metadata
base_model: sentence-transformers/all-MiniLM-L12-v2
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:100000
- loss:CosineSimilarityLoss
widget:
- source_sentence: >-
NIPA personal income includes pension contributions by employers in the
year income is earned , and benefits paid at retirement are not a
component of NIPA income .
sentences:
- >-
While not the only makeup of income , NIPA is one of the more well known
income distinctions .
- >-
Les temples de karnak et de Louxor ont été démolis pour faire place à
des projets de construction en Cisjordanie .
- >-
Les restaurants sont tenus à des règles strictes pour contenir leur
odeur .
- source_sentence: >-
right right you know the one that 's one reason we bought a house here in
Plano we were hoping you know well the school district 's gonna be good
you know for resale value and so on and so forth but
sentences:
- We moved to Plano because we thought the school district was good .
- These and those .
- >-
L' obsession a suscité une suggestion que tous étaient des boucs
émissaires de la guerre .
- source_sentence: >-
Dans l' homme invisible , le talentueux dixième narrateur doit surmonter
non seulement les différentes idéologies qui lui sont présentées comme
masques ou subversions d' identité , mais aussi les différents rôles et
prescriptions pour le leadership que sa propre race lui souhaite de
réaliser .
sentences:
- '" We ''re too uptight now ! " Said Tommy'
- Le talentueux dixième narrateur doit surmonter les idéologies .
- >-
Saddam is not taking advantage of the current Arab love towards the
United States
- source_sentence: >-
Les lacunes trouvées au cours de la surveillance en cours ou au moyen d'
évaluations distinctes devraient être communiquées à l' individu
responsable de la fonction et à au moins un niveau de gestion au-dessus de
cet individu .
sentences:
- L' économie diminuera également si les conditions du marché changent .
- The Watergate comparison wasn 't just for Democratic bashing .
- Il n' y a pas lieu de signaler les lacunes .
- source_sentence: >-
it looks fertile and it it um i mean it rains enough they have the climate
and the rain and if not it 's like i 've been to Saint Thomas and it just
starts from the ocean up
sentences:
- Il n' a jamais triché .
- They don 't know how to do it .
- >-
They have the rain and the climate so I imagine the lands would be
fertile .
model-index:
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: snli dev
type: snli-dev
metrics:
- type: pearson_cosine
value: 0.3725313255221131
name: Pearson Cosine
- type: spearman_cosine
value: 0.3729470854776107
name: Spearman Cosine
- type: pearson_manhattan
value: 0.3650227128515394
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.37250760289182383
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.36567325497563746
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.37294699995093694
name: Spearman Euclidean
- type: pearson_dot
value: 0.3725313190046259
name: Pearson Dot
- type: spearman_dot
value: 0.3729474276296007
name: Spearman Dot
- type: pearson_max
value: 0.3725313255221131
name: Pearson Max
- type: spearman_max
value: 0.3729474276296007
name: Spearman Max
SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L12-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L12-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("cherifkhalifah/finetuned-snli-MiniLM-L12-v2-100k-en-fr")
# Run inference
sentences = [
"it looks fertile and it it um i mean it rains enough they have the climate and the rain and if not it 's like i 've been to Saint Thomas and it just starts from the ocean up",
'They have the rain and the climate so I imagine the lands would be fertile .',
"They don 't know how to do it .",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
snli-dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.3725 |
spearman_cosine | 0.3729 |
pearson_manhattan | 0.365 |
spearman_manhattan | 0.3725 |
pearson_euclidean | 0.3657 |
spearman_euclidean | 0.3729 |
pearson_dot | 0.3725 |
spearman_dot | 0.3729 |
pearson_max | 0.3725 |
spearman_max | 0.3729 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 100,000 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 5 tokens
- mean: 35.27 tokens
- max: 128 tokens
- min: 5 tokens
- mean: 18.46 tokens
- max: 66 tokens
- min: 0.0
- mean: 0.5
- max: 1.0
- Samples:
sentence_0 sentence_1 label Natalia M' a regardé .
Natalia a regardé et attend que je lui donne l' épée .
0.5
And he sounded sincere .
He sounded sincere.He was sounding sincere in his words .
0.0
There 's a small zoo area where you can see snakes , lizards , birds of prey , wolves , hyenas , foxes , and various desert cats , including cheetahs and leopards .
The zoo is home to some endangered desert animals .
0.5
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 4fp16
: Truemulti_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss | snli-dev_spearman_max |
---|---|---|---|
0.08 | 500 | 0.2008 | 0.0433 |
0.16 | 1000 | 0.1757 | 0.1024 |
0.24 | 1500 | 0.1732 | 0.1503 |
0.32 | 2000 | 0.1685 | 0.2168 |
0.4 | 2500 | 0.1702 | 0.2206 |
0.48 | 3000 | 0.1676 | 0.2117 |
0.56 | 3500 | 0.1637 | 0.2624 |
0.64 | 4000 | 0.1636 | 0.2169 |
0.72 | 4500 | 0.1608 | 0.0051 |
0.8 | 5000 | 0.1601 | 0.2236 |
0.88 | 5500 | 0.1597 | 0.2471 |
0.96 | 6000 | 0.1596 | 0.2934 |
1.0 | 6250 | - | 0.2905 |
1.04 | 6500 | 0.1602 | 0.3001 |
1.12 | 7000 | 0.1571 | 0.3116 |
1.2 | 7500 | 0.1588 | 0.3145 |
1.28 | 8000 | 0.1562 | 0.3304 |
1.3600 | 8500 | 0.1548 | 0.3376 |
1.44 | 9000 | 0.156 | 0.3359 |
1.52 | 9500 | 0.1552 | 0.3194 |
1.6 | 10000 | 0.153 | 0.3474 |
1.6800 | 10500 | 0.1529 | 0.3220 |
1.76 | 11000 | 0.1518 | 0.3255 |
1.8400 | 11500 | 0.1499 | 0.3332 |
1.92 | 12000 | 0.1524 | 0.3521 |
2.0 | 12500 | 0.1512 | 0.3425 |
2.08 | 13000 | 0.1514 | 0.3462 |
2.16 | 13500 | 0.1516 | 0.3414 |
2.24 | 14000 | 0.1532 | 0.3453 |
2.32 | 14500 | 0.1459 | 0.3699 |
2.4 | 15000 | 0.1524 | 0.3576 |
2.48 | 15500 | 0.1506 | 0.3418 |
2.56 | 16000 | 0.1488 | 0.3559 |
2.64 | 16500 | 0.1486 | 0.3597 |
2.7200 | 17000 | 0.1469 | 0.3552 |
2.8 | 17500 | 0.1448 | 0.3459 |
2.88 | 18000 | 0.1458 | 0.3503 |
2.96 | 18500 | 0.1468 | 0.3647 |
3.0 | 18750 | - | 0.3611 |
3.04 | 19000 | 0.1472 | 0.3741 |
3.12 | 19500 | 0.1457 | 0.3603 |
3.2 | 20000 | 0.147 | 0.3576 |
3.2800 | 20500 | 0.1451 | 0.3663 |
3.36 | 21000 | 0.1438 | 0.3734 |
3.44 | 21500 | 0.1471 | 0.3698 |
3.52 | 22000 | 0.1462 | 0.3646 |
3.6 | 22500 | 0.1436 | 0.3740 |
3.68 | 23000 | 0.1441 | 0.3696 |
3.76 | 23500 | 0.1423 | 0.3636 |
3.84 | 24000 | 0.1411 | 0.3713 |
3.92 | 24500 | 0.1438 | 0.3706 |
4.0 | 25000 | 0.1421 | 0.3729 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}