id
stringlengths
27
136
text
stringlengths
4
1.05M
algebraic-stack_agda0000_doc_8528
{-# OPTIONS --cubical --safe #-} module Data.String where open import Agda.Builtin.String using (String) public open import Agda.Builtin.String open import Agda.Builtin.String.Properties open import Agda.Builtin.Char using (Char) public open import Agda.Builtin.Char open import Agda.Builtin.Char.Properties open import Relation.Binary open import Relation.Binary.Construct.On import Data.Nat.Order as ℕ open import Function.Injective open import Function open import Path open import Data.List open import Data.List.Relation.Binary.Lexicographic unpack : String → List Char unpack = primStringToList pack : List Char → String pack = primStringFromList charOrd : TotalOrder Char _ _ charOrd = on-ord primCharToNat lemma ℕ.totalOrder where lemma : Injective primCharToNat lemma x y p = builtin-eq-to-path (primCharToNatInjective x y (path-to-builtin-eq p )) listCharOrd : TotalOrder (List Char) _ _ listCharOrd = listOrd charOrd stringOrd : TotalOrder String _ _ stringOrd = on-ord primStringToList lemma listCharOrd where lemma : Injective primStringToList lemma x y p = builtin-eq-to-path (primStringToListInjective x y (path-to-builtin-eq p))
algebraic-stack_agda0000_doc_8529
-- Example usage of solver {-# OPTIONS --without-K --safe #-} open import Categories.Category module Experiment.Categories.Solver.Category.Example {o ℓ e} (𝒞 : Category o ℓ e) where open import Experiment.Categories.Solver.Category 𝒞 open Category 𝒞 open HomReasoning private variable A B C D E : Obj module _ (f : D ⇒ E) (g : C ⇒ D) (h : B ⇒ C) (i : A ⇒ B) where _ : (f ∘ id ∘ g) ∘ id ∘ h ∘ i ≈ f ∘ (g ∘ h) ∘ i _ = solve ((∥-∥ :∘ :id :∘ ∥-∥) :∘ :id :∘ ∥-∥ :∘ ∥-∥) (∥-∥ :∘ (∥-∥ :∘ ∥-∥) :∘ ∥-∥) refl
algebraic-stack_agda0000_doc_8530
---------------------------------------------------------------- -- This file contains the definition of isomorphisms. -- ---------------------------------------------------------------- module Category.Iso where open import Category.Category record Iso {l : Level}{ℂ : Cat {l}}{A B : Obj ℂ} (f : el (Hom ℂ A B)) : Set l where field inv : el (Hom ℂ B A) left-inv-ax : ⟨ Hom ℂ A A ⟩[ f ○[ comp ℂ ] inv ≡ id ℂ ] right-inv-ax : ⟨ Hom ℂ B B ⟩[ inv ○[ comp ℂ ] f ≡ id ℂ ] open Iso public
algebraic-stack_agda0000_doc_8531
------------------------------------------------------------------------ -- The Agda standard library -- -- The Cowriter type and some operations ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe --sized-types #-} module Codata.Cowriter where open import Size import Level as L open import Codata.Thunk using (Thunk; force) open import Codata.Conat open import Codata.Delay using (Delay; later; now) open import Codata.Stream as Stream using (Stream; _∷_) open import Data.Unit open import Data.List using (List; []; _∷_) open import Data.List.NonEmpty using (List⁺; _∷_) open import Data.Nat.Base as Nat using (ℕ; zero; suc) open import Data.Product as Prod using (_×_; _,_) open import Data.Sum as Sum using (_⊎_; inj₁; inj₂) open import Data.Vec using (Vec; []; _∷_) open import Data.BoundedVec as BVec using (BoundedVec) open import Function data Cowriter {w a} (W : Set w) (A : Set a) (i : Size) : Set (a L.⊔ w) where [_] : A → Cowriter W A i _∷_ : W → Thunk (Cowriter W A) i → Cowriter W A i ------------------------------------------------------------------------ -- Relationship to Delay. module _ {a} {A : Set a} where fromDelay : ∀ {i} → Delay A i → Cowriter ⊤ A i fromDelay (now a) = [ a ] fromDelay (later da) = _ ∷ λ where .force → fromDelay (da .force) module _ {w a} {W : Set w} {A : Set a} where toDelay : ∀ {i} → Cowriter W A i → Delay A i toDelay [ a ] = now a toDelay (_ ∷ ca) = later λ where .force → toDelay (ca .force) ------------------------------------------------------------------------ -- Basic functions. fromStream : ∀ {i} → Stream W i → Cowriter W A i fromStream (w ∷ ws) = w ∷ λ where .force → fromStream (ws .force) repeat : W → Cowriter W A ∞ repeat = fromStream ∘′ Stream.repeat length : ∀ {i} → Cowriter W A i → Conat i length [ _ ] = zero length (w ∷ cw) = suc λ where .force → length (cw .force) splitAt : ∀ (n : ℕ) → Cowriter W A ∞ → (Vec W n × Cowriter W A ∞) ⊎ (BoundedVec W n × A) splitAt zero cw = inj₁ ([] , cw) splitAt (suc n) [ a ] = inj₂ (BVec.[] , a) splitAt (suc n) (w ∷ cw) = Sum.map (Prod.map₁ (w ∷_)) (Prod.map₁ (w BVec.∷_)) $ splitAt n (cw .force) take : ∀ (n : ℕ) → Cowriter W A ∞ → Vec W n ⊎ (BoundedVec W n × A) take n = Sum.map₁ Prod.proj₁ ∘′ splitAt n infixr 5 _++_ _⁺++_ _++_ : ∀ {i} → List W → Cowriter W A i → Cowriter W A i [] ++ ca = ca (w ∷ ws) ++ ca = w ∷ λ where .force → ws ++ ca _⁺++_ : ∀ {i} → List⁺ W → Thunk (Cowriter W A) i → Cowriter W A i (w ∷ ws) ⁺++ ca = w ∷ λ where .force → ws ++ ca .force concat : ∀ {i} → Cowriter (List⁺ W) A i → Cowriter W A i concat [ a ] = [ a ] concat (w ∷ ca) = w ⁺++ λ where .force → concat (ca .force) module _ {w x a b} {W : Set w} {X : Set x} {A : Set a} {B : Set b} where ------------------------------------------------------------------------ -- Functor, Applicative and Monad map : ∀ {i} → (W → X) → (A → B) → Cowriter W A i → Cowriter X B i map f g [ a ] = [ g a ] map f g (w ∷ cw) = f w ∷ λ where .force → map f g (cw .force) module _ {w a r} {W : Set w} {A : Set a} {R : Set r} where map₁ : ∀ {i} → (W → R) → Cowriter W A i → Cowriter R A i map₁ f = map f id map₂ : ∀ {i} → (A → R) → Cowriter W A i → Cowriter W R i map₂ = map id ap : ∀ {i} → Cowriter W (A → R) i → Cowriter W A i → Cowriter W R i ap [ f ] ca = map₂ f ca ap (w ∷ cf) ca = w ∷ λ where .force → ap (cf .force) ca _>>=_ : ∀ {i} → Cowriter W A i → (A → Cowriter W R i) → Cowriter W R i [ a ] >>= f = f a (w ∷ ca) >>= f = w ∷ λ where .force → ca .force >>= f ------------------------------------------------------------------------ -- Construction. module _ {w s a} {W : Set w} {S : Set s} {A : Set a} where unfold : ∀ {i} → (S → (W × S) ⊎ A) → S → Cowriter W A i unfold next seed with next seed ... | inj₁ (w , seed') = w ∷ λ where .force → unfold next seed' ... | inj₂ a = [ a ]
algebraic-stack_agda0000_doc_8532
module Dave.Algebra.Naturals.Bin where open import Dave.Algebra.Naturals.Definition open import Dave.Algebra.Naturals.Addition open import Dave.Algebra.Naturals.Multiplication open import Dave.Embedding data Bin : Set where ⟨⟩ : Bin _t : Bin → Bin _f : Bin → Bin inc : Bin → Bin inc ⟨⟩ = ⟨⟩ t inc (b t) = (inc b) f inc (b f) = b t to : ℕ → Bin to zero = ⟨⟩ f to (suc n) = inc (to n) from : Bin → ℕ from ⟨⟩ = zero from (b t) = 1 + 2 * (from b) from (b f) = 2 * (from b) from6 = from (⟨⟩ t t f) from23 = from (⟨⟩ t f t t t) from23WithZeros = from (⟨⟩ f f f t f t t t) Bin-ℕ-Suc-Homomorph : ∀ (b : Bin) → from (inc b) ≡ suc (from b) Bin-ℕ-Suc-Homomorph ⟨⟩ = refl Bin-ℕ-Suc-Homomorph (b t) = begin from (inc (b t)) ≡⟨⟩ from ((inc b) f) ≡⟨⟩ 2 * (from (inc b)) ≡⟨ cong (λ a → 2 * a) (Bin-ℕ-Suc-Homomorph b) ⟩ 2 * suc (from b) ≡⟨⟩ 2 * (1 + (from b)) ≡⟨ *-distrib1ₗ-+ₗ 2 (from b) ⟩ 2 + 2 * (from b) ≡⟨⟩ suc (1 + 2 * (from b)) ≡⟨⟩ suc (from (b t)) ∎ Bin-ℕ-Suc-Homomorph (b f) = begin from (inc (b f)) ≡⟨⟩ from (b t) ≡⟨⟩ 1 + 2 * (from b) ≡⟨⟩ suc (2 * from b) ≡⟨⟩ suc (from (b f)) ∎ to-inverse-from : ∀ (n : ℕ) → from (to n) ≡ n to-inverse-from zero = refl to-inverse-from (suc n) = begin from (to (suc n)) ≡⟨⟩ from (inc (to n)) ≡⟨ Bin-ℕ-Suc-Homomorph (to n) ⟩ suc (from (to n)) ≡⟨ cong (λ a → suc a) (to-inverse-from n) ⟩ suc n ∎ ℕ≲Bin : ℕ ≲ Bin ℕ≲Bin = record { to = to; from = from; from∘to = to-inverse-from }
algebraic-stack_agda0000_doc_8533
open import ExtractSac as ES using () open import Extract (ES.kompile-fun) open import Data.Nat as N using (ℕ; zero; suc; _≤_; _≥_; _<_; _>_; s≤s; z≤n; _∸_) import Data.Nat.DivMod as N open import Data.Nat.Properties as N open import Data.List as L using (List; []; _∷_) open import Data.Vec as V using (Vec; []; _∷_) import Data.Vec.Properties as V open import Data.Fin as F using (Fin; zero; suc; #_) import Data.Fin.Properties as F open import Data.Product as Prod using (Σ; _,_; curry; uncurry) renaming (_×_ to _×ₜ_) open import Data.String open import Relation.Binary.PropositionalEquality open import Structures open import Function open import Array.Base open import Array.Properties open import APL2 open import Agda.Builtin.Float open import Reflection open import ReflHelper pattern I0 = (zero ∷ []) pattern I1 = (suc zero ∷ []) pattern I2 = (suc (suc zero) ∷ []) pattern I3 = (suc (suc (suc zero)) ∷ []) -- backin←{(d w in)←⍵⋄⊃+/,w{(⍴in)↑(-⍵+⍴d)↑⍺×d}¨⍳⍴w} backin : ∀ {n s s₁} → (inp : Ar Float n s) → (w : Ar Float n s₁) → {≥ : ▴ s ≥a ▴ s₁} → (d : Ar Float n $ ▾ ((s - s₁){≥} + 1)) → Ar Float n s backin {n}{s}{s₁} inp w d = let ixs = ι ρ w use-ixs i,pf = let i , pf = i,pf iv = a→ix i (ρ w) pf wᵢ = sel w (subst-ix (λ i → V.lookup∘tabulate _ i) iv) --x = pre-pad i 0.0 (d ×ᵣ wᵢ) x = (i + ρ d) -↑⟨ 0.0 ⟩ (d ×ᵣ wᵢ) y = (ρ inp) ↑⟨ 0.0 ⟩ x in y s = reduce-1d _+ᵣ_ (cst 0.0) (, use-ixs ̈ ixs) in subst-ar (λ i → V.lookup∘tabulate _ i) s kbin = kompile backin (quote _≥a_ ∷ quote reduce-1d ∷ quote _↑⟨_⟩_ ∷ quote _-↑⟨_⟩_ ∷ quote a→ix ∷ []) [] rkbin = frefl backin (quote _≥a_ ∷ quote reduce-1d ∷ quote _↑⟨_⟩_ ∷ quote _-↑⟨_⟩_ ∷ quote a→ix ∷ []) fin-id : ∀ {n} → Fin n → Fin n fin-id x = x s-w+1≤s : ∀ {s w} → s ≥ w → s > 0 → w > 0 → s N.∸ w N.+ 1 ≤ s s-w+1≤s {suc s} {suc w} (s≤s s≥w) s>0 w>0 rewrite (+-comm (s ∸ w) 1) = s≤s (m∸n≤m s w) helper : ∀ {n} {sI sw : Vec ℕ n} → s→a sI ≥a s→a sw → (cst 0) <a s→a sI → (cst 0) <a s→a sw → (iv : Ix 1 (n ∷ [])) → V.lookup sI (ix-lookup iv zero) ≥ V.lookup (V.tabulate (λ i → V.lookup sI i ∸ V.lookup sw i N.+ 1)) (ix-lookup iv zero) helper {sI = sI} {sw} sI≥sw sI>0 sw>0 (x ∷ []) rewrite (V.lookup∘tabulate (λ i → V.lookup sI i ∸ V.lookup sw i N.+ 1) x) = s-w+1≤s (sI≥sw (x ∷ [])) (sI>0 (x ∷ [])) (sw>0 (x ∷ [])) a≤b⇒b≡c⇒a≤c : ∀ {a b c} → a ≤ b → b ≡ c → a ≤ c a≤b⇒b≡c⇒a≤c a≤b refl = a≤b -- sI - (sI - sw + 1) + 1 = sw shape-same : ∀ {n} {sI sw : Vec ℕ n} → s→a sI ≥a s→a sw → (cst 0) <a s→a sI → (cst 0) <a s→a sw → (i : Fin n) → V.lookup (V.tabulate (λ i₁ → V.lookup sI i₁ ∸ V.lookup (V.tabulate (λ i₂ → V.lookup sI i₂ ∸ V.lookup sw i₂ N.+ 1)) i₁ N.+ 1)) i ≡ V.lookup sw i shape-same {suc n} {x ∷ sI} {y ∷ sw} I≥w I>0 w>0 zero = begin x ∸ (x ∸ y N.+ 1) N.+ 1 ≡⟨ sym $ +-∸-comm {m = x} 1 {o = (x ∸ y N.+ 1)} (s-w+1≤s (I≥w I0) (I>0 I0) (w>0 I0)) ⟩ x N.+ 1 ∸ (x ∸ y N.+ 1) ≡⟨ cong (x N.+ 1 ∸_) (sym $ +-∸-comm {m = x} 1 {o = y} (I≥w I0)) ⟩ x N.+ 1 ∸ (x N.+ 1 ∸ y) ≡⟨ m∸[m∸n]≡n {m = x N.+ 1} {n = y} (a≤b⇒b≡c⇒a≤c (≤-step $ I≥w I0) (+-comm 1 x)) ⟩ y ∎ where open ≡-Reasoning shape-same {suc n} {x ∷ sI} {x₁ ∷ sw} I≥w I>0 w>0 (suc i) = shape-same {sI = sI} {sw = sw} (λ { (i ∷ []) → I≥w (suc i ∷ []) }) (λ { (i ∷ []) → I>0 (suc i ∷ []) }) (λ { (i ∷ []) → w>0 (suc i ∷ []) }) i {-backmulticonv ← { (d_out weights in bias) ← ⍵ d_in ← +⌿d_out {backin ⍺ ⍵ in} ⍤((⍴⍴in), (⍴⍴in)) ⊢ weights d_w ← {⍵ conv in} ⍤(⍴⍴in) ⊢ d_out d_bias ← backbias ⍤(⍴⍴in) ⊢ d_out d_in d_w d_bias }-} backmulticonv : ∀ {n m}{sI sw so} → (W : Ar (Ar Float n sw) m so) → (I : Ar Float n sI) → (B : Ar Float m so) -- We can get rid of these two expressions if we rewrite -- the convolution to accept s+1 ≥ w, and not s ≥ w. → {>I : (cst 0) <a s→a sI} → {>w : (cst 0) <a s→a sw} → {≥ : s→a sI ≥a s→a sw} → (δo : Ar (Ar Float n (a→s $ (s→a sI - s→a sw) {≥} + 1)) m so) → {- (typeOf W) ×ₜ-} (typeOf I) --×ₜ (typeOf B) backmulticonv {n} {sI = sI} {sw} {so} W I B {sI>0} {sw>0} {sI≥sw} δo = let δI = reduce-1d _+ᵣ_ (cst 0.0) (, (W ̈⟨ (λ x y → backin I x {sI≥sw} y) ⟩ δo)) {- δW = (λ x → (x conv I) {≥ = λ { iv@(i ∷ []) → subst₂ _≤_ (sym $ V.lookup∘tabulate _ i) refl $ s-w+1≤s (sI≥sw iv) (sI>0 iv) (sw>0 iv) } }) ̈ δo δB = backbias ̈ δo -} in --(imap (λ iv → subst-ar (shape-same {sI = sI} {sw = sw} sI≥sw sI>0 sw>0) (sel δW iv)) , δI {-, imap (λ iv → ▾ (sel δB iv))) -} where open import Example-04 open import Example-03 kbckmconv = kompile backmulticonv (quote _≥a_ ∷ quote _<a_ ∷ quote reduce-1d ∷ quote _↑⟨_⟩_ ∷ quote _-↑⟨_⟩_ ∷ quote a→ix ∷ quote _conv_ ∷ []) [] where open import Example-04 conv-fns : List (String ×ₜ Name) conv-fns = ("blog" , quote blog) ∷ ("backbias" , quote backbias) ∷ ("logistic" , quote logistic) ∷ ("meansqerr" , quote meansqerr) ∷ ("backavgpool" , quote backavgpool) ∷ ("avgpool" , quote avgpool) ∷ ("conv" , quote _conv_) ∷ ("multiconv" , quote multiconv) ∷ ("backin", quote backin) ∷ ("backmulticonv" , quote backmulticonv) ∷ [] where open import Example-03 open import Example-04 -- * test-zhang -- * train-zhang
algebraic-stack_agda0000_doc_8534
module Properties.Base where open import Data.Maybe hiding (All) open import Data.List open import Data.List.All open import Data.Product open import Data.Sum open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Typing open import Global open import Values open import Session open import Schedule one-step : ∀ {G} → (∃ λ G' → ThreadPool (G' ++ G)) → Event × (∃ λ G → ThreadPool G) one-step{G} (G1 , tp) with ssplit-refl-left-inactive (G1 ++ G) ... | G' , ina-G' , ss-GG' with Alternative.step ss-GG' tp (tnil ina-G') ... | ev , tp' = ev , ( _ , tp') restart : ∀ {G} → Command G → Command G restart (Ready ss v κ) = apply-cont ss κ v restart cmd = cmd -- auxiliary lemmas lift-unrestricted : ∀ {t G} (unrt : Unr t) (v : Val G t) → unrestricted-val unrt (lift-val v) ≡ ::-inactive (unrestricted-val unrt v) lift-unrestricted-venv : ∀ {Φ G} (unrt : All Unr Φ) (ϱ : VEnv G Φ) → unrestricted-venv unrt (lift-venv ϱ) ≡ ::-inactive (unrestricted-venv unrt ϱ) lift-unrestricted UUnit (VUnit inaG) = refl lift-unrestricted UInt (VInt i inaG) = refl lift-unrestricted (UPair unrt unrt₁) (VPair ss-GG₁G₂ v v₁) rewrite lift-unrestricted unrt v | lift-unrestricted unrt₁ v₁ = refl lift-unrestricted UFun (VFun (inj₁ ()) ϱ e) lift-unrestricted UFun (VFun (inj₂ y) ϱ e) = lift-unrestricted-venv y ϱ lift-unrestricted-venv [] (vnil ina) = refl lift-unrestricted-venv (px ∷ unrt) (vcons ssp v ϱ) rewrite lift-unrestricted px v | lift-unrestricted-venv unrt ϱ = refl unrestricted-empty : ∀ {t} → (unrt : Unr t) (v : Val [] t) → unrestricted-val unrt v ≡ []-inactive unrestricted-empty-venv : ∀ {t} → (unrt : All Unr t) (v : VEnv [] t) → unrestricted-venv unrt v ≡ []-inactive unrestricted-empty UUnit (VUnit []-inactive) = refl unrestricted-empty UInt (VInt i []-inactive) = refl unrestricted-empty (UPair unrt unrt₁) (VPair ss-[] v v₁) rewrite unrestricted-empty unrt v | unrestricted-empty unrt₁ v₁ = refl unrestricted-empty UFun (VFun (inj₁ ()) ϱ e) unrestricted-empty UFun (VFun (inj₂ y) ϱ e) = unrestricted-empty-venv y ϱ unrestricted-empty-venv [] (vnil []-inactive) = refl unrestricted-empty-venv (px ∷ unrt) (vcons ss-[] v v₁) rewrite unrestricted-empty px v | unrestricted-empty-venv unrt v₁ = refl split-env-lemma : ∀ { Φ Φ₁ Φ₂ } (sp : Split Φ Φ₁ Φ₂) (ϱ : VEnv [] Φ) → ∃ λ ϱ₁ → ∃ λ ϱ₂ → split-env sp (lift-venv ϱ) ≡ (((nothing ∷ []) , (nothing ∷ [])) , (ss-both ss-[]) , lift-venv ϱ₁ , lift-venv ϱ₂) split-env-lemma [] (vnil []-inactive) = (vnil []-inactive) , ((vnil []-inactive) , refl) split-env-lemma (dupl unrt sp) (vcons ss-[] v ϱ) with split-env-lemma sp ϱ | unrestricted-val unrt v ... | ϱ₁ , ϱ₂ , spe== | unr-v rewrite inactive-left-ssplit ss-[] unr-v | lift-unrestricted unrt v | unrestricted-empty unrt v | spe== with ssplit-compose3 (ss-both ss-[]) (ss-both ss-[]) ... | ssc3 = (vcons ss-[] v ϱ₁) , (vcons ss-[] v ϱ₂) , refl split-env-lemma (Split.drop unrt sp) (vcons ss-[] v ϱ) with split-env-lemma sp ϱ | unrestricted-val unrt v ... | ϱ₁ , ϱ₂ , spe== | unr-v rewrite lift-unrestricted unrt v | unrestricted-empty unrt v = ϱ₁ , ϱ₂ , spe== split-env-lemma (left sp) (vcons ss-[] v ϱ) with split-env-lemma sp ϱ ... | ϱ₁ , ϱ₂ , spe== rewrite spe== with ssplit-compose3 (ss-both ss-[]) (ss-both ss-[]) ... | ssc3 = (vcons ss-[] v ϱ₁) , (ϱ₂ , refl) split-env-lemma (rght sp) (vcons ss-[] v ϱ) with split-env-lemma sp ϱ ... | ϱ₁ , ϱ₂ , spe== rewrite spe== with ssplit-compose4 (ss-both ss-[]) (ss-both ss-[]) ... | ssc4 = ϱ₁ , (vcons ss-[] v ϱ₂) , refl split-env-right-lemma : ∀ {Φ} (ϱ : VEnv [] Φ) → split-env (split-all-right Φ) (lift-venv ϱ) ≡ (((nothing ∷ []) , (nothing ∷ [])) , (ss-both ss-[]) , vnil (::-inactive []-inactive) , lift-venv ϱ) split-env-right-lemma (vnil []-inactive) = refl split-env-right-lemma (vcons ss-[] v ϱ) with split-env-right-lemma ϱ ... | sperl rewrite sperl with ssplit-compose4 (ss-both ss-[]) (ss-both ss-[]) ... | ssc4 = refl split-env-right-lemma0 : ∀ {Φ} (ϱ : VEnv [] Φ) → split-env (split-all-right Φ) ϱ ≡ (([] , []) , ss-[] , vnil []-inactive , ϱ) split-env-right-lemma0 (vnil []-inactive) = refl split-env-right-lemma0 (vcons ss-[] v ϱ) rewrite split-env-right-lemma0 ϱ = refl split-env-left-lemma0 : ∀ {Φ} (ϱ : VEnv [] Φ) → split-env (split-all-left Φ) ϱ ≡ (([] , []) , ss-[] , ϱ , vnil []-inactive) split-env-left-lemma0 (vnil []-inactive) = refl split-env-left-lemma0 (vcons ss-[] v ϱ) rewrite split-env-left-lemma0 ϱ = refl split-env-lemma-2T : Set split-env-lemma-2T = ∀ { Φ Φ₁ Φ₂ } (sp : Split Φ Φ₁ Φ₂) (ϱ : VEnv [] Φ) → ∃ λ ϱ₁ → ∃ λ ϱ₂ → split-env sp (lift-venv ϱ) ≡ (_ , (ss-both ss-[]) , lift-venv ϱ₁ , lift-venv ϱ₂) × split-env sp ϱ ≡ (_ , ss-[] , ϱ₁ , ϱ₂) split-env-lemma-2 : split-env-lemma-2T split-env-lemma-2 [] (vnil []-inactive) = (vnil []-inactive) , ((vnil []-inactive) , (refl , refl)) split-env-lemma-2 (dupl unrt sp) (vcons ss-[] v ϱ) with split-env-lemma-2 sp ϱ ... | ϱ₁ , ϱ₂ , selift-ind , se-ind rewrite se-ind | lift-unrestricted unrt v with unrestricted-val unrt v ... | []-inactive rewrite selift-ind with ssplit-compose3 (ss-both ss-[]) (ss-both ss-[]) ... | ssc3 = (vcons ss-[] v ϱ₁) , (vcons ss-[] v ϱ₂) , refl , refl split-env-lemma-2 (Split.drop unrt sp) (vcons ss-[] v ϱ) with split-env-lemma-2 sp ϱ ... | ϱ₁ , ϱ₂ , selift-ind , se-ind rewrite se-ind | lift-unrestricted unrt v with unrestricted-val unrt v ... | []-inactive = ϱ₁ , ϱ₂ , selift-ind , se-ind split-env-lemma-2 (left sp) (vcons ss-[] v ϱ) with split-env-lemma-2 sp ϱ ... | ϱ₁ , ϱ₂ , selift-ind , se-ind rewrite se-ind | selift-ind with ssplit-compose3 (ss-both ss-[]) (ss-both ss-[]) ... | ssc3 = (vcons ss-[] v ϱ₁) , ϱ₂ , refl , refl split-env-lemma-2 (rght sp) (vcons ss-[] v ϱ) with split-env-lemma-2 sp ϱ ... | ϱ₁ , ϱ₂ , selift-ind , se-ind rewrite se-ind | selift-ind with ssplit-compose4 (ss-both ss-[]) (ss-both ss-[]) ... | ssc4 = ϱ₁ , (vcons ss-[] v ϱ₂) , refl , refl split-rotate-lemma : ∀ {Φ} → split-rotate (split-all-left Φ) (split-all-right Φ) ≡ (Φ , split-all-right Φ , split-all-left Φ) split-rotate-lemma {[]} = refl split-rotate-lemma {x ∷ Φ} rewrite split-rotate-lemma {Φ} = refl split-rotate-lemma' : ∀ {Φ Φ₁ Φ₂} (sp : Split Φ Φ₁ Φ₂) → split-rotate (split-all-left Φ) sp ≡ (Φ₂ , sp , split-all-left Φ₂) split-rotate-lemma' {[]} [] = refl split-rotate-lemma' {x ∷ Φ} (dupl un-x sp) rewrite split-rotate-lemma' {Φ} sp = refl split-rotate-lemma' {x ∷ Φ} {Φ₁} {Φ₂} (Split.drop un-x sp) rewrite split-rotate-lemma' {Φ} sp = refl split-rotate-lemma' {x ∷ Φ} (left sp) rewrite split-rotate-lemma' {Φ} sp = refl split-rotate-lemma' {x ∷ Φ} (rght sp) rewrite split-rotate-lemma' {Φ} sp = refl ssplit-compose-lemma : ∀ ss → ssplit-compose ss-[] ss ≡ ([] , ss-[] , ss-[]) ssplit-compose-lemma ss-[] = refl
algebraic-stack_agda0000_doc_8535
open import Oscar.Prelude open import Oscar.Class.IsFunctor open import Oscar.Class.Reflexivity open import Oscar.Class.Smap open import Oscar.Class.Surjection open import Oscar.Class.Transitivity module Oscar.Class.Functor where record Functor 𝔬₁ 𝔯₁ ℓ₁ 𝔬₂ 𝔯₂ ℓ₂ : Ø ↑̂ (𝔬₁ ∙̂ 𝔯₁ ∙̂ ℓ₁ ∙̂ 𝔬₂ ∙̂ 𝔯₂ ∙̂ ℓ₂) where constructor ∁ field {𝔒₁} : Ø 𝔬₁ _∼₁_ : 𝔒₁ → 𝔒₁ → Ø 𝔯₁ _∼̇₁_ : ∀ {x y} → x ∼₁ y → x ∼₁ y → Ø ℓ₁ ε₁ : Reflexivity.type _∼₁_ _↦₁_ : Transitivity.type _∼₁_ {𝔒₂} : Ø 𝔬₂ _∼₂_ : 𝔒₂ → 𝔒₂ → Ø 𝔯₂ _∼̇₂_ : ∀ {x y} → x ∼₂ y → x ∼₂ y → Ø ℓ₂ ε₂ : Reflexivity.type _∼₂_ _↦₂_ : Transitivity.type _∼₂_ {μ} : Surjection.type 𝔒₁ 𝔒₂ functor-smap : Smap.type _∼₁_ _∼₂_ μ μ -- FIXME cannot name this § or smap b/c of namespace conflict ⦃ `IsFunctor ⦄ : IsFunctor _∼₁_ _∼̇₁_ ε₁ _↦₁_ _∼₂_ _∼̇₂_ ε₂ _↦₂_ functor-smap
algebraic-stack_agda0000_doc_8536
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Overloading ⟦_⟧ notation -- -- This module defines a general mechanism for overloading the -- ⟦_⟧ notation, using Agda’s instance arguments. ------------------------------------------------------------------------ module Base.Denotation.Notation where open import Level record Meaning (Syntax : Set) {ℓ : Level} : Set (suc ℓ) where constructor meaning field {Semantics} : Set ℓ ⟨_⟩⟦_⟧ : Syntax → Semantics open Meaning {{...}} public renaming (⟨_⟩⟦_⟧ to ⟦_⟧) open Meaning public using (⟨_⟩⟦_⟧)
algebraic-stack_agda0000_doc_8537
{-# OPTIONS --allow-unsolved-metas #-} module IsLiteralProblem where open import OscarPrelude open import IsLiteralSequent open import Problem record IsLiteralProblem (𝔓 : Problem) : Set where constructor _¶_ field {problem} : Problem isLiteralInferences : All IsLiteralSequent (inferences 𝔓) isLiteralInterest : IsLiteralSequent (interest 𝔓) open IsLiteralProblem public instance EqIsLiteralProblem : ∀ {𝔓} → Eq (IsLiteralProblem 𝔓) EqIsLiteralProblem = {!!}
algebraic-stack_agda0000_doc_8538
module Pi-.Invariants where open import Data.Empty open import Data.Unit open import Data.Sum open import Data.Product open import Relation.Binary.Core open import Relation.Binary open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Data.Nat open import Data.Nat.Properties open import Function using (_∘_) open import Pi-.Syntax open import Pi-.Opsem open import Pi-.NoRepeat open import Pi-.Dir -- Direction of values dir𝕍 : ∀ {t} → ⟦ t ⟧ → Dir dir𝕍 {𝟘} () dir𝕍 {𝟙} v = ▷ dir𝕍 {_ +ᵤ _} (inj₁ x) = dir𝕍 x dir𝕍 {_ +ᵤ _} (inj₂ y) = dir𝕍 y dir𝕍 {_ ×ᵤ _} (x , y) = dir𝕍 x ×ᵈⁱʳ dir𝕍 y dir𝕍 { - _} (- v) = -ᵈⁱʳ (dir𝕍 v) -- Execution direction of states dirState : State → Dir dirState ⟨ _ ∣ _ ∣ _ ⟩▷ = ▷ dirState [ _ ∣ _ ∣ _ ]▷ = ▷ dirState ⟨ _ ∣ _ ∣ _ ⟩◁ = ◁ dirState [ _ ∣ _ ∣ _ ]◁ = ◁ dirCtx : ∀ {A B} → Context {A} {B} → Dir dirCtx ☐ = ▷ dirCtx (☐⨾ c₂ • κ) = dirCtx κ dirCtx (c₁ ⨾☐• κ) = dirCtx κ dirCtx (☐⊕ c₂ • κ) = dirCtx κ dirCtx (c₁ ⊕☐• κ) = dirCtx κ dirCtx (☐⊗[ c₂ , x ]• κ) = dir𝕍 x ×ᵈⁱʳ dirCtx κ dirCtx ([ c₁ , x ]⊗☐• κ) = dir𝕍 x ×ᵈⁱʳ dirCtx κ dirState𝕍 : State → Dir dirState𝕍 ⟨ _ ∣ v ∣ κ ⟩▷ = dir𝕍 v ×ᵈⁱʳ dirCtx κ dirState𝕍 [ _ ∣ v ∣ κ ]▷ = dir𝕍 v ×ᵈⁱʳ dirCtx κ dirState𝕍 ⟨ _ ∣ v ∣ κ ⟩◁ = dir𝕍 v ×ᵈⁱʳ dirCtx κ dirState𝕍 [ _ ∣ v ∣ κ ]◁ = dir𝕍 v ×ᵈⁱʳ dirCtx κ δdir : ∀ {A B} (c : A ↔ B) {b : base c} → (v : ⟦ A ⟧) → dir𝕍 v ≡ dir𝕍 (δ c {b} v) δdir unite₊l (inj₂ v) = refl δdir uniti₊l v = refl δdir swap₊ (inj₁ x) = refl δdir swap₊ (inj₂ y) = refl δdir assocl₊ (inj₁ v) = refl δdir assocl₊ (inj₂ (inj₁ v)) = refl δdir assocl₊ (inj₂ (inj₂ v)) = refl δdir assocr₊ (inj₁ (inj₁ v)) = refl δdir assocr₊ (inj₁ (inj₂ v)) = refl δdir assocr₊ (inj₂ v) = refl δdir unite⋆l (tt , v) = identˡᵈⁱʳ (dir𝕍 v) δdir uniti⋆l v = sym (identˡᵈⁱʳ (dir𝕍 v)) δdir swap⋆ (x , y) = commᵈⁱʳ _ _ δdir assocl⋆ (v₁ , (v₂ , v₃)) = assoclᵈⁱʳ _ _ _ δdir assocr⋆ ((v₁ , v₂) , v₃) = sym (assoclᵈⁱʳ _ _ _) δdir dist (inj₁ v₁ , v₃) = refl δdir dist (inj₂ v₂ , v₃) = refl δdir factor (inj₁ (v₁ , v₃)) = refl δdir factor (inj₂ (v₂ , v₃)) = refl -- Invariant of directions dirInvariant : ∀ {st st'} → st ↦ st' → dirState st ×ᵈⁱʳ dirState𝕍 st ≡ dirState st' ×ᵈⁱʳ dirState𝕍 st' dirInvariant {⟨ c ∣ v ∣ κ ⟩▷} (↦⃗₁ {b = b}) rewrite δdir c {b} v = refl dirInvariant ↦⃗₂ = refl dirInvariant ↦⃗₃ = refl dirInvariant ↦⃗₄ = refl dirInvariant ↦⃗₅ = refl dirInvariant {⟨ c₁ ⊗ c₂ ∣ (x , y) ∣ κ ⟩▷} ↦⃗₆ rewrite assoclᵈⁱʳ (dir𝕍 x) (dir𝕍 y) (dirCtx κ) = refl dirInvariant ↦⃗₇ = refl dirInvariant {[ c₁ ∣ x ∣ ☐⊗[ c₂ , y ]• κ ]▷} ↦⃗₈ rewrite assoc-commᵈⁱʳ (dir𝕍 x) (dir𝕍 y) (dirCtx κ) = refl dirInvariant {[ c₂ ∣ y ∣ [ c₁ , x ]⊗☐• κ ]▷} ↦⃗₉ rewrite assocl-commᵈⁱʳ (dir𝕍 y) (dir𝕍 x) (dirCtx κ) = refl dirInvariant ↦⃗₁₀ = refl dirInvariant ↦⃗₁₁ = refl dirInvariant ↦⃗₁₂ = refl dirInvariant {_} {⟨ c ∣ v ∣ κ ⟩◁} (↦⃖₁ {b = b}) rewrite δdir c {b} v = refl dirInvariant ↦⃖₂ = refl dirInvariant ↦⃖₃ = refl dirInvariant ↦⃖₄ = refl dirInvariant ↦⃖₅ = refl dirInvariant {⟨ c₁ ∣ x ∣ ☐⊗[ c₂ , y ]• κ ⟩◁} ↦⃖₆ rewrite assoclᵈⁱʳ (dir𝕍 x) (dir𝕍 y) (dirCtx κ) = refl dirInvariant ↦⃖₇ = refl dirInvariant {⟨ c₂ ∣ y ∣ [ c₁ , x ]⊗☐• κ ⟩◁} ↦⃖₈ rewrite assoc-commᵈⁱʳ (dir𝕍 y) (dir𝕍 x) (dirCtx κ) = refl dirInvariant {[ c₁ ⊗ c₂ ∣ (x , y) ∣ κ ]◁ } ↦⃖₉ rewrite assoclᵈⁱʳ (dir𝕍 y) (dir𝕍 x) (dirCtx κ) | commᵈⁱʳ (dir𝕍 y) (dir𝕍 x) = refl dirInvariant ↦⃖₁₀ = refl dirInvariant ↦⃖₁₁ = refl dirInvariant ↦⃖₁₂ = refl dirInvariant {[ η₊ ∣ inj₁ v ∣ κ ]◁} ↦η₁ with dir𝕍 v ... | ◁ with dirCtx κ ... | ◁ = refl ... | ▷ = refl dirInvariant {[ η₊ ∣ inj₁ v ∣ κ ]◁} ↦η₁ | ▷ with dirCtx κ ... | ◁ = refl ... | ▷ = refl dirInvariant {[ η₊ ∣ inj₂ (- v) ∣ κ ]◁} ↦η₂ with dir𝕍 v ... | ◁ with dirCtx κ ... | ◁ = refl ... | ▷ = refl dirInvariant {[ η₊ ∣ inj₂ (- v) ∣ κ ]◁} ↦η₂ | ▷ with dirCtx κ ... | ◁ = refl ... | ▷ = refl dirInvariant {⟨ ε₊ ∣ inj₁ v ∣ κ ⟩▷} ↦ε₁ with dir𝕍 v ... | ◁ with dirCtx κ ... | ◁ = refl ... | ▷ = refl dirInvariant {⟨ ε₊ ∣ inj₁ v ∣ κ ⟩▷} ↦ε₁ | ▷ with dirCtx κ ... | ◁ = refl ... | ▷ = refl dirInvariant {⟨ ε₊ ∣ inj₂ (- v) ∣ κ ⟩▷} ↦ε₂ with dir𝕍 v ... | ◁ with dirCtx κ ... | ◁ = refl ... | ▷ = refl dirInvariant {⟨ ε₊ ∣ inj₂ (- v) ∣ κ ⟩▷} ↦ε₂ | ▷ with dirCtx κ ... | ◁ = refl ... | ▷ = refl -- Reconstruct the whole combinator from context getℂκ : ∀ {A B} → A ↔ B → Context {A} {B} → ∃[ C ] ∃[ D ] (C ↔ D) getℂκ c ☐ = _ , _ , c getℂκ c (☐⨾ c₂ • κ) = getℂκ (c ⨾ c₂) κ getℂκ c (c₁ ⨾☐• κ) = getℂκ (c₁ ⨾ c) κ getℂκ c (☐⊕ c₂ • κ) = getℂκ (c ⊕ c₂) κ getℂκ c (c₁ ⊕☐• κ) = getℂκ (c₁ ⊕ c) κ getℂκ c (☐⊗[ c₂ , x ]• κ) = getℂκ (c ⊗ c₂) κ getℂκ c ([ c₁ , x ]⊗☐• κ) = getℂκ (c₁ ⊗ c) κ getℂ : State → ∃[ A ] ∃[ B ] (A ↔ B) getℂ ⟨ c ∣ _ ∣ κ ⟩▷ = getℂκ c κ getℂ [ c ∣ _ ∣ κ ]▷ = getℂκ c κ getℂ ⟨ c ∣ _ ∣ κ ⟩◁ = getℂκ c κ getℂ [ c ∣ _ ∣ κ ]◁ = getℂκ c κ -- The reconstructed combinator stays the same ℂInvariant : ∀ {st st'} → st ↦ st' → getℂ st ≡ getℂ st' ℂInvariant ↦⃗₁ = refl ℂInvariant ↦⃗₂ = refl ℂInvariant ↦⃗₃ = refl ℂInvariant ↦⃗₄ = refl ℂInvariant ↦⃗₅ = refl ℂInvariant ↦⃗₆ = refl ℂInvariant ↦⃗₇ = refl ℂInvariant ↦⃗₈ = refl ℂInvariant ↦⃗₉ = refl ℂInvariant ↦⃗₁₀ = refl ℂInvariant ↦⃗₁₁ = refl ℂInvariant ↦⃗₁₂ = refl ℂInvariant ↦⃖₁ = refl ℂInvariant ↦⃖₂ = refl ℂInvariant ↦⃖₃ = refl ℂInvariant ↦⃖₄ = refl ℂInvariant ↦⃖₅ = refl ℂInvariant ↦⃖₆ = refl ℂInvariant ↦⃖₇ = refl ℂInvariant ↦⃖₈ = refl ℂInvariant ↦⃖₉ = refl ℂInvariant ↦⃖₁₀ = refl ℂInvariant ↦⃖₁₁ = refl ℂInvariant ↦⃖₁₂ = refl ℂInvariant ↦η₁ = refl ℂInvariant ↦η₂ = refl ℂInvariant ↦ε₁ = refl ℂInvariant ↦ε₂ = refl ℂInvariant* : ∀ {st st'} → st ↦* st' → getℂ st ≡ getℂ st' ℂInvariant* ◾ = refl ℂInvariant* (r ∷ rs) = trans (ℂInvariant r) (ℂInvariant* rs) -- Get the type of the deepest context get𝕌 : ∀ {A B} → Context {A} {B} → 𝕌 × 𝕌 get𝕌 {A} {B} ☐ = A , B get𝕌 (☐⨾ c₂ • κ) = get𝕌 κ get𝕌 (c₁ ⨾☐• κ) = get𝕌 κ get𝕌 (☐⊕ c₂ • κ) = get𝕌 κ get𝕌 (c₁ ⊕☐• κ) = get𝕌 κ get𝕌 (☐⊗[ c₂ , x ]• κ) = get𝕌 κ get𝕌 ([ c₁ , x ]⊗☐• κ) = get𝕌 κ get𝕌State : State → 𝕌 × 𝕌 get𝕌State ⟨ c ∣ v ∣ κ ⟩▷ = get𝕌 κ get𝕌State [ c ∣ v ∣ κ ]▷ = get𝕌 κ get𝕌State ⟨ c ∣ v ∣ κ ⟩◁ = get𝕌 κ get𝕌State [ c ∣ v ∣ κ ]◁ = get𝕌 κ -- Append a context to another context appendκ : ∀ {A B} → (ctx : Context {A} {B}) → let (C , D) = get𝕌 ctx in Context {C} {D} → Context {A} {B} appendκ ☐ ctx = ctx appendκ (☐⨾ c₂ • κ) ctx = ☐⨾ c₂ • appendκ κ ctx appendκ (c₁ ⨾☐• κ) ctx = c₁ ⨾☐• appendκ κ ctx appendκ (☐⊕ c₂ • κ) ctx = ☐⊕ c₂ • appendκ κ ctx appendκ (c₁ ⊕☐• κ) ctx = c₁ ⊕☐• appendκ κ ctx appendκ (☐⊗[ c₂ , x ]• κ) ctx = ☐⊗[ c₂ , x ]• appendκ κ ctx appendκ ([ c₁ , x ]⊗☐• κ) ctx = [ c₁ , x ]⊗☐• appendκ κ ctx appendκState : ∀ st → let (A , B) = get𝕌State st in Context {A} {B} → State appendκState ⟨ c ∣ v ∣ κ ⟩▷ ctx = ⟨ c ∣ v ∣ appendκ κ ctx ⟩▷ appendκState [ c ∣ v ∣ κ ]▷ ctx = [ c ∣ v ∣ appendκ κ ctx ]▷ appendκState ⟨ c ∣ v ∣ κ ⟩◁ ctx = ⟨ c ∣ v ∣ appendκ κ ctx ⟩◁ appendκState [ c ∣ v ∣ κ ]◁ ctx = [ c ∣ v ∣ appendκ κ ctx ]◁ -- The type of context does not change during execution 𝕌Invariant : ∀ {st st'} → st ↦ st' → get𝕌State st ≡ get𝕌State st' 𝕌Invariant ↦⃗₁ = refl 𝕌Invariant ↦⃗₂ = refl 𝕌Invariant ↦⃗₃ = refl 𝕌Invariant ↦⃗₄ = refl 𝕌Invariant ↦⃗₅ = refl 𝕌Invariant ↦⃗₆ = refl 𝕌Invariant ↦⃗₇ = refl 𝕌Invariant ↦⃗₈ = refl 𝕌Invariant ↦⃗₉ = refl 𝕌Invariant ↦⃗₁₀ = refl 𝕌Invariant ↦⃗₁₁ = refl 𝕌Invariant ↦⃗₁₂ = refl 𝕌Invariant ↦⃖₁ = refl 𝕌Invariant ↦⃖₂ = refl 𝕌Invariant ↦⃖₃ = refl 𝕌Invariant ↦⃖₄ = refl 𝕌Invariant ↦⃖₅ = refl 𝕌Invariant ↦⃖₆ = refl 𝕌Invariant ↦⃖₇ = refl 𝕌Invariant ↦⃖₈ = refl 𝕌Invariant ↦⃖₉ = refl 𝕌Invariant ↦⃖₁₀ = refl 𝕌Invariant ↦⃖₁₁ = refl 𝕌Invariant ↦⃖₁₂ = refl 𝕌Invariant ↦η₁ = refl 𝕌Invariant ↦η₂ = refl 𝕌Invariant ↦ε₁ = refl 𝕌Invariant ↦ε₂ = refl 𝕌Invariant* : ∀ {st st'} → st ↦* st' → get𝕌State st ≡ get𝕌State st' 𝕌Invariant* ◾ = refl 𝕌Invariant* (r ∷ rs) = trans (𝕌Invariant r) (𝕌Invariant* rs) -- Appending context does not affect reductions appendκ↦ : ∀ {st st'} → (r : st ↦ st') (eq : get𝕌State st ≡ get𝕌State st') → (κ : Context {proj₁ (get𝕌State st)} {proj₂ (get𝕌State st)}) → appendκState st κ ↦ appendκState st' (subst (λ {(A , B) → Context {A} {B}}) eq κ) appendκ↦ ↦⃗₁ refl ctx = ↦⃗₁ appendκ↦ ↦⃗₂ refl ctx = ↦⃗₂ appendκ↦ ↦⃗₃ refl ctx = ↦⃗₃ appendκ↦ ↦⃗₄ refl ctx = ↦⃗₄ appendκ↦ ↦⃗₅ refl ctx = ↦⃗₅ appendκ↦ ↦⃗₆ refl ctx = ↦⃗₆ appendκ↦ ↦⃗₇ refl ctx = ↦⃗₇ appendκ↦ ↦⃗₈ refl ctx = ↦⃗₈ appendκ↦ ↦⃗₉ refl ctx = ↦⃗₉ appendκ↦ ↦⃗₁₀ refl ctx = ↦⃗₁₀ appendκ↦ ↦⃗₁₁ refl ctx = ↦⃗₁₁ appendκ↦ ↦⃗₁₂ refl ctx = ↦⃗₁₂ appendκ↦ ↦⃖₁ refl ctx = ↦⃖₁ appendκ↦ ↦⃖₂ refl ctx = ↦⃖₂ appendκ↦ ↦⃖₃ refl ctx = ↦⃖₃ appendκ↦ ↦⃖₄ refl ctx = ↦⃖₄ appendκ↦ ↦⃖₅ refl ctx = ↦⃖₅ appendκ↦ ↦⃖₆ refl ctx = ↦⃖₆ appendκ↦ ↦⃖₇ refl ctx = ↦⃖₇ appendκ↦ ↦⃖₈ refl ctx = ↦⃖₈ appendκ↦ ↦⃖₉ refl ctx = ↦⃖₉ appendκ↦ ↦⃖₁₀ refl ctx = ↦⃖₁₀ appendκ↦ ↦⃖₁₁ refl ctx = ↦⃖₁₁ appendκ↦ ↦⃖₁₂ refl ctx = ↦⃖₁₂ appendκ↦ ↦η₁ refl ctx = ↦η₁ appendκ↦ ↦η₂ refl ctx = ↦η₂ appendκ↦ ↦ε₁ refl ctx = ↦ε₁ appendκ↦ ↦ε₂ refl ctx = ↦ε₂ appendκ↦* : ∀ {st st'} → (r : st ↦* st') (eq : get𝕌State st ≡ get𝕌State st') → (κ : Context {proj₁ (get𝕌State st)} {proj₂ (get𝕌State st)}) → appendκState st κ ↦* appendκState st' (subst (λ {(A , B) → Context {A} {B}}) eq κ) appendκ↦* ◾ refl ctx = ◾ appendκ↦* (↦⃗₁ {b = b} {v} {κ} ∷ rs) eq ctx = appendκ↦ (↦⃗₁ {b = b} {v} {κ}) refl ctx ∷ appendκ↦* rs eq ctx appendκ↦* (↦⃗₂ {v = v} {κ} ∷ rs) eq ctx = appendκ↦ (↦⃗₂ {v = v} {κ}) refl ctx ∷ appendκ↦* rs eq ctx appendκ↦* (↦⃗₃ {v = v} {κ} ∷ rs) eq ctx = appendκ↦ (↦⃗₃ {v = v} {κ}) refl ctx ∷ appendκ↦* rs eq ctx appendκ↦* (↦⃗₄ {x = x} {κ} ∷ rs) eq ctx = appendκ↦ (↦⃗₄ {x = x} {κ}) refl ctx ∷ appendκ↦* rs eq ctx appendκ↦* (↦⃗₅ {y = y} {κ} ∷ rs) eq ctx = appendκ↦ (↦⃗₅ {y = y} {κ}) refl ctx ∷ appendκ↦* rs eq ctx appendκ↦* (↦⃗₆ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦⃗₆ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx appendκ↦* (↦⃗₇ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦⃗₇ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx appendκ↦* (↦⃗₈ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦⃗₈ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx appendκ↦* (↦⃗₉ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦⃗₉ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx appendκ↦* (↦⃗₁₀ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦⃗₁₀ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx appendκ↦* (↦⃗₁₁ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦⃗₁₁ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx appendκ↦* (↦⃗₁₂ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦⃗₁₂ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx appendκ↦* (↦⃖₁ {b = b} {v} {κ} ∷ rs) eq ctx = appendκ↦ (↦⃖₁ {b = b} {v} {κ}) refl ctx ∷ appendκ↦* rs eq ctx appendκ↦* (↦⃖₂ {v = v} {κ} ∷ rs) eq ctx = appendκ↦ (↦⃖₂ {v = v} {κ}) refl ctx ∷ appendκ↦* rs eq ctx appendκ↦* (↦⃖₃ {v = v} {κ} ∷ rs) eq ctx = appendκ↦ (↦⃖₃ {v = v} {κ}) refl ctx ∷ appendκ↦* rs eq ctx appendκ↦* (↦⃖₄ {x = x} {κ} ∷ rs) eq ctx = appendκ↦ (↦⃖₄ {x = x} {κ}) refl ctx ∷ appendκ↦* rs eq ctx appendκ↦* (↦⃖₅ {y = y} {κ} ∷ rs) eq ctx = appendκ↦ (↦⃖₅ {y = y} {κ}) refl ctx ∷ appendκ↦* rs eq ctx appendκ↦* (↦⃖₆ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦⃖₆ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx appendκ↦* (↦⃖₇ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦⃖₇ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx appendκ↦* (↦⃖₈ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦⃖₈ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx appendκ↦* (↦⃖₉ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦⃖₉ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx appendκ↦* (↦⃖₁₀ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦⃖₁₀ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx appendκ↦* (↦⃖₁₁ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦⃖₁₁ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx appendκ↦* (↦⃖₁₂ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦⃖₁₂ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx appendκ↦* (↦η₁ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦η₁ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx appendκ↦* (↦η₂ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦η₂ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx appendκ↦* (↦ε₁ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦ε₁ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx appendκ↦* (↦ε₂ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦ε₂ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx
algebraic-stack_agda0000_doc_8539
------------------------------------------------------------------------ -- Two logically equivalent axiomatisations of equality ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Equality where open import Logical-equivalence hiding (id; _∘_) open import Prelude private variable ℓ : Level A B C D : Type ℓ P : A → Type ℓ a a₁ a₂ a₃ b c p u v x x₁ x₂ y y₁ y₂ z : A f g : (x : A) → P x ------------------------------------------------------------------------ -- Reflexive relations record Reflexive-relation a : Type (lsuc a) where no-eta-equality infix 4 _≡_ field -- "Equality". _≡_ : {A : Type a} → A → A → Type a -- Reflexivity. refl : (x : A) → x ≡ x -- Some definitions. module Reflexive-relation′ (reflexive : ∀ ℓ → Reflexive-relation ℓ) where private open module R {ℓ} = Reflexive-relation (reflexive ℓ) public -- Non-equality. infix 4 _≢_ _≢_ : {A : Type a} → A → A → Type a x ≢ y = ¬ (x ≡ y) -- The property of having decidable equality. Decidable-equality : Type ℓ → Type ℓ Decidable-equality A = Decidable (_≡_ {A = A}) -- A type is contractible if it is inhabited and all elements are -- equal. Contractible : Type ℓ → Type ℓ Contractible A = ∃ λ (x : A) → ∀ y → x ≡ y -- The property of being a proposition. Is-proposition : Type ℓ → Type ℓ Is-proposition A = (x y : A) → x ≡ y -- The property of being a set. Is-set : Type ℓ → Type ℓ Is-set A = {x y : A} → Is-proposition (x ≡ y) -- Uniqueness of identity proofs (for a specific universe level). Uniqueness-of-identity-proofs : ∀ ℓ → Type (lsuc ℓ) Uniqueness-of-identity-proofs ℓ = {A : Type ℓ} → Is-set A -- The K rule (without computational content). K-rule : ∀ a p → Type (lsuc (a ⊔ p)) K-rule a p = {A : Type a} (P : {x : A} → x ≡ x → Type p) → (∀ x → P (refl x)) → ∀ {x} (x≡x : x ≡ x) → P x≡x -- Singleton x is a set which contains all elements which are equal -- to x. Singleton : {A : Type a} → A → Type a Singleton x = ∃ λ y → y ≡ x -- A variant of Singleton. Other-singleton : {A : Type a} → A → Type a Other-singleton x = ∃ λ y → x ≡ y -- The inspect idiom. inspect : (x : A) → Other-singleton x inspect x = x , refl x -- Extensionality for functions of a certain type. Extensionality′ : (A : Type a) → (A → Type b) → Type (a ⊔ b) Extensionality′ A B = {f g : (x : A) → B x} → (∀ x → f x ≡ g x) → f ≡ g -- Extensionality for functions at certain levels. -- -- The definition is wrapped in a record type in order to avoid -- certain problems related to Agda's handling of implicit -- arguments. record Extensionality (a b : Level) : Type (lsuc (a ⊔ b)) where no-eta-equality field apply-ext : {A : Type a} {B : A → Type b} → Extensionality′ A B open Extensionality public -- Proofs of extensionality which behave well when applied to -- reflexivity. Well-behaved-extensionality : (A : Type a) → (A → Type b) → Type (a ⊔ b) Well-behaved-extensionality A B = ∃ λ (ext : Extensionality′ A B) → ∀ f → ext (λ x → refl (f x)) ≡ refl f ------------------------------------------------------------------------ -- Abstract definition of equality based on the J rule -- Parametrised by a reflexive relation. record Equality-with-J₀ a p (reflexive : ∀ ℓ → Reflexive-relation ℓ) : Type (lsuc (a ⊔ p)) where open Reflexive-relation′ reflexive field -- The J rule. elim : ∀ {A : Type a} {x y} (P : {x y : A} → x ≡ y → Type p) → (∀ x → P (refl x)) → (x≡y : x ≡ y) → P x≡y -- The usual computational behaviour of the J rule. elim-refl : ∀ {A : Type a} {x} (P : {x y : A} → x ≡ y → Type p) (r : ∀ x → P (refl x)) → elim P r (refl x) ≡ r x -- Extended variants of Reflexive-relation and Equality-with-J₀ with -- some extra fields. These fields can be derived from -- Equality-with-J₀ (see J₀⇒Equivalence-relation⁺ and J₀⇒J below), but -- those derived definitions may not have the intended computational -- behaviour (in particular, not when the paths of Cubical Agda are -- used). -- A variant of Reflexive-relation: equivalence relations with some -- extra structure. record Equivalence-relation⁺ a : Type (lsuc a) where no-eta-equality field reflexive-relation : Reflexive-relation a open Reflexive-relation reflexive-relation field -- Symmetry. sym : {A : Type a} {x y : A} → x ≡ y → y ≡ x sym-refl : {A : Type a} {x : A} → sym (refl x) ≡ refl x -- Transitivity. trans : {A : Type a} {x y z : A} → x ≡ y → y ≡ z → x ≡ z trans-refl-refl : {A : Type a} {x : A} → trans (refl x) (refl x) ≡ refl x -- A variant of Equality-with-J₀. record Equality-with-J a b (e⁺ : ∀ ℓ → Equivalence-relation⁺ ℓ) : Type (lsuc (a ⊔ b)) where no-eta-equality private open module R {ℓ} = Equivalence-relation⁺ (e⁺ ℓ) open module R₀ {ℓ} = Reflexive-relation (reflexive-relation {ℓ}) field equality-with-J₀ : Equality-with-J₀ a b (λ _ → reflexive-relation) open Equality-with-J₀ equality-with-J₀ field -- Congruence. cong : {A : Type a} {B : Type b} {x y : A} (f : A → B) → x ≡ y → f x ≡ f y cong-refl : {A : Type a} {B : Type b} {x : A} (f : A → B) → cong f (refl x) ≡ refl (f x) -- Substitutivity. subst : {A : Type a} {x y : A} (P : A → Type b) → x ≡ y → P x → P y subst-refl : ∀ {A : Type a} {x} (P : A → Type b) p → subst P (refl x) p ≡ p -- A dependent variant of cong. dcong : ∀ {A : Type a} {P : A → Type b} {x y} (f : (x : A) → P x) (x≡y : x ≡ y) → subst P x≡y (f x) ≡ f y dcong-refl : ∀ {A : Type a} {P : A → Type b} {x} (f : (x : A) → P x) → dcong f (refl x) ≡ subst-refl _ _ -- Equivalence-relation⁺ can be derived from Equality-with-J₀. J₀⇒Equivalence-relation⁺ : ∀ {ℓ reflexive} → Equality-with-J₀ ℓ ℓ reflexive → Equivalence-relation⁺ ℓ J₀⇒Equivalence-relation⁺ {ℓ} {r} eq = record { reflexive-relation = r ℓ ; sym = sym ; sym-refl = sym-refl ; trans = trans ; trans-refl-refl = trans-refl-refl } where open Reflexive-relation (r ℓ) open Equality-with-J₀ eq cong : (f : A → B) → x ≡ y → f x ≡ f y cong f = elim (λ {u v} _ → f u ≡ f v) (λ x → refl (f x)) subst : (P : A → Type ℓ) → x ≡ y → P x → P y subst P = elim (λ {u v} _ → P u → P v) (λ _ p → p) subst-refl : (P : A → Type ℓ) (p : P x) → subst P (refl x) p ≡ p subst-refl P p = cong (_$ p) $ elim-refl (λ {u} _ → P u → _) _ sym : x ≡ y → y ≡ x sym {x = x} x≡y = subst (λ z → x ≡ z → z ≡ x) x≡y id x≡y abstract sym-refl : sym (refl x) ≡ refl x sym-refl = cong (_$ _) $ subst-refl (λ z → _ ≡ z → z ≡ _) _ trans : x ≡ y → y ≡ z → x ≡ z trans {x = x} = flip (subst (x ≡_)) abstract trans-refl-refl : trans (refl x) (refl x) ≡ refl x trans-refl-refl = subst-refl _ _ -- Equality-with-J (for arbitrary universe levels) can be derived from -- Equality-with-J₀ (for arbitrary universe levels). J₀⇒J : ∀ {reflexive} → (eq : ∀ {a p} → Equality-with-J₀ a p reflexive) → ∀ {a p} → Equality-with-J a p (λ _ → J₀⇒Equivalence-relation⁺ eq) J₀⇒J {r} eq {a} {b} = record { equality-with-J₀ = eq ; cong = cong ; cong-refl = cong-refl ; subst = subst ; subst-refl = subst-refl ; dcong = dcong ; dcong-refl = dcong-refl } where open module R {ℓ} = Reflexive-relation (r ℓ) open module E {a} {b} = Equality-with-J₀ (eq {a} {b}) cong : (f : A → B) → x ≡ y → f x ≡ f y cong f = elim (λ {u v} _ → f u ≡ f v) (λ x → refl (f x)) abstract cong-refl : (f : A → B) → cong f (refl x) ≡ refl (f x) cong-refl _ = elim-refl _ _ subst : (P : A → Type b) → x ≡ y → P x → P y subst P = elim (λ {u v} _ → P u → P v) (λ _ p → p) subst-refl≡id : (P : A → Type b) → subst P (refl x) ≡ id subst-refl≡id P = elim-refl (λ {u v} _ → P u → P v) (λ _ p → p) subst-refl : ∀ (P : A → Type b) p → subst P (refl x) p ≡ p subst-refl P p = cong (_$ p) (subst-refl≡id P) dcong : (f : (x : A) → P x) (x≡y : x ≡ y) → subst P x≡y (f x) ≡ f y dcong {A = A} {P = P} f x≡y = elim (λ {x y} (x≡y : x ≡ y) → (f : (x : A) → P x) → subst P x≡y (f x) ≡ f y) (λ _ _ → subst-refl _ _) x≡y f abstract dcong-refl : (f : (x : A) → P x) → dcong f (refl x) ≡ subst-refl _ _ dcong-refl {P = P} f = cong (_$ f) $ elim-refl (λ _ → (_ : ∀ x → P x) → _) _ -- Some derived properties. module Equality-with-J′ {e⁺ : ∀ ℓ → Equivalence-relation⁺ ℓ} (eq : ∀ {a p} → Equality-with-J a p e⁺) where private open module E⁺ {ℓ} = Equivalence-relation⁺ (e⁺ ℓ) public open module E {a b} = Equality-with-J (eq {a} {b}) public hiding (subst; subst-refl) open module E₀ {a p} = Equality-with-J₀ (equality-with-J₀ {a} {p}) public open Reflexive-relation′ (λ ℓ → reflexive-relation {ℓ}) public -- Substitutivity. subst : (P : A → Type p) → x ≡ y → P x → P y subst = E.subst subst-refl : (P : A → Type p) (p : P x) → subst P (refl x) p ≡ p subst-refl = E.subst-refl -- Singleton types are contractible. private irr : (p : Singleton x) → (x , refl x) ≡ p irr p = elim (λ {u v} u≡v → (v , refl v) ≡ (u , u≡v)) (λ _ → refl _) (proj₂ p) singleton-contractible : (x : A) → Contractible (Singleton x) singleton-contractible x = ((x , refl x) , irr) abstract -- "Evaluation rule" for singleton-contractible. singleton-contractible-refl : (x : A) → proj₂ (singleton-contractible x) (x , refl x) ≡ refl (x , refl x) singleton-contractible-refl _ = elim-refl _ _ ------------------------------------------------------------------------ -- Abstract definition of equality based on substitutivity and -- contractibility of singleton types record Equality-with-substitutivity-and-contractibility a p (reflexive : ∀ ℓ → Reflexive-relation ℓ) : Type (lsuc (a ⊔ p)) where no-eta-equality open Reflexive-relation′ reflexive field -- Substitutivity. subst : {A : Type a} {x y : A} (P : A → Type p) → x ≡ y → P x → P y -- The usual computational behaviour of substitutivity. subst-refl : {A : Type a} {x : A} (P : A → Type p) (p : P x) → subst P (refl x) p ≡ p -- Singleton types are contractible. singleton-contractible : {A : Type a} (x : A) → Contractible (Singleton x) -- Some derived properties. module Equality-with-substitutivity-and-contractibility′ {reflexive : ∀ ℓ → Reflexive-relation ℓ} (eq : ∀ {a p} → Equality-with-substitutivity-and-contractibility a p reflexive) where private open Reflexive-relation′ reflexive public open module E {a p} = Equality-with-substitutivity-and-contractibility (eq {a} {p}) public hiding (singleton-contractible) open module E′ {a} = Equality-with-substitutivity-and-contractibility (eq {a} {a}) public using (singleton-contractible) abstract -- Congruence. cong : (f : A → B) → x ≡ y → f x ≡ f y cong {x = x} f x≡y = subst (λ y → x ≡ y → f x ≡ f y) x≡y (λ _ → refl (f x)) x≡y -- Symmetry. sym : x ≡ y → y ≡ x sym {x = x} x≡y = subst (λ z → x ≡ z → z ≡ x) x≡y id x≡y abstract -- "Evaluation rule" for sym. sym-refl : sym (refl x) ≡ refl x sym-refl {x = x} = cong (λ f → f (refl x)) $ subst-refl (λ z → x ≡ z → z ≡ x) _ -- Transitivity. trans : x ≡ y → y ≡ z → x ≡ z trans {x = x} = flip (subst (_≡_ x)) abstract -- "Evaluation rule" for trans. trans-refl-refl : trans (refl x) (refl x) ≡ refl x trans-refl-refl = subst-refl _ _ abstract -- The J rule. elim : (P : {x y : A} → x ≡ y → Type p) → (∀ x → P (refl x)) → (x≡y : x ≡ y) → P x≡y elim {x = x} {y = y} P p x≡y = let lemma = proj₂ (singleton-contractible y) in subst (P ∘ proj₂) (trans (sym (lemma (y , refl y))) (lemma (x , x≡y))) (p y) -- Transitivity and symmetry sometimes cancel each other out. trans-sym : (x≡y : x ≡ y) → trans (sym x≡y) x≡y ≡ refl y trans-sym = elim (λ {x y} (x≡y : x ≡ y) → trans (sym x≡y) x≡y ≡ refl y) (λ _ → trans (cong (λ p → trans p _) sym-refl) trans-refl-refl) -- "Evaluation rule" for elim. elim-refl : (P : {x y : A} → x ≡ y → Type p) (p : ∀ x → P (refl x)) → elim P p (refl x) ≡ p x elim-refl {x = x} _ _ = let lemma = proj₂ (singleton-contractible x) (x , refl x) in trans (cong (λ q → subst _ q _) (trans-sym lemma)) (subst-refl _ _) ------------------------------------------------------------------------ -- The two abstract definitions are logically equivalent J⇒subst+contr : ∀ {reflexive} → (∀ {a p} → Equality-with-J₀ a p reflexive) → ∀ {a p} → Equality-with-substitutivity-and-contractibility a p reflexive J⇒subst+contr eq = record { subst = subst ; subst-refl = subst-refl ; singleton-contractible = singleton-contractible } where open Equality-with-J′ (J₀⇒J eq) subst+contr⇒J : ∀ {reflexive} → (∀ {a p} → Equality-with-substitutivity-and-contractibility a p reflexive) → ∀ {a p} → Equality-with-J₀ a p reflexive subst+contr⇒J eq = record { elim = elim ; elim-refl = elim-refl } where open Equality-with-substitutivity-and-contractibility′ eq ------------------------------------------------------------------------ -- Some derived definitions and properties module Derived-definitions-and-properties {e⁺} (equality-with-J : ∀ {a p} → Equality-with-J a p e⁺) where -- This module reexports most of the definitions and properties -- introduced above. open Equality-with-J′ equality-with-J public private variable eq u≡v v≡w x≡y y≡z x₁≡x₂ : x ≡ y -- Equational reasoning combinators. infix -1 finally _∎ infixr -2 step-≡ _≡⟨⟩_ _∎ : (x : A) → x ≡ x x ∎ = refl x -- It can be easier for Agda to type-check typical equational -- reasoning chains if the transitivity proof gets the equality -- arguments in the opposite order, because then the y argument is -- (perhaps more) known once the proof of x ≡ y is type-checked. -- -- The idea behind this optimisation came up in discussions with Ulf -- Norell. step-≡ : ∀ x → y ≡ z → x ≡ y → x ≡ z step-≡ _ = flip trans syntax step-≡ x y≡z x≡y = x ≡⟨ x≡y ⟩ y≡z _≡⟨⟩_ : ∀ x → x ≡ y → x ≡ y _ ≡⟨⟩ x≡y = x≡y finally : (x y : A) → x ≡ y → x ≡ y finally _ _ x≡y = x≡y syntax finally x y x≡y = x ≡⟨ x≡y ⟩∎ y ∎ -- A minor variant of Christine Paulin-Mohring's version of the J -- rule. -- -- This definition is based on Martin Hofmann's (see the addendum -- to Thomas Streicher's Habilitation thesis). Note that it is -- also very similar to the definition of -- Equality-with-substitutivity-and-contractibility.elim. elim₁ : (P : ∀ {x} → x ≡ y → Type p) → P (refl y) → (x≡y : x ≡ y) → P x≡y elim₁ {y = y} {x = x} P p x≡y = subst (P ∘ proj₂) (proj₂ (singleton-contractible y) (x , x≡y)) p abstract -- "Evaluation rule" for elim₁. elim₁-refl : (P : ∀ {x} → x ≡ y → Type p) (p : P (refl y)) → elim₁ P p (refl y) ≡ p elim₁-refl {y = y} P p = subst (P ∘ proj₂) (proj₂ (singleton-contractible y) (y , refl y)) p ≡⟨ cong (λ q → subst (P ∘ proj₂) q _) (singleton-contractible-refl _) ⟩ subst (P ∘ proj₂) (refl (y , refl y)) p ≡⟨ subst-refl _ _ ⟩∎ p ∎ -- A variant of singleton-contractible. private irr : (p : Other-singleton x) → (x , refl x) ≡ p irr p = elim (λ {u v} u≡v → (u , refl u) ≡ (v , u≡v)) (λ _ → refl _) (proj₂ p) other-singleton-contractible : (x : A) → Contractible (Other-singleton x) other-singleton-contractible x = ((x , refl x) , irr) abstract -- "Evaluation rule" for other-singleton-contractible. other-singleton-contractible-refl : (x : A) → proj₂ (other-singleton-contractible x) (x , refl x) ≡ refl (x , refl x) other-singleton-contractible-refl _ = elim-refl _ _ -- Christine Paulin-Mohring's version of the J rule. elim¹ : (P : ∀ {y} → x ≡ y → Type p) → P (refl x) → (x≡y : x ≡ y) → P x≡y elim¹ {x = x} {y = y} P p x≡y = subst (P ∘ proj₂) (proj₂ (other-singleton-contractible x) (y , x≡y)) p abstract -- "Evaluation rule" for elim¹. elim¹-refl : (P : ∀ {y} → x ≡ y → Type p) (p : P (refl x)) → elim¹ P p (refl x) ≡ p elim¹-refl {x = x} P p = subst (P ∘ proj₂) (proj₂ (other-singleton-contractible x) (x , refl x)) p ≡⟨ cong (λ q → subst (P ∘ proj₂) q _) (other-singleton-contractible-refl _) ⟩ subst (P ∘ proj₂) (refl (x , refl x)) p ≡⟨ subst-refl _ _ ⟩∎ p ∎ -- Every conceivable alternative implementation of cong (for two -- specific types) is pointwise equal to cong. monomorphic-cong-canonical : (cong′ : {x y : A} (f : A → B) → x ≡ y → f x ≡ f y) → ({x : A} (f : A → B) → cong′ f (refl x) ≡ refl (f x)) → cong′ f x≡y ≡ cong f x≡y monomorphic-cong-canonical {f = f} cong′ cong′-refl = elim (λ x≡y → cong′ f x≡y ≡ cong f x≡y) (λ x → cong′ f (refl x) ≡⟨ cong′-refl _ ⟩ refl (f x) ≡⟨ sym $ cong-refl _ ⟩∎ cong f (refl x) ∎) _ -- Every conceivable alternative implementation of cong (for -- arbitrary types) is pointwise equal to cong. cong-canonical : (cong′ : ∀ {a b} {A : Type a} {B : Type b} {x y : A} (f : A → B) → x ≡ y → f x ≡ f y) → (∀ {a b} {A : Type a} {B : Type b} {x : A} (f : A → B) → cong′ f (refl x) ≡ refl (f x)) → cong′ f x≡y ≡ cong f x≡y cong-canonical cong′ cong′-refl = monomorphic-cong-canonical cong′ cong′-refl -- A generalisation of dcong. dcong′ : (f : (x : A) → x ≡ y → P x) (x≡y : x ≡ y) → subst P x≡y (f x x≡y) ≡ f y (refl y) dcong′ {y = y} {P = P} f x≡y = elim₁ (λ {x} (x≡y : x ≡ y) → (f : ∀ x → x ≡ y → P x) → subst P x≡y (f x x≡y) ≡ f y (refl y)) (λ f → subst P (refl y) (f y (refl y)) ≡⟨ subst-refl _ _ ⟩∎ f y (refl y) ∎) x≡y f abstract -- "Evaluation rule" for dcong′. dcong′-refl : (f : (x : A) → x ≡ y → P x) → dcong′ f (refl y) ≡ subst-refl _ _ dcong′-refl {y = y} {P = P} f = cong (_$ f) $ elim₁-refl (λ _ → (f : ∀ x → x ≡ y → P x) → _) _ -- Binary congruence. cong₂ : (f : A → B → C) → x ≡ y → u ≡ v → f x u ≡ f y v cong₂ {x = x} {y = y} {u = u} {v = v} f x≡y u≡v = f x u ≡⟨ cong (flip f u) x≡y ⟩ f y u ≡⟨ cong (f y) u≡v ⟩∎ f y v ∎ abstract -- "Evaluation rule" for cong₂. cong₂-refl : (f : A → B → C) → cong₂ f (refl x) (refl y) ≡ refl (f x y) cong₂-refl {x = x} {y = y} f = trans (cong (flip f y) (refl x)) (cong (f x) (refl y)) ≡⟨ cong₂ trans (cong-refl _) (cong-refl _) ⟩ trans (refl (f x y)) (refl (f x y)) ≡⟨ trans-refl-refl ⟩∎ refl (f x y) ∎ -- The K rule is logically equivalent to uniqueness of identity -- proofs (at least for certain combinations of levels). K⇔UIP : K-rule ℓ ℓ ⇔ Uniqueness-of-identity-proofs ℓ K⇔UIP = record { from = λ UIP P r {x} x≡x → subst P (UIP (refl x) x≡x) (r x) ; to = λ K → elim (λ p → ∀ q → p ≡ q) (λ x → K (λ {x} p → refl x ≡ p) (λ x → refl (refl x))) } abstract -- Extensionality at given levels works at lower levels as well. lower-extensionality : ∀ â b̂ → Extensionality (a ⊔ â) (b ⊔ b̂) → Extensionality a b apply-ext (lower-extensionality â b̂ ext) f≡g = cong (λ h → lower ∘ h ∘ lift) $ apply-ext ext {A = ↑ â _} {B = ↑ b̂ ∘ _} (cong lift ∘ f≡g ∘ lower) -- Extensionality for explicit function types works for implicit -- function types as well. implicit-extensionality : Extensionality a b → {A : Type a} {B : A → Type b} {f g : {x : A} → B x} → (∀ x → f {x} ≡ g {x}) → (λ {x} → f {x}) ≡ g implicit-extensionality ext f≡g = cong (λ f {x} → f x) $ apply-ext ext f≡g -- A bunch of lemmas that can be used to rearrange equalities. abstract trans-reflʳ : (x≡y : x ≡ y) → trans x≡y (refl y) ≡ x≡y trans-reflʳ = elim (λ {u v} u≡v → trans u≡v (refl v) ≡ u≡v) (λ _ → trans-refl-refl) trans-reflˡ : (x≡y : x ≡ y) → trans (refl x) x≡y ≡ x≡y trans-reflˡ = elim (λ {u v} u≡v → trans (refl u) u≡v ≡ u≡v) (λ _ → trans-refl-refl) trans-assoc : (x≡y : x ≡ y) (y≡z : y ≡ z) (z≡u : z ≡ u) → trans (trans x≡y y≡z) z≡u ≡ trans x≡y (trans y≡z z≡u) trans-assoc = elim (λ x≡y → ∀ y≡z z≡u → trans (trans x≡y y≡z) z≡u ≡ trans x≡y (trans y≡z z≡u)) (λ y y≡z z≡u → trans (trans (refl y) y≡z) z≡u ≡⟨ cong₂ trans (trans-reflˡ _) (refl _) ⟩ trans y≡z z≡u ≡⟨ sym $ trans-reflˡ _ ⟩∎ trans (refl y) (trans y≡z z≡u) ∎) sym-sym : (x≡y : x ≡ y) → sym (sym x≡y) ≡ x≡y sym-sym = elim (λ {u v} u≡v → sym (sym u≡v) ≡ u≡v) (λ x → sym (sym (refl x)) ≡⟨ cong sym sym-refl ⟩ sym (refl x) ≡⟨ sym-refl ⟩∎ refl x ∎) sym-trans : (x≡y : x ≡ y) (y≡z : y ≡ z) → sym (trans x≡y y≡z) ≡ trans (sym y≡z) (sym x≡y) sym-trans = elim (λ x≡y → ∀ y≡z → sym (trans x≡y y≡z) ≡ trans (sym y≡z) (sym x≡y)) (λ y y≡z → sym (trans (refl y) y≡z) ≡⟨ cong sym (trans-reflˡ _) ⟩ sym y≡z ≡⟨ sym $ trans-reflʳ _ ⟩ trans (sym y≡z) (refl y) ≡⟨ cong (trans (sym y≡z)) (sym sym-refl) ⟩∎ trans (sym y≡z) (sym (refl y)) ∎) trans-symˡ : (p : x ≡ y) → trans (sym p) p ≡ refl y trans-symˡ = elim (λ p → trans (sym p) p ≡ refl _) (λ x → trans (sym (refl x)) (refl x) ≡⟨ trans-reflʳ _ ⟩ sym (refl x) ≡⟨ sym-refl ⟩∎ refl x ∎) trans-symʳ : (p : x ≡ y) → trans p (sym p) ≡ refl _ trans-symʳ = elim (λ p → trans p (sym p) ≡ refl _) (λ x → trans (refl x) (sym (refl x)) ≡⟨ trans-reflˡ _ ⟩ sym (refl x) ≡⟨ sym-refl ⟩∎ refl x ∎) cong-trans : (f : A → B) (x≡y : x ≡ y) (y≡z : y ≡ z) → cong f (trans x≡y y≡z) ≡ trans (cong f x≡y) (cong f y≡z) cong-trans f = elim (λ x≡y → ∀ y≡z → cong f (trans x≡y y≡z) ≡ trans (cong f x≡y) (cong f y≡z)) (λ y y≡z → cong f (trans (refl y) y≡z) ≡⟨ cong (cong f) (trans-reflˡ _) ⟩ cong f y≡z ≡⟨ sym $ trans-reflˡ _ ⟩ trans (refl (f y)) (cong f y≡z) ≡⟨ cong₂ trans (sym (cong-refl _)) (refl _) ⟩∎ trans (cong f (refl y)) (cong f y≡z) ∎) cong-id : (x≡y : x ≡ y) → x≡y ≡ cong id x≡y cong-id = elim (λ u≡v → u≡v ≡ cong id u≡v) (λ x → refl x ≡⟨ sym (cong-refl _) ⟩∎ cong id (refl x) ∎) cong-const : (x≡y : x ≡ y) → cong (const z) x≡y ≡ refl z cong-const {z = z} = elim (λ u≡v → cong (const z) u≡v ≡ refl z) (λ x → cong (const z) (refl x) ≡⟨ cong-refl _ ⟩∎ refl z ∎) cong-∘ : (f : B → C) (g : A → B) (x≡y : x ≡ y) → cong f (cong g x≡y) ≡ cong (f ∘ g) x≡y cong-∘ f g = elim (λ x≡y → cong f (cong g x≡y) ≡ cong (f ∘ g) x≡y) (λ x → cong f (cong g (refl x)) ≡⟨ cong (cong f) (cong-refl _) ⟩ cong f (refl (g x)) ≡⟨ cong-refl _ ⟩ refl (f (g x)) ≡⟨ sym (cong-refl _) ⟩∎ cong (f ∘ g) (refl x) ∎) cong-uncurry-cong₂-, : {x≡y : x ≡ y} {u≡v : u ≡ v} → cong (uncurry f) (cong₂ _,_ x≡y u≡v) ≡ cong₂ f x≡y u≡v cong-uncurry-cong₂-, {y = y} {u = u} {f = f} {x≡y = x≡y} {u≡v} = cong (uncurry f) (trans (cong (flip _,_ u) x≡y) (cong (_,_ y) u≡v)) ≡⟨ cong-trans _ _ _ ⟩ trans (cong (uncurry f) (cong (flip _,_ u) x≡y)) (cong (uncurry f) (cong (_,_ y) u≡v)) ≡⟨ cong₂ trans (cong-∘ _ _ _) (cong-∘ _ _ _) ⟩∎ trans (cong (flip f u) x≡y) (cong (f y) u≡v) ∎ cong-proj₁-cong₂-, : (x≡y : x ≡ y) (u≡v : u ≡ v) → cong proj₁ (cong₂ _,_ x≡y u≡v) ≡ x≡y cong-proj₁-cong₂-, {y = y} x≡y u≡v = cong proj₁ (cong₂ _,_ x≡y u≡v) ≡⟨ cong-uncurry-cong₂-, ⟩ cong₂ const x≡y u≡v ≡⟨⟩ trans (cong id x≡y) (cong (const y) u≡v) ≡⟨ cong₂ trans (sym $ cong-id _) (cong-const _) ⟩ trans x≡y (refl y) ≡⟨ trans-reflʳ _ ⟩∎ x≡y ∎ cong-proj₂-cong₂-, : (x≡y : x ≡ y) (u≡v : u ≡ v) → cong proj₂ (cong₂ _,_ x≡y u≡v) ≡ u≡v cong-proj₂-cong₂-, {u = u} x≡y u≡v = cong proj₂ (cong₂ _,_ x≡y u≡v) ≡⟨ cong-uncurry-cong₂-, ⟩ cong₂ (const id) x≡y u≡v ≡⟨⟩ trans (cong (const u) x≡y) (cong id u≡v) ≡⟨ cong₂ trans (cong-const _) (sym $ cong-id _) ⟩ trans (refl u) u≡v ≡⟨ trans-reflˡ _ ⟩∎ u≡v ∎ cong₂-reflˡ : {u≡v : u ≡ v} (f : A → B → C) → cong₂ f (refl x) u≡v ≡ cong (f x) u≡v cong₂-reflˡ {u = u} {x = x} {u≡v = u≡v} f = trans (cong (flip f u) (refl x)) (cong (f x) u≡v) ≡⟨ cong₂ trans (cong-refl _) (refl _) ⟩ trans (refl (f x u)) (cong (f x) u≡v) ≡⟨ trans-reflˡ _ ⟩∎ cong (f x) u≡v ∎ cong₂-reflʳ : (f : A → B → C) {x≡y : x ≡ y} → cong₂ f x≡y (refl u) ≡ cong (flip f u) x≡y cong₂-reflʳ {y = y} {u = u} f {x≡y} = trans (cong (flip f u) x≡y) (cong (f y) (refl u)) ≡⟨ cong (trans _) (cong-refl _) ⟩ trans (cong (flip f u) x≡y) (refl (f y u)) ≡⟨ trans-reflʳ _ ⟩∎ cong (flip f u) x≡y ∎ cong-sym : (f : A → B) (x≡y : x ≡ y) → cong f (sym x≡y) ≡ sym (cong f x≡y) cong-sym f = elim (λ x≡y → cong f (sym x≡y) ≡ sym (cong f x≡y)) (λ x → cong f (sym (refl x)) ≡⟨ cong (cong f) sym-refl ⟩ cong f (refl x) ≡⟨ cong-refl _ ⟩ refl (f x) ≡⟨ sym sym-refl ⟩ sym (refl (f x)) ≡⟨ cong sym $ sym (cong-refl _) ⟩∎ sym (cong f (refl x)) ∎) cong₂-sym : cong₂ f (sym x≡y) (sym u≡v) ≡ sym (cong₂ f x≡y u≡v) cong₂-sym {f = f} {x≡y = x≡y} {u≡v = u≡v} = elim¹ (λ u≡v → cong₂ f (sym x≡y) (sym u≡v) ≡ sym (cong₂ f x≡y u≡v)) (cong₂ f (sym x≡y) (sym (refl _)) ≡⟨ cong (cong₂ _ _) sym-refl ⟩ cong₂ f (sym x≡y) (refl _) ≡⟨ cong₂-reflʳ _ ⟩ cong (flip f _) (sym x≡y) ≡⟨ cong-sym _ _ ⟩ sym (cong (flip f _) x≡y) ≡⟨ cong sym $ sym $ cong₂-reflʳ _ ⟩∎ sym (cong₂ f x≡y (refl _)) ∎) u≡v cong₂-trans : {f : A → B → C} → cong₂ f (trans x≡y y≡z) (trans u≡v v≡w) ≡ trans (cong₂ f x≡y u≡v) (cong₂ f y≡z v≡w) cong₂-trans {x≡y = x≡y} {y≡z = y≡z} {u≡v = u≡v} {v≡w = v≡w} {f = f} = elim₁ (λ x≡y → cong₂ f (trans x≡y y≡z) (trans u≡v v≡w) ≡ trans (cong₂ f x≡y u≡v) (cong₂ f y≡z v≡w)) (elim₁ (λ u≡v → cong₂ f (trans (refl _) y≡z) (trans u≡v v≡w) ≡ trans (cong₂ f (refl _) u≡v) (cong₂ f y≡z v≡w)) (cong₂ f (trans (refl _) y≡z) (trans (refl _) v≡w) ≡⟨ cong₂ (cong₂ f) (trans-reflˡ _) (trans-reflˡ _) ⟩ cong₂ f y≡z v≡w ≡⟨ sym $ trans (cong (flip trans _) $ cong₂-refl _) $ trans-reflˡ _ ⟩∎ trans (cong₂ f (refl _) (refl _)) (cong₂ f y≡z v≡w) ∎) u≡v) x≡y cong₂-∘ˡ : {f : B → C → D} {g : A → B} {x≡y : x ≡ y} {u≡v : u ≡ v} → cong₂ (f ∘ g) x≡y u≡v ≡ cong₂ f (cong g x≡y) u≡v cong₂-∘ˡ {y = y} {u = u} {f = f} {g = g} {x≡y = x≡y} {u≡v} = trans (cong (flip (f ∘ g) u) x≡y) (cong (f (g y)) u≡v) ≡⟨ cong (flip trans _) $ sym $ cong-∘ _ _ _ ⟩∎ trans (cong (flip f u) (cong g x≡y)) (cong (f (g y)) u≡v) ∎ cong₂-∘ʳ : {x≡y : x ≡ y} {u≡v : u ≡ v} → cong₂ (λ x → f x ∘ g) x≡y u≡v ≡ cong₂ f x≡y (cong g u≡v) cong₂-∘ʳ {y = y} {u = u} {f = f} {g = g} {x≡y = x≡y} {u≡v} = trans (cong (flip f (g u)) x≡y) (cong (f y ∘ g) u≡v) ≡⟨ cong (trans _) $ sym $ cong-∘ _ _ _ ⟩∎ trans (cong (flip f (g u)) x≡y) (cong (f y) (cong g u≡v)) ∎ cong₂-cong-cong : (f : A → B) (g : A → C) (h : B → C → D) → cong₂ h (cong f eq) (cong g eq) ≡ cong (λ x → h (f x) (g x)) eq cong₂-cong-cong f g h = elim¹ (λ eq → cong₂ h (cong f eq) (cong g eq) ≡ cong (λ x → h (f x) (g x)) eq) (cong₂ h (cong f (refl _)) (cong g (refl _)) ≡⟨ cong₂ (cong₂ h) (cong-refl _) (cong-refl _) ⟩ cong₂ h (refl _) (refl _) ≡⟨ cong₂-refl h ⟩ refl _ ≡⟨ sym $ cong-refl _ ⟩∎ cong (λ x → h (f x) (g x)) (refl _) ∎) _ cong-≡id : {f : A → A} (f≡id : f ≡ id) → cong (λ g → g (f x)) f≡id ≡ cong (λ g → f (g x)) f≡id cong-≡id = elim₁ (λ {f} p → cong (λ g → g (f _)) p ≡ cong (λ g → f (g _)) p) (refl _) cong-≡id-≡-≡id : (f≡id : ∀ x → f x ≡ x) → cong f (f≡id x) ≡ f≡id (f x) cong-≡id-≡-≡id {f = f} {x = x} f≡id = cong f (f≡id x) ≡⟨ elim¹ (λ {y} (p : f x ≡ y) → cong f p ≡ trans (f≡id (f x)) (trans p (sym (f≡id y)))) ( cong f (refl _) ≡⟨ cong-refl _ ⟩ refl _ ≡⟨ sym $ trans-symʳ _ ⟩ trans (f≡id (f x)) (sym (f≡id (f x))) ≡⟨ cong (trans (f≡id (f x))) $ sym $ trans-reflˡ _ ⟩∎ trans (f≡id (f x)) (trans (refl _) (sym (f≡id (f x)))) ∎) (f≡id x)⟩ trans (f≡id (f x)) (trans (f≡id x) (sym (f≡id x))) ≡⟨ cong (trans (f≡id (f x))) $ trans-symʳ _ ⟩ trans (f≡id (f x)) (refl _) ≡⟨ trans-reflʳ _ ⟩ f≡id (f x) ∎ elim-∘ : (P Q : ∀ {x y} → x ≡ y → Type p) (f : ∀ {x y} {x≡y : x ≡ y} → P x≡y → Q x≡y) (r : ∀ x → P (refl x)) {x≡y : x ≡ y} → f (elim P r x≡y) ≡ elim Q (f ∘ r) x≡y elim-∘ {x = x} P Q f r {x≡y} = elim¹ (λ x≡y → f (elim P r x≡y) ≡ elim Q (f ∘ r) x≡y) (f (elim P r (refl x)) ≡⟨ cong f $ elim-refl _ _ ⟩ f (r x) ≡⟨ sym $ elim-refl _ _ ⟩∎ elim Q (f ∘ r) (refl x) ∎) x≡y elim-cong : (P : B → B → Type p) (f : A → B) (r : ∀ x → P x x) {x≡y : x ≡ y} → elim (λ {x y} _ → P x y) r (cong f x≡y) ≡ elim (λ {x y} _ → P (f x) (f y)) (r ∘ f) x≡y elim-cong {x = x} P f r {x≡y} = elim¹ (λ x≡y → elim (λ {x y} _ → P x y) r (cong f x≡y) ≡ elim (λ {x y} _ → P (f x) (f y)) (r ∘ f) x≡y) (elim (λ {x y} _ → P x y) r (cong f (refl x)) ≡⟨ cong (elim (λ {x y} _ → P x y) _) $ cong-refl _ ⟩ elim (λ {x y} _ → P x y) r (refl (f x)) ≡⟨ elim-refl _ _ ⟩ r (f x) ≡⟨ sym $ elim-refl _ _ ⟩∎ elim (λ {x y} _ → P (f x) (f y)) (r ∘ f) (refl x) ∎) x≡y subst-const : ∀ (x₁≡x₂ : x₁ ≡ x₂) {b} → subst (const B) x₁≡x₂ b ≡ b subst-const {B = B} x₁≡x₂ {b} = elim¹ (λ x₁≡x₂ → subst (const B) x₁≡x₂ b ≡ b) (subst-refl _ _) x₁≡x₂ abstract -- One can express sym in terms of subst. sym-subst : sym x≡y ≡ subst (λ z → x ≡ z → z ≡ x) x≡y id x≡y sym-subst = elim (λ {x} x≡y → sym x≡y ≡ subst (λ z → x ≡ z → z ≡ x) x≡y id x≡y) (λ x → sym (refl x) ≡⟨ sym-refl ⟩ refl x ≡⟨ cong (_$ refl x) $ sym $ subst-refl (λ z → x ≡ z → _) _ ⟩∎ subst (λ z → x ≡ z → z ≡ x) (refl x) id (refl x) ∎) _ -- One can express trans in terms of subst (in several ways). trans-subst : {x≡y : x ≡ y} {y≡z : y ≡ z} → trans x≡y y≡z ≡ subst (x ≡_) y≡z x≡y trans-subst {z = z} = elim (λ {x y} x≡y → (y≡z : y ≡ z) → trans x≡y y≡z ≡ subst (x ≡_) y≡z x≡y) (λ y → elim (λ {y} y≡z → trans (refl y) y≡z ≡ subst (y ≡_) y≡z (refl y)) (λ x → trans (refl x) (refl x) ≡⟨ trans-refl-refl ⟩ refl x ≡⟨ sym $ subst-refl _ _ ⟩∎ subst (x ≡_) (refl x) (refl x) ∎)) _ _ subst-trans : (x≡y : x ≡ y) {y≡z : y ≡ z} → subst (_≡ z) (sym x≡y) y≡z ≡ trans x≡y y≡z subst-trans {y = y} {z} x≡y {y≡z} = elim₁ (λ x≡y → subst (λ x → x ≡ z) (sym x≡y) y≡z ≡ trans x≡y y≡z) (subst (λ x → x ≡ z) (sym (refl y)) y≡z ≡⟨ cong (λ eq → subst (λ x → x ≡ z) eq _) sym-refl ⟩ subst (λ x → x ≡ z) (refl y) y≡z ≡⟨ subst-refl _ _ ⟩ y≡z ≡⟨ sym $ trans-reflˡ _ ⟩∎ trans (refl y) y≡z ∎) x≡y subst-trans-sym : {y≡x : y ≡ x} {y≡z : y ≡ z} → subst (_≡ z) y≡x y≡z ≡ trans (sym y≡x) y≡z subst-trans-sym {z = z} {y≡x = y≡x} {y≡z = y≡z} = subst (_≡ z) y≡x y≡z ≡⟨ cong (flip (subst (_≡ z)) _) $ sym $ sym-sym _ ⟩ subst (_≡ z) (sym (sym y≡x)) y≡z ≡⟨ subst-trans _ ⟩∎ trans (sym y≡x) y≡z ∎ -- One can express subst in terms of elim. subst-elim : subst P x≡y p ≡ elim (λ {u v} _ → P u → P v) (λ _ → id) x≡y p subst-elim {P = P} = elim (λ x≡y → ∀ p → subst P x≡y p ≡ elim (λ {u v} _ → P u → P v) (λ _ → id) x≡y p) (λ x p → subst P (refl x) p ≡⟨ subst-refl _ _ ⟩ p ≡⟨ cong (_$ p) $ sym $ elim-refl (λ {u} _ → P u → _) _ ⟩∎ elim (λ {u v} _ → P u → P v) (λ _ → id) (refl x) p ∎) _ _ subst-∘ : (P : B → Type p) (f : A → B) (x≡y : x ≡ y) {p : P (f x)} → subst (P ∘ f) x≡y p ≡ subst P (cong f x≡y) p subst-∘ P f _ {p} = elim¹ (λ x≡y → subst (P ∘ f) x≡y p ≡ subst P (cong f x≡y) p) (subst (P ∘ f) (refl _) p ≡⟨ subst-refl _ _ ⟩ p ≡⟨ sym $ subst-refl _ _ ⟩ subst P (refl _) p ≡⟨ cong (flip (subst _) _) $ sym $ cong-refl _ ⟩∎ subst P (cong f (refl _)) p ∎) _ subst-↑ : (P : A → Type p) {p : ↑ ℓ (P x)} → subst (↑ ℓ ∘ P) x≡y p ≡ lift (subst P x≡y (lower p)) subst-↑ {ℓ = ℓ} P {p} = elim¹ (λ x≡y → subst (↑ ℓ ∘ P) x≡y p ≡ lift (subst P x≡y (lower p))) (subst (↑ ℓ ∘ P) (refl _) p ≡⟨ subst-refl _ _ ⟩ p ≡⟨ cong lift $ sym $ subst-refl _ _ ⟩∎ lift (subst P (refl _) (lower p)) ∎) _ -- A fusion law for subst. subst-subst : (P : A → Type p) (x≡y : x ≡ y) (y≡z : y ≡ z) (p : P x) → subst P y≡z (subst P x≡y p) ≡ subst P (trans x≡y y≡z) p subst-subst P x≡y y≡z p = elim (λ {x y} x≡y → ∀ {z} (y≡z : y ≡ z) p → subst P y≡z (subst P x≡y p) ≡ subst P (trans x≡y y≡z) p) (λ x y≡z p → subst P y≡z (subst P (refl x) p) ≡⟨ cong (subst P _) $ subst-refl _ _ ⟩ subst P y≡z p ≡⟨ cong (λ q → subst P q _) (sym $ trans-reflˡ _) ⟩∎ subst P (trans (refl x) y≡z) p ∎) x≡y y≡z p -- "Computation rules" for subst-subst. subst-subst-reflˡ : ∀ (P : A → Type p) {p} → subst-subst P (refl x) x≡y p ≡ cong₂ (flip (subst P)) (subst-refl _ _) (sym $ trans-reflˡ x≡y) subst-subst-reflˡ P = cong (λ f → f _ _) $ elim-refl (λ {x y} x≡y → ∀ {z} (y≡z : y ≡ z) p → subst P y≡z (subst P x≡y p) ≡ _) _ subst-subst-refl-refl : ∀ (P : A → Type p) {p} → subst-subst P (refl x) (refl x) p ≡ cong₂ (flip (subst P)) (subst-refl _ _) (sym trans-refl-refl) subst-subst-refl-refl {x = x} P {p} = subst-subst P (refl x) (refl x) p ≡⟨ subst-subst-reflˡ _ ⟩ cong₂ (flip (subst P)) (subst-refl _ _) (sym $ trans-reflˡ (refl x)) ≡⟨ cong (cong₂ (flip (subst P)) (subst-refl _ _) ∘ sym) $ elim-refl _ _ ⟩∎ cong₂ (flip (subst P)) (subst-refl _ _) (sym trans-refl-refl) ∎ -- Substitutivity and symmetry sometimes cancel each other out. subst-subst-sym : (P : A → Type p) (x≡y : x ≡ y) (p : P y) → subst P x≡y (subst P (sym x≡y) p) ≡ p subst-subst-sym P = elim¹ (λ x≡y → ∀ p → subst P x≡y (subst P (sym x≡y) p) ≡ p) (λ p → subst P (refl _) (subst P (sym (refl _)) p) ≡⟨ subst-refl _ _ ⟩ subst P (sym (refl _)) p ≡⟨ cong (flip (subst P) _) sym-refl ⟩ subst P (refl _) p ≡⟨ subst-refl _ _ ⟩∎ p ∎) subst-sym-subst : (P : A → Type p) {x≡y : x ≡ y} {p : P x} → subst P (sym x≡y) (subst P x≡y p) ≡ p subst-sym-subst P {x≡y = x≡y} {p = p} = elim¹ (λ x≡y → ∀ p → subst P (sym x≡y) (subst P x≡y p) ≡ p) (λ p → subst P (sym (refl _)) (subst P (refl _) p) ≡⟨ cong (flip (subst P) _) sym-refl ⟩ subst P (refl _) (subst P (refl _) p) ≡⟨ subst-refl _ _ ⟩ subst P (refl _) p ≡⟨ subst-refl _ _ ⟩∎ p ∎) x≡y p -- Some "computation rules". subst-subst-sym-refl : (P : A → Type p) {p : P x} → subst-subst-sym P (refl x) p ≡ trans (subst-refl _ _) (trans (cong (flip (subst P) _) sym-refl) (subst-refl _ _)) subst-subst-sym-refl P {p = p} = cong (_$ _) $ elim¹-refl (λ x≡y → ∀ p → subst P x≡y (subst P (sym x≡y) p) ≡ p) _ subst-sym-subst-refl : (P : A → Type p) {p : P x} → subst-sym-subst P {x≡y = refl x} {p = p} ≡ trans (cong (flip (subst P) _) sym-refl) (trans (subst-refl _ _) (subst-refl _ _)) subst-sym-subst-refl P = cong (_$ _) $ elim¹-refl (λ x≡y → ∀ p → subst P (sym x≡y) (subst P x≡y p) ≡ p) _ -- Some corollaries and variants. trans-[trans-sym]- : (a≡b : a ≡ b) (c≡b : c ≡ b) → trans (trans a≡b (sym c≡b)) c≡b ≡ a≡b trans-[trans-sym]- a≡b c≡b = trans (trans a≡b (sym c≡b)) c≡b ≡⟨ trans-subst ⟩ subst (_ ≡_) c≡b (trans a≡b (sym c≡b)) ≡⟨ cong (subst _ _) trans-subst ⟩ subst (_ ≡_) c≡b (subst (_ ≡_) (sym c≡b) a≡b) ≡⟨ subst-subst-sym _ _ _ ⟩∎ a≡b ∎ trans-[trans]-sym : (a≡b : a ≡ b) (b≡c : b ≡ c) → trans (trans a≡b b≡c) (sym b≡c) ≡ a≡b trans-[trans]-sym a≡b b≡c = trans (trans a≡b b≡c) (sym b≡c) ≡⟨ sym $ cong (λ eq → trans (trans _ eq) (sym b≡c)) $ sym-sym _ ⟩ trans (trans a≡b (sym (sym b≡c))) (sym b≡c) ≡⟨ trans-[trans-sym]- _ _ ⟩∎ a≡b ∎ trans--[trans-sym] : (b≡a : b ≡ a) (b≡c : b ≡ c) → trans b≡a (trans (sym b≡a) b≡c) ≡ b≡c trans--[trans-sym] b≡a b≡c = trans b≡a (trans (sym b≡a) b≡c) ≡⟨ sym $ trans-assoc _ _ _ ⟩ trans (trans b≡a (sym b≡a)) b≡c ≡⟨ cong (flip trans _) $ trans-symʳ _ ⟩ trans (refl _) b≡c ≡⟨ trans-reflˡ _ ⟩∎ b≡c ∎ trans-sym-[trans] : (a≡b : a ≡ b) (b≡c : b ≡ c) → trans (sym a≡b) (trans a≡b b≡c) ≡ b≡c trans-sym-[trans] a≡b b≡c = trans (sym a≡b) (trans a≡b b≡c) ≡⟨ cong (λ p → trans (sym _) (trans p _)) $ sym $ sym-sym _ ⟩ trans (sym a≡b) (trans (sym (sym a≡b)) b≡c) ≡⟨ trans--[trans-sym] _ _ ⟩∎ b≡c ∎ -- The lemmas subst-refl and subst-const can cancel each other -- out. subst-refl-subst-const : trans (sym $ subst-refl (λ _ → B) b) (subst-const (refl x)) ≡ refl b subst-refl-subst-const {b = b} {x = x} = trans (sym $ subst-refl _ _) (elim¹ (λ eq → subst (λ _ → _) eq b ≡ b) (subst-refl _ _) (refl _)) ≡⟨ cong (trans _) (elim¹-refl _ _) ⟩ trans (sym $ subst-refl _ _) (subst-refl _ _) ≡⟨ trans-symˡ _ ⟩∎ refl _ ∎ -- In non-dependent cases one can express dcong using subst-const -- and cong. -- -- This is (similar to) Lemma 2.3.8 in the HoTT book. dcong-subst-const-cong : (f : A → B) (x≡y : x ≡ y) → dcong f x≡y ≡ (subst (const B) x≡y (f x) ≡⟨ subst-const _ ⟩ f x ≡⟨ cong f x≡y ⟩∎ f y ∎) dcong-subst-const-cong f = elim (λ {x y} x≡y → dcong f x≡y ≡ trans (subst-const x≡y) (cong f x≡y)) (λ x → dcong f (refl x) ≡⟨ dcong-refl _ ⟩ subst-refl _ _ ≡⟨ sym $ trans-reflʳ _ ⟩ trans (subst-refl _ _) (refl (f x)) ≡⟨ cong₂ trans (sym $ elim¹-refl _ _) (sym $ cong-refl _) ⟩∎ trans (subst-const _) (cong f (refl x)) ∎) -- A corollary. dcong≡→cong≡ : {x≡y : x ≡ y} {fx≡fy : f x ≡ f y} → dcong f x≡y ≡ trans (subst-const _) fx≡fy → cong f x≡y ≡ fx≡fy dcong≡→cong≡ {f = f} {x≡y = x≡y} {fx≡fy} hyp = cong f x≡y ≡⟨ sym $ trans-sym-[trans] _ _ ⟩ trans (sym $ subst-const _) (trans (subst-const _) $ cong f x≡y) ≡⟨ cong (trans (sym $ subst-const _)) $ sym $ dcong-subst-const-cong _ _ ⟩ trans (sym $ subst-const _) (dcong f x≡y) ≡⟨ cong (trans (sym $ subst-const _)) hyp ⟩ trans (sym $ subst-const _) (trans (subst-const _) fx≡fy) ≡⟨ trans-sym-[trans] _ _ ⟩∎ fx≡fy ∎ -- A kind of symmetry for "dependent paths". dsym : {x≡y : x ≡ y} {P : A → Type p} {p : P x} {q : P y} → subst P x≡y p ≡ q → subst P (sym x≡y) q ≡ p dsym {x≡y = x≡y} {P = P} p≡q = elim (λ {x y} x≡y → ∀ {p : P x} {q : P y} → subst P x≡y p ≡ q → subst P (sym x≡y) q ≡ p) (λ _ {p q} p≡q → subst P (sym (refl _)) q ≡⟨ cong (flip (subst P) _) sym-refl ⟩ subst P (refl _) q ≡⟨ subst-refl _ _ ⟩ q ≡⟨ sym p≡q ⟩ subst P (refl _) p ≡⟨ subst-refl _ _ ⟩∎ p ∎) x≡y p≡q -- A "computation rule" for dsym. dsym-subst-refl : {P : A → Type p} {p : P x} → dsym (subst-refl P p) ≡ trans (cong (flip (subst P) _) sym-refl) (subst-refl _ _) dsym-subst-refl {P = P} = dsym (subst-refl _ _) ≡⟨ cong (λ f → f (subst-refl _ _)) $ elim-refl (λ {x y} x≡y → ∀ {p : P x} {q : P y} → subst P x≡y p ≡ q → subst P (sym x≡y) q ≡ p) _ ⟩ trans (cong (flip (subst P) _) sym-refl) (trans (subst-refl _ _) (trans (sym (subst-refl P _)) (subst-refl _ _))) ≡⟨ cong (trans (cong (flip (subst P) _) sym-refl)) $ trans--[trans-sym] _ _ ⟩∎ trans (cong (flip (subst P) _) sym-refl) (subst-refl _ _) ∎ -- A kind of transitivity for "dependent paths". -- -- This lemma is suggested in the HoTT book (first edition, -- Exercise 6.1). dtrans : {x≡y : x ≡ y} {y≡z : y ≡ z} (P : A → Type p) {p : P x} {q : P y} {r : P z} → subst P x≡y p ≡ q → subst P y≡z q ≡ r → subst P (trans x≡y y≡z) p ≡ r dtrans {x≡y = x≡y} {y≡z = y≡z} P {p = p} {q = q} {r = r} p≡q q≡r = subst P (trans x≡y y≡z) p ≡⟨ sym $ subst-subst _ _ _ _ ⟩ subst P y≡z (subst P x≡y p) ≡⟨ cong (subst P y≡z) p≡q ⟩ subst P y≡z q ≡⟨ q≡r ⟩∎ r ∎ -- "Computation rules" for dtrans. dtrans-reflˡ : {x≡y : x ≡ y} {y≡z : y ≡ z} {P : A → Type p} {p : P x} {r : P z} {p≡r : subst P y≡z (subst P x≡y p) ≡ r} → dtrans P (refl _) p≡r ≡ trans (sym $ subst-subst _ _ _ _) p≡r dtrans-reflˡ {y≡z = y≡z} {P = P} {p≡r = p≡r} = trans (sym $ subst-subst _ _ _ _) (trans (cong (subst P y≡z) (refl _)) p≡r) ≡⟨ cong (trans (sym $ subst-subst _ _ _ _) ∘ flip trans _) $ cong-refl _ ⟩ trans (sym $ subst-subst _ _ _ _) (trans (refl _) p≡r) ≡⟨ cong (trans (sym $ subst-subst _ _ _ _)) $ trans-reflˡ _ ⟩∎ trans (sym $ subst-subst _ _ _ _) p≡r ∎ dtrans-reflʳ : {x≡y : x ≡ y} {y≡z : y ≡ z} {P : A → Type p} {p : P x} {q : P y} {p≡q : subst P x≡y p ≡ q} → dtrans P p≡q (refl (subst P y≡z q)) ≡ trans (sym $ subst-subst _ _ _ _) (cong (subst P y≡z) p≡q) dtrans-reflʳ {x≡y = x≡y} {y≡z = y≡z} {P = P} {p≡q = p≡q} = trans (sym $ subst-subst _ _ _ _) (trans (cong (subst P y≡z) p≡q) (refl _)) ≡⟨ cong (trans _) $ trans-reflʳ _ ⟩∎ trans (sym $ subst-subst _ _ _ _) (cong (subst P y≡z) p≡q) ∎ dtrans-subst-reflˡ : {x≡y : x ≡ y} {P : A → Type p} {p : P x} {q : P y} {p≡q : subst P x≡y p ≡ q} → dtrans P (subst-refl _ _) p≡q ≡ trans (cong (flip (subst P) _) (trans-reflˡ _)) p≡q dtrans-subst-reflˡ {x≡y = x≡y} {P = P} {p≡q = p≡q} = trans (sym $ subst-subst _ _ _ _) (trans (cong (subst P x≡y) (subst-refl _ _)) p≡q) ≡⟨ cong (λ eq → trans (sym eq) (trans (cong (subst P x≡y) (subst-refl _ _)) _)) $ subst-subst-reflˡ _ ⟩ trans (sym $ trans (cong (subst P _) (subst-refl _ _)) (cong (flip (subst P) _) (sym $ trans-reflˡ _))) (trans (cong (subst P _) (subst-refl _ _)) p≡q) ≡⟨ cong (flip trans _) $ sym-trans _ _ ⟩ trans (trans (sym $ cong (flip (subst P) _) (sym $ trans-reflˡ _)) (sym $ cong (subst P _) (subst-refl _ _))) (trans (cong (subst P _) (subst-refl _ _)) p≡q) ≡⟨ trans-assoc _ _ _ ⟩ trans (sym $ cong (flip (subst P) _) (sym $ trans-reflˡ _)) (trans (sym $ cong (subst P _) (subst-refl _ _)) (trans (cong (subst P _) (subst-refl _ _)) p≡q)) ≡⟨ cong (trans _) $ trans-sym-[trans] _ _ ⟩ trans (sym $ cong (flip (subst P) _) (sym $ trans-reflˡ _)) p≡q ≡⟨ cong (flip trans _ ∘ sym) $ cong-sym _ _ ⟩ trans (sym $ sym $ cong (flip (subst P) _) (trans-reflˡ _)) p≡q ≡⟨ cong (flip trans _) $ sym-sym _ ⟩∎ trans (cong (flip (subst P) _) (trans-reflˡ _)) p≡q ∎ dtrans-subst-reflʳ : {x≡y : x ≡ y} {P : A → Type p} {p : P x} {q : P y} {p≡q : subst P x≡y p ≡ q} → dtrans P p≡q (subst-refl _ _) ≡ trans (cong (flip (subst P) _) (trans-reflʳ _)) p≡q dtrans-subst-reflʳ {x≡y = x≡y} {P = P} {p = p} {p≡q = p≡q} = elim¹ (λ x≡y → ∀ {q} (p≡q : subst P x≡y p ≡ q) → dtrans P p≡q (subst-refl _ _) ≡ trans (cong (flip (subst P) _) (trans-reflʳ _)) p≡q) (λ p≡q → trans (sym $ subst-subst _ _ _ _) (trans (cong (subst P (refl _)) p≡q) (subst-refl _ _)) ≡⟨ cong (λ eq → trans (sym eq) (trans (cong (subst P (refl _)) _) (subst-refl _ _))) $ subst-subst-refl-refl _ ⟩ trans (sym $ cong₂ (flip (subst P)) (subst-refl _ _) $ sym trans-refl-refl) (trans (cong (subst P (refl _)) p≡q) (subst-refl _ _)) ≡⟨⟩ trans (sym $ trans (cong (subst P _) (subst-refl _ _)) (cong (flip (subst P) _) (sym trans-refl-refl))) (trans (cong (subst P (refl _)) p≡q) (subst-refl _ _)) ≡⟨ cong (flip trans _) $ sym-trans _ _ ⟩ trans (trans (sym $ cong (flip (subst P) _) (sym trans-refl-refl)) (sym $ cong (subst P _) (subst-refl _ _))) (trans (cong (subst P (refl _)) p≡q) (subst-refl _ _)) ≡⟨ lemma₁ p≡q ⟩ trans (cong (flip (subst P) _) trans-refl-refl) p≡q ≡⟨ cong (λ eq → trans (cong (flip (subst P) _) eq) _) $ sym $ elim-refl _ _ ⟩∎ trans (cong (flip (subst P) _) (trans-reflʳ _)) p≡q ∎) x≡y p≡q where lemma₂ : cong (subst P (refl _)) (subst-refl P p) ≡ cong id (subst-refl P (subst P (refl _) p)) lemma₂ = cong (subst P (refl _)) (subst-refl P p) ≡⟨ cong-≡id-≡-≡id (subst-refl P) ⟩ subst-refl P (subst P (refl _) p) ≡⟨ cong-id _ ⟩∎ cong id (subst-refl P (subst P (refl _) p)) ∎ lemma₁ : ∀ {q} (p≡q : subst P (refl _) p ≡ q) → trans (trans (sym $ cong (flip (subst P) _) (sym trans-refl-refl)) (sym $ cong (subst P (refl _)) (subst-refl _ _))) (trans (cong (subst P (refl _)) p≡q) (subst-refl _ _)) ≡ trans (cong (flip (subst P) _) trans-refl-refl) p≡q lemma₁ = elim¹ (λ p≡q → trans (trans (sym $ cong (flip (subst P) _) (sym trans-refl-refl)) (sym $ cong (subst P (refl _)) (subst-refl _ _))) (trans (cong (subst P (refl _)) p≡q) (subst-refl _ _)) ≡ trans (cong (flip (subst P) _) trans-refl-refl) p≡q) (trans (trans (sym $ cong (flip (subst P) _) (sym trans-refl-refl)) (sym $ cong (subst P (refl _)) (subst-refl _ _))) (trans (cong (subst P (refl _)) (refl _)) (subst-refl _ _)) ≡⟨ cong (λ eq → trans (trans (sym $ cong (flip (subst P) _) (sym trans-refl-refl)) (sym $ cong (subst P _) (subst-refl _ _))) (trans eq (subst-refl _ _))) $ cong-refl (subst P (refl _)) ⟩ trans (trans (sym $ cong (flip (subst P) _) (sym trans-refl-refl)) (sym $ cong (subst P (refl _)) (subst-refl _ _))) (trans (refl _) (subst-refl _ _)) ≡⟨ cong (trans _) $ trans-reflˡ _ ⟩ trans (trans (sym $ cong (flip (subst P) _) (sym trans-refl-refl)) (sym $ cong (subst P (refl _)) (subst-refl _ _))) (subst-refl _ _) ≡⟨ cong (λ eq → trans (trans (sym $ cong (flip (subst P) _) _) (sym eq)) (subst-refl _ _)) lemma₂ ⟩ trans (trans (sym $ cong (flip (subst P) _) (sym trans-refl-refl)) (sym $ cong id (subst-refl _ _))) (subst-refl _ _) ≡⟨ cong (λ eq → trans (trans (sym $ cong (flip (subst P) _) (sym trans-refl-refl)) (sym eq)) (subst-refl _ _)) $ sym $ cong-id _ ⟩ trans (trans (sym $ cong (flip (subst P) _) (sym trans-refl-refl)) (sym $ subst-refl _ _)) (subst-refl _ _) ≡⟨ trans-[trans-sym]- _ _ ⟩ sym (cong (flip (subst P) _) (sym trans-refl-refl)) ≡⟨ cong sym $ cong-sym _ _ ⟩ sym (sym (cong (flip (subst P) _) trans-refl-refl)) ≡⟨ sym-sym _ ⟩ cong (flip (subst P) _) trans-refl-refl ≡⟨ sym $ trans-reflʳ _ ⟩∎ trans (cong (flip (subst P) _) trans-refl-refl) (refl _) ∎) -- A lemma relating dcong, trans and dtrans. -- -- This lemma is suggested in the HoTT book (first edition, -- Exercise 6.1). dcong-trans : {f : (x : A) → P x} {x≡y : x ≡ y} {y≡z : y ≡ z} → dcong f (trans x≡y y≡z) ≡ dtrans P (dcong f x≡y) (dcong f y≡z) dcong-trans {P = P} {f = f} {x≡y = x≡y} {y≡z = y≡z} = elim₁ (λ x≡y → dcong f (trans x≡y y≡z) ≡ dtrans P (dcong f x≡y) (dcong f y≡z)) (dcong f (trans (refl _) y≡z) ≡⟨ elim₁ (λ {p} eq → dcong f p ≡ trans (cong (flip (subst P) _) eq) (dcong f y≡z)) ( dcong f y≡z ≡⟨ sym $ trans-reflˡ _ ⟩ trans (refl _) (dcong f y≡z) ≡⟨ cong (flip trans _) $ sym $ cong-refl _ ⟩∎ trans (cong (flip (subst P) _) (refl _)) (dcong f y≡z) ∎) (trans-reflˡ _) ⟩ trans (cong (flip (subst P) _) (trans-reflˡ _)) (dcong f y≡z) ≡⟨ sym dtrans-subst-reflˡ ⟩ dtrans P (subst-refl _ _) (dcong f y≡z) ≡⟨ cong (λ eq → dtrans P eq (dcong f y≡z)) $ sym $ dcong-refl f ⟩∎ dtrans P (dcong f (refl _)) (dcong f y≡z) ∎) x≡y -- An equality between pairs can be proved using a pair of -- equalities. Σ-≡,≡→≡ : {B : A → Type b} {p₁ p₂ : Σ A B} → (p : proj₁ p₁ ≡ proj₁ p₂) → subst B p (proj₂ p₁) ≡ proj₂ p₂ → p₁ ≡ p₂ Σ-≡,≡→≡ {B = B} p q = elim (λ {x₁ y₁} (p : x₁ ≡ y₁) → ∀ {x₂ y₂} → subst B p x₂ ≡ y₂ → (x₁ , x₂) ≡ (y₁ , y₂)) (λ z₁ {x₂} {y₂} x₂≡y₂ → cong (_,_ z₁) ( x₂ ≡⟨ sym $ subst-refl _ _ ⟩ subst B (refl z₁) x₂ ≡⟨ x₂≡y₂ ⟩∎ y₂ ∎)) p q -- The uncurried form of Σ-≡,≡→≡ has an inverse, Σ-≡,≡←≡. (For a -- proof, see Bijection.Σ-≡,≡↔≡.) Σ-≡,≡←≡ : {B : A → Type b} {p₁ p₂ : Σ A B} → p₁ ≡ p₂ → ∃ λ (p : proj₁ p₁ ≡ proj₁ p₂) → subst B p (proj₂ p₁) ≡ proj₂ p₂ Σ-≡,≡←≡ {A = A} {B = B} = elim (λ {p₁ p₂ : Σ A B} _ → ∃ λ (p : proj₁ p₁ ≡ proj₁ p₂) → subst B p (proj₂ p₁) ≡ proj₂ p₂) (λ p → refl _ , subst-refl _ _) abstract -- "Evaluation rules" for Σ-≡,≡→≡. Σ-≡,≡→≡-reflˡ : ∀ {B : A → Type b} {y₁ y₂} → (y₁≡y₂ : subst B (refl x) y₁ ≡ y₂) → Σ-≡,≡→≡ (refl x) y₁≡y₂ ≡ cong (x ,_) (trans (sym $ subst-refl _ _) y₁≡y₂) Σ-≡,≡→≡-reflˡ {B = B} y₁≡y₂ = cong (λ f → f y₁≡y₂) $ elim-refl (λ {x₁ y₁} (p : x₁ ≡ y₁) → ∀ {x₂ y₂} → subst B p x₂ ≡ y₂ → (x₁ , x₂) ≡ (y₁ , y₂)) _ Σ-≡,≡→≡-refl-refl : ∀ {B : A → Type b} {y} → Σ-≡,≡→≡ (refl x) (refl (subst B (refl x) y)) ≡ cong (x ,_) (sym (subst-refl _ _)) Σ-≡,≡→≡-refl-refl {x = x} = Σ-≡,≡→≡ (refl x) (refl _) ≡⟨ Σ-≡,≡→≡-reflˡ (refl _) ⟩ cong (x ,_) (trans (sym $ subst-refl _ _) (refl _)) ≡⟨ cong (cong (x ,_)) (trans-reflʳ _) ⟩∎ cong (x ,_) (sym (subst-refl _ _)) ∎ Σ-≡,≡→≡-refl-subst-refl : {B : A → Type b} {p : Σ A B} → Σ-≡,≡→≡ (refl _) (subst-refl _ _) ≡ refl p Σ-≡,≡→≡-refl-subst-refl {B = B} = Σ-≡,≡→≡ (refl _) (subst-refl B _) ≡⟨ Σ-≡,≡→≡-reflˡ _ ⟩ cong (_ ,_) (trans (sym $ subst-refl _ _) (subst-refl _ _)) ≡⟨ cong (cong _) (trans-symˡ _) ⟩ cong (_ ,_) (refl _) ≡⟨ cong-refl _ ⟩∎ refl _ ∎ Σ-≡,≡→≡-refl-subst-const : {p : A × B} → Σ-≡,≡→≡ (refl _) (subst-const _) ≡ refl p Σ-≡,≡→≡-refl-subst-const = Σ-≡,≡→≡ (refl _) (subst-const _) ≡⟨ Σ-≡,≡→≡-reflˡ _ ⟩ cong (_ ,_) (trans (sym $ subst-refl _ _) (subst-const _)) ≡⟨ cong (cong _) subst-refl-subst-const ⟩ cong (_ ,_) (refl _) ≡⟨ cong-refl _ ⟩∎ refl _ ∎ -- "Evaluation rule" for Σ-≡,≡←≡. Σ-≡,≡←≡-refl : {B : A → Type b} {p : Σ A B} → Σ-≡,≡←≡ (refl p) ≡ (refl _ , subst-refl _ _) Σ-≡,≡←≡-refl = elim-refl _ _ -- Proof transformation rules for Σ-≡,≡→≡. proj₁-Σ-≡,≡→≡ : ∀ {B : A → Type b} {y₁ y₂} (x₁≡x₂ : x₁ ≡ x₂) (y₁≡y₂ : subst B x₁≡x₂ y₁ ≡ y₂) → cong proj₁ (Σ-≡,≡→≡ x₁≡x₂ y₁≡y₂) ≡ x₁≡x₂ proj₁-Σ-≡,≡→≡ {B = B} {y₁ = y₁} x₁≡x₂ y₁≡y₂ = elim¹ (λ x₁≡x₂ → ∀ {y₂} (y₁≡y₂ : subst B x₁≡x₂ y₁ ≡ y₂) → cong proj₁ (Σ-≡,≡→≡ x₁≡x₂ y₁≡y₂) ≡ x₁≡x₂) (λ y₁≡y₂ → cong proj₁ (Σ-≡,≡→≡ (refl _) y₁≡y₂) ≡⟨ cong (cong proj₁) $ Σ-≡,≡→≡-reflˡ _ ⟩ cong proj₁ (cong (_,_ _) (trans (sym $ subst-refl _ _) y₁≡y₂)) ≡⟨ cong-∘ _ (_,_ _) _ ⟩ cong (const _) (trans (sym $ subst-refl _ _) y₁≡y₂) ≡⟨ cong-const _ ⟩∎ refl _ ∎) x₁≡x₂ y₁≡y₂ Σ-≡,≡→≡-cong : {B : A → Type b} {p₁ p₂ : Σ A B} {q₁ q₂ : proj₁ p₁ ≡ proj₁ p₂} (q₁≡q₂ : q₁ ≡ q₂) {r₁ : subst B q₁ (proj₂ p₁) ≡ proj₂ p₂} {r₂ : subst B q₂ (proj₂ p₁) ≡ proj₂ p₂} (r₁≡r₂ : (subst B q₂ (proj₂ p₁) ≡⟨ cong (flip (subst B) _) (sym q₁≡q₂) ⟩ subst B q₁ (proj₂ p₁) ≡⟨ r₁ ⟩∎ proj₂ p₂ ∎) ≡ r₂) → Σ-≡,≡→≡ q₁ r₁ ≡ Σ-≡,≡→≡ q₂ r₂ Σ-≡,≡→≡-cong {B = B} = elim (λ {q₁ q₂} q₁≡q₂ → ∀ {r₁ r₂} (r₁≡r₂ : trans (cong (flip (subst B) _) (sym q₁≡q₂)) r₁ ≡ r₂) → Σ-≡,≡→≡ q₁ r₁ ≡ Σ-≡,≡→≡ q₂ r₂) (λ q {r₁ r₂} r₁≡r₂ → cong (Σ-≡,≡→≡ q) ( r₁ ≡⟨ sym $ trans-reflˡ _ ⟩ trans (refl (subst B q _)) r₁ ≡⟨ cong (flip trans _) $ sym $ cong-refl _ ⟩ trans (cong (flip (subst B) _) (refl q)) r₁ ≡⟨ cong (λ e → trans (cong (flip (subst B) _) e) _) $ sym sym-refl ⟩ trans (cong (flip (subst B) _) (sym (refl q))) r₁ ≡⟨ r₁≡r₂ ⟩∎ r₂ ∎)) trans-Σ-≡,≡→≡ : {B : A → Type b} {p₁ p₂ p₃ : Σ A B} → (q₁₂ : proj₁ p₁ ≡ proj₁ p₂) (q₂₃ : proj₁ p₂ ≡ proj₁ p₃) (r₁₂ : subst B q₁₂ (proj₂ p₁) ≡ proj₂ p₂) (r₂₃ : subst B q₂₃ (proj₂ p₂) ≡ proj₂ p₃) → trans (Σ-≡,≡→≡ q₁₂ r₁₂) (Σ-≡,≡→≡ q₂₃ r₂₃) ≡ Σ-≡,≡→≡ (trans q₁₂ q₂₃) (subst B (trans q₁₂ q₂₃) (proj₂ p₁) ≡⟨ sym $ subst-subst _ _ _ _ ⟩ subst B q₂₃ (subst B q₁₂ (proj₂ p₁)) ≡⟨ cong (subst _ _) r₁₂ ⟩ subst B q₂₃ (proj₂ p₂) ≡⟨ r₂₃ ⟩∎ proj₂ p₃ ∎) trans-Σ-≡,≡→≡ {B = B} q₁₂ q₂₃ r₁₂ r₂₃ = elim (λ {p₂₁ p₃₁} q₂₃ → ∀ {p₁₁} (q₁₂ : p₁₁ ≡ p₂₁) {p₁₂ p₂₂} (r₁₂ : subst B q₁₂ p₁₂ ≡ p₂₂) {p₃₂} (r₂₃ : subst B q₂₃ p₂₂ ≡ p₃₂) → trans (Σ-≡,≡→≡ q₁₂ r₁₂) (Σ-≡,≡→≡ q₂₃ r₂₃) ≡ Σ-≡,≡→≡ (trans q₁₂ q₂₃) (trans (sym $ subst-subst _ _ _ _) (trans (cong (subst _ _) r₁₂) r₂₃))) (λ x → elim₁ (λ q₁₂ → ∀ {p₁₂ p₂₂} (r₁₂ : subst B q₁₂ p₁₂ ≡ p₂₂) {p₃₂} (r₂₃ : subst B (refl _) p₂₂ ≡ p₃₂) → trans (Σ-≡,≡→≡ q₁₂ r₁₂) (Σ-≡,≡→≡ (refl _) r₂₃) ≡ Σ-≡,≡→≡ (trans q₁₂ (refl _)) (trans (sym $ subst-subst _ _ _ _) (trans (cong (subst _ _) r₁₂) r₂₃))) (λ {y} → elim¹ (λ {p₂₂} r₁₂ → ∀ {p₃₂} (r₂₃ : subst B (refl _) p₂₂ ≡ p₃₂) → trans (Σ-≡,≡→≡ (refl _) r₁₂) (Σ-≡,≡→≡ (refl _) r₂₃) ≡ Σ-≡,≡→≡ (trans (refl _) (refl _)) (trans (sym $ subst-subst _ _ _ _) (trans (cong (subst _ _) r₁₂) r₂₃))) (elim¹ (λ r₂₃ → trans (Σ-≡,≡→≡ (refl _) (refl _)) (Σ-≡,≡→≡ (refl _) r₂₃) ≡ Σ-≡,≡→≡ (trans (refl _) (refl _)) (trans (sym $ subst-subst _ _ _ _) (trans (cong (subst _ _) (refl _)) r₂₃))) (let lemma₁ = sym (cong (subst B _) (subst-refl _ _)) ≡⟨ sym $ trans-sym-[trans] _ _ ⟩ trans (sym $ cong (flip (subst B) _) trans-refl-refl) (trans (cong (flip (subst B) _) trans-refl-refl) (sym (cong (subst B _) (subst-refl _ _)))) ≡⟨ cong (flip trans _) $ sym $ cong-sym _ _ ⟩∎ trans (cong (flip (subst B) _) (sym trans-refl-refl)) (trans (cong (flip (subst B) _) trans-refl-refl) (sym (cong (subst B _) (subst-refl _ _)))) ∎ lemma₂ = trans (cong (flip (subst B) _) trans-refl-refl) (sym (cong (subst B _) (subst-refl _ _))) ≡⟨ cong (λ e → trans (cong (flip (subst B) _) e) (sym $ cong (subst B _) (subst-refl _ _))) $ sym $ sym-sym _ ⟩ trans (cong (flip (subst B) _) (sym $ sym trans-refl-refl)) (sym (cong (subst B _) (subst-refl _ _))) ≡⟨ cong (flip trans _) $ cong-sym _ _ ⟩ trans (sym (cong (flip (subst B) _) (sym trans-refl-refl))) (sym (cong (subst B _) (subst-refl _ _))) ≡⟨ sym $ sym-trans _ _ ⟩ sym (trans (cong (subst B _) (subst-refl _ _)) (cong (flip (subst B) _) (sym trans-refl-refl))) ≡⟨⟩ sym (cong₂ (flip (subst B)) (subst-refl _ _) (sym trans-refl-refl)) ≡⟨ cong sym $ sym $ subst-subst-refl-refl _ ⟩ sym (subst-subst _ _ _ _) ≡⟨ sym $ trans-reflʳ _ ⟩ trans (sym $ subst-subst _ _ _ _) (refl _) ≡⟨ cong (trans (sym $ subst-subst _ _ _ _)) $ sym trans-refl-refl ⟩ trans (sym $ subst-subst _ _ _ _) (trans (refl _) (refl _)) ≡⟨ cong (λ x → trans (sym $ subst-subst _ _ _ _) (trans x (refl _))) $ sym $ cong-refl _ ⟩∎ trans (sym $ subst-subst _ _ _ _) (trans (cong (subst _ _) (refl _)) (refl _)) ∎ in trans (Σ-≡,≡→≡ (refl _) (refl _)) (Σ-≡,≡→≡ (refl _) (refl _)) ≡⟨ cong₂ trans Σ-≡,≡→≡-refl-refl Σ-≡,≡→≡-refl-refl ⟩ trans (cong (_ ,_) (sym (subst-refl _ _))) (cong (_ ,_) (sym (subst-refl B _))) ≡⟨ sym $ cong-trans _ _ _ ⟩ cong (_ ,_) (trans (sym (subst-refl _ _)) (sym (subst-refl _ _))) ≡⟨ cong (cong (_ ,_) ∘ trans (sym (subst-refl _ _)) ∘ sym) $ sym $ cong-≡id-≡-≡id (subst-refl B) ⟩ cong (_ ,_) (trans (sym (subst-refl _ _)) (sym (cong (subst B _) (subst-refl _ _)))) ≡⟨ sym $ Σ-≡,≡→≡-reflˡ _ ⟩ Σ-≡,≡→≡ (refl _) (sym (cong (subst B _) (subst-refl _ _))) ≡⟨ cong (Σ-≡,≡→≡ _) lemma₁ ⟩ Σ-≡,≡→≡ (refl _) (trans (cong (flip (subst B) _) (sym trans-refl-refl)) (trans (cong (flip (subst B) _) trans-refl-refl) (sym (cong (subst B _) (subst-refl _ _))))) ≡⟨ sym $ Σ-≡,≡→≡-cong _ (refl _) ⟩ Σ-≡,≡→≡ (trans (refl _) (refl _)) (trans (cong (flip (subst B) _) trans-refl-refl) (sym (cong (subst B _) (subst-refl _ _)))) ≡⟨ cong (Σ-≡,≡→≡ (trans (refl _) (refl _))) lemma₂ ⟩∎ Σ-≡,≡→≡ (trans (refl _) (refl _)) (trans (sym $ subst-subst _ _ _ _) (trans (cong (subst _ _) (refl _)) (refl _))) ∎)))) q₂₃ q₁₂ r₁₂ r₂₃ Σ-≡,≡→≡-subst-const : {p₁ p₂ : A × B} → (p : proj₁ p₁ ≡ proj₁ p₂) (q : proj₂ p₁ ≡ proj₂ p₂) → Σ-≡,≡→≡ p (trans (subst-const _) q) ≡ cong₂ _,_ p q Σ-≡,≡→≡-subst-const p q = elim (λ {x₁ y₁} (p : x₁ ≡ y₁) → Σ-≡,≡→≡ p (trans (subst-const _) q) ≡ cong₂ _,_ p q) (λ x → let lemma = trans (sym $ subst-refl _ _) (trans (subst-const _) q) ≡⟨ sym $ trans-assoc _ _ _ ⟩ trans (trans (sym $ subst-refl _ _) (subst-const _)) q ≡⟨ cong₂ trans subst-refl-subst-const (refl _) ⟩ trans (refl _) q ≡⟨ trans-reflˡ _ ⟩∎ q ∎ in Σ-≡,≡→≡ (refl x) (trans (subst-const _) q) ≡⟨ Σ-≡,≡→≡-reflˡ _ ⟩ cong (x ,_) (trans (sym $ subst-refl _ _) (trans (subst-const _) q)) ≡⟨ cong (cong (x ,_)) lemma ⟩ cong (x ,_) q ≡⟨ sym $ cong₂-reflˡ _,_ ⟩∎ cong₂ _,_ (refl x) q ∎) p Σ-≡,≡→≡-subst-const-refl : Σ-≡,≡→≡ x₁≡x₂ (subst-const _) ≡ cong₂ _,_ x₁≡x₂ (refl y) Σ-≡,≡→≡-subst-const-refl {x₁≡x₂ = x₁≡x₂} {y = y} = Σ-≡,≡→≡ x₁≡x₂ (subst-const _) ≡⟨ cong (Σ-≡,≡→≡ x₁≡x₂) $ sym $ trans-reflʳ _ ⟩ Σ-≡,≡→≡ x₁≡x₂ (trans (subst-const _) (refl _)) ≡⟨ Σ-≡,≡→≡-subst-const _ _ ⟩∎ cong₂ _,_ x₁≡x₂ (refl y) ∎ -- Proof simplification rule for Σ-≡,≡←≡. proj₁-Σ-≡,≡←≡ : {B : A → Type b} {p₁ p₂ : Σ A B} (p₁≡p₂ : p₁ ≡ p₂) → proj₁ (Σ-≡,≡←≡ p₁≡p₂) ≡ cong proj₁ p₁≡p₂ proj₁-Σ-≡,≡←≡ = elim (λ p₁≡p₂ → proj₁ (Σ-≡,≡←≡ p₁≡p₂) ≡ cong proj₁ p₁≡p₂) (λ p → proj₁ (Σ-≡,≡←≡ (refl p)) ≡⟨ cong proj₁ $ Σ-≡,≡←≡-refl ⟩ refl (proj₁ p) ≡⟨ sym $ cong-refl _ ⟩∎ cong proj₁ (refl p) ∎) -- A binary variant of subst. subst₂ : ∀ {B : A → Type b} (P : Σ A B → Type p) {x₁ x₂ y₁ y₂} → (x₁≡x₂ : x₁ ≡ x₂) → subst B x₁≡x₂ y₁ ≡ y₂ → P (x₁ , y₁) → P (x₂ , y₂) subst₂ P x₁≡x₂ y₁≡y₂ = subst P (Σ-≡,≡→≡ x₁≡x₂ y₁≡y₂) abstract -- "Evaluation rule" for subst₂. subst₂-refl-refl : ∀ {B : A → Type b} (P : Σ A B → Type p) {y p} → subst₂ P (refl _) (refl _) p ≡ subst (curry P x) (sym $ subst-refl B y) p subst₂-refl-refl {x = x} P {p = p} = subst P (Σ-≡,≡→≡ (refl _) (refl _)) p ≡⟨ cong (λ eq₁ → subst P eq₁ _) Σ-≡,≡→≡-refl-refl ⟩ subst P (cong (x ,_) (sym (subst-refl _ _))) p ≡⟨ sym $ subst-∘ _ _ _ ⟩∎ subst (curry P x) (sym $ subst-refl _ _) p ∎ -- The subst function can be "pushed" inside pairs. push-subst-pair : ∀ (B : A → Type b) (C : Σ A B → Type c) {p} → subst (λ x → Σ (B x) (curry C x)) y≡z p ≡ (subst B y≡z (proj₁ p) , subst₂ C y≡z (refl _) (proj₂ p)) push-subst-pair {y≡z = y≡z} B C {p} = elim¹ (λ y≡z → subst (λ x → Σ (B x) (curry C x)) y≡z p ≡ (subst B y≡z (proj₁ p) , subst₂ C y≡z (refl _) (proj₂ p))) (subst (λ x → Σ (B x) (curry C x)) (refl _) p ≡⟨ subst-refl _ _ ⟩ p ≡⟨ Σ-≡,≡→≡ (sym (subst-refl _ _)) (sym (subst₂-refl-refl _)) ⟩∎ (subst B (refl _) (proj₁ p) , subst₂ C (refl _) (refl _) (proj₂ p)) ∎) y≡z -- A proof transformation rule for push-subst-pair. proj₁-push-subst-pair-refl : ∀ {A : Type a} {y : A} (B : A → Type b) (C : Σ A B → Type c) {p} → cong proj₁ (push-subst-pair {y≡z = refl y} B C {p = p}) ≡ trans (cong proj₁ (subst-refl (λ _ → Σ _ _) _)) (sym $ subst-refl _ _) proj₁-push-subst-pair-refl B C = cong proj₁ (push-subst-pair _ _) ≡⟨ cong (cong proj₁) $ elim¹-refl (λ y≡z → subst (λ x → Σ (B x) (curry C x)) y≡z _ ≡ (subst B y≡z _ , subst₂ C y≡z (refl _) _)) _ ⟩ cong proj₁ (trans (subst-refl (λ _ → Σ _ _) _) (Σ-≡,≡→≡ (sym $ subst-refl B _) (sym (subst₂-refl-refl _)))) ≡⟨ cong-trans _ _ _ ⟩ trans (cong proj₁ (subst-refl _ _)) (cong proj₁ (Σ-≡,≡→≡ (sym $ subst-refl _ _) (sym (subst₂-refl-refl _)))) ≡⟨ cong (trans _) $ proj₁-Σ-≡,≡→≡ _ _ ⟩∎ trans (cong proj₁ (subst-refl _ _)) (sym $ subst-refl _ _) ∎ -- Corollaries of push-subst-pair. push-subst-pair′ : ∀ (B : A → Type b) (C : Σ A B → Type c) {p p₁} → (p₁≡p₁ : subst B y≡z (proj₁ p) ≡ p₁) → subst (λ x → Σ (B x) (curry C x)) y≡z p ≡ (p₁ , subst₂ C y≡z p₁≡p₁ (proj₂ p)) push-subst-pair′ {y≡z = y≡z} B C {p} = elim¹ (λ {p₁} p₁≡p₁ → subst (λ x → Σ (B x) (curry C x)) y≡z p ≡ (p₁ , subst₂ C y≡z p₁≡p₁ (proj₂ p))) (push-subst-pair _ _) push-subst-pair-× : ∀ {y≡z : y ≡ z} (B : Type b) (C : A × B → Type c) {p} → subst (λ x → Σ B (curry C x)) y≡z p ≡ (proj₁ p , subst (λ x → C (x , proj₁ p)) y≡z (proj₂ p)) push-subst-pair-× {y≡z = y≡z} B C {p} = subst (λ x → Σ B (curry C x)) y≡z p ≡⟨ push-subst-pair′ _ C (subst-const _) ⟩ (proj₁ p , subst₂ C y≡z (subst-const _) (proj₂ p)) ≡⟨ cong (_ ,_) $ elim¹ (λ y≡z → subst₂ C y≡z (subst-const y≡z) (proj₂ p) ≡ subst (λ x → C (x , proj₁ p)) y≡z (proj₂ p)) ( subst₂ C (refl _) (subst-const _) (proj₂ p) ≡⟨⟩ subst C (Σ-≡,≡→≡ (refl _) (subst-const _)) (proj₂ p) ≡⟨ cong (λ eq → subst C eq _) Σ-≡,≡→≡-refl-subst-const ⟩ subst C (refl _) (proj₂ p) ≡⟨ subst-refl _ _ ⟩ proj₂ p ≡⟨ sym $ subst-refl _ _ ⟩∎ subst (λ x → C (x , _)) (refl _) (proj₂ p) ∎) y≡z ⟩ (proj₁ p , subst (λ x → C (x , _)) y≡z (proj₂ p)) ∎ -- A proof simplification rule for subst₂. subst₂-proj₁ : ∀ {B : A → Type b} {y₁ y₂} {x₁≡x₂ : x₁ ≡ x₂} {y₁≡y₂ : subst B x₁≡x₂ y₁ ≡ y₂} (P : A → Type p) {p} → subst₂ {B = B} (P ∘ proj₁) x₁≡x₂ y₁≡y₂ p ≡ subst P x₁≡x₂ p subst₂-proj₁ {x₁≡x₂ = x₁≡x₂} {y₁≡y₂} P {p} = subst₂ (P ∘ proj₁) x₁≡x₂ y₁≡y₂ p ≡⟨ subst-∘ _ _ _ ⟩ subst P (cong proj₁ (Σ-≡,≡→≡ x₁≡x₂ y₁≡y₂)) p ≡⟨ cong (λ eq → subst P eq _) (proj₁-Σ-≡,≡→≡ _ _) ⟩∎ subst P x₁≡x₂ p ∎ -- The subst function can be "pushed" inside non-dependent pairs. push-subst-, : ∀ (B : A → Type b) (C : A → Type c) {p} → subst (λ x → B x × C x) y≡z p ≡ (subst B y≡z (proj₁ p) , subst C y≡z (proj₂ p)) push-subst-, {y≡z = y≡z} B C {x , y} = subst (λ x → B x × C x) y≡z (x , y) ≡⟨ push-subst-pair _ _ ⟩ (subst B y≡z x , subst (C ∘ proj₁) (Σ-≡,≡→≡ y≡z (refl _)) y) ≡⟨ cong (_,_ _) $ subst₂-proj₁ _ ⟩∎ (subst B y≡z x , subst C y≡z y) ∎ -- A proof transformation rule for push-subst-,. proj₁-push-subst-,-refl : ∀ {A : Type a} {y : A} (B : A → Type b) (C : A → Type c) {p} → cong proj₁ (push-subst-, {y≡z = refl y} B C {p = p}) ≡ trans (cong proj₁ (subst-refl (λ _ → _ × _) _)) (sym $ subst-refl _ _) proj₁-push-subst-,-refl _ _ = cong proj₁ (trans (push-subst-pair _ _) (cong (_,_ _) $ subst₂-proj₁ _)) ≡⟨ cong-trans _ _ _ ⟩ trans (cong proj₁ (push-subst-pair _ _)) (cong proj₁ (cong (_,_ _) $ subst₂-proj₁ _)) ≡⟨ cong (trans _) $ cong-∘ _ _ _ ⟩ trans (cong proj₁ (push-subst-pair _ _)) (cong (const _) $ subst₂-proj₁ _) ≡⟨ trans (cong (trans _) (cong-const _)) $ trans-reflʳ _ ⟩ cong proj₁ (push-subst-pair _ _) ≡⟨ proj₁-push-subst-pair-refl _ _ ⟩∎ trans (cong proj₁ (subst-refl _ _)) (sym $ subst-refl _ _) ∎ -- The subst function can be "pushed" inside inj₁ and inj₂. push-subst-inj₁ : ∀ (B : A → Type b) (C : A → Type c) {x} → subst (λ x → B x ⊎ C x) y≡z (inj₁ x) ≡ inj₁ (subst B y≡z x) push-subst-inj₁ {y≡z = y≡z} B C {x} = elim¹ (λ y≡z → subst (λ x → B x ⊎ C x) y≡z (inj₁ x) ≡ inj₁ (subst B y≡z x)) (subst (λ x → B x ⊎ C x) (refl _) (inj₁ x) ≡⟨ subst-refl _ _ ⟩ inj₁ x ≡⟨ cong inj₁ $ sym $ subst-refl _ _ ⟩∎ inj₁ (subst B (refl _) x) ∎) y≡z push-subst-inj₂ : ∀ (B : A → Type b) (C : A → Type c) {x} → subst (λ x → B x ⊎ C x) y≡z (inj₂ x) ≡ inj₂ (subst C y≡z x) push-subst-inj₂ {y≡z = y≡z} B C {x} = elim¹ (λ y≡z → subst (λ x → B x ⊎ C x) y≡z (inj₂ x) ≡ inj₂ (subst C y≡z x)) (subst (λ x → B x ⊎ C x) (refl _) (inj₂ x) ≡⟨ subst-refl _ _ ⟩ inj₂ x ≡⟨ cong inj₂ $ sym $ subst-refl _ _ ⟩∎ inj₂ (subst C (refl _) x) ∎) y≡z -- The subst function can be "pushed" inside applications. push-subst-application : {B : A → Type b} (x₁≡x₂ : x₁ ≡ x₂) (C : (x : A) → B x → Type c) {f : (x : A) → B x} {g : (y : B x₁) → C x₁ y} → subst (λ x → C x (f x)) x₁≡x₂ (g (f x₁)) ≡ subst (λ x → (y : B x) → C x y) x₁≡x₂ g (f x₂) push-subst-application {x₁ = x₁} x₁≡x₂ C {f} {g} = elim¹ (λ {x₂} x₁≡x₂ → subst (λ x → C x (f x)) x₁≡x₂ (g (f x₁)) ≡ subst (λ x → ∀ y → C x y) x₁≡x₂ g (f x₂)) (subst (λ x → C x (f x)) (refl _) (g (f x₁)) ≡⟨ subst-refl _ _ ⟩ g (f x₁) ≡⟨ cong (_$ f x₁) $ sym $ subst-refl (λ x → ∀ y → C x y) _ ⟩∎ subst (λ x → ∀ y → C x y) (refl _) g (f x₁) ∎) x₁≡x₂ push-subst-implicit-application : {B : A → Type b} (x₁≡x₂ : x₁ ≡ x₂) (C : (x : A) → B x → Type c) {f : (x : A) → B x} {g : {y : B x₁} → C x₁ y} → subst (λ x → C x (f x)) x₁≡x₂ (g {y = f x₁}) ≡ subst (λ x → {y : B x} → C x y) x₁≡x₂ g {y = f x₂} push-subst-implicit-application {x₁ = x₁} x₁≡x₂ C {f} {g} = elim¹ (λ {x₂} x₁≡x₂ → subst (λ x → C x (f x)) x₁≡x₂ (g {y = f x₁}) ≡ subst (λ x → ∀ {y} → C x y) x₁≡x₂ g {y = f x₂}) (subst (λ x → C x (f x)) (refl _) (g {y = f x₁}) ≡⟨ subst-refl _ _ ⟩ g {y = f x₁} ≡⟨ cong (λ g → g {y = f x₁}) $ sym $ subst-refl (λ x → ∀ {y} → C x y) _ ⟩∎ subst (λ x → ∀ {y} → C x y) (refl _) g {y = f x₁} ∎) x₁≡x₂ subst-∀-sym : ∀ {B : A → Type b} {y : B x₁} {C : (x : A) → B x → Type c} {f : (y : B x₂) → C x₂ y} {x₁≡x₂ : x₁ ≡ x₂} → subst (λ x → (y : B x) → C x y) (sym x₁≡x₂) f y ≡ subst (uncurry C) (sym $ Σ-≡,≡→≡ x₁≡x₂ (refl _)) (f (subst B x₁≡x₂ y)) subst-∀-sym {B = B} {C = C} {x₁≡x₂ = x₁≡x₂} = elim (λ {x₁ x₂} x₁≡x₂ → {y : B x₁} (f : (y : B x₂) → C x₂ y) → subst (λ x → (y : B x) → C x y) (sym x₁≡x₂) f y ≡ subst (uncurry C) (sym $ Σ-≡,≡→≡ x₁≡x₂ (refl _)) (f (subst B x₁≡x₂ y))) (λ x {y} f → let lemma = cong (x ,_) (subst-refl B y) ≡⟨ cong (cong (x ,_)) $ sym $ sym-sym _ ⟩ cong (x ,_) (sym $ sym $ subst-refl B y) ≡⟨ cong-sym _ _ ⟩ sym $ cong (x ,_) (sym $ subst-refl B y) ≡⟨ cong sym $ sym Σ-≡,≡→≡-refl-refl ⟩∎ sym $ Σ-≡,≡→≡ (refl x) (refl _) ∎ in subst (λ x → (y : B x) → C x y) (sym (refl x)) f y ≡⟨ cong (λ eq → subst (λ x → (y : B x) → C x y) eq _ _) sym-refl ⟩ subst (λ x → (y : B x) → C x y) (refl x) f y ≡⟨ cong (_$ y) $ subst-refl (λ x → (_ : B x) → _) _ ⟩ f y ≡⟨ sym $ dcong f _ ⟩ subst (C x) (subst-refl B _) (f (subst B (refl x) y)) ≡⟨ subst-∘ _ _ _ ⟩ subst (uncurry C) (cong (x ,_) (subst-refl B y)) (f (subst B (refl x) y)) ≡⟨ cong (λ eq → subst (uncurry C) eq (f (subst B (refl x) y))) lemma ⟩∎ subst (uncurry C) (sym $ Σ-≡,≡→≡ (refl x) (refl _)) (f (subst B (refl x) y)) ∎) x₁≡x₂ _ subst-∀ : ∀ {B : A → Type b} {y : B x₂} {C : (x : A) → B x → Type c} {f : (y : B x₁) → C x₁ y} {x₁≡x₂ : x₁ ≡ x₂} → subst (λ x → (y : B x) → C x y) x₁≡x₂ f y ≡ subst (uncurry C) (sym $ Σ-≡,≡→≡ (sym x₁≡x₂) (refl _)) (f (subst B (sym x₁≡x₂) y)) subst-∀ {B = B} {y = y} {C = C} {f = f} {x₁≡x₂ = x₁≡x₂} = subst (λ x → (y : B x) → C x y) x₁≡x₂ f y ≡⟨ cong (λ eq → subst (λ x → (y : B x) → C x y) eq _ _) $ sym $ sym-sym _ ⟩ subst (λ x → (y : B x) → C x y) (sym (sym x₁≡x₂)) f y ≡⟨ subst-∀-sym ⟩∎ subst (uncurry C) (sym $ Σ-≡,≡→≡ (sym x₁≡x₂) (refl _)) (f (subst B (sym x₁≡x₂) y)) ∎ subst-→ : {B : A → Type b} {y : B x₂} {C : A → Type c} {f : B x₁ → C x₁} → subst (λ x → B x → C x) x₁≡x₂ f y ≡ subst C x₁≡x₂ (f (subst B (sym x₁≡x₂) y)) subst-→ {x₁≡x₂ = x₁≡x₂} {B = B} {y = y} {C} {f} = subst (λ x → B x → C x) x₁≡x₂ f y ≡⟨ cong (λ eq → subst (λ x → B x → C x) eq f y) $ sym $ sym-sym _ ⟩ subst (λ x → B x → C x) (sym $ sym x₁≡x₂) f y ≡⟨ subst-∀-sym ⟩ subst (C ∘ proj₁) (sym $ Σ-≡,≡→≡ (sym x₁≡x₂) (refl _)) (f (subst B (sym x₁≡x₂) y)) ≡⟨ subst-∘ _ _ _ ⟩ subst C (cong proj₁ $ sym $ Σ-≡,≡→≡ (sym x₁≡x₂) (refl _)) (f (subst B (sym x₁≡x₂) y)) ≡⟨ cong (λ eq → subst C eq (f (subst B (sym x₁≡x₂) y))) $ cong-sym _ _ ⟩ subst C (sym $ cong proj₁ $ Σ-≡,≡→≡ (sym x₁≡x₂) (refl _)) (f (subst B (sym x₁≡x₂) y)) ≡⟨ cong (λ eq → subst C (sym eq) (f (subst B (sym x₁≡x₂) y))) $ proj₁-Σ-≡,≡→≡ _ _ ⟩ subst C (sym $ sym x₁≡x₂) (f (subst B (sym x₁≡x₂) y)) ≡⟨ cong (λ eq → subst C eq (f (subst B (sym x₁≡x₂) y))) $ sym-sym _ ⟩∎ subst C x₁≡x₂ (f (subst B (sym x₁≡x₂) y)) ∎ subst-→-domain : (B : A → Type b) {f : B x → C} (x≡y : x ≡ y) {u : B y} → subst (λ x → B x → C) x≡y f u ≡ f (subst B (sym x≡y) u) subst-→-domain {C = C} B x≡y {u = u} = elim₁ (λ {x} x≡y → (f : B x → C) → subst (λ x → B x → C) x≡y f u ≡ f (subst B (sym x≡y) u)) (λ f → subst (λ x → B x → C) (refl _) f u ≡⟨ cong (_$ u) $ subst-refl (λ x → B x → _) _ ⟩ f u ≡⟨ cong f $ sym $ subst-refl _ _ ⟩ f (subst B (refl _) u) ≡⟨ cong (λ p → f (subst B p u)) $ sym sym-refl ⟩∎ f (subst B (sym (refl _)) u) ∎) x≡y _ -- A "computation rule". subst-→-domain-refl : {B : A → Type b} {f : B x → C} {u : B x} → subst-→-domain B {f = f} (refl x) {u = u} ≡ trans (cong (_$ u) (subst-refl (λ x → B x → _) _)) (trans (cong f (sym (subst-refl _ _))) (cong (f ∘ flip (subst B) u) (sym sym-refl))) subst-→-domain-refl {C = C} {B = B} {u = u} = cong (_$ _) $ elim₁-refl (λ {x} x≡y → (f : B x → C) → subst (λ x → B x → C) x≡y f u ≡ f (subst B (sym x≡y) u)) _ -- The following lemma is Proposition 2 from "Generalizations of -- Hedberg's Theorem" by Kraus, Escardó, Coquand and Altenkirch. subst-in-terms-of-trans-and-cong : {x≡y : x ≡ y} {fx≡gx : f x ≡ g x} → subst (λ z → f z ≡ g z) x≡y fx≡gx ≡ trans (sym (cong f x≡y)) (trans fx≡gx (cong g x≡y)) subst-in-terms-of-trans-and-cong {f = f} {g = g} = elim (λ {x y} x≡y → (fx≡gx : f x ≡ g x) → subst (λ z → f z ≡ g z) x≡y fx≡gx ≡ trans (sym (cong f x≡y)) (trans fx≡gx (cong g x≡y))) (λ x fx≡gx → subst (λ z → f z ≡ g z) (refl x) fx≡gx ≡⟨ subst-refl _ _ ⟩ fx≡gx ≡⟨ sym $ trans-reflˡ _ ⟩ trans (refl (f x)) fx≡gx ≡⟨ sym $ cong₂ trans sym-refl (trans-reflʳ _) ⟩ trans (sym (refl (f x))) (trans fx≡gx (refl (g x))) ≡⟨ sym $ cong₂ (λ p q → trans (sym p) (trans _ q)) (cong-refl _) (cong-refl _) ⟩∎ trans (sym (cong f (refl x))) (trans fx≡gx (cong g (refl x))) ∎ ) _ _ -- A variant of subst-in-terms-of-trans-and-cong that works for -- dependent functions. subst-in-terms-of-trans-and-dcong : {f g : (x : A) → P x} {x≡y : x ≡ y} {fx≡gx : f x ≡ g x} → subst (λ z → f z ≡ g z) x≡y fx≡gx ≡ trans (sym (dcong f x≡y)) (trans (cong (subst P x≡y) fx≡gx) (dcong g x≡y)) subst-in-terms-of-trans-and-dcong {P = P} {f = f} {g = g} = elim (λ {x y} x≡y → (fx≡gx : f x ≡ g x) → subst (λ z → f z ≡ g z) x≡y fx≡gx ≡ trans (sym (dcong f x≡y)) (trans (cong (subst P x≡y) fx≡gx) (dcong g x≡y))) (λ x fx≡gx → subst (λ z → f z ≡ g z) (refl x) fx≡gx ≡⟨ subst-refl _ _ ⟩ fx≡gx ≡⟨ elim¹ (λ {gx} eq → eq ≡ trans (sym (subst-refl P (f x))) (trans (cong (subst P (refl x)) eq) (subst-refl P gx))) ( refl (f x) ≡⟨ sym $ trans-symˡ _ ⟩ trans (sym (subst-refl P (f x))) (subst-refl P (f x)) ≡⟨ cong (trans _) $ trans (sym $ trans-reflˡ _) $ cong (flip trans _) $ sym $ cong-refl _ ⟩∎ trans (sym (subst-refl P (f x))) (trans (cong (subst P (refl x)) (refl (f x))) (subst-refl P (f x))) ∎) fx≡gx ⟩ trans (sym (subst-refl P (f x))) (trans (cong (subst P (refl x)) fx≡gx) (subst-refl P (g x))) ≡⟨ sym $ cong₂ (λ p q → trans (sym p) (trans (cong (subst P (refl x)) fx≡gx) q)) (dcong-refl _) (dcong-refl _) ⟩∎ trans (sym (dcong f (refl x))) (trans (cong (subst P (refl x)) fx≡gx) (dcong g (refl x))) ∎) _ _ -- Sometimes cong can be "pushed" inside subst. The following -- lemma provides one example. cong-subst : {B : A → Type b} {C : A → Type c} {f : ∀ {x} → B x → C x} {g h : (x : A) → B x} (eq₁ : x ≡ y) (eq₂ : g x ≡ h x) → cong f (subst (λ x → g x ≡ h x) eq₁ eq₂) ≡ subst (λ x → f (g x) ≡ f (h x)) eq₁ (cong f eq₂) cong-subst {f = f} {g} {h} = elim₁ (λ eq₁ → ∀ eq₂ → cong f (subst (λ x → g x ≡ h x) eq₁ eq₂) ≡ subst (λ x → f (g x) ≡ f (h x)) eq₁ (cong f eq₂)) (λ eq₂ → cong f (subst (λ x → g x ≡ h x) (refl _) eq₂) ≡⟨ cong (cong f) $ subst-refl _ _ ⟩ cong f eq₂ ≡⟨ sym $ subst-refl _ _ ⟩∎ subst (λ x → f (g x) ≡ f (h x)) (refl _) (cong f eq₂) ∎) -- Some rearrangement lemmas for equalities between equalities. [trans≡]≡[≡trans-symʳ] : (p₁₂ : a₁ ≡ a₂) (p₁₃ : a₁ ≡ a₃) (p₂₃ : a₂ ≡ a₃) → (trans p₁₂ p₂₃ ≡ p₁₃) ≡ (p₁₂ ≡ trans p₁₃ (sym p₂₃)) [trans≡]≡[≡trans-symʳ] p₁₂ p₁₃ p₂₃ = elim (λ {a₂ a₃} p₂₃ → ∀ {a₁} (p₁₂ : a₁ ≡ a₂) (p₁₃ : a₁ ≡ a₃) → (trans p₁₂ p₂₃ ≡ p₁₃) ≡ (p₁₂ ≡ trans p₁₃ (sym p₂₃))) (λ a₂₃ p₁₂ p₁₃ → trans p₁₂ (refl a₂₃) ≡ p₁₃ ≡⟨ cong₂ _≡_ (trans-reflʳ _) (sym $ trans-reflʳ _) ⟩ p₁₂ ≡ trans p₁₃ (refl a₂₃) ≡⟨ cong ((_ ≡_) ∘ trans _) (sym sym-refl) ⟩∎ p₁₂ ≡ trans p₁₃ (sym (refl a₂₃)) ∎) p₂₃ p₁₂ p₁₃ [trans≡]≡[≡trans-symˡ] : (p₁₂ : a₁ ≡ a₂) (p₁₃ : a₁ ≡ a₃) (p₂₃ : a₂ ≡ a₃) → (trans p₁₂ p₂₃ ≡ p₁₃) ≡ (p₂₃ ≡ trans (sym p₁₂) p₁₃) [trans≡]≡[≡trans-symˡ] p₁₂ = elim (λ {a₁ a₂} p₁₂ → ∀ {a₃} (p₁₃ : a₁ ≡ a₃) (p₂₃ : a₂ ≡ a₃) → (trans p₁₂ p₂₃ ≡ p₁₃) ≡ (p₂₃ ≡ trans (sym p₁₂) p₁₃)) (λ a₁₂ p₁₃ p₂₃ → trans (refl a₁₂) p₂₃ ≡ p₁₃ ≡⟨ cong₂ _≡_ (trans-reflˡ _) (sym $ trans-reflˡ _) ⟩ p₂₃ ≡ trans (refl a₁₂) p₁₃ ≡⟨ cong ((_ ≡_) ∘ flip trans _) (sym sym-refl) ⟩∎ p₂₃ ≡ trans (sym (refl a₁₂)) p₁₃ ∎) p₁₂ -- The following lemma is basically Theorem 2.11.5 from the HoTT -- book (the book's lemma gives an equivalence between equality -- types, rather than an equality between equality types). [subst≡]≡[trans≡trans] : {p : x ≡ y} {q : x ≡ x} {r : y ≡ y} → (subst (λ z → z ≡ z) p q ≡ r) ≡ (trans q p ≡ trans p r) [subst≡]≡[trans≡trans] {p = p} {q} {r} = elim (λ {x y} p → {q : x ≡ x} {r : y ≡ y} → (subst (λ z → z ≡ z) p q ≡ r) ≡ (trans q p ≡ trans p r)) (λ x {q r} → subst (λ z → z ≡ z) (refl x) q ≡ r ≡⟨ cong (_≡ _) (subst-refl _ _) ⟩ q ≡ r ≡⟨ sym $ cong₂ _≡_ (trans-reflʳ _) (trans-reflˡ _) ⟩∎ trans q (refl x) ≡ trans (refl x) r ∎) p -- "Evaluation rule" for [subst≡]≡[trans≡trans]. [subst≡]≡[trans≡trans]-refl : {q r : x ≡ x} → [subst≡]≡[trans≡trans] {p = refl x} ≡ trans (cong (_≡ r) (subst-refl (λ z → z ≡ z) q)) (sym $ cong₂ _≡_ (trans-reflʳ q) (trans-reflˡ r)) [subst≡]≡[trans≡trans]-refl {q = q} {r = r} = cong (λ f → f {q = q} {r = r}) $ elim-refl (λ {x y} p → {q : x ≡ x} {r : y ≡ y} → _ ≡ (trans _ p ≡ _)) _ -- The proof trans is commutative when one of the arguments is f x for -- a function f : (x : A) → x ≡ x. trans-sometimes-commutative : {p : x ≡ x} (f : (x : A) → x ≡ x) → trans (f x) p ≡ trans p (f x) trans-sometimes-commutative {x = x} {p = p} f = let lemma = subst (λ z → z ≡ z) p (f x) ≡⟨ dcong f p ⟩∎ f x ∎ in trans (f x) p ≡⟨ subst id [subst≡]≡[trans≡trans] lemma ⟩∎ trans p (f x) ∎ -- Sometimes one can turn two ("modified") copies of a proof into -- one. trans-cong-cong : (f : A → A → B) (p : x ≡ y) → trans (cong (λ z → f z x) p) (cong (λ z → f y z) p) ≡ cong (λ z → f z z) p trans-cong-cong f = elim (λ {x y} p → trans (cong (λ z → f z x) p) (cong (λ z → f y z) p) ≡ cong (λ z → f z z) p) (λ x → trans (cong (λ z → f z x) (refl x)) (cong (λ z → f x z) (refl x)) ≡⟨ cong₂ trans (cong-refl _) (cong-refl _) ⟩ trans (refl (f x x)) (refl (f x x)) ≡⟨ trans-refl-refl ⟩ refl (f x x) ≡⟨ sym $ cong-refl _ ⟩∎ cong (λ z → f z z) (refl x) ∎) -- If f and g agree on a decidable subset of their common domain, then -- cong f eq is equal to (modulo some uses of transitivity) cong g eq -- for proofs eq between elements in this subset. cong-respects-relevant-equality : {f g : A → B} (p : A → Bool) (f≡g : ∀ x → T (p x) → f x ≡ g x) {px : T (p x)} {py : T (p y)} → trans (cong f x≡y) (f≡g y py) ≡ trans (f≡g x px) (cong g x≡y) cong-respects-relevant-equality {f = f} {g} p f≡g = elim (λ {x y} x≡y → {px : T (p x)} {py : T (p y)} → trans (cong f x≡y) (f≡g y py) ≡ trans (f≡g x px) (cong g x≡y)) (λ x {px px′} → trans (cong f (refl x)) (f≡g x px′) ≡⟨ cong (flip trans _) (cong-refl _) ⟩ trans (refl (f x)) (f≡g x px′) ≡⟨ trans-reflˡ _ ⟩ f≡g x px′ ≡⟨ cong (f≡g x) (T-irr (p x) px′ px) ⟩ f≡g x px ≡⟨ sym $ trans-reflʳ _ ⟩ trans (f≡g x px) (refl (g x)) ≡⟨ cong (trans _) (sym $ cong-refl _) ⟩∎ trans (f≡g x px) (cong g (refl x)) ∎) _ where T-irr : (b : Bool) → Is-proposition (T b) T-irr true _ _ = refl _ T-irr false () -- A special case of cong-respects-relevant-equality. -- -- The statement of this lemma is very similar to that of -- Lemma 2.4.3 from the HoTT book. naturality : {x≡y : x ≡ y} (f≡g : ∀ x → f x ≡ g x) → trans (cong f x≡y) (f≡g y) ≡ trans (f≡g x) (cong g x≡y) naturality f≡g = cong-respects-relevant-equality (λ _ → true) (λ x _ → f≡g x) -- If f z evaluates to z for a decidable set of values which -- includes x and y, do we have -- -- cong f x≡y ≡ x≡y -- -- for any x≡y : x ≡ y? The equation above is not well-typed if f -- is a variable, but the approximation below can be proved. cong-roughly-id : (f : A → A) (p : A → Bool) (x≡y : x ≡ y) (px : T (p x)) (py : T (p y)) (f≡id : ∀ z → T (p z) → f z ≡ z) → cong f x≡y ≡ trans (f≡id x px) (trans x≡y $ sym (f≡id y py)) cong-roughly-id {x = x} {y = y} f p x≡y px py f≡id = let lemma = trans (cong id x≡y) (sym (f≡id y py)) ≡⟨ cong-respects-relevant-equality p (λ x → sym ∘ f≡id x) ⟩∎ trans (sym (f≡id x px)) (cong f x≡y) ∎ in cong f x≡y ≡⟨ sym $ subst (λ eq → eq → trans (f≡id x px) (trans (cong id x≡y) (sym (f≡id y py))) ≡ cong f x≡y) ([trans≡]≡[≡trans-symˡ] _ _ _) id lemma ⟩ trans (f≡id x px) (trans (cong id x≡y) $ sym (f≡id y py)) ≡⟨ cong (λ eq → trans _ (trans eq _)) (sym $ cong-id _) ⟩∎ trans (f≡id x px) (trans x≡y $ sym (f≡id y py)) ∎
algebraic-stack_agda0000_doc_8540
{-# OPTIONS -v tc.conv.irr:50 #-} -- {-# OPTIONS -v tc.lhs.unify:50 #-} module IndexInference where data Nat : Set where zero : Nat suc : Nat -> Nat data Vec (A : Set) : Nat -> Set where [] : Vec A zero _::_ : {n : Nat} -> A -> Vec A n -> Vec A (suc n) infixr 40 _::_ -- The length of the vector can be inferred from the pattern. foo : Vec Nat _ -> Nat foo (a :: b :: c :: []) = c -- Andreas, 2012-09-13 an example with irrelevant components in index pred : Nat → Nat pred (zero ) = zero pred (suc n) = n data ⊥ : Set where record ⊤ : Set where NonZero : Nat → Set NonZero zero = ⊥ NonZero (suc n) = ⊤ data Fin (n : Nat) : Set where zero : .(NonZero n) → Fin n suc : .(NonZero n) → Fin (pred n) → Fin n data SubVec (A : Set)(n : Nat) : Fin n → Set where [] : .{p : NonZero n} → SubVec A n (zero p) _::_ : .{p : NonZero n}{k : Fin (pred n)} → A → SubVec A (pred n) k → SubVec A n (suc p k) -- The length of the vector can be inferred from the pattern. bar : {A : Set} → SubVec A (suc (suc (suc zero))) _ → A bar (a :: []) = a
algebraic-stack_agda0000_doc_8541
{-# OPTIONS --safe #-} module Definition.Typed.Properties where open import Definition.Untyped open import Definition.Untyped.Properties open import Definition.Typed open import Definition.Typed.RedSteps import Definition.Typed.Weakening as Twk open import Tools.Empty using (⊥; ⊥-elim) open import Tools.Product open import Tools.Sum hiding (id ; sym) import Tools.PropositionalEquality as PE import Data.Fin as Fin import Data.Nat as Nat -- Escape context extraction wfTerm : ∀ {Γ A t r} → Γ ⊢ t ∷ A ^ r → ⊢ Γ wfTerm (univ <l ⊢Γ) = ⊢Γ wfTerm (ℕⱼ ⊢Γ) = ⊢Γ wfTerm (Emptyⱼ ⊢Γ) = ⊢Γ wfTerm (Πⱼ <l ▹ <l' ▹ F ▹ G) = wfTerm F wfTerm (∃ⱼ F ▹ G) = wfTerm F wfTerm (var ⊢Γ x₁) = ⊢Γ wfTerm (lamⱼ _ _ F t) with wfTerm t wfTerm (lamⱼ _ _ F t) | ⊢Γ ∙ F′ = ⊢Γ wfTerm (g ∘ⱼ a) = wfTerm a wfTerm (⦅ F , G , t , u ⦆ⱼ) = wfTerm t wfTerm (fstⱼ A B t) = wfTerm t wfTerm (sndⱼ A B t) = wfTerm t wfTerm (zeroⱼ ⊢Γ) = ⊢Γ wfTerm (sucⱼ n) = wfTerm n wfTerm (natrecⱼ F z s n) = wfTerm z wfTerm (Emptyrecⱼ A e) = wfTerm e wfTerm (Idⱼ A t u) = wfTerm t wfTerm (Idreflⱼ t) = wfTerm t wfTerm (transpⱼ A P t s u e) = wfTerm t wfTerm (castⱼ A B e t) = wfTerm t wfTerm (castreflⱼ A t) = wfTerm t wfTerm (conv t A≡B) = wfTerm t wf : ∀ {Γ A r} → Γ ⊢ A ^ r → ⊢ Γ wf (Uⱼ ⊢Γ) = ⊢Γ wf (univ A) = wfTerm A mutual wfEqTerm : ∀ {Γ A t u r} → Γ ⊢ t ≡ u ∷ A ^ r → ⊢ Γ wfEqTerm (refl t) = wfTerm t wfEqTerm (sym t≡u) = wfEqTerm t≡u wfEqTerm (trans t≡u u≡r) = wfEqTerm t≡u wfEqTerm (conv t≡u A≡B) = wfEqTerm t≡u wfEqTerm (Π-cong _ _ F F≡H G≡E) = wfEqTerm F≡H wfEqTerm (∃-cong F F≡H G≡E) = wfEqTerm F≡H wfEqTerm (app-cong f≡g a≡b) = wfEqTerm f≡g wfEqTerm (β-red _ _ F t a) = wfTerm a wfEqTerm (η-eq _ _ F f g f0≡g0) = wfTerm f wfEqTerm (suc-cong n) = wfEqTerm n wfEqTerm (natrec-cong F≡F′ z≡z′ s≡s′ n≡n′) = wfEqTerm z≡z′ wfEqTerm (natrec-zero F z s) = wfTerm z wfEqTerm (natrec-suc n F z s) = wfTerm n wfEqTerm (Emptyrec-cong A≡A' _ _) = wfEq A≡A' wfEqTerm (proof-irrelevance t u) = wfTerm t wfEqTerm (Id-cong A t u) = wfEqTerm u wfEqTerm (Id-Π _ _ A B t u) = wfTerm t wfEqTerm (Id-ℕ-00 ⊢Γ) = ⊢Γ wfEqTerm (Id-ℕ-SS m n) = wfTerm n wfEqTerm (Id-U-ΠΠ A B A' B') = wfTerm A wfEqTerm (Id-U-ℕℕ ⊢Γ) = ⊢Γ wfEqTerm (Id-SProp A B) = wfTerm A wfEqTerm (Id-ℕ-0S n) = wfTerm n wfEqTerm (Id-ℕ-S0 n) = wfTerm n wfEqTerm (Id-U-ℕΠ A B) = wfTerm A wfEqTerm (Id-U-Πℕ A B) = wfTerm A wfEqTerm (Id-U-ΠΠ!% eq A B A' B') = wfTerm A wfEqTerm (cast-cong A B t _ _) = wfEqTerm t wfEqTerm (cast-Π A B A' B' e f) = wfTerm f wfEqTerm (cast-ℕ-0 e) = wfTerm e wfEqTerm (cast-ℕ-S e n) = wfTerm n wfEq : ∀ {Γ A B r} → Γ ⊢ A ≡ B ^ r → ⊢ Γ wfEq (univ A≡B) = wfEqTerm A≡B wfEq (refl A) = wf A wfEq (sym A≡B) = wfEq A≡B wfEq (trans A≡B B≡C) = wfEq A≡B -- Reduction is a subset of conversion subsetTerm : ∀ {Γ A t u l} → Γ ⊢ t ⇒ u ∷ A ^ l → Γ ⊢ t ≡ u ∷ A ^ [ ! , l ] subset : ∀ {Γ A B r} → Γ ⊢ A ⇒ B ^ r → Γ ⊢ A ≡ B ^ r subsetTerm (natrec-subst F z s n⇒n′) = natrec-cong (refl F) (refl z) (refl s) (subsetTerm n⇒n′) subsetTerm (natrec-zero F z s) = natrec-zero F z s subsetTerm (natrec-suc n F z s) = natrec-suc n F z s subsetTerm (app-subst {rA = !} t⇒u a) = app-cong (subsetTerm t⇒u) (refl a) subsetTerm (app-subst {rA = %} t⇒u a) = app-cong (subsetTerm t⇒u) (proof-irrelevance a a) subsetTerm (β-red l< l<' A t a) = β-red l< l<' A t a subsetTerm (conv t⇒u A≡B) = conv (subsetTerm t⇒u) A≡B subsetTerm (Id-subst A t u) = Id-cong (subsetTerm A) (refl t) (refl u) subsetTerm (Id-ℕ-subst m n) = Id-cong (refl (ℕⱼ (wfTerm n))) (subsetTerm m) (refl n) subsetTerm (Id-ℕ-0-subst n) = let ⊢Γ = wfEqTerm (subsetTerm n) in Id-cong (refl (ℕⱼ ⊢Γ)) (refl (zeroⱼ ⊢Γ)) (subsetTerm n) subsetTerm (Id-ℕ-S-subst m n) = Id-cong (refl (ℕⱼ (wfTerm m))) (refl (sucⱼ m)) (subsetTerm n) subsetTerm (Id-U-subst A B) = Id-cong (refl (univ 0<1 (wfTerm B))) (subsetTerm A) (refl B) subsetTerm (Id-U-ℕ-subst B) = let ⊢Γ = wfEqTerm (subsetTerm B) in Id-cong (refl (univ 0<1 ⊢Γ)) (refl (ℕⱼ ⊢Γ)) (subsetTerm B) subsetTerm (Id-U-Π-subst A P B) = Id-cong (refl (univ 0<1 (wfTerm A))) (refl (Πⱼ (≡is≤ PE.refl) ▹ (≡is≤ PE.refl) ▹ A ▹ P)) (subsetTerm B) subsetTerm (Id-Π <l <l' A B t u) = Id-Π <l <l' A B t u subsetTerm (Id-ℕ-00 ⊢Γ) = Id-ℕ-00 ⊢Γ subsetTerm (Id-ℕ-SS m n) = Id-ℕ-SS m n subsetTerm (Id-U-ΠΠ A B A' B') = Id-U-ΠΠ A B A' B' subsetTerm (Id-U-ℕℕ ⊢Γ) = Id-U-ℕℕ ⊢Γ subsetTerm (Id-SProp A B) = Id-SProp A B subsetTerm (Id-ℕ-0S n) = Id-ℕ-0S n subsetTerm (Id-ℕ-S0 n) = Id-ℕ-S0 n subsetTerm (Id-U-ℕΠ A B) = Id-U-ℕΠ A B subsetTerm (Id-U-Πℕ A B) = Id-U-Πℕ A B subsetTerm (Id-U-ΠΠ!% eq A B A' B') = Id-U-ΠΠ!% eq A B A' B' subsetTerm (cast-subst A B e t) = let ⊢Γ = wfEqTerm (subsetTerm A) in cast-cong (subsetTerm A) (refl B) (refl t) e (conv e (univ (Id-cong (refl (univ 0<1 ⊢Γ)) (subsetTerm A) (refl B)))) subsetTerm (cast-ℕ-subst B e t) = let ⊢Γ = wfEqTerm (subsetTerm B) in cast-cong (refl (ℕⱼ (wfTerm t))) (subsetTerm B) (refl t) e (conv e (univ (Id-cong (refl (univ 0<1 ⊢Γ)) (refl (ℕⱼ ⊢Γ)) (subsetTerm B)))) subsetTerm (cast-Π-subst A P B e t) = let ⊢Γ = wfTerm A in cast-cong (refl (Πⱼ (≡is≤ PE.refl) ▹ (≡is≤ PE.refl) ▹ A ▹ P)) (subsetTerm B) (refl t) e (conv e (univ (Id-cong (refl (univ 0<1 ⊢Γ)) (refl (Πⱼ ≡is≤ PE.refl ▹ ≡is≤ PE.refl ▹ A ▹ P)) (subsetTerm B) ))) subsetTerm (cast-Π A B A' B' e f) = cast-Π A B A' B' e f subsetTerm (cast-ℕ-0 e) = cast-ℕ-0 e subsetTerm (cast-ℕ-S e n) = cast-ℕ-S e n subsetTerm (cast-ℕ-cong e n) = let ⊢Γ = wfTerm e ⊢ℕ = ℕⱼ ⊢Γ in cast-cong (refl ⊢ℕ) (refl ⊢ℕ) (subsetTerm n) e e subset (univ A⇒B) = univ (subsetTerm A⇒B) subset*Term : ∀ {Γ A t u l } → Γ ⊢ t ⇒* u ∷ A ^ l → Γ ⊢ t ≡ u ∷ A ^ [ ! , l ] subset*Term (id t) = refl t subset*Term (t⇒t′ ⇨ t⇒*u) = trans (subsetTerm t⇒t′) (subset*Term t⇒*u) subset* : ∀ {Γ A B r} → Γ ⊢ A ⇒* B ^ r → Γ ⊢ A ≡ B ^ r subset* (id A) = refl A subset* (A⇒A′ ⇨ A′⇒*B) = trans (subset A⇒A′) (subset* A′⇒*B) -- Transitivity of reduction transTerm⇒* : ∀ {Γ A t u v l } → Γ ⊢ t ⇒* u ∷ A ^ l → Γ ⊢ u ⇒* v ∷ A ^ l → Γ ⊢ t ⇒* v ∷ A ^ l transTerm⇒* (id x) y = y transTerm⇒* (x ⇨ x₁) y = x ⇨ transTerm⇒* x₁ y trans⇒* : ∀ {Γ A B C r} → Γ ⊢ A ⇒* B ^ r → Γ ⊢ B ⇒* C ^ r → Γ ⊢ A ⇒* C ^ r trans⇒* (id x) y = y trans⇒* (x ⇨ x₁) y = x ⇨ trans⇒* x₁ y transTerm:⇒:* : ∀ {Γ A t u v l } → Γ ⊢ t :⇒*: u ∷ A ^ l → Γ ⊢ u :⇒*: v ∷ A ^ l → Γ ⊢ t :⇒*: v ∷ A ^ l transTerm:⇒:* [[ ⊢t , ⊢u , d ]] [[ ⊢t₁ , ⊢u₁ , d₁ ]] = [[ ⊢t , ⊢u₁ , (transTerm⇒* d d₁) ]] conv⇒* : ∀ {Γ A B l t u} → Γ ⊢ t ⇒* u ∷ A ^ l → Γ ⊢ A ≡ B ^ [ ! , l ] → Γ ⊢ t ⇒* u ∷ B ^ l conv⇒* (id x) e = id (conv x e) conv⇒* (x ⇨ D) e = conv x e ⇨ conv⇒* D e conv:⇒*: : ∀ {Γ A B l t u} → Γ ⊢ t :⇒*: u ∷ A ^ l → Γ ⊢ A ≡ B ^ [ ! , l ] → Γ ⊢ t :⇒*: u ∷ B ^ l conv:⇒*: [[ ⊢t , ⊢u , d ]] e = [[ (conv ⊢t e) , (conv ⊢u e) , (conv⇒* d e) ]] -- Can extract left-part of a reduction redFirstTerm : ∀ {Γ t u A l } → Γ ⊢ t ⇒ u ∷ A ^ l → Γ ⊢ t ∷ A ^ [ ! , l ] redFirst : ∀ {Γ A B r} → Γ ⊢ A ⇒ B ^ r → Γ ⊢ A ^ r redFirstTerm (conv t⇒u A≡B) = conv (redFirstTerm t⇒u) A≡B redFirstTerm (app-subst t⇒u a) = (redFirstTerm t⇒u) ∘ⱼ a redFirstTerm (β-red {lA = lA} {lB = lB} lA< lB< ⊢A ⊢t ⊢a) = (lamⱼ lA< lB< ⊢A ⊢t) ∘ⱼ ⊢a redFirstTerm (natrec-subst F z s n⇒n′) = natrecⱼ F z s (redFirstTerm n⇒n′) redFirstTerm (natrec-zero F z s) = natrecⱼ F z s (zeroⱼ (wfTerm z)) redFirstTerm (natrec-suc n F z s) = natrecⱼ F z s (sucⱼ n) redFirstTerm (Id-subst A t u) = Idⱼ (redFirstTerm A) t u redFirstTerm (Id-ℕ-subst m n) = Idⱼ (ℕⱼ (wfTerm n)) (redFirstTerm m) n redFirstTerm (Id-ℕ-0-subst n) = Idⱼ (ℕⱼ (wfEqTerm (subsetTerm n))) (zeroⱼ (wfEqTerm (subsetTerm n))) (redFirstTerm n) redFirstTerm (Id-ℕ-S-subst m n) = Idⱼ (ℕⱼ (wfTerm m)) (sucⱼ m) (redFirstTerm n) redFirstTerm (Id-U-subst A B) = Idⱼ (univ 0<1 (wfTerm B)) (redFirstTerm A) B redFirstTerm (Id-U-ℕ-subst B) = let ⊢Γ = (wfEqTerm (subsetTerm B)) in Idⱼ (univ 0<1 ⊢Γ) (ℕⱼ ⊢Γ) (redFirstTerm B) redFirstTerm (Id-U-Π-subst A P B) = Idⱼ (univ 0<1 (wfTerm A)) (Πⱼ (≡is≤ PE.refl) ▹ (≡is≤ PE.refl) ▹ A ▹ P) (redFirstTerm B) redFirstTerm (Id-Π {rA = rA} <l <l' A B t u) = Idⱼ (Πⱼ <l ▹ <l' ▹ A ▹ B) t u redFirstTerm (Id-ℕ-00 ⊢Γ) = Idⱼ (ℕⱼ ⊢Γ) (zeroⱼ ⊢Γ) (zeroⱼ ⊢Γ) redFirstTerm (Id-ℕ-SS m n) = Idⱼ (ℕⱼ (wfTerm m)) (sucⱼ m) (sucⱼ n) redFirstTerm (Id-U-ΠΠ A B A' B') = Idⱼ (univ 0<1 (wfTerm A)) (Πⱼ (≡is≤ PE.refl) ▹ (≡is≤ PE.refl) ▹ A ▹ B) (Πⱼ (≡is≤ PE.refl) ▹ (≡is≤ PE.refl) ▹ A' ▹ B') redFirstTerm (Id-U-ℕℕ ⊢Γ) = Idⱼ (univ 0<1 ⊢Γ) (ℕⱼ ⊢Γ) (ℕⱼ ⊢Γ) redFirstTerm (Id-SProp A B) = Idⱼ (univ 0<1 (wfTerm A)) A B redFirstTerm (Id-ℕ-0S n) = Idⱼ (ℕⱼ (wfTerm n)) (zeroⱼ (wfTerm n)) (sucⱼ n) redFirstTerm (Id-ℕ-S0 n) = Idⱼ (ℕⱼ (wfTerm n)) (sucⱼ n) (zeroⱼ (wfTerm n)) redFirstTerm (Id-U-ℕΠ A B) = Idⱼ (univ 0<1 (wfTerm A)) (ℕⱼ (wfTerm A)) (Πⱼ (≡is≤ PE.refl) ▹ (≡is≤ PE.refl) ▹ A ▹ B) redFirstTerm (Id-U-Πℕ A B) = Idⱼ (univ 0<1 (wfTerm A)) (Πⱼ (≡is≤ PE.refl) ▹ (≡is≤ PE.refl) ▹ A ▹ B) (ℕⱼ (wfTerm A)) redFirstTerm (Id-U-ΠΠ!% eq A B A' B') = Idⱼ (univ 0<1 (wfTerm A)) (Πⱼ (≡is≤ PE.refl) ▹ (≡is≤ PE.refl) ▹ A ▹ B) (Πⱼ (≡is≤ PE.refl) ▹ (≡is≤ PE.refl) ▹ A' ▹ B') redFirstTerm (cast-subst A B e t) = castⱼ (redFirstTerm A) B e t redFirstTerm (cast-ℕ-subst B e t) = castⱼ (ℕⱼ (wfTerm t)) (redFirstTerm B) e t redFirstTerm (cast-Π-subst A P B e t) = castⱼ (Πⱼ (≡is≤ PE.refl) ▹ (≡is≤ PE.refl) ▹ A ▹ P) (redFirstTerm B) e t redFirstTerm (cast-Π A B A' B' e f) = castⱼ (Πⱼ (≡is≤ PE.refl) ▹ (≡is≤ PE.refl) ▹ A ▹ B) (Πⱼ (≡is≤ PE.refl) ▹ (≡is≤ PE.refl) ▹ A' ▹ B') e f redFirstTerm (cast-ℕ-0 e) = castⱼ (ℕⱼ (wfTerm e)) (ℕⱼ (wfTerm e)) e (zeroⱼ (wfTerm e)) redFirstTerm (cast-ℕ-S e n) = castⱼ (ℕⱼ (wfTerm e)) (ℕⱼ (wfTerm e)) e (sucⱼ n) redFirstTerm (cast-ℕ-cong e n) = castⱼ (ℕⱼ (wfTerm e)) (ℕⱼ (wfTerm e)) e (redFirstTerm n) redFirst (univ A⇒B) = univ (redFirstTerm A⇒B) redFirst*Term : ∀ {Γ t u A l} → Γ ⊢ t ⇒* u ∷ A ^ l → Γ ⊢ t ∷ A ^ [ ! , l ] redFirst*Term (id t) = t redFirst*Term (t⇒t′ ⇨ t′⇒*u) = redFirstTerm t⇒t′ redFirst* : ∀ {Γ A B r} → Γ ⊢ A ⇒* B ^ r → Γ ⊢ A ^ r redFirst* (id A) = A redFirst* (A⇒A′ ⇨ A′⇒*B) = redFirst A⇒A′ -- Neutral types are always small -- tyNe : ∀ {Γ t r} → Γ ⊢ t ^ r → Neutral t → Γ ⊢ t ∷ (Univ r) ^ ! -- tyNe (univ x) tn = x -- tyNe (Idⱼ A x y) tn = Idⱼ A x y -- Neutrals do not weak head reduce neRedTerm : ∀ {Γ t u l A} (d : Γ ⊢ t ⇒ u ∷ A ^ l) (n : Neutral t) → ⊥ neRed : ∀ {Γ t u r} (d : Γ ⊢ t ⇒ u ^ r) (n : Neutral t) → ⊥ whnfRedTerm : ∀ {Γ t u A l} (d : Γ ⊢ t ⇒ u ∷ A ^ l) (w : Whnf t) → ⊥ whnfRed : ∀ {Γ A B r} (d : Γ ⊢ A ⇒ B ^ r) (w : Whnf A) → ⊥ neRedTerm (conv d x) n = neRedTerm d n neRedTerm (app-subst d x) (∘ₙ n) = neRedTerm d n neRedTerm (β-red _ _ x x₁ x₂) (∘ₙ ()) neRedTerm (natrec-zero x x₁ x₂) (natrecₙ ()) neRedTerm (natrec-suc x x₁ x₂ x₃) (natrecₙ ()) neRedTerm (natrec-subst x x₁ x₂ tr) (natrecₙ tn) = neRedTerm tr tn neRedTerm (Id-subst tr x y) (Idₙ tn) = neRedTerm tr tn neRedTerm (Id-ℕ-subst tr x) (Idℕₙ tn) = neRedTerm tr tn neRedTerm (Id-ℕ-0-subst tr) (Idℕ0ₙ tn) = neRedTerm tr tn neRedTerm (Id-ℕ-S-subst x tr) (IdℕSₙ tn) = neRedTerm tr tn neRedTerm (Id-U-subst tr x) (IdUₙ tn) = neRedTerm tr tn neRedTerm (Id-U-ℕ-subst tr) (IdUℕₙ tn) = neRedTerm tr tn neRedTerm (Id-U-Π-subst A B tr) (IdUΠₙ tn) = neRedTerm tr tn neRedTerm (Id-subst tr x y) (Idℕₙ tn) = whnfRedTerm tr ℕₙ neRedTerm (Id-subst tr x y) (Idℕ0ₙ tn) = whnfRedTerm tr ℕₙ neRedTerm (Id-subst tr x y) (IdℕSₙ tn) = whnfRedTerm tr ℕₙ neRedTerm (Id-subst tr x y) (IdUₙ tn) = whnfRedTerm tr Uₙ neRedTerm (Id-subst tr x y) (IdUℕₙ tn) = whnfRedTerm tr Uₙ neRedTerm (Id-subst tr x y) (IdUΠₙ tn) = whnfRedTerm tr Uₙ neRedTerm (Id-ℕ-subst tr x) (Idℕ0ₙ tn) = whnfRedTerm tr zeroₙ neRedTerm (Id-ℕ-subst tr x) (IdℕSₙ tn) = whnfRedTerm tr sucₙ neRedTerm (Id-U-subst tr x) (IdUℕₙ tn) = whnfRedTerm tr ℕₙ neRedTerm (Id-U-subst tr x) (IdUΠₙ tn) = whnfRedTerm tr Πₙ neRedTerm (Id-Π _ _ A B t u) (Idₙ ()) neRedTerm (Id-ℕ-00 tr) (Idₙ ()) neRedTerm (Id-ℕ-00 tr) (Idℕₙ ()) neRedTerm (Id-ℕ-00 tr) (Idℕ0ₙ ()) neRedTerm (Id-ℕ-SS x tr) (Idₙ ()) neRedTerm (Id-ℕ-SS x tr) (Idℕₙ ()) neRedTerm (Id-U-ΠΠ A B A' B') (Idₙ ()) neRedTerm (Id-U-ΠΠ A B A' B') (IdUₙ ()) neRedTerm (Id-U-ΠΠ A B A' B') (IdUΠₙ ()) neRedTerm (Id-U-ℕℕ x) (Idₙ ()) neRedTerm (Id-U-ℕℕ x) (IdUₙ ()) neRedTerm (Id-U-ℕℕ x) (IdUℕₙ ()) neRedTerm (Id-SProp A B) (Idₙ ()) neRedTerm (Id-ℕ-0S x) (Idₙ ()) neRedTerm (Id-ℕ-S0 x) (Idₙ ()) neRedTerm (Id-U-ℕΠ A B) (Idₙ ()) neRedTerm (Id-U-Πℕ A B) (Idₙ ()) neRedTerm (Id-U-ΠΠ!% eq A B A' B') (Idₙ ()) neRedTerm (cast-subst tr B e x) (castₙ tn) = neRedTerm tr tn neRedTerm (cast-ℕ-subst tr e x) (castℕₙ tn) = neRedTerm tr tn neRedTerm (cast-Π-subst A B tr e x) (castΠₙ tn) = neRedTerm tr tn neRedTerm (cast-Π-subst A B tr e x) (castΠℕₙ) = whnfRedTerm tr ℕₙ neRedTerm (cast-subst tr x x₁ x₂) (castℕₙ tn) = whnfRedTerm tr ℕₙ neRedTerm (cast-subst tr x x₁ x₂) (castΠₙ tn) = whnfRedTerm tr Πₙ neRedTerm (cast-subst tr x x₁ x₂) (castℕℕₙ tn) = whnfRedTerm tr ℕₙ neRedTerm (cast-subst tr x x₁ x₂) (castℕΠₙ) = whnfRedTerm tr ℕₙ neRedTerm (cast-subst tr x x₁ x₂) (castΠℕₙ) = whnfRedTerm tr Πₙ neRedTerm (cast-ℕ-subst tr x x₁) (castℕℕₙ tn) = whnfRedTerm tr ℕₙ neRedTerm (cast-ℕ-subst tr x x₁) (castℕΠₙ) = whnfRedTerm tr Πₙ neRedTerm (cast-Π A B A' B' e f) (castₙ ()) neRedTerm (cast-Π A B A' B' e f) (castΠₙ ()) neRedTerm (cast-ℕ-0 x) (castₙ ()) neRedTerm (cast-ℕ-0 x) (castℕₙ ()) neRedTerm (cast-ℕ-0 x) (castℕℕₙ ()) neRedTerm (cast-ℕ-S x x₁) (castₙ ()) neRedTerm (cast-ℕ-S x x₁) (castℕₙ ()) neRedTerm (cast-ℕ-S x x₁) (castℕℕₙ ()) neRedTerm (cast-ℕ-cong x x₁) (castₙ ()) neRedTerm (cast-ℕ-cong x x₁) (castℕₙ ()) neRedTerm (cast-ℕ-cong x x₁) (castℕℕₙ t) = neRedTerm x₁ t neRedTerm (cast-subst d x x₁ x₂) castΠΠ%!ₙ = whnfRedTerm d Πₙ neRedTerm (cast-subst d x x₁ x₂) castΠΠ!%ₙ = whnfRedTerm d Πₙ neRedTerm (cast-Π-subst x x₁ d x₂ x₃) castΠΠ%!ₙ = whnfRedTerm d Πₙ neRedTerm (cast-Π-subst x x₁ d x₂ x₃) castΠΠ!%ₙ = whnfRedTerm d Πₙ neRed (univ x) N = neRedTerm x N whnfRedTerm (conv d x) w = whnfRedTerm d w whnfRedTerm (app-subst d x) (ne (∘ₙ x₁)) = neRedTerm d x₁ whnfRedTerm (β-red _ _ x x₁ x₂) (ne (∘ₙ ())) whnfRedTerm (natrec-subst x x₁ x₂ d) (ne (natrecₙ x₃)) = neRedTerm d x₃ whnfRedTerm (natrec-zero x x₁ x₂) (ne (natrecₙ ())) whnfRedTerm (natrec-suc x x₁ x₂ x₃) (ne (natrecₙ ())) whnfRedTerm (Id-subst d x x₁) (ne (Idₙ x₂)) = neRedTerm d x₂ whnfRedTerm (Id-subst d x x₁) (ne (Idℕₙ x₂)) = whnfRedTerm d ℕₙ whnfRedTerm (Id-subst d x x₁) (ne (Idℕ0ₙ x₂)) = whnfRedTerm d ℕₙ whnfRedTerm (Id-subst d x x₁) (ne (IdℕSₙ x₂)) = whnfRedTerm d ℕₙ whnfRedTerm (Id-subst d x x₁) (ne (IdUₙ x₂)) = whnfRedTerm d Uₙ whnfRedTerm (Id-subst d x x₁) (ne (IdUℕₙ x₂)) = whnfRedTerm d Uₙ whnfRedTerm (Id-subst d x x₁) (ne (IdUΠₙ x₂)) = whnfRedTerm d Uₙ whnfRedTerm (Id-ℕ-subst d x) (ne (Idℕₙ x₁)) = neRedTerm d x₁ whnfRedTerm (Id-ℕ-subst d x) (ne (Idℕ0ₙ x₁)) = whnfRedTerm d zeroₙ whnfRedTerm (Id-ℕ-subst d x) (ne (IdℕSₙ x₁)) = whnfRedTerm d sucₙ whnfRedTerm (Id-ℕ-0-subst d) (ne (Idℕ0ₙ x)) = neRedTerm d x whnfRedTerm (Id-ℕ-S-subst x d) (ne (IdℕSₙ x₁)) = neRedTerm d x₁ whnfRedTerm (Id-U-subst d x) (ne (IdUₙ x₁)) = neRedTerm d x₁ whnfRedTerm (Id-U-subst d x) (ne (IdUℕₙ x₁)) = whnfRedTerm d ℕₙ whnfRedTerm (Id-U-subst d x) (ne (IdUΠₙ x₁)) = whnfRedTerm d Πₙ whnfRedTerm (Id-U-ℕ-subst d) (ne (IdUℕₙ x)) = neRedTerm d x whnfRedTerm (Id-U-Π-subst x x₁ d) (ne (IdUΠₙ x₂)) = neRedTerm d x₂ whnfRedTerm (Id-Π _ _ x x₁ x₂ x₃) (ne (Idₙ ())) whnfRedTerm (Id-ℕ-00 x) (ne (Idₙ ())) whnfRedTerm (Id-ℕ-00 x) (ne (Idℕₙ ())) whnfRedTerm (Id-ℕ-00 x) (ne (Idℕ0ₙ ())) whnfRedTerm (Id-ℕ-SS x x₁) (ne (Idₙ ())) whnfRedTerm (Id-ℕ-SS x x₁) (ne (Idℕₙ ())) whnfRedTerm (Id-ℕ-SS x x₁) (ne (IdℕSₙ ())) whnfRedTerm (Id-U-ΠΠ x x₁ x₂ x₃) (ne (Idₙ ())) whnfRedTerm (Id-U-ΠΠ x x₁ x₂ x₃) (ne (IdUₙ ())) whnfRedTerm (Id-U-ΠΠ x x₁ x₂ x₃) (ne (IdUΠₙ ())) whnfRedTerm (Id-U-ℕℕ x) (ne (Idₙ ())) whnfRedTerm (Id-U-ℕℕ x) (ne (IdUₙ ())) whnfRedTerm (Id-U-ℕℕ x) (ne (IdUℕₙ ())) whnfRedTerm (Id-SProp x x₁) (ne (Idₙ ())) whnfRedTerm (Id-ℕ-0S x) (ne (Idₙ ())) whnfRedTerm (Id-ℕ-S0 x) (ne (Idₙ ())) whnfRedTerm (Id-U-ℕΠ A B) (ne (Idₙ ())) whnfRedTerm (Id-U-Πℕ A B) (ne (Idₙ ())) whnfRedTerm (Id-U-ΠΠ!% eq A B A' B') (ne (Idₙ ())) whnfRedTerm (cast-subst d x x₁ x₂) (ne (castₙ x₃)) = neRedTerm d x₃ whnfRedTerm (cast-subst d x x₁ x₂) (ne (castℕₙ x₃)) = whnfRedTerm d ℕₙ whnfRedTerm (cast-subst d x x₁ x₂) (ne (castΠₙ x₃)) = whnfRedTerm d Πₙ whnfRedTerm (cast-subst d x x₁ x₂) (ne (castℕℕₙ x₃)) = whnfRedTerm d ℕₙ whnfRedTerm (cast-subst d x x₁ x₂) (ne castℕΠₙ) = whnfRedTerm d ℕₙ whnfRedTerm (cast-subst d x x₁ x₂) (ne castΠℕₙ) = whnfRedTerm d Πₙ whnfRedTerm (cast-ℕ-subst d x x₁) (ne (castℕₙ x₂)) = neRedTerm d x₂ whnfRedTerm (cast-ℕ-subst d x x₁) (ne (castℕℕₙ x₂)) = whnfRedTerm d ℕₙ whnfRedTerm (cast-ℕ-subst d x x₁) (ne castℕΠₙ) = whnfRedTerm d Πₙ whnfRedTerm (cast-Π-subst x x₁ d x₂ x₃) (ne (castΠₙ x₄)) = neRedTerm d x₄ whnfRedTerm (cast-Π-subst x x₁ d x₂ x₃) (ne castΠℕₙ) = whnfRedTerm d ℕₙ whnfRedTerm (cast-Π x x₁ x₂ x₃ x₄ x₅) (ne (castₙ ())) whnfRedTerm (cast-Π x x₁ x₂ x₃ x₄ x₅) (ne (castΠₙ ())) whnfRedTerm (cast-ℕ-0 x) (ne (castₙ ())) whnfRedTerm (cast-ℕ-0 x) (ne (castℕₙ ())) whnfRedTerm (cast-ℕ-0 x) (ne (castℕℕₙ ())) whnfRedTerm (cast-ℕ-S x x₁) (ne (castₙ ())) whnfRedTerm (cast-ℕ-S x x₁) (ne (castℕₙ ())) whnfRedTerm (cast-ℕ-S x x₁) (ne (castℕℕₙ ())) whnfRedTerm (cast-ℕ-cong x x₁) (ne (castₙ ())) whnfRedTerm (cast-ℕ-cong x x₁) (ne (castℕₙ ())) whnfRedTerm (cast-ℕ-cong x x₁) (ne (castℕℕₙ t)) = neRedTerm x₁ t whnfRedTerm (cast-subst d x x₁ x₂) (ne castΠΠ%!ₙ) = whnfRedTerm d Πₙ whnfRedTerm (cast-subst d x x₁ x₂) (ne castΠΠ!%ₙ) = whnfRedTerm d Πₙ whnfRedTerm (cast-Π-subst x x₁ d x₂ x₃) (ne castΠΠ%!ₙ) = whnfRedTerm d Πₙ whnfRedTerm (cast-Π-subst x x₁ d x₂ x₃) (ne castΠΠ!%ₙ) = whnfRedTerm d Πₙ whnfRed (univ x) w = whnfRedTerm x w whnfRed*Term : ∀ {Γ t u A l} (d : Γ ⊢ t ⇒* u ∷ A ^ l) (w : Whnf t) → t PE.≡ u whnfRed*Term (id x) Uₙ = PE.refl whnfRed*Term (id x) Πₙ = PE.refl whnfRed*Term (id x) ∃ₙ = PE.refl whnfRed*Term (id x) ℕₙ = PE.refl whnfRed*Term (id x) Emptyₙ = PE.refl whnfRed*Term (id x) lamₙ = PE.refl whnfRed*Term (id x) zeroₙ = PE.refl whnfRed*Term (id x) sucₙ = PE.refl whnfRed*Term (id x) (ne x₁) = PE.refl whnfRed*Term (conv x x₁ ⇨ d) w = ⊥-elim (whnfRedTerm x w) whnfRed*Term (x ⇨ d) (ne x₁) = ⊥-elim (neRedTerm x x₁) whnfRed* : ∀ {Γ A B r} (d : Γ ⊢ A ⇒* B ^ r) (w : Whnf A) → A PE.≡ B whnfRed* (id x) w = PE.refl whnfRed* (x ⇨ d) w = ⊥-elim (whnfRed x w) -- Whr is deterministic -- somehow the cases (cast-Π, cast-Π) and (Id-U-ΠΠ, Id-U-ΠΠ) fail if -- we do not introduce a dummy relevance rA'. This is why we need the two -- auxiliary functions. whrDetTerm-aux1 : ∀{Γ t u F lF A A' rA lA lB rA' l B B' e f} → (d : t PE.≡ cast l (Π A ^ rA ° lA ▹ B ° lB ° l) (Π A' ^ rA' ° lA ▹ B' ° lB ° l) e f) → (d′ : Γ ⊢ t ⇒ u ∷ F ^ lF) → (lam A' ▹ (let a = cast l (wk1 A') (wk1 A) (Idsym (Univ rA l) (wk1 A) (wk1 A') (fst (wk1 e))) (var 0) in cast l (B [ a ]↑) B' ((snd (wk1 e)) ∘ (var 0) ^ ¹) ((wk1 f) ∘ a ^ l)) ^ l) PE.≡ u whrDetTerm-aux1 d (conv d' x) = whrDetTerm-aux1 d d' whrDetTerm-aux1 PE.refl (cast-subst d' x x₁ x₂) = ⊥-elim (whnfRedTerm d' Πₙ) whrDetTerm-aux1 PE.refl (cast-Π-subst x x₁ d' x₂ x₃) = ⊥-elim (whnfRedTerm d' Πₙ) whrDetTerm-aux1 PE.refl (cast-Π x x₁ x₂ x₃ x₄ x₅) = PE.refl whrDetTerm-aux2 : ∀{Γ t u F lF A rA B A' rA' B'} → (rA≡rA' : rA PE.≡ rA') → (d : t PE.≡ Id (U ⁰) (Π A ^ rA ° ⁰ ▹ B ° ⁰ ° ⁰) (Π A' ^ rA' ° ⁰ ▹ B' ° ⁰ ° ⁰)) → (d' : Γ ⊢ t ⇒ u ∷ F ^ lF) → (∃ (Id (Univ rA ⁰) A A') ▹ (Π (wk1 A') ^ rA ° ⁰ ▹ Id (U ⁰) ((wk (lift (step id)) B) [ cast ⁰ (wk1 (wk1 A')) (wk1 (wk1 A)) (Idsym (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) (var 1)) (var 0) ]↑) (wk (lift (step id)) B') ° ¹ ° ¹ ) ) PE.≡ u whrDetTerm-aux2 eq d (conv d' x) = whrDetTerm-aux2 eq d d' whrDetTerm-aux2 _ PE.refl (Id-subst d' x x₁) = ⊥-elim (whnfRedTerm d' Uₙ) whrDetTerm-aux2 _ PE.refl (Id-U-subst d' x) = ⊥-elim (whnfRedTerm d' Πₙ) whrDetTerm-aux2 _ PE.refl (Id-U-Π-subst x x₁ d') = ⊥-elim (whnfRedTerm d' Πₙ) whrDetTerm-aux2 _ PE.refl (Id-U-ΠΠ x x₁ x₂ x₃) = PE.refl whrDetTerm-aux2 PE.refl PE.refl (Id-U-ΠΠ!% eq A B A' B') = ⊥-elim (eq PE.refl) whrDetTerm : ∀{Γ t u A l u′ A′ l′} (d : Γ ⊢ t ⇒ u ∷ A ^ l) (d′ : Γ ⊢ t ⇒ u′ ∷ A′ ^ l′) → u PE.≡ u′ whrDet : ∀{Γ A B B′ r r'} (d : Γ ⊢ A ⇒ B ^ r) (d′ : Γ ⊢ A ⇒ B′ ^ r') → B PE.≡ B′ whrDetTerm (conv d x) d′ = whrDetTerm d d′ whrDetTerm (app-subst d x) (app-subst d′ x₁) rewrite whrDetTerm d d′ = PE.refl whrDetTerm (app-subst d x) (β-red _ _ x₁ x₂ x₃) = ⊥-elim (whnfRedTerm d lamₙ) whrDetTerm (β-red _ _ x x₁ x₂) (app-subst d' x₃) = ⊥-elim (whnfRedTerm d' lamₙ) whrDetTerm (β-red _ _ x x₁ x₂) (β-red _ _ x₃ x₄ x₅) = PE.refl whrDetTerm (natrec-subst x x₁ x₂ d) (natrec-subst x₃ x₄ x₅ d') rewrite whrDetTerm d d' = PE.refl whrDetTerm (natrec-subst x x₁ x₂ d) (natrec-zero x₃ x₄ x₅) = ⊥-elim (whnfRedTerm d zeroₙ) whrDetTerm (natrec-subst x x₁ x₂ d) (natrec-suc x₃ x₄ x₅ x₆) = ⊥-elim (whnfRedTerm d sucₙ) whrDetTerm (natrec-zero x x₁ x₂) (natrec-subst x₃ x₄ x₅ d') = ⊥-elim (whnfRedTerm d' zeroₙ) whrDetTerm (natrec-zero x x₁ x₂) (natrec-zero x₃ x₄ x₅) = PE.refl whrDetTerm (natrec-suc x x₁ x₂ x₃) (natrec-subst x₄ x₅ x₆ d') = ⊥-elim (whnfRedTerm d' sucₙ) whrDetTerm (natrec-suc x x₁ x₂ x₃) (natrec-suc x₄ x₅ x₆ x₇) = PE.refl whrDetTerm (Id-subst d x x₁) (Id-subst d' x₂ x₃) rewrite whrDetTerm d d' = PE.refl whrDetTerm (Id-subst d x x₁) (Id-ℕ-subst d' x₂) = ⊥-elim (whnfRedTerm d ℕₙ) whrDetTerm (Id-subst d x x₁) (Id-ℕ-0-subst d') = ⊥-elim (whnfRedTerm d ℕₙ) whrDetTerm (Id-subst d x x₁) (Id-ℕ-S-subst x₂ d') = ⊥-elim (whnfRedTerm d ℕₙ) whrDetTerm (Id-subst d x x₁) (Id-U-subst d' x₂) = ⊥-elim (whnfRedTerm d Uₙ) whrDetTerm (Id-subst d x x₁) (Id-U-ℕ-subst d') = ⊥-elim (whnfRedTerm d Uₙ) whrDetTerm (Id-subst d x x₁) (Id-U-Π-subst x₂ x₃ d') = ⊥-elim (whnfRedTerm d Uₙ) whrDetTerm (Id-subst d x x₁) (Id-Π _ _ x₂ x₃ x₄ x₅) = ⊥-elim (whnfRedTerm d Πₙ) whrDetTerm (Id-subst d x x₁) (Id-ℕ-00 x₂) = ⊥-elim (whnfRedTerm d ℕₙ) whrDetTerm (Id-subst d x x₁) (Id-ℕ-SS x₂ x₃) = ⊥-elim (whnfRedTerm d ℕₙ) whrDetTerm (Id-subst d x x₁) (Id-U-ΠΠ x₂ x₃ x₄ x₅) = ⊥-elim (whnfRedTerm d Uₙ) whrDetTerm (Id-subst d x x₁) (Id-U-ℕℕ x₂) = ⊥-elim (whnfRedTerm d Uₙ) whrDetTerm (Id-subst d x x₁) (Id-SProp x₂ x₃) = ⊥-elim (whnfRedTerm d Uₙ) whrDetTerm (Id-subst d x x₁) (Id-ℕ-0S x₂) = ⊥-elim (whnfRedTerm d ℕₙ) whrDetTerm (Id-subst d x x₁) (Id-ℕ-S0 x₂) = ⊥-elim (whnfRedTerm d ℕₙ) whrDetTerm (Id-subst d x x₁) (Id-U-ℕΠ x₂ x₃) = ⊥-elim (whnfRedTerm d Uₙ) whrDetTerm (Id-subst d x x₁) (Id-U-Πℕ x₂ x₃) = ⊥-elim (whnfRedTerm d Uₙ) whrDetTerm (Id-subst d x x₁) (Id-U-ΠΠ!% x₂ x₃ x₄ x₅ x₆) = ⊥-elim (whnfRedTerm d Uₙ) whrDetTerm (Id-ℕ-subst d x) (Id-subst d' x₁ x₂) = ⊥-elim (whnfRedTerm d' ℕₙ) whrDetTerm (Id-ℕ-subst d x) (Id-ℕ-subst d' x₁) rewrite whrDetTerm d d' = PE.refl whrDetTerm (Id-ℕ-subst d x) (Id-ℕ-0-subst d') = ⊥-elim (whnfRedTerm d zeroₙ) whrDetTerm (Id-ℕ-subst d x) (Id-ℕ-S-subst x₁ d') = ⊥-elim (whnfRedTerm d sucₙ) whrDetTerm (Id-ℕ-subst d x) (Id-ℕ-00 x₁) = ⊥-elim (whnfRedTerm d zeroₙ) whrDetTerm (Id-ℕ-subst d x) (Id-ℕ-SS x₁ x₂) = ⊥-elim (whnfRedTerm d sucₙ) whrDetTerm (Id-ℕ-subst d x) (Id-ℕ-0S x₁) = ⊥-elim (whnfRedTerm d zeroₙ) whrDetTerm (Id-ℕ-subst d x) (Id-ℕ-S0 x₁) = ⊥-elim (whnfRedTerm d sucₙ) whrDetTerm (Id-ℕ-0-subst d) (Id-subst d' x x₁) = ⊥-elim (whnfRedTerm d' ℕₙ) whrDetTerm (Id-ℕ-0-subst d) (Id-ℕ-subst d' x) = ⊥-elim (whnfRedTerm d' zeroₙ) whrDetTerm (Id-ℕ-0-subst d) (Id-ℕ-0-subst d') rewrite whrDetTerm d d' = PE.refl whrDetTerm (Id-ℕ-0-subst d) (Id-ℕ-00 x) = ⊥-elim (whnfRedTerm d zeroₙ) whrDetTerm (Id-ℕ-0-subst d) (Id-ℕ-0S x) = ⊥-elim (whnfRedTerm d sucₙ) whrDetTerm (Id-ℕ-S-subst x d) (Id-subst d' x₁ x₂) = ⊥-elim (whnfRedTerm d' ℕₙ) whrDetTerm (Id-ℕ-S-subst x d) (Id-ℕ-subst d' x₁) = ⊥-elim (whnfRedTerm d' sucₙ) whrDetTerm (Id-ℕ-S-subst x d) (Id-ℕ-S-subst x₁ d') rewrite whrDetTerm d d' = PE.refl whrDetTerm (Id-ℕ-S-subst x d) (Id-ℕ-SS x₁ x₂) = ⊥-elim (whnfRedTerm d sucₙ) whrDetTerm (Id-ℕ-S-subst x d) (Id-ℕ-S0 x₁) = ⊥-elim (whnfRedTerm d zeroₙ) whrDetTerm (Id-U-subst d x) (Id-subst d' x₁ x₂) = ⊥-elim (whnfRedTerm d' Uₙ) whrDetTerm (Id-U-subst d x) (Id-U-subst d' x₁) rewrite whrDetTerm d d' = PE.refl whrDetTerm (Id-U-subst d x) (Id-U-ℕ-subst d') = ⊥-elim (whnfRedTerm d ℕₙ) whrDetTerm (Id-U-subst d x) (Id-U-Π-subst x₁ x₂ d') = ⊥-elim (whnfRedTerm d Πₙ) whrDetTerm (Id-U-subst d x) (Id-U-ΠΠ x₁ x₂ x₃ x₄) = ⊥-elim (whnfRedTerm d Πₙ) whrDetTerm (Id-U-subst d x) (Id-U-ℕℕ x₁) = ⊥-elim (whnfRedTerm d ℕₙ) whrDetTerm (Id-U-subst d x) (Id-U-ℕΠ x₁ x₂) = ⊥-elim (whnfRedTerm d ℕₙ) whrDetTerm (Id-U-subst d x) (Id-U-Πℕ x₁ x₂) = ⊥-elim (whnfRedTerm d Πₙ) whrDetTerm (Id-U-subst d x) (Id-U-ΠΠ!% x₁ x₂ x₃ x₄ x₅) = ⊥-elim (whnfRedTerm d Πₙ) whrDetTerm (Id-U-ℕ-subst d) (Id-subst d' x x₁) = ⊥-elim (whnfRedTerm d' Uₙ) whrDetTerm (Id-U-ℕ-subst d) (Id-U-subst d' x) = ⊥-elim (whnfRedTerm d' ℕₙ) whrDetTerm (Id-U-ℕ-subst d) (Id-U-ℕ-subst d') rewrite whrDetTerm d d' = PE.refl whrDetTerm (Id-U-ℕ-subst d) (Id-U-ℕℕ x) = ⊥-elim (whnfRedTerm d ℕₙ) whrDetTerm (Id-U-ℕ-subst d) (Id-U-ℕΠ x x₁) = ⊥-elim (whnfRedTerm d Πₙ) whrDetTerm (Id-U-Π-subst x x₁ d) (Id-subst d' x₂ x₃) = ⊥-elim (whnfRedTerm d' Uₙ) whrDetTerm (Id-U-Π-subst x x₁ d) (Id-U-subst d' x₂) = ⊥-elim (whnfRedTerm d' Πₙ) whrDetTerm (Id-U-Π-subst x x₁ d) (Id-U-Π-subst x₂ x₃ d') rewrite whrDetTerm d d' = PE.refl whrDetTerm (Id-U-Π-subst x x₁ d) (Id-U-ΠΠ x₂ x₃ x₄ x₅) = ⊥-elim (whnfRedTerm d Πₙ) whrDetTerm (Id-U-Π-subst x x₁ d) (Id-U-Πℕ x₂ x₃) = ⊥-elim (whnfRedTerm d ℕₙ) whrDetTerm (Id-U-Π-subst x x₁ d) (Id-U-ΠΠ!% x₂ x₃ x₄ x₅ x₆) = ⊥-elim (whnfRedTerm d Πₙ) whrDetTerm (Id-Π _ _ x x₁ x₂ x₃) (Id-subst d' x₄ x₅) = ⊥-elim (whnfRedTerm d' Πₙ) whrDetTerm (Id-Π _ _ x x₁ x₂ x₃) (Id-Π _ _ x₄ x₅ x₆ x₇) = PE.refl whrDetTerm (Id-ℕ-00 x) (Id-subst d' x₁ x₂) = ⊥-elim (whnfRedTerm d' ℕₙ) whrDetTerm (Id-ℕ-00 x) (Id-ℕ-subst d' x₁) = ⊥-elim (whnfRedTerm d' zeroₙ) whrDetTerm (Id-ℕ-00 x) (Id-ℕ-0-subst d') = ⊥-elim (whnfRedTerm d' zeroₙ) whrDetTerm (Id-ℕ-00 x) (Id-ℕ-00 x₁) = PE.refl whrDetTerm (Id-ℕ-SS x x₁) (Id-subst d' x₂ x₃) = ⊥-elim (whnfRedTerm d' ℕₙ) whrDetTerm (Id-ℕ-SS x x₁) (Id-ℕ-subst d' x₂) = ⊥-elim (whnfRedTerm d' sucₙ) whrDetTerm (Id-ℕ-SS x x₁) (Id-ℕ-S-subst x₂ d') = ⊥-elim (whnfRedTerm d' sucₙ) whrDetTerm (Id-ℕ-SS x x₁) (Id-ℕ-SS x₂ x₃) = PE.refl whrDetTerm (Id-U-ΠΠ x x₁ x₂ x₃) d' = whrDetTerm-aux2 PE.refl PE.refl d' whrDetTerm (Id-U-ℕℕ x) (Id-subst d' x₁ x₂) = ⊥-elim (whnfRedTerm d' Uₙ) whrDetTerm (Id-U-ℕℕ x) (Id-U-subst d' x₁) = ⊥-elim (whnfRedTerm d' ℕₙ) whrDetTerm (Id-U-ℕℕ x) (Id-U-ℕ-subst d') = ⊥-elim (whnfRedTerm d' ℕₙ) whrDetTerm (Id-U-ℕℕ x) (Id-U-ℕℕ x₁) = PE.refl whrDetTerm (Id-SProp x x₁) (Id-subst d' x₂ x₃) = ⊥-elim (whnfRedTerm d' Uₙ) whrDetTerm (Id-SProp x x₁) (Id-SProp x₂ x₃) = PE.refl whrDetTerm (Id-ℕ-0S x) (Id-subst d' x₁ x₂) = ⊥-elim (whnfRedTerm d' ℕₙ) whrDetTerm (Id-ℕ-0S x) (Id-ℕ-subst d' x₁) = ⊥-elim (whnfRedTerm d' zeroₙ) whrDetTerm (Id-ℕ-0S x) (Id-ℕ-0-subst d') = ⊥-elim (whnfRedTerm d' sucₙ) whrDetTerm (Id-ℕ-0S x) (Id-ℕ-0S x₁) = PE.refl whrDetTerm (Id-ℕ-S0 x) (Id-subst d' x₁ x₂) = ⊥-elim (whnfRedTerm d' ℕₙ) whrDetTerm (Id-ℕ-S0 x) (Id-ℕ-subst d' x₁) = ⊥-elim (whnfRedTerm d' sucₙ) whrDetTerm (Id-ℕ-S0 x) (Id-ℕ-S-subst x₁ d') = ⊥-elim (whnfRedTerm d' zeroₙ) whrDetTerm (Id-ℕ-S0 x) (Id-ℕ-S0 x₁) = PE.refl whrDetTerm (Id-U-ℕΠ x x₁) (Id-subst d' x₂ x₃) = ⊥-elim (whnfRedTerm d' Uₙ) whrDetTerm (Id-U-ℕΠ x x₁) (Id-U-subst d' x₂) = ⊥-elim (whnfRedTerm d' ℕₙ) whrDetTerm (Id-U-ℕΠ x x₁) (Id-U-ℕ-subst d') = ⊥-elim (whnfRedTerm d' Πₙ) whrDetTerm (Id-U-ℕΠ x x₁) (Id-U-ℕΠ x₂ x₃) = PE.refl whrDetTerm (Id-U-Πℕ x x₁) (Id-subst d' x₂ x₃) = ⊥-elim (whnfRedTerm d' Uₙ) whrDetTerm (Id-U-Πℕ x x₁) (Id-U-subst d' x₂) = ⊥-elim (whnfRedTerm d' Πₙ) whrDetTerm (Id-U-Πℕ x x₁) (Id-U-Π-subst x₂ x₃ d') = ⊥-elim (whnfRedTerm d' ℕₙ) whrDetTerm (Id-U-Πℕ x x₁) (Id-U-Πℕ x₂ x₃) = PE.refl whrDetTerm (Id-U-ΠΠ!% eq A B A' B') (Id-subst d' x x₁) = ⊥-elim (whnfRedTerm d' Uₙ) whrDetTerm (Id-U-ΠΠ!% eq A B A' B') (Id-U-subst d' x) = ⊥-elim (whnfRedTerm d' Πₙ) whrDetTerm (Id-U-ΠΠ!% eq A B A' B') (Id-U-Π-subst x x₁ d') = ⊥-elim (whnfRedTerm d' Πₙ) whrDetTerm (Id-U-ΠΠ!% eq A B A' B') (Id-U-ΠΠ x x₁ x₂ x₃) = ⊥-elim (eq PE.refl) whrDetTerm (Id-U-ΠΠ!% eq A B A' B') (Id-U-ΠΠ!% x x₁ x₂ x₃ x₄) = PE.refl whrDetTerm (cast-subst d x x₁ x₂) (cast-subst d' x₃ x₄ x₅) rewrite whrDetTerm d d' = PE.refl whrDetTerm (cast-subst d x x₁ x₂) (cast-ℕ-subst d' x₃ x₄) = ⊥-elim (whnfRedTerm d ℕₙ) whrDetTerm (cast-subst d x x₁ x₂) (cast-Π-subst x₃ x₄ d' x₅ x₆) = ⊥-elim (whnfRedTerm d Πₙ) whrDetTerm (cast-subst d x x₁ x₂) (cast-Π x₃ x₄ x₅ x₆ x₇ x₈) = ⊥-elim (whnfRedTerm d Πₙ) whrDetTerm (cast-subst d x x₁ x₂) (cast-ℕ-0 x₃) = ⊥-elim (whnfRedTerm d ℕₙ) whrDetTerm (cast-subst d x x₁ x₂) (cast-ℕ-S x₃ x₄) = ⊥-elim (whnfRedTerm d ℕₙ) whrDetTerm (cast-ℕ-subst d x x₁) (cast-subst d' x₂ x₃ x₄) = ⊥-elim (whnfRedTerm d' ℕₙ) whrDetTerm (cast-ℕ-subst d x x₁) (cast-ℕ-subst d' x₂ x₃) rewrite whrDetTerm d d' = PE.refl whrDetTerm (cast-ℕ-subst d x x₁) (cast-ℕ-0 x₂) = ⊥-elim (whnfRedTerm d ℕₙ) whrDetTerm (cast-ℕ-subst d x x₁) (cast-ℕ-S x₂ x₃) = ⊥-elim (whnfRedTerm d ℕₙ) whrDetTerm (cast-Π-subst x x₁ d x₂ x₃) (cast-subst d' x₄ x₅ x₆) = ⊥-elim (whnfRedTerm d' Πₙ) whrDetTerm (cast-Π-subst x x₁ d x₂ x₃) (cast-Π-subst x₄ x₅ d' x₆ x₇) rewrite whrDetTerm d d' = PE.refl whrDetTerm (cast-Π-subst x x₁ d x₂ x₃) (cast-Π x₄ x₅ x₆ x₇ x₈ x₉) = ⊥-elim (whnfRedTerm d Πₙ) whrDetTerm (cast-Π x x₁ x₂ x₃ x₄ x₅) d' = whrDetTerm-aux1 (PE.refl) d' whrDetTerm (cast-ℕ-0 x) (cast-subst d' x₁ x₂ x₃) = ⊥-elim (whnfRedTerm d' ℕₙ) whrDetTerm (cast-ℕ-0 x) (cast-ℕ-subst d' x₁ x₂) = ⊥-elim (whnfRedTerm d' ℕₙ) whrDetTerm (cast-ℕ-0 x) (cast-ℕ-0 x₁) = PE.refl whrDetTerm (cast-ℕ-S x x₁) (cast-subst d' x₂ x₃ x₄) = ⊥-elim (whnfRedTerm d' ℕₙ) whrDetTerm (cast-ℕ-S x x₁) (cast-ℕ-subst d' x₂ x₃) = ⊥-elim (whnfRedTerm d' ℕₙ) whrDetTerm (cast-ℕ-S x x₁) (cast-ℕ-S x₂ x₃) = PE.refl whrDetTerm (cast-ℕ-cong x x₁) (cast-subst d' x₂ x₃ x₄) = ⊥-elim (whnfRedTerm d' ℕₙ) whrDetTerm (cast-ℕ-cong x x₁) (cast-ℕ-subst d' x₂ x₃) = ⊥-elim (whnfRedTerm d' ℕₙ) whrDetTerm (cast-ℕ-cong x x₁) (cast-ℕ-cong x₂ x₃) rewrite whrDetTerm x₁ x₃ = PE.refl -- whrDetTerm (cast-subst d x x₁ x₂) (cast-ℕ-cong x₃ d′) = ⊥-elim (whnfRedTerm d ℕₙ) whrDetTerm (cast-ℕ-subst d x x₁) (cast-ℕ-cong x₂ d′) = ⊥-elim (whnfRedTerm d ℕₙ) whrDetTerm (cast-ℕ-0 x) (cast-ℕ-cong x₁ d′) = ⊥-elim (whnfRedTerm d′ zeroₙ) whrDetTerm (cast-ℕ-S x x₁) (cast-ℕ-cong x₂ d′) = ⊥-elim (whnfRedTerm d′ sucₙ) whrDetTerm (cast-ℕ-cong x d) (cast-ℕ-0 x₁) = ⊥-elim (whnfRedTerm d zeroₙ) whrDetTerm (cast-ℕ-cong x d) (cast-ℕ-S x₁ x₂) = ⊥-elim (whnfRedTerm d sucₙ) {-# CATCHALL #-} whrDetTerm d (conv d′ x₁) = whrDetTerm d d′ whrDet (univ x) (univ x₁) = whrDetTerm x x₁ whrDet↘Term : ∀{Γ t u A l u′} (d : Γ ⊢ t ↘ u ∷ A ^ l) (d′ : Γ ⊢ t ⇒* u′ ∷ A ^ l) → Γ ⊢ u′ ⇒* u ∷ A ^ l whrDet↘Term (proj₁ , proj₂) (id x) = proj₁ whrDet↘Term (id x , proj₂) (x₁ ⇨ d′) = ⊥-elim (whnfRedTerm x₁ proj₂) whrDet↘Term (x ⇨ proj₁ , proj₂) (x₁ ⇨ d′) = whrDet↘Term (PE.subst (λ x₂ → _ ⊢ x₂ ↘ _ ∷ _ ^ _) (whrDetTerm x x₁) (proj₁ , proj₂)) d′ whrDet*Term : ∀{Γ t u A A' l u′ } (d : Γ ⊢ t ↘ u ∷ A ^ l) (d′ : Γ ⊢ t ↘ u′ ∷ A' ^ l) → u PE.≡ u′ whrDet*Term (id x , proj₂) (id x₁ , proj₄) = PE.refl whrDet*Term (id x , proj₂) (x₁ ⇨ proj₃ , proj₄) = ⊥-elim (whnfRedTerm x₁ proj₂) whrDet*Term (x ⇨ proj₁ , proj₂) (id x₁ , proj₄) = ⊥-elim (whnfRedTerm x proj₄) whrDet*Term (x ⇨ proj₁ , proj₂) (x₁ ⇨ proj₃ , proj₄) = whrDet*Term (proj₁ , proj₂) (PE.subst (λ x₂ → _ ⊢ x₂ ↘ _ ∷ _ ^ _) (whrDetTerm x₁ x) (proj₃ , proj₄)) whrDet* : ∀{Γ A B B′ r r'} (d : Γ ⊢ A ↘ B ^ r) (d′ : Γ ⊢ A ↘ B′ ^ r') → B PE.≡ B′ whrDet* (id x , proj₂) (id x₁ , proj₄) = PE.refl whrDet* (id x , proj₂) (x₁ ⇨ proj₃ , proj₄) = ⊥-elim (whnfRed x₁ proj₂) whrDet* (x ⇨ proj₁ , proj₂) (id x₁ , proj₄) = ⊥-elim (whnfRed x proj₄) whrDet* (A⇒A′ ⇨ A′⇒*B , whnfB) (A⇒A″ ⇨ A″⇒*B′ , whnfB′) = whrDet* (A′⇒*B , whnfB) (PE.subst (λ x → _ ⊢ x ↘ _ ^ _ ) (whrDet A⇒A″ A⇒A′) (A″⇒*B′ , whnfB′)) -- Identity of syntactic reduction idRed:*: : ∀ {Γ A r} → Γ ⊢ A ^ r → Γ ⊢ A :⇒*: A ^ r idRed:*: A = [[ A , A , id A ]] idRedTerm:*: : ∀ {Γ A l t} → Γ ⊢ t ∷ A ^ [ ! , l ] → Γ ⊢ t :⇒*: t ∷ A ^ l idRedTerm:*: t = [[ t , t , id t ]] -- U cannot be a term UnotInA : ∀ {A Γ r r'} → Γ ⊢ (Univ r ¹) ∷ A ^ r' → ⊥ UnotInA (conv U∷U x) = UnotInA U∷U UnotInA[t] : ∀ {A B t a Γ r r' r'' r'''} → t [ a ] PE.≡ (Univ r ¹) → Γ ⊢ a ∷ A ^ r' → Γ ∙ A ^ r'' ⊢ t ∷ B ^ r''' → ⊥ UnotInA[t] () x₁ (univ 0<1 x₂) UnotInA[t] () x₁ (ℕⱼ x₂) UnotInA[t] () x₁ (Emptyⱼ x₂) UnotInA[t] () x₁ (Πⱼ _ ▹ _ ▹ x₂ ▹ x₃) UnotInA[t] x₁ x₂ (var x₃ here) rewrite x₁ = UnotInA x₂ UnotInA[t] () x₂ (var x₃ (there x₄)) UnotInA[t] () x₁ (lamⱼ _ _ x₂ x₃) UnotInA[t] () x₁ (x₂ ∘ⱼ x₃) UnotInA[t] () x₁ (zeroⱼ x₂) UnotInA[t] () x₁ (sucⱼ x₂) UnotInA[t] () x₁ (natrecⱼ x₂ x₃ x₄ x₅) UnotInA[t] () x₁ (Emptyrecⱼ x₂ x₃) UnotInA[t] x x₁ (conv x₂ x₃) = UnotInA[t] x x₁ x₂ redU*Term′ : ∀ {A B U′ l Γ r} → U′ PE.≡ (Univ r ¹) → Γ ⊢ A ⇒ U′ ∷ B ^ l → ⊥ redU*Term′ U′≡U (conv A⇒U x) = redU*Term′ U′≡U A⇒U redU*Term′ () (app-subst A⇒U x) redU*Term′ U′≡U (β-red _ _ x x₁ x₂) = UnotInA[t] U′≡U x₂ x₁ redU*Term′ () (natrec-subst x x₁ x₂ A⇒U) redU*Term′ U′≡U (natrec-zero x x₁ x₂) rewrite U′≡U = UnotInA x₁ redU*Term′ () (natrec-suc x x₁ x₂ x₃) redU*Term : ∀ {A B l Γ r} → Γ ⊢ A ⇒* (Univ r ¹) ∷ B ^ l → ⊥ redU*Term (id x) = UnotInA x redU*Term (x ⇨ A⇒*U) = redU*Term A⇒*U -- Nothing reduces to U redU : ∀ {A Γ r l } → Γ ⊢ A ⇒ (Univ r ¹) ^ [ ! , l ] → ⊥ redU (univ x) = redU*Term′ PE.refl x redU* : ∀ {A Γ r l } → Γ ⊢ A ⇒* (Univ r ¹) ^ [ ! , l ] → A PE.≡ (Univ r ¹) redU* (id x) = PE.refl redU* (x ⇨ A⇒*U) rewrite redU* A⇒*U = ⊥-elim (redU x) -- convertibility for irrelevant terms implies typing typeInversion : ∀ {t u A l Γ} → Γ ⊢ t ≡ u ∷ A ^ [ % , l ] → Γ ⊢ t ∷ A ^ [ % , l ] typeInversion (conv X x) = let d = typeInversion X in conv d x typeInversion (proof-irrelevance x x₁) = x -- general version of reflexivity, symmetry and transitivity genRefl : ∀ {A Γ t r l } → Γ ⊢ t ∷ A ^ [ r , l ] → Γ ⊢ t ≡ t ∷ A ^ [ r , l ] genRefl {r = !} d = refl d genRefl {r = %} d = proof-irrelevance d d -- Judgmental instance of the equality relation genSym : ∀ {k l A Γ r lA } → Γ ⊢ k ≡ l ∷ A ^ [ r , lA ] → Γ ⊢ l ≡ k ∷ A ^ [ r , lA ] genSym {r = !} = sym genSym {r = %} (proof-irrelevance x x₁) = proof-irrelevance x₁ x genSym {r = %} (conv x x₁) = conv (genSym x) x₁ genTrans : ∀ {k l m A r Γ lA } → Γ ⊢ k ≡ l ∷ A ^ [ r , lA ] → Γ ⊢ l ≡ m ∷ A ^ [ r , lA ] → Γ ⊢ k ≡ m ∷ A ^ [ r , lA ] genTrans {r = !} = trans genTrans {r = %} (conv X x) (conv Y x₁) = conv (genTrans X (conv Y (trans x₁ (sym x)))) x genTrans {r = %} (conv X x) (proof-irrelevance x₁ x₂) = proof-irrelevance (conv (typeInversion X) x) x₂ genTrans {r = %} (proof-irrelevance x x₁) (conv Y x₂) = proof-irrelevance x (conv (typeInversion (genSym Y)) x₂) genTrans {r = %} (proof-irrelevance x x₁) (proof-irrelevance x₂ x₃) = proof-irrelevance x x₃ genVar : ∀ {x A Γ r l } → Γ ⊢ var x ∷ A ^ [ r , l ] → Γ ⊢ var x ≡ var x ∷ A ^ [ r , l ] genVar {r = !} = refl genVar {r = %} d = proof-irrelevance d d toLevelInj : ∀ {l₁ l₁′ : TypeLevel} {l<₁ : l₁′ <∞ l₁} {l₂ l₂′ : TypeLevel} {l<₂ : l₂′ <∞ l₂} → toLevel l₁′ PE.≡ toLevel l₂′ → l₁′ PE.≡ l₂′ toLevelInj {.(ι ¹)} {.(ι ⁰)} {emb<} {.(ι ¹)} {.(ι ⁰)} {emb<} e = PE.refl toLevelInj {.∞} {.(ι ¹)} {∞<} {.(ι ¹)} {.(ι ⁰)} {emb<} () toLevelInj {.∞} {.(ι ¹)} {∞<} {.∞} {.(ι ¹)} {∞<} e = PE.refl redSProp′ : ∀ {Γ A B l} (D : Γ ⊢ A ⇒* B ∷ SProp l ^ next l ) → Γ ⊢ A ⇒* B ^ [ % , ι l ] redSProp′ (id x) = id (univ x) redSProp′ (x ⇨ D) = univ x ⇨ redSProp′ D redSProp : ∀ {Γ A B l} (D : Γ ⊢ A :⇒*: B ∷ SProp l ^ next l ) → Γ ⊢ A :⇒*: B ^ [ % , ι l ] redSProp [[ ⊢t , ⊢u , d ]] = [[ (univ ⊢t) , (univ ⊢u) , redSProp′ d ]] un-univ : ∀ {A r Γ l} → Γ ⊢ A ^ [ r , ι l ] → Γ ⊢ A ∷ Univ r l ^ [ ! , next l ] un-univ (univ x) = x un-univ≡ : ∀ {A B r Γ l} → Γ ⊢ A ≡ B ^ [ r , ι l ] → Γ ⊢ A ≡ B ∷ Univ r l ^ [ ! , next l ] un-univ≡ (univ x) = x un-univ≡ (refl x) = refl (un-univ x) un-univ≡ (sym X) = sym (un-univ≡ X) un-univ≡ (trans X Y) = trans (un-univ≡ X) (un-univ≡ Y) univ-gen : ∀ {r Γ l} → (⊢Γ : ⊢ Γ) → Γ ⊢ Univ r l ^ [ ! , next l ] univ-gen {l = ⁰} ⊢Γ = univ (univ 0<1 ⊢Γ ) univ-gen {l = ¹} ⊢Γ = Uⱼ ⊢Γ un-univ⇒ : ∀ {l Γ A B r} → Γ ⊢ A ⇒ B ^ [ r , ι l ] → Γ ⊢ A ⇒ B ∷ Univ r l ^ next l un-univ⇒ (univ x) = x univ⇒* : ∀ {l Γ A B r} → Γ ⊢ A ⇒* B ∷ Univ r l ^ next l → Γ ⊢ A ⇒* B ^ [ r , ι l ] univ⇒* (id x) = id (univ x) univ⇒* (x ⇨ D) = univ x ⇨ univ⇒* D un-univ⇒* : ∀ {l Γ A B r} → Γ ⊢ A ⇒* B ^ [ r , ι l ] → Γ ⊢ A ⇒* B ∷ Univ r l ^ next l un-univ⇒* (id x) = id (un-univ x) un-univ⇒* (x ⇨ D) = un-univ⇒ x ⇨ un-univ⇒* D univ:⇒*: : ∀ {l Γ A B r} → Γ ⊢ A :⇒*: B ∷ Univ r l ^ next l → Γ ⊢ A :⇒*: B ^ [ r , ι l ] univ:⇒*: [[ ⊢A , ⊢B , D ]] = [[ (univ ⊢A) , (univ ⊢B) , (univ⇒* D) ]] un-univ:⇒*: : ∀ {l Γ A B r} → Γ ⊢ A :⇒*: B ^ [ r , ι l ] → Γ ⊢ A :⇒*: B ∷ Univ r l ^ next l un-univ:⇒*: [[ ⊢A , ⊢B , D ]] = [[ (un-univ ⊢A) , (un-univ ⊢B) , (un-univ⇒* D) ]] IdRed*Term′ : ∀ {Γ A B t u l} (⊢t : Γ ⊢ t ∷ A ^ [ ! , ι l ]) (⊢u : Γ ⊢ u ∷ A ^ [ ! , ι l ]) (D : Γ ⊢ A ⇒* B ^ [ ! , ι l ]) → Γ ⊢ Id A t u ⇒* Id B t u ∷ SProp l ^ next l IdRed*Term′ ⊢t ⊢u (id (univ ⊢A)) = id (Idⱼ ⊢A ⊢t ⊢u) IdRed*Term′ ⊢t ⊢u (univ d ⇨ D) = Id-subst d ⊢t ⊢u ⇨ IdRed*Term′ (conv ⊢t (subset (univ d))) (conv ⊢u (subset (univ d))) D IdRed*Term : ∀ {Γ A B t u l} (⊢t : Γ ⊢ t ∷ A ^ [ ! , ι l ]) (⊢u : Γ ⊢ u ∷ A ^ [ ! , ι l ]) (D : Γ ⊢ A :⇒*: B ^ [ ! , ι l ]) → Γ ⊢ Id A t u :⇒*: Id B t u ∷ SProp l ^ next l IdRed*Term {Γ} {A} {B} ⊢t ⊢u [[ univ ⊢A , univ ⊢B , D ]] = [[ Idⱼ ⊢A ⊢t ⊢u , Idⱼ ⊢B (conv ⊢t (subset* D)) (conv ⊢u (subset* D)) , IdRed*Term′ ⊢t ⊢u D ]] IdRed* : ∀ {Γ A B t u l} (⊢t : Γ ⊢ t ∷ A ^ [ ! , ι l ]) (⊢u : Γ ⊢ u ∷ A ^ [ ! , ι l ]) (D : Γ ⊢ A ⇒* B ^ [ ! , ι l ]) → Γ ⊢ Id A t u ⇒* Id B t u ^ [ % , ι l ] IdRed* ⊢t ⊢u (id ⊢A) = id (univ (Idⱼ (un-univ ⊢A) ⊢t ⊢u)) IdRed* ⊢t ⊢u (d ⇨ D) = univ (Id-subst (un-univ⇒ d) ⊢t ⊢u) ⇨ IdRed* (conv ⊢t (subset d)) (conv ⊢u (subset d)) D CastRed*Term′ : ∀ {Γ A B X e t} (⊢X : Γ ⊢ X ^ [ ! , ι ⁰ ]) (⊢e : Γ ⊢ e ∷ Id (U ⁰) A X ^ [ % , next ⁰ ]) (⊢t : Γ ⊢ t ∷ A ^ [ ! , ι ⁰ ]) (D : Γ ⊢ A ⇒* B ^ [ ! , ι ⁰ ]) → Γ ⊢ cast ⁰ A X e t ⇒* cast ⁰ B X e t ∷ X ^ ι ⁰ CastRed*Term′ (univ ⊢X) ⊢e ⊢t (id (univ ⊢A)) = id (castⱼ ⊢A ⊢X ⊢e ⊢t) CastRed*Term′ (univ ⊢X) ⊢e ⊢t (univ d ⇨ D) = cast-subst d ⊢X ⊢e ⊢t ⇨ CastRed*Term′ (univ ⊢X) (conv ⊢e (univ (Id-cong (refl (univ 0<1 (wfTerm ⊢t))) (subsetTerm d) (refl ⊢X)) )) (conv ⊢t (subset (univ d))) D CastRed*Term : ∀ {Γ A B X t e} (⊢X : Γ ⊢ X ^ [ ! , ι ⁰ ]) (⊢e : Γ ⊢ e ∷ Id (U ⁰) A X ^ [ % , next ⁰ ]) (⊢t : Γ ⊢ t ∷ A ^ [ ! , ι ⁰ ]) (D : Γ ⊢ A :⇒*: B ∷ U ⁰ ^ next ⁰) → Γ ⊢ cast ⁰ A X e t :⇒*: cast ⁰ B X e t ∷ X ^ ι ⁰ CastRed*Term {Γ} {A} {B} (univ ⊢X) ⊢e ⊢t [[ ⊢A , ⊢B , D ]] = [[ castⱼ ⊢A ⊢X ⊢e ⊢t , castⱼ ⊢B ⊢X (conv ⊢e (univ (Id-cong (refl (univ 0<1 (wfTerm ⊢t))) (subset*Term D) (refl ⊢X)) )) (conv ⊢t (univ (subset*Term D))) , CastRed*Term′ (univ ⊢X) ⊢e ⊢t (univ* D) ]] CastRed*Termℕ′ : ∀ {Γ A B e t} (⊢e : Γ ⊢ e ∷ Id (U ⁰) ℕ A ^ [ % , next ⁰ ]) (⊢t : Γ ⊢ t ∷ ℕ ^ [ ! , ι ⁰ ]) (D : Γ ⊢ A ⇒* B ^ [ ! , ι ⁰ ]) → Γ ⊢ cast ⁰ ℕ A e t ⇒* cast ⁰ ℕ B e t ∷ A ^ ι ⁰ CastRed*Termℕ′ ⊢e ⊢t (id (univ ⊢A)) = id (castⱼ (ℕⱼ (wfTerm ⊢A)) ⊢A ⊢e ⊢t) CastRed*Termℕ′ ⊢e ⊢t (univ d ⇨ D) = cast-ℕ-subst d ⊢e ⊢t ⇨ conv* (CastRed*Termℕ′ (conv ⊢e (univ (Id-cong (refl (univ 0<1 (wfTerm ⊢e))) (refl (ℕⱼ (wfTerm ⊢e))) (subsetTerm d))) ) ⊢t D) (sym (subset (univ d))) CastRed*Termℕ : ∀ {Γ A B e t} (⊢e : Γ ⊢ e ∷ Id (U ⁰) ℕ A ^ [ % , next ⁰ ]) (⊢t : Γ ⊢ t ∷ ℕ ^ [ ! , ι ⁰ ]) (D : Γ ⊢ A :⇒*: B ^ [ ! , ι ⁰ ]) → Γ ⊢ cast ⁰ ℕ A e t :⇒*: cast ⁰ ℕ B e t ∷ A ^ ι ⁰ CastRed*Termℕ ⊢e ⊢t [[ ⊢A , ⊢B , D ]] = [[ castⱼ (ℕⱼ (wfTerm ⊢e)) (un-univ ⊢A) ⊢e ⊢t , conv (castⱼ (ℕⱼ (wfTerm ⊢e)) (un-univ ⊢B) (conv ⊢e (univ (Id-cong (refl (univ 0<1 (wfTerm ⊢e))) (refl (ℕⱼ (wfTerm ⊢e))) (subset*Term (un-univ⇒* D))))) ⊢t) (sym (subset* D)) , CastRed*Termℕ′ ⊢e ⊢t D ]] CastRed*Termℕℕ′ : ∀ {Γ e t u} (⊢e : Γ ⊢ e ∷ Id (U ⁰) ℕ ℕ ^ [ % , next ⁰ ]) (⊢t : Γ ⊢ t ⇒* u ∷ ℕ ^ ι ⁰ ) → Γ ⊢ cast ⁰ ℕ ℕ e t ⇒* cast ⁰ ℕ ℕ e u ∷ ℕ ^ ι ⁰ CastRed*Termℕℕ′ ⊢e (id ⊢t) = id (castⱼ (ℕⱼ (wfTerm ⊢e)) (ℕⱼ (wfTerm ⊢e)) ⊢e ⊢t) CastRed*Termℕℕ′ ⊢e (d ⇨ D) = cast-ℕ-cong ⊢e d ⇨ CastRed*Termℕℕ′ ⊢e D CastRed*Termℕℕ : ∀ {Γ e t u} (⊢e : Γ ⊢ e ∷ Id (U ⁰) ℕ ℕ ^ [ % , next ⁰ ]) (⊢t : Γ ⊢ t :⇒*: u ∷ ℕ ^ ι ⁰ ) → Γ ⊢ cast ⁰ ℕ ℕ e t :⇒*: cast ⁰ ℕ ℕ e u ∷ ℕ ^ ι ⁰ CastRed*Termℕℕ ⊢e [[ ⊢t , ⊢u , D ]] = [[ castⱼ (ℕⱼ (wfTerm ⊢e)) (ℕⱼ (wfTerm ⊢e)) ⊢e ⊢t , castⱼ (ℕⱼ (wfTerm ⊢e)) (ℕⱼ (wfTerm ⊢e)) ⊢e ⊢u , CastRed*Termℕℕ′ ⊢e D ]] CastRed*Termℕsuc : ∀ {Γ e n} (⊢e : Γ ⊢ e ∷ Id (U ⁰) ℕ ℕ ^ [ % , next ⁰ ]) (⊢n : Γ ⊢ n ∷ ℕ ^ [ ! , ι ⁰ ]) → Γ ⊢ cast ⁰ ℕ ℕ e (suc n) :⇒*: suc (cast ⁰ ℕ ℕ e n) ∷ ℕ ^ ι ⁰ CastRed*Termℕsuc ⊢e ⊢n = [[ castⱼ (ℕⱼ (wfTerm ⊢e)) (ℕⱼ (wfTerm ⊢e)) ⊢e (sucⱼ ⊢n) , sucⱼ (castⱼ (ℕⱼ (wfTerm ⊢e)) (ℕⱼ (wfTerm ⊢e)) ⊢e ⊢n) , cast-ℕ-S ⊢e ⊢n ⇨ id (sucⱼ (castⱼ (ℕⱼ (wfTerm ⊢e)) (ℕⱼ (wfTerm ⊢e)) ⊢e ⊢n)) ]] CastRed*Termℕzero : ∀ {Γ e} (⊢e : Γ ⊢ e ∷ Id (U ⁰) ℕ ℕ ^ [ % , next ⁰ ]) → Γ ⊢ cast ⁰ ℕ ℕ e zero :⇒*: zero ∷ ℕ ^ ι ⁰ CastRed*Termℕzero ⊢e = [[ castⱼ (ℕⱼ (wfTerm ⊢e)) (ℕⱼ (wfTerm ⊢e)) ⊢e (zeroⱼ (wfTerm ⊢e)) , zeroⱼ (wfTerm ⊢e) , cast-ℕ-0 ⊢e ⇨ id (zeroⱼ (wfTerm ⊢e)) ]] CastRed*TermΠ′ : ∀ {Γ F rF G A B e t} (⊢F : Γ ⊢ F ∷ (Univ rF ⁰) ^ [ ! , next ⁰ ]) (⊢G : Γ ∙ F ^ [ rF , ι ⁰ ] ⊢ G ∷ U ⁰ ^ [ ! , next ⁰ ]) (⊢e : Γ ⊢ e ∷ Id (U ⁰) (Π F ^ rF ° ⁰ ▹ G ° ⁰ ° ⁰) A ^ [ % , next ⁰ ]) (⊢t : Γ ⊢ t ∷ (Π F ^ rF ° ⁰ ▹ G ° ⁰ ° ⁰) ^ [ ! , ι ⁰ ]) (D : Γ ⊢ A ⇒* B ^ [ ! , ι ⁰ ]) → Γ ⊢ cast ⁰ (Π F ^ rF ° ⁰ ▹ G ° ⁰ ° ⁰) A e t ⇒* cast ⁰ (Π F ^ rF ° ⁰ ▹ G ° ⁰ ° ⁰) B e t ∷ A ^ ι ⁰ CastRed*TermΠ′ ⊢F ⊢G ⊢e ⊢t (id (univ ⊢A)) = id (castⱼ (Πⱼ ≡is≤ PE.refl ▹ ≡is≤ PE.refl ▹ ⊢F ▹ ⊢G) ⊢A ⊢e ⊢t) CastRed*TermΠ′ ⊢F ⊢G ⊢e ⊢t (univ d ⇨ D) = cast-Π-subst ⊢F ⊢G d ⊢e ⊢t ⇨ conv* (CastRed*TermΠ′ ⊢F ⊢G (conv ⊢e (univ (Id-cong (refl (univ 0<1 (wfTerm ⊢e))) (refl (Πⱼ ≡is≤ PE.refl ▹ ≡is≤ PE.refl ▹ ⊢F ▹ ⊢G)) (subsetTerm d))) ) ⊢t D) (sym (subset (univ d))) CastRed*TermΠ : ∀ {Γ F rF G A B e t} (⊢F : Γ ⊢ F ∷ (Univ rF ⁰) ^ [ ! , next ⁰ ]) (⊢G : Γ ∙ F ^ [ rF , ι ⁰ ] ⊢ G ∷ U ⁰ ^ [ ! , next ⁰ ]) (⊢e : Γ ⊢ e ∷ Id (U ⁰) (Π F ^ rF ° ⁰ ▹ G ° ⁰ ° ⁰) A ^ [ % , next ⁰ ]) (⊢t : Γ ⊢ t ∷ (Π F ^ rF ° ⁰ ▹ G ° ⁰ ° ⁰) ^ [ ! , ι ⁰ ]) (D : Γ ⊢ A :⇒*: B ^ [ ! , ι ⁰ ]) → Γ ⊢ cast ⁰ (Π F ^ rF ° ⁰ ▹ G ° ⁰ ° ⁰) A e t :⇒*: cast ⁰ (Π F ^ rF ° ⁰ ▹ G ° ⁰ ° ⁰) B e t ∷ A ^ ι ⁰ CastRed*TermΠ ⊢F ⊢G ⊢e ⊢t [[ ⊢A , ⊢B , D ]] = let [Π] = Πⱼ ≡is≤ PE.refl ▹ ≡is≤ PE.refl ▹ ⊢F ▹ ⊢G in [[ castⱼ [Π] (un-univ ⊢A) ⊢e ⊢t , conv (castⱼ [Π] (un-univ ⊢B) (conv ⊢e (univ (Id-cong (refl (univ 0<1 (wfTerm ⊢e))) (refl [Π]) (subset*Term (un-univ⇒* D))))) ⊢t) (sym (subset* D)) , CastRed*TermΠ′ ⊢F ⊢G ⊢e ⊢t D ]] IdURed*Term′ : ∀ {Γ t t′ u} (⊢t : Γ ⊢ t ∷ U ⁰ ^ [ ! , ι ¹ ]) (⊢t′ : Γ ⊢ t′ ∷ U ⁰ ^ [ ! , ι ¹ ]) (d : Γ ⊢ t ⇒* t′ ∷ U ⁰ ^ ι ¹) (⊢u : Γ ⊢ u ∷ U ⁰ ^ [ ! , ι ¹ ]) → Γ ⊢ Id (U ⁰) t u ⇒* Id (U ⁰) t′ u ∷ SProp ¹ ^ ∞ IdURed*Term′ ⊢t ⊢t′ (id x) ⊢u = id (Idⱼ (univ 0<1 (wfTerm ⊢t)) ⊢t ⊢u) IdURed*Term′ ⊢t ⊢t′ (x ⇨ d) ⊢u = _⇨_ (Id-U-subst x ⊢u) (IdURed*Term′ (redFirst*Term d) ⊢t′ d ⊢u) IdURed*Term : ∀ {Γ t t′ u} (d : Γ ⊢ t :⇒*: t′ ∷ U ⁰ ^ ι ¹) (⊢u : Γ ⊢ u ∷ U ⁰ ^ [ ! , ι ¹ ]) → Γ ⊢ Id (U ⁰) t u :⇒*: Id (U ⁰) t′ u ∷ SProp ¹ ^ ∞ IdURed*Term [[ ⊢t , ⊢t′ , d ]] ⊢u = [[ Idⱼ (univ 0<1 (wfTerm ⊢u)) ⊢t ⊢u , Idⱼ (univ 0<1 (wfTerm ⊢u)) ⊢t′ ⊢u , IdURed*Term′ ⊢t ⊢t′ d ⊢u ]] IdUΠRed*Term′ : ∀ {Γ F rF G t t′} (⊢F : Γ ⊢ F ∷ Univ rF ⁰ ^ [ ! , ι ¹ ]) (⊢G : Γ ∙ F ^ [ rF , ι ⁰ ] ⊢ G ∷ U ⁰ ^ [ ! , ι ¹ ]) (⊢t : Γ ⊢ t ∷ U ⁰ ^ [ ! , ι ¹ ]) (⊢t′ : Γ ⊢ t′ ∷ U ⁰ ^ [ ! , ι ¹ ]) (d : Γ ⊢ t ⇒* t′ ∷ U ⁰ ^ ι ¹) → Γ ⊢ Id (U ⁰) (Π F ^ rF ° ⁰ ▹ G ° ⁰ ° ⁰) t ⇒* Id (U ⁰) (Π F ^ rF ° ⁰ ▹ G ° ⁰ ° ⁰) t′ ∷ SProp ¹ ^ ∞ IdUΠRed*Term′ ⊢F ⊢G ⊢t ⊢t′ (id x) = id (Idⱼ (univ 0<1 (wfTerm ⊢t)) (Πⱼ ≡is≤ PE.refl ▹ ≡is≤ PE.refl ▹ ⊢F ▹ ⊢G) ⊢t) IdUΠRed*Term′ ⊢F ⊢G ⊢t ⊢t′ (x ⇨ d) = _⇨_ (Id-U-Π-subst ⊢F ⊢G x) (IdUΠRed*Term′ ⊢F ⊢G (redFirst*Term d) ⊢t′ d) IdUΠRed*Term : ∀ {Γ F rF G t t′} (⊢F : Γ ⊢ F ∷ Univ rF ⁰ ^ [ ! , ι ¹ ]) (⊢G : Γ ∙ F ^ [ rF , ι ⁰ ] ⊢ G ∷ U ⁰ ^ [ ! , ι ¹ ]) (d : Γ ⊢ t :⇒*: t′ ∷ U ⁰ ^ ι ¹) → Γ ⊢ Id (U ⁰) (Π F ^ rF ° ⁰ ▹ G ° ⁰ ° ⁰) t :⇒*: Id (U ⁰) (Π F ^ rF ° ⁰ ▹ G ° ⁰ ° ⁰) t′ ∷ SProp ¹ ^ ∞ IdUΠRed*Term ⊢F ⊢G [[ ⊢t , ⊢t′ , d ]] = [[ Idⱼ (univ 0<1 (wfTerm ⊢t)) (Πⱼ ≡is≤ PE.refl ▹ ≡is≤ PE.refl ▹ ⊢F ▹ ⊢G) ⊢t , Idⱼ (univ 0<1 (wfTerm ⊢t)) (Πⱼ ≡is≤ PE.refl ▹ ≡is≤ PE.refl ▹ ⊢F ▹ ⊢G) ⊢t′ , IdUΠRed*Term′ ⊢F ⊢G ⊢t ⊢t′ d ]] IdℕRed*Term′ : ∀ {Γ t t′ u} (⊢t : Γ ⊢ t ∷ ℕ ^ [ ! , ι ⁰ ]) (⊢t′ : Γ ⊢ t′ ∷ ℕ ^ [ ! , ι ⁰ ]) (d : Γ ⊢ t ⇒* t′ ∷ ℕ ^ ι ⁰) (⊢u : Γ ⊢ u ∷ ℕ ^ [ ! , ι ⁰ ]) → Γ ⊢ Id ℕ t u ⇒* Id ℕ t′ u ∷ SProp ⁰ ^ next ⁰ IdℕRed*Term′ ⊢t ⊢t′ (id x) ⊢u = id (Idⱼ (ℕⱼ (wfTerm ⊢u)) ⊢t ⊢u) IdℕRed*Term′ ⊢t ⊢t′ (x ⇨ d) ⊢u = _⇨_ (Id-ℕ-subst x ⊢u) (IdℕRed*Term′ (redFirst*Term d) ⊢t′ d ⊢u) Idℕ0Red*Term′ : ∀ {Γ t t′} (⊢t : Γ ⊢ t ∷ ℕ ^ [ ! , ι ⁰ ]) (⊢t′ : Γ ⊢ t′ ∷ ℕ ^ [ ! , ι ⁰ ]) (d : Γ ⊢ t ⇒* t′ ∷ ℕ ^ ι ⁰) → Γ ⊢ Id ℕ zero t ⇒* Id ℕ zero t′ ∷ SProp ⁰ ^ next ⁰ Idℕ0Red*Term′ ⊢t ⊢t′ (id x) = id (Idⱼ (ℕⱼ (wfTerm ⊢t)) (zeroⱼ (wfTerm ⊢t)) ⊢t) Idℕ0Red*Term′ ⊢t ⊢t′ (x ⇨ d) = Id-ℕ-0-subst x ⇨ Idℕ0Red*Term′ (redFirst*Term d) ⊢t′ d IdℕSRed*Term′ : ∀ {Γ t u u′} (⊢t : Γ ⊢ t ∷ ℕ ^ [ ! , ι ⁰ ]) (⊢u : Γ ⊢ u ∷ ℕ ^ [ ! , ι ⁰ ]) (⊢u′ : Γ ⊢ u′ ∷ ℕ ^ [ ! , ι ⁰ ]) (d : Γ ⊢ u ⇒* u′ ∷ ℕ ^ ι ⁰) → Γ ⊢ Id ℕ (suc t) u ⇒* Id ℕ (suc t) u′ ∷ SProp ⁰ ^ next ⁰ IdℕSRed*Term′ ⊢t ⊢u ⊢u′ (id x) = id (Idⱼ (ℕⱼ (wfTerm ⊢t)) (sucⱼ ⊢t) ⊢u) IdℕSRed*Term′ ⊢t ⊢u ⊢u′ (x ⇨ d) = Id-ℕ-S-subst ⊢t x ⇨ IdℕSRed*Term′ ⊢t (redFirst*Term d) ⊢u′ d IdUℕRed*Term′ : ∀ {Γ t t′} (⊢t : Γ ⊢ t ∷ U ⁰ ^ [ ! , ι ¹ ]) (⊢t′ : Γ ⊢ t′ ∷ U ⁰ ^ [ ! , ι ¹ ]) (d : Γ ⊢ t ⇒* t′ ∷ U ⁰ ^ ι ¹) → Γ ⊢ Id (U ⁰) ℕ t ⇒* Id (U ⁰) ℕ t′ ∷ SProp ¹ ^ ∞ IdUℕRed*Term′ ⊢t ⊢t′ (id x) = id (Idⱼ (univ 0<1 (wfTerm ⊢t)) (ℕⱼ (wfTerm ⊢t) ) ⊢t) IdUℕRed*Term′ ⊢t ⊢t′ (x ⇨ d) = _⇨_ (Id-U-ℕ-subst x) (IdUℕRed*Term′ (redFirst*Term d) ⊢t′ d) IdUℕRed*Term : ∀ {Γ t t′} (d : Γ ⊢ t :⇒*: t′ ∷ U ⁰ ^ ι ¹) → Γ ⊢ Id (U ⁰) ℕ t :⇒*: Id (U ⁰) ℕ t′ ∷ SProp ¹ ^ ∞ IdUℕRed*Term [[ ⊢t , ⊢t′ , d ]] = [[ Idⱼ (univ 0<1 (wfTerm ⊢t)) (ℕⱼ (wfTerm ⊢t) ) ⊢t , Idⱼ (univ 0<1 (wfTerm ⊢t)) (ℕⱼ (wfTerm ⊢t) ) ⊢t′ , IdUℕRed*Term′ ⊢t ⊢t′ d ]] appRed* : ∀ {Γ a t u A B rA lA lB l} (⊢a : Γ ⊢ a ∷ A ^ [ rA , ι lA ]) (D : Γ ⊢ t ⇒* u ∷ (Π A ^ rA ° lA ▹ B ° lB ° l) ^ ι l) → Γ ⊢ t ∘ a ^ l ⇒* u ∘ a ^ l ∷ B [ a ] ^ ι lB appRed* ⊢a (id x) = id (x ∘ⱼ ⊢a) appRed* ⊢a (x ⇨ D) = app-subst x ⊢a ⇨ appRed* ⊢a D castΠRed* : ∀ {Γ F rF G A B e t} (⊢F : Γ ⊢ F ^ [ rF , ι ⁰ ]) (⊢G : Γ ∙ F ^ [ rF , ι ⁰ ] ⊢ G ^ [ ! , ι ⁰ ]) (⊢e : Γ ⊢ e ∷ Id (U ⁰) (Π F ^ rF ° ⁰ ▹ G ° ⁰ ° ⁰) A ^ [ % , next ⁰ ]) (⊢t : Γ ⊢ t ∷ Π F ^ rF ° ⁰ ▹ G ° ⁰ ° ⁰ ^ [ ! , ι ⁰ ]) (D : Γ ⊢ A ⇒* B ^ [ ! , ι ⁰ ]) → Γ ⊢ cast ⁰ (Π F ^ rF ° ⁰ ▹ G ° ⁰ ° ⁰) A e t ⇒* cast ⁰ (Π F ^ rF ° ⁰ ▹ G ° ⁰ ° ⁰) B e t ∷ A ^ ι ⁰ castΠRed* ⊢F ⊢G ⊢e ⊢t (id (univ ⊢A)) = id (castⱼ (Πⱼ ≡is≤ PE.refl ▹ ≡is≤ PE.refl ▹ un-univ ⊢F ▹ un-univ ⊢G) ⊢A ⊢e ⊢t) castΠRed* ⊢F ⊢G ⊢e ⊢t ((univ d) ⇨ D) = cast-Π-subst (un-univ ⊢F) (un-univ ⊢G) d ⊢e ⊢t ⇨ conv* (castΠRed* ⊢F ⊢G (conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢F))) (refl (Πⱼ ≡is≤ PE.refl ▹ ≡is≤ PE.refl ▹ un-univ ⊢F ▹ un-univ ⊢G)) (subsetTerm d)))) ⊢t D) (sym (subset (univ d))) notredUterm* : ∀ {Γ r l l' A B} → Γ ⊢ Univ r l ⇒ A ∷ B ^ l' → ⊥ notredUterm* (conv D x) = notredUterm* D notredU* : ∀ {Γ r l l' A} → Γ ⊢ Univ r l ⇒ A ^ [ ! , l' ] → ⊥ notredU* (univ x) = notredUterm* x redU*gen : ∀ {Γ r l r' l' l''} → Γ ⊢ Univ r l ⇒* Univ r' l' ^ [ ! , l'' ] → Univ r l PE.≡ Univ r' l' redU*gen (id x) = PE.refl redU*gen (univ (conv x x₁) ⇨ D) = ⊥-elim (notredUterm* x) -- Typing of Idsym Idsymⱼ : ∀ {Γ A l x y e} → Γ ⊢ A ∷ U l ^ [ ! , next l ] → Γ ⊢ x ∷ A ^ [ ! , ι l ] → Γ ⊢ y ∷ A ^ [ ! , ι l ] → Γ ⊢ e ∷ Id A x y ^ [ % , ι l ] → Γ ⊢ Idsym A x y e ∷ Id A y x ^ [ % , ι l ] Idsymⱼ {Γ} {A} {l} {x} {y} {e} ⊢A ⊢x ⊢y ⊢e = let ⊢Γ = wfTerm ⊢A ⊢A = univ ⊢A ⊢P : Γ ∙ A ^ [ ! , ι l ] ⊢ Id (wk1 A) (var 0) (wk1 x) ^ [ % , ι l ] ⊢P = univ (Idⱼ (Twk.wkTerm (Twk.step Twk.id) (⊢Γ ∙ ⊢A) (un-univ ⊢A)) (var (⊢Γ ∙ ⊢A) here) (Twk.wkTerm (Twk.step Twk.id) (⊢Γ ∙ ⊢A) ⊢x)) ⊢refl : Γ ⊢ Idrefl A x ∷ Id (wk1 A) (var 0) (wk1 x) [ x ] ^ [ % , ι l ] ⊢refl = PE.subst₂ (λ X Y → Γ ⊢ Idrefl A x ∷ Id X x Y ^ [ % , ι l ]) (PE.sym (wk1-singleSubst A x)) (PE.sym (wk1-singleSubst x x)) (Idreflⱼ ⊢x) in PE.subst₂ (λ X Y → Γ ⊢ Idsym A x y e ∷ Id X y Y ^ [ % , ι l ]) (wk1-singleSubst A y) (wk1-singleSubst x y) (transpⱼ ⊢A ⊢P ⊢x ⊢refl ⊢y ⊢e) ▹▹ⱼ_▹_▹_▹_ : ∀ {Γ F rF lF G lG r l} → lF ≤ l → lG ≤ l → Γ ⊢ F ∷ (Univ rF lF) ^ [ ! , next lF ] → Γ ⊢ G ∷ (Univ r lG) ^ [ ! , next lG ] → Γ ⊢ F ^ rF ° lF ▹▹ G ° lG ° l ∷ (Univ r l) ^ [ ! , next l ] ▹▹ⱼ lF≤ ▹ lG≤ ▹ F ▹ G = Πⱼ lF≤ ▹ lG≤ ▹ F ▹ un-univ (Twk.wk (Twk.step Twk.id) ((wf (univ F)) ∙ (univ F)) (univ G)) ××ⱼ_▹_ : ∀ {Γ F G l} → Γ ⊢ F ∷ SProp l ^ [ ! , next l ] → Γ ⊢ G ∷ SProp l ^ [ ! , next l ] → Γ ⊢ F ×× G ∷ SProp l ^ [ ! , next l ] ××ⱼ F ▹ G = ∃ⱼ F ▹ un-univ (Twk.wk (Twk.step Twk.id) ((wf (univ F)) ∙ (univ F)) (univ G))
algebraic-stack_agda0000_doc_8542
{-# OPTIONS --cubical --safe #-} module Data.Nat.Properties where open import Data.Nat.Base open import Agda.Builtin.Nat using () renaming (_<_ to _<ᴮ_; _==_ to _≡ᴮ_) public open import Prelude open import Cubical.Data.Nat using (caseNat; injSuc) public open import Data.Nat.DivMod mutual _-1⊔_ : ℕ → ℕ → ℕ zero -1⊔ n = n suc m -1⊔ n = n ⊔ m _⊔_ : ℕ → ℕ → ℕ zero ⊔ m = m suc n ⊔ m = suc (m -1⊔ n) znots : ∀ {n} → zero ≢ suc n znots z≡s = subst (caseNat ⊤ ⊥) z≡s tt snotz : ∀ {n} → suc n ≢ zero snotz s≡z = subst (caseNat ⊥ ⊤) s≡z tt pred : ℕ → ℕ pred (suc n) = n pred zero = zero sound-== : ∀ n m → T (n ≡ᴮ m) → n ≡ m sound-== zero zero p i = zero sound-== (suc n) (suc m) p i = suc (sound-== n m p i) complete-== : ∀ n → T (n ≡ᴮ n) complete-== zero = tt complete-== (suc n) = complete-== n open import Relation.Nullary.Discrete.FromBoolean discreteℕ : Discrete ℕ discreteℕ = from-bool-eq _≡ᴮ_ sound-== complete-== isSetℕ : isSet ℕ isSetℕ = Discrete→isSet discreteℕ +-suc : ∀ x y → x + suc y ≡ suc (x + y) +-suc zero y = refl +-suc (suc x) y = cong suc (+-suc x y) +-idʳ : ∀ x → x + 0 ≡ x +-idʳ zero = refl +-idʳ (suc x) = cong suc (+-idʳ x) +-comm : ∀ x y → x + y ≡ y + x +-comm x zero = +-idʳ x +-comm x (suc y) = +-suc x y ; cong suc (+-comm x y) infix 4 _<_ _<_ : ℕ → ℕ → Type n < m = T (n <ᴮ m) infix 4 _≤ᴮ_ _≤ᴮ_ : ℕ → ℕ → Bool n ≤ᴮ m = not (m <ᴮ n) infix 4 _≤_ _≤_ : ℕ → ℕ → Type n ≤ m = T (n ≤ᴮ m) infix 4 _≥ᴮ_ _≥ᴮ_ : ℕ → ℕ → Bool _≥ᴮ_ = flip _≤ᴮ_ +-assoc : ∀ x y z → (x + y) + z ≡ x + (y + z) +-assoc zero y z i = y + z +-assoc (suc x) y z i = suc (+-assoc x y z i) +-*-distrib : ∀ x y z → (x + y) * z ≡ x * z + y * z +-*-distrib zero y z = refl +-*-distrib (suc x) y z = cong (z +_) (+-*-distrib x y z) ; sym (+-assoc z (x * z) (y * z)) *-zeroʳ : ∀ x → x * zero ≡ zero *-zeroʳ zero = refl *-zeroʳ (suc x) = *-zeroʳ x *-suc : ∀ x y → x + x * y ≡ x * suc y *-suc zero y = refl *-suc (suc x) y = cong suc (sym (+-assoc x y (x * y)) ; cong (_+ x * y) (+-comm x y) ; +-assoc y x (x * y) ; cong (y +_) (*-suc x y)) *-comm : ∀ x y → x * y ≡ y * x *-comm zero y = sym (*-zeroʳ y) *-comm (suc x) y = cong (y +_) (*-comm x y) ; *-suc y x *-assoc : ∀ x y z → (x * y) * z ≡ x * (y * z) *-assoc zero y z = refl *-assoc (suc x) y z = +-*-distrib y (x * y) z ; cong (y * z +_) (*-assoc x y z) open import Data.Nat.DivMod open import Agda.Builtin.Nat using (div-helper) div-helper′ : (m n j : ℕ) → ℕ div-helper′ m zero j = zero div-helper′ m (suc n) zero = suc (div-helper′ m n m) div-helper′ m (suc n) (suc j) = div-helper′ m n j div-helper-lemma : ∀ k m n j → div-helper k m n j ≡ k + div-helper′ m n j div-helper-lemma k m zero j = sym (+-idʳ k) div-helper-lemma k m (suc n) zero = div-helper-lemma (suc k) m n m ; sym (+-suc k (div-helper′ m n m)) div-helper-lemma k m (suc n) (suc j) = div-helper-lemma k m n j Even : ℕ → Type Even n = T (even n) odd : ℕ → Bool odd n = not (rem n 2 ≡ᴮ 0) Odd : ℕ → Type Odd n = T (odd n) s≤s : ∀ n m → n ≤ m → suc n ≤ suc m s≤s zero m p = tt s≤s (suc n) m p = p n≤s : ∀ n m → n ≤ m → n ≤ suc m n≤s zero m p = tt n≤s (suc zero) m p = tt n≤s (suc (suc n)) zero p = p n≤s (suc (suc n₁)) (suc n) p = n≤s (suc n₁) n p div-≤ : ∀ n m → n ÷ suc m ≤ n div-≤ n m = subst (_≤ n) (sym (div-helper-lemma 0 m n m)) (go m n m) where go : ∀ m n j → div-helper′ m n j ≤ n go m zero j = tt go m (suc n) zero = s≤s (div-helper′ m n m) n (go m n m) go m (suc n) (suc j) = n≤s (div-helper′ m n j) n (go m n j) ≤-trans : ∀ x y z → x ≤ y → y ≤ z → x ≤ z ≤-trans zero y z p q = tt ≤-trans (suc n) zero zero p q = p ≤-trans (suc zero) zero (suc n) p q = tt ≤-trans (suc (suc n₁)) zero (suc n) p q = ≤-trans (suc n₁) zero n p tt ≤-trans (suc n) (suc zero) zero p q = q ≤-trans (suc zero) (suc zero) (suc n) p q = tt ≤-trans (suc (suc n₁)) (suc zero) (suc n) p q = ≤-trans (suc n₁) zero n p tt ≤-trans (suc n₁) (suc (suc n)) zero p q = q ≤-trans (suc zero) (suc (suc n₁)) (suc n) p q = tt ≤-trans (suc (suc n₁)) (suc (suc n₂)) (suc n) p q = ≤-trans (suc n₁) (suc n₂) n p q p≤n : ∀ n m → suc n ≤ m → n ≤ m p≤n zero m p = tt p≤n (suc n) zero p = p p≤n (suc zero) (suc n) p = tt p≤n (suc (suc n₁)) (suc n) p = p≤n (suc n₁) n p p≤p : ∀ n m → suc n ≤ suc m → n ≤ m p≤p zero m p = tt p≤p (suc n) m p = p ≤-refl : ∀ n → n ≤ n ≤-refl zero = tt ≤-refl (suc zero) = tt ≤-refl (suc (suc n)) = ≤-refl (suc n) linearise : ∀ n m → n ≡ m → n ≡ m linearise n m n≡m with discreteℕ n m ... | yes p = p ... | no ¬p = ⊥-elim (¬p n≡m)
algebraic-stack_agda0000_doc_8543
------------------------------------------------------------------------ -- Paths and extensionality ------------------------------------------------------------------------ {-# OPTIONS --erased-cubical --safe #-} module Equality.Path where import Bijection open import Equality hiding (module Derived-definitions-and-properties) open import Equality.Instances-related import Equivalence import Equivalence.Contractible-preimages import Equivalence.Half-adjoint import Function-universe import H-level import H-level.Closure open import Logical-equivalence using (_⇔_) import Preimage open import Prelude import Univalence-axiom ------------------------------------------------------------------------ -- The interval open import Agda.Primitive.Cubical public using (I; Partial; PartialP) renaming (i0 to 0̲; i1 to 1̲; IsOne to Is-one; itIsOne to is-one; primINeg to -_; primIMin to min; primIMax to max; primComp to comp; primHComp to hcomp; primTransp to transport) open import Agda.Builtin.Cubical.Sub public renaming (Sub to _[_↦_]; inc to inˢ; primSubOut to outˢ) ------------------------------------------------------------------------ -- Some local generalisable variables private variable a b c p q ℓ : Level A : Type a B : A → Type b P : I → Type p u v w x y z : A f g h : (x : A) → B x i j : I n : ℕ ------------------------------------------------------------------------ -- Equality -- Homogeneous and heterogeneous equality. open import Agda.Builtin.Cubical.Path public using (_≡_) renaming (PathP to infix 4 [_]_≡_) ------------------------------------------------------------------------ -- Filling -- The code in this section is based on code in the cubical library -- written by Anders Mörtberg. -- Filling for homogenous composition. hfill : {φ : I} (u : I → Partial φ A) (u₀ : A [ φ ↦ u 0̲ ]) → outˢ u₀ ≡ hcomp u (outˢ u₀) hfill {φ = φ} u u₀ = λ i → hcomp (λ j → λ { (φ = 1̲) → u (min i j) is-one ; (i = 0̲) → outˢ u₀ }) (outˢ u₀) -- Filling for heterogeneous composition. -- -- Note that if p had been a constant level, then the final line of -- the type signature could have been replaced by -- [ P ] outˢ u₀ ≡ comp P u u₀. fill : {p : I → Level} (P : ∀ i → Type (p i)) {φ : I} (u : ∀ i → Partial φ (P i)) (u₀ : P 0̲ [ φ ↦ u 0̲ ]) → ∀ i → P i fill P {φ} u u₀ i = comp (λ j → P (min i j)) (λ j → λ { (φ = 1̲) → u (min i j) is-one ; (i = 0̲) → outˢ u₀ }) (outˢ u₀) -- Filling for transport. transport-fill : (A : Type ℓ) (φ : I) (P : (i : I) → Type ℓ [ φ ↦ (λ _ → A) ]) (u₀ : outˢ (P 0̲)) → [ (λ i → outˢ (P i)) ] u₀ ≡ transport (λ i → outˢ (P i)) φ u₀ transport-fill _ φ P u₀ i = transport (λ j → outˢ (P (min i j))) (max (- i) φ) u₀ ------------------------------------------------------------------------ -- Path equality satisfies the axioms of Equality-with-J -- Reflexivity. refl : {@0 A : Type a} {x : A} → x ≡ x refl {x = x} = λ _ → x -- A family of instantiations of Reflexive-relation. reflexive-relation : ∀ ℓ → Reflexive-relation ℓ Reflexive-relation._≡_ (reflexive-relation _) = _≡_ Reflexive-relation.refl (reflexive-relation _) = λ _ → refl -- Symmetry. hsym : [ P ] x ≡ y → [ (λ i → P (- i)) ] y ≡ x hsym x≡y = λ i → x≡y (- i) -- Transitivity. -- -- The proof htransʳ-reflʳ is based on code in Agda's reference manual -- written by Anders Mörtberg. -- -- The proof htrans is suggested in the HoTT book (first version, -- Exercise 6.1). htransʳ : [ P ] x ≡ y → y ≡ z → [ P ] x ≡ z htransʳ {x = x} x≡y y≡z = λ i → hcomp (λ { _ (i = 0̲) → x ; j (i = 1̲) → y≡z j }) (x≡y i) htransˡ : x ≡ y → [ P ] y ≡ z → [ P ] x ≡ z htransˡ x≡y y≡z = hsym (htransʳ (hsym y≡z) (hsym x≡y)) htransʳ-reflʳ : (x≡y : [ P ] x ≡ y) → htransʳ x≡y refl ≡ x≡y htransʳ-reflʳ {x = x} {y = y} x≡y = λ i j → hfill (λ { _ (j = 0̲) → x ; _ (j = 1̲) → y }) (inˢ (x≡y j)) (- i) htransˡ-reflˡ : (x≡y : [ P ] x ≡ y) → htransˡ refl x≡y ≡ x≡y htransˡ-reflˡ = htransʳ-reflʳ htrans : {x≡y : x ≡ y} {y≡z : y ≡ z} (P : A → Type p) {p : P x} {q : P y} {r : P z} → [ (λ i → P (x≡y i)) ] p ≡ q → [ (λ i → P (y≡z i)) ] q ≡ r → [ (λ i → P (htransˡ x≡y y≡z i)) ] p ≡ r htrans {z = z} {x≡y = x≡y} {y≡z = y≡z} P {r = r} p≡q q≡r = λ i → comp (λ j → P (eq j i)) (λ { j (i = 0̲) → p≡q (- j) ; j (i = 1̲) → r }) (q≡r i) where eq : [ (λ i → x≡y (- i) ≡ z) ] y≡z ≡ htransˡ x≡y y≡z eq = λ i j → hfill (λ { i (j = 0̲) → x≡y (- i) ; _ (j = 1̲) → z }) (inˢ (y≡z j)) i -- Some equational reasoning combinators. infix -1 finally finally-h infixr -2 step-≡ step-≡h step-≡hh _≡⟨⟩_ step-≡ : ∀ x → [ P ] y ≡ z → x ≡ y → [ P ] x ≡ z step-≡ _ = flip htransˡ syntax step-≡ x y≡z x≡y = x ≡⟨ x≡y ⟩ y≡z step-≡h : ∀ x → y ≡ z → [ P ] x ≡ y → [ P ] x ≡ z step-≡h _ = flip htransʳ syntax step-≡h x y≡z x≡y = x ≡⟨ x≡y ⟩h y≡z step-≡hh : {x≡y : x ≡ y} {y≡z : y ≡ z} (P : A → Type p) (p : P x) {q : P y} {r : P z} → [ (λ i → P (y≡z i)) ] q ≡ r → [ (λ i → P (x≡y i)) ] p ≡ q → [ (λ i → P (htransˡ x≡y y≡z i)) ] p ≡ r step-≡hh P _ = flip (htrans P) syntax step-≡hh P p q≡r p≡q = p ≡⟨ p≡q ⟩[ P ] q≡r _≡⟨⟩_ : ∀ x → [ P ] x ≡ y → [ P ] x ≡ y _ ≡⟨⟩ x≡y = x≡y finally : (x y : A) → x ≡ y → x ≡ y finally _ _ x≡y = x≡y syntax finally x y x≡y = x ≡⟨ x≡y ⟩∎ y ∎ finally-h : ∀ x y → [ P ] x ≡ y → [ P ] x ≡ y finally-h _ _ x≡y = x≡y syntax finally-h x y x≡y = x ≡⟨ x≡y ⟩∎h y ∎ -- The J rule. elim : (P : {x y : A} → x ≡ y → Type p) → (∀ x → P (refl {x = x})) → (x≡y : x ≡ y) → P x≡y elim {x = x} P p x≡y = transport (λ i → P (λ j → x≡y (min i j))) 0̲ (p x) -- Substitutivity. hsubst : ∀ (Q : ∀ {i} → P i → Type q) → [ P ] x ≡ y → Q x → Q y hsubst Q x≡y p = transport (λ i → Q (x≡y i)) 0̲ p subst : (P : A → Type p) → x ≡ y → P x → P y subst P = hsubst P -- Congruence. -- -- The heterogeneous variant is based on code in the cubical library -- written by Anders Mörtberg. hcong : (f : (x : A) → B x) (x≡y : x ≡ y) → [ (λ i → B (x≡y i)) ] f x ≡ f y hcong f x≡y = λ i → f (x≡y i) cong : {B : Type b} (f : A → B) → x ≡ y → f x ≡ f y cong f = hcong f dcong : (f : (x : A) → B x) (x≡y : x ≡ y) → subst B x≡y (f x) ≡ f y dcong {B = B} f x≡y = λ i → transport (λ j → B (x≡y (max i j))) i (f (x≡y i)) -- Transporting along reflexivity amounts to doing nothing. -- -- This definition is based on code in Agda's reference manual written -- by Anders Mörtberg. transport-refl : ∀ i → transport (λ i → refl {x = A} i) i ≡ id transport-refl {A = A} i = λ j → transport (λ _ → A) (max i j) -- A family of instantiations of Equivalence-relation⁺. -- -- Note that htransˡ is used to implement trans. The reason htransˡ is -- used, rather than htransʳ, is that htransˡ is also used to -- implement the commonly used equational reasoning combinator step-≡, -- and I'd like this combinator to match trans. equivalence-relation⁺ : ∀ ℓ → Equivalence-relation⁺ ℓ equivalence-relation⁺ _ = λ where .Equivalence-relation⁺.reflexive-relation → reflexive-relation _ .Equivalence-relation⁺.sym → hsym .Equivalence-relation⁺.sym-refl → refl .Equivalence-relation⁺.trans → htransˡ .Equivalence-relation⁺.trans-refl-refl → htransˡ-reflˡ _ -- A family of instantiations of Equality-with-J₀. equality-with-J₀ : Equality-with-J₀ a p reflexive-relation Equality-with-J₀.elim equality-with-J₀ = elim Equality-with-J₀.elim-refl equality-with-J₀ = λ _ r → cong (_$ r _) $ transport-refl 0̲ private module Temporarily-local where -- A family of instantiations of Equality-with-J. equality-with-J : Equality-with-J a p equivalence-relation⁺ equality-with-J = λ where .Equality-with-J.equality-with-J₀ → equality-with-J₀ .Equality-with-J.cong → cong .Equality-with-J.cong-refl → λ _ → refl .Equality-with-J.subst → subst .Equality-with-J.subst-refl → λ _ p → cong (_$ p) $ transport-refl 0̲ .Equality-with-J.dcong → dcong .Equality-with-J.dcong-refl → λ _ → refl -- Various derived definitions and properties. open Equality.Derived-definitions-and-properties Temporarily-local.equality-with-J public hiding (_≡_; refl; elim; subst; cong; dcong; step-≡; _≡⟨⟩_; finally; reflexive-relation; equality-with-J₀) ------------------------------------------------------------------------ -- An extended variant of Equality-with-J -- The following variant of Equality-with-J includes functions mapping -- equalities to and from paths. The purpose of this definition is to -- make it possible to instantiate these functions with identity -- functions when paths are used as equalities (see -- equality-with-paths below). record Equality-with-paths a b (e⁺ : ∀ ℓ → Equivalence-relation⁺ ℓ) : Type (lsuc (a ⊔ b)) where field equality-with-J : Equality-with-J a b e⁺ private module R = Reflexive-relation (Equivalence-relation⁺.reflexive-relation (e⁺ a)) field -- A bijection between equality at level a and paths. to-path : x R.≡ y → x ≡ y from-path : x ≡ y → x R.≡ y to-path∘from-path : (x≡y : x ≡ y) → to-path (from-path x≡y) R.≡ x≡y from-path∘to-path : (x≡y : x R.≡ y) → from-path (to-path x≡y) R.≡ x≡y -- The bijection maps reflexivity to reflexivity. to-path-refl : to-path (R.refl x) R.≡ refl from-path-refl : from-path refl R.≡ R.refl x -- A family of instantiations of Equality-with-paths. equality-with-paths : Equality-with-paths a p equivalence-relation⁺ equality-with-paths = λ where .E.equality-with-J → Temporarily-local.equality-with-J .E.to-path → id .E.from-path → id .E.to-path∘from-path → λ _ → refl .E.from-path∘to-path → λ _ → refl .E.to-path-refl → refl .E.from-path-refl → refl where module E = Equality-with-paths -- Equality-with-paths (for arbitrary universe levels) can be derived -- from Equality-with-J (for arbitrary universe levels). Equality-with-J⇒Equality-with-paths : ∀ {e⁺} → (∀ {a p} → Equality-with-J a p e⁺) → (∀ {a p} → Equality-with-paths a p e⁺) Equality-with-J⇒Equality-with-paths eq = λ where .E.equality-with-J → eq .E.to-path → B._↔_.to (proj₁ ≡↔≡′) .E.from-path → B._↔_.from (proj₁ ≡↔≡′) .E.to-path∘from-path → B._↔_.right-inverse-of (proj₁ ≡↔≡′) .E.from-path∘to-path → B._↔_.left-inverse-of (proj₁ ≡↔≡′) .E.to-path-refl → B._↔_.from (proj₁ ≡↔≡′) (proj₁ (proj₂ ≡↔≡′)) .E.from-path-refl → proj₂ (proj₂ ≡↔≡′) where module E = Equality-with-paths module B = Bijection eq ≡↔≡′ = all-equality-types-isomorphic eq Temporarily-local.equality-with-J -- Equality-with-paths (for arbitrary universe levels) can be derived -- from Equality-with-J₀ (for arbitrary universe levels). Equality-with-J₀⇒Equality-with-paths : ∀ {reflexive} → (eq : ∀ {a p} → Equality-with-J₀ a p reflexive) → ∀ {a p} → Equality-with-paths a p (λ _ → J₀⇒Equivalence-relation⁺ eq) Equality-with-J₀⇒Equality-with-paths eq = Equality-with-J⇒Equality-with-paths (J₀⇒J eq) module Derived-definitions-and-properties {e⁺} (equality-with-paths : ∀ {a p} → Equality-with-paths a p e⁺) where private module EP {a} {p} = Equality-with-paths (equality-with-paths {a = a} {p = p}) open EP public using (equality-with-J) private module E = Equality.Derived-definitions-and-properties equality-with-J open Bijection equality-with-J ≡↔≡ : {A : Type a} {x y : A} → x E.≡ y ↔ x ≡ y ≡↔≡ {a = a} = record { surjection = record { logical-equivalence = record { to = EP.to-path {p = a} ; from = EP.from-path } ; right-inverse-of = EP.to-path∘from-path } ; left-inverse-of = EP.from-path∘to-path } -- The isomorphism maps reflexivity to reflexivity. to-≡↔≡-refl : _↔_.to ≡↔≡ (E.refl x) E.≡ refl to-≡↔≡-refl = EP.to-path-refl from-≡↔≡-refl : _↔_.from ≡↔≡ refl E.≡ E.refl x from-≡↔≡-refl = EP.from-path-refl open E public open Temporarily-local public ------------------------------------------------------------------------ -- Extensionality open Equivalence equality-with-J using (Is-equivalence) open H-level.Closure equality-with-J using (ext⁻¹) -- Extensionality. ext : Extensionality a b apply-ext ext f≡g = λ i x → f≡g x i ⟨ext⟩ : Extensionality′ A B ⟨ext⟩ = apply-ext ext -- The function ⟨ext⟩ is an equivalence. ext-is-equivalence : Is-equivalence {A = ∀ x → f x ≡ g x} ⟨ext⟩ ext-is-equivalence = ext⁻¹ , (λ _ → refl) , (λ _ → refl) , (λ _ → refl) private -- Equality rearrangement lemmas for ⟨ext⟩. All of these lemmas hold -- definitionally. ext-refl : ⟨ext⟩ (λ x → refl {x = f x}) ≡ refl ext-refl = refl ext-const : (x≡y : x ≡ y) → ⟨ext⟩ (const {B = A} x≡y) ≡ cong const x≡y ext-const _ = refl cong-ext : (f≡g : ∀ x → f x ≡ g x) → cong (_$ x) (⟨ext⟩ f≡g) ≡ f≡g x cong-ext _ = refl subst-ext : ∀ {p} (f≡g : ∀ x → f x ≡ g x) → subst (λ f → B (f x)) (⟨ext⟩ f≡g) p ≡ subst B (f≡g x) p subst-ext _ = refl elim-ext : {f g : (x : A) → B x} (P : B x → B x → Type p) (p : (y : B x) → P y y) (f≡g : ∀ x → f x ≡ g x) → elim (λ {f g} _ → P (f x) (g x)) (p ∘ (_$ x)) (⟨ext⟩ f≡g) ≡ elim (λ {x y} _ → P x y) p (f≡g x) elim-ext _ _ _ = refl -- I based the statements of the following three lemmas on code in -- the Lean Homotopy Type Theory Library with Jakob von Raumer and -- Floris van Doorn listed as authors. The file was claimed to have -- been ported from the Coq HoTT library. (The third lemma has later -- been generalised.) ext-sym : (f≡g : ∀ x → f x ≡ g x) → ⟨ext⟩ (sym ∘ f≡g) ≡ sym (⟨ext⟩ f≡g) ext-sym _ = refl ext-trans : (f≡g : ∀ x → f x ≡ g x) (g≡h : ∀ x → g x ≡ h x) → ⟨ext⟩ (λ x → trans (f≡g x) (g≡h x)) ≡ trans (⟨ext⟩ f≡g) (⟨ext⟩ g≡h) ext-trans _ _ = refl cong-post-∘-ext : {B : A → Type b} {C : A → Type c} {f g : (x : A) → B x} {h : ∀ {x} → B x → C x} (f≡g : ∀ x → f x ≡ g x) → cong (h ∘_) (⟨ext⟩ f≡g) ≡ ⟨ext⟩ (cong h ∘ f≡g) cong-post-∘-ext _ = refl cong-pre-∘-ext : {B : Type b} {C : B → Type c} {f g : (x : B) → C x} {h : A → B} (f≡g : ∀ x → f x ≡ g x) → cong (_∘ h) (⟨ext⟩ f≡g) ≡ ⟨ext⟩ (f≡g ∘ h) cong-pre-∘-ext _ = refl ------------------------------------------------------------------------ -- Some properties open Bijection equality-with-J using (_↔_) open Function-universe equality-with-J hiding (id; _∘_) open H-level equality-with-J open Univalence-axiom equality-with-J -- There is a dependent path from reflexivity for x to any dependent -- path starting in x. refl≡ : (x≡y : [ P ] x ≡ y) → [ (λ i → [ (λ j → P (min i j)) ] x ≡ x≡y i) ] refl {x = x} ≡ x≡y refl≡ x≡y = λ i j → x≡y (min i j) -- Transporting in one direction and then back amounts to doing -- nothing. transport∘transport : ∀ {p : I → Level} (P : ∀ i → Type (p i)) {p} → transport (λ i → P (- i)) 0̲ (transport P 0̲ p) ≡ p transport∘transport P {p} = hsym λ i → comp (λ j → P (min i (- j))) (λ j → λ { (i = 0̲) → p ; (i = 1̲) → transport (λ k → P (- min j k)) (- j) (transport P 0̲ p) }) (transport (λ j → P (min i j)) (- i) p) -- One form of transporting can be expressed using trans and sym. transport-≡ : {p : x ≡ y} {q : u ≡ v} (r : x ≡ u) → transport (λ i → p i ≡ q i) 0̲ r ≡ trans (sym p) (trans r q) transport-≡ {x = x} {p = p} {q = q} r = elim¹ (λ p → transport (λ i → p i ≡ q i) 0̲ r ≡ trans (sym p) (trans r q)) (transport (λ i → x ≡ q i) 0̲ r ≡⟨⟩ subst (x ≡_) q r ≡⟨ sym trans-subst ⟩ trans r q ≡⟨ sym $ trans-reflˡ _ ⟩ trans refl (trans r q) ≡⟨⟩ trans (sym refl) (trans r q) ∎) p -- The function htrans {x≡y = x≡y} {y≡z = y≡z} (const A) is pointwise -- equal to trans. -- -- Andrea Vezzosi helped me with this proof. htrans-const : (x≡y : x ≡ y) (y≡z : y ≡ z) (p : u ≡ v) {q : v ≡ w} → htrans {x≡y = x≡y} {y≡z = y≡z} (const A) p q ≡ trans p q htrans-const {A = A} {w = w} _ _ p {q = q} = (λ i → comp (λ _ → A) (s i) (q i)) ≡⟨⟩ (λ i → hcomp (λ j x → transport (λ _ → A) j (s i j x)) (transport (λ _ → A) 0̲ (q i))) ≡⟨ (λ k i → hcomp (λ j x → cong (_$ s i j x) (transport-refl j) k) (cong (_$ q i) (transport-refl 0̲) k)) ⟩∎ (λ i → hcomp (s i) (q i)) ∎ where s : ∀ i j → Partial (max i (- i)) A s i = λ where j (i = 0̲) → p (- j) _ (i = 1̲) → w -- The following two lemmas are due to Anders Mörtberg. -- -- Previously Andrea Vezzosi and I had each proved the second lemma in -- much more convoluted ways (starting from a logical equivalence -- proved by Anders; I had also gotten some useful hints from Andrea -- for my proof). -- Heterogeneous equality can be expressed in terms of homogeneous -- equality. heterogeneous≡homogeneous : {P : I → Type p} {p : P 0̲} {q : P 1̲} → ([ P ] p ≡ q) ≡ (transport P 0̲ p ≡ q) heterogeneous≡homogeneous {P = P} {p = p} {q = q} = λ i → [ (λ j → P (max i j)) ] transport (λ j → P (min i j)) (- i) p ≡ q -- A variant of the previous lemma. heterogeneous↔homogeneous : (P : I → Type p) {p : P 0̲} {q : P 1̲} → ([ P ] p ≡ q) ↔ transport P 0̲ p ≡ q heterogeneous↔homogeneous P = subst ([ P ] _ ≡ _ ↔_) heterogeneous≡homogeneous (Bijection.id equality-with-J) -- The function dcong is pointwise equal to an expression involving -- hcong. dcong≡hcong : {B : A → Type b} {x≡y : x ≡ y} (f : (x : A) → B x) → dcong f x≡y ≡ _↔_.to (heterogeneous↔homogeneous (λ i → B (x≡y i))) (hcong f x≡y) dcong≡hcong {B = B} {x≡y = x≡y} f = elim (λ x≡y → dcong f x≡y ≡ _↔_.to (heterogeneous↔homogeneous (λ i → B (x≡y i))) (hcong f x≡y)) (λ x → dcong f (refl {x = x}) ≡⟨⟩ (λ i → transport (λ _ → B x) i (f x)) ≡⟨ (λ i → comp (λ j → transport (λ _ → B x) (- j) (f x) ≡ f x) (λ { j (i = 0̲) → (λ k → transport (λ _ → B x) (max k (- j)) (f x)) ; j (i = 1̲) → transport (λ k → transport (λ _ → B x) (- min k j) (f x) ≡ f x) 0̲ refl }) (transport (λ _ → f x ≡ f x) (- i) refl)) ⟩ transport (λ i → transport (λ _ → B x) (- i) (f x) ≡ f x) 0̲ refl ≡⟨ cong (transport (λ i → transport (λ _ → B x) (- i) (f x) ≡ f x) 0̲ ∘ (_$ refl)) $ sym $ transport-refl 0̲ ⟩ transport (λ i → transport (λ _ → B x) (- i) (f x) ≡ f x) 0̲ (transport (λ _ → f x ≡ f x) 0̲ refl) ≡⟨⟩ _↔_.to (heterogeneous↔homogeneous (λ i → B (refl {x = x} i))) (hcong f (refl {x = x})) ∎) x≡y -- A "computation" rule. from-heterogeneous↔homogeneous-const-refl : (B : A → Type b) {x : A} {y : B x} → _↔_.from (heterogeneous↔homogeneous λ _ → B x) refl ≡ sym (subst-refl B y) from-heterogeneous↔homogeneous-const-refl B {x = x} {y = y} = transport (λ _ → y ≡ transport (λ _ → B x) 0̲ y) 0̲ (transport (λ i → transport (λ _ → B x) i y ≡ transport (λ _ → B x) 0̲ y) 0̲ (λ _ → transport (λ _ → B x) 0̲ y)) ≡⟨ cong (_$ transport (λ i → transport (λ _ → B x) i y ≡ transport (λ _ → B x) 0̲ y) 0̲ (λ _ → transport (λ _ → B x) 0̲ y)) $ transport-refl 0̲ ⟩ transport (λ i → transport (λ _ → B x) i y ≡ transport (λ _ → B x) 0̲ y) 0̲ (λ _ → transport (λ _ → B x) 0̲ y) ≡⟨ transport-≡ (λ _ → transport (λ _ → B x) 0̲ y) ⟩ trans (λ i → transport (λ _ → B x) (- i) y) (trans (λ _ → transport (λ _ → B x) 0̲ y) (λ _ → transport (λ _ → B x) 0̲ y)) ≡⟨ cong (trans (λ i → transport (λ _ → B x) (- i) y)) $ trans-symʳ (λ _ → transport (λ _ → B x) 0̲ y) ⟩ trans (λ i → transport (λ _ → B x) (- i) y) refl ≡⟨ trans-reflʳ _ ⟩∎ (λ i → transport (λ _ → B x) (- i) y) ∎ -- A direct proof of something with the same type as Σ-≡,≡→≡. Σ-≡,≡→≡′ : {p₁ p₂ : Σ A B} → (p : proj₁ p₁ ≡ proj₁ p₂) → subst B p (proj₂ p₁) ≡ proj₂ p₂ → p₁ ≡ p₂ Σ-≡,≡→≡′ {B = B} {p₁ = _ , y₁} {p₂ = _ , y₂} p q i = p i , lemma i where lemma : [ (λ i → B (p i)) ] y₁ ≡ y₂ lemma = _↔_.from (heterogeneous↔homogeneous _) q -- Σ-≡,≡→≡ is pointwise equal to Σ-≡,≡→≡′. Σ-≡,≡→≡≡Σ-≡,≡→≡′ : {B : A → Type b} {p₁ p₂ : Σ A B} {p : proj₁ p₁ ≡ proj₁ p₂} {q : subst B p (proj₂ p₁) ≡ proj₂ p₂} → Σ-≡,≡→≡ {B = B} p q ≡ Σ-≡,≡→≡′ p q Σ-≡,≡→≡≡Σ-≡,≡→≡′ {B = B} {p₁ = p₁} {p₂ = p₂} {p = p} {q = q} = elim₁ (λ p → ∀ {p₁₂} (q : subst B p p₁₂ ≡ proj₂ p₂) → Σ-≡,≡→≡ p q ≡ Σ-≡,≡→≡′ p q) (λ q → Σ-≡,≡→≡ refl q ≡⟨ Σ-≡,≡→≡-reflˡ q ⟩ cong (_ ,_) (trans (sym $ subst-refl B _) q) ≡⟨ cong (cong (_ ,_)) $ elim¹ (λ q → trans (sym $ subst-refl B _) q ≡ _↔_.from (heterogeneous↔homogeneous _) q) ( trans (sym $ subst-refl B _) refl ≡⟨ trans-reflʳ _ ⟩ sym (subst-refl B _) ≡⟨ sym $ from-heterogeneous↔homogeneous-const-refl B ⟩∎ _↔_.from (heterogeneous↔homogeneous _) refl ∎) q ⟩ cong (_ ,_) (_↔_.from (heterogeneous↔homogeneous _) q) ≡⟨⟩ Σ-≡,≡→≡′ refl q ∎) p q -- All instances of an interval-indexed family are equal. index-irrelevant : (P : I → Type p) → P i ≡ P j index-irrelevant {i = i} {j = j} P = λ k → P (max (min i (- k)) (min j k)) -- Positive h-levels of P i can be expressed in terms of the h-levels -- of dependent paths over P. H-level-suc↔H-level[]≡ : {P : I → Type p} → H-level (suc n) (P i) ↔ (∀ x y → H-level n ([ P ] x ≡ y)) H-level-suc↔H-level[]≡ {n = n} {i = i} {P = P} = H-level (suc n) (P i) ↝⟨ H-level-cong ext _ (≡⇒≃ $ index-irrelevant P) ⟩ H-level (suc n) (P 1̲) ↝⟨ inverse $ ≡↔+ _ ext ⟩ ((x y : P 1̲) → H-level n (x ≡ y)) ↝⟨ (Π-cong ext (≡⇒≃ $ index-irrelevant P) λ x → ∀-cong ext λ _ → ≡⇒↝ _ $ cong (λ x → H-level _ (x ≡ _)) ( x ≡⟨ sym $ transport∘transport (λ i → P (- i)) ⟩ transport P 0̲ (transport (λ i → P (- i)) 0̲ x) ≡⟨ cong (λ f → transport P 0̲ (transport (λ i → P (- i)) 0̲ (f x))) $ sym $ transport-refl 0̲ ⟩∎ transport P 0̲ (transport (λ i → P (- i)) 0̲ (transport (λ _ → P 1̲) 0̲ x)) ∎)) ⟩ ((x : P 0̲) (y : P 1̲) → H-level n (transport P 0̲ x ≡ y)) ↝⟨ (∀-cong ext λ x → ∀-cong ext λ y → H-level-cong ext n $ inverse $ heterogeneous↔homogeneous P) ⟩□ ((x : P 0̲) (y : P 1̲) → H-level n ([ P ] x ≡ y)) □ private -- A simple lemma used below. H-level-suc→H-level[]≡ : ∀ n → H-level (1 + n) (P 0̲) → H-level n ([ P ] x ≡ y) H-level-suc→H-level[]≡ {P = P} {x = x} {y = y} n = H-level (1 + n) (P 0̲) ↔⟨ H-level-suc↔H-level[]≡ ⟩ (∀ x y → H-level n ([ P ] x ≡ y)) ↝⟨ (λ f → f _ _) ⟩□ H-level n ([ P ] x ≡ y) □ -- A form of proof irrelevance for paths that are propositional at one -- end-point. heterogeneous-irrelevance₀ : Is-proposition (P 0̲) → [ P ] x ≡ y heterogeneous-irrelevance₀ {P = P} {x = x} {y = y} = Is-proposition (P 0̲) ↝⟨ H-level-suc→H-level[]≡ _ ⟩ Contractible ([ P ] x ≡ y) ↝⟨ proj₁ ⟩□ [ P ] x ≡ y □ -- A form of UIP for squares that are sets on one corner. heterogeneous-UIP₀₀ : {P : I → I → Type p} {x : ∀ i → P i 0̲} {y : ∀ i → P i 1̲} {p : [ (λ j → P 0̲ j) ] x 0̲ ≡ y 0̲} {q : [ (λ j → P 1̲ j) ] x 1̲ ≡ y 1̲} → Is-set (P 0̲ 0̲) → [ (λ i → [ (λ j → P i j) ] x i ≡ y i) ] p ≡ q heterogeneous-UIP₀₀ {P = P} {x = x} {y = y} {p = p} {q = q} = Is-set (P 0̲ 0̲) ↝⟨ H-level-suc→H-level[]≡ 1 ⟩ Is-proposition ([ (λ j → P 0̲ j) ] x 0̲ ≡ y 0̲) ↝⟨ H-level-suc→H-level[]≡ _ ⟩ Contractible ([ (λ i → [ (λ j → P i j) ] x i ≡ y i) ] p ≡ q) ↝⟨ proj₁ ⟩□ [ (λ i → [ (λ j → P i j) ] x i ≡ y i) ] p ≡ q □ -- A variant of heterogeneous-UIP₀₀, "one level up". heterogeneous-UIP₃₀₀ : {P : I → I → I → Type p} {x : ∀ i j → P i j 0̲} {y : ∀ i j → P i j 1̲} {p : ∀ i → [ (λ k → P i 0̲ k) ] x i 0̲ ≡ y i 0̲} {q : ∀ i → [ (λ k → P i 1̲ k) ] x i 1̲ ≡ y i 1̲} {r : [ (λ j → [ (λ k → P 0̲ j k) ] x 0̲ j ≡ y 0̲ j) ] p 0̲ ≡ q 0̲} {s : [ (λ j → [ (λ k → P 1̲ j k) ] x 1̲ j ≡ y 1̲ j) ] p 1̲ ≡ q 1̲} → H-level 3 (P 0̲ 0̲ 0̲) → [ (λ i → [ (λ j → [ (λ k → P i j k) ] x i j ≡ y i j) ] p i ≡ q i) ] r ≡ s heterogeneous-UIP₃₀₀ {P = P} {x = x} {y = y} {p = p} {q = q} {r = r} {s = s} = H-level 3 (P 0̲ 0̲ 0̲) ↝⟨ H-level-suc→H-level[]≡ 2 ⟩ Is-set ([ (λ k → P 0̲ 0̲ k) ] x 0̲ 0̲ ≡ y 0̲ 0̲) ↝⟨ H-level-suc→H-level[]≡ 1 ⟩ Is-proposition ([ (λ j → [ (λ k → P 0̲ j k) ] x 0̲ j ≡ y 0̲ j) ] p 0̲ ≡ q 0̲) ↝⟨ H-level-suc→H-level[]≡ _ ⟩ Contractible ([ (λ i → [ (λ j → [ (λ k → P i j k) ] x i j ≡ y i j) ] p i ≡ q i) ] r ≡ s) ↝⟨ proj₁ ⟩□ [ (λ i → [ (λ j → [ (λ k → P i j k) ] x i j ≡ y i j) ] p i ≡ q i) ] r ≡ s □ -- The following three lemmas can be used to implement the truncation -- cases of (at least some) eliminators for (at least some) HITs. For -- some examples, see H-level.Truncation.Propositional, Quotient and -- Eilenberg-MacLane-space. -- A variant of heterogeneous-irrelevance₀. heterogeneous-irrelevance : {P : A → Type p} → (∀ x → Is-proposition (P x)) → {x≡y : x ≡ y} {p₁ : P x} {p₂ : P y} → [ (λ i → P (x≡y i)) ] p₁ ≡ p₂ heterogeneous-irrelevance {x = x} {P = P} P-prop {x≡y} {p₁} {p₂} = $⟨ P-prop ⟩ (∀ x → Is-proposition (P x)) ↝⟨ _$ _ ⟩ Is-proposition (P x) ↝⟨ heterogeneous-irrelevance₀ ⟩□ [ (λ i → P (x≡y i)) ] p₁ ≡ p₂ □ -- A variant of heterogeneous-UIP₀₀. -- -- The cubical library contains (or used to contain) a lemma with -- basically the same type, but with a seemingly rather different -- proof, implemented by Zesen Qian. heterogeneous-UIP : {P : A → Type p} → (∀ x → Is-set (P x)) → {eq₁ eq₂ : x ≡ y} (eq₃ : eq₁ ≡ eq₂) {p₁ : P x} {p₂ : P y} (eq₄ : [ (λ j → P (eq₁ j)) ] p₁ ≡ p₂) (eq₅ : [ (λ j → P (eq₂ j)) ] p₁ ≡ p₂) → [ (λ i → [ (λ j → P (eq₃ i j)) ] p₁ ≡ p₂) ] eq₄ ≡ eq₅ heterogeneous-UIP {x = x} {P = P} P-set eq₃ {p₁} {p₂} eq₄ eq₅ = $⟨ P-set ⟩ (∀ x → Is-set (P x)) ↝⟨ _$ _ ⟩ Is-set (P x) ↝⟨ heterogeneous-UIP₀₀ ⟩□ [ (λ i → [ (λ j → P (eq₃ i j)) ] p₁ ≡ p₂) ] eq₄ ≡ eq₅ □ -- A variant of heterogeneous-UIP, "one level up". heterogeneous-UIP₃ : {P : A → Type p} → (∀ x → H-level 3 (P x)) → {eq₁ eq₂ : x ≡ y} {eq₃ eq₄ : eq₁ ≡ eq₂} (eq₅ : eq₃ ≡ eq₄) {p₁ : P x} {p₂ : P y} {eq₆ : [ (λ k → P (eq₁ k)) ] p₁ ≡ p₂} {eq₇ : [ (λ k → P (eq₂ k)) ] p₁ ≡ p₂} (eq₈ : [ (λ j → [ (λ k → P (eq₃ j k)) ] p₁ ≡ p₂) ] eq₆ ≡ eq₇) (eq₉ : [ (λ j → [ (λ k → P (eq₄ j k)) ] p₁ ≡ p₂) ] eq₆ ≡ eq₇) → [ (λ i → [ (λ j → [ (λ k → P (eq₅ i j k)) ] p₁ ≡ p₂) ] eq₆ ≡ eq₇) ] eq₈ ≡ eq₉ heterogeneous-UIP₃ {x = x} {P = P} P-groupoid eq₅ {p₁ = p₁} {p₂ = p₂} {eq₆ = eq₆} {eq₇ = eq₇} eq₈ eq₉ = $⟨ P-groupoid ⟩ (∀ x → H-level 3 (P x)) ↝⟨ _$ _ ⟩ H-level 3 (P x) ↝⟨ heterogeneous-UIP₃₀₀ ⟩□ [ (λ i → [ (λ j → [ (λ k → P (eq₅ i j k)) ] p₁ ≡ p₂) ] eq₆ ≡ eq₇) ] eq₈ ≡ eq₉ □
algebraic-stack_agda0000_doc_8512
{-# OPTIONS --without-K #-} open import lib.Basics module lib.types.Sigma where -- Cartesian product _×_ : ∀ {i j} (A : Type i) (B : Type j) → Type (lmax i j) A × B = Σ A (λ _ → B) infixr 5 _×_ module _ {i j} {A : Type i} {B : A → Type j} where pair : (a : A) (b : B a) → Σ A B pair a b = (a , b) -- pair= has already been defined fst= : {ab a'b' : Σ A B} (p : ab == a'b') → (fst ab == fst a'b') fst= = ap fst snd= : {ab a'b' : Σ A B} (p : ab == a'b') → (snd ab == snd a'b' [ B ↓ fst= p ]) snd= {._} {_} idp = idp fst=-β : {a a' : A} (p : a == a') {b : B a} {b' : B a'} (q : b == b' [ B ↓ p ]) → fst= (pair= p q) == p fst=-β idp idp = idp snd=-β : {a a' : A} (p : a == a') {b : B a} {b' : B a'} (q : b == b' [ B ↓ p ]) → snd= (pair= p q) == q [ (λ v → b == b' [ B ↓ v ]) ↓ fst=-β p q ] snd=-β idp idp = idp pair=-η : {ab a'b' : Σ A B} (p : ab == a'b') → p == pair= (fst= p) (snd= p) pair=-η {._} {_} idp = idp pair== : {a a' : A} {p p' : a == a'} (α : p == p') {b : B a} {b' : B a'} {q : b == b' [ B ↓ p ]} {q' : b == b' [ B ↓ p' ]} (β : q == q' [ (λ u → b == b' [ B ↓ u ]) ↓ α ]) → pair= p q == pair= p' q' pair== idp idp = idp module _ {i j} {A : Type i} {B : Type j} where fst×= : {ab a'b' : A × B} (p : ab == a'b') → (fst ab == fst a'b') fst×= = ap fst snd×= : {ab a'b' : A × B} (p : ab == a'b') → (snd ab == snd a'b') snd×= = ap snd fst×=-β : {a a' : A} (p : a == a') {b b' : B} (q : b == b') → fst×= (pair×= p q) == p fst×=-β idp idp = idp snd×=-β : {a a' : A} (p : a == a') {b b' : B} (q : b == b') → snd×= (pair×= p q) == q snd×=-β idp idp = idp pair×=-η : {ab a'b' : A × B} (p : ab == a'b') → p == pair×= (fst×= p) (snd×= p) pair×=-η {._} {_} idp = idp module _ {i j} {A : Type i} {B : A → Type j} where =Σ : (x y : Σ A B) → Type (lmax i j) =Σ (a , b) (a' , b') = Σ (a == a') (λ p → b == b' [ B ↓ p ]) =Σ-eqv : (x y : Σ A B) → (=Σ x y) ≃ (x == y) =Σ-eqv x y = equiv (λ pq → pair= (fst pq) (snd pq)) (λ p → fst= p , snd= p) (λ p → ! (pair=-η p)) (λ pq → pair= (fst=-β (fst pq) (snd pq)) (snd=-β (fst pq) (snd pq))) =Σ-path : (x y : Σ A B) → (=Σ x y) == (x == y) =Σ-path x y = ua (=Σ-eqv x y) Σ= : ∀ {i j} {A A' : Type i} (p : A == A') {B : A → Type j} {B' : A' → Type j} (q : B == B' [ (λ X → (X → Type j)) ↓ p ]) → Σ A B == Σ A' B' Σ= idp idp = idp abstract Σ-level : ∀ {i j} {n : ℕ₋₂} {A : Type i} {P : A → Type j} → (has-level n A → ((x : A) → has-level n (P x)) → has-level n (Σ A P)) Σ-level {n = ⟨-2⟩} p q = ((fst p , (fst (q (fst p)))) , (λ y → pair= (snd p _) (from-transp! _ _ (snd (q _) _)))) Σ-level {n = S n} p q = λ x y → equiv-preserves-level (=Σ-eqv x y) (Σ-level (p _ _) (λ _ → equiv-preserves-level ((to-transp-equiv _ _)⁻¹) (q _ _ _))) ×-level : ∀ {i j} {n : ℕ₋₂} {A : Type i} {B : Type j} → (has-level n A → has-level n B → has-level n (A × B)) ×-level pA pB = Σ-level pA (λ x → pB) -- Equivalences in a Σ-type equiv-Σ-fst : ∀ {i j k} {A : Type i} {B : Type j} (P : B → Type k) {h : A → B} → is-equiv h → (Σ A (P ∘ h)) ≃ (Σ B P) equiv-Σ-fst {A = A} {B = B} P {h = h} e = equiv f g f-g g-f where f : Σ A (P ∘ h) → Σ B P f (a , r) = (h a , r) g : Σ B P → Σ A (P ∘ h) g (b , s) = (is-equiv.g e b , transport P (! (is-equiv.f-g e b)) s) f-g : ∀ y → f (g y) == y f-g (b , s) = pair= (is-equiv.f-g e b) (trans-↓ P (is-equiv.f-g e b) s) g-f : ∀ x → g (f x) == x g-f (a , r) = pair= (is-equiv.g-f e a) (transport (λ q → transport P (! q) r == r [ P ∘ h ↓ is-equiv.g-f e a ]) (is-equiv.adj e a) (trans-ap-↓ P h (is-equiv.g-f e a) r) ) equiv-Σ-snd : ∀ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k} → (∀ x → B x ≃ C x) → Σ A B ≃ Σ A C equiv-Σ-snd {A = A} {B = B} {C = C} k = equiv f g f-g g-f where f : Σ A B → Σ A C f (a , b) = (a , fst (k a) b) g : Σ A C → Σ A B g (a , c) = (a , is-equiv.g (snd (k a)) c) f-g : ∀ p → f (g p) == p f-g (a , c) = pair= idp (is-equiv.f-g (snd (k a)) c) g-f : ∀ p → g (f p) == p g-f (a , b) = pair= idp (is-equiv.g-f (snd (k a)) b) -- Two ways of simultaneously applying equivalences in each component. module _ {i₀ i₁ j₀ j₁} {A₀ : Type i₀} {A₁ : Type i₁} {B₀ : A₀ → Type j₀} {B₁ : A₁ → Type j₁} where equiv-Σ : (u : A₀ ≃ A₁) (v : ∀ a → B₀ (<– u a) ≃ B₁ a) → Σ A₀ B₀ ≃ Σ A₁ B₁ equiv-Σ u v = Σ A₀ B₀ ≃⟨ equiv-Σ-fst _ (snd (u ⁻¹)) ⁻¹ ⟩ Σ A₁ (B₀ ∘ <– u) ≃⟨ equiv-Σ-snd v ⟩ Σ A₁ B₁ ≃∎ equiv-Σ' : (u : A₀ ≃ A₁) (v : ∀ a → B₀ a ≃ B₁ (–> u a)) → Σ A₀ B₀ ≃ Σ A₁ B₁ equiv-Σ' u v = Σ A₀ B₀ ≃⟨ equiv-Σ-snd v ⟩ Σ A₀ (B₁ ∘ –> u) ≃⟨ equiv-Σ-fst _ (snd u) ⟩ Σ A₁ B₁ ≃∎ -- Implementation of [_∙'_] on Σ Σ-∙' : ∀ {i j} {A : Type i} {B : A → Type j} {x y z : A} {p : x == y} {p' : y == z} {u : B x} {v : B y} {w : B z} (q : u == v [ B ↓ p ]) (r : v == w [ B ↓ p' ]) → (pair= p q ∙' pair= p' r) == pair= (p ∙' p') (q ∙'ᵈ r) Σ-∙' {p = idp} {p' = idp} q idp = idp -- Implementation of [_∙_] on Σ Σ-∙ : ∀ {i j} {A : Type i} {B : A → Type j} {x y z : A} {p : x == y} {p' : y == z} {u : B x} {v : B y} {w : B z} (q : u == v [ B ↓ p ]) (r : v == w [ B ↓ p' ]) → (pair= p q ∙ pair= p' r) == pair= (p ∙ p') (q ∙ᵈ r) Σ-∙ {p = idp} {p' = idp} idp r = idp -- Implementation of [!] on Σ Σ-! : ∀ {i j} {A : Type i} {B : A → Type j} {x y : A} {p : x == y} {u : B x} {v : B y} (q : u == v [ B ↓ p ]) → ! (pair= p q) == pair= (! p) (!ᵈ q) Σ-! {p = idp} idp = idp -- Implementation of [_∙'_] on × ×-∙' : ∀ {i j} {A : Type i} {B : Type j} {x y z : A} (p : x == y) (p' : y == z) {u v w : B} (q : u == v) (q' : v == w) → (pair×= p q ∙' pair×= p' q') == pair×= (p ∙' p') (q ∙' q') ×-∙' idp idp q idp = idp -- Implementation of [_∙_] on × ×-∙ : ∀ {i j} {A : Type i} {B : Type j} {x y z : A} (p : x == y) (p' : y == z) {u v w : B} (q : u == v) (q' : v == w) → (pair×= p q ∙ pair×= p' q') == pair×= (p ∙ p') (q ∙ q') ×-∙ idp idp idp r = idp -- Implementation of [!] on × ×-! : ∀ {i j} {A : Type i} {B : Type j} {x y : A} (p : x == y) {u v : B} (q : u == v) → ! (pair×= p q) == pair×= (! p) (! q) ×-! idp idp = idp -- Special case of [ap-,] ap-cst,id : ∀ {i j} {A : Type i} (B : A → Type j) {a : A} {x y : B a} (p : x == y) → ap (λ x → _,_ {B = B} a x) p == pair= idp p ap-cst,id B idp = idp -- hfiber fst == B module _ {i j} {A : Type i} {B : A → Type j} where private to : ∀ a → hfiber (fst :> (Σ A B → A)) a → B a to a ((.a , b) , idp) = b from : ∀ (a : A) → B a → hfiber (fst :> (Σ A B → A)) a from a b = (a , b) , idp to-from : ∀ (a : A) (b : B a) → to a (from a b) == b to-from a b = idp from-to : ∀ a b′ → from a (to a b′) == b′ from-to a ((.a , b) , idp) = idp hfiber-fst : ∀ a → hfiber (fst :> (Σ A B → A)) a ≃ B a hfiber-fst a = to a , is-eq (to a) (from a) (to-from a) (from-to a) {- Dependent paths in a Σ-type -} module _ {i j k} {A : Type i} {B : A → Type j} {C : (a : A) → B a → Type k} where ↓-Σ-in : {x x' : A} {p : x == x'} {r : B x} {r' : B x'} {s : C x r} {s' : C x' r'} (q : r == r' [ B ↓ p ]) → s == s' [ uncurry C ↓ pair= p q ] → (r , s) == (r' , s') [ (λ x → Σ (B x) (C x)) ↓ p ] ↓-Σ-in {p = idp} idp t = pair= idp t ↓-Σ-fst : {x x' : A} {p : x == x'} {r : B x} {r' : B x'} {s : C x r} {s' : C x' r'} → (r , s) == (r' , s') [ (λ x → Σ (B x) (C x)) ↓ p ] → r == r' [ B ↓ p ] ↓-Σ-fst {p = idp} u = fst= u ↓-Σ-snd : {x x' : A} {p : x == x'} {r : B x} {r' : B x'} {s : C x r} {s' : C x' r'} → (u : (r , s) == (r' , s') [ (λ x → Σ (B x) (C x)) ↓ p ]) → s == s' [ uncurry C ↓ pair= p (↓-Σ-fst u) ] ↓-Σ-snd {p = idp} idp = idp ↓-Σ-β-fst : {x x' : A} {p : x == x'} {r : B x} {r' : B x'} {s : C x r} {s' : C x' r'} (q : r == r' [ B ↓ p ]) (t : s == s' [ uncurry C ↓ pair= p q ]) → ↓-Σ-fst (↓-Σ-in q t) == q ↓-Σ-β-fst {p = idp} idp idp = idp ↓-Σ-β-snd : {x x' : A} {p : x == x'} {r : B x} {r' : B x'} {s : C x r} {s' : C x' r'} (q : r == r' [ B ↓ p ]) (t : s == s' [ uncurry C ↓ pair= p q ]) → ↓-Σ-snd (↓-Σ-in q t) == t [ (λ q' → s == s' [ uncurry C ↓ pair= p q' ]) ↓ ↓-Σ-β-fst q t ] ↓-Σ-β-snd {p = idp} idp idp = idp ↓-Σ-η : {x x' : A} {p : x == x'} {r : B x} {r' : B x'} {s : C x r} {s' : C x' r'} (u : (r , s) == (r' , s') [ (λ x → Σ (B x) (C x)) ↓ p ]) → ↓-Σ-in (↓-Σ-fst u) (↓-Σ-snd u) == u ↓-Σ-η {p = idp} idp = idp {- Dependent paths in a ×-type -} module _ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k} where ↓-×-in : {x x' : A} {p : x == x'} {r : B x} {r' : B x'} {s : C x} {s' : C x'} → r == r' [ B ↓ p ] → s == s' [ C ↓ p ] → (r , s) == (r' , s') [ (λ x → B x × C x) ↓ p ] ↓-×-in {p = idp} q t = pair×= q t module _ where -- An orphan lemma. ↓-cst×app-in : ∀ {i j k} {A : Type i} {B : Type j} {C : A → B → Type k} {a₁ a₂ : A} (p : a₁ == a₂) {b₁ b₂ : B} (q : b₁ == b₂) {c₁ : C a₁ b₁}{c₂ : C a₂ b₂} → c₁ == c₂ [ uncurry C ↓ pair×= p q ] → (b₁ , c₁) == (b₂ , c₂) [ (λ x → Σ B (C x)) ↓ p ] ↓-cst×app-in idp idp idp = idp {- pair= and pair×= where one argument is reflexivity -} pair=-idp-l : ∀ {i j} {A : Type i} {B : A → Type j} (a : A) {b₁ b₂ : B a} (q : b₁ == b₂) → pair= {B = B} idp q == ap (λ y → (a , y)) q pair=-idp-l _ idp = idp pair×=-idp-l : ∀ {i j} {A : Type i} {B : Type j} (a : A) {b₁ b₂ : B} (q : b₁ == b₂) → pair×= idp q == ap (λ y → (a , y)) q pair×=-idp-l _ idp = idp pair×=-idp-r : ∀ {i j} {A : Type i} {B : Type j} {a₁ a₂ : A} (p : a₁ == a₂) (b : B) → pair×= p idp == ap (λ x → (x , b)) p pair×=-idp-r idp _ = idp pair×=-split-l : ∀ {i j} {A : Type i} {B : Type j} {a₁ a₂ : A} (p : a₁ == a₂) {b₁ b₂ : B} (q : b₁ == b₂) → pair×= p q == ap (λ a → (a , b₁)) p ∙ ap (λ b → (a₂ , b)) q pair×=-split-l idp idp = idp pair×=-split-r : ∀ {i j} {A : Type i} {B : Type j} {a₁ a₂ : A} (p : a₁ == a₂) {b₁ b₂ : B} (q : b₁ == b₂) → pair×= p q == ap (λ b → (a₁ , b)) q ∙ ap (λ a → (a , b₂)) p pair×=-split-r idp idp = idp -- Commutativity of products and derivatives. module _ {i j} {A : Type i} {B : Type j} where ×-comm : Σ A (λ _ → B) ≃ Σ B (λ _ → A) ×-comm = equiv (λ {(a , b) → (b , a)}) (λ {(b , a) → (a , b)}) (λ _ → idp) (λ _ → idp) module _ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k} where Σ₂-×-comm : Σ (Σ A B) (λ ab → C (fst ab)) ≃ Σ (Σ A C) (λ ac → B (fst ac)) Σ₂-×-comm = Σ-assoc ⁻¹ ∘e equiv-Σ-snd (λ a → ×-comm) ∘e Σ-assoc module _ {i j k} {A : Type i} {B : Type j} {C : A → B → Type k} where Σ₁-×-comm : Σ A (λ a → Σ B (λ b → C a b)) ≃ Σ B (λ b → Σ A (λ a → C a b)) Σ₁-×-comm = Σ-assoc ∘e equiv-Σ-fst _ (snd ×-comm) ∘e Σ-assoc ⁻¹
algebraic-stack_agda0000_doc_8513
{-# OPTIONS --without-K --exact-split --safe #-} module 06-universes where import 05-identity-types open 05-identity-types public -------------------------------------------------------------------------------- -- Section 6.3 Observational equality on the natural numbers -- Definition 6.3.1 Eq-ℕ : ℕ → ℕ → UU lzero Eq-ℕ zero-ℕ zero-ℕ = 𝟙 Eq-ℕ zero-ℕ (succ-ℕ n) = 𝟘 Eq-ℕ (succ-ℕ m) zero-ℕ = 𝟘 Eq-ℕ (succ-ℕ m) (succ-ℕ n) = Eq-ℕ m n -- Lemma 6.3.2 refl-Eq-ℕ : (n : ℕ) → Eq-ℕ n n refl-Eq-ℕ zero-ℕ = star refl-Eq-ℕ (succ-ℕ n) = refl-Eq-ℕ n -- Proposition 6.3.3 Eq-ℕ-eq : {x y : ℕ} → Id x y → Eq-ℕ x y Eq-ℕ-eq {x} {.x} refl = refl-Eq-ℕ x eq-Eq-ℕ : (x y : ℕ) → Eq-ℕ x y → Id x y eq-Eq-ℕ zero-ℕ zero-ℕ e = refl eq-Eq-ℕ (succ-ℕ x) (succ-ℕ y) e = ap succ-ℕ (eq-Eq-ℕ x y e) -------------------------------------------------------------------------------- -- Section 6.4 Peano's seventh and eighth axioms -- Theorem 6.4.1 is-injective-succ-ℕ : (x y : ℕ) → Id (succ-ℕ x) (succ-ℕ y) → Id x y is-injective-succ-ℕ x y e = eq-Eq-ℕ x y (Eq-ℕ-eq e) Peano-7 : (x y : ℕ) → ((Id x y) → (Id (succ-ℕ x) (succ-ℕ y))) × ((Id (succ-ℕ x) (succ-ℕ y)) → (Id x y)) Peano-7 x y = pair (ap succ-ℕ) (is-injective-succ-ℕ x y) -- Theorem 6.4.2 Peano-8 : (x : ℕ) → ¬ (Id zero-ℕ (succ-ℕ x)) Peano-8 x p = Eq-ℕ-eq p -------------------------------------------------------------------------------- -- Exercises -- Exercise 6.1 -- Exercise 6.1 (a) is-injective-add-ℕ : (k m n : ℕ) → Id (add-ℕ m k) (add-ℕ n k) → Id m n is-injective-add-ℕ zero-ℕ m n = id is-injective-add-ℕ (succ-ℕ k) m n p = is-injective-add-ℕ k m n (is-injective-succ-ℕ (add-ℕ m k) (add-ℕ n k) p) -- Exercise 6.1 (b) is-injective-mul-ℕ : (k m n : ℕ) → Id (mul-ℕ m (succ-ℕ k)) (mul-ℕ n (succ-ℕ k)) → Id m n is-injective-mul-ℕ k zero-ℕ zero-ℕ p = refl is-injective-mul-ℕ k (succ-ℕ m) (succ-ℕ n) p = ap succ-ℕ ( is-injective-mul-ℕ k m n ( is-injective-add-ℕ ( succ-ℕ k) ( mul-ℕ m (succ-ℕ k)) ( mul-ℕ n (succ-ℕ k)) ( ( inv (left-successor-law-mul-ℕ m (succ-ℕ k))) ∙ ( ( p) ∙ ( left-successor-law-mul-ℕ n (succ-ℕ k)))))) -- Exercise 6.1 (c) neq-add-ℕ : (m n : ℕ) → ¬ (Id m (add-ℕ m (succ-ℕ n))) neq-add-ℕ (succ-ℕ m) n p = neq-add-ℕ m n ( ( is-injective-succ-ℕ m (add-ℕ (succ-ℕ m) n) p) ∙ ( left-successor-law-add-ℕ m n)) -- Exercise 6.1 (d) neq-mul-ℕ : (m n : ℕ) → ¬ (Id (succ-ℕ m) (mul-ℕ (succ-ℕ m) (succ-ℕ (succ-ℕ n)))) neq-mul-ℕ m n p = neq-add-ℕ ( succ-ℕ m) ( add-ℕ (mul-ℕ m (succ-ℕ n)) n) ( ( p) ∙ ( ( right-successor-law-mul-ℕ (succ-ℕ m) (succ-ℕ n)) ∙ ( ap (add-ℕ (succ-ℕ m)) (left-successor-law-mul-ℕ m (succ-ℕ n))))) -- Exercise 6.2 -- Exercise 6.2 (a) Eq-𝟚 : bool → bool → UU lzero Eq-𝟚 true true = unit Eq-𝟚 true false = empty Eq-𝟚 false true = empty Eq-𝟚 false false = unit -- Exercise 6.2 (b) reflexive-Eq-𝟚 : (x : bool) → Eq-𝟚 x x reflexive-Eq-𝟚 true = star reflexive-Eq-𝟚 false = star Eq-eq-𝟚 : {x y : bool} → Id x y → Eq-𝟚 x y Eq-eq-𝟚 {x = x} refl = reflexive-Eq-𝟚 x eq-Eq-𝟚 : {x y : bool} → Eq-𝟚 x y → Id x y eq-Eq-𝟚 {true} {true} star = refl eq-Eq-𝟚 {false} {false} star = refl -- Exercise 6.2 (c) neq-neg-𝟚 : (b : bool) → ¬ (Id b (neg-𝟚 b)) neq-neg-𝟚 true = Eq-eq-𝟚 neq-neg-𝟚 false = Eq-eq-𝟚 neq-false-true-𝟚 : ¬ (Id false true) neq-false-true-𝟚 = Eq-eq-𝟚 -- Exercise 6.3 -- Exercise 6.3 (a) leq-ℕ : ℕ → ℕ → UU lzero leq-ℕ zero-ℕ m = unit leq-ℕ (succ-ℕ n) zero-ℕ = empty leq-ℕ (succ-ℕ n) (succ-ℕ m) = leq-ℕ n m _≤_ = leq-ℕ -- Some trivialities that will be useful later leq-zero-ℕ : (n : ℕ) → leq-ℕ zero-ℕ n leq-zero-ℕ n = star eq-leq-zero-ℕ : (x : ℕ) → leq-ℕ x zero-ℕ → Id zero-ℕ x eq-leq-zero-ℕ zero-ℕ star = refl succ-leq-ℕ : (n : ℕ) → leq-ℕ n (succ-ℕ n) succ-leq-ℕ zero-ℕ = star succ-leq-ℕ (succ-ℕ n) = succ-leq-ℕ n concatenate-eq-leq-eq-ℕ : {x1 x2 x3 x4 : ℕ} → Id x1 x2 → leq-ℕ x2 x3 → Id x3 x4 → leq-ℕ x1 x4 concatenate-eq-leq-eq-ℕ refl H refl = H concatenate-leq-eq-ℕ : (m : ℕ) {n n' : ℕ} → leq-ℕ m n → Id n n' → leq-ℕ m n' concatenate-leq-eq-ℕ m H refl = H concatenate-eq-leq-ℕ : {m m' : ℕ} (n : ℕ) → Id m' m → leq-ℕ m n → leq-ℕ m' n concatenate-eq-leq-ℕ n refl H = H -- Exercise 6.3 (b) reflexive-leq-ℕ : (n : ℕ) → leq-ℕ n n reflexive-leq-ℕ zero-ℕ = star reflexive-leq-ℕ (succ-ℕ n) = reflexive-leq-ℕ n leq-eq-ℕ : (m n : ℕ) → Id m n → leq-ℕ m n leq-eq-ℕ m .m refl = reflexive-leq-ℕ m transitive-leq-ℕ : (n m l : ℕ) → (n ≤ m) → (m ≤ l) → (n ≤ l) transitive-leq-ℕ zero-ℕ m l p q = star transitive-leq-ℕ (succ-ℕ n) (succ-ℕ m) (succ-ℕ l) p q = transitive-leq-ℕ n m l p q preserves-leq-succ-ℕ : (m n : ℕ) → leq-ℕ m n → leq-ℕ m (succ-ℕ n) preserves-leq-succ-ℕ m n p = transitive-leq-ℕ m n (succ-ℕ n) p (succ-leq-ℕ n) anti-symmetric-leq-ℕ : (m n : ℕ) → leq-ℕ m n → leq-ℕ n m → Id m n anti-symmetric-leq-ℕ zero-ℕ zero-ℕ p q = refl anti-symmetric-leq-ℕ (succ-ℕ m) (succ-ℕ n) p q = ap succ-ℕ (anti-symmetric-leq-ℕ m n p q) -- Exercise 6.3 (c) decide-leq-ℕ : (m n : ℕ) → coprod (leq-ℕ m n) (leq-ℕ n m) decide-leq-ℕ zero-ℕ zero-ℕ = inl star decide-leq-ℕ zero-ℕ (succ-ℕ n) = inl star decide-leq-ℕ (succ-ℕ m) zero-ℕ = inr star decide-leq-ℕ (succ-ℕ m) (succ-ℕ n) = decide-leq-ℕ m n -- Exercise 6.3 (d) preserves-order-add-ℕ : (k m n : ℕ) → leq-ℕ m n → leq-ℕ (add-ℕ m k) (add-ℕ n k) preserves-order-add-ℕ zero-ℕ m n = id preserves-order-add-ℕ (succ-ℕ k) m n = preserves-order-add-ℕ k m n reflects-order-add-ℕ : (k m n : ℕ) → leq-ℕ (add-ℕ m k) (add-ℕ n k) → leq-ℕ m n reflects-order-add-ℕ zero-ℕ m n = id reflects-order-add-ℕ (succ-ℕ k) m n = reflects-order-add-ℕ k m n -- Exercise 6.3 (e) preserves-order-mul-ℕ : (k m n : ℕ) → leq-ℕ m n → leq-ℕ (mul-ℕ m k) (mul-ℕ n k) preserves-order-mul-ℕ k zero-ℕ n p = star preserves-order-mul-ℕ k (succ-ℕ m) (succ-ℕ n) p = preserves-order-add-ℕ k ( mul-ℕ m k) ( mul-ℕ n k) ( preserves-order-mul-ℕ k m n p) reflects-order-mul-ℕ : (k m n : ℕ) → leq-ℕ (mul-ℕ m (succ-ℕ k)) (mul-ℕ n (succ-ℕ k)) → leq-ℕ m n reflects-order-mul-ℕ k zero-ℕ n p = star reflects-order-mul-ℕ k (succ-ℕ m) (succ-ℕ n) p = reflects-order-mul-ℕ k m n ( reflects-order-add-ℕ ( succ-ℕ k) ( mul-ℕ m (succ-ℕ k)) ( mul-ℕ n (succ-ℕ k)) ( p)) -- Exercise 6.3 (f) leq-min-ℕ : (k m n : ℕ) → leq-ℕ k m → leq-ℕ k n → leq-ℕ k (min-ℕ m n) leq-min-ℕ zero-ℕ zero-ℕ zero-ℕ H K = star leq-min-ℕ zero-ℕ zero-ℕ (succ-ℕ n) H K = star leq-min-ℕ zero-ℕ (succ-ℕ m) zero-ℕ H K = star leq-min-ℕ zero-ℕ (succ-ℕ m) (succ-ℕ n) H K = star leq-min-ℕ (succ-ℕ k) (succ-ℕ m) (succ-ℕ n) H K = leq-min-ℕ k m n H K leq-left-leq-min-ℕ : (k m n : ℕ) → leq-ℕ k (min-ℕ m n) → leq-ℕ k m leq-left-leq-min-ℕ zero-ℕ zero-ℕ zero-ℕ H = star leq-left-leq-min-ℕ zero-ℕ zero-ℕ (succ-ℕ n) H = star leq-left-leq-min-ℕ zero-ℕ (succ-ℕ m) zero-ℕ H = star leq-left-leq-min-ℕ zero-ℕ (succ-ℕ m) (succ-ℕ n) H = star leq-left-leq-min-ℕ (succ-ℕ k) (succ-ℕ m) (succ-ℕ n) H = leq-left-leq-min-ℕ k m n H leq-right-leq-min-ℕ : (k m n : ℕ) → leq-ℕ k (min-ℕ m n) → leq-ℕ k n leq-right-leq-min-ℕ zero-ℕ zero-ℕ zero-ℕ H = star leq-right-leq-min-ℕ zero-ℕ zero-ℕ (succ-ℕ n) H = star leq-right-leq-min-ℕ zero-ℕ (succ-ℕ m) zero-ℕ H = star leq-right-leq-min-ℕ zero-ℕ (succ-ℕ m) (succ-ℕ n) H = star leq-right-leq-min-ℕ (succ-ℕ k) (succ-ℕ m) (succ-ℕ n) H = leq-right-leq-min-ℕ k m n H leq-max-ℕ : (k m n : ℕ) → leq-ℕ m k → leq-ℕ n k → leq-ℕ (max-ℕ m n) k leq-max-ℕ zero-ℕ zero-ℕ zero-ℕ H K = star leq-max-ℕ (succ-ℕ k) zero-ℕ zero-ℕ H K = star leq-max-ℕ (succ-ℕ k) zero-ℕ (succ-ℕ n) H K = K leq-max-ℕ (succ-ℕ k) (succ-ℕ m) zero-ℕ H K = H leq-max-ℕ (succ-ℕ k) (succ-ℕ m) (succ-ℕ n) H K = leq-max-ℕ k m n H K leq-left-leq-max-ℕ : (k m n : ℕ) → leq-ℕ (max-ℕ m n) k → leq-ℕ m k leq-left-leq-max-ℕ k zero-ℕ zero-ℕ H = star leq-left-leq-max-ℕ k zero-ℕ (succ-ℕ n) H = star leq-left-leq-max-ℕ k (succ-ℕ m) zero-ℕ H = H leq-left-leq-max-ℕ (succ-ℕ k) (succ-ℕ m) (succ-ℕ n) H = leq-left-leq-max-ℕ k m n H leq-right-leq-max-ℕ : (k m n : ℕ) → leq-ℕ (max-ℕ m n) k → leq-ℕ n k leq-right-leq-max-ℕ k zero-ℕ zero-ℕ H = star leq-right-leq-max-ℕ k zero-ℕ (succ-ℕ n) H = H leq-right-leq-max-ℕ k (succ-ℕ m) zero-ℕ H = star leq-right-leq-max-ℕ (succ-ℕ k) (succ-ℕ m) (succ-ℕ n) H = leq-right-leq-max-ℕ k m n H -- Exercise 6.4 -- Exercise 6.4 (a) -- We define a distance function on ℕ -- dist-ℕ : ℕ → ℕ → ℕ dist-ℕ zero-ℕ n = n dist-ℕ (succ-ℕ m) zero-ℕ = succ-ℕ m dist-ℕ (succ-ℕ m) (succ-ℕ n) = dist-ℕ m n dist-ℕ' : ℕ → ℕ → ℕ dist-ℕ' m n = dist-ℕ n m ap-dist-ℕ : {m n m' n' : ℕ} → Id m m' → Id n n' → Id (dist-ℕ m n) (dist-ℕ m' n') ap-dist-ℕ refl refl = refl {- We show that two natural numbers are equal if and only if their distance is zero. -} eq-dist-ℕ : (m n : ℕ) → Id zero-ℕ (dist-ℕ m n) → Id m n eq-dist-ℕ zero-ℕ zero-ℕ p = refl eq-dist-ℕ (succ-ℕ m) (succ-ℕ n) p = ap succ-ℕ (eq-dist-ℕ m n p) dist-eq-ℕ' : (n : ℕ) → Id zero-ℕ (dist-ℕ n n) dist-eq-ℕ' zero-ℕ = refl dist-eq-ℕ' (succ-ℕ n) = dist-eq-ℕ' n dist-eq-ℕ : (m n : ℕ) → Id m n → Id zero-ℕ (dist-ℕ m n) dist-eq-ℕ m .m refl = dist-eq-ℕ' m -- The distance function is symmetric -- symmetric-dist-ℕ : (m n : ℕ) → Id (dist-ℕ m n) (dist-ℕ n m) symmetric-dist-ℕ zero-ℕ zero-ℕ = refl symmetric-dist-ℕ zero-ℕ (succ-ℕ n) = refl symmetric-dist-ℕ (succ-ℕ m) zero-ℕ = refl symmetric-dist-ℕ (succ-ℕ m) (succ-ℕ n) = symmetric-dist-ℕ m n -- We compute the distance from zero -- left-zero-law-dist-ℕ : (n : ℕ) → Id (dist-ℕ zero-ℕ n) n left-zero-law-dist-ℕ zero-ℕ = refl left-zero-law-dist-ℕ (succ-ℕ n) = refl right-zero-law-dist-ℕ : (n : ℕ) → Id (dist-ℕ n zero-ℕ) n right-zero-law-dist-ℕ zero-ℕ = refl right-zero-law-dist-ℕ (succ-ℕ n) = refl -- We prove the triangle inequality -- ap-add-ℕ : {m n m' n' : ℕ} → Id m m' → Id n n' → Id (add-ℕ m n) (add-ℕ m' n') ap-add-ℕ refl refl = refl triangle-inequality-dist-ℕ : (m n k : ℕ) → leq-ℕ (dist-ℕ m n) (add-ℕ (dist-ℕ m k) (dist-ℕ k n)) triangle-inequality-dist-ℕ zero-ℕ zero-ℕ zero-ℕ = star triangle-inequality-dist-ℕ zero-ℕ zero-ℕ (succ-ℕ k) = star triangle-inequality-dist-ℕ zero-ℕ (succ-ℕ n) zero-ℕ = tr ( leq-ℕ (succ-ℕ n)) ( inv (left-unit-law-add-ℕ (succ-ℕ n))) ( reflexive-leq-ℕ (succ-ℕ n)) triangle-inequality-dist-ℕ zero-ℕ (succ-ℕ n) (succ-ℕ k) = concatenate-eq-leq-eq-ℕ ( inv (ap succ-ℕ (left-zero-law-dist-ℕ n))) ( triangle-inequality-dist-ℕ zero-ℕ n k) ( ( ap (succ-ℕ ∘ (add-ℕ' (dist-ℕ k n))) (left-zero-law-dist-ℕ k)) ∙ ( inv (left-successor-law-add-ℕ k (dist-ℕ k n)))) triangle-inequality-dist-ℕ (succ-ℕ m) zero-ℕ zero-ℕ = reflexive-leq-ℕ (succ-ℕ m) triangle-inequality-dist-ℕ (succ-ℕ m) zero-ℕ (succ-ℕ k) = concatenate-eq-leq-eq-ℕ ( inv (ap succ-ℕ (right-zero-law-dist-ℕ m))) ( triangle-inequality-dist-ℕ m zero-ℕ k) ( ap (succ-ℕ ∘ (add-ℕ (dist-ℕ m k))) (right-zero-law-dist-ℕ k)) triangle-inequality-dist-ℕ (succ-ℕ m) (succ-ℕ n) zero-ℕ = concatenate-leq-eq-ℕ ( dist-ℕ m n) ( transitive-leq-ℕ ( dist-ℕ m n) ( succ-ℕ (add-ℕ (dist-ℕ m zero-ℕ) (dist-ℕ zero-ℕ n))) ( succ-ℕ (succ-ℕ (add-ℕ (dist-ℕ m zero-ℕ) (dist-ℕ zero-ℕ n)))) ( transitive-leq-ℕ ( dist-ℕ m n) ( add-ℕ (dist-ℕ m zero-ℕ) (dist-ℕ zero-ℕ n)) ( succ-ℕ (add-ℕ (dist-ℕ m zero-ℕ) (dist-ℕ zero-ℕ n))) ( triangle-inequality-dist-ℕ m n zero-ℕ) ( succ-leq-ℕ (add-ℕ (dist-ℕ m zero-ℕ) (dist-ℕ zero-ℕ n)))) ( succ-leq-ℕ (succ-ℕ (add-ℕ (dist-ℕ m zero-ℕ) (dist-ℕ zero-ℕ n))))) ( ( ap (succ-ℕ ∘ succ-ℕ) ( ap-add-ℕ (right-zero-law-dist-ℕ m) (left-zero-law-dist-ℕ n))) ∙ ( inv (left-successor-law-add-ℕ m (succ-ℕ n)))) triangle-inequality-dist-ℕ (succ-ℕ m) (succ-ℕ n) (succ-ℕ k) = triangle-inequality-dist-ℕ m n k -- We show that dist-ℕ x y is a solution to a simple equation. leq-dist-ℕ : (x y : ℕ) → leq-ℕ x y → Id (add-ℕ x (dist-ℕ x y)) y leq-dist-ℕ zero-ℕ zero-ℕ H = refl leq-dist-ℕ zero-ℕ (succ-ℕ y) star = left-unit-law-add-ℕ (succ-ℕ y) leq-dist-ℕ (succ-ℕ x) (succ-ℕ y) H = ( left-successor-law-add-ℕ x (dist-ℕ x y)) ∙ ( ap succ-ℕ (leq-dist-ℕ x y H)) rewrite-left-add-dist-ℕ : (x y z : ℕ) → Id (add-ℕ x y) z → Id x (dist-ℕ y z) rewrite-left-add-dist-ℕ zero-ℕ zero-ℕ .zero-ℕ refl = refl rewrite-left-add-dist-ℕ zero-ℕ (succ-ℕ y) .(succ-ℕ (add-ℕ zero-ℕ y)) refl = ( dist-eq-ℕ' y) ∙ ( inv (ap (dist-ℕ (succ-ℕ y)) (left-unit-law-add-ℕ (succ-ℕ y)))) rewrite-left-add-dist-ℕ (succ-ℕ x) zero-ℕ .(succ-ℕ x) refl = refl rewrite-left-add-dist-ℕ (succ-ℕ x) (succ-ℕ y) .(succ-ℕ (add-ℕ (succ-ℕ x) y)) refl = rewrite-left-add-dist-ℕ (succ-ℕ x) y (add-ℕ (succ-ℕ x) y) refl rewrite-left-dist-add-ℕ : (x y z : ℕ) → leq-ℕ y z → Id x (dist-ℕ y z) → Id (add-ℕ x y) z rewrite-left-dist-add-ℕ .(dist-ℕ y z) y z H refl = ( commutative-add-ℕ (dist-ℕ y z) y) ∙ ( leq-dist-ℕ y z H) rewrite-right-add-dist-ℕ : (x y z : ℕ) → Id (add-ℕ x y) z → Id y (dist-ℕ x z) rewrite-right-add-dist-ℕ x y z p = rewrite-left-add-dist-ℕ y x z (commutative-add-ℕ y x ∙ p) rewrite-right-dist-add-ℕ : (x y z : ℕ) → leq-ℕ x z → Id y (dist-ℕ x z) → Id (add-ℕ x y) z rewrite-right-dist-add-ℕ x .(dist-ℕ x z) z H refl = leq-dist-ℕ x z H -- We show that dist-ℕ is translation invariant translation-invariant-dist-ℕ : (k m n : ℕ) → Id (dist-ℕ (add-ℕ k m) (add-ℕ k n)) (dist-ℕ m n) translation-invariant-dist-ℕ zero-ℕ m n = ap-dist-ℕ (left-unit-law-add-ℕ m) (left-unit-law-add-ℕ n) translation-invariant-dist-ℕ (succ-ℕ k) m n = ( ap-dist-ℕ (left-successor-law-add-ℕ k m) (left-successor-law-add-ℕ k n)) ∙ ( translation-invariant-dist-ℕ k m n) -- We show that dist-ℕ is linear with respect to scalar multiplication linear-dist-ℕ : (m n k : ℕ) → Id (dist-ℕ (mul-ℕ k m) (mul-ℕ k n)) (mul-ℕ k (dist-ℕ m n)) linear-dist-ℕ zero-ℕ zero-ℕ zero-ℕ = refl linear-dist-ℕ zero-ℕ zero-ℕ (succ-ℕ k) = linear-dist-ℕ zero-ℕ zero-ℕ k linear-dist-ℕ zero-ℕ (succ-ℕ n) zero-ℕ = refl linear-dist-ℕ zero-ℕ (succ-ℕ n) (succ-ℕ k) = ap (dist-ℕ' (mul-ℕ (succ-ℕ k) (succ-ℕ n))) (right-zero-law-mul-ℕ (succ-ℕ k)) linear-dist-ℕ (succ-ℕ m) zero-ℕ zero-ℕ = refl linear-dist-ℕ (succ-ℕ m) zero-ℕ (succ-ℕ k) = ap (dist-ℕ (mul-ℕ (succ-ℕ k) (succ-ℕ m))) (right-zero-law-mul-ℕ (succ-ℕ k)) linear-dist-ℕ (succ-ℕ m) (succ-ℕ n) zero-ℕ = refl linear-dist-ℕ (succ-ℕ m) (succ-ℕ n) (succ-ℕ k) = ( ap-dist-ℕ ( right-successor-law-mul-ℕ (succ-ℕ k) m) ( right-successor-law-mul-ℕ (succ-ℕ k) n)) ∙ ( ( translation-invariant-dist-ℕ ( succ-ℕ k) ( mul-ℕ (succ-ℕ k) m) ( mul-ℕ (succ-ℕ k) n)) ∙ ( linear-dist-ℕ m n (succ-ℕ k))) -- Exercise 6.6 {- In this exercise we were asked to define the relations ≤ and < on the integers. As a criterion of correctness, we were then also asked to show that the type of all integers l satisfying k ≤ l satisfy the induction principle of the natural numbers. -} diff-ℤ : ℤ → ℤ → ℤ diff-ℤ k l = add-ℤ (neg-ℤ k) l is-non-negative-ℤ : ℤ → UU lzero is-non-negative-ℤ (inl x) = empty is-non-negative-ℤ (inr k) = unit leq-ℤ : ℤ → ℤ → UU lzero leq-ℤ k l = is-non-negative-ℤ (diff-ℤ k l) reflexive-leq-ℤ : (k : ℤ) → leq-ℤ k k reflexive-leq-ℤ k = tr is-non-negative-ℤ (inv (left-inverse-law-add-ℤ k)) star is-non-negative-succ-ℤ : (k : ℤ) → is-non-negative-ℤ k → is-non-negative-ℤ (succ-ℤ k) is-non-negative-succ-ℤ (inr (inl star)) p = star is-non-negative-succ-ℤ (inr (inr x)) p = star is-non-negative-add-ℤ : (k l : ℤ) → is-non-negative-ℤ k → is-non-negative-ℤ l → is-non-negative-ℤ (add-ℤ k l) is-non-negative-add-ℤ (inr (inl star)) (inr (inl star)) p q = star is-non-negative-add-ℤ (inr (inl star)) (inr (inr n)) p q = star is-non-negative-add-ℤ (inr (inr zero-ℕ)) (inr (inl star)) p q = star is-non-negative-add-ℤ (inr (inr (succ-ℕ n))) (inr (inl star)) star star = is-non-negative-succ-ℤ ( add-ℤ (inr (inr n)) (inr (inl star))) ( is-non-negative-add-ℤ (inr (inr n)) (inr (inl star)) star star) is-non-negative-add-ℤ (inr (inr zero-ℕ)) (inr (inr m)) star star = star is-non-negative-add-ℤ (inr (inr (succ-ℕ n))) (inr (inr m)) star star = is-non-negative-succ-ℤ ( add-ℤ (inr (inr n)) (inr (inr m))) ( is-non-negative-add-ℤ (inr (inr n)) (inr (inr m)) star star) triangle-diff-ℤ : (k l m : ℤ) → Id (add-ℤ (diff-ℤ k l) (diff-ℤ l m)) (diff-ℤ k m) triangle-diff-ℤ k l m = ( associative-add-ℤ (neg-ℤ k) l (diff-ℤ l m)) ∙ ( ap ( add-ℤ (neg-ℤ k)) ( ( inv (associative-add-ℤ l (neg-ℤ l) m)) ∙ ( ( ap (λ x → add-ℤ x m) (right-inverse-law-add-ℤ l)) ∙ ( left-unit-law-add-ℤ m)))) transitive-leq-ℤ : (k l m : ℤ) → leq-ℤ k l → leq-ℤ l m → leq-ℤ k m transitive-leq-ℤ k l m p q = tr is-non-negative-ℤ ( triangle-diff-ℤ k l m) ( is-non-negative-add-ℤ ( add-ℤ (neg-ℤ k) l) ( add-ℤ (neg-ℤ l) m) ( p) ( q)) succ-leq-ℤ : (k : ℤ) → leq-ℤ k (succ-ℤ k) succ-leq-ℤ k = tr is-non-negative-ℤ ( inv ( ( right-successor-law-add-ℤ (neg-ℤ k) k) ∙ ( ap succ-ℤ (left-inverse-law-add-ℤ k)))) ( star) leq-ℤ-succ-leq-ℤ : (k l : ℤ) → leq-ℤ k l → leq-ℤ k (succ-ℤ l) leq-ℤ-succ-leq-ℤ k l p = transitive-leq-ℤ k l (succ-ℤ l) p (succ-leq-ℤ l) is-positive-ℤ : ℤ → UU lzero is-positive-ℤ k = is-non-negative-ℤ (pred-ℤ k) le-ℤ : ℤ → ℤ → UU lzero le-ℤ (inl zero-ℕ) (inl x) = empty le-ℤ (inl zero-ℕ) (inr y) = unit le-ℤ (inl (succ-ℕ x)) (inl zero-ℕ) = unit le-ℤ (inl (succ-ℕ x)) (inl (succ-ℕ y)) = le-ℤ (inl x) (inl y) le-ℤ (inl (succ-ℕ x)) (inr y) = unit le-ℤ (inr x) (inl y) = empty le-ℤ (inr (inl star)) (inr (inl star)) = empty le-ℤ (inr (inl star)) (inr (inr x)) = unit le-ℤ (inr (inr x)) (inr (inl star)) = empty le-ℤ (inr (inr zero-ℕ)) (inr (inr zero-ℕ)) = empty le-ℤ (inr (inr zero-ℕ)) (inr (inr (succ-ℕ y))) = unit le-ℤ (inr (inr (succ-ℕ x))) (inr (inr zero-ℕ)) = empty le-ℤ (inr (inr (succ-ℕ x))) (inr (inr (succ-ℕ y))) = le-ℤ (inr (inr x)) (inr (inr y)) -- Extra material -- We show that ℕ is an ordered semi-ring left-law-leq-add-ℕ : (k m n : ℕ) → leq-ℕ m n → leq-ℕ (add-ℕ m k) (add-ℕ n k) left-law-leq-add-ℕ zero-ℕ m n = id left-law-leq-add-ℕ (succ-ℕ k) m n H = left-law-leq-add-ℕ k m n H right-law-leq-add-ℕ : (k m n : ℕ) → leq-ℕ m n → leq-ℕ (add-ℕ k m) (add-ℕ k n) right-law-leq-add-ℕ k m n H = concatenate-eq-leq-eq-ℕ ( commutative-add-ℕ k m) ( left-law-leq-add-ℕ k m n H) ( commutative-add-ℕ n k) preserves-leq-add-ℕ : {m m' n n' : ℕ} → leq-ℕ m m' → leq-ℕ n n' → leq-ℕ (add-ℕ m n) (add-ℕ m' n') preserves-leq-add-ℕ {m} {m'} {n} {n'} H K = transitive-leq-ℕ ( add-ℕ m n) ( add-ℕ m' n) ( add-ℕ m' n') ( left-law-leq-add-ℕ n m m' H) ( right-law-leq-add-ℕ m' n n' K) {- right-law-leq-mul-ℕ : (k m n : ℕ) → leq-ℕ m n → leq-ℕ (mul-ℕ k m) (mul-ℕ k n) right-law-leq-mul-ℕ zero-ℕ m n H = star right-law-leq-mul-ℕ (succ-ℕ k) m n H = {!!} -} {- preserves-leq-add-ℕ { m = mul-ℕ k m} { m' = mul-ℕ k n} ( right-law-leq-mul-ℕ k m n H) H left-law-leq-mul-ℕ : (k m n : ℕ) → leq-ℕ m n → leq-ℕ (mul-ℕ m k) (mul-ℕ n k) left-law-leq-mul-ℕ k m n H = concatenate-eq-leq-eq-ℕ ( commutative-mul-ℕ k m) ( commutative-mul-ℕ k n) ( right-law-leq-mul-ℕ k m n H) -} -- We show that ℤ is an ordered ring {- leq-add-ℤ : (m k l : ℤ) → leq-ℤ k l → leq-ℤ (add-ℤ m k) (add-ℤ m l) leq-add-ℤ (inl zero-ℕ) k l H = {!!} leq-add-ℤ (inl (succ-ℕ x)) k l H = {!!} leq-add-ℤ (inr m) k l H = {!!} -} -- Section 5.5 Identity systems succ-fam-Eq-ℕ : {i : Level} (R : (m n : ℕ) → Eq-ℕ m n → UU i) → (m n : ℕ) → Eq-ℕ m n → UU i succ-fam-Eq-ℕ R m n e = R (succ-ℕ m) (succ-ℕ n) e succ-refl-fam-Eq-ℕ : {i : Level} (R : (m n : ℕ) → Eq-ℕ m n → UU i) (ρ : (n : ℕ) → R n n (refl-Eq-ℕ n)) → (n : ℕ) → (succ-fam-Eq-ℕ R n n (refl-Eq-ℕ n)) succ-refl-fam-Eq-ℕ R ρ n = ρ (succ-ℕ n) path-ind-Eq-ℕ : {i : Level} (R : (m n : ℕ) → Eq-ℕ m n → UU i) ( ρ : (n : ℕ) → R n n (refl-Eq-ℕ n)) → ( m n : ℕ) (e : Eq-ℕ m n) → R m n e path-ind-Eq-ℕ R ρ zero-ℕ zero-ℕ star = ρ zero-ℕ path-ind-Eq-ℕ R ρ zero-ℕ (succ-ℕ n) () path-ind-Eq-ℕ R ρ (succ-ℕ m) zero-ℕ () path-ind-Eq-ℕ R ρ (succ-ℕ m) (succ-ℕ n) e = path-ind-Eq-ℕ ( λ m n e → R (succ-ℕ m) (succ-ℕ n) e) ( λ n → ρ (succ-ℕ n)) m n e comp-path-ind-Eq-ℕ : {i : Level} (R : (m n : ℕ) → Eq-ℕ m n → UU i) ( ρ : (n : ℕ) → R n n (refl-Eq-ℕ n)) → ( n : ℕ) → Id (path-ind-Eq-ℕ R ρ n n (refl-Eq-ℕ n)) (ρ n) comp-path-ind-Eq-ℕ R ρ zero-ℕ = refl comp-path-ind-Eq-ℕ R ρ (succ-ℕ n) = comp-path-ind-Eq-ℕ ( λ m n e → R (succ-ℕ m) (succ-ℕ n) e) ( λ n → ρ (succ-ℕ n)) n {- -- Graphs Gph : (i : Level) → UU (lsuc i) Gph i = Σ (UU i) (λ X → (X → X → (UU i))) -- Reflexive graphs rGph : (i : Level) → UU (lsuc i) rGph i = Σ (UU i) (λ X → Σ (X → X → (UU i)) (λ R → (x : X) → R x x)) -} -- Exercise 3.7 {- With the construction of the divisibility relation we open the door to basic number theory. -} divides : (d n : ℕ) → UU lzero divides d n = Σ ℕ (λ m → Eq-ℕ (mul-ℕ d m) n) -- We prove some lemmas about inequalities -- leq-add-ℕ : (m n : ℕ) → leq-ℕ m (add-ℕ m n) leq-add-ℕ m zero-ℕ = reflexive-leq-ℕ m leq-add-ℕ m (succ-ℕ n) = transitive-leq-ℕ m (add-ℕ m n) (succ-ℕ (add-ℕ m n)) ( leq-add-ℕ m n) ( succ-leq-ℕ (add-ℕ m n)) leq-add-ℕ' : (m n : ℕ) → leq-ℕ m (add-ℕ n m) leq-add-ℕ' m n = concatenate-leq-eq-ℕ m (leq-add-ℕ m n) (commutative-add-ℕ m n) leq-leq-add-ℕ : (m n x : ℕ) → leq-ℕ (add-ℕ m x) (add-ℕ n x) → leq-ℕ m n leq-leq-add-ℕ m n zero-ℕ H = H leq-leq-add-ℕ m n (succ-ℕ x) H = leq-leq-add-ℕ m n x H leq-leq-add-ℕ' : (m n x : ℕ) → leq-ℕ (add-ℕ x m) (add-ℕ x n) → leq-ℕ m n leq-leq-add-ℕ' m n x H = leq-leq-add-ℕ m n x ( concatenate-eq-leq-eq-ℕ ( commutative-add-ℕ m x) ( H) ( commutative-add-ℕ x n)) leq-leq-mul-ℕ : (m n x : ℕ) → leq-ℕ (mul-ℕ (succ-ℕ x) m) (mul-ℕ (succ-ℕ x) n) → leq-ℕ m n leq-leq-mul-ℕ zero-ℕ zero-ℕ x H = star leq-leq-mul-ℕ zero-ℕ (succ-ℕ n) x H = star leq-leq-mul-ℕ (succ-ℕ m) zero-ℕ x H = ex-falso ( concatenate-leq-eq-ℕ ( mul-ℕ (succ-ℕ x) (succ-ℕ m)) ( H) ( right-zero-law-mul-ℕ (succ-ℕ x))) leq-leq-mul-ℕ (succ-ℕ m) (succ-ℕ n) x H = leq-leq-mul-ℕ m n x ( leq-leq-add-ℕ' (mul-ℕ (succ-ℕ x) m) (mul-ℕ (succ-ℕ x) n) (succ-ℕ x) ( concatenate-eq-leq-eq-ℕ ( inv (right-successor-law-mul-ℕ (succ-ℕ x) m)) ( H) ( right-successor-law-mul-ℕ (succ-ℕ x) n))) leq-leq-mul-ℕ' : (m n x : ℕ) → leq-ℕ (mul-ℕ m (succ-ℕ x)) (mul-ℕ n (succ-ℕ x)) → leq-ℕ m n leq-leq-mul-ℕ' m n x H = leq-leq-mul-ℕ m n x ( concatenate-eq-leq-eq-ℕ ( commutative-mul-ℕ (succ-ℕ x) m) ( H) ( commutative-mul-ℕ n (succ-ℕ x))) {- succ-relation-ℕ : {i : Level} (R : ℕ → ℕ → UU i) → ℕ → ℕ → UU i succ-relation-ℕ R m n = R (succ-ℕ m) (succ-ℕ n) succ-reflexivity-ℕ : {i : Level} (R : ℕ → ℕ → UU i) (ρ : (n : ℕ) → R n n) → (n : ℕ) → succ-relation-ℕ R n n succ-reflexivity-ℕ R ρ n = ρ (succ-ℕ n) {- In the book we suggest that first the order of the variables should be swapped, in order to make the inductive hypothesis stronger. Agda's pattern matching mechanism allows us to bypass this step and give a more direct construction. -} least-reflexive-Eq-ℕ : {i : Level} (R : ℕ → ℕ → UU i) (ρ : (n : ℕ) → R n n) → (m n : ℕ) → Eq-ℕ m n → R m n least-reflexive-Eq-ℕ R ρ zero-ℕ zero-ℕ star = ρ zero-ℕ least-reflexive-Eq-ℕ R ρ zero-ℕ (succ-ℕ n) () least-reflexive-Eq-ℕ R ρ (succ-ℕ m) zero-ℕ () least-reflexive-Eq-ℕ R ρ (succ-ℕ m) (succ-ℕ n) e = least-reflexive-Eq-ℕ (succ-relation-ℕ R) (succ-reflexivity-ℕ R ρ) m n e -} -- The definition of < le-ℕ : ℕ → ℕ → UU lzero le-ℕ m zero-ℕ = empty le-ℕ zero-ℕ (succ-ℕ m) = unit le-ℕ (succ-ℕ n) (succ-ℕ m) = le-ℕ n m _<_ = le-ℕ anti-reflexive-le-ℕ : (n : ℕ) → ¬ (n < n) anti-reflexive-le-ℕ zero-ℕ = ind-empty anti-reflexive-le-ℕ (succ-ℕ n) = anti-reflexive-le-ℕ n transitive-le-ℕ : (n m l : ℕ) → (le-ℕ n m) → (le-ℕ m l) → (le-ℕ n l) transitive-le-ℕ zero-ℕ (succ-ℕ m) (succ-ℕ l) p q = star transitive-le-ℕ (succ-ℕ n) (succ-ℕ m) (succ-ℕ l) p q = transitive-le-ℕ n m l p q succ-le-ℕ : (n : ℕ) → le-ℕ n (succ-ℕ n) succ-le-ℕ zero-ℕ = star succ-le-ℕ (succ-ℕ n) = succ-le-ℕ n anti-symmetric-le-ℕ : (m n : ℕ) → le-ℕ m n → le-ℕ n m → Id m n anti-symmetric-le-ℕ (succ-ℕ m) (succ-ℕ n) p q = ap succ-ℕ (anti-symmetric-le-ℕ m n p q) {- -------------------------------------------------------------------------------- data Fin-Tree : UU lzero where constr : (n : ℕ) → (Fin n → Fin-Tree) → Fin-Tree root-Fin-Tree : Fin-Tree root-Fin-Tree = constr zero-ℕ ex-falso succ-Fin-Tree : Fin-Tree → Fin-Tree succ-Fin-Tree t = constr one-ℕ (λ i → t) map-assoc-coprod : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} → coprod (coprod A B) C → coprod A (coprod B C) map-assoc-coprod (inl (inl x)) = inl x map-assoc-coprod (inl (inr x)) = inr (inl x) map-assoc-coprod (inr x) = inr (inr x) map-coprod-Fin : (m n : ℕ) → Fin (add-ℕ m n) → coprod (Fin m) (Fin n) map-coprod-Fin m zero-ℕ = inl map-coprod-Fin m (succ-ℕ n) = map-assoc-coprod ∘ (functor-coprod (map-coprod-Fin m n) (id {A = unit})) add-Fin-Tree : Fin-Tree → Fin-Tree → Fin-Tree add-Fin-Tree (constr n x) (constr m y) = constr (add-ℕ n m) ((ind-coprod (λ i → Fin-Tree) x y) ∘ (map-coprod-Fin n m)) -------------------------------------------------------------------------------- data labeled-Bin-Tree {l1 : Level} (A : UU l1) : UU l1 where leaf : A → labeled-Bin-Tree A constr : (bool → labeled-Bin-Tree A) → labeled-Bin-Tree A mul-leaves-labeled-Bin-Tree : {l1 : Level} {A : UU l1} (μ : A → (A → A)) → labeled-Bin-Tree A → A mul-leaves-labeled-Bin-Tree μ (leaf x) = x mul-leaves-labeled-Bin-Tree μ (constr f) = μ ( mul-leaves-labeled-Bin-Tree μ (f false)) ( mul-leaves-labeled-Bin-Tree μ (f true)) pick-list : {l1 : Level} {A : UU l1} → ℕ → list A → coprod A unit pick-list zero-ℕ nil = inr star pick-list zero-ℕ (cons a x) = inl a pick-list (succ-ℕ n) nil = inr star pick-list (succ-ℕ n) (cons a x) = pick-list n x -}
algebraic-stack_agda0000_doc_8514
{-# OPTIONS --cubical --no-import-sorts --allow-unsolved-metas #-} module Number.Instances.QuoQ.Definitions where open import Agda.Primitive renaming (_⊔_ to ℓ-max; lsuc to ℓ-suc; lzero to ℓ-zero) open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc) open import Cubical.Foundations.Logic renaming (inl to inlᵖ; inr to inrᵖ) open import Cubical.Relation.Nullary.Base renaming (¬_ to ¬ᵗ_) open import Cubical.Relation.Binary.Base open import Cubical.Data.Sum.Base renaming (_⊎_ to infixr 4 _⊎_) open import Cubical.Data.Sigma.Base renaming (_×_ to infixr 4 _×_) open import Cubical.Data.Sigma open import Cubical.Data.Bool as Bool using (Bool; not; true; false) open import Cubical.Data.Empty renaming (elim to ⊥-elim; ⊥ to ⊥⊥) -- `⊥` and `elim` open import Cubical.Foundations.Logic renaming (¬_ to ¬ᵖ_; inl to inlᵖ; inr to inrᵖ) open import Function.Base using (it; _∋_; _$_) open import Cubical.Foundations.Isomorphism open import Cubical.HITs.PropositionalTruncation --.Properties open import Utils using (!_; !!_) open import MoreLogic.Reasoning open import MoreLogic.Definitions open import MoreLogic.Properties open import MorePropAlgebra.Definitions hiding (_≤''_) open import MorePropAlgebra.Structures open import MorePropAlgebra.Bundles open import MorePropAlgebra.Consequences open import Number.Structures2 open import Number.Bundles2 open import Cubical.Data.NatPlusOne using (HasFromNat; 1+_; ℕ₊₁; ℕ₊₁→ℕ) open import Cubical.HITs.SetQuotients as SetQuotient using () renaming (_/_ to _//_) open import Cubical.Data.Nat.Literals open import Cubical.Data.Bool open import Number.Prelude.Nat open import Number.Prelude.QuoInt open import Cubical.HITs.Ints.QuoInt using (HasFromNat) open import Cubical.HITs.Rationals.QuoQ using ( ℚ ; onCommonDenom ; onCommonDenomSym ; eq/ ; _//_ ; _∼_ ) renaming ( [_] to [_]ᶠ ; ℕ₊₁→ℤ to [1+_ⁿ]ᶻ ) abstract private lemma1 : ∀ a b₁ b₂ c → (a ·ᶻ b₁) ·ᶻ (b₂ ·ᶻ c) ≡ (a ·ᶻ c) ·ᶻ (b₂ ·ᶻ b₁) lemma1 a b₁ b₂ c = (a ·ᶻ b₁) ·ᶻ (b₂ ·ᶻ c) ≡⟨ sym $ ·ᶻ-assoc a b₁ (b₂ ·ᶻ c) ⟩ a ·ᶻ (b₁ ·ᶻ (b₂ ·ᶻ c)) ≡⟨ (λ i → a ·ᶻ ·ᶻ-assoc b₁ b₂ c i) ⟩ a ·ᶻ ((b₁ ·ᶻ b₂) ·ᶻ c) ≡⟨ (λ i → a ·ᶻ ·ᶻ-comm (b₁ ·ᶻ b₂) c i) ⟩ a ·ᶻ (c ·ᶻ (b₁ ·ᶻ b₂)) ≡⟨ ·ᶻ-assoc a c (b₁ ·ᶻ b₂) ⟩ (a ·ᶻ c) ·ᶻ (b₁ ·ᶻ b₂) ≡⟨ (λ i → (a ·ᶻ c) ·ᶻ ·ᶻ-comm b₁ b₂ i) ⟩ (a ·ᶻ c) ·ᶻ (b₂ ·ᶻ b₁) ∎ ·ᶻ-commʳ : ∀ a b c → (a ·ᶻ b) ·ᶻ c ≡ (a ·ᶻ c) ·ᶻ b ·ᶻ-commʳ a b c = (a ·ᶻ b) ·ᶻ c ≡⟨ sym $ ·ᶻ-assoc a b c ⟩ a ·ᶻ (b ·ᶻ c) ≡⟨ (λ i → a ·ᶻ ·ᶻ-comm b c i) ⟩ a ·ᶻ (c ·ᶻ b) ≡⟨ ·ᶻ-assoc a c b ⟩ (a ·ᶻ c) ·ᶻ b ∎ ∼-preserves-<ᶻ : ∀ aᶻ aⁿ bᶻ bⁿ → (aᶻ , aⁿ) ∼ (bᶻ , bⁿ) → [ ((aᶻ <ᶻ 0) ⇒ (bᶻ <ᶻ 0)) ⊓ ((0 <ᶻ aᶻ) ⇒ (0 <ᶻ bᶻ)) ] ∼-preserves-<ᶻ aᶻ aⁿ bᶻ bⁿ r = γ where aⁿᶻ = [1+ aⁿ ⁿ]ᶻ bⁿᶻ = [1+ bⁿ ⁿ]ᶻ 0<aⁿᶻ : [ 0 <ᶻ aⁿᶻ ] 0<aⁿᶻ = ℕ₊₁.n aⁿ , +ⁿ-comm (ℕ₊₁.n aⁿ) 1 0<bⁿᶻ : [ 0 <ᶻ bⁿᶻ ] 0<bⁿᶻ = ℕ₊₁.n bⁿ , +ⁿ-comm (ℕ₊₁.n bⁿ) 1 γ : [ ((aᶻ <ᶻ 0) ⇒ (bᶻ <ᶻ 0)) ⊓ ((0 <ᶻ aᶻ) ⇒ (0 <ᶻ bᶻ)) ] γ .fst aᶻ<0 = ( aᶻ <ᶻ 0 ⇒ᵖ⟨ ·ᶻ-preserves-<ᶻ aᶻ 0 bⁿᶻ 0<bⁿᶻ ⟩ aᶻ ·ᶻ bⁿᶻ <ᶻ 0 ·ᶻ bⁿᶻ ⇒ᵖ⟨ (subst (λ p → [ aᶻ ·ᶻ bⁿᶻ <ᶻ p ]) $ ·ᶻ-nullifiesˡ bⁿᶻ) ⟩ aᶻ ·ᶻ bⁿᶻ <ᶻ 0 ⇒ᵖ⟨ subst (λ p → [ p <ᶻ 0 ]) r ⟩ bᶻ ·ᶻ aⁿᶻ <ᶻ 0 ⇒ᵖ⟨ subst (λ p → [ bᶻ ·ᶻ aⁿᶻ <ᶻ p ]) (sym (·ᶻ-nullifiesˡ aⁿᶻ)) ⟩ bᶻ ·ᶻ aⁿᶻ <ᶻ 0 ·ᶻ aⁿᶻ ⇒ᵖ⟨ ·ᶻ-reflects-<ᶻ bᶻ 0 aⁿᶻ 0<aⁿᶻ ⟩ bᶻ <ᶻ 0 ◼ᵖ) .snd aᶻ<0 γ .snd 0<aᶻ = ( 0 <ᶻ aᶻ ⇒ᵖ⟨ ·ᶻ-preserves-<ᶻ 0 aᶻ bⁿᶻ 0<bⁿᶻ ⟩ 0 ·ᶻ bⁿᶻ <ᶻ aᶻ ·ᶻ bⁿᶻ ⇒ᵖ⟨ (subst (λ p → [ p <ᶻ aᶻ ·ᶻ bⁿᶻ ]) $ ·ᶻ-nullifiesˡ bⁿᶻ) ⟩ 0 <ᶻ aᶻ ·ᶻ bⁿᶻ ⇒ᵖ⟨ subst (λ p → [ 0 <ᶻ p ]) r ⟩ 0 <ᶻ bᶻ ·ᶻ aⁿᶻ ⇒ᵖ⟨ subst (λ p → [ p <ᶻ bᶻ ·ᶻ aⁿᶻ ]) (sym (·ᶻ-nullifiesˡ aⁿᶻ)) ⟩ 0 ·ᶻ aⁿᶻ <ᶻ bᶻ ·ᶻ aⁿᶻ ⇒ᵖ⟨ ·ᶻ-reflects-<ᶻ 0 bᶻ aⁿᶻ 0<aⁿᶻ ⟩ 0 <ᶻ bᶻ ◼ᵖ) .snd 0<aᶻ -- < on ℤ × ℕ₊₁ in terms of < on ℤ _<'_ : ℤ × ℕ₊₁ → ℤ × ℕ₊₁ → hProp ℓ-zero (aᶻ , aⁿ) <' (bᶻ , bⁿ) = let aⁿᶻ = [1+ aⁿ ⁿ]ᶻ bⁿᶻ = [1+ bⁿ ⁿ]ᶻ in (aᶻ ·ᶻ bⁿᶻ) <ᶻ (bᶻ ·ᶻ aⁿᶻ) private lem1 : ∀ x y z → [ 0 <ᶻ y ] → [ 0 <ᶻ z ] → (0 <ᶻ (x ·ᶻ y)) ≡ (0 <ᶻ (x ·ᶻ z)) lem1 x y z p q = 0 <ᶻ (x ·ᶻ y) ≡⟨ (λ i → ·ᶻ-nullifiesˡ y (~ i) <ᶻ x ·ᶻ y) ⟩ (0 ·ᶻ y) <ᶻ (x ·ᶻ y) ≡⟨ sym $ ·ᶻ-creates-<ᶻ-≡ 0 x y p ⟩ 0 <ᶻ x ≡⟨ ·ᶻ-creates-<ᶻ-≡ 0 x z q ⟩ (0 ·ᶻ z) <ᶻ (x ·ᶻ z) ≡⟨ (λ i → ·ᶻ-nullifiesˡ z i <ᶻ x ·ᶻ z) ⟩ 0 <ᶻ (x ·ᶻ z) ∎ <'-respects-∼ˡ : ∀ a b x → a ∼ b → a <' x ≡ b <' x <'-respects-∼ˡ a@(aᶻ , aⁿ) b@(bᶻ , bⁿ) x@(xᶻ , xⁿ) a~b = γ where aⁿᶻ = [1+ aⁿ ⁿ]ᶻ; 0<aⁿᶻ : [ 0 <ᶻ aⁿᶻ ]; 0<aⁿᶻ = 0<ᶻpos[suc] _ bⁿᶻ = [1+ bⁿ ⁿ]ᶻ; 0<bⁿᶻ : [ 0 <ᶻ bⁿᶻ ]; 0<bⁿᶻ = 0<ᶻpos[suc] _ xⁿᶻ = [1+ xⁿ ⁿ]ᶻ p : aᶻ ·ᶻ bⁿᶻ ≡ bᶻ ·ᶻ aⁿᶻ p = a~b γ : ((aᶻ ·ᶻ xⁿᶻ) <ᶻ (xᶻ ·ᶻ aⁿᶻ)) ≡ ((bᶻ ·ᶻ xⁿᶻ) <ᶻ (xᶻ ·ᶻ bⁿᶻ)) γ = aᶻ ·ᶻ xⁿᶻ <ᶻ xᶻ ·ᶻ aⁿᶻ ≡⟨ ·ᶻ-creates-<ᶻ-≡ (aᶻ ·ᶻ xⁿᶻ) (xᶻ ·ᶻ aⁿᶻ) bⁿᶻ 0<bⁿᶻ ⟩ aᶻ ·ᶻ xⁿᶻ ·ᶻ bⁿᶻ <ᶻ xᶻ ·ᶻ aⁿᶻ ·ᶻ bⁿᶻ ≡⟨ (λ i → ·ᶻ-commʳ aᶻ xⁿᶻ bⁿᶻ i <ᶻ xᶻ ·ᶻ aⁿᶻ ·ᶻ bⁿᶻ) ⟩ aᶻ ·ᶻ bⁿᶻ ·ᶻ xⁿᶻ <ᶻ xᶻ ·ᶻ aⁿᶻ ·ᶻ bⁿᶻ ≡⟨ (λ i → p i ·ᶻ xⁿᶻ <ᶻ xᶻ ·ᶻ aⁿᶻ ·ᶻ bⁿᶻ) ⟩ bᶻ ·ᶻ aⁿᶻ ·ᶻ xⁿᶻ <ᶻ xᶻ ·ᶻ aⁿᶻ ·ᶻ bⁿᶻ ≡⟨ (λ i → ·ᶻ-commʳ bᶻ aⁿᶻ xⁿᶻ i <ᶻ ·ᶻ-commʳ xᶻ aⁿᶻ bⁿᶻ i) ⟩ bᶻ ·ᶻ xⁿᶻ ·ᶻ aⁿᶻ <ᶻ xᶻ ·ᶻ bⁿᶻ ·ᶻ aⁿᶻ ≡⟨ sym $ ·ᶻ-creates-<ᶻ-≡ (bᶻ ·ᶻ xⁿᶻ) (xᶻ ·ᶻ bⁿᶻ) aⁿᶻ 0<aⁿᶻ ⟩ bᶻ ·ᶻ xⁿᶻ <ᶻ xᶻ ·ᶻ bⁿᶻ ∎ <'-respects-∼ʳ : ∀ x a b → a ∼ b → x <' a ≡ x <' b <'-respects-∼ʳ x@(xᶻ , xⁿ) a@(aᶻ , aⁿ) b@(bᶻ , bⁿ) a~b = let aⁿᶻ = [1+ aⁿ ⁿ]ᶻ; 0<aⁿᶻ : [ 0 <ᶻ aⁿᶻ ]; 0<aⁿᶻ = 0<ᶻpos[suc] _ bⁿᶻ = [1+ bⁿ ⁿ]ᶻ; 0<bⁿᶻ : [ 0 <ᶻ bⁿᶻ ]; 0<bⁿᶻ = 0<ᶻpos[suc] _ xⁿᶻ = [1+ xⁿ ⁿ]ᶻ p : aᶻ ·ᶻ bⁿᶻ ≡ bᶻ ·ᶻ aⁿᶻ p = a~b in xᶻ ·ᶻ aⁿᶻ <ᶻ aᶻ ·ᶻ xⁿᶻ ≡⟨ (λ i → xᶻ ·ᶻ aⁿᶻ <ᶻ ·ᶻ-comm aᶻ xⁿᶻ i) ⟩ xᶻ ·ᶻ aⁿᶻ <ᶻ xⁿᶻ ·ᶻ aᶻ ≡⟨ ·ᶻ-creates-<ᶻ-≡ (xᶻ ·ᶻ aⁿᶻ) (xⁿᶻ ·ᶻ aᶻ) bⁿᶻ 0<bⁿᶻ ⟩ xᶻ ·ᶻ aⁿᶻ ·ᶻ bⁿᶻ <ᶻ xⁿᶻ ·ᶻ aᶻ ·ᶻ bⁿᶻ ≡⟨ (λ i → xᶻ ·ᶻ aⁿᶻ ·ᶻ bⁿᶻ <ᶻ ·ᶻ-assoc xⁿᶻ aᶻ bⁿᶻ (~ i)) ⟩ xᶻ ·ᶻ aⁿᶻ ·ᶻ bⁿᶻ <ᶻ xⁿᶻ ·ᶻ (aᶻ ·ᶻ bⁿᶻ) ≡⟨ (λ i → xᶻ ·ᶻ aⁿᶻ ·ᶻ bⁿᶻ <ᶻ xⁿᶻ ·ᶻ (p i)) ⟩ xᶻ ·ᶻ aⁿᶻ ·ᶻ bⁿᶻ <ᶻ xⁿᶻ ·ᶻ (bᶻ ·ᶻ aⁿᶻ) ≡⟨ (λ i → ·ᶻ-commʳ xᶻ aⁿᶻ bⁿᶻ i <ᶻ ·ᶻ-assoc xⁿᶻ bᶻ aⁿᶻ i) ⟩ xᶻ ·ᶻ bⁿᶻ ·ᶻ aⁿᶻ <ᶻ xⁿᶻ ·ᶻ bᶻ ·ᶻ aⁿᶻ ≡⟨ sym $ ·ᶻ-creates-<ᶻ-≡ (xᶻ ·ᶻ bⁿᶻ) (xⁿᶻ ·ᶻ bᶻ) aⁿᶻ 0<aⁿᶻ ⟩ xᶻ ·ᶻ bⁿᶻ <ᶻ xⁿᶻ ·ᶻ bᶻ ≡⟨ (λ i → xᶻ ·ᶻ bⁿᶻ <ᶻ ·ᶻ-comm xⁿᶻ bᶻ i) ⟩ xᶻ ·ᶻ bⁿᶻ <ᶻ bᶻ ·ᶻ xⁿᶻ ∎ infixl 4 _<_ _<_ : hPropRel ℚ ℚ ℓ-zero a < b = SetQuotient.rec2 {R = _∼_} {B = hProp ℓ-zero} isSetHProp _<'_ <'-respects-∼ˡ <'-respects-∼ʳ a b _≤_ : hPropRel ℚ ℚ ℓ-zero x ≤ y = ¬ᵖ (y < x) min' : ℤ × ℕ₊₁ → ℤ × ℕ₊₁ → ℤ min' (aᶻ , aⁿ) (bᶻ , bⁿ) = let aⁿᶻ = [1+ aⁿ ⁿ]ᶻ bⁿᶻ = [1+ bⁿ ⁿ]ᶻ in minᶻ (aᶻ ·ᶻ bⁿᶻ) (bᶻ ·ᶻ aⁿᶻ) max' : ℤ × ℕ₊₁ → ℤ × ℕ₊₁ → ℤ max' (aᶻ , aⁿ) (bᶻ , bⁿ) = let aⁿᶻ = [1+ aⁿ ⁿ]ᶻ bⁿᶻ = [1+ bⁿ ⁿ]ᶻ in maxᶻ (aᶻ ·ᶻ bⁿᶻ) (bᶻ ·ᶻ aⁿᶻ) min'-sym : ∀ x y → min' x y ≡ min' y x min'-sym (aᶻ , aⁿ) (bᶻ , bⁿ) = minᶻ-comm (aᶻ ·ᶻ [1+ bⁿ ⁿ]ᶻ) (bᶻ ·ᶻ [1+ aⁿ ⁿ]ᶻ) max'-sym : ∀ x y → max' x y ≡ max' y x max'-sym (aᶻ , aⁿ) (bᶻ , bⁿ) = maxᶻ-comm (aᶻ ·ᶻ [1+ bⁿ ⁿ]ᶻ) (bᶻ ·ᶻ [1+ aⁿ ⁿ]ᶻ) min'-respects-∼ : (a@(aᶻ , aⁿ) b@(bᶻ , bⁿ) x@(xᶻ , xⁿ) : ℤ × ℕ₊₁) → a ∼ b → [1+ bⁿ ⁿ]ᶻ ·ᶻ min' a x ≡ [1+ aⁿ ⁿ]ᶻ ·ᶻ min' b x min'-respects-∼ a@(aᶻ , aⁿ) b@(bᶻ , bⁿ) x@(xᶻ , xⁿ) a~b = bⁿᶻ ·ᶻ minᶻ (aᶻ ·ᶻ xⁿᶻ) (xᶻ ·ᶻ aⁿᶻ) ≡⟨ ·ᶻ-minᶻ-distribˡ (aᶻ ·ᶻ xⁿᶻ) (xᶻ ·ᶻ aⁿᶻ) bⁿᶻ 0≤bⁿᶻ ⟩ minᶻ (bⁿᶻ ·ᶻ (aᶻ ·ᶻ xⁿᶻ)) (bⁿᶻ ·ᶻ (xᶻ ·ᶻ aⁿᶻ)) ≡⟨ (λ i → minᶻ (·ᶻ-assoc bⁿᶻ aᶻ xⁿᶻ i) (bⁿᶻ ·ᶻ (xᶻ ·ᶻ aⁿᶻ))) ⟩ minᶻ ((bⁿᶻ ·ᶻ aᶻ) ·ᶻ xⁿᶻ) (bⁿᶻ ·ᶻ (xᶻ ·ᶻ aⁿᶻ)) ≡⟨ (λ i → minᶻ ((·ᶻ-comm bⁿᶻ aᶻ i) ·ᶻ xⁿᶻ) (bⁿᶻ ·ᶻ (xᶻ ·ᶻ aⁿᶻ))) ⟩ minᶻ ((aᶻ ·ᶻ bⁿᶻ) ·ᶻ xⁿᶻ) (bⁿᶻ ·ᶻ (xᶻ ·ᶻ aⁿᶻ)) ≡⟨ (λ i → minᶻ (p i ·ᶻ xⁿᶻ) (bⁿᶻ ·ᶻ (xᶻ ·ᶻ aⁿᶻ))) ⟩ minᶻ ((bᶻ ·ᶻ aⁿᶻ) ·ᶻ xⁿᶻ) (bⁿᶻ ·ᶻ (xᶻ ·ᶻ aⁿᶻ)) ≡⟨ (λ i → minᶻ (·ᶻ-comm bᶻ aⁿᶻ i ·ᶻ xⁿᶻ) (·ᶻ-assoc bⁿᶻ xᶻ aⁿᶻ i)) ⟩ minᶻ ((aⁿᶻ ·ᶻ bᶻ) ·ᶻ xⁿᶻ) ((bⁿᶻ ·ᶻ xᶻ) ·ᶻ aⁿᶻ) ≡⟨ (λ i → minᶻ (·ᶻ-assoc aⁿᶻ bᶻ xⁿᶻ (~ i)) (·ᶻ-comm (bⁿᶻ ·ᶻ xᶻ) aⁿᶻ i)) ⟩ minᶻ (aⁿᶻ ·ᶻ (bᶻ ·ᶻ xⁿᶻ)) (aⁿᶻ ·ᶻ (bⁿᶻ ·ᶻ xᶻ)) ≡⟨ sym $ ·ᶻ-minᶻ-distribˡ (bᶻ ·ᶻ xⁿᶻ) (bⁿᶻ ·ᶻ xᶻ) aⁿᶻ 0≤aⁿᶻ ⟩ aⁿᶻ ·ᶻ minᶻ (bᶻ ·ᶻ xⁿᶻ) (bⁿᶻ ·ᶻ xᶻ) ≡⟨ (λ i → aⁿᶻ ·ᶻ minᶻ (bᶻ ·ᶻ xⁿᶻ) (·ᶻ-comm bⁿᶻ xᶻ i)) ⟩ aⁿᶻ ·ᶻ minᶻ (bᶻ ·ᶻ xⁿᶻ) (xᶻ ·ᶻ bⁿᶻ) ∎ where aⁿᶻ = [1+ aⁿ ⁿ]ᶻ bⁿᶻ = [1+ bⁿ ⁿ]ᶻ xⁿᶻ = [1+ xⁿ ⁿ]ᶻ p : aᶻ ·ᶻ bⁿᶻ ≡ bᶻ ·ᶻ aⁿᶻ p = a~b 0≤aⁿᶻ : [ 0 ≤ᶻ aⁿᶻ ] 0≤aⁿᶻ (k , p) = snotzⁿ $ sym (+ⁿ-suc k _) ∙ p 0≤bⁿᶻ : [ 0 ≤ᶻ bⁿᶻ ] 0≤bⁿᶻ (k , p) = snotzⁿ $ sym (+ⁿ-suc k _) ∙ p -- same proof as for min max'-respects-∼ : (a@(aᶻ , aⁿ) b@(bᶻ , bⁿ) x@(xᶻ , xⁿ) : ℤ × ℕ₊₁) → a ∼ b → [1+ bⁿ ⁿ]ᶻ ·ᶻ max' a x ≡ [1+ aⁿ ⁿ]ᶻ ·ᶻ max' b x max'-respects-∼ a@(aᶻ , aⁿ) b@(bᶻ , bⁿ) x@(xᶻ , xⁿ) a~b = bⁿᶻ ·ᶻ maxᶻ (aᶻ ·ᶻ xⁿᶻ) (xᶻ ·ᶻ aⁿᶻ) ≡⟨ ·ᶻ-maxᶻ-distribˡ (aᶻ ·ᶻ xⁿᶻ) (xᶻ ·ᶻ aⁿᶻ) bⁿᶻ 0≤bⁿᶻ ⟩ maxᶻ (bⁿᶻ ·ᶻ (aᶻ ·ᶻ xⁿᶻ)) (bⁿᶻ ·ᶻ (xᶻ ·ᶻ aⁿᶻ)) ≡⟨ (λ i → maxᶻ (·ᶻ-assoc bⁿᶻ aᶻ xⁿᶻ i) (bⁿᶻ ·ᶻ (xᶻ ·ᶻ aⁿᶻ))) ⟩ maxᶻ ((bⁿᶻ ·ᶻ aᶻ) ·ᶻ xⁿᶻ) (bⁿᶻ ·ᶻ (xᶻ ·ᶻ aⁿᶻ)) ≡⟨ (λ i → maxᶻ ((·ᶻ-comm bⁿᶻ aᶻ i) ·ᶻ xⁿᶻ) (bⁿᶻ ·ᶻ (xᶻ ·ᶻ aⁿᶻ))) ⟩ maxᶻ ((aᶻ ·ᶻ bⁿᶻ) ·ᶻ xⁿᶻ) (bⁿᶻ ·ᶻ (xᶻ ·ᶻ aⁿᶻ)) ≡⟨ (λ i → maxᶻ (p i ·ᶻ xⁿᶻ) (bⁿᶻ ·ᶻ (xᶻ ·ᶻ aⁿᶻ))) ⟩ maxᶻ ((bᶻ ·ᶻ aⁿᶻ) ·ᶻ xⁿᶻ) (bⁿᶻ ·ᶻ (xᶻ ·ᶻ aⁿᶻ)) ≡⟨ (λ i → maxᶻ (·ᶻ-comm bᶻ aⁿᶻ i ·ᶻ xⁿᶻ) (·ᶻ-assoc bⁿᶻ xᶻ aⁿᶻ i)) ⟩ maxᶻ ((aⁿᶻ ·ᶻ bᶻ) ·ᶻ xⁿᶻ) ((bⁿᶻ ·ᶻ xᶻ) ·ᶻ aⁿᶻ) ≡⟨ (λ i → maxᶻ (·ᶻ-assoc aⁿᶻ bᶻ xⁿᶻ (~ i)) (·ᶻ-comm (bⁿᶻ ·ᶻ xᶻ) aⁿᶻ i)) ⟩ maxᶻ (aⁿᶻ ·ᶻ (bᶻ ·ᶻ xⁿᶻ)) (aⁿᶻ ·ᶻ (bⁿᶻ ·ᶻ xᶻ)) ≡⟨ sym $ ·ᶻ-maxᶻ-distribˡ (bᶻ ·ᶻ xⁿᶻ) (bⁿᶻ ·ᶻ xᶻ) aⁿᶻ 0≤aⁿᶻ ⟩ aⁿᶻ ·ᶻ maxᶻ (bᶻ ·ᶻ xⁿᶻ) (bⁿᶻ ·ᶻ xᶻ) ≡⟨ (λ i → aⁿᶻ ·ᶻ maxᶻ (bᶻ ·ᶻ xⁿᶻ) (·ᶻ-comm bⁿᶻ xᶻ i)) ⟩ aⁿᶻ ·ᶻ maxᶻ (bᶻ ·ᶻ xⁿᶻ) (xᶻ ·ᶻ bⁿᶻ) ∎ where aⁿᶻ = [1+ aⁿ ⁿ]ᶻ bⁿᶻ = [1+ bⁿ ⁿ]ᶻ xⁿᶻ = [1+ xⁿ ⁿ]ᶻ p : aᶻ ·ᶻ bⁿᶻ ≡ bᶻ ·ᶻ aⁿᶻ p = a~b 0≤aⁿᶻ : [ 0 ≤ᶻ aⁿᶻ ] 0≤aⁿᶻ (k , p) = snotzⁿ $ sym (+ⁿ-suc k _) ∙ p 0≤bⁿᶻ : [ 0 ≤ᶻ bⁿᶻ ] 0≤bⁿᶻ (k , p) = snotzⁿ $ sym (+ⁿ-suc k _) ∙ p min : ℚ → ℚ → ℚ min a b = onCommonDenomSym min' min'-sym min'-respects-∼ a b max : ℚ → ℚ → ℚ max a b = onCommonDenomSym max' max'-sym max'-respects-∼ a b -- injᶻⁿ⁺¹ : ∀ x → [ 0 <ᶻ x ] → Σ[ y ∈ ℕ₊₁ ] x ≡ [1+ y ⁿ]ᶻ -- injᶻⁿ⁺¹ (signed spos zero) p = ⊥-elim {A = λ _ → Σ[ y ∈ ℕ₊₁ ] ℤ.posneg i0 ≡ [1+ y ⁿ]ᶻ} (¬-<ⁿ-zero p) -- injᶻⁿ⁺¹ (signed sneg zero) p = ⊥-elim {A = λ _ → Σ[ y ∈ ℕ₊₁ ] ℤ.posneg i1 ≡ [1+ y ⁿ]ᶻ} (¬-<ⁿ-zero p) -- injᶻⁿ⁺¹ (ℤ.posneg i) p = ⊥-elim {A = λ _ → Σ[ y ∈ ℕ₊₁ ] ℤ.posneg i ≡ [1+ y ⁿ]ᶻ} (¬-<ⁿ-zero p) -- injᶻⁿ⁺¹ (signed spos (suc n)) p = 1+ n , refl absᶻ⁺¹ : ℤ → ℕ₊₁ absᶻ⁺¹ (pos zero) = 1+ 0 absᶻ⁺¹ (neg zero) = 1+ 0 absᶻ⁺¹ (posneg i) = 1+ 0 absᶻ⁺¹ (pos (suc n)) = 1+ n absᶻ⁺¹ (neg (suc n)) = 1+ n -- absᶻ⁺¹-identity⁺ : ∀ x → [ 0 <ⁿ x ] → [1+ absᶻ⁺¹ (pos x) ⁿ]ᶻ ≡ pos x -- absᶻ⁺¹-identity⁺ zero p = ⊥-elim {A = λ _ → [1+ absᶻ⁺¹ (pos zero) ⁿ]ᶻ ≡ pos zero} (<ⁿ-irrefl 0 p) -- absᶻ⁺¹-identity⁺ (suc x) p = refl -- -- absᶻ⁺¹-identity⁻ : ∀ x → [ 0 <ⁿ x ] → [1+ absᶻ⁺¹ (neg x) ⁿ]ᶻ ≡ pos x -- absᶻ⁺¹-identity⁻ zero p = ⊥-elim {A = λ _ → [1+ absᶻ⁺¹ (neg zero) ⁿ]ᶻ ≡ pos zero} (<ⁿ-irrefl 0 p) -- absᶻ⁺¹-identity⁻ (suc x) p = refl absᶻ⁺¹-identity : ∀ x → [ x #ᶻ 0 ] → [1+ absᶻ⁺¹ x ⁿ]ᶻ ≡ pos (absᶻ x) absᶻ⁺¹-identity (pos zero) p = ⊥-elim {A = λ _ → pos 1 ≡ pos 0} $ #ᶻ⇒≢ (posneg i0) p refl absᶻ⁺¹-identity (neg zero) p = ⊥-elim {A = λ _ → pos 1 ≡ pos 0} $ #ᶻ⇒≢ (posneg i1) p posneg absᶻ⁺¹-identity (posneg i) p = ⊥-elim {A = λ _ → pos 1 ≡ pos 0} $ #ᶻ⇒≢ (posneg i ) p (λ j → posneg (i ∧ j)) absᶻ⁺¹-identity (pos (suc n)) p = refl absᶻ⁺¹-identity (neg (suc n)) p = refl absᶻ⁺¹-identityⁿ : ∀ x → [ x #ᶻ 0 ] → suc (ℕ₊₁.n (absᶻ⁺¹ x)) ≡ absᶻ x absᶻ⁺¹-identityⁿ x p i = absᶻ (absᶻ⁺¹-identity x p i) sign' : ℤ × ℕ₊₁ → Sign sign' (z , n) = signᶻ z sign'-preserves-∼ : (a b : ℤ × ℕ₊₁) → a ∼ b → sign' a ≡ sign' b sign'-preserves-∼ a@(aᶻ , aⁿ) b@(bᶻ , bⁿ) p = sym (lem aᶻ bⁿ) ∙ ψ ∙ lem bᶻ aⁿ where a' = absᶻ aᶻ ·ⁿ suc (ℕ₊₁.n bⁿ) b' = absᶻ bᶻ ·ⁿ suc (ℕ₊₁.n aⁿ) γ : signed (signᶻ aᶻ ⊕ spos) a' ≡ signed (signᶻ bᶻ ⊕ spos) b' γ = p ψ : signᶻ (signed (signᶻ aᶻ ⊕ spos) a') ≡ signᶻ (signed (signᶻ bᶻ ⊕ spos) b') ψ i = signᶻ (γ i) lem : ∀ x y → signᶻ (signed (signᶻ x ⊕ spos) (absᶻ x ·ⁿ suc (ℕ₊₁.n y))) ≡ signᶻ x lem (pos zero) y = refl lem (neg zero) y = refl lem (posneg i) y = refl lem (pos (suc n)) y = refl lem (neg (suc n)) y = refl sign : ℚ → Sign sign = SetQuotient.rec {R = _∼_} {B = Sign} Bool.isSetBool sign' sign'-preserves-∼ sign-signᶻ-identity : ∀ z n → sign [ z , n ]ᶠ ≡ signᶻ z sign-signᶻ-identity z n = refl
algebraic-stack_agda0000_doc_8515
-- TODO: Generalize and move to Structure.Categorical.Proofs module Structure.Category.Proofs where import Lvl open import Data open import Data.Tuple as Tuple using (_,_) open import Functional using (const ; swap ; _$_) open import Lang.Instance open import Logic open import Logic.Propositional open import Logic.Predicate open import Structure.Category open import Structure.Categorical.Names open import Structure.Categorical.Properties import Structure.Operator.Properties as Properties open import Structure.Operator open import Structure.Relator.Equivalence open import Structure.Relator.Properties open import Structure.Setoid open import Syntax.Function open import Syntax.Transitivity open import Type module _ {ℓₒ ℓₘ ℓₑ : Lvl.Level} {Obj : Type{ℓₒ}} {Morphism : Obj → Obj → Type{ℓₘ}} ⦃ morphism-equiv : ∀{x y} → Equiv{ℓₑ}(Morphism x y) ⦄ (cat : Category(Morphism)) where open Category(cat) open Category.ArrowNotation(cat) open Morphism.OperModule(\{x} → _∘_ {x}) open Morphism.IdModule(\{x} → _∘_ {x})(id) private open module [≡]-Equivalence {x}{y} = Equivalence (Equiv-equivalence ⦃ morphism-equiv{x}{y} ⦄) using () private variable x y z : Obj private variable f g h i : x ⟶ y associate4-123-321 : (((f ∘ g) ∘ h) ∘ i ≡ f ∘ (g ∘ (h ∘ i))) associate4-123-321 = Morphism.associativity(_∘_) 🝖 Morphism.associativity(_∘_) associate4-123-213 : (((f ∘ g) ∘ h) ∘ i ≡ (f ∘ (g ∘ h)) ∘ i) associate4-123-213 = congruence₂ₗ(_∘_)(_) (Morphism.associativity(_∘_)) associate4-321-231 : (f ∘ (g ∘ (h ∘ i)) ≡ f ∘ ((g ∘ h) ∘ i)) associate4-321-231 = congruence₂ᵣ(_∘_)(_) (symmetry(_≡_) (Morphism.associativity(_∘_))) associate4-213-121 : ((f ∘ (g ∘ h)) ∘ i ≡ (f ∘ g) ∘ (h ∘ i)) associate4-213-121 = symmetry(_≡_) (congruence₂ₗ(_∘_)(_) (Morphism.associativity(_∘_))) 🝖 Morphism.associativity(_∘_) associate4-231-213 : f ∘ ((g ∘ h) ∘ i) ≡ (f ∘ (g ∘ h)) ∘ i associate4-231-213 = symmetry(_≡_) (Morphism.associativity(_∘_)) associate4-231-123 : f ∘ ((g ∘ h) ∘ i) ≡ ((f ∘ g) ∘ h) ∘ i associate4-231-123 = associate4-231-213 🝖 symmetry(_≡_) associate4-123-213 associate4-231-121 : (f ∘ ((g ∘ h) ∘ i) ≡ (f ∘ g) ∘ (h ∘ i)) associate4-231-121 = congruence₂ᵣ(_∘_)(_) (Morphism.associativity(_∘_)) 🝖 symmetry(_≡_) (Morphism.associativity(_∘_)) id-automorphism : Automorphism(id{x}) ∃.witness id-automorphism = id ∃.proof id-automorphism = intro(Morphism.identityₗ(_∘_)(id)) , intro(Morphism.identityᵣ(_∘_)(id)) inverse-isomorphism : (f : x ⟶ y) → ⦃ _ : Isomorphism(f) ⦄ → Isomorphism(inv f) ∃.witness (inverse-isomorphism f) = f ∃.proof (inverse-isomorphism f) = intro (inverseᵣ(f)(inv f)) , intro (inverseₗ(f)(inv f)) where open Isomorphism(f) module _ ⦃ op : ∀{x y z} → BinaryOperator(_∘_ {x}{y}{z}) ⦄ where op-closed-under-isomorphism : ∀{A B C : Obj} → (f : B ⟶ C) → (g : A ⟶ B) → ⦃ _ : Isomorphism(f) ⦄ → ⦃ _ : Isomorphism(g) ⦄ → Isomorphism(f ∘ g) ∃.witness (op-closed-under-isomorphism f g) = inv g ∘ inv f Tuple.left (∃.proof (op-closed-under-isomorphism f g)) = intro $ (inv g ∘ inv f) ∘ (f ∘ g) 🝖-[ associate4-213-121 ]-sym (inv g ∘ (inv f ∘ f)) ∘ g 🝖-[ congruence₂ₗ(_∘_) ⦃ op ⦄ (g) (congruence₂ᵣ(_∘_) ⦃ op ⦄ (inv g) (Morphism.inverseₗ(_∘_)(id) (f)(inv f))) ] (inv g ∘ id) ∘ g 🝖-[ congruence₂ₗ(_∘_) ⦃ op ⦄ (g) (Morphism.identityᵣ(_∘_)(id)) ] inv g ∘ g 🝖-[ Morphism.inverseₗ(_∘_)(id) (g)(inv g) ] id 🝖-end where open Isomorphism(f) open Isomorphism(g) Tuple.right (∃.proof (op-closed-under-isomorphism f g)) = intro $ (f ∘ g) ∘ (inv g ∘ inv f) 🝖-[ associate4-213-121 ]-sym (f ∘ (g ∘ inv g)) ∘ inv f 🝖-[ congruence₂ₗ(_∘_) ⦃ op ⦄ (_) (congruence₂ᵣ(_∘_) ⦃ op ⦄ (_) (Morphism.inverseᵣ(_∘_)(id) (_)(_))) ] (f ∘ id) ∘ inv f 🝖-[ congruence₂ₗ(_∘_) ⦃ op ⦄ (_) (Morphism.identityᵣ(_∘_)(id)) ] f ∘ inv f 🝖-[ Morphism.inverseᵣ(_∘_)(id) (_)(_) ] id 🝖-end where open Isomorphism(f) open Isomorphism(g) instance Isomorphic-reflexivity : Reflexivity(Isomorphic) ∃.witness (Reflexivity.proof Isomorphic-reflexivity) = id ∃.proof (Reflexivity.proof Isomorphic-reflexivity) = id-automorphism instance Isomorphic-symmetry : Symmetry(Isomorphic) ∃.witness (Symmetry.proof Isomorphic-symmetry iso-xy) = inv(∃.witness iso-xy) ∃.proof (Symmetry.proof Isomorphic-symmetry iso-xy) = inverse-isomorphism(∃.witness iso-xy) module _ ⦃ op : ∀{x y z} → BinaryOperator(_∘_ {x}{y}{z}) ⦄ where instance Isomorphic-transitivity : Transitivity(Isomorphic) ∃.witness (Transitivity.proof Isomorphic-transitivity ([∃]-intro xy) ([∃]-intro yz)) = yz ∘ xy ∃.proof (Transitivity.proof Isomorphic-transitivity ([∃]-intro xy) ([∃]-intro yz)) = op-closed-under-isomorphism ⦃ op ⦄ yz xy instance Isomorphic-equivalence : Equivalence(Isomorphic) Isomorphic-equivalence = record{}
algebraic-stack_agda0000_doc_8516
module OscarEverything where open import OscarPrelude open import HasSubstantiveDischarge
algebraic-stack_agda0000_doc_8517
{-# OPTIONS --cubical --safe #-} module Cardinality.Finite.SplitEnumerable.Instances where open import Cardinality.Finite.SplitEnumerable open import Cardinality.Finite.SplitEnumerable.Inductive open import Cardinality.Finite.ManifestBishop using (_|Π|_) open import Data.Fin open import Prelude open import Data.List.Membership open import Data.Tuple import Data.Unit.UniversePolymorphic as Poly private infixr 4 _?×_ data _?×_ (A : Type a) (B : Type b) : Type (a ℓ⊔ b) where pair : A → B → A ?× B instance poly-inst : ∀ {a} → Poly.⊤ {a} poly-inst = Poly.tt module _ {a b} {A : Type a} (B : A → Type b) where Im-Type : (xs : List A) → Type (a ℓ⊔ b) Im-Type = foldr (λ x xs → ℰ! (B x) ?× xs) Poly.⊤ Tup-Im-Lookup : ∀ x (xs : List A) → x ∈ xs → Im-Type xs → ℰ! (B x) Tup-Im-Lookup x (y ∷ xs) (f0 , y≡x ) (pair ℰ!⟨Bx⟩ _) = subst (ℰ! ∘ B) y≡x ℰ!⟨Bx⟩ Tup-Im-Lookup x (y ∷ xs) (fs n , x∈ys) (pair _ tup) = Tup-Im-Lookup x xs (n , x∈ys) tup Tup-Im-Pi : (xs : ℰ! A) → Im-Type (xs .fst) → ∀ x → ℰ! (B x) Tup-Im-Pi xs tup x = Tup-Im-Lookup x (xs .fst) (xs .snd x) tup instance inst-pair : ⦃ lhs : A ⦄ ⦃ rhs : B ⦄ → A ?× B inst-pair ⦃ lhs ⦄ ⦃ rhs ⦄ = pair lhs rhs instance fin-sigma : ⦃ lhs : ℰ! A ⦄ {B : A → Type b} → ⦃ rhs : Im-Type B (lhs .fst) ⦄ → ℰ! (Σ A B) fin-sigma ⦃ lhs ⦄ ⦃ rhs ⦄ = lhs |Σ| Tup-Im-Pi _ lhs rhs instance fin-pi : ⦃ lhs : ℰ! A ⦄ {B : A → Type b} → ⦃ rhs : Im-Type B (lhs .fst) ⦄ → (ℰ! ((x : A) → B x)) fin-pi ⦃ lhs ⦄ ⦃ rhs ⦄ = lhs |Π| Tup-Im-Pi _ lhs rhs -- instance -- fin-prod : ⦃ lhs : ℰ! A ⦄ ⦃ rhs : ℰ! B ⦄ → ℰ! (A × B) -- fin-prod ⦃ lhs ⦄ ⦃ rhs ⦄ = lhs |×| rhs -- instance -- fin-fun : {A B : Type₀} ⦃ lhs : ℰ! A ⦄ ⦃ rhs : ℰ! B ⦄ → ℰ! (A → B) -- fin-fun ⦃ lhs ⦄ ⦃ rhs ⦄ = lhs |Π| λ _ → rhs instance fin-sum : ⦃ lhs : ℰ! A ⦄ ⦃ rhs : ℰ! B ⦄ → ℰ! (A ⊎ B) fin-sum ⦃ lhs ⦄ ⦃ rhs ⦄ = lhs |⊎| rhs instance fin-bool : ℰ! Bool fin-bool = ℰ!⟨2⟩ instance fin-top : ℰ! ⊤ fin-top = ℰ!⟨⊤⟩ instance fin-bot : ℰ! ⊥ fin-bot = ℰ!⟨⊥⟩ instance fin-fin : ∀ {n} → ℰ! (Fin n) fin-fin = ℰ!⟨Fin⟩
algebraic-stack_agda0000_doc_8518
-- 2012-03-08 Andreas module _ where {-# TERMINATING #-} -- error: misplaced pragma
algebraic-stack_agda0000_doc_8519
-- Andreas, 2014-01-16, issue 1406 -- Agda with K again is inconsistent with classical logic -- {-# OPTIONS --cubical-compatible #-} open import Common.Level open import Common.Prelude open import Common.Equality cast : {A B : Set} (p : A ≡ B) (a : A) → B cast refl a = a data HEq {α} {A : Set α} (a : A) : {B : Set α} (b : B) → Set (lsuc α) where refl : HEq a a mkHet : {A B : Set} (eq : A ≡ B) (a : A) → HEq a (cast eq a) mkHet refl a = refl -- Type with a big forced index. (Allowed unless --cubical-compatible.) -- This definition is allowed in Agda master since 2014-10-17 -- https://github.com/agda/agda/commit/9a4ebdd372dc0510e2d77e726fb0f4e6f56781e8 -- However, probably the consequences of this new feature have not -- been grasped fully yet. data SING : (F : Set → Set) → Set where sing : (F : Set → Set) → SING F -- The following theorem is the culprit. -- It needs K. -- It allows us to unify forced indices, which I think is wrong. thm : ∀{F G : Set → Set} (a : SING F) (b : SING G) (p : HEq a b) → F ≡ G thm (sing F) (sing .F) refl = refl -- Note that a direct matching fails, as it generates heterogeneous constraints. -- thm a .a refl = refl -- However, by matching on the constructor sing, the forced index -- is exposed to unification. -- As a consequence of thm, -- SING is injective which it clearly should not be. SING-inj : ∀ (F G : Set → Set) (p : SING F ≡ SING G) → F ≡ G SING-inj F G p = thm (sing F) _ (mkHet p (sing F)) -- The rest is an adaption of Chung-Kil Hur's proof (2010) data Either {α} (A B : Set α) : Set α where inl : A → Either A B inr : B → Either A B data Inv (A : Set) : Set1 where inv : (F : Set → Set) (eq : SING F ≡ A) → Inv A ¬ : ∀{α} → Set α → Set α ¬ A = A → ⊥ -- Classical logic postulate em : ∀{α} (A : Set α) → Either A (¬ A) Cantor' : (A : Set) → Either (Inv A) (¬ (Inv A)) → Set Cantor' A (inl (inv F eq)) = ¬ (F A) Cantor' A (inr _) = ⊤ Cantor : Set → Set Cantor A = Cantor' A (em (Inv A)) C : Set C = SING Cantor ic : Inv C ic = inv Cantor refl cast' : ∀{F G} → SING F ≡ SING G → ¬ (F C) → ¬ (G C) cast' eq = subst (λ F → ¬ (F C)) (SING-inj _ _ eq) -- Self application 1 diag : ¬ (Cantor C) diag c with em (Inv C) | c diag c | inl (inv F eq) | c' = cast' eq c' c diag _ | inr f | _ = f ic -- Self application 2 diag' : Cantor C diag' with em (Inv C) diag' | inl (inv F eq) = cast' (sym eq) diag diag' | inr _ = _ absurd : ⊥ absurd = diag diag'
algebraic-stack_agda0000_doc_8520
{-# OPTIONS --cubical-compatible #-} ------------------------------------------------------------------------ -- Universe levels ------------------------------------------------------------------------ module Common.Level where open import Agda.Primitive public using (Level; lzero; lsuc; _⊔_) -- Lifting. record Lift {a ℓ} (A : Set a) : Set (a ⊔ ℓ) where constructor lift field lower : A open Lift public
algebraic-stack_agda0000_doc_8521
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} {-# OPTIONS --allow-unsolved-metas #-} -- This module provides some scaffolding to define the handlers for our fake/simple "implementation" -- and connect them to the interface of the SystemModel. open import Optics.All open import LibraBFT.Prelude open import LibraBFT.Lemmas open import LibraBFT.Base.ByteString open import LibraBFT.Base.Encode open import LibraBFT.Base.KVMap open import LibraBFT.Base.PKCS open import LibraBFT.Hash open import LibraBFT.Impl.Base.Types open import LibraBFT.Impl.Consensus.Types open import LibraBFT.Impl.Util.Util open import LibraBFT.Impl.Properties.Aux -- TODO-1: maybe Aux properties should be in this file? open import LibraBFT.Concrete.System impl-sps-avp open import LibraBFT.Concrete.System.Parameters open EpochConfig open import LibraBFT.Yasm.Yasm (ℓ+1 0ℓ) EpochConfig epochId authorsN ConcSysParms NodeId-PK-OK open Structural impl-sps-avp module LibraBFT.Impl.Handle.Properties (hash : BitString → Hash) (hash-cr : ∀{x y} → hash x ≡ hash y → Collision hash x y ⊎ x ≡ y) where open import LibraBFT.Impl.Consensus.ChainedBFT.EventProcessor hash hash-cr open import LibraBFT.Impl.Handle hash hash-cr ----- Properties that bridge the system model gap to the handler ----- msgsToSendWereSent1 : ∀ {pid ts pm vm} {st : EventProcessor} → send (V vm) ∈ proj₂ (peerStep pid (P pm) ts st) → ∃[ αs ] (SendVote vm αs ∈ LBFT-outs (handle pid (P pm) ts) st) msgsToSendWereSent1 {pid} {ts} {pm} {vm} {st} send∈acts with send∈acts -- The fake handler sends only to node 0 (fakeAuthor), so this doesn't -- need to be very general yet. -- TODO-1: generalize this proof so it will work when the set of recipients is -- not hard coded. -- The system model allows any message sent to be received by any peer (so the list of -- recipients it essentially ignored), meaning that our safety proofs will be for a slightly -- stronger model. Progress proofs will require knowledge of recipients, though, so we will -- keep the implementation model faithful to the implementation. ...| here refl = fakeAuthor ∷ [] , here refl msgsToSendWereSent : ∀ {pid ts nm m} {st : EventProcessor} → m ∈ proj₂ (peerStepWrapper pid nm st) → ∃[ vm ] (m ≡ V vm × send (V vm) ∈ proj₂ (peerStep pid nm ts st)) msgsToSendWereSent {pid} {nm = nm} {m} {st} m∈outs with nm ...| C _ = ⊥-elim (¬Any[] m∈outs) ...| V _ = ⊥-elim (¬Any[] m∈outs) ...| P pm with m∈outs ...| here v∈outs with m ...| P _ = ⊥-elim (P≢V v∈outs) ...| C _ = ⊥-elim (C≢V v∈outs) ...| V vm rewrite sym v∈outs = vm , refl , here refl ----- Properties that relate handler to system state ----- postulate -- TODO-2: this will be proved for the implementation, confirming that honest -- participants only store QCs comprising votes that have actually been sent. -- Votes stored in highesQuorumCert and highestCommitCert were sent before. -- Note that some implementations might not ensure this, but LibraBFT does -- because even the leader of the next round sends its own vote to itself, -- as opposed to using it to construct a QC using its own unsent vote. qcVotesSentB4 : ∀{e pid ps vs pk q vm}{st : SystemState e} → ReachableSystemState st → initialised st pid ≡ initd → ps ≡ peerStates st pid → q QC∈VoteMsg vm → vm ^∙ vmSyncInfo ≡ mkSyncInfo (ps ^∙ epHighestQC) (ps ^∙ epHighestCommitQC) → vs ∈ qcVotes q → MsgWithSig∈ pk (proj₂ vs) (msgPool st)
algebraic-stack_agda0000_doc_8522
module utm where open import turing open import Data.Product -- open import Data.Bool open import Data.List open import Data.Nat open import logic data utmStates : Set where reads : utmStates read0 : utmStates read1 : utmStates read2 : utmStates read3 : utmStates read4 : utmStates read5 : utmStates read6 : utmStates loc0 : utmStates loc1 : utmStates loc2 : utmStates loc3 : utmStates loc4 : utmStates loc5 : utmStates loc6 : utmStates fetch0 : utmStates fetch1 : utmStates fetch2 : utmStates fetch3 : utmStates fetch4 : utmStates fetch5 : utmStates fetch6 : utmStates fetch7 : utmStates print0 : utmStates print1 : utmStates print2 : utmStates print3 : utmStates print4 : utmStates print5 : utmStates print6 : utmStates print7 : utmStates mov0 : utmStates mov1 : utmStates mov2 : utmStates mov3 : utmStates mov4 : utmStates mov5 : utmStates mov6 : utmStates tidy0 : utmStates tidy1 : utmStates halt : utmStates data utmΣ : Set where 0 : utmΣ 1 : utmΣ B : utmΣ * : utmΣ $ : utmΣ ^ : utmΣ X : utmΣ Y : utmΣ Z : utmΣ @ : utmΣ b : utmΣ utmδ : utmStates → utmΣ → utmStates × (Write utmΣ) × Move utmδ reads x = read0 , wnone , mnone utmδ read0 * = read1 , write * , left utmδ read0 x = read0 , write x , right utmδ read1 x = read2 , write @ , right utmδ read2 ^ = read3 , write ^ , right utmδ read2 x = read2 , write x , right utmδ read3 0 = read4 , write 0 , left utmδ read3 1 = read5 , write 1 , left utmδ read3 b = read6 , write b , left utmδ read4 @ = loc0 , write 0 , right utmδ read4 x = read4 , write x , left utmδ read5 @ = loc0 , write 1 , right utmδ read5 x = read5 , write x , left utmδ read6 @ = loc0 , write B , right utmδ read6 x = read6 , write x , left utmδ loc0 0 = loc0 , write X , left utmδ loc0 1 = loc0 , write Y , left utmδ loc0 B = loc0 , write Z , left utmδ loc0 $ = loc1 , write $ , right utmδ loc0 x = loc0 , write x , left utmδ loc1 X = loc2 , write 0 , right utmδ loc1 Y = loc3 , write 1 , right utmδ loc1 Z = loc4 , write B , right utmδ loc1 * = fetch0 , write * , right utmδ loc1 x = loc1 , write x , right utmδ loc2 0 = loc5 , write X , right utmδ loc2 1 = loc6 , write Y , right utmδ loc2 B = loc6 , write Z , right utmδ loc2 x = loc2 , write x , right utmδ loc3 1 = loc5 , write Y , right utmδ loc3 0 = loc6 , write X , right utmδ loc3 B = loc6 , write Z , right utmδ loc3 x = loc3 , write x , right utmδ loc4 B = loc5 , write Z , right utmδ loc4 0 = loc6 , write X , right utmδ loc4 1 = loc6 , write Y , right utmδ loc4 x = loc4 , write x , right utmδ loc5 $ = loc1 , write $ , right utmδ loc5 x = loc5 , write x , left utmδ loc6 $ = halt , write $ , right utmδ loc6 * = loc0 , write * , left utmδ loc6 x = loc6 , write x , right utmδ fetch0 0 = fetch1 , write X , left utmδ fetch0 1 = fetch2 , write Y , left utmδ fetch0 B = fetch3 , write Z , left utmδ fetch0 x = fetch0 , write x , right utmδ fetch1 $ = fetch4 , write $ , right utmδ fetch1 x = fetch1 , write x , left utmδ fetch2 $ = fetch5 , write $ , right utmδ fetch2 x = fetch2 , write x , left utmδ fetch3 $ = fetch6 , write $ , right utmδ fetch3 x = fetch3 , write x , left utmδ fetch4 0 = fetch7 , write X , right utmδ fetch4 1 = fetch7 , write X , right utmδ fetch4 B = fetch7 , write X , right utmδ fetch4 * = print0 , write * , left utmδ fetch4 x = fetch4 , write x , right utmδ fetch5 0 = fetch7 , write Y , right utmδ fetch5 1 = fetch7 , write Y , right utmδ fetch5 B = fetch7 , write Y , right utmδ fetch5 * = print0 , write * , left utmδ fetch5 x = fetch5 , write x , right utmδ fetch6 0 = fetch7 , write Z , right utmδ fetch6 1 = fetch7 , write Z , right utmδ fetch6 B = fetch7 , write Z , right utmδ fetch6 * = print0 , write * , left utmδ fetch6 x = fetch6 , write x , right utmδ fetch7 * = fetch0 , write * , right utmδ fetch7 x = fetch7 , write x , right utmδ print0 X = print1 , write X , right utmδ print0 Y = print2 , write Y , right utmδ print0 Z = print3 , write Z , right utmδ print1 ^ = print4 , write ^ , right utmδ print1 x = print1 , write x , right utmδ print2 ^ = print5 , write ^ , right utmδ print2 x = print2 , write x , right utmδ print3 ^ = print6 , write ^ , right utmδ print3 x = print3 , write x , right utmδ print4 x = print7 , write 0 , left utmδ print5 x = print7 , write 1 , left utmδ print6 x = print7 , write B , left utmδ print7 X = mov0 , write X , right utmδ print7 Y = mov1 , write Y , right utmδ print7 x = print7 , write x , left utmδ mov0 ^ = mov2 , write ^ , left utmδ mov0 x = mov0 , write x , right utmδ mov1 ^ = mov3 , write ^ , right utmδ mov1 x = mov1 , write x , right utmδ mov2 0 = mov4 , write ^ , right utmδ mov2 1 = mov5 , write ^ , right utmδ mov2 B = mov6 , write ^ , right utmδ mov3 0 = mov4 , write ^ , left utmδ mov3 1 = mov5 , write ^ , left utmδ mov3 B = mov6 , write ^ , left utmδ mov4 ^ = tidy0 , write 0 , left utmδ mov5 ^ = tidy0 , write 1 , left utmδ mov6 ^ = tidy0 , write B , left utmδ tidy0 $ = tidy1 , write $ , left utmδ tidy0 x = tidy0 , write x , left utmδ tidy1 X = tidy1 , write 0 , left utmδ tidy1 Y = tidy1 , write 1 , left utmδ tidy1 Z = tidy1 , write B , left utmδ tidy1 $ = reads , write $ , right utmδ tidy1 x = tidy1 , write x , left utmδ _ x = halt , write x , mnone U-TM : Turing utmStates utmΣ U-TM = record { tδ = utmδ ; tstart = read0 ; tend = tend ; tnone = b } where tend : utmStates → Bool tend halt = true tend _ = false -- Copyδ : CopyStates → ℕ → CopyStates × ( Write ℕ ) × Move -- Copyδ s1 0 = H , wnone , mnone -- Copyδ s1 1 = s2 , write 0 , right -- Copyδ s2 0 = s3 , write 0 , right -- Copyδ s2 1 = s2 , write 1 , right -- Copyδ s3 0 = s4 , write 1 , left -- Copyδ s3 1 = s3 , write 1 , right -- Copyδ s4 0 = s5 , write 0 , left -- Copyδ s4 1 = s4 , write 1 , left -- Copyδ s5 0 = s1 , write 1 , right -- Copyδ s5 1 = s5 , write 1 , left -- Copyδ H _ = H , wnone , mnone -- Copyδ _ (suc (suc _)) = H , wnone , mnone Copyδ-encode : List utmΣ Copyδ-encode = 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ -- s1 0 = H , wnone , mnone * ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ -- s1 1 = s2 , write 0 , right * ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ -- s2 0 = s3 , write 0 , right * ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ -- s2 1 = s2 , write 1 , right * ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ -- s3 0 = s4 , write 1 , left * ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ -- s3 1 = s3 , write 1 , right * ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ -- s4 0 = s5 , write 0 , left * ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ -- s4 1 = s4 , write 1 , left * ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ -- s5 0 = s1 , write 1 , right * ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ -- s5 1 = s5 , write 1 , left [] input-encode : List utmΣ input-encode = 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ [] input+Copyδ : List utmΣ input+Copyδ = ( $ ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ * ∷ [] ) -- start state ++ Copyδ-encode ++ ( $ ∷ ^ ∷ input-encode ) short-input : List utmΣ short-input = $ ∷ 0 ∷ 0 ∷ 0 ∷ * ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ * ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ * ∷ 0 ∷ 1 ∷ B ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ * ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ $ ∷ ^ ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ [] utm-test1 : List utmΣ → utmStates × ( List utmΣ ) × ( List utmΣ ) utm-test1 inp = Turing.taccept U-TM inp {-# TERMINATING #-} utm-test2 : ℕ → List utmΣ → utmStates × ( List utmΣ ) × ( List utmΣ ) utm-test2 n inp = loop n (Turing.tstart U-TM) inp [] where loop : ℕ → utmStates → ( List utmΣ ) → ( List utmΣ ) → utmStates × ( List utmΣ ) × ( List utmΣ ) loop zero q L R = ( q , L , R ) loop (suc n) q L R with move {utmStates} {utmΣ} {0} {utmδ} q L R | q ... | nq , nL , nR | reads = loop n nq nL nR ... | nq , nL , nR | _ = loop (suc n) nq nL nR t1 = utm-test2 20 short-input t : (n : ℕ) → utmStates × ( List utmΣ ) × ( List utmΣ ) -- t n = utm-test2 n input+Copyδ t n = utm-test2 n short-input
algebraic-stack_agda0000_doc_8523
{-# OPTIONS --safe #-} module Cubical.HITs.TypeQuotients where open import Cubical.HITs.TypeQuotients.Base public open import Cubical.HITs.TypeQuotients.Properties public
algebraic-stack_agda0000_doc_8524
data _≡_ {A : Set} (x : A) : A → Set where refl : x ≡ x cong : ∀ {A B : Set} (f : A → B) {x y : A} → x ≡ y → f x ≡ f y cong f refl = refl data ℕ : Set where zero : ℕ suc : ℕ → ℕ data Fin : ℕ → Set where zero : {n : ℕ} → Fin (suc n) suc : {n : ℕ} (i : Fin n) → Fin (suc n) data _≤_ : ℕ → ℕ → Set where zero : ∀ {n} → zero ≤ n suc : ∀ {m n} (le : m ≤ n) → suc m ≤ suc n _<_ : ℕ → ℕ → Set m < n = suc m ≤ n toℕ : ∀ {n} → Fin n → ℕ toℕ zero = zero toℕ (suc i) = suc (toℕ i) fromℕ≤ : ∀ {m n} → m < n → Fin n fromℕ≤ (suc zero) = zero fromℕ≤ (suc (suc m≤n)) = suc (fromℕ≤ (suc m≤n)) -- If we treat constructors as inert this fails to solve. Not entirely sure why. fromℕ≤-toℕ : ∀ {m} (i : Fin m) (i<m : toℕ i < m) → fromℕ≤ i<m ≡ i fromℕ≤-toℕ zero (suc zero) = refl fromℕ≤-toℕ (suc i) (suc (suc m≤n)) = cong suc (fromℕ≤-toℕ i (suc m≤n))
algebraic-stack_agda0000_doc_8525
{-# OPTIONS --no-positivity-check #-} module IIRDg where import LF import DefinitionalEquality import IIRD open LF open DefinitionalEquality open IIRD mutual data Ug {I : Set}{D : I -> Set1}(γ : OPg I D) : I -> Set where introg : (a : Gu γ (Ug γ) (Tg γ)) -> Ug γ (Gi γ (Ug γ) (Tg γ) a) Tg : {I : Set}{D : I -> Set1}(γ : OPg I D)(i : I) -> Ug γ i -> D i Tg γ .(Gi γ (Ug γ) (Tg γ) a) (introg a) = Gt γ (Ug γ) (Tg γ) a Arg : {I : Set}{D : I -> Set1}(γ : OPg I D) -> Set Arg γ = Gu γ (Ug γ) (Tg γ) index : {I : Set}{D : I -> Set1}(γ : OPg I D) -> Arg γ -> I index γ a = Gi γ (Ug γ) (Tg γ) a IH : {I : Set}{D : I -> Set1}(γ : OPg I D)(F : (i : I) -> Ug γ i -> Set1) -> Arg γ -> Set1 IH γ = KIH γ (Ug γ) (Tg γ) -- Elimination rule Rg : {I : Set}{D : I -> Set1}(γ : OPg I D)(F : (i : I) -> Ug γ i -> Set1) -> (h : (a : Arg γ) -> IH γ F a -> F (index γ a) (introg a)) -> (i : I)(u : Ug γ i) -> F i u Rg γ F h .(index γ a) (introg a) = h a (Kmap γ (Ug γ) (Tg γ) F (Rg γ F h) a) {- -- We don't have general IIRDs so we have to postulate Ug/Tg postulate Ug : {I : Set}{D : I -> Set1} -> OPg I D -> I -> Set Tg : {I : Set}{D : I -> Set1}(γ : OPg I D)(i : I) -> Ug γ i -> D i introg : {I : Set}{D : I -> Set1}(γ : OPg I D)(a : Gu γ (Ug γ) (Tg γ)) -> Ug γ (Gi γ (Ug γ) (Tg γ) a) Tg-equality : {I : Set}{D : I -> Set1}(γ : OPg I D)(a : Gu γ (Ug γ) (Tg γ)) -> Tg γ (Gi γ (Ug γ) (Tg γ) a) (introg γ a) ≡₁ Gt γ (Ug γ) (Tg γ) a Rg : {I : Set}{D : I -> Set1}(γ : OPg I D)(F : (i : I) -> Ug γ i -> Set1) (h : (a : Gu γ (Ug γ) (Tg γ)) -> KIH γ (Ug γ) (Tg γ) F a -> F (Gi γ (Ug γ) (Tg γ) a) (introg γ a)) (i : I)(u : Ug γ i) -> F i u Rg-equality : {I : Set}{D : I -> Set1}(γ : OPg I D)(F : (i : I) -> Ug γ i -> Set1) (h : (a : Gu γ (Ug γ) (Tg γ)) -> KIH γ (Ug γ) (Tg γ) F a -> F (Gi γ (Ug γ) (Tg γ) a) (introg γ a)) (a : Gu γ (Ug γ) (Tg γ)) -> Rg γ F h (Gi γ (Ug γ) (Tg γ) a) (introg γ a) ≡₁ h a (Kmap γ (Ug γ) (Tg γ) F (Rg γ F h) a) -- Helpers ι★g : {I : Set}(i : I) -> OPg I (\_ -> One') ι★g i = ι < i | ★' >' -- Examples module Martin-Löf-Identity where IdOP : {A : Set} -> OPg (A * A) (\_ -> One') IdOP {A} = σ A \a -> ι★g < a | a > _==_ : {A : Set}(x y : A) -> Set x == y = Ug IdOP < x | y > refl : {A : Set}(x : A) -> x == x refl x = introg IdOP < x | ★ > -- We have to work slightly harder than desired since we don't have η for × and One. private -- F C is just uncurry C but dependent and at high universes. F : {A : Set}(C : (x y : A) -> x == y -> Set1)(i : A * A) -> Ug IdOP i -> Set1 F C < x | y > p = C x y p h' : {A : Set}(C : (x y : A) -> x == y -> Set1) (h : (x : A) -> C x x (refl x)) (a : Gu IdOP (Ug IdOP) (Tg IdOP)) -> KIH IdOP (Ug IdOP) (Tg IdOP) (F C) a -> F C (Gi IdOP (Ug IdOP) (Tg IdOP) a) (introg IdOP a) h' C h < x | ★ > _ = h x J : {A : Set}(C : (x y : A) -> x == y -> Set1) (h : (x : A) -> C x x (refl x)) (x y : A)(p : x == y) -> C x y p J {A} C h x y p = Rg IdOP (F C) (h' C h) < x | y > p J-equality : {A : Set}(C : (x y : A) -> x == y -> Set1) (h : (x : A) -> C x x (refl x))(x : A) -> J C h x x (refl x) ≡₁ h x J-equality {A} C h x = Rg-equality IdOP (F C) (h' C h) < x | ★ > module Christine-Identity where IdOP : {A : Set}(a : A) -> OPg A (\_ -> One') IdOP {A} a = ι★g a _==_ : {A : Set}(x y : A) -> Set x == y = Ug (IdOP x) y refl : {A : Set}(x : A) -> x == x refl x = introg (IdOP x) ★ private h' : {A : Set}(x : A)(C : (y : A) -> x == y -> Set1) (h : C x (refl x))(a : Gu (IdOP x) (Ug (IdOP x)) (Tg (IdOP x))) -> KIH (IdOP x) (Ug (IdOP x)) (Tg (IdOP x)) C a -> C (Gi (IdOP x) (Ug (IdOP x)) (Tg (IdOP x)) a) (introg (IdOP x) a) h' x C h ★ _ = h H : {A : Set}(x : A)(C : (y : A) -> x == y -> Set1) (h : C x (refl x)) (y : A)(p : x == y) -> C y p H x C h y p = Rg (IdOP x) C (h' x C h) y p H-equality : {A : Set}(x : A)(C : (y : A) -> x == y -> Set1) (h : C x (refl x)) -> H x C h x (refl x) ≡₁ h H-equality x C h = Rg-equality (IdOP x) C (h' x C h) ★ open Christine-Identity -}
algebraic-stack_agda0000_doc_8526
module Oscar.Category.Setoid where open import Oscar.Builtin.Objectevel open import Oscar.Property record IsSetoid {𝔬} {𝔒 : Ø 𝔬} {𝔮} (_≋_ : 𝑴 1 𝔒 𝔮) : Ø 𝔬 ∙̂ 𝔮 where field reflexivity : ∀ x → x ≋ x symmetry : ∀ {x y} → x ≋ y → y ≋ x transitivity : ∀ {x y} → x ≋ y → ∀ {z} → y ≋ z → x ≋ z open IsSetoid ⦃ … ⦄ public record Setoid 𝔬 𝔮 : Ø ↑̂ (𝔬 ∙̂ 𝔮) where constructor ↑_ infix 4 _≋_ field {⋆} : Set 𝔬 _≋_ : ⋆ → ⋆ → Set 𝔮 ⦃ isSetoid ⦄ : IsSetoid _≋_ open IsSetoid isSetoid public
algebraic-stack_agda0000_doc_8527
module _ where data Flat (A : Set) : Set where flat : @♭ A → Flat A -- the lambda cohesion annotation must match the domain. into : {A : Set} → A → Flat A into = λ (@♭ a) → flat a
algebraic-stack_agda0000_doc_16480
{-# OPTIONS --safe #-} open import Definition.Typed.EqualityRelation module Definition.LogicalRelation.Substitution.Introductions.Pair {{eqrel : EqRelSet}} where open EqRelSet {{...}} open import Definition.Untyped as U hiding (wk) open import Definition.Untyped.Properties open import Definition.Typed open import Definition.Typed.Properties open import Definition.Typed.Weakening as T hiding (wk; wkTerm; wkEqTerm) open import Definition.Typed.RedSteps open import Definition.LogicalRelation open import Definition.LogicalRelation.ShapeView open import Definition.LogicalRelation.Irrelevance open import Definition.LogicalRelation.Weakening open import Definition.LogicalRelation.Properties open import Definition.LogicalRelation.Application open import Definition.LogicalRelation.Substitution open import Definition.LogicalRelation.Substitution.Properties open import Definition.LogicalRelation.Substitution.Reflexivity open import Definition.LogicalRelation.Substitution.Introductions.Sigma open import Definition.LogicalRelation.Substitution.Introductions.Pi open import Definition.LogicalRelation.Substitution.Introductions.SingleSubst open import Tools.Product import Tools.PropositionalEquality as PE -- Valid pair construction. ⦅⦆ᵛ : ∀ {F G l∃ t u Γ l} ([Γ] : ⊩ᵛ Γ) ([F] : Γ ⊩ᵛ⟨ l ⟩ F ^ [ % , ι l∃ ] / [Γ]) ([G] : Γ ∙ F ^ [ % , ι l∃ ] ⊩ᵛ⟨ l ⟩ G ^ [ % , ι l∃ ] / [Γ] ∙ [F]) ([t] : Γ ⊩ᵛ⟨ l ⟩ t ∷ F ^ [ % , ι l∃ ] / [Γ] / [F]) ([u] : Γ ⊩ᵛ⟨ l ⟩ u ∷ G [ t ] ^ [ % , ι l∃ ] / [Γ] / substS {F} {G} {t} [Γ] [F] [G] [t]) → Γ ⊩ᵛ⟨ l ⟩ ⦅ G , t , u ⦆ ∷ ∃ F ▹ G ^ [ % , ι l∃ ] / [Γ] / ∃ᵛ {F} {G} [Γ] [F] [G] ⦅⦆ᵛ {F} {G} {l∃} {t} {u} {Γ} {l} [Γ] [F] [G] [t] [u] {Δ = Δ} {σ = σ} ⊢Δ [σ] = let [G[t]] = substS {F} {G} {t} [Γ] [F] [G] [t] [ΠFG] = Πᵛ {F = F} {G = G} (≡is≤ PE.refl) (≡is≤ PE.refl) [Γ] [F] [G] [σF] = proj₁ ([F] ⊢Δ [σ]) ⊢F = escape [σF] [σG] = proj₁ ([G] (⊢Δ ∙ ⊢F) (liftSubstS {F = F} [Γ] ⊢Δ [F] [σ])) ⊢G = escape [σG] [σt] = proj₁ ([t] (⊢Δ) [σ]) ⊢t = escapeTerm [σF] [σt] [σu] = proj₁ ([u] (⊢Δ) [σ]) [σG[t]] = proj₁ ([G[t]] ⊢Δ [σ]) [σΠFG] = proj₁ ([ΠFG] ⊢Δ [σ]) [σG[t]]′ = irrelevance′ (singleSubstLift G t) [σG[t]] [σu]′ = irrelevanceTerm′ (singleSubstLift G t) PE.refl PE.refl [σG[t]] [σG[t]]′ [σu] ⊢u = escapeTerm [σG[t]]′ [σu]′ ⦅t,u⦆ⱼ = ⦅_,_,_,_⦆ⱼ {F = subst σ F} {G = subst (liftSubst σ) G} {t = subst σ t} {u = subst σ u} ⊢F ⊢G ⊢t ⊢u in ⦅t,u⦆ⱼ , λ {σ′} [σ′] [σ≡σ′] → ⦅t,u⦆ⱼ , let ⊢Γ = wfTerm ⊢t [σt′] = proj₁ ([t] ⊢Δ [σ′]) [σt≡σt′] = proj₂ ([t] ⊢Δ [σ]) [σ′] [σ≡σ′] [σF′] = proj₁ ([F] ⊢Δ [σ′]) ⊢F′ = escape [σF′] ⊢t′ = escapeTerm [σF′] [σt′] [σG′] = proj₁ ([G] {σ = liftSubst σ′} (⊢Δ ∙ ⊢F′) (liftSubstS {F = F} [Γ] ⊢Δ [F] [σ′])) ⊢G′ = escape [σG′] _ , Πᵣ _ _ _ _ _ F′ G′ D′ _ _ A≡A′ [F]₁ [G]₁ G-ext = extractMaybeEmb (Π-elim (proj₁ ([ΠFG] ⊢Δ [σ′]))) [σ′u] = proj₁ ([u] ⊢Δ [σ′]) [σ′G[t]] = proj₁ ([G[t]] ⊢Δ [σ′]) [σ′G[t]]′ = irrelevance′ (singleSubstLift G t) [σ′G[t]] [σ′u]′ = irrelevanceTerm′ (singleSubstLift G t) PE.refl PE.refl [σ′G[t]] [σ′G[t]]′ [σ′u] ⊢u′ = escapeTerm [σ′G[t]]′ [σ′u]′ pair' = ⦅_,_,_,_⦆ⱼ {F = subst σ′ F} {G = subst (liftSubst σ′) G} {t = subst σ′ t} {u = subst σ′ u} ⊢F′ ⊢G′ ⊢t′ ⊢u′ [σ′≡σ] = symS [Γ] ⊢Δ [σ] [σ′] [σ≡σ′] [σF′≡σF] = proj₂ ([F] ⊢Δ [σ′]) [σ] [σ′≡σ] σF′≡σF = escapeEq [σF′] [σF′≡σF] [liftσ] = liftSubstS {F = F} [Γ] ⊢Δ [F] [σ] [wk1σ′] = wk1SubstS [Γ] ⊢Δ ⊢F′ [σ′] [wk1σ] = wk1SubstS [Γ] ⊢Δ ⊢F′ [σ] foo = proj₁ ([F] (⊢Δ ∙ ⊢F′) [wk1σ′]) [liftσ′] : (Δ ∙ subst σ′ F ^ [ % , ι l∃ ]) ⊩ˢ liftSubst σ ∷ Γ ∙ F ^ [ % , ι l∃ ] / [Γ] ∙ [F] / (⊢Δ ∙ escape (proj₁ ([F] ⊢Δ [σ′]))) [liftσ′] = let ⊢F = escape (proj₁ ([F] ⊢Δ [σ])) [tailσ] = wk1SubstS {F = subst σ′ F} [Γ] ⊢Δ (escape (proj₁ ([F] ⊢Δ [σ′]))) [σ] var0′ : (Δ ∙ subst σ′ F ^ [ % , ι l∃ ]) ⊢ var 0 ∷ subst (wk1Subst σ′) F ^ [ % , ι l∃ ] var0′ = var (⊢Δ ∙ ⊢F′) (PE.subst (λ x → 0 ∷ x ^ _ ∈ (Δ ∙ subst σ′ F ^ _)) (wk-subst F) here) var0 = conv var0′ (≅-eq (escapeEq (proj₁ ([F] (⊢Δ ∙ ⊢F′) [wk1σ′])) (proj₂ ([F] (⊢Δ ∙ ⊢F′) [wk1σ′]) [wk1σ] (wk1SubstSEq [Γ] ⊢Δ ⊢F′ [σ′] [σ′≡σ])))) in [tailσ] , neuTerm (proj₁ ([F] (⊢Δ ∙ ⊢F′) [tailσ])) (var 0) var0 (~-var var0) [σG′≡σG] = proj₂ ([G] (⊢Δ ∙ ⊢F′) (liftSubstS {F = F} [Γ] ⊢Δ [F] [σ′] )) [liftσ′] (liftSubstSEq {F = F} [Γ] ⊢Δ [F] [σ′] (symS [Γ] ⊢Δ [σ] [σ′] [σ≡σ′])) σG′≡σG = escapeEq [σG′] [σG′≡σG] in conv pair' (univ (∃-cong ⊢F′ (un-univ≡ (≅-eq σF′≡σF)) (un-univ≡ (≅-eq σG′≡σG))) )
algebraic-stack_agda0000_doc_16481
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.types.Lift open import lib.types.Paths open import lib.types.Pointed module lib.types.Unit where tt = unit ⊙Unit : Ptd₀ ⊙Unit = ⊙[ Unit , unit ] abstract -- Unit is contractible Unit-is-contr : is-contr Unit Unit-is-contr = (unit , λ y → idp) Unit-has-level : {n : ℕ₋₂} → has-level n Unit Unit-has-level = contr-has-level Unit-is-contr -- [Unit-has-level#instance] produces unsolved metas Unit-has-level-S#instance : {n : ℕ₋₂} → has-level (S n) Unit Unit-has-level-S#instance = contr-has-level Unit-is-contr Unit-is-prop : is-prop Unit Unit-is-prop = Unit-has-level Unit-is-set : is-set Unit Unit-is-set = Unit-has-level Unit-level = Unit-is-contr ⊤-is-contr = Unit-is-contr ⊤-level = Unit-is-contr ⊤-has-level = Unit-has-level ⊤-is-prop = Unit-is-prop ⊤-is-set = Unit-is-set LiftUnit-⊙in-level : ∀ {i j} {X : Ptd i} → is-contr (fst (X ⊙→ ⊙Lift {j = j} ⊙Unit)) LiftUnit-⊙in-level {X = X} = (⊙cst {X = X} , λ f → pair= idp (prop-has-all-paths ((Lift-level Unit-is-set) _ _) idp (snd f))) LiftUnit-⊙out-level : ∀ {i j} {X : Ptd i} → is-contr (fst (⊙Lift {j = j} ⊙Unit ⊙→ X)) LiftUnit-⊙out-level {X = X} = (⊙cst {Y = X} , λ f → ⊙λ= (λ _ → ! (snd f)) (! (!-inv-l (snd f))))
algebraic-stack_agda0000_doc_16482
module _ where -- Should not be able to give by name id : {_ = A : Set} → A → A id x = x works : (X : Set) → X → X works X = id {X} fails : (X : Set) → X → X fails X = id {A = X}
algebraic-stack_agda0000_doc_16483
module Text.Greek.SBLGNT.2Pet where open import Data.List open import Text.Greek.Bible open import Text.Greek.Script open import Text.Greek.Script.Unicode ΠΕΤΡΟΥ-Β : List (Word) ΠΕΤΡΟΥ-Β = word (Σ ∷ υ ∷ μ ∷ ε ∷ ὼ ∷ ν ∷ []) "2Pet.1.1" ∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ς ∷ []) "2Pet.1.1" ∷ word (δ ∷ ο ∷ ῦ ∷ ∙λ ∷ ο ∷ ς ∷ []) "2Pet.1.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.1.1" ∷ word (ἀ ∷ π ∷ ό ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ο ∷ ς ∷ []) "2Pet.1.1" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "2Pet.1.1" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Pet.1.1" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Pet.1.1" ∷ word (ἰ ∷ σ ∷ ό ∷ τ ∷ ι ∷ μ ∷ ο ∷ ν ∷ []) "2Pet.1.1" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Pet.1.1" ∷ word (∙λ ∷ α ∷ χ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "2Pet.1.1" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "2Pet.1.1" ∷ word (ἐ ∷ ν ∷ []) "2Pet.1.1" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ ῃ ∷ []) "2Pet.1.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Pet.1.1" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Pet.1.1" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Pet.1.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.1.1" ∷ word (σ ∷ ω ∷ τ ∷ ῆ ∷ ρ ∷ ο ∷ ς ∷ []) "2Pet.1.1" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "2Pet.1.1" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Pet.1.1" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "2Pet.1.2" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Pet.1.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.1.2" ∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ []) "2Pet.1.2" ∷ word (π ∷ ∙λ ∷ η ∷ θ ∷ υ ∷ ν ∷ θ ∷ ε ∷ ί ∷ η ∷ []) "2Pet.1.2" ∷ word (ἐ ∷ ν ∷ []) "2Pet.1.2" ∷ word (ἐ ∷ π ∷ ι ∷ γ ∷ ν ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "2Pet.1.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Pet.1.2" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Pet.1.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.1.2" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "2Pet.1.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Pet.1.2" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "2Pet.1.2" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Pet.1.2" ∷ word (Ὡ ∷ ς ∷ []) "2Pet.1.3" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "2Pet.1.3" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Pet.1.3" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Pet.1.3" ∷ word (θ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "2Pet.1.3" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ω ∷ ς ∷ []) "2Pet.1.3" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Pet.1.3" ∷ word (τ ∷ ὰ ∷ []) "2Pet.1.3" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Pet.1.3" ∷ word (ζ ∷ ω ∷ ὴ ∷ ν ∷ []) "2Pet.1.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.1.3" ∷ word (ε ∷ ὐ ∷ σ ∷ έ ∷ β ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "2Pet.1.3" ∷ word (δ ∷ ε ∷ δ ∷ ω ∷ ρ ∷ η ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "2Pet.1.3" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Pet.1.3" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Pet.1.3" ∷ word (ἐ ∷ π ∷ ι ∷ γ ∷ ν ∷ ώ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "2Pet.1.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Pet.1.3" ∷ word (κ ∷ α ∷ ∙λ ∷ έ ∷ σ ∷ α ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "2Pet.1.3" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Pet.1.3" ∷ word (ἰ ∷ δ ∷ ί ∷ ᾳ ∷ []) "2Pet.1.3" ∷ word (δ ∷ ό ∷ ξ ∷ ῃ ∷ []) "2Pet.1.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.1.3" ∷ word (ἀ ∷ ρ ∷ ε ∷ τ ∷ ῇ ∷ []) "2Pet.1.3" ∷ word (δ ∷ ι ∷ []) "2Pet.1.4" ∷ word (ὧ ∷ ν ∷ []) "2Pet.1.4" ∷ word (τ ∷ ὰ ∷ []) "2Pet.1.4" ∷ word (τ ∷ ί ∷ μ ∷ ι ∷ α ∷ []) "2Pet.1.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.1.4" ∷ word (μ ∷ έ ∷ γ ∷ ι ∷ σ ∷ τ ∷ α ∷ []) "2Pet.1.4" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Pet.1.4" ∷ word (ἐ ∷ π ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "2Pet.1.4" ∷ word (δ ∷ ε ∷ δ ∷ ώ ∷ ρ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "2Pet.1.4" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Pet.1.4" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Pet.1.4" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ω ∷ ν ∷ []) "2Pet.1.4" ∷ word (γ ∷ έ ∷ ν ∷ η ∷ σ ∷ θ ∷ ε ∷ []) "2Pet.1.4" ∷ word (θ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "2Pet.1.4" ∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ω ∷ ν ∷ ο ∷ ὶ ∷ []) "2Pet.1.4" ∷ word (φ ∷ ύ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "2Pet.1.4" ∷ word (ἀ ∷ π ∷ ο ∷ φ ∷ υ ∷ γ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Pet.1.4" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Pet.1.4" ∷ word (ἐ ∷ ν ∷ []) "2Pet.1.4" ∷ word (τ ∷ ῷ ∷ []) "2Pet.1.4" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ῳ ∷ []) "2Pet.1.4" ∷ word (ἐ ∷ ν ∷ []) "2Pet.1.4" ∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ υ ∷ μ ∷ ί ∷ ᾳ ∷ []) "2Pet.1.4" ∷ word (φ ∷ θ ∷ ο ∷ ρ ∷ ᾶ ∷ ς ∷ []) "2Pet.1.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.1.5" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "2Pet.1.5" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "2Pet.1.5" ∷ word (δ ∷ ὲ ∷ []) "2Pet.1.5" ∷ word (σ ∷ π ∷ ο ∷ υ ∷ δ ∷ ὴ ∷ ν ∷ []) "2Pet.1.5" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ν ∷ []) "2Pet.1.5" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ ι ∷ σ ∷ ε ∷ ν ∷ έ ∷ γ ∷ κ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Pet.1.5" ∷ word (ἐ ∷ π ∷ ι ∷ χ ∷ ο ∷ ρ ∷ η ∷ γ ∷ ή ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "2Pet.1.5" ∷ word (ἐ ∷ ν ∷ []) "2Pet.1.5" ∷ word (τ ∷ ῇ ∷ []) "2Pet.1.5" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "2Pet.1.5" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Pet.1.5" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Pet.1.5" ∷ word (ἀ ∷ ρ ∷ ε ∷ τ ∷ ή ∷ ν ∷ []) "2Pet.1.5" ∷ word (ἐ ∷ ν ∷ []) "2Pet.1.5" ∷ word (δ ∷ ὲ ∷ []) "2Pet.1.5" ∷ word (τ ∷ ῇ ∷ []) "2Pet.1.5" ∷ word (ἀ ∷ ρ ∷ ε ∷ τ ∷ ῇ ∷ []) "2Pet.1.5" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Pet.1.5" ∷ word (γ ∷ ν ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "2Pet.1.5" ∷ word (ἐ ∷ ν ∷ []) "2Pet.1.6" ∷ word (δ ∷ ὲ ∷ []) "2Pet.1.6" ∷ word (τ ∷ ῇ ∷ []) "2Pet.1.6" ∷ word (γ ∷ ν ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "2Pet.1.6" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Pet.1.6" ∷ word (ἐ ∷ γ ∷ κ ∷ ρ ∷ ά ∷ τ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "2Pet.1.6" ∷ word (ἐ ∷ ν ∷ []) "2Pet.1.6" ∷ word (δ ∷ ὲ ∷ []) "2Pet.1.6" ∷ word (τ ∷ ῇ ∷ []) "2Pet.1.6" ∷ word (ἐ ∷ γ ∷ κ ∷ ρ ∷ α ∷ τ ∷ ε ∷ ί ∷ ᾳ ∷ []) "2Pet.1.6" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Pet.1.6" ∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ο ∷ ν ∷ ή ∷ ν ∷ []) "2Pet.1.6" ∷ word (ἐ ∷ ν ∷ []) "2Pet.1.6" ∷ word (δ ∷ ὲ ∷ []) "2Pet.1.6" ∷ word (τ ∷ ῇ ∷ []) "2Pet.1.6" ∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ο ∷ ν ∷ ῇ ∷ []) "2Pet.1.6" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Pet.1.6" ∷ word (ε ∷ ὐ ∷ σ ∷ έ ∷ β ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "2Pet.1.6" ∷ word (ἐ ∷ ν ∷ []) "2Pet.1.7" ∷ word (δ ∷ ὲ ∷ []) "2Pet.1.7" ∷ word (τ ∷ ῇ ∷ []) "2Pet.1.7" ∷ word (ε ∷ ὐ ∷ σ ∷ ε ∷ β ∷ ε ∷ ί ∷ ᾳ ∷ []) "2Pet.1.7" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Pet.1.7" ∷ word (φ ∷ ι ∷ ∙λ ∷ α ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ί ∷ α ∷ ν ∷ []) "2Pet.1.7" ∷ word (ἐ ∷ ν ∷ []) "2Pet.1.7" ∷ word (δ ∷ ὲ ∷ []) "2Pet.1.7" ∷ word (τ ∷ ῇ ∷ []) "2Pet.1.7" ∷ word (φ ∷ ι ∷ ∙λ ∷ α ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ί ∷ ᾳ ∷ []) "2Pet.1.7" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Pet.1.7" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ ν ∷ []) "2Pet.1.7" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "2Pet.1.8" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Pet.1.8" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Pet.1.8" ∷ word (ὑ ∷ π ∷ ά ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "2Pet.1.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.1.8" ∷ word (π ∷ ∙λ ∷ ε ∷ ο ∷ ν ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "2Pet.1.8" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "2Pet.1.8" ∷ word (ἀ ∷ ρ ∷ γ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Pet.1.8" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "2Pet.1.8" ∷ word (ἀ ∷ κ ∷ ά ∷ ρ ∷ π ∷ ο ∷ υ ∷ ς ∷ []) "2Pet.1.8" ∷ word (κ ∷ α ∷ θ ∷ ί ∷ σ ∷ τ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "2Pet.1.8" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Pet.1.8" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Pet.1.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Pet.1.8" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "2Pet.1.8" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Pet.1.8" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "2Pet.1.8" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Pet.1.8" ∷ word (ἐ ∷ π ∷ ί ∷ γ ∷ ν ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "2Pet.1.8" ∷ word (ᾧ ∷ []) "2Pet.1.9" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Pet.1.9" ∷ word (μ ∷ ὴ ∷ []) "2Pet.1.9" ∷ word (π ∷ ά ∷ ρ ∷ ε ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "2Pet.1.9" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "2Pet.1.9" ∷ word (τ ∷ υ ∷ φ ∷ ∙λ ∷ ό ∷ ς ∷ []) "2Pet.1.9" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "2Pet.1.9" ∷ word (μ ∷ υ ∷ ω ∷ π ∷ ά ∷ ζ ∷ ω ∷ ν ∷ []) "2Pet.1.9" ∷ word (∙λ ∷ ή ∷ θ ∷ η ∷ ν ∷ []) "2Pet.1.9" ∷ word (∙λ ∷ α ∷ β ∷ ὼ ∷ ν ∷ []) "2Pet.1.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Pet.1.9" ∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ι ∷ σ ∷ μ ∷ ο ∷ ῦ ∷ []) "2Pet.1.9" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "2Pet.1.9" ∷ word (π ∷ ά ∷ ∙λ ∷ α ∷ ι ∷ []) "2Pet.1.9" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Pet.1.9" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ η ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "2Pet.1.9" ∷ word (δ ∷ ι ∷ ὸ ∷ []) "2Pet.1.10" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "2Pet.1.10" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "2Pet.1.10" ∷ word (σ ∷ π ∷ ο ∷ υ ∷ δ ∷ ά ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "2Pet.1.10" ∷ word (β ∷ ε ∷ β ∷ α ∷ ί ∷ α ∷ ν ∷ []) "2Pet.1.10" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Pet.1.10" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Pet.1.10" ∷ word (κ ∷ ∙λ ∷ ῆ ∷ σ ∷ ι ∷ ν ∷ []) "2Pet.1.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.1.10" ∷ word (ἐ ∷ κ ∷ ∙λ ∷ ο ∷ γ ∷ ὴ ∷ ν ∷ []) "2Pet.1.10" ∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "2Pet.1.10" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "2Pet.1.10" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Pet.1.10" ∷ word (π ∷ ο ∷ ι ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Pet.1.10" ∷ word (ο ∷ ὐ ∷ []) "2Pet.1.10" ∷ word (μ ∷ ὴ ∷ []) "2Pet.1.10" ∷ word (π ∷ τ ∷ α ∷ ί ∷ σ ∷ η ∷ τ ∷ έ ∷ []) "2Pet.1.10" ∷ word (π ∷ ο ∷ τ ∷ ε ∷ []) "2Pet.1.10" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "2Pet.1.11" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Pet.1.11" ∷ word (π ∷ ∙λ ∷ ο ∷ υ ∷ σ ∷ ί ∷ ω ∷ ς ∷ []) "2Pet.1.11" ∷ word (ἐ ∷ π ∷ ι ∷ χ ∷ ο ∷ ρ ∷ η ∷ γ ∷ η ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "2Pet.1.11" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Pet.1.11" ∷ word (ἡ ∷ []) "2Pet.1.11" ∷ word (ε ∷ ἴ ∷ σ ∷ ο ∷ δ ∷ ο ∷ ς ∷ []) "2Pet.1.11" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Pet.1.11" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Pet.1.11" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ι ∷ ο ∷ ν ∷ []) "2Pet.1.11" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "2Pet.1.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Pet.1.11" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "2Pet.1.11" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Pet.1.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.1.11" ∷ word (σ ∷ ω ∷ τ ∷ ῆ ∷ ρ ∷ ο ∷ ς ∷ []) "2Pet.1.11" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "2Pet.1.11" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Pet.1.11" ∷ word (Δ ∷ ι ∷ ὸ ∷ []) "2Pet.1.12" ∷ word (μ ∷ ε ∷ ∙λ ∷ ∙λ ∷ ή ∷ σ ∷ ω ∷ []) "2Pet.1.12" ∷ word (ἀ ∷ ε ∷ ὶ ∷ []) "2Pet.1.12" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Pet.1.12" ∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ι ∷ μ ∷ ν ∷ ῄ ∷ σ ∷ κ ∷ ε ∷ ι ∷ ν ∷ []) "2Pet.1.12" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "2Pet.1.12" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ω ∷ ν ∷ []) "2Pet.1.12" ∷ word (κ ∷ α ∷ ί ∷ π ∷ ε ∷ ρ ∷ []) "2Pet.1.12" ∷ word (ε ∷ ἰ ∷ δ ∷ ό ∷ τ ∷ α ∷ ς ∷ []) "2Pet.1.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.1.12" ∷ word (ἐ ∷ σ ∷ τ ∷ η ∷ ρ ∷ ι ∷ γ ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "2Pet.1.12" ∷ word (ἐ ∷ ν ∷ []) "2Pet.1.12" ∷ word (τ ∷ ῇ ∷ []) "2Pet.1.12" ∷ word (π ∷ α ∷ ρ ∷ ο ∷ ύ ∷ σ ∷ ῃ ∷ []) "2Pet.1.12" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ ᾳ ∷ []) "2Pet.1.12" ∷ word (δ ∷ ί ∷ κ ∷ α ∷ ι ∷ ο ∷ ν ∷ []) "2Pet.1.13" ∷ word (δ ∷ ὲ ∷ []) "2Pet.1.13" ∷ word (ἡ ∷ γ ∷ ο ∷ ῦ ∷ μ ∷ α ∷ ι ∷ []) "2Pet.1.13" ∷ word (ἐ ∷ φ ∷ []) "2Pet.1.13" ∷ word (ὅ ∷ σ ∷ ο ∷ ν ∷ []) "2Pet.1.13" ∷ word (ε ∷ ἰ ∷ μ ∷ ὶ ∷ []) "2Pet.1.13" ∷ word (ἐ ∷ ν ∷ []) "2Pet.1.13" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ῳ ∷ []) "2Pet.1.13" ∷ word (τ ∷ ῷ ∷ []) "2Pet.1.13" ∷ word (σ ∷ κ ∷ η ∷ ν ∷ ώ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "2Pet.1.13" ∷ word (δ ∷ ι ∷ ε ∷ γ ∷ ε ∷ ί ∷ ρ ∷ ε ∷ ι ∷ ν ∷ []) "2Pet.1.13" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Pet.1.13" ∷ word (ἐ ∷ ν ∷ []) "2Pet.1.13" ∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ν ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "2Pet.1.13" ∷ word (ε ∷ ἰ ∷ δ ∷ ὼ ∷ ς ∷ []) "2Pet.1.14" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Pet.1.14" ∷ word (τ ∷ α ∷ χ ∷ ι ∷ ν ∷ ή ∷ []) "2Pet.1.14" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "2Pet.1.14" ∷ word (ἡ ∷ []) "2Pet.1.14" ∷ word (ἀ ∷ π ∷ ό ∷ θ ∷ ε ∷ σ ∷ ι ∷ ς ∷ []) "2Pet.1.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Pet.1.14" ∷ word (σ ∷ κ ∷ η ∷ ν ∷ ώ ∷ μ ∷ α ∷ τ ∷ ό ∷ ς ∷ []) "2Pet.1.14" ∷ word (μ ∷ ο ∷ υ ∷ []) "2Pet.1.14" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "2Pet.1.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.1.14" ∷ word (ὁ ∷ []) "2Pet.1.14" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "2Pet.1.14" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Pet.1.14" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "2Pet.1.14" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "2Pet.1.14" ∷ word (ἐ ∷ δ ∷ ή ∷ ∙λ ∷ ω ∷ σ ∷ έ ∷ ν ∷ []) "2Pet.1.14" ∷ word (μ ∷ ο ∷ ι ∷ []) "2Pet.1.14" ∷ word (σ ∷ π ∷ ο ∷ υ ∷ δ ∷ ά ∷ σ ∷ ω ∷ []) "2Pet.1.15" ∷ word (δ ∷ ὲ ∷ []) "2Pet.1.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.1.15" ∷ word (ἑ ∷ κ ∷ ά ∷ σ ∷ τ ∷ ο ∷ τ ∷ ε ∷ []) "2Pet.1.15" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "2Pet.1.15" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Pet.1.15" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "2Pet.1.15" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Pet.1.15" ∷ word (ἐ ∷ μ ∷ ὴ ∷ ν ∷ []) "2Pet.1.15" ∷ word (ἔ ∷ ξ ∷ ο ∷ δ ∷ ο ∷ ν ∷ []) "2Pet.1.15" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Pet.1.15" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ω ∷ ν ∷ []) "2Pet.1.15" ∷ word (μ ∷ ν ∷ ή ∷ μ ∷ η ∷ ν ∷ []) "2Pet.1.15" ∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "2Pet.1.15" ∷ word (Ο ∷ ὐ ∷ []) "2Pet.1.16" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Pet.1.16" ∷ word (σ ∷ ε ∷ σ ∷ ο ∷ φ ∷ ι ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "2Pet.1.16" ∷ word (μ ∷ ύ ∷ θ ∷ ο ∷ ι ∷ ς ∷ []) "2Pet.1.16" ∷ word (ἐ ∷ ξ ∷ α ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ υ ∷ θ ∷ ή ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Pet.1.16" ∷ word (ἐ ∷ γ ∷ ν ∷ ω ∷ ρ ∷ ί ∷ σ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "2Pet.1.16" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Pet.1.16" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Pet.1.16" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Pet.1.16" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "2Pet.1.16" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Pet.1.16" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "2Pet.1.16" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Pet.1.16" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ν ∷ []) "2Pet.1.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.1.16" ∷ word (π ∷ α ∷ ρ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "2Pet.1.16" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "2Pet.1.16" ∷ word (ἐ ∷ π ∷ ό ∷ π ∷ τ ∷ α ∷ ι ∷ []) "2Pet.1.16" ∷ word (γ ∷ ε ∷ ν ∷ η ∷ θ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Pet.1.16" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Pet.1.16" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ ο ∷ υ ∷ []) "2Pet.1.16" ∷ word (μ ∷ ε ∷ γ ∷ α ∷ ∙λ ∷ ε ∷ ι ∷ ό ∷ τ ∷ η ∷ τ ∷ ο ∷ ς ∷ []) "2Pet.1.16" ∷ word (∙λ ∷ α ∷ β ∷ ὼ ∷ ν ∷ []) "2Pet.1.17" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Pet.1.17" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "2Pet.1.17" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Pet.1.17" ∷ word (π ∷ α ∷ τ ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Pet.1.17" ∷ word (τ ∷ ι ∷ μ ∷ ὴ ∷ ν ∷ []) "2Pet.1.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.1.17" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "2Pet.1.17" ∷ word (φ ∷ ω ∷ ν ∷ ῆ ∷ ς ∷ []) "2Pet.1.17" ∷ word (ἐ ∷ ν ∷ ε ∷ χ ∷ θ ∷ ε ∷ ί ∷ σ ∷ η ∷ ς ∷ []) "2Pet.1.17" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "2Pet.1.17" ∷ word (τ ∷ ο ∷ ι ∷ ᾶ ∷ σ ∷ δ ∷ ε ∷ []) "2Pet.1.17" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "2Pet.1.17" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Pet.1.17" ∷ word (μ ∷ ε ∷ γ ∷ α ∷ ∙λ ∷ ο ∷ π ∷ ρ ∷ ε ∷ π ∷ ο ∷ ῦ ∷ ς ∷ []) "2Pet.1.17" ∷ word (δ ∷ ό ∷ ξ ∷ η ∷ ς ∷ []) "2Pet.1.17" ∷ word (Ὁ ∷ []) "2Pet.1.17" ∷ word (υ ∷ ἱ ∷ ό ∷ ς ∷ []) "2Pet.1.17" ∷ word (μ ∷ ο ∷ υ ∷ []) "2Pet.1.17" ∷ word (ὁ ∷ []) "2Pet.1.17" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ ό ∷ ς ∷ []) "2Pet.1.17" ∷ word (μ ∷ ο ∷ υ ∷ []) "2Pet.1.17" ∷ word (ο ∷ ὗ ∷ τ ∷ ό ∷ ς ∷ []) "2Pet.1.17" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "2Pet.1.17" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Pet.1.17" ∷ word (ὃ ∷ ν ∷ []) "2Pet.1.17" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "2Pet.1.17" ∷ word (ε ∷ ὐ ∷ δ ∷ ό ∷ κ ∷ η ∷ σ ∷ α ∷ []) "2Pet.1.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.1.18" ∷ word (τ ∷ α ∷ ύ ∷ τ ∷ η ∷ ν ∷ []) "2Pet.1.18" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Pet.1.18" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "2Pet.1.18" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "2Pet.1.18" ∷ word (ἠ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "2Pet.1.18" ∷ word (ἐ ∷ ξ ∷ []) "2Pet.1.18" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "2Pet.1.18" ∷ word (ἐ ∷ ν ∷ ε ∷ χ ∷ θ ∷ ε ∷ ῖ ∷ σ ∷ α ∷ ν ∷ []) "2Pet.1.18" ∷ word (σ ∷ ὺ ∷ ν ∷ []) "2Pet.1.18" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "2Pet.1.18" ∷ word (ὄ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Pet.1.18" ∷ word (ἐ ∷ ν ∷ []) "2Pet.1.18" ∷ word (τ ∷ ῷ ∷ []) "2Pet.1.18" ∷ word (ἁ ∷ γ ∷ ί ∷ ῳ ∷ []) "2Pet.1.18" ∷ word (ὄ ∷ ρ ∷ ε ∷ ι ∷ []) "2Pet.1.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.1.19" ∷ word (ἔ ∷ χ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "2Pet.1.19" ∷ word (β ∷ ε ∷ β ∷ α ∷ ι ∷ ό ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "2Pet.1.19" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "2Pet.1.19" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ι ∷ κ ∷ ὸ ∷ ν ∷ []) "2Pet.1.19" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "2Pet.1.19" ∷ word (ᾧ ∷ []) "2Pet.1.19" ∷ word (κ ∷ α ∷ ∙λ ∷ ῶ ∷ ς ∷ []) "2Pet.1.19" ∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "2Pet.1.19" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ έ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Pet.1.19" ∷ word (ὡ ∷ ς ∷ []) "2Pet.1.19" ∷ word (∙λ ∷ ύ ∷ χ ∷ ν ∷ ῳ ∷ []) "2Pet.1.19" ∷ word (φ ∷ α ∷ ί ∷ ν ∷ ο ∷ ν ∷ τ ∷ ι ∷ []) "2Pet.1.19" ∷ word (ἐ ∷ ν ∷ []) "2Pet.1.19" ∷ word (α ∷ ὐ ∷ χ ∷ μ ∷ η ∷ ρ ∷ ῷ ∷ []) "2Pet.1.19" ∷ word (τ ∷ ό ∷ π ∷ ῳ ∷ []) "2Pet.1.19" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "2Pet.1.19" ∷ word (ο ∷ ὗ ∷ []) "2Pet.1.19" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ []) "2Pet.1.19" ∷ word (δ ∷ ι ∷ α ∷ υ ∷ γ ∷ ά ∷ σ ∷ ῃ ∷ []) "2Pet.1.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.1.19" ∷ word (φ ∷ ω ∷ σ ∷ φ ∷ ό ∷ ρ ∷ ο ∷ ς ∷ []) "2Pet.1.19" ∷ word (ἀ ∷ ν ∷ α ∷ τ ∷ ε ∷ ί ∷ ∙λ ∷ ῃ ∷ []) "2Pet.1.19" ∷ word (ἐ ∷ ν ∷ []) "2Pet.1.19" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "2Pet.1.19" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "2Pet.1.19" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Pet.1.19" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "2Pet.1.20" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "2Pet.1.20" ∷ word (γ ∷ ι ∷ ν ∷ ώ ∷ σ ∷ κ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Pet.1.20" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Pet.1.20" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ []) "2Pet.1.20" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ί ∷ α ∷ []) "2Pet.1.20" ∷ word (γ ∷ ρ ∷ α ∷ φ ∷ ῆ ∷ ς ∷ []) "2Pet.1.20" ∷ word (ἰ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "2Pet.1.20" ∷ word (ἐ ∷ π ∷ ι ∷ ∙λ ∷ ύ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "2Pet.1.20" ∷ word (ο ∷ ὐ ∷ []) "2Pet.1.20" ∷ word (γ ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "2Pet.1.20" ∷ word (ο ∷ ὐ ∷ []) "2Pet.1.21" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Pet.1.21" ∷ word (θ ∷ ε ∷ ∙λ ∷ ή ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "2Pet.1.21" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "2Pet.1.21" ∷ word (ἠ ∷ ν ∷ έ ∷ χ ∷ θ ∷ η ∷ []) "2Pet.1.21" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ί ∷ α ∷ []) "2Pet.1.21" ∷ word (π ∷ ο ∷ τ ∷ έ ∷ []) "2Pet.1.21" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Pet.1.21" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "2Pet.1.21" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "2Pet.1.21" ∷ word (ἁ ∷ γ ∷ ί ∷ ο ∷ υ ∷ []) "2Pet.1.21" ∷ word (φ ∷ ε ∷ ρ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "2Pet.1.21" ∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "2Pet.1.21" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "2Pet.1.21" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Pet.1.21" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ι ∷ []) "2Pet.1.21" ∷ word (Ἐ ∷ γ ∷ έ ∷ ν ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "2Pet.2.1" ∷ word (δ ∷ ὲ ∷ []) "2Pet.2.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.2.1" ∷ word (ψ ∷ ε ∷ υ ∷ δ ∷ ο ∷ π ∷ ρ ∷ ο ∷ φ ∷ ῆ ∷ τ ∷ α ∷ ι ∷ []) "2Pet.2.1" ∷ word (ἐ ∷ ν ∷ []) "2Pet.2.1" ∷ word (τ ∷ ῷ ∷ []) "2Pet.2.1" ∷ word (∙λ ∷ α ∷ ῷ ∷ []) "2Pet.2.1" ∷ word (ὡ ∷ ς ∷ []) "2Pet.2.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.2.1" ∷ word (ἐ ∷ ν ∷ []) "2Pet.2.1" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Pet.2.1" ∷ word (ἔ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "2Pet.2.1" ∷ word (ψ ∷ ε ∷ υ ∷ δ ∷ ο ∷ δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ο ∷ ι ∷ []) "2Pet.2.1" ∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "2Pet.2.1" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ ι ∷ σ ∷ ά ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "2Pet.2.1" ∷ word (α ∷ ἱ ∷ ρ ∷ έ ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "2Pet.2.1" ∷ word (ἀ ∷ π ∷ ω ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "2Pet.2.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.2.1" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "2Pet.2.1" ∷ word (ἀ ∷ γ ∷ ο ∷ ρ ∷ ά ∷ σ ∷ α ∷ ν ∷ τ ∷ α ∷ []) "2Pet.2.1" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Pet.2.1" ∷ word (δ ∷ ε ∷ σ ∷ π ∷ ό ∷ τ ∷ η ∷ ν ∷ []) "2Pet.2.1" ∷ word (ἀ ∷ ρ ∷ ν ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "2Pet.2.1" ∷ word (ἐ ∷ π ∷ ά ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Pet.2.1" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Pet.2.1" ∷ word (τ ∷ α ∷ χ ∷ ι ∷ ν ∷ ὴ ∷ ν ∷ []) "2Pet.2.1" ∷ word (ἀ ∷ π ∷ ώ ∷ ∙λ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "2Pet.2.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.2.2" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "2Pet.2.2" ∷ word (ἐ ∷ ξ ∷ α ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ υ ∷ θ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "2Pet.2.2" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "2Pet.2.2" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "2Pet.2.2" ∷ word (ἀ ∷ σ ∷ ε ∷ ∙λ ∷ γ ∷ ε ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "2Pet.2.2" ∷ word (δ ∷ ι ∷ []) "2Pet.2.2" ∷ word (ο ∷ ὓ ∷ ς ∷ []) "2Pet.2.2" ∷ word (ἡ ∷ []) "2Pet.2.2" ∷ word (ὁ ∷ δ ∷ ὸ ∷ ς ∷ []) "2Pet.2.2" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Pet.2.2" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "2Pet.2.2" ∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ η ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "2Pet.2.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.2.3" ∷ word (ἐ ∷ ν ∷ []) "2Pet.2.3" ∷ word (π ∷ ∙λ ∷ ε ∷ ο ∷ ν ∷ ε ∷ ξ ∷ ί ∷ ᾳ ∷ []) "2Pet.2.3" ∷ word (π ∷ ∙λ ∷ α ∷ σ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Pet.2.3" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ι ∷ ς ∷ []) "2Pet.2.3" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Pet.2.3" ∷ word (ἐ ∷ μ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "2Pet.2.3" ∷ word (ο ∷ ἷ ∷ ς ∷ []) "2Pet.2.3" ∷ word (τ ∷ ὸ ∷ []) "2Pet.2.3" ∷ word (κ ∷ ρ ∷ ί ∷ μ ∷ α ∷ []) "2Pet.2.3" ∷ word (ἔ ∷ κ ∷ π ∷ α ∷ ∙λ ∷ α ∷ ι ∷ []) "2Pet.2.3" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "2Pet.2.3" ∷ word (ἀ ∷ ρ ∷ γ ∷ ε ∷ ῖ ∷ []) "2Pet.2.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.2.3" ∷ word (ἡ ∷ []) "2Pet.2.3" ∷ word (ἀ ∷ π ∷ ώ ∷ ∙λ ∷ ε ∷ ι ∷ α ∷ []) "2Pet.2.3" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "2Pet.2.3" ∷ word (ο ∷ ὐ ∷ []) "2Pet.2.3" ∷ word (ν ∷ υ ∷ σ ∷ τ ∷ ά ∷ ζ ∷ ε ∷ ι ∷ []) "2Pet.2.3" ∷ word (Ε ∷ ἰ ∷ []) "2Pet.2.4" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Pet.2.4" ∷ word (ὁ ∷ []) "2Pet.2.4" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "2Pet.2.4" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "2Pet.2.4" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ η ∷ σ ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "2Pet.2.4" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "2Pet.2.4" ∷ word (ἐ ∷ φ ∷ ε ∷ ί ∷ σ ∷ α ∷ τ ∷ ο ∷ []) "2Pet.2.4" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Pet.2.4" ∷ word (σ ∷ ε ∷ ι ∷ ρ ∷ α ∷ ῖ ∷ ς ∷ []) "2Pet.2.4" ∷ word (ζ ∷ ό ∷ φ ∷ ο ∷ υ ∷ []) "2Pet.2.4" ∷ word (τ ∷ α ∷ ρ ∷ τ ∷ α ∷ ρ ∷ ώ ∷ σ ∷ α ∷ ς ∷ []) "2Pet.2.4" ∷ word (π ∷ α ∷ ρ ∷ έ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "2Pet.2.4" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Pet.2.4" ∷ word (κ ∷ ρ ∷ ί ∷ σ ∷ ι ∷ ν ∷ []) "2Pet.2.4" ∷ word (τ ∷ η ∷ ρ ∷ ο ∷ υ ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "2Pet.2.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.2.5" ∷ word (ἀ ∷ ρ ∷ χ ∷ α ∷ ί ∷ ο ∷ υ ∷ []) "2Pet.2.5" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ υ ∷ []) "2Pet.2.5" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "2Pet.2.5" ∷ word (ἐ ∷ φ ∷ ε ∷ ί ∷ σ ∷ α ∷ τ ∷ ο ∷ []) "2Pet.2.5" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Pet.2.5" ∷ word (ὄ ∷ γ ∷ δ ∷ ο ∷ ο ∷ ν ∷ []) "2Pet.2.5" ∷ word (Ν ∷ ῶ ∷ ε ∷ []) "2Pet.2.5" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ς ∷ []) "2Pet.2.5" ∷ word (κ ∷ ή ∷ ρ ∷ υ ∷ κ ∷ α ∷ []) "2Pet.2.5" ∷ word (ἐ ∷ φ ∷ ύ ∷ ∙λ ∷ α ∷ ξ ∷ ε ∷ ν ∷ []) "2Pet.2.5" ∷ word (κ ∷ α ∷ τ ∷ α ∷ κ ∷ ∙λ ∷ υ ∷ σ ∷ μ ∷ ὸ ∷ ν ∷ []) "2Pet.2.5" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ῳ ∷ []) "2Pet.2.5" ∷ word (ἀ ∷ σ ∷ ε ∷ β ∷ ῶ ∷ ν ∷ []) "2Pet.2.5" ∷ word (ἐ ∷ π ∷ ά ∷ ξ ∷ α ∷ ς ∷ []) "2Pet.2.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.2.6" ∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ι ∷ ς ∷ []) "2Pet.2.6" ∷ word (Σ ∷ ο ∷ δ ∷ ό ∷ μ ∷ ω ∷ ν ∷ []) "2Pet.2.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.2.6" ∷ word (Γ ∷ ο ∷ μ ∷ ό ∷ ρ ∷ ρ ∷ α ∷ ς ∷ []) "2Pet.2.6" ∷ word (τ ∷ ε ∷ φ ∷ ρ ∷ ώ ∷ σ ∷ α ∷ ς ∷ []) "2Pet.2.6" ∷ word (κ ∷ α ∷ τ ∷ α ∷ σ ∷ τ ∷ ρ ∷ ο ∷ φ ∷ ῇ ∷ []) "2Pet.2.6" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ κ ∷ ρ ∷ ι ∷ ν ∷ ε ∷ ν ∷ []) "2Pet.2.6" ∷ word (ὑ ∷ π ∷ ό ∷ δ ∷ ε ∷ ι ∷ γ ∷ μ ∷ α ∷ []) "2Pet.2.6" ∷ word (μ ∷ ε ∷ ∙λ ∷ ∙λ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "2Pet.2.6" ∷ word (ἀ ∷ σ ∷ ε ∷ β ∷ έ ∷ σ ∷ ι ∷ ν ∷ []) "2Pet.2.6" ∷ word (τ ∷ ε ∷ θ ∷ ε ∷ ι ∷ κ ∷ ώ ∷ ς ∷ []) "2Pet.2.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.2.7" ∷ word (δ ∷ ί ∷ κ ∷ α ∷ ι ∷ ο ∷ ν ∷ []) "2Pet.2.7" ∷ word (Λ ∷ ὼ ∷ τ ∷ []) "2Pet.2.7" ∷ word (κ ∷ α ∷ τ ∷ α ∷ π ∷ ο ∷ ν ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "2Pet.2.7" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "2Pet.2.7" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Pet.2.7" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "2Pet.2.7" ∷ word (ἀ ∷ θ ∷ έ ∷ σ ∷ μ ∷ ω ∷ ν ∷ []) "2Pet.2.7" ∷ word (ἐ ∷ ν ∷ []) "2Pet.2.7" ∷ word (ἀ ∷ σ ∷ ε ∷ ∙λ ∷ γ ∷ ε ∷ ί ∷ ᾳ ∷ []) "2Pet.2.7" ∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ρ ∷ ο ∷ φ ∷ ῆ ∷ ς ∷ []) "2Pet.2.7" ∷ word (ἐ ∷ ρ ∷ ρ ∷ ύ ∷ σ ∷ α ∷ τ ∷ ο ∷ []) "2Pet.2.7" ∷ word (β ∷ ∙λ ∷ έ ∷ μ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "2Pet.2.8" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Pet.2.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.2.8" ∷ word (ἀ ∷ κ ∷ ο ∷ ῇ ∷ []) "2Pet.2.8" ∷ word (ὁ ∷ []) "2Pet.2.8" ∷ word (δ ∷ ί ∷ κ ∷ α ∷ ι ∷ ο ∷ ς ∷ []) "2Pet.2.8" ∷ word (ἐ ∷ γ ∷ κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ []) "2Pet.2.8" ∷ word (ἐ ∷ ν ∷ []) "2Pet.2.8" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Pet.2.8" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "2Pet.2.8" ∷ word (ἐ ∷ ξ ∷ []) "2Pet.2.8" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "2Pet.2.8" ∷ word (ψ ∷ υ ∷ χ ∷ ὴ ∷ ν ∷ []) "2Pet.2.8" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ί ∷ α ∷ ν ∷ []) "2Pet.2.8" ∷ word (ἀ ∷ ν ∷ ό ∷ μ ∷ ο ∷ ι ∷ ς ∷ []) "2Pet.2.8" ∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ ι ∷ ς ∷ []) "2Pet.2.8" ∷ word (ἐ ∷ β ∷ α ∷ σ ∷ ά ∷ ν ∷ ι ∷ ζ ∷ ε ∷ ν ∷ []) "2Pet.2.8" ∷ word (ο ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "2Pet.2.9" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "2Pet.2.9" ∷ word (ε ∷ ὐ ∷ σ ∷ ε ∷ β ∷ ε ∷ ῖ ∷ ς ∷ []) "2Pet.2.9" ∷ word (ἐ ∷ κ ∷ []) "2Pet.2.9" ∷ word (π ∷ ε ∷ ι ∷ ρ ∷ α ∷ σ ∷ μ ∷ ο ∷ ῦ ∷ []) "2Pet.2.9" ∷ word (ῥ ∷ ύ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "2Pet.2.9" ∷ word (ἀ ∷ δ ∷ ί ∷ κ ∷ ο ∷ υ ∷ ς ∷ []) "2Pet.2.9" ∷ word (δ ∷ ὲ ∷ []) "2Pet.2.9" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Pet.2.9" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "2Pet.2.9" ∷ word (κ ∷ ρ ∷ ί ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "2Pet.2.9" ∷ word (κ ∷ ο ∷ ∙λ ∷ α ∷ ζ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "2Pet.2.9" ∷ word (τ ∷ η ∷ ρ ∷ ε ∷ ῖ ∷ ν ∷ []) "2Pet.2.9" ∷ word (μ ∷ ά ∷ ∙λ ∷ ι ∷ σ ∷ τ ∷ α ∷ []) "2Pet.2.10" ∷ word (δ ∷ ὲ ∷ []) "2Pet.2.10" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Pet.2.10" ∷ word (ὀ ∷ π ∷ ί ∷ σ ∷ ω ∷ []) "2Pet.2.10" ∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ὸ ∷ ς ∷ []) "2Pet.2.10" ∷ word (ἐ ∷ ν ∷ []) "2Pet.2.10" ∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ υ ∷ μ ∷ ί ∷ ᾳ ∷ []) "2Pet.2.10" ∷ word (μ ∷ ι ∷ α ∷ σ ∷ μ ∷ ο ∷ ῦ ∷ []) "2Pet.2.10" ∷ word (π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "2Pet.2.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.2.10" ∷ word (κ ∷ υ ∷ ρ ∷ ι ∷ ό ∷ τ ∷ η ∷ τ ∷ ο ∷ ς ∷ []) "2Pet.2.10" ∷ word (κ ∷ α ∷ τ ∷ α ∷ φ ∷ ρ ∷ ο ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "2Pet.2.10" ∷ word (Τ ∷ ο ∷ ∙λ ∷ μ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "2Pet.2.10" ∷ word (α ∷ ὐ ∷ θ ∷ ά ∷ δ ∷ ε ∷ ι ∷ ς ∷ []) "2Pet.2.10" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ς ∷ []) "2Pet.2.10" ∷ word (ο ∷ ὐ ∷ []) "2Pet.2.10" ∷ word (τ ∷ ρ ∷ έ ∷ μ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "2Pet.2.10" ∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Pet.2.10" ∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "2Pet.2.11" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ι ∷ []) "2Pet.2.11" ∷ word (ἰ ∷ σ ∷ χ ∷ ύ ∷ ϊ ∷ []) "2Pet.2.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.2.11" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ι ∷ []) "2Pet.2.11" ∷ word (μ ∷ ε ∷ ί ∷ ζ ∷ ο ∷ ν ∷ ε ∷ ς ∷ []) "2Pet.2.11" ∷ word (ὄ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Pet.2.11" ∷ word (ο ∷ ὐ ∷ []) "2Pet.2.11" ∷ word (φ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "2Pet.2.11" ∷ word (κ ∷ α ∷ τ ∷ []) "2Pet.2.11" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "2Pet.2.11" ∷ word (β ∷ ∙λ ∷ ά ∷ σ ∷ φ ∷ η ∷ μ ∷ ο ∷ ν ∷ []) "2Pet.2.11" ∷ word (κ ∷ ρ ∷ ί ∷ σ ∷ ι ∷ ν ∷ []) "2Pet.2.11" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "2Pet.2.12" ∷ word (δ ∷ έ ∷ []) "2Pet.2.12" ∷ word (ὡ ∷ ς ∷ []) "2Pet.2.12" ∷ word (ἄ ∷ ∙λ ∷ ο ∷ γ ∷ α ∷ []) "2Pet.2.12" ∷ word (ζ ∷ ῷ ∷ α ∷ []) "2Pet.2.12" ∷ word (γ ∷ ε ∷ γ ∷ ε ∷ ν ∷ ν ∷ η ∷ μ ∷ έ ∷ ν ∷ α ∷ []) "2Pet.2.12" ∷ word (φ ∷ υ ∷ σ ∷ ι ∷ κ ∷ ὰ ∷ []) "2Pet.2.12" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Pet.2.12" ∷ word (ἅ ∷ ∙λ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "2Pet.2.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.2.12" ∷ word (φ ∷ θ ∷ ο ∷ ρ ∷ ά ∷ ν ∷ []) "2Pet.2.12" ∷ word (ἐ ∷ ν ∷ []) "2Pet.2.12" ∷ word (ο ∷ ἷ ∷ ς ∷ []) "2Pet.2.12" ∷ word (ἀ ∷ γ ∷ ν ∷ ο ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "2Pet.2.12" ∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Pet.2.12" ∷ word (ἐ ∷ ν ∷ []) "2Pet.2.12" ∷ word (τ ∷ ῇ ∷ []) "2Pet.2.12" ∷ word (φ ∷ θ ∷ ο ∷ ρ ∷ ᾷ ∷ []) "2Pet.2.12" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "2Pet.2.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.2.12" ∷ word (φ ∷ θ ∷ α ∷ ρ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "2Pet.2.12" ∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "2Pet.2.13" ∷ word (μ ∷ ι ∷ σ ∷ θ ∷ ὸ ∷ ν ∷ []) "2Pet.2.13" ∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ί ∷ α ∷ ς ∷ []) "2Pet.2.13" ∷ word (ἡ ∷ δ ∷ ο ∷ ν ∷ ὴ ∷ ν ∷ []) "2Pet.2.13" ∷ word (ἡ ∷ γ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "2Pet.2.13" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Pet.2.13" ∷ word (ἐ ∷ ν ∷ []) "2Pet.2.13" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ ᾳ ∷ []) "2Pet.2.13" ∷ word (τ ∷ ρ ∷ υ ∷ φ ∷ ή ∷ ν ∷ []) "2Pet.2.13" ∷ word (σ ∷ π ∷ ί ∷ ∙λ ∷ ο ∷ ι ∷ []) "2Pet.2.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.2.13" ∷ word (μ ∷ ῶ ∷ μ ∷ ο ∷ ι ∷ []) "2Pet.2.13" ∷ word (ἐ ∷ ν ∷ τ ∷ ρ ∷ υ ∷ φ ∷ ῶ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Pet.2.13" ∷ word (ἐ ∷ ν ∷ []) "2Pet.2.13" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "2Pet.2.13" ∷ word (ἀ ∷ π ∷ ά ∷ τ ∷ α ∷ ι ∷ ς ∷ []) "2Pet.2.13" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "2Pet.2.13" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ υ ∷ ω ∷ χ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "2Pet.2.13" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Pet.2.13" ∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Pet.2.14" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Pet.2.14" ∷ word (μ ∷ ε ∷ σ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Pet.2.14" ∷ word (μ ∷ ο ∷ ι ∷ χ ∷ α ∷ ∙λ ∷ ί ∷ δ ∷ ο ∷ ς ∷ []) "2Pet.2.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.2.14" ∷ word (ἀ ∷ κ ∷ α ∷ τ ∷ α ∷ π ∷ α ∷ ύ ∷ σ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "2Pet.2.14" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "2Pet.2.14" ∷ word (δ ∷ ε ∷ ∙λ ∷ ε ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Pet.2.14" ∷ word (ψ ∷ υ ∷ χ ∷ ὰ ∷ ς ∷ []) "2Pet.2.14" ∷ word (ἀ ∷ σ ∷ τ ∷ η ∷ ρ ∷ ί ∷ κ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "2Pet.2.14" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "2Pet.2.14" ∷ word (γ ∷ ε ∷ γ ∷ υ ∷ μ ∷ ν ∷ α ∷ σ ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "2Pet.2.14" ∷ word (π ∷ ∙λ ∷ ε ∷ ο ∷ ν ∷ ε ∷ ξ ∷ ί ∷ α ∷ ς ∷ []) "2Pet.2.14" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Pet.2.14" ∷ word (κ ∷ α ∷ τ ∷ ά ∷ ρ ∷ α ∷ ς ∷ []) "2Pet.2.14" ∷ word (τ ∷ έ ∷ κ ∷ ν ∷ α ∷ []) "2Pet.2.14" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ι ∷ π ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Pet.2.15" ∷ word (ε ∷ ὐ ∷ θ ∷ ε ∷ ῖ ∷ α ∷ ν ∷ []) "2Pet.2.15" ∷ word (ὁ ∷ δ ∷ ὸ ∷ ν ∷ []) "2Pet.2.15" ∷ word (ἐ ∷ π ∷ ∙λ ∷ α ∷ ν ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "2Pet.2.15" ∷ word (ἐ ∷ ξ ∷ α ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ υ ∷ θ ∷ ή ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Pet.2.15" ∷ word (τ ∷ ῇ ∷ []) "2Pet.2.15" ∷ word (ὁ ∷ δ ∷ ῷ ∷ []) "2Pet.2.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Pet.2.15" ∷ word (Β ∷ α ∷ ∙λ ∷ α ∷ ὰ ∷ μ ∷ []) "2Pet.2.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Pet.2.15" ∷ word (Β ∷ ο ∷ σ ∷ ὸ ∷ ρ ∷ []) "2Pet.2.15" ∷ word (ὃ ∷ ς ∷ []) "2Pet.2.15" ∷ word (μ ∷ ι ∷ σ ∷ θ ∷ ὸ ∷ ν ∷ []) "2Pet.2.15" ∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ί ∷ α ∷ ς ∷ []) "2Pet.2.15" ∷ word (ἠ ∷ γ ∷ ά ∷ π ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "2Pet.2.15" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ξ ∷ ι ∷ ν ∷ []) "2Pet.2.16" ∷ word (δ ∷ ὲ ∷ []) "2Pet.2.16" ∷ word (ἔ ∷ σ ∷ χ ∷ ε ∷ ν ∷ []) "2Pet.2.16" ∷ word (ἰ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "2Pet.2.16" ∷ word (π ∷ α ∷ ρ ∷ α ∷ ν ∷ ο ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "2Pet.2.16" ∷ word (ὑ ∷ π ∷ ο ∷ ζ ∷ ύ ∷ γ ∷ ι ∷ ο ∷ ν ∷ []) "2Pet.2.16" ∷ word (ἄ ∷ φ ∷ ω ∷ ν ∷ ο ∷ ν ∷ []) "2Pet.2.16" ∷ word (ἐ ∷ ν ∷ []) "2Pet.2.16" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "2Pet.2.16" ∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "2Pet.2.16" ∷ word (φ ∷ θ ∷ ε ∷ γ ∷ ξ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "2Pet.2.16" ∷ word (ἐ ∷ κ ∷ ώ ∷ ∙λ ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "2Pet.2.16" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Pet.2.16" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Pet.2.16" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ ο ∷ υ ∷ []) "2Pet.2.16" ∷ word (π ∷ α ∷ ρ ∷ α ∷ φ ∷ ρ ∷ ο ∷ ν ∷ ί ∷ α ∷ ν ∷ []) "2Pet.2.16" ∷ word (Ο ∷ ὗ ∷ τ ∷ ο ∷ ί ∷ []) "2Pet.2.17" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "2Pet.2.17" ∷ word (π ∷ η ∷ γ ∷ α ∷ ὶ ∷ []) "2Pet.2.17" ∷ word (ἄ ∷ ν ∷ υ ∷ δ ∷ ρ ∷ ο ∷ ι ∷ []) "2Pet.2.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.2.17" ∷ word (ὁ ∷ μ ∷ ί ∷ χ ∷ ∙λ ∷ α ∷ ι ∷ []) "2Pet.2.17" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "2Pet.2.17" ∷ word (∙λ ∷ α ∷ ί ∷ ∙λ ∷ α ∷ π ∷ ο ∷ ς ∷ []) "2Pet.2.17" ∷ word (ἐ ∷ ∙λ ∷ α ∷ υ ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ α ∷ ι ∷ []) "2Pet.2.17" ∷ word (ο ∷ ἷ ∷ ς ∷ []) "2Pet.2.17" ∷ word (ὁ ∷ []) "2Pet.2.17" ∷ word (ζ ∷ ό ∷ φ ∷ ο ∷ ς ∷ []) "2Pet.2.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Pet.2.17" ∷ word (σ ∷ κ ∷ ό ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "2Pet.2.17" ∷ word (τ ∷ ε ∷ τ ∷ ή ∷ ρ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "2Pet.2.17" ∷ word (ὑ ∷ π ∷ έ ∷ ρ ∷ ο ∷ γ ∷ κ ∷ α ∷ []) "2Pet.2.18" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Pet.2.18" ∷ word (μ ∷ α ∷ τ ∷ α ∷ ι ∷ ό ∷ τ ∷ η ∷ τ ∷ ο ∷ ς ∷ []) "2Pet.2.18" ∷ word (φ ∷ θ ∷ ε ∷ γ ∷ γ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "2Pet.2.18" ∷ word (δ ∷ ε ∷ ∙λ ∷ ε ∷ ά ∷ ζ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "2Pet.2.18" ∷ word (ἐ ∷ ν ∷ []) "2Pet.2.18" ∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ υ ∷ μ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "2Pet.2.18" ∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ὸ ∷ ς ∷ []) "2Pet.2.18" ∷ word (ἀ ∷ σ ∷ ε ∷ ∙λ ∷ γ ∷ ε ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "2Pet.2.18" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Pet.2.18" ∷ word (ὀ ∷ ∙λ ∷ ί ∷ γ ∷ ω ∷ ς ∷ []) "2Pet.2.18" ∷ word (ἀ ∷ π ∷ ο ∷ φ ∷ ε ∷ ύ ∷ γ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "2Pet.2.18" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Pet.2.18" ∷ word (ἐ ∷ ν ∷ []) "2Pet.2.18" ∷ word (π ∷ ∙λ ∷ ά ∷ ν ∷ ῃ ∷ []) "2Pet.2.18" ∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ρ ∷ ε ∷ φ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "2Pet.2.18" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ υ ∷ θ ∷ ε ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "2Pet.2.19" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Pet.2.19" ∷ word (ἐ ∷ π ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ∙λ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "2Pet.2.19" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὶ ∷ []) "2Pet.2.19" ∷ word (δ ∷ ο ∷ ῦ ∷ ∙λ ∷ ο ∷ ι ∷ []) "2Pet.2.19" ∷ word (ὑ ∷ π ∷ ά ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Pet.2.19" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Pet.2.19" ∷ word (φ ∷ θ ∷ ο ∷ ρ ∷ ᾶ ∷ ς ∷ []) "2Pet.2.19" ∷ word (ᾧ ∷ []) "2Pet.2.19" ∷ word (γ ∷ ά ∷ ρ ∷ []) "2Pet.2.19" ∷ word (τ ∷ ι ∷ ς ∷ []) "2Pet.2.19" ∷ word (ἥ ∷ τ ∷ τ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "2Pet.2.19" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ῳ ∷ []) "2Pet.2.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.2.19" ∷ word (δ ∷ ε ∷ δ ∷ ο ∷ ύ ∷ ∙λ ∷ ω ∷ τ ∷ α ∷ ι ∷ []) "2Pet.2.19" ∷ word (ε ∷ ἰ ∷ []) "2Pet.2.20" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Pet.2.20" ∷ word (ἀ ∷ π ∷ ο ∷ φ ∷ υ ∷ γ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Pet.2.20" ∷ word (τ ∷ ὰ ∷ []) "2Pet.2.20" ∷ word (μ ∷ ι ∷ ά ∷ σ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "2Pet.2.20" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Pet.2.20" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ υ ∷ []) "2Pet.2.20" ∷ word (ἐ ∷ ν ∷ []) "2Pet.2.20" ∷ word (ἐ ∷ π ∷ ι ∷ γ ∷ ν ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "2Pet.2.20" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Pet.2.20" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "2Pet.2.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.2.20" ∷ word (σ ∷ ω ∷ τ ∷ ῆ ∷ ρ ∷ ο ∷ ς ∷ []) "2Pet.2.20" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "2Pet.2.20" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Pet.2.20" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "2Pet.2.20" ∷ word (δ ∷ ὲ ∷ []) "2Pet.2.20" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "2Pet.2.20" ∷ word (ἐ ∷ μ ∷ π ∷ ∙λ ∷ α ∷ κ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Pet.2.20" ∷ word (ἡ ∷ τ ∷ τ ∷ ῶ ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "2Pet.2.20" ∷ word (γ ∷ έ ∷ γ ∷ ο ∷ ν ∷ ε ∷ ν ∷ []) "2Pet.2.20" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Pet.2.20" ∷ word (τ ∷ ὰ ∷ []) "2Pet.2.20" ∷ word (ἔ ∷ σ ∷ χ ∷ α ∷ τ ∷ α ∷ []) "2Pet.2.20" ∷ word (χ ∷ ε ∷ ί ∷ ρ ∷ ο ∷ ν ∷ α ∷ []) "2Pet.2.20" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "2Pet.2.20" ∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ ω ∷ ν ∷ []) "2Pet.2.20" ∷ word (κ ∷ ρ ∷ ε ∷ ῖ ∷ τ ∷ τ ∷ ο ∷ ν ∷ []) "2Pet.2.21" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Pet.2.21" ∷ word (ἦ ∷ ν ∷ []) "2Pet.2.21" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Pet.2.21" ∷ word (μ ∷ ὴ ∷ []) "2Pet.2.21" ∷ word (ἐ ∷ π ∷ ε ∷ γ ∷ ν ∷ ω ∷ κ ∷ έ ∷ ν ∷ α ∷ ι ∷ []) "2Pet.2.21" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Pet.2.21" ∷ word (ὁ ∷ δ ∷ ὸ ∷ ν ∷ []) "2Pet.2.21" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Pet.2.21" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ς ∷ []) "2Pet.2.21" ∷ word (ἢ ∷ []) "2Pet.2.21" ∷ word (ἐ ∷ π ∷ ι ∷ γ ∷ ν ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "2Pet.2.21" ∷ word (ὑ ∷ π ∷ ο ∷ σ ∷ τ ∷ ρ ∷ έ ∷ ψ ∷ α ∷ ι ∷ []) "2Pet.2.21" ∷ word (ἐ ∷ κ ∷ []) "2Pet.2.21" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Pet.2.21" ∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ο ∷ θ ∷ ε ∷ ί ∷ σ ∷ η ∷ ς ∷ []) "2Pet.2.21" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Pet.2.21" ∷ word (ἁ ∷ γ ∷ ί ∷ α ∷ ς ∷ []) "2Pet.2.21" ∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "2Pet.2.21" ∷ word (σ ∷ υ ∷ μ ∷ β ∷ έ ∷ β ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "2Pet.2.22" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Pet.2.22" ∷ word (τ ∷ ὸ ∷ []) "2Pet.2.22" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Pet.2.22" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ο ∷ ῦ ∷ ς ∷ []) "2Pet.2.22" ∷ word (π ∷ α ∷ ρ ∷ ο ∷ ι ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "2Pet.2.22" ∷ word (Κ ∷ ύ ∷ ω ∷ ν ∷ []) "2Pet.2.22" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ρ ∷ έ ∷ ψ ∷ α ∷ ς ∷ []) "2Pet.2.22" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "2Pet.2.22" ∷ word (τ ∷ ὸ ∷ []) "2Pet.2.22" ∷ word (ἴ ∷ δ ∷ ι ∷ ο ∷ ν ∷ []) "2Pet.2.22" ∷ word (ἐ ∷ ξ ∷ έ ∷ ρ ∷ α ∷ μ ∷ α ∷ []) "2Pet.2.22" ∷ word (κ ∷ α ∷ ί ∷ []) "2Pet.2.22" ∷ word (Ὗ ∷ ς ∷ []) "2Pet.2.22" ∷ word (∙λ ∷ ο ∷ υ ∷ σ ∷ α ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "2Pet.2.22" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Pet.2.22" ∷ word (κ ∷ υ ∷ ∙λ ∷ ι ∷ σ ∷ μ ∷ ὸ ∷ ν ∷ []) "2Pet.2.22" ∷ word (β ∷ ο ∷ ρ ∷ β ∷ ό ∷ ρ ∷ ο ∷ υ ∷ []) "2Pet.2.22" ∷ word (Τ ∷ α ∷ ύ ∷ τ ∷ η ∷ ν ∷ []) "2Pet.3.1" ∷ word (ἤ ∷ δ ∷ η ∷ []) "2Pet.3.1" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ ο ∷ ί ∷ []) "2Pet.3.1" ∷ word (δ ∷ ε ∷ υ ∷ τ ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "2Pet.3.1" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Pet.3.1" ∷ word (γ ∷ ρ ∷ ά ∷ φ ∷ ω ∷ []) "2Pet.3.1" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ή ∷ ν ∷ []) "2Pet.3.1" ∷ word (ἐ ∷ ν ∷ []) "2Pet.3.1" ∷ word (α ∷ ἷ ∷ ς ∷ []) "2Pet.3.1" ∷ word (δ ∷ ι ∷ ε ∷ γ ∷ ε ∷ ί ∷ ρ ∷ ω ∷ []) "2Pet.3.1" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Pet.3.1" ∷ word (ἐ ∷ ν ∷ []) "2Pet.3.1" ∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ν ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "2Pet.3.1" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Pet.3.1" ∷ word (ε ∷ ἰ ∷ ∙λ ∷ ι ∷ κ ∷ ρ ∷ ι ∷ ν ∷ ῆ ∷ []) "2Pet.3.1" ∷ word (δ ∷ ι ∷ ά ∷ ν ∷ ο ∷ ι ∷ α ∷ ν ∷ []) "2Pet.3.1" ∷ word (μ ∷ ν ∷ η ∷ σ ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "2Pet.3.2" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "2Pet.3.2" ∷ word (π ∷ ρ ∷ ο ∷ ε ∷ ι ∷ ρ ∷ η ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "2Pet.3.2" ∷ word (ῥ ∷ η ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "2Pet.3.2" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "2Pet.3.2" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "2Pet.3.2" ∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "2Pet.3.2" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "2Pet.3.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.3.2" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Pet.3.2" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "2Pet.3.2" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ό ∷ ∙λ ∷ ω ∷ ν ∷ []) "2Pet.3.2" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Pet.3.2" ∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "2Pet.3.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Pet.3.2" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "2Pet.3.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.3.2" ∷ word (σ ∷ ω ∷ τ ∷ ῆ ∷ ρ ∷ ο ∷ ς ∷ []) "2Pet.3.2" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "2Pet.3.3" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "2Pet.3.3" ∷ word (γ ∷ ι ∷ ν ∷ ώ ∷ σ ∷ κ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Pet.3.3" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Pet.3.3" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "2Pet.3.3" ∷ word (ἐ ∷ π ∷ []) "2Pet.3.3" ∷ word (ἐ ∷ σ ∷ χ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "2Pet.3.3" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "2Pet.3.3" ∷ word (ἡ ∷ μ ∷ ε ∷ ρ ∷ ῶ ∷ ν ∷ []) "2Pet.3.3" ∷ word (ἐ ∷ ν ∷ []) "2Pet.3.3" ∷ word (ἐ ∷ μ ∷ π ∷ α ∷ ι ∷ γ ∷ μ ∷ ο ∷ ν ∷ ῇ ∷ []) "2Pet.3.3" ∷ word (ἐ ∷ μ ∷ π ∷ α ∷ ῖ ∷ κ ∷ τ ∷ α ∷ ι ∷ []) "2Pet.3.3" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "2Pet.3.3" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "2Pet.3.3" ∷ word (ἰ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "2Pet.3.3" ∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ υ ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "2Pet.3.3" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "2Pet.3.3" ∷ word (π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "2Pet.3.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.3.4" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Pet.3.4" ∷ word (Π ∷ ο ∷ ῦ ∷ []) "2Pet.3.4" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "2Pet.3.4" ∷ word (ἡ ∷ []) "2Pet.3.4" ∷ word (ἐ ∷ π ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ α ∷ []) "2Pet.3.4" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Pet.3.4" ∷ word (π ∷ α ∷ ρ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "2Pet.3.4" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Pet.3.4" ∷ word (ἀ ∷ φ ∷ []) "2Pet.3.4" ∷ word (ἧ ∷ ς ∷ []) "2Pet.3.4" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Pet.3.4" ∷ word (ο ∷ ἱ ∷ []) "2Pet.3.4" ∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ ε ∷ ς ∷ []) "2Pet.3.4" ∷ word (ἐ ∷ κ ∷ ο ∷ ι ∷ μ ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "2Pet.3.4" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "2Pet.3.4" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "2Pet.3.4" ∷ word (δ ∷ ι ∷ α ∷ μ ∷ έ ∷ ν ∷ ε ∷ ι ∷ []) "2Pet.3.4" ∷ word (ἀ ∷ π ∷ []) "2Pet.3.4" ∷ word (ἀ ∷ ρ ∷ χ ∷ ῆ ∷ ς ∷ []) "2Pet.3.4" ∷ word (κ ∷ τ ∷ ί ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "2Pet.3.4" ∷ word (∙λ ∷ α ∷ ν ∷ θ ∷ ά ∷ ν ∷ ε ∷ ι ∷ []) "2Pet.3.5" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Pet.3.5" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Pet.3.5" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "2Pet.3.5" ∷ word (θ ∷ έ ∷ ∙λ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "2Pet.3.5" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Pet.3.5" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ὶ ∷ []) "2Pet.3.5" ∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "2Pet.3.5" ∷ word (ἔ ∷ κ ∷ π ∷ α ∷ ∙λ ∷ α ∷ ι ∷ []) "2Pet.3.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.3.5" ∷ word (γ ∷ ῆ ∷ []) "2Pet.3.5" ∷ word (ἐ ∷ ξ ∷ []) "2Pet.3.5" ∷ word (ὕ ∷ δ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "2Pet.3.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.3.5" ∷ word (δ ∷ ι ∷ []) "2Pet.3.5" ∷ word (ὕ ∷ δ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "2Pet.3.5" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ σ ∷ τ ∷ ῶ ∷ σ ∷ α ∷ []) "2Pet.3.5" ∷ word (τ ∷ ῷ ∷ []) "2Pet.3.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Pet.3.5" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Pet.3.5" ∷ word (∙λ ∷ ό ∷ γ ∷ ῳ ∷ []) "2Pet.3.5" ∷ word (δ ∷ ι ∷ []) "2Pet.3.6" ∷ word (ὧ ∷ ν ∷ []) "2Pet.3.6" ∷ word (ὁ ∷ []) "2Pet.3.6" ∷ word (τ ∷ ό ∷ τ ∷ ε ∷ []) "2Pet.3.6" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ ς ∷ []) "2Pet.3.6" ∷ word (ὕ ∷ δ ∷ α ∷ τ ∷ ι ∷ []) "2Pet.3.6" ∷ word (κ ∷ α ∷ τ ∷ α ∷ κ ∷ ∙λ ∷ υ ∷ σ ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "2Pet.3.6" ∷ word (ἀ ∷ π ∷ ώ ∷ ∙λ ∷ ε ∷ τ ∷ ο ∷ []) "2Pet.3.6" ∷ word (ο ∷ ἱ ∷ []) "2Pet.3.7" ∷ word (δ ∷ ὲ ∷ []) "2Pet.3.7" ∷ word (ν ∷ ῦ ∷ ν ∷ []) "2Pet.3.7" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ὶ ∷ []) "2Pet.3.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.3.7" ∷ word (ἡ ∷ []) "2Pet.3.7" ∷ word (γ ∷ ῆ ∷ []) "2Pet.3.7" ∷ word (τ ∷ ῷ ∷ []) "2Pet.3.7" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "2Pet.3.7" ∷ word (∙λ ∷ ό ∷ γ ∷ ῳ ∷ []) "2Pet.3.7" ∷ word (τ ∷ ε ∷ θ ∷ η ∷ σ ∷ α ∷ υ ∷ ρ ∷ ι ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "2Pet.3.7" ∷ word (ε ∷ ἰ ∷ σ ∷ ὶ ∷ ν ∷ []) "2Pet.3.7" ∷ word (π ∷ υ ∷ ρ ∷ ὶ ∷ []) "2Pet.3.7" ∷ word (τ ∷ η ∷ ρ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "2Pet.3.7" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Pet.3.7" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "2Pet.3.7" ∷ word (κ ∷ ρ ∷ ί ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "2Pet.3.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.3.7" ∷ word (ἀ ∷ π ∷ ω ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "2Pet.3.7" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "2Pet.3.7" ∷ word (ἀ ∷ σ ∷ ε ∷ β ∷ ῶ ∷ ν ∷ []) "2Pet.3.7" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "2Pet.3.7" ∷ word (Ἓ ∷ ν ∷ []) "2Pet.3.8" ∷ word (δ ∷ ὲ ∷ []) "2Pet.3.8" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "2Pet.3.8" ∷ word (μ ∷ ὴ ∷ []) "2Pet.3.8" ∷ word (∙λ ∷ α ∷ ν ∷ θ ∷ α ∷ ν ∷ έ ∷ τ ∷ ω ∷ []) "2Pet.3.8" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Pet.3.8" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ ο ∷ ί ∷ []) "2Pet.3.8" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Pet.3.8" ∷ word (μ ∷ ί ∷ α ∷ []) "2Pet.3.8" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ []) "2Pet.3.8" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "2Pet.3.8" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "2Pet.3.8" ∷ word (ὡ ∷ ς ∷ []) "2Pet.3.8" ∷ word (χ ∷ ί ∷ ∙λ ∷ ι ∷ α ∷ []) "2Pet.3.8" ∷ word (ἔ ∷ τ ∷ η ∷ []) "2Pet.3.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.3.8" ∷ word (χ ∷ ί ∷ ∙λ ∷ ι ∷ α ∷ []) "2Pet.3.8" ∷ word (ἔ ∷ τ ∷ η ∷ []) "2Pet.3.8" ∷ word (ὡ ∷ ς ∷ []) "2Pet.3.8" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ []) "2Pet.3.8" ∷ word (μ ∷ ί ∷ α ∷ []) "2Pet.3.8" ∷ word (ο ∷ ὐ ∷ []) "2Pet.3.9" ∷ word (β ∷ ρ ∷ α ∷ δ ∷ ύ ∷ ν ∷ ε ∷ ι ∷ []) "2Pet.3.9" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "2Pet.3.9" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Pet.3.9" ∷ word (ἐ ∷ π ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "2Pet.3.9" ∷ word (ὥ ∷ ς ∷ []) "2Pet.3.9" ∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "2Pet.3.9" ∷ word (β ∷ ρ ∷ α ∷ δ ∷ ύ ∷ τ ∷ η ∷ τ ∷ α ∷ []) "2Pet.3.9" ∷ word (ἡ ∷ γ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "2Pet.3.9" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Pet.3.9" ∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ο ∷ θ ∷ υ ∷ μ ∷ ε ∷ ῖ ∷ []) "2Pet.3.9" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Pet.3.9" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Pet.3.9" ∷ word (μ ∷ ὴ ∷ []) "2Pet.3.9" ∷ word (β ∷ ο ∷ υ ∷ ∙λ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ό ∷ ς ∷ []) "2Pet.3.9" ∷ word (τ ∷ ι ∷ ν ∷ α ∷ ς ∷ []) "2Pet.3.9" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ έ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "2Pet.3.9" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Pet.3.9" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "2Pet.3.9" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Pet.3.9" ∷ word (μ ∷ ε ∷ τ ∷ ά ∷ ν ∷ ο ∷ ι ∷ α ∷ ν ∷ []) "2Pet.3.9" ∷ word (χ ∷ ω ∷ ρ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "2Pet.3.9" ∷ word (ἥ ∷ ξ ∷ ε ∷ ι ∷ []) "2Pet.3.10" ∷ word (δ ∷ ὲ ∷ []) "2Pet.3.10" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ []) "2Pet.3.10" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "2Pet.3.10" ∷ word (ὡ ∷ ς ∷ []) "2Pet.3.10" ∷ word (κ ∷ ∙λ ∷ έ ∷ π ∷ τ ∷ η ∷ ς ∷ []) "2Pet.3.10" ∷ word (ἐ ∷ ν ∷ []) "2Pet.3.10" ∷ word (ᾗ ∷ []) "2Pet.3.10" ∷ word (ο ∷ ἱ ∷ []) "2Pet.3.10" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ὶ ∷ []) "2Pet.3.10" ∷ word (ῥ ∷ ο ∷ ι ∷ ζ ∷ η ∷ δ ∷ ὸ ∷ ν ∷ []) "2Pet.3.10" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "2Pet.3.10" ∷ word (σ ∷ τ ∷ ο ∷ ι ∷ χ ∷ ε ∷ ῖ ∷ α ∷ []) "2Pet.3.10" ∷ word (δ ∷ ὲ ∷ []) "2Pet.3.10" ∷ word (κ ∷ α ∷ υ ∷ σ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ α ∷ []) "2Pet.3.10" ∷ word (∙λ ∷ υ ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "2Pet.3.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.3.10" ∷ word (γ ∷ ῆ ∷ []) "2Pet.3.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.3.10" ∷ word (τ ∷ ὰ ∷ []) "2Pet.3.10" ∷ word (ἐ ∷ ν ∷ []) "2Pet.3.10" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "2Pet.3.10" ∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "2Pet.3.10" ∷ word (ε ∷ ὑ ∷ ρ ∷ ε ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "2Pet.3.10" ∷ word (Τ ∷ ο ∷ ύ ∷ τ ∷ ω ∷ ν ∷ []) "2Pet.3.11" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "2Pet.3.11" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "2Pet.3.11" ∷ word (∙λ ∷ υ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "2Pet.3.11" ∷ word (π ∷ ο ∷ τ ∷ α ∷ π ∷ ο ∷ ὺ ∷ ς ∷ []) "2Pet.3.11" ∷ word (δ ∷ ε ∷ ῖ ∷ []) "2Pet.3.11" ∷ word (ὑ ∷ π ∷ ά ∷ ρ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "2Pet.3.11" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Pet.3.11" ∷ word (ἐ ∷ ν ∷ []) "2Pet.3.11" ∷ word (ἁ ∷ γ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "2Pet.3.11" ∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ρ ∷ ο ∷ φ ∷ α ∷ ῖ ∷ ς ∷ []) "2Pet.3.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.3.11" ∷ word (ε ∷ ὐ ∷ σ ∷ ε ∷ β ∷ ε ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "2Pet.3.11" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ δ ∷ ο ∷ κ ∷ ῶ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "2Pet.3.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.3.12" ∷ word (σ ∷ π ∷ ε ∷ ύ ∷ δ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "2Pet.3.12" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Pet.3.12" ∷ word (π ∷ α ∷ ρ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "2Pet.3.12" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Pet.3.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Pet.3.12" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Pet.3.12" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "2Pet.3.12" ∷ word (δ ∷ ι ∷ []) "2Pet.3.12" ∷ word (ἣ ∷ ν ∷ []) "2Pet.3.12" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ὶ ∷ []) "2Pet.3.12" ∷ word (π ∷ υ ∷ ρ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "2Pet.3.12" ∷ word (∙λ ∷ υ ∷ θ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "2Pet.3.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.3.12" ∷ word (σ ∷ τ ∷ ο ∷ ι ∷ χ ∷ ε ∷ ῖ ∷ α ∷ []) "2Pet.3.12" ∷ word (κ ∷ α ∷ υ ∷ σ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ α ∷ []) "2Pet.3.12" ∷ word (τ ∷ ή ∷ κ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "2Pet.3.12" ∷ word (κ ∷ α ∷ ι ∷ ν ∷ ο ∷ ὺ ∷ ς ∷ []) "2Pet.3.13" ∷ word (δ ∷ ὲ ∷ []) "2Pet.3.13" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ὺ ∷ ς ∷ []) "2Pet.3.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.3.13" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "2Pet.3.13" ∷ word (κ ∷ α ∷ ι ∷ ν ∷ ὴ ∷ ν ∷ []) "2Pet.3.13" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "2Pet.3.13" ∷ word (τ ∷ ὸ ∷ []) "2Pet.3.13" ∷ word (ἐ ∷ π ∷ ά ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ μ ∷ α ∷ []) "2Pet.3.13" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Pet.3.13" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ δ ∷ ο ∷ κ ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "2Pet.3.13" ∷ word (ἐ ∷ ν ∷ []) "2Pet.3.13" ∷ word (ο ∷ ἷ ∷ ς ∷ []) "2Pet.3.13" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ []) "2Pet.3.13" ∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ε ∷ ῖ ∷ []) "2Pet.3.13" ∷ word (Δ ∷ ι ∷ ό ∷ []) "2Pet.3.14" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ ο ∷ ί ∷ []) "2Pet.3.14" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "2Pet.3.14" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ δ ∷ ο ∷ κ ∷ ῶ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Pet.3.14" ∷ word (σ ∷ π ∷ ο ∷ υ ∷ δ ∷ ά ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "2Pet.3.14" ∷ word (ἄ ∷ σ ∷ π ∷ ι ∷ ∙λ ∷ ο ∷ ι ∷ []) "2Pet.3.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.3.14" ∷ word (ἀ ∷ μ ∷ ώ ∷ μ ∷ η ∷ τ ∷ ο ∷ ι ∷ []) "2Pet.3.14" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "2Pet.3.14" ∷ word (ε ∷ ὑ ∷ ρ ∷ ε ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "2Pet.3.14" ∷ word (ἐ ∷ ν ∷ []) "2Pet.3.14" ∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ ῃ ∷ []) "2Pet.3.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.3.15" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Pet.3.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Pet.3.15" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "2Pet.3.15" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Pet.3.15" ∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ο ∷ θ ∷ υ ∷ μ ∷ ί ∷ α ∷ ν ∷ []) "2Pet.3.15" ∷ word (σ ∷ ω ∷ τ ∷ η ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "2Pet.3.15" ∷ word (ἡ ∷ γ ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ ε ∷ []) "2Pet.3.15" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "2Pet.3.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.3.15" ∷ word (ὁ ∷ []) "2Pet.3.15" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ ὸ ∷ ς ∷ []) "2Pet.3.15" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Pet.3.15" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ς ∷ []) "2Pet.3.15" ∷ word (Π ∷ α ∷ ῦ ∷ ∙λ ∷ ο ∷ ς ∷ []) "2Pet.3.15" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "2Pet.3.15" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Pet.3.15" ∷ word (δ ∷ ο ∷ θ ∷ ε ∷ ῖ ∷ σ ∷ α ∷ ν ∷ []) "2Pet.3.15" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "2Pet.3.15" ∷ word (σ ∷ ο ∷ φ ∷ ί ∷ α ∷ ν ∷ []) "2Pet.3.15" ∷ word (ἔ ∷ γ ∷ ρ ∷ α ∷ ψ ∷ ε ∷ ν ∷ []) "2Pet.3.15" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Pet.3.15" ∷ word (ὡ ∷ ς ∷ []) "2Pet.3.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.3.16" ∷ word (ἐ ∷ ν ∷ []) "2Pet.3.16" ∷ word (π ∷ ά ∷ σ ∷ α ∷ ι ∷ ς ∷ []) "2Pet.3.16" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "2Pet.3.16" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ α ∷ ῖ ∷ ς ∷ []) "2Pet.3.16" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "2Pet.3.16" ∷ word (ἐ ∷ ν ∷ []) "2Pet.3.16" ∷ word (α ∷ ὐ ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "2Pet.3.16" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "2Pet.3.16" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ω ∷ ν ∷ []) "2Pet.3.16" ∷ word (ἐ ∷ ν ∷ []) "2Pet.3.16" ∷ word (α ∷ ἷ ∷ ς ∷ []) "2Pet.3.16" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "2Pet.3.16" ∷ word (δ ∷ υ ∷ σ ∷ ν ∷ ό ∷ η ∷ τ ∷ ά ∷ []) "2Pet.3.16" ∷ word (τ ∷ ι ∷ ν ∷ α ∷ []) "2Pet.3.16" ∷ word (ἃ ∷ []) "2Pet.3.16" ∷ word (ο ∷ ἱ ∷ []) "2Pet.3.16" ∷ word (ἀ ∷ μ ∷ α ∷ θ ∷ ε ∷ ῖ ∷ ς ∷ []) "2Pet.3.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.3.16" ∷ word (ἀ ∷ σ ∷ τ ∷ ή ∷ ρ ∷ ι ∷ κ ∷ τ ∷ ο ∷ ι ∷ []) "2Pet.3.16" ∷ word (σ ∷ τ ∷ ρ ∷ ε ∷ β ∷ ∙λ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "2Pet.3.16" ∷ word (ὡ ∷ ς ∷ []) "2Pet.3.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.3.16" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "2Pet.3.16" ∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ὰ ∷ ς ∷ []) "2Pet.3.16" ∷ word (γ ∷ ρ ∷ α ∷ φ ∷ ὰ ∷ ς ∷ []) "2Pet.3.16" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Pet.3.16" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Pet.3.16" ∷ word (ἰ ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "2Pet.3.16" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "2Pet.3.16" ∷ word (ἀ ∷ π ∷ ώ ∷ ∙λ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "2Pet.3.16" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "2Pet.3.17" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "2Pet.3.17" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ ο ∷ ί ∷ []) "2Pet.3.17" ∷ word (π ∷ ρ ∷ ο ∷ γ ∷ ι ∷ ν ∷ ώ ∷ σ ∷ κ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Pet.3.17" ∷ word (φ ∷ υ ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "2Pet.3.17" ∷ word (ἵ ∷ ν ∷ α ∷ []) "2Pet.3.17" ∷ word (μ ∷ ὴ ∷ []) "2Pet.3.17" ∷ word (τ ∷ ῇ ∷ []) "2Pet.3.17" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "2Pet.3.17" ∷ word (ἀ ∷ θ ∷ έ ∷ σ ∷ μ ∷ ω ∷ ν ∷ []) "2Pet.3.17" ∷ word (π ∷ ∙λ ∷ ά ∷ ν ∷ ῃ ∷ []) "2Pet.3.17" ∷ word (σ ∷ υ ∷ ν ∷ α ∷ π ∷ α ∷ χ ∷ θ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Pet.3.17" ∷ word (ἐ ∷ κ ∷ π ∷ έ ∷ σ ∷ η ∷ τ ∷ ε ∷ []) "2Pet.3.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Pet.3.17" ∷ word (ἰ ∷ δ ∷ ί ∷ ο ∷ υ ∷ []) "2Pet.3.17" ∷ word (σ ∷ τ ∷ η ∷ ρ ∷ ι ∷ γ ∷ μ ∷ ο ∷ ῦ ∷ []) "2Pet.3.17" ∷ word (α ∷ ὐ ∷ ξ ∷ ά ∷ ν ∷ ε ∷ τ ∷ ε ∷ []) "2Pet.3.18" ∷ word (δ ∷ ὲ ∷ []) "2Pet.3.18" ∷ word (ἐ ∷ ν ∷ []) "2Pet.3.18" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ τ ∷ ι ∷ []) "2Pet.3.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.3.18" ∷ word (γ ∷ ν ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "2Pet.3.18" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Pet.3.18" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "2Pet.3.18" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Pet.3.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.3.18" ∷ word (σ ∷ ω ∷ τ ∷ ῆ ∷ ρ ∷ ο ∷ ς ∷ []) "2Pet.3.18" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "2Pet.3.18" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Pet.3.18" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "2Pet.3.18" ∷ word (ἡ ∷ []) "2Pet.3.18" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ []) "2Pet.3.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.3.18" ∷ word (ν ∷ ῦ ∷ ν ∷ []) "2Pet.3.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "2Pet.3.18" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Pet.3.18" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "2Pet.3.18" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ ο ∷ ς ∷ []) "2Pet.3.18" ∷ word (ἀ ∷ μ ∷ ή ∷ ν ∷ []) "2Pet.3.18" ∷ []
algebraic-stack_agda0000_doc_16484
module Chain { A : Set } (_==_ : A -> A -> Set ) (refl : (x : A) -> x == x) (trans : (x y z : A) -> x == y -> y == z -> x == z) where infix 2 chain>_ infixl 2 _===_ infix 3 _by_ chain>_ : (x : A) -> x == x chain> x = refl _ _===_ : {x y z : A} -> x == y -> y == z -> x == z xy === yz = trans _ _ _ xy yz _by_ : {x : A}(y : A) -> x == y -> x == y y by eq = eq
algebraic-stack_agda0000_doc_16485
{-# OPTIONS --without-K --safe #-} open import Algebra.Construct.DirectProduct module Construct.DirectProduct where open import Algebra.Bundles import Algebra.Construct.DirectProduct as DirectProduct open import Data.Product open import Data.Product.Relation.Binary.Pointwise.NonDependent open import Level using (Level; _⊔_) private variable a b ℓ₁ ℓ₂ : Level
algebraic-stack_agda0000_doc_16486
------------------------------------------------------------------------ -- The Agda standard library -- -- Core lemmas for division and modulus operations ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Nat.DivMod.Core where open import Agda.Builtin.Nat using () renaming (div-helper to divₕ; mod-helper to modₕ) open import Data.Nat open import Data.Nat.Properties open import Relation.Binary.PropositionalEquality open ≡-Reasoning ------------------------------------------------------------------------- -- mod lemmas modₕ-skipTo0 : ∀ acc n a b → modₕ acc n (b + a) a ≡ modₕ (a + acc) n b 0 modₕ-skipTo0 acc n zero b = cong (λ v → modₕ acc n v 0) (+-identityʳ b) modₕ-skipTo0 acc n (suc a) b = begin modₕ acc n (b + suc a) (suc a) ≡⟨ cong (λ v → modₕ acc n v (suc a)) (+-suc b a) ⟩ modₕ acc n (suc b + a) (suc a) ≡⟨⟩ modₕ (suc acc) n (b + a) a ≡⟨ modₕ-skipTo0 (suc acc) n a b ⟩ modₕ (a + suc acc) n b 0 ≡⟨ cong (λ v → modₕ v n b 0) (+-suc a acc) ⟩ modₕ (suc a + acc) n b 0 ∎ modₕ-skipToEnd : ∀ acc n a b → modₕ acc n a (a + b) ≡ acc + a modₕ-skipToEnd acc n zero b = sym (+-identityʳ acc) modₕ-skipToEnd acc n (suc a) b = begin modₕ (suc acc) n a (a + b) ≡⟨ modₕ-skipToEnd (suc acc) n a b ⟩ suc acc + a ≡⟨ sym (+-suc acc a) ⟩ acc + suc a ∎ a[modₕ]1≡0 : ∀ a → modₕ 0 0 a 0 ≡ 0 a[modₕ]1≡0 zero = refl a[modₕ]1≡0 (suc a) = a[modₕ]1≡0 a n[modₕ]n≡0 : ∀ acc v → modₕ acc (acc + v) (suc v) v ≡ 0 n[modₕ]n≡0 acc v = modₕ-skipTo0 acc (acc + v) v 1 a[modₕ]n<n : ∀ acc d n → modₕ acc (acc + n) d n ≤ acc + n a[modₕ]n<n acc zero n = m≤m+n acc n a[modₕ]n<n acc (suc d) zero = a[modₕ]n<n zero d (acc + 0) a[modₕ]n<n acc (suc d) (suc n) rewrite +-suc acc n = a[modₕ]n<n (suc acc) d n modₕ-idem : ∀ acc a n → modₕ 0 (acc + n) (modₕ acc (acc + n) a n) (acc + n) ≡ modₕ acc (acc + n) a n modₕ-idem acc zero n = modₕ-skipToEnd 0 (acc + n) acc n modₕ-idem acc (suc a) zero rewrite +-identityʳ acc = modₕ-idem 0 a acc modₕ-idem acc (suc a) (suc n) rewrite +-suc acc n = modₕ-idem (suc acc) a n a+n[modₕ]n≡a[modₕ]n : ∀ acc a n → modₕ acc (acc + n) (acc + a + suc n) n ≡ modₕ acc (acc + n) a n a+n[modₕ]n≡a[modₕ]n acc zero n rewrite +-identityʳ acc = begin modₕ acc (acc + n) (acc + suc n) n ≡⟨ cong (λ v → modₕ acc (acc + n) v n) (+-suc acc n) ⟩ modₕ acc (acc + n) (suc acc + n) n ≡⟨ modₕ-skipTo0 acc (acc + n) n (suc acc) ⟩ modₕ (acc + n) (acc + n) (suc acc) 0 ≡⟨⟩ modₕ 0 (acc + n) acc (acc + n) ≡⟨ modₕ-skipToEnd 0 (acc + n) acc n ⟩ acc ∎ a+n[modₕ]n≡a[modₕ]n acc (suc a) zero rewrite +-identityʳ acc = begin modₕ acc acc (acc + suc a + 1) 0 ≡⟨ cong (λ v → modₕ acc acc v 0) (+-comm (acc + suc a) 1) ⟩ modₕ acc acc (1 + (acc + suc a)) 0 ≡⟨⟩ modₕ 0 acc (acc + suc a) acc ≡⟨ cong (λ v → modₕ 0 acc v acc) (+-comm acc (suc a)) ⟩ modₕ 0 acc (suc a + acc) acc ≡⟨ cong (λ v → modₕ 0 acc v acc) (sym (+-suc a acc)) ⟩ modₕ 0 acc (a + suc acc) acc ≡⟨ a+n[modₕ]n≡a[modₕ]n 0 a acc ⟩ modₕ 0 acc a acc ∎ a+n[modₕ]n≡a[modₕ]n acc (suc a) (suc n) rewrite +-suc acc n = begin mod₁ (acc + suc a + (2 + n)) (suc n) ≡⟨ cong (λ v → mod₁ (v + suc (suc n)) (suc n)) (+-suc acc a) ⟩ mod₁ (suc acc + a + (2 + n)) (suc n) ≡⟨⟩ mod₂ (acc + a + (2 + n)) n ≡⟨ cong (λ v → mod₂ v n) (sym (+-assoc (acc + a) 1 (suc n))) ⟩ mod₂ (acc + a + 1 + suc n) n ≡⟨ cong (λ v → mod₂ (v + suc n) n) (+-comm (acc + a) 1) ⟩ mod₂ (suc acc + a + suc n) n ≡⟨ a+n[modₕ]n≡a[modₕ]n (suc acc) a n ⟩ mod₂ a n ∎ where mod₁ = modₕ acc (suc acc + n) mod₂ = modₕ (suc acc) (suc acc + n) ------------------------------------------------------------------------- -- division lemmas -- The quotient and remainder are related to the dividend and -- divisor in the right way. division-lemma : ∀ accᵐ accᵈ d n → accᵐ + accᵈ * suc (accᵐ + n) + d ≡ modₕ accᵐ (accᵐ + n) d n + divₕ accᵈ (accᵐ + n) d n * suc (accᵐ + n) division-lemma accᵐ accᵈ zero n = +-identityʳ _ division-lemma accᵐ accᵈ (suc d) zero rewrite +-identityʳ accᵐ = begin accᵐ + accᵈ * suc accᵐ + suc d ≡⟨ +-suc _ d ⟩ suc accᵈ * suc accᵐ + d ≡⟨ division-lemma zero (suc accᵈ) d accᵐ ⟩ modₕ 0 accᵐ d accᵐ + divₕ (suc accᵈ) accᵐ d accᵐ * suc accᵐ ≡⟨⟩ modₕ accᵐ accᵐ (suc d) 0 + divₕ accᵈ accᵐ (suc d) 0 * suc accᵐ ∎ division-lemma accᵐ accᵈ (suc d) (suc n) rewrite +-suc accᵐ n = begin accᵐ + accᵈ * m + suc d ≡⟨ +-suc _ d ⟩ suc (accᵐ + accᵈ * m + d) ≡⟨ division-lemma (suc accᵐ) accᵈ d n ⟩ modₕ _ _ d n + divₕ accᵈ _ d n * m ∎ where m = 2 + accᵐ + n
algebraic-stack_agda0000_doc_16487
open import SOAS.Metatheory.Syntax -- Metasubstitution operation module SOAS.Metatheory.SecondOrder.Metasubstitution {T : Set}(Syn : Syntax {T}) where open Syntax Syn open import SOAS.Metatheory.FreeMonoid Syn open import SOAS.Common open import SOAS.Families.Core {T} open import SOAS.Families.Build open import SOAS.Context open import SOAS.Variable open import SOAS.Construction.Structure as Structure open import SOAS.ContextMaps.Combinators open import SOAS.ContextMaps.CategoryOfRenamings open import SOAS.Abstract.Hom open import SOAS.Abstract.ExpStrength import SOAS.Abstract.Coalgebra as →□ open →□.Sorted import SOAS.Abstract.Box as □ ; open □.Sorted open import Categories.Monad open import SOAS.Coalgebraic.Monoid open import SOAS.Metatheory Syn private variable Γ Δ Π : Ctx α β τ : T 𝔛 𝔜 ℨ : Familyₛ 𝔐 𝔑 : MCtx open Theory -- Ground metasubstitution from the monad structure msub₀ : (𝔛 ⇾̣ 𝕋 𝔜) → 𝕋 𝔛 ⇾̣ 𝕋 𝔜 msub₀ {𝔛}{𝔜} κ t = μ.η 𝔜 (F.₁ κ t) where open Monad ΣMon:Monad -- Meta-algebra structure on the exponential [ 𝔛 ⊸ 𝒫 ] ⇨ ℳ [_⊸_]⇨_ᵃ : (𝔛 {𝒫}{ℳ} : Familyₛ) → Coalg 𝒫 → ΣMon ℳ → (𝒫 ⇾̣ ℳ) → MetaAlg 𝔛 ([ 𝔛 ⊸ 𝒫 ] ⇨ ℳ) [_⊸_]⇨_ᵃ 𝔛 {𝒫}{ℳ} 𝒫ᵇ Σℳᵐ ψ = record { 𝑎𝑙𝑔 = λ t ζ → ℳ.𝑎𝑙𝑔 (estr [ 𝔛 ⊸ 𝒫ᵇ ]ᵇ ℳ t ζ) ; 𝑣𝑎𝑟 = λ v ζ → ℳ.η v ; 𝑚𝑣𝑎𝑟 = λ 𝔪 ε ζ → ℳ.μ (ψ (ζ 𝔪)) (copair ℳ (λ x → ε x ζ) ℳ.η) } where module ℳ = ΣMon Σℳᵐ □[_⊸_]⇨_ᵃ : (𝔛 {𝒫}{ℳ} : Familyₛ) → Coalg 𝒫 → ΣMon ℳ → (𝒫 ⇾̣ ℳ) → MetaAlg 𝔛 ([ 𝔛 ⊸ 𝒫 ] ➡ ℳ) □[ 𝔛 ⊸ 𝒫ᵇ ]⇨ Σℳᵐ ᵃ ψ = □ᵃ 𝔛 ([ 𝔛 ⊸ 𝒫ᵇ ]⇨ Σℳᵐ ᵃ ψ) -- Derived meta-algebra instance for [ 𝔛 ⊸ 𝕋 𝔜 ] ⇨ 𝕋 𝔜 ⟅_⇨_⟆ᵃ : (𝔛 𝔜 : Familyₛ) → MetaAlg 𝔛 ⟅ 𝔛 ⇨ 𝕋 𝔜 ⟆ ⟅ 𝔛 ⇨ 𝔜 ⟆ᵃ = [ 𝔛 ⊸ 𝕋ᵇ 𝔜 ]⇨ Σ𝕋ᵐ 𝔜 ᵃ id module MS {𝔛 𝔜 : Familyₛ} = Semantics 𝔛 ⟅ 𝔛 ⇨ 𝔜 ⟆ᵃ module □MS {𝔛 𝔜 : Familyₛ} = □Traversal 𝔛 ⟅ 𝔛 ⇨ 𝔜 ⟆ᵃ -- Metasubstitution operations -- Base msub : 𝕋 𝔛 ⇾̣ ⟅ 𝔛 ⇨ 𝕋 𝔜 ⟆ msub = MS.𝕤𝕖𝕞 -- Parametrised □msub : 𝕋 𝔛 ⇾̣ ⟅ 𝔛 ➡ 𝕋 𝔜 ⟆ □msub = □MS.𝕥𝕣𝕒𝕧 -- Linear ○msub : 𝕋 𝔛 ⇾̣ ⟅ 𝔛 ⊸ 𝕋 𝔜 ⟆ ○msub {𝔜 = 𝔜}{Γ = Γ} t ζ = □msub t (inl Γ) λ {_}{Π} 𝔪 → 𝕣𝕖𝕟 𝔜 (ζ 𝔪) (Π ∔∣ inr Γ) -- Unit parametrisation □msub-id : (t : 𝕋 𝔛 α Γ)(κ : [ 𝔛 ⊸ 𝕋 𝔜 ] Γ) → □msub t id κ ≡ msub t κ □msub-id {𝔛}{𝔜 = 𝔜} t κ = cong (λ - → - κ) (□𝕥𝕣𝕒𝕧-id≈𝕤𝕖𝕞 𝔛 ⟅ 𝔛 ⇨ 𝔜 ⟆ᵃ) -- Unit metasubstitution mapping ms-unit : [ 𝔛 ⊸ 𝕋 𝔛 ] Γ ms-unit {𝔛}{Δ = Δ} 𝔪 = 𝕞𝕧𝕒𝕣 𝔛 𝔪 (𝕧𝕒𝕣 𝔛 ∘ inl Δ) -- | Inductive metasubstitution -- List of terms in an extended (object variable) context mapped to every element of a metavariable context data MSub (Γ : Ctx) : MCtx → MCtx → Set₁ where ◦ : MSub Γ ⁅⁆ 𝔑 _◃_ : (𝔑 ▷ 𝕋) α (Π ∔ Γ) → MSub Γ 𝔐 𝔑 → MSub Γ (⁅ Π ⊩ₙ α ⁆ 𝔐) 𝔑 infixr 15 _◃_ _▹_ -- Add term to the end of a metasubstitution map _▹_ : MSub Γ 𝔐 𝔑 → (𝔑 ▷ 𝕋) τ (Π ∔ Γ) → MSub Γ (𝔐 ⁅ Π ⊩ₙ τ ⁆) 𝔑 ◦ ▹ t = t ◃ ◦ (s ◃ ζ) ▹ t = s ◃ (ζ ▹ t) -- Application of a metasubstitution to a metavariable ix≀ : MSub Γ 𝔐 𝔑 → [ ∥ 𝔐 ∥ ⊸ 𝔑 ▷ 𝕋 ] Γ ix≀ (t ◃ ζ) ↓ = t ix≀ (t ◃ ζ) (↑ 𝔪) = ix≀ ζ 𝔪 -- Term corresponding to the topmost distinguished metavariable of an extended mvar context _⊩◌ : (Π : Ctx) → (⁅ Π ⊩ₙ β ⁆ 𝔐 ▷ 𝕋) β (Π ∔ Γ) _⊩◌ {β}{𝔐} Π = ms-unit ↓ ◌ : (⁅ β ⁆ 𝔐 ▷ 𝕋) β Γ ◌ = ∅ ⊩◌ -- Weakening of metavariable context wk≀ : (𝔐 ▷ 𝕋) α Γ → (⁅ Π ⊩ₙ τ ⁆ 𝔐 ▷ 𝕋) α Γ wk≀ t = 𝕋₁ ↑_ t -- Extension of the codomain of a metasubstitution ext≀ : (Π : Ctx)(τ : T) → MSub Γ 𝔐 𝔑 → MSub Γ 𝔐 (⁅ Π ⊩ₙ τ ⁆ 𝔑) ext≀ Π τ ◦ = ◦ ext≀ Π τ (t ◃ κ) = wk≀ t ◃ (ext≀ Π τ κ) -- Lifting of a metasubstitution lift≀ : (Π : Ctx)(τ : T) → MSub Γ 𝔐 𝔑 → MSub Γ (⁅ Π ⊩ₙ τ ⁆ 𝔐) (⁅ Π ⊩ₙ τ ⁆ 𝔑) lift≀ Π τ κ = (Π ⊩◌) ◃ (ext≀ Π τ κ) -- Identity metasubstitution id≀ : (Γ : Ctx) → MSub Γ 𝔐 𝔐 id≀ {⁅⁆} Γ = ◦ id≀ {⁅ Π ⊩ₙ τ ⁆ 𝔐} Γ = lift≀ Π τ (id≀ Γ) -- Left and right weakening of object context of a metasubstitution inl≀ : MSub Γ 𝔐 𝔑 → MSub (Γ ∔ Δ) 𝔐 𝔑 inl≀ ◦ = ◦ inl≀ {𝔑 = 𝔑} (_◃_ {Π = Π} t κ) = 𝕣𝕖𝕟 ∥ 𝔑 ∥ t (Π ∔∣ inl _) ◃ (inl≀ κ) inr≀ : (Γ : Ctx) → MSub Δ 𝔐 𝔑 → MSub (Γ ∔ Δ) 𝔐 𝔑 inr≀ _ ◦ = ◦ inr≀ {Δ}{𝔑 = 𝔑} Γ (_◃_ {Π = Π} t κ) = (𝕣𝕖𝕟 ∥ 𝔑 ∥ t (Π ∔∣ inr Γ)) ◃ (inr≀ Γ κ) -- Application of weakened metasubstitution corresponds to centre weakening ix-inr≀ : (κ : MSub Δ 𝔐 𝔑)(𝔪 : Π ⊩ τ ∈ 𝔐) → ix≀ (inr≀ Γ κ) 𝔪 ≡ (𝕣𝕖𝕟 ∥ 𝔑 ∥ (ix≀ κ 𝔪) (Π ∔∣ inr Γ)) ix-inr≀ (x ◃ κ) ↓ = refl ix-inr≀ (x ◃ κ) (↑ 𝔪) = ix-inr≀ κ 𝔪 -- Correctness lemmas of weakening, lifting, identity ext≀≈𝕋₁pop : (κ : MSub Γ 𝔐 𝔑)(𝔪 : Π ⊩ τ ∈ 𝔐) → ix≀ (ext≀ Δ β κ) 𝔪 ≡ wk≀ (ix≀ κ 𝔪) ext≀≈𝕋₁pop (x ◃ κ) ↓ = refl ext≀≈𝕋₁pop (x ◃ κ) (↑ 𝔪) = ext≀≈𝕋₁pop κ 𝔪 lift≀≈𝕋₁pop : (κ : MSub Γ 𝔐 𝔑)(𝔪 : Γ ⊩ α ∈ 𝔐) → ix≀ (lift≀ Γ α κ) (↑ 𝔪) ≡ wk≀ (ix≀ κ 𝔪) lift≀≈𝕋₁pop (x ◃ κ) ↓ = refl lift≀≈𝕋₁pop (x ◃ κ) (↑ 𝔪) = lift≀≈𝕋₁pop κ 𝔪 id≀≈ms-unit : (Γ : Ctx)(𝔪 : Π ⊩ τ ∈ 𝔐) → ix≀ (id≀ Γ) 𝔪 ≡ ms-unit 𝔪 id≀≈ms-unit {𝔐 = ⁅ Π ⊩ₙ τ ⁆ 𝔐} Γ ↓ = refl id≀≈ms-unit {𝔐 = ⁅ Π ⊩ₙ τ ⁆ 𝔐} Γ (↑_ {Δ}{β}{Γ = .Π}{.τ} 𝔪) = begin ix≀ (ext≀ Π τ (id≀ Γ)) 𝔪 ≡⟨ ext≀≈𝕋₁pop (id≀ Γ) 𝔪 ⟩ wk≀ (ix≀ (id≀ Γ) 𝔪) ≡⟨ cong (wk≀) (id≀≈ms-unit Γ 𝔪) ⟩ wk≀ (ms-unit 𝔪) ≡⟨⟩ wk≀ (𝕞𝕧𝕒𝕣 ∥ 𝔐 ∥ 𝔪 (𝕧𝕒𝕣 ∥ 𝔐 ∥ ∘ ∔.i₁)) ≡⟨ 𝕋₁∘𝕞𝕧𝕒𝕣[𝕧𝕒𝕣] ↑_ 𝔪 (∔.i₁) ⟩ 𝕞𝕧𝕒𝕣 ∥ ⁅ Π ⊩ₙ τ ⁆ 𝔐 ∥ (↑ 𝔪) (𝕧𝕒𝕣 ∥ ⁅ Π ⊩ₙ τ ⁆ 𝔐 ∥ ∘ ∔.i₁) ∎ where open ≡-Reasoning -- Inductive metasubstitution operations -- Base msub≀ : (𝔐 ▷ 𝕋) α Γ → MSub Γ 𝔐 𝔑 → (𝔑 ▷ 𝕋) α Γ msub≀ t ζ = msub t (ix≀ ζ) -- Parametrised □msub≀ : (𝔐 ▷ 𝕋) α Γ → (Γ ↝ Δ) → MSub Δ 𝔐 𝔑 → (𝔑 ▷ 𝕋) α Δ □msub≀ t ρ ζ = □msub t ρ (ix≀ ζ) -- Linear ○msub≀ : (𝔐 ▷ 𝕋) α Γ → MSub Δ 𝔐 𝔑 → (𝔑 ▷ 𝕋) α (Γ ∔ Δ) ○msub≀ {Γ = Γ} t ζ = □msub≀ t (inl Γ) (inr≀ Γ ζ) -- Syntactic sugar for metasubstitution application _》 : (𝔑 ▷ 𝕋) α (Π ∔ Γ) → MSub Γ (⁅ Π ⊩ₙ α ⁆̣) 𝔑 t 》 = t ◃ ◦ _《_ : (𝔐 ▷ 𝕋) α Γ → MSub Γ 𝔐 𝔑 → (𝔑 ▷ 𝕋) α Γ _《_ = msub≀ infixr 25 _》 infix 15 _《_ -- Instantiation of a term extended at the start of the context instₛ : (⁅ Π ⊩ₙ α ⁆ 𝔐 ▷ 𝕋) β Γ → (𝔐 ▷ 𝕋) α (Π ∔ Γ) → (𝔐 ▷ 𝕋) β Γ instₛ {Γ = Γ} h s = msub≀ h (s ◃ id≀ Γ) -- Instantiation of a term extended at the end of the context instₑ : (𝔐 ⁅ Π ⊩ₙ α ⁆ ▷ 𝕋) β Γ → (𝔐 ▷ 𝕋) α (Π ∔ Γ) → (𝔐 ▷ 𝕋) β Γ instₑ {Γ = Γ} h s = msub≀ h ((id≀ Γ) ▹ s) -- Instantiation of a term extended twice at the end of the context instₑ₂ : {Π₁ Π₂ : Ctx}{α₁ α₂ : T} → ((𝔐 ⁅ Π₁ ⊩ₙ α₁ ⁆) ⁅ Π₂ ⊩ₙ α₂ ⁆ ▷ 𝕋) β Γ → (𝔐 ▷ 𝕋) α₁ (Π₁ ∔ Γ) → (𝔐 ▷ 𝕋) α₂ (Π₂ ∔ Γ) → (𝔐 ▷ 𝕋) β Γ instₑ₂ {Γ = Γ} h s t = msub≀ h ((id≀ Γ ▹ s) ▹ t)
algebraic-stack_agda0000_doc_16488
-- Andreas, 2016-10-11, AIM XXIV, issue #2248 -- COMPILED_TYPE should only work on postulates data Unit : Set where unit : Unit abstract IO : Set → Set IO A = A doNothing : IO Unit doNothing = unit {-# COMPILED_TYPE IO IO #-} main : IO unit main = doNothing
algebraic-stack_agda0000_doc_16489
-- an example showing how to use sigma types to define a type for non-zero natural numbers module nat-nonzero where open import bool open import eq open import nat open import nat-thms open import product ℕ⁺ : Set ℕ⁺ = Σ ℕ (λ n → iszero n ≡ ff) suc⁺ : ℕ⁺ → ℕ⁺ suc⁺ (x , p) = (suc x , refl) _+⁺_ : ℕ⁺ → ℕ⁺ → ℕ⁺ (x , p) +⁺ (y , q) = x + y , iszerosum2 x y p _*⁺_ : ℕ⁺ → ℕ⁺ → ℕ⁺ (x , p) *⁺ (y , q) = (x * y , iszeromult x y p q)
algebraic-stack_agda0000_doc_16490
{-# OPTIONS --safe #-} module Definition.Typed.Consequences.Inequality where open import Definition.Untyped hiding (U≢ℕ; U≢Π; U≢ne; ℕ≢Π; ℕ≢ne; Π≢ne; U≢Empty; ℕ≢Empty; Empty≢Π; Empty≢ne) open import Definition.Typed open import Definition.Typed.Properties open import Definition.Typed.EqRelInstance open import Definition.LogicalRelation open import Definition.LogicalRelation.Irrelevance open import Definition.LogicalRelation.ShapeView open import Definition.LogicalRelation.Fundamental.Reducibility open import Definition.Typed.Consequences.Syntactic open import Tools.Product open import Tools.Empty import Tools.PropositionalEquality as PE A≢B : ∀ {A B rA rB Γ} (_⊩′⟨_⟩A_ _⊩′⟨_⟩B_ : Con Term → TypeLevel → Term → Set) (A-intr : ∀ {l} → Γ ⊩′⟨ l ⟩A A → Γ ⊩⟨ l ⟩ A ^ rA) (B-intr : ∀ {l} → Γ ⊩′⟨ l ⟩B B → Γ ⊩⟨ l ⟩ B ^ rB) (A-elim : ∀ {l} → Γ ⊩⟨ l ⟩ A ^ rA → ∃ λ l′ → Γ ⊩′⟨ l′ ⟩A A) (B-elim : ∀ {l} → Γ ⊩⟨ l ⟩ B ^ rA → ∃ λ l′ → Γ ⊩′⟨ l′ ⟩B B) (A≢B′ : ∀ {l l′} ([A] : Γ ⊩′⟨ l ⟩A A) ([B] : Γ ⊩′⟨ l′ ⟩B B) → ShapeView Γ l l′ A B rA rB (A-intr [A]) (B-intr [B]) → ⊥) → Γ ⊢ A ≡ B ^ rA → ⊥ A≢B {A} {B} _ _ A-intr B-intr A-elim B-elim A≢B′ A≡B = let X = reducibleEq A≡B [A] = proj₁ X [B] = proj₁ (proj₂ X) [A≡B] = proj₂ (proj₂ X) _ , [A]′ = A-elim ([A]) _ , [B]′ = B-elim ([B]) [A≡B]′ = irrelevanceEq [A] (A-intr [A]′) [A≡B] in A≢B′ [A]′ [B]′ (goodCases (A-intr [A]′) (B-intr [B]′) [A≡B]′) U≢ℕ′ : ∀ {Γ A ll B l l′} ([U] : Γ ⊩′⟨ l ⟩U A ^ ll) ([ℕ] : Γ ⊩ℕ B) → ShapeView Γ l l′ _ _ [ ! , _ ] [ ! , _ ] (Uᵣ {ll = ll} [U]) (ℕᵣ [ℕ]) → ⊥ U≢ℕ′ a b () U≢ℕ-red : ∀ {ll r lU B Γ} → Γ ⊢ B ⇒* ℕ ^ [ ! , ll ] → Γ ⊢ Univ r lU ≡ B ^ [ ! , ll ] → ⊥ U≢ℕ-red {ll} D = A≢B (λ Γ l A → Γ ⊩′⟨ l ⟩U A ^ ll) (λ Γ l B → Γ ⊩ℕ B) Uᵣ ℕᵣ (λ x → extractMaybeEmb (U-elim x)) (λ x → extractMaybeEmb (ℕ-elim′ D x)) U≢ℕ′ -- U and ℕ cannot be judgmentally equal. U≢ℕ! : ∀ {r l ll Γ} → Γ ⊢ Univ r l ≡ ℕ ^ [ ! , ll ] → ⊥ U≢ℕ! U≡ℕ = let _ , ⊢ℕ = syntacticEq U≡ℕ in U≢ℕ-red (id ⊢ℕ) U≡ℕ -- U vs Pi U≢Π′ : ∀ {A lA B rB lB Γ l l′} ([U] : Γ ⊩′⟨ l ⟩U A ^ lA) ([Π] : Γ ⊩′⟨ l′ ⟩Π B ^[ rB , lB ]) → ShapeView Γ l l′ _ _ _ _ (Uᵣ {ll = lA} [U]) (Πᵣ [Π]) → ⊥ U≢Π′ a b () U≢Π-red : ∀ {ll B F G rF lF lG rU lU Γ} → Γ ⊢ B ⇒* Π F ^ rF ° lF ▹ G ° lG ° ll ^ [ ! , ι ll ] → Γ ⊢ Univ rU lU ≡ B ^ [ ! , ι ll ] → ⊥ U≢Π-red {ll} D = A≢B (λ Γ l A → Γ ⊩′⟨ l ⟩U A ^ ι ll) (λ Γ l A → Γ ⊩′⟨ l ⟩Π A ^[ ! , ll ]) Uᵣ Πᵣ (λ x → extractMaybeEmb (U-elim x)) (λ x → extractMaybeEmb (Π-elim′ D x)) U≢Π′ -- U and Π F ▹ G for any F and G cannot be judgmentally equal. U≢Π! : ∀ {rU lU F rF lF lG G l Γ} → Γ ⊢ Univ rU lU ≡ Π F ^ rF ° lF ▹ G ° lG ° l ^ [ ! , ι l ] → ⊥ U≢Π! U≡Π = let _ , ⊢Π = syntacticEq U≡Π in U≢Π-red (id ⊢Π) U≡Π -- ∃ vs Pi ∃≢Π′ : ∀ {A lA B rB lB Γ l l′} ([∃] : Γ ⊩′⟨ l ⟩∃ A ^ lA) ([Π] : Γ ⊩′⟨ l′ ⟩Π B ^[ rB , lB ]) → ShapeView Γ l l′ _ _ _ _ (∃ᵣ [∃]) (Πᵣ [Π]) → ⊥ ∃≢Π′ a b () ∃≢Π-red : ∀ {ll B F G rF lF lG P Q Γ} → Γ ⊢ B ⇒* Π F ^ rF ° lF ▹ G ° lG ° ll ^ [ % , ι ll ] → Γ ⊢ ∃ P ▹ Q ≡ B ^ [ % , ι ll ] → ⊥ ∃≢Π-red {ll} D = A≢B (λ Γ l A → Γ ⊩′⟨ l ⟩∃ A ^ ll) (λ Γ l A → Γ ⊩′⟨ l ⟩Π A ^[ % , ll ]) ∃ᵣ Πᵣ (λ x → extractMaybeEmb (∃-elim x)) (λ x → extractMaybeEmb (Π-elim′ D x)) ∃≢Π′ -- U and Π F ▹ G for any F and G cannot be judgmentally equal. ∃≢Π! : ∀ {P Q F rF lF lG G l Γ} → Γ ⊢ ∃ P ▹ Q ≡ Π F ^ rF ° lF ▹ G ° lG ° l ^ [ % , ι l ] → ⊥ ∃≢Π! ∃≡Π = let _ , ⊢Π = syntacticEq ∃≡Π in ∃≢Π-red (id ⊢Π) ∃≡Π U≢ne′ : ∀ {A lU r lK K Γ l l′} ([U] : Γ ⊩′⟨ l ⟩U A ^ lU) ([K] : Γ ⊩ne K ^[ r , lK ] ) → ShapeView Γ l l′ _ _ _ _ (Uᵣ {ll = lU} [U]) (ne [K]) → ⊥ U≢ne′ a b () U≢ne-red : ∀ {ll rU lU B K Γ} → Γ ⊢ B ⇒* K ^ [ ! , ι ll ] → Neutral K → Γ ⊢ Univ rU lU ≡ B ^ [ ! , ι ll ] → ⊥ U≢ne-red {ll} D neK = A≢B (λ Γ l A → Γ ⊩′⟨ l ⟩U A ^ ι ll) (λ Γ l B → Γ ⊩ne B ^[ ! , ll ]) Uᵣ ne (λ x → extractMaybeEmb (U-elim x)) (λ x → extractMaybeEmb (ne-elim′ D neK x PE.refl)) U≢ne′ -- U and K for any neutral K cannot be judgmentally equal. U≢ne! : ∀ {r l ll K Γ} → Neutral K → Γ ⊢ Univ r l ≡ K ^ [ ! , ι ll ] → ⊥ U≢ne! neK U≡K = let _ , ⊢K = syntacticEq U≡K in U≢ne-red (id ⊢K) neK U≡K ℕ≢Π′ : ∀ {A B Γ ll l l′} ([ℕ] : Γ ⊩ℕ A) ([Π] : Γ ⊩′⟨ l′ ⟩Π B ^[ ! , ll ]) → ShapeView Γ l l′ _ _ _ _ (ℕᵣ [ℕ]) (Πᵣ [Π]) → ⊥ ℕ≢Π′ a b () ℕ≢Π-red : ∀ {A B F rF lF lG G Γ} → Γ ⊢ A ⇒* ℕ ^ [ ! , ι ⁰ ] → Γ ⊢ B ⇒* Π F ^ rF ° lF ▹ G ° lG ° ⁰ ^ [ ! , ι ⁰ ] → Γ ⊢ A ≡ B ^ [ ! , ι ⁰ ] → ⊥ ℕ≢Π-red D D′ = A≢B (λ Γ l A → Γ ⊩ℕ A) (λ Γ l A → Γ ⊩′⟨ l ⟩Π A ^[ ! , ⁰ ]) ℕᵣ Πᵣ (λ x → extractMaybeEmb (ℕ-elim′ D x)) (λ x → extractMaybeEmb (Π-elim′ D′ x)) ℕ≢Π′ -- ℕ and Π F ▹ G for any F and G cannot be judgmentally equal. ℕ≢Π! : ∀ {F rF G lF lG Γ} → Γ ⊢ ℕ ≡ Π F ^ rF ° lF ▹ G ° lG ° ⁰ ^ [ ! , ι ⁰ ] → ⊥ ℕ≢Π! ℕ≡Π = let ⊢ℕ , ⊢Π = syntacticEq ℕ≡Π in ℕ≢Π-red (id ⊢ℕ) (id ⊢Π) ℕ≡Π -- Empty and Π Empty≢Π′ : ∀ {ll A B Γ l l′} ([Empty] : Γ ⊩Empty A ^ ll) ([Π] : Γ ⊩′⟨ l′ ⟩Π B ^[ % , ll ]) → ShapeView Γ l l′ _ _ _ _ (Emptyᵣ [Empty]) (Πᵣ [Π]) → ⊥ Empty≢Π′ a b () Empty≢Π-red : ∀ {ll A B F rF lF lG G Γ} → Γ ⊢ A ⇒* Empty ll ^ [ % , ι ll ] → Γ ⊢ B ⇒* Π F ^ rF ° lF ▹ G ° lG ° ll ^ [ % , ι ll ] → Γ ⊢ A ≡ B ^ [ % , ι ll ] → ⊥ Empty≢Π-red {ll} D D′ = A≢B (λ Γ l A → Γ ⊩Empty A ^ ll) (λ Γ l A → Γ ⊩′⟨ l ⟩Π A ^[ % , ll ]) Emptyᵣ Πᵣ (λ x → extractMaybeEmb (Empty-elim′ D x)) (λ x → extractMaybeEmb (Π-elim′ D′ x)) Empty≢Π′ Empty≢Π% : ∀ {F rF lF lG l G Γ} → Γ ⊢ Empty l ≡ Π F ^ rF ° lF ▹ G ° lG ° l ^ [ % , ι l ] → ⊥ Empty≢Π% Empty≡Π = let ⊢Empty , ⊢Π = syntacticEq Empty≡Π in Empty≢Π-red (id ⊢Empty) (id ⊢Π) Empty≡Π ℕ≢ne′ : ∀ {ll A K Γ l l′} ([ℕ] : Γ ⊩ℕ A) ([K] : Γ ⊩ne K ^[ ! , ll ]) → ShapeView Γ l l′ _ _ _ _ (ℕᵣ [ℕ]) (ne [K]) → ⊥ ℕ≢ne′ a b () ℕ≢ne-red : ∀ {A B K Γ} → Γ ⊢ A ⇒* ℕ ^ [ ! , ι ⁰ ] → Γ ⊢ B ⇒* K ^ [ ! , ι ⁰ ] → Neutral K → Γ ⊢ A ≡ B ^ [ ! , ι ⁰ ] → ⊥ ℕ≢ne-red D D′ neK = A≢B (λ Γ l A → Γ ⊩ℕ A) (λ Γ l B → Γ ⊩ne B ^[ ! , ⁰ ]) ℕᵣ ne (λ x → extractMaybeEmb (ℕ-elim′ D x)) (λ x → extractMaybeEmb (ne-elim′ D′ neK x PE.refl )) ℕ≢ne′ -- ℕ and K for any neutral K cannot be judgmentally equal. ℕ≢ne! : ∀ {K Γ} → Neutral K → Γ ⊢ ℕ ≡ K ^ [ ! , ι ⁰ ] → ⊥ ℕ≢ne! neK ℕ≡K = let ⊢ℕ , ⊢K = syntacticEq ℕ≡K in ℕ≢ne-red (id ⊢ℕ) (id ⊢K) neK ℕ≡K -- Empty and neutral Empty≢ne′ : ∀ {ll A K Γ l l′} ([Empty] : Γ ⊩Empty A ^ ll) ([K] : Γ ⊩ne K ^[ % , ll ]) → ShapeView Γ l l′ _ _ _ _ (Emptyᵣ [Empty]) (ne [K]) → ⊥ Empty≢ne′ a b () Empty≢ne-red : ∀ {ll A B K Γ} → Γ ⊢ A ⇒* Empty ll ^ [ % , ι ll ] → Γ ⊢ B ⇒* K ^ [ % , ι ll ] → Neutral K → Γ ⊢ A ≡ B ^ [ % , ι ll ] → ⊥ Empty≢ne-red {ll} D D′ neK = A≢B (λ Γ l A → Γ ⊩Empty A ^ ll) (λ Γ l B → Γ ⊩ne B ^[ % , ll ]) Emptyᵣ ne (λ x → extractMaybeEmb (Empty-elim′ D x)) (λ x → extractMaybeEmb (ne-elim′ D′ neK x PE.refl)) Empty≢ne′ Empty≢ne% : ∀ {l K Γ} → Neutral K → Γ ⊢ Empty l ≡ K ^ [ % , ι l ] → ⊥ Empty≢ne% neK Empty≡K = let ⊢Empty , ⊢K = syntacticEq Empty≡K in Empty≢ne-red (id ⊢Empty) (id ⊢K) neK Empty≡K Π≢ne′ : ∀ {ll A K r Γ l l′} ([Π] : Γ ⊩′⟨ l ⟩Π A ^[ r , ll ]) ([K] : Γ ⊩ne K ^[ r , ll ]) → ShapeView Γ l l′ _ _ _ _ (Πᵣ [Π]) (ne [K]) → ⊥ Π≢ne′ a b () Π≢ne-red : ∀ {ll r A B F rF lF lG G K Γ} → Γ ⊢ A ⇒* Π F ^ rF ° lF ▹ G ° lG ° ll ^ [ r , ι ll ] → Γ ⊢ B ⇒* K ^ [ r , ι ll ] → Neutral K → Γ ⊢ A ≡ B ^ [ r , ι ll ] → ⊥ Π≢ne-red {ll} {r} D D′ neK = A≢B (λ Γ l A → Γ ⊩′⟨ l ⟩Π A ^[ r , ll ]) (λ Γ l B → Γ ⊩ne B ^[ r , ll ]) Πᵣ ne (λ x → extractMaybeEmb (Π-elim′ D x)) (λ x → extractMaybeEmb (ne-elim′ D′ neK x PE.refl)) Π≢ne′ -- Π F ▹ G and K for any F and G and neutral K cannot be judgmentally equal. Π≢ne : ∀ {F rF lF lG G K r l Γ} → Neutral K → Γ ⊢ Π F ^ rF ° lF ▹ G ° lG ° l ≡ K ^ [ r , ι l ] → ⊥ Π≢ne neK Π≡K = let ⊢Π , ⊢K = syntacticEq Π≡K in Π≢ne-red (id ⊢Π) (id ⊢K) neK Π≡K
algebraic-stack_agda0000_doc_16491
{- This file contains: - Definitions equivalences - Glue types -} {-# OPTIONS --cubical --safe #-} module Cubical.Core.Glue where open import Cubical.Core.Primitives open import Agda.Builtin.Cubical.Glue public using ( isEquiv -- ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} (f : A → B) → Type (ℓ ⊔ ℓ') ; equiv-proof -- ∀ (y : B) → isContr (fiber f y) ; _≃_ -- ∀ {ℓ ℓ'} (A : Type ℓ) (B : Type ℓ') → Type (ℓ ⊔ ℓ') ; equivFun -- ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} → A ≃ B → A → B ; equivProof -- ∀ {ℓ ℓ'} (T : Type ℓ) (A : Type ℓ') (w : T ≃ A) (a : A) φ → -- Partial φ (fiber (equivFun w) a) → fiber (equivFun w) a ; primGlue -- ∀ {ℓ ℓ'} (A : Type ℓ) {φ : I} (T : Partial φ (Type ℓ')) -- → (e : PartialP φ (λ o → T o ≃ A)) → Type ℓ' ; prim^unglue -- ∀ {ℓ ℓ'} {A : Type ℓ} {φ : I} {T : Partial φ (Type ℓ')} -- → {e : PartialP φ (λ o → T o ≃ A)} → primGlue A T e → A -- The ∀ operation on I. This is commented out as it is not currently used for anything -- ; primFaceForall -- (I → I) → I ) renaming ( prim^glue to glue -- ∀ {ℓ ℓ'} {A : Type ℓ} {φ : I} {T : Partial φ (Type ℓ')} -- → {e : PartialP φ (λ o → T o ≃ A)} -- → PartialP φ T → A → primGlue A T e ; pathToEquiv to lineToEquiv -- ∀ {ℓ : I → Level} (P : (i : I) → Type (ℓ i)) → P i0 ≃ P i1 ) private variable ℓ ℓ' : Level -- Uncurry Glue to make it more pleasant to use Glue : (A : Type ℓ) {φ : I} → (Te : Partial φ (Σ[ T ∈ Type ℓ' ] T ≃ A)) → Type ℓ' Glue A Te = primGlue A (λ x → Te x .fst) (λ x → Te x .snd) -- Make the φ argument of prim^unglue explicit unglue : {A : Type ℓ} (φ : I) {T : Partial φ (Type ℓ')} {e : PartialP φ (λ o → T o ≃ A)} → primGlue A T e → A unglue φ = prim^unglue {φ = φ}
algebraic-stack_agda0000_doc_16492
-- This module explains how to combine elimination of empty types with pattern -- match style definitions without running into problems with decidability. module Introduction.Data.Empty where -- First we introduce an empty and a singleton type. data Zero : Set where data One : Set where one : One -- There is a special pattern () which matches any element of an (obviously) -- empty type. If there is a ()-pattern in a left-hand side the right-hand side -- can be omitted. elim-Zero : {A : Set} -> Zero -> A elim-Zero () data _×_ (A B : Set) : Set where pair : A -> B -> A × B -- The algorithm for checking if a type is empty is very naive. In this example -- you cannot replace pair () _ with () because the type checker cannot see -- that Zero × B is empty. elim-EmptyPair : {A B : Set} -> Zero × B -> A elim-EmptyPair (pair () _) data Nat : Set where zero : Nat suc : Nat -> Nat -- For some empty types finite unfolding is not enough. ConstZero : Nat -> Set ConstZero zero = Zero ConstZero (suc n) = ConstZero n -- We can still define the elimination function but we have to do it -- recursively over the n. elim-ConstZero : (n : Nat) -> ConstZero n -> {A : Set} -> A elim-ConstZero zero () elim-ConstZero (suc n) x = elim-ConstZero n x
algebraic-stack_agda0000_doc_16493
{-# OPTIONS --type-in-type #-} Ty : Set Ty = (Ty : Set) (nat top bot : Ty) (arr prod sum : Ty → Ty → Ty) → Ty nat : Ty; nat = λ _ nat _ _ _ _ _ → nat top : Ty; top = λ _ _ top _ _ _ _ → top bot : Ty; bot = λ _ _ _ bot _ _ _ → bot arr : Ty → Ty → Ty; arr = λ A B Ty nat top bot arr prod sum → arr (A Ty nat top bot arr prod sum) (B Ty nat top bot arr prod sum) prod : Ty → Ty → Ty; prod = λ A B Ty nat top bot arr prod sum → prod (A Ty nat top bot arr prod sum) (B Ty nat top bot arr prod sum) sum : Ty → Ty → Ty; sum = λ A B Ty nat top bot arr prod sum → sum (A Ty nat top bot arr prod sum) (B Ty nat top bot arr prod sum) Con : Set; Con = (Con : Set) (nil : Con) (snoc : Con → Ty → Con) → Con nil : Con; nil = λ Con nil snoc → nil snoc : Con → Ty → Con; snoc = λ Γ A Con nil snoc → snoc (Γ Con nil snoc) A Var : Con → Ty → Set; Var = λ Γ A → (Var : Con → Ty → Set) (vz : ∀ Γ A → Var (snoc Γ A) A) (vs : ∀ Γ B A → Var Γ A → Var (snoc Γ B) A) → Var Γ A vz : ∀{Γ A} → Var (snoc Γ A) A; vz = λ Var vz vs → vz _ _ vs : ∀{Γ B A} → Var Γ A → Var (snoc Γ B) A; vs = λ x Var vz vs → vs _ _ _ (x Var vz vs) Tm : Con → Ty → Set; Tm = λ Γ A → (Tm : Con → Ty → Set) (var : ∀ Γ A → Var Γ A → Tm Γ A) (lam : ∀ Γ A B → Tm (snoc Γ A) B → Tm Γ (arr A B)) (app : ∀ Γ A B → Tm Γ (arr A B) → Tm Γ A → Tm Γ B) (tt : ∀ Γ → Tm Γ top) (pair : ∀ Γ A B → Tm Γ A → Tm Γ B → Tm Γ (prod A B)) (fst : ∀ Γ A B → Tm Γ (prod A B) → Tm Γ A) (snd : ∀ Γ A B → Tm Γ (prod A B) → Tm Γ B) (left : ∀ Γ A B → Tm Γ A → Tm Γ (sum A B)) (right : ∀ Γ A B → Tm Γ B → Tm Γ (sum A B)) (case : ∀ Γ A B C → Tm Γ (sum A B) → Tm Γ (arr A C) → Tm Γ (arr B C) → Tm Γ C) (zero : ∀ Γ → Tm Γ nat) (suc : ∀ Γ → Tm Γ nat → Tm Γ nat) (rec : ∀ Γ A → Tm Γ nat → Tm Γ (arr nat (arr A A)) → Tm Γ A → Tm Γ A) → Tm Γ A var : ∀{Γ A} → Var Γ A → Tm Γ A; var = λ x Tm var lam app tt pair fst snd left right case zero suc rec → var _ _ x lam : ∀{Γ A B} → Tm (snoc Γ A) B → Tm Γ (arr A B); lam = λ t Tm var lam app tt pair fst snd left right case zero suc rec → lam _ _ _ (t Tm var lam app tt pair fst snd left right case zero suc rec) app : ∀{Γ A B} → Tm Γ (arr A B) → Tm Γ A → Tm Γ B; app = λ t u Tm var lam app tt pair fst snd left right case zero suc rec → app _ _ _ (t Tm var lam app tt pair fst snd left right case zero suc rec) (u Tm var lam app tt pair fst snd left right case zero suc rec) tt : ∀{Γ} → Tm Γ top; tt = λ Tm var lam app tt pair fst snd left right case zero suc rec → tt _ pair : ∀{Γ A B} → Tm Γ A → Tm Γ B → Tm Γ (prod A B); pair = λ t u Tm var lam app tt pair fst snd left right case zero suc rec → pair _ _ _ (t Tm var lam app tt pair fst snd left right case zero suc rec) (u Tm var lam app tt pair fst snd left right case zero suc rec) fst : ∀{Γ A B} → Tm Γ (prod A B) → Tm Γ A; fst = λ t Tm var lam app tt pair fst snd left right case zero suc rec → fst _ _ _ (t Tm var lam app tt pair fst snd left right case zero suc rec) snd : ∀{Γ A B} → Tm Γ (prod A B) → Tm Γ B; snd = λ t Tm var lam app tt pair fst snd left right case zero suc rec → snd _ _ _ (t Tm var lam app tt pair fst snd left right case zero suc rec) left : ∀{Γ A B} → Tm Γ A → Tm Γ (sum A B); left = λ t Tm var lam app tt pair fst snd left right case zero suc rec → left _ _ _ (t Tm var lam app tt pair fst snd left right case zero suc rec) right : ∀{Γ A B} → Tm Γ B → Tm Γ (sum A B); right = λ t Tm var lam app tt pair fst snd left right case zero suc rec → right _ _ _ (t Tm var lam app tt pair fst snd left right case zero suc rec) case : ∀{Γ A B C} → Tm Γ (sum A B) → Tm Γ (arr A C) → Tm Γ (arr B C) → Tm Γ C; case = λ t u v Tm var lam app tt pair fst snd left right case zero suc rec → case _ _ _ _ (t Tm var lam app tt pair fst snd left right case zero suc rec) (u Tm var lam app tt pair fst snd left right case zero suc rec) (v Tm var lam app tt pair fst snd left right case zero suc rec) zero : ∀{Γ} → Tm Γ nat; zero = λ Tm var lam app tt pair fst snd left right case zero suc rec → zero _ suc : ∀{Γ} → Tm Γ nat → Tm Γ nat; suc = λ t Tm var lam app tt pair fst snd left right case zero suc rec → suc _ (t Tm var lam app tt pair fst snd left right case zero suc rec) rec : ∀{Γ A} → Tm Γ nat → Tm Γ (arr nat (arr A A)) → Tm Γ A → Tm Γ A; rec = λ t u v Tm var lam app tt pair fst snd left right case zero suc rec → rec _ _ (t Tm var lam app tt pair fst snd left right case zero suc rec) (u Tm var lam app tt pair fst snd left right case zero suc rec) (v Tm var lam app tt pair fst snd left right case zero suc rec) v0 : ∀{Γ A} → Tm (snoc Γ A) A; v0 = var vz v1 : ∀{Γ A B} → Tm (snoc (snoc Γ A) B) A; v1 = var (vs vz) v2 : ∀{Γ A B C} → Tm (snoc (snoc (snoc Γ A) B) C) A; v2 = var (vs (vs vz)) v3 : ∀{Γ A B C D} → Tm (snoc (snoc (snoc (snoc Γ A) B) C) D) A; v3 = var (vs (vs (vs vz))) tbool : Ty; tbool = sum top top true : ∀{Γ} → Tm Γ tbool; true = left tt tfalse : ∀{Γ} → Tm Γ tbool; tfalse = right tt ifthenelse : ∀{Γ A} → Tm Γ (arr tbool (arr A (arr A A))); ifthenelse = lam (lam (lam (case v2 (lam v2) (lam v1)))) times4 : ∀{Γ A} → Tm Γ (arr (arr A A) (arr A A)); times4 = lam (lam (app v1 (app v1 (app v1 (app v1 v0))))) add : ∀{Γ} → Tm Γ (arr nat (arr nat nat)); add = lam (rec v0 (lam (lam (lam (suc (app v1 v0))))) (lam v0)) mul : ∀{Γ} → Tm Γ (arr nat (arr nat nat)); mul = lam (rec v0 (lam (lam (lam (app (app add (app v1 v0)) v0)))) (lam zero)) fact : ∀{Γ} → Tm Γ (arr nat nat); fact = lam (rec v0 (lam (lam (app (app mul (suc v1)) v0))) (suc zero)) {-# OPTIONS --type-in-type #-} Ty1 : Set Ty1 = (Ty1 : Set) (nat top bot : Ty1) (arr prod sum : Ty1 → Ty1 → Ty1) → Ty1 nat1 : Ty1; nat1 = λ _ nat1 _ _ _ _ _ → nat1 top1 : Ty1; top1 = λ _ _ top1 _ _ _ _ → top1 bot1 : Ty1; bot1 = λ _ _ _ bot1 _ _ _ → bot1 arr1 : Ty1 → Ty1 → Ty1; arr1 = λ A B Ty1 nat1 top1 bot1 arr1 prod sum → arr1 (A Ty1 nat1 top1 bot1 arr1 prod sum) (B Ty1 nat1 top1 bot1 arr1 prod sum) prod1 : Ty1 → Ty1 → Ty1; prod1 = λ A B Ty1 nat1 top1 bot1 arr1 prod1 sum → prod1 (A Ty1 nat1 top1 bot1 arr1 prod1 sum) (B Ty1 nat1 top1 bot1 arr1 prod1 sum) sum1 : Ty1 → Ty1 → Ty1; sum1 = λ A B Ty1 nat1 top1 bot1 arr1 prod1 sum1 → sum1 (A Ty1 nat1 top1 bot1 arr1 prod1 sum1) (B Ty1 nat1 top1 bot1 arr1 prod1 sum1) Con1 : Set; Con1 = (Con1 : Set) (nil : Con1) (snoc : Con1 → Ty1 → Con1) → Con1 nil1 : Con1; nil1 = λ Con1 nil1 snoc → nil1 snoc1 : Con1 → Ty1 → Con1; snoc1 = λ Γ A Con1 nil1 snoc1 → snoc1 (Γ Con1 nil1 snoc1) A Var1 : Con1 → Ty1 → Set; Var1 = λ Γ A → (Var1 : Con1 → Ty1 → Set) (vz : ∀ Γ A → Var1 (snoc1 Γ A) A) (vs : ∀ Γ B A → Var1 Γ A → Var1 (snoc1 Γ B) A) → Var1 Γ A vz1 : ∀{Γ A} → Var1 (snoc1 Γ A) A; vz1 = λ Var1 vz1 vs → vz1 _ _ vs1 : ∀{Γ B A} → Var1 Γ A → Var1 (snoc1 Γ B) A; vs1 = λ x Var1 vz1 vs1 → vs1 _ _ _ (x Var1 vz1 vs1) Tm1 : Con1 → Ty1 → Set; Tm1 = λ Γ A → (Tm1 : Con1 → Ty1 → Set) (var : ∀ Γ A → Var1 Γ A → Tm1 Γ A) (lam : ∀ Γ A B → Tm1 (snoc1 Γ A) B → Tm1 Γ (arr1 A B)) (app : ∀ Γ A B → Tm1 Γ (arr1 A B) → Tm1 Γ A → Tm1 Γ B) (tt : ∀ Γ → Tm1 Γ top1) (pair : ∀ Γ A B → Tm1 Γ A → Tm1 Γ B → Tm1 Γ (prod1 A B)) (fst : ∀ Γ A B → Tm1 Γ (prod1 A B) → Tm1 Γ A) (snd : ∀ Γ A B → Tm1 Γ (prod1 A B) → Tm1 Γ B) (left : ∀ Γ A B → Tm1 Γ A → Tm1 Γ (sum1 A B)) (right : ∀ Γ A B → Tm1 Γ B → Tm1 Γ (sum1 A B)) (case : ∀ Γ A B C → Tm1 Γ (sum1 A B) → Tm1 Γ (arr1 A C) → Tm1 Γ (arr1 B C) → Tm1 Γ C) (zero : ∀ Γ → Tm1 Γ nat1) (suc : ∀ Γ → Tm1 Γ nat1 → Tm1 Γ nat1) (rec : ∀ Γ A → Tm1 Γ nat1 → Tm1 Γ (arr1 nat1 (arr1 A A)) → Tm1 Γ A → Tm1 Γ A) → Tm1 Γ A var1 : ∀{Γ A} → Var1 Γ A → Tm1 Γ A; var1 = λ x Tm1 var1 lam app tt pair fst snd left right case zero suc rec → var1 _ _ x lam1 : ∀{Γ A B} → Tm1 (snoc1 Γ A) B → Tm1 Γ (arr1 A B); lam1 = λ t Tm1 var1 lam1 app tt pair fst snd left right case zero suc rec → lam1 _ _ _ (t Tm1 var1 lam1 app tt pair fst snd left right case zero suc rec) app1 : ∀{Γ A B} → Tm1 Γ (arr1 A B) → Tm1 Γ A → Tm1 Γ B; app1 = λ t u Tm1 var1 lam1 app1 tt pair fst snd left right case zero suc rec → app1 _ _ _ (t Tm1 var1 lam1 app1 tt pair fst snd left right case zero suc rec) (u Tm1 var1 lam1 app1 tt pair fst snd left right case zero suc rec) tt1 : ∀{Γ} → Tm1 Γ top1; tt1 = λ Tm1 var1 lam1 app1 tt1 pair fst snd left right case zero suc rec → tt1 _ pair1 : ∀{Γ A B} → Tm1 Γ A → Tm1 Γ B → Tm1 Γ (prod1 A B); pair1 = λ t u Tm1 var1 lam1 app1 tt1 pair1 fst snd left right case zero suc rec → pair1 _ _ _ (t Tm1 var1 lam1 app1 tt1 pair1 fst snd left right case zero suc rec) (u Tm1 var1 lam1 app1 tt1 pair1 fst snd left right case zero suc rec) fst1 : ∀{Γ A B} → Tm1 Γ (prod1 A B) → Tm1 Γ A; fst1 = λ t Tm1 var1 lam1 app1 tt1 pair1 fst1 snd left right case zero suc rec → fst1 _ _ _ (t Tm1 var1 lam1 app1 tt1 pair1 fst1 snd left right case zero suc rec) snd1 : ∀{Γ A B} → Tm1 Γ (prod1 A B) → Tm1 Γ B; snd1 = λ t Tm1 var1 lam1 app1 tt1 pair1 fst1 snd1 left right case zero suc rec → snd1 _ _ _ (t Tm1 var1 lam1 app1 tt1 pair1 fst1 snd1 left right case zero suc rec) left1 : ∀{Γ A B} → Tm1 Γ A → Tm1 Γ (sum1 A B); left1 = λ t Tm1 var1 lam1 app1 tt1 pair1 fst1 snd1 left1 right case zero suc rec → left1 _ _ _ (t Tm1 var1 lam1 app1 tt1 pair1 fst1 snd1 left1 right case zero suc rec) right1 : ∀{Γ A B} → Tm1 Γ B → Tm1 Γ (sum1 A B); right1 = λ t Tm1 var1 lam1 app1 tt1 pair1 fst1 snd1 left1 right1 case zero suc rec → right1 _ _ _ (t Tm1 var1 lam1 app1 tt1 pair1 fst1 snd1 left1 right1 case zero suc rec) case1 : ∀{Γ A B C} → Tm1 Γ (sum1 A B) → Tm1 Γ (arr1 A C) → Tm1 Γ (arr1 B C) → Tm1 Γ C; case1 = λ t u v Tm1 var1 lam1 app1 tt1 pair1 fst1 snd1 left1 right1 case1 zero suc rec → case1 _ _ _ _ (t Tm1 var1 lam1 app1 tt1 pair1 fst1 snd1 left1 right1 case1 zero suc rec) (u Tm1 var1 lam1 app1 tt1 pair1 fst1 snd1 left1 right1 case1 zero suc rec) (v Tm1 var1 lam1 app1 tt1 pair1 fst1 snd1 left1 right1 case1 zero suc rec) zero1 : ∀{Γ} → Tm1 Γ nat1; zero1 = λ Tm1 var1 lam1 app1 tt1 pair1 fst1 snd1 left1 right1 case1 zero1 suc rec → zero1 _ suc1 : ∀{Γ} → Tm1 Γ nat1 → Tm1 Γ nat1; suc1 = λ t Tm1 var1 lam1 app1 tt1 pair1 fst1 snd1 left1 right1 case1 zero1 suc1 rec → suc1 _ (t Tm1 var1 lam1 app1 tt1 pair1 fst1 snd1 left1 right1 case1 zero1 suc1 rec) rec1 : ∀{Γ A} → Tm1 Γ nat1 → Tm1 Γ (arr1 nat1 (arr1 A A)) → Tm1 Γ A → Tm1 Γ A; rec1 = λ t u v Tm1 var1 lam1 app1 tt1 pair1 fst1 snd1 left1 right1 case1 zero1 suc1 rec1 → rec1 _ _ (t Tm1 var1 lam1 app1 tt1 pair1 fst1 snd1 left1 right1 case1 zero1 suc1 rec1) (u Tm1 var1 lam1 app1 tt1 pair1 fst1 snd1 left1 right1 case1 zero1 suc1 rec1) (v Tm1 var1 lam1 app1 tt1 pair1 fst1 snd1 left1 right1 case1 zero1 suc1 rec1) v01 : ∀{Γ A} → Tm1 (snoc1 Γ A) A; v01 = var1 vz1 v11 : ∀{Γ A B} → Tm1 (snoc1 (snoc1 Γ A) B) A; v11 = var1 (vs1 vz1) v21 : ∀{Γ A B C} → Tm1 (snoc1 (snoc1 (snoc1 Γ A) B) C) A; v21 = var1 (vs1 (vs1 vz1)) v31 : ∀{Γ A B C D} → Tm1 (snoc1 (snoc1 (snoc1 (snoc1 Γ A) B) C) D) A; v31 = var1 (vs1 (vs1 (vs1 vz1))) tbool1 : Ty1; tbool1 = sum1 top1 top1 true1 : ∀{Γ} → Tm1 Γ tbool1; true1 = left1 tt1 tfalse1 : ∀{Γ} → Tm1 Γ tbool1; tfalse1 = right1 tt1 ifthenelse1 : ∀{Γ A} → Tm1 Γ (arr1 tbool1 (arr1 A (arr1 A A))); ifthenelse1 = lam1 (lam1 (lam1 (case1 v21 (lam1 v21) (lam1 v11)))) times41 : ∀{Γ A} → Tm1 Γ (arr1 (arr1 A A) (arr1 A A)); times41 = lam1 (lam1 (app1 v11 (app1 v11 (app1 v11 (app1 v11 v01))))) add1 : ∀{Γ} → Tm1 Γ (arr1 nat1 (arr1 nat1 nat1)); add1 = lam1 (rec1 v01 (lam1 (lam1 (lam1 (suc1 (app1 v11 v01))))) (lam1 v01)) mul1 : ∀{Γ} → Tm1 Γ (arr1 nat1 (arr1 nat1 nat1)); mul1 = lam1 (rec1 v01 (lam1 (lam1 (lam1 (app1 (app1 add1 (app1 v11 v01)) v01)))) (lam1 zero1)) fact1 : ∀{Γ} → Tm1 Γ (arr1 nat1 nat1); fact1 = lam1 (rec1 v01 (lam1 (lam1 (app1 (app1 mul1 (suc1 v11)) v01))) (suc1 zero1)) {-# OPTIONS --type-in-type #-} Ty2 : Set Ty2 = (Ty2 : Set) (nat top bot : Ty2) (arr prod sum : Ty2 → Ty2 → Ty2) → Ty2 nat2 : Ty2; nat2 = λ _ nat2 _ _ _ _ _ → nat2 top2 : Ty2; top2 = λ _ _ top2 _ _ _ _ → top2 bot2 : Ty2; bot2 = λ _ _ _ bot2 _ _ _ → bot2 arr2 : Ty2 → Ty2 → Ty2; arr2 = λ A B Ty2 nat2 top2 bot2 arr2 prod sum → arr2 (A Ty2 nat2 top2 bot2 arr2 prod sum) (B Ty2 nat2 top2 bot2 arr2 prod sum) prod2 : Ty2 → Ty2 → Ty2; prod2 = λ A B Ty2 nat2 top2 bot2 arr2 prod2 sum → prod2 (A Ty2 nat2 top2 bot2 arr2 prod2 sum) (B Ty2 nat2 top2 bot2 arr2 prod2 sum) sum2 : Ty2 → Ty2 → Ty2; sum2 = λ A B Ty2 nat2 top2 bot2 arr2 prod2 sum2 → sum2 (A Ty2 nat2 top2 bot2 arr2 prod2 sum2) (B Ty2 nat2 top2 bot2 arr2 prod2 sum2) Con2 : Set; Con2 = (Con2 : Set) (nil : Con2) (snoc : Con2 → Ty2 → Con2) → Con2 nil2 : Con2; nil2 = λ Con2 nil2 snoc → nil2 snoc2 : Con2 → Ty2 → Con2; snoc2 = λ Γ A Con2 nil2 snoc2 → snoc2 (Γ Con2 nil2 snoc2) A Var2 : Con2 → Ty2 → Set; Var2 = λ Γ A → (Var2 : Con2 → Ty2 → Set) (vz : ∀ Γ A → Var2 (snoc2 Γ A) A) (vs : ∀ Γ B A → Var2 Γ A → Var2 (snoc2 Γ B) A) → Var2 Γ A vz2 : ∀{Γ A} → Var2 (snoc2 Γ A) A; vz2 = λ Var2 vz2 vs → vz2 _ _ vs2 : ∀{Γ B A} → Var2 Γ A → Var2 (snoc2 Γ B) A; vs2 = λ x Var2 vz2 vs2 → vs2 _ _ _ (x Var2 vz2 vs2) Tm2 : Con2 → Ty2 → Set; Tm2 = λ Γ A → (Tm2 : Con2 → Ty2 → Set) (var : ∀ Γ A → Var2 Γ A → Tm2 Γ A) (lam : ∀ Γ A B → Tm2 (snoc2 Γ A) B → Tm2 Γ (arr2 A B)) (app : ∀ Γ A B → Tm2 Γ (arr2 A B) → Tm2 Γ A → Tm2 Γ B) (tt : ∀ Γ → Tm2 Γ top2) (pair : ∀ Γ A B → Tm2 Γ A → Tm2 Γ B → Tm2 Γ (prod2 A B)) (fst : ∀ Γ A B → Tm2 Γ (prod2 A B) → Tm2 Γ A) (snd : ∀ Γ A B → Tm2 Γ (prod2 A B) → Tm2 Γ B) (left : ∀ Γ A B → Tm2 Γ A → Tm2 Γ (sum2 A B)) (right : ∀ Γ A B → Tm2 Γ B → Tm2 Γ (sum2 A B)) (case : ∀ Γ A B C → Tm2 Γ (sum2 A B) → Tm2 Γ (arr2 A C) → Tm2 Γ (arr2 B C) → Tm2 Γ C) (zero : ∀ Γ → Tm2 Γ nat2) (suc : ∀ Γ → Tm2 Γ nat2 → Tm2 Γ nat2) (rec : ∀ Γ A → Tm2 Γ nat2 → Tm2 Γ (arr2 nat2 (arr2 A A)) → Tm2 Γ A → Tm2 Γ A) → Tm2 Γ A var2 : ∀{Γ A} → Var2 Γ A → Tm2 Γ A; var2 = λ x Tm2 var2 lam app tt pair fst snd left right case zero suc rec → var2 _ _ x lam2 : ∀{Γ A B} → Tm2 (snoc2 Γ A) B → Tm2 Γ (arr2 A B); lam2 = λ t Tm2 var2 lam2 app tt pair fst snd left right case zero suc rec → lam2 _ _ _ (t Tm2 var2 lam2 app tt pair fst snd left right case zero suc rec) app2 : ∀{Γ A B} → Tm2 Γ (arr2 A B) → Tm2 Γ A → Tm2 Γ B; app2 = λ t u Tm2 var2 lam2 app2 tt pair fst snd left right case zero suc rec → app2 _ _ _ (t Tm2 var2 lam2 app2 tt pair fst snd left right case zero suc rec) (u Tm2 var2 lam2 app2 tt pair fst snd left right case zero suc rec) tt2 : ∀{Γ} → Tm2 Γ top2; tt2 = λ Tm2 var2 lam2 app2 tt2 pair fst snd left right case zero suc rec → tt2 _ pair2 : ∀{Γ A B} → Tm2 Γ A → Tm2 Γ B → Tm2 Γ (prod2 A B); pair2 = λ t u Tm2 var2 lam2 app2 tt2 pair2 fst snd left right case zero suc rec → pair2 _ _ _ (t Tm2 var2 lam2 app2 tt2 pair2 fst snd left right case zero suc rec) (u Tm2 var2 lam2 app2 tt2 pair2 fst snd left right case zero suc rec) fst2 : ∀{Γ A B} → Tm2 Γ (prod2 A B) → Tm2 Γ A; fst2 = λ t Tm2 var2 lam2 app2 tt2 pair2 fst2 snd left right case zero suc rec → fst2 _ _ _ (t Tm2 var2 lam2 app2 tt2 pair2 fst2 snd left right case zero suc rec) snd2 : ∀{Γ A B} → Tm2 Γ (prod2 A B) → Tm2 Γ B; snd2 = λ t Tm2 var2 lam2 app2 tt2 pair2 fst2 snd2 left right case zero suc rec → snd2 _ _ _ (t Tm2 var2 lam2 app2 tt2 pair2 fst2 snd2 left right case zero suc rec) left2 : ∀{Γ A B} → Tm2 Γ A → Tm2 Γ (sum2 A B); left2 = λ t Tm2 var2 lam2 app2 tt2 pair2 fst2 snd2 left2 right case zero suc rec → left2 _ _ _ (t Tm2 var2 lam2 app2 tt2 pair2 fst2 snd2 left2 right case zero suc rec) right2 : ∀{Γ A B} → Tm2 Γ B → Tm2 Γ (sum2 A B); right2 = λ t Tm2 var2 lam2 app2 tt2 pair2 fst2 snd2 left2 right2 case zero suc rec → right2 _ _ _ (t Tm2 var2 lam2 app2 tt2 pair2 fst2 snd2 left2 right2 case zero suc rec) case2 : ∀{Γ A B C} → Tm2 Γ (sum2 A B) → Tm2 Γ (arr2 A C) → Tm2 Γ (arr2 B C) → Tm2 Γ C; case2 = λ t u v Tm2 var2 lam2 app2 tt2 pair2 fst2 snd2 left2 right2 case2 zero suc rec → case2 _ _ _ _ (t Tm2 var2 lam2 app2 tt2 pair2 fst2 snd2 left2 right2 case2 zero suc rec) (u Tm2 var2 lam2 app2 tt2 pair2 fst2 snd2 left2 right2 case2 zero suc rec) (v Tm2 var2 lam2 app2 tt2 pair2 fst2 snd2 left2 right2 case2 zero suc rec) zero2 : ∀{Γ} → Tm2 Γ nat2; zero2 = λ Tm2 var2 lam2 app2 tt2 pair2 fst2 snd2 left2 right2 case2 zero2 suc rec → zero2 _ suc2 : ∀{Γ} → Tm2 Γ nat2 → Tm2 Γ nat2; suc2 = λ t Tm2 var2 lam2 app2 tt2 pair2 fst2 snd2 left2 right2 case2 zero2 suc2 rec → suc2 _ (t Tm2 var2 lam2 app2 tt2 pair2 fst2 snd2 left2 right2 case2 zero2 suc2 rec) rec2 : ∀{Γ A} → Tm2 Γ nat2 → Tm2 Γ (arr2 nat2 (arr2 A A)) → Tm2 Γ A → Tm2 Γ A; rec2 = λ t u v Tm2 var2 lam2 app2 tt2 pair2 fst2 snd2 left2 right2 case2 zero2 suc2 rec2 → rec2 _ _ (t Tm2 var2 lam2 app2 tt2 pair2 fst2 snd2 left2 right2 case2 zero2 suc2 rec2) (u Tm2 var2 lam2 app2 tt2 pair2 fst2 snd2 left2 right2 case2 zero2 suc2 rec2) (v Tm2 var2 lam2 app2 tt2 pair2 fst2 snd2 left2 right2 case2 zero2 suc2 rec2) v02 : ∀{Γ A} → Tm2 (snoc2 Γ A) A; v02 = var2 vz2 v12 : ∀{Γ A B} → Tm2 (snoc2 (snoc2 Γ A) B) A; v12 = var2 (vs2 vz2) v22 : ∀{Γ A B C} → Tm2 (snoc2 (snoc2 (snoc2 Γ A) B) C) A; v22 = var2 (vs2 (vs2 vz2)) v32 : ∀{Γ A B C D} → Tm2 (snoc2 (snoc2 (snoc2 (snoc2 Γ A) B) C) D) A; v32 = var2 (vs2 (vs2 (vs2 vz2))) tbool2 : Ty2; tbool2 = sum2 top2 top2 true2 : ∀{Γ} → Tm2 Γ tbool2; true2 = left2 tt2 tfalse2 : ∀{Γ} → Tm2 Γ tbool2; tfalse2 = right2 tt2 ifthenelse2 : ∀{Γ A} → Tm2 Γ (arr2 tbool2 (arr2 A (arr2 A A))); ifthenelse2 = lam2 (lam2 (lam2 (case2 v22 (lam2 v22) (lam2 v12)))) times42 : ∀{Γ A} → Tm2 Γ (arr2 (arr2 A A) (arr2 A A)); times42 = lam2 (lam2 (app2 v12 (app2 v12 (app2 v12 (app2 v12 v02))))) add2 : ∀{Γ} → Tm2 Γ (arr2 nat2 (arr2 nat2 nat2)); add2 = lam2 (rec2 v02 (lam2 (lam2 (lam2 (suc2 (app2 v12 v02))))) (lam2 v02)) mul2 : ∀{Γ} → Tm2 Γ (arr2 nat2 (arr2 nat2 nat2)); mul2 = lam2 (rec2 v02 (lam2 (lam2 (lam2 (app2 (app2 add2 (app2 v12 v02)) v02)))) (lam2 zero2)) fact2 : ∀{Γ} → Tm2 Γ (arr2 nat2 nat2); fact2 = lam2 (rec2 v02 (lam2 (lam2 (app2 (app2 mul2 (suc2 v12)) v02))) (suc2 zero2)) {-# OPTIONS --type-in-type #-} Ty3 : Set Ty3 = (Ty3 : Set) (nat top bot : Ty3) (arr prod sum : Ty3 → Ty3 → Ty3) → Ty3 nat3 : Ty3; nat3 = λ _ nat3 _ _ _ _ _ → nat3 top3 : Ty3; top3 = λ _ _ top3 _ _ _ _ → top3 bot3 : Ty3; bot3 = λ _ _ _ bot3 _ _ _ → bot3 arr3 : Ty3 → Ty3 → Ty3; arr3 = λ A B Ty3 nat3 top3 bot3 arr3 prod sum → arr3 (A Ty3 nat3 top3 bot3 arr3 prod sum) (B Ty3 nat3 top3 bot3 arr3 prod sum) prod3 : Ty3 → Ty3 → Ty3; prod3 = λ A B Ty3 nat3 top3 bot3 arr3 prod3 sum → prod3 (A Ty3 nat3 top3 bot3 arr3 prod3 sum) (B Ty3 nat3 top3 bot3 arr3 prod3 sum) sum3 : Ty3 → Ty3 → Ty3; sum3 = λ A B Ty3 nat3 top3 bot3 arr3 prod3 sum3 → sum3 (A Ty3 nat3 top3 bot3 arr3 prod3 sum3) (B Ty3 nat3 top3 bot3 arr3 prod3 sum3) Con3 : Set; Con3 = (Con3 : Set) (nil : Con3) (snoc : Con3 → Ty3 → Con3) → Con3 nil3 : Con3; nil3 = λ Con3 nil3 snoc → nil3 snoc3 : Con3 → Ty3 → Con3; snoc3 = λ Γ A Con3 nil3 snoc3 → snoc3 (Γ Con3 nil3 snoc3) A Var3 : Con3 → Ty3 → Set; Var3 = λ Γ A → (Var3 : Con3 → Ty3 → Set) (vz : ∀ Γ A → Var3 (snoc3 Γ A) A) (vs : ∀ Γ B A → Var3 Γ A → Var3 (snoc3 Γ B) A) → Var3 Γ A vz3 : ∀{Γ A} → Var3 (snoc3 Γ A) A; vz3 = λ Var3 vz3 vs → vz3 _ _ vs3 : ∀{Γ B A} → Var3 Γ A → Var3 (snoc3 Γ B) A; vs3 = λ x Var3 vz3 vs3 → vs3 _ _ _ (x Var3 vz3 vs3) Tm3 : Con3 → Ty3 → Set; Tm3 = λ Γ A → (Tm3 : Con3 → Ty3 → Set) (var : ∀ Γ A → Var3 Γ A → Tm3 Γ A) (lam : ∀ Γ A B → Tm3 (snoc3 Γ A) B → Tm3 Γ (arr3 A B)) (app : ∀ Γ A B → Tm3 Γ (arr3 A B) → Tm3 Γ A → Tm3 Γ B) (tt : ∀ Γ → Tm3 Γ top3) (pair : ∀ Γ A B → Tm3 Γ A → Tm3 Γ B → Tm3 Γ (prod3 A B)) (fst : ∀ Γ A B → Tm3 Γ (prod3 A B) → Tm3 Γ A) (snd : ∀ Γ A B → Tm3 Γ (prod3 A B) → Tm3 Γ B) (left : ∀ Γ A B → Tm3 Γ A → Tm3 Γ (sum3 A B)) (right : ∀ Γ A B → Tm3 Γ B → Tm3 Γ (sum3 A B)) (case : ∀ Γ A B C → Tm3 Γ (sum3 A B) → Tm3 Γ (arr3 A C) → Tm3 Γ (arr3 B C) → Tm3 Γ C) (zero : ∀ Γ → Tm3 Γ nat3) (suc : ∀ Γ → Tm3 Γ nat3 → Tm3 Γ nat3) (rec : ∀ Γ A → Tm3 Γ nat3 → Tm3 Γ (arr3 nat3 (arr3 A A)) → Tm3 Γ A → Tm3 Γ A) → Tm3 Γ A var3 : ∀{Γ A} → Var3 Γ A → Tm3 Γ A; var3 = λ x Tm3 var3 lam app tt pair fst snd left right case zero suc rec → var3 _ _ x lam3 : ∀{Γ A B} → Tm3 (snoc3 Γ A) B → Tm3 Γ (arr3 A B); lam3 = λ t Tm3 var3 lam3 app tt pair fst snd left right case zero suc rec → lam3 _ _ _ (t Tm3 var3 lam3 app tt pair fst snd left right case zero suc rec) app3 : ∀{Γ A B} → Tm3 Γ (arr3 A B) → Tm3 Γ A → Tm3 Γ B; app3 = λ t u Tm3 var3 lam3 app3 tt pair fst snd left right case zero suc rec → app3 _ _ _ (t Tm3 var3 lam3 app3 tt pair fst snd left right case zero suc rec) (u Tm3 var3 lam3 app3 tt pair fst snd left right case zero suc rec) tt3 : ∀{Γ} → Tm3 Γ top3; tt3 = λ Tm3 var3 lam3 app3 tt3 pair fst snd left right case zero suc rec → tt3 _ pair3 : ∀{Γ A B} → Tm3 Γ A → Tm3 Γ B → Tm3 Γ (prod3 A B); pair3 = λ t u Tm3 var3 lam3 app3 tt3 pair3 fst snd left right case zero suc rec → pair3 _ _ _ (t Tm3 var3 lam3 app3 tt3 pair3 fst snd left right case zero suc rec) (u Tm3 var3 lam3 app3 tt3 pair3 fst snd left right case zero suc rec) fst3 : ∀{Γ A B} → Tm3 Γ (prod3 A B) → Tm3 Γ A; fst3 = λ t Tm3 var3 lam3 app3 tt3 pair3 fst3 snd left right case zero suc rec → fst3 _ _ _ (t Tm3 var3 lam3 app3 tt3 pair3 fst3 snd left right case zero suc rec) snd3 : ∀{Γ A B} → Tm3 Γ (prod3 A B) → Tm3 Γ B; snd3 = λ t Tm3 var3 lam3 app3 tt3 pair3 fst3 snd3 left right case zero suc rec → snd3 _ _ _ (t Tm3 var3 lam3 app3 tt3 pair3 fst3 snd3 left right case zero suc rec) left3 : ∀{Γ A B} → Tm3 Γ A → Tm3 Γ (sum3 A B); left3 = λ t Tm3 var3 lam3 app3 tt3 pair3 fst3 snd3 left3 right case zero suc rec → left3 _ _ _ (t Tm3 var3 lam3 app3 tt3 pair3 fst3 snd3 left3 right case zero suc rec) right3 : ∀{Γ A B} → Tm3 Γ B → Tm3 Γ (sum3 A B); right3 = λ t Tm3 var3 lam3 app3 tt3 pair3 fst3 snd3 left3 right3 case zero suc rec → right3 _ _ _ (t Tm3 var3 lam3 app3 tt3 pair3 fst3 snd3 left3 right3 case zero suc rec) case3 : ∀{Γ A B C} → Tm3 Γ (sum3 A B) → Tm3 Γ (arr3 A C) → Tm3 Γ (arr3 B C) → Tm3 Γ C; case3 = λ t u v Tm3 var3 lam3 app3 tt3 pair3 fst3 snd3 left3 right3 case3 zero suc rec → case3 _ _ _ _ (t Tm3 var3 lam3 app3 tt3 pair3 fst3 snd3 left3 right3 case3 zero suc rec) (u Tm3 var3 lam3 app3 tt3 pair3 fst3 snd3 left3 right3 case3 zero suc rec) (v Tm3 var3 lam3 app3 tt3 pair3 fst3 snd3 left3 right3 case3 zero suc rec) zero3 : ∀{Γ} → Tm3 Γ nat3; zero3 = λ Tm3 var3 lam3 app3 tt3 pair3 fst3 snd3 left3 right3 case3 zero3 suc rec → zero3 _ suc3 : ∀{Γ} → Tm3 Γ nat3 → Tm3 Γ nat3; suc3 = λ t Tm3 var3 lam3 app3 tt3 pair3 fst3 snd3 left3 right3 case3 zero3 suc3 rec → suc3 _ (t Tm3 var3 lam3 app3 tt3 pair3 fst3 snd3 left3 right3 case3 zero3 suc3 rec) rec3 : ∀{Γ A} → Tm3 Γ nat3 → Tm3 Γ (arr3 nat3 (arr3 A A)) → Tm3 Γ A → Tm3 Γ A; rec3 = λ t u v Tm3 var3 lam3 app3 tt3 pair3 fst3 snd3 left3 right3 case3 zero3 suc3 rec3 → rec3 _ _ (t Tm3 var3 lam3 app3 tt3 pair3 fst3 snd3 left3 right3 case3 zero3 suc3 rec3) (u Tm3 var3 lam3 app3 tt3 pair3 fst3 snd3 left3 right3 case3 zero3 suc3 rec3) (v Tm3 var3 lam3 app3 tt3 pair3 fst3 snd3 left3 right3 case3 zero3 suc3 rec3) v03 : ∀{Γ A} → Tm3 (snoc3 Γ A) A; v03 = var3 vz3 v13 : ∀{Γ A B} → Tm3 (snoc3 (snoc3 Γ A) B) A; v13 = var3 (vs3 vz3) v23 : ∀{Γ A B C} → Tm3 (snoc3 (snoc3 (snoc3 Γ A) B) C) A; v23 = var3 (vs3 (vs3 vz3)) v33 : ∀{Γ A B C D} → Tm3 (snoc3 (snoc3 (snoc3 (snoc3 Γ A) B) C) D) A; v33 = var3 (vs3 (vs3 (vs3 vz3))) tbool3 : Ty3; tbool3 = sum3 top3 top3 true3 : ∀{Γ} → Tm3 Γ tbool3; true3 = left3 tt3 tfalse3 : ∀{Γ} → Tm3 Γ tbool3; tfalse3 = right3 tt3 ifthenelse3 : ∀{Γ A} → Tm3 Γ (arr3 tbool3 (arr3 A (arr3 A A))); ifthenelse3 = lam3 (lam3 (lam3 (case3 v23 (lam3 v23) (lam3 v13)))) times43 : ∀{Γ A} → Tm3 Γ (arr3 (arr3 A A) (arr3 A A)); times43 = lam3 (lam3 (app3 v13 (app3 v13 (app3 v13 (app3 v13 v03))))) add3 : ∀{Γ} → Tm3 Γ (arr3 nat3 (arr3 nat3 nat3)); add3 = lam3 (rec3 v03 (lam3 (lam3 (lam3 (suc3 (app3 v13 v03))))) (lam3 v03)) mul3 : ∀{Γ} → Tm3 Γ (arr3 nat3 (arr3 nat3 nat3)); mul3 = lam3 (rec3 v03 (lam3 (lam3 (lam3 (app3 (app3 add3 (app3 v13 v03)) v03)))) (lam3 zero3)) fact3 : ∀{Γ} → Tm3 Γ (arr3 nat3 nat3); fact3 = lam3 (rec3 v03 (lam3 (lam3 (app3 (app3 mul3 (suc3 v13)) v03))) (suc3 zero3)) {-# OPTIONS --type-in-type #-} Ty4 : Set Ty4 = (Ty4 : Set) (nat top bot : Ty4) (arr prod sum : Ty4 → Ty4 → Ty4) → Ty4 nat4 : Ty4; nat4 = λ _ nat4 _ _ _ _ _ → nat4 top4 : Ty4; top4 = λ _ _ top4 _ _ _ _ → top4 bot4 : Ty4; bot4 = λ _ _ _ bot4 _ _ _ → bot4 arr4 : Ty4 → Ty4 → Ty4; arr4 = λ A B Ty4 nat4 top4 bot4 arr4 prod sum → arr4 (A Ty4 nat4 top4 bot4 arr4 prod sum) (B Ty4 nat4 top4 bot4 arr4 prod sum) prod4 : Ty4 → Ty4 → Ty4; prod4 = λ A B Ty4 nat4 top4 bot4 arr4 prod4 sum → prod4 (A Ty4 nat4 top4 bot4 arr4 prod4 sum) (B Ty4 nat4 top4 bot4 arr4 prod4 sum) sum4 : Ty4 → Ty4 → Ty4; sum4 = λ A B Ty4 nat4 top4 bot4 arr4 prod4 sum4 → sum4 (A Ty4 nat4 top4 bot4 arr4 prod4 sum4) (B Ty4 nat4 top4 bot4 arr4 prod4 sum4) Con4 : Set; Con4 = (Con4 : Set) (nil : Con4) (snoc : Con4 → Ty4 → Con4) → Con4 nil4 : Con4; nil4 = λ Con4 nil4 snoc → nil4 snoc4 : Con4 → Ty4 → Con4; snoc4 = λ Γ A Con4 nil4 snoc4 → snoc4 (Γ Con4 nil4 snoc4) A Var4 : Con4 → Ty4 → Set; Var4 = λ Γ A → (Var4 : Con4 → Ty4 → Set) (vz : ∀ Γ A → Var4 (snoc4 Γ A) A) (vs : ∀ Γ B A → Var4 Γ A → Var4 (snoc4 Γ B) A) → Var4 Γ A vz4 : ∀{Γ A} → Var4 (snoc4 Γ A) A; vz4 = λ Var4 vz4 vs → vz4 _ _ vs4 : ∀{Γ B A} → Var4 Γ A → Var4 (snoc4 Γ B) A; vs4 = λ x Var4 vz4 vs4 → vs4 _ _ _ (x Var4 vz4 vs4) Tm4 : Con4 → Ty4 → Set; Tm4 = λ Γ A → (Tm4 : Con4 → Ty4 → Set) (var : ∀ Γ A → Var4 Γ A → Tm4 Γ A) (lam : ∀ Γ A B → Tm4 (snoc4 Γ A) B → Tm4 Γ (arr4 A B)) (app : ∀ Γ A B → Tm4 Γ (arr4 A B) → Tm4 Γ A → Tm4 Γ B) (tt : ∀ Γ → Tm4 Γ top4) (pair : ∀ Γ A B → Tm4 Γ A → Tm4 Γ B → Tm4 Γ (prod4 A B)) (fst : ∀ Γ A B → Tm4 Γ (prod4 A B) → Tm4 Γ A) (snd : ∀ Γ A B → Tm4 Γ (prod4 A B) → Tm4 Γ B) (left : ∀ Γ A B → Tm4 Γ A → Tm4 Γ (sum4 A B)) (right : ∀ Γ A B → Tm4 Γ B → Tm4 Γ (sum4 A B)) (case : ∀ Γ A B C → Tm4 Γ (sum4 A B) → Tm4 Γ (arr4 A C) → Tm4 Γ (arr4 B C) → Tm4 Γ C) (zero : ∀ Γ → Tm4 Γ nat4) (suc : ∀ Γ → Tm4 Γ nat4 → Tm4 Γ nat4) (rec : ∀ Γ A → Tm4 Γ nat4 → Tm4 Γ (arr4 nat4 (arr4 A A)) → Tm4 Γ A → Tm4 Γ A) → Tm4 Γ A var4 : ∀{Γ A} → Var4 Γ A → Tm4 Γ A; var4 = λ x Tm4 var4 lam app tt pair fst snd left right case zero suc rec → var4 _ _ x lam4 : ∀{Γ A B} → Tm4 (snoc4 Γ A) B → Tm4 Γ (arr4 A B); lam4 = λ t Tm4 var4 lam4 app tt pair fst snd left right case zero suc rec → lam4 _ _ _ (t Tm4 var4 lam4 app tt pair fst snd left right case zero suc rec) app4 : ∀{Γ A B} → Tm4 Γ (arr4 A B) → Tm4 Γ A → Tm4 Γ B; app4 = λ t u Tm4 var4 lam4 app4 tt pair fst snd left right case zero suc rec → app4 _ _ _ (t Tm4 var4 lam4 app4 tt pair fst snd left right case zero suc rec) (u Tm4 var4 lam4 app4 tt pair fst snd left right case zero suc rec) tt4 : ∀{Γ} → Tm4 Γ top4; tt4 = λ Tm4 var4 lam4 app4 tt4 pair fst snd left right case zero suc rec → tt4 _ pair4 : ∀{Γ A B} → Tm4 Γ A → Tm4 Γ B → Tm4 Γ (prod4 A B); pair4 = λ t u Tm4 var4 lam4 app4 tt4 pair4 fst snd left right case zero suc rec → pair4 _ _ _ (t Tm4 var4 lam4 app4 tt4 pair4 fst snd left right case zero suc rec) (u Tm4 var4 lam4 app4 tt4 pair4 fst snd left right case zero suc rec) fst4 : ∀{Γ A B} → Tm4 Γ (prod4 A B) → Tm4 Γ A; fst4 = λ t Tm4 var4 lam4 app4 tt4 pair4 fst4 snd left right case zero suc rec → fst4 _ _ _ (t Tm4 var4 lam4 app4 tt4 pair4 fst4 snd left right case zero suc rec) snd4 : ∀{Γ A B} → Tm4 Γ (prod4 A B) → Tm4 Γ B; snd4 = λ t Tm4 var4 lam4 app4 tt4 pair4 fst4 snd4 left right case zero suc rec → snd4 _ _ _ (t Tm4 var4 lam4 app4 tt4 pair4 fst4 snd4 left right case zero suc rec) left4 : ∀{Γ A B} → Tm4 Γ A → Tm4 Γ (sum4 A B); left4 = λ t Tm4 var4 lam4 app4 tt4 pair4 fst4 snd4 left4 right case zero suc rec → left4 _ _ _ (t Tm4 var4 lam4 app4 tt4 pair4 fst4 snd4 left4 right case zero suc rec) right4 : ∀{Γ A B} → Tm4 Γ B → Tm4 Γ (sum4 A B); right4 = λ t Tm4 var4 lam4 app4 tt4 pair4 fst4 snd4 left4 right4 case zero suc rec → right4 _ _ _ (t Tm4 var4 lam4 app4 tt4 pair4 fst4 snd4 left4 right4 case zero suc rec) case4 : ∀{Γ A B C} → Tm4 Γ (sum4 A B) → Tm4 Γ (arr4 A C) → Tm4 Γ (arr4 B C) → Tm4 Γ C; case4 = λ t u v Tm4 var4 lam4 app4 tt4 pair4 fst4 snd4 left4 right4 case4 zero suc rec → case4 _ _ _ _ (t Tm4 var4 lam4 app4 tt4 pair4 fst4 snd4 left4 right4 case4 zero suc rec) (u Tm4 var4 lam4 app4 tt4 pair4 fst4 snd4 left4 right4 case4 zero suc rec) (v Tm4 var4 lam4 app4 tt4 pair4 fst4 snd4 left4 right4 case4 zero suc rec) zero4 : ∀{Γ} → Tm4 Γ nat4; zero4 = λ Tm4 var4 lam4 app4 tt4 pair4 fst4 snd4 left4 right4 case4 zero4 suc rec → zero4 _ suc4 : ∀{Γ} → Tm4 Γ nat4 → Tm4 Γ nat4; suc4 = λ t Tm4 var4 lam4 app4 tt4 pair4 fst4 snd4 left4 right4 case4 zero4 suc4 rec → suc4 _ (t Tm4 var4 lam4 app4 tt4 pair4 fst4 snd4 left4 right4 case4 zero4 suc4 rec) rec4 : ∀{Γ A} → Tm4 Γ nat4 → Tm4 Γ (arr4 nat4 (arr4 A A)) → Tm4 Γ A → Tm4 Γ A; rec4 = λ t u v Tm4 var4 lam4 app4 tt4 pair4 fst4 snd4 left4 right4 case4 zero4 suc4 rec4 → rec4 _ _ (t Tm4 var4 lam4 app4 tt4 pair4 fst4 snd4 left4 right4 case4 zero4 suc4 rec4) (u Tm4 var4 lam4 app4 tt4 pair4 fst4 snd4 left4 right4 case4 zero4 suc4 rec4) (v Tm4 var4 lam4 app4 tt4 pair4 fst4 snd4 left4 right4 case4 zero4 suc4 rec4) v04 : ∀{Γ A} → Tm4 (snoc4 Γ A) A; v04 = var4 vz4 v14 : ∀{Γ A B} → Tm4 (snoc4 (snoc4 Γ A) B) A; v14 = var4 (vs4 vz4) v24 : ∀{Γ A B C} → Tm4 (snoc4 (snoc4 (snoc4 Γ A) B) C) A; v24 = var4 (vs4 (vs4 vz4)) v34 : ∀{Γ A B C D} → Tm4 (snoc4 (snoc4 (snoc4 (snoc4 Γ A) B) C) D) A; v34 = var4 (vs4 (vs4 (vs4 vz4))) tbool4 : Ty4; tbool4 = sum4 top4 top4 true4 : ∀{Γ} → Tm4 Γ tbool4; true4 = left4 tt4 tfalse4 : ∀{Γ} → Tm4 Γ tbool4; tfalse4 = right4 tt4 ifthenelse4 : ∀{Γ A} → Tm4 Γ (arr4 tbool4 (arr4 A (arr4 A A))); ifthenelse4 = lam4 (lam4 (lam4 (case4 v24 (lam4 v24) (lam4 v14)))) times44 : ∀{Γ A} → Tm4 Γ (arr4 (arr4 A A) (arr4 A A)); times44 = lam4 (lam4 (app4 v14 (app4 v14 (app4 v14 (app4 v14 v04))))) add4 : ∀{Γ} → Tm4 Γ (arr4 nat4 (arr4 nat4 nat4)); add4 = lam4 (rec4 v04 (lam4 (lam4 (lam4 (suc4 (app4 v14 v04))))) (lam4 v04)) mul4 : ∀{Γ} → Tm4 Γ (arr4 nat4 (arr4 nat4 nat4)); mul4 = lam4 (rec4 v04 (lam4 (lam4 (lam4 (app4 (app4 add4 (app4 v14 v04)) v04)))) (lam4 zero4)) fact4 : ∀{Γ} → Tm4 Γ (arr4 nat4 nat4); fact4 = lam4 (rec4 v04 (lam4 (lam4 (app4 (app4 mul4 (suc4 v14)) v04))) (suc4 zero4)) {-# OPTIONS --type-in-type #-} Ty5 : Set Ty5 = (Ty5 : Set) (nat top bot : Ty5) (arr prod sum : Ty5 → Ty5 → Ty5) → Ty5 nat5 : Ty5; nat5 = λ _ nat5 _ _ _ _ _ → nat5 top5 : Ty5; top5 = λ _ _ top5 _ _ _ _ → top5 bot5 : Ty5; bot5 = λ _ _ _ bot5 _ _ _ → bot5 arr5 : Ty5 → Ty5 → Ty5; arr5 = λ A B Ty5 nat5 top5 bot5 arr5 prod sum → arr5 (A Ty5 nat5 top5 bot5 arr5 prod sum) (B Ty5 nat5 top5 bot5 arr5 prod sum) prod5 : Ty5 → Ty5 → Ty5; prod5 = λ A B Ty5 nat5 top5 bot5 arr5 prod5 sum → prod5 (A Ty5 nat5 top5 bot5 arr5 prod5 sum) (B Ty5 nat5 top5 bot5 arr5 prod5 sum) sum5 : Ty5 → Ty5 → Ty5; sum5 = λ A B Ty5 nat5 top5 bot5 arr5 prod5 sum5 → sum5 (A Ty5 nat5 top5 bot5 arr5 prod5 sum5) (B Ty5 nat5 top5 bot5 arr5 prod5 sum5) Con5 : Set; Con5 = (Con5 : Set) (nil : Con5) (snoc : Con5 → Ty5 → Con5) → Con5 nil5 : Con5; nil5 = λ Con5 nil5 snoc → nil5 snoc5 : Con5 → Ty5 → Con5; snoc5 = λ Γ A Con5 nil5 snoc5 → snoc5 (Γ Con5 nil5 snoc5) A Var5 : Con5 → Ty5 → Set; Var5 = λ Γ A → (Var5 : Con5 → Ty5 → Set) (vz : ∀ Γ A → Var5 (snoc5 Γ A) A) (vs : ∀ Γ B A → Var5 Γ A → Var5 (snoc5 Γ B) A) → Var5 Γ A vz5 : ∀{Γ A} → Var5 (snoc5 Γ A) A; vz5 = λ Var5 vz5 vs → vz5 _ _ vs5 : ∀{Γ B A} → Var5 Γ A → Var5 (snoc5 Γ B) A; vs5 = λ x Var5 vz5 vs5 → vs5 _ _ _ (x Var5 vz5 vs5) Tm5 : Con5 → Ty5 → Set; Tm5 = λ Γ A → (Tm5 : Con5 → Ty5 → Set) (var : ∀ Γ A → Var5 Γ A → Tm5 Γ A) (lam : ∀ Γ A B → Tm5 (snoc5 Γ A) B → Tm5 Γ (arr5 A B)) (app : ∀ Γ A B → Tm5 Γ (arr5 A B) → Tm5 Γ A → Tm5 Γ B) (tt : ∀ Γ → Tm5 Γ top5) (pair : ∀ Γ A B → Tm5 Γ A → Tm5 Γ B → Tm5 Γ (prod5 A B)) (fst : ∀ Γ A B → Tm5 Γ (prod5 A B) → Tm5 Γ A) (snd : ∀ Γ A B → Tm5 Γ (prod5 A B) → Tm5 Γ B) (left : ∀ Γ A B → Tm5 Γ A → Tm5 Γ (sum5 A B)) (right : ∀ Γ A B → Tm5 Γ B → Tm5 Γ (sum5 A B)) (case : ∀ Γ A B C → Tm5 Γ (sum5 A B) → Tm5 Γ (arr5 A C) → Tm5 Γ (arr5 B C) → Tm5 Γ C) (zero : ∀ Γ → Tm5 Γ nat5) (suc : ∀ Γ → Tm5 Γ nat5 → Tm5 Γ nat5) (rec : ∀ Γ A → Tm5 Γ nat5 → Tm5 Γ (arr5 nat5 (arr5 A A)) → Tm5 Γ A → Tm5 Γ A) → Tm5 Γ A var5 : ∀{Γ A} → Var5 Γ A → Tm5 Γ A; var5 = λ x Tm5 var5 lam app tt pair fst snd left right case zero suc rec → var5 _ _ x lam5 : ∀{Γ A B} → Tm5 (snoc5 Γ A) B → Tm5 Γ (arr5 A B); lam5 = λ t Tm5 var5 lam5 app tt pair fst snd left right case zero suc rec → lam5 _ _ _ (t Tm5 var5 lam5 app tt pair fst snd left right case zero suc rec) app5 : ∀{Γ A B} → Tm5 Γ (arr5 A B) → Tm5 Γ A → Tm5 Γ B; app5 = λ t u Tm5 var5 lam5 app5 tt pair fst snd left right case zero suc rec → app5 _ _ _ (t Tm5 var5 lam5 app5 tt pair fst snd left right case zero suc rec) (u Tm5 var5 lam5 app5 tt pair fst snd left right case zero suc rec) tt5 : ∀{Γ} → Tm5 Γ top5; tt5 = λ Tm5 var5 lam5 app5 tt5 pair fst snd left right case zero suc rec → tt5 _ pair5 : ∀{Γ A B} → Tm5 Γ A → Tm5 Γ B → Tm5 Γ (prod5 A B); pair5 = λ t u Tm5 var5 lam5 app5 tt5 pair5 fst snd left right case zero suc rec → pair5 _ _ _ (t Tm5 var5 lam5 app5 tt5 pair5 fst snd left right case zero suc rec) (u Tm5 var5 lam5 app5 tt5 pair5 fst snd left right case zero suc rec) fst5 : ∀{Γ A B} → Tm5 Γ (prod5 A B) → Tm5 Γ A; fst5 = λ t Tm5 var5 lam5 app5 tt5 pair5 fst5 snd left right case zero suc rec → fst5 _ _ _ (t Tm5 var5 lam5 app5 tt5 pair5 fst5 snd left right case zero suc rec) snd5 : ∀{Γ A B} → Tm5 Γ (prod5 A B) → Tm5 Γ B; snd5 = λ t Tm5 var5 lam5 app5 tt5 pair5 fst5 snd5 left right case zero suc rec → snd5 _ _ _ (t Tm5 var5 lam5 app5 tt5 pair5 fst5 snd5 left right case zero suc rec) left5 : ∀{Γ A B} → Tm5 Γ A → Tm5 Γ (sum5 A B); left5 = λ t Tm5 var5 lam5 app5 tt5 pair5 fst5 snd5 left5 right case zero suc rec → left5 _ _ _ (t Tm5 var5 lam5 app5 tt5 pair5 fst5 snd5 left5 right case zero suc rec) right5 : ∀{Γ A B} → Tm5 Γ B → Tm5 Γ (sum5 A B); right5 = λ t Tm5 var5 lam5 app5 tt5 pair5 fst5 snd5 left5 right5 case zero suc rec → right5 _ _ _ (t Tm5 var5 lam5 app5 tt5 pair5 fst5 snd5 left5 right5 case zero suc rec) case5 : ∀{Γ A B C} → Tm5 Γ (sum5 A B) → Tm5 Γ (arr5 A C) → Tm5 Γ (arr5 B C) → Tm5 Γ C; case5 = λ t u v Tm5 var5 lam5 app5 tt5 pair5 fst5 snd5 left5 right5 case5 zero suc rec → case5 _ _ _ _ (t Tm5 var5 lam5 app5 tt5 pair5 fst5 snd5 left5 right5 case5 zero suc rec) (u Tm5 var5 lam5 app5 tt5 pair5 fst5 snd5 left5 right5 case5 zero suc rec) (v Tm5 var5 lam5 app5 tt5 pair5 fst5 snd5 left5 right5 case5 zero suc rec) zero5 : ∀{Γ} → Tm5 Γ nat5; zero5 = λ Tm5 var5 lam5 app5 tt5 pair5 fst5 snd5 left5 right5 case5 zero5 suc rec → zero5 _ suc5 : ∀{Γ} → Tm5 Γ nat5 → Tm5 Γ nat5; suc5 = λ t Tm5 var5 lam5 app5 tt5 pair5 fst5 snd5 left5 right5 case5 zero5 suc5 rec → suc5 _ (t Tm5 var5 lam5 app5 tt5 pair5 fst5 snd5 left5 right5 case5 zero5 suc5 rec) rec5 : ∀{Γ A} → Tm5 Γ nat5 → Tm5 Γ (arr5 nat5 (arr5 A A)) → Tm5 Γ A → Tm5 Γ A; rec5 = λ t u v Tm5 var5 lam5 app5 tt5 pair5 fst5 snd5 left5 right5 case5 zero5 suc5 rec5 → rec5 _ _ (t Tm5 var5 lam5 app5 tt5 pair5 fst5 snd5 left5 right5 case5 zero5 suc5 rec5) (u Tm5 var5 lam5 app5 tt5 pair5 fst5 snd5 left5 right5 case5 zero5 suc5 rec5) (v Tm5 var5 lam5 app5 tt5 pair5 fst5 snd5 left5 right5 case5 zero5 suc5 rec5) v05 : ∀{Γ A} → Tm5 (snoc5 Γ A) A; v05 = var5 vz5 v15 : ∀{Γ A B} → Tm5 (snoc5 (snoc5 Γ A) B) A; v15 = var5 (vs5 vz5) v25 : ∀{Γ A B C} → Tm5 (snoc5 (snoc5 (snoc5 Γ A) B) C) A; v25 = var5 (vs5 (vs5 vz5)) v35 : ∀{Γ A B C D} → Tm5 (snoc5 (snoc5 (snoc5 (snoc5 Γ A) B) C) D) A; v35 = var5 (vs5 (vs5 (vs5 vz5))) tbool5 : Ty5; tbool5 = sum5 top5 top5 true5 : ∀{Γ} → Tm5 Γ tbool5; true5 = left5 tt5 tfalse5 : ∀{Γ} → Tm5 Γ tbool5; tfalse5 = right5 tt5 ifthenelse5 : ∀{Γ A} → Tm5 Γ (arr5 tbool5 (arr5 A (arr5 A A))); ifthenelse5 = lam5 (lam5 (lam5 (case5 v25 (lam5 v25) (lam5 v15)))) times45 : ∀{Γ A} → Tm5 Γ (arr5 (arr5 A A) (arr5 A A)); times45 = lam5 (lam5 (app5 v15 (app5 v15 (app5 v15 (app5 v15 v05))))) add5 : ∀{Γ} → Tm5 Γ (arr5 nat5 (arr5 nat5 nat5)); add5 = lam5 (rec5 v05 (lam5 (lam5 (lam5 (suc5 (app5 v15 v05))))) (lam5 v05)) mul5 : ∀{Γ} → Tm5 Γ (arr5 nat5 (arr5 nat5 nat5)); mul5 = lam5 (rec5 v05 (lam5 (lam5 (lam5 (app5 (app5 add5 (app5 v15 v05)) v05)))) (lam5 zero5)) fact5 : ∀{Γ} → Tm5 Γ (arr5 nat5 nat5); fact5 = lam5 (rec5 v05 (lam5 (lam5 (app5 (app5 mul5 (suc5 v15)) v05))) (suc5 zero5)) {-# OPTIONS --type-in-type #-} Ty6 : Set Ty6 = (Ty6 : Set) (nat top bot : Ty6) (arr prod sum : Ty6 → Ty6 → Ty6) → Ty6 nat6 : Ty6; nat6 = λ _ nat6 _ _ _ _ _ → nat6 top6 : Ty6; top6 = λ _ _ top6 _ _ _ _ → top6 bot6 : Ty6; bot6 = λ _ _ _ bot6 _ _ _ → bot6 arr6 : Ty6 → Ty6 → Ty6; arr6 = λ A B Ty6 nat6 top6 bot6 arr6 prod sum → arr6 (A Ty6 nat6 top6 bot6 arr6 prod sum) (B Ty6 nat6 top6 bot6 arr6 prod sum) prod6 : Ty6 → Ty6 → Ty6; prod6 = λ A B Ty6 nat6 top6 bot6 arr6 prod6 sum → prod6 (A Ty6 nat6 top6 bot6 arr6 prod6 sum) (B Ty6 nat6 top6 bot6 arr6 prod6 sum) sum6 : Ty6 → Ty6 → Ty6; sum6 = λ A B Ty6 nat6 top6 bot6 arr6 prod6 sum6 → sum6 (A Ty6 nat6 top6 bot6 arr6 prod6 sum6) (B Ty6 nat6 top6 bot6 arr6 prod6 sum6) Con6 : Set; Con6 = (Con6 : Set) (nil : Con6) (snoc : Con6 → Ty6 → Con6) → Con6 nil6 : Con6; nil6 = λ Con6 nil6 snoc → nil6 snoc6 : Con6 → Ty6 → Con6; snoc6 = λ Γ A Con6 nil6 snoc6 → snoc6 (Γ Con6 nil6 snoc6) A Var6 : Con6 → Ty6 → Set; Var6 = λ Γ A → (Var6 : Con6 → Ty6 → Set) (vz : ∀ Γ A → Var6 (snoc6 Γ A) A) (vs : ∀ Γ B A → Var6 Γ A → Var6 (snoc6 Γ B) A) → Var6 Γ A vz6 : ∀{Γ A} → Var6 (snoc6 Γ A) A; vz6 = λ Var6 vz6 vs → vz6 _ _ vs6 : ∀{Γ B A} → Var6 Γ A → Var6 (snoc6 Γ B) A; vs6 = λ x Var6 vz6 vs6 → vs6 _ _ _ (x Var6 vz6 vs6) Tm6 : Con6 → Ty6 → Set; Tm6 = λ Γ A → (Tm6 : Con6 → Ty6 → Set) (var : ∀ Γ A → Var6 Γ A → Tm6 Γ A) (lam : ∀ Γ A B → Tm6 (snoc6 Γ A) B → Tm6 Γ (arr6 A B)) (app : ∀ Γ A B → Tm6 Γ (arr6 A B) → Tm6 Γ A → Tm6 Γ B) (tt : ∀ Γ → Tm6 Γ top6) (pair : ∀ Γ A B → Tm6 Γ A → Tm6 Γ B → Tm6 Γ (prod6 A B)) (fst : ∀ Γ A B → Tm6 Γ (prod6 A B) → Tm6 Γ A) (snd : ∀ Γ A B → Tm6 Γ (prod6 A B) → Tm6 Γ B) (left : ∀ Γ A B → Tm6 Γ A → Tm6 Γ (sum6 A B)) (right : ∀ Γ A B → Tm6 Γ B → Tm6 Γ (sum6 A B)) (case : ∀ Γ A B C → Tm6 Γ (sum6 A B) → Tm6 Γ (arr6 A C) → Tm6 Γ (arr6 B C) → Tm6 Γ C) (zero : ∀ Γ → Tm6 Γ nat6) (suc : ∀ Γ → Tm6 Γ nat6 → Tm6 Γ nat6) (rec : ∀ Γ A → Tm6 Γ nat6 → Tm6 Γ (arr6 nat6 (arr6 A A)) → Tm6 Γ A → Tm6 Γ A) → Tm6 Γ A var6 : ∀{Γ A} → Var6 Γ A → Tm6 Γ A; var6 = λ x Tm6 var6 lam app tt pair fst snd left right case zero suc rec → var6 _ _ x lam6 : ∀{Γ A B} → Tm6 (snoc6 Γ A) B → Tm6 Γ (arr6 A B); lam6 = λ t Tm6 var6 lam6 app tt pair fst snd left right case zero suc rec → lam6 _ _ _ (t Tm6 var6 lam6 app tt pair fst snd left right case zero suc rec) app6 : ∀{Γ A B} → Tm6 Γ (arr6 A B) → Tm6 Γ A → Tm6 Γ B; app6 = λ t u Tm6 var6 lam6 app6 tt pair fst snd left right case zero suc rec → app6 _ _ _ (t Tm6 var6 lam6 app6 tt pair fst snd left right case zero suc rec) (u Tm6 var6 lam6 app6 tt pair fst snd left right case zero suc rec) tt6 : ∀{Γ} → Tm6 Γ top6; tt6 = λ Tm6 var6 lam6 app6 tt6 pair fst snd left right case zero suc rec → tt6 _ pair6 : ∀{Γ A B} → Tm6 Γ A → Tm6 Γ B → Tm6 Γ (prod6 A B); pair6 = λ t u Tm6 var6 lam6 app6 tt6 pair6 fst snd left right case zero suc rec → pair6 _ _ _ (t Tm6 var6 lam6 app6 tt6 pair6 fst snd left right case zero suc rec) (u Tm6 var6 lam6 app6 tt6 pair6 fst snd left right case zero suc rec) fst6 : ∀{Γ A B} → Tm6 Γ (prod6 A B) → Tm6 Γ A; fst6 = λ t Tm6 var6 lam6 app6 tt6 pair6 fst6 snd left right case zero suc rec → fst6 _ _ _ (t Tm6 var6 lam6 app6 tt6 pair6 fst6 snd left right case zero suc rec) snd6 : ∀{Γ A B} → Tm6 Γ (prod6 A B) → Tm6 Γ B; snd6 = λ t Tm6 var6 lam6 app6 tt6 pair6 fst6 snd6 left right case zero suc rec → snd6 _ _ _ (t Tm6 var6 lam6 app6 tt6 pair6 fst6 snd6 left right case zero suc rec) left6 : ∀{Γ A B} → Tm6 Γ A → Tm6 Γ (sum6 A B); left6 = λ t Tm6 var6 lam6 app6 tt6 pair6 fst6 snd6 left6 right case zero suc rec → left6 _ _ _ (t Tm6 var6 lam6 app6 tt6 pair6 fst6 snd6 left6 right case zero suc rec) right6 : ∀{Γ A B} → Tm6 Γ B → Tm6 Γ (sum6 A B); right6 = λ t Tm6 var6 lam6 app6 tt6 pair6 fst6 snd6 left6 right6 case zero suc rec → right6 _ _ _ (t Tm6 var6 lam6 app6 tt6 pair6 fst6 snd6 left6 right6 case zero suc rec) case6 : ∀{Γ A B C} → Tm6 Γ (sum6 A B) → Tm6 Γ (arr6 A C) → Tm6 Γ (arr6 B C) → Tm6 Γ C; case6 = λ t u v Tm6 var6 lam6 app6 tt6 pair6 fst6 snd6 left6 right6 case6 zero suc rec → case6 _ _ _ _ (t Tm6 var6 lam6 app6 tt6 pair6 fst6 snd6 left6 right6 case6 zero suc rec) (u Tm6 var6 lam6 app6 tt6 pair6 fst6 snd6 left6 right6 case6 zero suc rec) (v Tm6 var6 lam6 app6 tt6 pair6 fst6 snd6 left6 right6 case6 zero suc rec) zero6 : ∀{Γ} → Tm6 Γ nat6; zero6 = λ Tm6 var6 lam6 app6 tt6 pair6 fst6 snd6 left6 right6 case6 zero6 suc rec → zero6 _ suc6 : ∀{Γ} → Tm6 Γ nat6 → Tm6 Γ nat6; suc6 = λ t Tm6 var6 lam6 app6 tt6 pair6 fst6 snd6 left6 right6 case6 zero6 suc6 rec → suc6 _ (t Tm6 var6 lam6 app6 tt6 pair6 fst6 snd6 left6 right6 case6 zero6 suc6 rec) rec6 : ∀{Γ A} → Tm6 Γ nat6 → Tm6 Γ (arr6 nat6 (arr6 A A)) → Tm6 Γ A → Tm6 Γ A; rec6 = λ t u v Tm6 var6 lam6 app6 tt6 pair6 fst6 snd6 left6 right6 case6 zero6 suc6 rec6 → rec6 _ _ (t Tm6 var6 lam6 app6 tt6 pair6 fst6 snd6 left6 right6 case6 zero6 suc6 rec6) (u Tm6 var6 lam6 app6 tt6 pair6 fst6 snd6 left6 right6 case6 zero6 suc6 rec6) (v Tm6 var6 lam6 app6 tt6 pair6 fst6 snd6 left6 right6 case6 zero6 suc6 rec6) v06 : ∀{Γ A} → Tm6 (snoc6 Γ A) A; v06 = var6 vz6 v16 : ∀{Γ A B} → Tm6 (snoc6 (snoc6 Γ A) B) A; v16 = var6 (vs6 vz6) v26 : ∀{Γ A B C} → Tm6 (snoc6 (snoc6 (snoc6 Γ A) B) C) A; v26 = var6 (vs6 (vs6 vz6)) v36 : ∀{Γ A B C D} → Tm6 (snoc6 (snoc6 (snoc6 (snoc6 Γ A) B) C) D) A; v36 = var6 (vs6 (vs6 (vs6 vz6))) tbool6 : Ty6; tbool6 = sum6 top6 top6 true6 : ∀{Γ} → Tm6 Γ tbool6; true6 = left6 tt6 tfalse6 : ∀{Γ} → Tm6 Γ tbool6; tfalse6 = right6 tt6 ifthenelse6 : ∀{Γ A} → Tm6 Γ (arr6 tbool6 (arr6 A (arr6 A A))); ifthenelse6 = lam6 (lam6 (lam6 (case6 v26 (lam6 v26) (lam6 v16)))) times46 : ∀{Γ A} → Tm6 Γ (arr6 (arr6 A A) (arr6 A A)); times46 = lam6 (lam6 (app6 v16 (app6 v16 (app6 v16 (app6 v16 v06))))) add6 : ∀{Γ} → Tm6 Γ (arr6 nat6 (arr6 nat6 nat6)); add6 = lam6 (rec6 v06 (lam6 (lam6 (lam6 (suc6 (app6 v16 v06))))) (lam6 v06)) mul6 : ∀{Γ} → Tm6 Γ (arr6 nat6 (arr6 nat6 nat6)); mul6 = lam6 (rec6 v06 (lam6 (lam6 (lam6 (app6 (app6 add6 (app6 v16 v06)) v06)))) (lam6 zero6)) fact6 : ∀{Γ} → Tm6 Γ (arr6 nat6 nat6); fact6 = lam6 (rec6 v06 (lam6 (lam6 (app6 (app6 mul6 (suc6 v16)) v06))) (suc6 zero6)) {-# OPTIONS --type-in-type #-} Ty7 : Set Ty7 = (Ty7 : Set) (nat top bot : Ty7) (arr prod sum : Ty7 → Ty7 → Ty7) → Ty7 nat7 : Ty7; nat7 = λ _ nat7 _ _ _ _ _ → nat7 top7 : Ty7; top7 = λ _ _ top7 _ _ _ _ → top7 bot7 : Ty7; bot7 = λ _ _ _ bot7 _ _ _ → bot7 arr7 : Ty7 → Ty7 → Ty7; arr7 = λ A B Ty7 nat7 top7 bot7 arr7 prod sum → arr7 (A Ty7 nat7 top7 bot7 arr7 prod sum) (B Ty7 nat7 top7 bot7 arr7 prod sum) prod7 : Ty7 → Ty7 → Ty7; prod7 = λ A B Ty7 nat7 top7 bot7 arr7 prod7 sum → prod7 (A Ty7 nat7 top7 bot7 arr7 prod7 sum) (B Ty7 nat7 top7 bot7 arr7 prod7 sum) sum7 : Ty7 → Ty7 → Ty7; sum7 = λ A B Ty7 nat7 top7 bot7 arr7 prod7 sum7 → sum7 (A Ty7 nat7 top7 bot7 arr7 prod7 sum7) (B Ty7 nat7 top7 bot7 arr7 prod7 sum7) Con7 : Set; Con7 = (Con7 : Set) (nil : Con7) (snoc : Con7 → Ty7 → Con7) → Con7 nil7 : Con7; nil7 = λ Con7 nil7 snoc → nil7 snoc7 : Con7 → Ty7 → Con7; snoc7 = λ Γ A Con7 nil7 snoc7 → snoc7 (Γ Con7 nil7 snoc7) A Var7 : Con7 → Ty7 → Set; Var7 = λ Γ A → (Var7 : Con7 → Ty7 → Set) (vz : ∀ Γ A → Var7 (snoc7 Γ A) A) (vs : ∀ Γ B A → Var7 Γ A → Var7 (snoc7 Γ B) A) → Var7 Γ A vz7 : ∀{Γ A} → Var7 (snoc7 Γ A) A; vz7 = λ Var7 vz7 vs → vz7 _ _ vs7 : ∀{Γ B A} → Var7 Γ A → Var7 (snoc7 Γ B) A; vs7 = λ x Var7 vz7 vs7 → vs7 _ _ _ (x Var7 vz7 vs7) Tm7 : Con7 → Ty7 → Set; Tm7 = λ Γ A → (Tm7 : Con7 → Ty7 → Set) (var : ∀ Γ A → Var7 Γ A → Tm7 Γ A) (lam : ∀ Γ A B → Tm7 (snoc7 Γ A) B → Tm7 Γ (arr7 A B)) (app : ∀ Γ A B → Tm7 Γ (arr7 A B) → Tm7 Γ A → Tm7 Γ B) (tt : ∀ Γ → Tm7 Γ top7) (pair : ∀ Γ A B → Tm7 Γ A → Tm7 Γ B → Tm7 Γ (prod7 A B)) (fst : ∀ Γ A B → Tm7 Γ (prod7 A B) → Tm7 Γ A) (snd : ∀ Γ A B → Tm7 Γ (prod7 A B) → Tm7 Γ B) (left : ∀ Γ A B → Tm7 Γ A → Tm7 Γ (sum7 A B)) (right : ∀ Γ A B → Tm7 Γ B → Tm7 Γ (sum7 A B)) (case : ∀ Γ A B C → Tm7 Γ (sum7 A B) → Tm7 Γ (arr7 A C) → Tm7 Γ (arr7 B C) → Tm7 Γ C) (zero : ∀ Γ → Tm7 Γ nat7) (suc : ∀ Γ → Tm7 Γ nat7 → Tm7 Γ nat7) (rec : ∀ Γ A → Tm7 Γ nat7 → Tm7 Γ (arr7 nat7 (arr7 A A)) → Tm7 Γ A → Tm7 Γ A) → Tm7 Γ A var7 : ∀{Γ A} → Var7 Γ A → Tm7 Γ A; var7 = λ x Tm7 var7 lam app tt pair fst snd left right case zero suc rec → var7 _ _ x lam7 : ∀{Γ A B} → Tm7 (snoc7 Γ A) B → Tm7 Γ (arr7 A B); lam7 = λ t Tm7 var7 lam7 app tt pair fst snd left right case zero suc rec → lam7 _ _ _ (t Tm7 var7 lam7 app tt pair fst snd left right case zero suc rec) app7 : ∀{Γ A B} → Tm7 Γ (arr7 A B) → Tm7 Γ A → Tm7 Γ B; app7 = λ t u Tm7 var7 lam7 app7 tt pair fst snd left right case zero suc rec → app7 _ _ _ (t Tm7 var7 lam7 app7 tt pair fst snd left right case zero suc rec) (u Tm7 var7 lam7 app7 tt pair fst snd left right case zero suc rec) tt7 : ∀{Γ} → Tm7 Γ top7; tt7 = λ Tm7 var7 lam7 app7 tt7 pair fst snd left right case zero suc rec → tt7 _ pair7 : ∀{Γ A B} → Tm7 Γ A → Tm7 Γ B → Tm7 Γ (prod7 A B); pair7 = λ t u Tm7 var7 lam7 app7 tt7 pair7 fst snd left right case zero suc rec → pair7 _ _ _ (t Tm7 var7 lam7 app7 tt7 pair7 fst snd left right case zero suc rec) (u Tm7 var7 lam7 app7 tt7 pair7 fst snd left right case zero suc rec) fst7 : ∀{Γ A B} → Tm7 Γ (prod7 A B) → Tm7 Γ A; fst7 = λ t Tm7 var7 lam7 app7 tt7 pair7 fst7 snd left right case zero suc rec → fst7 _ _ _ (t Tm7 var7 lam7 app7 tt7 pair7 fst7 snd left right case zero suc rec) snd7 : ∀{Γ A B} → Tm7 Γ (prod7 A B) → Tm7 Γ B; snd7 = λ t Tm7 var7 lam7 app7 tt7 pair7 fst7 snd7 left right case zero suc rec → snd7 _ _ _ (t Tm7 var7 lam7 app7 tt7 pair7 fst7 snd7 left right case zero suc rec) left7 : ∀{Γ A B} → Tm7 Γ A → Tm7 Γ (sum7 A B); left7 = λ t Tm7 var7 lam7 app7 tt7 pair7 fst7 snd7 left7 right case zero suc rec → left7 _ _ _ (t Tm7 var7 lam7 app7 tt7 pair7 fst7 snd7 left7 right case zero suc rec) right7 : ∀{Γ A B} → Tm7 Γ B → Tm7 Γ (sum7 A B); right7 = λ t Tm7 var7 lam7 app7 tt7 pair7 fst7 snd7 left7 right7 case zero suc rec → right7 _ _ _ (t Tm7 var7 lam7 app7 tt7 pair7 fst7 snd7 left7 right7 case zero suc rec) case7 : ∀{Γ A B C} → Tm7 Γ (sum7 A B) → Tm7 Γ (arr7 A C) → Tm7 Γ (arr7 B C) → Tm7 Γ C; case7 = λ t u v Tm7 var7 lam7 app7 tt7 pair7 fst7 snd7 left7 right7 case7 zero suc rec → case7 _ _ _ _ (t Tm7 var7 lam7 app7 tt7 pair7 fst7 snd7 left7 right7 case7 zero suc rec) (u Tm7 var7 lam7 app7 tt7 pair7 fst7 snd7 left7 right7 case7 zero suc rec) (v Tm7 var7 lam7 app7 tt7 pair7 fst7 snd7 left7 right7 case7 zero suc rec) zero7 : ∀{Γ} → Tm7 Γ nat7; zero7 = λ Tm7 var7 lam7 app7 tt7 pair7 fst7 snd7 left7 right7 case7 zero7 suc rec → zero7 _ suc7 : ∀{Γ} → Tm7 Γ nat7 → Tm7 Γ nat7; suc7 = λ t Tm7 var7 lam7 app7 tt7 pair7 fst7 snd7 left7 right7 case7 zero7 suc7 rec → suc7 _ (t Tm7 var7 lam7 app7 tt7 pair7 fst7 snd7 left7 right7 case7 zero7 suc7 rec) rec7 : ∀{Γ A} → Tm7 Γ nat7 → Tm7 Γ (arr7 nat7 (arr7 A A)) → Tm7 Γ A → Tm7 Γ A; rec7 = λ t u v Tm7 var7 lam7 app7 tt7 pair7 fst7 snd7 left7 right7 case7 zero7 suc7 rec7 → rec7 _ _ (t Tm7 var7 lam7 app7 tt7 pair7 fst7 snd7 left7 right7 case7 zero7 suc7 rec7) (u Tm7 var7 lam7 app7 tt7 pair7 fst7 snd7 left7 right7 case7 zero7 suc7 rec7) (v Tm7 var7 lam7 app7 tt7 pair7 fst7 snd7 left7 right7 case7 zero7 suc7 rec7) v07 : ∀{Γ A} → Tm7 (snoc7 Γ A) A; v07 = var7 vz7 v17 : ∀{Γ A B} → Tm7 (snoc7 (snoc7 Γ A) B) A; v17 = var7 (vs7 vz7) v27 : ∀{Γ A B C} → Tm7 (snoc7 (snoc7 (snoc7 Γ A) B) C) A; v27 = var7 (vs7 (vs7 vz7)) v37 : ∀{Γ A B C D} → Tm7 (snoc7 (snoc7 (snoc7 (snoc7 Γ A) B) C) D) A; v37 = var7 (vs7 (vs7 (vs7 vz7))) tbool7 : Ty7; tbool7 = sum7 top7 top7 true7 : ∀{Γ} → Tm7 Γ tbool7; true7 = left7 tt7 tfalse7 : ∀{Γ} → Tm7 Γ tbool7; tfalse7 = right7 tt7 ifthenelse7 : ∀{Γ A} → Tm7 Γ (arr7 tbool7 (arr7 A (arr7 A A))); ifthenelse7 = lam7 (lam7 (lam7 (case7 v27 (lam7 v27) (lam7 v17)))) times47 : ∀{Γ A} → Tm7 Γ (arr7 (arr7 A A) (arr7 A A)); times47 = lam7 (lam7 (app7 v17 (app7 v17 (app7 v17 (app7 v17 v07))))) add7 : ∀{Γ} → Tm7 Γ (arr7 nat7 (arr7 nat7 nat7)); add7 = lam7 (rec7 v07 (lam7 (lam7 (lam7 (suc7 (app7 v17 v07))))) (lam7 v07)) mul7 : ∀{Γ} → Tm7 Γ (arr7 nat7 (arr7 nat7 nat7)); mul7 = lam7 (rec7 v07 (lam7 (lam7 (lam7 (app7 (app7 add7 (app7 v17 v07)) v07)))) (lam7 zero7)) fact7 : ∀{Γ} → Tm7 Γ (arr7 nat7 nat7); fact7 = lam7 (rec7 v07 (lam7 (lam7 (app7 (app7 mul7 (suc7 v17)) v07))) (suc7 zero7)) {-# OPTIONS --type-in-type #-} Ty8 : Set Ty8 = (Ty8 : Set) (nat top bot : Ty8) (arr prod sum : Ty8 → Ty8 → Ty8) → Ty8 nat8 : Ty8; nat8 = λ _ nat8 _ _ _ _ _ → nat8 top8 : Ty8; top8 = λ _ _ top8 _ _ _ _ → top8 bot8 : Ty8; bot8 = λ _ _ _ bot8 _ _ _ → bot8 arr8 : Ty8 → Ty8 → Ty8; arr8 = λ A B Ty8 nat8 top8 bot8 arr8 prod sum → arr8 (A Ty8 nat8 top8 bot8 arr8 prod sum) (B Ty8 nat8 top8 bot8 arr8 prod sum) prod8 : Ty8 → Ty8 → Ty8; prod8 = λ A B Ty8 nat8 top8 bot8 arr8 prod8 sum → prod8 (A Ty8 nat8 top8 bot8 arr8 prod8 sum) (B Ty8 nat8 top8 bot8 arr8 prod8 sum) sum8 : Ty8 → Ty8 → Ty8; sum8 = λ A B Ty8 nat8 top8 bot8 arr8 prod8 sum8 → sum8 (A Ty8 nat8 top8 bot8 arr8 prod8 sum8) (B Ty8 nat8 top8 bot8 arr8 prod8 sum8) Con8 : Set; Con8 = (Con8 : Set) (nil : Con8) (snoc : Con8 → Ty8 → Con8) → Con8 nil8 : Con8; nil8 = λ Con8 nil8 snoc → nil8 snoc8 : Con8 → Ty8 → Con8; snoc8 = λ Γ A Con8 nil8 snoc8 → snoc8 (Γ Con8 nil8 snoc8) A Var8 : Con8 → Ty8 → Set; Var8 = λ Γ A → (Var8 : Con8 → Ty8 → Set) (vz : ∀ Γ A → Var8 (snoc8 Γ A) A) (vs : ∀ Γ B A → Var8 Γ A → Var8 (snoc8 Γ B) A) → Var8 Γ A vz8 : ∀{Γ A} → Var8 (snoc8 Γ A) A; vz8 = λ Var8 vz8 vs → vz8 _ _ vs8 : ∀{Γ B A} → Var8 Γ A → Var8 (snoc8 Γ B) A; vs8 = λ x Var8 vz8 vs8 → vs8 _ _ _ (x Var8 vz8 vs8) Tm8 : Con8 → Ty8 → Set; Tm8 = λ Γ A → (Tm8 : Con8 → Ty8 → Set) (var : ∀ Γ A → Var8 Γ A → Tm8 Γ A) (lam : ∀ Γ A B → Tm8 (snoc8 Γ A) B → Tm8 Γ (arr8 A B)) (app : ∀ Γ A B → Tm8 Γ (arr8 A B) → Tm8 Γ A → Tm8 Γ B) (tt : ∀ Γ → Tm8 Γ top8) (pair : ∀ Γ A B → Tm8 Γ A → Tm8 Γ B → Tm8 Γ (prod8 A B)) (fst : ∀ Γ A B → Tm8 Γ (prod8 A B) → Tm8 Γ A) (snd : ∀ Γ A B → Tm8 Γ (prod8 A B) → Tm8 Γ B) (left : ∀ Γ A B → Tm8 Γ A → Tm8 Γ (sum8 A B)) (right : ∀ Γ A B → Tm8 Γ B → Tm8 Γ (sum8 A B)) (case : ∀ Γ A B C → Tm8 Γ (sum8 A B) → Tm8 Γ (arr8 A C) → Tm8 Γ (arr8 B C) → Tm8 Γ C) (zero : ∀ Γ → Tm8 Γ nat8) (suc : ∀ Γ → Tm8 Γ nat8 → Tm8 Γ nat8) (rec : ∀ Γ A → Tm8 Γ nat8 → Tm8 Γ (arr8 nat8 (arr8 A A)) → Tm8 Γ A → Tm8 Γ A) → Tm8 Γ A var8 : ∀{Γ A} → Var8 Γ A → Tm8 Γ A; var8 = λ x Tm8 var8 lam app tt pair fst snd left right case zero suc rec → var8 _ _ x lam8 : ∀{Γ A B} → Tm8 (snoc8 Γ A) B → Tm8 Γ (arr8 A B); lam8 = λ t Tm8 var8 lam8 app tt pair fst snd left right case zero suc rec → lam8 _ _ _ (t Tm8 var8 lam8 app tt pair fst snd left right case zero suc rec) app8 : ∀{Γ A B} → Tm8 Γ (arr8 A B) → Tm8 Γ A → Tm8 Γ B; app8 = λ t u Tm8 var8 lam8 app8 tt pair fst snd left right case zero suc rec → app8 _ _ _ (t Tm8 var8 lam8 app8 tt pair fst snd left right case zero suc rec) (u Tm8 var8 lam8 app8 tt pair fst snd left right case zero suc rec) tt8 : ∀{Γ} → Tm8 Γ top8; tt8 = λ Tm8 var8 lam8 app8 tt8 pair fst snd left right case zero suc rec → tt8 _ pair8 : ∀{Γ A B} → Tm8 Γ A → Tm8 Γ B → Tm8 Γ (prod8 A B); pair8 = λ t u Tm8 var8 lam8 app8 tt8 pair8 fst snd left right case zero suc rec → pair8 _ _ _ (t Tm8 var8 lam8 app8 tt8 pair8 fst snd left right case zero suc rec) (u Tm8 var8 lam8 app8 tt8 pair8 fst snd left right case zero suc rec) fst8 : ∀{Γ A B} → Tm8 Γ (prod8 A B) → Tm8 Γ A; fst8 = λ t Tm8 var8 lam8 app8 tt8 pair8 fst8 snd left right case zero suc rec → fst8 _ _ _ (t Tm8 var8 lam8 app8 tt8 pair8 fst8 snd left right case zero suc rec) snd8 : ∀{Γ A B} → Tm8 Γ (prod8 A B) → Tm8 Γ B; snd8 = λ t Tm8 var8 lam8 app8 tt8 pair8 fst8 snd8 left right case zero suc rec → snd8 _ _ _ (t Tm8 var8 lam8 app8 tt8 pair8 fst8 snd8 left right case zero suc rec) left8 : ∀{Γ A B} → Tm8 Γ A → Tm8 Γ (sum8 A B); left8 = λ t Tm8 var8 lam8 app8 tt8 pair8 fst8 snd8 left8 right case zero suc rec → left8 _ _ _ (t Tm8 var8 lam8 app8 tt8 pair8 fst8 snd8 left8 right case zero suc rec) right8 : ∀{Γ A B} → Tm8 Γ B → Tm8 Γ (sum8 A B); right8 = λ t Tm8 var8 lam8 app8 tt8 pair8 fst8 snd8 left8 right8 case zero suc rec → right8 _ _ _ (t Tm8 var8 lam8 app8 tt8 pair8 fst8 snd8 left8 right8 case zero suc rec) case8 : ∀{Γ A B C} → Tm8 Γ (sum8 A B) → Tm8 Γ (arr8 A C) → Tm8 Γ (arr8 B C) → Tm8 Γ C; case8 = λ t u v Tm8 var8 lam8 app8 tt8 pair8 fst8 snd8 left8 right8 case8 zero suc rec → case8 _ _ _ _ (t Tm8 var8 lam8 app8 tt8 pair8 fst8 snd8 left8 right8 case8 zero suc rec) (u Tm8 var8 lam8 app8 tt8 pair8 fst8 snd8 left8 right8 case8 zero suc rec) (v Tm8 var8 lam8 app8 tt8 pair8 fst8 snd8 left8 right8 case8 zero suc rec) zero8 : ∀{Γ} → Tm8 Γ nat8; zero8 = λ Tm8 var8 lam8 app8 tt8 pair8 fst8 snd8 left8 right8 case8 zero8 suc rec → zero8 _ suc8 : ∀{Γ} → Tm8 Γ nat8 → Tm8 Γ nat8; suc8 = λ t Tm8 var8 lam8 app8 tt8 pair8 fst8 snd8 left8 right8 case8 zero8 suc8 rec → suc8 _ (t Tm8 var8 lam8 app8 tt8 pair8 fst8 snd8 left8 right8 case8 zero8 suc8 rec) rec8 : ∀{Γ A} → Tm8 Γ nat8 → Tm8 Γ (arr8 nat8 (arr8 A A)) → Tm8 Γ A → Tm8 Γ A; rec8 = λ t u v Tm8 var8 lam8 app8 tt8 pair8 fst8 snd8 left8 right8 case8 zero8 suc8 rec8 → rec8 _ _ (t Tm8 var8 lam8 app8 tt8 pair8 fst8 snd8 left8 right8 case8 zero8 suc8 rec8) (u Tm8 var8 lam8 app8 tt8 pair8 fst8 snd8 left8 right8 case8 zero8 suc8 rec8) (v Tm8 var8 lam8 app8 tt8 pair8 fst8 snd8 left8 right8 case8 zero8 suc8 rec8) v08 : ∀{Γ A} → Tm8 (snoc8 Γ A) A; v08 = var8 vz8 v18 : ∀{Γ A B} → Tm8 (snoc8 (snoc8 Γ A) B) A; v18 = var8 (vs8 vz8) v28 : ∀{Γ A B C} → Tm8 (snoc8 (snoc8 (snoc8 Γ A) B) C) A; v28 = var8 (vs8 (vs8 vz8)) v38 : ∀{Γ A B C D} → Tm8 (snoc8 (snoc8 (snoc8 (snoc8 Γ A) B) C) D) A; v38 = var8 (vs8 (vs8 (vs8 vz8))) tbool8 : Ty8; tbool8 = sum8 top8 top8 true8 : ∀{Γ} → Tm8 Γ tbool8; true8 = left8 tt8 tfalse8 : ∀{Γ} → Tm8 Γ tbool8; tfalse8 = right8 tt8 ifthenelse8 : ∀{Γ A} → Tm8 Γ (arr8 tbool8 (arr8 A (arr8 A A))); ifthenelse8 = lam8 (lam8 (lam8 (case8 v28 (lam8 v28) (lam8 v18)))) times48 : ∀{Γ A} → Tm8 Γ (arr8 (arr8 A A) (arr8 A A)); times48 = lam8 (lam8 (app8 v18 (app8 v18 (app8 v18 (app8 v18 v08))))) add8 : ∀{Γ} → Tm8 Γ (arr8 nat8 (arr8 nat8 nat8)); add8 = lam8 (rec8 v08 (lam8 (lam8 (lam8 (suc8 (app8 v18 v08))))) (lam8 v08)) mul8 : ∀{Γ} → Tm8 Γ (arr8 nat8 (arr8 nat8 nat8)); mul8 = lam8 (rec8 v08 (lam8 (lam8 (lam8 (app8 (app8 add8 (app8 v18 v08)) v08)))) (lam8 zero8)) fact8 : ∀{Γ} → Tm8 Γ (arr8 nat8 nat8); fact8 = lam8 (rec8 v08 (lam8 (lam8 (app8 (app8 mul8 (suc8 v18)) v08))) (suc8 zero8)) {-# OPTIONS --type-in-type #-} Ty9 : Set Ty9 = (Ty9 : Set) (nat top bot : Ty9) (arr prod sum : Ty9 → Ty9 → Ty9) → Ty9 nat9 : Ty9; nat9 = λ _ nat9 _ _ _ _ _ → nat9 top9 : Ty9; top9 = λ _ _ top9 _ _ _ _ → top9 bot9 : Ty9; bot9 = λ _ _ _ bot9 _ _ _ → bot9 arr9 : Ty9 → Ty9 → Ty9; arr9 = λ A B Ty9 nat9 top9 bot9 arr9 prod sum → arr9 (A Ty9 nat9 top9 bot9 arr9 prod sum) (B Ty9 nat9 top9 bot9 arr9 prod sum) prod9 : Ty9 → Ty9 → Ty9; prod9 = λ A B Ty9 nat9 top9 bot9 arr9 prod9 sum → prod9 (A Ty9 nat9 top9 bot9 arr9 prod9 sum) (B Ty9 nat9 top9 bot9 arr9 prod9 sum) sum9 : Ty9 → Ty9 → Ty9; sum9 = λ A B Ty9 nat9 top9 bot9 arr9 prod9 sum9 → sum9 (A Ty9 nat9 top9 bot9 arr9 prod9 sum9) (B Ty9 nat9 top9 bot9 arr9 prod9 sum9) Con9 : Set; Con9 = (Con9 : Set) (nil : Con9) (snoc : Con9 → Ty9 → Con9) → Con9 nil9 : Con9; nil9 = λ Con9 nil9 snoc → nil9 snoc9 : Con9 → Ty9 → Con9; snoc9 = λ Γ A Con9 nil9 snoc9 → snoc9 (Γ Con9 nil9 snoc9) A Var9 : Con9 → Ty9 → Set; Var9 = λ Γ A → (Var9 : Con9 → Ty9 → Set) (vz : ∀ Γ A → Var9 (snoc9 Γ A) A) (vs : ∀ Γ B A → Var9 Γ A → Var9 (snoc9 Γ B) A) → Var9 Γ A vz9 : ∀{Γ A} → Var9 (snoc9 Γ A) A; vz9 = λ Var9 vz9 vs → vz9 _ _ vs9 : ∀{Γ B A} → Var9 Γ A → Var9 (snoc9 Γ B) A; vs9 = λ x Var9 vz9 vs9 → vs9 _ _ _ (x Var9 vz9 vs9) Tm9 : Con9 → Ty9 → Set; Tm9 = λ Γ A → (Tm9 : Con9 → Ty9 → Set) (var : ∀ Γ A → Var9 Γ A → Tm9 Γ A) (lam : ∀ Γ A B → Tm9 (snoc9 Γ A) B → Tm9 Γ (arr9 A B)) (app : ∀ Γ A B → Tm9 Γ (arr9 A B) → Tm9 Γ A → Tm9 Γ B) (tt : ∀ Γ → Tm9 Γ top9) (pair : ∀ Γ A B → Tm9 Γ A → Tm9 Γ B → Tm9 Γ (prod9 A B)) (fst : ∀ Γ A B → Tm9 Γ (prod9 A B) → Tm9 Γ A) (snd : ∀ Γ A B → Tm9 Γ (prod9 A B) → Tm9 Γ B) (left : ∀ Γ A B → Tm9 Γ A → Tm9 Γ (sum9 A B)) (right : ∀ Γ A B → Tm9 Γ B → Tm9 Γ (sum9 A B)) (case : ∀ Γ A B C → Tm9 Γ (sum9 A B) → Tm9 Γ (arr9 A C) → Tm9 Γ (arr9 B C) → Tm9 Γ C) (zero : ∀ Γ → Tm9 Γ nat9) (suc : ∀ Γ → Tm9 Γ nat9 → Tm9 Γ nat9) (rec : ∀ Γ A → Tm9 Γ nat9 → Tm9 Γ (arr9 nat9 (arr9 A A)) → Tm9 Γ A → Tm9 Γ A) → Tm9 Γ A var9 : ∀{Γ A} → Var9 Γ A → Tm9 Γ A; var9 = λ x Tm9 var9 lam app tt pair fst snd left right case zero suc rec → var9 _ _ x lam9 : ∀{Γ A B} → Tm9 (snoc9 Γ A) B → Tm9 Γ (arr9 A B); lam9 = λ t Tm9 var9 lam9 app tt pair fst snd left right case zero suc rec → lam9 _ _ _ (t Tm9 var9 lam9 app tt pair fst snd left right case zero suc rec) app9 : ∀{Γ A B} → Tm9 Γ (arr9 A B) → Tm9 Γ A → Tm9 Γ B; app9 = λ t u Tm9 var9 lam9 app9 tt pair fst snd left right case zero suc rec → app9 _ _ _ (t Tm9 var9 lam9 app9 tt pair fst snd left right case zero suc rec) (u Tm9 var9 lam9 app9 tt pair fst snd left right case zero suc rec) tt9 : ∀{Γ} → Tm9 Γ top9; tt9 = λ Tm9 var9 lam9 app9 tt9 pair fst snd left right case zero suc rec → tt9 _ pair9 : ∀{Γ A B} → Tm9 Γ A → Tm9 Γ B → Tm9 Γ (prod9 A B); pair9 = λ t u Tm9 var9 lam9 app9 tt9 pair9 fst snd left right case zero suc rec → pair9 _ _ _ (t Tm9 var9 lam9 app9 tt9 pair9 fst snd left right case zero suc rec) (u Tm9 var9 lam9 app9 tt9 pair9 fst snd left right case zero suc rec) fst9 : ∀{Γ A B} → Tm9 Γ (prod9 A B) → Tm9 Γ A; fst9 = λ t Tm9 var9 lam9 app9 tt9 pair9 fst9 snd left right case zero suc rec → fst9 _ _ _ (t Tm9 var9 lam9 app9 tt9 pair9 fst9 snd left right case zero suc rec) snd9 : ∀{Γ A B} → Tm9 Γ (prod9 A B) → Tm9 Γ B; snd9 = λ t Tm9 var9 lam9 app9 tt9 pair9 fst9 snd9 left right case zero suc rec → snd9 _ _ _ (t Tm9 var9 lam9 app9 tt9 pair9 fst9 snd9 left right case zero suc rec) left9 : ∀{Γ A B} → Tm9 Γ A → Tm9 Γ (sum9 A B); left9 = λ t Tm9 var9 lam9 app9 tt9 pair9 fst9 snd9 left9 right case zero suc rec → left9 _ _ _ (t Tm9 var9 lam9 app9 tt9 pair9 fst9 snd9 left9 right case zero suc rec) right9 : ∀{Γ A B} → Tm9 Γ B → Tm9 Γ (sum9 A B); right9 = λ t Tm9 var9 lam9 app9 tt9 pair9 fst9 snd9 left9 right9 case zero suc rec → right9 _ _ _ (t Tm9 var9 lam9 app9 tt9 pair9 fst9 snd9 left9 right9 case zero suc rec) case9 : ∀{Γ A B C} → Tm9 Γ (sum9 A B) → Tm9 Γ (arr9 A C) → Tm9 Γ (arr9 B C) → Tm9 Γ C; case9 = λ t u v Tm9 var9 lam9 app9 tt9 pair9 fst9 snd9 left9 right9 case9 zero suc rec → case9 _ _ _ _ (t Tm9 var9 lam9 app9 tt9 pair9 fst9 snd9 left9 right9 case9 zero suc rec) (u Tm9 var9 lam9 app9 tt9 pair9 fst9 snd9 left9 right9 case9 zero suc rec) (v Tm9 var9 lam9 app9 tt9 pair9 fst9 snd9 left9 right9 case9 zero suc rec) zero9 : ∀{Γ} → Tm9 Γ nat9; zero9 = λ Tm9 var9 lam9 app9 tt9 pair9 fst9 snd9 left9 right9 case9 zero9 suc rec → zero9 _ suc9 : ∀{Γ} → Tm9 Γ nat9 → Tm9 Γ nat9; suc9 = λ t Tm9 var9 lam9 app9 tt9 pair9 fst9 snd9 left9 right9 case9 zero9 suc9 rec → suc9 _ (t Tm9 var9 lam9 app9 tt9 pair9 fst9 snd9 left9 right9 case9 zero9 suc9 rec) rec9 : ∀{Γ A} → Tm9 Γ nat9 → Tm9 Γ (arr9 nat9 (arr9 A A)) → Tm9 Γ A → Tm9 Γ A; rec9 = λ t u v Tm9 var9 lam9 app9 tt9 pair9 fst9 snd9 left9 right9 case9 zero9 suc9 rec9 → rec9 _ _ (t Tm9 var9 lam9 app9 tt9 pair9 fst9 snd9 left9 right9 case9 zero9 suc9 rec9) (u Tm9 var9 lam9 app9 tt9 pair9 fst9 snd9 left9 right9 case9 zero9 suc9 rec9) (v Tm9 var9 lam9 app9 tt9 pair9 fst9 snd9 left9 right9 case9 zero9 suc9 rec9) v09 : ∀{Γ A} → Tm9 (snoc9 Γ A) A; v09 = var9 vz9 v19 : ∀{Γ A B} → Tm9 (snoc9 (snoc9 Γ A) B) A; v19 = var9 (vs9 vz9) v29 : ∀{Γ A B C} → Tm9 (snoc9 (snoc9 (snoc9 Γ A) B) C) A; v29 = var9 (vs9 (vs9 vz9)) v39 : ∀{Γ A B C D} → Tm9 (snoc9 (snoc9 (snoc9 (snoc9 Γ A) B) C) D) A; v39 = var9 (vs9 (vs9 (vs9 vz9))) tbool9 : Ty9; tbool9 = sum9 top9 top9 true9 : ∀{Γ} → Tm9 Γ tbool9; true9 = left9 tt9 tfalse9 : ∀{Γ} → Tm9 Γ tbool9; tfalse9 = right9 tt9 ifthenelse9 : ∀{Γ A} → Tm9 Γ (arr9 tbool9 (arr9 A (arr9 A A))); ifthenelse9 = lam9 (lam9 (lam9 (case9 v29 (lam9 v29) (lam9 v19)))) times49 : ∀{Γ A} → Tm9 Γ (arr9 (arr9 A A) (arr9 A A)); times49 = lam9 (lam9 (app9 v19 (app9 v19 (app9 v19 (app9 v19 v09))))) add9 : ∀{Γ} → Tm9 Γ (arr9 nat9 (arr9 nat9 nat9)); add9 = lam9 (rec9 v09 (lam9 (lam9 (lam9 (suc9 (app9 v19 v09))))) (lam9 v09)) mul9 : ∀{Γ} → Tm9 Γ (arr9 nat9 (arr9 nat9 nat9)); mul9 = lam9 (rec9 v09 (lam9 (lam9 (lam9 (app9 (app9 add9 (app9 v19 v09)) v09)))) (lam9 zero9)) fact9 : ∀{Γ} → Tm9 Γ (arr9 nat9 nat9); fact9 = lam9 (rec9 v09 (lam9 (lam9 (app9 (app9 mul9 (suc9 v19)) v09))) (suc9 zero9)) {-# OPTIONS --type-in-type #-} Ty10 : Set Ty10 = (Ty10 : Set) (nat top bot : Ty10) (arr prod sum : Ty10 → Ty10 → Ty10) → Ty10 nat10 : Ty10; nat10 = λ _ nat10 _ _ _ _ _ → nat10 top10 : Ty10; top10 = λ _ _ top10 _ _ _ _ → top10 bot10 : Ty10; bot10 = λ _ _ _ bot10 _ _ _ → bot10 arr10 : Ty10 → Ty10 → Ty10; arr10 = λ A B Ty10 nat10 top10 bot10 arr10 prod sum → arr10 (A Ty10 nat10 top10 bot10 arr10 prod sum) (B Ty10 nat10 top10 bot10 arr10 prod sum) prod10 : Ty10 → Ty10 → Ty10; prod10 = λ A B Ty10 nat10 top10 bot10 arr10 prod10 sum → prod10 (A Ty10 nat10 top10 bot10 arr10 prod10 sum) (B Ty10 nat10 top10 bot10 arr10 prod10 sum) sum10 : Ty10 → Ty10 → Ty10; sum10 = λ A B Ty10 nat10 top10 bot10 arr10 prod10 sum10 → sum10 (A Ty10 nat10 top10 bot10 arr10 prod10 sum10) (B Ty10 nat10 top10 bot10 arr10 prod10 sum10) Con10 : Set; Con10 = (Con10 : Set) (nil : Con10) (snoc : Con10 → Ty10 → Con10) → Con10 nil10 : Con10; nil10 = λ Con10 nil10 snoc → nil10 snoc10 : Con10 → Ty10 → Con10; snoc10 = λ Γ A Con10 nil10 snoc10 → snoc10 (Γ Con10 nil10 snoc10) A Var10 : Con10 → Ty10 → Set; Var10 = λ Γ A → (Var10 : Con10 → Ty10 → Set) (vz : ∀ Γ A → Var10 (snoc10 Γ A) A) (vs : ∀ Γ B A → Var10 Γ A → Var10 (snoc10 Γ B) A) → Var10 Γ A vz10 : ∀{Γ A} → Var10 (snoc10 Γ A) A; vz10 = λ Var10 vz10 vs → vz10 _ _ vs10 : ∀{Γ B A} → Var10 Γ A → Var10 (snoc10 Γ B) A; vs10 = λ x Var10 vz10 vs10 → vs10 _ _ _ (x Var10 vz10 vs10) Tm10 : Con10 → Ty10 → Set; Tm10 = λ Γ A → (Tm10 : Con10 → Ty10 → Set) (var : ∀ Γ A → Var10 Γ A → Tm10 Γ A) (lam : ∀ Γ A B → Tm10 (snoc10 Γ A) B → Tm10 Γ (arr10 A B)) (app : ∀ Γ A B → Tm10 Γ (arr10 A B) → Tm10 Γ A → Tm10 Γ B) (tt : ∀ Γ → Tm10 Γ top10) (pair : ∀ Γ A B → Tm10 Γ A → Tm10 Γ B → Tm10 Γ (prod10 A B)) (fst : ∀ Γ A B → Tm10 Γ (prod10 A B) → Tm10 Γ A) (snd : ∀ Γ A B → Tm10 Γ (prod10 A B) → Tm10 Γ B) (left : ∀ Γ A B → Tm10 Γ A → Tm10 Γ (sum10 A B)) (right : ∀ Γ A B → Tm10 Γ B → Tm10 Γ (sum10 A B)) (case : ∀ Γ A B C → Tm10 Γ (sum10 A B) → Tm10 Γ (arr10 A C) → Tm10 Γ (arr10 B C) → Tm10 Γ C) (zero : ∀ Γ → Tm10 Γ nat10) (suc : ∀ Γ → Tm10 Γ nat10 → Tm10 Γ nat10) (rec : ∀ Γ A → Tm10 Γ nat10 → Tm10 Γ (arr10 nat10 (arr10 A A)) → Tm10 Γ A → Tm10 Γ A) → Tm10 Γ A var10 : ∀{Γ A} → Var10 Γ A → Tm10 Γ A; var10 = λ x Tm10 var10 lam app tt pair fst snd left right case zero suc rec → var10 _ _ x lam10 : ∀{Γ A B} → Tm10 (snoc10 Γ A) B → Tm10 Γ (arr10 A B); lam10 = λ t Tm10 var10 lam10 app tt pair fst snd left right case zero suc rec → lam10 _ _ _ (t Tm10 var10 lam10 app tt pair fst snd left right case zero suc rec) app10 : ∀{Γ A B} → Tm10 Γ (arr10 A B) → Tm10 Γ A → Tm10 Γ B; app10 = λ t u Tm10 var10 lam10 app10 tt pair fst snd left right case zero suc rec → app10 _ _ _ (t Tm10 var10 lam10 app10 tt pair fst snd left right case zero suc rec) (u Tm10 var10 lam10 app10 tt pair fst snd left right case zero suc rec) tt10 : ∀{Γ} → Tm10 Γ top10; tt10 = λ Tm10 var10 lam10 app10 tt10 pair fst snd left right case zero suc rec → tt10 _ pair10 : ∀{Γ A B} → Tm10 Γ A → Tm10 Γ B → Tm10 Γ (prod10 A B); pair10 = λ t u Tm10 var10 lam10 app10 tt10 pair10 fst snd left right case zero suc rec → pair10 _ _ _ (t Tm10 var10 lam10 app10 tt10 pair10 fst snd left right case zero suc rec) (u Tm10 var10 lam10 app10 tt10 pair10 fst snd left right case zero suc rec) fst10 : ∀{Γ A B} → Tm10 Γ (prod10 A B) → Tm10 Γ A; fst10 = λ t Tm10 var10 lam10 app10 tt10 pair10 fst10 snd left right case zero suc rec → fst10 _ _ _ (t Tm10 var10 lam10 app10 tt10 pair10 fst10 snd left right case zero suc rec) snd10 : ∀{Γ A B} → Tm10 Γ (prod10 A B) → Tm10 Γ B; snd10 = λ t Tm10 var10 lam10 app10 tt10 pair10 fst10 snd10 left right case zero suc rec → snd10 _ _ _ (t Tm10 var10 lam10 app10 tt10 pair10 fst10 snd10 left right case zero suc rec) left10 : ∀{Γ A B} → Tm10 Γ A → Tm10 Γ (sum10 A B); left10 = λ t Tm10 var10 lam10 app10 tt10 pair10 fst10 snd10 left10 right case zero suc rec → left10 _ _ _ (t Tm10 var10 lam10 app10 tt10 pair10 fst10 snd10 left10 right case zero suc rec) right10 : ∀{Γ A B} → Tm10 Γ B → Tm10 Γ (sum10 A B); right10 = λ t Tm10 var10 lam10 app10 tt10 pair10 fst10 snd10 left10 right10 case zero suc rec → right10 _ _ _ (t Tm10 var10 lam10 app10 tt10 pair10 fst10 snd10 left10 right10 case zero suc rec) case10 : ∀{Γ A B C} → Tm10 Γ (sum10 A B) → Tm10 Γ (arr10 A C) → Tm10 Γ (arr10 B C) → Tm10 Γ C; case10 = λ t u v Tm10 var10 lam10 app10 tt10 pair10 fst10 snd10 left10 right10 case10 zero suc rec → case10 _ _ _ _ (t Tm10 var10 lam10 app10 tt10 pair10 fst10 snd10 left10 right10 case10 zero suc rec) (u Tm10 var10 lam10 app10 tt10 pair10 fst10 snd10 left10 right10 case10 zero suc rec) (v Tm10 var10 lam10 app10 tt10 pair10 fst10 snd10 left10 right10 case10 zero suc rec) zero10 : ∀{Γ} → Tm10 Γ nat10; zero10 = λ Tm10 var10 lam10 app10 tt10 pair10 fst10 snd10 left10 right10 case10 zero10 suc rec → zero10 _ suc10 : ∀{Γ} → Tm10 Γ nat10 → Tm10 Γ nat10; suc10 = λ t Tm10 var10 lam10 app10 tt10 pair10 fst10 snd10 left10 right10 case10 zero10 suc10 rec → suc10 _ (t Tm10 var10 lam10 app10 tt10 pair10 fst10 snd10 left10 right10 case10 zero10 suc10 rec) rec10 : ∀{Γ A} → Tm10 Γ nat10 → Tm10 Γ (arr10 nat10 (arr10 A A)) → Tm10 Γ A → Tm10 Γ A; rec10 = λ t u v Tm10 var10 lam10 app10 tt10 pair10 fst10 snd10 left10 right10 case10 zero10 suc10 rec10 → rec10 _ _ (t Tm10 var10 lam10 app10 tt10 pair10 fst10 snd10 left10 right10 case10 zero10 suc10 rec10) (u Tm10 var10 lam10 app10 tt10 pair10 fst10 snd10 left10 right10 case10 zero10 suc10 rec10) (v Tm10 var10 lam10 app10 tt10 pair10 fst10 snd10 left10 right10 case10 zero10 suc10 rec10) v010 : ∀{Γ A} → Tm10 (snoc10 Γ A) A; v010 = var10 vz10 v110 : ∀{Γ A B} → Tm10 (snoc10 (snoc10 Γ A) B) A; v110 = var10 (vs10 vz10) v210 : ∀{Γ A B C} → Tm10 (snoc10 (snoc10 (snoc10 Γ A) B) C) A; v210 = var10 (vs10 (vs10 vz10)) v310 : ∀{Γ A B C D} → Tm10 (snoc10 (snoc10 (snoc10 (snoc10 Γ A) B) C) D) A; v310 = var10 (vs10 (vs10 (vs10 vz10))) tbool10 : Ty10; tbool10 = sum10 top10 top10 true10 : ∀{Γ} → Tm10 Γ tbool10; true10 = left10 tt10 tfalse10 : ∀{Γ} → Tm10 Γ tbool10; tfalse10 = right10 tt10 ifthenelse10 : ∀{Γ A} → Tm10 Γ (arr10 tbool10 (arr10 A (arr10 A A))); ifthenelse10 = lam10 (lam10 (lam10 (case10 v210 (lam10 v210) (lam10 v110)))) times410 : ∀{Γ A} → Tm10 Γ (arr10 (arr10 A A) (arr10 A A)); times410 = lam10 (lam10 (app10 v110 (app10 v110 (app10 v110 (app10 v110 v010))))) add10 : ∀{Γ} → Tm10 Γ (arr10 nat10 (arr10 nat10 nat10)); add10 = lam10 (rec10 v010 (lam10 (lam10 (lam10 (suc10 (app10 v110 v010))))) (lam10 v010)) mul10 : ∀{Γ} → Tm10 Γ (arr10 nat10 (arr10 nat10 nat10)); mul10 = lam10 (rec10 v010 (lam10 (lam10 (lam10 (app10 (app10 add10 (app10 v110 v010)) v010)))) (lam10 zero10)) fact10 : ∀{Γ} → Tm10 Γ (arr10 nat10 nat10); fact10 = lam10 (rec10 v010 (lam10 (lam10 (app10 (app10 mul10 (suc10 v110)) v010))) (suc10 zero10)) {-# OPTIONS --type-in-type #-} Ty11 : Set Ty11 = (Ty11 : Set) (nat top bot : Ty11) (arr prod sum : Ty11 → Ty11 → Ty11) → Ty11 nat11 : Ty11; nat11 = λ _ nat11 _ _ _ _ _ → nat11 top11 : Ty11; top11 = λ _ _ top11 _ _ _ _ → top11 bot11 : Ty11; bot11 = λ _ _ _ bot11 _ _ _ → bot11 arr11 : Ty11 → Ty11 → Ty11; arr11 = λ A B Ty11 nat11 top11 bot11 arr11 prod sum → arr11 (A Ty11 nat11 top11 bot11 arr11 prod sum) (B Ty11 nat11 top11 bot11 arr11 prod sum) prod11 : Ty11 → Ty11 → Ty11; prod11 = λ A B Ty11 nat11 top11 bot11 arr11 prod11 sum → prod11 (A Ty11 nat11 top11 bot11 arr11 prod11 sum) (B Ty11 nat11 top11 bot11 arr11 prod11 sum) sum11 : Ty11 → Ty11 → Ty11; sum11 = λ A B Ty11 nat11 top11 bot11 arr11 prod11 sum11 → sum11 (A Ty11 nat11 top11 bot11 arr11 prod11 sum11) (B Ty11 nat11 top11 bot11 arr11 prod11 sum11) Con11 : Set; Con11 = (Con11 : Set) (nil : Con11) (snoc : Con11 → Ty11 → Con11) → Con11 nil11 : Con11; nil11 = λ Con11 nil11 snoc → nil11 snoc11 : Con11 → Ty11 → Con11; snoc11 = λ Γ A Con11 nil11 snoc11 → snoc11 (Γ Con11 nil11 snoc11) A Var11 : Con11 → Ty11 → Set; Var11 = λ Γ A → (Var11 : Con11 → Ty11 → Set) (vz : ∀ Γ A → Var11 (snoc11 Γ A) A) (vs : ∀ Γ B A → Var11 Γ A → Var11 (snoc11 Γ B) A) → Var11 Γ A vz11 : ∀{Γ A} → Var11 (snoc11 Γ A) A; vz11 = λ Var11 vz11 vs → vz11 _ _ vs11 : ∀{Γ B A} → Var11 Γ A → Var11 (snoc11 Γ B) A; vs11 = λ x Var11 vz11 vs11 → vs11 _ _ _ (x Var11 vz11 vs11) Tm11 : Con11 → Ty11 → Set; Tm11 = λ Γ A → (Tm11 : Con11 → Ty11 → Set) (var : ∀ Γ A → Var11 Γ A → Tm11 Γ A) (lam : ∀ Γ A B → Tm11 (snoc11 Γ A) B → Tm11 Γ (arr11 A B)) (app : ∀ Γ A B → Tm11 Γ (arr11 A B) → Tm11 Γ A → Tm11 Γ B) (tt : ∀ Γ → Tm11 Γ top11) (pair : ∀ Γ A B → Tm11 Γ A → Tm11 Γ B → Tm11 Γ (prod11 A B)) (fst : ∀ Γ A B → Tm11 Γ (prod11 A B) → Tm11 Γ A) (snd : ∀ Γ A B → Tm11 Γ (prod11 A B) → Tm11 Γ B) (left : ∀ Γ A B → Tm11 Γ A → Tm11 Γ (sum11 A B)) (right : ∀ Γ A B → Tm11 Γ B → Tm11 Γ (sum11 A B)) (case : ∀ Γ A B C → Tm11 Γ (sum11 A B) → Tm11 Γ (arr11 A C) → Tm11 Γ (arr11 B C) → Tm11 Γ C) (zero : ∀ Γ → Tm11 Γ nat11) (suc : ∀ Γ → Tm11 Γ nat11 → Tm11 Γ nat11) (rec : ∀ Γ A → Tm11 Γ nat11 → Tm11 Γ (arr11 nat11 (arr11 A A)) → Tm11 Γ A → Tm11 Γ A) → Tm11 Γ A var11 : ∀{Γ A} → Var11 Γ A → Tm11 Γ A; var11 = λ x Tm11 var11 lam app tt pair fst snd left right case zero suc rec → var11 _ _ x lam11 : ∀{Γ A B} → Tm11 (snoc11 Γ A) B → Tm11 Γ (arr11 A B); lam11 = λ t Tm11 var11 lam11 app tt pair fst snd left right case zero suc rec → lam11 _ _ _ (t Tm11 var11 lam11 app tt pair fst snd left right case zero suc rec) app11 : ∀{Γ A B} → Tm11 Γ (arr11 A B) → Tm11 Γ A → Tm11 Γ B; app11 = λ t u Tm11 var11 lam11 app11 tt pair fst snd left right case zero suc rec → app11 _ _ _ (t Tm11 var11 lam11 app11 tt pair fst snd left right case zero suc rec) (u Tm11 var11 lam11 app11 tt pair fst snd left right case zero suc rec) tt11 : ∀{Γ} → Tm11 Γ top11; tt11 = λ Tm11 var11 lam11 app11 tt11 pair fst snd left right case zero suc rec → tt11 _ pair11 : ∀{Γ A B} → Tm11 Γ A → Tm11 Γ B → Tm11 Γ (prod11 A B); pair11 = λ t u Tm11 var11 lam11 app11 tt11 pair11 fst snd left right case zero suc rec → pair11 _ _ _ (t Tm11 var11 lam11 app11 tt11 pair11 fst snd left right case zero suc rec) (u Tm11 var11 lam11 app11 tt11 pair11 fst snd left right case zero suc rec) fst11 : ∀{Γ A B} → Tm11 Γ (prod11 A B) → Tm11 Γ A; fst11 = λ t Tm11 var11 lam11 app11 tt11 pair11 fst11 snd left right case zero suc rec → fst11 _ _ _ (t Tm11 var11 lam11 app11 tt11 pair11 fst11 snd left right case zero suc rec) snd11 : ∀{Γ A B} → Tm11 Γ (prod11 A B) → Tm11 Γ B; snd11 = λ t Tm11 var11 lam11 app11 tt11 pair11 fst11 snd11 left right case zero suc rec → snd11 _ _ _ (t Tm11 var11 lam11 app11 tt11 pair11 fst11 snd11 left right case zero suc rec) left11 : ∀{Γ A B} → Tm11 Γ A → Tm11 Γ (sum11 A B); left11 = λ t Tm11 var11 lam11 app11 tt11 pair11 fst11 snd11 left11 right case zero suc rec → left11 _ _ _ (t Tm11 var11 lam11 app11 tt11 pair11 fst11 snd11 left11 right case zero suc rec) right11 : ∀{Γ A B} → Tm11 Γ B → Tm11 Γ (sum11 A B); right11 = λ t Tm11 var11 lam11 app11 tt11 pair11 fst11 snd11 left11 right11 case zero suc rec → right11 _ _ _ (t Tm11 var11 lam11 app11 tt11 pair11 fst11 snd11 left11 right11 case zero suc rec) case11 : ∀{Γ A B C} → Tm11 Γ (sum11 A B) → Tm11 Γ (arr11 A C) → Tm11 Γ (arr11 B C) → Tm11 Γ C; case11 = λ t u v Tm11 var11 lam11 app11 tt11 pair11 fst11 snd11 left11 right11 case11 zero suc rec → case11 _ _ _ _ (t Tm11 var11 lam11 app11 tt11 pair11 fst11 snd11 left11 right11 case11 zero suc rec) (u Tm11 var11 lam11 app11 tt11 pair11 fst11 snd11 left11 right11 case11 zero suc rec) (v Tm11 var11 lam11 app11 tt11 pair11 fst11 snd11 left11 right11 case11 zero suc rec) zero11 : ∀{Γ} → Tm11 Γ nat11; zero11 = λ Tm11 var11 lam11 app11 tt11 pair11 fst11 snd11 left11 right11 case11 zero11 suc rec → zero11 _ suc11 : ∀{Γ} → Tm11 Γ nat11 → Tm11 Γ nat11; suc11 = λ t Tm11 var11 lam11 app11 tt11 pair11 fst11 snd11 left11 right11 case11 zero11 suc11 rec → suc11 _ (t Tm11 var11 lam11 app11 tt11 pair11 fst11 snd11 left11 right11 case11 zero11 suc11 rec) rec11 : ∀{Γ A} → Tm11 Γ nat11 → Tm11 Γ (arr11 nat11 (arr11 A A)) → Tm11 Γ A → Tm11 Γ A; rec11 = λ t u v Tm11 var11 lam11 app11 tt11 pair11 fst11 snd11 left11 right11 case11 zero11 suc11 rec11 → rec11 _ _ (t Tm11 var11 lam11 app11 tt11 pair11 fst11 snd11 left11 right11 case11 zero11 suc11 rec11) (u Tm11 var11 lam11 app11 tt11 pair11 fst11 snd11 left11 right11 case11 zero11 suc11 rec11) (v Tm11 var11 lam11 app11 tt11 pair11 fst11 snd11 left11 right11 case11 zero11 suc11 rec11) v011 : ∀{Γ A} → Tm11 (snoc11 Γ A) A; v011 = var11 vz11 v111 : ∀{Γ A B} → Tm11 (snoc11 (snoc11 Γ A) B) A; v111 = var11 (vs11 vz11) v211 : ∀{Γ A B C} → Tm11 (snoc11 (snoc11 (snoc11 Γ A) B) C) A; v211 = var11 (vs11 (vs11 vz11)) v311 : ∀{Γ A B C D} → Tm11 (snoc11 (snoc11 (snoc11 (snoc11 Γ A) B) C) D) A; v311 = var11 (vs11 (vs11 (vs11 vz11))) tbool11 : Ty11; tbool11 = sum11 top11 top11 true11 : ∀{Γ} → Tm11 Γ tbool11; true11 = left11 tt11 tfalse11 : ∀{Γ} → Tm11 Γ tbool11; tfalse11 = right11 tt11 ifthenelse11 : ∀{Γ A} → Tm11 Γ (arr11 tbool11 (arr11 A (arr11 A A))); ifthenelse11 = lam11 (lam11 (lam11 (case11 v211 (lam11 v211) (lam11 v111)))) times411 : ∀{Γ A} → Tm11 Γ (arr11 (arr11 A A) (arr11 A A)); times411 = lam11 (lam11 (app11 v111 (app11 v111 (app11 v111 (app11 v111 v011))))) add11 : ∀{Γ} → Tm11 Γ (arr11 nat11 (arr11 nat11 nat11)); add11 = lam11 (rec11 v011 (lam11 (lam11 (lam11 (suc11 (app11 v111 v011))))) (lam11 v011)) mul11 : ∀{Γ} → Tm11 Γ (arr11 nat11 (arr11 nat11 nat11)); mul11 = lam11 (rec11 v011 (lam11 (lam11 (lam11 (app11 (app11 add11 (app11 v111 v011)) v011)))) (lam11 zero11)) fact11 : ∀{Γ} → Tm11 Γ (arr11 nat11 nat11); fact11 = lam11 (rec11 v011 (lam11 (lam11 (app11 (app11 mul11 (suc11 v111)) v011))) (suc11 zero11)) {-# OPTIONS --type-in-type #-} Ty12 : Set Ty12 = (Ty12 : Set) (nat top bot : Ty12) (arr prod sum : Ty12 → Ty12 → Ty12) → Ty12 nat12 : Ty12; nat12 = λ _ nat12 _ _ _ _ _ → nat12 top12 : Ty12; top12 = λ _ _ top12 _ _ _ _ → top12 bot12 : Ty12; bot12 = λ _ _ _ bot12 _ _ _ → bot12 arr12 : Ty12 → Ty12 → Ty12; arr12 = λ A B Ty12 nat12 top12 bot12 arr12 prod sum → arr12 (A Ty12 nat12 top12 bot12 arr12 prod sum) (B Ty12 nat12 top12 bot12 arr12 prod sum) prod12 : Ty12 → Ty12 → Ty12; prod12 = λ A B Ty12 nat12 top12 bot12 arr12 prod12 sum → prod12 (A Ty12 nat12 top12 bot12 arr12 prod12 sum) (B Ty12 nat12 top12 bot12 arr12 prod12 sum) sum12 : Ty12 → Ty12 → Ty12; sum12 = λ A B Ty12 nat12 top12 bot12 arr12 prod12 sum12 → sum12 (A Ty12 nat12 top12 bot12 arr12 prod12 sum12) (B Ty12 nat12 top12 bot12 arr12 prod12 sum12) Con12 : Set; Con12 = (Con12 : Set) (nil : Con12) (snoc : Con12 → Ty12 → Con12) → Con12 nil12 : Con12; nil12 = λ Con12 nil12 snoc → nil12 snoc12 : Con12 → Ty12 → Con12; snoc12 = λ Γ A Con12 nil12 snoc12 → snoc12 (Γ Con12 nil12 snoc12) A Var12 : Con12 → Ty12 → Set; Var12 = λ Γ A → (Var12 : Con12 → Ty12 → Set) (vz : ∀ Γ A → Var12 (snoc12 Γ A) A) (vs : ∀ Γ B A → Var12 Γ A → Var12 (snoc12 Γ B) A) → Var12 Γ A vz12 : ∀{Γ A} → Var12 (snoc12 Γ A) A; vz12 = λ Var12 vz12 vs → vz12 _ _ vs12 : ∀{Γ B A} → Var12 Γ A → Var12 (snoc12 Γ B) A; vs12 = λ x Var12 vz12 vs12 → vs12 _ _ _ (x Var12 vz12 vs12) Tm12 : Con12 → Ty12 → Set; Tm12 = λ Γ A → (Tm12 : Con12 → Ty12 → Set) (var : ∀ Γ A → Var12 Γ A → Tm12 Γ A) (lam : ∀ Γ A B → Tm12 (snoc12 Γ A) B → Tm12 Γ (arr12 A B)) (app : ∀ Γ A B → Tm12 Γ (arr12 A B) → Tm12 Γ A → Tm12 Γ B) (tt : ∀ Γ → Tm12 Γ top12) (pair : ∀ Γ A B → Tm12 Γ A → Tm12 Γ B → Tm12 Γ (prod12 A B)) (fst : ∀ Γ A B → Tm12 Γ (prod12 A B) → Tm12 Γ A) (snd : ∀ Γ A B → Tm12 Γ (prod12 A B) → Tm12 Γ B) (left : ∀ Γ A B → Tm12 Γ A → Tm12 Γ (sum12 A B)) (right : ∀ Γ A B → Tm12 Γ B → Tm12 Γ (sum12 A B)) (case : ∀ Γ A B C → Tm12 Γ (sum12 A B) → Tm12 Γ (arr12 A C) → Tm12 Γ (arr12 B C) → Tm12 Γ C) (zero : ∀ Γ → Tm12 Γ nat12) (suc : ∀ Γ → Tm12 Γ nat12 → Tm12 Γ nat12) (rec : ∀ Γ A → Tm12 Γ nat12 → Tm12 Γ (arr12 nat12 (arr12 A A)) → Tm12 Γ A → Tm12 Γ A) → Tm12 Γ A var12 : ∀{Γ A} → Var12 Γ A → Tm12 Γ A; var12 = λ x Tm12 var12 lam app tt pair fst snd left right case zero suc rec → var12 _ _ x lam12 : ∀{Γ A B} → Tm12 (snoc12 Γ A) B → Tm12 Γ (arr12 A B); lam12 = λ t Tm12 var12 lam12 app tt pair fst snd left right case zero suc rec → lam12 _ _ _ (t Tm12 var12 lam12 app tt pair fst snd left right case zero suc rec) app12 : ∀{Γ A B} → Tm12 Γ (arr12 A B) → Tm12 Γ A → Tm12 Γ B; app12 = λ t u Tm12 var12 lam12 app12 tt pair fst snd left right case zero suc rec → app12 _ _ _ (t Tm12 var12 lam12 app12 tt pair fst snd left right case zero suc rec) (u Tm12 var12 lam12 app12 tt pair fst snd left right case zero suc rec) tt12 : ∀{Γ} → Tm12 Γ top12; tt12 = λ Tm12 var12 lam12 app12 tt12 pair fst snd left right case zero suc rec → tt12 _ pair12 : ∀{Γ A B} → Tm12 Γ A → Tm12 Γ B → Tm12 Γ (prod12 A B); pair12 = λ t u Tm12 var12 lam12 app12 tt12 pair12 fst snd left right case zero suc rec → pair12 _ _ _ (t Tm12 var12 lam12 app12 tt12 pair12 fst snd left right case zero suc rec) (u Tm12 var12 lam12 app12 tt12 pair12 fst snd left right case zero suc rec) fst12 : ∀{Γ A B} → Tm12 Γ (prod12 A B) → Tm12 Γ A; fst12 = λ t Tm12 var12 lam12 app12 tt12 pair12 fst12 snd left right case zero suc rec → fst12 _ _ _ (t Tm12 var12 lam12 app12 tt12 pair12 fst12 snd left right case zero suc rec) snd12 : ∀{Γ A B} → Tm12 Γ (prod12 A B) → Tm12 Γ B; snd12 = λ t Tm12 var12 lam12 app12 tt12 pair12 fst12 snd12 left right case zero suc rec → snd12 _ _ _ (t Tm12 var12 lam12 app12 tt12 pair12 fst12 snd12 left right case zero suc rec) left12 : ∀{Γ A B} → Tm12 Γ A → Tm12 Γ (sum12 A B); left12 = λ t Tm12 var12 lam12 app12 tt12 pair12 fst12 snd12 left12 right case zero suc rec → left12 _ _ _ (t Tm12 var12 lam12 app12 tt12 pair12 fst12 snd12 left12 right case zero suc rec) right12 : ∀{Γ A B} → Tm12 Γ B → Tm12 Γ (sum12 A B); right12 = λ t Tm12 var12 lam12 app12 tt12 pair12 fst12 snd12 left12 right12 case zero suc rec → right12 _ _ _ (t Tm12 var12 lam12 app12 tt12 pair12 fst12 snd12 left12 right12 case zero suc rec) case12 : ∀{Γ A B C} → Tm12 Γ (sum12 A B) → Tm12 Γ (arr12 A C) → Tm12 Γ (arr12 B C) → Tm12 Γ C; case12 = λ t u v Tm12 var12 lam12 app12 tt12 pair12 fst12 snd12 left12 right12 case12 zero suc rec → case12 _ _ _ _ (t Tm12 var12 lam12 app12 tt12 pair12 fst12 snd12 left12 right12 case12 zero suc rec) (u Tm12 var12 lam12 app12 tt12 pair12 fst12 snd12 left12 right12 case12 zero suc rec) (v Tm12 var12 lam12 app12 tt12 pair12 fst12 snd12 left12 right12 case12 zero suc rec) zero12 : ∀{Γ} → Tm12 Γ nat12; zero12 = λ Tm12 var12 lam12 app12 tt12 pair12 fst12 snd12 left12 right12 case12 zero12 suc rec → zero12 _ suc12 : ∀{Γ} → Tm12 Γ nat12 → Tm12 Γ nat12; suc12 = λ t Tm12 var12 lam12 app12 tt12 pair12 fst12 snd12 left12 right12 case12 zero12 suc12 rec → suc12 _ (t Tm12 var12 lam12 app12 tt12 pair12 fst12 snd12 left12 right12 case12 zero12 suc12 rec) rec12 : ∀{Γ A} → Tm12 Γ nat12 → Tm12 Γ (arr12 nat12 (arr12 A A)) → Tm12 Γ A → Tm12 Γ A; rec12 = λ t u v Tm12 var12 lam12 app12 tt12 pair12 fst12 snd12 left12 right12 case12 zero12 suc12 rec12 → rec12 _ _ (t Tm12 var12 lam12 app12 tt12 pair12 fst12 snd12 left12 right12 case12 zero12 suc12 rec12) (u Tm12 var12 lam12 app12 tt12 pair12 fst12 snd12 left12 right12 case12 zero12 suc12 rec12) (v Tm12 var12 lam12 app12 tt12 pair12 fst12 snd12 left12 right12 case12 zero12 suc12 rec12) v012 : ∀{Γ A} → Tm12 (snoc12 Γ A) A; v012 = var12 vz12 v112 : ∀{Γ A B} → Tm12 (snoc12 (snoc12 Γ A) B) A; v112 = var12 (vs12 vz12) v212 : ∀{Γ A B C} → Tm12 (snoc12 (snoc12 (snoc12 Γ A) B) C) A; v212 = var12 (vs12 (vs12 vz12)) v312 : ∀{Γ A B C D} → Tm12 (snoc12 (snoc12 (snoc12 (snoc12 Γ A) B) C) D) A; v312 = var12 (vs12 (vs12 (vs12 vz12))) tbool12 : Ty12; tbool12 = sum12 top12 top12 true12 : ∀{Γ} → Tm12 Γ tbool12; true12 = left12 tt12 tfalse12 : ∀{Γ} → Tm12 Γ tbool12; tfalse12 = right12 tt12 ifthenelse12 : ∀{Γ A} → Tm12 Γ (arr12 tbool12 (arr12 A (arr12 A A))); ifthenelse12 = lam12 (lam12 (lam12 (case12 v212 (lam12 v212) (lam12 v112)))) times412 : ∀{Γ A} → Tm12 Γ (arr12 (arr12 A A) (arr12 A A)); times412 = lam12 (lam12 (app12 v112 (app12 v112 (app12 v112 (app12 v112 v012))))) add12 : ∀{Γ} → Tm12 Γ (arr12 nat12 (arr12 nat12 nat12)); add12 = lam12 (rec12 v012 (lam12 (lam12 (lam12 (suc12 (app12 v112 v012))))) (lam12 v012)) mul12 : ∀{Γ} → Tm12 Γ (arr12 nat12 (arr12 nat12 nat12)); mul12 = lam12 (rec12 v012 (lam12 (lam12 (lam12 (app12 (app12 add12 (app12 v112 v012)) v012)))) (lam12 zero12)) fact12 : ∀{Γ} → Tm12 Γ (arr12 nat12 nat12); fact12 = lam12 (rec12 v012 (lam12 (lam12 (app12 (app12 mul12 (suc12 v112)) v012))) (suc12 zero12)) {-# OPTIONS --type-in-type #-} Ty13 : Set Ty13 = (Ty13 : Set) (nat top bot : Ty13) (arr prod sum : Ty13 → Ty13 → Ty13) → Ty13 nat13 : Ty13; nat13 = λ _ nat13 _ _ _ _ _ → nat13 top13 : Ty13; top13 = λ _ _ top13 _ _ _ _ → top13 bot13 : Ty13; bot13 = λ _ _ _ bot13 _ _ _ → bot13 arr13 : Ty13 → Ty13 → Ty13; arr13 = λ A B Ty13 nat13 top13 bot13 arr13 prod sum → arr13 (A Ty13 nat13 top13 bot13 arr13 prod sum) (B Ty13 nat13 top13 bot13 arr13 prod sum) prod13 : Ty13 → Ty13 → Ty13; prod13 = λ A B Ty13 nat13 top13 bot13 arr13 prod13 sum → prod13 (A Ty13 nat13 top13 bot13 arr13 prod13 sum) (B Ty13 nat13 top13 bot13 arr13 prod13 sum) sum13 : Ty13 → Ty13 → Ty13; sum13 = λ A B Ty13 nat13 top13 bot13 arr13 prod13 sum13 → sum13 (A Ty13 nat13 top13 bot13 arr13 prod13 sum13) (B Ty13 nat13 top13 bot13 arr13 prod13 sum13) Con13 : Set; Con13 = (Con13 : Set) (nil : Con13) (snoc : Con13 → Ty13 → Con13) → Con13 nil13 : Con13; nil13 = λ Con13 nil13 snoc → nil13 snoc13 : Con13 → Ty13 → Con13; snoc13 = λ Γ A Con13 nil13 snoc13 → snoc13 (Γ Con13 nil13 snoc13) A Var13 : Con13 → Ty13 → Set; Var13 = λ Γ A → (Var13 : Con13 → Ty13 → Set) (vz : ∀ Γ A → Var13 (snoc13 Γ A) A) (vs : ∀ Γ B A → Var13 Γ A → Var13 (snoc13 Γ B) A) → Var13 Γ A vz13 : ∀{Γ A} → Var13 (snoc13 Γ A) A; vz13 = λ Var13 vz13 vs → vz13 _ _ vs13 : ∀{Γ B A} → Var13 Γ A → Var13 (snoc13 Γ B) A; vs13 = λ x Var13 vz13 vs13 → vs13 _ _ _ (x Var13 vz13 vs13) Tm13 : Con13 → Ty13 → Set; Tm13 = λ Γ A → (Tm13 : Con13 → Ty13 → Set) (var : ∀ Γ A → Var13 Γ A → Tm13 Γ A) (lam : ∀ Γ A B → Tm13 (snoc13 Γ A) B → Tm13 Γ (arr13 A B)) (app : ∀ Γ A B → Tm13 Γ (arr13 A B) → Tm13 Γ A → Tm13 Γ B) (tt : ∀ Γ → Tm13 Γ top13) (pair : ∀ Γ A B → Tm13 Γ A → Tm13 Γ B → Tm13 Γ (prod13 A B)) (fst : ∀ Γ A B → Tm13 Γ (prod13 A B) → Tm13 Γ A) (snd : ∀ Γ A B → Tm13 Γ (prod13 A B) → Tm13 Γ B) (left : ∀ Γ A B → Tm13 Γ A → Tm13 Γ (sum13 A B)) (right : ∀ Γ A B → Tm13 Γ B → Tm13 Γ (sum13 A B)) (case : ∀ Γ A B C → Tm13 Γ (sum13 A B) → Tm13 Γ (arr13 A C) → Tm13 Γ (arr13 B C) → Tm13 Γ C) (zero : ∀ Γ → Tm13 Γ nat13) (suc : ∀ Γ → Tm13 Γ nat13 → Tm13 Γ nat13) (rec : ∀ Γ A → Tm13 Γ nat13 → Tm13 Γ (arr13 nat13 (arr13 A A)) → Tm13 Γ A → Tm13 Γ A) → Tm13 Γ A var13 : ∀{Γ A} → Var13 Γ A → Tm13 Γ A; var13 = λ x Tm13 var13 lam app tt pair fst snd left right case zero suc rec → var13 _ _ x lam13 : ∀{Γ A B} → Tm13 (snoc13 Γ A) B → Tm13 Γ (arr13 A B); lam13 = λ t Tm13 var13 lam13 app tt pair fst snd left right case zero suc rec → lam13 _ _ _ (t Tm13 var13 lam13 app tt pair fst snd left right case zero suc rec) app13 : ∀{Γ A B} → Tm13 Γ (arr13 A B) → Tm13 Γ A → Tm13 Γ B; app13 = λ t u Tm13 var13 lam13 app13 tt pair fst snd left right case zero suc rec → app13 _ _ _ (t Tm13 var13 lam13 app13 tt pair fst snd left right case zero suc rec) (u Tm13 var13 lam13 app13 tt pair fst snd left right case zero suc rec) tt13 : ∀{Γ} → Tm13 Γ top13; tt13 = λ Tm13 var13 lam13 app13 tt13 pair fst snd left right case zero suc rec → tt13 _ pair13 : ∀{Γ A B} → Tm13 Γ A → Tm13 Γ B → Tm13 Γ (prod13 A B); pair13 = λ t u Tm13 var13 lam13 app13 tt13 pair13 fst snd left right case zero suc rec → pair13 _ _ _ (t Tm13 var13 lam13 app13 tt13 pair13 fst snd left right case zero suc rec) (u Tm13 var13 lam13 app13 tt13 pair13 fst snd left right case zero suc rec) fst13 : ∀{Γ A B} → Tm13 Γ (prod13 A B) → Tm13 Γ A; fst13 = λ t Tm13 var13 lam13 app13 tt13 pair13 fst13 snd left right case zero suc rec → fst13 _ _ _ (t Tm13 var13 lam13 app13 tt13 pair13 fst13 snd left right case zero suc rec) snd13 : ∀{Γ A B} → Tm13 Γ (prod13 A B) → Tm13 Γ B; snd13 = λ t Tm13 var13 lam13 app13 tt13 pair13 fst13 snd13 left right case zero suc rec → snd13 _ _ _ (t Tm13 var13 lam13 app13 tt13 pair13 fst13 snd13 left right case zero suc rec) left13 : ∀{Γ A B} → Tm13 Γ A → Tm13 Γ (sum13 A B); left13 = λ t Tm13 var13 lam13 app13 tt13 pair13 fst13 snd13 left13 right case zero suc rec → left13 _ _ _ (t Tm13 var13 lam13 app13 tt13 pair13 fst13 snd13 left13 right case zero suc rec) right13 : ∀{Γ A B} → Tm13 Γ B → Tm13 Γ (sum13 A B); right13 = λ t Tm13 var13 lam13 app13 tt13 pair13 fst13 snd13 left13 right13 case zero suc rec → right13 _ _ _ (t Tm13 var13 lam13 app13 tt13 pair13 fst13 snd13 left13 right13 case zero suc rec) case13 : ∀{Γ A B C} → Tm13 Γ (sum13 A B) → Tm13 Γ (arr13 A C) → Tm13 Γ (arr13 B C) → Tm13 Γ C; case13 = λ t u v Tm13 var13 lam13 app13 tt13 pair13 fst13 snd13 left13 right13 case13 zero suc rec → case13 _ _ _ _ (t Tm13 var13 lam13 app13 tt13 pair13 fst13 snd13 left13 right13 case13 zero suc rec) (u Tm13 var13 lam13 app13 tt13 pair13 fst13 snd13 left13 right13 case13 zero suc rec) (v Tm13 var13 lam13 app13 tt13 pair13 fst13 snd13 left13 right13 case13 zero suc rec) zero13 : ∀{Γ} → Tm13 Γ nat13; zero13 = λ Tm13 var13 lam13 app13 tt13 pair13 fst13 snd13 left13 right13 case13 zero13 suc rec → zero13 _ suc13 : ∀{Γ} → Tm13 Γ nat13 → Tm13 Γ nat13; suc13 = λ t Tm13 var13 lam13 app13 tt13 pair13 fst13 snd13 left13 right13 case13 zero13 suc13 rec → suc13 _ (t Tm13 var13 lam13 app13 tt13 pair13 fst13 snd13 left13 right13 case13 zero13 suc13 rec) rec13 : ∀{Γ A} → Tm13 Γ nat13 → Tm13 Γ (arr13 nat13 (arr13 A A)) → Tm13 Γ A → Tm13 Γ A; rec13 = λ t u v Tm13 var13 lam13 app13 tt13 pair13 fst13 snd13 left13 right13 case13 zero13 suc13 rec13 → rec13 _ _ (t Tm13 var13 lam13 app13 tt13 pair13 fst13 snd13 left13 right13 case13 zero13 suc13 rec13) (u Tm13 var13 lam13 app13 tt13 pair13 fst13 snd13 left13 right13 case13 zero13 suc13 rec13) (v Tm13 var13 lam13 app13 tt13 pair13 fst13 snd13 left13 right13 case13 zero13 suc13 rec13) v013 : ∀{Γ A} → Tm13 (snoc13 Γ A) A; v013 = var13 vz13 v113 : ∀{Γ A B} → Tm13 (snoc13 (snoc13 Γ A) B) A; v113 = var13 (vs13 vz13) v213 : ∀{Γ A B C} → Tm13 (snoc13 (snoc13 (snoc13 Γ A) B) C) A; v213 = var13 (vs13 (vs13 vz13)) v313 : ∀{Γ A B C D} → Tm13 (snoc13 (snoc13 (snoc13 (snoc13 Γ A) B) C) D) A; v313 = var13 (vs13 (vs13 (vs13 vz13))) tbool13 : Ty13; tbool13 = sum13 top13 top13 true13 : ∀{Γ} → Tm13 Γ tbool13; true13 = left13 tt13 tfalse13 : ∀{Γ} → Tm13 Γ tbool13; tfalse13 = right13 tt13 ifthenelse13 : ∀{Γ A} → Tm13 Γ (arr13 tbool13 (arr13 A (arr13 A A))); ifthenelse13 = lam13 (lam13 (lam13 (case13 v213 (lam13 v213) (lam13 v113)))) times413 : ∀{Γ A} → Tm13 Γ (arr13 (arr13 A A) (arr13 A A)); times413 = lam13 (lam13 (app13 v113 (app13 v113 (app13 v113 (app13 v113 v013))))) add13 : ∀{Γ} → Tm13 Γ (arr13 nat13 (arr13 nat13 nat13)); add13 = lam13 (rec13 v013 (lam13 (lam13 (lam13 (suc13 (app13 v113 v013))))) (lam13 v013)) mul13 : ∀{Γ} → Tm13 Γ (arr13 nat13 (arr13 nat13 nat13)); mul13 = lam13 (rec13 v013 (lam13 (lam13 (lam13 (app13 (app13 add13 (app13 v113 v013)) v013)))) (lam13 zero13)) fact13 : ∀{Γ} → Tm13 Γ (arr13 nat13 nat13); fact13 = lam13 (rec13 v013 (lam13 (lam13 (app13 (app13 mul13 (suc13 v113)) v013))) (suc13 zero13)) {-# OPTIONS --type-in-type #-} Ty14 : Set Ty14 = (Ty14 : Set) (nat top bot : Ty14) (arr prod sum : Ty14 → Ty14 → Ty14) → Ty14 nat14 : Ty14; nat14 = λ _ nat14 _ _ _ _ _ → nat14 top14 : Ty14; top14 = λ _ _ top14 _ _ _ _ → top14 bot14 : Ty14; bot14 = λ _ _ _ bot14 _ _ _ → bot14 arr14 : Ty14 → Ty14 → Ty14; arr14 = λ A B Ty14 nat14 top14 bot14 arr14 prod sum → arr14 (A Ty14 nat14 top14 bot14 arr14 prod sum) (B Ty14 nat14 top14 bot14 arr14 prod sum) prod14 : Ty14 → Ty14 → Ty14; prod14 = λ A B Ty14 nat14 top14 bot14 arr14 prod14 sum → prod14 (A Ty14 nat14 top14 bot14 arr14 prod14 sum) (B Ty14 nat14 top14 bot14 arr14 prod14 sum) sum14 : Ty14 → Ty14 → Ty14; sum14 = λ A B Ty14 nat14 top14 bot14 arr14 prod14 sum14 → sum14 (A Ty14 nat14 top14 bot14 arr14 prod14 sum14) (B Ty14 nat14 top14 bot14 arr14 prod14 sum14) Con14 : Set; Con14 = (Con14 : Set) (nil : Con14) (snoc : Con14 → Ty14 → Con14) → Con14 nil14 : Con14; nil14 = λ Con14 nil14 snoc → nil14 snoc14 : Con14 → Ty14 → Con14; snoc14 = λ Γ A Con14 nil14 snoc14 → snoc14 (Γ Con14 nil14 snoc14) A Var14 : Con14 → Ty14 → Set; Var14 = λ Γ A → (Var14 : Con14 → Ty14 → Set) (vz : ∀ Γ A → Var14 (snoc14 Γ A) A) (vs : ∀ Γ B A → Var14 Γ A → Var14 (snoc14 Γ B) A) → Var14 Γ A vz14 : ∀{Γ A} → Var14 (snoc14 Γ A) A; vz14 = λ Var14 vz14 vs → vz14 _ _ vs14 : ∀{Γ B A} → Var14 Γ A → Var14 (snoc14 Γ B) A; vs14 = λ x Var14 vz14 vs14 → vs14 _ _ _ (x Var14 vz14 vs14) Tm14 : Con14 → Ty14 → Set; Tm14 = λ Γ A → (Tm14 : Con14 → Ty14 → Set) (var : ∀ Γ A → Var14 Γ A → Tm14 Γ A) (lam : ∀ Γ A B → Tm14 (snoc14 Γ A) B → Tm14 Γ (arr14 A B)) (app : ∀ Γ A B → Tm14 Γ (arr14 A B) → Tm14 Γ A → Tm14 Γ B) (tt : ∀ Γ → Tm14 Γ top14) (pair : ∀ Γ A B → Tm14 Γ A → Tm14 Γ B → Tm14 Γ (prod14 A B)) (fst : ∀ Γ A B → Tm14 Γ (prod14 A B) → Tm14 Γ A) (snd : ∀ Γ A B → Tm14 Γ (prod14 A B) → Tm14 Γ B) (left : ∀ Γ A B → Tm14 Γ A → Tm14 Γ (sum14 A B)) (right : ∀ Γ A B → Tm14 Γ B → Tm14 Γ (sum14 A B)) (case : ∀ Γ A B C → Tm14 Γ (sum14 A B) → Tm14 Γ (arr14 A C) → Tm14 Γ (arr14 B C) → Tm14 Γ C) (zero : ∀ Γ → Tm14 Γ nat14) (suc : ∀ Γ → Tm14 Γ nat14 → Tm14 Γ nat14) (rec : ∀ Γ A → Tm14 Γ nat14 → Tm14 Γ (arr14 nat14 (arr14 A A)) → Tm14 Γ A → Tm14 Γ A) → Tm14 Γ A var14 : ∀{Γ A} → Var14 Γ A → Tm14 Γ A; var14 = λ x Tm14 var14 lam app tt pair fst snd left right case zero suc rec → var14 _ _ x lam14 : ∀{Γ A B} → Tm14 (snoc14 Γ A) B → Tm14 Γ (arr14 A B); lam14 = λ t Tm14 var14 lam14 app tt pair fst snd left right case zero suc rec → lam14 _ _ _ (t Tm14 var14 lam14 app tt pair fst snd left right case zero suc rec) app14 : ∀{Γ A B} → Tm14 Γ (arr14 A B) → Tm14 Γ A → Tm14 Γ B; app14 = λ t u Tm14 var14 lam14 app14 tt pair fst snd left right case zero suc rec → app14 _ _ _ (t Tm14 var14 lam14 app14 tt pair fst snd left right case zero suc rec) (u Tm14 var14 lam14 app14 tt pair fst snd left right case zero suc rec) tt14 : ∀{Γ} → Tm14 Γ top14; tt14 = λ Tm14 var14 lam14 app14 tt14 pair fst snd left right case zero suc rec → tt14 _ pair14 : ∀{Γ A B} → Tm14 Γ A → Tm14 Γ B → Tm14 Γ (prod14 A B); pair14 = λ t u Tm14 var14 lam14 app14 tt14 pair14 fst snd left right case zero suc rec → pair14 _ _ _ (t Tm14 var14 lam14 app14 tt14 pair14 fst snd left right case zero suc rec) (u Tm14 var14 lam14 app14 tt14 pair14 fst snd left right case zero suc rec) fst14 : ∀{Γ A B} → Tm14 Γ (prod14 A B) → Tm14 Γ A; fst14 = λ t Tm14 var14 lam14 app14 tt14 pair14 fst14 snd left right case zero suc rec → fst14 _ _ _ (t Tm14 var14 lam14 app14 tt14 pair14 fst14 snd left right case zero suc rec) snd14 : ∀{Γ A B} → Tm14 Γ (prod14 A B) → Tm14 Γ B; snd14 = λ t Tm14 var14 lam14 app14 tt14 pair14 fst14 snd14 left right case zero suc rec → snd14 _ _ _ (t Tm14 var14 lam14 app14 tt14 pair14 fst14 snd14 left right case zero suc rec) left14 : ∀{Γ A B} → Tm14 Γ A → Tm14 Γ (sum14 A B); left14 = λ t Tm14 var14 lam14 app14 tt14 pair14 fst14 snd14 left14 right case zero suc rec → left14 _ _ _ (t Tm14 var14 lam14 app14 tt14 pair14 fst14 snd14 left14 right case zero suc rec) right14 : ∀{Γ A B} → Tm14 Γ B → Tm14 Γ (sum14 A B); right14 = λ t Tm14 var14 lam14 app14 tt14 pair14 fst14 snd14 left14 right14 case zero suc rec → right14 _ _ _ (t Tm14 var14 lam14 app14 tt14 pair14 fst14 snd14 left14 right14 case zero suc rec) case14 : ∀{Γ A B C} → Tm14 Γ (sum14 A B) → Tm14 Γ (arr14 A C) → Tm14 Γ (arr14 B C) → Tm14 Γ C; case14 = λ t u v Tm14 var14 lam14 app14 tt14 pair14 fst14 snd14 left14 right14 case14 zero suc rec → case14 _ _ _ _ (t Tm14 var14 lam14 app14 tt14 pair14 fst14 snd14 left14 right14 case14 zero suc rec) (u Tm14 var14 lam14 app14 tt14 pair14 fst14 snd14 left14 right14 case14 zero suc rec) (v Tm14 var14 lam14 app14 tt14 pair14 fst14 snd14 left14 right14 case14 zero suc rec) zero14 : ∀{Γ} → Tm14 Γ nat14; zero14 = λ Tm14 var14 lam14 app14 tt14 pair14 fst14 snd14 left14 right14 case14 zero14 suc rec → zero14 _ suc14 : ∀{Γ} → Tm14 Γ nat14 → Tm14 Γ nat14; suc14 = λ t Tm14 var14 lam14 app14 tt14 pair14 fst14 snd14 left14 right14 case14 zero14 suc14 rec → suc14 _ (t Tm14 var14 lam14 app14 tt14 pair14 fst14 snd14 left14 right14 case14 zero14 suc14 rec) rec14 : ∀{Γ A} → Tm14 Γ nat14 → Tm14 Γ (arr14 nat14 (arr14 A A)) → Tm14 Γ A → Tm14 Γ A; rec14 = λ t u v Tm14 var14 lam14 app14 tt14 pair14 fst14 snd14 left14 right14 case14 zero14 suc14 rec14 → rec14 _ _ (t Tm14 var14 lam14 app14 tt14 pair14 fst14 snd14 left14 right14 case14 zero14 suc14 rec14) (u Tm14 var14 lam14 app14 tt14 pair14 fst14 snd14 left14 right14 case14 zero14 suc14 rec14) (v Tm14 var14 lam14 app14 tt14 pair14 fst14 snd14 left14 right14 case14 zero14 suc14 rec14) v014 : ∀{Γ A} → Tm14 (snoc14 Γ A) A; v014 = var14 vz14 v114 : ∀{Γ A B} → Tm14 (snoc14 (snoc14 Γ A) B) A; v114 = var14 (vs14 vz14) v214 : ∀{Γ A B C} → Tm14 (snoc14 (snoc14 (snoc14 Γ A) B) C) A; v214 = var14 (vs14 (vs14 vz14)) v314 : ∀{Γ A B C D} → Tm14 (snoc14 (snoc14 (snoc14 (snoc14 Γ A) B) C) D) A; v314 = var14 (vs14 (vs14 (vs14 vz14))) tbool14 : Ty14; tbool14 = sum14 top14 top14 true14 : ∀{Γ} → Tm14 Γ tbool14; true14 = left14 tt14 tfalse14 : ∀{Γ} → Tm14 Γ tbool14; tfalse14 = right14 tt14 ifthenelse14 : ∀{Γ A} → Tm14 Γ (arr14 tbool14 (arr14 A (arr14 A A))); ifthenelse14 = lam14 (lam14 (lam14 (case14 v214 (lam14 v214) (lam14 v114)))) times414 : ∀{Γ A} → Tm14 Γ (arr14 (arr14 A A) (arr14 A A)); times414 = lam14 (lam14 (app14 v114 (app14 v114 (app14 v114 (app14 v114 v014))))) add14 : ∀{Γ} → Tm14 Γ (arr14 nat14 (arr14 nat14 nat14)); add14 = lam14 (rec14 v014 (lam14 (lam14 (lam14 (suc14 (app14 v114 v014))))) (lam14 v014)) mul14 : ∀{Γ} → Tm14 Γ (arr14 nat14 (arr14 nat14 nat14)); mul14 = lam14 (rec14 v014 (lam14 (lam14 (lam14 (app14 (app14 add14 (app14 v114 v014)) v014)))) (lam14 zero14)) fact14 : ∀{Γ} → Tm14 Γ (arr14 nat14 nat14); fact14 = lam14 (rec14 v014 (lam14 (lam14 (app14 (app14 mul14 (suc14 v114)) v014))) (suc14 zero14)) {-# OPTIONS --type-in-type #-} Ty15 : Set Ty15 = (Ty15 : Set) (nat top bot : Ty15) (arr prod sum : Ty15 → Ty15 → Ty15) → Ty15 nat15 : Ty15; nat15 = λ _ nat15 _ _ _ _ _ → nat15 top15 : Ty15; top15 = λ _ _ top15 _ _ _ _ → top15 bot15 : Ty15; bot15 = λ _ _ _ bot15 _ _ _ → bot15 arr15 : Ty15 → Ty15 → Ty15; arr15 = λ A B Ty15 nat15 top15 bot15 arr15 prod sum → arr15 (A Ty15 nat15 top15 bot15 arr15 prod sum) (B Ty15 nat15 top15 bot15 arr15 prod sum) prod15 : Ty15 → Ty15 → Ty15; prod15 = λ A B Ty15 nat15 top15 bot15 arr15 prod15 sum → prod15 (A Ty15 nat15 top15 bot15 arr15 prod15 sum) (B Ty15 nat15 top15 bot15 arr15 prod15 sum) sum15 : Ty15 → Ty15 → Ty15; sum15 = λ A B Ty15 nat15 top15 bot15 arr15 prod15 sum15 → sum15 (A Ty15 nat15 top15 bot15 arr15 prod15 sum15) (B Ty15 nat15 top15 bot15 arr15 prod15 sum15) Con15 : Set; Con15 = (Con15 : Set) (nil : Con15) (snoc : Con15 → Ty15 → Con15) → Con15 nil15 : Con15; nil15 = λ Con15 nil15 snoc → nil15 snoc15 : Con15 → Ty15 → Con15; snoc15 = λ Γ A Con15 nil15 snoc15 → snoc15 (Γ Con15 nil15 snoc15) A Var15 : Con15 → Ty15 → Set; Var15 = λ Γ A → (Var15 : Con15 → Ty15 → Set) (vz : ∀ Γ A → Var15 (snoc15 Γ A) A) (vs : ∀ Γ B A → Var15 Γ A → Var15 (snoc15 Γ B) A) → Var15 Γ A vz15 : ∀{Γ A} → Var15 (snoc15 Γ A) A; vz15 = λ Var15 vz15 vs → vz15 _ _ vs15 : ∀{Γ B A} → Var15 Γ A → Var15 (snoc15 Γ B) A; vs15 = λ x Var15 vz15 vs15 → vs15 _ _ _ (x Var15 vz15 vs15) Tm15 : Con15 → Ty15 → Set; Tm15 = λ Γ A → (Tm15 : Con15 → Ty15 → Set) (var : ∀ Γ A → Var15 Γ A → Tm15 Γ A) (lam : ∀ Γ A B → Tm15 (snoc15 Γ A) B → Tm15 Γ (arr15 A B)) (app : ∀ Γ A B → Tm15 Γ (arr15 A B) → Tm15 Γ A → Tm15 Γ B) (tt : ∀ Γ → Tm15 Γ top15) (pair : ∀ Γ A B → Tm15 Γ A → Tm15 Γ B → Tm15 Γ (prod15 A B)) (fst : ∀ Γ A B → Tm15 Γ (prod15 A B) → Tm15 Γ A) (snd : ∀ Γ A B → Tm15 Γ (prod15 A B) → Tm15 Γ B) (left : ∀ Γ A B → Tm15 Γ A → Tm15 Γ (sum15 A B)) (right : ∀ Γ A B → Tm15 Γ B → Tm15 Γ (sum15 A B)) (case : ∀ Γ A B C → Tm15 Γ (sum15 A B) → Tm15 Γ (arr15 A C) → Tm15 Γ (arr15 B C) → Tm15 Γ C) (zero : ∀ Γ → Tm15 Γ nat15) (suc : ∀ Γ → Tm15 Γ nat15 → Tm15 Γ nat15) (rec : ∀ Γ A → Tm15 Γ nat15 → Tm15 Γ (arr15 nat15 (arr15 A A)) → Tm15 Γ A → Tm15 Γ A) → Tm15 Γ A var15 : ∀{Γ A} → Var15 Γ A → Tm15 Γ A; var15 = λ x Tm15 var15 lam app tt pair fst snd left right case zero suc rec → var15 _ _ x lam15 : ∀{Γ A B} → Tm15 (snoc15 Γ A) B → Tm15 Γ (arr15 A B); lam15 = λ t Tm15 var15 lam15 app tt pair fst snd left right case zero suc rec → lam15 _ _ _ (t Tm15 var15 lam15 app tt pair fst snd left right case zero suc rec) app15 : ∀{Γ A B} → Tm15 Γ (arr15 A B) → Tm15 Γ A → Tm15 Γ B; app15 = λ t u Tm15 var15 lam15 app15 tt pair fst snd left right case zero suc rec → app15 _ _ _ (t Tm15 var15 lam15 app15 tt pair fst snd left right case zero suc rec) (u Tm15 var15 lam15 app15 tt pair fst snd left right case zero suc rec) tt15 : ∀{Γ} → Tm15 Γ top15; tt15 = λ Tm15 var15 lam15 app15 tt15 pair fst snd left right case zero suc rec → tt15 _ pair15 : ∀{Γ A B} → Tm15 Γ A → Tm15 Γ B → Tm15 Γ (prod15 A B); pair15 = λ t u Tm15 var15 lam15 app15 tt15 pair15 fst snd left right case zero suc rec → pair15 _ _ _ (t Tm15 var15 lam15 app15 tt15 pair15 fst snd left right case zero suc rec) (u Tm15 var15 lam15 app15 tt15 pair15 fst snd left right case zero suc rec) fst15 : ∀{Γ A B} → Tm15 Γ (prod15 A B) → Tm15 Γ A; fst15 = λ t Tm15 var15 lam15 app15 tt15 pair15 fst15 snd left right case zero suc rec → fst15 _ _ _ (t Tm15 var15 lam15 app15 tt15 pair15 fst15 snd left right case zero suc rec) snd15 : ∀{Γ A B} → Tm15 Γ (prod15 A B) → Tm15 Γ B; snd15 = λ t Tm15 var15 lam15 app15 tt15 pair15 fst15 snd15 left right case zero suc rec → snd15 _ _ _ (t Tm15 var15 lam15 app15 tt15 pair15 fst15 snd15 left right case zero suc rec) left15 : ∀{Γ A B} → Tm15 Γ A → Tm15 Γ (sum15 A B); left15 = λ t Tm15 var15 lam15 app15 tt15 pair15 fst15 snd15 left15 right case zero suc rec → left15 _ _ _ (t Tm15 var15 lam15 app15 tt15 pair15 fst15 snd15 left15 right case zero suc rec) right15 : ∀{Γ A B} → Tm15 Γ B → Tm15 Γ (sum15 A B); right15 = λ t Tm15 var15 lam15 app15 tt15 pair15 fst15 snd15 left15 right15 case zero suc rec → right15 _ _ _ (t Tm15 var15 lam15 app15 tt15 pair15 fst15 snd15 left15 right15 case zero suc rec) case15 : ∀{Γ A B C} → Tm15 Γ (sum15 A B) → Tm15 Γ (arr15 A C) → Tm15 Γ (arr15 B C) → Tm15 Γ C; case15 = λ t u v Tm15 var15 lam15 app15 tt15 pair15 fst15 snd15 left15 right15 case15 zero suc rec → case15 _ _ _ _ (t Tm15 var15 lam15 app15 tt15 pair15 fst15 snd15 left15 right15 case15 zero suc rec) (u Tm15 var15 lam15 app15 tt15 pair15 fst15 snd15 left15 right15 case15 zero suc rec) (v Tm15 var15 lam15 app15 tt15 pair15 fst15 snd15 left15 right15 case15 zero suc rec) zero15 : ∀{Γ} → Tm15 Γ nat15; zero15 = λ Tm15 var15 lam15 app15 tt15 pair15 fst15 snd15 left15 right15 case15 zero15 suc rec → zero15 _ suc15 : ∀{Γ} → Tm15 Γ nat15 → Tm15 Γ nat15; suc15 = λ t Tm15 var15 lam15 app15 tt15 pair15 fst15 snd15 left15 right15 case15 zero15 suc15 rec → suc15 _ (t Tm15 var15 lam15 app15 tt15 pair15 fst15 snd15 left15 right15 case15 zero15 suc15 rec) rec15 : ∀{Γ A} → Tm15 Γ nat15 → Tm15 Γ (arr15 nat15 (arr15 A A)) → Tm15 Γ A → Tm15 Γ A; rec15 = λ t u v Tm15 var15 lam15 app15 tt15 pair15 fst15 snd15 left15 right15 case15 zero15 suc15 rec15 → rec15 _ _ (t Tm15 var15 lam15 app15 tt15 pair15 fst15 snd15 left15 right15 case15 zero15 suc15 rec15) (u Tm15 var15 lam15 app15 tt15 pair15 fst15 snd15 left15 right15 case15 zero15 suc15 rec15) (v Tm15 var15 lam15 app15 tt15 pair15 fst15 snd15 left15 right15 case15 zero15 suc15 rec15) v015 : ∀{Γ A} → Tm15 (snoc15 Γ A) A; v015 = var15 vz15 v115 : ∀{Γ A B} → Tm15 (snoc15 (snoc15 Γ A) B) A; v115 = var15 (vs15 vz15) v215 : ∀{Γ A B C} → Tm15 (snoc15 (snoc15 (snoc15 Γ A) B) C) A; v215 = var15 (vs15 (vs15 vz15)) v315 : ∀{Γ A B C D} → Tm15 (snoc15 (snoc15 (snoc15 (snoc15 Γ A) B) C) D) A; v315 = var15 (vs15 (vs15 (vs15 vz15))) tbool15 : Ty15; tbool15 = sum15 top15 top15 true15 : ∀{Γ} → Tm15 Γ tbool15; true15 = left15 tt15 tfalse15 : ∀{Γ} → Tm15 Γ tbool15; tfalse15 = right15 tt15 ifthenelse15 : ∀{Γ A} → Tm15 Γ (arr15 tbool15 (arr15 A (arr15 A A))); ifthenelse15 = lam15 (lam15 (lam15 (case15 v215 (lam15 v215) (lam15 v115)))) times415 : ∀{Γ A} → Tm15 Γ (arr15 (arr15 A A) (arr15 A A)); times415 = lam15 (lam15 (app15 v115 (app15 v115 (app15 v115 (app15 v115 v015))))) add15 : ∀{Γ} → Tm15 Γ (arr15 nat15 (arr15 nat15 nat15)); add15 = lam15 (rec15 v015 (lam15 (lam15 (lam15 (suc15 (app15 v115 v015))))) (lam15 v015)) mul15 : ∀{Γ} → Tm15 Γ (arr15 nat15 (arr15 nat15 nat15)); mul15 = lam15 (rec15 v015 (lam15 (lam15 (lam15 (app15 (app15 add15 (app15 v115 v015)) v015)))) (lam15 zero15)) fact15 : ∀{Γ} → Tm15 Γ (arr15 nat15 nat15); fact15 = lam15 (rec15 v015 (lam15 (lam15 (app15 (app15 mul15 (suc15 v115)) v015))) (suc15 zero15)) {-# OPTIONS --type-in-type #-} Ty16 : Set Ty16 = (Ty16 : Set) (nat top bot : Ty16) (arr prod sum : Ty16 → Ty16 → Ty16) → Ty16 nat16 : Ty16; nat16 = λ _ nat16 _ _ _ _ _ → nat16 top16 : Ty16; top16 = λ _ _ top16 _ _ _ _ → top16 bot16 : Ty16; bot16 = λ _ _ _ bot16 _ _ _ → bot16 arr16 : Ty16 → Ty16 → Ty16; arr16 = λ A B Ty16 nat16 top16 bot16 arr16 prod sum → arr16 (A Ty16 nat16 top16 bot16 arr16 prod sum) (B Ty16 nat16 top16 bot16 arr16 prod sum) prod16 : Ty16 → Ty16 → Ty16; prod16 = λ A B Ty16 nat16 top16 bot16 arr16 prod16 sum → prod16 (A Ty16 nat16 top16 bot16 arr16 prod16 sum) (B Ty16 nat16 top16 bot16 arr16 prod16 sum) sum16 : Ty16 → Ty16 → Ty16; sum16 = λ A B Ty16 nat16 top16 bot16 arr16 prod16 sum16 → sum16 (A Ty16 nat16 top16 bot16 arr16 prod16 sum16) (B Ty16 nat16 top16 bot16 arr16 prod16 sum16) Con16 : Set; Con16 = (Con16 : Set) (nil : Con16) (snoc : Con16 → Ty16 → Con16) → Con16 nil16 : Con16; nil16 = λ Con16 nil16 snoc → nil16 snoc16 : Con16 → Ty16 → Con16; snoc16 = λ Γ A Con16 nil16 snoc16 → snoc16 (Γ Con16 nil16 snoc16) A Var16 : Con16 → Ty16 → Set; Var16 = λ Γ A → (Var16 : Con16 → Ty16 → Set) (vz : ∀ Γ A → Var16 (snoc16 Γ A) A) (vs : ∀ Γ B A → Var16 Γ A → Var16 (snoc16 Γ B) A) → Var16 Γ A vz16 : ∀{Γ A} → Var16 (snoc16 Γ A) A; vz16 = λ Var16 vz16 vs → vz16 _ _ vs16 : ∀{Γ B A} → Var16 Γ A → Var16 (snoc16 Γ B) A; vs16 = λ x Var16 vz16 vs16 → vs16 _ _ _ (x Var16 vz16 vs16) Tm16 : Con16 → Ty16 → Set; Tm16 = λ Γ A → (Tm16 : Con16 → Ty16 → Set) (var : ∀ Γ A → Var16 Γ A → Tm16 Γ A) (lam : ∀ Γ A B → Tm16 (snoc16 Γ A) B → Tm16 Γ (arr16 A B)) (app : ∀ Γ A B → Tm16 Γ (arr16 A B) → Tm16 Γ A → Tm16 Γ B) (tt : ∀ Γ → Tm16 Γ top16) (pair : ∀ Γ A B → Tm16 Γ A → Tm16 Γ B → Tm16 Γ (prod16 A B)) (fst : ∀ Γ A B → Tm16 Γ (prod16 A B) → Tm16 Γ A) (snd : ∀ Γ A B → Tm16 Γ (prod16 A B) → Tm16 Γ B) (left : ∀ Γ A B → Tm16 Γ A → Tm16 Γ (sum16 A B)) (right : ∀ Γ A B → Tm16 Γ B → Tm16 Γ (sum16 A B)) (case : ∀ Γ A B C → Tm16 Γ (sum16 A B) → Tm16 Γ (arr16 A C) → Tm16 Γ (arr16 B C) → Tm16 Γ C) (zero : ∀ Γ → Tm16 Γ nat16) (suc : ∀ Γ → Tm16 Γ nat16 → Tm16 Γ nat16) (rec : ∀ Γ A → Tm16 Γ nat16 → Tm16 Γ (arr16 nat16 (arr16 A A)) → Tm16 Γ A → Tm16 Γ A) → Tm16 Γ A var16 : ∀{Γ A} → Var16 Γ A → Tm16 Γ A; var16 = λ x Tm16 var16 lam app tt pair fst snd left right case zero suc rec → var16 _ _ x lam16 : ∀{Γ A B} → Tm16 (snoc16 Γ A) B → Tm16 Γ (arr16 A B); lam16 = λ t Tm16 var16 lam16 app tt pair fst snd left right case zero suc rec → lam16 _ _ _ (t Tm16 var16 lam16 app tt pair fst snd left right case zero suc rec) app16 : ∀{Γ A B} → Tm16 Γ (arr16 A B) → Tm16 Γ A → Tm16 Γ B; app16 = λ t u Tm16 var16 lam16 app16 tt pair fst snd left right case zero suc rec → app16 _ _ _ (t Tm16 var16 lam16 app16 tt pair fst snd left right case zero suc rec) (u Tm16 var16 lam16 app16 tt pair fst snd left right case zero suc rec) tt16 : ∀{Γ} → Tm16 Γ top16; tt16 = λ Tm16 var16 lam16 app16 tt16 pair fst snd left right case zero suc rec → tt16 _ pair16 : ∀{Γ A B} → Tm16 Γ A → Tm16 Γ B → Tm16 Γ (prod16 A B); pair16 = λ t u Tm16 var16 lam16 app16 tt16 pair16 fst snd left right case zero suc rec → pair16 _ _ _ (t Tm16 var16 lam16 app16 tt16 pair16 fst snd left right case zero suc rec) (u Tm16 var16 lam16 app16 tt16 pair16 fst snd left right case zero suc rec) fst16 : ∀{Γ A B} → Tm16 Γ (prod16 A B) → Tm16 Γ A; fst16 = λ t Tm16 var16 lam16 app16 tt16 pair16 fst16 snd left right case zero suc rec → fst16 _ _ _ (t Tm16 var16 lam16 app16 tt16 pair16 fst16 snd left right case zero suc rec) snd16 : ∀{Γ A B} → Tm16 Γ (prod16 A B) → Tm16 Γ B; snd16 = λ t Tm16 var16 lam16 app16 tt16 pair16 fst16 snd16 left right case zero suc rec → snd16 _ _ _ (t Tm16 var16 lam16 app16 tt16 pair16 fst16 snd16 left right case zero suc rec) left16 : ∀{Γ A B} → Tm16 Γ A → Tm16 Γ (sum16 A B); left16 = λ t Tm16 var16 lam16 app16 tt16 pair16 fst16 snd16 left16 right case zero suc rec → left16 _ _ _ (t Tm16 var16 lam16 app16 tt16 pair16 fst16 snd16 left16 right case zero suc rec) right16 : ∀{Γ A B} → Tm16 Γ B → Tm16 Γ (sum16 A B); right16 = λ t Tm16 var16 lam16 app16 tt16 pair16 fst16 snd16 left16 right16 case zero suc rec → right16 _ _ _ (t Tm16 var16 lam16 app16 tt16 pair16 fst16 snd16 left16 right16 case zero suc rec) case16 : ∀{Γ A B C} → Tm16 Γ (sum16 A B) → Tm16 Γ (arr16 A C) → Tm16 Γ (arr16 B C) → Tm16 Γ C; case16 = λ t u v Tm16 var16 lam16 app16 tt16 pair16 fst16 snd16 left16 right16 case16 zero suc rec → case16 _ _ _ _ (t Tm16 var16 lam16 app16 tt16 pair16 fst16 snd16 left16 right16 case16 zero suc rec) (u Tm16 var16 lam16 app16 tt16 pair16 fst16 snd16 left16 right16 case16 zero suc rec) (v Tm16 var16 lam16 app16 tt16 pair16 fst16 snd16 left16 right16 case16 zero suc rec) zero16 : ∀{Γ} → Tm16 Γ nat16; zero16 = λ Tm16 var16 lam16 app16 tt16 pair16 fst16 snd16 left16 right16 case16 zero16 suc rec → zero16 _ suc16 : ∀{Γ} → Tm16 Γ nat16 → Tm16 Γ nat16; suc16 = λ t Tm16 var16 lam16 app16 tt16 pair16 fst16 snd16 left16 right16 case16 zero16 suc16 rec → suc16 _ (t Tm16 var16 lam16 app16 tt16 pair16 fst16 snd16 left16 right16 case16 zero16 suc16 rec) rec16 : ∀{Γ A} → Tm16 Γ nat16 → Tm16 Γ (arr16 nat16 (arr16 A A)) → Tm16 Γ A → Tm16 Γ A; rec16 = λ t u v Tm16 var16 lam16 app16 tt16 pair16 fst16 snd16 left16 right16 case16 zero16 suc16 rec16 → rec16 _ _ (t Tm16 var16 lam16 app16 tt16 pair16 fst16 snd16 left16 right16 case16 zero16 suc16 rec16) (u Tm16 var16 lam16 app16 tt16 pair16 fst16 snd16 left16 right16 case16 zero16 suc16 rec16) (v Tm16 var16 lam16 app16 tt16 pair16 fst16 snd16 left16 right16 case16 zero16 suc16 rec16) v016 : ∀{Γ A} → Tm16 (snoc16 Γ A) A; v016 = var16 vz16 v116 : ∀{Γ A B} → Tm16 (snoc16 (snoc16 Γ A) B) A; v116 = var16 (vs16 vz16) v216 : ∀{Γ A B C} → Tm16 (snoc16 (snoc16 (snoc16 Γ A) B) C) A; v216 = var16 (vs16 (vs16 vz16)) v316 : ∀{Γ A B C D} → Tm16 (snoc16 (snoc16 (snoc16 (snoc16 Γ A) B) C) D) A; v316 = var16 (vs16 (vs16 (vs16 vz16))) tbool16 : Ty16; tbool16 = sum16 top16 top16 true16 : ∀{Γ} → Tm16 Γ tbool16; true16 = left16 tt16 tfalse16 : ∀{Γ} → Tm16 Γ tbool16; tfalse16 = right16 tt16 ifthenelse16 : ∀{Γ A} → Tm16 Γ (arr16 tbool16 (arr16 A (arr16 A A))); ifthenelse16 = lam16 (lam16 (lam16 (case16 v216 (lam16 v216) (lam16 v116)))) times416 : ∀{Γ A} → Tm16 Γ (arr16 (arr16 A A) (arr16 A A)); times416 = lam16 (lam16 (app16 v116 (app16 v116 (app16 v116 (app16 v116 v016))))) add16 : ∀{Γ} → Tm16 Γ (arr16 nat16 (arr16 nat16 nat16)); add16 = lam16 (rec16 v016 (lam16 (lam16 (lam16 (suc16 (app16 v116 v016))))) (lam16 v016)) mul16 : ∀{Γ} → Tm16 Γ (arr16 nat16 (arr16 nat16 nat16)); mul16 = lam16 (rec16 v016 (lam16 (lam16 (lam16 (app16 (app16 add16 (app16 v116 v016)) v016)))) (lam16 zero16)) fact16 : ∀{Γ} → Tm16 Γ (arr16 nat16 nat16); fact16 = lam16 (rec16 v016 (lam16 (lam16 (app16 (app16 mul16 (suc16 v116)) v016))) (suc16 zero16)) {-# OPTIONS --type-in-type #-} Ty17 : Set Ty17 = (Ty17 : Set) (nat top bot : Ty17) (arr prod sum : Ty17 → Ty17 → Ty17) → Ty17 nat17 : Ty17; nat17 = λ _ nat17 _ _ _ _ _ → nat17 top17 : Ty17; top17 = λ _ _ top17 _ _ _ _ → top17 bot17 : Ty17; bot17 = λ _ _ _ bot17 _ _ _ → bot17 arr17 : Ty17 → Ty17 → Ty17; arr17 = λ A B Ty17 nat17 top17 bot17 arr17 prod sum → arr17 (A Ty17 nat17 top17 bot17 arr17 prod sum) (B Ty17 nat17 top17 bot17 arr17 prod sum) prod17 : Ty17 → Ty17 → Ty17; prod17 = λ A B Ty17 nat17 top17 bot17 arr17 prod17 sum → prod17 (A Ty17 nat17 top17 bot17 arr17 prod17 sum) (B Ty17 nat17 top17 bot17 arr17 prod17 sum) sum17 : Ty17 → Ty17 → Ty17; sum17 = λ A B Ty17 nat17 top17 bot17 arr17 prod17 sum17 → sum17 (A Ty17 nat17 top17 bot17 arr17 prod17 sum17) (B Ty17 nat17 top17 bot17 arr17 prod17 sum17) Con17 : Set; Con17 = (Con17 : Set) (nil : Con17) (snoc : Con17 → Ty17 → Con17) → Con17 nil17 : Con17; nil17 = λ Con17 nil17 snoc → nil17 snoc17 : Con17 → Ty17 → Con17; snoc17 = λ Γ A Con17 nil17 snoc17 → snoc17 (Γ Con17 nil17 snoc17) A Var17 : Con17 → Ty17 → Set; Var17 = λ Γ A → (Var17 : Con17 → Ty17 → Set) (vz : ∀ Γ A → Var17 (snoc17 Γ A) A) (vs : ∀ Γ B A → Var17 Γ A → Var17 (snoc17 Γ B) A) → Var17 Γ A vz17 : ∀{Γ A} → Var17 (snoc17 Γ A) A; vz17 = λ Var17 vz17 vs → vz17 _ _ vs17 : ∀{Γ B A} → Var17 Γ A → Var17 (snoc17 Γ B) A; vs17 = λ x Var17 vz17 vs17 → vs17 _ _ _ (x Var17 vz17 vs17) Tm17 : Con17 → Ty17 → Set; Tm17 = λ Γ A → (Tm17 : Con17 → Ty17 → Set) (var : ∀ Γ A → Var17 Γ A → Tm17 Γ A) (lam : ∀ Γ A B → Tm17 (snoc17 Γ A) B → Tm17 Γ (arr17 A B)) (app : ∀ Γ A B → Tm17 Γ (arr17 A B) → Tm17 Γ A → Tm17 Γ B) (tt : ∀ Γ → Tm17 Γ top17) (pair : ∀ Γ A B → Tm17 Γ A → Tm17 Γ B → Tm17 Γ (prod17 A B)) (fst : ∀ Γ A B → Tm17 Γ (prod17 A B) → Tm17 Γ A) (snd : ∀ Γ A B → Tm17 Γ (prod17 A B) → Tm17 Γ B) (left : ∀ Γ A B → Tm17 Γ A → Tm17 Γ (sum17 A B)) (right : ∀ Γ A B → Tm17 Γ B → Tm17 Γ (sum17 A B)) (case : ∀ Γ A B C → Tm17 Γ (sum17 A B) → Tm17 Γ (arr17 A C) → Tm17 Γ (arr17 B C) → Tm17 Γ C) (zero : ∀ Γ → Tm17 Γ nat17) (suc : ∀ Γ → Tm17 Γ nat17 → Tm17 Γ nat17) (rec : ∀ Γ A → Tm17 Γ nat17 → Tm17 Γ (arr17 nat17 (arr17 A A)) → Tm17 Γ A → Tm17 Γ A) → Tm17 Γ A var17 : ∀{Γ A} → Var17 Γ A → Tm17 Γ A; var17 = λ x Tm17 var17 lam app tt pair fst snd left right case zero suc rec → var17 _ _ x lam17 : ∀{Γ A B} → Tm17 (snoc17 Γ A) B → Tm17 Γ (arr17 A B); lam17 = λ t Tm17 var17 lam17 app tt pair fst snd left right case zero suc rec → lam17 _ _ _ (t Tm17 var17 lam17 app tt pair fst snd left right case zero suc rec) app17 : ∀{Γ A B} → Tm17 Γ (arr17 A B) → Tm17 Γ A → Tm17 Γ B; app17 = λ t u Tm17 var17 lam17 app17 tt pair fst snd left right case zero suc rec → app17 _ _ _ (t Tm17 var17 lam17 app17 tt pair fst snd left right case zero suc rec) (u Tm17 var17 lam17 app17 tt pair fst snd left right case zero suc rec) tt17 : ∀{Γ} → Tm17 Γ top17; tt17 = λ Tm17 var17 lam17 app17 tt17 pair fst snd left right case zero suc rec → tt17 _ pair17 : ∀{Γ A B} → Tm17 Γ A → Tm17 Γ B → Tm17 Γ (prod17 A B); pair17 = λ t u Tm17 var17 lam17 app17 tt17 pair17 fst snd left right case zero suc rec → pair17 _ _ _ (t Tm17 var17 lam17 app17 tt17 pair17 fst snd left right case zero suc rec) (u Tm17 var17 lam17 app17 tt17 pair17 fst snd left right case zero suc rec) fst17 : ∀{Γ A B} → Tm17 Γ (prod17 A B) → Tm17 Γ A; fst17 = λ t Tm17 var17 lam17 app17 tt17 pair17 fst17 snd left right case zero suc rec → fst17 _ _ _ (t Tm17 var17 lam17 app17 tt17 pair17 fst17 snd left right case zero suc rec) snd17 : ∀{Γ A B} → Tm17 Γ (prod17 A B) → Tm17 Γ B; snd17 = λ t Tm17 var17 lam17 app17 tt17 pair17 fst17 snd17 left right case zero suc rec → snd17 _ _ _ (t Tm17 var17 lam17 app17 tt17 pair17 fst17 snd17 left right case zero suc rec) left17 : ∀{Γ A B} → Tm17 Γ A → Tm17 Γ (sum17 A B); left17 = λ t Tm17 var17 lam17 app17 tt17 pair17 fst17 snd17 left17 right case zero suc rec → left17 _ _ _ (t Tm17 var17 lam17 app17 tt17 pair17 fst17 snd17 left17 right case zero suc rec) right17 : ∀{Γ A B} → Tm17 Γ B → Tm17 Γ (sum17 A B); right17 = λ t Tm17 var17 lam17 app17 tt17 pair17 fst17 snd17 left17 right17 case zero suc rec → right17 _ _ _ (t Tm17 var17 lam17 app17 tt17 pair17 fst17 snd17 left17 right17 case zero suc rec) case17 : ∀{Γ A B C} → Tm17 Γ (sum17 A B) → Tm17 Γ (arr17 A C) → Tm17 Γ (arr17 B C) → Tm17 Γ C; case17 = λ t u v Tm17 var17 lam17 app17 tt17 pair17 fst17 snd17 left17 right17 case17 zero suc rec → case17 _ _ _ _ (t Tm17 var17 lam17 app17 tt17 pair17 fst17 snd17 left17 right17 case17 zero suc rec) (u Tm17 var17 lam17 app17 tt17 pair17 fst17 snd17 left17 right17 case17 zero suc rec) (v Tm17 var17 lam17 app17 tt17 pair17 fst17 snd17 left17 right17 case17 zero suc rec) zero17 : ∀{Γ} → Tm17 Γ nat17; zero17 = λ Tm17 var17 lam17 app17 tt17 pair17 fst17 snd17 left17 right17 case17 zero17 suc rec → zero17 _ suc17 : ∀{Γ} → Tm17 Γ nat17 → Tm17 Γ nat17; suc17 = λ t Tm17 var17 lam17 app17 tt17 pair17 fst17 snd17 left17 right17 case17 zero17 suc17 rec → suc17 _ (t Tm17 var17 lam17 app17 tt17 pair17 fst17 snd17 left17 right17 case17 zero17 suc17 rec) rec17 : ∀{Γ A} → Tm17 Γ nat17 → Tm17 Γ (arr17 nat17 (arr17 A A)) → Tm17 Γ A → Tm17 Γ A; rec17 = λ t u v Tm17 var17 lam17 app17 tt17 pair17 fst17 snd17 left17 right17 case17 zero17 suc17 rec17 → rec17 _ _ (t Tm17 var17 lam17 app17 tt17 pair17 fst17 snd17 left17 right17 case17 zero17 suc17 rec17) (u Tm17 var17 lam17 app17 tt17 pair17 fst17 snd17 left17 right17 case17 zero17 suc17 rec17) (v Tm17 var17 lam17 app17 tt17 pair17 fst17 snd17 left17 right17 case17 zero17 suc17 rec17) v017 : ∀{Γ A} → Tm17 (snoc17 Γ A) A; v017 = var17 vz17 v117 : ∀{Γ A B} → Tm17 (snoc17 (snoc17 Γ A) B) A; v117 = var17 (vs17 vz17) v217 : ∀{Γ A B C} → Tm17 (snoc17 (snoc17 (snoc17 Γ A) B) C) A; v217 = var17 (vs17 (vs17 vz17)) v317 : ∀{Γ A B C D} → Tm17 (snoc17 (snoc17 (snoc17 (snoc17 Γ A) B) C) D) A; v317 = var17 (vs17 (vs17 (vs17 vz17))) tbool17 : Ty17; tbool17 = sum17 top17 top17 true17 : ∀{Γ} → Tm17 Γ tbool17; true17 = left17 tt17 tfalse17 : ∀{Γ} → Tm17 Γ tbool17; tfalse17 = right17 tt17 ifthenelse17 : ∀{Γ A} → Tm17 Γ (arr17 tbool17 (arr17 A (arr17 A A))); ifthenelse17 = lam17 (lam17 (lam17 (case17 v217 (lam17 v217) (lam17 v117)))) times417 : ∀{Γ A} → Tm17 Γ (arr17 (arr17 A A) (arr17 A A)); times417 = lam17 (lam17 (app17 v117 (app17 v117 (app17 v117 (app17 v117 v017))))) add17 : ∀{Γ} → Tm17 Γ (arr17 nat17 (arr17 nat17 nat17)); add17 = lam17 (rec17 v017 (lam17 (lam17 (lam17 (suc17 (app17 v117 v017))))) (lam17 v017)) mul17 : ∀{Γ} → Tm17 Γ (arr17 nat17 (arr17 nat17 nat17)); mul17 = lam17 (rec17 v017 (lam17 (lam17 (lam17 (app17 (app17 add17 (app17 v117 v017)) v017)))) (lam17 zero17)) fact17 : ∀{Γ} → Tm17 Γ (arr17 nat17 nat17); fact17 = lam17 (rec17 v017 (lam17 (lam17 (app17 (app17 mul17 (suc17 v117)) v017))) (suc17 zero17)) {-# OPTIONS --type-in-type #-} Ty18 : Set Ty18 = (Ty18 : Set) (nat top bot : Ty18) (arr prod sum : Ty18 → Ty18 → Ty18) → Ty18 nat18 : Ty18; nat18 = λ _ nat18 _ _ _ _ _ → nat18 top18 : Ty18; top18 = λ _ _ top18 _ _ _ _ → top18 bot18 : Ty18; bot18 = λ _ _ _ bot18 _ _ _ → bot18 arr18 : Ty18 → Ty18 → Ty18; arr18 = λ A B Ty18 nat18 top18 bot18 arr18 prod sum → arr18 (A Ty18 nat18 top18 bot18 arr18 prod sum) (B Ty18 nat18 top18 bot18 arr18 prod sum) prod18 : Ty18 → Ty18 → Ty18; prod18 = λ A B Ty18 nat18 top18 bot18 arr18 prod18 sum → prod18 (A Ty18 nat18 top18 bot18 arr18 prod18 sum) (B Ty18 nat18 top18 bot18 arr18 prod18 sum) sum18 : Ty18 → Ty18 → Ty18; sum18 = λ A B Ty18 nat18 top18 bot18 arr18 prod18 sum18 → sum18 (A Ty18 nat18 top18 bot18 arr18 prod18 sum18) (B Ty18 nat18 top18 bot18 arr18 prod18 sum18) Con18 : Set; Con18 = (Con18 : Set) (nil : Con18) (snoc : Con18 → Ty18 → Con18) → Con18 nil18 : Con18; nil18 = λ Con18 nil18 snoc → nil18 snoc18 : Con18 → Ty18 → Con18; snoc18 = λ Γ A Con18 nil18 snoc18 → snoc18 (Γ Con18 nil18 snoc18) A Var18 : Con18 → Ty18 → Set; Var18 = λ Γ A → (Var18 : Con18 → Ty18 → Set) (vz : ∀ Γ A → Var18 (snoc18 Γ A) A) (vs : ∀ Γ B A → Var18 Γ A → Var18 (snoc18 Γ B) A) → Var18 Γ A vz18 : ∀{Γ A} → Var18 (snoc18 Γ A) A; vz18 = λ Var18 vz18 vs → vz18 _ _ vs18 : ∀{Γ B A} → Var18 Γ A → Var18 (snoc18 Γ B) A; vs18 = λ x Var18 vz18 vs18 → vs18 _ _ _ (x Var18 vz18 vs18) Tm18 : Con18 → Ty18 → Set; Tm18 = λ Γ A → (Tm18 : Con18 → Ty18 → Set) (var : ∀ Γ A → Var18 Γ A → Tm18 Γ A) (lam : ∀ Γ A B → Tm18 (snoc18 Γ A) B → Tm18 Γ (arr18 A B)) (app : ∀ Γ A B → Tm18 Γ (arr18 A B) → Tm18 Γ A → Tm18 Γ B) (tt : ∀ Γ → Tm18 Γ top18) (pair : ∀ Γ A B → Tm18 Γ A → Tm18 Γ B → Tm18 Γ (prod18 A B)) (fst : ∀ Γ A B → Tm18 Γ (prod18 A B) → Tm18 Γ A) (snd : ∀ Γ A B → Tm18 Γ (prod18 A B) → Tm18 Γ B) (left : ∀ Γ A B → Tm18 Γ A → Tm18 Γ (sum18 A B)) (right : ∀ Γ A B → Tm18 Γ B → Tm18 Γ (sum18 A B)) (case : ∀ Γ A B C → Tm18 Γ (sum18 A B) → Tm18 Γ (arr18 A C) → Tm18 Γ (arr18 B C) → Tm18 Γ C) (zero : ∀ Γ → Tm18 Γ nat18) (suc : ∀ Γ → Tm18 Γ nat18 → Tm18 Γ nat18) (rec : ∀ Γ A → Tm18 Γ nat18 → Tm18 Γ (arr18 nat18 (arr18 A A)) → Tm18 Γ A → Tm18 Γ A) → Tm18 Γ A var18 : ∀{Γ A} → Var18 Γ A → Tm18 Γ A; var18 = λ x Tm18 var18 lam app tt pair fst snd left right case zero suc rec → var18 _ _ x lam18 : ∀{Γ A B} → Tm18 (snoc18 Γ A) B → Tm18 Γ (arr18 A B); lam18 = λ t Tm18 var18 lam18 app tt pair fst snd left right case zero suc rec → lam18 _ _ _ (t Tm18 var18 lam18 app tt pair fst snd left right case zero suc rec) app18 : ∀{Γ A B} → Tm18 Γ (arr18 A B) → Tm18 Γ A → Tm18 Γ B; app18 = λ t u Tm18 var18 lam18 app18 tt pair fst snd left right case zero suc rec → app18 _ _ _ (t Tm18 var18 lam18 app18 tt pair fst snd left right case zero suc rec) (u Tm18 var18 lam18 app18 tt pair fst snd left right case zero suc rec) tt18 : ∀{Γ} → Tm18 Γ top18; tt18 = λ Tm18 var18 lam18 app18 tt18 pair fst snd left right case zero suc rec → tt18 _ pair18 : ∀{Γ A B} → Tm18 Γ A → Tm18 Γ B → Tm18 Γ (prod18 A B); pair18 = λ t u Tm18 var18 lam18 app18 tt18 pair18 fst snd left right case zero suc rec → pair18 _ _ _ (t Tm18 var18 lam18 app18 tt18 pair18 fst snd left right case zero suc rec) (u Tm18 var18 lam18 app18 tt18 pair18 fst snd left right case zero suc rec) fst18 : ∀{Γ A B} → Tm18 Γ (prod18 A B) → Tm18 Γ A; fst18 = λ t Tm18 var18 lam18 app18 tt18 pair18 fst18 snd left right case zero suc rec → fst18 _ _ _ (t Tm18 var18 lam18 app18 tt18 pair18 fst18 snd left right case zero suc rec) snd18 : ∀{Γ A B} → Tm18 Γ (prod18 A B) → Tm18 Γ B; snd18 = λ t Tm18 var18 lam18 app18 tt18 pair18 fst18 snd18 left right case zero suc rec → snd18 _ _ _ (t Tm18 var18 lam18 app18 tt18 pair18 fst18 snd18 left right case zero suc rec) left18 : ∀{Γ A B} → Tm18 Γ A → Tm18 Γ (sum18 A B); left18 = λ t Tm18 var18 lam18 app18 tt18 pair18 fst18 snd18 left18 right case zero suc rec → left18 _ _ _ (t Tm18 var18 lam18 app18 tt18 pair18 fst18 snd18 left18 right case zero suc rec) right18 : ∀{Γ A B} → Tm18 Γ B → Tm18 Γ (sum18 A B); right18 = λ t Tm18 var18 lam18 app18 tt18 pair18 fst18 snd18 left18 right18 case zero suc rec → right18 _ _ _ (t Tm18 var18 lam18 app18 tt18 pair18 fst18 snd18 left18 right18 case zero suc rec) case18 : ∀{Γ A B C} → Tm18 Γ (sum18 A B) → Tm18 Γ (arr18 A C) → Tm18 Γ (arr18 B C) → Tm18 Γ C; case18 = λ t u v Tm18 var18 lam18 app18 tt18 pair18 fst18 snd18 left18 right18 case18 zero suc rec → case18 _ _ _ _ (t Tm18 var18 lam18 app18 tt18 pair18 fst18 snd18 left18 right18 case18 zero suc rec) (u Tm18 var18 lam18 app18 tt18 pair18 fst18 snd18 left18 right18 case18 zero suc rec) (v Tm18 var18 lam18 app18 tt18 pair18 fst18 snd18 left18 right18 case18 zero suc rec) zero18 : ∀{Γ} → Tm18 Γ nat18; zero18 = λ Tm18 var18 lam18 app18 tt18 pair18 fst18 snd18 left18 right18 case18 zero18 suc rec → zero18 _ suc18 : ∀{Γ} → Tm18 Γ nat18 → Tm18 Γ nat18; suc18 = λ t Tm18 var18 lam18 app18 tt18 pair18 fst18 snd18 left18 right18 case18 zero18 suc18 rec → suc18 _ (t Tm18 var18 lam18 app18 tt18 pair18 fst18 snd18 left18 right18 case18 zero18 suc18 rec) rec18 : ∀{Γ A} → Tm18 Γ nat18 → Tm18 Γ (arr18 nat18 (arr18 A A)) → Tm18 Γ A → Tm18 Γ A; rec18 = λ t u v Tm18 var18 lam18 app18 tt18 pair18 fst18 snd18 left18 right18 case18 zero18 suc18 rec18 → rec18 _ _ (t Tm18 var18 lam18 app18 tt18 pair18 fst18 snd18 left18 right18 case18 zero18 suc18 rec18) (u Tm18 var18 lam18 app18 tt18 pair18 fst18 snd18 left18 right18 case18 zero18 suc18 rec18) (v Tm18 var18 lam18 app18 tt18 pair18 fst18 snd18 left18 right18 case18 zero18 suc18 rec18) v018 : ∀{Γ A} → Tm18 (snoc18 Γ A) A; v018 = var18 vz18 v118 : ∀{Γ A B} → Tm18 (snoc18 (snoc18 Γ A) B) A; v118 = var18 (vs18 vz18) v218 : ∀{Γ A B C} → Tm18 (snoc18 (snoc18 (snoc18 Γ A) B) C) A; v218 = var18 (vs18 (vs18 vz18)) v318 : ∀{Γ A B C D} → Tm18 (snoc18 (snoc18 (snoc18 (snoc18 Γ A) B) C) D) A; v318 = var18 (vs18 (vs18 (vs18 vz18))) tbool18 : Ty18; tbool18 = sum18 top18 top18 true18 : ∀{Γ} → Tm18 Γ tbool18; true18 = left18 tt18 tfalse18 : ∀{Γ} → Tm18 Γ tbool18; tfalse18 = right18 tt18 ifthenelse18 : ∀{Γ A} → Tm18 Γ (arr18 tbool18 (arr18 A (arr18 A A))); ifthenelse18 = lam18 (lam18 (lam18 (case18 v218 (lam18 v218) (lam18 v118)))) times418 : ∀{Γ A} → Tm18 Γ (arr18 (arr18 A A) (arr18 A A)); times418 = lam18 (lam18 (app18 v118 (app18 v118 (app18 v118 (app18 v118 v018))))) add18 : ∀{Γ} → Tm18 Γ (arr18 nat18 (arr18 nat18 nat18)); add18 = lam18 (rec18 v018 (lam18 (lam18 (lam18 (suc18 (app18 v118 v018))))) (lam18 v018)) mul18 : ∀{Γ} → Tm18 Γ (arr18 nat18 (arr18 nat18 nat18)); mul18 = lam18 (rec18 v018 (lam18 (lam18 (lam18 (app18 (app18 add18 (app18 v118 v018)) v018)))) (lam18 zero18)) fact18 : ∀{Γ} → Tm18 Γ (arr18 nat18 nat18); fact18 = lam18 (rec18 v018 (lam18 (lam18 (app18 (app18 mul18 (suc18 v118)) v018))) (suc18 zero18)) {-# OPTIONS --type-in-type #-} Ty19 : Set Ty19 = (Ty19 : Set) (nat top bot : Ty19) (arr prod sum : Ty19 → Ty19 → Ty19) → Ty19 nat19 : Ty19; nat19 = λ _ nat19 _ _ _ _ _ → nat19 top19 : Ty19; top19 = λ _ _ top19 _ _ _ _ → top19 bot19 : Ty19; bot19 = λ _ _ _ bot19 _ _ _ → bot19 arr19 : Ty19 → Ty19 → Ty19; arr19 = λ A B Ty19 nat19 top19 bot19 arr19 prod sum → arr19 (A Ty19 nat19 top19 bot19 arr19 prod sum) (B Ty19 nat19 top19 bot19 arr19 prod sum) prod19 : Ty19 → Ty19 → Ty19; prod19 = λ A B Ty19 nat19 top19 bot19 arr19 prod19 sum → prod19 (A Ty19 nat19 top19 bot19 arr19 prod19 sum) (B Ty19 nat19 top19 bot19 arr19 prod19 sum) sum19 : Ty19 → Ty19 → Ty19; sum19 = λ A B Ty19 nat19 top19 bot19 arr19 prod19 sum19 → sum19 (A Ty19 nat19 top19 bot19 arr19 prod19 sum19) (B Ty19 nat19 top19 bot19 arr19 prod19 sum19) Con19 : Set; Con19 = (Con19 : Set) (nil : Con19) (snoc : Con19 → Ty19 → Con19) → Con19 nil19 : Con19; nil19 = λ Con19 nil19 snoc → nil19 snoc19 : Con19 → Ty19 → Con19; snoc19 = λ Γ A Con19 nil19 snoc19 → snoc19 (Γ Con19 nil19 snoc19) A Var19 : Con19 → Ty19 → Set; Var19 = λ Γ A → (Var19 : Con19 → Ty19 → Set) (vz : ∀ Γ A → Var19 (snoc19 Γ A) A) (vs : ∀ Γ B A → Var19 Γ A → Var19 (snoc19 Γ B) A) → Var19 Γ A vz19 : ∀{Γ A} → Var19 (snoc19 Γ A) A; vz19 = λ Var19 vz19 vs → vz19 _ _ vs19 : ∀{Γ B A} → Var19 Γ A → Var19 (snoc19 Γ B) A; vs19 = λ x Var19 vz19 vs19 → vs19 _ _ _ (x Var19 vz19 vs19) Tm19 : Con19 → Ty19 → Set; Tm19 = λ Γ A → (Tm19 : Con19 → Ty19 → Set) (var : ∀ Γ A → Var19 Γ A → Tm19 Γ A) (lam : ∀ Γ A B → Tm19 (snoc19 Γ A) B → Tm19 Γ (arr19 A B)) (app : ∀ Γ A B → Tm19 Γ (arr19 A B) → Tm19 Γ A → Tm19 Γ B) (tt : ∀ Γ → Tm19 Γ top19) (pair : ∀ Γ A B → Tm19 Γ A → Tm19 Γ B → Tm19 Γ (prod19 A B)) (fst : ∀ Γ A B → Tm19 Γ (prod19 A B) → Tm19 Γ A) (snd : ∀ Γ A B → Tm19 Γ (prod19 A B) → Tm19 Γ B) (left : ∀ Γ A B → Tm19 Γ A → Tm19 Γ (sum19 A B)) (right : ∀ Γ A B → Tm19 Γ B → Tm19 Γ (sum19 A B)) (case : ∀ Γ A B C → Tm19 Γ (sum19 A B) → Tm19 Γ (arr19 A C) → Tm19 Γ (arr19 B C) → Tm19 Γ C) (zero : ∀ Γ → Tm19 Γ nat19) (suc : ∀ Γ → Tm19 Γ nat19 → Tm19 Γ nat19) (rec : ∀ Γ A → Tm19 Γ nat19 → Tm19 Γ (arr19 nat19 (arr19 A A)) → Tm19 Γ A → Tm19 Γ A) → Tm19 Γ A var19 : ∀{Γ A} → Var19 Γ A → Tm19 Γ A; var19 = λ x Tm19 var19 lam app tt pair fst snd left right case zero suc rec → var19 _ _ x lam19 : ∀{Γ A B} → Tm19 (snoc19 Γ A) B → Tm19 Γ (arr19 A B); lam19 = λ t Tm19 var19 lam19 app tt pair fst snd left right case zero suc rec → lam19 _ _ _ (t Tm19 var19 lam19 app tt pair fst snd left right case zero suc rec) app19 : ∀{Γ A B} → Tm19 Γ (arr19 A B) → Tm19 Γ A → Tm19 Γ B; app19 = λ t u Tm19 var19 lam19 app19 tt pair fst snd left right case zero suc rec → app19 _ _ _ (t Tm19 var19 lam19 app19 tt pair fst snd left right case zero suc rec) (u Tm19 var19 lam19 app19 tt pair fst snd left right case zero suc rec) tt19 : ∀{Γ} → Tm19 Γ top19; tt19 = λ Tm19 var19 lam19 app19 tt19 pair fst snd left right case zero suc rec → tt19 _ pair19 : ∀{Γ A B} → Tm19 Γ A → Tm19 Γ B → Tm19 Γ (prod19 A B); pair19 = λ t u Tm19 var19 lam19 app19 tt19 pair19 fst snd left right case zero suc rec → pair19 _ _ _ (t Tm19 var19 lam19 app19 tt19 pair19 fst snd left right case zero suc rec) (u Tm19 var19 lam19 app19 tt19 pair19 fst snd left right case zero suc rec) fst19 : ∀{Γ A B} → Tm19 Γ (prod19 A B) → Tm19 Γ A; fst19 = λ t Tm19 var19 lam19 app19 tt19 pair19 fst19 snd left right case zero suc rec → fst19 _ _ _ (t Tm19 var19 lam19 app19 tt19 pair19 fst19 snd left right case zero suc rec) snd19 : ∀{Γ A B} → Tm19 Γ (prod19 A B) → Tm19 Γ B; snd19 = λ t Tm19 var19 lam19 app19 tt19 pair19 fst19 snd19 left right case zero suc rec → snd19 _ _ _ (t Tm19 var19 lam19 app19 tt19 pair19 fst19 snd19 left right case zero suc rec) left19 : ∀{Γ A B} → Tm19 Γ A → Tm19 Γ (sum19 A B); left19 = λ t Tm19 var19 lam19 app19 tt19 pair19 fst19 snd19 left19 right case zero suc rec → left19 _ _ _ (t Tm19 var19 lam19 app19 tt19 pair19 fst19 snd19 left19 right case zero suc rec) right19 : ∀{Γ A B} → Tm19 Γ B → Tm19 Γ (sum19 A B); right19 = λ t Tm19 var19 lam19 app19 tt19 pair19 fst19 snd19 left19 right19 case zero suc rec → right19 _ _ _ (t Tm19 var19 lam19 app19 tt19 pair19 fst19 snd19 left19 right19 case zero suc rec) case19 : ∀{Γ A B C} → Tm19 Γ (sum19 A B) → Tm19 Γ (arr19 A C) → Tm19 Γ (arr19 B C) → Tm19 Γ C; case19 = λ t u v Tm19 var19 lam19 app19 tt19 pair19 fst19 snd19 left19 right19 case19 zero suc rec → case19 _ _ _ _ (t Tm19 var19 lam19 app19 tt19 pair19 fst19 snd19 left19 right19 case19 zero suc rec) (u Tm19 var19 lam19 app19 tt19 pair19 fst19 snd19 left19 right19 case19 zero suc rec) (v Tm19 var19 lam19 app19 tt19 pair19 fst19 snd19 left19 right19 case19 zero suc rec) zero19 : ∀{Γ} → Tm19 Γ nat19; zero19 = λ Tm19 var19 lam19 app19 tt19 pair19 fst19 snd19 left19 right19 case19 zero19 suc rec → zero19 _ suc19 : ∀{Γ} → Tm19 Γ nat19 → Tm19 Γ nat19; suc19 = λ t Tm19 var19 lam19 app19 tt19 pair19 fst19 snd19 left19 right19 case19 zero19 suc19 rec → suc19 _ (t Tm19 var19 lam19 app19 tt19 pair19 fst19 snd19 left19 right19 case19 zero19 suc19 rec) rec19 : ∀{Γ A} → Tm19 Γ nat19 → Tm19 Γ (arr19 nat19 (arr19 A A)) → Tm19 Γ A → Tm19 Γ A; rec19 = λ t u v Tm19 var19 lam19 app19 tt19 pair19 fst19 snd19 left19 right19 case19 zero19 suc19 rec19 → rec19 _ _ (t Tm19 var19 lam19 app19 tt19 pair19 fst19 snd19 left19 right19 case19 zero19 suc19 rec19) (u Tm19 var19 lam19 app19 tt19 pair19 fst19 snd19 left19 right19 case19 zero19 suc19 rec19) (v Tm19 var19 lam19 app19 tt19 pair19 fst19 snd19 left19 right19 case19 zero19 suc19 rec19) v019 : ∀{Γ A} → Tm19 (snoc19 Γ A) A; v019 = var19 vz19 v119 : ∀{Γ A B} → Tm19 (snoc19 (snoc19 Γ A) B) A; v119 = var19 (vs19 vz19) v219 : ∀{Γ A B C} → Tm19 (snoc19 (snoc19 (snoc19 Γ A) B) C) A; v219 = var19 (vs19 (vs19 vz19)) v319 : ∀{Γ A B C D} → Tm19 (snoc19 (snoc19 (snoc19 (snoc19 Γ A) B) C) D) A; v319 = var19 (vs19 (vs19 (vs19 vz19))) tbool19 : Ty19; tbool19 = sum19 top19 top19 true19 : ∀{Γ} → Tm19 Γ tbool19; true19 = left19 tt19 tfalse19 : ∀{Γ} → Tm19 Γ tbool19; tfalse19 = right19 tt19 ifthenelse19 : ∀{Γ A} → Tm19 Γ (arr19 tbool19 (arr19 A (arr19 A A))); ifthenelse19 = lam19 (lam19 (lam19 (case19 v219 (lam19 v219) (lam19 v119)))) times419 : ∀{Γ A} → Tm19 Γ (arr19 (arr19 A A) (arr19 A A)); times419 = lam19 (lam19 (app19 v119 (app19 v119 (app19 v119 (app19 v119 v019))))) add19 : ∀{Γ} → Tm19 Γ (arr19 nat19 (arr19 nat19 nat19)); add19 = lam19 (rec19 v019 (lam19 (lam19 (lam19 (suc19 (app19 v119 v019))))) (lam19 v019)) mul19 : ∀{Γ} → Tm19 Γ (arr19 nat19 (arr19 nat19 nat19)); mul19 = lam19 (rec19 v019 (lam19 (lam19 (lam19 (app19 (app19 add19 (app19 v119 v019)) v019)))) (lam19 zero19)) fact19 : ∀{Γ} → Tm19 Γ (arr19 nat19 nat19); fact19 = lam19 (rec19 v019 (lam19 (lam19 (app19 (app19 mul19 (suc19 v119)) v019))) (suc19 zero19)) {-# OPTIONS --type-in-type #-} Ty20 : Set Ty20 = (Ty20 : Set) (nat top bot : Ty20) (arr prod sum : Ty20 → Ty20 → Ty20) → Ty20 nat20 : Ty20; nat20 = λ _ nat20 _ _ _ _ _ → nat20 top20 : Ty20; top20 = λ _ _ top20 _ _ _ _ → top20 bot20 : Ty20; bot20 = λ _ _ _ bot20 _ _ _ → bot20 arr20 : Ty20 → Ty20 → Ty20; arr20 = λ A B Ty20 nat20 top20 bot20 arr20 prod sum → arr20 (A Ty20 nat20 top20 bot20 arr20 prod sum) (B Ty20 nat20 top20 bot20 arr20 prod sum) prod20 : Ty20 → Ty20 → Ty20; prod20 = λ A B Ty20 nat20 top20 bot20 arr20 prod20 sum → prod20 (A Ty20 nat20 top20 bot20 arr20 prod20 sum) (B Ty20 nat20 top20 bot20 arr20 prod20 sum) sum20 : Ty20 → Ty20 → Ty20; sum20 = λ A B Ty20 nat20 top20 bot20 arr20 prod20 sum20 → sum20 (A Ty20 nat20 top20 bot20 arr20 prod20 sum20) (B Ty20 nat20 top20 bot20 arr20 prod20 sum20) Con20 : Set; Con20 = (Con20 : Set) (nil : Con20) (snoc : Con20 → Ty20 → Con20) → Con20 nil20 : Con20; nil20 = λ Con20 nil20 snoc → nil20 snoc20 : Con20 → Ty20 → Con20; snoc20 = λ Γ A Con20 nil20 snoc20 → snoc20 (Γ Con20 nil20 snoc20) A Var20 : Con20 → Ty20 → Set; Var20 = λ Γ A → (Var20 : Con20 → Ty20 → Set) (vz : ∀ Γ A → Var20 (snoc20 Γ A) A) (vs : ∀ Γ B A → Var20 Γ A → Var20 (snoc20 Γ B) A) → Var20 Γ A vz20 : ∀{Γ A} → Var20 (snoc20 Γ A) A; vz20 = λ Var20 vz20 vs → vz20 _ _ vs20 : ∀{Γ B A} → Var20 Γ A → Var20 (snoc20 Γ B) A; vs20 = λ x Var20 vz20 vs20 → vs20 _ _ _ (x Var20 vz20 vs20) Tm20 : Con20 → Ty20 → Set; Tm20 = λ Γ A → (Tm20 : Con20 → Ty20 → Set) (var : ∀ Γ A → Var20 Γ A → Tm20 Γ A) (lam : ∀ Γ A B → Tm20 (snoc20 Γ A) B → Tm20 Γ (arr20 A B)) (app : ∀ Γ A B → Tm20 Γ (arr20 A B) → Tm20 Γ A → Tm20 Γ B) (tt : ∀ Γ → Tm20 Γ top20) (pair : ∀ Γ A B → Tm20 Γ A → Tm20 Γ B → Tm20 Γ (prod20 A B)) (fst : ∀ Γ A B → Tm20 Γ (prod20 A B) → Tm20 Γ A) (snd : ∀ Γ A B → Tm20 Γ (prod20 A B) → Tm20 Γ B) (left : ∀ Γ A B → Tm20 Γ A → Tm20 Γ (sum20 A B)) (right : ∀ Γ A B → Tm20 Γ B → Tm20 Γ (sum20 A B)) (case : ∀ Γ A B C → Tm20 Γ (sum20 A B) → Tm20 Γ (arr20 A C) → Tm20 Γ (arr20 B C) → Tm20 Γ C) (zero : ∀ Γ → Tm20 Γ nat20) (suc : ∀ Γ → Tm20 Γ nat20 → Tm20 Γ nat20) (rec : ∀ Γ A → Tm20 Γ nat20 → Tm20 Γ (arr20 nat20 (arr20 A A)) → Tm20 Γ A → Tm20 Γ A) → Tm20 Γ A var20 : ∀{Γ A} → Var20 Γ A → Tm20 Γ A; var20 = λ x Tm20 var20 lam app tt pair fst snd left right case zero suc rec → var20 _ _ x lam20 : ∀{Γ A B} → Tm20 (snoc20 Γ A) B → Tm20 Γ (arr20 A B); lam20 = λ t Tm20 var20 lam20 app tt pair fst snd left right case zero suc rec → lam20 _ _ _ (t Tm20 var20 lam20 app tt pair fst snd left right case zero suc rec) app20 : ∀{Γ A B} → Tm20 Γ (arr20 A B) → Tm20 Γ A → Tm20 Γ B; app20 = λ t u Tm20 var20 lam20 app20 tt pair fst snd left right case zero suc rec → app20 _ _ _ (t Tm20 var20 lam20 app20 tt pair fst snd left right case zero suc rec) (u Tm20 var20 lam20 app20 tt pair fst snd left right case zero suc rec) tt20 : ∀{Γ} → Tm20 Γ top20; tt20 = λ Tm20 var20 lam20 app20 tt20 pair fst snd left right case zero suc rec → tt20 _ pair20 : ∀{Γ A B} → Tm20 Γ A → Tm20 Γ B → Tm20 Γ (prod20 A B); pair20 = λ t u Tm20 var20 lam20 app20 tt20 pair20 fst snd left right case zero suc rec → pair20 _ _ _ (t Tm20 var20 lam20 app20 tt20 pair20 fst snd left right case zero suc rec) (u Tm20 var20 lam20 app20 tt20 pair20 fst snd left right case zero suc rec) fst20 : ∀{Γ A B} → Tm20 Γ (prod20 A B) → Tm20 Γ A; fst20 = λ t Tm20 var20 lam20 app20 tt20 pair20 fst20 snd left right case zero suc rec → fst20 _ _ _ (t Tm20 var20 lam20 app20 tt20 pair20 fst20 snd left right case zero suc rec) snd20 : ∀{Γ A B} → Tm20 Γ (prod20 A B) → Tm20 Γ B; snd20 = λ t Tm20 var20 lam20 app20 tt20 pair20 fst20 snd20 left right case zero suc rec → snd20 _ _ _ (t Tm20 var20 lam20 app20 tt20 pair20 fst20 snd20 left right case zero suc rec) left20 : ∀{Γ A B} → Tm20 Γ A → Tm20 Γ (sum20 A B); left20 = λ t Tm20 var20 lam20 app20 tt20 pair20 fst20 snd20 left20 right case zero suc rec → left20 _ _ _ (t Tm20 var20 lam20 app20 tt20 pair20 fst20 snd20 left20 right case zero suc rec) right20 : ∀{Γ A B} → Tm20 Γ B → Tm20 Γ (sum20 A B); right20 = λ t Tm20 var20 lam20 app20 tt20 pair20 fst20 snd20 left20 right20 case zero suc rec → right20 _ _ _ (t Tm20 var20 lam20 app20 tt20 pair20 fst20 snd20 left20 right20 case zero suc rec) case20 : ∀{Γ A B C} → Tm20 Γ (sum20 A B) → Tm20 Γ (arr20 A C) → Tm20 Γ (arr20 B C) → Tm20 Γ C; case20 = λ t u v Tm20 var20 lam20 app20 tt20 pair20 fst20 snd20 left20 right20 case20 zero suc rec → case20 _ _ _ _ (t Tm20 var20 lam20 app20 tt20 pair20 fst20 snd20 left20 right20 case20 zero suc rec) (u Tm20 var20 lam20 app20 tt20 pair20 fst20 snd20 left20 right20 case20 zero suc rec) (v Tm20 var20 lam20 app20 tt20 pair20 fst20 snd20 left20 right20 case20 zero suc rec) zero20 : ∀{Γ} → Tm20 Γ nat20; zero20 = λ Tm20 var20 lam20 app20 tt20 pair20 fst20 snd20 left20 right20 case20 zero20 suc rec → zero20 _ suc20 : ∀{Γ} → Tm20 Γ nat20 → Tm20 Γ nat20; suc20 = λ t Tm20 var20 lam20 app20 tt20 pair20 fst20 snd20 left20 right20 case20 zero20 suc20 rec → suc20 _ (t Tm20 var20 lam20 app20 tt20 pair20 fst20 snd20 left20 right20 case20 zero20 suc20 rec) rec20 : ∀{Γ A} → Tm20 Γ nat20 → Tm20 Γ (arr20 nat20 (arr20 A A)) → Tm20 Γ A → Tm20 Γ A; rec20 = λ t u v Tm20 var20 lam20 app20 tt20 pair20 fst20 snd20 left20 right20 case20 zero20 suc20 rec20 → rec20 _ _ (t Tm20 var20 lam20 app20 tt20 pair20 fst20 snd20 left20 right20 case20 zero20 suc20 rec20) (u Tm20 var20 lam20 app20 tt20 pair20 fst20 snd20 left20 right20 case20 zero20 suc20 rec20) (v Tm20 var20 lam20 app20 tt20 pair20 fst20 snd20 left20 right20 case20 zero20 suc20 rec20) v020 : ∀{Γ A} → Tm20 (snoc20 Γ A) A; v020 = var20 vz20 v120 : ∀{Γ A B} → Tm20 (snoc20 (snoc20 Γ A) B) A; v120 = var20 (vs20 vz20) v220 : ∀{Γ A B C} → Tm20 (snoc20 (snoc20 (snoc20 Γ A) B) C) A; v220 = var20 (vs20 (vs20 vz20)) v320 : ∀{Γ A B C D} → Tm20 (snoc20 (snoc20 (snoc20 (snoc20 Γ A) B) C) D) A; v320 = var20 (vs20 (vs20 (vs20 vz20))) tbool20 : Ty20; tbool20 = sum20 top20 top20 true20 : ∀{Γ} → Tm20 Γ tbool20; true20 = left20 tt20 tfalse20 : ∀{Γ} → Tm20 Γ tbool20; tfalse20 = right20 tt20 ifthenelse20 : ∀{Γ A} → Tm20 Γ (arr20 tbool20 (arr20 A (arr20 A A))); ifthenelse20 = lam20 (lam20 (lam20 (case20 v220 (lam20 v220) (lam20 v120)))) times420 : ∀{Γ A} → Tm20 Γ (arr20 (arr20 A A) (arr20 A A)); times420 = lam20 (lam20 (app20 v120 (app20 v120 (app20 v120 (app20 v120 v020))))) add20 : ∀{Γ} → Tm20 Γ (arr20 nat20 (arr20 nat20 nat20)); add20 = lam20 (rec20 v020 (lam20 (lam20 (lam20 (suc20 (app20 v120 v020))))) (lam20 v020)) mul20 : ∀{Γ} → Tm20 Γ (arr20 nat20 (arr20 nat20 nat20)); mul20 = lam20 (rec20 v020 (lam20 (lam20 (lam20 (app20 (app20 add20 (app20 v120 v020)) v020)))) (lam20 zero20)) fact20 : ∀{Γ} → Tm20 Γ (arr20 nat20 nat20); fact20 = lam20 (rec20 v020 (lam20 (lam20 (app20 (app20 mul20 (suc20 v120)) v020))) (suc20 zero20)) {-# OPTIONS --type-in-type #-} Ty21 : Set Ty21 = (Ty21 : Set) (nat top bot : Ty21) (arr prod sum : Ty21 → Ty21 → Ty21) → Ty21 nat21 : Ty21; nat21 = λ _ nat21 _ _ _ _ _ → nat21 top21 : Ty21; top21 = λ _ _ top21 _ _ _ _ → top21 bot21 : Ty21; bot21 = λ _ _ _ bot21 _ _ _ → bot21 arr21 : Ty21 → Ty21 → Ty21; arr21 = λ A B Ty21 nat21 top21 bot21 arr21 prod sum → arr21 (A Ty21 nat21 top21 bot21 arr21 prod sum) (B Ty21 nat21 top21 bot21 arr21 prod sum) prod21 : Ty21 → Ty21 → Ty21; prod21 = λ A B Ty21 nat21 top21 bot21 arr21 prod21 sum → prod21 (A Ty21 nat21 top21 bot21 arr21 prod21 sum) (B Ty21 nat21 top21 bot21 arr21 prod21 sum) sum21 : Ty21 → Ty21 → Ty21; sum21 = λ A B Ty21 nat21 top21 bot21 arr21 prod21 sum21 → sum21 (A Ty21 nat21 top21 bot21 arr21 prod21 sum21) (B Ty21 nat21 top21 bot21 arr21 prod21 sum21) Con21 : Set; Con21 = (Con21 : Set) (nil : Con21) (snoc : Con21 → Ty21 → Con21) → Con21 nil21 : Con21; nil21 = λ Con21 nil21 snoc → nil21 snoc21 : Con21 → Ty21 → Con21; snoc21 = λ Γ A Con21 nil21 snoc21 → snoc21 (Γ Con21 nil21 snoc21) A Var21 : Con21 → Ty21 → Set; Var21 = λ Γ A → (Var21 : Con21 → Ty21 → Set) (vz : ∀ Γ A → Var21 (snoc21 Γ A) A) (vs : ∀ Γ B A → Var21 Γ A → Var21 (snoc21 Γ B) A) → Var21 Γ A vz21 : ∀{Γ A} → Var21 (snoc21 Γ A) A; vz21 = λ Var21 vz21 vs → vz21 _ _ vs21 : ∀{Γ B A} → Var21 Γ A → Var21 (snoc21 Γ B) A; vs21 = λ x Var21 vz21 vs21 → vs21 _ _ _ (x Var21 vz21 vs21) Tm21 : Con21 → Ty21 → Set; Tm21 = λ Γ A → (Tm21 : Con21 → Ty21 → Set) (var : ∀ Γ A → Var21 Γ A → Tm21 Γ A) (lam : ∀ Γ A B → Tm21 (snoc21 Γ A) B → Tm21 Γ (arr21 A B)) (app : ∀ Γ A B → Tm21 Γ (arr21 A B) → Tm21 Γ A → Tm21 Γ B) (tt : ∀ Γ → Tm21 Γ top21) (pair : ∀ Γ A B → Tm21 Γ A → Tm21 Γ B → Tm21 Γ (prod21 A B)) (fst : ∀ Γ A B → Tm21 Γ (prod21 A B) → Tm21 Γ A) (snd : ∀ Γ A B → Tm21 Γ (prod21 A B) → Tm21 Γ B) (left : ∀ Γ A B → Tm21 Γ A → Tm21 Γ (sum21 A B)) (right : ∀ Γ A B → Tm21 Γ B → Tm21 Γ (sum21 A B)) (case : ∀ Γ A B C → Tm21 Γ (sum21 A B) → Tm21 Γ (arr21 A C) → Tm21 Γ (arr21 B C) → Tm21 Γ C) (zero : ∀ Γ → Tm21 Γ nat21) (suc : ∀ Γ → Tm21 Γ nat21 → Tm21 Γ nat21) (rec : ∀ Γ A → Tm21 Γ nat21 → Tm21 Γ (arr21 nat21 (arr21 A A)) → Tm21 Γ A → Tm21 Γ A) → Tm21 Γ A var21 : ∀{Γ A} → Var21 Γ A → Tm21 Γ A; var21 = λ x Tm21 var21 lam app tt pair fst snd left right case zero suc rec → var21 _ _ x lam21 : ∀{Γ A B} → Tm21 (snoc21 Γ A) B → Tm21 Γ (arr21 A B); lam21 = λ t Tm21 var21 lam21 app tt pair fst snd left right case zero suc rec → lam21 _ _ _ (t Tm21 var21 lam21 app tt pair fst snd left right case zero suc rec) app21 : ∀{Γ A B} → Tm21 Γ (arr21 A B) → Tm21 Γ A → Tm21 Γ B; app21 = λ t u Tm21 var21 lam21 app21 tt pair fst snd left right case zero suc rec → app21 _ _ _ (t Tm21 var21 lam21 app21 tt pair fst snd left right case zero suc rec) (u Tm21 var21 lam21 app21 tt pair fst snd left right case zero suc rec) tt21 : ∀{Γ} → Tm21 Γ top21; tt21 = λ Tm21 var21 lam21 app21 tt21 pair fst snd left right case zero suc rec → tt21 _ pair21 : ∀{Γ A B} → Tm21 Γ A → Tm21 Γ B → Tm21 Γ (prod21 A B); pair21 = λ t u Tm21 var21 lam21 app21 tt21 pair21 fst snd left right case zero suc rec → pair21 _ _ _ (t Tm21 var21 lam21 app21 tt21 pair21 fst snd left right case zero suc rec) (u Tm21 var21 lam21 app21 tt21 pair21 fst snd left right case zero suc rec) fst21 : ∀{Γ A B} → Tm21 Γ (prod21 A B) → Tm21 Γ A; fst21 = λ t Tm21 var21 lam21 app21 tt21 pair21 fst21 snd left right case zero suc rec → fst21 _ _ _ (t Tm21 var21 lam21 app21 tt21 pair21 fst21 snd left right case zero suc rec) snd21 : ∀{Γ A B} → Tm21 Γ (prod21 A B) → Tm21 Γ B; snd21 = λ t Tm21 var21 lam21 app21 tt21 pair21 fst21 snd21 left right case zero suc rec → snd21 _ _ _ (t Tm21 var21 lam21 app21 tt21 pair21 fst21 snd21 left right case zero suc rec) left21 : ∀{Γ A B} → Tm21 Γ A → Tm21 Γ (sum21 A B); left21 = λ t Tm21 var21 lam21 app21 tt21 pair21 fst21 snd21 left21 right case zero suc rec → left21 _ _ _ (t Tm21 var21 lam21 app21 tt21 pair21 fst21 snd21 left21 right case zero suc rec) right21 : ∀{Γ A B} → Tm21 Γ B → Tm21 Γ (sum21 A B); right21 = λ t Tm21 var21 lam21 app21 tt21 pair21 fst21 snd21 left21 right21 case zero suc rec → right21 _ _ _ (t Tm21 var21 lam21 app21 tt21 pair21 fst21 snd21 left21 right21 case zero suc rec) case21 : ∀{Γ A B C} → Tm21 Γ (sum21 A B) → Tm21 Γ (arr21 A C) → Tm21 Γ (arr21 B C) → Tm21 Γ C; case21 = λ t u v Tm21 var21 lam21 app21 tt21 pair21 fst21 snd21 left21 right21 case21 zero suc rec → case21 _ _ _ _ (t Tm21 var21 lam21 app21 tt21 pair21 fst21 snd21 left21 right21 case21 zero suc rec) (u Tm21 var21 lam21 app21 tt21 pair21 fst21 snd21 left21 right21 case21 zero suc rec) (v Tm21 var21 lam21 app21 tt21 pair21 fst21 snd21 left21 right21 case21 zero suc rec) zero21 : ∀{Γ} → Tm21 Γ nat21; zero21 = λ Tm21 var21 lam21 app21 tt21 pair21 fst21 snd21 left21 right21 case21 zero21 suc rec → zero21 _ suc21 : ∀{Γ} → Tm21 Γ nat21 → Tm21 Γ nat21; suc21 = λ t Tm21 var21 lam21 app21 tt21 pair21 fst21 snd21 left21 right21 case21 zero21 suc21 rec → suc21 _ (t Tm21 var21 lam21 app21 tt21 pair21 fst21 snd21 left21 right21 case21 zero21 suc21 rec) rec21 : ∀{Γ A} → Tm21 Γ nat21 → Tm21 Γ (arr21 nat21 (arr21 A A)) → Tm21 Γ A → Tm21 Γ A; rec21 = λ t u v Tm21 var21 lam21 app21 tt21 pair21 fst21 snd21 left21 right21 case21 zero21 suc21 rec21 → rec21 _ _ (t Tm21 var21 lam21 app21 tt21 pair21 fst21 snd21 left21 right21 case21 zero21 suc21 rec21) (u Tm21 var21 lam21 app21 tt21 pair21 fst21 snd21 left21 right21 case21 zero21 suc21 rec21) (v Tm21 var21 lam21 app21 tt21 pair21 fst21 snd21 left21 right21 case21 zero21 suc21 rec21) v021 : ∀{Γ A} → Tm21 (snoc21 Γ A) A; v021 = var21 vz21 v121 : ∀{Γ A B} → Tm21 (snoc21 (snoc21 Γ A) B) A; v121 = var21 (vs21 vz21) v221 : ∀{Γ A B C} → Tm21 (snoc21 (snoc21 (snoc21 Γ A) B) C) A; v221 = var21 (vs21 (vs21 vz21)) v321 : ∀{Γ A B C D} → Tm21 (snoc21 (snoc21 (snoc21 (snoc21 Γ A) B) C) D) A; v321 = var21 (vs21 (vs21 (vs21 vz21))) tbool21 : Ty21; tbool21 = sum21 top21 top21 true21 : ∀{Γ} → Tm21 Γ tbool21; true21 = left21 tt21 tfalse21 : ∀{Γ} → Tm21 Γ tbool21; tfalse21 = right21 tt21 ifthenelse21 : ∀{Γ A} → Tm21 Γ (arr21 tbool21 (arr21 A (arr21 A A))); ifthenelse21 = lam21 (lam21 (lam21 (case21 v221 (lam21 v221) (lam21 v121)))) times421 : ∀{Γ A} → Tm21 Γ (arr21 (arr21 A A) (arr21 A A)); times421 = lam21 (lam21 (app21 v121 (app21 v121 (app21 v121 (app21 v121 v021))))) add21 : ∀{Γ} → Tm21 Γ (arr21 nat21 (arr21 nat21 nat21)); add21 = lam21 (rec21 v021 (lam21 (lam21 (lam21 (suc21 (app21 v121 v021))))) (lam21 v021)) mul21 : ∀{Γ} → Tm21 Γ (arr21 nat21 (arr21 nat21 nat21)); mul21 = lam21 (rec21 v021 (lam21 (lam21 (lam21 (app21 (app21 add21 (app21 v121 v021)) v021)))) (lam21 zero21)) fact21 : ∀{Γ} → Tm21 Γ (arr21 nat21 nat21); fact21 = lam21 (rec21 v021 (lam21 (lam21 (app21 (app21 mul21 (suc21 v121)) v021))) (suc21 zero21)) {-# OPTIONS --type-in-type #-} Ty22 : Set Ty22 = (Ty22 : Set) (nat top bot : Ty22) (arr prod sum : Ty22 → Ty22 → Ty22) → Ty22 nat22 : Ty22; nat22 = λ _ nat22 _ _ _ _ _ → nat22 top22 : Ty22; top22 = λ _ _ top22 _ _ _ _ → top22 bot22 : Ty22; bot22 = λ _ _ _ bot22 _ _ _ → bot22 arr22 : Ty22 → Ty22 → Ty22; arr22 = λ A B Ty22 nat22 top22 bot22 arr22 prod sum → arr22 (A Ty22 nat22 top22 bot22 arr22 prod sum) (B Ty22 nat22 top22 bot22 arr22 prod sum) prod22 : Ty22 → Ty22 → Ty22; prod22 = λ A B Ty22 nat22 top22 bot22 arr22 prod22 sum → prod22 (A Ty22 nat22 top22 bot22 arr22 prod22 sum) (B Ty22 nat22 top22 bot22 arr22 prod22 sum) sum22 : Ty22 → Ty22 → Ty22; sum22 = λ A B Ty22 nat22 top22 bot22 arr22 prod22 sum22 → sum22 (A Ty22 nat22 top22 bot22 arr22 prod22 sum22) (B Ty22 nat22 top22 bot22 arr22 prod22 sum22) Con22 : Set; Con22 = (Con22 : Set) (nil : Con22) (snoc : Con22 → Ty22 → Con22) → Con22 nil22 : Con22; nil22 = λ Con22 nil22 snoc → nil22 snoc22 : Con22 → Ty22 → Con22; snoc22 = λ Γ A Con22 nil22 snoc22 → snoc22 (Γ Con22 nil22 snoc22) A Var22 : Con22 → Ty22 → Set; Var22 = λ Γ A → (Var22 : Con22 → Ty22 → Set) (vz : ∀ Γ A → Var22 (snoc22 Γ A) A) (vs : ∀ Γ B A → Var22 Γ A → Var22 (snoc22 Γ B) A) → Var22 Γ A vz22 : ∀{Γ A} → Var22 (snoc22 Γ A) A; vz22 = λ Var22 vz22 vs → vz22 _ _ vs22 : ∀{Γ B A} → Var22 Γ A → Var22 (snoc22 Γ B) A; vs22 = λ x Var22 vz22 vs22 → vs22 _ _ _ (x Var22 vz22 vs22) Tm22 : Con22 → Ty22 → Set; Tm22 = λ Γ A → (Tm22 : Con22 → Ty22 → Set) (var : ∀ Γ A → Var22 Γ A → Tm22 Γ A) (lam : ∀ Γ A B → Tm22 (snoc22 Γ A) B → Tm22 Γ (arr22 A B)) (app : ∀ Γ A B → Tm22 Γ (arr22 A B) → Tm22 Γ A → Tm22 Γ B) (tt : ∀ Γ → Tm22 Γ top22) (pair : ∀ Γ A B → Tm22 Γ A → Tm22 Γ B → Tm22 Γ (prod22 A B)) (fst : ∀ Γ A B → Tm22 Γ (prod22 A B) → Tm22 Γ A) (snd : ∀ Γ A B → Tm22 Γ (prod22 A B) → Tm22 Γ B) (left : ∀ Γ A B → Tm22 Γ A → Tm22 Γ (sum22 A B)) (right : ∀ Γ A B → Tm22 Γ B → Tm22 Γ (sum22 A B)) (case : ∀ Γ A B C → Tm22 Γ (sum22 A B) → Tm22 Γ (arr22 A C) → Tm22 Γ (arr22 B C) → Tm22 Γ C) (zero : ∀ Γ → Tm22 Γ nat22) (suc : ∀ Γ → Tm22 Γ nat22 → Tm22 Γ nat22) (rec : ∀ Γ A → Tm22 Γ nat22 → Tm22 Γ (arr22 nat22 (arr22 A A)) → Tm22 Γ A → Tm22 Γ A) → Tm22 Γ A var22 : ∀{Γ A} → Var22 Γ A → Tm22 Γ A; var22 = λ x Tm22 var22 lam app tt pair fst snd left right case zero suc rec → var22 _ _ x lam22 : ∀{Γ A B} → Tm22 (snoc22 Γ A) B → Tm22 Γ (arr22 A B); lam22 = λ t Tm22 var22 lam22 app tt pair fst snd left right case zero suc rec → lam22 _ _ _ (t Tm22 var22 lam22 app tt pair fst snd left right case zero suc rec) app22 : ∀{Γ A B} → Tm22 Γ (arr22 A B) → Tm22 Γ A → Tm22 Γ B; app22 = λ t u Tm22 var22 lam22 app22 tt pair fst snd left right case zero suc rec → app22 _ _ _ (t Tm22 var22 lam22 app22 tt pair fst snd left right case zero suc rec) (u Tm22 var22 lam22 app22 tt pair fst snd left right case zero suc rec) tt22 : ∀{Γ} → Tm22 Γ top22; tt22 = λ Tm22 var22 lam22 app22 tt22 pair fst snd left right case zero suc rec → tt22 _ pair22 : ∀{Γ A B} → Tm22 Γ A → Tm22 Γ B → Tm22 Γ (prod22 A B); pair22 = λ t u Tm22 var22 lam22 app22 tt22 pair22 fst snd left right case zero suc rec → pair22 _ _ _ (t Tm22 var22 lam22 app22 tt22 pair22 fst snd left right case zero suc rec) (u Tm22 var22 lam22 app22 tt22 pair22 fst snd left right case zero suc rec) fst22 : ∀{Γ A B} → Tm22 Γ (prod22 A B) → Tm22 Γ A; fst22 = λ t Tm22 var22 lam22 app22 tt22 pair22 fst22 snd left right case zero suc rec → fst22 _ _ _ (t Tm22 var22 lam22 app22 tt22 pair22 fst22 snd left right case zero suc rec) snd22 : ∀{Γ A B} → Tm22 Γ (prod22 A B) → Tm22 Γ B; snd22 = λ t Tm22 var22 lam22 app22 tt22 pair22 fst22 snd22 left right case zero suc rec → snd22 _ _ _ (t Tm22 var22 lam22 app22 tt22 pair22 fst22 snd22 left right case zero suc rec) left22 : ∀{Γ A B} → Tm22 Γ A → Tm22 Γ (sum22 A B); left22 = λ t Tm22 var22 lam22 app22 tt22 pair22 fst22 snd22 left22 right case zero suc rec → left22 _ _ _ (t Tm22 var22 lam22 app22 tt22 pair22 fst22 snd22 left22 right case zero suc rec) right22 : ∀{Γ A B} → Tm22 Γ B → Tm22 Γ (sum22 A B); right22 = λ t Tm22 var22 lam22 app22 tt22 pair22 fst22 snd22 left22 right22 case zero suc rec → right22 _ _ _ (t Tm22 var22 lam22 app22 tt22 pair22 fst22 snd22 left22 right22 case zero suc rec) case22 : ∀{Γ A B C} → Tm22 Γ (sum22 A B) → Tm22 Γ (arr22 A C) → Tm22 Γ (arr22 B C) → Tm22 Γ C; case22 = λ t u v Tm22 var22 lam22 app22 tt22 pair22 fst22 snd22 left22 right22 case22 zero suc rec → case22 _ _ _ _ (t Tm22 var22 lam22 app22 tt22 pair22 fst22 snd22 left22 right22 case22 zero suc rec) (u Tm22 var22 lam22 app22 tt22 pair22 fst22 snd22 left22 right22 case22 zero suc rec) (v Tm22 var22 lam22 app22 tt22 pair22 fst22 snd22 left22 right22 case22 zero suc rec) zero22 : ∀{Γ} → Tm22 Γ nat22; zero22 = λ Tm22 var22 lam22 app22 tt22 pair22 fst22 snd22 left22 right22 case22 zero22 suc rec → zero22 _ suc22 : ∀{Γ} → Tm22 Γ nat22 → Tm22 Γ nat22; suc22 = λ t Tm22 var22 lam22 app22 tt22 pair22 fst22 snd22 left22 right22 case22 zero22 suc22 rec → suc22 _ (t Tm22 var22 lam22 app22 tt22 pair22 fst22 snd22 left22 right22 case22 zero22 suc22 rec) rec22 : ∀{Γ A} → Tm22 Γ nat22 → Tm22 Γ (arr22 nat22 (arr22 A A)) → Tm22 Γ A → Tm22 Γ A; rec22 = λ t u v Tm22 var22 lam22 app22 tt22 pair22 fst22 snd22 left22 right22 case22 zero22 suc22 rec22 → rec22 _ _ (t Tm22 var22 lam22 app22 tt22 pair22 fst22 snd22 left22 right22 case22 zero22 suc22 rec22) (u Tm22 var22 lam22 app22 tt22 pair22 fst22 snd22 left22 right22 case22 zero22 suc22 rec22) (v Tm22 var22 lam22 app22 tt22 pair22 fst22 snd22 left22 right22 case22 zero22 suc22 rec22) v022 : ∀{Γ A} → Tm22 (snoc22 Γ A) A; v022 = var22 vz22 v122 : ∀{Γ A B} → Tm22 (snoc22 (snoc22 Γ A) B) A; v122 = var22 (vs22 vz22) v222 : ∀{Γ A B C} → Tm22 (snoc22 (snoc22 (snoc22 Γ A) B) C) A; v222 = var22 (vs22 (vs22 vz22)) v322 : ∀{Γ A B C D} → Tm22 (snoc22 (snoc22 (snoc22 (snoc22 Γ A) B) C) D) A; v322 = var22 (vs22 (vs22 (vs22 vz22))) tbool22 : Ty22; tbool22 = sum22 top22 top22 true22 : ∀{Γ} → Tm22 Γ tbool22; true22 = left22 tt22 tfalse22 : ∀{Γ} → Tm22 Γ tbool22; tfalse22 = right22 tt22 ifthenelse22 : ∀{Γ A} → Tm22 Γ (arr22 tbool22 (arr22 A (arr22 A A))); ifthenelse22 = lam22 (lam22 (lam22 (case22 v222 (lam22 v222) (lam22 v122)))) times422 : ∀{Γ A} → Tm22 Γ (arr22 (arr22 A A) (arr22 A A)); times422 = lam22 (lam22 (app22 v122 (app22 v122 (app22 v122 (app22 v122 v022))))) add22 : ∀{Γ} → Tm22 Γ (arr22 nat22 (arr22 nat22 nat22)); add22 = lam22 (rec22 v022 (lam22 (lam22 (lam22 (suc22 (app22 v122 v022))))) (lam22 v022)) mul22 : ∀{Γ} → Tm22 Γ (arr22 nat22 (arr22 nat22 nat22)); mul22 = lam22 (rec22 v022 (lam22 (lam22 (lam22 (app22 (app22 add22 (app22 v122 v022)) v022)))) (lam22 zero22)) fact22 : ∀{Γ} → Tm22 Γ (arr22 nat22 nat22); fact22 = lam22 (rec22 v022 (lam22 (lam22 (app22 (app22 mul22 (suc22 v122)) v022))) (suc22 zero22)) {-# OPTIONS --type-in-type #-} Ty23 : Set Ty23 = (Ty23 : Set) (nat top bot : Ty23) (arr prod sum : Ty23 → Ty23 → Ty23) → Ty23 nat23 : Ty23; nat23 = λ _ nat23 _ _ _ _ _ → nat23 top23 : Ty23; top23 = λ _ _ top23 _ _ _ _ → top23 bot23 : Ty23; bot23 = λ _ _ _ bot23 _ _ _ → bot23 arr23 : Ty23 → Ty23 → Ty23; arr23 = λ A B Ty23 nat23 top23 bot23 arr23 prod sum → arr23 (A Ty23 nat23 top23 bot23 arr23 prod sum) (B Ty23 nat23 top23 bot23 arr23 prod sum) prod23 : Ty23 → Ty23 → Ty23; prod23 = λ A B Ty23 nat23 top23 bot23 arr23 prod23 sum → prod23 (A Ty23 nat23 top23 bot23 arr23 prod23 sum) (B Ty23 nat23 top23 bot23 arr23 prod23 sum) sum23 : Ty23 → Ty23 → Ty23; sum23 = λ A B Ty23 nat23 top23 bot23 arr23 prod23 sum23 → sum23 (A Ty23 nat23 top23 bot23 arr23 prod23 sum23) (B Ty23 nat23 top23 bot23 arr23 prod23 sum23) Con23 : Set; Con23 = (Con23 : Set) (nil : Con23) (snoc : Con23 → Ty23 → Con23) → Con23 nil23 : Con23; nil23 = λ Con23 nil23 snoc → nil23 snoc23 : Con23 → Ty23 → Con23; snoc23 = λ Γ A Con23 nil23 snoc23 → snoc23 (Γ Con23 nil23 snoc23) A Var23 : Con23 → Ty23 → Set; Var23 = λ Γ A → (Var23 : Con23 → Ty23 → Set) (vz : ∀ Γ A → Var23 (snoc23 Γ A) A) (vs : ∀ Γ B A → Var23 Γ A → Var23 (snoc23 Γ B) A) → Var23 Γ A vz23 : ∀{Γ A} → Var23 (snoc23 Γ A) A; vz23 = λ Var23 vz23 vs → vz23 _ _ vs23 : ∀{Γ B A} → Var23 Γ A → Var23 (snoc23 Γ B) A; vs23 = λ x Var23 vz23 vs23 → vs23 _ _ _ (x Var23 vz23 vs23) Tm23 : Con23 → Ty23 → Set; Tm23 = λ Γ A → (Tm23 : Con23 → Ty23 → Set) (var : ∀ Γ A → Var23 Γ A → Tm23 Γ A) (lam : ∀ Γ A B → Tm23 (snoc23 Γ A) B → Tm23 Γ (arr23 A B)) (app : ∀ Γ A B → Tm23 Γ (arr23 A B) → Tm23 Γ A → Tm23 Γ B) (tt : ∀ Γ → Tm23 Γ top23) (pair : ∀ Γ A B → Tm23 Γ A → Tm23 Γ B → Tm23 Γ (prod23 A B)) (fst : ∀ Γ A B → Tm23 Γ (prod23 A B) → Tm23 Γ A) (snd : ∀ Γ A B → Tm23 Γ (prod23 A B) → Tm23 Γ B) (left : ∀ Γ A B → Tm23 Γ A → Tm23 Γ (sum23 A B)) (right : ∀ Γ A B → Tm23 Γ B → Tm23 Γ (sum23 A B)) (case : ∀ Γ A B C → Tm23 Γ (sum23 A B) → Tm23 Γ (arr23 A C) → Tm23 Γ (arr23 B C) → Tm23 Γ C) (zero : ∀ Γ → Tm23 Γ nat23) (suc : ∀ Γ → Tm23 Γ nat23 → Tm23 Γ nat23) (rec : ∀ Γ A → Tm23 Γ nat23 → Tm23 Γ (arr23 nat23 (arr23 A A)) → Tm23 Γ A → Tm23 Γ A) → Tm23 Γ A var23 : ∀{Γ A} → Var23 Γ A → Tm23 Γ A; var23 = λ x Tm23 var23 lam app tt pair fst snd left right case zero suc rec → var23 _ _ x lam23 : ∀{Γ A B} → Tm23 (snoc23 Γ A) B → Tm23 Γ (arr23 A B); lam23 = λ t Tm23 var23 lam23 app tt pair fst snd left right case zero suc rec → lam23 _ _ _ (t Tm23 var23 lam23 app tt pair fst snd left right case zero suc rec) app23 : ∀{Γ A B} → Tm23 Γ (arr23 A B) → Tm23 Γ A → Tm23 Γ B; app23 = λ t u Tm23 var23 lam23 app23 tt pair fst snd left right case zero suc rec → app23 _ _ _ (t Tm23 var23 lam23 app23 tt pair fst snd left right case zero suc rec) (u Tm23 var23 lam23 app23 tt pair fst snd left right case zero suc rec) tt23 : ∀{Γ} → Tm23 Γ top23; tt23 = λ Tm23 var23 lam23 app23 tt23 pair fst snd left right case zero suc rec → tt23 _ pair23 : ∀{Γ A B} → Tm23 Γ A → Tm23 Γ B → Tm23 Γ (prod23 A B); pair23 = λ t u Tm23 var23 lam23 app23 tt23 pair23 fst snd left right case zero suc rec → pair23 _ _ _ (t Tm23 var23 lam23 app23 tt23 pair23 fst snd left right case zero suc rec) (u Tm23 var23 lam23 app23 tt23 pair23 fst snd left right case zero suc rec) fst23 : ∀{Γ A B} → Tm23 Γ (prod23 A B) → Tm23 Γ A; fst23 = λ t Tm23 var23 lam23 app23 tt23 pair23 fst23 snd left right case zero suc rec → fst23 _ _ _ (t Tm23 var23 lam23 app23 tt23 pair23 fst23 snd left right case zero suc rec) snd23 : ∀{Γ A B} → Tm23 Γ (prod23 A B) → Tm23 Γ B; snd23 = λ t Tm23 var23 lam23 app23 tt23 pair23 fst23 snd23 left right case zero suc rec → snd23 _ _ _ (t Tm23 var23 lam23 app23 tt23 pair23 fst23 snd23 left right case zero suc rec) left23 : ∀{Γ A B} → Tm23 Γ A → Tm23 Γ (sum23 A B); left23 = λ t Tm23 var23 lam23 app23 tt23 pair23 fst23 snd23 left23 right case zero suc rec → left23 _ _ _ (t Tm23 var23 lam23 app23 tt23 pair23 fst23 snd23 left23 right case zero suc rec) right23 : ∀{Γ A B} → Tm23 Γ B → Tm23 Γ (sum23 A B); right23 = λ t Tm23 var23 lam23 app23 tt23 pair23 fst23 snd23 left23 right23 case zero suc rec → right23 _ _ _ (t Tm23 var23 lam23 app23 tt23 pair23 fst23 snd23 left23 right23 case zero suc rec) case23 : ∀{Γ A B C} → Tm23 Γ (sum23 A B) → Tm23 Γ (arr23 A C) → Tm23 Γ (arr23 B C) → Tm23 Γ C; case23 = λ t u v Tm23 var23 lam23 app23 tt23 pair23 fst23 snd23 left23 right23 case23 zero suc rec → case23 _ _ _ _ (t Tm23 var23 lam23 app23 tt23 pair23 fst23 snd23 left23 right23 case23 zero suc rec) (u Tm23 var23 lam23 app23 tt23 pair23 fst23 snd23 left23 right23 case23 zero suc rec) (v Tm23 var23 lam23 app23 tt23 pair23 fst23 snd23 left23 right23 case23 zero suc rec) zero23 : ∀{Γ} → Tm23 Γ nat23; zero23 = λ Tm23 var23 lam23 app23 tt23 pair23 fst23 snd23 left23 right23 case23 zero23 suc rec → zero23 _ suc23 : ∀{Γ} → Tm23 Γ nat23 → Tm23 Γ nat23; suc23 = λ t Tm23 var23 lam23 app23 tt23 pair23 fst23 snd23 left23 right23 case23 zero23 suc23 rec → suc23 _ (t Tm23 var23 lam23 app23 tt23 pair23 fst23 snd23 left23 right23 case23 zero23 suc23 rec) rec23 : ∀{Γ A} → Tm23 Γ nat23 → Tm23 Γ (arr23 nat23 (arr23 A A)) → Tm23 Γ A → Tm23 Γ A; rec23 = λ t u v Tm23 var23 lam23 app23 tt23 pair23 fst23 snd23 left23 right23 case23 zero23 suc23 rec23 → rec23 _ _ (t Tm23 var23 lam23 app23 tt23 pair23 fst23 snd23 left23 right23 case23 zero23 suc23 rec23) (u Tm23 var23 lam23 app23 tt23 pair23 fst23 snd23 left23 right23 case23 zero23 suc23 rec23) (v Tm23 var23 lam23 app23 tt23 pair23 fst23 snd23 left23 right23 case23 zero23 suc23 rec23) v023 : ∀{Γ A} → Tm23 (snoc23 Γ A) A; v023 = var23 vz23 v123 : ∀{Γ A B} → Tm23 (snoc23 (snoc23 Γ A) B) A; v123 = var23 (vs23 vz23) v223 : ∀{Γ A B C} → Tm23 (snoc23 (snoc23 (snoc23 Γ A) B) C) A; v223 = var23 (vs23 (vs23 vz23)) v323 : ∀{Γ A B C D} → Tm23 (snoc23 (snoc23 (snoc23 (snoc23 Γ A) B) C) D) A; v323 = var23 (vs23 (vs23 (vs23 vz23))) tbool23 : Ty23; tbool23 = sum23 top23 top23 true23 : ∀{Γ} → Tm23 Γ tbool23; true23 = left23 tt23 tfalse23 : ∀{Γ} → Tm23 Γ tbool23; tfalse23 = right23 tt23 ifthenelse23 : ∀{Γ A} → Tm23 Γ (arr23 tbool23 (arr23 A (arr23 A A))); ifthenelse23 = lam23 (lam23 (lam23 (case23 v223 (lam23 v223) (lam23 v123)))) times423 : ∀{Γ A} → Tm23 Γ (arr23 (arr23 A A) (arr23 A A)); times423 = lam23 (lam23 (app23 v123 (app23 v123 (app23 v123 (app23 v123 v023))))) add23 : ∀{Γ} → Tm23 Γ (arr23 nat23 (arr23 nat23 nat23)); add23 = lam23 (rec23 v023 (lam23 (lam23 (lam23 (suc23 (app23 v123 v023))))) (lam23 v023)) mul23 : ∀{Γ} → Tm23 Γ (arr23 nat23 (arr23 nat23 nat23)); mul23 = lam23 (rec23 v023 (lam23 (lam23 (lam23 (app23 (app23 add23 (app23 v123 v023)) v023)))) (lam23 zero23)) fact23 : ∀{Γ} → Tm23 Γ (arr23 nat23 nat23); fact23 = lam23 (rec23 v023 (lam23 (lam23 (app23 (app23 mul23 (suc23 v123)) v023))) (suc23 zero23)) {-# OPTIONS --type-in-type #-} Ty24 : Set Ty24 = (Ty24 : Set) (nat top bot : Ty24) (arr prod sum : Ty24 → Ty24 → Ty24) → Ty24 nat24 : Ty24; nat24 = λ _ nat24 _ _ _ _ _ → nat24 top24 : Ty24; top24 = λ _ _ top24 _ _ _ _ → top24 bot24 : Ty24; bot24 = λ _ _ _ bot24 _ _ _ → bot24 arr24 : Ty24 → Ty24 → Ty24; arr24 = λ A B Ty24 nat24 top24 bot24 arr24 prod sum → arr24 (A Ty24 nat24 top24 bot24 arr24 prod sum) (B Ty24 nat24 top24 bot24 arr24 prod sum) prod24 : Ty24 → Ty24 → Ty24; prod24 = λ A B Ty24 nat24 top24 bot24 arr24 prod24 sum → prod24 (A Ty24 nat24 top24 bot24 arr24 prod24 sum) (B Ty24 nat24 top24 bot24 arr24 prod24 sum) sum24 : Ty24 → Ty24 → Ty24; sum24 = λ A B Ty24 nat24 top24 bot24 arr24 prod24 sum24 → sum24 (A Ty24 nat24 top24 bot24 arr24 prod24 sum24) (B Ty24 nat24 top24 bot24 arr24 prod24 sum24) Con24 : Set; Con24 = (Con24 : Set) (nil : Con24) (snoc : Con24 → Ty24 → Con24) → Con24 nil24 : Con24; nil24 = λ Con24 nil24 snoc → nil24 snoc24 : Con24 → Ty24 → Con24; snoc24 = λ Γ A Con24 nil24 snoc24 → snoc24 (Γ Con24 nil24 snoc24) A Var24 : Con24 → Ty24 → Set; Var24 = λ Γ A → (Var24 : Con24 → Ty24 → Set) (vz : ∀ Γ A → Var24 (snoc24 Γ A) A) (vs : ∀ Γ B A → Var24 Γ A → Var24 (snoc24 Γ B) A) → Var24 Γ A vz24 : ∀{Γ A} → Var24 (snoc24 Γ A) A; vz24 = λ Var24 vz24 vs → vz24 _ _ vs24 : ∀{Γ B A} → Var24 Γ A → Var24 (snoc24 Γ B) A; vs24 = λ x Var24 vz24 vs24 → vs24 _ _ _ (x Var24 vz24 vs24) Tm24 : Con24 → Ty24 → Set; Tm24 = λ Γ A → (Tm24 : Con24 → Ty24 → Set) (var : ∀ Γ A → Var24 Γ A → Tm24 Γ A) (lam : ∀ Γ A B → Tm24 (snoc24 Γ A) B → Tm24 Γ (arr24 A B)) (app : ∀ Γ A B → Tm24 Γ (arr24 A B) → Tm24 Γ A → Tm24 Γ B) (tt : ∀ Γ → Tm24 Γ top24) (pair : ∀ Γ A B → Tm24 Γ A → Tm24 Γ B → Tm24 Γ (prod24 A B)) (fst : ∀ Γ A B → Tm24 Γ (prod24 A B) → Tm24 Γ A) (snd : ∀ Γ A B → Tm24 Γ (prod24 A B) → Tm24 Γ B) (left : ∀ Γ A B → Tm24 Γ A → Tm24 Γ (sum24 A B)) (right : ∀ Γ A B → Tm24 Γ B → Tm24 Γ (sum24 A B)) (case : ∀ Γ A B C → Tm24 Γ (sum24 A B) → Tm24 Γ (arr24 A C) → Tm24 Γ (arr24 B C) → Tm24 Γ C) (zero : ∀ Γ → Tm24 Γ nat24) (suc : ∀ Γ → Tm24 Γ nat24 → Tm24 Γ nat24) (rec : ∀ Γ A → Tm24 Γ nat24 → Tm24 Γ (arr24 nat24 (arr24 A A)) → Tm24 Γ A → Tm24 Γ A) → Tm24 Γ A var24 : ∀{Γ A} → Var24 Γ A → Tm24 Γ A; var24 = λ x Tm24 var24 lam app tt pair fst snd left right case zero suc rec → var24 _ _ x lam24 : ∀{Γ A B} → Tm24 (snoc24 Γ A) B → Tm24 Γ (arr24 A B); lam24 = λ t Tm24 var24 lam24 app tt pair fst snd left right case zero suc rec → lam24 _ _ _ (t Tm24 var24 lam24 app tt pair fst snd left right case zero suc rec) app24 : ∀{Γ A B} → Tm24 Γ (arr24 A B) → Tm24 Γ A → Tm24 Γ B; app24 = λ t u Tm24 var24 lam24 app24 tt pair fst snd left right case zero suc rec → app24 _ _ _ (t Tm24 var24 lam24 app24 tt pair fst snd left right case zero suc rec) (u Tm24 var24 lam24 app24 tt pair fst snd left right case zero suc rec) tt24 : ∀{Γ} → Tm24 Γ top24; tt24 = λ Tm24 var24 lam24 app24 tt24 pair fst snd left right case zero suc rec → tt24 _ pair24 : ∀{Γ A B} → Tm24 Γ A → Tm24 Γ B → Tm24 Γ (prod24 A B); pair24 = λ t u Tm24 var24 lam24 app24 tt24 pair24 fst snd left right case zero suc rec → pair24 _ _ _ (t Tm24 var24 lam24 app24 tt24 pair24 fst snd left right case zero suc rec) (u Tm24 var24 lam24 app24 tt24 pair24 fst snd left right case zero suc rec) fst24 : ∀{Γ A B} → Tm24 Γ (prod24 A B) → Tm24 Γ A; fst24 = λ t Tm24 var24 lam24 app24 tt24 pair24 fst24 snd left right case zero suc rec → fst24 _ _ _ (t Tm24 var24 lam24 app24 tt24 pair24 fst24 snd left right case zero suc rec) snd24 : ∀{Γ A B} → Tm24 Γ (prod24 A B) → Tm24 Γ B; snd24 = λ t Tm24 var24 lam24 app24 tt24 pair24 fst24 snd24 left right case zero suc rec → snd24 _ _ _ (t Tm24 var24 lam24 app24 tt24 pair24 fst24 snd24 left right case zero suc rec) left24 : ∀{Γ A B} → Tm24 Γ A → Tm24 Γ (sum24 A B); left24 = λ t Tm24 var24 lam24 app24 tt24 pair24 fst24 snd24 left24 right case zero suc rec → left24 _ _ _ (t Tm24 var24 lam24 app24 tt24 pair24 fst24 snd24 left24 right case zero suc rec) right24 : ∀{Γ A B} → Tm24 Γ B → Tm24 Γ (sum24 A B); right24 = λ t Tm24 var24 lam24 app24 tt24 pair24 fst24 snd24 left24 right24 case zero suc rec → right24 _ _ _ (t Tm24 var24 lam24 app24 tt24 pair24 fst24 snd24 left24 right24 case zero suc rec) case24 : ∀{Γ A B C} → Tm24 Γ (sum24 A B) → Tm24 Γ (arr24 A C) → Tm24 Γ (arr24 B C) → Tm24 Γ C; case24 = λ t u v Tm24 var24 lam24 app24 tt24 pair24 fst24 snd24 left24 right24 case24 zero suc rec → case24 _ _ _ _ (t Tm24 var24 lam24 app24 tt24 pair24 fst24 snd24 left24 right24 case24 zero suc rec) (u Tm24 var24 lam24 app24 tt24 pair24 fst24 snd24 left24 right24 case24 zero suc rec) (v Tm24 var24 lam24 app24 tt24 pair24 fst24 snd24 left24 right24 case24 zero suc rec) zero24 : ∀{Γ} → Tm24 Γ nat24; zero24 = λ Tm24 var24 lam24 app24 tt24 pair24 fst24 snd24 left24 right24 case24 zero24 suc rec → zero24 _ suc24 : ∀{Γ} → Tm24 Γ nat24 → Tm24 Γ nat24; suc24 = λ t Tm24 var24 lam24 app24 tt24 pair24 fst24 snd24 left24 right24 case24 zero24 suc24 rec → suc24 _ (t Tm24 var24 lam24 app24 tt24 pair24 fst24 snd24 left24 right24 case24 zero24 suc24 rec) rec24 : ∀{Γ A} → Tm24 Γ nat24 → Tm24 Γ (arr24 nat24 (arr24 A A)) → Tm24 Γ A → Tm24 Γ A; rec24 = λ t u v Tm24 var24 lam24 app24 tt24 pair24 fst24 snd24 left24 right24 case24 zero24 suc24 rec24 → rec24 _ _ (t Tm24 var24 lam24 app24 tt24 pair24 fst24 snd24 left24 right24 case24 zero24 suc24 rec24) (u Tm24 var24 lam24 app24 tt24 pair24 fst24 snd24 left24 right24 case24 zero24 suc24 rec24) (v Tm24 var24 lam24 app24 tt24 pair24 fst24 snd24 left24 right24 case24 zero24 suc24 rec24) v024 : ∀{Γ A} → Tm24 (snoc24 Γ A) A; v024 = var24 vz24 v124 : ∀{Γ A B} → Tm24 (snoc24 (snoc24 Γ A) B) A; v124 = var24 (vs24 vz24) v224 : ∀{Γ A B C} → Tm24 (snoc24 (snoc24 (snoc24 Γ A) B) C) A; v224 = var24 (vs24 (vs24 vz24)) v324 : ∀{Γ A B C D} → Tm24 (snoc24 (snoc24 (snoc24 (snoc24 Γ A) B) C) D) A; v324 = var24 (vs24 (vs24 (vs24 vz24))) tbool24 : Ty24; tbool24 = sum24 top24 top24 true24 : ∀{Γ} → Tm24 Γ tbool24; true24 = left24 tt24 tfalse24 : ∀{Γ} → Tm24 Γ tbool24; tfalse24 = right24 tt24 ifthenelse24 : ∀{Γ A} → Tm24 Γ (arr24 tbool24 (arr24 A (arr24 A A))); ifthenelse24 = lam24 (lam24 (lam24 (case24 v224 (lam24 v224) (lam24 v124)))) times424 : ∀{Γ A} → Tm24 Γ (arr24 (arr24 A A) (arr24 A A)); times424 = lam24 (lam24 (app24 v124 (app24 v124 (app24 v124 (app24 v124 v024))))) add24 : ∀{Γ} → Tm24 Γ (arr24 nat24 (arr24 nat24 nat24)); add24 = lam24 (rec24 v024 (lam24 (lam24 (lam24 (suc24 (app24 v124 v024))))) (lam24 v024)) mul24 : ∀{Γ} → Tm24 Γ (arr24 nat24 (arr24 nat24 nat24)); mul24 = lam24 (rec24 v024 (lam24 (lam24 (lam24 (app24 (app24 add24 (app24 v124 v024)) v024)))) (lam24 zero24)) fact24 : ∀{Γ} → Tm24 Γ (arr24 nat24 nat24); fact24 = lam24 (rec24 v024 (lam24 (lam24 (app24 (app24 mul24 (suc24 v124)) v024))) (suc24 zero24)) {-# OPTIONS --type-in-type #-} Ty25 : Set Ty25 = (Ty25 : Set) (nat top bot : Ty25) (arr prod sum : Ty25 → Ty25 → Ty25) → Ty25 nat25 : Ty25; nat25 = λ _ nat25 _ _ _ _ _ → nat25 top25 : Ty25; top25 = λ _ _ top25 _ _ _ _ → top25 bot25 : Ty25; bot25 = λ _ _ _ bot25 _ _ _ → bot25 arr25 : Ty25 → Ty25 → Ty25; arr25 = λ A B Ty25 nat25 top25 bot25 arr25 prod sum → arr25 (A Ty25 nat25 top25 bot25 arr25 prod sum) (B Ty25 nat25 top25 bot25 arr25 prod sum) prod25 : Ty25 → Ty25 → Ty25; prod25 = λ A B Ty25 nat25 top25 bot25 arr25 prod25 sum → prod25 (A Ty25 nat25 top25 bot25 arr25 prod25 sum) (B Ty25 nat25 top25 bot25 arr25 prod25 sum) sum25 : Ty25 → Ty25 → Ty25; sum25 = λ A B Ty25 nat25 top25 bot25 arr25 prod25 sum25 → sum25 (A Ty25 nat25 top25 bot25 arr25 prod25 sum25) (B Ty25 nat25 top25 bot25 arr25 prod25 sum25) Con25 : Set; Con25 = (Con25 : Set) (nil : Con25) (snoc : Con25 → Ty25 → Con25) → Con25 nil25 : Con25; nil25 = λ Con25 nil25 snoc → nil25 snoc25 : Con25 → Ty25 → Con25; snoc25 = λ Γ A Con25 nil25 snoc25 → snoc25 (Γ Con25 nil25 snoc25) A Var25 : Con25 → Ty25 → Set; Var25 = λ Γ A → (Var25 : Con25 → Ty25 → Set) (vz : ∀ Γ A → Var25 (snoc25 Γ A) A) (vs : ∀ Γ B A → Var25 Γ A → Var25 (snoc25 Γ B) A) → Var25 Γ A vz25 : ∀{Γ A} → Var25 (snoc25 Γ A) A; vz25 = λ Var25 vz25 vs → vz25 _ _ vs25 : ∀{Γ B A} → Var25 Γ A → Var25 (snoc25 Γ B) A; vs25 = λ x Var25 vz25 vs25 → vs25 _ _ _ (x Var25 vz25 vs25) Tm25 : Con25 → Ty25 → Set; Tm25 = λ Γ A → (Tm25 : Con25 → Ty25 → Set) (var : ∀ Γ A → Var25 Γ A → Tm25 Γ A) (lam : ∀ Γ A B → Tm25 (snoc25 Γ A) B → Tm25 Γ (arr25 A B)) (app : ∀ Γ A B → Tm25 Γ (arr25 A B) → Tm25 Γ A → Tm25 Γ B) (tt : ∀ Γ → Tm25 Γ top25) (pair : ∀ Γ A B → Tm25 Γ A → Tm25 Γ B → Tm25 Γ (prod25 A B)) (fst : ∀ Γ A B → Tm25 Γ (prod25 A B) → Tm25 Γ A) (snd : ∀ Γ A B → Tm25 Γ (prod25 A B) → Tm25 Γ B) (left : ∀ Γ A B → Tm25 Γ A → Tm25 Γ (sum25 A B)) (right : ∀ Γ A B → Tm25 Γ B → Tm25 Γ (sum25 A B)) (case : ∀ Γ A B C → Tm25 Γ (sum25 A B) → Tm25 Γ (arr25 A C) → Tm25 Γ (arr25 B C) → Tm25 Γ C) (zero : ∀ Γ → Tm25 Γ nat25) (suc : ∀ Γ → Tm25 Γ nat25 → Tm25 Γ nat25) (rec : ∀ Γ A → Tm25 Γ nat25 → Tm25 Γ (arr25 nat25 (arr25 A A)) → Tm25 Γ A → Tm25 Γ A) → Tm25 Γ A var25 : ∀{Γ A} → Var25 Γ A → Tm25 Γ A; var25 = λ x Tm25 var25 lam app tt pair fst snd left right case zero suc rec → var25 _ _ x lam25 : ∀{Γ A B} → Tm25 (snoc25 Γ A) B → Tm25 Γ (arr25 A B); lam25 = λ t Tm25 var25 lam25 app tt pair fst snd left right case zero suc rec → lam25 _ _ _ (t Tm25 var25 lam25 app tt pair fst snd left right case zero suc rec) app25 : ∀{Γ A B} → Tm25 Γ (arr25 A B) → Tm25 Γ A → Tm25 Γ B; app25 = λ t u Tm25 var25 lam25 app25 tt pair fst snd left right case zero suc rec → app25 _ _ _ (t Tm25 var25 lam25 app25 tt pair fst snd left right case zero suc rec) (u Tm25 var25 lam25 app25 tt pair fst snd left right case zero suc rec) tt25 : ∀{Γ} → Tm25 Γ top25; tt25 = λ Tm25 var25 lam25 app25 tt25 pair fst snd left right case zero suc rec → tt25 _ pair25 : ∀{Γ A B} → Tm25 Γ A → Tm25 Γ B → Tm25 Γ (prod25 A B); pair25 = λ t u Tm25 var25 lam25 app25 tt25 pair25 fst snd left right case zero suc rec → pair25 _ _ _ (t Tm25 var25 lam25 app25 tt25 pair25 fst snd left right case zero suc rec) (u Tm25 var25 lam25 app25 tt25 pair25 fst snd left right case zero suc rec) fst25 : ∀{Γ A B} → Tm25 Γ (prod25 A B) → Tm25 Γ A; fst25 = λ t Tm25 var25 lam25 app25 tt25 pair25 fst25 snd left right case zero suc rec → fst25 _ _ _ (t Tm25 var25 lam25 app25 tt25 pair25 fst25 snd left right case zero suc rec) snd25 : ∀{Γ A B} → Tm25 Γ (prod25 A B) → Tm25 Γ B; snd25 = λ t Tm25 var25 lam25 app25 tt25 pair25 fst25 snd25 left right case zero suc rec → snd25 _ _ _ (t Tm25 var25 lam25 app25 tt25 pair25 fst25 snd25 left right case zero suc rec) left25 : ∀{Γ A B} → Tm25 Γ A → Tm25 Γ (sum25 A B); left25 = λ t Tm25 var25 lam25 app25 tt25 pair25 fst25 snd25 left25 right case zero suc rec → left25 _ _ _ (t Tm25 var25 lam25 app25 tt25 pair25 fst25 snd25 left25 right case zero suc rec) right25 : ∀{Γ A B} → Tm25 Γ B → Tm25 Γ (sum25 A B); right25 = λ t Tm25 var25 lam25 app25 tt25 pair25 fst25 snd25 left25 right25 case zero suc rec → right25 _ _ _ (t Tm25 var25 lam25 app25 tt25 pair25 fst25 snd25 left25 right25 case zero suc rec) case25 : ∀{Γ A B C} → Tm25 Γ (sum25 A B) → Tm25 Γ (arr25 A C) → Tm25 Γ (arr25 B C) → Tm25 Γ C; case25 = λ t u v Tm25 var25 lam25 app25 tt25 pair25 fst25 snd25 left25 right25 case25 zero suc rec → case25 _ _ _ _ (t Tm25 var25 lam25 app25 tt25 pair25 fst25 snd25 left25 right25 case25 zero suc rec) (u Tm25 var25 lam25 app25 tt25 pair25 fst25 snd25 left25 right25 case25 zero suc rec) (v Tm25 var25 lam25 app25 tt25 pair25 fst25 snd25 left25 right25 case25 zero suc rec) zero25 : ∀{Γ} → Tm25 Γ nat25; zero25 = λ Tm25 var25 lam25 app25 tt25 pair25 fst25 snd25 left25 right25 case25 zero25 suc rec → zero25 _ suc25 : ∀{Γ} → Tm25 Γ nat25 → Tm25 Γ nat25; suc25 = λ t Tm25 var25 lam25 app25 tt25 pair25 fst25 snd25 left25 right25 case25 zero25 suc25 rec → suc25 _ (t Tm25 var25 lam25 app25 tt25 pair25 fst25 snd25 left25 right25 case25 zero25 suc25 rec) rec25 : ∀{Γ A} → Tm25 Γ nat25 → Tm25 Γ (arr25 nat25 (arr25 A A)) → Tm25 Γ A → Tm25 Γ A; rec25 = λ t u v Tm25 var25 lam25 app25 tt25 pair25 fst25 snd25 left25 right25 case25 zero25 suc25 rec25 → rec25 _ _ (t Tm25 var25 lam25 app25 tt25 pair25 fst25 snd25 left25 right25 case25 zero25 suc25 rec25) (u Tm25 var25 lam25 app25 tt25 pair25 fst25 snd25 left25 right25 case25 zero25 suc25 rec25) (v Tm25 var25 lam25 app25 tt25 pair25 fst25 snd25 left25 right25 case25 zero25 suc25 rec25) v025 : ∀{Γ A} → Tm25 (snoc25 Γ A) A; v025 = var25 vz25 v125 : ∀{Γ A B} → Tm25 (snoc25 (snoc25 Γ A) B) A; v125 = var25 (vs25 vz25) v225 : ∀{Γ A B C} → Tm25 (snoc25 (snoc25 (snoc25 Γ A) B) C) A; v225 = var25 (vs25 (vs25 vz25)) v325 : ∀{Γ A B C D} → Tm25 (snoc25 (snoc25 (snoc25 (snoc25 Γ A) B) C) D) A; v325 = var25 (vs25 (vs25 (vs25 vz25))) tbool25 : Ty25; tbool25 = sum25 top25 top25 true25 : ∀{Γ} → Tm25 Γ tbool25; true25 = left25 tt25 tfalse25 : ∀{Γ} → Tm25 Γ tbool25; tfalse25 = right25 tt25 ifthenelse25 : ∀{Γ A} → Tm25 Γ (arr25 tbool25 (arr25 A (arr25 A A))); ifthenelse25 = lam25 (lam25 (lam25 (case25 v225 (lam25 v225) (lam25 v125)))) times425 : ∀{Γ A} → Tm25 Γ (arr25 (arr25 A A) (arr25 A A)); times425 = lam25 (lam25 (app25 v125 (app25 v125 (app25 v125 (app25 v125 v025))))) add25 : ∀{Γ} → Tm25 Γ (arr25 nat25 (arr25 nat25 nat25)); add25 = lam25 (rec25 v025 (lam25 (lam25 (lam25 (suc25 (app25 v125 v025))))) (lam25 v025)) mul25 : ∀{Γ} → Tm25 Γ (arr25 nat25 (arr25 nat25 nat25)); mul25 = lam25 (rec25 v025 (lam25 (lam25 (lam25 (app25 (app25 add25 (app25 v125 v025)) v025)))) (lam25 zero25)) fact25 : ∀{Γ} → Tm25 Γ (arr25 nat25 nat25); fact25 = lam25 (rec25 v025 (lam25 (lam25 (app25 (app25 mul25 (suc25 v125)) v025))) (suc25 zero25)) {-# OPTIONS --type-in-type #-} Ty26 : Set Ty26 = (Ty26 : Set) (nat top bot : Ty26) (arr prod sum : Ty26 → Ty26 → Ty26) → Ty26 nat26 : Ty26; nat26 = λ _ nat26 _ _ _ _ _ → nat26 top26 : Ty26; top26 = λ _ _ top26 _ _ _ _ → top26 bot26 : Ty26; bot26 = λ _ _ _ bot26 _ _ _ → bot26 arr26 : Ty26 → Ty26 → Ty26; arr26 = λ A B Ty26 nat26 top26 bot26 arr26 prod sum → arr26 (A Ty26 nat26 top26 bot26 arr26 prod sum) (B Ty26 nat26 top26 bot26 arr26 prod sum) prod26 : Ty26 → Ty26 → Ty26; prod26 = λ A B Ty26 nat26 top26 bot26 arr26 prod26 sum → prod26 (A Ty26 nat26 top26 bot26 arr26 prod26 sum) (B Ty26 nat26 top26 bot26 arr26 prod26 sum) sum26 : Ty26 → Ty26 → Ty26; sum26 = λ A B Ty26 nat26 top26 bot26 arr26 prod26 sum26 → sum26 (A Ty26 nat26 top26 bot26 arr26 prod26 sum26) (B Ty26 nat26 top26 bot26 arr26 prod26 sum26) Con26 : Set; Con26 = (Con26 : Set) (nil : Con26) (snoc : Con26 → Ty26 → Con26) → Con26 nil26 : Con26; nil26 = λ Con26 nil26 snoc → nil26 snoc26 : Con26 → Ty26 → Con26; snoc26 = λ Γ A Con26 nil26 snoc26 → snoc26 (Γ Con26 nil26 snoc26) A Var26 : Con26 → Ty26 → Set; Var26 = λ Γ A → (Var26 : Con26 → Ty26 → Set) (vz : ∀ Γ A → Var26 (snoc26 Γ A) A) (vs : ∀ Γ B A → Var26 Γ A → Var26 (snoc26 Γ B) A) → Var26 Γ A vz26 : ∀{Γ A} → Var26 (snoc26 Γ A) A; vz26 = λ Var26 vz26 vs → vz26 _ _ vs26 : ∀{Γ B A} → Var26 Γ A → Var26 (snoc26 Γ B) A; vs26 = λ x Var26 vz26 vs26 → vs26 _ _ _ (x Var26 vz26 vs26) Tm26 : Con26 → Ty26 → Set; Tm26 = λ Γ A → (Tm26 : Con26 → Ty26 → Set) (var : ∀ Γ A → Var26 Γ A → Tm26 Γ A) (lam : ∀ Γ A B → Tm26 (snoc26 Γ A) B → Tm26 Γ (arr26 A B)) (app : ∀ Γ A B → Tm26 Γ (arr26 A B) → Tm26 Γ A → Tm26 Γ B) (tt : ∀ Γ → Tm26 Γ top26) (pair : ∀ Γ A B → Tm26 Γ A → Tm26 Γ B → Tm26 Γ (prod26 A B)) (fst : ∀ Γ A B → Tm26 Γ (prod26 A B) → Tm26 Γ A) (snd : ∀ Γ A B → Tm26 Γ (prod26 A B) → Tm26 Γ B) (left : ∀ Γ A B → Tm26 Γ A → Tm26 Γ (sum26 A B)) (right : ∀ Γ A B → Tm26 Γ B → Tm26 Γ (sum26 A B)) (case : ∀ Γ A B C → Tm26 Γ (sum26 A B) → Tm26 Γ (arr26 A C) → Tm26 Γ (arr26 B C) → Tm26 Γ C) (zero : ∀ Γ → Tm26 Γ nat26) (suc : ∀ Γ → Tm26 Γ nat26 → Tm26 Γ nat26) (rec : ∀ Γ A → Tm26 Γ nat26 → Tm26 Γ (arr26 nat26 (arr26 A A)) → Tm26 Γ A → Tm26 Γ A) → Tm26 Γ A var26 : ∀{Γ A} → Var26 Γ A → Tm26 Γ A; var26 = λ x Tm26 var26 lam app tt pair fst snd left right case zero suc rec → var26 _ _ x lam26 : ∀{Γ A B} → Tm26 (snoc26 Γ A) B → Tm26 Γ (arr26 A B); lam26 = λ t Tm26 var26 lam26 app tt pair fst snd left right case zero suc rec → lam26 _ _ _ (t Tm26 var26 lam26 app tt pair fst snd left right case zero suc rec) app26 : ∀{Γ A B} → Tm26 Γ (arr26 A B) → Tm26 Γ A → Tm26 Γ B; app26 = λ t u Tm26 var26 lam26 app26 tt pair fst snd left right case zero suc rec → app26 _ _ _ (t Tm26 var26 lam26 app26 tt pair fst snd left right case zero suc rec) (u Tm26 var26 lam26 app26 tt pair fst snd left right case zero suc rec) tt26 : ∀{Γ} → Tm26 Γ top26; tt26 = λ Tm26 var26 lam26 app26 tt26 pair fst snd left right case zero suc rec → tt26 _ pair26 : ∀{Γ A B} → Tm26 Γ A → Tm26 Γ B → Tm26 Γ (prod26 A B); pair26 = λ t u Tm26 var26 lam26 app26 tt26 pair26 fst snd left right case zero suc rec → pair26 _ _ _ (t Tm26 var26 lam26 app26 tt26 pair26 fst snd left right case zero suc rec) (u Tm26 var26 lam26 app26 tt26 pair26 fst snd left right case zero suc rec) fst26 : ∀{Γ A B} → Tm26 Γ (prod26 A B) → Tm26 Γ A; fst26 = λ t Tm26 var26 lam26 app26 tt26 pair26 fst26 snd left right case zero suc rec → fst26 _ _ _ (t Tm26 var26 lam26 app26 tt26 pair26 fst26 snd left right case zero suc rec) snd26 : ∀{Γ A B} → Tm26 Γ (prod26 A B) → Tm26 Γ B; snd26 = λ t Tm26 var26 lam26 app26 tt26 pair26 fst26 snd26 left right case zero suc rec → snd26 _ _ _ (t Tm26 var26 lam26 app26 tt26 pair26 fst26 snd26 left right case zero suc rec) left26 : ∀{Γ A B} → Tm26 Γ A → Tm26 Γ (sum26 A B); left26 = λ t Tm26 var26 lam26 app26 tt26 pair26 fst26 snd26 left26 right case zero suc rec → left26 _ _ _ (t Tm26 var26 lam26 app26 tt26 pair26 fst26 snd26 left26 right case zero suc rec) right26 : ∀{Γ A B} → Tm26 Γ B → Tm26 Γ (sum26 A B); right26 = λ t Tm26 var26 lam26 app26 tt26 pair26 fst26 snd26 left26 right26 case zero suc rec → right26 _ _ _ (t Tm26 var26 lam26 app26 tt26 pair26 fst26 snd26 left26 right26 case zero suc rec) case26 : ∀{Γ A B C} → Tm26 Γ (sum26 A B) → Tm26 Γ (arr26 A C) → Tm26 Γ (arr26 B C) → Tm26 Γ C; case26 = λ t u v Tm26 var26 lam26 app26 tt26 pair26 fst26 snd26 left26 right26 case26 zero suc rec → case26 _ _ _ _ (t Tm26 var26 lam26 app26 tt26 pair26 fst26 snd26 left26 right26 case26 zero suc rec) (u Tm26 var26 lam26 app26 tt26 pair26 fst26 snd26 left26 right26 case26 zero suc rec) (v Tm26 var26 lam26 app26 tt26 pair26 fst26 snd26 left26 right26 case26 zero suc rec) zero26 : ∀{Γ} → Tm26 Γ nat26; zero26 = λ Tm26 var26 lam26 app26 tt26 pair26 fst26 snd26 left26 right26 case26 zero26 suc rec → zero26 _ suc26 : ∀{Γ} → Tm26 Γ nat26 → Tm26 Γ nat26; suc26 = λ t Tm26 var26 lam26 app26 tt26 pair26 fst26 snd26 left26 right26 case26 zero26 suc26 rec → suc26 _ (t Tm26 var26 lam26 app26 tt26 pair26 fst26 snd26 left26 right26 case26 zero26 suc26 rec) rec26 : ∀{Γ A} → Tm26 Γ nat26 → Tm26 Γ (arr26 nat26 (arr26 A A)) → Tm26 Γ A → Tm26 Γ A; rec26 = λ t u v Tm26 var26 lam26 app26 tt26 pair26 fst26 snd26 left26 right26 case26 zero26 suc26 rec26 → rec26 _ _ (t Tm26 var26 lam26 app26 tt26 pair26 fst26 snd26 left26 right26 case26 zero26 suc26 rec26) (u Tm26 var26 lam26 app26 tt26 pair26 fst26 snd26 left26 right26 case26 zero26 suc26 rec26) (v Tm26 var26 lam26 app26 tt26 pair26 fst26 snd26 left26 right26 case26 zero26 suc26 rec26) v026 : ∀{Γ A} → Tm26 (snoc26 Γ A) A; v026 = var26 vz26 v126 : ∀{Γ A B} → Tm26 (snoc26 (snoc26 Γ A) B) A; v126 = var26 (vs26 vz26) v226 : ∀{Γ A B C} → Tm26 (snoc26 (snoc26 (snoc26 Γ A) B) C) A; v226 = var26 (vs26 (vs26 vz26)) v326 : ∀{Γ A B C D} → Tm26 (snoc26 (snoc26 (snoc26 (snoc26 Γ A) B) C) D) A; v326 = var26 (vs26 (vs26 (vs26 vz26))) tbool26 : Ty26; tbool26 = sum26 top26 top26 true26 : ∀{Γ} → Tm26 Γ tbool26; true26 = left26 tt26 tfalse26 : ∀{Γ} → Tm26 Γ tbool26; tfalse26 = right26 tt26 ifthenelse26 : ∀{Γ A} → Tm26 Γ (arr26 tbool26 (arr26 A (arr26 A A))); ifthenelse26 = lam26 (lam26 (lam26 (case26 v226 (lam26 v226) (lam26 v126)))) times426 : ∀{Γ A} → Tm26 Γ (arr26 (arr26 A A) (arr26 A A)); times426 = lam26 (lam26 (app26 v126 (app26 v126 (app26 v126 (app26 v126 v026))))) add26 : ∀{Γ} → Tm26 Γ (arr26 nat26 (arr26 nat26 nat26)); add26 = lam26 (rec26 v026 (lam26 (lam26 (lam26 (suc26 (app26 v126 v026))))) (lam26 v026)) mul26 : ∀{Γ} → Tm26 Γ (arr26 nat26 (arr26 nat26 nat26)); mul26 = lam26 (rec26 v026 (lam26 (lam26 (lam26 (app26 (app26 add26 (app26 v126 v026)) v026)))) (lam26 zero26)) fact26 : ∀{Γ} → Tm26 Γ (arr26 nat26 nat26); fact26 = lam26 (rec26 v026 (lam26 (lam26 (app26 (app26 mul26 (suc26 v126)) v026))) (suc26 zero26)) {-# OPTIONS --type-in-type #-} Ty27 : Set Ty27 = (Ty27 : Set) (nat top bot : Ty27) (arr prod sum : Ty27 → Ty27 → Ty27) → Ty27 nat27 : Ty27; nat27 = λ _ nat27 _ _ _ _ _ → nat27 top27 : Ty27; top27 = λ _ _ top27 _ _ _ _ → top27 bot27 : Ty27; bot27 = λ _ _ _ bot27 _ _ _ → bot27 arr27 : Ty27 → Ty27 → Ty27; arr27 = λ A B Ty27 nat27 top27 bot27 arr27 prod sum → arr27 (A Ty27 nat27 top27 bot27 arr27 prod sum) (B Ty27 nat27 top27 bot27 arr27 prod sum) prod27 : Ty27 → Ty27 → Ty27; prod27 = λ A B Ty27 nat27 top27 bot27 arr27 prod27 sum → prod27 (A Ty27 nat27 top27 bot27 arr27 prod27 sum) (B Ty27 nat27 top27 bot27 arr27 prod27 sum) sum27 : Ty27 → Ty27 → Ty27; sum27 = λ A B Ty27 nat27 top27 bot27 arr27 prod27 sum27 → sum27 (A Ty27 nat27 top27 bot27 arr27 prod27 sum27) (B Ty27 nat27 top27 bot27 arr27 prod27 sum27) Con27 : Set; Con27 = (Con27 : Set) (nil : Con27) (snoc : Con27 → Ty27 → Con27) → Con27 nil27 : Con27; nil27 = λ Con27 nil27 snoc → nil27 snoc27 : Con27 → Ty27 → Con27; snoc27 = λ Γ A Con27 nil27 snoc27 → snoc27 (Γ Con27 nil27 snoc27) A Var27 : Con27 → Ty27 → Set; Var27 = λ Γ A → (Var27 : Con27 → Ty27 → Set) (vz : ∀ Γ A → Var27 (snoc27 Γ A) A) (vs : ∀ Γ B A → Var27 Γ A → Var27 (snoc27 Γ B) A) → Var27 Γ A vz27 : ∀{Γ A} → Var27 (snoc27 Γ A) A; vz27 = λ Var27 vz27 vs → vz27 _ _ vs27 : ∀{Γ B A} → Var27 Γ A → Var27 (snoc27 Γ B) A; vs27 = λ x Var27 vz27 vs27 → vs27 _ _ _ (x Var27 vz27 vs27) Tm27 : Con27 → Ty27 → Set; Tm27 = λ Γ A → (Tm27 : Con27 → Ty27 → Set) (var : ∀ Γ A → Var27 Γ A → Tm27 Γ A) (lam : ∀ Γ A B → Tm27 (snoc27 Γ A) B → Tm27 Γ (arr27 A B)) (app : ∀ Γ A B → Tm27 Γ (arr27 A B) → Tm27 Γ A → Tm27 Γ B) (tt : ∀ Γ → Tm27 Γ top27) (pair : ∀ Γ A B → Tm27 Γ A → Tm27 Γ B → Tm27 Γ (prod27 A B)) (fst : ∀ Γ A B → Tm27 Γ (prod27 A B) → Tm27 Γ A) (snd : ∀ Γ A B → Tm27 Γ (prod27 A B) → Tm27 Γ B) (left : ∀ Γ A B → Tm27 Γ A → Tm27 Γ (sum27 A B)) (right : ∀ Γ A B → Tm27 Γ B → Tm27 Γ (sum27 A B)) (case : ∀ Γ A B C → Tm27 Γ (sum27 A B) → Tm27 Γ (arr27 A C) → Tm27 Γ (arr27 B C) → Tm27 Γ C) (zero : ∀ Γ → Tm27 Γ nat27) (suc : ∀ Γ → Tm27 Γ nat27 → Tm27 Γ nat27) (rec : ∀ Γ A → Tm27 Γ nat27 → Tm27 Γ (arr27 nat27 (arr27 A A)) → Tm27 Γ A → Tm27 Γ A) → Tm27 Γ A var27 : ∀{Γ A} → Var27 Γ A → Tm27 Γ A; var27 = λ x Tm27 var27 lam app tt pair fst snd left right case zero suc rec → var27 _ _ x lam27 : ∀{Γ A B} → Tm27 (snoc27 Γ A) B → Tm27 Γ (arr27 A B); lam27 = λ t Tm27 var27 lam27 app tt pair fst snd left right case zero suc rec → lam27 _ _ _ (t Tm27 var27 lam27 app tt pair fst snd left right case zero suc rec) app27 : ∀{Γ A B} → Tm27 Γ (arr27 A B) → Tm27 Γ A → Tm27 Γ B; app27 = λ t u Tm27 var27 lam27 app27 tt pair fst snd left right case zero suc rec → app27 _ _ _ (t Tm27 var27 lam27 app27 tt pair fst snd left right case zero suc rec) (u Tm27 var27 lam27 app27 tt pair fst snd left right case zero suc rec) tt27 : ∀{Γ} → Tm27 Γ top27; tt27 = λ Tm27 var27 lam27 app27 tt27 pair fst snd left right case zero suc rec → tt27 _ pair27 : ∀{Γ A B} → Tm27 Γ A → Tm27 Γ B → Tm27 Γ (prod27 A B); pair27 = λ t u Tm27 var27 lam27 app27 tt27 pair27 fst snd left right case zero suc rec → pair27 _ _ _ (t Tm27 var27 lam27 app27 tt27 pair27 fst snd left right case zero suc rec) (u Tm27 var27 lam27 app27 tt27 pair27 fst snd left right case zero suc rec) fst27 : ∀{Γ A B} → Tm27 Γ (prod27 A B) → Tm27 Γ A; fst27 = λ t Tm27 var27 lam27 app27 tt27 pair27 fst27 snd left right case zero suc rec → fst27 _ _ _ (t Tm27 var27 lam27 app27 tt27 pair27 fst27 snd left right case zero suc rec) snd27 : ∀{Γ A B} → Tm27 Γ (prod27 A B) → Tm27 Γ B; snd27 = λ t Tm27 var27 lam27 app27 tt27 pair27 fst27 snd27 left right case zero suc rec → snd27 _ _ _ (t Tm27 var27 lam27 app27 tt27 pair27 fst27 snd27 left right case zero suc rec) left27 : ∀{Γ A B} → Tm27 Γ A → Tm27 Γ (sum27 A B); left27 = λ t Tm27 var27 lam27 app27 tt27 pair27 fst27 snd27 left27 right case zero suc rec → left27 _ _ _ (t Tm27 var27 lam27 app27 tt27 pair27 fst27 snd27 left27 right case zero suc rec) right27 : ∀{Γ A B} → Tm27 Γ B → Tm27 Γ (sum27 A B); right27 = λ t Tm27 var27 lam27 app27 tt27 pair27 fst27 snd27 left27 right27 case zero suc rec → right27 _ _ _ (t Tm27 var27 lam27 app27 tt27 pair27 fst27 snd27 left27 right27 case zero suc rec) case27 : ∀{Γ A B C} → Tm27 Γ (sum27 A B) → Tm27 Γ (arr27 A C) → Tm27 Γ (arr27 B C) → Tm27 Γ C; case27 = λ t u v Tm27 var27 lam27 app27 tt27 pair27 fst27 snd27 left27 right27 case27 zero suc rec → case27 _ _ _ _ (t Tm27 var27 lam27 app27 tt27 pair27 fst27 snd27 left27 right27 case27 zero suc rec) (u Tm27 var27 lam27 app27 tt27 pair27 fst27 snd27 left27 right27 case27 zero suc rec) (v Tm27 var27 lam27 app27 tt27 pair27 fst27 snd27 left27 right27 case27 zero suc rec) zero27 : ∀{Γ} → Tm27 Γ nat27; zero27 = λ Tm27 var27 lam27 app27 tt27 pair27 fst27 snd27 left27 right27 case27 zero27 suc rec → zero27 _ suc27 : ∀{Γ} → Tm27 Γ nat27 → Tm27 Γ nat27; suc27 = λ t Tm27 var27 lam27 app27 tt27 pair27 fst27 snd27 left27 right27 case27 zero27 suc27 rec → suc27 _ (t Tm27 var27 lam27 app27 tt27 pair27 fst27 snd27 left27 right27 case27 zero27 suc27 rec) rec27 : ∀{Γ A} → Tm27 Γ nat27 → Tm27 Γ (arr27 nat27 (arr27 A A)) → Tm27 Γ A → Tm27 Γ A; rec27 = λ t u v Tm27 var27 lam27 app27 tt27 pair27 fst27 snd27 left27 right27 case27 zero27 suc27 rec27 → rec27 _ _ (t Tm27 var27 lam27 app27 tt27 pair27 fst27 snd27 left27 right27 case27 zero27 suc27 rec27) (u Tm27 var27 lam27 app27 tt27 pair27 fst27 snd27 left27 right27 case27 zero27 suc27 rec27) (v Tm27 var27 lam27 app27 tt27 pair27 fst27 snd27 left27 right27 case27 zero27 suc27 rec27) v027 : ∀{Γ A} → Tm27 (snoc27 Γ A) A; v027 = var27 vz27 v127 : ∀{Γ A B} → Tm27 (snoc27 (snoc27 Γ A) B) A; v127 = var27 (vs27 vz27) v227 : ∀{Γ A B C} → Tm27 (snoc27 (snoc27 (snoc27 Γ A) B) C) A; v227 = var27 (vs27 (vs27 vz27)) v327 : ∀{Γ A B C D} → Tm27 (snoc27 (snoc27 (snoc27 (snoc27 Γ A) B) C) D) A; v327 = var27 (vs27 (vs27 (vs27 vz27))) tbool27 : Ty27; tbool27 = sum27 top27 top27 true27 : ∀{Γ} → Tm27 Γ tbool27; true27 = left27 tt27 tfalse27 : ∀{Γ} → Tm27 Γ tbool27; tfalse27 = right27 tt27 ifthenelse27 : ∀{Γ A} → Tm27 Γ (arr27 tbool27 (arr27 A (arr27 A A))); ifthenelse27 = lam27 (lam27 (lam27 (case27 v227 (lam27 v227) (lam27 v127)))) times427 : ∀{Γ A} → Tm27 Γ (arr27 (arr27 A A) (arr27 A A)); times427 = lam27 (lam27 (app27 v127 (app27 v127 (app27 v127 (app27 v127 v027))))) add27 : ∀{Γ} → Tm27 Γ (arr27 nat27 (arr27 nat27 nat27)); add27 = lam27 (rec27 v027 (lam27 (lam27 (lam27 (suc27 (app27 v127 v027))))) (lam27 v027)) mul27 : ∀{Γ} → Tm27 Γ (arr27 nat27 (arr27 nat27 nat27)); mul27 = lam27 (rec27 v027 (lam27 (lam27 (lam27 (app27 (app27 add27 (app27 v127 v027)) v027)))) (lam27 zero27)) fact27 : ∀{Γ} → Tm27 Γ (arr27 nat27 nat27); fact27 = lam27 (rec27 v027 (lam27 (lam27 (app27 (app27 mul27 (suc27 v127)) v027))) (suc27 zero27)) {-# OPTIONS --type-in-type #-} Ty28 : Set Ty28 = (Ty28 : Set) (nat top bot : Ty28) (arr prod sum : Ty28 → Ty28 → Ty28) → Ty28 nat28 : Ty28; nat28 = λ _ nat28 _ _ _ _ _ → nat28 top28 : Ty28; top28 = λ _ _ top28 _ _ _ _ → top28 bot28 : Ty28; bot28 = λ _ _ _ bot28 _ _ _ → bot28 arr28 : Ty28 → Ty28 → Ty28; arr28 = λ A B Ty28 nat28 top28 bot28 arr28 prod sum → arr28 (A Ty28 nat28 top28 bot28 arr28 prod sum) (B Ty28 nat28 top28 bot28 arr28 prod sum) prod28 : Ty28 → Ty28 → Ty28; prod28 = λ A B Ty28 nat28 top28 bot28 arr28 prod28 sum → prod28 (A Ty28 nat28 top28 bot28 arr28 prod28 sum) (B Ty28 nat28 top28 bot28 arr28 prod28 sum) sum28 : Ty28 → Ty28 → Ty28; sum28 = λ A B Ty28 nat28 top28 bot28 arr28 prod28 sum28 → sum28 (A Ty28 nat28 top28 bot28 arr28 prod28 sum28) (B Ty28 nat28 top28 bot28 arr28 prod28 sum28) Con28 : Set; Con28 = (Con28 : Set) (nil : Con28) (snoc : Con28 → Ty28 → Con28) → Con28 nil28 : Con28; nil28 = λ Con28 nil28 snoc → nil28 snoc28 : Con28 → Ty28 → Con28; snoc28 = λ Γ A Con28 nil28 snoc28 → snoc28 (Γ Con28 nil28 snoc28) A Var28 : Con28 → Ty28 → Set; Var28 = λ Γ A → (Var28 : Con28 → Ty28 → Set) (vz : ∀ Γ A → Var28 (snoc28 Γ A) A) (vs : ∀ Γ B A → Var28 Γ A → Var28 (snoc28 Γ B) A) → Var28 Γ A vz28 : ∀{Γ A} → Var28 (snoc28 Γ A) A; vz28 = λ Var28 vz28 vs → vz28 _ _ vs28 : ∀{Γ B A} → Var28 Γ A → Var28 (snoc28 Γ B) A; vs28 = λ x Var28 vz28 vs28 → vs28 _ _ _ (x Var28 vz28 vs28) Tm28 : Con28 → Ty28 → Set; Tm28 = λ Γ A → (Tm28 : Con28 → Ty28 → Set) (var : ∀ Γ A → Var28 Γ A → Tm28 Γ A) (lam : ∀ Γ A B → Tm28 (snoc28 Γ A) B → Tm28 Γ (arr28 A B)) (app : ∀ Γ A B → Tm28 Γ (arr28 A B) → Tm28 Γ A → Tm28 Γ B) (tt : ∀ Γ → Tm28 Γ top28) (pair : ∀ Γ A B → Tm28 Γ A → Tm28 Γ B → Tm28 Γ (prod28 A B)) (fst : ∀ Γ A B → Tm28 Γ (prod28 A B) → Tm28 Γ A) (snd : ∀ Γ A B → Tm28 Γ (prod28 A B) → Tm28 Γ B) (left : ∀ Γ A B → Tm28 Γ A → Tm28 Γ (sum28 A B)) (right : ∀ Γ A B → Tm28 Γ B → Tm28 Γ (sum28 A B)) (case : ∀ Γ A B C → Tm28 Γ (sum28 A B) → Tm28 Γ (arr28 A C) → Tm28 Γ (arr28 B C) → Tm28 Γ C) (zero : ∀ Γ → Tm28 Γ nat28) (suc : ∀ Γ → Tm28 Γ nat28 → Tm28 Γ nat28) (rec : ∀ Γ A → Tm28 Γ nat28 → Tm28 Γ (arr28 nat28 (arr28 A A)) → Tm28 Γ A → Tm28 Γ A) → Tm28 Γ A var28 : ∀{Γ A} → Var28 Γ A → Tm28 Γ A; var28 = λ x Tm28 var28 lam app tt pair fst snd left right case zero suc rec → var28 _ _ x lam28 : ∀{Γ A B} → Tm28 (snoc28 Γ A) B → Tm28 Γ (arr28 A B); lam28 = λ t Tm28 var28 lam28 app tt pair fst snd left right case zero suc rec → lam28 _ _ _ (t Tm28 var28 lam28 app tt pair fst snd left right case zero suc rec) app28 : ∀{Γ A B} → Tm28 Γ (arr28 A B) → Tm28 Γ A → Tm28 Γ B; app28 = λ t u Tm28 var28 lam28 app28 tt pair fst snd left right case zero suc rec → app28 _ _ _ (t Tm28 var28 lam28 app28 tt pair fst snd left right case zero suc rec) (u Tm28 var28 lam28 app28 tt pair fst snd left right case zero suc rec) tt28 : ∀{Γ} → Tm28 Γ top28; tt28 = λ Tm28 var28 lam28 app28 tt28 pair fst snd left right case zero suc rec → tt28 _ pair28 : ∀{Γ A B} → Tm28 Γ A → Tm28 Γ B → Tm28 Γ (prod28 A B); pair28 = λ t u Tm28 var28 lam28 app28 tt28 pair28 fst snd left right case zero suc rec → pair28 _ _ _ (t Tm28 var28 lam28 app28 tt28 pair28 fst snd left right case zero suc rec) (u Tm28 var28 lam28 app28 tt28 pair28 fst snd left right case zero suc rec) fst28 : ∀{Γ A B} → Tm28 Γ (prod28 A B) → Tm28 Γ A; fst28 = λ t Tm28 var28 lam28 app28 tt28 pair28 fst28 snd left right case zero suc rec → fst28 _ _ _ (t Tm28 var28 lam28 app28 tt28 pair28 fst28 snd left right case zero suc rec) snd28 : ∀{Γ A B} → Tm28 Γ (prod28 A B) → Tm28 Γ B; snd28 = λ t Tm28 var28 lam28 app28 tt28 pair28 fst28 snd28 left right case zero suc rec → snd28 _ _ _ (t Tm28 var28 lam28 app28 tt28 pair28 fst28 snd28 left right case zero suc rec) left28 : ∀{Γ A B} → Tm28 Γ A → Tm28 Γ (sum28 A B); left28 = λ t Tm28 var28 lam28 app28 tt28 pair28 fst28 snd28 left28 right case zero suc rec → left28 _ _ _ (t Tm28 var28 lam28 app28 tt28 pair28 fst28 snd28 left28 right case zero suc rec) right28 : ∀{Γ A B} → Tm28 Γ B → Tm28 Γ (sum28 A B); right28 = λ t Tm28 var28 lam28 app28 tt28 pair28 fst28 snd28 left28 right28 case zero suc rec → right28 _ _ _ (t Tm28 var28 lam28 app28 tt28 pair28 fst28 snd28 left28 right28 case zero suc rec) case28 : ∀{Γ A B C} → Tm28 Γ (sum28 A B) → Tm28 Γ (arr28 A C) → Tm28 Γ (arr28 B C) → Tm28 Γ C; case28 = λ t u v Tm28 var28 lam28 app28 tt28 pair28 fst28 snd28 left28 right28 case28 zero suc rec → case28 _ _ _ _ (t Tm28 var28 lam28 app28 tt28 pair28 fst28 snd28 left28 right28 case28 zero suc rec) (u Tm28 var28 lam28 app28 tt28 pair28 fst28 snd28 left28 right28 case28 zero suc rec) (v Tm28 var28 lam28 app28 tt28 pair28 fst28 snd28 left28 right28 case28 zero suc rec) zero28 : ∀{Γ} → Tm28 Γ nat28; zero28 = λ Tm28 var28 lam28 app28 tt28 pair28 fst28 snd28 left28 right28 case28 zero28 suc rec → zero28 _ suc28 : ∀{Γ} → Tm28 Γ nat28 → Tm28 Γ nat28; suc28 = λ t Tm28 var28 lam28 app28 tt28 pair28 fst28 snd28 left28 right28 case28 zero28 suc28 rec → suc28 _ (t Tm28 var28 lam28 app28 tt28 pair28 fst28 snd28 left28 right28 case28 zero28 suc28 rec) rec28 : ∀{Γ A} → Tm28 Γ nat28 → Tm28 Γ (arr28 nat28 (arr28 A A)) → Tm28 Γ A → Tm28 Γ A; rec28 = λ t u v Tm28 var28 lam28 app28 tt28 pair28 fst28 snd28 left28 right28 case28 zero28 suc28 rec28 → rec28 _ _ (t Tm28 var28 lam28 app28 tt28 pair28 fst28 snd28 left28 right28 case28 zero28 suc28 rec28) (u Tm28 var28 lam28 app28 tt28 pair28 fst28 snd28 left28 right28 case28 zero28 suc28 rec28) (v Tm28 var28 lam28 app28 tt28 pair28 fst28 snd28 left28 right28 case28 zero28 suc28 rec28) v028 : ∀{Γ A} → Tm28 (snoc28 Γ A) A; v028 = var28 vz28 v128 : ∀{Γ A B} → Tm28 (snoc28 (snoc28 Γ A) B) A; v128 = var28 (vs28 vz28) v228 : ∀{Γ A B C} → Tm28 (snoc28 (snoc28 (snoc28 Γ A) B) C) A; v228 = var28 (vs28 (vs28 vz28)) v328 : ∀{Γ A B C D} → Tm28 (snoc28 (snoc28 (snoc28 (snoc28 Γ A) B) C) D) A; v328 = var28 (vs28 (vs28 (vs28 vz28))) tbool28 : Ty28; tbool28 = sum28 top28 top28 true28 : ∀{Γ} → Tm28 Γ tbool28; true28 = left28 tt28 tfalse28 : ∀{Γ} → Tm28 Γ tbool28; tfalse28 = right28 tt28 ifthenelse28 : ∀{Γ A} → Tm28 Γ (arr28 tbool28 (arr28 A (arr28 A A))); ifthenelse28 = lam28 (lam28 (lam28 (case28 v228 (lam28 v228) (lam28 v128)))) times428 : ∀{Γ A} → Tm28 Γ (arr28 (arr28 A A) (arr28 A A)); times428 = lam28 (lam28 (app28 v128 (app28 v128 (app28 v128 (app28 v128 v028))))) add28 : ∀{Γ} → Tm28 Γ (arr28 nat28 (arr28 nat28 nat28)); add28 = lam28 (rec28 v028 (lam28 (lam28 (lam28 (suc28 (app28 v128 v028))))) (lam28 v028)) mul28 : ∀{Γ} → Tm28 Γ (arr28 nat28 (arr28 nat28 nat28)); mul28 = lam28 (rec28 v028 (lam28 (lam28 (lam28 (app28 (app28 add28 (app28 v128 v028)) v028)))) (lam28 zero28)) fact28 : ∀{Γ} → Tm28 Γ (arr28 nat28 nat28); fact28 = lam28 (rec28 v028 (lam28 (lam28 (app28 (app28 mul28 (suc28 v128)) v028))) (suc28 zero28)) {-# OPTIONS --type-in-type #-} Ty29 : Set Ty29 = (Ty29 : Set) (nat top bot : Ty29) (arr prod sum : Ty29 → Ty29 → Ty29) → Ty29 nat29 : Ty29; nat29 = λ _ nat29 _ _ _ _ _ → nat29 top29 : Ty29; top29 = λ _ _ top29 _ _ _ _ → top29 bot29 : Ty29; bot29 = λ _ _ _ bot29 _ _ _ → bot29 arr29 : Ty29 → Ty29 → Ty29; arr29 = λ A B Ty29 nat29 top29 bot29 arr29 prod sum → arr29 (A Ty29 nat29 top29 bot29 arr29 prod sum) (B Ty29 nat29 top29 bot29 arr29 prod sum) prod29 : Ty29 → Ty29 → Ty29; prod29 = λ A B Ty29 nat29 top29 bot29 arr29 prod29 sum → prod29 (A Ty29 nat29 top29 bot29 arr29 prod29 sum) (B Ty29 nat29 top29 bot29 arr29 prod29 sum) sum29 : Ty29 → Ty29 → Ty29; sum29 = λ A B Ty29 nat29 top29 bot29 arr29 prod29 sum29 → sum29 (A Ty29 nat29 top29 bot29 arr29 prod29 sum29) (B Ty29 nat29 top29 bot29 arr29 prod29 sum29) Con29 : Set; Con29 = (Con29 : Set) (nil : Con29) (snoc : Con29 → Ty29 → Con29) → Con29 nil29 : Con29; nil29 = λ Con29 nil29 snoc → nil29 snoc29 : Con29 → Ty29 → Con29; snoc29 = λ Γ A Con29 nil29 snoc29 → snoc29 (Γ Con29 nil29 snoc29) A Var29 : Con29 → Ty29 → Set; Var29 = λ Γ A → (Var29 : Con29 → Ty29 → Set) (vz : ∀ Γ A → Var29 (snoc29 Γ A) A) (vs : ∀ Γ B A → Var29 Γ A → Var29 (snoc29 Γ B) A) → Var29 Γ A vz29 : ∀{Γ A} → Var29 (snoc29 Γ A) A; vz29 = λ Var29 vz29 vs → vz29 _ _ vs29 : ∀{Γ B A} → Var29 Γ A → Var29 (snoc29 Γ B) A; vs29 = λ x Var29 vz29 vs29 → vs29 _ _ _ (x Var29 vz29 vs29) Tm29 : Con29 → Ty29 → Set; Tm29 = λ Γ A → (Tm29 : Con29 → Ty29 → Set) (var : ∀ Γ A → Var29 Γ A → Tm29 Γ A) (lam : ∀ Γ A B → Tm29 (snoc29 Γ A) B → Tm29 Γ (arr29 A B)) (app : ∀ Γ A B → Tm29 Γ (arr29 A B) → Tm29 Γ A → Tm29 Γ B) (tt : ∀ Γ → Tm29 Γ top29) (pair : ∀ Γ A B → Tm29 Γ A → Tm29 Γ B → Tm29 Γ (prod29 A B)) (fst : ∀ Γ A B → Tm29 Γ (prod29 A B) → Tm29 Γ A) (snd : ∀ Γ A B → Tm29 Γ (prod29 A B) → Tm29 Γ B) (left : ∀ Γ A B → Tm29 Γ A → Tm29 Γ (sum29 A B)) (right : ∀ Γ A B → Tm29 Γ B → Tm29 Γ (sum29 A B)) (case : ∀ Γ A B C → Tm29 Γ (sum29 A B) → Tm29 Γ (arr29 A C) → Tm29 Γ (arr29 B C) → Tm29 Γ C) (zero : ∀ Γ → Tm29 Γ nat29) (suc : ∀ Γ → Tm29 Γ nat29 → Tm29 Γ nat29) (rec : ∀ Γ A → Tm29 Γ nat29 → Tm29 Γ (arr29 nat29 (arr29 A A)) → Tm29 Γ A → Tm29 Γ A) → Tm29 Γ A var29 : ∀{Γ A} → Var29 Γ A → Tm29 Γ A; var29 = λ x Tm29 var29 lam app tt pair fst snd left right case zero suc rec → var29 _ _ x lam29 : ∀{Γ A B} → Tm29 (snoc29 Γ A) B → Tm29 Γ (arr29 A B); lam29 = λ t Tm29 var29 lam29 app tt pair fst snd left right case zero suc rec → lam29 _ _ _ (t Tm29 var29 lam29 app tt pair fst snd left right case zero suc rec) app29 : ∀{Γ A B} → Tm29 Γ (arr29 A B) → Tm29 Γ A → Tm29 Γ B; app29 = λ t u Tm29 var29 lam29 app29 tt pair fst snd left right case zero suc rec → app29 _ _ _ (t Tm29 var29 lam29 app29 tt pair fst snd left right case zero suc rec) (u Tm29 var29 lam29 app29 tt pair fst snd left right case zero suc rec) tt29 : ∀{Γ} → Tm29 Γ top29; tt29 = λ Tm29 var29 lam29 app29 tt29 pair fst snd left right case zero suc rec → tt29 _ pair29 : ∀{Γ A B} → Tm29 Γ A → Tm29 Γ B → Tm29 Γ (prod29 A B); pair29 = λ t u Tm29 var29 lam29 app29 tt29 pair29 fst snd left right case zero suc rec → pair29 _ _ _ (t Tm29 var29 lam29 app29 tt29 pair29 fst snd left right case zero suc rec) (u Tm29 var29 lam29 app29 tt29 pair29 fst snd left right case zero suc rec) fst29 : ∀{Γ A B} → Tm29 Γ (prod29 A B) → Tm29 Γ A; fst29 = λ t Tm29 var29 lam29 app29 tt29 pair29 fst29 snd left right case zero suc rec → fst29 _ _ _ (t Tm29 var29 lam29 app29 tt29 pair29 fst29 snd left right case zero suc rec) snd29 : ∀{Γ A B} → Tm29 Γ (prod29 A B) → Tm29 Γ B; snd29 = λ t Tm29 var29 lam29 app29 tt29 pair29 fst29 snd29 left right case zero suc rec → snd29 _ _ _ (t Tm29 var29 lam29 app29 tt29 pair29 fst29 snd29 left right case zero suc rec) left29 : ∀{Γ A B} → Tm29 Γ A → Tm29 Γ (sum29 A B); left29 = λ t Tm29 var29 lam29 app29 tt29 pair29 fst29 snd29 left29 right case zero suc rec → left29 _ _ _ (t Tm29 var29 lam29 app29 tt29 pair29 fst29 snd29 left29 right case zero suc rec) right29 : ∀{Γ A B} → Tm29 Γ B → Tm29 Γ (sum29 A B); right29 = λ t Tm29 var29 lam29 app29 tt29 pair29 fst29 snd29 left29 right29 case zero suc rec → right29 _ _ _ (t Tm29 var29 lam29 app29 tt29 pair29 fst29 snd29 left29 right29 case zero suc rec) case29 : ∀{Γ A B C} → Tm29 Γ (sum29 A B) → Tm29 Γ (arr29 A C) → Tm29 Γ (arr29 B C) → Tm29 Γ C; case29 = λ t u v Tm29 var29 lam29 app29 tt29 pair29 fst29 snd29 left29 right29 case29 zero suc rec → case29 _ _ _ _ (t Tm29 var29 lam29 app29 tt29 pair29 fst29 snd29 left29 right29 case29 zero suc rec) (u Tm29 var29 lam29 app29 tt29 pair29 fst29 snd29 left29 right29 case29 zero suc rec) (v Tm29 var29 lam29 app29 tt29 pair29 fst29 snd29 left29 right29 case29 zero suc rec) zero29 : ∀{Γ} → Tm29 Γ nat29; zero29 = λ Tm29 var29 lam29 app29 tt29 pair29 fst29 snd29 left29 right29 case29 zero29 suc rec → zero29 _ suc29 : ∀{Γ} → Tm29 Γ nat29 → Tm29 Γ nat29; suc29 = λ t Tm29 var29 lam29 app29 tt29 pair29 fst29 snd29 left29 right29 case29 zero29 suc29 rec → suc29 _ (t Tm29 var29 lam29 app29 tt29 pair29 fst29 snd29 left29 right29 case29 zero29 suc29 rec) rec29 : ∀{Γ A} → Tm29 Γ nat29 → Tm29 Γ (arr29 nat29 (arr29 A A)) → Tm29 Γ A → Tm29 Γ A; rec29 = λ t u v Tm29 var29 lam29 app29 tt29 pair29 fst29 snd29 left29 right29 case29 zero29 suc29 rec29 → rec29 _ _ (t Tm29 var29 lam29 app29 tt29 pair29 fst29 snd29 left29 right29 case29 zero29 suc29 rec29) (u Tm29 var29 lam29 app29 tt29 pair29 fst29 snd29 left29 right29 case29 zero29 suc29 rec29) (v Tm29 var29 lam29 app29 tt29 pair29 fst29 snd29 left29 right29 case29 zero29 suc29 rec29) v029 : ∀{Γ A} → Tm29 (snoc29 Γ A) A; v029 = var29 vz29 v129 : ∀{Γ A B} → Tm29 (snoc29 (snoc29 Γ A) B) A; v129 = var29 (vs29 vz29) v229 : ∀{Γ A B C} → Tm29 (snoc29 (snoc29 (snoc29 Γ A) B) C) A; v229 = var29 (vs29 (vs29 vz29)) v329 : ∀{Γ A B C D} → Tm29 (snoc29 (snoc29 (snoc29 (snoc29 Γ A) B) C) D) A; v329 = var29 (vs29 (vs29 (vs29 vz29))) tbool29 : Ty29; tbool29 = sum29 top29 top29 true29 : ∀{Γ} → Tm29 Γ tbool29; true29 = left29 tt29 tfalse29 : ∀{Γ} → Tm29 Γ tbool29; tfalse29 = right29 tt29 ifthenelse29 : ∀{Γ A} → Tm29 Γ (arr29 tbool29 (arr29 A (arr29 A A))); ifthenelse29 = lam29 (lam29 (lam29 (case29 v229 (lam29 v229) (lam29 v129)))) times429 : ∀{Γ A} → Tm29 Γ (arr29 (arr29 A A) (arr29 A A)); times429 = lam29 (lam29 (app29 v129 (app29 v129 (app29 v129 (app29 v129 v029))))) add29 : ∀{Γ} → Tm29 Γ (arr29 nat29 (arr29 nat29 nat29)); add29 = lam29 (rec29 v029 (lam29 (lam29 (lam29 (suc29 (app29 v129 v029))))) (lam29 v029)) mul29 : ∀{Γ} → Tm29 Γ (arr29 nat29 (arr29 nat29 nat29)); mul29 = lam29 (rec29 v029 (lam29 (lam29 (lam29 (app29 (app29 add29 (app29 v129 v029)) v029)))) (lam29 zero29)) fact29 : ∀{Γ} → Tm29 Γ (arr29 nat29 nat29); fact29 = lam29 (rec29 v029 (lam29 (lam29 (app29 (app29 mul29 (suc29 v129)) v029))) (suc29 zero29)) {-# OPTIONS --type-in-type #-} Ty30 : Set Ty30 = (Ty30 : Set) (nat top bot : Ty30) (arr prod sum : Ty30 → Ty30 → Ty30) → Ty30 nat30 : Ty30; nat30 = λ _ nat30 _ _ _ _ _ → nat30 top30 : Ty30; top30 = λ _ _ top30 _ _ _ _ → top30 bot30 : Ty30; bot30 = λ _ _ _ bot30 _ _ _ → bot30 arr30 : Ty30 → Ty30 → Ty30; arr30 = λ A B Ty30 nat30 top30 bot30 arr30 prod sum → arr30 (A Ty30 nat30 top30 bot30 arr30 prod sum) (B Ty30 nat30 top30 bot30 arr30 prod sum) prod30 : Ty30 → Ty30 → Ty30; prod30 = λ A B Ty30 nat30 top30 bot30 arr30 prod30 sum → prod30 (A Ty30 nat30 top30 bot30 arr30 prod30 sum) (B Ty30 nat30 top30 bot30 arr30 prod30 sum) sum30 : Ty30 → Ty30 → Ty30; sum30 = λ A B Ty30 nat30 top30 bot30 arr30 prod30 sum30 → sum30 (A Ty30 nat30 top30 bot30 arr30 prod30 sum30) (B Ty30 nat30 top30 bot30 arr30 prod30 sum30) Con30 : Set; Con30 = (Con30 : Set) (nil : Con30) (snoc : Con30 → Ty30 → Con30) → Con30 nil30 : Con30; nil30 = λ Con30 nil30 snoc → nil30 snoc30 : Con30 → Ty30 → Con30; snoc30 = λ Γ A Con30 nil30 snoc30 → snoc30 (Γ Con30 nil30 snoc30) A Var30 : Con30 → Ty30 → Set; Var30 = λ Γ A → (Var30 : Con30 → Ty30 → Set) (vz : ∀ Γ A → Var30 (snoc30 Γ A) A) (vs : ∀ Γ B A → Var30 Γ A → Var30 (snoc30 Γ B) A) → Var30 Γ A vz30 : ∀{Γ A} → Var30 (snoc30 Γ A) A; vz30 = λ Var30 vz30 vs → vz30 _ _ vs30 : ∀{Γ B A} → Var30 Γ A → Var30 (snoc30 Γ B) A; vs30 = λ x Var30 vz30 vs30 → vs30 _ _ _ (x Var30 vz30 vs30) Tm30 : Con30 → Ty30 → Set; Tm30 = λ Γ A → (Tm30 : Con30 → Ty30 → Set) (var : ∀ Γ A → Var30 Γ A → Tm30 Γ A) (lam : ∀ Γ A B → Tm30 (snoc30 Γ A) B → Tm30 Γ (arr30 A B)) (app : ∀ Γ A B → Tm30 Γ (arr30 A B) → Tm30 Γ A → Tm30 Γ B) (tt : ∀ Γ → Tm30 Γ top30) (pair : ∀ Γ A B → Tm30 Γ A → Tm30 Γ B → Tm30 Γ (prod30 A B)) (fst : ∀ Γ A B → Tm30 Γ (prod30 A B) → Tm30 Γ A) (snd : ∀ Γ A B → Tm30 Γ (prod30 A B) → Tm30 Γ B) (left : ∀ Γ A B → Tm30 Γ A → Tm30 Γ (sum30 A B)) (right : ∀ Γ A B → Tm30 Γ B → Tm30 Γ (sum30 A B)) (case : ∀ Γ A B C → Tm30 Γ (sum30 A B) → Tm30 Γ (arr30 A C) → Tm30 Γ (arr30 B C) → Tm30 Γ C) (zero : ∀ Γ → Tm30 Γ nat30) (suc : ∀ Γ → Tm30 Γ nat30 → Tm30 Γ nat30) (rec : ∀ Γ A → Tm30 Γ nat30 → Tm30 Γ (arr30 nat30 (arr30 A A)) → Tm30 Γ A → Tm30 Γ A) → Tm30 Γ A var30 : ∀{Γ A} → Var30 Γ A → Tm30 Γ A; var30 = λ x Tm30 var30 lam app tt pair fst snd left right case zero suc rec → var30 _ _ x lam30 : ∀{Γ A B} → Tm30 (snoc30 Γ A) B → Tm30 Γ (arr30 A B); lam30 = λ t Tm30 var30 lam30 app tt pair fst snd left right case zero suc rec → lam30 _ _ _ (t Tm30 var30 lam30 app tt pair fst snd left right case zero suc rec) app30 : ∀{Γ A B} → Tm30 Γ (arr30 A B) → Tm30 Γ A → Tm30 Γ B; app30 = λ t u Tm30 var30 lam30 app30 tt pair fst snd left right case zero suc rec → app30 _ _ _ (t Tm30 var30 lam30 app30 tt pair fst snd left right case zero suc rec) (u Tm30 var30 lam30 app30 tt pair fst snd left right case zero suc rec) tt30 : ∀{Γ} → Tm30 Γ top30; tt30 = λ Tm30 var30 lam30 app30 tt30 pair fst snd left right case zero suc rec → tt30 _ pair30 : ∀{Γ A B} → Tm30 Γ A → Tm30 Γ B → Tm30 Γ (prod30 A B); pair30 = λ t u Tm30 var30 lam30 app30 tt30 pair30 fst snd left right case zero suc rec → pair30 _ _ _ (t Tm30 var30 lam30 app30 tt30 pair30 fst snd left right case zero suc rec) (u Tm30 var30 lam30 app30 tt30 pair30 fst snd left right case zero suc rec) fst30 : ∀{Γ A B} → Tm30 Γ (prod30 A B) → Tm30 Γ A; fst30 = λ t Tm30 var30 lam30 app30 tt30 pair30 fst30 snd left right case zero suc rec → fst30 _ _ _ (t Tm30 var30 lam30 app30 tt30 pair30 fst30 snd left right case zero suc rec) snd30 : ∀{Γ A B} → Tm30 Γ (prod30 A B) → Tm30 Γ B; snd30 = λ t Tm30 var30 lam30 app30 tt30 pair30 fst30 snd30 left right case zero suc rec → snd30 _ _ _ (t Tm30 var30 lam30 app30 tt30 pair30 fst30 snd30 left right case zero suc rec) left30 : ∀{Γ A B} → Tm30 Γ A → Tm30 Γ (sum30 A B); left30 = λ t Tm30 var30 lam30 app30 tt30 pair30 fst30 snd30 left30 right case zero suc rec → left30 _ _ _ (t Tm30 var30 lam30 app30 tt30 pair30 fst30 snd30 left30 right case zero suc rec) right30 : ∀{Γ A B} → Tm30 Γ B → Tm30 Γ (sum30 A B); right30 = λ t Tm30 var30 lam30 app30 tt30 pair30 fst30 snd30 left30 right30 case zero suc rec → right30 _ _ _ (t Tm30 var30 lam30 app30 tt30 pair30 fst30 snd30 left30 right30 case zero suc rec) case30 : ∀{Γ A B C} → Tm30 Γ (sum30 A B) → Tm30 Γ (arr30 A C) → Tm30 Γ (arr30 B C) → Tm30 Γ C; case30 = λ t u v Tm30 var30 lam30 app30 tt30 pair30 fst30 snd30 left30 right30 case30 zero suc rec → case30 _ _ _ _ (t Tm30 var30 lam30 app30 tt30 pair30 fst30 snd30 left30 right30 case30 zero suc rec) (u Tm30 var30 lam30 app30 tt30 pair30 fst30 snd30 left30 right30 case30 zero suc rec) (v Tm30 var30 lam30 app30 tt30 pair30 fst30 snd30 left30 right30 case30 zero suc rec) zero30 : ∀{Γ} → Tm30 Γ nat30; zero30 = λ Tm30 var30 lam30 app30 tt30 pair30 fst30 snd30 left30 right30 case30 zero30 suc rec → zero30 _ suc30 : ∀{Γ} → Tm30 Γ nat30 → Tm30 Γ nat30; suc30 = λ t Tm30 var30 lam30 app30 tt30 pair30 fst30 snd30 left30 right30 case30 zero30 suc30 rec → suc30 _ (t Tm30 var30 lam30 app30 tt30 pair30 fst30 snd30 left30 right30 case30 zero30 suc30 rec) rec30 : ∀{Γ A} → Tm30 Γ nat30 → Tm30 Γ (arr30 nat30 (arr30 A A)) → Tm30 Γ A → Tm30 Γ A; rec30 = λ t u v Tm30 var30 lam30 app30 tt30 pair30 fst30 snd30 left30 right30 case30 zero30 suc30 rec30 → rec30 _ _ (t Tm30 var30 lam30 app30 tt30 pair30 fst30 snd30 left30 right30 case30 zero30 suc30 rec30) (u Tm30 var30 lam30 app30 tt30 pair30 fst30 snd30 left30 right30 case30 zero30 suc30 rec30) (v Tm30 var30 lam30 app30 tt30 pair30 fst30 snd30 left30 right30 case30 zero30 suc30 rec30) v030 : ∀{Γ A} → Tm30 (snoc30 Γ A) A; v030 = var30 vz30 v130 : ∀{Γ A B} → Tm30 (snoc30 (snoc30 Γ A) B) A; v130 = var30 (vs30 vz30) v230 : ∀{Γ A B C} → Tm30 (snoc30 (snoc30 (snoc30 Γ A) B) C) A; v230 = var30 (vs30 (vs30 vz30)) v330 : ∀{Γ A B C D} → Tm30 (snoc30 (snoc30 (snoc30 (snoc30 Γ A) B) C) D) A; v330 = var30 (vs30 (vs30 (vs30 vz30))) tbool30 : Ty30; tbool30 = sum30 top30 top30 true30 : ∀{Γ} → Tm30 Γ tbool30; true30 = left30 tt30 tfalse30 : ∀{Γ} → Tm30 Γ tbool30; tfalse30 = right30 tt30 ifthenelse30 : ∀{Γ A} → Tm30 Γ (arr30 tbool30 (arr30 A (arr30 A A))); ifthenelse30 = lam30 (lam30 (lam30 (case30 v230 (lam30 v230) (lam30 v130)))) times430 : ∀{Γ A} → Tm30 Γ (arr30 (arr30 A A) (arr30 A A)); times430 = lam30 (lam30 (app30 v130 (app30 v130 (app30 v130 (app30 v130 v030))))) add30 : ∀{Γ} → Tm30 Γ (arr30 nat30 (arr30 nat30 nat30)); add30 = lam30 (rec30 v030 (lam30 (lam30 (lam30 (suc30 (app30 v130 v030))))) (lam30 v030)) mul30 : ∀{Γ} → Tm30 Γ (arr30 nat30 (arr30 nat30 nat30)); mul30 = lam30 (rec30 v030 (lam30 (lam30 (lam30 (app30 (app30 add30 (app30 v130 v030)) v030)))) (lam30 zero30)) fact30 : ∀{Γ} → Tm30 Γ (arr30 nat30 nat30); fact30 = lam30 (rec30 v030 (lam30 (lam30 (app30 (app30 mul30 (suc30 v130)) v030))) (suc30 zero30)) {-# OPTIONS --type-in-type #-} Ty31 : Set Ty31 = (Ty31 : Set) (nat top bot : Ty31) (arr prod sum : Ty31 → Ty31 → Ty31) → Ty31 nat31 : Ty31; nat31 = λ _ nat31 _ _ _ _ _ → nat31 top31 : Ty31; top31 = λ _ _ top31 _ _ _ _ → top31 bot31 : Ty31; bot31 = λ _ _ _ bot31 _ _ _ → bot31 arr31 : Ty31 → Ty31 → Ty31; arr31 = λ A B Ty31 nat31 top31 bot31 arr31 prod sum → arr31 (A Ty31 nat31 top31 bot31 arr31 prod sum) (B Ty31 nat31 top31 bot31 arr31 prod sum) prod31 : Ty31 → Ty31 → Ty31; prod31 = λ A B Ty31 nat31 top31 bot31 arr31 prod31 sum → prod31 (A Ty31 nat31 top31 bot31 arr31 prod31 sum) (B Ty31 nat31 top31 bot31 arr31 prod31 sum) sum31 : Ty31 → Ty31 → Ty31; sum31 = λ A B Ty31 nat31 top31 bot31 arr31 prod31 sum31 → sum31 (A Ty31 nat31 top31 bot31 arr31 prod31 sum31) (B Ty31 nat31 top31 bot31 arr31 prod31 sum31) Con31 : Set; Con31 = (Con31 : Set) (nil : Con31) (snoc : Con31 → Ty31 → Con31) → Con31 nil31 : Con31; nil31 = λ Con31 nil31 snoc → nil31 snoc31 : Con31 → Ty31 → Con31; snoc31 = λ Γ A Con31 nil31 snoc31 → snoc31 (Γ Con31 nil31 snoc31) A Var31 : Con31 → Ty31 → Set; Var31 = λ Γ A → (Var31 : Con31 → Ty31 → Set) (vz : ∀ Γ A → Var31 (snoc31 Γ A) A) (vs : ∀ Γ B A → Var31 Γ A → Var31 (snoc31 Γ B) A) → Var31 Γ A vz31 : ∀{Γ A} → Var31 (snoc31 Γ A) A; vz31 = λ Var31 vz31 vs → vz31 _ _ vs31 : ∀{Γ B A} → Var31 Γ A → Var31 (snoc31 Γ B) A; vs31 = λ x Var31 vz31 vs31 → vs31 _ _ _ (x Var31 vz31 vs31) Tm31 : Con31 → Ty31 → Set; Tm31 = λ Γ A → (Tm31 : Con31 → Ty31 → Set) (var : ∀ Γ A → Var31 Γ A → Tm31 Γ A) (lam : ∀ Γ A B → Tm31 (snoc31 Γ A) B → Tm31 Γ (arr31 A B)) (app : ∀ Γ A B → Tm31 Γ (arr31 A B) → Tm31 Γ A → Tm31 Γ B) (tt : ∀ Γ → Tm31 Γ top31) (pair : ∀ Γ A B → Tm31 Γ A → Tm31 Γ B → Tm31 Γ (prod31 A B)) (fst : ∀ Γ A B → Tm31 Γ (prod31 A B) → Tm31 Γ A) (snd : ∀ Γ A B → Tm31 Γ (prod31 A B) → Tm31 Γ B) (left : ∀ Γ A B → Tm31 Γ A → Tm31 Γ (sum31 A B)) (right : ∀ Γ A B → Tm31 Γ B → Tm31 Γ (sum31 A B)) (case : ∀ Γ A B C → Tm31 Γ (sum31 A B) → Tm31 Γ (arr31 A C) → Tm31 Γ (arr31 B C) → Tm31 Γ C) (zero : ∀ Γ → Tm31 Γ nat31) (suc : ∀ Γ → Tm31 Γ nat31 → Tm31 Γ nat31) (rec : ∀ Γ A → Tm31 Γ nat31 → Tm31 Γ (arr31 nat31 (arr31 A A)) → Tm31 Γ A → Tm31 Γ A) → Tm31 Γ A var31 : ∀{Γ A} → Var31 Γ A → Tm31 Γ A; var31 = λ x Tm31 var31 lam app tt pair fst snd left right case zero suc rec → var31 _ _ x lam31 : ∀{Γ A B} → Tm31 (snoc31 Γ A) B → Tm31 Γ (arr31 A B); lam31 = λ t Tm31 var31 lam31 app tt pair fst snd left right case zero suc rec → lam31 _ _ _ (t Tm31 var31 lam31 app tt pair fst snd left right case zero suc rec) app31 : ∀{Γ A B} → Tm31 Γ (arr31 A B) → Tm31 Γ A → Tm31 Γ B; app31 = λ t u Tm31 var31 lam31 app31 tt pair fst snd left right case zero suc rec → app31 _ _ _ (t Tm31 var31 lam31 app31 tt pair fst snd left right case zero suc rec) (u Tm31 var31 lam31 app31 tt pair fst snd left right case zero suc rec) tt31 : ∀{Γ} → Tm31 Γ top31; tt31 = λ Tm31 var31 lam31 app31 tt31 pair fst snd left right case zero suc rec → tt31 _ pair31 : ∀{Γ A B} → Tm31 Γ A → Tm31 Γ B → Tm31 Γ (prod31 A B); pair31 = λ t u Tm31 var31 lam31 app31 tt31 pair31 fst snd left right case zero suc rec → pair31 _ _ _ (t Tm31 var31 lam31 app31 tt31 pair31 fst snd left right case zero suc rec) (u Tm31 var31 lam31 app31 tt31 pair31 fst snd left right case zero suc rec) fst31 : ∀{Γ A B} → Tm31 Γ (prod31 A B) → Tm31 Γ A; fst31 = λ t Tm31 var31 lam31 app31 tt31 pair31 fst31 snd left right case zero suc rec → fst31 _ _ _ (t Tm31 var31 lam31 app31 tt31 pair31 fst31 snd left right case zero suc rec) snd31 : ∀{Γ A B} → Tm31 Γ (prod31 A B) → Tm31 Γ B; snd31 = λ t Tm31 var31 lam31 app31 tt31 pair31 fst31 snd31 left right case zero suc rec → snd31 _ _ _ (t Tm31 var31 lam31 app31 tt31 pair31 fst31 snd31 left right case zero suc rec) left31 : ∀{Γ A B} → Tm31 Γ A → Tm31 Γ (sum31 A B); left31 = λ t Tm31 var31 lam31 app31 tt31 pair31 fst31 snd31 left31 right case zero suc rec → left31 _ _ _ (t Tm31 var31 lam31 app31 tt31 pair31 fst31 snd31 left31 right case zero suc rec) right31 : ∀{Γ A B} → Tm31 Γ B → Tm31 Γ (sum31 A B); right31 = λ t Tm31 var31 lam31 app31 tt31 pair31 fst31 snd31 left31 right31 case zero suc rec → right31 _ _ _ (t Tm31 var31 lam31 app31 tt31 pair31 fst31 snd31 left31 right31 case zero suc rec) case31 : ∀{Γ A B C} → Tm31 Γ (sum31 A B) → Tm31 Γ (arr31 A C) → Tm31 Γ (arr31 B C) → Tm31 Γ C; case31 = λ t u v Tm31 var31 lam31 app31 tt31 pair31 fst31 snd31 left31 right31 case31 zero suc rec → case31 _ _ _ _ (t Tm31 var31 lam31 app31 tt31 pair31 fst31 snd31 left31 right31 case31 zero suc rec) (u Tm31 var31 lam31 app31 tt31 pair31 fst31 snd31 left31 right31 case31 zero suc rec) (v Tm31 var31 lam31 app31 tt31 pair31 fst31 snd31 left31 right31 case31 zero suc rec) zero31 : ∀{Γ} → Tm31 Γ nat31; zero31 = λ Tm31 var31 lam31 app31 tt31 pair31 fst31 snd31 left31 right31 case31 zero31 suc rec → zero31 _ suc31 : ∀{Γ} → Tm31 Γ nat31 → Tm31 Γ nat31; suc31 = λ t Tm31 var31 lam31 app31 tt31 pair31 fst31 snd31 left31 right31 case31 zero31 suc31 rec → suc31 _ (t Tm31 var31 lam31 app31 tt31 pair31 fst31 snd31 left31 right31 case31 zero31 suc31 rec) rec31 : ∀{Γ A} → Tm31 Γ nat31 → Tm31 Γ (arr31 nat31 (arr31 A A)) → Tm31 Γ A → Tm31 Γ A; rec31 = λ t u v Tm31 var31 lam31 app31 tt31 pair31 fst31 snd31 left31 right31 case31 zero31 suc31 rec31 → rec31 _ _ (t Tm31 var31 lam31 app31 tt31 pair31 fst31 snd31 left31 right31 case31 zero31 suc31 rec31) (u Tm31 var31 lam31 app31 tt31 pair31 fst31 snd31 left31 right31 case31 zero31 suc31 rec31) (v Tm31 var31 lam31 app31 tt31 pair31 fst31 snd31 left31 right31 case31 zero31 suc31 rec31) v031 : ∀{Γ A} → Tm31 (snoc31 Γ A) A; v031 = var31 vz31 v131 : ∀{Γ A B} → Tm31 (snoc31 (snoc31 Γ A) B) A; v131 = var31 (vs31 vz31) v231 : ∀{Γ A B C} → Tm31 (snoc31 (snoc31 (snoc31 Γ A) B) C) A; v231 = var31 (vs31 (vs31 vz31)) v331 : ∀{Γ A B C D} → Tm31 (snoc31 (snoc31 (snoc31 (snoc31 Γ A) B) C) D) A; v331 = var31 (vs31 (vs31 (vs31 vz31))) tbool31 : Ty31; tbool31 = sum31 top31 top31 true31 : ∀{Γ} → Tm31 Γ tbool31; true31 = left31 tt31 tfalse31 : ∀{Γ} → Tm31 Γ tbool31; tfalse31 = right31 tt31 ifthenelse31 : ∀{Γ A} → Tm31 Γ (arr31 tbool31 (arr31 A (arr31 A A))); ifthenelse31 = lam31 (lam31 (lam31 (case31 v231 (lam31 v231) (lam31 v131)))) times431 : ∀{Γ A} → Tm31 Γ (arr31 (arr31 A A) (arr31 A A)); times431 = lam31 (lam31 (app31 v131 (app31 v131 (app31 v131 (app31 v131 v031))))) add31 : ∀{Γ} → Tm31 Γ (arr31 nat31 (arr31 nat31 nat31)); add31 = lam31 (rec31 v031 (lam31 (lam31 (lam31 (suc31 (app31 v131 v031))))) (lam31 v031)) mul31 : ∀{Γ} → Tm31 Γ (arr31 nat31 (arr31 nat31 nat31)); mul31 = lam31 (rec31 v031 (lam31 (lam31 (lam31 (app31 (app31 add31 (app31 v131 v031)) v031)))) (lam31 zero31)) fact31 : ∀{Γ} → Tm31 Γ (arr31 nat31 nat31); fact31 = lam31 (rec31 v031 (lam31 (lam31 (app31 (app31 mul31 (suc31 v131)) v031))) (suc31 zero31)) {-# OPTIONS --type-in-type #-} Ty32 : Set Ty32 = (Ty32 : Set) (nat top bot : Ty32) (arr prod sum : Ty32 → Ty32 → Ty32) → Ty32 nat32 : Ty32; nat32 = λ _ nat32 _ _ _ _ _ → nat32 top32 : Ty32; top32 = λ _ _ top32 _ _ _ _ → top32 bot32 : Ty32; bot32 = λ _ _ _ bot32 _ _ _ → bot32 arr32 : Ty32 → Ty32 → Ty32; arr32 = λ A B Ty32 nat32 top32 bot32 arr32 prod sum → arr32 (A Ty32 nat32 top32 bot32 arr32 prod sum) (B Ty32 nat32 top32 bot32 arr32 prod sum) prod32 : Ty32 → Ty32 → Ty32; prod32 = λ A B Ty32 nat32 top32 bot32 arr32 prod32 sum → prod32 (A Ty32 nat32 top32 bot32 arr32 prod32 sum) (B Ty32 nat32 top32 bot32 arr32 prod32 sum) sum32 : Ty32 → Ty32 → Ty32; sum32 = λ A B Ty32 nat32 top32 bot32 arr32 prod32 sum32 → sum32 (A Ty32 nat32 top32 bot32 arr32 prod32 sum32) (B Ty32 nat32 top32 bot32 arr32 prod32 sum32) Con32 : Set; Con32 = (Con32 : Set) (nil : Con32) (snoc : Con32 → Ty32 → Con32) → Con32 nil32 : Con32; nil32 = λ Con32 nil32 snoc → nil32 snoc32 : Con32 → Ty32 → Con32; snoc32 = λ Γ A Con32 nil32 snoc32 → snoc32 (Γ Con32 nil32 snoc32) A Var32 : Con32 → Ty32 → Set; Var32 = λ Γ A → (Var32 : Con32 → Ty32 → Set) (vz : ∀ Γ A → Var32 (snoc32 Γ A) A) (vs : ∀ Γ B A → Var32 Γ A → Var32 (snoc32 Γ B) A) → Var32 Γ A vz32 : ∀{Γ A} → Var32 (snoc32 Γ A) A; vz32 = λ Var32 vz32 vs → vz32 _ _ vs32 : ∀{Γ B A} → Var32 Γ A → Var32 (snoc32 Γ B) A; vs32 = λ x Var32 vz32 vs32 → vs32 _ _ _ (x Var32 vz32 vs32) Tm32 : Con32 → Ty32 → Set; Tm32 = λ Γ A → (Tm32 : Con32 → Ty32 → Set) (var : ∀ Γ A → Var32 Γ A → Tm32 Γ A) (lam : ∀ Γ A B → Tm32 (snoc32 Γ A) B → Tm32 Γ (arr32 A B)) (app : ∀ Γ A B → Tm32 Γ (arr32 A B) → Tm32 Γ A → Tm32 Γ B) (tt : ∀ Γ → Tm32 Γ top32) (pair : ∀ Γ A B → Tm32 Γ A → Tm32 Γ B → Tm32 Γ (prod32 A B)) (fst : ∀ Γ A B → Tm32 Γ (prod32 A B) → Tm32 Γ A) (snd : ∀ Γ A B → Tm32 Γ (prod32 A B) → Tm32 Γ B) (left : ∀ Γ A B → Tm32 Γ A → Tm32 Γ (sum32 A B)) (right : ∀ Γ A B → Tm32 Γ B → Tm32 Γ (sum32 A B)) (case : ∀ Γ A B C → Tm32 Γ (sum32 A B) → Tm32 Γ (arr32 A C) → Tm32 Γ (arr32 B C) → Tm32 Γ C) (zero : ∀ Γ → Tm32 Γ nat32) (suc : ∀ Γ → Tm32 Γ nat32 → Tm32 Γ nat32) (rec : ∀ Γ A → Tm32 Γ nat32 → Tm32 Γ (arr32 nat32 (arr32 A A)) → Tm32 Γ A → Tm32 Γ A) → Tm32 Γ A var32 : ∀{Γ A} → Var32 Γ A → Tm32 Γ A; var32 = λ x Tm32 var32 lam app tt pair fst snd left right case zero suc rec → var32 _ _ x lam32 : ∀{Γ A B} → Tm32 (snoc32 Γ A) B → Tm32 Γ (arr32 A B); lam32 = λ t Tm32 var32 lam32 app tt pair fst snd left right case zero suc rec → lam32 _ _ _ (t Tm32 var32 lam32 app tt pair fst snd left right case zero suc rec) app32 : ∀{Γ A B} → Tm32 Γ (arr32 A B) → Tm32 Γ A → Tm32 Γ B; app32 = λ t u Tm32 var32 lam32 app32 tt pair fst snd left right case zero suc rec → app32 _ _ _ (t Tm32 var32 lam32 app32 tt pair fst snd left right case zero suc rec) (u Tm32 var32 lam32 app32 tt pair fst snd left right case zero suc rec) tt32 : ∀{Γ} → Tm32 Γ top32; tt32 = λ Tm32 var32 lam32 app32 tt32 pair fst snd left right case zero suc rec → tt32 _ pair32 : ∀{Γ A B} → Tm32 Γ A → Tm32 Γ B → Tm32 Γ (prod32 A B); pair32 = λ t u Tm32 var32 lam32 app32 tt32 pair32 fst snd left right case zero suc rec → pair32 _ _ _ (t Tm32 var32 lam32 app32 tt32 pair32 fst snd left right case zero suc rec) (u Tm32 var32 lam32 app32 tt32 pair32 fst snd left right case zero suc rec) fst32 : ∀{Γ A B} → Tm32 Γ (prod32 A B) → Tm32 Γ A; fst32 = λ t Tm32 var32 lam32 app32 tt32 pair32 fst32 snd left right case zero suc rec → fst32 _ _ _ (t Tm32 var32 lam32 app32 tt32 pair32 fst32 snd left right case zero suc rec) snd32 : ∀{Γ A B} → Tm32 Γ (prod32 A B) → Tm32 Γ B; snd32 = λ t Tm32 var32 lam32 app32 tt32 pair32 fst32 snd32 left right case zero suc rec → snd32 _ _ _ (t Tm32 var32 lam32 app32 tt32 pair32 fst32 snd32 left right case zero suc rec) left32 : ∀{Γ A B} → Tm32 Γ A → Tm32 Γ (sum32 A B); left32 = λ t Tm32 var32 lam32 app32 tt32 pair32 fst32 snd32 left32 right case zero suc rec → left32 _ _ _ (t Tm32 var32 lam32 app32 tt32 pair32 fst32 snd32 left32 right case zero suc rec) right32 : ∀{Γ A B} → Tm32 Γ B → Tm32 Γ (sum32 A B); right32 = λ t Tm32 var32 lam32 app32 tt32 pair32 fst32 snd32 left32 right32 case zero suc rec → right32 _ _ _ (t Tm32 var32 lam32 app32 tt32 pair32 fst32 snd32 left32 right32 case zero suc rec) case32 : ∀{Γ A B C} → Tm32 Γ (sum32 A B) → Tm32 Γ (arr32 A C) → Tm32 Γ (arr32 B C) → Tm32 Γ C; case32 = λ t u v Tm32 var32 lam32 app32 tt32 pair32 fst32 snd32 left32 right32 case32 zero suc rec → case32 _ _ _ _ (t Tm32 var32 lam32 app32 tt32 pair32 fst32 snd32 left32 right32 case32 zero suc rec) (u Tm32 var32 lam32 app32 tt32 pair32 fst32 snd32 left32 right32 case32 zero suc rec) (v Tm32 var32 lam32 app32 tt32 pair32 fst32 snd32 left32 right32 case32 zero suc rec) zero32 : ∀{Γ} → Tm32 Γ nat32; zero32 = λ Tm32 var32 lam32 app32 tt32 pair32 fst32 snd32 left32 right32 case32 zero32 suc rec → zero32 _ suc32 : ∀{Γ} → Tm32 Γ nat32 → Tm32 Γ nat32; suc32 = λ t Tm32 var32 lam32 app32 tt32 pair32 fst32 snd32 left32 right32 case32 zero32 suc32 rec → suc32 _ (t Tm32 var32 lam32 app32 tt32 pair32 fst32 snd32 left32 right32 case32 zero32 suc32 rec) rec32 : ∀{Γ A} → Tm32 Γ nat32 → Tm32 Γ (arr32 nat32 (arr32 A A)) → Tm32 Γ A → Tm32 Γ A; rec32 = λ t u v Tm32 var32 lam32 app32 tt32 pair32 fst32 snd32 left32 right32 case32 zero32 suc32 rec32 → rec32 _ _ (t Tm32 var32 lam32 app32 tt32 pair32 fst32 snd32 left32 right32 case32 zero32 suc32 rec32) (u Tm32 var32 lam32 app32 tt32 pair32 fst32 snd32 left32 right32 case32 zero32 suc32 rec32) (v Tm32 var32 lam32 app32 tt32 pair32 fst32 snd32 left32 right32 case32 zero32 suc32 rec32) v032 : ∀{Γ A} → Tm32 (snoc32 Γ A) A; v032 = var32 vz32 v132 : ∀{Γ A B} → Tm32 (snoc32 (snoc32 Γ A) B) A; v132 = var32 (vs32 vz32) v232 : ∀{Γ A B C} → Tm32 (snoc32 (snoc32 (snoc32 Γ A) B) C) A; v232 = var32 (vs32 (vs32 vz32)) v332 : ∀{Γ A B C D} → Tm32 (snoc32 (snoc32 (snoc32 (snoc32 Γ A) B) C) D) A; v332 = var32 (vs32 (vs32 (vs32 vz32))) tbool32 : Ty32; tbool32 = sum32 top32 top32 true32 : ∀{Γ} → Tm32 Γ tbool32; true32 = left32 tt32 tfalse32 : ∀{Γ} → Tm32 Γ tbool32; tfalse32 = right32 tt32 ifthenelse32 : ∀{Γ A} → Tm32 Γ (arr32 tbool32 (arr32 A (arr32 A A))); ifthenelse32 = lam32 (lam32 (lam32 (case32 v232 (lam32 v232) (lam32 v132)))) times432 : ∀{Γ A} → Tm32 Γ (arr32 (arr32 A A) (arr32 A A)); times432 = lam32 (lam32 (app32 v132 (app32 v132 (app32 v132 (app32 v132 v032))))) add32 : ∀{Γ} → Tm32 Γ (arr32 nat32 (arr32 nat32 nat32)); add32 = lam32 (rec32 v032 (lam32 (lam32 (lam32 (suc32 (app32 v132 v032))))) (lam32 v032)) mul32 : ∀{Γ} → Tm32 Γ (arr32 nat32 (arr32 nat32 nat32)); mul32 = lam32 (rec32 v032 (lam32 (lam32 (lam32 (app32 (app32 add32 (app32 v132 v032)) v032)))) (lam32 zero32)) fact32 : ∀{Γ} → Tm32 Γ (arr32 nat32 nat32); fact32 = lam32 (rec32 v032 (lam32 (lam32 (app32 (app32 mul32 (suc32 v132)) v032))) (suc32 zero32)) {-# OPTIONS --type-in-type #-} Ty33 : Set Ty33 = (Ty33 : Set) (nat top bot : Ty33) (arr prod sum : Ty33 → Ty33 → Ty33) → Ty33 nat33 : Ty33; nat33 = λ _ nat33 _ _ _ _ _ → nat33 top33 : Ty33; top33 = λ _ _ top33 _ _ _ _ → top33 bot33 : Ty33; bot33 = λ _ _ _ bot33 _ _ _ → bot33 arr33 : Ty33 → Ty33 → Ty33; arr33 = λ A B Ty33 nat33 top33 bot33 arr33 prod sum → arr33 (A Ty33 nat33 top33 bot33 arr33 prod sum) (B Ty33 nat33 top33 bot33 arr33 prod sum) prod33 : Ty33 → Ty33 → Ty33; prod33 = λ A B Ty33 nat33 top33 bot33 arr33 prod33 sum → prod33 (A Ty33 nat33 top33 bot33 arr33 prod33 sum) (B Ty33 nat33 top33 bot33 arr33 prod33 sum) sum33 : Ty33 → Ty33 → Ty33; sum33 = λ A B Ty33 nat33 top33 bot33 arr33 prod33 sum33 → sum33 (A Ty33 nat33 top33 bot33 arr33 prod33 sum33) (B Ty33 nat33 top33 bot33 arr33 prod33 sum33) Con33 : Set; Con33 = (Con33 : Set) (nil : Con33) (snoc : Con33 → Ty33 → Con33) → Con33 nil33 : Con33; nil33 = λ Con33 nil33 snoc → nil33 snoc33 : Con33 → Ty33 → Con33; snoc33 = λ Γ A Con33 nil33 snoc33 → snoc33 (Γ Con33 nil33 snoc33) A Var33 : Con33 → Ty33 → Set; Var33 = λ Γ A → (Var33 : Con33 → Ty33 → Set) (vz : ∀ Γ A → Var33 (snoc33 Γ A) A) (vs : ∀ Γ B A → Var33 Γ A → Var33 (snoc33 Γ B) A) → Var33 Γ A vz33 : ∀{Γ A} → Var33 (snoc33 Γ A) A; vz33 = λ Var33 vz33 vs → vz33 _ _ vs33 : ∀{Γ B A} → Var33 Γ A → Var33 (snoc33 Γ B) A; vs33 = λ x Var33 vz33 vs33 → vs33 _ _ _ (x Var33 vz33 vs33) Tm33 : Con33 → Ty33 → Set; Tm33 = λ Γ A → (Tm33 : Con33 → Ty33 → Set) (var : ∀ Γ A → Var33 Γ A → Tm33 Γ A) (lam : ∀ Γ A B → Tm33 (snoc33 Γ A) B → Tm33 Γ (arr33 A B)) (app : ∀ Γ A B → Tm33 Γ (arr33 A B) → Tm33 Γ A → Tm33 Γ B) (tt : ∀ Γ → Tm33 Γ top33) (pair : ∀ Γ A B → Tm33 Γ A → Tm33 Γ B → Tm33 Γ (prod33 A B)) (fst : ∀ Γ A B → Tm33 Γ (prod33 A B) → Tm33 Γ A) (snd : ∀ Γ A B → Tm33 Γ (prod33 A B) → Tm33 Γ B) (left : ∀ Γ A B → Tm33 Γ A → Tm33 Γ (sum33 A B)) (right : ∀ Γ A B → Tm33 Γ B → Tm33 Γ (sum33 A B)) (case : ∀ Γ A B C → Tm33 Γ (sum33 A B) → Tm33 Γ (arr33 A C) → Tm33 Γ (arr33 B C) → Tm33 Γ C) (zero : ∀ Γ → Tm33 Γ nat33) (suc : ∀ Γ → Tm33 Γ nat33 → Tm33 Γ nat33) (rec : ∀ Γ A → Tm33 Γ nat33 → Tm33 Γ (arr33 nat33 (arr33 A A)) → Tm33 Γ A → Tm33 Γ A) → Tm33 Γ A var33 : ∀{Γ A} → Var33 Γ A → Tm33 Γ A; var33 = λ x Tm33 var33 lam app tt pair fst snd left right case zero suc rec → var33 _ _ x lam33 : ∀{Γ A B} → Tm33 (snoc33 Γ A) B → Tm33 Γ (arr33 A B); lam33 = λ t Tm33 var33 lam33 app tt pair fst snd left right case zero suc rec → lam33 _ _ _ (t Tm33 var33 lam33 app tt pair fst snd left right case zero suc rec) app33 : ∀{Γ A B} → Tm33 Γ (arr33 A B) → Tm33 Γ A → Tm33 Γ B; app33 = λ t u Tm33 var33 lam33 app33 tt pair fst snd left right case zero suc rec → app33 _ _ _ (t Tm33 var33 lam33 app33 tt pair fst snd left right case zero suc rec) (u Tm33 var33 lam33 app33 tt pair fst snd left right case zero suc rec) tt33 : ∀{Γ} → Tm33 Γ top33; tt33 = λ Tm33 var33 lam33 app33 tt33 pair fst snd left right case zero suc rec → tt33 _ pair33 : ∀{Γ A B} → Tm33 Γ A → Tm33 Γ B → Tm33 Γ (prod33 A B); pair33 = λ t u Tm33 var33 lam33 app33 tt33 pair33 fst snd left right case zero suc rec → pair33 _ _ _ (t Tm33 var33 lam33 app33 tt33 pair33 fst snd left right case zero suc rec) (u Tm33 var33 lam33 app33 tt33 pair33 fst snd left right case zero suc rec) fst33 : ∀{Γ A B} → Tm33 Γ (prod33 A B) → Tm33 Γ A; fst33 = λ t Tm33 var33 lam33 app33 tt33 pair33 fst33 snd left right case zero suc rec → fst33 _ _ _ (t Tm33 var33 lam33 app33 tt33 pair33 fst33 snd left right case zero suc rec) snd33 : ∀{Γ A B} → Tm33 Γ (prod33 A B) → Tm33 Γ B; snd33 = λ t Tm33 var33 lam33 app33 tt33 pair33 fst33 snd33 left right case zero suc rec → snd33 _ _ _ (t Tm33 var33 lam33 app33 tt33 pair33 fst33 snd33 left right case zero suc rec) left33 : ∀{Γ A B} → Tm33 Γ A → Tm33 Γ (sum33 A B); left33 = λ t Tm33 var33 lam33 app33 tt33 pair33 fst33 snd33 left33 right case zero suc rec → left33 _ _ _ (t Tm33 var33 lam33 app33 tt33 pair33 fst33 snd33 left33 right case zero suc rec) right33 : ∀{Γ A B} → Tm33 Γ B → Tm33 Γ (sum33 A B); right33 = λ t Tm33 var33 lam33 app33 tt33 pair33 fst33 snd33 left33 right33 case zero suc rec → right33 _ _ _ (t Tm33 var33 lam33 app33 tt33 pair33 fst33 snd33 left33 right33 case zero suc rec) case33 : ∀{Γ A B C} → Tm33 Γ (sum33 A B) → Tm33 Γ (arr33 A C) → Tm33 Γ (arr33 B C) → Tm33 Γ C; case33 = λ t u v Tm33 var33 lam33 app33 tt33 pair33 fst33 snd33 left33 right33 case33 zero suc rec → case33 _ _ _ _ (t Tm33 var33 lam33 app33 tt33 pair33 fst33 snd33 left33 right33 case33 zero suc rec) (u Tm33 var33 lam33 app33 tt33 pair33 fst33 snd33 left33 right33 case33 zero suc rec) (v Tm33 var33 lam33 app33 tt33 pair33 fst33 snd33 left33 right33 case33 zero suc rec) zero33 : ∀{Γ} → Tm33 Γ nat33; zero33 = λ Tm33 var33 lam33 app33 tt33 pair33 fst33 snd33 left33 right33 case33 zero33 suc rec → zero33 _ suc33 : ∀{Γ} → Tm33 Γ nat33 → Tm33 Γ nat33; suc33 = λ t Tm33 var33 lam33 app33 tt33 pair33 fst33 snd33 left33 right33 case33 zero33 suc33 rec → suc33 _ (t Tm33 var33 lam33 app33 tt33 pair33 fst33 snd33 left33 right33 case33 zero33 suc33 rec) rec33 : ∀{Γ A} → Tm33 Γ nat33 → Tm33 Γ (arr33 nat33 (arr33 A A)) → Tm33 Γ A → Tm33 Γ A; rec33 = λ t u v Tm33 var33 lam33 app33 tt33 pair33 fst33 snd33 left33 right33 case33 zero33 suc33 rec33 → rec33 _ _ (t Tm33 var33 lam33 app33 tt33 pair33 fst33 snd33 left33 right33 case33 zero33 suc33 rec33) (u Tm33 var33 lam33 app33 tt33 pair33 fst33 snd33 left33 right33 case33 zero33 suc33 rec33) (v Tm33 var33 lam33 app33 tt33 pair33 fst33 snd33 left33 right33 case33 zero33 suc33 rec33) v033 : ∀{Γ A} → Tm33 (snoc33 Γ A) A; v033 = var33 vz33 v133 : ∀{Γ A B} → Tm33 (snoc33 (snoc33 Γ A) B) A; v133 = var33 (vs33 vz33) v233 : ∀{Γ A B C} → Tm33 (snoc33 (snoc33 (snoc33 Γ A) B) C) A; v233 = var33 (vs33 (vs33 vz33)) v333 : ∀{Γ A B C D} → Tm33 (snoc33 (snoc33 (snoc33 (snoc33 Γ A) B) C) D) A; v333 = var33 (vs33 (vs33 (vs33 vz33))) tbool33 : Ty33; tbool33 = sum33 top33 top33 true33 : ∀{Γ} → Tm33 Γ tbool33; true33 = left33 tt33 tfalse33 : ∀{Γ} → Tm33 Γ tbool33; tfalse33 = right33 tt33 ifthenelse33 : ∀{Γ A} → Tm33 Γ (arr33 tbool33 (arr33 A (arr33 A A))); ifthenelse33 = lam33 (lam33 (lam33 (case33 v233 (lam33 v233) (lam33 v133)))) times433 : ∀{Γ A} → Tm33 Γ (arr33 (arr33 A A) (arr33 A A)); times433 = lam33 (lam33 (app33 v133 (app33 v133 (app33 v133 (app33 v133 v033))))) add33 : ∀{Γ} → Tm33 Γ (arr33 nat33 (arr33 nat33 nat33)); add33 = lam33 (rec33 v033 (lam33 (lam33 (lam33 (suc33 (app33 v133 v033))))) (lam33 v033)) mul33 : ∀{Γ} → Tm33 Γ (arr33 nat33 (arr33 nat33 nat33)); mul33 = lam33 (rec33 v033 (lam33 (lam33 (lam33 (app33 (app33 add33 (app33 v133 v033)) v033)))) (lam33 zero33)) fact33 : ∀{Γ} → Tm33 Γ (arr33 nat33 nat33); fact33 = lam33 (rec33 v033 (lam33 (lam33 (app33 (app33 mul33 (suc33 v133)) v033))) (suc33 zero33)) {-# OPTIONS --type-in-type #-} Ty34 : Set Ty34 = (Ty34 : Set) (nat top bot : Ty34) (arr prod sum : Ty34 → Ty34 → Ty34) → Ty34 nat34 : Ty34; nat34 = λ _ nat34 _ _ _ _ _ → nat34 top34 : Ty34; top34 = λ _ _ top34 _ _ _ _ → top34 bot34 : Ty34; bot34 = λ _ _ _ bot34 _ _ _ → bot34 arr34 : Ty34 → Ty34 → Ty34; arr34 = λ A B Ty34 nat34 top34 bot34 arr34 prod sum → arr34 (A Ty34 nat34 top34 bot34 arr34 prod sum) (B Ty34 nat34 top34 bot34 arr34 prod sum) prod34 : Ty34 → Ty34 → Ty34; prod34 = λ A B Ty34 nat34 top34 bot34 arr34 prod34 sum → prod34 (A Ty34 nat34 top34 bot34 arr34 prod34 sum) (B Ty34 nat34 top34 bot34 arr34 prod34 sum) sum34 : Ty34 → Ty34 → Ty34; sum34 = λ A B Ty34 nat34 top34 bot34 arr34 prod34 sum34 → sum34 (A Ty34 nat34 top34 bot34 arr34 prod34 sum34) (B Ty34 nat34 top34 bot34 arr34 prod34 sum34) Con34 : Set; Con34 = (Con34 : Set) (nil : Con34) (snoc : Con34 → Ty34 → Con34) → Con34 nil34 : Con34; nil34 = λ Con34 nil34 snoc → nil34 snoc34 : Con34 → Ty34 → Con34; snoc34 = λ Γ A Con34 nil34 snoc34 → snoc34 (Γ Con34 nil34 snoc34) A Var34 : Con34 → Ty34 → Set; Var34 = λ Γ A → (Var34 : Con34 → Ty34 → Set) (vz : ∀ Γ A → Var34 (snoc34 Γ A) A) (vs : ∀ Γ B A → Var34 Γ A → Var34 (snoc34 Γ B) A) → Var34 Γ A vz34 : ∀{Γ A} → Var34 (snoc34 Γ A) A; vz34 = λ Var34 vz34 vs → vz34 _ _ vs34 : ∀{Γ B A} → Var34 Γ A → Var34 (snoc34 Γ B) A; vs34 = λ x Var34 vz34 vs34 → vs34 _ _ _ (x Var34 vz34 vs34) Tm34 : Con34 → Ty34 → Set; Tm34 = λ Γ A → (Tm34 : Con34 → Ty34 → Set) (var : ∀ Γ A → Var34 Γ A → Tm34 Γ A) (lam : ∀ Γ A B → Tm34 (snoc34 Γ A) B → Tm34 Γ (arr34 A B)) (app : ∀ Γ A B → Tm34 Γ (arr34 A B) → Tm34 Γ A → Tm34 Γ B) (tt : ∀ Γ → Tm34 Γ top34) (pair : ∀ Γ A B → Tm34 Γ A → Tm34 Γ B → Tm34 Γ (prod34 A B)) (fst : ∀ Γ A B → Tm34 Γ (prod34 A B) → Tm34 Γ A) (snd : ∀ Γ A B → Tm34 Γ (prod34 A B) → Tm34 Γ B) (left : ∀ Γ A B → Tm34 Γ A → Tm34 Γ (sum34 A B)) (right : ∀ Γ A B → Tm34 Γ B → Tm34 Γ (sum34 A B)) (case : ∀ Γ A B C → Tm34 Γ (sum34 A B) → Tm34 Γ (arr34 A C) → Tm34 Γ (arr34 B C) → Tm34 Γ C) (zero : ∀ Γ → Tm34 Γ nat34) (suc : ∀ Γ → Tm34 Γ nat34 → Tm34 Γ nat34) (rec : ∀ Γ A → Tm34 Γ nat34 → Tm34 Γ (arr34 nat34 (arr34 A A)) → Tm34 Γ A → Tm34 Γ A) → Tm34 Γ A var34 : ∀{Γ A} → Var34 Γ A → Tm34 Γ A; var34 = λ x Tm34 var34 lam app tt pair fst snd left right case zero suc rec → var34 _ _ x lam34 : ∀{Γ A B} → Tm34 (snoc34 Γ A) B → Tm34 Γ (arr34 A B); lam34 = λ t Tm34 var34 lam34 app tt pair fst snd left right case zero suc rec → lam34 _ _ _ (t Tm34 var34 lam34 app tt pair fst snd left right case zero suc rec) app34 : ∀{Γ A B} → Tm34 Γ (arr34 A B) → Tm34 Γ A → Tm34 Γ B; app34 = λ t u Tm34 var34 lam34 app34 tt pair fst snd left right case zero suc rec → app34 _ _ _ (t Tm34 var34 lam34 app34 tt pair fst snd left right case zero suc rec) (u Tm34 var34 lam34 app34 tt pair fst snd left right case zero suc rec) tt34 : ∀{Γ} → Tm34 Γ top34; tt34 = λ Tm34 var34 lam34 app34 tt34 pair fst snd left right case zero suc rec → tt34 _ pair34 : ∀{Γ A B} → Tm34 Γ A → Tm34 Γ B → Tm34 Γ (prod34 A B); pair34 = λ t u Tm34 var34 lam34 app34 tt34 pair34 fst snd left right case zero suc rec → pair34 _ _ _ (t Tm34 var34 lam34 app34 tt34 pair34 fst snd left right case zero suc rec) (u Tm34 var34 lam34 app34 tt34 pair34 fst snd left right case zero suc rec) fst34 : ∀{Γ A B} → Tm34 Γ (prod34 A B) → Tm34 Γ A; fst34 = λ t Tm34 var34 lam34 app34 tt34 pair34 fst34 snd left right case zero suc rec → fst34 _ _ _ (t Tm34 var34 lam34 app34 tt34 pair34 fst34 snd left right case zero suc rec) snd34 : ∀{Γ A B} → Tm34 Γ (prod34 A B) → Tm34 Γ B; snd34 = λ t Tm34 var34 lam34 app34 tt34 pair34 fst34 snd34 left right case zero suc rec → snd34 _ _ _ (t Tm34 var34 lam34 app34 tt34 pair34 fst34 snd34 left right case zero suc rec) left34 : ∀{Γ A B} → Tm34 Γ A → Tm34 Γ (sum34 A B); left34 = λ t Tm34 var34 lam34 app34 tt34 pair34 fst34 snd34 left34 right case zero suc rec → left34 _ _ _ (t Tm34 var34 lam34 app34 tt34 pair34 fst34 snd34 left34 right case zero suc rec) right34 : ∀{Γ A B} → Tm34 Γ B → Tm34 Γ (sum34 A B); right34 = λ t Tm34 var34 lam34 app34 tt34 pair34 fst34 snd34 left34 right34 case zero suc rec → right34 _ _ _ (t Tm34 var34 lam34 app34 tt34 pair34 fst34 snd34 left34 right34 case zero suc rec) case34 : ∀{Γ A B C} → Tm34 Γ (sum34 A B) → Tm34 Γ (arr34 A C) → Tm34 Γ (arr34 B C) → Tm34 Γ C; case34 = λ t u v Tm34 var34 lam34 app34 tt34 pair34 fst34 snd34 left34 right34 case34 zero suc rec → case34 _ _ _ _ (t Tm34 var34 lam34 app34 tt34 pair34 fst34 snd34 left34 right34 case34 zero suc rec) (u Tm34 var34 lam34 app34 tt34 pair34 fst34 snd34 left34 right34 case34 zero suc rec) (v Tm34 var34 lam34 app34 tt34 pair34 fst34 snd34 left34 right34 case34 zero suc rec) zero34 : ∀{Γ} → Tm34 Γ nat34; zero34 = λ Tm34 var34 lam34 app34 tt34 pair34 fst34 snd34 left34 right34 case34 zero34 suc rec → zero34 _ suc34 : ∀{Γ} → Tm34 Γ nat34 → Tm34 Γ nat34; suc34 = λ t Tm34 var34 lam34 app34 tt34 pair34 fst34 snd34 left34 right34 case34 zero34 suc34 rec → suc34 _ (t Tm34 var34 lam34 app34 tt34 pair34 fst34 snd34 left34 right34 case34 zero34 suc34 rec) rec34 : ∀{Γ A} → Tm34 Γ nat34 → Tm34 Γ (arr34 nat34 (arr34 A A)) → Tm34 Γ A → Tm34 Γ A; rec34 = λ t u v Tm34 var34 lam34 app34 tt34 pair34 fst34 snd34 left34 right34 case34 zero34 suc34 rec34 → rec34 _ _ (t Tm34 var34 lam34 app34 tt34 pair34 fst34 snd34 left34 right34 case34 zero34 suc34 rec34) (u Tm34 var34 lam34 app34 tt34 pair34 fst34 snd34 left34 right34 case34 zero34 suc34 rec34) (v Tm34 var34 lam34 app34 tt34 pair34 fst34 snd34 left34 right34 case34 zero34 suc34 rec34) v034 : ∀{Γ A} → Tm34 (snoc34 Γ A) A; v034 = var34 vz34 v134 : ∀{Γ A B} → Tm34 (snoc34 (snoc34 Γ A) B) A; v134 = var34 (vs34 vz34) v234 : ∀{Γ A B C} → Tm34 (snoc34 (snoc34 (snoc34 Γ A) B) C) A; v234 = var34 (vs34 (vs34 vz34)) v334 : ∀{Γ A B C D} → Tm34 (snoc34 (snoc34 (snoc34 (snoc34 Γ A) B) C) D) A; v334 = var34 (vs34 (vs34 (vs34 vz34))) tbool34 : Ty34; tbool34 = sum34 top34 top34 true34 : ∀{Γ} → Tm34 Γ tbool34; true34 = left34 tt34 tfalse34 : ∀{Γ} → Tm34 Γ tbool34; tfalse34 = right34 tt34 ifthenelse34 : ∀{Γ A} → Tm34 Γ (arr34 tbool34 (arr34 A (arr34 A A))); ifthenelse34 = lam34 (lam34 (lam34 (case34 v234 (lam34 v234) (lam34 v134)))) times434 : ∀{Γ A} → Tm34 Γ (arr34 (arr34 A A) (arr34 A A)); times434 = lam34 (lam34 (app34 v134 (app34 v134 (app34 v134 (app34 v134 v034))))) add34 : ∀{Γ} → Tm34 Γ (arr34 nat34 (arr34 nat34 nat34)); add34 = lam34 (rec34 v034 (lam34 (lam34 (lam34 (suc34 (app34 v134 v034))))) (lam34 v034)) mul34 : ∀{Γ} → Tm34 Γ (arr34 nat34 (arr34 nat34 nat34)); mul34 = lam34 (rec34 v034 (lam34 (lam34 (lam34 (app34 (app34 add34 (app34 v134 v034)) v034)))) (lam34 zero34)) fact34 : ∀{Γ} → Tm34 Γ (arr34 nat34 nat34); fact34 = lam34 (rec34 v034 (lam34 (lam34 (app34 (app34 mul34 (suc34 v134)) v034))) (suc34 zero34)) {-# OPTIONS --type-in-type #-} Ty35 : Set Ty35 = (Ty35 : Set) (nat top bot : Ty35) (arr prod sum : Ty35 → Ty35 → Ty35) → Ty35 nat35 : Ty35; nat35 = λ _ nat35 _ _ _ _ _ → nat35 top35 : Ty35; top35 = λ _ _ top35 _ _ _ _ → top35 bot35 : Ty35; bot35 = λ _ _ _ bot35 _ _ _ → bot35 arr35 : Ty35 → Ty35 → Ty35; arr35 = λ A B Ty35 nat35 top35 bot35 arr35 prod sum → arr35 (A Ty35 nat35 top35 bot35 arr35 prod sum) (B Ty35 nat35 top35 bot35 arr35 prod sum) prod35 : Ty35 → Ty35 → Ty35; prod35 = λ A B Ty35 nat35 top35 bot35 arr35 prod35 sum → prod35 (A Ty35 nat35 top35 bot35 arr35 prod35 sum) (B Ty35 nat35 top35 bot35 arr35 prod35 sum) sum35 : Ty35 → Ty35 → Ty35; sum35 = λ A B Ty35 nat35 top35 bot35 arr35 prod35 sum35 → sum35 (A Ty35 nat35 top35 bot35 arr35 prod35 sum35) (B Ty35 nat35 top35 bot35 arr35 prod35 sum35) Con35 : Set; Con35 = (Con35 : Set) (nil : Con35) (snoc : Con35 → Ty35 → Con35) → Con35 nil35 : Con35; nil35 = λ Con35 nil35 snoc → nil35 snoc35 : Con35 → Ty35 → Con35; snoc35 = λ Γ A Con35 nil35 snoc35 → snoc35 (Γ Con35 nil35 snoc35) A Var35 : Con35 → Ty35 → Set; Var35 = λ Γ A → (Var35 : Con35 → Ty35 → Set) (vz : ∀ Γ A → Var35 (snoc35 Γ A) A) (vs : ∀ Γ B A → Var35 Γ A → Var35 (snoc35 Γ B) A) → Var35 Γ A vz35 : ∀{Γ A} → Var35 (snoc35 Γ A) A; vz35 = λ Var35 vz35 vs → vz35 _ _ vs35 : ∀{Γ B A} → Var35 Γ A → Var35 (snoc35 Γ B) A; vs35 = λ x Var35 vz35 vs35 → vs35 _ _ _ (x Var35 vz35 vs35) Tm35 : Con35 → Ty35 → Set; Tm35 = λ Γ A → (Tm35 : Con35 → Ty35 → Set) (var : ∀ Γ A → Var35 Γ A → Tm35 Γ A) (lam : ∀ Γ A B → Tm35 (snoc35 Γ A) B → Tm35 Γ (arr35 A B)) (app : ∀ Γ A B → Tm35 Γ (arr35 A B) → Tm35 Γ A → Tm35 Γ B) (tt : ∀ Γ → Tm35 Γ top35) (pair : ∀ Γ A B → Tm35 Γ A → Tm35 Γ B → Tm35 Γ (prod35 A B)) (fst : ∀ Γ A B → Tm35 Γ (prod35 A B) → Tm35 Γ A) (snd : ∀ Γ A B → Tm35 Γ (prod35 A B) → Tm35 Γ B) (left : ∀ Γ A B → Tm35 Γ A → Tm35 Γ (sum35 A B)) (right : ∀ Γ A B → Tm35 Γ B → Tm35 Γ (sum35 A B)) (case : ∀ Γ A B C → Tm35 Γ (sum35 A B) → Tm35 Γ (arr35 A C) → Tm35 Γ (arr35 B C) → Tm35 Γ C) (zero : ∀ Γ → Tm35 Γ nat35) (suc : ∀ Γ → Tm35 Γ nat35 → Tm35 Γ nat35) (rec : ∀ Γ A → Tm35 Γ nat35 → Tm35 Γ (arr35 nat35 (arr35 A A)) → Tm35 Γ A → Tm35 Γ A) → Tm35 Γ A var35 : ∀{Γ A} → Var35 Γ A → Tm35 Γ A; var35 = λ x Tm35 var35 lam app tt pair fst snd left right case zero suc rec → var35 _ _ x lam35 : ∀{Γ A B} → Tm35 (snoc35 Γ A) B → Tm35 Γ (arr35 A B); lam35 = λ t Tm35 var35 lam35 app tt pair fst snd left right case zero suc rec → lam35 _ _ _ (t Tm35 var35 lam35 app tt pair fst snd left right case zero suc rec) app35 : ∀{Γ A B} → Tm35 Γ (arr35 A B) → Tm35 Γ A → Tm35 Γ B; app35 = λ t u Tm35 var35 lam35 app35 tt pair fst snd left right case zero suc rec → app35 _ _ _ (t Tm35 var35 lam35 app35 tt pair fst snd left right case zero suc rec) (u Tm35 var35 lam35 app35 tt pair fst snd left right case zero suc rec) tt35 : ∀{Γ} → Tm35 Γ top35; tt35 = λ Tm35 var35 lam35 app35 tt35 pair fst snd left right case zero suc rec → tt35 _ pair35 : ∀{Γ A B} → Tm35 Γ A → Tm35 Γ B → Tm35 Γ (prod35 A B); pair35 = λ t u Tm35 var35 lam35 app35 tt35 pair35 fst snd left right case zero suc rec → pair35 _ _ _ (t Tm35 var35 lam35 app35 tt35 pair35 fst snd left right case zero suc rec) (u Tm35 var35 lam35 app35 tt35 pair35 fst snd left right case zero suc rec) fst35 : ∀{Γ A B} → Tm35 Γ (prod35 A B) → Tm35 Γ A; fst35 = λ t Tm35 var35 lam35 app35 tt35 pair35 fst35 snd left right case zero suc rec → fst35 _ _ _ (t Tm35 var35 lam35 app35 tt35 pair35 fst35 snd left right case zero suc rec) snd35 : ∀{Γ A B} → Tm35 Γ (prod35 A B) → Tm35 Γ B; snd35 = λ t Tm35 var35 lam35 app35 tt35 pair35 fst35 snd35 left right case zero suc rec → snd35 _ _ _ (t Tm35 var35 lam35 app35 tt35 pair35 fst35 snd35 left right case zero suc rec) left35 : ∀{Γ A B} → Tm35 Γ A → Tm35 Γ (sum35 A B); left35 = λ t Tm35 var35 lam35 app35 tt35 pair35 fst35 snd35 left35 right case zero suc rec → left35 _ _ _ (t Tm35 var35 lam35 app35 tt35 pair35 fst35 snd35 left35 right case zero suc rec) right35 : ∀{Γ A B} → Tm35 Γ B → Tm35 Γ (sum35 A B); right35 = λ t Tm35 var35 lam35 app35 tt35 pair35 fst35 snd35 left35 right35 case zero suc rec → right35 _ _ _ (t Tm35 var35 lam35 app35 tt35 pair35 fst35 snd35 left35 right35 case zero suc rec) case35 : ∀{Γ A B C} → Tm35 Γ (sum35 A B) → Tm35 Γ (arr35 A C) → Tm35 Γ (arr35 B C) → Tm35 Γ C; case35 = λ t u v Tm35 var35 lam35 app35 tt35 pair35 fst35 snd35 left35 right35 case35 zero suc rec → case35 _ _ _ _ (t Tm35 var35 lam35 app35 tt35 pair35 fst35 snd35 left35 right35 case35 zero suc rec) (u Tm35 var35 lam35 app35 tt35 pair35 fst35 snd35 left35 right35 case35 zero suc rec) (v Tm35 var35 lam35 app35 tt35 pair35 fst35 snd35 left35 right35 case35 zero suc rec) zero35 : ∀{Γ} → Tm35 Γ nat35; zero35 = λ Tm35 var35 lam35 app35 tt35 pair35 fst35 snd35 left35 right35 case35 zero35 suc rec → zero35 _ suc35 : ∀{Γ} → Tm35 Γ nat35 → Tm35 Γ nat35; suc35 = λ t Tm35 var35 lam35 app35 tt35 pair35 fst35 snd35 left35 right35 case35 zero35 suc35 rec → suc35 _ (t Tm35 var35 lam35 app35 tt35 pair35 fst35 snd35 left35 right35 case35 zero35 suc35 rec) rec35 : ∀{Γ A} → Tm35 Γ nat35 → Tm35 Γ (arr35 nat35 (arr35 A A)) → Tm35 Γ A → Tm35 Γ A; rec35 = λ t u v Tm35 var35 lam35 app35 tt35 pair35 fst35 snd35 left35 right35 case35 zero35 suc35 rec35 → rec35 _ _ (t Tm35 var35 lam35 app35 tt35 pair35 fst35 snd35 left35 right35 case35 zero35 suc35 rec35) (u Tm35 var35 lam35 app35 tt35 pair35 fst35 snd35 left35 right35 case35 zero35 suc35 rec35) (v Tm35 var35 lam35 app35 tt35 pair35 fst35 snd35 left35 right35 case35 zero35 suc35 rec35) v035 : ∀{Γ A} → Tm35 (snoc35 Γ A) A; v035 = var35 vz35 v135 : ∀{Γ A B} → Tm35 (snoc35 (snoc35 Γ A) B) A; v135 = var35 (vs35 vz35) v235 : ∀{Γ A B C} → Tm35 (snoc35 (snoc35 (snoc35 Γ A) B) C) A; v235 = var35 (vs35 (vs35 vz35)) v335 : ∀{Γ A B C D} → Tm35 (snoc35 (snoc35 (snoc35 (snoc35 Γ A) B) C) D) A; v335 = var35 (vs35 (vs35 (vs35 vz35))) tbool35 : Ty35; tbool35 = sum35 top35 top35 true35 : ∀{Γ} → Tm35 Γ tbool35; true35 = left35 tt35 tfalse35 : ∀{Γ} → Tm35 Γ tbool35; tfalse35 = right35 tt35 ifthenelse35 : ∀{Γ A} → Tm35 Γ (arr35 tbool35 (arr35 A (arr35 A A))); ifthenelse35 = lam35 (lam35 (lam35 (case35 v235 (lam35 v235) (lam35 v135)))) times435 : ∀{Γ A} → Tm35 Γ (arr35 (arr35 A A) (arr35 A A)); times435 = lam35 (lam35 (app35 v135 (app35 v135 (app35 v135 (app35 v135 v035))))) add35 : ∀{Γ} → Tm35 Γ (arr35 nat35 (arr35 nat35 nat35)); add35 = lam35 (rec35 v035 (lam35 (lam35 (lam35 (suc35 (app35 v135 v035))))) (lam35 v035)) mul35 : ∀{Γ} → Tm35 Γ (arr35 nat35 (arr35 nat35 nat35)); mul35 = lam35 (rec35 v035 (lam35 (lam35 (lam35 (app35 (app35 add35 (app35 v135 v035)) v035)))) (lam35 zero35)) fact35 : ∀{Γ} → Tm35 Γ (arr35 nat35 nat35); fact35 = lam35 (rec35 v035 (lam35 (lam35 (app35 (app35 mul35 (suc35 v135)) v035))) (suc35 zero35)) {-# OPTIONS --type-in-type #-} Ty36 : Set Ty36 = (Ty36 : Set) (nat top bot : Ty36) (arr prod sum : Ty36 → Ty36 → Ty36) → Ty36 nat36 : Ty36; nat36 = λ _ nat36 _ _ _ _ _ → nat36 top36 : Ty36; top36 = λ _ _ top36 _ _ _ _ → top36 bot36 : Ty36; bot36 = λ _ _ _ bot36 _ _ _ → bot36 arr36 : Ty36 → Ty36 → Ty36; arr36 = λ A B Ty36 nat36 top36 bot36 arr36 prod sum → arr36 (A Ty36 nat36 top36 bot36 arr36 prod sum) (B Ty36 nat36 top36 bot36 arr36 prod sum) prod36 : Ty36 → Ty36 → Ty36; prod36 = λ A B Ty36 nat36 top36 bot36 arr36 prod36 sum → prod36 (A Ty36 nat36 top36 bot36 arr36 prod36 sum) (B Ty36 nat36 top36 bot36 arr36 prod36 sum) sum36 : Ty36 → Ty36 → Ty36; sum36 = λ A B Ty36 nat36 top36 bot36 arr36 prod36 sum36 → sum36 (A Ty36 nat36 top36 bot36 arr36 prod36 sum36) (B Ty36 nat36 top36 bot36 arr36 prod36 sum36) Con36 : Set; Con36 = (Con36 : Set) (nil : Con36) (snoc : Con36 → Ty36 → Con36) → Con36 nil36 : Con36; nil36 = λ Con36 nil36 snoc → nil36 snoc36 : Con36 → Ty36 → Con36; snoc36 = λ Γ A Con36 nil36 snoc36 → snoc36 (Γ Con36 nil36 snoc36) A Var36 : Con36 → Ty36 → Set; Var36 = λ Γ A → (Var36 : Con36 → Ty36 → Set) (vz : ∀ Γ A → Var36 (snoc36 Γ A) A) (vs : ∀ Γ B A → Var36 Γ A → Var36 (snoc36 Γ B) A) → Var36 Γ A vz36 : ∀{Γ A} → Var36 (snoc36 Γ A) A; vz36 = λ Var36 vz36 vs → vz36 _ _ vs36 : ∀{Γ B A} → Var36 Γ A → Var36 (snoc36 Γ B) A; vs36 = λ x Var36 vz36 vs36 → vs36 _ _ _ (x Var36 vz36 vs36) Tm36 : Con36 → Ty36 → Set; Tm36 = λ Γ A → (Tm36 : Con36 → Ty36 → Set) (var : ∀ Γ A → Var36 Γ A → Tm36 Γ A) (lam : ∀ Γ A B → Tm36 (snoc36 Γ A) B → Tm36 Γ (arr36 A B)) (app : ∀ Γ A B → Tm36 Γ (arr36 A B) → Tm36 Γ A → Tm36 Γ B) (tt : ∀ Γ → Tm36 Γ top36) (pair : ∀ Γ A B → Tm36 Γ A → Tm36 Γ B → Tm36 Γ (prod36 A B)) (fst : ∀ Γ A B → Tm36 Γ (prod36 A B) → Tm36 Γ A) (snd : ∀ Γ A B → Tm36 Γ (prod36 A B) → Tm36 Γ B) (left : ∀ Γ A B → Tm36 Γ A → Tm36 Γ (sum36 A B)) (right : ∀ Γ A B → Tm36 Γ B → Tm36 Γ (sum36 A B)) (case : ∀ Γ A B C → Tm36 Γ (sum36 A B) → Tm36 Γ (arr36 A C) → Tm36 Γ (arr36 B C) → Tm36 Γ C) (zero : ∀ Γ → Tm36 Γ nat36) (suc : ∀ Γ → Tm36 Γ nat36 → Tm36 Γ nat36) (rec : ∀ Γ A → Tm36 Γ nat36 → Tm36 Γ (arr36 nat36 (arr36 A A)) → Tm36 Γ A → Tm36 Γ A) → Tm36 Γ A var36 : ∀{Γ A} → Var36 Γ A → Tm36 Γ A; var36 = λ x Tm36 var36 lam app tt pair fst snd left right case zero suc rec → var36 _ _ x lam36 : ∀{Γ A B} → Tm36 (snoc36 Γ A) B → Tm36 Γ (arr36 A B); lam36 = λ t Tm36 var36 lam36 app tt pair fst snd left right case zero suc rec → lam36 _ _ _ (t Tm36 var36 lam36 app tt pair fst snd left right case zero suc rec) app36 : ∀{Γ A B} → Tm36 Γ (arr36 A B) → Tm36 Γ A → Tm36 Γ B; app36 = λ t u Tm36 var36 lam36 app36 tt pair fst snd left right case zero suc rec → app36 _ _ _ (t Tm36 var36 lam36 app36 tt pair fst snd left right case zero suc rec) (u Tm36 var36 lam36 app36 tt pair fst snd left right case zero suc rec) tt36 : ∀{Γ} → Tm36 Γ top36; tt36 = λ Tm36 var36 lam36 app36 tt36 pair fst snd left right case zero suc rec → tt36 _ pair36 : ∀{Γ A B} → Tm36 Γ A → Tm36 Γ B → Tm36 Γ (prod36 A B); pair36 = λ t u Tm36 var36 lam36 app36 tt36 pair36 fst snd left right case zero suc rec → pair36 _ _ _ (t Tm36 var36 lam36 app36 tt36 pair36 fst snd left right case zero suc rec) (u Tm36 var36 lam36 app36 tt36 pair36 fst snd left right case zero suc rec) fst36 : ∀{Γ A B} → Tm36 Γ (prod36 A B) → Tm36 Γ A; fst36 = λ t Tm36 var36 lam36 app36 tt36 pair36 fst36 snd left right case zero suc rec → fst36 _ _ _ (t Tm36 var36 lam36 app36 tt36 pair36 fst36 snd left right case zero suc rec) snd36 : ∀{Γ A B} → Tm36 Γ (prod36 A B) → Tm36 Γ B; snd36 = λ t Tm36 var36 lam36 app36 tt36 pair36 fst36 snd36 left right case zero suc rec → snd36 _ _ _ (t Tm36 var36 lam36 app36 tt36 pair36 fst36 snd36 left right case zero suc rec) left36 : ∀{Γ A B} → Tm36 Γ A → Tm36 Γ (sum36 A B); left36 = λ t Tm36 var36 lam36 app36 tt36 pair36 fst36 snd36 left36 right case zero suc rec → left36 _ _ _ (t Tm36 var36 lam36 app36 tt36 pair36 fst36 snd36 left36 right case zero suc rec) right36 : ∀{Γ A B} → Tm36 Γ B → Tm36 Γ (sum36 A B); right36 = λ t Tm36 var36 lam36 app36 tt36 pair36 fst36 snd36 left36 right36 case zero suc rec → right36 _ _ _ (t Tm36 var36 lam36 app36 tt36 pair36 fst36 snd36 left36 right36 case zero suc rec) case36 : ∀{Γ A B C} → Tm36 Γ (sum36 A B) → Tm36 Γ (arr36 A C) → Tm36 Γ (arr36 B C) → Tm36 Γ C; case36 = λ t u v Tm36 var36 lam36 app36 tt36 pair36 fst36 snd36 left36 right36 case36 zero suc rec → case36 _ _ _ _ (t Tm36 var36 lam36 app36 tt36 pair36 fst36 snd36 left36 right36 case36 zero suc rec) (u Tm36 var36 lam36 app36 tt36 pair36 fst36 snd36 left36 right36 case36 zero suc rec) (v Tm36 var36 lam36 app36 tt36 pair36 fst36 snd36 left36 right36 case36 zero suc rec) zero36 : ∀{Γ} → Tm36 Γ nat36; zero36 = λ Tm36 var36 lam36 app36 tt36 pair36 fst36 snd36 left36 right36 case36 zero36 suc rec → zero36 _ suc36 : ∀{Γ} → Tm36 Γ nat36 → Tm36 Γ nat36; suc36 = λ t Tm36 var36 lam36 app36 tt36 pair36 fst36 snd36 left36 right36 case36 zero36 suc36 rec → suc36 _ (t Tm36 var36 lam36 app36 tt36 pair36 fst36 snd36 left36 right36 case36 zero36 suc36 rec) rec36 : ∀{Γ A} → Tm36 Γ nat36 → Tm36 Γ (arr36 nat36 (arr36 A A)) → Tm36 Γ A → Tm36 Γ A; rec36 = λ t u v Tm36 var36 lam36 app36 tt36 pair36 fst36 snd36 left36 right36 case36 zero36 suc36 rec36 → rec36 _ _ (t Tm36 var36 lam36 app36 tt36 pair36 fst36 snd36 left36 right36 case36 zero36 suc36 rec36) (u Tm36 var36 lam36 app36 tt36 pair36 fst36 snd36 left36 right36 case36 zero36 suc36 rec36) (v Tm36 var36 lam36 app36 tt36 pair36 fst36 snd36 left36 right36 case36 zero36 suc36 rec36) v036 : ∀{Γ A} → Tm36 (snoc36 Γ A) A; v036 = var36 vz36 v136 : ∀{Γ A B} → Tm36 (snoc36 (snoc36 Γ A) B) A; v136 = var36 (vs36 vz36) v236 : ∀{Γ A B C} → Tm36 (snoc36 (snoc36 (snoc36 Γ A) B) C) A; v236 = var36 (vs36 (vs36 vz36)) v336 : ∀{Γ A B C D} → Tm36 (snoc36 (snoc36 (snoc36 (snoc36 Γ A) B) C) D) A; v336 = var36 (vs36 (vs36 (vs36 vz36))) tbool36 : Ty36; tbool36 = sum36 top36 top36 true36 : ∀{Γ} → Tm36 Γ tbool36; true36 = left36 tt36 tfalse36 : ∀{Γ} → Tm36 Γ tbool36; tfalse36 = right36 tt36 ifthenelse36 : ∀{Γ A} → Tm36 Γ (arr36 tbool36 (arr36 A (arr36 A A))); ifthenelse36 = lam36 (lam36 (lam36 (case36 v236 (lam36 v236) (lam36 v136)))) times436 : ∀{Γ A} → Tm36 Γ (arr36 (arr36 A A) (arr36 A A)); times436 = lam36 (lam36 (app36 v136 (app36 v136 (app36 v136 (app36 v136 v036))))) add36 : ∀{Γ} → Tm36 Γ (arr36 nat36 (arr36 nat36 nat36)); add36 = lam36 (rec36 v036 (lam36 (lam36 (lam36 (suc36 (app36 v136 v036))))) (lam36 v036)) mul36 : ∀{Γ} → Tm36 Γ (arr36 nat36 (arr36 nat36 nat36)); mul36 = lam36 (rec36 v036 (lam36 (lam36 (lam36 (app36 (app36 add36 (app36 v136 v036)) v036)))) (lam36 zero36)) fact36 : ∀{Γ} → Tm36 Γ (arr36 nat36 nat36); fact36 = lam36 (rec36 v036 (lam36 (lam36 (app36 (app36 mul36 (suc36 v136)) v036))) (suc36 zero36)) {-# OPTIONS --type-in-type #-} Ty37 : Set Ty37 = (Ty37 : Set) (nat top bot : Ty37) (arr prod sum : Ty37 → Ty37 → Ty37) → Ty37 nat37 : Ty37; nat37 = λ _ nat37 _ _ _ _ _ → nat37 top37 : Ty37; top37 = λ _ _ top37 _ _ _ _ → top37 bot37 : Ty37; bot37 = λ _ _ _ bot37 _ _ _ → bot37 arr37 : Ty37 → Ty37 → Ty37; arr37 = λ A B Ty37 nat37 top37 bot37 arr37 prod sum → arr37 (A Ty37 nat37 top37 bot37 arr37 prod sum) (B Ty37 nat37 top37 bot37 arr37 prod sum) prod37 : Ty37 → Ty37 → Ty37; prod37 = λ A B Ty37 nat37 top37 bot37 arr37 prod37 sum → prod37 (A Ty37 nat37 top37 bot37 arr37 prod37 sum) (B Ty37 nat37 top37 bot37 arr37 prod37 sum) sum37 : Ty37 → Ty37 → Ty37; sum37 = λ A B Ty37 nat37 top37 bot37 arr37 prod37 sum37 → sum37 (A Ty37 nat37 top37 bot37 arr37 prod37 sum37) (B Ty37 nat37 top37 bot37 arr37 prod37 sum37) Con37 : Set; Con37 = (Con37 : Set) (nil : Con37) (snoc : Con37 → Ty37 → Con37) → Con37 nil37 : Con37; nil37 = λ Con37 nil37 snoc → nil37 snoc37 : Con37 → Ty37 → Con37; snoc37 = λ Γ A Con37 nil37 snoc37 → snoc37 (Γ Con37 nil37 snoc37) A Var37 : Con37 → Ty37 → Set; Var37 = λ Γ A → (Var37 : Con37 → Ty37 → Set) (vz : ∀ Γ A → Var37 (snoc37 Γ A) A) (vs : ∀ Γ B A → Var37 Γ A → Var37 (snoc37 Γ B) A) → Var37 Γ A vz37 : ∀{Γ A} → Var37 (snoc37 Γ A) A; vz37 = λ Var37 vz37 vs → vz37 _ _ vs37 : ∀{Γ B A} → Var37 Γ A → Var37 (snoc37 Γ B) A; vs37 = λ x Var37 vz37 vs37 → vs37 _ _ _ (x Var37 vz37 vs37) Tm37 : Con37 → Ty37 → Set; Tm37 = λ Γ A → (Tm37 : Con37 → Ty37 → Set) (var : ∀ Γ A → Var37 Γ A → Tm37 Γ A) (lam : ∀ Γ A B → Tm37 (snoc37 Γ A) B → Tm37 Γ (arr37 A B)) (app : ∀ Γ A B → Tm37 Γ (arr37 A B) → Tm37 Γ A → Tm37 Γ B) (tt : ∀ Γ → Tm37 Γ top37) (pair : ∀ Γ A B → Tm37 Γ A → Tm37 Γ B → Tm37 Γ (prod37 A B)) (fst : ∀ Γ A B → Tm37 Γ (prod37 A B) → Tm37 Γ A) (snd : ∀ Γ A B → Tm37 Γ (prod37 A B) → Tm37 Γ B) (left : ∀ Γ A B → Tm37 Γ A → Tm37 Γ (sum37 A B)) (right : ∀ Γ A B → Tm37 Γ B → Tm37 Γ (sum37 A B)) (case : ∀ Γ A B C → Tm37 Γ (sum37 A B) → Tm37 Γ (arr37 A C) → Tm37 Γ (arr37 B C) → Tm37 Γ C) (zero : ∀ Γ → Tm37 Γ nat37) (suc : ∀ Γ → Tm37 Γ nat37 → Tm37 Γ nat37) (rec : ∀ Γ A → Tm37 Γ nat37 → Tm37 Γ (arr37 nat37 (arr37 A A)) → Tm37 Γ A → Tm37 Γ A) → Tm37 Γ A var37 : ∀{Γ A} → Var37 Γ A → Tm37 Γ A; var37 = λ x Tm37 var37 lam app tt pair fst snd left right case zero suc rec → var37 _ _ x lam37 : ∀{Γ A B} → Tm37 (snoc37 Γ A) B → Tm37 Γ (arr37 A B); lam37 = λ t Tm37 var37 lam37 app tt pair fst snd left right case zero suc rec → lam37 _ _ _ (t Tm37 var37 lam37 app tt pair fst snd left right case zero suc rec) app37 : ∀{Γ A B} → Tm37 Γ (arr37 A B) → Tm37 Γ A → Tm37 Γ B; app37 = λ t u Tm37 var37 lam37 app37 tt pair fst snd left right case zero suc rec → app37 _ _ _ (t Tm37 var37 lam37 app37 tt pair fst snd left right case zero suc rec) (u Tm37 var37 lam37 app37 tt pair fst snd left right case zero suc rec) tt37 : ∀{Γ} → Tm37 Γ top37; tt37 = λ Tm37 var37 lam37 app37 tt37 pair fst snd left right case zero suc rec → tt37 _ pair37 : ∀{Γ A B} → Tm37 Γ A → Tm37 Γ B → Tm37 Γ (prod37 A B); pair37 = λ t u Tm37 var37 lam37 app37 tt37 pair37 fst snd left right case zero suc rec → pair37 _ _ _ (t Tm37 var37 lam37 app37 tt37 pair37 fst snd left right case zero suc rec) (u Tm37 var37 lam37 app37 tt37 pair37 fst snd left right case zero suc rec) fst37 : ∀{Γ A B} → Tm37 Γ (prod37 A B) → Tm37 Γ A; fst37 = λ t Tm37 var37 lam37 app37 tt37 pair37 fst37 snd left right case zero suc rec → fst37 _ _ _ (t Tm37 var37 lam37 app37 tt37 pair37 fst37 snd left right case zero suc rec) snd37 : ∀{Γ A B} → Tm37 Γ (prod37 A B) → Tm37 Γ B; snd37 = λ t Tm37 var37 lam37 app37 tt37 pair37 fst37 snd37 left right case zero suc rec → snd37 _ _ _ (t Tm37 var37 lam37 app37 tt37 pair37 fst37 snd37 left right case zero suc rec) left37 : ∀{Γ A B} → Tm37 Γ A → Tm37 Γ (sum37 A B); left37 = λ t Tm37 var37 lam37 app37 tt37 pair37 fst37 snd37 left37 right case zero suc rec → left37 _ _ _ (t Tm37 var37 lam37 app37 tt37 pair37 fst37 snd37 left37 right case zero suc rec) right37 : ∀{Γ A B} → Tm37 Γ B → Tm37 Γ (sum37 A B); right37 = λ t Tm37 var37 lam37 app37 tt37 pair37 fst37 snd37 left37 right37 case zero suc rec → right37 _ _ _ (t Tm37 var37 lam37 app37 tt37 pair37 fst37 snd37 left37 right37 case zero suc rec) case37 : ∀{Γ A B C} → Tm37 Γ (sum37 A B) → Tm37 Γ (arr37 A C) → Tm37 Γ (arr37 B C) → Tm37 Γ C; case37 = λ t u v Tm37 var37 lam37 app37 tt37 pair37 fst37 snd37 left37 right37 case37 zero suc rec → case37 _ _ _ _ (t Tm37 var37 lam37 app37 tt37 pair37 fst37 snd37 left37 right37 case37 zero suc rec) (u Tm37 var37 lam37 app37 tt37 pair37 fst37 snd37 left37 right37 case37 zero suc rec) (v Tm37 var37 lam37 app37 tt37 pair37 fst37 snd37 left37 right37 case37 zero suc rec) zero37 : ∀{Γ} → Tm37 Γ nat37; zero37 = λ Tm37 var37 lam37 app37 tt37 pair37 fst37 snd37 left37 right37 case37 zero37 suc rec → zero37 _ suc37 : ∀{Γ} → Tm37 Γ nat37 → Tm37 Γ nat37; suc37 = λ t Tm37 var37 lam37 app37 tt37 pair37 fst37 snd37 left37 right37 case37 zero37 suc37 rec → suc37 _ (t Tm37 var37 lam37 app37 tt37 pair37 fst37 snd37 left37 right37 case37 zero37 suc37 rec) rec37 : ∀{Γ A} → Tm37 Γ nat37 → Tm37 Γ (arr37 nat37 (arr37 A A)) → Tm37 Γ A → Tm37 Γ A; rec37 = λ t u v Tm37 var37 lam37 app37 tt37 pair37 fst37 snd37 left37 right37 case37 zero37 suc37 rec37 → rec37 _ _ (t Tm37 var37 lam37 app37 tt37 pair37 fst37 snd37 left37 right37 case37 zero37 suc37 rec37) (u Tm37 var37 lam37 app37 tt37 pair37 fst37 snd37 left37 right37 case37 zero37 suc37 rec37) (v Tm37 var37 lam37 app37 tt37 pair37 fst37 snd37 left37 right37 case37 zero37 suc37 rec37) v037 : ∀{Γ A} → Tm37 (snoc37 Γ A) A; v037 = var37 vz37 v137 : ∀{Γ A B} → Tm37 (snoc37 (snoc37 Γ A) B) A; v137 = var37 (vs37 vz37) v237 : ∀{Γ A B C} → Tm37 (snoc37 (snoc37 (snoc37 Γ A) B) C) A; v237 = var37 (vs37 (vs37 vz37)) v337 : ∀{Γ A B C D} → Tm37 (snoc37 (snoc37 (snoc37 (snoc37 Γ A) B) C) D) A; v337 = var37 (vs37 (vs37 (vs37 vz37))) tbool37 : Ty37; tbool37 = sum37 top37 top37 true37 : ∀{Γ} → Tm37 Γ tbool37; true37 = left37 tt37 tfalse37 : ∀{Γ} → Tm37 Γ tbool37; tfalse37 = right37 tt37 ifthenelse37 : ∀{Γ A} → Tm37 Γ (arr37 tbool37 (arr37 A (arr37 A A))); ifthenelse37 = lam37 (lam37 (lam37 (case37 v237 (lam37 v237) (lam37 v137)))) times437 : ∀{Γ A} → Tm37 Γ (arr37 (arr37 A A) (arr37 A A)); times437 = lam37 (lam37 (app37 v137 (app37 v137 (app37 v137 (app37 v137 v037))))) add37 : ∀{Γ} → Tm37 Γ (arr37 nat37 (arr37 nat37 nat37)); add37 = lam37 (rec37 v037 (lam37 (lam37 (lam37 (suc37 (app37 v137 v037))))) (lam37 v037)) mul37 : ∀{Γ} → Tm37 Γ (arr37 nat37 (arr37 nat37 nat37)); mul37 = lam37 (rec37 v037 (lam37 (lam37 (lam37 (app37 (app37 add37 (app37 v137 v037)) v037)))) (lam37 zero37)) fact37 : ∀{Γ} → Tm37 Γ (arr37 nat37 nat37); fact37 = lam37 (rec37 v037 (lam37 (lam37 (app37 (app37 mul37 (suc37 v137)) v037))) (suc37 zero37)) {-# OPTIONS --type-in-type #-} Ty38 : Set Ty38 = (Ty38 : Set) (nat top bot : Ty38) (arr prod sum : Ty38 → Ty38 → Ty38) → Ty38 nat38 : Ty38; nat38 = λ _ nat38 _ _ _ _ _ → nat38 top38 : Ty38; top38 = λ _ _ top38 _ _ _ _ → top38 bot38 : Ty38; bot38 = λ _ _ _ bot38 _ _ _ → bot38 arr38 : Ty38 → Ty38 → Ty38; arr38 = λ A B Ty38 nat38 top38 bot38 arr38 prod sum → arr38 (A Ty38 nat38 top38 bot38 arr38 prod sum) (B Ty38 nat38 top38 bot38 arr38 prod sum) prod38 : Ty38 → Ty38 → Ty38; prod38 = λ A B Ty38 nat38 top38 bot38 arr38 prod38 sum → prod38 (A Ty38 nat38 top38 bot38 arr38 prod38 sum) (B Ty38 nat38 top38 bot38 arr38 prod38 sum) sum38 : Ty38 → Ty38 → Ty38; sum38 = λ A B Ty38 nat38 top38 bot38 arr38 prod38 sum38 → sum38 (A Ty38 nat38 top38 bot38 arr38 prod38 sum38) (B Ty38 nat38 top38 bot38 arr38 prod38 sum38) Con38 : Set; Con38 = (Con38 : Set) (nil : Con38) (snoc : Con38 → Ty38 → Con38) → Con38 nil38 : Con38; nil38 = λ Con38 nil38 snoc → nil38 snoc38 : Con38 → Ty38 → Con38; snoc38 = λ Γ A Con38 nil38 snoc38 → snoc38 (Γ Con38 nil38 snoc38) A Var38 : Con38 → Ty38 → Set; Var38 = λ Γ A → (Var38 : Con38 → Ty38 → Set) (vz : ∀ Γ A → Var38 (snoc38 Γ A) A) (vs : ∀ Γ B A → Var38 Γ A → Var38 (snoc38 Γ B) A) → Var38 Γ A vz38 : ∀{Γ A} → Var38 (snoc38 Γ A) A; vz38 = λ Var38 vz38 vs → vz38 _ _ vs38 : ∀{Γ B A} → Var38 Γ A → Var38 (snoc38 Γ B) A; vs38 = λ x Var38 vz38 vs38 → vs38 _ _ _ (x Var38 vz38 vs38) Tm38 : Con38 → Ty38 → Set; Tm38 = λ Γ A → (Tm38 : Con38 → Ty38 → Set) (var : ∀ Γ A → Var38 Γ A → Tm38 Γ A) (lam : ∀ Γ A B → Tm38 (snoc38 Γ A) B → Tm38 Γ (arr38 A B)) (app : ∀ Γ A B → Tm38 Γ (arr38 A B) → Tm38 Γ A → Tm38 Γ B) (tt : ∀ Γ → Tm38 Γ top38) (pair : ∀ Γ A B → Tm38 Γ A → Tm38 Γ B → Tm38 Γ (prod38 A B)) (fst : ∀ Γ A B → Tm38 Γ (prod38 A B) → Tm38 Γ A) (snd : ∀ Γ A B → Tm38 Γ (prod38 A B) → Tm38 Γ B) (left : ∀ Γ A B → Tm38 Γ A → Tm38 Γ (sum38 A B)) (right : ∀ Γ A B → Tm38 Γ B → Tm38 Γ (sum38 A B)) (case : ∀ Γ A B C → Tm38 Γ (sum38 A B) → Tm38 Γ (arr38 A C) → Tm38 Γ (arr38 B C) → Tm38 Γ C) (zero : ∀ Γ → Tm38 Γ nat38) (suc : ∀ Γ → Tm38 Γ nat38 → Tm38 Γ nat38) (rec : ∀ Γ A → Tm38 Γ nat38 → Tm38 Γ (arr38 nat38 (arr38 A A)) → Tm38 Γ A → Tm38 Γ A) → Tm38 Γ A var38 : ∀{Γ A} → Var38 Γ A → Tm38 Γ A; var38 = λ x Tm38 var38 lam app tt pair fst snd left right case zero suc rec → var38 _ _ x lam38 : ∀{Γ A B} → Tm38 (snoc38 Γ A) B → Tm38 Γ (arr38 A B); lam38 = λ t Tm38 var38 lam38 app tt pair fst snd left right case zero suc rec → lam38 _ _ _ (t Tm38 var38 lam38 app tt pair fst snd left right case zero suc rec) app38 : ∀{Γ A B} → Tm38 Γ (arr38 A B) → Tm38 Γ A → Tm38 Γ B; app38 = λ t u Tm38 var38 lam38 app38 tt pair fst snd left right case zero suc rec → app38 _ _ _ (t Tm38 var38 lam38 app38 tt pair fst snd left right case zero suc rec) (u Tm38 var38 lam38 app38 tt pair fst snd left right case zero suc rec) tt38 : ∀{Γ} → Tm38 Γ top38; tt38 = λ Tm38 var38 lam38 app38 tt38 pair fst snd left right case zero suc rec → tt38 _ pair38 : ∀{Γ A B} → Tm38 Γ A → Tm38 Γ B → Tm38 Γ (prod38 A B); pair38 = λ t u Tm38 var38 lam38 app38 tt38 pair38 fst snd left right case zero suc rec → pair38 _ _ _ (t Tm38 var38 lam38 app38 tt38 pair38 fst snd left right case zero suc rec) (u Tm38 var38 lam38 app38 tt38 pair38 fst snd left right case zero suc rec) fst38 : ∀{Γ A B} → Tm38 Γ (prod38 A B) → Tm38 Γ A; fst38 = λ t Tm38 var38 lam38 app38 tt38 pair38 fst38 snd left right case zero suc rec → fst38 _ _ _ (t Tm38 var38 lam38 app38 tt38 pair38 fst38 snd left right case zero suc rec) snd38 : ∀{Γ A B} → Tm38 Γ (prod38 A B) → Tm38 Γ B; snd38 = λ t Tm38 var38 lam38 app38 tt38 pair38 fst38 snd38 left right case zero suc rec → snd38 _ _ _ (t Tm38 var38 lam38 app38 tt38 pair38 fst38 snd38 left right case zero suc rec) left38 : ∀{Γ A B} → Tm38 Γ A → Tm38 Γ (sum38 A B); left38 = λ t Tm38 var38 lam38 app38 tt38 pair38 fst38 snd38 left38 right case zero suc rec → left38 _ _ _ (t Tm38 var38 lam38 app38 tt38 pair38 fst38 snd38 left38 right case zero suc rec) right38 : ∀{Γ A B} → Tm38 Γ B → Tm38 Γ (sum38 A B); right38 = λ t Tm38 var38 lam38 app38 tt38 pair38 fst38 snd38 left38 right38 case zero suc rec → right38 _ _ _ (t Tm38 var38 lam38 app38 tt38 pair38 fst38 snd38 left38 right38 case zero suc rec) case38 : ∀{Γ A B C} → Tm38 Γ (sum38 A B) → Tm38 Γ (arr38 A C) → Tm38 Γ (arr38 B C) → Tm38 Γ C; case38 = λ t u v Tm38 var38 lam38 app38 tt38 pair38 fst38 snd38 left38 right38 case38 zero suc rec → case38 _ _ _ _ (t Tm38 var38 lam38 app38 tt38 pair38 fst38 snd38 left38 right38 case38 zero suc rec) (u Tm38 var38 lam38 app38 tt38 pair38 fst38 snd38 left38 right38 case38 zero suc rec) (v Tm38 var38 lam38 app38 tt38 pair38 fst38 snd38 left38 right38 case38 zero suc rec) zero38 : ∀{Γ} → Tm38 Γ nat38; zero38 = λ Tm38 var38 lam38 app38 tt38 pair38 fst38 snd38 left38 right38 case38 zero38 suc rec → zero38 _ suc38 : ∀{Γ} → Tm38 Γ nat38 → Tm38 Γ nat38; suc38 = λ t Tm38 var38 lam38 app38 tt38 pair38 fst38 snd38 left38 right38 case38 zero38 suc38 rec → suc38 _ (t Tm38 var38 lam38 app38 tt38 pair38 fst38 snd38 left38 right38 case38 zero38 suc38 rec) rec38 : ∀{Γ A} → Tm38 Γ nat38 → Tm38 Γ (arr38 nat38 (arr38 A A)) → Tm38 Γ A → Tm38 Γ A; rec38 = λ t u v Tm38 var38 lam38 app38 tt38 pair38 fst38 snd38 left38 right38 case38 zero38 suc38 rec38 → rec38 _ _ (t Tm38 var38 lam38 app38 tt38 pair38 fst38 snd38 left38 right38 case38 zero38 suc38 rec38) (u Tm38 var38 lam38 app38 tt38 pair38 fst38 snd38 left38 right38 case38 zero38 suc38 rec38) (v Tm38 var38 lam38 app38 tt38 pair38 fst38 snd38 left38 right38 case38 zero38 suc38 rec38) v038 : ∀{Γ A} → Tm38 (snoc38 Γ A) A; v038 = var38 vz38 v138 : ∀{Γ A B} → Tm38 (snoc38 (snoc38 Γ A) B) A; v138 = var38 (vs38 vz38) v238 : ∀{Γ A B C} → Tm38 (snoc38 (snoc38 (snoc38 Γ A) B) C) A; v238 = var38 (vs38 (vs38 vz38)) v338 : ∀{Γ A B C D} → Tm38 (snoc38 (snoc38 (snoc38 (snoc38 Γ A) B) C) D) A; v338 = var38 (vs38 (vs38 (vs38 vz38))) tbool38 : Ty38; tbool38 = sum38 top38 top38 true38 : ∀{Γ} → Tm38 Γ tbool38; true38 = left38 tt38 tfalse38 : ∀{Γ} → Tm38 Γ tbool38; tfalse38 = right38 tt38 ifthenelse38 : ∀{Γ A} → Tm38 Γ (arr38 tbool38 (arr38 A (arr38 A A))); ifthenelse38 = lam38 (lam38 (lam38 (case38 v238 (lam38 v238) (lam38 v138)))) times438 : ∀{Γ A} → Tm38 Γ (arr38 (arr38 A A) (arr38 A A)); times438 = lam38 (lam38 (app38 v138 (app38 v138 (app38 v138 (app38 v138 v038))))) add38 : ∀{Γ} → Tm38 Γ (arr38 nat38 (arr38 nat38 nat38)); add38 = lam38 (rec38 v038 (lam38 (lam38 (lam38 (suc38 (app38 v138 v038))))) (lam38 v038)) mul38 : ∀{Γ} → Tm38 Γ (arr38 nat38 (arr38 nat38 nat38)); mul38 = lam38 (rec38 v038 (lam38 (lam38 (lam38 (app38 (app38 add38 (app38 v138 v038)) v038)))) (lam38 zero38)) fact38 : ∀{Γ} → Tm38 Γ (arr38 nat38 nat38); fact38 = lam38 (rec38 v038 (lam38 (lam38 (app38 (app38 mul38 (suc38 v138)) v038))) (suc38 zero38)) {-# OPTIONS --type-in-type #-} Ty39 : Set Ty39 = (Ty39 : Set) (nat top bot : Ty39) (arr prod sum : Ty39 → Ty39 → Ty39) → Ty39 nat39 : Ty39; nat39 = λ _ nat39 _ _ _ _ _ → nat39 top39 : Ty39; top39 = λ _ _ top39 _ _ _ _ → top39 bot39 : Ty39; bot39 = λ _ _ _ bot39 _ _ _ → bot39 arr39 : Ty39 → Ty39 → Ty39; arr39 = λ A B Ty39 nat39 top39 bot39 arr39 prod sum → arr39 (A Ty39 nat39 top39 bot39 arr39 prod sum) (B Ty39 nat39 top39 bot39 arr39 prod sum) prod39 : Ty39 → Ty39 → Ty39; prod39 = λ A B Ty39 nat39 top39 bot39 arr39 prod39 sum → prod39 (A Ty39 nat39 top39 bot39 arr39 prod39 sum) (B Ty39 nat39 top39 bot39 arr39 prod39 sum) sum39 : Ty39 → Ty39 → Ty39; sum39 = λ A B Ty39 nat39 top39 bot39 arr39 prod39 sum39 → sum39 (A Ty39 nat39 top39 bot39 arr39 prod39 sum39) (B Ty39 nat39 top39 bot39 arr39 prod39 sum39) Con39 : Set; Con39 = (Con39 : Set) (nil : Con39) (snoc : Con39 → Ty39 → Con39) → Con39 nil39 : Con39; nil39 = λ Con39 nil39 snoc → nil39 snoc39 : Con39 → Ty39 → Con39; snoc39 = λ Γ A Con39 nil39 snoc39 → snoc39 (Γ Con39 nil39 snoc39) A Var39 : Con39 → Ty39 → Set; Var39 = λ Γ A → (Var39 : Con39 → Ty39 → Set) (vz : ∀ Γ A → Var39 (snoc39 Γ A) A) (vs : ∀ Γ B A → Var39 Γ A → Var39 (snoc39 Γ B) A) → Var39 Γ A vz39 : ∀{Γ A} → Var39 (snoc39 Γ A) A; vz39 = λ Var39 vz39 vs → vz39 _ _ vs39 : ∀{Γ B A} → Var39 Γ A → Var39 (snoc39 Γ B) A; vs39 = λ x Var39 vz39 vs39 → vs39 _ _ _ (x Var39 vz39 vs39) Tm39 : Con39 → Ty39 → Set; Tm39 = λ Γ A → (Tm39 : Con39 → Ty39 → Set) (var : ∀ Γ A → Var39 Γ A → Tm39 Γ A) (lam : ∀ Γ A B → Tm39 (snoc39 Γ A) B → Tm39 Γ (arr39 A B)) (app : ∀ Γ A B → Tm39 Γ (arr39 A B) → Tm39 Γ A → Tm39 Γ B) (tt : ∀ Γ → Tm39 Γ top39) (pair : ∀ Γ A B → Tm39 Γ A → Tm39 Γ B → Tm39 Γ (prod39 A B)) (fst : ∀ Γ A B → Tm39 Γ (prod39 A B) → Tm39 Γ A) (snd : ∀ Γ A B → Tm39 Γ (prod39 A B) → Tm39 Γ B) (left : ∀ Γ A B → Tm39 Γ A → Tm39 Γ (sum39 A B)) (right : ∀ Γ A B → Tm39 Γ B → Tm39 Γ (sum39 A B)) (case : ∀ Γ A B C → Tm39 Γ (sum39 A B) → Tm39 Γ (arr39 A C) → Tm39 Γ (arr39 B C) → Tm39 Γ C) (zero : ∀ Γ → Tm39 Γ nat39) (suc : ∀ Γ → Tm39 Γ nat39 → Tm39 Γ nat39) (rec : ∀ Γ A → Tm39 Γ nat39 → Tm39 Γ (arr39 nat39 (arr39 A A)) → Tm39 Γ A → Tm39 Γ A) → Tm39 Γ A var39 : ∀{Γ A} → Var39 Γ A → Tm39 Γ A; var39 = λ x Tm39 var39 lam app tt pair fst snd left right case zero suc rec → var39 _ _ x lam39 : ∀{Γ A B} → Tm39 (snoc39 Γ A) B → Tm39 Γ (arr39 A B); lam39 = λ t Tm39 var39 lam39 app tt pair fst snd left right case zero suc rec → lam39 _ _ _ (t Tm39 var39 lam39 app tt pair fst snd left right case zero suc rec) app39 : ∀{Γ A B} → Tm39 Γ (arr39 A B) → Tm39 Γ A → Tm39 Γ B; app39 = λ t u Tm39 var39 lam39 app39 tt pair fst snd left right case zero suc rec → app39 _ _ _ (t Tm39 var39 lam39 app39 tt pair fst snd left right case zero suc rec) (u Tm39 var39 lam39 app39 tt pair fst snd left right case zero suc rec) tt39 : ∀{Γ} → Tm39 Γ top39; tt39 = λ Tm39 var39 lam39 app39 tt39 pair fst snd left right case zero suc rec → tt39 _ pair39 : ∀{Γ A B} → Tm39 Γ A → Tm39 Γ B → Tm39 Γ (prod39 A B); pair39 = λ t u Tm39 var39 lam39 app39 tt39 pair39 fst snd left right case zero suc rec → pair39 _ _ _ (t Tm39 var39 lam39 app39 tt39 pair39 fst snd left right case zero suc rec) (u Tm39 var39 lam39 app39 tt39 pair39 fst snd left right case zero suc rec) fst39 : ∀{Γ A B} → Tm39 Γ (prod39 A B) → Tm39 Γ A; fst39 = λ t Tm39 var39 lam39 app39 tt39 pair39 fst39 snd left right case zero suc rec → fst39 _ _ _ (t Tm39 var39 lam39 app39 tt39 pair39 fst39 snd left right case zero suc rec) snd39 : ∀{Γ A B} → Tm39 Γ (prod39 A B) → Tm39 Γ B; snd39 = λ t Tm39 var39 lam39 app39 tt39 pair39 fst39 snd39 left right case zero suc rec → snd39 _ _ _ (t Tm39 var39 lam39 app39 tt39 pair39 fst39 snd39 left right case zero suc rec) left39 : ∀{Γ A B} → Tm39 Γ A → Tm39 Γ (sum39 A B); left39 = λ t Tm39 var39 lam39 app39 tt39 pair39 fst39 snd39 left39 right case zero suc rec → left39 _ _ _ (t Tm39 var39 lam39 app39 tt39 pair39 fst39 snd39 left39 right case zero suc rec) right39 : ∀{Γ A B} → Tm39 Γ B → Tm39 Γ (sum39 A B); right39 = λ t Tm39 var39 lam39 app39 tt39 pair39 fst39 snd39 left39 right39 case zero suc rec → right39 _ _ _ (t Tm39 var39 lam39 app39 tt39 pair39 fst39 snd39 left39 right39 case zero suc rec) case39 : ∀{Γ A B C} → Tm39 Γ (sum39 A B) → Tm39 Γ (arr39 A C) → Tm39 Γ (arr39 B C) → Tm39 Γ C; case39 = λ t u v Tm39 var39 lam39 app39 tt39 pair39 fst39 snd39 left39 right39 case39 zero suc rec → case39 _ _ _ _ (t Tm39 var39 lam39 app39 tt39 pair39 fst39 snd39 left39 right39 case39 zero suc rec) (u Tm39 var39 lam39 app39 tt39 pair39 fst39 snd39 left39 right39 case39 zero suc rec) (v Tm39 var39 lam39 app39 tt39 pair39 fst39 snd39 left39 right39 case39 zero suc rec) zero39 : ∀{Γ} → Tm39 Γ nat39; zero39 = λ Tm39 var39 lam39 app39 tt39 pair39 fst39 snd39 left39 right39 case39 zero39 suc rec → zero39 _ suc39 : ∀{Γ} → Tm39 Γ nat39 → Tm39 Γ nat39; suc39 = λ t Tm39 var39 lam39 app39 tt39 pair39 fst39 snd39 left39 right39 case39 zero39 suc39 rec → suc39 _ (t Tm39 var39 lam39 app39 tt39 pair39 fst39 snd39 left39 right39 case39 zero39 suc39 rec) rec39 : ∀{Γ A} → Tm39 Γ nat39 → Tm39 Γ (arr39 nat39 (arr39 A A)) → Tm39 Γ A → Tm39 Γ A; rec39 = λ t u v Tm39 var39 lam39 app39 tt39 pair39 fst39 snd39 left39 right39 case39 zero39 suc39 rec39 → rec39 _ _ (t Tm39 var39 lam39 app39 tt39 pair39 fst39 snd39 left39 right39 case39 zero39 suc39 rec39) (u Tm39 var39 lam39 app39 tt39 pair39 fst39 snd39 left39 right39 case39 zero39 suc39 rec39) (v Tm39 var39 lam39 app39 tt39 pair39 fst39 snd39 left39 right39 case39 zero39 suc39 rec39) v039 : ∀{Γ A} → Tm39 (snoc39 Γ A) A; v039 = var39 vz39 v139 : ∀{Γ A B} → Tm39 (snoc39 (snoc39 Γ A) B) A; v139 = var39 (vs39 vz39) v239 : ∀{Γ A B C} → Tm39 (snoc39 (snoc39 (snoc39 Γ A) B) C) A; v239 = var39 (vs39 (vs39 vz39)) v339 : ∀{Γ A B C D} → Tm39 (snoc39 (snoc39 (snoc39 (snoc39 Γ A) B) C) D) A; v339 = var39 (vs39 (vs39 (vs39 vz39))) tbool39 : Ty39; tbool39 = sum39 top39 top39 true39 : ∀{Γ} → Tm39 Γ tbool39; true39 = left39 tt39 tfalse39 : ∀{Γ} → Tm39 Γ tbool39; tfalse39 = right39 tt39 ifthenelse39 : ∀{Γ A} → Tm39 Γ (arr39 tbool39 (arr39 A (arr39 A A))); ifthenelse39 = lam39 (lam39 (lam39 (case39 v239 (lam39 v239) (lam39 v139)))) times439 : ∀{Γ A} → Tm39 Γ (arr39 (arr39 A A) (arr39 A A)); times439 = lam39 (lam39 (app39 v139 (app39 v139 (app39 v139 (app39 v139 v039))))) add39 : ∀{Γ} → Tm39 Γ (arr39 nat39 (arr39 nat39 nat39)); add39 = lam39 (rec39 v039 (lam39 (lam39 (lam39 (suc39 (app39 v139 v039))))) (lam39 v039)) mul39 : ∀{Γ} → Tm39 Γ (arr39 nat39 (arr39 nat39 nat39)); mul39 = lam39 (rec39 v039 (lam39 (lam39 (lam39 (app39 (app39 add39 (app39 v139 v039)) v039)))) (lam39 zero39)) fact39 : ∀{Γ} → Tm39 Γ (arr39 nat39 nat39); fact39 = lam39 (rec39 v039 (lam39 (lam39 (app39 (app39 mul39 (suc39 v139)) v039))) (suc39 zero39))
algebraic-stack_agda0000_doc_16494
{-# OPTIONS --without-K #-} open import Base open import Spaces.Interval module Spaces.IntervalProps where bool-split : bool {zero} → Set bool-split true = unit bool-split false = ⊥ -- If [bool] is contractible, then [true ≡ false] bool-contr-path : is-contr (bool {zero}) → true ≡ false bool-contr-path (x , f) = (f true) ∘ ! (f false) -- But if [true ≡ false], then [⊥] bool-is-not-contr : ¬ (is-contr bool) bool-is-not-contr f = transport bool-split (bool-contr-path f) tt I-is-contr : is-contr I I-is-contr = (zer , I-rec (λ (t : I) → t ≡ zer) refl (! seg) (trans-id≡cst seg refl ∘ refl-right-unit (! seg))) interval-implies-funext : ∀ {i j} (A : Set i) (B : Set j) (f g : A → B) (h : (x : A) → f x ≡ g x) → f ≡ g interval-implies-funext A B f g h = ap (λ i a → I-rec-nondep _ (f a) (g a) (h a) i) seg
algebraic-stack_agda0000_doc_16495
-- Giving /lift \phi/ the the first hole TWICE (the first time you get an type error), causes the following internal error: -- An internal error has occurred. Please report this as a bug. -- Location of the error: -- src/full/Agda/TypeChecking/Reduce/Monad.hs:118 ------------------------------------------------------------------------ -- Library infixr 9 _∘_ _∘_ : ∀ {a b c} {A : Set a} {B : A → Set b} {C : {x : A} → B x → Set c} → (∀ {x} (y : B x) → C y) → (g : (x : A) → B x) → ((x : A) → C (g x)) f ∘ g = λ x → f (g x) data ⊥ : Set where data _⊎_ (A : Set) (B : Set) : Set where inj₁ : (x : A) → A ⊎ B inj₂ : (y : B) → A ⊎ B [_,_] : ∀ {A : Set} {B : Set} {C : A ⊎ B → Set} → ((x : A) → C (inj₁ x)) → ((x : B) → C (inj₂ x)) → ((x : A ⊎ B) → C x) [ f , g ] (inj₁ x) = f x [ f , g ] (inj₂ y) = g y [_,_]₁ : ∀ {A : Set} {B : Set} {C : A ⊎ B → Set₁} → ((x : A) → C (inj₁ x)) → ((x : B) → C (inj₂ x)) → ((x : A ⊎ B) → C x) [ f , g ]₁ (inj₁ x) = f x [ f , g ]₁ (inj₂ y) = g y record Σ (X : Set) (Y : X → Set) : Set where constructor _,_ field proj₁ : X proj₂ : Y proj₁ open Σ public _×_ : Set → Set → Set X × Y = Σ X λ _ → Y data _≡_ {X : Set} (x : X) : X → Set where refl : x ≡ x subst : ∀ {A} (P : A → Set) {x y} → x ≡ y → P x → P y subst P refl p = p Pow : Set → Set₁ Pow X = X → Set _∈_ : ∀ {X} → X → Pow X → Set x ∈ P = P x infix 4 _⊆_ _⊆_ : ∀ {X} → Pow X → Pow X → Set P ⊆ Q = ∀ {x} → x ∈ P → x ∈ Q _∪_ : ∀ {X} → Pow X → Pow X → Pow X P ∪ Q = λ x → P x ⊎ Q x _⇒_ : ∀ {X} → Pow X → Pow X → Pow X P ⇒ Q = λ x → x ∈ P → x ∈ Q record _▷_ (I O : Set) : Set₁ where constructor _◃_/_ field Parameter : (o : O) → Set Arity : ∀ {o} (p : Parameter o) → Set input : ∀ {o} (p : Parameter o) (a : Arity p) → I open _▷_ public Sig = λ I → I ▷ I ⟦_⟧ : ∀ {I O} → I ▷ O → (Pow I → Pow O) ⟦ P ◃ A / s ⟧ X o = Σ (P o) λ p → ((a : A p) → X (s p a)) data μ {I} (Ω : Sig I) : Pow I where sup : ⟦ Ω ⟧ (μ Ω) ⊆ μ Ω const^C : ∀ {I O} → Pow O → I ▷ O const^C X = X ◃ (λ _ → ⊥) / λ x () _⊎^C_ : ∀ {I O} → I ▷ O → I ▷ O → I ▷ O (P₁ ◃ A₁ / s₁) ⊎^C (P₂ ◃ A₂ / s₂) = (P₁ ∪ P₂) ◃ [ A₁ , A₂ ]₁ / [ s₁ , s₂ ] _⊙^C_ : ∀ {I J} → I ▷ I → J ▷ J → (I × J) ▷ (I × J) (P₁ ◃ A₁ / s₁) ⊙^C (P₂ ◃ A₂ / s₂) = (λ { (i , j) → P₁ i ⊎ P₂ j }) ◃ [ A₁ , A₂ ]₁ / (λ { {_ , j} (inj₁ p₁) a₁ → s₁ p₁ a₁ , j ; {i , _} (inj₂ p₂) a₂ → i , s₂ p₂ a₂ }) _⋆^C_ : ∀ {O} → O ▷ O → Pow O → O ▷ O Σ ⋆^C X = const^C X ⊎^C Σ _⋆_ : ∀ {O} → O ▷ O → Pow O → Pow O Σ ⋆ X = μ (Σ ⋆^C X) Alg : ∀ {I} → Sig I → Pow I → Set Alg Ω X = ⟦ Ω ⟧ X ⊆ X do : ∀ {O} {Σ : O ▷ O} {X} → Alg Σ (Σ ⋆ X) do (p , k) = sup (inj₂ p , k) Hom : ∀ {I J} → Sig (I × J) → Pow (I × J) → Pow I → Sig J → Pow J → Set Hom Ω U V Ψ W = Alg (const^C U ⊎^C Ω) ((V ∘ proj₁) ⇒ ((Ψ ⋆ W) ∘ proj₂)) _⋊_ : ∀ {I O} (C : I ▷ O) Z → (I × Z) ▷ (O × Z) (P ◃ A / s) ⋊ Z = (P ∘ proj₁) ◃ A / λ {oz} p a → s p a , proj₂ oz record ContainerMorphism {I₁ I₂ O₁ O₂} (C₁ : I₁ ▷ O₁) (C₂ : I₂ ▷ O₂) (f : I₁ → I₂) (g : O₁ → O₂) (_∼_ : I₂ → I₂ → Set) (_≈_ : Set → Set → Set) (_·_ : ∀ {A B} → A ≈ B → A → B) : Set where field parameter : Parameter C₁ ⊆ Parameter C₂ ∘ g arity : ∀ {o} {p₁ : Parameter C₁ o} → Arity C₂ (parameter p₁) ≈ Arity C₁ p₁ coherent : ∀ {o} {p₁ : Parameter C₁ o} {a₂ : Arity C₂ (parameter p₁)} → f (input C₁ p₁ (arity · a₂)) ∼ input C₂ (parameter p₁) a₂ open ContainerMorphism public _⇛[_/_]_ : ∀ {I₁ I₂ O₁ O₂} → I₁ ▷ O₁ → (I₁ → I₂) → (O₁ → O₂) → I₂ ▷ O₂ → Set C₁ ⇛[ f / g ] C₂ = ContainerMorphism C₁ C₂ f g _≡_ (λ R₂ R₁ → R₂ → R₁) (λ f x → f x) _⇛[_]_ : ∀ {I J} → I ▷ I → (I → J) → J ▷ J → Set C₁ ⇛[ f ] C₂ = C₁ ⇛[ f / f ] C₂ ⟪_⟫ : ∀ {I J} {C₁ : I ▷ I} {C₂ : J ▷ J} {f : I → J} → C₁ ⇛[ f ] C₂ → (X : Pow J) → ⟦ C₁ ⟧ (X ∘ f) ⊆ ⟦ C₂ ⟧ X ∘ f ⟪ m ⟫ X (c , k) = parameter m c , λ a₂ → subst X (coherent m) (k (arity m a₂)) ------------------------------------------------------------------------ weaken : ∀ {I J} {Ω : Sig I} {Ψ : Sig J} {X : Pow J} {f : I → J} → Alg Ψ X → Ω ⇛[ f ] Ψ → Alg Ω (X ∘ f) weaken {X = X} φ m (p , k) = φ (⟪ m ⟫ X (p , k)) lift : ∀ {I J} {Ω : Sig I} {U : Pow (I × J)} {V : Pow I} {Ψ : Sig J} {W : Pow J} → Hom (Ω ⋊ J) U V Ψ W → Hom (Ω ⊙^C Ψ) U V Ψ W lift φ (inj₁ u , _) = φ (inj₁ u , λ ()) lift φ (inj₂ (inj₁ p) , k) = φ (inj₂ p , k) lift φ (inj₂ (inj₂ p) , k) = λ v → do (p , λ a → k a v) handle : ∀ {I J K} {Ω : Sig I} {Ω′ : Sig J} {Ω″ : Sig K} {U : Pow (J × K)} {V : Pow J} {W : Pow K} {f : I → J × K} → Hom (Ω′ ⋊ K) U V Ω″ W → Ω ⇛[ f ] (Ω′ ⊙^C Ω″) → ∀ {i} → i ∈ (Ω ⋆ (U ∘ f)) → let (j , k) = f i in j ∈ V → k ∈ (Ω″ ⋆ W) handle φ m (sup (inj₁ u , _)) v = φ (inj₁ u , λ ()) v handle φ m (sup (inj₂ p , k)) v = weaken {!lift φ!} {!!} {!!} -- Expected outcome: -- giving "lift φ" twice should give the same error twice.
algebraic-stack_agda0000_doc_16464
{-# OPTIONS --safe #-} postulate F : Set → Set {-# POLARITY F ++ #-}
algebraic-stack_agda0000_doc_16465
{-# OPTIONS --no-termination-check #-} module Data.Bin.DivModTests where open import Data.Bin.DivMod open Everything using (BinFin; _divMod_; result) open import IO open import Data.Bin hiding (suc; fromℕ) open import Data.String hiding (_≟_) open import Data.Unit hiding (_≟_) open import Coinduction open import Data.List open import Data.Char hiding (_≟_) open import Data.Digit hiding (toDigits) open import Data.Fin hiding (_+_; fromℕ; _≟_) open import Data.Bin.Bijection using (fromℕ) showBits : Bin → String showBits x = fromList (Data.List.reverse (Data.List.map showDigit (toBits x))) open import Relation.Nullary.Decidable import Data.Bin.Properties -- eq = Data.Bin.Properties._≟_ open import Relation.Binary open import Data.Bin.Properties using (<-strictTotalOrder) open StrictTotalOrder <-strictTotalOrder using (_≟_) toDigits : (base : Bin) → {≢0 : False (base ≟ (fromℕ 0))} → Bin → List (BinFin base) toDigits _ 0# = [] toDigits base {≢0} x with (x divMod base) {≢0} ... | result q r _ = r ∷ toDigits base {≢0} q -- still need to prove termination of this showBinDigit : Bin → Char showBinDigit 0# = '0' showBinDigit ([] 1#) = '1' showBinDigit ((zero ∷ []) 1#) = '2' showBinDigit ((suc zero ∷ []) 1#) = '3' showBinDigit ((zero ∷ zero ∷ []) 1#) = '4' showBinDigit ((suc zero ∷ zero ∷ []) 1#) = '5' showBinDigit ((zero ∷ suc zero ∷ []) 1#) = '6' showBinDigit ((suc zero ∷ suc zero ∷ []) 1#) = '7' showBinDigit ((zero ∷ zero ∷ zero ∷ []) 1#) = '8' showBinDigit ((suc zero ∷ zero ∷ zero ∷ []) 1#) = '9' showBinDigit _ = 'x' open import Function open import Data.Product showDigits : Bin → String showDigits x = fromList (Data.List.reverse (Data.List.map (showBinDigit ∘ proj₁) (toDigits (fromℕ 10) x))) test : Bin → String test x = showDigits x go : Bin → IO ⊤ go n = ♯ putStrLn (test n) >> ♯ go (n + (fromℕ 1)) main = run (go (fromℕ 0))
algebraic-stack_agda0000_doc_16466
open import Nat open import Prelude open import List open import judgemental-erase open import statics-checks open import statics-core module constructability where -- we construct expressions and types by induction on their -- structure. for each sub term, we call the relevant theorem, then -- assemble the results with carefully chosen lists of actions that allow -- us to call the appropriate zipper lemmas and maintain well-typedness -- at every stage of the contruction. -- -- the proof term at each stage except subsumption is, morally, just the -- mapping of the fragment of the action semantics used by the constructs -- in the list in the current formation context into the list monoid. -- if the name of the given hole is irrelevant irr-hole : Nat irr-hole = 0 -- construction of types construct-type : (t : htyp) → Σ[ L ∈ List action ] runtype (▹ ⦇-⦈ ◃) L (▹ t ◃) construct-type num = [ construct num ] , DoType TMConNum DoRefl construct-type ⦇-⦈ = [ del irr-hole ] , DoType TMDel DoRefl construct-type (t1 ==> t2) with construct-type t1 | construct-type t2 ... | (l1 , ih1) | (l2 , ih2) = l1 ++ construct arrow :: l2 ++ [ move parent ] , runtype++ ih1 (DoType TMConArrow (runtype++ (ziplem-tmarr2 ih2) (DoType TMArrParent2 DoRefl))) construct-type (t1 ⊕ t2) with construct-type t1 | construct-type t2 ... | (l1 , ih1) | (l2 , ih2) = l1 ++ construct sum :: l2 ++ [ move parent ] , runtype++ ih1 (DoType TMConPlus (runtype++ (ziplem-tmplus2 ih2) (DoType TMPlusParent2 DoRefl))) construct-type (t1 ⊠ t2) with construct-type t1 | construct-type t2 ... | (l1 , ih1) | (l2 , ih2) = l1 ++ construct prod :: l2 ++ [ move parent ] , runtype++ ih1 (DoType TMConProd (runtype++ (ziplem-tmprod2 ih2) (DoType TMProdParent2 DoRefl))) mutual -- construction of expressions in synthetic positions construct-synth : {Γ : tctx} {u : Nat} {t : htyp} {e : hexp} → (Γ ⊢ e => t) → Σ[ L ∈ List action ] runsynth Γ ▹ ⦇-⦈[ u ] ◃ ⦇-⦈ L ▹ e ◃ t -- the three base cases construct-synth (SVar x) = [ construct (var _ irr-hole) ] , DoSynth (SAConVar x) DoRefl construct-synth SNum = [ construct (numlit _ irr-hole) ] , DoSynth SAConNumlit DoRefl construct-synth SEHole = [ del _ ] , DoSynth SADel DoRefl -- the inductive cases construct-synth (SPlus e1 e2 ) with construct-ana e1 | construct-ana e2 ... | (l1 , ih1) | (l2 , ih2) = construct (plus irr-hole irr-hole) :: (l2 ++ move parent :: move (child 1) :: (l1 ++ [ move parent ])) , DoSynth (SAConPlus1 TCHole2) (runsynth++ (ziplem-plus2 ih2) (DoSynth (SAMove EMPlusParent2) (DoSynth (SAMove EMPlusChild1) (runsynth++ (ziplem-plus1 ih1) (DoSynth (SAMove EMPlusParent1) DoRefl))))) construct-synth {t = t} (SAsc x) with construct-type t | construct-ana x ... | (l1 , ih1) | (l2 , ih2) = construct asc :: (l1 ++ move parent :: move (child 1) :: (l2 ++ [ move parent ])) , DoSynth SAConAsc (runsynth++ (ziplem-asc2 ETTop ETTop ih1) (DoSynth (SAMove EMAscParent2) (DoSynth (SAMove EMAscChild1) (runsynth++ (ziplem-asc1 ih2) (DoSynth (SAMove EMAscParent1) DoRefl))))) construct-synth {t = t1 ==> t2} (SLam x wt) with construct-type t1 | construct-synth wt ... | l1 , ih1 | l2 , ih2 = construct (lam _ irr-hole irr-hole) :: (l1 ++ (move parent :: move (child 2) :: (l2 ++ [ move parent ]))) , DoSynth (SAConLam x) (runsynth++ (ziplem-halflam1 x ETTop (rel◆t _) ih1) (DoSynth (SAMove EMHalfLamParent1) (DoSynth (SAMove EMHalfLamChild2) (runsynth++ (ziplem-halflam2 x EETop SEHole ih2) (DoSynth (SAMove EMHalfLamParent2) DoRefl))))) construct-synth (SAp e1 m e2) with construct-synth e1 | construct-ana e2 ... | l1 , ih1 | l2 , ih2 = l1 ++ construct (ap irr-hole irr-hole) :: (l2 ++ [ move parent ]) , runsynth++ ih1 (DoSynth (SAConApArr m) (runsynth++ (ziplem-ap2 e1 m ih2) (DoSynth (SAMove EMApParent2) DoRefl))) construct-synth (SNEHole {u = u} wt) with construct-synth wt ... | l , ih = l ++ construct (nehole u) :: move parent :: [] , runsynth++ ih (DoSynth SAConNEHole (DoSynth (SAMove EMNEHoleParent) DoRefl)) construct-synth (SPair e1 e2) with construct-synth e1 | construct-synth e2 ... | l1 , ih1 | l2 , ih2 = construct (pair irr-hole irr-hole) :: (l1 ++ move parent :: move (child 2) :: l2 ++ [ move parent ]) , DoSynth SAConPair (runsynth++ (ziplem-pair1 EETop SEHole ih1 SEHole) (DoSynth (SAMove EMPairParent1) (DoSynth (SAMove EMPairChild2) (runsynth++ (ziplem-pair2 e1 EETop SEHole ih2) (DoSynth (SAMove EMPairParent2) DoRefl))))) construct-synth (SFst e pr) with construct-synth e ... | l , ih = l ++ [ construct (fst irr-hole) ] , runsynth++ ih (DoSynth (SAConFst1 pr) DoRefl) construct-synth (SSnd e pr) with construct-synth e ... | l , ih = l ++ [ construct (snd irr-hole) ] , runsynth++ ih (DoSynth (SAConSnd1 pr) DoRefl) -- construction of expressions in analytic positions construct-ana : {Γ : tctx} {u : Nat} {t : htyp} {e : hexp} → (Γ ⊢ e <= t) → Σ[ L ∈ List action ] runana Γ ▹ ⦇-⦈[ u ] ◃ L ▹ e ◃ t construct-ana (ASubsume x c) with construct-synth x ... | l , ih = construct (nehole irr-hole) :: l ++ (move parent :: finish :: []) , DoAna (AASubsume EETop SEHole SAConNEHole TCHole1) (runana++ (ziplem-nehole-b SEHole c ih) (DoAna (AAMove EMNEHoleParent) (DoAna (AAFinish (ASubsume x c)) DoRefl))) construct-ana (ALam a m e) with construct-ana e ... | l , ih = construct (lam _ irr-hole irr-hole) :: (l ++ [ move parent ]) , DoAna (AAConLam1 a m) (runana++ (ziplem-lam a m ih) (DoAna (AAMove EMLamParent) DoRefl)) construct-ana (AInl m wt) with construct-ana wt ... | l , ih = construct (inl irr-hole irr-hole) :: l ++ [ move parent ] , DoAna (AAConInl1 m) (runana++ (ziplem-inl m ih) (DoAna (AAMove EMInlParent) DoRefl)) construct-ana (AInr m wt) with construct-ana wt ... | l , ih = construct (inr irr-hole irr-hole) :: l ++ [ move parent ] , DoAna (AAConInr1 m) (runana++ (ziplem-inr m ih) (DoAna (AAMove EMInrParent) DoRefl)) construct-ana (ACase {x = x} {y = y} x# y# m wt0 wt1 wt2) with construct-synth wt0 | construct-ana wt1 | construct-ana wt2 ... | l0 , ih0 | l1 , ih1 | l2 , ih2 = construct (case x y irr-hole irr-hole irr-hole) :: construct (nehole irr-hole) :: l0 ++ (move parent :: finish :: move parent :: move (child 2) :: l1 ++ (move parent :: move (child 3) :: l2 ++ [ move parent ])) , DoAna (AAConCase x# y#) (DoAna (AAZipCase1 x# y# EETop SEHole SAConNEHole MSHole (ASubsume SEHole TCHole1) (ASubsume SEHole TCHole1)) (runana++ (ziplem-case1b x# y# EETop SEHole ih0) (DoAna (AAZipCase1 x# y# (EENEHole EETop) (SNEHole wt0) (SAMove EMNEHoleParent) MSHole (ASubsume SEHole TCHole1) (ASubsume SEHole TCHole1)) (DoAna (AAZipCase1 x# y# EETop (SNEHole wt0) (SAFinish wt0) m (ASubsume SEHole TCHole1) (ASubsume SEHole TCHole1)) (DoAna (AAMove EMCaseParent1) (DoAna (AAMove EMCaseChild2) (runana++ (ziplem-case2 x# y# wt0 (ASubsume SEHole TCHole1) m ih1) (DoAna (AAMove EMCaseParent2) (DoAna (AAMove EMCaseChild3) (runana++ (ziplem-case3 x# y# wt0 wt1 m ih2) (DoAna (AAMove EMCaseParent3) DoRefl)))))))))))
algebraic-stack_agda0000_doc_16467
-- Andreas, 2017-01-12, issue #2386 postulate B : Set data _≡_ {A B : Set} (x : A) : A → Set where refl : (b : B) → x ≡ x {-# BUILTIN EQUALITY _≡_ #-} -- Wrong type of _≡_
algebraic-stack_agda0000_doc_16468
open import Prelude module Implicits.Substitutions.Context where open import Implicits.Syntax.Type open import Implicits.Syntax.Context open import Implicits.Substitutions.Type as TS using () open import Data.Fin.Substitution open import Data.Star as Star hiding (map) open import Data.Star.Properties open import Data.Vec open import Data.List as List using () ktx-map : ∀ {ν μ n} → (Type ν → Type μ) → Ktx ν n → Ktx μ n ktx-map f (Γ , Δ) = map f Γ , List.map f Δ _/_ : ∀ {ν μ n} → Ktx ν n → Sub Type ν μ → Ktx μ n K / σ = ktx-map (λ t → t TS./ σ) K _/Var_ : ∀ {ν m n} → Sub Fin n m → Ktx ν m → Ktx ν n σ /Var (Γ , Δ) = map (λ x → lookup x Γ) σ , Δ ictx-weaken : ∀ {ν} → ICtx ν → ICtx (suc ν) ictx-weaken Δ = List.map (flip TS._/_ TS.wk) Δ ctx-weaken : ∀ {ν n} → Ctx ν n → Ctx (suc ν) n ctx-weaken Γ = map (flip TS._/_ TS.wk) Γ weaken : ∀ {ν n} → Ktx ν n → Ktx (suc ν) n weaken K = K / TS.wk
algebraic-stack_agda0000_doc_16469
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.cubical.Square open import lib.types.Group open import lib.types.EilenbergMacLane1.Core module lib.types.EilenbergMacLane1.PathElim where module _ {i} (G : Group i) where private module G = Group G module EM₁Level₂PathElim {k} {C : Type k} {{C-level : has-level 2 C}} (f₁ f₂ : EM₁ G → C) (embase* : f₁ embase == f₂ embase) (emloop* : ∀ g → Square embase* (ap f₁ (emloop g)) (ap f₂ (emloop g)) embase*) (emloop-comp* : ∀ g₁ g₂ → emloop* (G.comp g₁ g₂) ⊡v∙ ap (ap f₂) (emloop-comp' G g₁ g₂) == ap (ap f₁) (emloop-comp' G g₁ g₂) ∙v⊡ ↓-='-square-comp (emloop* g₁) (emloop* g₂)) where private module M = EM₁Level₁Elim {i} {G} {P = λ x → f₁ x == f₂ x} {{λ x → has-level-apply C-level _ _}} embase* (λ g → ↓-='-from-square (emloop* g)) (λ g₁ g₂ → ↓-='-from-square-comp-path (emloop-comp g₁ g₂) (emloop* g₁) (emloop* g₂) (emloop* (G.comp g₁ g₂)) (emloop-comp* g₁ g₂)) open M public module EM₁Level₂PathConstElim {k} {C : Type k} {{C-level : has-level 2 C}} (f : EM₁ G → C) (c : C) (embase* : f embase == c) (emloop* : ∀ g → Square embase* (ap f (emloop g)) idp embase*) (emloop-comp* : ∀ g₁ g₂ → emloop* (G.comp g₁ g₂) == (ap (ap f) (emloop-comp' G g₁ g₂) ∙ ap-∙ f (emloop g₁) (emloop g₂)) ∙v⊡ (emloop* g₁ ⊡h emloop* g₂)) where emloop** : ∀ g → Square embase* (ap f (emloop g)) (ap (cst c) (emloop' G g)) embase* emloop** g = emloop* g ⊡v∙ ! (ap-cst c (emloop g)) private emloop-comp** : ∀ g₁ g₂ → emloop** (G.comp g₁ g₂) ⊡v∙ ap (ap (cst c)) (emloop-comp' G g₁ g₂) == ap (ap f) (emloop-comp g₁ g₂) ∙v⊡ ↓-='-square-comp (emloop** g₁) (emloop** g₂) emloop-comp** g₁ g₂ = (emloop* (G.comp g₁ g₂) ⊡v∙ ! (ap-cst c (emloop (G.comp g₁ g₂)))) ⊡v∙ ap (ap (cst c)) (emloop-comp g₁ g₂) =⟨ ⊡v∙-assoc (emloop* (G.comp g₁ g₂)) (! (ap-cst c (emloop (G.comp g₁ g₂)))) (ap (ap (cst c)) (emloop-comp g₁ g₂)) ⟩ emloop* (G.comp g₁ g₂) ⊡v∙ (! (ap-cst c (emloop (G.comp g₁ g₂))) ∙ ap (ap (cst c)) (emloop-comp g₁ g₂)) =⟨ ap (emloop* (G.comp g₁ g₂) ⊡v∙_) $ =ₛ-out $ ! (ap-cst c (emloop (G.comp g₁ g₂))) ◃∙ ap (ap (cst c)) (emloop-comp g₁ g₂) ◃∎ =ₛ⟨ pre-rotate'-in $ post-rotate-in {p = _ ◃∎} $ homotopy-naturality-to-cst (ap (cst c)) idp (ap-cst c) (emloop-comp g₁ g₂) ⟩ ! (ap-cst c (emloop g₁ ∙ emloop g₂)) ◃∎ =ₛ⟨ !-=ₛ (ap-cst-coh c (emloop g₁) (emloop g₂)) ⟩ ! (ap2 _∙_ (ap-cst c (emloop g₁)) (ap-cst c (emloop g₂))) ◃∙ ! (ap-∙ (cst c) (emloop g₁) (emloop g₂)) ◃∎ =ₛ₁⟨ 0 & 1 & !-ap2 _∙_ (ap-cst c (emloop g₁)) (ap-cst c (emloop g₂)) ⟩ ap2 _∙_ (! (ap-cst c (emloop g₁))) (! (ap-cst c (emloop g₂))) ◃∙ ! (ap-∙ (cst c) (emloop g₁) (emloop g₂)) ◃∎ =ₛ₁⟨ 1 & 1 & !ap-∙=∙-ap (cst c) (emloop g₁) (emloop g₂) ⟩ ap2 _∙_ (! (ap-cst c (emloop g₁))) (! (ap-cst c (emloop g₂))) ◃∙ ∙-ap (cst c) (emloop g₁) (emloop g₂) ◃∎ ∎ₛ ⟩ emloop* (G.comp g₁ g₂) ⊡v∙ (ap2 _∙_ (! (ap-cst c (emloop g₁))) (! (ap-cst c (emloop g₂))) ∙ ∙-ap (cst c) (emloop g₁) (emloop g₂)) =⟨ ! $ ⊡v∙-assoc (emloop* (G.comp g₁ g₂)) (ap2 _∙_ (! (ap-cst c (emloop g₁))) (! (ap-cst c (emloop g₂)))) (∙-ap (cst c) (emloop g₁) (emloop g₂)) ⟩ (emloop* (G.comp g₁ g₂) ⊡v∙ ap2 _∙_ (! (ap-cst c (emloop g₁))) (! (ap-cst c (emloop g₂)))) ⊡v∙ ∙-ap (cst c) (emloop g₁) (emloop g₂) =⟨ ap (λ s → (s ⊡v∙ ap2 _∙_ (! (ap-cst c (emloop g₁))) (! (ap-cst c (emloop g₂)))) ⊡v∙ ∙-ap (cst c) (emloop g₁) (emloop g₂)) (emloop-comp* g₁ g₂) ⟩ (((ap (ap f) (emloop-comp' G g₁ g₂) ∙ ap-∙ f (emloop g₁) (emloop g₂)) ∙v⊡ emloop* g₁ ⊡h emloop* g₂) ⊡v∙ ap2 _∙_ (! (ap-cst c (emloop g₁))) (! (ap-cst c (emloop g₂)))) ⊡v∙ ∙-ap (cst c) (emloop g₁) (emloop g₂) =⟨ ap (_⊡v∙ ∙-ap (cst c) (emloop g₁) (emloop g₂)) $ ((ap (ap f) (emloop-comp' G g₁ g₂) ∙ ap-∙ f (emloop g₁) (emloop g₂)) ∙v⊡ emloop* g₁ ⊡h emloop* g₂) ⊡v∙ ap2 _∙_ (! (ap-cst c (emloop g₁))) (! (ap-cst c (emloop g₂))) =⟨ ∙v⊡-⊡v∙-comm (ap (ap f) (emloop-comp' G g₁ g₂) ∙ ap-∙ f (emloop g₁) (emloop g₂)) (emloop* g₁ ⊡h emloop* g₂) (ap2 _∙_ (! (ap-cst c (emloop g₁))) (! (ap-cst c (emloop g₂)))) ⟩ (ap (ap f) (emloop-comp' G g₁ g₂) ∙ ap-∙ f (emloop g₁) (emloop g₂)) ∙v⊡ ((emloop* g₁ ⊡h emloop* g₂) ⊡v∙ ap2 _∙_ (! (ap-cst c (emloop g₁))) (! (ap-cst c (emloop g₂)))) =⟨ ap ((ap (ap f) (emloop-comp' G g₁ g₂) ∙ ap-∙ f (emloop g₁) (emloop g₂)) ∙v⊡_) $ ⊡h-⊡v∙-comm (emloop* g₁) (emloop* g₂) (! (ap-cst c (emloop g₁))) (! (ap-cst c (emloop g₂))) ⟩ (ap (ap f) (emloop-comp' G g₁ g₂) ∙ ap-∙ f (emloop g₁) (emloop g₂)) ∙v⊡ (emloop** g₁ ⊡h emloop** g₂) =⟨ ∙v⊡-assoc (ap (ap f) (emloop-comp' G g₁ g₂)) (ap-∙ f (emloop g₁) (emloop g₂)) (emloop** g₁ ⊡h emloop** g₂) ⟩ ap (ap f) (emloop-comp' G g₁ g₂) ∙v⊡ (ap-∙ f (emloop g₁) (emloop g₂) ∙v⊡ (emloop** g₁ ⊡h emloop** g₂)) =∎ ⟩ (ap (ap f) (emloop-comp' G g₁ g₂) ∙v⊡ (ap-∙ f (emloop g₁) (emloop g₂) ∙v⊡ (emloop** g₁ ⊡h emloop** g₂))) ⊡v∙ ∙-ap (cst c) (emloop g₁) (emloop g₂) =⟨ ∙v⊡-⊡v∙-comm (ap (ap f) (emloop-comp' G g₁ g₂)) (ap-∙ f (emloop g₁) (emloop g₂) ∙v⊡ (emloop** g₁ ⊡h emloop** g₂)) (∙-ap (cst c) (emloop g₁) (emloop g₂)) ⟩ ap (ap f) (emloop-comp' G g₁ g₂) ∙v⊡ (ap-∙ f (emloop g₁) (emloop g₂) ∙v⊡ emloop** g₁ ⊡h emloop** g₂) ⊡v∙ ∙-ap (cst c) (emloop g₁) (emloop g₂) =⟨ ap (ap (ap f) (emloop-comp' G g₁ g₂) ∙v⊡_) $ ∙v⊡-⊡v∙-comm (ap-∙ f (emloop g₁) (emloop g₂)) (emloop** g₁ ⊡h emloop** g₂) (∙-ap (cst c) (emloop g₁) (emloop g₂)) ⟩ ap (ap f) (emloop-comp' G g₁ g₂) ∙v⊡ ↓-='-square-comp' (emloop** g₁) (emloop** g₂) =⟨ ap (ap (ap f) (emloop-comp' G g₁ g₂) ∙v⊡_) $ ↓-='-square-comp'=↓-='-square-comp {f = f} {g = cst c} (emloop** g₁) (emloop** g₂) ⟩ ap (ap f) (emloop-comp g₁ g₂) ∙v⊡ ↓-='-square-comp (emloop** g₁) (emloop** g₂) =∎ module M = EM₁Level₂PathElim {k} {C} {{C-level}} f (cst c) embase* emloop** emloop-comp** open M public
algebraic-stack_agda0000_doc_16470
postulate ANY : ∀{a}{A : Set a} → A data Ty : Set where _⇒_ : (a b : Ty) → Ty data Tm : (b : Ty) → Set where S : ∀{c a b} → Tm ((c ⇒ (a ⇒ b)) ⇒ ((c ⇒ a) ⇒ (c ⇒ b))) _∙_ : ∀{a b} (t : Tm (a ⇒ b)) (u : Tm a) → Tm b data _↦_ : ∀{a} (t t' : Tm a) → Set where ↦S : ∀{c a b} {t : Tm (c ⇒ (a ⇒ b))} {u : Tm (c ⇒ a)} {v : Tm c} → (((S ∙ t) ∙ u) ∙ v) ↦ ((t ∙ v) ∙ (u ∙ v)) ↦r : ∀{a b} {u u' : Tm a} {t : Tm (a ⇒ b)} → (t ∙ u) ↦ (t ∙ u') data SN {a} (t : Tm a) : Set where acc : (h : ∀{t'} (r : t ↦ t') → SN t') → SN t test : ∀{a b} {t : Tm (a ⇒ b)} {u : Tm a} → SN t → SN u → SN (t ∙ u) test snt snu = acc λ{ (↦S) → ANY ; (↦r) → {!test snt ?!} } -- Refine with (test snt) -- or give (test snt ?) -- An internal error has occurred. Please report this as a bug. -- Location of the error: src/full/Agda/TypeChecking/Substitute.hs:456
algebraic-stack_agda0000_doc_16471
-- The error on Agda 2.5.3 was: -- An internal error has occurred. Please report this as a bug. -- Location of the error: src/full/Agda/TypeChecking/Substitute/Class.hs:209 open import Agda.Primitive using (_⊔_ ; Level ; lsuc) record Unit {U : Level} : Set U where -- error still occurs with no constructors or fields in these types constructor unit record _×_ {U V : Level} (A : Set U) (B : Set V) : Set (U ⊔ V) where constructor _,,_ field x : A y : B infixr 25 _×_ data _⇔_ {U V : Level} : (A : Set U) → (B : Set V) → Set (U ⊔ V) where unitIL : {A : Set U} → A ⇔ A × Unit
algebraic-stack_agda0000_doc_16472
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} {-# OPTIONS --allow-unsolved-metas #-} -- This module proves the two "VotesOnce" proof obligations for our fake handler open import Optics.All open import LibraBFT.Prelude open import LibraBFT.Lemmas open import LibraBFT.Base.PKCS import LibraBFT.Concrete.Properties.VotesOnce as VO open import LibraBFT.Impl.Consensus.Types hiding (EpochConfigFor) open import LibraBFT.Impl.Util.Crypto open import LibraBFT.Impl.Handle.Properties sha256 sha256-cr open import LibraBFT.Impl.Properties.Aux open import LibraBFT.Concrete.System impl-sps-avp open import LibraBFT.Concrete.System.Parameters open EpochConfig open import LibraBFT.Yasm.Yasm (ℓ+1 0ℓ) EpochConfig epochId authorsN ConcSysParms NodeId-PK-OK open Structural impl-sps-avp open import LibraBFT.Impl.Properties.VotesOnce -- In this module, we (will) prove the two implementation obligations for the VotesOnce rule. Note -- that it is not yet 100% clear that the obligations are the best definitions to use. See comments -- in Concrete.VotesOnce. We will want to prove these obligations for the fake/simple -- implementation (or some variant on it) and streamline the proof before we proceed to tacke more -- ambitious properties. module LibraBFT.Impl.Properties.VotesOnceDirect where oldVoteRound≤lvr : ∀ {e pid pk v}{pre : SystemState e} → (r : ReachableSystemState pre) → initialised pre pid ≡ initd → Meta-Honest-PK pk → (sig : WithVerSig pk v) → MsgWithSig∈ pk (ver-signature sig) (msgPool pre) → ValidSenderForPK (availEpochs pre) v pid pk → (₋epEC (peerStates pre pid)) ^∙ epEpoch ≡ (v ^∙ vEpoch) → v ^∙ vRound ≤ (₋epEC (peerStates pre pid)) ^∙ epLastVotedRound oldVoteRound≤lvr (step-s r (step-epoch _)) pidIn pkH sig msv vspk ep≡ = {!!} oldVoteRound≤lvr {pid = pid'} {pre = pre} (step-s r (step-peer {pid = pid} cheat@(step-cheat f c))) pidIn pkH sig msv vspk ep≡ with ¬cheatForgeNew cheat refl unit pkH msv ...| msb4 rewrite cheatStepDNMPeerStates₁ {pid = pid} {pid' = pid'} cheat unit = oldVoteRound≤lvr r pidIn pkH sig msb4 vspk ep≡ oldVoteRound≤lvr {pid = pid'} {pre = pre} step@(step-s r (step-peer {pid = pid} stHon@(step-honest stPeer))) pidIn pkH sig msv vspk ep≡ with newMsg⊎msgSentB4 r stHon pkH (msgSigned msv) (msg⊆ msv) (msg∈pool msv) ...| inj₂ msb4 rewrite msgSameSig msv with pid ≟ pid' ...| no imp = oldVoteRound≤lvr r pidIn pkH sig msb4 vspk ep≡ ...| yes refl = let ep≡st = noEpochChangeYet r refl stPeer lvr≤ = lastVoteRound-mono r refl stPeer ep≡st ep≡v = trans ep≡st ep≡ in ≤-trans (oldVoteRound≤lvr r pidIn pkH sig msb4 vspk ep≡v) lvr≤ oldVoteRound≤lvr {pid = pid'} {pre = pre} step@(step-s r (step-peer {pid = pid} stHon@(step-honest stPeer))) pidIn pkH sig msv vspk ep≡ | inj₁ (m∈outs , vspkN , newV) with sameHonestSig⇒sameVoteData pkH (msgSigned msv) sig (msgSameSig msv) ...| inj₁ hb = ⊥-elim (PerState.meta-sha256-cr pre step hb) ...| inj₂ refl with sameEpoch⇒sameEC vspk vspkN refl -- Both peers are allowed to sign for the same PK in the same epoch, -- so they are the same peer ...| refl with NodeId-PK-OK-injective (vp-ec vspk) (vp-sender-ok vspk) (vp-sender-ok vspkN) ...| refl rewrite eventProcessorPostSt r stPeer refl = let nvr = newVoteSameEpochGreaterRound r stPeer (msg⊆ msv) m∈outs (msgSigned msv) newV in ≡⇒≤ ((proj₂ ∘ proj₂) nvr) votesOnce₁ : VO.ImplObligation₁ votesOnce₁ {pid' = pid'} r (step-msg {_ , P m} _ psI) {v' = v'} {m' = m'} pkH v⊂m (here refl) sv ¬msb vspkv v'⊂m' m'∈pool sv' ep≡ r≡ with v⊂m ...| vote∈vm = let m'mwsb = mkMsgWithSig∈ m' v' v'⊂m' pid' m'∈pool sv' refl vspkv' = ValidSenderForPK⇒ep≡ sv sv' ep≡ vspkv rv'<rv = oldVoteRound≤lvr r psI pkH sv' m'mwsb vspkv' ep≡ in ⊥-elim (<⇒≢ (s≤s rv'<rv) (sym r≡)) ...| vote∈qc vs∈qc v≈rbld (inV qc∈m) rewrite cong ₋vSignature v≈rbld = ⊥-elim (¬msb (qcVotesSentB4 r psI refl qc∈m refl vs∈qc)) votesOnce₂ : VO.ImplObligation₂ votesOnce₂ {pk = pk} {st} r (step-msg {_ , P m} _ psI) hpk v⊂m m∈outs sig vnew vpk v'⊂m' m'∈outs sig' v'new vpk' es≡ rnds≡ with m∈outs | m'∈outs ...| here refl | here refl with v⊂m | v'⊂m' ...| vote∈vm | vote∈vm = refl ...| vote∈vm | vote∈qc vs∈qc' v≈rbld' (inV qc∈m') rewrite cong ₋vSignature v≈rbld' = ⊥-elim (v'new (qcVotesSentB4 r psI refl qc∈m' refl vs∈qc')) ...| vote∈qc vs∈qc v≈rbld (inV qc∈m) | _ rewrite cong ₋vSignature v≈rbld = ⊥-elim (vnew (qcVotesSentB4 r psI refl qc∈m refl vs∈qc))
algebraic-stack_agda0000_doc_16473
open import Data.Product using ( _,_ ) open import Data.Sum using ( inj₁ ; inj₂ ) open import Web.Semantic.DL.ABox.Interp using ( _*_ ) open import Web.Semantic.DL.ABox.Model using ( *-resp-⟨ABox⟩ ) open import Web.Semantic.DL.Category.Object using ( Object ; iface ) open import Web.Semantic.DL.Category.Morphism using ( _⇒_ ; _≣_ ; _⊑_ ; _,_ ) open import Web.Semantic.DL.Category.Tensor using ( _⟨⊗⟩_ ) open import Web.Semantic.DL.Category.Properties.Tensor.Lemmas using ( tensor-up ; tensor-down ; tensor-resp-⊨b ) open import Web.Semantic.DL.Signature using ( Signature ) open import Web.Semantic.DL.TBox using ( TBox ) open import Web.Semantic.Util using ( inode ; up ; down ) module Web.Semantic.DL.Category.Properties.Tensor.RespectsEquiv {Σ : Signature} {S T : TBox Σ} where tensor-resp-⊑ : ∀ {A₁ A₂ B₁ B₂ : Object S T} (F₁ G₁ : A₁ ⇒ B₁) (F₂ G₂ : A₂ ⇒ B₂) → (F₁ ⊑ G₁) → (F₂ ⊑ G₂) → (F₁ ⟨⊗⟩ F₂ ⊑ G₁ ⟨⊗⟩ G₂) tensor-resp-⊑ {A₁} {A₂} F₁ G₁ F₂ G₂ F₁⊑G₁ F₂⊑G₂ I (I⊨ST , (I⊨A₁ , I⊨A₂)) I⊨F₁F₂ = tensor-resp-⊨b G₁ G₂ I (F₁⊑G₁ (up * I) (I⊨ST , *-resp-⟨ABox⟩ inj₁ (inode * I) (iface A₁) I⊨A₁) (tensor-up F₁ F₂ I I⊨F₁F₂)) (F₂⊑G₂ (down * I) (I⊨ST , *-resp-⟨ABox⟩ inj₂ (inode * I) (iface A₂) I⊨A₂) (tensor-down F₁ F₂ I I⊨F₁F₂)) tensor-resp-≣ : ∀ {A₁ A₂ B₁ B₂ : Object S T} {F₁ G₁ : A₁ ⇒ B₁} {F₂ G₂ : A₂ ⇒ B₂} → (F₁ ≣ G₁) → (F₂ ≣ G₂) → (F₁ ⟨⊗⟩ F₂ ≣ G₁ ⟨⊗⟩ G₂) tensor-resp-≣ {A₁} {A₂} {B₁} {B₂} {F₁} {G₁} {F₂} {G₂} (F₁⊑G₁ , G₁⊑F₁) (F₂⊑G₂ , G₂⊑F₂) = ( tensor-resp-⊑ F₁ G₁ F₂ G₂ F₁⊑G₁ F₂⊑G₂ , tensor-resp-⊑ G₁ F₁ G₂ F₂ G₁⊑F₁ G₂⊑F₂ )
algebraic-stack_agda0000_doc_16474
module Algebra.LabelledGraph where open import Algebra.Dioid -- Core graph construction primitives data LabelledGraph {D eq} (d : Dioid D eq) (A : Set) : Set where ε : LabelledGraph d A -- Empty graph v : A -> LabelledGraph d A -- Graph comprising a single vertex _[_]>_ : LabelledGraph d A -> D -> LabelledGraph d A -> LabelledGraph d A -- Connect two graphs _+_ : ∀ {A D eq} {d : Dioid D eq} -> LabelledGraph d A -> LabelledGraph d A -> LabelledGraph d A _+_ {_} {_} {_} {d} g h = g [ Dioid.zero d ]> h _*_ : ∀ {A D eq} {d : Dioid D eq} -> LabelledGraph d A -> LabelledGraph d A -> LabelledGraph d A _*_ {_} {_} {_} {d} g h = g [ Dioid.one d ]> h infixl 4 _≡_ infixl 8 _+_ infixl 9 _*_ infixl 9 _[_]>_ infix 10 _⊆_ -- Equational theory of graphs data _≡_ {A D eq} {d : Dioid D eq} : (x y : LabelledGraph d A) -> Set where -- Equivalence relation reflexivity : ∀ {x : LabelledGraph d A} -> x ≡ x symmetry : ∀ {x y : LabelledGraph d A} -> x ≡ y -> y ≡ x transitivity : ∀ {x y z : LabelledGraph d A} -> x ≡ y -> y ≡ z -> x ≡ z -- Congruence left-congruence : ∀ {x y z : LabelledGraph d A} {r : D} -> x ≡ y -> x [ r ]> z ≡ y [ r ]> z right-congruence : ∀ {x y z : LabelledGraph d A} {r : D} -> x ≡ y -> z [ r ]> x ≡ z [ r ]> y dioid-congruence : ∀ {x y : LabelledGraph d A} {r s : D} -> eq r s -> x [ r ]> y ≡ x [ s ]> y -- Axioms zero-commutativity : ∀ {x y : LabelledGraph d A} -> x + y ≡ y + x left-identity : ∀ {x : LabelledGraph d A} {r : D} -> ε [ r ]> x ≡ x right-identity : ∀ {x : LabelledGraph d A} {r : D} -> x [ r ]> ε ≡ x left-decomposition : ∀ {x y z : LabelledGraph d A} {r s : D} -> x [ r ]> (y [ s ]> z) ≡ (x [ r ]> y) + (x [ r ]> z) + (y [ s ]> z) right-decomposition : ∀ {x y z : LabelledGraph d A} {r s : D} -> (x [ r ]> y) [ s ]> z ≡ (x [ r ]> y) + (x [ s ]> z) + (y [ s ]> z) label-addition : ∀ {x y : LabelledGraph d A} {r s : D} -> (x [ r ]> y) + (x [ s ]> y) ≡ (x [ Dioid.plus d r s ]> y) -- Subgraph relation _⊆_ : ∀ {A D eq} {d : Dioid D eq} -> LabelledGraph d A -> LabelledGraph d A -> Set x ⊆ y = x + y ≡ y
algebraic-stack_agda0000_doc_16475
open import Agda.Builtin.Bool works : Bool → Bool works b with b | true ... | b′ | _ = b′ fails : Bool → Bool fails b with b′ ← b | true ... | _ = b′
algebraic-stack_agda0000_doc_16476
module CS410-Functor where open import CS410-Prelude record Functor (T : Set -> Set) : Set1 where field -- OPERATIONS ---------------------------------------------- map : forall {X Y} -> (X -> Y) -> T X -> T Y -- LAWS ---------------------------------------------------- mapid : forall {X}(x : T X) -> map id x == x mapcomp : forall {X Y Z}(f : Y -> Z)(g : X -> Y)(x : T X) -> map (f o g) x == map f (map g x) record Applicative (T : Set -> Set) : Set1 where field -- OPERATIONS ---------------------------------------------- pure : forall {X} -> X -> T X _<*>_ : forall {X Y} -> T (X -> Y) -> T X -> T Y -- LAWS ---------------------------------------------------- identity : forall {X}(v : T X) -> pure id <*> v == v composition : forall {X Y Z}(u : T (Y -> Z))(v : T (X -> Y))(w : T X) -> pure (\ f g x -> f (g x)) <*> u <*> v <*> w == u <*> (v <*> w) homomorphism : forall {X Y}(f : X -> Y)(x : X) -> pure (f x) == pure f <*> pure x interchange : forall {X Y}(u : T (X -> Y))(y : X) -> u <*> pure y == pure (\ f -> f y) <*> u infixl 10 _<*>_ App2Fun : {T : Set -> Set} -> Applicative T -> Functor T App2Fun {T} app = record { map = \ f x -> pure f <*> x; mapid = identity; mapcomp = lem} where open Applicative app lem : forall {X Y Z}(f : Y -> Z)(g : X -> Y)(x : T X) -> pure (\ x -> f (g x)) <*> x == pure f <*> (pure g <*> x) lem {X}{Y}{Z} f g x rewrite (sym (composition (pure f) (pure g) x)) | (sym (homomorphism (\ (f : Y -> Z)(g : X -> Y) x -> f (g x)) f)) | (sym (homomorphism (\ (g : X -> Y) x -> f (g x)) g)) = refl record Traversable (T : Set -> Set) : Set1 where field -- OPERATIONS ---------------------------------------------- traverse : forall {F} -> Applicative F -> forall {A B} -> (A -> F B) -> T A -> F (T B) -- LAWS ---------------------------------------------------- -- maybe later record Monad (T : Set -> Set) : Set1 where field -- OPERATIONS ---------------------------------------------- return : forall {X} -> X -> T X _>>=_ : forall {X Y} -> T X -> (X -> T Y) -> T Y -- LAWS ---------------------------------------------------- law1 : forall {X Y}(x : X)(f : X -> T Y) -> return x >>= f == f x law2 : forall {X}(t : T X) -> t >>= return == t law3 : forall {X Y Z}(f : X -> T Y)(g : Y -> T Z)(t : T X) -> (t >>= f) >>= g == t >>= (\ x -> f x >>= g) -- DERIVED OPERATIONS _<=<_ : {X Y Z : Set} -> (Y -> T Z) -> (X -> T Y) -> (X -> T Z) (f <=< g) x = g x >>= f infixr 5 _>>=_ record Monad-Alg {T : Set -> Set}(M : Monad T) : Set1 where field -- OPERATIONS ---------------------------------------------- A : Set A-map : forall {X} -> (X -> A) -> T X -> A open Monad M -- LAWS ---------------------------------------------------- field A-law1 : forall {X}(f : X -> A)(x : X) -> A-map f (return x) == f x A-law2 : forall {X Y}(g : X -> T Y)(f : Y -> A)(t : T X) -> A-map (A-map f o g) t == A-map f (t >>= g)
algebraic-stack_agda0000_doc_16477
module DualTail1 where open import Data.Nat open import Data.Fin using (Fin; zero; suc) open import Data.Product open import Function using (id; _∘_) open import Relation.Binary.PropositionalEquality using (_≡_; refl) open import Types.Direction open import Types.IND1 as IND hiding (GType; Type; SType; _≈_; _≈'_) import Types.COI as COI open import Types.Tail1 private variable n : ℕ -- instead of unrolling and substituting, we maintain a stack of bodies of recursive types data Stack {GType : ℕ → Set} : ℕ → Set where ε : Stack 0 ⟪_,_⟫ : Stack {GType} n → GType (suc n) → Stack (suc n) -- obtain an entry from the stack -- technically m = n - i, but we don't need to know get : ∀ {GType} (i : Fin n) → Stack {GType} n → Σ ℕ λ m → Stack {GType} m × GType (suc m) get zero ⟪ σ , x ⟫ = _ , (σ , x) get (suc i) ⟪ σ , x ⟫ = get i σ -- the dual of a stack dual-stack : Stack {GType} n → Stack {GType} n dual-stack ε = ε dual-stack ⟪ σ , g ⟫ = ⟪ dual-stack σ , dualG g ⟫ -- relate a stack entry to the corresponding entry on the dual stack get-dual-stack : (x : Fin n) (σ : Stack n) → get x (dual-stack σ) ≡ map id (map dual-stack dualG) (get x σ) get-dual-stack zero ⟪ σ , x ⟫ = refl get-dual-stack (suc x) ⟪ σ , x₁ ⟫ = get-dual-stack x σ -- stacked version of general mapping of inductive session type to COI ind2coiS : Stack {IND.GType} n → IND.SType n → COI.SType ind2coiG : Stack {IND.GType} n → IND.GType n → COI.STypeF COI.SType ind2coiT : Stack {IND.GType} n → IND.TType n → COI.Type COI.SType.force (ind2coiS σ (gdd G)) = ind2coiG σ G COI.SType.force (ind2coiS σ (rec G)) = ind2coiG ⟪ σ , G ⟫ G COI.SType.force (ind2coiS σ (var x)) with get x σ ... | m , σ' , gxs = ind2coiG ⟪ σ' , gxs ⟫ gxs ind2coiG σ (transmit d T S) = COI.transmit d (ind2coiT σ T) (ind2coiS σ S) ind2coiG σ (choice d m alt) = COI.choice d m (ind2coiS σ ∘ alt) ind2coiG σ end = COI.end ind2coiT σ TUnit = COI.TUnit ind2coiT σ TInt = COI.TInt ind2coiT σ (TPair T T₁) = COI.TPair (ind2coiT σ T) (ind2coiT σ T₁) ind2coiT σ (TChan S) = COI.TChan (ind2coiS σ S) -- mapping tail recursive session types to coinductive session types -- relies on a stack to unfold variables on the fly tail2coiT : Type → COI.Type tail2coiS : Stack {GType} n → SType n → COI.SType tail2coiG : Stack {GType} n → GType n → COI.STypeF COI.SType tail2coiT TUnit = COI.TUnit tail2coiT TInt = COI.TInt tail2coiT (TPair t t₁) = COI.TPair (tail2coiT t) (tail2coiT t₁) tail2coiT (TChan s) = COI.TChan (ind2coiS ε s) COI.SType.force (tail2coiS σ (gdd g)) = tail2coiG σ g COI.SType.force (tail2coiS σ (rec g)) = tail2coiG ⟪ σ , g ⟫ g COI.SType.force (tail2coiS σ (var x)) with get x σ ... | m , σ' , gxs = tail2coiG ⟪ σ' , gxs ⟫ gxs tail2coiG σ (transmit d t s) = COI.transmit d (tail2coiT t) (tail2coiS σ s) tail2coiG σ (choice d m alt) = COI.choice d m (tail2coiS σ ∘ alt) tail2coiG σ end = COI.end -- get coinductive bisimulation in scope _≈_ = COI._≈_ _≈'_ = COI._≈'_ -- main proposition dual-tailS : (σ : Stack {GType} n) (s : SType n) → COI.dual (tail2coiS σ s) ≈ tail2coiS (dual-stack σ) (dualS s) dual-tailG : (σ : Stack {GType} n) (g : GType n) → COI.dualF (tail2coiG σ g) ≈' tail2coiG (dual-stack σ) (dualG g) COI.Equiv.force (dual-tailS σ (gdd g)) = dual-tailG σ g COI.Equiv.force (dual-tailS σ (rec g)) = dual-tailG ⟪ σ , g ⟫ g COI.Equiv.force (dual-tailS σ (var x)) rewrite get-dual-stack x σ with get x σ ... | m , σ' , g = dual-tailG ⟪ σ' , g ⟫ g dual-tailG σ (transmit d t s) = COI.eq-transmit (dual-dir d) COI.≈ᵗ-refl (dual-tailS σ s) dual-tailG σ (choice d m alt) = COI.eq-choice (dual-dir d) (dual-tailS σ ∘ alt) dual-tailG σ end = COI.eq-end -- corrolary for SType 0 dual-tail : ∀ s → COI.dual (tail2coiS ε s) ≈ tail2coiS ε (dualS s) dual-tail = dual-tailS ε
algebraic-stack_agda0000_doc_16478
open import Data.Nat open import Data.Nat.Show open import IO module Ackermann where ack : ℕ -> ℕ -> ℕ ack zero n = n + 1 ack (suc m) zero = ack m 1 ack (suc m) (suc n) = ack m (ack (suc m) n) main = run (putStrLn (show (ack 3 9)))
algebraic-stack_agda0000_doc_16479
{-# OPTIONS --type-in-type #-} module CS410-Categories where open import CS410-Prelude postulate extensionality : {S : Set}{T : S -> Set} {f g : (x : S) -> T x} -> ((x : S) -> f x == g x) -> f == g imp : {S : Set}{T : S -> Set}(f : (x : S) -> T x){x : S} -> T x imp f {x} = f x extensionality' : {S : Set}{T : S -> Set} {f g : {x : S} -> T x} -> ((x : S) -> f {x} == g {x}) -> _==_ {forall {x : S} -> T x} f g extensionality' {f = f}{g = g} q = refl imp =$= extensionality {f = \ x -> f {x}}{g = \ x -> g {x}} q _=$'_ : {S : Set}{T : S -> Set} {f g : {x : S} -> T x} -> _==_ {forall {x : S} -> T x} f g -> (x : S) -> f {x} == g {x} refl f =$' x = refl (f {x}) infixl 2 _=$'_ record Category : Set where field -- two types of thing Obj : Set -- "objects" _~>_ : Obj -> Obj -> Set -- "arrows" or "morphisms" -- or "homomorphisms" -- two operations id~> : {T : Obj} -> T ~> T _>~>_ : {R S T : Obj} -> R ~> S -> S ~> T -> R ~> T -- three laws law-id~>>~> : {S T : Obj} (f : S ~> T) -> (id~> >~> f) == f law->~>id~> : {S T : Obj} (f : S ~> T) -> (f >~> id~>) == f law->~>>~> : {Q R S T : Obj} (f : Q ~> R)(g : R ~> S)(h : S ~> T) -> ((f >~> g) >~> h) == (f >~> (g >~> h)) assocn : {Q R R' S T : Obj} {f : Q ~> R} {g : R ~> S} {f' : Q ~> R'}{g' : R' ~> S} {h : S ~> T} -> (f >~> g) == (f' >~> g') -> (f >~> g >~> h) == (f' >~> g' >~> h) assocn {f = f} {g = g} {f' = f'} {g' = g'} {h = h} q = f >~> g >~> h =< law->~>>~> _ _ _ ]= (f >~> g) >~> h =[ refl _>~>_ =$= q =$= refl h >= (f' >~> g') >~> h =[ law->~>>~> _ _ _ >= f' >~> g' >~> h [QED] infixr 3 _>~>_ -- Sets and functions are the classic example of a category. SET : Category SET = record { Obj = Set ; _~>_ = \ S T -> S -> T ; id~> = id ; _>~>_ = _>>_ ; law-id~>>~> = \ f -> refl f ; law->~>id~> = \ f -> refl f ; law->~>>~> = \ f g h -> refl (f >> (g >> h)) } module FUNCTOR where open Category record _=>_ (C D : Category) : Set where -- "Functor from C to D" field -- two actions F-Obj : Obj C -> Obj D F-map : {S T : Obj C} -> _~>_ C S T -> _~>_ D (F-Obj S) (F-Obj T) -- two laws F-map-id~> : {T : Obj C} -> F-map (id~> C {T}) == id~> D {F-Obj T} F-map->~> : {R S T : Obj C}(f : _~>_ C R S)(g : _~>_ C S T) -> F-map (_>~>_ C f g) == _>~>_ D (F-map f) (F-map g) open FUNCTOR public ID : {C : Category} -> C => C ID = record { F-Obj = id ; F-map = id ; F-map-id~> = refl _ ; F-map->~> = \ f g -> refl _ } module FUNCTOR-CP {C D E : Category} where open _=>_ open Category _>=>_ : C => D -> D => E -> C => E F-Obj (F >=> G) = F-Obj F >> F-Obj G F-map (F >=> G) = F-map F >> F-map G F-map-id~> (F >=> G) = F-map G (F-map F (id~> C)) =[ refl (F-map G) =$= F-map-id~> F >= F-map G (id~> D) =[ F-map-id~> G >= id~> E [QED] F-map->~> (F >=> G) f g = F-map G (F-map F (_>~>_ C f g)) =[ refl (F-map G) =$= F-map->~> F f g >= F-map G (_>~>_ D (F-map F f) (F-map F g)) =[ F-map->~> G (F-map F f) (F-map F g) >= _>~>_ E (F-map G (F-map F f)) (F-map G (F-map F g)) [QED] open FUNCTOR-CP public module NATURAL-TRANSFORMATION {C D : Category} where open Category open _=>_ record _~~>_ (F G : C => D) : Set where field -- one operation xf : {X : Obj C} -> _~>_ D (F-Obj F X) (F-Obj G X) -- one law naturality : {X Y : Obj C}(f : _~>_ C X Y) -> _>~>_ D (F-map F f) (xf {Y}) == _>~>_ D (xf {X}) (F-map G f) open NATURAL-TRANSFORMATION public open _~~>_ public module MONAD {C : Category}(M : C => C) where open Category C open _=>_ M record Monad : Set where field unit : ID ~~> M mult : (M >=> M) ~~> M unitMult : {X : Obj} -> (xf unit >~> xf mult) == id~> {F-Obj X} multUnit : {X : Obj} -> (F-map (xf unit) >~> xf mult) == id~> {F-Obj X} multMult : {X : Obj} -> (xf mult >~> xf mult) == (F-map (xf mult) >~> xf mult {X}) KLEISLI : Category KLEISLI = record { Obj = Obj ; _~>_ = \ S T -> S ~> F-Obj T ; id~> = xf unit ; _>~>_ = \ f g -> f >~> F-map g >~> xf mult ; law-id~>>~> = \ f -> xf unit >~> F-map f >~> xf mult =< law->~>>~> _ _ _ ]= (xf unit >~> F-map f) >~> xf mult =< refl (_>~> xf mult) =$= naturality unit f ]= (f >~> xf unit) >~> xf mult =[ law->~>>~> _ _ _ >= f >~> (xf unit >~> xf mult) =[ refl (f >~>_) =$= unitMult >= f >~> id~> =[ law->~>id~> f >= f [QED] ; law->~>id~> = \ f -> f >~> (F-map (xf unit) >~> xf mult) =[ refl (f >~>_) =$= multUnit >= f >~> id~> =[ law->~>id~> f >= f [QED] ; law->~>>~> = \ f g h -> (f >~> F-map g >~> xf mult) >~> F-map h >~> xf mult =[ law->~>>~> _ _ _ >= f >~> (F-map g >~> xf mult) >~> (F-map h >~> xf mult) =[ refl (\ x -> _ >~> x) =$= law->~>>~> _ _ _ >= f >~> F-map g >~> xf mult >~> F-map h >~> xf mult =< refl (\ x -> _ >~> _ >~> x) =$= assocn (naturality mult _) ]= f >~> F-map g >~> F-map (F-map h) >~> xf mult >~> xf mult =[ refl (\ x -> _ >~> _ >~> _ >~> x) =$= multMult >= f >~> F-map g >~> F-map (F-map h) >~> F-map (xf mult) >~> xf mult =< refl (\ x -> _ >~> _ >~> x) =$= law->~>>~> _ _ _ ]= f >~> F-map g >~> (F-map (F-map h) >~> F-map (xf mult)) >~> xf mult =< refl (\ x -> _ >~> _ >~> x >~> _) =$= F-map->~> _ _ ]= f >~> F-map g >~> F-map (F-map h >~> xf mult) >~> xf mult =< refl (\ x -> _ >~> x) =$= law->~>>~> _ _ _ ]= f >~> (F-map g >~> F-map (F-map h >~> xf mult)) >~> xf mult =< refl (\ x -> _ >~> x >~> _) =$= F-map->~> _ _ ]= f >~> F-map (g >~> F-map h >~> xf mult) >~> xf mult [QED] }
algebraic-stack_agda0000_doc_16848
-- Linear monoidal closed structure for families module SOAS.Families.Linear {T : Set} where open import SOAS.Common open import SOAS.Context {T} open import SOAS.Sorting {T} open import SOAS.Families.Core {T} open import SOAS.Families.Isomorphism {T} open import Categories.Category.Monoidal open import Categories.Category.Monoidal.Closed open import Categories.Functor.Bifunctor -- | Monoidal tensor and unit -- Linear tensor product that combines two families with two disjoint contexts data _⊗_ (X Y : Family) : Ctx → Set where merge : (Γ Δ : Ctx) → X Γ → Y Δ → (X ⊗ Y) (Δ ∔ Γ) infixr 20 _⊗_ pattern _⊹_ {Γ}{Δ} t s = merge Γ Δ t s infix 30 _⊹_ -- ⊗ is a bifunctor ⊗F : Bifunctor 𝔽amilies 𝔽amilies 𝔽amilies ⊗F = record { F₀ = λ (X , Y) → X ⊗ Y ; F₁ = λ{ {X , Y}{X′ , Y′} (f , g) (x ⊹ y) → (f x) ⊹ (g y)} ; identity = λ{ {X , Y}{Γ}{x ⊹ y} → refl } ; homomorphism = λ{ {X , Y}{X′ , Y′}{X″ , Y″}{f , g}{f′ , g′}{Γ}{x ⊹ y} → refl } ; F-resp-≈ = λ{ (p₁ , p₂) {.(Δ ∔ Γ)} {merge Γ Δ t s} → cong₂ (merge Γ Δ) p₁ p₂ } } _⊗̣_ : Familyₛ → Familyₛ → Familyₛ _⊗̣_ = sorted₂ _⊗_ 𝒚 : Ctx → Family 𝒚 Γ Δ = Γ ≡ Δ -- Family which is only inhabited at the empty context E : Family E = 𝒚 ∅ -- Sorted family which is only inhabited at a singleton context N : Familyₛ N α = 𝒚 ⌈ α ⌋ -- | Monoidal exponential -- Linear exponential between families _⊸_ : Family → Family → Family (X ⊸ Y) Γ = {Δ : Ctx} → X Δ → Y (Δ ∔ Γ) infixr 15 _⊸_ -- Linear exponential between sorted families _⊸∙_ : Familyₛ → Familyₛ → Familyₛ _⊸∙_ = sorted₂ _⊸_ infixr 15 _⊸∙_ -- ⊸ is a bifunctor ⊸F : Bifunctor 𝔽am.op 𝔽amilies 𝔽amilies ⊸F = record { F₀ = λ (X , Y) → X ⊸ Y ; F₁ = λ{ {X , Y}{X′ , Y′} (f , g) e x → g (e (f x))} ; identity = refl ; homomorphism = refl ; F-resp-≈ = λ{ {X , Y}{X′ , Y′}{f , g} (p₁ , p₂) {Γ}{e} → dext′ (trans (cong (g ∘ e) p₁) p₂) } }
algebraic-stack_agda0000_doc_16849
open import Nat open import Prelude open import contexts module core where -- types data htyp : Set where b : htyp ⦇-⦈ : htyp _==>_ : htyp → htyp → htyp -- arrow type constructors bind very tightly infixr 25 _==>_ -- external expressions data hexp : Set where c : hexp _·:_ : hexp → htyp → hexp X : Nat → hexp ·λ : Nat → hexp → hexp ·λ_[_]_ : Nat → htyp → hexp → hexp ⦇-⦈[_] : Nat → hexp ⦇⌜_⌟⦈[_] : hexp → Nat → hexp _∘_ : hexp → hexp → hexp -- the type of type contexts, i.e. Γs in the judegments below tctx : Set tctx = htyp ctx mutual -- identity substitution, substitition environments data env : Set where Id : (Γ : tctx) → env Subst : (d : ihexp) → (y : Nat) → env → env -- internal expressions data ihexp : Set where c : ihexp X : Nat → ihexp ·λ_[_]_ : Nat → htyp → ihexp → ihexp ⦇-⦈⟨_⟩ : (Nat × env) → ihexp ⦇⌜_⌟⦈⟨_⟩ : ihexp → (Nat × env) → ihexp _∘_ : ihexp → ihexp → ihexp _⟨_⇒_⟩ : ihexp → htyp → htyp → ihexp _⟨_⇒⦇-⦈⇏_⟩ : ihexp → htyp → htyp → ihexp -- convenient notation for chaining together two agreeable casts _⟨_⇒_⇒_⟩ : ihexp → htyp → htyp → htyp → ihexp d ⟨ t1 ⇒ t2 ⇒ t3 ⟩ = d ⟨ t1 ⇒ t2 ⟩ ⟨ t2 ⇒ t3 ⟩ -- type consistency data _~_ : (t1 t2 : htyp) → Set where TCRefl : {τ : htyp} → τ ~ τ TCHole1 : {τ : htyp} → τ ~ ⦇-⦈ TCHole2 : {τ : htyp} → ⦇-⦈ ~ τ TCArr : {τ1 τ2 τ1' τ2' : htyp} → τ1 ~ τ1' → τ2 ~ τ2' → τ1 ==> τ2 ~ τ1' ==> τ2' -- type inconsistency data _~̸_ : (τ1 τ2 : htyp) → Set where ICBaseArr1 : {τ1 τ2 : htyp} → b ~̸ τ1 ==> τ2 ICBaseArr2 : {τ1 τ2 : htyp} → τ1 ==> τ2 ~̸ b ICArr1 : {τ1 τ2 τ3 τ4 : htyp} → τ1 ~̸ τ3 → τ1 ==> τ2 ~̸ τ3 ==> τ4 ICArr2 : {τ1 τ2 τ3 τ4 : htyp} → τ2 ~̸ τ4 → τ1 ==> τ2 ~̸ τ3 ==> τ4 --- matching for arrows data _▸arr_ : htyp → htyp → Set where MAHole : ⦇-⦈ ▸arr ⦇-⦈ ==> ⦇-⦈ MAArr : {τ1 τ2 : htyp} → τ1 ==> τ2 ▸arr τ1 ==> τ2 -- the type of hole contexts, i.e. Δs in the judgements hctx : Set hctx = (htyp ctx × htyp) ctx -- notation for a triple to match the CMTT syntax _::_[_] : Nat → htyp → tctx → (Nat × (tctx × htyp)) u :: τ [ Γ ] = u , (Γ , τ) -- the hole name u does not appear in the term e data hole-name-new : (e : hexp) (u : Nat) → Set where HNConst : ∀{u} → hole-name-new c u HNAsc : ∀{e τ u} → hole-name-new e u → hole-name-new (e ·: τ) u HNVar : ∀{x u} → hole-name-new (X x) u HNLam1 : ∀{x e u} → hole-name-new e u → hole-name-new (·λ x e) u HNLam2 : ∀{x e u τ} → hole-name-new e u → hole-name-new (·λ x [ τ ] e) u HNHole : ∀{u u'} → u' ≠ u → hole-name-new (⦇-⦈[ u' ]) u HNNEHole : ∀{u u' e} → u' ≠ u → hole-name-new e u → hole-name-new (⦇⌜ e ⌟⦈[ u' ]) u HNAp : ∀{ u e1 e2 } → hole-name-new e1 u → hole-name-new e2 u → hole-name-new (e1 ∘ e2) u -- two terms that do not share any hole names data holes-disjoint : (e1 : hexp) → (e2 : hexp) → Set where HDConst : ∀{e} → holes-disjoint c e HDAsc : ∀{e1 e2 τ} → holes-disjoint e1 e2 → holes-disjoint (e1 ·: τ) e2 HDVar : ∀{x e} → holes-disjoint (X x) e HDLam1 : ∀{x e1 e2} → holes-disjoint e1 e2 → holes-disjoint (·λ x e1) e2 HDLam2 : ∀{x e1 e2 τ} → holes-disjoint e1 e2 → holes-disjoint (·λ x [ τ ] e1) e2 HDHole : ∀{u e2} → hole-name-new e2 u → holes-disjoint (⦇-⦈[ u ]) e2 HDNEHole : ∀{u e1 e2} → hole-name-new e2 u → holes-disjoint e1 e2 → holes-disjoint (⦇⌜ e1 ⌟⦈[ u ]) e2 HDAp : ∀{e1 e2 e3} → holes-disjoint e1 e3 → holes-disjoint e2 e3 → holes-disjoint (e1 ∘ e2) e3 -- bidirectional type checking judgements for hexp mutual -- synthesis data _⊢_=>_ : (Γ : tctx) (e : hexp) (τ : htyp) → Set where SConst : {Γ : tctx} → Γ ⊢ c => b SAsc : {Γ : tctx} {e : hexp} {τ : htyp} → Γ ⊢ e <= τ → Γ ⊢ (e ·: τ) => τ SVar : {Γ : tctx} {τ : htyp} {x : Nat} → (x , τ) ∈ Γ → Γ ⊢ X x => τ SAp : {Γ : tctx} {e1 e2 : hexp} {τ τ1 τ2 : htyp} → holes-disjoint e1 e2 → Γ ⊢ e1 => τ1 → τ1 ▸arr τ2 ==> τ → Γ ⊢ e2 <= τ2 → Γ ⊢ (e1 ∘ e2) => τ SEHole : {Γ : tctx} {u : Nat} → Γ ⊢ ⦇-⦈[ u ] => ⦇-⦈ SNEHole : {Γ : tctx} {e : hexp} {τ : htyp} {u : Nat} → hole-name-new e u → Γ ⊢ e => τ → Γ ⊢ ⦇⌜ e ⌟⦈[ u ] => ⦇-⦈ SLam : {Γ : tctx} {e : hexp} {τ1 τ2 : htyp} {x : Nat} → x # Γ → (Γ ,, (x , τ1)) ⊢ e => τ2 → Γ ⊢ ·λ x [ τ1 ] e => τ1 ==> τ2 -- analysis data _⊢_<=_ : (Γ : htyp ctx) (e : hexp) (τ : htyp) → Set where ASubsume : {Γ : tctx} {e : hexp} {τ τ' : htyp} → Γ ⊢ e => τ' → τ ~ τ' → Γ ⊢ e <= τ ALam : {Γ : tctx} {e : hexp} {τ τ1 τ2 : htyp} {x : Nat} → x # Γ → τ ▸arr τ1 ==> τ2 → (Γ ,, (x , τ1)) ⊢ e <= τ2 → Γ ⊢ (·λ x e) <= τ -- those types without holes data _tcomplete : htyp → Set where TCBase : b tcomplete TCArr : ∀{τ1 τ2} → τ1 tcomplete → τ2 tcomplete → (τ1 ==> τ2) tcomplete -- those external expressions without holes data _ecomplete : hexp → Set where ECConst : c ecomplete ECAsc : ∀{τ e} → τ tcomplete → e ecomplete → (e ·: τ) ecomplete ECVar : ∀{x} → (X x) ecomplete ECLam1 : ∀{x e} → e ecomplete → (·λ x e) ecomplete ECLam2 : ∀{x e τ} → e ecomplete → τ tcomplete → (·λ x [ τ ] e) ecomplete ECAp : ∀{e1 e2} → e1 ecomplete → e2 ecomplete → (e1 ∘ e2) ecomplete -- those internal expressions without holes data _dcomplete : ihexp → Set where DCVar : ∀{x} → (X x) dcomplete DCConst : c dcomplete DCLam : ∀{x τ d} → d dcomplete → τ tcomplete → (·λ x [ τ ] d) dcomplete DCAp : ∀{d1 d2} → d1 dcomplete → d2 dcomplete → (d1 ∘ d2) dcomplete DCCast : ∀{d τ1 τ2} → d dcomplete → τ1 tcomplete → τ2 tcomplete → (d ⟨ τ1 ⇒ τ2 ⟩) dcomplete -- contexts that only produce complete types _gcomplete : tctx → Set Γ gcomplete = (x : Nat) (τ : htyp) → (x , τ) ∈ Γ → τ tcomplete -- those internal expressions where every cast is the identity cast and -- there are no failed casts data cast-id : ihexp → Set where CIConst : cast-id c CIVar : ∀{x} → cast-id (X x) CILam : ∀{x τ d} → cast-id d → cast-id (·λ x [ τ ] d) CIHole : ∀{u} → cast-id (⦇-⦈⟨ u ⟩) CINEHole : ∀{d u} → cast-id d → cast-id (⦇⌜ d ⌟⦈⟨ u ⟩) CIAp : ∀{d1 d2} → cast-id d1 → cast-id d2 → cast-id (d1 ∘ d2) CICast : ∀{d τ} → cast-id d → cast-id (d ⟨ τ ⇒ τ ⟩) -- expansion mutual -- synthesis data _⊢_⇒_~>_⊣_ : (Γ : tctx) (e : hexp) (τ : htyp) (d : ihexp) (Δ : hctx) → Set where ESConst : ∀{Γ} → Γ ⊢ c ⇒ b ~> c ⊣ ∅ ESVar : ∀{Γ x τ} → (x , τ) ∈ Γ → Γ ⊢ X x ⇒ τ ~> X x ⊣ ∅ ESLam : ∀{Γ x τ1 τ2 e d Δ } → (x # Γ) → (Γ ,, (x , τ1)) ⊢ e ⇒ τ2 ~> d ⊣ Δ → Γ ⊢ ·λ x [ τ1 ] e ⇒ (τ1 ==> τ2) ~> ·λ x [ τ1 ] d ⊣ Δ ESAp : ∀{Γ e1 τ τ1 τ1' τ2 τ2' d1 Δ1 e2 d2 Δ2 } → holes-disjoint e1 e2 → Δ1 ## Δ2 → Γ ⊢ e1 => τ1 → τ1 ▸arr τ2 ==> τ → Γ ⊢ e1 ⇐ (τ2 ==> τ) ~> d1 :: τ1' ⊣ Δ1 → Γ ⊢ e2 ⇐ τ2 ~> d2 :: τ2' ⊣ Δ2 → Γ ⊢ e1 ∘ e2 ⇒ τ ~> (d1 ⟨ τ1' ⇒ τ2 ==> τ ⟩) ∘ (d2 ⟨ τ2' ⇒ τ2 ⟩) ⊣ (Δ1 ∪ Δ2) ESEHole : ∀{ Γ u } → Γ ⊢ ⦇-⦈[ u ] ⇒ ⦇-⦈ ~> ⦇-⦈⟨ u , Id Γ ⟩ ⊣ ■ (u :: ⦇-⦈ [ Γ ]) ESNEHole : ∀{ Γ e τ d u Δ } → Δ ## (■ (u , Γ , ⦇-⦈)) → Γ ⊢ e ⇒ τ ~> d ⊣ Δ → Γ ⊢ ⦇⌜ e ⌟⦈[ u ] ⇒ ⦇-⦈ ~> ⦇⌜ d ⌟⦈⟨ u , Id Γ ⟩ ⊣ (Δ ,, u :: ⦇-⦈ [ Γ ]) ESAsc : ∀ {Γ e τ d τ' Δ} → Γ ⊢ e ⇐ τ ~> d :: τ' ⊣ Δ → Γ ⊢ (e ·: τ) ⇒ τ ~> d ⟨ τ' ⇒ τ ⟩ ⊣ Δ -- analysis data _⊢_⇐_~>_::_⊣_ : (Γ : tctx) (e : hexp) (τ : htyp) (d : ihexp) (τ' : htyp) (Δ : hctx) → Set where EALam : ∀{Γ x τ τ1 τ2 e d τ2' Δ } → (x # Γ) → τ ▸arr τ1 ==> τ2 → (Γ ,, (x , τ1)) ⊢ e ⇐ τ2 ~> d :: τ2' ⊣ Δ → Γ ⊢ ·λ x e ⇐ τ ~> ·λ x [ τ1 ] d :: τ1 ==> τ2' ⊣ Δ EASubsume : ∀{e Γ τ' d Δ τ} → ((u : Nat) → e ≠ ⦇-⦈[ u ]) → ((e' : hexp) (u : Nat) → e ≠ ⦇⌜ e' ⌟⦈[ u ]) → Γ ⊢ e ⇒ τ' ~> d ⊣ Δ → τ ~ τ' → Γ ⊢ e ⇐ τ ~> d :: τ' ⊣ Δ EAEHole : ∀{ Γ u τ } → Γ ⊢ ⦇-⦈[ u ] ⇐ τ ~> ⦇-⦈⟨ u , Id Γ ⟩ :: τ ⊣ ■ (u :: τ [ Γ ]) EANEHole : ∀{ Γ e u τ d τ' Δ } → Δ ## (■ (u , Γ , τ)) → Γ ⊢ e ⇒ τ' ~> d ⊣ Δ → Γ ⊢ ⦇⌜ e ⌟⦈[ u ] ⇐ τ ~> ⦇⌜ d ⌟⦈⟨ u , Id Γ ⟩ :: τ ⊣ (Δ ,, u :: τ [ Γ ]) -- ground types data _ground : (τ : htyp) → Set where GBase : b ground GHole : ⦇-⦈ ==> ⦇-⦈ ground mutual -- substitution typing data _,_⊢_:s:_ : hctx → tctx → env → tctx → Set where STAId : ∀{Γ Γ' Δ} → ((x : Nat) (τ : htyp) → (x , τ) ∈ Γ' → (x , τ) ∈ Γ) → Δ , Γ ⊢ Id Γ' :s: Γ' STASubst : ∀{Γ Δ σ y Γ' d τ } → Δ , Γ ,, (y , τ) ⊢ σ :s: Γ' → Δ , Γ ⊢ d :: τ → Δ , Γ ⊢ Subst d y σ :s: Γ' -- type assignment data _,_⊢_::_ : (Δ : hctx) (Γ : tctx) (d : ihexp) (τ : htyp) → Set where TAConst : ∀{Δ Γ} → Δ , Γ ⊢ c :: b TAVar : ∀{Δ Γ x τ} → (x , τ) ∈ Γ → Δ , Γ ⊢ X x :: τ TALam : ∀{ Δ Γ x τ1 d τ2} → x # Γ → Δ , (Γ ,, (x , τ1)) ⊢ d :: τ2 → Δ , Γ ⊢ ·λ x [ τ1 ] d :: (τ1 ==> τ2) TAAp : ∀{ Δ Γ d1 d2 τ1 τ} → Δ , Γ ⊢ d1 :: τ1 ==> τ → Δ , Γ ⊢ d2 :: τ1 → Δ , Γ ⊢ d1 ∘ d2 :: τ TAEHole : ∀{ Δ Γ σ u Γ' τ} → (u , (Γ' , τ)) ∈ Δ → Δ , Γ ⊢ σ :s: Γ' → Δ , Γ ⊢ ⦇-⦈⟨ u , σ ⟩ :: τ TANEHole : ∀ { Δ Γ d τ' Γ' u σ τ } → (u , (Γ' , τ)) ∈ Δ → Δ , Γ ⊢ d :: τ' → Δ , Γ ⊢ σ :s: Γ' → Δ , Γ ⊢ ⦇⌜ d ⌟⦈⟨ u , σ ⟩ :: τ TACast : ∀{ Δ Γ d τ1 τ2} → Δ , Γ ⊢ d :: τ1 → τ1 ~ τ2 → Δ , Γ ⊢ d ⟨ τ1 ⇒ τ2 ⟩ :: τ2 TAFailedCast : ∀{Δ Γ d τ1 τ2} → Δ , Γ ⊢ d :: τ1 → τ1 ground → τ2 ground → τ1 ≠ τ2 → Δ , Γ ⊢ d ⟨ τ1 ⇒⦇-⦈⇏ τ2 ⟩ :: τ2 -- substitution [_/_]_ : ihexp → Nat → ihexp → ihexp [ d / y ] c = c [ d / y ] X x with natEQ x y [ d / y ] X .y | Inl refl = d [ d / y ] X x | Inr neq = X x [ d / y ] (·λ x [ x₁ ] d') with natEQ x y [ d / y ] (·λ .y [ τ ] d') | Inl refl = ·λ y [ τ ] d' [ d / y ] (·λ x [ τ ] d') | Inr x₁ = ·λ x [ τ ] ( [ d / y ] d') [ d / y ] ⦇-⦈⟨ u , σ ⟩ = ⦇-⦈⟨ u , Subst d y σ ⟩ [ d / y ] ⦇⌜ d' ⌟⦈⟨ u , σ ⟩ = ⦇⌜ [ d / y ] d' ⌟⦈⟨ u , Subst d y σ ⟩ [ d / y ] (d1 ∘ d2) = ([ d / y ] d1) ∘ ([ d / y ] d2) [ d / y ] (d' ⟨ τ1 ⇒ τ2 ⟩ ) = ([ d / y ] d') ⟨ τ1 ⇒ τ2 ⟩ [ d / y ] (d' ⟨ τ1 ⇒⦇-⦈⇏ τ2 ⟩ ) = ([ d / y ] d') ⟨ τ1 ⇒⦇-⦈⇏ τ2 ⟩ -- applying an environment to an expression apply-env : env → ihexp → ihexp apply-env (Id Γ) d = d apply-env (Subst d y σ) d' = [ d / y ] ( apply-env σ d') -- values data _val : (d : ihexp) → Set where VConst : c val VLam : ∀{x τ d} → (·λ x [ τ ] d) val -- boxed values data _boxedval : (d : ihexp) → Set where BVVal : ∀{d} → d val → d boxedval BVArrCast : ∀{ d τ1 τ2 τ3 τ4 } → τ1 ==> τ2 ≠ τ3 ==> τ4 → d boxedval → d ⟨ (τ1 ==> τ2) ⇒ (τ3 ==> τ4) ⟩ boxedval BVHoleCast : ∀{ τ d } → τ ground → d boxedval → d ⟨ τ ⇒ ⦇-⦈ ⟩ boxedval mutual -- indeterminate forms data _indet : (d : ihexp) → Set where IEHole : ∀{u σ} → ⦇-⦈⟨ u , σ ⟩ indet INEHole : ∀{d u σ} → d final → ⦇⌜ d ⌟⦈⟨ u , σ ⟩ indet IAp : ∀{d1 d2} → ((τ1 τ2 τ3 τ4 : htyp) (d1' : ihexp) → d1 ≠ (d1' ⟨(τ1 ==> τ2) ⇒ (τ3 ==> τ4)⟩)) → d1 indet → d2 final → (d1 ∘ d2) indet ICastArr : ∀{d τ1 τ2 τ3 τ4} → τ1 ==> τ2 ≠ τ3 ==> τ4 → d indet → d ⟨ (τ1 ==> τ2) ⇒ (τ3 ==> τ4) ⟩ indet ICastGroundHole : ∀{ τ d } → τ ground → d indet → d ⟨ τ ⇒ ⦇-⦈ ⟩ indet ICastHoleGround : ∀ { d τ } → ((d' : ihexp) (τ' : htyp) → d ≠ (d' ⟨ τ' ⇒ ⦇-⦈ ⟩)) → d indet → τ ground → d ⟨ ⦇-⦈ ⇒ τ ⟩ indet IFailedCast : ∀{ d τ1 τ2 } → d final → τ1 ground → τ2 ground → τ1 ≠ τ2 → d ⟨ τ1 ⇒⦇-⦈⇏ τ2 ⟩ indet -- final expressions data _final : (d : ihexp) → Set where FBoxedVal : ∀{d} → d boxedval → d final FIndet : ∀{d} → d indet → d final -- contextual dynamics -- evaluation contexts data ectx : Set where ⊙ : ectx _∘₁_ : ectx → ihexp → ectx _∘₂_ : ihexp → ectx → ectx ⦇⌜_⌟⦈⟨_⟩ : ectx → (Nat × env ) → ectx _⟨_⇒_⟩ : ectx → htyp → htyp → ectx _⟨_⇒⦇-⦈⇏_⟩ : ectx → htyp → htyp → ectx -- note: this judgement is redundant: in the absence of the premises in -- the red brackets, all syntactically well formed ectxs are valid. with -- finality premises, that's not true, and that would propagate through -- additions to the calculus. so we leave it here for clarity but note -- that, as written, in any use case its either trival to prove or -- provides no additional information --ε is an evaluation context data _evalctx : (ε : ectx) → Set where ECDot : ⊙ evalctx ECAp1 : ∀{d ε} → ε evalctx → (ε ∘₁ d) evalctx ECAp2 : ∀{d ε} → -- d final → -- red brackets ε evalctx → (d ∘₂ ε) evalctx ECNEHole : ∀{ε u σ} → ε evalctx → ⦇⌜ ε ⌟⦈⟨ u , σ ⟩ evalctx ECCast : ∀{ ε τ1 τ2} → ε evalctx → (ε ⟨ τ1 ⇒ τ2 ⟩) evalctx ECFailedCast : ∀{ ε τ1 τ2 } → ε evalctx → ε ⟨ τ1 ⇒⦇-⦈⇏ τ2 ⟩ evalctx -- d is the result of filling the hole in ε with d' data _==_⟦_⟧ : (d : ihexp) (ε : ectx) (d' : ihexp) → Set where FHOuter : ∀{d} → d == ⊙ ⟦ d ⟧ FHAp1 : ∀{d1 d1' d2 ε} → d1 == ε ⟦ d1' ⟧ → (d1 ∘ d2) == (ε ∘₁ d2) ⟦ d1' ⟧ FHAp2 : ∀{d1 d2 d2' ε} → -- d1 final → -- red brackets d2 == ε ⟦ d2' ⟧ → (d1 ∘ d2) == (d1 ∘₂ ε) ⟦ d2' ⟧ FHNEHole : ∀{ d d' ε u σ} → d == ε ⟦ d' ⟧ → ⦇⌜ d ⌟⦈⟨ (u , σ ) ⟩ == ⦇⌜ ε ⌟⦈⟨ (u , σ ) ⟩ ⟦ d' ⟧ FHCast : ∀{ d d' ε τ1 τ2 } → d == ε ⟦ d' ⟧ → d ⟨ τ1 ⇒ τ2 ⟩ == ε ⟨ τ1 ⇒ τ2 ⟩ ⟦ d' ⟧ FHFailedCast : ∀{ d d' ε τ1 τ2} → d == ε ⟦ d' ⟧ → (d ⟨ τ1 ⇒⦇-⦈⇏ τ2 ⟩) == (ε ⟨ τ1 ⇒⦇-⦈⇏ τ2 ⟩) ⟦ d' ⟧ -- matched ground types data _▸gnd_ : htyp → htyp → Set where MGArr : ∀{τ1 τ2} → (τ1 ==> τ2) ≠ (⦇-⦈ ==> ⦇-⦈) → (τ1 ==> τ2) ▸gnd (⦇-⦈ ==> ⦇-⦈) -- instruction transition judgement data _→>_ : (d d' : ihexp) → Set where ITLam : ∀{ x τ d1 d2 } → -- d2 final → -- red brackets ((·λ x [ τ ] d1) ∘ d2) →> ([ d2 / x ] d1) ITCastID : ∀{d τ } → -- d final → -- red brackets (d ⟨ τ ⇒ τ ⟩) →> d ITCastSucceed : ∀{d τ } → -- d final → -- red brackets τ ground → (d ⟨ τ ⇒ ⦇-⦈ ⇒ τ ⟩) →> d ITCastFail : ∀{ d τ1 τ2} → -- d final → -- red brackets τ1 ground → τ2 ground → τ1 ≠ τ2 → (d ⟨ τ1 ⇒ ⦇-⦈ ⇒ τ2 ⟩) →> (d ⟨ τ1 ⇒⦇-⦈⇏ τ2 ⟩) ITApCast : ∀{d1 d2 τ1 τ2 τ1' τ2' } → -- d1 final → -- red brackets -- d2 final → -- red brackets ((d1 ⟨ (τ1 ==> τ2) ⇒ (τ1' ==> τ2')⟩) ∘ d2) →> ((d1 ∘ (d2 ⟨ τ1' ⇒ τ1 ⟩)) ⟨ τ2 ⇒ τ2' ⟩) ITGround : ∀{ d τ τ'} → -- d final → -- red brackets τ ▸gnd τ' → (d ⟨ τ ⇒ ⦇-⦈ ⟩) →> (d ⟨ τ ⇒ τ' ⇒ ⦇-⦈ ⟩) ITExpand : ∀{d τ τ' } → -- d final → -- red brackets τ ▸gnd τ' → (d ⟨ ⦇-⦈ ⇒ τ ⟩) →> (d ⟨ ⦇-⦈ ⇒ τ' ⇒ τ ⟩) -- single step (in contextual evaluation sense) data _↦_ : (d d' : ihexp) → Set where Step : ∀{ d d0 d' d0' ε} → d == ε ⟦ d0 ⟧ → d0 →> d0' → d' == ε ⟦ d0' ⟧ → d ↦ d' -- reflexive transitive closure of single steps into multi steps data _↦*_ : (d d' : ihexp) → Set where MSRefl : ∀{d} → d ↦* d MSStep : ∀{d d' d''} → d ↦ d' → d' ↦* d'' → d ↦* d'' -- freshness mutual -- ... with respect to a hole context data envfresh : Nat → env → Set where EFId : ∀{x Γ} → x # Γ → envfresh x (Id Γ) EFSubst : ∀{x d σ y} → fresh x d → envfresh x σ → x ≠ y → envfresh x (Subst d y σ) -- ... for inernal expressions data fresh : Nat → ihexp → Set where FConst : ∀{x} → fresh x c FVar : ∀{x y} → x ≠ y → fresh x (X y) FLam : ∀{x y τ d} → x ≠ y → fresh x d → fresh x (·λ y [ τ ] d) FHole : ∀{x u σ} → envfresh x σ → fresh x (⦇-⦈⟨ u , σ ⟩) FNEHole : ∀{x d u σ} → envfresh x σ → fresh x d → fresh x (⦇⌜ d ⌟⦈⟨ u , σ ⟩) FAp : ∀{x d1 d2} → fresh x d1 → fresh x d2 → fresh x (d1 ∘ d2) FCast : ∀{x d τ1 τ2} → fresh x d → fresh x (d ⟨ τ1 ⇒ τ2 ⟩) FFailedCast : ∀{x d τ1 τ2} → fresh x d → fresh x (d ⟨ τ1 ⇒⦇-⦈⇏ τ2 ⟩) -- ... for external expressions data freshh : Nat → hexp → Set where FRHConst : ∀{x} → freshh x c FRHAsc : ∀{x e τ} → freshh x e → freshh x (e ·: τ) FRHVar : ∀{x y} → x ≠ y → freshh x (X y) FRHLam1 : ∀{x y e} → x ≠ y → freshh x e → freshh x (·λ y e) FRHLam2 : ∀{x τ e y} → x ≠ y → freshh x e → freshh x (·λ y [ τ ] e) FRHEHole : ∀{x u} → freshh x (⦇-⦈[ u ]) FRHNEHole : ∀{x u e} → freshh x e → freshh x (⦇⌜ e ⌟⦈[ u ]) FRHAp : ∀{x e1 e2} → freshh x e1 → freshh x e2 → freshh x (e1 ∘ e2) -- x is not used in a binding site in d mutual data unbound-in-σ : Nat → env → Set where UBσId : ∀{x Γ} → unbound-in-σ x (Id Γ) UBσSubst : ∀{x d y σ} → unbound-in x d → unbound-in-σ x σ → x ≠ y → unbound-in-σ x (Subst d y σ) data unbound-in : (x : Nat) (d : ihexp) → Set where UBConst : ∀{x} → unbound-in x c UBVar : ∀{x y} → unbound-in x (X y) UBLam2 : ∀{x d y τ} → x ≠ y → unbound-in x d → unbound-in x (·λ_[_]_ y τ d) UBHole : ∀{x u σ} → unbound-in-σ x σ → unbound-in x (⦇-⦈⟨ u , σ ⟩) UBNEHole : ∀{x u σ d } → unbound-in-σ x σ → unbound-in x d → unbound-in x (⦇⌜ d ⌟⦈⟨ u , σ ⟩) UBAp : ∀{ x d1 d2 } → unbound-in x d1 → unbound-in x d2 → unbound-in x (d1 ∘ d2) UBCast : ∀{x d τ1 τ2} → unbound-in x d → unbound-in x (d ⟨ τ1 ⇒ τ2 ⟩) UBFailedCast : ∀{x d τ1 τ2} → unbound-in x d → unbound-in x (d ⟨ τ1 ⇒⦇-⦈⇏ τ2 ⟩) mutual data binders-disjoint-σ : env → ihexp → Set where BDσId : ∀{Γ d} → binders-disjoint-σ (Id Γ) d BDσSubst : ∀{d1 d2 y σ} → binders-disjoint d1 d2 → binders-disjoint-σ σ d2 → binders-disjoint-σ (Subst d1 y σ) d2 -- two terms that do not share any binders data binders-disjoint : (d1 : ihexp) → (d2 : ihexp) → Set where BDConst : ∀{d} → binders-disjoint c d BDVar : ∀{x d} → binders-disjoint (X x) d BDLam : ∀{x τ d1 d2} → binders-disjoint d1 d2 → unbound-in x d2 → binders-disjoint (·λ_[_]_ x τ d1) d2 BDHole : ∀{u σ d2} → binders-disjoint-σ σ d2 → binders-disjoint (⦇-⦈⟨ u , σ ⟩) d2 BDNEHole : ∀{u σ d1 d2} → binders-disjoint-σ σ d2 → binders-disjoint d1 d2 → binders-disjoint (⦇⌜ d1 ⌟⦈⟨ u , σ ⟩) d2 BDAp : ∀{d1 d2 d3} → binders-disjoint d1 d3 → binders-disjoint d2 d3 → binders-disjoint (d1 ∘ d2) d3 BDCast : ∀{d1 d2 τ1 τ2} → binders-disjoint d1 d2 → binders-disjoint (d1 ⟨ τ1 ⇒ τ2 ⟩) d2 BDFailedCast : ∀{d1 d2 τ1 τ2} → binders-disjoint d1 d2 → binders-disjoint (d1 ⟨ τ1 ⇒⦇-⦈⇏ τ2 ⟩) d2 mutual -- each term has to be binders unique, and they have to be pairwise -- disjoint with the collection of bound vars data binders-unique-σ : env → Set where BUσId : ∀{Γ} → binders-unique-σ (Id Γ) BUσSubst : ∀{d y σ} → binders-unique d → binders-unique-σ σ → binders-disjoint-σ σ d → binders-unique-σ (Subst d y σ) -- all the variable names in the term are unique data binders-unique : ihexp → Set where BUHole : binders-unique c BUVar : ∀{x} → binders-unique (X x) BULam : {x : Nat} {τ : htyp} {d : ihexp} → binders-unique d → unbound-in x d → binders-unique (·λ_[_]_ x τ d) BUEHole : ∀{u σ} → binders-unique-σ σ → binders-unique (⦇-⦈⟨ u , σ ⟩) BUNEHole : ∀{u σ d} → binders-unique d → binders-unique-σ σ → binders-unique (⦇⌜ d ⌟⦈⟨ u , σ ⟩) BUAp : ∀{d1 d2} → binders-unique d1 → binders-unique d2 → binders-disjoint d1 d2 → binders-unique (d1 ∘ d2) BUCast : ∀{d τ1 τ2} → binders-unique d → binders-unique (d ⟨ τ1 ⇒ τ2 ⟩) BUFailedCast : ∀{d τ1 τ2} → binders-unique d → binders-unique (d ⟨ τ1 ⇒⦇-⦈⇏ τ2 ⟩)
algebraic-stack_agda0000_doc_16850
{-# OPTIONS --rewriting #-} module Luau.TypeCheck where open import Agda.Builtin.Equality using (_≡_) open import FFI.Data.Maybe using (Maybe; just) open import Luau.Syntax using (Expr; Stat; Block; BinaryOperator; yes; nil; addr; number; bool; string; val; var; var_∈_; _⟨_⟩∈_; function_is_end; _$_; block_is_end; binexp; local_←_; _∙_; done; return; name; +; -; *; /; <; >; ==; ~=; <=; >=; ··) open import Luau.Var using (Var) open import Luau.Addr using (Addr) open import Luau.Heap using (Heap; Object; function_is_end) renaming (_[_] to _[_]ᴴ) open import Luau.Type using (Type; nil; unknown; number; boolean; string; _⇒_; src; tgt) open import Luau.VarCtxt using (VarCtxt; ∅; _⋒_; _↦_; _⊕_↦_; _⊝_) renaming (_[_] to _[_]ⱽ) open import FFI.Data.Vector using (Vector) open import FFI.Data.Maybe using (Maybe; just; nothing) open import Properties.Product using (_×_; _,_) orUnknown : Maybe Type → Type orUnknown nothing = unknown orUnknown (just T) = T srcBinOp : BinaryOperator → Type srcBinOp + = number srcBinOp - = number srcBinOp * = number srcBinOp / = number srcBinOp < = number srcBinOp > = number srcBinOp == = unknown srcBinOp ~= = unknown srcBinOp <= = number srcBinOp >= = number srcBinOp ·· = string tgtBinOp : BinaryOperator → Type tgtBinOp + = number tgtBinOp - = number tgtBinOp * = number tgtBinOp / = number tgtBinOp < = boolean tgtBinOp > = boolean tgtBinOp == = boolean tgtBinOp ~= = boolean tgtBinOp <= = boolean tgtBinOp >= = boolean tgtBinOp ·· = string data _⊢ᴮ_∈_ : VarCtxt → Block yes → Type → Set data _⊢ᴱ_∈_ : VarCtxt → Expr yes → Type → Set data _⊢ᴮ_∈_ where done : ∀ {Γ} → --------------- Γ ⊢ᴮ done ∈ nil return : ∀ {M B T U Γ} → Γ ⊢ᴱ M ∈ T → Γ ⊢ᴮ B ∈ U → --------------------- Γ ⊢ᴮ return M ∙ B ∈ T local : ∀ {x M B T U V Γ} → Γ ⊢ᴱ M ∈ U → (Γ ⊕ x ↦ T) ⊢ᴮ B ∈ V → -------------------------------- Γ ⊢ᴮ local var x ∈ T ← M ∙ B ∈ V function : ∀ {f x B C T U V W Γ} → (Γ ⊕ x ↦ T) ⊢ᴮ C ∈ V → (Γ ⊕ f ↦ (T ⇒ U)) ⊢ᴮ B ∈ W → ------------------------------------------------- Γ ⊢ᴮ function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B ∈ W data _⊢ᴱ_∈_ where nil : ∀ {Γ} → -------------------- Γ ⊢ᴱ (val nil) ∈ nil var : ∀ {x T Γ} → T ≡ orUnknown(Γ [ x ]ⱽ) → ---------------- Γ ⊢ᴱ (var x) ∈ T addr : ∀ {a Γ} T → ----------------- Γ ⊢ᴱ val(addr a) ∈ T number : ∀ {n Γ} → --------------------------- Γ ⊢ᴱ val(number n) ∈ number bool : ∀ {b Γ} → -------------------------- Γ ⊢ᴱ val(bool b) ∈ boolean string : ∀ {x Γ} → --------------------------- Γ ⊢ᴱ val(string x) ∈ string app : ∀ {M N T U Γ} → Γ ⊢ᴱ M ∈ T → Γ ⊢ᴱ N ∈ U → ---------------------- Γ ⊢ᴱ (M $ N) ∈ (tgt T) function : ∀ {f x B T U V Γ} → (Γ ⊕ x ↦ T) ⊢ᴮ B ∈ V → ----------------------------------------------------- Γ ⊢ᴱ (function f ⟨ var x ∈ T ⟩∈ U is B end) ∈ (T ⇒ U) block : ∀ {b B T U Γ} → Γ ⊢ᴮ B ∈ U → ------------------------------------ Γ ⊢ᴱ (block var b ∈ T is B end) ∈ T binexp : ∀ {op Γ M N T U} → Γ ⊢ᴱ M ∈ T → Γ ⊢ᴱ N ∈ U → ---------------------------------- Γ ⊢ᴱ (binexp M op N) ∈ tgtBinOp op data ⊢ᴼ_ : Maybe(Object yes) → Set where nothing : --------- ⊢ᴼ nothing function : ∀ {f x T U V B} → (x ↦ T) ⊢ᴮ B ∈ V → ---------------------------------------------- ⊢ᴼ (just function f ⟨ var x ∈ T ⟩∈ U is B end) ⊢ᴴ_ : Heap yes → Set ⊢ᴴ H = ∀ a {O} → (H [ a ]ᴴ ≡ O) → (⊢ᴼ O) _⊢ᴴᴱ_▷_∈_ : VarCtxt → Heap yes → Expr yes → Type → Set (Γ ⊢ᴴᴱ H ▷ M ∈ T) = (⊢ᴴ H) × (Γ ⊢ᴱ M ∈ T) _⊢ᴴᴮ_▷_∈_ : VarCtxt → Heap yes → Block yes → Type → Set (Γ ⊢ᴴᴮ H ▷ B ∈ T) = (⊢ᴴ H) × (Γ ⊢ᴮ B ∈ T)
algebraic-stack_agda0000_doc_16851
module Pi.Syntax where open import Data.Empty open import Data.Unit open import Data.Sum open import Data.Product infixr 12 _×ᵤ_ infixr 11 _+ᵤ_ infixr 50 _⨾_ infixr 10 _↔_ infix 99 !_ -- Types data 𝕌 : Set where 𝟘 : 𝕌 𝟙 : 𝕌 _+ᵤ_ : 𝕌 → 𝕌 → 𝕌 _×ᵤ_ : 𝕌 → 𝕌 → 𝕌 ⟦_⟧ : (A : 𝕌) → Set ⟦ 𝟘 ⟧ = ⊥ ⟦ 𝟙 ⟧ = ⊤ ⟦ t₁ +ᵤ t₂ ⟧ = ⟦ t₁ ⟧ ⊎ ⟦ t₂ ⟧ ⟦ t₁ ×ᵤ t₂ ⟧ = ⟦ t₁ ⟧ × ⟦ t₂ ⟧ -- Combinators data _↔_ : 𝕌 → 𝕌 → Set where unite₊l : {t : 𝕌} → 𝟘 +ᵤ t ↔ t uniti₊l : {t : 𝕌} → t ↔ 𝟘 +ᵤ t swap₊ : {t₁ t₂ : 𝕌} → t₁ +ᵤ t₂ ↔ t₂ +ᵤ t₁ assocl₊ : {t₁ t₂ t₃ : 𝕌} → t₁ +ᵤ (t₂ +ᵤ t₃) ↔ (t₁ +ᵤ t₂) +ᵤ t₃ assocr₊ : {t₁ t₂ t₃ : 𝕌} → (t₁ +ᵤ t₂) +ᵤ t₃ ↔ t₁ +ᵤ (t₂ +ᵤ t₃) unite⋆l : {t : 𝕌} → 𝟙 ×ᵤ t ↔ t uniti⋆l : {t : 𝕌} → t ↔ 𝟙 ×ᵤ t swap⋆ : {t₁ t₂ : 𝕌} → t₁ ×ᵤ t₂ ↔ t₂ ×ᵤ t₁ assocl⋆ : {t₁ t₂ t₃ : 𝕌} → t₁ ×ᵤ (t₂ ×ᵤ t₃) ↔ (t₁ ×ᵤ t₂) ×ᵤ t₃ assocr⋆ : {t₁ t₂ t₃ : 𝕌} → (t₁ ×ᵤ t₂) ×ᵤ t₃ ↔ t₁ ×ᵤ (t₂ ×ᵤ t₃) absorbr : {t : 𝕌} → 𝟘 ×ᵤ t ↔ 𝟘 factorzl : {t : 𝕌} → 𝟘 ↔ 𝟘 ×ᵤ t dist : {t₁ t₂ t₃ : 𝕌} → (t₁ +ᵤ t₂) ×ᵤ t₃ ↔ (t₁ ×ᵤ t₃) +ᵤ (t₂ ×ᵤ t₃) factor : {t₁ t₂ t₃ : 𝕌} → (t₁ ×ᵤ t₃) +ᵤ (t₂ ×ᵤ t₃) ↔ (t₁ +ᵤ t₂) ×ᵤ t₃ id↔ : {t : 𝕌} → t ↔ t _⨾_ : {t₁ t₂ t₃ : 𝕌} → (t₁ ↔ t₂) → (t₂ ↔ t₃) → (t₁ ↔ t₃) _⊕_ : {t₁ t₂ t₃ t₄ : 𝕌} → (t₁ ↔ t₃) → (t₂ ↔ t₄) → (t₁ +ᵤ t₂ ↔ t₃ +ᵤ t₄) _⊗_ : {t₁ t₂ t₃ t₄ : 𝕌} → (t₁ ↔ t₃) → (t₂ ↔ t₄) → (t₁ ×ᵤ t₂ ↔ t₃ ×ᵤ t₄) -- Some useful combinators unite₊r : {t : 𝕌} → t +ᵤ 𝟘 ↔ t unite₊r = swap₊ ⨾ unite₊l uniti₊r : {t : 𝕌} → t ↔ t +ᵤ 𝟘 uniti₊r = uniti₊l ⨾ swap₊ unite⋆r : {t : 𝕌} → t ×ᵤ 𝟙 ↔ t unite⋆r = swap⋆ ⨾ unite⋆l uniti⋆r : {t : 𝕌} → t ↔ t ×ᵤ 𝟙 uniti⋆r = uniti⋆l ⨾ swap⋆ absorbl : {t : 𝕌} → t ×ᵤ 𝟘 ↔ 𝟘 absorbl = swap⋆ ⨾ absorbr factorzr : {t : 𝕌} → 𝟘 ↔ t ×ᵤ 𝟘 factorzr = factorzl ⨾ swap⋆ distl : {t₁ t₂ t₃ : 𝕌} → t₁ ×ᵤ (t₂ +ᵤ t₃) ↔ (t₁ ×ᵤ t₂) +ᵤ (t₁ ×ᵤ t₃) distl = swap⋆ ⨾ dist ⨾ (swap⋆ ⊕ swap⋆) factorl : {t₁ t₂ t₃ : 𝕌 } → (t₁ ×ᵤ t₂) +ᵤ (t₁ ×ᵤ t₃) ↔ t₁ ×ᵤ (t₂ +ᵤ t₃) factorl = (swap⋆ ⊕ swap⋆) ⨾ factor ⨾ swap⋆ -- Inverses of combinators !_ : {A B : 𝕌} → A ↔ B → B ↔ A ! unite₊l = uniti₊l ! uniti₊l = unite₊l ! swap₊ = swap₊ ! assocl₊ = assocr₊ ! assocr₊ = assocl₊ ! unite⋆l = uniti⋆l ! uniti⋆l = unite⋆l ! swap⋆ = swap⋆ ! assocl⋆ = assocr⋆ ! assocr⋆ = assocl⋆ ! absorbr = factorzl ! factorzl = absorbr ! dist = factor ! factor = dist ! id↔ = id↔ ! (c₁ ⨾ c₂) = ! c₂ ⨾ ! c₁ ! (c₁ ⊕ c₂) = (! c₁) ⊕ (! c₂) ! (c₁ ⊗ c₂) = (! c₁) ⊗ (! c₂)
algebraic-stack_agda0000_doc_16852
module Automata.Nondeterministic where -- Standard libraries imports ---------------------------------------- open import Level using () renaming (zero to ℓ₀) open import Data.Nat using (ℕ) open import Data.Product using (_×_) open import Data.Vec using (Vec ; [] ; _∷_) open import Relation.Unary using (Pred) open import Relation.Binary.PropositionalEquality using (_≡_) ---------------------------------------------------------------------- -- Thesis imports ---------------------------------------------------- open import Utilities.ExistsSyntax using (∃-syntax) ---------------------------------------------------------------------- record NDA (Σ : Set) : Set₁ where constructor ⟨_,_,_,_⟩ field Q : Set S : Pred Q ℓ₀ F : Pred Q ℓ₀ Δ : Q → Σ → Pred Q ℓ₀ Δ* : Q → {n : ℕ} → Vec Σ n → Pred Q ℓ₀ Δ* q [] = q ≡_ Δ* q (x ∷ xs) q′ = ∃ q₀ ∶ Q • ((Δ q x q₀) × (Δ* q₀ xs q′)) Accepts : {n : ℕ} → Pred (Vec Σ n) ℓ₀ Accepts xs = ∃ q ∶ Q • (S q × ∃ q′ ∶ Q • ((F q′) × (Δ* q xs q′))) -- :TODO: are these useful? _-Reachable : ℕ → Q → Pred Q ℓ₀ _-Reachable n q q′ = ∃ xs ∶ Vec Σ n • (Δ* q xs q′) Reachable : Q → Pred Q ℓ₀ Reachable q q′ = ∃ n ∶ ℕ • (n -Reachable) q q′
algebraic-stack_agda0000_doc_16853
module ByteCount where open import Agda.Builtin.Word {-# FOREIGN GHC import Foreign.C.Types #-} postulate CSize : Set mkCSize : Word64 → CSize {-# COMPILE GHC CSize = type CSize #-} {-# COMPILE GHC mkCSize = CSize #-} ByteCount : Set ByteCount = CSize
algebraic-stack_agda0000_doc_16854
------------------------------------------------------------------------ -- Primitive IO: simple bindings to Haskell types and functions ------------------------------------------------------------------------ module IO.Primitive where open import Data.String hiding (Costring) open import Data.Char open import Foreign.Haskell ------------------------------------------------------------------------ -- The IO monad postulate IO : Set → Set {-# COMPILED_TYPE IO IO #-} infixl 1 _>>=_ postulate return : ∀ {A} → A → IO A _>>=_ : ∀ {A B} → IO A → (A → IO B) → IO B {-# COMPILED return (\_ -> return :: a -> IO a) #-} {-# COMPILED _>>=_ (\_ _ -> (>>=) :: IO a -> (a -> IO b) -> IO b) #-} ------------------------------------------------------------------------ -- Simple lazy IO (UTF8-based) private Costring = Colist Char postulate getContents : IO Costring readFile : String → IO Costring writeFile : String → Costring → IO Unit putStr : Costring → IO Unit putStrLn : Costring → IO Unit {-# IMPORT System.IO.UTF8 #-} {-# COMPILED getContents System.IO.UTF8.getContents #-} {-# COMPILED readFile System.IO.UTF8.readFile #-} {-# COMPILED writeFile System.IO.UTF8.writeFile #-} {-# COMPILED putStr System.IO.UTF8.putStr #-} {-# COMPILED putStrLn System.IO.UTF8.putStrLn #-}
algebraic-stack_agda0000_doc_16855
{-# OPTIONS --cubical -van-extra-option-just-to-test-a-hack:0 #-}
algebraic-stack_agda0000_doc_16856
open import Function using (_$_) open import Relation.Nullary using (yes; no) open import Relation.Binary using (Decidable; Irrelevant; Antisymmetric; Setoid) open import AKS.Algebra.Bundles using (NonZeroCommutativeRing; Field) module AKS.Algebra.Consequences {c ℓ} (R : NonZeroCommutativeRing c ℓ) where open import AKS.Nat using (ℕ) open import Algebra.Bundles using (CommutativeRing) open NonZeroCommutativeRing R using (_+_; _*_; -_; _-_; 0#; 1#) renaming (Carrier to C) open NonZeroCommutativeRing R using (_≈_; _≉_; setoid) open Setoid setoid using (refl; sym) open import Relation.Binary.Reasoning.Setoid setoid open NonZeroCommutativeRing R using (isNonZeroCommutativeRing; commutativeRing) open CommutativeRing commutativeRing using (+-identityʳ; +-assoc; +-comm; +-congʳ; +-congˡ; +-cong; -‿cong; -‿inverseʳ) open CommutativeRing commutativeRing using (*-identityˡ; *-cong; *-congʳ; *-congˡ; *-assoc; *-comm; zeroʳ; zeroˡ; commutativeSemiring) open import AKS.Algebra.Structures C _≈_ using (IsField; IsEuclideanDomain; module Modulus; module Divisibility; IsIntegralDomain; IsGCDDomain; IsUniqueFactorizationDomain) open import AKS.Algebra.Divisibility commutativeSemiring using (module Euclidean) open Modulus using (Remainder; 0≈) open Divisibility _*_ using (_∣_; divides) module Division⇒EuclideanDomain (_≈?_ : Decidable _≈_) (≈-irrelevant : Irrelevant _≈_) (≉-irrelevant : Irrelevant _≉_) (∣_∣ : ∀ n {n≉0 : n ≉ 0#} → ℕ) (_div_ : ∀ (n m : C) {m≉0 : m ≉ 0#} → C) (_mod_ : ∀ (n m : C) {m≉0 : m ≉ 0#} → C) (division : ∀ n m {m≉0 : m ≉ 0#} → n ≈ m * (n div m) {m≉0} + (n mod m) {m≉0}) (modulus : ∀ n m {m≉0 : m ≉ 0#} → Remainder 0# ∣_∣ _mod_ n m {m≉0}) (div-cong : ∀ {x₁ x₂} {y₁ y₂} → x₁ ≈ x₂ → y₁ ≈ y₂ → ∀ {y₁≉0 y₂≉0} → (x₁ div y₁) {y₁≉0} ≈ (x₂ div y₂) {y₂≉0}) (mod-distribʳ-* : ∀ c a b {b≉0} {b*c≉0} → ((a * c) mod (b * c)) {b*c≉0} ≈ (a mod b) {b≉0} * c) (*-cancelˡ : ∀ x {y z} → x ≉ 0# → x * y ≈ x * z → y ≈ z) where private remainder : ∀ n m {m≉0 : m ≉ 0#} → (n mod m) {m≉0} ≈ n - m * (n div m) {m≉0} remainder n m {m≉0} = begin n mod m ≈⟨ sym (+-identityʳ (n mod m)) ⟩ n mod m + 0# ≈⟨ +-congˡ (sym (-‿inverseʳ (m * n div m))) ⟩ n mod m + (m * n div m - m * n div m) ≈⟨ sym (+-assoc (n mod m) (m * n div m) (- (m * n div m))) ⟩ (n mod m + m * n div m) - m * n div m ≈⟨ +-congʳ (+-comm (n mod m) (m * n div m)) ⟩ (m * n div m + n mod m) - m * n div m ≈⟨ +-congʳ (sym (division n m {m≉0})) ⟩ n - m * n div m ∎ mod-cong : ∀ {x₁ x₂} {y₁ y₂} → x₁ ≈ x₂ → y₁ ≈ y₂ → ∀ {y₁≉0 y₂≉0} → (x₁ mod y₁) {y₁≉0} ≈ (x₂ mod y₂) {y₂≉0} mod-cong {x₁} {x₂} {y₁} {y₂} x₁≈x₂ y₁≈y₂ {y₁≉0} {y₂≉0} = begin x₁ mod y₁ ≈⟨ remainder x₁ y₁ {y₁≉0} ⟩ x₁ - y₁ * x₁ div y₁ ≈⟨ +-cong x₁≈x₂ (-‿cong (*-cong y₁≈y₂ (div-cong x₁≈x₂ y₁≈y₂))) ⟩ x₂ - y₂ * x₂ div y₂ ≈⟨ sym (remainder x₂ y₂ {y₂≉0}) ⟩ x₂ mod y₂ ∎ open Euclidean ∣_∣ _div_ _mod_ _≈?_ ≈-irrelevant ≉-irrelevant division modulus mod-cong mod-distribʳ-* using (gcd; gcd-isGCD) public isIntegralDomain : IsIntegralDomain _+_ _*_ -_ 0# 1# isIntegralDomain = record { isNonZeroCommutativeRing = isNonZeroCommutativeRing; *-cancelˡ = *-cancelˡ } isGCDDomain : IsGCDDomain _+_ _*_ -_ 0# 1# gcd isGCDDomain = record { isIntegralDomain = isIntegralDomain; gcd-isGCD = gcd-isGCD } isUniqueFactorizationDomain : IsUniqueFactorizationDomain _+_ _*_ -_ 0# 1# gcd isUniqueFactorizationDomain = record { isGCDDomain = isGCDDomain } isEuclideanDomain : IsEuclideanDomain _+_ _*_ -_ 0# 1# ∣_∣ _div_ _mod_ gcd isEuclideanDomain = record { isUniqueFactorizationDomain = isUniqueFactorizationDomain ; division = division ; modulus = modulus ; div-cong = div-cong ; mod-cong = mod-cong } module Inverse⇒Field (_≈?_ : Decidable _≈_) (≈-irrelevant : Irrelevant _≈_) (≉-irrelevant : Irrelevant _≉_) (_/_ : ∀ (n m : C) {m≉0 : m ≉ 0#} → C) (inverse : ∀ (n m : C) {m≉0 : m ≉ 0#} → n ≈ m * (n / m) {m≉0}) where private ∣_∣ : ∀ n {n≉0 : n ≉ 0#} → ℕ ∣ _ ∣ = 0 _mod_ : ∀ (n m : C) {m≉0 : m ≉ 0#} → C _ mod _ = 0# division : ∀ n m {m≉0 : m ≉ 0#} → n ≈ m * (n / m) {m≉0} + (n mod m) {m≉0} division n m {m≉0} = begin n ≈⟨ inverse n m {m≉0} ⟩ m * (n / m) ≈⟨ sym (+-identityʳ (m * (n / m))) ⟩ m * (n / m) {m≉0} + (n mod m) {m≉0} ∎ modulus : ∀ n m {m≉0 : m ≉ 0#} → Remainder 0# ∣_∣ _mod_ n m {m≉0} modulus _ _ = 0≈ refl *-cancelˡ : ∀ x {y z} → x ≉ 0# → x * y ≈ x * z → y ≈ z *-cancelˡ x {y} {z} x≢0 x*y≡x*z = begin y ≈⟨ sym (*-identityˡ y) ⟩ 1# * y ≈⟨ *-congʳ (inverse 1# x {x≢0}) ⟩ (x * (1# / x)) * y ≈⟨ *-congʳ (*-comm x (1# / x)) ⟩ ((1# / x) * x) * y ≈⟨ *-assoc _ _ _ ⟩ (1# / x) * (x * y) ≈⟨ *-congˡ x*y≡x*z ⟩ (1# / x) * (x * z) ≈⟨ sym (*-assoc _ _ _) ⟩ ((1# / x) * x) * z ≈⟨ *-congʳ (*-comm (1# / x) x) ⟩ (x * (1# / x)) * z ≈⟨ *-congʳ (sym (inverse 1# x {x≢0})) ⟩ 1# * z ≈⟨ *-identityˡ z ⟩ z ∎ div-cong : ∀ {x₁ x₂} {y₁ y₂} → x₁ ≈ x₂ → y₁ ≈ y₂ → ∀ {y₁≉0 y₂≉0} → (x₁ / y₁) {y₁≉0} ≈ (x₂ / y₂) {y₂≉0} div-cong {x₁} {x₂} {y₁} {y₂} x₁≈x₂ y₁≈y₂ {y₁≉0} {y₂≉0} = *-cancelˡ y₁ y₁≉0 $ begin y₁ * (x₁ / y₁) ≈⟨ sym (inverse x₁ y₁) ⟩ x₁ ≈⟨ x₁≈x₂ ⟩ x₂ ≈⟨ inverse x₂ y₂ ⟩ y₂ * (x₂ / y₂) ≈⟨ *-congʳ (sym y₁≈y₂) ⟩ y₁ * (x₂ / y₂) ∎ mod-distribʳ-* : ∀ c a b {b≉0} {b*c≉0} → ((a * c) mod (b * c)) {b*c≉0} ≈ (a mod b) {b≉0} * c mod-distribʳ-* c a b = sym (zeroˡ c) open Division⇒EuclideanDomain _≈?_ ≈-irrelevant ≉-irrelevant ∣_∣ _/_ _mod_ division modulus div-cong mod-distribʳ-* *-cancelˡ using (gcd; isEuclideanDomain) public isField : IsField _+_ _*_ -_ 0# 1# _/_ gcd isField = record { isEuclideanDomain = isEuclideanDomain } [field] : Field c ℓ [field] = record { isField = isField }
algebraic-stack_agda0000_doc_16857
------------------------------------------------------------------------------ -- Natural numbers (PCF version) ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module LTC-PCF.Data.Nat where open import LTC-PCF.Base open import LTC-PCF.Data.Nat.Rec open import LTC-PCF.Data.Nat.Type public infixl 7 _*_ infixl 6 _+_ _∸_ ------------------------------------------------------------------------------ -- Addition with recursion on the first argument. _+_ : D → D → D m + n = rec m n (lam (λ _ → lam succ₁)) -- Subtraction with recursion on the second argument. _∸_ : D → D → D m ∸ n = rec n m (lam (λ _ → lam pred₁)) -- Multiplication with recursion on the first argument. _*_ : D → D → D m * n = rec m zero (lam (λ _ → lam (λ x → n + x)))
algebraic-stack_agda0000_doc_16858
{-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module CombiningProofs.Erasing where postulate D : Set succ₁ : D → D data N : D → Set where nsucc₁ : ∀ {n} → N n → N (succ₁ n) nsucc₂ : ∀ {n} → (Nn : N n) → N (succ₁ n) -- The types of nsucc₁ and nsucc₂ are the same. -- (18 April 2013) -- $ dump-agdai Erasing -- Qname: Erasing.N.nsucc₁ -- Type: El {getSort = Type (Max []), unEl = Pi []r{El {getSort = Type (Max []), unEl = Def Erasing.D []}} (Abs "n" El {getSort = Type (Max []), unEl = Pi []r(El {getSort = Type (Max []), unEl = Def Erasing.N [[]r(Var 0 [])]}) (NoAbs "_" El {getSort = Type (Max []), unEl = Def Erasing.N [[]r(Def Erasing.succ₁ [[]r(Var 0 [])])]})})} -- Qname: Erasing.N.nsucc₂ -- Type: El {getSort = Type (Max []), unEl = Pi []r{El {getSort = Type (Max []), unEl = Def Erasing.D []}} (Abs "n" El {getSort = Type (Max []), unEl = Pi []r(El {getSort = Type (Max []), unEl = Def Erasing.N [[]r(Var 0 [])]}) (NoAbs "Nn" El {getSort = Type (Max []), unEl = Def Erasing.N [[]r(Def Erasing.succ₁ [[]r(Var 0 [])])]})})}
algebraic-stack_agda0000_doc_16859
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Functions.Definition open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order open import Numbers.Naturals.Order.WellFounded open import Semirings.Definition open import Orders.Total.Definition open import Orders.Partial.Definition open import Orders.WellFounded.Definition open import Orders.WellFounded.Induction module Sets.CantorBijection.Order where order : Rel (ℕ && ℕ) order (a ,, b) (c ,, d) = ((a +N b) <N (c +N d)) || (((a +N b) ≡ (c +N d)) && (b <N d)) totalOrder : TotalOrder (ℕ && ℕ) PartialOrder._<_ (TotalOrder.order totalOrder) = order PartialOrder.irreflexive (TotalOrder.order totalOrder) {fst ,, snd} (inl x) = exFalso (TotalOrder.irreflexive ℕTotalOrder x) PartialOrder.irreflexive (TotalOrder.order totalOrder) {fst ,, snd} (inr (_ ,, p)) = exFalso (TotalOrder.irreflexive ℕTotalOrder p) PartialOrder.<Transitive (TotalOrder.order totalOrder) {x1 ,, x2} {y1 ,, y2} {z1 ,, z2} (inl pr1) (inl pr2) = inl (TotalOrder.<Transitive ℕTotalOrder pr1 pr2) PartialOrder.<Transitive (TotalOrder.order totalOrder) {x1 ,, x2} {y1 ,, y2} {z1 ,, z2} (inl pr1) (inr (f1 ,, f2)) = inl (identityOfIndiscernablesRight _<N_ pr1 f1) PartialOrder.<Transitive (TotalOrder.order totalOrder) {x1 ,, x2} {y1 ,, y2} {z1 ,, z2} (inr (f1 ,, f2)) (inl x) = inl (identityOfIndiscernablesLeft _<N_ x (equalityCommutative f1)) PartialOrder.<Transitive (TotalOrder.order totalOrder) {x1 ,, x2} {y1 ,, y2} {z1 ,, z2} (inr (f1 ,, f2)) (inr (fst ,, snd)) = inr (transitivity f1 fst ,, TotalOrder.<Transitive ℕTotalOrder f2 snd) TotalOrder.totality totalOrder (a ,, b) (c ,, d) with TotalOrder.totality ℕTotalOrder (a +N b) (c +N d) TotalOrder.totality totalOrder (a ,, b) (c ,, d) | inl (inl x) = inl (inl (inl x)) TotalOrder.totality totalOrder (a ,, b) (c ,, d) | inl (inr x) = inl (inr (inl x)) TotalOrder.totality totalOrder (a ,, b) (c ,, d) | inr eq with TotalOrder.totality ℕTotalOrder b d TotalOrder.totality totalOrder (a ,, b) (c ,, d) | inr eq | inl (inl x) = inl (inl (inr (eq ,, x))) TotalOrder.totality totalOrder (a ,, b) (c ,, d) | inr eq | inl (inr x) = inl (inr (inr (equalityCommutative eq ,, x))) TotalOrder.totality totalOrder (a ,, b) (c ,, .b) | inr eq | inr refl rewrite canSubtractFromEqualityRight {a} {b} {c} eq = inr refl leastElement : {y : ℕ && ℕ} → order y (0 ,, 0) → False leastElement {zero ,, b} (inl ()) leastElement {zero ,, b} (inr ()) leastElement {succ a ,, b} (inl ()) leastElement {succ a ,, b} (inr ()) mustDescend : (a b t : ℕ) → order (a ,, b) (t ,, zero) → a +N b <N t mustDescend a b zero ord = exFalso (leastElement ord) mustDescend a b (succ t) (inl x) rewrite Semiring.sumZeroRight ℕSemiring t = x orderWellfounded : WellFounded order orderWellfounded (a ,, b) = access (go b a) where g0 : (c : ℕ) (y : ℕ && ℕ) → order y (c ,, 0) → Accessible order y -- We want to induct on the second entry of x here, so we decompose so as to put that first. g : (x : ℕ) → ((y : ℕ) → y <N x → (b : ℕ) (z : ℕ && ℕ) → order z (b ,, y) → Accessible order z) → (c : ℕ) (y : ℕ && ℕ) → order y (c ,, x) → Accessible order y g0 = rec <NWellfounded (λ z → (x : ℕ && ℕ) (x₁ : order x (z ,, zero)) → Accessible order x) f where p : (a b : ℕ) → a ≡ b → (a ,, zero) ≡ (b ,, zero) p a .a refl = refl f : (x : ℕ) (x₁ : (x₂ : ℕ) (x₃ : x₂ <N x) (x₄ : ℕ && ℕ) (x₅ : order x₄ (x₂ ,, zero)) → Accessible order x₄) (x₂ : ℕ && ℕ) (x₃ : order x₂ (x ,, zero)) → Accessible order x₂ f zero pr y ord = exFalso (leastElement ord) f (succ m) pr (fst ,, snd) (inl pr2) = h snd fst pr2 where go : (x : ℕ) (x₁ : (x₂ : ℕ) (x₃ : x₂ <N x) (x₄ : ℕ) (x₅ : x₄ +N x₂ <N succ (m +N zero)) → Accessible order (x₄ ,, x₂)) (x₂ : ℕ) (x₃ : x₂ +N x <N succ (m +N zero)) → Accessible order (x₂ ,, x) go bound pr2 toProve bounded with TotalOrder.totality ℕTotalOrder (toProve +N bound) (m +N 0) ... | inl (inl bl) = pr m (le 0 refl) (toProve ,, bound) (inl bl) ... | inl (inr bl) = exFalso (noIntegersBetweenXAndSuccX (m +N 0) bl bounded) go zero pr2 toProve _ | inr bl rewrite Semiring.sumZeroRight ℕSemiring m | Semiring.sumZeroRight ℕSemiring toProve = access λ i i<z → pr m (le 0 refl) i (inl (mustDescend (_&&_.fst i) (_&&_.snd i) (m +N zero) (identityOfIndiscernablesLeft order (identityOfIndiscernablesRight order i<z (p toProve (m +N 0) (transitivity bl (equalityCommutative (Semiring.sumZeroRight ℕSemiring m))))) refl))) go (succ bound) pr2 toProve _ | inr bl = access desc where desc : (i : ℕ && ℕ) → (order i (toProve ,, succ bound)) → Accessible order i desc (i1 ,, i2) (inl ord) = pr m (le zero refl) (i1 ,, i2) (inl (identityOfIndiscernablesRight _<N_ ord bl)) desc (i1 ,, i2) (inr (ord1 ,, ord2)) = pr2 i2 ord2 i1 (le 0 (applyEquality succ (transitivity ord1 bl))) h : (a : ℕ) (b : ℕ) (pr2 : b +N a <N succ m +N 0) → Accessible order (b ,, a) h = rec <NWellfounded (λ z → (x2 : ℕ) (x1 : x2 +N z <N succ (m +N zero)) → Accessible order (x2 ,, z)) go g zero _ = g0 g (succ x) pr zero (y1 ,, y2) (inl pr1) with TotalOrder.totality ℕTotalOrder (y1 +N y2) x g (succ x) pr zero (y1 ,, y2) (inl pr1) | inl (inl y1+y2<x) = pr x (le 0 refl) zero (y1 ,, y2) (inl y1+y2<x) g (succ x) pr zero (y1 ,, y2) (inl pr1) | inl (inr x<y1+y2) = exFalso (noIntegersBetweenXAndSuccX x x<y1+y2 pr1) g (succ x) pr zero (y1 ,, y2) (inl pr1) | inr y1+y2=x = access (λ y y<zs → pr x (le 0 refl) zero y (ans y y<zs)) where ans : (y : ℕ && ℕ) → order y (y1 ,, y2) → (_&&_.fst y +N _&&_.snd y <N x) || ((_&&_.fst y +N _&&_.snd y ≡ x) && (_&&_.snd y <N x)) ans (fst ,, snd) (inl x) rewrite y1+y2=x = inl x ans (zero ,, snd) (inr (a1 ,, a2)) rewrite y1+y2=x | a1 = exFalso (bad x y1 y2 y1+y2=x a2) where bad : (x y1 y2 : ℕ) → y1 +N y2 ≡ x → x <N y2 → False bad x zero y2 y1+y2=x x<y2 = TotalOrder.irreflexive ℕTotalOrder (identityOfIndiscernablesRight _<N_ x<y2 y1+y2=x) bad x (succ y1) y2 y1+y2=x x<y2 rewrite equalityCommutative y1+y2=x = TotalOrder.irreflexive ℕTotalOrder (TotalOrder.<Transitive ℕTotalOrder x<y2 (identityOfIndiscernablesRight _<N_ (addingIncreases y2 y1) (Semiring.commutative ℕSemiring y2 (succ y1)))) ans (succ fst ,, snd) (inr (a1 ,, a2)) rewrite y1+y2=x = inr (a1 ,, le fst a1) g (succ x) pr zero (zero ,, y2) (inr (fst ,, snd)) = exFalso (TotalOrder.irreflexive ℕTotalOrder (identityOfIndiscernablesLeft _<N_ snd fst)) g (succ x) pr zero (succ y1 ,, y2) (inr (fst ,, snd)) = pr y2 snd (succ (succ y1)) (succ y1 ,, y2) (inl (le 0 refl)) g (succ x) pr (succ c) y (inl z) = pr x (le 0 refl) (succ (succ c)) y (inl (identityOfIndiscernablesRight _<N_ z (applyEquality succ (transitivity (Semiring.commutative ℕSemiring c (succ x)) (applyEquality succ (Semiring.commutative ℕSemiring x c)))))) g (succ x) pr (succ c) y (inr (fst ,, snd)) with TotalOrder.totality ℕTotalOrder (_&&_.snd y) x ... | inl (inl bl) = pr x (le 0 refl) (succ (succ c)) y (inr (transitivity fst (applyEquality succ (transitivity (Semiring.commutative ℕSemiring c (succ x)) (applyEquality succ (Semiring.commutative ℕSemiring x c)))) ,, bl)) ... | inl (inr bl) = exFalso (noIntegersBetweenXAndSuccX x bl snd) g (succ x) pr (succ c) (y1 ,, .x) (inr (fst ,, _)) | inr refl with canSubtractFromEqualityRight {y1} {x} {succ (succ c)} (transitivity fst (applyEquality succ (transitivity (Semiring.commutative ℕSemiring c (succ x)) (applyEquality succ (Semiring.commutative ℕSemiring x c))))) g (succ x) pr (succ c) (.(succ (succ c)) ,, .x) (inr (_ ,, _)) | inr refl | refl = pr x (le 0 refl) (succ (succ (succ c))) (succ (succ c) ,, x) (inl (le 0 refl)) go : (a : ℕ) → (b : ℕ) → (y : ℕ && ℕ) → order y (b ,, a) → Accessible order y go = rec <NWellfounded (λ (a : ℕ) → (b : ℕ) → (y : ℕ && ℕ) → order y (b ,, a) → Accessible order y) g
algebraic-stack_agda0000_doc_16860
module Basic.Axiomatic.Partial where open import Data.Bool hiding (not; if_then_else_; _∧_) open import Data.Vec hiding ([_]; _++_; split) open import Function open import Relation.Binary.PropositionalEquality open import Data.Product import Level as L open import Utils.Decidable open import Basic.AST open import Basic.BigStep {- Here we define a Hoare logic for partial correctness of While programs (chapter 6.2). The most important point here is the choice of representation for predicates. The book mention intensional and extensional approaches. In the intensional approach, we define a separate assertion language. However, the assertion language has to be powerful enough to be able to express useful properties of the program state, and it takes quite a bit of work to define such a language. An advatange of the intensional approach is that we could reuse the same assertion language to extend the object language in other ways. The book uses the extensional approach, and so do we. We go a bit further than the book though: the book has boolean predicates over the program state, while we have type theoretic "(State n → Set)" predicates. This means that our predicates can be proof-relevant and contain data, so they can express computations and transformations on states. However, the higher-order nature of the "(State n → Set)" representation of predicates also makes type inference quite hard. I attepmeted to do some correctness proofs with the Hoare logics, and it's certainly feasible, but we would need a lot more machinery and lots of helper functions to make it convenient enough. It's interesting to note that manual proof-writing is generally easier with Hoare logics than with raw semantics, but here in Agda it's the opposite: the proofs in raw semantics (see e. g. the factorial proofs in Basic.SmallStep, Basic.BigStep and Extended.FunRetRec) are pretty neat convenient, since Agda keeps track of the program state for us and hides lots of unnecessary details. Side note: we could have made our definition universe polymorphic. It would be a trivial extension; the reason we don't have it is that we don't need that much power of expression for any of our proofs. Just using "Set" suffices. -} {- Predicate combinators: these just lift conjunction and implication into the State environment. -} _∧_ : ∀ {α β γ}{A : Set α} → (A → Set β) → (A → Set γ) → (A → Set _) _∧_ f g x = f x × g x _==>_ : ∀ {α β γ}{A : Set α} → (A → Set β) → (A → Set γ) → Set _ _==>_ f g = ∀ {x} → f x → g x infixr 4 _,_ data 〈_〉_〈_〉 {n} : (State n → Set) → St n → (State n → Set) → Set₁ where skip : ∀ {P} → ----------------- 〈 P 〉 skip 〈 P 〉 ass : ∀ {x a P} → ---------------------------------------------- 〈 (λ s → P (s [ x ]≔ ⟦ a ⟧ᵉ s)) 〉 x := a 〈 P 〉 _,_ : ∀ {P Q R S₁ S₂} → 〈 P 〉 S₁ 〈 Q 〉 → 〈 Q 〉 S₂ 〈 R 〉 → -------------------------------- 〈 P 〉 S₁ , S₂ 〈 R 〉 if : ∀ {P Q b S₁ S₂} → 〈 (T ∘ ⟦ b ⟧ᵉ) ∧ P 〉 S₁ 〈 Q 〉 → 〈 (F ∘ ⟦ b ⟧ᵉ) ∧ P 〉 S₂ 〈 Q 〉 → -------------------------------------------------------------- 〈 P 〉 if b then S₁ else S₂ 〈 Q 〉 while : ∀ {P b S} → 〈 (T ∘ ⟦ b ⟧ᵉ) ∧ P 〉 S 〈 P 〉 → ---------------------------------------- 〈 P 〉 while b do S 〈 (F ∘ ⟦ b ⟧ᵉ) ∧ P 〉 cons : ∀ {P' Q' P Q S} → P ==> P' → 〈 P' 〉 S 〈 Q' 〉 → Q' ==> Q → ----------------------------------------- 〈 P 〉 S 〈 Q 〉 {- A part of exercise 6.13 (associativity of statement composition with respect to our logic). -} split : ∀ {n P R}{S₁ S₂ : St n} → 〈 P 〉 S₁ , S₂ 〈 R 〉 → ∃ λ Q → (〈 P 〉 S₁ 〈 Q 〉) × (〈 Q 〉 S₂ 〈 R 〉) split (p , p₁) = _ , (p , p₁) split (cons x p y) with split p ... | Q , (p1 , p2) = Q , (cons x p1 id , cons id p2 y) ex-613a : ∀ {n P Q}{S₁ S₂ S₃ : St n} → 〈 P 〉 S₁ , (S₂ , S₃) 〈 Q 〉 → 〈 P 〉 (S₁ , S₂) , S₃ 〈 Q 〉 ex-613a (p , p₁) with split p₁ ... | _ , (p₁₁ , p₁₂) = (p , p₁₁) , p₁₂ ex-613a (cons x p x₁) = cons x (ex-613a p) x₁ ex-613b : ∀ {n P Q}{S₁ S₂ S₃ : St n} → 〈 P 〉 (S₁ , S₂) , S₃ 〈 Q 〉 → 〈 P 〉 S₁ , (S₂ , S₃) 〈 Q 〉 ex-613b (p₁ , p₂) with split p₁ ... | _ , (p₁₁ , p₁₂) = p₁₁ , (p₁₂ , p₂) ex-613b (cons x p x₁) = cons x (ex-613b p) x₁ {- Now we set out to prove soundess and completeness of our Hoare logic (see chapter 6.3). Note that we express validity of a Hoare triple in terms of the weakest liberal precondition: ⊨ₚ { P } S { Q } := (P ==> wlp S Q) This is just a notational conveneince, but for some reason I also find it pleasing to the eye. -} -- Weakest liberal precondition ------------------------------------------------------------ wlp : ∀ {n} → St n → (State n → Set) → State n → Set wlp S Q s = ∀ {s'} → ⟨ S , s ⟩⟱ s' → Q s' -- Soundness ------------------------------------------------------------ {- This proof is the same as in the book, because it's rather simple and there's not much choice. -} sound : ∀ {n}{S : St n}{P Q} → 〈 P 〉 S 〈 Q 〉 → (P ==> wlp S Q) sound skip ps skip = ps sound ass ps ass = ps sound (p , p₁) ps (run , run₁) = sound p₁ (sound p ps run) run₁ sound (if p p₁) ps (if-true x run) = sound p (x , ps) run sound (if p p₁) ps (if-false x run) = sound p₁ (x , ps) run sound (while p) ps (while-true x run run₁) = sound (while p) (sound p (x , ps) run) run₁ sound (while p) ps (while-false x) = x , ps sound (cons x p x₁) ps run = x₁ (sound p (x ps) run) -- Completeness ------------------------------------------------------------ {- This one differs from the book proof. The book proves the following: ∀ S Q → 〈 wlp S Q 〉 S 〈 Q 〉 then uses "cons" and the definition of "wlp" to infer 〈 P 〉 S 〈 Q 〉 from (P ==> wlp S Q). We instead prove completeness directly. Our job here is essentially to recurse on sub-statements, while making the postcondition of that statement equal to the weakest precondition of the following statement. As a result, the proofs for the "if_then_else_" , composition and "while" cases are all a bit simpler than the book proofs. In the case of "while", the book makes an unnecessary twist. It uses the law of excluded middle on "〈 while b do S , s' 〉⟶ s''" derivations, but there's actually no need for that. It would be indeed ugly in Agda, where we would have to assume classical logic and destroy constructivity in order to be able to write that proof. -} complete : ∀ {n}(S : St n){P Q} → (P ==> wlp S Q) → 〈 P 〉 S 〈 Q 〉 complete (x := a) f = cons (λ z → f z ass) ass id complete skip f = cons (λ z → f z skip) skip id complete (S , S₁){P}{Q} f = complete S {P} {wlp S₁ Q} (λ ps runS runS₁ → f ps (runS , runS₁)) , complete S₁ id complete (if b then S else S₁){P}{Q} f = if (complete S {(T ∘ ⟦ b ⟧ᵉ) ∧ P} {Q} (λ {(pb , pP) → λ runS → f pP (if-true pb runS)})) (complete S₁ {(F ∘ ⟦ b ⟧ᵉ) ∧ P} {Q} (λ {(pb , pP) → λ runS₁ → f pP (if-false pb runS₁)})) complete (while b do S){P}{Q} f = cons f (while (complete S {(T ∘ ⟦ b ⟧ᵉ) ∧ W} {W} (λ {(pb , pw) → λ runS runW → pw (while-true pb runS runW)}))) (λ {(pb , pw) → pw (while-false pb)}) where W = wlp (while b do S) Q
algebraic-stack_agda0000_doc_16861
{-# OPTIONS --without-K --safe #-} module Categories.Category.Construction.LT-Models where -- Given a fixed Lawvere Theory LT and a fixed category C, -- the Functors [LT , C] form a category. -- The proof is basically the same as that of Functors. open import Level open import Categories.Category.Core using (Category) open import Categories.Category.Cartesian.Bundle using (CartesianCategory) open import Categories.Category.Monoidal.Instance.Setoids using (Setoids-CartesianCategory) open import Categories.NaturalTransformation using (NaturalTransformation; _∘ᵥ_) renaming (id to idN) open import Categories.NaturalTransformation.Equivalence using (_≃_; ≃-isEquivalence) open import Categories.Theory.Lawvere using (LawvereTheory; ModelsOf_In_) private variable o ℓ e o′ ℓ′ e′ : Level -- The reason the proofs below are so easy is that _∘ᵥ_ 'computes' all the way down into -- expressions in C, from which the properties follow. LT-Models : LawvereTheory ℓ e → CartesianCategory o′ ℓ′ e′ → Category (ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) (ℓ ⊔ ℓ′ ⊔ e′) e′ LT-Models LT C = record { Obj = ModelsOf LT In C ; _⇒_ = λ m₁ m₂ → NaturalTransformation (ModelsOf_In_.mod m₁) (ModelsOf_In_.mod m₂) ; _≈_ = _≃_ ; id = idN ; _∘_ = _∘ᵥ_ ; assoc = assoc ; sym-assoc = sym-assoc ; identityˡ = identityˡ ; identityʳ = identityʳ ; identity² = identity² ; equiv = ≃-isEquivalence ; ∘-resp-≈ = λ eq eq′ → ∘-resp-≈ eq eq′ } where module C = CartesianCategory C using (U) open Category C.U LT-SetoidsModels : {ℓ′ e′ : Level} → LawvereTheory ℓ e → Category (ℓ ⊔ e ⊔ suc (ℓ′ ⊔ e′)) (ℓ ⊔ ℓ′ ⊔ e′) (ℓ′ ⊔ e′) LT-SetoidsModels {ℓ′ = ℓ′} {e′} LT = LT-Models LT (Setoids-CartesianCategory ℓ′ e′)
algebraic-stack_agda0000_doc_16862
module Auto-Modules where open import Auto.Prelude hiding (cong; trans) module NonemptySet (X : Set) (x : X) where h0 : (P : X → Set) → (∀ x → P x) → Σ X P h0 = {!!} -- h0 = λ P h → Σ-i x (h x) module WithRAA (RAA : ∀ A → ¬ (¬ A) → A) where h1 : ∀ A → A ∨ ¬ A h1 = {!!} --h1 = λ A → RAA (A ∨ ((x : A) → ⊥)) (λ z → z (∨-i₂ (λ x → z (∨-i₁ x)))) module B where h2 : ∀ A → A ∨ ¬ A h2 = {!!} module A (X : Set) (x : X) where postulate AllSame : {x y : X} → x ≡ y n0 : (P : X → Set) → Σ X P → ∀ x → P x -- n0 = {!subst AllSame!} -- no solution found n0 = λ P h x → subst P (Σ.wit h) x AllSame (Σ.prf h) module B (X : Set) (x y : X) (P : X → Set) where postulate p : P x h3 : P x h3 = {!p!} -- h3 = p module Setoid (X : Set) (Eq : X → X → Set) (refl : ∀ {x} → Eq x x) (symm : ∀ {x₁ x₂} → Eq x₁ x₂ → Eq x₂ x₁) (subst : ∀ {x₁ x₂} → (P : X → Set) → Eq x₁ x₂ → P x₁ → P x₂) where cong : ∀ {x₁ x₂} → (f : X → X) → Eq x₁ x₂ → Eq (f x₁) (f x₂) cong = {!!} -- hole 4 -- cong = λ {x₁} {x₂} f z → subst (λ z₁ → Eq (f x₁) (f z₁)) z refl trans : ∀ {x₁ x₂ x₃} → Eq x₁ x₂ → Eq x₂ x₃ → Eq x₁ x₃ trans = {!!} -- hole 5 -- trans = λ {x₁} {x₂} {x₃} z z₁ → subst (Eq x₁) z₁ z
algebraic-stack_agda0000_doc_16863
module Base where data True : Set where T : True data False : Set where infix 20 _*_ data _*_ (A : Set)(B : A -> Set) : Set where <_,_> : (x : A) -> B x -> A * B rel : Set -> Set1 rel A = A -> A -> Set pred : Set -> Set1 pred A = A -> Set Refl : {A : Set} -> rel A -> Set Refl {A} R = {x : A} -> R x x Sym : {A : Set} -> rel A -> Set Sym {A} R = {x y : A} -> R x y -> R y x Trans : {A : Set} -> rel A -> Set Trans {A} R = {x y z : A} -> R x y -> R y z -> R x z Map : {A : Set} -> rel A -> {B : Set} -> rel B -> pred (A -> B) Map {A} _R_ _S_ f = {x y : A} -> x R y -> f x S f y
algebraic-stack_agda0000_doc_8944
{-# OPTIONS --without-K #-} open import HoTT.Base open import HoTT.Equivalence module HoTT.Identity.Universe {i} {A B : 𝒰 i} where -- Axiom 2.10.3 - univalence postulate idtoeqv-equiv : isequiv (idtoeqv {A = A} {B = B}) =𝒰-equiv : (A == B) ≃ (A ≃ B) =𝒰-equiv = idtoeqv , idtoeqv-equiv module _ where open qinv (isequiv→qinv idtoeqv-equiv) abstract ua : A ≃ B → A == B ua = g =𝒰-η : ua ∘ idtoeqv ~ id =𝒰-η = η =𝒰-β : idtoeqv ∘ ua ~ id =𝒰-β = ε _=𝒰_ = _≃_
algebraic-stack_agda0000_doc_8945
module hott.types.int where open import hott.functions open import hott.core import hott.types.nat as nat open nat using (ℕ) data ℤ : Type₀ where zero : ℤ +ve : ℕ → ℤ -ve : ℕ → ℤ fromNat : ℕ → ℤ fromNat nat.zero = zero fromNat (nat.succ n) = +ve n neg : ℤ → ℤ neg zero = zero neg (+ve n) = -ve n neg (-ve n) = +ve n suc : ℤ → ℤ suc zero = +ve 0 suc (+ve x) = +ve (nat.succ x) suc (-ve 0) = zero suc (-ve (nat.succ x)) = -ve x pred : ℤ → ℤ pred zero = -ve 0 pred (-ve x) = -ve (nat.succ x) pred (+ve 0) = zero pred (+ve (nat.succ x)) = +ve x suc∘pred~id : suc ∘ pred ~ id suc∘pred~id zero = refl suc∘pred~id (+ve 0) = refl suc∘pred~id (+ve (nat.succ x)) = refl suc∘pred~id (-ve x) = refl pred∘suc~id : pred ∘ suc ~ id pred∘suc~id zero = refl pred∘suc~id (+ve x) = refl pred∘suc~id (-ve 0) = refl pred∘suc~id (-ve (nat.succ x)) = refl
algebraic-stack_agda0000_doc_8946
------------------------------------------------------------------------ -- Second-order abstract syntax -- -- Examples of the formalisation framework in use ------------------------------------------------------------------------ module Examples where -- | Algebraic structures -- Monoids import Monoid.Signature import Monoid.Syntax import Monoid.Equality -- Commutative monoids import CommMonoid.Signature import CommMonoid.Syntax import CommMonoid.Equality -- Groups import Group.Signature import Group.Syntax import Group.Equality -- Commutative groups import CommGroup.Signature import CommGroup.Syntax import CommGroup.Equality -- Group actions import GroupAction.Signature import GroupAction.Syntax import GroupAction.Equality -- Semirings import Semiring.Signature import Semiring.Syntax import Semiring.Equality -- Rings import Ring.Signature import Ring.Syntax import Ring.Equality -- Commutative rings import CommRing.Signature import CommRing.Syntax import CommRing.Equality -- | Logic -- Propositional logic import PropLog.Signature import PropLog.Syntax import PropLog.Equality -- First-order logic (with example proofs) import FOL.Signature import FOL.Syntax import FOL.Equality -- | Computational calculi -- Combinatory logic import Combinatory.Signature import Combinatory.Syntax import Combinatory.Equality -- Untyped λ-calculus import UTLC.Signature import UTLC.Syntax import UTLC.Equality -- Simply-typed λ-calculus (with operational semantics and environment model) import STLC.Signature import STLC.Syntax import STLC.Equality import STLC.Model -- Typed λ-calculus with product and sum types, and naturals (with example derivation) import TLC.Signature import TLC.Syntax import TLC.Equality -- PCF import PCF.Signature import PCF.Syntax import PCF.Equality -- | Miscellaneous -- Lenses import Lens.Signature import Lens.Syntax import Lens.Equality -- Inception algebras import Inception.Signature import Inception.Syntax import Inception.Equality -- Substitution algebras import Sub.Signature import Sub.Syntax import Sub.Equality -- Partial differentiation (with some example proofs) import PDiff.Signature import PDiff.Syntax import PDiff.Equality
algebraic-stack_agda0000_doc_8947
{-# OPTIONS --without-K --safe #-} module Experiment.Zero where open import Level using (_⊔_) -- Empty type data ⊥ : Set where -- Unit type record ⊤ : Set where constructor tt -- Boolean data Bool : Set where true false : Bool -- Natural number data ℕ : Set where zero : ℕ suc : ℕ → ℕ -- Propositional Equality data _≡_ {a} {A : Set a} (x : A) : A → Set a where refl : x ≡ x -- Sum type data _⊎_ {a} {b} (A : Set a) (B : Set b) : Set (a ⊔ b) where inj₁ : A → A ⊎ B inj₂ : B → A ⊎ B -- Dependent Product type record Σ {a} {b} (A : Set a) (B : A → Set b) : Set (a ⊔ b) where constructor _,_ field fst : A snd : B fst -- Induction ⊤-ind : ∀ {p} {P : ⊤ → Set p} → P tt → ∀ x → P x ⊤-ind P⊤ tt = P⊤ ⊥-ind : ∀ {p} {P : ⊥ → Set p} → ∀ x → P x ⊥-ind () Bool-ind : ∀ {p} {P : Bool → Set p} → P true → P false → ∀ x → P x Bool-ind t e true = t Bool-ind t e false = e ℕ-ind : ∀ {p} {P : ℕ → Set p} → P zero → (∀ m → P m → P (suc m)) → ∀ n → P n ℕ-ind P0 Ps zero = P0 ℕ-ind P0 Ps (suc n) = Ps n (ℕ-ind P0 Ps n) ≡-ind : ∀ {a p} {A : Set a} (P : (x y : A) → x ≡ y → Set p) → (∀ x → P x x refl) → ∀ x y (eq : x ≡ y) → P x y eq ≡-ind P Pr x .x refl = Pr x ⊎-ind : ∀ {a b p} {A : Set a} {B : Set b} {P : A ⊎ B → Set p} → (∀ x → P (inj₁ x)) → (∀ y → P (inj₂ y)) → ∀ s → P s ⊎-ind i1 i2 (inj₁ x) = i1 x ⊎-ind i1 i2 (inj₂ y) = i2 y Σ-ind : ∀ {a b p} {A : Set a} {B : A → Set b} {P : Σ A B → Set p} → (∀ x y → P (x , y)) → ∀ p → P p Σ-ind f (x , y) = f x y
algebraic-stack_agda0000_doc_8948
{-# OPTIONS --without-K --safe #-} module Dodo.Binary.Intersection where -- Stdlib imports open import Level using (Level; _⊔_) open import Data.Product as P open import Data.Product using (_×_; _,_; swap; proj₁; proj₂) open import Relation.Binary using (REL) -- Local imports open import Dodo.Binary.Equality -- # Definitions infixl 30 _∩₂_ _∩₂_ : {a b ℓ₁ ℓ₂ : Level} {A : Set a} {B : Set b} → REL A B ℓ₁ → REL A B ℓ₂ → REL A B (ℓ₁ ⊔ ℓ₂) _∩₂_ P Q x y = P x y × Q x y -- # Properties module _ {a b ℓ : Level} {A : Set a} {B : Set b} {R : REL A B ℓ} where ∩₂-idem : (R ∩₂ R) ⇔₂ R ∩₂-idem = ⇔: ⊆-proof ⊇-proof where ⊆-proof : (R ∩₂ R) ⊆₂' R ⊆-proof _ _ = proj₁ ⊇-proof : R ⊆₂' (R ∩₂ R) ⊇-proof _ _ Rxy = (Rxy , Rxy) module _ {a b ℓ₁ ℓ₂ : Level} {A : Set a} {B : Set b} {P : REL A B ℓ₁} {Q : REL A B ℓ₂} where ∩₂-comm : (P ∩₂ Q) ⇔₂ (Q ∩₂ P) ∩₂-comm = ⇔: (λ _ _ → swap) (λ _ _ → swap) module _ {a b ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {B : Set b} {P : REL A B ℓ₁} {Q : REL A B ℓ₂} {R : REL A B ℓ₃} where ∩₂-assoc : P ∩₂ (Q ∩₂ R) ⇔₂ (P ∩₂ Q) ∩₂ R ∩₂-assoc = ⇔: ⊆-proof ⊇-proof where ⊆-proof : P ∩₂ (Q ∩₂ R) ⊆₂' (P ∩₂ Q) ∩₂ R ⊆-proof _ _ (Pxy , (Qxy , Rxy)) = ((Pxy , Qxy) , Rxy) ⊇-proof : (P ∩₂ Q) ∩₂ R ⊆₂' P ∩₂ (Q ∩₂ R) ⊇-proof _ _ ((Pxy , Qxy) , Rxy) = (Pxy , (Qxy , Rxy)) -- # Operations -- ## Operations: ⊆₂ module _ {a b ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {B : Set b} {P : REL A B ℓ₁} {Q : REL A B ℓ₂} {R : REL A B ℓ₃} where ∩₂-combine-⊆₂ : P ⊆₂ Q → P ⊆₂ R → P ⊆₂ (Q ∩₂ R) ∩₂-combine-⊆₂ (⊆: P⊆Q) (⊆: P⊆R) = ⊆: (λ x y Pxy → (P⊆Q x y Pxy , P⊆R x y Pxy)) module _ {a b ℓ₁ ℓ₂ : Level} {A : Set a} {B : Set b} {P : REL A B ℓ₁} {Q : REL A B ℓ₂} where ∩₂-introˡ-⊆₂ : (P ∩₂ Q) ⊆₂ Q ∩₂-introˡ-⊆₂ = ⊆: λ _ _ → proj₂ ∩₂-introʳ-⊆₂ : (P ∩₂ Q) ⊆₂ P ∩₂-introʳ-⊆₂ = ⊆: λ _ _ → proj₁ module _ {a b ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {B : Set b} {P : REL A B ℓ₁} {Q : REL A B ℓ₂} {R : REL A B ℓ₃} where ∩₂-elimˡ-⊆₂ : P ⊆₂ (Q ∩₂ R) → P ⊆₂ R ∩₂-elimˡ-⊆₂ (⊆: P⊆[Q∩R]) = ⊆: (λ x y Pxy → proj₂ (P⊆[Q∩R] x y Pxy)) ∩₂-elimʳ-⊆₂ : P ⊆₂ (Q ∩₂ R) → P ⊆₂ Q ∩₂-elimʳ-⊆₂ (⊆: P⊆[Q∩R]) = ⊆: (λ x y Pxy → proj₁ (P⊆[Q∩R] x y Pxy)) module _ {a b ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {B : Set b} {P : REL A B ℓ₁} {Q : REL A B ℓ₂} {R : REL A B ℓ₃} where ∩₂-substˡ-⊆₂ : P ⊆₂ Q → (P ∩₂ R) ⊆₂ (Q ∩₂ R) ∩₂-substˡ-⊆₂ (⊆: P⊆Q) = ⊆: (λ x y → P.map₁ (P⊆Q x y)) ∩₂-substʳ-⊆₂ : P ⊆₂ Q → (R ∩₂ P) ⊆₂ (R ∩₂ Q) ∩₂-substʳ-⊆₂ (⊆: P⊆Q) = ⊆: (λ x y → P.map₂ (P⊆Q x y)) -- ## Operations: ⇔₂ module _ {a b ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {B : Set b} {P : REL A B ℓ₁} {Q : REL A B ℓ₂} {R : REL A B ℓ₃} where ∩₂-substˡ : P ⇔₂ Q → (P ∩₂ R) ⇔₂ (Q ∩₂ R) ∩₂-substˡ = ⇔₂-compose ∩₂-substˡ-⊆₂ ∩₂-substˡ-⊆₂ ∩₂-substʳ : P ⇔₂ Q → (R ∩₂ P) ⇔₂ (R ∩₂ Q) ∩₂-substʳ = ⇔₂-compose ∩₂-substʳ-⊆₂ ∩₂-substʳ-⊆₂
algebraic-stack_agda0000_doc_8949
-- Andreas, 2015-12-10, issue reported by Andrea Vezzosi open import Common.Equality open import Common.Bool id : Bool → Bool id true = true id false = false is-id : ∀ x → x ≡ id x is-id true = refl is-id false = refl postulate P : Bool → Set b : Bool p : P (id b) proof : P b proof rewrite is-id b = p
algebraic-stack_agda0000_doc_8950
module Selective where open import Prelude.Equality open import Agda.Builtin.TrustMe ----------------------------------------------------------------- -- id : ∀ {a} {A : Set a} → A → A -- id x = x id : ∀ {A : Set} → A → A id x = x {-# INLINE id #-} infixl -10 id syntax id {A = A} x = x ofType A const : ∀ {a b} {A : Set a} {B : Set b} → A → B → A const x _ = x {-# INLINE const #-} flip : ∀ {a b c} {A : Set a} {B : Set b} {C : A → B → Set c} → (∀ x y → C x y) → ∀ y x → C x y flip f x y = f y x {-# INLINE flip #-} infixr 9 _∘_ _∘_ : ∀ {a b c} {A : Set a} {B : A → Set b} {C : ∀ x → B x → Set c} (f : ∀ {x} (y : B x) → C x y) (g : ∀ x → B x) → ∀ x → C x (g x) (f ∘ g) x = f (g x) {-# INLINE _∘_ #-} infixr -20 _$_ _$_ : ∀ {a b} {A : Set a} {B : A → Set b} → (∀ x → B x) → ∀ x → B x f $ x = f x ------------------------------------------------------------------ data Either (A : Set) (B : Set) : Set where left : A → Either A B right : B → Either A B either : ∀ {A : Set} {B : Set} {C : Set} → (A → C) → (B → C) → Either A B → C either f g (left x) = f x either f g (right x) = g x data Pair (a b : Set) : Set where _×_ : a → b → Pair a b ------------------------------------------------------------------ record Functor (F : Set → Set) : Set₁ where infixl 5 _<$>_ field fmap : ∀ {A B} → (A → B) → F A → F B -- Functor laws fmap-id : ∀ {A} {x : F A} → fmap id x ≡ id x fmap-compose : ∀ {A B C} {f : A → B} {g : B → C} {x : F A} → fmap (g ∘ f) x ≡ (fmap g ∘ fmap f) x _<$>_ = fmap open Functor {{...}} public instance FunctorFunction : {X : Set} → Functor (λ Y → (X → Y)) fmap {{FunctorFunction}} f g = λ x → (f ∘ g) x fmap-id {{FunctorFunction}} = refl fmap-compose {{FunctorFunction}} = refl record Applicative (F : Set → Set) : Set₁ where infixl 5 _<*>_ _<*_ _*>_ field overlap {{functor}} : Functor F pure : ∀ {A} → A → F A _<*>_ : ∀ {A B} → F (A → B) → F A → F B -- Applicative laws ap-identity : ∀ {A B} {f : F (A → B)} → (pure id <*> f) ≡ f ap-homomorphism : ∀ {A B} {x : A} {f : A → B} → pure f <*> pure x ≡ pure (f x) ap-interchange : ∀ {A B} {x : A} {f : F (A → B)} → f <*> pure x ≡ pure (_$ x) <*> f -- ap-composition : ∀ {A B C} {x : F A} {f : F (A → B)} {g : F (B → C)} → -- (pure (_∘_) <*> g <*> f <*> x) ≡ (g <*> (f <*> x)) fmap-pure-ap : ∀ {A B} {x : F A} {f : A → B} → f <$> x ≡ pure f <*> x _<*_ : ∀ {A B} → F A → F B → F A a <* b = ⦇ const a b ⦈ _*>_ : ∀ {A B} → F A → F B → F B a *> b = ⦇ (const id) a b ⦈ open Applicative {{...}} public instance ApplicativeFunction : {X : Set} → Applicative (λ Y → (X → Y)) pure {{ApplicativeFunction}} f = const f _<*>_ {{ApplicativeFunction}} f g = λ x → f x (g x) -- Applicative laws ap-identity {{ApplicativeFunction}} = refl ap-homomorphism {{ApplicativeFunction}} = refl ap-interchange {{ApplicativeFunction}} = refl fmap-pure-ap {{ApplicativeFunction}} {_} {_} {x} {f} = primTrustMe -- f <$> x -- f <$> x -- ≡⟨ {!!} ⟩ -- pure f <*> x -- ∎ record Bifunctor (P : Set → Set → Set) : Set₁ where field bimap : ∀ {A B C D} → (A → B) → (C → D) → P A C → P B D first : ∀ {A B C} → (A -> B) -> P A C -> P B C second : ∀ {A B C} → (B -> C) -> P A B -> P A C open Bifunctor {{...}} public instance BifunctorEither : Bifunctor Either bimap {{BifunctorEither}} f _ (left a) = left (f a) bimap {{BifunctorEither}} _ g (right b) = right (g b) first {{BifunctorEither}} f = bimap f id second {{BifunctorEither}} = bimap id record Selective (F : Set → Set) : Set₁ where field overlap {{applicative}} : Applicative F handle : ∀ {A B} → F (Either A B) → F (A → B) → F B -- Laws: -- (F1) Apply a pure function to the result: f1 : ∀ {A B C} {f : B → C} {x : F (Either A B)} {y : F (A → B)} → (f <$> (handle x y)) ≡ handle (second f <$> x) ((f ∘_) <$> y) -- (F2) Apply a pure function to the left (error) branch: f2 : ∀ {A B C} {f : A -> C} {x : F (Either A B)} {y : F (C → B)} → handle (first f <$> x) y ≡ handle x ((_∘ f) <$> y) -- (F3) Apply a pure function to the handler: f3 : ∀ {A B C} {f : C → A → B} {x : F (Either A B)} {y : F C} → (handle x (f <$> y)) ≡ handle (first (flip f) <$> x) (flip (_$_) <$> y) -- (P1) Apply a pure handler: p1 : ∀ {A B} {x : F (Either A B)} {y : A → B} → handle x (pure y) ≡ (either y id <$> x) -- (P2) Handle a pure error: p2 : ∀ {A B} {x : A} {y : F (A → B)} → handle (pure (left x)) y ≡ ((_$ x) <$> y) -- -- (A1) Associativity -- a1 : ∀ {A B C} {x : F (Either A B)} -- {y : F (Either C (A → B))} -- {z : F (C → A → B)} → -- handle x (handle y z) ≡ -- handle (handle ((λ x → right x) <$> x) (λ a → bimap (λ x → (x × a)) (_$ a) y)) -- A1: handle x (handle y z) = handle (handle (f <$> x) (g <$> y)) (h <$> z) -- where f x = Right <$> x -- g y = \a -> bimap (,a) ($a) y -- h z = uncurry z -- a1 :: Selective f => f (Either a b) -> f (Either c (a -> b)) -> f (c -> a -> b) -> f b -- a1 x y z = handle x (handle y z) === handle (handle (f <$> x) (g <$> y)) (h <$> z) -- where -- f x = Right <$> x -- g y = \a -> bimap (,a) ($a) y -- h z = uncurry z open Selective {{...}} public -- | 'Selective' is more powerful than 'Applicative': we can recover the -- application operator '<*>'. In particular, the following 'Applicative' laws -- hold when expressed using 'apS': -- -- * Identity : pure id <*> v = v -- * Homomorphism : pure f <*> pure x = pure (f x) -- * Interchange : u <*> pure y = pure ($y) <*> u -- * Composition : (.) <$> u <*> v <*> w = u <*> (v <*> w) apS : ∀ {A B : Set} {F : Set → Set} {{_ : Selective F}} → F (A → B) → F A → F B apS f x = handle (left <$> f) (flip (_$_) <$> x) ---------------------------------------------------------------------
algebraic-stack_agda0000_doc_8951
module SizedIO.ConsoleObject where open import Size open import SizedIO.Console open import SizedIO.Object open import SizedIO.IOObject -- A console object is an IO object for the IO interface of console ConsoleObject : (i : Size) → (iface : Interface) → Set ConsoleObject i iface = IOObject consoleI iface i
algebraic-stack_agda0000_doc_8952
module Acc where data Rel(A : Set) : Set1 where rel : (A -> A -> Set) -> Rel A _is_than_ : {A : Set} -> A -> Rel A -> A -> Set x is rel f than y = f x y data Acc {A : Set} (less : Rel A) (x : A) : Set where acc : ((y : A) -> x is less than y -> Acc less y) -> Acc less x data WO {A : Set} (less : Rel A) : Set where wo : ((x : A) -> Acc less x) -> WO less data False : Set where data True : Set where tt : True data Nat : Set where Z : Nat S : Nat -> Nat data ∏ {A : Set} (f : A -> Set) : Set where ∏I : ((z : A) -> f z) -> ∏ f data Ord : Set where z : Ord lim : (Nat -> Ord) -> Ord zp : Ord -> Ord zp z = z zp (lim f) = lim (\x -> zp (f x)) _<_ : Ord -> Ord -> Set z < _ = True lim _ < z = False lim f < lim g = ∏ \(n : Nat) -> f n < g n ltNat : Nat -> Nat -> Set ltNat Z Z = False ltNat Z (S n) = True ltNat (S m) (S n) = ltNat m n ltNat (S m) Z = False ltNatRel : Rel Nat ltNatRel = rel ltNat postulate woltNat : WO ltNatRel
algebraic-stack_agda0000_doc_8953
{-# OPTIONS --cumulativity #-} open import Agda.Builtin.Equality mutual X : Set X = _ Y : Set₁ Y = Set test : _≡_ {A = Set₁} X Y test = refl
algebraic-stack_agda0000_doc_8954
------------------------------------------------------------------------ -- Potentially cyclic precedence graphs ------------------------------------------------------------------------ module Mixfix.Cyclic.PrecedenceGraph where open import Data.Fin using (Fin) open import Data.Nat using (ℕ) open import Data.Vec as Vec using (allFin) open import Data.List using (List) open import Data.Product using (∃) open import Mixfix.Fixity open import Mixfix.Operator open import Mixfix.Expr hiding (module PrecedenceGraph) -- Precedence graphs are represented by the number of precedence -- levels, plus functions mapping node identifiers (precedences) to -- node contents and successor precedences. record PrecedenceGraph : Set where field -- The number of precedence levels. levels : ℕ -- Precedence levels. Precedence : Set Precedence = Fin levels field -- The precedence level's operators. ops : Precedence → (fix : Fixity) → List (∃ (Operator fix)) -- The immediate successors of the precedence level. ↑ : Precedence → List Precedence -- All precedence levels. anyPrecedence : List Precedence anyPrecedence = Vec.toList (allFin levels) -- Potentially cyclic precedence graphs. cyclic : PrecedenceGraphInterface cyclic = record { PrecedenceGraph = PrecedenceGraph ; Precedence = PrecedenceGraph.Precedence ; ops = PrecedenceGraph.ops ; ↑ = PrecedenceGraph.↑ ; anyPrecedence = PrecedenceGraph.anyPrecedence }
algebraic-stack_agda0000_doc_8955
------------------------------------------------------------------------ -- This module establishes that the recognisers are as expressive as -- possible when the alphabet is Bool (this could be generalised to -- arbitrary finite alphabets), whereas this is not the case when the -- alphabet is ℕ ------------------------------------------------------------------------ module TotalRecognisers.LeftRecursion.ExpressiveStrength where open import Algebra open import Codata.Musical.Notation open import Data.Bool as Bool hiding (_∧_) open import Data.Empty open import Function.Base open import Function.Equality using (_⟨$⟩_) open import Function.Equivalence using (_⇔_; equivalence; module Equivalence) open import Data.List import Data.List.Properties as ListProp open import Data.List.Reverse open import Data.Nat as Nat open import Data.Nat.InfinitelyOften as Inf import Data.Nat.Properties as NatProp open import Data.Product open import Data.Sum open import Relation.Binary open import Relation.Binary.PropositionalEquality hiding ([_]) open import Relation.Nullary open import Relation.Nullary.Decidable open import Relation.Nullary.Negation private module ListMonoid {A : Set} = Monoid (ListProp.++-monoid A) module NatOrder = DecTotalOrder NatProp.≤-decTotalOrder import TotalRecognisers.LeftRecursion open TotalRecognisers.LeftRecursion Bool using (_∧_; left-zero) private open module LR {Tok : Set} = TotalRecognisers.LeftRecursion Tok hiding (P; ∞⟨_⟩P; _∧_; left-zero; _∷_) P : Set → Bool → Set P Tok = LR.P {Tok} ∞⟨_⟩P : Bool → Set → Bool → Set ∞⟨ b ⟩P Tok n = LR.∞⟨_⟩P {Tok} b n open import TotalRecognisers.LeftRecursion.Lib Bool hiding (_∷_) ------------------------------------------------------------------------ -- A boring lemma private lemma : (f : List Bool → Bool) → (false ∧ f [ true ] ∨ false ∧ f [ false ]) ∨ f [] ≡ f [] lemma f = cong₂ (λ b₁ b₂ → (b₁ ∨ b₂) ∨ f []) (left-zero (f [ true ])) (left-zero (f [ false ])) ------------------------------------------------------------------------ -- Expressive strength -- For every grammar there is an equivalent decidable predicate. grammar⇒pred : ∀ {Tok n} (p : P Tok n) → ∃ λ (f : List Tok → Bool) → ∀ {s} → s ∈ p ⇔ T (f s) grammar⇒pred p = ((λ s → ⌊ s ∈? p ⌋) , λ {_} → equivalence fromWitness toWitness) -- When the alphabet is Bool the other direction holds: for every -- decidable predicate there is a corresponding grammar. -- -- Note that the grammars constructed by the proof are all "infinite -- LL(1)". pred⇒grammar : (f : List Bool → Bool) → ∃ λ (p : P Bool (f [])) → ∀ {s} → s ∈ p ⇔ T (f s) pred⇒grammar f = (p f , λ {s} → equivalence (p-sound f) (p-complete f s)) where p : (f : List Bool → Bool) → P Bool (f []) p f = cast (lemma f) ( ♯? (sat id ) · ♯ p (f ∘ _∷_ true ) ∣ ♯? (sat not) · ♯ p (f ∘ _∷_ false) ∣ accept-if-true (f []) ) p-sound : ∀ f {s} → s ∈ p f → T (f s) p-sound f (cast (∣-right s∈)) with AcceptIfTrue.sound (f []) s∈ ... | (refl , ok) = ok p-sound f (cast (∣-left (∣-left (t∈ · s∈)))) with drop-♭♯ (f [ true ]) t∈ ... | sat {t = true} _ = p-sound (f ∘ _∷_ true ) s∈ ... | sat {t = false} () p-sound f (cast (∣-left (∣-right (t∈ · s∈)))) with drop-♭♯ (f [ false ]) t∈ ... | sat {t = false} _ = p-sound (f ∘ _∷_ false) s∈ ... | sat {t = true} () p-complete : ∀ f s → T (f s) → s ∈ p f p-complete f [] ok = cast (∣-right {n₁ = false ∧ f [ true ] ∨ false ∧ f [ false ]} $ AcceptIfTrue.complete ok) p-complete f (true ∷ bs) ok = cast (∣-left $ ∣-left $ add-♭♯ (f [ true ]) (sat _) · p-complete (f ∘ _∷_ true ) bs ok) p-complete f (false ∷ bs) ok = cast (∣-left $ ∣-right {n₁ = false ∧ f [ true ]} $ add-♭♯ (f [ false ]) (sat _) · p-complete (f ∘ _∷_ false) bs ok) -- An alternative proof which uses a left recursive definition of the -- grammar to avoid the use of a cast. pred⇒grammar′ : (f : List Bool → Bool) → ∃ λ (p : P Bool (f [])) → ∀ {s} → s ∈ p ⇔ T (f s) pred⇒grammar′ f = (p f , λ {s} → equivalence (p-sound f) (p-complete f s)) where extend : {A B : Set} → (List A → B) → A → (List A → B) extend f x = λ xs → f (xs ∷ʳ x) p : (f : List Bool → Bool) → P Bool (f []) p f = ♯ p (extend f true ) · ♯? (sat id ) ∣ ♯ p (extend f false) · ♯? (sat not) ∣ accept-if-true (f []) p-sound : ∀ f {s} → s ∈ p f → T (f s) p-sound f (∣-right s∈) with AcceptIfTrue.sound (f []) s∈ ... | (refl , ok) = ok p-sound f (∣-left (∣-left (s∈ · t∈))) with drop-♭♯ (f [ true ]) t∈ ... | sat {t = true} _ = p-sound (extend f true ) s∈ ... | sat {t = false} () p-sound f (∣-left (∣-right (s∈ · t∈))) with drop-♭♯ (f [ false ]) t∈ ... | sat {t = false} _ = p-sound (extend f false) s∈ ... | sat {t = true} () p-complete′ : ∀ f {s} → Reverse s → T (f s) → s ∈ p f p-complete′ f [] ok = ∣-right {n₁ = false} $ AcceptIfTrue.complete ok p-complete′ f (bs ∶ rs ∶ʳ true ) ok = ∣-left {n₁ = false} $ ∣-left {n₁ = false} $ p-complete′ (extend f true ) rs ok · add-♭♯ (f [ true ]) (sat _) p-complete′ f (bs ∶ rs ∶ʳ false) ok = ∣-left {n₁ = false} $ ∣-right {n₁ = false} $ p-complete′ (extend f false) rs ok · add-♭♯ (f [ false ]) (sat _) p-complete : ∀ f s → T (f s) → s ∈ p f p-complete f s = p-complete′ f (reverseView s) -- If infinite alphabets are allowed the result is different: there -- are decidable predicates which cannot be realised as grammars. The -- proof below shows that a recogniser for natural number strings -- cannot accept exactly the strings of the form "nn". module NotExpressible where -- A "pair" is a string containing two equal elements. pair : ℕ → List ℕ pair n = n ∷ n ∷ [] -- OnlyPairs p is inhabited iff p only accepts pairs and empty -- strings. (Empty strings are allowed due to the presence of the -- nonempty combinator.) OnlyPairs : ∀ {n} → P ℕ n → Set OnlyPairs p = ∀ {n s} → n ∷ s ∈ p → s ≡ [ n ] -- ManyPairs p is inhabited iff p accepts infinitely many pairs. ManyPairs : ∀ {n} → P ℕ n → Set ManyPairs p = Inf (λ n → pair n ∈ p) -- AcceptsNonEmptyString p is inhabited iff p accepts a non-empty -- string. AcceptsNonEmptyString : ∀ {Tok n} → P Tok n → Set AcceptsNonEmptyString p = ∃₂ λ t s → t ∷ s ∈ p -- If a recogniser does not accept any non-empty string, then it -- either accepts the empty string or no string at all. nullable-or-fail : ∀ {Tok n} {p : P Tok n} → ¬ AcceptsNonEmptyString p → [] ∈ p ⊎ (∀ s → ¬ s ∈ p) nullable-or-fail {p = p} ¬a with [] ∈? p ... | yes []∈p = inj₁ []∈p ... | no []∉p = inj₂ helper where helper : ∀ s → ¬ s ∈ p helper [] = []∉p helper (t ∷ s) = ¬a ∘ _,_ t ∘ _,_ s -- If p₁ · p₂ accepts infinitely many pairs, and nothing but pairs -- (or the empty string), then at most one of p₁ and p₂ accepts a -- non-empty string. This follows because p₁ and p₂ are independent -- of each other. For instance, if p₁ accepted n and p₂ accepted i -- and j, then p₁ · p₂ would accept both ni and nj, and if p₁ -- accepted mm and p₂ accepted n then p₁ · p₂ would accept mmn. at-most-one : ∀ {n₁ n₂} {p₁ : ∞⟨ n₂ ⟩P ℕ n₁} {p₂ : ∞⟨ n₁ ⟩P ℕ n₂} → OnlyPairs (p₁ · p₂) → ManyPairs (p₁ · p₂) → AcceptsNonEmptyString (♭? p₁) → AcceptsNonEmptyString (♭? p₂) → ⊥ at-most-one op mp (n₁ , s₁ , n₁s₁∈p₁) (n₂ , s₂ , n₂s₂∈p₂) with op (n₁s₁∈p₁ · n₂s₂∈p₂) at-most-one _ _ (_ , _ ∷ [] , _) (_ , _ , _) | () at-most-one _ _ (_ , _ ∷ _ ∷ _ , _) (_ , _ , _) | () at-most-one {p₁ = p₁} {p₂} op mp (n , [] , n∈p₁) (.n , .[] , n∈p₂) | refl = twoDifferentWitnesses mp helper where ¬pair : ∀ {i s} → s ∈ p₁ · p₂ → n ≢ i → s ≢ pair i ¬pair (_·_ {s₁ = []} _ ii∈p₂) n≢i refl with op (n∈p₁ · ii∈p₂) ... | () ¬pair (_·_ {s₁ = i ∷ []} i∈p₁ _) n≢i refl with op (i∈p₁ · n∈p₂) ¬pair (_·_ {s₁ = .n ∷ []} n∈p₁ _) n≢n refl | refl = n≢n refl ¬pair (_·_ {s₁ = i ∷ .i ∷ []} ii∈p₁ _) n≢i refl with op (ii∈p₁ · n∈p₂) ... | () ¬pair (_·_ {s₁ = _ ∷ _ ∷ _ ∷ _} _ _) _ () helper : ¬ ∃₂ λ i j → i ≢ j × pair i ∈ p₁ · p₂ × pair j ∈ p₁ · p₂ helper (i , j , i≢j , ii∈ , jj∈) with Nat._≟_ n i helper (.n , j , n≢j , nn∈ , jj∈) | yes refl = ¬pair jj∈ n≢j refl helper (i , j , i≢j , ii∈ , jj∈) | no n≢i = ¬pair ii∈ n≢i refl -- OnlyPairs and ManyPairs are mutually exclusive. ¬pairs : ∀ {n} (p : P ℕ n) → OnlyPairs p → ManyPairs p → ⊥ ¬pairs fail op mp = witness mp (helper ∘ proj₂) where helper : ∀ {t} → ¬ pair t ∈ fail helper () ¬pairs empty op mp = witness mp (helper ∘ proj₂) where helper : ∀ {t} → ¬ pair t ∈ empty helper () ¬pairs (sat f) op mp = witness mp (helper ∘ proj₂) where helper : ∀ {t} → ¬ pair t ∈ sat f helper () ¬pairs (nonempty p) op mp = ¬pairs p (op ∘ nonempty) (Inf.map helper mp) where helper : ∀ {n} → pair n ∈ nonempty p → pair n ∈ p helper (nonempty pr) = pr ¬pairs (cast eq p) op mp = ¬pairs p (op ∘ cast) (Inf.map helper mp) where helper : ∀ {n} → pair n ∈ cast eq p → pair n ∈ p helper (cast pr) = pr -- The most interesting cases are _∣_ and _·_. For the choice -- combinator we make use of the fact that if p₁ ∣ p₂ accepts -- infinitely many pairs, then at least one of p₁ and p₂ do. (We are -- deriving a contradiction, so the use of classical reasoning is -- unproblematic.) ¬pairs (p₁ ∣ p₂) op mp = commutes-with-∪ (Inf.map split mp) helper where helper : ¬ (ManyPairs p₁ ⊎ ManyPairs p₂) helper (inj₁ mp₁) = ¬pairs p₁ (op ∘ ∣-left) mp₁ helper (inj₂ mp₂) = ¬pairs p₂ (op ∘ ∣-right {p₁ = p₁}) mp₂ split : ∀ {s} → s ∈ p₁ ∣ p₂ → s ∈ p₁ ⊎ s ∈ p₂ split (∣-left s∈p₁) = inj₁ s∈p₁ split (∣-right s∈p₂) = inj₂ s∈p₂ -- For the sequencing combinator we make use of the fact that the -- argument recognisers cannot both accept non-empty strings. ¬pairs (p₁ · p₂) op mp = excluded-middle λ a₁? → excluded-middle λ a₂? → helper a₁? a₂? where continue : {n n′ : Bool} (p : ∞⟨ n′ ⟩P ℕ n) → n′ ≡ true → OnlyPairs (♭? p) → ManyPairs (♭? p) → ⊥ continue p eq with forced? p continue p refl | true = ¬pairs p continue p () | false helper : Dec (AcceptsNonEmptyString (♭? p₁)) → Dec (AcceptsNonEmptyString (♭? p₂)) → ⊥ helper (yes a₁) (yes a₂) = at-most-one op mp a₁ a₂ helper (no ¬a₁) _ with nullable-or-fail ¬a₁ ... | inj₁ []∈p₁ = continue p₂ (⇒ []∈p₁) (op ∘ _·_ []∈p₁) (Inf.map right mp) where right : ∀ {s} → s ∈ p₁ · p₂ → s ∈ ♭? p₂ right (_·_ {s₁ = []} _ ∈p₂) = ∈p₂ right (_·_ {s₁ = _ ∷ _} ∈p₁ _) = ⊥-elim (¬a₁ (-, -, ∈p₁)) ... | inj₂ is-fail = witness mp (∉ ∘ proj₂) where ∉ : ∀ {s} → ¬ s ∈ p₁ · p₂ ∉ (∈p₁ · _) = is-fail _ ∈p₁ helper _ (no ¬a₂) with nullable-or-fail ¬a₂ ... | inj₁ []∈p₂ = continue p₁ (⇒ []∈p₂) (op ∘ (λ ∈p₁ → cast∈ (proj₂ ListMonoid.identity _) refl (∈p₁ · []∈p₂))) (Inf.map left mp) where left : ∀ {s} → s ∈ p₁ · p₂ → s ∈ ♭? p₁ left (_·_ {s₂ = _ ∷ _} _ ∈p₂) = ⊥-elim (¬a₂ (-, -, ∈p₂)) left (_·_ {s₁ = s₁} {s₂ = []} ∈p₁ _) = cast∈ (sym $ proj₂ ListMonoid.identity s₁) refl ∈p₁ ... | inj₂ is-fail = witness mp (∉ ∘ proj₂) where ∉ : ∀ {s} → ¬ s ∈ p₁ · p₂ ∉ (_ · ∈p₂) = is-fail _ ∈p₂ -- Note that it is easy to decide whether a string is a pair or not. pair? : List ℕ → Bool pair? (m ∷ n ∷ []) = ⌊ Nat._≟_ m n ⌋ pair? _ = false -- This means that there are decidable predicates over token strings -- which cannot be realised using the recogniser combinators. not-realisable : ¬ ∃₂ (λ n (p : P ℕ n) → ∀ {s} → s ∈ p ⇔ T (pair? s)) not-realisable (_ , p , hyp) = ¬pairs p op mp where op : OnlyPairs p op {n} {[]} s∈p = ⊥-elim (Equivalence.to hyp ⟨$⟩ s∈p) op {n} { m ∷ []} s∈p with toWitness (Equivalence.to hyp ⟨$⟩ s∈p) op {n} {.n ∷ []} s∈p | refl = refl op {n} {_ ∷ _ ∷ _} s∈p = ⊥-elim (Equivalence.to hyp ⟨$⟩ s∈p) mp : ManyPairs p mp (i , ¬pair) = ¬pair i NatOrder.refl $ Equivalence.from hyp ⟨$⟩ fromWitness refl not-expressible : ∃₂ λ (Tok : Set) (f : List Tok → Bool) → ¬ ∃₂ (λ n (p : P Tok n) → ∀ {s} → s ∈ p ⇔ T (f s)) not-expressible = (ℕ , pair? , not-realisable) where open NotExpressible
algebraic-stack_agda0000_doc_8956
module Lemmachine.Spike where open import Data.Fin open import Data.Digit -- 3.9 Quality Values DIGIT = Decimal data qvalue : DIGIT → DIGIT → DIGIT → Set where zero : (d₁ d₂ d₃ : DIGIT) → qvalue d₁ d₂ d₃ one : qvalue zero zero zero
algebraic-stack_agda0000_doc_8957
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Categories.Commutativity where open import Cubical.Foundations.Prelude open import Cubical.Categories.Category private variable ℓ ℓ' : Level module _ {C : Precategory ℓ ℓ'} where open Precategory C compSq : ∀ {x y z w u v} {f : C [ x , y ]} {g h} {k : C [ z , w ]} {l} {m} {n : C [ u , v ]} -- square 1 → f ⋆ g ≡ h ⋆ k -- square 2 (sharing g) → k ⋆ l ≡ m ⋆ n → f ⋆ (g ⋆ l) ≡ (h ⋆ m) ⋆ n compSq {f = f} {g} {h} {k} {l} {m} {n} p q = f ⋆ (g ⋆ l) ≡⟨ sym (⋆Assoc _ _ _) ⟩ (f ⋆ g) ⋆ l ≡⟨ cong (_⋆ l) p ⟩ (h ⋆ k) ⋆ l ≡⟨ ⋆Assoc _ _ _ ⟩ h ⋆ (k ⋆ l) ≡⟨ cong (h ⋆_) q ⟩ h ⋆ (m ⋆ n) ≡⟨ sym (⋆Assoc _ _ _) ⟩ (h ⋆ m) ⋆ n ∎
algebraic-stack_agda0000_doc_8958
------------------------------------------------------------------------ -- The Agda standard library -- -- Lexicographic induction ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Induction.Lexicographic where open import Data.Product open import Induction open import Level -- The structure of lexicographic induction. Σ-Rec : ∀ {a b ℓ₁ ℓ₂ ℓ₃} {A : Set a} {B : A → Set b} → RecStruct A (ℓ₁ ⊔ b) ℓ₂ → (∀ x → RecStruct (B x) ℓ₁ ℓ₃) → RecStruct (Σ A B) _ _ Σ-Rec RecA RecB P (x , y) = -- Either x is constant and y is "smaller", ... RecB x (λ y' → P (x , y')) y × -- ...or x is "smaller" and y is arbitrary. RecA (λ x' → ∀ y' → P (x' , y')) x _⊗_ : ∀ {a b ℓ₁ ℓ₂ ℓ₃} {A : Set a} {B : Set b} → RecStruct A (ℓ₁ ⊔ b) ℓ₂ → RecStruct B ℓ₁ ℓ₃ → RecStruct (A × B) _ _ RecA ⊗ RecB = Σ-Rec RecA (λ _ → RecB) -- Constructs a recursor builder for lexicographic induction. Σ-rec-builder : ∀ {a b ℓ₁ ℓ₂ ℓ₃} {A : Set a} {B : A → Set b} {RecA : RecStruct A (ℓ₁ ⊔ b) ℓ₂} {RecB : ∀ x → RecStruct (B x) ℓ₁ ℓ₃} → RecursorBuilder RecA → (∀ x → RecursorBuilder (RecB x)) → RecursorBuilder (Σ-Rec RecA RecB) Σ-rec-builder {RecA = RecA} {RecB = RecB} recA recB P f (x , y) = (p₁ x y p₂x , p₂x) where p₁ : ∀ x y → RecA (λ x' → ∀ y' → P (x' , y')) x → RecB x (λ y' → P (x , y')) y p₁ x y x-rec = recB x (λ y' → P (x , y')) (λ y y-rec → f (x , y) (y-rec , x-rec)) y p₂ : ∀ x → RecA (λ x' → ∀ y' → P (x' , y')) x p₂ = recA (λ x → ∀ y → P (x , y)) (λ x x-rec y → f (x , y) (p₁ x y x-rec , x-rec)) p₂x = p₂ x [_⊗_] : ∀ {a b ℓ₁ ℓ₂ ℓ₃} {A : Set a} {B : Set b} {RecA : RecStruct A (ℓ₁ ⊔ b) ℓ₂} {RecB : RecStruct B ℓ₁ ℓ₃} → RecursorBuilder RecA → RecursorBuilder RecB → RecursorBuilder (RecA ⊗ RecB) [ recA ⊗ recB ] = Σ-rec-builder recA (λ _ → recB) ------------------------------------------------------------------------ -- Example private open import Data.Nat open import Induction.Nat as N -- The Ackermann function à la Rózsa Péter. ackermann : ℕ → ℕ → ℕ ackermann m n = build [ N.recBuilder ⊗ N.recBuilder ] (λ _ → ℕ) (λ { (zero , n) _ → 1 + n ; (suc m , zero) (_ , ackm•) → ackm• 1 ; (suc m , suc n) (ack[1+m]n , ackm•) → ackm• ack[1+m]n }) (m , n)
algebraic-stack_agda0000_doc_8959
{- This file contains: - Fibers of induced map between set truncations is the set truncation of fibers modulo a certain equivalence relation defined by π₁ of the base. -} {-# OPTIONS --safe #-} module Cubical.HITs.SetTruncation.Fibers where open import Cubical.HITs.SetTruncation.Base open import Cubical.Foundations.Prelude open import Cubical.Foundations.Path open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.HLevels open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Data.Sigma open import Cubical.HITs.PropositionalTruncation as Prop open import Cubical.HITs.SetTruncation as Set open import Cubical.HITs.SetQuotients as SetQuot open import Cubical.Relation.Binary private variable ℓ ℓ' : Level module _ {X : Type ℓ } {Y : Type ℓ'} (f : X → Y) where private ∥f∥₂ : ∥ X ∥₂ → ∥ Y ∥₂ ∥f∥₂ = Set.map f module _ (y : Y) where open Iso isSetFiber∥∥₂ : isSet (fiber ∥f∥₂ ∣ y ∣₂) isSetFiber∥∥₂ = isOfHLevelΣ 2 squash₂ (λ _ → isProp→isSet (squash₂ _ _)) fiberRel : ∥ fiber f y ∥₂ → ∥ fiber f y ∥₂ → Type ℓ fiberRel a b = Set.map fst a ≡ Set.map fst b private proj : ∥ fiber f y ∥₂ / fiberRel → ∥ X ∥₂ proj = SetQuot.rec squash₂ (Set.map fst) (λ _ _ p → p) ∥fiber∥₂/R→fiber∥∥₂ : ∥ fiber f y ∥₂ / fiberRel → fiber ∥f∥₂ ∣ y ∣₂ ∥fiber∥₂/R→fiber∥∥₂ = SetQuot.rec isSetFiber∥∥₂ ∥fiber∥₂→fiber∥∥₂ feq where fiber→fiber∥∥₂ : fiber f y → fiber ∥f∥₂ ∣ y ∣₂ fiber→fiber∥∥₂ (x , p) = ∣ x ∣₂ , cong ∣_∣₂ p ∥fiber∥₂→fiber∥∥₂ : ∥ fiber f y ∥₂ → fiber ∥f∥₂ ∣ y ∣₂ ∥fiber∥₂→fiber∥∥₂ = Set.rec isSetFiber∥∥₂ fiber→fiber∥∥₂ feq : (a b : ∥ fiber f y ∥₂) (r : fiberRel a b) → ∥fiber∥₂→fiber∥∥₂ a ≡ ∥fiber∥₂→fiber∥∥₂ b feq = Set.elim2 (λ _ _ → isProp→isSet (isPropΠ (λ _ → isSetFiber∥∥₂ _ _))) λ _ _ p → ΣPathP (p , isSet→isSet' squash₂ _ _ _ _) mereFiber→∥fiber∥₂/R : (x : X) → ∥ f x ≡ y ∥ → ∥ fiber f y ∥₂ / fiberRel mereFiber→∥fiber∥₂/R x = Prop.rec→Set squash/ (λ p → [ ∣ _ , p ∣₂ ]) (λ _ _ → eq/ _ _ refl) fiber∥∥₂→∥fiber∥₂/R : fiber ∥f∥₂ ∣ y ∣₂ → ∥ fiber f y ∥₂ / fiberRel fiber∥∥₂→∥fiber∥₂/R = uncurry (Set.elim (λ _ → isSetΠ λ _ → squash/) λ x p → mereFiber→∥fiber∥₂/R x (PathIdTrunc₀Iso .fun p)) ∥fiber∥₂/R→fiber∥∥₂→fst : (q : ∥ fiber f y ∥₂ / fiberRel) → ∥fiber∥₂/R→fiber∥∥₂ q .fst ≡ proj q ∥fiber∥₂/R→fiber∥∥₂→fst = SetQuot.elimProp (λ _ → squash₂ _ _) (Set.elim (λ _ → isProp→isSet (squash₂ _ _)) (λ _ → refl)) fiber∥∥₂→∥fiber∥₂/R→proj : (x : fiber ∥f∥₂ ∣ y ∣₂) → proj (fiber∥∥₂→∥fiber∥₂/R x) ≡ x .fst fiber∥∥₂→∥fiber∥₂/R→proj = uncurry (Set.elim (λ _ → isSetΠ λ _ → isProp→isSet (squash₂ _ _)) λ x p → Prop.elim {P = λ t → proj (mereFiber→∥fiber∥₂/R x t) ≡ ∣ x ∣₂} (λ _ → squash₂ _ _) (λ _ → refl) (PathIdTrunc₀Iso .fun p)) ∥fiber∥₂/R→fiber∥∥₂→∥fiber∥₂/R : (x : ∥ fiber f y ∥₂ / fiberRel) → fiber∥∥₂→∥fiber∥₂/R (∥fiber∥₂/R→fiber∥∥₂ x) ≡ x ∥fiber∥₂/R→fiber∥∥₂→∥fiber∥₂/R = SetQuot.elimProp (λ _ → squash/ _ _) (Set.elim (λ _ → isProp→isSet (squash/ _ _)) (λ _ → eq/ _ _ refl)) fiber∥∥₂→∥fiber∥₂/R→fiber∥∥₂ : (x : fiber ∥f∥₂ ∣ y ∣₂) → ∥fiber∥₂/R→fiber∥∥₂ (fiber∥∥₂→∥fiber∥₂/R x) ≡ x fiber∥∥₂→∥fiber∥₂/R→fiber∥∥₂ x = Σ≡Prop (λ _ → squash₂ _ _) (∥fiber∥₂/R→fiber∥∥₂→fst (fiber∥∥₂→∥fiber∥₂/R x) ∙ fiber∥∥₂→∥fiber∥₂/R→proj x) Iso-∥fiber∥₂/R-fiber∥∥₂ : Iso (∥ fiber f y ∥₂ / fiberRel) (fiber ∥f∥₂ ∣ y ∣₂) Iso-∥fiber∥₂/R-fiber∥∥₂ .fun = ∥fiber∥₂/R→fiber∥∥₂ Iso-∥fiber∥₂/R-fiber∥∥₂ .inv = fiber∥∥₂→∥fiber∥₂/R Iso-∥fiber∥₂/R-fiber∥∥₂ .leftInv = ∥fiber∥₂/R→fiber∥∥₂→∥fiber∥₂/R Iso-∥fiber∥₂/R-fiber∥∥₂ .rightInv = fiber∥∥₂→∥fiber∥₂/R→fiber∥∥₂ -- main results ∥fiber∥₂/R≃fiber∥∥₂ : ∥ fiber f y ∥₂ / fiberRel ≃ fiber ∥f∥₂ ∣ y ∣₂ ∥fiber∥₂/R≃fiber∥∥₂ = isoToEquiv Iso-∥fiber∥₂/R-fiber∥∥₂ -- the relation is an equivalence relation open BinaryRelation open isEquivRel isEquivRelFiberRel : isEquivRel fiberRel isEquivRelFiberRel .reflexive _ = refl isEquivRelFiberRel .symmetric _ _ = sym isEquivRelFiberRel .transitive _ _ _ = _∙_ -- alternative characterization of the relation in terms of equality in Y and fiber f y ∣transport∣ : ∥ y ≡ y ∥₂ → ∥ fiber f y ∥₂ → ∥ fiber f y ∥₂ ∣transport∣ = Set.rec2 squash₂ (λ s (x , q) → ∣ x , q ∙ s ∣₂) fiberRel2 : (x x' : ∥ fiber f y ∥₂) → Type (ℓ-max ℓ ℓ') fiberRel2 x x' = ∥ Σ[ s ∈ ∥ y ≡ y ∥₂ ] ∣transport∣ s x ≡ x' ∥ fiberRel2→1 : ∀ x x' → fiberRel2 x x' → fiberRel x x' fiberRel2→1 = Set.elim2 (λ _ _ → isSetΠ λ _ → isOfHLevelPath 2 squash₂ _ _) λ _ _ → Prop.rec (squash₂ _ _) (uncurry (Set.elim (λ _ → isSetΠ λ _ → isOfHLevelPath 2 squash₂ _ _) λ _ → cong (Set.map fst))) fiberRel1→2 : ∀ x x' → fiberRel x x' → fiberRel2 x x' fiberRel1→2 = Set.elim2 (λ _ _ → isSetΠ λ _ → isProp→isSet squash) λ a b p → Prop.rec squash (λ q → let filler = doubleCompPath-filler (sym (a .snd)) (cong f q) (b .snd) in ∣ ∣ filler i1 ∣₂ , cong ∣_∣₂ (ΣPathP (q , adjustLemma (flipSquare filler))) ∣) (PathIdTrunc₀Iso .Iso.fun p) where adjustLemma : {x y z w : Y} {p : x ≡ y} {q : x ≡ z} {r : z ≡ w} {s : y ≡ w} → PathP (λ i → p i ≡ r i) q s → PathP (λ i → p i ≡ w) (q ∙ r) s adjustLemma {p = p} {q} {r} {s} α i j = hcomp (λ k → λ { (i = i0) → compPath-filler q r k j ; (i = i1) → s j ; (j = i0) → p i ; (j = i1) → r (i ∨ k)}) (α i j) fiberRel1≃2 : ∀ x x' → fiberRel x x' ≃ fiberRel2 x x' fiberRel1≃2 _ _ = propBiimpl→Equiv (squash₂ _ _) squash (fiberRel1→2 _ _) (fiberRel2→1 _ _)
algebraic-stack_agda0000_doc_17408
{-# OPTIONS --without-K --safe #-} module Definition.Conversion.Consequences.Completeness where open import Definition.Untyped open import Definition.Typed open import Definition.Conversion open import Definition.Conversion.EqRelInstance open import Definition.LogicalRelation open import Definition.LogicalRelation.Substitution open import Definition.LogicalRelation.Substitution.Escape open import Definition.LogicalRelation.Fundamental open import Tools.Product -- Algorithmic equality is derivable from judgemental equality of types. completeEq : ∀ {A B Γ} → Γ ⊢ A ≡ B → Γ ⊢ A [conv↑] B completeEq A≡B = let [Γ] , [A] , [B] , [A≡B] = fundamentalEq A≡B in escapeEqᵛ [Γ] [A] [A≡B] -- Algorithmic equality is derivable from judgemental equality of terms. completeEqTerm : ∀ {t u A Γ} → Γ ⊢ t ≡ u ∷ A → Γ ⊢ t [conv↑] u ∷ A completeEqTerm t≡u = let [Γ] , modelsTermEq [A] [t] [u] [t≡u] = fundamentalTermEq t≡u in escapeEqTermᵛ [Γ] [A] [t≡u]
algebraic-stack_agda0000_doc_17409
------------------------------------------------------------------------------ -- All the Peano arithmetic modules ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module PA.Everything where open import PA.Axiomatic.Mendelson.Base open import PA.Axiomatic.Mendelson.Base.Consistency.Axioms open import PA.Axiomatic.Mendelson.PropertiesATP open import PA.Axiomatic.Mendelson.PropertiesI open import PA.Axiomatic.Mendelson.Relation.Binary.EqReasoning open import PA.Axiomatic.Mendelson.Relation.Binary.PropositionalEqualityI open import PA.Axiomatic.Mendelson.Relation.Binary.PropositionalEqualityATP open import PA.Axiomatic.Standard.Base open import PA.Axiomatic.Standard.Base.Consistency.Axioms open import PA.Axiomatic.Standard.PropertiesATP open import PA.Axiomatic.Standard.PropertiesI open import PA.Inductive.Base open import PA.Inductive.Base.Core open import PA.Inductive.Existential open import PA.Inductive.PropertiesATP open import PA.Inductive.PropertiesI open import PA.Inductive.PropertiesByInduction open import PA.Inductive.PropertiesByInductionATP open import PA.Inductive.PropertiesByInductionI open import PA.Inductive.Relation.Binary.EqReasoning open import PA.Inductive.Relation.Binary.PropositionalEquality open import PA.Inductive2Mendelson open import PA.Inductive2Standard
algebraic-stack_agda0000_doc_17410
module Computability.Data.Fin.Opposite where open import Computability.Prelude open import Data.Nat using (_≤_; _<_; s≤s; z≤n) open import Data.Nat.Properties using (≤-step) open import Data.Fin using (Fin; zero; suc; inject₁; fromℕ; fromℕ<; toℕ; opposite) opposite-fromℕ : ∀ k → opposite (fromℕ k) ≡ zero opposite-fromℕ zero = refl opposite-fromℕ (suc k) rewrite opposite-fromℕ k = refl opposite-inject₁-suc : ∀{k}(i : Fin k) → opposite (inject₁ i) ≡ suc (opposite i) opposite-inject₁-suc zero = refl opposite-inject₁-suc (suc i) rewrite opposite-inject₁-suc i = refl opposite-opposite : ∀{k}(i : Fin k) → opposite (opposite i) ≡ i opposite-opposite {suc k} zero rewrite opposite-fromℕ k = refl opposite-opposite (suc i) rewrite opposite-inject₁-suc (opposite i) | opposite-opposite i = refl opposite-fromℕ< : ∀ a b (lt : a < b) → opposite (fromℕ< (≤-step lt)) ≡ suc (opposite (fromℕ< lt)) opposite-fromℕ< zero .(suc _) (s≤s le) = refl opposite-fromℕ< (suc a) .(suc _) (s≤s le) rewrite opposite-fromℕ< _ _ le = refl
algebraic-stack_agda0000_doc_17411
module Type.Properties.Decidable.Proofs where open import Data open import Data.Proofs open import Data.Boolean using (if_then_else_) open import Data.Boolean.Stmt open import Data.Either as Either using (_‖_) open import Data.Tuple as Tuple using (_⨯_ ; _,_) open import Functional import Lvl open import Data.Boolean using (Bool ; 𝑇 ; 𝐹) import Data.Boolean.Operators open Data.Boolean.Operators.Programming open import Lang.Inspect open import Logic open import Logic.Classical open import Logic.Predicate open import Logic.Propositional open import Numeral.Natural open import Relator.Equals.Proofs.Equiv open import Type.Properties.Decidable open import Type.Properties.Empty open import Type.Properties.Inhabited open import Type.Properties.Singleton.Proofs open import Type private variable ℓ ℓₚ : Lvl.Level private variable A B C P Q R T : Type{ℓ} private variable b b₁ b₂ d : Bool private variable f : A → B module _ (P : Stmt{ℓ}) where decider-classical : ⦃ dec : Decider₀(P)(d) ⦄ → Classical(P) Classical.excluded-middle (decider-classical ⦃ dec = dec ⦄) = elim(\_ → (P ∨ (¬ P))) [∨]-introₗ [∨]-introᵣ dec classical-decidable : ⦃ classical : Classical(P) ⦄ → Decidable(0)(P) ∃.witness classical-decidable = Either.isLeft(excluded-middle(P)) ∃.proof classical-decidable with excluded-middle(P) | inspect Either.isLeft(excluded-middle(P)) ... | Either.Left p | _ = true p ... | Either.Right np | _ = false np module _ {ℓ₂} {x y : R} {Pred : (P ∨ (¬ P)) → R → Type{ℓ₂}} where decider-if-intro : ∀{f} ⦃ dec : Decider₀(P)(f) ⦄ → ((p : P) → Pred(Either.Left p)(x)) → ((np : (¬ P)) → Pred(Either.Right np)(y)) → Pred(excluded-middle(P) ⦃ decider-classical ⦄)(if f then x else y) decider-if-intro {f = 𝑇} ⦃ true p ⦄ fp _ = fp p decider-if-intro {f = 𝐹} ⦃ false np ⦄ _ fnp = fnp np decider-to-classical : ⦃ dec : Decider₀(P)(d) ⦄ → Classical(P) decider-to-classical{P = P} = decider-classical(P) classical-to-decidable : ⦃ classical : Classical(P) ⦄ → Decidable(0)(P) classical-to-decidable{P = P} = classical-decidable(P) classical-to-decider : ⦃ classical : Classical(P) ⦄ → Decider(0)(P)([∃]-witness classical-to-decidable) classical-to-decider{P = P} = [∃]-proof classical-to-decidable decider-true : ⦃ dec : Decider₀(P)(b) ⦄ → (P ↔ IsTrue(b)) decider-true ⦃ dec = true p ⦄ = [↔]-intro (const p) (const <>) decider-true ⦃ dec = false np ⦄ = [↔]-intro empty (empty ∘ np) decider-false : ⦃ dec : Decider₀(P)(b) ⦄ → ((P → Empty{ℓ}) ↔ IsFalse(b)) decider-false ⦃ dec = true p ⦄ = [↔]-intro empty (empty ∘ apply p) decider-false ⦃ dec = false np ⦄ = [↔]-intro (const(empty ∘ np)) (const <>) isempty-decider : ⦃ empty : IsEmpty(P) ⦄ → Decider₀(P)(𝐹) isempty-decider ⦃ intro p ⦄ = false (empty ∘ p) inhabited-decider : ⦃ inhab : (◊ P) ⦄ → Decider₀(P)(𝑇) inhabited-decider ⦃ intro ⦃ p ⦄ ⦄ = true p empty-decider : Decider₀(Empty{ℓ})(𝐹) empty-decider = isempty-decider unit-decider : Decider₀(Unit{ℓ})(𝑇) unit-decider = inhabited-decider ⦃ unit-is-pos ⦄ instance tuple-decider : ⦃ dec-P : Decider₀(P)(b₁) ⦄ → ⦃ dec-Q : Decider₀(Q)(b₂) ⦄ → Decider₀(P ⨯ Q)(b₁ && b₂) tuple-decider ⦃ true p ⦄ ⦃ true q ⦄ = true(p , q) tuple-decider ⦃ true p ⦄ ⦃ false nq ⦄ = false(nq ∘ Tuple.right) tuple-decider ⦃ false np ⦄ ⦃ true q ⦄ = false(np ∘ Tuple.left) tuple-decider ⦃ false np ⦄ ⦃ false nq ⦄ = false(np ∘ Tuple.left) instance either-decider : ⦃ dec-P : Decider₀(P)(b₁) ⦄ → ⦃ dec-Q : Decider₀(Q)(b₂) ⦄ → Decider₀(P ‖ Q)(b₁ || b₂) either-decider ⦃ true p ⦄ ⦃ true q ⦄ = true (Either.Left p) either-decider ⦃ true p ⦄ ⦃ false nq ⦄ = true (Either.Left p) either-decider ⦃ false np ⦄ ⦃ true q ⦄ = true (Either.Right q) either-decider ⦃ false np ⦄ ⦃ false nq ⦄ = false (Either.elim np nq) instance function-decider : ⦃ dec-P : Decider₀(P)(b₁) ⦄ → ⦃ dec-Q : Decider₀(Q)(b₂) ⦄ → Decider₀(P → Q)((! b₁) || b₂) function-decider ⦃ true p ⦄ ⦃ true q ⦄ = true (const q) function-decider ⦃ true p ⦄ ⦃ false nq ⦄ = false (apply p ∘ (nq ∘_)) function-decider ⦃ false np ⦄ ⦃ true q ⦄ = true (const q) function-decider ⦃ false np ⦄ ⦃ false nq ⦄ = true (empty ∘ np) instance not-decider : ⦃ dec : Decider₀(P)(b) ⦄ → Decider₀(¬ P)(! b) not-decider = function-decider {b₂ = 𝐹} ⦃ dec-Q = empty-decider ⦄ instance IsTrue-decider : Decider₀(IsTrue(b))(b) IsTrue-decider {𝑇} = true <> IsTrue-decider {𝐹} = false id