Dataset Viewer (First 5GB)
id
stringlengths 27
136
| text
stringlengths 4
1.05M
|
---|---|
algebraic-stack_agda0000_doc_8528 | {-# OPTIONS --cubical --safe #-}
module Data.String where
open import Agda.Builtin.String using (String) public
open import Agda.Builtin.String
open import Agda.Builtin.String.Properties
open import Agda.Builtin.Char using (Char) public
open import Agda.Builtin.Char
open import Agda.Builtin.Char.Properties
open import Relation.Binary
open import Relation.Binary.Construct.On
import Data.Nat.Order as ℕ
open import Function.Injective
open import Function
open import Path
open import Data.List
open import Data.List.Relation.Binary.Lexicographic
unpack : String → List Char
unpack = primStringToList
pack : List Char → String
pack = primStringFromList
charOrd : TotalOrder Char _ _
charOrd = on-ord primCharToNat lemma ℕ.totalOrder
where
lemma : Injective primCharToNat
lemma x y p = builtin-eq-to-path (primCharToNatInjective x y (path-to-builtin-eq p ))
listCharOrd : TotalOrder (List Char) _ _
listCharOrd = listOrd charOrd
stringOrd : TotalOrder String _ _
stringOrd = on-ord primStringToList lemma listCharOrd
where
lemma : Injective primStringToList
lemma x y p = builtin-eq-to-path (primStringToListInjective x y (path-to-builtin-eq p))
|
algebraic-stack_agda0000_doc_8529 | -- Example usage of solver
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
module Experiment.Categories.Solver.Category.Example
{o ℓ e} (𝒞 : Category o ℓ e) where
open import Experiment.Categories.Solver.Category 𝒞
open Category 𝒞
open HomReasoning
private
variable
A B C D E : Obj
module _ (f : D ⇒ E) (g : C ⇒ D) (h : B ⇒ C) (i : A ⇒ B) where
_ : (f ∘ id ∘ g) ∘ id ∘ h ∘ i ≈ f ∘ (g ∘ h) ∘ i
_ = solve ((∥-∥ :∘ :id :∘ ∥-∥) :∘ :id :∘ ∥-∥ :∘ ∥-∥)
(∥-∥ :∘ (∥-∥ :∘ ∥-∥) :∘ ∥-∥)
refl
|
algebraic-stack_agda0000_doc_8530 | ----------------------------------------------------------------
-- This file contains the definition of isomorphisms. --
----------------------------------------------------------------
module Category.Iso where
open import Category.Category
record Iso {l : Level}{ℂ : Cat {l}}{A B : Obj ℂ} (f : el (Hom ℂ A B)) : Set l where
field
inv : el (Hom ℂ B A)
left-inv-ax : ⟨ Hom ℂ A A ⟩[ f ○[ comp ℂ ] inv ≡ id ℂ ]
right-inv-ax : ⟨ Hom ℂ B B ⟩[ inv ○[ comp ℂ ] f ≡ id ℂ ]
open Iso public
|
algebraic-stack_agda0000_doc_8531 | ------------------------------------------------------------------------
-- The Agda standard library
--
-- The Cowriter type and some operations
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe --sized-types #-}
module Codata.Cowriter where
open import Size
import Level as L
open import Codata.Thunk using (Thunk; force)
open import Codata.Conat
open import Codata.Delay using (Delay; later; now)
open import Codata.Stream as Stream using (Stream; _∷_)
open import Data.Unit
open import Data.List using (List; []; _∷_)
open import Data.List.NonEmpty using (List⁺; _∷_)
open import Data.Nat.Base as Nat using (ℕ; zero; suc)
open import Data.Product as Prod using (_×_; _,_)
open import Data.Sum as Sum using (_⊎_; inj₁; inj₂)
open import Data.Vec using (Vec; []; _∷_)
open import Data.BoundedVec as BVec using (BoundedVec)
open import Function
data Cowriter {w a} (W : Set w) (A : Set a) (i : Size) : Set (a L.⊔ w) where
[_] : A → Cowriter W A i
_∷_ : W → Thunk (Cowriter W A) i → Cowriter W A i
------------------------------------------------------------------------
-- Relationship to Delay.
module _ {a} {A : Set a} where
fromDelay : ∀ {i} → Delay A i → Cowriter ⊤ A i
fromDelay (now a) = [ a ]
fromDelay (later da) = _ ∷ λ where .force → fromDelay (da .force)
module _ {w a} {W : Set w} {A : Set a} where
toDelay : ∀ {i} → Cowriter W A i → Delay A i
toDelay [ a ] = now a
toDelay (_ ∷ ca) = later λ where .force → toDelay (ca .force)
------------------------------------------------------------------------
-- Basic functions.
fromStream : ∀ {i} → Stream W i → Cowriter W A i
fromStream (w ∷ ws) = w ∷ λ where .force → fromStream (ws .force)
repeat : W → Cowriter W A ∞
repeat = fromStream ∘′ Stream.repeat
length : ∀ {i} → Cowriter W A i → Conat i
length [ _ ] = zero
length (w ∷ cw) = suc λ where .force → length (cw .force)
splitAt : ∀ (n : ℕ) → Cowriter W A ∞ → (Vec W n × Cowriter W A ∞) ⊎ (BoundedVec W n × A)
splitAt zero cw = inj₁ ([] , cw)
splitAt (suc n) [ a ] = inj₂ (BVec.[] , a)
splitAt (suc n) (w ∷ cw) = Sum.map (Prod.map₁ (w ∷_)) (Prod.map₁ (w BVec.∷_))
$ splitAt n (cw .force)
take : ∀ (n : ℕ) → Cowriter W A ∞ → Vec W n ⊎ (BoundedVec W n × A)
take n = Sum.map₁ Prod.proj₁ ∘′ splitAt n
infixr 5 _++_ _⁺++_
_++_ : ∀ {i} → List W → Cowriter W A i → Cowriter W A i
[] ++ ca = ca
(w ∷ ws) ++ ca = w ∷ λ where .force → ws ++ ca
_⁺++_ : ∀ {i} → List⁺ W → Thunk (Cowriter W A) i → Cowriter W A i
(w ∷ ws) ⁺++ ca = w ∷ λ where .force → ws ++ ca .force
concat : ∀ {i} → Cowriter (List⁺ W) A i → Cowriter W A i
concat [ a ] = [ a ]
concat (w ∷ ca) = w ⁺++ λ where .force → concat (ca .force)
module _ {w x a b} {W : Set w} {X : Set x} {A : Set a} {B : Set b} where
------------------------------------------------------------------------
-- Functor, Applicative and Monad
map : ∀ {i} → (W → X) → (A → B) → Cowriter W A i → Cowriter X B i
map f g [ a ] = [ g a ]
map f g (w ∷ cw) = f w ∷ λ where .force → map f g (cw .force)
module _ {w a r} {W : Set w} {A : Set a} {R : Set r} where
map₁ : ∀ {i} → (W → R) → Cowriter W A i → Cowriter R A i
map₁ f = map f id
map₂ : ∀ {i} → (A → R) → Cowriter W A i → Cowriter W R i
map₂ = map id
ap : ∀ {i} → Cowriter W (A → R) i → Cowriter W A i → Cowriter W R i
ap [ f ] ca = map₂ f ca
ap (w ∷ cf) ca = w ∷ λ where .force → ap (cf .force) ca
_>>=_ : ∀ {i} → Cowriter W A i → (A → Cowriter W R i) → Cowriter W R i
[ a ] >>= f = f a
(w ∷ ca) >>= f = w ∷ λ where .force → ca .force >>= f
------------------------------------------------------------------------
-- Construction.
module _ {w s a} {W : Set w} {S : Set s} {A : Set a} where
unfold : ∀ {i} → (S → (W × S) ⊎ A) → S → Cowriter W A i
unfold next seed with next seed
... | inj₁ (w , seed') = w ∷ λ where .force → unfold next seed'
... | inj₂ a = [ a ]
|
algebraic-stack_agda0000_doc_8532 | module Dave.Algebra.Naturals.Bin where
open import Dave.Algebra.Naturals.Definition
open import Dave.Algebra.Naturals.Addition
open import Dave.Algebra.Naturals.Multiplication
open import Dave.Embedding
data Bin : Set where
⟨⟩ : Bin
_t : Bin → Bin
_f : Bin → Bin
inc : Bin → Bin
inc ⟨⟩ = ⟨⟩ t
inc (b t) = (inc b) f
inc (b f) = b t
to : ℕ → Bin
to zero = ⟨⟩ f
to (suc n) = inc (to n)
from : Bin → ℕ
from ⟨⟩ = zero
from (b t) = 1 + 2 * (from b)
from (b f) = 2 * (from b)
from6 = from (⟨⟩ t t f)
from23 = from (⟨⟩ t f t t t)
from23WithZeros = from (⟨⟩ f f f t f t t t)
Bin-ℕ-Suc-Homomorph : ∀ (b : Bin) → from (inc b) ≡ suc (from b)
Bin-ℕ-Suc-Homomorph ⟨⟩ = refl
Bin-ℕ-Suc-Homomorph (b t) = begin
from (inc (b t)) ≡⟨⟩
from ((inc b) f) ≡⟨⟩
2 * (from (inc b)) ≡⟨ cong (λ a → 2 * a) (Bin-ℕ-Suc-Homomorph b) ⟩
2 * suc (from b) ≡⟨⟩
2 * (1 + (from b)) ≡⟨ *-distrib1ₗ-+ₗ 2 (from b) ⟩
2 + 2 * (from b) ≡⟨⟩
suc (1 + 2 * (from b)) ≡⟨⟩
suc (from (b t)) ∎
Bin-ℕ-Suc-Homomorph (b f) = begin
from (inc (b f)) ≡⟨⟩
from (b t) ≡⟨⟩
1 + 2 * (from b) ≡⟨⟩
suc (2 * from b) ≡⟨⟩
suc (from (b f)) ∎
to-inverse-from : ∀ (n : ℕ) → from (to n) ≡ n
to-inverse-from zero = refl
to-inverse-from (suc n) = begin
from (to (suc n)) ≡⟨⟩
from (inc (to n)) ≡⟨ Bin-ℕ-Suc-Homomorph (to n) ⟩
suc (from (to n)) ≡⟨ cong (λ a → suc a) (to-inverse-from n) ⟩
suc n ∎
ℕ≲Bin : ℕ ≲ Bin
ℕ≲Bin = record
{
to = to;
from = from;
from∘to = to-inverse-from
} |
algebraic-stack_agda0000_doc_8533 | open import ExtractSac as ES using ()
open import Extract (ES.kompile-fun)
open import Data.Nat as N using (ℕ; zero; suc; _≤_; _≥_; _<_; _>_; s≤s; z≤n; _∸_)
import Data.Nat.DivMod as N
open import Data.Nat.Properties as N
open import Data.List as L using (List; []; _∷_)
open import Data.Vec as V using (Vec; []; _∷_)
import Data.Vec.Properties as V
open import Data.Fin as F using (Fin; zero; suc; #_)
import Data.Fin.Properties as F
open import Data.Product as Prod using (Σ; _,_; curry; uncurry) renaming (_×_ to _×ₜ_)
open import Data.String
open import Relation.Binary.PropositionalEquality
open import Structures
open import Function
open import Array.Base
open import Array.Properties
open import APL2
open import Agda.Builtin.Float
open import Reflection
open import ReflHelper
pattern I0 = (zero ∷ [])
pattern I1 = (suc zero ∷ [])
pattern I2 = (suc (suc zero) ∷ [])
pattern I3 = (suc (suc (suc zero)) ∷ [])
-- backin←{(d w in)←⍵⋄⊃+/,w{(⍴in)↑(-⍵+⍴d)↑⍺×d}¨⍳⍴w}
backin : ∀ {n s s₁} → (inp : Ar Float n s)
→ (w : Ar Float n s₁)
→ {≥ : ▴ s ≥a ▴ s₁}
→ (d : Ar Float n $ ▾ ((s - s₁){≥} + 1))
→ Ar Float n s
backin {n}{s}{s₁} inp w d = let
ixs = ι ρ w
use-ixs i,pf = let
i , pf = i,pf
iv = a→ix i (ρ w) pf
wᵢ = sel w (subst-ix (λ i → V.lookup∘tabulate _ i) iv)
--x = pre-pad i 0.0 (d ×ᵣ wᵢ)
x = (i + ρ d) -↑⟨ 0.0 ⟩ (d ×ᵣ wᵢ)
y = (ρ inp) ↑⟨ 0.0 ⟩ x
in y
s = reduce-1d _+ᵣ_ (cst 0.0) (, use-ixs ̈ ixs)
in subst-ar (λ i → V.lookup∘tabulate _ i) s
kbin = kompile backin (quote _≥a_ ∷ quote reduce-1d ∷ quote _↑⟨_⟩_ ∷ quote _-↑⟨_⟩_ ∷ quote a→ix ∷ []) []
rkbin = frefl backin (quote _≥a_ ∷ quote reduce-1d ∷ quote _↑⟨_⟩_ ∷ quote _-↑⟨_⟩_ ∷ quote a→ix ∷ [])
fin-id : ∀ {n} → Fin n → Fin n
fin-id x = x
s-w+1≤s : ∀ {s w} → s ≥ w → s > 0 → w > 0 → s N.∸ w N.+ 1 ≤ s
s-w+1≤s {suc s} {suc w} (s≤s s≥w) s>0 w>0 rewrite (+-comm (s ∸ w) 1) = s≤s (m∸n≤m s w)
helper : ∀ {n} {sI sw : Vec ℕ n}
→ s→a sI ≥a s→a sw
→ (cst 0) <a s→a sI
→ (cst 0) <a s→a sw
→ (iv : Ix 1 (n ∷ []))
→ V.lookup sI (ix-lookup iv zero) ≥
V.lookup (V.tabulate (λ i → V.lookup sI i ∸ V.lookup sw i N.+ 1))
(ix-lookup iv zero)
helper {sI = sI} {sw} sI≥sw sI>0 sw>0 (x ∷ [])
rewrite (V.lookup∘tabulate (λ i → V.lookup sI i ∸ V.lookup sw i N.+ 1) x) =
s-w+1≤s (sI≥sw (x ∷ [])) (sI>0 (x ∷ [])) (sw>0 (x ∷ []))
a≤b⇒b≡c⇒a≤c : ∀ {a b c} → a ≤ b → b ≡ c → a ≤ c
a≤b⇒b≡c⇒a≤c a≤b refl = a≤b
-- sI - (sI - sw + 1) + 1 = sw
shape-same : ∀ {n} {sI sw : Vec ℕ n}
→ s→a sI ≥a s→a sw
→ (cst 0) <a s→a sI
→ (cst 0) <a s→a sw
→ (i : Fin n)
→ V.lookup
(V.tabulate
(λ i₁ →
V.lookup sI i₁ ∸
V.lookup (V.tabulate (λ i₂ → V.lookup sI i₂ ∸ V.lookup sw i₂ N.+ 1)) i₁
N.+ 1))
i
≡ V.lookup sw i
shape-same {suc n} {x ∷ sI} {y ∷ sw} I≥w I>0 w>0 zero =
begin
x ∸ (x ∸ y N.+ 1) N.+ 1 ≡⟨ sym $ +-∸-comm {m = x} 1 {o = (x ∸ y N.+ 1)} (s-w+1≤s (I≥w I0) (I>0 I0) (w>0 I0)) ⟩
x N.+ 1 ∸ (x ∸ y N.+ 1) ≡⟨ cong (x N.+ 1 ∸_) (sym $ +-∸-comm {m = x} 1 {o = y} (I≥w I0)) ⟩
x N.+ 1 ∸ (x N.+ 1 ∸ y) ≡⟨ m∸[m∸n]≡n {m = x N.+ 1} {n = y} (a≤b⇒b≡c⇒a≤c (≤-step $ I≥w I0) (+-comm 1 x)) ⟩
y
∎
where open ≡-Reasoning
shape-same {suc n} {x ∷ sI} {x₁ ∷ sw} I≥w I>0 w>0 (suc i) =
shape-same {sI = sI} {sw = sw} (λ { (i ∷ []) → I≥w (suc i ∷ []) })
(λ { (i ∷ []) → I>0 (suc i ∷ []) })
(λ { (i ∷ []) → w>0 (suc i ∷ []) }) i
{-backmulticonv ← {
(d_out weights in bias) ← ⍵
d_in ← +⌿d_out {backin ⍺ ⍵ in} ⍤((⍴⍴in), (⍴⍴in)) ⊢ weights
d_w ← {⍵ conv in} ⍤(⍴⍴in) ⊢ d_out
d_bias ← backbias ⍤(⍴⍴in) ⊢ d_out
d_in d_w d_bias
}-}
backmulticonv : ∀ {n m}{sI sw so}
→ (W : Ar (Ar Float n sw) m so)
→ (I : Ar Float n sI)
→ (B : Ar Float m so)
-- We can get rid of these two expressions if we rewrite
-- the convolution to accept s+1 ≥ w, and not s ≥ w.
→ {>I : (cst 0) <a s→a sI}
→ {>w : (cst 0) <a s→a sw}
→ {≥ : s→a sI ≥a s→a sw}
→ (δo : Ar (Ar Float n (a→s $ (s→a sI - s→a sw) {≥} + 1)) m so)
→ {- (typeOf W) ×ₜ-} (typeOf I) --×ₜ (typeOf B)
backmulticonv {n} {sI = sI} {sw} {so} W I B {sI>0} {sw>0} {sI≥sw} δo = let
δI = reduce-1d _+ᵣ_ (cst 0.0) (, (W ̈⟨ (λ x y → backin I x {sI≥sw} y) ⟩ δo))
{-
δW = (λ x → (x conv I) {≥ = λ { iv@(i ∷ []) → subst₂ _≤_ (sym $ V.lookup∘tabulate _ i) refl
$ s-w+1≤s (sI≥sw iv) (sI>0 iv) (sw>0 iv) } }) ̈ δo
δB = backbias ̈ δo
-}
in --(imap (λ iv → subst-ar (shape-same {sI = sI} {sw = sw} sI≥sw sI>0 sw>0) (sel δW iv)) ,
δI {-,
imap (λ iv → ▾ (sel δB iv))) -}
where open import Example-04
open import Example-03
kbckmconv = kompile backmulticonv (quote _≥a_ ∷ quote _<a_ ∷ quote reduce-1d ∷ quote _↑⟨_⟩_ ∷ quote _-↑⟨_⟩_ ∷ quote a→ix ∷ quote _conv_ ∷ []) []
where open import Example-04
conv-fns : List (String ×ₜ Name)
conv-fns = ("blog" , quote blog)
∷ ("backbias" , quote backbias)
∷ ("logistic" , quote logistic)
∷ ("meansqerr" , quote meansqerr)
∷ ("backavgpool" , quote backavgpool)
∷ ("avgpool" , quote avgpool)
∷ ("conv" , quote _conv_)
∷ ("multiconv" , quote multiconv)
∷ ("backin", quote backin)
∷ ("backmulticonv" , quote backmulticonv)
∷ []
where open import Example-03
open import Example-04
-- * test-zhang
-- * train-zhang
|
algebraic-stack_agda0000_doc_8534 | module Properties.Base where
open import Data.Maybe hiding (All)
open import Data.List
open import Data.List.All
open import Data.Product
open import Data.Sum
open import Relation.Nullary
open import Relation.Binary.PropositionalEquality
open import Typing
open import Global
open import Values
open import Session
open import Schedule
one-step : ∀ {G} → (∃ λ G' → ThreadPool (G' ++ G)) → Event × (∃ λ G → ThreadPool G)
one-step{G} (G1 , tp)
with ssplit-refl-left-inactive (G1 ++ G)
... | G' , ina-G' , ss-GG'
with Alternative.step ss-GG' tp (tnil ina-G')
... | ev , tp' = ev , ( _ , tp')
restart : ∀ {G} → Command G → Command G
restart (Ready ss v κ) = apply-cont ss κ v
restart cmd = cmd
-- auxiliary lemmas
lift-unrestricted :
∀ {t G} (unrt : Unr t) (v : Val G t)
→ unrestricted-val unrt (lift-val v) ≡ ::-inactive (unrestricted-val unrt v)
lift-unrestricted-venv :
∀ {Φ G} (unrt : All Unr Φ) (ϱ : VEnv G Φ)
→ unrestricted-venv unrt (lift-venv ϱ) ≡ ::-inactive (unrestricted-venv unrt ϱ)
lift-unrestricted UUnit (VUnit inaG) = refl
lift-unrestricted UInt (VInt i inaG) = refl
lift-unrestricted (UPair unrt unrt₁) (VPair ss-GG₁G₂ v v₁)
rewrite lift-unrestricted unrt v | lift-unrestricted unrt₁ v₁
= refl
lift-unrestricted UFun (VFun (inj₁ ()) ϱ e)
lift-unrestricted UFun (VFun (inj₂ y) ϱ e) = lift-unrestricted-venv y ϱ
lift-unrestricted-venv [] (vnil ina) = refl
lift-unrestricted-venv (px ∷ unrt) (vcons ssp v ϱ)
rewrite lift-unrestricted px v | lift-unrestricted-venv unrt ϱ
= refl
unrestricted-empty : ∀ {t} → (unrt : Unr t) (v : Val [] t) → unrestricted-val unrt v ≡ []-inactive
unrestricted-empty-venv : ∀ {t} → (unrt : All Unr t) (v : VEnv [] t) → unrestricted-venv unrt v ≡ []-inactive
unrestricted-empty UUnit (VUnit []-inactive) = refl
unrestricted-empty UInt (VInt i []-inactive) = refl
unrestricted-empty (UPair unrt unrt₁) (VPair ss-[] v v₁)
rewrite unrestricted-empty unrt v | unrestricted-empty unrt₁ v₁
= refl
unrestricted-empty UFun (VFun (inj₁ ()) ϱ e)
unrestricted-empty UFun (VFun (inj₂ y) ϱ e) = unrestricted-empty-venv y ϱ
unrestricted-empty-venv [] (vnil []-inactive) = refl
unrestricted-empty-venv (px ∷ unrt) (vcons ss-[] v v₁)
rewrite unrestricted-empty px v | unrestricted-empty-venv unrt v₁
= refl
split-env-lemma :
∀ { Φ Φ₁ Φ₂ }
(sp : Split Φ Φ₁ Φ₂)
(ϱ : VEnv [] Φ)
→ ∃ λ ϱ₁ → ∃ λ ϱ₂ →
split-env sp (lift-venv ϱ) ≡
(((nothing ∷ []) , (nothing ∷ [])) , (ss-both ss-[]) , lift-venv ϱ₁ , lift-venv ϱ₂)
split-env-lemma [] (vnil []-inactive) =
(vnil []-inactive) , ((vnil []-inactive) , refl)
split-env-lemma (dupl unrt sp) (vcons ss-[] v ϱ)
with split-env-lemma sp ϱ | unrestricted-val unrt v
... | ϱ₁ , ϱ₂ , spe== | unr-v
rewrite inactive-left-ssplit ss-[] unr-v | lift-unrestricted unrt v | unrestricted-empty unrt v | spe==
with ssplit-compose3 (ss-both ss-[]) (ss-both ss-[])
... | ssc3
= (vcons ss-[] v ϱ₁)
, (vcons ss-[] v ϱ₂)
, refl
split-env-lemma (Split.drop unrt sp) (vcons ss-[] v ϱ)
with split-env-lemma sp ϱ | unrestricted-val unrt v
... | ϱ₁ , ϱ₂ , spe== | unr-v
rewrite lift-unrestricted unrt v | unrestricted-empty unrt v
= ϱ₁ , ϱ₂ , spe==
split-env-lemma (left sp) (vcons ss-[] v ϱ)
with split-env-lemma sp ϱ
... | ϱ₁ , ϱ₂ , spe==
rewrite spe==
with ssplit-compose3 (ss-both ss-[]) (ss-both ss-[])
... | ssc3
= (vcons ss-[] v ϱ₁) , (ϱ₂ , refl)
split-env-lemma (rght sp) (vcons ss-[] v ϱ)
with split-env-lemma sp ϱ
... | ϱ₁ , ϱ₂ , spe==
rewrite spe==
with ssplit-compose4 (ss-both ss-[]) (ss-both ss-[])
... | ssc4
= ϱ₁ , (vcons ss-[] v ϱ₂) , refl
split-env-right-lemma :
∀ {Φ} (ϱ : VEnv [] Φ) →
split-env (split-all-right Φ) (lift-venv ϱ)
≡
(((nothing ∷ []) , (nothing ∷ [])) , (ss-both ss-[]) , vnil (::-inactive []-inactive) , lift-venv ϱ)
split-env-right-lemma (vnil []-inactive) = refl
split-env-right-lemma (vcons ss-[] v ϱ)
with split-env-right-lemma ϱ
... | sperl
rewrite sperl
with ssplit-compose4 (ss-both ss-[]) (ss-both ss-[])
... | ssc4
= refl
split-env-right-lemma0 :
∀ {Φ} (ϱ : VEnv [] Φ) →
split-env (split-all-right Φ) ϱ
≡
(([] , []) , ss-[] , vnil []-inactive , ϱ)
split-env-right-lemma0 (vnil []-inactive) = refl
split-env-right-lemma0 (vcons ss-[] v ϱ)
rewrite split-env-right-lemma0 ϱ
= refl
split-env-left-lemma0 :
∀ {Φ} (ϱ : VEnv [] Φ) →
split-env (split-all-left Φ) ϱ
≡
(([] , []) , ss-[] , ϱ , vnil []-inactive)
split-env-left-lemma0 (vnil []-inactive) = refl
split-env-left-lemma0 (vcons ss-[] v ϱ)
rewrite split-env-left-lemma0 ϱ
= refl
split-env-lemma-2T : Set
split-env-lemma-2T =
∀ { Φ Φ₁ Φ₂ }
(sp : Split Φ Φ₁ Φ₂)
(ϱ : VEnv [] Φ)
→ ∃ λ ϱ₁ → ∃ λ ϱ₂ →
split-env sp (lift-venv ϱ) ≡
(_ , (ss-both ss-[]) , lift-venv ϱ₁ , lift-venv ϱ₂)
×
split-env sp ϱ ≡
(_ , ss-[] , ϱ₁ , ϱ₂)
split-env-lemma-2 : split-env-lemma-2T
split-env-lemma-2 [] (vnil []-inactive)
= (vnil []-inactive) , ((vnil []-inactive) , (refl , refl))
split-env-lemma-2 (dupl unrt sp) (vcons ss-[] v ϱ)
with split-env-lemma-2 sp ϱ
... | ϱ₁ , ϱ₂ , selift-ind , se-ind
rewrite se-ind | lift-unrestricted unrt v
with unrestricted-val unrt v
... | []-inactive
rewrite selift-ind
with ssplit-compose3 (ss-both ss-[]) (ss-both ss-[])
... | ssc3
= (vcons ss-[] v ϱ₁) , (vcons ss-[] v ϱ₂) , refl , refl
split-env-lemma-2 (Split.drop unrt sp) (vcons ss-[] v ϱ)
with split-env-lemma-2 sp ϱ
... | ϱ₁ , ϱ₂ , selift-ind , se-ind
rewrite se-ind | lift-unrestricted unrt v
with unrestricted-val unrt v
... | []-inactive
= ϱ₁ , ϱ₂ , selift-ind , se-ind
split-env-lemma-2 (left sp) (vcons ss-[] v ϱ)
with split-env-lemma-2 sp ϱ
... | ϱ₁ , ϱ₂ , selift-ind , se-ind
rewrite se-ind | selift-ind
with ssplit-compose3 (ss-both ss-[]) (ss-both ss-[])
... | ssc3
= (vcons ss-[] v ϱ₁) , ϱ₂ , refl , refl
split-env-lemma-2 (rght sp) (vcons ss-[] v ϱ)
with split-env-lemma-2 sp ϱ
... | ϱ₁ , ϱ₂ , selift-ind , se-ind
rewrite se-ind | selift-ind
with ssplit-compose4 (ss-both ss-[]) (ss-both ss-[])
... | ssc4
= ϱ₁ , (vcons ss-[] v ϱ₂) , refl , refl
split-rotate-lemma : ∀ {Φ} →
split-rotate (split-all-left Φ) (split-all-right Φ)
≡
(Φ , split-all-right Φ , split-all-left Φ)
split-rotate-lemma {[]} = refl
split-rotate-lemma {x ∷ Φ}
rewrite split-rotate-lemma {Φ}
= refl
split-rotate-lemma' : ∀ {Φ Φ₁ Φ₂}
(sp : Split Φ Φ₁ Φ₂) →
split-rotate (split-all-left Φ) sp
≡
(Φ₂ , sp , split-all-left Φ₂)
split-rotate-lemma' {[]} [] = refl
split-rotate-lemma' {x ∷ Φ} (dupl un-x sp)
rewrite split-rotate-lemma' {Φ} sp
= refl
split-rotate-lemma' {x ∷ Φ} {Φ₁} {Φ₂} (Split.drop un-x sp)
rewrite split-rotate-lemma' {Φ} sp
= refl
split-rotate-lemma' {x ∷ Φ} (left sp)
rewrite split-rotate-lemma' {Φ} sp
= refl
split-rotate-lemma' {x ∷ Φ} (rght sp)
rewrite split-rotate-lemma' {Φ} sp
= refl
ssplit-compose-lemma : ∀ ss →
ssplit-compose ss-[] ss ≡ ([] , ss-[] , ss-[])
ssplit-compose-lemma ss-[] = refl
|
algebraic-stack_agda0000_doc_8535 |
open import Oscar.Prelude
open import Oscar.Class.IsFunctor
open import Oscar.Class.Reflexivity
open import Oscar.Class.Smap
open import Oscar.Class.Surjection
open import Oscar.Class.Transitivity
module Oscar.Class.Functor where
record Functor 𝔬₁ 𝔯₁ ℓ₁ 𝔬₂ 𝔯₂ ℓ₂ : Ø ↑̂ (𝔬₁ ∙̂ 𝔯₁ ∙̂ ℓ₁ ∙̂ 𝔬₂ ∙̂ 𝔯₂ ∙̂ ℓ₂) where
constructor ∁
field
{𝔒₁} : Ø 𝔬₁
_∼₁_ : 𝔒₁ → 𝔒₁ → Ø 𝔯₁
_∼̇₁_ : ∀ {x y} → x ∼₁ y → x ∼₁ y → Ø ℓ₁
ε₁ : Reflexivity.type _∼₁_
_↦₁_ : Transitivity.type _∼₁_
{𝔒₂} : Ø 𝔬₂
_∼₂_ : 𝔒₂ → 𝔒₂ → Ø 𝔯₂
_∼̇₂_ : ∀ {x y} → x ∼₂ y → x ∼₂ y → Ø ℓ₂
ε₂ : Reflexivity.type _∼₂_
_↦₂_ : Transitivity.type _∼₂_
{μ} : Surjection.type 𝔒₁ 𝔒₂
functor-smap : Smap.type _∼₁_ _∼₂_ μ μ -- FIXME cannot name this § or smap b/c of namespace conflict
⦃ `IsFunctor ⦄ : IsFunctor _∼₁_ _∼̇₁_ ε₁ _↦₁_ _∼₂_ _∼̇₂_ ε₂ _↦₂_ functor-smap
|
algebraic-stack_agda0000_doc_8536 | ------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Overloading ⟦_⟧ notation
--
-- This module defines a general mechanism for overloading the
-- ⟦_⟧ notation, using Agda’s instance arguments.
------------------------------------------------------------------------
module Base.Denotation.Notation where
open import Level
record Meaning (Syntax : Set) {ℓ : Level} : Set (suc ℓ) where
constructor
meaning
field
{Semantics} : Set ℓ
⟨_⟩⟦_⟧ : Syntax → Semantics
open Meaning {{...}} public
renaming (⟨_⟩⟦_⟧ to ⟦_⟧)
open Meaning public
using (⟨_⟩⟦_⟧)
|
algebraic-stack_agda0000_doc_8537 | {-# OPTIONS --allow-unsolved-metas #-}
module IsLiteralProblem where
open import OscarPrelude
open import IsLiteralSequent
open import Problem
record IsLiteralProblem (𝔓 : Problem) : Set
where
constructor _¶_
field
{problem} : Problem
isLiteralInferences : All IsLiteralSequent (inferences 𝔓)
isLiteralInterest : IsLiteralSequent (interest 𝔓)
open IsLiteralProblem public
instance EqIsLiteralProblem : ∀ {𝔓} → Eq (IsLiteralProblem 𝔓)
EqIsLiteralProblem = {!!}
|
algebraic-stack_agda0000_doc_8538 | module Pi-.Invariants where
open import Data.Empty
open import Data.Unit
open import Data.Sum
open import Data.Product
open import Relation.Binary.Core
open import Relation.Binary
open import Relation.Nullary
open import Relation.Binary.PropositionalEquality
open import Data.Nat
open import Data.Nat.Properties
open import Function using (_∘_)
open import Pi-.Syntax
open import Pi-.Opsem
open import Pi-.NoRepeat
open import Pi-.Dir
-- Direction of values
dir𝕍 : ∀ {t} → ⟦ t ⟧ → Dir
dir𝕍 {𝟘} ()
dir𝕍 {𝟙} v = ▷
dir𝕍 {_ +ᵤ _} (inj₁ x) = dir𝕍 x
dir𝕍 {_ +ᵤ _} (inj₂ y) = dir𝕍 y
dir𝕍 {_ ×ᵤ _} (x , y) = dir𝕍 x ×ᵈⁱʳ dir𝕍 y
dir𝕍 { - _} (- v) = -ᵈⁱʳ (dir𝕍 v)
-- Execution direction of states
dirState : State → Dir
dirState ⟨ _ ∣ _ ∣ _ ⟩▷ = ▷
dirState [ _ ∣ _ ∣ _ ]▷ = ▷
dirState ⟨ _ ∣ _ ∣ _ ⟩◁ = ◁
dirState [ _ ∣ _ ∣ _ ]◁ = ◁
dirCtx : ∀ {A B} → Context {A} {B} → Dir
dirCtx ☐ = ▷
dirCtx (☐⨾ c₂ • κ) = dirCtx κ
dirCtx (c₁ ⨾☐• κ) = dirCtx κ
dirCtx (☐⊕ c₂ • κ) = dirCtx κ
dirCtx (c₁ ⊕☐• κ) = dirCtx κ
dirCtx (☐⊗[ c₂ , x ]• κ) = dir𝕍 x ×ᵈⁱʳ dirCtx κ
dirCtx ([ c₁ , x ]⊗☐• κ) = dir𝕍 x ×ᵈⁱʳ dirCtx κ
dirState𝕍 : State → Dir
dirState𝕍 ⟨ _ ∣ v ∣ κ ⟩▷ = dir𝕍 v ×ᵈⁱʳ dirCtx κ
dirState𝕍 [ _ ∣ v ∣ κ ]▷ = dir𝕍 v ×ᵈⁱʳ dirCtx κ
dirState𝕍 ⟨ _ ∣ v ∣ κ ⟩◁ = dir𝕍 v ×ᵈⁱʳ dirCtx κ
dirState𝕍 [ _ ∣ v ∣ κ ]◁ = dir𝕍 v ×ᵈⁱʳ dirCtx κ
δdir : ∀ {A B} (c : A ↔ B) {b : base c} → (v : ⟦ A ⟧) → dir𝕍 v ≡ dir𝕍 (δ c {b} v)
δdir unite₊l (inj₂ v) = refl
δdir uniti₊l v = refl
δdir swap₊ (inj₁ x) = refl
δdir swap₊ (inj₂ y) = refl
δdir assocl₊ (inj₁ v) = refl
δdir assocl₊ (inj₂ (inj₁ v)) = refl
δdir assocl₊ (inj₂ (inj₂ v)) = refl
δdir assocr₊ (inj₁ (inj₁ v)) = refl
δdir assocr₊ (inj₁ (inj₂ v)) = refl
δdir assocr₊ (inj₂ v) = refl
δdir unite⋆l (tt , v) = identˡᵈⁱʳ (dir𝕍 v)
δdir uniti⋆l v = sym (identˡᵈⁱʳ (dir𝕍 v))
δdir swap⋆ (x , y) = commᵈⁱʳ _ _
δdir assocl⋆ (v₁ , (v₂ , v₃)) = assoclᵈⁱʳ _ _ _
δdir assocr⋆ ((v₁ , v₂) , v₃) = sym (assoclᵈⁱʳ _ _ _)
δdir dist (inj₁ v₁ , v₃) = refl
δdir dist (inj₂ v₂ , v₃) = refl
δdir factor (inj₁ (v₁ , v₃)) = refl
δdir factor (inj₂ (v₂ , v₃)) = refl
-- Invariant of directions
dirInvariant : ∀ {st st'} → st ↦ st' → dirState st ×ᵈⁱʳ dirState𝕍 st ≡ dirState st' ×ᵈⁱʳ dirState𝕍 st'
dirInvariant {⟨ c ∣ v ∣ κ ⟩▷} (↦⃗₁ {b = b}) rewrite δdir c {b} v = refl
dirInvariant ↦⃗₂ = refl
dirInvariant ↦⃗₃ = refl
dirInvariant ↦⃗₄ = refl
dirInvariant ↦⃗₅ = refl
dirInvariant {⟨ c₁ ⊗ c₂ ∣ (x , y) ∣ κ ⟩▷} ↦⃗₆ rewrite assoclᵈⁱʳ (dir𝕍 x) (dir𝕍 y) (dirCtx κ) = refl
dirInvariant ↦⃗₇ = refl
dirInvariant {[ c₁ ∣ x ∣ ☐⊗[ c₂ , y ]• κ ]▷} ↦⃗₈ rewrite assoc-commᵈⁱʳ (dir𝕍 x) (dir𝕍 y) (dirCtx κ) = refl
dirInvariant {[ c₂ ∣ y ∣ [ c₁ , x ]⊗☐• κ ]▷} ↦⃗₉ rewrite assocl-commᵈⁱʳ (dir𝕍 y) (dir𝕍 x) (dirCtx κ) = refl
dirInvariant ↦⃗₁₀ = refl
dirInvariant ↦⃗₁₁ = refl
dirInvariant ↦⃗₁₂ = refl
dirInvariant {_} {⟨ c ∣ v ∣ κ ⟩◁} (↦⃖₁ {b = b}) rewrite δdir c {b} v = refl
dirInvariant ↦⃖₂ = refl
dirInvariant ↦⃖₃ = refl
dirInvariant ↦⃖₄ = refl
dirInvariant ↦⃖₅ = refl
dirInvariant {⟨ c₁ ∣ x ∣ ☐⊗[ c₂ , y ]• κ ⟩◁} ↦⃖₆ rewrite assoclᵈⁱʳ (dir𝕍 x) (dir𝕍 y) (dirCtx κ) = refl
dirInvariant ↦⃖₇ = refl
dirInvariant {⟨ c₂ ∣ y ∣ [ c₁ , x ]⊗☐• κ ⟩◁} ↦⃖₈ rewrite assoc-commᵈⁱʳ (dir𝕍 y) (dir𝕍 x) (dirCtx κ) = refl
dirInvariant {[ c₁ ⊗ c₂ ∣ (x , y) ∣ κ ]◁ } ↦⃖₉ rewrite assoclᵈⁱʳ (dir𝕍 y) (dir𝕍 x) (dirCtx κ) | commᵈⁱʳ (dir𝕍 y) (dir𝕍 x) = refl
dirInvariant ↦⃖₁₀ = refl
dirInvariant ↦⃖₁₁ = refl
dirInvariant ↦⃖₁₂ = refl
dirInvariant {[ η₊ ∣ inj₁ v ∣ κ ]◁} ↦η₁ with dir𝕍 v
... | ◁ with dirCtx κ
... | ◁ = refl
... | ▷ = refl
dirInvariant {[ η₊ ∣ inj₁ v ∣ κ ]◁} ↦η₁ | ▷ with dirCtx κ
... | ◁ = refl
... | ▷ = refl
dirInvariant {[ η₊ ∣ inj₂ (- v) ∣ κ ]◁} ↦η₂ with dir𝕍 v
... | ◁ with dirCtx κ
... | ◁ = refl
... | ▷ = refl
dirInvariant {[ η₊ ∣ inj₂ (- v) ∣ κ ]◁} ↦η₂ | ▷ with dirCtx κ
... | ◁ = refl
... | ▷ = refl
dirInvariant {⟨ ε₊ ∣ inj₁ v ∣ κ ⟩▷} ↦ε₁ with dir𝕍 v
... | ◁ with dirCtx κ
... | ◁ = refl
... | ▷ = refl
dirInvariant {⟨ ε₊ ∣ inj₁ v ∣ κ ⟩▷} ↦ε₁ | ▷ with dirCtx κ
... | ◁ = refl
... | ▷ = refl
dirInvariant {⟨ ε₊ ∣ inj₂ (- v) ∣ κ ⟩▷} ↦ε₂ with dir𝕍 v
... | ◁ with dirCtx κ
... | ◁ = refl
... | ▷ = refl
dirInvariant {⟨ ε₊ ∣ inj₂ (- v) ∣ κ ⟩▷} ↦ε₂ | ▷ with dirCtx κ
... | ◁ = refl
... | ▷ = refl
-- Reconstruct the whole combinator from context
getℂκ : ∀ {A B} → A ↔ B → Context {A} {B} → ∃[ C ] ∃[ D ] (C ↔ D)
getℂκ c ☐ = _ , _ , c
getℂκ c (☐⨾ c₂ • κ) = getℂκ (c ⨾ c₂) κ
getℂκ c (c₁ ⨾☐• κ) = getℂκ (c₁ ⨾ c) κ
getℂκ c (☐⊕ c₂ • κ) = getℂκ (c ⊕ c₂) κ
getℂκ c (c₁ ⊕☐• κ) = getℂκ (c₁ ⊕ c) κ
getℂκ c (☐⊗[ c₂ , x ]• κ) = getℂκ (c ⊗ c₂) κ
getℂκ c ([ c₁ , x ]⊗☐• κ) = getℂκ (c₁ ⊗ c) κ
getℂ : State → ∃[ A ] ∃[ B ] (A ↔ B)
getℂ ⟨ c ∣ _ ∣ κ ⟩▷ = getℂκ c κ
getℂ [ c ∣ _ ∣ κ ]▷ = getℂκ c κ
getℂ ⟨ c ∣ _ ∣ κ ⟩◁ = getℂκ c κ
getℂ [ c ∣ _ ∣ κ ]◁ = getℂκ c κ
-- The reconstructed combinator stays the same
ℂInvariant : ∀ {st st'} → st ↦ st' → getℂ st ≡ getℂ st'
ℂInvariant ↦⃗₁ = refl
ℂInvariant ↦⃗₂ = refl
ℂInvariant ↦⃗₃ = refl
ℂInvariant ↦⃗₄ = refl
ℂInvariant ↦⃗₅ = refl
ℂInvariant ↦⃗₆ = refl
ℂInvariant ↦⃗₇ = refl
ℂInvariant ↦⃗₈ = refl
ℂInvariant ↦⃗₉ = refl
ℂInvariant ↦⃗₁₀ = refl
ℂInvariant ↦⃗₁₁ = refl
ℂInvariant ↦⃗₁₂ = refl
ℂInvariant ↦⃖₁ = refl
ℂInvariant ↦⃖₂ = refl
ℂInvariant ↦⃖₃ = refl
ℂInvariant ↦⃖₄ = refl
ℂInvariant ↦⃖₅ = refl
ℂInvariant ↦⃖₆ = refl
ℂInvariant ↦⃖₇ = refl
ℂInvariant ↦⃖₈ = refl
ℂInvariant ↦⃖₉ = refl
ℂInvariant ↦⃖₁₀ = refl
ℂInvariant ↦⃖₁₁ = refl
ℂInvariant ↦⃖₁₂ = refl
ℂInvariant ↦η₁ = refl
ℂInvariant ↦η₂ = refl
ℂInvariant ↦ε₁ = refl
ℂInvariant ↦ε₂ = refl
ℂInvariant* : ∀ {st st'} → st ↦* st' → getℂ st ≡ getℂ st'
ℂInvariant* ◾ = refl
ℂInvariant* (r ∷ rs) = trans (ℂInvariant r) (ℂInvariant* rs)
-- Get the type of the deepest context
get𝕌 : ∀ {A B} → Context {A} {B} → 𝕌 × 𝕌
get𝕌 {A} {B} ☐ = A , B
get𝕌 (☐⨾ c₂ • κ) = get𝕌 κ
get𝕌 (c₁ ⨾☐• κ) = get𝕌 κ
get𝕌 (☐⊕ c₂ • κ) = get𝕌 κ
get𝕌 (c₁ ⊕☐• κ) = get𝕌 κ
get𝕌 (☐⊗[ c₂ , x ]• κ) = get𝕌 κ
get𝕌 ([ c₁ , x ]⊗☐• κ) = get𝕌 κ
get𝕌State : State → 𝕌 × 𝕌
get𝕌State ⟨ c ∣ v ∣ κ ⟩▷ = get𝕌 κ
get𝕌State [ c ∣ v ∣ κ ]▷ = get𝕌 κ
get𝕌State ⟨ c ∣ v ∣ κ ⟩◁ = get𝕌 κ
get𝕌State [ c ∣ v ∣ κ ]◁ = get𝕌 κ
-- Append a context to another context
appendκ : ∀ {A B} → (ctx : Context {A} {B}) → let (C , D) = get𝕌 ctx
in Context {C} {D} → Context {A} {B}
appendκ ☐ ctx = ctx
appendκ (☐⨾ c₂ • κ) ctx = ☐⨾ c₂ • appendκ κ ctx
appendκ (c₁ ⨾☐• κ) ctx = c₁ ⨾☐• appendκ κ ctx
appendκ (☐⊕ c₂ • κ) ctx = ☐⊕ c₂ • appendκ κ ctx
appendκ (c₁ ⊕☐• κ) ctx = c₁ ⊕☐• appendκ κ ctx
appendκ (☐⊗[ c₂ , x ]• κ) ctx = ☐⊗[ c₂ , x ]• appendκ κ ctx
appendκ ([ c₁ , x ]⊗☐• κ) ctx = [ c₁ , x ]⊗☐• appendκ κ ctx
appendκState : ∀ st → let (A , B) = get𝕌State st
in Context {A} {B} → State
appendκState ⟨ c ∣ v ∣ κ ⟩▷ ctx = ⟨ c ∣ v ∣ appendκ κ ctx ⟩▷
appendκState [ c ∣ v ∣ κ ]▷ ctx = [ c ∣ v ∣ appendκ κ ctx ]▷
appendκState ⟨ c ∣ v ∣ κ ⟩◁ ctx = ⟨ c ∣ v ∣ appendκ κ ctx ⟩◁
appendκState [ c ∣ v ∣ κ ]◁ ctx = [ c ∣ v ∣ appendκ κ ctx ]◁
-- The type of context does not change during execution
𝕌Invariant : ∀ {st st'} → st ↦ st' → get𝕌State st ≡ get𝕌State st'
𝕌Invariant ↦⃗₁ = refl
𝕌Invariant ↦⃗₂ = refl
𝕌Invariant ↦⃗₃ = refl
𝕌Invariant ↦⃗₄ = refl
𝕌Invariant ↦⃗₅ = refl
𝕌Invariant ↦⃗₆ = refl
𝕌Invariant ↦⃗₇ = refl
𝕌Invariant ↦⃗₈ = refl
𝕌Invariant ↦⃗₉ = refl
𝕌Invariant ↦⃗₁₀ = refl
𝕌Invariant ↦⃗₁₁ = refl
𝕌Invariant ↦⃗₁₂ = refl
𝕌Invariant ↦⃖₁ = refl
𝕌Invariant ↦⃖₂ = refl
𝕌Invariant ↦⃖₃ = refl
𝕌Invariant ↦⃖₄ = refl
𝕌Invariant ↦⃖₅ = refl
𝕌Invariant ↦⃖₆ = refl
𝕌Invariant ↦⃖₇ = refl
𝕌Invariant ↦⃖₈ = refl
𝕌Invariant ↦⃖₉ = refl
𝕌Invariant ↦⃖₁₀ = refl
𝕌Invariant ↦⃖₁₁ = refl
𝕌Invariant ↦⃖₁₂ = refl
𝕌Invariant ↦η₁ = refl
𝕌Invariant ↦η₂ = refl
𝕌Invariant ↦ε₁ = refl
𝕌Invariant ↦ε₂ = refl
𝕌Invariant* : ∀ {st st'} → st ↦* st' → get𝕌State st ≡ get𝕌State st'
𝕌Invariant* ◾ = refl
𝕌Invariant* (r ∷ rs) = trans (𝕌Invariant r) (𝕌Invariant* rs)
-- Appending context does not affect reductions
appendκ↦ : ∀ {st st'} → (r : st ↦ st') (eq : get𝕌State st ≡ get𝕌State st')
→ (κ : Context {proj₁ (get𝕌State st)} {proj₂ (get𝕌State st)})
→ appendκState st κ ↦ appendκState st' (subst (λ {(A , B) → Context {A} {B}}) eq κ)
appendκ↦ ↦⃗₁ refl ctx = ↦⃗₁
appendκ↦ ↦⃗₂ refl ctx = ↦⃗₂
appendκ↦ ↦⃗₃ refl ctx = ↦⃗₃
appendκ↦ ↦⃗₄ refl ctx = ↦⃗₄
appendκ↦ ↦⃗₅ refl ctx = ↦⃗₅
appendκ↦ ↦⃗₆ refl ctx = ↦⃗₆
appendκ↦ ↦⃗₇ refl ctx = ↦⃗₇
appendκ↦ ↦⃗₈ refl ctx = ↦⃗₈
appendκ↦ ↦⃗₉ refl ctx = ↦⃗₉
appendκ↦ ↦⃗₁₀ refl ctx = ↦⃗₁₀
appendκ↦ ↦⃗₁₁ refl ctx = ↦⃗₁₁
appendκ↦ ↦⃗₁₂ refl ctx = ↦⃗₁₂
appendκ↦ ↦⃖₁ refl ctx = ↦⃖₁
appendκ↦ ↦⃖₂ refl ctx = ↦⃖₂
appendκ↦ ↦⃖₃ refl ctx = ↦⃖₃
appendκ↦ ↦⃖₄ refl ctx = ↦⃖₄
appendκ↦ ↦⃖₅ refl ctx = ↦⃖₅
appendκ↦ ↦⃖₆ refl ctx = ↦⃖₆
appendκ↦ ↦⃖₇ refl ctx = ↦⃖₇
appendκ↦ ↦⃖₈ refl ctx = ↦⃖₈
appendκ↦ ↦⃖₉ refl ctx = ↦⃖₉
appendκ↦ ↦⃖₁₀ refl ctx = ↦⃖₁₀
appendκ↦ ↦⃖₁₁ refl ctx = ↦⃖₁₁
appendκ↦ ↦⃖₁₂ refl ctx = ↦⃖₁₂
appendκ↦ ↦η₁ refl ctx = ↦η₁
appendκ↦ ↦η₂ refl ctx = ↦η₂
appendκ↦ ↦ε₁ refl ctx = ↦ε₁
appendκ↦ ↦ε₂ refl ctx = ↦ε₂
appendκ↦* : ∀ {st st'} → (r : st ↦* st') (eq : get𝕌State st ≡ get𝕌State st')
→ (κ : Context {proj₁ (get𝕌State st)} {proj₂ (get𝕌State st)})
→ appendκState st κ ↦* appendκState st' (subst (λ {(A , B) → Context {A} {B}}) eq κ)
appendκ↦* ◾ refl ctx = ◾
appendκ↦* (↦⃗₁ {b = b} {v} {κ} ∷ rs) eq ctx = appendκ↦ (↦⃗₁ {b = b} {v} {κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦⃗₂ {v = v} {κ} ∷ rs) eq ctx = appendκ↦ (↦⃗₂ {v = v} {κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦⃗₃ {v = v} {κ} ∷ rs) eq ctx = appendκ↦ (↦⃗₃ {v = v} {κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦⃗₄ {x = x} {κ} ∷ rs) eq ctx = appendκ↦ (↦⃗₄ {x = x} {κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦⃗₅ {y = y} {κ} ∷ rs) eq ctx = appendκ↦ (↦⃗₅ {y = y} {κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦⃗₆ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦⃗₆ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦⃗₇ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦⃗₇ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦⃗₈ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦⃗₈ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦⃗₉ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦⃗₉ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦⃗₁₀ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦⃗₁₀ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦⃗₁₁ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦⃗₁₁ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦⃗₁₂ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦⃗₁₂ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦⃖₁ {b = b} {v} {κ} ∷ rs) eq ctx = appendκ↦ (↦⃖₁ {b = b} {v} {κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦⃖₂ {v = v} {κ} ∷ rs) eq ctx = appendκ↦ (↦⃖₂ {v = v} {κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦⃖₃ {v = v} {κ} ∷ rs) eq ctx = appendκ↦ (↦⃖₃ {v = v} {κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦⃖₄ {x = x} {κ} ∷ rs) eq ctx = appendκ↦ (↦⃖₄ {x = x} {κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦⃖₅ {y = y} {κ} ∷ rs) eq ctx = appendκ↦ (↦⃖₅ {y = y} {κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦⃖₆ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦⃖₆ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦⃖₇ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦⃖₇ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦⃖₈ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦⃖₈ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦⃖₉ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦⃖₉ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦⃖₁₀ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦⃖₁₀ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦⃖₁₁ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦⃖₁₁ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦⃖₁₂ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦⃖₁₂ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦η₁ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦η₁ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦η₂ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦η₂ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦ε₁ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦ε₁ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦ε₂ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦ε₂ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx
|
algebraic-stack_agda0000_doc_8539 | ------------------------------------------------------------------------
-- Two logically equivalent axiomatisations of equality
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Equality where
open import Logical-equivalence hiding (id; _∘_)
open import Prelude
private
variable
ℓ : Level
A B C D : Type ℓ
P : A → Type ℓ
a a₁ a₂ a₃ b c p u v x x₁ x₂ y y₁ y₂ z : A
f g : (x : A) → P x
------------------------------------------------------------------------
-- Reflexive relations
record Reflexive-relation a : Type (lsuc a) where
no-eta-equality
infix 4 _≡_
field
-- "Equality".
_≡_ : {A : Type a} → A → A → Type a
-- Reflexivity.
refl : (x : A) → x ≡ x
-- Some definitions.
module Reflexive-relation′
(reflexive : ∀ ℓ → Reflexive-relation ℓ) where
private
open module R {ℓ} = Reflexive-relation (reflexive ℓ) public
-- Non-equality.
infix 4 _≢_
_≢_ : {A : Type a} → A → A → Type a
x ≢ y = ¬ (x ≡ y)
-- The property of having decidable equality.
Decidable-equality : Type ℓ → Type ℓ
Decidable-equality A = Decidable (_≡_ {A = A})
-- A type is contractible if it is inhabited and all elements are
-- equal.
Contractible : Type ℓ → Type ℓ
Contractible A = ∃ λ (x : A) → ∀ y → x ≡ y
-- The property of being a proposition.
Is-proposition : Type ℓ → Type ℓ
Is-proposition A = (x y : A) → x ≡ y
-- The property of being a set.
Is-set : Type ℓ → Type ℓ
Is-set A = {x y : A} → Is-proposition (x ≡ y)
-- Uniqueness of identity proofs (for a specific universe level).
Uniqueness-of-identity-proofs : ∀ ℓ → Type (lsuc ℓ)
Uniqueness-of-identity-proofs ℓ = {A : Type ℓ} → Is-set A
-- The K rule (without computational content).
K-rule : ∀ a p → Type (lsuc (a ⊔ p))
K-rule a p = {A : Type a} (P : {x : A} → x ≡ x → Type p) →
(∀ x → P (refl x)) →
∀ {x} (x≡x : x ≡ x) → P x≡x
-- Singleton x is a set which contains all elements which are equal
-- to x.
Singleton : {A : Type a} → A → Type a
Singleton x = ∃ λ y → y ≡ x
-- A variant of Singleton.
Other-singleton : {A : Type a} → A → Type a
Other-singleton x = ∃ λ y → x ≡ y
-- The inspect idiom.
inspect : (x : A) → Other-singleton x
inspect x = x , refl x
-- Extensionality for functions of a certain type.
Extensionality′ : (A : Type a) → (A → Type b) → Type (a ⊔ b)
Extensionality′ A B =
{f g : (x : A) → B x} → (∀ x → f x ≡ g x) → f ≡ g
-- Extensionality for functions at certain levels.
--
-- The definition is wrapped in a record type in order to avoid
-- certain problems related to Agda's handling of implicit
-- arguments.
record Extensionality (a b : Level) : Type (lsuc (a ⊔ b)) where
no-eta-equality
field
apply-ext : {A : Type a} {B : A → Type b} → Extensionality′ A B
open Extensionality public
-- Proofs of extensionality which behave well when applied to
-- reflexivity.
Well-behaved-extensionality :
(A : Type a) → (A → Type b) → Type (a ⊔ b)
Well-behaved-extensionality A B =
∃ λ (ext : Extensionality′ A B) →
∀ f → ext (λ x → refl (f x)) ≡ refl f
------------------------------------------------------------------------
-- Abstract definition of equality based on the J rule
-- Parametrised by a reflexive relation.
record Equality-with-J₀
a p (reflexive : ∀ ℓ → Reflexive-relation ℓ) :
Type (lsuc (a ⊔ p)) where
open Reflexive-relation′ reflexive
field
-- The J rule.
elim : ∀ {A : Type a} {x y}
(P : {x y : A} → x ≡ y → Type p) →
(∀ x → P (refl x)) →
(x≡y : x ≡ y) → P x≡y
-- The usual computational behaviour of the J rule.
elim-refl : ∀ {A : Type a} {x}
(P : {x y : A} → x ≡ y → Type p)
(r : ∀ x → P (refl x)) →
elim P r (refl x) ≡ r x
-- Extended variants of Reflexive-relation and Equality-with-J₀ with
-- some extra fields. These fields can be derived from
-- Equality-with-J₀ (see J₀⇒Equivalence-relation⁺ and J₀⇒J below), but
-- those derived definitions may not have the intended computational
-- behaviour (in particular, not when the paths of Cubical Agda are
-- used).
-- A variant of Reflexive-relation: equivalence relations with some
-- extra structure.
record Equivalence-relation⁺ a : Type (lsuc a) where
no-eta-equality
field
reflexive-relation : Reflexive-relation a
open Reflexive-relation reflexive-relation
field
-- Symmetry.
sym : {A : Type a} {x y : A} → x ≡ y → y ≡ x
sym-refl : {A : Type a} {x : A} → sym (refl x) ≡ refl x
-- Transitivity.
trans : {A : Type a} {x y z : A} → x ≡ y → y ≡ z → x ≡ z
trans-refl-refl : {A : Type a} {x : A} →
trans (refl x) (refl x) ≡ refl x
-- A variant of Equality-with-J₀.
record Equality-with-J
a b (e⁺ : ∀ ℓ → Equivalence-relation⁺ ℓ) :
Type (lsuc (a ⊔ b)) where
no-eta-equality
private
open module R {ℓ} = Equivalence-relation⁺ (e⁺ ℓ)
open module R₀ {ℓ} = Reflexive-relation (reflexive-relation {ℓ})
field
equality-with-J₀ : Equality-with-J₀ a b (λ _ → reflexive-relation)
open Equality-with-J₀ equality-with-J₀
field
-- Congruence.
cong : {A : Type a} {B : Type b} {x y : A}
(f : A → B) → x ≡ y → f x ≡ f y
cong-refl : {A : Type a} {B : Type b} {x : A} (f : A → B) →
cong f (refl x) ≡ refl (f x)
-- Substitutivity.
subst : {A : Type a} {x y : A} (P : A → Type b) →
x ≡ y → P x → P y
subst-refl : ∀ {A : Type a} {x} (P : A → Type b) p →
subst P (refl x) p ≡ p
-- A dependent variant of cong.
dcong :
∀ {A : Type a} {P : A → Type b} {x y}
(f : (x : A) → P x) (x≡y : x ≡ y) →
subst P x≡y (f x) ≡ f y
dcong-refl :
∀ {A : Type a} {P : A → Type b} {x} (f : (x : A) → P x) →
dcong f (refl x) ≡ subst-refl _ _
-- Equivalence-relation⁺ can be derived from Equality-with-J₀.
J₀⇒Equivalence-relation⁺ :
∀ {ℓ reflexive} →
Equality-with-J₀ ℓ ℓ reflexive →
Equivalence-relation⁺ ℓ
J₀⇒Equivalence-relation⁺ {ℓ} {r} eq = record
{ reflexive-relation = r ℓ
; sym = sym
; sym-refl = sym-refl
; trans = trans
; trans-refl-refl = trans-refl-refl
}
where
open Reflexive-relation (r ℓ)
open Equality-with-J₀ eq
cong : (f : A → B) → x ≡ y → f x ≡ f y
cong f = elim (λ {u v} _ → f u ≡ f v) (λ x → refl (f x))
subst : (P : A → Type ℓ) → x ≡ y → P x → P y
subst P = elim (λ {u v} _ → P u → P v) (λ _ p → p)
subst-refl : (P : A → Type ℓ) (p : P x) → subst P (refl x) p ≡ p
subst-refl P p = cong (_$ p) $ elim-refl (λ {u} _ → P u → _) _
sym : x ≡ y → y ≡ x
sym {x = x} x≡y = subst (λ z → x ≡ z → z ≡ x) x≡y id x≡y
abstract
sym-refl : sym (refl x) ≡ refl x
sym-refl = cong (_$ _) $ subst-refl (λ z → _ ≡ z → z ≡ _) _
trans : x ≡ y → y ≡ z → x ≡ z
trans {x = x} = flip (subst (x ≡_))
abstract
trans-refl-refl : trans (refl x) (refl x) ≡ refl x
trans-refl-refl = subst-refl _ _
-- Equality-with-J (for arbitrary universe levels) can be derived from
-- Equality-with-J₀ (for arbitrary universe levels).
J₀⇒J :
∀ {reflexive} →
(eq : ∀ {a p} → Equality-with-J₀ a p reflexive) →
∀ {a p} → Equality-with-J a p (λ _ → J₀⇒Equivalence-relation⁺ eq)
J₀⇒J {r} eq {a} {b} = record
{ equality-with-J₀ = eq
; cong = cong
; cong-refl = cong-refl
; subst = subst
; subst-refl = subst-refl
; dcong = dcong
; dcong-refl = dcong-refl
}
where
open module R {ℓ} = Reflexive-relation (r ℓ)
open module E {a} {b} = Equality-with-J₀ (eq {a} {b})
cong : (f : A → B) → x ≡ y → f x ≡ f y
cong f = elim (λ {u v} _ → f u ≡ f v) (λ x → refl (f x))
abstract
cong-refl : (f : A → B) → cong f (refl x) ≡ refl (f x)
cong-refl _ = elim-refl _ _
subst : (P : A → Type b) → x ≡ y → P x → P y
subst P = elim (λ {u v} _ → P u → P v) (λ _ p → p)
subst-refl≡id : (P : A → Type b) → subst P (refl x) ≡ id
subst-refl≡id P = elim-refl (λ {u v} _ → P u → P v) (λ _ p → p)
subst-refl : ∀ (P : A → Type b) p → subst P (refl x) p ≡ p
subst-refl P p = cong (_$ p) (subst-refl≡id P)
dcong : (f : (x : A) → P x) (x≡y : x ≡ y) →
subst P x≡y (f x) ≡ f y
dcong {A = A} {P = P} f x≡y = elim
(λ {x y} (x≡y : x ≡ y) → (f : (x : A) → P x) →
subst P x≡y (f x) ≡ f y)
(λ _ _ → subst-refl _ _)
x≡y
f
abstract
dcong-refl : (f : (x : A) → P x) →
dcong f (refl x) ≡ subst-refl _ _
dcong-refl {P = P} f =
cong (_$ f) $ elim-refl (λ _ → (_ : ∀ x → P x) → _) _
-- Some derived properties.
module Equality-with-J′
{e⁺ : ∀ ℓ → Equivalence-relation⁺ ℓ}
(eq : ∀ {a p} → Equality-with-J a p e⁺)
where
private
open module E⁺ {ℓ} = Equivalence-relation⁺ (e⁺ ℓ) public
open module E {a b} = Equality-with-J (eq {a} {b}) public
hiding (subst; subst-refl)
open module E₀ {a p} = Equality-with-J₀ (equality-with-J₀ {a} {p})
public
open Reflexive-relation′ (λ ℓ → reflexive-relation {ℓ}) public
-- Substitutivity.
subst : (P : A → Type p) → x ≡ y → P x → P y
subst = E.subst
subst-refl : (P : A → Type p) (p : P x) → subst P (refl x) p ≡ p
subst-refl = E.subst-refl
-- Singleton types are contractible.
private
irr : (p : Singleton x) → (x , refl x) ≡ p
irr p =
elim (λ {u v} u≡v → (v , refl v) ≡ (u , u≡v))
(λ _ → refl _)
(proj₂ p)
singleton-contractible : (x : A) → Contractible (Singleton x)
singleton-contractible x = ((x , refl x) , irr)
abstract
-- "Evaluation rule" for singleton-contractible.
singleton-contractible-refl :
(x : A) →
proj₂ (singleton-contractible x) (x , refl x) ≡ refl (x , refl x)
singleton-contractible-refl _ = elim-refl _ _
------------------------------------------------------------------------
-- Abstract definition of equality based on substitutivity and
-- contractibility of singleton types
record Equality-with-substitutivity-and-contractibility
a p (reflexive : ∀ ℓ → Reflexive-relation ℓ) :
Type (lsuc (a ⊔ p)) where
no-eta-equality
open Reflexive-relation′ reflexive
field
-- Substitutivity.
subst : {A : Type a} {x y : A} (P : A → Type p) → x ≡ y → P x → P y
-- The usual computational behaviour of substitutivity.
subst-refl : {A : Type a} {x : A} (P : A → Type p) (p : P x) →
subst P (refl x) p ≡ p
-- Singleton types are contractible.
singleton-contractible :
{A : Type a} (x : A) → Contractible (Singleton x)
-- Some derived properties.
module Equality-with-substitutivity-and-contractibility′
{reflexive : ∀ ℓ → Reflexive-relation ℓ}
(eq : ∀ {a p} → Equality-with-substitutivity-and-contractibility
a p reflexive)
where
private
open Reflexive-relation′ reflexive public
open module E {a p} =
Equality-with-substitutivity-and-contractibility (eq {a} {p}) public
hiding (singleton-contractible)
open module E′ {a} =
Equality-with-substitutivity-and-contractibility (eq {a} {a}) public
using (singleton-contractible)
abstract
-- Congruence.
cong : (f : A → B) → x ≡ y → f x ≡ f y
cong {x = x} f x≡y =
subst (λ y → x ≡ y → f x ≡ f y) x≡y (λ _ → refl (f x)) x≡y
-- Symmetry.
sym : x ≡ y → y ≡ x
sym {x = x} x≡y = subst (λ z → x ≡ z → z ≡ x) x≡y id x≡y
abstract
-- "Evaluation rule" for sym.
sym-refl : sym (refl x) ≡ refl x
sym-refl {x = x} =
cong (λ f → f (refl x)) $
subst-refl (λ z → x ≡ z → z ≡ x) _
-- Transitivity.
trans : x ≡ y → y ≡ z → x ≡ z
trans {x = x} = flip (subst (_≡_ x))
abstract
-- "Evaluation rule" for trans.
trans-refl-refl : trans (refl x) (refl x) ≡ refl x
trans-refl-refl = subst-refl _ _
abstract
-- The J rule.
elim : (P : {x y : A} → x ≡ y → Type p) →
(∀ x → P (refl x)) →
(x≡y : x ≡ y) → P x≡y
elim {x = x} {y = y} P p x≡y =
let lemma = proj₂ (singleton-contractible y) in
subst (P ∘ proj₂)
(trans (sym (lemma (y , refl y))) (lemma (x , x≡y)))
(p y)
-- Transitivity and symmetry sometimes cancel each other out.
trans-sym : (x≡y : x ≡ y) → trans (sym x≡y) x≡y ≡ refl y
trans-sym =
elim (λ {x y} (x≡y : x ≡ y) → trans (sym x≡y) x≡y ≡ refl y)
(λ _ → trans (cong (λ p → trans p _) sym-refl)
trans-refl-refl)
-- "Evaluation rule" for elim.
elim-refl : (P : {x y : A} → x ≡ y → Type p)
(p : ∀ x → P (refl x)) →
elim P p (refl x) ≡ p x
elim-refl {x = x} _ _ =
let lemma = proj₂ (singleton-contractible x) (x , refl x) in
trans (cong (λ q → subst _ q _) (trans-sym lemma))
(subst-refl _ _)
------------------------------------------------------------------------
-- The two abstract definitions are logically equivalent
J⇒subst+contr :
∀ {reflexive} →
(∀ {a p} → Equality-with-J₀ a p reflexive) →
∀ {a p} → Equality-with-substitutivity-and-contractibility
a p reflexive
J⇒subst+contr eq = record
{ subst = subst
; subst-refl = subst-refl
; singleton-contractible = singleton-contractible
}
where open Equality-with-J′ (J₀⇒J eq)
subst+contr⇒J :
∀ {reflexive} →
(∀ {a p} → Equality-with-substitutivity-and-contractibility
a p reflexive) →
∀ {a p} → Equality-with-J₀ a p reflexive
subst+contr⇒J eq = record
{ elim = elim
; elim-refl = elim-refl
}
where open Equality-with-substitutivity-and-contractibility′ eq
------------------------------------------------------------------------
-- Some derived definitions and properties
module Derived-definitions-and-properties
{e⁺}
(equality-with-J : ∀ {a p} → Equality-with-J a p e⁺)
where
-- This module reexports most of the definitions and properties
-- introduced above.
open Equality-with-J′ equality-with-J public
private
variable
eq u≡v v≡w x≡y y≡z x₁≡x₂ : x ≡ y
-- Equational reasoning combinators.
infix -1 finally _∎
infixr -2 step-≡ _≡⟨⟩_
_∎ : (x : A) → x ≡ x
x ∎ = refl x
-- It can be easier for Agda to type-check typical equational
-- reasoning chains if the transitivity proof gets the equality
-- arguments in the opposite order, because then the y argument is
-- (perhaps more) known once the proof of x ≡ y is type-checked.
--
-- The idea behind this optimisation came up in discussions with Ulf
-- Norell.
step-≡ : ∀ x → y ≡ z → x ≡ y → x ≡ z
step-≡ _ = flip trans
syntax step-≡ x y≡z x≡y = x ≡⟨ x≡y ⟩ y≡z
_≡⟨⟩_ : ∀ x → x ≡ y → x ≡ y
_ ≡⟨⟩ x≡y = x≡y
finally : (x y : A) → x ≡ y → x ≡ y
finally _ _ x≡y = x≡y
syntax finally x y x≡y = x ≡⟨ x≡y ⟩∎ y ∎
-- A minor variant of Christine Paulin-Mohring's version of the J
-- rule.
--
-- This definition is based on Martin Hofmann's (see the addendum
-- to Thomas Streicher's Habilitation thesis). Note that it is
-- also very similar to the definition of
-- Equality-with-substitutivity-and-contractibility.elim.
elim₁ : (P : ∀ {x} → x ≡ y → Type p) →
P (refl y) →
(x≡y : x ≡ y) → P x≡y
elim₁ {y = y} {x = x} P p x≡y =
subst (P ∘ proj₂)
(proj₂ (singleton-contractible y) (x , x≡y))
p
abstract
-- "Evaluation rule" for elim₁.
elim₁-refl : (P : ∀ {x} → x ≡ y → Type p) (p : P (refl y)) →
elim₁ P p (refl y) ≡ p
elim₁-refl {y = y} P p =
subst (P ∘ proj₂)
(proj₂ (singleton-contractible y) (y , refl y))
p ≡⟨ cong (λ q → subst (P ∘ proj₂) q _) (singleton-contractible-refl _) ⟩
subst (P ∘ proj₂) (refl (y , refl y)) p ≡⟨ subst-refl _ _ ⟩∎
p ∎
-- A variant of singleton-contractible.
private
irr : (p : Other-singleton x) → (x , refl x) ≡ p
irr p =
elim (λ {u v} u≡v → (u , refl u) ≡ (v , u≡v))
(λ _ → refl _)
(proj₂ p)
other-singleton-contractible :
(x : A) → Contractible (Other-singleton x)
other-singleton-contractible x = ((x , refl x) , irr)
abstract
-- "Evaluation rule" for other-singleton-contractible.
other-singleton-contractible-refl :
(x : A) →
proj₂ (other-singleton-contractible x) (x , refl x) ≡
refl (x , refl x)
other-singleton-contractible-refl _ = elim-refl _ _
-- Christine Paulin-Mohring's version of the J rule.
elim¹ : (P : ∀ {y} → x ≡ y → Type p) →
P (refl x) →
(x≡y : x ≡ y) → P x≡y
elim¹ {x = x} {y = y} P p x≡y =
subst (P ∘ proj₂)
(proj₂ (other-singleton-contractible x) (y , x≡y))
p
abstract
-- "Evaluation rule" for elim¹.
elim¹-refl : (P : ∀ {y} → x ≡ y → Type p) (p : P (refl x)) →
elim¹ P p (refl x) ≡ p
elim¹-refl {x = x} P p =
subst (P ∘ proj₂)
(proj₂ (other-singleton-contractible x) (x , refl x)) p ≡⟨ cong (λ q → subst (P ∘ proj₂) q _)
(other-singleton-contractible-refl _) ⟩
subst (P ∘ proj₂) (refl (x , refl x)) p ≡⟨ subst-refl _ _ ⟩∎
p ∎
-- Every conceivable alternative implementation of cong (for two
-- specific types) is pointwise equal to cong.
monomorphic-cong-canonical :
(cong′ : {x y : A} (f : A → B) → x ≡ y → f x ≡ f y) →
({x : A} (f : A → B) → cong′ f (refl x) ≡ refl (f x)) →
cong′ f x≡y ≡ cong f x≡y
monomorphic-cong-canonical {f = f} cong′ cong′-refl = elim
(λ x≡y → cong′ f x≡y ≡ cong f x≡y)
(λ x →
cong′ f (refl x) ≡⟨ cong′-refl _ ⟩
refl (f x) ≡⟨ sym $ cong-refl _ ⟩∎
cong f (refl x) ∎)
_
-- Every conceivable alternative implementation of cong (for
-- arbitrary types) is pointwise equal to cong.
cong-canonical :
(cong′ :
∀ {a b} {A : Type a} {B : Type b} {x y : A}
(f : A → B) → x ≡ y → f x ≡ f y) →
(∀ {a b} {A : Type a} {B : Type b} {x : A}
(f : A → B) → cong′ f (refl x) ≡ refl (f x)) →
cong′ f x≡y ≡ cong f x≡y
cong-canonical cong′ cong′-refl =
monomorphic-cong-canonical cong′ cong′-refl
-- A generalisation of dcong.
dcong′ :
(f : (x : A) → x ≡ y → P x) (x≡y : x ≡ y) →
subst P x≡y (f x x≡y) ≡ f y (refl y)
dcong′ {y = y} {P = P} f x≡y = elim₁
(λ {x} (x≡y : x ≡ y) →
(f : ∀ x → x ≡ y → P x) →
subst P x≡y (f x x≡y) ≡ f y (refl y))
(λ f → subst P (refl y) (f y (refl y)) ≡⟨ subst-refl _ _ ⟩∎
f y (refl y) ∎)
x≡y f
abstract
-- "Evaluation rule" for dcong′.
dcong′-refl :
(f : (x : A) → x ≡ y → P x) →
dcong′ f (refl y) ≡ subst-refl _ _
dcong′-refl {y = y} {P = P} f =
cong (_$ f) $ elim₁-refl (λ _ → (f : ∀ x → x ≡ y → P x) → _) _
-- Binary congruence.
cong₂ : (f : A → B → C) → x ≡ y → u ≡ v → f x u ≡ f y v
cong₂ {x = x} {y = y} {u = u} {v = v} f x≡y u≡v =
f x u ≡⟨ cong (flip f u) x≡y ⟩
f y u ≡⟨ cong (f y) u≡v ⟩∎
f y v ∎
abstract
-- "Evaluation rule" for cong₂.
cong₂-refl : (f : A → B → C) →
cong₂ f (refl x) (refl y) ≡ refl (f x y)
cong₂-refl {x = x} {y = y} f =
trans (cong (flip f y) (refl x)) (cong (f x) (refl y)) ≡⟨ cong₂ trans (cong-refl _) (cong-refl _) ⟩
trans (refl (f x y)) (refl (f x y)) ≡⟨ trans-refl-refl ⟩∎
refl (f x y) ∎
-- The K rule is logically equivalent to uniqueness of identity
-- proofs (at least for certain combinations of levels).
K⇔UIP : K-rule ℓ ℓ ⇔ Uniqueness-of-identity-proofs ℓ
K⇔UIP = record
{ from = λ UIP P r {x} x≡x → subst P (UIP (refl x) x≡x) (r x)
; to = λ K →
elim (λ p → ∀ q → p ≡ q)
(λ x → K (λ {x} p → refl x ≡ p) (λ x → refl (refl x)))
}
abstract
-- Extensionality at given levels works at lower levels as well.
lower-extensionality :
∀ â b̂ → Extensionality (a ⊔ â) (b ⊔ b̂) → Extensionality a b
apply-ext (lower-extensionality â b̂ ext) f≡g =
cong (λ h → lower ∘ h ∘ lift) $
apply-ext ext
{A = ↑ â _} {B = ↑ b̂ ∘ _} (cong lift ∘ f≡g ∘ lower)
-- Extensionality for explicit function types works for implicit
-- function types as well.
implicit-extensionality :
Extensionality a b →
{A : Type a} {B : A → Type b} {f g : {x : A} → B x} →
(∀ x → f {x} ≡ g {x}) → (λ {x} → f {x}) ≡ g
implicit-extensionality ext f≡g =
cong (λ f {x} → f x) $ apply-ext ext f≡g
-- A bunch of lemmas that can be used to rearrange equalities.
abstract
trans-reflʳ : (x≡y : x ≡ y) → trans x≡y (refl y) ≡ x≡y
trans-reflʳ =
elim (λ {u v} u≡v → trans u≡v (refl v) ≡ u≡v)
(λ _ → trans-refl-refl)
trans-reflˡ : (x≡y : x ≡ y) → trans (refl x) x≡y ≡ x≡y
trans-reflˡ =
elim (λ {u v} u≡v → trans (refl u) u≡v ≡ u≡v)
(λ _ → trans-refl-refl)
trans-assoc : (x≡y : x ≡ y) (y≡z : y ≡ z) (z≡u : z ≡ u) →
trans (trans x≡y y≡z) z≡u ≡ trans x≡y (trans y≡z z≡u)
trans-assoc =
elim (λ x≡y → ∀ y≡z z≡u → trans (trans x≡y y≡z) z≡u ≡
trans x≡y (trans y≡z z≡u))
(λ y y≡z z≡u →
trans (trans (refl y) y≡z) z≡u ≡⟨ cong₂ trans (trans-reflˡ _) (refl _) ⟩
trans y≡z z≡u ≡⟨ sym $ trans-reflˡ _ ⟩∎
trans (refl y) (trans y≡z z≡u) ∎)
sym-sym : (x≡y : x ≡ y) → sym (sym x≡y) ≡ x≡y
sym-sym = elim (λ {u v} u≡v → sym (sym u≡v) ≡ u≡v)
(λ x → sym (sym (refl x)) ≡⟨ cong sym sym-refl ⟩
sym (refl x) ≡⟨ sym-refl ⟩∎
refl x ∎)
sym-trans : (x≡y : x ≡ y) (y≡z : y ≡ z) →
sym (trans x≡y y≡z) ≡ trans (sym y≡z) (sym x≡y)
sym-trans =
elim (λ x≡y → ∀ y≡z → sym (trans x≡y y≡z) ≡ trans (sym y≡z) (sym x≡y))
(λ y y≡z → sym (trans (refl y) y≡z) ≡⟨ cong sym (trans-reflˡ _) ⟩
sym y≡z ≡⟨ sym $ trans-reflʳ _ ⟩
trans (sym y≡z) (refl y) ≡⟨ cong (trans (sym y≡z)) (sym sym-refl) ⟩∎
trans (sym y≡z) (sym (refl y)) ∎)
trans-symˡ : (p : x ≡ y) → trans (sym p) p ≡ refl y
trans-symˡ =
elim (λ p → trans (sym p) p ≡ refl _)
(λ x → trans (sym (refl x)) (refl x) ≡⟨ trans-reflʳ _ ⟩
sym (refl x) ≡⟨ sym-refl ⟩∎
refl x ∎)
trans-symʳ : (p : x ≡ y) → trans p (sym p) ≡ refl _
trans-symʳ =
elim (λ p → trans p (sym p) ≡ refl _)
(λ x → trans (refl x) (sym (refl x)) ≡⟨ trans-reflˡ _ ⟩
sym (refl x) ≡⟨ sym-refl ⟩∎
refl x ∎)
cong-trans : (f : A → B) (x≡y : x ≡ y) (y≡z : y ≡ z) →
cong f (trans x≡y y≡z) ≡ trans (cong f x≡y) (cong f y≡z)
cong-trans f =
elim (λ x≡y → ∀ y≡z → cong f (trans x≡y y≡z) ≡
trans (cong f x≡y) (cong f y≡z))
(λ y y≡z → cong f (trans (refl y) y≡z) ≡⟨ cong (cong f) (trans-reflˡ _) ⟩
cong f y≡z ≡⟨ sym $ trans-reflˡ _ ⟩
trans (refl (f y)) (cong f y≡z) ≡⟨ cong₂ trans (sym (cong-refl _)) (refl _) ⟩∎
trans (cong f (refl y)) (cong f y≡z) ∎)
cong-id : (x≡y : x ≡ y) → x≡y ≡ cong id x≡y
cong-id = elim (λ u≡v → u≡v ≡ cong id u≡v)
(λ x → refl x ≡⟨ sym (cong-refl _) ⟩∎
cong id (refl x) ∎)
cong-const : (x≡y : x ≡ y) → cong (const z) x≡y ≡ refl z
cong-const {z = z} =
elim (λ u≡v → cong (const z) u≡v ≡ refl z)
(λ x → cong (const z) (refl x) ≡⟨ cong-refl _ ⟩∎
refl z ∎)
cong-∘ : (f : B → C) (g : A → B) (x≡y : x ≡ y) →
cong f (cong g x≡y) ≡ cong (f ∘ g) x≡y
cong-∘ f g = elim (λ x≡y → cong f (cong g x≡y) ≡ cong (f ∘ g) x≡y)
(λ x → cong f (cong g (refl x)) ≡⟨ cong (cong f) (cong-refl _) ⟩
cong f (refl (g x)) ≡⟨ cong-refl _ ⟩
refl (f (g x)) ≡⟨ sym (cong-refl _) ⟩∎
cong (f ∘ g) (refl x) ∎)
cong-uncurry-cong₂-, :
{x≡y : x ≡ y} {u≡v : u ≡ v} →
cong (uncurry f) (cong₂ _,_ x≡y u≡v) ≡ cong₂ f x≡y u≡v
cong-uncurry-cong₂-, {y = y} {u = u} {f = f} {x≡y = x≡y} {u≡v} =
cong (uncurry f)
(trans (cong (flip _,_ u) x≡y) (cong (_,_ y) u≡v)) ≡⟨ cong-trans _ _ _ ⟩
trans (cong (uncurry f) (cong (flip _,_ u) x≡y))
(cong (uncurry f) (cong (_,_ y) u≡v)) ≡⟨ cong₂ trans (cong-∘ _ _ _) (cong-∘ _ _ _) ⟩∎
trans (cong (flip f u) x≡y) (cong (f y) u≡v) ∎
cong-proj₁-cong₂-, :
(x≡y : x ≡ y) (u≡v : u ≡ v) →
cong proj₁ (cong₂ _,_ x≡y u≡v) ≡ x≡y
cong-proj₁-cong₂-, {y = y} x≡y u≡v =
cong proj₁ (cong₂ _,_ x≡y u≡v) ≡⟨ cong-uncurry-cong₂-, ⟩
cong₂ const x≡y u≡v ≡⟨⟩
trans (cong id x≡y) (cong (const y) u≡v) ≡⟨ cong₂ trans (sym $ cong-id _) (cong-const _) ⟩
trans x≡y (refl y) ≡⟨ trans-reflʳ _ ⟩∎
x≡y ∎
cong-proj₂-cong₂-, :
(x≡y : x ≡ y) (u≡v : u ≡ v) →
cong proj₂ (cong₂ _,_ x≡y u≡v) ≡ u≡v
cong-proj₂-cong₂-, {u = u} x≡y u≡v =
cong proj₂ (cong₂ _,_ x≡y u≡v) ≡⟨ cong-uncurry-cong₂-, ⟩
cong₂ (const id) x≡y u≡v ≡⟨⟩
trans (cong (const u) x≡y) (cong id u≡v) ≡⟨ cong₂ trans (cong-const _) (sym $ cong-id _) ⟩
trans (refl u) u≡v ≡⟨ trans-reflˡ _ ⟩∎
u≡v ∎
cong₂-reflˡ : {u≡v : u ≡ v}
(f : A → B → C) →
cong₂ f (refl x) u≡v ≡ cong (f x) u≡v
cong₂-reflˡ {u = u} {x = x} {u≡v = u≡v} f =
trans (cong (flip f u) (refl x)) (cong (f x) u≡v) ≡⟨ cong₂ trans (cong-refl _) (refl _) ⟩
trans (refl (f x u)) (cong (f x) u≡v) ≡⟨ trans-reflˡ _ ⟩∎
cong (f x) u≡v ∎
cong₂-reflʳ : (f : A → B → C) {x≡y : x ≡ y} →
cong₂ f x≡y (refl u) ≡ cong (flip f u) x≡y
cong₂-reflʳ {y = y} {u = u} f {x≡y} =
trans (cong (flip f u) x≡y) (cong (f y) (refl u)) ≡⟨ cong (trans _) (cong-refl _) ⟩
trans (cong (flip f u) x≡y) (refl (f y u)) ≡⟨ trans-reflʳ _ ⟩∎
cong (flip f u) x≡y ∎
cong-sym : (f : A → B) (x≡y : x ≡ y) →
cong f (sym x≡y) ≡ sym (cong f x≡y)
cong-sym f = elim (λ x≡y → cong f (sym x≡y) ≡ sym (cong f x≡y))
(λ x → cong f (sym (refl x)) ≡⟨ cong (cong f) sym-refl ⟩
cong f (refl x) ≡⟨ cong-refl _ ⟩
refl (f x) ≡⟨ sym sym-refl ⟩
sym (refl (f x)) ≡⟨ cong sym $ sym (cong-refl _) ⟩∎
sym (cong f (refl x)) ∎)
cong₂-sym :
cong₂ f (sym x≡y) (sym u≡v) ≡ sym (cong₂ f x≡y u≡v)
cong₂-sym {f = f} {x≡y = x≡y} {u≡v = u≡v} = elim¹
(λ u≡v → cong₂ f (sym x≡y) (sym u≡v) ≡ sym (cong₂ f x≡y u≡v))
(cong₂ f (sym x≡y) (sym (refl _)) ≡⟨ cong (cong₂ _ _) sym-refl ⟩
cong₂ f (sym x≡y) (refl _) ≡⟨ cong₂-reflʳ _ ⟩
cong (flip f _) (sym x≡y) ≡⟨ cong-sym _ _ ⟩
sym (cong (flip f _) x≡y) ≡⟨ cong sym $ sym $ cong₂-reflʳ _ ⟩∎
sym (cong₂ f x≡y (refl _)) ∎)
u≡v
cong₂-trans :
{f : A → B → C} →
cong₂ f (trans x≡y y≡z) (trans u≡v v≡w) ≡
trans (cong₂ f x≡y u≡v) (cong₂ f y≡z v≡w)
cong₂-trans
{x≡y = x≡y} {y≡z = y≡z} {u≡v = u≡v} {v≡w = v≡w} {f = f} =
elim₁
(λ x≡y →
cong₂ f (trans x≡y y≡z) (trans u≡v v≡w) ≡
trans (cong₂ f x≡y u≡v) (cong₂ f y≡z v≡w))
(elim₁
(λ u≡v →
cong₂ f (trans (refl _) y≡z) (trans u≡v v≡w) ≡
trans (cong₂ f (refl _) u≡v) (cong₂ f y≡z v≡w))
(cong₂ f (trans (refl _) y≡z) (trans (refl _) v≡w) ≡⟨ cong₂ (cong₂ f) (trans-reflˡ _) (trans-reflˡ _) ⟩
cong₂ f y≡z v≡w ≡⟨ sym $
trans (cong (flip trans _) $ cong₂-refl _) $
trans-reflˡ _ ⟩∎
trans (cong₂ f (refl _) (refl _)) (cong₂ f y≡z v≡w) ∎)
u≡v)
x≡y
cong₂-∘ˡ :
{f : B → C → D} {g : A → B} {x≡y : x ≡ y} {u≡v : u ≡ v} →
cong₂ (f ∘ g) x≡y u≡v ≡ cong₂ f (cong g x≡y) u≡v
cong₂-∘ˡ {y = y} {u = u} {f = f} {g = g} {x≡y = x≡y} {u≡v} =
trans (cong (flip (f ∘ g) u) x≡y) (cong (f (g y)) u≡v) ≡⟨ cong (flip trans _) $ sym $ cong-∘ _ _ _ ⟩∎
trans (cong (flip f u) (cong g x≡y)) (cong (f (g y)) u≡v) ∎
cong₂-∘ʳ :
{x≡y : x ≡ y} {u≡v : u ≡ v} →
cong₂ (λ x → f x ∘ g) x≡y u≡v ≡ cong₂ f x≡y (cong g u≡v)
cong₂-∘ʳ {y = y} {u = u} {f = f} {g = g} {x≡y = x≡y} {u≡v} =
trans (cong (flip f (g u)) x≡y) (cong (f y ∘ g) u≡v) ≡⟨ cong (trans _) $ sym $ cong-∘ _ _ _ ⟩∎
trans (cong (flip f (g u)) x≡y) (cong (f y) (cong g u≡v)) ∎
cong₂-cong-cong :
(f : A → B) (g : A → C) (h : B → C → D) →
cong₂ h (cong f eq) (cong g eq) ≡
cong (λ x → h (f x) (g x)) eq
cong₂-cong-cong f g h = elim¹
(λ eq → cong₂ h (cong f eq) (cong g eq) ≡
cong (λ x → h (f x) (g x)) eq)
(cong₂ h (cong f (refl _)) (cong g (refl _)) ≡⟨ cong₂ (cong₂ h) (cong-refl _) (cong-refl _) ⟩
cong₂ h (refl _) (refl _) ≡⟨ cong₂-refl h ⟩
refl _ ≡⟨ sym $ cong-refl _ ⟩∎
cong (λ x → h (f x) (g x)) (refl _) ∎)
_
cong-≡id :
{f : A → A}
(f≡id : f ≡ id) →
cong (λ g → g (f x)) f≡id ≡
cong (λ g → f (g x)) f≡id
cong-≡id = elim₁
(λ {f} p → cong (λ g → g (f _)) p ≡ cong (λ g → f (g _)) p)
(refl _)
cong-≡id-≡-≡id :
(f≡id : ∀ x → f x ≡ x) →
cong f (f≡id x) ≡ f≡id (f x)
cong-≡id-≡-≡id {f = f} {x = x} f≡id =
cong f (f≡id x) ≡⟨ elim¹
(λ {y} (p : f x ≡ y) →
cong f p ≡ trans (f≡id (f x)) (trans p (sym (f≡id y)))) (
cong f (refl _) ≡⟨ cong-refl _ ⟩
refl _ ≡⟨ sym $ trans-symʳ _ ⟩
trans (f≡id (f x)) (sym (f≡id (f x))) ≡⟨ cong (trans (f≡id (f x))) $ sym $ trans-reflˡ _ ⟩∎
trans (f≡id (f x)) (trans (refl _) (sym (f≡id (f x)))) ∎)
(f≡id x)⟩
trans (f≡id (f x)) (trans (f≡id x) (sym (f≡id x))) ≡⟨ cong (trans (f≡id (f x))) $ trans-symʳ _ ⟩
trans (f≡id (f x)) (refl _) ≡⟨ trans-reflʳ _ ⟩
f≡id (f x) ∎
elim-∘ :
(P Q : ∀ {x y} → x ≡ y → Type p)
(f : ∀ {x y} {x≡y : x ≡ y} → P x≡y → Q x≡y)
(r : ∀ x → P (refl x)) {x≡y : x ≡ y} →
f (elim P r x≡y) ≡ elim Q (f ∘ r) x≡y
elim-∘ {x = x} P Q f r {x≡y} = elim¹
(λ x≡y → f (elim P r x≡y) ≡
elim Q (f ∘ r) x≡y)
(f (elim P r (refl x)) ≡⟨ cong f $ elim-refl _ _ ⟩
f (r x) ≡⟨ sym $ elim-refl _ _ ⟩∎
elim Q (f ∘ r) (refl x) ∎)
x≡y
elim-cong :
(P : B → B → Type p) (f : A → B)
(r : ∀ x → P x x) {x≡y : x ≡ y} →
elim (λ {x y} _ → P x y) r (cong f x≡y) ≡
elim (λ {x y} _ → P (f x) (f y)) (r ∘ f) x≡y
elim-cong {x = x} P f r {x≡y} = elim¹
(λ x≡y → elim (λ {x y} _ → P x y) r (cong f x≡y) ≡
elim (λ {x y} _ → P (f x) (f y)) (r ∘ f) x≡y)
(elim (λ {x y} _ → P x y) r (cong f (refl x)) ≡⟨ cong (elim (λ {x y} _ → P x y) _) $ cong-refl _ ⟩
elim (λ {x y} _ → P x y) r (refl (f x)) ≡⟨ elim-refl _ _ ⟩
r (f x) ≡⟨ sym $ elim-refl _ _ ⟩∎
elim (λ {x y} _ → P (f x) (f y)) (r ∘ f) (refl x) ∎)
x≡y
subst-const : ∀ (x₁≡x₂ : x₁ ≡ x₂) {b} →
subst (const B) x₁≡x₂ b ≡ b
subst-const {B = B} x₁≡x₂ {b} =
elim¹ (λ x₁≡x₂ → subst (const B) x₁≡x₂ b ≡ b)
(subst-refl _ _)
x₁≡x₂
abstract
-- One can express sym in terms of subst.
sym-subst : sym x≡y ≡ subst (λ z → x ≡ z → z ≡ x) x≡y id x≡y
sym-subst = elim
(λ {x} x≡y → sym x≡y ≡ subst (λ z → x ≡ z → z ≡ x) x≡y id x≡y)
(λ x →
sym (refl x) ≡⟨ sym-refl ⟩
refl x ≡⟨ cong (_$ refl x) $ sym $ subst-refl (λ z → x ≡ z → _) _ ⟩∎
subst (λ z → x ≡ z → z ≡ x) (refl x) id (refl x) ∎)
_
-- One can express trans in terms of subst (in several ways).
trans-subst :
{x≡y : x ≡ y} {y≡z : y ≡ z} →
trans x≡y y≡z ≡ subst (x ≡_) y≡z x≡y
trans-subst {z = z} = elim
(λ {x y} x≡y → (y≡z : y ≡ z) → trans x≡y y≡z ≡ subst (x ≡_) y≡z x≡y)
(λ y → elim
(λ {y} y≡z → trans (refl y) y≡z ≡ subst (y ≡_) y≡z (refl y))
(λ x →
trans (refl x) (refl x) ≡⟨ trans-refl-refl ⟩
refl x ≡⟨ sym $ subst-refl _ _ ⟩∎
subst (x ≡_) (refl x) (refl x) ∎))
_
_
subst-trans :
(x≡y : x ≡ y) {y≡z : y ≡ z} →
subst (_≡ z) (sym x≡y) y≡z ≡ trans x≡y y≡z
subst-trans {y = y} {z} x≡y {y≡z} =
elim₁ (λ x≡y → subst (λ x → x ≡ z) (sym x≡y) y≡z ≡
trans x≡y y≡z)
(subst (λ x → x ≡ z) (sym (refl y)) y≡z ≡⟨ cong (λ eq → subst (λ x → x ≡ z) eq _) sym-refl ⟩
subst (λ x → x ≡ z) (refl y) y≡z ≡⟨ subst-refl _ _ ⟩
y≡z ≡⟨ sym $ trans-reflˡ _ ⟩∎
trans (refl y) y≡z ∎)
x≡y
subst-trans-sym :
{y≡x : y ≡ x} {y≡z : y ≡ z} →
subst (_≡ z) y≡x y≡z ≡ trans (sym y≡x) y≡z
subst-trans-sym {z = z} {y≡x = y≡x} {y≡z = y≡z} =
subst (_≡ z) y≡x y≡z ≡⟨ cong (flip (subst (_≡ z)) _) $ sym $ sym-sym _ ⟩
subst (_≡ z) (sym (sym y≡x)) y≡z ≡⟨ subst-trans _ ⟩∎
trans (sym y≡x) y≡z ∎
-- One can express subst in terms of elim.
subst-elim :
subst P x≡y p ≡ elim (λ {u v} _ → P u → P v) (λ _ → id) x≡y p
subst-elim {P = P} = elim
(λ x≡y → ∀ p →
subst P x≡y p ≡ elim (λ {u v} _ → P u → P v) (λ _ → id) x≡y p)
(λ x p →
subst P (refl x) p ≡⟨ subst-refl _ _ ⟩
p ≡⟨ cong (_$ p) $ sym $ elim-refl (λ {u} _ → P u → _) _ ⟩∎
elim (λ {u v} _ → P u → P v) (λ _ → id) (refl x) p ∎)
_
_
subst-∘ : (P : B → Type p) (f : A → B) (x≡y : x ≡ y) {p : P (f x)} →
subst (P ∘ f) x≡y p ≡ subst P (cong f x≡y) p
subst-∘ P f _ {p} = elim¹
(λ x≡y → subst (P ∘ f) x≡y p ≡ subst P (cong f x≡y) p)
(subst (P ∘ f) (refl _) p ≡⟨ subst-refl _ _ ⟩
p ≡⟨ sym $ subst-refl _ _ ⟩
subst P (refl _) p ≡⟨ cong (flip (subst _) _) $ sym $ cong-refl _ ⟩∎
subst P (cong f (refl _)) p ∎)
_
subst-↑ : (P : A → Type p) {p : ↑ ℓ (P x)} →
subst (↑ ℓ ∘ P) x≡y p ≡ lift (subst P x≡y (lower p))
subst-↑ {ℓ = ℓ} P {p} = elim¹
(λ x≡y → subst (↑ ℓ ∘ P) x≡y p ≡ lift (subst P x≡y (lower p)))
(subst (↑ ℓ ∘ P) (refl _) p ≡⟨ subst-refl _ _ ⟩
p ≡⟨ cong lift $ sym $ subst-refl _ _ ⟩∎
lift (subst P (refl _) (lower p)) ∎)
_
-- A fusion law for subst.
subst-subst :
(P : A → Type p) (x≡y : x ≡ y) (y≡z : y ≡ z) (p : P x) →
subst P y≡z (subst P x≡y p) ≡ subst P (trans x≡y y≡z) p
subst-subst P x≡y y≡z p =
elim (λ {x y} x≡y → ∀ {z} (y≡z : y ≡ z) p →
subst P y≡z (subst P x≡y p) ≡ subst P (trans x≡y y≡z) p)
(λ x y≡z p →
subst P y≡z (subst P (refl x) p) ≡⟨ cong (subst P _) $ subst-refl _ _ ⟩
subst P y≡z p ≡⟨ cong (λ q → subst P q _) (sym $ trans-reflˡ _) ⟩∎
subst P (trans (refl x) y≡z) p ∎)
x≡y y≡z p
-- "Computation rules" for subst-subst.
subst-subst-reflˡ :
∀ (P : A → Type p) {p} →
subst-subst P (refl x) x≡y p ≡
cong₂ (flip (subst P)) (subst-refl _ _) (sym $ trans-reflˡ x≡y)
subst-subst-reflˡ P =
cong (λ f → f _ _) $
elim-refl (λ {x y} x≡y → ∀ {z} (y≡z : y ≡ z) p →
subst P y≡z (subst P x≡y p) ≡ _)
_
subst-subst-refl-refl :
∀ (P : A → Type p) {p} →
subst-subst P (refl x) (refl x) p ≡
cong₂ (flip (subst P)) (subst-refl _ _) (sym trans-refl-refl)
subst-subst-refl-refl {x = x} P {p} =
subst-subst P (refl x) (refl x) p ≡⟨ subst-subst-reflˡ _ ⟩
cong₂ (flip (subst P)) (subst-refl _ _)
(sym $ trans-reflˡ (refl x)) ≡⟨ cong (cong₂ (flip (subst P)) (subst-refl _ _) ∘ sym) $
elim-refl _ _ ⟩∎
cong₂ (flip (subst P)) (subst-refl _ _) (sym trans-refl-refl) ∎
-- Substitutivity and symmetry sometimes cancel each other out.
subst-subst-sym :
(P : A → Type p) (x≡y : x ≡ y) (p : P y) →
subst P x≡y (subst P (sym x≡y) p) ≡ p
subst-subst-sym P =
elim¹
(λ x≡y → ∀ p → subst P x≡y (subst P (sym x≡y) p) ≡ p)
(λ p →
subst P (refl _) (subst P (sym (refl _)) p) ≡⟨ subst-refl _ _ ⟩
subst P (sym (refl _)) p ≡⟨ cong (flip (subst P) _) sym-refl ⟩
subst P (refl _) p ≡⟨ subst-refl _ _ ⟩∎
p ∎)
subst-sym-subst :
(P : A → Type p) {x≡y : x ≡ y} {p : P x} →
subst P (sym x≡y) (subst P x≡y p) ≡ p
subst-sym-subst P {x≡y = x≡y} {p = p} =
elim¹
(λ x≡y → ∀ p → subst P (sym x≡y) (subst P x≡y p) ≡ p)
(λ p →
subst P (sym (refl _)) (subst P (refl _) p) ≡⟨ cong (flip (subst P) _) sym-refl ⟩
subst P (refl _) (subst P (refl _) p) ≡⟨ subst-refl _ _ ⟩
subst P (refl _) p ≡⟨ subst-refl _ _ ⟩∎
p ∎)
x≡y p
-- Some "computation rules".
subst-subst-sym-refl :
(P : A → Type p) {p : P x} →
subst-subst-sym P (refl x) p ≡
trans (subst-refl _ _)
(trans (cong (flip (subst P) _) sym-refl)
(subst-refl _ _))
subst-subst-sym-refl P {p = p} =
cong (_$ _) $
elim¹-refl
(λ x≡y → ∀ p → subst P x≡y (subst P (sym x≡y) p) ≡ p)
_
subst-sym-subst-refl :
(P : A → Type p) {p : P x} →
subst-sym-subst P {x≡y = refl x} {p = p} ≡
trans (cong (flip (subst P) _) sym-refl)
(trans (subst-refl _ _) (subst-refl _ _))
subst-sym-subst-refl P =
cong (_$ _) $
elim¹-refl
(λ x≡y → ∀ p → subst P (sym x≡y) (subst P x≡y p) ≡ p)
_
-- Some corollaries and variants.
trans-[trans-sym]- : (a≡b : a ≡ b) (c≡b : c ≡ b) →
trans (trans a≡b (sym c≡b)) c≡b ≡ a≡b
trans-[trans-sym]- a≡b c≡b =
trans (trans a≡b (sym c≡b)) c≡b ≡⟨ trans-subst ⟩
subst (_ ≡_) c≡b (trans a≡b (sym c≡b)) ≡⟨ cong (subst _ _) trans-subst ⟩
subst (_ ≡_) c≡b (subst (_ ≡_) (sym c≡b) a≡b) ≡⟨ subst-subst-sym _ _ _ ⟩∎
a≡b ∎
trans-[trans]-sym : (a≡b : a ≡ b) (b≡c : b ≡ c) →
trans (trans a≡b b≡c) (sym b≡c) ≡ a≡b
trans-[trans]-sym a≡b b≡c =
trans (trans a≡b b≡c) (sym b≡c) ≡⟨ sym $ cong (λ eq → trans (trans _ eq) (sym b≡c)) $ sym-sym _ ⟩
trans (trans a≡b (sym (sym b≡c))) (sym b≡c) ≡⟨ trans-[trans-sym]- _ _ ⟩∎
a≡b ∎
trans--[trans-sym] : (b≡a : b ≡ a) (b≡c : b ≡ c) →
trans b≡a (trans (sym b≡a) b≡c) ≡ b≡c
trans--[trans-sym] b≡a b≡c =
trans b≡a (trans (sym b≡a) b≡c) ≡⟨ sym $ trans-assoc _ _ _ ⟩
trans (trans b≡a (sym b≡a)) b≡c ≡⟨ cong (flip trans _) $ trans-symʳ _ ⟩
trans (refl _) b≡c ≡⟨ trans-reflˡ _ ⟩∎
b≡c ∎
trans-sym-[trans] : (a≡b : a ≡ b) (b≡c : b ≡ c) →
trans (sym a≡b) (trans a≡b b≡c) ≡ b≡c
trans-sym-[trans] a≡b b≡c =
trans (sym a≡b) (trans a≡b b≡c) ≡⟨ cong (λ p → trans (sym _) (trans p _)) $ sym $ sym-sym _ ⟩
trans (sym a≡b) (trans (sym (sym a≡b)) b≡c) ≡⟨ trans--[trans-sym] _ _ ⟩∎
b≡c ∎
-- The lemmas subst-refl and subst-const can cancel each other
-- out.
subst-refl-subst-const :
trans (sym $ subst-refl (λ _ → B) b) (subst-const (refl x)) ≡
refl b
subst-refl-subst-const {b = b} {x = x} =
trans (sym $ subst-refl _ _)
(elim¹ (λ eq → subst (λ _ → _) eq b ≡ b)
(subst-refl _ _)
(refl _)) ≡⟨ cong (trans _) (elim¹-refl _ _) ⟩
trans (sym $ subst-refl _ _) (subst-refl _ _) ≡⟨ trans-symˡ _ ⟩∎
refl _ ∎
-- In non-dependent cases one can express dcong using subst-const
-- and cong.
--
-- This is (similar to) Lemma 2.3.8 in the HoTT book.
dcong-subst-const-cong :
(f : A → B) (x≡y : x ≡ y) →
dcong f x≡y ≡
(subst (const B) x≡y (f x) ≡⟨ subst-const _ ⟩
f x ≡⟨ cong f x≡y ⟩∎
f y ∎)
dcong-subst-const-cong f = elim
(λ {x y} x≡y → dcong f x≡y ≡
trans (subst-const x≡y) (cong f x≡y))
(λ x →
dcong f (refl x) ≡⟨ dcong-refl _ ⟩
subst-refl _ _ ≡⟨ sym $ trans-reflʳ _ ⟩
trans (subst-refl _ _) (refl (f x)) ≡⟨ cong₂ trans
(sym $ elim¹-refl _ _)
(sym $ cong-refl _) ⟩∎
trans (subst-const _) (cong f (refl x)) ∎)
-- A corollary.
dcong≡→cong≡ :
{x≡y : x ≡ y} {fx≡fy : f x ≡ f y} →
dcong f x≡y ≡ trans (subst-const _) fx≡fy →
cong f x≡y ≡ fx≡fy
dcong≡→cong≡ {f = f} {x≡y = x≡y} {fx≡fy} hyp =
cong f x≡y ≡⟨ sym $ trans-sym-[trans] _ _ ⟩
trans (sym $ subst-const _) (trans (subst-const _) $ cong f x≡y) ≡⟨ cong (trans (sym $ subst-const _)) $ sym $
dcong-subst-const-cong _ _ ⟩
trans (sym $ subst-const _) (dcong f x≡y) ≡⟨ cong (trans (sym $ subst-const _)) hyp ⟩
trans (sym $ subst-const _) (trans (subst-const _) fx≡fy) ≡⟨ trans-sym-[trans] _ _ ⟩∎
fx≡fy ∎
-- A kind of symmetry for "dependent paths".
dsym :
{x≡y : x ≡ y} {P : A → Type p} {p : P x} {q : P y} →
subst P x≡y p ≡ q → subst P (sym x≡y) q ≡ p
dsym {x≡y = x≡y} {P = P} p≡q = elim
(λ {x y} x≡y →
∀ {p : P x} {q : P y} →
subst P x≡y p ≡ q →
subst P (sym x≡y) q ≡ p)
(λ _ {p q} p≡q →
subst P (sym (refl _)) q ≡⟨ cong (flip (subst P) _) sym-refl ⟩
subst P (refl _) q ≡⟨ subst-refl _ _ ⟩
q ≡⟨ sym p≡q ⟩
subst P (refl _) p ≡⟨ subst-refl _ _ ⟩∎
p ∎)
x≡y
p≡q
-- A "computation rule" for dsym.
dsym-subst-refl :
{P : A → Type p} {p : P x} →
dsym (subst-refl P p) ≡
trans (cong (flip (subst P) _) sym-refl) (subst-refl _ _)
dsym-subst-refl {P = P} =
dsym (subst-refl _ _) ≡⟨ cong (λ f → f (subst-refl _ _)) $
elim-refl
(λ {x y} x≡y →
∀ {p : P x} {q : P y} →
subst P x≡y p ≡ q →
subst P (sym x≡y) q ≡ p)
_ ⟩
trans (cong (flip (subst P) _) sym-refl)
(trans (subst-refl _ _)
(trans (sym (subst-refl P _)) (subst-refl _ _))) ≡⟨ cong (trans (cong (flip (subst P) _) sym-refl)) $ trans--[trans-sym] _ _ ⟩∎
trans (cong (flip (subst P) _) sym-refl) (subst-refl _ _) ∎
-- A kind of transitivity for "dependent paths".
--
-- This lemma is suggested in the HoTT book (first edition,
-- Exercise 6.1).
dtrans :
{x≡y : x ≡ y} {y≡z : y ≡ z}
(P : A → Type p) {p : P x} {q : P y} {r : P z} →
subst P x≡y p ≡ q →
subst P y≡z q ≡ r →
subst P (trans x≡y y≡z) p ≡ r
dtrans {x≡y = x≡y} {y≡z = y≡z} P {p = p} {q = q} {r = r} p≡q q≡r =
subst P (trans x≡y y≡z) p ≡⟨ sym $ subst-subst _ _ _ _ ⟩
subst P y≡z (subst P x≡y p) ≡⟨ cong (subst P y≡z) p≡q ⟩
subst P y≡z q ≡⟨ q≡r ⟩∎
r ∎
-- "Computation rules" for dtrans.
dtrans-reflˡ :
{x≡y : x ≡ y} {y≡z : y ≡ z}
{P : A → Type p} {p : P x} {r : P z}
{p≡r : subst P y≡z (subst P x≡y p) ≡ r} →
dtrans P (refl _) p≡r ≡
trans (sym $ subst-subst _ _ _ _) p≡r
dtrans-reflˡ {y≡z = y≡z} {P = P} {p≡r = p≡r} =
trans (sym $ subst-subst _ _ _ _)
(trans (cong (subst P y≡z) (refl _)) p≡r) ≡⟨ cong (trans (sym $ subst-subst _ _ _ _) ∘ flip trans _) $ cong-refl _ ⟩
trans (sym $ subst-subst _ _ _ _) (trans (refl _) p≡r) ≡⟨ cong (trans (sym $ subst-subst _ _ _ _)) $ trans-reflˡ _ ⟩∎
trans (sym $ subst-subst _ _ _ _) p≡r ∎
dtrans-reflʳ :
{x≡y : x ≡ y} {y≡z : y ≡ z}
{P : A → Type p} {p : P x} {q : P y}
{p≡q : subst P x≡y p ≡ q} →
dtrans P p≡q (refl (subst P y≡z q)) ≡
trans (sym $ subst-subst _ _ _ _) (cong (subst P y≡z) p≡q)
dtrans-reflʳ {x≡y = x≡y} {y≡z = y≡z} {P = P} {p≡q = p≡q} =
trans (sym $ subst-subst _ _ _ _)
(trans (cong (subst P y≡z) p≡q) (refl _)) ≡⟨ cong (trans _) $ trans-reflʳ _ ⟩∎
trans (sym $ subst-subst _ _ _ _) (cong (subst P y≡z) p≡q) ∎
dtrans-subst-reflˡ :
{x≡y : x ≡ y} {P : A → Type p} {p : P x} {q : P y}
{p≡q : subst P x≡y p ≡ q} →
dtrans P (subst-refl _ _) p≡q ≡
trans (cong (flip (subst P) _) (trans-reflˡ _)) p≡q
dtrans-subst-reflˡ {x≡y = x≡y} {P = P} {p≡q = p≡q} =
trans (sym $ subst-subst _ _ _ _)
(trans (cong (subst P x≡y) (subst-refl _ _)) p≡q) ≡⟨ cong (λ eq → trans (sym eq)
(trans (cong (subst P x≡y) (subst-refl _ _)) _)) $
subst-subst-reflˡ _ ⟩
trans (sym $ trans (cong (subst P _) (subst-refl _ _))
(cong (flip (subst P) _) (sym $ trans-reflˡ _)))
(trans (cong (subst P _) (subst-refl _ _)) p≡q) ≡⟨ cong (flip trans _) $ sym-trans _ _ ⟩
trans (trans
(sym $ cong (flip (subst P) _) (sym $ trans-reflˡ _))
(sym $ cong (subst P _) (subst-refl _ _)))
(trans (cong (subst P _) (subst-refl _ _)) p≡q) ≡⟨ trans-assoc _ _ _ ⟩
trans (sym $ cong (flip (subst P) _) (sym $ trans-reflˡ _))
(trans (sym $ cong (subst P _) (subst-refl _ _))
(trans (cong (subst P _) (subst-refl _ _)) p≡q)) ≡⟨ cong (trans _) $ trans-sym-[trans] _ _ ⟩
trans (sym $ cong (flip (subst P) _) (sym $ trans-reflˡ _)) p≡q ≡⟨ cong (flip trans _ ∘ sym) $ cong-sym _ _ ⟩
trans (sym $ sym $ cong (flip (subst P) _) (trans-reflˡ _)) p≡q ≡⟨ cong (flip trans _) $ sym-sym _ ⟩∎
trans (cong (flip (subst P) _) (trans-reflˡ _)) p≡q ∎
dtrans-subst-reflʳ :
{x≡y : x ≡ y} {P : A → Type p} {p : P x} {q : P y}
{p≡q : subst P x≡y p ≡ q} →
dtrans P p≡q (subst-refl _ _) ≡
trans (cong (flip (subst P) _) (trans-reflʳ _)) p≡q
dtrans-subst-reflʳ {x≡y = x≡y} {P = P} {p = p} {p≡q = p≡q} = elim¹
(λ x≡y → ∀ {q} (p≡q : subst P x≡y p ≡ q) →
dtrans P p≡q (subst-refl _ _) ≡
trans (cong (flip (subst P) _) (trans-reflʳ _)) p≡q)
(λ p≡q →
trans (sym $ subst-subst _ _ _ _)
(trans (cong (subst P (refl _)) p≡q) (subst-refl _ _)) ≡⟨ cong (λ eq → trans (sym eq) (trans (cong (subst P (refl _)) _)
(subst-refl _ _))) $
subst-subst-refl-refl _ ⟩
trans (sym $ cong₂ (flip (subst P)) (subst-refl _ _) $
sym trans-refl-refl)
(trans (cong (subst P (refl _)) p≡q) (subst-refl _ _)) ≡⟨⟩
trans (sym $ trans (cong (subst P _) (subst-refl _ _))
(cong (flip (subst P) _) (sym trans-refl-refl)))
(trans (cong (subst P (refl _)) p≡q) (subst-refl _ _)) ≡⟨ cong (flip trans _) $ sym-trans _ _ ⟩
trans (trans (sym $ cong (flip (subst P) _)
(sym trans-refl-refl))
(sym $ cong (subst P _) (subst-refl _ _)))
(trans (cong (subst P (refl _)) p≡q) (subst-refl _ _)) ≡⟨ lemma₁ p≡q ⟩
trans (cong (flip (subst P) _) trans-refl-refl) p≡q ≡⟨ cong (λ eq → trans (cong (flip (subst P) _) eq) _) $ sym $
elim-refl _ _ ⟩∎
trans (cong (flip (subst P) _) (trans-reflʳ _)) p≡q ∎)
x≡y
p≡q
where
lemma₂ :
cong (subst P (refl _)) (subst-refl P p) ≡
cong id (subst-refl P (subst P (refl _) p))
lemma₂ =
cong (subst P (refl _)) (subst-refl P p) ≡⟨ cong-≡id-≡-≡id (subst-refl P) ⟩
subst-refl P (subst P (refl _) p) ≡⟨ cong-id _ ⟩∎
cong id (subst-refl P (subst P (refl _) p)) ∎
lemma₁ :
∀ {q} (p≡q : subst P (refl _) p ≡ q) →
trans (trans (sym $ cong (flip (subst P) _)
(sym trans-refl-refl))
(sym $ cong (subst P (refl _)) (subst-refl _ _)))
(trans (cong (subst P (refl _)) p≡q) (subst-refl _ _)) ≡
trans (cong (flip (subst P) _) trans-refl-refl) p≡q
lemma₁ = elim¹
(λ p≡q →
trans (trans (sym $ cong (flip (subst P) _)
(sym trans-refl-refl))
(sym $ cong (subst P (refl _)) (subst-refl _ _)))
(trans (cong (subst P (refl _)) p≡q) (subst-refl _ _)) ≡
trans (cong (flip (subst P) _) trans-refl-refl) p≡q)
(trans (trans (sym $ cong (flip (subst P) _)
(sym trans-refl-refl))
(sym $ cong (subst P (refl _)) (subst-refl _ _)))
(trans (cong (subst P (refl _)) (refl _)) (subst-refl _ _)) ≡⟨ cong (λ eq → trans (trans (sym $ cong (flip (subst P) _)
(sym trans-refl-refl))
(sym $ cong (subst P _) (subst-refl _ _)))
(trans eq (subst-refl _ _))) $
cong-refl (subst P (refl _)) ⟩
trans (trans (sym $ cong (flip (subst P) _)
(sym trans-refl-refl))
(sym $ cong (subst P (refl _)) (subst-refl _ _)))
(trans (refl _) (subst-refl _ _)) ≡⟨ cong (trans _) $ trans-reflˡ _ ⟩
trans (trans (sym $ cong (flip (subst P) _)
(sym trans-refl-refl))
(sym $ cong (subst P (refl _)) (subst-refl _ _)))
(subst-refl _ _) ≡⟨ cong (λ eq → trans (trans (sym $ cong (flip (subst P) _) _) (sym eq))
(subst-refl _ _))
lemma₂ ⟩
trans (trans (sym $ cong (flip (subst P) _)
(sym trans-refl-refl))
(sym $ cong id (subst-refl _ _)))
(subst-refl _ _) ≡⟨ cong (λ eq → trans (trans (sym $ cong (flip (subst P) _)
(sym trans-refl-refl)) (sym eq))
(subst-refl _ _)) $ sym $
cong-id _ ⟩
trans (trans (sym $ cong (flip (subst P) _)
(sym trans-refl-refl))
(sym $ subst-refl _ _))
(subst-refl _ _) ≡⟨ trans-[trans-sym]- _ _ ⟩
sym (cong (flip (subst P) _) (sym trans-refl-refl)) ≡⟨ cong sym $ cong-sym _ _ ⟩
sym (sym (cong (flip (subst P) _) trans-refl-refl)) ≡⟨ sym-sym _ ⟩
cong (flip (subst P) _) trans-refl-refl ≡⟨ sym $ trans-reflʳ _ ⟩∎
trans (cong (flip (subst P) _) trans-refl-refl) (refl _) ∎)
-- A lemma relating dcong, trans and dtrans.
--
-- This lemma is suggested in the HoTT book (first edition,
-- Exercise 6.1).
dcong-trans :
{f : (x : A) → P x} {x≡y : x ≡ y} {y≡z : y ≡ z} →
dcong f (trans x≡y y≡z) ≡ dtrans P (dcong f x≡y) (dcong f y≡z)
dcong-trans {P = P} {f = f} {x≡y = x≡y} {y≡z = y≡z} = elim₁
(λ x≡y → dcong f (trans x≡y y≡z) ≡ dtrans P (dcong f x≡y) (dcong f y≡z))
(dcong f (trans (refl _) y≡z) ≡⟨ elim₁ (λ {p} eq → dcong f p ≡
trans (cong (flip (subst P) _) eq) (dcong f y≡z)) (
dcong f y≡z ≡⟨ sym $ trans-reflˡ _ ⟩
trans (refl _) (dcong f y≡z) ≡⟨ cong (flip trans _) $ sym $ cong-refl _ ⟩∎
trans (cong (flip (subst P) _) (refl _)) (dcong f y≡z) ∎)
(trans-reflˡ _) ⟩
trans (cong (flip (subst P) _) (trans-reflˡ _)) (dcong f y≡z) ≡⟨ sym dtrans-subst-reflˡ ⟩
dtrans P (subst-refl _ _) (dcong f y≡z) ≡⟨ cong (λ eq → dtrans P eq (dcong f y≡z)) $ sym $ dcong-refl f ⟩∎
dtrans P (dcong f (refl _)) (dcong f y≡z) ∎)
x≡y
-- An equality between pairs can be proved using a pair of
-- equalities.
Σ-≡,≡→≡ : {B : A → Type b} {p₁ p₂ : Σ A B} →
(p : proj₁ p₁ ≡ proj₁ p₂) →
subst B p (proj₂ p₁) ≡ proj₂ p₂ →
p₁ ≡ p₂
Σ-≡,≡→≡ {B = B} p q = elim
(λ {x₁ y₁} (p : x₁ ≡ y₁) → ∀ {x₂ y₂} →
subst B p x₂ ≡ y₂ → (x₁ , x₂) ≡ (y₁ , y₂))
(λ z₁ {x₂} {y₂} x₂≡y₂ → cong (_,_ z₁) (
x₂ ≡⟨ sym $ subst-refl _ _ ⟩
subst B (refl z₁) x₂ ≡⟨ x₂≡y₂ ⟩∎
y₂ ∎))
p q
-- The uncurried form of Σ-≡,≡→≡ has an inverse, Σ-≡,≡←≡. (For a
-- proof, see Bijection.Σ-≡,≡↔≡.)
Σ-≡,≡←≡ : {B : A → Type b} {p₁ p₂ : Σ A B} →
p₁ ≡ p₂ →
∃ λ (p : proj₁ p₁ ≡ proj₁ p₂) →
subst B p (proj₂ p₁) ≡ proj₂ p₂
Σ-≡,≡←≡ {A = A} {B = B} = elim
(λ {p₁ p₂ : Σ A B} _ →
∃ λ (p : proj₁ p₁ ≡ proj₁ p₂) → subst B p (proj₂ p₁) ≡ proj₂ p₂)
(λ p → refl _ , subst-refl _ _)
abstract
-- "Evaluation rules" for Σ-≡,≡→≡.
Σ-≡,≡→≡-reflˡ :
∀ {B : A → Type b} {y₁ y₂} →
(y₁≡y₂ : subst B (refl x) y₁ ≡ y₂) →
Σ-≡,≡→≡ (refl x) y₁≡y₂ ≡
cong (x ,_) (trans (sym $ subst-refl _ _) y₁≡y₂)
Σ-≡,≡→≡-reflˡ {B = B} y₁≡y₂ =
cong (λ f → f y₁≡y₂) $
elim-refl (λ {x₁ y₁} (p : x₁ ≡ y₁) → ∀ {x₂ y₂} →
subst B p x₂ ≡ y₂ → (x₁ , x₂) ≡ (y₁ , y₂))
_
Σ-≡,≡→≡-refl-refl :
∀ {B : A → Type b} {y} →
Σ-≡,≡→≡ (refl x) (refl (subst B (refl x) y)) ≡
cong (x ,_) (sym (subst-refl _ _))
Σ-≡,≡→≡-refl-refl {x = x} =
Σ-≡,≡→≡ (refl x) (refl _) ≡⟨ Σ-≡,≡→≡-reflˡ (refl _) ⟩
cong (x ,_) (trans (sym $ subst-refl _ _) (refl _)) ≡⟨ cong (cong (x ,_)) (trans-reflʳ _) ⟩∎
cong (x ,_) (sym (subst-refl _ _)) ∎
Σ-≡,≡→≡-refl-subst-refl :
{B : A → Type b} {p : Σ A B} →
Σ-≡,≡→≡ (refl _) (subst-refl _ _) ≡ refl p
Σ-≡,≡→≡-refl-subst-refl {B = B} =
Σ-≡,≡→≡ (refl _) (subst-refl B _) ≡⟨ Σ-≡,≡→≡-reflˡ _ ⟩
cong (_ ,_) (trans (sym $ subst-refl _ _) (subst-refl _ _)) ≡⟨ cong (cong _) (trans-symˡ _) ⟩
cong (_ ,_) (refl _) ≡⟨ cong-refl _ ⟩∎
refl _ ∎
Σ-≡,≡→≡-refl-subst-const :
{p : A × B} →
Σ-≡,≡→≡ (refl _) (subst-const _) ≡ refl p
Σ-≡,≡→≡-refl-subst-const =
Σ-≡,≡→≡ (refl _) (subst-const _) ≡⟨ Σ-≡,≡→≡-reflˡ _ ⟩
cong (_ ,_) (trans (sym $ subst-refl _ _) (subst-const _)) ≡⟨ cong (cong _) subst-refl-subst-const ⟩
cong (_ ,_) (refl _) ≡⟨ cong-refl _ ⟩∎
refl _ ∎
-- "Evaluation rule" for Σ-≡,≡←≡.
Σ-≡,≡←≡-refl :
{B : A → Type b} {p : Σ A B} →
Σ-≡,≡←≡ (refl p) ≡ (refl _ , subst-refl _ _)
Σ-≡,≡←≡-refl = elim-refl _ _
-- Proof transformation rules for Σ-≡,≡→≡.
proj₁-Σ-≡,≡→≡ :
∀ {B : A → Type b} {y₁ y₂}
(x₁≡x₂ : x₁ ≡ x₂) (y₁≡y₂ : subst B x₁≡x₂ y₁ ≡ y₂) →
cong proj₁ (Σ-≡,≡→≡ x₁≡x₂ y₁≡y₂) ≡ x₁≡x₂
proj₁-Σ-≡,≡→≡ {B = B} {y₁ = y₁} x₁≡x₂ y₁≡y₂ = elim¹
(λ x₁≡x₂ → ∀ {y₂} (y₁≡y₂ : subst B x₁≡x₂ y₁ ≡ y₂) →
cong proj₁ (Σ-≡,≡→≡ x₁≡x₂ y₁≡y₂) ≡ x₁≡x₂)
(λ y₁≡y₂ →
cong proj₁ (Σ-≡,≡→≡ (refl _) y₁≡y₂) ≡⟨ cong (cong proj₁) $ Σ-≡,≡→≡-reflˡ _ ⟩
cong proj₁ (cong (_,_ _) (trans (sym $ subst-refl _ _) y₁≡y₂)) ≡⟨ cong-∘ _ (_,_ _) _ ⟩
cong (const _) (trans (sym $ subst-refl _ _) y₁≡y₂) ≡⟨ cong-const _ ⟩∎
refl _ ∎)
x₁≡x₂ y₁≡y₂
Σ-≡,≡→≡-cong :
{B : A → Type b} {p₁ p₂ : Σ A B}
{q₁ q₂ : proj₁ p₁ ≡ proj₁ p₂}
(q₁≡q₂ : q₁ ≡ q₂)
{r₁ : subst B q₁ (proj₂ p₁) ≡ proj₂ p₂}
{r₂ : subst B q₂ (proj₂ p₁) ≡ proj₂ p₂}
(r₁≡r₂ : (subst B q₂ (proj₂ p₁) ≡⟨ cong (flip (subst B) _) (sym q₁≡q₂) ⟩
subst B q₁ (proj₂ p₁) ≡⟨ r₁ ⟩∎
proj₂ p₂ ∎)
≡
r₂) →
Σ-≡,≡→≡ q₁ r₁ ≡ Σ-≡,≡→≡ q₂ r₂
Σ-≡,≡→≡-cong {B = B} = elim
(λ {q₁ q₂} q₁≡q₂ →
∀ {r₁ r₂}
(r₁≡r₂ : trans (cong (flip (subst B) _) (sym q₁≡q₂)) r₁ ≡ r₂) →
Σ-≡,≡→≡ q₁ r₁ ≡ Σ-≡,≡→≡ q₂ r₂)
(λ q {r₁ r₂} r₁≡r₂ → cong (Σ-≡,≡→≡ q) (
r₁ ≡⟨ sym $ trans-reflˡ _ ⟩
trans (refl (subst B q _)) r₁ ≡⟨ cong (flip trans _) $ sym $ cong-refl _ ⟩
trans (cong (flip (subst B) _) (refl q)) r₁ ≡⟨ cong (λ e → trans (cong (flip (subst B) _) e) _) $ sym sym-refl ⟩
trans (cong (flip (subst B) _) (sym (refl q))) r₁ ≡⟨ r₁≡r₂ ⟩∎
r₂ ∎))
trans-Σ-≡,≡→≡ :
{B : A → Type b} {p₁ p₂ p₃ : Σ A B} →
(q₁₂ : proj₁ p₁ ≡ proj₁ p₂) (q₂₃ : proj₁ p₂ ≡ proj₁ p₃)
(r₁₂ : subst B q₁₂ (proj₂ p₁) ≡ proj₂ p₂)
(r₂₃ : subst B q₂₃ (proj₂ p₂) ≡ proj₂ p₃) →
trans (Σ-≡,≡→≡ q₁₂ r₁₂) (Σ-≡,≡→≡ q₂₃ r₂₃) ≡
Σ-≡,≡→≡ (trans q₁₂ q₂₃)
(subst B (trans q₁₂ q₂₃) (proj₂ p₁) ≡⟨ sym $ subst-subst _ _ _ _ ⟩
subst B q₂₃ (subst B q₁₂ (proj₂ p₁)) ≡⟨ cong (subst _ _) r₁₂ ⟩
subst B q₂₃ (proj₂ p₂) ≡⟨ r₂₃ ⟩∎
proj₂ p₃ ∎)
trans-Σ-≡,≡→≡ {B = B} q₁₂ q₂₃ r₁₂ r₂₃ = elim
(λ {p₂₁ p₃₁} q₂₃ → ∀ {p₁₁} (q₁₂ : p₁₁ ≡ p₂₁)
{p₁₂ p₂₂} (r₁₂ : subst B q₁₂ p₁₂ ≡ p₂₂)
{p₃₂} (r₂₃ : subst B q₂₃ p₂₂ ≡ p₃₂) →
trans (Σ-≡,≡→≡ q₁₂ r₁₂) (Σ-≡,≡→≡ q₂₃ r₂₃) ≡
Σ-≡,≡→≡ (trans q₁₂ q₂₃)
(trans (sym $ subst-subst _ _ _ _)
(trans (cong (subst _ _) r₁₂) r₂₃)))
(λ x → elim₁
(λ q₁₂ →
∀ {p₁₂ p₂₂} (r₁₂ : subst B q₁₂ p₁₂ ≡ p₂₂)
{p₃₂} (r₂₃ : subst B (refl _) p₂₂ ≡ p₃₂) →
trans (Σ-≡,≡→≡ q₁₂ r₁₂) (Σ-≡,≡→≡ (refl _) r₂₃) ≡
Σ-≡,≡→≡ (trans q₁₂ (refl _))
(trans (sym $ subst-subst _ _ _ _)
(trans (cong (subst _ _) r₁₂) r₂₃)))
(λ {y} → elim¹
(λ {p₂₂} r₁₂ →
∀ {p₃₂} (r₂₃ : subst B (refl _) p₂₂ ≡ p₃₂) →
trans (Σ-≡,≡→≡ (refl _) r₁₂) (Σ-≡,≡→≡ (refl _) r₂₃) ≡
Σ-≡,≡→≡ (trans (refl _) (refl _))
(trans (sym $ subst-subst _ _ _ _)
(trans (cong (subst _ _) r₁₂) r₂₃)))
(elim¹
(λ r₂₃ →
trans (Σ-≡,≡→≡ (refl _) (refl _))
(Σ-≡,≡→≡ (refl _) r₂₃) ≡
Σ-≡,≡→≡ (trans (refl _) (refl _))
(trans (sym $ subst-subst _ _ _ _)
(trans (cong (subst _ _) (refl _))
r₂₃)))
(let lemma₁ =
sym (cong (subst B _) (subst-refl _ _)) ≡⟨ sym $ trans-sym-[trans] _ _ ⟩
trans (sym $ cong (flip (subst B) _)
trans-refl-refl)
(trans (cong (flip (subst B) _)
trans-refl-refl)
(sym (cong (subst B _)
(subst-refl _ _)))) ≡⟨ cong (flip trans _) $ sym $ cong-sym _ _ ⟩∎
trans (cong (flip (subst B) _)
(sym trans-refl-refl))
(trans (cong (flip (subst B) _)
trans-refl-refl)
(sym (cong (subst B _)
(subst-refl _ _)))) ∎
lemma₂ =
trans (cong (flip (subst B) _) trans-refl-refl)
(sym (cong (subst B _) (subst-refl _ _))) ≡⟨ cong (λ e → trans (cong (flip (subst B) _) e)
(sym $ cong (subst B _) (subst-refl _ _))) $
sym $ sym-sym _ ⟩
trans (cong (flip (subst B) _)
(sym $ sym trans-refl-refl))
(sym (cong (subst B _) (subst-refl _ _))) ≡⟨ cong (flip trans _) $ cong-sym _ _ ⟩
trans (sym (cong (flip (subst B) _)
(sym trans-refl-refl)))
(sym (cong (subst B _) (subst-refl _ _))) ≡⟨ sym $ sym-trans _ _ ⟩
sym (trans (cong (subst B _) (subst-refl _ _))
(cong (flip (subst B) _)
(sym trans-refl-refl))) ≡⟨⟩
sym (cong₂ (flip (subst B)) (subst-refl _ _)
(sym trans-refl-refl)) ≡⟨ cong sym $ sym $ subst-subst-refl-refl _ ⟩
sym (subst-subst _ _ _ _) ≡⟨ sym $ trans-reflʳ _ ⟩
trans (sym $ subst-subst _ _ _ _) (refl _) ≡⟨ cong (trans (sym $ subst-subst _ _ _ _)) $ sym trans-refl-refl ⟩
trans (sym $ subst-subst _ _ _ _)
(trans (refl _) (refl _)) ≡⟨ cong (λ x → trans (sym $ subst-subst _ _ _ _) (trans x (refl _))) $
sym $ cong-refl _ ⟩∎
trans (sym $ subst-subst _ _ _ _)
(trans (cong (subst _ _) (refl _)) (refl _)) ∎
in
trans (Σ-≡,≡→≡ (refl _) (refl _))
(Σ-≡,≡→≡ (refl _) (refl _)) ≡⟨ cong₂ trans Σ-≡,≡→≡-refl-refl Σ-≡,≡→≡-refl-refl ⟩
trans (cong (_ ,_) (sym (subst-refl _ _)))
(cong (_ ,_) (sym (subst-refl B _))) ≡⟨ sym $ cong-trans _ _ _ ⟩
cong (_ ,_) (trans (sym (subst-refl _ _))
(sym (subst-refl _ _))) ≡⟨ cong (cong (_ ,_) ∘ trans (sym (subst-refl _ _)) ∘ sym) $ sym $
cong-≡id-≡-≡id (subst-refl B) ⟩
cong (_ ,_)
(trans (sym (subst-refl _ _))
(sym (cong (subst B _) (subst-refl _ _)))) ≡⟨ sym $ Σ-≡,≡→≡-reflˡ _ ⟩
Σ-≡,≡→≡ (refl _)
(sym (cong (subst B _) (subst-refl _ _))) ≡⟨ cong (Σ-≡,≡→≡ _) lemma₁ ⟩
Σ-≡,≡→≡ (refl _)
(trans (cong (flip (subst B) _) (sym trans-refl-refl))
(trans (cong (flip (subst B) _) trans-refl-refl)
(sym (cong (subst B _) (subst-refl _ _))))) ≡⟨ sym $ Σ-≡,≡→≡-cong _ (refl _) ⟩
Σ-≡,≡→≡ (trans (refl _) (refl _))
(trans (cong (flip (subst B) _) trans-refl-refl)
(sym (cong (subst B _) (subst-refl _ _)))) ≡⟨ cong (Σ-≡,≡→≡ (trans (refl _) (refl _))) lemma₂ ⟩∎
Σ-≡,≡→≡ (trans (refl _) (refl _))
(trans (sym $ subst-subst _ _ _ _)
(trans (cong (subst _ _) (refl _))
(refl _))) ∎))))
q₂₃ q₁₂ r₁₂ r₂₃
Σ-≡,≡→≡-subst-const :
{p₁ p₂ : A × B} →
(p : proj₁ p₁ ≡ proj₁ p₂) (q : proj₂ p₁ ≡ proj₂ p₂) →
Σ-≡,≡→≡ p (trans (subst-const _) q) ≡ cong₂ _,_ p q
Σ-≡,≡→≡-subst-const p q = elim
(λ {x₁ y₁} (p : x₁ ≡ y₁) →
Σ-≡,≡→≡ p (trans (subst-const _) q) ≡ cong₂ _,_ p q)
(λ x →
let lemma =
trans (sym $ subst-refl _ _) (trans (subst-const _) q) ≡⟨ sym $ trans-assoc _ _ _ ⟩
trans (trans (sym $ subst-refl _ _) (subst-const _)) q ≡⟨ cong₂ trans subst-refl-subst-const (refl _) ⟩
trans (refl _) q ≡⟨ trans-reflˡ _ ⟩∎
q ∎ in
Σ-≡,≡→≡ (refl x) (trans (subst-const _) q) ≡⟨ Σ-≡,≡→≡-reflˡ _ ⟩
cong (x ,_) (trans (sym $ subst-refl _ _)
(trans (subst-const _) q)) ≡⟨ cong (cong (x ,_)) lemma ⟩
cong (x ,_) q ≡⟨ sym $ cong₂-reflˡ _,_ ⟩∎
cong₂ _,_ (refl x) q ∎)
p
Σ-≡,≡→≡-subst-const-refl :
Σ-≡,≡→≡ x₁≡x₂ (subst-const _) ≡ cong₂ _,_ x₁≡x₂ (refl y)
Σ-≡,≡→≡-subst-const-refl {x₁≡x₂ = x₁≡x₂} {y = y} =
Σ-≡,≡→≡ x₁≡x₂ (subst-const _) ≡⟨ cong (Σ-≡,≡→≡ x₁≡x₂) $ sym $ trans-reflʳ _ ⟩
Σ-≡,≡→≡ x₁≡x₂ (trans (subst-const _) (refl _)) ≡⟨ Σ-≡,≡→≡-subst-const _ _ ⟩∎
cong₂ _,_ x₁≡x₂ (refl y) ∎
-- Proof simplification rule for Σ-≡,≡←≡.
proj₁-Σ-≡,≡←≡ :
{B : A → Type b} {p₁ p₂ : Σ A B}
(p₁≡p₂ : p₁ ≡ p₂) →
proj₁ (Σ-≡,≡←≡ p₁≡p₂) ≡ cong proj₁ p₁≡p₂
proj₁-Σ-≡,≡←≡ = elim
(λ p₁≡p₂ → proj₁ (Σ-≡,≡←≡ p₁≡p₂) ≡ cong proj₁ p₁≡p₂)
(λ p →
proj₁ (Σ-≡,≡←≡ (refl p)) ≡⟨ cong proj₁ $ Σ-≡,≡←≡-refl ⟩
refl (proj₁ p) ≡⟨ sym $ cong-refl _ ⟩∎
cong proj₁ (refl p) ∎)
-- A binary variant of subst.
subst₂ : ∀ {B : A → Type b} (P : Σ A B → Type p) {x₁ x₂ y₁ y₂} →
(x₁≡x₂ : x₁ ≡ x₂) → subst B x₁≡x₂ y₁ ≡ y₂ →
P (x₁ , y₁) → P (x₂ , y₂)
subst₂ P x₁≡x₂ y₁≡y₂ = subst P (Σ-≡,≡→≡ x₁≡x₂ y₁≡y₂)
abstract
-- "Evaluation rule" for subst₂.
subst₂-refl-refl :
∀ {B : A → Type b} (P : Σ A B → Type p) {y p} →
subst₂ P (refl _) (refl _) p ≡
subst (curry P x) (sym $ subst-refl B y) p
subst₂-refl-refl {x = x} P {p = p} =
subst P (Σ-≡,≡→≡ (refl _) (refl _)) p ≡⟨ cong (λ eq₁ → subst P eq₁ _) Σ-≡,≡→≡-refl-refl ⟩
subst P (cong (x ,_) (sym (subst-refl _ _))) p ≡⟨ sym $ subst-∘ _ _ _ ⟩∎
subst (curry P x) (sym $ subst-refl _ _) p ∎
-- The subst function can be "pushed" inside pairs.
push-subst-pair :
∀ (B : A → Type b) (C : Σ A B → Type c) {p} →
subst (λ x → Σ (B x) (curry C x)) y≡z p ≡
(subst B y≡z (proj₁ p) , subst₂ C y≡z (refl _) (proj₂ p))
push-subst-pair {y≡z = y≡z} B C {p} = elim¹
(λ y≡z →
subst (λ x → Σ (B x) (curry C x)) y≡z p ≡
(subst B y≡z (proj₁ p) , subst₂ C y≡z (refl _) (proj₂ p)))
(subst (λ x → Σ (B x) (curry C x)) (refl _) p ≡⟨ subst-refl _ _ ⟩
p ≡⟨ Σ-≡,≡→≡ (sym (subst-refl _ _)) (sym (subst₂-refl-refl _)) ⟩∎
(subst B (refl _) (proj₁ p) ,
subst₂ C (refl _) (refl _) (proj₂ p)) ∎)
y≡z
-- A proof transformation rule for push-subst-pair.
proj₁-push-subst-pair-refl :
∀ {A : Type a} {y : A} (B : A → Type b) (C : Σ A B → Type c) {p} →
cong proj₁ (push-subst-pair {y≡z = refl y} B C {p = p}) ≡
trans (cong proj₁ (subst-refl (λ _ → Σ _ _) _))
(sym $ subst-refl _ _)
proj₁-push-subst-pair-refl B C =
cong proj₁ (push-subst-pair _ _) ≡⟨ cong (cong proj₁) $
elim¹-refl
(λ y≡z →
subst (λ x → Σ (B x) (curry C x)) y≡z _ ≡
(subst B y≡z _ , subst₂ C y≡z (refl _) _))
_ ⟩
cong proj₁
(trans (subst-refl (λ _ → Σ _ _) _)
(Σ-≡,≡→≡ (sym $ subst-refl B _) (sym (subst₂-refl-refl _)))) ≡⟨ cong-trans _ _ _ ⟩
trans (cong proj₁ (subst-refl _ _))
(cong proj₁
(Σ-≡,≡→≡ (sym $ subst-refl _ _) (sym (subst₂-refl-refl _)))) ≡⟨ cong (trans _) $
proj₁-Σ-≡,≡→≡ _ _ ⟩∎
trans (cong proj₁ (subst-refl _ _)) (sym $ subst-refl _ _) ∎
-- Corollaries of push-subst-pair.
push-subst-pair′ :
∀ (B : A → Type b) (C : Σ A B → Type c) {p p₁} →
(p₁≡p₁ : subst B y≡z (proj₁ p) ≡ p₁) →
subst (λ x → Σ (B x) (curry C x)) y≡z p ≡
(p₁ , subst₂ C y≡z p₁≡p₁ (proj₂ p))
push-subst-pair′ {y≡z = y≡z} B C {p} =
elim¹ (λ {p₁} p₁≡p₁ →
subst (λ x → Σ (B x) (curry C x)) y≡z p ≡
(p₁ , subst₂ C y≡z p₁≡p₁ (proj₂ p)))
(push-subst-pair _ _)
push-subst-pair-× :
∀ {y≡z : y ≡ z} (B : Type b) (C : A × B → Type c) {p} →
subst (λ x → Σ B (curry C x)) y≡z p ≡
(proj₁ p , subst (λ x → C (x , proj₁ p)) y≡z (proj₂ p))
push-subst-pair-× {y≡z = y≡z} B C {p} =
subst (λ x → Σ B (curry C x)) y≡z p ≡⟨ push-subst-pair′ _ C (subst-const _) ⟩
(proj₁ p , subst₂ C y≡z (subst-const _) (proj₂ p)) ≡⟨ cong (_ ,_) $
elim¹
(λ y≡z → subst₂ C y≡z (subst-const y≡z) (proj₂ p) ≡
subst (λ x → C (x , proj₁ p)) y≡z (proj₂ p))
(
subst₂ C (refl _) (subst-const _) (proj₂ p) ≡⟨⟩
subst C (Σ-≡,≡→≡ (refl _) (subst-const _)) (proj₂ p) ≡⟨ cong (λ eq → subst C eq _) Σ-≡,≡→≡-refl-subst-const ⟩
subst C (refl _) (proj₂ p) ≡⟨ subst-refl _ _ ⟩
proj₂ p ≡⟨ sym $ subst-refl _ _ ⟩∎
subst (λ x → C (x , _)) (refl _) (proj₂ p) ∎)
y≡z ⟩
(proj₁ p , subst (λ x → C (x , _)) y≡z (proj₂ p)) ∎
-- A proof simplification rule for subst₂.
subst₂-proj₁ :
∀ {B : A → Type b} {y₁ y₂}
{x₁≡x₂ : x₁ ≡ x₂} {y₁≡y₂ : subst B x₁≡x₂ y₁ ≡ y₂}
(P : A → Type p) {p} →
subst₂ {B = B} (P ∘ proj₁) x₁≡x₂ y₁≡y₂ p ≡ subst P x₁≡x₂ p
subst₂-proj₁ {x₁≡x₂ = x₁≡x₂} {y₁≡y₂} P {p} =
subst₂ (P ∘ proj₁) x₁≡x₂ y₁≡y₂ p ≡⟨ subst-∘ _ _ _ ⟩
subst P (cong proj₁ (Σ-≡,≡→≡ x₁≡x₂ y₁≡y₂)) p ≡⟨ cong (λ eq → subst P eq _) (proj₁-Σ-≡,≡→≡ _ _) ⟩∎
subst P x₁≡x₂ p ∎
-- The subst function can be "pushed" inside non-dependent pairs.
push-subst-, :
∀ (B : A → Type b) (C : A → Type c) {p} →
subst (λ x → B x × C x) y≡z p ≡
(subst B y≡z (proj₁ p) , subst C y≡z (proj₂ p))
push-subst-, {y≡z = y≡z} B C {x , y} =
subst (λ x → B x × C x) y≡z (x , y) ≡⟨ push-subst-pair _ _ ⟩
(subst B y≡z x , subst (C ∘ proj₁) (Σ-≡,≡→≡ y≡z (refl _)) y) ≡⟨ cong (_,_ _) $ subst₂-proj₁ _ ⟩∎
(subst B y≡z x , subst C y≡z y) ∎
-- A proof transformation rule for push-subst-,.
proj₁-push-subst-,-refl :
∀ {A : Type a} {y : A} (B : A → Type b) (C : A → Type c) {p} →
cong proj₁ (push-subst-, {y≡z = refl y} B C {p = p}) ≡
trans (cong proj₁ (subst-refl (λ _ → _ × _) _))
(sym $ subst-refl _ _)
proj₁-push-subst-,-refl _ _ =
cong proj₁ (trans (push-subst-pair _ _)
(cong (_,_ _) $ subst₂-proj₁ _)) ≡⟨ cong-trans _ _ _ ⟩
trans (cong proj₁ (push-subst-pair _ _))
(cong proj₁ (cong (_,_ _) $ subst₂-proj₁ _)) ≡⟨ cong (trans _) $
cong-∘ _ _ _ ⟩
trans (cong proj₁ (push-subst-pair _ _))
(cong (const _) $ subst₂-proj₁ _) ≡⟨ trans (cong (trans _) (cong-const _)) $
trans-reflʳ _ ⟩
cong proj₁ (push-subst-pair _ _) ≡⟨ proj₁-push-subst-pair-refl _ _ ⟩∎
trans (cong proj₁ (subst-refl _ _)) (sym $ subst-refl _ _) ∎
-- The subst function can be "pushed" inside inj₁ and inj₂.
push-subst-inj₁ :
∀ (B : A → Type b) (C : A → Type c) {x} →
subst (λ x → B x ⊎ C x) y≡z (inj₁ x) ≡ inj₁ (subst B y≡z x)
push-subst-inj₁ {y≡z = y≡z} B C {x} = elim¹
(λ y≡z → subst (λ x → B x ⊎ C x) y≡z (inj₁ x) ≡
inj₁ (subst B y≡z x))
(subst (λ x → B x ⊎ C x) (refl _) (inj₁ x) ≡⟨ subst-refl _ _ ⟩
inj₁ x ≡⟨ cong inj₁ $ sym $ subst-refl _ _ ⟩∎
inj₁ (subst B (refl _) x) ∎)
y≡z
push-subst-inj₂ :
∀ (B : A → Type b) (C : A → Type c) {x} →
subst (λ x → B x ⊎ C x) y≡z (inj₂ x) ≡ inj₂ (subst C y≡z x)
push-subst-inj₂ {y≡z = y≡z} B C {x} = elim¹
(λ y≡z → subst (λ x → B x ⊎ C x) y≡z (inj₂ x) ≡
inj₂ (subst C y≡z x))
(subst (λ x → B x ⊎ C x) (refl _) (inj₂ x) ≡⟨ subst-refl _ _ ⟩
inj₂ x ≡⟨ cong inj₂ $ sym $ subst-refl _ _ ⟩∎
inj₂ (subst C (refl _) x) ∎)
y≡z
-- The subst function can be "pushed" inside applications.
push-subst-application :
{B : A → Type b}
(x₁≡x₂ : x₁ ≡ x₂) (C : (x : A) → B x → Type c)
{f : (x : A) → B x} {g : (y : B x₁) → C x₁ y} →
subst (λ x → C x (f x)) x₁≡x₂ (g (f x₁)) ≡
subst (λ x → (y : B x) → C x y) x₁≡x₂ g (f x₂)
push-subst-application {x₁ = x₁} x₁≡x₂ C {f} {g} = elim¹
(λ {x₂} x₁≡x₂ →
subst (λ x → C x (f x)) x₁≡x₂ (g (f x₁)) ≡
subst (λ x → ∀ y → C x y) x₁≡x₂ g (f x₂))
(subst (λ x → C x (f x)) (refl _) (g (f x₁)) ≡⟨ subst-refl _ _ ⟩
g (f x₁) ≡⟨ cong (_$ f x₁) $ sym $ subst-refl (λ x → ∀ y → C x y) _ ⟩∎
subst (λ x → ∀ y → C x y) (refl _) g (f x₁) ∎)
x₁≡x₂
push-subst-implicit-application :
{B : A → Type b}
(x₁≡x₂ : x₁ ≡ x₂) (C : (x : A) → B x → Type c)
{f : (x : A) → B x} {g : {y : B x₁} → C x₁ y} →
subst (λ x → C x (f x)) x₁≡x₂ (g {y = f x₁}) ≡
subst (λ x → {y : B x} → C x y) x₁≡x₂ g {y = f x₂}
push-subst-implicit-application {x₁ = x₁} x₁≡x₂ C {f} {g} = elim¹
(λ {x₂} x₁≡x₂ →
subst (λ x → C x (f x)) x₁≡x₂ (g {y = f x₁}) ≡
subst (λ x → ∀ {y} → C x y) x₁≡x₂ g {y = f x₂})
(subst (λ x → C x (f x)) (refl _) (g {y = f x₁}) ≡⟨ subst-refl _ _ ⟩
g {y = f x₁} ≡⟨ cong (λ g → g {y = f x₁}) $ sym $ subst-refl (λ x → ∀ {y} → C x y) _ ⟩∎
subst (λ x → ∀ {y} → C x y) (refl _) g {y = f x₁} ∎)
x₁≡x₂
subst-∀-sym :
∀ {B : A → Type b} {y : B x₁}
{C : (x : A) → B x → Type c} {f : (y : B x₂) → C x₂ y}
{x₁≡x₂ : x₁ ≡ x₂} →
subst (λ x → (y : B x) → C x y) (sym x₁≡x₂) f y ≡
subst (uncurry C) (sym $ Σ-≡,≡→≡ x₁≡x₂ (refl _))
(f (subst B x₁≡x₂ y))
subst-∀-sym {B = B} {C = C} {x₁≡x₂ = x₁≡x₂} = elim
(λ {x₁ x₂} x₁≡x₂ →
{y : B x₁} (f : (y : B x₂) → C x₂ y) →
subst (λ x → (y : B x) → C x y) (sym x₁≡x₂) f y ≡
subst (uncurry C) (sym $ Σ-≡,≡→≡ x₁≡x₂ (refl _))
(f (subst B x₁≡x₂ y)))
(λ x {y} f →
let lemma =
cong (x ,_) (subst-refl B y) ≡⟨ cong (cong (x ,_)) $ sym $ sym-sym _ ⟩
cong (x ,_) (sym $ sym $ subst-refl B y) ≡⟨ cong-sym _ _ ⟩
sym $ cong (x ,_) (sym $ subst-refl B y) ≡⟨ cong sym $ sym Σ-≡,≡→≡-refl-refl ⟩∎
sym $ Σ-≡,≡→≡ (refl x) (refl _) ∎
in
subst (λ x → (y : B x) → C x y) (sym (refl x)) f y ≡⟨ cong (λ eq → subst (λ x → (y : B x) → C x y) eq _ _) sym-refl ⟩
subst (λ x → (y : B x) → C x y) (refl x) f y ≡⟨ cong (_$ y) $ subst-refl (λ x → (_ : B x) → _) _ ⟩
f y ≡⟨ sym $ dcong f _ ⟩
subst (C x) (subst-refl B _) (f (subst B (refl x) y)) ≡⟨ subst-∘ _ _ _ ⟩
subst (uncurry C) (cong (x ,_) (subst-refl B y))
(f (subst B (refl x) y)) ≡⟨ cong (λ eq → subst (uncurry C) eq (f (subst B (refl x) y))) lemma ⟩∎
subst (uncurry C) (sym $ Σ-≡,≡→≡ (refl x) (refl _))
(f (subst B (refl x) y)) ∎)
x₁≡x₂ _
subst-∀ :
∀ {B : A → Type b} {y : B x₂}
{C : (x : A) → B x → Type c} {f : (y : B x₁) → C x₁ y}
{x₁≡x₂ : x₁ ≡ x₂} →
subst (λ x → (y : B x) → C x y) x₁≡x₂ f y ≡
subst (uncurry C) (sym $ Σ-≡,≡→≡ (sym x₁≡x₂) (refl _))
(f (subst B (sym x₁≡x₂) y))
subst-∀ {B = B} {y = y} {C = C} {f = f} {x₁≡x₂ = x₁≡x₂} =
subst (λ x → (y : B x) → C x y) x₁≡x₂ f y ≡⟨ cong (λ eq → subst (λ x → (y : B x) → C x y) eq _ _) $ sym $ sym-sym _ ⟩
subst (λ x → (y : B x) → C x y) (sym (sym x₁≡x₂)) f y ≡⟨ subst-∀-sym ⟩∎
subst (uncurry C) (sym $ Σ-≡,≡→≡ (sym x₁≡x₂) (refl _))
(f (subst B (sym x₁≡x₂) y)) ∎
subst-→ :
{B : A → Type b} {y : B x₂} {C : A → Type c} {f : B x₁ → C x₁} →
subst (λ x → B x → C x) x₁≡x₂ f y ≡
subst C x₁≡x₂ (f (subst B (sym x₁≡x₂) y))
subst-→ {x₁≡x₂ = x₁≡x₂} {B = B} {y = y} {C} {f} =
subst (λ x → B x → C x) x₁≡x₂ f y ≡⟨ cong (λ eq → subst (λ x → B x → C x) eq f y) $ sym $
sym-sym _ ⟩
subst (λ x → B x → C x) (sym $ sym x₁≡x₂) f y ≡⟨ subst-∀-sym ⟩
subst (C ∘ proj₁) (sym $ Σ-≡,≡→≡ (sym x₁≡x₂) (refl _))
(f (subst B (sym x₁≡x₂) y)) ≡⟨ subst-∘ _ _ _ ⟩
subst C (cong proj₁ $ sym $ Σ-≡,≡→≡ (sym x₁≡x₂) (refl _))
(f (subst B (sym x₁≡x₂) y)) ≡⟨ cong (λ eq → subst C eq (f (subst B (sym x₁≡x₂) y))) $
cong-sym _ _ ⟩
subst C (sym $ cong proj₁ $ Σ-≡,≡→≡ (sym x₁≡x₂) (refl _))
(f (subst B (sym x₁≡x₂) y)) ≡⟨ cong (λ eq → subst C (sym eq) (f (subst B (sym x₁≡x₂) y))) $
proj₁-Σ-≡,≡→≡ _ _ ⟩
subst C (sym $ sym x₁≡x₂) (f (subst B (sym x₁≡x₂) y)) ≡⟨ cong (λ eq → subst C eq (f (subst B (sym x₁≡x₂) y))) $
sym-sym _ ⟩∎
subst C x₁≡x₂ (f (subst B (sym x₁≡x₂) y)) ∎
subst-→-domain :
(B : A → Type b) {f : B x → C} (x≡y : x ≡ y) {u : B y} →
subst (λ x → B x → C) x≡y f u ≡ f (subst B (sym x≡y) u)
subst-→-domain {C = C} B x≡y {u = u} = elim₁
(λ {x} x≡y → (f : B x → C) →
subst (λ x → B x → C) x≡y f u ≡
f (subst B (sym x≡y) u))
(λ f →
subst (λ x → B x → C) (refl _) f u ≡⟨ cong (_$ u) $ subst-refl (λ x → B x → _) _ ⟩
f u ≡⟨ cong f $ sym $ subst-refl _ _ ⟩
f (subst B (refl _) u) ≡⟨ cong (λ p → f (subst B p u)) $ sym sym-refl ⟩∎
f (subst B (sym (refl _)) u) ∎)
x≡y _
-- A "computation rule".
subst-→-domain-refl :
{B : A → Type b} {f : B x → C} {u : B x} →
subst-→-domain B {f = f} (refl x) {u = u} ≡
trans (cong (_$ u) (subst-refl (λ x → B x → _) _))
(trans (cong f (sym (subst-refl _ _)))
(cong (f ∘ flip (subst B) u) (sym sym-refl)))
subst-→-domain-refl {C = C} {B = B} {u = u} =
cong (_$ _) $
elim₁-refl
(λ {x} x≡y → (f : B x → C) →
subst (λ x → B x → C) x≡y f u ≡
f (subst B (sym x≡y) u))
_
-- The following lemma is Proposition 2 from "Generalizations of
-- Hedberg's Theorem" by Kraus, Escardó, Coquand and Altenkirch.
subst-in-terms-of-trans-and-cong :
{x≡y : x ≡ y} {fx≡gx : f x ≡ g x} →
subst (λ z → f z ≡ g z) x≡y fx≡gx ≡
trans (sym (cong f x≡y)) (trans fx≡gx (cong g x≡y))
subst-in-terms-of-trans-and-cong {f = f} {g = g} = elim
(λ {x y} x≡y →
(fx≡gx : f x ≡ g x) →
subst (λ z → f z ≡ g z) x≡y fx≡gx ≡
trans (sym (cong f x≡y)) (trans fx≡gx (cong g x≡y)))
(λ x fx≡gx →
subst (λ z → f z ≡ g z) (refl x) fx≡gx ≡⟨ subst-refl _ _ ⟩
fx≡gx ≡⟨ sym $ trans-reflˡ _ ⟩
trans (refl (f x)) fx≡gx ≡⟨ sym $ cong₂ trans sym-refl (trans-reflʳ _) ⟩
trans (sym (refl (f x))) (trans fx≡gx (refl (g x))) ≡⟨ sym $ cong₂ (λ p q → trans (sym p) (trans _ q))
(cong-refl _) (cong-refl _) ⟩∎
trans (sym (cong f (refl x))) (trans fx≡gx (cong g (refl x))) ∎ )
_
_
-- A variant of subst-in-terms-of-trans-and-cong that works for
-- dependent functions.
subst-in-terms-of-trans-and-dcong :
{f g : (x : A) → P x} {x≡y : x ≡ y} {fx≡gx : f x ≡ g x} →
subst (λ z → f z ≡ g z) x≡y fx≡gx ≡
trans (sym (dcong f x≡y))
(trans (cong (subst P x≡y) fx≡gx) (dcong g x≡y))
subst-in-terms-of-trans-and-dcong {P = P} {f = f} {g = g} = elim
(λ {x y} x≡y →
(fx≡gx : f x ≡ g x) →
subst (λ z → f z ≡ g z) x≡y fx≡gx ≡
trans (sym (dcong f x≡y))
(trans (cong (subst P x≡y) fx≡gx) (dcong g x≡y)))
(λ x fx≡gx →
subst (λ z → f z ≡ g z) (refl x) fx≡gx ≡⟨ subst-refl _ _ ⟩
fx≡gx ≡⟨ elim¹
(λ {gx} eq →
eq ≡
trans (sym (subst-refl P (f x)))
(trans (cong (subst P (refl x)) eq)
(subst-refl P gx)))
(
refl (f x) ≡⟨ sym $ trans-symˡ _ ⟩
trans (sym (subst-refl P (f x)))
(subst-refl P (f x)) ≡⟨ cong (trans _) $
trans (sym $ trans-reflˡ _) $
cong (flip trans _) $
sym $ cong-refl _ ⟩∎
trans (sym (subst-refl P (f x)))
(trans (cong (subst P (refl x)) (refl (f x)))
(subst-refl P (f x))) ∎)
fx≡gx ⟩
trans (sym (subst-refl P (f x)))
(trans (cong (subst P (refl x)) fx≡gx)
(subst-refl P (g x))) ≡⟨ sym $
cong₂ (λ p q → trans (sym p) (trans (cong (subst P (refl x)) fx≡gx) q))
(dcong-refl _)
(dcong-refl _) ⟩∎
trans (sym (dcong f (refl x)))
(trans (cong (subst P (refl x)) fx≡gx)
(dcong g (refl x))) ∎)
_
_
-- Sometimes cong can be "pushed" inside subst. The following
-- lemma provides one example.
cong-subst :
{B : A → Type b} {C : A → Type c}
{f : ∀ {x} → B x → C x} {g h : (x : A) → B x}
(eq₁ : x ≡ y) (eq₂ : g x ≡ h x) →
cong f (subst (λ x → g x ≡ h x) eq₁ eq₂) ≡
subst (λ x → f (g x) ≡ f (h x)) eq₁ (cong f eq₂)
cong-subst {f = f} {g} {h} = elim₁
(λ eq₁ → ∀ eq₂ →
cong f (subst (λ x → g x ≡ h x) eq₁ eq₂) ≡
subst (λ x → f (g x) ≡ f (h x)) eq₁ (cong f eq₂))
(λ eq₂ →
cong f (subst (λ x → g x ≡ h x) (refl _) eq₂) ≡⟨ cong (cong f) $ subst-refl _ _ ⟩
cong f eq₂ ≡⟨ sym $ subst-refl _ _ ⟩∎
subst (λ x → f (g x) ≡ f (h x)) (refl _) (cong f eq₂) ∎)
-- Some rearrangement lemmas for equalities between equalities.
[trans≡]≡[≡trans-symʳ] :
(p₁₂ : a₁ ≡ a₂) (p₁₃ : a₁ ≡ a₃) (p₂₃ : a₂ ≡ a₃) →
(trans p₁₂ p₂₃ ≡ p₁₃)
≡
(p₁₂ ≡ trans p₁₃ (sym p₂₃))
[trans≡]≡[≡trans-symʳ] p₁₂ p₁₃ p₂₃ = elim
(λ {a₂ a₃} p₂₃ →
∀ {a₁} (p₁₂ : a₁ ≡ a₂) (p₁₃ : a₁ ≡ a₃) →
(trans p₁₂ p₂₃ ≡ p₁₃)
≡
(p₁₂ ≡ trans p₁₃ (sym p₂₃)))
(λ a₂₃ p₁₂ p₁₃ →
trans p₁₂ (refl a₂₃) ≡ p₁₃ ≡⟨ cong₂ _≡_ (trans-reflʳ _) (sym $ trans-reflʳ _) ⟩
p₁₂ ≡ trans p₁₃ (refl a₂₃) ≡⟨ cong ((_ ≡_) ∘ trans _) (sym sym-refl) ⟩∎
p₁₂ ≡ trans p₁₃ (sym (refl a₂₃)) ∎)
p₂₃ p₁₂ p₁₃
[trans≡]≡[≡trans-symˡ] :
(p₁₂ : a₁ ≡ a₂) (p₁₃ : a₁ ≡ a₃) (p₂₃ : a₂ ≡ a₃) →
(trans p₁₂ p₂₃ ≡ p₁₃)
≡
(p₂₃ ≡ trans (sym p₁₂) p₁₃)
[trans≡]≡[≡trans-symˡ] p₁₂ = elim
(λ {a₁ a₂} p₁₂ →
∀ {a₃} (p₁₃ : a₁ ≡ a₃) (p₂₃ : a₂ ≡ a₃) →
(trans p₁₂ p₂₃ ≡ p₁₃)
≡
(p₂₃ ≡ trans (sym p₁₂) p₁₃))
(λ a₁₂ p₁₃ p₂₃ →
trans (refl a₁₂) p₂₃ ≡ p₁₃ ≡⟨ cong₂ _≡_ (trans-reflˡ _) (sym $ trans-reflˡ _) ⟩
p₂₃ ≡ trans (refl a₁₂) p₁₃ ≡⟨ cong ((_ ≡_) ∘ flip trans _) (sym sym-refl) ⟩∎
p₂₃ ≡ trans (sym (refl a₁₂)) p₁₃ ∎)
p₁₂
-- The following lemma is basically Theorem 2.11.5 from the HoTT
-- book (the book's lemma gives an equivalence between equality
-- types, rather than an equality between equality types).
[subst≡]≡[trans≡trans] :
{p : x ≡ y} {q : x ≡ x} {r : y ≡ y} →
(subst (λ z → z ≡ z) p q ≡ r)
≡
(trans q p ≡ trans p r)
[subst≡]≡[trans≡trans] {p = p} {q} {r} = elim
(λ {x y} p → {q : x ≡ x} {r : y ≡ y} →
(subst (λ z → z ≡ z) p q ≡ r)
≡
(trans q p ≡ trans p r))
(λ x {q r} →
subst (λ z → z ≡ z) (refl x) q ≡ r ≡⟨ cong (_≡ _) (subst-refl _ _) ⟩
q ≡ r ≡⟨ sym $ cong₂ _≡_ (trans-reflʳ _) (trans-reflˡ _) ⟩∎
trans q (refl x) ≡ trans (refl x) r ∎)
p
-- "Evaluation rule" for [subst≡]≡[trans≡trans].
[subst≡]≡[trans≡trans]-refl :
{q r : x ≡ x} →
[subst≡]≡[trans≡trans] {p = refl x} ≡
trans (cong (_≡ r) (subst-refl (λ z → z ≡ z) q))
(sym $ cong₂ _≡_ (trans-reflʳ q) (trans-reflˡ r))
[subst≡]≡[trans≡trans]-refl {q = q} {r = r} =
cong (λ f → f {q = q} {r = r}) $
elim-refl
(λ {x y} p → {q : x ≡ x} {r : y ≡ y} → _ ≡ (trans _ p ≡ _))
_
-- The proof trans is commutative when one of the arguments is f x for
-- a function f : (x : A) → x ≡ x.
trans-sometimes-commutative :
{p : x ≡ x} (f : (x : A) → x ≡ x) →
trans (f x) p ≡ trans p (f x)
trans-sometimes-commutative {x = x} {p = p} f =
let lemma =
subst (λ z → z ≡ z) p (f x) ≡⟨ dcong f p ⟩∎
f x ∎
in
trans (f x) p ≡⟨ subst id [subst≡]≡[trans≡trans] lemma ⟩∎
trans p (f x) ∎
-- Sometimes one can turn two ("modified") copies of a proof into
-- one.
trans-cong-cong :
(f : A → A → B) (p : x ≡ y) →
trans (cong (λ z → f z x) p)
(cong (λ z → f y z) p) ≡
cong (λ z → f z z) p
trans-cong-cong f = elim
(λ {x y} p → trans (cong (λ z → f z x) p)
(cong (λ z → f y z) p) ≡
cong (λ z → f z z) p)
(λ x → trans (cong (λ z → f z x) (refl x))
(cong (λ z → f x z) (refl x)) ≡⟨ cong₂ trans (cong-refl _) (cong-refl _) ⟩
trans (refl (f x x)) (refl (f x x)) ≡⟨ trans-refl-refl ⟩
refl (f x x) ≡⟨ sym $ cong-refl _ ⟩∎
cong (λ z → f z z) (refl x) ∎)
-- If f and g agree on a decidable subset of their common domain, then
-- cong f eq is equal to (modulo some uses of transitivity) cong g eq
-- for proofs eq between elements in this subset.
cong-respects-relevant-equality :
{f g : A → B}
(p : A → Bool) (f≡g : ∀ x → T (p x) → f x ≡ g x)
{px : T (p x)} {py : T (p y)} →
trans (cong f x≡y) (f≡g y py) ≡ trans (f≡g x px) (cong g x≡y)
cong-respects-relevant-equality {f = f} {g} p f≡g = elim
(λ {x y} x≡y →
{px : T (p x)} {py : T (p y)} →
trans (cong f x≡y) (f≡g y py) ≡ trans (f≡g x px) (cong g x≡y))
(λ x {px px′} →
trans (cong f (refl x)) (f≡g x px′) ≡⟨ cong (flip trans _) (cong-refl _) ⟩
trans (refl (f x)) (f≡g x px′) ≡⟨ trans-reflˡ _ ⟩
f≡g x px′ ≡⟨ cong (f≡g x) (T-irr (p x) px′ px) ⟩
f≡g x px ≡⟨ sym $ trans-reflʳ _ ⟩
trans (f≡g x px) (refl (g x)) ≡⟨ cong (trans _) (sym $ cong-refl _) ⟩∎
trans (f≡g x px) (cong g (refl x)) ∎)
_
where
T-irr : (b : Bool) → Is-proposition (T b)
T-irr true _ _ = refl _
T-irr false ()
-- A special case of cong-respects-relevant-equality.
--
-- The statement of this lemma is very similar to that of
-- Lemma 2.4.3 from the HoTT book.
naturality :
{x≡y : x ≡ y}
(f≡g : ∀ x → f x ≡ g x) →
trans (cong f x≡y) (f≡g y) ≡ trans (f≡g x) (cong g x≡y)
naturality f≡g =
cong-respects-relevant-equality (λ _ → true) (λ x _ → f≡g x)
-- If f z evaluates to z for a decidable set of values which
-- includes x and y, do we have
--
-- cong f x≡y ≡ x≡y
--
-- for any x≡y : x ≡ y? The equation above is not well-typed if f
-- is a variable, but the approximation below can be proved.
cong-roughly-id :
(f : A → A) (p : A → Bool)
(x≡y : x ≡ y) (px : T (p x)) (py : T (p y))
(f≡id : ∀ z → T (p z) → f z ≡ z) →
cong f x≡y ≡
trans (f≡id x px) (trans x≡y $ sym (f≡id y py))
cong-roughly-id {x = x} {y = y} f p x≡y px py f≡id =
let lemma =
trans (cong id x≡y) (sym (f≡id y py)) ≡⟨ cong-respects-relevant-equality p (λ x → sym ∘ f≡id x) ⟩∎
trans (sym (f≡id x px)) (cong f x≡y) ∎
in
cong f x≡y ≡⟨ sym $ subst (λ eq → eq → trans (f≡id x px)
(trans (cong id x≡y) (sym (f≡id y py))) ≡
cong f x≡y)
([trans≡]≡[≡trans-symˡ] _ _ _) id lemma ⟩
trans (f≡id x px) (trans (cong id x≡y) $ sym (f≡id y py)) ≡⟨ cong (λ eq → trans _ (trans eq _)) (sym $ cong-id _) ⟩∎
trans (f≡id x px) (trans x≡y $ sym (f≡id y py)) ∎
|
algebraic-stack_agda0000_doc_8540 | {-# OPTIONS -v tc.conv.irr:50 #-}
-- {-# OPTIONS -v tc.lhs.unify:50 #-}
module IndexInference where
data Nat : Set where
zero : Nat
suc : Nat -> Nat
data Vec (A : Set) : Nat -> Set where
[] : Vec A zero
_::_ : {n : Nat} -> A -> Vec A n -> Vec A (suc n)
infixr 40 _::_
-- The length of the vector can be inferred from the pattern.
foo : Vec Nat _ -> Nat
foo (a :: b :: c :: []) = c
-- Andreas, 2012-09-13 an example with irrelevant components in index
pred : Nat → Nat
pred (zero ) = zero
pred (suc n) = n
data ⊥ : Set where
record ⊤ : Set where
NonZero : Nat → Set
NonZero zero = ⊥
NonZero (suc n) = ⊤
data Fin (n : Nat) : Set where
zero : .(NonZero n) → Fin n
suc : .(NonZero n) → Fin (pred n) → Fin n
data SubVec (A : Set)(n : Nat) : Fin n → Set where
[] : .{p : NonZero n} → SubVec A n (zero p)
_::_ : .{p : NonZero n}{k : Fin (pred n)} → A → SubVec A (pred n) k → SubVec A n (suc p k)
-- The length of the vector can be inferred from the pattern.
bar : {A : Set} → SubVec A (suc (suc (suc zero))) _ → A
bar (a :: []) = a
|
End of preview. Expand
in Data Studio
No dataset card yet
- Downloads last month
- 221