yemen2016's picture
End of training
a9d25f6 verified
|
raw
history blame
3.32 kB
metadata
library_name: transformers
base_model: MiMe-MeMo/MeMo-BERT-03
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: memo3_indirect_speech
    results: []

memo3_indirect_speech

This model is a fine-tuned version of MiMe-MeMo/MeMo-BERT-03 on an unknown dataset. It achieves the following results on the evaluation set:

  • Accuracy: 0.6840
  • Precision: 0.7036
  • Recall: 0.6840
  • F1: 0.6798
  • Loss: 0.7225

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Accuracy Precision Recall F1 Validation Loss
No log 1.0 9 0.3820 0.1459 0.3820 0.2112 1.3936
No log 2.0 18 0.3820 0.1459 0.3820 0.2112 1.5289
No log 3.0 27 0.5385 0.2900 0.5385 0.3770 1.0207
No log 4.0 36 0.3820 0.1459 0.3820 0.2112 1.3341
No log 5.0 45 0.5385 0.2900 0.5385 0.3770 1.0219
No log 6.0 54 0.3829 0.1825 0.3829 0.2130 1.0394
No log 7.0 63 0.6020 0.5949 0.6020 0.5650 0.8312
No log 8.0 72 0.6250 0.6270 0.6250 0.5846 0.8301
No log 9.0 81 0.6821 0.7037 0.6821 0.6491 0.7462
No log 10.0 90 0.5620 0.6878 0.5620 0.5268 0.8255
No log 11.0 99 0.5968 0.6945 0.5968 0.5751 0.7890
No log 12.0 108 0.6901 0.6877 0.6901 0.6868 0.7190
No log 13.0 117 0.6020 0.7003 0.6020 0.5805 0.8426
No log 14.0 126 0.6932 0.6919 0.6932 0.6899 0.7213
No log 15.0 135 0.7158 0.7300 0.7158 0.6928 0.7416
No log 16.0 144 0.6503 0.7054 0.6503 0.6417 0.7546
No log 17.0 153 0.7031 0.7104 0.7031 0.6993 0.6824
No log 17.8235 160 0.6840 0.7036 0.6840 0.6798 0.7225

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Tokenizers 0.21.0