galkinv42's picture
Hinter-Models/deberta-sber-nli-v2
1191042 verified
metadata
library_name: transformers
license: mit
base_model: MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: nli-cross-encoder-roberta
    results: []

nli-cross-encoder-roberta

This model is a fine-tuned version of MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4859
  • Accuracy: 0.9448
  • F1 Macro: 0.9469

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.06
  • num_epochs: 8
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Macro
0.1806 1.0 211 0.3069 0.9088 0.9134
0.1021 2.0 422 0.1795 0.9530 0.9544
0.0343 3.0 633 0.4396 0.9365 0.9389
0.0182 4.0 844 0.4025 0.9475 0.9496
0.0047 5.0 1055 0.4674 0.9420 0.9441
0.0014 6.0 1266 0.4457 0.9448 0.9469
0.0049 7.0 1477 0.4835 0.9448 0.9469
0.0004 8.0 1688 0.4859 0.9448 0.9469

Framework versions

  • Transformers 4.56.1
  • Pytorch 2.6.0+cu124
  • Datasets 4.0.0
  • Tokenizers 0.22.0