m2nho's picture
End of training
ba6e8d9 verified
metadata
language:
  - en
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - Jzuluaga/atcosim_corpus
metrics:
  - wer
model-index:
  - name: Whisper small - Whisper with atcosim
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: 'This is a dataset constructed from two datasets: ATCOSIM.'
          type: Jzuluaga/atcosim_corpus
          args: 'config: en, split: test small split [full]'
        metrics:
          - name: Wer
            type: wer
            value: 1.4177192827488738

Whisper small - Whisper with atcosim

This model is a fine-tuned version of openai/whisper-small on the This is a dataset constructed from two datasets: ATCOSIM. dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0385
  • Wer: 1.4177

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0349 0.2092 100 0.0974 6.4040
0.0493 0.4184 200 0.0664 3.2329
0.0464 0.6276 300 0.0519 2.8708
0.0394 0.8368 400 0.0474 2.3055
0.0177 1.0460 500 0.0429 1.7004
0.0054 1.2552 600 0.0416 1.5458
0.0182 1.4644 700 0.0411 1.5193
0.008 1.6736 800 0.0400 1.4663
0.0055 1.8828 900 0.0387 1.4619
0.0053 2.0921 1000 0.0385 1.4177

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1