mitegvg's picture
Model save
80391ea verified
metadata
library_name: transformers
tags:
  - generated_from_trainer
model-index:
  - name: videomae-diving48-multilabel-finetuned
    results: []

videomae-diving48-multilabel-finetuned

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3969
  • F1 Macro: 0.2636
  • Precision Macro: 0.2180
  • Recall Macro: 0.4145
  • Exact Match Ratio: 0.0003
  • Hamming Accuracy: 0.7557

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 25544
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Macro Precision Macro Recall Macro Exact Match Ratio Hamming Accuracy
1.3045 0.1250 3194 1.4774 0.1609 0.1518 0.2915 0.0 0.7280
0.8881 1.1250 6388 1.4002 0.2035 0.1952 0.3239 0.0 0.7537
1.0683 2.1250 9582 1.4017 0.2014 0.1999 0.3470 0.0 0.7403
0.7672 3.1250 12776 1.4316 0.2280 0.1893 0.3459 0.0022 0.7566
0.8529 4.1250 15970 1.4307 0.2333 0.2011 0.3484 0.0003 0.7650
1.0022 5.1250 19164 1.4566 0.2367 0.2095 0.3404 0.0005 0.7734
1.3422 6.1250 22358 1.4297 0.2602 0.2127 0.3922 0.0005 0.7634
1.0641 7.1247 25544 1.3969 0.2636 0.2180 0.4145 0.0003 0.7557

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.1.0+cu118
  • Datasets 3.6.0
  • Tokenizers 0.21.1