Hugging Face Internal Testing Organization

company
Activity Feed

AI & ML interests

None defined yet.

Recent Activity

hf-internal-testing's activity

sayakpaulย 
posted an update 3 days ago
view post
Post
1751
We have authored a post to go over the state of video generation in the Diffusers ecosystem ๐Ÿงจ

We cover the models supported, the knobs of optims our users can fire, fine-tuning, and more ๐Ÿ”ฅ

5-6GBs for HunyuanVideo, sky is the limit ๐ŸŒŒ ๐Ÿค—
https://huggingface.co/blog/video_gen
lewtunย 
posted an update 5 days ago
view post
Post
9358
We are reproducing the full DeepSeek R1 data and training pipeline so everybody can use their recipe. Instead of doing it in secret we can do it together in the open!

๐Ÿงช Step 1: replicate the R1-Distill models by distilling a high-quality reasoning corpus from DeepSeek-R1.

๐Ÿง  Step 2: replicate the pure RL pipeline that DeepSeek used to create R1-Zero. This will involve curating new, large-scale datasets for math, reasoning, and code.

๐Ÿ”ฅ Step 3: show we can go from base model -> SFT -> RL via multi-stage training.

Follow along: https://github.com/huggingface/open-r1
ยท
tomaarsenย 
posted an update 7 days ago
view post
Post
1440
I just released Sentence Transformers v3.4.0, featuring a memory leak fix, compatibility between the powerful Cached... losses and the Matryoshka loss modifier, and a bunch of fixes & small features.

๐Ÿช† Matryoshka & Cached loss compatibility
It is now possible to combine the powerful Cached... losses (which use in-batch negatives & a caching mechanism to allow for endless batch size & negatives) with the Matryoshka loss modifier which modifies a base loss such that it is trained not only on the maximum dimensionality (e.g. 1024 dimensions), but also on many lower dimensions (e.g. 768, 512, 256, 128, 64, 32).
After training, these models' embeddings can be truncated for faster retrieval, etc.

๐ŸŽž๏ธ Resolve memory leak when Model and Trainer are reinitialized
Due to a circular dependency between Trainer -> Model -> ModelCardData -> Trainer, deleting both the trainer & model still didn't free up the memory.
This led to a memory leak in scripts where you repeatedly do so.

โž• New Features
Many new small features, e.g. multi-GPU support for 'mine_hard_negatives', a 'margin' parameter to TripletEvaluator, and Matthews Correlation Coefficient in the BinaryClassificationEvaluator.

๐Ÿ› Bug Fixes
Also a bunch of fixes, for example that subsequent batches were not sorted when using the "no_duplicates" batch sampler. See the release notes for more details.

Full release notes: https://github.com/UKPLab/sentence-transformers/releases/tag/v3.4.0

Big thanks to all community members who assisted in this release. 10 folks with their first contribution this time around!
Xenovaย 
posted an update 14 days ago
view post
Post
3695
Introducing Kokoro.js, a new JavaScript library for running Kokoro TTS, an 82 million parameter text-to-speech model, 100% locally in the browser w/ WASM. Powered by ๐Ÿค— Transformers.js. WebGPU support coming soon!
๐Ÿ‘‰ npm i kokoro-js ๐Ÿ‘ˆ

Try it out yourself: webml-community/kokoro-web
Link to models/samples: onnx-community/Kokoro-82M-ONNX

You can get started in just a few lines of code!
import { KokoroTTS } from "kokoro-js";

const tts = await KokoroTTS.from_pretrained(
  "onnx-community/Kokoro-82M-ONNX",
  { dtype: "q8" }, // fp32, fp16, q8, q4, q4f16
);

const text = "Life is like a box of chocolates. You never know what you're gonna get.";
const audio = await tts.generate(text,
  { voice: "af_sky" }, // See `tts.list_voices()`
);
audio.save("audio.wav");

Huge kudos to the Kokoro TTS community, especially taylorchu for the ONNX exports and Hexgrad for the amazing project! None of this would be possible without you all! ๐Ÿค—

The model is also extremely resilient to quantization. The smallest variant is only 86 MB in size (down from the original 326 MB), with no noticeable difference in audio quality! ๐Ÿคฏ
ยท
tomaarsenย 
posted an update 15 days ago
view post
Post
4412
๐ŸŽ๏ธ Today I'm introducing a method to train static embedding models that run 100x to 400x faster on CPU than common embedding models, while retaining 85%+ of the quality! Including 2 fully open models: training scripts, datasets, metrics.

We apply our recipe to train 2 Static Embedding models that we release today! We release:
2๏ธโƒฃ an English Retrieval model and a general-purpose Multilingual similarity model (e.g. classification, clustering, etc.), both Apache 2.0
๐Ÿง  my modern training strategy: ideation -> dataset choice -> implementation -> evaluation
๐Ÿ“œ my training scripts, using the Sentence Transformers library
๐Ÿ“Š my Weights & Biases reports with losses & metrics
๐Ÿ“• my list of 30 training and 13 evaluation datasets

The 2 Static Embedding models have the following properties:
๐ŸŽ๏ธ Extremely fast, e.g. 107500 sentences per second on a consumer CPU, compared to 270 for 'all-mpnet-base-v2' and 56 for 'gte-large-en-v1.5'
0๏ธโƒฃ Zero active parameters: No Transformer blocks, no attention, not even a matrix multiplication. Super speed!
๐Ÿ“ No maximum sequence length! Embed texts at any length (note: longer texts may embed worse)
๐Ÿ“ Linear instead of exponential complexity: 2x longer text takes 2x longer, instead of 2.5x or more.
๐Ÿช† Matryoshka support: allow you to truncate embeddings with minimal performance loss (e.g. 4x smaller with a 0.56% perf. decrease for English Similarity tasks)

Check out the full blogpost if you'd like to 1) use these lightning-fast models or 2) learn how to train them with consumer-level hardware: https://huggingface.co/blog/static-embeddings

The blogpost contains a lengthy list of possible advancements; I'm very confident that our 2 models are only the tip of the iceberg, and we may be able to get even better performance.

Alternatively, check out the models:
* sentence-transformers/static-retrieval-mrl-en-v1
* sentence-transformers/static-similarity-mrl-multilingual-v1
  • 1 reply
ยท
albertvillanovaย 
posted an update 23 days ago
lewtunย 
posted an update 24 days ago
view post
Post
3660
I was initially pretty sceptical about Meta's Coconut paper [1] because the largest perf gains were reported on toy linguistic problems. However, these results on machine translation are pretty impressive!

https://x.com/casper_hansen_/status/1875872309996855343

Together with the recent PRIME method [2] for scaling RL, reasoning for open models is looking pretty exciting for 2025!

[1] Training Large Language Models to Reason in a Continuous Latent Space (2412.06769)
[2] https://huggingface.co/blog/ganqu/prime
Xenovaย 
posted an update 29 days ago
view post
Post
7558
First project of 2025: Vision Transformer Explorer

I built a web app to interactively explore the self-attention maps produced by ViTs. This explains what the model is focusing on when making predictions, and provides insights into its inner workings! ๐Ÿคฏ

Try it out yourself! ๐Ÿ‘‡
webml-community/attention-visualization

Source code: https://github.com/huggingface/transformers.js-examples/tree/main/attention-visualization
tomaarsenย 
posted an update 30 days ago
view post
Post
2956
That didn't take long! Nomic AI has finetuned the new ModernBERT-base encoder model into a strong embedding model for search, classification, clustering and more!

Details:
๐Ÿค– Based on ModernBERT-base with 149M parameters.
๐Ÿ“Š Outperforms both nomic-embed-text-v1 and nomic-embed-text-v1.5 on MTEB!
๐ŸŽ๏ธ Immediate FA2 and unpacking support for super efficient inference.
๐Ÿช† Trained with Matryoshka support, i.e. 2 valid output dimensionalities: 768 and 256.
โžก๏ธ Maximum sequence length of 8192 tokens!
2๏ธโƒฃ Trained in 2 stages: unsupervised contrastive data -> high quality labeled datasets.
โž• Integrated in Sentence Transformers, Transformers, LangChain, LlamaIndex, Haystack, etc.
๐Ÿ›๏ธ Apache 2.0 licensed: fully commercially permissible

Try it out here: nomic-ai/modernbert-embed-base

Very nice work by Zach Nussbaum and colleagues at Nomic AI.
lewtunย 
posted an update about 1 month ago
view post
Post
2253
This paper ( HuatuoGPT-o1, Towards Medical Complex Reasoning with LLMs (2412.18925)) has a really interesting recipe for inducing o1-like behaviour in Llama models:

* Iteratively sample CoTs from the model, using a mix of different search strategies. This gives you something like Stream of Search via prompting.
* Verify correctness of each CoT using GPT-4o (needed because exact match doesn't work well in medicine where there are lots of aliases)
* Use GPT-4o to reformat the concatenated CoTs into a single stream that includes smooth transitions like "hmm, wait" etc that one sees in o1
* Use the resulting data for SFT & RL
* Use sparse rewards from GPT-4o to guide RL training. They find RL gives an average ~3 point boost across medical benchmarks and SFT on this data already gives a strong improvement.

Applying this strategy to other domains could be quite promising, provided the training data can be formulated with verifiable problems!
  • 1 reply
ยท
sayakpaulย 
posted an update about 1 month ago
view post
Post
4309
Commits speak louder than words ๐Ÿคช

* 4 new video models
* Multiple image models, including SANA & Flux Control
* New quantizers -> GGUF & TorchAO
* New training scripts

Enjoy this holiday-special Diffusers release ๐Ÿค—
Notes: https://github.com/huggingface/diffusers/releases/tag/v0.32.0