WrinkleBrane Optimization Analysis
π Key Findings from Benchmarks
Fidelity Performance on Synthetic Patterns
- High fidelity: 150+ dB PSNR with SSIM (1.0000) achieved on simple geometric test patterns
- Hadamard codes show optimal orthogonality with zero cross-correlation error
- DCT codes achieve near-optimal results with minimal orthogonality error (0.000001)
- Gaussian codes demonstrate expected degradation (11.1Β±2.8dB PSNR) due to poor orthogonality
Capacity Behavior (Limited Testing)
- Theoretical capacity: Up to L layers (as expected from theory)
- Within-capacity performance: Good results maintained up to theoretical limit on test patterns
- Beyond-capacity degradation: Expected performance drop when exceeding theoretical capacity
- Testing limitation: Evaluation restricted to simple synthetic patterns
Performance Scaling (Preliminary)
- Memory usage: Linear scaling with BΓLΓHΓW tensor dimensions
- Write throughput: 6,012 to 134,041 patterns/sec across tested scales
- Read throughput: 8,786 to 341,295 readouts/sec
- Scale effects: Throughput per pattern decreases with larger configurations
π― Optimization Opportunities
1. Alpha Scaling Optimization
Issue: Current implementation uses uniform alpha=1.0 for all patterns Opportunity: Adaptive alpha scaling based on pattern energy and orthogonality
def compute_adaptive_alphas(patterns, C, keys):
"""Compute optimal alpha values for each pattern."""
alphas = torch.ones(len(keys))
for i, key in enumerate(keys):
# Scale by pattern energy
pattern_energy = torch.norm(patterns[i])
alphas[i] = 1.0 / pattern_energy.clamp_min(0.1)
# Consider orthogonality with existing codes
code_similarity = torch.abs(C[:, key] @ C).max()
alphas[i] *= (2.0 - code_similarity)
return alphas
2. Hierarchical Memory Organization
Issue: All patterns stored at same level causing interference Opportunity: Multi-resolution storage with different layer allocations
class HierarchicalMembraneBank:
def __init__(self, L, H, W, levels=3):
self.levels = levels
self.banks = []
for level in range(levels):
bank_L = L // (2 ** level)
self.banks.append(MembraneBank(bank_L, H, W))
3. Dynamic Code Generation
Issue: Static Hadamard codes limit capacity to fixed dimensions Opportunity: Generate codes on-demand with optimal orthogonality
def generate_optimal_codes(L, K, existing_patterns=None):
"""Generate codes optimized for specific patterns."""
if K <= L:
return hadamard_codes(L, K) # Use Hadamard when possible
else:
return gram_schmidt_codes(L, K, patterns=existing_patterns)
4. Sparse Storage Optimization
Issue: Dense tensor operations even for sparse patterns Opportunity: Leverage sparsity in both patterns and codes
def sparse_store_pairs(M, C, keys, values, alphas, sparsity_threshold=0.01):
"""Sparse implementation of store_pairs for sparse patterns."""
# Identify sparse patterns
sparse_mask = torch.norm(values.view(len(values), -1), dim=1) < sparsity_threshold
# Use dense storage for dense patterns, sparse for sparse ones
if sparse_mask.any():
return sparse_storage_kernel(M, C, keys[sparse_mask], values[sparse_mask])
else:
return store_pairs(M, C, keys, values, alphas)
5. Batch Processing Optimization
Issue: Current implementation processes single batches Opportunity: Vectorize across multiple membrane banks
class BatchedMembraneBank:
def __init__(self, L, H, W, num_banks=8):
self.banks = [MembraneBank(L, H, W) for _ in range(num_banks)]
def parallel_store(self, patterns_list, keys_list):
"""Store different pattern sets in parallel banks."""
# Vectorized implementation across banks
pass
6. GPU Acceleration Opportunities
Issue: No GPU acceleration benchmarked (CUDA not available in test environment) Opportunity: Optimize tensor operations for GPU
def gpu_optimized_einsum(M, C):
"""GPU-optimized einsum with memory coalescing."""
if M.is_cuda:
# Use custom CUDA kernels for better memory access patterns
return torch.cuda.compiled_einsum('blhw,lk->bkhw', M, C)
else:
return torch.einsum('blhw,lk->bkhw', M, C)
7. Persistence Layer Enhancements
Issue: Basic exponential decay persistence Opportunity: Adaptive persistence based on pattern importance
class AdaptivePersistence:
def __init__(self, base_lambda=0.95):
self.base_lambda = base_lambda
self.access_counts = {}
def compute_decay(self, pattern_keys):
"""Compute decay rates based on access patterns."""
lambdas = []
for key in pattern_keys:
count = self.access_counts.get(key, 0)
# More accessed patterns decay slower
lambda_val = self.base_lambda + (1 - self.base_lambda) * count / 100
lambdas.append(min(lambda_val, 0.99))
return torch.tensor(lambdas)
π Implementation Priority
High Priority (Immediate Impact)
- Alpha Scaling Optimization - Simple to implement, significant fidelity improvement
- Dynamic Code Generation - Removes hard capacity limits
- GPU Acceleration - Major performance boost for large scales
Medium Priority (Architectural)
- Hierarchical Memory - Better scaling characteristics
- Sparse Storage - Memory efficiency for sparse data
- Adaptive Persistence - Better long-term memory behavior
Low Priority (Advanced)
- Batch Processing - Complex but potentially high-throughput
π Expected Performance Gains
Alpha Scaling: 5-15dB PSNR improvement
Dynamic Codes: 2-5x capacity increase
GPU Acceleration: 10-50x throughput improvement
Hierarchical Storage: 30-50% memory reduction
Sparse Optimization: 60-80% memory savings for sparse data
π§ͺ Testing Strategy
Each optimization should be tested with:
- Fidelity preservation: PSNR β₯ 100dB for standard test cases
- Capacity scaling: Linear degradation up to theoretical limits
- Performance benchmarks: Throughput improvements measured
- Interference analysis: Cross-talk remains minimal
- Edge case handling: Robust behavior for corner cases
π Implementation Checklist
- Implement adaptive alpha scaling
- Add dynamic code generation
- Create hierarchical memory banks
- Develop sparse storage kernels
- Add GPU acceleration paths
- Implement adaptive persistence
- Add comprehensive benchmarks
- Create performance regression tests