|
# WrinkleBrane Optimization Analysis |
|
|
|
## π Key Findings from Benchmarks |
|
|
|
### Fidelity Performance on Synthetic Patterns |
|
- **High fidelity**: 150+ dB PSNR with SSIM (1.0000) achieved on simple geometric test patterns |
|
- **Hadamard codes** show optimal orthogonality with zero cross-correlation error |
|
- **DCT codes** achieve near-optimal results with minimal orthogonality error (0.000001) |
|
- **Gaussian codes** demonstrate expected degradation (11.1Β±2.8dB PSNR) due to poor orthogonality |
|
|
|
### Capacity Behavior (Limited Testing) |
|
- **Theoretical capacity**: Up to L layers (as expected from theory) |
|
- **Within-capacity performance**: Good results maintained up to theoretical limit on test patterns |
|
- **Beyond-capacity degradation**: Expected performance drop when exceeding theoretical capacity |
|
- **Testing limitation**: Evaluation restricted to simple synthetic patterns |
|
|
|
### Performance Scaling (Preliminary) |
|
- **Memory usage**: Linear scaling with BΓLΓHΓW tensor dimensions |
|
- **Write throughput**: 6,012 to 134,041 patterns/sec across tested scales |
|
- **Read throughput**: 8,786 to 341,295 readouts/sec |
|
- **Scale effects**: Throughput per pattern decreases with larger configurations |
|
|
|
## π― Optimization Opportunities |
|
|
|
### 1. Alpha Scaling Optimization |
|
**Issue**: Current implementation uses uniform alpha=1.0 for all patterns |
|
**Opportunity**: Adaptive alpha scaling based on pattern energy and orthogonality |
|
|
|
```python |
|
def compute_adaptive_alphas(patterns, C, keys): |
|
"""Compute optimal alpha values for each pattern.""" |
|
alphas = torch.ones(len(keys)) |
|
|
|
for i, key in enumerate(keys): |
|
# Scale by pattern energy |
|
pattern_energy = torch.norm(patterns[i]) |
|
alphas[i] = 1.0 / pattern_energy.clamp_min(0.1) |
|
|
|
# Consider orthogonality with existing codes |
|
code_similarity = torch.abs(C[:, key] @ C).max() |
|
alphas[i] *= (2.0 - code_similarity) |
|
|
|
return alphas |
|
``` |
|
|
|
### 2. Hierarchical Memory Organization |
|
**Issue**: All patterns stored at same level causing interference |
|
**Opportunity**: Multi-resolution storage with different layer allocations |
|
|
|
```python |
|
class HierarchicalMembraneBank: |
|
def __init__(self, L, H, W, levels=3): |
|
self.levels = levels |
|
self.banks = [] |
|
for level in range(levels): |
|
bank_L = L // (2 ** level) |
|
self.banks.append(MembraneBank(bank_L, H, W)) |
|
``` |
|
|
|
### 3. Dynamic Code Generation |
|
**Issue**: Static Hadamard codes limit capacity to fixed dimensions |
|
**Opportunity**: Generate codes on-demand with optimal orthogonality |
|
|
|
```python |
|
def generate_optimal_codes(L, K, existing_patterns=None): |
|
"""Generate codes optimized for specific patterns.""" |
|
if K <= L: |
|
return hadamard_codes(L, K) # Use Hadamard when possible |
|
else: |
|
return gram_schmidt_codes(L, K, patterns=existing_patterns) |
|
``` |
|
|
|
### 4. Sparse Storage Optimization |
|
**Issue**: Dense tensor operations even for sparse patterns |
|
**Opportunity**: Leverage sparsity in both patterns and codes |
|
|
|
```python |
|
def sparse_store_pairs(M, C, keys, values, alphas, sparsity_threshold=0.01): |
|
"""Sparse implementation of store_pairs for sparse patterns.""" |
|
# Identify sparse patterns |
|
sparse_mask = torch.norm(values.view(len(values), -1), dim=1) < sparsity_threshold |
|
|
|
# Use dense storage for dense patterns, sparse for sparse ones |
|
if sparse_mask.any(): |
|
return sparse_storage_kernel(M, C, keys[sparse_mask], values[sparse_mask]) |
|
else: |
|
return store_pairs(M, C, keys, values, alphas) |
|
``` |
|
|
|
### 5. Batch Processing Optimization |
|
**Issue**: Current implementation processes single batches |
|
**Opportunity**: Vectorize across multiple membrane banks |
|
|
|
```python |
|
class BatchedMembraneBank: |
|
def __init__(self, L, H, W, num_banks=8): |
|
self.banks = [MembraneBank(L, H, W) for _ in range(num_banks)] |
|
|
|
def parallel_store(self, patterns_list, keys_list): |
|
"""Store different pattern sets in parallel banks.""" |
|
# Vectorized implementation across banks |
|
pass |
|
``` |
|
|
|
### 6. GPU Acceleration Opportunities |
|
**Issue**: No GPU acceleration benchmarked (CUDA not available in test environment) |
|
**Opportunity**: Optimize tensor operations for GPU |
|
|
|
```python |
|
def gpu_optimized_einsum(M, C): |
|
"""GPU-optimized einsum with memory coalescing.""" |
|
if M.is_cuda: |
|
# Use custom CUDA kernels for better memory access patterns |
|
return torch.cuda.compiled_einsum('blhw,lk->bkhw', M, C) |
|
else: |
|
return torch.einsum('blhw,lk->bkhw', M, C) |
|
``` |
|
|
|
### 7. Persistence Layer Enhancements |
|
**Issue**: Basic exponential decay persistence |
|
**Opportunity**: Adaptive persistence based on pattern importance |
|
|
|
```python |
|
class AdaptivePersistence: |
|
def __init__(self, base_lambda=0.95): |
|
self.base_lambda = base_lambda |
|
self.access_counts = {} |
|
|
|
def compute_decay(self, pattern_keys): |
|
"""Compute decay rates based on access patterns.""" |
|
lambdas = [] |
|
for key in pattern_keys: |
|
count = self.access_counts.get(key, 0) |
|
# More accessed patterns decay slower |
|
lambda_val = self.base_lambda + (1 - self.base_lambda) * count / 100 |
|
lambdas.append(min(lambda_val, 0.99)) |
|
return torch.tensor(lambdas) |
|
``` |
|
|
|
## π Implementation Priority |
|
|
|
### High Priority (Immediate Impact) |
|
1. **Alpha Scaling Optimization** - Simple to implement, significant fidelity improvement |
|
2. **Dynamic Code Generation** - Removes hard capacity limits |
|
3. **GPU Acceleration** - Major performance boost for large scales |
|
|
|
### Medium Priority (Architectural) |
|
4. **Hierarchical Memory** - Better scaling characteristics |
|
5. **Sparse Storage** - Memory efficiency for sparse data |
|
6. **Adaptive Persistence** - Better long-term memory behavior |
|
|
|
### Low Priority (Advanced) |
|
7. **Batch Processing** - Complex but potentially high-throughput |
|
|
|
## π Expected Performance Gains |
|
|
|
### Alpha Scaling: 5-15dB PSNR improvement |
|
### Dynamic Codes: 2-5x capacity increase |
|
### GPU Acceleration: 10-50x throughput improvement |
|
### Hierarchical Storage: 30-50% memory reduction |
|
### Sparse Optimization: 60-80% memory savings for sparse data |
|
|
|
## π§ͺ Testing Strategy |
|
|
|
Each optimization should be tested with: |
|
1. **Fidelity preservation**: PSNR β₯ 100dB for standard test cases |
|
2. **Capacity scaling**: Linear degradation up to theoretical limits |
|
3. **Performance benchmarks**: Throughput improvements measured |
|
4. **Interference analysis**: Cross-talk remains minimal |
|
5. **Edge case handling**: Robust behavior for corner cases |
|
|
|
## π Implementation Checklist |
|
|
|
- [ ] Implement adaptive alpha scaling |
|
- [ ] Add dynamic code generation |
|
- [ ] Create hierarchical memory banks |
|
- [ ] Develop sparse storage kernels |
|
- [ ] Add GPU acceleration paths |
|
- [ ] Implement adaptive persistence |
|
- [ ] Add comprehensive benchmarks |
|
- [ ] Create performance regression tests |