deepdml's picture
Update README.md
04b34f7 verified
metadata
language:
  - en
license: apache-2.0
tags:
  - generated_from_trainer
base_model: openai/whisper-base
datasets:
  - mozilla-foundation/common_voice_17_0
metrics:
  - wer
model-index:
  - name: Whisper Medium en
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Common Voice 17.0
          type: mozilla-foundation/common_voice_17_0
          config: en
          split: test
          args: en
        metrics:
          - type: wer
            value: 19.814275123347905
            name: Wer
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: google/fleurs
          type: google/fleurs
          config: en_us
          split: test
        metrics:
          - type: wer
            value: 14
            name: WER
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: facebook/voxpopuli
          type: facebook/voxpopuli
          config: en
          split: test
        metrics:
          - type: wer
            value: 13.25
            name: WER
pipeline_tag: automatic-speech-recognition

Whisper Base en

This model is a fine-tuned version of openai/whisper-base on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5062
  • Wer: 19.8143

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000

Training results

Training Loss Epoch Step Validation Loss Wer
0.3654 1.0974 1000 0.5075 20.6605
0.2314 3.0922 2000 0.5117 20.1370
0.261 5.087 3000 0.5058 20.1230
0.1793 7.0818 4000 0.5196 20.5831
0.2344 9.0766 5000 0.5062 19.8143

Framework versions

  • Transformers 4.42.0.dev0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1