, # adaptive attention span specific params 'adapt_span_params': { '--adapt-span': { 'action': 'store_true', 'default': False, 'help': 'enable adaptive attention span', 'dest': 'adapt_span_enabled' }, '--adapt-span-loss': { 'type': float, 'default': 0, 'help': 'the loss coefficient for span lengths', 'dest': 'adapt_span_loss' }, '--adapt-span-ramp': { 'type': int, 'default': 32, 'help': 'ramp length of the soft masking function', 'dest': 'adapt_span_ramp' }, '--adapt-span-init': { 'type': float, 'default': 0, 'help': 'initial attention span ratio', 'dest': 'adapt_span_init' }, '--adapt-span-cache': { 'action': 'store_true', 'default': False, 'help': 'adapt cache size as well to reduce memory usage', 'dest': 'adapt_span_cache' }, }, # persistent memory specific params 'pers_mem_params': { '--pers-mem-size': { 'type': int, 'default': 0, 'help': 'the number of persistent memory vectors', 'dest': 'pers_mem_size' }, }, }
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # #!/usr/bin/env python3 import math import torch import torch.nn as nn import torch.nn.functional as F class AdaptiveMask(nn.Module): """Soft masking function for adaptive size. It masks out the last K values of an input. The masking value goes from 1 to 0 gradually, so K can be learned with back-propagation. Args: max_size: maximum size (i.e. input dimension) ramp_size: size of the ramp going from 0 to 1 init_val: initial size proportion not to be masked out shape: learn multiple sizes independent of each other """ def __init__(self, max_size, ramp_size, init_val=0, shape=(1,)): nn.Module.__init__(self) self._max_size = max_size self._ramp_size = ramp_size self.current_val = nn.Parameter(torch.zeros(*shape) + init_val) mask_template = torch.linspace(1 - max_size, 0, steps=max_size) self.register_buffer('mask_template', mask_template) def forward(self, x): mask = self.mask_template + self.current_val * self._max_size mask = mask / self._ramp_size + 1 mask = mask.clamp(0, 1) if x.size(-1) < self._max_size: # the input could have been trimmed beforehand to save computation mask = mask[:, :, -x.size(-1):] x = x * mask return x def get_current_max_size(self, include_ramp=True): current_size = math.ceil(self.current_val.max().item() * self._max_size) if include_ramp: current_size += self._ramp_size current_size = max(0, min(self._max_size, current_size)) return current_size def get_current_avg_size(self, include_ramp=True): current_size = math.ceil(self.current_val.mean().item() * self._max_size) if include_ramp: current_size += self._ramp_size current_size = max(0, min(self._max_size, current_size)) return current_size def clamp_param(self): """this need to be called after each update""" self.current_val.data.clamp_(0, 1) class AdaptiveSpan(nn.Module): """Adaptive attention span for Transformerself. This module learns an attention span length from data for each self-attention head. Args: attn_span: maximum attention span adapt_span_loss: loss coefficient for the span length adapt_span_ramp: length of the masking ramp adapt_span_init: initial size ratio adapt_span_cache: adapt cache size to reduce memory usage """ def __init__(self, attn_span, adapt_span_loss, adapt_span_ramp, adapt_span_init, adapt_span_cache, nb_heads, **kargs): nn.Module.__init__(self) self._adapt_cache = adapt_span_cache self._max_span = attn_span self._loss_coeff = adapt_span_loss self._nb_heads = nb_heads self._mask = AdaptiveMask(max_size=self._max_span, ramp_size=adapt_span_ramp, init_val=adapt_span_init, shape=(nb_heads, 1, 1)) def forward(self, attn, normalize=True): """mask attention with the right span""" # batch and head dimensions are merged together, so separate them first B = attn.size(0) # batch size M = attn.size(1) # block size attn = attn.reshape(B // self._nb_heads, self._nb_heads, M, -1) attn = self._mask(attn) if normalize: attn = attn / (attn.sum(-1, keepdim=True) + 1e-8) # normalize so sum is 1 attn = attn.view(B, M, -1) return attn def get_trim_len(self): """how much of memory can be trimmed to reduce computation""" L = self._max_span trim_len = min(L - 1, L - self._mask.get_current_max_size()) # too fine granularity might be bad for the memory management trim_len = math.floor(trim_len / 64) * 64 return trim_len def trim_memory(self, query, key, value, key_pe): """trim out unnecessary memory beforehand to reduce computation""" trim_len = self.get_trim_len() cache_size = key.size(1) - query.size(1) trim_len_cache = trim_len - (self._max_span - cache_size) if trim_len_cache > 0: key = key[:, trim_len_cache:, :] value = value[:, trim_len_cache:, :] elif trim_len_cache < 0: # cache is too short! this happens when validation resumes # after a lot of updates. key = F.pad(key, [0, 0, -trim_len_cache, 0]) value = F.pad(value, [0, 0, -trim_len_cache, 0]) if trim_len > 0: if key_pe is not None: key_pe = key_pe[:, :, trim_len:] return key, value, key_pe def get_cache_size(self): """determine how long the cache should be""" if self._adapt_cache: trim_len = self.get_trim_len() # give a buffer of 64 steps since a span might increase # in future updates return min(self._max_span, self._max_span - trim_len + 64) else: return self._max_span def get_loss(self): """a loss term for regularizing the span length""" return self._loss_coeff * self._max_span * self._mask.current_val.mean() def get_current_max_span(self): return self._mask.get_current_max_size() def get_current_avg_span(self): return self._mask.get_current_avg_size() def clamp_param(self): self._mask.clamp_param()
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # #!/usr/bin/env python3 import math import torch import torch.nn as nn import torch.nn.functional as F from adaptive_span import AdaptiveSpan from persistent_memory import PersistentMemory from adaptive_io import build_adaptive_io, compute_dummy_loss # Size notations: # B = batch_size, H = hidden_size, M = block_size, L = attn_span def _skew(X, pad_value): """shift every row 1 step to right""" # X = B x M x L B, M, L = X.size() X = F.pad(X, (0, M + 1), value=pad_value) # B x M x (L+M+1) X = X.view(B, -1) # B x ML+MM+M X = X[:, :-M] # B x ML+MM X = X.view(B, M, M + L) # B x M x L+M return X def _unskew(X): """reverse _skew operation""" # X = B x M x L+M B, M, L = X.size() L -= M X = X.view(B, -1) # B x ML+MM X = F.pad(X, (0, M)) # B x ML+MM+M X = X.view(B, M, M + L + 1) # B x M x L+M+1 X = X[:, :, :L] # B x M x L return X class SeqAttention(nn.Module): """Sequential self-attention layer. Each token will attend to its previous fixed number of steps. Note that attention doesn't include the current step itself. """ def __init__(self, hidden_size, nb_heads, attn_span, dropout, adapt_span_params, pers_mem_params, **kargs): nn.Module.__init__(self) self.dropout = nn.Dropout(dropout) self.hidden_size = hidden_size # size of a single head self.attn_span = attn_span self.adapt_span_enabled = adapt_span_params['adapt_span_enabled'] if self.adapt_span_enabled: self.adaptive_span = AdaptiveSpan(attn_span=attn_span, nb_heads=nb_heads, **adapt_span_params, **kargs) self.persistent_memory = None if pers_mem_params['pers_mem_size'] > 0: self.persistent_memory = PersistentMemory( pers_mem_params['pers_mem_size'], nb_heads, hidden_size, dropout) if self.adapt_span_enabled: self.persistent_memory.adaptive_span = self.adaptive_span def forward(self, query, key, value, key_pe): # query size = B x M x H # key, value sizes = B x (M+L) x H if self.adapt_span_enabled: # [optional] trim out memory to reduce unnecessary computation key, value, key_pe = self.adaptive_span.trim_memory( query, key, value, key_pe) # compute attention from context # B x M (dest) x (M+L) (src) attn_cont = torch.matmul(query, key.transpose(-1, -2)) attn_cont = _unskew(attn_cont) # B x M x L # compute the effect of position embedding attn_pos = torch.matmul(query, key_pe) # B x M x L_pos attn = attn_cont + attn_pos if self.persistent_memory is not None: attn, pers_mem_out = self.persistent_memory(query, attn) else: attn = attn / math.sqrt(self.hidden_size) # B x M X L_pos attn = F.softmax(attn, dim=-1) if self.adapt_span_enabled: # trim attention lengths according to the learned span attn = self.adaptive_span(attn) attn = self.dropout(attn) # B x M X L_pos attn_cont = _skew(attn, 0) # B x M X (L+M) out = torch.matmul(attn_cont, value) # B x M x H if self.persistent_memory is not None: out = out + pers_mem_out return out def get_cache_size(self): if self.adapt_span_enabled: return self.adaptive_span.get_cache_size() else: return self.attn_span class MultiHeadSeqAttention(nn.Module): def __init__(self, hidden_size, nb_heads, **kargs): nn.Module.__init__(self) assert hidden_size % nb_heads == 0 self.nb_heads = nb_heads self.head_dim = hidden_size // nb_heads self.attn = SeqAttention( hidden_size=self.head_dim, nb_heads=nb_heads, **kargs) self.proj_query = nn.Linear(hidden_size, hidden_size, bias=False) self.proj_out = nn.Linear(hidden_size, hidden_size, bias=False) self.proj_val = nn.Linear(hidden_size, hidden_size, bias=False) self.proj_key = nn.Linear(hidden_size, hidden_size, bias=False) def head_reshape(self, x): K = self.nb_heads D = self.head_dim x = x.view(x.size()[:-1] + (K, D)) # B x (M+L) x K x D x = x.transpose(1, 2).contiguous() # B x K x (M+L) x D x = x.view(-1, x.size(-2), x.size(-1)) # B_K x (M+L) x D return x def forward(self, query, key, value, key_pe): B = query.size(0) K = self.nb_heads D = self.head_dim M = query.size(1) query = self.proj_query(query) query = self.head_reshape(query) value = self.proj_val(value) value = self.head_reshape(value) key = self.proj_key(key) key = self.head_reshape(key) out = self.attn(query, key, value, key_pe) # B_K x M x D out = out.view(B, K, M, D) # B x K x M x D out = out.transpose(1, 2).contiguous() # B x M x K x D out = out.view(B, M, -1) # B x M x K_D out = self.proj_out(out) return out class FeedForwardLayer(nn.Module): def __init__(self, hidden_size, inner_hidden_size, dropout, **kargs): nn.Module.__init__(self) self.fc1 = nn.Linear(hidden_size, inner_hidden_size) self.fc2 = nn.Linear(inner_hidden_size, hidden_size) self.dropout = nn.Dropout(dropout) def forward(self, h): h1 = F.relu(self.fc1(h)) h1 = self.dropout(h1) h2 = self.fc2(h1) return h2 class TransformerSeqLayer(nn.Module): def __init__(self, hidden_size, **kargs): nn.Module.__init__(self) self.attn = MultiHeadSeqAttention(hidden_size=hidden_size, **kargs) self.norm1 = nn.LayerNorm(hidden_size) if kargs['pers_mem_params']['pers_mem_size'] > 0: # replacing FF with persistent memory self.ff = None else: self.ff = FeedForwardLayer(hidden_size=hidden_size, **kargs) self.norm2 = nn.LayerNorm(hidden_size) def forward(self, h, h_cache, key_pe): # h = B x M x H # h_cache = B x L x H h_all = torch.cat([h_cache, h], dim=1) # B x (M+L) x H attn_out = self.attn(h, h_all, h_all, key_pe) h = self.norm1(h + attn_out) # B x M x H if self.ff is not None: ff_out = self.ff(h) out = self.norm2(h + ff_out) # B x M x H else: out = h return out class TransformerSeq(nn.Module): def __init__(self, vocab_size, hidden_size, nb_heads, nb_layers, attn_span, emb_dropout, adapt_io_params, **kargs): nn.Module.__init__(self) # token embeddings self.adapt_io = adapt_io_params['adapt_io_enabled'] if self.adapt_io: self.in_emb, self.out_emb = build_adaptive_io( vocab_size, hidden_size, **adapt_io_params) else: self.in_emb = nn.Embedding(vocab_size, hidden_size) self.out_emb = nn.Linear(hidden_size, vocab_size) if emb_dropout > 0: self.emb_dropout = nn.Dropout(emb_dropout) else: self.emb_dropout = None # position embeddings self.key_pe = nn.Parameter( torch.randn(1, hidden_size // nb_heads, attn_span)) self.layers = nn.ModuleList() self.layers.extend( TransformerSeqLayer( hidden_size=hidden_size, nb_heads=nb_heads, attn_span=attn_span, **kargs) for _ in range(nb_layers)) def forward(self, x, h_cache, target=None): # x size = B x M block_size = x.size(1) h = self.in_emb(x) # B x M x H if self.emb_dropout is not None: h = self.emb_dropout(h) h_cache_next = [] for l, layer in enumerate(self.layers): cache_size = layer.attn.attn.get_cache_size() if cache_size > block_size: h_cache_next_l = torch.cat( [h_cache[l][:, -cache_size + block_size:, :], h], dim=1).detach() else: h_cache_next_l = h[:, -cache_size:, :].detach() h_cache_next.append(h_cache_next_l) h = layer(h, h_cache[l], self.key_pe) # B x M x H if self.emb_dropout is not None: h = self.emb_dropout(h) if self.adapt_io: # loss is computed here out = self.out_emb(h, target) dummy_loss = compute_dummy_loss(self.in_emb, self.out_emb) else: out = F.log_softmax(self.out_emb(h), dim=-1) dummy_loss = None return out, h_cache_next, dummy_loss
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # #!/usr/bin/env python3 import os import math import argparse import torch from adagrad_with_grad_clip import AdagradWithGradClip def _parse_args(params_config, args): parser = argparse.ArgumentParser() for params_category in params_config: # e.g., 'model_params' for param_flag, param_config in params_config[params_category].items(): # e.g., param_flag = '--block-sz' parser.add_argument(param_flag, **param_config) return parser.parse_args(args) def get_params(params_config, args=None): namespace = _parse_args(params_config, args) return { params_category: { param_config['dest']: namespace.__getattribute__(param_config['dest']) for param_config in params_config[params_category].values() } for params_category in params_config } ############################################################################## # ENVIRONMENT ############################################################################## def _torch_distributed_init_process_group(local_rank): torch.distributed.init_process_group( backend='nccl', init_method='env://' ) rank = torch.distributed.get_rank() world_size = torch.distributed.get_world_size() print('my rank={} local_rank={}'.format(rank, local_rank)) torch.cuda.set_device(local_rank) return { 'rank': rank, 'world_size': world_size, } def set_up_env(env_params): assert torch.cuda.is_available() if env_params['distributed']: env_params.update( _torch_distributed_init_process_group( local_rank=env_params['local_rank'])) env_params['device'] = torch.device('cuda') ############################################################################## # OPTIMIZER AND SCHEDULER ############################################################################## def _get_grad_requiring_params(model): nb_parameters = 0 grad_requiring_params = [] for param in model.parameters(): if param.requires_grad: nb_parameters += param.numel() grad_requiring_params.append(param) print('nb_parameters={:.2f}M'.format(nb_parameters / 1e6)) return grad_requiring_params def _get_optimizer(model, optim, lr: float, momentum: float, grad_clip: float): if optim == 'sgd': optimizer = torch.optim.SGD(_get_grad_requiring_params(model), lr=lr, momentum=momentum) optimizer.grad_clip = grad_clip return optimizer elif optim == 'adagrad': optimizer = AdagradWithGradClip(_get_grad_requiring_params(model), lr=lr, grad_clip=grad_clip) optimizer.grad_clip = 0 # done internally return optimizer elif optim == 'adam': optimizer = torch.optim.Adam(_get_grad_requiring_params(model), lr=lr) optimizer.grad_clip = grad_clip return optimizer else: raise RuntimeError("wrong type of optimizer " "- must be 'sgd', 'adagrad' or 'adam'") def _get_scheduler(optimizer, lr_warmup): if lr_warmup > 0: return torch.optim.lr_scheduler.LambdaLR( optimizer, lambda ep: min(1, ep / lr_warmup)) return None def get_optimizer_and_scheduler(model, optim_params): optimizer = _get_optimizer(model=model, optim=optim_params['optim'], lr=optim_params['lr'], momentum=optim_params['momentum'], grad_clip=optim_params['grad_clip']) scheduler = _get_scheduler(optimizer=optimizer, lr_warmup=optim_params['lr_warmup']) return optimizer, scheduler ############################################################################## # CHECKPOINT ############################################################################## def _load_checkpoint(checkpoint_path, model, optimizer, scheduler, logger, distributed): print('loading from a checkpoint at {}'.format(checkpoint_path)) if distributed: # the model is saved from gpu0 so we need to map it to CPU first checkpoint_state = torch.load( checkpoint_path, map_location=lambda storage, loc: storage) else: checkpoint_state = torch.load(checkpoint_path) iter_init = checkpoint_state['iter_no'] + 1 # next iteration model.load_state_dict(checkpoint_state['model']) optimizer.load_state_dict(checkpoint_state['optimizer']) logger.load_state_dict(checkpoint_state['logger']) if 'scheduler_iter' in checkpoint_state: # we only need the step count scheduler.step(checkpoint_state['scheduler_iter']) return iter_init def load_checkpoint(checkpoint_path, model, optimizer, scheduler, logger, distributed): if checkpoint_path and os.path.exists(checkpoint_path): return _load_checkpoint(checkpoint_path=checkpoint_path, model=model, optimizer=optimizer, scheduler=scheduler, logger=logger, distributed=distributed) return 0 def save_checkpoint(checkpoint_path, iter_no, model, optimizer, scheduler, logger): if checkpoint_path: checkpoint_state = { 'iter_no': iter_no, # last completed iteration 'model': model.state_dict(), 'logger': logger.state_dict(), 'optimizer': optimizer.state_dict(), } if scheduler is not None: checkpoint_state['scheduler_iter'] = scheduler.last_epoch torch.save(checkpoint_state, checkpoint_path) ############################################################################## # LOGGER ############################################################################## class Logger: def __init__(self, data_unit): self.data_unit = data_unit self._state_dict = dict() def load_state_dict(self, state_dict): self._state_dict = state_dict def state_dict(self): return self._state_dict def _log(self, title, value): if title not in self._state_dict: self._state_dict[title] = [] self._state_dict[title].append(value) def log_iter(self, iter_no, nb_batches_per_iter, loss_train, loss_val, elapsed, model): step = (iter_no + 1) * nb_batches_per_iter self._log(title='step', value=step) msg = 'steps: {}'.format(step) if self.data_unit == 'bpc': train_bpc = float(loss_train / math.log(2)) val_bpc = float(loss_val / math.log(2)) msg += '\ttrain: {:.3f}bpc\tval: {:.3f}bpc'.format(train_bpc, val_bpc) self._log(title='train_bpc', value=train_bpc) self._log(title='val_bpc', value=val_bpc) else: train_ppl = math.exp(loss_train) val_ppl = math.exp(loss_val) msg += '\ttrain: {:.2f}ppl\tval: {:.2f}ppl'.format(train_ppl, val_ppl) self._log(title='train_ppl', value=train_ppl) self._log(title='val_ppl', value=val_ppl) msg += '\tms/batch: {:.1f}'.format(elapsed) if model.module.layers[0].attn.attn.adapt_span_enabled: avg_spans = [] max_spans = [] for layer in model.module.layers: avg_spans.append( layer.attn.attn.adaptive_span.get_current_avg_span()) max_spans.append( layer.attn.attn.adaptive_span.get_current_max_span()) span_avg = float(sum(avg_spans)) / len(avg_spans) span_max = float(max(max_spans)) self._log('span_avg', span_avg) self._log('span_max', span_max) msg += "\tspan_avg: {:.0f}\tspan_max: {:.0f}".format(span_avg, span_max) print(msg)
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # #!/usr/bin/env python3 import math import random import torch def _train_step(model, X, Y, h_cache, eval_only, loss_div=1): """Single training step.""" out, h_cache, dummy_loss = model(X, h_cache, target=Y) if model.module.adapt_io: loss = out.mean() + dummy_loss.sum() else: out = out.view(-1, out.size(-1)) loss = torch.nn.functional.nll_loss(out, Y.view(-1)) loss_value = loss.item() / loss_div if not eval_only: # loss term from adaptive-span if model.module.layers[0].attn.attn.adapt_span_enabled: loss += sum(layer.attn.attn.adaptive_span.get_loss() for layer in model.module.layers) (loss / loss_div).backward() return loss_value, h_cache def _train_batch(model, optimizer, scheduler, X, Y, h_cache, eval_only, batch_split): """Train on a batch.""" optimizer.zero_grad() if batch_split == 1: # process a batch in a single step (default behaviour) loss_value, h_cache = _train_step(model, X, Y, h_cache, eval_only) else: # split a batch into multiple pieces that each can fit in memory assert X.size(0) % batch_split == 0 split_size = X.size(0) // batch_split loss_value = 0 h_cache_list = [] for split_ind in range(batch_split): split_slice = slice(split_ind*split_size, (split_ind+1)*split_size) split_h_cache = [h[split_slice,:,:] for h in h_cache] split_loss_value, split_h_cache = _train_step( model, X[split_slice,:], Y[split_slice], split_h_cache, eval_only, batch_split) loss_value += split_loss_value h_cache_list.append(split_h_cache) h_cache = [ torch.cat( [h_cache_list[i][l] for i in range(batch_split)] , dim=0) for l in range(len(h_cache))] if not eval_only: if scheduler is not None: scheduler.step() if optimizer.grad_clip > 0: torch.nn.utils.clip_grad_norm_( model.parameters(), optimizer.grad_clip) optimizer.step() # make sure span parameters are in a correct range if model.module.layers[0].attn.attn.adapt_span_enabled: for layer in model.module.layers: layer.attn.attn.adaptive_span.clamp_param() return loss_value, h_cache def train_iteration(model, optimizer, scheduler, data, nb_batches_per_iter, block_size, eval_only, train_pos, h_cache, batch_split): """Single training iteration.""" if eval_only: model.eval() else: model.train() nb_batches_per_iter_max = nb_batches_per_iter if eval_only: # eval on fewer batches during training for speed-up nb_batches_per_iter_max = max(1, nb_batches_per_iter // 10) nb_batches_per_iter_max = min(nb_batches_per_iter_max, math.ceil(data.size(1) / block_size)) loss_all = 0 actual_nb_batches_per_iter = 0 for _ in range(nb_batches_per_iter_max): actual_nb_batches_per_iter += 1 X = data[:, train_pos: train_pos + block_size].contiguous() Y = data[:, train_pos + 1: train_pos + block_size + 1].contiguous() loss, h_cache = _train_batch( model=model, optimizer=optimizer, scheduler=scheduler, X=X, Y=Y, h_cache=h_cache, eval_only=eval_only, batch_split=batch_split) loss_all += loss train_pos += block_size if train_pos >= data.size(1) - block_size: # reached the end. randomize the offset to reduce overfitting train_pos = random.randrange(block_size) # reset the cache for h in h_cache: h.fill_(0) loss_all = loss_all / actual_nb_batches_per_iter return loss_all, train_pos, h_cache # do full evaluation def full_eval(model, optimizer, scheduler, data, block_size, hidden_size): model.eval() train_pos = 0 nb_batches_per_iter_max = math.ceil(data.size(1) / block_size) h_cache = [ torch.zeros( data.size(0), layer.attn.attn.get_cache_size(), hidden_size).to(data.device) for layer in model.module.layers] loss_all = 0 actual_nb_batches_per_iter = 0 for _ in range(nb_batches_per_iter_max): actual_nb_batches_per_iter += 1 X = data[:, train_pos: train_pos + block_size].contiguous() Y = data[:, train_pos + 1: train_pos + block_size + 1].contiguous() loss, h_cache = _train_batch( model=model, optimizer=optimizer, scheduler=scheduler, X=X, Y=Y, h_cache=h_cache, eval_only=True, batch_split=1) loss_all += loss train_pos += block_size if train_pos >= data.size(1) - block_size: # Skip the remaining tokens as it can't make a whole block. # An effect on performance should be negligable for a large data. break loss_all = loss_all / actual_nb_batches_per_iter return loss_all
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # #!/usr/bin/env python3 from argparse import Namespace import math import random import torch import torch.nn as nn import torch.nn.functional as F class PersistentMemory(nn.Module): def __init__(self, size, nb_heads, head_dim, dropout): super(PersistentMemory, self).__init__() self.size = size self.nb_heads = nb_heads self.head_dim = head_dim # different heads have different vectors self.key = nn.Parameter(torch.randn(self.nb_heads, self.head_dim, self.size) / math.sqrt(self.head_dim)) self.val = nn.Parameter(torch.randn(self.nb_heads, self.size, self.head_dim) / math.sqrt(self.size)) self.dropout = nn.Dropout(dropout) self.adaptive_span = None def forward(self, query, attn): key = self.key.unsqueeze(0) val = self.val.unsqueeze(0) query = query.view((-1, self.nb_heads) + query.size()[1:]) attn_pers = torch.matmul(query, key * math.sqrt(self.head_dim)) attn_pers = attn_pers.view((-1,) + attn_pers.size()[2:]) # compute softmax jointly attn = torch.cat((attn, attn_pers), dim=-1) attn = attn / math.sqrt(self.head_dim) # B x M X L_total attn = F.softmax(attn, dim=-1) attn_pers = attn[:, :, -key.size(-1):] attn = attn[:, :, :-key.size(-1)] # B x M X L # adapt attention span if self.adaptive_span is not None: attn = self.adaptive_span(attn, normalize=False) # normalize the sum jointly! attn = torch.cat((attn, attn_pers), dim=-1) attn = attn / (attn.sum(-1, keepdim=True) + 1e-8) attn_pers = attn[:, :, -key.size(-1):] attn = attn[:, :, :-key.size(-1)] # B x M X L attn_pers = self.dropout(attn_pers) # B x M X L attn_pers = attn_pers.view((-1, self.nb_heads) + attn_pers.size()[1:]) out = torch.matmul(attn_pers, val * math.sqrt(self.size)) out = out.view((-1,) + out.size()[2:]) return attn, out
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # #!/usr/bin/env python3 import math import time import torch from config import PARAMS_CONFIG from data import get_train_val_test_data from models import TransformerSeq from trainer import train_iteration, full_eval from utils import ( get_params, set_up_env, get_optimizer_and_scheduler, load_checkpoint, save_checkpoint, Logger) def launch(env_params, model_params, adapt_io_params, adapt_span_params, pers_mem_params, optim_params, data_params, trainer_params): # ENVIRONMENT (device, distributed, etc.) set_up_env(env_params) device = env_params['device'] distributed = env_params['distributed'] if distributed == False or env_params['rank'] == 0: print('model_params:\t', model_params) print('optim_params:\t', optim_params) print('data_params:\t', data_params) print('trainer_params:\t', trainer_params) print('adapt_io_params:\t', adapt_io_params) print('adapt_span_params:\t', adapt_span_params) print('pers_mem_params:\t', pers_mem_params) # DATA train_data, val_data, test_data = get_train_val_test_data( data_params=data_params, env_params=env_params, batch_size=trainer_params['batch_size'], device=device, sort_dict=adapt_io_params['adapt_io_enabled']) # MODEL model = TransformerSeq( vocab_size=data_params['vocab_size'], **model_params, adapt_io_params=adapt_io_params, adapt_span_params=adapt_span_params, pers_mem_params=pers_mem_params) if distributed: local_rank = env_params['local_rank'] model = model.to(device) model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[local_rank], output_device=local_rank) else: model = torch.nn.DataParallel(model) model = model.to(device) # OPTIMIZER AND SCHEDULER optimizer, scheduler = get_optimizer_and_scheduler( model=model, optim_params=optim_params) # create logger logger = Logger(data_params['data_unit']) # resume training from last checkpoint if exists iter_init = load_checkpoint( trainer_params['checkpoint_path'], model, optimizer, scheduler, logger, distributed) if trainer_params['full_eval_mode']: # evaluate the model on test data with torch.no_grad(): loss_val = full_eval(model, optimizer, scheduler, val_data, model_params['block_size'], model_params['hidden_size']) loss_test = full_eval(model, optimizer, scheduler, test_data, model_params['block_size'], model_params['hidden_size']) if distributed: # collect results into rank0 stats = torch.tensor( [loss_val, loss_test]).to(device) torch.distributed.reduce(stats, 0) if env_params['rank'] == 0: loss_val = stats[0] / env_params['world_size'] loss_test = stats[1] / env_params['world_size'] else: return if data_params['data_unit'] == 'bpc': print('val: {:.3f}bpc'.format(loss_val / math.log(2))) print('test: {:.3f}bpc'.format(loss_test / math.log(2))) else: print('val: {:.2f}ppl'.format(math.exp(loss_val))) print('test: {:.2f}ppl'.format(math.exp(loss_test))) return # position of current batch data_pos = [0] * 2 # initialize caches for train and valid hid_cache = [[ torch.zeros( train_data.size(0), layer.attn.attn.get_cache_size(), model_params['hidden_size']).to(device) for layer in model.module.layers] for _ in range(2)] nb_batches_per_iter = trainer_params['nb_batches_per_iter'] for iter_no in range(iter_init, trainer_params['nb_iter']): t_sta = time.time() loss_train, data_pos[0], hid_cache[0] = train_iteration( model, optimizer, scheduler, train_data, nb_batches_per_iter, model_params['block_size'], False, data_pos[0], hid_cache[0], trainer_params['batch_split']) elapsed = 1000 * (time.time() - t_sta) / nb_batches_per_iter with torch.no_grad(): loss_val, data_pos[1], hid_cache[1] = train_iteration( model, optimizer, scheduler, val_data, nb_batches_per_iter, model_params['block_size'], True, data_pos[1], hid_cache[1], trainer_params['batch_split']) if distributed: # collect results into rank0 stats = torch.tensor( [loss_train, loss_val]).to(device) torch.distributed.reduce(stats, 0) if env_params['rank'] == 0: loss_train = stats[0] / env_params['world_size'] loss_val = stats[1] / env_params['world_size'] else: continue logger.log_iter(iter_no, nb_batches_per_iter, loss_train, loss_val, elapsed, model) save_checkpoint(trainer_params['checkpoint_path'], iter_no, model, optimizer, scheduler, logger) if __name__ == '__main__': launch(**get_params(params_config=PARAMS_CONFIG))
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # #!/usr/bin/env python3 import os import torch class Dictionary(object): def __init__(self, path, sort_dict=False): self.word2idx = {} self.word2count = {} self.idx2word = [] assert os.path.exists(path) # Add words to the dictionary with open(path, 'r', encoding="utf8") as f: for line in f: words = line.split() + ['<eos>'] for word in words: if sort_dict: self.word2count[word] = self.word2count.get(word, 0) + 1 elif word not in self.word2idx: self.word2idx[word] = len(self.idx2word) self.idx2word.append(word) if sort_dict: # Sort dictionary by count and build indices accordingly: sorted_dict = sorted(self.word2count.items(), key=lambda kv: kv[1])[::-1] for i in range(len(sorted_dict)): word = sorted_dict[i][0] self.word2idx[word] = i self.idx2word.append(word) def __len__(self): return len(self.idx2word) def _tokenize(text_path, dictionary): """Tokenizes a text file.""" print('Tokenizing {}'.format(text_path)) assert os.path.exists(text_path) # Assign to each token its identifier ids = [] with open(text_path, 'r', encoding="utf8") as f: for line in f: tokens = line.split() + ['<eos>'] for token in tokens: ids.append(dictionary[token]) ids = torch.LongTensor(ids) return ids class Corpus: def __init__(self, data_path, sort_dict): print('Building dictionary') self._dictionary = Dictionary(os.path.join(data_path, 'train.txt'), sort_dict) self.train = _tokenize( text_path=os.path.join(data_path, 'train.txt'), dictionary=self._dictionary.word2idx) self.valid = _tokenize( text_path=os.path.join(data_path, 'valid.txt'), dictionary=self._dictionary.word2idx) self.test = _tokenize( text_path=os.path.join(data_path, 'test.txt'), dictionary=self._dictionary.word2idx) @property def vocab_size(self): return len(self._dictionary) def _batchify(data_tensor, batch_size): nb_batches = data_tensor.size(0) // batch_size # trim away some tokens to make whole batches data_tensor = data_tensor.narrow(0, 0, nb_batches * batch_size) data_tensor = data_tensor.view(batch_size, -1).contiguous() return data_tensor def _build_corpus(data_path, env_params, sort_dict): # save the corpus to a file so that it's faster next time if sort_dict: corpus_path = os.path.join(data_path, 'corpus_sorted.pt') else: corpus_path = os.path.join(data_path, 'corpus.pt') if os.path.exists(corpus_path): print('Loading an existing corpus file from {}'.format(corpus_path)) corpus = torch.load(corpus_path) else: print('Creating a corpus file at {}'.format(corpus_path)) if env_params['distributed']: # only one process need to create a corpus file if env_params['rank'] == 0: corpus = Corpus(data_path, sort_dict) torch.save(corpus, corpus_path) # sync with other processes torch.distributed.broadcast(torch.zeros(1).cuda(), src=0) else: print('Waiting rank0 to create a corpus file.') # sync with rank0 torch.distributed.broadcast(torch.zeros(1).cuda(), src=0) corpus = torch.load(corpus_path) else: corpus = Corpus(data_path, sort_dict) torch.save(corpus, corpus_path) return corpus def _get_train_val_test_data(corpus, batch_size): return [ _batchify(corpus.train, batch_size), _batchify(corpus.valid, batch_size), _batchify(corpus.test, batch_size) ] def get_train_val_test_data(data_params, env_params, batch_size, device, sort_dict): corpus = _build_corpus(data_params['data_path'], env_params, sort_dict) data_params['vocab_size'] = corpus.vocab_size train_data, val_data, test_data = _get_train_val_test_data( corpus=corpus, batch_size=batch_size) if env_params['distributed']: # split the data into equal parts assert batch_size % env_params['world_size'] == 0 device_batch_size = batch_size // env_params['world_size'] slice_data = slice( device_batch_size * env_params['rank'], device_batch_size * (env_params['rank'] + 1)) train_data = train_data[slice_data] val_data = val_data[slice_data] test_data = test_data[slice_data] train_data = train_data.to(device) val_data = val_data.to(device) test_data = test_data.to(device) return train_data, val_data, test_data
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # #!/usr/bin/env python3 from torch.optim import Adagrad def _clip_grad(clr, grad, group_grad_clip): if group_grad_clip > 0: norm = grad.norm(2).item() if norm > group_grad_clip: clr *= group_grad_clip / (norm + 1e-10) return clr class AdagradWithGradClip(Adagrad): """Adagrad algoritm with custom gradient clipping""" def __init__(self, params, lr=1e-2, lr_decay=0, weight_decay=0, initial_accumulator_value=0, grad_clip=0): Adagrad.__init__(self, params, lr=lr, lr_decay=lr_decay, weight_decay=weight_decay, initial_accumulator_value=initial_accumulator_value) self.defaults['grad_clip'] = grad_clip self.param_groups[0].setdefault('grad_clip', grad_clip) def step(self, closure=None): loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data state = self.state[p] state['step'] += 1 if group['weight_decay'] != 0: if p.grad.data.is_sparse: raise RuntimeError("weight_decay option is " "not compatible with sparse " "gradients") grad = grad.add(group['weight_decay'], p.data) clr = (group['lr'] / (1 + (state['step'] - 1) * group['lr_decay'])) # clip clr = _clip_grad(clr=clr, grad=grad, group_grad_clip=group['grad_clip']) if grad.is_sparse: # the update is non-linear so indices must be unique grad = grad.coalesce() grad_indices = grad._indices() grad_values = grad._values() size = grad.size() def make_sparse(values): constructor = grad.new if grad_indices.dim() == 0 or values.dim() == 0: return constructor().resize_as_(grad) return constructor(grad_indices, values, size) state['sum'].add_(make_sparse(grad_values.pow(2))) std = state['sum']._sparse_mask(grad) std_values = std._values().sqrt_().add_(1e-10) p.data.add_(-clr, make_sparse(grad_values / std_values)) else: state['sum'].addcmul_(1, grad, grad) std = state['sum'].sqrt().add_(1e-10) p.data.addcdiv_(-clr, grad, std) return loss
# coding=utf-8 # Copyright (c) Facebook, Inc. and its affiliates. # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa). GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned using a masked language modeling (MLM) loss. """ import logging import math import os from dataclasses import dataclass, field from typing import Optional from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, HfArgumentParser, LineByLineTextDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) logger = logging.getLogger(__name__) MODEL_CONFIG_CLASSES = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. """ model_name_or_path: Optional[str] = field( default=None, metadata={ "help": "The model checkpoint for weights initialization. Leave None if you want to train a model from scratch." }, ) model_type: Optional[str] = field( default=None, metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)}, ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ train_data_file: Optional[str] = field( default=None, metadata={"help": "The input training data file (a text file)."} ) eval_data_file: Optional[str] = field( default=None, metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, ) line_by_line: bool = field( default=False, metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."}, ) mlm: bool = field( default=False, metadata={"help": "Train with masked-language modeling loss instead of language modeling."} ) mlm_probability: float = field( default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) block_size: int = field( default=-1, metadata={ "help": "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." }, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) def get_dataset(args: DataTrainingArguments, tokenizer: PreTrainedTokenizer, evaluate=False): file_path = args.eval_data_file if evaluate else args.train_data_file if args.line_by_line: return LineByLineTextDataset(tokenizer=tokenizer, file_path=file_path, block_size=args.block_size) else: return TextDataset( tokenizer=tokenizer, file_path=file_path, block_size=args.block_size, overwrite_cache=args.overwrite_cache ) def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) model_args, data_args, training_args = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( "Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file " "or remove the --do_eval argument." ) if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.local_rank != -1), training_args.fp16, ) logger.info("Training/evaluation parameters %s", training_args) # Set seed set_seed(training_args.seed) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: config = AutoConfig.from_pretrained(model_args.config_name, cache_dir=model_args.cache_dir) elif model_args.model_name_or_path: config = AutoConfig.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir) else: config = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch.") if model_args.tokenizer_name: tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, cache_dir=model_args.cache_dir) elif model_args.model_name_or_path: tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another script, save it," "and load it from here, using --tokenizer_name" ) tokenizer.add_special_tokens({'additional_special_tokens': ['<|belief|>', '<|endofbelief|>', '<|action|>', '<|endofaction|>', \ '<|response|>', '<|endofresponse|>', '<|context|>', '<|endofcontext|>', '<|user|>', '<|system|>', \ '<|task|>', '<|endoftask|>', '<|chitchat|>', '<|endofchitchat|>']}) if model_args.model_name_or_path: model = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, ) else: logger.info("Training new model from scratch") model = AutoModelWithLMHead.from_config(config) model.resize_token_embeddings(len(tokenizer)) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( "BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the --mlm " "flag (masked language modeling)." ) if data_args.block_size <= 0: data_args.block_size = tokenizer.max_len # Our input block size will be the max possible for the model else: data_args.block_size = min(data_args.block_size, tokenizer.max_len) # Get datasets train_dataset = get_dataset(data_args, tokenizer=tokenizer) if training_args.do_train else None eval_dataset = get_dataset(data_args, tokenizer=tokenizer, evaluate=True) if training_args.do_eval else None data_collator = DataCollatorForLanguageModeling( tokenizer=tokenizer, mlm=data_args.mlm, mlm_probability=data_args.mlm_probability ) # Initialize our Trainer trainer = Trainer( model=model, args=training_args, data_collator=data_collator, train_dataset=train_dataset, eval_dataset=eval_dataset, prediction_loss_only=True, ) # Training if training_args.do_train: model_path = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path) else None ) trainer.train(model_path=model_path) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir) # Evaluation results = {} if training_args.do_eval: logger.info("*** Evaluate ***") eval_output = trainer.evaluate() perplexity = math.exp(eval_output["eval_loss"]) result = {"perplexity": perplexity} output_eval_file = os.path.join(training_args.output_dir, "eval_results_lm.txt") if trainer.is_world_master(): with open(output_eval_file, "w") as writer: logger.info("***** Eval results *****") for key in sorted(result.keys()): logger.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) results.update(result) return results def _mp_fn(index): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
# Copyright (c) Facebook, Inc. and its affiliates. import json import random import argparse import os def clean(x): return x.replace("\n", "").replace("\r", "").replace("\t", " ").strip() parser = argparse.ArgumentParser() parser.add_argument("--data", default="./accentor-sgd/", type=str, required=False, help="path to SGD") args = parser.parse_args() random.seed(42) pairs = {} for s in ["train", "dev", "test"]: pairs[s] = [] fns = os.listdir(args.data + s) fns.sort() for fn in fns: if not fn.startswith("dialogue") or not fn.endswith(".json"): continue with open(args.data + s + "/" + fn, "r", encoding='utf8') as f: data = json.load(f) for i in range(len(data)): t = '' for j in range(len(data[i]["turns"])): for ps in ["beginning", "end"]: if ps in data[i]["turns"][j]: for k in range(len(data[i]["turns"][j][ps])): if data[i]["turns"][j][ps][k]["label"] == "good": pair = [t, clean(data[i]["turns"][j][ps][k]["candidate"])] pairs[s] += [pair] if t != '': t += ' ' if j % 2 == 0: t += 'user: ' else: t += 'system: ' t += clean(data[i]["turns"][j]["utterance"]) for s in pairs: print(s, len(pairs[s])) random.shuffle(pairs["train"]) for s in ["train", "dev", "test"]: with open("parlai_"+(s if s != "dev" else "valid")+".txt", "w", encoding='utf8') as f: for i in range(len(pairs[s])): f.write("text:" + pairs[s][i][0] + "\t" + "labels:" + pairs[s][i][1] + "\tepisode_done:True\n")
# Copyright (c) Facebook, Inc. and its affiliates. import json import os from utils import bleuscorer import argparse def main(): parser = argparse.ArgumentParser() parser.add_argument("--inference", default="dev.inference.gpt2_10epoch_1e-3_fp16.json", type=str, required=False, help='inference file') parser.add_argument("--datafolder", default="./simpletod/", type=str, required=False, help='data folder') parser.add_argument("--predictionfolder", default="./prediction/", type=str, required=False, help='prediction folder') parser.add_argument("--split", default="dev", type=str, required=False, help="[dev,test]") args = parser.parse_args() inference = args.inference datafolder = args.datafolder predictionfolder = args.predictionfolder folder = args.split + "/" if inference.endswith(".txt"): with open(inference, "r") as f: predict = f.read().strip().split("\n") predict = [a.strip() for a in predict] else: with open(inference, "r") as f: predict = json.load(f) idx = 0 cnt = 0 seen_services = set() with open(datafolder + "train/" + "schema.json", "r") as f: schema = json.load(f) for i in range(len(schema)): seen_services.add(schema[i]["service_name"]) domain_slots = set() with open(datafolder + folder + "schema.json", "r") as f: schema = json.load(f) for i in range(len(schema)): for j in range(len(schema[i]["slots"])): assert(" " not in schema[i]["slots"][j]) domain_slots.add(schema[i]["service_name"].split("_")[0].lower() + " " + schema[i]["slots"][j]["name"].lower()) fns = os.listdir(datafolder + folder) fns.sort() act_precision = [] act_recall = [] seen_act_precision = [] seen_act_recall = [] unseen_act_precision = [] unseen_act_recall = [] bleu = [] bleua = [] bleub = [] seenbleu = [] seenbleua = [] seenbleub = [] unseenbleu = [] unseenbleua = [] unseenbleub = [] for fn in fns: if not fn.startswith("dialogue"): continue if fn.startswith("dialogues_and_metrics.json"): continue with open(datafolder + folder + fn, "r") as f: data = json.load(f) for i in range(len(data)): for j in range(1, len(data[i]["turns"]), 2): cnt += 1 if idx >= len(predict): continue belief = predict[idx].split("<|belief|>") if len(belief) >= 2 and "<|endofbelief|>" in belief[1]: belief = belief[1].split("<|endofbelief|>")[0].strip() else: belief = "" action = predict[idx].split("<|action|>") if len(action) >= 2 and "<|endofaction|>" in action[1]: action = action[1].split("<|endofaction|>")[0].strip() else: action = "" response = predict[idx].split("<|response|>") if len(response) >= 2: response = response[1].split("<|")[0].strip() else: response = "" data[i]["turns"][j]["response"] = response seen = True for k in range(len(data[i]["turns"][j-1]["frames"])): if data[i]["turns"][j-1]["frames"][k]["service"] not in seen_services: seen = False parsedbelief = belief.split(", ") for k in range(len(parsedbelief)): parsed = False for ds in domain_slots: if parsedbelief[k].startswith(ds): parsedbelief[k] = [ds, parsedbelief[k][len(ds):].strip()] parsed = True break if not parsed: parsedbelief[k] = [parsedbelief[k]] k = 1 while k < len(parsedbelief): if len(parsedbelief[k]) == 1: parsedbelief[k-1] += parsedbelief[k] del parsedbelief[k] else: k += 1 if len(parsedbelief) >= 1: if parsedbelief[0][0] not in domain_slots: del parsedbelief[0] parsedbelief = {x[0]:x[1:] for x in parsedbelief} parsedaction = action.split(", ") for k in range(len(parsedaction)): parsedaction[k] = parsedaction[k].strip().split() k = 0 while k < len(parsedaction): if len(parsedaction[k]) <= 1 or len(parsedaction[k]) > 3: del parsedaction[k] else: k += 1 act_gt = set() for k in range(len(data[i]["turns"][j]["frames"][0]["actions"])): act_gt.add((data[i]["turns"][j]["frames"][0]["actions"][k]["act"].lower() + " " + data[i]["turns"][j]["frames"][0]["actions"][k]["slot"]).strip()) act_p = set() for k in range(len(parsedaction)): act_p.add(' '.join(parsedaction[k][1:])) act_precision += [len(act_p & act_gt) / len(act_p) if len(act_p) != 0 else 1] act_recall += [len(act_p & act_gt) / len(act_gt) if len(act_gt) != 0 else 0] if seen: seen_act_precision += [len(act_p & act_gt) / len(act_p) if len(act_p) != 0 else 1] seen_act_recall += [len(act_p & act_gt) / len(act_gt) if len(act_gt) != 0 else 0] else: unseen_act_precision += [len(act_p & act_gt) / len(act_p) if len(act_p) != 0 else 1] unseen_act_recall += [len(act_p & act_gt) / len(act_gt) if len(act_gt) != 0 else 0] bleu += [bleuscorer([response.lower()], [[data[i]["turns"][j]["delex"].lower()]])] if len(data[i]["turns"][j]["delexaug"]) > 0: bleua += [bleuscorer([response.lower()], [[a.lower() for a in data[i]["turns"][j]["delexaug"]]])] bleub += [bleuscorer([response.lower()], [[a.lower() for a in data[i]["turns"][j]["delexaug"] + [data[i]["turns"][j]["delex"].lower()]]])] if seen: seenbleu += [bleuscorer([response.lower()], [[data[i]["turns"][j]["delex"].lower()]])] if len(data[i]["turns"][j]["delexaug"]) > 0: seenbleua += [bleuscorer([response.lower()], [[a.lower() for a in data[i]["turns"][j]["delexaug"]]])] seenbleub += [bleuscorer([response.lower()], [[a.lower() for a in data[i]["turns"][j]["delexaug"] + [data[i]["turns"][j]["delex"].lower()]]])] else: unseenbleu += [bleuscorer([response.lower()], [[data[i]["turns"][j]["delex"].lower()]])] if len(data[i]["turns"][j]["delexaug"]) > 0: unseenbleua += [bleuscorer([response.lower()], [[a.lower() for a in data[i]["turns"][j]["delexaug"]]])] unseenbleub += [bleuscorer([response.lower()], [[a.lower() for a in data[i]["turns"][j]["delexaug"] + [data[i]["turns"][j]["delex"].lower()]]])] for k in range(len(data[i]["turns"][j-1]["frames"])): data[i]["turns"][j-1]["frames"][k]["state"]["slot_values"] = {} for ds in parsedbelief: if ds.split()[0].lower() == data[i]["turns"][j-1]["frames"][k]["service"].split("_")[0].lower(): data[i]["turns"][j-1]["frames"][k]["state"]["slot_values"][ds.split()[1]] = parsedbelief[ds] idx += 1 if not os.path.exists(predictionfolder + folder): os.makedirs(predictionfolder + folder) with open(predictionfolder + folder + fn, "w") as f: json.dump(data, f, indent=1) act_precision = sum(act_precision) / len(act_precision) act_recall = sum(act_recall) / len(act_recall) print("act", act_precision, act_recall, 2*act_precision*act_recall/(act_precision+act_recall)) print('bleu:', sum(bleu)/len(bleu)) #BLEU-4_{orig} print('bleua:', sum(bleua)/len(bleua)) #BLEU-4_{aug} #print('bleub:', sum(bleub)/len(bleub)) seen_act_precision = sum(seen_act_precision) / len(seen_act_precision) seen_act_recall = sum(seen_act_recall) / len(seen_act_recall) print("act (seen):", seen_act_precision, seen_act_recall, 2*seen_act_precision*seen_act_recall/(seen_act_precision+seen_act_recall)) unseen_act_precision = sum(unseen_act_precision) / len(unseen_act_precision) unseen_act_recall = sum(unseen_act_recall) / len(unseen_act_recall) print("act (unseen):", unseen_act_precision, unseen_act_recall, 2*unseen_act_precision*unseen_act_recall/(unseen_act_precision+unseen_act_recall)) print('bleu (seen):', sum(seenbleu)/len(seenbleu)) print('bleua (seen):', sum(seenbleua)/len(seenbleua)) #print('bleub (seen):', sum(seenbleub)/len(seenbleub)) print('bleu (unseen):', sum(unseenbleu)/len(unseenbleu)) print('bleua (unseen):', sum(unseenbleua)/len(unseenbleua)) #print('bleub (unseen):', sum(unseenbleub)/len(unseenbleub)) if __name__ == '__main__': main()
# Copyright (c) Facebook, Inc. and its affiliates. import json import os import copy import random import argparse def main(): parser = argparse.ArgumentParser() parser.add_argument("--all", default=False, type=bool, required=False, help="use all dialogues rather than only augmented dialogues") parser.add_argument("--delexlevel", default=2, type=int, required=False, help="0: no delex; 1: delex values in \"slots\"; 2: delex values in both \"slots\" and \"actions\"") parser.add_argument("--data", default="./accentor-sgd/", type=str, required=False, help="path to SGD") parser.add_argument("--target", default="./simpletod/", type=str, required=False, help="path to output") args = parser.parse_args() datafolder = args.data targetfolder = args.target for folder in ["train", "dev", "test"]: if not os.path.exists(targetfolder + folder): os.makedirs(targetfolder + folder) inlm = [] inlme = [] inlma = [] inlmb = [] incc = [] inlmf = [] fns = os.listdir(datafolder + folder) fns.sort() for fn in fns: if not fn.startswith("dialogue"): with open(datafolder + folder + "/" + fn, "r", encoding='utf8') as f: data = json.load(f) with open(targetfolder + folder + "/" + fn, "w", encoding='utf8') as f: json.dump(data, f, indent=1) continue with open(datafolder + folder + "/" + fn, "r", encoding='utf8') as f: data = json.load(f) i = 0 while i < len(data): dbs = [] slots = {} canmap = {} vmap = {} for j in range(len(data[i]["turns"])): if data[i]["turns"][j]["speaker"] != "SYSTEM": continue if "service_results" in data[i]["turns"][j]["frames"][0]: dbs += data[i]["turns"][j]["frames"][0]["service_results"] if len(data[i]["turns"][j]["frames"][0]["slots"]) != 0: slots = {} for k in range(len(data[i]["turns"][j]["frames"][0]["actions"])): assert(len(data[i]["turns"][j]["frames"][0]["actions"][k]["canonical_values"]) == len(data[i]["turns"][j]["frames"][0]["actions"][k]["values"])) for l in range(len(data[i]["turns"][j]["frames"][0]["actions"][k]["canonical_values"])): canmap[data[i]["turns"][j]["frames"][0]["actions"][k]["values"][l]] = data[i]["turns"][j]["frames"][0]["actions"][k]["canonical_values"][l] vmap[data[i]["turns"][j]["frames"][0]["actions"][k]["canonical_values"][l]] = data[i]["turns"][j]["frames"][0]["actions"][k]["values"][l] for k in range(len(data[i]["turns"][j]["frames"][0]["slots"])): s = data[i]["turns"][j]["frames"][0]["slots"][k]["slot"] slots[s] = data[i]["turns"][j]["utterance"][data[i]["turns"][j]["frames"][0]["slots"][k]["start"]:data[i]["turns"][j]["frames"][0]["slots"][k]["exclusive_end"]] db = {} for k in range(len(dbs)): matched = True for s in slots: if s not in dbs[k]: matched = False break if dbs[k][s] != canmap[slots[s]]: matched = False break if matched: db = copy.deepcopy(dbs[k]) for s in db: if db[s] in vmap: db[s] = vmap[db[s]] break data[i]["turns"][j]["frames"][0]["selecteddbslots"] = slots data[i]["turns"][j]["frames"][0]["selecteddb"] = db for j in range(1, len(data[i]["turns"]), 2): domain = data[i]["turns"][j]["frames"][0]["service"].split("_")[0].lower() assert(data[i]["turns"][j]["speaker"] == "SYSTEM") assert(len(data[i]["turns"][j]["frames"]) == 1) slots = copy.deepcopy(data[i]["turns"][j]["frames"][0]["slots"]) slots.sort(key = lambda x : -x["start"]) delex = data[i]["turns"][j]["utterance"] delexed = set() if args.delexlevel >= 1: for k in range(1, len(slots)): assert(slots[k-1]["start"] >= slots[k]["exclusive_end"]) for k in range(len(slots)): domain_slot = domain + "_" + slots[k]["slot"] delex = delex[:slots[k]["start"]] + "[" + domain_slot + "]" + delex[slots[k]["exclusive_end"]:] delexed.add(domain_slot) if args.delexlevel >= 2: slots2 = copy.deepcopy(data[i]["turns"][j]["frames"][0]["actions"]) slots2 = [x for x in slots2 if len(x["values"]) > 0] slots2.sort(key = lambda x : -len(x["values"][0])) for k in range(len(slots2)): domain_slot = domain + "_" + slots2[k]["slot"] if domain_slot in delexed: continue for l in range(len(slots2[k]["values"])): delex = delex.replace(slots2[k]["values"][l], "[" + domain_slot + "]") delexed.add(domain_slot) data[i]["turns"][j]["delex"] = delex target = '' belief = [] for k in range(len(data[i]["turns"][j-1]["frames"])): for slot in data[i]["turns"][j-1]["frames"][k]["state"]["slot_values"]: belief += [[data[i]["turns"][j-1]["frames"][k]["service"].split("_")[0].lower(), slot, data[i]["turns"][j-1]["frames"][k]["state"]["slot_values"][slot]]] belief.sort(key = lambda x : x[0] + " " + x[1]) for k in range(len(belief)): belief[k][2].sort() belief[k][2] = belief[k][2][0] belief = [x[0] + " " + x[1] + " " + x[2] for x in belief] target += '<|belief|> ' + ", ".join(belief) + ' <|endofbelief|> ' action = copy.deepcopy(data[i]["turns"][j]["frames"][0]["actions"]) action.sort(key = lambda x : x["act"]) action = [domain + " " + x["act"].lower() + " " + x["slot"] for x in action] targetaug = [] delexaug = [] tcpos = [] tcneg = [] for k in range(len(data[i]["turns"][j]["beginning"])): if "social" in data[i]["turns"][j]["beginning"][k]["justification"] or "useful" in data[i]["turns"][j]["beginning"][k]["justification"]: delexaug += [data[i]["turns"][j]["beginning"][k]["candidate"].strip() + ' ' + delex] targetaug += [target + '<|action|> ' + "chitchat, " + ", ".join(action) + ' <|endofaction|> ' + '<|response|> ' + data[i]["turns"][j]["beginning"][k]["candidate"].strip() + ' ' + delex + ' <|endofresponse|>'] tcpos += [' <|task|> ' + delex + ' <|endoftask|> ' + '<|chitchat|> ' + data[i]["turns"][j]["beginning"][k]["candidate"].strip() + ' <|endofchitchat|> '] else: tcneg += [' <|task|> ' + delex + ' <|endoftask|> ' + '<|chitchat|> ' + data[i]["turns"][j]["beginning"][k]["candidate"].strip() + ' <|endofchitchat|> '] for k in range(len(data[i]["turns"][j]["end"])): if "social" in data[i]["turns"][j]["end"][k]["justification"] or "useful" in data[i]["turns"][j]["end"][k]["justification"]: delexaug += [delex + ' ' + data[i]["turns"][j]["end"][k]["candidate"].strip()] targetaug += [target + '<|action|> ' + ", ".join(action) + ", chitchat" + ' <|endofaction|> ' + '<|response|> ' + delex + ' ' + data[i]["turns"][j]["end"][k]["candidate"].strip() + ' <|endofresponse|>'] tcpos += [' <|task|> ' + delex + ' <|endoftask|> ' + '<|chitchat|> ' + data[i]["turns"][j]["end"][k]["candidate"].strip() + ' <|endofchitchat|> '] else: tcneg += [' <|task|> ' + delex + ' <|endoftask|> ' + '<|chitchat|> ' + data[i]["turns"][j]["end"][k]["candidate"].strip() + ' <|endofchitchat|> '] target += '<|action|> ' + ", ".join(action) + ' <|endofaction|> ' target += '<|response|> ' + delex + ' <|endofresponse|>' data[i]["turns"][j]["target"] = target data[i]["turns"][j]["targetaug"] = targetaug data[i]["turns"][j]["delexaug"] = delexaug context = '<|context|> ' for k in range(j): if k % 2 == 0: context += '<|user|> ' else: context += '<|system|> ' context += data[i]["turns"][k]["utterance"] + " " context += '<|endofcontext|>' data[i]["turns"][j]["context"] = context inlm += [(context + target).replace("\n", " ").replace("\r", "")] assert("\n" not in inlm[-1]) inlme += [(context).replace("\n", " ").replace("\r", "")] if len(targetaug) != 0: for k in range(len(targetaug)): inlma += [(context + targetaug[k]).replace("\n", " ").replace("\r", "")] inlmb += [(context + targetaug[k]).replace("\n", " ").replace("\r", "")] inlmf += [(context + tcpos[k] + targetaug[k]).replace("\n", " ").replace("\r", "")] for l in range(len(tcneg)): inlmf += [(context + tcneg[l] + targetaug[k]).replace("\n", " ").replace("\r", "")] else: inlmb += [(context + target).replace("\n", " ").replace("\r", "")] for k in range(len(tcneg)): inlmf += [(context + tcneg[k] + target).replace("\n", " ").replace("\r", "")] incc += [context.replace('<|context|>', '').replace('<|endofcontext|>', '').replace('<|user|>', 'user:').replace('<|system|>', 'system:').replace('\t', ' ').strip(), '[DONE]'] i += 1 with open(targetfolder + folder + "/" + fn, "w") as f: json.dump(data, f, indent=1) random.shuffle(inlm) with open("lm.input."+folder+".txt", "w", encoding='utf8') as f: #SimpleTOD f.write('\n'.join(inlm)) with open("lm.input."+folder+".eval.txt", "w", encoding='utf8') as f: #used as the input during evaluation of SimpleTOD and SimpleTOD extension f.write('\n'.join(inlme)) with open("lm.input."+folder+".aug.txt", "w", encoding='utf8') as f: #SimpleTOD extension (augmented responses only) f.write('\n'.join(inlma)) with open("lm.input."+folder+".both.txt", "w", encoding='utf8') as f: #SimpleTOD extension (all responses) f.write('\n'.join(inlmb)) with open("lm.input."+folder+".cc.txt", "w", encoding='utf8') as f: #cc: chitchat f.write('\n'.join(incc+['[EXIT]'])) with open("lm.input."+folder+".ff.txt", "w", encoding='utf8') as f: #ff: free-form f.write('\n'.join(inlmf)) if __name__ == '__main__': random.seed(42) main()
# Copyright (c) Facebook, Inc. and its affiliates. from transformers import GPT2LMHeadModel, GPT2Tokenizer import torch import argparse import numpy as np import json from tqdm import tqdm def set_seed(args): np.random.seed(args.seed) torch.manual_seed(args.seed) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed) parser = argparse.ArgumentParser() parser.add_argument("--no_cuda", action="store_true", help="avoid using CUDA when available") parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") parser.add_argument("--model_name_or_path", type=str, default="output", help="path to pre-trained model or shortcut name") parser.add_argument("--input", type=str, help="input text file, each line corresponding to one instance") parser.add_argument("--output", type=str, help="output file") parser.add_argument("--eos_token_id", type=int, default=None, help="eos token id") parser.add_argument("--batch_size", type=int, default=1, help="batch size") parser.add_argument("--jobid", type=int, default=0, help="jobid") parser.add_argument("--jobnum", type=int, default=1, help="jobnum") args = parser.parse_args() args.device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count() set_seed(args) model = GPT2LMHeadModel.from_pretrained(args.model_name_or_path) tokenizer = GPT2Tokenizer.from_pretrained(args.model_name_or_path, pad_token='<PAD>') model.to(args.device) with open(args.input, "r") as f: prompts = f.read().strip().split("\n") batch_size = args.batch_size ret = [] for batch in tqdm(range(args.jobid, len(prompts), batch_size * args.jobnum)): prompt_text = prompts[batch: batch+batch_size] encodings_dict = tokenizer.batch_encode_plus(prompt_text, max_length=None, pad_to_max_length=True) input_ids = torch.tensor(encodings_dict['input_ids']) attn_mask = torch.tensor(encodings_dict['attention_mask']) seq_len = len(input_ids[0]) num_tokens_to_produce = 1024 - seq_len pad_token_id = tokenizer.pad_token_id eos_token_id = args.eos_token_id if eos_token_id is None: eos_token_id = tokenizer.eos_token_id eos_not_in_sents = torch.ones(input_ids.shape[0]).long() last_non_masked_idx = torch.sum(attn_mask, dim=1) - 1 start_idx = inp_idx = (last_non_masked_idx).view(-1, 1).repeat(1, tokenizer.vocab_size + len(tokenizer.additional_special_tokens)).unsqueeze(1) past = None position_ids = torch.tensor([list(range(seq_len)) for i in range(input_ids.shape[0])]) for i, position_ids_slice in enumerate(position_ids): position_ids_slice[last_non_masked_idx[i]:] = position_ids_slice[last_non_masked_idx[i]] input_ids = input_ids.to(args.device) attn_mask = attn_mask.to(args.device) eos_not_in_sents = eos_not_in_sents.to(args.device) start_idx = start_idx.to(args.device) position_ids = position_ids.to(args.device) for step in range(num_tokens_to_produce): outputs = model(input_ids, attention_mask=attn_mask, position_ids=position_ids) if step == 0: next_token_logits = outputs[0].gather(1, start_idx).squeeze(1) else: next_token_logits = outputs[0][:, -1, :] next_tokens = torch.argmax(next_token_logits, dim=-1) eos_not_in_sents.mul_(next_tokens.ne(eos_token_id).long()) tokens_to_add = next_tokens * (eos_not_in_sents) + pad_token_id * (1 - eos_not_in_sents) input_ids = torch.cat([input_ids, tokens_to_add.unsqueeze(-1)], dim=-1) attn_mask = torch.cat([attn_mask, torch.ones((attn_mask.shape[0], 1)).long().to(args.device)], dim=1) position_ids = torch.cat([position_ids, (position_ids[:, -1] + 1).unsqueeze(-1)], dim=1) if torch.max(eos_not_in_sents) == 0: break ret += [tokenizer.decode(output, skip_special_tokens=False, clean_up_tokenization_spaces=True).replace("<|endoftext|>", "") for output in input_ids] with open(args.output, "w") as f: json.dump(ret, f, indent=1)
# Copyright (c) Facebook, Inc. and its affiliates. import json import random import argparse import os parser = argparse.ArgumentParser() parser.add_argument("--data", default="./simpletod/", type=str, required=False, help="path to delexed & augmented SGD") args = parser.parse_args() def clean(x): return x.replace("\n", "").replace("\r", "").replace("\t", " ").strip() random.seed(42) pairs = {} pos = {} tot = {} for s in ["train", "dev", "test"]: pairs[s] = [] pos[s] = 0 tot[s] = 0 fns = os.listdir(args.data + s) fns.sort() for fn in fns: if not fn.startswith("dialogue") or not fn.endswith(".json"): continue with open(args.data + s + "/" + fn, "r", encoding='utf8') as f: data = json.load(f) for i in range(len(data)): t = '' for j in range(len(data[i]["turns"])): for ps in ["beginning", "end"]: if ps in data[i]["turns"][j]: for k in range(len(data[i]["turns"][j][ps])): tot[s] += 1 if data[i]["turns"][j][ps][k]["label"] == "good": pair = [t, data[i]["turns"][j]["delex"], clean(data[i]["turns"][j][ps][k]["candidate"]), 1 if ps == "beginning" else 2] pairs[s] += [pair] pos[s] += 1 else: pair = [t, data[i]["turns"][j]["delex"], clean(data[i]["turns"][j][ps][k]["candidate"]), 0] pairs[s] += [pair] if t != '': t += ' ' if j % 2 == 0: t += 'user: ' else: t += 'system: ' t += clean(data[i]["turns"][j]["utterance"]) for s in pos: print(s, pos[s], tot[s], pos[s]/tot[s]) for s in pairs: print(s, len(pairs[s])) random.shuffle(pairs["train"]) with open("arranger_input.json", "w", encoding='utf8') as f: json.dump(pairs, f, indent=1)
# Copyright (c) Facebook, Inc. and its affiliates. import nltk def bleuscorer(hyps, refs): #print(hyps, refs) bleu = [] for hyp, ref in zip(hyps, refs): hyp = hyp.split() ref = [a.split() for a in ref] #hyp = nltk.word_tokenize(hyp) #ref = [nltk.word_tokenize(a) for a in ref] bleu += [nltk.translate.bleu_score.sentence_bleu(ref, hyp)] return sum(bleu) / len(bleu) if __name__ == '__main__': print(bleuscorer(['the the the the the the the', 'there is a cat', 'it is'], [["the cat is on the mat", "there is a cat on the mat"], ["there is a cat on the mat"], ["it is true"]]))
# coding=utf-8 # Copyright (c) Facebook, Inc. and its affiliates. # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function import argparse import glob import logging import os import random import numpy as np import torch from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler, TensorDataset) from torch.utils.data.distributed import DistributedSampler try: from torch.utils.tensorboard import SummaryWriter except: from tensorboardX import SummaryWriter from tqdm import tqdm, trange from transformers import (WEIGHTS_NAME, BertConfig, BertForMultipleChoice, BertTokenizer, RobertaConfig, RobertaForMultipleChoice, RobertaTokenizer) from transformers import AdamW, get_linear_schedule_with_warmup import torch.nn as nn from utils_multiple_choice import (convert_examples_to_features, processors) logger = logging.getLogger(__name__) ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) for conf in (BertConfig, RobertaConfig)), ()) MODEL_CLASSES = { 'bert': (BertConfig, BertForMultipleChoice, BertTokenizer), 'roberta': (RobertaConfig, RobertaForMultipleChoice, RobertaTokenizer), } def select_field(features, field): return [ [ choice[field] for choice in feature.choices_features ] for feature in features ] def simple_accuracy(preds, labels): return (preds == labels).mean() def set_seed(args): random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed) def train(args, train_dataset, model, tokenizer): """ Train the model """ if args.local_rank in [-1, 0]: tb_writer = SummaryWriter() args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) if args.max_steps > 0: t_total = args.max_steps args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 else: t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs # Prepare optimizer and schedule (linear warmup and decay) no_decay = ['bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay}, {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} ] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total) if args.fp16: try: from apex import amp except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) # multi-gpu training (should be after apex fp16 initialization) if args.n_gpu > 1: model = torch.nn.DataParallel(model) # Distributed training (should be after apex fp16 initialization) if args.local_rank != -1: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True) # Train! logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_dataset)) logger.info(" Num Epochs = %d", args.num_train_epochs) logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d", args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1)) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", t_total) global_step = 0 tr_loss, logging_loss = 0.0, 0.0 best_dev_acc, best_dev_loss = 0.0, 99999999999.0 best_steps = 0 model.zero_grad() train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]) set_seed(args) # Added here for reproductibility (even between python 2 and 3) for _ in train_iterator: epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) for step, batch in enumerate(epoch_iterator): model.train() batch = tuple(t.to(args.device) for t in batch) inputs = {'input_ids': batch[0], 'attention_mask': batch[1], 'token_type_ids': batch[2] if args.model_type in ['bert'] else None, 'labels': batch[3]} outputs = model(**inputs) loss = outputs[0] # model outputs are always tuple in transformers (see doc) if args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu parallel training if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) else: loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) tr_loss += loss.item() if (step + 1) % args.gradient_accumulation_steps == 0: optimizer.step() scheduler.step() # Update learning rate schedule model.zero_grad() global_step += 1 if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: # Log metrics if args.local_rank == -1 and args.evaluate_during_training: # Only evaluate when single GPU otherwise metrics may not average well results = evaluate(args, model, tokenizer) for key, value in results.items(): tb_writer.add_scalar('eval_{}'.format(key), value, global_step) if results["eval_acc"] > best_dev_acc: best_dev_acc = results["eval_acc"] best_dev_loss = results["eval_loss"] best_steps = global_step if args.do_test: results_test = evaluate(args, model, tokenizer, test=True) for key, value in results_test.items(): tb_writer.add_scalar('test_{}'.format(key), value, global_step) logger.info("test acc: %s, loss: %s, global steps: %s", str(results_test['eval_acc']), str(results_test['eval_loss']), str(global_step)) tb_writer.add_scalar('lr', scheduler.get_lr()[0], global_step) tb_writer.add_scalar('loss', (tr_loss - logging_loss)/args.logging_steps, global_step) logger.info("Average loss: %s at global step: %s", str((tr_loss - logging_loss)/args.logging_steps), str(global_step)) logging_loss = tr_loss if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0: # Save model checkpoint output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step)) if not os.path.exists(output_dir): os.makedirs(output_dir) model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training model_to_save.save_pretrained(output_dir) tokenizer.save_vocabulary(output_dir) torch.save(args, os.path.join(output_dir, 'training_args.bin')) logger.info("Saving model checkpoint to %s", output_dir) if args.max_steps > 0 and global_step > args.max_steps: epoch_iterator.close() break if args.max_steps > 0 and global_step > args.max_steps: train_iterator.close() break if args.local_rank in [-1, 0]: tb_writer.close() return global_step, tr_loss / global_step, best_steps def evaluate(args, model, tokenizer, prefix="", test=False): eval_task_names = (args.task_name,) eval_outputs_dirs = (args.output_dir,) results = {} for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs): eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, evaluate=not test, test=test) if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]: os.makedirs(eval_output_dir) args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) # Note that DistributedSampler samples randomly eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset) eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) # multi-gpu evaluate if args.n_gpu > 1: model = torch.nn.DataParallel(model) logger.info("***** Running evaluation {} *****".format(prefix)) logger.info(" Num examples = %d", len(eval_dataset)) logger.info(" Batch size = %d", args.eval_batch_size) eval_loss = 0.0 nb_eval_steps = 0 preds = None out_label_ids = None for batch in tqdm(eval_dataloader, desc="Evaluating"): model.eval() batch = tuple(t.to(args.device) for t in batch) with torch.no_grad(): inputs = {'input_ids': batch[0], 'attention_mask': batch[1], 'token_type_ids': batch[2] if args.model_type in ['bert'] else None, 'labels': batch[3]} outputs = model(**inputs) tmp_eval_loss, logits = outputs[:2] eval_loss += tmp_eval_loss.mean().item() nb_eval_steps += 1 if preds is None: preds = logits.detach().cpu().numpy() out_label_ids = inputs['labels'].detach().cpu().numpy() else: preds = np.append(preds, logits.detach().cpu().numpy(), axis=0) out_label_ids = np.append(out_label_ids, inputs['labels'].detach().cpu().numpy(), axis=0) eval_loss = eval_loss / nb_eval_steps output_logits_file = os.path.join(eval_output_dir, "is_test_" + str(test).lower() + "_eval_logits.txt") with open(output_logits_file, "w") as writer: logits_list = list(preds) for i in range(len(logits_list)): for j in range(len(logits_list[i])): writer.write(str(logits_list[i][j])) if j == len(logits_list[i]) - 1: writer.write("\n") else: writer.write(" ") preds = np.argmax(preds, axis=1) acc = simple_accuracy(preds, out_label_ids) result = {"eval_acc": acc, "eval_loss": eval_loss} results.update(result) output_eval_file = os.path.join(eval_output_dir, "is_test_" + str(test).lower() + "_eval_results.txt") with open(output_eval_file, "w") as writer: logger.info("***** Eval results {} *****".format(str(prefix) + " is test:" + str(test))) writer.write("model =%s\n" % str(args.model_name_or_path)) writer.write("total batch size=%d\n" % (args.per_gpu_train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))) writer.write("train num epochs=%d\n" % args.num_train_epochs) writer.write("fp16 =%s\n" % args.fp16) writer.write("max seq length =%d\n" % args.max_seq_length) for key in sorted(result.keys()): logger.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) return results def load_and_cache_examples(args, task, tokenizer, evaluate=False, test=False): if args.local_rank not in [-1, 0]: torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache processor = processors[task]() # Load data features from cache or dataset file if evaluate: cached_mode = 'dev' elif test: cached_mode = 'test' else: cached_mode = 'train' assert (evaluate == True and test == True) == False cached_features_file = os.path.join(args.data_dir, 'cached_{}_{}_{}_{}'.format( cached_mode, list(filter(None, args.model_name_or_path.split('/'))).pop(), str(args.max_seq_length), str(task))) if os.path.exists(cached_features_file) and not args.overwrite_cache: logger.info("Loading features from cached file %s", cached_features_file) features = torch.load(cached_features_file) else: logger.info("Creating features from dataset file at %s", args.data_dir) label_list = processor.get_labels() if evaluate: examples = processor.get_dev_examples(args.data_dir) elif test: examples = processor.get_test_examples(args.data_dir) else: examples = processor.get_train_examples(args.data_dir) logger.info("Training number: %s", str(len(examples))) features = convert_examples_to_features( examples, label_list, args.max_seq_length, tokenizer, pad_on_left=False, pad_token_segment_id=0 ) if args.local_rank in [-1, 0]: logger.info("Saving features into cached file %s", cached_features_file) torch.save(features, cached_features_file) if args.local_rank == 0: torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache # Convert to Tensors and build dataset all_input_ids = torch.tensor(select_field(features, 'input_ids'), dtype=torch.long) all_input_mask = torch.tensor(select_field(features, 'input_mask'), dtype=torch.long) all_segment_ids = torch.tensor(select_field(features, 'segment_ids'), dtype=torch.long) all_label_ids = torch.tensor([f.label for f in features], dtype=torch.long) dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids) return dataset def main(): parser = argparse.ArgumentParser() ## Required parameters parser.add_argument("--data_dir", default=None, type=str, required=True, help="The input data dir. Should contain the .tsv files (or other data files) for the task.") parser.add_argument("--model_type", default=None, type=str, required=True, help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys())) parser.add_argument("--model_name_or_path", default=None, type=str, required=True, help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS)) parser.add_argument("--task_name", default=None, type=str, required=True, help="The name of the task to train selected in the list: " + ", ".join(processors.keys())) parser.add_argument("--output_dir", default=None, type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.") ## Other parameters parser.add_argument("--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name") parser.add_argument("--tokenizer_name", default="", type=str, help="Pretrained tokenizer name or path if not the same as model_name") parser.add_argument("--cache_dir", default="", type=str, help="Where do you want to store the pre-trained models downloaded from s3") parser.add_argument("--max_seq_length", default=128, type=int, help="The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded.") parser.add_argument("--do_train", action='store_true', help="Whether to run training.") parser.add_argument("--do_eval", action='store_true', help="Whether to run eval on the dev set.") parser.add_argument("--do_test", action='store_true', help='Whether to run test on the test set') parser.add_argument("--evaluate_during_training", action='store_true', help="Run evaluation during training at each logging step.") parser.add_argument("--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.") parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.") parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.") parser.add_argument('--gradient_accumulation_steps', type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.") parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight deay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.") parser.add_argument("--max_steps", default=-1, type=int, help="If > 0: set total number of training steps to perform. Override num_train_epochs.") parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") parser.add_argument('--logging_steps', type=int, default=50, help="Log every X updates steps.") parser.add_argument('--save_steps', type=int, default=50, help="Save checkpoint every X updates steps.") parser.add_argument("--eval_all_checkpoints", action='store_true', help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number") parser.add_argument("--no_cuda", action='store_true', help="Avoid using CUDA when available") parser.add_argument('--overwrite_output_dir', action='store_true', help="Overwrite the content of the output directory") parser.add_argument('--overwrite_cache', action='store_true', help="Overwrite the cached training and evaluation sets") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument('--fp16', action='store_true', help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit") parser.add_argument('--fp16_opt_level', type=str, default='O1', help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html") parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.") parser.add_argument('--server_port', type=str, default='', help="For distant debugging.") args = parser.parse_args() if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir: raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir)) # Setup distant debugging if needed if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend='nccl') args.n_gpu = 1 args.device = device # Setup logging logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt = '%m/%d/%Y %H:%M:%S', level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN) logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16) # Set seed set_seed(args) args.task_name = args.task_name.lower() if args.task_name not in processors: raise ValueError("Task not found: %s" % (args.task_name)) processor = processors[args.task_name]() label_list = processor.get_labels() num_labels = len(label_list) # Load pretrained model and tokenizer if args.local_rank not in [-1, 0]: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab args.model_type = args.model_type.lower() config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path, num_labels=num_labels, finetuning_task=args.task_name, cache_dir=args.cache_dir if args.cache_dir else None) tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case, cache_dir=args.cache_dir if args.cache_dir else None) model = model_class.from_pretrained(args.model_name_or_path, from_tf=bool('.ckpt' in args.model_name_or_path), config=config, cache_dir=args.cache_dir if args.cache_dir else None) if args.local_rank == 0: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab model.to(args.device) logger.info("Training/evaluation parameters %s", args) best_steps = 0 # Training if args.do_train: train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False) global_step, tr_loss, best_steps = train(args, train_dataset, model, tokenizer) logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained() if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0): # Create output directory if needed if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: os.makedirs(args.output_dir) logger.info("Saving model checkpoint to %s", args.output_dir) # Save a trained model, configuration and tokenizer using `save_pretrained()`. # They can then be reloaded using `from_pretrained()` model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training model_to_save.save_pretrained(args.output_dir) tokenizer.save_pretrained(args.output_dir) # Good practice: save your training arguments together with the trained model torch.save(args, os.path.join(args.output_dir, 'training_args.bin')) # Load a trained model and vocabulary that you have fine-tuned model = model_class.from_pretrained(args.output_dir) tokenizer = tokenizer_class.from_pretrained(args.output_dir) model.to(args.device) # Evaluation results = {} if args.do_eval and args.local_rank in [-1, 0]: if not args.do_train: args.output_dir = args.model_name_or_path checkpoints = [args.output_dir] if args.eval_all_checkpoints: checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True))) logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging logger.info("Evaluate the following checkpoints: %s", checkpoints) for checkpoint in checkpoints: global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else "" prefix = checkpoint.split('/')[-1] if checkpoint.find('checkpoint') != -1 else "" model = model_class.from_pretrained(checkpoint) model.to(args.device) result = evaluate(args, model, tokenizer, prefix=prefix) result = dict((k + '_{}'.format(global_step), v) for k, v in result.items()) results.update(result) if args.do_test and args.local_rank in [-1, 0]: if not args.do_train: args.output_dir = args.model_name_or_path checkpoints = [args.output_dir] logger.info("Evaluate the following checkpoints: %s", checkpoints) for checkpoint in checkpoints: global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else "" prefix = checkpoint.split('/')[-1] if checkpoint.find('checkpoint') != -1 else "" model = model_class.from_pretrained(checkpoint) model.to(args.device) result = evaluate(args, model, tokenizer, prefix=prefix, test=True) result = dict((k + '_{}'.format(global_step), v) for k, v in result.items()) results.update(result) if best_steps: logger.info("best steps of eval acc is the following checkpoints: %s", best_steps) return results if __name__ == "__main__": main()
# coding=utf-8 # Copyright (c) Facebook, Inc. and its affiliates. # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function import logging import os import sys from io import open import json import csv import glob import tqdm from typing import List from transformers import PreTrainedTokenizer import random logger = logging.getLogger(__name__) class InputExample(object): """A single training/test example for multiple choice""" def __init__(self, example_id, question, contexts, endings, label=None): """Constructs a InputExample. Args: example_id: Unique id for the example. contexts: list of str. The untokenized text of the first sequence (context of corresponding question). question: string. The untokenized text of the second sequence (question). endings: list of str. multiple choice's options. Its length must be equal to contexts' length. label: (Optional) string. The label of the example. This should be specified for train and dev examples, but not for test examples. """ self.example_id = example_id self.question = question self.contexts = contexts self.endings = endings self.label = label class InputFeatures(object): def __init__(self, example_id, choices_features, label ): self.example_id = example_id self.choices_features = [ { 'input_ids': input_ids, 'input_mask': input_mask, 'segment_ids': segment_ids } for input_ids, input_mask, segment_ids in choices_features ] self.label = label class DataProcessor(object): """Base class for data converters for multiple choice data sets.""" def get_train_examples(self, data_dir): """Gets a collection of `InputExample`s for the train set.""" raise NotImplementedError() def get_dev_examples(self, data_dir): """Gets a collection of `InputExample`s for the dev set.""" raise NotImplementedError() def get_test_examples(self, data_dir): """Gets a collection of `InputExample`s for the test set.""" raise NotImplementedError() def get_labels(self): """Gets the list of labels for this data set.""" raise NotImplementedError() class ACCProcessor(DataProcessor): def __init__(self): self.D = [[], [], []] datasetfile = "arranger_input.json" with open(datasetfile, "r") as f: data = json.load(f) for sid in range(2): dt = ["train", "dev"][sid] for i in range(len(data[dt])): d = [data[dt][i][0].lower(), data[dt][i][1].lower(), data[dt][i][2].lower(), data[dt][i][3]] self.D[sid] += [d] sid = 2 for fns in [["lm.input.dev.cc.txt", "lm.output.dev.cc.txt", "dev.inference.gpt2_10epoch_1e-3_fp16.json"], ["lm.input.test.cc.txt", "lm.output.test.cc.txt", "test.inference.gpt2_10epoch_1e-3_fp16.json"]]: with open(fns[0], "r") as f: data = f.read().split("\n")[0:-1:2] data_d = data with open(fns[1], "r") as f: data = f.read() data = data.split("[TransformerGenerator]:")[1:] for i in range(len(data)): data[i] = data[i].split("\n")[0].strip() data_cc = data with open(fns[2], "r") as f: data = json.load(f) for i in range(len(data)): data[i] = data[i].split("<|response|>") if len(data[i]) == 1: data[i] += [''] elif len(data[i]) > 2: data[i] = ["<|response|>".join(data[i][:-2]), data[i][-1]] self.D[2] += [[data_d[i].strip(), data[i][1], data_cc[i].strip(), 0]] def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self.D[0], "train") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self.D[2], "test") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self.D[1], "dev") def get_labels(self): """See base class.""" return ["0", "1", "2"] def _create_examples(self, data, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, d) in enumerate(data): acc_id = "%s-%d" % (set_type, i) examples.append( InputExample( example_id=acc_id, question="", contexts=[data[i][0], data[i][0], data[i][0]], endings=[data[i][1], data[i][2] + " " + data[i][1], data[i][1] + " " + data[i][2]], label=str(data[i][3]))) return examples def convert_examples_to_features( examples: List[InputExample], label_list: List[str], max_length: int, tokenizer: PreTrainedTokenizer, pad_token_segment_id=0, pad_on_left=False, pad_token=0, mask_padding_with_zero=True, ) -> List[InputFeatures]: """ Loads a data file into a list of `InputFeatures` """ label_map = {label : i for i, label in enumerate(label_list)} features = [] for (ex_index, example) in tqdm.tqdm(enumerate(examples), desc="convert examples to features"): if ex_index % 10000 == 0: logger.info("Writing example %d of %d" % (ex_index, len(examples))) choices_features = [] for ending_idx, (context, ending) in enumerate(zip(example.contexts, example.endings)): text_a = context if example.question.find("_") != -1: text_b = example.question.replace("_", ending) else: text_b = example.question + " " + ending inputs = tokenizer.encode_plus( text_a, text_b, add_special_tokens=True, max_length=max_length, ) input_ids, token_type_ids = inputs["input_ids"], inputs["token_type_ids"] # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. attention_mask = [1 if mask_padding_with_zero else 0] * len(input_ids) # Zero-pad up to the sequence length. padding_length = max_length - len(input_ids) if pad_on_left: input_ids = ([pad_token] * padding_length) + input_ids attention_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + attention_mask token_type_ids = ([pad_token_segment_id] * padding_length) + token_type_ids else: input_ids = input_ids + ([pad_token] * padding_length) attention_mask = attention_mask + ([0 if mask_padding_with_zero else 1] * padding_length) token_type_ids = token_type_ids + ([pad_token_segment_id] * padding_length) assert len(input_ids) == max_length assert len(attention_mask) == max_length assert len(token_type_ids) == max_length choices_features.append((input_ids, attention_mask, token_type_ids)) label = label_map[example.label] if ex_index < 2: logger.info("*** Example ***") logger.info("race_id: {}".format(example.example_id)) for choice_idx, (input_ids, attention_mask, token_type_ids) in enumerate(choices_features): logger.info("choice: {}".format(choice_idx)) logger.info("input_ids: {}".format(' '.join(map(str, input_ids)))) logger.info("attention_mask: {}".format(' '.join(map(str, attention_mask)))) logger.info("token_type_ids: {}".format(' '.join(map(str, token_type_ids)))) logger.info("label: {}".format(label)) features.append( InputFeatures( example_id=example.example_id, choices_features=choices_features, label=label, ) ) return features processors = { "acc": ACCProcessor, } MULTIPLE_CHOICE_TASKS_NUM_LABELS = { "acc", 3 }
# Copyright (c) Facebook, Inc. and its affiliates. import json for fns in [["./lm.input.dev.eval.txt", "./lm.output.dev.cc.txt", "./dev.inference.gpt2_10epoch_1e-3_fp16.json", "lm.input.dev.eval.ff.txt"], ["./lm.input.test.eval.txt", "./lm.output.test.cc.txt", "./test.inference.gpt2_10epoch_1e-3_fp16.json", "lm.input.test.eval.ff.txt"]]: with open(fns[0], "r", encoding='utf8') as f: context = f.read().strip().split("\n") with open(fns[1], "r", encoding='utf8') as f: cc = f.read().strip() cc = cc.split("[TransformerGenerator]:")[1:] for i in range(len(cc)): cc[i] = cc[i].split("\n")[0].strip() with open(fns[2], "r", encoding='utf8') as f: task = json.load(f) print(len(context), len(cc), len(task)) assert(len(context) == len(cc)) assert(len(cc) == len(task)) with open(fns[3], "w", encoding='utf8') as f: for i in range(len(cc)): t = task[i].split("<|response|>") if len(t) >= 2: t = t[-1].strip() else: t = "" b = task[i].split("<|belief|>") if len(b) >= 2: b = b[1].split("<|endofbelief|>") if len(b) == 2: b = b[0] else: b = "" else: b = "" f.write(context[i] + " <|task|> " + t + " <|endoftask|> <|chitchat|> " + cc[i] + ' <|endofchitchat|> <|belief|>' + b + "<|endofbelief|>\n")
# Copyright (c) Facebook, Inc. and its affiliates. import json with open("./acc_arranger_roberta_base_3epoch/is_test_true_eval_logits.txt", "r") as f: model_outputs = f.read().strip().split("\n") for i in range(len(model_outputs)): model_outputs[i] = model_outputs[i].split() for j in range(len(model_outputs[i])): model_outputs[i][j] = float(model_outputs[i][j]) assert(len(model_outputs[i]) == 3) print(len(model_outputs)) for fns in [["./lm.input.dev.cc.txt", "./lm.output.dev.cc.txt", "./dev.inference.gpt2_10epoch_1e-3_fp16.json", "./dev.inference.arranger_3epoch.json"], ["./lm.input.test.cc.txt", "./lm.output.test.cc.txt", "./test.inference.gpt2_10epoch_1e-3_fp16.json", "./test.inference.arranger_3epoch.json"]]: with open(fns[0], "r") as f: data = f.read().split("\n")[0:-1:2] print(len(data)) data_d = data with open(fns[1], "r") as f: data = f.read() data = data.split("[TransformerGenerator]:")[1:] for i in range(len(data)): data[i] = data[i].split("\n")[0].strip() print(len(data)) data_cc = data with open(fns[2], "r") as f: data = json.load(f) print(len(data)) eval_data = [] for i in range(len(data)): data[i] = data[i].split("<|response|>") if len(data[i]) == 1: data[i] += [''] elif len(data[i]) > 2: data[i] = ["<|response|>".join(data[i][:-2]), data[i][-1]] eval_data += [[data_d[i].strip(), data[i][1], data_cc[i].strip(), 0]] print(len(eval_data)) stats = {0:0, 1:0, 2:0} for i in range(len(data)): assert(len(model_outputs[i]) == 3) o = 0 for j in range(1, 3): if model_outputs[i][j] > model_outputs[i][o]: o = j stats[o] += 1 if o == 0: data[i] = "<|response|>".join(data[i]) elif o == 1: data[i] = data[i][0] + "<|response|> " + data_cc[i].strip() + " " + data[i][1].strip() else: data[i] = data[i][0] + "<|response|> " + data[i][1].strip() + " " + data_cc[i].strip() print(len(data), len(model_outputs)) print(stats) model_outputs = model_outputs[len(data):] with open(fns[3], "w", encoding='utf8') as f: json.dump(data, f, indent=1)
# Copyright (c) Facebook, Inc. and its affiliates. import json import argparse if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--source", default="./MultiWOZ_2.1/data.json", type=str, required=False, help="Path to the MultiWOZ dataset.") args = parser.parse_args() with open("candidates-multiwoz.json", "r", encoding='utf8') as f: augmentation = json.load(f) with open(args.source, "r", encoding='utf8') as f: data = json.load(f) data = {x:data[x] for x in data if x in augmentation} for x in data: for i in range(1, len(data[x]["log"]), 2): data[x]["log"][i]["beginning"] = [] data[x]["log"][i]["end"] = [] for cc in augmentation[x]: data[x]["log"][cc[0]][cc[1]] += [{"candidate": cc[2], "label": cc[3], "justification": cc[4]}] with open("accentor-multiwoz-1k.json", "w", encoding='utf8') as f: json.dump(data, f, indent=1, ensure_ascii=False)
# Copyright (c) Facebook, Inc. and its affiliates. import json import argparse import os if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--source", default="./dstc8-schema-guided-dialogue", type=str, required=False, help="Path to the SGD dataset.") parser.add_argument("--target", default="./accentor-sgd", type=str, required=False, help="The target directory to store ACCENTOR-SGD.") args = parser.parse_args() with open("candidates-sgd.json", "r", encoding='utf8') as f: augmentation = json.load(f) for subdir in ["train", "dev", "test"]: targetdir = os.path.join(args.target, subdir) sourcedir = os.path.join(args.source, subdir) os.makedirs(targetdir, exist_ok=True) fns = os.listdir(sourcedir) for fn in fns: if not fn.endswith(".json"): continue with open(os.path.join(sourcedir, fn), "r", encoding='utf8') as f: data = json.load(f) if fn.startswith("dialogue"): for i in range(len(data)): for j in range(1, len(data[i]["turns"]), 2): data[i]["turns"][j]["beginning"] = [] data[i]["turns"][j]["end"] = [] for cc in augmentation[subdir + data[i]["dialogue_id"]]: data[i]["turns"][cc[0]][cc[1]] += [{"candidate": cc[2], "label": cc[3], "justification": cc[4]}] with open(os.path.join(targetdir, fn), "w", encoding='utf8') as f: json.dump(data, f, indent=1, ensure_ascii=False)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # Implementation adapted from Slimmable - https://github.com/JiahuiYu/slimmable_networks import torch class CrossEntropyLossSoft(torch.nn.modules.loss._Loss): """ inplace distillation for image classification """ def forward(self, output, target): output_log_prob = torch.nn.functional.log_softmax(output, dim=1) target = target.unsqueeze(1) output_log_prob = output_log_prob.unsqueeze(2) cross_entropy_loss = -torch.bmm(target, output_log_prob) return cross_entropy_loss.mean() class KLLossSoft(torch.nn.modules.loss._Loss): """ inplace distillation for image classification output: output logits of the student network target: output logits of the teacher network T: temperature KL(p||q) = Ep \log p - \Ep log q """ def forward(self, output, soft_logits, target=None, temperature=1., alpha=0.9): output, soft_logits = output / temperature, soft_logits / temperature soft_target_prob = torch.nn.functional.softmax(soft_logits, dim=1) output_log_prob = torch.nn.functional.log_softmax(output, dim=1) kd_loss = -torch.sum(soft_target_prob * output_log_prob, dim=1) if target is not None: n_class = output.size(1) target = torch.zeros_like(output).scatter(1, target.view(-1, 1), 1) target = target.unsqueeze(1) output_log_prob = output_log_prob.unsqueeze(2) ce_loss = -torch.bmm(target, output_log_prob).squeeze() loss = alpha*temperature* temperature*kd_loss + (1.0-alpha)*ce_loss else: loss = kd_loss if self.reduction == 'mean': return loss.mean() elif self.reduction == 'sum': return loss.sum() return loss class CrossEntropyLossSmooth(torch.nn.modules.loss._Loss): def __init__(self, label_smoothing=0.1): super(CrossEntropyLossSmooth, self).__init__() self.eps = label_smoothing """ label smooth """ def forward(self, output, target): n_class = output.size(1) one_hot = torch.zeros_like(output).scatter(1, target.view(-1, 1), 1) target = one_hot * (1 - self.eps) + self.eps / n_class output_log_prob = torch.nn.functional.log_softmax(output, dim=1) target = target.unsqueeze(1) output_log_prob = output_log_prob.unsqueeze(2) loss = -torch.bmm(target, output_log_prob) if self.reduction == 'mean': return loss.mean() elif self.reduction == 'sum': return loss.sum() return loss def f_divergence(q_logits, p_logits, alpha, iw_clip=1e3): assert isinstance(alpha, float) q_prob = torch.nn.functional.softmax(q_logits, dim=1).detach() p_prob = torch.nn.functional.softmax(p_logits, dim=1).detach() q_log_prob = torch.nn.functional.log_softmax(q_logits, dim=1) #gradient is only backpropagated here importance_ratio = p_prob / q_prob if abs(alpha) < 1e-3: importance_ratio = importance_ratio.clamp(0, iw_clip) f = -importance_ratio.log() f_base = 0 rho_f = importance_ratio.log() - 1.0 elif abs(alpha - 1.0) < 1e-3: f = importance_ratio * importance_ratio.log() f_base = 0 rho_f = importance_ratio else: iw_alpha = torch.pow(importance_ratio, alpha) iw_alpha = iw_alpha.clamp(0, iw_clip) f = iw_alpha / alpha / (alpha - 1.0) f_base = 1.0 / alpha / (alpha - 1.0) rho_f = iw_alpha / alpha + f_base loss = torch.sum(q_prob * (f - f_base), dim=1) grad_loss = -torch.sum(q_prob * rho_f * q_log_prob, dim=1) return loss, grad_loss """ It's often necessary to clip the maximum gradient value (e.g., 1.0) when using this adaptive KD loss """ class AdaptiveLossSoft(torch.nn.modules.loss._Loss): def __init__(self, alpha_min=-1.0, alpha_max=1.0, iw_clip=5.0): super(AdaptiveLossSoft, self).__init__() self.alpha_min = alpha_min self.alpha_max = alpha_max self.iw_clip = iw_clip def forward(self, output, target, alpha_min=None, alpha_max=None): alpha_min = alpha_min or self.alpha_min alpha_max = alpha_max or self.alpha_max loss_left, grad_loss_left = f_divergence(output, target, alpha_min, iw_clip=self.iw_clip) loss_right, grad_loss_right = f_divergence(output, target, alpha_max, iw_clip=self.iw_clip) ind = torch.gt(loss_left, loss_right).float() loss = ind * grad_loss_left + (1.0 - ind) * grad_loss_right if self.reduction == 'mean': return loss.mean() elif self.reduction == 'sum': return loss.sum() return loss
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import argparse import random import torch import torch.nn as nn import torch.distributed as dist import torch.multiprocessing as mp import models from utils.config import setup import utils.comm as comm import utils.saver as saver from data.data_loader import build_data_loader from evaluate import attentive_nas_eval as attentive_nas_eval import utils.logging as logging import argparse """ using multiple nodes to run evolutionary search: 1) each GPU will evaluate its own sub-networks 2) all evaluation results will be aggregated on GPU 0 """ parser = argparse.ArgumentParser(description='Test AlphaNet Models') parser.add_argument('--config-file', default='./configs/parallel_supernet_evo_search.yml') parser.add_argument('--machine-rank', default=0, type=int, help='machine rank, distributed setting') parser.add_argument('--num-machines', default=1, type=int, help='number of nodes, distributed setting') parser.add_argument('--dist-url', default="tcp://127.0.0.1:10001", type=str, help='init method, distributed setting') parser.add_argument('--seed', default=1, type=int, help='default random seed') run_args = parser.parse_args() logger = logging.get_logger(__name__) def eval_worker(gpu, ngpus_per_node, args): args.gpu = gpu # local rank, local machine cuda id args.local_rank = args.gpu args.batch_size = args.batch_size_per_gpu global_rank = args.gpu + args.machine_rank * ngpus_per_node dist.init_process_group( backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=global_rank ) # Setup logging format. logging.setup_logging("stdout.log", 'w') # synchronize is needed here to prevent a possible timeout after calling # init_process_group # See: https://github.com/facebookresearch/maskrcnn-benchmark/issues/172 comm.synchronize() args.rank = comm.get_rank() # global rank torch.cuda.set_device(args.gpu) random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) # build the supernet logger.info("=> creating model '{}'".format(args.arch)) model = models.model_factory.create_model(args) model.cuda(args.gpu) model = comm.get_parallel_model(model, args.gpu) #local rank # define loss function (criterion) criterion = nn.CrossEntropyLoss().cuda() ## load dataset, train_sampler: distributed train_loader, val_loader, train_sampler = build_data_loader(args) assert args.resume #reloading model model.module.load_weights_from_pretrained_models(args.resume) if train_sampler: train_sampler.set_epoch(0) targeted_min_flops = args.evo_search.targeted_min_flops targeted_max_flops = args.evo_search.targeted_max_flops # run evolutionary search parent_popu = [] for idx in range(args.evo_search.parent_popu_size): if idx == 0: cfg = model.module.sample_min_subnet() else: cfg = model.module.sample_active_subnet_within_range( targeted_min_flops, targeted_max_flops ) cfg['net_id'] = f'net_{idx % args.world_size}_evo_0_{idx}' parent_popu.append(cfg) pareto_global = {} for evo in range(args.evo_search.evo_iter): # partition the set of candidate sub-networks # and send them to each GPU for parallel evaluation # sub-networks to be evaluated on GPU {args.rank} my_subnets_to_be_evaluated = {} n_evaluated = len(parent_popu) // args.world_size * args.world_size for cfg in parent_popu[:n_evaluated]: if cfg['net_id'].startswith(f'net_{args.rank}_'): my_subnets_to_be_evaluated[cfg['net_id']] = cfg # aggregating all evaluation results eval_results = attentive_nas_eval.validate( my_subnets_to_be_evaluated, train_loader, val_loader, model, criterion, args, logger, ) # update the Pareto frontier # in this case, we search the best FLOPs vs. accuracy trade-offs for cfg in eval_results: f = round(cfg['flops'] / args.evo_search.step) * args.evo_search.step if f not in pareto_global or pareto_global[f]['acc1'] < cfg['acc1']: pareto_global[f] = cfg # next batch of sub-networks to be evaluated parent_popu = [] # mutate for idx in range(args.evo_search.mutate_size): while True: old_cfg = random.choice(list(pareto_global.values())) cfg = model.module.mutate_and_reset(old_cfg, prob=args.evo_search.mutate_prob) flops = model.module.compute_active_subnet_flops() if flops >= targeted_min_flops and flops <= targeted_max_flops: break cfg['net_id'] = f'net_{idx % args.world_size}_evo_{evo}_mutate_{idx}' parent_popu.append(cfg) # cross over for idx in range(args.evo_search.crossover_size): while True: cfg1 = random.choice(list(pareto_global.values())) cfg2 = random.choice(list(pareto_global.values())) cfg = model.module.crossover_and_reset(cfg1, cfg2) flops = model.module.compute_active_subnet_flops() if flops >= targeted_min_flops and flops <= targeted_max_flops: break cfg['net_id'] = f'net_{idx % args.world_size}_evo_{evo}_crossover_{idx}' parent_popu.append(cfg) if __name__ == '__main__': # setup enviroments args = setup(run_args.config_file) args.dist_url = run_args.dist_url args.machine_rank = run_args.machine_rank args.num_nodes = run_args.num_machines ngpus_per_node = torch.cuda.device_count() if args.multiprocessing_distributed: # Since we have ngpus_per_node processes per node, the total world_size # needs to be adjusted accordingly args.world_size = ngpus_per_node * args.num_nodes assert args.world_size > 1, "only support DDP settings" # Use torch.multiprocessing.spawn to launch distributed processes: the # eval_worker process function mp.spawn(eval_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args)) else: raise NotImplementedError
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # Modified from AttentiveNAS (https://github.com/facebookresearch/AttentiveNAS) import argparse import builtins import math import os import random import shutil import time import warnings import sys import operator from datetime import date import torch import torch.nn as nn #from torch.utils.tensorboard import SummaryWriter import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.distributed as dist import torch.optim import torch.multiprocessing as mp import torch.utils.data import torch.utils.data.distributed from data.data_loader import build_data_loader from utils.config import setup import utils.saver as saver from utils.progress import AverageMeter, ProgressMeter, accuracy import utils.comm as comm import utils.logging as logging from evaluate import attentive_nas_eval as attentive_nas_eval from solver import build_optimizer, build_lr_scheduler import models from copy import deepcopy import numpy as np import loss_ops as loss_ops parser = argparse.ArgumentParser(description='AlphaNet Training') parser.add_argument('--config-file', default=None, type=str, help='training configuration') parser.add_argument('--machine-rank', default=0, type=int, help='machine rank, distributed setting') parser.add_argument('--num-machines', default=1, type=int, help='number of nodes, distributed setting') parser.add_argument('--dist-url', default="tcp://127.0.0.1:10001", type=str, help='init method, distributed setting') logger = logging.get_logger(__name__) def build_args_and_env(run_args): assert run_args.config_file and os.path.isfile(run_args.config_file), 'cannot locate config file' args = setup(run_args.config_file) args.config_file = run_args.config_file #load config assert args.distributed and args.multiprocessing_distributed, 'only support DDP training' args.distributed = True args.machine_rank = run_args.machine_rank args.num_nodes = run_args.num_machines args.dist_url = run_args.dist_url args.models_save_dir = os.path.join(args.models_save_dir, args.exp_name) if not os.path.exists(args.models_save_dir): os.makedirs(args.models_save_dir) #backup config file saver.copy_file(args.config_file, '{}/{}'.format(args.models_save_dir, os.path.basename(args.config_file))) args.checkpoint_save_path = os.path.join( args.models_save_dir, 'alphanet.pth.tar' ) args.logging_save_path = os.path.join( args.models_save_dir, f'stdout.log' ) return args def main(): run_args = parser.parse_args() args = build_args_and_env(run_args) random.seed(args.seed) torch.manual_seed(args.seed) #cudnn.deterministic = True #warnings.warn('You have chosen to seed training. ' # 'This will turn on the CUDNN deterministic setting, ' # 'which can slow down your training considerably! ' # 'You may see unexpected behavior when restarting ' # 'from checkpoints.') ngpus_per_node = torch.cuda.device_count() if args.multiprocessing_distributed: # Since we have ngpus_per_node processes per node, the total world_size # needs to be adjusted accordingly args.world_size = ngpus_per_node * args.num_nodes # Use torch.multiprocessing.spawn to launch distributed processes: the # main_worker process function mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args)) else: raise NotImplementedError assert args.world_size > 1, 'only support ddp training' def main_worker(gpu, ngpus_per_node, args): args.gpu = gpu # local rank, local machine cuda id args.local_rank = args.gpu args.batch_size = args.batch_size_per_gpu args.batch_size_total = args.batch_size * args.world_size #rescale base lr args.lr_scheduler.base_lr = args.lr_scheduler.base_lr * (max(1, args.batch_size_total // 256)) # set random seed, make sure all random subgraph generated would be the same random.seed(args.seed) torch.manual_seed(args.seed) if args.gpu: torch.cuda.manual_seed(args.seed) global_rank = args.gpu + args.machine_rank * ngpus_per_node dist.init_process_group( backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=global_rank ) # Setup logging format. logging.setup_logging(args.logging_save_path, 'w') logger.info(f"Use GPU: {args.gpu}, machine rank {args.machine_rank}, num_nodes {args.num_nodes}, \ gpu per node {ngpus_per_node}, world size {args.world_size}") # synchronize is needed here to prevent a possible timeout after calling # init_process_group # See: https://github.com/facebookresearch/maskrcnn-benchmark/issues/172 comm.synchronize() args.rank = comm.get_rank() # global rank args.local_rank = args.gpu torch.cuda.set_device(args.gpu) # build model logger.info("=> creating model '{}'".format(args.arch)) model = models.model_factory.create_model(args) model.cuda(args.gpu) # use sync batchnorm if getattr(args, 'sync_bn', False): model.apply( lambda m: setattr(m, 'need_sync', True)) model = comm.get_parallel_model(model, args.gpu) #local rank logger.info(model) criterion = loss_ops.CrossEntropyLossSmooth(args.label_smoothing).cuda(args.gpu) soft_criterion = loss_ops.AdaptiveLossSoft(args.alpha_min, args.alpha_max, args.iw_clip).cuda(args.gpu) if not getattr(args, 'inplace_distill', True): soft_criterion = None ## load dataset, train_sampler: distributed train_loader, val_loader, train_sampler = build_data_loader(args) args.n_iters_per_epoch = len(train_loader) logger.info( f'building optimizer and lr scheduler, \ local rank {args.gpu}, global rank {args.rank}, world_size {args.world_size}') optimizer = build_optimizer(args, model) lr_scheduler = build_lr_scheduler(args, optimizer) # optionally resume from a checkpoint if args.resume: saver.load_checkpoints(args, model, optimizer, lr_scheduler, logger) logger.info(args) for epoch in range(args.start_epoch, args.epochs): if args.distributed: train_sampler.set_epoch(epoch) args.curr_epoch = epoch logger.info('Training lr {}'.format(lr_scheduler.get_lr()[0])) # train for one epoch acc1, acc5 = train_epoch(epoch, model, train_loader, optimizer, criterion, args, \ soft_criterion=soft_criterion, lr_scheduler=lr_scheduler) if comm.is_master_process() or args.distributed: # validate supernet model validate( train_loader, val_loader, model, criterion, args ) if comm.is_master_process(): # save checkpoints saver.save_checkpoint( args.checkpoint_save_path, model, optimizer, lr_scheduler, args, epoch, ) def train_epoch( epoch, model, train_loader, optimizer, criterion, args, soft_criterion=None, lr_scheduler=None, ): batch_time = AverageMeter('Time', ':6.3f') data_time = AverageMeter('Data', ':6.3f') losses = AverageMeter('Loss', ':.4e') top1 = AverageMeter('Acc@1', ':6.2f') top5 = AverageMeter('Acc@5', ':6.2f') progress = ProgressMeter( len(train_loader), [batch_time, data_time, losses, top1, top5], prefix="Epoch: [{}]".format(epoch)) model.train() end = time.time() num_updates = epoch * len(train_loader) for batch_idx, (images, target) in enumerate(train_loader): # measure data loading time data_time.update(time.time() - end) images = images.cuda(args.gpu, non_blocking=True) target = target.cuda(args.gpu, non_blocking=True) # total subnets to be sampled num_subnet_training = max(2, getattr(args, 'num_arch_training', 2)) optimizer.zero_grad() ### compute gradients using sandwich rule ### # step 1 sample the largest network, apply regularization to only the largest network drop_connect_only_last_two_stages = getattr(args, 'drop_connect_only_last_two_stages', True) model.module.sample_max_subnet() model.module.set_dropout_rate(args.dropout, args.drop_connect, drop_connect_only_last_two_stages) #dropout for supernet output = model(images) loss = criterion(output, target) loss.backward() with torch.no_grad(): soft_logits = output.clone().detach() #step 2. sample the smallest network and several random networks sandwich_rule = getattr(args, 'sandwich_rule', True) model.module.set_dropout_rate(0, 0, drop_connect_only_last_two_stages) #reset dropout rate for arch_id in range(1, num_subnet_training): if arch_id == num_subnet_training-1 and sandwich_rule: model.module.sample_min_subnet() else: model.module.sample_active_subnet() # calcualting loss output = model(images) if soft_criterion: loss = soft_criterion(output, soft_logits) else: assert not args.inplace_distill loss = criterion(output, target) loss.backward() #clip gradients if specfied if getattr(args, 'grad_clip_value', None): torch.nn.utils.clip_grad_value_(model.parameters(), args.grad_clip_value) optimizer.step() #accuracy measured on the local batch acc1, acc5 = accuracy(output, target, topk=(1, 5)) if args.distributed: corr1, corr5, loss = acc1*args.batch_size, acc5*args.batch_size, loss.item()*args.batch_size #just in case the batch size is different on different nodes stats = torch.tensor([corr1, corr5, loss, args.batch_size], device=args.gpu) dist.barrier() # synchronizes all processes dist.all_reduce(stats, op=torch.distributed.ReduceOp.SUM) corr1, corr5, loss, batch_size = stats.tolist() acc1, acc5, loss = corr1/batch_size, corr5/batch_size, loss/batch_size losses.update(loss, batch_size) top1.update(acc1, batch_size) top5.update(acc5, batch_size) else: losses.update(loss.item(), images.size(0)) top1.update(acc1, images.size(0)) top5.update(acc5, images.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() num_updates += 1 if lr_scheduler is not None: lr_scheduler.step() if batch_idx % args.print_freq == 0: progress.display(batch_idx, logger) return top1.avg, top5.avg def validate( train_loader, val_loader, model, criterion, args, distributed = True, ): subnets_to_be_evaluated = { 'attentive_nas_min_net': {}, 'attentive_nas_max_net': {}, } acc1_list, acc5_list = attentive_nas_eval.validate( subnets_to_be_evaluated, train_loader, val_loader, model, criterion, args, logger, bn_calibration = True, ) if __name__ == '__main__': main()
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # Modified from AttentiveNAS (https://github.com/facebookresearch/AttentiveNAS) import argparse import builtins import math import os import random import shutil import time import warnings import sys from datetime import date import torch import torch.nn as nn import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.distributed as dist import torch.optim import torch.multiprocessing as mp import torch.utils.data import torch.utils.data.distributed import models from utils.config import setup from utils.flops_counter import count_net_flops_and_params import utils.comm as comm import utils.saver as saver from data.data_loader import build_data_loader from utils.progress import AverageMeter, ProgressMeter, accuracy import argparse parser = argparse.ArgumentParser(description='Test AlphaNet Models') parser.add_argument('--config-file', default='./configs/eval_alphanet_models.yml') parser.add_argument('--model', default='a0', type=str, choices=['a0', 'a1', 'a2', 'a3', 'a4', 'a5', 'a5_1', 'a6']) parser.add_argument('--gpu', default=0, type=int, help='gpu id') run_args = parser.parse_args() if __name__ == '__main__': args = setup(run_args.config_file) args.model = run_args.model args.gpu = run_args.gpu random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) args.__dict__['active_subnet'] = args.__dict__['pareto_models'][args.model] print(args.active_subnet) train_loader, val_loader, train_sampler = build_data_loader(args) ## init static attentivenas model with weights inherited from the supernet model = models.model_factory.create_model(args) model.to(args.gpu) model.eval() # bn running stats calibration following Slimmable (https://arxiv.org/abs/1903.05134) # please consider trying a different random seed if you see a small accuracy drop with torch.no_grad(): model.reset_running_stats_for_calibration() for batch_idx, (images, _) in enumerate(train_loader): if batch_idx >= args.post_bn_calibration_batch_num: break images = images.cuda(args.gpu, non_blocking=True) model(images) #forward only model.eval() with torch.no_grad(): criterion = nn.CrossEntropyLoss().cuda() from evaluate.imagenet_eval import validate_one_subnet acc1, acc5, loss, flops, params = validate_one_subnet(val_loader, model, criterion, args) print(acc1, acc5, flops, params)
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import numpy as np import scipy from scipy.optimize import Bounds, LinearConstraint, minimize, SR1 import pdb import math import numpy.random import time from scipy.interpolate import UnivariateSpline, splrep, BSpline, splev import torch n = 500 #G = torch.tensor([1-i/(n+1) for i in range(n)]) G = torch.tensor([1.0 for i in range(n)]) # CIFAR10 approx pattern #G = torch.concatenate((1.0*torch.ones(7*n//8), 0.5*torch.ones(n//8))) # Imagenet like #G = torch.tensor([1.0 + 1.0*i/n for i in range(n)]) #G = torch.tensor([1.0 - 0.5*i/n for i in range(n)]) #G = torch.tensor([min(0.1, 1.0/math.sqrt(i+1)) for i in range(n)]) #G = torch.concatenate((10.0*torch.tensor([1-i/(n+1) for i in range(n//4)]), 1.0*torch.tensor([1-i/(n+1) for i in range(n//4)]), 0.1*torch.ones(n//2))) G = torch.concatenate(( torch.tensor([max(1, 10*(1-i/(n//10+1))) for i in range(n//10)]), torch.tensor([1.0 for i in range(9*n//10)]))) # This one gives very promising shapes! # It gives a learning rate warmup at the begining, # with a fall-off thats more gradual and cosine like. # G = torch.concatenate(( # torch.tensor([max(1, 10*(1-i/(n//10+1))) for i in range(n//10)]), # torch.tensor([1.0 + (i/(9*n//10)) for i in range(9*n//10)]))) # No warmup version #G = torch.tensor([1.0 + 1.0*i/n for i in range(n)]) # G = torch.concatenate(( # torch.tensor([((i+1)/(n//100+1)) for i in range(n//100)]), # torch.tensor([1.0 + (i/((99*n)//100)) for i in range((99*n)//100)]))) # G = torch.concatenate(( # torch.tensor([max(1, 2*(1-i/(n//10+1))) for i in range(n//10)]), # torch.tensor([1.0 - 0.3*(i/(9*n//10)) for i in range(9*n//10)]))) # spl = splrep(x=[0, n//10, n], y=[10, 1, 2], k=2) # spl(range(n)) G = torch.tensor(scipy.ndimage.gaussian_filter1d(G, sigma=30)) constrain_decreasing = False D = 1.0 Dsq = D**2 Gsq = G**2 numpy.random.seed(42) mask = np.zeros(n) mask[0] = 1 mask = torch.tensor(mask) def lamb_from_increments_torch(x): xmod = x.sub(x*mask) # Set first entry to 0 v = torch.exp(-xmod) cexp = torch.cumprod(v, dim=0) cexp_shift = cexp * x[0] #pdb.set_trace() return cexp_shift def lamb_from_increments(xraw): if not torch.is_tensor(xraw): x = torch.tensor(xraw, dtype=torch.float64) else: x = xraw result = lamb_from_increments_torch(x) if torch.is_tensor(xraw): return result else: return result.numpy() def lamb_to_increments(yraw): if not torch.is_tensor(yraw): y = torch.tensor(yraw, dtype=torch.float64) else: y = yraw def inv_cum_prod(v): return torch.exp(torch.diff(torch.log(v))) log_incs = -torch.log(inv_cum_prod(y)) result = torch.concatenate( (torch.tensor([y[0]]), log_incs)) if torch.is_tensor(yraw): return result else: return result.numpy() y0 = np.flip(np.cumsum(np.abs(numpy.random.normal(size=n))))/n x0 = lamb_to_increments(y0) assert np.all(np.isclose(lamb_from_increments(x0), y0)) def func(x_raw): if torch.is_tensor(x_raw): x = x_raw else: x = torch.tensor(x_raw, dtype=torch.float64, requires_grad=True) # Convert to cumulative value lamb = lamb_from_increments_torch(x) lamb_sq = lamb*lamb lamb_flip = lamb.flip(dims=(0,)) lamb_sum = torch.sum(lamb) lamb_sq_flip = lamb_flip*lamb_flip Gsq_flip = Gsq.flip(dims=(0,)) t1 = 0.5*Dsq/lamb_sum # Distance error term t2 = 0.5/lamb_sum # Gradient error term t2 *= torch.sum(Gsq*lamb_sq) inner_cumsum = torch.cumsum(Gsq_flip*lamb_sq_flip, dim=0) denom_cumsum = torch.cumsum(lamb_flip, dim=0) eval = lamb_flip[1:]*inner_cumsum[1:]/(denom_cumsum[1:]*(denom_cumsum[1:]-lamb_flip[1:])) t3 = 0.5*torch.sum(eval) fval = (t1+t2+t3) #/max(G/D,D/G) fval.backward() if torch.is_tensor(x_raw): return fval.item() else: g = list(np.copy(x.grad.numpy())) return (fval.item(), g) # Test fx0, fgx0 = func(x0) start = time.time() if constrain_decreasing: bounds = [(1e-12, np.inf)] + [(0, 10) for _ in range(n-1)] else: bounds = [(1e-12, np.inf)] + [(-10, 10) for _ in range(n-1)] print(f"Starting solve...") xopt_inc, fopt, dopt = scipy.optimize.fmin_l_bfgs_b( func, x0, bounds = bounds, iprint = 0, factr = 10.0, # High accuracy maxls = 100000, maxfun = 100000, pgtol=1e-10, m=20, ) end = time.time() xopt = lamb_from_increments(xopt_inc) assert dopt['warnflag'] == 0 print(f"Time taken: {end - start}") print(f"Steps to convergence: {dopt['funcalls']}") #print(f"grad: {dopt['grad']}") #print(xopt) print(f"xopt[0]: {xopt[0]}") print(f"xopt[-1]: {xopt[-1]}") print(f"xopt[0]/xopt[-1]: {xopt[0]/xopt[-1]}") print(f"fval: {fopt}") print(f"fval * sqrt(n): {fopt * math.sqrt(n)} ") cosine_curve = [D/(math.sqrt(n)) * 0.5 * (1 + math.cos((i/n) * math.pi)) for i in range(n)] import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.ticker as mtick mpl.rcParams['font.family'] = 'serif' mpl.rcParams['axes.titlesize'] = 5 mpl.rcParams['axes.labelsize'] = 5 mpl.rcParams['font.size'] = 4.2 mpl.rcParams['legend.fontsize'] = 4.2 linewidth = '0.2' mpl.rcParams['lines.markersize'] = 1.0 mpl.rcParams['lines.linewidth'] = linewidth mpl.rcParams['axes.linewidth'] = linewidth mpl.rcParams['xtick.major.width'] = linewidth mpl.rcParams['ytick.major.width'] = linewidth fig = plt.figure(figsize=(4, 5)) ax = fig.add_subplot(3, 1, 1) plt.tight_layout() ax.set_xlabel('k') ax.set_ylabel('lamb') ax.set_title(f"Optimal step size sequence (final={xopt[-1]})") ax.plot(range(1, n+1), xopt, 'k') ax.plot(range(1, n+1), [(1-i/(n+1))*D/(math.sqrt(n)) for i in range(n)], color='purple') ax.plot(range(1, n+1), cosine_curve, color='r') ax.hlines(y=D/(math.sqrt(n)), xmin=1, xmax=n, color='b') ax.hlines(y=(1-n/(n+1))*D/(math.sqrt(n)), xmin=1, xmax=n, color='y') ax.plot(range(1, n+1), [((1-i/(n+1))**0.5)*D/(math.sqrt(n)) for i in range(n)], color='pink') plt.tight_layout() ax = fig.add_subplot(3, 1, 2) plt.tight_layout() ax.set_xlabel('k') ax.set_ylabel('lamb') ax.set_title(f"Optimal step size sequence") ax.plot(range(1, n+1), xopt, 'k') ax.plot(range(1, n+1), [(1-i/(n+1))*D/(math.sqrt(n)) for i in range(n)], color='purple') ax.plot(range(1, n+1), cosine_curve, color='r') ax.plot(range(1, n+1), [((1-i/(n+1))**0.5)*D/(math.sqrt(n)) for i in range(n)], color='pink') ax.hlines(y=D/(math.sqrt(n)), xmin=1, xmax=n, color='b') ax.hlines(y=(1-n/(n+1))*D/(math.sqrt(n)), xmin=1, xmax=n, color='y') ax.set_yscale('log') plt.tight_layout() ax = fig.add_subplot(3, 1, 3) plt.tight_layout() ax.set_xlabel('k') ax.set_ylabel('G') ax.set_title(f"Gradient norm sequence") ax.plot(range(1, n+1), G, 'k') plt.tight_layout() fname = "lamb_lbfgs_seq.png" plt.savefig(fname, bbox_inches='tight', pad_inches=0, dpi=300) print(f"Saved {fname}") plt.close() plt.close('all')
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import numpy as np import scipy from scipy.optimize import Bounds, LinearConstraint, minimize, SR1 import pdb import math import numpy.random import time from scipy.interpolate import UnivariateSpline, splrep, BSpline, splev import torch n = 500 #G = torch.tensor([1-i/(n+1) for i in range(n)]) G = torch.tensor([1.0 for i in range(n)]) # CIFAR10 approx pattern #G = torch.concatenate((1.0*torch.ones(7*n//8), 0.5*torch.ones(n//8))) # Imagenet like #G = torch.tensor([1.0 + 1.0*i/n for i in range(n)]) #G = torch.tensor([1.0 - 0.5*i/n for i in range(n)]) #G = torch.tensor([min(0.1, 1.0/math.sqrt(i+1)) for i in range(n)]) #G = torch.concatenate((10.0*torch.tensor([1-i/(n+1) for i in range(n//4)]), 1.0*torch.tensor([1-i/(n+1) for i in range(n//4)]), 0.1*torch.ones(n//2))) G = torch.concatenate(( torch.tensor([max(1, 10*(1-i/(n//10+1))) for i in range(n//10)]), torch.tensor([1.0 for i in range(9*n//10)]))) # This one gives very promising shapes! # It gives a learning rate warmup at the begining, # with a fall-off thats more gradual and cosine like. # G = torch.concatenate(( # torch.tensor([max(1, 10*(1-i/(n//10+1))) for i in range(n//10)]), # torch.tensor([1.0 + (i/(9*n//10)) for i in range(9*n//10)]))) # No warmup version #G = torch.tensor([1.0 + 1.0*i/n for i in range(n)]) # G = torch.concatenate(( # torch.tensor([((i+1)/(n//100+1)) for i in range(n//100)]), # torch.tensor([1.0 + (i/((99*n)//100)) for i in range((99*n)//100)]))) # G = torch.concatenate(( # torch.tensor([max(1, 2*(1-i/(n//10+1))) for i in range(n//10)]), # torch.tensor([1.0 - 0.3*(i/(9*n//10)) for i in range(9*n//10)]))) # spl = splrep(x=[0, n//10, n], y=[10, 1, 2], k=2) # spl(range(n)) #G = torch.tensor(scipy.ndimage.gaussian_filter1d(G, sigma=30)) D = 1.0 Dsq = D**2 Gsq = G**2 numpy.random.seed(42) mask = np.zeros(n) mask[0] = 1 mask = torch.tensor(mask) x0 = np.array([D/(math.sqrt(n)) for _ in range(n)]) def func(x_raw): if torch.is_tensor(x_raw): x = x_raw else: x = torch.tensor(x_raw, dtype=torch.float64, requires_grad=True) # Convert to cumulative value lamb = x lamb_sq = lamb*lamb lamb_flip = lamb.flip(dims=(0,)) lamb_sum = torch.sum(lamb) lamb_sq_flip = lamb_flip*lamb_flip Gsq_flip = Gsq.flip(dims=(0,)) t1 = 0.5*Dsq/lamb_sum # Distance error term t2 = 0.5/lamb_sum # Gradient error term t2 *= torch.sum(Gsq*lamb_sq) inner_cumsum = torch.cumsum(Gsq_flip*lamb_sq_flip, dim=0) denom_cumsum = torch.cumsum(lamb_flip, dim=0) eval = lamb_flip[1:]*inner_cumsum[1:]/(denom_cumsum[1:]*(denom_cumsum[1:]-lamb_flip[1:])) t3 = 0.5*torch.sum(eval) fval = (t1+t2+t3) #/max(G/D,D/G) fval.backward() if torch.is_tensor(x_raw): return fval.item() else: g = list(np.copy(x.grad.numpy())) return (fval.item(), g) # Test fx0, fgx0 = func(x0) start = time.time() bounds = [(1e-12, np.inf) for _ in range(n)] print(f"Starting solve...") xopt_inc, fopt, dopt = scipy.optimize.fmin_l_bfgs_b( func, x0, bounds = bounds, iprint = 0, factr = 10.0, # High accuracy maxls = 100000, maxfun = 100000, pgtol=1e-10, m=20, ) end = time.time() xopt = xopt_inc assert dopt['warnflag'] == 0 print(f"Time taken: {end - start}") print(f"Steps to convergence: {dopt['funcalls']}") #print(f"grad: {dopt['grad']}") #print(xopt) print(f"xopt[0]: {xopt[0]}") print(f"xopt[-1]: {xopt[-1]}") print(f"xopt[0]/xopt[-1]: {xopt[0]/xopt[-1]}") print(f"fval: {fopt}") print(f"fval * sqrt(n): {fopt * math.sqrt(n)} ") cosine_curve = [D/(math.sqrt(n)) * 0.5 * (1 + math.cos((i/n) * math.pi)) for i in range(n)] import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.ticker as mtick mpl.rcParams['font.family'] = 'serif' mpl.rcParams['axes.titlesize'] = 5 mpl.rcParams['axes.labelsize'] = 5 mpl.rcParams['font.size'] = 4.2 mpl.rcParams['legend.fontsize'] = 4.2 linewidth = '0.2' mpl.rcParams['lines.markersize'] = 1.0 mpl.rcParams['lines.linewidth'] = linewidth mpl.rcParams['axes.linewidth'] = linewidth mpl.rcParams['xtick.major.width'] = linewidth mpl.rcParams['ytick.major.width'] = linewidth fig = plt.figure(figsize=(4, 5)) ax = fig.add_subplot(3, 1, 1) plt.tight_layout() ax.set_xlabel('k') ax.set_ylabel('lamb') ax.set_title(f"Optimal step size sequence (final={xopt[-1]})") ax.plot(range(1, n+1), xopt, 'k') ax.plot(range(1, n+1), [(1-i/(n+1))*D/(math.sqrt(n)) for i in range(n)], color='purple') ax.plot(range(1, n+1), cosine_curve, color='r') ax.hlines(y=D/(math.sqrt(n)), xmin=1, xmax=n, color='b') ax.hlines(y=(1-n/(n+1))*D/(math.sqrt(n)), xmin=1, xmax=n, color='y') ax.plot(range(1, n+1), [((1-i/(n+1))**0.5)*D/(math.sqrt(n)) for i in range(n)], color='pink') plt.tight_layout() ax = fig.add_subplot(3, 1, 2) plt.tight_layout() ax.set_xlabel('k') ax.set_ylabel('lamb') ax.set_title(f"Optimal step size sequence") ax.plot(range(1, n+1), xopt, 'k') ax.plot(range(1, n+1), [(1-i/(n+1))*D/(math.sqrt(n)) for i in range(n)], color='purple') ax.plot(range(1, n+1), cosine_curve, color='r') ax.plot(range(1, n+1), [((1-i/(n+1))**0.5)*D/(math.sqrt(n)) for i in range(n)], color='pink') ax.hlines(y=D/(math.sqrt(n)), xmin=1, xmax=n, color='b') ax.hlines(y=(1-n/(n+1))*D/(math.sqrt(n)), xmin=1, xmax=n, color='y') ax.set_yscale('log') plt.tight_layout() ax = fig.add_subplot(3, 1, 3) plt.tight_layout() ax.set_xlabel('k') ax.set_ylabel('G') ax.set_title(f"Gradient norm sequence") ax.plot(range(1, n+1), G, 'k') plt.tight_layout() fname = "lamb_lbfgs_seq.png" plt.savefig(fname, bbox_inches='tight', pad_inches=0, dpi=300) print(f"Saved {fname}") plt.close() plt.close('all')
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import numpy as np import scipy from scipy.optimize import Bounds, LinearConstraint, minimize, SR1 import pdb import math import numpy.random import time import torch n = 1000 G = 1.0 D = 1.0 Gsq = G**2 Dsq = D**2 numpy.random.seed(42) mask = np.zeros(n) mask[0] = 1 mask = torch.tensor(mask) def lamb_from_increments_torch(x): xmod = x.sub(x*mask) # Set first entry to 0 v = torch.exp(-xmod) cexp = torch.cumprod(v, dim=0) cexp_shift = cexp * x[0] #pdb.set_trace() return cexp_shift def lamb_from_increments(xraw): if not torch.is_tensor(xraw): x = torch.tensor(xraw, dtype=torch.float64) else: x = xraw result = lamb_from_increments_torch(x) if torch.is_tensor(xraw): return result else: return result.numpy() def lamb_to_increments(yraw): if not torch.is_tensor(yraw): y = torch.tensor(yraw, dtype=torch.float64) else: y = yraw def inv_cum_prod(v): return torch.exp(torch.diff(torch.log(v))) log_incs = -torch.log(inv_cum_prod(y)) result = torch.concatenate( (torch.tensor([y[0]]), log_incs)) if torch.is_tensor(yraw): return result else: return result.numpy() y0 = np.flip(np.cumsum(np.abs(numpy.random.normal(size=n))))/n x0 = lamb_to_increments(y0) assert np.all(np.isclose(lamb_from_increments(x0), y0)) def func(x_raw): if torch.is_tensor(x_raw): x = x_raw else: x = torch.tensor(x_raw, dtype=torch.float64, requires_grad=True) lamb = lamb_from_increments_torch(x) lamb_flip = lamb.flip(dims=(0,)) lamb_sum = torch.sum(lamb) lamb_sq_flip = lamb_flip*lamb_flip t1 = 0.5*Dsq/lamb_sum # Distance error term t2 = 0.5*Gsq/lamb_sum # Gradient error term t2 *= torch.sum(lamb_sq_flip) inner_cumsum = torch.cumsum(lamb_sq_flip, dim=0) denom_cumsum = torch.cumsum(lamb_flip, dim=0) eval = lamb_flip[1:]*inner_cumsum[1:]/(denom_cumsum[1:]*(denom_cumsum[1:]-lamb_flip[1:])) t3 = 0.5*Gsq*torch.sum(eval) fval = (t1+t2+t3) #/max(G/D,D/G) fval.backward() if torch.is_tensor(x_raw): return fval.item() else: g = list(np.copy(x.grad.numpy())) return (fval.item(), g) # Test fx0, fgx0 = func(x0) start = time.time() bounds = [(1e-12, np.inf)] + [(0, 10) for _ in range(n-1)] print(f"Starting solve...") xopt_inc, fopt, dopt = scipy.optimize.fmin_l_bfgs_b( func, x0, bounds = bounds, iprint = 0, factr = 10.0, # High accuracy maxls = 100000, maxfun = 100000, pgtol=1e-10, m=20, ) end = time.time() xopt = lamb_from_increments(xopt_inc) assert dopt['warnflag'] == 0 print(f"Time taken: {end - start}") print(f"Steps to convergence: {dopt['funcalls']}") #print(f"grad: {dopt['grad']}") #print(xopt) print(f"xopt[0]: {xopt[0]}") print(f"xopt[-1]: {xopt[-1]}") print(f"xopt[0]/xopt[-1]: {xopt[0]/xopt[-1]}") print(f"fval: {fopt}") print(f"fval * sqrt(n): {fopt * math.sqrt(n)} ") def func1d(x_raw): eta = torch.tensor(x_raw, dtype=torch.float64, requires_grad=True) t1 = Dsq/(2*n*eta) t2 = Gsq*eta/2 t3 = (Gsq*eta/2)*torch.sum(1/torch.arange(1, n)) fval = (t1+t2+t3)#/max(G/D,D/G) fval.backward() if torch.is_tensor(x_raw): return fval.item() else: g = list(np.copy(eta.grad.numpy())) return (fval.item(), g) xopt_1d, fopt_1d, dopt_1d = scipy.optimize.fmin_l_bfgs_b( func1d, np.array([y0[0]]), bounds = [(1e-8, 100)], iprint = 0 ) assert dopt_1d['warnflag'] == 0 xopt_1d = xopt_1d[0] print(f"1D grad: {dopt_1d['grad']}") print(f"1D Steps to convergence: {dopt_1d['funcalls']}") #print(f"grad: {dopt_1d['grad']}") print(f"eta 1d: {xopt_1d}") print(f"1D fval: {fopt_1d}") theory_eta = D/(G*math.sqrt(n*(2+math.log(n-1)))) theory1d = (D*G*math.sqrt(2+math.log(n-1))/math.sqrt(n))#/max(G/D,D/G) print(f"Theory eta: {theory_eta}") print(f"theory 1d fval: {theory1d}") print(f"1d/full ratio: {fopt_1d/fopt}") import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.ticker as mtick mpl.rcParams['font.family'] = 'serif' mpl.rcParams['axes.titlesize'] = 5 mpl.rcParams['axes.labelsize'] = 5 mpl.rcParams['font.size'] = 4.2 mpl.rcParams['legend.fontsize'] = 4.2 linewidth = '0.2' mpl.rcParams['lines.markersize'] = 1.0 mpl.rcParams['lines.linewidth'] = linewidth mpl.rcParams['axes.linewidth'] = linewidth mpl.rcParams['xtick.major.width'] = linewidth mpl.rcParams['ytick.major.width'] = linewidth fig = plt.figure(figsize=(4, 3)) ax = fig.add_subplot(2, 1, 1) plt.tight_layout() ax.set_xlabel('k') ax.set_ylabel('lamb') ax.set_title(f"Optimal step size sequence v.s. optimal flat Dsq={D} Gsq={G}") ax.plot(range(1, n+1), xopt, 'k') ax.hlines(y=xopt_1d, xmin=1, xmax=n, color='r') ax.hlines(y=D/(G*math.sqrt(n)), xmin=1, xmax=n, color='b') #ax.set_yscale('log') plt.tight_layout() ax = fig.add_subplot(2, 1, 2) plt.tight_layout() ax.set_xlabel('k') ax.set_ylabel('lamb') ax.set_title(f"Optimal step size sequence v.s. optimal flat D={D} G={G}") ax.plot(range(1, n+1), xopt, 'k') ax.hlines(y=xopt_1d, xmin=1, xmax=n, color='r') ax.hlines(y=D/(G*math.sqrt(n)), xmin=1, xmax=n, color='b') ax.set_yscale('log') plt.tight_layout() fname = "lamb_lbfgs.png" plt.savefig(fname, bbox_inches='tight', pad_inches=0, dpi=300) print(f"Saved {fname}") plt.close() plt.close('all')
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import math import logging from typing import TYPE_CHECKING, Any, Callable, Optional import torch import torch.optim import pdb if TYPE_CHECKING: from torch.optim.optimizer import _params_t else: _params_t = Any from fairseq.optim import FairseqOptimizer, register_optimizer logger = logging.getLogger(__name__) def gmean(input_x): log_x = torch.log(input_x.flatten()) return torch.exp(torch.mean(log_x)) class AdaGradFlex(torch.optim.Optimizer): """ Adagrad with coordinate-wise flex statistics. """ def __init__( self, params: _params_t, lr: float = 1.0, momentum: float = 0, log_every: int = 0, weight_decay: float = 0.0, eps: float = 1e-20, decouple: bool = True, ): if lr <= 0: raise ValueError(f"Learning rate {lr} must be positive") if momentum < 0: raise ValueError(f"Momentum {momentum} must be non-negative") print(f"Weight decay: {weight_decay}") defaults = dict(lr=lr, momentum=momentum, eps=eps, weight_decay=weight_decay, log_every=log_every, k = 0, numerator_weighted=0.0, decouple=decouple) super().__init__(params, defaults) @property def supports_memory_efficient_fp16(self): return False @property def supports_flat_params(self): return True def step(self, closure: Optional[Callable[[], float]] = None) -> Optional[float]: """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() group = self.param_groups[0] momentum = group['momentum'] ck = 1 - momentum log_every = group['log_every'] for group in self.param_groups: eps = group["eps"] k = group['k'] decay = group['weight_decay'] decouple = group['decouple'] lr = group['lr'] below_one = 0 total = 0 ###### for p in group['params']: if p.grad is None: continue grad = p.grad.data state = self.state[p] if "alphak" not in state: state["alphak"] = torch.zeros_like(p.data).detach() #state["gsq"] = torch.zeros_like(p.data).detach() state["gmax"] = torch.zeros_like(p.data).detach() state['sk'] = torch.zeros_like(p.data).detach() if momentum > 0: state["z"] = torch.clone(p.data).detach() state['flex'] = torch.zeros_like(p.data).detach() sk = state['sk'] #gsq = state['gsq'] alphak = state['alphak'] gmax = state['gmax'] flex = state['flex'] if grad.is_sparse: grad = grad.to_dense() if decay != 0 and not decouple: grad.add_(p.data, alpha=decay) flex.add_(grad*grad).sub_(grad * sk) alphak.copy_(alphak.fmax(flex)) gmax.copy_(gmax.fmax(grad.abs())) sk.add_(grad) if decay != 0 and decouple: p_old = p.data.clone() if momentum > 0: z = state['z'] z.sub_(grad.div(torch.sqrt(gmax*gmax + alphak) + eps), alpha=lr) p.data.mul_(1-ck).add_(z, alpha=ck) if decay != 0 and decouple: z.add_(p_old, alpha=-decay * lr) else: p.data.sub_(grad.div(torch.sqrt(gmax*gmax + alphak) + eps), alpha=lr) if decay != 0 and decouple: p.data.add_(p_old, alpha=-decay * lr) ### Logging # below_one += ((alphak+eps)/(gmax*gmax + eps) < 1).sum().item() # total += grad.numel() # if k % 50 == 0 and k > 0: # print(f"fraction below 1: {below_one/total}") # ratio = (alphak+eps)/(gmax*gmax + eps) # print(f"mean: {ratio.mean()} gmean: {gmean(ratio)} std: {ratio.std()}") # qs = [0.0, 0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95, 1.0] # quantiles = torch.quantile(ratio, q=torch.tensor(qs).cuda()) # print(f"quantiles: {list(zip(qs, quantiles))}") group['k'] = k + 1 return loss
""" Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. """ import matplotlib.pyplot as plt from datasets import transformations import torch import numpy as np def plot_x2_reconstructions( pairs, model, indices, train_set, save_name, ): """ Plots sample x2 reconstructions based on indices Args: pairs (datasets.Pairs): contains x1, x2, and params. model (function): callable f(x1) = x1_reconstruction indices (list of ints): indices for samples to plot train_set (bool): if true title is plotted with train otherwise test. save_name (str): indicates path where images should be saved. """ title = "Training Reconstruction" if train_set else "Test Reconstruction" fig, axs = plt.subplots(len(indices), 3, figsize=(6, 12)) fig.suptitle(title, fontsize=16) for i, sample_idx in enumerate(indices): x1, x2, params = pairs[sample_idx] n_pixels = x1.shape[1] try: # for weakly supervised autoencoder x2_reconstruction = model(x1.unsqueeze(0), x2.unsqueeze(0), params) except TypeError: # for real autoencoder x2_reconstruction = model(x1.unsqueeze(0), params) axs[i][0].imshow(x1.squeeze()) axs[i][0].set_title("x1") axs[i][1].imshow(x2.squeeze()) axs[i][1].set_title("x2") axs[i][2].imshow( x2_reconstruction.cpu().detach().numpy().reshape(n_pixels, n_pixels) ) axs[i][2].set_title("x2 from tranformed z1") if save_name: plt.savefig(f"{save_name}.png", dpi=300, bbox_inches="tight") plt.close() else: plt.show() def plot_x1_reconstructions(pairs, model, indices, train_set, save_name): """ Plots sample x2 reconstructions based on indices Args: pairs (datasets.Pairs): contains x1, x2, and params. model (function): callable f(x1) = x1_reconstruction indices (list of ints): indices for samples to plot train_set (bool): if true title is plotted with train otherwise test. save_name (str): indicates path where images should be saved. """ title = "Training Reconstructions" if train_set else "Test Reconstructions" fig, axs = plt.subplots(len(indices), 2, figsize=(5, 12)) fig.suptitle(title, fontsize=16) for i, sample_idx in enumerate(indices): x1, x2, params = pairs[sample_idx] n_pixels = x1.shape[1] x1_reconstruction = model(x1.unsqueeze(0)).cpu().detach().numpy() axs[i][0].imshow(x1.squeeze()) axs[i][0].set_title("x1") axs[i][1].imshow(x1_reconstruction.reshape(n_pixels, n_pixels)) axs[i][1].set_title("x1 reconstruction") if save_name: plt.savefig(f"{save_name}.png", dpi=300, bbox_inches="tight") plt.close() else: plt.show() def plot_rotations( X, model, n_transformations, title, save_name=None, param_name="angle", use_latent_op=True, ): """Plots all rotated reconstructions for given samples""" font_size = 18 degree_sign = "\N{DEGREE SIGN}" n_samples = X.shape[0] fig, axs = plt.subplots(n_samples, n_transformations + 2, figsize=(16, 12)) fig.suptitle(title, fontsize=16) for sample_i, x1 in enumerate(X): axs[sample_i, 0].imshow(x1.squeeze()) axs[sample_i, 0].set_title("original", fontsize=font_size) axs[sample_i, 0].set_xticks([]) axs[sample_i, 0].set_yticks([]) transformation_params = get_all_transformations(param_name, n_transformations) for i, param in enumerate(transformation_params): if use_latent_op: x2_reconstruction = model.reconstruct_x2(x1.unsqueeze(1), param) else: x2_reconstruction = model.reconstruct_transformed_x1( x1.unsqueeze(1), param ) axs[sample_i, i + 1].imshow(x2_reconstruction.squeeze()) if param_name == "angle": axs[sample_i, i + 1].set_title( f"{param.angle:0.0f}{degree_sign}", fontsize=font_size ) axs[sample_i, i + 1].set_xticks([]) axs[sample_i, i + 1].set_yticks([]) if save_name: plt.savefig(save_name, bbox_inches="tight", dpi=300) plt.close() else: plt.show() def plot_transformations_complex( X, model, title, save_name=None, param_name="angle", supervised=False, ): """Plots all rotated reconstructions for given samples""" font_size = 18 degree_sign = "\N{DEGREE SIGN}" n_samples = X.shape[0] transformation_params = transformations.get_transform_params(model.data.n_rotations, model.data.n_x_translations, model.data.n_y_translations, (1.0, )) n_transformations = len([i for i in transformation_params]) fig, axs = plt.subplots(n_samples, n_transformations + 1, figsize=(16, int(12/5.*len(X)))) for sample_i, x1 in enumerate(X): axs[sample_i, 0].imshow(x1.squeeze()) axs[sample_i, 0].set_title("original", fontsize=font_size) axs[sample_i, 0].set_xticks([]) axs[sample_i, 0].set_yticks([]) x1 = x1.to(model.device) z1 = model.encoder(x1) transformation_params = transformations.get_transform_params(model.data.n_rotations, model.data.n_x_translations, model.data.n_y_translations, (1.0, )) for i, param in enumerate(transformation_params): shifts = torch.LongTensor([[i]]) if supervised: z_transformed = model.transform(z1, [shifts]) else: z_transformed = model.transform(z1, torch.LongTensor([[i]])) x2_reconstruction = model.decoder(z_transformed).detach().cpu().numpy() axs[sample_i, i + 1].imshow(x2_reconstruction.squeeze()) if param_name == "angle": axs[sample_i, i + 1].set_title( f"{param.angle:0.0f}{degree_sign}", fontsize=font_size ) elif param_name == "tx": axs[sample_i, i + 1].set_title(f"{param.shift_x:0.0f}", fontsize=font_size) elif param_name == 'ty': axs[sample_i, i + 1].set_title(f"{param.shift_y:0.0f}", fontsize=font_size) else: axs[sample_i, i + 1].set_title(f"{param.shift_x:0.0f},{param.shift_y:0.0f}", fontsize=font_size) axs[sample_i, i + 1].set_xticks([]) axs[sample_i, i + 1].set_yticks([]) if save_name: plt.savefig(save_name, bbox_inches="tight", dpi=300) plt.close() else: plt.show() def get_all_transformations(param_name, n_transformations): if param_name == "angle": return transformations.get_transform_params(n_transformations, 0, 0, (1.0,)) elif param_name == "shift_x": return transformations.get_transform_params(0, n_transformations, 0, (1.0,)) elif param_name == "shift_y": return transformations.get_transform_params(0, 0, n_transformations, (1.0,)) def plot_rotations_translations(X, model, n_transformations, n_rot, n_x, n_y, save_name=None): degree_sign = "\N{DEGREE SIGN}" n_samples = X.shape[0] fig, axs = plt.subplots(n_samples, n_transformations + 2, figsize=(16, int(12/5.*len(X)))) for sample_i, x1 in enumerate(X): axs[sample_i, 0].imshow(x1.squeeze()) axs[sample_i, 0].set_title("original", fontsize=16) axs[sample_i, 0].set_xticks([]) axs[sample_i, 0].set_yticks([]) x1 = x1.to(model.device) transformation_params = [t for t in transformations.get_transform_params(n_rot, n_x, n_y, (1.0, ))] z = model.encoder(x1) angle = None shift_x = None shift_y = None t_list = [] i = 0 for _, t in enumerate(range(n_transformations+1)): j = np.random.randint(len(transformation_params)) param = transformation_params[j] if not t in t_list: shifts = model.return_shifts([param]) z_transformed = model.transform(z, shifts) x2_reconstruction = model.decoder(z_transformed).detach().cpu().numpy() axs[sample_i, i + 1].imshow(x2_reconstruction.squeeze()) axs[sample_i, i + 1].set_title(f"{param.angle:0.0f}{degree_sign}\n{param.shift_x:0.0f},{param.shift_y:0.0f}", fontsize=16) axs[sample_i, i + 1].set_xticks([]) axs[sample_i, i + 1].set_yticks([]) angle = param.angle shift_x = param.shift_x shift_y = param.shift_y i += 1 if i+1 >= n_transformations + 2: break if save_name: plt.savefig(save_name, bbox_inches="tight", dpi=300) plt.close() else: plt.show()
""" Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. """ """ Launches experiments locally or on the cluster python run_experiments.py [name] --cluster OPTIONS: python run_experiments.py linear-mnist-test --data mnist python run_experiments.py cci-autoencoder-shapes --architecture CCI """ import argparse import autoencoder import cci_variational_autoencoder import os import itertools from datasets import datasets from functools import partial import torch import shutil import submitit BASE_PARAMS = { "seed": [0, 10, 20, 30, 40], "n_epochs": [30], "learning_rate": [0.001, 0.0005], } device = "cuda" if torch.cuda.is_available() else "cpu" print(f"running on {device}") def run_cci_vae_shapes( beta=1000.0, c_max=36.0, z_dim=30, batch_size=16, n_epochs=10, learning_rate=0.0005, seed=0, folder=None, n_classes=300, architecture=None, n_rotations=9, n_x_translations=0, n_y_translations=0, distribution="gaussian", ): """Runs CCI VAE and variants on Simple Shapes. Note architecture kwarg is not used""" if folder is None: raise ValueError("Please provide an experiment folder") print("saving results to ", folder) shapes = datasets.SimpleShapes( batch_size, n_rotations=n_rotations, n_x_translations=n_x_translations, n_y_translations=n_y_translations, n_classes=n_classes, seed=seed, pairs=False, ) train_cci_vae_variants( shapes, beta, c_max, z_dim, n_epochs, learning_rate, distribution, seed, folder ) def run_cci_vae_mnist( beta=1000.0, c_max=36.0, z_dim=30, batch_size=16, n_epochs=10, learning_rate=0.0005, seed=0, folder=None, n_classes=300, proportion=0.01, architecture=None, n_rotations=9, n_x_translations=0, n_y_translations=0, distribution="gaussian", ): """Runs CCI VAE and variants on MNIST. Note architecture kwarg is not used""" if folder is None: raise ValueError("Please provide an experiment folder") print("saving results to ", folder) mnist = datasets.ProjectiveMNIST( batch_size, seed=seed, train_set_proportion=proportion, test_set_proportion=1.0, valid_set_proportion=proportion, n_rotations=n_rotations, n_x_translations=n_x_translations, n_y_translations=n_y_translations, pairs=False, ) train_cci_vae_variants( mnist, beta, c_max, z_dim, n_epochs, learning_rate, distribution, seed, folder ) def run_cci_vae_single_digit_mnist( beta=1000.0, c_max=36.0, z_dim=30, batch_size=16, n_epochs=10, learning_rate=0.0005, seed=0, folder=None, n_classes=300, proportion=0.01, architecture=None, n_rotations=9, n_x_translations=0, n_y_translations=0, distribution="gaussian", ): """Runs CCI VAE and variants on MNIST. Note architecture kwarg is not used""" if folder is None: raise ValueError("Please provide an experiment folder") print("saving results to ", folder) mnist = datasets.ProjectiveSingleDigitMNIST( batch_size, seed=seed, train_set_proportion=proportion, test_set_proportion=1.0, valid_set_proportion=proportion, n_rotations=n_rotations, n_x_translations=n_x_translations, n_y_translations=n_y_translations, pairs=False, ) train_cci_vae_variants( mnist, beta, c_max, z_dim, n_epochs, learning_rate, distribution, seed, folder ) def train_cci_vae_variants( data, beta, c_max, z_dim, n_epochs, learning_rate, distribution, seed, folder ): """Trains CCI, Beta, and standard VAE""" print("Training CCI VAE") cci_vae_folder = os.path.join(folder, "cci_vae") train_cci_vae( data, beta, c_max, z_dim, n_epochs, learning_rate, distribution, seed, cci_vae_folder, ) print("Training Beta VAE") beta_vae_folder = os.path.join(folder, "beta_vae") train_cci_vae( data, beta, 0.0, z_dim, n_epochs, learning_rate, distribution, seed, beta_vae_folder, ) print("Training VAE") vae_folder = os.path.join(folder, "vae") train_cci_vae( data, 1.0, 0.0, z_dim, n_epochs, learning_rate, distribution, seed, vae_folder ) def run_autoencoder_shapes( z_dim=1000, batch_size=16, n_epochs=30, learning_rate=0.0005, seed=0, folder=None, architecture="Linear", n_classes=300, n_rotations=9, n_x_translations=0, n_y_translations=0, distribution=None, use_latent_op=True, ): if folder is None: raise ValueError("Please provide an experiment folder") print("saving results to ", folder) shapes = datasets.SimpleShapes( batch_size, n_classes=n_classes, seed=seed, n_rotations=n_rotations, n_x_translations=n_x_translations, n_y_translations=n_y_translations, ) if use_latent_op: train_autoencoder( shapes, z_dim, n_epochs, learning_rate, seed, folder, architecture ) else: train_standard_autoencoder( shapes, z_dim, n_epochs, learning_rate, seed, folder, architecture ) def run_autoencoder_mnist( z_dim=1000, batch_size=16, n_epochs=2, learning_rate=0.0005, seed=0, folder=None, architecture="Linear", proportion=0.01, n_rotations=9, n_x_translations=0, n_y_translations=0, distribution=None, use_latent_op=True, ): if folder is None: raise ValueError("Please provide an experiment folder") print("saving results to ", folder) mnist = datasets.ProjectiveMNIST( batch_size, seed=seed, train_set_proportion=proportion, test_set_proportion=1.0, valid_set_proportion=proportion, n_rotations=n_rotations, n_x_translations=n_x_translations, n_y_translations=n_y_translations, ) if use_latent_op: print("using latent_op") train_autoencoder( mnist, z_dim, n_epochs, learning_rate, seed, folder, architecture ) else: train_standard_autoencoder( mnist, z_dim, n_epochs, learning_rate, seed, folder, architecture ) def train_standard_autoencoder( data, z_dim, n_epochs, learning_rate, seed, folder, architecture ): model = autoencoder.AutoEncoder( data, z_dim=z_dim, n_epochs=n_epochs, learning_rate=learning_rate, encoder_type=architecture, decoder_type=architecture, device=device, seed=seed, ) model.run() model.save_best_validation(os.path.join(folder, "standard-autoencoder")) def train_autoencoder(data, z_dim, n_epochs, learning_rate, seed, folder, architecture): model_disentangled_rotation = autoencoder.AutoEncoder( data, z_dim=z_dim, n_epochs=n_epochs, learning_rate=learning_rate, latent_operator_name="DisentangledRotation", encoder_type=architecture, decoder_type=architecture, device=device, seed=seed, ) model_disentangled_rotation.run() model_disentangled_rotation.save_best_validation( os.path.join(folder, "disentangled-operator") ) model_shift_operator = autoencoder.AutoEncoder( data, z_dim=z_dim, n_epochs=n_epochs, learning_rate=learning_rate, latent_operator_name="ShiftOperator", encoder_type=architecture, decoder_type=architecture, device=device, seed=seed, ) model_shift_operator.run() model_shift_operator.save_best_validation(os.path.join(folder, "shift-operator")) def train_cci_vae( data, beta, c_max, z_dim, n_epochs, learning_rate, distribution, seed, folder ): cci_vae = cci_variational_autoencoder.CCIVariationalAutoEncoder( data, beta=beta, c_max=c_max, z_dim=z_dim, seed=seed, learning_rate=learning_rate, n_epochs=n_epochs, distribution=distribution, ) cci_vae.train() cci_vae.save_best_validation(folder) def launch_single_job(experiment, base_dir, results_dir, **kwargs): log_folder = base_dir + "%j" executor = submitit.AutoExecutor(folder=log_folder) # executor.update_parameters(timeout_min=600, gpus_per_node=1) executor.update_parameters( timeout_min=240, gpus_per_node=1, ) job = executor.submit(experiment, folder=results_dir, **kwargs) print("job id", job.job_id) print(f"logging to: {base_dir + job.job_id}") print(f"results stored at: {results_dir}") result = job.result() print(f"job result: {result}") def launch_sweep(experiment, params, base_dir, experiment_dir): log_folder = base_dir + "%j" executor = submitit.AutoExecutor(folder=log_folder) # executor.update_parameters(timeout_min=600, gpus_per_node=1) executor.update_parameters( timeout_min=600, gpus_per_node=1, ) jobs = [] with executor.batch(): for i, param in enumerate(params): print("running with param ", param) param["folder"] = os.path.join(experiment_dir, f"{i}") job = executor.submit(experiment, **param) jobs.append(job) print(f"launched {len(params)} jobs") print("sweep id", jobs[0].job_id) print(f"logging to: {base_dir}{jobs[0].job_id}") results = [job.result() for job in jobs] print(f"job results: {results}") def get_params(args): params = BASE_PARAMS if args.data == "mnist": params["batch_size"] = [8, 16, 32, 64] elif args.data == "shapes": params["batch_size"] = [4, 8, 16, 32] if args.model == "cci_vae": params["n_epochs"] = [10, 20, 50] params["beta"] = [4.0, 10.0, 100.0, 1000.0] params["z_dim"] = [10, 30] return params def get_param_combinations(params): """Returns a list of dictionaries with all combinations""" keys, values = zip(*params.items()) params_combinations = [dict(zip(keys, v)) for v in itertools.product(*values)] return params_combinations def get_directories(args, cluster=False): user = os.environ["USER"] if cluster: RESULTS_DIR = f"/checkpoint/{user}/Equivariance/" base_dir = f"/checkpoint/{user}/jobs/{args.name}/" else: RESULTS_DIR = os.path.expanduser( "~/Dropbox/FAIR/Projects/Equivariance/experiments/results" ) base_dir = os.path.expanduser( "~/Dropbox/FAIR/Projects/Equivariance/experiments/jobs/{args.name}/" ) experiment_dir = os.path.join(RESULTS_DIR, args.name) # clean experimental directory if os.path.exists(experiment_dir): shutil.rmtree(experiment_dir) return base_dir, experiment_dir def get_experiment_function(args): experiments = { "run_autoencoder_shapes": run_autoencoder_shapes, "run_autoencoder_mnist": run_autoencoder_mnist, "run_cci_vae_shapes": run_cci_vae_shapes, "run_cci_vae_mnist": run_cci_vae_mnist, "run_cci_vae_single_digit_mnist": run_cci_vae_mnist, } experiment = experiments[f"run_{args.model}_{args.data}"] print(f"run_{args.model}_{args.data}") if args.data == "shapes": experiment = partial(experiment, n_classes=args.n_classes) elif args.data in {"mnist", "single_digit_mnist"}: experiment = partial(experiment, proportion=args.mnist_proportion) else: raise ValueError(f"dataset {args.data} not supported") # standard autoencoder if "autoencoder" == args.model and args.no_latent_op: experiment = partial(experiment, use_latent_op=False) n_rotations, n_x_translations, n_y_translations = get_n_transformations(args) experiment = partial( experiment, n_rotations=n_rotations, n_x_translations=n_x_translations, n_y_translations=n_y_translations, architecture=args.architecture, z_dim=args.z_dim, distribution=args.distribution, ) return experiment def get_n_transformations(args): n_rotations, n_x_translations, n_y_translations = 0, 0, 0 n_transformations = 9 if args.transformation == "rotation": n_rotations = n_transformations if args.transformation == "shift_x": n_x_translations = n_transformations if args.transformation == "shift_y": n_y_translations = n_transformations return n_rotations, n_x_translations, n_y_translations def init_argparse() -> argparse.ArgumentParser: parser = argparse.ArgumentParser( usage="python run_experiments --cluster", description="runs experiments with specified parameters", ) parser.add_argument("name", help="name of experiment") parser.add_argument( "--model", help="model for experiments. Example: autoencoder, cci_vae", default="autoencoder", ) parser.add_argument( "--architecture", help="name of autoencoder architecture", default="Linear", ) parser.add_argument( "--data", help="dataset used for training: mnist, single_digit_mnist", default="shapes", ) parser.add_argument( "--mnist_proportion", help="proportion of mnist to use", default=0.01, type=float, ) parser.add_argument( "--n_classes", help="number of classes to use for simple shapes", default=300, type=int, ) parser.add_argument( "--z_dim", help="dataset used for training", default=1000, type=int ) parser.add_argument( "--transformation", choices=["rotation", "shift_x", "shift_y"], type=str.lower, default="rotation", ) parser.add_argument( "--distribution", help="likelihood distribution used for computing loss in CCI VAE", choices=["gaussian", "bernoulli"], type=str.lower, default="gaussian", ) parser.add_argument("--beta", help="beta used for CCI VAE", default=1000, type=int) parser.add_argument( "--no_latent_op", help="use standard autoencoder without latent operators", action="store_true", ) parser.add_argument("--cluster", action="store_true") parser.add_argument("--sweep", action="store_true") return parser if __name__ == "__main__": parser = init_argparse() args = parser.parse_args() experiment = get_experiment_function(args) base_dir, experiment_dir = get_directories(args, cluster=args.cluster) if args.cluster and args.sweep: params = get_params(args) params_combinations = get_param_combinations(params) launch_sweep(experiment, params_combinations, base_dir, experiment_dir) elif args.cluster: launch_single_job( experiment, base_dir, experiment_dir, ) else: print("running single local job") experiment(folder=experiment_dir)
""" Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. """ import torch from torch import nn from collections import OrderedDict from abc import ABC class ResNetExplorer(nn.Module): """ Loads a pre-trained model and hook on one of its layer """ def __init__(self, path_to_model="pytorch/vision:v0.6.0", model="resnet152"): super().__init__() self.pretrained_model = torch.hub.load(path_to_model, model, pretrained=True) def create_full_model(self, layer_to_explore, layer_to_explore_size, image_size): all_layers = dict(list(self.pretrained_model.named_children())) all_keys = list( all_layers.keys() ) # TODO: I am not sure the order is preserved ? max_index = all_keys.index(layer_to_explore) ##### ENCODER # take all layers up to the one we want to explore for the encoder encoder_layers = [ (all_keys[i], all_layers[layer]) for i, layer in enumerate(all_layers) if i <= max_index ] layers = OrderedDict() for layer in encoder_layers: name = layer[0] layers[name] = layer[1] # create a new model with it (saves time during feed-forward if we take other layers than the last one) self.fixed_encoder = nn.Sequential(layers) ##### Linear layer to learn the mapping self.linear = nn.Linear(layer_to_explore_size, layer_to_explore_size) ##### DECODER self.decoder = nn.Linear(layer_to_explore_size, image_size) def forward(self, x): z = self.fixed_encoder(x) # feed flattened z to linear z_prime = self.linear(z.view(x.size(0), -1)) x_dec = self.decoder(z_prime) # sigmoid to have something between 0 and 1 x_dec = torch.sigmoid(x_dec) # map to image shape return x_dec.view(x.size()) class LinearEncoder(nn.Module): def __init__(self, n_pixels, n_channels, z_dim): super().__init__() self.fc1 = nn.Linear(n_pixels ** 2 * n_channels, z_dim, bias=False) def forward(self, x): out = x.flatten(start_dim=1) out = self.fc1(out) return out class LinearDecoder(nn.Module): def __init__(self, n_pixels, n_channels, z_dim): super().__init__() self.n_pixels = n_pixels self.n_channels = n_channels self.fc1 = nn.Linear(z_dim, n_pixels ** 2 * n_channels, bias=False) def forward(self, x): out = self.fc1(x) out = out.reshape(-1, self.n_channels, self.n_pixels, self.n_pixels) return out class ComplexLinearEncoder(nn.Module): def __init__(self, n_pixels, n_channels, z_dim): super().__init__() self.fc1r = torch.nn.Linear(n_pixels ** 2 * n_channels, z_dim, bias=False) self.fc1i = torch.nn.Linear(n_pixels ** 2 * n_channels, z_dim, bias=False) def forward(self, x): out = x.flatten(start_dim=1) outr = self.fc1r(out) outi = self.fc1i(out) return (outr, outi) class ComplexLinearDecoder(nn.Module): def __init__(self, n_pixels, n_channels, z_dim): super().__init__() self.n_pixels = n_pixels self.n_channels = n_channels self.fc1r = nn.Linear(z_dim, n_pixels ** 2 * n_channels, bias=False) self.fc1i = nn.Linear(z_dim, n_pixels ** 2 * n_channels, bias=False) def forward(self, x): r1 = self.fc1r(x[0]) r2 = -self.fc1i(x[1]) out_r = r1 + r2 out_r = out_r.reshape(-1, self.n_channels, self.n_pixels, self.n_pixels) return out_r class CCIEncoder(nn.Module): def __init__(self, n_pixels, n_channels, z_dim): super().__init__() self.encoder = nn.Sequential( nn.Conv2d(n_channels, n_pixels, kernel_size=4, stride=2), nn.ReLU(), nn.Conv2d(n_pixels, n_pixels, kernel_size=4, stride=2), nn.ReLU(), nn.Conv2d(n_pixels, n_pixels, kernel_size=4, stride=2), nn.ReLU(), nn.Conv2d(n_pixels, 256, kernel_size=1, stride=1), Lambda(lambda x: x.view(x.size(0), -1)), nn.Linear(256, z_dim), ) def forward(self, x): out = self.encoder(x) return out class CCIDecoder(nn.Module): def __init__(self, n_pixels, n_channels, z_dim): super().__init__() self.decoder = nn.Sequential( nn.Linear(z_dim, 256), nn.ReLU(), Lambda(lambda x: x.view(-1, 256, 1, 1)), nn.ConvTranspose2d(256, 64, 4), nn.ReLU(), nn.ConvTranspose2d(64, 64, 4, 2, 1), nn.ReLU(), nn.ConvTranspose2d(64, n_pixels, 4, 2, 1), nn.ReLU(), nn.ConvTranspose2d(n_pixels, n_channels, 4, 2, 1), Lambda(lambda x: x.view(x.size(0), -1)), nn.Linear(32 * 32, n_pixels * n_pixels), Lambda(lambda x: x.view(x.size(0), 1, n_pixels, n_pixels)), ) def forward(self, x): out = self.decoder(x) return out class NonLinearEncoder(nn.Module): def __init__(self, n_pixels, n_chanels, z_dim): super().__init__() self.fc1 = nn.Linear(n_pixels ** 2, n_pixels // 2) self.batch_norm = nn.BatchNorm1d(n_pixels // 2) self.fc2 = nn.Linear(n_pixels // 2, z_dim) def forward(self, x): out = x.flatten(start_dim=1) out = self.fc1(out) out = self.batch_norm(out) out = torch.relu(out) out = self.fc2(out) out = torch.relu(out) return out class NonLinearDecoder(nn.Module): def __init__(self, n_pixels, n_channels, z_dim): super().__init__() self.n_channels = n_channels self.n_pixels = n_pixels self.fc1 = nn.Linear(z_dim, (n_pixels ** 2) // 2) self.batch_norm = nn.BatchNorm1d((n_pixels ** 2) // 2) self.fc2 = nn.Linear((n_pixels ** 2) // 2, n_pixels ** 2) def forward(self, x): out = self.fc1(x) out = self.batch_norm(out) out = torch.relu(out) # reshape out = self.fc2(out) out = torch.relu(out) out = out.reshape(-1, self.n_channels, self.n_pixels, self.n_pixels) return out class VAEBase(ABC): @staticmethod def reparameterize(mu, log_var): """Returns z_sample from mu, var""" std = torch.exp(log_var / 2) # z_sample = torch.normal(mu, std) # eps = Variable(torch.randn_like(std)) eps = torch.randn_like(std) z_sample = mu + eps.mul(std) return z_sample @staticmethod def latent_sample(mu, log_var, num_std): """Generates sample based on mu, var that's num_std away from mean""" std = torch.exp(log_var / 2) z_sample = (num_std * std).add(mu) return z_sample class LinearCCIVAE(nn.Module, VAEBase): def __init__(self, n_pixels, n_channels, z_dim): super().__init__() self.z_dim = z_dim self.encoder = LinearEncoder(n_pixels, n_channels, 2 * z_dim) self.decoder = LinearDecoder(n_pixels, n_channels, z_dim) def forward(self, x): z_dist = self.encoder(x) mu, log_var = z_dist[:, : self.z_dim], z_dist[:, self.z_dim :] # reparameterize z_sample = LinearCCIVAE.reparameterize(mu, log_var) out = self.decoder(z_sample) return out, mu, log_var class Lambda(nn.Module): def __init__(self, func): super().__init__() self.func = func def forward(self, x): return self.func(x) class CCIVAE(nn.Module, VAEBase): """Model Architecture from CCI-VAE paper https://arxiv.org/abs/1804.03599 Encoder: 4 convolutional layers, each with 32 channels, 4x4 kernels, and a stride of 2. Followed by 2 fully connected layers, each of 256 units Latent Space: 20 units (10 for mean, 10 for variance) Decoder: transpose of encoder with ReLU activations """ def __init__(self, n_pixels, n_channels, z_dim, distribution="gaussian"): super().__init__() self.z_dim = z_dim self.n_channels = n_channels self.distribution = distribution self.encoder = nn.Sequential( nn.Conv2d(n_channels, n_pixels, kernel_size=4, stride=2), nn.ReLU(), nn.Conv2d(n_pixels, n_pixels, kernel_size=4, stride=2), nn.ReLU(), nn.Conv2d(n_pixels, n_pixels, kernel_size=4, stride=2), nn.ReLU(), nn.Conv2d(n_pixels, 256, kernel_size=1, stride=1), nn.ReLU(), Lambda(lambda x: x.view(x.size(0), -1)), nn.Linear(256, 2 * z_dim), ) self.decoder = nn.Sequential( nn.Linear(z_dim, 256), nn.ReLU(), Lambda(lambda x: x.view(-1, 256, 1, 1)), nn.ConvTranspose2d(256, 64, 4), nn.ReLU(), nn.ConvTranspose2d(64, 64, 4, 2, 1), nn.ReLU(), nn.ConvTranspose2d(64, n_pixels, 4, 2, 1), nn.ReLU(), nn.ConvTranspose2d(n_pixels, n_channels, 4, 2, 1), Lambda(lambda x: x.view(x.size(0), -1)), nn.ReLU(), nn.Linear(32 * 32, n_pixels * n_pixels), Lambda(lambda x: x.view(x.size(0), 1, n_pixels, n_pixels)), nn.Sigmoid(), ) def forward(self, x): z_dist = self.encoder(x) mu, log_var = z_dist[:, : self.z_dim], z_dist[:, self.z_dim :] # tanh log_var didn't seem to help # log_var = torch.tanh(log_var) z_sample = CCIVAE.reparameterize(mu, log_var) out = self.decoder(z_sample) return out, mu, log_var
""" Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. """ import torch import numpy as np import functools import pdb class ShiftOperator: """Performs discrete shift based on n_rotations.""" def __init__(self, n_rotations, device): self.n_rotations = n_rotations self.device = device self.translation_matrices = self.generate_shift_operator_matrices( n_rotations + 1 ) def __call__(self, z_batch, angles): """Interface for Autoencoder""" return self.translate_batch(z_batch, angles) def translate_batch(self, z_batch, angles): """Applies shift operator to batch Args: angles (array of floats): counter-clockwise rotation in degrees. """ smallest_angle = 360 / (self.n_rotations + 1) if angles.dim() > 1: shifts = angles[:, 0] / smallest_angle else: shifts = angles / smallest_angle try: translated_batch = [ self.translate(z, shifts[i].long()) for i, z in enumerate(z_batch) ] except IndexError as e: print("===ANGLES ARE", angles) raise e return torch.stack(translated_batch) def translate(self, z, shift): """Translate latent Args: z (1-dim tensor): latent vector shift (int): amount by which to shift. shift of 0 corresponds to the identity. """ # reshape into 2D tensor z_2d = z.reshape(self.n_rotations + 1, -1) translation_matrix = self.translation_matrices[shift] # move to cpu if tensor is cpu. Used for eval if not z_2d.is_cuda: translation_matrix = translation_matrix.cpu() # translation z_2d_shifted = translation_matrix.matmul(z_2d) # reshape back z_shifted = z_2d_shifted.reshape(z.shape) return z_shifted def generate_shift_operator_matrices(self, n_rotations): """Generates family of shift operator matrices""" translation_matrix = np.zeros((n_rotations, n_rotations)) for i in range(n_rotations): translation_matrix[i, (i + 1) % n_rotations] = 1 translation_matrices = [np.eye(n_rotations, n_rotations)] T = np.eye(n_rotations, n_rotations) for i in range(n_rotations - 1): T = np.dot(translation_matrix, T) translation_matrices.append(T) translation_matrices = np.array(translation_matrices) _translation_matrices = torch.tensor( translation_matrices, dtype=torch.float32, device=self.device, ) return _translation_matrices class ComplexShiftOperator: """Performs discrete shift based on n_rotations""" def __init__(self, cardinals, z_dim, device, unique_transfo=False, index=None): self.cardinals = cardinals self.z_dim = z_dim self.device = device self.translation_matrices = self.generate_translation_matrices( self.cardinals, self.z_dim ) if unique_transfo: if (np.array(cardinals)>1).sum()==1: self.index = int((np.array(cardinals)>1).nonzero()[0]) elif (np.array(cardinals)>1).sum()>1: if index is None: print("Must provide the index of the operator !") else: self.index = index self.translate_batch = self.translate_batch_unique else: self.translate_batch = self.translate_batch_multiple def __call__(self, z_batch, shifts): """Interface for Autoencoder""" z_batch_r, z_batch_i = z_batch return self.translate_batch(z_batch_r, z_batch_i, shifts) def translate_batch_unique(self, z_batch_r, z_batch_i, shifts): """Translates batch in the case of a unique transformations (Faster)""" tr = self.translation_matrices[self.index][0][shifts[:, 0]] ti = self.translation_matrices[self.index][1][shifts[:, 0]] z_batch_r_shifted = tr * z_batch_r - ti * z_batch_i z_batch_i_shifted = tr * z_batch_i + ti * z_batch_r return ( z_batch_r_shifted, z_batch_i_shifted, ) def translate_batch_multiple(self, z_batch_r, z_batch_i, shifts): """Translates batch in the case of multiple transformations""" (Mr, Mi) = self.build_multipliers(shifts) z_batch_r_shifted = Mr * z_batch_r - Mi * z_batch_i z_batch_i_shifted = Mr * z_batch_i + Mi * z_batch_r return ( z_batch_r_shifted, z_batch_i_shifted, ) def build_multipliers(self, shifts): size_batch, n_transfo = shifts.shape Mr = torch.ones((size_batch, self.z_dim), device=self.device) Mi = torch.zeros((size_batch, self.z_dim), device=self.device) for i in range(n_transfo): tr = self.translation_matrices[i][0][shifts[:, i]] ti = self.translation_matrices[i][1][shifts[:, i]] Mr = Mr * tr - Mi * ti Mi = Mr * ti + Mi * tr return (Mr, Mi) def translate(self, zr, zi, shift): """Translate latent Args: z (1-dim tensor): latent vector shift (int): amount by which to shift """ for i in range(len(shift)): tr = self.translation_matrices[i][0][shift[i]] ti = self.translation_matrices[i][1][shift[i]] zr = zr * tr - zi * ti zi = zi * tr + zr * ti return (zr, zi) def generate_translation_matrices(self, cardinals, z_dim): """Generates family of translation matrices""" def DFT_matrix(cardinal, z_dim): i, j = np.meshgrid(np.arange(cardinal), np.arange(cardinal)) omega = np.exp(2 * np.pi * 1j / cardinal) W = np.power(omega, i * j) return W # Loop over all transformations that can happen to the sample XYZ = [] for i, t in enumerate(cardinals): K = self.cardinals[i] X_i = np.arange(K) if z_dim % K: # creates in shift operator an unfinished cycle second_dim = ( int(np.floor(z_dim / K)) + 1 ) # TODO: not sure this is the right way else: # creates in shift operator a finished cycle second_dim = int(z_dim / K) X_i = np.tile(X_i.flatten(), (second_dim))[:z_dim] XYZ.append(X_i) _all_translation_matrices = list() for i in range(len(cardinals)): translation_matrices = DFT_matrix(cardinals[i], z_dim) translation_matrices = translation_matrices[:, XYZ[i]] translation_matrices_r = np.real(translation_matrices) translation_matrices_i = np.imag(translation_matrices) _translation_matrices_r = torch.tensor( translation_matrices_r, dtype=torch.float32, device=self.device, ) _translation_matrices_i = torch.tensor( translation_matrices_i, dtype=torch.float32, device=self.device, ) _all_translation_matrices.append( (_translation_matrices_r, _translation_matrices_i,) ) return _all_translation_matrices class DisentangledRotation: """Performs rotation using rotation matrix of the form: [cos, -sin], [sin, cos] Args: n_rotations (int): discrete rotations needed before identity is reached """ def __init__(self, n_rotations, device): self.n_rotations = n_rotations self.device = device def __call__(self, z, angles): """Interface for Autoencoder""" return self.rotate_batch(z, angles) def rotate_batch(self, x_batch, angles): """Rotates batch""" rotated_batch = [] if angles.dim() > 1: angles = angles[:, 0] else: angles = angles for i, x in enumerate(x_batch): x_rotated = self.rotate(x, angles[i]) rotated_batch.append(x_rotated) return torch.stack(rotated_batch) def rotate(self, x, angle): """Clockwise rotation or translation Args: x (1D tensor): representing latent vector angle (float): rotation angle in degrees Returns: rotated tensor of same shape as x """ if x.dim() != 1: raise ValueError(f"x must be a flattened 1D vector. Got shape {x.shape}") rotation_matrix = self.get_rotation_matrix(angle, x.shape[0]) if not x.is_cuda: rotation_matrix = rotation_matrix.cpu() x_rotated = rotation_matrix.matmul(x) return x_rotated @functools.lru_cache() def get_rotation_matrix(self, angle, dim): """Angle is the rotation angle in degrees. Returns rotation matrix that operates on first two dimensions """ rotation_matrix = torch.diag(torch.ones(dim, device=self.device)) if angle == 0.0: return rotation_matrix radians = (angle / 360) * torch.tensor(2 * np.pi) matrix_2d = torch.tensor( [ [torch.cos(radians), -torch.sin(radians)], [torch.sin(radians), torch.cos(radians)], ] ) rotation_matrix[0][0] = matrix_2d[0][0] rotation_matrix[0][1] = matrix_2d[0][1] rotation_matrix[1][0] = matrix_2d[1][0] rotation_matrix[1][1] = matrix_2d[1][1] return rotation_matrix.to(device=self.device)
""" Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. """
""" Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. """ import torch import numpy as np import random import matplotlib import matplotlib.pyplot as plt import models import latent_operators from datasets import datasets from datasets.data_utils import x_to_image import plot import pdb import os import shutil eps = 1e-20 class WeaklyComplexAutoEncoder: """Trains a weakly supervised shift operator. Args: data (AbstractDataset): contains train and test loaders with angles z_dim (int): dimension of latent space seed (int): for random number generation translation (bool): if true, uses an offset identity matrix for rotation """ def __init__( self, data, z_dim=405, seed=0, encoder_type="ComplexLinear", decoder_type="ComplexLinear", transformation_type=None, device="cpu", temperature=1.0, output_directory="output", save_name="", use_softmax=1, n_rotations = 0, n_x_translations = 0, n_y_translations = 0, scaling_factors = (1, ) ): self.z_dim = z_dim self.seed = seed self.set_seed() self.data = data self.device = device self.encoder = getattr(models, encoder_type + "Encoder")( self.data.n_pixels, self.data.n_channels, z_dim ).to(self.device) self.decoder = getattr(models, decoder_type + "Decoder")( self.data.n_pixels, self.data.n_channels, z_dim ).to(self.device) cardinals = [ n_rotations + 1, n_x_translations + 1, n_y_translations + 1, len(scaling_factors), ] self.cardinals = cardinals # SO FAR, THIS MODEL ONLY WORKS FOR 1 TRANSFO # We grab which one with the following line assert (np.array(cardinals) > 1).sum()==1 for i, cardinal in enumerate(cardinals): if cardinal > 1: self.K = cardinal self.transfo_index = i # function used for transformation self.use_softmax = use_softmax self.transform = self.get_transformation(transformation_type) self.temperature = temperature self.output_dir = output_directory self.save_name = save_name self.best_epoch = 0 self.best_mse = 0 def set_seed(self): """Sets seed for random number generation""" torch.manual_seed(self.seed) np.random.seed(self.seed) random.seed(self.seed) # Generate Dataset torch.autograd.set_detect_anomaly(True) def get_transformation(self, name): """Returns function to performance transformation based name""" if name is None: return None transformation = getattr(latent_operators, name) return transformation(self.cardinals, self.z_dim, self.device, unique_transfo = True) def train(self, loss_func, learning_rate, n_epochs, log_frequency): self.encoder.train() self.decoder.train() params = list(self.encoder.parameters()) + list(self.decoder.parameters()) optimizer = torch.optim.Adam(params, lr=learning_rate) train_losses = torch.FloatTensor(n_epochs) valid_losses = torch.FloatTensor(n_epochs) best_mse = np.inf N_pairs = len(self.data.train_loader.dataset) for epoch in range(n_epochs): epoch_loss = 0 for i, (x1, x2, angles) in enumerate(self.data.train_loader): x1 = x1.to(device=self.device) x2 = x2.to(device=self.device) optimizer.zero_grad() loss = loss_func(x1, x2, angles) loss.backward() optimizer.step() epoch_loss += loss.item() * x1.size(0) epoch_loss = epoch_loss / N_pairs print(f"Epoch {epoch} Train loss: {epoch_loss:0.3e}") valid_mse = ( self.compute_mean_loss(loss_func, self.data.valid_loader) .detach() .item() ) # train_mse = ( # self.compute_mean_loss(loss_func, self.data.train_loader) # .detach() # .item() # ) # train_losses[epoch] = train_mse train_losses[epoch] = epoch_loss if valid_mse < best_mse: self.update_state(mse=valid_mse, epoch=epoch) best_mse = valid_mse file_name = "checkpoint_{}.pth.tar".format(self.save_name) self.save_best_checkpoint( out_dir=self.output_dir, file_name=file_name, optimizer_state_dict=optimizer.state_dict(), ) print(f"Epoch {epoch} validation loss: {valid_mse:0.3e}") valid_losses[epoch] = valid_mse return train_losses.detach().numpy(), valid_losses.detach().numpy() def ifft(self, cps): second_dim = cps.size(1) K = len(self.transform.translation_matrices[self.transfo_index][0]) cps_r = cps[..., 0].to(device=self.device) cps_i = cps[..., 1].to(device=self.device) tr_r = self.transform.translation_matrices[self.transfo_index][0] tr_i = self.transform.translation_matrices[self.transfo_index][1] alternative = cps_r[:, None, ...] * tr_r - cps_i[:, None, ...] * tr_i alternative = alternative.mean(2) # mean over frequencies return alternative def reconstruct_x1(self, x1): """Reconstructs x1 using model""" self.encoder.eval() self.decoder.eval() x1 = x1.to(device=self.device) with torch.no_grad(): z1 = self.encoder(x1) x1_reconstruction_r = self.decoder(z1) return x1_reconstruction_r def reconstruct_x2(self, x1, x2, param=None): """Reconstructs x2 using model and latent transformation""" self.encoder.eval() self.decoder.eval() x1 = x1.to(device=self.device) x2 = x2.to(device=self.device) batch_size = x1.size(0) with torch.no_grad(): z1 = self.encoder(x1) z2 = self.encoder(x2) angles_probas = self.compute_angles_probas(x1, x2, z1, z2) predicted_angle = angles_probas.detach().argmax(-1, keepdims=True) z_transformed = self.transform(z1, predicted_angle) x2_reconstruction_r = self.decoder(z_transformed) return x2_reconstruction_r def plot_multiple_transformations(self, param_name='angle', indices=None, train_set=False, save_name=None): """Plots all rotated reconstructions for given samples""" if indices is None: n_samples = min(len(self.data.X_orig_train), len(self.data.X_orig_test)) indices = np.random.randint(low=0, high=n_samples, size=5) X = ( self.data.X_orig_train[indices] if train_set else self.data.X_orig_test[indices] ).float() title = ( "Translations" if param_name=='angle' != "angle" else "Rotations" ) plot.plot_transformations_complex( X, self, title, save_name=save_name, param_name=param_name, supervised=False, ) def plot_x1_reconstructions( self, indices=[10, 2092, 10299, 13290], train_set=False, save_name=None ): """Plots x1 autoencoder reconstruction from z1. Args: pairs (datasets.Pairs): contains x1, x2, and params. model (function): callable f(x1) = x1_reconstruction indices (list of ints): indices for samples to plot train_set (bool): if true title is plotted with train otherwise test. save_name (str): indicates path where images should be saved. """ pairs = self.data.X_train if train_set else self.data.X_test plot.plot_x1_reconstructions( pairs, self.reconstruct_x1, indices, train_set, save_name ) def plot_x2_reconstructions( self, indices=[10, 2092, 10299, 13290], train_set=False, save_name=None ): """Plots x1, x2 and x2 autoencoder reconstruction from z1 rotated. Args: pairs (datasets.Pairs): contains x1, x2, and params. model (function): callable f(x1) = x1_reconstruction indices (list of ints): indices for samples to plot train_set (bool): if true title is plotted with train otherwise test. save_name (str): indicates path where images should be saved. """ pairs = self.data.X_train if train_set else self.data.X_test plot.plot_x2_reconstructions( pairs, self.reconstruct_x2, indices, train_set, save_name ) def compute_angles_probas(self, x1, x2, z1, z2): cps = self.computes_cross_power_spectrum(z1[0], z1[1], z2[0], z2[1]) invfs_alter = self.ifft(cps) angles_probas = invfs_alter return angles_probas def reconstruction_mse_transformed_z1_weak(self, x1, x2, angles, use_argmax=False): """Computes reconstruction MSE of x1 from z1 + x2 from transformed(z1), not using ground-truth angles""" criterion = torch.nn.MSELoss(reduction="none") batch_size = x1.size(0) z1 = self.encoder(x1) z2 = self.encoder(x2) prod_size = np.prod(x1.size()) x1_reconstruction_r = self.decoder(z1) x1_reconstruction_loss = criterion(x1_reconstruction_r, x1) x1_reconstruction_loss = x1_reconstruction_loss.mean() # TODO this is not adapted to product of shift operators, it's looking only at the 1st cardinal # Transform according to all possible angles, weighted angles_probas = self.compute_angles_probas(x1, x2, z1, z2) if use_argmax: predicted_angle = angles_probas.detach().argmax( -1, keepdims=True ) z_transformed = self.transform(z1, predicted_angle) x2_reconstruction_r = self.decoder(z_transformed) x2_reconstruction_loss = criterion(x2_reconstruction_r, x2) x2_reconstruction_loss = x2_reconstruction_loss.mean() else: all_angles = torch.arange(self.K).repeat(1, batch_size).view(-1, 1) temp = self.temperature mask = torch.softmax(angles_probas / temp, dim=-1) repeat_z1 = ( z1[0][:, None, :].repeat(1, self.K, 1).view(batch_size * self.K, -1), z1[1][:, None, :].repeat(1, self.K, 1).view(batch_size * self.K, -1), ) x2_repeat = ( x2[:, None, ...] .repeat(1, self.K, 1, 1, 1) .view(batch_size * self.K, x2.size(1), x2.size(2), x2.size(3)) ) z_transformed = self.transform(repeat_z1, all_angles) x2_reconstruction_r = self.decoder(z_transformed) x2_reconstruction_transformed_loss = ( criterion(x2_reconstruction_r, x2_repeat) .sum((1, 2, 3)) # sums over image dim .view(batch_size, -1) ) x2_reconstruction_loss = (mask * x2_reconstruction_transformed_loss).sum() / prod_size loss = x1_reconstruction_loss + x2_reconstruction_loss return loss def computes_cross_power_spectrum( self, z_batch_r1, z_batch_i1, z_batch_r2, z_batch_i2 ): """Computes Cross Power spectrum (no FFT) """ batch_size = z_batch_r1.size(0) z1z2_batch_r = ( z_batch_r1 * z_batch_r2 + z_batch_i1 * z_batch_i2 ) # recall we use the conjugate of z_batch_2, hence the + here z1z2_batch_i = ( -z_batch_r1 * z_batch_i2 + z_batch_i1 * z_batch_r2 ) # recall we use the conjugate of z_batch_2, hence the - in front here norm_z1z2_batch = ((z1z2_batch_r ** 2 + z1z2_batch_i ** 2)) ** 0.5 cps_r = z1z2_batch_r / norm_z1z2_batch cps_i = z1z2_batch_i / norm_z1z2_batch cps = torch.cat([cps_r[..., None], cps_i[..., None]], -1) return cps def compute_test_loss(self, loss_func, data_loader): """Computes RMSE based on given loss function.""" self.encoder.eval() self.decoder.eval() losses = [] N = 0 with torch.no_grad(): for i, (x1, x2, angles) in enumerate(data_loader): x1 = x1.to(device=self.device) x2 = x2.to(device=self.device) bs = x1.size(0) loss_batch = loss_func(x1, x2, angles, True)*bs N += bs losses.append(loss_batch) test_loss = torch.stack(losses).sum() / float(N) self.encoder.train() self.decoder.train() return test_loss def compute_mean_loss(self, loss_func, data_loader): """Computes RMSE based on given loss function.""" self.encoder.eval() self.decoder.eval() losses = [] with torch.no_grad(): for i, (x1, x2, angles) in enumerate(data_loader): x1 = x1.to(device=self.device) x2 = x2.to(device=self.device) loss_batch = loss_func(x1, x2, angles, True) losses.append(loss_batch) mean_loss = torch.stack(losses).mean() self.encoder.train() self.decoder.train() return mean_loss def run( self, learning_rate=0.0005, n_epochs=10, log_frequency=50 ): """Runs experiment for autoencoder reconstruction.""" loss_func = self.reconstruction_mse_transformed_z1_weak train_loss, valid_loss = self.train( loss_func, learning_rate, n_epochs, log_frequency ) train_mse = self.compute_mean_loss(loss_func, self.data.train_loader) print(f"Train MSE: {train_mse}") valid_mse = self.compute_mean_loss(loss_func, self.data.valid_loader) print(f"Valid MSE: {valid_mse}") test_mse = self.compute_test_loss(loss_func, self.data.test_loader_batch_100) print(f"Test MSE: {test_mse}") return train_loss, valid_loss, train_mse, valid_mse, test_mse def update_state(self, mse, epoch): self.best_mse = mse self.best_epoch = epoch def load_model(self, path_to_checkpoint): checkpoint = torch.load(path_to_checkpoint) self.best_epoch = checkpoint["best_epoch"] self.encoder.load_state_dict(checkpoint["encoder_state_dict"]) self.decoder.load_state_dict(checkpoint["decoder_state_dict"]) self.best_mse = checkpoint["best_mse"] return checkpoint["best_mse"], checkpoint["best_epoch"] def get_current_state(self): return { "encoder_state_dict": self.encoder.state_dict(), "decoder_state_dict": self.decoder.state_dict(), "best_epoch": self.best_epoch, "best_mse": self.best_mse, } def save_best_checkpoint(self, out_dir, file_name, optimizer_state_dict): """ :param file_name: filename to save checkpoint in. :param optimizer_state_dict: state of the optimizer. :return: str to path where the model is saved. """ state = self.get_current_state() state["optimizer_state_dict"] = optimizer_state_dict best_path = os.path.join(out_dir, "best_" + file_name) torch.save(state, best_path)
""" Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. """ import copy import torch import json import os import random import numpy as np import models import latent_operators import plot from datasets import datasets, transformations class AutoEncoder: """Trains an autoencoder on rotated shapes. Args: data (AbstractDataset): contains train and test loaders with transformation params z_dim (int): dimension of latent space seed (int): for random number generation translation (bool): if true, uses an offset identity matrix for rotation shift_x (bool): use shift values instead of angles in supervision. """ def __init__( self, data, z_dim=700, seed=0, encoder_type="Linear", decoder_type="Linear", latent_operator_name=None, device="cpu", learning_rate=0.0005, n_epochs=5, ): self.z_dim = z_dim self.seed = seed self.set_seed() self.data = data self.device = device self.encoder_type = encoder_type self.decoder_type = decoder_type self.encoder = getattr(models, encoder_type + "Encoder")( self.data.n_pixels, self.data.n_channels, z_dim ).to(self.device) self.decoder = getattr(models, decoder_type + "Decoder")( self.data.n_pixels, self.data.n_channels, z_dim ).to(self.device) self.encoder_best_valid = self.encoder self.decoder_best_valid = self.decoder self.learning_rate = learning_rate self.n_epochs = n_epochs self.transformation_param_name = self.get_transformation_param_name() # function used for latent transformation self.use_latent_op = False if latent_operator_name is None else True self.latent_operator_name = latent_operator_name self.latent_operator = self.get_latent_operator(latent_operator_name) self.train_losses = [] self.valid_losses = [] self.final_test_loss = None def __repr__(self): model = { "encoder_type": self.encoder_type, "decoder_type": self.decoder_type, "z_dim": self.z_dim, "latent_operator": self.latent_operator_name, "batch_size": self.data.batch_size, "learning_rate": self.learning_rate, "n_epochs": self.n_epochs, "data": str(self.data), } return json.dumps(model) def save(self, path, indices=None): os.makedirs(path, exist_ok=True) self.save_model_configs(path) self.save_models(path) self.save_losses(path) self.save_plots(path) def save_model_configs(self, path): model_configs_str = self.__repr__() model_configs = json.loads(model_configs_str) file_path = os.path.join(path, "model_configs.json") with open(file_path, "w") as outfile: json.dump(model_configs, outfile) def save_models(self, path): encoder_path = os.path.join(path, "encoder.pt") torch.save(self.encoder.state_dict(), encoder_path) decoder_path = os.path.join(path, "decoder.pt") torch.save(self.decoder.state_dict(), decoder_path) def load_models(self, path, device="cpu"): self.encoder.load_state_dict( torch.load(os.path.join(path, "encoder.pt"), map_location=device) ) self.decoder.load_state_dict( torch.load(os.path.join(path, "decoder.pt"), map_location=device) ) def save_losses(self, path): file_path = os.path.join(path, "train_losses.npy") np.save(file_path, self.train_losses) file_path = os.path.join(path, "valid_losses.npy") np.save(file_path, self.valid_losses) file_path = os.path.join(path, "test_loss.npy") np.save(file_path, self.final_test_loss) def save_plots(self, path): for train_set in [True, False]: set_name = "train" if train_set else "test" x1_plot_path = os.path.join(path, f"x1_{set_name}_reconstructions") self.plot_x1_reconstructions(save_name=x1_plot_path, train_set=train_set) # store x2 reconstructions only when using supervised latent operator if self.use_latent_op: x2_plot_path = os.path.join(path, f"x2_{set_name}_reconstructions") self.plot_x2_reconstructions( save_name=x2_plot_path, train_set=train_set ) transformation_name = ( "translations" if self.transformation_param_name != "angle" else "rotations" ) multiple_rotations_path = os.path.join( path, f"x_{set_name}_{transformation_name}" ) self.plot_multiple_rotations( save_name=multiple_rotations_path, train_set=train_set ) def save_best_validation(self, path, indices=None): self.encoder = self.encoder_best_valid self.decoder = self.decoder_best_valid self.save(path, indices=indices) def set_seed(self): """Sets seed for random number generation""" torch.manual_seed(self.seed) np.random.seed(self.seed) random.seed(self.seed) # Generate Dataset torch.autograd.set_detect_anomaly(True) def get_transformation_param_name(self): """Returns the parameter used for transformation""" if self.data.n_rotations > 1: return "angle" elif self.data.n_x_translations > 1: return "shift_x" elif self.data.n_y_translations > 1: return "shift_y" else: raise ValueError("No transformation found") def get_latent_operator(self, name): """Returns function to performance transformation based name""" if name is None: return None latent_operator = getattr(latent_operators, name) return latent_operator(self.n_transformations, self.device) @property def n_transformations(self): if self.data.n_rotations > 1: return self.data.n_rotations elif self.data.n_x_translations > 1: return self.data.n_x_translations elif self.data.n_y_translations > 1: return self.data.n_y_translations else: raise ValueError("No transformation found") def train(self, loss_func, stop_early=False, log_frequency=None): self.encoder.train().to(self.device) self.decoder.train().to(self.device) params = list(self.encoder.parameters()) + list(self.decoder.parameters()) optimizer = torch.optim.Adam(params, lr=self.learning_rate) if log_frequency is None: log_frequency = self.set_log_frequency() for epoch in range(self.n_epochs): running_loss = 0.0 print(f"Epoch {epoch}") self.log_train_val_loss(loss_func) for i, (x1, x2, params) in enumerate(self.data.train_loader): print(f"Training batch {i}", end="\r") x1 = x1.to(device=self.device) x2 = x2.to(device=self.device) angles = self.get_angles(params) angles = angles.to(device=self.device) optimizer.zero_grad() loss = loss_func(x1, x2, angles) loss.backward() optimizer.step() running_loss += loss.item() if i % log_frequency == (log_frequency - 1): print(f"Running loss: {running_loss / log_frequency:0.3e}") running_loss = 0.0 if stop_early: return None train_loss, valid_loss = self.log_train_val_loss(loss_func) self.copy_models_validation(valid_loss) # test loss per sample (using batch size 1) self.final_test_loss = self.compute_total_loss( self.data.test_loader_batch_1, loss_func ) print(f"Test Loss: {self.final_test_loss:0.3e}") def set_log_frequency(self): frequency = len(self.data.train_loader) // 10 return frequency def copy_models_validation(self, valid_loss): """Copies models with best validation""" if valid_loss < np.min(self.valid_losses): self.encoder_best_valid = copy.deepcopy(self.encoder) self.decoder_best_valid = copy.deepcopy(self.decoder) def log_train_val_loss(self, loss_func, show_print=True): train_loss = self.compute_total_loss(self.data.train_loader, loss_func) valid_loss = self.compute_total_loss(self.data.valid_loader, loss_func) self.train_losses.append(train_loss) self.valid_losses.append(valid_loss) if show_print: print(f"Total loss train: {train_loss:0.3e} validation: {valid_loss:0.3e}") return train_loss, valid_loss def compute_total_loss(self, loader, loss_func): self.encoder.eval() self.decoder.eval() losses = [] with torch.no_grad(): for x1, x2, params in loader: x1 = x1.to(device=self.device) x2 = x2.to(device=self.device) angles = self.get_angles(params) angles = angles.to(device=self.device) losses.append(loss_func(x1, x2, angles).cpu()) mean_loss = torch.stack(losses).mean() self.encoder.train() self.decoder.train() return mean_loss def reconstruction_mse_x1(self, x1, x2, angles): """Computes MSE x1 reconstruction loss""" criterion = torch.nn.MSELoss() z = self.encoder(x1) x1_reconstruction = self.decoder(z) loss = criterion(x1_reconstruction, x1) return loss def reconstruction_mse_transformed_z1(self, x1, x2, angles): """Computes reconstruction MSE of x1 from z1 + x2 from transformed(z1)""" criterion = torch.nn.MSELoss() z = self.encoder(x1) x1_reconstruction = self.decoder(z) x1_reconstruction_loss = criterion(x1_reconstruction, x1) z_transformed = self.latent_operator(z, angles) x2_reconstruction_loss = criterion(self.decoder(z_transformed), x2) loss = x1_reconstruction_loss + x2_reconstruction_loss return loss def reconstruction_mse_frozen_z1(self, x1, x2, angles): """Reconstruction loss of x2 from x1 without transformations""" criterion = torch.nn.MSELoss() z = self.encoder(x1) x2_reconstruction = self.decoder(z) loss = criterion(x2_reconstruction, x2) return loss def compute_mean_loss(self, loss_func, data_loader): """Computes RMSE based on given loss function.""" self.encoder.eval().cpu() self.decoder.eval().cpu() losses = [] for x1, x2, params in data_loader: angles = self.get_angles(params) losses.append(loss_func(x1, x2, angles).cpu()) mean_loss = torch.stack(losses).mean() return mean_loss def get_angles(self, params): """Returns tensor of angles for translations in x or rotations.""" param_name = self.transformation_param_name if param_name in ("shift_x", "shift_y"): angles = torch.tensor( [ transformations.shift_to_angle( getattr(p, param_name), self.n_transformations, ) for p in params ] ) else: angles = torch.tensor([p.angle for p in params]) return angles def run(self, log_frequency=None, stop_early=False): """Runs experiment for autoencoder reconstruction. Args: log_frequency (int): number of batches after which to print loss stop_early (bool): stop after a single log_frequency number of batches. Useful for testing without waiting for long training. """ if self.latent_operator_name is None: loss_func = self.reconstruction_mse_x1 elif self.latent_operator_name in ["ShiftOperator", "DisentangledRotation"]: loss_func = self.reconstruction_mse_transformed_z1 # TODO: what is frozen_rotation? elif self.latent_operator_name == "frozen_rotation": loss_func = self.reconstruction_mse_frozen_z1 else: raise ValueError( f"transformation type {self.transformation_type} not supported" ) self.train( loss_func, log_frequency=log_frequency, stop_early=stop_early, ) def reconstruct_x1(self, x1): """Reconstructs x1 using model""" self.encoder.eval().cpu() self.decoder.eval().cpu() with torch.no_grad(): z = self.encoder(x1) y = self.decoder(z) return y def reconstruct_transformed_x1(self, x1, param): """Reconstructs x1 transformed using model""" self.encoder.eval().cpu() self.decoder.eval().cpu() with torch.no_grad(): x_transformed = transformations.transform(x1.squeeze(0), param) z = self.encoder(x_transformed.unsqueeze(0)) y = self.decoder(z) return y def reconstruct_x2(self, x1, param): """Reconstructs x2 using model and latent transformation""" self.encoder.eval().cpu() self.decoder.eval().cpu() with torch.no_grad(): z = self.encoder(x1) angle = self.get_angles([param]).unsqueeze(0) z_transformed = self.latent_operator(z, angle) x2 = self.decoder(z_transformed) return x2 def plot_x1_reconstructions(self, indices=None, train_set=False, save_name=None): """Plots x1 autoencoder reconstruction from z1. Args: pairs (datasets.Pairs): contains x1, x2, and params. model (function): callable f(x1) = x1_reconstruction indices (list of ints): indices for samples to plot train_set (bool): if true title is plotted with train otherwise test. save_name (str): indicates path where images should be saved. """ pairs = self.data.X_train if train_set else self.data.X_test if indices is None: indices = random.sample(range(len(pairs)), k=4) plot.plot_x1_reconstructions( pairs, self.reconstruct_x1, indices, train_set, save_name ) def plot_x2_reconstructions(self, indices=None, train_set=False, save_name=None): """Plots x1, x2 and x2 autoencoder reconstruction from z1 rotated. Args: pairs (datasets.Pairs): contains x1, x2, and params. model (function): callable f(x1) = x1_reconstruction indices (list of ints): indices for samples to plot train_set (bool): if true title is plotted with train otherwise test. save_name (str): indicates path where images should be saved. """ pairs = self.data.X_train if train_set else self.data.X_test if indices is None: indices = random.sample(range(len(pairs)), k=4) plot.plot_x2_reconstructions( pairs, self.reconstruct_x2, indices, train_set, save_name ) def plot_multiple_rotations(self, indices=None, train_set=False, save_name=None): """Plots all rotated reconstructions for given samples""" if indices is None: n_samples = min(len(self.data.X_orig_train), len(self.data.X_orig_test)) indices = np.random.randint(low=0, high=n_samples, size=5) X = ( self.data.X_orig_train[indices] if train_set else self.data.X_orig_test[indices] ).float() title = ( "Translations" if self.transformation_param_name != "angle" else "Rotations" ) plot.plot_rotations( X, self, self.n_transformations, title, save_name=save_name, param_name=self.transformation_param_name, use_latent_op=self.use_latent_op, ) def load_data(configs, path): data_configs = json.loads(configs["data"]) if "shapes" and "2k-classes" in path: data = datasets.SimpleShapes( configs["batch_size"], n_rotations=data_configs["n_rotations"], n_x_translations=data_configs["n_x_translations"], n_y_translations=data_configs["n_y_translations"], n_classes=2000, seed=0, ) elif "mnist" in path: data = datasets.ProjectiveMNIST( configs["batch_size"], n_rotations=data_configs["n_rotations"], n_x_translations=data_configs["n_x_translations"], n_y_translations=data_configs["n_y_translations"], train_set_proportion=0.01, valid_set_proportion=0.01, test_set_proportion=1.0, seed=0, ) else: raise ValueError("data not found") return data def load(path): with open(os.path.join(path, "model_configs.json")) as f: configs = json.load(f) data = load_data(configs, path) model_type = "CCI" if "cci" in path else "Linear" model = AutoEncoder( data, z_dim=configs["z_dim"], latent_operator_name=configs["latent_operator"], encoder_type=model_type, decoder_type=model_type, ) model.load_models(path) return model if __name__ == "__main__": device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print(f"running on {device}") n_epochs = 2 simple_shapes = datasets.SimpleShapes(16) print("Training Autoencder") model = AutoEncoder(simple_shapes, device=device, n_epochs=n_epochs) model.run() print("Training Autoencder with Latent Translation") model_with_rotation = AutoEncoder( simple_shapes, latent_operator_name="ShiftOperator", device=device, n_epochs=n_epochs, ) model_with_rotation.run()
""" Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. """ """Implements CCI VAE https://arxiv.org/abs/1804.03599 """ import torch import os import numpy as np import models import json import plot import copy import random from datasets import datasets, transformations from datasets.data_utils import x_to_image from sklearn.decomposition import PCA import matplotlib import matplotlib.pyplot as plt class CCIVariationalAutoEncoder: """Trains an autoencoder on rotated shapes. Args: data (AbstractDataset): contains train and test loaders with angles model (CCIVAE model): contains forward funtion with encoder / decoder beta (float): beta in beta-VAE model c_max (float): maximum value for controlled capacity parameter in CCI VAE. z_dim (int): dimension of latent space seed (int): for random number generation translation (bool): if true, uses an offset identity matrix for rotation """ def __init__( self, data, model=models.CCIVAE, beta=1000.0, c_max=36.0, z_dim=30, seed=0, device="cpu", learning_rate=0.0005, n_epochs=5, distribution="gaussian", ): self.beta, self.c_max = beta, c_max self.c = 0.0 self.z_dim = z_dim self.data = data self.device = device self.model_cls = model self.model = model( self.data.n_pixels, self.data.n_channels, z_dim, distribution=distribution ) self.model.to(device=device) self.model_best_valid = self.model self.learning_rate = learning_rate self.n_epochs = n_epochs self.distribution = distribution self.seed = seed self.set_seed() self.train_losses = [] self.kl_losses = [] self.reconstruction_losses = [] self.valid_losses = [] self.final_test_loss = None def __repr__(self): model = { "model_class": str(self.model_cls), "beta": self.beta, "c_max": self.c_max, "distribution": self.distribution, "z_dim": self.z_dim, "batch_size": self.data.batch_size, "learning_rate": self.learning_rate, "n_epochs": self.n_epochs, "data": str(self.data), } return json.dumps(model) def set_seed(self): """Sets seed for random number generation""" torch.manual_seed(self.seed) np.random.seed(self.seed) random.seed(self.seed) # Generate Dataset torch.autograd.set_detect_anomaly(True) def compute_loss(self, x1): """Loss for controlled capacity beta vae (CCI VAE) https://arxiv.org/abs/1804.03599 """ if self.distribution == "gaussian": criterion = torch.nn.MSELoss(reduction="sum") elif self.distribution == "bernoulli": criterion = torch.nn.BCELoss(reduction="sum") else: raise ValueError(f"distribution {self.distribution} not supported") # assuming a Gaussian Distribution out, mu, log_var = self.model(x1) reconstruction_loss = criterion(out, x1) # https://arxiv.org/abs/1312.6114 # -0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2) kl_divergence = ( -0.5 * (1 + log_var - mu.pow(2) - log_var.exp()).mean(dim=0) ).sum() return reconstruction_loss, kl_divergence def train(self, stop_early=False, log_frequency=None, track_losses=True): """Trains controlled capacity beta vae (CCI VAE) https://arxiv.org/abs/1804.03599 Learning rate used in the paper is 5e-4 If verbose is False, previous loss print is overridden If stop_early is True, training stops after first logged loss. This is useful for testing. """ self.model.train().to(self.device) optimizer = torch.optim.Adam(self.model.parameters(), lr=self.learning_rate) c_step_size = (self.c_max - self.c) / self.n_epochs if log_frequency is None: log_frequency = self.set_log_frequency() for epoch in range(self.n_epochs): running_loss = 0.0 print(f"Epoch {epoch}") if track_losses: self.log_train_val_loss() running_loss = 0.0 running_reconstruction_loss, running_kl_divergence = 0.0, 0.0 # update controlled capacity parameter self.c += c_step_size for i, (x1, _, _) in enumerate(self.data.train_loader): x1 = x1.to(device=self.device) optimizer.zero_grad() reconstruction_loss, kl_divergence = self.compute_loss(x1) loss = reconstruction_loss + self.beta * (kl_divergence - self.c).abs() loss.backward() optimizer.step() running_loss += loss.item() running_reconstruction_loss += ( reconstruction_loss.cpu().detach().numpy() ) running_kl_divergence += kl_divergence.cpu().detach().numpy() if i % log_frequency == (log_frequency - 1): normalized_loss = running_loss / log_frequency normalized_reconstruction_loss = ( running_reconstruction_loss / log_frequency ) normalized_kl_divergence = running_kl_divergence / log_frequency print(f"Running Total Loss: {normalized_loss:0.3e}") print( f"Running Reconstruction Loss: {normalized_reconstruction_loss:0.3e}" f" KL Divergence: {normalized_kl_divergence:0.3e}" ) self.kl_losses.append(normalized_kl_divergence) self.reconstruction_losses.append(normalized_reconstruction_loss) running_loss = 0.0 running_reconstruction_loss = 0.0 running_kl_divergence = 0.0 if stop_early: return None if track_losses: train_loss, valid_loss = self.log_train_val_loss() self.copy_models_validation(valid_loss) # compute test loss per sample self.final_test_loss = self.compute_total_loss( self.data.test_loader_batch_1 ) print(f"Test Loss: {self.final_test_loss:0.3e}") def set_log_frequency(self): frequency = len(self.data.train_loader) // 10 return frequency def copy_models_validation(self, valid_loss): """Copies models with best validation""" if valid_loss < np.min(self.valid_losses): self.model_vest_valid = copy.deepcopy(self.model) def log_train_val_loss(self, show_print=True): train_loss = self.compute_total_loss(self.data.train_loader) valid_loss = self.compute_total_loss(self.data.valid_loader) self.train_losses.append(train_loss) self.valid_losses.append(valid_loss) if show_print: print(f"Total loss train: {train_loss:0.3e} validation: {valid_loss:0.3e}") return train_loss, valid_loss def compute_total_loss(self, loader): """Computes total average loss on given loader""" self.model.eval() losses = [] with torch.no_grad(): for x1, x2, params in loader: x1 = x1.to(device=self.device) reconstruction_loss, kl_divergence = self.compute_loss(x1) loss = reconstruction_loss + self.beta * (kl_divergence - self.c).abs() losses.append(loss.item()) mean_loss = np.mean(losses) self.model.train() return mean_loss def reconstruct_x1(self, x1): """Reconstructs x1 using model""" self.model.eval().cpu() with torch.no_grad(): y, _, _ = self.model(x1) return y def reconstruct_mean(self, x1): self.model.eval().cpu() with torch.no_grad(): _, mu, _ = self.model(x1) out = self.model.decoder(mu) return out def save_best_validation(self, path, indices=None): """Saves results best for model with best validation loss""" self.model = self.model_best_valid self.save(path, indices=indices) def save(self, path, indices=None): os.makedirs(path, exist_ok=True) self.save_model_configs(path) self.save_model(path) self.save_losses(path) self.save_plots(path) def save_model_configs(self, path): model_configs_str = self.__repr__() model_configs = json.loads(model_configs_str) file_path = os.path.join(path, "model_configs.json") with open(file_path, "w") as outfile: json.dump(model_configs, outfile) def load_model(self, path): device = torch.device("cpu") model = self.model_cls(self.data.n_pixels, self.data.n_channels, self.z_dim) model.load_state_dict(torch.load(path, map_location=device)) self.model = model self.model.to(device=device) def save_model(self, path): full_path = os.path.join(path, "model.pt") torch.save(self.model.state_dict(), full_path) def save_losses(self, path): file_path = os.path.join(path, "kl_divergence.npy") np.save(file_path, self.kl_losses) file_path = os.path.join(path, "reconstruction_losses.npy") np.save(file_path, self.reconstruction_losses) file_path = os.path.join(path, "train_losses.npy") np.save(file_path, self.train_losses) file_path = os.path.join(path, "valid_losses.npy") np.save(file_path, self.valid_losses) file_path = os.path.join(path, "test_loss.npy") np.save(file_path, self.final_test_loss) def save_plots(self, path): matplotlib.use("Agg") for train_set in [True, False]: set_name = "train" if train_set else "test" x1_plot_path = os.path.join(path, f"x1_{set_name}_reconstructions") self.plot_x1_reconstructions(save_name=x1_plot_path, train_set=train_set) latent_traversal_path = os.path.join(path, f"x_{set_name}_latent_traversal") self.plot_latent_traversal( save_name=latent_traversal_path, train_set=train_set ) def plot_x1_reconstructions(self, indices=None, train_set=False, save_name=None): """Plots x1 autoencoder reconstruction from z1. Args: pairs (datasets.Pairs): contains x1, x2, and params. model (function): callable f(x1) = x1_reconstruction indices (list of ints): indices for samples to plot train_set (bool): if true title is plotted with train otherwise test. save_name (str): indicates path where images should be saved. """ pairs = self.data.X_train if train_set else self.data.X_test if indices is None: indices = random.sample(range(len(pairs)), k=4) plot.plot_x1_reconstructions( pairs, self.reconstruct_mean, indices, train_set, save_name ) def plot_latent_traversal( self, indices=None, num_std=6.0, train_set=True, save_name=None, fixed_range=True, ): """Traverses latent space from [mu - 3 * std, mu + 3 * std] for given indices. If fixed_range is True, then [-num_std, num_std] is the interval. """ self.model.eval().cpu() pairs = self.data.X_train if train_set else self.data.X_test if indices is None: indices = random.sample(range(len(pairs)), k=3) for index in indices: sample_save_name = save_name if save_name is not None: sample_save_name = save_name + "_sample_" + str(index) self._plot_latent_traversal_helper( pairs, index, num_std, train_set, sample_save_name, fixed_range ) def plot_single_latent_traversal( self, index=3, train_set=True, latent_dim=0, save_name=None, num_std=6.0, ): self.model.eval().cpu() pairs = self.data.X_train if train_set else self.data.X_test sample_save_name = save_name if save_name is not None: sample_save_name = save_name + "_sample_" + str(index) x1, x2, p = pairs[index] title = "Training" if train_set else "Test" traversal_path = CCIVariationalAutoEncoder.get_std_path(num_std) num_subplots = len(traversal_path) + 1 fig, axs = plt.subplots(1, num_subplots, figsize=(12, 16)) axs[0].imshow(x1.squeeze()) axs[0].set_title(f"{title}: x1, latent {latent_dim}") axs[0].set_xticks([]) axs[0].set_yticks([]) with torch.no_grad(): _, mu, log_var = self.model(x1.unsqueeze(0)) z = mu for i, step in enumerate(traversal_path): z_shifted = z.clone().cpu().detach() z_shifted[0][latent_dim] = step with torch.no_grad(): reconstruction = self.model.decoder(z_shifted) axs[i + 1].imshow(reconstruction.squeeze().detach().numpy()) axs[i + 1].set_xticks([]) axs[i + 1].set_yticks([]) fig.tight_layout() if save_name: # close figure to speed up saving plt.savefig(sample_save_name, bbox_inches="tight", dpi=100) plt.close(fig) @staticmethod def get_std_path(num_std): """Returns list of std steps. [-3, -2, -1, 0, 1, 2, 3] """ step_size = num_std / 3.0 positive_steps = [i * step_size for i in range(1, 4)] negative_steps = sorted(list(-1 * np.array(positive_steps))) path = negative_steps + [0] + positive_steps return path def _plot_latent_traversal_helper( self, X, index, num_std, train_set, save_name, fixed_range ): title = "Training" if train_set else "Test" traversal_path = CCIVariationalAutoEncoder.get_std_path(num_std) num_subplots = len(traversal_path) + 1 x1, x2, p = X[index] fig, axs = plt.subplots(self.z_dim, num_subplots, figsize=(20, 60)) for dim in range(self.z_dim): axs[dim, 0].imshow(x1.squeeze()) axs[dim, 0].set_title(f"{title}: x1, latent {dim}") axs[dim, 0].set_xticks([]) axs[dim, 0].set_yticks([]) with torch.no_grad(): _, mu, log_var = self.model(x1.unsqueeze(0)) z = mu for i, step in enumerate(traversal_path): if not fixed_range: z_shifted = CCIVariationalAutoEncoder.shift_latent( z, dim, step, log_var ) else: z_shifted = z.clone().cpu().detach() z_shifted[0][dim] = step with torch.no_grad(): reconstruction = self.model.decoder(z_shifted) axs[dim, i + 1].imshow(reconstruction.squeeze().detach().numpy()) if not fixed_range: axs[dim, i + 1].set_title(f"std {step:.1f}") else: axs[dim, i + 1].set_title(f"{step:.1f}") axs[dim, i + 1].set_xticks([]) axs[dim, i + 1].set_yticks([]) fig.tight_layout() if save_name: # close figure to speed up saving plt.savefig(save_name, bbox_inches="tight", dpi=100) plt.close(fig) @staticmethod def shift_latent(z, dim, num_std, log_var): """Shifts latent by num_std along index of latent dimension""" std = torch.exp(log_var / 2.0) z_shifted = z.clone().cpu().detach() z_shifted[0][dim] += num_std * std[0][dim] return z_shifted def get_latents(self, train_set=False, num_batches=1000): """Returns latent representation for random indices""" self.model.eval().cpu() loader = self.data.train_loader if train_set else self.data.test_loader Z = [] for i, (x1, x2, p) in enumerate(loader): z = self.get_latent(x1) Z.append(z) if i == num_batches: break Z = torch.cat(Z) return Z def get_latent(self, x): with torch.no_grad(): _, mu, var = self.model(x) z = self.model.reparameterize(mu, var) return z def compute_latent_variances(self, n_samples=None): """Computes variance of latents across transformations of a sample""" if n_samples is None: n_samples = len(self.data.X_orig_test) variances = [] for i in range(n_samples): x1 = self.data.X_orig_test[i] self.model.eval().cpu() with torch.no_grad(): sample_latents = [] for param in self.data.transform_params: x_transformed = transformations.transform(x1, param) _, mu, log_var = self.model(x_transformed.unsqueeze(0)) # use mean of latent z = mu sample_latents.append(z) sample_latents = torch.cat(sample_latents) sample_var = sample_latents.var(dim=0) variances.append(sample_var) variances = torch.stack(variances).numpy() return variances def compute_latents_per_shape(self, n_samples=None): """Computes variance of latents across transformations of a sample""" if n_samples is None: n_samples = len(self.data.X_orig_test) latents = [] for i in range(n_samples): x1 = self.data.X_orig_test[i] self.model.eval().cpu() with torch.no_grad(): sample_latents = [] for param in self.data.transform_params: x_transformed = transformations.transform(x1, param) _, mu, log_var = self.model(x_transformed.unsqueeze(0)) # use mean of latent z = mu sample_latents.append(z) sample_latents = torch.cat(sample_latents) latents.append(sample_latents) latents = torch.stack(latents).numpy() return latents def pca_ranked_eigenvalues(self, n_samples=None): """Returns average of ranked normalized eigenvalues for latents""" latents = self.compute_latents_per_shape(n_samples=n_samples) n_components = self.data.n_rotations + 1 aggregate_ranked_normalized_eigenvalues = [] for latent in latents: pca = PCA(n_components=n_components) pca.fit(latents[1]) ranked_normalized_eigenvalues = np.sort(pca.explained_variance_ratio_)[::-1] aggregate_ranked_normalized_eigenvalues.append( ranked_normalized_eigenvalues ) aggregate_ranked_normalized_eigenvalues = np.stack( aggregate_ranked_normalized_eigenvalues ) average_var_explained = np.mean(aggregate_ranked_normalized_eigenvalues, axis=0) return average_var_explained def compute_mutual_info(variances): """Variances is a numpy array with shape (n_samples, z_dim)""" n = variances.shape[0] m_info = np.log(2 * np.pi * variances).sum(0) / (2.0 * n) return m_info def load_data(configs, path): data_configs = json.loads(configs["data"]) if "shapes" and "2k-classes" in path: data = datasets.SimpleShapes( configs["batch_size"], n_rotations=data_configs["n_rotations"], n_x_translations=data_configs["n_x_translations"], n_y_translations=data_configs["n_y_translations"], n_classes=2000, seed=0, ) elif "mnist" in path: data = datasets.ProjectiveSingleDigitMNIST( configs["batch_size"], n_rotations=data_configs["n_rotations"], n_x_translations=data_configs["n_x_translations"], n_y_translations=data_configs["n_y_translations"], train_set_proportion=0.1, valid_set_proportion=0.1, test_set_proportion=1.0, seed=0, ) else: raise ValueError("data not found") return data def load(path): with open(os.path.join(path, "model_configs.json")) as f: configs = json.load(f) data = load_data(configs, path) model = CCIVariationalAutoEncoder( data, z_dim=configs["z_dim"], beta=configs["beta"], c_max=configs["c_max"], distribution=configs["distribution"], learning_rate=configs["learning_rate"], n_epochs=configs["n_epochs"], ) model.load_model(os.path.join(path, "model.pt")) return model if __name__ == "__main__": device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print(f"running on {device}") n_epochs = 2 batch_size = 16 simple_shapes = datasets.SimpleShapes(batch_size) vae = CCIVariationalAutoEncoder( simple_shapes, beta=0.0, c_max=0.0, device=device, n_epochs=n_epochs ) vae.train()
""" Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. """ import torch import numpy as np import random import matplotlib import matplotlib.pyplot as plt import models import latent_operators from datasets import datasets from datasets.data_utils import x_to_image import plot import pdb import os import shutil import numpy as np eps = 1e-20 class ComplexAutoEncoder: """Trains a shift operator. Args: data (AbstractDataset): contains train and test loaders with angles z_dim (int): dimension of latent space seed (int): for random number generation translation (bool): if true, uses an offset identity matrix for rotation """ def __init__( self, data, z_dim=405, seed=0, encoder_type="ComplexLinear", decoder_type="ComplexLinear", transformation_types=None, indexes=None, device="cpu", output_directory="output", save_name="", n_rotations = 0, n_x_translations = 0, n_y_translations = 0, scaling_factors = (1, ) ): self.z_dim = z_dim self.seed = seed self.set_seed() self.data = data self.device = device self.encoder = getattr(models, encoder_type + "Encoder")( self.data.n_pixels, self.data.n_channels, z_dim ).to(self.device) self.decoder = getattr(models, decoder_type + "Decoder")( self.data.n_pixels, self.data.n_channels, z_dim ).to(self.device) self.transformation_types = transformation_types self.W_r = torch.nn.ModuleList() self.W_i = torch.nn.ModuleList() for i in range(len(self.transformation_types)-1): self.W_r.append(torch.nn.Linear(z_dim, z_dim, bias=False).to(self.device)) self.W_i.append(torch.nn.Linear(z_dim, z_dim, bias=False).to(self.device)) cardinals = [ n_rotations + 1, n_x_translations + 1, n_y_translations + 1, len(scaling_factors), ] self.cardinals = cardinals # function used for transformation # indexes 0, 1, 2 self.transforms = [] for i in range(len(transformation_types)): self.transforms.append(self.get_transformation(transformation_types[i], indexes[i])) self.output_dir = output_directory self.save_name = save_name self.best_epoch = 0 self.best_mse = 0 def set_seed(self): """Sets seed for random number generation""" torch.manual_seed(self.seed) np.random.seed(self.seed) random.seed(self.seed) # Generate Dataset torch.autograd.set_detect_anomaly(True) def get_transformation(self, name, index): """Returns function to performance transformation based name""" if name is None: return None transformation = getattr(latent_operators, name) return transformation(self.cardinals, self.z_dim, self.device, unique_transfo = True, index=index) def return_shifts(self, params): smallest_angle = 360 / (self.data.n_rotations + 1) int_x = round(self.data.n_pixels / (self.data.n_x_translations + 1)) int_y = round(self.data.n_pixels / (self.data.n_y_translations + 1)) shifts_x = torch.LongTensor([[param.shift_x/int_x for param in params]]).t() shifts_y = torch.LongTensor([[param.shift_y/int_y for param in params]]).t() shifts_r = torch.LongTensor([[int(param.angle/smallest_angle) for param in params]]).t() shifts = [] if self.data.n_rotations > 0: shifts.append(shifts_r) if self.data.n_x_translations > 0: shifts.append(shifts_x) if self.data.n_y_translations > 0: shifts.append(shifts_y) return shifts def transform(self, z1, shifts): N_transfo = len(self.transforms) # shifts is now a tuple z_r = z1[0] z_i = z1[1] for i in range(0,N_transfo-1,1): z_transformed = self.transforms[i]((z_r,z_i), shifts[i]) z_r = z_transformed[0] z_i = z_transformed[1] z_r = self.W_r[i](z_r) - self.W_i[i](z_i) z_i= self.W_r[i](z_i) + self.W_i[i](z_r) z_transformed = self.transforms[N_transfo-1]((z_r,z_i), shifts[N_transfo-1]) return z_transformed def train(self, loss_func, learning_rate, n_epochs, log_frequency): self.encoder.train() self.decoder.train() params = list(self.encoder.parameters()) + list(self.decoder.parameters()) + \ list(self.W_r.parameters()) + list(self.W_i.parameters()) optimizer = torch.optim.Adam(params, lr=learning_rate) train_losses = torch.FloatTensor(n_epochs) valid_losses = torch.FloatTensor(n_epochs) best_mse = np.inf N_pairs = len(self.data.train_loader.dataset) for epoch in range(n_epochs): epoch_loss = 0 for i, (x1, x2, angles) in enumerate(self.data.train_loader): x1 = x1.to(device=self.device) x2 = x2.to(device=self.device) optimizer.zero_grad() loss = loss_func(x1, x2, angles) loss.backward() optimizer.step() epoch_loss += loss.item() * x1.size(0) epoch_loss = epoch_loss / N_pairs print(f"Epoch {epoch} Train loss: {epoch_loss:0.3e}") valid_mse = ( self.compute_mean_loss(loss_func, self.data.valid_loader) .detach() .item() ) train_losses[epoch] = epoch_loss if valid_mse < best_mse: self.update_state(mse=valid_mse, epoch=epoch) best_mse = valid_mse file_name = "checkpoint_{}.pth.tar".format(self.save_name) self.save_best_checkpoint( out_dir=self.output_dir, file_name=file_name, optimizer_state_dict=optimizer.state_dict(), ) print(f"Epoch {epoch} validation loss: {valid_mse:0.3e}") valid_losses[epoch] = valid_mse return train_losses.detach().numpy(), valid_losses.detach().numpy() def reconstruct_x1(self, x1): """Reconstructs x1 using model""" self.encoder.eval() self.decoder.eval() x1 = x1.to(device=self.device) with torch.no_grad(): z1 = self.encoder(x1) x1_reconstruction_r = self.decoder(z1) return x1_reconstruction_r def reconstruct_x2(self, x1, param): """Reconstructs x2 using model and latent transformation""" self.encoder.eval() self.decoder.eval() x1 = x1.to(device=self.device) batch_size = x1.size(0) with torch.no_grad(): z1 = self.encoder(x1) shifts = self.return_shifts([param]) z_transformed = self.transform(z1, shifts) x2_reconstruction_r = self.decoder(z_transformed) return x2_reconstruction_r def plot_x1_reconstructions( self, indices=[10, 2092, 10299, 13290], train_set=False, save_name=None ): """Plots x1 autoencoder reconstruction from z1. Args: pairs (datasets.Pairs): contains x1, x2, and params. model (function): callable f(x1) = x1_reconstruction indices (list of ints): indices for samples to plot train_set (bool): if true title is plotted with train otherwise test. save_name (str): indicates path where images should be saved. """ pairs = self.data.X_train if train_set else self.data.X_test plot.plot_x1_reconstructions( pairs, self.reconstruct_x1, indices, train_set, save_name ) def plot_x2_reconstructions( self, indices=[10, 2092, 10299, 13290], train_set=False, save_name=None ): """Plots x1, x2 and x2 autoencoder reconstruction from z1 rotated. Args: pairs (datasets.Pairs): contains x1, x2, and params. model (function): callable f(x1) = x1_reconstruction indices (list of ints): indices for samples to plot train_set (bool): if true title is plotted with train otherwise test. save_name (str): indicates path where images should be saved. """ pairs = self.data.X_train if train_set else self.data.X_test plot.plot_x2_reconstructions( pairs, self.reconstruct_x2, indices, train_set, save_name ) def reconstruction_mse_transformed_z1(self, x1, x2, params): """Computes reconstruction MSE of x1 from z1 + x2 from transformed(z1), not using ground-truth angles""" criterion = torch.nn.MSELoss(reduction="none") batch_size = x1.size(0) z1 = self.encoder(x1) x1_reconstruction_r = self.decoder(z1) x1_reconstruction_loss = criterion(x1_reconstruction_r, x1) x1_reconstruction_loss = x1_reconstruction_loss.mean() shifts = self.return_shifts(params) z_transformed = self.transform(z1, shifts) x2_reconstruction_r = self.decoder(z_transformed) x2_reconstruction_loss = criterion(x2_reconstruction_r, x2) x2_reconstruction_loss = x2_reconstruction_loss.mean() loss = x1_reconstruction_loss + x2_reconstruction_loss return loss def compute_test_loss(self, loss_func, data_loader): """Computes RMSE based on given loss function.""" self.encoder.eval() self.decoder.eval() losses = [] N = 0 with torch.no_grad(): for i, (x1, x2, angles) in enumerate(data_loader): x1 = x1.to(device=self.device) x2 = x2.to(device=self.device) bs = x1.size(0) loss_batch = loss_func(x1, x2, angles)*bs N += bs losses.append(loss_batch) test_loss = torch.stack(losses).sum() / float(N) self.encoder.train() self.decoder.train() return test_loss def compute_mean_loss(self, loss_func, data_loader): """Computes RMSE based on given loss function.""" self.encoder.eval() self.decoder.eval() losses = [] with torch.no_grad(): for i, (x1, x2, angles) in enumerate(data_loader): x1 = x1.to(device=self.device) x2 = x2.to(device=self.device) loss_batch = loss_func(x1, x2, angles) losses.append(loss_batch) mean_loss = torch.stack(losses).mean() self.encoder.train() self.decoder.train() return mean_loss def run( self, learning_rate=0.0005, n_epochs=10, log_frequency=50 ): """Runs experiment for autoencoder reconstruction.""" loss_func = self.reconstruction_mse_transformed_z1 train_loss, valid_loss = self.train( loss_func, learning_rate, n_epochs, log_frequency ) train_mse = self.compute_mean_loss(loss_func, self.data.train_loader) print(f"Train MSE: {train_mse}") valid_mse = self.compute_mean_loss(loss_func, self.data.valid_loader) print(f"Valid MSE: {valid_mse}") test_mse = self.compute_test_loss(loss_func, self.data.test_loader_batch_100) print(f"Test MSE: {test_mse}") return train_loss, valid_loss, train_mse, valid_mse, test_mse def update_state(self, mse, epoch): self.best_mse = mse self.best_epoch = epoch def load_model(self, path_to_checkpoint): checkpoint = torch.load(path_to_checkpoint) self.best_epoch = checkpoint["best_epoch"] self.encoder.load_state_dict(checkpoint["encoder_state_dict"]) self.decoder.load_state_dict(checkpoint["decoder_state_dict"]) for t in range(len(self.transformation_types) - 1): self.W_r[t].load_state_dict(checkpoint["W_r"][t]) self.W_i[t].load_state_dict(checkpoint["W_i"][t]) self.best_mse = checkpoint["best_mse"] return checkpoint["best_mse"], checkpoint["best_epoch"] def get_current_state(self): W_r = {} W_i = {} for t in range(len(self.transformation_types)-1): W_r[t] = self.W_r[t].state_dict() W_i[t] = self.W_i[t].state_dict() return { "encoder_state_dict": self.encoder.state_dict(), "decoder_state_dict": self.decoder.state_dict(), "W_r": W_r, "W_i": W_i, "best_epoch": self.best_epoch, "best_mse": self.best_mse, } def save_best_checkpoint(self, out_dir, file_name, optimizer_state_dict): """ :param file_name: filename to save checkpoint in. :param optimizer_state_dict: state of the optimizer. :return: str to path where the model is saved. """ state = self.get_current_state() state["optimizer_state_dict"] = optimizer_state_dict best_path = os.path.join(out_dir, "best_" + file_name) torch.save(state, best_path) def plot_multiple_transformations_stacked(self, indices, n_plots, train_set=False, save_name=None): degree_sign = "\N{DEGREE SIGN}" if indices is None: n_samples = min(len(self.data.X_orig_train), len(self.data.X_orig_test)) indices = np.random.randint(low=0, high=n_samples, size=5) X = ( self.data.X_orig_train[indices] if train_set else self.data.X_orig_test[indices] ).float() plot.plot_rotations_translations( X, self, n_plots, self.data.n_rotations, self.data.n_x_translations, self.data.n_y_translations, save_name=save_name ) def plot_multiple_transformations(self, param_name='angle', indices=None, train_set=False, save_name=None): """Plots all rotated reconstructions for given samples""" if indices is None: n_samples = min(len(self.data.X_orig_train), len(self.data.X_orig_test)) indices = np.random.randint(low=0, high=n_samples, size=5) X = ( self.data.X_orig_train[indices] if train_set else self.data.X_orig_test[indices] ).float() title = ( "Translations" if param_name=='angle' != "angle" else "Rotations" ) plot.plot_transformations_complex( X, self, title, save_name=save_name, param_name=param_name, supervised=True, )
""" Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. --- Saves model/plots for best validation MSE """ import math import numpy as np import os from distutils.dir_util import copy_tree def save_best_validation_helper(folder, operator): min_valid_loss = math.inf for sweep in os.listdir(folder): if sweep.startswith("best") or sweep.startswith(".DS_Store"): continue path = os.path.join(folder, sweep, operator) try: valid_loss = np.min(np.load(os.path.join(path, "valid_losses.npy"))) except FileNotFoundError: print(f"run {sweep} missing for {operator}") continue if min_valid_loss >= valid_loss: min_valid_loss = valid_loss destination = os.path.join(folder, "best-validation", operator) copy_tree(path, destination) def save_all_best_validation(parent_folder): for experiment in os.listdir(parent_folder): experiment_path = os.path.join(parent_folder, experiment) if experiment.endswith("-sweep") and "autoencoder" in experiment and "standard" not in experiment: save_best_validation_helper(experiment_path, "disentangled-operator") save_best_validation_helper(experiment_path, "shift-operator") elif experiment.endswith("-sweep") and "standard-autoencoder" in experiment: save_best_validation_helper(experiment_path, "standard-autoencoder") elif experiment.endswith("-sweep") and "cci-vae" in experiment: save_best_validation_helper(experiment_path, "cci_vae") save_best_validation_helper(experiment_path, "beta_vae") save_best_validation_helper(experiment_path, "vae") if __name__ == "__main__": user = os.environ["USER"] parent_folder = f"/checkpoint/{user}/Equivariance/" save_all_best_validation(parent_folder)
""" Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. """ """ Transformations applied to the input images """ import torch import itertools import numpy as np import skimage.transform from dataclasses import dataclass # TODO: set automaticlaly based on n_pixels TRANSLATION_INTERVAL = [0, 28] @dataclass class Params: """ angle (float): counter-clockwise rotation angle in degrees shift_x (float): shift value to the right shift_y (float): shift value to upwards scale (float): scaling factor """ angle: float = 0.0 shift_x: float = 0.0 shift_y: float = 0.0 scale: float = 1.0 def transform(image, params): """ Applies transformations on a single image based on params. Order of transformation is: rotate, translate, scale Args: image (np.array or torch.tensor): of shape [n_pixels, n_pixels] params (Params): contains parameters for rotations, scaling etc. Returns: image with transformations applied """ assert ( image.ndim == 3 ), f"image must be of shape [n_channels, n_pixels, n_pixels] not {image.shape}" image_transformed = image.squeeze() # Rotate if params.angle not in (0.0, 360.0): # cval is the fill value. image_transformed = skimage.transform.rotate( image_transformed, params.angle, cval=image_transformed.min() ) # Translate # if edge is reached cut-off portion appears on other side if params.shift_x != 0.0: image_transformed = np.roll(image_transformed, int(params.shift_x), axis=1) if params.shift_y != 0.0: image_transformed = np.roll(image_transformed, -int(params.shift_y), axis=0) # Scale if params.scale != 1.0: image_transformed = rescale(image_transformed, params.scale) image_transformed = to_torch(image, image_transformed) return image_transformed def rescale(image, scale): """Rescales images based on given scale factor""" scale_transform = skimage.transform.SimilarityTransform(scale=scale) image = skimage.transform.warp( image, scale_transform.inverse, mode="constant", cval=image.min(), ) return image def to_torch(image, image_transformed): """Converts numpy matrix to torch tensor with correct shape""" image_transformed = image_transformed.reshape(image.shape) if torch.is_tensor(image_transformed): return image_transformed.float() if torch.is_tensor(image): image_transformed = torch.from_numpy(image_transformed).float() return image_transformed def get_transform_params( n_rotations, n_x_translations, n_y_translations, scaling_factors, ): """Returns transform params corresponding given values. Translations subdivide translation interval. Args: n_rotations (int): number of subdivisions of 360 to apply. n_x_translations (int): number of shifts along x-axis n_y_translations (int): number of shifts along y-axis scaling_factors (list or tuple floats): representing the scaling factors to use Returns: Params object """ shifts_x = get_shifts(n_x_translations, TRANSLATION_INTERVAL) shifts_y = get_shifts(n_y_translations, TRANSLATION_INTERVAL) for angle in get_rotation_angles(n_rotations): for shift_x, shift_y in itertools.product(shifts_x, shifts_y): for scale in scaling_factors: params = Params( angle=angle, shift_x=shift_x, shift_y=shift_y, scale=scale ) yield params def get_shifts(n_translations, interval): """Returns shifts along given axis by dividing interval. Args: interval (list of ints): [0, n_pixels] n_translations (int): should be divisible by n_pixels """ if n_translations == 0: return [0] elif n_translations == 1: return [0, interval[1] // 2] min_shift = round(interval[1] / (n_translations + 1)) steps = [n * min_shift for n in range(n_translations + 1)] return steps def get_rotation_angles(n_rotations): """Yields rotation angles based on subdivisions given. Example: >>> get_rotation_angles(2) => [0.0, 120.0, 240.0] """ min_angle = 360.0 / (n_rotations + 1) for n in range(n_rotations + 1): yield min_angle * n def shift_to_angle(shift_val, n_transformations): """Returns the angle corresponding to the shift_val. Example: [0, 32], shift_val = 4, we should get 4 / 32 * 360 """ if shift_val == TRANSLATION_INTERVAL[1]: return 0.0 shift_ratio = float(shift_val) / TRANSLATION_INTERVAL[1] angle = 360.0 * shift_ratio return angle
""" Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. """ import torch from torch.utils.data import Dataset from torchvision import transforms from sklearn.model_selection import StratifiedShuffleSplit import torchvision from . import data_utils from abc import ABC, abstractmethod from datasets import transformations import numpy as np import random import json class AbstractDataset(ABC): """ Defines common fields needed for datasets Attributes: batch_size (int): batch size used for dataloaders train_load (torch.utils.data.Dataset): X1, X2, Angle(s) test_load (torch.utils.data.Dataset): X1, X2, Angle(s) pairs (bool): indicates whether to use Pairs dataset where both x1 and x2 are transformed. Otherwise, Single dataset is used where only x1 is transformed. """ def __init__( self, batch_size, n_rotations=0, n_x_translations=0, n_y_translations=0, scaling_factors=(1.0,), seed=0, pairs=True, ): AbstractDataset.set_seed(seed) self.batch_size = batch_size self.n_x_translations, self.n_y_translations = ( n_x_translations, n_y_translations, ) self.n_rotations, self.scaling_factors = n_rotations, scaling_factors self.X_orig_train, self.X_orig_valid, self.X_orig_test = self.get_original() self.transform_params = list( transformations.get_transform_params( n_rotations=self.n_rotations, n_x_translations=self.n_x_translations, n_y_translations=self.n_y_translations, scaling_factors=self.scaling_factors, ) ) data_cls = Pairs if pairs else Single self.X_train = data_cls(self.X_orig_train, self.transform_params) self.train_loader = torch.utils.data.DataLoader( self.X_train, batch_size=self.batch_size, shuffle=True, collate_fn=Pairs.collate, ) #  For validation and test, use shuffle = False to have SequentialSampler(dataset) by default # (see https://github.com/pytorch/pytorch/blob/bfa94487b968ccb570ef8cd9547029b967e76ed0/torch/utils/data/dataloader.py#L257) self.X_valid = data_cls(self.X_orig_valid, self.transform_params) self.valid_loader = torch.utils.data.DataLoader( self.X_valid, batch_size=self.batch_size, shuffle=False, collate_fn=Pairs.collate, ) self.X_test = data_cls(self.X_orig_test, self.transform_params) self.test_loader = torch.utils.data.DataLoader( self.X_test, batch_size=self.batch_size, shuffle=False, collate_fn=Pairs.collate, ) self.test_loader_batch_1 = torch.utils.data.DataLoader( self.X_test, batch_size=1, shuffle=False, collate_fn=Pairs.collate, ) self.test_loader_batch_100 = torch.utils.data.DataLoader( self.X_test, batch_size=100, shuffle=False, collate_fn=Pairs.collate, ) def __repr__(self): attributes = { "n_rotations": self.n_rotations, "n_x_translations": self.n_x_translations, "n_y_translations": self.n_y_translations, "scaling_factors": self.scaling_factors, } return json.dumps(attributes) @abstractmethod def get_original(self): """Sets X_train and X_test to images in original dataset""" pass @property def total_n_transformations(self): """Computes the total number of transformations""" n_translations = (1 + self.n_x_translations) * (1 + self.n_y_translations) n = n_translations * (1 + self.n_rotations) * len(self.scaling_factors) return n @staticmethod def set_seed(seed): torch.manual_seed(seed) np.random.seed(seed) random.seed(seed) @classmethod def __subclasshook__(cls, C): """Verifies dataset has loader of correct type""" for loader in ["train_loader", "test_loader"]: is_valid = hasattr(cls, loader) and isinstance( (getattr(cls, loader)), Dataset ) if not is_valid: return False return True class ProjectiveMNIST(AbstractDataset): """Builds MNIST dataset with transformations applied lazly. Loader contains: (digit, rotated_digit, angle) Shape of Data: (batch_size, 1, 28, 28) Args: batch_size (int): batch size to user for dataloaders n_rotations (int): number discrete rotations per image train_set_proportion (float): proportion of training set to keep valid_set_proportion (float): proportion of training set to keep test_set_proportion (float): proportion of training set to keep """ def __init__( self, batch_size, n_rotations=4, n_x_translations=0, n_y_translations=0, scaling_factors=(1.0,), train_set_proportion=0.1, valid_set_proportion=1.0, test_set_proportion=1.0, seed=0, pairs=True, ): self.train_set_proportion = train_set_proportion self.valid_set_proportion = valid_set_proportion self.test_set_proportion = test_set_proportion super().__init__( batch_size, n_rotations, n_x_translations, n_y_translations, scaling_factors, seed, pairs, ) self.n_pixels = self.X_orig_train[0].shape[1] self.n_channels = 1 def get_original(self): """Returns original training and test images""" mnist_train, mnist_val, mnist_test = self.download_mnist() # normalize MNIST so values are between [0, 1] x_train = mnist_train.data.unsqueeze(1) / 255.0 x_val = mnist_val.data.unsqueeze(1) / 255.0 x_test = mnist_test.data.unsqueeze(1) / 255.0 return x_train, x_val, x_test @staticmethod def stratified_sample(X, y, size): """Returns a stratified sample""" if size == 1.0: return X test_size = 1 - size sampler = StratifiedShuffleSplit( n_splits=1, test_size=test_size, random_state=0 ) indices, _ = next(sampler.split(X, y)) X_sample = X[indices] return X_sample @staticmethod def split_train_valid(train_set, split=10000): num_train = len(train_set) indices = list(range(num_train)) train_idx, valid_idx = indices[split:], indices[:split] train_data = train_set.data[train_idx] valid_data = train_set.data[valid_idx] train_targets = train_set.targets[train_idx] valid_targets = train_set.targets[valid_idx] return train_data, train_targets, valid_data, valid_targets def download_mnist(self): """Skips download if cache is available""" train_set = torchvision.datasets.MNIST( "/tmp/", train=True, download=True, transform=transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))] ), ) test_set = torchvision.datasets.MNIST( "/tmp/", train=False, download=True, transform=transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))] ), ) ( train_data, train_targets, valid_data, valid_targets, ) = ProjectiveMNIST.split_train_valid(train_set) # stratified samples train_data = ProjectiveMNIST.stratified_sample( train_data, train_targets, self.train_set_proportion ) valid_data = ProjectiveMNIST.stratified_sample( valid_data, valid_targets, self.valid_set_proportion ) test_data = ProjectiveMNIST.stratified_sample( test_set.data, test_set.targets, self.test_set_proportion ) return train_data, valid_data, test_data class ProjectiveSingleDigitMNIST(AbstractDataset): """Builds MNIST dataset with transformations applied lazly. Loader contains: (digit, rotated_digit, angle) Shape of Data: (batch_size, 1, 28, 28) Args: batch_size (int): batch size to user for dataloaders n_rotations (int): number discrete rotations per image train_set_proportion (float): proportion of training set to keep valid_set_proportion (float): proportion of training set to keep test_set_proportion (float): proportion of training set to keep """ def __init__( self, batch_size, n_rotations=4, n_x_translations=0, n_y_translations=0, scaling_factors=(1.0,), train_set_proportion=0.1, valid_set_proportion=1.0, test_set_proportion=1.0, seed=0, pairs=True, digit=4, ): self.train_set_proportion = train_set_proportion self.valid_set_proportion = valid_set_proportion self.test_set_proportion = test_set_proportion self.digit = digit super().__init__( batch_size, n_rotations, n_x_translations, n_y_translations, scaling_factors, seed, pairs, ) self.n_pixels = self.X_orig_train[0].shape[1] self.n_channels = 1 def get_original(self): """Returns original training and test images""" mnist_train, mnist_val, mnist_test = self.download_mnist() # normalize MNIST so values are between [0, 1] x_train = mnist_train.data.unsqueeze(1) / 255.0 x_val = mnist_val.data.unsqueeze(1) / 255.0 x_test = mnist_test.data.unsqueeze(1) / 255.0 return x_train, x_val, x_test @staticmethod def split_train_valid(train_set, split=10000): num_train = len(train_set) indices = list(range(num_train)) train_idx, valid_idx = indices[split:], indices[:split] train_data = train_set.data[train_idx] valid_data = train_set.data[valid_idx] train_targets = train_set.targets[train_idx] valid_targets = train_set.targets[valid_idx] return train_data, train_targets, valid_data, valid_targets def sample_single_digit(self, x, targets, proportion): idx = targets == self.digit x_digit = x[idx] sample_size = int(len(idx) * proportion) return x_digit[:sample_size] def download_mnist(self): """Skips download if cache is available""" train_set = torchvision.datasets.MNIST( "/tmp/", train=True, download=True, transform=transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))] ), ) test_set = torchvision.datasets.MNIST( "/tmp/", train=False, download=True, transform=transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))] ), ) ( train_data, train_targets, valid_data, valid_targets, ) = ProjectiveMNIST.split_train_valid(train_set) # stratified samples train_data = self.sample_single_digit( train_data, train_targets, self.train_set_proportion ) valid_data = self.sample_single_digit( valid_data, valid_targets, self.valid_set_proportion ) test_data = self.sample_single_digit( test_set.data, test_set.targets, self.test_set_proportion ) return train_data, valid_data, test_data class SimpleShapes(AbstractDataset): def __init__( self, batch_size, n_pixels=28, n_classes=300, n_points=5, n_rotations=9, n_x_translations=0, n_y_translations=0, scaling_factors=(1.0,), n_channels=1, seed=0, pairs=True, ): self.n_pixels, self.n_classes = n_pixels, n_classes self.n_points, self.n_channels = n_points, n_channels super().__init__( batch_size, n_rotations, n_x_translations, n_y_translations, scaling_factors, seed, pairs, ) @staticmethod def normalize(X): return torch.clamp(X + 1, 0.0, 1.0) def get_original(self): np.random.seed(1) # Sets seed data = data_utils.generate_dataset(self.n_pixels, self.n_classes, self.n_points) (X_train, _), (X_test, _) = data X_trainvalid = torch.from_numpy(X_train).unsqueeze(1).float() N = X_trainvalid.size(0) Nvalid = int(N * 0.2) # Keeps 20% for validation X_valid = SimpleShapes.normalize(X_trainvalid[:Nvalid, ...]) X_train = SimpleShapes.normalize(X_trainvalid[Nvalid:, ...]) X_test = SimpleShapes.normalize(torch.from_numpy(X_test).unsqueeze(1).float()) return X_train, X_valid, X_test class Single(Dataset): """Contains x1 transformed with parameters. Total number of samples == x1 transformed """ def __init__(self, X, params): self.X = X self.params = params def __len__(self): return self.X.shape[0] * len(self.params) @staticmethod def collate(batch): """Used for dataloader""" X1 = torch.stack([item[0] for item in batch]) X2 = torch.stack([item[1] for item in batch]) params = [item[2] for item in batch] return X1, X2, params def get_x_idx(self, idx): """Returns the idx of the original image x.""" return idx // len(self.params) def get_x1(self, idx, x_idx): x = self.X[x_idx] p = len(self.params) x1_params_idx = idx % p x1_params = self.params[x1_params_idx] x1 = transformations.transform(x, x1_params) return x1, x1_params def __getitem__(self, idx): x_idx = self.get_x_idx(idx) x1, x1_params = self.get_x1(idx, x_idx) x2 = self.X[x_idx] return x1, x2, x1_params class Pairs(Dataset): """Contains x1, x2, and transformation params. Total of n_samples * num_params^2 pairs: (x0, t0) => x1 (x1, t0) => x2 (x0, t0) => x1 (x1, t1) => x2 Args: X (original images): [n_samples, n_pixels, n_pixels] params (list of transformations.Params): parameters for transformations """ def __init__(self, X, params): self.X = X self.params = params def __len__(self): return self.X.shape[0] * (len(self.params) ** 2) @staticmethod def collate(batch): """Used for dataloader""" X1 = torch.stack([item[0] for item in batch]) X2 = torch.stack([item[1] for item in batch]) params = [item[2] for item in batch] return X1, X2, params def get_x_idx(self, idx): """Returns the idx of the original image x.""" return idx // (len(self.params) ** 2) def get_x1(self, idx, x_idx): x = self.X[x_idx] p = len(self.params) x1_params_idx = (idx - (x_idx) * p * p) // p x1_params = self.params[x1_params_idx] x1 = transformations.transform(x, x1_params) return x1 def get_x2_params(self, idx, x_idx): p = len(self.params) x1_params_idx = (idx - (x_idx) * p * p) // p x2_params_idx = idx - ((x_idx * p * p) + (x1_params_idx * p)) return self.params[x2_params_idx] def __getitem__(self, idx): x_idx = self.get_x_idx(idx) x1 = self.get_x1(idx, x_idx) x2_params = self.get_x2_params(idx, x_idx) x2 = transformations.transform(x1, x2_params) x1, x2 = x1, x2 return x1, x2, x2_params class ShapeNet(AbstractDataset): pass class ShapeNetIterator(Dataset): """ShapeNet Iterator""" def __init__(self, V, transform=None): self.V = V self.preprocess = transforms.Compose( [ # transforms.Resize(256), # transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ), ] ) def __len__(self): return len(self.V[0]) def __getitem__(self, idx): return tuple([self.preprocess(self.V[v][idx]) for v in range(len(self.V))])
""" Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. """
""" Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. """ """Script demonstrating drawing of anti-aliased lines using Xiaolin Wu's line algorithm usage: python xiaolinwu.py [output-file] """ from __future__ import division import sys from PIL import Image def _fpart(x): return x - int(x) def _rfpart(x): return 1 - _fpart(x) def putpixel(img, xy, color, alpha=1): """Paints color over the background at the point xy in img. Use alpha for blending. alpha=1 means a completely opaque foreground. """ c = tuple(map(lambda bg, fg: int(round(alpha * fg + (1-alpha) * bg)), img.getpixel(xy), color)) img.putpixel(xy, c) def draw_line(img, p1, p2, color): """Draws an anti-aliased line in img from p1 to p2 with the given color.""" x1, y1 = p1 x2, y2 = p2 dx, dy = x2-x1, y2-y1 steep = abs(dx) < abs(dy) p = lambda px, py: ((px,py), (py,px))[steep] if steep: x1, y1, x2, y2, dx, dy = y1, x1, y2, x2, dy, dx if x2 < x1: x1, x2, y1, y2 = x2, x1, y2, y1 grad = dy/dx intery = y1 + _rfpart(x1) * grad def draw_endpoint(pt): x, y = pt xend = round(x) yend = y + grad * (xend - x) xgap = _rfpart(x + 0.5) px, py = int(xend), int(yend) putpixel(img, p(px, py), color, _rfpart(yend) * xgap) putpixel(img, p(px, py+1), color, _fpart(yend) * xgap) return px xstart = draw_endpoint(p(*p1)) + 1 xend = draw_endpoint(p(*p2)) for x in range(xstart, xend): y = int(intery) putpixel(img, p(x, y), color, _rfpart(intery)) putpixel(img, p(x, y+1), color, _fpart(intery)) intery += grad
""" Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. """ from torch.utils.data import Dataset, DataLoader import numpy as np from PIL import Image from .xiaolinwu import draw_line blue = (0, 0, 255) yellow = (255, 255, 0) white = (255, 255, 255) black = (0, 0, 0) def generate_images_from_coords(NPX, NP, C, cols): images = list() for c in range(C.shape[2]): img = Image.new("RGB", (NPX, NPX), white) for p in range(NP - 1): if (C[0, p + 1, c] != C[0, p, c]) or (C[1, p + 1, c] != C[1, p, c]): draw_line( img, (C[0, p + 1, c], C[1, p + 1, c]), (C[0, p, c], C[1, p, c]), cols[c], ) draw_line( img, (C[0, p, c], C[1, p, c]), (C[0, p + 1, c], C[1, p + 1, c]), cols[c], ) if (C[0, p + 1, c] != C[0, 0, c]) or (C[1, p + 1, c] != C[1, 0, c]): draw_line( img, (C[0, p + 1, c], C[1, p + 1, c]), (C[0, 0, c], C[1, 0, c]), cols[c] ) draw_line( img, (C[0, 0, c], C[1, 0, c]), (C[0, p + 1, c], C[1, p + 1, c]), cols[c] ) images.append(np.array(img)) return images # Draw images correspoding to different classes def plot_and_save_grid(NPX, images, margin=1, name="FIGS/junk.png"): grid = np.zeros((NPX + 2 * margin, NPX * NC + margin * NC + margin, 3)) pointer = 0 for img in images: grid[ margin : NPX + margin, 0 + pointer + margin : NPX + pointer + margin, : ] = img pointer += NPX + margin im = Image.fromarray(np.uint8((grid))) im.save(name) return im class MyDataset(Dataset): """Face Landmarks dataset.""" def __init__(self, V, transform=None): """ Args: csv_file (string): Path to the csv file with annotations. root_dir (string): Directory with all the images. transform (callable, optional): Optional transform to be applied on a sample. """ # self.root = ts.root # self.transform = transforms.ToTensor() self.V = V def __len__(self): return len(self.V[0]) def __getitem__(self, idx): try: return tuple([self.V[v][idx] for v in range(len(self.V))]) except: pdb.set_trace() # return (self.transform(self.train_data[idx,:,:,:]),self.train_labels[idx]) # return Dataset.__getitem__(self, idx) # super() def pytorch_dataset(V, batch_size): # order = np.random.permutation(NS) ts = MyDataset(V) loader = torch.utils.data.DataLoader(ts, batch_size=batch_size, shuffle=True) return loader def generate_dataset(NPX, NC, NP): NS = NC * 2 # number of samples # coordinates of each classes of objects C = np.random.randint(0 + NPX / 6, NPX - 1 - NPX / 6, (2, NP, NC)) cols = np.zeros((NS, 3)) # Generate images corresponding to different classes using Xiaolin Wu's line algorithm for anti-aliasing cols = np.zeros((NS, 3)) X = np.array( generate_images_from_coords(NPX, NP, C[:, :, :].reshape((2, NP, NC)), cols) ) X = 1 - np.mean(X, axis=3) # normalize (negative sign ensure background is min) X = X / -X.mean() y = np.arange(NC) y = y.flatten() Y = y.astype(int) split = NS // 4 Xtrain = X[:split] Ytrain = Y[:split] Xtest = X[split:] Ytest = Y[split:] return ((Xtrain, Ytrain), (Xtest, Ytest)) def generate_angles(NT1, NT2, NC): # create pairs of shape with all angles NT = NT1 * NT2 ** 2 [ind1, ind2] = np.meshgrid(range(NT), range(NT)) s1 = ind1.flatten() s2 = ind2.flatten() alphas = (s1 - s2) % (NT1) sangle1 = np.floor(s1 / NT2 ** 2) sangle2 = np.floor(s2 / NT2 ** 2) strans1 = s1 % NT2 ** 2 strans2 = s2 % NT2 ** 2 stransx1 = np.floor(strans1 / NT2) stransx2 = np.floor(strans2 / NT2) stransy1 = strans1 % NT2 stransy2 = strans2 % NT2 alphas1 = (sangle1 - sangle2) % (NT1) alphas2 = (stransx1 - stransx2) % (NT2) alphas3 = (stransy1 - stransy2) % (NT2) s1_all_shapes = ( np.tile(s1, (int(NC / 2))) + NT * np.tile(np.arange(int(NC / 2)).T, (NT * NT, 1)).T.flatten() ) s2_all_shapes = ( np.tile(s2, (int(NC / 2))) + NT * np.tile(np.arange(int(NC / 2)).T, (NT * NT, 1)).T.flatten() ) alphas_all_shapes1 = np.tile(alphas1, int(NC / 2)) alphas_all_shapes2 = np.tile(alphas2, int(NC / 2)) alphas_all_shapes3 = np.tile(alphas3, int(NC / 2)) alphas = (alphas1, alphas2, alphas3) alphas_all_shapes = (alphas_all_shapes1, alphas_all_shapes2, alphas_all_shapes3) return s1, s2, s1_all_shapes, s2_all_shapes, alphas, alphas_all_shapes def x_to_image(x): """Takes a single input x and transforms it into image for im.show""" if x.dim() == 2: n_channels = 1 else: n_channels = x.shape[0] n_pixels = x.shape[1] x_image = x.reshape(n_channels, n_pixels, n_pixels) x_image = x_image.permute(1, 2, 0) # sequeeze to remove in case of a singel channel x_image = x_image.squeeze() return x_image
""" Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. """ import pytest from datasets import datasets from cci_variational_autoencoder import CCIVariationalAutoEncoder BATCH_SIZE = 16 @pytest.fixture(scope="module") def rotated_mnist(): rotated_mnist = datasets.ProjectiveMNIST( BATCH_SIZE, n_rotations=9, train_set_proportion=0.001, test_set_proportion=0.001, valid_set_proportion=0.001, ) return rotated_mnist @pytest.fixture(scope="module") def simple_shapes(): batch_size = 16 return datasets.SimpleShapes(batch_size, n_classes=10) class TestCCIVariationalAutoEncoder: def test_vae(self, simple_shapes): n_epochs, learning_rate = 1, 0.001 model = CCIVariationalAutoEncoder( simple_shapes, beta=1.0, c_max=0.0, device="cpu", n_epochs=n_epochs, learning_rate=learning_rate, ) model.train() def test_beta_vae(self, simple_shapes): n_epochs, learning_rate = 1, 0.001 model = CCIVariationalAutoEncoder( simple_shapes, beta=1.0, c_max=0.0, device="cpu", n_epochs=n_epochs, learning_rate=learning_rate, ) model.train() def test_cci_vae(self, simple_shapes): n_epochs, learning_rate = 1, 0.001 model = CCIVariationalAutoEncoder( simple_shapes, beta=100.0, c_max=36.0, device="cpu", n_epochs=n_epochs, learning_rate=learning_rate, ) model.train() class TestProjectiveMNISTVAE: def test_vae(self, rotated_mnist): n_epochs, learning_rate = 1, 0.001 model = CCIVariationalAutoEncoder( rotated_mnist, beta=1.0, c_max=0.0, device="cpu", n_epochs=n_epochs, learning_rate=learning_rate, ) model.train(stop_early=True) def test_cci_vae(self, rotated_mnist): n_epochs, learning_rate = 1, 0.001 model = CCIVariationalAutoEncoder( rotated_mnist, beta=100.0, c_max=36.0, device="cpu", n_epochs=n_epochs, learning_rate=learning_rate, ) model.train(stop_early=True)
""" Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. """ import torch import math from datasets import transformations from datasets import datasets class TestSimpleShapes: def test_train_loader(self): simple_shapes = datasets.SimpleShapes(16, n_classes=3) assert hasattr(simple_shapes, "train_loader") assert hasattr(simple_shapes, "test_loader") assert len(simple_shapes.train_loader) > 0 assert len(simple_shapes.test_loader) > 0 def test_transformations(self): simple_shapes = datasets.SimpleShapes( 16, n_classes=3, n_rotations=9, n_x_translations=5, n_y_translations=10, scaling_factors=(1.0, 1.2), ) assert simple_shapes.total_n_transformations > 50 class TestProjectiveMNIST: def test_creation(self): """Verifies rotated mnist is created properly""" n_rotations = 9 batch_size = 16 train_size = 5000 rotated_mnist = datasets.ProjectiveMNIST(batch_size, n_rotations=n_rotations) expected_n_batches = math.ceil( (rotated_mnist.total_n_transformations ** 2) * train_size / batch_size ) assert len(rotated_mnist.train_loader) == expected_n_batches # test shape of x2 assert rotated_mnist.X_train[3][1].shape == torch.Size([1, 28, 28]) def test_proportion(self): n_rotations = 9 batch_size = 16 train_proportion = 0.001 test_proportion = 0.005 # 10k for validation full_train_size = 50000 full_test_size = 10000 rotated_mnist = datasets.ProjectiveMNIST( batch_size, n_rotations=n_rotations, train_set_proportion=train_proportion, valid_set_proportion=train_proportion, test_set_proportion=test_proportion, ) expected_train_size = ( full_train_size * train_proportion * (n_rotations + 1) ** 2 ) expected_test_size = full_test_size * test_proportion * (n_rotations + 1) ** 2 assert len(rotated_mnist.X_train) == expected_train_size assert len(rotated_mnist.X_test) == expected_test_size class TestTransformations: def test_transform(self): shape = (1, 30, 30) image = torch.rand(shape) params = transformations.Params(angle=45.0) rotated_X = transformations.transform(image, params) assert torch.is_tensor(rotated_X) assert rotated_X.shape == image.shape
""" Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. """ import pytest from datasets import datasets from autoencoder import AutoEncoder class TestAutoencoder: @pytest.fixture(scope="module") def simple_shapes(self): batch_size = 4 return datasets.SimpleShapes(batch_size, n_classes=10, n_rotations=3) def test_autoencoder(self, simple_shapes): n_epochs, learning_rate = 1, 0.001 model = AutoEncoder( simple_shapes, device="cpu", n_epochs=n_epochs, learning_rate=learning_rate ) model.run(stop_early=True) def test_autoencoder_with_shift_operator(self, simple_shapes): """Tests autoencoder with latent rotation""" n_epochs, learning_rate = 1, 0.001 model = AutoEncoder( simple_shapes, device="cpu", n_epochs=n_epochs, learning_rate=learning_rate, latent_operator_name="ShiftOperator", ) model.run(stop_early=True) def test_autoencoder_with_disentangled_rotation(self, simple_shapes): """Tests autoencoder with latent rotation""" n_epochs, learning_rate = 1, 0.001 model = AutoEncoder( simple_shapes, device="cpu", n_epochs=n_epochs, learning_rate=learning_rate, latent_operator_name="DisentangledRotation", ) model.run(stop_early=True) class TestProjectiveMnistAutoencoder: def __init__(self): self.n_epochs = 1 self.learning_rate = 0.01 def test_standard_autoencoder(self, rotated_mnist): model = AutoEncoder( rotated_mnist, n_epochs=self.n_epochs, learning_rate=self.learning_rate ) model.run(stop_early=True) def test_rotated_autoencoder(self, rotated_mnist): model = AutoEncoder( rotated_mnist, z_dim=400, latent_operator_name="DisentangledRotation", n_epochs=self.n_epochs, learning_rate=self.learning_rate, ) model.run(stop_early=True) def test_shift_operator_autoencoder(self, rotated_mnist): model = AutoEncoder( rotated_mnist, z_dim=400, latent_operator_name="ShiftOperator", n_epochs=self.n_epochs, learning_rate=self.learning_rate, ) model.run(stop_early=True)
""" Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. """
""" Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. """ import argparse import torch import sys sys.path.append("..") from datasets import datasets from weakly_complex_shift_autoencoder import WeaklyComplexAutoEncoder from complex_shift_autoencoder import ComplexAutoEncoder import sys import os import numpy as np import random import torch.backends.cudnn as cudnn use_cuda = True if torch.cuda.is_available() else False parser = argparse.ArgumentParser( description="Fully/Weakly supervised version of shift operator" ) # General arguments parser.add_argument("--seed", type=int, default=0) parser.add_argument( "--output_directory", type=str, default="output", help="In this directory the models will be " "saved. Will be created if doesn't exist.", ) parser.add_argument("--n_epochs", type=int, default="10", help="Number of epochs.") parser.add_argument("--lr", type=float, default="0.001", help="Learning rate.") parser.add_argument("--bs", type=int, default="16", help="Batch size.") parser.add_argument( "--n_rot", type=int, default="9", help="Number of rotations (for the model)." ) parser.add_argument( "--data_n_rot", type=int, default="9", help="Number of rotations (for the data)." ) parser.add_argument( "--n_x", type=int, default="0", help="Number of x translations in x (for the model).", ) parser.add_argument( "--data_n_x", type=int, default="0", help="Number of x translations in x (for the data).", ) parser.add_argument( "--n_y", type=int, default="0", help="Number of y translations in y (for the model).", ) parser.add_argument( "--data_n_y", type=int, default="0", help="Number of y translations in y (for the data).", ) parser.add_argument("--tr_prop", type=float, default="0.01", help="Train proportion.") parser.add_argument("--te_prop", type=float, default="0.01", help="Test proportion.") parser.add_argument("--val_prop", type=float, default="0.01", help="Valid proportion.") parser.add_argument("--n_classes", type=int, default="300", help="Number of classes.") parser.add_argument("--dataset", type=str, default="mnist", help="Dataset") parser.add_argument( "--sftmax", type=int, default="1", help="If 1, switches to weighting and summing (deprecated softmax is always used)" ) parser.add_argument("--tau", type=float, default=0.1, help="Temperature of softmax.") parser.add_argument("--mode", type=str, default="train", help="training or test mode") parser.add_argument("--supervised", type=int, default=0, help="Switches between weakly and fully supervised.") def main(params): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print(f"running on {device}") args = parser.parse_args(params) SEED = int(args.seed) random.seed(SEED) torch.manual_seed(SEED) np.random.seed(SEED) torch.cuda.manual_seed_all(SEED) if args.dataset == "simpleshapes": data = datasets.SimpleShapes( batch_size=args.bs, n_x_translations=args.data_n_x, n_y_translations=args.data_n_y, n_rotations=args.data_n_rot, n_classes=args.n_classes, n_pixels=28, ) elif args.dataset == "mnist": data = datasets.ProjectiveMNIST( batch_size=args.bs, n_x_translations=args.data_n_x, n_y_translations=args.data_n_y, n_rotations=args.data_n_rot, train_set_proportion=args.tr_prop, test_set_proportion=args.te_prop, valid_set_proportion=args.val_prop, ) if args.mode == "train": print("Training") if args.mode == "test": print("Testing") # automatically set z_dim to image size image_size = data.n_pixels ** 2 if not os.path.exists(args.output_directory): os.mkdir(args.output_directory) dict_args = vars(args) save_name = "_".join( [ "{0}_{1}".format(key, dict_args[key]) for key in dict_args if key not in ["output_directory", "mode"] ] ) if args.supervised: transformation_types = [] indexes = [] if args.n_rot > 0: transformation_types.append("ComplexShiftOperator") indexes.append(0) if args.n_x > 0: transformation_types.append("ComplexShiftOperator") indexes.append(1) if args.n_y > 0: transformation_types.append("ComplexShiftOperator") indexes.append(2) model_with_rotation = ComplexAutoEncoder( data, transformation_types=transformation_types, indexes=indexes, device=device, z_dim=image_size, seed=SEED, output_directory=args.output_directory, save_name=save_name, n_rotations=args.n_rot, n_x_translations=args.n_x, n_y_translations=args.n_y, ) n_transfos = len(indexes) else: model_with_rotation = WeaklyComplexAutoEncoder( data, transformation_type="ComplexShiftOperator", device=device, z_dim=image_size, seed=SEED, temperature=args.tau, output_directory=args.output_directory, save_name=save_name, use_softmax=args.sftmax, n_rotations=args.n_rot, n_x_translations=args.n_x, n_y_translations=args.n_y, ) if args.mode == "train": ( train_loss, valid_loss, train_mse, valid_mse, test_mse, ) = model_with_rotation.run(n_epochs=args.n_epochs, learning_rate=args.lr) perf = np.array([train_mse, valid_mse, test_mse]) torch.save(perf, os.path.join(args.output_directory, "final_mse_" + save_name)) torch.save( train_loss, os.path.join(args.output_directory, "train_loss_" + save_name) ) torch.save( valid_loss, os.path.join(args.output_directory, "valid_loss_" + save_name) ) file_name = "best_checkpoint_{}.pth.tar".format(model_with_rotation.save_name) path_to_model = os.path.join(args.output_directory, file_name) best_mse, best_epoch = model_with_rotation.load_model(path_to_model) ##### Plots train reconstructions samples_pairs = np.random.randint( 0, len(model_with_rotation.data.X_train), size=(10,) ).tolist() model_with_rotation.plot_x2_reconstructions( indices=samples_pairs, train_set=True, save_name=os.path.join(args.output_directory, "plots_train_reconstructions_" + save_name), ) ##### Plots train rotations of samples train_indices = np.random.randint( 0, len(model_with_rotation.data.X_orig_train), size=(10,) ).tolist() figsave_name=os.path.join(args.output_directory, "plots_train_rotations_" + save_name + '.png') if args.supervised: if n_transfos == 1: if args.data_n_x > 0: param_name = 'tx' elif args.data_n_y > 0: param_name = 'ty' if args.data_n_rot > 0: param_name = 'angle' model_with_rotation.plot_multiple_transformations(indices=train_indices, train_set = True, param_name=param_name, save_name=figsave_name ) else: model_with_rotation.plot_multiple_transformations_stacked(indices=train_indices, train_set = True, n_plots = 10, save_name=figsave_name ) else: if args.data_n_x > 0: param_name = 'tx' elif args.data_n_y > 0: param_name = 'ty' if args.data_n_rot > 0: param_name = 'angle' model_with_rotation.plot_multiple_transformations(indices=train_indices, train_set = True, param_name=param_name,save_name=figsave_name ) ##### Plots test reconstructions samples_pairs = np.random.randint( 0, len(model_with_rotation.data.X_test), size=(10,) ).tolist() model_with_rotation.plot_x2_reconstructions( indices=samples_pairs, train_set=False, save_name=os.path.join(args.output_directory, "plots_test_reconstructions_" + save_name), ) ##### Plots test rotations of samples test_indices = np.random.randint( 0, len(model_with_rotation.data.X_orig_test), size=(10,) ).tolist() figsave_name=os.path.join(args.output_directory, "plots_test_rotations_" + save_name + '.png') if args.supervised: if n_transfos == 1: if args.data_n_x > 0: param_name = 'tx' elif args.data_n_y > 0: param_name = 'ty' if args.data_n_rot > 0: param_name = 'angle' model_with_rotation.plot_multiple_transformations(indices=test_indices, train_set = False, param_name=param_name, save_name=figsave_name ) else: model_with_rotation.plot_multiple_transformations_stacked(indices=test_indices, train_set = False, n_plots = 10, save_name=figsave_name ) else: if args.data_n_x > 0: param_name = 'tx' elif args.data_n_y > 0: param_name = 'ty' if args.data_n_rot > 0: param_name = 'angle' model_with_rotation.plot_multiple_transformations(indices=test_indices, train_set = False, param_name=param_name, save_name=figsave_name ) elif args.mode == "test": file_name = "best_checkpoint_{}.pth.tar".format(model_with_rotation.save_name) path_to_model = os.path.join(args.output_directory, file_name) model_with_rotation.load_model(path_to_model) if args.supervised: loss_func = model_with_rotation.reconstruction_mse_transformed_z1 else: loss_func = model_with_rotation.reconstruction_mse_transformed_z1_weak test_mse = model_with_rotation.compute_test_loss( loss_func, model_with_rotation.data.test_loader_batch_100 ) torch.save( torch.FloatTensor([test_mse]), os.path.join( args.output_directory, "test_mse_" + model_with_rotation.save_name ), ) if __name__ == "__main__": main(sys.argv[1:])
# Copyright (c) Meta Platforms, Inc. and affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import json import sys class Fab_HDD(): def __init__(self, config="BarraCuda"): ############################### # Carbon per capacity ############################### with open("hdd/hdd_consumer.json", 'r') as f: hdd_config = json.load(f) with open("hdd/hdd_enterprise.json", 'r') as f: hdd_config.update(json.load(f)) assert config in hdd_config.keys() and "HDD configuration not found" self.carbon_per_gb = hdd_config[config] self.carbon = 0 return def get_cpg(self, ): return self.carbon_per_gb def set_capacity(self, capacity): self.capacity = capacity self.carbon = carbon_per_gb return def get_carbon(self, ): return self.carbon
# Copyright (c) Meta Platforms, Inc. and affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import json import sys class Fab_Logic(): def __init__(self, process_node=14, gpa="97", carbon_intensity="loc_taiwan", debug=False, fab_yield=0.875): self.debug = debug ############################### # Energy per unit area ############################### with open("logic/epa.json", 'r') as f: epa_config = json.load(f) ############################### # Raw materials per unit area ############################### with open("logic/materials.json", 'r') as f: materials_config = json.load(f) ############################### # Gasses per unit area ############################### if gpa == "95": with open("logic/gpa_95.json", 'r') as f: gpa_config = json.load(f) elif gpa == "99": with open("logic/gpa_99.json", 'r') as f: gpa_config = json.load(f) elif gpa == "97": with open("logic/gpa_95.json", 'r') as f: gpa_95_config = json.load(f) with open("logic/gpa_99.json", 'r') as f: gpa_99_config = json.load(f) gpa_config = {} for c in gpa_95_config.keys(): gas = (gpa_95_config[c] + gpa_99_config[c]) / 2. gpa_config[c] = gas else: print("Error: Unsupported GPA value for FAB logic") sys.exit() ############################### # Carbon intensity of fab ############################### if "loc" in carbon_intensity: with open("carbon_intensity/location.json", 'r') as f: loc_configs = json.load(f) loc = carbon_intensity.replace("loc_", "") assert loc in loc_configs.keys() fab_ci = loc_configs[loc] elif "src" in carbon_intensity: with open("carbon_intensity/source.json", 'r') as f: src_configs = json.load(f) src = carbon_intensity.replace("src_", "") assert src in src_configs.keys() fab_ci = src_configs[src] else: print("Error: Carbon intensity must either be loc | src dependent") sys.exit() ############################### # Aggregating model ############################### process_node = str(process_node) + "nm" assert process_node in epa_config.keys() assert process_node in gpa_config.keys() assert process_node in materials_config.keys() carbon_energy = fab_ci * epa_config[process_node] carbon_gas = gpa_config[process_node] carbon_materials = materials_config[process_node] self.carbon_per_area = (carbon_energy + carbon_gas + carbon_materials) self.carbon_per_area = self.carbon_per_area / fab_yield if self.debug: print("[Fab logic] Carbon/area from energy consumed" , carbon_energy) print("[Fab logic] Carbon/area from gasses" , carbon_gas) print("[Fab logic] Carbon/area from materials" , carbon_materials) print("[Fab logic] Carbon/area aggregate" , self.carbon_per_area) self.carbon = 0 return def get_cpa(self,): return self.carbon_per_area def set_area(self, area): self.area = area self.carbon = self.area * self.carbon_per_area def get_carbon(self, ): return self.carbon
# Copyright (c) Meta Platforms, Inc. and affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import json import sys from dram_model import Fab_DRAM from ssd_model import Fab_SSD from logic_model import Fab_Logic def main(): Fab_DRAM(config="ddr4_10nm") Fab_SSD(config="nand_10nm") Fab_Logic(gpa="95", carbon_intensity = "src_coal", debug=True, process_node=10) # Fab_Logic(gpa="97", carbon_intensity = "loc_taiwan", debug=True, # process_node=14) if __name__=="__main__": main()
# Copyright (c) Meta Platforms, Inc. and affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import json import sys class Fab_DRAM(): def __init__(self, config = "ddr4_10nm", fab_yield=0.875): ############################### # Carbon per capacity ############################### with open("dram/dram_hynix.json", 'r') as f: dram_config = json.load(f) assert config in dram_config.keys() and "DRAM configuration not found" self.fab_yield = fab_yield self.carbon_per_gb = dram_config[config] / self.fab_yield self.carbon = 0 def get_cpg(self, ): return self.carbon_per_gb def set_capacity(self, capacity): self.capacity = capacity self.carbon = self.carbon_per_gb * self.capacity return def get_carbon(self, ): return self.carbon
# Copyright (c) Meta Platforms, Inc. and affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import json import sys class Fab_SSD(): def __init__(self, config="nand_10nm", fab_yield=0.875): ############################### # Carbon per capacity ############################### with open("ssd/ssd_hynix.json", 'r') as f: ssd_config = json.load(f) with open("ssd/ssd_seagate.json", 'r') as f: ssd_config.update(json.load(f)) with open("ssd/ssd_western.json", 'r') as f: ssd_config.update(json.load(f)) assert config in ssd_config.keys() and "SSD configuration not found" self.fab_yield = fab_yield self.carbon_per_gb = ssd_config[config] / self.fab_yield self.carbon = 0 return def get_cpg(self, ): return self.carbon_per_gb def set_capacity(self, capacity): self.capacity = capacity self.carbon = self.carbon_per_gb * self.capacity return def get_carbon(self, ): return self.carbon
# Copyright (c) Meta Platforms, Inc. and affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import json import sys from dram_model import Fab_DRAM from hdd_model import Fab_HDD from ssd_model import Fab_SSD from logic_model import Fab_Logic debug = False ############################## # Original Dell 740 LCA ############################## #https://corporate.delltechnologies.com/content/dam/digitalassets/active/en/unauth/data-sheets/products/servers/lca_poweredge_r740.pdf ############################## # Main Dell R740 integrated circuits ############################## dellr740_large_ssd = 3840 # GB (3.84 TB x 8 SSD's) dellr740_ssd = 400 # GB (400GB x 1 SSD) dellr740_ssd_dram = 68 # GB (64 + 4GB ECC) dellr740_dram = 36 # GB (32 + 4 ECC GB x 12) ic_yield = 0.875 cpu_area = 6.98 #cm^2 ############################## # Estimated process technology node to mimic fairphone LCA process node ############################## CPU_Logic = Fab_Logic(gpa = "95", carbon_intensity = "src_coal", process_node = 28, fab_yield=ic_yield) SSD_main = Fab_SSD(config = "nand_30nm", fab_yield = ic_yield) SSD_secondary = Fab_SSD(config = "nand_30nm", fab_yield = ic_yield) DRAM_SSD_main = Fab_DRAM(config = "ddr3_50nm", fab_yield = ic_yield) DRAM_SSD_secondary = Fab_DRAM(config = "ddr3_50nm", fab_yield = ic_yield) DRAM = Fab_DRAM(config = "ddr3_50nm", fab_yield = ic_yield) ############################## # Computing carbon footprint of IC's ############################## CPU_Logic.set_area(cpu_area) DRAM.set_capacity(dellr740_dram) DRAM_SSD_main.set_capacity(dellr740_ssd_dram) SSD_main.set_capacity(dellr740_large_ssd) DRAM_SSD_secondary.set_capacity(dellr740_ssd_dram) SSD_secondary.set_capacity(dellr740_ssd) ################################## # Computing the packaging footprint ################################## # number of packages ssd_main_nr = 12 + 1 ssd_secondary_nr = 12 + 1 dram_nr = 18 + 1 cpu_nr = 2 packaging_intensity = 150 # gram CO2 SSD_main_packaging = packaging_intensity * ssd_main_nr SSD_secondary_packaging = packaging_intensity * ssd_secondary_nr DRAM_packging = packaging_intensity * dram_nr CPU_packaging = packaging_intensity * cpu_nr total_packaging = SSD_main_packaging + \ SSD_secondary_packaging + \ DRAM_packging + \ CPU_packaging total_packaging = total_packaging / 1000. ################################## # Compute end-to-end carbon footprints ################################## SSD_main_count = 8 # There are 8x3.84TB SSD's SSD_main_co2 = (SSD_main.get_carbon() + \ DRAM_SSD_main.get_carbon() + \ SSD_main_packaging) / 1000. SSD_main_co2 = SSD_main_co2 * SSD_main_count SSD_secondary_count = 1 # There are 1x400GB SSD's SSD_secondary_co2 = (SSD_secondary.get_carbon() + \ DRAM_SSD_secondary.get_carbon() + \ SSD_secondary_packaging) / 1000. SSD_secondary_co2 = SSD_secondary_co2 * SSD_secondary_count DRAM_count = 12 # There are 12 x (32GB+4GB ECC DRAM modules) DRAM_co2 = (DRAM.get_carbon() + DRAM_packging) / 1000. * DRAM_count CPU_count = 2 CPU_co2 = (CPU_Logic.get_carbon() + CPU_packaging) * CPU_count / 1000. if debug: print("ACT SSD main", SSD_main_co2, "kg CO2") print("ACT SSD secondary", SSD_secondary_co2, "kg CO2") print("ACT DRAM", DRAM_co2, "kg CO2") print("ACT CPU", CPU_co2, "kg CO2") print("ACT Packaging", total_packaging, "kg CO2") print("--------------------------------") print("ACT SSD main", SSD_main_co2, "kg CO2 vs. LCA 3373 kg CO2") print("ACT SSD secondary", SSD_secondary_co2, "kg CO2 vs. LCA 64.1 kg CO2") print("ACT DRAM", DRAM_co2, "kg CO2 vs. LCA 533 kg CO2") print("ACT CPU", CPU_co2, "kg CO2 vs. LCA 47 kg CO2")
# Copyright (c) Meta Platforms, Inc. and affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import json import sys from dram_model import Fab_DRAM from hdd_model import Fab_HDD from ssd_model import Fab_SSD from logic_model import Fab_Logic debug = False # Main Fairphone integrated circuits fairphone3_ICs = ["IC analog switch", "LED Flash", "LED Flash", "CMOS image sensor", "Light sensor", "Light sensor", "LED Full Color", "Image sensor", "I.C WLAN", "I.C WLAN", "Audio power amplifier", "IC analog switch", "IC power amplifier", "IC PMU", "IC PMU", "IC PMU", "Sensor", "NFC Microcontroller", "IC transceiver", "IC audio power", ] # Main Fairphone integrated circuits' areas in mm^2 fairphone3_IC_areas = [0.85, 1.2, 1.2, 35, 0.89, 0.08, 0.25, 18, 11.6, 1.44, 12.96, 1.61, 6.3, 26.88, 0.77, 11.36, 7, 8.69, 11, 9.6] fairphone_cpu_area = 46.4 #mm^2 fairphone_ram = 4 # GB fairphone_storage = 64 # GB ic_yield = 0.875 ################################## # Estimated process technology node to mimic fairphone LCA process node # This initializes ACT with an older technology node. ################################## # IC Logic node IC_Logic = Fab_Logic(gpa = "95", carbon_intensity = "src_coal", process_node = 28, fab_yield=ic_yield) # CPU Application processor node CPU_Logic = Fab_Logic(gpa = "95", carbon_intensity = "src_coal", process_node = 28, fab_yield=ic_yield) # DRAM Logic node DRAM = Fab_DRAM(config = "ddr3_50nm", fab_yield=ic_yield) # SSD Logic node SSD = Fab_SSD(config = "nand_30nm", fab_yield=ic_yield) ################################## # Computing the IC footprint ################################## IC_Logic.set_area(sum(fairphone3_IC_areas)/100.) CPU_Logic.set_area(fairphone_cpu_area/100.) DRAM.set_capacity(fairphone_ram) SSD.set_capacity(fairphone_storage) ################################## # Computing the packaging footprint ################################## #Number of packages nr = len(fairphone3_ICs) + 1 + 1 + 1 # Fairphone ICs + CPU + DRAM + SSD packaging_intensity = 150 # gram CO2 PackagingFootprint = nr * packaging_intensity if debug: print("ACT IC", IC_Logic.get_carbon(), "g CO2") print("ACT CPU", CPU_Logic.get_carbon(), "g CO2") print("ACT DRAM", DRAM.get_carbon(), "g CO2") print("ACT SSD", SSD.get_carbon(), "g CO2") print("ACT Packaging", PackagingFootprint, "g CO2") print("--------------------------------") ram_flash = (DRAM.get_carbon() + SSD.get_carbon() + packaging_intensity * 2) / 1000. fairphone_ram_flash = 11 print("ACT RAM + Flash", ram_flash, "kg CO2 vs. LCA", fairphone_ram_flash, "kg CO2") cpu = (CPU_Logic.get_carbon() + packaging_intensity) / 1000. fairphone_cpu = 1.07 print("ACT CPU", cpu, "kg CO2 vs. LCA", fairphone_cpu, "kg CO2") ics = (IC_Logic.get_carbon() + packaging_intensity * len(fairphone3_ICs)) / 1000. fairphone_ics = 5.3 print("ACT ICs", ics, "kg CO2 vs. LCA", fairphone_ics, "kg CO2")
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import setuptools with open("README.md", "r") as fh: long_description = fh.read() def parse_requirements_file(path): with open(path) as f: reqs = [] for line in f: line = line.strip() reqs.append(line.split("==")[0]) return reqs reqs_main = parse_requirements_file("requirements/main.txt") reqs_dev = parse_requirements_file("requirements/dev.txt") setuptools.setup( name="active-mri-acquisition", version="0.1.0", author="Facebook AI Research", description="A reinforcement learning environment for active MRI acquisition.", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/facebookresearch/active-mri-acquisition/", packages=setuptools.find_packages(), classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Intended Audience :: Science/Research", "Topic :: Scientific/Engineering :: Artificial Intelligence :: Medical Imaging", ], python_requires=">=3.7", install_requires=reqs_main, extras_require={"dev": reqs_main + reqs_dev}, )
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import nox @nox.session() def lint(session): session.install("--upgrade", "setuptools", "pip") session.install("-r", "requirements/dev.txt") session.run("flake8", "activemri") # session.run("black", "--check", "activemri") @nox.session() def mypy(session): session.install("--upgrade", "setuptools", "pip") session.install("-r", "requirements/dev.txt") session.run("mypy", "activemri") @nox.session() def pytest(session) -> None: session.install("--upgrade", "setuptools", "pip") session.install("torch") session.install("torchvision") session.install("-e", ".") session.run("pytest", "tests/core")
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from . import data, envs, experimental __all__ = ["data", "envs", "experimental"]
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from . import cvpr19_models __all__ = ["cvpr19_models"]
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from . import data, models, options, util __all__ = ["data", "models", "options", "util"]
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import ignite.engine import logging import os import tempfile import types import torch import torch.nn.functional as F import torch.optim as optim import torch.utils.data from ignite.contrib.handlers import ProgressBar from ignite.engine import Engine, Events from ignite.metrics import Loss from tensorboardX import SummaryWriter from typing import Any, Dict, Tuple import activemri.experimental.cvpr19_models.data as data import activemri.experimental.cvpr19_models.models as models import activemri.experimental.cvpr19_models.options as options import activemri.experimental.cvpr19_models.util as util def run_validation_and_update_best_checkpoint( engine: ignite.engine.Engine, val_engine: ignite.engine.Engine = None, progress_bar: ignite.contrib.handlers.ProgressBar = None, val_loader: torch.utils.data.DataLoader = None, trainer: "Trainer" = None, ): val_engine.run(val_loader) metrics = val_engine.state.metrics if trainer.options.use_evaluator: progress_bar.log_message( f"Validation Results - Epoch: {engine.state.epoch} " f"MSE: {metrics['mse']:.3f} SSIM: {metrics['ssim']:.3f} loss_D: " f"{metrics['loss_D']:.3f}" ) else: progress_bar.log_message( f"Validation Results - Epoch: {engine.state.epoch} " f"MSE: {metrics['mse']:.3f} SSIM: {metrics['ssim']:.3f}" ) trainer.completed_epochs += 1 score = -metrics["loss_D"] if trainer.options.only_evaluator else -metrics["mse"] if score > trainer.best_validation_score: trainer.best_validation_score = score full_path = save_checkpoint_function(trainer, "best_checkpoint") progress_bar.log_message( f"Saved best checkpoint to {full_path}. Score: {score}. " f"Iteration: {engine.state.iteration}" ) def save_checkpoint_function(trainer: "Trainer", filename: str) -> str: # Ensures atomic checkpoint save to avoid corrupted files if preempted during a save operation tmp_filename = tempfile.NamedTemporaryFile( delete=False, dir=trainer.options.checkpoints_dir ) try: torch.save(trainer.create_checkpoint(), tmp_filename) except BaseException: tmp_filename.close() os.remove(tmp_filename.name) raise else: tmp_filename.close() full_path = os.path.join(trainer.options.checkpoints_dir, filename + ".pth") os.rename(tmp_filename.name, full_path) return full_path def save_regular_checkpoint( engine: ignite.engine.Engine, trainer: "Trainer" = None, progress_bar: ignite.contrib.handlers.ProgressBar = None, ): full_path = save_checkpoint_function(trainer, "regular_checkpoint") progress_bar.log_message( f"Saved regular checkpoint to {full_path}. Epoch: {trainer.completed_epochs}, " f"Iteration: {engine.state.iteration}" ) class Trainer: def __init__(self, options: types.SimpleNamespace): self.reconstructor: torch.nn.Module = None self.evaluator: torch.nn.Module = None self.options = options self.best_validation_score = -float("inf") self.completed_epochs = 0 self.updates_performed = 0 criterion_gan = models.fft_utils.GANLossKspace( use_mse_as_energy=options.use_mse_as_disc_energy, grad_ctx=options.grad_ctx, gamma=options.gamma, options=self.options, ).to(options.device) self.losses = { "GAN": criterion_gan, "NLL": models.fft_utils.gaussian_nll_loss, } if self.options.only_evaluator: self.options.checkpoints_dir = os.path.join( self.options.checkpoints_dir, "evaluator", ) if not os.path.exists(self.options.checkpoints_dir): os.makedirs(self.options.checkpoints_dir) def create_checkpoint(self) -> Dict[str, Any]: return { "reconstructor": self.reconstructor.state_dict(), "evaluator": self.evaluator.state_dict() if self.options.use_evaluator else None, "options": self.options, "optimizer_G": self.optimizers["G"].state_dict(), "optimizer_D": self.optimizers["D"].state_dict() if self.options.use_evaluator else None, "completed_epochs": self.completed_epochs, "best_validation_score": self.best_validation_score, "updates_performed": self.updates_performed, } def get_loaders( self, ) -> Tuple[torch.utils.data.DataLoader, torch.utils.data.DataLoader]: train_data_loader, val_data_loader = data.create_data_loaders(self.options) return train_data_loader, val_data_loader def inference(self, batch): self.reconstructor.eval() with torch.no_grad(): ( zero_filled_image, ground_truth, mask, ) = models.fft_utils.preprocess_inputs( batch, self.options.dataroot, self.options.device ) # Get reconstructor output reconstructed_image, uncertainty_map, mask_embedding = self.reconstructor( zero_filled_image, mask ) reconstructor_eval = None ground_truth_eval = None if self.evaluator is not None: self.evaluator.eval() reconstructor_eval = self.evaluator( reconstructed_image, mask_embedding, mask ) ground_truth_eval = self.evaluator(ground_truth, mask_embedding, mask) # Compute magnitude (for val losses and plots) zero_filled_image_magnitude = models.fft_utils.to_magnitude( zero_filled_image ) reconstructed_image_magnitude = models.fft_utils.to_magnitude( reconstructed_image ) ground_truth_magnitude = models.fft_utils.to_magnitude(ground_truth) if self.options.dataroot == "KNEE_RAW": # crop data reconstructed_image_magnitude = models.fft_utils.center_crop( reconstructed_image_magnitude, [320, 320] ) ground_truth_magnitude = models.fft_utils.center_crop( ground_truth_magnitude, [320, 320] ) zero_filled_image_magnitude = models.fft_utils.center_crop( zero_filled_image_magnitude, [320, 320] ) uncertainty_map = models.fft_utils.center_crop( uncertainty_map, [320, 320] ) return { "ground_truth": ground_truth, "zero_filled_image": zero_filled_image, "reconstructed_image": reconstructed_image, "ground_truth_magnitude": ground_truth_magnitude, "zero_filled_image_magnitude": zero_filled_image_magnitude, "reconstructed_image_magnitude": reconstructed_image_magnitude, "uncertainty_map": uncertainty_map, "mask": mask, "reconstructor_eval": reconstructor_eval, "ground_truth_eval": ground_truth_eval, } def load_from_checkpoint_if_present(self): if not os.path.exists(self.options.checkpoints_dir): return self.logger.info(f"Checkpoint folder found at {self.options.checkpoints_dir}") files = os.listdir(self.options.checkpoints_dir) for filename in files: if "regular_checkpoint" in filename: self.logger.info(f"Loading checkpoint {filename}.pth") checkpoint = torch.load( os.path.join(self.options.checkpoints_dir, filename) ) self.reconstructor.load_state_dict(checkpoint["reconstructor"]) if self.options.use_evaluator: self.evaluator.load_state_dict(checkpoint["evaluator"]) self.optimizers["D"].load_state_dict(checkpoint["optimizer_D"]) self.optimizers["G"].load_state_dict(checkpoint["optimizer_G"]) self.completed_epochs = checkpoint["completed_epochs"] self.best_validation_score = checkpoint["best_validation_score"] self.updates_performed = checkpoint["updates_performed"] def load_weights_from_given_checkpoint(self): if self.options.weights_checkpoint is None: return elif not os.path.exists(self.options.weights_checkpoint): raise FileNotFoundError("Specified weights checkpoint do not exist!") self.logger.info( f"Loading weights from checkpoint found at {self.options.weights_checkpoint}." ) checkpoint = torch.load(self.options.weights_checkpoint) self.reconstructor.load_state_dict(checkpoint["reconstructor"]) if ( self.options.use_evaluator and "evaluator" in checkpoint and checkpoint["evaluator"] is not None ): self.evaluator.load_state_dict(checkpoint["evaluator"]) else: self.logger.info("Evaluator was not loaded.") def update(self, batch): if not self.options.only_evaluator: self.reconstructor.train() (zero_filled_image, target, mask,) = models.fft_utils.preprocess_inputs( batch, self.options.dataroot, self.options.device ) # Get reconstructor output reconstructed_image, uncertainty_map, mask_embedding = self.reconstructor( zero_filled_image, mask ) # ------------------------------------------------------------------------ # Update evaluator and compute generator GAN Loss # ------------------------------------------------------------------------ loss_G_GAN = 0 loss_D = torch.tensor(0.0) if self.evaluator is not None: self.evaluator.train() self.optimizers["D"].zero_grad() fake = reconstructed_image detached_fake = fake.detach() if self.options.mask_embed_dim != 0: mask_embedding = mask_embedding.detach() output = self.evaluator( detached_fake, mask_embedding, mask if self.options.add_mask_eval else None, ) loss_D_fake = self.losses["GAN"]( output, False, mask, degree=0, pred_and_gt=(detached_fake, target) ) real = target output = self.evaluator( real, mask_embedding, mask if self.options.add_mask_eval else None ) loss_D_real = self.losses["GAN"]( output, True, mask, degree=1, pred_and_gt=(detached_fake, target) ) loss_D = loss_D_fake + loss_D_real loss_D.backward(retain_graph=True) self.optimizers["D"].step() if not self.options.only_evaluator: output = self.evaluator( fake, mask_embedding, mask if self.options.add_mask_eval else None ) loss_G_GAN = self.losses["GAN"]( output, True, mask, degree=1, updateG=True, pred_and_gt=(fake, target), ) loss_G_GAN *= self.options.lambda_gan # ------------------------------------------------------------------------ # Update reconstructor # ------------------------------------------------------------------------ loss_G = torch.tensor(0.0) if not self.options.only_evaluator: self.optimizers["G"].zero_grad() loss_G = self.losses["NLL"]( reconstructed_image, target, uncertainty_map, self.options ).mean() loss_G += loss_G_GAN loss_G.backward() self.optimizers["G"].step() self.updates_performed += 1 return {"loss_D": loss_D.item(), "loss_G": loss_G.item()} def discriminator_loss( self, reconstructor_eval, target_eval, reconstructed_image=None, target=None, mask=None, ): if self.evaluator is None: return 0 with torch.no_grad(): loss_D_fake = self.losses["GAN"]( reconstructor_eval, False, mask, degree=0, pred_and_gt=(reconstructed_image, target), ) loss_D_real = self.losses["GAN"]( target_eval, True, mask, degree=1, pred_and_gt=(reconstructed_image, target), ) return loss_D_fake + loss_D_real def __call__(self) -> float: self.logger = logging.getLogger() if self.options.debug: self.logger.setLevel(logging.DEBUG) else: self.logger.setLevel(logging.INFO) fh = logging.FileHandler( os.path.join(self.options.checkpoints_dir, "trainer.log") ) formatter = logging.Formatter( "%(asctime)s - %(threadName)s - %(levelname)s: %(message)s" ) fh.setFormatter(formatter) self.logger.addHandler(fh) self.logger.info("Creating trainer with the following options:") for key, value in vars(self.options).items(): if key == "device": value = value.type elif key == "gpu_ids": value = "cuda : " + str(value) if torch.cuda.is_available() else "cpu" self.logger.info(f" {key:>25}: {'None' if value is None else value:<30}") # Create Reconstructor Model self.reconstructor = models.reconstruction.ReconstructorNetwork( number_of_cascade_blocks=self.options.number_of_cascade_blocks, n_downsampling=self.options.n_downsampling, number_of_filters=self.options.number_of_reconstructor_filters, number_of_layers_residual_bottleneck=self.options.number_of_layers_residual_bottleneck, mask_embed_dim=self.options.mask_embed_dim, dropout_probability=self.options.dropout_probability, img_width=self.options.image_width, use_deconv=self.options.use_deconv, ) if self.options.device.type == "cuda": self.reconstructor = torch.nn.DataParallel(self.reconstructor).to( self.options.device ) self.optimizers = { "G": optim.Adam( self.reconstructor.parameters(), lr=self.options.lr, betas=(self.options.beta1, 0.999), ) } # Create Evaluator Model if self.options.use_evaluator: self.evaluator = models.evaluator.EvaluatorNetwork( number_of_filters=self.options.number_of_evaluator_filters, number_of_conv_layers=self.options.number_of_evaluator_convolution_layers, use_sigmoid=False, width=self.options.image_width, height=640 if self.options.dataroot == "KNEE_RAW" else None, mask_embed_dim=self.options.mask_embed_dim, ) self.evaluator = torch.nn.DataParallel(self.evaluator).to( self.options.device ) self.optimizers["D"] = optim.Adam( self.evaluator.parameters(), lr=self.options.lr, betas=(self.options.beta1, 0.999), ) train_loader, val_loader = self.get_loaders() self.load_from_checkpoint_if_present() self.load_weights_from_given_checkpoint() writer = SummaryWriter(self.options.checkpoints_dir) # Training engine and handlers train_engine = Engine(lambda engine, batch: self.update(batch)) val_engine = Engine(lambda engine, batch: self.inference(batch)) validation_mse = Loss( loss_fn=F.mse_loss, output_transform=lambda x: ( x["reconstructed_image_magnitude"], x["ground_truth_magnitude"], ), ) validation_mse.attach(val_engine, name="mse") validation_ssim = Loss( loss_fn=util.common.compute_ssims, output_transform=lambda x: ( x["reconstructed_image_magnitude"], x["ground_truth_magnitude"], ), ) validation_ssim.attach(val_engine, name="ssim") if self.options.use_evaluator: validation_loss_d = Loss( loss_fn=self.discriminator_loss, output_transform=lambda x: ( x["reconstructor_eval"], x["ground_truth_eval"], { "reconstructed_image": x["reconstructed_image"], "target": x["ground_truth"], "mask": x["mask"], }, ), ) validation_loss_d.attach(val_engine, name="loss_D") progress_bar = ProgressBar() progress_bar.attach(train_engine) train_engine.add_event_handler( Events.EPOCH_COMPLETED, run_validation_and_update_best_checkpoint, val_engine=val_engine, progress_bar=progress_bar, val_loader=val_loader, trainer=self, ) # Tensorboard Plots @train_engine.on(Events.ITERATION_COMPLETED) def plot_training_loss(engine): writer.add_scalar( "training/generator_loss", engine.state.output["loss_G"], self.updates_performed, ) if "loss_D" in engine.state.output: writer.add_scalar( "training/discriminator_loss", engine.state.output["loss_D"], self.updates_performed, ) @train_engine.on(Events.EPOCH_COMPLETED) def plot_validation_loss(_): writer.add_scalar( "validation/MSE", val_engine.state.metrics["mse"], self.completed_epochs ) writer.add_scalar( "validation/SSIM", val_engine.state.metrics["ssim"], self.completed_epochs, ) if "loss_D" in val_engine.state.metrics: writer.add_scalar( "validation/loss_D", val_engine.state.metrics["loss_D"], self.completed_epochs, ) @train_engine.on(Events.EPOCH_COMPLETED) def plot_validation_images(_): ground_truth = val_engine.state.output["ground_truth_magnitude"] zero_filled_image = val_engine.state.output["zero_filled_image_magnitude"] reconstructed_image = val_engine.state.output[ "reconstructed_image_magnitude" ] uncertainty_map = val_engine.state.output["uncertainty_map"] difference = torch.abs(ground_truth - reconstructed_image) # Create plots ground_truth = util.common.create_grid_from_tensor(ground_truth) writer.add_image( "validation_images/ground_truth", ground_truth, self.completed_epochs ) zero_filled_image = util.common.create_grid_from_tensor(zero_filled_image) writer.add_image( "validation_images/zero_filled_image", zero_filled_image, self.completed_epochs, ) reconstructed_image = util.common.create_grid_from_tensor( reconstructed_image ) writer.add_image( "validation_images/reconstructed_image", reconstructed_image, self.completed_epochs, ) uncertainty_map = util.common.gray2heatmap( util.common.create_grid_from_tensor(uncertainty_map.exp()), cmap="jet", ) writer.add_image( "validation_images/uncertainty_map", uncertainty_map, self.completed_epochs, ) difference = util.common.create_grid_from_tensor(difference) difference = util.common.gray2heatmap(difference, cmap="gray") writer.add_image( "validation_images/difference", difference, self.completed_epochs ) mask = util.common.create_grid_from_tensor( val_engine.state.output["mask"].repeat( 1, 1, val_engine.state.output["mask"].shape[3], 1 ) ) writer.add_image( "validation_images/mask_image", mask, self.completed_epochs ) train_engine.add_event_handler( Events.EPOCH_COMPLETED, save_regular_checkpoint, trainer=self, progress_bar=progress_bar, ) train_engine.run(train_loader, self.options.max_epochs - self.completed_epochs) writer.close() return self.best_validation_score if __name__ == "__main__": options_ = options.train_options.TrainOptions().parse() options_.device = ( torch.device("cuda:{}".format(options_.gpu_ids[0])) if options_.gpu_ids else torch.device("cpu") ) options_.checkpoints_dir = os.path.join(options_.checkpoints_dir, options_.name) if not os.path.exists(options_.checkpoints_dir): os.makedirs(options_.checkpoints_dir) trainer_ = Trainer(options_) trainer_()
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from . import base_options class TrainOptions(base_options.BaseOptions): def initialize(self, parser): parser = base_options.BaseOptions.initialize(self, parser) parser.add_argument( "--beta1", type=float, default=0.5, help="momentum term of adam" ) parser.add_argument( "--lr", type=float, default=0.0002, help="initial learning rate for adam" ) parser.add_argument( "--mask_type", type=str, choices=[ "basic", "symmetric_basic", "low_to_high", "grid", "symmetric_grid", "basic_rnl", "symmetric_basic_rnl", "low_to_high_rnl", ], help="The type of mask to use.", ) parser.add_argument( "--rnl_params", type=str, default=None, help="Characterizes the distribution of initial masks (when these are sampled, see " "--train_with_fixed_initial_mask). " "Format is min_lowf_lines,max_lowf_lines,highf_beta_alpha,highf_beta_beta. " "Mask have a random number of low frequency lines active, uniform between " "min_lowf_lines and max_lowf_lines. The remaining number of lines is determined by " "a Beta(highf_beta_alpha, highf_beta_beta) distribution, which indicates the " "proportion of the remaining lines to sample.", ) parser.add_argument( "--debug", action="store_true", help="Activates debug level messages." ) parser.add_argument( "--add_mask_eval", action="store_true", help="Sum mask values to observation in evaluator model.", ) parser.add_argument("--weights_checkpoint", type=str, default=None) # parser.add_argument("--validation_train_split_ratio", type=float, default=0.9) parser.add_argument( "--max_epochs", type=int, default=100, help="number of epochs to train (default: 5)", ) # parser.add_argument("--save_freq", type=int, default=200) # Options for Reconstruction Model parser.add_argument("--number_of_reconstructor_filters", type=int, default=128) parser.add_argument("--dropout_probability", type=float, default=0) parser.add_argument("--number_of_cascade_blocks", type=int, default=3) parser.add_argument( "--number_of_layers_residual_bottleneck", type=int, default=6 ) parser.add_argument("--n_downsampling", type=int, default=3) parser.add_argument("--use_deconv", type=bool, default=True) # Options for Evaluator Model parser.add_argument( "--no_evaluator", dest="use_evaluator", action="store_false" ) parser.add_argument("--number_of_evaluator_filters", type=int, default=128) parser.add_argument( "--number_of_evaluator_convolution_layers", type=int, default=4 ) # Options for both Reconstructor and Evaluator Model parser.add_argument("--mask_embed_dim", type=int, default=6) parser.add_argument("--image_width", type=int, default=128) # Options moved from old model file parser.add_argument( "--use_mse_as_disc_energy", action="store_true", help="use MSE as evaluator energy", ) parser.add_argument( "--grad_ctx", action="store_true", help="GAN criterion computes adversarial loss signal at provided k-space lines.", ) parser.add_argument( "--lambda_gan", type=float, default=0.01, help="Weight for reconstruction loss.", ) parser.add_argument("--gamma", type=int, default=100) parser.add_argument( "--only_evaluator", dest="only_evaluator", action="store_true" ) return parser
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from . import base_options, train_options # noqa:F401
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import torch class BaseOptions: def __init__(self): self.initialized = False self.parser = None def initialize(self, parser): parser.add_argument( "--dataset_dir", required=True, help="Path to fastmri dataset." ) parser.add_argument( "--dataroot", required=True, help="Path to images (should have subfolders trainA, trainB, valA, valB, etc)", ) parser.add_argument( "--batchSize", type=int, default=1, help="Input batch size." ) parser.add_argument( "--gpu_ids", type=str, default="0", help="GPU IDs: e.g. 0 0,1,2, 0,2. use -1 for CPU.", ) parser.add_argument( "--name", type=str, default="experiment_name", help="Name of the experiment. It determines the sub folder where results are stored.", ) parser.add_argument( "--nThreads", default=4, type=int, help="Number of threads for data loader." ) parser.add_argument( "--checkpoints_dir", type=str, default="./checkpoints", help="Root directory to save results and model checkpoints.", ) parser.add_argument( "--init_type", type=str, choices=["normal", "xavier", "kaiming", "orthogonal"], default="normal", help="Network weights initialization type.", ) parser.add_argument( "--num_volumes_train", type=int, default=None, help="Number of MRI volumes to use for training.", ) parser.add_argument( "--num_volumes_val", type=int, default=None, help="Number of MRI volumes to use for validation.", ) self.initialized = True return parser def gather_options(self): # initialize parser with basic options parser = None if not self.initialized: parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter, allow_abbrev=False, ) parser = self.initialize(parser) # get the basic options opt, _ = parser.parse_known_args() self.parser = parser return parser.parse_args() def print_options(self, opt): message = "" message += "----------------- Options ---------------\n" for k, v in sorted(vars(opt).items()): comment = "" default = self.parser.get_default(k) if v != default: comment = "\t[default: %s]" % str(default) message += "{:>25}: {:<30}{}\n".format(str(k), str(v), comment) message += "----------------- End -------------------" print(message) def parse(self, silent=True): opt = self.gather_options() # set gpu ids str_ids = opt.gpu_ids.split(",") opt.gpu_ids = [] # for str_id in str_ids: for str_id in range(len(str_ids)): id = int(str_id) if id >= 0: opt.gpu_ids.append(id) if len(opt.gpu_ids) > 0: torch.cuda.set_device(opt.gpu_ids[0]) opt.batchSize *= len(opt.gpu_ids) print( f"Use multiple GPUs, batchSize are increased by {len(opt.gpu_ids)} " f"times to {opt.batchSize}" ) if not silent: self.print_options(opt) return opt
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from . import common __all__ = ["common"]
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import os from typing import Dict, Optional import matplotlib.pyplot as plt import numpy as np import skimage.measure import torch import torchvision.utils as tvutil def load_checkpoint(checkpoint_path: str) -> Optional[Dict]: if os.path.isfile(checkpoint_path): logging.info(f"Found checkpoint at {checkpoint_path}.") return torch.load(checkpoint_path) logging.info(f"No checkpoint found at {checkpoint_path}.") return None def compute_ssims(xs, ys): ssims = [] for i in range(xs.shape[0]): ssim = skimage.measure.compare_ssim( xs[i, 0].cpu().numpy(), ys[i, 0].cpu().numpy(), data_range=ys[i, 0].cpu().numpy().max(), ) ssims.append(ssim) return np.array(ssims).mean() def compute_psnrs(xs, ys): psnrs = [] for i in range(xs.shape[0]): psnr = skimage.measure.compare_psnr( xs[i, 0].cpu().numpy(), ys[i, 0].cpu().numpy(), data_range=ys[i, 0].cpu().numpy().max(), ) psnrs.append(psnr) return np.array(psnrs).mean() def compute_mse(xs, ys): return np.mean((ys.cpu().numpy() - xs.cpu().numpy()) ** 2) def compute_nmse(xs, ys): ys_numpy = ys.cpu().numpy() return ( np.linalg.norm(ys_numpy - xs.cpu().numpy()) ** 2 / np.linalg.norm(ys_numpy) ** 2 ) # Converts a Tensor into an image array (numpy) # |imtype|: the desired type of the converted numpy array def tensor2im(input_image, imtype=np.uint8, renormalize=True): if isinstance(input_image, torch.Tensor): image_tensor = input_image.data else: return input_image # do normalization first, since we working on fourier space. we need to clamp if renormalize: image_tensor.add_(1).div_(2) image_tensor.mul_(255).clamp_(0, 255) if len(image_tensor.shape) == 4: image_numpy = image_tensor[0].cpu().float().numpy() else: image_numpy = image_tensor.cpu().float().numpy() if image_numpy.shape[0] == 1: image_numpy = np.tile(image_numpy, (3, 1, 1)) return image_numpy.astype(imtype) def create_grid_from_tensor(tensor_of_images, num_rows=4): # take norm over real-imaginary dimension # tensor_of_images = tensor_of_images.norm(dim=1, keepdim=True) # make image grid tensor_grid = tvutil.make_grid( tensor_of_images, nrow=num_rows, normalize=True, scale_each=False ) numpy_grid = tensor2im(tensor_grid, renormalize=False) return numpy_grid def gray2heatmap(grayimg, cmap="jet"): cmap = plt.get_cmap(cmap) rgba_img = cmap(grayimg) # rgb_img = np.delete(rgba_img, 3, 2) * 255.0 rgb_img = rgba_img[:, :, :, 0] * 255.0 rgb_img = rgb_img.astype(np.uint8) return rgb_img
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ cvpr19_models.models.reconstruction.py ====================================== MRI Reconstruction model as described in `Zhang, Zizhao, et al. "Reducing uncertainty in undersampled mri reconstruction with active acquisition." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.` """ import functools import torch import torch.nn as nn from . import fft_utils def get_norm_layer(norm_type="instance"): if norm_type == "batch": norm_layer = functools.partial(nn.BatchNorm2d, affine=True) elif norm_type == "instance": norm_layer = functools.partial( nn.InstanceNorm2d, affine=False, track_running_stats=False ) elif norm_type == "none": norm_layer = None else: raise NotImplementedError("normalization layer [%s] is not found" % norm_type) return norm_layer def init_func(m): init_type = "normal" gain = 0.02 classname = m.__class__.__name__ if hasattr(m, "weight") and ( classname.find("Conv") != -1 or classname.find("Linear") != -1 ): if init_type == "normal": torch.nn.init.normal_(m.weight.data, 0.0, gain) elif init_type == "xavier": torch.nn.init.xavier_normal_(m.weight.data, gain=gain) elif init_type == "kaiming": torch.nn.init.kaiming_normal_(m.weight.data, a=0, mode="fan_in") elif init_type == "orthogonal": torch.nn.init.orthogonal_(m.weight.data, gain=gain) else: raise NotImplementedError( "initialization method [%s] is not implemented" % init_type ) if hasattr(m, "bias") and m.bias is not None: torch.nn.init.constant_(m.bias.data, 0.0) elif classname.find("BatchNorm2d") != -1: torch.nn.init.normal_(m.weight.data, 1.0, gain) torch.nn.init.constant_(m.bias.data, 0.0) # Define a resnet block class ResnetBlock(nn.Module): def __init__(self, dim, padding_type, norm_layer, dropout_probability, use_bias): super(ResnetBlock, self).__init__() self.conv_block = self.build_conv_block( dim, padding_type, norm_layer, dropout_probability, use_bias ) def build_conv_block( self, dim, padding_type, norm_layer, dropout_probability, use_bias ): conv_block = [] p = 0 if padding_type == "reflect": conv_block += [nn.ReflectionPad2d(1)] elif padding_type == "replicate": conv_block += [nn.ReplicationPad2d(1)] elif padding_type == "zero": p = 1 else: raise NotImplementedError("padding [%s] is not implemented" % padding_type) conv_block += [ nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim), nn.ReLU(True), ] if dropout_probability > 0: conv_block += [nn.Dropout(dropout_probability)] p = 0 if padding_type == "reflect": conv_block += [nn.ReflectionPad2d(1)] elif padding_type == "replicate": conv_block += [nn.ReplicationPad2d(1)] elif padding_type == "zero": p = 1 else: raise NotImplementedError("padding [%s] is not implemented" % padding_type) conv_block += [ nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim), ] return nn.Sequential(*conv_block) def forward(self, x): out = x + self.conv_block(x) return out class ReconstructorNetwork(nn.Module): """Reconstructor network used in Zhang et al., CVPR'19. Args: number_of_encoder_input_channels(int): Number of input channels to the reconstruction model. number_of_decoder_output_channels(int): Number of output channels of the reconstruction model. number_of_filters(int): Number of convolutional filters.\n dropout_probability(float): Dropout probability. number_of_layers_residual_bottleneck (int): Number of residual blocks in each model between two consecutive down- or up-sampling operations. number_of_cascade_blocks (int): Number of times the entire architecture is replicated. mask_embed_dim(int): Dimensionality of the mask embedding. padding_type(str): Convolution operation padding type. n_downsampling(int): Number of down-sampling operations. img_width(int): The width of the image. use_deconv(binary): Whether to use deconvolution in the up-sampling. """ def __init__( self, number_of_encoder_input_channels=2, number_of_decoder_output_channels=3, number_of_filters=128, dropout_probability=0.0, number_of_layers_residual_bottleneck=6, number_of_cascade_blocks=3, mask_embed_dim=6, padding_type="reflect", n_downsampling=3, img_width=128, use_deconv=True, ): super(ReconstructorNetwork, self).__init__() self.number_of_encoder_input_channels = number_of_encoder_input_channels self.number_of_decoder_output_channels = number_of_decoder_output_channels self.number_of_filters = number_of_filters self.use_deconv = use_deconv norm_layer = functools.partial( nn.InstanceNorm2d, affine=False, track_running_stats=False ) if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d self.number_of_cascade_blocks = number_of_cascade_blocks self.use_mask_embedding = True if mask_embed_dim > 0 else False if self.use_mask_embedding: number_of_encoder_input_channels += mask_embed_dim print("[Reconstructor Network] -> use masked embedding condition") # Lists of encoder, residual bottleneck and decoder blocks for all cascade blocks self.encoders_all_cascade_blocks = nn.ModuleList() self.residual_bottlenecks_all_cascade_blocks = nn.ModuleList() self.decoders_all_cascade_blocks = nn.ModuleList() # Architecture for the Cascade Blocks for iii in range(1, self.number_of_cascade_blocks + 1): # Encoder for iii_th cascade block encoder = [ nn.ReflectionPad2d(1), nn.Conv2d( number_of_encoder_input_channels, number_of_filters, kernel_size=3, stride=2, padding=0, bias=use_bias, ), norm_layer(number_of_filters), nn.ReLU(True), ] for i in range(1, n_downsampling): mult = 2 ** i encoder += [ nn.ReflectionPad2d(1), nn.Conv2d( number_of_filters * mult // 2, number_of_filters * mult, kernel_size=3, stride=2, padding=0, bias=use_bias, ), norm_layer(number_of_filters * mult), nn.ReLU(True), ] self.encoders_all_cascade_blocks.append(nn.Sequential(*encoder)) # Bottleneck for iii_th cascade block residual_bottleneck = [] mult = 2 ** (n_downsampling - 1) for i in range(number_of_layers_residual_bottleneck): residual_bottleneck += [ ResnetBlock( number_of_filters * mult, padding_type=padding_type, norm_layer=norm_layer, dropout_probability=dropout_probability, use_bias=use_bias, ) ] self.residual_bottlenecks_all_cascade_blocks.append( nn.Sequential(*residual_bottleneck) ) # Decoder for iii_th cascade block decoder = [] for i in range(n_downsampling): mult = 2 ** (n_downsampling - 1 - i) if self.use_deconv: decoder += [ nn.ConvTranspose2d( number_of_filters * mult, int(number_of_filters * mult / 2), kernel_size=4, stride=2, padding=1, bias=use_bias, ), norm_layer(int(number_of_filters * mult / 2)), nn.ReLU(True), ] else: decoder += [nn.Upsample(scale_factor=2), nn.ReflectionPad2d(1)] + [ nn.Conv2d( number_of_filters * mult, int(number_of_filters * mult / 2), kernel_size=3, stride=1, padding=0, bias=use_bias, ), norm_layer(int(number_of_filters * mult / 2)), nn.ReLU(True), ] decoder += [ nn.Conv2d( number_of_filters // 2, number_of_decoder_output_channels, kernel_size=1, padding=0, bias=False, ) ] # better self.decoders_all_cascade_blocks.append(nn.Sequential(*decoder)) if self.use_mask_embedding: self.mask_embedding_layer = nn.Sequential( nn.Conv2d(img_width, mask_embed_dim, 1, 1) ) self.apply(init_func) def data_consistency(self, x, input, mask): ft_x = fft_utils.fft(x) fuse = ( fft_utils.ifft( torch.where((1 - mask).byte(), ft_x, torch.tensor(0.0).to(ft_x.device)) ) + input ) return fuse def embed_mask(self, mask): b, c, h, w = mask.shape mask = mask.view(b, w, 1, 1) cond_embed = self.mask_embedding_layer(mask) return cond_embed # noinspection PyUnboundLocalVariable def forward(self, zero_filled_input, mask): """Generates reconstructions given images with partial k-space info. Args: zero_filled_input(torch.Tensor): Image obtained from zero-filled reconstruction of partial k-space scans. mask(torch.Tensor): Mask used in creating the zero filled image from ground truth image. Returns: tuple(torch.Tensor, torch.Tensor, torch.Tensor): Contains:\n * Reconstructed high resolution image. * Uncertainty map. * Mask_embedding. """ if self.use_mask_embedding: mask_embedding = self.embed_mask(mask) mask_embedding = mask_embedding.repeat( 1, 1, zero_filled_input.shape[2], zero_filled_input.shape[3] ) encoder_input = torch.cat([zero_filled_input, mask_embedding], 1) else: encoder_input = zero_filled_input mask_embedding = None residual_bottleneck_output = None for cascade_block, (encoder, residual_bottleneck, decoder) in enumerate( zip( self.encoders_all_cascade_blocks, self.residual_bottlenecks_all_cascade_blocks, self.decoders_all_cascade_blocks, ) ): encoder_output = encoder(encoder_input) if cascade_block > 0: # Skip connection from previous residual block encoder_output = encoder_output + residual_bottleneck_output residual_bottleneck_output = residual_bottleneck(encoder_output) decoder_output = decoder(residual_bottleneck_output) reconstructed_image = self.data_consistency( decoder_output[:, :-1, ...], zero_filled_input, mask ) uncertainty_map = decoder_output[:, -1:, :, :] if self.use_mask_embedding: encoder_input = torch.cat([reconstructed_image, mask_embedding], 1) else: encoder_input = reconstructed_image return reconstructed_image, uncertainty_map, mask_embedding def init_from_checkpoint(self, checkpoint): if not isinstance(self, nn.DataParallel): self.load_state_dict( { # This assumes that environment code runs in a single GPU key.replace("module.", ""): val for key, val in checkpoint["reconstructor"].items() } ) else: self.load_state_dict(checkpoint["reconstructor"]) return checkpoint["options"]
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from . import evaluator, fft_utils, reconstruction # noqa: F401
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn import torch.nn.functional as F def roll(x, shift, dim): if isinstance(shift, (tuple, list)): assert len(shift) == len(dim) for s, d in zip(shift, dim): x = roll(x, s, d) return x shift = shift % x.size(dim) if shift == 0: return x left = x.narrow(dim, 0, x.size(dim) - shift) right = x.narrow(dim, x.size(dim) - shift, shift) return torch.cat((right, left), dim=dim) # note that for IFFT we do not use irfft # this function returns two channels where the first one (real part) is in image space def ifftshift(x, dim=None): if dim is None: dim = tuple(range(x.dim())) shift = [(dim + 1) // 2 for dim in x.shape] elif isinstance(dim, int): shift = (x.shape[dim] + 1) // 2 else: shift = [(x.shape[i] + 1) // 2 for i in dim] return roll(x, shift, dim) def fftshift(x, dim=None): if dim is None: dim = tuple(range(x.dim())) shift = [dim // 2 for dim in x.shape] elif isinstance(dim, int): shift = x.shape[dim] // 2 else: shift = [x.shape[i] // 2 for i in dim] return roll(x, shift, dim) def ifft(x, normalized=False, ifft_shift=False): x = x.permute(0, 2, 3, 1) y = torch.ifft(x, 2, normalized=normalized) if ifft_shift: y = ifftshift(y, dim=(1, 2)) return y.permute(0, 3, 1, 2) def rfft(x, normalized=False): # x is in gray scale and has 1-d in the 1st dimension x = x.squeeze(1) y = torch.rfft(x, 2, onesided=False, normalized=normalized) return y.permute(0, 3, 1, 2) def fft(x, normalized=False, shift=False): x = x.permute(0, 2, 3, 1) if shift: x = fftshift(x, dim=(1, 2)) y = torch.fft(x, 2, normalized=normalized) return y.permute(0, 3, 1, 2) def center_crop(x, shape): assert 0 < shape[0] <= x.shape[-2] assert 0 < shape[1] <= x.shape[-1] w_from = (x.shape[-1] - shape[0]) // 2 h_from = (x.shape[-2] - shape[1]) // 2 w_to = w_from + shape[0] h_to = h_from + shape[1] x = x[..., h_from:h_to, w_from:w_to] return x def to_magnitude(tensor): tensor = (tensor[:, 0, :, :] ** 2 + tensor[:, 1, :, :] ** 2) ** 0.5 return tensor.unsqueeze(1) def dicom_to_0_1_range(tensor): return (tensor.clamp(-3, 3) + 3) / 6 def gaussian_nll_loss(reconstruction, target, logvar, options): reconstruction = to_magnitude(reconstruction) target = to_magnitude(target) if options.dataroot == "KNEE_RAW": reconstruction = center_crop(reconstruction, [320, 320]) target = center_crop(target, [320, 320]) logvar = center_crop(logvar, [320, 320]) l2 = F.mse_loss(reconstruction, target, reduce=False) # Clip logvar to make variance in [0.0001, 5], for numerical stability logvar = logvar.clamp(-9.2, 1.609) one_over_var = torch.exp(-logvar) assert len(l2) == len(logvar) return 0.5 * (one_over_var * l2 + logvar) def preprocess_inputs(batch, dataroot, device, prev_reconstruction=None): mask = batch[0].to(device) target = batch[1].to(device) if dataroot == "KNEE_RAW": k_space = batch[2].permute(0, 3, 1, 2).to(device) # alter mask to always include the highest frequencies that include padding mask = torch.where( to_magnitude(k_space).sum(2).unsqueeze(2) == 0.0, torch.tensor(1.0).to(device), mask, ) if prev_reconstruction is None: masked_true_k_space = torch.where( mask.byte(), k_space, torch.tensor(0.0).to(device) ) else: prev_reconstruction = prev_reconstruction.clone() prev_reconstruction[:, :, :160, :] = 0 prev_reconstruction[:, :, -160:, :] = 0 prev_reconstruction[:, :, :, :24] = 0 prev_reconstruction[:, :, :, -24:] = 0 ft_x = fft(prev_reconstruction, shift=True) masked_true_k_space = torch.where(mask.byte(), k_space, ft_x) reconstructor_input = ifft(masked_true_k_space, ifft_shift=True) target = target.permute(0, 3, 1, 2) else: fft_target = fft(target) if prev_reconstruction is None: masked_true_k_space = torch.where( mask.byte(), fft_target, torch.tensor(0.0).to(device) ) else: ft_x = fft(prev_reconstruction) masked_true_k_space = torch.where(mask.byte(), fft_target, ft_x) reconstructor_input = ifft(masked_true_k_space) return reconstructor_input, target, mask class GANLossKspace(nn.Module): def __init__( self, use_lsgan=True, use_mse_as_energy=False, grad_ctx=False, gamma=100, options=None, ): super(GANLossKspace, self).__init__() # self.register_buffer('real_label', torch.ones(imSize, imSize)) # self.register_buffer('fake_label', torch.zeros(imSize, imSize)) self.grad_ctx = grad_ctx self.options = options if use_lsgan: self.loss = nn.MSELoss(size_average=False) else: self.loss = nn.BCELoss(size_average=False) self.use_mse_as_energy = use_mse_as_energy if use_mse_as_energy: self.gamma = gamma self.bin = 5 def get_target_tensor(self, input, target_is_real, degree, mask, pred_and_gt=None): if target_is_real: target_tensor = torch.ones_like(input) target_tensor[:] = degree else: target_tensor = torch.zeros_like(input) if not self.use_mse_as_energy: if degree != 1: target_tensor[:] = degree else: pred, gt = pred_and_gt if self.options.dataroot == "KNEE_RAW": gt = center_crop(gt, [368, 320]) pred = center_crop(pred, [368, 320]) w = gt.shape[2] ks_gt = fft(gt, normalized=True) ks_input = fft(pred, normalized=True) ks_row_mse = F.mse_loss(ks_input, ks_gt, reduce=False).sum( 1, keepdim=True ).sum(2, keepdim=True).squeeze() / (2 * w) energy = torch.exp(-ks_row_mse * self.gamma) target_tensor[:] = energy # force observed part to always for i in range(mask.shape[0]): idx = torch.nonzero(mask[i, 0, 0, :]) target_tensor[i, idx] = 1 return target_tensor def __call__( self, input, target_is_real, mask, degree=1, updateG=False, pred_and_gt=None ): # input [B, imSize] # degree is the realistic degree of output # set updateG to True when training G. target_tensor = self.get_target_tensor( input, target_is_real, degree, mask, pred_and_gt ) b, w = target_tensor.shape if updateG and not self.grad_ctx: mask_ = mask.squeeze() # maskout the observed part loss masked_input = torch.where( (1 - mask_).byte(), input, torch.tensor(0.0).to(input.device) ) masked_target = torch.where( (1 - mask_).byte(), target_tensor, torch.tensor(0.0).to(input.device) ) return self.loss(masked_input, masked_target) / (1 - mask_).sum() else: return self.loss(input, target_tensor) / (b * w)