id
stringlengths 27
136
| text
stringlengths 4
1.05M
|
---|---|
algebraic-stack_agda0000_doc_56 | ------------------------------------------------------------------------
-- Values
------------------------------------------------------------------------
open import Atom
module Values (atoms : χ-atoms) where
open import Equality.Propositional
open import Prelude hiding (const)
open import Chi atoms
open import Deterministic atoms
open χ-atoms atoms
-- Values.
mutual
infixr 5 _∷_
data Value : Exp → Type where
lambda : ∀ x e → Value (lambda x e)
const : ∀ c {es} → Values es → Value (const c es)
data Values : List Exp → Type where
[] : Values []
_∷_ : ∀ {e es} → Value e → Values es → Values (e ∷ es)
-- Constructor applications.
data Consts : Type where
const : Const → List Consts → Consts
mutual
data Constructor-application : Exp → Type where
const : ∀ c {es} →
Constructor-applications es →
Constructor-application (const c es)
data Constructor-applications : List Exp → Type where
[] : Constructor-applications []
_∷_ : ∀ {e es} →
Constructor-application e → Constructor-applications es →
Constructor-applications (e ∷ es)
-- Constructor applications are values.
mutual
const→value : ∀ {e} → Constructor-application e → Value e
const→value (const c cs) = const c (consts→values cs)
consts→values : ∀ {es} → Constructor-applications es → Values es
consts→values [] = []
consts→values (c ∷ cs) = const→value c ∷ consts→values cs
-- The second argument of _⇓_ is always a Value.
mutual
⇓-Value : ∀ {e v} → e ⇓ v → Value v
⇓-Value (apply _ _ p) = ⇓-Value p
⇓-Value (case _ _ _ p) = ⇓-Value p
⇓-Value (rec p) = ⇓-Value p
⇓-Value lambda = lambda _ _
⇓-Value (const ps) = const _ (⇓⋆-Values ps)
⇓⋆-Values : ∀ {es vs} → es ⇓⋆ vs → Values vs
⇓⋆-Values [] = []
⇓⋆-Values (p ∷ ps) = ⇓-Value p ∷ ⇓⋆-Values ps
mutual
values-compute-to-themselves : ∀ {v} → Value v → v ⇓ v
values-compute-to-themselves (lambda _ _) = lambda
values-compute-to-themselves (const _ ps) =
const (values-compute-to-themselves⋆ ps)
values-compute-to-themselves⋆ : ∀ {vs} → Values vs → vs ⇓⋆ vs
values-compute-to-themselves⋆ [] = []
values-compute-to-themselves⋆ (p ∷ ps) =
values-compute-to-themselves p ∷ values-compute-to-themselves⋆ ps
values-only-compute-to-themselves :
∀ {v₁ v₂} → Value v₁ → v₁ ⇓ v₂ → v₁ ≡ v₂
values-only-compute-to-themselves p q =
⇓-deterministic (values-compute-to-themselves p) q
values-only-compute-to-themselves⋆ :
∀ {vs₁ vs₂} → Values vs₁ → vs₁ ⇓⋆ vs₂ → vs₁ ≡ vs₂
values-only-compute-to-themselves⋆ ps qs =
⇓⋆-deterministic (values-compute-to-themselves⋆ ps) qs
|
algebraic-stack_agda0000_doc_57 | {-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Algebra.Semigroup.Properties where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Function using (_∘_; id)
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Logic using (_≡ₚ_)
open import Cubical.Functions.Embedding
open import Cubical.Data.Nat
open import Cubical.Data.NatPlusOne
open import Cubical.Algebra
open import Cubical.Algebra.Properties
open import Cubical.Algebra.Semigroup.Morphism
open import Cubical.Algebra.Magma.Properties using (isPropIsMagma)
open import Cubical.Relation.Binary
open import Cubical.Relation.Binary.Reasoning.Equality
open import Cubical.HITs.PropositionalTruncation
open import Cubical.Algebra.Semigroup.MorphismProperties public
using (SemigroupPath; uaSemigroup; carac-uaSemigroup; Semigroup≡; caracSemigroup≡)
private
variable
ℓ ℓ′ : Level
isPropIsSemigroup : ∀ {S : Type ℓ} {_•_} → isProp (IsSemigroup S _•_)
isPropIsSemigroup {_} {_} {_•_} (issemigroup aMagma aAssoc) (issemigroup bMagma bAssoc) =
cong₂ issemigroup (isPropIsMagma aMagma bMagma) (isPropAssociative (IsMagma.is-set aMagma) _•_ aAssoc bAssoc)
module SemigroupLemmas (S : Semigroup ℓ) where
open Semigroup S
^-suc : ∀ x n → x ^ suc₊₁ n ≡ x ^ n • x
^-suc x one = refl
^-suc x (2+ n) =
x ^ suc₊₁ (2+ n) ≡⟨⟩
x ^ 1+ suc (suc n) ≡⟨⟩
x • (x • x ^ 1+ n) ≡⟨⟩
x • x ^ suc₊₁ (1+ n) ≡⟨ cong (x •_) (^-suc x (1+ n)) ⟩
x • (x ^ 1+ n • x) ≡˘⟨ assoc x (x ^ 1+ n) x ⟩
x • x ^ 1+ n • x ≡⟨⟩
x ^ 2+ n • x ∎
^-plus : ∀ x → Homomorphic₂ (x ^_) _+₊₁_ _•_
^-plus _ one _ = refl
^-plus x (2+ m) n =
x ^ (1+ (suc m) +₊₁ n) ≡⟨⟩
x • (x ^ (1+ m +₊₁ n)) ≡⟨ cong (x •_) (^-plus x (1+ m) n) ⟩
x • (x ^ 1+ m • x ^ n) ≡˘⟨ assoc x (x ^ 1+ m) (x ^ n) ⟩
x • x ^ 1+ m • x ^ n ≡⟨⟩
x ^ 2+ m • x ^ n ∎
module Kernel {S : Semigroup ℓ} {T : Semigroup ℓ′} (hom : SemigroupHom S T) where
private
module S = Semigroup S
module T = Semigroup T
open SemigroupHom hom renaming (fun to f)
Kernel′ : RawRel ⟨ S ⟩ ℓ′
Kernel′ x y = f x ≡ f y
isPropKernel : isPropValued Kernel′
isPropKernel x y = T.is-set (f x) (f y)
Kernel : Rel ⟨ S ⟩ ℓ′
Kernel = fromRaw Kernel′ isPropKernel
ker-reflexive : Reflexive Kernel
ker-reflexive = refl
ker-fromEq : FromEq Kernel
ker-fromEq = rec (isPropKernel _ _) (cong f)
ker-symmetric : Symmetric Kernel
ker-symmetric = sym
ker-transitive : Transitive Kernel
ker-transitive = _∙_
ker-isPreorder : IsPreorder Kernel
ker-isPreorder = record
{ reflexive = ker-reflexive
; transitive = ker-transitive
}
ker-isPartialEquivalence : IsPartialEquivalence Kernel
ker-isPartialEquivalence = record
{ symmetric = ker-symmetric
; transitive = ker-transitive
}
ker-isEquivalence : IsEquivalence Kernel
ker-isEquivalence = record
{ isPartialEquivalence = ker-isPartialEquivalence
; reflexive = ker-reflexive
}
ker⇒id→emb : Kernel ⇒ _≡ₚ_ → isEmbedding f
ker⇒id→emb ker⇒id = injEmbedding S.is-set T.is-set (λ p → rec (S.is-set _ _) id (ker⇒id p))
emb→ker⇒id : isEmbedding f → Kernel ⇒ _≡ₚ_
emb→ker⇒id isemb {x} {y} = ∣_∣ ∘ invIsEq (isemb x y)
|
algebraic-stack_agda0000_doc_58 | {-# OPTIONS --prop #-}
data _≡_ {A : Set} (a : A) : A → Set where
refl : a ≡ a
postulate
funextP : {A : Prop} {B : A → Set} {f g : (a : A) → B a} (h : (x : A) → f x ≡ g x) → f ≡ g
test : {A : Prop} {B : A → Set} {f g : (a : A) → B a} (h : (x : A) → f x ≡ g x) → f ≡ g
test h = funextP h
|
algebraic-stack_agda0000_doc_59 | ------------------------------------------------------------------------------
-- Parametrized preorder reasoning
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module Common.Relation.Binary.PreorderReasoning
{D : Set}
(_∼_ : D → D → Set)
(refl : ∀ {x} → x ∼ x)
(trans : ∀ {x y z} → x ∼ y → y ∼ z → x ∼ z)
where
infix 3 _∎
infixr 2 _∼⟨_⟩_
------------------------------------------------------------------------------
-- From (Mu, S.-C., Ko, H.-S. and Jansson, P. (2009)).
--
-- N.B. Unlike Ulf's thesis (and the Agda standard library 0.8.1) this
-- set of combinators do not use a wrapper data type.
_∼⟨_⟩_ : ∀ x {y z} → x ∼ y → y ∼ z → x ∼ z
_ ∼⟨ x∼y ⟩ y∼z = trans x∼y y∼z
_∎ : ∀ x → x ∼ x
_∎ _ = refl
------------------------------------------------------------------------------
-- References
--
-- Mu, S.-C., Ko, H.-S. and Jansson, P. (2009). Algebra of programming
-- in Agda: Dependent types for relational program derivation. Journal
-- of Functional Programming 19.5, pp. 545–579.
|
algebraic-stack_agda0000_doc_60 | {-# OPTIONS --without-K #-}
module SubstLemmas where
open import Level using (Level)
open import Relation.Binary.PropositionalEquality
using (_≡_; refl; sym; trans; subst; cong₂)
open import Data.Nat using (ℕ; _+_; _*_)
------------------------------------------------------------------------------
-- Lemmas about subst (and a couple about trans)
subst-dist :
{a b : Level} {A : Set a} {B : A → Set b}
(f : {x : A} → B x → B x → B x) →
{x₁ x₂ : A} → (x₂≡x₁ : x₂ ≡ x₁) → (v₁ v₂ : B x₂) →
subst B x₂≡x₁ (f v₁ v₂) ≡ f (subst B x₂≡x₁ v₁) (subst B x₂≡x₁ v₂)
subst-dist f refl v₁ v₂ = refl
subst-trans :
{a b : Level} {A : Set a} {B : A → Set b} {x₁ x₂ x₃ : A} →
(x₂≡x₁ : x₂ ≡ x₁) → (x₃≡x₂ : x₃ ≡ x₂) → (v : B x₃) →
subst B x₂≡x₁ (subst B x₃≡x₂ v) ≡ subst B (trans x₃≡x₂ x₂≡x₁) v
subst-trans refl refl v = refl
subst₂+ : {b : Level} {B : ℕ → Set b} {x₁ x₂ x₃ x₄ : ℕ} →
(x₂≡x₁ : x₂ ≡ x₁) → (x₄≡x₃ : x₄ ≡ x₃) → (v₁ : B x₂) → (v₂ : B x₄) →
(f : {x₁ x₂ : ℕ} → B x₁ → B x₂ → B (x₁ + x₂)) →
subst B (cong₂ _+_ x₂≡x₁ x₄≡x₃) (f v₁ v₂) ≡
f (subst B x₂≡x₁ v₁) (subst B x₄≡x₃ v₂)
subst₂+ refl refl v₁ v₂ f = refl
subst₂* : {b : Level} {B : ℕ → Set b} {x₁ x₂ x₃ x₄ : ℕ} →
(x₂≡x₁ : x₂ ≡ x₁) → (x₄≡x₃ : x₄ ≡ x₃) → (v₁ : B x₂) → (v₂ : B x₄) →
(f : {x₁ x₂ : ℕ} → B x₁ → B x₂ → B (x₁ * x₂)) →
subst B (cong₂ _*_ x₂≡x₁ x₄≡x₃) (f v₁ v₂) ≡
f (subst B x₂≡x₁ v₁) (subst B x₄≡x₃ v₂)
subst₂* refl refl v₁ v₂ f = refl
trans-syml : {A : Set} {x y : A} → (p : x ≡ y) → trans (sym p) p ≡ refl
trans-syml refl = refl
trans-symr : {A : Set} {x y : A} → (p : x ≡ y) → trans p (sym p) ≡ refl
trans-symr refl = refl
subst-subst :
{a b : Level} {A : Set a} {B : A → Set b}
{x y : A} → (eq : x ≡ y) → (eq' : y ≡ x) → (irr : sym eq ≡ eq') → (v : B y) →
subst B eq (subst B eq' v) ≡ v
subst-subst refl .refl refl v = refl
|
algebraic-stack_agda0000_doc_61 | -- Andreas, 2015-12-29
-- with-clause stripping for record patterns
-- {-# OPTIONS -v tc.with.strip:60 #-}
record R : Set1 where
field
f : Set
test : R → Set1
test record{ f = a } with a
... | x = R
test1 : R → Set1
test1 record{ f = a } with a
test1 record{ f = a } | _ = R
test2 : R → Set1
test2 record{ f = a } with a
test2 record{ f = _ } | _ = R
-- Visible fields may be missing.
test3 : R → Set1
test3 record{ f = a } with a
test3 record{} | _ = R
-- With-clauses may specify more fields than the parent
test4 : R → Set1
test4 record{} with R
test4 record{ f = _ } | _ = R
-- all should pass
|
algebraic-stack_agda0000_doc_62 | {-# OPTIONS --without-K --safe #-}
module TypeTheory.HoTT.Data.Sum.Properties where
-- agda-stdlib
open import Level
open import Data.Empty
open import Data.Product
open import Data.Sum
open import Function.Base
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary
-- agda-misc
open import TypeTheory.HoTT.Base
private
variable
a b : Level
A : Set a
B : Set b
isProp-⊎ : ¬ (A × B) → isProp A → isProp B → isProp (A ⊎ B)
isProp-⊎ ¬[A×B] A-isP B-isP (inj₁ x₁) (inj₁ x₂) = cong inj₁ (A-isP x₁ x₂)
isProp-⊎ ¬[A×B] A-isP B-isP (inj₁ x₁) (inj₂ y₂) = ⊥-elim $ ¬[A×B] (x₁ , y₂)
isProp-⊎ ¬[A×B] A-isP B-isP (inj₂ y₁) (inj₁ x₂) = ⊥-elim $ ¬[A×B] (x₂ , y₁)
isProp-⊎ ¬[A×B] A-isP B-isP (inj₂ y₁) (inj₂ y₂) = cong inj₂ (B-isP y₁ y₂)
|
algebraic-stack_agda0000_doc_63 | module Proofs where
open import Agda.Builtin.Equality
open import Relation.Binary.PropositionalEquality.Core
open import Data.Nat
open ≡-Reasoning
open import Classes
data Vec : ℕ → Set → Set where
Nil : ∀ {a} → Vec 0 a
Cons : ∀ {n A} → (a : A) → Vec n A → Vec (suc n) A
cons-cong : ∀ {n A} {a c : A} {b d : Vec n A} → a ≡ c → b ≡ d → Cons a b ≡ Cons c d
cons-cong {_} {_} {a} {c} {b} {d} p q = begin
Cons a b ≡⟨ cong (λ x → Cons a x) q ⟩
Cons a d ≡⟨ cong (λ x → Cons x d) p ⟩
Cons c d ∎
instance
VecF : {n : ℕ} → Functor (Vec n)
VecF = record {
fmap = fmap' ;
F-id = id' ;
F-∘ = comp' }
where
fmap' : ∀ {n A B} → (A → B) → Vec n A → Vec n B
fmap' f Nil = Nil
fmap' f (Cons a v) = Cons (f a) (fmap' f v)
id' : ∀ {n A} → (a : Vec n A) → fmap' id a ≡ a
id' Nil = refl
id' (Cons a v) = cong (λ w → Cons a w) (id' v)
comp' : ∀ {n A B C} → (g : B → C) (f : A → B) (a : Vec n A) → fmap' (g ∘ f) a ≡ (fmap' g ∘ fmap' f) a
comp' g f Nil = refl
comp' g f (Cons a v) = cons-cong refl (comp' g f v)
full : ∀ {A} → A → (n : ℕ) → Vec n A
full x zero = Nil
full x (suc n) = Cons x (full x n)
zipWith : ∀ {n A B C} → (A → B → C) → Vec n A → Vec n B → Vec n C
zipWith _ Nil Nil = Nil
zipWith f (Cons a v) (Cons b w) = Cons (f a b) (zipWith f v w)
instance
VecA : {n : ℕ} → Applicative (Vec n)
VecA {n} = record
{ pure = λ x → full x n
; _<*>_ = ap'
; A-id = id'
; A-∘ = comp'
; A-hom = hom'
; A-ic = ic'
}
where
ap' : ∀ {n A B} (v : Vec n (A → B)) (w : Vec n A) → Vec n B
ap' Nil Nil = Nil
ap' (Cons a v) (Cons b w) = Cons (a b) (ap' v w)
id' : ∀ {n A} (v : Vec n A) → ap' (full id n) v ≡ v
id' Nil = refl
id' (Cons a v) = cons-cong refl (id' v)
comp' : ∀ {n A B C} → (u : Vec n (B → C)) (v : Vec n (A → B)) (w : Vec n A)
→ ap' (ap' (ap' (full _∘_ n) u) v) w ≡ ap' u (ap' v w)
comp' Nil Nil Nil = refl
comp' (Cons a u) (Cons b v) (Cons c w) = cons-cong refl (comp' u v w)
hom' : ∀ {n A B} (f : A → B) (x : A) → ap' (full f n) (full x n) ≡ full (f x) n
hom' {zero} f x = refl
hom' {suc n} f x = cons-cong refl (hom' {n} f x)
ic' : ∀ {n A B} (u : Vec n (A → B)) (y : A) → ap' u (full y n) ≡ ap' (full (_$ y) n) u
ic' Nil y = refl
ic' (Cons a u) y = cons-cong refl (ic' u y)
tail : ∀ {n A} → Vec (suc n) A → Vec n A
tail (Cons x v) = v
diag : ∀ {n A} → Vec n (Vec n A) → Vec n A
diag Nil = Nil
diag (Cons (Cons a w) v) = Cons a (diag (fmap tail v))
fmap-pure : ∀ {A B F} {{aF : Applicative F}} (f : A → B) (x : A)
→ fmap f (Applicative.pure aF x) ≡ Applicative.pure aF (f x)
fmap-pure f x = begin
fmap f (pure x) ≡⟨ sym (appFun f (pure x)) ⟩
pure f <*> pure x ≡⟨ A-hom f x ⟩
pure (f x) ∎
diag-full : ∀ {A} (n : ℕ) (v : Vec n A) → diag (full v n) ≡ v
diag-full _ Nil = refl
diag-full (suc n) (Cons a v) = cons-cong refl (begin
diag (fmap tail (full (Cons a v) n)) ≡⟨ cong diag (fmap-pure tail (Cons a v)) ⟩
diag (full v n) ≡⟨ diag-full n v ⟩
v ∎)
instance
VecM : {n : ℕ} → Monad (Vec n)
VecM = record { _>>=_ = bind' ;
left-1 = left' ;
right-1 = {!!} ;
assoc = {!!} }
where
bind' : ∀ {n A B} → Vec n A → (A → Vec n B) → Vec n B
bind' v f = diag (fmap f v)
left' : ∀ {n A B} (a : A) (k : A → Vec n B) → bind' (pure a) k ≡ k a
left' {n} a k = begin
diag (fmap k (full a n)) ≡⟨ cong diag (fmap-pure k a) ⟩
diag (full (k a) n) ≡⟨ diag-full n (k a) ⟩
k a ∎
right' : ∀ {n A} (m : Vec n A) → bind' m pure ≡ m
right' Nil = refl
right' (Cons a m) = begin
bind' (Cons a m) pure ≡⟨ refl ⟩
diag (fmap pure (Cons a m)) ≡⟨ cons-cong refl {!!} ⟩ -- :(
Cons a m ∎
|
algebraic-stack_agda0000_doc_5984 | {-# OPTIONS --without-K #-}
module WithoutK8 where
data I : Set where
i : I
module M (x : I) where
data D : Set where
d : D
data P : D → Set where
postulate x : I
open module M′ = M x
Foo : P d → Set
Foo ()
|
algebraic-stack_agda0000_doc_5985 | module Human.List where
open import Human.Nat
infixr 5 _,_
data List {a} (A : Set a) : Set a where
end : List A
_,_ : (x : A) (xs : List A) → List A
{-# BUILTIN LIST List #-}
{-# COMPILE JS List = function(x,v) { if (x.length < 1) { return v["[]"](); } else { return v["_∷_"](x[0], x.slice(1)); } } #-}
{-# COMPILE JS end = Array() #-}
{-# COMPILE JS _,_ = function (x) { return function(y) { return Array(x).concat(y); }; } #-}
foldr : ∀ {A : Set} {B : Set} → (A → B → B) → B → List A → B
foldr c n end = n
foldr c n (x , xs) = c x (foldr c n xs)
length : ∀ {A : Set} → List A → Nat
length = foldr (λ a n → suc n) zero
-- TODO --
-- filter
-- reduce
-- Receives a function that transforms each element of A, a function A and a new list, B.
map : ∀ {A : Set} {B : Set} → (f : A → B) → List A → List B
map f end = end
map f (x , xs) = (f x) , (map f xs) -- f transforms element x, return map to do a new transformation
-- Sum all numbers in a list
sum : List Nat → Nat
sum end = zero
sum (x , l) = x + (sum l)
remove-last : ∀ {A : Set} → List A → List A
remove-last end = end
remove-last (x , l) = l
|
algebraic-stack_agda0000_doc_5986 | {-# OPTIONS --safe #-}
module Cubical.Data.Vec.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Univalence
import Cubical.Data.Empty as ⊥
open import Cubical.Data.Unit
open import Cubical.Data.Nat
open import Cubical.Data.Sigma
open import Cubical.Data.Sum
open import Cubical.Data.Vec.Base
open import Cubical.Data.FinData
open import Cubical.Relation.Nullary
open Iso
private
variable
ℓ : Level
A : Type ℓ
-- This is really cool!
-- Compare with: https://github.com/agda/agda-stdlib/blob/master/src/Data/Vec/Properties/WithK.agda#L32
++-assoc : ∀ {m n k} (xs : Vec A m) (ys : Vec A n) (zs : Vec A k) →
PathP (λ i → Vec A (+-assoc m n k (~ i))) ((xs ++ ys) ++ zs) (xs ++ ys ++ zs)
++-assoc {m = zero} [] ys zs = refl
++-assoc {m = suc m} (x ∷ xs) ys zs i = x ∷ ++-assoc xs ys zs i
-- Equivalence between Fin n → A and Vec A n
FinVec→Vec : {n : ℕ} → FinVec A n → Vec A n
FinVec→Vec {n = zero} xs = []
FinVec→Vec {n = suc _} xs = xs zero ∷ FinVec→Vec (λ x → xs (suc x))
Vec→FinVec : {n : ℕ} → Vec A n → FinVec A n
Vec→FinVec xs f = lookup f xs
FinVec→Vec→FinVec : {n : ℕ} (xs : FinVec A n) → Vec→FinVec (FinVec→Vec xs) ≡ xs
FinVec→Vec→FinVec {n = zero} xs = funExt λ f → ⊥.rec (¬Fin0 f)
FinVec→Vec→FinVec {n = suc n} xs = funExt goal
where
goal : (f : Fin (suc n))
→ Vec→FinVec (xs zero ∷ FinVec→Vec (λ x → xs (suc x))) f ≡ xs f
goal zero = refl
goal (suc f) i = FinVec→Vec→FinVec (λ x → xs (suc x)) i f
Vec→FinVec→Vec : {n : ℕ} (xs : Vec A n) → FinVec→Vec (Vec→FinVec xs) ≡ xs
Vec→FinVec→Vec {n = zero} [] = refl
Vec→FinVec→Vec {n = suc n} (x ∷ xs) i = x ∷ Vec→FinVec→Vec xs i
FinVecIsoVec : (n : ℕ) → Iso (FinVec A n) (Vec A n)
FinVecIsoVec n = iso FinVec→Vec Vec→FinVec Vec→FinVec→Vec FinVec→Vec→FinVec
FinVec≃Vec : (n : ℕ) → FinVec A n ≃ Vec A n
FinVec≃Vec n = isoToEquiv (FinVecIsoVec n)
FinVec≡Vec : (n : ℕ) → FinVec A n ≡ Vec A n
FinVec≡Vec n = ua (FinVec≃Vec n)
isContrVec0 : isContr (Vec A 0)
isContrVec0 = [] , λ { [] → refl }
-- encode - decode Vec
module VecPath {A : Type ℓ}
where
code : {n : ℕ} → (v v' : Vec A n) → Type ℓ
code [] [] = Unit*
code (a ∷ v) (a' ∷ v') = (a ≡ a') × (v ≡ v')
-- encode
reflEncode : {n : ℕ} → (v : Vec A n) → code v v
reflEncode [] = tt*
reflEncode (a ∷ v) = refl , refl
encode : {n : ℕ} → (v v' : Vec A n) → (v ≡ v') → code v v'
encode v v' p = J (λ v' _ → code v v') (reflEncode v) p
encodeRefl : {n : ℕ} → (v : Vec A n) → encode v v refl ≡ reflEncode v
encodeRefl v = JRefl (λ v' _ → code v v') (reflEncode v)
-- decode
decode : {n : ℕ} → (v v' : Vec A n) → (r : code v v') → (v ≡ v')
decode [] [] _ = refl
decode (a ∷ v) (a' ∷ v') (p , q) = cong₂ _∷_ p q
decodeRefl : {n : ℕ} → (v : Vec A n) → decode v v (reflEncode v) ≡ refl
decodeRefl [] = refl
decodeRefl (a ∷ v) = refl
-- equiv
≡Vec≃codeVec : {n : ℕ} → (v v' : Vec A n) → (v ≡ v') ≃ (code v v')
≡Vec≃codeVec v v' = isoToEquiv is
where
is : Iso (v ≡ v') (code v v')
fun is = encode v v'
inv is = decode v v'
rightInv is = sect v v'
where
sect : {n : ℕ} → (v v' : Vec A n) → (r : code v v')
→ encode v v' (decode v v' r) ≡ r
sect [] [] tt* = encodeRefl []
sect (a ∷ v) (a' ∷ v') (p , q) = J (λ a' p → encode (a ∷ v) (a' ∷ v') (decode (a ∷ v) (a' ∷ v') (p , q)) ≡ (p , q))
(J (λ v' q → encode (a ∷ v) (a ∷ v') (decode (a ∷ v) (a ∷ v') (refl , q)) ≡ (refl , q))
(encodeRefl (a ∷ v)) q) p
leftInv is = retr v v'
where
retr : {n : ℕ} → (v v' : Vec A n) → (p : v ≡ v')
→ decode v v' (encode v v' p) ≡ p
retr v v' p = J (λ v' p → decode v v' (encode v v' p) ≡ p)
(cong (decode v v) (encodeRefl v) ∙ decodeRefl v) p
isOfHLevelVec : (h : HLevel) (n : ℕ)
→ isOfHLevel (suc (suc h)) A → isOfHLevel (suc (suc h)) (Vec A n)
isOfHLevelVec h zero ofLevelA [] [] = isOfHLevelRespectEquiv (suc h) (invEquiv (≡Vec≃codeVec [] []))
(isOfHLevelUnit* (suc h))
isOfHLevelVec h (suc n) ofLevelA (x ∷ v) (x' ∷ v') = isOfHLevelRespectEquiv (suc h) (invEquiv (≡Vec≃codeVec _ _))
(isOfHLevelΣ (suc h) (ofLevelA x x') (λ _ → isOfHLevelVec h n ofLevelA v v'))
discreteA→discreteVecA : Discrete A → (n : ℕ) → Discrete (Vec A n)
discreteA→discreteVecA DA zero [] [] = yes refl
discreteA→discreteVecA DA (suc n) (a ∷ v) (a' ∷ v') with (DA a a') | (discreteA→discreteVecA DA n v v')
... | yes p | yes q = yes (invIsEq (snd (≡Vec≃codeVec (a ∷ v) (a' ∷ v'))) (p , q))
... | yes p | no ¬q = no (λ r → ¬q (snd (funIsEq (snd (≡Vec≃codeVec (a ∷ v) (a' ∷ v'))) r)))
... | no ¬p | yes q = no (λ r → ¬p (fst (funIsEq (snd (≡Vec≃codeVec (a ∷ v) (a' ∷ v'))) r)))
... | no ¬p | no ¬q = no (λ r → ¬q (snd (funIsEq (snd (≡Vec≃codeVec (a ∷ v) (a' ∷ v'))) r)))
≢-∷ : {m : ℕ} → (Discrete A) → (a : A) → (v : Vec A m) → (a' : A) → (v' : Vec A m) →
(a ∷ v ≡ a' ∷ v' → ⊥.⊥) → (a ≡ a' → ⊥.⊥) ⊎ (v ≡ v' → ⊥.⊥)
≢-∷ {m} discreteA a v a' v' ¬r with (discreteA a a')
| (discreteA→discreteVecA discreteA m v v')
... | yes p | yes q = ⊥.rec (¬r (cong₂ _∷_ p q))
... | yes p | no ¬q = inr ¬q
... | no ¬p | y = inl ¬p
|
algebraic-stack_agda0000_doc_5987 |
module Oscar.Data.AList where
open import Oscar.Data.Equality
open import Oscar.Data.Nat
open import Oscar.Level
module _ {a} (A : Nat → Set a) where
data AList (n : Nat) : Nat → Set a where
[] : AList n n
_∷_ : ∀ {m} → A m → AList n m → AList n (suc m)
open import Oscar.Category
module Category' {a} {A : Nat → Set a} where
_⊸_ = AList A
infix 4 _≋_
_≋_ : ∀ {m n} → m ⊸ n → m ⊸ n → Set a
_≋_ = _≡_
infixr 9 _∙_
_∙_ : ∀ {m n} → m ⊸ n → ∀ {l} → l ⊸ m → l ⊸ n
[] ∙ ρ = ρ
(x ∷ σ) ∙ ρ = x ∷ (σ ∙ ρ)
∙-associativity : ∀ {k l} (f : k ⊸ l) {m} (g : l ⊸ m) {n} (h : m ⊸ n) → (h ∙ g) ∙ f ≋ h ∙ g ∙ f
∙-associativity f g [] = refl
∙-associativity f g (x ∷ h) = cong (x ∷_) (∙-associativity f g h)
ε : ∀ {n} → n ⊸ n
ε = []
∙-left-identity : ∀ {m n} (σ : m ⊸ n) → ε ∙ σ ≋ σ
∙-left-identity _ = refl
∙-right-identity : ∀ {m n} (σ : m ⊸ n) → σ ∙ ε ≋ σ
∙-right-identity [] = refl
∙-right-identity (x ∷ σ) = cong (x ∷_) (∙-right-identity σ)
semigroupoidAList : Semigroupoid (AList A) (λ {x y} → ≡-setoid (AList A x y))
Semigroupoid._∙_ semigroupoidAList = _∙_
Semigroupoid.∙-extensionality semigroupoidAList refl refl = refl
Semigroupoid.∙-associativity semigroupoidAList = ∙-associativity
categoryAList : Category semigroupoidAList
Category.ε categoryAList = ε
Category.ε-left-identity categoryAList = ∙-left-identity _
Category.ε-right-identity categoryAList = ∙-right-identity _
-- ∙-associativity σ _ [] = refl
-- ∙-associativity (τ asnoc t / x) ρ σ = cong (λ s → s asnoc t / x) (∙-associativity τ ρ σ)
-- -- semigroupoid : ∀ {a} (A : Nat → Set a) → Semigroupoid a a ∅̂
-- -- Semigroupoid._∙_ = semigroupoid
-- -- -- record Semigroupoid
-- -- -- {𝔬} {𝔒 :
-- -- -- -- module Oscar.Data.AList {𝔣} (FunctionName : Set 𝔣) where
-- -- -- -- open import Oscar.Data.Fin
-- -- -- -- open import Oscar.Data.Nat
-- -- -- -- open import Oscar.Data.Product
-- -- -- -- open import Oscar.Data.Term FunctionName
-- -- -- -- open import Oscar.Data.IList
-- -- -- -- pattern anil = []
-- -- -- -- pattern _asnoc_/_ σ t' x = (t' , x) ∷ σ
-- -- -- -- AList : Nat → Nat → Set 𝔣
-- -- -- -- AList m n = IList (λ m → Term m × Fin (suc m)) n m
-- -- -- -- -- data AList' (n : Nat) : Nat -> Set 𝔣 where
-- -- -- -- -- anil : AList' n n
-- -- -- -- -- _asnoc_/_ : ∀ {m} (σ : AList' n m) (t' : Term m) (x : Fin (suc m))
-- -- -- -- -- -> AList' n (suc m)
-- -- -- -- -- open import Oscar.Function
-- -- -- -- -- --AList = flip AList'
-- -- -- -- -- -- data AList : Nat -> Nat -> Set 𝔣 where
-- -- -- -- -- -- anil : ∀ {n} -> AList n n
-- -- -- -- -- -- _asnoc_/_ : ∀ {m n} (σ : AList m n) (t' : Term m) (x : Fin (suc m))
-- -- -- -- -- -- -> AList (suc m) n
-- -- -- -- -- -- -- open import Relation.Binary.PropositionalEquality renaming ([_] to [[_]])
-- -- -- -- -- -- -- open ≡-Reasoning
-- -- -- -- -- -- -- step-prop : ∀ {m n} (s t : Term (suc m)) (σ : AList m n) r z ->
-- -- -- -- -- -- -- (Unifies s t [-◇ sub (σ asnoc r / z) ]) ⇔ (Unifies ((r for z) ◃ s) ((r for z) ◃ t) [-◇ sub σ ])
-- -- -- -- -- -- -- step-prop s t σ r z f = to , from
-- -- -- -- -- -- -- where
-- -- -- -- -- -- -- lemma1 : ∀ t -> (f ◇ sub σ) ◃ ((r for z) ◃ t) ≡ (f ◇ (sub σ ◇ (r for z))) ◃ t
-- -- -- -- -- -- -- lemma1 t = bind-assoc f (sub σ) (r for z) t
-- -- -- -- -- -- -- to = λ a → begin
-- -- -- -- -- -- -- (f ◇ sub σ) ◃ ((r for z) ◃ s) ≡⟨ lemma1 s ⟩
-- -- -- -- -- -- -- (f ◇ (sub σ ◇ (r for z))) ◃ s ≡⟨ a ⟩
-- -- -- -- -- -- -- (f ◇ (sub σ ◇ (r for z))) ◃ t ≡⟨ sym (lemma1 t) ⟩
-- -- -- -- -- -- -- (f ◇ sub σ) ◃ ((r for z) ◃ t) ∎
-- -- -- -- -- -- -- from = λ a → begin
-- -- -- -- -- -- -- (f ◇ (sub σ ◇ (r for z))) ◃ s ≡⟨ sym (lemma1 s) ⟩
-- -- -- -- -- -- -- (f ◇ sub σ) ◃ ((r for z) ◃ s) ≡⟨ a ⟩
-- -- -- -- -- -- -- (f ◇ sub σ) ◃ ((r for z) ◃ t) ≡⟨ lemma1 t ⟩
-- -- -- -- -- -- -- (f ◇ (sub σ ◇ (r for z))) ◃ t ∎
-- -- -- -- -- -- -- record ⋆amgu (T : ℕ → Set) : Set where
-- -- -- -- -- -- -- field amgu : ∀ {m} (s t : T m) (acc : ∃ (AList m)) -> Maybe (∃ (AList m))
-- -- -- -- -- -- -- open ⋆amgu ⦃ … ⦄ public
-- -- -- -- -- -- -- open import Category.Monad using (RawMonad)
-- -- -- -- -- -- -- import Level
-- -- -- -- -- -- -- open RawMonad (Data.Maybe.monad {Level.zero})
-- -- -- -- -- -- -- open import Relation.Binary using (IsDecEquivalence)
-- -- -- -- -- -- -- open import Relation.Nullary using (Dec; yes; no)
-- -- -- -- -- -- -- open import Data.Nat using (ℕ; _≟_)
-- -- -- -- -- -- -- open import Data.Product using () renaming (Σ to Σ₁)
-- -- -- -- -- -- -- open Σ₁ renaming (proj₁ to π₁; proj₂ to π₂)
-- -- -- -- -- -- -- open import Data.Product using (Σ)
-- -- -- -- -- -- -- open Σ
-- -- -- -- -- -- -- open import Data.Sum
-- -- -- -- -- -- -- open import Function
-- -- -- -- -- -- -- NothingForkLeft : ∀ {m l} (s1 t1 : Term m) (ρ : AList m l) (s2 t2 : Term m) →
-- -- -- -- -- -- -- Nothing⋆ $ Unifies⋆ s1 t1 [-◇⋆ sub ρ ] →
-- -- -- -- -- -- -- Nothing⋆ $ Unifies⋆ (s1 fork s2) (t1 fork t2) [-◇⋆ sub ρ ]
-- -- -- -- -- -- -- NothingForkLeft s1 t1 ρ s2 t2 nounify = No[Q◇ρ]→No[P◇ρ] No[Q◇ρ]
-- -- -- -- -- -- -- where
-- -- -- -- -- -- -- P = Unifies⋆ (s1 fork s2) (t1 fork t2)
-- -- -- -- -- -- -- Q = (Unifies⋆ s1 t1 ∧⋆ Unifies⋆ s2 t2)
-- -- -- -- -- -- -- Q⇔P : Q ⇔⋆ P
-- -- -- -- -- -- -- Q⇔P = switch⋆ P Q (Properties.fact1' {_} {s1} {s2} {t1} {t2})
-- -- -- -- -- -- -- No[Q◇ρ]→No[P◇ρ] : Nothing⋆ (Q [-◇⋆ sub ρ ]) -> Nothing⋆ (P [-◇⋆ sub ρ ])
-- -- -- -- -- -- -- No[Q◇ρ]→No[P◇ρ] = Properties.fact2⋆ (Q [-◇⋆ sub ρ ]) (P [-◇⋆ sub ρ ]) (Properties.fact5⋆ Q P (sub ρ) Q⇔P)
-- -- -- -- -- -- -- No[Q◇ρ] : Nothing⋆ (Q [-◇⋆ sub ρ ])
-- -- -- -- -- -- -- No[Q◇ρ] = failure-propagation.first⋆ (sub ρ) (Unifies⋆ s1 t1) (Unifies⋆ s2 t2) nounify
-- -- -- -- -- -- -- NothingForkRight : ∀ {m l n} (σ : AList l n)
-- -- -- -- -- -- -- (s1 s2 : Term m)
-- -- -- -- -- -- -- (t1 t2 : Term m) →
-- -- -- -- -- -- -- (ρ : AList m l) →
-- -- -- -- -- -- -- Max⋆ (Unifies⋆ s1 t1 [-◇⋆ sub ρ ]) $ sub σ →
-- -- -- -- -- -- -- Nothing⋆ $ Unifies⋆ s2 t2 [-◇⋆ sub (σ ++ ρ) ] →
-- -- -- -- -- -- -- Nothing⋆ $ Unifies⋆ (s1 fork s2) (t1 fork t2) [-◇⋆ sub ρ ]
-- -- -- -- -- -- -- NothingForkRight σ s1 s2 t1 t2 ρ a nounify = No[Q◇ρ]→No[P◇ρ]⋆ No[Q◇ρ]⋆
-- -- -- -- -- -- -- where
-- -- -- -- -- -- -- P⋆ = Unifies⋆ (s1 fork s2) (t1 fork t2)
-- -- -- -- -- -- -- Q⋆ = (Unifies⋆ s1 t1 ∧⋆ Unifies⋆ s2 t2)
-- -- -- -- -- -- -- Q⇔P⋆ : Q⋆ ⇔⋆ P⋆
-- -- -- -- -- -- -- Q⇔P⋆ = switch⋆ P⋆ Q⋆ (Properties.fact1'⋆ {_} {s1} {s2} {t1} {t2})
-- -- -- -- -- -- -- No[Q◇ρ]→No[P◇ρ]⋆ : Nothing⋆ (Q⋆ [-◇⋆ sub ρ ]) -> Nothing⋆ (P⋆ [-◇⋆ sub ρ ])
-- -- -- -- -- -- -- No[Q◇ρ]→No[P◇ρ]⋆ = Properties.fact2⋆ (Q⋆ [-◇⋆ sub ρ ]) (P⋆ [-◇⋆ sub ρ ]) (Properties.fact5⋆ Q⋆ P⋆ (sub ρ) Q⇔P⋆)
-- -- -- -- -- -- -- No[Q◇ρ]⋆ : Nothing⋆ (Q⋆ [-◇⋆ sub ρ ])
-- -- -- -- -- -- -- No[Q◇ρ]⋆ = failure-propagation.second⋆ (sub ρ) (sub σ) (Unifies⋆ s1 t1) (Unifies s2 t2) a
-- -- -- -- -- -- -- (λ f → nounify f ∘ π₂ (Unifies s2 t2) (cong (f ◃_) ∘ sym ∘ SubList.fact1 σ ρ))
-- -- -- -- -- -- -- MaxFork : ∀ {m l n n1} (s1 s2 t1 t2 : Term m)
-- -- -- -- -- -- -- (ρ : AList m l) (σ : AList l n) →
-- -- -- -- -- -- -- Max⋆ (Unifies⋆ s1 t1 [-◇⋆ sub ρ ]) $ sub σ →
-- -- -- -- -- -- -- (σ1 : AList n n1) →
-- -- -- -- -- -- -- Max⋆ (Unifies⋆ s2 t2 [-◇⋆ sub (σ ++ ρ) ]) $ sub σ1 →
-- -- -- -- -- -- -- Max⋆ (Unifies⋆ (s1 fork s2) (t1 fork t2) [-◇⋆ sub ρ ]) $ sub (σ1 ++ σ)
-- -- -- -- -- -- -- MaxFork s1 s2 t1 t2 ρ σ a σ1 b = Max[P∧Q◇ρ][σ1++σ]
-- -- -- -- -- -- -- where
-- -- -- -- -- -- -- P = Unifies s1 t1
-- -- -- -- -- -- -- Q = Unifies s2 t2
-- -- -- -- -- -- -- P∧Q = P ∧ Q
-- -- -- -- -- -- -- C = Unifies (s1 fork s2) (t1 fork t2)
-- -- -- -- -- -- -- Max[C◇ρ]⇔Max[P∧Q◇ρ] : Max (C [-◇ sub ρ ]) ⇔ Max (P∧Q [-◇ sub ρ ])
-- -- -- -- -- -- -- Max[C◇ρ]⇔Max[P∧Q◇ρ] = Max.fact (C [-◇ sub ρ ]) (P∧Q [-◇ sub ρ ]) (Properties.fact5 C P∧Q (sub ρ)
-- -- -- -- -- -- -- (Properties.fact1' {_} {s1} {s2} {t1} {t2}))
-- -- -- -- -- -- -- Max[Q◇σ++ρ]⇔Max[Q◇σ◇ρ] : Max (Q [-◇ sub (σ ++ ρ)]) ⇔ Max (Q [-◇ sub σ ◇ sub ρ ])
-- -- -- -- -- -- -- Max[Q◇σ++ρ]⇔Max[Q◇σ◇ρ] = Max.fact (Q [-◇ sub (σ ++ ρ)]) (Q [-◇ sub σ ◇ sub ρ ]) (Properties.fact6 Q (SubList.fact1 σ ρ))
-- -- -- -- -- -- -- Max[P∧Q◇ρ][σ1++σ] : π₁ (Max (C [-◇ sub ρ ])) (sub (σ1 ++ σ))
-- -- -- -- -- -- -- Max[P∧Q◇ρ][σ1++σ] = π₂ (Max (C [-◇ sub ρ ])) (≐-sym (SubList.fact1 σ1 σ))
-- -- -- -- -- -- -- (proj₂ (Max[C◇ρ]⇔Max[P∧Q◇ρ] (sub σ1 ◇ sub σ))
-- -- -- -- -- -- -- (optimist (sub ρ) (sub σ) (sub σ1) P Q (DClosed.fact1 s1 t1) a (proj₁ (Max[Q◇σ++ρ]⇔Max[Q◇σ◇ρ] (sub σ1)) b)))
-- -- -- -- -- -- -- NothingVecHead : ∀ {m l} (t₁ t₂ : Term m) (ρ : AList m l) {N} (ts₁ ts₂ : Vec (Term m) N) →
-- -- -- -- -- -- -- Nothing⋆ $ Unifies⋆ t₁ t₂ [-◇⋆ sub ρ ] →
-- -- -- -- -- -- -- Nothing⋆ $ Unifies⋆V (t₁ ∷ ts₁) (t₂ ∷ ts₂) [-◇⋆ sub ρ ]
-- -- -- -- -- -- -- NothingVecHead t₁ t₂ ρ ts₁ ts₂ nounify = No[Q◇ρ]→No[P◇ρ] No[Q◇ρ]
-- -- -- -- -- -- -- where
-- -- -- -- -- -- -- P = Unifies⋆V (t₁ ∷ ts₁) (t₂ ∷ ts₂)
-- -- -- -- -- -- -- Q = (Unifies⋆ t₁ t₂ ∧⋆ Unifies⋆V ts₁ ts₂)
-- -- -- -- -- -- -- Q⇔P : Q ⇔⋆ P
-- -- -- -- -- -- -- Q⇔P = switch⋆ P Q (Properties.fact1'V {_} {t₁} {t₂} {_} {ts₁} {ts₂})
-- -- -- -- -- -- -- No[Q◇ρ]→No[P◇ρ] : Nothing⋆ (Q [-◇⋆ sub ρ ]) -> Nothing⋆ (P [-◇⋆ sub ρ ])
-- -- -- -- -- -- -- No[Q◇ρ]→No[P◇ρ] = Properties.fact2⋆ (Q [-◇⋆ sub ρ ]) (P [-◇⋆ sub ρ ]) (Properties.fact5⋆ Q P (sub ρ) Q⇔P)
-- -- -- -- -- -- -- No[Q◇ρ] : Nothing⋆ (Q [-◇⋆ sub ρ ])
-- -- -- -- -- -- -- No[Q◇ρ] = failure-propagation.first⋆ (sub ρ) (Unifies⋆ t₁ t₂) (Unifies⋆V ts₁ ts₂) nounify
-- -- -- -- -- -- -- NothingVecTail : ∀ {m l n} (σ : AList l n)
-- -- -- -- -- -- -- (t₁ t₂ : Term m)
-- -- -- -- -- -- -- {N}
-- -- -- -- -- -- -- (ts₁ ts₂ : Vec (Term m) N) →
-- -- -- -- -- -- -- (ρ : AList m l) →
-- -- -- -- -- -- -- Max⋆ (Unifies⋆ t₁ t₂ [-◇⋆ sub ρ ]) $ sub σ →
-- -- -- -- -- -- -- Nothing⋆ $ Unifies⋆V ts₁ ts₂ [-◇⋆ sub (σ ++ ρ) ] →
-- -- -- -- -- -- -- Nothing⋆ $ Unifies⋆V (t₁ ∷ ts₁) (t₂ ∷ ts₂) [-◇⋆ sub ρ ]
-- -- -- -- -- -- -- NothingVecTail σ t₁ t₂ ts₁ ts₂ ρ a nounify = No[Q◇ρ]→No[P◇ρ]⋆ No[Q◇ρ]⋆
-- -- -- -- -- -- -- where
-- -- -- -- -- -- -- P⋆ = Unifies⋆V (t₁ ∷ ts₁) (t₂ ∷ ts₂)
-- -- -- -- -- -- -- Q⋆ = (Unifies⋆ t₁ t₂ ∧⋆ Unifies⋆V ts₁ ts₂)
-- -- -- -- -- -- -- Q⇔P⋆ : Q⋆ ⇔⋆ P⋆
-- -- -- -- -- -- -- Q⇔P⋆ = switch⋆ P⋆ Q⋆ (Properties.fact1'V {_} {t₁} {t₂} {_} {ts₁} {ts₂})
-- -- -- -- -- -- -- -- Q⇔P⋆ = switch⋆ P⋆ Q⋆ (Properties.fact1'⋆ {_} {s1} {s2} {t1} {t2})
-- -- -- -- -- -- -- No[Q◇ρ]→No[P◇ρ]⋆ : Nothing⋆ (Q⋆ [-◇⋆ sub ρ ]) -> Nothing⋆ (P⋆ [-◇⋆ sub ρ ])
-- -- -- -- -- -- -- No[Q◇ρ]→No[P◇ρ]⋆ = Properties.fact2⋆ (Q⋆ [-◇⋆ sub ρ ]) (P⋆ [-◇⋆ sub ρ ]) (Properties.fact5⋆ Q⋆ P⋆ (sub ρ) Q⇔P⋆)
-- -- -- -- -- -- -- No[Q◇ρ]⋆ : Nothing⋆ (Q⋆ [-◇⋆ sub ρ ])
-- -- -- -- -- -- -- No[Q◇ρ]⋆ = failure-propagation.second⋆ (sub ρ) (sub σ) (Unifies⋆ t₁ t₂) (UnifiesV ts₁ ts₂) a
-- -- -- -- -- -- -- (λ f → nounify f ∘ π₂ (UnifiesV ts₁ ts₂) (cong (f ◃_) ∘ sym ∘ SubList.fact1 σ ρ))
-- -- -- -- -- -- -- MaxVec : ∀ {m l n n1} (t₁ t₂ : Term m) {N} (ts₁ ts₂ : Vec (Term m) N)
-- -- -- -- -- -- -- (ρ : AList m l) (σ : AList l n) →
-- -- -- -- -- -- -- Max⋆ (Unifies⋆ t₁ t₂ [-◇⋆ sub ρ ]) $ sub σ →
-- -- -- -- -- -- -- (σ1 : AList n n1) →
-- -- -- -- -- -- -- Max⋆ (Unifies⋆V ts₁ ts₂ [-◇⋆ sub (σ ++ ρ) ]) $ sub σ1 →
-- -- -- -- -- -- -- Max⋆ (Unifies⋆V (t₁ ∷ ts₁) (t₂ ∷ ts₂) [-◇⋆ sub ρ ]) $ sub (σ1 ++ σ)
-- -- -- -- -- -- -- MaxVec t₁ t₂ ts₁ ts₂ ρ σ a σ1 b = Max[P∧Q◇ρ][σ1++σ]
-- -- -- -- -- -- -- where
-- -- -- -- -- -- -- P = Unifies t₁ t₂
-- -- -- -- -- -- -- Q = UnifiesV ts₁ ts₂
-- -- -- -- -- -- -- P∧Q = P ∧ Q
-- -- -- -- -- -- -- C = UnifiesV (t₁ ∷ ts₁) (t₂ ∷ ts₂)
-- -- -- -- -- -- -- Max[C◇ρ]⇔Max[P∧Q◇ρ] : Max (C [-◇ sub ρ ]) ⇔ Max (P∧Q [-◇ sub ρ ])
-- -- -- -- -- -- -- Max[C◇ρ]⇔Max[P∧Q◇ρ] = Max.fact (C [-◇ sub ρ ]) (P∧Q [-◇ sub ρ ]) (Properties.fact5 C P∧Q (sub ρ)
-- -- -- -- -- -- -- (Properties.fact1'V {_} {t₁} {t₂} {_} {ts₁} {ts₂}))
-- -- -- -- -- -- -- Max[Q◇σ++ρ]⇔Max[Q◇σ◇ρ] : Max (Q [-◇ sub (σ ++ ρ)]) ⇔ Max (Q [-◇ sub σ ◇ sub ρ ])
-- -- -- -- -- -- -- Max[Q◇σ++ρ]⇔Max[Q◇σ◇ρ] = Max.fact (Q [-◇ sub (σ ++ ρ)]) (Q [-◇ sub σ ◇ sub ρ ]) (Properties.fact6 Q (SubList.fact1 σ ρ))
-- -- -- -- -- -- -- Max[P∧Q◇ρ][σ1++σ] : π₁ (Max (C [-◇ sub ρ ])) (sub (σ1 ++ σ))
-- -- -- -- -- -- -- Max[P∧Q◇ρ][σ1++σ] = π₂ (Max (C [-◇ sub ρ ])) (≐-sym (SubList.fact1 σ1 σ))
-- -- -- -- -- -- -- (proj₂ (Max[C◇ρ]⇔Max[P∧Q◇ρ] (sub σ1 ◇ sub σ))
-- -- -- -- -- -- -- (optimist (sub ρ) (sub σ) (sub σ1) P Q (DClosed.fact1 t₁ t₂) a (proj₁ (Max[Q◇σ++ρ]⇔Max[Q◇σ◇ρ] (sub σ1)) b)))
-- -- -- -- -- -- -- NothingFor→NothingComposition : ∀ {m l} (s t : Term (suc m)) (ρ : AList m l)
-- -- -- -- -- -- -- (r : Term m) (z : Fin (suc m)) →
-- -- -- -- -- -- -- Nothing⋆ (Unifies⋆ ((r for z) ◃ s) ((r for z) ◃ t) [-◇⋆ sub ρ ]) →
-- -- -- -- -- -- -- Nothing⋆ (Unifies⋆ s t [-◇⋆ sub (ρ asnoc r / z) ])
-- -- -- -- -- -- -- NothingFor→NothingComposition s t ρ r z nounify = NoQ→NoP nounify
-- -- -- -- -- -- -- where
-- -- -- -- -- -- -- P = Unifies s t [-◇ sub (ρ asnoc r / z) ]
-- -- -- -- -- -- -- Q = Unifies ((r for z) ◃ s) ((r for z) ◃ t) [-◇ sub ρ ]
-- -- -- -- -- -- -- NoQ→NoP : Nothing Q → Nothing P
-- -- -- -- -- -- -- NoQ→NoP = Properties.fact2 Q P (switch P Q (step-prop s t ρ r z))
-- -- -- -- -- -- -- MaxFor→MaxComposition : ∀ {m l n} (s t : Term (suc m)) (ρ : AList m l)
-- -- -- -- -- -- -- (r : Term m) (z : Fin (suc m)) (σ : AList l n) →
-- -- -- -- -- -- -- Max⋆ (Unifies⋆ ((r for z) ◃ s) ((r for z) ◃ t) [-◇⋆ sub ρ ]) $ sub σ →
-- -- -- -- -- -- -- Max⋆ (Unifies⋆ s t [-◇⋆ sub (ρ asnoc r / z) ]) $ sub σ
-- -- -- -- -- -- -- MaxFor→MaxComposition s t ρ r z σ a = proj₂ (MaxP⇔MaxQ (sub σ)) a
-- -- -- -- -- -- -- where
-- -- -- -- -- -- -- P = Unifies s t [-◇ sub (ρ asnoc r / z) ]
-- -- -- -- -- -- -- Q = Unifies ((r for z) ◃ s) ((r for z) ◃ t) [-◇ sub ρ ]
-- -- -- -- -- -- -- MaxP⇔MaxQ : Max P ⇔ Max Q
-- -- -- -- -- -- -- MaxP⇔MaxQ = Max.fact P Q (step-prop s t ρ r z)
-- -- -- -- -- -- -- module _ ⦃ isDecEquivalenceA : IsDecEquivalence (_≡_ {A = FunctionName}) ⦄ where
-- -- -- -- -- -- -- open IsDecEquivalence isDecEquivalenceA using () renaming (_≟_ to _≟F_)
-- -- -- -- -- -- -- mutual
-- -- -- -- -- -- -- instance ⋆amguTerm : ⋆amgu Term
-- -- -- -- -- -- -- ⋆amgu.amgu ⋆amguTerm leaf leaf acc = just acc
-- -- -- -- -- -- -- ⋆amgu.amgu ⋆amguTerm leaf (function _ _) acc = nothing
-- -- -- -- -- -- -- ⋆amgu.amgu ⋆amguTerm leaf (s' fork t') acc = nothing
-- -- -- -- -- -- -- ⋆amgu.amgu ⋆amguTerm (s' fork t') leaf acc = nothing
-- -- -- -- -- -- -- ⋆amgu.amgu ⋆amguTerm (s' fork t') (function _ _) acc = nothing
-- -- -- -- -- -- -- ⋆amgu.amgu ⋆amguTerm (s1 fork s2) (t1 fork t2) acc =
-- -- -- -- -- -- -- amgu s2 t2 =<< amgu s1 t1 acc
-- -- -- -- -- -- -- ⋆amgu.amgu ⋆amguTerm (function fn₁ ts₁) leaf acc = nothing
-- -- -- -- -- -- -- ⋆amgu.amgu ⋆amguTerm (function fn₁ {n₁} ts₁) (function fn₂ {n₂} ts₂) acc
-- -- -- -- -- -- -- with fn₁ ≟F fn₂
-- -- -- -- -- -- -- … | no _ = nothing
-- -- -- -- -- -- -- … | yes _ with n₁ ≟ n₂
-- -- -- -- -- -- -- … | no _ = nothing
-- -- -- -- -- -- -- … | yes refl = amgu ts₁ ts₂ acc
-- -- -- -- -- -- -- ⋆amgu.amgu ⋆amguTerm (function fn₁ ts₁) (_ fork _) acc = nothing
-- -- -- -- -- -- -- ⋆amgu.amgu ⋆amguTerm (i x) (i y) (m , anil) = just (flexFlex x y)
-- -- -- -- -- -- -- ⋆amgu.amgu ⋆amguTerm (i x) t (m , anil) = flexRigid x t
-- -- -- -- -- -- -- ⋆amgu.amgu ⋆amguTerm t (i x) (m , anil) = flexRigid x t
-- -- -- -- -- -- -- ⋆amgu.amgu ⋆amguTerm s t (n , σ asnoc r / z) =
-- -- -- -- -- -- -- (λ σ -> σ ∃asnoc r / z) <$>
-- -- -- -- -- -- -- amgu ((r for z) ◃ s) ((r for z) ◃ t) (n , σ)
-- -- -- -- -- -- -- instance ⋆amguVecTerm : ∀ {N} → ⋆amgu (flip Vec N ∘ Term)
-- -- -- -- -- -- -- ⋆amgu.amgu ⋆amguVecTerm [] [] acc = just acc
-- -- -- -- -- -- -- ⋆amgu.amgu ⋆amguVecTerm (t₁ ∷ t₁s) (t₂ ∷ t₂s) acc = amgu t₁s t₂s =<< amgu t₁ t₂ acc
-- -- -- -- -- -- -- mgu : ∀ {m} -> (s t : Term m) -> Maybe (∃ (AList m))
-- -- -- -- -- -- -- mgu {m} s t = amgu s t (m , anil)
-- -- -- -- -- -- -- mutual
-- -- -- -- -- -- -- -- We use a view so that we need to handle fewer cases in the main proof
-- -- -- -- -- -- -- data AmguT : {m : ℕ} -> (s t : Term m) -> ∃ (AList m) -> Maybe (∃ (AList m)) -> Set where
-- -- -- -- -- -- -- Flip : ∀ {m s t acc} -> amgu t s acc ≡ amgu s t acc ->
-- -- -- -- -- -- -- AmguT {m} t s acc (amgu t s acc) -> AmguT s t acc (amgu s t acc)
-- -- -- -- -- -- -- leaf-leaf : ∀ {m acc} -> AmguT {m} leaf leaf acc (just acc)
-- -- -- -- -- -- -- fn-name : ∀ {m fn₁ fn₂ N₁ N₂ acc} {ts₁ : Vec (Term m) N₁} {ts₂ : Vec (Term m) N₂} →
-- -- -- -- -- -- -- fn₁ ≢ fn₂ →
-- -- -- -- -- -- -- AmguT {m} (function fn₁ ts₁)
-- -- -- -- -- -- -- (function fn₂ ts₂)
-- -- -- -- -- -- -- acc nothing
-- -- -- -- -- -- -- fn-size : ∀ {m fn₁ fn₂ N₁ N₂ acc} {ts₁ : Vec (Term m) N₁} {ts₂ : Vec (Term m) N₂} →
-- -- -- -- -- -- -- N₁ ≢ N₂ →
-- -- -- -- -- -- -- AmguT {m} (function fn₁ ts₁)
-- -- -- -- -- -- -- (function fn₂ ts₂)
-- -- -- -- -- -- -- acc nothing
-- -- -- -- -- -- -- fn-fn : ∀ {m fn N acc} {ts₁ ts₂ : Vec (Term m) N} →
-- -- -- -- -- -- -- AmguT {m} (function fn ts₁)
-- -- -- -- -- -- -- (function fn ts₂)
-- -- -- -- -- -- -- acc (amgu ts₁ ts₂ acc)
-- -- -- -- -- -- -- leaf-fork : ∀ {m s t acc} -> AmguT {m} leaf (s fork t) acc nothing
-- -- -- -- -- -- -- leaf-fn : ∀ {m fn N} {ts : Vec (Term _) N} {acc} -> AmguT {m} leaf (function fn ts) acc nothing
-- -- -- -- -- -- -- fork-fn : ∀ {m s t fn N} {ts : Vec (Term _) N} {acc} -> AmguT {m} (s fork t) (function fn ts) acc nothing
-- -- -- -- -- -- -- fork-fork : ∀ {m s1 s2 t1 t2 acc} -> AmguT {m} (s1 fork s2) (t1 fork t2) acc (amgu s2 t2 =<< amgu s1 t1 acc)
-- -- -- -- -- -- -- var-var : ∀ {m x y} -> AmguT (i x) (i y) (m , anil) (just (flexFlex x y))
-- -- -- -- -- -- -- var-t : ∀ {m x t} -> i x ≢ t -> AmguT (i x) t (m , anil) (flexRigid x t)
-- -- -- -- -- -- -- s-t : ∀{m s t n σ r z} -> AmguT {suc m} s t (n , σ asnoc r / z) ((λ σ -> σ ∃asnoc r / z) <$>
-- -- -- -- -- -- -- amgu ((r for z) ◃ s) ((r for z) ◃ t) (n , σ))
-- -- -- -- -- -- -- data AmguTV : {m : ℕ} -> ∀ {N} (ss ts : Vec (Term m) N) -> ∃ (AList m) -> Maybe (∃ (AList m)) -> Set where
-- -- -- -- -- -- -- fn0-fn0 : ∀ {m acc} →
-- -- -- -- -- -- -- AmguTV {m} ([])
-- -- -- -- -- -- -- ([])
-- -- -- -- -- -- -- acc (just acc)
-- -- -- -- -- -- -- fns-fns : ∀ {m N acc} {t₁ t₂ : Term m} {ts₁ ts₂ : Vec (Term m) N} →
-- -- -- -- -- -- -- AmguTV {m} ((t₁ ∷ ts₁))
-- -- -- -- -- -- -- ((t₂ ∷ ts₂))
-- -- -- -- -- -- -- acc (amgu ts₁ ts₂ =<< amgu t₁ t₂ acc)
-- -- -- -- -- -- -- view : ∀ {m : ℕ} -> (s t : Term m) -> (acc : ∃ (AList m)) -> AmguT s t acc (amgu s t acc)
-- -- -- -- -- -- -- view leaf leaf acc = leaf-leaf
-- -- -- -- -- -- -- view leaf (s fork t) acc = leaf-fork
-- -- -- -- -- -- -- view (s fork t) leaf acc = Flip refl leaf-fork
-- -- -- -- -- -- -- view (s1 fork s2) (t1 fork t2) acc = fork-fork
-- -- -- -- -- -- -- view (function fn₁ {n₁} ts₁) (function fn₂ {n₂} ts₂) acc with
-- -- -- -- -- -- -- fn₁ ≟F fn₂
-- -- -- -- -- -- -- … | no neq = fn-name neq
-- -- -- -- -- -- -- … | yes refl with n₁ ≟ n₂
-- -- -- -- -- -- -- … | yes refl = fn-fn
-- -- -- -- -- -- -- … | no neq = fn-size neq
-- -- -- -- -- -- -- view leaf (function fn ts) acc = leaf-fn
-- -- -- -- -- -- -- view (function fn ts) leaf acc = Flip refl leaf-fn
-- -- -- -- -- -- -- view (function fn ts) (_ fork _) acc = Flip refl fork-fn
-- -- -- -- -- -- -- view (s fork t) (function fn ts) acc = fork-fn
-- -- -- -- -- -- -- view (i x) (i y) (m , anil) = var-var
-- -- -- -- -- -- -- view (i x) leaf (m , anil) = var-t (λ ())
-- -- -- -- -- -- -- view (i x) (s fork t) (m , anil) = var-t (λ ())
-- -- -- -- -- -- -- view (i x) (function fn ts) (m , anil) = var-t (λ ())
-- -- -- -- -- -- -- view leaf (i x) (m , anil) = Flip refl (var-t (λ ()))
-- -- -- -- -- -- -- view (s fork t) (i x) (m , anil) = Flip refl (var-t (λ ()))
-- -- -- -- -- -- -- view (function fn ts) (i x) (m , anil) = Flip refl (var-t (λ ()))
-- -- -- -- -- -- -- view (i x) (i x') (n , σ asnoc r / z) = s-t
-- -- -- -- -- -- -- view (i x) leaf (n , σ asnoc r / z) = s-t
-- -- -- -- -- -- -- view (i x) (s fork t) (n , σ asnoc r / z) = s-t
-- -- -- -- -- -- -- view leaf (i x) (n , σ asnoc r / z) = s-t
-- -- -- -- -- -- -- view (s fork t) (i x) (n , σ asnoc r / z) = s-t
-- -- -- -- -- -- -- view (function fn ts) (i x) (n , σ asnoc r / z) = s-t
-- -- -- -- -- -- -- view (i x) (function fn ts) (n , σ asnoc r / z) = s-t
-- -- -- -- -- -- -- viewV : ∀ {m : ℕ} {N} -> (ss ts : Vec (Term m) N) -> (acc : ∃ (AList m)) -> AmguTV ss ts acc (amgu ss ts acc)
-- -- -- -- -- -- -- viewV [] [] acc = fn0-fn0
-- -- -- -- -- -- -- viewV (t ∷ ts₁) (t₂ ∷ ts₂) acc = fns-fns
-- -- -- -- -- -- -- amgu-Correctness : {m : ℕ} -> (s t : Term m) -> ∃ (AList m) -> Set
-- -- -- -- -- -- -- amgu-Correctness s t (l , ρ) =
-- -- -- -- -- -- -- (∃ λ n → ∃ λ σ → π₁ (Max (Unifies s t [-◇ sub ρ ])) (sub σ) × amgu s t (l , ρ) ≡ just (n , σ ++ ρ ))
-- -- -- -- -- -- -- ⊎ (Nothing ((Unifies s t) [-◇ sub ρ ]) × amgu s t (l , ρ) ≡ nothing)
-- -- -- -- -- -- -- amgu-Correctness⋆ : {m : ℕ} -> (s t : Term m) -> ∃ (AList m) -> Set
-- -- -- -- -- -- -- amgu-Correctness⋆ s t (l , ρ) =
-- -- -- -- -- -- -- (∃ λ n → ∃ λ σ → π₁ (Max (Unifies s t [-◇ sub ρ ])) (sub σ) × amgu s t (l , ρ) ≡ just (n , σ ++ ρ ))
-- -- -- -- -- -- -- ⊎ (Nothing ((Unifies s t) [-◇ sub ρ ]) × amgu s t (l , ρ) ≡ nothing)
-- -- -- -- -- -- -- amgu-Ccomm : ∀ {m} s t acc -> amgu {m = m} s t acc ≡ amgu t s acc -> amgu-Correctness s t acc -> amgu-Correctness t s acc
-- -- -- -- -- -- -- amgu-Ccomm s t (l , ρ) st≡ts = lemma
-- -- -- -- -- -- -- where
-- -- -- -- -- -- -- Unst = (Unifies s t) [-◇ sub ρ ]
-- -- -- -- -- -- -- Unts = (Unifies t s) [-◇ sub ρ ]
-- -- -- -- -- -- -- Unst⇔Unts : ((Unifies s t) [-◇ sub ρ ]) ⇔ ((Unifies t s) [-◇ sub ρ ])
-- -- -- -- -- -- -- Unst⇔Unts = Properties.fact5 (Unifies s t) (Unifies t s) (sub ρ) (Properties.fact1 {_} {s} {t})
-- -- -- -- -- -- -- lemma : amgu-Correctness s t (l , ρ) -> amgu-Correctness t s (l , ρ)
-- -- -- -- -- -- -- lemma (inj₁ (n , σ , MaxUnst , amgu≡just)) =
-- -- -- -- -- -- -- inj₁ (n , σ , proj₁ (Max.fact Unst Unts Unst⇔Unts (sub σ)) MaxUnst , trans (sym st≡ts) amgu≡just)
-- -- -- -- -- -- -- lemma (inj₂ (NoUnst , amgu≡nothing)) =
-- -- -- -- -- -- -- inj₂ ((λ {_} → Properties.fact2 Unst Unts Unst⇔Unts NoUnst) , trans (sym st≡ts) amgu≡nothing)
-- -- -- -- -- -- -- amgu-Ccomm⋆ : ∀ {m} s t acc -> amgu {m = m} s t acc ≡ amgu t s acc -> amgu-Correctness⋆ s t acc -> amgu-Correctness⋆ t s acc
-- -- -- -- -- -- -- amgu-Ccomm⋆ s t (l , ρ) st≡ts = lemma
-- -- -- -- -- -- -- where
-- -- -- -- -- -- -- Unst = (Unifies s t) [-◇ sub ρ ]
-- -- -- -- -- -- -- Unts = (Unifies t s) [-◇ sub ρ ]
-- -- -- -- -- -- -- Unst⇔Unts : ((Unifies s t) [-◇ sub ρ ]) ⇔ ((Unifies t s) [-◇ sub ρ ])
-- -- -- -- -- -- -- Unst⇔Unts = Properties.fact5 (Unifies s t) (Unifies t s) (sub ρ) (Properties.fact1 {_} {s} {t})
-- -- -- -- -- -- -- lemma : amgu-Correctness s t (l , ρ) -> amgu-Correctness t s (l , ρ)
-- -- -- -- -- -- -- lemma (inj₁ (n , σ , MaxUnst , amgu≡just)) =
-- -- -- -- -- -- -- inj₁ (n , σ , proj₁ (Max.fact Unst Unts Unst⇔Unts (sub σ)) MaxUnst , trans (sym st≡ts) amgu≡just)
-- -- -- -- -- -- -- lemma (inj₂ (NoUnst , amgu≡nothing)) =
-- -- -- -- -- -- -- inj₂ ((λ {_} → Properties.fact2 Unst Unts Unst⇔Unts NoUnst) , trans (sym st≡ts) amgu≡nothing)
-- -- -- -- -- -- -- mutual
-- -- -- -- -- -- -- amguV-c : ∀ {m N} {ss ts : Vec (Term m) N} {l ρ} -> AmguTV ss ts (l , ρ) (amgu ss ts (l , ρ)) ->
-- -- -- -- -- -- -- (∃ λ n → ∃ λ σ → Max⋆ (Unifies⋆V ss ts [-◇⋆ sub ρ ]) (sub σ) × amgu {m = m} ss ts (l , ρ) ≡ just (n , σ ++ ρ ))
-- -- -- -- -- -- -- ⊎ (Nothing⋆ (Unifies⋆V ss ts [-◇⋆ sub ρ ]) × amgu {m = m} ss ts (l , ρ) ≡ nothing)
-- -- -- -- -- -- -- amguV-c {m} {N} {ss} {ts} {l} {ρ} amg with amgu ss ts (l , ρ)
-- -- -- -- -- -- -- amguV-c {m} {0} {.[]} {.[]} {l} {ρ} fn0-fn0 | .(just (l , ρ)) = inj₁ (_ , anil , trivial-problemV {_} {_} {_} {[]} {sub ρ} , cong (just ∘ _,_ l) (sym (SubList.anil-id-l ρ)))
-- -- -- -- -- -- -- amguV-c {m} {.(suc _)} {(t₁ ∷ ts₁)} {(t₂ ∷ ts₂)} {l} {ρ} fns-fns | _ with amgu t₁ t₂ (l , ρ) | amgu-c $ view t₁ t₂ (l , ρ)
-- -- -- -- -- -- -- amguV-c {m} {.(suc _)} {(t₁ ∷ ts₁)} {(t₂ ∷ ts₂)} {l} {ρ} fns-fns | _ | am | inj₂ (nounify , refl) = inj₂ ((λ {_} → NothingVecHead t₁ t₂ ρ _ _ nounify) , refl)
-- -- -- -- -- -- -- amguV-c {m} {.(suc _)} {(t₁ ∷ ts₁)} {(t₂ ∷ ts₂)} {l} {ρ} fns-fns | _ | am | inj₁ (n , σ , a , refl)
-- -- -- -- -- -- -- with amgu ts₁ ts₂ (n , σ ++ ρ) | amguV-c (viewV (ts₁) (ts₂) (n , (σ ++ ρ)))
-- -- -- -- -- -- -- … | _ | inj₂ (nounify , refl) = inj₂ ((λ {_} → NothingVecTail σ t₁ t₂ _ _ ρ a nounify) , refl)
-- -- -- -- -- -- -- … | _ | inj₁ (n1 , σ1 , a1 , refl) = inj₁ (n1 , σ1 ++ σ , MaxVec t₁ t₂ _ _ ρ σ a σ1 a1 , cong (λ σ -> just (n1 , σ)) (++-assoc σ1 σ ρ))
-- -- -- -- -- -- -- amgu-c : ∀ {m s t l ρ} -> AmguT s t (l , ρ) (amgu s t (l , ρ)) ->
-- -- -- -- -- -- -- (∃ λ n → ∃ λ σ → Max⋆ (Unifies⋆ s t [-◇⋆ sub ρ ]) (sub σ) × amgu {m = m} s t (l , ρ) ≡ just (n , σ ++ ρ ))
-- -- -- -- -- -- -- ⊎ (Nothing⋆ (Unifies⋆ s t [-◇⋆ sub ρ ]) × amgu {m = m} s t (l , ρ) ≡ nothing)
-- -- -- -- -- -- -- amgu-c {m} {s} {t} {l} {ρ} amg with amgu s t (l , ρ)
-- -- -- -- -- -- -- amgu-c {l = l} {ρ} leaf-leaf | ._
-- -- -- -- -- -- -- = inj₁ (l , anil , trivial-problem {_} {_} {leaf} {sub ρ} , cong (λ x -> just (l , x)) (sym (SubList.anil-id-l ρ)) )
-- -- -- -- -- -- -- amgu-c (fn-name neq) | _ = inj₂ ((λ f x → neq (Term-function-inj-FunctionName x)) , refl)
-- -- -- -- -- -- -- amgu-c (fn-size neq) | _ = inj₂ ((λ f x → neq (Term-function-inj-VecSize x)) , refl)
-- -- -- -- -- -- -- amgu-c {s = function fn ts₁} {t = function .fn ts₂} {l = l} {ρ = ρ} fn-fn | _ with amgu ts₁ ts₂ | amguV-c (viewV ts₁ ts₂ (l , ρ))
-- -- -- -- -- -- -- … | _ | inj₂ (nounify , refl!) rewrite refl! = inj₂ ((λ {_} f feq → nounify f (Term-function-inj-Vector feq)) , refl)
-- -- -- -- -- -- -- … | _ | inj₁ (n , σ , (b , c) , refl!) rewrite refl! = inj₁ (_ , _ , ((cong (function fn) b) , (λ {_} f' feq → c f' (Term-function-inj-Vector feq))) , refl )
-- -- -- -- -- -- -- amgu-c leaf-fork | .nothing = inj₂ ((λ _ () ) , refl)
-- -- -- -- -- -- -- amgu-c leaf-fn | _ = inj₂ ((λ _ () ) , refl)
-- -- -- -- -- -- -- amgu-c fork-fn | _ = inj₂ ((λ _ () ) , refl)
-- -- -- -- -- -- -- amgu-c {m} {s1 fork s2} {t1 fork t2} {l} {ρ} fork-fork | ._
-- -- -- -- -- -- -- with amgu s1 t1 (l , ρ) | amgu-c $ view s1 t1 (l , ρ)
-- -- -- -- -- -- -- … | .nothing | inj₂ (nounify , refl) = inj₂ ((λ {_} -> NothingForkLeft s1 t1 ρ s2 t2 nounify) , refl)
-- -- -- -- -- -- -- … | .(just (n , σ ++ ρ)) | inj₁ (n , σ , a , refl)
-- -- -- -- -- -- -- with amgu s2 t2 (n , σ ++ ρ) | amgu-c (view s2 t2 (n , (σ ++ ρ)))
-- -- -- -- -- -- -- … | .nothing | inj₂ (nounify , refl) = inj₂ ( (λ {_} -> NothingForkRight σ s1 s2 t1 t2 ρ a nounify) , refl)
-- -- -- -- -- -- -- … | .(just (n1 , σ1 ++ (σ ++ ρ))) | inj₁ (n1 , σ1 , b , refl)
-- -- -- -- -- -- -- = inj₁ (n1 , σ1 ++ σ , MaxFork s1 s2 t1 t2 ρ σ a σ1 b , cong (λ σ -> just (n1 , σ)) (++-assoc σ1 σ ρ))
-- -- -- -- -- -- -- amgu-c {suc l} {i x} {i y} (var-var) | .(just (flexFlex x y))
-- -- -- -- -- -- -- with thick? x y | Thick.fact1 x y (thick? x y) refl
-- -- -- -- -- -- -- … | .(just y') | inj₂ (y' , thinxy'≡y , refl )
-- -- -- -- -- -- -- = inj₁ (l , anil asnoc i y' / x , var-elim-i-≡ x (i y) (sym (cong i thinxy'≡y)) , refl )
-- -- -- -- -- -- -- … | .nothing | inj₁ ( x≡y , refl ) rewrite sym x≡y
-- -- -- -- -- -- -- = inj₁ (suc l , anil , trivial-problem {_} {_} {i x} {sub anil} , refl)
-- -- -- -- -- -- -- amgu-c {suc l} {i x} {t} (var-t ix≢t) | .(flexRigid x t)
-- -- -- -- -- -- -- with check x t | check-prop x t
-- -- -- -- -- -- -- … | .nothing | inj₂ ( ps , r , refl) = inj₂ ( (λ {_} -> NothingStep x t ix≢t ps r ) , refl)
-- -- -- -- -- -- -- … | .(just t') | inj₁ (t' , r , refl) = inj₁ ( l , anil asnoc t' / x , var-elim-i-≡ x t r , refl )
-- -- -- -- -- -- -- amgu-c {suc m} {s} {t} {l} {ρ asnoc r / z} s-t
-- -- -- -- -- -- -- | .((λ x' → x' ∃asnoc r / z) <$>
-- -- -- -- -- -- -- (amgu ((r for z) ◃ s) ((r for z) ◃ t) (l , ρ)))
-- -- -- -- -- -- -- with amgu-c (view ((r for z) ◃ s) ((r for z) ◃ t) (l , ρ))
-- -- -- -- -- -- -- … | inj₂ (nounify , ra) = inj₂ ( (λ {_} -> NothingFor→NothingComposition s t ρ r z nounify) , cong (_<$>_ (λ x' → x' ∃asnoc r / z)) ra )
-- -- -- -- -- -- -- … | inj₁ (n , σ , a , ra) = inj₁ (n , σ , MaxFor→MaxComposition s t ρ r z σ a , cong (_<$>_ (λ x' → x' ∃asnoc r / z)) ra)
-- -- -- -- -- -- -- amgu-c {m} {s} {t} {l} {ρ} (Flip amguts≡amgust amguts) | ._ = amgu-Ccomm⋆ t s (l , ρ) amguts≡amgust (amgu-c amguts)
-- -- -- -- -- -- -- amgu-c {zero} {i ()} _ | _
-- -- -- -- -- -- -- mgu-c : ∀ {m} (s t : Term m) ->
-- -- -- -- -- -- -- (∃ λ n → ∃ λ σ → (Max⋆ (Unifies⋆ s t)) (sub σ) × mgu s t ≡ just (n , σ))
-- -- -- -- -- -- -- ⊎ (Nothing⋆ (Unifies⋆ s t) × mgu s t ≡ nothing)
-- -- -- -- -- -- -- mgu-c {m} s t = amgu-c (view s t (m , anil))
-- -- -- -- -- -- -- unify : ∀ {m} (s t : Term m) ->
-- -- -- -- -- -- -- (∃ λ n → ∃ λ (σ : AList m n) → Max⋆ (Unifies⋆ s t) $ sub σ)
-- -- -- -- -- -- -- ⊎ Nothing⋆ (Unifies⋆ s t)
-- -- -- -- -- -- -- unify {m} s t with amgu-c (view s t (m , anil))
-- -- -- -- -- -- -- unify {m} s₁ t | inj₁ (proj₃ , proj₄ , proj₅ , proj₆) = inj₁ (proj₃ , proj₄ , proj₅)
-- -- -- -- -- -- -- unify {m} s t | inj₂ (proj₃ , _) = inj₂ proj₃
-- -- -- -- -- -- -- unifyV : ∀ {m N} (s t : Vec (Term m) N) ->
-- -- -- -- -- -- -- (∃ λ n → ∃ λ (σ : AList m n) → Max⋆ (Unifies⋆V s t) $ sub σ)
-- -- -- -- -- -- -- ⊎ Nothing⋆ (Unifies⋆V s t)
-- -- -- -- -- -- -- unifyV {m} {N} s t with amguV-c (viewV s t (m , anil))
-- -- -- -- -- -- -- … | inj₁ (proj₃ , proj₄ , proj₅ , proj₆) = inj₁ (proj₃ , proj₄ , proj₅)
-- -- -- -- -- -- -- … | inj₂ (proj₃ , _) = inj₂ proj₃
-- -- -- -- -- -- -- open import Oscar.Data.Permutation
-- -- -- -- -- -- -- unifyWith : ∀ {m N} (p q : Term m) (X Y : Vec (Term m) N) →
-- -- -- -- -- -- -- (∃ λ X* → X* ≡ordering' X × ∃ λ n → ∃ λ (σ : AList m n) → Max⋆ (Unifies⋆V (p ∷ X*) (q ∷ Y)) $ sub σ)
-- -- -- -- -- -- -- ⊎
-- -- -- -- -- -- -- (∀ X* → X* ≡ordering' X → Nothing⋆ (Unifies⋆V (p ∷ X*) (q ∷ Y)))
-- -- -- -- -- -- -- unifyWith p q X Y = {!!}
|
algebraic-stack_agda0000_doc_5988 | module AKS.Primality where
open import AKS.Primality.Base public
open import AKS.Primality.Properties public
|
algebraic-stack_agda0000_doc_5989 | {-# OPTIONS --without-K --safe #-}
open import Categories.Category.Core using (Category)
open import Categories.Comonad
-- Verbatim dual of Categories.Adjoint.Construction.Kleisli
module Categories.Adjoint.Construction.CoKleisli {o ℓ e} {C : Category o ℓ e} (M : Comonad C) where
open import Categories.Category.Construction.CoKleisli
open import Categories.Adjoint
open import Categories.Functor
open import Categories.Functor.Properties
open import Categories.NaturalTransformation.Core
open import Categories.NaturalTransformation.NaturalIsomorphism using (_≃_)
open import Categories.Morphism.Reasoning C
private
module C = Category C
module M = Comonad M
open M.F
open C
open HomReasoning
open Equiv
Forgetful : Functor (CoKleisli M) C
Forgetful =
record
{ F₀ = λ X → F₀ X
; F₁ = λ f → F₁ f ∘ M.δ.η _
; identity = Comonad.identityˡ M
; homomorphism = λ {X Y Z} {f g} → hom-proof {X} {Y} {Z} {f} {g}
; F-resp-≈ = λ eq → ∘-resp-≈ˡ (F-resp-≈ eq)
}
where
trihom : {X Y Z W : Obj} {f : X ⇒ Y} {g : Y ⇒ Z} {h : Z ⇒ W} → F₁ (h ∘ g ∘ f) ≈ F₁ h ∘ F₁ g ∘ F₁ f
trihom {X} {Y} {Z} {W} {f} {g} {h} = begin
F₁ (h ∘ g ∘ f) ≈⟨ homomorphism ⟩
F₁ h ∘ F₁ (g ∘ f) ≈⟨ refl⟩∘⟨ homomorphism ⟩
F₁ h ∘ F₁ g ∘ F₁ f ∎
hom-proof :
{X Y Z : Obj} {f : F₀ X ⇒ Y} {g : F₀ Y ⇒ Z} →
(F₁ (g ∘ F₁ f ∘ M.δ.η X)) ∘ M.δ.η X ≈ (F₁ g ∘ M.δ.η Y) ∘ F₁ f ∘ M.δ.η X
hom-proof {X} {Y} {Z} {f} {g} = begin
(F₁ (g ∘ F₁ f ∘ M.δ.η X)) ∘ M.δ.η X ≈⟨ pushˡ trihom ⟩
F₁ g ∘ (F₁ (F₁ f) ∘ F₁ (M.δ.η X)) ∘ M.δ.η X ≈⟨ refl⟩∘⟨ (pullʳ (sym M.assoc)) ⟩
F₁ g ∘ F₁ (F₁ f) ∘ M.δ.η (F₀ X) ∘ M.δ.η X ≈⟨ refl⟩∘⟨ pullˡ (sym (M.δ.commute f)) ⟩
F₁ g ∘ (M.δ.η Y ∘ F₁ f) ∘ M.δ.η X ≈⟨ assoc²'' ⟩
(F₁ g ∘ M.δ.η Y) ∘ F₁ f ∘ M.δ.η X ∎
Cofree : Functor C (CoKleisli M)
Cofree =
record
{ F₀ = λ X → X
; F₁ = λ f → f ∘ M.ε.η _
; identity = λ {A} → identityˡ
; homomorphism = λ {X Y Z} {f g} → hom-proof {X} {Y} {Z} {f} {g}
; F-resp-≈ = λ x → ∘-resp-≈ˡ x
}
where
hom-proof :
{X Y Z : Obj} {f : X ⇒ Y} {g : Y ⇒ Z} →
(g ∘ f) ∘ M.ε.η X ≈ (g ∘ M.ε.η Y) ∘ (F₁ (f ∘ M.ε.η X) ∘ M.δ.η X)
hom-proof {X} {Y} {Z} {f} {g} = begin
(g ∘ f) ∘ M.ε.η X ≈⟨ pullʳ (sym (M.ε.commute f)) ⟩
g ∘ M.ε.η Y ∘ F₁ f ≈⟨ sym (pullʳ (refl⟩∘⟨ elimʳ (Comonad.identityˡ M))) ⟩
(g ∘ M.ε.η Y) ∘ (F₁ f ∘ F₁ (M.ε.η X) ∘ M.δ.η X) ≈⟨ refl⟩∘⟨ pullˡ (sym homomorphism) ⟩
(g ∘ M.ε.η Y) ∘ (F₁ (f ∘ M.ε.η X) ∘ M.δ.η X) ∎
FC≃M : Forgetful ∘F Cofree ≃ M.F
FC≃M =
record
{ F⇒G = ntHelper record
{ η = λ X → F₁ C.id
; commute = λ {X Y} f → to-commute {X} {Y} f
}
; F⇐G = ntHelper record
{ η = λ X → F₁ C.id
; commute = λ {X Y} f → from-commute {X} {Y} f
}
; iso = λ X → record
{ isoˡ = elimʳ identity ○ identity
; isoʳ = elimʳ identity ○ identity
}
}
where
to-commute : {X Y : Obj} → (f : X ⇒ Y) → F₁ C.id ∘ F₁ (f ∘ M.ε.η X) ∘ M.δ.η X ≈ F₁ f ∘ F₁ C.id
to-commute {X} {Y} f = begin
F₁ C.id ∘ F₁ (f ∘ M.ε.η X) ∘ M.δ.η X ≈⟨ elimˡ identity ⟩
F₁ (f ∘ M.ε.η X) ∘ M.δ.η X ≈⟨ pushˡ homomorphism ⟩
F₁ f ∘ F₁ (M.ε.η X) ∘ M.δ.η X ≈⟨ refl⟩∘⟨ Comonad.identityˡ M ⟩
F₁ f ∘ C.id ≈⟨ refl⟩∘⟨ sym identity ⟩
F₁ f ∘ F₁ C.id ∎
from-commute : {X Y : Obj} → (f : X ⇒ Y) → F₁ C.id ∘ F₁ f ≈ (F₁ (f ∘ M.ε.η X) ∘ M.δ.η X) ∘ F₁ C.id
from-commute {X} {Y} f = begin
F₁ C.id ∘ F₁ f ≈⟨ [ M.F ]-resp-square id-comm-sym ⟩
F₁ f ∘ F₁ C.id ≈⟨ introʳ (Comonad.identityˡ M) ⟩∘⟨refl ⟩
(F₁ f ∘ F₁ (M.ε.η X) ∘ M.δ.η X) ∘ F₁ C.id ≈⟨ pullˡ (sym homomorphism) ⟩∘⟨refl ⟩
(F₁ (f ∘ M.ε.η X) ∘ M.δ.η X) ∘ F₁ C.id ∎
-- useful lemma:
FF1≈1 : {X : Obj} → F₁ (F₁ (C.id {X})) ≈ C.id
FF1≈1 {X} = begin
F₁ (F₁ (C.id {X})) ≈⟨ F-resp-≈ identity ⟩
F₁ (C.id) ≈⟨ identity ⟩
C.id ∎
Forgetful⊣Cofree : Forgetful ⊣ Cofree
Forgetful⊣Cofree =
record
{ unit = ntHelper record
{ η = λ X → F₁ C.id
; commute = λ {X Y} f → unit-commute {X} {Y} f
}
; counit = ntHelper record
{ η = M.ε.η
; commute = λ {X Y} f → counit-commute {X} {Y} f
}
; zig = λ {A} → zig-proof {A}
; zag = λ {B} → zag-proof {B}
}
where
unit-commute : ∀ {X Y : Obj} →
(f : F₀ X ⇒ Y) →
F₁ C.id ∘ F₁ f ∘ M.δ.η X ≈ ((F₁ f ∘ M.δ.η X) ∘ M.ε.η (F₀ X)) ∘ F₁ (F₁ C.id) ∘ M.δ.η X
unit-commute {X} {Y} f = begin
F₁ C.id ∘ F₁ f ∘ M.δ.η X ≈⟨ elimˡ identity ⟩
F₁ f ∘ M.δ.η X ≈⟨ introʳ (Comonad.identityʳ M) ⟩
(F₁ f ∘ M.δ.η X) ∘ M.ε.η (F₀ X) ∘ M.δ.η X ≈⟨ sym assoc ⟩
((F₁ f ∘ M.δ.η X) ∘ M.ε.η (F₀ X)) ∘ M.δ.η X ≈⟨ intro-center FF1≈1 ⟩
((F₁ f ∘ M.δ.η X) ∘ M.ε.η (F₀ X)) ∘ F₁ (F₁ C.id) ∘ M.δ.η X ∎
counit-commute : ∀ {X Y : Obj} →
(f : X ⇒ Y) →
M.ε.η Y ∘ (F₁ (f ∘ M.ε.η X) ∘ M.δ.η X) ≈ f ∘ M.ε.η X
counit-commute {X} {Y} f = begin
M.ε.η Y ∘ F₁ (f ∘ M.ε.η X) ∘ M.δ.η X ≈⟨ refl⟩∘⟨ pushˡ homomorphism ⟩
M.ε.η Y ∘ (F₁ f ∘ F₁ (M.ε.η X) ∘ M.δ.η X) ≈⟨ refl⟩∘⟨ elimʳ (Comonad.identityˡ M) ⟩
M.ε.η Y ∘ F₁ f ≈⟨ M.ε.commute f ⟩
f ∘ M.ε.η X ∎
zig-proof : {A : Obj} → M.ε.η (F₀ A) ∘ F₁ (F₁ C.id) ∘ M.δ.η _ ≈ C.id
zig-proof {A} = begin
M.ε.η (F₀ A) ∘ F₁ (F₁ C.id) ∘ M.δ.η _ ≈⟨ elim-center FF1≈1 ⟩
M.ε.η (F₀ A) ∘ M.δ.η _ ≈⟨ Comonad.identityʳ M ⟩
C.id ∎
zag-proof : {B : Obj} → (M.ε.η B ∘ M.ε.η (F₀ B)) ∘ (F₁ (F₁ C.id) ∘ M.δ.η _) ≈ M.ε.η B
zag-proof {B} = begin
(M.ε.η B ∘ M.ε.η (F₀ B)) ∘ (F₁ (F₁ C.id) ∘ M.δ.η _) ≈⟨ assoc ⟩
M.ε.η B ∘ (M.ε.η (F₀ B) ∘ (F₁ (F₁ C.id) ∘ M.δ.η _)) ≈⟨ refl⟩∘⟨ elim-center FF1≈1 ⟩
M.ε.η B ∘ (M.ε.η (F₀ B) ∘ M.δ.η _) ≈⟨ elimʳ (Comonad.identityʳ M) ⟩
M.ε.η B ∎ |
algebraic-stack_agda0000_doc_5990 | {-# OPTIONS --safe #-}
{-
This uses ideas from Floris van Doorn's phd thesis and the code in
https://github.com/cmu-phil/Spectral/blob/master/spectrum/basic.hlean
-}
module Cubical.Homotopy.Spectrum where
open import Cubical.Foundations.Prelude
open import Cubical.Data.Unit.Pointed
open import Cubical.Foundations.Equiv
open import Cubical.Data.Int
open import Cubical.Homotopy.Prespectrum
private
variable
ℓ : Level
record Spectrum (ℓ : Level) : Type (ℓ-suc ℓ) where
open GenericPrespectrum
field
prespectrum : Prespectrum ℓ
equiv : (k : ℤ) → isEquiv (fst (map prespectrum k))
open GenericPrespectrum prespectrum public
|
algebraic-stack_agda0000_doc_5991 | {-
This file contains:
- the abelianization of groups as a HIT as proposed in https://arxiv.org/abs/2007.05833
The definition of the abelianization is not as a set-quotient, since the relation of abelianization is cumbersome to work with.
-}
{-# OPTIONS --safe #-}
module Cubical.Algebra.Group.Abelianization.Base where
open import Cubical.Data.Sigma
open import Cubical.Algebra.Group.Base
open import Cubical.Algebra.Group.Properties
private
variable
ℓ : Level
module _ (G : Group ℓ) where
open GroupStr {{...}}
open GroupTheory G
private
instance
_ = snd G
{-
The definition of the abelianization of a group as a higher inductive type.
The generality of the comm relation will be needed to define the group structure on the abelianization.
-}
data Abelianization : Type ℓ where
η : (g : fst G) → Abelianization
comm : (a b c : fst G) → η (a · (b · c)) ≡ η (a · (c · b))
isset : (x y : Abelianization) → (p q : x ≡ y) → p ≡ q
|
algebraic-stack_agda0000_doc_5992 | {-# OPTIONS --without-K --safe #-}
open import Categories.Category
module Categories.Category.Construction.Properties.Presheaves.Complete {o ℓ e} (C : Category o ℓ e) where
open import Data.Product
open import Function.Equality using (Π) renaming (_∘_ to _∙_)
open import Relation.Binary
open import Relation.Binary.Construct.Closure.SymmetricTransitive as ST using (Plus⇔)
open Plus⇔
open import Categories.Category.Complete
open import Categories.Category.Cocomplete
open import Categories.Category.Construction.Presheaves
open import Categories.Category.Instance.Setoids
open import Categories.Category.Instance.Properties.Setoids
open import Categories.Diagram.Limit as Lim
open import Categories.Diagram.Colimit
open import Categories.Functor
open import Categories.NaturalTransformation
import Categories.Category.Construction.Cones as Co
import Categories.Category.Construction.Cocones as Coc
import Relation.Binary.Reasoning.Setoid as SetoidR
private
module C = Category C
open C
open Π using (_⟨$⟩_)
module _ o′ where
private
P = Presheaves′ o′ o′ C
module P = Category P
module _ {J : Category o′ o′ o′} (F : Functor J P) where
module J = Category J
module F = Functor F
open F
module F₀ j = Functor (F₀ j)
module F₁ {a b} (f : a J.⇒ b) = NaturalTransformation (F₁ f)
open Setoid using () renaming (_≈_ to [_]_≈_)
F[-,_] : Obj → Functor J (Setoids o′ o′)
F[-, X ] = record
{ F₀ = λ j → F₀.₀ j X
; F₁ = λ f → F₁.η f X
; identity = identity
; homomorphism = homomorphism
; F-resp-≈ = λ eq → F-resp-≈ eq -- this application cannot be eta reduced
}
-- limit related definitions
module LimFX X = Limit (Setoids-Complete _ _ _ o′ o′ F[-, X ])
module FCone (K : Co.Cone F) where
open Co.Cone F K public
module N = Functor N
module ψ j = NaturalTransformation (ψ j)
module FCone⇒ {K K′ : Co.Cone F} (K⇒K′ : Co.Cone⇒ F K K′) where
open Co.Cone⇒ F K⇒K′ public
module arr = NaturalTransformation arr
FXcone : ∀ X → (K : Co.Cone F) → Co.Cone F[-, X ]
FXcone X K = record
{ N = N.₀ X
; apex = record
{ ψ = λ j → ψ.η j X
; commute = λ f → commute f -- this application cannot be eta reduced
}
}
where open FCone K
⊤ : Co.Cone F
⊤ = record
{ N = record
{ F₀ = λ X → LimFX.apex X
; F₁ = λ {A B} f → record
{ _⟨$⟩_ = λ { (S , eq) → (λ j → F₀.₁ j f ⟨$⟩ S j) , λ {X Y} g →
let open SetoidR (F₀.₀ Y B)
in begin
F₁.η g B ⟨$⟩ (F₀.₁ X f ⟨$⟩ S X) ≈⟨ F₁.commute g f (Setoid.refl (F₀.₀ X A)) ⟩
F₀.₁ Y f ⟨$⟩ (F₁.η g A ⟨$⟩ S X) ≈⟨ Π.cong (F₀.₁ Y f) (eq g) ⟩
F₀.₁ Y f ⟨$⟩ S Y ∎ }
; cong = λ eq j → Π.cong (F₀.₁ j f) (eq j)
}
; identity = λ eq j → F₀.identity j (eq j)
; homomorphism = λ eq j → F₀.homomorphism j (eq j)
; F-resp-≈ = λ eq eq′ j → F₀.F-resp-≈ j eq (eq′ j)
}
; apex = record
{ ψ = λ j → ntHelper record
{ η = λ X → record
{ _⟨$⟩_ = λ { (S , eq) → S j }
; cong = λ eq → eq j
}
; commute = λ f eq → Π.cong (F₀.₁ j f) (eq j)
}
; commute = λ { {Y} {Z} f {W} {S₁ , eq₁} {S₂ , eq₂} eq →
let open SetoidR (F₀.₀ Z W)
in begin
F₁.η f W ⟨$⟩ S₁ Y ≈⟨ eq₁ f ⟩
S₁ Z ≈⟨ eq Z ⟩
S₂ Z ∎ }
}
}
K⇒⊤′ : ∀ X {K} → Co.Cones F [ K , ⊤ ] → Co.Cones F[-, X ] [ FXcone X K , LimFX.limit X ]
K⇒⊤′ X {K} K⇒⊤ = record
{ arr = arr.η X
; commute = comm
}
where open FCone⇒ K⇒⊤ renaming (commute to comm)
complete : Limit F
complete = record
{ terminal = record
{ ⊤ = ⊤
; ! = λ {K} →
let module K = FCone K
in record
{ arr = ntHelper record
{ η = λ X → LimFX.rep X (FXcone X K)
; commute = λ {X Y} f eq j → K.ψ.commute j f eq
}
; commute = λ eq → Π.cong (K.ψ.η _ _) eq
}
; !-unique = λ K⇒⊤ {X} → LimFX.terminal.!-unique X (K⇒⊤′ X K⇒⊤)
}
}
-- colimit related definitions
module ColimFX X = Colimit (Setoids-Cocomplete _ _ _ o′ o′ F[-, X ])
module FCocone (K : Coc.Cocone F) where
open Coc.Cocone F K public
module N = Functor N
module ψ j = NaturalTransformation (ψ j)
module FCocone⇒ {K K′ : Coc.Cocone F} (K⇒K′ : Coc.Cocone⇒ F K K′) where
open Coc.Cocone⇒ F K⇒K′ public
module arr = NaturalTransformation arr
FXcocone : ∀ X → (K : Coc.Cocone F) → Coc.Cocone F[-, X ]
FXcocone X K = record
{ N = N.₀ X
; coapex = record
{ ψ = λ j → ψ.η j X
; commute = λ f → commute f -- this application cannot be eta reduced
}
}
where open FCocone K
⊥ : Coc.Cocone F
⊥ = record
{ N = record
{ F₀ = λ X → ColimFX.coapex X
; F₁ = λ {A B} f → record
{ _⟨$⟩_ = λ { (j , Sj) → j , F₀.₁ j f ⟨$⟩ Sj }
; cong = λ { {a , Sa} {b , Sb} →
ST.map (λ { (j , Sj) → j , F₀.₁ j f ⟨$⟩ Sj }) (helper f) }
}
; identity = λ { {A} {j , _} eq → forth⁺ (J.id , identity (F₀.identity j (Setoid.refl (F₀.₀ j A)))) eq }
; homomorphism = λ {X Y Z} {f g} → λ { {_} {j , Sj} eq →
let open Setoid (F₀.₀ j Z)
in ST.trans (coc o′ o′ F[-, Z ])
(ST.map (hom-map f g) (helper (f ∘ g)) eq)
(forth (J.id , trans (identity refl) (F₀.homomorphism j (Setoid.refl (F₀.₀ j X))))) }
; F-resp-≈ = λ {A B} {f g} eq → λ { {j , Sj} eq′ →
let open Setoid (F₀.₀ j B)
in ST.trans (coc o′ o′ F[-, B ])
(forth (J.id , trans (identity refl) (F₀.F-resp-≈ j eq (Setoid.refl (F₀.₀ j A)))))
(ST.map (λ { (j , Sj) → (j , F₀.₁ j g ⟨$⟩ Sj) }) (helper g) eq′) }
}
; coapex = record
{ ψ = λ j → ntHelper record
{ η = λ X → record
{ _⟨$⟩_ = j ,_
; cong = λ eq → forth (-, identity eq)
}
; commute = λ {X Y} f eq → back (-, identity (Π.cong (F₀.₁ j f) (Setoid.sym (F₀.₀ j X) eq)))
}
; commute = λ {a b} f {X} {x y} eq →
let open ST.Plus⇔Reasoning (coc o′ o′ F[-, X ])
in back (f , Π.cong (F₁.η f X) (Setoid.sym (F₀.₀ a X) eq))
}
}
where helper : ∀ {A B} (f : B C.⇒ A) {a Sa b Sb} →
Σ (a J.⇒ b) (λ g → [ F₀.₀ b A ] F₁.η g A ⟨$⟩ Sa ≈ Sb) →
Σ (a J.⇒ b) λ h → [ F₀.₀ b B ] F₁.η h B ⟨$⟩ (F₀.₁ a f ⟨$⟩ Sa) ≈ F₀.₁ b f ⟨$⟩ Sb
helper {A} {B} f {a} {Sa} {b} {Sb} (g , eq′) =
let open SetoidR (F₀.₀ b B)
in g , (begin
F₁.η g B ⟨$⟩ (F₀.₁ a f ⟨$⟩ Sa) ≈⟨ F₁.commute g f (Setoid.refl (F₀.₀ a A)) ⟩
F₀.₁ b f ⟨$⟩ (F₁.η g A ⟨$⟩ Sa) ≈⟨ Π.cong (F₀.₁ b f) eq′ ⟩
F₀.₁ b f ⟨$⟩ Sb ∎)
hom-map : ∀ {X Y Z} → Y C.⇒ X → Z C.⇒ Y → Σ J.Obj (λ j → Setoid.Carrier (F₀.₀ j X)) → Σ J.Obj (λ j → Setoid.Carrier (F₀.₀ j Z))
hom-map f g (j , Sj) = j , F₀.₁ j (f ∘ g) ⟨$⟩ Sj
⊥⇒K′ : ∀ X {K} → Coc.Cocones F [ ⊥ , K ] → Coc.Cocones F[-, X ] [ ColimFX.colimit X , FXcocone X K ]
⊥⇒K′ X {K} ⊥⇒K = record
{ arr = arr.η X
; commute = comm
}
where open FCocone⇒ ⊥⇒K renaming (commute to comm)
! : {K : Coc.Cocone F} → Coc.Cocone⇒ F ⊥ K
! {K} = record
{ arr = ntHelper record
{ η = λ X → ColimFX.rep X (FXcocone X K)
; commute = λ {X Y} f → λ { {a , Sa} {b , Sb} eq →
let open SetoidR (K.N.F₀ Y)
in begin
K.ψ.η a Y ⟨$⟩ (F₀.₁ a f ⟨$⟩ Sa) ≈⟨ K.ψ.commute a f (Setoid.refl (F₀.₀ a X)) ⟩
K.N.F₁ f ⟨$⟩ (K.ψ.η a X ⟨$⟩ Sa) ≈⟨ Π.cong (K.N.F₁ f) (ST.minimal (coc o′ o′ F[-, X ]) (K.N.₀ X) (Kψ X) (helper X) eq) ⟩
K.N.F₁ f ⟨$⟩ (K.ψ.η b X ⟨$⟩ Sb) ∎ }
}
; commute = λ eq → Π.cong (K.ψ.η _ _) eq
}
where module K = FCocone K
Kψ : ∀ X → Σ J.Obj (λ j → Setoid.Carrier (F₀.₀ j X)) → Setoid.Carrier (K.N.F₀ X)
Kψ X (j , S) = K.ψ.η j X ⟨$⟩ S
helper : ∀ X → coc o′ o′ F[-, X ] =[ Kψ X ]⇒ [ K.N.₀ X ]_≈_
helper X {a , Sa} {b , Sb} (f , eq) = begin
K.ψ.η a X ⟨$⟩ Sa ≈˘⟨ K.commute f (Setoid.refl (F₀.₀ a X)) ⟩
K.ψ.η b X ⟨$⟩ (F₁.η f X ⟨$⟩ Sa) ≈⟨ Π.cong (K.ψ.η b X) eq ⟩
K.ψ.η b X ⟨$⟩ Sb ∎
where open SetoidR (K.N.₀ X)
cocomplete : Colimit F
cocomplete = record
{ initial = record
{ ⊥ = ⊥
; ! = !
; !-unique = λ ⊥⇒K {X} → ColimFX.initial.!-unique X (⊥⇒K′ X ⊥⇒K)
}
}
Presheaves-Complete : Complete o′ o′ o′ P
Presheaves-Complete F = complete F
Presheaves-Cocomplete : Cocomplete o′ o′ o′ P
Presheaves-Cocomplete F = cocomplete F
|
algebraic-stack_agda0000_doc_5993 | {-# OPTIONS --cubical-compatible #-}
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
Test : Set
Test = ℕ
test : Test → ℕ
test zero = zero
test (suc n) = test n
|
algebraic-stack_agda0000_doc_5994 | module Serializer where
open import Data.List
open import Data.Fin hiding (_+_)
open import Data.Nat
open import Data.Product
open import Data.Bool
open import Function using (_∘_ ; _$_ ; _∋_)
open import Function.Injection hiding (_∘_)
open import Function.Surjection hiding (_∘_)
open import Function.Bijection hiding (_∘_)
open import Relation.Binary.PropositionalEquality hiding ( [_] )
open import Reflection
open import Helper.Fin
open import Helper.CodeGeneration
-----------------------------------
-- Generic
-----------------------------------
-- Finite
record Serializer (T : Set) : Set where
constructor serializer
field
size : ℕ
from : T -> Fin size
to : Fin size -> T
bijection : Bijection (setoid T) (setoid (Fin size))
|
algebraic-stack_agda0000_doc_5995 | ------------------------------------------------------------------------------
-- Test the consistency of FOTC.Data.List
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- In the module FOTC.Data.List we declare Agda postulates as FOL
-- axioms. We test if it is possible to prove an unprovable theorem
-- from these axioms.
module FOTC.Data.List.Consistency.Axioms where
open import FOTC.Base
open import FOTC.Data.List
------------------------------------------------------------------------------
postulate impossible : ∀ d e → d ≡ e
{-# ATP prove impossible #-}
|
algebraic-stack_agda0000_doc_5996 | open import Data.Product using ( _×_ ; _,_ )
open import Data.Sum using ( inj₁ ; inj₂ )
open import Relation.Binary.PropositionalEquality using ( _≡_ ; refl )
open import Relation.Unary using ( _∈_ ; _⊆_ )
open import Web.Semantic.DL.ABox using
( ABox ; Assertions ; ⟨ABox⟩ ; ε ; _,_ ; _∼_ ; _∈₁_ ; _∈₂_ )
open import Web.Semantic.DL.ABox.Interp using ( Interp ; _,_ ; ⌊_⌋ ; ind ; _*_ )
open import Web.Semantic.DL.ABox.Interp.Morphism using
( _≲_ ; _,_ ; ≲⌊_⌋ ; ≲-resp-ind ; ≡³-impl-≲ )
open import Web.Semantic.DL.Signature using ( Signature )
open import Web.Semantic.DL.TBox.Interp using
( Δ ; _⊨_≈_ ; ≈-refl ; ≈-sym ; ≈-trans ; con ; rol ; con-≈ ; rol-≈ )
open import Web.Semantic.DL.TBox.Interp.Morphism using
( ≲-image ; ≲-resp-≈ ; ≲-resp-con ; ≲-resp-rol ; ≲-refl )
open import Web.Semantic.Util using
( True ; tt ; id ; _∘_ ; _⊕_⊕_ ; inode ; bnode ; enode ; →-dist-⊕ )
module Web.Semantic.DL.ABox.Model {Σ : Signature} where
infix 2 _⊨a_ _⊨b_
infixr 5 _,_
_⟦_⟧₀ : ∀ {X} (I : Interp Σ X) → X → (Δ ⌊ I ⌋)
I ⟦ x ⟧₀ = ind I x
_⊨a_ : ∀ {X} → Interp Σ X → ABox Σ X → Set
I ⊨a ε = True
I ⊨a (A , B) = (I ⊨a A) × (I ⊨a B)
I ⊨a x ∼ y = ⌊ I ⌋ ⊨ ind I x ≈ ind I y
I ⊨a x ∈₁ c = ind I x ∈ con ⌊ I ⌋ c
I ⊨a (x , y) ∈₂ r = (ind I x , ind I y) ∈ rol ⌊ I ⌋ r
Assertions✓ : ∀ {X} (I : Interp Σ X) A {a} →
(a ∈ Assertions A) → (I ⊨a A) → (I ⊨a a)
Assertions✓ I ε () I⊨A
Assertions✓ I (A , B) (inj₁ a∈A) (I⊨A , I⊨B) = Assertions✓ I A a∈A I⊨A
Assertions✓ I (A , B) (inj₂ a∈B) (I⊨A , I⊨B) = Assertions✓ I B a∈B I⊨B
Assertions✓ I (i ∼ j) refl I⊨A = I⊨A
Assertions✓ I (i ∈₁ c) refl I⊨A = I⊨A
Assertions✓ I (ij ∈₂ r) refl I⊨A = I⊨A
⊨a-resp-⊇ : ∀ {X} (I : Interp Σ X) A B →
(Assertions A ⊆ Assertions B) → (I ⊨a B) → (I ⊨a A)
⊨a-resp-⊇ I ε B A⊆B I⊨B = tt
⊨a-resp-⊇ I (A₁ , A₂) B A⊆B I⊨B =
( ⊨a-resp-⊇ I A₁ B (A⊆B ∘ inj₁) I⊨B
, ⊨a-resp-⊇ I A₂ B (A⊆B ∘ inj₂) I⊨B )
⊨a-resp-⊇ I (x ∼ y) B A⊆B I⊨B = Assertions✓ I B (A⊆B refl) I⊨B
⊨a-resp-⊇ I (x ∈₁ c) B A⊆B I⊨B = Assertions✓ I B (A⊆B refl) I⊨B
⊨a-resp-⊇ I (xy ∈₂ r) B A⊆B I⊨B = Assertions✓ I B (A⊆B refl) I⊨B
⊨a-resp-≲ : ∀ {X} {I J : Interp Σ X} → (I ≲ J) → ∀ A → (I ⊨a A) → (J ⊨a A)
⊨a-resp-≲ {X} {I} {J} I≲J ε I⊨A =
tt
⊨a-resp-≲ {X} {I} {J} I≲J (A , B) (I⊨A , I⊨B) =
(⊨a-resp-≲ I≲J A I⊨A , ⊨a-resp-≲ I≲J B I⊨B)
⊨a-resp-≲ {X} {I} {J} I≲J (x ∼ y) I⊨x∼y =
≈-trans ⌊ J ⌋ (≈-sym ⌊ J ⌋ (≲-resp-ind I≲J x))
(≈-trans ⌊ J ⌋ (≲-resp-≈ ≲⌊ I≲J ⌋ I⊨x∼y)
(≲-resp-ind I≲J y))
⊨a-resp-≲ {X} {I} {J} I≲J (x ∈₁ c) I⊨x∈c =
con-≈ ⌊ J ⌋ c (≲-resp-con ≲⌊ I≲J ⌋ I⊨x∈c) (≲-resp-ind I≲J x)
⊨a-resp-≲ {X} {I} {J} I≲J ((x , y) ∈₂ r) I⊨xy∈r =
rol-≈ ⌊ J ⌋ r (≈-sym ⌊ J ⌋ (≲-resp-ind I≲J x))
(≲-resp-rol ≲⌊ I≲J ⌋ I⊨xy∈r) (≲-resp-ind I≲J y)
⊨a-resp-≡ : ∀ {X : Set} (I : Interp Σ X) j →
(ind I ≡ j) → ∀ A → (I ⊨a A) → (⌊ I ⌋ , j ⊨a A)
⊨a-resp-≡ (I , i) .i refl A I⊨A = I⊨A
⊨a-resp-≡³ : ∀ {V X Y : Set} (I : Interp Σ (X ⊕ V ⊕ Y)) j →
(→-dist-⊕ (ind I) ≡ →-dist-⊕ j) → ∀ A → (I ⊨a A) → (⌊ I ⌋ , j ⊨a A)
⊨a-resp-≡³ I j i≡j = ⊨a-resp-≲ (≡³-impl-≲ I j i≡j)
⟨ABox⟩-Assertions : ∀ {X Y a} (f : X → Y) (A : ABox Σ X) →
(a ∈ Assertions A) → (⟨ABox⟩ f a ∈ Assertions (⟨ABox⟩ f A))
⟨ABox⟩-Assertions f ε ()
⟨ABox⟩-Assertions f (A , B) (inj₁ a∈A) = inj₁ (⟨ABox⟩-Assertions f A a∈A)
⟨ABox⟩-Assertions f (A , B) (inj₂ a∈B) = inj₂ (⟨ABox⟩-Assertions f B a∈B)
⟨ABox⟩-Assertions f (x ∼ y) refl = refl
⟨ABox⟩-Assertions f (x ∈₁ c) refl = refl
⟨ABox⟩-Assertions f ((x , y) ∈₂ r) refl = refl
⟨ABox⟩-resp-⊨ : ∀ {X Y} {I : Interp Σ X} {j : Y → Δ ⌊ I ⌋}
(f : X → Y) → (∀ x → ⌊ I ⌋ ⊨ ind I x ≈ j (f x)) →
∀ A → (I ⊨a A) → (⌊ I ⌋ , j ⊨a ⟨ABox⟩ f A)
⟨ABox⟩-resp-⊨ {X} {Y} {I} f i≈j∘f ε I⊨ε =
tt
⟨ABox⟩-resp-⊨ {X} {Y} {I} f i≈j∘f (A , B) (I⊨A , I⊨B) =
(⟨ABox⟩-resp-⊨ f i≈j∘f A I⊨A , ⟨ABox⟩-resp-⊨ f i≈j∘f B I⊨B)
⟨ABox⟩-resp-⊨ {X} {Y} {I} f i≈j∘f (x ∼ y) x≈y =
≈-trans ⌊ I ⌋ (≈-sym ⌊ I ⌋ (i≈j∘f x)) (≈-trans ⌊ I ⌋ x≈y (i≈j∘f y))
⟨ABox⟩-resp-⊨ {X} {Y} {I} f i≈j∘f (x ∈₁ c) x∈⟦c⟧ =
con-≈ ⌊ I ⌋ c x∈⟦c⟧ (i≈j∘f x)
⟨ABox⟩-resp-⊨ {X} {Y} {I} f i≈j∘f ((x , y) ∈₂ r) xy∈⟦r⟧ =
rol-≈ ⌊ I ⌋ r (≈-sym ⌊ I ⌋ (i≈j∘f x)) xy∈⟦r⟧ (i≈j∘f y)
*-resp-⟨ABox⟩ : ∀ {X Y} (f : Y → X) I A →
(I ⊨a ⟨ABox⟩ f A) → (f * I ⊨a A)
*-resp-⟨ABox⟩ f (I , i) ε I⊨ε =
tt
*-resp-⟨ABox⟩ f (I , i) (A , B) (I⊨A , I⊨B) =
(*-resp-⟨ABox⟩ f (I , i) A I⊨A , *-resp-⟨ABox⟩ f (I , i) B I⊨B )
*-resp-⟨ABox⟩ f (I , i) (x ∼ y) x≈y =
x≈y
*-resp-⟨ABox⟩ f (I , i) (x ∈₁ c) x∈⟦c⟧ =
x∈⟦c⟧
*-resp-⟨ABox⟩ f (I , i) ((x , y) ∈₂ r) xy∈⟦c⟧ =
xy∈⟦c⟧
-- bnodes I f is the same as I, except that f is used as the interpretation
-- for bnodes.
on-bnode : ∀ {V W X Y Z : Set} → (W → Z) → ((X ⊕ V ⊕ Y) → Z) →
((X ⊕ W ⊕ Y) → Z)
on-bnode f g (inode x) = g (inode x)
on-bnode f g (bnode w) = f w
on-bnode f g (enode y) = g (enode y)
bnodes : ∀ {V W X Y} → (I : Interp Σ (X ⊕ V ⊕ Y)) → (W → Δ ⌊ I ⌋) →
Interp Σ (X ⊕ W ⊕ Y)
bnodes I f = (⌊ I ⌋ , on-bnode f (ind I))
bnodes-resp-≲ : ∀ {V W X Y} (I J : Interp Σ (X ⊕ V ⊕ Y)) →
(I≲J : I ≲ J) → (f : W → Δ ⌊ I ⌋) →
(bnodes I f ≲ bnodes J (≲-image ≲⌊ I≲J ⌋ ∘ f))
bnodes-resp-≲ (I , i) (J , j) (I≲J , i≲j) f = (I≲J , lemma) where
lemma : ∀ x →
J ⊨ ≲-image I≲J (on-bnode f i x) ≈ on-bnode (≲-image I≲J ∘ f) j x
lemma (inode x) = i≲j (inode x)
lemma (bnode v) = ≈-refl J
lemma (enode y) = i≲j (enode y)
-- I ⊨b A whenever there exists an f such that bnodes I f ⊨a A
data _⊨b_ {V W X Y} (I : Interp Σ (X ⊕ V ⊕ Y))
(A : ABox Σ (X ⊕ W ⊕ Y)) : Set where
_,_ : ∀ f → (bnodes I f ⊨a A) → (I ⊨b A)
inb : ∀ {V W X Y} {I : Interp Σ (X ⊕ V ⊕ Y)} {A : ABox Σ (X ⊕ W ⊕ Y)} →
(I ⊨b A) → W → Δ ⌊ I ⌋
inb (f , I⊨A) = f
⊨b-impl-⊨a : ∀ {V W X Y} {I : Interp Σ (X ⊕ V ⊕ Y)} {A : ABox Σ (X ⊕ W ⊕ Y)} →
(I⊨A : I ⊨b A) → (bnodes I (inb I⊨A) ⊨a A)
⊨b-impl-⊨a (f , I⊨A) = I⊨A
⊨a-impl-⊨b : ∀ {V X Y} (I : Interp Σ (X ⊕ V ⊕ Y)) A → (I ⊨a A) → (I ⊨b A)
⊨a-impl-⊨b I A I⊨A =
(ind I ∘ bnode , ⊨a-resp-≲ (≲-refl ⌊ I ⌋ , lemma) A I⊨A) where
lemma : ∀ x → ⌊ I ⌋ ⊨ ind I x ≈ on-bnode (ind I ∘ bnode) (ind I) x
lemma (inode x) = ≈-refl ⌊ I ⌋
lemma (bnode v) = ≈-refl ⌊ I ⌋
lemma (enode y) = ≈-refl ⌊ I ⌋
⊨b-resp-≲ : ∀ {V W X Y} {I J : Interp Σ (X ⊕ V ⊕ Y)} → (I ≲ J)
→ ∀ (A : ABox Σ (X ⊕ W ⊕ Y)) → (I ⊨b A) → (J ⊨b A)
⊨b-resp-≲ I≲J A (f , I⊨A) =
((≲-image ≲⌊ I≲J ⌋ ∘ f) , ⊨a-resp-≲ (bnodes-resp-≲ _ _ I≲J f) A I⊨A)
|
algebraic-stack_agda0000_doc_5997 | {-# OPTIONS --allow-unsolved-metas --no-termination-check
#-}
module Bag where
import Prelude
import Equiv
import Datoid
import Eq
import Nat
import List
import Pos
open Prelude
open Equiv
open Datoid
open Eq
open Nat
open List
abstract
----------------------------------------------------------------------
-- Bag type
private
-- If this were Coq then the invariant should be a Prop. Similar
-- remarks apply to some definitions below. Since I have to write
-- the supporting library myself I can't be bothered to
-- distinguish Set and Prop right now though.
data BagType (a : Datoid) : Set where
bt : (pairs : List (Pair Pos.Pos (El a)))
→ NoDuplicates a (map snd pairs)
→ BagType a
list : {a : Datoid} → BagType a → List (Pair Pos.Pos (El a))
list (bt l _) = l
contents : {a : Datoid} → BagType a → List (El a)
contents b = map snd (list b)
invariant : {a : Datoid} → (b : BagType a)
→ NoDuplicates a (contents b)
invariant (bt _ i) = i
private
elemDatoid : Datoid → Datoid
elemDatoid a = pairDatoid Pos.posDatoid a
BagEq : (a : Datoid) → BagType a → BagType a → Set
BagEq a b1 b2 = rel' (Permutation (elemDatoid a)) (list b1) (list b2)
eqRefl : {a : Datoid} → (x : BagType a) → BagEq a x x
eqRefl {a} x = refl (Permutation (elemDatoid a)) {list x}
eqSym : {a : Datoid} → (x y : BagType a)
→ BagEq a x y → BagEq a y x
eqSym {a} x y = sym (Permutation (elemDatoid a)) {list x} {list y}
eqTrans : {a : Datoid} → (x y z : BagType a)
→ BagEq a x y → BagEq a y z → BagEq a x z
eqTrans {a} x y z = trans (Permutation (elemDatoid a))
{list x} {list y} {list z}
eqDec : {a : Datoid} → (x y : BagType a)
→ Either (BagEq a x y) _
eqDec {a} x y = decRel (Permutation (elemDatoid a)) (list x) (list y)
BagEquiv : (a : Datoid) → DecidableEquiv (BagType a)
BagEquiv a = decEquiv (equiv (BagEq a) eqRefl eqSym eqTrans) (dec eqDec)
Bag : Datoid → Datoid
Bag a = datoid (BagType a) (BagEquiv a)
----------------------------------------------------------------------
-- Bag primitives
empty : {a : Datoid} → El (Bag a)
empty = bt nil unit
private
data LookupResult (a : Datoid) (x : El a) (b : El (Bag a)) : Set where
lr : Nat
→ (b' : El (Bag a))
→ Not (member a x (contents b'))
→ ({y : El a} → Not (member a y (contents b))
→ Not (member a y (contents b')))
→ LookupResult a x b
lookup1 : {a : Datoid}
→ (n : Pos.Pos)
→ (y : El a)
→ (b' : El (Bag a))
→ (nyb' : Not (member a y (contents b')))
→ (x : El a)
→ Either (datoidRel a x y) _
→ LookupResult a x b'
→ LookupResult a x (bt (pair n y :: list b')
(pair nyb' (invariant b')))
lookup1 n y b' nyb' x (left xy) _ =
lr (Pos.toNat n) b'
(contrapositive (memberPreservesEq xy (contents b')) nyb')
(\{y'} ny'b → snd (notDistribIn ny'b))
lookup1 {a} n y b' nyb' x (right nxy)
(lr n' (bt b'' ndb'') nxb'' nmPres) =
lr n' (bt (pair n y :: b'') (pair (nmPres nyb') ndb''))
(notDistribOut {datoidRel a x y} nxy nxb'')
(\{y'} ny'b → notDistribOut (fst (notDistribIn ny'b))
(nmPres (snd (notDistribIn ny'b))))
lookup2
: {a : Datoid}
→ (x : El a)
→ (b : El (Bag a))
→ LookupResult a x b
lookup2 x (bt nil nd) = lr zero (bt nil nd) (not id) (\{_} _ → not id)
lookup2 {a} x (bt (pair n y :: b) (pair nyb ndb)) =
lookup1 n y (bt b ndb) nyb x
(decRel (datoidEq a) x y)
(lookup2 x (bt b ndb))
lookup3 : {a : Datoid} → {x : El a} → {b : El (Bag a)}
→ LookupResult a x b → Pair Nat (El (Bag a))
lookup3 (lr n b _ _) = pair n b
lookup : {a : Datoid} → El a → El (Bag a) → Pair Nat (El (Bag a))
lookup x b = lookup3 (lookup2 x b)
private
insert' : {a : Datoid} → (x : El a) → {b : El (Bag a)}
→ LookupResult a x b → El (Bag a)
insert' x (lr n (bt b ndb) nxb _) =
bt (pair (Pos.suc' n) x :: b) (pair nxb ndb)
insert : {a : Datoid} → El a → El (Bag a) → El (Bag a)
insert x b = insert' x (lookup2 x b)
private
postulate
insertLemma1
: {a : Datoid}
→ (x : El a)
→ (b : El (Bag a))
→ (nxb : Not (member a x (contents b)))
→ datoidRel (Bag a)
(insert x b)
(bt (pair Pos.one x :: list b) (pair nxb (invariant b)))
insertLemma2
: {a : Datoid}
→ (n : Pos.Pos)
→ (x : El a)
→ (b : El (Bag a))
→ (nxb : Not (member a x (contents b)))
→ datoidRel (Bag a)
(insert x (bt (pair n x :: list b)
(pair nxb (invariant b))))
(bt (pair (Pos.suc n) x :: list b)
(pair nxb (invariant b)))
----------------------------------------------------------------------
-- Bag traversals
data Traverse (a : Datoid) : Set where
Empty : Traverse a
Insert : (x : El a) → (b : El (Bag a)) → Traverse a
run : {a : Datoid} → Traverse a → El (Bag a)
run Empty = empty
run (Insert x b) = insert x b
abstract
traverse : {a : Datoid} → El (Bag a) → Traverse a
traverse (bt nil _) = Empty
traverse {a} (bt (pair n x :: b) (pair nxb ndb)) = traverse' (Pos.pred n)
where
private
traverse' : Maybe Pos.Pos → Traverse a
traverse' Nothing = Insert x (bt b ndb)
traverse' (Just n) = Insert x (bt (pair n x :: b) (pair nxb ndb))
traverseTraverses
: {a : Datoid} → (b : El (Bag a))
→ datoidRel (Bag a) (run (traverse b)) b
traverseTraverses {a} (bt nil unit) = dRefl (Bag a) {empty}
traverseTraverses {a} (bt (pair n x :: b) (pair nxb ndb)) =
tT (Pos.pred n) (Pos.predOK n)
where
private
postulate
subst' : {a : Datoid} → (P : El a → Set) → (x y : El a)
→ datoidRel a x y → P x → P y
tT : (predN : Maybe Pos.Pos)
→ Pos.Pred n predN
→ datoidRel (Bag a)
(run (traverse (bt (pair n x :: b) (pair nxb ndb))))
(bt (pair n x :: b) (pair nxb ndb))
tT Nothing (Pos.ok eq) = {!!}
-- subst' (\p → datoidRel (Bag a)
-- (run (traverse (bt (pair p x :: b) (pair nxb ndb))))
-- (bt (pair p x :: b) (pair nxb ndb)))
-- Pos.one n eq (insertLemma1 x (bt b ndb) nxb)
-- eq : one == n
-- data Pred (p : Pos) (mP : Maybe Pos) : Set where
-- ok : datoidRel posDatoid (sucPred mP) p → Pred p mP
-- insert x (bt b ndb) == bt (pair n x :: b) (pair nxb ndb)
tT (Just n) (Pos.ok eq) = {!!} -- insertLemma2 n x (bt b ndb) nxb
-- insert x (bt (pair n x :: b) (pair nxb btb) ==
-- bt (pair (suc n) x :: b) (pair nxb btb)
bagElim
: {a : Datoid}
→ (P : El (Bag a) → Set)
→ Respects (Bag a) P
→ P empty
→ ((x : El a) → (b : El (Bag a)) → P b → P (insert x b))
→ (b : El (Bag a))
→ P b
bagElim {a} P Prespects e i b =
bagElim' b (traverse b) (traverseTraverses b)
where
private
bagElim'
: (b : El (Bag a))
→ (t : Traverse a)
→ datoidRel (Bag a) (run t) b
→ P b
bagElim' b Empty eq = subst Prespects empty b eq e
bagElim' b (Insert x b') eq =
subst Prespects (insert x b') b eq
(i x b' (bagElim' b' (traverse b') (traverseTraverses b')))
----------------------------------------------------------------------
-- Respect and equality preservation lemmas
postulate
insertPreservesRespect
: {a : Datoid}
→ (P : El (Bag a) → Set)
→ (x : El a)
→ Respects (Bag a) P
→ Respects (Bag a) (\b → P (insert x b))
lookupPreservesRespect
: {a : Datoid}
→ (P : El (Bag a) → Set)
→ (x : El a)
→ Respects (Bag a) P
→ Respects (Bag a) (\b → P (snd $ lookup x b))
-- This doesn't type check without John Major equality or some
-- ugly substitutions...
-- bagElimPreservesEquality
-- : {a : Datoid}
-- → (P : El (Bag a) → Set)
-- → (r : Respects (Bag a) P)
-- → (e : P empty)
-- → (i : (x : El a) → (b : El (Bag a)) → P b → P (insert x b))
-- → ( (x1 x2 : El a) → (b1 b2 : El (Bag a))
-- → (p1 : P b1) → (p2 : P b2)
-- → (eqX : datoidRel a x1 x2) → (eqB : datoidRel (Bag a) b1 b2)
-- → i x1 b1 p1 =^= i x2 b2 p2
-- )
-- → (b1 b2 : El (Bag a))
-- → datoidRel (Bag a) b1 b2
-- → bagElim P r e i b1 =^= bagElim P r e i b2
|
algebraic-stack_agda0000_doc_5998 | {-# OPTIONS --without-K --safe #-}
-- | Operations that ensure a cycle traverses a particular element
-- at most once.
module Dodo.Binary.Cycle where
-- Stdlib import
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; _≢_; refl)
open import Level using (Level; _⊔_)
open import Function using (_∘_)
open import Data.Product using (_×_; _,_; proj₁; proj₂)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Relation.Nullary using (yes; no)
open import Relation.Binary using (Rel)
open import Relation.Binary.Construct.Closure.Transitive using (TransClosure; [_]; _∷_; _∷ʳ_; _++_)
-- Local imports
open import Dodo.Unary.Dec
open import Dodo.Binary.Transitive
-- # Definitions
-- | The given relation, with proofs that neither element equals `z`.
ExcludeRel : {a ℓ : Level} {A : Set a} → (R : Rel A ℓ) → (z : A) → Rel A (a ⊔ ℓ)
ExcludeRel R z x y = R x y × x ≢ z × y ≢ z
-- | A cycle of R which passes through `z` /exactly once/.
data PassCycle {a ℓ : Level} {A : Set a} (R : Rel A ℓ) (z : A) : Set (a ⊔ ℓ) where
cycle₁ : R z z → PassCycle R z
cycle₂ : {x : A} → x ≢ z → R z x → R x z → PassCycle R z
cycleₙ : {x y : A} → R z x → TransClosure (ExcludeRel R z) x y → R y z → PassCycle R z
-- # Functions
-- | A cycle of a relation either /does not/ pass through an element `y`, or it
-- can be made to pass through `y` /exactly once/.
--
-- Note that if the original cycle passes `y` /more than once/, then only one
-- cycle of the multi-cycle through `y` may be taken.
divert-cycle : {a ℓ : Level} {A : Set a}
→ {R : Rel A ℓ}
→ {x : A}
→ TransClosure R x x
→ {y : A}
→ DecPred (_≡ y)
→ PassCycle R y ⊎ TransClosure (ExcludeRel R y) x x
divert-cycle {x = x} [ Rxx ] eq-xm with eq-xm x
... | yes refl = inj₁ (cycle₁ Rxx)
... | no x≢y = inj₂ [ ( Rxx , x≢y , x≢y ) ]
divert-cycle {A = A} {R = R} {x} ( Rxw ∷ R⁺wx ) {y} eq-dec = lemma Rxw R⁺wx
where
-- Chain that starts with `y`.
--
-- `Ryx` and `R⁺xz` are acculumators.
lemma-incl : {x z : A} → R y x → TransClosure (ExcludeRel R y) x z → TransClosure R z y → PassCycle R y
lemma-incl Ryx R⁺xz [ Rzy ] = cycleₙ Ryx R⁺xz Rzy
lemma-incl Ryx R⁺xz (_∷_ {_} {w} Rzw R⁺wy) with eq-dec w
lemma-incl Ryx R⁺xz (_∷_ {_} {w} Rzw R⁺wy) | yes refl = cycleₙ Ryx R⁺xz Rzw
lemma-incl Ryx R⁺xz (_∷_ {_} {w} Rzw R⁺wy) | no w≢y =
let z≢y = ⁺-lift-predʳ (proj₂ ∘ proj₂) R⁺xz
in lemma-incl Ryx (R⁺xz ∷ʳ (Rzw , z≢y , w≢y)) R⁺wy
-- First step of a chain that starts with `y`.
lemma-incl₀ : {x : A} → R y x → TransClosure R x y → PassCycle R y
lemma-incl₀ {x} Ryx R⁺xy with eq-dec x
lemma-incl₀ {x} Ryx R⁺xy | yes refl = cycle₁ Ryx
lemma-incl₀ {x} Ryx [ Rxy ] | no x≢y = cycle₂ x≢y Ryx Rxy
lemma-incl₀ {x} Ryx (_∷_ {_} {z} Rxz R⁺zy) | no x≢y with eq-dec z
lemma-incl₀ {x} Ryx (_∷_ {x} {z} Rxz R⁺zy) | no x≢y | yes refl = cycle₂ x≢y Ryx Rxz
lemma-incl₀ {x} Ryx (_∷_ {x} {z} Rxz R⁺zy) | no x≢y | no z≢y = lemma-incl Ryx [ Rxz , x≢y , z≢y ] R⁺zy
-- Chain that does /not/ (yet) pass through `y`.
lemma-excl : {z : A} → TransClosure (ExcludeRel R y) x z → TransClosure R z x → PassCycle R y ⊎ TransClosure (ExcludeRel R y) x x
lemma-excl R⁺xz [ Rzx ] =
let z≢y = ⁺-lift-predʳ (proj₂ ∘ proj₂) R⁺xz
x≢y = ⁺-lift-predˡ (proj₁ ∘ proj₂) R⁺xz
in inj₂ (R⁺xz ∷ʳ (Rzx , z≢y , x≢y))
lemma-excl R⁺xz (_∷_ {_} {w} Rzw R⁺wx) with eq-dec w
lemma-excl R⁺xz (_∷_ {_} {_} Rzw [ Rwx ]) | yes refl = inj₁ (cycleₙ Rwx R⁺xz Rzw)
lemma-excl R⁺xz (_∷_ {_} {_} Rzw (Rwq ∷ R⁺qx)) | yes refl = inj₁ (lemma-incl₀ Rwq (R⁺qx ++ (⁺-map _ proj₁ R⁺xz) ∷ʳ Rzw))
lemma-excl R⁺xz (_∷_ {_} {_} Rzw R⁺wx) | no w≢y =
let z≢y = ⁺-lift-predʳ (proj₂ ∘ proj₂) R⁺xz
in lemma-excl (R⁺xz ∷ʳ (Rzw , z≢y , w≢y)) R⁺wx
lemma : {w : A} → R x w → TransClosure R w x → PassCycle R y ⊎ TransClosure (ExcludeRel R y) x x
lemma {_} Rxw R⁺wx with eq-dec x
lemma {_} Rxw R⁺wx | yes refl = inj₁ (lemma-incl₀ Rxw R⁺wx)
lemma {w} Rxw R⁺wx | no x≢y with eq-dec w
lemma {_} Rxw [ Rwx ] | no x≢y | yes refl = inj₁ (cycle₂ x≢y Rwx Rxw)
lemma {_} Rxw ( Rwz ∷ R⁺zx ) | no x≢y | yes refl = inj₁ (lemma-incl₀ Rwz (R⁺zx ∷ʳ Rxw))
lemma {_} Rxw R⁺wx | no x≢y | no w≢y = lemma-excl [ Rxw , x≢y , w≢y ] R⁺wx
|
algebraic-stack_agda0000_doc_5999 | {-# OPTIONS --without-K --safe #-}
-- A "canonical" presentation of limits in Setoid.
--
-- These limits are obviously isomorphic to those created by
-- the Completeness proof, but are far less unweildy to work with.
-- This isomorphism is witnessed by Categories.Diagram.Pullback.up-to-iso
module Categories.Category.Instance.Properties.Setoids.Limits.Canonical where
open import Level
open import Data.Product using (_,_; _×_)
open import Relation.Binary.Bundles using (Setoid)
open import Function.Equality as SΠ renaming (id to ⟶-id)
import Relation.Binary.Reasoning.Setoid as SR
open import Categories.Diagram.Pullback
open import Categories.Category.Instance.Setoids
open Setoid renaming (_≈_ to [_][_≈_])
--------------------------------------------------------------------------------
-- Pullbacks
record FiberProduct {o ℓ} {X Y Z : Setoid o ℓ} (f : X ⟶ Z) (g : Y ⟶ Z) : Set (o ⊔ ℓ) where
field
elem₁ : Carrier X
elem₂ : Carrier Y
commute : [ Z ][ f ⟨$⟩ elem₁ ≈ g ⟨$⟩ elem₂ ]
open FiberProduct
pullback : ∀ (o ℓ : Level) {X Y Z : Setoid (o ⊔ ℓ) ℓ} → (f : X ⟶ Z) → (g : Y ⟶ Z) → Pullback (Setoids (o ⊔ ℓ) ℓ) f g
pullback _ _ {X = X} {Y = Y} {Z = Z} f g = record
{ P = record
{ Carrier = FiberProduct f g
; _≈_ = λ p q → [ X ][ elem₁ p ≈ elem₁ q ] × [ Y ][ elem₂ p ≈ elem₂ q ]
; isEquivalence = record
{ refl = (refl X) , (refl Y)
; sym = λ (eq₁ , eq₂) → sym X eq₁ , sym Y eq₂
; trans = λ (eq₁ , eq₂) (eq₁′ , eq₂′) → (trans X eq₁ eq₁′) , (trans Y eq₂ eq₂′)
}
}
; p₁ = record { _⟨$⟩_ = elem₁ ; cong = λ (eq₁ , _) → eq₁ }
; p₂ = record { _⟨$⟩_ = elem₂ ; cong = λ (_ , eq₂) → eq₂ }
; isPullback = record
{ commute = λ {p} {q} (eq₁ , eq₂) → trans Z (cong f eq₁) (commute q)
; universal = λ {A} {h₁} {h₂} eq → record
{ _⟨$⟩_ = λ a → record
{ elem₁ = h₁ ⟨$⟩ a
; elem₂ = h₂ ⟨$⟩ a
; commute = eq (refl A)
}
; cong = λ eq → cong h₁ eq , cong h₂ eq }
; unique = λ eq₁ eq₂ x≈y → eq₁ x≈y , eq₂ x≈y
; p₁∘universal≈h₁ = λ {_} {h₁} {_} eq → cong h₁ eq
; p₂∘universal≈h₂ = λ {_} {_} {h₂} eq → cong h₂ eq
}
}
|
algebraic-stack_agda0000_doc_5872 | {-# OPTIONS --cubical --safe #-}
module Data.Bag where
open import Prelude
open import Algebra
open import Path.Reasoning
infixr 5 _∷_
data ⟅_⟆ (A : Type a) : Type a where
[] : ⟅ A ⟆
_∷_ : A → ⟅ A ⟆ → ⟅ A ⟆
com : ∀ x y xs → x ∷ y ∷ xs ≡ y ∷ x ∷ xs
trunc : isSet ⟅ A ⟆
record Elim {a ℓ}
(A : Type a)
(P : ⟅ A ⟆ → Type ℓ)
: Type (a ℓ⊔ ℓ) where
constructor elim
field
⟅_⟆-set : ∀ {xs} → isSet (P xs)
⟅_⟆[] : P []
⟅_⟆_∷_⟨_⟩ : ∀ x xs → P xs → P (x ∷ xs)
private z = ⟅_⟆[]; f = ⟅_⟆_∷_⟨_⟩
field
⟅_⟆-com : (∀ x y xs pxs →
PathP (λ i → P (com x y xs i))
(f x (y ∷ xs) (f y xs pxs))
(f y (x ∷ xs) (f x xs pxs)))
⟅_⟆⇓ : (xs : ⟅ A ⟆) → P xs
⟅ [] ⟆⇓ = z
⟅ x ∷ xs ⟆⇓ = f x xs ⟅ xs ⟆⇓
⟅ com x y xs i ⟆⇓ = ⟅_⟆-com x y xs ⟅ xs ⟆⇓ i
⟅ trunc xs ys x y i j ⟆⇓ =
isOfHLevel→isOfHLevelDep 2
(λ xs → ⟅_⟆-set {xs})
⟅ xs ⟆⇓ ⟅ ys ⟆⇓
(cong ⟅_⟆⇓ x) (cong ⟅_⟆⇓ y)
(trunc xs ys x y)
i j
open Elim
infixr 0 elim-syntax
elim-syntax : ∀ {a ℓ}
→ (A : Type a)
→ (⟅ A ⟆ → Type ℓ)
→ Type (a ℓ⊔ ℓ)
elim-syntax = Elim
syntax elim-syntax A (λ xs → Pxs) = xs ⦂⟅ A ⟆→ Pxs
record ElimProp {a ℓ} (A : Type a) (P : ⟅ A ⟆ → Type ℓ) : Type (a ℓ⊔ ℓ) where
constructor elim-prop
field
⟦_⟧-prop : ∀ {xs} → isProp (P xs)
⟦_⟧[] : P []
⟦_⟧_∷_⟨_⟩ : ∀ x xs → P xs → P (x ∷ xs)
private z = ⟦_⟧[]; f = ⟦_⟧_∷_⟨_⟩
⟦_⟧⇑ = elim
(isProp→isSet ⟦_⟧-prop)
z f
(λ x y xs pxs → toPathP (⟦_⟧-prop (transp (λ i → P (com x y xs i)) i0
(f x (y ∷ xs) (f y xs pxs))) (f y (x ∷ xs) (f x xs pxs))))
⟦_⟧⇓ = ⟅ ⟦_⟧⇑ ⟆⇓
open ElimProp
infixr 0 elim-prop-syntax
elim-prop-syntax : ∀ {a ℓ} → (A : Type a) → (⟅ A ⟆ → Type ℓ) → Type (a ℓ⊔ ℓ)
elim-prop-syntax = ElimProp
syntax elim-prop-syntax A (λ xs → Pxs) = xs ⦂⟅ A ⟆→∥ Pxs ∥
record [⟅_⟆→_] {a b} (A : Type a) (B : Type b) : Type (a ℓ⊔ b) where
constructor rec
field
[_]-set : isSet B
[_]_∷_ : A → B → B
[_][] : B
private f = [_]_∷_; z = [_][]
field
[_]-com : ∀ x y xs → f x (f y xs) ≡ f y (f x xs)
[_]⇑ = elim [_]-set z (λ x _ → f x) (λ x y _ → [_]-com x y)
[_]↓ = ⟅ [_]⇑ ⟆⇓
open [⟅_⟆→_]
infixr 5 _∪_
_∪_ : ⟅ A ⟆ → ⟅ A ⟆ → ⟅ A ⟆
_∪_ = λ xs ys → [ ys ∪′ ]↓ xs
where
_∪′ : ⟅ A ⟆ → [⟅ A ⟆→ ⟅ A ⟆ ]
[ ys ∪′ ]-set = trunc
[ ys ∪′ ] x ∷ xs = x ∷ xs
[ ys ∪′ ][] = ys
[ ys ∪′ ]-com = com
∪-assoc : (xs ys zs : ⟅ A ⟆) →
(xs ∪ ys) ∪ zs ≡ xs ∪ (ys ∪ zs)
∪-assoc = λ xs ys zs → ⟦ ∪-assoc′ ys zs ⟧⇓ xs
where
∪-assoc′ : ∀ ys zs →
xs ⦂⟅ A ⟆→∥ (xs ∪ ys) ∪ zs ≡ xs ∪ (ys ∪ zs) ∥
⟦ ∪-assoc′ ys zs ⟧-prop = trunc _ _
⟦ ∪-assoc′ ys zs ⟧[] = refl
⟦ ∪-assoc′ ys zs ⟧ x ∷ xs ⟨ P ⟩ = cong (x ∷_) P
∪-cons : ∀ (x : A) xs ys
→ (x ∷ xs) ∪ ys ≡ xs ∪ (x ∷ ys)
∪-cons = λ x xs ys → ⟦ ∪-cons′ x ys ⟧⇓ xs
where
∪-cons′ : ∀ x ys →
xs ⦂⟅ A ⟆→∥ (x ∷ xs) ∪ ys ≡ xs ∪ (x ∷ ys) ∥
⟦ ∪-cons′ x ys ⟧-prop = trunc _ _
⟦ ∪-cons′ x ys ⟧[] = refl
⟦ ∪-cons′ x ys ⟧ y ∷ xs ⟨ P ⟩ = cong (_∪ ys) (com x y xs) ; cong (y ∷_) P
∪-idʳ : (xs : ⟅ A ⟆) → xs ∪ [] ≡ xs
∪-idʳ = ⟦ ∪-idʳ′ ⟧⇓
where
∪-idʳ′ : xs ⦂⟅ A ⟆→∥ xs ∪ [] ≡ xs ∥
⟦ ∪-idʳ′ ⟧-prop = trunc _ _
⟦ ∪-idʳ′ ⟧[] = refl
⟦ ∪-idʳ′ ⟧ x ∷ xs ⟨ P ⟩ = cong (x ∷_) P
∪-comm : (xs ys : ⟅ A ⟆) → xs ∪ ys ≡ ys ∪ xs
∪-comm {A = A} = λ xs ys → ⟦ ∪-comm′ ys ⟧⇓ xs
where
∪-comm′ : (ys : ⟅ A ⟆) →
xs ⦂⟅ A ⟆→∥ xs ∪ ys ≡ ys ∪ xs ∥
⟦ ∪-comm′ ys ⟧-prop = trunc _ _
⟦ ∪-comm′ ys ⟧[] = sym (∪-idʳ ys)
⟦ ∪-comm′ ys ⟧ x ∷ xs ⟨ P ⟩ =
(x ∷ xs) ∪ ys ≡⟨ cong (x ∷_) P ⟩
(x ∷ ys) ∪ xs ≡⟨ ∪-cons x ys xs ⟩
ys ∪ x ∷ xs ∎
⟅⟆-commutative-monoid : ∀ {a} (A : Type a) → CommutativeMonoid _
Monoid.𝑆 (CommutativeMonoid.monoid (⟅⟆-commutative-monoid A)) = ⟅ A ⟆
Monoid._∙_ (CommutativeMonoid.monoid (⟅⟆-commutative-monoid A)) = _∪_
Monoid.ε (CommutativeMonoid.monoid (⟅⟆-commutative-monoid A)) = []
Monoid.assoc (CommutativeMonoid.monoid (⟅⟆-commutative-monoid A)) = ∪-assoc
Monoid.ε∙ (CommutativeMonoid.monoid (⟅⟆-commutative-monoid A)) _ = refl
Monoid.∙ε (CommutativeMonoid.monoid (⟅⟆-commutative-monoid A)) = ∪-idʳ
CommutativeMonoid.comm (⟅⟆-commutative-monoid A) = ∪-comm
module _ {ℓ} (mon : CommutativeMonoid ℓ) (sIsSet : isSet (CommutativeMonoid.𝑆 mon)) where
open CommutativeMonoid mon
⟦_⟧ : (A → 𝑆) → ⟅ A ⟆ → 𝑆
⟦_⟧ = λ h → [ ⟦ h ⟧′ ]↓
where
⟦_⟧′ : (A → 𝑆) → [⟅ A ⟆→ 𝑆 ]
[ ⟦ h ⟧′ ] x ∷ xs = h x ∙ xs
[ ⟦ h ⟧′ ][] = ε
[ ⟦ h ⟧′ ]-com x y xs =
h x ∙ (h y ∙ xs)
≡˘⟨ assoc _ _ _ ⟩
(h x ∙ h y) ∙ xs
≡⟨ cong (_∙ xs) (comm _ _) ⟩
(h y ∙ h x) ∙ xs
≡⟨ assoc _ _ _ ⟩
h y ∙ (h x ∙ xs) ∎
[ ⟦ h ⟧′ ]-set = sIsSet
record ⟦_≡_⟧ {a b} {A : Type a} {B : Type b}
(h : ⟅ A ⟆ → B)
(xf : [⟅ A ⟆→ B ])
: Type (a ℓ⊔ b) where
constructor elim-univ
field
⟦_≡⟧_∷_ : ∀ x xs → h (x ∷ xs) ≡ [ xf ] x ∷ h xs
⟦_≡⟧[] : h [] ≡ [ xf ][]
⟦_≡⟧⇓ : ∀ xs → h xs ≡ [ xf ]↓ xs
⟦_≡⟧⇓ = ⟦ ≡⇓′ ⟧⇓
where
≡⇓′ : xs ⦂⟅ A ⟆→∥ h xs ≡ [ xf ]↓ xs ∥
⟦ ≡⇓′ ⟧-prop = [ xf ]-set _ _
⟦ ≡⇓′ ⟧[] = ⟦_≡⟧[]
⟦ ≡⇓′ ⟧ x ∷ xs ⟨ P ⟩ = ⟦_≡⟧_∷_ x _ ; cong ([ xf ] x ∷_) P
open ⟦_≡_⟧
record ⟦_⊚_≡_⟧ {a b c} {A : Type a} {B : Type b} {C : Type c}
(h : B → C)
(xf : [⟅ A ⟆→ B ])
(yf : [⟅ A ⟆→ C ])
: Type (a ℓ⊔ b ℓ⊔ c)
where
constructor elim-fuse
field
⟦_∘≡⟧_∷_ : ∀ x xs → h ([ xf ] x ∷ xs) ≡ [ yf ] x ∷ h xs
⟦_∘≡⟧[] : h [ xf ][] ≡ [ yf ][]
⟦_∘≡⟧⇓ : ∀ xs → h ([ xf ]↓ xs) ≡ [ yf ]↓ xs
⟦_∘≡⟧⇓ = ⟦ ≡⇓′ ⟧⇓
where
≡⇓′ : xs ⦂⟅ A ⟆→∥ h ([ xf ]↓ xs) ≡ [ yf ]↓ xs ∥
⟦ ≡⇓′ ⟧-prop = [ yf ]-set _ _
⟦ ≡⇓′ ⟧[] = ⟦_∘≡⟧[]
⟦ ≡⇓′ ⟧ x ∷ xs ⟨ P ⟩ = ⟦_∘≡⟧_∷_ x _ ; cong ([ yf ] x ∷_) P
open ⟦_⊚_≡_⟧
map-alg : (A → B) → [⟅ A ⟆→ ⟅ B ⟆ ]
[ map-alg f ]-set = trunc
[ map-alg f ][] = []
[ map-alg f ] x ∷ xs = f x ∷ xs
[ map-alg f ]-com x y = com (f x) (f y)
map : (A → B) → ⟅ A ⟆ → ⟅ B ⟆
map f = [ map-alg f ]↓
[_]∘_ : [⟅ B ⟆→ C ] → (A → B) → [⟅ A ⟆→ C ]
[ [ g ]∘ f ]-set = [ g ]-set
[ [ g ]∘ f ][] = [ g ][]
[ [ g ]∘ f ] x ∷ xs = [ g ] f x ∷ xs
[ [ g ]∘ f ]-com x y = [ g ]-com (f x) (f y)
map-fuse : ∀ (g : [⟅ B ⟆→ C ]) (f : A → B)
→ [ g ]↓ ∘ map f ≡ [ [ g ]∘ f ]↓
map-fuse g f = funExt ⟦ map-fuse′ g f ∘≡⟧⇓
where
map-fuse′ : (g : [⟅ B ⟆→ C ]) (f : A → B)
→ ⟦ [ g ]↓ ⊚ map-alg f ≡ [ g ]∘ f ⟧
⟦ map-fuse′ g f ∘≡⟧ x ∷ xs = refl
⟦ map-fuse′ g f ∘≡⟧[] = refl
bind : ⟅ A ⟆ → (A → ⟅ B ⟆) → ⟅ B ⟆
bind xs f = ⟦ ⟅⟆-commutative-monoid _ ⟧ trunc f xs
|
algebraic-stack_agda0000_doc_5873 |
record R (A : Set) : Set₁ where
field
P : A → Set
p : (x : A) → P x
module M (r : (A : Set) → R A) where
open module R′ {A : Set} = R (r A) public
postulate
r : (A : Set) → R A
A : Set
open M r
internal-error : (x : A) → P x
internal-error x = p
|
algebraic-stack_agda0000_doc_5874 | -- Andreas, 2017-08-23, issue #2714
-- Make sure we produce a warning about missing main function
-- even though we import a module with --no-main.
open import Issue2712
|
algebraic-stack_agda0000_doc_5875 |
module _ where
open import Common.Prelude
case_of_ : {A B : Set} → A → (A → B) → B
case x of f = f x
{-# INLINE case_of_ #-}
patlam : Nat → Nat
patlam zero = zero
patlam (suc n) =
case n of λ
{ zero → zero
; (suc m) → m + patlam n
}
static : {A : Set} → A → A
static x = x
{-# STATIC static #-}
-- The static here will make the compiler get to the pattern lambda in the body of patlam
-- before compiling patlam. If we're not careful this might make the pattern lambda not
-- inline in the body of patlam.
foo : Nat → Nat
foo n = static (patlam (suc n))
main : IO Unit
main = printNat (foo 5)
|
algebraic-stack_agda0000_doc_5876 | import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; sym; cong; cong₂; cong-app)
open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; step-≡; _∎)
open import Function using (_∘_)
open import Data.Nat using (ℕ; zero; suc)
open import Data.Fin hiding (_+_; #_)
open import DeBruijn
postulate
extensionality : ∀ {A B : Set} {f g : A → B}
→ (∀ (x : A) → f x ≡ g x)
-----------------------
→ f ≡ g
⟪_⟫ : ∀ {n m} → Subst n m → Term n → Term m
⟪ σ ⟫ = subst σ
ids : ∀ {n} → Subst n n
ids x = # x
↑ : ∀ {n} → Subst n (suc n)
↑ x = # (suc x)
infix 6 _•_
_•_ : ∀ {n m} → Term m → Subst n m → Subst (suc n) m
(M • σ) zero = M
(M • σ) (suc x) = σ x
infixr 5 _⨟_
_⨟_ : ∀ {n k m} → Subst n k → Subst k m → Subst n m
σ ⨟ τ = ⟪ τ ⟫ ∘ σ
ren : ∀ {n m} → Rename n m → Subst n m
ren ρ = ids ∘ ρ
sub-head : ∀ {n m} {M : Term m} {σ : Subst n m}
→ ⟪ M • σ ⟫ (# zero) ≡ M
sub-head = refl
sub-tail : ∀ {n m} {M : Term m} {σ : Subst n m}
→ (↑ ⨟ M • σ) ≡ σ
sub-tail = extensionality λ x → refl
sub-idL : ∀ {n m} {σ : Subst n m}
→ ids ⨟ σ ≡ σ
sub-idL = extensionality λ x → refl
sub-dist : ∀ {n m k} {σ : Subst n m} {τ : Subst m k} {M : Term m}
→ ((M • σ) ⨟ τ) ≡ ((subst τ M) • (σ ⨟ τ))
sub-dist {n}{m}{k}{σ}{τ}{M} = extensionality λ x → lemma {x = x}
where
lemma : ∀ {x : Fin (suc n)} → ((M • σ) ⨟ τ) x ≡ ((subst τ M) • (σ ⨟ τ)) x
lemma {x = zero} = refl
lemma {x = suc x} = refl
cong-ext : ∀ {n m}{ρ ρ′ : Rename n m}
→ (ρ ≡ ρ′)
---------------------------------
→ ext ρ ≡ ext ρ′
cong-ext{n}{m}{ρ}{ρ′} rr = extensionality λ x → lemma {x}
where
lemma : ∀ {x : Fin (suc n)} → ext ρ x ≡ ext ρ′ x
lemma {zero} = refl
lemma {suc y} = cong suc (cong-app rr y)
cong-rename : ∀ {n m}{ρ ρ′ : Rename n m}{M M′ : Term n}
→ ρ ≡ ρ′
→ M ≡ M′
------------------------
→ rename ρ M ≡ rename ρ′ M
cong-rename {M = # x} rr refl = cong #_ (cong-app rr x)
cong-rename {ρ = ρ} {ρ′ = ρ′} {M = ƛ N} rr refl =
cong ƛ_ (cong-rename {ρ = ext ρ}{ρ′ = ext ρ′}{M = N} (cong-ext rr) refl)
cong-rename {M = L · M} rr refl =
cong₂ _·_ (cong-rename rr refl) (cong-rename rr refl)
cong-exts : ∀ {n m}{σ σ′ : Subst n m}
→ σ ≡ σ′
----------------
→ exts σ ≡ exts σ′
cong-exts{n}{m}{σ}{σ′} ss = extensionality λ x → lemma {x}
where
lemma : ∀ {x} → exts σ x ≡ exts σ′ x
lemma {zero} = refl
lemma {suc x} = cong (rename suc) (cong-app (ss) x)
cong-sub : ∀ {n m}{σ σ′ : Subst n m}{M M′ : Term n}
→ σ ≡ σ′
→ M ≡ M′
-----------------------
→ subst σ M ≡ subst σ′ M′
cong-sub {n}{m}{σ}{σ′}{# x} ss refl = cong-app ss x
cong-sub {n}{m}{σ}{σ′}{ƛ M} ss refl =
cong ƛ_ (cong-sub {σ = exts σ}{σ′ = exts σ′} {M = M} (cong-exts ss) refl)
cong-sub {n}{m}{σ}{σ′}{L · M} ss refl =
cong₂ _·_ (cong-sub {M = L} ss refl) (cong-sub {M = M} ss refl)
cong-sub-zero : ∀ {n} {M M′ : Term n}
→ M ≡ M′
----------------------------
→ subst-zero M ≡ subst-zero M′
cong-sub-zero {n}{M}{M′} mm′ =
extensionality λ x → cong (λ z → subst-zero z x) mm′
cong-cons : ∀ {n m}{M N : Term m}{σ τ : Subst n m}
→ M ≡ N
→ σ ≡ τ
-----------------
→ (M • σ) ≡ (N • τ)
cong-cons{n}{m}{M}{N}{σ}{τ} refl st = extensionality lemma
where
lemma : (x : Fin (suc n)) → (M • σ) x ≡ (M • τ) x
lemma zero = refl
lemma (suc x) = cong-app st x
cong-seq : ∀ {n m k}{σ σ′ : Subst n m}{τ τ′ : Subst m k}
→ (σ ≡ σ′) → (τ ≡ τ′)
→ (σ ⨟ τ) ≡ (σ′ ⨟ τ′)
cong-seq {n}{m}{k}{σ}{σ′}{τ}{τ′} ss′ tt′ = extensionality lemma
where
lemma : (x : Fin n) → (σ ⨟ τ) x ≡ (σ′ ⨟ τ′) x
lemma x =
begin
(σ ⨟ τ) x
≡⟨⟩
subst τ (σ x)
≡⟨ cong (subst τ) (cong-app ss′ x) ⟩
subst τ (σ′ x)
≡⟨ cong-sub{M = σ′ x} tt′ refl ⟩
subst τ′ (σ′ x)
≡⟨⟩
(σ′ ⨟ τ′) x
∎
ren-ext : ∀ {n m} {ρ : Rename n m}
→ ren (ext ρ) ≡ exts (ren ρ)
ren-ext {n}{m}{ρ} = extensionality λ x → lemma {x = x}
where
lemma : ∀ {x : Fin (suc n)} → (ren (ext ρ)) x ≡ exts (ren ρ) x
lemma {x = zero} = refl
lemma {x = suc x} = refl
rename-subst-ren : ∀ {n m} {ρ : Rename n m} {M : Term n}
→ rename ρ M ≡ ⟪ ren ρ ⟫ M
rename-subst-ren {M = # x} = refl
rename-subst-ren {n}{ρ = ρ}{M = ƛ N} =
begin
rename ρ (ƛ N)
≡⟨⟩
ƛ rename (ext ρ) N
≡⟨ cong ƛ_ (rename-subst-ren {ρ = ext ρ}{M = N}) ⟩
ƛ ⟪ ren (ext ρ) ⟫ N
≡⟨ cong ƛ_ (cong-sub{M = N} ren-ext refl) ⟩
ƛ ⟪ exts (ren ρ) ⟫ N
≡⟨⟩
⟪ ren ρ ⟫ (ƛ N)
∎
rename-subst-ren {M = L · M} = cong₂ _·_ rename-subst-ren rename-subst-ren
exts-cons-shift : ∀ {n m} {σ : Subst n m}
→ exts σ ≡ (# zero • (σ ⨟ ↑))
exts-cons-shift = extensionality λ x → lemma{x = x}
where
lemma : ∀ {n m} {σ : Subst n m} {x : Fin (suc n)}
→ exts σ x ≡ (# zero • (σ ⨟ ↑)) x
lemma {x = zero} = refl
lemma {x = suc y} = rename-subst-ren
subst-zero-cons-ids : ∀ {n}{M : Term n}
→ subst-zero M ≡ (M • ids)
subst-zero-cons-ids = extensionality λ x → lemma {x = x}
where
lemma : ∀ {n}{M : Term n}{x : Fin (suc n)}
→ subst-zero M x ≡ (M • ids) x
lemma {x = zero} = refl
lemma {x = suc x} = refl
exts-ids : ∀ {n}
→ exts ids ≡ ids {suc n}
exts-ids {n} = extensionality lemma
where lemma : (x : Fin (suc n)) → exts ids x ≡ ids x
lemma zero = refl
lemma (suc x) = refl
sub-id : ∀ {n} {M : Term n}
→ ⟪ ids ⟫ M ≡ M
sub-id {M = # x} = refl
sub-id {M = ƛ N} =
begin
⟪ ids ⟫ (ƛ N)
≡⟨⟩
ƛ ⟪ exts ids ⟫ N
≡⟨ cong ƛ_ (cong-sub{M = N} exts-ids refl) ⟩
ƛ ⟪ ids ⟫ N
≡⟨ cong ƛ_ sub-id ⟩
ƛ N
∎
sub-id {M = L · M} = cong₂ _·_ sub-id sub-id
sub-idR : ∀ {n m} {σ : Subst n m}
→ (σ ⨟ ids) ≡ σ
sub-idR {n}{σ = σ} =
begin
σ ⨟ ids
≡⟨⟩
⟪ ids ⟫ ∘ σ
≡⟨ extensionality (λ x → sub-id) ⟩
σ
∎
compose-ext : ∀ {n m k}{ρ : Rename m k} {ρ′ : Rename n m}
→ ((ext ρ) ∘ (ext ρ′)) ≡ ext (ρ ∘ ρ′)
compose-ext = extensionality λ x → lemma {x = x}
where
lemma : ∀ {n m k}{ρ : Rename m k} {ρ′ : Rename n m} {x : Fin (suc n)}
→ ((ext ρ) ∘ (ext ρ′)) x ≡ ext (ρ ∘ ρ′) x
lemma {x = zero} = refl
lemma {x = suc x} = refl
compose-rename : ∀ {n m k}{M : Term n}{ρ : Rename m k}{ρ′ : Rename n m}
→ rename ρ (rename ρ′ M) ≡ rename (ρ ∘ ρ′) M
compose-rename {M = # x} = refl
compose-rename {n}{m}{k}{ƛ N}{ρ}{ρ′} = cong ƛ_ G
where
G : rename (ext ρ) (rename (ext ρ′) N) ≡ rename (ext (ρ ∘ ρ′)) N
G =
begin
rename (ext ρ) (rename (ext ρ′) N)
≡⟨ compose-rename{ρ = ext ρ}{ρ′ = ext ρ′} ⟩
rename ((ext ρ) ∘ (ext ρ′)) N
≡⟨ cong-rename compose-ext refl ⟩
rename (ext (ρ ∘ ρ′)) N
∎
compose-rename {M = L · M} = cong₂ _·_ compose-rename compose-rename
commute-subst-rename : ∀ {n m}{M : Term n}{σ : Subst n m}
{ρ : ∀ {n} → Rename n (suc n)}
→ (∀ {x : Fin n} → exts σ (ρ x) ≡ rename ρ (σ x))
→ subst (exts σ) (rename ρ M) ≡ rename ρ (subst σ M)
commute-subst-rename {M = # x} r = r
commute-subst-rename{n}{m}{ƛ N}{σ}{ρ} r =
cong ƛ_ (commute-subst-rename{suc n}{suc m}{N}
{exts σ}{ρ = ρ′} (λ {x} → H {x}))
where
ρ′ : ∀ {n} → Rename n (suc n)
ρ′ {zero} = λ ()
ρ′ {suc n} = ext ρ
H : {x : Fin (suc n)} → exts (exts σ) (ext ρ x) ≡ rename (ext ρ) (exts σ x)
H {zero} = refl
H {suc y} =
begin
exts (exts σ) (ext ρ (suc y))
≡⟨⟩
rename suc (exts σ (ρ y))
≡⟨ cong (rename suc) r ⟩
rename suc (rename ρ (σ y))
≡⟨ compose-rename ⟩
rename (suc ∘ ρ) (σ y)
≡⟨ cong-rename refl refl ⟩
rename ((ext ρ) ∘ suc) (σ y)
≡⟨ sym compose-rename ⟩
rename (ext ρ) (rename suc (σ y))
≡⟨⟩
rename (ext ρ) (exts σ (suc y))
∎
commute-subst-rename {M = L · M}{ρ = ρ} r =
cong₂ _·_ (commute-subst-rename{M = L}{ρ = ρ} r)
(commute-subst-rename{M = M}{ρ = ρ} r)
exts-seq : ∀ {n m m′} {σ₁ : Subst n m} {σ₂ : Subst m m′}
→ (exts σ₁ ⨟ exts σ₂) ≡ exts (σ₁ ⨟ σ₂)
exts-seq = extensionality λ x → lemma {x = x}
where
lemma : ∀ {n m m′}{x : Fin (suc n)} {σ₁ : Subst n m}{σ₂ : Subst m m′}
→ (exts σ₁ ⨟ exts σ₂) x ≡ exts (σ₁ ⨟ σ₂) x
lemma {x = zero} = refl
lemma {x = suc x}{σ₁}{σ₂} =
begin
(exts σ₁ ⨟ exts σ₂) (suc x)
≡⟨⟩
⟪ exts σ₂ ⟫ (rename suc (σ₁ x))
≡⟨ commute-subst-rename{M = σ₁ x}{σ = σ₂}{ρ = suc} refl ⟩
rename suc (⟪ σ₂ ⟫ (σ₁ x))
≡⟨⟩
rename suc ((σ₁ ⨟ σ₂) x)
∎
sub-sub : ∀ {n m k}{M : Term n} {σ₁ : Subst n m}{σ₂ : Subst m k}
→ ⟪ σ₂ ⟫ (⟪ σ₁ ⟫ M) ≡ ⟪ σ₁ ⨟ σ₂ ⟫ M
sub-sub {M = # x} = refl
sub-sub {n}{m}{k}{ƛ N}{σ₁}{σ₂} =
begin
⟪ σ₂ ⟫ (⟪ σ₁ ⟫ (ƛ N))
≡⟨⟩
ƛ ⟪ exts σ₂ ⟫ (⟪ exts σ₁ ⟫ N)
≡⟨ cong ƛ_ (sub-sub{M = N}{σ₁ = exts σ₁}{σ₂ = exts σ₂}) ⟩
ƛ ⟪ exts σ₁ ⨟ exts σ₂ ⟫ N
≡⟨ cong ƛ_ (cong-sub{M = N} exts-seq refl) ⟩
ƛ ⟪ exts ( σ₁ ⨟ σ₂) ⟫ N
∎
sub-sub {M = L · M} = cong₂ _·_ (sub-sub{M = L}) (sub-sub{M = M})
rename-subst : ∀ {n m m′}{M : Term n}{ρ : Rename n m}{σ : Subst m m′}
→ ⟪ σ ⟫ (rename ρ M) ≡ ⟪ σ ∘ ρ ⟫ M
rename-subst {n}{m}{m′}{M}{ρ}{σ} =
begin
⟪ σ ⟫ (rename ρ M)
≡⟨ cong ⟪ σ ⟫ (rename-subst-ren{M = M}) ⟩
⟪ σ ⟫ (⟪ ren ρ ⟫ M)
≡⟨ sub-sub{M = M} ⟩
⟪ ren ρ ⨟ σ ⟫ M
≡⟨⟩
⟪ σ ∘ ρ ⟫ M
∎
sub-assoc : ∀ {n m k Ψ} {σ : Subst n m} {τ : Subst m k} {θ : Subst k Ψ}
→ (σ ⨟ τ) ⨟ θ ≡ (σ ⨟ τ ⨟ θ)
sub-assoc {n}{m}{k}{Ψ}{σ}{τ}{θ} = extensionality λ x → lemma{x = x}
where
lemma : ∀ {x : Fin n} → ((σ ⨟ τ) ⨟ θ) x ≡ (σ ⨟ τ ⨟ θ) x
lemma {x} =
begin
((σ ⨟ τ) ⨟ θ) x
≡⟨⟩
⟪ θ ⟫ (⟪ τ ⟫ (σ x))
≡⟨ sub-sub{M = σ x} ⟩
⟪ τ ⨟ θ ⟫ (σ x)
≡⟨⟩
(σ ⨟ τ ⨟ θ) x
∎
subst-zero-exts-cons : ∀ {n m}{σ : Subst n m}{M : Term m}
→ exts σ ⨟ subst-zero M ≡ (M • σ)
subst-zero-exts-cons {n}{m}{σ}{M} =
begin
exts σ ⨟ subst-zero M
≡⟨ cong-seq exts-cons-shift subst-zero-cons-ids ⟩
(# zero • (σ ⨟ ↑)) ⨟ (M • ids)
≡⟨ sub-dist ⟩
(⟪ M • ids ⟫ (# zero)) • ((σ ⨟ ↑) ⨟ (M • ids))
≡⟨ cong-cons (sub-head{σ = ids}) refl ⟩
M • ((σ ⨟ ↑) ⨟ (M • ids))
≡⟨ cong-cons refl (sub-assoc{σ = σ}) ⟩
M • (σ ⨟ (↑ ⨟ (M • ids)))
≡⟨ cong-cons refl (cong-seq{σ = σ} refl (sub-tail{M = M}{σ = ids})) ⟩
M • (σ ⨟ ids)
≡⟨ cong-cons refl (sub-idR{σ = σ}) ⟩
M • σ
∎
subst-commute : ∀ {n m} {N : Term (suc n)} {M : Term n} {σ : Subst n m}
→ ⟪ exts σ ⟫ N [ ⟪ σ ⟫ M ] ≡ ⟪ σ ⟫ (N [ M ])
subst-commute {n}{m}{N}{M}{σ} =
begin
⟪ exts σ ⟫ N [ ⟪ σ ⟫ M ]
≡⟨⟩
⟪ subst-zero (⟪ σ ⟫ M) ⟫ (⟪ exts σ ⟫ N)
≡⟨ cong-sub {M = ⟪ exts σ ⟫ N} subst-zero-cons-ids refl ⟩
⟪ ⟪ σ ⟫ M • ids ⟫ (⟪ exts σ ⟫ N)
≡⟨ sub-sub {M = N} ⟩
⟪ (exts σ) ⨟ ((⟪ σ ⟫ M) • ids) ⟫ N
≡⟨ cong-sub {M = N} (cong-seq exts-cons-shift refl) refl ⟩
⟪ (# zero • (σ ⨟ ↑)) ⨟ (⟪ σ ⟫ M • ids) ⟫ N
≡⟨ cong-sub {M = N} (sub-dist {M = # zero}) refl ⟩
⟪ ⟪ ⟪ σ ⟫ M • ids ⟫ (# zero) • ((σ ⨟ ↑) ⨟ (⟪ σ ⟫ M • ids)) ⟫ N
≡⟨⟩
⟪ ⟪ σ ⟫ M • ((σ ⨟ ↑) ⨟ (⟪ σ ⟫ M • ids)) ⟫ N
≡⟨ cong-sub {M = N} (cong-cons refl (sub-assoc {σ = σ})) refl ⟩
⟪ ⟪ σ ⟫ M • (σ ⨟ ↑ ⨟ ⟪ σ ⟫ M • ids) ⟫ N
≡⟨ cong-sub {M = N} refl refl ⟩
⟪ ⟪ σ ⟫ M • (σ ⨟ ids) ⟫ N
≡⟨ cong-sub {M = N} (cong-cons refl (sub-idR {σ = σ})) refl ⟩
⟪ ⟪ σ ⟫ M • σ ⟫ N
≡⟨ cong-sub {M = N} (cong-cons refl (sub-idL {σ = σ})) refl ⟩
⟪ ⟪ σ ⟫ M • (ids ⨟ σ) ⟫ N
≡⟨ cong-sub {M = N} (sym sub-dist) refl ⟩
⟪ M • ids ⨟ σ ⟫ N
≡⟨ sym (sub-sub {M = N}) ⟩
⟪ σ ⟫ (⟪ M • ids ⟫ N)
≡⟨ cong ⟪ σ ⟫ (sym (cong-sub {M = N} subst-zero-cons-ids refl)) ⟩
⟪ σ ⟫ (N [ M ])
∎
rename-subst-commute : ∀ {n m} {N : Term (suc n)} {M : Term n} {ρ : Rename n m }
→ (rename (ext ρ) N) [ rename ρ M ] ≡ rename ρ (N [ M ])
rename-subst-commute {n}{m}{N}{M}{ρ} =
begin
(rename (ext ρ) N) [ rename ρ M ]
≡⟨ cong-sub (cong-sub-zero (rename-subst-ren {M = M})) (rename-subst-ren {M = N}) ⟩
(⟪ ren (ext ρ) ⟫ N) [ ⟪ ren ρ ⟫ M ]
≡⟨ cong-sub refl (cong-sub {M = N} ren-ext refl) ⟩
(⟪ exts (ren ρ) ⟫ N) [ ⟪ ren ρ ⟫ M ]
≡⟨ subst-commute {N = N} ⟩
subst (ren ρ) (N [ M ])
≡⟨ sym (rename-subst-ren) ⟩
rename ρ (N [ M ])
∎
infix 8 _〔_〕
_〔_〕 : ∀ {n} → Term (suc (suc n)) → Term n → Term (suc n)
_〔_〕 N M = subst (exts (subst-zero M)) N
substitution-lemma : ∀ {n} {M : Term (suc (suc n))} {N : Term (suc n)} {L : Term n}
→ M [ N ] [ L ] ≡ (M 〔 L 〕) [ (N [ L ]) ]
substitution-lemma {M = M}{N = N}{L = L} =
sym (subst-commute {N = M}{M = N}{σ = subst-zero L})
|
algebraic-stack_agda0000_doc_5877 | module Category.Functor.Either where
open import Agda.Primitive using (_⊔_)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Category.Functor using (RawFunctor ; module RawFunctor )
open import Category.Applicative using (RawApplicative; module RawApplicative)
open import Function using (_∘_)
Either : ∀ {l₁ l₂} (A : Set l₁) (B : Set l₂) → Set (l₁ ⊔ l₂)
Either = _⊎_
eitherFunctor : ∀ {l₁ l₂} {A : Set l₁} → RawFunctor (Either {l₁} {l₂} A)
eitherFunctor = record
{ _<$>_ = λ f → λ { (inj₁ z) → inj₁ z ; (inj₂ a) → inj₂ (f a) }
}
eitherApplicative : ∀ {l₁} {A : Set l₁} → RawApplicative (Either {l₁} {l₁} A)
eitherApplicative = record
{ pure = inj₂
; _⊛_ = λ { (inj₁ a) → λ _ → inj₁ a ; (inj₂ f) → λ { (inj₁ a) → inj₁ a ; (inj₂ b) → inj₂ (f b) } }
}
|
algebraic-stack_agda0000_doc_5878 | {-# OPTIONS --cubical --safe #-}
module Cubical.HITs.FiniteMultiset.Base where
open import Cubical.Foundations.Prelude
open import Cubical.HITs.SetTruncation
open import Cubical.Foundations.HLevels
private
variable
A : Type₀
infixr 5 _∷_
data FMSet (A : Type₀) : Type₀ where
[] : FMSet A
_∷_ : (x : A) → (xs : FMSet A) → FMSet A
comm : ∀ x y xs → x ∷ y ∷ xs ≡ y ∷ x ∷ xs
trunc : isSet (FMSet A)
pattern [_] x = x ∷ []
module FMSetElim {ℓ} {B : FMSet A → Type ℓ}
([]* : B []) (_∷*_ : (x : A) {xs : FMSet A} → B xs → B (x ∷ xs))
(comm* : (x y : A) {xs : FMSet A} (b : B xs)
→ PathP (λ i → B (comm x y xs i)) (x ∷* (y ∷* b)) (y ∷* (x ∷* b)))
(trunc* : (xs : FMSet A) → isSet (B xs)) where
f : (xs : FMSet A) → B xs
f [] = []*
f (x ∷ xs) = x ∷* f xs
f (comm x y xs i) = comm* x y (f xs) i
f (trunc xs zs p q i j) =
isOfHLevel→isOfHLevelDep {n = 2} trunc* (f xs) (f zs) (cong f p) (cong f q) (trunc xs zs p q) i j
module FMSetElimProp {ℓ} {B : FMSet A → Type ℓ} (BProp : {xs : FMSet A} → isProp (B xs))
([]* : B []) (_∷*_ : (x : A) {xs : FMSet A} → B xs → B (x ∷ xs)) where
f : (xs : FMSet A) → B xs
f = FMSetElim.f []* _∷*_
(λ x y {xs} b →
toPathP (BProp (transp (λ i → B (comm x y xs i)) i0 (x ∷* (y ∷* b))) (y ∷* (x ∷* b))))
(λ xs → isProp→isSet BProp)
module FMSetRec {ℓ} {B : Type ℓ} (BType : isSet B)
([]* : B) (_∷*_ : A → B → B)
(comm* : (x y : A) (b : B) → x ∷* (y ∷* b) ≡ y ∷* (x ∷* b)) where
f : FMSet A → B
f = FMSetElim.f []* (λ x b → x ∷* b) (λ x y b → comm* x y b) (λ _ → BType)
|
algebraic-stack_agda0000_doc_5879 | -- Σ type (also used as existential) and
-- cartesian product (also used as conjunction).
{-# OPTIONS --without-K --safe #-}
module Tools.Product where
open import Agda.Primitive
open import Agda.Builtin.Sigma public using (Σ; _,_)
open import Agda.Builtin.Sigma using (fst; snd)
infixr 2 _×_
-- Dependent pair type (aka dependent sum, Σ type).
private
variable
ℓ₁ ℓ₂ ℓ₃ : Level
proj₁ : ∀ {A : Set ℓ₁} {B : A → Set ℓ₂} → Σ A B → A
proj₁ = fst
proj₂ : ∀ {A : Set ℓ₁} {B : A → Set ℓ₂} → (S : Σ A B) → B (fst S)
proj₂ = snd
-- Existential quantification.
∃ : {A : Set ℓ₁} → (A → Set ℓ₂) → Set (ℓ₁ ⊔ ℓ₂)
∃ = Σ _
∃₂ : {A : Set ℓ₁} {B : A → Set ℓ₂}
(C : (x : A) → B x → Set ℓ₃) → Set (ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃)
∃₂ C = ∃ λ a → ∃ λ b → C a b
-- Cartesian product.
_×_ : (A : Set ℓ₁) (B : Set ℓ₂) → Set (ℓ₁ ⊔ ℓ₂)
A × B = Σ A (λ x → B)
|
algebraic-stack_agda0000_doc_5880 |
-- When defining types by recursion it is sometimes difficult to infer implicit
-- arguments. This module illustrates the problem and shows how to get around
-- it for the example of vectors of a given length.
module DataByRecursion where
data Nat : Set where
zero : Nat
suc : Nat -> Nat
data Nil : Set where
nil' : Nil
data Cons (A As : Set) : Set where
_::'_ : A -> As -> Cons A As
mutual
Vec' : Set -> Nat -> Set
Vec' A zero = Nil
Vec' A (suc n) = Cons A (Vec A n)
data Vec (A : Set)(n : Nat) : Set where
vec : Vec' A n -> Vec A n
nil : {A : Set} -> Vec A zero
nil = vec nil'
_::_ : {A : Set}{n : Nat} -> A -> Vec A n -> Vec A (suc n)
x :: xs = vec (x ::' xs)
map : {n : Nat}{A B : Set} -> (A -> B) -> Vec A n -> Vec B n
map {zero} f (vec nil') = nil
map {suc n} f (vec (x ::' xs)) = f x :: map f xs
|
algebraic-stack_agda0000_doc_5881 | module FSC where
-- focused sequent calculus
{-
open import Relation.Binary.PropositionalEquality
open import Data.Nat hiding (_>_)
-}
open import StdLibStuff
open import Syntax
data FSC-Ctx (n : ℕ) : Ctx n → Set where
ε : FSC-Ctx n ε
_∷_ : {Γ : Ctx n} → (t : Type n) → FSC-Ctx n Γ → FSC-Ctx n (t ∷ Γ)
_∷h_ : {Γ : Ctx n} → Form Γ $o → FSC-Ctx n Γ → FSC-Ctx n Γ
data HVar {n : ℕ} : {Γ-t : Ctx n} → FSC-Ctx n Γ-t → Set where
zero : {Γ-t : Ctx n} {h : Form Γ-t $o} {Γ : FSC-Ctx n Γ-t} → HVar (h ∷h Γ)
succ : {Γ-t : Ctx n} {h : Form Γ-t $o} {Γ : FSC-Ctx n Γ-t} → HVar Γ → HVar (h ∷h Γ)
skip : {Γ-t : Ctx n} {t : Type n} {Γ : FSC-Ctx n Γ-t} → HVar Γ → HVar (t ∷ Γ)
lookup-hyp : {n : ℕ} {Γ-t : Ctx n} (Γ : FSC-Ctx n Γ-t) → HVar Γ → Form Γ-t $o
lookup-hyp .(h ∷h Γ) (zero {._} {h} {Γ}) = h
lookup-hyp .(h ∷h Γ) (succ {._} {h} {Γ} x) = lookup-hyp Γ x
lookup-hyp .(t ∷ Γ) (skip {Γ-t} {t} {Γ} x) = weak (lookup-hyp Γ x)
mutual
data _⊢_ {n : ℕ} {Γ-t : Ctx n} (Γ : FSC-Ctx n Γ-t) : Form Γ-t $o → Set where
||-I-l : {F G : Form Γ-t $o} →
Γ ⊢ F →
Γ ⊢ (F || G)
||-I-r : {F G : Form Γ-t $o} →
Γ ⊢ G →
Γ ⊢ (F || G)
&-I : {F G : Form Γ-t $o} →
Γ ⊢ F → Γ ⊢ G →
Γ ⊢ (F & G)
?-I : {t : Type n} {F : Form (t ∷ Γ-t) $o}
(G : Form Γ-t t) →
Γ ⊢ sub G F →
Γ ⊢ (?[ t ] F)
?'-I : {t : Type n} {F : Form Γ-t (t > $o)}
(G : Form Γ-t t) →
Γ ⊢ (F · G) →
Γ ⊢ (?'[ t ] F)
=>-I : {F G : Form Γ-t $o} →
(F ∷h Γ) ⊢ G →
Γ ⊢ (F => G)
~-I : {F : Form Γ-t $o} →
(F ∷h Γ) ⊢ $false →
Γ ⊢ (~ F)
!-I : {t : Type n} {F : Form (t ∷ Γ-t) $o} →
(t ∷ Γ) ⊢ F →
Γ ⊢ (![ t ] F)
!'-I : {t : Type n} {F : Form Γ-t (t > $o)} →
(t ∷ Γ) ⊢ (weak F · ($ this {refl})) →
Γ ⊢ (!'[ t ] F)
$true-I :
Γ ⊢ $true
==-I : {t : Type n} {F G : Form Γ-t t} →
Γ ⊢ t ∋ F == G →
Γ ⊢ (F == G) -- compute eq
elim : {F : Form Γ-t $o} →
(x : HVar Γ) →
Γ , lookup-hyp Γ x ⊢ F →
Γ ⊢ F
ac : {t : Type n} {F : Form Γ-t $o} →
Γ , (![ t > $o ] ((?[ t ] ($ (next this) {refl} · $ this {refl})) => ($ this {refl} · (ι t ($ (next this) {refl} · $ this {refl}))))) ⊢ F →
Γ ⊢ F
ac' : {t : Type n} {F : Form Γ-t $o} →
Γ , (![ t > $o ] ((?'[ t ] ($ this {refl})) => ($ this {refl} · (ι' t ($ this {refl}))))) ⊢ F →
Γ ⊢ F
raa : {F : Form Γ-t $o} →
Γ ⊢ (~ (~ F)) →
Γ ⊢ F
reduce : {t u : Type n} {F : Form Γ-t u → Form Γ-t $o} {G : Form (t ∷ Γ-t) u} {H : Form Γ-t t} →
Γ ⊢ (F (sub H G)) →
Γ ⊢ (F ((^[ t ] G) · H))
data _,_⊢_ {n : ℕ} {Γ-t : Ctx n} (Γ : FSC-Ctx n Γ-t) : Form Γ-t $o → Form Γ-t $o → Set where
use : {F G : Form Γ-t $o} →
Γ ⊢ $o ∋ G ↔ F →
Γ , F ⊢ G
$false-E : {H : Form Γ-t $o} →
Γ , $false ⊢ H
~-E : {F H : Form Γ-t $o} →
Γ ⊢ F →
Γ , ~ F ⊢ H
||-E : {F G H : Form Γ-t $o} →
Γ ⊢ (F => H) →
Γ ⊢ (G => H) →
Γ , F || G ⊢ H
&-E-l : {F G H : Form Γ-t $o} →
Γ , F ⊢ H →
Γ , F & G ⊢ H
&-E-r : {F G H : Form Γ-t $o} →
Γ , G ⊢ H →
Γ , F & G ⊢ H
?-E : {t : Type n} {F : Form (t ∷ Γ-t) $o} {H : Form Γ-t $o} →
Γ , sub (ι t F) F ⊢ H →
Γ , ?[ t ] F ⊢ H
?'-E : {t : Type n} {F : Form Γ-t (t > $o)} {H : Form Γ-t $o} →
Γ , (F · ι' t F) ⊢ H →
Γ , ?'[ t ] F ⊢ H
=>-E : {F G H : Form Γ-t $o} →
Γ ⊢ F →
Γ , G ⊢ H →
Γ , F => G ⊢ H
!-E : {t : Type n} {F : Form (t ∷ Γ-t) $o} {H : Form Γ-t $o}
(G : Form Γ-t t) →
Γ , sub G F ⊢ H →
Γ , ![ t ] F ⊢ H
!'-E : {t : Type n} {F : Form Γ-t (t > $o)} {H : Form Γ-t $o}
(G : Form Γ-t t) →
Γ , (F · G) ⊢ H →
Γ , !'[ t ] F ⊢ H
r-bool-ext : {F G H : Form Γ-t $o} →
Γ , ((F => G) & (G => F)) ⊢ H →
Γ , F == G ⊢ H -- compute eq
r-fun-ext : {t u : Type n} {F G : Form Γ-t (t > u)} {H : Form Γ-t $o}
(I : Form Γ-t t) →
Γ , (F · I) == (G · I) ⊢ H →
Γ , F == G ⊢ H -- compute eq
reduce : {t u : Type n} {F : Form Γ-t u → Form Γ-t $o} {G : Form (t ∷ Γ-t) u} {H : Form Γ-t t} {I : Form Γ-t $o} →
Γ , (F (sub H G)) ⊢ I →
Γ , (F ((^[ t ] G) · H)) ⊢ I
data _⊢_∋_==_ {n : ℕ} {Γ-t : Ctx n} (Γ : FSC-Ctx n Γ-t) : (t : Type n) (F G : Form Γ-t t) → Set where
simp : {t : Type n} {F G : Form Γ-t t} →
Γ ⊢ t ∋ F ↔ G →
Γ ⊢ t ∋ F == G
step : {t : Type n} {F G : Form Γ-t t} (F' G' : Form Γ-t t) →
(x : HVar Γ) →
Γ , lookup-hyp Γ x ⊢ F' == G' →
Γ ⊢ t ∋ F ↔ F' →
Γ ⊢ t ∋ G' == G →
Γ ⊢ t ∋ F == G
bool-ext : {F G : Form Γ-t $o} →
Γ ⊢ ((F => G) & (G => F)) →
Γ ⊢ $o ∋ F == G
fun-ext : {t u : Type n} {F G : Form Γ-t (t > u)} →
(t ∷ Γ) ⊢ u ∋ ((weak F) · $ this {refl}) == ((weak G) · $ this {refl}) →
Γ ⊢ (t > u) ∋ F == G
data _⊢_∋_↔_ {n : ℕ} {Γ-t : Ctx n} (Γ : FSC-Ctx n Γ-t) : (t : Type n) → Form Γ-t t → Form Γ-t t → Set where
head-var : (t : Type n) (x : Var Γ-t) (p : lookup-Var Γ-t x ≡ t) →
Γ ⊢ t ∋ $ x {p} ↔ $ x {p}
head-const : (t : Type n) (c : Form Γ-t t) →
Γ ⊢ t ∋ c ↔ c
head-app : (t₁ t₂ : Type n) (F₁ F₂ : Form Γ-t (t₁ > t₂)) (G₁ G₂ : Form Γ-t t₁) →
Γ ⊢ (t₁ > t₂) ∋ F₁ == F₂ → Γ ⊢ t₁ ∋ G₁ == G₂ →
Γ ⊢ t₂ ∋ (F₁ · G₁) ↔ (F₂ · G₂)
head-lam : (t₁ t₂ : Type n) (F₁ F₂ : Form (t₁ ∷ Γ-t) t₂) →
(t₁ ∷ Γ) ⊢ t₂ ∋ F₁ == F₂ →
Γ ⊢ (t₁ > t₂) ∋ (lam t₁ F₁) ↔ (lam t₁ F₂)
head-lam-eta-left : (t₁ t₂ : Type n) (F₁ : Form Γ-t (t₁ > t₂)) (F₂ : Form (t₁ ∷ Γ-t) t₂) →
(t₁ ∷ Γ) ⊢ t₂ ∋ (weak F₁ · $ this {refl}) == F₂ →
Γ ⊢ (t₁ > t₂) ∋ F₁ ↔ lam t₁ F₂
head-lam-eta-right : (t₁ t₂ : Type n) (F₁ : Form Γ-t (t₁ > t₂)) (F₂ : Form (t₁ ∷ Γ-t) t₂) →
(t₁ ∷ Γ) ⊢ t₂ ∋ F₂ == (weak F₁ · $ this {refl}) →
Γ ⊢ (t₁ > t₂) ∋ lam t₁ F₂ ↔ F₁
reduce-l : {t u v : Type n} {F₁ : Form Γ-t v → Form Γ-t t} {G : Form (u ∷ Γ-t) v} {H : Form Γ-t u} {F₂ : Form Γ-t t} →
Γ ⊢ t ∋ (F₁ (sub H G)) ↔ F₂ →
Γ ⊢ t ∋ (F₁ ((^[ u ] G) · H)) ↔ F₂
reduce-r : {t u v : Type n} {F₂ : Form Γ-t v → Form Γ-t t} {G : Form (u ∷ Γ-t) v} {H : Form Γ-t u} {F₁ : Form Γ-t t} →
Γ ⊢ t ∋ F₁ ↔ (F₂ (sub H G)) →
Γ ⊢ t ∋ F₁ ↔ (F₂ ((^[ u ] G) · H))
data _,_⊢_==_ {n : ℕ} {Γ-t : Ctx n} {t : Type n} (Γ : FSC-Ctx n Γ-t) : Form Γ-t $o → Form Γ-t t → Form Γ-t t → Set where
use : {F G : Form Γ-t t} →
Γ , F == G ⊢ F == G
use' : {F G : Form Γ-t t} {H : Form Γ-t $o} →
headNorm 2 (F == G) ≡ headNorm 2 H →
Γ , H ⊢ F == G
use-sym : {F G : Form Γ-t t} →
Γ , F == G ⊢ G == F -- compute eq
&-E-l : {F G : Form Γ-t $o} {H₁ H₂ : Form Γ-t t} →
Γ , F ⊢ H₁ == H₂ →
Γ , F & G ⊢ H₁ == H₂
&-E-r : {F G : Form Γ-t $o} {H₁ H₂ : Form Γ-t t} →
Γ , G ⊢ H₁ == H₂ →
Γ , F & G ⊢ H₁ == H₂
?-E : {u : Type n} {F : Form (u ∷ Γ-t) $o} {H₁ H₂ : Form Γ-t t} →
Γ , sub (ι u F) F ⊢ H₁ == H₂ →
Γ , ?[ u ] F ⊢ H₁ == H₂
?'-E : {u : Type n} {F : Form Γ-t (u > $o)} {H₁ H₂ : Form Γ-t t} →
Γ , (F · ι' u F) ⊢ H₁ == H₂ →
Γ , ?'[ u ] F ⊢ H₁ == H₂
=>-E : {F G : Form Γ-t $o} {H₁ H₂ : Form Γ-t t} →
Γ ⊢ F →
Γ , G ⊢ H₁ == H₂ →
Γ , F => G ⊢ H₁ == H₂
!-E : {u : Type n} {F : Form (u ∷ Γ-t) $o} {H₁ H₂ : Form Γ-t t}
(G : Form Γ-t u) →
Γ , sub G F ⊢ H₁ == H₂ →
Γ , ![ u ] F ⊢ H₁ == H₂
!'-E : {u : Type n} {F : Form Γ-t (u > $o)} {H₁ H₂ : Form Γ-t t}
(G : Form Γ-t u) →
Γ , (F · G) ⊢ H₁ == H₂ →
Γ , !'[ u ] F ⊢ H₁ == H₂
r-bool-ext : {F G : Form Γ-t $o} {H I : Form Γ-t t} →
Γ , ((F => G) & (G => F)) ⊢ H == I →
Γ , F == G ⊢ H == I -- compute eq
r-fun-ext : {u v : Type n} {F G : Form Γ-t (u > v)} {H I : Form Γ-t t}
(J : Form Γ-t u) →
Γ , (F · J) == (G · J) ⊢ H == I →
Γ , F == G ⊢ H == I -- compute eq
reduce : {u v : Type n} {F : Form Γ-t v → Form Γ-t $o} {G : Form (u ∷ Γ-t) v} {H : Form Γ-t u} {I₁ I₂ : Form Γ-t t} →
Γ , (F (sub H G)) ⊢ I₁ == I₂ →
Γ , (F ((^[ u ] G) · H)) ⊢ I₁ == I₂
|
algebraic-stack_agda0000_doc_5882 | -- Andreas, 2016-09-20, issue #2197 reported by m0davis
{-# OPTIONS --allow-unsolved-metas #-}
-- {-# OPTIONS -v tc.pos:20 -v tc.meta.eta:20 #-}
record R : Set where
inductive
field
foo : R
bar : R
bar = {!!}
-- This used to loop due to infinite eta-expansion.
-- Should check now.
|
algebraic-stack_agda0000_doc_5883 | module Common.Issue481ParametrizedModule (A : Set1) where
id : A → A
id x = x
postulate
Bla : Set
|
algebraic-stack_agda0000_doc_5884 | test = forall _⦇_ → Set
|
algebraic-stack_agda0000_doc_5885 | {-# OPTIONS --without-K --rewriting #-}
open import lib.Basics
module lib.types.Sigma where
-- pointed [Σ]
⊙Σ : ∀ {i j} (X : Ptd i) → (de⊙ X → Ptd j) → Ptd (lmax i j)
⊙Σ ⊙[ A , a₀ ] Y = ⊙[ Σ A (de⊙ ∘ Y) , (a₀ , pt (Y a₀)) ]
-- Cartesian product
_×_ : ∀ {i j} (A : Type i) (B : Type j) → Type (lmax i j)
A × B = Σ A (λ _ → B)
_⊙×_ : ∀ {i j} → Ptd i → Ptd j → Ptd (lmax i j)
X ⊙× Y = ⊙Σ X (λ _ → Y)
infixr 80 _×_ _⊙×_
-- XXX Do we really need two versions of [⊙fst]?
⊙fstᵈ : ∀ {i j} {X : Ptd i} (Y : de⊙ X → Ptd j) → ⊙Σ X Y ⊙→ X
⊙fstᵈ Y = fst , idp
⊙fst : ∀ {i j} {X : Ptd i} {Y : Ptd j} → X ⊙× Y ⊙→ X
⊙fst = ⊙fstᵈ _
⊙snd : ∀ {i j} {X : Ptd i} {Y : Ptd j} → X ⊙× Y ⊙→ Y
⊙snd = (snd , idp)
fanout : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k}
→ (A → B) → (A → C) → (A → B × C)
fanout f g x = f x , g x
⊙fanout-pt : ∀ {i j} {A : Type i} {B : Type j}
{a₀ a₁ : A} (p : a₀ == a₁) {b₀ b₁ : B} (q : b₀ == b₁)
→ (a₀ , b₀) == (a₁ , b₁) :> A × B
⊙fanout-pt = pair×=
⊙fanout : ∀ {i j k} {X : Ptd i} {Y : Ptd j} {Z : Ptd k}
→ X ⊙→ Y → X ⊙→ Z → X ⊙→ Y ⊙× Z
⊙fanout (f , fpt) (g , gpt) = fanout f g , ⊙fanout-pt fpt gpt
diag : ∀ {i} {A : Type i} → (A → A × A)
diag a = a , a
⊙diag : ∀ {i} {X : Ptd i} → X ⊙→ X ⊙× X
⊙diag = ((λ x → (x , x)) , idp)
⊙×-inl : ∀ {i j} (X : Ptd i) (Y : Ptd j) → X ⊙→ X ⊙× Y
⊙×-inl X Y = (λ x → x , pt Y) , idp
⊙×-inr : ∀ {i j} (X : Ptd i) (Y : Ptd j) → Y ⊙→ X ⊙× Y
⊙×-inr X Y = (λ y → pt X , y) , idp
⊙fst-fanout : ∀ {i j k} {X : Ptd i} {Y : Ptd j} {Z : Ptd k}
(f : X ⊙→ Y) (g : X ⊙→ Z)
→ ⊙fst ⊙∘ ⊙fanout f g == f
⊙fst-fanout (f , idp) (g , idp) = idp
⊙snd-fanout : ∀ {i j k} {X : Ptd i} {Y : Ptd j} {Z : Ptd k}
(f : X ⊙→ Y) (g : X ⊙→ Z)
→ ⊙snd ⊙∘ ⊙fanout f g == g
⊙snd-fanout (f , idp) (g , idp) = idp
⊙fanout-pre∘ : ∀ {i j k l} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} {W : Ptd l}
(f : Y ⊙→ Z) (g : Y ⊙→ W) (h : X ⊙→ Y)
→ ⊙fanout f g ⊙∘ h == ⊙fanout (f ⊙∘ h) (g ⊙∘ h)
⊙fanout-pre∘ (f , idp) (g , idp) (h , idp) = idp
module _ {i j} {A : Type i} {B : A → Type j} where
pair : (a : A) (b : B a) → Σ A B
pair a b = (a , b)
-- pair= has already been defined
fst= : {ab a'b' : Σ A B} (p : ab == a'b') → (fst ab == fst a'b')
fst= = ap fst
snd= : {ab a'b' : Σ A B} (p : ab == a'b')
→ (snd ab == snd a'b' [ B ↓ fst= p ])
snd= {._} {_} idp = idp
fst=-β : {a a' : A} (p : a == a')
{b : B a} {b' : B a'} (q : b == b' [ B ↓ p ])
→ fst= (pair= p q) == p
fst=-β idp idp = idp
snd=-β : {a a' : A} (p : a == a')
{b : B a} {b' : B a'} (q : b == b' [ B ↓ p ])
→ snd= (pair= p q) == q [ (λ v → b == b' [ B ↓ v ]) ↓ fst=-β p q ]
snd=-β idp idp = idp
pair=-η : {ab a'b' : Σ A B} (p : ab == a'b')
→ p == pair= (fst= p) (snd= p)
pair=-η {._} {_} idp = idp
pair== : {a a' : A} {p p' : a == a'} (α : p == p')
{b : B a} {b' : B a'} {q : b == b' [ B ↓ p ]} {q' : b == b' [ B ↓ p' ]}
(β : q == q' [ (λ u → b == b' [ B ↓ u ]) ↓ α ])
→ pair= p q == pair= p' q'
pair== idp idp = idp
module _ {i j} {A : Type i} {B : Type j} where
fst×= : {ab a'b' : A × B} (p : ab == a'b') → (fst ab == fst a'b')
fst×= = ap fst
snd×= : {ab a'b' : A × B} (p : ab == a'b')
→ (snd ab == snd a'b')
snd×= = ap snd
fst×=-β : {a a' : A} (p : a == a')
{b b' : B} (q : b == b')
→ fst×= (pair×= p q) == p
fst×=-β idp idp = idp
snd×=-β : {a a' : A} (p : a == a')
{b b' : B} (q : b == b')
→ snd×= (pair×= p q) == q
snd×=-β idp idp = idp
pair×=-η : {ab a'b' : A × B} (p : ab == a'b')
→ p == pair×= (fst×= p) (snd×= p)
pair×=-η {._} {_} idp = idp
module _ {i j} {A : Type i} {B : A → Type j} where
=Σ : (x y : Σ A B) → Type (lmax i j)
=Σ (a , b) (a' , b') = Σ (a == a') (λ p → b == b' [ B ↓ p ])
=Σ-econv : (x y : Σ A B) → (=Σ x y) ≃ (x == y)
=Σ-econv x y =
equiv (λ pq → pair= (fst pq) (snd pq)) (λ p → fst= p , snd= p)
(λ p → ! (pair=-η p))
(λ pq → pair= (fst=-β (fst pq) (snd pq)) (snd=-β (fst pq) (snd pq)))
=Σ-conv : (x y : Σ A B) → (=Σ x y) == (x == y)
=Σ-conv x y = ua (=Σ-econv x y)
Σ= : ∀ {i j} {A A' : Type i} (p : A == A') {B : A → Type j} {B' : A' → Type j}
(q : B == B' [ (λ X → (X → Type j)) ↓ p ]) → Σ A B == Σ A' B'
Σ= idp idp = idp
instance
Σ-level : ∀ {i j} {n : ℕ₋₂} {A : Type i} {P : A → Type j}
→ has-level n A → ((x : A) → has-level n (P x))
→ has-level n (Σ A P)
Σ-level {n = ⟨-2⟩} p q = has-level-in ((contr-center p , (contr-center (q (contr-center p)))) , lemma)
where abstract lemma = λ y → pair= (contr-path p _) (from-transp! _ _ (contr-path (q _) _))
Σ-level {n = S n} p q = has-level-in lemma where
abstract
lemma = λ x y → equiv-preserves-level (=Σ-econv x y)
{{Σ-level (has-level-apply p _ _) (λ _ →
equiv-preserves-level ((to-transp-equiv _ _)⁻¹) {{has-level-apply (q _) _ _}})}}
×-level : ∀ {i j} {n : ℕ₋₂} {A : Type i} {B : Type j}
→ (has-level n A → has-level n B → has-level n (A × B))
×-level pA pB = Σ-level pA (λ x → pB)
-- Equivalences in a Σ-type
Σ-fmap-l : ∀ {i j k} {A : Type i} {B : Type j} (P : B → Type k)
→ (f : A → B) → (Σ A (P ∘ f) → Σ B P)
Σ-fmap-l P f (a , r) = (f a , r)
×-fmap-l : ∀ {i₀ i₁ j} {A₀ : Type i₀} {A₁ : Type i₁} (B : Type j)
→ (f : A₀ → A₁) → (A₀ × B → A₁ × B)
×-fmap-l B = Σ-fmap-l (λ _ → B)
Σ-isemap-l : ∀ {i j k} {A : Type i} {B : Type j} (P : B → Type k) {h : A → B}
→ is-equiv h → is-equiv (Σ-fmap-l P h)
Σ-isemap-l {A = A} {B = B} P {h} e = is-eq _ g f-g g-f
where f = Σ-fmap-l P h
g : Σ B P → Σ A (P ∘ h)
g (b , s) = (is-equiv.g e b , transport P (! (is-equiv.f-g e b)) s)
f-g : ∀ y → f (g y) == y
f-g (b , s) = pair= (is-equiv.f-g e b) (transp-↓ P (is-equiv.f-g e b) s)
g-f : ∀ x → g (f x) == x
g-f (a , r) =
pair= (is-equiv.g-f e a)
(transport (λ q → transport P (! q) r == r [ P ∘ h ↓ is-equiv.g-f e a ])
(is-equiv.adj e a)
(transp-ap-↓ P h (is-equiv.g-f e a) r))
×-isemap-l : ∀ {i₀ i₁ j} {A₀ : Type i₀} {A₁ : Type i₁} (B : Type j) {h : A₀ → A₁}
→ is-equiv h → is-equiv (×-fmap-l B h)
×-isemap-l B = Σ-isemap-l (λ _ → B)
Σ-emap-l : ∀ {i j k} {A : Type i} {B : Type j} (P : B → Type k)
→ (e : A ≃ B) → (Σ A (P ∘ –> e) ≃ Σ B P)
Σ-emap-l P (f , e) = _ , Σ-isemap-l P e
×-emap-l : ∀ {i₀ i₁ j} {A₀ : Type i₀} {A₁ : Type i₁} (B : Type j)
→ (e : A₀ ≃ A₁) → (A₀ × B ≃ A₁ × B)
×-emap-l B = Σ-emap-l (λ _ → B)
Σ-fmap-r : ∀ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k}
→ (∀ x → B x → C x) → (Σ A B → Σ A C)
Σ-fmap-r h (a , b) = (a , h a b)
×-fmap-r : ∀ {i j₀ j₁} (A : Type i) {B₀ : Type j₀} {B₁ : Type j₁}
→ (h : B₀ → B₁) → (A × B₀ → A × B₁)
×-fmap-r A h = Σ-fmap-r (λ _ → h)
Σ-isemap-r : ∀ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k}
{h : ∀ x → B x → C x} → (∀ x → is-equiv (h x)) → is-equiv (Σ-fmap-r h)
Σ-isemap-r {A = A} {B = B} {C = C} {h} k = is-eq _ g f-g g-f
where f = Σ-fmap-r h
g : Σ A C → Σ A B
g (a , c) = (a , is-equiv.g (k a) c)
f-g : ∀ p → f (g p) == p
f-g (a , c) = pair= idp (is-equiv.f-g (k a) c)
g-f : ∀ p → g (f p) == p
g-f (a , b) = pair= idp (is-equiv.g-f (k a) b)
×-isemap-r : ∀ {i j₀ j₁} (A : Type i) {B₀ : Type j₀} {B₁ : Type j₁}
→ {h : B₀ → B₁} → is-equiv h → is-equiv (×-fmap-r A h)
×-isemap-r A e = Σ-isemap-r (λ _ → e)
Σ-emap-r : ∀ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k}
→ (∀ x → B x ≃ C x) → (Σ A B ≃ Σ A C)
Σ-emap-r k = _ , Σ-isemap-r (λ x → snd (k x))
×-emap-r : ∀ {i j₀ j₁} (A : Type i) {B₀ : Type j₀} {B₁ : Type j₁}
→ (e : B₀ ≃ B₁) → (A × B₀ ≃ A × B₁)
×-emap-r A e = Σ-emap-r (λ _ → e)
hfiber-Σ-fmap-r : ∀ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k}
→ (h : ∀ x → B x → C x) → {a : A} → (c : C a)
→ hfiber (Σ-fmap-r h) (a , c) ≃ hfiber (h a) c
hfiber-Σ-fmap-r h {a} c = equiv to from to-from from-to
where to : hfiber (Σ-fmap-r h) (a , c) → hfiber (h a) c
to ((_ , b) , idp) = b , idp
from : hfiber (h a) c → hfiber (Σ-fmap-r h) (a , c)
from (b , idp) = (a , b) , idp
abstract
to-from : (x : hfiber (h a) c) → to (from x) == x
to-from (b , idp) = idp
from-to : (x : hfiber (Σ-fmap-r h) (a , c)) → from (to x) == x
from-to ((_ , b) , idp) = idp
{-
-- 2016/08/20 favonia: no one is using the following two functions.
-- Two ways of simultaneously applying equivalences in each component.
module _ {i₀ i₁ j₀ j₁} {A₀ : Type i₀} {A₁ : Type i₁}
{B₀ : A₀ → Type j₀} {B₁ : A₁ → Type j₁} where
Σ-emap : (u : A₀ ≃ A₁) (v : ∀ a → B₀ (<– u a) ≃ B₁ a) → Σ A₀ B₀ ≃ Σ A₁ B₁
Σ-emap u v = Σ A₀ B₀ ≃⟨ Σ-emap-l _ (u ⁻¹) ⁻¹ ⟩
Σ A₁ (B₀ ∘ <– u) ≃⟨ Σ-emap-r v ⟩
Σ A₁ B₁ ≃∎
Σ-emap' : (u : A₀ ≃ A₁) (v : ∀ a → B₀ a ≃ B₁ (–> u a)) → Σ A₀ B₀ ≃ Σ A₁ B₁
Σ-emap' u v = Σ A₀ B₀ ≃⟨ Σ-emap-r v ⟩
Σ A₀ (B₁ ∘ –> u) ≃⟨ Σ-emap-l _ u ⟩
Σ A₁ B₁ ≃∎
-}
×-fmap : ∀ {i₀ i₁ j₀ j₁} {A₀ : Type i₀} {A₁ : Type i₁} {B₀ : Type j₀} {B₁ : Type j₁}
→ (h : A₀ → A₁) (k : B₀ → B₁) → (A₀ × B₀ → A₁ × B₁)
×-fmap u v = ×-fmap-r _ v ∘ ×-fmap-l _ u
⊙×-fmap : ∀ {i i' j j'} {X : Ptd i} {X' : Ptd i'} {Y : Ptd j} {Y' : Ptd j'}
→ X ⊙→ X' → Y ⊙→ Y' → X ⊙× Y ⊙→ X' ⊙× Y'
⊙×-fmap (f , fpt) (g , gpt) = ×-fmap f g , pair×= fpt gpt
×-isemap : ∀ {i₀ i₁ j₀ j₁} {A₀ : Type i₀} {A₁ : Type i₁} {B₀ : Type j₀} {B₁ : Type j₁}
{h : A₀ → A₁} {k : B₀ → B₁} → is-equiv h → is-equiv k → is-equiv (×-fmap h k)
×-isemap eh ek = ×-isemap-r _ ek ∘ise ×-isemap-l _ eh
×-emap : ∀ {i₀ i₁ j₀ j₁} {A₀ : Type i₀} {A₁ : Type i₁} {B₀ : Type j₀} {B₁ : Type j₁}
→ (u : A₀ ≃ A₁) (v : B₀ ≃ B₁) → (A₀ × B₀ ≃ A₁ × B₁)
×-emap u v = ×-emap-r _ v ∘e ×-emap-l _ u
⊙×-emap : ∀ {i i' j j'} {X : Ptd i} {X' : Ptd i'} {Y : Ptd j} {Y' : Ptd j'}
→ X ⊙≃ X' → Y ⊙≃ Y' → X ⊙× Y ⊙≃ X' ⊙× Y'
⊙×-emap (F , F-ise) (G , G-ise) = ⊙×-fmap F G , ×-isemap F-ise G-ise
-- Implementation of [_∙'_] on Σ
Σ-∙' : ∀ {i j} {A : Type i} {B : A → Type j}
{x y z : A} {p : x == y} {p' : y == z}
{u : B x} {v : B y} {w : B z}
(q : u == v [ B ↓ p ]) (r : v == w [ B ↓ p' ])
→ (pair= p q ∙' pair= p' r) == pair= (p ∙' p') (q ∙'ᵈ r)
Σ-∙' {p = idp} {p' = idp} q idp = idp
-- Implementation of [_∙_] on Σ
Σ-∙ : ∀ {i j} {A : Type i} {B : A → Type j}
{x y z : A} {p : x == y} {p' : y == z}
{u : B x} {v : B y} {w : B z}
(q : u == v [ B ↓ p ]) (r : v == w [ B ↓ p' ])
→ (pair= p q ∙ pair= p' r) == pair= (p ∙ p') (q ∙ᵈ r)
Σ-∙ {p = idp} {p' = idp} idp r = idp
-- Implementation of [!] on Σ
Σ-! : ∀ {i j} {A : Type i} {B : A → Type j}
{x y : A} {p : x == y}
{u : B x} {v : B y}
(q : u == v [ B ↓ p ])
→ ! (pair= p q) == pair= (! p) (!ᵈ q)
Σ-! {p = idp} idp = idp
-- Implementation of [_∙'_] on ×
×-∙' : ∀ {i j} {A : Type i} {B : Type j}
{x y z : A} (p : x == y) (p' : y == z)
{u v w : B} (q : u == v) (q' : v == w)
→ (pair×= p q ∙' pair×= p' q') == pair×= (p ∙' p') (q ∙' q')
×-∙' idp idp q idp = idp
-- Implementation of [_∙_] on ×
×-∙ : ∀ {i j} {A : Type i} {B : Type j}
{x y z : A} (p : x == y) (p' : y == z)
{u v w : B} (q : u == v) (q' : v == w)
→ (pair×= p q ∙ pair×= p' q') == pair×= (p ∙ p') (q ∙ q')
×-∙ idp idp idp r = idp
-- Implementation of [!] on ×
×-! : ∀ {i j} {A : Type i} {B : Type j}
{x y : A} (p : x == y) {u v : B} (q : u == v)
→ ! (pair×= p q) == pair×= (! p) (! q)
×-! idp idp = idp
-- Special case of [ap-,]
ap-cst,id : ∀ {i j} {A : Type i} (B : A → Type j)
{a : A} {x y : B a} (p : x == y)
→ ap (λ x → _,_ {B = B} a x) p == pair= idp p
ap-cst,id B idp = idp
-- hfiber fst == B
module _ {i j} {A : Type i} {B : A → Type j} where
private
to : ∀ a → hfiber (fst :> (Σ A B → A)) a → B a
to a ((.a , b) , idp) = b
from : ∀ (a : A) → B a → hfiber (fst :> (Σ A B → A)) a
from a b = (a , b) , idp
to-from : ∀ (a : A) (b : B a) → to a (from a b) == b
to-from a b = idp
from-to : ∀ a b′ → from a (to a b′) == b′
from-to a ((.a , b) , idp) = idp
hfiber-fst : ∀ a → hfiber (fst :> (Σ A B → A)) a ≃ B a
hfiber-fst a = to a , is-eq (to a) (from a) (to-from a) (from-to a)
{- Dependent paths in a Σ-type -}
module _ {i j k} {A : Type i} {B : A → Type j} {C : (a : A) → B a → Type k}
where
↓-Σ-in : {x x' : A} {p : x == x'} {r : B x} {r' : B x'}
{s : C x r} {s' : C x' r'}
(q : r == r' [ B ↓ p ])
→ s == s' [ uncurry C ↓ pair= p q ]
→ (r , s) == (r' , s') [ (λ x → Σ (B x) (C x)) ↓ p ]
↓-Σ-in {p = idp} idp t = pair= idp t
↓-Σ-fst : {x x' : A} {p : x == x'} {r : B x} {r' : B x'}
{s : C x r} {s' : C x' r'}
→ (r , s) == (r' , s') [ (λ x → Σ (B x) (C x)) ↓ p ]
→ r == r' [ B ↓ p ]
↓-Σ-fst {p = idp} u = fst= u
↓-Σ-snd : {x x' : A} {p : x == x'} {r : B x} {r' : B x'}
{s : C x r} {s' : C x' r'}
→ (u : (r , s) == (r' , s') [ (λ x → Σ (B x) (C x)) ↓ p ])
→ s == s' [ uncurry C ↓ pair= p (↓-Σ-fst u) ]
↓-Σ-snd {p = idp} idp = idp
↓-Σ-β-fst : {x x' : A} {p : x == x'} {r : B x} {r' : B x'}
{s : C x r} {s' : C x' r'}
(q : r == r' [ B ↓ p ])
(t : s == s' [ uncurry C ↓ pair= p q ])
→ ↓-Σ-fst (↓-Σ-in q t) == q
↓-Σ-β-fst {p = idp} idp idp = idp
↓-Σ-β-snd : {x x' : A} {p : x == x'} {r : B x} {r' : B x'}
{s : C x r} {s' : C x' r'}
(q : r == r' [ B ↓ p ])
(t : s == s' [ uncurry C ↓ pair= p q ])
→ ↓-Σ-snd (↓-Σ-in q t) == t
[ (λ q' → s == s' [ uncurry C ↓ pair= p q' ]) ↓ ↓-Σ-β-fst q t ]
↓-Σ-β-snd {p = idp} idp idp = idp
↓-Σ-η : {x x' : A} {p : x == x'} {r : B x} {r' : B x'}
{s : C x r} {s' : C x' r'}
(u : (r , s) == (r' , s') [ (λ x → Σ (B x) (C x)) ↓ p ])
→ ↓-Σ-in (↓-Σ-fst u) (↓-Σ-snd u) == u
↓-Σ-η {p = idp} idp = idp
{- Dependent paths in a ×-type -}
module _ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k}
where
↓-×-in : {x x' : A} {p : x == x'} {r : B x} {r' : B x'}
{s : C x} {s' : C x'}
→ r == r' [ B ↓ p ]
→ s == s' [ C ↓ p ]
→ (r , s) == (r' , s') [ (λ x → B x × C x) ↓ p ]
↓-×-in {p = idp} q t = pair×= q t
{- Dependent paths over a ×-type -}
module _ {i j k} {A : Type i} {B : Type j} (C : A → B → Type k)
where
↓-over-×-in : {x x' : A} {p : x == x'} {y y' : B} {q : y == y'}
{u : C x y} {v : C x' y} {w : C x' y'}
→ u == v [ (λ a → C a y) ↓ p ]
→ v == w [ (λ b → C x' b) ↓ q ]
→ u == w [ uncurry C ↓ pair×= p q ]
↓-over-×-in {p = idp} {q = idp} idp idp = idp
↓-over-×-in' : {x x' : A} {p : x == x'} {y y' : B} {q : y == y'}
{u : C x y} {v : C x y'} {w : C x' y'}
→ u == v [ (λ b → C x b) ↓ q ]
→ v == w [ (λ a → C a y') ↓ p ]
→ u == w [ uncurry C ↓ pair×= p q ]
↓-over-×-in' {p = idp} {q = idp} idp idp = idp
module _ where
-- An orphan lemma.
↓-cst×app-in : ∀ {i j k} {A : Type i}
{B : Type j} {C : A → B → Type k}
{a₁ a₂ : A} (p : a₁ == a₂)
{b₁ b₂ : B} (q : b₁ == b₂)
{c₁ : C a₁ b₁}{c₂ : C a₂ b₂}
→ c₁ == c₂ [ uncurry C ↓ pair×= p q ]
→ (b₁ , c₁) == (b₂ , c₂) [ (λ x → Σ B (C x)) ↓ p ]
↓-cst×app-in idp idp idp = idp
{- pair= and pair×= where one argument is reflexivity -}
pair=-idp-l : ∀ {i j} {A : Type i} {B : A → Type j} (a : A) {b₁ b₂ : B a}
(q : b₁ == b₂) → pair= {B = B} idp q == ap (λ y → (a , y)) q
pair=-idp-l _ idp = idp
pair×=-idp-l : ∀ {i j} {A : Type i} {B : Type j} (a : A) {b₁ b₂ : B}
(q : b₁ == b₂) → pair×= idp q == ap (λ y → (a , y)) q
pair×=-idp-l _ idp = idp
pair×=-idp-r : ∀ {i j} {A : Type i} {B : Type j} {a₁ a₂ : A} (p : a₁ == a₂)
(b : B) → pair×= p idp == ap (λ x → (x , b)) p
pair×=-idp-r idp _ = idp
pair×=-split-l : ∀ {i j} {A : Type i} {B : Type j} {a₁ a₂ : A} (p : a₁ == a₂)
{b₁ b₂ : B} (q : b₁ == b₂)
→ pair×= p q == ap (λ a → (a , b₁)) p ∙ ap (λ b → (a₂ , b)) q
pair×=-split-l idp idp = idp
pair×=-split-r : ∀ {i j} {A : Type i} {B : Type j} {a₁ a₂ : A} (p : a₁ == a₂)
{b₁ b₂ : B} (q : b₁ == b₂)
→ pair×= p q == ap (λ b → (a₁ , b)) q ∙ ap (λ a → (a , b₂)) p
pair×=-split-r idp idp = idp
-- Commutativity of products and derivatives.
module _ {i j} {A : Type i} {B : Type j} where
×-comm : Σ A (λ _ → B) ≃ Σ B (λ _ → A)
×-comm = equiv (λ {(a , b) → (b , a)}) (λ {(b , a) → (a , b)}) (λ _ → idp) (λ _ → idp)
module _ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k} where
Σ₂-×-comm : Σ (Σ A B) (λ ab → C (fst ab)) ≃ Σ (Σ A C) (λ ac → B (fst ac))
Σ₂-×-comm = Σ-assoc ⁻¹ ∘e Σ-emap-r (λ a → ×-comm) ∘e Σ-assoc
module _ {i j k} {A : Type i} {B : Type j} {C : A → B → Type k} where
Σ₁-×-comm : Σ A (λ a → Σ B (λ b → C a b)) ≃ Σ B (λ b → Σ A (λ a → C a b))
Σ₁-×-comm = Σ-assoc ∘e Σ-emap-l _ ×-comm ∘e Σ-assoc ⁻¹
|
algebraic-stack_agda0000_doc_5886 | {-# OPTIONS --prop --without-K --rewriting #-}
-- The basic CBPV metalanguage, extended with parallelism.
open import Calf.CostMonoid
module Calf.ParMetalanguage (parCostMonoid : ParCostMonoid) where
open ParCostMonoid parCostMonoid
open import Calf.Prelude
open import Calf.Metalanguage
open import Calf.Step costMonoid
open import Calf.Types.Eq
open import Calf.Types.Bounded costMonoid
open import Data.Product
open import Relation.Binary.PropositionalEquality
postulate
_&_ : {A₁ A₂ : tp pos} → cmp (F A₁) → cmp (F A₂) → cmp (F (Σ++ A₁ (λ _ → A₂)))
&/join : ∀ {A₁ A₂} {v₁ v₂ p₁ p₂} →
step (F A₁) p₁ (ret v₁) & step (F A₂) p₂ (ret v₂) ≡ step (F (Σ++ A₁ λ _ → A₂)) (p₁ ⊗ p₂) (ret (v₁ , v₂))
{-# REWRITE &/join #-}
&/join/𝟘 : ∀ {A₁ A₂} {v₁ v₂} →
ret v₁ & ret v₂ ≡ step (F (Σ++ A₁ λ _ → A₂)) (𝟘 ⊗ 𝟘) (ret (v₁ , v₂))
&/join/𝟘 = &/join {p₁ = 𝟘} {p₂ = 𝟘}
{-# REWRITE &/join/𝟘 #-}
bind/& : ∀ {A₁ A₂} {X} {v₁ v₂ f} (p₁ p₂ : ℂ) →
bind {Σ++ A₁ λ _ → A₂} X (step (F A₁) p₁ (ret v₁) & step (F A₂) p₂ (ret v₂)) f ≡ step X (p₁ ⊗ p₂) (f (v₁ , v₂))
bind/& _ _ = refl
bound/par : {A₁ A₂ : tp pos} {e₁ : cmp (F A₁)} {e₂ : cmp (F A₂)} {c₁ c₂ : ℂ} →
IsBounded A₁ e₁ c₁ →
IsBounded A₂ e₂ c₂ →
IsBounded (Σ++ A₁ λ _ → A₂) (e₁ & e₂) (c₁ ⊗ c₂)
bound/par (⇓ a₁ withCost p₁' [ h-bounded₁ , h-≡₁ ]) (⇓ a₂ withCost p₂' [ h-bounded₂ , h-≡₂ ]) with eq/ref h-≡₁ | eq/ref h-≡₂
... | refl | refl = ⇓ (a₁ , a₂) withCost (p₁' ⊗ p₂') [ (λ u → ⊗-mono-≤ (h-bounded₁ u) (h-bounded₂ u)) , (ret (eq/intro refl)) ]
|
algebraic-stack_agda0000_doc_5887 | {-# OPTIONS --warning=error --safe --without-K #-}
open import LogicalFormulae
open import Lists.Lists
open import Numbers.BinaryNaturals.Definition
open import Maybe
open import Numbers.BinaryNaturals.SubtractionGo
module Numbers.BinaryNaturals.SubtractionGoPreservesCanonicalRight where
goPreservesCanonicalRightZero : (a b : BinNat) → mapMaybe canonical (go zero a b) ≡ mapMaybe canonical (go zero a (canonical b))
goPreservesCanonicalRightOne : (a b : BinNat) → mapMaybe canonical (go one a b) ≡ mapMaybe canonical (go one a (canonical b))
goPreservesCanonicalRightZero [] [] = refl
goPreservesCanonicalRightZero [] (zero :: b) with inspect (go zero [] b)
goPreservesCanonicalRightZero [] (zero :: b) | no with≡ pr with inspect (canonical b)
goPreservesCanonicalRightZero [] (zero :: b) | no with≡ pr | [] with≡ pr2 rewrite pr | pr2 = exFalso (noNotYes (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr)) (transitivity (goPreservesCanonicalRightZero [] b) (transitivity (applyEquality (λ i → mapMaybe canonical (go zero [] i)) pr2) refl))))
goPreservesCanonicalRightZero [] (zero :: b) | no with≡ pr | (x :: y) with≡ pr2 with inspect (go zero [] (x :: y))
goPreservesCanonicalRightZero [] (zero :: b) | no with≡ pr | (x :: y) with≡ pr2 | no with≡ pr3 rewrite pr | pr2 | pr3 = refl
goPreservesCanonicalRightZero [] (zero :: b) | no with≡ pr | (x :: y) with≡ pr2 | yes z with≡ pr3 rewrite pr | pr2 | pr3 | equalityCommutative pr2 = exFalso (noNotYes (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr)) (transitivity (goPreservesCanonicalRightZero [] b) (applyEquality (mapMaybe canonical) pr3))))
goPreservesCanonicalRightZero [] (zero :: b) | yes r with≡ pr with inspect (canonical b)
goPreservesCanonicalRightZero [] (zero :: b) | yes r with≡ pr | [] with≡ pr2 rewrite pr | pr2 = applyEquality yes (goZeroEmpty' b pr)
goPreservesCanonicalRightZero [] (zero :: b) | yes r with≡ pr | (x :: xs) with≡ pr2 with inspect (go zero [] (x :: xs))
goPreservesCanonicalRightZero [] (zero :: b) | yes r with≡ pr | (x :: xs) with≡ pr2 | no with≡ pr3 rewrite pr | pr2 | pr3 = exFalso (noNotYes (transitivity (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr3)) (transitivity (applyEquality (λ i → mapMaybe canonical (go zero [] i)) (equalityCommutative pr2)) (equalityCommutative (goPreservesCanonicalRightZero [] b)))) (applyEquality (mapMaybe canonical) pr)))
goPreservesCanonicalRightZero [] (zero :: b) | yes r with≡ pr | (x :: xs) with≡ pr2 | yes x₁ with≡ pr3 rewrite pr | pr2 | pr3 = transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr)) (transitivity (transitivity (goPreservesCanonicalRightZero [] b) (applyEquality (λ i → mapMaybe canonical (go zero [] i)) pr2)) (applyEquality (mapMaybe canonical) pr3))
goPreservesCanonicalRightZero [] (one :: b) = refl
goPreservesCanonicalRightZero (zero :: a) [] = refl
goPreservesCanonicalRightZero (one :: a) [] = refl
goPreservesCanonicalRightZero (zero :: a) (zero :: b) with inspect (canonical b)
goPreservesCanonicalRightZero (zero :: a) (zero :: b) | [] with≡ pr1 with inspect (go zero a b)
goPreservesCanonicalRightZero (zero :: a) (zero :: b) | [] with≡ pr1 | no with≡ pr2 = exFalso (noNotYes (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr2)) (transitivity (goPreservesCanonicalRightZero a b) (transitivity (applyEquality (λ i → mapMaybe canonical (go zero a i)) pr1) (applyEquality (mapMaybe canonical) (goEmpty a))))))
goPreservesCanonicalRightZero (zero :: a) (zero :: b) | [] with≡ pr1 | yes y with≡ pr2 rewrite pr1 | pr2 = applyEquality yes v
where
t : canonical y ≡ canonical a
t = yesInjective (transitivity (applyEquality (mapMaybe canonical) (equalityCommutative pr2)) (transitivity (goPreservesCanonicalRightZero a b) (transitivity (applyEquality (λ i → mapMaybe canonical (go zero a i)) pr1) (applyEquality (mapMaybe canonical) (goEmpty a)))))
v : canonical (zero :: y) ≡ canonical (zero :: a)
v with inspect (canonical y)
v | [] with≡ pr4 rewrite pr4 | (transitivity (equalityCommutative t) pr4) = refl
v | (x :: r) with≡ pr4 rewrite pr4 | transitivity (equalityCommutative t) pr4 = refl
goPreservesCanonicalRightZero (zero :: a) (zero :: b) | (r :: rs) with≡ pr1 with inspect (go zero a b)
goPreservesCanonicalRightZero (zero :: a) (zero :: b) | (r :: rs) with≡ pr1 | no with≡ pr2 with inspect (go zero a (r :: rs))
goPreservesCanonicalRightZero (zero :: a) (zero :: b) | (r :: rs) with≡ pr1 | no with≡ pr2 | no with≡ pr3 rewrite pr1 | pr2 | pr3 = refl
goPreservesCanonicalRightZero (zero :: a) (zero :: b) | (r :: rs) with≡ pr1 | no with≡ pr2 | yes z with≡ pr3 rewrite pr1 | pr2 | pr3 = exFalso (noNotYes (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr2)) (transitivity (transitivity (goPreservesCanonicalRightZero a b) (applyEquality (λ i → mapMaybe canonical (go zero a i)) pr1)) (applyEquality (mapMaybe canonical) pr3))))
goPreservesCanonicalRightZero (zero :: a) (zero :: b) | (r :: rs) with≡ pr1 | yes y with≡ pr2 with inspect (go zero a (r :: rs))
goPreservesCanonicalRightZero (zero :: a) (zero :: b) | (r :: rs) with≡ pr1 | yes y with≡ pr2 | no with≡ pr3 rewrite pr1 | pr2 | pr3 = exFalso (noNotYes (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr3)) (transitivity (transitivity (applyEquality (λ i → mapMaybe canonical (go zero a i)) (equalityCommutative pr1)) (equalityCommutative (goPreservesCanonicalRightZero a b))) (applyEquality (mapMaybe canonical) pr2))))
goPreservesCanonicalRightZero (zero :: a) (zero :: b) | (r :: rs) with≡ pr1 | yes y with≡ pr2 | yes z with≡ pr3 rewrite pr1 | pr2 | pr3 = applyEquality yes v
where
t : canonical y ≡ canonical z
t = yesInjective (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr2)) (transitivity (goPreservesCanonicalRightZero a b) (transitivity (applyEquality (λ i → mapMaybe canonical (go zero a i)) pr1) (applyEquality (mapMaybe canonical) pr3))))
v : canonical (zero :: y) ≡ canonical (zero :: z)
v with inspect (canonical y)
v | [] with≡ pr4 rewrite pr4 | (transitivity (equalityCommutative t) pr4) = refl
v | (x :: r) with≡ pr4 rewrite pr4 | transitivity (equalityCommutative t) pr4 = refl
goPreservesCanonicalRightZero (zero :: a) (one :: b) with inspect (go one a b)
goPreservesCanonicalRightZero (zero :: a) (one :: b) | no with≡ x with inspect (go one a (canonical b))
goPreservesCanonicalRightZero (zero :: a) (one :: b) | no with≡ pr | no with≡ pr2 rewrite pr | pr2 = refl
goPreservesCanonicalRightZero (zero :: a) (one :: b) | no with≡ pr | yes x with≡ pr2 rewrite pr | pr2 = exFalso (noNotYes (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr)) (transitivity (goPreservesCanonicalRightOne a b) (applyEquality (mapMaybe canonical) pr2))))
goPreservesCanonicalRightZero (zero :: a) (one :: b) | yes r with≡ pr1 with inspect (go one a (canonical b))
goPreservesCanonicalRightZero (zero :: a) (one :: b) | yes r with≡ pr1 | no with≡ pr2 rewrite pr1 | pr2 = exFalso (noNotYes (transitivity (applyEquality (mapMaybe canonical) (equalityCommutative pr2)) (transitivity (equalityCommutative (goPreservesCanonicalRightOne a b)) (applyEquality (mapMaybe canonical) pr1))))
goPreservesCanonicalRightZero (zero :: a) (one :: b) | yes r with≡ pr1 | yes s with≡ pr2 rewrite pr1 | pr2 = applyEquality (λ i → yes (one :: i)) (yesInjective (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr1)) (transitivity (goPreservesCanonicalRightOne a b) (applyEquality (mapMaybe canonical) pr2))))
goPreservesCanonicalRightZero (one :: a) (zero :: b) with inspect (go zero a b)
goPreservesCanonicalRightZero (one :: a) (zero :: b) | no with≡ pr1 with inspect (canonical b)
goPreservesCanonicalRightZero (one :: a) (zero :: b) | no with≡ pr1 | [] with≡ pr2 rewrite pr1 | pr2 = exFalso (noNotYes (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr1)) (transitivity (goPreservesCanonicalRightZero a b) (transitivity (applyEquality (λ i → mapMaybe canonical (go zero a i)) pr2) (applyEquality (mapMaybe canonical) (goEmpty a))))))
goPreservesCanonicalRightZero (one :: a) (zero :: b) | no with≡ pr1 | (x :: y) with≡ pr2 with inspect (go zero a (x :: y))
goPreservesCanonicalRightZero (one :: a) (zero :: b) | no with≡ pr1 | (x :: y) with≡ pr2 | no with≡ pr3 rewrite pr1 | pr2 | pr3 = refl
goPreservesCanonicalRightZero (one :: a) (zero :: b) | no with≡ pr1 | (x :: y) with≡ pr2 | yes z with≡ pr3 rewrite pr1 | pr2 | pr3 = exFalso (noNotYes (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr1)) (transitivity (goPreservesCanonicalRightZero a b) (transitivity (applyEquality (λ i → mapMaybe canonical (go zero a i)) pr2) (applyEquality (mapMaybe canonical) pr3)))))
goPreservesCanonicalRightZero (one :: a) (zero :: b) | yes x with≡ pr1 with inspect (canonical b)
goPreservesCanonicalRightZero (one :: a) (zero :: b) | yes x with≡ pr1 | [] with≡ pr2 rewrite pr1 | pr2 = applyEquality (λ i → yes (one :: i)) (yesInjective (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr1)) (transitivity (goPreservesCanonicalRightZero a b) (transitivity (applyEquality (λ i → mapMaybe canonical (go zero a i)) pr2) (applyEquality (mapMaybe canonical) (goEmpty a))))))
goPreservesCanonicalRightZero (one :: a) (zero :: b) | yes x with≡ pr1 | (r :: rs) with≡ pr2 with inspect (go zero a (r :: rs))
goPreservesCanonicalRightZero (one :: a) (zero :: b) | yes x with≡ pr1 | (r :: rs) with≡ pr2 | no with≡ pr3 rewrite pr1 | pr2 | pr3 = exFalso (noNotYes (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr3)) (transitivity (transitivity (applyEquality (λ i → mapMaybe canonical (go zero a i)) (equalityCommutative pr2)) (equalityCommutative (goPreservesCanonicalRightZero a b))) (applyEquality (mapMaybe canonical) pr1))))
goPreservesCanonicalRightZero (one :: a) (zero :: b) | yes x with≡ pr1 | (r :: rs) with≡ pr2 | yes y with≡ pr3 rewrite pr1 | pr2 | pr3 = applyEquality (λ i → yes (one :: i)) (yesInjective (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr1)) (transitivity (transitivity (goPreservesCanonicalRightZero a b) (applyEquality (λ i → mapMaybe canonical (go zero a i)) pr2)) (applyEquality (mapMaybe canonical) pr3))))
goPreservesCanonicalRightZero (one :: a) (one :: b) with inspect (go zero a b)
goPreservesCanonicalRightZero (one :: a) (one :: b) | no with≡ pr1 with inspect (go zero a (canonical b))
goPreservesCanonicalRightZero (one :: a) (one :: b) | no with≡ pr1 | no with≡ x rewrite pr1 | x = refl
goPreservesCanonicalRightZero (one :: a) (one :: b) | no with≡ pr1 | yes x₁ with≡ x rewrite pr1 | x = exFalso (noNotYes (transitivity (applyEquality (mapMaybe canonical) (equalityCommutative pr1)) (transitivity (goPreservesCanonicalRightZero a b) (applyEquality (mapMaybe canonical) x))))
goPreservesCanonicalRightZero (one :: a) (one :: b) | yes x with≡ pr1 with inspect (go zero a (canonical b))
goPreservesCanonicalRightZero (one :: a) (one :: b) | yes x with≡ pr1 | no with≡ pr2 rewrite pr1 | pr2 = exFalso (noNotYes (transitivity (applyEquality (mapMaybe canonical) (equalityCommutative pr2)) (transitivity (equalityCommutative (goPreservesCanonicalRightZero a b)) (applyEquality (mapMaybe canonical) pr1))))
goPreservesCanonicalRightZero (one :: a) (one :: b) | yes x with≡ pr1 | yes y with≡ pr2 rewrite pr1 | pr2 = applyEquality yes v
where
t : canonical x ≡ canonical y
t = yesInjective (transitivity (transitivity (applyEquality (mapMaybe canonical) (equalityCommutative pr1)) (goPreservesCanonicalRightZero a b)) (applyEquality (mapMaybe canonical) pr2))
v : canonical (zero :: x) ≡ canonical (zero :: y)
v with inspect (canonical x)
v | [] with≡ pr4 rewrite pr4 | (transitivity (equalityCommutative t) pr4) = refl
v | (x :: r) with≡ pr4 rewrite pr4 | transitivity (equalityCommutative t) pr4 = refl
goPreservesCanonicalRightOne a [] = refl
goPreservesCanonicalRightOne [] (zero :: b) rewrite goOneEmpty' (canonical (zero :: b)) = refl
goPreservesCanonicalRightOne (zero :: a) (zero :: b) with inspect (go one a b)
goPreservesCanonicalRightOne (zero :: a) (zero :: b) | no with≡ pr1 with inspect (canonical b)
goPreservesCanonicalRightOne (zero :: a) (zero :: b) | no with≡ pr1 | [] with≡ pr2 with inspect (go one a [])
goPreservesCanonicalRightOne (zero :: a) (zero :: b) | no with≡ pr1 | [] with≡ pr2 | no with≡ pr3 rewrite pr1 | pr2 | pr3 = refl
goPreservesCanonicalRightOne (zero :: a) (zero :: b) | no with≡ pr1 | [] with≡ pr2 | yes y with≡ pr3 rewrite pr1 | pr2 | pr3 = exFalso (noNotYes (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr1)) (transitivity (transitivity (goPreservesCanonicalRightOne a b) (transitivity (applyEquality (λ i → mapMaybe canonical (go one a i)) pr2) refl)) (applyEquality (mapMaybe canonical) pr3))))
goPreservesCanonicalRightOne (zero :: a) (zero :: b) | no with≡ pr1 | (x :: y) with≡ pr2 with inspect (go one a (x :: y))
goPreservesCanonicalRightOne (zero :: a) (zero :: b) | no with≡ pr1 | (x :: y) with≡ pr2 | no with≡ pr3 rewrite pr1 | pr2 | pr3 = refl
goPreservesCanonicalRightOne (zero :: a) (zero :: b) | no with≡ pr1 | (x :: y) with≡ pr2 | yes z with≡ pr3 rewrite pr1 | pr2 | pr3 = exFalso (noNotYes (transitivity (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr1)) (transitivity (goPreservesCanonicalRightOne a b) (applyEquality (λ i → mapMaybe canonical (go one a i)) pr2))) (applyEquality (mapMaybe canonical) pr3)))
goPreservesCanonicalRightOne (zero :: a) (zero :: b) | yes y with≡ pr1 with inspect (canonical b)
goPreservesCanonicalRightOne (zero :: a) (zero :: b) | yes y with≡ pr1 | [] with≡ pr2 with inspect (go one a [])
goPreservesCanonicalRightOne (zero :: a) (zero :: b) | yes y with≡ pr1 | [] with≡ pr2 | no with≡ pr3 rewrite pr1 | pr2 | pr3 = exFalso (noNotYes (transitivity (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr3)) (transitivity (applyEquality (λ i → mapMaybe canonical (go one a i)) (equalityCommutative pr2)) (equalityCommutative (goPreservesCanonicalRightOne a b)))) (applyEquality (mapMaybe canonical) pr1)))
goPreservesCanonicalRightOne (zero :: a) (zero :: b) | yes y with≡ pr1 | [] with≡ pr2 | yes z with≡ pr3 rewrite pr1 | pr2 | pr3 = applyEquality (λ i → yes (one :: i)) (yesInjective (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr1)) (transitivity (transitivity (goPreservesCanonicalRightOne a b) (applyEquality (λ i → mapMaybe canonical (go one a i)) pr2)) (applyEquality (mapMaybe canonical) pr3))))
goPreservesCanonicalRightOne (zero :: a) (zero :: b) | yes y with≡ pr1 | (r :: rs) with≡ pr2 with inspect (go one a (r :: rs))
goPreservesCanonicalRightOne (zero :: a) (zero :: b) | yes y with≡ pr1 | (r :: rs) with≡ pr2 | no with≡ pr3 rewrite pr1 | pr2 | pr3 = exFalso (noNotYes (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr3)) (transitivity (applyEquality (λ i → mapMaybe canonical (go one a i)) (equalityCommutative pr2)) (transitivity (equalityCommutative (goPreservesCanonicalRightOne a b)) (applyEquality (mapMaybe canonical) pr1)))))
goPreservesCanonicalRightOne (zero :: a) (zero :: b) | yes y with≡ pr1 | (r :: rs) with≡ pr2 | yes z with≡ pr3 rewrite pr1 | pr2 | pr3 = applyEquality (λ i → yes (one :: i)) (yesInjective (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr1)) (transitivity (transitivity (goPreservesCanonicalRightOne a b) (applyEquality (λ i → mapMaybe canonical (go one a i)) pr2)) (applyEquality (mapMaybe canonical) pr3))))
goPreservesCanonicalRightOne (one :: a) (zero :: b) with inspect (go zero a b)
goPreservesCanonicalRightOne (one :: a) (zero :: b) | no with≡ pr1 with inspect (canonical b)
goPreservesCanonicalRightOne (one :: a) (zero :: b) | no with≡ pr1 | [] with≡ pr2 rewrite pr1 | pr2 = exFalso (noNotYes (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr1)) (transitivity (goPreservesCanonicalRightZero a b) (transitivity (applyEquality (λ i → mapMaybe canonical (go zero a i)) pr2) (applyEquality (mapMaybe canonical) (goEmpty a))))))
goPreservesCanonicalRightOne (one :: a) (zero :: b) | no with≡ pr1 | (r :: rs) with≡ pr2 with inspect (go zero a (r :: rs))
goPreservesCanonicalRightOne (one :: a) (zero :: b) | no with≡ pr1 | (r :: rs) with≡ pr2 | no with≡ pr3 rewrite pr1 | pr2 | pr3 = refl
goPreservesCanonicalRightOne (one :: a) (zero :: b) | no with≡ pr1 | (r :: rs) with≡ pr2 | yes y with≡ pr3 rewrite pr1 | pr2 | pr3 = exFalso (noNotYes (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr1)) (transitivity (transitivity (goPreservesCanonicalRightZero a b) (applyEquality (λ i → mapMaybe canonical (go zero a i)) pr2)) (applyEquality (mapMaybe canonical) pr3))))
goPreservesCanonicalRightOne (one :: a) (zero :: b) | yes y with≡ pr1 with inspect (canonical b)
goPreservesCanonicalRightOne (one :: a) (zero :: b) | yes y with≡ pr1 | [] with≡ pr2 rewrite pr1 | pr2 = applyEquality yes v
where
t : canonical y ≡ canonical a
t = yesInjective (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr1)) (transitivity (goPreservesCanonicalRightZero a b) (transitivity (applyEquality (λ i → mapMaybe canonical (go zero a i)) pr2) (applyEquality (mapMaybe canonical) (goEmpty a)))))
v : canonical (zero :: y) ≡ canonical (zero :: a)
v with inspect (canonical y)
v | [] with≡ pr4 rewrite pr4 | (transitivity (equalityCommutative t) pr4) = refl
v | (x :: r) with≡ pr4 rewrite pr4 | transitivity (equalityCommutative t) pr4 = refl
goPreservesCanonicalRightOne (one :: a) (zero :: b) | yes y with≡ pr1 | (r :: rs) with≡ pr2 with inspect (go zero a (r :: rs))
goPreservesCanonicalRightOne (one :: a) (zero :: b) | yes y with≡ pr1 | (r :: rs) with≡ pr2 | no with≡ pr3 rewrite pr1 | pr2 | pr3 = exFalso (noNotYes (transitivity (equalityCommutative (transitivity (transitivity (goPreservesCanonicalRightZero a b) (applyEquality (λ i → mapMaybe canonical (go zero a i)) pr2)) (applyEquality (mapMaybe canonical) pr3))) (applyEquality (mapMaybe canonical) pr1)))
goPreservesCanonicalRightOne (one :: a) (zero :: b) | yes y with≡ pr1 | (r :: rs) with≡ pr2 | yes z with≡ pr3 rewrite pr1 | pr2 | pr3 = applyEquality yes v
where
t : canonical y ≡ canonical z
t = yesInjective (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr1)) (transitivity (goPreservesCanonicalRightZero a b) (transitivity (applyEquality (λ i → mapMaybe canonical (go zero a i)) pr2) (applyEquality (mapMaybe canonical) pr3))))
v : canonical (zero :: y) ≡ canonical (zero :: z)
v with inspect (canonical y)
v | [] with≡ pr4 rewrite pr4 | (transitivity (equalityCommutative t) pr4) = refl
v | (x :: r) with≡ pr4 rewrite pr4 | transitivity (equalityCommutative t) pr4 = refl
goPreservesCanonicalRightOne [] (one :: b) = refl
goPreservesCanonicalRightOne (zero :: a) (one :: b) with inspect (go one a b)
goPreservesCanonicalRightOne (zero :: a) (one :: b) | no with≡ pr1 with inspect (go one a (canonical b))
goPreservesCanonicalRightOne (zero :: a) (one :: b) | no with≡ pr1 | no with≡ pr2 rewrite pr1 | pr2 = refl
goPreservesCanonicalRightOne (zero :: a) (one :: b) | no with≡ pr1 | yes y with≡ pr2 rewrite pr1 | pr2 = exFalso (noNotYes (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr1)) (transitivity (goPreservesCanonicalRightOne a b) (applyEquality (mapMaybe canonical) pr2))))
goPreservesCanonicalRightOne (zero :: a) (one :: b) | yes y with≡ pr1 with inspect (go one a (canonical b))
goPreservesCanonicalRightOne (zero :: a) (one :: b) | yes y with≡ pr1 | no with≡ pr2 rewrite pr1 | pr2 = exFalso (noNotYes (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr2)) (transitivity (equalityCommutative (goPreservesCanonicalRightOne a b)) (applyEquality (mapMaybe canonical) pr1))))
goPreservesCanonicalRightOne (zero :: a) (one :: b) | yes y with≡ pr1 | yes z with≡ pr2 rewrite pr1 | pr2 = applyEquality yes v
where
t : canonical y ≡ canonical z
t = yesInjective (transitivity (transitivity (applyEquality (mapMaybe canonical) (equalityCommutative pr1)) (goPreservesCanonicalRightOne a b)) (applyEquality (mapMaybe canonical) pr2))
v : canonical (zero :: y) ≡ canonical (zero :: z)
v with inspect (canonical y)
v | [] with≡ pr4 rewrite pr4 | (transitivity (equalityCommutative t) pr4) = refl
v | (x :: r) with≡ pr4 rewrite pr4 | transitivity (equalityCommutative t) pr4 = refl
goPreservesCanonicalRightOne (one :: a) (one :: b) with inspect (go one a b)
goPreservesCanonicalRightOne (one :: a) (one :: b) | no with≡ pr1 with inspect (go one a (canonical b))
goPreservesCanonicalRightOne (one :: a) (one :: b) | no with≡ pr1 | no with≡ pr2 rewrite pr1 | pr2 = refl
goPreservesCanonicalRightOne (one :: a) (one :: b) | no with≡ pr1 | yes y with≡ pr2 rewrite pr1 | pr2 = exFalso (noNotYes (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr1)) (transitivity (goPreservesCanonicalRightOne a b) (applyEquality (mapMaybe canonical) pr2))))
goPreservesCanonicalRightOne (one :: a) (one :: b) | yes y with≡ pr1 with inspect (go one a (canonical b))
goPreservesCanonicalRightOne (one :: a) (one :: b) | yes y with≡ pr1 | yes z with≡ pr2 rewrite pr1 | pr2 = applyEquality (λ i → yes (one :: i)) (yesInjective (transitivity (transitivity (applyEquality (mapMaybe canonical) (equalityCommutative pr1)) (goPreservesCanonicalRightOne a b) ) (applyEquality (mapMaybe canonical) pr2)))
goPreservesCanonicalRightOne (one :: a) (one :: b) | yes y with≡ pr1 | no with≡ pr2 rewrite pr1 | pr2 = exFalso (noNotYes (transitivity (equalityCommutative (applyEquality (mapMaybe canonical) pr2)) (transitivity (equalityCommutative (goPreservesCanonicalRightOne a b)) (applyEquality (mapMaybe canonical) pr1))))
goPreservesCanonicalRight : (state : Bit) → (a b : BinNat) → mapMaybe canonical (go state a b) ≡ mapMaybe canonical (go state a (canonical b))
goPreservesCanonicalRight zero = goPreservesCanonicalRightZero
goPreservesCanonicalRight one = goPreservesCanonicalRightOne
|
algebraic-stack_agda0000_doc_128 | {-# OPTIONS --cubical --safe --postfix-projections #-}
module Data.Bool.Properties where
open import Prelude
open import Data.Bool
open import Data.Unit.Properties
T? : ∀ x → Dec (T x)
T? x .does = x
T? false .why = ofⁿ id
T? true .why = ofʸ tt
isPropT : ∀ x → isProp (T x)
isPropT false = isProp⊥
isPropT true = isProp⊤
discreteBool : Discrete Bool
discreteBool false y .does = not y
discreteBool true y .does = y
discreteBool false false .why = ofʸ refl
discreteBool false true .why = ofⁿ λ p → subst (bool ⊤ ⊥) p tt
discreteBool true false .why = ofⁿ λ p → subst (bool ⊥ ⊤) p tt
discreteBool true true .why = ofʸ refl
|
algebraic-stack_agda0000_doc_129 | {-# OPTIONS --without-K #-}
module P where
open import Data.Empty
open import Data.Unit
open import Data.Sum
open import Data.Product
open import Relation.Binary.PropositionalEquality
------------------------------------------------------------------------------
-- For now, a groupoid is just a set
Groupoid : Set₁
Groupoid = Set
mutual
-- types
data B : Set where
ZERO : B
ONE : B
_+_ : B → B → B
_*_ : B → B → B
_~_ : {b : B} → ⟦ b ⟧ → ⟦ b ⟧ → B
-- values
⟦_⟧ : B → Groupoid
⟦ ZERO ⟧ = ⊥
⟦ ONE ⟧ = ⊤
⟦ b₁ + b₂ ⟧ = ⟦ b₁ ⟧ ⊎ ⟦ b₂ ⟧
⟦ b₁ * b₂ ⟧ = ⟦ b₁ ⟧ × ⟦ b₂ ⟧
⟦ v₁ ~ v₂ ⟧ = v₁ ≡ v₂
-- pointed types
data PB : Set where
POINTED : Σ B (λ b → ⟦ b ⟧) → PB
RECIP : PB → PB
-- lift B type constructors to pointed types
_++_ : PB → PB → PB
(POINTED (b₁ , v₁)) ++ (POINTED (b₂ , v₂)) = POINTED (b₁ + b₂ , inj₁ v₁)
_ ++ _ = {!!}
_**_ : PB → PB → PB
(POINTED (b₁ , v₁)) ** (POINTED (b₂ , v₂)) = POINTED (b₁ * b₂ , (v₁ , v₂))
_ ** _ = {!!}
-- All the pi combinators now work on pointed types
data _⟷_ : PB → PB → Set₁ where
swap⋆ : {pb₁ pb₂ : PB} → (pb₁ ** pb₂) ⟷ (pb₂ ** pb₁)
eta : {pb : PB} → POINTED (ONE , tt) ⟷ RECIP pb
-- induction principle to reason about identities; needed ???
ind : {b : B} →
(C : (v₁ v₂ : ⟦ b ⟧) → (p : ⟦ _~_ {b} v₁ v₂ ⟧) → Set) →
(c : (v : ⟦ b ⟧) → C v v refl) →
(v₁ v₂ : ⟦ b ⟧) → (p : ⟦ _~_ {b} v₁ v₂ ⟧) → C v₁ v₂ p
ind C c v .v refl = c v
-- Examples
Bool : B
Bool = ONE + ONE
false : ⟦ Bool ⟧
false = inj₁ tt
true : ⟦ Bool ⟧
true = inj₂ tt
pb1 : PB
pb1 = POINTED (Bool , false)
pb2 : PB
pb2 = POINTED (Bool , true)
FalseID : B
FalseID = _~_ {Bool} false false
pb3 : PB
pb3 = POINTED (FalseID , refl)
FalseID^2 : B
FalseID^2 = _~_ {FalseID} refl refl
pb4 : PB
pb4 = POINTED (FalseID^2 , refl)
------------------------------------------------------------------------------
|
algebraic-stack_agda0000_doc_130 | -- Basic intuitionistic logic of proofs, without ∨, ⊥, or +.
-- Gentzen-style formalisation of syntax with context pairs.
-- Normal forms and neutrals.
module BasicILP.Syntax.DyadicGentzenNormalForm where
open import BasicILP.Syntax.DyadicGentzen public
-- Derivations.
mutual
-- Normal forms, or introductions.
infix 3 _⊢ⁿᶠ_
data _⊢ⁿᶠ_ : Cx² Ty Box → Ty → Set where
neⁿᶠ : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ⁿᵉ A → Γ ⁏ Δ ⊢ⁿᶠ A
lamⁿᶠ : ∀ {A B Γ Δ} → Γ , A ⁏ Δ ⊢ⁿᶠ B → Γ ⁏ Δ ⊢ⁿᶠ A ▻ B
boxⁿᶠ : ∀ {Ψ Ω A Γ Δ} → (x : Ψ ⁏ Ω ⊢ A)
→ Γ ⁏ Δ ⊢ⁿᶠ [ Ψ ⁏ Ω ⊢ x ] A
pairⁿᶠ : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ⁿᶠ A → Γ ⁏ Δ ⊢ⁿᶠ B → Γ ⁏ Δ ⊢ⁿᶠ A ∧ B
unitⁿᶠ : ∀ {Γ Δ} → Γ ⁏ Δ ⊢ⁿᶠ ⊤
-- Neutrals, or eliminations.
infix 3 _⊢ⁿᵉ_
data _⊢ⁿᵉ_ : Cx² Ty Box → Ty → Set where
varⁿᵉ : ∀ {A Γ Δ} → A ∈ Γ → Γ ⁏ Δ ⊢ⁿᵉ A
appⁿᵉ : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ⁿᵉ A ▻ B → Γ ⁏ Δ ⊢ⁿᶠ A → Γ ⁏ Δ ⊢ⁿᵉ B
mvarⁿᵉ : ∀ {Ψ Ω A x Γ Δ} → [ Ψ ⁏ Ω ⊢ x ] A ∈ Δ
→ {{_ : Γ ⁏ Δ ⊢⋆ⁿᶠ Ψ}}
→ {{_ : Γ ⁏ Δ ⊢⍟ⁿᶠ Ω}}
→ Γ ⁏ Δ ⊢ⁿᵉ A
unboxⁿᵉ : ∀ {Ψ Ω A C x Γ Δ} → Γ ⁏ Δ ⊢ⁿᵉ [ Ψ ⁏ Ω ⊢ x ] A
→ Γ ⁏ Δ , [ Ψ ⁏ Ω ⊢ x ] A ⊢ⁿᶠ C
→ Γ ⁏ Δ ⊢ⁿᵉ C
fstⁿᵉ : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ⁿᵉ A ∧ B → Γ ⁏ Δ ⊢ⁿᵉ A
sndⁿᵉ : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ⁿᵉ A ∧ B → Γ ⁏ Δ ⊢ⁿᵉ B
infix 3 _⊢⋆ⁿᶠ_
_⊢⋆ⁿᶠ_ : Cx² Ty Box → Cx Ty → Set
Γ ⁏ Δ ⊢⋆ⁿᶠ ∅ = 𝟙
Γ ⁏ Δ ⊢⋆ⁿᶠ Ξ , A = Γ ⁏ Δ ⊢⋆ⁿᶠ Ξ × Γ ⁏ Δ ⊢ⁿᶠ A
infix 3 _⊢⍟ⁿᶠ_
_⊢⍟ⁿᶠ_ : Cx² Ty Box → Cx Box → Set
Γ ⁏ Δ ⊢⍟ⁿᶠ ∅ = 𝟙
Γ ⁏ Δ ⊢⍟ⁿᶠ Ξ , [ Ψ ⁏ Ω ⊢ x ] A = Γ ⁏ Δ ⊢⍟ⁿᶠ Ξ × Γ ⁏ Δ ⊢ⁿᶠ [ Ψ ⁏ Ω ⊢ x ] A
infix 3 _⊢⋆ⁿᵉ_
_⊢⋆ⁿᵉ_ : Cx² Ty Box → Cx Ty → Set
Γ ⁏ Δ ⊢⋆ⁿᵉ ∅ = 𝟙
Γ ⁏ Δ ⊢⋆ⁿᵉ Ξ , A = Γ ⁏ Δ ⊢⋆ⁿᵉ Ξ × Γ ⁏ Δ ⊢ⁿᵉ A
infix 3 _⊢⍟ⁿᵉ_
_⊢⍟ⁿᵉ_ : Cx² Ty Box → Cx Box → Set
Γ ⁏ Δ ⊢⍟ⁿᵉ ∅ = 𝟙
Γ ⁏ Δ ⊢⍟ⁿᵉ Ξ , [ Ψ ⁏ Ω ⊢ x ] A = Γ ⁏ Δ ⊢⍟ⁿᵉ Ξ × Γ ⁏ Δ ⊢ⁿᵉ [ Ψ ⁏ Ω ⊢ x ] A
-- Translation to simple terms.
mutual
nf→tm : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ⁿᶠ A → Γ ⁏ Δ ⊢ A
nf→tm (neⁿᶠ t) = ne→tm t
nf→tm (lamⁿᶠ t) = lam (nf→tm t)
nf→tm (boxⁿᶠ t) = box t
nf→tm (pairⁿᶠ t u) = pair (nf→tm t) (nf→tm u)
nf→tm unitⁿᶠ = unit
ne→tm : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ⁿᵉ A → Γ ⁏ Δ ⊢ A
ne→tm (varⁿᵉ i) = var i
ne→tm (appⁿᵉ t u) = app (ne→tm t) (nf→tm u)
ne→tm (mvarⁿᵉ i {{ts}} {{us}}) = mvar i {{nf→tm⋆ ts}} {{nf→tm⍟ us}}
ne→tm (unboxⁿᵉ t u) = unbox (ne→tm t) (nf→tm u)
ne→tm (fstⁿᵉ t) = fst (ne→tm t)
ne→tm (sndⁿᵉ t) = snd (ne→tm t)
nf→tm⋆ : ∀ {Ξ Γ Δ} → Γ ⁏ Δ ⊢⋆ⁿᶠ Ξ → Γ ⁏ Δ ⊢⋆ Ξ
nf→tm⋆ {∅} ∙ = ∙
nf→tm⋆ {Ξ , A} (ts , t) = nf→tm⋆ ts , nf→tm t
nf→tm⍟ : ∀ {Ξ Γ Δ} → Γ ⁏ Δ ⊢⍟ⁿᶠ Ξ → Γ ⁏ Δ ⊢⍟ Ξ
nf→tm⍟ {∅} ∙ = ∙
nf→tm⍟ {Ξ , _} (ts , t) = nf→tm⍟ ts , nf→tm t
ne→tm⋆ : ∀ {Ξ Γ Δ} → Γ ⁏ Δ ⊢⋆ⁿᵉ Ξ → Γ ⁏ Δ ⊢⋆ Ξ
ne→tm⋆ {∅} ∙ = ∙
ne→tm⋆ {Ξ , A} (ts , t) = ne→tm⋆ ts , ne→tm t
ne→tm⍟ : ∀ {Ξ Γ Δ} → Γ ⁏ Δ ⊢⍟ⁿᵉ Ξ → Γ ⁏ Δ ⊢⍟ Ξ
ne→tm⍟ {∅} ∙ = ∙
ne→tm⍟ {Ξ , _} (ts , t) = ne→tm⍟ ts , ne→tm t
-- Monotonicity with respect to context inclusion.
mutual
mono⊢ⁿᶠ : ∀ {A Γ Γ′ Δ} → Γ ⊆ Γ′ → Γ ⁏ Δ ⊢ⁿᶠ A → Γ′ ⁏ Δ ⊢ⁿᶠ A
mono⊢ⁿᶠ η (neⁿᶠ t) = neⁿᶠ (mono⊢ⁿᵉ η t)
mono⊢ⁿᶠ η (lamⁿᶠ t) = lamⁿᶠ (mono⊢ⁿᶠ (keep η) t)
mono⊢ⁿᶠ η (boxⁿᶠ t) = boxⁿᶠ t
mono⊢ⁿᶠ η (pairⁿᶠ t u) = pairⁿᶠ (mono⊢ⁿᶠ η t) (mono⊢ⁿᶠ η u)
mono⊢ⁿᶠ η unitⁿᶠ = unitⁿᶠ
mono⊢ⁿᵉ : ∀ {A Γ Γ′ Δ} → Γ ⊆ Γ′ → Γ ⁏ Δ ⊢ⁿᵉ A → Γ′ ⁏ Δ ⊢ⁿᵉ A
mono⊢ⁿᵉ η (varⁿᵉ i) = varⁿᵉ (mono∈ η i)
mono⊢ⁿᵉ η (appⁿᵉ t u) = appⁿᵉ (mono⊢ⁿᵉ η t) (mono⊢ⁿᶠ η u)
mono⊢ⁿᵉ η (mvarⁿᵉ i {{ts}} {{us}}) = mvarⁿᵉ i {{mono⊢⋆ⁿᶠ η ts}} {{mono⊢⍟ⁿᶠ η us}}
mono⊢ⁿᵉ η (unboxⁿᵉ t u) = unboxⁿᵉ (mono⊢ⁿᵉ η t) (mono⊢ⁿᶠ η u)
mono⊢ⁿᵉ η (fstⁿᵉ t) = fstⁿᵉ (mono⊢ⁿᵉ η t)
mono⊢ⁿᵉ η (sndⁿᵉ t) = sndⁿᵉ (mono⊢ⁿᵉ η t)
mono⊢⋆ⁿᶠ : ∀ {Ξ Γ Γ′ Δ} → Γ ⊆ Γ′ → Γ ⁏ Δ ⊢⋆ⁿᶠ Ξ → Γ′ ⁏ Δ ⊢⋆ⁿᶠ Ξ
mono⊢⋆ⁿᶠ {∅} η ∙ = ∙
mono⊢⋆ⁿᶠ {Ξ , A} η (ts , t) = mono⊢⋆ⁿᶠ η ts , mono⊢ⁿᶠ η t
mono⊢⍟ⁿᶠ : ∀ {Ξ Γ Γ′ Δ} → Γ ⊆ Γ′ → Γ ⁏ Δ ⊢⍟ⁿᶠ Ξ → Γ′ ⁏ Δ ⊢⍟ⁿᶠ Ξ
mono⊢⍟ⁿᶠ {∅} η ∙ = ∙
mono⊢⍟ⁿᶠ {Ξ , _} η (ts , t) = mono⊢⍟ⁿᶠ η ts , mono⊢ⁿᶠ η t
mono⊢⋆ⁿᵉ : ∀ {Ξ Γ Γ′ Δ} → Γ ⊆ Γ′ → Γ ⁏ Δ ⊢⋆ⁿᵉ Ξ → Γ′ ⁏ Δ ⊢⋆ⁿᵉ Ξ
mono⊢⋆ⁿᵉ {∅} η ∙ = ∙
mono⊢⋆ⁿᵉ {Ξ , A} η (ts , t) = mono⊢⋆ⁿᵉ η ts , mono⊢ⁿᵉ η t
mono⊢⍟ⁿᵉ : ∀ {Ξ Γ Γ′ Δ} → Γ ⊆ Γ′ → Γ ⁏ Δ ⊢⍟ⁿᵉ Ξ → Γ′ ⁏ Δ ⊢⍟ⁿᵉ Ξ
mono⊢⍟ⁿᵉ {∅} η ∙ = ∙
mono⊢⍟ⁿᵉ {Ξ , _} η (ts , t) = mono⊢⍟ⁿᵉ η ts , mono⊢ⁿᵉ η t
-- Monotonicity with respect to modal context inclusion.
mutual
mmono⊢ⁿᶠ : ∀ {A Γ Δ Δ′} → Δ ⊆ Δ′ → Γ ⁏ Δ ⊢ⁿᶠ A → Γ ⁏ Δ′ ⊢ⁿᶠ A
mmono⊢ⁿᶠ θ (neⁿᶠ t) = neⁿᶠ (mmono⊢ⁿᵉ θ t)
mmono⊢ⁿᶠ θ (lamⁿᶠ t) = lamⁿᶠ (mmono⊢ⁿᶠ θ t)
mmono⊢ⁿᶠ θ (boxⁿᶠ t) = boxⁿᶠ t
mmono⊢ⁿᶠ θ (pairⁿᶠ t u) = pairⁿᶠ (mmono⊢ⁿᶠ θ t) (mmono⊢ⁿᶠ θ u)
mmono⊢ⁿᶠ θ unitⁿᶠ = unitⁿᶠ
mmono⊢ⁿᵉ : ∀ {A Γ Δ Δ′} → Δ ⊆ Δ′ → Γ ⁏ Δ ⊢ⁿᵉ A → Γ ⁏ Δ′ ⊢ⁿᵉ A
mmono⊢ⁿᵉ θ (varⁿᵉ i) = varⁿᵉ i
mmono⊢ⁿᵉ θ (appⁿᵉ t u) = appⁿᵉ (mmono⊢ⁿᵉ θ t) (mmono⊢ⁿᶠ θ u)
mmono⊢ⁿᵉ θ (mvarⁿᵉ i {{ts}} {{us}}) = mvarⁿᵉ (mono∈ θ i) {{mmono⊢⋆ⁿᶠ θ ts}} {{mmono⊢⍟ⁿᶠ θ us}}
mmono⊢ⁿᵉ θ (unboxⁿᵉ t u) = unboxⁿᵉ (mmono⊢ⁿᵉ θ t) (mmono⊢ⁿᶠ (keep θ) u)
mmono⊢ⁿᵉ θ (fstⁿᵉ t) = fstⁿᵉ (mmono⊢ⁿᵉ θ t)
mmono⊢ⁿᵉ θ (sndⁿᵉ t) = sndⁿᵉ (mmono⊢ⁿᵉ θ t)
mmono⊢⋆ⁿᶠ : ∀ {Ξ Γ Δ Δ′} → Δ ⊆ Δ′ → Γ ⁏ Δ ⊢⋆ⁿᶠ Ξ → Γ ⁏ Δ′ ⊢⋆ⁿᶠ Ξ
mmono⊢⋆ⁿᶠ {∅} θ ∙ = ∙
mmono⊢⋆ⁿᶠ {Ξ , A} θ (ts , t) = mmono⊢⋆ⁿᶠ θ ts , mmono⊢ⁿᶠ θ t
mmono⊢⍟ⁿᶠ : ∀ {Ξ Γ Δ Δ′} → Δ ⊆ Δ′ → Γ ⁏ Δ ⊢⍟ⁿᶠ Ξ → Γ ⁏ Δ′ ⊢⍟ⁿᶠ Ξ
mmono⊢⍟ⁿᶠ {∅} θ ∙ = ∙
mmono⊢⍟ⁿᶠ {Ξ , _} θ (ts , t) = mmono⊢⍟ⁿᶠ θ ts , mmono⊢ⁿᶠ θ t
mmono⊢⋆ⁿᵉ : ∀ {Ξ Γ Δ Δ′} → Δ ⊆ Δ′ → Γ ⁏ Δ ⊢⋆ⁿᵉ Ξ → Γ ⁏ Δ′ ⊢⋆ⁿᵉ Ξ
mmono⊢⋆ⁿᵉ {∅} θ ∙ = ∙
mmono⊢⋆ⁿᵉ {Ξ , A} θ (ts , t) = mmono⊢⋆ⁿᵉ θ ts , mmono⊢ⁿᵉ θ t
mmono⊢⍟ⁿᵉ : ∀ {Ξ Γ Δ Δ′} → Δ ⊆ Δ′ → Γ ⁏ Δ ⊢⍟ⁿᵉ Ξ → Γ ⁏ Δ′ ⊢⍟ⁿᵉ Ξ
mmono⊢⍟ⁿᵉ {∅} θ ∙ = ∙
mmono⊢⍟ⁿᵉ {Ξ , _} θ (ts , t) = mmono⊢⍟ⁿᵉ θ ts , mmono⊢ⁿᵉ θ t
-- Monotonicity using context pairs.
mono²⊢ⁿᶠ : ∀ {A Π Π′} → Π ⊆² Π′ → Π ⊢ⁿᶠ A → Π′ ⊢ⁿᶠ A
mono²⊢ⁿᶠ (η , θ) = mono⊢ⁿᶠ η ∘ mmono⊢ⁿᶠ θ
mono²⊢ⁿᵉ : ∀ {A Π Π′} → Π ⊆² Π′ → Π ⊢ⁿᵉ A → Π′ ⊢ⁿᵉ A
mono²⊢ⁿᵉ (η , θ) = mono⊢ⁿᵉ η ∘ mmono⊢ⁿᵉ θ
-- Generalised reflexivity.
refl⊢⋆ⁿᵉ : ∀ {Γ Ψ Δ} → {{_ : Ψ ⊆ Γ}} → Γ ⁏ Δ ⊢⋆ⁿᵉ Ψ
refl⊢⋆ⁿᵉ {∅} {{done}} = ∙
refl⊢⋆ⁿᵉ {Γ , A} {{skip η}} = mono⊢⋆ⁿᵉ weak⊆ (refl⊢⋆ⁿᵉ {{η}})
refl⊢⋆ⁿᵉ {Γ , A} {{keep η}} = mono⊢⋆ⁿᵉ weak⊆ (refl⊢⋆ⁿᵉ {{η}}) , varⁿᵉ top
|
algebraic-stack_agda0000_doc_131 | module EquationalTheory where
open import Library
open import Syntax
open import RenamingAndSubstitution
-- Single collapsing substitution.
sub1 : ∀{Γ σ τ} → Tm Γ σ → Tm (Γ , σ) τ → Tm Γ τ
sub1 {Γ}{σ}{τ} u t = sub (subId , u) t
-- Typed β-η-equality.
data _≡βη_ {Γ : Cxt} : ∀{σ} → Tm Γ σ → Tm Γ σ → Set where
-- Axioms.
beta≡ : ∀{σ τ} {t : Tm (Γ , σ) τ} {u : Tm Γ σ} →
--------------------------
app (abs t) u ≡βη sub1 u t
eta≡ : ∀{σ τ} (t : Tm Γ (σ ⇒ τ)) →
-------------------------------------
abs (app (weak _ t) (var zero)) ≡βη t
-- Congruence rules.
var≡ : ∀{σ} (x : Var Γ σ) →
---------------
var x ≡βη var x
abs≡ : ∀{σ τ}{t t' : Tm (Γ , σ) τ} →
t ≡βη t' →
----------------
abs t ≡βη abs t'
app≡ : ∀{σ τ}{t t' : Tm Γ (σ ⇒ τ)}{u u' : Tm Γ σ} →
t ≡βη t' → u ≡βη u' →
---------------------
app t u ≡βη app t' u'
-- Equivalence rules.
refl≡ : ∀{a} (t {t'} : Tm Γ a) →
t ≡ t' →
-------
t ≡βη t'
sym≡ : ∀{a}{t t' : Tm Γ a}
(t'≡t : t' ≡βη t) →
-----------------
t ≡βη t'
trans≡ : ∀{a}{t₁ t₂ t₃ : Tm Γ a}
(t₁≡t₂ : t₁ ≡βη t₂) (t₂≡t₃ : t₂ ≡βη t₃) →
----------------------------------
t₁ ≡βη t₃
-- A calculation on renamings needed for renaming of eta≡.
ren-eta≡ : ∀ {Γ Δ a b} (t : Tm Γ (a ⇒ b)) (ρ : Ren Δ Γ) →
ren (wkr ρ , zero) (ren (wkr renId) t) ≡ ren (wkr {σ = a} renId) (ren ρ t)
ren-eta≡ t ρ = begin
ren (wkr ρ , zero) (ren (wkr renId) t) ≡⟨ sym (rencomp _ _ _) ⟩
ren (renComp (wkr ρ , zero) (wkr renId)) t ≡⟨ cong (λ ρ₁ → ren ρ₁ t) (lemrr _ _ _) ⟩
ren (renComp (wkr ρ) renId) t ≡⟨ cong (λ ρ₁ → ren ρ₁ t) (ridr _) ⟩
ren (wkr ρ) t ≡⟨ cong (λ ρ₁ → ren ρ₁ t) (cong wkr (sym (lidr _))) ⟩
ren (wkr (renComp renId ρ)) t ≡⟨ cong (λ ρ₁ → ren ρ₁ t) (sym (wkrcomp _ _)) ⟩
ren (renComp (wkr renId) ρ) t ≡⟨ rencomp _ _ _ ⟩
ren (wkr renId) (ren ρ t) ∎ where open ≡-Reasoning
-- Definitional equality is closed under renaming.
ren≡βη : ∀{Γ a} {t : Tm Γ a}{t' : Tm Γ a} → t ≡βη t' → ∀{Δ}(ρ : Ren Δ Γ) →
ren ρ t ≡βη ren ρ t'
ren≡βη (beta≡ {t = t}{u = u}) ρ = trans≡ beta≡ $ refl≡ _ $
trans (subren (subId , ren ρ u) (liftr ρ) t)
(trans (cong (λ xs → sub xs t)
(cong₂ Sub._,_
(trans (lemsr subId (ren ρ u) ρ)
(trans (sidl (ren2sub ρ)) (sym $ sidr (ren2sub ρ))))
(ren2subren ρ u)))
(sym $ rensub ρ (subId , u) t))
-- TODO: factor out reasoning about renamings and substitutions
ren≡βη (eta≡ {a} t) ρ rewrite ren-eta≡ t ρ = eta≡ (ren ρ t)
-- OLD:
-- ren≡βη (eta≡ t) ρ = trans≡
-- (abs≡ (app≡ (refl≡ _
-- (trans (sym $ rencomp (liftr ρ) (wkr renId) t)
-- (trans (cong (λ xs → ren xs t)
-- (trans (lemrr (wkr ρ) zero renId)
-- (trans (ridr (wkr ρ))
-- (trans (cong wkr (sym (lidr ρ)))
-- (sym (wkrcomp renId ρ))))))
-- (rencomp (wkr renId) ρ t))))
-- (refl≡ _)))
-- (eta≡ _)
ren≡βη (var≡ x) ρ = var≡ (lookr ρ x)
ren≡βη (abs≡ p) ρ = abs≡ (ren≡βη p (liftr ρ))
ren≡βη (app≡ p q) ρ = app≡ (ren≡βη p ρ) (ren≡βη q ρ)
ren≡βη (refl≡ _ refl) ρ = refl≡ _ refl
ren≡βη (sym≡ p) ρ = sym≡ (ren≡βη p ρ)
ren≡βη (trans≡ p q) ρ = trans≡ (ren≡βη p ρ) (ren≡βη q ρ)
|
algebraic-stack_agda0000_doc_132 | open import Relation.Binary.Core
module InsertSort.Impl2.Correctness.Order {A : Set}
(_≤_ : A → A → Set)
(tot≤ : Total _≤_) where
open import Data.List
open import Function using (_∘_)
open import InsertSort.Impl2 _≤_ tot≤
open import List.Sorted _≤_
open import OList _≤_
open import OList.Properties _≤_
theorem-insertSort-sorted : (xs : List A) → Sorted (forget (insertSort xs))
theorem-insertSort-sorted = lemma-olist-sorted ∘ insertSort
|
algebraic-stack_agda0000_doc_133 | {-# OPTIONS --prop #-}
open import Agda.Builtin.Nat
data T : Nat → Prop where
To : T zero
Tn : ∀ n → T n
ummm : ∀ n → T n → {! !}
ummm n t = {! t !}
|
algebraic-stack_agda0000_doc_134 | -- A variant of code reported by Andreas Abel.
{-# OPTIONS --guardedness --sized-types #-}
open import Common.Coinduction renaming (∞ to Delay)
open import Common.Size
open import Common.Product
data ⊥ : Set where
record Stream (A : Set) : Set where
inductive
constructor delay
field
force : Delay (A × Stream A)
open Stream
head : ∀{A} → Stream A → A
head s = proj₁ (♭ (force s))
-- This type should be empty, as Stream A is isomorphic to ℕ → A.
data D : (i : Size) → Set where
lim : ∀ i → Stream (D i) → D (↑ i)
-- Emptiness witness for D.
empty : ∀ i → D i → ⊥
empty .(↑ i) (lim i s) = empty i (head s)
-- BAD: But we can construct an inhabitant.
inh : Stream (D ∞)
inh = delay (♯ (lim ∞ inh , inh)) -- Should be rejected by termination checker.
absurd : ⊥
absurd = empty ∞ (lim ∞ inh)
|
algebraic-stack_agda0000_doc_135 |
open import Oscar.Prelude
open import Oscar.Class
open import Oscar.Class.IsPrecategory
open import Oscar.Class.IsCategory
open import Oscar.Class.HasEquivalence
open import Oscar.Class.Reflexivity
open import Oscar.Class.Symmetry
open import Oscar.Class.Transextensionality
open import Oscar.Class.Transassociativity
open import Oscar.Class.Transleftidentity
open import Oscar.Class.Transrightidentity
open import Oscar.Class.Transitivity
open import Oscar.Class.Precategory
open import Oscar.Class.Category
open import Oscar.Property.Setoid.Proposequality
open import Oscar.Property.Setoid.Proposextensequality
open import Oscar.Data.Proposequality
import Oscar.Class.Reflexivity.Function
import Oscar.Class.Transextensionality.Proposequality
module Oscar.Property.Category.Function where
module _ {𝔬 : Ł} where
instance
TransitivityFunction : Transitivity.class Function⟦ 𝔬 ⟧
TransitivityFunction .⋆ f g = g ∘ f
module _ {𝔬 : Ł} where
instance
HasEquivalenceFunction : ∀ {A B : Ø 𝔬} → HasEquivalence (Function⟦ 𝔬 ⟧ A B) 𝔬
HasEquivalenceFunction .⋆ = _≡̇_
HasEquivalenceFunction .Rℭlass.⋆⋆ = !
instance
TransassociativityFunction : Transassociativity.class Function⟦ 𝔬 ⟧ _≡̇_ transitivity
TransassociativityFunction .⋆ _ _ _ _ = ∅
instance
𝓣ransextensionalityFunctionProposextensequality : Transextensionality.class Function⟦ 𝔬 ⟧ Proposextensequality transitivity
𝓣ransextensionalityFunctionProposextensequality .⋆ {f₂ = f₂} f₁≡̇f₂ g₁≡̇g₂ x rewrite f₁≡̇f₂ x = g₁≡̇g₂ (f₂ x)
instance
IsPrecategoryFunction : IsPrecategory Function⟦ 𝔬 ⟧ _≡̇_ transitivity
IsPrecategoryFunction = ∁
instance
TransleftidentityFunction : Transleftidentity.class Function⟦ 𝔬 ⟧ _≡̇_ ε transitivity
TransleftidentityFunction .⋆ _ = ∅
TransrightidentityFunction : Transrightidentity.class Function⟦ 𝔬 ⟧ _≡̇_ ε transitivity
TransrightidentityFunction .⋆ _ = ∅
instance
IsCategoryFunction : IsCategory Function⟦ 𝔬 ⟧ _≡̇_ ε transitivity
IsCategoryFunction = ∁
PrecategoryFunction : Precategory _ _ _
PrecategoryFunction = ∁ Function⟦ 𝔬 ⟧ Proposextensequality transitivity
CategoryFunction : Category _ _ _
CategoryFunction = ∁ Function⟦ 𝔬 ⟧ Proposextensequality ε transitivity
|
algebraic-stack_agda0000_doc_136 | ------------------------------------------------------------------------
-- The Agda standard library
--
-- Floats
------------------------------------------------------------------------
module Data.Float where
open import Data.Bool hiding (_≟_)
open import Relation.Nullary.Decidable
open import Relation.Nullary
open import Relation.Binary.PropositionalEquality as PropEq using (_≡_)
open import Relation.Binary.PropositionalEquality.TrustMe
open import Data.String using (String)
postulate
Float : Set
{-# BUILTIN FLOAT Float #-}
primitive
primFloatEquality : Float → Float → Bool
primShowFloat : Float → String
show : Float → String
show = primShowFloat
_≟_ : (x y : Float) → Dec (x ≡ y)
x ≟ y with primFloatEquality x y
... | true = yes trustMe
... | false = no whatever
where postulate whatever : _
|
algebraic-stack_agda0000_doc_137 | module Issue2447.Type-error where
import Issue2447.M
Rejected : Set
Rejected = Set
|
algebraic-stack_agda0000_doc_138 | {-# OPTIONS --safe --warning=error --without-K #-}
open import Groups.Homomorphisms.Definition
open import Groups.Definition
open import Setoids.Setoids
open import Rings.Definition
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Rings.Homomorphisms.Definition where
record RingHom {m n o p : _} {A : Set m} {B : Set n} {SA : Setoid {m} {o} A} {SB : Setoid {n} {p} B} {_+A_ : A → A → A} {_*A_ : A → A → A} (R : Ring SA _+A_ _*A_) {_+B_ : B → B → B} {_*B_ : B → B → B} (S : Ring SB _+B_ _*B_) (f : A → B) : Set (m ⊔ n ⊔ o ⊔ p) where
open Ring S
open Group additiveGroup
open Setoid SB
field
preserves1 : f (Ring.1R R) ∼ 1R
ringHom : {r s : A} → f (r *A s) ∼ (f r) *B (f s)
groupHom : GroupHom (Ring.additiveGroup R) additiveGroup f
|
algebraic-stack_agda0000_doc_139 | {-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Relation.Binary.Base where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.Fiberwise
open import Cubical.Data.Sigma
open import Cubical.HITs.SetQuotients.Base
open import Cubical.HITs.PropositionalTruncation.Base
private
variable
ℓA ℓ≅A ℓA' ℓ≅A' : Level
Rel : ∀ {ℓ} (A B : Type ℓ) (ℓ' : Level) → Type (ℓ-max ℓ (ℓ-suc ℓ'))
Rel A B ℓ' = A → B → Type ℓ'
PropRel : ∀ {ℓ} (A B : Type ℓ) (ℓ' : Level) → Type (ℓ-max ℓ (ℓ-suc ℓ'))
PropRel A B ℓ' = Σ[ R ∈ Rel A B ℓ' ] ∀ a b → isProp (R a b)
idPropRel : ∀ {ℓ} (A : Type ℓ) → PropRel A A ℓ
idPropRel A .fst a a' = ∥ a ≡ a' ∥
idPropRel A .snd _ _ = squash
invPropRel : ∀ {ℓ ℓ'} {A B : Type ℓ}
→ PropRel A B ℓ' → PropRel B A ℓ'
invPropRel R .fst b a = R .fst a b
invPropRel R .snd b a = R .snd a b
compPropRel : ∀ {ℓ ℓ' ℓ''} {A B C : Type ℓ}
→ PropRel A B ℓ' → PropRel B C ℓ'' → PropRel A C (ℓ-max ℓ (ℓ-max ℓ' ℓ''))
compPropRel R S .fst a c = ∥ Σ[ b ∈ _ ] (R .fst a b × S .fst b c) ∥
compPropRel R S .snd _ _ = squash
graphRel : ∀ {ℓ} {A B : Type ℓ} → (A → B) → Rel A B ℓ
graphRel f a b = f a ≡ b
module BinaryRelation {ℓ ℓ' : Level} {A : Type ℓ} (R : Rel A A ℓ') where
isRefl : Type (ℓ-max ℓ ℓ')
isRefl = (a : A) → R a a
isSym : Type (ℓ-max ℓ ℓ')
isSym = (a b : A) → R a b → R b a
isTrans : Type (ℓ-max ℓ ℓ')
isTrans = (a b c : A) → R a b → R b c → R a c
record isEquivRel : Type (ℓ-max ℓ ℓ') where
constructor equivRel
field
reflexive : isRefl
symmetric : isSym
transitive : isTrans
isPropValued : Type (ℓ-max ℓ ℓ')
isPropValued = (a b : A) → isProp (R a b)
isEffective : Type (ℓ-max ℓ ℓ')
isEffective =
(a b : A) → isEquiv (eq/ {R = R} a b)
impliesIdentity : Type _
impliesIdentity = {a a' : A} → (R a a') → (a ≡ a')
-- the total space corresponding to the binary relation w.r.t. a
relSinglAt : (a : A) → Type (ℓ-max ℓ ℓ')
relSinglAt a = Σ[ a' ∈ A ] (R a a')
-- the statement that the total space is contractible at any a
contrRelSingl : Type (ℓ-max ℓ ℓ')
contrRelSingl = (a : A) → isContr (relSinglAt a)
isUnivalent : Type (ℓ-max ℓ ℓ')
isUnivalent = (a a' : A) → (R a a') ≃ (a ≡ a')
contrRelSingl→isUnivalent : isRefl → contrRelSingl → isUnivalent
contrRelSingl→isUnivalent ρ c a a' = isoToEquiv i
where
h : isProp (relSinglAt a)
h = isContr→isProp (c a)
aρa : relSinglAt a
aρa = a , ρ a
Q : (y : A) → a ≡ y → _
Q y _ = R a y
i : Iso (R a a') (a ≡ a')
Iso.fun i r = cong fst (h aρa (a' , r))
Iso.inv i = J Q (ρ a)
Iso.rightInv i = J (λ y p → cong fst (h aρa (y , J Q (ρ a) p)) ≡ p)
(J (λ q _ → cong fst (h aρa (a , q)) ≡ refl)
(J (λ α _ → cong fst α ≡ refl) refl
(isContr→isProp (isProp→isContrPath h aρa aρa) refl (h aρa aρa)))
(sym (JRefl Q (ρ a))))
Iso.leftInv i r = J (λ w β → J Q (ρ a) (cong fst β) ≡ snd w)
(JRefl Q (ρ a)) (h aρa (a' , r))
isUnivalent→contrRelSingl : isUnivalent → contrRelSingl
isUnivalent→contrRelSingl u a = q
where
abstract
f : (x : A) → a ≡ x → R a x
f x p = invEq (u a x) p
t : singl a → relSinglAt a
t (x , p) = x , f x p
q : isContr (relSinglAt a)
q = isOfHLevelRespectEquiv 0 (t , totalEquiv _ _ f λ x → invEquiv (u a x) .snd)
(isContrSingl a)
EquivRel : ∀ {ℓ} (A : Type ℓ) (ℓ' : Level) → Type (ℓ-max ℓ (ℓ-suc ℓ'))
EquivRel A ℓ' = Σ[ R ∈ Rel A A ℓ' ] BinaryRelation.isEquivRel R
EquivPropRel : ∀ {ℓ} (A : Type ℓ) (ℓ' : Level) → Type (ℓ-max ℓ (ℓ-suc ℓ'))
EquivPropRel A ℓ' = Σ[ R ∈ PropRel A A ℓ' ] BinaryRelation.isEquivRel (R .fst)
record RelIso {A : Type ℓA} (_≅_ : Rel A A ℓ≅A)
{A' : Type ℓA'} (_≅'_ : Rel A' A' ℓ≅A') : Type (ℓ-max (ℓ-max ℓA ℓA') (ℓ-max ℓ≅A ℓ≅A')) where
constructor reliso
field
fun : A → A'
inv : A' → A
rightInv : (a' : A') → fun (inv a') ≅' a'
leftInv : (a : A) → inv (fun a) ≅ a
open BinaryRelation
RelIso→Iso : {A : Type ℓA} {A' : Type ℓA'}
(_≅_ : Rel A A ℓ≅A) (_≅'_ : Rel A' A' ℓ≅A')
(uni : impliesIdentity _≅_) (uni' : impliesIdentity _≅'_)
(f : RelIso _≅_ _≅'_)
→ Iso A A'
Iso.fun (RelIso→Iso _ _ _ _ f) = RelIso.fun f
Iso.inv (RelIso→Iso _ _ _ _ f) = RelIso.inv f
Iso.rightInv (RelIso→Iso _ _ uni uni' f) a'
= uni' (RelIso.rightInv f a')
Iso.leftInv (RelIso→Iso _ _ uni uni' f) a
= uni (RelIso.leftInv f a)
|
algebraic-stack_agda0000_doc_140 | module Thesis.SIRelBigStep.Types where
open import Data.Empty
open import Data.Product
open import Relation.Nullary
open import Relation.Binary.PropositionalEquality
open import Relation.Binary hiding (_⇒_)
data Type : Set where
_⇒_ : (σ τ : Type) → Type
pair : (σ τ : Type) → Type
nat : Type
infixr 20 _⇒_
open import Base.Syntax.Context Type public
open import Base.Syntax.Vars Type public
-- Decidable equivalence for types and contexts. Needed later for ⊕ on closures.
⇒-inj : ∀ {τ1 τ2 τ3 τ4 : Type} → _≡_ {A = Type} (τ1 ⇒ τ2) (τ3 ⇒ τ4) → τ1 ≡ τ3 × τ2 ≡ τ4
⇒-inj refl = refl , refl
pair-inj : ∀ {τ1 τ2 τ3 τ4 : Type} → _≡_ {A = Type} (pair τ1 τ2) (pair τ3 τ4) → τ1 ≡ τ3 × τ2 ≡ τ4
pair-inj refl = refl , refl
_≟Type_ : (τ1 τ2 : Type) → Dec (τ1 ≡ τ2)
(τ1 ⇒ τ2) ≟Type (τ3 ⇒ τ4) with τ1 ≟Type τ3 | τ2 ≟Type τ4
(τ1 ⇒ τ2) ≟Type (.τ1 ⇒ .τ2) | yes refl | yes refl = yes refl
(τ1 ⇒ τ2) ≟Type (.τ1 ⇒ τ4) | yes refl | no ¬q = no (λ x → ¬q (proj₂ (⇒-inj x)))
(τ1 ⇒ τ2) ≟Type (τ3 ⇒ τ4) | no ¬p | q = no (λ x → ¬p (proj₁ (⇒-inj x)))
(τ1 ⇒ τ2) ≟Type pair τ3 τ4 = no (λ ())
(τ1 ⇒ τ2) ≟Type nat = no (λ ())
pair τ1 τ2 ≟Type (τ3 ⇒ τ4) = no (λ ())
pair τ1 τ2 ≟Type pair τ3 τ4 with τ1 ≟Type τ3 | τ2 ≟Type τ4
pair τ1 τ2 ≟Type pair .τ1 .τ2 | yes refl | yes refl = yes refl
pair τ1 τ2 ≟Type pair τ3 τ4 | yes p | no ¬q = no (λ x → ¬q (proj₂ (pair-inj x)))
pair τ1 τ2 ≟Type pair τ3 τ4 | no ¬p | q = no (λ x → ¬p (proj₁ (pair-inj x)))
pair τ1 τ2 ≟Type nat = no (λ ())
nat ≟Type pair τ1 τ2 = no (λ ())
nat ≟Type (τ1 ⇒ τ2) = no (λ ())
nat ≟Type nat = yes refl
•-inj : ∀ {τ1 τ2 : Type} {Γ1 Γ2 : Context} → _≡_ {A = Context} (τ1 • Γ1) (τ2 • Γ2) → τ1 ≡ τ2 × Γ1 ≡ Γ2
•-inj refl = refl , refl
_≟Ctx_ : (Γ1 Γ2 : Context) → Dec (Γ1 ≡ Γ2)
∅ ≟Ctx ∅ = yes refl
∅ ≟Ctx (τ2 • Γ2) = no (λ ())
(τ1 • Γ1) ≟Ctx ∅ = no (λ ())
(τ1 • Γ1) ≟Ctx (τ2 • Γ2) with τ1 ≟Type τ2 | Γ1 ≟Ctx Γ2
(τ1 • Γ1) ≟Ctx (.τ1 • .Γ1) | yes refl | yes refl = yes refl
(τ1 • Γ1) ≟Ctx (.τ1 • Γ2) | yes refl | no ¬q = no (λ x → ¬q (proj₂ (•-inj x)))
(τ1 • Γ1) ≟Ctx (τ2 • Γ2) | no ¬p | q = no (λ x → ¬p (proj₁ (•-inj x)))
≟Ctx-refl : ∀ Γ → Γ ≟Ctx Γ ≡ yes refl
≟Ctx-refl Γ with Γ ≟Ctx Γ
≟Ctx-refl Γ | yes refl = refl
≟Ctx-refl Γ | no ¬p = ⊥-elim (¬p refl)
|
algebraic-stack_agda0000_doc_141 | module MLib.Prelude where
open import MLib.Prelude.FromStdlib public
module Fin where
open import MLib.Prelude.Fin public
open Fin using (Fin; zero; suc) hiding (module Fin) public
|
algebraic-stack_agda0000_doc_142 | open import Agda.Builtin.Nat
data Vec (A : Set) : Nat → Set where
[] : Vec A 0
_∷_ : ∀ {n} → A → Vec A n → Vec A (suc n)
infixr 5 _∷_ _++_
_++_ : ∀ {A m n} → Vec A m → Vec A n → Vec A (m + n)
[] ++ ys = ys
(x ∷ xs) ++ ys = x ∷ xs ++ ys
T : ∀ {A n} → Vec A n → Set
T [] = Nat
T (x ∷ xs) = Vec Nat 0
foo : ∀ {A} m n (xs : Vec A m) (ys : Vec A n) → T (xs ++ ys)
foo m n xs ys with {m + n} | xs ++ ys
... | [] = 0
... | z ∷ zs = []
|
algebraic-stack_agda0000_doc_143 | module HelloWorld where
open import Common.IO
open import Common.Unit
main : IO Unit
main = putStr "Hello World"
|
algebraic-stack_agda0000_doc_17248 | ------------------------------------------------------------------------
-- The Agda standard library
--
-- Examples of decision procedures and how to use them
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module README.Decidability where
-- Reflects and Dec are defined in Relation.Nullary, and operations on them can
-- be found in Relation.Nullary.Reflects and Relation.Nullary.Decidable.
open import Relation.Nullary as Nullary
open import Relation.Nullary.Reflects
open import Relation.Nullary.Decidable
open import Data.Bool
open import Data.List
open import Data.List.Properties using (∷-injective)
open import Data.Nat
open import Data.Nat.Properties using (suc-injective)
open import Data.Product
open import Data.Unit
open import Function
open import Relation.Binary.PropositionalEquality
open import Relation.Nary
open import Relation.Nullary.Product
infix 4 _≟₀_ _≟₁_ _≟₂_
-- A proof of `Reflects P b` shows that a proposition `P` has the truth value of
-- the boolean `b`. A proof of `Reflects P true` amounts to a proof of `P`, and
-- a proof of `Reflects P false` amounts to a refutation of `P`.
ex₀ : (n : ℕ) → Reflects (n ≡ n) true
ex₀ n = ofʸ refl
ex₁ : (n : ℕ) → Reflects (zero ≡ suc n) false
ex₁ n = ofⁿ λ ()
ex₂ : (b : Bool) → Reflects (T b) b
ex₂ false = ofⁿ id
ex₂ true = ofʸ tt
-- A proof of `Dec P` is a proof of `Reflects P b` for some `b`.
-- `Dec P` is declared as a record, with fields:
-- does : Bool
-- proof : Reflects P does
ex₃ : (b : Bool) → Dec (T b)
does (ex₃ b) = b
proof (ex₃ b) = ex₂ b
-- We also have pattern synonyms `yes` and `no`, allowing both fields to be
-- given at once.
ex₄ : (n : ℕ) → Dec (zero ≡ suc n)
ex₄ n = no λ ()
-- It is possible, but not ideal, to define recursive decision procedures using
-- only the `yes` and `no` patterns. The following procedure decides whether two
-- given natural numbers are equal.
_≟₀_ : (m n : ℕ) → Dec (m ≡ n)
zero ≟₀ zero = yes refl
zero ≟₀ suc n = no λ ()
suc m ≟₀ zero = no λ ()
suc m ≟₀ suc n with m ≟₀ n
... | yes p = yes (cong suc p)
... | no ¬p = no (¬p ∘ suc-injective)
-- In this case, we can see that `does (suc m ≟ suc n)` should be equal to
-- `does (m ≟ n)`, because a `yes` from `m ≟ n` gives rise to a `yes` from the
-- result, and similarly for `no`. However, in the above definition, this
-- equality does not hold definitionally, because we always do a case split
-- before returning a result. To avoid this, we can return the `does` part
-- separately, before any pattern matching.
_≟₁_ : (m n : ℕ) → Dec (m ≡ n)
zero ≟₁ zero = yes refl
zero ≟₁ suc n = no λ ()
suc m ≟₁ zero = no λ ()
does (suc m ≟₁ suc n) = does (m ≟₁ n)
proof (suc m ≟₁ suc n) with m ≟₁ n
... | yes p = ofʸ (cong suc p)
... | no ¬p = ofⁿ (¬p ∘ suc-injective)
-- We now get definitional equalities such as the following.
_ : (m n : ℕ) → does (5 + m ≟₁ 3 + n) ≡ does (2 + m ≟₁ n)
_ = λ m n → refl
-- Even better, from a maintainability point of view, is to use `map` or `map′`,
-- both of which capture the pattern of the `does` field remaining the same, but
-- the `proof` field being updated.
_≟₂_ : (m n : ℕ) → Dec (m ≡ n)
zero ≟₂ zero = yes refl
zero ≟₂ suc n = no λ ()
suc m ≟₂ zero = no λ ()
suc m ≟₂ suc n = map′ (cong suc) suc-injective (m ≟₂ n)
_ : (m n : ℕ) → does (5 + m ≟₂ 3 + n) ≡ does (2 + m ≟₂ n)
_ = λ m n → refl
-- `map′` can be used in conjunction with combinators such as `_⊎-dec_` and
-- `_×-dec_` to build complex (simply typed) decision procedures.
module ListDecEq₀ {a} {A : Set a} (_≟ᴬ_ : (x y : A) → Dec (x ≡ y)) where
_≟ᴸᴬ_ : (xs ys : List A) → Dec (xs ≡ ys)
[] ≟ᴸᴬ [] = yes refl
[] ≟ᴸᴬ (y ∷ ys) = no λ ()
(x ∷ xs) ≟ᴸᴬ [] = no λ ()
(x ∷ xs) ≟ᴸᴬ (y ∷ ys) =
map′ (uncurry (cong₂ _∷_)) ∷-injective (x ≟ᴬ y ×-dec xs ≟ᴸᴬ ys)
-- The final case says that `x ∷ xs ≡ y ∷ ys` exactly when `x ≡ y` *and*
-- `xs ≡ ys`. The proofs are updated by the first two arguments to `map′`.
-- In the case of ≡-equality tests, the pattern
-- `map′ (congₙ c) c-injective (x₀ ≟ y₀ ×-dec ... ×-dec xₙ₋₁ ≟ yₙ₋₁)`
-- is captured by `≟-mapₙ n c c-injective (x₀ ≟ y₀) ... (xₙ₋₁ ≟ yₙ₋₁)`.
module ListDecEq₁ {a} {A : Set a} (_≟ᴬ_ : (x y : A) → Dec (x ≡ y)) where
_≟ᴸᴬ_ : (xs ys : List A) → Dec (xs ≡ ys)
[] ≟ᴸᴬ [] = yes refl
[] ≟ᴸᴬ (y ∷ ys) = no λ ()
(x ∷ xs) ≟ᴸᴬ [] = no λ ()
(x ∷ xs) ≟ᴸᴬ (y ∷ ys) = ≟-mapₙ 2 _∷_ ∷-injective (x ≟ᴬ y) (xs ≟ᴸᴬ ys)
|
algebraic-stack_agda0000_doc_17249 | {-# OPTIONS --cubical-compatible #-}
module WithoutK2 where
-- Equality defined with two indices.
data _≡_ {A : Set} : A → A → Set where
refl : ∀ x → x ≡ x
K : {A : Set} (P : {x : A} → x ≡ x → Set) →
(∀ x → P (refl x)) →
∀ {x} (x≡x : x ≡ x) → P x≡x
K P p (refl x) = p x
|
algebraic-stack_agda0000_doc_17250 |
open import SOAS.Common
open import SOAS.Families.Core
open import Categories.Object.Initial
open import SOAS.Coalgebraic.Strength
import SOAS.Metatheory.MetaAlgebra
-- Substitution structure by initiality
module SOAS.Metatheory.Substitution {T : Set}
(⅀F : Functor 𝔽amiliesₛ 𝔽amiliesₛ) (⅀:Str : Strength ⅀F)
(𝔛 : Familyₛ) (open SOAS.Metatheory.MetaAlgebra ⅀F 𝔛)
(𝕋:Init : Initial 𝕄etaAlgebras)
where
open import SOAS.Context
open import SOAS.Variable
open import SOAS.Abstract.Hom
import SOAS.Abstract.Coalgebra as →□ ; open →□.Sorted
import SOAS.Abstract.Box as □ ; open □.Sorted
open import SOAS.Abstract.Monoid
open import SOAS.Coalgebraic.Map
open import SOAS.Coalgebraic.Monoid
open import SOAS.Coalgebraic.Lift
open import SOAS.Metatheory.Algebra ⅀F
open import SOAS.Metatheory.Semantics ⅀F ⅀:Str 𝔛 𝕋:Init
open import SOAS.Metatheory.Traversal ⅀F ⅀:Str 𝔛 𝕋:Init
open import SOAS.Metatheory.Renaming ⅀F ⅀:Str 𝔛 𝕋:Init
open import SOAS.Metatheory.Coalgebraic ⅀F ⅀:Str 𝔛 𝕋:Init
open Strength ⅀:Str
private
variable
Γ Δ : Ctx
α β : T
-- Substitution is a 𝕋-parametrised traversal into 𝕋
module Substitution = Traversal 𝕋ᴮ 𝕒𝕝𝕘 id 𝕞𝕧𝕒𝕣
𝕤𝕦𝕓 : 𝕋 ⇾̣ 〖 𝕋 , 𝕋 〗
𝕤𝕦𝕓 = Substitution.𝕥𝕣𝕒𝕧
-- The renaming and algebra structures on 𝕋 are compatible, so 𝕤𝕦𝕓 is coalgebraic
𝕤𝕦𝕓ᶜ : Coalgebraic 𝕋ᴮ 𝕋ᴮ 𝕋ᴮ 𝕤𝕦𝕓
𝕤𝕦𝕓ᶜ = Travᶜ.𝕥𝕣𝕒𝕧ᶜ 𝕋ᴮ 𝕒𝕝𝕘 id 𝕞𝕧𝕒𝕣 𝕋ᴮ idᴮ⇒ Renaming.𝕤𝕖𝕞ᵃ⇒
module 𝕤𝕦𝕓ᶜ = Coalgebraic 𝕤𝕦𝕓ᶜ
-- Compatibility of renaming and substitution
compat : {ρ : Γ ↝ Δ} (t : 𝕋 α Γ) → 𝕣𝕖𝕟 t ρ ≡ 𝕤𝕦𝕓 t (𝕧𝕒𝕣 ∘ ρ)
compat {ρ = ρ} t = begin 𝕣𝕖𝕟 t ρ ≡˘⟨ 𝕥𝕣𝕒𝕧-η≈id 𝕋ᴮ id refl ⟩
𝕤𝕦𝕓 (𝕣𝕖𝕟 t ρ) 𝕧𝕒𝕣 ≡⟨ 𝕤𝕦𝕓ᶜ.f∘r ⟩
𝕤𝕦𝕓 t (𝕧𝕒𝕣 ∘ ρ) ∎ where open ≡-Reasoning
-- Substitution associativity law
𝕤𝕦𝕓-comp : MapEq₂ 𝕋ᴮ 𝕋ᴮ 𝕒𝕝𝕘 (λ t σ ς → 𝕤𝕦𝕓 (𝕤𝕦𝕓 t σ) ς)
(λ t σ ς → 𝕤𝕦𝕓 t (λ v → 𝕤𝕦𝕓 (σ v) ς))
𝕤𝕦𝕓-comp = record
{ φ = id
; ϕ = 𝕤𝕦𝕓
; χ = 𝕞𝕧𝕒𝕣
; f⟨𝑣⟩ = 𝕥≈₁ 𝕥⟨𝕧⟩
; f⟨𝑚⟩ = trans (𝕥≈₁ 𝕥⟨𝕞⟩) 𝕥⟨𝕞⟩
; f⟨𝑎⟩ = λ{ {σ = σ}{ς}{t} → begin
𝕤𝕦𝕓 (𝕤𝕦𝕓 (𝕒𝕝𝕘 t) σ) ς
≡⟨ 𝕥≈₁ 𝕥⟨𝕒⟩ ⟩
𝕤𝕦𝕓 (𝕒𝕝𝕘 (str 𝕋ᴮ 𝕋 (⅀₁ 𝕤𝕦𝕓 t) σ)) ς
≡⟨ 𝕥⟨𝕒⟩ ⟩
𝕒𝕝𝕘 (str 𝕋ᴮ 𝕋 (⅀₁ 𝕤𝕦𝕓 (str 𝕋ᴮ 𝕋 (⅀₁ 𝕤𝕦𝕓 t) σ)) ς)
≡˘⟨ congr (str-nat₂ 𝕤𝕦𝕓 (⅀₁ 𝕤𝕦𝕓 t) σ) (λ - → 𝕒𝕝𝕘 (str 𝕋ᴮ 𝕋 - ς)) ⟩
𝕒𝕝𝕘 (str 𝕋ᴮ 𝕋 (str 𝕋ᴮ 〖 𝕋 , 𝕋 〗 (⅀.F₁ (λ { h ς → 𝕤𝕦𝕓 (h ς) }) (⅀₁ 𝕤𝕦𝕓 t)) σ) ς)
≡˘⟨ congr ⅀.homomorphism (λ - → 𝕒𝕝𝕘 (str 𝕋ᴮ 𝕋 (str 𝕋ᴮ 〖 𝕋 , 𝕋 〗 - σ) ς)) ⟩
𝕒𝕝𝕘 (str 𝕋ᴮ 𝕋 (str 𝕋ᴮ 〖 𝕋 , 𝕋 〗 (⅀₁ (λ{ t σ → 𝕤𝕦𝕓 (𝕤𝕦𝕓 t σ)}) t) σ) ς)
∎ }
; g⟨𝑣⟩ = 𝕥⟨𝕧⟩
; g⟨𝑚⟩ = 𝕥⟨𝕞⟩
; g⟨𝑎⟩ = λ{ {σ = σ}{ς}{t} → begin
𝕤𝕦𝕓 (𝕒𝕝𝕘 t) (λ v → 𝕤𝕦𝕓 (σ v) ς)
≡⟨ 𝕥⟨𝕒⟩ ⟩
𝕒𝕝𝕘 (str 𝕋ᴮ 𝕋 (⅀₁ 𝕤𝕦𝕓 t) (λ v → 𝕤𝕦𝕓 (σ v) ς))
≡⟨ cong 𝕒𝕝𝕘 (str-dist 𝕋 𝕤𝕦𝕓ᶜ (⅀₁ 𝕤𝕦𝕓 t) (λ {τ} z → σ z) ς) ⟩
𝕒𝕝𝕘 (str 𝕋ᴮ 𝕋 (str 𝕋ᴮ 〖 𝕋 , 𝕋 〗 (⅀.F₁ (precomp 𝕋 𝕤𝕦𝕓) (⅀₁ 𝕤𝕦𝕓 t)) σ) ς)
≡˘⟨ congr ⅀.homomorphism (λ - → 𝕒𝕝𝕘 (str 𝕋ᴮ 𝕋 (str 𝕋ᴮ 〖 𝕋 , 𝕋 〗 - σ) ς)) ⟩
𝕒𝕝𝕘 (str 𝕋ᴮ 𝕋 (str 𝕋ᴮ 〖 𝕋 , 𝕋 〗 (⅀₁ (λ{ t σ ς → 𝕤𝕦𝕓 t (λ v → 𝕤𝕦𝕓 (σ v) ς)}) t) σ) ς)
∎ }
} where open ≡-Reasoning ; open Substitution
-- Coalgebraic monoid structure on 𝕋
𝕋ᵐ : Mon 𝕋
𝕋ᵐ = record
{ η = 𝕧𝕒𝕣
; μ = 𝕤𝕦𝕓
; lunit = Substitution.𝕥⟨𝕧⟩
; runit = λ{ {t = t} → trans (𝕥𝕣𝕒𝕧-η≈𝕤𝕖𝕞 𝕋ᴮ 𝕋ᵃ id refl) 𝕤𝕖𝕞-id }
; assoc = λ{ {t = t} → MapEq₂.≈ 𝕤𝕦𝕓-comp t }
}
open Mon 𝕋ᵐ using ([_/] ; [_,_/]₂ ; lunit ; runit ; assoc) public
𝕋ᴹ : CoalgMon 𝕋
𝕋ᴹ = record { ᴮ = 𝕋ᴮ ; ᵐ = 𝕋ᵐ ; η-compat = refl ; μ-compat = λ{ {t = t} → compat t } }
-- Corollaries: renaming and simultaneous substitution commutes with
-- single-variable substitution
open import SOAS.ContextMaps.Combinators
𝕣𝕖𝕟[/] : (ρ : Γ ↝ Δ)(b : 𝕋 α (β ∙ Γ))(a : 𝕋 β Γ)
→ 𝕣𝕖𝕟 ([ a /] b) ρ ≡ [ (𝕣𝕖𝕟 a ρ) /] (𝕣𝕖𝕟 b (rlift _ ρ))
𝕣𝕖𝕟[/] ρ b a = begin
𝕣𝕖𝕟 ([ a /] b) ρ
≡⟨ 𝕤𝕦𝕓ᶜ.r∘f ⟩
𝕤𝕦𝕓 b (λ v → 𝕣𝕖𝕟 (add 𝕋 a 𝕧𝕒𝕣 v) ρ)
≡⟨ cong (𝕤𝕦𝕓 b) (dext (λ{ new → refl ; (old y) → Renaming.𝕥⟨𝕧⟩})) ⟩
𝕤𝕦𝕓 b (λ v → add 𝕋 (𝕣𝕖𝕟 a ρ) 𝕧𝕒𝕣 (rlift _ ρ v))
≡˘⟨ 𝕤𝕦𝕓ᶜ.f∘r ⟩
[ 𝕣𝕖𝕟 a ρ /] (𝕣𝕖𝕟 b (rlift _ ρ))
∎ where open ≡-Reasoning
𝕤𝕦𝕓[/] : (σ : Γ ~[ 𝕋 ]↝ Δ)(b : 𝕋 α (β ∙ Γ))(a : 𝕋 β Γ)
→ 𝕤𝕦𝕓 ([ a /] b) σ ≡ [ 𝕤𝕦𝕓 a σ /] (𝕤𝕦𝕓 b (lift 𝕋ᴮ ⌈ β ⌋ σ))
𝕤𝕦𝕓[/] {β = β} σ b a = begin
𝕤𝕦𝕓 ([ a /] b) σ
≡⟨ assoc ⟩
𝕤𝕦𝕓 b (λ v → 𝕤𝕦𝕓 (add 𝕋 a 𝕧𝕒𝕣 v) σ)
≡⟨ cong (𝕤𝕦𝕓 b) (dext (λ{ new → sym lunit ; (old v) → sym (begin
𝕤𝕦𝕓 (𝕣𝕖𝕟 (σ v) old) (add 𝕋 (𝕤𝕦𝕓 a σ) 𝕧𝕒𝕣)
≡⟨ 𝕤𝕦𝕓ᶜ.f∘r ⟩
𝕤𝕦𝕓 (σ v) (λ v → add 𝕋 (𝕤𝕦𝕓 a σ) 𝕧𝕒𝕣 (old v))
≡⟨ cong (𝕤𝕦𝕓 (σ v)) (dext (λ{ new → refl ; (old v) → refl})) ⟩
𝕤𝕦𝕓 (σ v) 𝕧𝕒𝕣
≡⟨ runit ⟩
σ v
≡˘⟨ lunit ⟩
𝕤𝕦𝕓 (𝕧𝕒𝕣 v) σ
∎)})) ⟩
𝕤𝕦𝕓 b (λ v → 𝕤𝕦𝕓 (lift 𝕋ᴮ ⌈ β ⌋ σ v) (add 𝕋 (𝕤𝕦𝕓 a σ) 𝕧𝕒𝕣))
≡˘⟨ assoc ⟩
[ 𝕤𝕦𝕓 a σ /] (𝕤𝕦𝕓 b (lift 𝕋ᴮ ⌈ β ⌋ σ))
∎ where open ≡-Reasoning
|
algebraic-stack_agda0000_doc_17251 |
module BuiltinConstructorsNeededForLiterals where
data Nat : Set where
zero : Nat → Nat
suc : Nat → Nat
{-# BUILTIN NATURAL Nat #-}
data ⊥ : Set where
empty : Nat → ⊥
empty (zero n) = empty n
empty (suc n) = empty n
bad : ⊥
bad = empty 0
|
algebraic-stack_agda0000_doc_17252 | {-# OPTIONS --without-K #-}
open import HoTT
open import homotopy.HSpace renaming (HSpaceStructure to HSS)
open import homotopy.WedgeExtension
module homotopy.Pi2HSusp where
module Pi2HSusp {i} (A : Type i) (gA : has-level ⟨ 1 ⟩ A)
(cA : is-connected ⟨0⟩ A) (A-H : HSS A)
(μcoh : HSS.μe- A-H (HSS.e A-H) == HSS.μ-e A-H (HSS.e A-H))
where
{- TODO this belongs somewhere else, but where? -}
private
Type=-ext : ∀ {i} {A B : Type i} (p q : A == B)
→ ((x : A) → coe p x == coe q x) → p == q
Type=-ext p q α =
! (ua-η p)
∙ ap ua (pair= (λ= α) (prop-has-all-paths-↓ (is-equiv-is-prop (coe q))))
∙ ua-η q
open HSpaceStructure A-H
open ConnectedHSpace A cA A-H
P : Suspension A → Type i
P x = Trunc ⟨ 1 ⟩ (north A == x)
module Codes = SuspensionRec A A A (λ a → ua (μ-equiv a))
Codes : Suspension A → Type i
Codes = Codes.f
Codes-level : (x : Suspension A) → has-level ⟨ 1 ⟩ (Codes x)
Codes-level = Suspension-elim A gA gA
(λ _ → prop-has-all-paths-↓ has-level-is-prop)
encode₀ : {x : Suspension A} → (north A == x) → Codes x
encode₀ α = transport Codes α e
encode : {x : Suspension A} → P x → Codes x
encode {x} = Trunc-rec (Codes-level x) encode₀
decode' : A → P (north A)
decode' a = [ (merid A a ∙ ! (merid A e)) ]
abstract
transport-Codes-mer : (a a' : A)
→ transport Codes (merid A a) a' == μ a a'
transport-Codes-mer a a' =
coe (ap Codes (merid A a)) a'
=⟨ Codes.glue-β a |in-ctx (λ w → coe w a') ⟩
coe (ua (μ-equiv a)) a'
=⟨ coe-β (μ-equiv a) a' ⟩
μ a a' ∎
transport-Codes-mer-e-! : (a : A)
→ transport Codes (! (merid A e)) a == a
transport-Codes-mer-e-! a =
coe (ap Codes (! (merid A e))) a
=⟨ ap-! Codes (merid A e) |in-ctx (λ w → coe w a) ⟩
coe (! (ap Codes (merid A e))) a
=⟨ Codes.glue-β e |in-ctx (λ w → coe (! w) a) ⟩
coe (! (ua (μ-equiv e))) a
=⟨ Type=-ext (ua (μ-equiv e)) idp (λ x → coe-β _ x ∙ μe- x)
|in-ctx (λ w → coe (! w) a) ⟩
coe (! idp) a ∎
abstract
encode-decode' : (a : A) → encode (decode' a) == a
encode-decode' a =
transport Codes (merid A a ∙ ! (merid A e)) e
=⟨ trans-∙ {B = Codes} (merid A a) (! (merid A e)) e ⟩
transport Codes (! (merid A e)) (transport Codes (merid A a) e)
=⟨ transport-Codes-mer a e ∙ μ-e a
|in-ctx (λ w → transport Codes (! (merid A e)) w) ⟩
transport Codes (! (merid A e)) a
=⟨ transport-Codes-mer-e-! a ⟩
a ∎
abstract
homomorphism : (a a' : A)
→ Path {A = Trunc ⟨ 1 ⟩ (north A == south A)}
[ merid A (μ a a' ) ] [ merid A a' ∙ ! (merid A e) ∙ merid A a ]
homomorphism = WedgeExt.ext args
where
args : WedgeExt.args {a₀ = e} {b₀ = e}
args = record {m = ⟨-2⟩; n = ⟨-2⟩; cA = cA; cB = cA;
P = λ a a' → (_ , Trunc-level {n = ⟨ 1 ⟩} _ _);
f = λ a → ap [_] $
merid A (μ a e)
=⟨ ap (merid A) (μ-e a) ⟩
merid A a
=⟨ ap (λ w → w ∙ merid A a) (! (!-inv-r (merid A e)))
∙ ∙-assoc (merid A e) (! (merid A e)) (merid A a) ⟩
merid A e ∙ ! (merid A e) ∙ merid A a ∎;
g = λ a' → ap [_] $
merid A (μ e a')
=⟨ ap (merid A) (μe- a') ⟩
merid A a'
=⟨ ! (∙-unit-r (merid A a'))
∙ ap (λ w → merid A a' ∙ w) (! (!-inv-l (merid A e))) ⟩
merid A a' ∙ ! (merid A e) ∙ merid A e ∎ ;
p = ap (λ {(p₁ , p₂) → ap [_] $
merid A (μ e e) =⟨ p₁ ⟩
merid A e =⟨ p₂ ⟩
merid A e ∙ ! (merid A e) ∙ merid A e ∎})
(pair×= (ap (λ x → ap (merid A) x) (! μcoh)) (coh (merid A e)))}
where coh : {B : Type i} {b b' : B} (p : b == b')
→ ap (λ w → w ∙ p) (! (!-inv-r p)) ∙ ∙-assoc p (! p) p
== ! (∙-unit-r p) ∙ ap (λ w → p ∙ w) (! (!-inv-l p))
coh idp = idp
decode : {x : Suspension A} → Codes x → P x
decode {x} = Suspension-elim A {P = λ x → Codes x → P x}
decode'
(λ a → [ merid A a ])
(λ a → ↓-→-from-transp (λ= $ STS a))
x
where
abstract
STS : (a a' : A) → transport P (merid A a) (decode' a')
== [ merid A (transport Codes (merid A a) a') ]
STS a a' =
transport P (merid A a) [ merid A a' ∙ ! (merid A e) ]
=⟨ transport-Trunc (λ x → north A == x) (merid A a) _ ⟩
[ transport (λ x → north A == x) (merid A a) (merid A a' ∙ ! (merid A e)) ]
=⟨ ap [_] (trans-pathfrom {A = Suspension A} (merid A a) _) ⟩
[ (merid A a' ∙ ! (merid A e)) ∙ merid A a ]
=⟨ ap [_] (∙-assoc (merid A a') (! (merid A e)) (merid A a)) ⟩
[ merid A a' ∙ ! (merid A e) ∙ merid A a ]
=⟨ ! (homomorphism a a') ⟩
[ merid A (μ a a') ]
=⟨ ap ([_] ∘ merid A) (! (transport-Codes-mer a a')) ⟩
[ merid A (transport Codes (merid A a) a') ] ∎
abstract
decode-encode : {x : Suspension A} (tα : P x)
→ decode {x} (encode {x} tα) == tα
decode-encode {x} = Trunc-elim
{P = λ tα → decode {x} (encode {x} tα) == tα}
(λ _ → =-preserves-level ⟨ 1 ⟩ Trunc-level)
(J (λ y p → decode {y} (encode {y} [ p ]) == [ p ])
(ap [_] (!-inv-r (merid A e))))
main-lemma-eqv : Trunc ⟨ 1 ⟩ (north A == north A) ≃ A
main-lemma-eqv = equiv encode decode' encode-decode' decode-encode
⊙main-lemma : ⊙Trunc ⟨ 1 ⟩ (⊙Ω (⊙Susp (A , e))) == (A , e)
⊙main-lemma = ⊙ua main-lemma-eqv idp
abstract
main-lemma-iso : (t1 : 1 ≠ 0) →
Ω^-Group 1 t1 (⊙Trunc ⟨ 1 ⟩ (⊙Ω (⊙Susp (A , e)))) Trunc-level
≃ᴳ Ω^-Group 1 t1 (⊙Trunc ⟨ 1 ⟩ (A , e)) Trunc-level
main-lemma-iso _ = (record {f = f; pres-comp = pres-comp} , ie)
where
h : fst (⊙Trunc ⟨ 1 ⟩ (⊙Ω (⊙Susp (A , e)))
⊙→ ⊙Trunc ⟨ 1 ⟩ (A , e))
h = (λ x → [ encode x ]) , idp
f : Ω (⊙Trunc ⟨ 1 ⟩ (⊙Ω (⊙Susp (A , e)))) → Ω (⊙Trunc ⟨ 1 ⟩ (A , e))
f = fst (ap^ 1 h)
pres-comp : (p q : Ω^ 1 (⊙Trunc ⟨ 1 ⟩ (⊙Ω (⊙Susp (A , e)))))
→ f (conc^ 1 (ℕ-S≠O _) p q) == conc^ 1 (ℕ-S≠O _) (f p) (f q)
pres-comp = ap^-conc^ 1 (ℕ-S≠O _) h
ie : is-equiv f
ie = is-equiv-ap^ 1 h (snd $ ((unTrunc-equiv A gA)⁻¹ ∘e main-lemma-eqv))
abstract
π₂-Suspension : (t1 : 1 ≠ 0) (t2 : 2 ≠ 0)
→ π 2 t2 (⊙Susp (A , e)) == π 1 t1 (A , e)
π₂-Suspension t1 t2 =
π 2 t2 (⊙Susp (A , e))
=⟨ π-inner-iso 1 t1 t2 (⊙Susp (A , e)) ⟩
π 1 t1 (⊙Ω (⊙Susp (A , e)))
=⟨ ! (π-Trunc-shift-iso 1 t1 (⊙Ω (⊙Susp (A , e)))) ⟩
Ω^-Group 1 t1 (⊙Trunc ⟨ 1 ⟩ (⊙Ω (⊙Susp (A , e)))) Trunc-level
=⟨ group-ua (main-lemma-iso t1) ⟩
Ω^-Group 1 t1 (⊙Trunc ⟨ 1 ⟩ (A , e)) Trunc-level
=⟨ π-Trunc-shift-iso 1 t1 (A , e) ⟩
π 1 t1 (A , e) ∎
|
algebraic-stack_agda0000_doc_17253 | open import Categories
open import Monads
open import Level
import Monads.CatofAdj
module Monads.CatofAdj.TermAdjHom
{c d}
{C : Cat {c}{d}}
(M : Monad C)
(A : Cat.Obj (Monads.CatofAdj.CatofAdj M {c ⊔ d}{c ⊔ d})) where
open import Library
open import Functors
open import Adjunctions
open import Monads.EM M
open Monads.CatofAdj M
open import Monads.CatofAdj.TermAdjObj M
open Cat
open Fun
open Adj
open Monad
open ObjAdj
K' : Fun (D A) (D EMObj)
K' = record {
OMap = λ X → record {
acar = OMap (R (adj A)) X;
astr = λ Z f → subst (λ Z → Hom C Z (OMap (R (adj A)) X))
(fcong Z (cong OMap (law A)))
(HMap (R (adj A)) (right (adj A) f));
alaw1 = λ {Z} {f} → alaw1lem
(TFun M)
(L (adj A))
(R (adj A))
(law A)
(η M)
(right (adj A))
(left (adj A))
(ηlaw A)
(natleft (adj A) (iden C) (right (adj A) f) (iden (D A)))
(lawb (adj A) f);
alaw2 = λ {Z} {W} {k} {f} → alaw2lem
(TFun M)
(L (adj A))
(R (adj A))
(law A)
(right (adj A))
(bind M)
(natright (adj A))
(bindlaw A {_}{_}{k})};
HMap = λ {X} {Y} f → record {
amor = HMap (R (adj A)) f;
ahom = λ {Z} {g} → ahomlem
(TFun M)
(L (adj A))
(R (adj A))
(law A)
(right (adj A))
(natright (adj A))};
fid = AlgMorphEq (fid (R (adj A)));
fcomp = AlgMorphEq (fcomp (R (adj A)))}
Llaw' : K' ○ L (adj A) ≅ L (adj EMObj)
Llaw' = FunctorEq
_
_
(ext (λ X → AlgEq
(fcong X (cong OMap (law A)))
((ext λ Z → dext (λ {f} {f'} p → Llawlem
(TFun M)
(L (adj A))
(R (adj A))
(law A)
(right (adj A))
(bind M)
(bindlaw A)
p)))))
(iext λ X → iext λ Y → ext λ f → AlgMorphEq'
(AlgEq
(fcong X (cong OMap (law A)))
((ext λ Z → dext (λ {f₁} {f'} p → Llawlem
(TFun M)
(L (adj A))
(R (adj A))
(law A)
(right (adj A))
(bind M)
(bindlaw A)
p))))
(AlgEq
(fcong Y (cong OMap (law A)))
((ext λ Z → dext (λ {f₁} {f'} p → Llawlem
(TFun M)
(L (adj A))
(R (adj A))
(law A)
(right (adj A))
(bind M)
(bindlaw A)
p))))
(dcong
(refl {x = f})
(ext (λ _ → cong₂
(Hom C)
(fcong X (cong OMap (law A)))
(fcong Y (cong OMap (law A)))))
(dicong
(refl {x = Y})
(ext (λ z → cong
(λ F → Hom C X z → Hom C (F X) (F z))
(cong OMap (law A))))
(dicong
(refl {x = X})
(ext (λ z → cong
(λ F → ∀ {y} → Hom C z y → Hom C (F z) (F y))
(cong OMap (law A))))
(cong HMap (law A))))))
Rlaw' : R (adj A) ≅ R (adj EMObj) ○ K'
Rlaw' = FunctorEq _ _ refl refl
rightlaw' : {X : Obj C} {Y : Obj (D A)} {f : Hom C X (OMap (R (adj A)) Y)} →
HMap K' (right (adj A) f)
≅
right (adj EMObj)
{X}
{OMap K' Y}
(subst (Hom C X) (fcong Y (cong OMap Rlaw')) f)
rightlaw' {X = X}{Y = Y}{f = f} = AlgMorphEq'
(AlgEq (fcong X (cong OMap (law A)))
(ext λ Z → dext (λ p → Llawlem (TFun M)
(L (adj A))
(R (adj A))
(law A)
(right (adj A))
(bind M)
(bindlaw A) p )))
refl
(trans (cong (λ (f₁ : Hom C X (OMap (R (adj A)) Y)) →
HMap (R (adj A)) (right (adj A) f₁)) (sym (stripsubst (Hom C X) f (fcong Y (cong OMap Rlaw')))) ) (sym (stripsubst (λ Z → Hom C Z (OMap (R (adj A)) Y)) ( ((HMap (R (adj A))
(right (adj A)
(subst (Hom C X) (fcong Y (cong (λ r → OMap r) Rlaw')) f))))) (fcong X (cong OMap (law A))))))
EMHom : Hom CatofAdj A EMObj
EMHom = record {
K = K';
Llaw = Llaw';
Rlaw = Rlaw';
rightlaw = rightlaw'}
|
algebraic-stack_agda0000_doc_17254 | {-# OPTIONS --without-K --rewriting #-}
open import lib.Base
open import lib.PathFunctor
open import lib.PathGroupoid
open import lib.Equivalence
{- Structural lemmas about paths over paths
The lemmas here have the form
[↓-something-in] : introduction rule for the something
[↓-something-out] : elimination rule for the something
[↓-something-β] : β-reduction rule for the something
[↓-something-η] : η-reduction rule for the something
The possible somethings are:
[cst] : constant fibration
[cst2] : fibration constant in the second argument
[cst2×] : fibration constant and nondependent in the second argument
[ap] : the path below is of the form [ap f p]
[fst×] : the fibration is [fst] (nondependent product)
[snd×] : the fibration is [snd] (nondependent product)
The rule of prime: The above lemmas should choose
between [_∙_] and [_∙'_] in a way that, if the underlying path is [idp],
then the entire lemma reduces to an identity function.
Otherwise, the lemma would have the suffix [in'] or [out'], meaning that
all the choices of [_∙_] or [_∙'_] are exactly the opposite ones.
You can also go back and forth between dependent paths and homogeneous paths
with a transport on one side with the functions
[to-transp], [from-transp], [to-transp-β]
[to-transp!], [from-transp!], [to-transp!-β]
More lemmas about paths over paths are present in the lib.types.* modules
(depending on the type constructor of the fibration)
-}
module lib.PathOver where
{- Dependent paths in a constant fibration -}
module _ {i j} {A : Type i} {B : Type j} where
↓-cst-in : {x y : A} {p : x == y} {u v : B}
→ u == v
→ u == v [ (λ _ → B) ↓ p ]
↓-cst-in {p = idp} q = q
↓-cst-out : {x y : A} {p : x == y} {u v : B}
→ u == v [ (λ _ → B) ↓ p ]
→ u == v
↓-cst-out {p = idp} q = q
↓-cst-β : {x y : A} (p : x == y) {u v : B} (q : u == v)
→ (↓-cst-out (↓-cst-in {p = p} q) == q)
↓-cst-β idp q = idp
{- Interaction of [↓-cst-in] with [_∙_] -}
↓-cst-in-∙ : {x y z : A} (p : x == y) (q : y == z) {u v w : B}
(p' : u == v) (q' : v == w)
→ ↓-cst-in {p = p ∙ q} (p' ∙ q')
== ↓-cst-in {p = p} p' ∙ᵈ ↓-cst-in {p = q} q'
↓-cst-in-∙ idp idp idp idp = idp
{- Interaction of [↓-cst-in] with [_∙'_] -}
↓-cst-in-∙' : {x y z : A} (p : x == y) (q : y == z) {u v w : B}
(p' : u == v) (q' : v == w)
→ ↓-cst-in {p = p ∙' q} (p' ∙' q')
== ↓-cst-in {p = p} p' ∙'ᵈ ↓-cst-in {p = q} q'
↓-cst-in-∙' idp idp idp idp = idp
{- Introduction of an equality between [↓-cst-in]s (used to deduce the
recursor from the eliminator in HIT with 2-paths) -}
↓-cst-in2 : {a a' : A} {u v : B}
{p₀ : a == a'} {p₁ : a == a'} {q₀ q₁ : u == v} {q : p₀ == p₁}
→ q₀ == q₁
→ (↓-cst-in {p = p₀} q₀ == ↓-cst-in {p = p₁} q₁ [ (λ p → u == v [ (λ _ → B) ↓ p ]) ↓ q ])
↓-cst-in2 {p₀ = idp} {p₁ = .idp} {q₀} {q₁} {idp} k = k
-- Dependent paths in a fibration constant in the second argument
module _ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k} where
↓-cst2-in : {x y : A} (p : x == y) {b : C x} {c : C y}
(q : b == c [ C ↓ p ]) {u : B x} {v : B y}
→ u == v [ B ↓ p ]
→ u == v [ (λ xy → B (fst xy)) ↓ (pair= p q) ]
↓-cst2-in idp idp r = r
↓-cst2-out : {x y : A} (p : x == y) {b : C x} {c : C y}
(q : b == c [ C ↓ p ]) {u : B x} {v : B y}
→ u == v [ (λ xy → B (fst xy)) ↓ (pair= p q) ]
→ u == v [ B ↓ p ]
↓-cst2-out idp idp r = r
-- Dependent paths in a fibration constant and non dependent in the
-- second argument
module _ {i j k} {A : Type i} {B : A → Type j} {C : Type k} where
↓-cst2×-in : {x y : A} (p : x == y) {b c : C}
(q : b == c) {u : B x} {v : B y}
→ u == v [ B ↓ p ]
→ u == v [ (λ xy → B (fst xy)) ↓ (pair×= p q) ]
↓-cst2×-in idp idp r = r
↓-cst2×-out : {x y : A} (p : x == y) {b c : C}
(q : b == c) {u : B x} {v : B y}
→ u == v [ (λ xy → B (fst xy)) ↓ (pair×= p q) ]
→ u == v [ B ↓ p ]
↓-cst2×-out idp idp r = r
-- Dependent paths in the universal fibration over the universe
↓-idf-out : ∀ {i} {A B : Type i} (p : A == B) {u : A} {v : B}
→ u == v [ (λ x → x) ↓ p ]
→ coe p u == v
↓-idf-out idp = idf _
↓-idf-in : ∀ {i} {A B : Type i} (p : A == B) {u : A} {v : B}
→ coe p u == v
→ u == v [ (λ x → x) ↓ p ]
↓-idf-in idp = idf _
-- Dependent paths over [ap f p]
module _ {i j k} {A : Type i} {B : Type j} (C : B → Type k) (f : A → B) where
↓-ap-in : {x y : A} {p : x == y} {u : C (f x)} {v : C (f y)}
→ u == v [ C ∘ f ↓ p ]
→ u == v [ C ↓ ap f p ]
↓-ap-in {p = idp} idp = idp
↓-ap-out : {x y : A} (p : x == y) {u : C (f x)} {v : C (f y)}
→ u == v [ C ↓ ap f p ]
→ u == v [ C ∘ f ↓ p ]
↓-ap-out idp idp = idp
-- Dependent paths over [ap2 f p q]
module _ {i j k l} {A : Type i} {B : Type j} {C : Type k} (D : C → Type l)
(f : A → B → C) where
↓-ap2-in : {x y : A} {p : x == y} {w z : B} {q : w == z}
{u : D (f x w)} {v : D (f y z)}
→ u == v [ D ∘ uncurry f ↓ pair×= p q ]
→ u == v [ D ↓ ap2 f p q ]
↓-ap2-in {p = idp} {q = idp} α = α
↓-ap2-out : {x y : A} {p : x == y} {w z : B} {q : w == z}
{u : D (f x w)} {v : D (f y z)}
→ u == v [ D ↓ ap2 f p q ]
→ u == v [ D ∘ uncurry f ↓ pair×= p q ]
↓-ap2-out {p = idp} {q = idp} α = α
apd↓ : ∀ {i j k} {A : Type i} {B : A → Type j} {C : (a : A) → B a → Type k}
(f : {a : A} (b : B a) → C a b) {x y : A} {p : x == y}
{u : B x} {v : B y} (q : u == v [ B ↓ p ])
→ f u == f v [ (λ xy → C (fst xy) (snd xy)) ↓ pair= p q ]
apd↓ f {p = idp} idp = idp
apd↓=apd : ∀ {i j} {A : Type i} {B : A → Type j} (f : (a : A) → B a) {x y : A}
(p : x == y) → (apd f p == ↓-ap-out _ _ p (apd↓ {A = Unit} f {p = idp} p))
apd↓=apd f idp = idp
-- Paths in the fibrations [fst] and [snd]
module _ {i j} where
↓-fst×-out : {A A' : Type i} {B B' : Type j} (p : A == A') (q : B == B')
{u : A} {v : A'}
→ u == v [ fst ↓ pair×= p q ]
→ u == v [ (λ X → X) ↓ p ]
↓-fst×-out idp idp h = h
↓-snd×-in : {A A' : Type i} {B B' : Type j} (p : A == A') (q : B == B')
{u : B} {v : B'}
→ u == v [ (λ X → X) ↓ q ]
→ u == v [ snd ↓ pair×= p q ]
↓-snd×-in idp idp h = h
-- Mediating dependent paths with the transport version
module _ {i j} {A : Type i} where
from-transp : (B : A → Type j) {a a' : A} (p : a == a')
{u : B a} {v : B a'}
→ (transport B p u == v)
→ (u == v [ B ↓ p ])
from-transp B idp idp = idp
to-transp : {B : A → Type j} {a a' : A} {p : a == a'}
{u : B a} {v : B a'}
→ (u == v [ B ↓ p ])
→ (transport B p u == v)
to-transp {p = idp} idp = idp
to-transp-β : (B : A → Type j) {a a' : A} (p : a == a')
{u : B a} {v : B a'}
(q : transport B p u == v)
→ to-transp (from-transp B p q) == q
to-transp-β B idp idp = idp
to-transp-η : {B : A → Type j} {a a' : A} {p : a == a'}
{u : B a} {v : B a'}
(q : u == v [ B ↓ p ])
→ from-transp B p (to-transp q) == q
to-transp-η {p = idp} idp = idp
to-transp-equiv : (B : A → Type j) {a a' : A} (p : a == a')
{u : B a} {v : B a'} → (u == v [ B ↓ p ]) ≃ (transport B p u == v)
to-transp-equiv B p =
equiv to-transp (from-transp B p) (to-transp-β B p) (to-transp-η)
from-transp! : (B : A → Type j)
{a a' : A} (p : a == a')
{u : B a} {v : B a'}
→ (u == transport! B p v)
→ (u == v [ B ↓ p ])
from-transp! B idp idp = idp
to-transp! : {B : A → Type j}
{a a' : A} {p : a == a'}
{u : B a} {v : B a'}
→ (u == v [ B ↓ p ])
→ (u == transport! B p v)
to-transp! {p = idp} idp = idp
to-transp!-β : (B : A → Type j)
{a a' : A} (p : a == a')
{u : B a} {v : B a'}
(q : u == transport! B p v)
→ to-transp! (from-transp! B p q) == q
to-transp!-β B idp idp = idp
to-transp!-η : {B : A → Type j} {a a' : A} {p : a == a'}
{u : B a} {v : B a'}
(q : u == v [ B ↓ p ])
→ from-transp! B p (to-transp! q) == q
to-transp!-η {p = idp} idp = idp
to-transp!-equiv : (B : A → Type j) {a a' : A} (p : a == a')
{u : B a} {v : B a'} → (u == v [ B ↓ p ]) ≃ (u == transport! B p v)
to-transp!-equiv B p =
equiv to-transp! (from-transp! B p) (to-transp!-β B p) (to-transp!-η)
{- Various other lemmas -}
{- Used for defining the recursor from the eliminator for 1-HIT -}
apd=cst-in : ∀ {i j} {A : Type i} {B : Type j} {f : A → B}
{a a' : A} {p : a == a'} {q : f a == f a'}
→ apd f p == ↓-cst-in q → ap f p == q
apd=cst-in {p = idp} x = x
↓-apd-out : ∀ {i j k} {A : Type i} {B : A → Type j} (C : (a : A) → B a → Type k)
{f : Π A B} {x y : A} {p : x == y}
{q : f x == f y [ B ↓ p ]} (r : apd f p == q)
{u : C x (f x)} {v : C y (f y)}
→ u == v [ uncurry C ↓ pair= p q ]
→ u == v [ (λ z → C z (f z)) ↓ p ]
↓-apd-out C {p = idp} idp idp = idp
↓-ap-out= : ∀ {i j k} {A : Type i} {B : Type j} (C : (b : B) → Type k)
(f : A → B) {x y : A} (p : x == y)
{q : f x == f y} (r : ap f p == q)
{u : C (f x)} {v : C (f y)}
→ u == v [ C ↓ q ]
→ u == v [ (λ z → C (f z)) ↓ p ]
↓-ap-out= C f idp idp idp = idp
-- No idea what that is
to-transp-weird : ∀ {i j} {A : Type i} {B : A → Type j}
{u v : A} {d : B u} {d' d'' : B v} {p : u == v}
(q : d == d' [ B ↓ p ]) (r : transport B p d == d'')
→ (from-transp B p r ∙'ᵈ (! r ∙ to-transp q)) == q
to-transp-weird {p = idp} idp idp = idp
-- Something not really clear yet
module _ {i j k} {A : Type i} {B : Type j} {C : Type k} (f : A → C) (g : B → C)
where
↓-swap : {a a' : A} {p : a == a'} {b b' : B} {q : b == b'}
(r : f a == g b') (s : f a' == g b)
→ (ap f p ∙' s == r [ (λ x → f a == g x) ↓ q ])
→ (r == s ∙ ap g q [ (λ x → f x == g b') ↓ p ])
↓-swap {p = idp} {q = idp} r s t = (! t) ∙ ∙'-unit-l s ∙ ! (∙-unit-r s)
↓-swap! : {a a' : A} {p : a == a'} {b b' : B} {q : b == b'}
(r : f a == g b') (s : f a' == g b)
→ (r == s ∙ ap g q [ (λ x → f x == g b') ↓ p ])
→ (ap f p ∙' s == r [ (λ x → f a == g x) ↓ q ])
↓-swap! {p = idp} {q = idp} r s t = ∙'-unit-l s ∙ ! (∙-unit-r s) ∙ (! t)
↓-swap-β : {a a' : A} {p : a == a'} {b b' : B} {q : b == b'}
(r : f a == g b') (s : f a' == g b)
(t : ap f p ∙' s == r [ (λ x → f a == g x) ↓ q ])
→ ↓-swap! r s (↓-swap r s t) == t
↓-swap-β {p = idp} {q = idp} r s t = coh (∙'-unit-l s) (∙-unit-r s) t where
coh : ∀ {i} {X : Type i} {x y z t : X} (p : x == y) (q : z == y) (r : x == t)
→ p ∙ ! q ∙ ! (! r ∙ p ∙ ! q) == r
coh idp idp idp = idp
transp-↓ : ∀ {i j} {A : Type i} (P : A → Type j) {a₁ a₂ : A}
(p : a₁ == a₂) (y : P a₂) → transport P (! p) y == y [ P ↓ p ]
transp-↓ _ idp _ = idp
transp-ap-↓ : ∀ {i j k} {A : Type i} {B : Type j} (P : B → Type k) (h : A → B)
{a₁ a₂ : A} (p : a₁ == a₂) (y : P (h a₂))
→ transport P (! (ap h p)) y == y [ P ∘ h ↓ p ]
transp-ap-↓ _ _ idp _ = idp
|
algebraic-stack_agda0000_doc_17255 | ------------------------------------------------------------------------
-- The Agda standard library
--
-- The lifting of a strict order to incorporate a new supremum
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
-- This module is designed to be used with
-- Relation.Nullary.Construct.Add.Supremum
open import Relation.Binary
module Relation.Binary.Construct.Add.Supremum.Strict
{a r} {A : Set a} (_<_ : Rel A r) where
open import Level using (_⊔_)
open import Data.Product
open import Function
open import Relation.Nullary hiding (Irrelevant)
import Relation.Nullary.Decidable as Dec
open import Relation.Binary.PropositionalEquality as P
using (_≡_; refl)
open import Relation.Nullary.Construct.Add.Supremum
import Relation.Binary.Construct.Add.Supremum.Equality as Equality
import Relation.Binary.Construct.Add.Supremum.NonStrict as NonStrict
------------------------------------------------------------------------
-- Definition
infix 4 _<⁺_
data _<⁺_ : Rel (A ⁺) (a ⊔ r) where
[_] : {k l : A} → k < l → [ k ] <⁺ [ l ]
[_]<⊤⁺ : (k : A) → [ k ] <⁺ ⊤⁺
------------------------------------------------------------------------
-- Relational properties
[<]-injective : ∀ {k l} → [ k ] <⁺ [ l ] → k < l
[<]-injective [ p ] = p
<⁺-asym : Asymmetric _<_ → Asymmetric _<⁺_
<⁺-asym <-asym [ p ] [ q ] = <-asym p q
<⁺-trans : Transitive _<_ → Transitive _<⁺_
<⁺-trans <-trans [ p ] [ q ] = [ <-trans p q ]
<⁺-trans <-trans [ p ] [ k ]<⊤⁺ = [ _ ]<⊤⁺
<⁺-dec : Decidable _<_ → Decidable _<⁺_
<⁺-dec _<?_ [ k ] [ l ] = Dec.map′ [_] [<]-injective (k <? l)
<⁺-dec _<?_ [ k ] ⊤⁺ = yes [ k ]<⊤⁺
<⁺-dec _<?_ ⊤⁺ [ l ] = no (λ ())
<⁺-dec _<?_ ⊤⁺ ⊤⁺ = no (λ ())
<⁺-irrelevant : Irrelevant _<_ → Irrelevant _<⁺_
<⁺-irrelevant <-irr [ p ] [ q ] = P.cong _ (<-irr p q)
<⁺-irrelevant <-irr [ k ]<⊤⁺ [ k ]<⊤⁺ = P.refl
module _ {r} {_≤_ : Rel A r} where
open NonStrict _≤_
<⁺-transʳ : Trans _≤_ _<_ _<_ → Trans _≤⁺_ _<⁺_ _<⁺_
<⁺-transʳ <-transʳ [ p ] [ q ] = [ <-transʳ p q ]
<⁺-transʳ <-transʳ [ p ] [ k ]<⊤⁺ = [ _ ]<⊤⁺
<⁺-transˡ : Trans _<_ _≤_ _<_ → Trans _<⁺_ _≤⁺_ _<⁺_
<⁺-transˡ <-transˡ [ p ] [ q ] = [ <-transˡ p q ]
<⁺-transˡ <-transˡ [ p ] ([ _ ] ≤⊤⁺) = [ _ ]<⊤⁺
<⁺-transˡ <-transˡ [ k ]<⊤⁺ (⊤⁺ ≤⊤⁺) = [ k ]<⊤⁺
------------------------------------------------------------------------
-- Relational properties + propositional equality
<⁺-cmp-≡ : Trichotomous _≡_ _<_ → Trichotomous _≡_ _<⁺_
<⁺-cmp-≡ <-cmp ⊤⁺ ⊤⁺ = tri≈ (λ ()) refl (λ ())
<⁺-cmp-≡ <-cmp ⊤⁺ [ l ] = tri> (λ ()) (λ ()) [ l ]<⊤⁺
<⁺-cmp-≡ <-cmp [ k ] ⊤⁺ = tri< [ k ]<⊤⁺ (λ ()) (λ ())
<⁺-cmp-≡ <-cmp [ k ] [ l ] with <-cmp k l
... | tri< a ¬b ¬c = tri< [ a ] (¬b ∘ []-injective) (¬c ∘ [<]-injective)
... | tri≈ ¬a refl ¬c = tri≈ (¬a ∘ [<]-injective) refl (¬c ∘ [<]-injective)
... | tri> ¬a ¬b c = tri> (¬a ∘ [<]-injective) (¬b ∘ []-injective) [ c ]
<⁺-irrefl-≡ : Irreflexive _≡_ _<_ → Irreflexive _≡_ _<⁺_
<⁺-irrefl-≡ <-irrefl refl [ x ] = <-irrefl refl x
<⁺-respˡ-≡ : _<⁺_ Respectsˡ _≡_
<⁺-respˡ-≡ = P.subst (_<⁺ _)
<⁺-respʳ-≡ : _<⁺_ Respectsʳ _≡_
<⁺-respʳ-≡ = P.subst (_ <⁺_)
<⁺-resp-≡ : _<⁺_ Respects₂ _≡_
<⁺-resp-≡ = <⁺-respʳ-≡ , <⁺-respˡ-≡
------------------------------------------------------------------------
-- Relational properties + setoid equality
module _ {e} {_≈_ : Rel A e} where
open Equality _≈_
<⁺-cmp : Trichotomous _≈_ _<_ → Trichotomous _≈⁺_ _<⁺_
<⁺-cmp <-cmp ⊤⁺ ⊤⁺ = tri≈ (λ ()) ⊤⁺≈⊤⁺ (λ ())
<⁺-cmp <-cmp ⊤⁺ [ l ] = tri> (λ ()) (λ ()) [ l ]<⊤⁺
<⁺-cmp <-cmp [ k ] ⊤⁺ = tri< [ k ]<⊤⁺ (λ ()) (λ ())
<⁺-cmp <-cmp [ k ] [ l ] with <-cmp k l
... | tri< a ¬b ¬c = tri< [ a ] (¬b ∘ [≈]-injective) (¬c ∘ [<]-injective)
... | tri≈ ¬a b ¬c = tri≈ (¬a ∘ [<]-injective) [ b ] (¬c ∘ [<]-injective)
... | tri> ¬a ¬b c = tri> (¬a ∘ [<]-injective) (¬b ∘ [≈]-injective) [ c ]
<⁺-irrefl : Irreflexive _≈_ _<_ → Irreflexive _≈⁺_ _<⁺_
<⁺-irrefl <-irrefl [ p ] [ q ] = <-irrefl p q
<⁺-respˡ-≈⁺ : _<_ Respectsˡ _≈_ → _<⁺_ Respectsˡ _≈⁺_
<⁺-respˡ-≈⁺ <-respˡ-≈ [ p ] [ q ] = [ <-respˡ-≈ p q ]
<⁺-respˡ-≈⁺ <-respˡ-≈ [ p ] ([ l ]<⊤⁺) = [ _ ]<⊤⁺
<⁺-respˡ-≈⁺ <-respˡ-≈ ⊤⁺≈⊤⁺ q = q
<⁺-respʳ-≈⁺ : _<_ Respectsʳ _≈_ → _<⁺_ Respectsʳ _≈⁺_
<⁺-respʳ-≈⁺ <-respʳ-≈ [ p ] [ q ] = [ <-respʳ-≈ p q ]
<⁺-respʳ-≈⁺ <-respʳ-≈ ⊤⁺≈⊤⁺ q = q
<⁺-resp-≈⁺ : _<_ Respects₂ _≈_ → _<⁺_ Respects₂ _≈⁺_
<⁺-resp-≈⁺ = map <⁺-respʳ-≈⁺ <⁺-respˡ-≈⁺
------------------------------------------------------------------------
-- Structures + propositional equality
<⁺-isStrictPartialOrder-≡ : IsStrictPartialOrder _≡_ _<_ →
IsStrictPartialOrder _≡_ _<⁺_
<⁺-isStrictPartialOrder-≡ strict = record
{ isEquivalence = P.isEquivalence
; irrefl = <⁺-irrefl-≡ irrefl
; trans = <⁺-trans trans
; <-resp-≈ = <⁺-resp-≡
} where open IsStrictPartialOrder strict
<⁺-isDecStrictPartialOrder-≡ : IsDecStrictPartialOrder _≡_ _<_ →
IsDecStrictPartialOrder _≡_ _<⁺_
<⁺-isDecStrictPartialOrder-≡ dectot = record
{ isStrictPartialOrder = <⁺-isStrictPartialOrder-≡ isStrictPartialOrder
; _≟_ = ≡-dec _≟_
; _<?_ = <⁺-dec _<?_
} where open IsDecStrictPartialOrder dectot
<⁺-isStrictTotalOrder-≡ : IsStrictTotalOrder _≡_ _<_ →
IsStrictTotalOrder _≡_ _<⁺_
<⁺-isStrictTotalOrder-≡ strictot = record
{ isEquivalence = P.isEquivalence
; trans = <⁺-trans trans
; compare = <⁺-cmp-≡ compare
} where open IsStrictTotalOrder strictot
------------------------------------------------------------------------
-- Structures + setoid equality
module _ {e} {_≈_ : Rel A e} where
open Equality _≈_
<⁺-isStrictPartialOrder : IsStrictPartialOrder _≈_ _<_ →
IsStrictPartialOrder _≈⁺_ _<⁺_
<⁺-isStrictPartialOrder strict = record
{ isEquivalence = ≈⁺-isEquivalence isEquivalence
; irrefl = <⁺-irrefl irrefl
; trans = <⁺-trans trans
; <-resp-≈ = <⁺-resp-≈⁺ <-resp-≈
} where open IsStrictPartialOrder strict
<⁺-isDecStrictPartialOrder : IsDecStrictPartialOrder _≈_ _<_ →
IsDecStrictPartialOrder _≈⁺_ _<⁺_
<⁺-isDecStrictPartialOrder dectot = record
{ isStrictPartialOrder = <⁺-isStrictPartialOrder isStrictPartialOrder
; _≟_ = ≈⁺-dec _≟_
; _<?_ = <⁺-dec _<?_
} where open IsDecStrictPartialOrder dectot
<⁺-isStrictTotalOrder : IsStrictTotalOrder _≈_ _<_ →
IsStrictTotalOrder _≈⁺_ _<⁺_
<⁺-isStrictTotalOrder strictot = record
{ isEquivalence = ≈⁺-isEquivalence isEquivalence
; trans = <⁺-trans trans
; compare = <⁺-cmp compare
} where open IsStrictTotalOrder strictot
|
algebraic-stack_agda0000_doc_17256 | module _ where
module A where
infix 2 _↑
infix 1 c
data D : Set where
● : D
_↑ : D → D
c : {x y : D} → D
syntax c {x = x} {y = y} = x ↓ y
module B where
infix 1 c
data D : Set where
c : {y x : D} → D
syntax c {y = y} {x = x} = y ↓ x
open A
open B
rejected : A.D
rejected = ● ↑ ↓ ●
|
algebraic-stack_agda0000_doc_17257 | {-# OPTIONS --cubical --safe #-}
module Issue4949 where
open import Agda.Builtin.Cubical.Path
open import Agda.Primitive.Cubical renaming (primIMax to _∨_)
open import Agda.Builtin.Unit
open import Agda.Builtin.Sigma
open import Agda.Builtin.Cubical.Glue renaming (prim^glue to glue)
idIsEquiv : ∀ {ℓ} (A : Set ℓ) → isEquiv (\ (x : A) → x)
equiv-proof (idIsEquiv A) y =
((y , \ _ → y) , λ z i → z .snd (primINeg i) , λ j → z .snd (primINeg i ∨ j))
idEquiv : ∀ {ℓ} (A : Set ℓ) → Σ _ (isEquiv {A = A} {B = A})
idEquiv A .fst = \ x → x
idEquiv A .snd = idIsEquiv A
Glue : ∀ {ℓ ℓ'} (A : Set ℓ) {φ : I}
→ (Te : Partial φ (Σ (Set ℓ') \ T → Σ _ (isEquiv {A = T} {B = A})))
→ Set ℓ'
Glue A Te = primGlue A (λ x → Te x .fst) (λ x → Te x .snd)
ua : ∀ {ℓ} {A B : Set ℓ} → A ≃ B → A ≡ B
ua {A = A} {B = B} e i = Glue B (λ { (i = i0) → (A , e)
; (i = i1) → (B , idEquiv B) })
⊤₀ = ⊤
⊤₁ = Σ ⊤ \ _ → ⊤
prf : isEquiv {A = ⊤₀} {B = ⊤₁} _
equiv-proof prf y = (_ , \ i → _) , (\ y → \ i → _ , (\ j → _))
u : ⊤₀ ≡ ⊤₁
u = ua ((λ _ → _) , prf)
uniq : ∀ i j → u (i ∨ j)
uniq i j = glue (λ { (i = i0) (j = i0) → tt ; (i = i1) → tt , tt ; (j = i1) → tt , tt }) _
-- comparing the partial element argument of `glue` should happen at the right type.
-- if it does not we get problems with eta.
test : ∀ j → uniq i0 j ≡ glue (λ { (i0 = i0) (j = i0) → tt ; (j = i1) → tt , tt }) (tt , tt)
test j = \ k → uniq i0 j
|
algebraic-stack_agda0000_doc_17258 | -- Problem 4: ``50 shades of continuity''
{-
C(f) = ∀ c : X. Cat(f,c)
Cat(f,c) = ∀ ε > 0. ∃ δ > 0. Q(f,c,ε,δ)
Q(f,c,ε,δ) = ∀ x : X. abs(x - c) < δ ⇒ abs(f x - f c) < ε
C'(f) = ∃ getδ : X -> RPos -> RPos. ∀ c : X. ∀ ε > 0. Q(f,c,ε,getδ c ε)
4a: Define UC(f):
UC(f) = ∀ ε > 0. ∃ δ > 0. ∀ y : X. Q(f,y,ε,δ)
4b: Define UC'(f):
UC'(f) = ∃ newδ : RPos -> RPos. ∀ ε > 0. ∀ y : X. Q(f,y,ε,newδ ε)
The function |newδ| computes a suitable "global" |δ| from any |ε|,
which shows |Q| for any |y|.
4c: Prove |∀ f : X -> ℝ. UC'(f) => C'(f)|.
The proof is a function from a pair (newδ, puc) to a pair (getδ, pc).
proof f (newδ, puc) = (getδ, pc)
where getδ c ε = newδ ε
pc c ε = puc ε c -- (1)
The type of (1) is
Q(f,c,ε,newδ ε)
=
Q(f,c,ε,getδ c ε)
which is the type of |pc c ε|.
----------------
Below is a self-contained proof in Agda just to check the above. It is
not part of the exam question.
-}
postulate
R RPos : Set
abs : R -> RPos
_-_ : R -> R -> R
_<_ : RPos -> RPos -> Set
X = R -- to avoid trouble with lack of subtyping
record Sigma (A : Set) (B : A -> Set) : Set where
constructor _,_
field
fst : A
snd : B fst
Q : (X -> R) -> X -> RPos -> RPos -> Set
Q f c ε δ = (x : X) -> (abs( x - c) < δ) ->
(abs(f x - f c) < ε)
Cat : (X -> R) -> X -> Set
Cat f c = (ε : RPos) -> Sigma RPos (\δ ->
Q f c ε δ)
C : (X -> R) -> Set
C f = (c : X) -> Cat f c
C' : (X -> R) -> Set
C' f = Sigma (X -> RPos -> RPos) (\getδ ->
(c : X) -> (ε : RPos) -> Q f c ε (getδ c ε))
UC : (X -> R) -> Set
UC f = (ε : RPos) -> Sigma RPos (\δ ->
(y : X) -> Q f y ε δ)
UC' : (X -> R) -> Set
UC' f = Sigma (RPos -> RPos) (\newδ ->
(ε : RPos) -> (y : X) -> Q f y ε (newδ ε))
proof : (f : X -> R) -> UC' f -> C' f
proof f (newδ , puc) = (getδ , pc)
where getδ = \c -> newδ
pc = \c ε -> puc ε c
|
algebraic-stack_agda0000_doc_17259 | -- {-# OPTIONS --show-implicit --show-irrelevant #-}
module Data.QuadTree.LensProofs.Valid-LensA where
open import Haskell.Prelude renaming (zero to Z; suc to S)
open import Data.Lens.Lens
open import Data.Logic
open import Data.QuadTree.InternalAgda
open import Agda.Primitive
open import Data.Lens.Proofs.LensLaws
open import Data.Lens.Proofs.LensPostulates
open import Data.Lens.Proofs.LensComposition
open import Data.QuadTree.Implementation.QuadrantLenses
open import Data.QuadTree.Implementation.Definition
open import Data.QuadTree.Implementation.ValidTypes
open import Data.QuadTree.Implementation.SafeFunctions
open import Data.QuadTree.Implementation.PublicFunctions
open import Data.QuadTree.Implementation.DataLenses
--- Lens laws for lensA
ValidLens-LensA-ViewSet :
{t : Set} {{eqT : Eq t}} {dep : Nat}
-> ViewSet (lensA {t} {dep})
ValidLens-LensA-ViewSet (CVQuadrant (Leaf x) {p1}) (CVQuadrant (Leaf v) {p2}) =
begin
view lensA (set lensA (CVQuadrant (Leaf x) {p1}) (CVQuadrant (Leaf v) {p2}))
=⟨⟩
getConst
(lensA CConst
(ifc (x == v && v == v && v == v)
then CVQuadrant (Leaf x)
else CVQuadrant (Node (Leaf x) (Leaf v) (Leaf v) (Leaf v))))
=⟨ sym (propFnIfc (x == v && v == v && v == v) (λ x -> getConst (lensA CConst x))) ⟩
(ifc (x == v && v == v && v == v)
then (CVQuadrant (Leaf x))
else (CVQuadrant (Leaf x)))
=⟨ propIfcBranchesSame {c = (x == v && v == v && v == v)} (CVQuadrant (Leaf x)) ⟩
(CVQuadrant (Leaf x))
end
ValidLens-LensA-ViewSet (CVQuadrant (Node a b c d)) (CVQuadrant (Leaf v)) = refl
ValidLens-LensA-ViewSet (CVQuadrant (Leaf x) {p1}) (CVQuadrant (Node a b@(Leaf vb) c@(Leaf vc) d@(Leaf vd)) {p2}) =
begin
view lensA (set lensA (CVQuadrant (Leaf x) {p1}) (CVQuadrant (Node a b c d) {p2}))
=⟨⟩
getConst (lensA CConst (
ifc (x == vb && vb == vc && vc == vd)
then (CVQuadrant (Leaf x))
else (CVQuadrant (Node (Leaf x) (Leaf vb) (Leaf vc) (Leaf vd)))
))
=⟨ sym (propFnIfc (x == vb && vb == vc && vc == vd) (λ x -> getConst (lensA CConst x))) ⟩
(ifc (x == vb && vb == vc && vc == vd)
then (CVQuadrant (Leaf x))
else (CVQuadrant (Leaf x)))
=⟨ propIfcBranchesSame {c = (x == vb && vb == vc && vc == vd)} (CVQuadrant (Leaf x)) ⟩
(CVQuadrant (Leaf x))
end
ValidLens-LensA-ViewSet (CVQuadrant (Leaf x)) (CVQuadrant (Node a (Leaf x₁) (Leaf x₂) (Node d d₁ d₂ d₃))) = refl
ValidLens-LensA-ViewSet (CVQuadrant (Leaf x)) (CVQuadrant (Node a (Leaf x₁) (Node c c₁ c₂ c₃) d)) = refl
ValidLens-LensA-ViewSet (CVQuadrant (Leaf x)) (CVQuadrant (Node a (Node b b₁ b₂ b₃) c d)) = refl
ValidLens-LensA-ViewSet (CVQuadrant (Node toa tob toc tod)) (CVQuadrant (Node a b c d)) = refl
ValidLens-LensA-SetView :
{t : Set} {{eqT : Eq t}} {dep : Nat}
-> SetView (lensA {t} {dep})
ValidLens-LensA-SetView {t} {dep} qd@(CVQuadrant (Leaf x) {p}) =
begin
set lensA (view lensA qd) qd
=⟨⟩
((ifc (x == x && x == x && x == x)
then (CVQuadrant (Leaf x))
else λ {{z}} -> (CVQuadrant (Node (Leaf x) (Leaf x) (Leaf x) (Leaf x)))))
=⟨ ifcTrue (x == x && x == x && x == x) (andCombine (eqReflexivity x) (andCombine (eqReflexivity x) (eqReflexivity x))) ⟩
CVQuadrant (Leaf x)
end
ValidLens-LensA-SetView {t} {dep} cv@(CVQuadrant qd@(Node (Leaf a) (Leaf b) (Leaf c) (Leaf d)) {p}) =
begin
set lensA (view lensA cv) cv
=⟨⟩
(ifc (a == b && b == c && c == d) then (CVQuadrant (Leaf a)) else (CVQuadrant (Node (Leaf a) (Leaf b) (Leaf c) (Leaf d))))
=⟨ ifcFalse (a == b && b == c && c == d) (notTrueToFalse (andSnd {depth qd <= S dep} {isCompressed qd} p)) ⟩
(CVQuadrant (Node (Leaf a) (Leaf b) (Leaf c) (Leaf d)))
end
ValidLens-LensA-SetView (CVQuadrant (Node (Leaf x) (Leaf x₁) (Leaf x₂) (Node qd₃ qd₄ qd₅ qd₆))) = refl
ValidLens-LensA-SetView (CVQuadrant (Node (Leaf x) (Leaf x₁) (Node qd₂ qd₄ qd₅ qd₆) qd₃)) = refl
ValidLens-LensA-SetView (CVQuadrant (Node (Leaf x) (Node qd₁ qd₄ qd₅ qd₆) qd₂ qd₃)) = refl
ValidLens-LensA-SetView (CVQuadrant (Node (Node qd qd₄ qd₅ qd₆) qd₁ qd₂ qd₃)) = refl
ValidLens-LensA-SetSet-Lemma : {t : Set} {{eqT : Eq t}} {dep : Nat}
-> (x a b c d : VQuadrant t {dep})
-> set lensA x (combine a b c d) ≡ (combine x b c d)
ValidLens-LensA-SetSet-Lemma {t} {dep} (CVQuadrant x@(Leaf xv)) (CVQuadrant a@(Leaf va)) (CVQuadrant b@(Leaf vb)) (CVQuadrant c@(Leaf vc)) (CVQuadrant d@(Leaf vd)) =
begin
(runIdentity (lensA (λ _ → CIdentity (CVQuadrant (Leaf xv)))
(ifc va == vb && vb == vc && vc == vd
then CVQuadrant (Leaf va)
else CVQuadrant (Node (Leaf va) (Leaf vb) (Leaf vc) (Leaf vd)))))
=⟨ sym $ propFnIfc (va == vb && vb == vc && vc == vd) (λ g -> (runIdentity (lensA (λ _ → CIdentity (CVQuadrant (Leaf xv) {andCombine (zeroLteAny dep) IsTrue.itsTrue})) g ) ) ) ⟩
(ifc va == vb && vb == vc && vc == vd
then ifc xv == va && va == va && va == va
then CVQuadrant (Leaf xv)
else CVQuadrant (Node (Leaf xv) (Leaf va) (Leaf va) (Leaf va))
else ifc xv == vb && vb == vc && vc == vd
then CVQuadrant (Leaf xv)
else CVQuadrant (Node (Leaf xv) (Leaf vb) (Leaf vc) (Leaf vd)))
=⟨ ifcTrueMap {c = va == vb && vb == vc && vc == vd}
(λ p -> cong
(λ q -> ifc xv == q && q == q && q == q
then CVQuadrant (Leaf xv) {andCombine (zeroLteAny (S dep)) IsTrue.itsTrue}
else (λ {{p}} -> CVQuadrant (Node (Leaf xv) (Leaf q) (Leaf q) (Leaf q)) {andCombine (zeroLteAny (dep)) (falseToNotTrue p)}) )
(eqToEquiv va vb (andFst {va == vb} p)) ) ⟩
(ifc va == vb && vb == vc && vc == vd
then ifc xv == vb && vb == vb && vb == vb
then CVQuadrant (Leaf xv) {andCombine (zeroLteAny (S dep)) IsTrue.itsTrue}
else (λ {{p}} -> CVQuadrant (Node (Leaf xv) (Leaf vb) (Leaf vb) (Leaf vb)) {andCombine (zeroLteAny (dep)) (falseToNotTrue p)})
else ifc xv == vb && vb == vc && vc == vd
then CVQuadrant (Leaf xv)
else CVQuadrant (Node (Leaf xv) (Leaf vb) (Leaf vc) (Leaf vd)))
=⟨ ifcTrueMap {c = va == vb && vb == vc && vc == vd}
(λ p -> cong
(λ q -> ifc xv == vb && vb == q && q == q
then CVQuadrant (Leaf xv) {andCombine (zeroLteAny (S dep)) IsTrue.itsTrue}
else (λ {{p}} -> CVQuadrant (Node (Leaf xv) (Leaf vb) (Leaf q) (Leaf q)) {andCombine (zeroLteAny (dep)) (falseToNotTrue p)}) )
(eqToEquiv vb vc (andFst $ andSnd {va == vb} p)) ) ⟩
(ifc va == vb && vb == vc && vc == vd
then ifc xv == vb && vb == vc && vc == vc
then CVQuadrant (Leaf xv) {andCombine (zeroLteAny (S dep)) IsTrue.itsTrue}
else (λ {{p}} -> CVQuadrant (Node (Leaf xv) (Leaf vb) (Leaf vc) (Leaf vc)) {andCombine (zeroLteAny (dep)) (falseToNotTrue p)})
else ifc xv == vb && vb == vc && vc == vd
then CVQuadrant (Leaf xv)
else CVQuadrant (Node (Leaf xv) (Leaf vb) (Leaf vc) (Leaf vd)))
=⟨ ifcTrueMap {c = va == vb && vb == vc && vc == vd}
(λ p -> cong
(λ q -> ifc xv == vb && vb == vc && vc == q
then CVQuadrant (Leaf xv) {andCombine (zeroLteAny (S dep)) IsTrue.itsTrue}
else (λ {{p}} -> CVQuadrant (Node (Leaf xv) (Leaf vb) (Leaf vc) (Leaf q)) {andCombine (zeroLteAny (dep)) (falseToNotTrue p)}) )
(eqToEquiv vc vd (andSnd $ andSnd {va == vb} p)) ) ⟩
(ifc va == vb && vb == vc && vc == vd
then ifc xv == vb && vb == vc && vc == vd
then CVQuadrant (Leaf xv) {andCombine (zeroLteAny (S dep)) IsTrue.itsTrue}
else (λ {{p}} -> CVQuadrant (Node (Leaf xv) (Leaf vb) (Leaf vc) (Leaf vd)) {andCombine (zeroLteAny (dep)) (falseToNotTrue p)})
else ifc xv == vb && vb == vc && vc == vd
then CVQuadrant (Leaf xv)
else CVQuadrant (Node (Leaf xv) (Leaf vb) (Leaf vc) (Leaf vd)))
=⟨ propIfcBranchesSame {c = va == vb && vb == vc && vc == vd}
(ifc xv == vb && vb == vc && vc == vd then CVQuadrant (Leaf xv) else CVQuadrant (Node (Leaf xv) (Leaf vb) (Leaf vc) (Leaf vd))) ⟩
(ifc xv == vb && vb == vc && vc == vd
then CVQuadrant (Leaf xv)
else CVQuadrant (Node (Leaf xv) (Leaf vb) (Leaf vc) (Leaf vd)))
end
ValidLens-LensA-SetSet-Lemma {t} {dep} cvx@(CVQuadrant x@(Node x1 x2 x3 x4) {p}) cva@(CVQuadrant a@(Leaf va)) cvb@(CVQuadrant b@(Leaf vb)) cvc@(CVQuadrant c@(Leaf vc)) cvd@(CVQuadrant d@(Leaf vd)) =
begin
runIdentity (lensA (λ _ → CIdentity cvx)
(ifc va == vb && vb == vc && vc == vd
then CVQuadrant (Leaf va)
else CVQuadrant (Node (Leaf va) (Leaf vb) (Leaf vc) (Leaf vd))))
=⟨ sym $ propFnIfc (va == vb && vb == vc && vc == vd) (λ g -> (runIdentity (lensA (λ _ → CIdentity cvx) g ) ) ) ⟩
(ifc va == vb && vb == vc && vc == vd
then CVQuadrant (Node x (Leaf va) (Leaf va) (Leaf va))
else CVQuadrant (Node x (Leaf vb) (Leaf vc) (Leaf vd)))
=⟨ ifcTrueMap {c = va == vb && vb == vc && vc == vd} (λ p -> cong (λ q -> combine cvx (cvq q) (cvq q) (cvq q)) (eqToEquiv va vb (andFst {va == vb} p))) ⟩
(ifc va == vb && vb == vc && vc == vd
then CVQuadrant (Node x (Leaf vb) (Leaf vb) (Leaf vb))
else CVQuadrant (Node x (Leaf vb) (Leaf vc) (Leaf vd)))
=⟨ ifcTrueMap {c = va == vb && vb == vc && vc == vd} (λ p -> cong (λ q -> combine cvx cvb (cvq q) (cvq q)) (eqToEquiv vb vc (andFst $ andSnd {va == vb} p))) ⟩
(ifc va == vb && vb == vc && vc == vd
then CVQuadrant (Node x (Leaf vb) (Leaf vc) (Leaf vc))
else CVQuadrant (Node x (Leaf vb) (Leaf vc) (Leaf vd)))
=⟨ ifcTrueMap {c = va == vb && vb == vc && vc == vd} (λ p -> cong (λ q -> combine cvx cvb cvc (cvq q)) (eqToEquiv vc vd (andSnd $ andSnd {va == vb} p))) ⟩
(ifc va == vb && vb == vc && vc == vd
then CVQuadrant (Node x (Leaf vb) (Leaf vc) (Leaf vd))
else CVQuadrant (Node x (Leaf vb) (Leaf vc) (Leaf vd)))
=⟨ propIfcBranchesSame {c = va == vb && vb == vc && vc == vd} (CVQuadrant (Node x (Leaf vb) (Leaf vc) (Leaf vd))) ⟩
CVQuadrant (Node x (Leaf vb) (Leaf vc) (Leaf vd))
end where
-- Construct a valid leaf from a value
cvq : t -> VQuadrant t {dep}
cvq q = CVQuadrant (Leaf q) {andCombine (zeroLteAny dep) IsTrue.itsTrue}
ValidLens-LensA-SetSet-Lemma (CVQuadrant _) (CVQuadrant (Leaf _)) (CVQuadrant (Leaf _)) (CVQuadrant (Leaf _)) (CVQuadrant (Node _ _ _ _)) = refl
ValidLens-LensA-SetSet-Lemma (CVQuadrant _) (CVQuadrant (Leaf _)) (CVQuadrant (Leaf _)) (CVQuadrant (Node _ _ _ _)) (CVQuadrant _) = refl
ValidLens-LensA-SetSet-Lemma (CVQuadrant _) (CVQuadrant (Leaf _)) (CVQuadrant (Node _ _ _ _)) (CVQuadrant _) (CVQuadrant _) = refl
ValidLens-LensA-SetSet-Lemma (CVQuadrant _) (CVQuadrant (Node _ _ _ _)) (CVQuadrant _) (CVQuadrant _) (CVQuadrant _) = refl
ValidLens-LensA-SetSet :
{t : Set} {{eqT : Eq t}} {dep : Nat}
-> SetSet (lensA {t} {dep})
ValidLens-LensA-SetSet a@(CVQuadrant qda) b@(CVQuadrant qdb) x@(CVQuadrant qdx@(Leaf xv)) =
begin
set lensA (CVQuadrant qdb) (combine (CVQuadrant qda) (CVQuadrant (Leaf xv)) (CVQuadrant (Leaf xv)) (CVQuadrant (Leaf xv)))
=⟨ ValidLens-LensA-SetSet-Lemma (CVQuadrant qdb) (CVQuadrant qda) (CVQuadrant (Leaf xv)) (CVQuadrant (Leaf xv)) (CVQuadrant (Leaf xv)) ⟩
combine (CVQuadrant qdb) (CVQuadrant (Leaf xv)) (CVQuadrant (Leaf xv)) (CVQuadrant (Leaf xv))
end
ValidLens-LensA-SetSet (CVQuadrant qda) (CVQuadrant qdb) (CVQuadrant qdx@(Node xa xb xc xd)) =
begin
set lensA (CVQuadrant qdb) (combine (CVQuadrant qda) (CVQuadrant xb) (CVQuadrant xc) (CVQuadrant xd))
=⟨ ValidLens-LensA-SetSet-Lemma (CVQuadrant qdb) (CVQuadrant qda) (CVQuadrant xb) (CVQuadrant xc) (CVQuadrant xd) ⟩
combine (CVQuadrant qdb) (CVQuadrant xb) (CVQuadrant xc) (CVQuadrant xd)
end
ValidLens-LensA : {t : Set} {{eqT : Eq t}} {dep : Nat}
-> ValidLens (VQuadrant t {S dep}) (VQuadrant t {dep})
ValidLens-LensA = CValidLens lensA (ValidLens-LensA-ViewSet) (ValidLens-LensA-SetView) (ValidLens-LensA-SetSet) |
algebraic-stack_agda0000_doc_17260 | {- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Base.Types
open import LibraBFT.Concrete.System
open import LibraBFT.Concrete.System.Parameters
import LibraBFT.Impl.Consensus.BlockStorage.BlockStore as BlockStore
import LibraBFT.Impl.Consensus.BlockStorage.Properties.BlockStore as BSprops
open import LibraBFT.Impl.Consensus.EpochManager as EpochManager
open import LibraBFT.Impl.Consensus.EpochManagerTypes
import LibraBFT.Impl.Consensus.MetricsSafetyRules as MetricsSafetyRules
open import LibraBFT.Impl.Consensus.Properties.MetricsSafetyRules
import LibraBFT.Impl.Consensus.RoundManager as RoundManager
open import LibraBFT.Impl.Consensus.RoundManager.Properties
import LibraBFT.Impl.Consensus.SafetyRules.SafetyRulesManager as SafetyRulesManager
open import LibraBFT.Impl.OBM.Logging.Logging
open import LibraBFT.Impl.Properties.Util
open import LibraBFT.ImplShared.Base.Types
open import LibraBFT.ImplShared.Consensus.Types
open import LibraBFT.ImplShared.Consensus.Types.EpochDep
open import LibraBFT.ImplShared.Interface.Output
open import LibraBFT.ImplShared.Util.Dijkstra.All
open import Optics.All
open import Util.Hash
open import Util.Lemmas
open import Util.PKCS
open import Util.Prelude
open import Yasm.System ℓ-RoundManager ℓ-VSFP ConcSysParms
open InitProofDefs
open Invariants
open EpochManagerInv
open SafetyRulesInv
open SafetyDataInv
module LibraBFT.Impl.Consensus.EpochManager.Properties where
module newSpec
(nodeConfig : NodeConfig)
(stateComp : StateComputer)
(persistentLivenessStorage : PersistentLivenessStorage)
(obmAuthor : Author)
(obmSK : SK)
where
-- TODO-2: May require refinement (additional requirements and/or properties)
Contract : EitherD-Post ErrLog EpochManager
Contract (Left _) = ⊤
Contract (Right em) = ∀ {sr} → em ^∙ emSafetyRulesManager ∙ srmInternalSafetyRules ≡ SRWLocal sr
→ sr ^∙ srPersistentStorage ∙ pssSafetyData ∙ sdLastVote ≡ nothing
postulate
contract : Contract (EpochManager.new nodeConfig stateComp persistentLivenessStorage obmAuthor obmSK)
module startRoundManager'Spec
(self0 : EpochManager)
(now : Instant)
(recoveryData : RecoveryData)
(epochState0 : EpochState)
(obmNeedFetch : ObmNeedFetch)
(obmProposalGenerator : ProposalGenerator)
(obmVersion : Version)
where
open startRoundManager'-ed self0 now recoveryData epochState0
obmNeedFetch obmProposalGenerator obmVersion
lastVote = recoveryData ^∙ rdLastVote
proposalGenerator = obmProposalGenerator
roundState = createRoundState-abs self0 now
proposerElection = createProposerElection epochState0
srUpdate : SafetyRules → SafetyRules
srUpdate = _& srPersistentStorage ∙ pssSafetyData ∙ sdEpoch ∙~ epochState0 ^∙ esEpoch
initProcessor : SafetyRules → BlockStore → RoundManager
initProcessor sr bs =
RoundManager∙new
obmNeedFetch
epochState0
bs
roundState
proposerElection
proposalGenerator
(srUpdate sr)
(self0 ^∙ emConfig ∙ ccSyncOnly)
ecInfo = mkECinfo (epochState0 ^∙ esVerifier) (epochState0 ^∙ esEpoch)
SRVoteEpoch≡ : SafetyRules → Epoch → Set
SRVoteEpoch≡ sr epoch = ∀ {v} → sr ^∙ srPersistentStorage ∙ pssSafetyData ∙ sdLastVote ≡ just v
→ v ^∙ vEpoch ≡ epoch
SRVoteRound≤ : SafetyRules → Set
SRVoteRound≤ sr = let sd = sr ^∙ srPersistentStorage ∙ pssSafetyData
in Meta.getLastVoteRound sd ≤ sd ^∙ sdLastVotedRound
initRMInv : ∀ {sr bs}
→ ValidatorVerifier-correct (epochState0 ^∙ esVerifier)
→ SafetyDataInv (sr ^∙ srPersistentStorage ∙ pssSafetyData)
→ sr ^∙ srPersistentStorage ∙ pssSafetyData ∙ sdLastVote ≡ nothing
→ BlockStoreInv (bs , ecInfo)
→ RoundManagerInv (initProcessor sr bs)
initRMInv {sr} vvCorr sdInv refl bsInv = mkRoundManagerInv vvCorr refl bsInv (mkSafetyRulesInv (mkSafetyDataInv refl z≤n))
contract-continue2 :
∀ {sr bs}
→ ValidatorVerifier-correct (epochState0 ^∙ esVerifier)
→ SafetyRulesInv sr
→ sr ^∙ srPersistentStorage ∙ pssSafetyData ∙ sdLastVote ≡ nothing
→ BlockStoreInv (bs , ecInfo)
→ EitherD-weakestPre (continue2-abs lastVote bs sr) (InitContract lastVote)
contract-continue2 {sr} {bs} vvCorr srInv lvNothing bsInv rewrite continue2-abs-≡
with LBFT-contract (RoundManager.start-abs now lastVote)
(Contract initRM initRMCorr)
(initProcessor sr bs)
(contract' initRM initRMCorr)
where
open startSpec now lastVote
initRM = initProcessor sr bs
initRMCorr = initRMInv {sr} {bs} vvCorr (sdInv srInv) lvNothing bsInv
...| inj₁ (_ , er≡j ) rewrite er≡j = tt
...| inj₂ (er≡n , ico) rewrite er≡n =
LBFT-post (RoundManager.start-abs now lastVote)
(initProcessor sr bs)
, refl , ico
contract-continue1
: ∀ {bs}
→ BlockStoreInv (bs , ecInfo)
→ ValidatorVerifier-correct (epochState0 ^∙ esVerifier)
→ EpochManagerInv self0
→ EitherD-weakestPre (continue1-abs lastVote bs) (InitContract lastVote)
contract-continue1 {bs} bsInv vvCorr emi rewrite continue1-abs-≡
with self0 ^∙ emSafetyRulesManager ∙ srmInternalSafetyRules | inspect
(self0 ^∙_) (emSafetyRulesManager ∙ srmInternalSafetyRules)
...| SRWLocal safetyRules | [ R ]
with emiSRI emi R
...| (sri , lvNothing)
with performInitializeSpec.contract safetyRules (self0 ^∙ emStorage) sri lvNothing
...| piProp
with MetricsSafetyRules.performInitialize-abs safetyRules (self0 ^∙ emStorage)
...| Left _ = tt
...| Right sr = contract-continue2 vvCorr (performInitializeSpec.ContractOk.srPres piProp sri)
(performInitializeSpec.ContractOk.lvNothing piProp) bsInv
contract' :
ValidatorVerifier-correct (epochState0 ^∙ esVerifier)
→ EpochManagerInv self0
→ EitherD-weakestPre
(EpochManager.startRoundManager'-ed-abs
self0 now recoveryData epochState0
obmNeedFetch obmProposalGenerator obmVersion)
(InitContract lastVote)
contract' vvCorr emi rewrite startRoundManager'-ed-abs-≡
with BSprops.new.contract (self0 ^∙ emStorage) recoveryData stateComputer
(self0 ^∙ emConfig ∙ ccMaxPrunedBlocksInMem)
...| bsprop
with BlockStore.new-e-abs (self0 ^∙ emStorage) recoveryData stateComputer
(self0 ^∙ emConfig ∙ ccMaxPrunedBlocksInMem)
...| Left _ = tt
...| Right bs = contract-continue1 bsprop vvCorr emi
|
algebraic-stack_agda0000_doc_17261 | {- https://lists.chalmers.se/pipermail/agda/2013/006033.html http://code.haskell.org/~Saizan/unification/ 18-Nov-2013 Andrea Vezzosi -}
module UnifyProof2 where
open import Data.Fin using (Fin; suc; zero)
open import Data.Nat hiding (_≤_)
open import Relation.Binary.PropositionalEquality
open import Function
open import Relation.Nullary
open import Data.Product renaming (map to _***_)
open import Data.Empty
open import Data.Maybe using (maybe; nothing; just; monad; Maybe)
open import Data.Sum
open import Unify
open import UnifyProof
open Σ₁
open import Data.List renaming (_++_ to _++L_)
open ≡-Reasoning
open import Category.Functor
open import Category.Monad
import Level
open RawMonad (Data.Maybe.monad {Level.zero})
-- We use a view so that we need to handle fewer cases in the main proof
data Amgu : {m : ℕ} -> (s t : Term m) -> ∃ (AList m) -> Maybe (∃ (AList m)) -> Set where
Flip : ∀ {m s t acc} -> amgu t s acc ≡ amgu s t acc ->
Amgu {m} t s acc (amgu t s acc) -> Amgu s t acc (amgu s t acc)
leaf-leaf : ∀ {m acc} -> Amgu {m} leaf leaf acc (just acc)
leaf-fork : ∀ {m s t acc} -> Amgu {m} leaf (s fork t) acc nothing
fork-fork : ∀ {m s1 s2 t1 t2 acc} -> Amgu {m} (s1 fork s2) (t1 fork t2) acc (amgu s2 t2 =<< amgu s1 t1 acc)
var-var : ∀ {m x y} -> Amgu (i x) (i y) (m , anil) (just (flexFlex x y))
var-t : ∀ {m x t} -> i x ≢ t -> Amgu (i x) t (m , anil) (flexRigid x t)
s-t : ∀{m s t n σ r z} -> Amgu {suc m} s t (n , σ asnoc r / z) ((λ σ -> σ ∃asnoc r / z) <$>
amgu ((r for z) ◃ s) ((r for z) ◃ t) (n , σ))
view : ∀ {m : ℕ} -> (s t : Term m) -> (acc : ∃ (AList m)) -> Amgu s t acc (amgu s t acc)
view leaf leaf acc = leaf-leaf
view leaf (s fork t) acc = leaf-fork
view (s fork t) leaf acc = Flip refl leaf-fork
view (s1 fork s2) (t1 fork t2) acc = fork-fork
view (i x) (i y) (m , anil) = var-var
view (i x) leaf (m , anil) = var-t (λ ())
view (i x) (s fork t) (m , anil) = var-t (λ ())
view leaf (i x) (m , anil) = Flip refl (var-t (λ ()))
view (s fork t) (i x) (m , anil) = Flip refl (var-t (λ ()))
view (i x) (i x') (n , σ asnoc r / z) = s-t
view (i x) leaf (n , σ asnoc r / z) = s-t
view (i x) (s fork t) (n , σ asnoc r / z) = s-t
view leaf (i x) (n , σ asnoc r / z) = s-t
view (s fork t) (i x) (n , σ asnoc r / z) = s-t
amgu-Correctness : {m : ℕ} -> (s t : Term m) -> ∃ (AList m) -> Set
amgu-Correctness s t (l , ρ) =
(∃ λ n → ∃ λ σ → π₁ (Max (Unifies s t [-◇ sub ρ ])) (sub σ) × amgu s t (l , ρ) ≡ just (n , σ ++ ρ ))
⊎ (Nothing ((Unifies s t) [-◇ sub ρ ]) × amgu s t (l , ρ) ≡ nothing)
amgu-Ccomm : ∀ {m} s t acc -> amgu {m} s t acc ≡ amgu t s acc -> amgu-Correctness s t acc -> amgu-Correctness t s acc
amgu-Ccomm s t (l , ρ) st≡ts = lemma
where
Unst = (Unifies s t) [-◇ sub ρ ]
Unts = (Unifies t s) [-◇ sub ρ ]
Unst⇔Unts : ((Unifies s t) [-◇ sub ρ ]) ⇔ ((Unifies t s) [-◇ sub ρ ])
Unst⇔Unts = Properties.fact5 (Unifies s t) (Unifies t s) (sub ρ) (Properties.fact1 {_} {s} {t})
lemma : amgu-Correctness s t (l , ρ) -> amgu-Correctness t s (l , ρ)
lemma (inj₁ (n , σ , MaxUnst , amgu≡just)) =
inj₁ (n , σ , proj₁ (Max.fact Unst Unts Unst⇔Unts (sub σ)) MaxUnst , trans (sym st≡ts) amgu≡just)
lemma (inj₂ (NoUnst , amgu≡nothing)) =
inj₂ ((λ {_} → Properties.fact2 Unst Unts Unst⇔Unts NoUnst) , trans (sym st≡ts) amgu≡nothing)
amgu-c : ∀ {m s t l ρ} -> Amgu s t (l , ρ) (amgu s t (l , ρ)) ->
(∃ λ n → ∃ λ σ → π₁ (Max ((Unifies s t) [-◇ sub ρ ])) (sub σ) × amgu {m} s t (l , ρ) ≡ just (n , σ ++ ρ ))
⊎ (Nothing ((Unifies s t) [-◇ sub ρ ]) × amgu {m} s t (l , ρ) ≡ nothing)
amgu-c {m} {s} {t} {l} {ρ} amg with amgu s t (l , ρ)
amgu-c {l = l} {ρ} leaf-leaf | ._
= inj₁ (l , anil , trivial-problem {_} {_} {leaf} {sub ρ} , cong (λ x -> just (l , x)) (sym (SubList.anil-id-l ρ)) )
amgu-c leaf-fork | .nothing = inj₂ ((λ _ () ) , refl)
amgu-c {m} {s1 fork s2} {t1 fork t2} {l} {ρ} fork-fork | ._
with amgu s1 t1 (l , ρ) | amgu-c $ view s1 t1 (l , ρ)
... | .nothing | inj₂ (nounify , refl) = inj₂ ((λ {_} -> No[Q◇ρ]→No[P◇ρ] No[Q◇ρ]) , refl)
where
P = Unifies (s1 fork s2) (t1 fork t2)
Q = (Unifies s1 t1 ∧ Unifies s2 t2)
Q⇔P : Q ⇔ P
Q⇔P = switch P Q (Properties.fact1' {_} {s1} {s2} {t1} {t2})
No[Q◇ρ]→No[P◇ρ] : Nothing (Q [-◇ sub ρ ]) -> Nothing (P [-◇ sub ρ ])
No[Q◇ρ]→No[P◇ρ] = Properties.fact2 (Q [-◇ sub ρ ]) (P [-◇ sub ρ ]) (Properties.fact5 Q P (sub ρ) Q⇔P)
No[Q◇ρ] : Nothing (Q [-◇ sub ρ ])
No[Q◇ρ] = failure-propagation.first (sub ρ) (Unifies s1 t1) (Unifies s2 t2) nounify
... | .(just (n , σ ++ ρ)) | inj₁ (n , σ , a , refl)
with amgu s2 t2 (n , σ ++ ρ) | amgu-c (view s2 t2 (n , (σ ++ ρ)))
... | .nothing | inj₂ (nounify , refl) = inj₂ ( (λ {_} -> No[Q◇ρ]→No[P◇ρ] No[Q◇ρ]) , refl)
where
P = Unifies (s1 fork s2) (t1 fork t2)
Q = (Unifies s1 t1 ∧ Unifies s2 t2)
Q⇔P : Q ⇔ P
Q⇔P = switch P Q (Properties.fact1' {_} {s1} {s2} {t1} {t2})
No[Q◇ρ]→No[P◇ρ] : Nothing (Q [-◇ sub ρ ]) -> Nothing (P [-◇ sub ρ ])
No[Q◇ρ]→No[P◇ρ] = Properties.fact2 (Q [-◇ sub ρ ]) (P [-◇ sub ρ ]) (Properties.fact5 Q P (sub ρ) Q⇔P)
No[Q◇ρ] : Nothing (Q [-◇ sub ρ ])
No[Q◇ρ] = failure-propagation.second (sub ρ) (sub σ) (Unifies s1 t1) (Unifies s2 t2) a
(λ f Unifs2t2-f◇σ◇ρ → nounify f (π₂ (Unifies s2 t2) (λ t → cong (f ◃) (sym (SubList.fact1 σ ρ t))) Unifs2t2-f◇σ◇ρ))
... | .(just (n1 , σ1 ++ (σ ++ ρ))) | inj₁ (n1 , σ1 , b , refl)
= inj₁ (n1 , σ1 ++ σ , Max[P∧Q◇ρ][σ1++σ] , cong (λ σ -> just (n1 , σ)) (++-assoc σ1 σ ρ))
where
P = Unifies s1 t1
Q = Unifies s2 t2
P∧Q = P ∧ Q
C = Unifies (s1 fork s2) (t1 fork t2)
Max[C◇ρ]⇔Max[P∧Q◇ρ] : Max (C [-◇ sub ρ ]) ⇔ Max (P∧Q [-◇ sub ρ ])
Max[C◇ρ]⇔Max[P∧Q◇ρ] = Max.fact (C [-◇ sub ρ ]) (P∧Q [-◇ sub ρ ]) (Properties.fact5 C P∧Q (sub ρ)
(Properties.fact1' {_} {s1} {s2} {t1} {t2}))
Max[Q◇σ++ρ]⇔Max[Q◇σ◇ρ] : Max (Q [-◇ sub (σ ++ ρ)]) ⇔ Max (Q [-◇ sub σ ◇ sub ρ ])
Max[Q◇σ++ρ]⇔Max[Q◇σ◇ρ] = Max.fact (Q [-◇ sub (σ ++ ρ)]) (Q [-◇ sub σ ◇ sub ρ ]) (Properties.fact6 Q (SubList.fact1 σ ρ))
Max[P∧Q◇ρ][σ1++σ] : π₁ (Max (C [-◇ sub ρ ])) (sub (σ1 ++ σ))
Max[P∧Q◇ρ][σ1++σ] = π₂ (Max (C [-◇ sub ρ ])) (≐-sym (SubList.fact1 σ1 σ))
(proj₂ (Max[C◇ρ]⇔Max[P∧Q◇ρ] (sub σ1 ◇ sub σ))
(optimist (sub ρ) (sub σ) (sub σ1) P Q (DClosed.fact1 s1 t1) a (proj₁ (Max[Q◇σ++ρ]⇔Max[Q◇σ◇ρ] (sub σ1)) b)))
amgu-c {suc l} {i x} {i y} (var-var) | .(just (flexFlex x y))
with thick x y | Thick.fact1 x y (thick x y) refl
... | .(just y') | inj₂ (y' , thinxy'≡y , refl )
= inj₁ (l , anil asnoc i y' / x , var-elim-i-≡ x (i y) (sym (cong i thinxy'≡y)) , refl )
... | .nothing | inj₁ ( x≡y , refl ) rewrite sym x≡y
= inj₁ (suc l , anil , trivial-problem {_} {_} {i x} {sub anil} , refl)
amgu-c {suc l} {i x} {t} (var-t ix≢t) | .(flexRigid x t)
with check x t | check-prop x t
... | .nothing | inj₂ ( ps , r , refl) = inj₂ ( (λ {_} -> No-Unifier ) , refl)
where
No-Unifier : {n : ℕ} (f : Fin (suc l) → Term n) → f x ≡ f ◃ t → ⊥
No-Unifier f fx≡f◃t = ix≢t (sym (trans r (cong (λ ps -> ps ⊹ i x) ps≡[])))
where
ps≡[] : ps ≡ []
ps≡[] = map-[] f ps (No-Cycle (f x) ((f ◃S) ps)
(begin f x ≡⟨ fx≡f◃t ⟩
f ◃ t ≡⟨ cong (f ◃) r ⟩
f ◃ (ps ⊹ i x) ≡⟨ StepM.fact2 f (i x) ps ⟩
(f ◃S) ps ⊹ f x ∎))
... | .(just t') | inj₁ (t' , r , refl) = inj₁ ( l , anil asnoc t' / x , var-elim-i-≡ x t r , refl )
amgu-c {suc m} {s} {t} {l} {ρ asnoc r / z} s-t
| .((λ x' → x' ∃asnoc r / z) <$>
(amgu ((r for z) ◃ s) ((r for z) ◃ t) (l , ρ)))
with amgu-c (view ((r for z) ◃ s) ((r for z) ◃ t) (l , ρ))
... | inj₂ (nounify , ra) = inj₂ ( (λ {_} -> NoQ→NoP nounify) , cong (_<$>_ (λ x' → x' ∃asnoc r / z)) ra )
where
P = Unifies s t [-◇ sub (ρ asnoc r / z) ]
Q = Unifies ((r for z) ◃ s) ((r for z) ◃ t) [-◇ sub ρ ]
NoQ→NoP : Nothing Q → Nothing P
NoQ→NoP = Properties.fact2 Q P (switch P Q (step-prop s t ρ r z))
... | inj₁ (n , σ , a , ra) = inj₁ (n , σ , proj₂ (MaxP⇔MaxQ (sub σ)) a , cong (_<$>_ (λ x' → x' ∃asnoc r / z)) ra)
where
P = Unifies s t [-◇ sub (ρ asnoc r / z) ]
Q = Unifies ((r for z) ◃ s) ((r for z) ◃ t) [-◇ sub ρ ]
MaxP⇔MaxQ : Max P ⇔ Max Q
MaxP⇔MaxQ = Max.fact P Q (step-prop s t ρ r z)
amgu-c {m} {s} {t} {l} {ρ} (Flip amguts≡amgust amguts) | ._ = amgu-Ccomm t s (l , ρ) amguts≡amgust (amgu-c amguts)
amgu-c {zero} {i ()} _ | _
mgu-c : ∀ {m} (s t : Term m) ->
(∃ λ n → ∃ λ σ → π₁ (Max (Unifies s t)) (sub σ) × mgu s t ≡ just (n , σ))
⊎ (Nothing (Unifies s t) × mgu s t ≡ nothing)
mgu-c {m} s t = amgu-c (view s t (m , anil))
|
algebraic-stack_agda0000_doc_17262 | {-# OPTIONS --without-K #-}
module sets.fin.ordering where
open import equality.core
open import function.isomorphism
open import sets.core
open import sets.fin.core
open import sets.fin.properties
import sets.nat.ordering as N
_<_ : ∀ {n} → Fin n → Fin n → Set
i < j = toℕ i N.< toℕ j
infixr 4 _<_
ord-from-ℕ : ∀ {n} {i j : Fin n}
→ Ordering N._<_ (toℕ i) (toℕ j)
→ Ordering _<_ i j
ord-from-ℕ (lt p) = lt p
ord-from-ℕ (eq p) = eq (toℕ-inj p)
ord-from-ℕ (gt p) = gt p
compare : ∀ {n} → (i j : Fin n) → Ordering _<_ i j
compare i j = ord-from-ℕ (N.compare (toℕ i) (toℕ j))
|
algebraic-stack_agda0000_doc_17263 | module ComplexIMPORT where
{-# IMPORT Prelude as P #-}
|
algebraic-stack_agda0000_doc_16960 | module Impure.STLCRef.Properties.Soundness where
open import Data.Nat
open import Data.Sum
open import Data.Product as Pr
open import Data.List
open import Data.Vec hiding (_∷ʳ_)
open import Data.Star
open import Function
open import Extensions.List
open import Relation.Binary.PropositionalEquality as P
open import Relation.Binary.Core using (REL; Reflexive)
open import Relation.Binary.List.Pointwise as PRel hiding (refl)
open import Impure.STLCRef.Syntax hiding (id)
open import Impure.STLCRef.Welltyped
open import Impure.STLCRef.Eval
ref-value-lemma : ∀ {n A Γ Σ} {e : Exp n} → Γ , Σ ⊢ e ∶ Ref A → Val e → ∃ λ i → e ≡ (loc i)
ref-value-lemma (var x) ()
ref-value-lemma (loc p) (loc i) = i , refl
ref-value-lemma (p · p₁) ()
ref-value-lemma (ref p) ()
ref-value-lemma (! p) ()
progress : ∀ {Γ Σ A} {e : Exp 0} {μ} →
Γ , Σ ⊢ μ →
Γ , Σ ⊢ e ∶ A →
--------------------------------------
Val e ⊎ ∃₂ λ e' μ' → (e , μ ≻ e' , μ')
progress p unit = inj₁ unit
progress p (var ())
progress p (loc {i = i} q) = inj₁ (loc i)
progress p (ƛ wt) = inj₁ (ƛ _ _)
progress p (f · e) with progress p f
progress p (() · e) | inj₁ unit
progress p (() · e) | inj₁ (loc i)
progress p (ƛ f · e) | inj₁ (ƛ _ _) = inj₂ (_ , (_ , AppAbs))
progress p (f · e) | inj₂ (_ , _ , f≻f') = inj₂ (_ , (_ , (Appₗ f≻f')))
progress p (ref wt) with progress p wt
progress p (ref wt) | inj₁ v = inj₂ (_ , (_ , (RefVal v)))
progress p (ref wt) | inj₂ (_ , _ , wt≻wt') = inj₂ (_ , _ , Ref wt≻wt')
progress p (! wt) with progress p wt
progress p (! wt) | inj₁ v with ref-value-lemma wt v
progress p (! loc q) | inj₁ (loc .i) | (i , refl) =
inj₂ (_ , (_ , (DerefLoc (P.subst (_<_ _) (pointwise-length p) ([]=-length q)))))
progress p (! wt) | inj₂ (_ , _ , wt≻wt') = inj₂ (_ , (_ , (Deref wt≻wt')))
progress p (wt ≔ x) with progress p wt | progress p x
progress p (wt ≔ x) | _ | inj₂ (_ , _ , x≻x') = inj₂ (_ , (_ , (Assign₂ x≻x')))
progress p (wt ≔ x) | inj₂ (_ , _ , wt≻wt') | _ = inj₂ (_ , _ , Assign₁ wt≻wt')
progress p (wt ≔ x) | inj₁ v | inj₁ w with ref-value-lemma wt v
progress p (loc q ≔ x) | inj₁ (loc .i) | inj₁ w | (i , refl) =
inj₂ (_ , (_ , Assign (P.subst (_<_ _) (pointwise-length p) ([]=-length q)) w))
postulate
sub-preserves : ∀ {n Γ Σ A B x} {e : Exp (suc n)} →
(B ∷ Γ) , Σ ⊢ e ∶ A →
Γ , Σ ⊢ x ∶ B →
Γ , Σ ⊢ (e / sub x) ∶ A
!!-loc : ∀ {n Σ Σ' A μ i} {Γ : Ctx n} →
Rel (λ A x → Γ , Σ ⊢ proj₁ x ∶ A) Σ' μ →
Σ' ⊢loc i ∶ A → (l : i < length μ) → Γ , Σ ⊢ proj₁ (μ !! l) ∶ A
!!-loc [] ()
!!-loc (x∼y ∷ p) here (s≤s z≤n) = x∼y
!!-loc (x∼y ∷ p) (there q) (s≤s l) = !!-loc p q l
-- extending the store preserves expression typings
⊒-preserves : ∀ {n Γ Σ Σ' A} {e : Exp n} → Σ' ⊒ Σ → Γ , Σ ⊢ e ∶ A → Γ , Σ' ⊢ e ∶ A
⊒-preserves ext unit = unit
⊒-preserves ext (var x) = var x
⊒-preserves ext (loc x) = loc (xs⊒ys[i] x ext)
⊒-preserves ext (ƛ p) = ƛ (⊒-preserves ext p)
⊒-preserves ext (p · q) = (⊒-preserves ext p) · ⊒-preserves ext q
⊒-preserves ext (ref p) = ref (⊒-preserves ext p)
⊒-preserves ext (! p) = ! (⊒-preserves ext p)
⊒-preserves ext (p ≔ q) = (⊒-preserves ext p) ≔ (⊒-preserves ext q)
≻-preserves : ∀ {n Γ Σ A} {e : Exp n} {e' μ' μ} →
Γ , Σ ⊢ e ∶ A →
Γ , Σ ⊢ μ → e , μ ≻ e' , μ' →
---------------------------------
∃ λ Σ' → Γ , Σ' ⊢ e' ∶ A × Σ' ⊒ Σ × Γ , Σ' ⊢ μ'
≻-preserves unit p ()
≻-preserves (var x) p ()
≻-preserves (loc p) p₁ ()
≻-preserves (ƛ wt) p ()
≻-preserves {Σ = Σ} (ƛ wt · wt₁) p AppAbs = Σ , sub-preserves wt wt₁ , ⊑-refl , p
≻-preserves {Σ = Σ} (ref {x = x} {A} wt) p (RefVal v) = let ext = ∷ʳ-⊒ A Σ in
Σ ∷ʳ A ,
loc (P.subst (λ i → _ ⊢loc i ∶ _) (pointwise-length p) (∷ʳ[length] Σ A)) ,
ext ,
pointwise-∷ʳ (PRel.map (⊒-preserves ext) p) (⊒-preserves ext wt)
≻-preserves {Σ = Σ₁} (! loc x) p (DerefLoc l) =
Σ₁ , !!-loc p x l , ⊑-refl , p
≻-preserves {Σ = Σ₁} (loc x ≔ y) p (Assign l v) =
Σ₁ , unit , ⊑-refl , pointwise-[]≔ p x l y
-- contextual closure
≻-preserves {Σ = Σ} (wt-f · wt-x) p (Appₗ r) =
Pr.map
id
(λ{ (wt-f' , ext , q) → wt-f' · ⊒-preserves ext wt-x , ext , q})
(≻-preserves wt-f p r)
≻-preserves (f · x) p (Appᵣ r) =
Pr.map
id
(λ{ (x' , ext , q) → ⊒-preserves ext f · x' , ext , q})
(≻-preserves x p r)
≻-preserves (ref wt) p (Ref r) = Pr.map id (λ{ (wt' , ext) → ref wt' , ext}) (≻-preserves wt p r)
≻-preserves (! wt) p (Deref r) = Pr.map id (λ{ (wt' , ext) → ! wt' , ext}) (≻-preserves wt p r)
≻-preserves (y ≔ x) p (Assign₁ r) =
Pr.map
id
(λ{ (y' , ext , q) → y' ≔ ⊒-preserves ext x , ext , q})
(≻-preserves y p r)
≻-preserves (y ≔ x) p (Assign₂ r) =
Pr.map
id
(λ{ (x' , ext , q) → ⊒-preserves ext y ≔ x' , ext , q})
(≻-preserves x p r)
-- preservation for multistep reductions
preservation : ∀ {n} {e : Exp n} {Γ Σ A μ μ' e'} →
Γ , Σ ⊢ e ∶ A →
Γ , Σ ⊢ μ →
e , μ ≻* e' , μ' →
-----------------------------------------------
∃ λ Σ' → Γ , Σ' ⊢ e' ∶ A × Σ' ⊒ Σ × Γ , Σ' ⊢ μ'
preservation wt ok ε = _ , wt , ⊑-refl , ok
preservation wt ok (x ◅ r) with ≻-preserves wt ok x
... | Σ₂ , wt' , Σ₂⊒Σ , μ₂ok with preservation wt' μ₂ok r
... | Σ₃ , wt'' , Σ₃⊒Σ₂ , μ₃ = Σ₃ , wt'' , ⊑-trans Σ₂⊒Σ Σ₃⊒Σ₂ , μ₃
-- fueled evaluation
open import Data.Maybe
eval : ∀ {e : Exp zero} {Σ A μ} ℕ →
[] , Σ ⊢ e ∶ A →
[] , Σ ⊢ μ →
---------------------------------------
Maybe (∃ λ Σ' → ∃ λ e' → ∃ λ μ' →
(e , μ ≻* e' , μ') × Val e' × ([] , Σ' ⊢ e' ∶ A))
eval 0 _ _ = nothing
eval (suc n) p q with progress q p
eval (suc n) p q | inj₁ x = just (_ , _ , _ , ε , x , p)
eval (suc n) p q | inj₂ (e' , μ' , step) with ≻-preserves p q step
... | (Σ₂ , wte' , ext , μ'-ok) with eval n wte' μ'-ok
... | nothing = nothing
... | just (Σ₃ , e'' , μ'' , steps , v , wte'') = just (Σ₃ , e'' , μ'' , step ◅ steps , v , wte'')
|
algebraic-stack_agda0000_doc_16961 | {-# OPTIONS --without-K --safe #-}
module Categories.Adjoint.Alternatives where
open import Level
open import Categories.Adjoint
open import Categories.Category
open import Categories.Functor renaming (id to idF)
open import Categories.NaturalTransformation
import Categories.Morphism.Reasoning as MR
private
variable
o ℓ e : Level
C D : Category o ℓ e
module _ (L : Functor C D) (R : Functor D C) where
private
module C = Category C
module D = Category D
module L = Functor L
module R = Functor R
record FromUnit : Set (levelOfTerm L ⊔ levelOfTerm R) where
field
unit : NaturalTransformation idF (R ∘F L)
module unit = NaturalTransformation unit
field
θ : ∀ {X Y} → C [ X , R.₀ Y ] → D [ L.₀ X , Y ]
commute : ∀ {X Y} (g : C [ X , R.₀ Y ]) → g C.≈ R.₁ (θ g) C.∘ unit.η X
unique : ∀ {X Y} {f : D [ L.₀ X , Y ]} {g : C [ X , R.₀ Y ]} →
g C.≈ R.₁ f C.∘ unit.η X → θ g D.≈ f
module _ where
open C.HomReasoning
open MR C
θ-natural : ∀ {X Y Z} (f : D [ Y , Z ]) (g : C [ X , R.₀ Y ]) → θ (R.₁ f C.∘ g) D.≈ θ (R.₁ f) D.∘ L.₁ g
θ-natural {X} {Y} f g = unique eq
where eq : R.₁ f C.∘ g C.≈ R.₁ (θ (R.₁ f) D.∘ L.₁ g) C.∘ unit.η X
eq = begin
R.₁ f C.∘ g ≈⟨ commute (R.₁ f) ⟩∘⟨refl ⟩
(R.₁ (θ (R.₁ f)) C.∘ unit.η (R.F₀ Y)) C.∘ g ≈⟨ C.assoc ⟩
R.₁ (θ (R.₁ f)) C.∘ unit.η (R.₀ Y) C.∘ g ≈⟨ pushʳ (unit.commute g) ⟩
(R.₁ (θ (R.₁ f)) C.∘ R.₁ (L.₁ g)) C.∘ unit.η X ≈˘⟨ R.homomorphism ⟩∘⟨refl ⟩
R.₁ (θ (R.₁ f) D.∘ L.₁ g) C.∘ unit.η X ∎
θ-cong : ∀ {X Y} {f g : C [ X , R.₀ Y ]} → f C.≈ g → θ f D.≈ θ g
θ-cong eq = unique (eq ○ commute _)
θ-natural′ : ∀ {X Y} (g : C [ X , R.₀ Y ]) → θ g D.≈ θ C.id D.∘ L.₁ g
θ-natural′ g = θ-cong (introˡ R.identity) ○ θ-natural D.id g ○ D.∘-resp-≈ˡ (θ-cong R.identity)
where open D.HomReasoning
open MR C
counit : NaturalTransformation (L ∘F R) idF
counit = ntHelper record
{ η = λ d → θ C.id
; commute = λ f → begin
θ C.id D.∘ L.₁ (R.₁ f) ≈˘⟨ θ-natural′ (R.₁ f) ⟩
θ (R.₁ f) ≈⟨ unique (CH.⟺ (MR.cancelʳ C (CH.⟺ (commute C.id))) CH.○ CH.⟺ (C.∘-resp-≈ˡ R.homomorphism)) ⟩
f D.∘ θ C.id ∎
}
where open D.HomReasoning
module CH = C.HomReasoning
unique′ : ∀ {X Y} {f g : D [ L.₀ X , Y ]} (h : C [ X , R.₀ Y ]) →
h C.≈ R.₁ f C.∘ unit.η X →
h C.≈ R.₁ g C.∘ unit.η X → f D.≈ g
unique′ _ eq₁ eq₂ = ⟺ (unique eq₁) ○ unique eq₂
where open D.HomReasoning
zig : ∀ {A} → θ C.id D.∘ L.F₁ (unit.η A) D.≈ D.id
zig {A} = unique′ (unit.η A)
(commute (unit.η A) ○ (C.∘-resp-≈ˡ (R.F-resp-≈ (θ-natural′ (unit.η A)))))
(introˡ R.identity)
where open C.HomReasoning
open MR C
L⊣R : L ⊣ R
L⊣R = record
{ unit = unit
; counit = counit
; zig = zig
; zag = C.Equiv.sym (commute C.id)
}
record FromCounit : Set (levelOfTerm L ⊔ levelOfTerm R) where
field
counit : NaturalTransformation (L ∘F R) idF
module counit = NaturalTransformation counit
field
θ : ∀ {X Y} → D [ L.₀ X , Y ] → C [ X , R.₀ Y ]
commute : ∀ {X Y} (g : D [ L.₀ X , Y ]) → g D.≈ counit.η Y D.∘ L.₁ (θ g)
unique : ∀ {X Y} {f : C [ X , R.₀ Y ]} {g : D [ L.₀ X , Y ]} →
g D.≈ counit.η Y D.∘ L.₁ f → θ g C.≈ f
module _ where
open D.HomReasoning
open MR D
θ-natural : ∀ {X Y Z} (f : C [ X , Y ]) (g : D [ L.₀ Y , Z ]) → θ (g D.∘ L.₁ f) C.≈ R.₁ g C.∘ θ (L.₁ f)
θ-natural {X} {Y} {Z} f g = unique eq
where eq : g D.∘ L.₁ f D.≈ counit.η Z D.∘ L.₁ (R.₁ g C.∘ θ (L.₁ f))
eq = begin
g D.∘ L.₁ f ≈⟨ pushʳ (commute (L.₁ f)) ⟩
(g D.∘ counit.η (L.F₀ Y)) D.∘ L.F₁ (θ (L.F₁ f)) ≈⟨ pushˡ (counit.sym-commute g) ⟩
counit.η Z D.∘ L.₁ (R.₁ g) D.∘ L.₁ (θ (L.₁ f)) ≈˘⟨ refl⟩∘⟨ L.homomorphism ⟩
counit.η Z D.∘ L.₁ (R.₁ g C.∘ θ (L.₁ f)) ∎
θ-cong : ∀ {X Y} {f g : D [ L.₀ X , Y ]} → f D.≈ g → θ f C.≈ θ g
θ-cong eq = unique (eq ○ commute _)
θ-natural′ : ∀ {X Y} (g : D [ L.₀ X , Y ]) → θ g C.≈ R.₁ g C.∘ θ D.id
θ-natural′ g = θ-cong (introʳ L.identity) ○ θ-natural C.id g ○ C.∘-resp-≈ʳ (θ-cong L.identity)
where open C.HomReasoning
open MR D
unit : NaturalTransformation idF (R ∘F L)
unit = ntHelper record
{ η = λ _ → θ D.id
; commute = λ f → begin
θ D.id C.∘ f ≈˘⟨ unique (DH.⟺ (cancelˡ (DH.⟺ (commute D.id))) DH.○ D.∘-resp-≈ʳ (DH.⟺ L.homomorphism)) ⟩
θ (L.₁ f) ≈⟨ θ-natural′ (L.₁ f) ⟩
R.₁ (L.₁ f) C.∘ θ D.id ∎
}
where open C.HomReasoning
module DH = D.HomReasoning
open MR D
unique′ : ∀ {X Y} {f g : C [ X , R.₀ Y ]} (h : D [ L.₀ X , Y ]) →
h D.≈ counit.η Y D.∘ L.₁ f →
h D.≈ counit.η Y D.∘ L.₁ g →
f C.≈ g
unique′ _ eq₁ eq₂ = ⟺ (unique eq₁) ○ unique eq₂
where open C.HomReasoning
zag : ∀ {B} → R.F₁ (counit.η B) C.∘ θ D.id C.≈ C.id
zag {B} = unique′ (counit.η B)
(⟺ (cancelʳ (⟺ (commute D.id))) ○ pushˡ (counit.sym-commute (counit.η B)) ○ D.∘-resp-≈ʳ (⟺ L.homomorphism))
(introʳ L.identity)
where open D.HomReasoning
open MR D
L⊣R : L ⊣ R
L⊣R = record
{ unit = unit
; counit = counit
; zig = D.Equiv.sym (commute D.id)
; zag = zag
}
module _ {L : Functor C D} {R : Functor D C} where
fromUnit : FromUnit L R → L ⊣ R
fromUnit = FromUnit.L⊣R
fromCounit : FromCounit L R → L ⊣ R
fromCounit = FromCounit.L⊣R
|
algebraic-stack_agda0000_doc_16962 | -- Trying to define ≤ as a datatype in Prop doesn't work very well:
{-# OPTIONS --enable-prop #-}
open import Agda.Builtin.Nat
data _≤'_ : Nat → Nat → Prop where
zero : (y : Nat) → zero ≤' y
suc : (x y : Nat) → x ≤' y → suc x ≤' suc y
≤'-ind : (P : (m n : Nat) → Set)
→ (pzy : (y : Nat) → P zero y)
→ (pss : (x y : Nat) → P x y → P (suc x) (suc y))
→ (m n : Nat) → m ≤' n → P m n
≤'-ind P pzy pss .0 y (zero .y) = ?
≤'-ind P pzy pss .(suc x) .(suc y) (suc x y pf) = ?
|
algebraic-stack_agda0000_doc_16963 |
module Lookup where
data Bool : Set where
false : Bool
true : Bool
data IsTrue : Bool -> Set where
isTrue : IsTrue true
data List (A : Set) : Set where
[] : List A
_::_ : A -> List A -> List A
data _×_ (A B : Set) : Set where
_,_ : A -> B -> A × B
module Map
(Key : Set)
(_==_ : Key -> Key -> Bool)
(Code : Set)
(Val : Code -> Set) where
infixr 40 _⟼_,_
infix 20 _∈_
data Map : List Code -> Set where
ε : Map []
_⟼_,_ : forall {c cs} ->
Key -> Val c -> Map cs -> Map (c :: cs)
_∈_ : forall {cs} -> Key -> Map cs -> Bool
k ∈ ε = false
k ∈ (k' ⟼ _ , m) with k == k'
... | true = true
... | false = k ∈ m
Lookup : forall {cs} -> (k : Key)(m : Map cs) -> IsTrue (k ∈ m) -> Set
Lookup k ε ()
Lookup k (_⟼_,_ {c} k' _ m) p with k == k'
... | true = Val c
... | false = Lookup k m p
lookup : {cs : List Code}(k : Key)(m : Map cs)(p : IsTrue (k ∈ m)) ->
Lookup k m p
lookup k ε ()
lookup k (k' ⟼ v , m) p with k == k'
... | true = v
... | false = lookup k m p |
algebraic-stack_agda0000_doc_16964 | -- Andreas, 2014-03-05, reported by xcycl.xoo, Mar 30, 2009
-- {-# OPTIONS -v tc.with:60 #-}
open import Common.Prelude renaming (Nat to ℕ; module Nat to ℕ)
data Nat : ℕ → Set where
i : (k : ℕ) → Nat k
toNat : (n : ℕ) → Nat n
toNat n = i n
fun : (n : ℕ) → ℕ
fun n with toNat n
fun .m | i m with toNat m
fun .Set | i .l | i l = 0
-- 'Set' is ill-typed here and should trigger an error
FORCE_FAIL_HERE_UNTIL_ISSUE_142_IS_REALLY_FIXED
|
algebraic-stack_agda0000_doc_16965 | id : Set → Set
id A = A
|
algebraic-stack_agda0000_doc_16966 | ------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Correctness of differentiation with the Nehemiah plugin.
------------------------------------------------------------------------
module Nehemiah.Change.Correctness where
-- The denotational properties of the `derive` transformation
-- for Calculus Nehemiah. In particular, the main theorem
-- about it producing the correct incremental behavior.
open import Nehemiah.Syntax.Type
open import Nehemiah.Syntax.Term
open import Nehemiah.Denotation.Value
open import Nehemiah.Denotation.Evaluation
open import Nehemiah.Change.Type
open import Nehemiah.Change.Term
open import Nehemiah.Change.Value
open import Nehemiah.Change.Evaluation
open import Nehemiah.Change.Validity
open import Nehemiah.Change.Derive
open import Nehemiah.Change.Implementation
open import Base.Denotation.Notation
open import Relation.Binary.PropositionalEquality
open import Data.Integer
open import Theorem.Groups-Nehemiah
open import Postulate.Extensionality
import Parametric.Change.Correctness
Const ⟦_⟧Base ⟦_⟧Const ΔBase
apply-base diff-base nil-base
⟦apply-base⟧ ⟦diff-base⟧ ⟦nil-base⟧
meaning-⊕-base meaning-⊝-base meaning-onil-base
derive-const implementation-structure as Correctness
open import Algebra.Structures
private
flatmap-funarg-equal : ∀ (f : ℤ → Bag) (Δf : Δ₍ int ⇒ bag ₎ f) Δf′ (Δf≈Δf′ : Δf ≈₍ int ⇒ bag ₎ Δf′) →
(f ⊞₍ int ⇒ bag ₎ Δf) ≡ (f ⟦⊕₍ int ⇒ bag ₎⟧ Δf′)
flatmap-funarg-equal f Δf Δf′ Δf≈Δf′ = ext lemma
where
lemma : ∀ v → f v ++ FunctionChange.apply Δf v (+ 0) ≡ f v ++ Δf′ v (+ 0)
lemma v rewrite Δf≈Δf′ v (+ 0) (+ 0) refl = refl
derive-const-correct : Correctness.Structure
derive-const-correct (intlit-const n) = refl
derive-const-correct add-const w Δw .Δw refl w₁ Δw₁ .Δw₁ refl
rewrite mn·pq=mp·nq {w} {Δw} {w₁} {Δw₁}
| associative-int (w + w₁) (Δw + Δw₁) (- (w + w₁))
= n+[m-n]=m {w + w₁} {Δw + Δw₁}
derive-const-correct minus-const w Δw .Δw refl
rewrite sym (-m·-n=-mn {w} {Δw})
| associative-int (- w) (- Δw) (- (- w)) = n+[m-n]=m { - w} { - Δw}
derive-const-correct empty-const = refl
derive-const-correct insert-const w Δw .Δw refl w₁ Δw₁ .Δw₁ refl = refl
derive-const-correct union-const w Δw .Δw refl w₁ Δw₁ .Δw₁ refl
rewrite ab·cd=ac·bd {w} {Δw} {w₁} {Δw₁}
| associative-bag (w ++ w₁) (Δw ++ Δw₁) (negateBag (w ++ w₁))
= a++[b\\a]=b {w ++ w₁} {Δw ++ Δw₁}
derive-const-correct negate-const w Δw .Δw refl
rewrite sym (-a·-b=-ab {w} {Δw})
| associative-bag (negateBag w) (negateBag Δw) (negateBag (negateBag w))
= a++[b\\a]=b {negateBag w} {negateBag Δw}
derive-const-correct flatmap-const w Δw Δw′ Δw≈Δw′ w₁ Δw₁ .Δw₁ refl
rewrite flatmap-funarg-equal w Δw Δw′ Δw≈Δw′ = refl
derive-const-correct sum-const w Δw .Δw refl
rewrite homo-sum {w} {Δw}
| associative-int (sumBag w) (sumBag Δw) (- sumBag w)
= n+[m-n]=m {sumBag w} {sumBag Δw}
open Correctness.Structure derive-const-correct public
|
algebraic-stack_agda0000_doc_16967 | {-# OPTIONS --safe --warning=error --without-K #-}
open import Groups.Definition
open import Setoids.Setoids
open import Sets.EquivalenceRelations
open import Groups.Homomorphisms.Definition
open import Groups.Homomorphisms.Lemmas
open import Groups.Subgroups.Definition
open import Groups.Lemmas
open import Groups.Abelian.Definition
open import Groups.Subgroups.Normal.Definition
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Groups.Subgroups.Normal.Lemmas where
data GroupKernelElement {a} {b} {c} {d} {A : Set a} {B : Set c} {S : Setoid {a} {b} A} {T : Setoid {c} {d} B} {_·A_ : A → A → A} {_·B_ : B → B → B} (G : Group S _·A_) {H : Group T _·B_} {f : A → B} (hom : GroupHom G H f) : Set (a ⊔ b ⊔ c ⊔ d) where
kerOfElt : (x : A) → (Setoid._∼_ T (f x) (Group.0G H)) → GroupKernelElement G hom
groupKernel : {a b c d : _} {A : Set a} {B : Set c} {S : Setoid {a} {b} A} {T : Setoid {c} {d} B} {_·A_ : A → A → A} {_·B_ : B → B → B} (G : Group S _·A_) {H : Group T _·B_} {f : A → B} (hom : GroupHom G H f) → Setoid (GroupKernelElement G hom)
Setoid._∼_ (groupKernel {S = S} G {H} {f} fHom) (kerOfElt x fx=0) (kerOfElt y fy=0) = Setoid._∼_ S x y
Equivalence.reflexive (Setoid.eq (groupKernel {S = S} G {H} {f} fHom)) {kerOfElt x x₁} = Equivalence.reflexive (Setoid.eq S)
Equivalence.symmetric (Setoid.eq (groupKernel {S = S} G {H} {f} fHom)) {kerOfElt x prX} {kerOfElt y prY} = Equivalence.symmetric (Setoid.eq S)
Equivalence.transitive (Setoid.eq (groupKernel {S = S} G {H} {f} fHom)) {kerOfElt x prX} {kerOfElt y prY} {kerOfElt z prZ} = Equivalence.transitive (Setoid.eq S)
groupKernelGroupOp : {a b c d : _} {A : Set a} {B : Set c} {S : Setoid {a} {b} A} {T : Setoid {c} {d} B} {_·A_ : A → A → A} {_·B_ : B → B → B} (G : Group S _·A_) {H : Group T _·B_} {f : A → B} (hom : GroupHom G H f) → (GroupKernelElement G hom) → (GroupKernelElement G hom) → (GroupKernelElement G hom)
groupKernelGroupOp {T = T} {_·A_ = _+A_} G {H = H} hom (kerOfElt x prX) (kerOfElt y prY) = kerOfElt (x +A y) (transitive (GroupHom.groupHom hom) (transitive (Group.+WellDefined H prX prY) (Group.identLeft H)))
where
open Setoid T
open Equivalence eq
groupKernelGroup : {a b c d : _} {A : Set a} {B : Set c} {S : Setoid {a} {b} A} {T : Setoid {c} {d} B} {_·A_ : A → A → A} {_·B_ : B → B → B} (G : Group S _·A_) {H : Group T _·B_} {f : A → B} (hom : GroupHom G H f) → Group (groupKernel G hom) (groupKernelGroupOp G hom)
Group.+WellDefined (groupKernelGroup G fHom) {kerOfElt x prX} {kerOfElt y prY} {kerOfElt a prA} {kerOfElt b prB} = Group.+WellDefined G
Group.0G (groupKernelGroup G fHom) = kerOfElt (Group.0G G) (imageOfIdentityIsIdentity fHom)
Group.inverse (groupKernelGroup {T = T} G {H = H} fHom) (kerOfElt x prX) = kerOfElt (Group.inverse G x) (transitive (homRespectsInverse fHom) (transitive (inverseWellDefined H prX) (invIdent H)))
where
open Setoid T
open Equivalence eq
Group.+Associative (groupKernelGroup {S = S} {_·A_ = _·A_} G fHom) {kerOfElt x prX} {kerOfElt y prY} {kerOfElt z prZ} = Group.+Associative G
Group.identRight (groupKernelGroup G fHom) {kerOfElt x prX} = Group.identRight G
Group.identLeft (groupKernelGroup G fHom) {kerOfElt x prX} = Group.identLeft G
Group.invLeft (groupKernelGroup G fHom) {kerOfElt x prX} = Group.invLeft G
Group.invRight (groupKernelGroup G fHom) {kerOfElt x prX} = Group.invRight G
injectionFromKernelToG : {a b c d : _} {A : Set a} {B : Set c} {S : Setoid {a} {b} A} {T : Setoid {c} {d} B} {_·A_ : A → A → A} {_·B_ : B → B → B} (G : Group S _·A_) {H : Group T _·B_} {f : A → B} (hom : GroupHom G H f) → GroupKernelElement G hom → A
injectionFromKernelToG G hom (kerOfElt x _) = x
injectionFromKernelToGIsHom : {a b c d : _} {A : Set a} {B : Set c} {S : Setoid {a} {b} A} {T : Setoid {c} {d} B} {_·A_ : A → A → A} {_·B_ : B → B → B} (G : Group S _·A_) {H : Group T _·B_} {f : A → B} (hom : GroupHom G H f) → GroupHom (groupKernelGroup G hom) G (injectionFromKernelToG G hom)
GroupHom.groupHom (injectionFromKernelToGIsHom {S = S} G hom) {kerOfElt x prX} {kerOfElt y prY} = Equivalence.reflexive (Setoid.eq S)
GroupHom.wellDefined (injectionFromKernelToGIsHom G hom) {kerOfElt x prX} {kerOfElt y prY} i = i
groupKernelGroupPred : {a b c d : _} {A : Set a} {B : Set c} {S : Setoid {a} {b} A} {T : Setoid {c} {d} B} {_·A_ : A → A → A} {_·B_ : B → B → B} (G : Group S _·A_) {H : Group T _·B_} {f : A → B} (hom : GroupHom G H f) → A → Set d
groupKernelGroupPred {T = T} G {H = H} {f = f} hom a = Setoid._∼_ T (f a) (Group.0G H)
groupKernelGroupPredWd : {a b c d : _} {A : Set a} {B : Set c} {S : Setoid {a} {b} A} {T : Setoid {c} {d} B} {_·A_ : A → A → A} {_·B_ : B → B → B} (G : Group S _·A_) {H : Group T _·B_} {f : A → B} (hom : GroupHom G H f) → {x y : A} → (Setoid._∼_ S x y) → (groupKernelGroupPred G hom x → groupKernelGroupPred G hom y)
groupKernelGroupPredWd {S = S} {T = T} G hom {x} {y} x=y fx=0 = Equivalence.transitive (Setoid.eq T) (GroupHom.wellDefined hom (Equivalence.symmetric (Setoid.eq S) x=y)) fx=0
groupKernelGroupIsSubgroup : {a b c d : _} {A : Set a} {B : Set c} {S : Setoid {a} {b} A} {T : Setoid {c} {d} B} {_·A_ : A → A → A} {_·B_ : B → B → B} (G : Group S _·A_) {H : Group T _·B_} {f : A → B} (hom : GroupHom G H f) → Subgroup G (groupKernelGroupPred G hom)
Subgroup.closedUnderPlus (groupKernelGroupIsSubgroup {S = S} {T = T} G {H = H} hom) g=0 h=0 = Equivalence.transitive (Setoid.eq T) (GroupHom.groupHom hom) (Equivalence.transitive (Setoid.eq T) (Group.+WellDefined H g=0 h=0) (Group.identLeft H))
Subgroup.containsIdentity (groupKernelGroupIsSubgroup G hom) = imageOfIdentityIsIdentity hom
Subgroup.closedUnderInverse (groupKernelGroupIsSubgroup {S = S} {T = T} G {H = H} hom) g=0 = Equivalence.transitive (Setoid.eq T) (homRespectsInverse hom) (Equivalence.transitive (Setoid.eq T) (inverseWellDefined H g=0) (invIdent H))
Subgroup.isSubset (groupKernelGroupIsSubgroup G hom) = groupKernelGroupPredWd G hom
groupKernelGroupIsNormalSubgroup : {a b c d : _} {A : Set a} {B : Set c} {S : Setoid {a} {b} A} {T : Setoid {c} {d} B} {_·A_ : A → A → A} {_·B_ : B → B → B} (G : Group S _·A_) {H : Group T _·B_} {f : A → B} (hom : GroupHom G H f) → normalSubgroup G (groupKernelGroupIsSubgroup G hom)
groupKernelGroupIsNormalSubgroup {T = T} G {H = H} hom k=0 = transitive groupHom (transitive (+WellDefined reflexive groupHom) (transitive (+WellDefined reflexive (transitive (+WellDefined k=0 reflexive) identLeft)) (transitive (symmetric groupHom) (transitive (wellDefined (Group.invRight G)) (imageOfIdentityIsIdentity hom)))))
where
open Setoid T
open Group H
open Equivalence eq
open GroupHom hom
abelianGroupSubgroupIsNormal : {a b c : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} {G : Group S _+_} {pred : A → Set c} → (s : Subgroup G pred) → AbelianGroup G → normalSubgroup G s
abelianGroupSubgroupIsNormal {S = S} {_+_ = _+_} {G = G} record { isSubset = predWd ; closedUnderPlus = respectsPlus ; containsIdentity = respectsId ; closedUnderInverse = respectsInv } abelian {k} {l} prK = predWd (transitive (transitive (transitive (symmetric identLeft) (+WellDefined (symmetric invRight) reflexive)) (symmetric +Associative)) (+WellDefined reflexive commutative)) prK
where
open Group G
open AbelianGroup abelian
open Setoid S
open Equivalence eq
|
algebraic-stack_agda0000_doc_16968 | {-# OPTIONS --without-K --rewriting #-}
open import lib.Basics
open import lib.types.Bool
open import lib.types.Empty
open import lib.types.Lift
open import lib.types.Sigma
open import lib.types.Pi
module lib.types.Coproduct where
module _ {i j} {A : Type i} {B : Type j} where
Coprod-elim : ∀ {k} {C : A ⊔ B → Type k}
→ ((a : A) → C (inl a)) → ((b : B) → C (inr b))
→ Π (A ⊔ B) C
Coprod-elim f g (inl a) = f a
Coprod-elim f g (inr b) = g b
⊔-elim = Coprod-elim
Coprod-rec : ∀ {k} {C : Type k}
→ (A → C) → (B → C) → (A ⊔ B → C)
Coprod-rec {C = C} = Coprod-elim {C = λ _ → C}
⊔-rec = Coprod-rec
Coprod= : Coprod A B → Coprod A B → Type (lmax i j)
Coprod= (inl a₁) (inl a₂) = Lift {j = (lmax i j)} $ a₁ == a₂
Coprod= (inl a₁) (inr b₂) = Lift Empty
Coprod= (inr b₁) (inl a₂) = Lift Empty
Coprod= (inr b₁) (inr b₂) = Lift {j = (lmax i j)} $ b₁ == b₂
Coprod=-in : {x y : Coprod A B} → (x == y) → Coprod= x y
Coprod=-in {inl _} idp = lift idp
Coprod=-in {inr _} idp = lift idp
Coprod=-out : {x y : Coprod A B} → Coprod= x y → (x == y)
Coprod=-out {inl _} {inl _} c = ap inl $ lower c
Coprod=-out {inl _} {inr _} c = Empty-rec $ lower c
Coprod=-out {inr _} {inl _} c = Empty-rec $ lower c
Coprod=-out {inr _} {inr _} c = ap inr (lower c)
Coprod=-in-equiv : (x y : Coprod A B) → (x == y) ≃ Coprod= x y
Coprod=-in-equiv x y = equiv Coprod=-in Coprod=-out (f-g x y) (g-f x y)
where f-g : ∀ x' y' → ∀ c → Coprod=-in (Coprod=-out {x'} {y'} c) == c
f-g (inl a₁) (inl .a₁) (lift idp) = idp
f-g (inl a₁) (inr b₂) b = Empty-rec $ lower b
f-g (inr b₁) (inl a₂) b = Empty-rec $ lower b
f-g (inr b₁) (inr .b₁) (lift idp) = idp
g-f : ∀ x' y' → ∀ p → Coprod=-out (Coprod=-in {x'} {y'} p) == p
g-f (inl _) .(inl _) idp = idp
g-f (inr _) .(inr _) idp = idp
inl=inl-equiv : (a₁ a₂ : A) → (inl a₁ == inl a₂) ≃ (a₁ == a₂)
inl=inl-equiv a₁ a₂ = lower-equiv ∘e Coprod=-in-equiv (inl a₁) (inl a₂)
inr=inr-equiv : (b₁ b₂ : B) → (inr b₁ == inr b₂) ≃ (b₁ == b₂)
inr=inr-equiv b₁ b₂ = lower-equiv ∘e Coprod=-in-equiv (inr b₁) (inr b₂)
inl≠inr : (a₁ : A) (b₂ : B) → (inl a₁ ≠ inr b₂)
inl≠inr a₁ b₂ p = lower $ Coprod=-in p
inr≠inl : (b₁ : B) (a₂ : A) → (inr b₁ ≠ inl a₂)
inr≠inl a₁ b₂ p = lower $ Coprod=-in p
instance
⊔-level : ∀ {n} → has-level (S (S n)) A → has-level (S (S n)) B
→ has-level (S (S n)) (Coprod A B)
⊔-level {n} pA pB = has-level-in (⊔-level-aux pA pB) where
instance _ = pA; _ = pB
⊔-level-aux : has-level (S (S n)) A → has-level (S (S n)) B
→ has-level-aux (S (S n)) (Coprod A B)
⊔-level-aux _ _ (inl a₁) (inl a₂) = equiv-preserves-level (inl=inl-equiv a₁ a₂ ⁻¹)
⊔-level-aux _ _ (inl a₁) (inr b₂) = has-level-in (λ p → Empty-rec (inl≠inr a₁ b₂ p))
⊔-level-aux _ _ (inr b₁) (inl a₂) = has-level-in (λ p → Empty-rec (inr≠inl b₁ a₂ p))
⊔-level-aux _ _ (inr b₁) (inr b₂) = equiv-preserves-level ((inr=inr-equiv b₁ b₂)⁻¹)
Coprod-level = ⊔-level
module _ {i j} {A : Type i} {B : Type j} where
Coprod-rec-post∘ : ∀ {k l} {C : Type k} {D : Type l}
→ (h : C → D) (f : A → C) (g : B → C)
→ h ∘ Coprod-rec f g ∼ Coprod-rec (h ∘ f) (h ∘ g)
Coprod-rec-post∘ h f g (inl _) = idp
Coprod-rec-post∘ h f g (inr _) = idp
⊔-rec-post∘ = Coprod-rec-post∘
module _ {i i' j j'} {A : Type i} {A' : Type i'} {B : Type j} {B' : Type j'}
(f : A → A') (g : B → B') where
⊔-fmap : A ⊔ B → A' ⊔ B'
⊔-fmap (inl a) = inl (f a)
⊔-fmap (inr b) = inr (g b)
infix 80 _⊙⊔_
_⊙⊔_ : ∀ {i j} → Ptd i → Ptd j → Ptd (lmax i j)
X ⊙⊔ Y = ⊙[ Coprod (de⊙ X) (de⊙ Y) , inl (pt X) ]
_⊔⊙_ : ∀ {i j} → Ptd i → Ptd j → Ptd (lmax i j)
X ⊔⊙ Y = ⊙[ Coprod (de⊙ X) (de⊙ Y) , inr (pt Y) ]
module _ {i j k} {X : Ptd i} {Y : Ptd j} {Z : Ptd k}
(f : X ⊙→ Z) (g : Y ⊙→ Z) where
⊙⊔-rec : X ⊙⊔ Y ⊙→ Z
⊙⊔-rec = Coprod-rec (fst f) (fst g) , snd f
⊔⊙-rec : X ⊔⊙ Y ⊙→ Z
⊔⊙-rec = Coprod-rec (fst f) (fst g) , snd g
module _ {i i' j j'} {X : Ptd i} {X' : Ptd i'} {Y : Ptd j} {Y' : Ptd j'}
(f : X ⊙→ X') (g : Y ⊙→ Y') where
⊙⊔-fmap : X ⊙⊔ Y ⊙→ X' ⊙⊔ Y'
⊙⊔-fmap = ⊔-fmap (fst f) (fst g) , ap inl (snd f)
⊔⊙-fmap : X ⊔⊙ Y ⊙→ X' ⊔⊙ Y'
⊔⊙-fmap = ⊔-fmap (fst f) (fst g) , ap inr (snd g)
codiag : ∀ {i} {A : Type i} → A ⊔ A → A
codiag = Coprod-rec (idf _) (idf _)
⊙codiag : ∀ {i} {X : Ptd i} → X ⊙⊔ X ⊙→ X
⊙codiag = (codiag , idp)
-- A binary sigma is a coproduct
ΣBool-equiv-⊔ : ∀ {i} (Pick : Bool → Type i)
→ Σ Bool Pick ≃ Pick true ⊔ Pick false
ΣBool-equiv-⊔ Pick = equiv into out into-out out-into
where
into : Σ _ Pick → Pick true ⊔ Pick false
into (true , a) = inl a
into (false , b) = inr b
out : (Pick true ⊔ Pick false) → Σ _ Pick
out (inl a) = (true , a)
out (inr b) = (false , b)
abstract
into-out : ∀ c → into (out c) == c
into-out (inl a) = idp
into-out (inr b) = idp
out-into : ∀ s → out (into s) == s
out-into (true , a) = idp
out-into (false , b) = idp
⊔₁-Empty : ∀ {i} (A : Type i) → Empty ⊔ A ≃ A
⊔₁-Empty A = equiv (λ{(inl ()); (inr a) → a}) inr (λ _ → idp) (λ{(inl ()); (inr _) → idp})
module _ {i j k} {A : Type i} {B : Type j} (P : A ⊔ B → Type k) where
Π₁-⊔-equiv-× : Π (A ⊔ B) P ≃ Π A (P ∘ inl) × Π B (P ∘ inr)
Π₁-⊔-equiv-× = equiv to from to-from from-to
where
to : Π (A ⊔ B) P → Π A (P ∘ inl) × Π B (P ∘ inr)
to f = (λ a → f (inl a)) , (λ b → f (inr b))
from : Π A (P ∘ inl) × Π B (P ∘ inr) → Π (A ⊔ B) P
from (f , g) (inl a) = f a
from (f , g) (inr b) = g b
abstract
to-from : ∀ fg → to (from fg) == fg
to-from _ = idp
from-to : ∀ fg → from (to fg) == fg
from-to fg = λ= λ where (inl _) → idp
(inr _) → idp
|
algebraic-stack_agda0000_doc_16969 | module nat-to-string where
open import bool
open import char
open import eq
open import list
open import maybe
open import nat
open import nat-division
open import nat-thms
open import product
open import string
open import termination
ℕ-to-digitsh : (base : ℕ) → 1 < base ≡ tt → (x : ℕ) → ↓𝔹 _>_ x → 𝕃 ℕ
ℕ-to-digitsh _ _ 0 _ = []
ℕ-to-digitsh base bp (suc x) (pf↓ fx) with (suc x) ÷ base ! (<=ℕff2 base bp)
... | q , r , p , _ = r :: (ℕ-to-digitsh base bp q (fx (÷<{base}{q}{r}{x} bp p)))
ℕ-to-digits : ℕ → 𝕃 ℕ
ℕ-to-digits x = reverse (ℕ-to-digitsh 10 refl x (↓-> x))
digit-to-string : ℕ → string
digit-to-string 0 = "0"
digit-to-string 1 = "1"
digit-to-string 2 = "2"
digit-to-string 3 = "3"
digit-to-string 4 = "4"
digit-to-string 5 = "5"
digit-to-string 6 = "6"
digit-to-string 7 = "7"
digit-to-string 8 = "8"
digit-to-string 9 = "9"
digit-to-string _ = "unexpected-digit"
digits-to-string : 𝕃 ℕ → string
digits-to-string [] = ""
digits-to-string (d :: ds) = (digit-to-string d) ^ (digits-to-string ds)
ℕ-to-string : ℕ → string
ℕ-to-string 0 = "0"
ℕ-to-string (suc x) = digits-to-string (ℕ-to-digits (suc x))
string-to-digit : char → maybe ℕ
string-to-digit '0' = just 0
string-to-digit '1' = just 1
string-to-digit '2' = just 2
string-to-digit '3' = just 3
string-to-digit '4' = just 4
string-to-digit '5' = just 5
string-to-digit '6' = just 6
string-to-digit '7' = just 7
string-to-digit '8' = just 8
string-to-digit '9' = just 9
string-to-digit _ = nothing
-- the digits are in order from least to most significant
digits-to-ℕh : ℕ → ℕ → 𝕃 ℕ → ℕ
digits-to-ℕh multiplier sum [] = sum
digits-to-ℕh multiplier sum (x :: xs) = digits-to-ℕh (10 * multiplier) (x * multiplier + sum) xs
digits-to-ℕ : 𝕃 ℕ → ℕ
digits-to-ℕ digits = digits-to-ℕh 1 0 digits
string-to-ℕ : string → maybe ℕ
string-to-ℕ s with 𝕃maybe-map string-to-digit (reverse (string-to-𝕃char s))
... | nothing = nothing
... | just ds = just (digits-to-ℕ ds)
|
algebraic-stack_agda0000_doc_16970 | {-# OPTIONS --type-in-type #-}
module Compilation.Encode.Examples where
open import Context
open import Type.Core
open import Compilation.Data
open import Compilation.Encode.Core
open import Function
open import Data.Product
open import Data.List.Base
module ProdTreeTreeExample where
open ProdTreeTree
open prodTreeTree
ProdTreeTree′ = ⟦ prodTreeTree ⟧ᵈ
ProdTree′ : Set -> Set -> Set
ProdTree′ with ProdTreeTree′
... | ø ▶ PT′ ▶ T′ = PT′
Tree′ : Set -> Set
Tree′ with ProdTreeTree′
... | ø ▶ PT′ ▶ T′ = T′
mutual
fromProdTree : ∀ {A B A′ B′} -> (A -> A′) -> (B -> B′) -> ProdTree A B -> ProdTree′ A′ B′
fromProdTree f g (Prod tree) =
Wrap λ R h -> h $ fromTree (λ{ (x , y) _ k -> k (f x) (g y) }) tree
fromTree : ∀ {A A′} -> (A -> A′) -> Tree A -> Tree′ A′
fromTree f (Leaf x) = Wrap λ R g h -> g $ f x
fromTree f (Fork prod) = Wrap λ R g h -> h $ fromProdTree f f prod
{-# TERMINATING #-}
mutual
toProdTree : ∀ {A B A′ B′} -> (A -> A′) -> (B -> B′) -> ProdTree′ A B -> ProdTree A′ B′
toProdTree f g (Wrap k) =
k _ λ tree -> Prod $ toTree (λ k -> k _ λ x y -> f x , g y) tree
toTree : ∀ {A A′} -> (A -> A′) -> Tree′ A -> Tree A′
toTree f (Wrap k) = k _ (Leaf ∘ f) (Fork ∘ toProdTree f f)
module ListExample where
list : Data⁺ (ε ▻ (ε ▻ ⋆))
list
= PackData
$ ø
▶ ( endᶜ
∷ Var vz ⇒ᶜ Var (vs vz) ∙ Var vz ⇒ᶜ endᶜ
∷ []
)
List′ : Set -> Set
List′ with ⟦ list ⟧ᵈ
... | ø ▶ L′ = L′
fromList : ∀ {A} -> List A -> List′ A
fromList [] = Wrap λ R z f -> z
fromList (x ∷ xs) = Wrap λ R z f -> f x $ fromList xs
{-# TERMINATING #-}
toList : ∀ {A} -> List′ A -> List A
toList (Wrap k) = k _ [] λ x xs -> x ∷ toList xs
module InterListExample where
data InterList (A B : Set) : Set where
InterNil : InterList A B
InterCons : A -> B -> InterList B A -> InterList A B
interlist : Data⁺ (ε ▻ (ε ▻ ⋆ ▻ ⋆))
interlist
= PackData
$ ø
▶ ( endᶜ
∷ Var (vs vz) ⇒ᶜ Var vz ⇒ᶜ Var (vs vs vz) ∙ Var vz ∙ Var (vs vz) ⇒ᶜ endᶜ
∷ []
)
InterList′ : Set -> Set -> Set
InterList′ with ⟦ interlist ⟧ᵈ
... | ø ▶ IL′ = IL′
fromInterList : ∀ {A B} -> InterList A B -> InterList′ A B
fromInterList InterNil = Wrap λ R z f -> z
fromInterList (InterCons x y yxs) = Wrap λ R z f -> f x y $ fromInterList yxs
{-# TERMINATING #-}
toInterList : ∀ {A B} -> InterList′ A B -> InterList A B
toInterList (Wrap k) = k _ InterNil λ x y yxs -> InterCons x y $ toInterList yxs
module TreeForestExample where
mutual
data Tree (A : Set) : Set where
node : A -> Forest A -> Tree A
data Forest (A : Set) : Set where
nil : Forest A
cons : Tree A -> Forest A -> Forest A
treeForest : Data⁺ (ε ▻ (ε ▻ ⋆) ▻ (ε ▻ ⋆))
treeForest
= PackData
$ ø
▶ ( Var vz ⇒ᶜ Var (vs vz) ∙ Var vz ⇒ᶜ endᶜ
∷ []
)
▶ ( endᶜ
∷ Var (vs vs vz) ∙ Var vz ⇒ᶜ Var (vs vz) ∙ Var vz ⇒ᶜ endᶜ
∷ []
)
TreeForest′ = ⟦ treeForest ⟧ᵈ
Tree′ : Set -> Set
Tree′ with TreeForest′
... | ø ▶ T′ ▶ F′ = T′
Forest′ : Set -> Set
Forest′ with TreeForest′
... | ø ▶ T′ ▶ F′ = F′
mutual
fromTree : ∀ {A} -> Tree A -> Tree′ A
fromTree (node x forest) = Wrap λ R f -> f x $ fromForest forest
fromForest : ∀ {A} -> Forest A -> Forest′ A
fromForest nil = Wrap λ R z f -> z
fromForest (cons tree forest) = Wrap λ R z f -> f (fromTree tree) (fromForest forest)
{-# TERMINATING #-}
mutual
toTree : ∀ {A} -> Tree′ A -> Tree A
toTree (Wrap k) = k _ λ x forest -> node x $ toForest forest
toForest : ∀ {A} -> Forest′ A -> Forest A
toForest (Wrap k) = k _ nil λ tree forest -> cons (toTree tree) (toForest forest)
module MNExample where
mutual
data M (A : Set) : Set where
p : A -> M A
n : N -> M A
data N : Set where
m : M N -> N
mn : Data⁺ (ε ▻ (ε ▻ ⋆) ▻ ε)
mn
= PackData
$ ø
▶ ( Var vz ⇒ᶜ endᶜ
∷ Var (vs vz) ⇒ᶜ endᶜ
∷ []
)
▶ ( Var (vs vz) ∙ Var vz ⇒ᶜ endᶜ
∷ []
)
MN′ = ⟦ mn ⟧ᵈ
M′ : Set -> Set
M′ with MN′
... | ø ▶ M′ ▶ N′ = M′
N′ : Set
N′ with MN′
... | ø ▶ M′ ▶ N′ = N′
{-# TERMINATING #-}
mutual
fromM : ∀ {A B} -> (A -> B) -> M A -> M′ B
fromM f (p x) = Wrap λ R g h -> g $ f x
fromM f (n x) = Wrap λ R g h -> h $ fromN x
fromN : N -> N′
fromN (m x) = Wrap λ R f -> f $ fromM fromN x
{-# TERMINATING #-}
mutual
toM : ∀ {A B} -> (A -> B) -> M′ A -> M B
toM f (Wrap k) = k _ (λ x -> p (f x)) (λ x -> n (toN x))
toN : N′ -> N
toN (Wrap k) = k _ λ x -> m (toM toN x)
|
algebraic-stack_agda0000_doc_16971 | module FFI.Data.Bool where
{-# FOREIGN GHC import qualified Data.Bool #-}
data Bool : Set where
false : Bool
true : Bool
{-# COMPILE GHC Bool = data Data.Bool.Bool (Data.Bool.False|Data.Bool.True) #-}
|
algebraic-stack_agda0000_doc_16972 | module test where
|
algebraic-stack_agda0000_doc_16973 | module Data.Either.Equiv where
import Lvl
open import Data.Either as Either
open import Structure.Function.Domain
open import Structure.Function
open import Structure.Operator
open import Structure.Setoid
open import Type
private variable ℓ ℓₑ ℓₑ₁ ℓₑ₂ : Lvl.Level
private variable A B : Type{ℓ}
record Extensionality ⦃ equiv-A : Equiv{ℓₑ₁}(A) ⦄ ⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄ (equiv : Equiv{ℓₑ}(A ‖ B)) : Type{Lvl.of(A) Lvl.⊔ Lvl.of(B) Lvl.⊔ ℓₑ₁ Lvl.⊔ ℓₑ₂ Lvl.⊔ ℓₑ} where
constructor intro
private instance _ = equiv
field
⦃ Left-function ⦄ : Function Left
⦃ Right-function ⦄ : Function Right
⦃ Left-injective ⦄ : Injective Left
⦃ Right-injective ⦄ : Injective Right
Left-Right-inequality : ∀{x : A}{y : B} → (Left x ≢ Right y)
|
algebraic-stack_agda0000_doc_16974 | {-# OPTIONS --without-K #-}
open import HoTT
open import homotopy.SuspProduct
open import homotopy.SuspSmash
open import homotopy.JoinSusp
open import cohomology.Theory
module cohomology.SphereProduct {i} (CT : CohomologyTheory i) where
open CohomologyTheory CT
open import cohomology.Wedge CT
module _ (n : ℤ) (m : ℕ) (X : Ptd i) where
private
space-path : ⊙Susp (⊙Lift {j = i} (⊙Sphere m) ⊙× X)
== ⊙Susp (⊙Lift (⊙Sphere m)) ⊙∨ (⊙Susp X ⊙∨ ⊙Susp^ (S m) X)
space-path =
SuspProduct.⊙path (⊙Lift (⊙Sphere m)) X
∙ ap (λ Z → ⊙Susp (⊙Lift (⊙Sphere m)) ⊙∨ (⊙Susp X ⊙∨ Z))
(SuspSmash.⊙path (⊙Lift (⊙Sphere m)) X
∙ ⊙*-⊙Lift-⊙Sphere m X)
C-Sphere× : C n (⊙Lift {j = i} (⊙Sphere m) ⊙× X)
== C n (⊙Lift (⊙Sphere m)) ×ᴳ (C n X ×ᴳ C n (⊙Susp^ m X))
C-Sphere× =
! (group-ua (C-Susp n (⊙Lift {j = i} (⊙Sphere m) ⊙× X)))
∙ ap (C (succ n)) space-path
∙ CWedge.path (succ n) (⊙Susp (⊙Lift (⊙Sphere m))) (⊙Susp X ⊙∨ ⊙Susp^ (S m) X)
∙ ap (λ H → C (succ n) (⊙Susp (⊙Lift (⊙Sphere m))) ×ᴳ H)
(CWedge.path (succ n) (⊙Susp X) (⊙Susp^ (S m) X)
∙ ap2 _×ᴳ_ (group-ua (C-Susp n X))
(group-ua (C-Susp n (⊙Susp^ m X))))
∙ ap (λ H → H ×ᴳ (C n X ×ᴳ C n (⊙Susp^ m X)))
(group-ua (C-Susp n (⊙Lift (⊙Sphere m))))
|
algebraic-stack_agda0000_doc_16975 | ------------------------------------------------------------------------
-- A type soundness result
------------------------------------------------------------------------
module Lambda.Closure.Functional.Type-soundness where
import Category.Monad.Partiality as Partiality
open import Category.Monad.Partiality.All as All
using (All; now; later)
open import Codata.Musical.Notation
open import Data.Fin using (Fin; zero; suc)
open import Data.Maybe using (Maybe; just; nothing)
open import Data.Maybe.Relation.Unary.Any as Maybe using (just)
open import Data.Nat
open import Data.Vec using (Vec; []; _∷_; lookup)
open import Relation.Binary.PropositionalEquality using (_≡_)
open import Relation.Nullary
open All.Alternative
private
open module E {A : Set} = Partiality.Equality (_≡_ {A = A})
using (_≈_; now; laterˡ)
open import Lambda.Closure.Functional
open Lambda.Closure.Functional.PF using (fail)
open Lambda.Closure.Functional.Workaround using (⟪_⟫P)
open import Lambda.Syntax
open Lambda.Syntax.Closure Tm
-- WF-Value, WF-Env and WF-MV specify when a
-- value/environment/potential value is well-formed with respect to a
-- given context (and type).
mutual
data WF-Value : Ty → Value → Set where
con : ∀ {i} → WF-Value nat (con i)
ƛ : ∀ {n Γ σ τ} {t : Tm (1 + n)} {ρ}
(t∈ : ♭ σ ∷ Γ ⊢ t ∈ ♭ τ) (ρ-wf : WF-Env Γ ρ) →
WF-Value (σ ⇾ τ) (ƛ t ρ)
infixr 5 _∷_
data WF-Env : ∀ {n} → Ctxt n → Env n → Set where
[] : WF-Env [] []
_∷_ : ∀ {n} {Γ : Ctxt n} {ρ σ v}
(v-wf : WF-Value σ v) (ρ-wf : WF-Env Γ ρ) →
WF-Env (σ ∷ Γ) (v ∷ ρ)
WF-MV : Ty → Maybe Value → Set
WF-MV σ = Maybe.Any (WF-Value σ)
-- Variables pointing into a well-formed environment refer to
-- well-formed values.
lookup-wf : ∀ {n Γ ρ} (x : Fin n) → WF-Env Γ ρ →
WF-Value (lookup Γ x) (lookup ρ x)
lookup-wf zero (v-wf ∷ ρ-wf) = v-wf
lookup-wf (suc x) (v-wf ∷ ρ-wf) = lookup-wf x ρ-wf
-- If we can prove All (WF-MV σ) x, then x does not "go wrong".
does-not-go-wrong : ∀ {σ x} → All (WF-MV σ) x → ¬ x ≈ fail
does-not-go-wrong (now (just _)) (now ())
does-not-go-wrong (later x-wf) (laterˡ x↯) =
does-not-go-wrong (♭ x-wf) x↯
-- Well-typed programs do not "go wrong".
mutual
⟦⟧-wf : ∀ {n Γ} (t : Tm n) {σ} → Γ ⊢ t ∈ σ →
∀ {ρ} → WF-Env Γ ρ → AllP (WF-MV σ) (⟦ t ⟧ ρ)
⟦⟧-wf (con i) con ρ-wf = now (just con)
⟦⟧-wf (var x) var ρ-wf = now (just (lookup-wf x ρ-wf))
⟦⟧-wf (ƛ t) (ƛ t∈) ρ-wf = now (just (ƛ t∈ ρ-wf))
⟦⟧-wf (t₁ · t₂) (t₁∈ · t₂∈) {ρ} ρ-wf =
⟦ t₁ · t₂ ⟧ ρ ≅⟨ ·-comp t₁ t₂ ⟩P
⟦ t₁ ⟧ ρ ⟦·⟧ ⟦ t₂ ⟧ ρ ⟨ (⟦⟧-wf t₁ t₁∈ ρ-wf >>=-congP λ { .{_} (just f-wf) →
⟦⟧-wf t₂ t₂∈ ρ-wf >>=-congP λ { .{_} (just v-wf) →
∙-wf f-wf v-wf }}) ⟩P
∙-wf : ∀ {σ τ f v} →
WF-Value (σ ⇾ τ) f → WF-Value (♭ σ) v →
AllP (WF-MV (♭ τ)) ⟪ f ∙ v ⟫P
∙-wf (ƛ t₁∈ ρ₁-wf) v₂-wf = later (♯ ⟦⟧-wf _ t₁∈ (v₂-wf ∷ ρ₁-wf))
type-soundness : ∀ {t : Tm 0} {σ} → [] ⊢ t ∈ σ → ¬ ⟦ t ⟧ [] ≈ fail
type-soundness t∈ =
does-not-go-wrong (All.Alternative.sound (⟦⟧-wf _ t∈ []))
|
algebraic-stack_agda0000_doc_5952 | {-# OPTIONS --without-K --safe #-}
module Categories.Category.Instance.Properties.Setoids where
open import Level
open import Data.Product using (Σ; proj₁; proj₂; _,_; Σ-syntax; _×_; -,_)
open import Function.Equality using (Π)
open import Relation.Binary using (Setoid; Preorder; Rel)
open import Relation.Binary.PropositionalEquality as ≡ using (_≡_)
open import Relation.Binary.Indexed.Heterogeneous using (_=[_]⇒_)
open import Relation.Binary.Construct.Closure.SymmetricTransitive as ST using (Plus⇔; minimal)
open Plus⇔
open import Categories.Category using (Category; _[_,_])
open import Categories.Functor
open import Categories.Category.Instance.Setoids
open import Categories.Category.Complete
open import Categories.Category.Cocomplete
import Categories.Category.Construction.Cocones as Coc
import Categories.Category.Construction.Cones as Co
import Relation.Binary.Reasoning.Setoid as RS
open Π using (_⟨$⟩_)
module _ {o ℓ e} c ℓ′ {J : Category o ℓ e} (F : Functor J (Setoids (o ⊔ c) (o ⊔ ℓ ⊔ c ⊔ ℓ′))) where
private
module J = Category J
open Functor F
module F₀ j = Setoid (F₀ j)
open F₀ using () renaming (_≈_ to _[_≈_])
vertex-carrier : Set (o ⊔ c)
vertex-carrier = Σ J.Obj F₀.Carrier
coc : Rel vertex-carrier (o ⊔ ℓ ⊔ c ⊔ ℓ′)
coc (X , x) (Y , y) = Σ[ f ∈ J [ X , Y ] ] Y [ (F₁ f ⟨$⟩ x) ≈ y ]
coc-preorder : Preorder (o ⊔ c) (o ⊔ c) (o ⊔ ℓ ⊔ c ⊔ ℓ′)
coc-preorder = record
{ Carrier = vertex-carrier
; _≈_ = _≡_
; _∼_ = coc
; isPreorder = record
{ isEquivalence = ≡.isEquivalence
; reflexive = λ { {j , _} ≡.refl → J.id , (identity (F₀.refl j)) }
; trans = λ { {a , Sa} {b , Sb} {c , Sc} (f , eq₁) (g , eq₂) →
let open RS (F₀ c)
in g J.∘ f , (begin
F₁ (g J.∘ f) ⟨$⟩ Sa ≈⟨ homomorphism (F₀.refl a) ⟩
F₁ g ⟨$⟩ (F₁ f ⟨$⟩ Sa) ≈⟨ Π.cong (F₁ g) eq₁ ⟩
F₁ g ⟨$⟩ Sb ≈⟨ eq₂ ⟩
Sc ∎) }
}
}
Setoids-Cocomplete : (o ℓ e c ℓ′ : Level) → Cocomplete o ℓ e (Setoids (o ⊔ c) (o ⊔ ℓ ⊔ c ⊔ ℓ′))
Setoids-Cocomplete o ℓ e c ℓ′ {J} F = record
{ initial =
record
{ ⊥ = record
{ N = ⇛-Setoid
; coapex = record
{ ψ = λ j → record
{ _⟨$⟩_ = j ,_
; cong = λ i≈k → forth (-, identity i≈k)
}
; commute = λ {X} X⇒Y x≈y → back (-, Π.cong (F₁ X⇒Y) (F₀.sym X x≈y))
}
}
; ! = λ {K} →
let module K = Cocone K
in record
{ arr = record
{ _⟨$⟩_ = to-coapex K
; cong = minimal (coc c ℓ′ F) K.N (to-coapex K) (coapex-cong K)
}
; commute = λ {X} x≈y → Π.cong (Coapex.ψ (Cocone.coapex K) X) x≈y
}
; !-unique = λ { {K} f {a , Sa} {b , Sb} eq →
let module K = Cocone K
module f = Cocone⇒ f
open RS K.N
in begin
K.ψ a ⟨$⟩ Sa ≈˘⟨ f.commute (F₀.refl a) ⟩
f.arr ⟨$⟩ (a , Sa) ≈⟨ Π.cong f.arr eq ⟩
f.arr ⟨$⟩ (b , Sb) ∎ }
}
}
where open Functor F
open Coc F
module J = Category J
module F₀ j = Setoid (F₀ j)
open F₀ using () renaming (_≈_ to _[_≈_])
-- this is essentially a symmetric transitive closure of coc
⇛-Setoid : Setoid (o ⊔ c) (o ⊔ ℓ ⊔ c ⊔ ℓ′)
⇛-Setoid = ST.setoid (coc c ℓ′ F) (Preorder.refl (coc-preorder c ℓ′ F))
to-coapex : ∀ K → vertex-carrier c ℓ′ F → Setoid.Carrier (Cocone.N K)
to-coapex K (j , Sj) = K.ψ j ⟨$⟩ Sj
where module K = Cocone K
coapex-cong : ∀ K → coc c ℓ′ F =[ to-coapex K ]⇒ (Setoid._≈_ (Cocone.N K))
coapex-cong K {X , x} {Y , y} (f , fx≈y) = begin
K.ψ X ⟨$⟩ x ≈˘⟨ K.commute f (F₀.refl X) ⟩
K.ψ Y ⟨$⟩ (F₁ f ⟨$⟩ x) ≈⟨ Π.cong (K.ψ Y) fx≈y ⟩
K.ψ Y ⟨$⟩ y ∎
where module K = Cocone K
open RS K.N
Setoids-Complete : (o ℓ e c ℓ′ : Level) → Complete o ℓ e (Setoids (c ⊔ ℓ ⊔ o ⊔ ℓ′) (o ⊔ ℓ′))
Setoids-Complete o ℓ e c ℓ′ {J} F =
record
{ terminal = record
{ ⊤ = record
{ N = record
{ Carrier = Σ (∀ j → F₀.Carrier j)
(λ S → ∀ {X Y} (f : J [ X , Y ]) → [ F₀ Y ] F₁ f ⟨$⟩ S X ≈ S Y)
; _≈_ = λ { (S₁ , _) (S₂ , _) → ∀ j → [ F₀ j ] S₁ j ≈ S₂ j }
; isEquivalence = record
{ refl = λ j → F₀.refl j
; sym = λ a≈b j → F₀.sym j (a≈b j)
; trans = λ a≈b b≈c j → F₀.trans j (a≈b j) (b≈c j)
}
}
; apex = record
{ ψ = λ j → record
{ _⟨$⟩_ = λ { (S , _) → S j }
; cong = λ eq → eq j
}
; commute = λ { {X} {Y} X⇒Y {_ , eq} {y} f≈g → F₀.trans Y (eq X⇒Y) (f≈g Y) }
}
}
; ! = λ {K} →
let module K = Cone K
in record
{ arr = record
{ _⟨$⟩_ = λ x → (λ j → K.ψ j ⟨$⟩ x) , λ f → K.commute f (Setoid.refl K.N)
; cong = λ a≈b j → Π.cong (K.ψ j) a≈b
}
; commute = λ x≈y → Π.cong (K.ψ _) x≈y
}
; !-unique = λ {K} f x≈y j →
let module K = Cone K
in F₀.sym j (Cone⇒.commute f (Setoid.sym K.N x≈y))
}
}
where open Functor F
open Co F
module J = Category J
module F₀ j = Setoid (F₀ j)
[_]_≈_ = Setoid._≈_
|
algebraic-stack_agda0000_doc_5953 | open import Agda.Primitive
variable
ℓ : Level
A : Set ℓ
P : A → Set ℓ
f : (x : A) → P x
postulate
R : (a : Level) → Set (lsuc a)
r : (a : Level) → R a
Id : (a : Level) (A : Set a) → A → A → Set a
cong₂ : (a b c : Level) (A : Set a) (B : Set b) (C : Set c) (x y : A) (u v : B)
(f : A → B → C) → Id c C (f x u) (f y v)
foo : (x y u v : A) (g : A → A) →
let a = _ in
Id a (Id _ _ _ _)
(cong₂ _ _ _ _ _ _ x y u v (λ x → f (g x)))
(cong₂ _ _ _ _ _ _ (g x) (g y) u v f)
|
algebraic-stack_agda0000_doc_5954 |
open import Oscar.Prelude
open import Oscar.Class
open import Oscar.Class.Reflexivity
module Oscar.Class.Reflexivity.Function where
module _
{a}
where
instance
𝓡eflexivityFunction : Reflexivity.class Function⟦ a ⟧
𝓡eflexivityFunction .⋆ = ¡
|
algebraic-stack_agda0000_doc_5955 | -- https://github.com/idris-lang/Idris-dev/blob/4e704011fb805fcb861cc9a1bd68a2e727cefdde/libs/contrib/Data/Nat/Fib.idr
{-# OPTIONS --without-K --safe #-}
-- agda-stdlib
open import Algebra
module Math.NumberTheory.Fibonacci.Generic
{c e} (CM : CommutativeMonoid c e)
(v0 v1 : CommutativeMonoid.Carrier CM)
where
-- agda-stdlib
open import Data.Nat
open import Function
import Relation.Binary.PropositionalEquality as ≡
import Relation.Binary.Reasoning.Setoid as SetoidReasoning
open CommutativeMonoid CM
renaming
( Carrier to A
)
open SetoidReasoning setoid
fibRec : ℕ → A
fibRec 0 = v0
fibRec 1 = v1
fibRec (suc (suc n)) = fibRec (suc n) ∙ fibRec n
fibAcc : ℕ → A → A → A
fibAcc 0 a b = a
fibAcc (suc n) a b = fibAcc n b (a ∙ b)
fib : ℕ → A
fib n = fibAcc n v0 v1
lemma : ∀ m n o p → (m ∙ n) ∙ (o ∙ p) ≈ (m ∙ o) ∙ (n ∙ p)
lemma m n o p = begin
(m ∙ n) ∙ (o ∙ p) ≈⟨ assoc m n (o ∙ p) ⟩
m ∙ (n ∙ (o ∙ p)) ≈⟨ sym $ ∙-congˡ $ assoc n o p ⟩
m ∙ ((n ∙ o) ∙ p) ≈⟨ ∙-congˡ $ ∙-congʳ $ comm n o ⟩
m ∙ ((o ∙ n) ∙ p) ≈⟨ ∙-congˡ $ assoc o n p ⟩
m ∙ (o ∙ (n ∙ p)) ≈⟨ sym $ assoc m o (n ∙ p) ⟩
(m ∙ o) ∙ (n ∙ p) ∎
fibAcc-cong : ∀ {m n o p q r} →
m ≡.≡ n → o ≈ p → q ≈ r → fibAcc m o q ≈ fibAcc n p r
fibAcc-cong {zero} {.0} {o} {p} {q} {r} ≡.refl o≈p q≈r = o≈p
fibAcc-cong {suc m} {.(suc m)} {o} {p} {q} {r} ≡.refl o≈p q≈r =
fibAcc-cong {m = m} ≡.refl q≈r (∙-cong o≈p q≈r)
fibAdd : ∀ m n o p q → fibAcc m n o ∙ fibAcc m p q ≈ fibAcc m (n ∙ p) (o ∙ q)
fibAdd 0 n o p q = refl
fibAdd 1 n o p q = refl
fibAdd (suc (suc m)) n o p q = begin
fibAcc (2 + m) n o ∙ fibAcc (2 + m) p q ≡⟨⟩
fibAcc (1 + m) o (n ∙ o) ∙ fibAcc (1 + m) q (p ∙ q) ≡⟨⟩
fibAcc m (n ∙ o) (o ∙ (n ∙ o)) ∙ fibAcc m (p ∙ q) (q ∙ (p ∙ q)) ≈⟨ fibAdd m (n ∙ o) (o ∙ (n ∙ o)) (p ∙ q) (q ∙ (p ∙ q)) ⟩
fibAcc m ((n ∙ o) ∙ (p ∙ q)) ((o ∙ (n ∙ o)) ∙ (q ∙ (p ∙ q))) ≈⟨ fibAcc-cong {m = m} ≡.refl (lemma n o p q) (lemma o (n ∙ o) q (p ∙ q)) ⟩
fibAcc m ((n ∙ p) ∙ (o ∙ q)) ((o ∙ q) ∙ ((n ∙ o) ∙ (p ∙ q))) ≈⟨ fibAcc-cong {m = m} ≡.refl refl (∙-congˡ $ lemma n o p q) ⟩
fibAcc m ((n ∙ p) ∙ (o ∙ q)) ((o ∙ q) ∙ ((n ∙ p) ∙ (o ∙ q))) ≡⟨⟩
fibAcc (1 + m) (o ∙ q) ((n ∙ p) ∙ (o ∙ q)) ≡⟨⟩
fibAcc (2 + m) (n ∙ p) (o ∙ q) ∎
fibRec≈fib : ∀ n → fibRec n ≈ fib n
fibRec≈fib 0 = refl
fibRec≈fib 1 = refl
fibRec≈fib (suc (suc n)) = begin
fibRec (2 + n) ≡⟨⟩
fibRec (1 + n) ∙ fibRec n ≈⟨ ∙-cong (fibRec≈fib (suc n)) (fibRec≈fib n) ⟩
fib (1 + n) ∙ fib n ≡⟨⟩
fibAcc (1 + n) v0 v1 ∙ fibAcc n v0 v1 ≡⟨⟩
fibAcc n v1 (v0 ∙ v1) ∙ fibAcc n v0 v1 ≈⟨ fibAdd n v1 (v0 ∙ v1) v0 v1 ⟩
fibAcc n (v1 ∙ v0) ((v0 ∙ v1) ∙ v1) ≈⟨ fibAcc-cong {m = n} ≡.refl (comm v1 v0) (trans (∙-congʳ (comm v0 v1)) (assoc v1 v0 v1)) ⟩
fibAcc n (v0 ∙ v1) (v1 ∙ (v0 ∙ v1)) ≡⟨⟩
fib (2 + n) ∎
fib[2+n]≈fib[1+n]∙fib[n] : ∀ n → fib (suc (suc n)) ≈ fib (suc n) ∙ fib n
fib[2+n]≈fib[1+n]∙fib[n] n =
trans (sym $ fibRec≈fib (suc (suc n)))
(∙-cong (fibRec≈fib (suc n)) (fibRec≈fib n))
fib[1+n]∙fib[n]≈fib[2+n] : ∀ n → fib (suc n) ∙ fib n ≈ fib (suc (suc n))
fib[1+n]∙fib[n]≈fib[2+n] n = sym $ fib[2+n]≈fib[1+n]∙fib[n] n
fib[n]∙fib[1+n]≈fib[2+n] : ∀ n → fib n ∙ fib (suc n) ≈ fib (suc (suc n))
fib[n]∙fib[1+n]≈fib[2+n] n = trans (comm (fib n) (fib (suc n))) (fib[1+n]∙fib[n]≈fib[2+n] n)
|
algebraic-stack_agda0000_doc_5956 |
module Lib.Maybe where
data Maybe (A : Set) : Set where
nothing : Maybe A
just : A -> Maybe A
{-# COMPILE GHC Maybe = data Maybe (Nothing | Just) #-}
|
algebraic-stack_agda0000_doc_5957 |
module Subst where
open import Prelude
open import Lambda
infix 100 _[_] _[_:=_] _↑
infixl 100 _↑_ _↑ˢ_ _↑ˣ_ _↓ˣ_
infixl 60 _-_
{-
_-_ : {τ : Type}(Γ : Ctx) -> Var Γ τ -> Ctx
ε - ()
Γ , τ - vz = Γ
Γ , τ - vs x = (Γ - x) , τ
wkˣ : {Γ : Ctx}{σ τ : Type}
(x : Var Γ σ) -> Var (Γ - x) τ -> Var Γ τ
wkˣ vz y = vs y
wkˣ (vs x) vz = vz
wkˣ (vs x) (vs y) = vs (wkˣ x y)
wk : {Γ : Ctx}{σ τ : Type}
(x : Var Γ σ) -> Term (Γ - x) τ -> Term Γ τ
wk x (var y) = var (wkˣ x y)
wk x (s • t) = wk x s • wk x t
wk x (ƛ t) = ƛ wk (vs x) t
_↑ : {Γ : Ctx}{σ τ : Type} -> Term Γ τ -> Term (Γ , σ) τ
t ↑ = wk vz t
_↑_ : {Γ : Ctx}{τ : Type} -> Term Γ τ -> (Δ : Ctx) -> Term (Γ ++ Δ) τ
t ↑ ε = t
t ↑ (Δ , σ) = (t ↑ Δ) ↑
data Cmpˣ {Γ : Ctx}{τ : Type}(x : Var Γ τ) :
{σ : Type} -> Var Γ σ -> Set where
same : Cmpˣ x x
diff : {σ : Type}(y : Var (Γ - x) σ) -> Cmpˣ x (wkˣ x y)
_≟_ : {Γ : Ctx}{σ τ : Type}(x : Var Γ σ)(y : Var Γ τ) -> Cmpˣ x y
vz ≟ vz = same
vz ≟ vs y = diff y
vs x ≟ vz = diff vz
vs x ≟ vs y with x ≟ y
vs x ≟ vs .x | same = same
vs x ≟ vs .(wkˣ x y) | diff y = diff (vs y)
_[_:=_] : {Γ : Ctx}{σ τ : Type} ->
Term Γ σ -> (x : Var Γ τ) -> Term (Γ - x) τ ->
Term (Γ - x) σ
var y [ x := u ] with x ≟ y
var .x [ x := u ] | same = u
var .(wkˣ x y) [ x := u ] | diff y = var y
(s • t) [ x := u ] = s [ x := u ] • t [ x := u ]
(ƛ t) [ x := u ] = ƛ t [ vs x := u ↑ ]
-}
infix 30 _─⟶_
infixl 90 _/_
_─⟶_ : Ctx -> Ctx -> Set
Γ ─⟶ Δ = Terms Γ Δ
idS : forall {Γ} -> Γ ─⟶ Γ
idS = tabulate var
infixr 80 _∘ˢ_
[_] : forall {Γ σ } -> Term Γ σ -> Γ ─⟶ Γ , σ
[ t ] = idS ◄ t
wkS : forall {Γ Δ τ} -> Γ ─⟶ Δ -> Γ , τ ─⟶ Δ
wkS ∅ = ∅
wkS (θ ◄ t) = wkS θ ◄ wk t
_↑ : forall {Γ Δ τ} -> (Γ ─⟶ Δ) -> Γ , τ ─⟶ Δ , τ
θ ↑ = wkS θ ◄ vz
_/_ : forall {Γ Δ τ} -> Term Δ τ -> Γ ─⟶ Δ -> Term Γ τ
vz / (θ ◄ u) = u
wk t / (θ ◄ u) = t / θ
(s • t) / θ = s / θ • t / θ
(ƛ t) / θ = ƛ t / θ ↑
_∘ˢ_ : forall {Γ Δ Θ} -> Δ ─⟶ Θ -> Γ ─⟶ Δ -> Γ ─⟶ Θ
∅ ∘ˢ θ = ∅
(δ ◄ t) ∘ˢ θ = δ ∘ˢ θ ◄ t / θ
inj : forall {Γ Δ τ} Θ -> Term Γ τ -> Γ ─⟶ Δ ++ Θ -> Γ ─⟶ Δ , τ ++ Θ
inj ε t θ = θ ◄ t
inj (Θ , σ) t (θ ◄ u) = inj Θ t θ ◄ u
[_⟵_] : forall {Γ τ} Δ -> Term (Γ ++ Δ) τ -> Γ ++ Δ ─⟶ Γ , τ ++ Δ
[ Δ ⟵ t ] = inj Δ t idS
_↑_ : forall {Γ σ} -> Term Γ σ -> (Δ : Ctx) -> Term (Γ ++ Δ) σ
t ↑ ε = t
t ↑ (Δ , τ) = wk (t ↑ Δ)
_↑ˢ_ : forall {Γ Δ} -> Terms Γ Δ -> (Θ : Ctx) -> Terms (Γ ++ Θ) Δ
∅ ↑ˢ Θ = ∅
(ts ◄ t) ↑ˢ Θ = ts ↑ˢ Θ ◄ t ↑ Θ
_↑ˣ_ : forall {Γ τ} -> Var Γ τ -> (Δ : Ctx) -> Var (Γ ++ Δ) τ
x ↑ˣ ε = x
x ↑ˣ (Δ , σ) = vsuc (x ↑ˣ Δ)
lem-var-↑ˣ : forall {Γ τ}(x : Var Γ τ)(Δ : Ctx) ->
var (x ↑ˣ Δ) ≡ var x ↑ Δ
lem-var-↑ˣ x ε = refl
lem-var-↑ˣ x (Δ , σ) = cong wk (lem-var-↑ˣ x Δ)
{- Not true!
lem-•-↑ : forall {Γ σ τ}(t : Term Γ (σ ⟶ τ))(u : Term Γ σ) Δ ->
(t ↑ Δ) • (u ↑ Δ) ≡ (t • u) ↑ Δ
lem-•-↑ t u ε = refl
lem-•-↑ t u (Δ , δ) = {! !}
lem-•ˢ-↑ : forall {Γ Θ τ}(t : Term Γ (Θ ⇒ τ))(ts : Terms Γ Θ) Δ ->
(t ↑ Δ) •ˢ (ts ↑ˢ Δ) ≡ (t •ˢ ts) ↑ Δ
lem-•ˢ-↑ t ∅ Δ = refl
lem-•ˢ-↑ t (u ◄ us) Δ = {! !}
-}
{-
_[_] : {Γ : Ctx}{σ τ : Type} ->
Term (Γ , τ) σ -> Term Γ τ -> Term Γ σ
t [ u ] = t / [ u ]
-}
{-
vz [ u ] = u
wk t [ u ] = {! !}
(s • t) [ u ] = {! !}
(ƛ_ {τ = ρ} t) [ u ] = ƛ {! !}
-}
{-
_↓ˣ_ : {Γ : Ctx}{σ τ : Type}
(y : Var Γ σ)(x : Var (Γ - y) τ) -> Var (Γ - wkˣ y x) σ
vz ↓ˣ x = vz
vs y ↓ˣ vz = y
vs y ↓ˣ vs x = vs (y ↓ˣ x)
lem-commute-minus :
{Γ : Ctx}{σ τ : Type}(y : Var Γ σ)(x : Var (Γ - y) τ) ->
Γ - y - x ≡ Γ - wkˣ y x - (y ↓ˣ x)
lem-commute-minus vz x = refl
lem-commute-minus (vs y) vz = refl
lem-commute-minus (vs {Γ} y) (vs x) with Γ - y - x | lem-commute-minus y x
... | ._ | refl = refl
Lem-wk-[] :
{Γ : Ctx}{τ σ ρ : Type}
(y : Var Γ τ)
(x : Var (Γ - y) σ)
(t : Term (Γ - wkˣ y x) ρ)
(u : Term (Γ - y - x) τ) -> Set
Lem-wk-[] {Γ}{τ}{σ}{ρ} y x t u =
wk (wkˣ y x) t [ y := wk x u ]
≡ wk x t[u']'
where
u' : Term (Γ - wkˣ y x - y ↓ˣ x) τ
u' = subst (\Δ -> Term Δ τ) (sym (lem-commute-minus y x)) u
t[u']' : Term (Γ - y - x) ρ
t[u']' = subst (\Δ -> Term Δ ρ) (lem-commute-minus y x)
(t [ y ↓ˣ x := u' ])
postulate
lem-wk-[] : {Γ : Ctx}{σ τ ρ : Type}
(y : Var Γ τ)(x : Var (Γ - y) σ)
(t : Term (Γ - wkˣ y x) ρ){u : Term (Γ - y - x) τ} ->
Lem-wk-[] y x t u
{-
lem-wk-[] y x (var z) = {! !}
lem-wk-[] y x (t • u) = {! !}
lem-wk-[] y x (ƛ t) = {! !}
-}
lem-wk-[]' : {Γ : Ctx}{σ τ ρ : Type}
(x : Var Γ σ)(t : Term (Γ - x , ρ) τ){u : Term (Γ - x) ρ} ->
wk x (t [ vz := u ]) ≡ wk (vs x) t [ vz := wk x u ]
lem-wk-[]' x t = sym (lem-wk-[] vz x t)
-} |
algebraic-stack_agda0000_doc_5958 | {-# OPTIONS --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.Substitution.Introductions.IdUniv {{eqrel : EqRelSet}} where
open EqRelSet {{...}}
open import Definition.Untyped
open import Definition.Untyped.Properties
open import Definition.Typed
open import Definition.Typed.Properties
import Definition.Typed.Weakening as Twk
open import Definition.Typed.EqualityRelation
open import Definition.Typed.RedSteps
open import Definition.LogicalRelation
open import Definition.LogicalRelation.ShapeView
open import Definition.LogicalRelation.Irrelevance
open import Definition.LogicalRelation.Properties
open import Definition.LogicalRelation.Application
open import Definition.LogicalRelation.Substitution
import Definition.LogicalRelation.Weakening as Lwk
open import Definition.LogicalRelation.Substitution.Properties
import Definition.LogicalRelation.Substitution.Irrelevance as S
open import Definition.LogicalRelation.Substitution.Reflexivity
open import Definition.LogicalRelation.Substitution.Weakening
-- open import Definition.LogicalRelation.Substitution.Introductions.Nat
open import Definition.LogicalRelation.Substitution.Introductions.Empty
open import Definition.LogicalRelation.Substitution.Introductions.Pi
open import Definition.LogicalRelation.Substitution.Introductions.Idlemmas
open import Definition.LogicalRelation.Substitution.MaybeEmbed
-- open import Definition.LogicalRelation.Substitution.Introductions.SingleSubst
open import Definition.LogicalRelation.Substitution.Introductions.Universe
open import Tools.Product
open import Tools.Empty
import Tools.Unit as TU
import Tools.PropositionalEquality as PE
import Data.Nat as Nat
[Id]SProp : ∀ {t u Γ}
(⊢Γ : ⊢ Γ)
([t] : Γ ⊩⟨ ι ⁰ ⟩ t ^ [ % , ι ⁰ ])
([u] : Γ ⊩⟨ ι ⁰ ⟩ u ^ [ % , ι ⁰ ])
→ Γ ⊩⟨ ι ¹ ⟩ Id (SProp ⁰) t u ^ [ % , ι ¹ ]
[Id]SProp {t} {u} {Γ} ⊢Γ [t] [u] =
let
⊢t = escape [t]
⊢u = escape [u]
⊢wkt = Twk.wk (Twk.step Twk.id) (⊢Γ ∙ ⊢u) ⊢t
⊢wku = Twk.wk (Twk.step Twk.id) (⊢Γ ∙ ⊢t) ⊢u
[wkt] = λ {ρ} {Δ} ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → Lwk.wk [ρ] ⊢Δ [t]
[wku] = λ {ρ} {Δ} ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → Lwk.wk [ρ] ⊢Δ [u]
[t▹u] : Γ ⊩⟨ ι ⁰ ⟩ t ^ % ° ⁰ ▹▹ u ° ⁰ ° ¹ ^ [ % , ι ¹ ]
[t▹u] = Πᵣ′ % ⁰ ⁰ (<is≤ 0<1) (<is≤ 0<1) t (wk1 u)
(idRed:*: (univ (Πⱼ <is≤ 0<1 ▹ <is≤ 0<1 ▹ un-univ ⊢t ▹ un-univ ⊢wku))) ⊢t ⊢wku
(≅-univ (≅ₜ-Π-cong (<is≤ 0<1) (<is≤ 0<1) ⊢t (≅-un-univ (escapeEqRefl [t])) (≅-un-univ (≅-wk (Twk.step Twk.id) (⊢Γ ∙ ⊢t) (escapeEqRefl [u])))))
[wkt] ([nondep] [u] [wkt]) ([nondepext] [u] [wkt])
[u▹t] : Γ ⊩⟨ ι ⁰ ⟩ u ^ % ° ⁰ ▹▹ t ° ⁰ ° ¹ ^ [ % , ι ¹ ]
[u▹t] = Πᵣ′ % ⁰ ⁰ (<is≤ 0<1) (<is≤ 0<1) u (wk1 t)
(idRed:*: (univ (Πⱼ <is≤ 0<1 ▹ <is≤ 0<1 ▹ un-univ ⊢u ▹ un-univ ⊢wkt))) ⊢u ⊢wkt
(≅-univ (≅ₜ-Π-cong (<is≤ 0<1) (<is≤ 0<1) ⊢u (≅-un-univ (escapeEqRefl [u])) (≅-un-univ (≅-wk (Twk.step Twk.id) (⊢Γ ∙ ⊢u) (escapeEqRefl [t])))))
[wku] ([nondep] [t] [wku]) ([nondepext] [t] [wku])
[wkt▹u] = λ {ρ} {Δ} ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → Lwk.wk [ρ] ⊢Δ (emb emb< [t▹u])
⊢t▹u = escape [t▹u]
⊢u▹t = Twk.wk (Twk.step Twk.id) (⊢Γ ∙ ⊢t▹u) (escape [u▹t])
⊢Id = univ (Idⱼ (univ 0<1 ⊢Γ) (un-univ ⊢t) (un-univ ⊢u))
⊢Eq = univ (∃ⱼ un-univ ⊢t▹u ▹ un-univ ⊢u▹t)
in ∃ᵣ′ (t ^ % ° ⁰ ▹▹ u ° ⁰ ° ¹) (wk1 (u ^ % ° ⁰ ▹▹ t ° ⁰ ° ¹))
[[ ⊢Id , ⊢Eq , univ (Id-SProp (un-univ ⊢t) (un-univ ⊢u)) ⇨ id ⊢Eq ]] ⊢t▹u ⊢u▹t
(≅-univ (≅ₜ-∃-cong ⊢t▹u (≅-un-univ (escapeEqRefl [t▹u])) (≅-un-univ (≅-wk (Twk.step Twk.id) (⊢Γ ∙ ⊢t▹u) (escapeEqRefl [u▹t])))))
[wkt▹u] ([nondep] (emb emb< [u▹t]) [wkt▹u]) ([nondepext] (emb emb< [u▹t]) [wkt▹u])
[IdExt]SProp : ∀ {t t′ u u′ Γ}
(⊢Γ : ⊢ Γ)
([t] : Γ ⊩⟨ ι ⁰ ⟩ t ^ [ % , ι ⁰ ])
([t′] : Γ ⊩⟨ ι ⁰ ⟩ t′ ^ [ % , ι ⁰ ])
([t≡t′] : Γ ⊩⟨ ι ⁰ ⟩ t ≡ t′ ^ [ % , ι ⁰ ] / [t])
([u] : Γ ⊩⟨ ι ⁰ ⟩ u ^ [ % , ι ⁰ ])
([u′] : Γ ⊩⟨ ι ⁰ ⟩ u′ ^ [ % , ι ⁰ ])
([u≡u′] : Γ ⊩⟨ ι ⁰ ⟩ u ≡ u′ ^ [ % , ι ⁰ ] / [u])
→ Γ ⊩⟨ ι ¹ ⟩ Id (SProp ⁰) t u ≡ Id (SProp ⁰) t′ u′ ^ [ % , ι ¹ ] / [Id]SProp ⊢Γ [t] [u]
[IdExt]SProp {t} {t′} {u} {u′} {Γ} ⊢Γ [t] [t′] [t≡t′] [u] [u′] [u≡u′] =
let ⊢t = escape [t]
⊢t′ = escape [t′]
⊢u = escape [u]
⊢u′ = escape [u′]
⊢t≡t′ = ≅-un-univ (escapeEq [t] [t≡t′])
⊢u≡u′ = ≅-un-univ (escapeEq [u] [u≡u′])
⊢wkt = Twk.wk (Twk.step Twk.id) (⊢Γ ∙ ⊢u) ⊢t
⊢wku = Twk.wk (Twk.step Twk.id) (⊢Γ ∙ ⊢t) ⊢u
[wkt] = λ {ρ} {Δ} ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → Lwk.wk [ρ] ⊢Δ [t]
[wku] = λ {ρ} {Δ} ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → Lwk.wk [ρ] ⊢Δ [u]
⊢wkt′ = Twk.wk (Twk.step Twk.id) (⊢Γ ∙ ⊢u′) ⊢t′
⊢wku′ = Twk.wk (Twk.step Twk.id) (⊢Γ ∙ ⊢t′) ⊢u′
[wkt′] = λ {ρ} {Δ} ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → Lwk.wk [ρ] ⊢Δ [t′]
[wku′] = λ {ρ} {Δ} ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → Lwk.wk [ρ] ⊢Δ [u′]
[t▹u] : Γ ⊩⟨ ι ⁰ ⟩ t ^ % ° ⁰ ▹▹ u ° ⁰ ° ¹ ^ [ % , ι ¹ ]
[t▹u] = Πᵣ′ % ⁰ ⁰ (<is≤ 0<1) (<is≤ 0<1) t (wk1 u)
(idRed:*: (univ (Πⱼ <is≤ 0<1 ▹ <is≤ 0<1 ▹ un-univ ⊢t ▹ un-univ ⊢wku))) ⊢t ⊢wku
(≅-univ (≅ₜ-Π-cong (<is≤ 0<1) (<is≤ 0<1) ⊢t (≅-un-univ (escapeEqRefl [t])) (≅-un-univ (≅-wk (Twk.step Twk.id) (⊢Γ ∙ ⊢t) (escapeEqRefl [u])))))
[wkt] ([nondep] [u] [wkt]) ([nondepext] [u] [wkt])
[u▹t] : Γ ⊩⟨ ι ⁰ ⟩ u ^ % ° ⁰ ▹▹ t ° ⁰ ° ¹ ^ [ % , ι ¹ ]
[u▹t] = Πᵣ′ % ⁰ ⁰ (<is≤ 0<1) (<is≤ 0<1) u (wk1 t)
(idRed:*: (univ (Πⱼ <is≤ 0<1 ▹ <is≤ 0<1 ▹ un-univ ⊢u ▹ un-univ ⊢wkt))) ⊢u ⊢wkt
(≅-univ (≅ₜ-Π-cong (<is≤ 0<1) (<is≤ 0<1) ⊢u (≅-un-univ (escapeEqRefl [u])) (≅-un-univ (≅-wk (Twk.step Twk.id) (⊢Γ ∙ ⊢u) (escapeEqRefl [t])))))
[wku] ([nondep] [t] [wku]) ([nondepext] [t] [wku])
[t▹u′] : Γ ⊩⟨ ι ⁰ ⟩ t′ ^ % ° ⁰ ▹▹ u′ ° ⁰ ° ¹ ^ [ % , ι ¹ ]
[t▹u′] = Πᵣ′ % ⁰ ⁰ (<is≤ 0<1) (<is≤ 0<1) t′ (wk1 u′)
(idRed:*: (univ (Πⱼ <is≤ 0<1 ▹ <is≤ 0<1 ▹ un-univ ⊢t′ ▹ un-univ ⊢wku′))) ⊢t′ ⊢wku′
(≅-univ (≅ₜ-Π-cong (<is≤ 0<1) (<is≤ 0<1) ⊢t′ (≅-un-univ (escapeEqRefl [t′])) (≅-un-univ (≅-wk (Twk.step Twk.id) (⊢Γ ∙ ⊢t′) (escapeEqRefl [u′])))))
[wkt′] ([nondep] [u′] [wkt′]) ([nondepext] [u′] [wkt′])
[u▹t′] : Γ ⊩⟨ ι ⁰ ⟩ u′ ^ % ° ⁰ ▹▹ t′ ° ⁰ ° ¹ ^ [ % , ι ¹ ]
[u▹t′] = Πᵣ′ % ⁰ ⁰ (<is≤ 0<1) (<is≤ 0<1) u′ (wk1 t′)
(idRed:*: (univ (Πⱼ <is≤ 0<1 ▹ <is≤ 0<1 ▹ un-univ ⊢u′ ▹ un-univ ⊢wkt′)))
⊢u′ ⊢wkt′
(≅-univ (≅ₜ-Π-cong (<is≤ 0<1) (<is≤ 0<1) ⊢u′ (≅-un-univ (escapeEqRefl [u′])) (≅-un-univ (≅-wk (Twk.step Twk.id) (⊢Γ ∙ ⊢u′) (escapeEqRefl [t′])))))
[wku′] ([nondep] [t′] [wku′]) ([nondepext] [t′] [wku′])
[t▹u≡t▹u′] : Γ ⊩⟨ ι ⁰ ⟩ t ^ % ° ⁰ ▹▹ u ° ⁰ ° ¹ ≡ t′ ^ % ° ⁰ ▹▹ u′ ° ⁰ ° ¹ ^ [ % , ι ¹ ] / [t▹u]
[t▹u≡t▹u′] = Π₌ t′ (wk1 u′) (id (univ (Πⱼ <is≤ 0<1 ▹ <is≤ 0<1 ▹ un-univ ⊢t′ ▹ un-univ ⊢wku′)))
(≅-univ (≅ₜ-Π-cong (<is≤ 0<1) (<is≤ 0<1) ⊢t ⊢t≡t′ (≅ₜ-wk (Twk.step Twk.id) (⊢Γ ∙ ⊢t) ⊢u≡u′)))
(λ {ρ} {Δ} ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → Lwk.wkEq [ρ] ⊢Δ (emb emb< [t]) [t≡t′])
([nondepext'] [u] [u′] [u≡u′] [wkt] [wkt′])
[u▹t≡u▹t′] : Γ ⊩⟨ ι ⁰ ⟩ u ^ % ° ⁰ ▹▹ t ° ⁰ ° ¹ ≡ u′ ^ % ° ⁰ ▹▹ t′ ° ⁰ ° ¹ ^ [ % , ι ¹ ] / [u▹t]
[u▹t≡u▹t′] = Π₌ u′ (wk1 t′) (id (univ (Πⱼ <is≤ 0<1 ▹ <is≤ 0<1 ▹ un-univ ⊢u′ ▹ un-univ ⊢wkt′)))
(≅-univ (≅ₜ-Π-cong (<is≤ 0<1) (<is≤ 0<1) ⊢u ⊢u≡u′ (≅ₜ-wk (Twk.step Twk.id) (⊢Γ ∙ ⊢u) ⊢t≡t′)))
(λ {ρ} {Δ} ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → Lwk.wkEq [ρ] ⊢Δ (emb emb< [u]) [u≡u′])
([nondepext'] [t] [t′] [t≡t′] [wku] [wku′])
⊢t▹u = escape [t▹u]
in ∃₌ {l′ = ¹} (t′ ^ % ° ⁰ ▹▹ u′ ° ⁰ ° ¹ ) (wk1 (u′ ^ % ° ⁰ ▹▹ t′ ° ⁰ ° ¹ ))
(univ (Id-SProp (un-univ ⊢t′) (un-univ ⊢u′)) ⇨ id (univ (××ⱼ (▹▹ⱼ <is≤ 0<1 ▹ <is≤ 0<1 ▹ un-univ ⊢t′ ▹ un-univ ⊢u′) ▹
(▹▹ⱼ <is≤ 0<1 ▹ <is≤ 0<1 ▹ un-univ ⊢u′ ▹ un-univ ⊢t′))))
(≅-univ (≅ₜ-∃-cong ⊢t▹u
(≅ₜ-Π-cong (<is≤ 0<1) (<is≤ 0<1) ⊢t ⊢t≡t′ (≅ₜ-wk (Twk.step Twk.id) (⊢Γ ∙ ⊢t) ⊢u≡u′))
(≅ₜ-Π-cong (<is≤ 0<1) (<is≤ 0<1) (Twk.wk (Twk.step Twk.id) (⊢Γ ∙ ⊢t▹u) ⊢u)
(≅ₜ-wk (Twk.step Twk.id) (⊢Γ ∙ ⊢t▹u) ⊢u≡u′)
(≅ₜ-wk (Twk.lift (Twk.step Twk.id)) ((⊢Γ ∙ ⊢t▹u) ∙
(Twk.wk (Twk.step Twk.id) (⊢Γ ∙ ⊢t▹u) ⊢u))
(≅ₜ-wk (Twk.step Twk.id) (⊢Γ ∙ ⊢u) ⊢t≡t′)) )))
(λ {ρ} {Δ} ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → Lwk.wkEq [ρ] ⊢Δ [t▹u] [t▹u≡t▹u′])
([nondepext'] (emb emb< [u▹t]) (emb emb< [u▹t′]) [u▹t≡u▹t′]
(λ {ρ} {Δ} ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → Lwk.wk [ρ] ⊢Δ (emb emb< [t▹u]))
(λ {ρ} {Δ} ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → Lwk.wk [ρ] ⊢Δ (emb emb< [t▹u′])))
[Id]U : ∀ {A B Γ}
(⊢Γ : ⊢ Γ)
([A] : Γ ⊩⟨ ι ⁰ ⟩ A ^ [ ! , ι ⁰ ])
([B] : Γ ⊩⟨ ι ⁰ ⟩ B ^ [ ! , ι ⁰ ])
→ Γ ⊩⟨ ι ¹ ⟩ Id (U ⁰) A B ^ [ % , ι ¹ ]
[IdExtShape]U : ∀ {A A′ B B′ Γ}
(⊢Γ : ⊢ Γ)
([A] : Γ ⊩⟨ ι ⁰ ⟩ A ^ [ ! , ι ⁰ ])
([A′] : Γ ⊩⟨ ι ⁰ ⟩ A′ ^ [ ! , ι ⁰ ])
(ShapeA : ShapeView Γ (ι ⁰) (ι ⁰) A A′ [ ! , ι ⁰ ] [ ! , ι ⁰ ] [A] [A′])
([A≡A′] : Γ ⊩⟨ ι ⁰ ⟩ A ≡ A′ ^ [ ! , ι ⁰ ] / [A])
([B] : Γ ⊩⟨ ι ⁰ ⟩ B ^ [ ! , ι ⁰ ])
([B′] : Γ ⊩⟨ ι ⁰ ⟩ B′ ^ [ ! , ι ⁰ ])
(ShapeB : ShapeView Γ (ι ⁰) (ι ⁰) B B′ [ ! , ι ⁰ ] [ ! , ι ⁰ ] [B] [B′])
([B≡B′] : Γ ⊩⟨ ι ⁰ ⟩ B ≡ B′ ^ [ ! , ι ⁰ ] / [B])
→ Γ ⊩⟨ ι ¹ ⟩ Id (U ⁰) A B ≡ Id (U ⁰) A′ B′ ^ [ % , ι ¹ ] / [Id]U ⊢Γ [A] [B]
[IdExt]U : ∀ {A A′ B B′ Γ}
(⊢Γ : ⊢ Γ)
([A] : Γ ⊩⟨ ι ⁰ ⟩ A ^ [ ! , ι ⁰ ])
([A′] : Γ ⊩⟨ ι ⁰ ⟩ A′ ^ [ ! , ι ⁰ ])
([A≡A′] : Γ ⊩⟨ ι ⁰ ⟩ A ≡ A′ ^ [ ! , ι ⁰ ] / [A])
([B] : Γ ⊩⟨ ι ⁰ ⟩ B ^ [ ! , ι ⁰ ])
([B′] : Γ ⊩⟨ ι ⁰ ⟩ B′ ^ [ ! , ι ⁰ ])
([B≡B′] : Γ ⊩⟨ ι ⁰ ⟩ B ≡ B′ ^ [ ! , ι ⁰ ] / [B])
→ Γ ⊩⟨ ι ¹ ⟩ Id (U ⁰) A B ≡ Id (U ⁰) A′ B′ ^ [ % , ι ¹ ] / [Id]U ⊢Γ [A] [B]
[Id]U {A} {B} ⊢Γ (ne′ K D neK K≡K) [B] =
let ⊢B = escape [B]
B≡B = escapeEqRefl [B]
in ne (ne (Id (U ⁰) K B) (univ:⇒*: (IdURed*Term (un-univ:⇒*: D) (un-univ ⊢B))) (IdUₙ neK) (~-IdU ⊢Γ K≡K (≅-un-univ B≡B)))
[Id]U ⊢Γ (ℕᵣ [[ ⊢A , ⊢K , D ]]) (ℕᵣ [[ ⊢B , ⊢L , D₁ ]]) =
let
⊢tA = (subset* D)
in proj₁ (redSubst* (trans⇒* (univ⇒* (IdURed*Term′ (un-univ ⊢A) (un-univ ⊢K) (un-univ⇒* D) (un-univ ⊢B)))
(trans⇒* (univ⇒* (IdUℕRed*Term′ (un-univ ⊢B) (un-univ ⊢L) (un-univ⇒* D₁))) (univ (Id-U-ℕℕ ⊢Γ) ⇨ id (univ (Unitⱼ ⊢Γ))))) (UnitType ⊢Γ))
[Id]U ⊢Γ (ℕᵣ D) (ne′ K D₁ neK K≡K) =
let [B] = ne′ K D₁ neK K≡K
⊢B = escape {l = ι ¹} [B]
in ne′ (Id (U ⁰) ℕ K) (univ:⇒*: (transTerm:⇒:* (IdURed*Term (un-univ:⇒*: D) (un-univ ⊢B) ) (IdUℕRed*Term (un-univ:⇒*: D₁))))
(IdUℕₙ neK) (~-IdUℕ ⊢Γ K≡K)
[Id]U ⊢Γ (ℕᵣ [[ ⊢A , ⊢ℕ , D ]]) (Πᵣ′ rF lF lG (≡is≤ PE.refl) (≡is≤ PE.refl) F G D′ ⊢F ⊢G A≡A [F] [G] G-ext) =
let [B] = Πᵣ′ rF lF lG (≡is≤ PE.refl) (≡is≤ PE.refl) F G D′ ⊢F ⊢G A≡A [F] [G] G-ext
⊢B = escape [B]
in proj₁ (redSubst* (trans⇒* (univ⇒* (IdURed*Term′ (un-univ ⊢A) (un-univ ⊢ℕ) (un-univ⇒* D) (un-univ ⊢B)))
(trans⇒* (univ⇒* (IdUℕRed*Term′ (un-univ ⊢B) (Πⱼ ≡is≤ PE.refl ▹ ≡is≤ PE.refl ▹ (un-univ ⊢F) ▹ (un-univ ⊢G)) (un-univ⇒* (red D′))))
(univ (Id-U-ℕΠ (un-univ ⊢F) (un-univ ⊢G)) ⇨ id (univ (Emptyⱼ ⊢Γ))))) (EmptyType ⊢Γ))
[Id]U ⊢Γ (Πᵣ′ rF lF lG (≡is≤ PE.refl) (≡is≤ PE.refl) F G [[ ⊢A , ⊢Π , D ]] ⊢F ⊢G A≡A [F] [G] G-ext) (ℕᵣ [[ ⊢B , ⊢ℕ , D' ]]) =
proj₁ (redSubst* (trans⇒* (univ⇒* (IdURed*Term′ (un-univ ⊢A) (un-univ ⊢Π) (un-univ⇒* D) (un-univ ⊢B)))
(trans⇒* (univ⇒* (IdUΠRed*Term′ (un-univ ⊢F) (un-univ ⊢G) (un-univ ⊢B) (un-univ ⊢ℕ) (un-univ⇒* D')))
(univ (Id-U-Πℕ (un-univ ⊢F) (un-univ ⊢G)) ⇨ id (univ (Emptyⱼ ⊢Γ))))) (EmptyType ⊢Γ))
[Id]U ⊢Γ (Πᵣ′ rF lF lG (≡is≤ PE.refl) (≡is≤ PE.refl) F G D ⊢F ⊢G A≡A [F] [G] G-ext) (ne′ K D₁ neK K≡K) =
let [B] = ne′ K D₁ neK K≡K
⊢B = escape {l = ι ¹} [B]
-- [F]' = PE.subst (λ X → _ ⊩⟨ _ ⟩ X ^ [ _ , _ ]) (wk-id F) ([F] Twk.id ⊢Γ)
-- ⊢F≅F = ≅-un-univ (escapeEqRefl [F]')
-- [G]' = PE.subst (λ X → _ ⊩⟨ _ ⟩ X ^ [ _ , _ ]) (wkSingleSubstId G) ([G] {a = var 0} (Twk.step Twk.id) (⊢Γ ∙ ⊢F) {!!})
-- ⊢G≅G = ≅-un-univ (escapeEqRefl [G]')
in ne′ (Id (U ⁰) (Π F ^ rF ° lF ▹ G ° lG ° ⁰) K)
(univ:⇒*: (transTerm:⇒:* (IdURed*Term (un-univ:⇒*: D) (un-univ ⊢B) ) (IdUΠRed*Term (un-univ ⊢F) (un-univ ⊢G) (un-univ:⇒*: D₁))))
(IdUΠₙ neK) (~-IdUΠ (≅-un-univ A≡A) K≡K)
[Id]U {A} {B} {Γ} ⊢Γ (Πᵣ′ ! .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F G [[ ⊢A , ⊢ΠFG , D ]] ⊢F ⊢G A≡A [F] [G] G-ext)
(Πᵣ′ ! .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₁ G₁ [[ ⊢B , ⊢ΠF₁G₁ , D₁ ]] ⊢F₁ ⊢G₁ B≡B [F₁] [G₁] G₁-ext) =
∃ᵣ′ (Id (U ⁰) F F₁) (IdGG₁ (step id) (var 0))
[[ (univ (Idⱼ (univ 0<1 ⊢Γ) (un-univ ⊢A) (un-univ ⊢B))) , ⊢∃ , D∃ ]]
⊢IdFF₁ ⊢IdGG₁ ∃≡∃ [IdFF₁]
(λ {ρ} {Δ} {a} [ρ] ⊢Δ [a] → PE.subst (λ X → Δ ⊩⟨ ι ¹ ⟩ X ^ [ % , ι ¹ ]) (PE.sym (wksubst-IdTel ρ a)) ([IdGG₁] [ρ] ⊢Δ [a]))
(λ {ρ} {Δ} {a} {b} [ρ] ⊢Δ [a] [b] [a≡b] → irrelevanceEq″ (PE.sym (wksubst-IdTel ρ a)) (PE.sym (wksubst-IdTel ρ b)) PE.refl PE.refl
([IdGG₁] [ρ] ⊢Δ [a]) (PE.subst (λ X → Δ ⊩⟨ ι ¹ ⟩ X ^ [ % , ι ¹ ]) (PE.sym (wksubst-IdTel ρ a)) ([IdGG₁] [ρ] ⊢Δ [a]))
([IdGG₁-ext] [ρ] ⊢Δ [a] [b] [a≡b]))
where
open IdTypeU-lemmas ⊢Γ ⊢A ⊢ΠFG D ⊢F ⊢G A≡A [F] [G] G-ext ⊢B ⊢ΠF₁G₁ D₁ ⊢F₁ ⊢G₁ B≡B [F₁] [G₁] G₁-ext
(λ [ρ] ⊢Δ → [Id]U ⊢Δ ([F] [ρ] ⊢Δ) ([F₁] [ρ] ⊢Δ))
(λ [ρ] ⊢Δ [x] [y] → [Id]U ⊢Δ ([G] [ρ] ⊢Δ [x]) ([G₁] [ρ] ⊢Δ [y]))
(λ [ρ] ⊢Δ [x] [x′] [x≡x′] [y] [y′] [y≡y′] →
[IdExt]U ⊢Δ ([G] [ρ] ⊢Δ [x]) ([G] [ρ] ⊢Δ [x′]) (G-ext [ρ] ⊢Δ [x] [x′] [x≡x′]) ([G₁] [ρ] ⊢Δ [y]) ([G₁] [ρ] ⊢Δ [y′]) (G₁-ext [ρ] ⊢Δ [y] [y′] [y≡y′]))
[Id]U {A} {B} {Γ} ⊢Γ (Πᵣ′ % .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F G [[ ⊢A , ⊢ΠFG , D ]] ⊢F ⊢G A≡A [F] [G] G-ext)
(Πᵣ′ % .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₁ G₁ [[ ⊢B , ⊢ΠF₁G₁ , D₁ ]] ⊢F₁ ⊢G₁ B≡B [F₁] [G₁] G₁-ext) =
∃ᵣ′ (Id (SProp ⁰) F F₁) (IdGG₁ (step id) (var 0))
[[ (univ (Idⱼ (univ 0<1 ⊢Γ) (un-univ ⊢A) (un-univ ⊢B))) , ⊢∃ , D∃ ]]
⊢IdFF₁ ⊢IdGG₁ ∃≡∃ [IdFF₁]
(λ {ρ} {Δ} {a} [ρ] ⊢Δ [a] → PE.subst (λ X → Δ ⊩⟨ ι ¹ ⟩ X ^ [ % , ι ¹ ]) (PE.sym (wksubst-IdTel ρ a)) ([IdGG₁] [ρ] ⊢Δ [a]))
(λ {ρ} {Δ} {a} {b} [ρ] ⊢Δ [a] [b] [a≡b] → irrelevanceEq″ (PE.sym (wksubst-IdTel ρ a)) (PE.sym (wksubst-IdTel ρ b)) PE.refl PE.refl
([IdGG₁] [ρ] ⊢Δ [a]) (PE.subst (λ X → Δ ⊩⟨ ι ¹ ⟩ X ^ [ % , ι ¹ ]) (PE.sym (wksubst-IdTel ρ a)) ([IdGG₁] [ρ] ⊢Δ [a]))
([IdGG₁-ext] [ρ] ⊢Δ [a] [b] [a≡b]))
where
open IdTypeU-lemmas ⊢Γ ⊢A ⊢ΠFG D ⊢F ⊢G A≡A [F] [G] G-ext ⊢B ⊢ΠF₁G₁ D₁ ⊢F₁ ⊢G₁ B≡B [F₁] [G₁] G₁-ext
(λ [ρ] ⊢Δ → [Id]SProp ⊢Δ ([F] [ρ] ⊢Δ) ([F₁] [ρ] ⊢Δ))
(λ [ρ] ⊢Δ [x] [y] → [Id]U ⊢Δ ([G] [ρ] ⊢Δ [x]) ([G₁] [ρ] ⊢Δ [y]))
(λ [ρ] ⊢Δ [x] [x′] [x≡x′] [y] [y′] [y≡y′] →
[IdExt]U ⊢Δ ([G] [ρ] ⊢Δ [x]) ([G] [ρ] ⊢Δ [x′]) (G-ext [ρ] ⊢Δ [x] [x′] [x≡x′]) ([G₁] [ρ] ⊢Δ [y]) ([G₁] [ρ] ⊢Δ [y′]) (G₁-ext [ρ] ⊢Δ [y] [y′] [y≡y′]))
[Id]U ⊢Γ (Πᵣ′ ! .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F G [[ ⊢A , ⊢ΠFG , D ]] ⊢F ⊢G A≡A [F] [G] G-ext)
(Πᵣ′ % .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₁ G₁ [[ ⊢B , ⊢ΠF₁G₁ , D' ]] ⊢F₁ ⊢G₁ B≡B [F₁] [G₁] G₁-ext) =
proj₁ (redSubst* (trans⇒* (univ⇒* (IdURed*Term′ (un-univ ⊢A) (un-univ ⊢ΠFG) (un-univ⇒* D) (un-univ ⊢B)))
(trans⇒* (univ⇒* (IdUΠRed*Term′ (un-univ ⊢F) (un-univ ⊢G) (un-univ ⊢B) (un-univ ⊢ΠF₁G₁) (un-univ⇒* D')))
(univ (Id-U-ΠΠ!% !≢% (un-univ ⊢F) (un-univ ⊢G) (un-univ ⊢F₁) (un-univ ⊢G₁)) ⇨ id (univ (Emptyⱼ ⊢Γ))))) (EmptyType ⊢Γ))
[Id]U ⊢Γ (Πᵣ′ % .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F G [[ ⊢A , ⊢ΠFG , D ]] ⊢F ⊢G A≡A [F] [G] G-ext)
(Πᵣ′ ! .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₁ G₁ [[ ⊢B , ⊢ΠF₁G₁ , D' ]] ⊢F₁ ⊢G₁ B≡B [F₁] [G₁] G₁-ext) =
proj₁ (redSubst* (trans⇒* (univ⇒* (IdURed*Term′ (un-univ ⊢A) (un-univ ⊢ΠFG) (un-univ⇒* D) (un-univ ⊢B)))
(trans⇒* (univ⇒* (IdUΠRed*Term′ (un-univ ⊢F) (un-univ ⊢G) (un-univ ⊢B) (un-univ ⊢ΠF₁G₁) (un-univ⇒* D')))
(univ (Id-U-ΠΠ!% (λ e → !≢% (PE.sym e)) (un-univ ⊢F) (un-univ ⊢G) (un-univ ⊢F₁) (un-univ ⊢G₁)) ⇨ id (univ (Emptyⱼ ⊢Γ))))) (EmptyType ⊢Γ))
[IdExtShape]U ⊢Γ _ _ (ℕᵥ ℕA [[ ⊢A , ⊢K , D ]]) [A≡A′] _ _ (ℕᵥ NB [[ ⊢B , ⊢L , D₁ ]]) [B≡B′] =
Π₌ (Empty _) (Empty _)
(trans⇒* (univ⇒* (IdURed*Term′ (un-univ ⊢A) (un-univ ⊢K) (un-univ⇒* D) (un-univ ⊢B)))
(trans⇒* (univ⇒* (IdUℕRed*Term′ (un-univ ⊢B) (un-univ ⊢L) (un-univ⇒* D₁))) (univ (Id-U-ℕℕ ⊢Γ) ⇨ id (univ (Unitⱼ ⊢Γ)))))
(≅-univ (Unit≡Unit ⊢Γ))
(λ [ρ] ⊢Δ → id (univ (Emptyⱼ ⊢Δ)))
λ [ρ] ⊢Δ [a] → id (univ (Emptyⱼ ⊢Δ))
[IdExtShape]U ⊢Γ _ _ (ℕᵥ ℕA D) [A≡A′] _ _ (ne neB neB') (ne₌ M D′ neM K≡M) =
let [[ ⊢B , _ , _ ]] = D′
in ne₌ (Id (U ⁰) ℕ M) (univ:⇒*: (transTerm:⇒:* (IdURed*Term (un-univ:⇒*: D) (un-univ ⊢B) ) (IdUℕRed*Term (un-univ:⇒*: D′))))
(IdUℕₙ neM) (~-IdUℕ ⊢Γ K≡M)
[IdExtShape]U ⊢Γ _ _ (ℕᵥ [[ ⊢A , ⊢ℕ , D ]] [[ ⊢A' , ⊢ℕ' , D' ]]) [A≡A′] _ _
(Πᵥ (Πᵣ rF lF lG (≡is≤ PE.refl) (≡is≤ PE.refl) F G D′ ⊢F ⊢G A≡A [F] [G] G-ext)
(Πᵣ rF' lF' lG' (≡is≤ PE.refl) (≡is≤ PE.refl) F' G' D′' ⊢F' ⊢G' A≡A' [F]' [G]' G-ext')) [B≡B′] =
let [B]' = Πᵣ′ rF' lF' lG' (≡is≤ PE.refl) (≡is≤ PE.refl) F' G' D′' ⊢F' ⊢G' A≡A' [F]' [G]' G-ext'
⊢B' = escape [B]'
in trans⇒* (univ⇒* (IdURed*Term′ (un-univ ⊢A') (un-univ ⊢ℕ') (un-univ⇒* D') (un-univ ⊢B')))
(trans⇒* (univ⇒* (IdUℕRed*Term′ (un-univ ⊢B') (Πⱼ ≡is≤ PE.refl ▹ ≡is≤ PE.refl ▹ (un-univ ⊢F') ▹ (un-univ ⊢G')) (un-univ⇒* (red D′'))))
(univ (Id-U-ℕΠ (un-univ ⊢F') (un-univ ⊢G')) ⇨ id (univ (Emptyⱼ ⊢Γ))))
[IdExtShape]U {A} {A′} {B} {B′} ⊢Γ _ _ (ne neA neA') (ne₌ M D neM K≡M) [B] [B'] [ShapeB] [B≡B′] =
let ⊢B' = escape [B']
B≡B' = escapeEq [B] [B≡B′]
in ne₌ (Id (U ⁰) M B′) (univ:⇒*: (IdURed*Term (un-univ:⇒*: D) (un-univ ⊢B')))
(IdUₙ neM) (~-IdU ⊢Γ K≡M (≅-un-univ B≡B'))
[IdExtShape]U ⊢Γ _ _ (Πᵥ (Πᵣ rF lF lG (≡is≤ PE.refl) (≡is≤ PE.refl) F G D′ ⊢F ⊢G A≡A [F] [G] G-ext)
(Πᵣ rF' lF' lG' (≡is≤ PE.refl) (≡is≤ PE.refl) F' G' [[ ⊢A' , ⊢Π' , DΠ' ]] ⊢F' ⊢G' A≡A' [F]' [G]' G-ext')) [A≡A′] _ _
(ℕᵥ [[ ⊢A , ⊢ℕ , D ]] [[ ⊢B' , ⊢ℕ' , D' ]]) [B≡B′] =
trans⇒* (univ⇒* (IdURed*Term′ (un-univ ⊢A') (un-univ ⊢Π') (un-univ⇒* DΠ') (un-univ ⊢B')))
(trans⇒* (univ⇒* (IdUΠRed*Term′ (un-univ ⊢F') (un-univ ⊢G') (un-univ ⊢B') (un-univ ⊢ℕ') (un-univ⇒* D')))
(univ (Id-U-Πℕ (un-univ ⊢F') (un-univ ⊢G')) ⇨ id (univ (Emptyⱼ ⊢Γ))))
[IdExtShape]U ⊢Γ _ _ (Πᵥ (Πᵣ rF' .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F' G' De' ⊢F' ⊢G' A≡A' [F]' [G]' G-ext')
(Πᵣ rF .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F G D ⊢F ⊢G A≡A [F] [G] G-ext)) (Π₌ F′ G′ D′₁ A≡B [F≡F′] [G≡G′])
_ _ (ne neA neB) (ne₌ M D′ neM K≡M) =
let [[ ⊢B , _ , _ ]] = D′
Π≡Π = whrDet* (red D , Whnf.Πₙ) (D′₁ , Whnf.Πₙ)
F≡F' , rF≡rF' , _ , G≡G' , _ = Π-PE-injectivity Π≡Π
in ne₌ (Id (U ⁰) (Π F ^ rF ° ⁰ ▹ G ° ⁰ ° ⁰) M)
(univ:⇒*: (transTerm:⇒:* (IdURed*Term (un-univ:⇒*: D) (un-univ ⊢B) ) (IdUΠRed*Term (un-univ ⊢F) (un-univ ⊢G) (un-univ:⇒*: D′))))
(IdUΠₙ neM) (PE.subst (λ X → _ ⊢ Id (U ⁰) (Π F' ^ rF' ° ⁰ ▹ G' ° ⁰ ° ⁰) _ ~ Id (U ⁰) (Π F ^ X ° ⁰ ▹ G ° ⁰ ° ⁰) M ∷ SProp _ ^ _) (PE.sym rF≡rF')
(~-IdUΠ (≅-un-univ
(PE.subst (λ X → _ ⊢ Π F' ^ rF' ° ⁰ ▹ G' ° ⁰ ° ⁰ ≅ Π F ^ rF' ° ⁰ ▹ X ° ⁰ ° ⁰ ^ _ ) (PE.sym G≡G')
(PE.subst (λ X → _ ⊢ Π F' ^ rF' ° ⁰ ▹ G' ° ⁰ ° ⁰ ≅ Π X ^ rF' ° ⁰ ▹ G′ ° ⁰ ° ⁰ ^ _ ) (PE.sym F≡F') A≡B))) K≡M))
[IdExtShape]U ⊢Γ _ _ (Πᵥ (Πᵣ % .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₁ G₁ [[ ⊢A₁ , ⊢ΠF₁G₁ , D₁ ]] ⊢F₁ ⊢G₁ A₁≡A₁ [F₁] [G₁] G₁-ext)
(Πᵣ ! .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₂ G₂ [[ ⊢A₂ , ⊢ΠF₂G₂ , D₂ ]] ⊢F₂ ⊢G₂ A₂≡A₂ [F₂] [G₂] G₂-ext))
(Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′])
_ _ (Πᵥ _ _) (Π₌ F′₁ G′₁ D′₁ A≡B₁ [F≡F′]₁ [G≡G′]₁) =
let ΠFG′≡ΠFG′₁ = whrDet* (D₂ , Πₙ) (D′ , Πₙ)
F′≡F′₁ , rF≡rF′ , _ , G′≡G′₁ , _ = Π-PE-injectivity ΠFG′≡ΠFG′₁
in ⊥-elim (!≢% rF≡rF′)
[IdExtShape]U ⊢Γ _ _ (Πᵥ (Πᵣ ! .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₁ G₁ [[ ⊢A₁ , ⊢ΠF₁G₁ , D₁ ]] ⊢F₁ ⊢G₁ A₁≡A₁ [F₁] [G₁] G₁-ext)
(Πᵣ % .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₂ G₂ [[ ⊢A₂ , ⊢ΠF₂G₂ , D₂ ]] ⊢F₂ ⊢G₂ A₂≡A₂ [F₂] [G₂] G₂-ext))
(Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′])
_ _ (Πᵥ _ _) (Π₌ F′₁ G′₁ D′₁ A≡B₁ [F≡F′]₁ [G≡G′]₁) =
let ΠFG′≡ΠFG′₁ = whrDet* (D₂ , Πₙ) (D′ , Πₙ)
F′≡F′₁ , rF≡rF′ , _ , G′≡G′₁ , _ = Π-PE-injectivity ΠFG′≡ΠFG′₁
in ⊥-elim (!≢% (PE.sym rF≡rF′))
[IdExtShape]U ⊢Γ _ _ (Πᵥ _ _)
(Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′])
_ _ (Πᵥ (Πᵣ % .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₁ G₁ [[ ⊢A₁ , ⊢ΠF₁G₁ , D₁ ]] ⊢F₁ ⊢G₁ A₁≡A₁ [F₁] [G₁] G₁-ext)
(Πᵣ ! .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₂ G₂ [[ ⊢A₂ , ⊢ΠF₂G₂ , D₂ ]] ⊢F₂ ⊢G₂ A₂≡A₂ [F₂] [G₂] G₂-ext)) (Π₌ F′₁ G′₁ D′₁ A≡B₁ [F≡F′]₁ [G≡G′]₁) =
let ΠFG′≡ΠFG′₁ = whrDet* (D₂ , Πₙ) (D′₁ , Πₙ)
F′≡F′₁ , rF≡rF′ , _ , G′≡G′₁ , _ = Π-PE-injectivity ΠFG′≡ΠFG′₁
in ⊥-elim (!≢% rF≡rF′)
[IdExtShape]U ⊢Γ _ _ (Πᵥ _ _)
(Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′])
_ _ (Πᵥ (Πᵣ ! .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₁ G₁ [[ ⊢A₁ , ⊢ΠF₁G₁ , D₁ ]] ⊢F₁ ⊢G₁ A₁≡A₁ [F₁] [G₁] G₁-ext)
(Πᵣ % .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₂ G₂ [[ ⊢A₂ , ⊢ΠF₂G₂ , D₂ ]] ⊢F₂ ⊢G₂ A₂≡A₂ [F₂] [G₂] G₂-ext)) (Π₌ F′₁ G′₁ D′₁ A≡B₁ [F≡F′]₁ [G≡G′]₁) =
let ΠFG′≡ΠFG′₁ = whrDet* (D₂ , Πₙ) (D′₁ , Πₙ)
F′≡F′₁ , rF≡rF′ , _ , G′≡G′₁ , _ = Π-PE-injectivity ΠFG′≡ΠFG′₁
in ⊥-elim (!≢% (PE.sym rF≡rF′))
[IdExtShape]U ⊢Γ _ _ (Πᵥ (Πᵣ ! .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₁ G₁ [[ ⊢A₁ , ⊢ΠF₁G₁ , D₁ ]] ⊢F₁ ⊢G₁ A₁≡A₁ [F₁] [G₁] G₁-ext)
(Πᵣ ! .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₂ G₂ [[ ⊢A₂ , ⊢ΠF₂G₂ , D₂ ]] ⊢F₂ ⊢G₂ A₂≡A₂ [F₂] [G₂] G₂-ext))
(Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′])
_ _ (Πᵥ (Πᵣ % .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₃ G₃ [[ ⊢A₃ , ⊢ΠF₃G₃ , D₃ ]] ⊢F₃ ⊢G₃ A₃≡A₃ [F₃] [G₃] G₃-ext)
(Πᵣ % .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₄ G₄ [[ ⊢A₄ , ⊢ΠF₄G₄ , D₄ ]] ⊢F₄ ⊢G₄ A₄≡A₄ [F₄] [G₄] G₄-ext)) (Π₌ F′₁ G′₁ D′₁ A≡B₁ [F≡F′]₁ [G≡G′]₁) =
trans⇒* (univ⇒* (IdURed*Term′ (un-univ ⊢A₂) (un-univ ⊢ΠF₂G₂) (un-univ⇒* D₂) (un-univ ⊢A₄)))
(trans⇒* (univ⇒* (IdUΠRed*Term′ (un-univ ⊢F₂) (un-univ ⊢G₂) (un-univ ⊢A₄) (un-univ ⊢ΠF₄G₄) (un-univ⇒* D₄)))
(univ (Id-U-ΠΠ!% !≢% (un-univ ⊢F₂) (un-univ ⊢G₂) (un-univ ⊢F₄) (un-univ ⊢G₄)) ⇨ id (univ (Emptyⱼ ⊢Γ))))
[IdExtShape]U ⊢Γ _ _ (Πᵥ (Πᵣ % .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₁ G₁ [[ ⊢A₁ , ⊢ΠF₁G₁ , D₁ ]] ⊢F₁ ⊢G₁ A₁≡A₁ [F₁] [G₁] G₁-ext)
(Πᵣ % .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₂ G₂ [[ ⊢A₂ , ⊢ΠF₂G₂ , D₂ ]] ⊢F₂ ⊢G₂ A₂≡A₂ [F₂] [G₂] G₂-ext))
(Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′])
_ _ (Πᵥ (Πᵣ ! .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₃ G₃ [[ ⊢A₃ , ⊢ΠF₃G₃ , D₃ ]] ⊢F₃ ⊢G₃ A₃≡A₃ [F₃] [G₃] G₃-ext)
(Πᵣ ! .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₄ G₄ [[ ⊢A₄ , ⊢ΠF₄G₄ , D₄ ]] ⊢F₄ ⊢G₄ A₄≡A₄ [F₄] [G₄] G₄-ext)) (Π₌ F′₁ G′₁ D′₁ A≡B₁ [F≡F′]₁ [G≡G′]₁) =
trans⇒* (univ⇒* (IdURed*Term′ (un-univ ⊢A₂) (un-univ ⊢ΠF₂G₂) (un-univ⇒* D₂) (un-univ ⊢A₄)))
(trans⇒* (univ⇒* (IdUΠRed*Term′ (un-univ ⊢F₂) (un-univ ⊢G₂) (un-univ ⊢A₄) (un-univ ⊢ΠF₄G₄) (un-univ⇒* D₄)))
(univ (Id-U-ΠΠ!% (λ e → !≢% (PE.sym e)) (un-univ ⊢F₂) (un-univ ⊢G₂) (un-univ ⊢F₄) (un-univ ⊢G₄)) ⇨ id (univ (Emptyⱼ ⊢Γ))))
[IdExtShape]U {A₁} {A₂} {A₃} {A₄} {Γ} ⊢Γ _ _
(Πᵥ (Πᵣ ! .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₁ G₁ [[ ⊢A₁ , ⊢ΠF₁G₁ , D₁ ]] ⊢F₁ ⊢G₁ A₁≡A₁ [F₁] [G₁] G₁-ext)
(Πᵣ ! .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₂ G₂ [[ ⊢A₂ , ⊢ΠF₂G₂ , D₂ ]] ⊢F₂ ⊢G₂ A₂≡A₂ [F₂] [G₂] G₂-ext))
(Π₌ F₂′ G₂′ D₂′ A₁≡A₂′ [F₁≡F₂′] [G₁≡G₂′])
_ _ (Πᵥ (Πᵣ ! .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₃ G₃ [[ ⊢A₃ , ⊢ΠF₃G₃ , D₃ ]] ⊢F₃ ⊢G₃ A₃≡A₃ [F₃] [G₃] G₃-ext)
(Πᵣ ! .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₄ G₄ [[ ⊢A₄ , ⊢ΠF₄G₄ , D₄ ]] ⊢F₄ ⊢G₄ A₄≡A₄ [F₄] [G₄] G₄-ext))
(Π₌ F₄′ G₄′ D₄′ A₃≡A₄′ [F₃≡F₄′] [G₃≡G₄′]) =
∃₌ (Id (U ⁰) F₂ F₄) (E₂.IdGG₁ (step id) (var 0))
E₂.D∃ ∃₁≡∃₂
[IdFF₁≡IdFF₂]
(λ {ρ} {Δ} {e} [ρ] ⊢Δ [e] → irrelevanceEq″ (PE.sym (E₁.wksubst-IdTel ρ e)) (PE.sym (E₂.wksubst-IdTel ρ e)) PE.refl PE.refl
(E₁.[IdGG₁] [ρ] ⊢Δ [e]) (PE.subst (λ X → Δ ⊩⟨ ι ¹ ⟩ X ^ [ % , ι ¹ ]) (PE.sym (E₁.wksubst-IdTel ρ e)) (E₁.[IdGG₁] [ρ] ⊢Δ [e]))
([IdGG₁≡IdGG₂] [ρ] ⊢Δ [e]))
where
Π≡Π = whrDet* (D₂ , Whnf.Πₙ) (D₂′ , Whnf.Πₙ)
F₂≡F₂′ = let x , _ , _ , _ , _ = Π-PE-injectivity Π≡Π in x
G₂≡G₂′ = let _ , _ , _ , x , _ = Π-PE-injectivity Π≡Π in x
Π≡Π′ = whrDet* (D₄ , Whnf.Πₙ) (D₄′ , Whnf.Πₙ)
F₄≡F₄′ = let x , _ , _ , _ , _ = Π-PE-injectivity Π≡Π′ in x
G₄≡G₄′ = let _ , _ , _ , x , _ = Π-PE-injectivity Π≡Π′ in x
A₁≡A₂ = PE.subst₂ (λ X Y → Γ ⊢ Π F₁ ^ ! ° ⁰ ▹ G₁ ° ⁰ ° ⁰ ≅ Π X ^ ! ° ⁰ ▹ Y ° ⁰ ° ⁰ ^ [ ! , ι ⁰ ]) (PE.sym F₂≡F₂′) (PE.sym G₂≡G₂′) A₁≡A₂′
A₃≡A₄ = PE.subst₂ (λ X Y → Γ ⊢ Π F₃ ^ ! ° ⁰ ▹ G₃ ° ⁰ ° ⁰ ≅ Π X ^ ! ° ⁰ ▹ Y ° ⁰ ° ⁰ ^ [ ! , ι ⁰ ]) (PE.sym F₄≡F₄′) (PE.sym G₄≡G₄′) A₃≡A₄′
[F₁≡F₂] = PE.subst (λ X → ∀ {ρ Δ} → ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → Δ ⊩⟨ ι ⁰ ⟩ wk ρ F₁ ≡ wk ρ X ^ [ ! , ι ⁰ ] / [F₁] [ρ] ⊢Δ)
(PE.sym F₂≡F₂′) [F₁≡F₂′]
[F₃≡F₄] = PE.subst (λ X → ∀ {ρ Δ} → ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → Δ ⊩⟨ ι ⁰ ⟩ wk ρ F₃ ≡ wk ρ X ^ [ ! , ι ⁰ ] / [F₃] [ρ] ⊢Δ)
(PE.sym F₄≡F₄′) [F₃≡F₄′]
[G₁≡G₂] = PE.subst (λ X → ∀ {ρ Δ a} → ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ ([a] : Δ ⊩⟨ ι ⁰ ⟩ a ∷ wk ρ F₁ ^ [ ! , ι ⁰ ] / [F₁] [ρ] ⊢Δ)
→ Δ ⊩⟨ ι ⁰ ⟩ wk (lift ρ) G₁ [ a ] ≡ wk (lift ρ) X [ a ] ^ [ ! , ι ⁰ ] / [G₁] [ρ] ⊢Δ [a])
(PE.sym G₂≡G₂′) [G₁≡G₂′]
[G₃≡G₄] = PE.subst (λ X → ∀ {ρ Δ a} → ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ ([a] : Δ ⊩⟨ ι ⁰ ⟩ a ∷ wk ρ F₃ ^ [ ! , ι ⁰ ] / [F₃] [ρ] ⊢Δ)
→ Δ ⊩⟨ ι ⁰ ⟩ wk (lift ρ) G₃ [ a ] ≡ wk (lift ρ) X [ a ] ^ [ ! , ι ⁰ ] / [G₃] [ρ] ⊢Δ [a])
(PE.sym G₄≡G₄′) [G₃≡G₄′]
open IdTypeU-lemmas-2 ⊢Γ ⊢A₁ ⊢ΠF₁G₁ D₁ ⊢F₁ ⊢G₁ A₁≡A₁ [F₁] [G₁] G₁-ext
⊢A₂ ⊢ΠF₂G₂ D₂ ⊢F₂ ⊢G₂ A₂≡A₂ [F₂] [G₂] G₂-ext
⊢A₃ ⊢ΠF₃G₃ D₃ ⊢F₃ ⊢G₃ A₃≡A₃ [F₃] [G₃] G₃-ext
⊢A₄ ⊢ΠF₄G₄ D₄ ⊢F₄ ⊢G₄ A₄≡A₄ [F₄] [G₄] G₄-ext
A₁≡A₂ A₃≡A₄ [F₁≡F₂] [F₃≡F₄] [G₁≡G₂] [G₃≡G₄]
(λ [ρ] ⊢Δ → [Id]U ⊢Δ ([F₁] [ρ] ⊢Δ) ([F₃] [ρ] ⊢Δ))
(λ [ρ] ⊢Δ [x] [y] → [Id]U ⊢Δ ([G₁] [ρ] ⊢Δ [x]) ([G₃] [ρ] ⊢Δ [y]))
(λ [ρ] ⊢Δ → [Id]U ⊢Δ ([F₂] [ρ] ⊢Δ) ([F₄] [ρ] ⊢Δ))
(λ [ρ] ⊢Δ [x] [y] → [Id]U ⊢Δ ([G₂] [ρ] ⊢Δ [x]) ([G₄] [ρ] ⊢Δ [y]))
(λ [ρ] ⊢Δ [x] [x′] [x≡x′] [y] [y′] [y≡y′] →
[IdExt]U ⊢Δ ([G₁] [ρ] ⊢Δ [x]) ([G₁] [ρ] ⊢Δ [x′]) (G₁-ext [ρ] ⊢Δ [x] [x′] [x≡x′]) ([G₃] [ρ] ⊢Δ [y]) ([G₃] [ρ] ⊢Δ [y′]) (G₃-ext [ρ] ⊢Δ [y] [y′] [y≡y′]))
(λ [ρ] ⊢Δ [x] [x′] [x≡x′] [y] [y′] [y≡y′] →
[IdExt]U ⊢Δ ([G₂] [ρ] ⊢Δ [x]) ([G₂] [ρ] ⊢Δ [x′]) (G₂-ext [ρ] ⊢Δ [x] [x′] [x≡x′]) ([G₄] [ρ] ⊢Δ [y]) ([G₄] [ρ] ⊢Δ [y′]) (G₄-ext [ρ] ⊢Δ [y] [y′] [y≡y′]))
(λ [ρ] ⊢Δ → [IdExt]U ⊢Δ ([F₁] [ρ] ⊢Δ) ([F₂] [ρ] ⊢Δ) ([F₁≡F₂] [ρ] ⊢Δ) ([F₃] [ρ] ⊢Δ) ([F₄] [ρ] ⊢Δ) ([F₃≡F₄] [ρ] ⊢Δ))
(λ [ρ] ⊢Δ [x₁] [x₂] [G₁x₁≡G₂x₂] [x₃] [x₄] [G₃x₃≡G₄x₄] → [IdExt]U ⊢Δ ([G₁] [ρ] ⊢Δ [x₁]) ([G₂] [ρ] ⊢Δ [x₂]) [G₁x₁≡G₂x₂] ([G₃] [ρ] ⊢Δ [x₃]) ([G₄] [ρ] ⊢Δ [x₄]) [G₃x₃≡G₄x₄])
[IdExtShape]U {A₁} {A₂} {A₃} {A₄} {Γ} ⊢Γ _ _
(Πᵥ (Πᵣ % .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₁ G₁ [[ ⊢A₁ , ⊢ΠF₁G₁ , D₁ ]] ⊢F₁ ⊢G₁ A₁≡A₁ [F₁] [G₁] G₁-ext)
(Πᵣ % .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₂ G₂ [[ ⊢A₂ , ⊢ΠF₂G₂ , D₂ ]] ⊢F₂ ⊢G₂ A₂≡A₂ [F₂] [G₂] G₂-ext))
(Π₌ F₂′ G₂′ D₂′ A₁≡A₂′ [F₁≡F₂′] [G₁≡G₂′])
_ _ (Πᵥ (Πᵣ % .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₃ G₃ [[ ⊢A₃ , ⊢ΠF₃G₃ , D₃ ]] ⊢F₃ ⊢G₃ A₃≡A₃ [F₃] [G₃] G₃-ext)
(Πᵣ % .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₄ G₄ [[ ⊢A₄ , ⊢ΠF₄G₄ , D₄ ]] ⊢F₄ ⊢G₄ A₄≡A₄ [F₄] [G₄] G₄-ext))
(Π₌ F₄′ G₄′ D₄′ A₃≡A₄′ [F₃≡F₄′] [G₃≡G₄′]) =
∃₌ (Id (SProp ⁰) F₂ F₄) (E₂.IdGG₁ (step id) (var 0))
E₂.D∃ ∃₁≡∃₂
[IdFF₁≡IdFF₂]
(λ {ρ} {Δ} {e} [ρ] ⊢Δ [e] → irrelevanceEq″ (PE.sym (E₁.wksubst-IdTel ρ e)) (PE.sym (E₂.wksubst-IdTel ρ e)) PE.refl PE.refl
(E₁.[IdGG₁] [ρ] ⊢Δ [e]) (PE.subst (λ X → Δ ⊩⟨ ι ¹ ⟩ X ^ [ % , ι ¹ ]) (PE.sym (E₁.wksubst-IdTel ρ e)) (E₁.[IdGG₁] [ρ] ⊢Δ [e]))
([IdGG₁≡IdGG₂] [ρ] ⊢Δ [e]))
where
Π≡Π = whrDet* (D₂ , Whnf.Πₙ) (D₂′ , Whnf.Πₙ)
F₂≡F₂′ = let x , _ , _ , _ , _ = Π-PE-injectivity Π≡Π in x
G₂≡G₂′ = let _ , _ , _ , x , _ = Π-PE-injectivity Π≡Π in x
Π≡Π′ = whrDet* (D₄ , Whnf.Πₙ) (D₄′ , Whnf.Πₙ)
F₄≡F₄′ = let x , _ , _ , _ , _ = Π-PE-injectivity Π≡Π′ in x
G₄≡G₄′ = let _ , _ , _ , x , _ = Π-PE-injectivity Π≡Π′ in x
A₁≡A₂ = PE.subst₂ (λ X Y → Γ ⊢ Π F₁ ^ % ° ⁰ ▹ G₁ ° ⁰ ° ⁰ ≅ Π X ^ % ° ⁰ ▹ Y ° ⁰ ° ⁰ ^ [ ! , ι ⁰ ]) (PE.sym F₂≡F₂′) (PE.sym G₂≡G₂′) A₁≡A₂′
A₃≡A₄ = PE.subst₂ (λ X Y → Γ ⊢ Π F₃ ^ % ° ⁰ ▹ G₃ ° ⁰ ° ⁰ ≅ Π X ^ % ° ⁰ ▹ Y ° ⁰ ° ⁰ ^ [ ! , ι ⁰ ]) (PE.sym F₄≡F₄′) (PE.sym G₄≡G₄′) A₃≡A₄′
[F₁≡F₂] = PE.subst (λ X → ∀ {ρ Δ} → ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → Δ ⊩⟨ ι ⁰ ⟩ wk ρ F₁ ≡ wk ρ X ^ [ % , ι ⁰ ] / [F₁] [ρ] ⊢Δ)
(PE.sym F₂≡F₂′) [F₁≡F₂′]
[F₃≡F₄] = PE.subst (λ X → ∀ {ρ Δ} → ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → Δ ⊩⟨ ι ⁰ ⟩ wk ρ F₃ ≡ wk ρ X ^ [ % , ι ⁰ ] / [F₃] [ρ] ⊢Δ)
(PE.sym F₄≡F₄′) [F₃≡F₄′]
[G₁≡G₂] = PE.subst (λ X → ∀ {ρ Δ a} → ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ ([a] : Δ ⊩⟨ ι ⁰ ⟩ a ∷ wk ρ F₁ ^ [ % , ι ⁰ ] / [F₁] [ρ] ⊢Δ)
→ Δ ⊩⟨ ι ⁰ ⟩ wk (lift ρ) G₁ [ a ] ≡ wk (lift ρ) X [ a ] ^ [ ! , ι ⁰ ] / [G₁] [ρ] ⊢Δ [a])
(PE.sym G₂≡G₂′) [G₁≡G₂′]
[G₃≡G₄] = PE.subst (λ X → ∀ {ρ Δ a} → ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ ([a] : Δ ⊩⟨ ι ⁰ ⟩ a ∷ wk ρ F₃ ^ [ % , ι ⁰ ] / [F₃] [ρ] ⊢Δ)
→ Δ ⊩⟨ ι ⁰ ⟩ wk (lift ρ) G₃ [ a ] ≡ wk (lift ρ) X [ a ] ^ [ ! , ι ⁰ ] / [G₃] [ρ] ⊢Δ [a])
(PE.sym G₄≡G₄′) [G₃≡G₄′]
open IdTypeU-lemmas-2 ⊢Γ ⊢A₁ ⊢ΠF₁G₁ D₁ ⊢F₁ ⊢G₁ A₁≡A₁ [F₁] [G₁] G₁-ext
⊢A₂ ⊢ΠF₂G₂ D₂ ⊢F₂ ⊢G₂ A₂≡A₂ [F₂] [G₂] G₂-ext
⊢A₃ ⊢ΠF₃G₃ D₃ ⊢F₃ ⊢G₃ A₃≡A₃ [F₃] [G₃] G₃-ext
⊢A₄ ⊢ΠF₄G₄ D₄ ⊢F₄ ⊢G₄ A₄≡A₄ [F₄] [G₄] G₄-ext
A₁≡A₂ A₃≡A₄ [F₁≡F₂] [F₃≡F₄] [G₁≡G₂] [G₃≡G₄]
(λ [ρ] ⊢Δ → [Id]SProp ⊢Δ ([F₁] [ρ] ⊢Δ) ([F₃] [ρ] ⊢Δ))
(λ [ρ] ⊢Δ [x] [y] → [Id]U ⊢Δ ([G₁] [ρ] ⊢Δ [x]) ([G₃] [ρ] ⊢Δ [y]))
(λ [ρ] ⊢Δ → [Id]SProp ⊢Δ ([F₂] [ρ] ⊢Δ) ([F₄] [ρ] ⊢Δ))
(λ [ρ] ⊢Δ [x] [y] → [Id]U ⊢Δ ([G₂] [ρ] ⊢Δ [x]) ([G₄] [ρ] ⊢Δ [y]))
(λ [ρ] ⊢Δ [x] [x′] [x≡x′] [y] [y′] [y≡y′] →
[IdExt]U ⊢Δ ([G₁] [ρ] ⊢Δ [x]) ([G₁] [ρ] ⊢Δ [x′]) (G₁-ext [ρ] ⊢Δ [x] [x′] [x≡x′]) ([G₃] [ρ] ⊢Δ [y]) ([G₃] [ρ] ⊢Δ [y′]) (G₃-ext [ρ] ⊢Δ [y] [y′] [y≡y′]))
(λ [ρ] ⊢Δ [x] [x′] [x≡x′] [y] [y′] [y≡y′] →
[IdExt]U ⊢Δ ([G₂] [ρ] ⊢Δ [x]) ([G₂] [ρ] ⊢Δ [x′]) (G₂-ext [ρ] ⊢Δ [x] [x′] [x≡x′]) ([G₄] [ρ] ⊢Δ [y]) ([G₄] [ρ] ⊢Δ [y′]) (G₄-ext [ρ] ⊢Δ [y] [y′] [y≡y′]))
(λ [ρ] ⊢Δ → [IdExt]SProp ⊢Δ ([F₁] [ρ] ⊢Δ) ([F₂] [ρ] ⊢Δ) ([F₁≡F₂] [ρ] ⊢Δ) ([F₃] [ρ] ⊢Δ) ([F₄] [ρ] ⊢Δ) ([F₃≡F₄] [ρ] ⊢Δ))
(λ [ρ] ⊢Δ [x₁] [x₂] [G₁x₁≡G₂x₂] [x₃] [x₄] [G₃x₃≡G₄x₄] → [IdExt]U ⊢Δ ([G₁] [ρ] ⊢Δ [x₁]) ([G₂] [ρ] ⊢Δ [x₂]) [G₁x₁≡G₂x₂] ([G₃] [ρ] ⊢Δ [x₃]) ([G₄] [ρ] ⊢Δ [x₄]) [G₃x₃≡G₄x₄])
[IdExt]U ⊢Γ [A] [A′] [A≡A′] [B] [B′] [B≡B′] = [IdExtShape]U ⊢Γ [A] [A′] (goodCases [A] [A′] [A≡A′]) [A≡A′] [B] [B′] (goodCases [B] [B′] [B≡B′]) [B≡B′]
Ugen' : ∀ {Γ rU l} → (⊢Γ : ⊢ Γ) → ((next l) LogRel.⊩¹U logRelRec (next l) ^ Γ) (Univ rU l) (next l)
Ugen' {Γ} {rU} {⁰} ⊢Γ = Uᵣ rU ⁰ emb< PE.refl ((idRed:*: (Ugenⱼ ⊢Γ)))
Ugen' {Γ} {rU} {¹} ⊢Γ = Uᵣ rU ¹ ∞< PE.refl (idRed:*: (Uⱼ ⊢Γ))
[Id]UGen : ∀ {A t u Γ l}
(⊢Γ : ⊢ Γ)
([A] : (l LogRel.⊩¹U logRelRec l ^ Γ) A (ι ¹))
([t] : Γ ⊩⟨ l ⟩ t ∷ A ^ [ ! , ι ¹ ] / Uᵣ [A])
([u] : Γ ⊩⟨ l ⟩ u ∷ A ^ [ ! , ι ¹ ] / Uᵣ [A])
→ Γ ⊩⟨ l ⟩ Id A t u ^ [ % , ι ¹ ]
[Id]UGen {A} {t} {u} {Γ} {ι .¹} ⊢Γ (Uᵣ ! ⁰ emb< PE.refl [[ ⊢A , ⊢B , D ]]) (Uₜ K d typeK K≡K [t]) (Uₜ M d₁ typeM M≡M [u]) =
let
[t0] : Γ ⊩⟨ ι ⁰ ⟩ t ^ [ ! , ι ⁰ ]
[t0] = PE.subst (λ X → Γ ⊩⟨ ι ⁰ ⟩ X ^ [ ! , ι ⁰ ]) (wk-id t) ([t] Twk.id ⊢Γ)
[u0] = PE.subst (λ X → Γ ⊩⟨ ι ⁰ ⟩ X ^ [ ! , ι ⁰ ]) (wk-id u) ([u] Twk.id ⊢Γ)
⊢tA = conv (un-univ (escape [t0])) (sym (subset* D))
⊢uA = conv (un-univ (escape [u0])) (sym (subset* D))
in proj₁ (redSubst* (IdRed* ⊢tA ⊢uA D) ([Id]U ⊢Γ [t0] [u0]))
[Id]UGen {A} {t} {u} {Γ} {ι .¹} ⊢Γ (Uᵣ % ⁰ emb< PE.refl [[ ⊢A , ⊢B , D ]]) (Uₜ K d typeK K≡K [t]) (Uₜ M d₁ typeM M≡M [u]) =
let
[t0] : Γ ⊩⟨ ι ⁰ ⟩ t ^ [ % , ι ⁰ ]
[t0] = PE.subst (λ X → Γ ⊩⟨ ι ⁰ ⟩ X ^ [ % , ι ⁰ ]) (wk-id t) ([t] Twk.id ⊢Γ)
[u0] = PE.subst (λ X → Γ ⊩⟨ ι ⁰ ⟩ X ^ [ % , ι ⁰ ]) (wk-id u) ([u] Twk.id ⊢Γ)
⊢tA = conv (un-univ (escape [t0])) (sym (subset* D))
⊢uA = conv (un-univ (escape [u0])) (sym (subset* D))
in proj₁ (redSubst* (IdRed* ⊢tA ⊢uA D) ([Id]SProp ⊢Γ [t0] [u0]))
[IdExt]UGen : ∀ {A B t v u w Γ l l'}
(⊢Γ : ⊢ Γ)
([A] : (l LogRel.⊩¹U logRelRec l ^ Γ) A (ι ¹))
([B] : (l' LogRel.⊩¹U logRelRec l' ^ Γ) B (ι ¹))
([A≡B] : Γ ⊩⟨ l ⟩ A ≡ B ^ [ ! , ι ¹ ] / Uᵣ [A])
([t] : Γ ⊩⟨ l ⟩ t ∷ A ^ [ ! , ι ¹ ] / Uᵣ [A])
([v] : Γ ⊩⟨ l' ⟩ v ∷ B ^ [ ! , ι ¹ ] / Uᵣ [B])
([t≡v] : Γ ⊩⟨ l ⟩ t ≡ v ∷ A ^ [ ! , ι ¹ ] / Uᵣ [A])
([u] : Γ ⊩⟨ l ⟩ u ∷ A ^ [ ! , ι ¹ ] / Uᵣ [A])
([w] : Γ ⊩⟨ l' ⟩ w ∷ B ^ [ ! , ι ¹ ] / Uᵣ [B])
([u≡w] : Γ ⊩⟨ l ⟩ u ≡ w ∷ A ^ [ ! , ι ¹ ] / Uᵣ [A])
→ Γ ⊩⟨ l ⟩ Id A t u ≡ Id B v w ^ [ % , ι ¹ ] / [Id]UGen ⊢Γ [A] [t] [u]
[IdExt]UGen {A} {B} {t} {v} {u} {w} {Γ} {.(ι ¹)} {.(ι ¹)} ⊢Γ (Uᵣ ! ⁰ emb< PE.refl d) (Uᵣ r₁ ⁰ emb< PE.refl d₁) [A≡B] [t] [v] [t≡v] [u] [w] [u≡w] =
let U≡U = whrDet* (red d₁ , Uₙ) ([A≡B] , Uₙ)
r≡r , _ = Univ-PE-injectivity U≡U
[UA] = Uᵣ ! ⁰ emb< PE.refl d
[UB] = Uᵣ r₁ ⁰ emb< PE.refl d₁
[U] = Ugen' ⊢Γ
[U]' = Ugen' ⊢Γ
[UA]' , [UAeq] = redSubst* (red d) (Uᵣ [U])
[UB]' , [UBeq] = redSubst* (PE.subst (λ X → Γ ⊢ _ ⇒* Univ X _ ^ _) r≡r (red d₁)) (Uᵣ [U]')
[t]′ = convTerm₁ {t = t} [UA]' (Uᵣ [U]) [UAeq] (irrelevanceTerm (Uᵣ [UA]) [UA]' [t])
[t^] = univEq (Uᵣ [U]) [t]′
[v]′ = convTerm₁ {t = v} [UB]' (Uᵣ [U]) [UBeq] (irrelevanceTerm (Uᵣ [UB]) [UB]' [v])
[v^] = univEq (Uᵣ [U]) [v]′
[t≡v]′ = convEqTerm₁ {t = t} {u = v} [UA]' (Uᵣ [U]) [UAeq] (irrelevanceEqTerm (Uᵣ [UA]) [UA]' [t≡v])
[t≡v^] = univEqEq (Uᵣ [U]) [t^] [t≡v]′
[u]′ = convTerm₁ {t = u} [UA]' (Uᵣ [U]) [UAeq] (irrelevanceTerm (Uᵣ [UA]) [UA]' [u])
[u^] = univEq (Uᵣ [U]) [u]′
[w]′ = convTerm₁ {t = w} [UB]' (Uᵣ [U]) [UBeq] (irrelevanceTerm (Uᵣ [UB]) [UB]' [w])
[w^] = univEq (Uᵣ [U]) [w]′
[u≡w]′ = convEqTerm₁ {t = u} {u = w} [UA]' (Uᵣ [U]) [UAeq] (irrelevanceEqTerm (Uᵣ [UA]) [UA]' [u≡w])
[u≡w^] = univEqEq (Uᵣ [U]) [u^] [u≡w]′
X = irrelevanceEq {A = Id (U ⁰) t u} {B = Id (U ⁰) v w} ([Id]U ⊢Γ [t^] [u^]) ([Id]UGen ⊢Γ [U] [t]′ [u]′) ([IdExt]U ⊢Γ [t^] [v^] [t≡v^] [u^] [w^] [u≡w^])
[IdA] , [IdA≡U] = redSubst* (IdRed* (escapeTerm (Uᵣ [UA]) [t]) (escapeTerm (Uᵣ [UA]) [u]) (red d)) ([Id]UGen ⊢Γ [U] [t]′ [u]′)
[IdB] , [IdB≡U] = redSubst* (IdRed* (escapeTerm (Uᵣ [UB]) [v]) (escapeTerm (Uᵣ [UB]) [w]) (PE.subst (λ X → Γ ⊢ _ ⇒* Univ X _ ^ _) r≡r (red d₁))) ([Id]UGen ⊢Γ [U] [v]′ [w]′)
[IdA≡U]′ = irrelevanceEq {A = Id A t u} {B = Id (U ⁰) t u} [IdA] ([Id]UGen ⊢Γ [UA] [t] [u]) [IdA≡U]
[IdB≡U]′ = irrelevanceEq {A = Id B v w} {B = Id (U ⁰) v w} [IdB] ([Id]UGen ⊢Γ [UB] [v] [w]) [IdB≡U]
in transEq {A = Id A t u} {B = Id (U _) t u} {C = Id B v w} ([Id]UGen ⊢Γ [UA] [t] [u]) ([Id]UGen ⊢Γ [U] [t]′ [u]′) ([Id]UGen ⊢Γ [UB] [v] [w])
[IdA≡U]′
(transEq {A = Id (U _) t u} {B = Id (U _) v w} {C = Id B v w} ([Id]UGen ⊢Γ [U] [t]′ [u]′) ([Id]UGen ⊢Γ [U] [v]′ [w]′) ([Id]UGen ⊢Γ [UB] [v] [w])
X (symEq {A = Id B v w} {B = Id (U _) v w} ([Id]UGen ⊢Γ [UB] [v] [w]) ([Id]UGen ⊢Γ [U] [v]′ [w]′) [IdB≡U]′))
[IdExt]UGen {A} {B} {t} {v} {u} {w} {Γ} {.(ι ¹)} {.(ι ¹)} ⊢Γ (Uᵣ % ⁰ emb< PE.refl d) (Uᵣ r₁ ⁰ emb< PE.refl d₁) [A≡B] [t] [v] [t≡v] [u] [w] [u≡w] =
let U≡U = whrDet* (red d₁ , Uₙ) ([A≡B] , Uₙ)
r≡r , _ = Univ-PE-injectivity U≡U
[UA] = Uᵣ % ⁰ emb< PE.refl d
[UB] = Uᵣ r₁ ⁰ emb< PE.refl d₁
[U] = Ugen' ⊢Γ
[U]' = Ugen' ⊢Γ
[UA]' , [UAeq] = redSubst* (red d) (Uᵣ [U])
[UB]' , [UBeq] = redSubst* (PE.subst (λ X → Γ ⊢ _ ⇒* Univ X _ ^ _) r≡r (red d₁)) (Uᵣ [U]')
[t]′ = convTerm₁ {t = t} [UA]' (Uᵣ [U]) [UAeq] (irrelevanceTerm (Uᵣ [UA]) [UA]' [t])
[t^] = univEq (Uᵣ [U]) [t]′
[v]′ = convTerm₁ {t = v} [UB]' (Uᵣ [U]) [UBeq] (irrelevanceTerm (Uᵣ [UB]) [UB]' [v])
[v^] = univEq (Uᵣ [U]) [v]′
[t≡v]′ = convEqTerm₁ {t = t} {u = v} [UA]' (Uᵣ [U]) [UAeq] (irrelevanceEqTerm (Uᵣ [UA]) [UA]' [t≡v])
[t≡v^] = univEqEq (Uᵣ [U]) [t^] [t≡v]′
[u]′ = convTerm₁ {t = u} [UA]' (Uᵣ [U]) [UAeq] (irrelevanceTerm (Uᵣ [UA]) [UA]' [u])
[u^] = univEq (Uᵣ [U]) [u]′
[w]′ = convTerm₁ {t = w} [UB]' (Uᵣ [U]) [UBeq] (irrelevanceTerm (Uᵣ [UB]) [UB]' [w])
[w^] = univEq (Uᵣ [U]) [w]′
[u≡w]′ = convEqTerm₁ {t = u} {u = w} [UA]' (Uᵣ [U]) [UAeq] (irrelevanceEqTerm (Uᵣ [UA]) [UA]' [u≡w])
[u≡w^] = univEqEq (Uᵣ [U]) [u^] [u≡w]′
X = irrelevanceEq {A = Id (SProp ⁰) t u} {B = Id (SProp ⁰) v w} ([Id]SProp ⊢Γ [t^] [u^]) ([Id]UGen ⊢Γ [U] [t]′ [u]′) ([IdExt]SProp ⊢Γ [t^] [v^] [t≡v^] [u^] [w^] [u≡w^])
[IdA] , [IdA≡U] = redSubst* (IdRed* (escapeTerm (Uᵣ [UA]) [t]) (escapeTerm (Uᵣ [UA]) [u]) (red d)) ([Id]UGen ⊢Γ [U] [t]′ [u]′)
[IdB] , [IdB≡U] = redSubst* (IdRed* (escapeTerm (Uᵣ [UB]) [v]) (escapeTerm (Uᵣ [UB]) [w]) (PE.subst (λ X → Γ ⊢ _ ⇒* Univ X _ ^ _) r≡r (red d₁))) ([Id]UGen ⊢Γ [U] [v]′ [w]′)
[IdA≡U]′ = irrelevanceEq {A = Id A t u} {B = Id (SProp ⁰) t u} [IdA] ([Id]UGen ⊢Γ [UA] [t] [u]) [IdA≡U]
[IdB≡U]′ = irrelevanceEq {A = Id B v w} {B = Id (SProp ⁰) v w} [IdB] ([Id]UGen ⊢Γ [UB] [v] [w]) [IdB≡U]
in transEq {A = Id A t u} {B = Id (SProp _) t u} {C = Id B v w} ([Id]UGen ⊢Γ [UA] [t] [u]) ([Id]UGen ⊢Γ [U] [t]′ [u]′) ([Id]UGen ⊢Γ [UB] [v] [w])
[IdA≡U]′
(transEq {A = Id (SProp _) t u} {B = Id (SProp _) v w} {C = Id B v w} ([Id]UGen ⊢Γ [U] [t]′ [u]′) ([Id]UGen ⊢Γ [U] [v]′ [w]′) ([Id]UGen ⊢Γ [UB] [v] [w])
X (symEq {A = Id B v w} {B = Id (SProp _) v w} ([Id]UGen ⊢Γ [UB] [v] [w]) ([Id]UGen ⊢Γ [U] [v]′ [w]′) [IdB≡U]′))
|
algebraic-stack_agda0000_doc_5959 | {-# OPTIONS --cubical --safe --postfix-projections #-}
module Cardinality.Finite.Structure where
open import Prelude
open import Data.Fin
open import Data.Nat
open import Data.Nat.Properties
private
variable
n m : ℕ
liftˡ : ∀ n m → Fin m → Fin (n + m)
liftˡ zero m x = x
liftˡ (suc n) m x = fs (liftˡ n m x)
liftʳ : ∀ n m → Fin n → Fin (n + m)
liftʳ (suc n) m f0 = f0
liftʳ (suc n) m (fs x) = fs (liftʳ n m x)
mapl : (A → B) → A ⊎ C → B ⊎ C
mapl f (inl x) = inl (f x)
mapl f (inr x) = inr x
fin-sum-to : ∀ n m → Fin n ⊎ Fin m → Fin (n + m)
fin-sum-to n m = either (liftʳ n m) (liftˡ n m)
fin-sum-from : ∀ n m → Fin (n + m) → Fin n ⊎ Fin m
fin-sum-from zero m x = inr x
fin-sum-from (suc n) m f0 = inl f0
fin-sum-from (suc n) m (fs x) = mapl fs (fin-sum-from n m x)
mapl-distrib : ∀ {a b c d} {A : Type a} {B : Type b} {C : Type c} {D : Type d} (xs : A ⊎ B) (h : A → C) (f : C → D) (g : B → D) → either′ f g (mapl h xs) ≡ either′ (f ∘′ h) g xs
mapl-distrib (inl x) h f g = refl
mapl-distrib (inr x) h f g = refl
either-distrib : ∀ {d} {D : Type d} (f : A → C) (g : B → C) (h : C → D) (xs : A ⊎ B) → either′ (h ∘ f) (h ∘ g) xs ≡ h (either′ f g xs)
either-distrib f g h (inl x) = refl
either-distrib f g h (inr x) = refl
open import Path.Reasoning
fin-sum-to-from : ∀ n m x → fin-sum-to n m (fin-sum-from n m x) ≡ x
fin-sum-to-from zero m x = refl
fin-sum-to-from (suc n) m f0 = refl
fin-sum-to-from (suc n) m (fs x) =
fin-sum-to (suc n) m (mapl fs (fin-sum-from n m x)) ≡⟨ mapl-distrib (fin-sum-from n m x) fs (liftʳ (suc n) m) (liftˡ (suc n) m) ⟩
either (liftʳ (suc n) m ∘ fs) (liftˡ (suc n) m) (fin-sum-from n m x) ≡⟨⟩
either (fs ∘ liftʳ n m) (fs ∘ liftˡ n m) (fin-sum-from n m x) ≡⟨ either-distrib (liftʳ n m) (liftˡ n m) fs (fin-sum-from n m x) ⟩
fs (either (liftʳ n m) (liftˡ n m) (fin-sum-from n m x)) ≡⟨ cong fs (fin-sum-to-from n m x) ⟩
fs x ∎
-- fin-sum-from-to : ∀ n m x → fin-sum-from n m (fin-sum-to n m x) ≡ x
-- fin-sum-from-to n m (inl x) = {!!}
-- fin-sum-from-to n m (inr x) = {!!}
-- fin-sum : ∀ n m → Fin n ⊎ Fin m ⇔ Fin (n + m)
-- fin-sum n m .fun = fin-sum-to n m
-- fin-sum n m .inv = fin-sum-from n m
-- fin-sum n m .rightInv = fin-sum-to-from n m
-- fin-sum n m .leftInv = fin-sum-from-to n m
|
algebraic-stack_agda0000_doc_5960 | module Data.Signed where
open import Data.Bit using
(Bit
; b0
; b1
; Bits-num
; Bits-neg
; Overflowing
; _overflow:_
; result
; carry
; WithCarry
; _with-carry:_
; toBool
; tryToFinₙ
; !ₙ
; _⊕_
; _↔_
) renaming
( _+_ to bit+
; _-_ to bit-
; ! to bit!
; _&_ to bit&
; _~|_ to bit|
; _^_ to bit^
; _>>_ to bit>>
; _<<_ to bit<<
)
open import Data.Unit using (⊤)
open import Data.Nat using (ℕ; suc; zero) renaming (_≤_ to ℕ≤)
open import Data.Vec using (Vec; _∷_; []; head; tail; replicate)
open import Data.Nat.Literal using (Number)
open import Data.Int.Literal using (Negative)
open import Data.Maybe using (just; nothing)
open import Data.Empty using (⊥)
infixl 8 _-_ _+_
infixl 7 _<<_ _>>_
infixl 6 _&_
infixl 5 _^_
infixl 4 _~|_
record Signed (n : ℕ) : Set where
constructor mk-int
field
bits : Vec Bit n
open Signed public
instance
Signed-num : {m : ℕ} → Number (Signed m)
Signed-num {zero} .Number.Constraint = Number.Constraint (Bits-num {zero})
Signed-num {suc m} .Number.Constraint = Number.Constraint (Bits-num {m})
Signed-num {zero} .Number.fromNat zero ⦃ p ⦄ = mk-int [] where
Signed-num {zero} .Number.fromNat (suc _) ⦃ ℕ≤.s≤s () ⦄
Signed-num {suc m} .Number.fromNat n ⦃ p ⦄ = mk-int (mk-bits p) where
mk-bits : Number.Constraint (Bits-num {m}) n → Vec Bit (suc m)
mk-bits p = b0 ∷ Number.fromNat Bits-num n ⦃ p ⦄
instance
Signed-neg : {m : ℕ} → Negative (Signed (suc m))
Signed-neg {m} .Negative.Constraint = Negative.Constraint (Bits-neg {m})
Signed-neg {m} .Negative.fromNeg n ⦃ p ⦄ = mk-int bitVec where
bitVec : Vec Bit (suc m)
bitVec = Negative.fromNeg (Bits-neg {m}) n ⦃ p ⦄
_+_ : {n : ℕ} → Signed n → Signed n → Overflowing (Signed n)
p + q = mk-int (result sum) overflow: toBool overflow where
sum = bit+ (bits p) (bits q)
last-carry : {n : ℕ} → Vec Bit n → Bit
last-carry [] = b0
last-carry (b ∷ _) = b
overflow = head (carry sum) ⊕ last-carry (tail (carry sum))
_-_ : {n : ℕ} → Signed n → Signed n → Overflowing (Signed n)
p - q = mk-int (result sub) overflow: toBool overflow where
sub = bit- (bits p) (bits q)
last-carry : {n : ℕ} → Vec Bit n → Bit
last-carry [] = b0
last-carry (b ∷ _) = b
overflow = head (carry sub) ↔ last-carry (tail (carry sub))
rotr : {n : ℕ} → Signed n → Signed n → WithCarry (Signed n) (Signed n)
rotr {n} (mk-int ps) (mk-int qs) = new-result with-carry: new-carry where
shifted : WithCarry (Vec Bit n) (Vec Bit n)
shifted with tryToFinₙ qs
... | just i = bit>> ps i
... | nothing = replicate b0 with-carry: ps
new-result : Signed n
new-result = mk-int (result shifted)
new-carry : Signed n
new-carry = mk-int (carry shifted)
rotl : {n : ℕ} → Signed n → Signed n → WithCarry (Signed n) (Signed n)
rotl {n} (mk-int ps) (mk-int qs) = new-result with-carry: new-carry where
shifted : WithCarry (Vec Bit n) (Vec Bit n)
shifted with tryToFinₙ qs
... | just i = bit<< ps i
... | nothing = replicate b0 with-carry: ps
new-result : Signed n
new-result = mk-int (result shifted)
new-carry : Signed n
new-carry = mk-int (carry shifted)
_>>_ : {n : ℕ} → Signed n → Signed n → Signed n
ps >> qs = result (rotr ps qs)
_<<_ : {n : ℕ} → Signed n → Signed n → Signed n
ps << qs = result (rotl ps qs)
arotr : {n : ℕ} → Signed n → Signed n → WithCarry (Signed n) (Signed n)
arotr {n} (mk-int []) _ = mk-int [] with-carry: mk-int []
arotr {suc n} (mk-int (p ∷ ps)) (mk-int qs) = new-result with-carry: new-carry
where
shifted : WithCarry (Vec Bit n) (Vec Bit n)
shifted with tryToFinₙ qs
... | just i = bit>> ps i
... | nothing = replicate b0 with-carry: ps
new-result : Signed (suc n)
new-result = mk-int (p ∷ result shifted)
new-carry : Signed (suc n)
new-carry = mk-int (b0 ∷ carry shifted)
arotl : {n : ℕ} → Signed n → Signed n → WithCarry (Signed n) (Signed n)
arotl {n} (mk-int []) _ = mk-int [] with-carry: mk-int []
arotl {suc n} (mk-int (p ∷ ps)) (mk-int qs) = new-result with-carry: new-carry
where
shifted : WithCarry (Vec Bit n) (Vec Bit n)
shifted with tryToFinₙ qs
... | just i = bit<< ps i
... | nothing = replicate b0 with-carry: ps
new-result : Signed (suc n)
new-result = mk-int (p ∷ result shifted)
new-carry : Signed (suc n)
new-carry = mk-int (b0 ∷ carry shifted)
_a>>_ : {n : ℕ} → Signed n → Signed n → Signed n
ps a>> qs = result (rotr ps qs)
_a<<_ : {n : ℕ} → Signed n → Signed n → Signed n
ps a<< qs = result (rotl ps qs)
! : {n : ℕ} → Signed n → Signed n
! (mk-int ps) = mk-int (!ₙ ps)
_&_ : {n : ℕ} → Signed n → Signed n → Signed n
(mk-int ps) & (mk-int qs) = mk-int (bit& ps qs)
_~|_ : {n : ℕ} → Signed n → Signed n → Signed n
(mk-int ps) ~| (mk-int qs) = mk-int (bit| ps qs)
_^_ : {n : ℕ} → Signed n → Signed n → Signed n
(mk-int ps) ^ (mk-int qs) = mk-int (bit^ ps qs)
|
algebraic-stack_agda0000_doc_5961 | {-# OPTIONS --warning=error --safe --without-K #-}
open import LogicalFormulae
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Functions
open import Setoids.Setoids
open import Setoids.Subset
open import Graphs.Definition
open import Sets.FinSet.Definition
open import Numbers.Naturals.Semiring
open import Numbers.Naturals.Order
open import Sets.EquivalenceRelations
open import Graphs.CompleteGraph
open import Graphs.Colouring
module Graphs.RamseyTriangle where
hasMonochromaticTriangle : {a : _} {n : ℕ} (G : Graph a (reflSetoid (FinSet n))) → Set (lsuc lzero)
hasMonochromaticTriangle {n = n} G = Sg (FinSet n → Set) λ pred → (subset (reflSetoid (FinSet n)) pred) && {!!}
ramseyForTriangle : (k : ℕ) → Sg ℕ (λ N → (n : ℕ) → (N <N n) → (c : Colouring k (Kn n)) → {!!})
ramseyForTriangle k = {!!}
|
algebraic-stack_agda0000_doc_5962 | {-# OPTIONS --sized-types #-}
module SizedTypesRigidVarClash where
postulate
Size : Set
_^ : Size -> Size
∞ : Size
{-# BUILTIN SIZE Size #-}
{-# BUILTIN SIZESUC _^ #-}
{-# BUILTIN SIZEINF ∞ #-}
data Nat : {size : Size} -> Set where
zero : {size : Size} -> Nat {size ^}
suc : {size : Size} -> Nat {size} -> Nat {size ^}
inc : {i j : Size} -> Nat {i} -> Nat {j ^}
inc x = suc x
|
algebraic-stack_agda0000_doc_5963 | -- Andreas, 2017-01-18, issue #2413
-- As-patterns of variable patterns
data Bool : Set where
true false : Bool
test : Bool → Bool
test x@y = {!x!} -- split on x
test1 : Bool → Bool
test1 x@_ = {!x!} -- split on x
test2 : Bool → Bool
test2 x@y = {!y!} -- split on y
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.