|
--- |
|
base_model: sentence-transformers/all-MiniLM-L12-v2 |
|
library_name: sentence-transformers |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
- pearson_manhattan |
|
- spearman_manhattan |
|
- pearson_euclidean |
|
- spearman_euclidean |
|
- pearson_dot |
|
- spearman_dot |
|
- pearson_max |
|
- spearman_max |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:100000 |
|
- loss:CosineSimilarityLoss |
|
widget: |
|
- source_sentence: NIPA personal income includes pension contributions by employers |
|
in the year income is earned , and benefits paid at retirement are not a component |
|
of NIPA income . |
|
sentences: |
|
- While not the only makeup of income , NIPA is one of the more well known income |
|
distinctions . |
|
- Les temples de karnak et de Louxor ont été démolis pour faire place à des projets |
|
de construction en Cisjordanie . |
|
- Les restaurants sont tenus à des règles strictes pour contenir leur odeur . |
|
- source_sentence: right right you know the one that 's one reason we bought a house |
|
here in Plano we were hoping you know well the school district 's gonna be good |
|
you know for resale value and so on and so forth but |
|
sentences: |
|
- We moved to Plano because we thought the school district was good . |
|
- These and those . |
|
- L' obsession a suscité une suggestion que tous étaient des boucs émissaires de |
|
la guerre . |
|
- source_sentence: Dans l' homme invisible , le talentueux dixième narrateur doit |
|
surmonter non seulement les différentes idéologies qui lui sont présentées comme |
|
masques ou subversions d' identité , mais aussi les différents rôles et prescriptions |
|
pour le leadership que sa propre race lui souhaite de réaliser . |
|
sentences: |
|
- '" We ''re too uptight now ! " Said Tommy' |
|
- Le talentueux dixième narrateur doit surmonter les idéologies . |
|
- Saddam is not taking advantage of the current Arab love towards the United States |
|
- source_sentence: Les lacunes trouvées au cours de la surveillance en cours ou au |
|
moyen d' évaluations distinctes devraient être communiquées à l' individu responsable |
|
de la fonction et à au moins un niveau de gestion au-dessus de cet individu . |
|
sentences: |
|
- L' économie diminuera également si les conditions du marché changent . |
|
- The Watergate comparison wasn 't just for Democratic bashing . |
|
- Il n' y a pas lieu de signaler les lacunes . |
|
- source_sentence: it looks fertile and it it um i mean it rains enough they have |
|
the climate and the rain and if not it 's like i 've been to Saint Thomas and |
|
it just starts from the ocean up |
|
sentences: |
|
- Il n' a jamais triché . |
|
- They don 't know how to do it . |
|
- They have the rain and the climate so I imagine the lands would be fertile . |
|
model-index: |
|
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2 |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: snli dev |
|
type: snli-dev |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.3725313255221131 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.3729470854776107 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.3650227128515394 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.37250760289182383 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.36567325497563746 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.37294699995093694 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.3725313190046259 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.3729474276296007 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.3725313255221131 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.3729474276296007 |
|
name: Spearman Max |
|
--- |
|
|
|
# SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2) <!-- at revision a05860a77cef7b37e0048a7864658139bc18a854 --> |
|
- **Maximum Sequence Length:** 128 tokens |
|
- **Output Dimensionality:** 384 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("cherifkhalifah/finetuned-snli-MiniLM-L12-v2-100k-en-fr") |
|
# Run inference |
|
sentences = [ |
|
"it looks fertile and it it um i mean it rains enough they have the climate and the rain and if not it 's like i 've been to Saint Thomas and it just starts from the ocean up", |
|
'They have the rain and the climate so I imagine the lands would be fertile .', |
|
"They don 't know how to do it .", |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 384] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
* Dataset: `snli-dev` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:-------------------|:-----------| |
|
| pearson_cosine | 0.3725 | |
|
| spearman_cosine | 0.3729 | |
|
| pearson_manhattan | 0.365 | |
|
| spearman_manhattan | 0.3725 | |
|
| pearson_euclidean | 0.3657 | |
|
| spearman_euclidean | 0.3729 | |
|
| pearson_dot | 0.3725 | |
|
| spearman_dot | 0.3729 | |
|
| pearson_max | 0.3725 | |
|
| **spearman_max** | **0.3729** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 100,000 training samples |
|
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence_0 | sentence_1 | label | |
|
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 5 tokens</li><li>mean: 35.27 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 18.46 tokens</li><li>max: 66 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.5</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| sentence_0 | sentence_1 | label | |
|
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------|:-----------------| |
|
| <code>Natalia M' a regardé .</code> | <code>Natalia a regardé et attend que je lui donne l' épée .</code> | <code>0.5</code> | |
|
| <code>And he sounded sincere .</code> | <code>He sounded sincere.He was sounding sincere in his words .</code> | <code>0.0</code> | |
|
| <code>There 's a small zoo area where you can see snakes , lizards , birds of prey , wolves , hyenas , foxes , and various desert cats , including cheetahs and leopards .</code> | <code>The zoo is home to some endangered desert animals .</code> | <code>0.5</code> | |
|
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: |
|
```json |
|
{ |
|
"loss_fct": "torch.nn.modules.loss.MSELoss" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `num_train_epochs`: 4 |
|
- `fp16`: True |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1 |
|
- `num_train_epochs`: 4 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.0 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `eval_use_gather_object`: False |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | snli-dev_spearman_max | |
|
|:------:|:-----:|:-------------:|:---------------------:| |
|
| 0.08 | 500 | 0.2008 | 0.0433 | |
|
| 0.16 | 1000 | 0.1757 | 0.1024 | |
|
| 0.24 | 1500 | 0.1732 | 0.1503 | |
|
| 0.32 | 2000 | 0.1685 | 0.2168 | |
|
| 0.4 | 2500 | 0.1702 | 0.2206 | |
|
| 0.48 | 3000 | 0.1676 | 0.2117 | |
|
| 0.56 | 3500 | 0.1637 | 0.2624 | |
|
| 0.64 | 4000 | 0.1636 | 0.2169 | |
|
| 0.72 | 4500 | 0.1608 | 0.0051 | |
|
| 0.8 | 5000 | 0.1601 | 0.2236 | |
|
| 0.88 | 5500 | 0.1597 | 0.2471 | |
|
| 0.96 | 6000 | 0.1596 | 0.2934 | |
|
| 1.0 | 6250 | - | 0.2905 | |
|
| 1.04 | 6500 | 0.1602 | 0.3001 | |
|
| 1.12 | 7000 | 0.1571 | 0.3116 | |
|
| 1.2 | 7500 | 0.1588 | 0.3145 | |
|
| 1.28 | 8000 | 0.1562 | 0.3304 | |
|
| 1.3600 | 8500 | 0.1548 | 0.3376 | |
|
| 1.44 | 9000 | 0.156 | 0.3359 | |
|
| 1.52 | 9500 | 0.1552 | 0.3194 | |
|
| 1.6 | 10000 | 0.153 | 0.3474 | |
|
| 1.6800 | 10500 | 0.1529 | 0.3220 | |
|
| 1.76 | 11000 | 0.1518 | 0.3255 | |
|
| 1.8400 | 11500 | 0.1499 | 0.3332 | |
|
| 1.92 | 12000 | 0.1524 | 0.3521 | |
|
| 2.0 | 12500 | 0.1512 | 0.3425 | |
|
| 2.08 | 13000 | 0.1514 | 0.3462 | |
|
| 2.16 | 13500 | 0.1516 | 0.3414 | |
|
| 2.24 | 14000 | 0.1532 | 0.3453 | |
|
| 2.32 | 14500 | 0.1459 | 0.3699 | |
|
| 2.4 | 15000 | 0.1524 | 0.3576 | |
|
| 2.48 | 15500 | 0.1506 | 0.3418 | |
|
| 2.56 | 16000 | 0.1488 | 0.3559 | |
|
| 2.64 | 16500 | 0.1486 | 0.3597 | |
|
| 2.7200 | 17000 | 0.1469 | 0.3552 | |
|
| 2.8 | 17500 | 0.1448 | 0.3459 | |
|
| 2.88 | 18000 | 0.1458 | 0.3503 | |
|
| 2.96 | 18500 | 0.1468 | 0.3647 | |
|
| 3.0 | 18750 | - | 0.3611 | |
|
| 3.04 | 19000 | 0.1472 | 0.3741 | |
|
| 3.12 | 19500 | 0.1457 | 0.3603 | |
|
| 3.2 | 20000 | 0.147 | 0.3576 | |
|
| 3.2800 | 20500 | 0.1451 | 0.3663 | |
|
| 3.36 | 21000 | 0.1438 | 0.3734 | |
|
| 3.44 | 21500 | 0.1471 | 0.3698 | |
|
| 3.52 | 22000 | 0.1462 | 0.3646 | |
|
| 3.6 | 22500 | 0.1436 | 0.3740 | |
|
| 3.68 | 23000 | 0.1441 | 0.3696 | |
|
| 3.76 | 23500 | 0.1423 | 0.3636 | |
|
| 3.84 | 24000 | 0.1411 | 0.3713 | |
|
| 3.92 | 24500 | 0.1438 | 0.3706 | |
|
| 4.0 | 25000 | 0.1421 | 0.3729 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.1.1 |
|
- Transformers: 4.44.2 |
|
- PyTorch: 2.4.1+cu121 |
|
- Accelerate: 0.34.2 |
|
- Datasets: 3.0.1 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |