python_code
stringlengths
0
66.4k
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ cvpr19_models.models.evaluator.py ================================= Active acquisition model as described in `Zhang, Zizhao, et al. "Reducing uncertainty in undersampled mri reconstruction with active acquisition." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.` """ import functools from typing import Optional import torch import torch.nn as nn from . import fft_utils, reconstruction class SimpleSequential(nn.Module): def __init__(self, net1, net2): super(SimpleSequential, self).__init__() self.net1 = net1 self.net2 = net2 def forward(self, x, mask): output = self.net1(x, mask) return self.net2(output, mask) class SpectralMapDecomposition(nn.Module): def __init__(self): super(SpectralMapDecomposition, self).__init__() def forward(self, reconstructed_image, mask_embedding, mask): batch_size = reconstructed_image.shape[0] height = reconstructed_image.shape[2] width = reconstructed_image.shape[3] # create spectral maps in kspace kspace = fft_utils.fft(reconstructed_image) kspace = kspace.unsqueeze(1).repeat(1, width, 1, 1, 1) # separate image into spectral maps separate_mask = torch.zeros([1, width, 1, 1, width], dtype=torch.float32) for i in range(width): separate_mask[0, i, 0, 0, i] = 1 separate_mask = separate_mask.to(reconstructed_image.device) masked_kspace = torch.where( separate_mask.byte(), kspace, torch.tensor(0.0).to(kspace.device) ) masked_kspace = masked_kspace.view(batch_size * width, 2, height, width) # convert spectral maps to image space separate_images = fft_utils.ifft(masked_kspace) # result is (batch, [real_M0, img_M0, real_M1, img_M1, ...], height, width] separate_images = separate_images.contiguous().view( batch_size, 2, width, height, width ) # add mask information as a summation -- might not be optimal if mask is not None: separate_images = ( separate_images + mask.permute(0, 3, 1, 2).unsqueeze(1).detach() ) separate_images = separate_images.contiguous().view( batch_size, 2 * width, height, width ) # concatenate mask embedding if mask_embedding is not None: spectral_map = torch.cat([separate_images, mask_embedding], dim=1) else: spectral_map = separate_images return spectral_map class EvaluatorNetwork(nn.Module): """Evaluator network used in Zhang et al., CVPR'19. Args: number_of_filters(int): Number of filters used in convolutions. Defaults to 256. \n number_of_conv_layers(int): Depth of the model defined as a number of convolutional layers. Defaults to 4. use_sigmoid(bool): Whether the sigmoid non-linearity is applied to the output of the network. Defaults to False. width(int): The width of the image. Defaults to 128 (corresponds to DICOM). height(Optional[int]): The height of the image. If ``None`` the value of ``width``. is used. Defaults to ``None``. mask_embed_dim(int): Dimensionality of the mask embedding. num_output_channels(Optional[int]): The dimensionality of the output. If ``None``, the value of ``width`` is used. Defaults to ``None``. """ def __init__( self, number_of_filters: int = 256, number_of_conv_layers: int = 4, use_sigmoid: bool = False, width: int = 128, height: Optional[int] = None, mask_embed_dim: int = 6, num_output_channels: Optional[int] = None, ): print(f"[EvaluatorNetwork] -> n_layers = {number_of_conv_layers}") super(EvaluatorNetwork, self).__init__() self.spectral_map = SpectralMapDecomposition() self.mask_embed_dim = mask_embed_dim if height is None: height = width number_of_input_channels = 2 * width + mask_embed_dim norm_layer = functools.partial( nn.InstanceNorm2d, affine=False, track_running_stats=False ) if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d sequence = [ nn.Conv2d( number_of_input_channels, number_of_filters, kernel_size=4, stride=2, padding=1, ), nn.LeakyReLU(0.2, True), ] in_channels = number_of_filters for n in range(1, number_of_conv_layers): if n < number_of_conv_layers - 1: if n <= 4: out_channels = in_channels * 2 else: out_channels = in_channels // 2 else: out_channels = in_channels sequence += [ nn.Conv2d( in_channels, out_channels, kernel_size=4, stride=2, padding=1, bias=use_bias, ), norm_layer(out_channels), nn.LeakyReLU(0.2, True), ] in_channels = out_channels kernel_size_width = width // 2 ** number_of_conv_layers kernel_size_height = height // 2 ** number_of_conv_layers sequence += [nn.AvgPool2d(kernel_size=(kernel_size_height, kernel_size_width))] if num_output_channels is None: num_output_channels = width sequence += [ nn.Conv2d( in_channels, num_output_channels, kernel_size=1, stride=1, padding=0 ) ] if use_sigmoid: sequence += [nn.Sigmoid()] self.model = nn.Sequential(*sequence) self.apply(reconstruction.init_func) def forward( self, input_tensor: torch.Tensor, mask_embedding: Optional[torch.Tensor] = None, mask: Optional[torch.Tensor] = None, ): """Computes scores for each k-space column. Args: input_tensor(torch.Tensor): Batch of reconstructed images, as produced by :class:`models.reconstruction.ReconstructorNetwork`. mask_embedding(Optional[torch.Tensor]): Corresponding batch of mask embeddings produced by :class:`models.reconstruction.ReconstructorNetwork`, if needed. mask(Optional[torch.Tensor]): Corresponding masks arrays, if needed. Returns: torch.Tensor: Evaluator score for each k-space column in each image in the batch. """ spectral_map_and_mask_embedding = self.spectral_map( input_tensor, mask_embedding, mask ) return self.model(spectral_map_and_mask_embedding).squeeze(3).squeeze(2)
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import json import os import numpy as np import torch import torch.utils.data import activemri.experimental.cvpr19_models.models.fft_utils as fft_utils class Slice(torch.utils.data.Dataset): def __init__( self, transform, dicom_root, which="train", resolution=320, scan_type=None, num_volumes=None, num_rand_slices=None, ): self.transform = transform self.dataset = _DicomDataset( dicom_root / str(resolution) / which, scan_type, num_volumes=num_volumes ) self.num_slices = self.dataset.metadata["num_slices"] self.num_rand_slices = num_rand_slices self.rng = np.random.RandomState() def __getitem__(self, i): i = int(i) if self.num_rand_slices is None: volume_i, slice_i = divmod(i, self.num_slices) else: volume_i = (i * self.num_slices // self.num_rand_slices) // self.num_slices slice_ids = list(range(self.num_slices)) self.rng.seed(seed=volume_i) self.rng.shuffle(slice_ids) slice_i = slice_ids[i % self.num_rand_slices] volume, volume_metadata = self.dataset[volume_i] slice = volume[slice_i : slice_i + 1] slice = slice.astype(np.float32) return self.transform(slice, volume_metadata["mean"], volume_metadata["std"]) def __len__(self): if self.num_rand_slices is None: return len(self.dataset) * self.num_slices else: return len(self.dataset) * self.num_rand_slices class DicomDataTransform: # If `seed` is none and `seed_per_image` is True, masks will be generated with a unique seed # per image, computed as `seed = int( 1009 * image.sum().abs())`. def __init__(self, mask_func, fixed_seed=None, seed_per_image=False): self.mask_func = mask_func self.fixed_seed = fixed_seed self.seed_per_image = seed_per_image def __call__(self, image, mean, std): image = (image - mean) / (std + 1e-12) image = torch.from_numpy(image) image = fft_utils.dicom_to_0_1_range(image) shape = np.array(image.shape) seed = ( int(1009 * image.sum().abs()) if self.fixed_seed is None and self.seed_per_image else self.fixed_seed ) mask = self.mask_func(shape, seed) if self.mask_func is not None else None image = torch.cat([image, torch.zeros_like(image)], dim=0) return mask, image class _DicomDataset: def __init__(self, root, scan_type=None, num_volumes=None): self.metadata = json.load(open(os.path.join(root, "metadata.json"))) shape = ( len(self.metadata["volumes"]), self.metadata["num_slices"], self.metadata["resolution"], self.metadata["resolution"], ) self.volumes = np.memmap( os.path.join(root, "data.bin"), self.metadata["dtype"], "r" ).reshape(shape) volume_ids = [] for i, volume in enumerate(self.metadata["volumes"]): if scan_type == "all" or volume["scan_type"] == scan_type: volume_ids.append(i) if num_volumes is not None: rng = np.random.RandomState(1234) rng.shuffle(volume_ids) volume_ids = volume_ids[:num_volumes] self.volume_ids = {i: id for i, id in enumerate(volume_ids)} def __getitem__(self, i): """ returns (data: 4d array, metadata: dict) """ id = self.volume_ids[i] return self.volumes[id], self.metadata["volumes"][id] def __len__(self): return len(self.volume_ids)
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import pathlib import numpy as np import torch import torch.utils.data from . import dicom_data_loader, masking_utils, raw_data_loader def get_train_valid_loader( dataset_dir, batch_size, num_workers=4, pin_memory=False, which_dataset="KNEE", mask_type="basic", rnl_params=None, num_volumes_train=None, num_volumes_val=None, ): if which_dataset == "KNEE": mask_func = masking_utils.get_mask_func( mask_type, which_dataset, rnl_params=rnl_params ) dicom_root = pathlib.Path(dataset_dir) data_transform = dicom_data_loader.DicomDataTransform( mask_func, fixed_seed=None, seed_per_image=True ) train_data = dicom_data_loader.Slice( data_transform, dicom_root, which="train", resolution=128, scan_type="all", num_volumes=num_volumes_train, num_rand_slices=None, ) valid_data = dicom_data_loader.Slice( data_transform, dicom_root, which="val", resolution=128, scan_type="all", num_volumes=num_volumes_val, num_rand_slices=None, ) elif which_dataset == "KNEE_RAW": mask_func = masking_utils.get_mask_func( mask_type, which_dataset, rnl_params=rnl_params ) raw_root = dataset_dir if not os.path.isdir(raw_root): raise ImportError(raw_root + " not exists. Change to the right path.") data_transform = raw_data_loader.RawDataTransform( mask_func, fixed_seed=None, seed_per_image=False ) train_data = raw_data_loader.RawSliceData( os.path.join(raw_root, "knee_singlecoil_train"), transform=data_transform, num_cols=368, num_volumes=num_volumes_train, ) data_transform = raw_data_loader.RawDataTransform( mask_func, fixed_seed=None, seed_per_image=True ) valid_data = raw_data_loader.RawSliceData( os.path.join(raw_root, "knee_singlecoil_val"), transform=data_transform, num_cols=368, num_volumes=num_volumes_val, custom_split="val", ) else: raise ValueError def init_fun(_): return np.random.seed(None) train_loader = torch.utils.data.DataLoader( train_data, batch_size=batch_size, sampler=None, shuffle=True, num_workers=num_workers, worker_init_fn=init_fun, pin_memory=pin_memory, drop_last=True, ) valid_loader = torch.utils.data.DataLoader( valid_data, batch_size=batch_size, sampler=None, shuffle=True, num_workers=num_workers, worker_init_fn=init_fun, pin_memory=pin_memory, drop_last=True, ) return train_loader, valid_loader def get_test_loader( dataset_dir, batch_size, num_workers=2, pin_memory=False, which_dataset="KNEE", mask_type="basic", rnl_params=None, ): if which_dataset == "KNEE": mask_func = masking_utils.get_mask_func( mask_type, which_dataset, rnl_params=rnl_params ) dicom_root = pathlib.Path(dataset_dir) data_transform = dicom_data_loader.DicomDataTransform( mask_func, fixed_seed=None, seed_per_image=True ) test_data = dicom_data_loader.Slice( data_transform, dicom_root, which="public_leaderboard", resolution=128, scan_type="all", num_volumes=None, num_rand_slices=None, ) def init_fun(_): return np.random.seed() data_loader = torch.utils.data.DataLoader( test_data, batch_size=batch_size, sampler=None, shuffle=False, num_workers=num_workers, worker_init_fn=init_fun, pin_memory=pin_memory, drop_last=True, ) elif which_dataset == "KNEE_RAW": mask_func = masking_utils.get_mask_func( mask_type, which_dataset, rnl_params=rnl_params ) raw_root = dataset_dir if not os.path.isdir(raw_root): raise ImportError(raw_root + " not exists. Change to the right path.") data_transform = raw_data_loader.RawDataTransform( mask_func, fixed_seed=None, seed_per_image=True ) test_data = raw_data_loader.RawSliceData( raw_root + "/knee_singlecoil_val", transform=data_transform, num_cols=368, custom_split="test", ) def init_fun(_): return np.random.seed(None) data_loader = torch.utils.data.DataLoader( test_data, batch_size=batch_size, sampler=None, shuffle=False, num_workers=num_workers, worker_init_fn=init_fun, pin_memory=pin_memory, drop_last=True, ) else: raise ValueError return data_loader
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from . import base_data_loader def create_data_loaders(options, is_test=False): if not is_test: train_loader, valid_loader = base_data_loader.get_train_valid_loader( options.dataset_dir, batch_size=options.batchSize, num_workers=options.nThreads, pin_memory=True, which_dataset=options.dataroot, mask_type=options.mask_type, rnl_params=options.rnl_params, num_volumes_train=options.num_volumes_train, num_volumes_val=options.num_volumes_val, ) return train_loader, valid_loader else: test_loader = base_data_loader.get_test_loader( options.dataset_dir, batch_size=options.batchSize, num_workers=0, pin_memory=True, which_dataset=options.dataroot, mask_type=options.mask_type, rnl_params=options.rnl_params, ) return test_loader
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import numpy as np import torch def get_mask_func(mask_type, which_dataset, rnl_params=None): # Whether the number of lines is random or not random_num_lines = mask_type[-4:] == "_rnl" if "symmetric_basic" in mask_type: logging.info( f"Mask is symmetric uniform choice with random_num_lines={random_num_lines}." ) return SymmetricUniformChoiceMaskFunc( [0.125], [4], which_dataset, random_num_lines=random_num_lines, rnl_params=rnl_params, ) if "basic" in mask_type: # First two parameters are ignored if `random_num_lines` is True logging.info( f"Mask is fixed acceleration mask with random_num_lines={random_num_lines}." ) return BasicMaskFunc( [0.125], [4], which_dataset, random_num_lines=random_num_lines, rnl_params=rnl_params, ) if "low_to_high" in mask_type: logging.info( f"Mask is symmetric low to high with random_num_lines={random_num_lines}." ) return SymmetricLowToHighMaskFunc( [0.125], [4], which_dataset, random_num_lines=random_num_lines, rnl_params=rnl_params, ) if "symmetric_grid" in mask_type: logging.info("Mask is symmetric grid.") return SymmetricUniformGridMaskFunc( [], [], which_dataset, random_num_lines=True, rnl_params=rnl_params ) if "grid" in mask_type: logging.info("Mask is grid (not symmetric).") return UniformGridMaskFunc( [], [], which_dataset, random_num_lines=True, rnl_params=rnl_params ) raise ValueError(f"Invalid mask type: {mask_type}.") class MaskFunc: def __init__( self, center_fractions, accelerations, which_dataset, random_num_lines=False, rnl_params=None, ): if len(center_fractions) != len(accelerations): raise ValueError( "Number of center fractions should match number of accelerations" ) self.center_fractions = center_fractions self.accelerations = accelerations self.random_num_lines = random_num_lines if rnl_params is None: # The lines below give approx. 4x acceleration on average. self.min_lowf_lines = 10 if which_dataset != "KNEE_RAW" else 30 self.max_lowf_lines = 12 if which_dataset != "KNEE_RAW" else 32 self.highf_beta_alpha = 1 self.highf_beta_beta = 5 else: params = [int(x) for x in rnl_params.split(",")] assert len(params) == 4 self.min_lowf_lines = params[0] self.max_lowf_lines = params[1] self.highf_beta_alpha = params[2] self.highf_beta_beta = params[3] self.rng = np.random.RandomState() def __call__(self, shape, seed=None): if len(shape) < 3: raise ValueError("Shape should have 3 or more dimensions") self.rng.seed(seed) num_cols = shape[-2] # Determine number of low and high frequency lines to scan if self.random_num_lines: # These are guaranteed to be an even number (useful for symmetric masks) num_low_freqs = self.rng.choice( range(self.min_lowf_lines, self.max_lowf_lines, 2) ) num_high_freqs = ( int( self.rng.beta(self.highf_beta_alpha, self.highf_beta_beta) * (num_cols - num_low_freqs) // 2 ) * 2 ) else: choice = self.rng.randint(0, len(self.accelerations)) center_fraction = self.center_fractions[choice] acceleration = self.accelerations[choice] num_low_freqs = int(round(num_cols * center_fraction)) num_high_freqs = int(num_cols // acceleration - num_low_freqs) # Create the mask mask = self.create_lf_focused_mask(num_cols, num_high_freqs, num_low_freqs) # Reshape the mask mask_shape = [1 for _ in shape] mask_shape[-1] = num_cols mask = torch.from_numpy(mask.reshape(*mask_shape).astype(np.float32)) return mask def create_lf_focused_mask(self, num_cols, num_high_freqs, num_low_freqs): p = num_high_freqs / (num_cols - num_low_freqs) mask = self.rng.uniform(size=num_cols) < p pad = (num_cols - num_low_freqs + 1) // 2 mask[pad : pad + num_low_freqs] = True return mask class BasicMaskFunc(MaskFunc): def create_lf_focused_mask(self, num_cols, num_high_freqs, num_low_freqs): mask = np.zeros([num_cols]) hf_cols = self.rng.choice( np.arange(num_cols - num_low_freqs), num_high_freqs, replace=False ) hf_cols[hf_cols >= (num_cols - num_low_freqs + 1) // 2] += num_low_freqs mask[hf_cols] = True pad = (num_cols - num_low_freqs + 1) // 2 mask[pad : pad + num_low_freqs] = True mask = np.fft.ifftshift(mask, axes=0) return mask class SymmetricUniformChoiceMaskFunc(MaskFunc): def create_lf_focused_mask(self, num_cols, num_high_freqs, num_low_freqs): mask = np.zeros([num_cols]) num_cols //= 2 num_low_freqs //= 2 num_high_freqs //= 2 hf_cols = self.rng.choice( np.arange(num_cols - num_low_freqs), num_high_freqs, replace=False ) mask[hf_cols] = True pad = num_cols - num_low_freqs mask[pad:num_cols] = True mask[: -(num_cols + 1) : -1] = mask[:num_cols] mask = np.fft.ifftshift(mask, axes=0) return mask class UniformGridMaskFunc(MaskFunc): def create_lf_focused_mask(self, num_cols, num_high_freqs, num_low_freqs): mask = np.zeros([num_cols]) acceleration = self.rng.choice([4, 8, 16]) hf_cols = np.arange(acceleration, num_cols, acceleration) mask[hf_cols] = True mask[: num_low_freqs // 2] = mask[-(num_low_freqs // 2) :] = True return mask class SymmetricLowToHighMaskFunc(MaskFunc): def create_lf_focused_mask(self, num_cols, num_high_freqs, num_low_freqs): mask = np.zeros([num_cols]) num_cols //= 2 num_low_freqs //= 2 num_high_freqs //= 2 num_low_freqs += num_high_freqs pad = num_cols - num_low_freqs mask[pad:num_cols] = True mask[: -(num_cols + 1) : -1] = mask[:num_cols] mask = np.fft.ifftshift(mask, axes=0) return mask class SymmetricUniformGridMaskFunc(MaskFunc): def create_lf_focused_mask(self, num_cols, num_high_freqs, num_low_freqs): mask = np.zeros([num_cols]) acceleration = self.rng.choice([4, 8, 16]) num_cols //= 2 num_low_freqs //= 2 hf_cols = np.arange(acceleration, num_cols, acceleration) mask[hf_cols] = True mask[:num_low_freqs] = True mask[: -(num_cols + 1) : -1] = mask[:num_cols] return mask
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import pathlib import h5py import numpy as np import torch import torch.utils.data def ifftshift(x, dim=None): if dim is None: dim = tuple(range(x.dim())) shift = [(dim + 1) // 2 for dim in x.shape] elif isinstance(dim, int): shift = (x.shape[dim] + 1) // 2 else: shift = [(x.shape[i] + 1) // 2 for i in dim] return roll(x, shift, dim) def fftshift(x, dim=None): if dim is None: dim = tuple(range(x.dim())) shift = [dim // 2 for dim in x.shape] elif isinstance(dim, int): shift = x.shape[dim] // 2 else: shift = [x.shape[i] // 2 for i in dim] return roll(x, shift, dim) def roll(x, shift, dim): if isinstance(shift, (tuple, list)): assert len(shift) == len(dim) for s, d in zip(shift, dim): x = roll(x, s, d) return x shift = shift % x.size(dim) if shift == 0: return x left = x.narrow(dim, 0, x.size(dim) - shift) right = x.narrow(dim, x.size(dim) - shift, shift) return torch.cat((right, left), dim=dim) class RawSliceData(torch.utils.data.Dataset): def __init__( self, root, transform, num_cols=None, num_volumes=None, num_rand_slices=None, custom_split=None, ): self.transform = transform self.examples = [] self.num_rand_slices = num_rand_slices self.rng = np.random.RandomState(1234) files = [] for fname in list(pathlib.Path(root).iterdir()): data = h5py.File(fname, "r") if num_cols is not None and data["kspace"].shape[2] != num_cols: continue files.append(fname) if custom_split is not None: split_info = [] with open(f"data/splits/raw_{custom_split}.txt") as f: for line in f: split_info.append(line.rsplit("\n")[0]) files = [f for f in files if f.name in split_info] if num_volumes is not None: self.rng.shuffle(files) files = files[:num_volumes] for volume_i, fname in enumerate(sorted(files)): data = h5py.File(fname, "r") kspace = data["kspace"] if num_rand_slices is None: num_slices = kspace.shape[0] self.examples += [(fname, slice) for slice in range(num_slices)] else: slice_ids = list(range(kspace.shape[0])) self.rng.seed(seed=volume_i) self.rng.shuffle(slice_ids) self.examples += [ (fname, slice) for slice in slice_ids[:num_rand_slices] ] def __len__(self): return len(self.examples) def __getitem__(self, i): fname, slice = self.examples[i] with h5py.File(fname, "r") as data: kspace = data["kspace"][slice] return self.transform(kspace, data.attrs) class RawDataTransform: def __init__(self, mask_func, fixed_seed=None, seed_per_image=False): self.mask_func = mask_func self.fixed_seed = fixed_seed self.seed_per_image = seed_per_image def __call__(self, kspace, attrs): kspace = torch.from_numpy(np.stack([kspace.real, kspace.imag], axis=-1)) kspace = ifftshift(kspace, dim=(0, 1)) image = torch.ifft(kspace, 2, normalized=False) image = ifftshift(image, dim=(0, 1)) # norm = torch.sqrt(image[..., 0] ** 2 + image[..., 1] ** 2).max() # 5.637766165023095e-08, 7.072103529760345e-07, 5.471710210258607e-06 # normalize by the mean norm of training images. image /= 7.072103529760345e-07 kspace /= 7.072103529760345e-07 shape = np.array(kspace.shape) seed = ( int(1009 * image.sum().abs()) if self.fixed_seed is None and self.seed_per_image else self.fixed_seed ) mask = self.mask_func(shape, seed) return mask, image, kspace
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Any, Dict, Optional import fastmri.models import torch import activemri.models # noinspection PyAbstractClass class Unet(activemri.models.Reconstructor): def __init__( self, in_chans=2, out_chans=2, chans=32, num_pool_layers=4, drop_prob=0.0 ): super().__init__() self.unet = fastmri.models.Unet( in_chans, out_chans, chans=chans, num_pool_layers=num_pool_layers, drop_prob=drop_prob, ) def forward( # type: ignore self, image: torch.Tensor, mean: torch.Tensor, std: torch.Tensor ) -> Dict[str, Any]: output = self.unet(image).squeeze(1) std = std.unsqueeze(1).unsqueeze(2) mean = mean.unsqueeze(1).unsqueeze(2) reconstruction = output * std + mean return {"reconstruction": reconstruction} def init_from_checkpoint(self, checkpoint: Dict[str, Any]) -> Optional[Any]: self.load_state_dict(checkpoint["state_dict"]) return None
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import abc from typing import Any, Dict, Optional import torch.nn class Reconstructor(torch.nn.Module): def __init__(self, **kwargs): super().__init__() def forward(self, *args, **kwargs) -> Dict[str, Any]: pass @abc.abstractmethod def init_from_checkpoint(self, checkpoint: Dict[str, Any]) -> Optional[Any]: pass
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Any, Dict import torch import activemri.experimental.cvpr19_models.models.reconstruction as cvpr19_reconstruction import activemri.models # This is just a wrapper for the model in cvpr19_models folder class CVPR19Reconstructor(activemri.models.Reconstructor): def __init__( self, number_of_encoder_input_channels: int = 2, number_of_decoder_output_channels: int = 3, number_of_filters: int = 128, dropout_probability: float = 0.0, number_of_layers_residual_bottleneck: int = 6, number_of_cascade_blocks: int = 3, mask_embed_dim: int = 6, padding_type: str = "reflect", n_downsampling: int = 3, img_width: int = 128, use_deconv: bool = True, ): super().__init__() self.reconstructor = cvpr19_reconstruction.ReconstructorNetwork( number_of_encoder_input_channels=number_of_encoder_input_channels, number_of_decoder_output_channels=number_of_decoder_output_channels, number_of_filters=number_of_filters, dropout_probability=dropout_probability, number_of_layers_residual_bottleneck=number_of_layers_residual_bottleneck, number_of_cascade_blocks=number_of_cascade_blocks, mask_embed_dim=mask_embed_dim, padding_type=padding_type, n_downsampling=n_downsampling, img_width=img_width, use_deconv=use_deconv, ) def forward( # type: ignore self, zero_filled_input: torch.Tensor, mask: torch.Tensor ) -> Dict[str, Any]: reconstructed_image, uncertainty_map, mask_embedding = self.reconstructor( zero_filled_input, mask ) reconstructed_image = reconstructed_image.permute(0, 2, 3, 1) uncertainty_map = uncertainty_map.permute(0, 2, 3, 1) return { "reconstruction": reconstructed_image, "uncertainty_map": uncertainty_map, "mask_embedding": mask_embedding, } def init_from_checkpoint(self, checkpoint: Dict[str, Any]): return self.reconstructor.init_from_checkpoint(checkpoint)
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ activemri.baselines.ddqn.py ======================================= Baseline implementation of Double DQN, as described in *Van Hasselt, Hado, Arthur Guez, and David Silver. "Deep reinforcement learning with double q-learning." arXiv preprint arXiv:1509.06461 (2015)*. """ import argparse import logging import math import os import pickle import random import sys import time from typing import Any, Dict, List, Optional, Tuple import filelock import numpy as np import tensorboardX import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import activemri.envs.envs as mri_envs import activemri.experimental.cvpr19_models.models.evaluator as cvpr19_evaluator from . import Policy, RandomPolicy, evaluation, replay_buffer def _encode_obs_dict(obs: Dict[str, Any]) -> torch.Tensor: reconstruction = obs["reconstruction"].permute(0, 3, 1, 2) mask_embedding = obs["extra_outputs"]["mask_embedding"] mask = obs["mask"] batch_size, num_channels, img_height, img_width = reconstruction.shape transformed_obs = torch.zeros( batch_size, num_channels, img_height + 2, img_width ).float() transformed_obs[..., :img_height, :] = reconstruction # The second to last row is the mask transformed_obs[..., img_height, :] = mask.unsqueeze(1) # The last row is the mask embedding (padded with 0s if necessary) if mask_embedding: mask_embed_dim = len(mask_embedding[0]) transformed_obs[..., img_height + 1, :mask_embed_dim] = mask_embedding[ :, :, 0, 0 ] else: transformed_obs[:, :, img_height + 1, 0] = np.nan return transformed_obs def _decode_obs_tensor( obs_tensor: torch.Tensor, mask_embed_dim: int ) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]: reconstruction = obs_tensor[..., :-2, :] bs = obs_tensor.shape[0] if torch.isnan(obs_tensor[0, 0, -1, 0]).item() == 1: assert mask_embed_dim == 0 mask_embedding = None else: mask_embedding = obs_tensor[:, 0, -1, :mask_embed_dim].view(bs, -1, 1, 1) mask_embedding = mask_embedding.repeat( 1, 1, reconstruction.shape[2], reconstruction.shape[3] ) mask = obs_tensor[:, 0, -2, :] mask = mask.contiguous().view(bs, 1, 1, -1) return reconstruction, mask, mask_embedding def _get_epsilon(steps_done, opts): return opts.epsilon_end + (opts.epsilon_start - opts.epsilon_end) * math.exp( -1.0 * steps_done / opts.epsilon_decay ) # noinspection PyAbstractClass class Flatten(nn.Module): # noinspection PyMethodMayBeStatic def forward(self, x): return x.view(x.size(0), -1) class SimpleMLP(nn.Module): """ Value network used for dataset specific DDQN model. """ def __init__( self, budget: int, image_width: int, num_hidden_layers: int = 2, hidden_size: int = 32, ignore_mask: bool = True, ): super().__init__() self.ignore_mask = ignore_mask self.num_inputs = budget if self.ignore_mask else image_width num_actions = image_width self.linear1 = nn.Sequential(nn.Linear(self.num_inputs, hidden_size), nn.ReLU()) hidden_layers = [] for i in range(num_hidden_layers): hidden_layers.append( nn.Sequential(nn.Linear(hidden_size, hidden_size), nn.ReLU()) ) self.hidden = nn.Sequential(*hidden_layers) self.output = nn.Linear(hidden_size, num_actions) self.model = nn.Sequential(self.linear1, self.hidden, self.output) def forward(self, obs: torch.Tensor) -> torch.Tensor: """Predicts action values. Args: obs(torch.Tensor): The observation tensor. Once decoded, it only uses the mask information. If ``__init__(..., ignore_mask=True)``, it will additionally use the mask only to deduce the time step. Returns: torch.Tensor: Q-values for all actions at the given observation. Note: Values corresponding to active k-space columns in the observation are manually set to ``1e-10``. """ _, mask, _ = _decode_obs_tensor(obs, 0) previous_actions = mask.squeeze() if self.ignore_mask: input_tensor = torch.zeros(obs.shape[0], self.num_inputs).to(obs.device) time_steps = previous_actions.sum(1).unsqueeze(1) # We allow the model to receive observations that are over budget during test # Code below randomizes the input to the model for these observations index_over_budget = (time_steps >= self.num_inputs).squeeze() time_steps = time_steps.clamp(0, self.num_inputs - 1) input_tensor.scatter_(1, time_steps.long(), 1) input_tensor[index_over_budget] = torch.randn_like( input_tensor[index_over_budget] ) else: input_tensor = mask value = self.model(input_tensor) return value - 1e10 * previous_actions class EvaluatorBasedValueNetwork(nn.Module): """ Value network based on Zhang et al., CVPR'19 evaluator architecture. """ def __init__( self, image_width: int, mask_embed_dim: int, legacy_offset: Optional[int] = None ): super().__init__() num_actions = image_width if legacy_offset: num_actions -= 2 * legacy_offset self.legacy_offset = legacy_offset self.evaluator = cvpr19_evaluator.EvaluatorNetwork( number_of_filters=128, number_of_conv_layers=4, use_sigmoid=False, width=image_width, mask_embed_dim=mask_embed_dim, num_output_channels=num_actions, ) self.mask_embed_dim = mask_embed_dim def forward(self, obs: torch.Tensor) -> torch.Tensor: """Predicts action values. Args: obs(torch.Tensor): The observation tensor. Returns: torch.Tensor: Q-values for all actions at the given observation. Note: Values corresponding to active k-space columns in the observation are manually set to ``1e-10``. """ reconstruction, mask, mask_embedding = _decode_obs_tensor( obs, self.evaluator.mask_embed_dim ) qvalue = self.evaluator(reconstruction, mask_embedding) if self.legacy_offset: mask = mask[..., self.legacy_offset : -self.legacy_offset] return qvalue - 1e10 * mask.squeeze() def _get_model(options): if options.dqn_model_type == "simple_mlp": return SimpleMLP(options.budget, options.image_width) if options.dqn_model_type == "evaluator": return EvaluatorBasedValueNetwork( options.image_width, options.mask_embedding_dim, legacy_offset=getattr(options, "legacy_offset", None), ) raise ValueError("Unknown model specified for DQN.") class DDQN(nn.Module, Policy): """Implementation of Double DQN value network. The configuration is given by the ``opts`` argument, which must contain the following fields: - mask_embedding_dim(int): See :class:`cvpr19_models.models.evaluator.EvaluatorNetwork`. - gamma(float): Discount factor for target updates. - dqn_model_type(str): Describes the architecture of the neural net. Options are "simple_mlp" and "evaluator", to use :class:`SimpleMLP` and :class:`EvaluatorBasedValueNetwork`, respectively. - budget(int): The environment's budget. - image_width(int): The width of the input images. Args: device(``torch.device``): Device to use. memory(optional(``replay_buffer.ReplayMemory``)): Replay buffer to sample transitions from. Can be ``None``, for example, if this is a target network. opts(``argparse.Namespace``): Options for the algorithm as explained above. """ def __init__( self, device: torch.device, memory: Optional[replay_buffer.ReplayMemory], opts: argparse.Namespace, ): super().__init__() self.model = _get_model(opts) self.memory = memory self.optimizer = optim.Adam(self.parameters(), lr=opts.dqn_learning_rate) self.opts = opts self.device = device self.random_sampler = RandomPolicy() self.to(device) def add_experience( self, observation: np.array, action: int, next_observation: np.array, reward: float, done: bool, ): self.memory.push(observation, action, next_observation, reward, done) def update_parameters(self, target_net: nn.Module) -> Optional[Dict[str, Any]]: self.model.train() batch = self.memory.sample() if batch is None: return None observations = batch["observations"].to(self.device) next_observations = batch["next_observations"].to(self.device) actions = batch["actions"].to(self.device) rewards = batch["rewards"].to(self.device).squeeze() dones = batch["dones"].to(self.device) not_done_mask = dones.logical_not().squeeze() # Compute Q-values and get best action according to online network output_cur_step = self.forward(observations) all_q_values_cur = output_cur_step q_values = all_q_values_cur.gather(1, actions.unsqueeze(1)) # Compute target values using the best action found if self.opts.gamma == 0.0: target_values = rewards else: with torch.no_grad(): all_q_values_next = self.forward(next_observations) target_values = torch.zeros(observations.shape[0], device=self.device) del observations if not_done_mask.any().item() != 0: best_actions = all_q_values_next.detach().max(1)[1] target_values[not_done_mask] = ( target_net.forward(next_observations) .gather(1, best_actions.unsqueeze(1))[not_done_mask] .squeeze() .detach() ) target_values = self.opts.gamma * target_values + rewards # loss = F.mse_loss(q_values, target_values.unsqueeze(1)) loss = F.smooth_l1_loss(q_values, target_values.unsqueeze(1)) self.optimizer.zero_grad() loss.backward() # Compute total gradient norm (for logging purposes) and then clip gradients grad_norm: torch.Tensor = 0 # type: ignore for p in list(filter(lambda p: p.grad is not None, self.parameters())): grad_norm += p.grad.data.norm(2).item() ** 2 grad_norm = grad_norm ** 0.5 torch.nn.utils.clip_grad_value_(self.parameters(), 1) self.optimizer.step() torch.cuda.empty_cache() return { "loss": loss, "grad_norm": grad_norm, "q_values_mean": q_values.detach().mean().cpu().numpy(), "q_values_std": q_values.detach().std().cpu().numpy(), } def forward(self, x: torch.Tensor) -> torch.Tensor: """Predicts action values. Args: x(torch.Tensor): The observation tensor. Returns: Dictionary(torch.Tensor): The predicted Q-values. Note: Values corresponding to active k-space columns in the observation are manually set to ``1e-10``. """ return self.model(x) def get_action( # type: ignore self, obs: Dict[str, Any], eps_threshold: float = 0.0 ) -> List[int]: """Returns an action sampled from an epsilon-greedy policy. With probability epsilon sample a random k-space column (ignoring active columns), otherwise return the column with the highest estimated Q-value for the observation. Args: obs(torch.Tensor): The observation for which an action is required. eps_threshold(float): The probability of sampling a random action instead of using a greedy action. """ sample = random.random() if sample < eps_threshold: return self.random_sampler.get_action(obs) with torch.no_grad(): self.model.eval() obs_tensor = _encode_obs_dict(obs) q_values = self(obs_tensor.to(self.device)) actions = torch.argmax(q_values, dim=1) + getattr(self.opts, "legacy_offset", 0) return actions.tolist() def _get_folder_lock(path): return filelock.FileLock(path, timeout=-1) class DDQNTester: def __init__( self, env: mri_envs.ActiveMRIEnv, training_dir: str, device: torch.device ): self.env = env self.device = device self.training_dir = training_dir self.evaluation_dir = os.path.join(training_dir, "evaluation") os.makedirs(self.evaluation_dir, exist_ok=True) self.folder_lock_path = DDQNTrainer.get_lock_filename(training_dir) self.latest_policy_path = DDQNTrainer.get_name_latest_checkpoint( self.training_dir ) self.best_test_score = -np.inf self.last_time_stamp = -np.inf self.options = None # Initialize writer and logger self.writer = tensorboardX.SummaryWriter(os.path.join(self.evaluation_dir)) self.logger = logging.getLogger() self.logger.setLevel(logging.INFO) formatter = logging.Formatter( "%(asctime)s - %(threadName)s - %(levelname)s: %(message)s" ) ch = logging.StreamHandler(sys.stdout) ch.setFormatter(formatter) self.logger.addHandler(ch) ch.setLevel(logging.DEBUG) fh = logging.FileHandler(os.path.join(self.evaluation_dir, "evaluation.log")) fh.setLevel(logging.DEBUG) fh.setFormatter(formatter) self.logger.addHandler(fh) # Read the options used for training options_file_found = False while not options_file_found: options_filename = DDQNTrainer.get_options_filename(self.training_dir) with _get_folder_lock(self.folder_lock_path): if os.path.isfile(options_filename): self.logger.info(f"Options file found at {options_filename}.") with open(options_filename, "rb") as f: self.options = pickle.load(f) options_file_found = True if not options_file_found: self.logger.info(f"No options file found at {options_filename}.") self.logger.info("I will wait for five minutes before trying again.") time.sleep(300) # This change is needed so that util.test_policy writes results to correct directory self.options.checkpoints_dir = self.evaluation_dir os.makedirs(self.evaluation_dir, exist_ok=True) # Initialize environment self.options.image_width = self.env.action_space.n self.logger.info(f"Created environment with {self.env.action_space.n} actions") self.logger.info(f"Checkpoint dir for this job is {self.evaluation_dir}") self.logger.info( f"Evaluation will be done for model saved at {self.training_dir}" ) # Initialize policy self.policy = DDQN(device, None, self.options) # Load info about best checkpoint tested and timestamp self.load_tester_checkpoint_if_present() def __call__(self): training_done = False while not training_done: training_done = self.check_if_train_done() self.logger.info(f"Is training done? {training_done}.") checkpoint_episode, timestamp = self.load_latest_policy() if timestamp is None or timestamp <= self.last_time_stamp: # No new policy checkpoint to evaluate self.logger.info( "No new policy to evaluate. " "I will wait for 10 minutes before trying again." ) time.sleep(600) continue self.logger.info( f"Found a new checkpoint with timestamp {timestamp}, " f"I will start evaluation now." ) test_scores, _ = evaluation.evaluate( self.env, self.policy, self.options.num_test_episodes, self.options.seed, "val", verbose=True, ) auc_score = test_scores[self.options.reward_metric].sum(axis=1).mean() if "mse" in self.options.reward_metric: auc_score *= -1 self.logger.info(f"The test score for the model was {auc_score}.") self.last_time_stamp = timestamp if auc_score > self.best_test_score: self.save_tester_checkpoint() policy_path = os.path.join(self.evaluation_dir, "policy_best.pt") self.save_policy(policy_path, checkpoint_episode) self.best_test_score = auc_score self.logger.info( f"Saved DQN model with score {self.best_test_score} to {policy_path}, " f"corresponding to episode {checkpoint_episode}." ) def check_if_train_done(self): with _get_folder_lock(self.folder_lock_path): return os.path.isfile(DDQNTrainer.get_done_filename(self.training_dir)) def checkpoint(self): self.save_tester_checkpoint() def save_tester_checkpoint(self): path = os.path.join(self.evaluation_dir, "tester_checkpoint.pickle") with open(path, "wb") as f: pickle.dump( { "best_test_score": self.best_test_score, "last_time_stamp": self.last_time_stamp, }, f, ) def load_tester_checkpoint_if_present(self): path = os.path.join(self.evaluation_dir, "tester_checkpoint.pickle") if os.path.isfile(path): with open(path, "rb") as f: checkpoint = pickle.load(f) self.best_test_score = checkpoint["best_test_score"] self.last_time_stamp = checkpoint["last_time_stamp"] self.logger.info( f"Found checkpoint from previous evaluation run. " f"Best Score set to {self.best_test_score}. " f"Last Time Stamp set to {self.last_time_stamp}" ) # noinspection PyProtectedMember def load_latest_policy(self): with _get_folder_lock(self.folder_lock_path): if not os.path.isfile(self.latest_policy_path): return None, None timestamp = os.path.getmtime(self.latest_policy_path) checkpoint = torch.load(self.latest_policy_path, map_location=self.device) self.policy.load_state_dict(checkpoint["dqn_weights"]) return checkpoint["episode"], timestamp def save_policy(self, path, episode): torch.save( { "dqn_weights": self.policy.state_dict(), "episode": episode, "options": self.options, }, path, ) class DDQNTrainer: """DDQN Trainer for active MRI acquisition. Configuration for the trainer is provided by argument ``options``. Must contain the following fields: - "checkpoints_dir"(str): The directory where the model will be saved to (or loaded from). - dqn_batch_size(int): The batch size to use for updates. - dqn_burn_in(int): How many steps to do before starting updating parameters. - dqn_normalize(bool): ``True`` if running mean/st. deviation should be maintained for observations. - dqn_only_test(bool): ``True`` if the model will not be trained, thus only will attempt to read from checkpoint and load only weights of the network (ignoring training related information). - dqn_test_episode_freq(optional(int)): How frequently (in number of env steps) to perform test episodes. - freq_dqn_checkpoint_save(int): How often (in episodes) to save the model. - num_train_steps(int): How many environment steps to train for. - replay_buffer_size(int): The capacity of the replay buffer. - resume(bool): If true, will try to load weights from the checkpoints dir. - num_test_episodes(int): How many test episodes to periodically evaluate for. - seed(int): Sets the seed for the environment when running evaluation episodes. - reward_metric(str): Which of the ``env.scores_keys()`` is used as reward. Mainly used for logging purposes. - target_net_update_freq(int): How often (in env's steps) to update the target network. Args: options(``argparse.Namespace``): Options for the trainer. env(``activemri.envs.ActiveMRIEnv``): Env for which the policy is trained. device(``torch.device``): Device to use. """ def __init__( self, options: argparse.Namespace, env: mri_envs.ActiveMRIEnv, device: torch.device, ): self.options = options self.env = env self.options.image_width = self.env.kspace_width self.steps = 0 self.episode = 0 self.best_test_score = -np.inf self.device = device self.replay_memory = None self.window_size = 1000 self.reward_images_in_window = np.zeros(self.window_size) self.current_score_auc_window = np.zeros(self.window_size) # ------- Init loggers ------ self.writer = tensorboardX.SummaryWriter( os.path.join(self.options.checkpoints_dir) ) self.logger = logging.getLogger() logging_level = logging.DEBUG if self.options.debug else logging.INFO self.logger.setLevel(logging_level) ch = logging.StreamHandler(sys.stdout) ch.setLevel(logging_level) formatter = logging.Formatter( "%(asctime)s - %(threadName)s - %(levelname)s: %(message)s" ) ch.setFormatter(formatter) self.logger.addHandler(ch) fh = logging.FileHandler( os.path.join(self.options.checkpoints_dir, "train.log") ) fh.setLevel(logging_level) fh.setFormatter(formatter) self.logger.addHandler(fh) self.logger.info("Creating DDQN model.") self.logger.info( f"Creating replay buffer with capacity {options.mem_capacity}." ) # ------- Create replay buffer and networks ------ # See _encode_obs_dict() for tensor format self.obs_shape = (2, self.env.kspace_height + 2, self.env.kspace_width) self.replay_memory = replay_buffer.ReplayMemory( options.mem_capacity, self.obs_shape, self.options.dqn_batch_size, self.options.dqn_burn_in, use_normalization=self.options.dqn_normalize, ) self.logger.info("Created replay buffer.") self.policy = DDQN(device, self.replay_memory, self.options) self.target_net = DDQN(device, None, self.options) self.target_net.eval() self.logger.info( f"Created neural networks with {self.env.action_space.n} outputs." ) # ------- Files used to communicate with DDQNTester ------ self.folder_lock_path = DDQNTrainer.get_lock_filename( self.options.checkpoints_dir ) with _get_folder_lock(self.folder_lock_path): # Write options so that tester can read them with open( DDQNTrainer.get_options_filename(self.options.checkpoints_dir), "wb" ) as f: pickle.dump(self.options, f) # Remove previous done file since training will start over done_file = DDQNTrainer.get_done_filename(self.options.checkpoints_dir) if os.path.isfile(done_file): os.remove(done_file) @staticmethod def get_done_filename(path): return os.path.join(path, "DONE") @staticmethod def get_name_latest_checkpoint(path): return os.path.join(path, "policy_checkpoint.pth") @staticmethod def get_options_filename(path): return os.path.join(path, "options.pickle") @staticmethod def get_lock_filename(path): return os.path.join(path, ".LOCK") def _max_replay_buffer_size(self): return min(self.options.num_train_steps, self.options.replay_buffer_size) def load_checkpoint_if_needed(self): if self.options.dqn_only_test or self.options.resume: policy_path = os.path.join(self.options.dqn_weights_path) if os.path.isfile(policy_path): self.load(policy_path) self.logger.info(f"Loaded DQN policy found at {policy_path}.") else: self.logger.warning(f"No DQN policy found at {policy_path}.") if self.options.dqn_only_test: raise FileNotFoundError def _train_dqn_policy(self): """ Trains the DQN policy. """ self.logger.info( f"Starting training at step {self.steps}/{self.options.num_train_steps}. " f"Best score so far is {self.best_test_score}." ) steps_epsilon = self.steps while self.steps < self.options.num_train_steps: self.logger.info("Episode {}".format(self.episode + 1)) # Evaluate the current policy if self.options.dqn_test_episode_freq and ( self.episode % self.options.dqn_test_episode_freq == 0 ): test_scores, _ = evaluation.evaluate( self.env, self.policy, self.options.num_test_episodes, self.options.seed, "val", ) self.env.set_training() auc_score = test_scores[self.options.reward_metric].sum(axis=1).mean() if "mse" in self.options.reward_metric: auc_score *= -1 if auc_score > self.best_test_score: policy_path = os.path.join( self.options.checkpoints_dir, "policy_best.pt" ) self.save(policy_path) self.best_test_score = auc_score self.logger.info( f"Saved DQN model with score {self.best_test_score} to {policy_path}." ) # Save model periodically if self.episode % self.options.freq_dqn_checkpoint_save == 0: self.checkpoint(save_memory=False) # Run an episode and update model obs, meta = self.env.reset() msg = ", ".join( [ f"({meta['fname'][i]}, {meta['slice_id'][i]})" for i in range(len(meta["slice_id"])) ] ) self.logger.info(f"Episode started with images {msg}.") all_done = False total_reward = 0 auc_score = 0 while not all_done: epsilon = _get_epsilon(steps_epsilon, self.options) action = self.policy.get_action(obs, eps_threshold=epsilon) next_obs, reward, done, meta = self.env.step(action) auc_score += meta["current_score"][self.options.reward_metric] all_done = all(done) self.steps += 1 obs_tensor = _encode_obs_dict(obs) next_obs_tensor = _encode_obs_dict(next_obs) batch_size = len(obs_tensor) for i in range(batch_size): self.policy.add_experience( obs_tensor[i], action[i], next_obs_tensor[i], reward[i], done[i] ) update_results = self.policy.update_parameters(self.target_net) torch.cuda.empty_cache() if self.steps % self.options.target_net_update_freq == 0: self.logger.info("Updating target network.") self.target_net.load_state_dict(self.policy.state_dict()) steps_epsilon += 1 # Adding per-step tensorboard logs if self.steps % 250 == 0: self.logger.debug("Writing to tensorboard.") self.writer.add_scalar("epsilon", epsilon, self.steps) if update_results is not None: self.writer.add_scalar( "loss", update_results["loss"], self.steps ) self.writer.add_scalar( "grad_norm", update_results["grad_norm"], self.steps ) self.writer.add_scalar( "mean_q_value", update_results["q_values_mean"], self.steps ) self.writer.add_scalar( "std_q_value", update_results["q_values_std"], self.steps ) total_reward += reward obs = next_obs # Adding per-episode tensorboard logs total_reward = total_reward.mean().item() auc_score = auc_score.mean().item() self.reward_images_in_window[self.episode % self.window_size] = total_reward self.current_score_auc_window[self.episode % self.window_size] = auc_score self.writer.add_scalar("episode_reward", total_reward, self.episode) self.writer.add_scalar( "average_reward_images_in_window", np.sum(self.reward_images_in_window) / min(self.episode + 1, self.window_size), self.episode, ) self.writer.add_scalar( "average_auc_score_in_window", np.sum(self.current_score_auc_window) / min(self.episode + 1, self.window_size), self.episode, ) self.episode += 1 self.checkpoint() # Writing DONE file with best test score with _get_folder_lock(self.folder_lock_path): with open( DDQNTrainer.get_done_filename(self.options.checkpoints_dir), "w" ) as f: f.write(str(self.best_test_score)) return self.best_test_score def __call__(self): self.load_checkpoint_if_needed() return self._train_dqn_policy() def checkpoint(self, save_memory=True): policy_path = DDQNTrainer.get_name_latest_checkpoint( self.options.checkpoints_dir ) self.save(policy_path) self.logger.info(f"Saved DQN checkpoint to {policy_path}") if save_memory: self.logger.info("Now saving replay memory.") memory_path = self.replay_memory.save( self.options.checkpoints_dir, "replay_buffer.pt" ) self.logger.info(f"Saved replay buffer to {memory_path}.") def save(self, path): with _get_folder_lock(self.folder_lock_path): torch.save( { "dqn_weights": self.policy.state_dict(), "target_weights": self.target_net.state_dict(), "options": self.options, "episode": self.episode, "steps": self.steps, "best_test_score": self.best_test_score, "reward_images_in_window": self.reward_images_in_window, "current_score_auc_window": self.current_score_auc_window, }, path, ) def load(self, path): checkpoint = torch.load(path) self.policy.load_state_dict(checkpoint["dqn_weights"]) self.episode = checkpoint["episode"] + 1 if not self.options.dqn_only_test: self.target_net.load_state_dict(checkpoint["target_weights"]) self.steps = checkpoint["steps"] self.best_test_score = checkpoint["best_test_score"] self.reward_images_in_window = checkpoint["reward_images_in_window"] self.current_score_auc_window = checkpoint["current_score_auc_window"]
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Any, Dict, List, Optional, Tuple import numpy as np import activemri.baselines as baselines import activemri.envs as envs def evaluate( env: envs.envs.ActiveMRIEnv, policy: baselines.Policy, num_episodes: int, seed: int, split: str, verbose: Optional[bool] = False, ) -> Tuple[Dict[str, np.ndarray], List[Tuple[Any, Any]]]: env.seed(seed) if split == "test": env.set_test() elif split == "val": env.set_val() else: raise ValueError(f"Invalid evaluation split: {split}.") score_keys = env.score_keys() all_scores = dict( (k, np.zeros((num_episodes * env.num_parallel_episodes, env.budget + 1))) for k in score_keys ) all_img_ids = [] trajectories_written = 0 for episode in range(num_episodes): step = 0 obs, meta = env.reset() if not obs: break # no more images # in case the last batch is smaller actual_batch_size = len(obs["reconstruction"]) if verbose: msg = ", ".join( [ f"({meta['fname'][i]}, {meta['slice_id'][i]})" for i in range(actual_batch_size) ] ) print(f"Read images: {msg}") for i in range(actual_batch_size): all_img_ids.append((meta["fname"][i], meta["slice_id"][i])) batch_idx = slice( trajectories_written, trajectories_written + actual_batch_size ) for k in score_keys: all_scores[k][batch_idx, step] = meta["current_score"][k] trajectories_written += actual_batch_size all_done = False while not all_done: step += 1 action = policy.get_action(obs) obs, reward, done, meta = env.step(action) for k in score_keys: all_scores[k][batch_idx, step] = meta["current_score"][k] all_done = all(done) for k in score_keys: all_scores[k] = all_scores[k][: len(all_img_ids), :] return all_scores, all_img_ids
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import abc from typing import Any, Dict, List class Policy: """ A basic policy interface. """ def __init__(self, *args, **kwargs): pass @abc.abstractmethod def get_action(self, obs: Dict[str, Any], **kwargs: Any) -> List[int]: """ Returns a list of actions for a batch of observations. """ pass def __call__(self, obs: Dict[str, Any], **kwargs: Any) -> List[int]: return self.get_action(obs, **kwargs) from .simple_baselines import ( RandomPolicy, RandomLowBiasPolicy, LowestIndexPolicy, OneStepGreedyOracle, ) from .cvpr19_evaluator import CVPR19Evaluator from .ddqn import DDQN, DDQNTrainer from .evaluation import evaluate __all__ = [ "RandomPolicy", "RandomLowBiasPolicy", "LowestIndexPolicy", "OneStepGreedyOracle", "CVPR19Evaluator", "DDQN", "DDQNTrainer", "evaluate", ]
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ activemri.baselines.simple_baselines.py ======================================= Simple baselines for active MRI acquisition. """ from typing import Any, Dict, List, Optional import numpy as np import torch import activemri.envs from . import Policy class RandomPolicy(Policy): """A policy representing random k-space selection. Returns one of the valid actions uniformly at random. Args: seed(optional(int)): The seed to use for the random number generator, which is based on ``torch.Generator()``. """ def __init__(self, seed: Optional[int] = None): super().__init__() self.rng = torch.Generator() if seed: self.rng.manual_seed(seed) def get_action(self, obs: Dict[str, Any], **_kwargs) -> List[int]: """Returns a random action without replacement. Args: obs(dict(str, any)): As returned by :class:`activemri.envs.ActiveMRIEnv`. Returns: list(int): A list of random k-space column indices, one per batch element in the observation. The indices are sampled from the set of inactive (0) columns on each batch element. """ return ( (obs["mask"].logical_not().float() + 1e-6) .multinomial(1, generator=self.rng) .squeeze() .tolist() ) class RandomLowBiasPolicy(Policy): def __init__( self, acceleration: float, centered: bool = True, seed: Optional[int] = None ): super().__init__() self.acceleration = acceleration self.centered = centered self.rng = np.random.RandomState(seed) def get_action(self, obs: Dict[str, Any], **_kwargs) -> List[int]: mask = obs["mask"].squeeze().cpu().numpy() new_mask = self._cartesian_mask(mask) action = (new_mask - mask).argmax(axis=1) return action.tolist() @staticmethod def _normal_pdf(length: int, sensitivity: float): return np.exp(-sensitivity * (np.arange(length) - length / 2) ** 2) def _cartesian_mask(self, current_mask: np.ndarray) -> np.ndarray: batch_size, image_width = current_mask.shape pdf_x = RandomLowBiasPolicy._normal_pdf( image_width, 0.5 / (image_width / 10.0) ** 2 ) pdf_x = np.expand_dims(pdf_x, axis=0) lmda = image_width / (2.0 * self.acceleration) # add uniform distribution pdf_x += lmda * 1.0 / image_width # remove previously chosen columns # note that pdf_x designed for centered masks new_mask = ( np.fft.ifftshift(current_mask, axes=1) if not self.centered else current_mask.copy() ) pdf_x = pdf_x * np.logical_not(new_mask) # normalize probabilities and choose accordingly pdf_x /= pdf_x.sum(axis=1, keepdims=True) indices = [ self.rng.choice(image_width, 1, False, pdf_x[i]).item() for i in range(batch_size) ] new_mask[range(batch_size), indices] = 1 if not self.centered: new_mask = np.fft.ifftshift(new_mask, axes=1) return new_mask class LowestIndexPolicy(Policy): """A policy that represents low-to-high frequency k-space selection. Args: alternate_sides(bool): If ``True`` the indices of selected actions will alternate between the sides of the mask. For example, for an image with 100 columns, and non-centered k-space, the order will be 0, 99, 1, 98, 2, 97, ..., etc. For the same size and centered, the order will be 49, 50, 48, 51, 47, 52, ..., etc. centered(bool): If ``True`` (default), low frequencies are in the center of the mask. Otherwise, they are in the edges of the mask. """ def __init__( self, alternate_sides: bool, centered: bool = True, ): super().__init__() self.alternate_sides = alternate_sides self.centered = centered self.bottom_side = True def get_action(self, obs: Dict[str, Any], **_kwargs) -> List[int]: """Returns a random action without replacement. Args: obs(dict(str, any)): As returned by :class:`activemri.envs.ActiveMRIEnv`. Returns: list(int): A list of k-space column indices, one per batch element in the observation, equal to the lowest non-active k-space column in their corresponding observation masks. """ mask = obs["mask"].squeeze().cpu().numpy() new_mask = self._get_new_mask(mask) action = (new_mask - mask).argmax(axis=1) return action.tolist() def _get_new_mask(self, current_mask: np.ndarray) -> np.ndarray: # The code below assumes mask in non centered new_mask = ( np.fft.ifftshift(current_mask, axes=1) if self.centered else current_mask.copy() ) if self.bottom_side: idx = np.arange(new_mask.shape[1], 0, -1) else: idx = np.arange(new_mask.shape[1]) if self.alternate_sides: self.bottom_side = not self.bottom_side # Next line finds the first non-zero index (from edge to center) and returns it indices = (np.logical_not(new_mask) * idx).argmax(axis=1) indices = np.expand_dims(indices, axis=1) new_mask[range(new_mask.shape[0]), indices] = 1 if self.centered: new_mask = np.fft.ifftshift(new_mask, axes=1) return new_mask class OneStepGreedyOracle(Policy): """A policy that returns the k-space column leading to best reconstruction score. Args: env(``activemri.envs.ActiveMRIEnv``): The environment for which the policy is computed for. metric(str): The name of the score metric to use (must be in ``env.score_keys()``). num_samples(optional(int)): If given, only ``num_samples`` random actions will be tested. Defaults to ``None``, which means that method will consider all actions. rng(``numpy.random.RandomState``): A random number generator to use for sampling. """ def __init__( self, env: activemri.envs.ActiveMRIEnv, metric: str, num_samples: Optional[int] = None, rng: Optional[np.random.RandomState] = None, ): assert metric in env.score_keys() super().__init__() self.env = env self.metric = metric self.num_samples = num_samples self.rng = rng if rng is not None else np.random.RandomState() def get_action(self, obs: Dict[str, Any], **_kwargs) -> List[int]: """Returns a one-step greedy action maximizing reconstruction score. Args: obs(dict(str, any)): As returned by :class:`activemri.envs.ActiveMRIEnv`. Returns: list(int): A list of k-space column indices, one per batch element in the observation, equal to the action that maximizes reconstruction score (e.g, SSIM or negative MSE). """ mask = obs["mask"] batch_size = mask.shape[0] all_action_lists = [] for i in range(batch_size): available_actions = mask[i].logical_not().nonzero().squeeze().tolist() self.rng.shuffle(available_actions) if len(available_actions) < self.num_samples: # Add dummy actions to try if num of samples is higher than the # number of inactive columns in this mask available_actions.extend( [0] * (self.num_samples - len(available_actions)) ) all_action_lists.append(available_actions) all_scores = np.zeros((batch_size, self.num_samples)) for i in range(self.num_samples): batch_action_to_try = [action_list[i] for action_list in all_action_lists] obs, new_score = self.env.try_action(batch_action_to_try) all_scores[:, i] = new_score[self.metric] if self.metric in ["mse", "nmse"]: all_scores *= -1 else: assert self.metric in ["ssim", "psnr"] best_indices = all_scores.argmax(axis=1) action = [] for i in range(batch_size): action.append(all_action_lists[i][best_indices[i]]) return action
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import tempfile from typing import Dict, Optional import numpy as np import torch class ReplayMemory: """Replay memory of transitions (ot, at, o_t+1, r_t+1). Args: capacity(int): How many transitions can be stored. After capacity is reached early transitions are overwritten in FIFO fashion. obs_shape(np.array): The shape of the numpy arrays representing observations. batch_size(int): The size of batches returned by the replay buffer. burn_in(int): While the replay buffer has lesser entries than this number, :meth:`sample()` will return ``None``. Indicates a burn-in period before training. use_normalization(bool): If ``True``, the replay buffer will keep running mean and standard deviation for the observations. Defaults to ``False``. """ def __init__( self, capacity: int, obs_shape: np.array, batch_size: int, burn_in: int, use_normalization: bool = False, ): assert burn_in >= batch_size self.batch_size = batch_size self.burn_in = burn_in self.observations = torch.zeros(capacity, *obs_shape, dtype=torch.float32) self.actions = torch.zeros(capacity, dtype=torch.long) self.next_observations = torch.zeros(capacity, *obs_shape, dtype=torch.float32) self.rewards = torch.zeros(capacity, dtype=torch.float32) self.dones = torch.zeros(capacity, dtype=torch.bool) self.position = 0 self.mean_obs = torch.zeros(obs_shape, dtype=torch.float32) self.std_obs = torch.ones(obs_shape, dtype=torch.float32) self._m2_obs = torch.ones(obs_shape, dtype=torch.float32) self.count_seen = 1 if not use_normalization: self._normalize = lambda x: x # type: ignore self._denormalize = lambda x: x # type: ignore def _normalize(self, observation: torch.Tensor) -> Optional[torch.Tensor]: if observation is None: return None return (observation - self.mean_obs) / self.std_obs def _denormalize(self, observation: torch.Tensor) -> Optional[torch.Tensor]: if observation is None: return None return self.std_obs * observation + self.mean_obs def _update_stats(self, observation: torch.Tensor): self.count_seen += 1 delta = observation - self.mean_obs self.mean_obs = self.mean_obs + delta / self.count_seen delta2 = observation - self.mean_obs self._m2_obs = self._m2_obs + (delta * delta2) self.std_obs = np.sqrt(self._m2_obs / (self.count_seen - 1)) def push( self, observation: np.array, action: int, next_observation: np.array, reward: float, done: bool, ): """ Pushes a transition into the replay buffer. """ self.observations[self.position] = observation.clone() self.actions[self.position] = torch.tensor([action], dtype=torch.long) self.next_observations[self.position] = next_observation.clone() self.rewards[self.position] = torch.tensor([reward], dtype=torch.float32) self.dones[self.position] = torch.tensor([done], dtype=torch.bool) self._update_stats(self.observations[self.position]) self.position = (self.position + 1) % len(self) def sample(self) -> Optional[Dict[str, Optional[torch.Tensor]]]: """Samples a batch of transitions from the replay buffer. Returns: Dictionary(str, torch.Tensor): Contains keys for "observations", "next_observations", "actions", "rewards", "dones". If the number of entries in the buffer is less than ``self.burn_in``, then returns ``None`` instead. """ if self.count_seen - 1 < self.burn_in: return None indices = np.random.choice(min(self.count_seen - 1, len(self)), self.batch_size) return { "observations": self._normalize(self.observations[indices]), "next_observations": self._normalize(self.next_observations[indices]), "actions": self.actions[indices], "rewards": self.rewards[indices], "dones": self.dones[indices], } def save(self, directory: str, name: str): """ Saves all tensors and normalization info to file `directory/name` """ data = { "observations": self.observations, "actions": self.actions, "next_observations": self.next_observations, "rewards": self.rewards, "dones": self.dones, "position": self.position, "mean_obs": self.mean_obs, "std_obs": self.std_obs, "m2_obs": self._m2_obs, "count_seen": self.count_seen, } tmp_filename = tempfile.NamedTemporaryFile(delete=False, dir=directory) try: torch.save(data, tmp_filename) except BaseException: tmp_filename.close() os.remove(tmp_filename.name) raise else: tmp_filename.close() full_path = os.path.join(directory, name) os.rename(tmp_filename.name, full_path) return full_path def load(self, path: str, capacity: Optional[int] = None): """Loads the replay buffer from the specified path. Args: path(str): The path from where the memory will be loaded from. capacity(int): If provided, the buffer is created with this much capacity. This value must be larger than the length of the stored tensors. """ data = torch.load(path) self.position = data["position"] self.mean_obs = data["mean_obs"] self.std_obs = data["std_obs"] self._m2_obs = data["m2_obs"] self.count_seen = data["count_seen"] old_len = data["observations"].shape[0] if capacity is None: self.observations = data["observations"] self.actions = data["actions"] self.next_observations = data["next_observations"] self.rewards = data["rewards"] self.dones = data["dones"] else: assert capacity >= len(data["observations"]) obs_shape = data["observations"].shape[1:] self.observations = torch.zeros(capacity, *obs_shape, dtype=torch.float32) self.actions = torch.zeros(capacity, dtype=torch.long) self.next_observations = torch.zeros( capacity, *obs_shape, dtype=torch.float32 ) self.rewards = torch.zeros(capacity, dtype=torch.float32) self.dones = torch.zeros(capacity, dtype=torch.bool) self.observations[:old_len] = data["observations"] self.actions[:old_len] = data["actions"] self.next_observations[:old_len] = data["next_observations"] self.rewards[:old_len] = data["rewards"] self.dones[:old_len] = data["dones"] return old_len def __len__(self): return len(self.observations)
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Any, Dict, List import torch import activemri.experimental.cvpr19_models.models.evaluator as cvpr19_evaluator from . import Policy # This is just a wrapper for the model in cvpr19_models folder class CVPR19Evaluator(Policy): def __init__( self, evaluator_path: str, device: torch.device, add_mask: bool = False, ): super().__init__() evaluator_checkpoint = torch.load(evaluator_path) assert ( evaluator_checkpoint is not None and evaluator_checkpoint["evaluator"] is not None ) self.evaluator = cvpr19_evaluator.EvaluatorNetwork( number_of_filters=evaluator_checkpoint[ "options" ].number_of_evaluator_filters, number_of_conv_layers=evaluator_checkpoint[ "options" ].number_of_evaluator_convolution_layers, use_sigmoid=False, width=evaluator_checkpoint["options"].image_width, height=640, mask_embed_dim=evaluator_checkpoint["options"].mask_embed_dim, ) self.evaluator.load_state_dict( { key.replace("module.", ""): val for key, val in evaluator_checkpoint["evaluator"].items() } ) self.evaluator.eval() self.evaluator.to(device) self.add_mask = add_mask self.device = device def get_action(self, obs: Dict[str, Any], **_kwargs) -> List[int]: with torch.no_grad(): mask_embedding = ( None if obs["extra_outputs"]["mask_embedding"] is None else obs["extra_outputs"]["mask_embedding"].to(self.device) ) mask = obs["mask"].bool().to(self.device) mask = mask.view(mask.shape[0], 1, 1, -1) k_space_scores = self.evaluator( obs["reconstruction"].permute(0, 3, 1, 2).to(self.device), mask_embedding, mask if self.add_mask else None, ) # Just fill chosen actions with some very large number to prevent from selecting again. k_space_scores.masked_fill_(mask.squeeze(), 100000) return torch.argmin(k_space_scores, dim=1).tolist()
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ activemri.envs.envs.py ==================================== Gym-like environment for active MRI acquisition. """ import functools import json import os import pathlib import warnings from typing import ( Any, Callable, Dict, Iterator, List, Mapping, Optional, Sequence, Sized, Tuple, Union, ) import fastmri.data import gym import numpy as np import torch import torch.utils.data import activemri.data.singlecoil_knee_data as scknee_data import activemri.data.transforms import activemri.envs.masks import activemri.envs.util import activemri.models DataInitFnReturnType = Tuple[ torch.utils.data.Dataset, torch.utils.data.Dataset, torch.utils.data.Dataset ] # ----------------------------------------------------------------------------- # DATA HANDLING # ----------------------------------------------------------------------------- class CyclicSampler(torch.utils.data.Sampler): def __init__( self, data_source: Sized, order: Optional[Sized] = None, loops: int = 1, ): torch.utils.data.Sampler.__init__(self, data_source) assert loops > 0 assert order is None or len(order) == len(data_source) self.data_source = data_source self.order = order if order is not None else range(len(self.data_source)) self.loops = loops def _iterator(self): for _ in range(self.loops): for j in self.order: yield j def __iter__(self): return iter(self._iterator()) def __len__(self): return len(self.data_source) * self.loops def _env_collate_fn( batch: Tuple[Union[np.array, list], ...] ) -> Tuple[Union[np.array, list], ...]: ret = [] for i in range(6): # kspace, mask, target, attrs, fname, slice_id ret.append([item[i] for item in batch]) return tuple(ret) class DataHandler: def __init__( self, data_source: torch.utils.data.Dataset, seed: Optional[int], batch_size: int = 1, loops: int = 1, collate_fn: Optional[Callable] = None, ): self._iter = None # type: Iterator[Any] self._collate_fn = collate_fn self._batch_size = batch_size self._loops = loops self._init_impl(data_source, seed, batch_size, loops, collate_fn) def _init_impl( self, data_source: torch.utils.data.Dataset, seed: Optional[int], batch_size: int = 1, loops: int = 1, collate_fn: Optional[Callable] = None, ): rng = np.random.RandomState(seed) order = rng.permutation(len(data_source)) sampler = CyclicSampler(data_source, order, loops=loops) if collate_fn: self._data_loader = torch.utils.data.DataLoader( data_source, batch_size=batch_size, sampler=sampler, collate_fn=collate_fn, ) else: self._data_loader = torch.utils.data.DataLoader( data_source, batch_size=batch_size, sampler=sampler ) self._iter = iter(self._data_loader) def reset(self): self._iter = iter(self._data_loader) def __iter__(self): return self._iter def __next__(self): return next(self._iter) def seed(self, seed: int): self._init_impl( self._data_loader.dataset, seed, self._batch_size, self._loops, self._collate_fn, ) # ----------------------------------------------------------------------------- # BASE ACTIVE MRI ENV # ----------------------------------------------------------------------------- class ActiveMRIEnv(gym.Env): """Base class for all active MRI acquisition environments. This class provides the core logic implementation of the k-space acquisition process. The class is not to be used directly, but rather one of its subclasses should be instantiated. Subclasses of `ActiveMRIEnv` are responsible for data initialization and specifying configuration options for the environment. Args: kspace_shape(tuple(int,int)): Shape of the k-space slices for the dataset. num_parallel_episodes(int): Determines the number images that will be processed simultaneously by :meth:`reset()` and :meth:`step()`. Defaults to 1. budget(optional(int)): The length of an acquisition episode. Defaults to ``None``, which indicates that episode will continue until all k-space columns have been acquired. seed(optional(int)): The seed for the environment's random number generator, which is an instance of ``numpy.random.RandomState``. Defaults to ``None``. no_checkpoint(optional(bool)): Set to ``True`` if you want to run your reconstructor model without loading anything from a checkpoint. """ _num_loops_train_data = 100000 metadata = {"render.modes": ["human"], "video.frames_per_second": None} def __init__( self, kspace_shape: Tuple[int, int], num_parallel_episodes: int = 1, budget: Optional[int] = None, seed: Optional[int] = None, ): # Default initialization self._cfg: Mapping[str, Any] = None self._data_location: str = None self._reconstructor: activemri.models.Reconstructor = None self._transform: Callable = None self._train_data_handler: DataHandler = None self._val_data_handler: DataHandler = None self._test_data_handler: DataHandler = None self._device = torch.device("cpu") self._has_setup = False self.num_parallel_episodes = num_parallel_episodes self.budget = budget self._seed = seed self._rng = np.random.RandomState(seed) self.reward_metric = "mse" # Init from provided configuration self.kspace_height, self.kspace_width = kspace_shape # Gym init # Observation is a dictionary self.observation_space = None self.action_space = gym.spaces.Discrete(self.kspace_width) # This is changed by `set_training()`, `set_val()`, `set_test()` self._current_data_handler: DataHandler = None # These are changed every call to `reset()` self._current_ground_truth: torch.Tensor = None self._transform_wrapper: Callable = None self._current_k_space: torch.Tensor = None self._did_reset = False self._steps_since_reset = 0 # These three are changed every call to `reset()` and every call to `step()` self._current_reconstruction_numpy: np.ndarray = None self._current_score: Dict[str, np.ndarray] = None self._current_mask: torch.Tensor = None # ------------------------------------------------------------------------- # Protected methods # ------------------------------------------------------------------------- def _setup( self, cfg_filename: str, data_init_func: Callable[[], DataInitFnReturnType], ): self._has_setup = True self._init_from_config_file(cfg_filename) self._setup_data_handlers(data_init_func) def _setup_data_handlers( self, data_init_func: Callable[[], DataInitFnReturnType], ): train_data, val_data, test_data = data_init_func() self._train_data_handler = DataHandler( train_data, self._seed, batch_size=self.num_parallel_episodes, loops=self._num_loops_train_data, collate_fn=_env_collate_fn, ) self._val_data_handler = DataHandler( val_data, self._seed + 1 if self._seed else None, batch_size=self.num_parallel_episodes, loops=1, collate_fn=_env_collate_fn, ) self._test_data_handler = DataHandler( test_data, self._seed + 2 if self._seed else None, batch_size=self.num_parallel_episodes, loops=1, collate_fn=_env_collate_fn, ) self._current_data_handler = self._train_data_handler def _init_from_config_dict(self, cfg: Mapping[str, Any]): self._cfg = cfg self._data_location = cfg["data_location"] if not os.path.isdir(self._data_location): default_cfg, defaults_fname = activemri.envs.util.get_defaults_json() self._data_location = default_cfg["data_location"] if not os.path.isdir(self._data_location) and self._has_setup: raise RuntimeError( f"No 'data_location' key found in the given config. Please " f"write dataset location in your JSON config, or in file {defaults_fname} " f"(to use as a default)." ) self._device = torch.device(cfg["device"]) self.reward_metric = cfg["reward_metric"] if self.reward_metric not in ["mse", "ssim", "psnr", "nmse"]: raise ValueError("Reward metric must be one of mse, nmse, ssim, or psnr.") mask_func = activemri.envs.util.import_object_from_str(cfg["mask"]["function"]) self._mask_func = functools.partial(mask_func, cfg["mask"]["args"]) # Instantiating reconstructor reconstructor_cfg = cfg["reconstructor"] reconstructor_cls = activemri.envs.util.import_object_from_str( reconstructor_cfg["cls"] ) checkpoint_fname = pathlib.Path(reconstructor_cfg["checkpoint_fname"]) default_cfg, defaults_fname = activemri.envs.util.get_defaults_json() saved_models_dir = default_cfg["saved_models_dir"] checkpoint_path = pathlib.Path(saved_models_dir) / checkpoint_fname if self._has_setup and not checkpoint_path.is_file(): raise RuntimeError( f"No checkpoint was found at {str(checkpoint_path)}. " f"Please make sure that both 'checkpoint_fname' (in your JSON config) " f"and 'saved_models_dir' (in {defaults_fname}) are configured correctly." ) checkpoint = ( torch.load(str(checkpoint_path)) if checkpoint_path.is_file() else None ) options = reconstructor_cfg["options"] if checkpoint and "options" in checkpoint: msg = ( f"Checkpoint at {checkpoint_path.name} has an 'options' key. " f"This will override the options defined in configuration file." ) warnings.warn(msg) options = checkpoint["options"] assert isinstance(options, dict) self._reconstructor = reconstructor_cls(**options) self._reconstructor.init_from_checkpoint(checkpoint) self._reconstructor.eval() self._reconstructor.to(self._device) self._transform = activemri.envs.util.import_object_from_str( reconstructor_cfg["transform"] ) def _init_from_config_file(self, config_filename: str): with open(config_filename, "rb") as f: self._init_from_config_dict(json.load(f)) @staticmethod def _void_transform( kspace: torch.Tensor, mask: torch.Tensor, target: torch.Tensor, attrs: List[Dict[str, Any]], fname: List[str], slice_id: List[int], ) -> Tuple: return kspace, mask, target, attrs, fname, slice_id def _send_tuple_to_device(self, the_tuple: Tuple[Union[Any, torch.Tensor]]): the_tuple_device = [] for i in range(len(the_tuple)): if isinstance(the_tuple[i], torch.Tensor): the_tuple_device.append(the_tuple[i].to(self._device)) else: the_tuple_device.append(the_tuple[i]) return tuple(the_tuple_device) @staticmethod def _send_dict_to_cpu_and_detach(the_dict: Dict[str, Union[Any, torch.Tensor]]): the_dict_cpu = {} for key in the_dict: if isinstance(the_dict[key], torch.Tensor): the_dict_cpu[key] = the_dict[key].detach().cpu() else: the_dict_cpu[key] = the_dict[key] return the_dict_cpu def _compute_obs_and_score( self, override_current_mask: Optional[torch.Tensor] = None ) -> Tuple[Dict[str, Any], Dict[str, np.ndarray]]: mask_to_use = ( override_current_mask if override_current_mask is not None else self._current_mask ) reconstructor_input = self._transform_wrapper( kspace=self._current_k_space, mask=mask_to_use, ground_truth=self._current_ground_truth, ) reconstructor_input = self._send_tuple_to_device(reconstructor_input) with torch.no_grad(): extra_outputs = self._reconstructor(*reconstructor_input) extra_outputs = self._send_dict_to_cpu_and_detach(extra_outputs) reconstruction = extra_outputs["reconstruction"] # this dict is only for storing the other outputs del extra_outputs["reconstruction"] # noinspection PyUnusedLocal reconstructor_input = None # de-referencing GPU tensors score = self._compute_score_given_tensors( *self._process_tensors_for_score_fns( reconstruction, self._current_ground_truth ) ) obs = { "reconstruction": reconstruction, "extra_outputs": extra_outputs, "mask": self._current_mask.clone().view(self._current_mask.shape[0], -1), } return obs, score def _clear_cache_and_unset_did_reset(self): self._current_mask = None self._current_ground_truth = None self._current_reconstruction_numpy = None self._transform_wrapper = None self._current_k_space = None self._current_score = None self._steps_since_reset = 0 self._did_reset = False # noinspection PyMethodMayBeStatic def _process_tensors_for_score_fns( self, reconstruction: torch.Tensor, ground_truth: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: return reconstruction, ground_truth @staticmethod def _compute_score_given_tensors( reconstruction: torch.Tensor, ground_truth: torch.Tensor ) -> Dict[str, np.ndarray]: mse = activemri.envs.util.compute_mse(reconstruction, ground_truth) nmse = activemri.envs.util.compute_nmse(reconstruction, ground_truth) ssim = activemri.envs.util.compute_ssim(reconstruction, ground_truth) psnr = activemri.envs.util.compute_psnr(reconstruction, ground_truth) return {"mse": mse, "nmse": nmse, "ssim": ssim, "psnr": psnr} @staticmethod def _convert_to_gray(array: np.ndarray) -> np.ndarray: M = np.max(array) m = np.min(array) return (255 * (array - m) / (M - m)).astype(np.uint8) @staticmethod def _render_arrays( ground_truth: np.ndarray, reconstruction: np.ndarray, mask: np.ndarray ) -> List[np.ndarray]: batch_size, img_height, img_width = ground_truth.shape frames = [] for i in range(batch_size): mask_i = np.tile(mask[i], (1, img_height, 1)) pad = 32 mask_begin = pad mask_end = mask_begin + mask.shape[-1] gt_begin = mask_end + pad gt_end = gt_begin + img_width rec_begin = gt_end + pad rec_end = rec_begin + img_width error_begin = rec_end + pad error_end = error_begin + img_width frame = 128 * np.ones((img_height, error_end + pad), dtype=np.uint8) frame[:, mask_begin:mask_end] = 255 * mask_i frame[:, gt_begin:gt_end] = ActiveMRIEnv._convert_to_gray(ground_truth[i]) frame[:, rec_begin:rec_end] = ActiveMRIEnv._convert_to_gray( reconstruction[i] ) rel_error = np.abs((ground_truth[i] - reconstruction[i]) / ground_truth[i]) frame[:, error_begin:error_end] = 255 * rel_error.astype(np.uint8) frames.append(frame) return frames # ------------------------------------------------------------------------- # Public methods # ------------------------------------------------------------------------- def reset(self) -> Tuple[Dict[str, Any], Dict[str, Any]]: """Starts a new acquisition episode with a batch of images. This methods performs the following steps: 1. Reads a batch of images from the environment's dataset. 2. Creates an initial acquisition mask for each image. 3. Passes the loaded data and the initial masks to the transform function, producing a batch of inputs for the environment's reconstructor model. 4. Calls the reconstructor model on this input and returns its output as an observation. The observation returned is a dictionary with the following keys: - *"reconstruction"(torch.Tensor):* The reconstruction produced by the environment's reconstructor model, using the current acquisition mask. - *"extra_outputs"(dict(str,Any)):* A dictionary with any additional outputs produced by the reconstructor (e.g., uncertainty maps). - *"mask"(torch.Tensor):* The current acquisition mask. Returns: tuple: tuple containing: - obs(dict(str,any): Observation dictionary. - metadata(dict(str,any): Metadata information containing the following keys: - *"fname"(list(str)):* the filenames of the image read from the dataset. - *"slice_id"(list(int)):* slice indices for each image within the volume. - *"current_score"(dict(str,float):* A dictionary with the error measures for the reconstruction (e.g., "mse", "nmse", "ssim", "psnr"). The measures considered can be obtained with :meth:`score_keys()`. """ self._did_reset = True try: kspace, _, ground_truth, attrs, fname, slice_id = next( self._current_data_handler ) except StopIteration: return {}, {} self._current_ground_truth = torch.from_numpy(np.stack(ground_truth)) # Converting k-space to torch is better handled by transform, # since we have both complex and non-complex versions self._current_k_space = kspace self._transform_wrapper = functools.partial( self._transform, attrs=attrs, fname=fname, slice_id=slice_id ) kspace_shapes = [tuple(k.shape) for k in kspace] self._current_mask = self._mask_func(kspace_shapes, self._rng, attrs=attrs) obs, self._current_score = self._compute_obs_and_score() self._current_reconstruction_numpy = obs["reconstruction"].cpu().numpy() self._steps_since_reset = 0 meta = { "fname": fname, "slice_id": slice_id, "current_score": self._current_score, } return obs, meta def step( self, action: Union[int, Sequence[int]] ) -> Tuple[Dict[str, Any], np.ndarray, List[bool], Dict]: """Performs a step of active MRI acquisition. Given a set of indices for k-space columns to acquire, updates the current batch of masks with their corresponding indices, creates a new batch of reconstructions, and returns the corresponding observations and rewards (for the observation format see :meth:`reset()`). The reward is the improvement in score with respect to the reconstruction before adding the indices. The specific score metric used is determined by ``env.reward_metric``. The method also returns a list of booleans, indicating whether any episodes in the batch have already concluded. The last return value is a metadata dictionary. It contains a single key "current_score", which contains a dictionary with the error measures for the reconstruction (e.g., ``"mse", "nmse", "ssim", "psnr"``). The measures considered can be obtained with :meth:`score_keys()`. Args: action(union(int, sequence(int))): Indices for k-space columns to acquire. The length of the sequence must be equal to the current number of parallel episodes (i.e., ``obs["reconstruction"].shape[0]``). If only an ``int`` is passed, the index will be replicated for the whole batch of episodes. Returns: tuple: The transition information in the order ``(next_observation, reward, done, meta)``. The types and shapes are: - ``next_observation(dict):`` Dictionary format (see :meth:`reset()`). - ``reward(np.ndarray)``: length equal to current number of parallel episodes. - ``done(list(bool))``: same length as ``reward``. - ``meta(dict)``: see description above. """ if not self._did_reset: raise RuntimeError( "Attempting to call env.step() before calling env.reset()." ) if isinstance(action, int): action = [action for _ in range(self.num_parallel_episodes)] self._current_mask = activemri.envs.masks.update_masks_from_indices( self._current_mask, action ) obs, new_score = self._compute_obs_and_score() self._current_reconstruction_numpy = obs["reconstruction"].cpu().numpy() reward = new_score[self.reward_metric] - self._current_score[self.reward_metric] if self.reward_metric in ["mse", "nmse"]: reward *= -1 else: assert self.reward_metric in ["ssim", "psnr"] self._current_score = new_score self._steps_since_reset += 1 done = activemri.envs.masks.check_masks_complete(self._current_mask) if self.budget and self._steps_since_reset >= self.budget: done = [True] * len(done) return obs, reward, done, {"current_score": self._current_score} def try_action( self, action: Union[int, Sequence[int]] ) -> Tuple[Dict[str, Any], Dict[str, np.ndarray]]: """Simulates the effects of actions without changing the environment's state. This method operates almost exactly as :meth:`step()`, with the exception that the environment's state is not altered. The method returns the next observation and the resulting reconstruction score after applying the give k-space columns to each image in the current batch of episodes. Args: action(union(int, sequence(int))): Indices for k-space columns to acquire. The length of the sequence must be equal to the current number of parallel episodes (i.e., ``obs["reconstruction"].shape[0]``). If only an ``int`` is passed, the index will be replicated for the whole batch of episodes. Returns: tuple: The reconstruction information in the order ``(next_observation, current_score)``. The types and shapes are: - ``next_observation(dict):`` Dictionary format (see :meth:`reset()`). - ``current_score(dict(str, float))``: A dictionary with the error measures for the reconstruction (e.g., "mse", "nmse", "ssim", "psnr"). The measures considered can be obtained with `ActiveMRIEnv.score_keys()`. """ if not self._did_reset: raise RuntimeError( "Attempting to call env.try_action() before calling env.reset()." ) if isinstance(action, int): action = [action for _ in range(self.num_parallel_episodes)] new_mask = activemri.envs.masks.update_masks_from_indices( self._current_mask, action ) obs, new_score = self._compute_obs_and_score(override_current_mask=new_mask) return obs, new_score def render(self, mode="human"): """Renders information about the environment's current state. Returns: ``np.ndarray``: An image frame containing, from left to right: current acquisition mask, current ground image, current reconstruction, and current relative reconstruction error. """ pass def seed(self, seed: Optional[int] = None): """Sets the seed for the internal number generator. This seeds affects the order of the data loader for all loop modalities (i.e., training, validation, test). Args: seed(optional(int)): The seed for the environment's random number generator. """ self._seed = seed self._rng = np.random.RandomState(seed) self._train_data_handler.seed(seed) self._val_data_handler.seed(seed) self._test_data_handler.seed(seed) def set_training(self, reset: bool = False): """Sets the environment to use the training data loader. Args: reset(bool): If ``True``, also resets the data loader so that it starts again from the first image in the loop order. Warning: After this method is called the ``env.reset()`` needs to be called again, otherwise an exception will be thrown. """ if reset: self._train_data_handler.reset() self._current_data_handler = self._train_data_handler self._clear_cache_and_unset_did_reset() def set_val(self, reset: bool = True): """Sets the environment to use the validation data loader. Args: reset(bool): If ``True``, also resets the data loader so that it starts again from the first image in the loop order. Warning: After this method is called the ``env.reset()`` needs to be called again, otherwise an exception will be thrown. """ if reset: self._val_data_handler.reset() self._current_data_handler = self._val_data_handler self._clear_cache_and_unset_did_reset() def set_test(self, reset: bool = True): """Sets the environment to use the test data loader. Args: reset(bool): If ``True``, also resets the data loader so that it starts again from the first image in the loop order. Warning: After this method is called the ``env.reset()`` needs to be called again, otherwise an exception will be thrown. """ if reset: self._test_data_handler.reset() self._current_data_handler = self._test_data_handler self._clear_cache_and_unset_did_reset() @staticmethod def score_keys() -> List[str]: """ Returns the list of score metric names used by this environment. """ return ["mse", "nmse", "ssim", "psnr"] # ----------------------------------------------------------------------------- # CUSTOM ENVIRONMENTS # ----------------------------------------------------------------------------- class MICCAI2020Env(ActiveMRIEnv): """Implementation of environment used for *Pineda et al., MICCAI 2020*. This environment is provided to facilitate replication of the experiments performed in *Luis Pineda, Sumana Basu, Adriana Romero, Roberto Calandra, Michal Drozdzal, "Active MR k-space Sampling with Reinforcement Learning". MICCAI 2020.* The dataset is the same as that of :class:`SingleCoilKneeEnv`, except that we provide a custom validation/test split of the original validation data. The environment's configuration file is set to use the reconstruction model used in the paper (see :class:`activemri.models.cvpr19_reconstructor.CVPR19Reconstructor`), as well as the proper transform to generate inputs for this model. The k-space shape of this environment is set to ``(640, 368)``. Args: num_parallel_episodes(int): Determines the number images that will be processed simultaneously by :meth:`reset()` and :meth:`step()`. Defaults to 1. budget(optional(int)): The length of an acquisition episode. Defaults to ``None``, which indicates that episode will continue until all k-space columns have been acquired. seed(optional(int)): The seed for the environment's random number generator, which is an instance of ``numpy.random.RandomState``. Defaults to ``None``. extreme(bool): ``True`` or ``False`` for running extreme acceleration or normal acceleration scenarios described in the paper, respectively. """ KSPACE_WIDTH = scknee_data.MICCAI2020Data.KSPACE_WIDTH START_PADDING = scknee_data.MICCAI2020Data.START_PADDING END_PADDING = scknee_data.MICCAI2020Data.END_PADDING CENTER_CROP_SIZE = scknee_data.MICCAI2020Data.CENTER_CROP_SIZE def __init__( self, num_parallel_episodes: int = 1, budget: Optional[int] = None, seed: Optional[int] = None, extreme: bool = False, obs_includes_padding: bool = True, ): super().__init__( (640, self.KSPACE_WIDTH), num_parallel_episodes=num_parallel_episodes, budget=budget, seed=seed, ) if extreme: self._setup("configs/miccai-2020-extreme-acc.json", self._create_dataset) else: self._setup("configs/miccai-2020-normal-acc.json", self._create_dataset) self.obs_includes_padding = obs_includes_padding # ------------------------------------------------------------------------- # Protected methods # ------------------------------------------------------------------------- def _create_dataset(self) -> DataInitFnReturnType: root_path = pathlib.Path(self._data_location) train_path = root_path / "knee_singlecoil_train" val_and_test_path = root_path / "knee_singlecoil_val" train_data = scknee_data.MICCAI2020Data( train_path, ActiveMRIEnv._void_transform, num_cols=self.KSPACE_WIDTH, ) val_data = scknee_data.MICCAI2020Data( val_and_test_path, ActiveMRIEnv._void_transform, custom_split="val", num_cols=self.KSPACE_WIDTH, ) test_data = scknee_data.MICCAI2020Data( val_and_test_path, ActiveMRIEnv._void_transform, custom_split="test", num_cols=self.KSPACE_WIDTH, ) return train_data, val_data, test_data def _process_tensors_for_score_fns( self, reconstruction: torch.Tensor, ground_truth: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: # Compute magnitude (for metrics) reconstruction = activemri.data.transforms.to_magnitude(reconstruction, dim=3) ground_truth = activemri.data.transforms.to_magnitude(ground_truth, dim=3) reconstruction = activemri.data.transforms.center_crop( reconstruction, (self.CENTER_CROP_SIZE, self.CENTER_CROP_SIZE) ) ground_truth = activemri.data.transforms.center_crop( ground_truth, (self.CENTER_CROP_SIZE, self.CENTER_CROP_SIZE) ) return reconstruction, ground_truth # ------------------------------------------------------------------------- # Public methods # ------------------------------------------------------------------------- def reset( self, ) -> Tuple[Dict[str, Any], Dict[str, Any]]: obs, meta = super().reset() if not obs: return obs, meta if self.obs_includes_padding: obs["mask"][:, self.START_PADDING : self.END_PADDING] = 1 return obs, meta def step( self, action: Union[int, Sequence[int]] ) -> Tuple[Dict[str, Any], np.ndarray, List[bool], Dict]: obs, reward, done, meta = super().step(action) if self.obs_includes_padding: obs["mask"][:, self.START_PADDING : self.END_PADDING] = 1 return obs, reward, done, meta def render(self, mode="human"): gt = self._current_ground_truth.cpu().numpy() rec = self._current_reconstruction_numpy gt = activemri.data.transforms.center_crop( (gt ** 2).sum(axis=3) ** 0.5, (self.CENTER_CROP_SIZE, self.CENTER_CROP_SIZE) ) rec = activemri.data.transforms.center_crop( (rec ** 2).sum(axis=3) ** 0.5, (self.CENTER_CROP_SIZE, self.CENTER_CROP_SIZE), ) return ActiveMRIEnv._render_arrays(gt, rec, self._current_mask.cpu().numpy()) class FastMRIEnv(ActiveMRIEnv): """Base class for all fastMRI environments. This class can be used to instantiate active acquisition environments using fastMRI data. However, for convenience we provide subclasses of ``FastMRIEnv`` with default configuration options for each dataset: - :class:`SingleCoilKneeEnv` - :class:`MultiCoilKneeEnv` - :class:`SingleCoilBrainEnv` - :class:`MultiCoilKneeEnv` Args: config_path(str): The path to the JSON configuration file. dataset_name(str): One of "knee_singlecoil", "multicoil" (for knee), "brain_multicoil". Primarily used to locate the fastMRI dataset in the user's fastMRI data root folder. num_parallel_episodes(int): Determines the number images that will be processed simultaneously by :meth:`reset()` and :meth:`step()`. Defaults to 1. budget(optional(int)): The length of an acquisition episode. Defaults to ``None``, which indicates that episode will continue until all k-space columns have been acquired. seed(optional(int)): The seed for the environment's random number generator, which is an instance of ``numpy.random.RandomState``. Defaults to ``None``. num_cols(sequence(int)): Used to filter k-space data to only use images whose k-space width is in this tuple. Defaults to ``(368, 372)``. """ def __init__( self, config_path: str, dataset_name: str, num_parallel_episodes: int = 1, budget: Optional[int] = None, seed: Optional[int] = None, num_cols: Sequence[int] = (368, 372), ): assert dataset_name in ["knee_singlecoil", "multicoil", "brain_multicoil"] challenge = "singlecoil" if dataset_name == "knee_singlecoil" else "multicoil" super().__init__( (640, np.max(num_cols)), num_parallel_episodes=num_parallel_episodes, budget=budget, seed=seed, ) self.num_cols = num_cols self.dataset_name = dataset_name self.challenge = challenge self._setup(config_path, self._create_dataset) def _create_dataset(self) -> DataInitFnReturnType: root_path = pathlib.Path(self._data_location) datacache_dir = activemri.envs.util.maybe_create_datacache_dir() train_path = root_path / f"{self.dataset_name}_train" val_path = root_path / f"{self.dataset_name}_val" val_cache_file = datacache_dir / f"val_{self.dataset_name}_cache.pkl" test_path = root_path / f"{self.dataset_name}_test" test_cache_file = datacache_dir / f"test_{self.dataset_name}_cache.pkl" if not test_path.is_dir(): warnings.warn( f"No test directory found for {self.dataset_name}. " f"I will use val directory for test model (env.set_test())." ) test_path = val_path test_cache_file = val_cache_file train_data = fastmri.data.SliceDataset( train_path, ActiveMRIEnv._void_transform, challenge=self.challenge, num_cols=self.num_cols, dataset_cache_file=datacache_dir / f"train_{self.dataset_name}_cache.pkl", ) val_data = fastmri.data.SliceDataset( val_path, ActiveMRIEnv._void_transform, challenge=self.challenge, num_cols=self.num_cols, dataset_cache_file=val_cache_file, ) test_data = fastmri.data.SliceDataset( test_path, ActiveMRIEnv._void_transform, challenge=self.challenge, num_cols=self.num_cols, dataset_cache_file=test_cache_file, ) return train_data, val_data, test_data def render(self, mode="human"): return ActiveMRIEnv._render_arrays( self._current_ground_truth.cpu().numpy(), self._current_reconstruction_numpy, self._current_mask.cpu().numpy(), ) class SingleCoilKneeEnv(FastMRIEnv): """Convenience class to access single-coil knee data. Loads the configuration from ``configs/single-coil-knee.json``. Looks for datasets named "knee_singlecoil_{train/val/test}" under the ``data_location`` dir. If "test" is not found, it uses "val" folder for test mode. Args: num_parallel_episodes(int): Determines the number images that will be processed simultaneously by :meth:`reset()` and :meth:`step()`. Defaults to 1. budget(optional(int)): The length of an acquisition episode. Defaults to ``None``, which indicates that episode will continue until all k-space columns have been acquired. seed(optional(int)): The seed for the environment's random number generator, which is an instance of ``numpy.random.RandomState``. Defaults to ``None``. num_cols(sequence(int)): Used to filter k-space data to only use images whose k-space width is in this tuple. Defaults to ``(368, 372)``. """ def __init__( self, num_parallel_episodes: int = 1, budget: Optional[int] = None, seed: Optional[int] = None, num_cols: Sequence[int] = (368, 372), ): super().__init__( "configs/single-coil-knee.json", "knee_singlecoil", num_parallel_episodes=num_parallel_episodes, budget=budget, seed=seed, num_cols=num_cols, ) class MultiCoilKneeEnv(FastMRIEnv): """Convenience class to access multi-coil knee data. Loads the configuration from ``configs/multi-coil-knee.json``. Looks for datasets named "multicoil_{train/val/test}" under default ``data_location`` dir. If "test" is not found, it uses "val" folder for test mode. Args: num_parallel_episodes(int): Determines the number images that will be processed simultaneously by :meth:`reset()` and :meth:`step()`. Defaults to 1. budget(optional(int)): The length of an acquisition episode. Defaults to ``None``, which indicates that episode will continue until all k-space columns have been acquired. seed(optional(int)): The seed for the environment's random number generator, which is an instance of ``numpy.random.RandomState``. Defaults to ``None``. num_cols(sequence(int)): Used to filter k-space data to only use images whose k-space width is in this tuple. Defaults to ``(368, 372)``. """ def __init__( self, num_parallel_episodes: int = 1, budget: Optional[int] = None, seed: Optional[int] = None, num_cols: Sequence[int] = (368, 372), ): super().__init__( "configs/multi-coil-knee.json", "multicoil", num_parallel_episodes=num_parallel_episodes, budget=budget, seed=seed, num_cols=num_cols, )
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import importlib import json import pathlib from typing import Dict, Tuple import numpy as np import skimage.metrics import torch def get_user_dir() -> pathlib.Path: return pathlib.Path.home() / ".activemri" def maybe_create_datacache_dir() -> pathlib.Path: datacache_dir = get_user_dir() / "__datacache__" if not datacache_dir.is_dir(): datacache_dir.mkdir() return datacache_dir def get_defaults_json() -> Tuple[Dict[str, str], str]: defaults_path = get_user_dir() / "defaults.json" if not pathlib.Path.exists(defaults_path): parent = defaults_path.parents[0] parent.mkdir(exist_ok=True) content = {"data_location": "", "saved_models_dir": ""} with defaults_path.open("w", encoding="utf-8") as f: json.dump(content, f) else: with defaults_path.open("r", encoding="utf-8") as f: content = json.load(f) return content, str(defaults_path) def import_object_from_str(classname: str): the_module, the_object = classname.rsplit(".", 1) the_object = classname.split(".")[-1] module = importlib.import_module(the_module) return getattr(module, the_object) def compute_ssim(xs: torch.Tensor, ys: torch.Tensor) -> np.ndarray: ssims = [] for i in range(xs.shape[0]): ssim = skimage.metrics.structural_similarity( xs[i].cpu().numpy(), ys[i].cpu().numpy(), data_range=ys[i].cpu().numpy().max(), ) ssims.append(ssim) return np.array(ssims, dtype=np.float32) def compute_psnr(xs: torch.Tensor, ys: torch.Tensor) -> np.ndarray: psnrs = [] for i in range(xs.shape[0]): psnr = skimage.metrics.peak_signal_noise_ratio( xs[i].cpu().numpy(), ys[i].cpu().numpy(), data_range=ys[i].cpu().numpy().max(), ) psnrs.append(psnr) return np.array(psnrs, dtype=np.float32) def compute_mse(xs: torch.Tensor, ys: torch.Tensor) -> np.ndarray: dims = tuple(range(1, len(xs.shape))) return np.mean((ys.cpu().numpy() - xs.cpu().numpy()) ** 2, axis=dims) def compute_nmse(xs: torch.Tensor, ys: torch.Tensor) -> np.ndarray: ys_numpy = ys.cpu().numpy() nmses = [] for i in range(xs.shape[0]): x = xs[i].cpu().numpy() y = ys_numpy[i] nmse = np.linalg.norm(y - x) ** 2 / np.linalg.norm(y) ** 2 nmses.append(nmse) return np.array(nmses, dtype=np.float32)
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. __all__ = [ "ActiveMRIEnv", "MICCAI2020Env", "FastMRIEnv", "SingleCoilKneeEnv", "MultiCoilKneeEnv", ] from .envs import ( ActiveMRIEnv, FastMRIEnv, MICCAI2020Env, MultiCoilKneeEnv, SingleCoilKneeEnv, )
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ activemri.envs.masks.py ==================================== Utilities to generate and manipulate active acquisition masks. """ from typing import Any, Dict, List, Optional, Sequence, Tuple import fastmri import numpy as np import torch def update_masks_from_indices( masks: torch.Tensor, indices: Sequence[int] ) -> torch.Tensor: assert masks.shape[0] == len(indices) new_masks = masks.clone() for i in range(len(indices)): new_masks[i, ..., indices[i]] = 1 return new_masks def check_masks_complete(masks: torch.Tensor) -> List[bool]: done = [] for mask in masks: done.append(mask.bool().all().item()) return done def sample_low_frequency_mask( mask_args: Dict[str, Any], kspace_shapes: List[Tuple[int, ...]], rng: np.random.RandomState, attrs: Optional[List[Dict[str, Any]]] = None, ) -> torch.Tensor: """Samples low frequency masks. Returns masks that contain some number of the lowest k-space frequencies active. The number of frequencies doesn't have to be the same for all masks in the batch, and it can also be a random number, depending on the given ``mask_args``. Active columns will be represented as 1s in the mask, and inactive columns as 0s. The distribution and shape of the masks can be controlled by ``mask_args``. This is a dictionary with the following keys: - *"max_width"(int)*: The maximum width of the masks. - *"min_cols"(int)*: The minimum number of low frequencies columns to activate per side. - *"max_cols"(int)*: The maximum number of low frequencies columns to activate per side (inclusive). - *"width_dim"(int)*: Indicates which of the dimensions in ``kspace_shapes`` corresponds to the k-space width. - *"centered"(bool)*: Specifies if the low frequencies are in the center of the k-space (``True``) or on the edges (``False``). - *"apply_attrs_padding"(optional(bool))*: If ``True``, the function will read keys ``"padding_left"`` and ``"padding_right"`` from ``attrs`` and set all corresponding high-frequency columns to 1. The number of 1s in the effective region of the mask (see next paragraph) is sampled between ``mask_args["min_cols"]`` and ``mask_args["max_cols"]`` (inclusive). The number of dimensions for the mask tensor will be ``mask_args["width_dim"] + 2``. The size will be ``[batch_size, 1, ..., 1, mask_args["max_width"]]``. For example, with ``mask_args["width_dim"] = 1`` and ``mask_args["max_width"] = 368``, output tensor has shape ``[batch_size, 1, 368]``. This function supports simultaneously sampling masks for k-space of different number of columns. This is controlled by argument ``kspace_shapes``. From this list, the function will obtain 1) ``batch_size = len(kspace_shapes``), and 2) the width of the k-spaces for each element in the batch. The i-th mask will have ``kspace_shapes[item][mask_args["width_dim"]]`` *effective* columns. Note: The mask tensor returned will always have ``mask_args["max_width"]`` columns. However, for any element ``i`` s.t. ``kspace_shapes[i][mask_args["width_dim"]] < mask_args["max_width"]``, the function will then pad the extra k-space columns with 1s. The rest of the columns will be filled out as if the mask has the same width as that indicated by ``kspace_shape[i]``. Args: mask_args(dict(str,any)): Specifies configuration options for the masks, as explained above. kspace_shapes(list(tuple(int,...))): Specifies the shapes of the k-space data on which this mask will be applied, as explained above. rng(``np.random.RandomState``): A random number generator to sample the masks. attrs(dict(str,int)): Used to determine any high-frequency padding. It must contain keys ``"padding_left"`` and ``"padding_right"``. Returns: ``torch.Tensor``: The generated low frequency masks. """ batch_size = len(kspace_shapes) num_cols = [shape[mask_args["width_dim"]] for shape in kspace_shapes] mask = torch.zeros(batch_size, mask_args["max_width"]) num_low_freqs = rng.randint( mask_args["min_cols"], mask_args["max_cols"] + 1, size=batch_size ) for i in range(batch_size): # If padding needs to be accounted for, only add low frequency lines # beyond the padding if attrs and mask_args.get("apply_attrs_padding", False): padding_left = attrs[i]["padding_left"] padding_right = attrs[i]["padding_right"] else: padding_left, padding_right = 0, num_cols[i] pad = (num_cols[i] - 2 * num_low_freqs[i] + 1) // 2 mask[i, pad : pad + 2 * num_low_freqs[i]] = 1 mask[i, :padding_left] = 1 mask[i, padding_right : num_cols[i]] = 1 if not mask_args["centered"]: mask[i, : num_cols[i]] = fastmri.ifftshift(mask[i, : num_cols[i]]) mask[i, num_cols[i] : mask_args["max_width"]] = 1 mask_shape = [batch_size] + [1] * (mask_args["width_dim"] + 1) mask_shape[mask_args["width_dim"] + 1] = mask_args["max_width"] return mask.view(*mask_shape)
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ activemri.data.transforms.py ==================================== Transform functions to process fastMRI data for reconstruction models. """ from typing import Tuple, Union import fastmri import fastmri.data.transforms as fastmri_transforms import numpy as np import torch import activemri.data.singlecoil_knee_data as scknee_data TensorType = Union[np.ndarray, torch.Tensor] def to_magnitude(tensor: torch.Tensor, dim: int) -> torch.Tensor: return (tensor ** 2).sum(dim=dim) ** 0.5 def center_crop(x: TensorType, shape: Tuple[int, int]) -> TensorType: """Center crops a tensor to the desired 2D shape. Args: x(union(``torch.Tensor``, ``np.ndarray``)): The tensor to crop. Shape should be ``(batch_size, height, width)``. shape(tuple(int,int)): The desired shape to crop to. Returns: (union(``torch.Tensor``, ``np.ndarray``)): The cropped tensor. """ assert len(x.shape) == 3 assert 0 < shape[0] <= x.shape[1] assert 0 < shape[1] <= x.shape[2] h_from = (x.shape[1] - shape[0]) // 2 w_from = (x.shape[2] - shape[1]) // 2 w_to = w_from + shape[0] h_to = h_from + shape[1] x = x[:, h_from:h_to, w_from:w_to] return x def ifft_permute_maybe_shift( x: torch.Tensor, normalized: bool = False, ifft_shift: bool = False ) -> torch.Tensor: x = x.permute(0, 2, 3, 1) y = torch.ifft(x, 2, normalized=normalized) if ifft_shift: y = fastmri.ifftshift(y, dim=(1, 2)) return y.permute(0, 3, 1, 2) def raw_transform_miccai2020(kspace=None, mask=None, **_kwargs): """Transform to produce input for reconstructor used in `Pineda et al. MICCAI'20 <https://arxiv.org/pdf/2007.10469.pdf>`_. Produces a zero-filled reconstruction and a mask that serve as a input to models of type :class:`activemri.models.cvpr10_reconstructor.CVPR19Reconstructor`. The mask is almost equal to the mask passed as argument, except that high-frequency padding columns are set to 1, and the mask is reshaped to be compatible with the reconstructor. Args: kspace(``np.ndarray``): The array containing the k-space data returned by the dataset. mask(``torch.Tensor``): The masks to apply to the k-space. Returns: tuple: A tuple containing: - ``torch.Tensor``: The zero-filled reconstructor that will be passed to the reconstructor. - ``torch.Tensor``: The mask to use as input to the reconstructor. """ # alter mask to always include the highest frequencies that include padding mask[ :, :, scknee_data.MICCAI2020Data.START_PADDING : scknee_data.MICCAI2020Data.END_PADDING, ] = 1 mask = mask.unsqueeze(1) all_kspace = [] for ksp in kspace: all_kspace.append(torch.from_numpy(ksp).permute(2, 0, 1)) k_space = torch.stack(all_kspace) masked_true_k_space = torch.where( mask.byte(), k_space, torch.tensor(0.0).to(mask.device), ) reconstructor_input = ifft_permute_maybe_shift(masked_true_k_space, ifft_shift=True) return reconstructor_input, mask # Based on # https://github.com/facebookresearch/fastMRI/blob/master/experimental/unet/unet_module.py def _base_fastmri_unet_transform( kspace, mask, ground_truth, attrs, which_challenge="singlecoil", ): kspace = fastmri_transforms.to_tensor(kspace) mask = mask[..., : kspace.shape[-2]] # accounting for variable size masks masked_kspace = kspace * mask.unsqueeze(-1) + 0.0 # inverse Fourier transform to get zero filled solution image = fastmri.ifft2c(masked_kspace) # crop input to correct size if ground_truth is not None: crop_size = (ground_truth.shape[-2], ground_truth.shape[-1]) else: crop_size = (attrs["recon_size"][0], attrs["recon_size"][1]) # check for FLAIR 203 if image.shape[-2] < crop_size[1]: crop_size = (image.shape[-2], image.shape[-2]) # noinspection PyTypeChecker image = fastmri_transforms.complex_center_crop(image, crop_size) # absolute value image = fastmri.complex_abs(image) # apply Root-Sum-of-Squares if multicoil data if which_challenge == "multicoil": image = fastmri.rss(image) # normalize input image, mean, std = fastmri_transforms.normalize_instance(image, eps=1e-11) image = image.clamp(-6, 6) return image.unsqueeze(0), mean, std def _batched_fastmri_unet_transform( kspace, mask, ground_truth, attrs, which_challenge="singlecoil" ): batch_size = len(kspace) images, means, stds = [], [], [] for i in range(batch_size): image, mean, std = _base_fastmri_unet_transform( kspace[i], mask[i], ground_truth[i], attrs[i], which_challenge=which_challenge, ) images.append(image) means.append(mean) stds.append(std) return torch.stack(images), torch.stack(means), torch.stack(stds) # noinspection PyUnusedLocal def fastmri_unet_transform_singlecoil( kspace=None, mask=None, ground_truth=None, attrs=None, fname=None, slice_id=None ): """ Transform to use as input to fastMRI's Unet model for singlecoil data. This is an adapted version of the code found in `fastMRI <https://github.com/facebookresearch/fastMRI/blob/master/experimental/unet/unet_module.py#L190>`_. """ return _batched_fastmri_unet_transform( kspace, mask, ground_truth, attrs, "singlecoil" ) # noinspection PyUnusedLocal def fastmri_unet_transform_multicoil( kspace=None, mask=None, ground_truth=None, attrs=None, fname=None, slice_id=None ): """Transform to use as input to fastMRI's Unet model for multicoil data. This is an adapted version of the code found in `fastMRI <https://github.com/facebookresearch/fastMRI/blob/master/experimental/unet/unet_module.py#L190>`_. """ return _batched_fastmri_unet_transform( kspace, mask, ground_truth, attrs, "multicoil" )
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import pathlib from typing import Callable, List, Optional, Tuple import fastmri import h5py import numpy as np import torch.utils.data # ----------------------------------------------------------------------------- # Single coil knee dataset (as used in MICCAI'20) # ----------------------------------------------------------------------------- class MICCAI2020Data(torch.utils.data.Dataset): # This is the same as fastMRI singlecoil_knee, except we provide a custom test split # and also normalize images by the mean norm of the k-space over training data KSPACE_WIDTH = 368 KSPACE_HEIGHT = 640 START_PADDING = 166 END_PADDING = 202 CENTER_CROP_SIZE = 320 def __init__( self, root: pathlib.Path, transform: Callable, num_cols: Optional[int] = None, num_volumes: Optional[int] = None, num_rand_slices: Optional[int] = None, custom_split: Optional[str] = None, ): self.transform = transform self.examples: List[Tuple[pathlib.PurePath, int]] = [] self.num_rand_slices = num_rand_slices self.rng = np.random.RandomState(1234) files = [] for fname in list(pathlib.Path(root).iterdir()): data = h5py.File(fname, "r") if num_cols is not None and data["kspace"].shape[2] != num_cols: continue files.append(fname) if custom_split is not None: split_info = [] with open(f"activemri/data/splits/knee_singlecoil/{custom_split}.txt") as f: for line in f: split_info.append(line.rsplit("\n")[0]) files = [f for f in files if f.name in split_info] if num_volumes is not None: self.rng.shuffle(files) files = files[:num_volumes] for volume_i, fname in enumerate(sorted(files)): data = h5py.File(fname, "r") kspace = data["kspace"] if num_rand_slices is None: num_slices = kspace.shape[0] self.examples += [(fname, slice_id) for slice_id in range(num_slices)] else: slice_ids = list(range(kspace.shape[0])) self.rng.seed(seed=volume_i) self.rng.shuffle(slice_ids) self.examples += [ (fname, slice_id) for slice_id in slice_ids[:num_rand_slices] ] def __len__(self): return len(self.examples) def __getitem__(self, i): fname, slice_id = self.examples[i] with h5py.File(fname, "r") as data: kspace = data["kspace"][slice_id] kspace = torch.from_numpy(np.stack([kspace.real, kspace.imag], axis=-1)) kspace = fastmri.ifftshift(kspace, dim=(0, 1)) target = torch.ifft(kspace, 2, normalized=False) target = fastmri.ifftshift(target, dim=(0, 1)) # Normalize using mean of k-space in training data target /= 7.072103529760345e-07 kspace /= 7.072103529760345e-07 # Environment expects numpy arrays. The code above was used with an older # version of the environment to generate the results of the MICCAI'20 paper. # So, to keep this consistent with the version in the paper, we convert # the tensors back to numpy rather than changing the original code. kspace = kspace.numpy() target = target.numpy() return self.transform( kspace, torch.zeros(kspace.shape[1]), target, dict(data.attrs), fname.name, slice_id, )
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Any, Dict, List import numpy as np import torch from . import singlecoil_knee_data from . import transforms __all__ = ["singlecoil_knee_data", "transforms"] def transform_template( kspace: List[np.ndarray] = None, mask: torch.Tensor = None, ground_truth: torch.Tensor = None, attrs: List[Dict[str, Any]] = None, fname: List[str] = None, slice_id: List[int] = None, ): """Template for transform functions. Args: - kspace(list(np.ndarray)): A list of complex numpy arrays, one per k-space in the batch. The length is the ``batch_size``, and array shapes are ``H x W x 2`` for single coil data, and ``C x H x W x 2`` for multicoil data, where ``H`` denotes k-space height, ``W`` denotes k-space width, and ``C`` is the number of coils. Note that the width can differ between batch elements, if ``num_cols`` is set to a tuple when creating the environment. - mask(torch.Tensor): A tensor of binary column masks, where 1s indicate that the corresponding k-space column should be selected. The shape is ``batch_size x 1 x maxW``, for single coil data, and ``batch_size x 1 x 1 x maxW`` for multicoil data. Here ``maxW`` is the maximum k-space width returned by the environment. - ground_truth(torch.Tensor): A tensor of ground truth 2D images. The shape is ``batch_size x 320 x 320``. - attrs(list(dict)): A list of dictionaries with the attributes read from the fastMRI for each image. - fname(list(str)): A list of the filenames where the images where read from. - slice_id(list(int)): A list with the slice ids in the files where each image was read from. Returns: tuple(Any...): A tuple with any number of inputs required by the reconstructor model. """ pass
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import functools import numpy as np import pytest # noqa: F401 import torch import activemri.envs.envs as envs import activemri.envs.util as util from . import mocks def test_import_object_from_str(): ceil = util.import_object_from_str("math.ceil") assert 3 == ceil(2.5) det = util.import_object_from_str("numpy.linalg.det") assert det(np.array([[1, 0], [0, 1]])) == 1 def test_random_cyclic_sampler_default_order(): alist = [0, 1, 2] sampler = envs.CyclicSampler(alist, None, loops=10) cnt = 0 for i, x in enumerate(sampler): assert alist[x] == i % 3 cnt += 1 assert cnt == 30 def test_random_cyclic_sampler_default_given_order(): alist = [1, 2, 0] sampler = envs.CyclicSampler(alist, order=[2, 0, 1], loops=10) cnt = 0 for i, x in enumerate(sampler): assert alist[x] == i % 3 cnt += 1 assert cnt == 30 def test_data_handler(): data = list(range(10)) batch_size = 2 loops = 3 handler = envs.DataHandler(data, None, batch_size=batch_size, loops=loops) cnt = dict([(x, 0) for x in data]) for x in handler: assert len(x) == batch_size for t in x: v = t.item() cnt[v] = cnt[v] + 1 for x in cnt: assert cnt[x] == loops # noinspection PyProtectedMember,PyClassHasNoInit class TestActiveMRIEnv: def test_init_from_config_dict(self): env = envs.ActiveMRIEnv((32, 64)) env._init_from_config_dict(mocks.config_dict) assert env.reward_metric == "ssim" assert type(env._reconstructor) == mocks.Reconstructor assert env._reconstructor.option1 == 1 assert env._reconstructor.option2 == 0.5 assert env._reconstructor.option3 == "dummy" assert env._reconstructor.option4 assert env._reconstructor.weights == "init" assert env._reconstructor._eval assert env._reconstructor.device == torch.device("cpu") assert env._transform("x", "m") == ("x", "m") batch_size = 3 shapes = [(1, 2) for _ in range(batch_size)] mask = env._mask_func(shapes, "rng") assert mask.shape == (batch_size, env._cfg["mask"]["args"]["size"]) def test_init_sets_action_space(self): env = envs.ActiveMRIEnv((32, 64)) for i in range(64): assert env.action_space.contains(i) assert env.action_space.n == 64 def test_reset_and_step(self): # the mock environment is set up to use mocks.Reconstructor # and mocks.mask_function. # The mask and data will be tensors of size D (env._tensor_size) # Initial mask will be: # [1 1 1 0 0 .... 0] (needs 7 actions) # [1 1 0 0 0 .... 0] (needs 8 actions) # Ground truth is X * ones(D, D) # K-space is (X - 1) * ones(D D) # Reconstruction is K-space + Mask. So, with the initial mask we have # sum |reconstruction - gt| = D^2 - 3D for first element of batch, # and = D^2 - 2D for second element. env = mocks.MRIEnv(num_parallel_episodes=2, loops_train=1, num_train=2) obs, _ = env.reset() # env works with shape (batch, height, width, {real/img}) assert tuple(obs["reconstruction"].shape) == ( env.num_parallel_episodes, env._tensor_size, env._tensor_size, 2, ) assert "ssim" in env._current_score mask_idx0_initial_active = env._cfg["mask"]["args"]["how_many"] mask_idx1_initial_active = mask_idx0_initial_active - 1 def expected_score(step): # See explanation above, plus every steps adds one more 1 to mask. s = env._tensor_size total = s ** 2 return 2 * ( (total - (mask_idx0_initial_active + step) * s) + (total - (mask_idx1_initial_active + step) * s) ) assert env._current_score["ssim"] == expected_score(0) prev_score = env._current_score["ssim"] for action in range(mask_idx0_initial_active, env._tensor_size): obs, reward, done, _ = env.step(action) assert env._current_score["ssim"] == expected_score( action - mask_idx1_initial_active ) assert reward == env._current_score["ssim"] - prev_score prev_score = env._current_score["ssim"] if action < 9: assert done == [False, False] else: assert done == [True, False] obs, reward, done, _ = env.step(mask_idx1_initial_active) assert env._current_score["ssim"] == 0.0 assert reward == -prev_score assert done == [True, True] def test_training_loop_ends(self): env = envs.ActiveMRIEnv((32, 64), num_parallel_episodes=3) env._num_loops_train_data = 3 env._init_from_config_dict(mocks.config_dict) env._compute_score_given_tensors = lambda x, y: {"mock": 0} num_train = 10 tensor_size = env._cfg["mask"]["args"]["size"] data_init_fn = mocks.make_data_init_fn(tensor_size, num_train, 0, 0) env._setup_data_handlers(data_init_fn) seen = dict([(x, 0) for x in range(num_train)]) for _ in range(1000): obs, meta = env.reset() if not obs: cnt_seen = functools.reduce(lambda x, y: x + y, seen.values()) assert cnt_seen == num_train * env._num_loops_train_data break slice_ids = meta["slice_id"] for slice_id in slice_ids: assert slice_id < num_train seen[slice_id] = seen[slice_id] + 1 for i in range(num_train): assert seen[i] == env._num_loops_train_data def test_alternate_loop_modes(self): # This tests if the environment can change correctly between train, val, and test # datasets. num_train, num_val, num_test = 10, 7, 5 env = mocks.MRIEnv( num_parallel_episodes=1, loops_train=2, num_train=num_train, num_val=num_val, num_test=num_test, ) # For each iteration of train data we will do a full loop over validation # and a partial loop over test. seen_train = dict([(x, 0) for x in range(num_train)]) seen_val = dict([(x, 0) for x in range(num_val)]) seen_test = dict([(x, 0) for x in range(num_test)]) for i in range(1000): env.set_training() obs, meta = env.reset() if not obs: break for slice_id in meta["slice_id"]: seen_train[slice_id] = seen_train[slice_id] + 1 env.set_val() for j in range(num_val + 1): obs, meta = env.reset() if not obs: cnt_seen = functools.reduce(lambda x, y: x + y, seen_val.values()) assert cnt_seen == (i + 1) * num_val break assert j < num_val for slice_id in meta["slice_id"]: seen_val[slice_id] = seen_val[slice_id] + 1 # With num_test - 1 we check that next call starts from 0 index again # even if not all images visited. One of the elements in test set should have # never been seen (data_handler will permute the indices so we don't know # which index it will be) env.set_test() for _ in range(num_test - 1): obs, meta = env.reset() assert obs for slice_id in meta["slice_id"]: seen_test[slice_id] = seen_test[slice_id] + 1 for i in range(num_train): assert seen_train[i] == env._num_loops_train_data for i in range(num_val): assert seen_val[i] == env._num_loops_train_data * num_train cnt_not_seen = 0 for i in range(num_test): if seen_test[i] != 0: assert seen_test[i] == env._num_loops_train_data * num_train else: cnt_not_seen += 1 assert cnt_not_seen == 1 def test_seed(self): num_train = 10 env = mocks.MRIEnv( num_parallel_episodes=1, loops_train=1, num_train=num_train, seed=0 ) def get_current_order(): order = [] for _ in range(num_train): obs, _ = env.reset() order.append(obs["reconstruction"].sum().int().item()) return order order_1 = get_current_order() env.seed(123) order_2 = get_current_order() env.seed(0) order_3 = get_current_order() assert set(order_1) == set(order_2) assert any([a != b for a, b in zip(order_1, order_2)]) assert all([a == b for a, b in zip(order_1, order_3)])
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np import pytest # noqa: F401 import torch import activemri.envs.masks as masks def test_update_masks_from_indices(): mask_1 = torch.tensor([[1, 0, 0, 0], [1, 0, 0, 0], [1, 0, 0, 0]], dtype=torch.uint8) mask_2 = torch.tensor([[0, 0, 1, 0], [0, 0, 1, 0], [0, 0, 1, 0]], dtype=torch.uint8) mask = torch.stack([mask_1, mask_2]) mask = masks.update_masks_from_indices(mask, np.array([2, 0])) assert mask.shape == torch.Size([2, 3, 4]) expected = torch.tensor( [[1, 0, 1, 0], [1, 0, 1, 0], [1, 0, 1, 0]], dtype=torch.uint8 ).repeat(2, 1, 1) assert (mask - expected).sum().item() == 0 def test_sample_low_freq_masks(): for centered in [True, False]: max_width = 20 mask_args = { "max_width": max_width, "width_dim": 1, "min_cols": 1, "max_cols": 4, "centered": centered, } rng = np.random.RandomState() widths = [10, 12, 18, 20] seen_cols = set() for i in range(1000): dummy_shapes = [(0, w) for w in widths] # w is in args.width_dim the_masks = masks.sample_low_frequency_mask(mask_args, dummy_shapes, rng) assert the_masks.shape == (len(widths), 1, 20) the_masks = the_masks.squeeze() for j, w in enumerate(widths): # Mask is symmetrical assert torch.all( the_masks[j, : w // 2] == torch.flip(the_masks[j, w // 2 : w], dims=[0]) ) # Extra columns set to one so that they are not valid actions assert the_masks[j, w:].sum().item() == max_width - w # Check that the number of columns is in the correct range active = the_masks[j, :w].sum().int().item() assert active >= 2 * mask_args["min_cols"] assert active <= 2 * mask_args["max_cols"] seen_cols.add(active // 2) # These masks should be either something like # 1100000011|111111111 (not centered) # 0000110000|111111111 (centered) # The lines below check for this prev = the_masks[j, 0] changed = False for k in range(1, w // 2): cur = the_masks[j, k] if cur != prev: assert not changed changed = True prev = cur assert changed if centered: assert not the_masks[j, 0] else: assert the_masks[j, 0] # Check that masks were sampled with all possible number of active cols assert len(seen_cols) == (mask_args["max_cols"] - mask_args["min_cols"] + 1)
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import pytest # noqa: F401 import torch import activemri.baselines as baselines def test_random(): policy = baselines.RandomPolicy() bs = 4 mask = torch.zeros(bs, 10) mask[:, :3] = 1 mask[0, :7] = 1 obs = {"mask": mask} steps = 5 for i in range(steps): action = policy(obs) assert len(action) == bs for j in range(bs): if j > 0 or (j == 0 and i < 3): assert obs["mask"][j, action[j]] == 0 obs["mask"][j, action[j]] = 1 assert obs["mask"].sum().item() == 34 def test_low_to_high_no_alternate(): policy = baselines.LowestIndexPolicy(alternate_sides=False, centered=False) mask = torch.zeros(2, 10) mask[0, 0::2] = 1 mask[1, 1::2] = 1 obs = {"mask": mask} for i in range(5): action = policy(obs) assert len(action) == 2 assert action[0] == 2 * i + 1 assert action[1] == 2 * i obs["mask"][:, action] = 1 assert obs["mask"].sum().item() == 20 def test_low_to_high_alternate(): policy = baselines.LowestIndexPolicy(alternate_sides=True, centered=False) mask = torch.zeros(2, 10) mask[0, 0::2] = 1 mask[1, 1::2] = 1 obs = {"mask": mask} order = [[1, 9, 3, 7, 5], [0, 8, 2, 6, 4]] for i in range(5): action = policy(obs) assert len(action) == 2 assert action[0] == order[0][i] assert action[1] == order[1][i] obs["mask"][:, action] = 1 assert obs["mask"].sum().item() == 20 def test_low_to_high_alternate_centered(): policy = baselines.LowestIndexPolicy(alternate_sides=True, centered=True) mask = torch.zeros(2, 10) mask[0, 0::2] = 1 mask[1, 1::2] = 1 obs = {"mask": mask} order = [[5, 3, 7, 1, 9], [6, 4, 8, 2, 0]] for i in range(5): action = policy(obs) assert len(action) == 2 assert action[0] == order[0][i] assert action[1] == order[1][i] obs["mask"][:, action] = 1 assert obs["mask"].sum().item() == 20
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import json from typing import Dict import numpy as np import torch import activemri.envs.envs as envs cfg_json_str = """ { "data_location": "dummy_location", "reconstructor": { "cls": "tests.core.mocks.Reconstructor", "options": { "option1": 1, "option2": 0.5, "option3": "dummy", "option4": true }, "checkpoint_fname": "null", "transform": "tests.core.mocks.transform" }, "mask": { "function": "tests.core.mocks.mask_func", "args": { "size": 10, "how_many": 3 } }, "reward_metric": "ssim", "device": "cpu" } """ config_dict = json.loads(cfg_json_str) class Dataset: def __init__(self, tensor_size, length): self.tensor_size = tensor_size self.length = length def __len__(self): return self.length def __getitem__(self, item): mock_kspace = (item + 1) * np.ones( (self.tensor_size, self.tensor_size, 2) # 2 is for mocking (real, img.) ) mock_mask = np.zeros(self.tensor_size) mock_ground_truth = mock_kspace + 1 return mock_kspace, mock_mask, mock_ground_truth, {}, "fname", item def make_data_init_fn(tensor_size, num_train, num_val, num_test): train_data = Dataset(tensor_size, num_train) val_data = Dataset(tensor_size, num_val) test_data = Dataset(tensor_size, num_test) def data_init_fn(): return train_data, val_data, test_data return data_init_fn # noinspection PyUnusedLocal def mask_func(args, kspace_shapes, _rng, attrs=None): batch_size = len(kspace_shapes) mask = torch.zeros(batch_size, args["size"]) mask[0, : args["how_many"]] = 1 if batch_size > 1: mask[1, : args["how_many"] - 1] = 1 return mask def transform(kspace=None, mask=None, **_kwargs): if isinstance(mask, torch.Tensor): mask = mask.view(mask.shape[0], 1, -1, 1) elif isinstance(mask, np.ndarray): mask = torch.from_numpy(mask) if isinstance(kspace, list): new_kspace = [] for array in kspace: new_kspace.append(torch.from_numpy(array)) return torch.stack(new_kspace), mask return kspace, mask # noinspection PyMethodMayBeStatic class Reconstructor: def __init__(self, **kwargs): self.option1 = kwargs["option1"] self.option2 = kwargs["option2"] self.option3 = kwargs["option3"] self.option4 = kwargs["option4"] self.weights = None self._eval = None self.device = None self.state_dict = {} def init_from_checkpoint(self, _checkpoint): self.weights = "init" def eval(self): self._eval = True def to(self, device): self.device = device def forward(self, kspace, mask): return {"reconstruction": kspace + mask} __call__ = forward def load_state_dict(self): pass class MRIEnv(envs.ActiveMRIEnv): def __init__( self, num_parallel_episodes, loops_train, num_train=1, num_val=1, num_test=1, seed=None, ): super().__init__( (32, 64), num_parallel_episodes=num_parallel_episodes, seed=seed ) self._num_loops_train_data = loops_train self._init_from_config_dict(config_dict) self._tensor_size = self._cfg["mask"]["args"]["size"] data_init_fn = make_data_init_fn( self._tensor_size, num_train, num_val, num_test ) self._setup_data_handlers(data_init_fn) @staticmethod def _compute_score_given_tensors( reconstruction: torch.Tensor, ground_truth: torch.Tensor ) -> Dict[str, np.ndarray]: return {"ssim": (reconstruction - ground_truth).abs().sum().numpy()}
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import json import os import pytest # noqa: F401 import activemri.envs.util def test_all_configs(): configs_root = "configs/" for fname in os.listdir(configs_root): with open(os.path.join(configs_root, fname), "r") as f: cfg = json.load(f) assert "data_location" in cfg assert "device" in cfg assert "reward_metric" in cfg assert "mask" in cfg mask_cfg = cfg["mask"] try: _ = activemri.envs.util.import_object_from_str(mask_cfg["function"]) except ModuleNotFoundError: print(f"Mask function in config file {fname} was not found.") assert False assert "args" in mask_cfg and isinstance(mask_cfg["args"], dict) assert "reconstructor" in cfg reconstructor_cfg = cfg["reconstructor"] assert "cls" in reconstructor_cfg try: _ = activemri.envs.util.import_object_from_str(reconstructor_cfg["cls"]) except ModuleNotFoundError: print(f"Reconstructor class in config file {fname} was not found.") assert False assert "options" in reconstructor_cfg assert "checkpoint_fname" in reconstructor_cfg assert "transform" in reconstructor_cfg try: _ = activemri.envs.util.import_object_from_str( reconstructor_cfg["transform"] ) except ModuleNotFoundError: print(f"Transform function in config file {fname} was not found.") assert False
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np import pytest # noqa: F401 import activemri.envs.envs as envs class TestMICCAIEnv: env = envs.MICCAI2020Env() def test_miccai_env_batch_content(self): for i, batch in enumerate(self.env._train_data_handler): # No check below for batch[1], since it's the mask and will be replaced later for j in [0, 1, 3, 4, 5]: assert isinstance(batch[j], list) assert len(batch[j]) == self.env.num_parallel_episodes for batch_idx in range(self.env.num_parallel_episodes): assert isinstance(batch[0][batch_idx], np.ndarray) assert batch[0][batch_idx].shape == ( 640, 368, 2, ) # k-space assert isinstance(batch[2][batch_idx], np.ndarray) assert batch[2][batch_idx].shape == (640, 368, 2) # ground truth image # data.attrs assert len(batch[3][batch_idx]) == 4 for key in ["norm", "max", "patient_id", "acquisition"]: assert key in batch[3][batch_idx] # file name assert isinstance(batch[4][batch_idx], str) # slice_id assert isinstance(batch[5][batch_idx], int) if i == 10: break def test_miccai_reset(self): obs, _ = self.env.reset() assert len(obs) == 3 assert "reconstruction" in obs assert "mask" in obs assert "extra_outputs" in obs assert obs["reconstruction"].shape == ( self.env.num_parallel_episodes, 640, 368, 2, ) assert obs["mask"].shape == (self.env.num_parallel_episodes, 368) class TestSingleCoilKneeEnv: env = envs.SingleCoilKneeEnv() def test_singlecoil_knee_env_batch_content(self): for i, batch in enumerate(self.env._train_data_handler): # No check below for batch[1], since it's the mask and will be replaced later kspace, _, ground_truth, attrs, fname, slice_id = batch for j in [0, 1, 3, 4, 5]: assert isinstance(batch[j], list) assert len(batch[j]) == self.env.num_parallel_episodes for batch_idx in range(self.env.num_parallel_episodes): assert isinstance(kspace[batch_idx], np.ndarray) assert np.all( np.iscomplex(kspace[batch_idx][np.nonzero(kspace[batch_idx])]) ) assert kspace[batch_idx].shape in [(640, 368), (640, 372)] # k-space assert isinstance(ground_truth[batch_idx], np.ndarray) assert not np.any(np.iscomplex(ground_truth[batch_idx])) assert ground_truth[batch_idx].shape == (320, 320) # ground_truth # data.attrs assert len(attrs[batch_idx]) == 8 for key in [ "acquisition", "max", "norm", "patient_id", "padding_left", "padding_right", "encoding_size", "recon_size", ]: assert key in attrs[batch_idx] # file name assert isinstance(fname[batch_idx], str) # slice_id assert isinstance(slice_id[batch_idx], int) if i == 10: break def test_singlecoil_knee_reset(self): obs, _ = self.env.reset() assert len(obs) == 3 assert "reconstruction" in obs assert "mask" in obs assert "extra_outputs" in obs assert obs["reconstruction"].shape == (self.env.num_parallel_episodes, 320, 320) assert obs["mask"].shape in [ (self.env.num_parallel_episodes, 368), (self.env.num_parallel_episodes, 372), ]
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. import os import sys sys.path.insert(0, os.path.abspath("..")) # -- Project information ----------------------------------------------------- project = "active-mri-acquisition" copyright = "2020, Facebook AI Research" author = "Facebook AI Research" # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ "sphinx.ext.autodoc", "sphinx.ext.coverage", "sphinx.ext.napoleon", "nbsphinx", ] # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ["build", "Thumbs.db", ".DS_Store", "**.ipynb_checkpoints"] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = "sphinx_rtd_theme" # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static"]
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import os import pickle from typing import cast import numpy as np import torch import activemri.baselines as baselines import activemri.envs as envs if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--budget", type=int, default=100, help="How many k-space columns to acquire." ) parser.add_argument( "--num_parallel_episodes", type=int, default=1, help="The number of episodes the environment runs in parallel", ) parser.add_argument( "--num_episodes", type=int, default=100, help="How many batches of episodes to run in total.", ) parser.add_argument( "--baseline", type=str, choices=[ "random", "random-lb", "lowtohigh", "evaluator", "ds-ddqn", "ss-ddqn", "oracle", ], help="The algorithm to evaluate.", ) parser.add_argument( "--evaluator_path", type=str, default=None, help="Path to checkpoint for evalutor network.", ) parser.add_argument( "--baseline_device", type=str, default="cpu", help="Which torch device to use for the baseline (if 'evaluator' or '*ddqn').", ) parser.add_argument( "--dqn_checkpoint_path", type=str, default=None, help="Checkpoint for the DDQN agent.", ) parser.add_argument("--legacy_model", action="store_true") parser.add_argument( "--oracle_num_samples", type=int, default=20, help="If using the one step greedy oracle, how many actions to sample each step.", ) parser.add_argument( "--output_dir", type=str, default=None, help="Directory where results will be stored.", ) parser.add_argument("--seed", type=int, default=0, help="Seed for the environment.") parser.add_argument("--env", choices=["miccai", "miccai_extreme"]) args = parser.parse_args() extreme = "_extreme" in args.env env = envs.MICCAI2020Env(args.num_parallel_episodes, args.budget, extreme=extreme) policy: baselines.Policy = None if args.baseline == "random": policy = baselines.RandomPolicy() if args.baseline == "random-lb": policy = baselines.RandomLowBiasPolicy(acceleration=3.0, centered=False) if args.baseline == "lowtohigh": policy = baselines.LowestIndexPolicy(alternate_sides=True, centered=False) if args.baseline == "evaluator": policy = baselines.CVPR19Evaluator( args.evaluator_path, torch.device(args.baseline_device), add_mask=True, ) if args.baseline == "oracle": policy = baselines.OneStepGreedyOracle( env, "ssim", num_samples=args.oracle_num_samples ) if "ddqn" in args.baseline: checkpoint_path = os.path.join( args.dqn_checkpoint_path, "evaluation", "policy_best.pt" ) checkpoint = torch.load(args.dqn_checkpoint_path) options = checkpoint["options"] if "miccai" in args.env: initial_num_lines = 1 if "extreme" in args.env else 15 if args.legacy_model: options.legacy_offset = initial_num_lines policy = cast(baselines.DDQN, policy) policy = baselines.DDQN(args.baseline_device, None, options) policy.load_state_dict(checkpoint["dqn_weights"]) all_scores, all_img_idx = baselines.evaluate( env, policy, args.num_episodes, args.seed, "test", verbose=True ) os.makedirs(args.output_dir, exist_ok=True) np.save(os.path.join(args.output_dir, "scores.npy"), all_scores) with open(os.path.join(args.output_dir, "img_ids.pkl"), "wb") as f: pickle.dump(all_img_idx, f)
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import activemri.baselines.ddqn as ddqn import activemri.envs as envs if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--budget", type=int, default=10) parser.add_argument("--num_parallel_episodes", type=int, default=4) parser.add_argument("--training_dir", type=str, default=None) parser.add_argument("--device", type=str, default=None) parser.add_argument("--extreme_acc", action="store_true") parser.add_argument("--seed", type=int, default=0) args = parser.parse_args() env = envs.MICCAI2020Env( args.num_parallel_episodes, args.budget, extreme=args.extreme_acc, seed=args.seed, ) tester = ddqn.DDQNTester(env, args.training_dir, args.device) tester()
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import torch import activemri.baselines as mri_baselines import activemri.envs as envs if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--budget", type=int, default=10) parser.add_argument("--num_parallel_episodes", type=int, default=4) parser.add_argument("--device", type=str, default=None) parser.add_argument("--seed", type=int, default=0) parser.add_argument("--extreme_acc", action="store_true") parser.add_argument("--checkpoints_dir", type=str, default=None) parser.add_argument("--mem_capacity", type=int, default=1000) parser.add_argument( "--dqn_model_type", type=str, choices=["simple_mlp", "evaluator"], default="evaluator", ) parser.add_argument( "--reward_metric", type=str, choices=["mse", "ssim", "nmse", "psnr"], default="ssim", ) parser.add_argument("--resume", action="store_true") parser.add_argument("--mask_embedding_dim", type=int, default=0) parser.add_argument("--dqn_batch_size", type=int, default=2) parser.add_argument("--dqn_burn_in", type=int, default=100) parser.add_argument("--dqn_normalize", action="store_true") parser.add_argument("--gamma", type=float, default=0.5) parser.add_argument("--epsilon_start", type=float, default=1.0) parser.add_argument("--epsilon_decay", type=int, default=10000) parser.add_argument("--epsilon_end", type=float, default=0.001) parser.add_argument("--dqn_learning_rate", type=float, default=0.001) parser.add_argument("--num_train_steps", type=int, default=1000) parser.add_argument("--num_test_episodes", type=int, default=2) parser.add_argument("--dqn_only_test", action="store_true") parser.add_argument("--dqn_weights_path", type=str, default=None) parser.add_argument("--dqn_test_episode_freq", type=int, default=None) parser.add_argument("--target_net_update_freq", type=int, default=5000) parser.add_argument("--freq_dqn_checkpoint_save", type=int, default=1000) parser.add_argument("--debug", action="store_true") args = parser.parse_args() env = envs.MICCAI2020Env( args.num_parallel_episodes, args.budget, obs_includes_padding=args.dqn_model_type == "evaluator", extreme=args.extreme_acc, ) env.seed(args.seed) policy = mri_baselines.DDQNTrainer(args, env, torch.device(args.device)) policy()
# Copyright (c) Meta Platforms, Inc. and affiliates. import logging from dataclasses import dataclass, field from math import sqrt from typing import List, Optional, Union import torch import torch.nn as nn logger: logging.Logger = logging.getLogger(__name__) @dataclass class MtlConfigs: mtl_model: str = "att_sp" # consider using enum num_task_experts: int = 1 num_shared_experts: int = 1 expert_out_dims: List[List[int]] = field(default_factory=list) self_exp_res_connect: bool = False expert_archs: Optional[List[List[int]]] = None gate_archs: Optional[List[List[int]]] = None num_experts: Optional[int] = None @dataclass(frozen=True) class ArchInputs: num_task: int = 3 task_mlp: List[int] = field(default_factory=list) mtl_configs: Optional[MtlConfigs] = field(default=None) # Parameters related to activation function activation_type: str = "RELU" class AdaTTSp(nn.Module): """ paper title: "AdaTT: Adaptive Task-to-Task Fusion Network for Multitask Learning in Recommendations" paper link: https://doi.org/10.1145/3580305.3599769 Call Args: inputs: inputs is a tensor of dimension [batch_size, self.num_tasks, self.input_dim]. Experts in the same module share the same input. outputs dimensions: [B, T, D_out] Example:: AdaTTSp( input_dim=256, expert_out_dims=[[128, 128]], num_tasks=8, num_task_experts=2, self_exp_res_connect=True, ) """ def __init__( self, input_dim: int, expert_out_dims: List[List[int]], num_tasks: int, num_task_experts: int, self_exp_res_connect: bool = True, activation: str = "RELU", ) -> None: super().__init__() if len(expert_out_dims) == 0: logger.warning( "AdaTTSp is noop! size of expert_out_dims which is the number of " "extraction layers should be at least 1." ) return self.num_extraction_layers: int = len(expert_out_dims) self.num_tasks = num_tasks self.num_task_experts = num_task_experts self.total_experts_per_layer: int = num_task_experts * num_tasks self.self_exp_res_connect = self_exp_res_connect self.experts = torch.nn.ModuleList() self.gate_weights = torch.nn.ModuleList() self_exp_weight_list = [] layer_input_dim = input_dim for expert_out_dim in expert_out_dims: self.experts.append( torch.nn.ModuleList( [ MLP(layer_input_dim, expert_out_dim, activation) for i in range(self.total_experts_per_layer) ] ) ) self.gate_weights.append( torch.nn.ModuleList( [ torch.nn.Sequential( torch.nn.Linear( layer_input_dim, self.total_experts_per_layer ), torch.nn.Softmax(dim=-1), ) for _ in range(num_tasks) ] ) ) # self.gate_weights is of shape L X T, after we loop over all layers. if self_exp_res_connect and num_task_experts > 1: params = torch.empty(num_tasks, num_task_experts) scale = sqrt(1.0 / num_task_experts) torch.nn.init.uniform_(params, a=-scale, b=scale) self_exp_weight_list.append(torch.nn.Parameter(params)) layer_input_dim = expert_out_dim[-1] self.self_exp_weights = nn.ParameterList(self_exp_weight_list) def forward( self, inputs: torch.Tensor, ) -> torch.Tensor: for layer_i in range(self.num_extraction_layers): # all task expert outputs. experts_out = torch.stack( [ expert(inputs[:, expert_i // self.num_task_experts, :]) for expert_i, expert in enumerate(self.experts[layer_i]) ], dim=1, ) # [B * E (total experts) * D_out] gates = torch.stack( [ gate_weight( inputs[:, task_i, :] ) # W ([B, D]) * S ([D, E]) -> G, dim is [B, E] for task_i, gate_weight in enumerate(self.gate_weights[layer_i]) ], dim=1, ) # [B, T, E] fused_experts_out = torch.bmm( gates, experts_out, ) # [B, T, E] X [B * E (total experts) * D_out] -> [B, T, D_out] if self.self_exp_res_connect: if self.num_task_experts > 1: # residual from the linear combination of tasks' own experts. self_exp_weighted = torch.einsum( "te,bted->btd", self.self_exp_weights[layer_i], experts_out.view( experts_out.size(0), self.num_tasks, self.num_task_experts, -1, ), # [B * E (total experts) * D_out] -> [B * T * E_task * D_out] ) # bmm: [T * E_task] X [B * T * E_task * D_out] -> [B, T, D_out] fused_experts_out = ( fused_experts_out + self_exp_weighted ) # [B, T, D_out] else: fused_experts_out = fused_experts_out + experts_out inputs = fused_experts_out return inputs class AdaTTWSharedExps(nn.Module): """ paper title: "AdaTT: Adaptive Task-to-Task Fusion Network for Multitask Learning in Recommendations" paper link: https://doi.org/10.1145/3580305.3599769 Call Args: inputs: inputs is a tensor of dimension [batch_size, self.num_tasks, self.input_dim]. Experts in the same module share the same input. outputs dimensions: [B, T, D_out] Example:: AdaTTWSharedExps( input_dim=256, expert_out_dims=[[128, 128]], num_tasks=8, num_shared_experts=1, num_task_experts=2, self_exp_res_connect=True, ) """ def __init__( self, input_dim: int, expert_out_dims: List[List[int]], num_tasks: int, num_shared_experts: int, num_task_experts: Optional[int] = None, num_task_expert_list: Optional[List[int]] = None, # Set num_task_expert_list for experimenting with a flexible number of # experts for different task_specific units. self_exp_res_connect: bool = True, activation: str = "RELU", ) -> None: super().__init__() if len(expert_out_dims) == 0: logger.warning( "AdaTTWSharedExps is noop! size of expert_out_dims which is the number of " "extraction layers should be at least 1." ) return self.num_extraction_layers: int = len(expert_out_dims) self.num_tasks = num_tasks assert (num_task_experts is None) ^ (num_task_expert_list is None) if num_task_experts is not None: self.num_expert_list = [num_task_experts for _ in range(num_tasks)] else: # num_expert_list is guaranteed to be not None here. # pyre-ignore self.num_expert_list: List[int] = num_task_expert_list self.num_expert_list.append(num_shared_experts) self.total_experts_per_layer: int = sum(self.num_expert_list) self.self_exp_res_connect = self_exp_res_connect self.experts = torch.nn.ModuleList() self.gate_weights = torch.nn.ModuleList() layer_input_dim = input_dim for layer_i, expert_out_dim in enumerate(expert_out_dims): self.experts.append( torch.nn.ModuleList( [ MLP(layer_input_dim, expert_out_dim, activation) for i in range(self.total_experts_per_layer) ] ) ) num_full_active_modules = ( num_tasks if layer_i == self.num_extraction_layers - 1 else num_tasks + 1 ) self.gate_weights.append( torch.nn.ModuleList( [ torch.nn.Sequential( torch.nn.Linear( layer_input_dim, self.total_experts_per_layer ), torch.nn.Softmax(dim=-1), ) for _ in range(num_full_active_modules) ] ) ) # self.gate_weights is a 2d module list of shape L X T (+ 1), after we loop over all layers. layer_input_dim = expert_out_dim[-1] self_exp_weight_list = [] if self_exp_res_connect: # If any tasks have number of experts not equal to 1, we learn linear combinations of native experts. if any(num_experts != 1 for num_experts in self.num_expert_list): for i in range(num_tasks + 1): num_full_active_layer = ( self.num_extraction_layers - 1 if i == num_tasks else self.num_extraction_layers ) params = torch.empty( num_full_active_layer, self.num_expert_list[i], ) scale = sqrt(1.0 / self.num_expert_list[i]) torch.nn.init.uniform_(params, a=-scale, b=scale) self_exp_weight_list.append(torch.nn.Parameter(params)) self.self_exp_weights = nn.ParameterList(self_exp_weight_list) self.expert_input_idx: List[int] = [] for i in range(num_tasks + 1): self.expert_input_idx.extend([i for _ in range(self.num_expert_list[i])]) def forward( self, inputs: torch.Tensor, ) -> torch.Tensor: for layer_i in range(self.num_extraction_layers): num_full_active_modules = ( self.num_tasks if layer_i == self.num_extraction_layers - 1 else self.num_tasks + 1 ) # all task expert outputs. experts_out = torch.stack( [ expert(inputs[:, self.expert_input_idx[expert_i], :]) for expert_i, expert in enumerate(self.experts[layer_i]) ], dim=1, ) # [B * E (total experts) * D_out] # gate weights for fusing all experts. gates = torch.stack( [ gate_weight(inputs[:, i, :]) # [B, D] * [D, E] -> [B, E] for i, gate_weight in enumerate(self.gate_weights[layer_i]) ], dim=1, ) # [B, T (+ 1), E] # add all expert gate weights with native expert weights. if self.self_exp_res_connect: prev_idx = 0 use_unit_naive_weights = all( num_expert == 1 for num_expert in self.num_expert_list ) for module_i in range(num_full_active_modules): next_idx = self.num_expert_list[module_i] + prev_idx if use_unit_naive_weights: gates[:, module_i, prev_idx:next_idx] += torch.ones( 1, self.num_expert_list[module_i] ) else: gates[:, module_i, prev_idx:next_idx] += self.self_exp_weights[ module_i ][layer_i].unsqueeze(0) prev_idx = next_idx fused_experts_out = torch.bmm( gates, experts_out, ) # [B, T (+ 1), E (total)] X [B * E (total) * D_out] -> [B, T (+ 1), D_out] inputs = fused_experts_out return inputs class MLP(nn.Module): """ Args: input_dim (int): mlp_arch (List[int]): activation (str): Call Args: input (torch.Tensor): tensor of shape (B, I) Returns: output (torch.Tensor): MLP result Example:: mlp = MLP(100, [100]) """ def __init__( self, input_dim: int, mlp_arch: List[int], activation: str = "RELU", bias: bool = True, ) -> None: super().__init__() mlp_net = [] for mlp_dim in mlp_arch: mlp_net.append( nn.Linear(in_features=input_dim, out_features=mlp_dim, bias=bias) ) if activation == "RELU": mlp_net.append(nn.ReLU()) else: raise ValueError("only RELU is included currently") input_dim = mlp_dim self.mlp_net = nn.Sequential(*mlp_net) def forward( self, input: torch.Tensor, ) -> torch.Tensor: return self.mlp_net(input) class SharedBottom(nn.Module): def __init__( self, input_dim: int, hidden_dims: List[int], num_tasks: int, activation: str ) -> None: super().__init__() self.bottom_projection = MLP(input_dim, hidden_dims, activation) self.num_tasks: int = num_tasks def forward( self, input: torch.Tensor, ) -> torch.Tensor: # input dim [T, D_in] # output dim [B, T, D_out] return self.bottom_projection(input).unsqueeze(1).expand(-1, self.num_tasks, -1) class CrossStitch(torch.nn.Module): """ cross-stitch paper title: "Cross-stitch Networks for Multi-task Learning". paper link: https://openaccess.thecvf.com/content_cvpr_2016/papers/Misra_Cross-Stitch_Networks_for_CVPR_2016_paper.pdf """ def __init__( self, input_dim: int, expert_archs: List[List[int]], num_tasks: int, activation: str = "RELU", ) -> None: super().__init__() self.num_layers: int = len(expert_archs) self.num_tasks = num_tasks self.experts = torch.nn.ModuleList() self.stitchs = torch.nn.ModuleList() expert_input_dim = input_dim for layer_ind in range(self.num_layers): self.experts.append( torch.nn.ModuleList( [ MLP( expert_input_dim, expert_archs[layer_ind], activation, ) for _ in range(self.num_tasks) ] ) ) self.stitchs.append( torch.nn.Linear( self.num_tasks, self.num_tasks, bias=False, ) ) expert_input_dim = expert_archs[layer_ind][-1] def forward(self, input: torch.Tensor) -> torch.Tensor: """ input dim [B, T, D_in] output dim [B, T, D_out] """ x = input for layer_ind in range(self.num_layers): expert_out = torch.stack( [ expert(x[:, expert_ind, :]) # [B, D_out] for expert_ind, expert in enumerate(self.experts[layer_ind]) ], dim=1, ) # [B, T, D_out] stitch_out = self.stitchs[layer_ind](expert_out.transpose(1, 2)).transpose( 1, 2 ) # [B, T, D_out] x = stitch_out return x class MLMMoE(torch.nn.Module): """ Multi-level Multi-gate Mixture of Experts This code implements a multi-level extension of the MMoE model, as described in the paper titled "Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts". Paper link: https://dl.acm.org/doi/10.1145/3219819.3220007 To run the original MMoE, use only one fusion level. For example, set expert_archs as [[96, 48]]. To configure multiple fusion levels, set expert_archs as something like [[96], [48]]. """ def __init__( self, input_dim: int, expert_archs: List[List[int]], gate_archs: List[List[int]], num_tasks: int, num_experts: int, activation: str = "RELU", ) -> None: super().__init__() self.num_layers: int = len(expert_archs) self.num_tasks: int = num_tasks self.num_experts = num_experts self.experts = torch.nn.ModuleList() self.gates = torch.nn.ModuleList() expert_input_dim = input_dim for layer_ind in range(self.num_layers): self.experts.append( torch.nn.ModuleList( [ MLP( expert_input_dim, expert_archs[layer_ind], activation, ) for _ in range(self.num_experts) ] ) ) self.gates.append( torch.nn.ModuleList( [ torch.nn.Sequential( MLP( input_dim, gate_archs[layer_ind], activation, ), torch.nn.Linear( gate_archs[layer_ind][-1] if gate_archs[layer_ind] else input_dim, self.num_experts, ), torch.nn.Softmax(dim=-1), ) for _ in range( self.num_experts if layer_ind < self.num_layers - 1 else self.num_tasks ) ] ) ) expert_input_dim = expert_archs[layer_ind][-1] def forward(self, input: torch.Tensor) -> torch.Tensor: """ input dim [B, D_in] output dim [B, T, D_out] """ x = input.unsqueeze(1).expand([-1, self.num_experts, -1]) # [B, E, D_in] for layer_ind in range(self.num_layers): expert_out = torch.stack( [ expert(x[:, expert_ind, :]) # [B, D_out] for expert_ind, expert in enumerate(self.experts[layer_ind]) ], dim=1, ) # [B, E, D_out] gate_out = torch.stack( [ gate(input) # [B, E] for gate_ind, gate in enumerate(self.gates[layer_ind]) ], dim=1, ) # [B, T, E] gated_out = torch.matmul(gate_out, expert_out) # [B, T, D_out] x = gated_out return x class PLE(nn.Module): """ PLE module is based on the paper "Progressive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for Personalized Recommendations". Paper link: https://doi.org/10.1145/3383313.3412236 PLE aims to address negative transfer and seesaw phenomenon in multi-task learning. PLE distinguishes shared and task-specic experts explicitly and adopts a progressive routing mechanism to extract and separate deeper semantic knowledge gradually. When there is only one extraction layer, PLE falls back to CGC. Args: input_dim: input embedding dimension expert_out_dims (List[List[int]]): dimension of an expert's output at each layer. This list's length equals the number of extraction layers num_tasks: number of tasks num_task_experts: number of experts for each task module at each layer. * If the number of experts is the same for all tasks, use an integer here. * If the number of experts is different for different tasks, use a list of integers here. num_shared_experts: number of experts for shared module at each layer Call Args: inputs: inputs is a tensor of dimension [batch_size, self.num_tasks + 1, self.input_dim]. Task specific module inputs are placed first, followed by shared module input. (Experts in the same module share the same input) Returns: output: output of extraction layer to be feed into task-specific tower networks. It's a list of tensors, each of which is for one task. Example:: PLE( input_dim=256, expert_out_dims=[[128]], num_tasks=8, num_task_experts=2, num_shared_experts=2, ) """ def __init__( self, input_dim: int, expert_out_dims: List[List[int]], num_tasks: int, num_task_experts: Union[int, List[int]], num_shared_experts: int, activation: str = "RELU", ) -> None: super().__init__() if len(expert_out_dims) == 0: raise ValueError("Expert out dims cannot be empty list") self.num_extraction_layers: int = len(expert_out_dims) self.num_tasks = num_tasks self.num_task_experts = num_task_experts if type(num_task_experts) is int: self.total_experts_per_layer: int = ( num_task_experts * num_tasks + num_shared_experts ) else: self.total_experts_per_layer: int = ( sum(num_task_experts) + num_shared_experts ) assert len(num_task_experts) == num_tasks self.num_shared_experts = num_shared_experts self.experts = nn.ModuleList() expert_input_dim = input_dim for expert_out_dim in expert_out_dims: self.experts.append( nn.ModuleList( [ MLP(expert_input_dim, expert_out_dim, activation) for i in range(self.total_experts_per_layer) ] ) ) expert_input_dim = expert_out_dim[-1] self.gate_weights = nn.ModuleList() selector_dim = input_dim for i in range(self.num_extraction_layers): expert_out_dim = expert_out_dims[i] # task specific gates. if type(num_task_experts) is int: gate_weights_in_layer = nn.ModuleList( [ nn.Sequential( nn.Linear( selector_dim, num_task_experts + num_shared_experts ), nn.Softmax(dim=-1), ) for i in range(num_tasks) ] ) else: gate_weights_in_layer = nn.ModuleList( [ nn.Sequential( nn.Linear( selector_dim, num_task_experts[i] + num_shared_experts ), nn.Softmax(dim=-1), ) for i in range(num_tasks) ] ) # Shared module gates. Note last layer has only task specific module gates for task towers later. if i != self.num_extraction_layers - 1: gate_weights_in_layer.append( nn.Sequential( nn.Linear(selector_dim, self.total_experts_per_layer), nn.Softmax(dim=-1), ) ) self.gate_weights.append(gate_weights_in_layer) selector_dim = expert_out_dim[-1] if type(self.num_task_experts) is list: experts_idx_2_task_idx = [] for i in range(num_tasks): # pyre-ignore experts_idx_2_task_idx += [i] * self.num_task_experts[i] experts_idx_2_task_idx += [num_tasks] * num_shared_experts self.experts_idx_2_task_idx: List[int] = experts_idx_2_task_idx def forward( self, inputs: torch.Tensor, ) -> torch.Tensor: for layer_i in range(self.num_extraction_layers): # all task specific and shared experts' outputs. # Note first num_task_experts * num_tasks experts are task specific, # last num_shared_experts experts are shared. if type(self.num_task_experts) is int: experts_out = torch.stack( [ self.experts[layer_i][expert_i]( inputs[ :, # pyre-ignore min(expert_i // self.num_task_experts, self.num_tasks), :, ] ) for expert_i in range(self.total_experts_per_layer) ], dim=1, ) # [B * E (num experts) * D_out] else: experts_out = torch.stack( [ self.experts[layer_i][expert_i]( inputs[ :, self.experts_idx_2_task_idx[expert_i], :, ] ) for expert_i in range(self.total_experts_per_layer) ], dim=1, ) # [B * E (num experts) * D_out] gates_out = [] # Loop over all the gates in the layer. Note for the last layer, # there is no shared gating network. prev_idx = 0 for gate_i in range(len(self.gate_weights[layer_i])): # This is for shared gating network, which uses all the experts. if gate_i == self.num_tasks: selected_matrix = experts_out # S_share # This is for task gating network, which only uses shared and its own experts. else: if type(self.num_task_experts) is int: task_experts_out = experts_out[ :, # pyre-ignore (gate_i * self.num_task_experts) : (gate_i + 1) # pyre-ignore * self.num_task_experts, :, ] # task specific experts else: # pyre-ignore next_idx = prev_idx + self.num_task_experts[gate_i] task_experts_out = experts_out[ :, prev_idx:next_idx, :, ] # task specific experts prev_idx = next_idx shared_experts_out = experts_out[ :, -self.num_shared_experts :, :, ] # shared experts selected_matrix = torch.concat( [task_experts_out, shared_experts_out], dim=1 ) # S_k with dimension of [B * E_selected * D_out] gates_out.append( torch.bmm( self.gate_weights[layer_i][gate_i]( inputs[:, gate_i, :] ).unsqueeze(dim=1), selected_matrix, ) # W * S -> G # [B, 1, E_selected] X [B * E_selected * D_out] -> [B, 1, D_out] ) inputs = torch.cat(gates_out, dim=1) # [B, T, D_out] return inputs class CentralTaskArch(nn.Module): def __init__( self, mtl_configs: MtlConfigs, opts: ArchInputs, input_dim: int, ) -> None: super().__init__() self.opts = opts assert len(mtl_configs.expert_out_dims) > 0, "expert_out_dims is empty." self.num_tasks: int = opts.num_task self.mtl_model: str = mtl_configs.mtl_model logger.info(f"mtl_model is {mtl_configs.mtl_model}") expert_out_dims: List[List[int]] = mtl_configs.expert_out_dims # AdaTT-sp # consider consolidating the implementation of att_sp and att_g. if mtl_configs.mtl_model == "att_sp": self.mtl_arch: nn.Module = AdaTTSp( input_dim=input_dim, expert_out_dims=expert_out_dims, num_tasks=self.num_tasks, num_task_experts=mtl_configs.num_task_experts, self_exp_res_connect=mtl_configs.self_exp_res_connect, activation=opts.activation_type, ) # AdaTT-general elif mtl_configs.mtl_model == "att_g": self.mtl_arch: nn.Module = AdaTTWSharedExps( input_dim=input_dim, expert_out_dims=expert_out_dims, num_tasks=self.num_tasks, num_task_experts=mtl_configs.num_task_experts, num_shared_experts=mtl_configs.num_shared_experts, self_exp_res_connect=mtl_configs.self_exp_res_connect, activation=opts.activation_type, ) # PLE elif mtl_configs.mtl_model == "ple": self.mtl_arch: nn.Module = PLE( input_dim=input_dim, expert_out_dims=expert_out_dims, num_tasks=self.num_tasks, num_task_experts=mtl_configs.num_task_experts, num_shared_experts=mtl_configs.num_shared_experts, activation=opts.activation_type, ) # cross-stitch elif mtl_configs.mtl_model == "cross_st": self.mtl_arch: nn.Module = CrossStitch( input_dim=input_dim, expert_archs=mtl_configs.expert_out_dims, num_tasks=self.num_tasks, activation=opts.activation_type, ) # multi-layer MMoE or MMoE elif mtl_configs.mtl_model == "mmoe": self.mtl_arch: nn.Module = MLMMoE( input_dim=input_dim, expert_archs=mtl_configs.expert_out_dims, gate_archs=[[] for i in range(len(mtl_configs.expert_out_dims))], num_tasks=self.num_tasks, num_experts=mtl_configs.num_shared_experts, activation=opts.activation_type, ) # shared bottom elif mtl_configs.mtl_model == "share_bottom": self.mtl_arch: nn.Module = SharedBottom( input_dim, [dim for dims in expert_out_dims for dim in dims], self.num_tasks, opts.activation_type, ) else: raise ValueError("invalid model type") task_modules_input_dim = expert_out_dims[-1][-1] self.task_modules: nn.ModuleList = nn.ModuleList( [ nn.Sequential( MLP( task_modules_input_dim, self.opts.task_mlp, opts.activation_type ), torch.nn.Linear(self.opts.task_mlp[-1], 1), ) for i in range(self.num_tasks) ] ) def forward( self, task_arch_input: torch.Tensor, ) -> List[torch.Tensor]: if self.mtl_model in ["att_sp", "cross_st"]: task_arch_input = task_arch_input.unsqueeze(1).expand( -1, self.num_tasks, -1 ) elif self.mtl_model in ["att_g", "ple"]: task_arch_input = task_arch_input.unsqueeze(1).expand( -1, self.num_tasks + 1, -1 ) task_specific_outputs = self.mtl_arch(task_arch_input) task_arch_output = [ task_module(task_specific_outputs[:, i, :]) for i, task_module in enumerate(self.task_modules) ] return task_arch_output
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. import pickle from fig_1 import * def evaluate_function_in_polytope(): # Generate projection matrix np.random.seed(3) B0 = np.random.randn(2, 100) # A REMBO projection B = B0 / np.sqrt((B0 ** 2).sum(axis=0)) # A hypersphere projection # Generate grid in low-d space b = 60. # Something big to be sure we capture the whole range density = 1000 grid_x = np.linspace(-b, b, density) grid_y = np.linspace(-b, b, density) grid2_x, grid2_y = np.meshgrid(grid_x, grid_y) X = np.array([grid2_x.flatten(), grid2_y.flatten()]).transpose() # Project up Y = (np.linalg.pinv(B) @ X.transpose()).transpose() z = ((Y<-1).any(axis=1) | (Y>1).any(axis=1)) # Points outside box bounds Y[z, :] = 0. # Set them to 0 for now; we'll drop them later fs = branin_centered(Y[:, :2]) # Drop points that violate polytope constraints in (1) fs[z] = np.nan fs = fs.reshape(grid2_x.shape) # Same thing with B0 instead of B. Y = (np.linalg.pinv(B0) @ X.transpose()).transpose() z = ((Y<-1).any(axis=1) | (Y>1).any(axis=1)) # Points outside box bounds Y[z, :] = 0. # Set them to 0 for now; we'll drop them later fs_B0 = branin_centered(Y[:, :2]) fs_B0[z] = np.nan # Drop points outside the box bounds fs_B0 = fs_B0.reshape(grid2_x.shape) with open('data/figS4_sim_output.pckl', 'wb') as fout: pickle.dump((grid_x, grid_y, fs, fs_B0), fout) def make_fig_S4(): with open('data/figS4_sim_output.pckl', 'rb') as fin: grid_x, grid_y, fs, fs_B0 = pickle.load(fin) fig = plt.figure(figsize=(5.5, 2)) plt.set_cmap('RdBu_r') ax = fig.add_subplot(121) CS1 = ax.contourf(grid_x, grid_y, np.log(fs_B0), levels=np.linspace(-1, 6, 30)) ax.grid(False) ax.set_xlabel(r'$x_1$', fontsize=9) ax.set_ylabel(r'$x_2$', fontsize=9) ax.set_xlim([-45, 45]) ax.set_ylim([-35, 35]) ax = fig.add_subplot(122) CS1 = ax.contourf(grid_x, grid_y, np.log(fs), levels=np.linspace(-1, 6, 30)) ax.grid(False) ax.set_xlabel(r'$x_1$', fontsize=9) ax.set_ylabel(r'$x_2$', fontsize=9) ax.set_xlim([-62, 62]) ax.set_ylim([-50, 50]) plt.subplots_adjust(right=0.99, top=0.99, left=0.1, bottom=0.17, wspace=0.45) plt.savefig('pdfs/new_embedding.pdf', pad_inches=0) if __name__ == '__main__': #evaluate_function_in_polytope() # Takes 20s to run, creates data/figS4_sim_output.pckl make_fig_S4()
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. import numpy as np from fig_1 import * def hesbo_branin(X, mode): # In 2-D, HESBO has 3 possible embeddings: # Full rank, span x1 and x2 # x1=x2 # x1=-x2 Y = X.copy() if mode == 1: pass # All is well here! elif mode == 2: Y[:, 0] = Y[:, 1] elif mode == 3: Y[:, 0] = -Y[:, 1] return branin_centered(Y) def make_fig_S1(): # Evaluate the branin function on the grid under the three possible embeddings grid_xhes, grid_yhes, fs_hesbo1 = eval_f_on_grid(hesbo_branin, [-1, 1], [-1, 1], {'mode': 1}, 2, density=1000) grid_xhes, grid_yhes, fs_hesbo2 = eval_f_on_grid(hesbo_branin, [-1, 1], [-1, 1], {'mode': 3}, 2, density=1000) grid_xhes, grid_yhes, fs_hesbo3 = eval_f_on_grid(hesbo_branin, [-1, 1], [-1, 1], {'mode': 2}, 2, density=1000) fig = plt.figure(figsize=(5.5, 1.8), facecolor='w', edgecolor='w') plt.set_cmap('RdBu_r') for i, fs in enumerate([fs_hesbo1, fs_hesbo2, fs_hesbo3]): ax = fig.add_subplot(1, 3, i + 1) CS1 = ax.contourf(grid_xhes, grid_yhes, np.log(fs), levels=np.linspace(-1, 6, 30)) ax.grid(False) ax.set_xlabel(r'$x_1$', fontsize=9) ax.set_xlim([-1, 1]) ax.set_xticks([-1, -0.5, 0, 0.5, 1]) ax.set_yticks([-1, -0.5, 0, 0.5, 1]) if i == 0: ax.set_ylabel(r'$x_2$', fontsize=9) ax.set_ylim([-1, 1]) else: ax.set_yticklabels([]) plt.subplots_adjust(right=0.98, top=0.975, left=0.1, bottom=0.195) plt.savefig('pdfs/hesbo_embeddings.pdf', pad_inches=0) if __name__ == '__main__': make_fig_S1()
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. from matplotlib import pyplot as plt from matplotlib.lines import Line2D from matplotlib import rc import matplotlib rc('font', family='serif', style='normal', variant='normal', weight='normal', stretch='normal', size=8) matplotlib.rcParams['ps.useafm'] = True matplotlib.rcParams['pdf.use14corefonts'] = True matplotlib.rcParams['text.usetex'] = True matplotlib.rcParams['xtick.labelsize'] = 7 matplotlib.rcParams['ytick.labelsize'] = 7 matplotlib.rcParams['axes.titlesize'] = 9 plot_method_names = [ 'ALEBO (ours)', 'REMBO', 'HeSBO, $d_e$=$d$', 'HeSBO, $d_e$=$2d$', 'REMBO-$\phi k_{\Psi}$', 'REMBO-$\gamma k_{\Psi}$', 'EBO', 'Add-GP-UCB', 'SMAC', 'CMA-ES', 'TuRBO', 'Sobol', 'CoordinateLineBO', 'RandomLineBO', 'DescentLineBO', ] plot_colors={ 'ALEBO (ours)': plt.cm.tab20(0), 'REMBO': plt.cm.tab20(1), 'HeSBO, $d_e$=$d$': plt.cm.tab20(2), 'HeSBO, $d_e$=$2d$': plt.cm.tab20(3), 'REMBO-$\phi k_{\Psi}$': plt.cm.tab20(4), 'REMBO-$\gamma k_{\Psi}$': plt.cm.tab20(5), 'EBO': plt.cm.tab20(6), 'Add-GP-UCB': plt.cm.tab20(7), 'SMAC': plt.cm.tab20(8), 'CMA-ES': plt.cm.tab20(9), 'TuRBO': plt.cm.tab20(10), 'Sobol': plt.cm.tab20(14), 'CoordinateLineBO': plt.cm.tab20(12), 'RandomLineBO': plt.cm.tab20(16), 'DescentLineBO': plt.cm.tab20(18), }
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. import numpy as np import pickle from plot_config import * def make_fig_S5(): with open('data/fig4_sim_output.pckl', 'rb') as fin: res = pickle.load(fin) nsamp = 1000 fig = plt.figure(figsize=(5.5, 2)) for i, d in enumerate([2, 6, 10]): ax = fig.add_subplot(1, 3, i + 1) x = [d_use for d_use in range(21) if d_use >= d] y1 = np.array([res['rembo'][(100, d, d_use)] for d_use in x]) y2 = np.array([res['hesbo'][(100, d, d_use)] for d_use in x]) y3 = np.array([res['unitsphere'][(100, d, d_use)] for d_use in x]) y1err = 2 * np.sqrt(y1 * (1 - y1) / nsamp) y2err = 2 * np.sqrt(y2 * (1 - y2) / nsamp) y3err = 2 * np.sqrt(y3 * (1 - y3) / nsamp) ax.errorbar(x, y1, yerr=y1err, color=plt.cm.tab10(0), marker='') ax.errorbar(x, y2, yerr=y2err, color=plt.cm.tab10(1), marker='') ax.errorbar(x, y3, yerr=y3err, color=plt.cm.tab10(2), marker='') ax.set_title(r'$d={d}$'.format(d=d)) if i == 0: ax.set_ylabel('Probability embedding\ncontains optimizer', fontsize=9) ax.legend(['REMBO', 'HeSBO', r'Hypersphere'], loc='lower right', fontsize=7) ax.set_xlabel(r'$d_e$', fontsize=9) ax.set_xlim([0, 21]) ax.set_ylim([-0.02, 1.02]) ax.set_yticks([0, 0.2, 0.4, 0.6, 0.8, 1.0]) if i > 0: ax.set_yticklabels([]) ax.grid(True, alpha=0.2) plt.subplots_adjust(right=0.99, bottom=0.17, left=0.10, top=0.89, wspace=0.1) plt.savefig('pdfs/lp_solns_ext.pdf', pad_inches=0) if __name__ == '__main__': # Assumes fig_4 has been run make_fig_S5()
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. import pickle import time import torch import numpy as np import cvxpy as cp # 1.0.25 from plot_config import * def gen_A_rembo(d: int, D: int) -> np.ndarray: A = torch.randn(D, d, dtype=torch.double) return A.numpy() def gen_A_hesbo(d: int, D:int) -> np.ndarray: A = torch.zeros((D, d), dtype=torch.double) h = torch.randint(d, size=(D,)) s = 2 * torch.randint(2, size=(D,), dtype=torch.double) - 1 for i in range(D): A[i, h[i]] = s[i] return A.numpy() def gen_A_unitsphere(d: int, D: int) -> np.ndarray: A = np.random.randn(D, d) # A REMBO projection _up_ A = A / np.sqrt((A ** 2).sum(axis=1))[:, None] return A def A_contains_xstar(xstar, A, perm): d = len(xstar) D = A.shape[0] Acon = np.zeros((d, D)) Acon[:d, :d] = np.diag(np.ones(d)) # Shuffle columns, to place true embedding on columns perm Acon = Acon[:, perm] Q = A @ np.linalg.pinv(A) - np.eye(D) A_eq = np.vstack((Acon, Q)) b_eq = np.hstack((xstar, np.zeros(D))) c = np.zeros(D) x = cp.Variable(D) prob = cp.Problem( cp.Minimize(c.T * x), [ A_eq @ x == b_eq, x >= -1, x <= 1, ], ) prob.solve(solver=cp.ECOS) if prob.status == cp.OPTIMAL: has_opt = True elif prob.status == cp.INFEASIBLE: has_opt = False else: raise ValueError(prob.status) return has_opt, prob def p_A_contains_optimizer(d, D, d_use, gen_A_fn, nsamp): num_feas = 0. for _ in range(nsamp): # Sample location of optimizer uniformly on [-1, 1]^d xstar = np.random.rand(d) * 2 - 1 # Sample features of embedding (first d) uniformly at random perm = list(range(D)) np.random.shuffle(perm) # Generate projection matrix A = gen_A_fn(d_use, D) has_opt, _ = A_contains_xstar(xstar, A, perm) num_feas += float(has_opt) return num_feas / nsamp def run_simulation1(): t1 = time.time() nsamp = 1000 res = {'rembo': {}, 'hesbo': {}, 'unitsphere': {}} D = 100 for d in [2, 6, 10]: for d_use in range(1, 21): if d_use < d: continue res['rembo'][(D, d, d_use)] = p_A_contains_optimizer( d=d, D=D, d_use=d_use, gen_A_fn=gen_A_rembo, nsamp=nsamp ) res['hesbo'][(D, d, d_use)] = p_A_contains_optimizer( d=d, D=D, d_use=d_use, gen_A_fn=gen_A_hesbo, nsamp=nsamp ) res['unitsphere'][(D, d, d_use)] = p_A_contains_optimizer( d=d, D=D, d_use=d_use, gen_A_fn=gen_A_unitsphere, nsamp=nsamp ) print(time.time() - t1) with open('data/fig4_sim_output.pckl', 'wb') as fout: pickle.dump(res, fout) def make_fig_4(): with open('data/fig4_sim_output.pckl', 'rb') as fin: res = pickle.load(fin) nsamp = 1000 fig = plt.figure(figsize=(2.63, 1.45)) for i, d in enumerate([2, 6]): ax = fig.add_subplot(1, 2, i + 1) x = [d_use for d_use in range(21) if d_use >= d] y1 = np.array([res['rembo'][(100, d, d_use)] for d_use in x]) y2 = np.array([res['hesbo'][(100, d, d_use)] for d_use in x]) y3 = np.array([res['unitsphere'][(100, d, d_use)] for d_use in x]) y1err = 2 * np.sqrt(y1 * (1 - y1) / nsamp) y2err = 2 * np.sqrt(y2 * (1 - y2) / nsamp) y3err = 2 * np.sqrt(y3 * (1 - y3) / nsamp) ax.errorbar(x, y1, yerr=y1err, color=plt.cm.tab10(0), marker='') ax.errorbar(x, y2, yerr=y2err, color=plt.cm.tab10(1), marker='') ax.errorbar(x, y3, yerr=y3err, color=plt.cm.tab10(2), marker='') ax.set_title(r'$d={d}$'.format(d=d)) if i == 0: ax.set_ylabel(r'$P_{\textrm{opt}}$', fontsize=9) ax.legend(['REMBO', 'HeSBO', r'Hypersphere'], loc='lower right', fontsize=5) ax.set_xlabel(r'$d_e$', fontsize=9) ax.set_xlim([0, 21]) ax.set_ylim([-0.02, 1.02]) ax.set_yticks([0, 0.2, 0.4, 0.6, 0.8, 1.0]) if i > 0: ax.set_yticklabels([]) ax.grid(True, alpha=0.2) plt.subplots_adjust(right=0.99, bottom=0.23, left=0.17, top=0.87, wspace=0.1) plt.savefig('pdfs/lp_solns.pdf', pad_inches=0) if __name__ == '__main__': #run_simulation1() # Will take about 30mins, produces data/fig4_sim_output.pckl make_fig_4()
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. import json import numpy as np from ax.storage.json_store.decoder import object_from_json from plot_config_nr import * def make_fig_5(): # Load in the benchmark results res = {} for fname in ['hartmann6_1000', 'branin_gramacy_100']: with open(f'../benchmarks/results/{fname}_aggregated_results.json', 'r') as fin: res.update(object_from_json(json.load(fin))) # A map from method idx in plot_method_names to the name used in res method_idx_to_res_name = { 0: 'ALEBO', 1: 'REMBO', 2: 'HeSBO, d=d', 3: 'HeSBO, d=2d', 4: 'rrembos_standard_kPsi', 5: 'rrembos_reverse_kPsi', 6: 'ebo', 7: 'addgpucb', 8: 'smac', 9: 'cmaes', 10: 'turbo', 11: 'Sobol', 12: 'coordinatelinebo', 13: 'randomlinebo', 14: 'descentlinebo', } # Make the figure fig = plt.figure(figsize=(5.5, 3.7)) ####### Branin, D=100 ax1 = fig.add_subplot(231) ax2 = fig.add_subplot(234) res_h = res['Branin, D=100'] for idx, m in enumerate(plot_method_names): res_name = method_idx_to_res_name[idx] if res_name not in res_h.objective_at_true_best: continue # Not run on this problem Y = res_h.objective_at_true_best[res_name] f = Y.mean(axis=0) x = np.arange(1, 51) color = plot_colors[m] ax1.plot(x, f, color=color, label=m) parts = ax2.violinplot(positions=[idx], dataset=Y[:, 49], showmeans=True) for pc in parts['bodies']: pc.set_facecolor(color) pc.set_edgecolor(color) for field in ['cmeans', 'cmaxes', 'cmins', 'cbars']: parts[field].set_color(color) ax1.set_xlim([0, 51]) ax1.set_ylabel('Best value found', fontsize=7) ax1.set_xlabel('Function evaluations', fontsize=7) ax1.axhline(y=0.397887, c='gray', ls='--') ax1.grid(alpha=0.2, zorder=-10) ax1.set_ylim([0, 7]) ax2.set_xticks(range(12)) ax2.set_xticklabels([]) ax2.set_ylabel('Final value', fontsize=7) ax2.grid(alpha=0.2, zorder=-10) ax2.set_xticklabels([plot_method_names[i] for i in range(12)], fontsize=6) ax2.xaxis.set_tick_params(rotation=90) # Make the legend custom_lines = [] names = [] for i in range(12): names.append(plot_method_names[i]) custom_lines.append( Line2D([0], [0], color=plot_colors[plot_method_names[i]], lw=2) ) order = range(12) names = [names[o] for o in order] custom_lines = [custom_lines[o] for o in order] ax1.legend(custom_lines, names, ncol=6, fontsize=5.5, bbox_to_anchor=(3.52, -2.26)) ax1.set_title('Branin, $d$=2, $D$=100', fontsize=8) ####### Hartmann6, D=1000 ax1 = fig.add_subplot(232) ax2 = fig.add_subplot(235) res_h = res['Hartmann6, D=1000'] for idx, m in enumerate(plot_method_names): res_name = method_idx_to_res_name[idx] if res_name not in res_h.objective_at_true_best: continue # Not run on this problem Y = res_h.objective_at_true_best[res_name] f = Y.mean(axis=0) x = np.arange(1, 201) color = plot_colors[m] ax1.plot(x, f, color=color, label=m) parts = ax2.violinplot(positions=[idx], dataset=Y[:, 199], showmeans=True) for pc in parts['bodies']: pc.set_facecolor(color) pc.set_edgecolor(color) for field in ['cmeans', 'cmaxes', 'cmins', 'cbars']: parts[field].set_color(color) ax1.set_xlim([0, 201]) #ax1.set_ylabel('Best value found', fontsize=9) ax1.set_xlabel('Function evaluations', fontsize=7) ax1.axhline(y=-3.32237, c='gray', ls='--') ax1.grid(alpha=0.2, zorder=-10) ax1.set_ylim([-3.5, -0.5]) ax2.set_xticks(range(12)) ax2.set_xticklabels([]) #ax2.set_ylabel('Final value', fontsize=9) ax2.grid(alpha=0.2, zorder=-10) ax2.set_xticklabels([plot_method_names[i] for i in range(12)], fontsize=6) ax2.xaxis.set_tick_params(rotation=90) ax1.set_title('Hartmann6, $d$=6, $D$=1000', fontsize=8) ####### Gramacy, D=100 ax1 = fig.add_subplot(233) ax2 = fig.add_subplot(236) res_h = res['Gramacy, D=100'] for idx, m in enumerate(plot_method_names): res_name = method_idx_to_res_name[idx] if res_name not in res_h.objective_at_true_best: continue # Not run on this problem Y = res_h.objective_at_true_best[res_name] f = Y.mean(axis=0) x = np.arange(1, 51) color = plot_colors[m] ax1.plot(x, f, color=color, label=m) parts = ax2.violinplot(positions=[idx], dataset=Y[:, 49], showmeans=True) for pc in parts['bodies']: pc.set_facecolor(color) pc.set_edgecolor(color) for field in ['cmeans', 'cmaxes', 'cmins', 'cbars']: parts[field].set_color(color) ax1.set_xlim([0, 51]) #ax1.set_ylabel('Best value found', fontsize=9) ax1.set_xlabel('Function evaluations', fontsize=7) ax1.set_ylim([0.58, 1]) ax1.axhline(y=0.5998, c='gray', ls='--') ax1.grid(alpha=0.2, zorder=-10) ax2.set_xticks(range(12)) ax2.set_xticklabels([plot_method_names[i] for i in range(12)], fontsize=6) ax2.xaxis.set_tick_params(rotation=90) #ax2.set_ylabel('Final value', fontsize=9) ax2.grid(alpha=0.2, zorder=-10) ax1.set_title('Gramacy, $d$=2, $D$=100', fontsize=8) plt.subplots_adjust(right=0.995, bottom=0.3, left=0.07, top=0.94, wspace=0.25, hspace=0.45) plt.savefig('pdfs/benchmark_results_t.pdf', pad_inches=0) if __name__ == '__main__': make_fig_5()
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. import json import numpy as np from ax.storage.json_store.decoder import object_from_json def table_S1_data(): with open('../benchmarks/results/all_aggregated_results.json', 'r') as fin: res = object_from_json(json.load(fin)) for D in [100, 1000]: pname = f'Hartmann6, D={D}' print('-----', pname) for m, ts in res[pname].gen_times.items(): # Get average total time for fit and gen t = np.mean(ts) t += np.mean(res[pname].fit_times[m]) # Divide by 200 to be time per iteration t /= 200. print(f'{m}: {t}') if __name__ == '__main__': table_S1_data()
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. import numpy as np from ax.utils.measurement.synthetic_functions import branin, hartmann6 from plot_config import * def branin_centered(X): # Evaluate branin problem, scaled to X \in [-1, 1]^2 # Map from [-1, 1]^2 to [[-5, 10], [0, 15]] assert X.min() >= -1 assert X.max() <= 1 Xu = (X + 1) / 2. Xu *= 15 Xu[:, 0] -= 5 return branin(Xu) def hartmann6_centered(X): # Evaluate hartmann6 problem, scaled to X \in [-1, 1]^2 # Map from [-1, 1]^6 to [0, 1]^6 assert X.min() >= -1 assert X.max() <= 1 Xu = (X + 1) / 2. return hartmann6(Xu) def rembo_branin(X, A): # Map from low-d to high-D Y = (A @ X.transpose()).transpose() # Clip to [-1, 1] Y = np.clip(Y, a_min=-1, a_max=1) # Evaluate Branin on first two components return branin_centered(Y[:, :2]) def rembo_hartmann6(X, A): # Map from low-d to high-D Y = (A @ X.transpose()).transpose() # Clip to [-1, 1] Y = np.clip(Y, a_min=-1, a_max=1) # Evaluate Hartmann6 on first six components return hartmann6_centered(Y[:, :6]) def eval_f_on_grid(f, bounds_x, bounds_y, f_kwargs, d, density=100): # prepare the grid on which to evaluate the problem grid_x = np.linspace(bounds_x[0], bounds_x[1], density) grid_y = np.linspace(bounds_y[0], bounds_y[1], density) grid2_x, grid2_y = np.meshgrid(grid_x, grid_y) X = np.array([grid2_x.flatten(), grid2_y.flatten()]).transpose() if d > 2: # Add in the other components, just at 0 X = np.hstack((X, np.zeros((X.shape[0], d - 2)))) fs = f(X, **f_kwargs).reshape(grid2_x.shape) return grid_x, grid_y, fs def make_fig_1(): ## Branin # Evaluate the usual Branin problem, but scaled to [-1, 1]^2 grid_x1, grid_y1, fs_branin = eval_f_on_grid(branin_centered, [-1, 1], [-1, 1], {}, 2) # Generate a REMBO projection matrix D = 100 np.random.seed(1) A_b = np.random.randn(D, 2) # Evaluate the function across the low-d space bounds = [-np.sqrt(2), np.sqrt(2)] grid_x2, grid_y2, fs_rembo = eval_f_on_grid(rembo_branin, bounds, bounds, {'A': A_b}, 2) ## Hartmann6 # Evaluate the usual Hartmann6 problem, but scaled to [-1, 1]^6 grid_x1h, grid_y1h, fs_hartmann6 = eval_f_on_grid(hartmann6_centered, [-1, 1], [-1, 1], {}, 6) # Generate a REMBO projection matrix D = 100 A_h = np.random.randn(D, 6) # Evaluate the function across the low-d space bounds = [-np.sqrt(6), np.sqrt(6)] grid_x2h, grid_y2h, fs_rembo_h = eval_f_on_grid(rembo_hartmann6, bounds, bounds, {'A': A_h}, 6) # Make the figure fig = plt.figure(figsize=(5.5, 1.2), facecolor='w', edgecolor='w') plt.set_cmap('RdBu_r') ### Branin ax = fig.add_subplot(141) CS1 = ax.contourf(grid_x1, grid_y1, np.log(fs_branin), levels=np.linspace(-1, 6, 30)) ax.grid(False) #ax.set_xlabel(r'$x_1$', fontsize=9) ax.set_xlim([-1, 1]) #ax.set_xticks([-1, -0.5, 0, 0.5, 1]) ax.set_xticks([]) #ax.set_ylabel(r'$x_2$', fontsize=9) ax.set_ylim([-1, 1]) ax.set_yticks([]) #ax.set_yticks([-1, -0.5, 0, 0.5, 1]) ax.set_title(r'Branin function, $d$=2') ax = fig.add_subplot(142) CS1 = ax.contourf(grid_x2, grid_y2, np.log(fs_rembo), levels=np.linspace(-1, 6, 30)) ax.grid(False) #ax.set_xlabel(r'$x_1$', fontsize=9) ax.set_xlim([-np.sqrt(2), np.sqrt(2)]) ax.set_xticks([]) #ax.set_xticks([-1.4, -1, -0.5, 0, 0.5, 1, 1.4]) #ax.set_ylabel(r'$x_2$', fontsize=9) ax.set_ylim([-np.sqrt(2), np.sqrt(2)]) ax.set_yticks([]) #ax.set_yticks([-1.4, -1, -0.5, 0, 0.5, 1, 1.4]) ax.set_title('REMBO embedding,\n$D$=100, $d_e$=2') ### Hartmann6 ax = fig.add_subplot(143) CS1f = ax.contourf(grid_x1h, grid_y1h, fs_hartmann6, levels=np.linspace(-1.2, 0., 20)) ax.grid(False) #ax.set_xlabel(r'$x_1$', fontsize=9) ax.set_xlim([-1, 1]) ax.set_xticks([]) #ax.set_xticks([-1, -0.5, 0, 0.5, 1]) #ax.set_ylabel(r'$x_2$', fontsize=9) ax.set_ylim([-1, 1]) ax.set_yticks([]) #ax.set_yticks([-1, -0.5, 0, 0.5, 1]) ax.set_title(r'Hartmann6 function, $d$=6') ax = fig.add_subplot(144) CS1f = ax.contourf(grid_x2h, grid_y2h, fs_rembo_h, levels=np.linspace(-1.2, 0., 20)) ax.grid(False) #ax.set_xlabel(r'$x_1$', fontsize=9) ax.set_xlim([-np.sqrt(6), np.sqrt(6)]) ax.set_xticks([]) #ax.set_xticks([-2, -1, 0, 1, 2,]) #ax.set_ylabel(r'$x_2$', fontsize=9) ax.set_ylim([-np.sqrt(6), np.sqrt(6)]) ax.set_yticks([]) #ax.set_yticks([-2, -1, 0, 1, 2,]) ax.set_title('REMBO embedding,\n$D$=100, $d_e$=6') fig.subplots_adjust(wspace=0.13, top=0.74, bottom=0.05, right=0.99, left=0.01) plt.savefig('pdfs/rembo_illustrations_w.pdf', pad_inches=0) if __name__ == '__main__': make_fig_1()
import json import numpy as np from ax.storage.json_store.decoder import object_from_json from plot_config import * def make_nasbench_figure(): with open('../benchmarks/results/nasbench_aggregated_results.json', 'r') as fin: res = object_from_json(json.load(fin)) # A map from method idx in plot_method_names to the name used in res method_idx_to_res_name = { 1: 'REMBO', 3: 'HeSBO', 9: 'cmaes', 10: 'turbo', 11: 'Sobol', 0: 'ALEBO', } plot_method_names[3] = 'HeSBO' plot_colors['HeSBO'] = plt.cm.tab20(3) fig = plt.figure(figsize=(2.96, 2.0)) ax1 = fig.add_subplot(111) method_idx = 1 method_names_used = [] for i, m in method_idx_to_res_name.items(): f = np.nanmean(res[m], axis=0) sem = np.nanstd(res[m], axis=0) / np.sqrt(res[m].shape[0]) x = np.arange(1, 51) mname = plot_method_names[i] color = plot_colors[mname] ax1.plot(x, f, color=color, label=mname) ax1.errorbar(x, f, yerr=2 * sem, color=color, alpha=0.5, ls='') ax1.set_xlim([0, 51]) ax1.set_ylabel('Best feasible test accuracy', fontsize=9) ax1.set_xlabel('Function evaluations', fontsize=9) #ax1.legend(bbox_to_anchor=(1.0, 1.24), ncol=4, fontsize=6, columnspacing=1.65) ax1.legend(ncol=2, loc='lower right', fontsize=7) ax1.set_ylim([0.92, 0.936]) ax1.set_yticks([0.92, 0.925, 0.93, 0.935]) ax1.set_yticklabels(['92.0\%', '92.5\%', '93.0\%', '93.5\%']) ax1.grid(alpha=0.2, zorder=-10) plt.subplots_adjust(right=0.98, bottom=0.17, left=0.19, top=0.98) plt.savefig(f'pdfs/nas.pdf', pad_inches=0) #plt.show() if __name__ == '__main__': make_nasbench_figure()
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. import json import numpy as np from ax.storage.json_store.decoder import object_from_json from plot_config import * def extract_sensitivity_results(): res = {} for fname in [ 'branin_gramacy_100', 'sensitivity', ]: with open(f'../benchmarks/results/{fname}_aggregated_results.json', 'r') as fin: res.update(object_from_json(json.load(fin))) # Results for D=100 ys1 = {} for d in [2, 3, 4, 5, 6, 7, 8]: if d == 4: ys1[d] = res['Branin, D=100'].objective_at_true_best['ALEBO'] else: ys1[d] = res['Branin, D=100_sensitivity'].objective_at_true_best[f'ALEBO, d={d}'] # Results for d_e=4 ys2 = {} for D in [50, 100, 200, 500, 1000]: if D == 100: ys2[D] = res['Branin, D=100'].objective_at_true_best['ALEBO'] else: ys2[D] = res[f'Branin, D={D}_sensitivity'].objective_at_true_best['ALEBO'] return ys1, ys2 def make_fig_S8(): ys1, ys2 = extract_sensitivity_results() fig = plt.figure(figsize=(5.5, 2.2)) ax = fig.add_subplot(121) x = np.arange(1, 51) for d_e in [2, 3, 4, 6, 8]: ax.plot(x, ys1[d_e].mean(axis=0), label=f'$d_e={d_e}$') ax.set_ylim([0, 7]) ax.set_yticks([0, 2, 4, 6]) ax.legend(fontsize=7) ax.set_title(r'Branin, $D=100$') ax.set_ylabel('Best value found', fontsize=9) ax.set_xlabel('Function evaluations', fontsize=9) ax.axhline(y=0.397887, c='gray', ls='--') ax.grid(alpha=0.2, zorder=-10) ax.set_xlim([0, 51]) ax = fig.add_subplot(122) for D in [50, 100, 200, 500, 1000]: ax.plot(x, ys2[D].mean(axis=0), label=f'$D={D}$') ax.set_title(r'Branin, $d_e=4$') ax.set_ylim([0, 7]) ax.legend(fontsize=7) ax.set_xlabel('Function evaluations', fontsize=9) ax.axhline(y=0.397887, c='gray', ls='--') ax.grid(alpha=0.2, zorder=-10) ax.set_yticks([0, 2, 4, 6]) ax.set_xlim([0, 51]) ax.set_yticklabels([]) plt.subplots_adjust(right=0.995, bottom=0.16, left=0.06, top=0.91, wspace=0.05) plt.savefig('pdfs/branin_by_d_D_traces.pdf', pad_inches=0) if __name__ == '__main__': make_fig_S8()
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. import numpy as np from plot_config import * def make_fig_2(): # Run the simulation np.random.seed(1) Ds = [20, 100, 1000] ds = list(range(1, 6)) nsamp = 1000 p_interior = {} for D in Ds: for d in ds: p_interior[(D, d)] = 0. for _ in range(nsamp): # Generate a REMBO projection A = np.random.randn(D, d) # Sample a point in [-sqrt(d), sqrt(d)]^d x = (np.random.rand(d) * 2 - 1) * np.sqrt(d) # Project up z = A @ x # Check if satisfies box bounds if z.min() >= -1 and z.max() <= 1: p_interior[(D, d)] += 1 p_interior[(D, d)] /= nsamp # Make the figure fig = plt.figure(figsize=(2., 1.55)) ax = fig.add_subplot(111) ax.grid(alpha=0.5) for i, D in enumerate(Ds): ax.plot(ds, [p_interior[(D, d)] for d in ds], 'x-', c=plt.cm.tab10(i)) ax.legend([r'$D=20$', r'$D=100$', r'$D=1000$'], fontsize=7) ax.set_xlabel(r'Embedding dimension $d_e$', fontsize=9) ax.set_ylabel('Probability projection\nsatisfies box bounds', fontsize=9) plt.subplots_adjust(right=0.99, bottom=0.22, left=0.3, top=0.94) plt.savefig('pdfs/rembo_p_interior.pdf', pad_inches=0) if __name__ == '__main__': make_fig_2()
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. import os os.environ['OPENBLAS_NUM_THREADS'] = '1' os.environ['OMP_NUM_THREADS'] = '1' import time import numpy as np import torch import pickle from ax.models.torch.alebo import ALEBO from ax.models.random.alebo_initializer import ALEBOInitializer from ax.models.torch.botorch import BotorchModel from botorch.test_functions.synthetic import Hartmann from botorch.models.gpytorch import BatchedMultiOutputGPyTorchModel from torch import Tensor from gpytorch.means.constant_mean import ConstantMean from gpytorch.models.exact_gp import ExactGP from gpytorch.likelihoods.gaussian_likelihood import FixedNoiseGaussianLikelihood from gpytorch.kernels.rbf_kernel import RBFKernel from gpytorch.kernels.scale_kernel import ScaleKernel from gpytorch.mlls.exact_marginal_log_likelihood import ExactMarginalLogLikelihood from botorch.fit import fit_gpytorch_model from gpytorch.distributions.multivariate_normal import MultivariateNormal from plot_config import * def highDhartmann6(X): # X \in [-1, 1]^D h = Hartmann() Xd = (X[:, :6] + 1) / 2. return h.evaluate_true(Xd) def gen_train_test_sets(B, ntrain, ntest, seed_train=1000, seed_test=2000): # Generate training points m1 = ALEBOInitializer(B=B.numpy(), seed=seed_train) train_X = torch.tensor(m1.gen(n=ntrain, bounds=[])[0], dtype=torch.double) train_Y = highDhartmann6(train_X) # Standardize train Y mu = train_Y.mean() sigma = train_Y.std() train_Y = (train_Y - mu) / sigma train_Y = train_Y.unsqueeze(1) train_Yvar = 1e-7 * torch.ones(train_Y.shape) # Generate test points m2 = ALEBOInitializer(B=B.numpy(), seed=seed_test) test_X = torch.tensor(m2.gen(n=ntest, bounds=[])[0], dtype=torch.double) test_Y = highDhartmann6(test_X) return train_X, train_Y, train_Yvar, test_X, test_Y, mu, sigma def fit_and_predict_alebo(B, train_X, train_Y, train_Yvar, test_X, mu, sigma): m = ALEBO(B=B) m.fit([train_X], [train_Y], [train_Yvar], [], [], [], [], []) f, var = m.predict(test_X) # Return predictions, un-standardized return f.squeeze() * sigma + mu, var.squeeze() * sigma ** 2 def fit_and_predict_map(B, train_X, train_Y, train_Yvar, test_X, mu, sigma): m = ALEBO(B=B, laplace_nsamp=1) # laplace_nsamp=1 uses MAP estimate m.fit([train_X], [train_Y], [train_Yvar], [], [], [], [], []) f, var = m.predict(test_X) # Return predictions, un-standardized return f.squeeze() * sigma + mu, var.squeeze() * sigma ** 2 class ARDRBFGP(BatchedMultiOutputGPyTorchModel, ExactGP): """A GP with fixed observation noise and an ARD RBF kernel.""" def __init__(self, train_X: Tensor, train_Y: Tensor, train_Yvar: Tensor) -> None: self._validate_tensor_args(X=train_X, Y=train_Y, Yvar=train_Yvar) self._set_dimensions(train_X=train_X, train_Y=train_Y) train_X, train_Y, train_Yvar = self._transform_tensor_args( X=train_X, Y=train_Y, Yvar=train_Yvar ) likelihood = FixedNoiseGaussianLikelihood( noise=train_Yvar, batch_shape=self._aug_batch_shape ) ExactGP.__init__( self, train_inputs=train_X, train_targets=train_Y, likelihood=likelihood ) self.mean_module = ConstantMean(batch_shape=self._aug_batch_shape) self.covar_module = ScaleKernel( base_kernel=RBFKernel( ard_num_dims=train_X.shape[-1], batch_shape=self._aug_batch_shape, ), batch_shape=self._aug_batch_shape, ) self.to(train_X) def forward(self, x: Tensor) -> MultivariateNormal: mean_x = self.mean_module(x) covar_x = self.covar_module(x) return MultivariateNormal(mean_x, covar_x) def get_and_fit_ARDRBF( Xs, Ys, Yvars, task_features=None, fidelity_features=None, refit_model=None, state_dict=None, fidelity_model_id=None, metric_names=None, ): m = ARDRBFGP(train_X=Xs[0], train_Y=Ys[0], train_Yvar=Yvars[0]) mll = ExactMarginalLogLikelihood(m.likelihood, m) mll = fit_gpytorch_model(mll) return m def fit_and_predict_ARDRBF(B, train_X, train_Y, train_Yvar, test_X, mu, sigma): # Project training data down to the embedding BX = train_X @ B.t() m = BotorchModel(model_constructor=get_and_fit_ARDRBF) # Fit ARD RBF model on data in embedding m.fit([BX], [train_Y], [train_Yvar], [], [], [], [], []) # Predict on test points in embedding f, var = m.predict(test_X @ B.t()) # Return predictions, un-standardized return f.squeeze() * sigma + mu, var.squeeze() * sigma ** 2 def run_simulation(): D = 100 d = 6 ntrain = 100 ntest = 50 # Get projection torch.manual_seed(1000) B0 = torch.randn(d, D, dtype=torch.double) B = B0 / torch.sqrt((B0 ** 2).sum(dim=0)) # Get fixed train/test data train_X, train_Y, train_Yvar, test_X, test_Y, mu, sigma = gen_train_test_sets(B, ntrain, ntest) # Predict with each model f1, var1 = fit_and_predict_alebo(B, train_X, train_Y, train_Yvar, test_X, mu, sigma) f2, var2 = fit_and_predict_map(B, train_X, train_Y, train_Yvar, test_X, mu, sigma) f3, var3 = fit_and_predict_ARDRBF(B, train_X, train_Y, train_Yvar, test_X, mu, sigma) # Save outcome with open('data/fig3_sim_output.pckl', 'wb') as fout: pickle.dump((test_Y, f1, var1, f2, var2, f3, var3), fout) def make_fig_3(): # Load in simulation results with open('data/fig3_sim_output.pckl', 'rb') as fin: (test_Y, f1, var1, f2, var2, f3, var3) = pickle.load(fin) fig = plt.figure(figsize=(2.63, 1.45)) ax = fig.add_subplot(121) ax.errorbar( x=test_Y.numpy(), y=f3.numpy(), yerr = 2 * np.sqrt(var3.numpy()), c='gray', lw=1, ls='', marker='.', mfc='k', mec='k', ms=3 ) x0 = -2.5 x1 = 0.5 ax.plot([x0, x1], [x0, x1], '-', zorder=-5, alpha=0.5, c='steelblue', lw=2) ax.set_xlim([x0, x1]) ax.set_ylim([x0, x1]) ax.set_yticks([0, -1, -2]) ax.set_xlabel('True value', fontsize=9) ax.set_ylabel('Model prediction', fontsize=9) ax.set_title('ARD RBF', fontsize=9) ax.grid(True, alpha=0.2) ax = fig.add_subplot(122) ax.errorbar( x=test_Y.numpy(), y=f1.numpy(), yerr = 2 * np.sqrt(var1.numpy()), c='gray', lw=1, ls='', marker='.', mfc='k', mec='k', ms=3 ) x0 = -3 x1 = 1 ax.plot([x0, x1], [x0, x1], '-', zorder=-5, alpha=0.5, c='steelblue', lw=2) ax.set_xlim([x0, x1]) ax.set_ylim([x0, x1]) ax.set_title('Mahalanobis', fontsize=9) ax.set_xticks([-3, -2, -1, 0, 1]) ax.set_xlabel('True value', fontsize=9) ax.grid(True, alpha=0.2) plt.subplots_adjust(right=0.99, bottom=0.24, left=0.16, top=0.87, wspace=0.3) plt.savefig('pdfs/ard_mahalanobis.pdf', pad_inches=0) if __name__ == '__main__': #run_simulation() # This will take ~20s, produces data/fig3_sim_output.pckl make_fig_3()
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. from fig_S8 import * def make_fig_S9(): ys1, ys2 = extract_sensitivity_results() d_es = [2, 3, 4, 5, 6, 7, 8] mus_de = [] sems_de = [] for d_e in d_es: Y = ys1[d_e][:, 49] mus_de.append(Y.mean()) sems_de.append(Y.std() / np.sqrt(len(Y))) Ds = [50, 100, 200, 500, 1000] mus_D = [] sems_D = [] for D in Ds: Y = ys2[D][:, 49] mus_D.append(Y.mean()) sems_D.append(Y.std() / np.sqrt(len(Y))) fig = plt.figure(figsize=(5.5, 1.8)) ax = fig.add_subplot(121) ax.errorbar(d_es, mus_de, yerr=2*np.array(sems_de)) ax.set_ylim([0.3, 2.85]) ax.set_yticks([0.5, 1.0, 1.5, 2.0, 2.5]) ax.set_xlabel(r'Embedding dimension $d_e$', fontsize=9) ax.set_title(r'Branin, $D=100$') ax.set_ylabel('Best value found', fontsize=9) ax.grid(alpha=0.2) ax = fig.add_subplot(122) ax.errorbar(Ds, mus_D, yerr=2*np.array(sems_D)) ax.set_ylim([0.3, 2.85]) ax.set_yticks([0.5, 1.0, 1.5, 2.0, 2.5]) ax.set_yticklabels([]) ax.set_xlabel(r'Ambient dimension $D$', fontsize=9) ax.set_title('Branin, $d_e=4$') ax.grid(alpha=0.2) ax.set_xticks([50, 200, 500, 1000]) plt.subplots_adjust(right=0.93, bottom=0.19, left=0.12, top=0.89, wspace=0.1) plt.savefig('pdfs/branin_by_D_d.pdf', pad_inches=0) if __name__ == '__main__': make_fig_S9()
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. import json import numpy as np from ax.storage.json_store.decoder import object_from_json from plot_config import * def extract_ablation_results(): with open(f'../benchmarks/results/ablation_aggregated_results.json', 'r') as fin: res = object_from_json(json.load(fin)) # Results ys = { 'ALEBO': res['Branin, D=100_ablation'].objective_at_true_best['ALEBO, base'], 'Ablation: Matern kernel': res['Branin, D=100_ablation'].objective_at_true_best['ALEBO, kernel ablation'], 'Ablation: Normal projection': res['Branin, D=100_ablation'].objective_at_true_best['ALEBO, projection ablation'], } return ys def make_fig_S_ablation(): ys = extract_ablation_results() fig = plt.figure(figsize=(4, 2.5)) ax = fig.add_subplot(111) x = np.arange(1, 51) for k, y in ys.items(): f = y.mean(axis=0) sem = y.std(axis=0) / np.sqrt(y.shape[0]) ax.errorbar(x, f, yerr=2 * sem, label=k) ax.set_ylim([0, 7]) ax.set_yticks([0, 2, 4, 6]) ax.legend(fontsize=7, loc='lower left') ax.set_title(r'Branin, $D=100$') ax.set_ylabel('Best value found', fontsize=9) ax.set_xlabel('Function evaluations', fontsize=9) ax.axhline(y=0.397887, c='gray', ls='--') ax.grid(alpha=0.2, zorder=-10) ax.set_xlim([0, 51]) plt.subplots_adjust(right=0.995, bottom=0.16, left=0.1, top=0.91, wspace=0.05) plt.savefig('pdfs/branin_ablation_traces.pdf', pad_inches=0) if __name__ == '__main__': make_fig_S_ablation()
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. import numpy as np import pickle from plot_config import * def make_fig_S2(): # Load in simulation results with open('data/fig3_sim_output.pckl', 'rb') as fin: (test_Y, f1, var1, f2, var2, f3, var3) = pickle.load(fin) fig = plt.figure(figsize=(5.5, 2)) ax = fig.add_subplot(131) ax.errorbar( x=test_Y.numpy(), y=f3.numpy(), yerr = 2 * np.sqrt(var3.numpy()), c='gray', lw=1, ls='', marker='.', mfc='k', mec='k', ms=3 ) x0 = -2.5 x1 = 0.5 ax.plot([x0, x1], [x0, x1], '-', zorder=-5, alpha=0.5, c='steelblue', lw=2) ax.set_xlim([x0, x1]) ax.set_ylim([x0, x1]) ax.set_xlabel('True value', fontsize=9) ax.set_ylabel('Model prediction', fontsize=9) ax.set_title('ARD RBF', fontsize=9) ax = fig.add_subplot(132) ax.errorbar( x=test_Y.numpy(), y=f2.numpy(), yerr = 2 * np.sqrt(var2.numpy()), c='gray', lw=1, ls='', marker='.', mfc='k', mec='k', ms=3 ) x0 = -2.5 x1 = 0.5 ax.plot([x0, x1], [x0, x1], '-', zorder=-5, alpha=0.5, c='steelblue', lw=2) ax.set_xlim([x0, x1]) ax.set_ylim([x0, x1]) ax.set_xlabel('True value', fontsize=9) ax.set_title('Mahalanobis\npoint estimate', fontsize=9) ax = fig.add_subplot(133) ax.errorbar( x=test_Y.numpy(), y=f1.numpy(), yerr = 2 * np.sqrt(var1.numpy()), c='gray', lw=1, ls='', marker='.', mfc='k', mec='k', ms=3 ) x0 = -3. x1 = 1 ax.plot([x0, x1], [x0, x1], '-', zorder=-5, alpha=0.5, c='steelblue', lw=2) ax.set_xlim([x0, x1]) ax.set_ylim([x0, x1]) ax.set_title('Mahalanobis\nposterior sampled', fontsize=9) ax.set_xticks([-3, -2, -1, 0, 1]) ax.set_xlabel('True value', fontsize=9) plt.subplots_adjust(right=0.99, bottom=0.17, left=0.1, top=0.84, wspace=0.3) plt.savefig('pdfs/model_predictions.pdf', pad_inches=0) if __name__ == '__main__': # Assumes fig_3 has already been run make_fig_S2()
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. from fig_4 import * def run_simulation(): t1 = time.time() nsamp = 1000 res = {'unitsphere': {}} for D in [50, 100, 200]: for d in range(2, 19, 2): for d_use in range(2, 21, 2): if d_use < d: continue res['unitsphere'][(D, d, d_use)] = p_A_contains_optimizer( d=d, D=D, d_use=d_use, gen_A_fn=gen_A_unitsphere, nsamp=nsamp ) with open('data/figS6_sim_output.pckl', 'wb') as fout: pickle.dump(res, fout) print(time.time() - t1) def make_fig_S6(): with open('data/figS6_sim_output.pckl', 'rb') as fin: res = pickle.load(fin) fig, (ax1, ax2, ax3, ax4) = plt.subplots(ncols=4,figsize=(5.5, 2), gridspec_kw={"width_ratios":[1, 1, 1, 0.15]}) axes = [ax1, ax2, ax3] for i, D in enumerate([50, 100, 200]): ds = [] duses = [] ps = [] for d in range(2, 19, 2): for d_use in range(2, 21, 2): if d_use < d: continue ds.append(d) duses.append(d_use) ps.append(res['unitsphere'][(D, d, d_use)]) cntr = axes[i].tricontourf(duses, ds, ps, levels=np.linspace(0, 1.001, 21), cmap='viridis') axes[i].set_title(f'$D={D}$') if i == 0: axes[i].set_yticks([2, 6, 10, 14, 18]) axes[i].set_ylabel(r'True subspace dimension $d$', fontsize=9) else: axes[i].set_yticks([2, 6, 10, 14, 18]) axes[i].set_yticklabels([]) axes[i].grid(alpha=0.2, zorder=-2) axes[i].set_xlabel(r'Embedding $d_e$') axes[i].set_xticks([2, 6, 10, 14, 18]) ax4.patch.set_visible(False) ax4.set_yticks([]) ax4.set_xticks([]) fig.colorbar(cntr, ax=ax4, ticks=[0, 0.25, 0.5, 0.75, 1.], fraction=1) plt.subplots_adjust(right=0.97, bottom=0.2, left=0.07, top=0.89, wspace=0.1) plt.savefig('pdfs/lp_solns_D.pdf', pad_inches=0) if __name__ == '__main__': #run_simulation() # This takes about 3hrs and produces data/figS6_sim_output.pckl make_fig_S6()
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. import json import numpy as np from ax.storage.json_store.decoder import object_from_json from plot_config import * def make_fig_S7(): # Load in the benchmark results res = {} for fname in [ 'hartmann6_1000', 'branin_gramacy_100', 'hartmann6_100', 'hartmann6_random_subspace_1000', ]: with open(f'../benchmarks/results/{fname}_aggregated_results.json', 'r') as fin: res.update(object_from_json(json.load(fin))) # A map from method idx in plot_method_names to the name used in res method_idx_to_res_name = { 0: 'ALEBO', 1: 'REMBO', 2: 'HeSBO, d=d', 3: 'HeSBO, d=2d', 4: 'rrembos_standard_kPsi', 5: 'rrembos_reverse_kPsi', 6: 'ebo', 7: 'addgpucb', 8: 'smac', 9: 'cmaes', 10: 'turbo', 11: 'Sobol', 12: 'coordinatelinebo', 13: 'randomlinebo', 14: 'descentlinebo', } # Make the figure fig = plt.figure(figsize=(5.5, 7.5)) ####### Branin, D=100 ax1 = fig.add_subplot(511) res_h = res['Branin, D=100'] for idx, m in enumerate(plot_method_names): res_name = method_idx_to_res_name[idx] if res_name not in res_h.objective_at_true_best: continue # Not run on this problem Y = np.log(res_h.objective_at_true_best[res_name] - 0.397887) f = Y.mean(axis=0) sem = Y.std(axis=0) / np.sqrt(Y.shape[0]) x = np.arange(1, 51) color = plot_colors[m] ax1.plot(x, f, color=color, label=m) ax1.errorbar(x[4::5], f[4::5], yerr=2 * sem[4::5], color=color, alpha=0.5, ls='') ax1.set_xlim([0, 51]) ax1.set_ylim([-6, 2]) ax1.set_ylabel('Log regret', fontsize=9) ax1.grid(alpha=0.2, zorder=-10) ax1.set_title(r'Branin, $d$=2, $D$=100') ####### Hartmann6, D=1000 ax2 = fig.add_subplot(512) res_h = res['Hartmann6, D=1000'] for idx, m in enumerate(plot_method_names): res_name = method_idx_to_res_name[idx] if res_name not in res_h.objective_at_true_best: continue # Not run on this problem Y = np.log(res_h.objective_at_true_best[res_name] - (-3.32237)) f = Y.mean(axis=0) sem = Y.std(axis=0) / np.sqrt(Y.shape[0]) x = np.arange(1, 201) color = plot_colors[m] ax2.plot(x, f, color=color, label=m) ax2.errorbar(x[9::10], f[9::10], yerr=2 * sem[9::10], color=color, alpha=0.5, ls='') ax2.set_xlim([0, 201]) ax2.set_ylim([-2.5, 1.7]) ax2.set_ylabel('Log regret', fontsize=9) ax2.grid(alpha=0.2, zorder=-10) ax2.set_title(r'Hartmann6, $d$=6, $D$=1000') ####### Gramacy, D=100 ax3 = fig.add_subplot(513) res_h = res['Gramacy, D=100'] for idx, m in enumerate(plot_method_names): res_name = method_idx_to_res_name[idx] if res_name not in res_h.objective_at_true_best: continue # Not run on this problem Y = np.log(res_h.objective_at_true_best[res_name] - 0.5998) f = Y.mean(axis=0) sem = Y.std(axis=0) / np.sqrt(Y.shape[0]) x = np.arange(1, 51) color = plot_colors[m] ax3.plot(x, f, color=color, label=m) ax3.errorbar(x[4::5], f[4::5], yerr=2 * sem[4::5], color=color, alpha=0.5, ls='') ax3.set_xlim([0, 51]) ax3.set_ylabel('Log regret', fontsize=9) ax3.grid(alpha=0.2, zorder=-10) ax3.set_title(r'Gramacy, $d$=2, $D=100$') ####### Hartmann6, D=100 ax4 = fig.add_subplot(514) res_h = res['Hartmann6, D=100'] for idx, m in enumerate(plot_method_names): res_name = method_idx_to_res_name[idx] if res_name not in res_h.objective_at_true_best: continue # Not run on this problem Y = np.log(res_h.objective_at_true_best[res_name] - (-3.32237)) f = Y.mean(axis=0) sem = Y.std(axis=0) / np.sqrt(Y.shape[0]) x = np.arange(1, 201) color = plot_colors[m] ax4.plot(x, f, color=color, label=m) ax4.errorbar(x[9::10], f[9::10], yerr=2 * sem[9::10], color=color, alpha=0.5, ls='') ax4.set_xlim([0, 201]) ax4.set_ylim([-4, 1.7]) ax4.set_ylabel('Log regret', fontsize=9) ax4.grid(alpha=0.2, zorder=-10) ax4.set_title(r'Hartmann6, $d$=6, $D$=100') # Add the legend ax4.legend(bbox_to_anchor=(1.44, 5.405), fontsize=8) ####### Hartmann6 random subspace, D=1000 ax5 = fig.add_subplot(515) res_h = res['Hartmann6 random subspace, D=1000'] for idx, m in enumerate(plot_method_names): res_name = method_idx_to_res_name[idx] if res_name not in res_h.objective_at_true_best: continue # Not run on this problem Y = np.log(res_h.objective_at_true_best[res_name] - (-3.32237)) f = Y.mean(axis=0) sem = Y.std(axis=0) / np.sqrt(Y.shape[0]) x = np.arange(1, 201) color = plot_colors[m] ax5.plot(x, f, color=color, label=m) ax5.errorbar(x[9::10], f[9::10], yerr=2 * sem[9::10], color=color, alpha=0.5, ls='') ax5.set_xlim([0, 201]) ax5.set_ylim([-2.1, 1.7]) ax5.set_xlabel('Function evaluations', fontsize=9) ax5.set_ylabel('Log regret', fontsize=9) ax5.grid(alpha=0.2, zorder=-10) ax5.set_title(r'Hartmann6, $d$=6 random subspace, $D$=1000') plt.subplots_adjust(right=0.72, bottom=0.06, left=0.08, top=0.97, hspace=0.45) plt.savefig('pdfs/log_regrets.pdf', pad_inches=0) if __name__ == '__main__': make_fig_S7()
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. from math import pi from fig_3 import * def compute_ll(f, var, test_Y): return -0.5 * (torch.log(2 * pi * var) + ((test_Y - f) ** 2) / var).sum().item() def run_simulation(): D = 100 d = 6 # Get projection torch.manual_seed(10) B0 = torch.randn(d, D, dtype=torch.double) B = B0 / torch.sqrt((B0 ** 2).sum(dim=0)) # Get test data _, _, _, test_X, test_Y, _, _ = gen_train_test_sets(B, ntrain=10, ntest=1000, seed_test=1000) ns = np.array([40, 50, 75, 100, 125, 150, 175, 200]) nrep = 20 ll_alebo = np.zeros((nrep, len(ns))) ll_ard = np.zeros((nrep, len(ns))) for i in range(nrep): for j, n in enumerate(ns): # Generate training data train_X, train_Y, train_Yvar, _, _, mu, sigma = gen_train_test_sets( B, ntrain=n, ntest=10, seed_train=(i + 1) * len(ns) + j ) # Predict with each model f1, var1 = fit_and_predict_alebo(B, train_X, train_Y, train_Yvar, test_X, mu, sigma) f3, var3 = fit_and_predict_ARDRBF(B, train_X, train_Y, train_Yvar, test_X, mu, sigma) ll_alebo[i, j] = compute_ll(f1, var1, test_Y) ll_ard[i, j] = compute_ll(f3, var3, test_Y) # Save outcome with open('data/figS3_sim_output.pckl', 'wb') as fout: pickle.dump((ns, ll_alebo, ll_ard), fout) def make_fig_S3(): with open('data/figS3_sim_output.pckl', 'rb') as fin: (ns, ll_alebo, ll_ard) = pickle.load(fin) ntest = 1000. nrep = 20 fig = plt.figure(figsize=(3, 2)) ax = fig.add_subplot(111) ax.errorbar(ns, ll_alebo.mean(axis=0) / ntest, yerr=2 * ll_alebo.std(axis=0)/ ntest / np.sqrt(nrep)) ax.errorbar(ns, ll_ard.mean(axis=0) / ntest, yerr=2 * ll_ard.std(axis=0)/ ntest / np.sqrt(nrep)) ax.grid(alpha=0.2) ax.set_ylabel('Average test-set\nlog likelihood', fontsize=9) ax.set_xlabel('Training set size', fontsize=9) ax.legend(['Mahalanobis, sampled', 'ARD RBF'], fontsize=7, loc='lower right') plt.subplots_adjust(right=0.995, bottom=0.19, left=0.21, top=0.98, wspace=0.3) plt.savefig('pdfs/log_likelihood.pdf', pad_inches=0) if __name__ == '__main__': run_simulation() # Produces data/figS3_sim_output.pckl make_fig_S3()
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. """ Run NASBench benchmarks """ import os os.environ['OPENBLAS_NUM_THREADS'] = '1' os.environ['OMP_NUM_THREADS'] = '1' import json import numpy as np # This loads the nasbench dataset, which takes ~30s from nasbench_evaluation import ( get_nasbench_ax_client, evaluate_parameters, NASBenchRunner, ) from ax.modelbridge.registry import Models from ax.modelbridge.generation_strategy import GenerationStep, GenerationStrategy from ax.modelbridge.strategies.alebo import ALEBOStrategy from ax.modelbridge.strategies.rembo import HeSBOStrategy, REMBOStrategy from ax.storage.json_store.encoder import object_to_json from ax.core.data import Data import turbo import cma def run_nasbench_benchmarks_ax(rep): """ Runs the Ax methods on the nasbench benchmark (Sobol, ALEBO, HeSBO, REMBO) """ gs_list = [ GenerationStrategy(name="Sobol", steps=[GenerationStep(model=Models.SOBOL, num_trials=-1)]), ALEBOStrategy(D=36, d=12, init_size=10), HeSBOStrategy(D=36, d=12, init_per_proj=10), REMBOStrategy(D=36, d=12, init_per_proj=4), ] for gs in gs_list: try: axc = get_nasbench_ax_client(gs) for i in range(50): param_dict_i, trial_index = axc.get_next_trial() raw_data = evaluate_parameters(param_dict_i) axc.complete_trial(trial_index=trial_index, raw_data=raw_data) with open(f'results/nasbench_{gs.name}_rep_{rep}.json', 'w') as fout: json.dump(object_to_json(axc.experiment), fout) except Exception: pass return def run_nasbench_benchmarks_turbo(rep): r = NASBenchRunner(max_eval=50) turbo1 = turbo.Turbo1( f=r.f, lb=np.zeros(36), ub=np.ones(36), n_init=10, max_evals=50, batch_size=1, ) turbo1.optimize() with open(f'results/nasbench_turbo_rep_{rep}.json', "w") as fout: json.dump((r.fs, r.feas), fout) def run_nasbench_benchmarks_cmaes(rep): r = NASBenchRunner(max_eval=50) try: cma.fmin( objective_function=r.f, x0=[0.5] * 36, sigma0=0.25, options={ 'bounds': [[0.0] * 36, [1.0] * 36], 'maxfevals': 50, }, ) except ValueError: pass # CMA-ES doesn't always terminate at exactly maxfevals with open(f'results/nasbench_cmaes_rep_{rep}.json', "w") as fout: json.dump((r.fs, r.feas), fout) if __name__ == '__main__': for rep in range(100): run_nasbench_benchmarks_cmaes(rep) run_nasbench_benchmarks_turbo(rep) run_nasbench_benchmarks_notbatch(rep)
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. from typing import Any, Callable, Dict, List, MutableMapping, Optional, Tuple, Union from ax.models.torch.botorch_defaults import get_and_fit_model from ax.modelbridge.strategies.alebo import ALEBOStrategy, get_ALEBOInitializer import torch from torch import Tensor from ax.core.data import Data from ax.core.experiment import Experiment from ax.core.search_space import SearchSpace from ax.modelbridge.factory import DEFAULT_TORCH_DEVICE from ax.modelbridge.generation_strategy import GenerationStep, GenerationStrategy from ax.modelbridge.random import RandomModelBridge from ax.modelbridge.torch import TorchModelBridge from ax.modelbridge.transforms.centered_unit_x import CenteredUnitX from ax.modelbridge.transforms.standardize_y import StandardizeY from botorch.models.gpytorch import GPyTorchModel from ax.models.torch.alebo import ALEBO class ALEBO_kernel_ablation(ALEBO): def get_and_fit_model( self, Xs: List[Tensor], Ys: List[Tensor], Yvars: List[Tensor], state_dicts: Optional[List[MutableMapping[str, Tensor]]] = None, ) -> GPyTorchModel: return get_and_fit_model( Xs=Xs, Ys=Ys, Yvars=Yvars, task_features=[], fidelity_features=[], metric_names=[], state_dict=None, ) def get_ALEBO_kernel_ablation( experiment: Experiment, search_space: SearchSpace, data: Data, B: torch.Tensor, **model_kwargs: Any, ) -> TorchModelBridge: if search_space is None: search_space = experiment.search_space return TorchModelBridge( experiment=experiment, search_space=search_space, data=data, model=ALEBO_kernel_ablation(B=B, **model_kwargs), transforms=[CenteredUnitX, StandardizeY], torch_dtype=B.dtype, torch_device=B.device, ) class ALEBOStrategy_kernel_ablation(GenerationStrategy): def __init__( self, D: int, d: int, init_size: int, name: str = "ALEBO", dtype: torch.dtype = torch.double, device: torch.device = DEFAULT_TORCH_DEVICE, random_kwargs: Optional[Dict[str, Any]] = None, gp_kwargs: Optional[Dict[str, Any]] = None, gp_gen_kwargs: Optional[Dict[str, Any]] = None, ) -> None: self.D = D self.d = d self.init_size = init_size self.dtype = dtype self.device = device self.random_kwargs = random_kwargs if random_kwargs is not None else {} self.gp_kwargs = gp_kwargs if gp_kwargs is not None else {} self.gp_gen_kwargs = gp_gen_kwargs B = self.gen_projection(d=d, D=D, device=device, dtype=dtype) self.gp_kwargs.update({"B": B}) self.random_kwargs.update({"B": B.cpu().numpy()}) steps = [ GenerationStep( model=get_ALEBOInitializer, num_arms=init_size, model_kwargs=self.random_kwargs, ), GenerationStep( model=get_ALEBO_kernel_ablation, num_arms=-1, model_kwargs=self.gp_kwargs, model_gen_kwargs=gp_gen_kwargs, ), ] super().__init__(steps=steps, name=name) def clone_reset(self) -> "ALEBOStrategy": """Copy without state.""" return self.__class__( D=self.D, d=self.d, init_size=self.init_size, name=self.name, dtype=self.dtype, device=self.device, random_kwargs=self.random_kwargs, gp_kwargs=self.gp_kwargs, gp_gen_kwargs=self.gp_gen_kwargs, ) def gen_projection( self, d: int, D: int, dtype: torch.dtype, device: torch.device ) -> torch.Tensor: """Generate the projection matrix B as a (d x D) tensor """ B0 = torch.randn(d, D, dtype=dtype, device=device) B = B0 / torch.sqrt((B0 ** 2).sum(dim=0)) return B class ALEBOStrategy_projection_ablation(ALEBOStrategy): def gen_projection( self, d: int, D: int, dtype: torch.dtype, device: torch.device ) -> torch.Tensor: B0 = torch.randn(d, D, dtype=dtype, device=device) return B0
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. """ Run benchmarks for CMAES. Requires installing cma from pip. The experiments here used version 2.7.0. """ import os os.environ['OPENBLAS_NUM_THREADS'] = '1' os.environ['OMP_NUM_THREADS'] = '1' import json from benchmark_problems import ( branin_100, hartmann6_100, hartmann6_1000, hartmann6_random_subspace_1000, ) from ax.benchmark.benchmark import benchmark_minimize_callable from ax.storage.json_store.encoder import object_to_json import cma # cma==2.7.0 def run_hartmann6_benchmarks(D, rep, random_subspace=False): if D == 100: problem = hartmann6_100 elif D == 1000 and not random_subspace: problem = hartmann6_1000 elif D == 1000 and random_subspace: problem = hartmann6_random_subspace_1000 experiment, f = benchmark_minimize_callable( problem=problem, num_trials=200, method_name='cmaes', replication_index=rep, ) try: cma.fmin( objective_function=f, x0=[0.5] * D, sigma0=0.25, options={'bounds': [[0] * D, [1] * D], 'maxfevals': 200}, ) except ValueError: pass # CMA-ES doesn't always terminate at exactly maxfevals rs_str = 'random_subspace_' if random_subspace else '' with open(f'results/hartmann6_{rs_str}{D}_cmaes_rep_{rep}.json', "w") as fout: json.dump(object_to_json(experiment), fout) def run_branin_benchmarks(rep): experiment, f = benchmark_minimize_callable( problem=branin_100, num_trials=50, method_name='cmaes', replication_index=rep, ) try: cma.fmin( objective_function=f, x0=[2.5] * 50 + [7.5] * 50, sigma0=3.75, options={ 'bounds': [[-5] * 50 + [0] * 50, [10] * 50 + [15] * 50], 'maxfevals': 50, }, ) except ValueError: pass # CMA-ES doesn't always terminate at exactly maxfevals with open(f'results/branin_100_cmaes_rep_{rep}.json', "w") as fout: json.dump(object_to_json(experiment), fout) if __name__ == '__main__': # Run all of the CMAES experiments. # These can be distributed. for i in range(50): # Hartmann6, D=100: Each rep takes ~5 s run_hartmann6_benchmarks(D=100, rep=i) # Hartmann6, D=1000: Each rep takes ~10 s run_hartmann6_benchmarks(D=1000, rep=i) # Branin, D=100: Each rep takes ~1 s run_branin_benchmarks(rep=i) # Hartmann6 random subspace, D=1000 run_hartmann6_benchmarks(D=1000, rep=i, random_subspace=True)
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. """ Run benchmarks for SMAC. Requires installing smac from pip. The experiments here used version 2.7.0. """ import os os.environ['OPENBLAS_NUM_THREADS'] = '1' os.environ['OMP_NUM_THREADS'] = '1' import json import numpy as np from benchmark_problems import ( branin_100, hartmann6_100, hartmann6_1000, hartmann6_random_subspace_1000, ) from ax.benchmark.benchmark import benchmark_minimize_callable from ax.storage.json_store.encoder import object_to_json from smac.facade.smac_hpo_facade import SMAC4HPO from smac.scenario.scenario import Scenario from smac.configspace import ConfigurationSpace from smac.runhistory.runhistory import RunKey from smac.initial_design.random_configuration_design import RandomConfigurations from smac.tae.execute_func import ExecuteTAFuncArray from ConfigSpace.hyperparameters import UniformFloatHyperparameter def fmin_smac_nopynisher(func, x0, bounds, maxfun, rng): """ Minimize a function using SMAC, but without pynisher, which doesn't work well with benchmark_minimize_callable. This function is based on SMAC's fmin_smac. """ cs = ConfigurationSpace() tmplt = 'x{0:0' + str(len(str(len(bounds)))) + 'd}' for idx, (lower_bound, upper_bound) in enumerate(bounds): parameter = UniformFloatHyperparameter( name=tmplt.format(idx + 1), lower=lower_bound, upper=upper_bound, default_value=x0[idx], ) cs.add_hyperparameter(parameter) scenario_dict = { "run_obj": "quality", "cs": cs, "deterministic": "true", "initial_incumbent": "DEFAULT", "runcount_limit": maxfun, } scenario = Scenario(scenario_dict) def call_ta(config): x = np.array([val for _, val in sorted(config.get_dictionary().items())], dtype=np.float) return func(x) smac = SMAC4HPO( scenario=scenario, tae_runner=ExecuteTAFuncArray, tae_runner_kwargs={'ta': call_ta, 'use_pynisher': False}, rng=rng, initial_design=RandomConfigurations, ) smac.optimize() return def run_hartmann6_benchmarks(D, rep, random_subspace=False): if D == 100: problem = hartmann6_100 elif D == 1000 and not random_subspace: problem = hartmann6_1000 elif D == 1000 and random_subspace: problem = hartmann6_random_subspace_1000 experiment, f = benchmark_minimize_callable( problem=problem, num_trials=200, method_name='smac', replication_index=rep, ) fmin_smac_nopynisher( func=f, x0=[0.5] * D, bounds=[[0, 1]] * D, maxfun=200, rng=rep + 1, ) rs_str = 'random_subspace_' if random_subspace else '' with open(f'results/hartmann6_{rs_str}{D}_smac_rep_{rep}.json', "w") as fout: json.dump(object_to_json(experiment), fout) def run_branin_benchmarks(rep): experiment, f = benchmark_minimize_callable( problem=branin_100, num_trials=50, method_name='smac', replication_index=rep, ) fmin_smac_nopynisher( func=f, x0=[2.5] * 50 + [7.5] * 50, bounds=[[-5, 10]] * 50 + [[0, 15]] * 50, maxfun=50, rng=rep + 1, ) with open(f'results/branin_100_smac_rep_{rep}.json', "w") as fout: json.dump(object_to_json(experiment), fout) if __name__ == '__main__': # Run all of the SMAC experiments. # These can be distributed. for i in range(50): # Hartmann6, D=100: Each rep takes ~1.5 hours run_hartmann6_benchmarks(D=100, rep=i) # Branin, D=100: Each rep takes ~20 mins run_branin_benchmarks(rep=i) # Hartmann6, D=1000: Each rep takes ~36 hours for i in range(10): run_hartmann6_benchmarks(D=1000, rep=i) # Hartmann6 random subspace, D=1000 run_hartmann6_benchmarks(D=1000, rep=i, random_subspace=True)
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. """ Run benchmarks for TuRBO. Requires installing turbo from https://github.com/uber-research/TuRBO. The experiments here used version 0.0.1 (commit 8461f9c). """ import os os.environ['OPENBLAS_NUM_THREADS'] = '1' os.environ['OMP_NUM_THREADS'] = '1' import json import numpy as np from benchmark_problems import ( branin_100, hartmann6_100, hartmann6_1000, hartmann6_random_subspace_1000, ) from ax.benchmark.benchmark import benchmark_minimize_callable from ax.storage.json_store.encoder import object_to_json import turbo def run_hartmann6_benchmarks(D, rep, random_subspace=False): if D == 100: problem = hartmann6_100 elif D == 1000 and not random_subspace: problem = hartmann6_1000 elif D == 1000 and random_subspace: problem = hartmann6_random_subspace_1000 experiment, f = benchmark_minimize_callable( problem=problem, num_trials=200, method_name='turbo', replication_index=rep, ) turbo1 = turbo.Turbo1( f=f, lb=np.zeros(D), ub=np.ones(D), n_init=10, max_evals=200, ) turbo1.optimize() rs_str = 'random_subspace_' if random_subspace else '' with open(f'results/hartmann6_{rs_str}{D}_turbo_rep_{rep}.json', "w") as fout: json.dump(object_to_json(experiment), fout) def run_branin_benchmarks(rep): experiment, f = benchmark_minimize_callable( problem=branin_100, num_trials=50, method_name='turbo', replication_index=rep, ) turbo1 = turbo.Turbo1( f=f, lb=np.hstack((-5 * np.ones(50), np.zeros(50))), ub=np.hstack((10 * np.ones(50), 15 * np.ones(50))), n_init=10, max_evals=50, ) turbo1.optimize() with open(f'results/branin_100_turbo_rep_{rep}.json', "w") as fout: json.dump(object_to_json(experiment), fout) if __name__ == '__main__': # Run all of the TuRBO experiments. # These can be distributed. for i in range(50): # Hartmann6, D=100: Each rep takes ~15 mins run_hartmann6_benchmarks(D=100, rep=i) # Hartmann6, D=1000: Each rep takes ~30 mins run_hartmann6_benchmarks(D=1000, rep=i) # Branin, D=100: Each rep takes ~5 mins run_branin_benchmarks(rep=i) # Hartmann6 random subspace, D=1000 run_hartmann6_benchmarks(D=1000, rep=i, random_subspace=True)
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. """ Compile all of the benchmark results from the different methods (potentially run in a distributed fashion) into a single BenchmarkResult object. All of the benchmark runs should be completed before running this. """ import gc import json import numpy as np from benchmark_problems import ( branin_100, branin_by_D, gramacy_100, hartmann6_100, hartmann6_1000, hartmann6_random_subspace_1000, ) from ax.benchmark.benchmark_result import aggregate_problem_results from ax.storage.json_store.encoder import object_to_json from ax.storage.json_store.decoder import object_from_json def merge_benchmark_results(res1, res2): """ Merges two benchmark results dictionaries in-place (res2 into res1) """ for problem_name in res2: for method_name in res2[problem_name]: for exp in res2[problem_name][method_name]: res1 = add_exp( res=res1, exp=exp, problem_name=problem_name, method_name=method_name, ) return res1 def add_exp(res, exp, problem_name, method_name): """ Add benchmark experiment exp to results dict res, under the specified problem_name and method_name. """ if problem_name not in res: res[problem_name] = {} if method_name not in res[problem_name]: res[problem_name][method_name] = [] res[problem_name][method_name].append(exp) return res def compile_hartmann6(D, random_subspace=False): if D == 100: problem = hartmann6_100 other_methods = ['addgpucb', 'cmaes', 'ebo', 'smac', 'turbo'] rls = ['rrembos_standard_kPsi', 'rrembos_reverse_kPsi', 'coordinatelinebo', 'descentlinebo', 'randomlinebo'] rs_str = '' elif D == 1000 and not random_subspace: problem = hartmann6_1000 other_methods = ['cmaes', 'smac', 'turbo'] rls = ['rrembos_standard_kPsi'] rs_str = '' elif D == 1000 and random_subspace: problem = hartmann6_random_subspace_1000 other_methods = ['cmaes', 'smac', 'turbo'] rls = [] rs_str = 'random_subspace_' all_results = {} for rep in range(50): with open(f'results/hartmann6_{rs_str}{D}_alebo_rembo_hesbo_sobol_rep_{rep}.json', 'r') as fin: res_i = object_from_json(json.load(fin)) all_results = merge_benchmark_results(all_results, res_i) for method_name in other_methods: if D==1000 and method_name == 'smac' and rep > 9: # SMAC D=1000 only run for 10 reps continue with open(f'results/hartmann6_{rs_str}{D}_{method_name}_rep_{rep}.json', 'r') as fin: exp_i = object_from_json(json.load(fin)) all_results = add_exp(res=all_results, exp=exp_i, problem_name=problem.name, method_name=method_name) res = aggregate_problem_results(runs=all_results[problem.name], problem=problem) # Add in RRembo and LineBOresults for method in rls: with open(f'results/hartmann6_{D}_{method}.json', 'r') as fin: A = json.load(fin) res.objective_at_true_best[method] = np.minimum.accumulate(np.array(A), axis=1) # Save with open(f'results/hartmann6_{rs_str}{D}_aggregated_results.json', "w") as fout: json.dump(object_to_json({problem.name: res}), fout) def compile_branin_gramacy_100(): all_results = {} for rep in range(50): with open(f'results/branin_gramacy_100_alebo_rembo_hesbo_sobol_rep_{rep}.json', 'r') as fin: res_i = object_from_json(json.load(fin)) all_results = merge_benchmark_results(all_results, res_i) for method_name in ['addgpucb', 'cmaes', 'ebo', 'smac', 'turbo']: with open(f'results/branin_100_{method_name}_rep_{rep}.json', 'r') as fin: exp_i = object_from_json(json.load(fin)) all_results = add_exp( res=all_results, exp=exp_i, problem_name='Branin, D=100', method_name=method_name, ) res = { p.name: aggregate_problem_results(runs=all_results[p.name], problem=p) for p in [branin_100, gramacy_100] } # Add in RRembo results for proj in ['standard', 'reverse']: method = f'rrembos_{proj}_kPsi' with open(f'results/branin_100_{method}.json', 'r') as fin: A = json.load(fin) res['Branin, D=100'].objective_at_true_best[method] = np.minimum.accumulate(np.array(A), axis=1) # Save with open(f'results/branin_gramacy_100_aggregated_results.json', "w") as fout: json.dump(object_to_json(res), fout) def compile_sensitivity_benchmarks(): all_results = {} for rep in range(50): ## Sensitivity to D with open(f'results/sensitivity_D_rep_{rep}.json', 'r') as fin: results_dict = json.load(fin) for D, obj in results_dict.items(): res_i = object_from_json(obj) all_results = merge_benchmark_results(all_results, res_i) ## Sensitivity to d_e with open(f'results/sensitivity_d_e_rep_{rep}.json', 'r') as fin: res_i = object_from_json(json.load(fin)) all_results = merge_benchmark_results(all_results, res_i) all_problems = ( [hartmann6_100, hartmann6_1000, branin_100, gramacy_100] + list(branin_by_D.values()) ) problems = [branin_100] + list(branin_by_D.values()) res = { p.name+'_sensitivity': aggregate_problem_results(runs=all_results[p.name], problem=p) for p in problems } # Save with open(f'results/sensitivity_aggregated_results.json', "w") as fout: json.dump(object_to_json(res), fout) def compile_ablation_benchmarks(): all_results = {} for rep in range(100): with open(f'results/ablation_rep_{rep}.json', 'r') as fin: res_i = object_from_json(json.load(fin)) all_results = merge_benchmark_results(all_results, res_i) problems = [branin_100] res = { p.name+'_ablation': aggregate_problem_results(runs=all_results[p.name], problem=p) for p in problems } # Save with open(f'results/ablation_aggregated_results.json', "w") as fout: json.dump(object_to_json(res), fout) def compile_nasbench(): all_res = {} # TuRBO and CMAES for method in ['turbo', 'cmaes']: all_res[method] = [] for rep in range(100): with open(f'results/nasbench_{method}_rep_{rep}.json', 'r') as fin: fs, feas = json.load(fin) # Set infeasible points to nan fs = np.array(fs) fs[~np.array(feas)] = np.nan all_res[method].append(fs) # Ax methods for method in ['Sobol', 'ALEBO', 'HeSBO', 'REMBO']: all_res[method] = [] for rep in range(100): with open(f'results/nasbench_{method}_rep_{rep}.json', 'r') as fin: exp = object_from_json(json.load(fin)) # Pull out results and set infeasible points to nan df = exp.fetch_data().df.sort_values(by='arm_name') df_obj = df[df['metric_name'] == 'final_test_accuracy'].copy().reset_index(drop=True) df_con = df[df['metric_name'] == 'final_training_time'].copy().reset_index(drop=True) infeas = df_con['mean'] > 1800 df_obj.loc[infeas, 'mean'] = np.nan all_res[method].append(df_obj['mean'].values) for method, arr in all_res.items(): all_res[method] = np.fmax.accumulate(np.vstack(all_res[method]), axis=1) with open(f'results/nasbench_aggregated_results.json', "w") as fout: json.dump(object_to_json(all_res), fout) if __name__ == '__main__': compile_nasbench() gc.collect() compile_hartmann6(D=100) gc.collect() compile_hartmann6(D=1000) gc.collect() compile_branin_gramacy_100() gc.collect() compile_sensitivity_benchmarks() gc.collect() compile_hartmann6(D=1000, random_subspace=True) gc.collect() compile_ablation_benchmarks()
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. import json import numpy as np from scipy.stats import special_ortho_group from typing import List, Optional from ax.benchmark.benchmark_problem import BenchmarkProblem from ax.core.objective import Objective from ax.core.optimization_config import OptimizationConfig from ax.core.outcome_constraint import ComparisonOp, OutcomeConstraint from ax.core.parameter import ParameterType, RangeParameter from ax.core.search_space import SearchSpace from ax.metrics.branin import BraninMetric from ax.metrics.hartmann6 import Hartmann6Metric from ax.metrics.noisy_function import NoisyFunctionMetric from ax.storage.metric_registry import register_metric from ax.utils.measurement.synthetic_functions import hartmann6 ### Hartmann6 problem, D=100 and D=1000 # Relevant parameters were chosen randomly using # x = np.arange(100) # np.random.seed(10) # np.random.shuffle(x) # print(x[:6]) # [19 14 43 37 66 3] hartmann6_100 = BenchmarkProblem( name="Hartmann6, D=100", optimal_value=-3.32237, optimization_config=OptimizationConfig( objective=Objective( metric=Hartmann6Metric( name="objective", param_names=["x19", "x14", "x43", "x37", "x66", "x3"], noise_sd=0.0, ), minimize=True, ) ), search_space=SearchSpace( parameters=[ RangeParameter( name=f"x{i}", parameter_type=ParameterType.FLOAT, lower=0.0, upper=1.0 ) for i in range(100) ] ), ) hartmann6_1000 = BenchmarkProblem( name="Hartmann6, D=1000", optimal_value=-3.32237, optimization_config=OptimizationConfig( objective=Objective( metric=Hartmann6Metric( name="objective", param_names=["x190", "x140", "x430", "x370", "x660", "x30"], noise_sd=0.0, ), minimize=True, ) ), search_space=SearchSpace( parameters=[ RangeParameter( name=f"x{i}", parameter_type=ParameterType.FLOAT, lower=0.0, upper=1.0 ) for i in range(1000) ] ), ) ### Branin problem, D=100 and sensitivity analysis # Original x1 and x2 have different bounds, so we create blocks of 50 for each # with each of the bounds and set the relevant parameters in those blocks. branin_100 = BenchmarkProblem( name="Branin, D=100", optimal_value=0.397887, optimization_config=OptimizationConfig( objective=Objective( metric=BraninMetric( name="objective", param_names=["x19", "x64"], noise_sd=0.0 ), minimize=True, ) ), search_space=SearchSpace( parameters=[ # pyre-ignore RangeParameter( name=f"x{i}", parameter_type=ParameterType.FLOAT, lower=-5.0, upper=10.0 ) for i in range(50) ] + [ RangeParameter( name=f"x{i + 50}", parameter_type=ParameterType.FLOAT, lower=0.0, upper=15.0, ) for i in range(50) ] ), ) # Additional dimensionalities for the sensitivity analysis to D. # Random embedding methods are invariant to the ordering of relevant/irrelevant # parameters, and also to the bounds on the irrelevant parameters. So since # these problems are being used only for ALEBO, we can simplify their # definition and take x0 and x1 as the relevant. base_branin_parameters = [ RangeParameter( name="x0", parameter_type=ParameterType.FLOAT, lower=-5.0, upper=10.0 ), RangeParameter( name="x1", parameter_type=ParameterType.FLOAT, lower=0.0, upper=15.0 ), ] branin_by_D = { D: BenchmarkProblem( name="Branin, D=" + str(D), optimal_value=0.397887, optimization_config=OptimizationConfig( objective=Objective( metric=BraninMetric( name="objective", param_names=["x0", "x1"], noise_sd=0.0 ), minimize=True, ) ), search_space=SearchSpace( parameters=base_branin_parameters # pyre-ignore + [ RangeParameter( name=f"x{i}", parameter_type=ParameterType.FLOAT, lower=0.0, upper=1.0, ) for i in range(2, D) ] ), ) for D in [50, 200, 500, 1000] } ### Gramacy problem, D=100 class GramacyObjective(NoisyFunctionMetric): def f(self, x: np.ndarray) -> float: return x.sum() class GramacyConstraint1(NoisyFunctionMetric): def f(self, x: np.ndarray) -> float: return 1.5 - x[0] - 2 * x[1] - 0.5 * np.sin(2 * np.pi * (x[0] ** 2 - 2 * x[1])) class GramacyConstraint2(NoisyFunctionMetric): def f(self, x: np.ndarray) -> float: return x[0] ** 2 + x[1] ** 2 - 1.5 # Register these metrics so they can be serialized to json register_metric(metric_cls=GramacyObjective, val=101) register_metric(metric_cls=GramacyConstraint1, val=102) register_metric(metric_cls=GramacyConstraint2, val=103) gramacy_100 = BenchmarkProblem( name="Gramacy, D=100", optimal_value=0.5998, optimization_config=OptimizationConfig( objective=Objective( metric=GramacyObjective( name="objective", param_names=["x19", "x64"], noise_sd=0.0 ), minimize=True, ), outcome_constraints=[ OutcomeConstraint( metric=GramacyConstraint1( name="constraint1", param_names=["x19", "x64"], noise_sd=0.0 ), op=ComparisonOp.LEQ, bound=0.0, relative=False, ), OutcomeConstraint( metric=GramacyConstraint2( name="constraint2", param_names=["x19", "x64"], noise_sd=0.0 ), op=ComparisonOp.LEQ, bound=0.0, relative=False, ), ], ), search_space=SearchSpace( parameters=[ RangeParameter( name=f"x{i}", parameter_type=ParameterType.FLOAT, lower=0.0, upper=1.0 ) for i in range(100) ] ), ) ### Hartmann6 D=1000 with random subspace class Hartmann6RandomSubspace1000Metric(NoisyFunctionMetric): def __init__( self, name: str, param_names: List[str], noise_sd: float = 0.0, lower_is_better: Optional[bool] = None, ) -> None: super().__init__( name=name, param_names=param_names, noise_sd=noise_sd, lower_is_better=lower_is_better, ) # Set the random basis try: with open('data/random_subspace_1000x6.json', 'r') as fin: self.random_basis = np.array(json.load(fin)) except IOError: np.random.seed(1000) self.random_basis = special_ortho_group.rvs(1000)[:6, :] with open('data/random_subspace_1000x6.json', 'w') as fout: json.dump(self.random_basis.tolist(), fout) def f(self, x: np.ndarray) -> float: # Project down to the true subspace z = self.random_basis @ x # x \in [-1, 1], so adjust z to be closer to [0, 1], and evaluate return hartmann6((z + 1) / 2.) register_metric(metric_cls=Hartmann6RandomSubspace1000Metric, val=104) hartmann6_random_subspace_1000 = BenchmarkProblem( name="Hartmann6 random subspace, D=1000", optimal_value=-3.32237, optimization_config=OptimizationConfig( objective=Objective( metric=Hartmann6RandomSubspace1000Metric( name="objective", param_names=[f"x{i}" for i in range(1000)], noise_sd=0.0, ), minimize=True, ) ), search_space=SearchSpace( parameters=[ RangeParameter( name=f"x{i}", parameter_type=ParameterType.FLOAT, lower=-1.0, upper=1.0 ) for i in range(1000) ] ), )
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. """ Run benchmarks for Add-GP-UCB. Requires installing dragonfly-opt from pip. The experiments here used version 0.1.4. """ import os os.environ['OPENBLAS_NUM_THREADS'] = '1' os.environ['OMP_NUM_THREADS'] = '1' from argparse import Namespace import json from benchmark_problems import ( branin_100, hartmann6_100, hartmann6_1000, ) from ax.benchmark.benchmark import benchmark_minimize_callable from ax.storage.json_store.encoder import object_to_json from dragonfly import minimise_function # dragonfly-opt==0.1.4 def run_hartmann6_benchmarks(D, rep): if D == 100: problem = hartmann6_100 elif D == 1000: problem = hartmann6_1000 experiment, f = benchmark_minimize_callable( problem=problem, num_trials=200, method_name='add_gp_ucb', replication_index=rep, ) options = Namespace(acq="add_ucb") res = minimise_function(f, domain=[[0, 1]] * D, max_capital=199, options=options) with open(f'results/hartmann6_{D}_addgpucb_rep_{rep}.json', "w") as fout: json.dump(object_to_json(experiment), fout) def run_branin_benchmarks(rep): experiment, f = benchmark_minimize_callable( problem=branin_100, num_trials=50, method_name='add_gp_ucb', replication_index=rep, ) options = Namespace(acq="add_ucb") res = minimise_function( f, domain=[[-5, 10]] * 50 + [[0, 15]] * 50, max_capital=49, options=options, ) with open(f'results/branin_100_addgpucb_rep_{rep}.json', "w") as fout: json.dump(object_to_json(experiment), fout) if __name__ == '__main__': # Run all of the Add-GP-UCB benchmarks using Dragonfly. # These can be distributed. for i in range(50): run_hartmann6_benchmarks(D=100, rep=i) ## Hartmann6, D=1000: Too slow, not run #run_hartmann6_benchmarks(D=1000, rep=i) # Branin, D=100: Each rep takes ~3 hours run_branin_benchmarks(rep=i)
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. """ Run benchmarks for LineBO on the Hartmann6 100 problem. These benchmarks are run using the benchmarking suite contained in the LineBO codebase. The code here loads in those results and extracts just the function evaluations, which are then stored in json. There are several steps that must be done before this script can be run. 1) Clone and install the LineBO software from https://github.com/jkirschner42/LineBO 2) copy data/hartmann6_100.yaml from here into the LineBO/config/ directory. This problem configuration is based on LineBO/config/hartmann6_sub14.yaml. 3) Run the experiments by executing: febo create hartmann6_100 --config config/hartmann6_100.yaml febo run hartmann6_100 4) Copy LineBO/runs/hartmann6_100/data/evaluations.hdf5 into results/ """ import numpy as np import h5py import json f = h5py.File('results/evaluations.hdf5', 'r') methods = ['RandomLineBO', 'CoordinateLineBO', 'DescentLineBO', 'Random', 'CMA-ES'] ys = {} for i, m in enumerate(methods): ys[m] = np.zeros((50, 200)) for rep in range(50): ys[m][rep, :] = f[str(i)][str(rep)]['y_exact'] * -3.32237 with open('results/hartmann6_100_randomlinebo.json', 'w') as fout: json.dump(ys['RandomLineBO'].tolist(), fout) with open('results/hartmann6_100_coordinatelinebo.json', 'w') as fout: json.dump(ys['CoordinateLineBO'].tolist(), fout) with open('results/hartmann6_100_descentlinebo.json', 'w') as fout: json.dump(ys['DescentLineBO'].tolist(), fout)
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. """ Run benchmarks for: ALEBO, REMBO, HeSBO, and Sobol. """ import os os.environ['OPENBLAS_NUM_THREADS'] = '1' os.environ['OMP_NUM_THREADS'] = '1' import json from benchmark_problems import ( branin_100, branin_by_D, gramacy_100, hartmann6_100, hartmann6_1000, hartmann6_random_subspace_1000, ) from ablation_models import ( ALEBOStrategy_projection_ablation, ALEBOStrategy_kernel_ablation, ) from ax.benchmark.benchmark import full_benchmark_run from ax.benchmark.benchmark_result import aggregate_problem_results from ax.modelbridge.registry import Models from ax.modelbridge.generation_strategy import GenerationStep, GenerationStrategy from ax.modelbridge.strategies.alebo import ALEBOStrategy from ax.modelbridge.strategies.rembo import HeSBOStrategy, REMBOStrategy from ax.storage.json_store.encoder import object_to_json def run_hartmann6_benchmarks(D, rep, random_subspace=False): if D == 100: problem = hartmann6_100 elif D == 1000 and not random_subspace: problem = hartmann6_1000 elif D == 1000 and random_subspace: problem = hartmann6_random_subspace_1000 strategy0 = GenerationStrategy( name="Sobol", steps=[ GenerationStep( model=Models.SOBOL, num_arms=-1, model_kwargs={'seed': rep + 1} ) ], ) strategy1 = ALEBOStrategy(D=D, d=12, init_size=10) strategy2 = REMBOStrategy(D=D, d=6, init_per_proj=2) strategy3 = HeSBOStrategy(D=D, d=6, init_per_proj=10, name=f"HeSBO, d=d") strategy4 = HeSBOStrategy(D=D, d=12, init_per_proj=10, name=f"HeSBO, d=2d") all_benchmarks = full_benchmark_run( num_replications=1, # Running them 1 at a time for distributed num_trials=200, batch_size=1, methods=[strategy0, strategy1, strategy2, strategy3, strategy4], problems=[problem], ) rs_str = 'random_subspace_' if random_subspace else '' with open( f'results/hartmann6_{rs_str}{D}_alebo_rembo_hesbo_sobol_rep_{rep}.json', "w" ) as fout: json.dump(object_to_json(all_benchmarks), fout) def run_branin_and_gramacy_100_benchmarks(rep): strategy0 = GenerationStrategy( name="Sobol", steps=[ GenerationStep( model=Models.SOBOL, num_arms=-1, model_kwargs={'seed': rep + 1} ) ], ) strategy1 = ALEBOStrategy(D=100, d=4, init_size=10) strategy2 = REMBOStrategy(D=100, d=2, init_per_proj=2) strategy3 = HeSBOStrategy(D=100, d=4, init_per_proj=10, name=f"HeSBO, d=2d") all_benchmarks = full_benchmark_run( num_replications=1, num_trials=50, batch_size=1, methods=[strategy0, strategy1, strategy2, strategy3], problems=[branin_100, gramacy_100], ) with open( f'results/branin_gramacy_100_alebo_rembo_hesbo_sobol_rep_{rep}.json', "w" ) as fout: json.dump(object_to_json(all_benchmarks), fout) def run_sensitivity_D_benchmarks(rep): results_dict = {} for D, problem in branin_by_D.items(): strategy1 = ALEBOStrategy(D=D, d=4, init_size=10) all_benchmarks = full_benchmark_run( num_replications=1, num_trials=50, batch_size=1, methods=[strategy1], problems=[problem], ) results_dict[D] = object_to_json(all_benchmarks) with open(f'results/sensitivity_D_rep_{rep}.json', "w") as fout: json.dump(results_dict, fout) def run_sensitivity_d_e_benchmarks(rep): strategies = [ ALEBOStrategy(D=100, d=d_e, init_size=10, name=f'ALEBO, d={d_e}') for d_e in [2, 3, 5, 6, 7, 8] ] all_benchmarks = full_benchmark_run( num_replications=1, num_trials=50, batch_size=1, methods=strategies, problems=[branin_100], ) with open(f'results/sensitivity_d_e_rep_{rep}.json', "w") as fout: json.dump(object_to_json(all_benchmarks), fout) def run_ablation_benchmarks(rep): strategies = [ ALEBOStrategy_projection_ablation(D=100, d=4, init_size=10, name='ALEBO, projection ablation'), ALEBOStrategy_kernel_ablation(D=100, d=4, init_size=10, name='ALEBO, kernel ablation'), ALEBOStrategy(D=100, d=4, init_size=10, name='ALEBO, base'), ] all_benchmarks = full_benchmark_run( num_replications=1, num_trials=50, batch_size=1, methods=strategies, problems=[branin_100], ) with open(f'results/ablation_rep_{rep}.json', "w") as fout: json.dump(object_to_json(all_benchmarks), fout) if __name__ == '__main__': # Run all of the benchmark replicates. # They are set up here to run as individual replicates becaus they can be # distributed. for i in range(50): # Hartmann6, D=100: Each rep takes ~2 hrs run_hartmann6_benchmarks(D=100, rep=i) # Hartmann6, D=1000: Each rep takes ~2.5 hrs run_hartmann6_benchmarks(D=1000, rep=i) # Hartmann6, D=1000: Each rep takes ~2.5 hrs run_hartmann6_benchmarks(D=1000, rep=i, random_subspace=True) # Branin and Gramacy, D=100: Each rep takes ~20 mins run_branin_and_gramacy_100_benchmarks(rep=i) # Sensitivity benchmarks: Each rep takes ~2 hrs run_sensitivity_D_benchmarks(rep=i) run_sensitivity_d_e_benchmarks(rep=i) for i in range(100): # Ablation benchmarks run_ablation_benchmarks(rep=i)
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. """ Run benchmarks for Ensemble BO. A few steps are required to use EBO: (1) git clone https://github.com/zi-w/Ensemble-Bayesian-Optimization in this directory. These experiments used commit 4e6f9ed04833cc2e21b5906b1181bc067298f914. (2) fix a python3 issue by editing ebo_core/helper.py to insert shape = int(shape) in line 7. """ import os os.environ['OPENBLAS_NUM_THREADS'] = '1' os.environ['OMP_NUM_THREADS'] = '1' import sys sys.path.insert(1, os.path.join(os.getcwd(), 'Ensemble-Bayesian-Optimization')) from ebo_core.ebo import ebo import json import numpy as np from benchmark_problems import ( branin_100, hartmann6_100, hartmann6_1000, ) from ax.benchmark.benchmark import benchmark_minimize_callable from ax.storage.json_store.encoder import object_to_json # These options are taken as package defaults from test_ebo.py core_options = { #'x_range':x_range, # input domain #'dx':x_range.shape[1], # input dimension #'max_value':f.f_max + sigma*5, # target value #'T':10, # number of iterations 'B':10, # number of candidates to be evaluated 'dim_limit':3, # max dimension of the input for each additive function component 'isplot':0, # 1 if plotting the result; otherwise 0. 'z':None, 'k':None, # group assignment and number of cuts in the Gibbs sampling subroutine 'alpha':1., # hyperparameter of the Gibbs sampling subroutine 'beta':np.array([5.,2.]), 'opt_n':1000, # points randomly sampled to start continuous optimization of acfun 'pid':'test3', # process ID for Azure 'datadir':'tmp_data/', # temporary data directory for Azure 'gibbs_iter':10, # number of iterations for the Gibbs sampling subroutine 'useAzure':False, # set to True if use Azure for batch evaluation 'func_cheap':True, # if func cheap, we do not use Azure to test functions 'n_add':None, # this should always be None. it makes dim_limit complicated if not None. 'nlayers': 100, # number of the layers of tiles 'gp_type':'l1', # other choices are l1, sk, sf, dk, df #'gp_sigma':0.1, # noise standard deviation 'n_bo':10, # min number of points selected for each partition 'n_bo_top_percent': 0.5, # percentage of top in bo selections 'n_top':10, # how many points to look ahead when doing choose Xnew 'min_leaf_size':10, # min number of samples in each leaf 'max_n_leaves':10, # max number of leaves 'thresAzure':1, # if batch size > thresAzure, we use Azure 'save_file_name': 'tmp/tmp.pk', } def run_hartmann6_benchmarks(D, rep): if D == 100: problem = hartmann6_100 elif D == 1000: problem = hartmann6_1000 experiment, f = benchmark_minimize_callable( problem=problem, num_trials=200, method_name='ebo', replication_index=rep, ) options = { 'x_range': np.vstack((np.zeros(D), np.ones(D))), 'dx': D, 'max_value': 3.32237, # Let it cheat and know the true max value 'T': 200, 'gp_sigma': 1e-7, } options.update(core_options) f_max = lambda x: -f(x) # since EBO maximizes e = ebo(f_max, options) try: e.run() except ValueError: pass # EBO can ask for more than T function evaluations with open(f'results/hartmann6_{D}_ebo_rep_{rep}.json', "w") as fout: json.dump(object_to_json(experiment), fout) def run_branin_benchmarks(rep): experiment, f = benchmark_minimize_callable( problem=branin_100, num_trials=50, method_name='ebo', replication_index=rep, ) options = { 'x_range': np.vstack(( np.hstack((-5 * np.ones(50), np.zeros(50))), np.hstack((10 * np.ones(50), 15 * np.ones(50))), )), 'dx': 100, 'max_value': -0.397887, # Let it cheat and know the true max value 'T': 50, 'gp_sigma': 1e-7, } options.update(core_options) f_max = lambda x: -f(x) # since EBO maximizes e = ebo(f_max, options) try: e.run() except ValueError: pass # EBO can ask for more than T function evaluations with open(f'results/branin_100_ebo_rep_{rep}.json', "w") as fout: json.dump(object_to_json(experiment), fout) if __name__ == '__main__': # Run all of the EBO benchmarks. # These can be distributed. for i in range(50): # Hartmann6, D=100: Each rep takes ~2 hours run_hartmann6_benchmarks(D=100, rep=i) ## Hartmann6, D=1000: Too slow, not run #run_hartmann6_benchmarks(D=1000, rep=i) # Branin, D=100: Each rep takes ~20 mins run_branin_benchmarks(rep=i)
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. """ Requires nasbench==1.0 from https://github.com/google-research/nasbench Also requires dataset nasbench_only108.tfrecord to be downloaded here. Creates an evaluation functionn for neural architecture search """ import numpy as np from ax.service.ax_client import AxClient from nasbench.lib.model_spec import ModelSpec from nasbench import api nasbench = api.NASBench('nasbench_only108.tfrecord') def get_spec(adj_indxs, op_indxs): """ Construct a NASBench spec from adjacency matrix and op indicators """ op_names = ['conv1x1-bn-relu', 'conv3x3-bn-relu', 'maxpool3x3'] ops = ['input'] ops.extend([op_names[i] for i in op_indxs]) ops.append('output') iu = np.triu_indices(7, k=1) adj_matrix = np.zeros((7, 7), dtype=np.int32) adj_matrix[(iu[0][adj_indxs], iu[1][adj_indxs])] = 1 spec = ModelSpec(adj_matrix, ops) return spec def evaluate_x(x): """ Evaluate NASBench on the model defined by x. x is a 36-d array. The first 21 are for the adjacency matrix. Largest entries will have the corresponding element in the adjacency matrix set to 1, with as many 1s as possible within the NASBench model space. The last 15 are for the ops in each of the five NASBench model components. One-hot encoded for each of the 5 components, 3 options. """ assert len(x) == 36 x_adj = x[:21] x_op = x[-15:] x_ord = x_adj.argsort()[::-1] op_indxs = x_op.reshape(3, 5).argmax(axis=0).tolist() last_good = None for i in range(1, 22): model_spec = get_spec(x_ord[:i], op_indxs) if model_spec.matrix is not None: # We have a connected graph # See if it has too many edges if model_spec.matrix.sum() > 9: break last_good = model_spec if last_good is None: # Could not get a valid spec from this x. Return bad metric values. return [0.80], [50 * 60] fixed_metrics, computed_metrics = nasbench.get_metrics_from_spec(last_good) test_acc = [r['final_test_accuracy'] for r in computed_metrics[108]] train_time = [r['final_training_time'] for r in computed_metrics[108]] return np.mean(test_acc), np.mean(train_time) def evaluate_parameters(parameters): x = np.array([parameters[f'x{i}'] for i in range(36)]) test_acc, train_time = evaluate_x(x) return { 'final_test_accuracy': (test_acc, 0.0), 'final_training_time': (train_time, 0.0), } def get_nasbench_ax_client(generation_strategy): # Get parameters parameters = [ { "name": f"x{i}", "type": "range", "bounds": [0, 1], "value_type": "float", "log_scale": False, } for i in range(36) ] axc = AxClient(generation_strategy=generation_strategy, verbose_logging=False) axc.create_experiment( name="nasbench", parameters=parameters, objective_name="final_test_accuracy", minimize=False, outcome_constraints=["final_training_time <= 1800"], ) return axc class NASBenchRunner: """ A runner for non-Ax methods. Assumes method MINIMIZES. """ def __init__(self, max_eval): # For tracking iterations self.fs = [] self.feas = [] self.n_eval = 0 self.max_eval = max_eval def f(self, x): if self.n_eval >= self.max_eval: raise ValueError("Evaluation budget exhuasted") test_acc, train_time = evaluate_x(x) feas = bool(train_time <= 1800) if not feas: val = 0.80 # bad value for infeasible else: val = test_acc self.n_eval += 1 self.fs.append(test_acc) # Store the true, not-negated value self.feas.append(feas) return -val # ASSUMES METHOD MINIMIZES
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch from crlapi.benchmark import StreamTrainer import hydra from omegaconf import DictConfig, OmegaConf def to_dict(cfg): r = {} for k, v in cfg.items(): if isinstance(v, DictConfig): td = to_dict(v) for kk in td: r[k + "/" + kk] = td[kk] else: r[k] = v return r @hydra.main(config_path=".", config_name="test_finetune_mlp.yaml") def main(cfg): import torch.multiprocessing as mp mp.set_start_method("spawn") import time stream_trainer = StreamTrainer() stream_trainer.run(cfg) if __name__ == "__main__": main()
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch from crlapi.benchmark import StreamTrainer import hydra from omegaconf import DictConfig, OmegaConf def to_dict(cfg): r = {} for k, v in cfg.items(): if isinstance(v, DictConfig): td = to_dict(v) for kk in td: r[k + "/" + kk] = td[kk] else: r[k] = v return r @hydra.main(config_path=".", config_name="test_finetune_mlp.yaml") def main(cfg): import torch.multiprocessing as mp mp.set_start_method("spawn") import time stream_trainer = StreamTrainer() stream_trainer.run(cfg) if __name__ == "__main__": main()
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from crlapi import instantiate_class,get_class,get_arguments class StreamTrainer: def create_logger(self, logger_args,all_args): self.logger=instantiate_class(logger_args) self.logger.save_hps(all_args) def create_stream(self, stream_args): return instantiate_class(stream_args) def create_clmodel(self, cl_model_args): from importlib import import_module d = dict(cl_model_args) if "classname" in d: classname = d["classname"] else: classname = d["class_name"] module_path, class_name = classname.rsplit(".", 1) module = import_module(module_path) c = getattr(module, class_name) self.clmodel=c(self.train_stream,cl_model_args) def run(self, args): self.create_logger(args.logger,args) stream_args = args.stream.train self.train_stream=self.create_stream(stream_args) stream_args = args.stream.evaluation self.evaluation_stream=self.create_stream(stream_args) clmodel_args = args.clmodel self.create_clmodel(clmodel_args) evaluation_args = args.evaluation #args=_prefix(args,"benchmark/") evaluation_mode=evaluation_args.mode assert evaluation_mode=="all_tasks" or evaluation_mode=="previous_tasks" for n_stage, task in enumerate(self.train_stream): self.logger.message("Training at stage "+str(n_stage)) training_logger = self.logger.get_logger(f"train_stage_{n_stage}/") self.clmodel = self.clmodel.update(task, training_logger) evaluation_logger = self.logger.get_logger(f"evaluation_stage_{n_stage}/") self.logger.message("Evaluation at stage "+str(n_stage)) for k,evaluation_task in enumerate(self.evaluation_stream): if evaluation_mode=="previous_tasks" and k>n_stage: pass else: self.logger.message("\tEvaluation on task "+str(k)) evaluation=self.clmodel.evaluate(evaluation_task,evaluation_logger,evaluation_args) self.logger.message("\t == "+str(evaluation)) for kk,vv in evaluation.items(): evaluation_logger.add_scalar(kk,vv,k) self.logger.close()
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # def instantiate_class(arguments): from importlib import import_module d = dict(arguments) if "classname" in d: classname = d["classname"] del d["classname"] else: classname = d["class_name"] del d["class_name"] module_path, class_name = classname.rsplit(".", 1) module = import_module(module_path) c = getattr(module, class_name) return c(**d) def get_class(arguments): from importlib import import_module d = dict(arguments) if "classname" in d: classname = d["classname"] del d["classname"] else: classname = d["class_name"] del d["class_name"] module_path, class_name = classname.rsplit(".", 1) module = import_module(module_path) c = getattr(module, class_name) return c def get_arguments(arguments): from importlib import import_module d = dict(arguments) if "classname" in d: classname = d["classname"] del d["classname"] else: classname = d["class_name"] del d["class_name"] return d
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import copy class TaskResources: """ Describe resources for a task (e.g a dataset, and environments, etc...) """ def make(self): raise NotImplementedError class Task: """ Describe a task to solve with a task descriptor, and associated ressources """ def task_descriptor(self): raise NotImplementedError def task_resources(self): raise NotImplementedError class CLModel: """ A continual learning model that is updated on different tasks. Such a model can evaluate itself on a particular task """ def __init__(self, config): self.config = config def update(self, task, logger): # return a clmodel raise NotImplementedError def evaluate(self, task,logger,**evaluation_args): raise NotImplementedError class Stream: """ A stream of tasks """ def __len__(self): raise NotImplementedError def __iter__(self): raise NotImplementedError def __getitem__(self,k): raise NotImplementedError
# # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # from torch.utils.tensorboard import SummaryWriter import sqlite3 import os import os.path import csv import copy from datetime import datetime import torch import numpy as np import time import pickle import bz2 import sys import pandas as pd from omegaconf import DictConfig, OmegaConf class TFPrefixLogger: def __init__(self,prefix,logger): self.logger=logger self.prefix=prefix def add_images(self, name, value, iteration): self.logger.add_images(self.prefix+name,value,iteration) def add_scalar(self, name, value, iteration): self.logger.add_scalar(self.prefix+name,value,iteration) def add_video(self, name, value, iteration, fps=10): self.logger.add_video(self.prefix+name,value,iteration,fps) def message(self,msg,from_name=""): self.logger.message(msg,from_name=self.prefix+from_name) def debug(self,msg,from_name=""): self.logger.debug(msg,from_name=self.prefix+from_name) class TFLogger(SummaryWriter): """A logger that stores informations both in tensorboard and CSV formats""" def __init__( self, log_dir=None, cache_size=10000, modulo=1,verbose=False, use_zip=True ): SummaryWriter.__init__(self, log_dir=log_dir) self.use_zip = use_zip self.save_every = cache_size self.modulo=modulo self.written_values={} self.log_dir = log_dir self.verbose = verbose self.picklename = log_dir + "/db.pickle.bzip2" if not self.use_zip: self.picklename = log_dir + "/db.pickle" self.to_pickle = [] def _omegaconf_to_dict(self,hps): d={} for k,v in hps.items(): if isinstance(v,DictConfig): d[k]=self._omegaconf_to_dict(v) else: d[k]=v return d def save_hps(self, hps): hps=self._omegaconf_to_dict(hps) print(hps) f = open(self.log_dir + "/params.json", "wt") f.write(str(hps) + "\n") f.close() outfile = open(self.log_dir + "/params.pickle", "wb") pickle.dump(hps, outfile) outfile.close() self.add_text("Hyperparameters", str(hps)) def get_logger(self,prefix): return TFPrefixLogger(prefix,self) def message(self,msg,from_name=""): print("[",from_name,"]: ",msg) def debug(self,msg,from_name=""): print("[DEBUG] [",from_name,"]: ",msg) def _to_pickle(self, name, value, iteration): self.to_pickle.append((name, iteration, value)) if len(self.to_pickle) > self.save_every: if self.use_zip: f = bz2.BZ2File(self.picklename, "ab") pickle.dump(self.to_pickle, f) f.close() else: f = open(self.picklename, "ab") pickle.dump(self.to_pickle, f) f.close() self.to_pickle = [] def add_images(self, name, value, iteration): iteration=int(iteration/self.modulo)*self.modulo if (name,iteration) in self.written_values: return else: self.written_values[(name,iteration)]=True self._to_pickle(name, value, iteration) SummaryWriter.add_images(self, name, value, iteration) def add_scalar(self, name, value, iteration): iteration=int(iteration/self.modulo)*self.modulo if (name,iteration) in self.written_values: return else: self.written_values[(name,iteration)]=True self._to_pickle(name, value, iteration) if self.verbose: print("['" + name + "' at " + str(iteration) + "] = " + str(value)) if isinstance(value, int) or isinstance(value, float): SummaryWriter.add_scalar(self, name, value, iteration) def add_video(self, name, value, iteration, fps=10): iteration=int(iteration/self.modulo)*self.modulo if (name,iteration) in self.written_values: return else: self.written_values[(name,iteration)]=True self._to_pickle(name, value.numpy(), iteration) SummaryWriter.add_video(self, name, value, iteration, fps=fps) def close(self): if len(self.to_pickle) > 0: if self.use_zip: f = bz2.BZ2File(self.picklename, "ab") pickle.dump(self.to_pickle, f) f.close() else: f = open(self.picklename, "ab") pickle.dump(self.to_pickle, f) f.close() self.to_pickle = [] SummaryWriter.close(self) f = open(self.log_dir + "/done", "wt") f.write("Done\n") f.close() class Log: def __init__(self, hps, values): self.hps = hps self.values = values max_length = max([len(v) for v in self.values]) for k in values: while len(values[k]) < max_length: values[k].append(None) self.length = max_length def to_xy(self, name): assert name in self.values x, y = [], [] for k, v in enumerate(self.values[name]): if not v is None: x.append(k) y.append(v) return x, y def to_dataframe(self, with_hps=False): max_len = np.max([len(k) for v, k in self.values.items()]) nv = {} for k, v in self.values.items(): while len(v) < max_len: v.append(None) nv[k] = v self.values = nv it = [k for k in range(max_len)] d = {**self.values, **{"iteration": it}} if with_hps: for k in self.hps: dd = [self.hps[k] for i in range(max_len)] d = {**d, **{"_hp/" + k: dd}} return pd.DataFrame(d) def get_at(self, name, iteration): return self.values[name][iteration] def get(self, name, keep_none=False): v = self.values[name] if not keep_none: return [k for k in v if not k is None] else: return v def replace_None_(self, name): v = self.values[name] last_v = None first_v = None r = [] for k in range(len(v)): if v[k] is None: r.append(last_v) else: r.append(v[k]) if last_v is None: first_v = v[k] last_v = v[k] p = 0 while r[p] is None: r[p] = first_v p += 1 self.values[name] = r def max(self, name): v = self.values[name] vv = [k for k in v if not k is None] return np.max(vv) def min(self, name): v = self.values[name] vv = [k for k in v if not k is None] return np.min(vv) def argmin(self, name): v = self.values[name] vv = [k for k in v if not k is None] _max = np.max(vv) for k in range(len(v)): if v[k] is None: vv.append(_max + 1.0) else: vv.append(v[k]) return np.argmin(vv) def argmax(self, name): v = self.values[name] vv = [k for k in v if not k is None] _min = np.min(vv) vv = [] for k in range(len(v)): if v[k] is None: vv.append(_min - 1.0) else: vv.append(v[k]) return np.argmax(vv) class Logs: def __init__(self): self.logs = [] self.hp_names = None self.filenames = [] def _add(self, log): self.hp_names = {k: True for k in log.hps} for l in self.logs: for k in log.hps: if not k in l.hps: l.hps[k] = "none" self.logs.append(log) def add(self, logs): if isinstance(logs, Log): self._add(logs) else: for l in logs: self._add(l) def max(self, function): alls = [function(l) for l in self.logs] idx = np.argmax(alls) return self.logs[idx] def hps(self): return list(self.hp_names) def size(self): return len(self.logs) def filter(self, hp_name, test_fn): logs = Logs() if not callable(test_fn): for l in self.logs: h = l.hps[hp_name] if h == test_fn: logs.add(l) else: for l in self.logs: if test_fn(l.hps[hp_name]): logs.add(l) return logs def unique_hps(self, name): r = {} for l in self.logs: v = l.hps[name] r[v] = 1 return list(r.keys()) def __len__(self): return len(self.logs) def to_dataframe(self): rdf = None for log in self.logs: df = log.to_dataframe(with_hps=True) if rdf is None: rdf = df else: rdf = pd.concat([rdf, df]) return rdf # def plot(self, y, x, hue=None, style=None, row=None, col=None, kind="line"): def flattify(d): d=dict(d) r = {} for k, v in d.items(): if isinstance(v, dict): rr = flattify(v) rrr = {k + "/" + kk: rr[kk] for kk in rr} r = {**r, **rrr} elif isinstance(v, list): r[k] = str(v) else: r[k] = v return r def read_log(directory, use_bz2=True, debug=False): print("== Read ", directory) # if os.path.exists(directory+"/fast.pickle"): # f=open(directory+"/fast.pickle","rb") # log=pickle.load(f) # f.close() # return log f = None if use_bz2: picklename = directory + "/db.pickle.bzip2" f = bz2.BZ2File(picklename, "rb") else: picklename = directory + "/db.pickle" f = open(picklename, "rb") values = {} try: while True: a = pickle.load(f) if not a is None: for name, iteration, value in a: # print(name,iteration,value) if debug: print(name, value, type(value)) if isinstance(value, np.int64): value = int(value) if ( isinstance(value, int) or isinstance(value, float) or isinstance(value, str) ): if not name in values: values[name] = [] while len(values[name]) < iteration + 1: values[name].append(None) values[name][iteration] = value except: f.close() f = open(directory + "/params.pickle", "rb") params = pickle.load(f) params = flattify(params) f.close() log = Log(params, values) log.from_directory = directory # f=open(directory+"/fast.pickle","wb") # pickle.dump(log,f) # f.close() return log def read_directory(directory, use_bz2=True): import os import os.path l = Logs() name = "db.pickle" if use_bz2: name = "db.pickle.bzip2" for dirpath, dirnames, filenames in os.walk(directory): if name in filenames: log = read_log(dirpath, use_bz2) l.add(log) print("Found %d logs" % l.size()) return l def _create_col(df, hps, _name): vs = [] for k, v in df.groupby(hps): n = {hps[i]: k[i] for i in range(len(hps))} v = v.copy() name = ",".join([str(k) + "=" + str(n[k]) for k in n]) print(name) print(_name) v[_name] = name vs.append(v) return pd.concat(vs) def plot_dataframe( df, y, x="iteration", hue=None, style=None, row=None, col=None, kind="line" ): import seaborn as sns cols = [y, x] if isinstance(row, list): cols += row else: cols += [row] if isinstance(col, list): cols += col else: cols += [col] if isinstance(style, list): cols += style else: cols += [style] if isinstance(hue, list): cols += hue else: cols += [hue] cols = [c for c in cols if not c is None] df = df[cols].dropna() if isinstance(row, list): df = _create_col(df, row, "__row") row = "__row" if isinstance(col, list): df = _create_col(df, col, "__col") col = "__col" if isinstance(style, list): df = _create_col(df, style, "__style") style = "__style" if isinstance(hue, list): df = _create_col(df, hue, "__hue") hue = "__hue" # df = convert_iteration_to_steps(df) sns.relplot(x=x, y=y, hue=hue, style=style, row=row, col=col, data=df, kind=kind)
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from crlapi.core import TaskResources, Stream, Task import torchvision.datasets import torchvision.transforms import numpy.random import numpy import torch.utils.data import torch class CachedCIFAR10(torchvision.datasets.CIFAR10): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.data = torch.from_numpy(self.data).float().permute(0, 3, 1, 2) self.targets = numpy.array(self.targets) self.data = self.data / 255. # normalize mu = torch.Tensor([0.4914, 0.4822, 0.4465]).view(1, 3, 1, 1) var = torch.Tensor([0.2470, 0.2435, 0.2616]).view(1, 3, 1, 1) self.data = (self.data - mu) / var def __getitem__(self, index): x, y = self.data[index], self.targets[index] if self.transform is not None: x = self.transform(x) return x, y class ClassificationResources(TaskResources): def __init__(self): pass class CIFAR10Resources(ClassificationResources): def __init__(self, idx_batch, n_total_batches, seed,train,directory): self.idx_batch=idx_batch self.n_total_batches=n_total_batches self.train=train self.seed=seed self.directory=directory def make(self): dataset=CachedCIFAR10(self.directory, train=self.train, download=True) if self.n_total_batches==1: return dataset numpy.random.seed(self.seed) indices=numpy.arange(len(dataset)) indices=numpy.random.permutation(indices) _indices=numpy.array_split(indices,self.n_total_batches) indices=list(_indices[self.idx_batch]) _set=torch.utils.data.Subset(dataset,indices) return _set class CIFAR10Task(Task): def __init__(self,task_descriptor,resources): self._task_descriptor=task_descriptor self._resources=resources self.input_shape=(3, 32, 32) self.n_classes=10 def task_descriptor(self): return self._task_descriptor def task_resources(self): return self._resources class CIFAR10EvaluationAnytimeStream(Stream): def __init__(self,n_megabatches,seed,directory): self.tasks=[] evaluation_resources=CIFAR10Resources(0,1,seed,False,directory) self.tasks.append(CIFAR10Task(None,evaluation_resources)) def __len__(self): return len(self.tasks) def __iter__(self): return self.tasks.__iter__() def __getitem__(self,k): return self.tasks[k] class CIFAR10TrainAnytimeStream(Stream): def __init__(self,n_megabatches,seed,directory): self.tasks=[] for k in range(n_megabatches): resources=CIFAR10Resources(k,n_megabatches,seed,True,directory) self.tasks.append(CIFAR10Task(k,resources)) def __len__(self): return len(self.tasks) def __iter__(self): return self.tasks.__iter__() def __getitem__(self,k): return self.tasks[k]
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from crlapi.core import TaskResources, Stream, Task import torchvision.datasets import torchvision.transforms import numpy.random import numpy import torch.utils.data import torch # TODO: did not verify this dataset class CachedEMNIST(torchvision.datasets.EMNIST): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.targets = self.targets.numpy() self.data = (self.data / 255. - .1307) / .3081 def __getitem__(self, index): x, y = self.data[index], self.targets[index] if self.transform is not None: x = self.transform(x) return x, y class ClassificationResources(TaskResources): def __init__(self): pass class EMNISTResources(ClassificationResources): def __init__(self, idx_batch, n_total_batches, seed,train,split,directory): self.idx_batch=idx_batch self.split=split self.n_total_batches=n_total_batches self.train=train self.seed=seed self.directory=directory def n_classes(self): print("Compputing n classes...") dataset=CachedEMNIST(self.directory, split=self.split,train=self.train, download=True) n=len(dataset.classes_split_dict[self.split]) return n def make(self): dataset=torchvision.datasets.EMNIST(self.directory, split=self.split,train=self.train, download=True, transform=torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize( (0.1307,), (0.3081,)) ])) if self.n_total_batches==1: return dataset numpy.random.seed(self.seed) indices=numpy.arange(len(dataset)) indices=numpy.random.permutation(indices) _indices=numpy.array_split(indices,self.n_total_batches) indices=list(_indices[self.idx_batch]) _set=torch.utils.data.Subset(dataset,indices) return _set class EMNISTTask(Task): def __init__(self,task_descriptor,resources): self._task_descriptor=task_descriptor self._resources=resources self.input_shape=(1,28,28) self.n_classes=self._resources.n_classes() def task_descriptor(self): return self._task_descriptor def task_resources(self): return self._resources class EMNISTEvaluationAnytimeStream(Stream): def __init__(self,n_megabatches,seed,split,directory): self.tasks=[] evaluation_resources=EMNISTResources(0,1,seed,False,split,directory) self.tasks.append(EMNISTTask(None,evaluation_resources)) def __len__(self): return len(self.tasks) def __iter__(self): return self.tasks.__iter__() def __getitem__(self,k): return self.tasks[k] class EMNISTTrainAnytimeStream(Stream): def __init__(self,n_megabatches,seed,split,directory): self.tasks=[] for k in range(n_megabatches): resources=EMNISTResources(k,n_megabatches,seed,True,split,directory) self.tasks.append(EMNISTTask(k,resources)) def __len__(self): return len(self.tasks) def __iter__(self): return self.tasks.__iter__() def __getitem__(self,k): return self.tasks[k]
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from crlapi.core import TaskResources, Stream, Task import torchvision.datasets import torchvision.transforms import numpy.random import numpy import torch.utils.data import torch class CachedMNIST(torchvision.datasets.MNIST): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.targets = self.targets.numpy() self.data = (self.data / 255. - .1307) / .3081 def __getitem__(self, index): x, y = self.data[index], self.targets[index] if self.transform is not None: x = self.transform(x) return x, y class ClassificationResources(TaskResources): def __init__(self): pass class MNISTResources(ClassificationResources): def __init__(self, idx_batch, n_total_batches, seed,train,directory): self.idx_batch=idx_batch self.n_total_batches=n_total_batches self.train=train self.seed=seed self.directory=directory def make(self): dataset=CachedMNIST(self.directory, train=self.train, download=True) if self.n_total_batches==1: return dataset numpy.random.seed(self.seed) indices=numpy.arange(len(dataset)) indices=numpy.random.permutation(indices) _indices=numpy.array_split(indices,self.n_total_batches) indices=list(_indices[self.idx_batch]) _set=torch.utils.data.Subset(dataset,indices) return _set class MNISTTask(Task): def __init__(self,task_descriptor,resources): self._task_descriptor=task_descriptor self._resources=resources self.input_shape=(1,28,28) self.n_classes=10 def task_descriptor(self): return self._task_descriptor def task_resources(self): return self._resources class MNISTEvaluationAnytimeStream(Stream): def __init__(self,n_megabatches,seed,directory): self.tasks=[] evaluation_resources=MNISTResources(0,1,seed,False,directory) self.tasks.append(MNISTTask(None,evaluation_resources)) def __len__(self): return len(self.tasks) def __iter__(self): return self.tasks.__iter__() def __getitem__(self,k): return self.tasks[k] class MNISTTrainAnytimeStream(Stream): def __init__(self,n_megabatches,seed,directory): self.tasks=[] for k in range(n_megabatches): resources=MNISTResources(k,n_megabatches,seed,True,directory) self.tasks.append(MNISTTask(k,resources)) def __len__(self): return len(self.tasks) def __iter__(self): return self.tasks.__iter__() def __getitem__(self,k): return self.tasks[k]
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import torch.nn as nn import numpy as np from copy import deepcopy from crlapi.sl.architectures.mixture_model import ( HardSoftMaxGateModule, SoftMaxGateModule, MixtureLayer, MoE_RandomGrow, MoE_UsageGrow, Gate, MoE, ) # -- Gates class SoftGate(Gate): def __init__(self, input_shape, n_experts, prepro_fn=None): super().__init__(input_shape, n_experts) gate_fn = nn.Linear(input_shape, n_experts) if prepro_fn is not None: self.prepro_fn = prepro_fn gate_fn = nn.Sequential(prepro_fn, gate_fn) self.module = SoftMaxGateModule(gate_fn) def forward(self,x): return self.module(x) class HardGate(Gate): def __init__(self, input_shape, n_experts, prepro_fn=None): super().__init__(input_shape, n_experts) gate_fn = nn.Linear(input_shape, n_experts) if prepro_fn is not None: gate_fn = nn.Sequential(prepro_fn, gate_fn) self.module = HardSoftMaxGateModule(gate_fn) def forward(self,x): return self.module(x) # -- Layers def _make_layers(array, in_channels): layers = [] for x in array: if x == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1), nn.BatchNorm2d(x), nn.ReLU(inplace=True)] in_channels = x return in_channels, nn.Sequential(*layers) def VGG(task, n_channels): vgg_parts = [ [64, 64, 'M'], [128, 128, 'M'], [256, 256, 256, 256, 'M'], [512, 512, 512, 512, 'M'], [512, 512, 512, 512, 'M'] ] if n_channels > 0: vgg_parts = [[n_channels if type(x) == int else x for x in block] for block in vgg_parts] in_channels, block0 = _make_layers(vgg_parts[0], 3) in_channels, block1 = _make_layers(vgg_parts[1], in_channels) in_channels, block2 = _make_layers(vgg_parts[2], in_channels) in_channels, block3 = _make_layers(vgg_parts[3], in_channels) in_channels, block4 = _make_layers(vgg_parts[4], in_channels) return nn.Sequential( block0, block1, block2, block3, block4, nn.Flatten(), nn.Linear(in_channels, task.n_classes) ) def MoE_VGG(task, n_channels, n_adaptivepooling, n_experts, is_hard): vgg_parts = [ [64, 64, 'M'], [128, 128, 'M'], [256, 256, 256, 256, 'M'], [512, 512, 512, 512, 'M'], [512, 512, 512, 512, 'M'] ] input_shape = task.input_shape gate = HardGate if is_hard else SoftGate if n_channels > 0: vgg_parts = [[n_channels if type(x) == int else x for x in block] for block in vgg_parts] in_channels, head = _make_layers(vgg_parts[0], 3) in_channels, block1 = _make_layers(vgg_parts[1], in_channels) in_channels, block2 = _make_layers(vgg_parts[2], in_channels) in_channels, block3 = _make_layers(vgg_parts[3], in_channels) in_channels, block4 = _make_layers(vgg_parts[4], in_channels) blocks = [block1, block2, block3, block4] dim_gates = [] x = torch.randn(1,3,32,32) for layer in [head] + blocks: x = layer(x) dim_gates += [x.shape[1:]] # Build Layers layers = [head] for i, (block, dim_gate) in enumerate(zip(blocks, dim_gates[:-1])): # build adaptive pooling gate input_size = dim_gate[0] * n_adaptivepooling ** 2 gate_fn = nn.Sequential( nn.AdaptiveAvgPool2d(n_adaptivepooling), nn.Flatten(), ) experts = [deepcopy(block) for _ in range(n_experts)] layers += [MixtureLayer(gate(input_size, n_experts, gate_fn), experts)] linear = nn.Linear(np.prod(dim_gates[-1]), task.n_classes) layers += nn.Sequential(nn.Flatten(), linear) model = MoE(layers) return model def MoE_VGG_RandomGrow(task, n_channels, n_adaptivepooling, n_experts, is_hard, n_experts_to_split): moe = MoE_VGG(task, n_channels, n_adaptivepooling, n_experts, is_hard) return MoE_RandomGrow(moe.layers,n_experts_to_split) def MoE_VGG_UsageGrow(task, n_channels, n_adaptivepooling, n_experts, is_hard, n_experts_to_split): moe = MoE_VGG(task, n_channels, n_adaptivepooling, n_experts, is_hard) return MoE_UsageGrow(moe.layers,n_experts_to_split)
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import torch.nn as nn import torch.nn.functional as F import copy import random import numpy as np class SoftMaxGateModule(nn.Module): def __init__(self,module): super().__init__() self.module=module def forward(self,x): y=self.module(x) return torch.softmax(y,dim=1) class HardSoftMaxGateModule(nn.Module): def __init__(self,module): super().__init__() self.module=module def forward(self,x): y=self.module(x) if self.training: dist=torch.distributions.Categorical(y) sampled_y=dist.sample() oh=F.one_hot(sampled_y,num_classes=p.size()[1]) return oh+(y-y.detach()) else: _max=y.max(1)[1] oh=F.one_hot(_max,num_classes=y.size()[1]) return oh class Gate(nn.Module): def __init__(self,input_shape,n_experts, prepro_fn=None): self.input_shape=input_shape super().__init__() def _weight(output,score): s=output.size() while(len(score.size())<len(s)): score=score.unsqueeze(-1) score=score.repeat(1,*s[1:]) return output*score class MixtureLayer(nn.Module): def __init__(self,gate_module,experts): super().__init__() assert isinstance(gate_module,Gate) self.gate=gate_module self.experts=nn.ModuleList(experts) def forward(self,x): out=0.0 scores=self.gate(x) gate_scores=[] for k,e in enumerate(self.experts): score=scores[:,k] if isinstance(e,MixtureLayer): y,g=e(x) for kk,vv in enumerate(g): gate_scores.append(([k]+vv[0],vv[1]*score)) else: y=e(x) gate_scores.append(([k],score)) y=_weight(y,score) out=out+y return out,gate_scores class MoE(nn.Module): def __init__(self,layers): super().__init__() self.layers=nn.ModuleList(layers) @property def device(self): return next(self.parameters()).device def forward(self,x,with_gate_scores=False): gate_scores=[] for l in self.layers: if isinstance(l,MixtureLayer): x,g=l(x) gate_scores.append(g) else: x=l(x) if with_gate_scores: return x,gate_scores else: return x class MoE_RandomGrow(MoE): def __init__(self,layers,n_experts_split): super().__init__(layers) self.n_experts_split=n_experts_split def _list_experts(self,layer): assert isinstance(layer,MixtureLayer) experts_url=[] for k,e in enumerate(layer.experts): if not isinstance(e,MixtureLayer): experts_url.append([k]) else: le=self._list_experts(e) for v in le: experts_url.append([k]+v) return experts_url def _generate_splitting(self,layer,url_to_split): idx_split=url_to_split[0] gate=copy.deepcopy(layer.gate) experts=[] for k,e in enumerate(layer.experts): if k!=idx_split: experts.append(copy.deepcopy(e)) elif len(url_to_split)>1: experts.append(self._generate_splitting(e,url_to_split[1:])) else: n_experts=[copy.deepcopy(e) for _ in range(self.n_experts_split)] n_gate=layer.gate.__class__(layer.gate.input_shape, self.n_experts_split, getattr(layer.gate, 'prepro_fn', None)) experts.append(MixtureLayer(n_gate,n_experts)) return MixtureLayer(gate,experts) def _grow_layer(self,layer): assert isinstance(layer,MixtureLayer) #First, we list all the experts experts_urls=self._list_experts(layer) print("\tList of experts: ",experts_urls) #Choose one expert at random expert_to_split=random.choice(experts_urls) print("\t\tSplitting expert: "+str(expert_to_split)) new_module=self._generate_splitting(layer,expert_to_split) experts_urls=self._list_experts(new_module) print("\t\tNew list of experts = ",experts_urls) return new_module def grow(self,dataset_loader,**args): if self.n_experts_split==0: return self self.zero_grad() new_layers=[] for l in self.layers: if isinstance(l,MixtureLayer): new_layers.append(self._grow_layer(l)) else: new_layers.append(copy.deepcopy(l)) return MoE_RandomGrow(new_layers,self.n_experts_split) class MoE_UsageGrow(MoE): def __init__(self,layers,n_experts_split): super().__init__(layers) self.n_experts_split=n_experts_split def _list_experts(self,layer): assert isinstance(layer,MixtureLayer) experts_url=[] for k,e in enumerate(layer.experts): if not isinstance(e,MixtureLayer): experts_url.append([k]) else: le=self._list_experts(e) for v in le: experts_url.append([k]+v) return experts_url def _generate_splitting(self,layer,url_to_split): idx_split=url_to_split[0] gate=copy.deepcopy(layer.gate) experts=[] for k,e in enumerate(layer.experts): if k!=idx_split: experts.append(copy.deepcopy(e)) elif len(url_to_split)>1: experts.append(self._generate_splitting(e,url_to_split[1:])) else: n_experts=[copy.deepcopy(e) for _ in range(self.n_experts_split)] n_gate=layer.gate.__class__(layer.gate.input_shape, self.n_experts_split, getattr(layer.gate, 'prepro_fn', None)) experts.append(MixtureLayer(n_gate,n_experts)) return MixtureLayer(gate,experts) def _grow_layer(self,layer,to_split_expert): assert isinstance(layer,MixtureLayer) #First, we list all the experts experts_urls=self._list_experts(layer) print("\tList of experts: ",experts_urls) print("\t To split: ",to_split_expert) assert to_split_expert in experts_urls new_module=self._generate_splitting(layer,to_split_expert) experts_urls=self._list_experts(new_module) print("\t\tNew list of experts = ",experts_urls) return new_module def grow(self,dataset_loader,**args): if self.n_experts_split==0: return self with torch.no_grad(): usage=None n=0 for x,y in dataset_loader: x, y = x.to(self.device), y.to(self.device) out,gate_scores=self(x,with_gate_scores=True) loss=F.cross_entropy(out,y,reduction='none') gate_scores=[[(gg[0],gg[1].sum(0)) for gg in g] for g in gate_scores] n+=x.size()[0] if usage is None: usage=gate_scores else: for k,g in enumerate(gate_scores): for kk,gg in enumerate(g): assert gg[0]==usage[k][kk][0] usage[k][kk]=(gg[0],gg[1]+usage[k][kk][1]) self.zero_grad() new_layers=[] p=0 for k,l in enumerate(self.layers): if isinstance(l,MixtureLayer): u=usage[p] us=[uu[1].item() for uu in u] idx=np.argmax(us) print("Expert usage at layer ",k," is ",{str(uu[0]):uu[1].item() for uu in u}) max_expert=u[idx][0] print("\tSplitting expert ",max_expert) new_layers.append(self._grow_layer(l,max_expert)) p+=1 else: new_layers.append(copy.deepcopy(l)) return MoE_UsageGrow(new_layers,self.n_experts_split)
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import torch.nn as nn from crlapi.sl.architectures.mixture_model import MixtureLayer,SoftMaxGateModule,HardSoftMaxGateModule,Gate,MoE,MoE_RandomGrow,MoE_UsageGrow class MLP(nn.Module): def __init__(self,task,**args): super().__init__() input_shape=task.input_shape d=1 for k in input_shape: d*=k input_dim=d output_dim=task.n_classes sizes=[input_dim]+[args["size_layers"] for k in range(args["n_layers"])]+[output_dim] print(sizes) layers=[] for k in range(len(sizes)-1): layers.append(nn.Linear(sizes[k],sizes[k+1])) if not k==len(sizes)-2: layers.append(nn.ReLU()) self.model=nn.Sequential(*layers) def forward(self,x): x=torch.flatten(x,start_dim=1) return self.model(x) class LinearSoftGate(Gate): def __init__(self,input_shape, n_experts, prepro_fn=None): super().__init__(input_shape,n_experts) assert len(input_shape)==1 self.module=SoftMaxGateModule(nn.Linear(input_shape[0],n_experts)) def forward(self,x): return self.module(x) class LinearHardGate(Gate): def __init__(self,input_shape, n_experts, prepro_fn=None): super().__init__(input_shape,n_experts) assert len(input_shape)==1 self.module=HardSoftMaxGateModule(nn.Linear(input_shape[0],n_experts)) def forward(self,x): return self.module(x) def mlp_layers(task,size_layers,n_layers,n_experts,is_hard): input_shape=task.input_shape d=1 for k in input_shape: d*=k input_dim=d output_dim=task.n_classes sizes=[input_dim]+[size_layers for k in range(n_layers)]+[output_dim] layers=[nn.Flatten(start_dim=1)] for k in range(len(sizes)-2): if is_hard: gate=LinearHardGate([sizes[k]],n_experts) else: gate=LinearSoftGate([sizes[k]],n_experts) experts=[nn.Sequential(nn.Linear(sizes[k],sizes[k+1]),nn.ReLU()) for _ in range(n_experts)] layer=MixtureLayer(gate,experts) layers.append(layer) layers.append(nn.Linear(sizes[-2],sizes[-1])) return layers def MoE_MLP(task,size_layers,n_layers,n_experts,is_hard): return MoE(mlp_layers(task,size_layers,n_layers,n_experts,is_hard)) def MoE_MLP_RandomGrow(task,size_layers,n_layers,n_experts,is_hard,n_experts_to_split): return MoE_RandomGrow(mlp_layers(task,size_layers,n_layers,n_experts,is_hard),n_experts_to_split) def MoE_MLP_UsageGrow(task,size_layers,n_layers,n_experts,is_hard,n_experts_to_split): return MoE_UsageGrow(mlp_layers(task,size_layers,n_layers,n_experts,is_hard),n_experts_to_split)
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import math import logging import numpy as np import torch from torch import nn import torch.utils.data from torch.nn import functional as F from torch.autograd import Variable def conv3x3(in_planes, out_planes, stride=1): return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, in_planes, planes, stride=1): super(BasicBlock, self).__init__() self.conv1 = conv3x3(in_planes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion * planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion * planes) ) self.activation = nn.ReLU() def forward(self, x): out = self.activation(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out = out + self.shortcut(x) out = self.activation(out) return out class ResNet(nn.Module): def __init__(self, block, num_blocks, num_classes, nf, input_size): super(ResNet, self).__init__() self.in_planes = nf self.input_size = input_size self.conv1 = conv3x3(input_size[0], nf * 1) self.bn1 = nn.BatchNorm2d(nf * 1) self.layer1 = self._make_layer(block, nf * 1, num_blocks[0], stride=1) self.layer2 = self._make_layer(block, nf * 2, num_blocks[1], stride=2) self.layer3 = self._make_layer(block, nf * 4, num_blocks[2], stride=2) self.layer4 = self._make_layer(block, nf * 8, num_blocks[3], stride=2) # hardcoded for now last_hid = nf * 8 * block.expansion last_hid = last_hid * (self.input_size[-1] // 2 // 2 // 2 // 4) ** 2 self.linear = nn.Linear(last_hid, num_classes) self.activation = nn.ReLU() def _make_layer(self, block, planes, num_blocks, stride): strides = [stride] + [1] * (num_blocks - 1) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, stride)) self.in_planes = planes * block.expansion return nn.Sequential(*layers) def return_hidden(self, x): bsz = x.size(0) assert x.ndim == 4 out = self.activation(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) # out = F.adaptive_avg_pool2d(out, 1) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) return out def forward(self, x): out = self.return_hidden(x) out = self.linear(out) return out def ResNet18(nclasses, nf=20, input_size=(3, 32, 32), *args, **kwargs): return ResNet(BasicBlock, [2, 2, 2, 2], nclasses, nf, input_size, *args, **kwargs)
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import math import copy import torch import torch.autograd as autograd import torch.nn as nn import torch.nn.functional as F def percentile(t, qq): k = int(qq * t.numel()) #1 + round(float(q) * (t.numel() - 1)) return t.view(-1).kthvalue(k).values.item() class GetSubnet(torch.autograd.Function): @staticmethod def forward(ctx, scores, zeros, ones, sparsity): k_val = percentile(scores, sparsity) return torch.where(scores < k_val, zeros.to(scores.device), ones.to(scores.device)) @staticmethod def backward(ctx, g): return g, None, None, None # Not learning weights, finding subnet class SubnetConv(nn.Conv2d): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.scores = nn.Parameter(torch.Tensor(self.weight.size())) nn.init.kaiming_uniform_(self.scores, a=math.sqrt(5)) self.register_buffer('ones', torch.ones_like(self.scores.data)) self.register_buffer('zeros', torch.zeros_like(self.scores.data)) # hardcoded for now self.prune_rate = 0.5 def set_prune_rate(self, prune_rate): self.prune_rate = prune_rate @property def clamped_scores(self): return self.scores.abs() def forward(self, x): subnet = GetSubnet.apply(self.clamped_scores, self.zeros, self.ones, self.prune_rate) w = self.weight * subnet x = F.conv2d( x, w, self.bias, self.stride, self.padding, self.dilation, self.groups ) return x # -- Layers def _make_layers(array, in_channels): layers = [] for x in array: if x == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: layers += [SubnetConv(in_channels, x, kernel_size=3, padding=1), nn.BatchNorm2d(x, affine=False), nn.ReLU(inplace=True)] in_channels = x return in_channels, layers class SubnetVGG(nn.Module): def __init__(self, task, n_channels, grow_n_units): super().__init__() self.grow_n_units = grow_n_units vgg_parts = [ 64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M' ] if n_channels > 0: vgg_parts = [n_channels if type(x) == int else x for x in vgg_parts] out_channels, base = _make_layers(vgg_parts, 3) self.net = nn.Sequential( *base, SubnetConv(out_channels, task.n_classes, kernel_size=1, padding=0), nn.Flatten(), ) def forward(self, x): return self.net(x) def grow(self, valid_loader, **args): x = torch.FloatTensor(64, 3, 32, 32).normal_() new_layers = [] for i, layer in enumerate(self.net): if isinstance(layer, SubnetConv): # input size in_c = 3 if i == 0 else last_output_channels # output size out_c = layer.out_channels + (self.grow_n_units if i < len(self.net) - 2 else 0) # what is the minimal score to be selected ? max_val = percentile(layer.scores.abs(), layer.prune_rate) min_val = layer.scores.abs().min().item() # init new layer new_layer = SubnetConv(in_c, out_c, kernel_size=layer.kernel_size, padding=layer.padding) new_layer.scores.data.uniform_(min_val, max_val) # adjust the prune rate so that the same amount of points get selected new_layer.prune_rate = 1 - (1 - layer.prune_rate) * layer.weight.numel() / new_layer.weight.numel() # copy the old params a, b, c, d = layer.scores.size() new_layer.weight[:a, :b, :c, :d].data.copy_(layer.weight.data) new_layer.scores[:a, :b, :c, :d].data.copy_(layer.scores.data) new_layer.bias.data.fill_(0) new_layer.bias[:a].data.copy_(layer.bias) last_output_channels = out_c new_layers += [new_layer] new_sub = torch.where(new_layer.clamped_scores < percentile(new_layer.clamped_scores, new_layer.prune_rate), new_layer.zeros, new_layer.ones) import pdb # assert torch.allclose(layer(x[:, :b]), new_layer(x)[:, :a]), pdb.set_trace() elif isinstance(layer, nn.BatchNorm2d): new_bn = nn.BatchNorm2d(last_output_channels, affine=False) c = layer.running_mean.size(0) new_bn.running_mean[:c].data.copy_(layer.running_mean.data) new_bn.running_var[:c].data.copy_(layer.running_var.data) new_layers += [new_bn] new_bn.training = layer.training # assert torch.allclose(layer(x[:, :c]), new_bn(x)[:, :c], atol=1e-7) else: new_layers += [copy.deepcopy(layer)] x = new_layers[-1](x) net = nn.Sequential(*new_layers) copy_self = copy.deepcopy(self) copy_self.net = net print(net) return copy_self
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from torch import nn from functools import partial from einops.layers.torch import Rearrange, Reduce import torch.nn as nn from crlapi.sl.architectures.mixture_model import MixtureLayer,SoftMaxGateModule,HardSoftMaxGateModule,Gate,MoE,MoE_RandomGrow,MoE_UsageGrow class LinearSoftGate(Gate): def __init__(self,input_shape, n_experts, prepro_fn=None): super().__init__(input_shape,n_experts) assert len(input_shape)==1 self.module=SoftMaxGateModule(nn.Linear(input_shape[0],n_experts)) def forward(self,x): print(x.size()) return self.module(x) class LinearHardGate(Gate): def __init__(self,input_shape, n_experts, prepro_fn=None): super().__init__(input_shape,n_experts) assert len(input_shape)==1 self.module=HardSoftMaxGateModule(nn.Linear(input_shape[0],n_experts)) def forward(self,x): return self.module(x) class PreNormResidual(nn.Module): def __init__(self, dim, fn): super().__init__() self.fn = fn self.norm = nn.LayerNorm(dim) def forward(self, x): return self.fn(self.norm(x)) + x def FeedForward(dim, expansion_factor = 4, dropout = 0., dense = nn.Linear): return nn.Sequential( dense(dim, dim * expansion_factor), PrintModule("After dense"), nn.GELU(), nn.Dropout(dropout), dense(dim * expansion_factor, dim), nn.Dropout(dropout) ) class PrintModule(nn.Module): def __init__(self,msg=""): super().__init__() self.msg=msg def forward(self,x): print(self.msg," : ",x.size()) return x def MLPMixer(task, patch_size, dim, depth, expansion_factor = 4, dropout = 0.): image_size= task.input_shape[1] assert image_size==task.input_shape[2] channels=task.input_shape[0] num_classes=task.n_classes assert (image_size % patch_size) == 0, 'image must be divisible by patch size' num_patches = (image_size // patch_size) ** 2 chan_first, chan_last = partial(nn.Conv1d, kernel_size = 1), nn.Linear return nn.Sequential( PrintModule("L1"), Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_size, p2 = patch_size), PrintModule("L2"), nn.Linear((patch_size ** 2) * channels, dim), PrintModule("L3"), *[nn.Sequential( PreNormResidual(dim, FeedForward(num_patches, expansion_factor, dropout, chan_first)), PreNormResidual(dim, FeedForward(dim, expansion_factor, dropout, chan_last)), PrintModule("L."), ) for _ in range(depth)], PrintModule("L4"), nn.LayerNorm(dim), Reduce('b n c -> b c', 'mean'), nn.Linear(dim, num_classes) )
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import torch.nn as nn import torch.nn.functional as F import torchvision import numpy as np import time import itertools from copy import deepcopy from pydoc import locate from fvcore.nn import FlopCountAnalysis as FCA from torchvision.models import * from . import sp # ---------------------------------------------------------------- # Models # ---------------------------------------------------------------- class module_list_wrapper(nn.Module): def __init__(self, layers): super().__init__() self.layer = nn.Sequential(*layers) def forward(self, x): out = self.layer(x) return out def __getitem__(self, i): return self.layer[i] def __len__(self): return len(self.layer) def sp_vgg(model, n_classes=10, dimh=16, method='none'): cfgs = { 'vgg11': [1, 'M', 2, 'M', 4, 4, 'M', 8, 8, 'M', 8, 8, 'M'], 'vgg14': [1, 1, 'M', 2, 2, 'M', 4, 4, 'M', 8, 8, 'M', 8, 8, 'M'], 'vgg16': [1, 1, 'M', 2, 2, 'M', 4, 4, 4, 'M', 8, 8, 8, 'M', 8, 8, 8, 'M'], 'vgg19': [1, 1, 'M', 2, 2, 'M', 4, 4, 4, 4, 'M', 8, 8, 8, 8, 'M', 8, 8, 8, 8, 'M'], } cfg = cfgs[model] next_layers = {} prev_idx = -1 in_channels = 3 net = [] n = len(cfg) for i, x in enumerate(cfg): if x == 'M': net.append(nn.MaxPool2d(kernel_size=2, stride=2)) elif x == 'A': net.append(nn.AvgPool2d(kernel_size=2, stride=2)) else: if method == 'none': net.append(sp.Conv2d(in_channels, 64*x, kernel_size=3, padding=1, actv_fn='relu', has_bn=True)) in_channels = 64*x else: net.append(sp.Conv2d(in_channels, dimh, kernel_size=3, padding=1, actv_fn='relu', has_bn=True)) in_channels = dimh if prev_idx >= 0: next_layers[prev_idx] = [i] prev_idx = i net.append(sp.Conv2d(in_channels, n_classes, kernel_size=1, padding=0, actv_fn='none', can_split=False)) net.append(nn.Flatten()) net = module_list_wrapper(net) old_fwd = net.forward next_layers[prev_idx] = [n] layer2split = list(next_layers.keys()) return net, next_layers, layer2split
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # *** MODULES taken from original code https://github.com/klightz/Firefly import numpy as np import time import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable from torch.distributions import Normal from torch.optim import * from crlapi.sl.architectures.firefly_vgg import sp ############################################################################### # # Split Network # ############################################################################### class SpNet(nn.Module): def __init__(self): super(SpNet, self).__init__() self.net = None self.next_layers = {} self.previous_layers = {} self.layers_to_split = [] self.verbose = True self.n_elites = 0 self.num_group = 1 def create_optimizer(self): pass def forward(self, x): pass def split(self): pass def clear(self): for layer in self.net: if isinstance(layer, sp.SpModule): layer.clear() def get_num_elites(self): n = 0 for i in self.layers_to_split: n += self.net[i].module.weight.shape[0] self.n_elites = int(n * self.grow_ratio) def get_num_elites_group(self, group_num): for g in range(group_num): n = 0 for i in self.layers_to_split_group[g]: n += self.net[i].module.weight.shape[0] try: self.n_elites_group[g] = int(n * self.grow_ratio) except: self.n_elites_group = {} self.n_elites_group[g] = int(n * self.grow_ratio) def sp_threshold(self): ws, wi = torch.sort(torch.cat([self.net[i].w for i in self.layers_to_split]).reshape(-1)) total= ws.shape[0] threshold = ws[self.n_elites] return threshold def sp_threshold_group(self, group_num): ws, wi = torch.sort(torch.cat([self.net[i].w for i in self.layers_to_split_group[group_num]]).reshape(-1)) total= ws.shape[0] threshold = ws[self.n_elites_group[group_num]] return threshold def save(self, path='./tmp.pt'): torch.save(self.state_dict(), path) def load(self, path='./tmp.pt'): self.load_state_dict(torch.load(path)) def get_num_params(self): model_n_params = sum(p.numel() for p in self.parameters() if p.requires_grad) return model_n_params def spe(self, dataloader, n_batches): pass def spf(self, dataloader, n_batches): pass def spff(self, dataloader, n_batches): pass def split(self, split_method, dataset, n_batches=-1): self.num_group = 1 if self.config.model != 'mobile' else 2 if split_method not in ['random', 'exact', 'fast', 'firefly', 'fireflyn']: raise NotImplementedError if self.verbose: print('[INFO] start splitting ...') start_time = time.time() self.net.eval() if self.num_group == 1: self.get_num_elites() else: self.get_num_elites_group(self.num_group) split_fn = { 'exact': self.spe, 'fast': self.spf, 'firefly': self.spff, 'fireflyn': self.spffn, } if split_method != 'random': split_fn[split_method](dataset, n_batches) n_neurons_added = {} if split_method == 'random': n_layers = len(self.layers_to_split) n_total_neurons = 0 threshold = 0. for l in self.layers_to_split: n_total_neurons += self.net[l].get_n_neurons() n_grow = int(n_total_neurons * self.grow_ratio) n_new1 = np.random.choice(n_grow, n_layers, replace=False) n_new1 = np.sort(n_new1) n_news = [] for i in range(len(n_new1) - 1): if i == 0: n_news.append(n_new1[i]) n_news.append(n_new1[i + 1] - n_new1[i]) else: n_news.append(n_new1[i + 1] - n_new1[i]) n_news[-1] += 1 for i, n_new_ in zip(reversed(self.layers_to_split), n_news): if isinstance(self.net[i], sp.SpModule) and self.net[i].can_split: n_new, idx = self.net[i].random_split(n_new_) n_neurons_added[i] = n_new if n_new > 0: # we have indeed splitted this layer for j in self.next_layers[i]: self.net[j].passive_split(idx) elif split_method == 'fireflyn': if self.num_group == 1: threshold = self.sp_threshold() for i in reversed(self.layers_to_split): if isinstance(self.net[i], sp.SpModule) and self.net[i].can_split: if self.num_group != 1: group = self.total_group[i] threshold = self.sp_threshold_group(group) n_new, split_idx, new_idx = self.net[i].spffn_active_grow(threshold) sp_new = split_idx.shape[0] if split_idx is not None else 0 n_neurons_added[i] = (sp_new, n_new-sp_new) if self.net[i].kh == 1: isfirst = True else: isfirst = False for j in self.next_layers[i]: print('passive', self.net[j].module.weight.shape) self.net[j].spffn_passive_grow(split_idx, new_idx) else: threshold= self.sp_threshold() # actual splitting for i in reversed(self.layers_to_split): if isinstance(self.net[i], sp.SpModule) and self.net[i].can_split: n_new, idx = self.net[i].active_split(threshold) n_neurons_added[i] = n_new if n_new > 0: # we have indeed splitted this layer for j in self.next_layers[i]: self.net[j].passive_split(idx) self.net.train() self.clear() # cleanup auxiliaries self.create_optimizer() # re-initialize optimizer end_time = time.time() if self.verbose: print('[INFO] splitting takes %10.4f sec. Threshold value is %10.9f' % ( end_time - start_time, threshold)) if split_method == 'fireflyn': print('[INFO] number of added neurons: \n%s\n' % \ '\n'.join(['-- %d grows (sp %d | new %d)' % (x, y1, y2) for x, (y1, y2) in n_neurons_added.items()])) else: print('[INFO] number of added neurons: \n%s\n' % \ '\n'.join(['-- %d grows %d neurons' % (x, y) for x, y in n_neurons_added.items()])) return n_neurons_added
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # *** MODULES taken from original code https://github.com/klightz/Firefly from .conv import Conv2d from .net import SpNet from .module import SpModule __all__ = [ 'SpNet', 'SpModule', 'Conv2d', ]
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # *** MODULES taken from original code https://github.com/klightz/Firefly import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable from torch.distributions import Normal from torch.optim import * ############################################################################### # # Split Block Abstract Class # ############################################################################### class SpModule(nn.Module): def __init__(self, can_split=True, actv_fn='relu', has_bn=False, has_bias=True, rescale=1.0): super(SpModule, self).__init__() # properties self.can_split = can_split self.actv_fn = actv_fn self.has_bn = has_bn self.has_bias = has_bias self.epsilon = 1e-2 self.K = 70 # modules self.module = None self.bn = None # auxiliaries self.w = None self.v = None self.y = None self.S = [] self.leaky_alpha = 0.2 def clear(self): del self.w del self.v del self.y del self.S try: del self.vni except: pass try: del self.vno except: pass self.w = self.v = self.y = None self.S = [] def get_device(self): try: return 'cuda' if self.module.weight.data.is_cuda else 'cpu' except: raise Exception('[ERROR] no module initialized') def _d2_actv(self, x, beta=3.): if self.actv_fn == 'relu': # use 2nd order derivative of softplus for approximation s = torch.sigmoid(x*beta) return beta*s*(1.-s) elif self.actv_fn == 'softplus': s = torch.sigmoid(x) return s*(1.-s) elif self.actv_fn == 'rbf': return (x.pow(2)-1)*(-x.pow(2)/2).exp() elif self.actv_fn == 'leaky_relu': s = torch.sigmoid(x*beta) return beta*s*(1.-s)*(1.-self.leaky_alpha) elif self.actv_fn == 'swish': s = torch.sigmoid(x) return s*(1.-s) + s + x*s*(1.-s) - (s.pow(2) + 2.*x*s.pow(2)*(1.-s)) elif self.actv_fn == 'sigmoid': s = torch.sigmoid(x) return (s-s.pow(2)) * (1.-s).pow(2) elif self.actv_fn == 'tanh': h = torch.tanh(x) return -2.*h * (1-h.pow(2)) elif self.actv_fn == 'none': return torch.ones_like(x) else: raise NotImplementedError def _activate(self, x): if self.actv_fn == 'relu': return F.relu(x) elif self.actv_fn == 'leaky_relu': return F.leaky_relu(x, self.leaky_alpha) elif self.actv_fn == 'swish': return x * torch.sigmoid(x) elif self.actv_fn == 'rbf': return (-x.pow(2)/2).exp() elif self.actv_fn == 'sigmoid': return torch.sigmoid(x) elif self.actv_fn == 'tanh': return torch.tanh(x) elif self.actv_fn == 'softplus': return F.softplus(x) elif self.actv_fn == 'none': return x else: raise NotImplementedError def forward(self, x): x = self.module(x) if self.has_bn: x = self.bn(x) return self._activate(x) def active_split(self, threshold): pass def passive_split(self, idx): pass
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # *** MODULES taken from original code https://github.com/klightz/Firefly import math import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable, grad from torch.distributions import Normal from torch.optim import * from .module import SpModule from crlapi.sl.architectures.firefly_vgg import sp ############################################################################### # # Conv2d Split Layer # ############################################################################### class Conv2d(SpModule): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=1, groups = 1, can_split=True, bias=True, actv_fn='relu', has_bn=False, rescale=1.0): super().__init__(can_split=can_split, actv_fn=actv_fn, has_bn=has_bn, has_bias=bias, rescale=rescale) if has_bn: self.bn = nn.BatchNorm2d(out_channels) self.has_bias = False if isinstance(kernel_size, int): self.kh = self.kw = kernel_size else: assert len(kernel_size) == 2 self.kh, self.kw = kernel_size if isinstance(padding, int): self.ph = self.pw = padding else: assert len(padding) == 2 self.ph, self.pw = padding if isinstance(stride, int): self.dh = self.dw = stride else: assert len(stride) == 2 self.dh, self.dw = stride self.groups = groups self.module = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, groups = groups, stride=stride, padding=padding, bias=self.has_bias) def get_conv_patches(self, x): x = F.pad(x, (self.pw, self.pw, self.ph, self.ph)) # pad (left, right, top, bottom) # get all image windows of size (kh, kw) and stride (dh, dw) patches = x.unfold(2, self.kh, self.dh).unfold(3, self.kw, self.dw) patches = patches.permute(0, 2, 3, 1, 4, 5).contiguous() # [B, H, W, C_in, kh, kw] return patches ########################################################################### # fast split ########################################################################### def spf_reset(self): # y is a dummy variable for storing gradients of v W = self.module.weight.data self.y = nn.Parameter(torch.zeros_like(W)) self.y.retain_grad() self.v = nn.Parameter(torch.zeros_like(W)) self.v.data.uniform_(-1e-1, 1e-1) self.v.retain_grad() self.w = 0. def spf_update_v(self): v = self.v sv = self.y.grad vv = v.pow(2).sum([1,2,3], keepdim=True) vsv = (sv * v).sum([1,2,3], keepdim=True) v_grad = 2. * (sv * vv - v * vsv) / vv.pow(2) self.v.grad = v_grad self.y.grad = None def spf_update_w(self, n=1.): v = self.v sv = self.y.grad vv = v.pow(2).sum([1,2,3]) vsv = (sv * v).sum([1,2,3]) self.w += (vsv / vv).data.clone() / n def spf_forward(self, x): out = self.module(x) # [B, C_out] bn_coef = 1. if self.has_bn: self.bn.eval() # fix running mean/variance out = self.bn(out) # calculate bn_coef bn_coef = 1. / torch.sqrt(self.bn.running_var + 1e-5) * self.bn.weight bn_coef = bn_coef.view(1, -1, 1, 1) # [1, C_out, 1, 1] # normalize v v_norm = self.v.pow(2).sum([1,2,3], keepdim=True).sqrt().data self.v.data = self.v.data / v_norm patches = self.get_conv_patches(x) B, H, W, C_in, kh, kw = patches.size() x = patches.reshape(B*H*W, -1) left = x.mm(self.y.view(-1, C_in*kh*kw).t()).view(B, H, W, -1).permute(0,3,1,2) right = x.mm(self.v.view(-1, C_in*kh*kw).t()).view(B, H, W, -1).permute(0,3,1,2) aux = self._d2_actv(out) * (bn_coef*left) * (bn_coef*right) out = self._activate(out) + aux return out ########################################################################### # firefly split + new neurons ########################################################################### def spffn_add_new(self, enlarge_out=True, enlarge_in=True): self.eout = self.K if enlarge_out else 0 self.ein = self.K if enlarge_in else 0 if self.groups == 1: C_out, C_in = self.module.weight.data.shape[:2] else: C_out, _ = self.module.weight.data.shape[:2] C_in = C_out device = self.get_device() if self.has_bn and self.eout > 0: new_bn = nn.BatchNorm2d(C_out+self.eout).to(device) new_bn.weight.data[:C_out] = self.bn.weight.data.clone() new_bn.bias.data[:C_out] = self.bn.bias.data.clone() new_bn.running_mean.data[:C_out] = self.bn.running_mean.data.clone() new_bn.running_var.data[:C_out] = self.bn.running_var.data.clone() new_bn.weight.data[C_out:] = 1. new_bn.bias.data[C_out:] = 0. self.bn = new_bn self.bn.eval() if self.groups != 1: self.groups += self.K new_layer = nn.Conv2d(in_channels=C_in+self.ein, out_channels=C_out+self.eout, kernel_size=(self.kh, self.kw), stride=(self.dh, self.dw), padding=(self.ph, self.pw), bias=self.has_bias, groups = self.groups).to(device) new_layer.weight.data[:C_out, :C_in, :, :] = self.module.weight.data.clone() if self.ein > 0: new_layer.weight.data[:, C_in:, :, :] = 0. if self.eout > 0: new_layer.weight.data[C_out:, :, :, :] = 0. self.module = new_layer self.module.eval() def spffn_penalty(self): penalty = 0. if self.can_split: penalty += self.v.pow(2).sum() if self.eout > 0: penalty += 1e-2 * self.vno.pow(2).sum() if penalty > 0: (penalty * 1e-2).backward() def spffn_clip(self): if self.ein > 0: # since output is just 1 self.vni.data.clamp_(-1e-2, 1e-2) def spffn_reset(self): if self.groups == 1: C_out, C_in, kh, kw = self.module.weight.data.shape else: C_out, C_in, kh, kw = self.module.weight.data.shape C_in = C_out device = self.get_device() self.y = nn.Parameter(torch.zeros(1,C_out,1,1)).to(device) self.y.retain_grad() self.w = 0. if self.can_split: v = torch.zeros(C_out-self.eout, C_in-self.ein,kh,kw).to(device) v.uniform_(-1e-1, 1e-1) self.v = nn.Parameter(v) if self.ein > 0: vni = torch.zeros(C_out, self.ein, kh, kw).to(device) vni.uniform_(-1e-2, 1e-2) self.vni = nn.Parameter(vni) if self.eout > 0: vno = torch.zeros(self.eout, C_in-self.ein, kh, kw).to(device) n = kh * kw * (C_in - self.ein) stdv = 1. / math.sqrt(n) #vno.uniform_(-stdv, stdv) vno.normal_(0, 0.1) self.vno = nn.Parameter(vno) def spffn_update_w(self, d, output = False): if not output: self.w += (self.y.grad.data / d).view(-1) self.y.grad = None else: y_grad = grad(self.output.mean(), self.y) self.w += (self.y.grad.data / y_grad[0].data / d).view(-1) self.y.grad = None def spffn_forward(self, x, alpha=-1): out = self.module(x) # [out+eout, in+ein, H, W] patches = self.get_conv_patches(x) B, H, W, C_in, kh, kw = patches.size() C_out = out.shape[1] cin, cout = C_in - self.ein, C_out - self.eout x = patches.view(B*H*W, -1, kh*kw) if self.ein > 0: x1, x2 = x[:,:cin,:].view(B*H*W, -1), x[:,cin:,:].view(B*H*W,-1) else: x1 = x.view(B*H*W, -1) if self.can_split: noise_v = x1.mm(self.v.view(-1, cin*kh*kw).t()).view(B,H,W,-1).permute(0,3,1,2) # [B,cout,H,W] if alpha >= 0.: noise_v = (noise_v.detach() * self.y[:,:cout,:,:] + noise_v * alpha) if self.eout > 0: noise_vo = x1.mm(self.vno.view(-1, cin*kh*kw).t()).view(B,H,W,-1).permute(0,3,1,2) if alpha >= 0.: noise_vo = (noise_vo.detach() * self.y[:,cout:,:,:] + noise_vo * alpha) if self.ein > 0: noise_vi1 = x2.mm(self.vni.view(-1, self.ein*kh*kw).t()) if self.eout > 0: noise_vi1, noise_vi2 = noise_vi1[:,:cout], noise_vi1[:,cout:] # [B*H*W, cout/eout] noise_vi1 = noise_vi1.view(B,H,W,-1).permute(0,3,1,2) noise_vi2 = noise_vi2.view(B,H,W,-1).permute(0,3,1,2) else: noise_vi1 = noise_vi1.view(B,H,W,-1).permute(0,3,1,2) o1_plus = o1_minus = o2 = 0. if self.can_split: o1_plus = out[:,:cout,:,:] + noise_v # [B, cout, H, W] o1_minus = out[:,:cout,:,:] - noise_v # [B, cout, H, W] if self.eout > 0: o2 = out[:,cout:,:,:] + noise_vo if self.ein > 0: o1_plus = o1_plus + noise_vi1 o1_minus = o1_minus + noise_vi1 if self.eout > 0: o2 = o2 + noise_vi2 if self.eout > 0: o1_plus = torch.cat((o1_plus, o2), 1) o1_minus = torch.cat((o1_minus, o2), 1) if self.has_bn: o1_plus = self.bn(o1_plus) o1_minus = self.bn(o1_minus) o1_plus = self._activate(o1_plus) o1_minus = self._activate(o1_minus) output = (o1_plus + o1_minus) / 2. else: o1 = out[:,:cout,:,:] if self.eout > 0: o2 = out[:,cout:,:,:] + noise_vo if self.ein > 0: o2 = o2 + noise_vi2 if self.ein > 0: o1 = o1 + noise_vi1 if self.eout > 0: o1 = torch.cat((o1, o2), 1) if self.has_bn: o1 = self.bn(o1) output = self._activate(o1) self.output = output return output ########################################################################### # firefly split ########################################################################### def spff_reset(self): W = self.module.weight.data device = self.get_device() self.y = nn.Parameter(torch.zeros(1, W.shape[0], 1, 1)).to(device) self.y.retain_grad() self.v = nn.Parameter(torch.zeros_like(W)) self.v.data.uniform_(-1e-1, 1e-1) self.w = 0. def spff_update_w(self, d): self.w += (self.y.grad.data/d).view(-1) def spff_scale_v(self): self.v.data = self.v.data * 1e2 def spff_forward(self, x, alpha=-1): out = self.module(x) patches = self.get_conv_patches(x) B, H, W, C_in, kh, kw = patches.size() x = patches.view(B*H*W, -1) if alpha >= 0.: noise_out = x.mm(self.v.view(-1, C_in*kh*kw).t()) noise_out = noise_out.view(B, H, W, -1).permute(0, 3, 1, 2) noise_out = (self.y * noise_out.detach() + noise_out * alpha) else: noise_out = x.mm(self.v.view(-1, C_in*kh*kw).t()) noise_out = noise_out.view(B, H, W, -1).permute(0, 3, 1, 2) out_plus = out + noise_out out_minus = out - noise_out if self.has_bn: self.bn.eval() out_plus = self.bn(out_plus) out_minus = self.bn(out_minus) out_plus = self._activate(out_plus) out_minus = self._activate(out_minus) return (out_plus + out_minus) / 2. ########################################################################### # exact split ########################################################################### def spe_forward(self, x): out = self.module(x) # [B, C_out, H, W] if self.has_bn: self.bn.eval() # fix running mean/variance out = self.bn(out) # calculate bn_coff bn_coff = 1. / torch.sqrt(self.bn.running_var + 1e-5) * self.bn.weight bn_coff = bn_coff.view(1, -1, 1, 1) # [1, C_out, 1, 1] first_run = (len(self.S) == 0) # calculate 2nd order derivative of the activation nabla2_out = self._d2_actv(out) # [B, C_out, H, W] patches = self.get_conv_patches(x) B, H, W, C_in, KH, KW = patches.size() C_out = out.shape[1] D = C_in * KH * KW x = patches.view(B, H, W, D) device = self.get_device() auxs = [] # separate calculations for each neuron for space efficiency for neuron_idx in range(C_out): c = bn_coff[:, neuron_idx:neuron_idx+1, :, :] if self.has_bn else 1. l = c * x if first_run: S = Variable(torch.zeros(D, D).to(device), requires_grad=True) # [H_in, H_in] self.S.append(S) else: S = self.S[neuron_idx] aux = l.view(-1, D).mm(S).unsqueeze(1).bmm(l.view(-1, D, 1)).squeeze(-1) # (Bx)S(Bx^T), [B*H*W,1] aux = aux.view(B, 1, H, W) auxs.append(aux) auxs = torch.cat(auxs, 1) # [B, C_out, H, W] auxs = auxs * nabla2_out # [B, C_out, H, W] out = self._activate(out) + auxs return out def spe_eigen(self, avg_over=1.): A = np.array([item.grad.data.cpu().numpy() for item in self.S]) # [C_out, D, D] A /= avg_over A = (A + np.transpose(A, [0, 2, 1])) / 2 w, v = np.linalg.eig(A) # [C_out, K], [C_out, D, K] w = np.real(w) v = np.real(v) min_idx = np.argmin(w, axis=1) w_min = np.min(w, axis=1) # [C_out,] v_min = v[np.arange(w_min.shape[0]), :, min_idx] # [C_out, D] self.w = w_min self.v = v_min device = self.get_device() self.w = torch.FloatTensor(w_min).to(device) self.v = torch.FloatTensor(v_min).to(device) self.v = self.v.view(*self.module.weight.data.shape) del A ## below are for copying weights and actual splitting def get_n_neurons(self): return self.module.weight.data.shape[0] def random_split(self, C_new): if C_new == 0: return 0, None C_out, C_in, kh, kw = self.module.weight.shape idx = np.random.choice(C_out, C_new) device = self.get_device() delta1 = F.normalize(torch.randn(C_new, C_in, kh, kw).to(device), p=2, dim=-1) delta2 = F.normalize(torch.randn(C_new, C_in, kh, kw).to(device), p=2, dim=-1) delta1 = delta1 * 1e-2 delta2 = delta2 * 1e-2 idx = torch.LongTensor(idx).to(device) new_layer = nn.Conv2d(in_channels=C_in, out_channels=C_out+C_new, kernel_size=(self.kh, self.kw), stride=(self.dh, self.dw), padding=(self.ph, self.pw), bias=self.has_bias).to(device) # for current layer new_layer.weight.data[:C_out, ...] = self.module.weight.data.clone() new_layer.weight.data[C_out:, ...] = self.module.weight.data[idx, ...] new_layer.weight.data[idx, ...] += delta1 new_layer.weight.data[C_out:, ...] -= delta2 if self.has_bias: new_layer.bias.data[:C_out, ...] = self.module.bias.data.clone() new_layer.bias.data[C_out:, ...] = self.module.bias.data[idx] self.module = new_layer # for batchnorm layer if self.has_bn: new_bn = nn.BatchNorm2d(C_out+C_new).to(device) new_bn.weight.data[:C_out] = self.bn.weight.data.clone() new_bn.weight.data[C_out:] = self.bn.weight.data[idx] new_bn.bias.data[:C_out] = self.bn.bias.data.clone() new_bn.bias.data[C_out:] = self.bn.bias.data[idx] new_bn.running_mean.data[:C_out] = self.bn.running_mean.data.clone() new_bn.running_mean.data[C_out:] = self.bn.running_mean.data[idx] new_bn.running_var.data[:C_out] = self.bn.running_var.data.clone() new_bn.running_var.data[C_out:] = self.bn.running_var.data[idx] self.bn = new_bn return C_new, idx def rdinit_grow_output(self): C_out, C_in, kh, kw = self.module.weight.shape device = self.get_device() new_layer = nn.Conv2d(in_channels=C_in, out_channels=C_out+1, kernel_size=(self.kh, self.kw), stride=(self.dh, self.dw), padding=(self.ph, self.pw), bias=self.has_bias).to(device) new_layer.weight.data[:C_out, ...] = self.module.weight.data.clone() self.module = new_layer def rdinit_grow_input(self): C_out, C_in, kh, kw = self.module.weight.shape device = self.get_device() new_layer = nn.Conv2d(in_channels=C_in+1, out_channels=C_out, kernel_size=(self.kh, self.kw), stride=(self.dh, self.dw), padding=(self.ph, self.pw), bias=self.has_bias).to(device) new_layer.weight.data[:,:C_in, ...] = self.module.weight.data.clone() self.module = new_layer def active_split(self, threshold): idx = torch.nonzero((self.w <= threshold).float()).view(-1) C_new = idx.shape[0] if C_new == 0: return 0, None C_out, C_in, kh, kw = self.module.weight.shape device = self.get_device() delta = self.v[idx, ...] * 1e-2 delta = delta.view(C_new, C_in, kh, kw) new_layer = nn.Conv2d(in_channels=C_in, out_channels=C_out+C_new, kernel_size=(self.kh, self.kw), stride=(self.dh, self.dw), padding=(self.ph, self.pw), bias=self.has_bias).to(device) # for current layer new_layer.weight.data[:C_out, ...] = self.module.weight.data.clone() new_layer.weight.data[C_out:, ...] = self.module.weight.data[idx, ...] new_layer.weight.data[idx, ...] += delta new_layer.weight.data[C_out:, ...] -= delta if self.has_bias: new_layer.bias.data[:C_out, ...] = self.module.bias.data.clone() new_layer.bias.data[C_out:, ...] = self.module.bias.data[idx] self.module = new_layer # for batchnorm layer if self.has_bn: new_bn = nn.BatchNorm2d(C_out+C_new).to(device) new_bn.weight.data[:C_out] = self.bn.weight.data.clone() new_bn.weight.data[C_out:] = self.bn.weight.data[idx] new_bn.bias.data[:C_out] = self.bn.bias.data.clone() new_bn.bias.data[C_out:] = self.bn.bias.data[idx] new_bn.running_mean.data[:C_out] = self.bn.running_mean.data.clone() new_bn.running_mean.data[C_out:] = self.bn.running_mean.data[idx] new_bn.running_var.data[:C_out] = self.bn.running_var.data.clone() new_bn.running_var.data[C_out:] = self.bn.running_var.data[idx] self.bn = new_bn return C_new, idx def passive_split(self, idx): C_new = idx.shape[0] C_out, C_in, _, _ = self.module.weight.shape device = self.get_device() new_layer = nn.Conv2d(in_channels=C_in+C_new, out_channels=C_out, kernel_size=(self.kh, self.kw), stride=(self.dh, self.dw), padding=(self.ph, self.pw), bias=self.has_bias).to(device) new_layer.weight.data[:, :C_in, ...] = self.module.weight.data.clone() new_layer.weight.data[:, C_in:, ...] = self.module.weight.data[:, idx, ...] / 2. new_layer.weight.data[:, idx, ...] /= 2. if self.has_bias: new_layer.bias.data = self.module.bias.data.clone() self.module = new_layer def spffn_active_grow(self, threshold): idx = torch.nonzero((self.w <= threshold).float()).view(-1) C_out, C_in, kh, kw = self.module.weight.shape c1 = C_out - self.eout c3 = C_in - self.ein split_idx, new_idx = idx[idx < c1], idx[idx >= c1] n_split = split_idx.shape[0] n_new = new_idx.shape[0] c2 = c1 + n_split device = self.get_device() delta = self.v[split_idx, ...] new_layer = nn.Conv2d(in_channels=C_in, out_channels=c1+n_split+n_new, kernel_size=(self.kh, self.kw), stride=(self.dh, self.dw), padding=(self.ph, self.pw), bias=self.has_bias).to(device) # for current layer [--original--c1--split_new--c2--add new--] old_W = self.module.weight.data.clone() try: old_W[:, C_in - self.ein:, :, :] = self.vni.clone() except: pass try: old_W[C_out-self.eout:, :C_in-self.ein, :, :] = self.vno.clone() except: pass new_layer.weight.data[:c1, ...] = old_W[:c1,...] if n_split > 0: new_layer.weight.data[c1:c2, ...] = old_W[split_idx, ...] new_layer.weight.data[split_idx,:c3,...] += delta new_layer.weight.data[c1:c2:,:c3,...] -= delta if n_new > 0: new_layer.weight.data[c2:, ...] = old_W[new_idx, ...] if self.has_bias: old_b = self.module.bias.data.clone() new_layer.bias.data[:c1, ...] = old_b[:c1,...].clone() if n_split > 0: new_layer.bias.data[c1:c2, ...] = old_b[split_idx] if n_new > 0: new_layer.bias.data[c2:,...] = 0. self.module = new_layer # for batchnorm layer if self.has_bn: new_bn = nn.BatchNorm2d(c1+n_split+n_new).to(device) new_bn.weight.data[:c1] = self.bn.weight.data[:c1].clone() new_bn.bias.data[:c1] = self.bn.bias.data[:c1].clone() new_bn.running_mean.data[:c1] = self.bn.running_mean.data[:c1].clone() new_bn.running_var.data[:c1] = self.bn.running_var.data[:c1].clone() if n_split > 0: new_bn.weight.data[c1:c2] = self.bn.weight.data[split_idx] new_bn.bias.data[c1:c2] = self.bn.bias.data[split_idx] new_bn.running_mean.data[c1:c2] = self.bn.running_mean.data[split_idx] new_bn.running_var.data[c1:c2] = self.bn.running_var.data[split_idx] if n_new > 0: new_bn.weight.data[c2:] = self.bn.weight.data[new_idx] new_bn.bias.data[c2:] = self.bn.bias.data[new_idx] new_bn.running_mean.data[c2:] = self.bn.running_mean.data[new_idx] new_bn.running_var.data[c2:] = self.bn.running_var.data[new_idx] self.bn = new_bn return n_split+n_new, split_idx, new_idx def spffn_passive_grow(self, split_idx, new_idx): n_split = split_idx.shape[0] if split_idx is not None else 0 n_new = new_idx.shape[0] if new_idx is not None else 0 C_out, C_in, _, _ = self.module.weight.shape if self.groups != 1: C_in = C_out device = self.get_device() c1 = C_in-self.ein if n_split == 0 and n_new == self.ein: return if self.groups != 1: self.groups = c1 + n_split + n_new C_out = self.groups new_layer = nn.Conv2d(in_channels=c1+n_split+n_new, out_channels=C_out, kernel_size=(self.kh, self.kw), stride=(self.dh, self.dw), padding=(self.ph, self.pw), bias=self.has_bias, groups = self.groups).to(device) c2 = c1 + n_split if self.has_bias: new_layer.bias.data = self.module.bias.data.clone() if self.groups != 1: new_layer.weight.data[:c1,:,...] = self.module.weight.data[:c1,:,...].clone() else: new_layer.weight.data[:,:c1,...] = self.module.weight.data[:,:c1,...].clone() if n_split > 0: if self.groups == 1: new_layer.weight.data[:,c1:c2,:,:] = self.module.weight.data[:,split_idx,:,:] / 2. new_layer.weight.data[:,split_idx,...] /= 2. else: new_layer.weight.data[c1:c2, :,...] = self.module.weight.data[split_idx, :,...] if self.groups != 1: new_bn = nn.BatchNorm2d(C_out).to(device) out = C_out - n_new - n_split out1 = out + n_split out2 = out1 + n_new new_bn.weight.data[:out] = self.bn.weight.data.clone()[:out] new_bn.bias.data[:out] = self.bn.bias.data.clone()[:out] new_bn.running_mean.data[:out] = self.bn.running_mean.data.clone()[:out] new_bn.running_var.data[:out] = self.bn.running_var.data.clone()[:out] if n_split > 0: out1 = out + n_split new_bn.weight.data[out:out1] = self.bn.weight.data[split_idx] new_bn.bias.data[out:out1] = self.bn.bias.data[split_idx] new_bn.running_mean.data[out:out1] = self.bn.running_mean.data[split_idx] new_bn.running_var.data[out:out1] = self.bn.running_var.data[split_idx] if n_new > 0: new_bn.weight.data[out1:out2] = self.bn.weight.data[new_idx] new_bn.bias.data[out1:out2] = self.bn.bias.data[new_idx] new_bn.running_mean.data[out1:out2] = self.bn.running_mean.data[new_idx] new_bn.running_var.data[out1:out2] = self.bn.running_var.data[new_idx] self.bn = new_bn if n_new > 0: if self.groups != 1: new_layer.weight.data[c2:,:,...] = self.module.weight.data[new_idx, :,...] else: new_layer.weight.data[:,c2:,...] = self.module.weight.data[:,new_idx,...] self.module = new_layer
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import sys import copy import time from pydoc import locate import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from crlapi.core import CLModel from crlapi.sl.clmodels.core import SupervisedCLModel from crlapi.sl.architectures.firefly_vgg import sp from crlapi.sl.architectures.firefly_vgg.models import sp_vgg def _state_dict(model, device): sd = model.state_dict() for k, v in sd.items(): sd[k] = v.to(device) return sd # --- Firefly Implementation. Since we do not plan to extend this method, # --- everything is self-contained here. class Firefly(SupervisedCLModel): def __init__(self, stream, clmodel_args): super().__init__() self.models = [] self.config = clmodel_args self.verbose = True def build_initial_net(self, task, **model_args): # only support the custom VGG backbone for now model, next_layers, layers_to_split = \ sp_vgg('vgg19', n_classes=task.n_classes, dimh=model_args['n_channels'], method='fireflyn') # Hacky AF model.next_layers = next_layers model.layers_to_split = layers_to_split return model def get_prediction_net(self,task): if task.task_descriptor() is None: model = self.models[-1] else: model = self.models[task.task_descriptor] model.eval() return model def update(self, task, logger): assert isinstance(task.task_descriptor(),int) logger.message("Building training dataset") training_dataset = task.task_resources().make() # Creating datasets and loaders training_loader,validation_loader = self.get_train_and_validation_loaders(training_dataset) if len(self.models)==0: model_args=self.config.model model=self.build_initial_net(task,**model_args) elif (task.task_descriptor() % self.config.grow_every) == 0: model=copy.deepcopy(self.models[task.task_descriptor()-1]) print('growing') base_gr = self.config.model.grow_ratio grow_ratio = (base_gr * task.task_descriptor() + 1) / (base_gr * (task.task_descriptor() - 1) + 1) - 1 n_pre = sum(np.prod(x.shape) for x in model.parameters()) added = self.split(model, training_loader, grow_ratio) n_post = sum(np.prod(x.shape) for x in model.parameters()) assert n_post > n_pre print(f'from {n_pre} to {n_post}') else: model=copy.deepcopy(self.models[task.task_descriptor()-1]) flops_per_input = self.count_flops(task, model) best_model=copy.deepcopy(model) best_loss, best_acc = None, None # Optionally create GPU training augmentations train_aug = self.get_train_augs() # Optinally use patience :) patience = self.config.patience patience_delta = self.config.patience_delta patience_count = 0 device=self.config["device"] model.to(device) optimizer = self.get_optimizer(model.parameters()) #Launching training procedure logger.message("Start training for "+str(self.config["max_epochs"])+" epochs") iteration, n_fwd_samples = 0, 0 for epoch in range(self.config["max_epochs"]): # Make sure model is ready for train model.train() #Training loop for i, (raw_x, y) in enumerate(training_loader): raw_x, y = raw_x.to(device), y.to(device) # apply transformations x = train_aug(raw_x) predicted=model(x) loss=F.cross_entropy(predicted,y) nb_ok=predicted.max(1)[1].eq(y).float().sum().item() accuracy=nb_ok/x.size()[0] logger.add_scalar("train/loss",loss.item(),iteration) logger.add_scalar("train/accuracy",accuracy,iteration) optimizer.zero_grad() loss.backward() optimizer.step() iteration += 1 n_fwd_samples += x.size(0) #Validation out=self._validation_loop(model,device,validation_loader) validation_loss,validation_accuracy=out["loss"],out["accuracy"] logger.add_scalar("validation/loss",validation_loss,epoch) logger.add_scalar("validation/accuracy",validation_accuracy,epoch) # Right now CV against accuracy # if best_loss is None or validation_loss < (best_loss - patience_delta): if best_acc is None or validation_accuracy > (best_acc + patience_delta): print("\tFound best model at epoch ",epoch) best_model.load_state_dict(_state_dict(model,"cpu")) best_loss = validation_loss best_acc = validation_accuracy patience_count = 0 else: patience_count += 1 logger.message(f"Validation Acc {validation_accuracy:.4f}\t Loss {validation_loss:.4}") if patience_count == patience: break self.models.append(best_model) logger.message("Training Done...") logger.add_scalar('train/model_params', sum([np.prod(x.shape) for x in model.parameters()]), 0) logger.add_scalar('train/one_sample_megaflop', flops_per_input / 1e6, 0) logger.add_scalar('train/total_megaflops', n_fwd_samples * flops_per_input / 1e6, 0) return self # -------------------------------------------- # Firefly specific methods (from Classifier) # -------------------------------------------- def spffn_forward(self, net, x, alpha): for layer in net: #if isinstance(layer, sp.SpModule) and layer.can_split: prev_x = x.cpu().data.numpy() if isinstance(layer, sp.SpModule): x = layer.spffn_forward(x, alpha=alpha) else: x = layer(x) return x.view(x.shape[0], -1) def spffn_loss_fn(self, net, x, y, alpha=-1): scores = self.spffn_forward(net, x, alpha=alpha) loss = F.cross_entropy(scores, y) return loss ## -- firefly new split -- ## def spffn(self, net, loader, n_batches): v_params = [] for i, layer in enumerate(net): if isinstance(layer, sp.SpModule): enlarge_in = (i > 0) enlarge_out = (i < len(net)-1) net[i].spffn_add_new(enlarge_in=enlarge_in, enlarge_out=enlarge_out) net[i].spffn_reset() if layer.can_split: v_params += [net[i].v] if enlarge_in: v_params += [net[i].vni] if enlarge_out: v_params += [net[i].vno] opt_v = torch.optim.RMSprop(nn.ParameterList(v_params), lr=1e-3, momentum=0.1, alpha=0.9) self.device = next(iter(net.parameters())).device torch.cuda.empty_cache() n_batches = 0 for i, (x, y) in enumerate(loader): n_batches += 1 x, y = x.to(self.device), y.to(self.device) loss = self.spffn_loss_fn(net, x, y) opt_v.zero_grad() loss.backward() for layer in net: if isinstance(layer, sp.SpModule): layer.spffn_penalty() opt_v.step() self.config.model.granularity = 1 alphas = np.linspace(0, 1, self.config.model.granularity*2+1) for alpha in alphas[1::2]: for x, y in loader: x, y = x.to(self.device), y.to(self.device) loss = self.spffn_loss_fn(net, x, y, alpha=1.0) opt_v.zero_grad() loss.backward() # for i in self.layers_to_split: for i in net.layers_to_split: net[i].spffn_update_w(self.config.model.granularity * n_batches, output = False) # -------------------------------------------- # Firefly specific methods (from SpNet) # -------------------------------------------- def clear(self, net): for layer in net: if isinstance(layer, sp.SpModule): layer.clear() def get_num_elites(self, net, grow_ratio): n = 0 # for i in self.layers_to_split: for i in net.layers_to_split: n += net[i].module.weight.shape[0] self.n_elites = int(n * grow_ratio) def get_num_elites_group(self, net, group_num, grow_ratio): for g in range(group_num): n = 0 for i in self.layers_to_split_group[g]: n += net[i].module.weight.shape[0] try: self.n_elites_group[g] = int(n * grow_ratio) except: self.n_elites_group = {} self.n_elites_group[g] = int(n * grow_ratio) def sp_threshold(self, net): # ws, wi = torch.sort(torch.cat([net[i].w for i in self.layers_to_split]).reshape(-1)) ws, wi = torch.sort(torch.cat([net[i].w for i in net.layers_to_split]).reshape(-1)) total= ws.shape[0] threshold = ws[self.n_elites] return threshold def sp_threshold_group(self, net, group_num): # ws, wi = torch.sort(torch.cat([net[i].w for i in self.layers_to_split_group[group_num]]).reshape(-1)) ws, wi = torch.sort(torch.cat([net[i].w for i in net.layers_to_split_group[group_num]]).reshape(-1)) total= ws.shape[0] threshold = ws[self.n_elites_group[group_num]] return threshold def split(self, net, loader, grow_ratio, n_batches=-1, split_method='fireflyn'): self.num_group = 1# if self.config.backbne != 'mobile' else 2 if split_method not in ['random', 'exact', 'fast', 'firefly', 'fireflyn']: raise NotImplementedError if self.verbose: print('[INFO] start splitting ...') start_time = time.time() net.eval() if self.num_group == 1: self.get_num_elites(net, grow_ratio) else: self.get_num_elites_group(net, grow_ratio, self.num_group) split_fn = { #'exact': self.spe, #'fast': self.spf, #'firefly': self.spff, 'fireflyn': self.spffn, } if split_method != 'random': split_fn[split_method](net, loader, n_batches) n_neurons_added = {} if split_method == 'random': # n_layers = len(self.layers_to_split) n_layers = len(net.layers_to_split) n_total_neurons = 0 threshold = 0. # for l in self.layers_to_split: for l in net.layers_to_split: n_total_neurons += net[l].get_n_neurons() n_grow = int(n_total_neurons * grow_ratio) n_new1 = np.random.choice(n_grow, n_layers, replace=False) n_new1 = np.sort(n_new1) n_news = [] for i in range(len(n_new1) - 1): if i == 0: n_news.append(n_new1[i]) n_news.append(n_new1[i + 1] - n_new1[i]) else: n_news.append(n_new1[i + 1] - n_new1[i]) n_news[-1] += 1 # for i, n_new_ in zip(reversed(self.layers_to_split), n_news): for i, n_new_ in zip(reversed(net.layers_to_split), n_news): if isinstance(net[i], sp.SpModule) and net[i].can_split: n_new, idx = net[i].random_split(n_new_) n_neurons_added[i] = n_new if n_new > 0: # we have indeed splitted this layer # for j in self.next_layers[i]: for j in net.next_layers[i]: net[j].passive_split(idx) elif split_method == 'fireflyn': if self.num_group == 1: threshold = self.sp_threshold(net) # for i in reversed(self.layers_to_split): for i in reversed(net.layers_to_split): if isinstance(net[i], sp.SpModule) and net[i].can_split: if self.num_group != 1: group = self.total_group[i] threshold = self.sp_threshold_group(net, group) n_new, split_idx, new_idx = net[i].spffn_active_grow(threshold) sp_new = split_idx.shape[0] if split_idx is not None else 0 n_neurons_added[i] = (sp_new, n_new-sp_new) if net[i].kh == 1: isfirst = True else: isfirst = False # for j in self.next_layers[i]: for j in net.next_layers[i]: print('passive', net[j].module.weight.shape) net[j].spffn_passive_grow(split_idx, new_idx) else: threshold= self.sp_threshold() # actual splitting # for i in reversed(self.layers_to_split): for i in reversed(net.layers_to_split): if isinstance(net[i], sp.SpModule) and net[i].can_split: n_new, idx = net[i].active_split(threshold) n_neurons_added[i] = n_new if n_new > 0: # we have indeed splitted this layer # for j in self.next_layers[i]: for j in net.next_layers[i]: net[j].passive_split(idx) net.train() self.clear(net) # cleanup auxiliaries end_time = time.time() if self.verbose: print('[INFO] splitting takes %10.4f sec. Threshold value is %10.9f' % ( end_time - start_time, threshold)) if split_method == 'fireflyn': print('[INFO] number of added neurons: \n%s\n' % \ '\n'.join(['-- %d grows (sp %d | new %d)' % (x, y1, y2) for x, (y1, y2) in n_neurons_added.items()])) else: print('[INFO] number of added neurons: \n%s\n' % \ '\n'.join(['-- %d grows %d neurons' % (x, y) for x, y in n_neurons_added.items()])) return n_neurons_added
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import torch.nn as nn import torch.nn.functional as F from crlapi.core import CLModel from crlapi.sl.clmodels.finetune import Finetune import copy import numpy as np from pydoc import locate class IndexDataset(torch.utils.data.Dataset): def __init__(self, og_dataset): self.og_dataset = og_dataset def __getitem__(self, index): data, target = self.og_dataset[index] return data, target, index def __len__(self): return len(self.og_dataset) def _state_dict(model, device): sd = model.state_dict() for k, v in sd.items(): sd[k] = v.to(device) return sd class AdaBoost(Finetune): def get_prediction_net(self,task): for i, model in enumerate(self.models): model.eval() self.models[i] = model.to(self.config.device) return self def forward(self, x): outs = [] for model in self.models: outs += [model(x)] out = torch.stack(outs) * self.model_weights.reshape((-1,) + (1,) * outs[0].ndim) out = out.mean(0) return out def compute_errors(self, loader, model): unshuffled_loader = torch.utils.data.DataLoader( loader.dataset, batch_size=loader.batch_size, drop_last=False, shuffle=False) device=self.config.device model.to(device) model.eval() # --- Upweighting err = [] # eval mode with torch.no_grad(): for x, y in unshuffled_loader: x, y = x.to(device), y.to(device) err += [~model(x).argmax(1).eq(y)] err = torch.cat(err).float() # (DS, ) return err def update(self, task, logger): assert isinstance(task.task_descriptor(),int) logger.message("Building training dataset") training_dataset = task.task_resources().make() # Creating datasets and loaders og_training_loader, validation_loader = self.get_train_and_validation_loaders(training_dataset) training_loader = torch.utils.data.DataLoader( IndexDataset(og_training_loader.dataset), batch_size=og_training_loader.batch_size, shuffle=True ) to_print = [] # --- step 1 : Initialize the observation weights uniformly ds_len = len(og_training_loader.dataset) sample_weights = torch.zeros(size=(ds_len,)).fill_(1. / ds_len).to(self.config.device) for around in range(self.config.n_rounds): # --- 2. a) Fit new classifier on weighted data # init model model_args=self.config.model model, best_model = [self.build_initial_net(task,**model_args) for _ in range(2)] flops_per_input = self.count_flops(task, model) n_params = sum(np.prod(x.shape) for x in model.parameters()) print(f'new model has {n_params} params') best_loss, best_acc = None, None # Optionally create GPU training augmentations train_aug = self.get_train_augs() # Optinally use patience :) patience = self.config.patience patience_delta = self.config.patience_delta patience_count = 0 device=self.config.device model.to(device) optimizer = self.get_optimizer(model.parameters()) #Launching training procedure logger.message("Start training for "+str(self.config.max_epochs) + " epochs") iteration, n_fwd_samples = 0, 0 epoch = 0 while True: # Run until convergence epoch += 1 # Make sure model is ready for train model.train() # Training loop training_loss=0.0 training_accuracy=0.0 n=0 for i, (raw_x, y, idx) in enumerate(training_loader): raw_x, y = raw_x.to(device), y.to(device) weight_x = sample_weights[idx] n += y.size(0) # apply transformations x = train_aug(raw_x) predicted = model(x) loss = F.cross_entropy(predicted, y, reduction='none') loss = (loss * weight_x).mean() * ds_len nb_ok=predicted.max(1)[1].eq(y).float().sum().item() accuracy=nb_ok/x.size()[0] training_accuracy+=nb_ok training_loss+=loss.item() logger.add_scalar("train/loss",loss.item(),iteration) logger.add_scalar("train/accuracy",accuracy,iteration) optimizer.zero_grad() loss.backward() optimizer.step() iteration += 1 n_fwd_samples += x.size(0) # Validation training_accuracy/=n training_loss/=n out=self._validation_loop(model,device,validation_loader) validation_loss,validation_accuracy=out["loss"],out["accuracy"] logger.add_scalar("validation/loss",validation_loss,epoch) logger.add_scalar("validation/accuracy",validation_accuracy,epoch) # Right now CV against accuracy if best_acc is None or validation_accuracy > (best_acc + patience_delta): print(f"\t Round {around}. Found best model at epoch ",epoch) best_model.load_state_dict(_state_dict(model,"cpu")) best_loss = validation_loss best_acc = validation_accuracy patience_count = 0 else: patience_count += 1 logger.message(f"Validation Acc {validation_accuracy:.4f}\t Validation Loss {validation_loss:.4f}") logger.message(f"Training Acc {training_accuracy:.4f}\t Training Loss {training_loss:.4f}") if patience_count == patience or epoch == self.config.max_epochs: break del model # --- Step 2 b) Compute the new classifier errors all_errs = self.compute_errors(og_training_loader, best_model) # 1, ds_size assert all_errs.shape == (ds_len, ) cls_err = (all_errs * sample_weights).sum() / sample_weights.sum() # --- Step 2 c) Compute the new classifier weight K = task.n_classes cls_alpha = torch.log((K - 1) * (1 - cls_err) / cls_err) # --- Step 2 d) Update the sample weights sample_weights = sample_weights * torch.exp(cls_alpha * all_errs) sample_weights /= sample_weights.sum() print(f'sample weights min {sample_weights.min():.6f}\t max {sample_weights.max():.6f} \t median {sample_weights.median():.6f}') print(torch.multinomial(sample_weights, ds_len, replacement=True).bincount().bincount()) # store best model self.models.append(best_model) cls_alpha = cls_alpha.reshape(1) # store classifier weights if not hasattr(self, 'model_weights'): self.model_weights = cls_alpha else: self.model_weights = torch.cat((self.model_weights, cls_alpha)) print(self.model_weights) # Evaluate each model individually : accs = [] for model in self.models: accs += [self._validation_loop(model, device, validation_loader)['accuracy']] ensemble = self._validation_loop(self, device, validation_loader)['accuracy'] fill = lambda x : str(x) + (100 - len(str(x))) * ' ' to_print += [fill(accs) + '\t' + str(ensemble)] for item in to_print: print(item) logger.message("Training Done...") logger.add_scalar('train/model_params', len(self.models) * sum([np.prod(x.shape) for x in model.parameters()]), 0) logger.add_scalar('train/one_sample_megaflop', len(self.models) * flops_per_input / 1e6 * len(self.models), 0) logger.add_scalar('train/total_megaflops', n_fwd_samples * flops_per_input / 1e6, 0) logger.add_scalar('train/best_validation_accuracy', best_acc, 0) return self
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import torch.nn as nn import torch.nn.functional as F from crlapi.core import CLModel from crlapi.sl.clmodels.finetune import Finetune import copy import numpy as np from pydoc import locate from itertools import chain def _state_dict(model, device): sd = model.state_dict() for k, v in sd.items(): sd[k] = v.to(device) return sd class AggEnsemble(Finetune): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.to_print = [] print(f'voting {self.config.vote}') def get_prediction_net(self,task): for model in self.models: model.eval() return self def forward(self, x): outs = [] for model in self.models: outs += [model(x)] out = torch.stack(outs).sum(0) return out def _validation_loop(self,nets,device,dataloader): [net.eval() for net in nets] [net.to(device) for net in nets] with torch.no_grad(): loss_values=[] nb_ok=0 nb_total=0 for x,y in dataloader: x,y=x.to(device),y.to(device) predicted=0 for net in nets: predicted += net(x) loss=F.cross_entropy(predicted,y) loss_values.append(loss.item()) nb_ok+=predicted.max(1)[1].eq(y).float().sum().item() nb_total+=x.size()[0] loss=np.mean(loss_values) accuracy=nb_ok/nb_total net = net.train() return {"loss":loss,"accuracy":accuracy} def update(self, task, logger): assert isinstance(task.task_descriptor(),int) if len(self.models)==0 or getattr(self.config, 'init_from_scratch', False): model_args=self.config.model models = [self.build_initial_net(task,**model_args) for _ in range(self.config.k)] n_params = sum(np.prod(x.shape) for x in models[0].parameters()) print(f'new model has {n_params} params') else: # get the last k models models = [copy.deepcopy(model) for model in self.models] logger.message("Building training dataset") training_dataset = task.task_resources().make() flops_per_input = self.count_flops(task, models[0]) * self.config.k # Creating datasets and loaders training_loader, validation_loader = self.get_train_and_validation_loaders(training_dataset) best_models = [copy.deepcopy(model) for model in models] best_loss, best_acc = 1e10, None # Optionally create GPU training augmentations train_aug = self.get_train_augs() # Optinally use patience :) patience = self.config.patience patience_delta = self.config.patience_delta patience_count = 0 device=self.config.device models = [model.to(device) for model in models] optimizer = self.get_optimizer(chain(*[model.parameters() for model in models])) #Launching training procedure logger.message("Start training for " + str(self.config.max_epochs) + " epochs") iteration, n_fwd_samples = 0, 0 for epoch in range(self.config.max_epochs): # Make sure model is ready for train [model.train() for model in models] # Keep a single track of these for now training_loss=0.0 training_accuracy=0.0 n=0 for i, (raw_x, y) in enumerate(training_loader): raw_x, y = raw_x.to(device), y.to(device) # apply transformations x = train_aug(raw_x) predicted = 0. for model in models: predicted += model(x) loss = F.cross_entropy(predicted,y) nb_ok = predicted.max(1)[1].eq(y).float().sum().item() acc = nb_ok/x.size()[0] accuracy = acc loss_ = loss.item() training_accuracy += accuracy training_loss += loss_ n += x.size(0) n_fwd_samples += x.size(0) logger.add_scalar("train/loss",loss_,iteration) logger.add_scalar("train/accuracy",accuracy,iteration) optimizer.zero_grad() loss.backward() optimizer.step() iteration += 1 #Validation training_accuracy /= i training_loss /= i out=self._validation_loop(models,device,validation_loader) validation_loss, validation_accuracy = out["loss"], out["accuracy"] logger.add_scalar("validation/loss",validation_loss,epoch) logger.add_scalar("validation/accuracy",validation_accuracy,epoch) if best_acc is None or validation_accuracy > (best_acc): best_acc = validation_accuracy for model_idx in range(self.config.k): best_models[model_idx].load_state_dict(_state_dict(models[model_idx],"cpu")) patience_count = 0 else: patience_count += 1 logger.message(f"Validation Acc {validation_accuracy:.4f}\t Validation Loss {validation_loss:.4f}") logger.message(f"Training Acc {training_accuracy:.4f}\t Training Loss {training_loss:.4f}") if patience_count == patience: break # overwrite the best models self.models = nn.ModuleList(best_models) logger.message("Training Done...") logger.add_scalar('train/model_params', len(self.models) * sum([np.prod(x.shape) for x in model.parameters()]), 0) logger.add_scalar('train/one_sample_megaflop', flops_per_input / 1e6 * len(self.models), 0) logger.add_scalar('train/total_megaflops', n_fwd_samples * flops_per_input / 1e6, 0) logger.add_scalar('train/best_validation_accuracy', best_acc, 0) return self
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import torch.nn as nn import torch.nn.functional as F from crlapi.core import CLModel from crlapi.sl.clmodels.finetune import Finetune import copy import numpy as np from pydoc import locate from itertools import chain def _state_dict(model, device): sd = model.state_dict() for k, v in sd.items(): sd[k] = v.to(device) return sd class BaggingSampler(torch.utils.data.Sampler): """ Simulate a Dataset Sampled with Replacement """ def __init__(self, indices, real_ds_size): self.size = real_ds_size self.indices = indices weights = torch.zeros(size=(self.size,)).float() weights[self.indices] = 1 self.weights = weights # do this here so that each epoch sees same sample dist samples = torch.multinomial(weights, self.size, replacement=True) self.samples = samples unique_samples = samples.unique() counts = samples.bincount().bincount() assert (counts * torch.arange(counts.size(0)))[1:].sum().item() == self.size print(counts, unique_samples.size(0), self.indices.size(0)) for ss in unique_samples: assert (ss == unique_samples).sum() > 0 def __iter__(self): samples = self.samples samples = samples[torch.randperm(samples.size(0))] # RESAMPLING samples = torch.multinomial(self.weights, self.size, replacement=True) for sample in samples: yield sample.item() class Bagging(Finetune): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.to_print = [] def get_prediction_net(self,task): for model in self.models: model.eval() return self def forward(self, x): outs = [] for model in self.models: outs += [model(x)] out = torch.stack(outs).mean(0) return out def update(self, task, logger): assert isinstance(task.task_descriptor(),int) if len(self.models)==0 or getattr(self.config, 'init_from_scratch', False): model_args=self.config.model models = [self.build_initial_net(task,**model_args) for _ in range(self.config.k)] n_params = sum(np.prod(x.shape) for x in models[0].parameters()) print(f'new model has {n_params} params') else: # get the last k models models = [copy.deepcopy(self.models[-i]) for i in range(self.config.k)] logger.message("Building training dataset") training_dataset = task.task_resources().make() flops_per_input = self.count_flops(task, models[0]) * self.config.k # Creating datasets and loaders training_loader, validation_loader = self.get_train_and_validation_loaders(training_dataset) ds_len = len(training_loader.dataset) training_loaders = [] # build boosted loaders for _ in range(self.config.k): all_idx = torch.arange(ds_len) idx = torch.multinomial( torch.ones_like(all_idx).float(), int(self.config.subsample_p * ds_len), replacement=False ) sampler = BaggingSampler(idx, ds_len) loader = torch.utils.data.DataLoader( training_loader.dataset, batch_size=training_loader.batch_size, sampler=sampler ) training_loaders += [loader] best_models = [copy.deepcopy(model) for model in models] best_losses, best_accs = [1e10] * self.config.k, [0] * self.config.k # Optionally create GPU training augmentations train_aug = self.get_train_augs() device=self.config.device models = [model.to(device) for model in models] optimizer = self.get_optimizer(chain(*[model.parameters() for model in models])) #Launching training procedure logger.message("Start training for " + str(self.config.max_epochs) + " epochs") iteration, n_fwd_samples = 0, 0 for epoch in range(self.config.max_epochs): # Make sure model is ready for train [model.train() for model in models] # Keep a single track of these for now training_loss=0.0 training_accuracy=0.0 n=0 for i, items in enumerate(zip(*training_loaders)): xs, ys = [], [] for item in items: x, y = item x, y = x.to(device), y.to(device) xs += [train_aug(x)] ys += [y] xs = torch.stack(xs) ys = torch.stack(ys) loss, acc = 0, 0 for model_idx in range(self.config.k): model, x, y = models[model_idx], xs[model_idx], ys[model_idx] predicted = model(x) loss += F.cross_entropy(predicted,y) nb_ok = predicted.max(1)[1].eq(y).float().sum().item() acc += nb_ok/x.size()[0] accuracy = acc / self.config.k loss_ = loss.item() / self.config.k training_accuracy += accuracy training_loss += loss_ n += xs.size(1) n_fwd_samples += xs.size(1) logger.add_scalar("train/loss",loss_,iteration) logger.add_scalar("train/accuracy",accuracy,iteration) optimizer.zero_grad() loss.backward() optimizer.step() iteration += 1 #Validation training_accuracy /= i training_loss /= i outs = [self._validation_loop(model,device,validation_loader) for model in models] validation_losses = [x['loss'] for x in outs] validation_accuracies = [x['accuracy'] for x in outs] validation_loss, validation_accuracy = np.mean(validation_losses), np.mean(validation_accuracies) logger.add_scalar("validation/loss",validation_loss,epoch) logger.add_scalar("validation/accuracy",validation_accuracy,epoch) for model_idx in range(self.config.k): if validation_accuracies[model_idx] > best_accs[model_idx]: print("\tFound best model at epoch ",epoch, '\t', model_idx) best_models[model_idx].load_state_dict(_state_dict(models[model_idx],"cpu")) best_accs[model_idx] = validation_accuracies[model_idx] logger.message(f"Validation Acc {validation_accuracy:.4f}\t Validation Loss {validation_loss:.4f}") logger.message(f"Training Acc {training_accuracy:.4f}\t Training Loss {training_loss:.4f}") for best_model in best_models: self.models.append(best_model) # Evaluate each model individually : accs = [] for model in self.models: accs += [self._validation_loop(model, device, validation_loader)['accuracy']] self.prog_pred_stats = [] ensemble = self._validation_loop(self, device, validation_loader)['accuracy'] fill = lambda x : str(x) + (100 - len(str(x))) * ' ' self.to_print += [fill(accs) + '\t' + str(ensemble)] for item in self.to_print: print(item) logger.message("Training Done...") logger.add_scalar('train/model_params', len(self.models) * sum([np.prod(x.shape) for x in model.parameters()]), 0) logger.add_scalar('train/one_sample_megaflop', flops_per_input / 1e6 * len(self.models), 0) logger.add_scalar('train/total_megaflops', n_fwd_samples * flops_per_input / 1e6, 0) logger.add_scalar('train/best_validation_accuracy', np.mean(best_accs), 0) return self
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import torch.nn as nn import torch.nn.functional as F from crlapi.core import CLModel from crlapi.sl.clmodels.finetune import Finetune import time import copy import numpy as np from pydoc import locate class IndexDataset(torch.utils.data.Dataset): """ Wrapper that additionally returns the index for each sample """ def __init__(self, og_dataset): self.og_dataset = og_dataset def __getitem__(self, index): data, target = self.og_dataset[index] return data, target, index def __len__(self): return len(self.og_dataset) class BoostingSampler(torch.utils.data.Sampler): """ Upsample points based on sample weight """ def __init__(self, weights): self.weights = weights def __iter__(self): assert -1e-5 < self.weights.sum().item() - 1 < 1e-5 samples = torch.multinomial(self.weights, self.weights.size(0), replacement=True) if not hasattr(self, 'epoch'): print('sampling with replacement counts', samples.bincount().bincount()) self.epoch = 0 else: self.epoch += 1 for sample in samples: yield sample.item() def _state_dict(model, device): sd = model.state_dict() for k, v in sd.items(): sd[k] = v.to(device) return sd class AdaBoost(Finetune): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.to_print = [] self.prog_pred_stats = [] def get_prediction_net(self,task): for i, model in enumerate(self.models): model.eval() self.models[i] = model.to(self.config.device) return self def forward(self, x): outs = [] for model in self.models: outs += [model(x)] out = torch.stack(outs) * self.model_alphas.reshape((-1,) + (1,) * outs[0].ndim) u_out = torch.stack(outs) print('diff weighted / unw', (out.sum(0).argmax(-1) != u_out.sum(0).argmax(-1)).float().mean()) prog_pred = out.cumsum(0).argmax(-1) diff_from_last = prog_pred[-1, :] != prog_pred diff_from_last = torch.flip(diff_from_last, dims=(0,)) # n_models, bs : with oldest model as idx = 0 last_conseq_steps_with_same_pred = (diff_from_last.int().cumsum(0) == 0).int().sum(0) useful_steps = len(self.models) - last_conseq_steps_with_same_pred + 1 self.prog_pred_stats += [useful_steps.bincount(minlength=len(self.models) + 1)] return out.sum(0) """ # --- actually let's pick the most confident model out = u_out max_prob = F.softmax(out,-1).max(-1)[0] # n_models, BS model_idx = max_prob.argmax(0) #BS, N_CLS = out.size(-1) idx = torch.arange(model_idx.size(0)).cuda() * len(self.models) + model_idx out = out.transpose(1,0) # BS, n_models, C out = out.reshape(-1,N_CLS)[idx].reshape(-1,N_CLS) return out # ---- #return u_out.sum(0) #return out.sum(0) """ def weighted_validation_loop(self,net,device, dataloader, weights): """ weight loss and accuracy using sample specific weights """ net = net.eval() # Return indices for the dataset loader = torch.utils.data.DataLoader( IndexDataset(dataloader.dataset), batch_size=dataloader.batch_size, shuffle=False ) ds_len = len(dataloader.dataset) with torch.no_grad(): loss_values=[] acc = 0 for i, (x,y,idx) in enumerate(loader): x, y, idx = x.to(device),y.to(device), idx.to(device) weight_x = weights[idx] predicted=net(x) loss = F.cross_entropy(predicted,y, reduction='none') loss = (loss * weight_x).mean() * ds_len loss_values.append(loss.item()) acc += (predicted.argmax(1).eq(y).float() * weight_x).sum() loss=np.mean(loss_values) net = net.train() return {"loss":loss,"accuracy":acc.item()} def _all_validation_loop(self, device, dataloader,task): """ weight loss and accuracy using sample specific weights """ self.get_prediction_net(task) ds_len = len(dataloader.dataset) acc = 0 with torch.no_grad(): loss_values=[] acc = 0 for i, (x,y) in enumerate(dataloader): x, y= x.to(device),y.to(device) out = [] for model in self.models: out += [model(x)] out = torch.stack(out).argmax(-1) acc += (out == y.view(1,-1)).int().max(0)[0].float().sum().item() return acc / ds_len def compute_errors(self, loader, models): """ given a loader and a list of models, returns a per_model x per_sample error matrix """ unshuffled_loader = torch.utils.data.DataLoader( loader.dataset, batch_size=loader.batch_size, drop_last=False, shuffle=False) device=self.config.device # --- Upweighting all_errs = [] # eval mode [x.eval() for x in models] with torch.no_grad(): for x, y in unshuffled_loader: x, y = x.to(device), y.to(device) for i, model in enumerate(models): if i == 0: err = [~model(x).argmax(1).eq(y)] else: err += [~model(x).argmax(1).eq(y)] err = torch.stack(err) # n_models, bs all_errs += [err] all_errs = torch.cat(all_errs, dim=1).float() # n_models, DS return all_errs def compute_model_and_sample_weights(self, err_matrix, task): """ compound sample and model models w.r.t to each model's performance """ n_models, ds_len = err_matrix.size() sample_weights = torch.zeros(size=(ds_len,)).fill_(1. / ds_len).to(self.config.device) model_alphas = [] for model_idx in range(n_models): model_err = err_matrix[model_idx] weighted_model_err = (sample_weights * model_err).sum() / sample_weights.sum() model_alpha = torch.log((1 - weighted_model_err) / weighted_model_err) + np.log(task.n_classes - 1) model_alphas += [model_alpha.reshape(1)] sample_weights = sample_weights * torch.exp(model_alpha * model_err) sample_weights /= sample_weights.sum() return sample_weights, model_alphas def update(self, task, logger): """ train model on new MB """ task_id = task.task_descriptor() assert isinstance(task_id, int) self.validation_outputs = None if task_id == 0 or self.config.init == 'scratch': # create model model_args = self.config.model model = self.build_initial_net(task,**model_args) elif self.config.init == 'last': model = copy.deepcopy(self.models[-1]) elif self.config.init == 'first': model = copy.deepcopy(self.models[0]) # Creating datasets and loaders logger.message("Building training dataset") training_dataset = task.task_resources().make() flops_per_input = self.count_flops(task, model) og_training_loader, validation_loader = self.get_train_and_validation_loaders(training_dataset) ds_len = len(og_training_loader.dataset) # --- get per sample weights if task_id == 0: n_params = sum(np.prod(x.shape) for x in model.parameters()) print(model) print(f'new model has {n_params} params') sample_weights = torch.zeros(size=(ds_len,)).fill_(1. / ds_len).to(self.config.device) model_alphas = [] err_matrix = val_err_matrix = None else: err_matrix = self.compute_errors(og_training_loader, self.models) sample_weights, model_alphas = self.compute_model_and_sample_weights(err_matrix, task) val_err_matrix = self.compute_errors(validation_loader, self.models) val_sample_weights, val_model_alphas = self.compute_model_and_sample_weights(val_err_matrix, task) print('tr sample weights',torch.multinomial(sample_weights, sample_weights.size(0), replacement=True).bincount().bincount()) print('val sample weights',torch.multinomial(val_sample_weights, val_sample_weights.size(0), replacement=True).bincount().bincount()) if self.config.compute_model_weights_on_val: model_alphas = val_model_alphas if self.config.boosting == 'weighting' or task_id == 0: # sample normally, but weight each point sampler = None training_weights = sample_weights #like ensembleat thispoint #print('UNIFORM WEIGHTS') #training_weights = torch.zeros(size=(ds_len,)).fill_(1. / ds_len).to(self.config.device) elif self.config.boosting == 'sampling': # oversample points with high weight --> no need to upweight them # print('UNIFORM WEIGHTS') #sample_weights = torch.zeros(size=(ds_len,)).fill_(1. / ds_len).to(self.config.device) sampler = BoostingSampler(sample_weights) training_weights = torch.zeros(size=(ds_len,)).fill_(1. / ds_len).to(self.config.device) else: raise ValueError # Return indices for the dataset training_loader = torch.utils.data.DataLoader( IndexDataset(og_training_loader.dataset), batch_size=og_training_loader.batch_size, shuffle=sampler is None, sampler=sampler ) best_model=copy.deepcopy(model) best_loss, best_acc = None, None # Optionally create GPU training augmentations train_aug = self.get_train_augs() # Optinally use patience :) patience = self.config.patience patience_delta = self.config.patience_delta patience_count = 0 device=self.config.device model.to(device) optimizer = self.get_optimizer(model.parameters()) # Launching training procedure logger.message("Start training for "+str(self.config.max_epochs)+" epochs") iteration = 0 for epoch in range(self.config.max_epochs): # Make sure model is ready for train model.train() # Training loop training_loss=0.0 training_accuracy=0.0 n=0 start = time.time() for i, (raw_x, y, idx) in enumerate(training_loader): raw_x, y = raw_x.to(device), y.to(device) weight_x = training_weights[idx] n += y.size(0) # apply transformations x = train_aug(raw_x) predicted = model(x) loss = F.cross_entropy(predicted, y, reduction='none') loss = (loss * weight_x).mean() * ds_len nb_ok = predicted.argmax(1).eq(y).sum().item() accuracy = nb_ok/x.size(0) training_accuracy += nb_ok training_loss += loss.item() logger.add_scalar("train/loss",loss.item(), iteration) logger.add_scalar("train/accuracy",accuracy, iteration) optimizer.zero_grad() loss.backward() optimizer.step() iteration += 1 # Validation epoch_time = time.time() - start training_accuracy /= n training_loss /= n if task_id == 0 or self.config.validation == 'normal': out=self._validation_loop(model,device,validation_loader) elif self.config.validation == 'weighted': out=self.weighted_validation_loop(model,device,validation_loader, val_sample_weights) else: raise ValueError validation_loss,validation_accuracy=out["loss"],out["accuracy"] logger.add_scalar('training/one_epoch_time', epoch_time, epoch) logger.add_scalar("validation/loss",validation_loss,epoch) logger.add_scalar("validation/accuracy",validation_accuracy,epoch) # Right now CV against accuracy # if best_loss is None or validation_loss < (best_loss - patience_delta): if best_acc is None or validation_accuracy > (best_acc + patience_delta): print("\tFound best model at epoch ",epoch) best_model.load_state_dict(_state_dict(model,"cpu")) best_loss = validation_loss best_acc = validation_accuracy patience_count = 0 else: patience_count += 1 logger.message(f"Validation Acc {validation_accuracy:.4f}\t Validation Loss {validation_loss:.4f}") logger.message(f"Training Acc {training_accuracy:.4f}\t Training Loss {training_loss:.4f}\t Time {epoch_time:.4f}") if patience_count == patience: break # Store best model self.models.append(best_model) # Before making predictions, we need to calculate the weight of the new model if self.config.compute_model_weights_on_val: final_loader, err_mat = validation_loader, val_err_matrix else: final_loader, err_mat = og_training_loader, err_matrix new_model_err = self.compute_errors(final_loader, [best_model]) # (1, DS) if err_mat is not None: err_mat = torch.cat((err_mat, new_model_err)) else: err_mat = new_model_err _, model_alphas = self.compute_model_and_sample_weights(err_mat, task) self.model_alphas = torch.cat(model_alphas) # Evaluate each model individually : accs = [] for model in self.models: accs += [self._validation_loop(model, device, validation_loader)['accuracy']] self.prog_pred_stats = [] ensemble = self._validation_loop(self, device, validation_loader)['accuracy'] best=self._all_validation_loop(device,validation_loader,task) print('among best ', best) pred_stats = torch.stack(self.prog_pred_stats).sum(0).float() pred_stats /= pred_stats.sum() print('model weights', self.model_alphas) print('pred stats', pred_stats) for i in range(pred_stats.size(0)): logger.add_scalar('model/prediction_depth', pred_stats[i].item(), i) fill = lambda x : str(x) + (100 - len(str(x))) * ' ' self.to_print += [fill(accs) + '\t' + str(ensemble)] for item in self.to_print: print(item) logger.message("Training Done...") logger.add_scalar('train/model_params', sum([np.prod(x.shape) for x in model.parameters()]), 0) logger.add_scalar('train/one_sample_megaflop', flops_per_input / 1e6, 0) logger.add_scalar('train/total_megaflops', n * flops_per_input / 1e6, 0) logger.add_scalar('train/best_validation_accuracy', best_acc, 0) return self
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import copy import numpy as np from pydoc import locate from random import shuffle from crlapi.core import CLModel from fvcore.nn import FlopCountAnalysis as FCA import torch import torch.nn as nn import torch.nn.functional as F from crlapi import instantiate_class,get_class,get_arguments import torch.utils.data class SupervisedCLModel(CLModel, nn.Module): """ A CLmodel based on a pytorch model, for supervised task over dataset Args: CLModel ([type]): [description] """ def __init__(self): nn.Module.__init__(self) self.memory_training_set=None self.memory_validation_set=None def update(self, task, logger): raise NotImplementedError def get_prediction_net(self,task): raise NotImplementedError def count_flops(self, task, model=None): if model is None: model = self.get_prediction_model(task) # don't mess up BN stats! model = model.eval() input = torch.FloatTensor(size=(1, *task.input_shape)).to(self.config['device']).normal_() model = model.to(self.config['device']) flops = FCA(model, input).total() return flops def _validation_loop(self,net,device,dataloader): net = net.eval() net.to(device) with torch.no_grad(): loss_values=[] nb_ok=0 nb_total=0 for x,y in dataloader: x,y=x.to(device),y.to(device) predicted=net(x) loss=F.cross_entropy(predicted,y) loss_values.append(loss.item()) nb_ok+=predicted.max(1)[1].eq(y).float().sum().item() nb_total+=x.size()[0] loss=np.mean(loss_values) accuracy=nb_ok/nb_total net = net.train() return {"loss":loss,"accuracy":accuracy} def evaluate(self,task,logger,evaluation_args): logger.message("Evaluating...") evaluation_dataset = task.task_resources().make() #Building dataloader for both evaluation_loader = torch.utils.data.DataLoader( evaluation_dataset, batch_size=evaluation_args["batch_size"], num_workers=evaluation_args["num_workers"], ) # TODO: is deepcopy here necessary ? evaluation_model=copy.deepcopy(self.get_prediction_net(task)) evaluation_model.eval() device=evaluation_args["device"] evaluation_model.to(device) with torch.no_grad(): loss_values=[] nb_ok=0 nb_total=0 for x,y in evaluation_loader: x,y=x.to(device),y.to(device) predicted=evaluation_model(x) loss=F.cross_entropy(predicted,y).item() nb_ok+=predicted.max(1)[1].eq(y).float().sum().item() nb_total+=x.size()[0] loss_values.append(loss) evaluation_loss=np.mean(loss_values) accuracy=nb_ok/nb_total r={"loss":evaluation_loss,"accuracy":accuracy} logger.debug(str(r)) return r def build_initial_net(self,task,**model_args): from importlib import import_module classname=model_args["class_name"] del model_args["class_name"] module_path, class_name = classname.rsplit(".", 1) module = import_module(module_path) c = getattr(module, class_name) return c(task, **model_args) # -- Helpers def get_train_and_validation_loaders(self, dataset): val_size = int(len(dataset) * self.config.validation_proportion) tr_size = len(dataset) - val_size training_dataset, validation_dataset = torch.utils.data.random_split(dataset, [tr_size, val_size]) if self.config.train_replay_proportion>0.0: if not self.memory_training_set is None: l=int(len(self.memory_training_set)*self.config.train_replay_proportion) m,_= torch.utils.data.random_split(self.memory_training_set,[l,len(self.memory_training_set)-l]) training_dataset=torch.utils.data.ConcatDataset([training_dataset,m]) if self.config.validation_replay_proportion>0.0: if not self.memory_validation_set is None: l=int(len(self.memory_validation_set)*self.config.validation_replay_proportion) m,_= torch.utils.data.random_split(self.memory_validation_set,[l,len(self.memory_validation_set)-l]) validation_dataset=torch.utils.data.ConcatDataset([validation_dataset,m]) print("Training set size = ",len(training_dataset)) print("Validation set size = ",len(validation_dataset)) self.memory_training_set=training_dataset self.memory_validation_set=validation_dataset training_loader = torch.utils.data.DataLoader( training_dataset, batch_size=self.config.training_batch_size, num_workers=self.config.training_num_workers, persistent_workers=self.config.training_num_workers>0, shuffle=True, # pin_memory=self.config['device'] != 'cpu' ) validation_loader = torch.utils.data.DataLoader( validation_dataset, batch_size=self.config.validation_batch_size, num_workers=self.config.validation_num_workers, persistent_workers=self.config.validation_num_workers>0, shuffle=False, # pin_memory=self.config['device'] != 'cpu' ) return training_loader,validation_loader def get_optimizer(self, model_params): c=get_class(self.config.optim) args=get_arguments(self.config.optim) return c(model_params,**args) def get_train_augs(self): if self.config.get('kornia_augs', None) is not None: tfs = [] import kornia for tf_cfg in self.config['kornia_augs']: tf = locate(f'kornia.augmentation.{tf_cfg.name}') args = dict(tf_cfg) args.pop('name') tfs += [tf(**args)] tfs = nn.Sequential(*tfs) else: tfs = nn.Identity() tfs = tfs.to(self.config['device']) return tfs
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import torch.nn as nn import torch.nn.functional as F from crlapi.core import CLModel from crlapi.sl.clmodels.finetune import Finetune import copy import numpy as np from pydoc import locate def _state_dict(model, device): sd = model.state_dict() for k, v in sd.items(): sd[k] = v.to(device) return sd class Ensemble(Finetune): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.to_print = [] print(f'voting {self.config.vote}') def get_prediction_net(self,task): for model in self.models: model.eval() return self def forward(self, x): outs = [] for model in self.models: outs += [model(x)] out = torch.stack(outs) if self.config.vote: votes = out.argmax(-1) oh_votes = F.one_hot(votes, dim=-1, num_classes=out.size(-1)) vote_count = oh_votes.sum(0).float() most_confident = out.max(0)[0].max(-1)[1] # Break ties vote_count[torch.arange(out.size(0)), most_confident] += 0.1 out = vote_count else: out = out.mean(0) return out def _all_validation_loop(self, device, dataloader,task): """ weight loss and accuracy using sample specific weights """ self.get_prediction_net(task) ds_len = len(dataloader.dataset) acc = 0 with torch.no_grad(): loss_values=[] acc = 0 for i, (x,y) in enumerate(dataloader): x, y= x.to(device),y.to(device) out = [] for model in self.models: out += [model(x)] out = torch.stack(out).argmax(-1) acc += (out == y.view(1,-1)).int().max(0)[0].float().sum().item() return acc / ds_len def update(self, task, logger): assert isinstance(task.task_descriptor(),int) if len(self.models)==0 or getattr(self.config, 'init_from_scratch', False): model_args=self.config.model model=self.build_initial_net(task,**model_args) n_params = sum(np.prod(x.shape) for x in model.parameters()) print(f'new model has {n_params} params') else: model=copy.deepcopy(self.models[task.task_descriptor()-1]) logger.message("Building training dataset") training_dataset = task.task_resources().make() flops_per_input = self.count_flops(task, model) # Creating datasets and loaders training_loader,validation_loader = self.get_train_and_validation_loaders(training_dataset) best_model=copy.deepcopy(model) best_loss, best_acc = None, None # Optionally create GPU training augmentations train_aug = self.get_train_augs() # Optinally use patience :) patience = self.config.patience patience_delta = self.config.patience_delta patience_count = 0 device=self.config.device model.to(device) optimizer = self.get_optimizer(model.parameters()) #Launching training procedure logger.message("Start training for "+str(self.config.max_epochs)+" epochs") iteration, n_fwd_samples = 0, 0 for epoch in range(self.config.max_epochs): # Make sure model is ready for train model.train() #Training loop training_loss=0.0 training_accuracy=0.0 n=0 for i, (raw_x, y) in enumerate(training_loader): raw_x, y = raw_x.to(device), y.to(device) n+=raw_x.size()[0] # apply transformations x = train_aug(raw_x) predicted=model(x) loss=F.cross_entropy(predicted,y) nb_ok=predicted.max(1)[1].eq(y).float().sum().item() accuracy=nb_ok/x.size()[0] training_accuracy+=nb_ok training_loss+=loss.item() logger.add_scalar("train/loss",loss.item(),iteration) logger.add_scalar("train/accuracy",accuracy,iteration) optimizer.zero_grad() loss.backward() optimizer.step() iteration += 1 n_fwd_samples += x.size(0) #Validation training_accuracy/=n training_loss/=n out=self._validation_loop(model,device,validation_loader) validation_loss,validation_accuracy=out["loss"],out["accuracy"] logger.add_scalar("validation/loss",validation_loss,epoch) logger.add_scalar("validation/accuracy",validation_accuracy,epoch) # Right now CV against accuracy # if best_loss is None or validation_loss < (best_loss - patience_delta): if best_acc is None or validation_accuracy > (best_acc + patience_delta): print("\tFound best model at epoch ",epoch) best_model.load_state_dict(_state_dict(model,"cpu")) best_loss = validation_loss best_acc = validation_accuracy patience_count = 0 else: patience_count += 1 logger.message(f"Validation Acc {validation_accuracy:.4f}\t Validation Loss {validation_loss:.4f}") logger.message(f"Training Acc {training_accuracy:.4f}\t Training Loss {training_loss:.4f}") if patience_count == patience: break self.models.append(best_model) # Evaluate each model individually : accs = [] for model in self.models: accs += [self._validation_loop(model, device, validation_loader)['accuracy']] self.prog_pred_stats = [] ensemble = self._validation_loop(self, device, validation_loader)['accuracy'] best=self._all_validation_loop(device,validation_loader,task) print('among best ', best) fill = lambda x : str(x) + (100 - len(str(x))) * ' ' self.to_print += [fill(accs) + '\t' + str(ensemble)] for item in self.to_print: print(item) logger.message("Training Done...") logger.add_scalar('train/model_params', len(self.models) * sum([np.prod(x.shape) for x in model.parameters()]), 0) logger.add_scalar('train/one_sample_megaflop', flops_per_input / 1e6 * len(self.models), 0) logger.add_scalar('train/total_megaflops', n_fwd_samples * flops_per_input / 1e6, 0) logger.add_scalar('train/best_validation_accuracy', best_acc, 0) return self
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import torch.nn as nn import torch.nn.functional as F from crlapi.core import CLModel from crlapi.sl.clmodels.finetune import Finetune import copy import numpy as np from pydoc import locate def _state_dict(model, device): sd = model.state_dict() for k, v in sd.items(): sd[k] = v.to(device) return sd class Ensemble(Finetune): def get_prediction_net(self,task): for i, model in enumerate(self.models): model.eval() self.models[i] = model.to(self.config.device) return self def forward(self, x): outs = [] for model in self.models: outs += [model(x)] out = torch.stack(outs) out = out.mean(0) return out def update(self, task, logger): assert isinstance(task.task_descriptor(),int) model_args=self.config.model model=self.build_initial_net(task,**model_args) n_params = sum(np.prod(x.shape) for x in model.parameters()) print(f'new model has {n_params} params') logger.message("Building training dataset") training_dataset = task.task_resources().make() flops_per_input = self.count_flops(task, model) # Creating datasets and loaders training_loader, validation_loader = self.get_train_and_validation_loaders(training_dataset) prev_sample_weights = None to_print = [] for around in range(self.config.n_rounds): # start new round with the best model of the last one if around > 0: model = copy.deepcopy(best_model) best_model = copy.deepcopy(model) best_loss, best_acc = None, None # Optionally create GPU training augmentations train_aug = self.get_train_augs() # Optinally use patience :) patience = self.config.patience patience_delta = self.config.patience_delta patience_count = 0 device=self.config.device model.to(device) optimizer = self.get_optimizer(model.parameters()) #Launching training procedure logger.message("Start training for "+str(self.config.max_epochs) + " epochs") iteration, n_fwd_samples = 0, 0 epoch = 0 while True: # Run until convergence epoch += 1 # Make sure model is ready for train model.train() # Training loop training_loss=0.0 training_accuracy=0.0 n=0 for i, (raw_x, y) in enumerate(training_loader): raw_x, y = raw_x.to(device), y.to(device) n+=raw_x.size()[0] # apply transformations x = train_aug(raw_x) predicted=model(x) loss=F.cross_entropy(predicted,y) nb_ok=predicted.max(1)[1].eq(y).float().sum().item() accuracy=nb_ok/x.size()[0] training_accuracy+=nb_ok training_loss+=loss.item() logger.add_scalar("train/loss",loss.item(),iteration) logger.add_scalar("train/accuracy",accuracy,iteration) optimizer.zero_grad() loss.backward() optimizer.step() iteration += 1 n_fwd_samples += x.size(0) # Validation training_accuracy/=n training_loss/=n out=self._validation_loop(model,device,validation_loader) validation_loss,validation_accuracy=out["loss"],out["accuracy"] logger.add_scalar("validation/loss",validation_loss,epoch) logger.add_scalar("validation/accuracy",validation_accuracy,epoch) # Right now CV against accuracy # if best_loss is None or validation_loss < (best_loss - patience_delta): if best_acc is None or validation_accuracy > (best_acc + patience_delta): print(f"\t Round {around}. Found best model at epoch ",epoch) best_model.load_state_dict(_state_dict(model,"cpu")) best_loss = validation_loss best_acc = validation_accuracy patience_count = 0 else: patience_count += 1 logger.message(f"Validation Acc {validation_accuracy:.4f}\t Validation Loss {validation_loss:.4f}") logger.message(f"Training Acc {training_accuracy:.4f}\t Training Loss {training_loss:.4f}") if patience_count == patience or epoch == self.config.max_epochs: break self.models.append(best_model) # Evaluate each model individually : accs = [] for model in self.models: accs += [self._validation_loop(model, device, validation_loader)['accuracy']] ensemble = self._validation_loop(self, device, validation_loader)['accuracy'] fill = lambda x : str(x) + (100 - len(str(x))) * ' ' to_print += [fill(accs) + '\t' + str(ensemble)] for item in to_print: print(item) logger.message("Training Done...") logger.add_scalar('train/model_params', len(self.models) * sum([np.prod(x.shape) for x in model.parameters()]), 0) logger.add_scalar('train/one_sample_megaflop', flops_per_input / 1e6 * len(self.models), 0) logger.add_scalar('train/total_megaflops', n_fwd_samples * flops_per_input / 1e6, 0) logger.add_scalar('train/best_validation_accuracy', best_acc, 0) return self
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import torch.nn as nn import torch.nn.functional as F from crlapi.core import CLModel from crlapi.sl.clmodels.finetune import Finetune import copy import numpy as np from pydoc import locate from itertools import chain def _state_dict(model, device): sd = model.state_dict() for k, v in sd.items(): sd[k] = v.to(device) return sd class KEnsemble(Finetune): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.to_print = [] print(f'voting {self.config.vote}') def get_prediction_net(self,task): for model in self.models: model.eval() return self def forward(self, x): outs = [] for model in self.models: outs += [model(x)] out = torch.stack(outs) out = F.softmax(out, dim=-1) if self.config.vote: votes = out.argmax(-1) oh_votes = F.one_hot(votes, num_classes=out.size(-1)) vote_count = oh_votes.sum(0).float() most_confident = out.max(0)[0].max(-1)[1] # Break ties vote_count[torch.arange(vote_count.size(0)), most_confident] += 0.1 out = vote_count else: out = out.mean(0) return out def update(self, task, logger): assert isinstance(task.task_descriptor(),int) if len(self.models)==0 or getattr(self.config, 'init_from_scratch', False): model_args=self.config.model models = [self.build_initial_net(task,**model_args) for _ in range(self.config.k)] n_params = sum(np.prod(x.shape) for x in models[0].parameters()) print(f'new model has {n_params} params') else: # get the last k models models = [copy.deepcopy(model) for model in self.models] logger.message("Building training dataset") training_dataset = task.task_resources().make() flops_per_input = self.count_flops(task, models[0]) * self.config.k # Creating datasets and loaders training_loader, validation_loader = self.get_train_and_validation_loaders(training_dataset) training_loaders = [] for i in range(self.config.k): training_loaders += [torch.utils.data.DataLoader( training_loader.dataset, batch_size=training_loader.batch_size, shuffle=True )] best_models = [copy.deepcopy(model) for model in models] best_losses, best_accs = [1e10] * self.config.k, [0] * self.config.k # Optionally create GPU training augmentations train_aug = self.get_train_augs() # Optinally use patience :) patience = self.config.patience patience_delta = self.config.patience_delta patience_count = 0 device=self.config.device models = [model.to(device) for model in models] optimizer = self.get_optimizer(chain(*[model.parameters() for model in models])) #Launching training procedure logger.message("Start training for " + str(self.config.max_epochs) + " epochs") iteration, n_fwd_samples = 0, 0 for epoch in range(self.config.max_epochs): # Make sure model is ready for train [model.train() for model in models] # Keep a single track of these for now training_loss=0.0 training_accuracy=0.0 n=0 for i, items in enumerate(zip(*training_loaders)): xs, ys = [], [] for item in items: x, y = item x, y = x.to(device), y.to(device) xs += [train_aug(x)] ys += [y] xs = torch.stack(xs) ys = torch.stack(ys) loss, acc = 0, 0 for model_idx in range(self.config.k): model, x, y = models[model_idx], xs[model_idx], ys[model_idx] predicted = model(x) loss += F.cross_entropy(predicted,y) nb_ok = predicted.max(1)[1].eq(y).float().sum().item() acc += nb_ok/x.size()[0] accuracy = acc / self.config.k loss_ = loss.item() / self.config.k training_accuracy += accuracy training_loss += loss_ n += xs.size(1) n_fwd_samples += xs.size(1) logger.add_scalar("train/loss",loss_,iteration) logger.add_scalar("train/accuracy",accuracy,iteration) optimizer.zero_grad() loss.backward() optimizer.step() iteration += 1 #Validation training_accuracy /= i training_loss /= i outs = [self._validation_loop(model,device,validation_loader) for model in models] validation_losses = [x['loss'] for x in outs] validation_accuracies = [x['accuracy'] for x in outs] validation_loss, validation_accuracy = np.mean(validation_losses), np.mean(validation_accuracies) logger.add_scalar("validation/loss",validation_loss,epoch) logger.add_scalar("validation/accuracy",validation_accuracy,epoch) found_best = False for model_idx in range(self.config.k): if validation_accuracies[model_idx] > best_accs[model_idx]: print("\tFound best model at epoch ",epoch, '\t', model_idx) best_models[model_idx].load_state_dict(_state_dict(models[model_idx],"cpu")) best_accs[model_idx] = validation_accuracies[model_idx] found_best = True logger.message(f"Validation Acc {validation_accuracy:.4f}\t Validation Loss {validation_loss:.4f}") logger.message(f"Training Acc {training_accuracy:.4f}\t Training Loss {training_loss:.4f}") if found_best: patience_count = 0 else: patience_count += 1 if patience_count == patience: break # overwrite the best models self.models = nn.ModuleList(best_models) # Evaluate each model individually : accs = [] for model in self.models: accs += [self._validation_loop(model, device, validation_loader)['accuracy']] self.prog_pred_stats = [] ensemble = self._validation_loop(self, device, validation_loader)['accuracy'] fill = lambda x : str(x) + (100 - len(str(x))) * ' ' self.to_print += [fill(accs) + '\t' + str(ensemble)] for item in self.to_print: print(item) logger.message("Training Done...") logger.add_scalar('train/model_params', len(self.models) * sum([np.prod(x.shape) for x in model.parameters()]), 0) # TODO: FIX! this is wrong logger.add_scalar('train/one_sample_megaflop', flops_per_input / 1e6 * len(self.models), 0) logger.add_scalar('train/total_megaflops', n_fwd_samples * flops_per_input / 1e6, 0) logger.add_scalar('train/best_validation_accuracy', np.mean(best_accs), 0) return self
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import copy import torch import numpy as np import torch.nn.functional as F from crlapi.core import CLModel from crlapi.sl.clmodels.core import SupervisedCLModel from pydoc import locate def _state_dict(model, device): sd = model.state_dict() for k, v in sd.items(): sd[k] = v.to(device) return sd class Finetune_Grow(SupervisedCLModel): def __init__(self, stream, clmodel_args): super().__init__() self.models=[] self.config=clmodel_args def get_prediction_net(self,task): if task.task_descriptor() is None: model = self.models[-1] else: model = self.models[task.task_descriptor] model.eval() return model def update(self, task, logger): assert isinstance(task.task_descriptor(),int) logger.message("Building training dataset") training_dataset = task.task_resources().make() # Creating datasets and loaders training_loader,validation_loader = self.get_train_and_validation_loaders(training_dataset) if len(self.models)==0: model_args=self.config.model model=self.build_initial_net(task,**model_args) elif (task.task_descriptor() % self.config['grow_every']) == 0: print('growing') model=copy.deepcopy(self.models[task.task_descriptor()-1]) model=model.grow(validation_loader,**self.config) else: model=copy.deepcopy(self.models[task.task_descriptor()-1]) if getattr(self.config, 'init_from_scratch', False): print('re-initializing the model') def weight_reset(m): try: m.reset_parameters() except: pass model.apply(weight_reset) best_model=copy.deepcopy(model) best_loss, best_acc = None, None # Optionally create GPU training augmentations train_aug = self.get_train_augs() # Optinally use patience :) patience = self.config.patience patience_delta = self.config.patience_delta patience_count = 0 device=self.config.device model.to(device) flops_per_input = self.count_flops(task, model) optimizer = self.get_optimizer(model.parameters()) #Launching training procedure logger.message("Start training for "+str(self.config.max_epochs)+" epochs") iteration, n_fwd_samples = 0, 0 for epoch in range(self.config.max_epochs): # Make sure model is ready for train model.train() #Training loop for i, (raw_x, y) in enumerate(training_loader): raw_x, y = raw_x.to(device), y.to(device) # apply transformations x = train_aug(raw_x) predicted=model(x) loss=F.cross_entropy(predicted,y) nb_ok=predicted.max(1)[1].eq(y).float().sum().item() accuracy=nb_ok/x.size()[0] logger.add_scalar("train/loss",loss.item(),iteration) logger.add_scalar("train/accuracy",accuracy,iteration) optimizer.zero_grad() loss.backward() optimizer.step() iteration += 1 n_fwd_samples += x.size(0) #Validation out=self._validation_loop(model,device,validation_loader) validation_loss,validation_accuracy=out["loss"],out["accuracy"] logger.add_scalar("validation/loss",validation_loss,epoch) logger.add_scalar("validation/accuracy",validation_accuracy,epoch) # Right now CV against accuracy # if best_loss is None or validation_loss < (best_loss - patience_delta): if best_acc is None or validation_accuracy > (best_acc + patience_delta): print("\tFound best model at epoch ",epoch) best_model.load_state_dict(_state_dict(model,"cpu")) best_loss = validation_loss best_acc = validation_accuracy patience_count = 0 else: patience_count += 1 logger.message(f"Validation Acc {validation_accuracy:.4f}\t Loss {validation_loss:.4f}") if patience_count == patience: break self.models.append(best_model) logger.message("Training Done...") logger.add_scalar('train/model_params', sum([np.prod(x.shape) for x in model.parameters()]), 0) logger.add_scalar('train/one_sample_megaflop', flops_per_input / 1e6, 0) logger.add_scalar('train/total_megaflops', n_fwd_samples * flops_per_input / 1e6, 0) logger.add_scalar('train/best_validation_accuracy', best_acc, 0) logger.message("Training Done...") return self
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import torch.nn as nn import torch.nn.functional as F from crlapi.core import CLModel from crlapi.sl.clmodels.core import SupervisedCLModel import time import copy import numpy as np from pydoc import locate def _state_dict(model, device): sd = model.state_dict() for k, v in sd.items(): sd[k] = v.to(device) return sd class Finetune(SupervisedCLModel): def __init__(self, stream, clmodel_args): super().__init__() self.models = nn.ModuleList() self.config=clmodel_args def get_prediction_net(self,task): if task.task_descriptor() is None: model = self.models[-1] else: model = self.models[task.task_descriptor] model.eval() return model def update(self, task, logger): assert isinstance(task.task_descriptor(),int) if len(self.models)==0 or getattr(self.config, 'init_from_scratch', False): model_args=self.config.model model=self.build_initial_net(task,**model_args) n_params = sum(np.prod(x.shape) for x in model.parameters()) print(model) print(f'new model has {n_params} params') else: model=copy.deepcopy(self.models[task.task_descriptor()-1]) logger.message("Building training dataset") training_dataset = task.task_resources().make() flops_per_input = self.count_flops(task, model) # Creating datasets and loaders training_loader,validation_loader = self.get_train_and_validation_loaders(training_dataset) best_model=copy.deepcopy(model) best_loss, best_acc = None, None # Optionally create GPU training augmentations train_aug = self.get_train_augs() # Optinally use patience :) patience = self.config.patience patience_delta = self.config.patience_delta patience_count = 0 device=self.config.device model.to(device) optimizer = self.get_optimizer(model.parameters()) #Launching training procedure logger.message("Start training for "+str(self.config.max_epochs)+" epochs") iteration, n_fwd_samples = 0, 0 for epoch in range(self.config.max_epochs): # Make sure model is ready for train model.train() #Training loop training_loss=0.0 training_accuracy=0.0 n=0 start = time.time() for i, (raw_x, y) in enumerate(training_loader): raw_x, y = raw_x.to(device), y.to(device) n+=raw_x.size()[0] # apply transformations x = train_aug(raw_x) predicted=model(x) loss=F.cross_entropy(predicted,y) nb_ok=predicted.max(1)[1].eq(y).float().sum().item() accuracy=nb_ok/x.size()[0] training_accuracy+=nb_ok training_loss+=loss.item() logger.add_scalar("train/loss",loss.item(),iteration) logger.add_scalar("train/accuracy",accuracy,iteration) optimizer.zero_grad() loss.backward() optimizer.step() iteration += 1 n_fwd_samples += x.size(0) #Validation epoch_time = time.time() - start training_accuracy/=n training_loss/=n out=self._validation_loop(model,device,validation_loader) validation_loss,validation_accuracy=out["loss"],out["accuracy"] logger.add_scalar('training/one_epoch_time', epoch_time, epoch) logger.add_scalar("validation/loss",validation_loss,epoch) logger.add_scalar("validation/accuracy",validation_accuracy,epoch) # Right now CV against accuracy # if best_loss is None or validation_loss < (best_loss - patience_delta): if best_acc is None or validation_accuracy > (best_acc + patience_delta): print("\tFound best model at epoch ",epoch) best_model.load_state_dict(_state_dict(model,"cpu")) best_loss = validation_loss best_acc = validation_accuracy patience_count = 0 else: patience_count += 1 logger.message(f"Validation Acc {validation_accuracy:.4f}\t Validation Loss {validation_loss:.4f}") logger.message(f"Training Acc {training_accuracy:.4f}\t Training Loss {training_loss:.4f}\t Time {epoch_time:.4f}") if patience_count == patience: break self.models.append(best_model) logger.message("Training Done...") logger.add_scalar('train/model_params', sum([np.prod(x.shape) for x in model.parameters()]), 0) logger.add_scalar('train/one_sample_megaflop', flops_per_input / 1e6, 0) logger.add_scalar('train/total_megaflops', n_fwd_samples * flops_per_input / 1e6, 0) logger.add_scalar('train/best_validation_accuracy', best_acc, 0) return self
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import json import re from datetime import datetime import requests def get_ad_archive_id(data): """ Extract ad_archive_id from ad_snapshot_url """ return re.search(r"/\?id=([0-9]+)", data["ad_snapshot_url"]).group(1) class FbAdsLibraryTraversal: default_url_pattern = ( "https://graph.facebook.com/{}/ads_archive?access_token={}&" + "fields={}&search_terms={}&ad_reached_countries={}&search_page_ids={}&" + "ad_active_status={}&limit={}" ) default_api_version = "v14.0" def __init__( self, access_token, fields, search_term, country, search_page_ids="", ad_active_status="ALL", after_date="1970-01-01", page_limit=500, api_version=None, retry_limit=3, ): self.page_count = 0 self.access_token = access_token self.fields = fields self.search_term = search_term self.country = country self.after_date = after_date self.search_page_ids = search_page_ids self.ad_active_status = ad_active_status self.page_limit = page_limit self.retry_limit = retry_limit if api_version is None: self.api_version = self.default_api_version else: self.api_version = api_version def generate_ad_archives(self): next_page_url = self.default_url_pattern.format( self.api_version, self.access_token, self.fields, self.search_term, self.country, self.search_page_ids, self.ad_active_status, self.page_limit, ) return self.__class__._get_ad_archives_from_url( next_page_url, after_date=self.after_date, retry_limit=self.retry_limit ) @staticmethod def _get_ad_archives_from_url( next_page_url, after_date="1970-01-01", retry_limit=3 ): last_error_url = None last_retry_count = 0 start_time_cutoff_after = datetime.strptime(after_date, "%Y-%m-%d").timestamp() while next_page_url is not None: response = requests.get(next_page_url) response_data = json.loads(response.text) if "error" in response_data: if next_page_url == last_error_url: # failed again if last_retry_count >= retry_limit: raise Exception( "Error message: [{}], failed on URL: [{}]".format( json.dumps(response_data["error"]), next_page_url ) ) else: last_error_url = next_page_url last_retry_count = 0 last_retry_count += 1 continue filtered = list( filter( lambda ad_archive: ("ad_delivery_start_time" in ad_archive) and ( datetime.strptime( ad_archive["ad_delivery_start_time"], "%Y-%m-%d" ).timestamp() >= start_time_cutoff_after ), response_data["data"], ) ) if len(filtered) == 0: # if no data after the after_date, break next_page_url = None break yield filtered if "paging" in response_data: next_page_url = response_data["paging"]["next"] else: next_page_url = None @classmethod def generate_ad_archives_from_url(cls, failure_url, after_date="1970-01-01"): """ if we failed from error, later we can just continue from the last failure url """ return cls._get_ad_archives_from_url(failure_url, after_date=after_date)
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import datetime import json from collections import Counter def get_operators(): """ Feel free to add your own 'operator' here; The input will be: generator_ad_archives: a generator of array of ad_archvie args: extra arguments passed in from CLI is_verbose: check this for debugging information """ return { "count": count_ads, "save": save_to_file, "save_to_csv": save_to_csv, "start_time_trending": count_start_time_trending, } def count_ads(generator_ad_archives, args, is_verbose=False): """ Count how many ad_archives match your query """ count = 0 for ad_archives in generator_ad_archives: count += len(ad_archives) if is_verbose: print("counting %d" % count) print("Total number of ads match the query: {}".format(count)) def save_to_file(generator_ad_archives, args, is_verbose=False): """ Save all retrieved ad_archives to the file; each ad_archive will be stored in JSON format in a single line; """ if len(args) != 1: raise Exception("save action requires exact 1 param: output file") with open(args[0], "w+") as file: count = 0 for ad_archives in generator_ad_archives: for data in ad_archives: file.write(json.dumps(data)) file.write("\n") count += len(ad_archives) if is_verbose: print("Items wrote: %d" % count) print("Total number of ads wrote: %d" % count) def save_to_csv(generator_ad_archives, args, fields, is_verbose=False): """ Save all retrieved ad_archives to the output file. Each ad_archive will be stored as a row in the CSV """ if len(args) != 1: raise Exception("save_to_csv action takes 1 argument: output_file") delimiter = "," total_count = 0 output = fields + "\n" output_file = args[0] for ad_archives in generator_ad_archives: total_count += len(ad_archives) if is_verbose: print("Items processed: %d" % total_count) for ad_archive in ad_archives: for field in list(fields.split(delimiter)): if field in ad_archive: value = ad_archive[field] if (type(value) == list and type(value[0]) == dict) or type( value ) == dict: value = json.dumps(value) elif type(value) == list: value = delimiter.join(value) output += ( '"' + value.replace("\n", "").replace('"', "") + '"' + delimiter ) else: output += delimiter output = output.rstrip(",") + "\n" with open(output_file, "w") as csvfile: csvfile.write(output) print("Successfully wrote data to file: %s" % output_file) def count_start_time_trending(generator_ad_archives, args, is_verbose=False): """ output the count trending of ads by start date; Accept one parameters: output_file: path to write the csv """ if len(args) != 1: raise Exception("start_time_trending action takes 1 arguments: output_file") total_count = 0 output_file = args[0] date_to_count = Counter({}) for ad_archives in generator_ad_archives: total_count += len(ad_archives) if is_verbose: print("Item processed: %d" % total_count) start_dates = list( map( lambda data: datetime.datetime.strptime( data["ad_delivery_start_time"], "%Y-%m-%d" ).strftime("%Y-%m-%d"), ad_archives, ) ) date_to_count.update(start_dates) with open(output_file, "w") as csvfile: csvfile.write("date, count\n") for date in date_to_count.keys(): csvfile.write("%s, %s\n" % (date, date_to_count[date])) print("Successfully wrote data to file: %s" % output_file)
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from iso3166 import countries supported_countries = [ "AT", "BE", "BG", "CA", "CY", "CZ", "DE", "DK", "EE", "ES", "FI", "FR", "GB", "GR", "HR", "HU", "IE", "IL", "IN", "IT", "LT", "LU", "LV", "MT", "NL", "PL", "PT", "RO", "SE", "SI", "SK", "UA", "US", ] valid_query_fields = [ "ad_creation_time", "ad_creative_body", "ad_creative_bodies", "ad_creative_link_caption", "ad_creative_link_captions", "ad_creative_link_description", "ad_creative_link_descriptions", "ad_creative_link_title", "ad_creative_link_titles", "ad_delivery_start_time", "ad_delivery_stop_time", "ad_snapshot_url", "currency", "delivery_by_region", "demographic_distribution", "bylines", "id", "impressions", "languages", "page_id", "page_name", "potential_reach", "publisher_platforms", "region_distribution", "spend", ] def get_country_code(country_str): """ Convert the country input to valid country code """ global supported_countries try: country = countries.get(country_str) except Exception: country = None if not country or country.alpha2 not in supported_countries: return None return country.alpha2 def is_valid_fields(field): """ The Facebook Ads Library API has a list of supported fields """ global valid_query_fields return field in valid_query_fields
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse import sys from fb_ads_library_api import FbAdsLibraryTraversal from fb_ads_library_api_operators import get_operators, save_to_csv from fb_ads_library_api_utils import get_country_code, is_valid_fields def get_parser(): parser = argparse.ArgumentParser( description="The Facebook Ads Library API CLI Utility" ) parser.add_argument( "-t", "--access-token", help="The Facebook developer access token", required=True, ) parser.add_argument( "-f", "--fields", help="Fields to retrieve from the Ad Library API", required=True, type=validate_fields_param, ) parser.add_argument("-s", "--search-term", help="The term you want to search for") parser.add_argument( "-c", "--country", help="Comma-separated country code (no spaces)", required=True, type=validate_country_param, ) parser.add_argument( "--search-page-ids", help="The specific Facebook Page you want to search" ) parser.add_argument( "--ad-active-status", help="Filter by the current status of the ads at the moment the script runs", ) parser.add_argument( "--after-date", help="Only return ads that started delivery after this date" ) parser.add_argument("--batch-size", type=int, help="Batch size") parser.add_argument( "--retry-limit", type=int, help="When an error occurs, the script will abort if it fails to get the same batch this amount of times", ) parser.add_argument("-v", "--verbose", action="store_true") actions = ",".join(get_operators().keys()) parser.add_argument( "action", help="Action to take on the ads, possible values: %s" % actions ) parser.add_argument( "args", nargs=argparse.REMAINDER, help="The parameter for the specific action" ) return parser def validate_country_param(country_input): if not country_input: return "" country_list = list(filter(lambda x: x.strip(), country_input.split(","))) if not country_list: raise argparse.ArgumentTypeError("Country cannot be empty") valid_country_codes = list(map(lambda x: get_country_code(x), country_list)) invalid_inputs = { key: value for (key, value) in zip(country_list, valid_country_codes) if value is None } if invalid_inputs: raise argparse.ArgumentTypeError( "Invalid/unsupported country code: %s" % (",".join(invalid_inputs.keys())) ) else: return ",".join(valid_country_codes) def validate_fields_param(fields_input): if not fields_input: return False fields_list = list( filter(lambda x: x, map(lambda x: x.strip(), fields_input.split(","))) ) if not fields_list: raise argparse.ArgumentTypeError("Fields cannot be empty") invalid_fields = list(filter(lambda x: not is_valid_fields(x), fields_list)) if not invalid_fields: return ",".join(fields_list) else: raise argparse.ArgumentTypeError( "Unsupported fields: %s" % (",".join(invalid_fields)) ) def main(): parser = get_parser() opts = parser.parse_args() if not opts.search_term and not opts.search_page_ids: print("At least one must be set: --search-term, --search-page-ids") sys.exit(1) if not opts.search_term: search_term = "." else: search_term = opts.search_term api = FbAdsLibraryTraversal( opts.access_token, opts.fields, search_term, opts.country ) if opts.search_page_ids: api.search_page_ids = opts.search_page_ids if opts.ad_active_status: api.ad_active_status = opts.ad_active_status if opts.batch_size: api.page_limit = opts.batch_size if opts.retry_limit: api.retry_limit = opts.retry_limit if opts.after_date: api.after_date = opts.after_date generator_ad_archives = api.generate_ad_archives() if opts.action in get_operators(): if opts.action == "save_to_csv": save_to_csv( generator_ad_archives, opts.args, opts.fields, is_verbose=opts.verbose ) else: get_operators()[opts.action]( generator_ad_archives, opts.args, is_verbose=opts.verbose ) else: print("Invalid 'action' value: %s" % opts.action) sys.exit(1) if __name__ == "__main__": main()