|
--- |
|
library_name: transformers |
|
base_model: MiMe-MeMo/MeMo-BERT-03 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: memo3_indirect_speech |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# memo3_indirect_speech |
|
|
|
This model is a fine-tuned version of [MiMe-MeMo/MeMo-BERT-03](https://huggingface.co/MiMe-MeMo/MeMo-BERT-03) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Accuracy: 0.6840 |
|
- Precision: 0.7036 |
|
- Recall: 0.6840 |
|
- F1: 0.6798 |
|
- Loss: 0.7225 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 8 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 20 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Accuracy | Precision | Recall | F1 | Validation Loss | |
|
|:-------------:|:-------:|:----:|:--------:|:---------:|:------:|:------:|:---------------:| |
|
| No log | 1.0 | 9 | 0.3820 | 0.1459 | 0.3820 | 0.2112 | 1.3936 | |
|
| No log | 2.0 | 18 | 0.3820 | 0.1459 | 0.3820 | 0.2112 | 1.5289 | |
|
| No log | 3.0 | 27 | 0.5385 | 0.2900 | 0.5385 | 0.3770 | 1.0207 | |
|
| No log | 4.0 | 36 | 0.3820 | 0.1459 | 0.3820 | 0.2112 | 1.3341 | |
|
| No log | 5.0 | 45 | 0.5385 | 0.2900 | 0.5385 | 0.3770 | 1.0219 | |
|
| No log | 6.0 | 54 | 0.3829 | 0.1825 | 0.3829 | 0.2130 | 1.0394 | |
|
| No log | 7.0 | 63 | 0.6020 | 0.5949 | 0.6020 | 0.5650 | 0.8312 | |
|
| No log | 8.0 | 72 | 0.6250 | 0.6270 | 0.6250 | 0.5846 | 0.8301 | |
|
| No log | 9.0 | 81 | 0.6821 | 0.7037 | 0.6821 | 0.6491 | 0.7462 | |
|
| No log | 10.0 | 90 | 0.5620 | 0.6878 | 0.5620 | 0.5268 | 0.8255 | |
|
| No log | 11.0 | 99 | 0.5968 | 0.6945 | 0.5968 | 0.5751 | 0.7890 | |
|
| No log | 12.0 | 108 | 0.6901 | 0.6877 | 0.6901 | 0.6868 | 0.7190 | |
|
| No log | 13.0 | 117 | 0.6020 | 0.7003 | 0.6020 | 0.5805 | 0.8426 | |
|
| No log | 14.0 | 126 | 0.6932 | 0.6919 | 0.6932 | 0.6899 | 0.7213 | |
|
| No log | 15.0 | 135 | 0.7158 | 0.7300 | 0.7158 | 0.6928 | 0.7416 | |
|
| No log | 16.0 | 144 | 0.6503 | 0.7054 | 0.6503 | 0.6417 | 0.7546 | |
|
| No log | 17.0 | 153 | 0.7031 | 0.7104 | 0.7031 | 0.6993 | 0.6824 | |
|
| No log | 17.8235 | 160 | 0.6840 | 0.7036 | 0.6840 | 0.6798 | 0.7225 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.47.1 |
|
- Pytorch 2.5.1+cu124 |
|
- Tokenizers 0.21.0 |
|
|