metadata
annotations_creators:
- manual
language:
- en
license: apache-2.0
multilinguality:
- monolingual
pretty_name: ARM4R Dataset
size_categories:
- 100K<examples<1M
source_datasets:
- original
task_categories:
- robotics
task_ids:
- grasping
Pre-training Auto-regressive Robotic Models with 4D Representations
by Dantong Niu*, Yuvan Sharma*, Haoru Xue, Giscard Biamby, Junyi Zhang, Ziteng Ji, Trevor Darrell†, and Roei Herzig†
*Equal contribution, †Equal advising
Berkeley AI Research, UC Berkeley
ICML 2025
Paper • Code • Models • Dataset
The structure for the data is as follows:
.
├── .gitattributes
├── README.md
├── epic_clips.json # contains mapping for episode id --> language instruction (76,014 episodes)
├── epic_tasks_final.zip # contains extracted 3D point data for Epic-Kitchens (76,014 episodes)
└── real_kinova_release_data.zip # contains collected data for real world Kinova Gen3 setup (2,550 episodes)
Citation
If you find our work helpful, please consider citing:
@article{niu2025pre,
title={Pre-training auto-regressive robotic models with 4d representations},
author={Niu, Dantong and Sharma, Yuvan and Xue, Haoru and Biamby, Giscard and Zhang, Junyi and Ji, Ziteng and Darrell, Trevor and Herzig, Roei},
journal={arXiv preprint arXiv:2502.13142},
year={2025}
}