|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: facebook/convnext-tiny-224 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: convnext-tiny-224-finetuned |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# convnext-tiny-224-finetuned |
|
|
|
This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.9429 |
|
- Logloss: 0.9429 |
|
- Accuracy: {'accuracy': 0.6371511068334937} |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Logloss | Accuracy | |
|
|:-------------:|:------:|:----:|:---------------:|:-------:|:--------------------------------:| |
|
| 1.4538 | 0.9846 | 32 | 1.3816 | 1.3816 | {'accuracy': 0.4475457170356112} | |
|
| 1.2257 | 2.0 | 65 | 1.1411 | 1.1411 | {'accuracy': 0.5668912415784408} | |
|
| 1.0432 | 2.9846 | 97 | 1.0302 | 1.0302 | {'accuracy': 0.6034648700673725} | |
|
| 1.0002 | 4.0 | 130 | 0.9979 | 0.9979 | {'accuracy': 0.615014436958614} | |
|
| 0.9492 | 4.9846 | 162 | 0.9781 | 0.9781 | {'accuracy': 0.631376323387873} | |
|
| 0.9302 | 6.0 | 195 | 0.9664 | 0.9664 | {'accuracy': 0.629451395572666} | |
|
| 0.8805 | 6.9846 | 227 | 0.9515 | 0.9515 | {'accuracy': 0.6371511068334937} | |
|
| 0.852 | 8.0 | 260 | 0.9504 | 0.9504 | {'accuracy': 0.6256015399422522} | |
|
| 0.8352 | 8.9846 | 292 | 0.9468 | 0.9468 | {'accuracy': 0.6371511068334937} | |
|
| 0.8245 | 9.8462 | 320 | 0.9429 | 0.9429 | {'accuracy': 0.6371511068334937} | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|