Robotics
LeRobot
Safetensors
act
zaringleb's picture
Upload policy weights, train config and readme
e68fbf2 verified
metadata
datasets: zaringleb/so101_binary_cube_7
library_name: lerobot
license: apache-2.0
model_name: act
pipeline_tag: robotics
tags:
  - lerobot
  - act
  - robotics

Model Card for act

Action Chunking with Transformers (ACT) is an imitation-learning method that predicts short action chunks instead of single steps. It learns from teleoperated data and often achieves high success rates.

This policy has been trained and pushed to the Hub using LeRobot. See the full documentation at LeRobot Docs.


How to Get Started with the Model

For a complete walkthrough, see the training guide. Below is the short version on how to train and run inference/eval:

Train from scratch

python lerobot/scripts/train.py \
  --dataset.repo_id=${HF_USER}/<dataset> \
  --policy.type=act \
  --output_dir=outputs/train/<desired_policy_repo_id> \
  --job_name=lerobot_training \
  --policy.device=cuda \
  --policy.repo_id=${HF_USER}/<desired_policy_repo_id>
  --wandb.enable=true

Writes checkpoints to outputs/train/<desired_policy_repo_id>/checkpoints/.

Evaluate the policy/run inference

python -m lerobot.record \
  --robot.type=so100_follower \
  --dataset.repo_id=<hf_user>/eval_<dataset> \
  --policy.path=<hf_user>/<desired_policy_repo_id> \
  --episodes=10

Prefix the dataset repo with eval_ and supply --policy.path pointing to a local or hub checkpoint.


Model Details

  • License: apache-2.0