Datasets:
task_categories:
- visual-question-answering
- table-question-answering
language:
- ja
license: cc-by-4.0
tags:
- table-qa
- visual-qa
- japanese
- ntcir
size_categories:
- 10K<n<100K
TableCellQA Dataset
This dataset is for Table Question Answering (Table QA), derived from tables in Japanese annual securities reports used in the NTCIR-18 U4 shared task.
This dataset was proposed in our paper: Enhancing Large Vision-Language Models with Layout Modality for Table Question Answering on Japanese Annual Securities Reports.
Key Differences from Original Dataset
- Multimodal Support: This dataset supports multimodal inputs (image, layout, text) for comprehensive table understanding
- Direct Cell Value Extraction: Unlike the original task, this dataset focuses on direct extraction of cell values, removing the need for arithmetic operations or other transformations
Dataset Description
- Language: Japanese
- Task: Table Question Answering
- Format: Images with OCR text and question-answer pairs
- Source: NTCIR-18 U4 Task
Dataset Structure
Each example contains:
id
: Unique identifiersample_id
: Original sample IDimage
: Table image (PNG format)text_w_bbox
: Raw OCR data with bounding box information (JSON format)question
: Question about the tableanswer
: Answer to the questionquestion_type
: Type of question (table_qa)dataset
: Dataset name (ntcir18-u4)
Usage
from datasets import load_dataset
import json
dataset = load_dataset("stockmark/u4-table-cell-qa")
# Access OCR data with bounding boxes
sample = dataset["train"][0]
ocr_data = json.loads(sample["text_w_bbox"])
# Each OCR element contains:
# - "box": [x1, y1, x2, y2] - bounding box coordinates
# - "text": extracted text
# - "label": classification label (if available)
# - "words": word-level information (if available)
for ocr_item in ocr_data:
print(f"Text: {ocr_item['text']}")
print(f"Box: {ocr_item['box']}")
License
This dataset is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0).
Citation
Original Dataset
This dataset is based on the NTCIR-U4 task. We thank the original authors for making their data available.
Data Source:
- 本データは金融庁 EDINET で公開されている有価証券報告書を基に編集・加工したものです。
- This data is based on securities reports published on EDINET (Financial Services Agency of Japan), which have been edited and processed.
Attribution: 本データセットを利用する際は、本データセットの作者、および元のデータソースの両方に対するクレジット(帰属表示)をお願いします。 When using this dataset, please provide attribution to both the creator of this dataset and the original data source.
- 出典:EDINET(金融庁)/ Source: EDINET (Financial Services Agency of Japan)
- 編集・加工:ストックマーク株式会社(NTCIR-18 U4 タスク関連データ)/ Edited and processed by: Stockmark Inc. (NTCIR-18 U4 Task related data)
References:
- Task Overview: https://sites.google.com/view/ntcir18-u4/
- Data and Code (GitHub): https://github.com/nlp-for-japanese-securities-reports/ntcir18-u4
@article{EMTCIR2024,
title = {Understanding Tables in Financial Documents: Shared Tasks for Table Retrieval and Table QA on Japanese Annual Security Reports},
author = {Yasutomo Kimura and Eisaku Sato and Kazuma Kadowaki and Hokuto Ototake},
journal = {Proceedings of the SIGIR-AP 2024 Workshops EMTCIR 2024},
month = {12},
year = {2024},
url = {https://ceur-ws.org/Vol-3854/}
}
Our Paper
If you use this dataset, please cite our paper:
@article{aida2025enhancinglargevisionlanguagemodels,
title={Enhancing Large Vision-Language Models with Layout Modality for Table Question Answering on Japanese Annual Securities Reports},
author={Hayato Aida and Kosuke Takahashi and Takahiro Omi},
year={2025},
eprint={2505.17625},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2505.17625},
}
This Dataset
If you use this processed dataset, please also cite:
@dataset{table_cell_qa_2025,
title={TableCellQA Dataset},
author={Hayato Aida},
year={2025},
publisher={Hugging Face},
url={https://huggingface.co/datasets/stockmark/u4-table-cell-qa}
}