|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: nli-cross-encoder-roberta |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# nli-cross-encoder-roberta |
|
|
|
This model is a fine-tuned version of [MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4859 |
|
- Accuracy: 0.9448 |
|
- F1 Macro: 0.9469 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.06 |
|
- num_epochs: 8 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:| |
|
| 0.1806 | 1.0 | 211 | 0.3069 | 0.9088 | 0.9134 | |
|
| 0.1021 | 2.0 | 422 | 0.1795 | 0.9530 | 0.9544 | |
|
| 0.0343 | 3.0 | 633 | 0.4396 | 0.9365 | 0.9389 | |
|
| 0.0182 | 4.0 | 844 | 0.4025 | 0.9475 | 0.9496 | |
|
| 0.0047 | 5.0 | 1055 | 0.4674 | 0.9420 | 0.9441 | |
|
| 0.0014 | 6.0 | 1266 | 0.4457 | 0.9448 | 0.9469 | |
|
| 0.0049 | 7.0 | 1477 | 0.4835 | 0.9448 | 0.9469 | |
|
| 0.0004 | 8.0 | 1688 | 0.4859 | 0.9448 | 0.9469 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.56.1 |
|
- Pytorch 2.6.0+cu124 |
|
- Datasets 4.0.0 |
|
- Tokenizers 0.22.0 |
|
|