WrinkleBrane / OPTIMIZATION_ANALYSIS.md
WCNegentropy's picture
πŸ“š Updated with scientifically rigorous documentation
dc2b9f3 verified
# WrinkleBrane Optimization Analysis
## πŸ” Key Findings from Benchmarks
### Fidelity Performance on Synthetic Patterns
- **High fidelity**: 150+ dB PSNR with SSIM (1.0000) achieved on simple geometric test patterns
- **Hadamard codes** show optimal orthogonality with zero cross-correlation error
- **DCT codes** achieve near-optimal results with minimal orthogonality error (0.000001)
- **Gaussian codes** demonstrate expected degradation (11.1Β±2.8dB PSNR) due to poor orthogonality
### Capacity Behavior (Limited Testing)
- **Theoretical capacity**: Up to L layers (as expected from theory)
- **Within-capacity performance**: Good results maintained up to theoretical limit on test patterns
- **Beyond-capacity degradation**: Expected performance drop when exceeding theoretical capacity
- **Testing limitation**: Evaluation restricted to simple synthetic patterns
### Performance Scaling (Preliminary)
- **Memory usage**: Linear scaling with BΓ—LΓ—HΓ—W tensor dimensions
- **Write throughput**: 6,012 to 134,041 patterns/sec across tested scales
- **Read throughput**: 8,786 to 341,295 readouts/sec
- **Scale effects**: Throughput per pattern decreases with larger configurations
## 🎯 Optimization Opportunities
### 1. Alpha Scaling Optimization
**Issue**: Current implementation uses uniform alpha=1.0 for all patterns
**Opportunity**: Adaptive alpha scaling based on pattern energy and orthogonality
```python
def compute_adaptive_alphas(patterns, C, keys):
"""Compute optimal alpha values for each pattern."""
alphas = torch.ones(len(keys))
for i, key in enumerate(keys):
# Scale by pattern energy
pattern_energy = torch.norm(patterns[i])
alphas[i] = 1.0 / pattern_energy.clamp_min(0.1)
# Consider orthogonality with existing codes
code_similarity = torch.abs(C[:, key] @ C).max()
alphas[i] *= (2.0 - code_similarity)
return alphas
```
### 2. Hierarchical Memory Organization
**Issue**: All patterns stored at same level causing interference
**Opportunity**: Multi-resolution storage with different layer allocations
```python
class HierarchicalMembraneBank:
def __init__(self, L, H, W, levels=3):
self.levels = levels
self.banks = []
for level in range(levels):
bank_L = L // (2 ** level)
self.banks.append(MembraneBank(bank_L, H, W))
```
### 3. Dynamic Code Generation
**Issue**: Static Hadamard codes limit capacity to fixed dimensions
**Opportunity**: Generate codes on-demand with optimal orthogonality
```python
def generate_optimal_codes(L, K, existing_patterns=None):
"""Generate codes optimized for specific patterns."""
if K <= L:
return hadamard_codes(L, K) # Use Hadamard when possible
else:
return gram_schmidt_codes(L, K, patterns=existing_patterns)
```
### 4. Sparse Storage Optimization
**Issue**: Dense tensor operations even for sparse patterns
**Opportunity**: Leverage sparsity in both patterns and codes
```python
def sparse_store_pairs(M, C, keys, values, alphas, sparsity_threshold=0.01):
"""Sparse implementation of store_pairs for sparse patterns."""
# Identify sparse patterns
sparse_mask = torch.norm(values.view(len(values), -1), dim=1) < sparsity_threshold
# Use dense storage for dense patterns, sparse for sparse ones
if sparse_mask.any():
return sparse_storage_kernel(M, C, keys[sparse_mask], values[sparse_mask])
else:
return store_pairs(M, C, keys, values, alphas)
```
### 5. Batch Processing Optimization
**Issue**: Current implementation processes single batches
**Opportunity**: Vectorize across multiple membrane banks
```python
class BatchedMembraneBank:
def __init__(self, L, H, W, num_banks=8):
self.banks = [MembraneBank(L, H, W) for _ in range(num_banks)]
def parallel_store(self, patterns_list, keys_list):
"""Store different pattern sets in parallel banks."""
# Vectorized implementation across banks
pass
```
### 6. GPU Acceleration Opportunities
**Issue**: No GPU acceleration benchmarked (CUDA not available in test environment)
**Opportunity**: Optimize tensor operations for GPU
```python
def gpu_optimized_einsum(M, C):
"""GPU-optimized einsum with memory coalescing."""
if M.is_cuda:
# Use custom CUDA kernels for better memory access patterns
return torch.cuda.compiled_einsum('blhw,lk->bkhw', M, C)
else:
return torch.einsum('blhw,lk->bkhw', M, C)
```
### 7. Persistence Layer Enhancements
**Issue**: Basic exponential decay persistence
**Opportunity**: Adaptive persistence based on pattern importance
```python
class AdaptivePersistence:
def __init__(self, base_lambda=0.95):
self.base_lambda = base_lambda
self.access_counts = {}
def compute_decay(self, pattern_keys):
"""Compute decay rates based on access patterns."""
lambdas = []
for key in pattern_keys:
count = self.access_counts.get(key, 0)
# More accessed patterns decay slower
lambda_val = self.base_lambda + (1 - self.base_lambda) * count / 100
lambdas.append(min(lambda_val, 0.99))
return torch.tensor(lambdas)
```
## πŸš€ Implementation Priority
### High Priority (Immediate Impact)
1. **Alpha Scaling Optimization** - Simple to implement, significant fidelity improvement
2. **Dynamic Code Generation** - Removes hard capacity limits
3. **GPU Acceleration** - Major performance boost for large scales
### Medium Priority (Architectural)
4. **Hierarchical Memory** - Better scaling characteristics
5. **Sparse Storage** - Memory efficiency for sparse data
6. **Adaptive Persistence** - Better long-term memory behavior
### Low Priority (Advanced)
7. **Batch Processing** - Complex but potentially high-throughput
## πŸ“Š Expected Performance Gains
### Alpha Scaling: 5-15dB PSNR improvement
### Dynamic Codes: 2-5x capacity increase
### GPU Acceleration: 10-50x throughput improvement
### Hierarchical Storage: 30-50% memory reduction
### Sparse Optimization: 60-80% memory savings for sparse data
## πŸ§ͺ Testing Strategy
Each optimization should be tested with:
1. **Fidelity preservation**: PSNR β‰₯ 100dB for standard test cases
2. **Capacity scaling**: Linear degradation up to theoretical limits
3. **Performance benchmarks**: Throughput improvements measured
4. **Interference analysis**: Cross-talk remains minimal
5. **Edge case handling**: Robust behavior for corner cases
## πŸ“‹ Implementation Checklist
- [ ] Implement adaptive alpha scaling
- [ ] Add dynamic code generation
- [ ] Create hierarchical memory banks
- [ ] Develop sparse storage kernels
- [ ] Add GPU acceleration paths
- [ ] Implement adaptive persistence
- [ ] Add comprehensive benchmarks
- [ ] Create performance regression tests