WrinkleBrane / OPTIMIZATION_ANALYSIS.md
WCNegentropy's picture
πŸ“š Updated with scientifically rigorous documentation
dc2b9f3 verified

WrinkleBrane Optimization Analysis

πŸ” Key Findings from Benchmarks

Fidelity Performance on Synthetic Patterns

  • High fidelity: 150+ dB PSNR with SSIM (1.0000) achieved on simple geometric test patterns
  • Hadamard codes show optimal orthogonality with zero cross-correlation error
  • DCT codes achieve near-optimal results with minimal orthogonality error (0.000001)
  • Gaussian codes demonstrate expected degradation (11.1Β±2.8dB PSNR) due to poor orthogonality

Capacity Behavior (Limited Testing)

  • Theoretical capacity: Up to L layers (as expected from theory)
  • Within-capacity performance: Good results maintained up to theoretical limit on test patterns
  • Beyond-capacity degradation: Expected performance drop when exceeding theoretical capacity
  • Testing limitation: Evaluation restricted to simple synthetic patterns

Performance Scaling (Preliminary)

  • Memory usage: Linear scaling with BΓ—LΓ—HΓ—W tensor dimensions
  • Write throughput: 6,012 to 134,041 patterns/sec across tested scales
  • Read throughput: 8,786 to 341,295 readouts/sec
  • Scale effects: Throughput per pattern decreases with larger configurations

🎯 Optimization Opportunities

1. Alpha Scaling Optimization

Issue: Current implementation uses uniform alpha=1.0 for all patterns Opportunity: Adaptive alpha scaling based on pattern energy and orthogonality

def compute_adaptive_alphas(patterns, C, keys):
    """Compute optimal alpha values for each pattern."""
    alphas = torch.ones(len(keys))
    
    for i, key in enumerate(keys):
        # Scale by pattern energy
        pattern_energy = torch.norm(patterns[i])
        alphas[i] = 1.0 / pattern_energy.clamp_min(0.1)
        
        # Consider orthogonality with existing codes
        code_similarity = torch.abs(C[:, key] @ C).max()
        alphas[i] *= (2.0 - code_similarity)
    
    return alphas

2. Hierarchical Memory Organization

Issue: All patterns stored at same level causing interference Opportunity: Multi-resolution storage with different layer allocations

class HierarchicalMembraneBank:
    def __init__(self, L, H, W, levels=3):
        self.levels = levels
        self.banks = []
        for level in range(levels):
            bank_L = L // (2 ** level)
            self.banks.append(MembraneBank(bank_L, H, W))

3. Dynamic Code Generation

Issue: Static Hadamard codes limit capacity to fixed dimensions Opportunity: Generate codes on-demand with optimal orthogonality

def generate_optimal_codes(L, K, existing_patterns=None):
    """Generate codes optimized for specific patterns."""
    if K <= L:
        return hadamard_codes(L, K)  # Use Hadamard when possible
    else:
        return gram_schmidt_codes(L, K, patterns=existing_patterns)

4. Sparse Storage Optimization

Issue: Dense tensor operations even for sparse patterns Opportunity: Leverage sparsity in both patterns and codes

def sparse_store_pairs(M, C, keys, values, alphas, sparsity_threshold=0.01):
    """Sparse implementation of store_pairs for sparse patterns."""
    # Identify sparse patterns
    sparse_mask = torch.norm(values.view(len(values), -1), dim=1) < sparsity_threshold
    
    # Use dense storage for dense patterns, sparse for sparse ones
    if sparse_mask.any():
        return sparse_storage_kernel(M, C, keys[sparse_mask], values[sparse_mask])
    else:
        return store_pairs(M, C, keys, values, alphas)

5. Batch Processing Optimization

Issue: Current implementation processes single batches Opportunity: Vectorize across multiple membrane banks

class BatchedMembraneBank:
    def __init__(self, L, H, W, num_banks=8):
        self.banks = [MembraneBank(L, H, W) for _ in range(num_banks)]
    
    def parallel_store(self, patterns_list, keys_list):
        """Store different pattern sets in parallel banks."""
        # Vectorized implementation across banks
        pass

6. GPU Acceleration Opportunities

Issue: No GPU acceleration benchmarked (CUDA not available in test environment) Opportunity: Optimize tensor operations for GPU

def gpu_optimized_einsum(M, C):
    """GPU-optimized einsum with memory coalescing."""
    if M.is_cuda:
        # Use custom CUDA kernels for better memory access patterns
        return torch.cuda.compiled_einsum('blhw,lk->bkhw', M, C)
    else:
        return torch.einsum('blhw,lk->bkhw', M, C)

7. Persistence Layer Enhancements

Issue: Basic exponential decay persistence Opportunity: Adaptive persistence based on pattern importance

class AdaptivePersistence:
    def __init__(self, base_lambda=0.95):
        self.base_lambda = base_lambda
        self.access_counts = {}
        
    def compute_decay(self, pattern_keys):
        """Compute decay rates based on access patterns."""
        lambdas = []
        for key in pattern_keys:
            count = self.access_counts.get(key, 0)
            # More accessed patterns decay slower
            lambda_val = self.base_lambda + (1 - self.base_lambda) * count / 100
            lambdas.append(min(lambda_val, 0.99))
        return torch.tensor(lambdas)

πŸš€ Implementation Priority

High Priority (Immediate Impact)

  1. Alpha Scaling Optimization - Simple to implement, significant fidelity improvement
  2. Dynamic Code Generation - Removes hard capacity limits
  3. GPU Acceleration - Major performance boost for large scales

Medium Priority (Architectural)

  1. Hierarchical Memory - Better scaling characteristics
  2. Sparse Storage - Memory efficiency for sparse data
  3. Adaptive Persistence - Better long-term memory behavior

Low Priority (Advanced)

  1. Batch Processing - Complex but potentially high-throughput

πŸ“Š Expected Performance Gains

Alpha Scaling: 5-15dB PSNR improvement

Dynamic Codes: 2-5x capacity increase

GPU Acceleration: 10-50x throughput improvement

Hierarchical Storage: 30-50% memory reduction

Sparse Optimization: 60-80% memory savings for sparse data

πŸ§ͺ Testing Strategy

Each optimization should be tested with:

  1. Fidelity preservation: PSNR β‰₯ 100dB for standard test cases
  2. Capacity scaling: Linear degradation up to theoretical limits
  3. Performance benchmarks: Throughput improvements measured
  4. Interference analysis: Cross-talk remains minimal
  5. Edge case handling: Robust behavior for corner cases

πŸ“‹ Implementation Checklist

  • Implement adaptive alpha scaling
  • Add dynamic code generation
  • Create hierarchical memory banks
  • Develop sparse storage kernels
  • Add GPU acceleration paths
  • Implement adaptive persistence
  • Add comprehensive benchmarks
  • Create performance regression tests