File size: 27,115 Bytes
8cb6e00
7662cb9
b6c7c7c
8cb6e00
 
 
 
 
 
9ea4e14
8cb6e00
 
 
 
 
 
c0f33c6
0b01c12
8cb6e00
 
 
 
 
 
 
 
 
3c9eeaf
8cb6e00
4fbcf68
9ea4e14
8a7f2d8
0c663c0
8cb6e00
 
 
 
 
 
 
 
b6c7c7c
 
 
 
5c0b5cd
 
b6c7c7c
5c0b5cd
ec0e22d
 
 
be86181
 
 
ae037a5
 
 
8cb6e00
 
 
 
 
 
 
7f09169
8cb6e00
 
 
 
 
 
 
 
 
 
 
 
 
 
d784ff5
4ee7a1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cb6e00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9feee8
 
 
8cb6e00
 
 
b6c7c7c
0b01c12
 
 
 
 
 
b6c7c7c
8cb6e00
 
b6c7c7c
8cb6e00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b538b8
8cb6e00
aa0bf91
 
d784ff5
aa0bf91
e40819a
aa0bf91
 
8cb6e00
b6c7c7c
8cb6e00
 
 
 
c9feee8
8cb6e00
 
 
b6c7c7c
0b01c12
 
 
 
 
8cb6e00
 
b6c7c7c
8cb6e00
 
71bda1d
 
9ea4e14
 
 
71bda1d
c0f33c6
71bda1d
 
f9467b5
71bda1d
 
c0f33c6
f6fc26e
71bda1d
 
 
 
c0f33c6
3dd8d6c
c0f33c6
 
f9467b5
71bda1d
 
f9467b5
71bda1d
 
 
3dd8d6c
9ea4e14
8cb6e00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d784ff5
8cb6e00
 
 
 
 
 
 
 
 
 
 
 
 
 
18e298f
 
8cb6e00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92b1ad1
7a95386
8cb6e00
 
 
 
 
7a95386
8cb6e00
 
 
 
2446a1f
8cb6e00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9395959
8cb6e00
 
 
 
 
 
ae28beb
8cb6e00
 
 
 
7a95386
92b1ad1
7a95386
a20826a
7a95386
 
 
 
8cb6e00
 
 
 
c9feee8
8cb6e00
 
 
 
 
 
 
 
 
 
 
 
 
1486ce7
48e6960
1486ce7
d784ff5
830b4bc
0dbfbd4
12c278e
0dbfbd4
 
 
 
 
 
 
 
 
4fbcf68
0dbfbd4
 
 
 
 
 
 
d67a459
8cb6e00
d7d1d4e
 
8cb6e00
f8d95b7
0c663c0
0dbfbd4
 
d7d1d4e
 
 
01e823e
1211e2b
0dbfbd4
 
 
 
 
 
01e823e
d7d1d4e
8cb6e00
 
b6c7c7c
8cb6e00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0d14fd
8cb6e00
a0d14fd
fbda383
a0d14fd
 
8cb6e00
a0d14fd
8cb6e00
a0d14fd
 
 
8cb6e00
b8d0141
 
8cb6e00
a0d14fd
 
 
 
 
 
 
8cb6e00
a0d14fd
 
8cb6e00
a0d14fd
 
 
60c50d7
 
 
 
 
3dd8d6c
b8d0141
a0d14fd
 
 
8cb6e00
a0d14fd
8cb6e00
a0d14fd
 
 
8cb6e00
a0d14fd
 
 
 
 
 
 
 
18e298f
 
a0d14fd
 
8cb6e00
a0d14fd
8cb6e00
a0d14fd
 
 
8cb6e00
a0d14fd
 
92b1ad1
 
a0d14fd
a20826a
a0d14fd
b6c7c7c
a0d14fd
8cb6e00
a0d14fd
8cb6e00
 
 
b8d0141
 
a0d14fd
 
eab6a7c
 
b8d0141
2ca501d
5022fdb
66fea52
eab6a7c
b8d0141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9395959
b8d0141
 
 
 
 
 
ae28beb
b8d0141
 
6efb035
 
 
b8d0141
 
 
 
 
 
 
b6c7c7c
b8d0141
 
7a95386
92b1ad1
7a95386
a20826a
7a95386
 
 
 
b8d0141
7a95386
b8d0141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6733cba
48e6960
830b4bc
d784ff5
3c9eeaf
0dbfbd4
5f2bc85
0dbfbd4
 
67a965a
eab6a7c
0dbfbd4
 
 
 
 
 
 
 
 
 
 
 
 
 
4fbcf68
0dbfbd4
 
 
 
 
4fbcf68
0dbfbd4
 
1486ce7
b8d0141
80a7dbc
 
 
 
 
 
 
 
 
 
 
1486ce7
0dbfbd4
0c663c0
f8d95b7
0c663c0
0dbfbd4
 
b8d0141
1486ce7
0c663c0
0dbfbd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8d0141
 
b6c7c7c
4167849
b8d0141
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
# Import necessary modules
from concurrent.futures import ProcessPoolExecutor
import logging
import os
import asyncio
import threading
import uuid
from fastapi import FastAPI, HTTPException, Header
from fastapi.encoders import jsonable_encoder
from typing import Dict, List, Literal, Optional
from fastapi.responses import FileResponse
import numpy as np
import pandas as pd
from pandasai import SmartDataframe
from langchain_groq.chat_models import ChatGroq
from dotenv import load_dotenv
from pydantic import BaseModel, Field, ValidationError
from csv_service import clean_data, extract_chart_filenames, generate_csv_data, get_csv_basic_info
from urllib.parse import unquote
from langchain_groq import ChatGroq
import pandas as pd
from langchain_experimental.tools import PythonAstREPLTool
from langchain_experimental.agents import create_pandas_dataframe_agent
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import seaborn as sns
from gemini_report_generator import generate_csv_report
from intitial_q_handler import if_initial_chart_question, if_initial_chat_question
from orchestrator_agent import csv_orchestrator_chat
from python_code_executor_service import CsvChatResult, PythonExecutor
from supabase_service import upload_file_to_supabase
from cerebras_csv_agent import query_csv_agent
from util_service import _prompt_generator, process_answer
from fastapi.middleware.cors import CORSMiddleware
import matplotlib
matplotlib.use('Agg')

# Initialize FastAPI app
app = FastAPI()

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Initialize the ProcessPoolExecutor
max_cpus = os.cpu_count()
logger.info(f"Max CPUs: {max_cpus}")

# Ensure the cache directory exists
os.makedirs("/app/cache", exist_ok=True)

os.makedirs("/app", exist_ok=True)
open("/app/pandasai.log", "a").close()  # Create the file if it doesn't exist

# Ensure the generated_charts directory exists
os.makedirs("/app/generated_charts", exist_ok=True)

load_dotenv()

image_file_path = os.getenv("IMAGE_FILE_PATH")
image_not_found = os.getenv("IMAGE_NOT_FOUND")
allowed_hosts = os.getenv("ALLOWED_HOSTS", "").split(",")
app.add_middleware(
    CORSMiddleware,
    allow_origins=allowed_hosts, 
    allow_credentials=True,
    allow_methods=["*"], 
    allow_headers=["*"],  
)

# Load environment variables
groq_api_keys = os.getenv("GROQ_API_KEYS").split(",")
model_name = os.getenv("GROQ_LLM_MODEL")

class CsvUrlRequest(BaseModel):
    csv_url: str
    
class ImageRequest(BaseModel):
    image_path: str
    chat_id: str
    
class FileProps(BaseModel):
    fileName: str
    filePath: str
    fileType: str  # 'csv' | 'image'

class Files(BaseModel):
    csv_files: List[FileProps]
    image_files: List[FileProps]

class FileBoxProps(BaseModel):
    files: Files
    
dummy_response = FileBoxProps(
            files=Files(
                csv_files=[
                    FileProps(
                        fileName="sales_data.csv",
                        filePath="/downloads/sales_data.csv",
                        fileType="csv"
                    ),
                    FileProps(
                        fileName="customer_data.csv",
                        filePath="/downloads/customer_data.csv",
                        fileType="csv"
                    )
                ],
                image_files=[
                    FileProps(
                        fileName="chart.png",
                        filePath="/downloads/chart.png",
                        fileType="image"
                    ),
                    FileProps(
                        fileName="graph.jpg",
                        filePath="/downloads/graph.jpg",
                        fileType="image"
                    )
                ]
            )
        )


# Thread-safe key management for groq_chat
current_groq_key_index = 0
current_groq_key_lock = threading.Lock()

# Thread-safe key management for langchain_csv_chat
current_langchain_key_index = 0
current_langchain_key_lock = threading.Lock()


# PING CHECK
@app.get("/ping")
async def root():
    return {"message": "Pong !!"}



# BASIC KNOWLEDGE BASED ON CSV

# Remove trailing slash from the URL otherwise it will redirect to GET method
@app.post("/api/basic_csv_data")
async def basic_csv_data(request: CsvUrlRequest):
    try:
        decoded_url = unquote(request.csv_url)
        logger.info(f"Fetching CSV data from URL: {decoded_url}")
        # csv_data = await get_csv_basic_info(decoded_url)    
        # Run the synchronous function in a thread pool executor
        loop = asyncio.get_running_loop()
        csv_data = await loop.run_in_executor(
            process_executor, get_csv_basic_info, decoded_url
        )
        logger.info(f"CSV data fetched successfully: {csv_data}")
        return {"data": csv_data}
    except Exception as e:
        logger.error(f"Error while fetching CSV data: {e}")
        raise HTTPException(status_code=400, detail=f"Failed to retrieve CSV data: {str(e)}")


# GET THE CHART FROM A SPECIFIC FILE PATH
@app.post("/api/get-chart")
async def get_image(request: ImageRequest, authorization: str = Header(None)):
    if not authorization:
        raise HTTPException(status_code=401, detail="Authorization header missing")

    if not authorization.startswith("Bearer "):
        raise HTTPException(status_code=401, detail="Invalid authorization header format")

    token = authorization.split(" ")[1]
    if not token:
        raise HTTPException(status_code=401, detail="Token missing")
    if token != os.getenv("AUTH_TOKEN"):
        raise HTTPException(status_code=403, detail="Invalid token")

    try:
        logger.info("Groq Chat created a chat for the user query...")
        image_file_path = request.image_path
        unique_file_name =f'{str(uuid.uuid4())}.png'
        logger.info("Uploading the chart to supabase...")
        image_public_url = await upload_file_to_supabase(f"{image_file_path}", unique_file_name, chat_id=request.chat_id)
        logger.info("Image uploaded to Supabase and Image URL is... ", {image_public_url})
        os.remove(image_file_path)
        return {"image_url": image_public_url}
        # return FileResponse(image_file_path, media_type="image/png")
    except Exception as e:
        logger.error(f"Error: {e}")
        return {"answer": "error"}
        

# GET CSV DATA FOR GENERATING THE TABLE
@app.post("/api/csv_data")
async def get_csv_data(request: CsvUrlRequest):
    try:
        decoded_url = unquote(request.csv_url)
        logger.info(f"Fetching CSV data from URL: {decoded_url}")
        # csv_data = await generate_csv_data(decoded_url)     
        loop = asyncio.get_running_loop()
        csv_data = await loop.run_in_executor(
            process_executor, generate_csv_data, decoded_url
        )   
        return csv_data
    except Exception as e:
        logger.error(f"Error while fetching CSV data: {e}")
        raise HTTPException(status_code=400, detail=f"Failed to retrieve CSV data: {str(e)}")

# EXECUTE THE PYTHON CODE 
class ExecutionRequest(BaseModel):
    chat_id: str = Field(..., alias="chat_id")
    csv_url: str = Field(..., alias="csv_url")
    codeExecutionPayload: CsvChatResult


@app.post("/api/code_execution_csv")
async def code_execution_csv(
    request_data: ExecutionRequest,  # Change from ExecutionRequest to dict to see raw input
    authorization: Optional[str] = Header(None)
):
    # Auth check remains the same
    expected_token = os.environ.get("AUTH_TOKEN")
    if not authorization or not expected_token or authorization.replace("Bearer ", "") != expected_token:
        raise HTTPException(status_code=401, detail="Unauthorized")

    try:
        # First log the incoming request data
        logger.info("Incoming request data:", request_data)
            
        # Rest of your processing logic...
        decoded_url = unquote(request_data.csv_url)
        df = clean_data(decoded_url)
        executor = PythonExecutor(df)
        formatted_output = await executor.process_response(request_data.codeExecutionPayload, request_data.chat_id)
        return {"answer": formatted_output}

    except Exception as e:
        logger.info("Processing error:", str(e))
        return {"error": "Failed to execute request", "message": str(e)}


# CHAT CODING STARTS FROM HERE

# Modified groq_chat function with thread-safe key rotation
def groq_chat(csv_url: str, question: str):
    global current_groq_key_index, current_groq_key_lock

    while True:
        with current_groq_key_lock:
            if current_groq_key_index >= len(groq_api_keys):
                return {"error": "All API keys exhausted."}
            current_api_key = groq_api_keys[current_groq_key_index]

        try:
           
            data = clean_data(csv_url)
            llm = ChatGroq(model=model_name, api_key=current_api_key)
            # Generate unique filename using UUID
            chart_filename = f"chart_{uuid.uuid4()}.png"
            chart_path = os.path.join("generated_charts", chart_filename)
            
            # Configure SmartDataframe with chart settings
            df = SmartDataframe(
                data,
                config={
                    'llm': llm,
                    'save_charts': True,  # Enable chart saving
                    'open_charts': False,
                    'save_charts_path': os.path.dirname(chart_path),  # Directory to save
                    'custom_chart_filename': chart_filename, # Unique filename
                    'enable_cache': False
                }
            )
            
            answer = df.chat(question)

            # Process different response types
            if isinstance(answer, pd.DataFrame):
                processed = answer.apply(handle_out_of_range_float).to_dict(orient="records")
            elif isinstance(answer, pd.Series):
                processed = answer.apply(handle_out_of_range_float).to_dict()
            elif isinstance(answer, list):
                processed = [handle_out_of_range_float(item) for item in answer]
            elif isinstance(answer, dict):
                processed = {k: handle_out_of_range_float(v) for k, v in answer.items()}
            else:
                processed = {"answer": str(handle_out_of_range_float(answer))}

            return processed

        except Exception as e:
            error_message = str(e)
            if error_message != "":
                logger.warning("Rate limit exceeded. Switching to next API key.")
                with current_groq_key_lock:
                    current_groq_key_index += 1
                    if current_groq_key_index >= len(groq_api_keys):
                        return {"error": "All API keys exhausted."}
            else:
                logger.error("Error in groq_chat: %s", e)
                return {"error": error_message}

# Modified langchain_csv_chat with thread-safe key rotation
def langchain_csv_chat(csv_url: str, question: str, chart_required: bool):
    global current_langchain_key_index, current_langchain_key_lock, current_langchain_chart_key_index, current_langchain_chart_lock

    data = clean_data(csv_url)
    attempts = 0

    while attempts < len(groq_api_keys):
        with current_langchain_key_lock:
            if current_langchain_key_index >= len(groq_api_keys):
                current_langchain_key_index = 0
            api_key = groq_api_keys[current_langchain_key_index]
            current_key = current_langchain_key_index
            current_langchain_key_index += 1
            attempts += 1

        try:
            llm = ChatGroq(model=model_name, api_key=api_key)
            tool = PythonAstREPLTool(locals={
                "df": data,
                "pd": pd,
                "np": np,
                "plt": plt,
                "sns": sns,
                "matplotlib": matplotlib
            })

            agent = create_pandas_dataframe_agent(
                llm,
                data,
                agent_type="tool-calling",
                verbose=True,
                allow_dangerous_code=True,
                extra_tools=[tool],
                return_intermediate_steps=True
            )

            prompt = _prompt_generator(question, chart_required, csv_url)
            result = agent.invoke({"input": prompt})
            return result.get("output")

        except Exception as e:
            error_message = str(e)
            if error_message != "":
                with current_langchain_chart_lock:
                    current_langchain_chart_key_index = (current_langchain_chart_key_index + 1)
                    logger.warning(f"Rate limit exceeded. Switching to next API key: {groq_api_keys[current_langchain_chart_key_index]}")
            else:
                logger.error(f"Error with API key {api_key}: {error_message}")
                return {"error": error_message}

    return {"error": "All API keys exhausted"}

# Async endpoint with non-blocking execution
@app.post("/api/csv-chat")
async def csv_chat(request: Dict, authorization: str = Header(None)):
    # Authorization checks
    if not authorization or not authorization.startswith("Bearer "):
        raise HTTPException(status_code=401, detail="Invalid authorization")
    
    token = authorization.split(" ")[1]
    if token != os.getenv("AUTH_TOKEN"):
        raise HTTPException(status_code=403, detail="Invalid token")

    try:
        query = request.get("query")
        csv_url = request.get("csv_url")
        decoded_url = unquote(csv_url)
        detailed_answer = request.get("detailed_answer")
        conversation_history = request.get("conversation_history", [])
        generate_report = request.get("generate_report")
        chat_id = request.get("chat_id")
        
        if generate_report is True:
            report_files = await generate_csv_report(csv_url, query, chat_id, conversation_history)
            if report_files is not None:
                return {"answer": jsonable_encoder(report_files)}

        if if_initial_chat_question(query):
            answer = await asyncio.to_thread(
                langchain_csv_chat, decoded_url, query, False
            )
            logger.info("langchain_answer:", answer)
            return {"answer": jsonable_encoder(answer)}
        
        # Orchestrate the execution
        if detailed_answer is True:
           orchestrator_answer = await asyncio.to_thread(
            csv_orchestrator_chat, decoded_url, query, conversation_history, chat_id
           )
           if orchestrator_answer is not None:
              return {"answer": jsonable_encoder(orchestrator_answer)}

        # Process with groq_chat first
        # groq_answer = await asyncio.to_thread(groq_chat, decoded_url, query)
        # logger.info("groq_answer:", groq_answer)
        
        result = await query_csv_agent(decoded_url, query, chat_id)
        logger.info("cerebras csv answer == >", result)
        if result is not None or result == "":
            return {"answer": result}
     
        # if process_answer(groq_answer) == "Empty response received.":
        #     return {"answer": "Sorry, I couldn't find relevant data..."}

        # if process_answer(groq_answer):
        lang_answer = await asyncio.to_thread(
            langchain_csv_chat, decoded_url, query, False
        )
        if process_answer(lang_answer):
            return {"answer": "error"}
        return {"answer": jsonable_encoder(lang_answer)}

        # return {"answer": jsonable_encoder(groq_answer)}

    except Exception as e:
        logger.error(f"Error processing request: {str(e)}")
        return {"answer": "error"}

def handle_out_of_range_float(value):
    if isinstance(value, float):
        if np.isnan(value):
            return None
        elif np.isinf(value):
            return "Infinity"
    return value







# CHART CODING STARTS FROM HERE

instructions = """

- Please ensure that each value is clearly visible, You may need to adjust the font size, rotate the labels, or use truncation to improve readability (if needed).
- For multiple charts, put all of them in a single file.
- Use colorblind-friendly palette
- Read above instructions and follow them.

"""

# Thread-safe configuration for chart endpoints
current_groq_chart_key_index = 0
current_groq_chart_lock = threading.Lock()

# current_langchain_chart_key_index = 0
# current_langchain_chart_lock = threading.Lock()

def model():
    global current_groq_chart_key_index, current_groq_chart_lock
    with current_groq_chart_lock:
        if current_groq_chart_key_index >= len(groq_api_keys):
            raise Exception("All API keys exhausted for chart generation")
        api_key = groq_api_keys[current_groq_chart_key_index]
    return ChatGroq(model=model_name, api_key=api_key)

def groq_chart(csv_url: str, question: str):
    global current_groq_chart_key_index, current_groq_chart_lock
    
    for attempt in range(len(groq_api_keys)):
        try:
            # Clean cache before processing
            # cache_db_path = "/workspace/cache/cache_db_0.11.db"
            # if os.path.exists(cache_db_path):
            #     try:
            #         os.remove(cache_db_path)
            #     except Exception as e:
            #         logger.info(f"Cache cleanup error: {e}")

            data = clean_data(csv_url)
            with current_groq_chart_lock:
                current_api_key = groq_api_keys[current_groq_chart_key_index]
            
            llm = ChatGroq(model=model_name, api_key=current_api_key)
            
            # Generate unique filename using UUID
            chart_filename = f"chart_{uuid.uuid4()}.png"
            chart_path = os.path.join("generated_charts", chart_filename)
            
            # Configure SmartDataframe with chart settings
            df = SmartDataframe(
                data,
                config={
                    'llm': llm,
                    'save_charts': True,  # Enable chart saving
                    'open_charts': False,
                    'save_charts_path': os.path.dirname(chart_path),  # Directory to save
                    'custom_chart_filename': chart_filename,  # Unique filename
                    'enable_cache': False
                }
            )
            
            answer = df.chat(question + instructions)
            
            if process_answer(answer):
                return "Chart not generated"
            return answer

        except Exception as e:
            error = str(e)
            # if "429" in error:
            if error != "":
                with current_groq_chart_lock:
                    current_groq_chart_key_index = (current_groq_chart_key_index + 1)
            else:
                logger.error(f"Chart generation error: {error}")
                return {"error": error}
    
    return {"error": "All API keys exhausted for chart generation"}




# Global locks for key rotation (chart endpoints)
# current_groq_chart_key_index = 0
# current_groq_chart_lock = threading.Lock()
current_langchain_chart_key_index = 0
current_langchain_chart_lock = threading.Lock()


# Use a process pool to run CPU-bound charts generation
process_executor = ProcessPoolExecutor(max_workers=max_cpus-2)

# --- LANGCHAIN-BASED CHART GENERATION ---
def langchain_csv_chart(csv_url: str, question: str, chart_required: bool):
    """
    Generate a chart using the langchain-based method.
    Modifications:
      • No shared deletion of cache.
      • Close matplotlib figures after generation.
      • Return a list of full chart file paths.
    """
    global current_langchain_chart_key_index, current_langchain_chart_lock
    
    data = clean_data(csv_url)

    for attempt in range(len(groq_api_keys)):
        try:
            with current_langchain_chart_lock:
                api_key = groq_api_keys[current_langchain_chart_key_index]
                current_key = current_langchain_chart_key_index
                current_langchain_chart_key_index = (current_langchain_chart_key_index + 1) % len(groq_api_keys)

            llm = ChatGroq(model=model_name, api_key=api_key)
            tool = PythonAstREPLTool(locals={
                "df": data,
                "pd": pd,
                "np": np,
                "plt": plt,
                "sns": sns,
                "matplotlib": matplotlib,
                "uuid": uuid
            })

            agent = create_pandas_dataframe_agent(
                llm,
                data,
                agent_type="tool-calling",
                verbose=True,
                allow_dangerous_code=True,
                extra_tools=[tool],
                return_intermediate_steps=True
            )

            result = agent.invoke({"input": _prompt_generator(question, True, csv_url)})
            output = result.get("output", "")

            # Close figures to avoid interference
            plt.close('all')

            # Extract chart filenames (assuming extract_chart_filenames returns a list)
            chart_files = extract_chart_filenames(output)
            if len(chart_files) > 0:
                # Return full paths (join with your image_file_path)
                return [os.path.join(image_file_path, f) for f in chart_files]

            if attempt < len(groq_api_keys) - 1:
                logger.info(f"Langchain chart error (key {current_key}): {output}")

        except Exception as e:
            error_message = str(e)
            if error_message != "":
                with current_langchain_chart_lock:
                    current_langchain_chart_key_index = (current_langchain_chart_key_index + 1)
                    logger.warning(f"Rate limit exceeded. Switching to next API key: {groq_api_keys[current_langchain_chart_key_index]}")
            else:
                logger.error(f"Error with API key {api_key}: {error_message}")
                return {"error": error_message}
    
    logger.error("All API keys exhausted for chart generation")
    return "Chart generation failed after all retries"


# --- FASTAPI ENDPOINT FOR CHART GENERATION ---
@app.post("/api/csv-chart")
async def csv_chart(request: dict, authorization: str = Header(None)):
    """
    Endpoint for generating a chart from CSV data.
    This endpoint uses a ProcessPoolExecutor to run the (CPU-bound) chart generation
    functions in separate processes so that multiple requests can run in parallel.
    """
    # --- Authorization Check ---
    if not authorization or not authorization.startswith("Bearer "):
        raise HTTPException(status_code=401, detail="Authorization required")
    
    token = authorization.split(" ")[1]
    if token != os.getenv("AUTH_TOKEN"):
        raise HTTPException(status_code=403, detail="Invalid credentials")

    try:
        query = request.get("query", "")
        csv_url = unquote(request.get("csv_url", ""))
        detailed_answer = request.get("detailed_answer", False)
        conversation_history = request.get("conversation_history", [])
        generate_report = request.get("generate_report", False)
        chat_id = request.get("chat_id", "")
        
        if generate_report is True:
            report_files = await generate_csv_report(csv_url, query, chat_id, conversation_history)
            if report_files is not None:
                return {"orchestrator_response": jsonable_encoder(report_files)}

        loop = asyncio.get_running_loop()
        # First, try the langchain-based method if the question qualifies
        if if_initial_chart_question(query):
            langchain_result = await loop.run_in_executor(
                process_executor, langchain_csv_chart, csv_url, query, True
            )
            logger.info("Langchain chart result:", langchain_result)
            if isinstance(langchain_result, list) and len(langchain_result) > 0:
                unique_file_name =f'{str(uuid.uuid4())}.png'
                logger.info("Uploading the chart to supabase...")
                image_public_url = await upload_file_to_supabase(f"{langchain_result[0]}", unique_file_name, chat_id=chat_id)
                logger.info("Image uploaded to Supabase and Image URL is... ", {image_public_url})
                os.remove(langchain_result[0])
                return {"image_url": image_public_url}
               # return FileResponse(langchain_result[0], media_type="image/png")
               
        # Use orchestrator to handle the user's chart query first
        if detailed_answer is True:
           orchestrator_answer = await asyncio.to_thread(
             csv_orchestrator_chat, csv_url, query, conversation_history, chat_id
           )
        
           if orchestrator_answer is not None:
             return {"orchestrator_response": jsonable_encoder(orchestrator_answer)}
        
        # Next, try the groq-based method
        # groq_result = await loop.run_in_executor(
        #     process_executor, groq_chart, csv_url, query
        # )
        # logger.info(f"Groq chart result: {groq_result}")
        # if isinstance(groq_result, str) and groq_result != "Chart not generated":
        #     unique_file_name =f'{str(uuid.uuid4())}.png'
        #     logger.info("Uploading the chart to supabase...")
        #     image_public_url = await upload_file_to_supabase(f"{groq_result}", unique_file_name, chat_id=chat_id)
        #     logger.info("Image uploaded to Supabase and Image URL is... ", {image_public_url})
        #     os.remove(groq_result)
        #     return {"image_url": image_public_url}
            # return FileResponse(groq_result, media_type="image/png")
        
        logger.info("Trying cerebras ai llama...")
        result = await query_csv_agent(csv_url, query, chat_id)
        logger.info("cerebras ai result ==>", result)
        if result is not None and result != "":
         return {"orchestrator_response": jsonable_encoder(result)}
          
        # Fallback: try langchain-based again
        logger.error("Cerebras ai llama response failed, trying langchain groq....")
        langchain_paths = await loop.run_in_executor(
            process_executor, langchain_csv_chart, csv_url, query, True
        )
        logger.info("Fallback langchain chart result:", langchain_paths)
        if isinstance(langchain_paths, list) and len(langchain_paths) > 0:
           unique_file_name =f'{str(uuid.uuid4())}.png'
           logger.info("Uploading the chart to supabase...")
           image_public_url = await upload_file_to_supabase(f"{langchain_paths[0]}", unique_file_name, chat_id=chat_id)
           logger.info("Image uploaded to Supabase and Image URL is... ", {image_public_url})
           os.remove(langchain_paths[0])
           return {"image_url": image_public_url}
           return FileResponse(langchain_paths[0], media_type="image/png")
        else:
           logger.error("All chart generation methods failed")
           return {"answer": "error"}

    except Exception as e:
        logger.error(f"Critical chart error: {str(e)}")
        return {"answer": "error"}