File size: 3,226 Bytes
378b08f
 
 
 
 
 
 
11f634e
378b08f
 
 
 
 
 
 
 
 
 
 
11f634e
378b08f
 
 
 
 
 
 
 
 
 
 
 
 
 
11f634e
 
 
 
 
 
 
 
 
 
 
 
378b08f
 
 
 
 
 
 
0ac0954
 
b4206dc
378b08f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4206dc
 
378b08f
b4206dc
378b08f
 
 
b4206dc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# Import necessary libraries
import numpy as np
import joblib  # For loading the serialized model
import pandas as pd  # For data manipulation
from flask import Flask, request, jsonify  # For creating the Flask API

# Initialize the Flask application
superkart_sales_forecast_api = Flask("SuperKart Sales Forecast Backend")

# Load the trained machine learning model
model = joblib.load("SuperKart_Sales_Forecast_v1_0.joblib")

# Define a route for the home page (GET request)
@superkart_sales_forecast_api.get('/')
def home():
    """
    This function handles GET requests to the root URL ('/') of the API.
    It returns a simple welcome message.
    """
    return "Welcome to the SuperKart Sales Forecast API!"

# Define an endpoint for single property prediction (POST request)
@superkart_sales_forecast_api.post('/v1/sales')
def predict_sales():
    """
    This function handles POST requests to the '/v1/sales' endpoint.
    It expects a JSON payload containing property details and returns
    the predicted rental price as a JSON response.
    """
    # Get the JSON data from the request body
    property_data = request.get_json()

    # Extract relevant features from the JSON data
    sample = {
            'Product_Weight': property_data['product_weight'],
            'Product_Sugar_Content': property_data['product_sugar_content'],
            'Product_Allocated_Area': property_data['product_allocated_area'],
            'Product_Type': property_data['product_type'],
            'Product_MRP': property_data['product_mrp'],
            'Store_Establishment_Year': property_data['store_establishment_year'],
            'Store_Size': property_data['store_size'],
            'Store_Location_City_Type': property_data['store_location_city_type'],
            'Store_Type': property_data['store_type']
        }



    # Convert the extracted data into a Pandas DataFrame
    input_data = pd.DataFrame([sample])

    # Make prediction (get sales)
    predicted_sales = model.predict(input_data)[0]

    # Convert to Python float and round
    predicted_sales = round(float(predicted_sales), 2)

    # Return the actual price
    return jsonify({'Predicted Sales Forecast (in dollars)': predicted_sales})


# Define an endpoint for batch prediction (POST request)
@superkart_sales_forecast_api.post('/v1/salesbatch')
def predict_sales_batch():
    """
    This function handles POST requests to the '/v1/salesbatch' endpoint.
    It expects a CSV file containing property details for multiple properties
    and returns the predicted rental prices as a dictionary in the JSON response.
    """
    # Get the uploaded CSV file from the request
    file = request.files['file']

    # Read the CSV file into a Pandas DataFrame
    input_data = pd.read_csv(file)

    # Make predictions for all properties in the DataFrame (get log_prices)
    predicted_sales = model.predict(input_data).tolist()
    # Use row indices as keys
    output_dict = {f"Row_{i}": round(float(pred), 2) for i, pred in enumerate(predicted_sales)}

    return jsonify(output_dict)

# Run the Flask application in debug mode if this script is executed directly
if __name__ == '__main__':
    superkart_sales_forecast_api.run(debug=True)