|
---
|
|
library_name: transformers
|
|
tags:
|
|
- generated_from_trainer
|
|
model-index:
|
|
- name: videomae-diving48-multilabel-finetuned
|
|
results: []
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# videomae-diving48-multilabel-finetuned
|
|
|
|
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 1.3969
|
|
- F1 Macro: 0.2636
|
|
- Precision Macro: 0.2180
|
|
- Recall Macro: 0.4145
|
|
- Exact Match Ratio: 0.0003
|
|
- Hamming Accuracy: 0.7557
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 0.0002
|
|
- train_batch_size: 4
|
|
- eval_batch_size: 4
|
|
- seed: 42
|
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
|
- lr_scheduler_type: linear
|
|
- lr_scheduler_warmup_ratio: 0.1
|
|
- training_steps: 25544
|
|
- mixed_precision_training: Native AMP
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 Macro | Precision Macro | Recall Macro | Exact Match Ratio | Hamming Accuracy |
|
|
|:-------------:|:------:|:-----:|:---------------:|:--------:|:---------------:|:------------:|:-----------------:|:----------------:|
|
|
| 1.3045 | 0.1250 | 3194 | 1.4774 | 0.1609 | 0.1518 | 0.2915 | 0.0 | 0.7280 |
|
|
| 0.8881 | 1.1250 | 6388 | 1.4002 | 0.2035 | 0.1952 | 0.3239 | 0.0 | 0.7537 |
|
|
| 1.0683 | 2.1250 | 9582 | 1.4017 | 0.2014 | 0.1999 | 0.3470 | 0.0 | 0.7403 |
|
|
| 0.7672 | 3.1250 | 12776 | 1.4316 | 0.2280 | 0.1893 | 0.3459 | 0.0022 | 0.7566 |
|
|
| 0.8529 | 4.1250 | 15970 | 1.4307 | 0.2333 | 0.2011 | 0.3484 | 0.0003 | 0.7650 |
|
|
| 1.0022 | 5.1250 | 19164 | 1.4566 | 0.2367 | 0.2095 | 0.3404 | 0.0005 | 0.7734 |
|
|
| 1.3422 | 6.1250 | 22358 | 1.4297 | 0.2602 | 0.2127 | 0.3922 | 0.0005 | 0.7634 |
|
|
| 1.0641 | 7.1247 | 25544 | 1.3969 | 0.2636 | 0.2180 | 0.4145 | 0.0003 | 0.7557 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.51.3
|
|
- Pytorch 2.1.0+cu118
|
|
- Datasets 3.6.0
|
|
- Tokenizers 0.21.1
|
|
|