|
--- |
|
task_categories: |
|
- visual-question-answering |
|
- table-question-answering |
|
language: |
|
- ja |
|
license: cc-by-4.0 |
|
tags: |
|
- table-qa |
|
- visual-qa |
|
- japanese |
|
- ntcir |
|
size_categories: |
|
- 10K<n<100K |
|
--- |
|
|
|
# TableCellQA Dataset |
|
|
|
This dataset is for Table Question Answering (Table QA), derived from tables in Japanese annual securities reports used in the NTCIR-18 U4 shared task. |
|
|
|
This dataset was proposed in our paper: [Enhancing Large Vision-Language Models with Layout Modality for Table Question Answering on Japanese Annual Securities Reports](https://arxiv.org/abs/2505.17625). |
|
|
|
## Key Differences from Original Dataset |
|
|
|
1. **Multimodal Support**: This dataset supports multimodal inputs (image, layout, text) for comprehensive table understanding |
|
2. **Direct Cell Value Extraction**: Unlike the original task, this dataset focuses on direct extraction of cell values, removing the need for arithmetic operations or other transformations |
|
|
|
## Dataset Description |
|
|
|
- **Language**: Japanese |
|
- **Task**: Table Question Answering |
|
- **Format**: Images with OCR text and question-answer pairs |
|
- **Source**: NTCIR-18 U4 Task |
|
|
|
## Dataset Structure |
|
|
|
Each example contains: |
|
- `id`: Unique identifier |
|
- `sample_id`: Original sample ID |
|
- `image`: Table image (PNG format) |
|
- `text_w_bbox`: Raw OCR data with bounding box information (JSON format) |
|
- `question`: Question about the table |
|
- `answer`: Answer to the question |
|
- `question_type`: Type of question (table_qa) |
|
- `dataset`: Dataset name (ntcir18-u4) |
|
|
|
## Usage |
|
|
|
```python |
|
from datasets import load_dataset |
|
import json |
|
|
|
dataset = load_dataset("stockmark/u4-table-cell-qa") |
|
|
|
# Access OCR data with bounding boxes |
|
sample = dataset["train"][0] |
|
ocr_data = json.loads(sample["text_w_bbox"]) |
|
|
|
# Each OCR element contains: |
|
# - "box": [x1, y1, x2, y2] - bounding box coordinates |
|
# - "text": extracted text |
|
# - "label": classification label (if available) |
|
# - "words": word-level information (if available) |
|
|
|
for ocr_item in ocr_data: |
|
print(f"Text: {ocr_item['text']}") |
|
print(f"Box: {ocr_item['box']}") |
|
``` |
|
|
|
## License |
|
|
|
This dataset is licensed under the [Creative Commons Attribution 4.0 International License (CC BY 4.0)](https://creativecommons.org/licenses/by/4.0/). |
|
|
|
## Citation |
|
|
|
### Original Dataset |
|
|
|
This dataset is based on the NTCIR-U4 task. We thank the original authors for making their data available. |
|
|
|
**Data Source:** |
|
- 本データは金融庁 EDINET で公開されている有価証券報告書を基に編集・加工したものです。 |
|
- This data is based on securities reports published on EDINET (Financial Services Agency of Japan), which have been edited and processed. |
|
|
|
**Attribution:** |
|
本データセットを利用する際は、本データセットの作者、および元のデータソースの両方に対するクレジット(帰属表示)をお願いします。 |
|
When using this dataset, please provide attribution to both the creator of this dataset and the original data source. |
|
- 出典:EDINET(金融庁)/ Source: EDINET (Financial Services Agency of Japan) |
|
- 編集・加工:ストックマーク株式会社(NTCIR-18 U4 タスク関連データ)/ Edited and processed by: Stockmark Inc. (NTCIR-18 U4 Task related data) |
|
|
|
**References:** |
|
- Task Overview: https://sites.google.com/view/ntcir18-u4/ |
|
- Data and Code (GitHub): https://github.com/nlp-for-japanese-securities-reports/ntcir18-u4 |
|
|
|
```bibtex |
|
@article{EMTCIR2024, |
|
title = {Understanding Tables in Financial Documents: Shared Tasks for Table Retrieval and Table QA on Japanese Annual Security Reports}, |
|
author = {Yasutomo Kimura and Eisaku Sato and Kazuma Kadowaki and Hokuto Ototake}, |
|
journal = {Proceedings of the SIGIR-AP 2024 Workshops EMTCIR 2024}, |
|
month = {12}, |
|
year = {2024}, |
|
url = {https://ceur-ws.org/Vol-3854/} |
|
} |
|
``` |
|
|
|
### Our Paper |
|
|
|
If you use this dataset, please cite our paper: |
|
|
|
```bibtex |
|
@article{aida2025enhancinglargevisionlanguagemodels, |
|
title={Enhancing Large Vision-Language Models with Layout Modality for Table Question Answering on Japanese Annual Securities Reports}, |
|
author={Hayato Aida and Kosuke Takahashi and Takahiro Omi}, |
|
year={2025}, |
|
eprint={2505.17625}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL}, |
|
url={https://arxiv.org/abs/2505.17625}, |
|
} |
|
``` |
|
|
|
### This Dataset |
|
|
|
If you use this processed dataset, please also cite: |
|
|
|
```bibtex |
|
@dataset{table_cell_qa_2025, |
|
title={TableCellQA Dataset}, |
|
author={Hayato Aida}, |
|
year={2025}, |
|
publisher={Hugging Face}, |
|
url={https://huggingface.co/datasets/stockmark/u4-table-cell-qa} |
|
} |
|
``` |
|
|