id
stringlengths 27
136
| text
stringlengths 4
1.05M
|
---|---|
algebraic-stack_agda0000_doc_5964 | module reverse_string where
open import Data.String
open import Data.List
reverse_string : String → String
reverse_string s = fromList (reverse (toList s))
|
algebraic-stack_agda0000_doc_5965 | {-# OPTIONS --safe --without-K #-}
open import Algebra.Bundles using (Monoid)
module Categories.Category.Construction.MonoidAsCategory o {c ℓ} (M : Monoid c ℓ) where
open import Data.Unit.Polymorphic
open import Level
open import Categories.Category.Core
open Monoid M
-- A monoid is a category with one object
MonoidAsCategory : Category o c ℓ
MonoidAsCategory = record
{ Obj = ⊤
; assoc = assoc _ _ _
; sym-assoc = sym (assoc _ _ _)
; identityˡ = identityˡ _
; identityʳ = identityʳ _
; identity² = identityˡ _
; equiv = isEquivalence
; ∘-resp-≈ = ∙-cong
}
|
algebraic-stack_agda0000_doc_5966 | ------------------------------------------------------------------------------
-- Non-terminating GCD
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOT.FOTC.Program.GCD.GCD-NT where
open import Data.Nat
open import Relation.Nullary
------------------------------------------------------------------------------
{-# TERMINATING #-}
gcd : ℕ → ℕ → ℕ
gcd 0 0 = 0
gcd (suc m) 0 = suc m
gcd 0 (suc n) = suc n
gcd (suc m) (suc n) with suc m ≤? suc n
gcd (suc m) (suc n) | yes p = gcd (suc m) (suc n ∸ suc m)
gcd (suc m) (suc n) | no ¬p = gcd (suc m ∸ suc n) (suc n)
|
algebraic-stack_agda0000_doc_5967 | module Structure.Signature where
open import Data.Tuple.Raise
open import Data.Tuple.Raiseᵣ.Functions
import Lvl
open import Numeral.Natural
open import Structure.Function
open import Structure.Setoid
open import Structure.Relator
open import Type
private variable ℓ ℓᵢ ℓᵢ₁ ℓᵢ₂ ℓᵢ₃ ℓd ℓd₁ ℓd₂ ℓᵣ ℓᵣ₁ ℓᵣ₂ ℓₑ ℓₑ₁ ℓₑ₂ : Lvl.Level
private variable n : ℕ
-- A signature consists of a countable family of sets of function and relation symbols.
-- `functions(n)` and `relations(n)` should be interpreted as the indices for functions/relations of arity `n`.
record Signature : Type{Lvl.𝐒(ℓᵢ₁ Lvl.⊔ ℓᵢ₂)} where
field
functions : ℕ → Type{ℓᵢ₁}
relations : ℕ → Type{ℓᵢ₂}
private variable s : Signature{ℓᵢ₁}{ℓᵢ₂}
import Data.Tuple.Equiv as Tuple
-- A structure with a signature `s` consists of a domain and interpretations of the function/relation symbols in `s`.
record Structure (s : Signature{ℓᵢ₁}{ℓᵢ₂}) : Type{Lvl.𝐒(ℓₑ Lvl.⊔ ℓd Lvl.⊔ ℓᵣ) Lvl.⊔ ℓᵢ₁ Lvl.⊔ ℓᵢ₂} where
open Signature(s)
field
domain : Type{ℓd}
⦃ equiv ⦄ : ∀{n} → Equiv{ℓₑ}(domain ^ n)
⦃ ext ⦄ : ∀{n} → Tuple.Extensionality(equiv{𝐒(𝐒 n)})
function : functions(n) → ((domain ^ n) → domain)
⦃ function-func ⦄ : ∀{fi} → Function(function{n} fi)
relation : relations(n) → ((domain ^ n) → Type{ℓᵣ})
⦃ relation-func ⦄ : ∀{ri} → UnaryRelator(relation{n} ri)
open Structure public using() renaming (domain to dom ; function to fn ; relation to rel)
open import Logic.Predicate
module _ {s : Signature{ℓᵢ₁}{ℓᵢ₂}} where
private variable A B C S : Structure{ℓd = ℓd}{ℓᵣ = ℓᵣ}(s)
private variable fi : Signature.functions s n
private variable ri : Signature.relations s n
private variable xs : dom(S) ^ n
record Homomorphism
(A : Structure{ℓₑ = ℓₑ₁}{ℓd = ℓd₁}{ℓᵣ = ℓᵣ₁}(s))
(B : Structure{ℓₑ = ℓₑ₂}{ℓd = ℓd₂}{ℓᵣ = ℓᵣ₂}(s))
(f : dom(A) → dom(B))
: Type{ℓₑ₁ Lvl.⊔ ℓₑ₂ Lvl.⊔ ℓd₁ Lvl.⊔ ℓd₂ Lvl.⊔ ℓᵣ₁ Lvl.⊔ ℓᵣ₂ Lvl.⊔ Lvl.ofType(Type.of s)}
where
field
⦃ function ⦄ : Function(f)
preserve-functions : ∀{xs : dom(A) ^ n} → (f(fn(A) fi xs) ≡ fn(B) fi (map f xs))
preserve-relations : ∀{xs : dom(A) ^ n} → (rel(A) ri xs) → (rel(B) ri (map f xs))
_→ₛₜᵣᵤ_ : Structure{ℓₑ = ℓₑ₁}{ℓd = ℓd₁}{ℓᵣ = ℓᵣ₁}(s) → Structure{ℓₑ = ℓₑ₂}{ℓd = ℓd₂}{ℓᵣ = ℓᵣ₂}(s) → Type
A →ₛₜᵣᵤ B = ∃(Homomorphism A B)
open import Data
open import Data.Tuple as Tuple using (_,_)
open import Data.Tuple.Raiseᵣ.Proofs
open import Functional
open import Function.Proofs
open import Lang.Instance
open import Structure.Operator
open import Structure.Relator.Properties
open import Syntax.Transitivity
idₛₜᵣᵤ : A →ₛₜᵣᵤ A
∃.witness idₛₜᵣᵤ = id
Homomorphism.preserve-functions (∃.proof (idₛₜᵣᵤ {A = A})) {n} {fi} {xs} = congruence₁(fn A fi) (symmetry(Equiv._≡_ (Structure.equiv A)) ⦃ Equiv.symmetry infer ⦄ map-id)
Homomorphism.preserve-relations (∃.proof (idₛₜᵣᵤ {A = A})) {n} {ri} {xs} = substitute₁ₗ(rel A ri) map-id
_∘ₛₜᵣᵤ_ : let _ = A , B , C in (B →ₛₜᵣᵤ C) → (A →ₛₜᵣᵤ B) → (A →ₛₜᵣᵤ C)
∃.witness (([∃]-intro f) ∘ₛₜᵣᵤ ([∃]-intro g)) = f ∘ g
Homomorphism.function (∃.proof ([∃]-intro f ∘ₛₜᵣᵤ [∃]-intro g)) = [∘]-function {f = f}{g = g}
Homomorphism.preserve-functions (∃.proof (_∘ₛₜᵣᵤ_ {A = A} {B = B} {C = C} ([∃]-intro f ⦃ hom-f ⦄) ([∃]-intro g ⦃ hom-g ⦄))) {fi = fi} = transitivity(_≡_) ⦃ Equiv.transitivity infer ⦄ (transitivity(_≡_) ⦃ Equiv.transitivity infer ⦄ (congruence₁(f) (Homomorphism.preserve-functions hom-g)) (Homomorphism.preserve-functions hom-f)) (congruence₁(fn C fi) (symmetry(Equiv._≡_ (Structure.equiv C)) ⦃ Equiv.symmetry infer ⦄ (map-[∘] {f = f}{g = g})))
Homomorphism.preserve-relations (∃.proof (_∘ₛₜᵣᵤ_ {A = A} {B = B} {C = C} ([∃]-intro f ⦃ hom-f ⦄) ([∃]-intro g ⦃ hom-g ⦄))) {ri = ri} = substitute₁ₗ (rel C ri) map-[∘] ∘ Homomorphism.preserve-relations hom-f ∘ Homomorphism.preserve-relations hom-g
open import Function.Equals
open import Function.Equals.Proofs
open import Logic.Predicate.Equiv
open import Structure.Category
open import Structure.Categorical.Properties
Structure-Homomorphism-category : Category(_→ₛₜᵣᵤ_ {ℓₑ}{ℓd}{ℓᵣ})
Category._∘_ Structure-Homomorphism-category = _∘ₛₜᵣᵤ_
Category.id Structure-Homomorphism-category = idₛₜᵣᵤ
BinaryOperator.congruence (Category.binaryOperator Structure-Homomorphism-category) = [⊜][∘]-binaryOperator-raw
_⊜_.proof (Morphism.Associativity.proof (Category.associativity Structure-Homomorphism-category) {_} {_} {_} {_} {[∃]-intro f} {[∃]-intro g} {[∃]-intro h}) {x} = reflexivity(_≡_) ⦃ Equiv.reflexivity infer ⦄ {f(g(h(x)))}
_⊜_.proof (Morphism.Identityₗ.proof (Tuple.left (Category.identity Structure-Homomorphism-category)) {f = [∃]-intro f}) {x} = reflexivity(_≡_) ⦃ Equiv.reflexivity infer ⦄ {f(x)}
_⊜_.proof (Morphism.Identityᵣ.proof (Tuple.right (Category.identity Structure-Homomorphism-category)) {f = [∃]-intro f}) {x} = reflexivity(_≡_) ⦃ Equiv.reflexivity infer ⦄ {f(x)}
module _ (s : Signature{ℓᵢ₁}{ℓᵢ₂}) where
data Term : Type{ℓᵢ₁} where
var : ℕ → Term
func : (Signature.functions s n) → (Term ^ n) → Term
|
algebraic-stack_agda0000_doc_272 |
module Issue59 where
data Nat : Set where
zero : Nat
suc : Nat → Nat
-- This no longer termination checks with the
-- new rules for with.
bad : Nat → Nat
bad n with n
... | zero = zero
... | suc m = bad m
-- This shouldn't termination check.
bad₂ : Nat → Nat
bad₂ n with bad₂ n
... | m = m
|
algebraic-stack_agda0000_doc_273 | module Cats.Util.SetoidMorphism.Iso where
open import Data.Product using (_,_ ; proj₁ ; proj₂)
open import Level using (_⊔_)
open import Relation.Binary using (Setoid ; IsEquivalence)
open import Cats.Util.SetoidMorphism as Mor using
( _⇒_ ; arr ; resp ; _≈_ ; ≈-intro ; ≈-elim ; ≈-elim′ ; _∘_ ; ∘-resp ; id ; IsInjective
; IsSurjective)
open import Cats.Util.SetoidReasoning
private
module S = Setoid
record IsIso {l l≈} {A : Setoid l l≈} {l′ l≈′} {B : Setoid l′ l≈′}
(f : A ⇒ B) : Set (l ⊔ l≈ ⊔ l′ ⊔ l≈′)
where
field
back : B ⇒ A
forth-back : f ∘ back ≈ id
back-forth : back ∘ f ≈ id
open IsIso
record _≅_ {l l≈} (A : Setoid l l≈) {l′ l≈′} (B : Setoid l′ l≈′)
: Set (l ⊔ l≈ ⊔ l′ ⊔ l≈′)
where
field
forth : A ⇒ B
back : B ⇒ A
forth-back : forth ∘ back ≈ id
back-forth : back ∘ forth ≈ id
open _≅_ public
IsIso→≅ : ∀ {l l≈} {A : Setoid l l≈} {l′ l≈′} {B : Setoid l′ l≈′} (f : A ⇒ B)
→ IsIso f → A ≅ B
IsIso→≅ f i = record
{ forth = f
; back = back i
; forth-back = forth-back i
; back-forth = back-forth i
}
≅→IsIso : ∀ {l l≈} {A : Setoid l l≈} {l′ l≈′} {B : Setoid l′ l≈′}
→ (i : A ≅ B) → IsIso (forth i)
≅→IsIso i = record
{ back = back i
; forth-back = forth-back i
; back-forth = back-forth i
}
IsIso-resp : ∀ {l l≈} {A : Setoid l l≈} {l′ l≈′} {B : Setoid l′ l≈′}
→ {f g : A ⇒ B} → f ≈ g → IsIso f → IsIso g
IsIso-resp {A = A} {B = B} {f} {g} f≈g i = record
{ back = back i
; forth-back = ≈-intro λ {x} {y} x≈y →
begin⟨ B ⟩
arr g (arr (back i) x)
≈⟨ B.sym (≈-elim f≈g (resp (back i) (B.sym x≈y))) ⟩
arr f (arr (back i) y)
≈⟨ ≈-elim′ (forth-back i) ⟩
y
∎
; back-forth = ≈-intro λ {x} {y} x≈y →
begin⟨ A ⟩
arr (back i) (arr g x)
≈⟨ resp (back i) (B.sym (≈-elim f≈g (A.sym x≈y))) ⟩
arr (back i) (arr f y)
≈⟨ ≈-elim′ (back-forth i) ⟩
y
∎
}
where
module A = Setoid A
module B = Setoid B
refl : ∀ {l l≈} {A : Setoid l l≈} → A ≅ A
refl = record
{ forth = id
; back = id
; forth-back = ≈-intro λ eq → eq
; back-forth = ≈-intro λ eq → eq
}
sym : ∀ {l l≈} {A : Setoid l l≈} {l′ l≈′} {B : Setoid l′ l≈′}
→ A ≅ B → B ≅ A
sym i = record
{ forth = back i
; back = forth i
; forth-back = back-forth i
; back-forth = forth-back i
}
trans : ∀ {l l≈} {A : Setoid l l≈} {l′ l≈′} {B : Setoid l′ l≈′}
→ ∀ {l″ l≈″} {C : Setoid l″ l≈″}
→ A ≅ B → B ≅ C → A ≅ C
trans {A = A} {C = C} AB BC = record
{ forth = forth BC ∘ forth AB
; back = back AB ∘ back BC
; forth-back = ≈-intro λ x≈y
→ S.trans C (resp (forth BC) (≈-elim (forth-back AB) (resp (back BC) x≈y)))
(≈-elim′ (forth-back BC))
; back-forth = ≈-intro λ x≈y
→ S.trans A (resp (back AB) (≈-elim (back-forth BC) (resp (forth AB) x≈y)))
(≈-elim′ (back-forth AB))
}
module _ {l l≈} {A : Setoid l l≈} {l′ l≈′} {B : Setoid l′ l≈′} where
Injective∧Surjective→Iso : {f : A ⇒ B}
→ IsInjective f → IsSurjective f → IsIso f
Injective∧Surjective→Iso {f} inj surj = record
{ back = record
{ arr = λ b → proj₁ (surj b)
; resp = λ {b} {c} b≈c → inj
(S.trans B (S.sym B (proj₂ (surj b))) (S.trans B b≈c (proj₂ (surj c))))
}
; forth-back = ≈-intro λ {x} {y} x≈y → S.trans B (S.sym B (proj₂ (surj x))) x≈y
; back-forth = ≈-intro λ {x} {y} x≈y → inj
(S.trans B (S.sym B (proj₂ (surj _))) (resp f x≈y))
}
Injective∧Surjective→≅ : {f : A ⇒ B} → IsInjective f → IsSurjective f → A ≅ B
Injective∧Surjective→≅ {f} inj surj
= IsIso→≅ f (Injective∧Surjective→Iso inj surj)
Iso→Injective : {f : A ⇒ B} → IsIso f → IsInjective f
Iso→Injective {f} i {a} {b} fa≈fb =
begin⟨ A ⟩
a
≈⟨ S.sym A (≈-elim′ (back-forth i)) ⟩
arr (back i) (arr f a)
≈⟨ resp (back i) fa≈fb ⟩
arr (back i) (arr f b)
≈⟨ ≈-elim′ (back-forth i) ⟩
b
∎
≅-Injective : (i : A ≅ B) → IsInjective (forth i)
≅-Injective i = Iso→Injective (≅→IsIso i)
Iso→Surjective : {f : A ⇒ B} → IsIso f → IsSurjective f
Iso→Surjective i b = arr (back i) b , S.sym B (≈-elim′ (forth-back i))
≅-Surjective : (i : A ≅ B) → IsSurjective (forth i)
≅-Surjective i = Iso→Surjective (≅→IsIso i)
|
algebraic-stack_agda0000_doc_274 | {-
T R U N C A T I O N L E V E L S
I N
H O M O T O P Y T Y P E T H E O R Y
======= ELECTRONIC APPENDIX =======
NICOLAI KRAUS
February 2015
-}
{-# OPTIONS --without-K #-}
module INDEX where
-- Chapter 2
open import Preliminaries
-- Parts of Chapter 2 are in a separate file:
open import Pointed
{- Chapter 3,4,5,6 are joint work with
Martin Escardo,
Thierry Coquand,
Thorsten Altenkirch -}
-- Chapter 3
open import Truncation_Level_Criteria
-- Chapter 4
open import Anonymous_Existence_CollSplit
open import Anonymous_Existence_Populatedness
open import Anonymous_Existence_Comparison
-- Chapter 5
open import Weakly_Constant_Functions
-- Chapter 6
open import Judgmental_Computation
{- Chapter 7 (joint work with Christian Sattler)
has two parts. First, we construct homotopically
complicated types; this development is distributed
beween two files. Then, we discuss connectedness,
which turns out to be very hard to formalise;
we use in total five files to structure that
discussion, see below. -}
{- First, we have an auxiliary file which makes precise
that the 'universe of n-types' behaves like an actual
universe. We formalise operations for it; this is
very useful as it allows a more 'principled' development. -}
open import UniverseOfNTypes
{- Now: Sections 1-4 of Chapter 7, where 1,2 are "hidden".
They are special cases of the more general theorem that
we prove in 7.4; the special cases are written out only
for pedagogical reasons and are thus omitted in this
formalisation. -}
open import HHHUU-ComplicatedTypes
{- Note that Chapter 7.5 is not formalised, even though it
could have been; we omit it because it is only an
alternative to the above formalisation, and actually
leads to a weaker result than the one in
'HHHUU-ComplicatedTypes'.
Chapter 7.6 is very hard to formalise (mostly done by
Christian Sattler). Caveat: The order of the statements
in the formalisation is different from the order in
the thesis (it sometimes is more convenient to define
multiple notions in the same module because they share
argument to avoid replication of code, without them
belonging together logically).
First, we show (in a separate file) that the non-dependent
universal property and the dependent universal
property are equivalent.
Contains: Definition 7.6.2, Lemma 7.6.6 -}
open import Trunc.Universal
-- Definition 7.6.4, Lemma 7.6.7, Corollary 7.6.8
open import Trunc.Basics
-- Lemma 7.6.9, Lemma 7.6.10
-- (actually even a stronger version of Lemma 7.6.10)
open import Trunc.TypeConstructors
{- main part of connectedness:
(link to 7.6.1,)
Definition 7.6.13, Definition 7.6.11,
Lemma 7.6.14, Lemma 7.6.12, Lemma 7.6.15
and
Theorem 7.7.1 -}
open import Trunc.Connection
-- Remark 7.6.16
open import Trunc.ConnectednessAlt
{- The main result of Chapter 8 is, unfortunately,
meta-theoretical. It is plausible that in an
implementation of a type theory with 'two levels'
(one semi-internal 'strict' equality and the
ordinary identity type), the complete Chapter 8
could be formalised; but at the moment, this is
merely speculation. -}
-- Chapter 9.2: Semi-Simplicial Types
-- Proposition 9.2.1 (Δ₊ implemented with judgmental categorical laws)
open import Deltaplus
|
algebraic-stack_agda0000_doc_275 | {-# OPTIONS --verbose tc.constr.findInScope:20 #-}
module InstanceArgumentsConstraints where
data Bool : Set where
true false : Bool
postulate A1 A2 B C : Set
a1 : A1
a2 : A2
someF : A1 → C
record Class (R : Bool → Set) : Set where
field f : (t : Bool) → R t
open Class {{...}}
class1 : Class (λ _ → A1)
class1 = record { f = λ _ → a1 }
class2 : Class (λ _ → A2)
class2 = record { f = λ _ → a2 }
test : C
test = someF (f true)
|
algebraic-stack_agda0000_doc_276 | {-# OPTIONS --cubical --safe #-}
module Data.Bool where
open import Level
open import Agda.Builtin.Bool using (Bool; true; false) public
open import Data.Unit
open import Data.Empty
bool : ∀ {ℓ} {P : Bool → Type ℓ} (f : P false) (t : P true) → (x : Bool) → P x
bool f t false = f
bool f t true = t
not : Bool → Bool
not false = true
not true = false
infixl 6 _or_
_or_ : Bool → Bool → Bool
false or y = y
true or y = true
infixl 7 _and_
_and_ : Bool → Bool → Bool
false and y = false
true and y = y
infixr 0 if_then_else_
if_then_else_ : ∀ {a} {A : Set a} → Bool → A → A → A
if true then x else _ = x
if false then _ else x = x
T : Bool → Type₀
T true = ⊤
T false = ⊥
|
algebraic-stack_agda0000_doc_277 | ------------------------------------------------------------------------
-- Example: Left recursive expression grammar
------------------------------------------------------------------------
module TotalParserCombinators.Examples.Expression where
open import Codata.Musical.Notation
open import Data.Char as Char using (Char)
open import Data.List
open import Data.Nat
open import Data.String as String using (String)
open import Function
open import Relation.Binary.PropositionalEquality as P using (_≡_)
open import TotalParserCombinators.BreadthFirst
open import TotalParserCombinators.Lib
open import TotalParserCombinators.Parser
open Token Char Char._≟_
------------------------------------------------------------------------
-- An expression grammar
-- t ∷= t '+' f ∣ f
-- f ∷= f '*' a ∣ a
-- a ∷= '(' t ')' ∣ n
-- Applicative implementation of the grammar.
module Applicative where
mutual
term = ♯ (return (λ e₁ _ e₂ → e₁ + e₂) ⊛ term) ⊛ tok '+' ⊛ factor
∣ factor
factor = ♯ (return (λ e₁ _ e₂ → e₁ * e₂) ⊛ factor) ⊛ tok '*' ⊛ atom
∣ atom
atom = return (λ _ e _ → e) ⊛ tok '(' ⊛ ♯ term ⊛ tok ')'
∣ number
-- Monadic implementation of the grammar.
module Monadic where
mutual
term = factor
∣ ♯ term >>= λ e₁ →
tok '+' >>= λ _ →
factor >>= λ e₂ →
return (e₁ + e₂)
factor = atom
∣ ♯ factor >>= λ e₁ →
tok '*' >>= λ _ →
atom >>= λ e₂ →
return (e₁ * e₂)
atom = number
∣ tok '(' >>= λ _ →
♯ term >>= λ e →
tok ')' >>= λ _ →
return e
------------------------------------------------------------------------
-- Unit tests
module Tests where
test : ∀ {R xs} → Parser Char R xs → String → List R
test p = parse p ∘ String.toList
-- Some examples have been commented out in order to reduce
-- type-checking times.
-- ex₁ : test Applicative.term "1*(2+3)" ≡ [ 5 ]
-- ex₁ = P.refl
-- ex₂ : test Applicative.term "1*(2+3" ≡ []
-- ex₂ = P.refl
ex₃ : test Monadic.term "1+2+3" ≡ [ 6 ]
ex₃ = P.refl
ex₄ : test Monadic.term "+32" ≡ []
ex₄ = P.refl
|
algebraic-stack_agda0000_doc_278 |
module Tactic.Nat.Reflect where
open import Prelude hiding (abs)
open import Control.Monad.State
open import Control.Monad.Transformer
import Agda.Builtin.Nat as Builtin
open import Builtin.Reflection
open import Tactic.Reflection
open import Tactic.Reflection.Quote
open import Tactic.Reflection.Meta
open import Tactic.Deriving.Quotable
open import Tactic.Reflection.Equality
open import Tactic.Nat.Exp
R = StateT (Nat × List (Term × Nat)) TC
fail : ∀ {A} → R A
fail = lift (typeErrorS "reflection error")
liftMaybe : ∀ {A} → Maybe A → R A
liftMaybe = maybe fail pure
runR : ∀ {A} → R A → TC (Maybe (A × List Term))
runR r =
maybeA (second (reverse ∘ map fst ∘ snd) <$> runStateT r (0 , []))
pattern `Nat = def (quote Nat) []
infixr 1 _`->_
infix 4 _`≡_
pattern _`≡_ x y = def (quote _≡_) (_ ∷ hArg `Nat ∷ vArg x ∷ vArg y ∷ [])
pattern _`->_ a b = pi (vArg a) (abs _ b)
pattern _`+_ x y = def₂ (quote Builtin._+_) x y
pattern _`*_ x y = def₂ (quote Builtin._*_) x y
pattern `0 = con₀ (quote Nat.zero)
pattern `suc n = con₁ (quote Nat.suc) n
fresh : Term → R (Exp Var)
fresh t =
get >>= uncurry′ λ i Γ →
var i <$ put (suc i , (t , i) ∷ Γ)
⟨suc⟩ : ∀ {X} → Exp X → Exp X
⟨suc⟩ (lit n) = lit (suc n)
⟨suc⟩ (lit n ⟨+⟩ e) = lit (suc n) ⟨+⟩ e
⟨suc⟩ e = lit 1 ⟨+⟩ e
private
forceInstance : Name → Term → R ⊤
forceInstance i v = lift $ unify v (def₀ i)
forceSemiring = forceInstance (quote SemiringNat)
forceNumber = forceInstance (quote NumberNat)
termToExpR : Term → R (Exp Var)
termToExpR (a `+ b) = ⦇ termToExpR a ⟨+⟩ termToExpR b ⦈
termToExpR (a `* b) = ⦇ termToExpR a ⟨*⟩ termToExpR b ⦈
termToExpR (def (quote Semiring._+_) (_ ∷ _ ∷ vArg i@(meta x _) ∷ vArg a ∷ vArg b ∷ [])) = do
forceSemiring i
⦇ termToExpR a ⟨+⟩ termToExpR b ⦈
termToExpR (def (quote Semiring._*_) (_ ∷ _ ∷ vArg i@(meta x _) ∷ vArg a ∷ vArg b ∷ [])) = do
lift $ unify i (def₀ (quote SemiringNat))
⦇ termToExpR a ⟨*⟩ termToExpR b ⦈
termToExpR (def (quote Semiring.zro) (_ ∷ _ ∷ vArg i@(meta x _) ∷ [])) = do
forceSemiring i
pure (lit 0)
termToExpR (def (quote Semiring.one) (_ ∷ _ ∷ vArg i@(meta x _) ∷ [])) = do
forceSemiring i
pure (lit 1)
termToExpR (def (quote Number.fromNat) (_ ∷ _ ∷ vArg i@(meta x _) ∷ vArg a ∷ _ ∷ [])) = do
forceNumber i
termToExpR a
termToExpR `0 = pure (lit 0)
termToExpR (`suc a) = ⟨suc⟩ <$> termToExpR a
termToExpR (lit (nat n)) = pure (lit n)
termToExpR (meta x _) = lift (blockOnMeta x)
termToExpR unknown = fail
termToExpR t = do
lift (ensureNoMetas t)
just i ← gets (flip lookup t ∘ snd) where nothing → fresh t
pure (var i)
private
lower : Nat → Term → R Term
lower 0 = pure
lower i = liftMaybe ∘ strengthen i
termToEqR : Term → R (Exp Var × Exp Var)
termToEqR (lhs `≡ rhs) = ⦇ termToExpR lhs , termToExpR rhs ⦈
termToEqR (def (quote _≡_) (_ ∷ hArg (meta x _) ∷ _)) = lift (blockOnMeta x)
termToEqR (meta x _) = lift (blockOnMeta x)
termToEqR _ = fail
termToHypsR′ : Nat → Term → R (List (Exp Var × Exp Var))
termToHypsR′ i (hyp `-> a) = _∷_ <$> (termToEqR =<< lower i hyp) <*> termToHypsR′ (suc i) a
termToHypsR′ _ (meta x _) = lift (blockOnMeta x)
termToHypsR′ i a = [_] <$> (termToEqR =<< lower i a)
termToHypsR : Term → R (List (Exp Var × Exp Var))
termToHypsR = termToHypsR′ 0
termToHyps : Term → TC (Maybe (List (Exp Var × Exp Var) × List Term))
termToHyps t = runR (termToHypsR t)
termToEq : Term → TC (Maybe ((Exp Var × Exp Var) × List Term))
termToEq t = runR (termToEqR t)
buildEnv : List Nat → Env Var
buildEnv [] i = 0
buildEnv (x ∷ xs) zero = x
buildEnv (x ∷ xs) (suc i) = buildEnv xs i
defaultArg : Term → Arg Term
defaultArg = arg (arg-info visible relevant)
data ProofError {a} : Set a → Set (lsuc a) where
bad-goal : ∀ g → ProofError g
qProofError : Term → Term
qProofError v = con (quote bad-goal) (defaultArg v ∷ [])
implicitArg instanceArg : ∀ {A} → A → Arg A
implicitArg = arg (arg-info hidden relevant)
instanceArg = arg (arg-info instance′ relevant)
unquoteDecl QuotableExp = deriveQuotable QuotableExp (quote Exp)
stripImplicitArg : Arg Term → List (Arg Term)
stripImplicitArgs : List (Arg Term) → List (Arg Term)
stripImplicitAbsTerm : Abs Term → Abs Term
stripImplicitArgTerm : Arg Term → Arg Term
stripImplicit : Term → Term
stripImplicit (var x args) = var x (stripImplicitArgs args)
stripImplicit (con c args) = con c (stripImplicitArgs args)
stripImplicit (def f args) = def f (stripImplicitArgs args)
stripImplicit (meta x args) = meta x (stripImplicitArgs args)
stripImplicit (lam v t) = lam v (stripImplicitAbsTerm t)
stripImplicit (pi t₁ t₂) = pi (stripImplicitArgTerm t₁) (stripImplicitAbsTerm t₂)
stripImplicit (agda-sort x) = agda-sort x
stripImplicit (lit l) = lit l
stripImplicit (pat-lam cs args) = pat-lam cs (stripImplicitArgs args)
stripImplicit unknown = unknown
stripImplicitAbsTerm (abs x v) = abs x (stripImplicit v)
stripImplicitArgs [] = []
stripImplicitArgs (a ∷ as) = stripImplicitArg a ++ stripImplicitArgs as
stripImplicitArgTerm (arg i x) = arg i (stripImplicit x)
stripImplicitArg (arg (arg-info visible r) x) = arg (arg-info visible r) (stripImplicit x) ∷ []
stripImplicitArg (arg (arg-info hidden r) x) = []
stripImplicitArg (arg (arg-info instance′ r) x) = []
quotedEnv : List Term → Term
quotedEnv ts = def (quote buildEnv) $ defaultArg (quoteList $ map stripImplicit ts) ∷ []
QED : ∀ {a} {A : Set a} {x : Maybe A} → Set
QED {x = x} = IsJust x
get-proof : ∀ {a} {A : Set a} (prf : Maybe A) → QED {x = prf} → A
get-proof (just eq) _ = eq
get-proof nothing ()
{-# STATIC get-proof #-}
getProof : Name → Term → Term → Term
getProof err t proof =
def (quote get-proof)
$ vArg proof
∷ vArg (def err $ vArg (stripImplicit t) ∷ [])
∷ []
failedProof : Name → Term → Term
failedProof err t =
def (quote get-proof)
$ vArg (con (quote nothing) [])
∷ vArg (def err $ vArg (stripImplicit t) ∷ [])
∷ []
cantProve : Set → ⊤
cantProve _ = _
invalidGoal : Set → ⊤
invalidGoal _ = _
|
algebraic-stack_agda0000_doc_279 | {-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Algebra.Group.Algebra where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Function using (_∘_)
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Data.Sigma
open import Cubical.Data.Unit
open import Cubical.Algebra.Group.Base
open import Cubical.Algebra.Group.Properties
open import Cubical.Algebra.Group.Morphism
open import Cubical.Algebra.Group.MorphismProperties
open import Cubical.HITs.PropositionalTruncation hiding (map)
-- open import Cubical.Data.Group.Base
open Iso
open Group
open GroupHom
private
variable
ℓ ℓ₁ ℓ₂ ℓ₃ : Level
------- elementary properties of morphisms --------
-- (- 0) = 0
-0≡0 : ∀ {ℓ} {G : Group {ℓ}} → (- G) (0g G) ≡ (0g G) -- - 0 ≡ 0
-0≡0 {G = G} = sym (IsGroup.lid (isGroup G) _) ∙ fst (IsGroup.inverse (isGroup G) _)
-- ϕ(0) ≡ 0
morph0→0 : ∀ {ℓ ℓ'} (G : Group {ℓ}) (H : Group {ℓ'}) (f : GroupHom G H)
→ fun f (0g G) ≡ 0g H
morph0→0 G H f =
(fun f) (0g G) ≡⟨ sym (IsGroup.rid (isGroup H) _) ⟩
(f' (0g G) H.+ 0g H) ≡⟨ (λ i → f' (0g G) H.+ invr H (f' (0g G)) (~ i)) ⟩
(f' (0g G) H.+ (f' (0g G) H.+ (H.- f' (0g G)))) ≡⟨ (Group.assoc H (f' (0g G)) (f' (0g G)) (H.- (f' (0g G)))) ⟩
((f' (0g G) H.+ f' (0g G)) H.+ (H.- f' (0g G))) ≡⟨ sym (cong (λ x → x H.+ (H.- f' (0g G))) (sym (cong f' (IsGroup.lid (isGroup G) _)) ∙ isHom f (0g G) (0g G))) ⟩
(f' (0g G)) H.+ (H.- (f' (0g G))) ≡⟨ invr H (f' (0g G)) ⟩
0g H ∎
where
module G = Group G
module H = Group H
f' = fun f
-- ϕ(- x) = - ϕ(x)
morphMinus : ∀ {ℓ ℓ'} (G : Group {ℓ}) (H : Group {ℓ'}) → (ϕ : GroupHom G H)
→ (g : ⟨ G ⟩) → fun ϕ ((- G) g) ≡ (- H) (fun ϕ g)
morphMinus G H ϕ g =
f (G.- g) ≡⟨ sym (IsGroup.rid (isGroup H) (f (G.- g))) ⟩
(f (G.- g) H.+ 0g H) ≡⟨ cong (f (G.- g) H.+_) (sym (invr H (f g))) ⟩
(f (G.- g) H.+ (f g H.+ (H.- f g))) ≡⟨ Group.assoc H (f (G.- g)) (f g) (H.- f g) ⟩
((f (G.- g) H.+ f g) H.+ (H.- f g)) ≡⟨ cong (H._+ (H.- f g)) helper ⟩
(0g H H.+ (H.- f g)) ≡⟨ IsGroup.lid (isGroup H) (H.- (f g))⟩
H.- (f g) ∎
where
module G = Group G
module H = Group H
f = fun ϕ
helper : (f (G.- g) H.+ f g) ≡ 0g H
helper = sym (isHom ϕ (G.- g) g) ∙∙ cong f (invl G g) ∙∙ morph0→0 G H ϕ
-- ----------- Alternative notions of isomorphisms --------------
record GroupIso {ℓ ℓ'} (G : Group {ℓ}) (H : Group {ℓ'}) : Type (ℓ-max ℓ ℓ') where
no-eta-equality
constructor iso
field
map : GroupHom G H
inv : ⟨ H ⟩ → ⟨ G ⟩
rightInv : section (GroupHom.fun map) inv
leftInv : retract (GroupHom.fun map) inv
record BijectionIso {ℓ ℓ'} (A : Group {ℓ}) (B : Group {ℓ'}) : Type (ℓ-max ℓ ℓ') where
constructor bij-iso
field
map' : GroupHom A B
inj : isInjective A B map'
surj : isSurjective A B map'
-- "Very" short exact sequences
-- i.e. an exact sequence A → B → C → D where A and D are trivial
record vSES {ℓ ℓ' ℓ'' ℓ'''} (A : Group {ℓ}) (B : Group {ℓ'}) (leftGr : Group {ℓ''}) (rightGr : Group {ℓ'''})
: Type (ℓ-suc (ℓ-max ℓ (ℓ-max ℓ' (ℓ-max ℓ'' ℓ''')))) where
constructor ses
field
isTrivialLeft : isProp ⟨ leftGr ⟩
isTrivialRight : isProp ⟨ rightGr ⟩
left : GroupHom leftGr A
right : GroupHom B rightGr
ϕ : GroupHom A B
Ker-ϕ⊂Im-left : (x : ⟨ A ⟩)
→ isInKer A B ϕ x
→ isInIm leftGr A left x
Ker-right⊂Im-ϕ : (x : ⟨ B ⟩)
→ isInKer B rightGr right x
→ isInIm A B ϕ x
open BijectionIso
open GroupIso
open vSES
compGroupIso : {G : Group {ℓ}} {H : Group {ℓ₁}} {A : Group {ℓ₂}} → GroupIso G H → GroupIso H A → GroupIso G A
map (compGroupIso iso1 iso2) = compGroupHom (map iso1) (map iso2)
inv (compGroupIso iso1 iso2) = inv iso1 ∘ inv iso2
rightInv (compGroupIso iso1 iso2) a = cong (fun (map iso2)) (rightInv iso1 _) ∙ rightInv iso2 a
leftInv (compGroupIso iso1 iso2) a = cong (inv iso1) (leftInv iso2 _) ∙ leftInv iso1 a
isGroupHomInv' : {G : Group {ℓ}} {H : Group {ℓ₁}} (f : GroupIso G H) → isGroupHom H G (inv f)
isGroupHomInv' {G = G} {H = H} f h h' = isInj-f _ _ (
f' (g (h ⋆² h')) ≡⟨ (rightInv f) _ ⟩
(h ⋆² h') ≡⟨ sym (cong₂ _⋆²_ (rightInv f h) (rightInv f h')) ⟩
(f' (g h) ⋆² f' (g h')) ≡⟨ sym (isHom (map f) _ _) ⟩ -- sym (isHom (hom f) _ _) ⟩
f' (g h ⋆¹ g h') ∎)
where
f' = fun (map f)
_⋆¹_ = Group._+_ G
_⋆²_ = Group._+_ H
g = inv f -- invEq (eq f)
isInj-f : (x y : ⟨ G ⟩) → f' x ≡ f' y → x ≡ y
isInj-f x y p = sym (leftInv f _) ∙∙ cong g p ∙∙ leftInv f _
invGroupIso : {G : Group {ℓ}} {H : Group {ℓ₁}} → GroupIso G H → GroupIso H G
fun (map (invGroupIso iso1)) = inv iso1
isHom (map (invGroupIso iso1)) = isGroupHomInv' iso1
inv (invGroupIso iso1) = fun (map iso1)
rightInv (invGroupIso iso1) = leftInv iso1
leftInv (invGroupIso iso1) = rightInv iso1
dirProdGroupIso : {G : Group {ℓ}} {H : Group {ℓ₁}} {A : Group {ℓ₂}} {B : Group {ℓ₃}}
→ GroupIso G H → GroupIso A B → GroupIso (dirProd G A) (dirProd H B)
fun (map (dirProdGroupIso iso1 iso2)) prod = fun (map iso1) (fst prod) , fun (map iso2) (snd prod)
isHom (map (dirProdGroupIso iso1 iso2)) a b = ΣPathP (isHom (map iso1) (fst a) (fst b) , isHom (map iso2) (snd a) (snd b))
inv (dirProdGroupIso iso1 iso2) prod = (inv iso1) (fst prod) , (inv iso2) (snd prod)
rightInv (dirProdGroupIso iso1 iso2) a = ΣPathP (rightInv iso1 (fst a) , (rightInv iso2 (snd a)))
leftInv (dirProdGroupIso iso1 iso2) a = ΣPathP (leftInv iso1 (fst a) , (leftInv iso2 (snd a)))
GrIsoToGrEquiv : {G : Group {ℓ}} {H : Group {ℓ₂}} → GroupIso G H → GroupEquiv G H
GroupEquiv.eq (GrIsoToGrEquiv i) = isoToEquiv (iso (fun (map i)) (inv i) (rightInv i) (leftInv i))
GroupEquiv.isHom (GrIsoToGrEquiv i) = isHom (map i)
--- Proofs that BijectionIso and vSES both induce isomorphisms ---
BijectionIsoToGroupIso : {A : Group {ℓ}} {B : Group {ℓ₂}} → BijectionIso A B → GroupIso A B
BijectionIsoToGroupIso {A = A} {B = B} i = grIso
where
module A = Group A
module B = Group B
f = fun (map' i)
helper : (b : _) → isProp (Σ[ a ∈ ⟨ A ⟩ ] f a ≡ b)
helper _ a b =
Σ≡Prop (λ _ → isSetCarrier B _ _)
(fst a ≡⟨ sym (IsGroup.rid (isGroup A) (fst a)) ⟩
((fst a) A.+ 0g A) ≡⟨ cong ((fst a) A.+_) (sym (invl A (fst b))) ⟩
((fst a) A.+ ((A.- fst b) A.+ fst b)) ≡⟨ Group.assoc A _ _ _ ⟩
(((fst a) A.+ (A.- fst b)) A.+ fst b) ≡⟨ cong (A._+ fst b) idHelper ⟩
(0g A A.+ fst b) ≡⟨ IsGroup.lid (isGroup A) (fst b) ⟩
fst b ∎)
where
idHelper : fst a A.+ (A.- fst b) ≡ 0g A
idHelper =
inj i _
(isHom (map' i) (fst a) (A.- (fst b))
∙ (cong (f (fst a) B.+_) (morphMinus A B (map' i) (fst b))
∙∙ cong (B._+ (B.- f (fst b))) (snd a ∙ sym (snd b))
∙∙ invr B (f (fst b))))
grIso : GroupIso A B
map grIso = map' i
inv grIso b = (rec (helper b) (λ a → a) (surj i b)) .fst
rightInv grIso b = (rec (helper b) (λ a → a) (surj i b)) .snd
leftInv grIso b j = rec (helper (f b)) (λ a → a) (propTruncIsProp (surj i (f b)) ∣ b , refl ∣ j) .fst
BijectionIsoToGroupEquiv : {A : Group {ℓ}} {B : Group {ℓ₂}} → BijectionIso A B → GroupEquiv A B
BijectionIsoToGroupEquiv i = GrIsoToGrEquiv (BijectionIsoToGroupIso i)
vSES→GroupIso : ∀ {ℓ ℓ' ℓ'' ℓ'''} {A : Group {ℓ}} {B : Group {ℓ'}} (leftGr : Group {ℓ''}) (rightGr : Group {ℓ'''})
→ vSES A B leftGr rightGr
→ GroupIso A B
vSES→GroupIso {A = A} lGr rGr vses = BijectionIsoToGroupIso theIso
where
theIso : BijectionIso _ _
map' theIso = vSES.ϕ vses
inj theIso a inker = rec (isSetCarrier A _ _)
(λ (a , p) → sym p
∙∙ cong (fun (left vses)) (isTrivialLeft vses a _)
∙∙ morph0→0 lGr A (left vses))
(Ker-ϕ⊂Im-left vses a inker)
surj theIso a = Ker-right⊂Im-ϕ vses a (isTrivialRight vses _ _)
vSES→GroupEquiv : {A : Group {ℓ}} {B : Group {ℓ₁}} (leftGr : Group {ℓ₂}) (rightGr : Group {ℓ₃})
→ vSES A B leftGr rightGr
→ GroupEquiv A B
vSES→GroupEquiv {A = A} lGr rGr vses = GrIsoToGrEquiv (vSES→GroupIso lGr rGr vses)
-- The trivial group is a unit.
lUnitGroupIso : ∀ {ℓ} {G : Group {ℓ}} → GroupEquiv (dirProd trivialGroup G) G
lUnitGroupIso =
GrIsoToGrEquiv
(iso (grouphom snd (λ a b → refl))
(λ g → tt , g)
(λ _ → refl)
λ _ → refl)
rUnitGroupIso : ∀ {ℓ} {G : Group {ℓ}} → GroupEquiv (dirProd G trivialGroup) G
rUnitGroupIso =
GrIsoToGrEquiv
(iso
(grouphom fst λ _ _ → refl)
(λ g → g , tt)
(λ _ → refl)
λ _ → refl)
contrGroup≅trivialGroup : {G : Group {ℓ}} → isContr ⟨ G ⟩ → GroupEquiv G trivialGroup
GroupEquiv.eq (contrGroup≅trivialGroup contr) = isContr→≃Unit contr
GroupEquiv.isHom (contrGroup≅trivialGroup contr) _ _ = refl
|
algebraic-stack_agda0000_doc_280 | module Relations where
-- Imports
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; cong)
open import Data.Nat using (ℕ; zero; suc; _+_)
open import Data.Nat.Properties using (+-comm)
-- Defining relations
data _≤_ : ℕ → ℕ → Set where
z≤n : ∀ {n : ℕ}
--------
→ zero ≤ n
s≤s : ∀ {m n : ℕ}
→ m ≤ n
-------------
→ suc m ≤ suc n
_ : 2 ≤ 4
_ = s≤s (s≤s z≤n)
-- Implicit arguments
_ : 2 ≤ 4
_ = s≤s {1} {3} (s≤s {0} {2} (z≤n {2}))
_ : 2 ≤ 4
_ = s≤s {m = 1} {n = 3} (s≤s {m = 0} {n = 2} (z≤n {n = 2}))
_ : 2 ≤ 4
_ = s≤s {n = 3} (s≤s {n = 2} z≤n)
-- Precedence
infix 4 _≤_
-- Inversion
inv-s≤s : ∀ {m n : ℕ}
→ suc m ≤ suc n
-------------
→ m ≤ n
inv-s≤s (s≤s m≤n) = m≤n
inv-z≤n : ∀ {m : ℕ}
→ m ≤ zero
--------
→ m ≡ zero
inv-z≤n z≤n = refl
-- Reflexivity (反射律)
≤-refl : ∀ {n : ℕ}
-----
→ n ≤ n
≤-refl {zero} = z≤n
≤-refl {suc n} = s≤s ≤-refl
-- Transitivity (推移律)
≤-trans : ∀ {m n p : ℕ}
→ m ≤ n
→ n ≤ p
-----
→ m ≤ p
≤-trans z≤n _ = z≤n
≤-trans (s≤s m≤n) (s≤s n≤p) = s≤s (≤-trans m≤n n≤p)
≤-trans′ : ∀ (m n p : ℕ)
→ m ≤ n
→ n ≤ p
-----
→ m ≤ p
≤-trans′ zero _ _ z≤n _ = z≤n
≤-trans′ (suc m) (suc n) (suc p) (s≤s m≤n) (s≤s n≤p) = s≤s (≤-trans′ m n p m≤n n≤p)
-- Anti-symmetry (非対称律)
≤-antisym : ∀ {m n : ℕ}
→ m ≤ n
→ n ≤ m
-----
→ m ≡ n
≤-antisym z≤n z≤n = refl
≤-antisym (s≤s m≤n) (s≤s n≤m) = cong suc (≤-antisym m≤n n≤m)
-- Total (全順序)
data Total (m n : ℕ) : Set where
forward :
m ≤ n
---------
→ Total m n
flipped :
n ≤ m
---------
→ Total m n
data Total′ : ℕ → ℕ → Set where
forward′ : ∀ {m n : ℕ}
→ m ≤ n
----------
→ Total′ m n
flipped′ : ∀ {m n : ℕ}
→ n ≤ m
----------
→ Total′ m n
≤-total : ∀ (m n : ℕ) → Total m n
≤-total zero n = forward z≤n
≤-total (suc m) zero = flipped z≤n
≤-total (suc m) (suc n) with ≤-total m n
... | forward m≤n = forward (s≤s m≤n)
... | flipped n≤m = flipped (s≤s n≤m)
≤-total′ : ∀ (m n : ℕ) → Total m n
≤-total′ zero n = forward z≤n
≤-total′ (suc m) zero = flipped z≤n
≤-total′ (suc m) (suc n) = helper (≤-total′ m n)
where
helper : Total m n → Total (suc m) (suc n)
helper (forward m≤n) = forward (s≤s m≤n)
helper (flipped n≤m) = flipped (s≤s n≤m)
≤-total″ : ∀ (m n : ℕ) → Total m n
≤-total″ m zero = flipped z≤n
≤-total″ zero (suc n) = forward z≤n
≤-total″ (suc m) (suc n) with ≤-total″ m n
... | forward m≤n = forward (s≤s m≤n)
... | flipped n≤m = flipped (s≤s n≤m)
-- Monotonicity (単調性)
+-monoʳ-≤ : ∀ (n p q : ℕ)
→ p ≤ q
-------------
→ n + p ≤ n + q
+-monoʳ-≤ zero p q p≤q = p≤q
+-monoʳ-≤ (suc n) p q p≤q = s≤s (+-monoʳ-≤ n p q p≤q)
+-monoˡ-≤ : ∀ (m n p : ℕ)
→ m ≤ n
-------------
→ m + p ≤ n + p
+-monoˡ-≤ m n p m≤n rewrite +-comm m p | +-comm n p = +-monoʳ-≤ p m n m≤n
+-mono-≤ : ∀ (m n p q : ℕ)
→ m ≤ n
→ p ≤ q
-------------
→ m + p ≤ n + q
+-mono-≤ m n p q m≤n p≤q = ≤-trans (+-monoˡ-≤ m n p m≤n) (+-monoʳ-≤ n p q p≤q)
-- Strict inequality
infix 4 _<_
data _<_ : ℕ → ℕ → Set where
z<s : ∀ {n : ℕ}
------------
→ zero < suc n
s<s : ∀ {m n : ℕ}
→ m < n
-------------
→ suc m < suc n
-- Even and odd
data even : ℕ → Set
data odd : ℕ → Set
data even where
zero :
---------
even zero
suc : ∀ {n : ℕ}
→ odd n
------------
→ even (suc n)
data odd where
suc : ∀ {n : ℕ}
→ even n
-----------
→ odd (suc n)
e+e≡e : ∀ {m n : ℕ}
→ even m
→ even n
------------
→ even (m + n)
o+e≡o : ∀ {m n : ℕ}
→ odd m
→ even n
-----------
→ odd (m + n)
e+e≡e zero en = en
e+e≡e (suc om) en = suc (o+e≡o om en)
o+e≡o (suc em) en = suc (e+e≡e em en)
|
algebraic-stack_agda0000_doc_281 | module Data.Nat.Instance where
open import Agda.Builtin.Nat
open import Class.Equality
open import Class.Monoid
open import Class.Show
open import Data.Char
open import Data.List
open import Data.Nat renaming (_≟_ to _≟ℕ_; _+_ to _+ℕ_)
open import Data.String
open import Function
private
postulate
primShowNat : ℕ -> List Char
{-# COMPILE GHC primShowNat = show #-}
showNat : ℕ -> String
showNat = fromList ∘ primShowNat
instance
Eq-ℕ : Eq ℕ
Eq-ℕ = record { _≟_ = _≟ℕ_ }
EqB-ℕ : EqB ℕ
EqB-ℕ = record { _≣_ = Agda.Builtin.Nat._==_ }
ℕ-Monoid : Monoid ℕ
ℕ-Monoid = record { mzero = zero ; _+_ = _+ℕ_ }
Show-ℕ : Show ℕ
Show-ℕ = record { show = showNat }
|
algebraic-stack_agda0000_doc_282 | open import Data.Product using ( _×_ ; _,_ ; swap )
open import Data.Sum using ( inj₁ ; inj₂ )
open import Relation.Nullary using ( ¬_ ; yes ; no )
open import Relation.Unary using ( _∈_ )
open import Web.Semantic.DL.ABox using ( ABox ; ε ; _,_ ; _∼_ ; _∈₁_ ; _∈₂_ )
open import Web.Semantic.DL.ABox.Interp using
( Interp ; ⌊_⌋ ; ind ; ind⁻¹ ; Surjective ; surj✓ )
open import Web.Semantic.DL.ABox.Interp.Morphism using
( _≲_ ; _≃_ ; _,_ ; ≲⌊_⌋ ; ≲-resp-ind )
open import Web.Semantic.DL.ABox.Interp.Meet using
( meet ; meet-lb ; meet-glb ; meet-uniq ; meet-surj )
open import Web.Semantic.DL.ABox.Model using ( _⊨a_ )
open import Web.Semantic.DL.Concept using
( Concept ; ⟨_⟩ ; ¬⟨_⟩ ; ⊤ ; ⊥ ; _⊔_ ; _⊓_ ; ∀[_]_ ; ∃⟨_⟩_ ; ≤1 ; >1 ; neg )
open import Web.Semantic.DL.Concept.Model using
( _⟦_⟧₁ ; neg-sound ; neg-complete )
open import Web.Semantic.DL.Integrity.Closed using
( Mediated₀ ; Initial₀ ; sur_⊨₀_ ; _,_ )
open import Web.Semantic.DL.Integrity.Closed.Alternate using
( _⊫_∼_ ; _⊫_∈₁_ ; _⊫_∈₂_ ; _⊫t_ ; _⊫a_ ; _⊫k_
; eq ; rel ; rev ; +atom ; -atom ; top ; inj₁ ; inj₂
; all ; ex ; uniq ; ¬uniq ; cn ; rl ; dis ; ref ; irr ; tra ; ε ; _,_ )
open import Web.Semantic.DL.KB using ( KB ; tbox ; abox )
open import Web.Semantic.DL.KB.Model using ( _⊨_ ; Interps ; ⊨-resp-≃ )
open import Web.Semantic.DL.Role using ( Role ; ⟨_⟩ ; ⟨_⟩⁻¹ )
open import Web.Semantic.DL.Role.Model using ( _⟦_⟧₂ )
open import Web.Semantic.DL.Signature using ( Signature )
open import Web.Semantic.DL.TBox using
( TBox ; ε ; _,_ ; _⊑₁_ ; _⊑₂_ ; Dis ; Ref ; Irr ; Tra )
open import Web.Semantic.DL.TBox.Interp using ( _⊨_≈_ ; ≈-sym ; ≈-trans )
open import Web.Semantic.DL.TBox.Interp.Morphism using ( ≲-resp-≈ ; iso )
open import Web.Semantic.DL.TBox.Model using ( _⊨t_ )
open import Web.Semantic.Util using
( ExclMiddle ; ExclMiddle₁ ; smaller-excl-middle ; is! ; is✓ ; tt ; elim )
module Web.Semantic.DL.Integrity.Closed.Properties
(excl-middle₁ : ExclMiddle₁) {Σ : Signature} {X : Set} where
-- The two definitions of closed-world integrity coincide for surjective interpretations.
-- Note that this requires excluded middle, as the alternate definition assumes a classical logic,
-- for example interpreting C ⊑ D as (¬ C ⊔ D) being a tautology.
min : KB Σ X → Interp Σ X
min K = meet excl-middle₁ (Interps K)
excl-middle : ExclMiddle
excl-middle = smaller-excl-middle excl-middle₁
sound∼ : ∀ K x y → (K ⊫ x ∼ y) → (⌊ min K ⌋ ⊨ x ≈ y)
sound∼ K x y (eq K⊫x∼y) = is! K⊫x∼y
complete∼ : ∀ K x y → (⌊ min K ⌋ ⊨ x ≈ y) → (K ⊫ x ∼ y)
complete∼ K x y x≈y = eq (is✓ x≈y)
sound₂ : ∀ K R xy → (K ⊫ xy ∈₂ R) → (xy ∈ ⌊ min K ⌋ ⟦ R ⟧₂)
sound₂ K ⟨ r ⟩ (x , y) (rel K⊫xy∈r) = is! K⊫xy∈r
sound₂ K ⟨ r ⟩⁻¹ (x , y) (rev K⊫yx∈r) = is! K⊫yx∈r
complete₂ : ∀ K R xy → (xy ∈ ⌊ min K ⌋ ⟦ R ⟧₂) → (K ⊫ xy ∈₂ R)
complete₂ K ⟨ r ⟩ (x , y) xy∈⟦r⟧ = rel (is✓ xy∈⟦r⟧)
complete₂ K ⟨ r ⟩⁻¹ (x , y) yx∈⟦r⟧ = rev (is✓ yx∈⟦r⟧)
sound₁ : ∀ K C x → (K ⊫ x ∈₁ C) → (x ∈ ⌊ min K ⌋ ⟦ C ⟧₁)
sound₁ K ⟨ c ⟩ x (+atom K⊨x∈c) =
is! K⊨x∈c
sound₁ K ¬⟨ c ⟩ x (-atom K⊭x∈c) =
λ x∈⟦c⟧ → K⊭x∈c (is✓ x∈⟦c⟧)
sound₁ K ⊤ x top = tt
sound₁ K ⊥ x ()
sound₁ K (C ⊓ D) x (K⊫x∈C , K⊫x∈D) =
(sound₁ K C x K⊫x∈C , sound₁ K D x K⊫x∈D)
sound₁ K (C ⊔ D) x (inj₁ K⊫x∈C) =
inj₁ (sound₁ K C x K⊫x∈C)
sound₁ K (C ⊔ D) x (inj₂ K⊫x∈D) =
inj₂ (sound₁ K D x K⊫x∈D)
sound₁ K (∀[ R ] C) x (all K⊫x∈∀RC) =
λ y xy∈⟦R⟧ → sound₁ K C y (K⊫x∈∀RC y (complete₂ K R _ xy∈⟦R⟧))
sound₁ K (∃⟨ R ⟩ C) x (ex y K⊫xy∈R K⊫y∈C) =
(y , sound₂ K R _ K⊫xy∈R , sound₁ K C y K⊫y∈C)
sound₁ K (≤1 R) x (uniq K⊫x∈≤1R) =
λ y z xy∈⟦R⟧ xz∈⟦R⟧ → sound∼ K y z
(K⊫x∈≤1R y z (complete₂ K R _ xy∈⟦R⟧) (complete₂ K R _ xz∈⟦R⟧))
sound₁ K (>1 R) x (¬uniq y z K⊫xy∈R K⊫xz∈R K⊯y∼z) =
( y , z , sound₂ K R _ K⊫xy∈R , sound₂ K R _ K⊫xz∈R
, λ y≈z → K⊯y∼z (complete∼ K y z y≈z) )
complete₁ : ∀ K C x → (x ∈ ⌊ min K ⌋ ⟦ C ⟧₁) → (K ⊫ x ∈₁ C)
complete₁ K ⟨ c ⟩ x x∈⟦c⟧ =
+atom (is✓ x∈⟦c⟧)
complete₁ K ¬⟨ c ⟩ x x∉⟦c⟧ =
-atom (λ K⊫x∈c → x∉⟦c⟧ (is! K⊫x∈c))
complete₁ K ⊤ x x∈⟦C⟧ =
top
complete₁ K ⊥ x ()
complete₁ K (C ⊓ D) x (x∈⟦C⟧ , x∈⟦D⟧) =
(complete₁ K C x x∈⟦C⟧ , complete₁ K D x x∈⟦D⟧)
complete₁ K (C ⊔ D) x (inj₁ x∈⟦C⟧) =
inj₁ (complete₁ K C x x∈⟦C⟧)
complete₁ K (C ⊔ D) x (inj₂ x∈⟦D⟧) =
inj₂ (complete₁ K D x x∈⟦D⟧)
complete₁ K (∀[ R ] C) x x∈⟦∀RC⟧ =
all (λ y K⊫xy∈R → complete₁ K C y (x∈⟦∀RC⟧ y (sound₂ K R _ K⊫xy∈R)))
complete₁ K (∃⟨ R ⟩ C) x (y , xy∈⟦R⟧ , y∈⟦C⟧) =
ex y (complete₂ K R (x , y) xy∈⟦R⟧) (complete₁ K C y y∈⟦C⟧)
complete₁ K (≤1 R) x x∈⟦≤1R⟧ =
uniq (λ y z K⊫xy∈R K⊫xz∈R → complete∼ K y z
(x∈⟦≤1R⟧ y z (sound₂ K R _ K⊫xy∈R) (sound₂ K R _ K⊫xz∈R)))
complete₁ K (>1 R) x (y , z , xy∈⟦R⟧ , xz∈⟦R⟧ , y≉z) =
¬uniq y z (complete₂ K R _ xy∈⟦R⟧) (complete₂ K R _ xz∈⟦R⟧)
(λ K⊫y∼z → y≉z (sound∼ K y z K⊫y∼z))
⊫-impl-min⊨ : ∀ K L → (K ⊫k L) → (min K ⊨ L)
⊫-impl-min⊨ K L (K⊫T , K⊫A) = ( J⊨T K⊫T , J⊨A K⊫A ) where
J : Interp Σ X
J = min K
J⊨T : ∀ {T} → (K ⊫t T) → (⌊ J ⌋ ⊨t T)
J⊨T ε = tt
J⊨T (K⊫T , K⊫U) = (J⊨T K⊫T , J⊨T K⊫U)
J⊨T (rl Q R K⊫Q⊑R) =
λ {xy} xy∈⟦Q⟧ → sound₂ K R xy (K⊫Q⊑R xy (complete₂ K Q xy xy∈⟦Q⟧))
J⊨T (cn C D K⊫C⊑D) = λ {x} → lemma x (K⊫C⊑D x) where
lemma : ∀ x → (K ⊫ x ∈₁ (neg C ⊔ D)) →
(x ∈ ⌊ J ⌋ ⟦ C ⟧₁) → (x ∈ ⌊ J ⌋ ⟦ D ⟧₁)
lemma x (inj₁ K⊫x∈¬C) x∈⟦C⟧ =
elim (neg-sound ⌊ J ⌋ {x} C (sound₁ K (neg C) x K⊫x∈¬C) x∈⟦C⟧)
lemma x (inj₂ K⊫x∈D) x∈⟦C⟧ =
sound₁ K D x K⊫x∈D
J⊨T (dis Q R K⊫DisQR) = λ {xy} xy∈⟦Q⟧ xy∈⟦R⟧ →
K⊫DisQR xy (complete₂ K Q xy xy∈⟦Q⟧) (complete₂ K R xy xy∈⟦R⟧)
J⊨T (ref R K⊫RefR) = λ x → sound₂ K R (x , x) (K⊫RefR x)
J⊨T (irr R K⊫IrrR) = λ x xx∈⟦R⟧ → K⊫IrrR x (complete₂ K R (x , x) xx∈⟦R⟧)
J⊨T (tra R K⊫TraR) = λ {x} {y} {z} xy∈⟦R⟧ yz∈⟦R⟧ →
sound₂ K R (x , z) (K⊫TraR x y z
(complete₂ K R (x , y) xy∈⟦R⟧) (complete₂ K R (y , z) yz∈⟦R⟧))
J⊨A : ∀ {A} → (K ⊫a A) → (J ⊨a A)
J⊨A ε = tt
J⊨A (K⊫A , K⊫B) = (J⊨A K⊫A , J⊨A K⊫B)
J⊨A (eq x y K⊫x∼y) = sound∼ K x y K⊫x∼y
J⊨A (rl (x , y) r K⊫xy∈r) = sound₂ K ⟨ r ⟩ (x , y) K⊫xy∈r
J⊨A (cn x c K⊫x∈c) = sound₁ K ⟨ c ⟩ x K⊫x∈c
min⊨-impl-⊫ : ∀ K L → (min K ⊨ L) → (K ⊫k L)
min⊨-impl-⊫ K L (J⊨T , J⊨A) =
( K⊫T (tbox L) J⊨T , K⊫A (abox L) J⊨A ) where
J : Interp Σ X
J = min K
K⊫T : ∀ T → (⌊ J ⌋ ⊨t T) → (K ⊫t T)
K⊫T ε J⊨ε = ε
K⊫T (T , U) (J⊨T , J⊨U) = (K⊫T T J⊨T , K⊫T U J⊨U)
K⊫T (Q ⊑₂ R) J⊨Q⊑R =
rl Q R (λ xy K⊫xy∈Q → complete₂ K R xy (J⊨Q⊑R (sound₂ K Q xy K⊫xy∈Q)))
K⊫T (C ⊑₁ D) J⊨C⊑D = cn C D lemma where
lemma : ∀ x → (K ⊫ x ∈₁ neg C ⊔ D)
lemma x with excl-middle (x ∈ ⌊ J ⌋ ⟦ C ⟧₁)
lemma x | yes x∈⟦C⟧ =
inj₂ (complete₁ K D x (J⊨C⊑D x∈⟦C⟧))
lemma x | no x∉⟦C⟧ =
inj₁ (complete₁ K (neg C) x (neg-complete excl-middle ⌊ J ⌋ C x∉⟦C⟧))
K⊫T (Dis Q R) J⊨DisQR =
dis Q R (λ xy K⊫xy∈Q K⊫xy∈R →
J⊨DisQR (sound₂ K Q xy K⊫xy∈Q) (sound₂ K R xy K⊫xy∈R))
K⊫T (Ref R) J⊨RefR =
ref R (λ x → complete₂ K R (x , x) (J⊨RefR x))
K⊫T (Irr R) J⊨IrrR =
irr R (λ x K⊫xx∈R → J⊨IrrR x (sound₂ K R (x , x) K⊫xx∈R))
K⊫T (Tra R) J⊨TrR =
tra R (λ x y z K⊫xy∈R K⊫yz∈R →
complete₂ K R (x , z) (J⊨TrR
(sound₂ K R (x , y) K⊫xy∈R) (sound₂ K R (y , z) K⊫yz∈R)))
K⊫A : ∀ A → (J ⊨a A) → (K ⊫a A)
K⊫A ε J⊨ε = ε
K⊫A (A , B) (J⊨A , J⊨B) = (K⊫A A J⊨A , K⊫A B J⊨B)
K⊫A (x ∼ y) x≈y = eq x y (complete∼ K x y x≈y)
K⊫A (x ∈₁ c) x∈⟦c⟧ = cn x c (complete₁ K ⟨ c ⟩ x x∈⟦c⟧)
K⊫A ((x , y) ∈₂ r) xy∈⟦r⟧ = rl (x , y) r (complete₂ K ⟨ r ⟩ (x , y) xy∈⟦r⟧)
min-med : ∀ (K : KB Σ X) J → (J ⊨ K) → Mediated₀ (min K) J
min-med K J J⊨K = (meet-lb excl-middle₁ (Interps K) J J⊨K , meet-uniq excl-middle₁ (Interps K) J J⊨K)
min-init : ∀ (K : KB Σ X) → (K ⊫k K) → (min K ∈ Initial₀ K)
min-init K K⊫K = ( ⊫-impl-min⊨ K K K⊫K , min-med K)
min-uniq : ∀ (I : Interp Σ X) (K : KB Σ X) → (I ∈ Surjective) → (I ∈ Initial₀ K) → (I ≃ min K)
min-uniq I K I∈Surj (I⊨K , I-med) =
( iso
≲⌊ meet-glb excl-middle₁ (Interps K) I I∈Surj lemma₁ ⌋
≲⌊ meet-lb excl-middle₁ (Interps K) I I⊨K ⌋
(λ x → ≈-sym ⌊ I ⌋ (surj✓ I∈Surj x))
(λ x → is! (lemma₂ x))
, λ x → is! (lemma₂ x)) where
lemma₁ : ∀ J J⊨K → I ≲ J
lemma₁ J J⊨K with I-med J J⊨K
lemma₁ J J⊨K | (I≲J , I≲J-uniq) = I≲J
lemma₂ : ∀ x J J⊨K → ⌊ J ⌋ ⊨ ind J (ind⁻¹ I∈Surj (ind I x)) ≈ ind J x
lemma₂ x J J⊨K =
≈-trans ⌊ J ⌋ (≈-sym ⌊ J ⌋ (≲-resp-ind (lemma₁ J J⊨K) (ind⁻¹ I∈Surj (ind I x))))
(≈-trans ⌊ J ⌋ (≲-resp-≈ ≲⌊ lemma₁ J J⊨K ⌋ (≈-sym ⌊ I ⌋ (surj✓ I∈Surj (ind I x))))
(≲-resp-ind (lemma₁ J J⊨K) x))
⊫-impl-⊨₀ : ∀ (KB₁ KB₂ : KB Σ X) → (KB₁ ⊫k KB₁) → (KB₁ ⊫k KB₂) → (sur KB₁ ⊨₀ KB₂)
⊫-impl-⊨₀ KB₁ KB₂ KB₁⊫KB₁ KB₁⊫KB₂ =
( min KB₁
, meet-surj excl-middle₁ (Interps KB₁)
, min-init KB₁ KB₁⊫KB₁
, ⊫-impl-min⊨ KB₁ KB₂ KB₁⊫KB₂ )
⊨₀-impl-⊫₁ : ∀ (KB₁ KB₂ : KB Σ X) → (sur KB₁ ⊨₀ KB₂) → (KB₁ ⊫k KB₁)
⊨₀-impl-⊫₁ KB₁ KB₂ (I , I∈Surj , (I⊨KB₁ , I-med) , I⊨KB₂) =
min⊨-impl-⊫ KB₁ KB₁ (⊨-resp-≃ (min-uniq I KB₁ I∈Surj (I⊨KB₁ , I-med)) KB₁ I⊨KB₁)
⊨₀-impl-⊫₂ : ∀ (KB₁ KB₂ : KB Σ X) → (sur KB₁ ⊨₀ KB₂) → (KB₁ ⊫k KB₂)
⊨₀-impl-⊫₂ KB₁ KB₂ (I , I∈Surj , I-init , I⊨KB₂) =
min⊨-impl-⊫ KB₁ KB₂ (⊨-resp-≃ (min-uniq I KB₁ I∈Surj I-init) KB₂ I⊨KB₂)
|
algebraic-stack_agda0000_doc_283 | {-# OPTIONS --without-K --safe #-}
module Fragment.Examples.CSemigroup.Types where
|
algebraic-stack_agda0000_doc_284 | -- This document shows how to encode GADTs using `IFix`.
{-# OPTIONS --type-in-type #-}
module ScottVec where
-- The kind of church-encoded type-level natural numbers.
Nat = (Set -> Set) -> Set -> Set
zero : Nat
zero = λ f z -> z
suc : Nat -> Nat
suc = λ n f z -> f (n f z)
plus : Nat -> Nat -> Nat
plus = λ n m f z -> n f (m f z)
-- Our old friend.
{-# NO_POSITIVITY_CHECK #-}
record IFix {I : Set} (F : (I -> Set) -> I -> Set) (i : I) : Set where
constructor wrap
field unwrap : F (IFix F) i
open IFix
-- Scott-encoded vectors (a vector is a list with statically-known length).
-- As usually the pattern vector of a Scott-encoded data type encodes pattern-matching.
VecF : Set -> (Nat -> Set) -> Nat -> Set
VecF
= λ A Rec n
-> (R : Nat -> Set) -- The type of the result depends on the vector's length.
-> (∀ p -> A -> Rec p -> R (suc p)) -- The encoded `cons` constructor.
-> R zero -- The encoded `nil` constructor.
-> R n
Vec : Set -> Nat -> Set
Vec = λ (A : Set) -> IFix (VecF A)
nil : ∀ A -> Vec A zero
nil = λ A -> wrap λ R f z -> z
cons : ∀ A n -> A -> Vec A n -> Vec A (suc n)
cons = λ A n x xs -> wrap λ R f z -> f n x xs
open import Data.Empty
open import Data.Unit.Base
open import Data.Nat.Base using (ℕ; _+_)
-- Type-safe `head`.
head : ∀ A n -> Vec A (suc n) -> A
head A n xs =
unwrap
xs
(λ p -> p (λ _ -> A) ⊤) -- `p (λ _ -> A) ⊤` returns `A` when `p` is `suc p'` for some `p'`
-- and `⊤` when `p` is `zero`
(λ p x xs' -> x) -- In the `cons` case `suc p (λ _ -> A) ⊤` reduces to `A`,
-- hence we return the list element of type `A`.
tt -- In the `nil` case `zero (λ _ -> A) ⊤` reduces to `⊤`,
-- hence we return the only value of that type.
{- Note [Type-safe `tail`]
It's not obvious if type-safe `tail` can be implemented with this setup. This is because even
though `Vec` is Scott-encoded, the type-level natural are Church-encoded (obviously we could
have Scott-encoded type-level naturals in Agda just as well, but not in Zerepoch Core), which
makes `pred` hard, which makes `tail` non-trivial.
I did try using Scott-encoded naturals in Agda, that makes `tail` even more straightforward
than `head`:
tail : ∀ A n -> Vec A (suc n) -> Vec A n
tail A n xs =
unwrap
xs
(λ p -> ((B : ℕ -> Set) -> B (pred p) -> B n) -> Vec A n)
(λ p x xs' coe -> coe (Vec A) xs')
(λ coe -> coe (Vec A) (nil A))
(λ B x -> x)
-}
-- Here we pattern-match on `xs` and if it's non-empty, i.e. of type `Vec ℕ (suc p)` for some `p`,
-- then we also get access to a coercion function that allows us to coerce the second list from
-- `Vec ℕ n` to the same `Vec ℕ (suc p)` and call the type-safe `head` over it.
-- Note that we don't even need to encode the `n ~ suc p` and `n ~ zero` equality constraints in
-- the definition of `vecF` and can recover coercions along those constraints by adding the
-- `Vec ℕ n -> Vec ℕ p` argument to the motive.
sumHeadsOr0 : ∀ n -> Vec ℕ n -> Vec ℕ n -> ℕ
sumHeadsOr0 n xs ys =
unwrap
xs
(λ p -> (Vec ℕ n -> Vec ℕ p) -> ℕ)
(λ p i _ coe -> i + head ℕ p (coe ys))
(λ _ -> 0)
(λ x -> x)
|
algebraic-stack_agda0000_doc_285 | module EqTest where
import Common.Level
open import Common.Maybe
open import Common.Equality
data ℕ : Set where
zero : ℕ
suc : ℕ -> ℕ
_≟_ : (x y : ℕ) -> Maybe (x ≡ y)
suc m ≟ suc n with m ≟ n
suc .n ≟ suc n | just refl = just refl
suc m ≟ suc n | nothing = nothing
zero ≟ suc _ = nothing
suc m ≟ zero = nothing
zero ≟ zero = just refl
|
algebraic-stack_agda0000_doc_286 | -- Andreas, 2012-09-26 disable projection-likeness for recursive functions
-- {-# OPTIONS -v tc.proj.like:100 #-}
module ProjectionLikeRecursive where
open import Common.Prelude
open import Common.Equality
if_then_else_ : {A : Set} → Bool → A → A → A
if true then t else e = t
if false then t else e = e
infixr 5 _∷_ _∷′_
data Vec (n : Nat) : Set where
[] : {p : n ≡ 0} → Vec n
_∷_ : {m : Nat}{p : n ≡ suc m} → Nat → Vec m → Vec n
null : {n : Nat} → Vec n → Bool
null [] = true
null xs = false
-- last is considered projection-like
last : (n : Nat) → Vec n → Nat
-- last 0 xs = zero --restoring this line removes proj.-likeness and passes the file
last n [] = zero
last n (x ∷ xs) = if (null xs) then x else last _ xs
-- breaks if projection-like translation is not removing the _ in the rec. call
[]′ : Vec zero
[]′ = [] {p = refl}
_∷′_ : {n : Nat} → Nat → Vec n → Vec (suc n)
x ∷′ xs = _∷_ {p = refl} x xs
three = last 3 (1 ∷′ 2 ∷′ 3 ∷′ []′)
test : three ≡ 3
test = refl
-- Error: Incomplete pattern matching
-- when checking that the expression refl has type three ≡ 3
|
algebraic-stack_agda0000_doc_287 |
module HasNegation where
record HasNegation (A : Set) : Set
where
field
~ : A → A
open HasNegation ⦃ … ⦄ public
{-# DISPLAY HasNegation.~ _ = ~ #-}
|
algebraic-stack_agda0000_doc_6112 |
module _ where
open import Common.Prelude
open import Common.Equality
primitive
primForce : ∀ {a b} {A : Set a} {B : A → Set b} (x : A) → (∀ x → B x) → B x
primForceLemma : ∀ {a b} {A : Set a} {B : A → Set b} (x : A) (f : ∀ x → B x) → primForce x f ≡ f x
force = primForce
forceLemma = primForceLemma
seq : ∀ {a b} {A : Set a} {B : Set b} → A → B → B
seq x y = force x λ _ → y
foo : (a b : Nat) → seq a b ≡ b
foo zero _ = refl
foo (suc n) _ = refl
seqLit : (n : Nat) → seq "literal" n ≡ n
seqLit n = refl
seqType : (n : Nat) → seq Nat n ≡ n
seqType n = refl
seqPi : {A B : Set} {n : Nat} → seq (A → B) n ≡ n
seqPi = refl
seqLam : {n : Nat} → seq (λ (x : Nat) → x) n ≡ n
seqLam = refl
seqLemma : (a b : Nat) → seq a b ≡ b
seqLemma a b = forceLemma a _
evalLemma : (n : Nat) → seqLemma (suc n) n ≡ refl
evalLemma n = refl
infixr 0 _$!_
_$!_ : ∀ {a b} {A : Set a} {B : A → Set b} → (∀ x → B x) → ∀ x → B x
f $! x = force x f
-- Without seq, this would be exponential --
pow2 : Nat → Nat → Nat
pow2 zero acc = acc
pow2 (suc n) acc = pow2 n $! acc + acc
lem : pow2 32 1 ≡ 4294967296
lem = refl
|
algebraic-stack_agda0000_doc_6113 | {-# OPTIONS --cubical --no-import-sorts --safe #-}
open import Cubical.Core.Everything
open import Cubical.Foundations.HLevels
module Cubical.Algebra.Semigroup.Construct.Right {ℓ} (Aˢ : hSet ℓ) where
open import Cubical.Foundations.Prelude
open import Cubical.Algebra.Semigroup
import Cubical.Algebra.Magma.Construct.Right Aˢ as RMagma
open RMagma public hiding (Right-isMagma; RightMagma)
private
A = ⟨ Aˢ ⟩
isSetA = Aˢ .snd
▸-assoc : Associative _▸_
▸-assoc _ _ _ = refl
Right-isSemigroup : IsSemigroup A _▸_
Right-isSemigroup = record
{ isMagma = RMagma.Right-isMagma
; assoc = ▸-assoc
}
RightSemigroup : Semigroup ℓ
RightSemigroup = record { isSemigroup = Right-isSemigroup }
|
algebraic-stack_agda0000_doc_6114 | module _ where
abstract
data Nat : Set where
Zero : Nat
Succ : Nat → Nat
countDown : Nat → Nat
countDown x with x
... | Zero = Zero
... | Succ n = countDown n
|
algebraic-stack_agda0000_doc_6115 | {-# OPTIONS --without-K --rewriting #-}
open import lib.Basics
open import lib.types.Sigma
open import lib.types.Group
open import lib.types.CommutingSquare
open import lib.groups.Homomorphism
open import lib.groups.Isomorphism
module lib.groups.CommutingSquare where
-- A new type to keep the parameters.
record CommSquareᴳ {i₀ i₁ j₀ j₁}
{G₀ : Group i₀} {G₁ : Group i₁} {H₀ : Group j₀} {H₁ : Group j₁}
(φ₀ : G₀ →ᴳ H₀) (φ₁ : G₁ →ᴳ H₁) (ξG : G₀ →ᴳ G₁) (ξH : H₀ →ᴳ H₁)
: Type (lmax (lmax i₀ i₁) (lmax j₀ j₁)) where
constructor comm-sqrᴳ
field
commutesᴳ : ∀ g₀ → GroupHom.f (ξH ∘ᴳ φ₀) g₀ == GroupHom.f (φ₁ ∘ᴳ ξG) g₀
infixr 0 _□$ᴳ_
_□$ᴳ_ = CommSquareᴳ.commutesᴳ
is-csᴳ-equiv : ∀ {i₀ i₁ j₀ j₁}
{G₀ : Group i₀} {G₁ : Group i₁} {H₀ : Group j₀} {H₁ : Group j₁}
{φ₀ : G₀ →ᴳ H₀} {φ₁ : G₁ →ᴳ H₁} {ξG : G₀ →ᴳ G₁} {ξH : H₀ →ᴳ H₁}
→ CommSquareᴳ φ₀ φ₁ ξG ξH → Type (lmax (lmax i₀ i₁) (lmax j₀ j₁))
is-csᴳ-equiv {ξG = ξG} {ξH} _ = is-equiv (GroupHom.f ξG) × is-equiv (GroupHom.f ξH)
CommSquareEquivᴳ : ∀ {i₀ i₁ j₀ j₁}
{G₀ : Group i₀} {G₁ : Group i₁} {H₀ : Group j₀} {H₁ : Group j₁}
(φ₀ : G₀ →ᴳ H₀) (φ₁ : G₁ →ᴳ H₁) (ξG : G₀ →ᴳ G₁) (ξH : H₀ →ᴳ H₁)
→ Type (lmax (lmax i₀ i₁) (lmax j₀ j₁))
CommSquareEquivᴳ φ₀ φ₁ ξG ξH = Σ (CommSquareᴳ φ₀ φ₁ ξG ξH) is-csᴳ-equiv
abstract
CommSquareᴳ-∘v : ∀ {i₀ i₁ i₂ j₀ j₁ j₂}
{G₀ : Group i₀} {G₁ : Group i₁} {G₂ : Group i₂}
{H₀ : Group j₀} {H₁ : Group j₁} {H₂ : Group j₂}
{φ : G₀ →ᴳ H₀} {ψ : G₁ →ᴳ H₁} {χ : G₂ →ᴳ H₂}
{ξG : G₀ →ᴳ G₁} {ξH : H₀ →ᴳ H₁}
{μA : G₁ →ᴳ G₂} {μB : H₁ →ᴳ H₂}
→ CommSquareᴳ ψ χ μA μB
→ CommSquareᴳ φ ψ ξG ξH
→ CommSquareᴳ φ χ (μA ∘ᴳ ξG) (μB ∘ᴳ ξH)
CommSquareᴳ-∘v {ξG = ξG} {μB = μB} (comm-sqrᴳ □₁₂) (comm-sqrᴳ □₀₁) =
comm-sqrᴳ λ g₀ → ap (GroupHom.f μB) (□₀₁ g₀) ∙ □₁₂ (GroupHom.f ξG g₀)
CommSquareEquivᴳ-inverse-v : ∀ {i₀ i₁ j₀ j₁}
{G₀ : Group i₀} {G₁ : Group i₁} {H₀ : Group j₀} {H₁ : Group j₁}
{φ₀ : G₀ →ᴳ H₀} {φ₁ : G₁ →ᴳ H₁} {ξG : G₀ →ᴳ G₁} {ξH : H₀ →ᴳ H₁}
→ (cse : CommSquareEquivᴳ φ₀ φ₁ ξG ξH)
→ CommSquareEquivᴳ φ₁ φ₀ (GroupIso.g-hom (ξG , fst (snd cse))) (GroupIso.g-hom (ξH , snd (snd cse)))
CommSquareEquivᴳ-inverse-v (comm-sqrᴳ cs , ise)
with CommSquareEquiv-inverse-v (comm-sqr cs , ise)
... | (comm-sqr cs' , ise') = cs'' , ise' where abstract cs'' = comm-sqrᴳ cs'
CommSquareᴳ-inverse-v : ∀ {i₀ i₁ j₀ j₁}
{G₀ : Group i₀} {G₁ : Group i₁} {H₀ : Group j₀} {H₁ : Group j₁}
{φ₀ : G₀ →ᴳ H₀} {φ₁ : G₁ →ᴳ H₁} {ξG : G₀ →ᴳ G₁} {ξH : H₀ →ᴳ H₁}
→ CommSquareᴳ φ₀ φ₁ ξG ξH
→ (ξG-ise : is-equiv (GroupHom.f ξG)) (ξH-ise : is-equiv (GroupHom.f ξH))
→ CommSquareᴳ φ₁ φ₀ (GroupIso.g-hom (ξG , ξG-ise)) (GroupIso.g-hom (ξH , ξH-ise))
CommSquareᴳ-inverse-v cs ξG-ise ξH-ise = fst (CommSquareEquivᴳ-inverse-v (cs , ξG-ise , ξH-ise))
-- basic facts nicely represented in commuting squares
inv-hom-natural-comm-sqr : ∀ {i j} (G : AbGroup i) (H : AbGroup j)
(φ : AbGroup.grp G →ᴳ AbGroup.grp H)
→ CommSquareᴳ φ φ (inv-hom G) (inv-hom H)
inv-hom-natural-comm-sqr _ _ φ = comm-sqrᴳ λ g → ! (GroupHom.pres-inv φ g)
|
algebraic-stack_agda0000_doc_6116 | -- this is effectively a CM make file. it just includes all the files that
-- exist in the directory in the right order so that one can check that
-- everything compiles cleanly and has no unfilled holes
-- data structures
open import List
open import Nat
open import Prelude
-- basic stuff: core definitions, etc
open import core
open import checks
open import judgemental-erase
open import judgemental-inconsistency
open import moveerase
open import examples
open import structural
-- first wave theorems
open import sensibility
open import aasubsume-min
open import determinism
-- second wave theorems (checksums)
open import reachability
open import constructability
|
algebraic-stack_agda0000_doc_6117 | module consoleExamples.passwordCheckSimple where
open import ConsoleLib
open import Data.Bool.Base
open import Data.Bool
open import Data.String renaming (_==_ to _==str_)
open import SizedIO.Base
main : ConsoleProg
main = run (GetLine >>= λ s →
if s ==str "passwd"
then WriteString "Success"
else WriteString "Error")
|
algebraic-stack_agda0000_doc_6118 | {-# OPTIONS --cubical --safe #-}
module Cubical.Data.Universe where
open import Cubical.Data.Universe.Base public
open import Cubical.Data.Universe.Properties public
|
algebraic-stack_agda0000_doc_6119 | {-# OPTIONS --without-K --safe #-}
open import Categories.Bicategory using (Bicategory)
-- A Pseudofunctor is a homomorphism of Bicategories
-- Follow Bénabou's definition, which is basically that of a Functor
-- Note that what is in nLab is an "exploded" version of the simpler version below
module Categories.Pseudofunctor where
open import Level
open import Data.Product using (_,_)
import Categories.Category as Category
open Category.Category using (Obj; module Commutation)
open Category using (Category; _[_,_])
open import Categories.Functor using (Functor; _∘F_) renaming (id to idF)
open import Categories.Category.Product using (_⁂_)
open import Categories.NaturalTransformation using (NaturalTransformation)
open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism; _≃_)
open import Categories.Category.Instance.One using (shift)
open NaturalIsomorphism using (F⇒G; F⇐G)
record Pseudofunctor {o ℓ e t o′ ℓ′ e′ t′ : Level} (C : Bicategory o ℓ e t) (D : Bicategory o′ ℓ′ e′ t′)
: Set (o ⊔ ℓ ⊔ e ⊔ t ⊔ o′ ⊔ ℓ′ ⊔ e′ ⊔ t′) where
private
module C = Bicategory C
module D = Bicategory D
field
P₀ : C.Obj → D.Obj
P₁ : {x y : C.Obj} → Functor (C.hom x y) (D.hom (P₀ x) (P₀ y))
-- For maximal generality, shift the levels of One. P preserves id
P-identity : {A : C.Obj} → D.id {P₀ A} ∘F shift o′ ℓ′ e′ ≃ P₁ ∘F (C.id {A})
-- P preserves composition
P-homomorphism : {x y z : C.Obj} → D.⊚ ∘F (P₁ ⁂ P₁) ≃ P₁ ∘F C.⊚ {x} {y} {z}
-- P preserves ≃
module unitˡ {A} = NaturalTransformation (F⇒G (P-identity {A}))
module unitʳ {A} = NaturalTransformation (F⇐G (P-identity {A}))
module Hom {x} {y} {z} = NaturalTransformation (F⇒G (P-homomorphism {x} {y} {z}))
-- For notational convenience, shorten some functor applications
private
F₀ = λ {x y} X → Functor.F₀ (P₁ {x} {y}) X
field
unitaryˡ : {x y : C.Obj} →
let open Commutation (D.hom (P₀ x) (P₀ y)) in
{f : Obj (C.hom x y)} →
[ D.id₁ D.⊚₀ (F₀ f) ⇒ F₀ f ]⟨
unitˡ.η _ D.⊚₁ D.id₂ ⇒⟨ F₀ C.id₁ D.⊚₀ F₀ f ⟩
Hom.η ( C.id₁ , f) ⇒⟨ F₀ (C.id₁ C.⊚₀ f) ⟩
Functor.F₁ P₁ C.unitorˡ.from
≈ D.unitorˡ.from
⟩
unitaryʳ : {x y : C.Obj} →
let open Commutation (D.hom (P₀ x) (P₀ y)) in
{f : Obj (C.hom x y)} →
[ (F₀ f) D.⊚₀ D.id₁ ⇒ F₀ f ]⟨
D.id₂ D.⊚₁ unitˡ.η _ ⇒⟨ F₀ f D.⊚₀ F₀ C.id₁ ⟩
Hom.η ( f , C.id₁ ) ⇒⟨ F₀ (f C.⊚₀ C.id₁) ⟩
Functor.F₁ P₁ (C.unitorʳ.from)
≈ D.unitorʳ.from
⟩
assoc : {x y z w : C.Obj} →
let open Commutation (D.hom (P₀ x) (P₀ w)) in
{f : Obj (C.hom x y)} {g : Obj (C.hom y z)} {h : Obj (C.hom z w)} →
[ (F₀ h D.⊚₀ F₀ g) D.⊚₀ F₀ f ⇒ F₀ (h C.⊚₀ (g C.⊚₀ f)) ]⟨
Hom.η (h , g) D.⊚₁ D.id₂ ⇒⟨ F₀ (h C.⊚₀ g) D.⊚₀ F₀ f ⟩
Hom.η (_ , f) ⇒⟨ F₀ ((h C.⊚₀ g) C.⊚₀ f) ⟩
Functor.F₁ P₁ C.associator.from
≈ D.associator.from ⇒⟨ F₀ h D.⊚₀ (F₀ g D.⊚₀ F₀ f) ⟩
D.id₂ D.⊚₁ Hom.η (g , f) ⇒⟨ F₀ h D.⊚₀ F₀ (g C.⊚₀ f) ⟩
Hom.η (h , _)
⟩
|
algebraic-stack_agda0000_doc_6120 | module Tactic.Reflection.Replace where
open import Prelude
open import Container.Traversable
open import Tactic.Reflection
open import Tactic.Reflection.Equality
{-# TERMINATING #-}
_r[_/_] : Term → Term → Term → Term
p r[ r / l ] =
ifYes p == l
then r
else case p of λ
{ (var x args) → var x $ args r₂[ r / l ]
; (con c args) → con c $ args r₂[ r / l ]
; (def f args) → def f $ args r₂[ r / l ]
; (lam v t) → lam v $ t r₁[ weaken 1 r / weaken 1 l ] -- lam v <$> t r₁[ weaken 1 r / weaken 1 l ]
; (pat-lam cs args) →
let w = length args in
pat-lam (replaceClause (weaken w l) (weaken w r) <$> cs) $ args r₂[ r / l ]
; (pi a b) → pi (a r₁[ r / l ]) (b r₁[ weaken 1 r / weaken 1 l ])
; (agda-sort s) → agda-sort $ replaceSort l r s
; (lit l) → lit l
; (meta x args) → meta x $ args r₂[ r / l ]
; unknown → unknown
}
where
replaceClause : Term → Term → Clause → Clause
replaceClause l r (clause pats x) = clause pats $ x r[ r / l ]
replaceClause l r (absurd-clause pats) = absurd-clause pats
replaceSort : Term → Term → Sort → Sort
replaceSort l r (set t) = set $ t r[ r / l ]
replaceSort l r (lit n) = lit n
replaceSort l r unknown = unknown
_r₁[_/_] : {T₀ : Set → Set} {{_ : Traversable T₀}} → T₀ Term → Term → Term → T₀ Term
p r₁[ r / l ] = _r[ r / l ] <$> p
_r₂[_/_] : {T₀ T₁ : Set → Set} {{_ : Traversable T₀}} {{_ : Traversable T₁}} →
T₁ (T₀ Term) → Term → Term → T₁ (T₀ Term)
p r₂[ r / l ] = fmap _r[ r / l ] <$> p
_R[_/_] : List (Arg Type) → Type → Type → List (Arg Type)
Γ R[ L / R ] = go Γ (strengthen 1 L) (strengthen 1 R) where
go : List (Arg Type) → Maybe Term → Maybe Term → List (Arg Type)
go (γ ∷ Γ) (just L) (just R) = (caseF γ of _r[ L / R ]) ∷ go Γ (strengthen 1 L) (strengthen 1 R)
go Γ _ _ = Γ
|
algebraic-stack_agda0000_doc_6121 | module Numeral.Natural.Relation.Order.Decidable where
open import Functional
open import Logic.IntroInstances
open import Logic.Propositional.Theorems
open import Numeral.Natural
open import Numeral.Natural.Oper.Comparisons
open import Numeral.Natural.Oper.Proofs
open import Numeral.Natural.Relation.Order
open import Numeral.Natural.Relation.Order.Proofs
open import Relator.Equals
open import Relator.Equals.Proofs
open import Structure.Function.Domain
open import Type.Properties.Decidable
instance
[≡]-decider : Decider(2)(_≡_)(_≡?_)
[≡]-decider {𝟎} {𝟎} = true [≡]-intro
[≡]-decider {𝟎} {𝐒 y} = false \()
[≡]-decider {𝐒 x}{𝟎} = false \()
[≡]-decider {𝐒 x}{𝐒 y} = step{f = id} (true ∘ [≡]-with(𝐒)) (false ∘ contrapositiveᵣ (injective(𝐒))) ([≡]-decider {x}{y})
instance
[≤]-decider : Decider(2)(_≤_)(_≤?_)
[≤]-decider {𝟎} {𝟎} = true [≤]-minimum
[≤]-decider {𝟎} {𝐒 y} = true [≤]-minimum
[≤]-decider {𝐒 x} {𝟎} = false \()
[≤]-decider {𝐒 x} {𝐒 y} = step{f = id} (true ∘ \p → [≤]-with-[𝐒] ⦃ p ⦄) (false ∘ contrapositiveᵣ [≤]-without-[𝐒]) ([≤]-decider {x}{y})
[<]-decider : Decider(2)(_<_)(_<?_)
[<]-decider {𝟎} {𝟎} = false (λ ())
[<]-decider {𝟎} {𝐒 y} = true (succ min)
[<]-decider {𝐒 x} {𝟎} = false (λ ())
[<]-decider {𝐒 x} {𝐒 y} = step{f = id} (true ∘ succ) (false ∘ contrapositiveᵣ [≤]-without-[𝐒]) ([<]-decider {x} {y})
|
algebraic-stack_agda0000_doc_6122 | {-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Numbers.Naturals.Semiring
open import Numbers.Naturals.Order
open import Numbers.Naturals.Order.WellFounded
open import Numbers.Naturals.Order.Lemmas
open import Numbers.Integers.Definition
open import Numbers.Integers.Integers
open import Numbers.Integers.Order
open import Groups.Groups
open import Groups.Definition
open import Rings.Definition
open import Rings.Orders.Partial.Definition
open import Rings.Orders.Total.Definition
open import Fields.Fields
open import Numbers.Primes.PrimeNumbers
open import Setoids.Setoids
open import Functions.Definition
open import Sets.EquivalenceRelations
open import Numbers.Rationals.Definition
open import Semirings.Definition
open import Orders.Total.Definition
open import Orders.WellFounded.Induction
open import Setoids.Orders.Total.Definition
module Numbers.Rationals.Lemmas where
open import Semirings.Lemmas ℕSemiring
open PartiallyOrderedRing ℤPOrderedRing
open import Rings.Orders.Total.Lemmas ℤOrderedRing
open import Rings.Orders.Total.AbsoluteValue ℤOrderedRing
open SetoidTotalOrder (totalOrderToSetoidTotalOrder ℤOrder)
evenOrOdd : (a : ℕ) → (Sg ℕ (λ i → i *N 2 ≡ a)) || (Sg ℕ (λ i → succ (i *N 2) ≡ a))
evenOrOdd zero = inl (zero , refl)
evenOrOdd (succ zero) = inr (zero , refl)
evenOrOdd (succ (succ a)) with evenOrOdd a
evenOrOdd (succ (succ a)) | inl (a/2 , even) = inl (succ a/2 , applyEquality (λ i → succ (succ i)) even)
evenOrOdd (succ (succ a)) | inr (a/2-1 , odd) = inr (succ a/2-1 , applyEquality (λ i → succ (succ i)) odd)
parity : (a b : ℕ) → succ (2 *N a) ≡ 2 *N b → False
parity zero (succ b) pr rewrite Semiring.commutative ℕSemiring b (succ (b +N 0)) = bad pr
where
bad : (1 ≡ succ (succ ((b +N 0) +N b))) → False
bad ()
parity (succ a) (succ b) pr rewrite Semiring.commutative ℕSemiring b (succ (b +N 0)) | Semiring.commutative ℕSemiring a (succ (a +N 0)) | Semiring.commutative ℕSemiring (a +N 0) a | Semiring.commutative ℕSemiring (b +N 0) b = parity a b (succInjective (succInjective pr))
sqrt0 : (p : ℕ) → p *N p ≡ 0 → p ≡ 0
sqrt0 zero pr = refl
sqrt0 (succ p) ()
-- So as to give us something easy to induct down, introduce a silly extra variable
evil' : (k : ℕ) → ((a b : ℕ) → (0 <N a) → (pr : k ≡ a +N b) → a *N a ≡ (b *N b) *N 2 → False)
evil' = rec <NWellfounded (λ z → (x x₁ : ℕ) (pr' : 0 <N x) (x₂ : z ≡ x +N x₁) (x₃ : x *N x ≡ (x₁ *N x₁) *N 2) → False) go
where
go : (k : ℕ) (indHyp : (k' : ℕ) (k'<k : k' <N k) (r s : ℕ) (0<r : 0 <N r) (r+s : k' ≡ r +N s) (x₇ : r *N r ≡ (s *N s) *N 2) → False) (a b : ℕ) (0<a : 0 <N a) (a+b : k ≡ a +N b) (pr : a *N a ≡ (b *N b) *N 2) → False
go k indHyp a b 0<a a+b pr = contr
where
open import Semirings.Solver ℕSemiring multiplicationNIsCommutative
aEven : Sg ℕ (λ i → i *N 2 ≡ a)
aEven with evenOrOdd a
aEven | inl x = x
aEven | inr (a/2-1 , odd) rewrite equalityCommutative odd =
-- Derive a pretty mechanical contradiction using the automatic solver.
-- This line looks hellish, but it was almost completely mechanical.
exFalso (parity (a/2-1 +N (a/2-1 *N succ (a/2-1 *N 2))) (b *N b) (transitivity (
-- truly mechanical bit starts here
from (succ (plus (plus (const a/2-1) (times (const a/2-1) (succ (times (const a/2-1) (succ (succ zero)))))) (plus (plus (const a/2-1) (times (const a/2-1) (succ (times (const a/2-1) (succ (succ zero)))))) (times zero (plus (const a/2-1) (times (const a/2-1) (succ (times (const a/2-1) (succ (succ zero))))))))))
to succ (plus (times (const a/2-1) (succ (succ zero))) (times (times (const a/2-1) (succ (succ zero))) (succ (times (const a/2-1) (succ (succ zero))))))
-- truly mechanical bit ends here
by applyEquality (λ i → succ (a/2-1 +N i)) (
-- Grinding out some manipulations
transitivity (equalityCommutative (Semiring.+Associative ℕSemiring a/2-1 _ _)) (applyEquality (a/2-1 +N_) (transitivity (Semiring.commutative ℕSemiring (a/2-1 *N (a/2-1 +N a/2-1)) _) (transitivity (equalityCommutative (Semiring.+Associative ℕSemiring a/2-1 _ _)) (applyEquality (a/2-1 +N_) (transitivity (equalityCommutative (Semiring.+Associative ℕSemiring a/2-1 _ _)) (applyEquality (a/2-1 +N_) (transitivity (equalityCommutative (Semiring.+DistributesOver* ℕSemiring a/2-1 _ _)) (applyEquality (a/2-1 *N_) (equalityCommutative (Semiring.+Associative ℕSemiring a/2-1 _ _))))))))))
)) (transitivity pr (multiplicationNIsCommutative (b *N b) 2))))
next : (underlying aEven *N 2) *N (underlying aEven *N 2) ≡ (b *N b) *N 2
next with aEven
... | a/2 , even rewrite even = pr
next2 : (underlying aEven *N 2) *N underlying aEven ≡ b *N b
next2 = productCancelsRight 2 _ _ (le 1 refl) (transitivity (equalityCommutative (Semiring.*Associative ℕSemiring (underlying aEven *N 2) _ _)) next)
next3 : b *N b ≡ (underlying aEven *N underlying aEven) *N 2
next3 = equalityCommutative (transitivity (transitivity (equalityCommutative (Semiring.*Associative ℕSemiring (underlying aEven) _ _)) (multiplicationNIsCommutative (underlying aEven) _)) next2)
halveDecreased : underlying aEven <N a
halveDecreased with aEven
halveDecreased | zero , even rewrite equalityCommutative even = exFalso (TotalOrder.irreflexive ℕTotalOrder 0<a)
halveDecreased | succ a/2 , even = le a/2 (transitivity (applyEquality succ (transitivity (Semiring.commutative ℕSemiring a/2 _) (applyEquality succ (transitivity (doubleIsAddTwo a/2) (multiplicationNIsCommutative 2 a/2))))) even)
reduced : b +N underlying aEven <N k
reduced with lessRespectsAddition b halveDecreased
... | bl rewrite a+b = identityOfIndiscernablesLeft _<N_ bl (Semiring.commutative ℕSemiring _ b)
0<b : 0 <N b
0<b with TotalOrder.totality ℕTotalOrder 0 b
0<b | inl (inl 0<b) = 0<b
0<b | inl (inr ())
0<b | inr 0=b rewrite equalityCommutative 0=b = exFalso (TotalOrder.irreflexive ℕTotalOrder {0} (identityOfIndiscernablesRight _<N_ 0<a (sqrt0 a pr)))
contr : False
contr = indHyp (b +N underlying aEven) reduced b (underlying aEven) 0<b refl next3
evil : (a b : ℕ) → (0 <N a) → a *N a ≡ (b *N b) *N 2 → False
evil a b 0<a = evil' (a +N b) a b 0<a refl
absNonneg : (x : ℕ) → abs (nonneg x) ≡ nonneg x
absNonneg x with totality (nonneg 0) (nonneg x)
absNonneg x | inl (inl 0<x) = refl
absNonneg x | inr 0=x = refl
absNegsucc : (x : ℕ) → abs (negSucc x) ≡ nonneg (succ x)
absNegsucc x with totality (nonneg 0) (negSucc x)
absNegsucc x | inl (inr _) = refl
toNats : (numerator denominator : ℤ) → .(denominator ≡ nonneg 0 → False) → (abs numerator) *Z (abs numerator) ≡ ((abs denominator) *Z (abs denominator)) *Z nonneg 2 → Sg (ℕ && ℕ) (λ nats → ((_&&_.fst nats *N _&&_.fst nats) ≡ (_&&_.snd nats *N _&&_.snd nats) *N 2) && (_&&_.snd nats ≡ 0 → False))
toNats (nonneg num) (nonneg 0) pr _ = exFalso (pr refl)
toNats (nonneg num) (nonneg (succ denom)) _ pr = (num ,, (succ denom)) , (nonnegInjective (transitivity (transitivity (equalityCommutative (absNonneg (num *N num))) (absRespectsTimes (nonneg num) (nonneg num))) pr) ,, λ ())
toNats (nonneg num) (negSucc denom) _ pr = (num ,, succ denom) , (nonnegInjective (transitivity (transitivity (equalityCommutative (absNonneg (num *N num))) (absRespectsTimes (nonneg num) (nonneg num))) pr) ,, λ ())
toNats (negSucc num) (nonneg (succ denom)) _ pr = (succ num ,, succ denom) , (nonnegInjective pr ,, λ ())
toNats (negSucc num) (negSucc denom) _ pr = (succ num ,, succ denom) , (nonnegInjective pr ,, λ ())
sqrt2Irrational : (a : ℚ) → (a *Q a) =Q (injectionQ (nonneg 2)) → False
sqrt2Irrational (record { num = numerator ; denom = denominator ; denomNonzero = denom!=0 }) pr = bad
where
-- We have in hand `pr`, which is the following (almost by definition):
pr' : (numerator *Z numerator) ≡ (denominator *Z denominator) *Z nonneg 2
pr' = transitivity (equalityCommutative (transitivity (Ring.*Commutative ℤRing) (Ring.identIsIdent ℤRing))) pr
-- Move into the naturals so that we can do nice divisibility things.
lemma1 : abs ((denominator *Z denominator) *Z nonneg 2) ≡ (abs denominator *Z abs denominator) *Z nonneg 2
lemma1 = transitivity (absRespectsTimes (denominator *Z denominator) (nonneg 2)) (applyEquality (_*Z nonneg 2) (absRespectsTimes denominator denominator))
amenableToNaturals : (abs numerator) *Z (abs numerator) ≡ ((abs denominator) *Z (abs denominator)) *Z nonneg 2
amenableToNaturals = transitivity (equalityCommutative (absRespectsTimes numerator numerator)) (transitivity (applyEquality abs pr') lemma1)
naturalsStatement : Sg (ℕ && ℕ) (λ nats → ((_&&_.fst nats *N _&&_.fst nats) ≡ (_&&_.snd nats *N _&&_.snd nats) *N 2) && (_&&_.snd nats ≡ 0 → False))
naturalsStatement = toNats numerator denominator denom!=0 amenableToNaturals
bad : False
bad with naturalsStatement
bad | (num ,, 0) , (pr1 ,, pr2) = exFalso (pr2 refl)
bad | (num ,, succ denom) , (pr1 ,, pr2) = evil num (succ denom) 0<num pr1
where
0<num : 0 <N num
0<num with TotalOrder.totality ℕTotalOrder 0 num
0<num | inl (inl 0<num) = 0<num
0<num | inr 0=num rewrite equalityCommutative 0=num = exFalso (naughtE pr1)
|
algebraic-stack_agda0000_doc_6123 |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.DStructures.Equivalences.PeifferGraphS2G where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Function
open import Cubical.Foundations.Structure
open import Cubical.Functions.FunExtEquiv
open import Cubical.Homotopy.Base
open import Cubical.Data.Sigma
open import Cubical.Data.Unit
open import Cubical.Relation.Binary
open import Cubical.Structures.Subtype
open import Cubical.Algebra.Group
open import Cubical.Structures.LeftAction
open import Cubical.Algebra.Group.Semidirect
open import Cubical.DStructures.Base
open import Cubical.DStructures.Meta.Properties
open import Cubical.DStructures.Meta.Isomorphism
open import Cubical.DStructures.Structures.Constant
open import Cubical.DStructures.Structures.Type
open import Cubical.DStructures.Structures.Group
open import Cubical.DStructures.Structures.Action
open import Cubical.DStructures.Structures.XModule
open import Cubical.DStructures.Structures.ReflGraph
open import Cubical.DStructures.Structures.VertComp
open import Cubical.DStructures.Structures.PeifferGraph
open import Cubical.DStructures.Structures.Strict2Group
open import Cubical.DStructures.Equivalences.GroupSplitEpiAction
open import Cubical.DStructures.Equivalences.PreXModReflGraph
private
variable
ℓ ℓ' ℓ'' ℓ₁ ℓ₁' ℓ₁'' ℓ₂ ℓA ℓA' ℓ≅A ℓ≅A' ℓB ℓB' ℓ≅B ℓC ℓ≅C ℓ≅ᴰ ℓ≅ᴰ' ℓ≅B' : Level
open Kernel
open GroupHom -- such .fun!
open GroupLemmas
open MorphismLemmas
open ActionLemmas
module _ (ℓ ℓ' : Level) where
ℓℓ' = ℓ-max ℓ ℓ'
𝒮ᴰ-♭PIso-PeifferGraph-Strict2Group : 𝒮ᴰ-♭PIso (idfun (ReflGraph ℓ ℓℓ')) (𝒮ᴰ-ReflGraph\Peiffer ℓ ℓℓ') (𝒮ᴰ-Strict2Group ℓ ℓℓ')
RelIso.fun (𝒮ᴰ-♭PIso-PeifferGraph-Strict2Group 𝒢) isPeifferGraph = 𝒱
where
open ReflGraphNotation 𝒢
open ReflGraphLemmas 𝒢
open VertComp
_⊙_ = λ (g f : ⟨ G₁ ⟩) → (g -₁ (𝒾s g)) +₁ f
𝒱 : VertComp 𝒢
vcomp 𝒱 g f _ = g ⊙ f
σ-∘ 𝒱 g f c = r
where
isg = 𝒾s g
abstract
r = s ((g -₁ isg) +₁ f)
≡⟨ (σ .isHom (g -₁ isg) f) ⟩
s (g -₁ isg) +₀ s f
≡⟨ cong (_+₀ s f) (σ-g--isg g) ⟩
0₀ +₀ s f
≡⟨ lId₀ (s f) ⟩
s f ∎
τ-∘ 𝒱 g f c = r
where
isg = 𝒾s g
-isg = -₁ (𝒾s g)
abstract
r = t ((g -₁ isg) +₁ f)
≡⟨ τ .isHom (g -₁ isg) f ⟩
t (g -₁ isg) +₀ t f
≡⟨ cong (_+₀ t f)
(τ .isHom g (-₁ isg)) ⟩
(t g +₀ t -isg) +₀ t f
≡⟨ cong ((t g +₀ t -isg) +₀_)
(sym c) ⟩
(t g +₀ t -isg) +₀ s g
≡⟨ cong (λ z → (t g +₀ z) +₀ s g)
(mapInv τ isg) ⟩
(t g -₀ (t isg)) +₀ s g
≡⟨ cong (λ z → (t g -₀ z) +₀ s g)
(τι-≡-fun (s g)) ⟩
(t g -₀ (s g)) +₀ s g
≡⟨ (sym (assoc₀ (t g) (-₀ s g) (s g))) ∙ (cong (t g +₀_) (lCancel₀ (s g))) ⟩
t g +₀ 0₀
≡⟨ rId₀ (t g) ⟩
t g ∎
isHom-∘ 𝒱 g f c-gf g' f' _ _ = r
where
isg = 𝒾s g
-isg = -₁ (𝒾s g)
isg' = 𝒾s g'
-isg' = -₁ (𝒾s g')
itf = 𝒾t f
-itf = -₁ (𝒾t f)
abstract
r = (g +₁ g') ⊙ (f +₁ f')
≡⟨ assoc₁ ((g +₁ g') -₁ 𝒾s (g +₁ g')) f f' ⟩
(((g +₁ g') -₁ 𝒾s (g +₁ g')) +₁ f) +₁ f'
≡⟨ cong (λ z → (z +₁ f) +₁ f')
(sym (assoc₁ g g' (-₁ (𝒾s (g +₁ g'))))) ⟩
((g +₁ (g' -₁ (𝒾s (g +₁ g')))) +₁ f) +₁ f'
≡⟨ cong (_+₁ f')
(sym (assoc₁ g (g' -₁ (𝒾s (g +₁ g'))) f)) ⟩
(g +₁ ((g' -₁ (𝒾s (g +₁ g'))) +₁ f)) +₁ f'
≡⟨ cong (λ z → (g +₁ z) +₁ f')
((g' -₁ (𝒾s (g +₁ g'))) +₁ f
≡⟨ cong (λ z → (g' -₁ z) +₁ f)
(ι∘σ .isHom g g') ⟩
(g' -₁ (isg +₁ isg')) +₁ f
≡⟨ cong (λ z → (g' +₁ z) +₁ f)
(invDistr G₁ isg isg') ⟩
(g' +₁ (-isg' +₁ -isg)) +₁ f
≡⟨ assoc-c--r- G₁ g' -isg' -isg f ⟩
g' +₁ (-isg' +₁ (-isg +₁ f))
≡⟨ cong (λ z → g' +₁ (-isg' +₁ ((-₁ (𝒾 z)) +₁ f)))
c-gf ⟩
g' +₁ (-isg' +₁ (-itf +₁ f))
≡⟨ isPeifferGraph4 𝒢 isPeifferGraph f g' ⟩
-itf +₁ (f +₁ (g' +₁ -isg'))
≡⟨ cong (λ z → (-₁ (𝒾 z)) +₁ (f +₁ (g' +₁ -isg')))
(sym c-gf) ⟩
-isg +₁ (f +₁ (g' +₁ -isg')) ∎) ⟩
(g +₁ (-isg +₁ (f +₁ (g' +₁ -isg')))) +₁ f'
≡⟨ cong (_+₁ f')
(assoc₁ g -isg (f +₁ (g' -₁ isg'))) ⟩
((g +₁ -isg) +₁ (f +₁ (g' +₁ -isg'))) +₁ f'
≡⟨ cong (_+₁ f') (assoc₁ (g -₁ isg) f (g' -₁ isg')) ⟩
(((g -₁ isg) +₁ f) +₁ (g' -₁ isg')) +₁ f'
≡⟨ sym (assoc₁ ((g -₁ isg) +₁ f) (g' -₁ isg') f') ⟩
((g -₁ isg) +₁ f) +₁ ((g' -₁ isg') +₁ f')
≡⟨ refl ⟩
(g ⊙ f) +₁ (g' ⊙ f') ∎
-- behold! use of symmetry is lurking around the corner
-- (in stark contrast to composability proofs)
assoc-∘ 𝒱 h g f _ _ _ _ = sym r
where
isg = 𝒾s g
ish = 𝒾s h
-ish = -₁ 𝒾s h
abstract
r = (h ⊙ g) ⊙ f
≡⟨ cong (λ z → (((h -₁ ish) +₁ g) -₁ z) +₁ f)
(ι∘σ .isHom (h -₁ ish) g) ⟩
(((h -₁ ish) +₁ g) -₁ (𝒾s (h -₁ ish) +₁ 𝒾s g)) +₁ f
≡⟨ cong (λ z → (((h -₁ ish) +₁ g) -₁ (z +₁ 𝒾s g)) +₁ f)
(ι∘σ .isHom h (-₁ ish)) ⟩
(((h -₁ ish) +₁ g) -₁ ((𝒾s h +₁ (𝒾s -ish)) +₁ 𝒾s g)) +₁ f
≡⟨ cong (λ z → (((h -₁ ish) +₁ g) -₁ ((𝒾s h +₁ z) +₁ 𝒾s g)) +₁ f)
(ισ-ι (s h)) ⟩
(((h -₁ ish) +₁ g) -₁ ((ish -₁ ish) +₁ isg)) +₁ f
≡⟨ cong (λ z → (((h -₁ ish) +₁ g) -₁ z) +₁ f)
(rCancel-lId G₁ ish isg) ⟩
(((h -₁ ish) +₁ g) -₁ isg) +₁ f
≡⟨ (cong (_+₁ f) (sym (assoc₁ (h -₁ ish) g (-₁ isg)))) ∙ (sym (assoc₁ (h -₁ ish) (g -₁ isg) f)) ⟩
h ⊙ (g ⊙ f) ∎
lid-∘ 𝒱 f _ = r
where
itf = 𝒾t f
abstract
r = itf ⊙ f
≡⟨ cong (λ z → (itf -₁ (𝒾 z)) +₁ f) (σι-≡-fun (t f)) ⟩
(itf -₁ itf) +₁ f
≡⟨ rCancel-lId G₁ itf f ⟩
f ∎
rid-∘ 𝒱 g _ = r
where
isg = 𝒾s g
-isg = -₁ (𝒾s g)
abstract
r = g ⊙ isg
≡⟨ sym (assoc₁ g -isg isg) ⟩
g +₁ (-isg +₁ isg)
≡⟨ lCancel-rId G₁ g isg ⟩
g ∎
RelIso.inv (𝒮ᴰ-♭PIso-PeifferGraph-Strict2Group 𝒢) 𝒞 = isPf
where
open ReflGraphNotation 𝒢
open VertComp 𝒞
abstract
isPf : isPeifferGraph 𝒢
isPf f g = ((isg +₁ (f -₁ itf)) +₁ (-isg +₁ g)) +₁ itf
≡⟨ cong (_+₁ itf)
(sym (assoc₁ isg (f -₁ itf) (-isg +₁ g))) ⟩
(isg +₁ ((f -₁ itf) +₁ (-isg +₁ g))) +₁ itf
≡⟨ cong (λ z → (isg +₁ z) +₁ itf)
(sym (assoc₁ f -itf (-isg +₁ g))) ⟩
(isg +₁ (f +₁ (-itf +₁ (-isg +₁ g)))) +₁ itf
≡⟨ cong (λ z → (isg +₁ (f +₁ z)) +₁ itf)
(assoc₁ -itf -isg g) ⟩
(isg +₁ (f +₁ ((-itf -₁ isg) +₁ g))) +₁ itf
≡⟨ cong (λ z → (isg +₁ z) +₁ itf)
(IC5 𝒞 g f) ⟩
(isg +₁ ((-isg +₁ g) +₁ (f -₁ itf))) +₁ itf
≡⟨ cong (_+₁ itf)
(assoc₁ isg (-isg +₁ g) (f -₁ itf)) ⟩
((isg +₁ (-isg +₁ g)) +₁ (f -₁ itf)) +₁ itf
≡⟨ cong (λ z → (z +₁ (f -₁ itf)) +₁ itf)
(assoc₁ isg -isg g ∙ rCancel-lId G₁ isg g) ⟩
(g +₁ (f -₁ itf)) +₁ itf
≡⟨ sym (assoc₁ g (f -₁ itf) itf) ⟩
g +₁ ((f -₁ itf) +₁ itf)
≡⟨ cong (g +₁_) ((sym (assoc₁ _ _ _)) ∙ (lCancel-rId G₁ f itf)) ⟩
g +₁ f ∎
where
isg = 𝒾s g
-isg = -₁ (𝒾s g)
itf = 𝒾t f
-itf = -it f
RelIso.leftInv (𝒮ᴰ-♭PIso-PeifferGraph-Strict2Group _) _ = tt
RelIso.rightInv (𝒮ᴰ-♭PIso-PeifferGraph-Strict2Group _) _ = tt
Iso-PeifferGraph-Strict2Group : Iso (PeifferGraph ℓ ℓℓ') (Strict2Group ℓ ℓℓ')
Iso-PeifferGraph-Strict2Group = 𝒮ᴰ-♭PIso-Over→TotalIso idIso (𝒮ᴰ-ReflGraph\Peiffer ℓ ℓℓ') (𝒮ᴰ-Strict2Group ℓ ℓℓ') 𝒮ᴰ-♭PIso-PeifferGraph-Strict2Group
open import Cubical.DStructures.Equivalences.XModPeifferGraph
Iso-XModule-Strict2Group : Iso (XModule ℓ ℓℓ') (Strict2Group ℓ ℓℓ')
Iso-XModule-Strict2Group = compIso (Iso-XModule-PeifferGraph ℓ ℓℓ') Iso-PeifferGraph-Strict2Group
|
algebraic-stack_agda0000_doc_6124 | ------------------------------------------------------------------------------
-- Arithmetic properties (added for the Collatz function example)
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Program.Collatz.Data.Nat.PropertiesATP where
open import FOTC.Base
open import FOTC.Data.Nat
open import FOTC.Data.Nat.Inequalities
open import FOTC.Data.Nat.Inequalities.PropertiesATP
using ( x≤x
; 2*SSx≥2
)
open import FOTC.Data.Nat.PropertiesATP
using ( *-N
; *-rightZero
; *-rightIdentity
; x∸x≡0
; +-rightIdentity
; +-comm
; +-N
; xy≡0→x≡0∨y≡0
; Sx≢x
; xy≡1→x≡1
; 0∸x
; S∸S
)
open import FOTC.Data.Nat.UnaryNumbers
open import FOTC.Program.Collatz.Data.Nat
------------------------------------------------------------------------------
^-N : ∀ {m n} → N m → N n → N (m ^ n)
^-N {m} Nm nzero = prf
where postulate prf : N (m ^ zero)
{-# ATP prove prf #-}
^-N {m} Nm (nsucc {n} Nn) = prf (^-N Nm Nn)
where postulate prf : N (m ^ n) → N (m ^ succ₁ n)
{-# ATP prove prf *-N #-}
div-2x-2≡x : ∀ {n} → N n → div (2' * n) 2' ≡ n
div-2x-2≡x nzero = prf
where postulate prf : div (2' * zero) 2' ≡ zero
{-# ATP prove prf *-rightZero #-}
div-2x-2≡x (nsucc nzero) = prf
where postulate prf : div (2' * (succ₁ zero)) 2' ≡ succ₁ zero
{-# ATP prove prf *-rightIdentity x≤x x∸x≡0 #-}
div-2x-2≡x (nsucc (nsucc {n} Nn)) = prf (div-2x-2≡x (nsucc Nn))
where postulate prf : div (2' * succ₁ n) 2' ≡ succ₁ n →
div (2' * (succ₁ (succ₁ n))) 2' ≡ succ₁ (succ₁ n)
{-# ATP prove prf 2*SSx≥2 +-rightIdentity +-comm +-N #-}
postulate div-2^[x+1]-2≡2^x : ∀ {n} → N n → div (2' ^ succ₁ n) 2' ≡ 2' ^ n
{-# ATP prove div-2^[x+1]-2≡2^x ^-N div-2x-2≡x #-}
+∸2 : ∀ {n} → N n → n ≢ zero → n ≢ 1' → n ≡ succ₁ (succ₁ (n ∸ 2'))
+∸2 nzero n≢0 n≢1 = ⊥-elim (n≢0 refl)
+∸2 (nsucc nzero) n≢0 n≢1 = ⊥-elim (n≢1 refl)
+∸2 (nsucc (nsucc {n} Nn)) n≢0 n≢1 = prf
where
-- TODO (06 December 2012). We do not use the ATPs because we do not
-- how to erase a term.
--
-- See the interactive proof.
postulate prf : succ₁ (succ₁ n) ≡ succ₁ (succ₁ (succ₁ (succ₁ n) ∸ 2'))
-- {-# ATP prove prf S∸S #-}
2^x≢0 : ∀ {n} → N n → 2' ^ n ≢ zero
2^x≢0 nzero h = ⊥-elim (0≢S (trans (sym h) (^-0 2')))
2^x≢0 (nsucc {n} Nn) h = prf (2^x≢0 Nn)
where postulate prf : 2' ^ n ≢ zero → ⊥
{-# ATP prove prf xy≡0→x≡0∨y≡0 ^-N #-}
postulate 2^[x+1]≢1 : ∀ {n} → N n → 2' ^ succ₁ n ≢ 1'
{-# ATP prove 2^[x+1]≢1 Sx≢x xy≡1→x≡1 ^-N #-}
Sx-Even→x-Odd : ∀ {n} → N n → Even (succ₁ n) → Odd n
Sx-Even→x-Odd nzero h = ⊥-elim prf
where postulate prf : ⊥
{-# ATP prove prf #-}
Sx-Even→x-Odd (nsucc {n} Nn) h = prf
where postulate prf : odd (succ₁ n) ≡ true
{-# ATP prove prf #-}
Sx-Odd→x-Even : ∀ {n} → N n → Odd (succ₁ n) → Even n
Sx-Odd→x-Even nzero _ = even-0
Sx-Odd→x-Even (nsucc {n} Nn) h = trans (sym (odd-S (succ₁ n))) h
postulate 2-Even : Even 2'
{-# ATP prove 2-Even #-}
∸-Even : ∀ {m n} → N m → N n → Even m → Even n → Even (m ∸ n)
∸-Odd : ∀ {m n} → N m → N n → Odd m → Odd n → Even (m ∸ n)
∸-Even {m} Nm nzero h₁ _ = subst Even (sym (∸-x0 m)) h₁
∸-Even nzero (nsucc {n} Nn) h₁ _ = subst Even (sym (0∸x (nsucc Nn))) h₁
∸-Even (nsucc {m} Nm) (nsucc {n} Nn) h₁ h₂ = prf
where postulate prf : Even (succ₁ m ∸ succ₁ n)
{-# ATP prove prf ∸-Odd Sx-Even→x-Odd S∸S #-}
∸-Odd nzero Nn h₁ _ = ⊥-elim (t≢f (trans (sym h₁) odd-0))
∸-Odd (nsucc Nm) nzero _ h₂ = ⊥-elim (t≢f (trans (sym h₂) odd-0))
∸-Odd (nsucc {m} Nm) (nsucc {n} Nn) h₁ h₂ = prf
where postulate prf : Even (succ₁ m ∸ succ₁ n)
{-# ATP prove prf ∸-Even Sx-Odd→x-Even S∸S #-}
x-Even→SSx-Even : ∀ {n} → N n → Even n → Even (succ₁ (succ₁ n))
x-Even→SSx-Even nzero h = prf
where postulate prf : Even (succ₁ (succ₁ zero))
{-# ATP prove prf #-}
x-Even→SSx-Even (nsucc {n} Nn) h = prf
where postulate prf : Even (succ₁ (succ₁ (succ₁ n)))
{-# ATP prove prf #-}
x+x-Even : ∀ {n} → N n → Even (n + n)
x+x-Even nzero = prf
where postulate prf : even (zero + zero) ≡ true
{-# ATP prove prf #-}
x+x-Even (nsucc {n} Nn) = prf (x+x-Even Nn)
where postulate prf : Even (n + n) → Even (succ₁ n + succ₁ n)
{-# ATP prove prf x-Even→SSx-Even +-N +-comm #-}
2x-Even : ∀ {n} → N n → Even (2' * n)
2x-Even nzero = prf
where postulate prf : Even (2' * zero)
{-# ATP prove prf #-}
2x-Even (nsucc {n} Nn) = prf
where
postulate prf : Even (2' * succ₁ n)
{-# ATP prove prf x-Even→SSx-Even x+x-Even +-N +-comm +-rightIdentity #-}
postulate 2^[x+1]-Even : ∀ {n} → N n → Even (2' ^ succ₁ n)
{-# ATP prove 2^[x+1]-Even ^-N 2x-Even #-}
|
algebraic-stack_agda0000_doc_6125 | module OlderBasicILP.Direct.Translation where
open import Common.Context public
-- import OlderBasicILP.Direct.Hilbert.Sequential as HS
import OlderBasicILP.Direct.Hilbert.Nested as HN
import OlderBasicILP.Direct.Gentzen as G
-- open HS using () renaming (_⊢×_ to HS⟨_⊢×_⟩ ; _⊢_ to HS⟨_⊢_⟩) public
open HN using () renaming (_⊢_ to HN⟨_⊢_⟩ ; _⊢⋆_ to HN⟨_⊢⋆_⟩) public
open G using () renaming (_⊢_ to G⟨_⊢_⟩ ; _⊢⋆_ to G⟨_⊢⋆_⟩) public
-- Translation from sequential Hilbert-style to nested.
-- hs→hn : ∀ {A Γ} → HS⟨ Γ ⊢ A ⟩ → HN⟨ Γ ⊢ A ⟩
-- hs→hn = ?
-- Translation from nested Hilbert-style to sequential.
-- hn→hs : ∀ {A Γ} → HN⟨ Γ ⊢ A ⟩ → HS⟨ Γ ⊢ A ⟩
-- hn→hs = ?
-- Deduction theorem for sequential Hilbert-style.
-- hs-lam : ∀ {A B Γ} → HS⟨ Γ , A ⊢ B ⟩ → HS⟨ Γ ⊢ A ▻ B ⟩
-- hs-lam = hn→hs ∘ HN.lam ∘ hs→hn
-- Translation from Hilbert-style to Gentzen-style.
mutual
hn→gᵇᵒˣ : HN.Box → G.Box
hn→gᵇᵒˣ HN.[ t ] = {!G.[ hn→g t ]!}
hn→gᵀ : HN.Ty → G.Ty
hn→gᵀ (HN.α P) = G.α P
hn→gᵀ (A HN.▻ B) = hn→gᵀ A G.▻ hn→gᵀ B
hn→gᵀ (T HN.⦂ A) = hn→gᵇᵒˣ T G.⦂ hn→gᵀ A
hn→gᵀ (A HN.∧ B) = hn→gᵀ A G.∧ hn→gᵀ B
hn→gᵀ HN.⊤ = G.⊤
hn→gᵀ⋆ : Cx HN.Ty → Cx G.Ty
hn→gᵀ⋆ ∅ = ∅
hn→gᵀ⋆ (Γ , A) = hn→gᵀ⋆ Γ , hn→gᵀ A
hn→gⁱ : ∀ {A Γ} → A ∈ Γ → hn→gᵀ A ∈ hn→gᵀ⋆ Γ
hn→gⁱ top = top
hn→gⁱ (pop i) = pop (hn→gⁱ i)
hn→g : ∀ {A Γ} → HN⟨ Γ ⊢ A ⟩ → G⟨ hn→gᵀ⋆ Γ ⊢ hn→gᵀ A ⟩
hn→g (HN.var i) = G.var (hn→gⁱ i)
hn→g (HN.app t u) = G.app (hn→g t) (hn→g u)
hn→g HN.ci = G.ci
hn→g HN.ck = G.ck
hn→g HN.cs = G.cs
hn→g (HN.box t) = {!G.box (hn→g t)!}
hn→g HN.cdist = {!G.cdist!}
hn→g HN.cup = {!G.cup!}
hn→g HN.cdown = G.cdown
hn→g HN.cpair = G.cpair
hn→g HN.cfst = G.cfst
hn→g HN.csnd = G.csnd
hn→g HN.unit = G.unit
-- hs→g : ∀ {A Γ} → HS⟨ Γ ⊢ A ⟩ → G⟨ Γ ⊢ A ⟩
-- hs→g = hn→g ∘ hs→hn
-- Translation from Gentzen-style to Hilbert-style.
mutual
g→hnᵇᵒˣ : G.Box → HN.Box
g→hnᵇᵒˣ G.[ t ] = {!HN.[ g→hn t ]!}
g→hnᵀ : G.Ty → HN.Ty
g→hnᵀ (G.α P) = HN.α P
g→hnᵀ (A G.▻ B) = g→hnᵀ A HN.▻ g→hnᵀ B
g→hnᵀ (T G.⦂ A) = g→hnᵇᵒˣ T HN.⦂ g→hnᵀ A
g→hnᵀ (A G.∧ B) = g→hnᵀ A HN.∧ g→hnᵀ B
g→hnᵀ G.⊤ = HN.⊤
g→hnᵀ⋆ : Cx G.Ty → Cx HN.Ty
g→hnᵀ⋆ ∅ = ∅
g→hnᵀ⋆ (Γ , A) = g→hnᵀ⋆ Γ , g→hnᵀ A
g→hnⁱ : ∀ {A Γ} → A ∈ Γ → g→hnᵀ A ∈ g→hnᵀ⋆ Γ
g→hnⁱ top = top
g→hnⁱ (pop i) = pop (g→hnⁱ i)
g→hn : ∀ {A Γ} → G⟨ Γ ⊢ A ⟩ → HN⟨ g→hnᵀ⋆ Γ ⊢ g→hnᵀ A ⟩
g→hn (G.var i) = HN.var (g→hnⁱ i)
g→hn (G.lam t) = HN.lam (g→hn t)
g→hn (G.app t u) = HN.app (g→hn t) (g→hn u)
-- g→hn (G.multibox ts u) = {!HN.multibox (g→hn⋆ ts) (g→hn u)!}
g→hn (G.down t) = HN.down (g→hn t)
g→hn (G.pair t u) = HN.pair (g→hn t) (g→hn u)
g→hn (G.fst t) = HN.fst (g→hn t)
g→hn (G.snd t) = HN.snd (g→hn t)
g→hn G.unit = HN.unit
g→hn⋆ : ∀ {Ξ Γ} → G⟨ Γ ⊢⋆ Ξ ⟩ → HN⟨ g→hnᵀ⋆ Γ ⊢⋆ g→hnᵀ⋆ Ξ ⟩
g→hn⋆ {∅} ∙ = ∙
g→hn⋆ {Ξ , A} (ts , t) = g→hn⋆ ts , g→hn t
-- g→hs : ∀ {A Γ} → G⟨ Γ ⊢ A ⟩ → HS⟨ Γ ⊢ A ⟩
-- g→hs = hn→hs ∘ g→hn
|
algebraic-stack_agda0000_doc_6126 |
module Oscar.Class.Semifunctor where
open import Oscar.Class.Semigroup
open import Oscar.Class.Extensionality
open import Oscar.Class.Preservativity
open import Oscar.Function
open import Oscar.Level
open import Oscar.Relation
record Semifunctor
{𝔞₁} {𝔄₁ : Set 𝔞₁} {𝔰₁} {_►₁_ : 𝔄₁ → 𝔄₁ → Set 𝔰₁}
(_◅₁_ : ∀ {m n} → m ►₁ n → ∀ {l} → m ⟨ l ►₁_ ⟩→ n)
{ℓ₁}
(_≋₁_ : ∀ {m n} → m ►₁ n → m ►₁ n → Set ℓ₁)
{𝔞₂} {𝔄₂ : Set 𝔞₂} {𝔰₂} {_►₂_ : 𝔄₂ → 𝔄₂ → Set 𝔰₂}
(_◅₂_ : ∀ {m n} → m ►₂ n → ∀ {l} → m ⟨ l ►₂_ ⟩→ n)
{ℓ₂}
(_≋₂_ : ∀ {m n} → m ►₂ n → m ►₂ n → Set ℓ₂)
(μ : 𝔄₁ → 𝔄₂)
(□ : ∀ {m n} → m ►₁ n → μ m ►₂ μ n)
: Set (𝔞₁ ⊔ 𝔰₁ ⊔ ℓ₁ ⊔ 𝔞₂ ⊔ 𝔰₂ ⊔ ℓ₂) where
field
⦃ ′semigroup₁ ⦄ : Semigroup _◅₁_ _≋₁_
⦃ ′semigroup₂ ⦄ : Semigroup _◅₂_ _≋₂_
⦃ ′extensionality ⦄ : ∀ {m n} → Extensionality (_≋₁_ {m} {n}) (λ ⋆ → _≋₂_ {μ m} {μ n} ⋆) □ □
⦃ ′preservativity ⦄ : ∀ {l m n} → Preservativity (λ ⋆ → _◅₁_ {m = m} {n = n} ⋆ {l = l}) (λ ⋆ → _◅₂_ ⋆) _≋₂_ □ □ □
instance
Semifunctor⋆ : ∀
{𝔞₁} {𝔄₁ : Set 𝔞₁} {𝔰₁} {_►₁_ : 𝔄₁ → 𝔄₁ → Set 𝔰₁}
{_◅₁_ : ∀ {m n} → m ►₁ n → ∀ {l} → m ⟨ l ►₁_ ⟩→ n}
{ℓ₁}
{_≋₁_ : ∀ {m n} → m ►₁ n → m ►₁ n → Set ℓ₁}
{𝔞₂} {𝔄₂ : Set 𝔞₂} {𝔰₂} {_►₂_ : 𝔄₂ → 𝔄₂ → Set 𝔰₂}
{_◅₂_ : ∀ {m n} → m ►₂ n → ∀ {l} → m ⟨ l ►₂_ ⟩→ n}
{ℓ₂}
{_≋₂_ : ∀ {m n} → m ►₂ n → m ►₂ n → Set ℓ₂}
{μ : 𝔄₁ → 𝔄₂}
{□ : ∀ {m n} → m ►₁ n → μ m ►₂ μ n}
⦃ _ : Semigroup _◅₁_ _≋₁_ ⦄
⦃ _ : Semigroup _◅₂_ _≋₂_ ⦄
⦃ _ : ∀ {m n} → Extensionality (_≋₁_ {m} {n}) (λ ⋆ → _≋₂_ {μ m} {μ n} ⋆) □ □ ⦄
⦃ _ : ∀ {l m n} → Preservativity (λ ⋆ → _◅₁_ {m = m} {n = n} ⋆ {l = l}) (λ ⋆ → _◅₂_ ⋆) _≋₂_ □ □ □ ⦄
→ Semifunctor _◅₁_ _≋₁_ _◅₂_ _≋₂_ μ □
Semifunctor.′semigroup₁ Semifunctor⋆ = it
Semifunctor.′semigroup₂ Semifunctor⋆ = it
Semifunctor.′extensionality Semifunctor⋆ = it
Semifunctor.′preservativity Semifunctor⋆ = it
-- record Semifunctor'
-- {𝔞} {𝔄 : Set 𝔞} {𝔰} {_►_ : 𝔄 → 𝔄 → Set 𝔰}
-- (_◅_ : ∀ {m n} → m ► n → ∀ {l} → m ⟨ l ►_ ⟩→ n)
-- {ℓ₁}
-- (_≋₁_ : ∀ {m n} → m ► n → m ► n → Set ℓ₁)
-- {𝔱} {▸ : 𝔄 → Set 𝔱}
-- (_◃_ : ∀ {m n} → m ► n → m ⟨ ▸ ⟩→ n)
-- {ℓ₂}
-- (_≋₂_ : ∀ {n} → ▸ n → ▸ n → Set ℓ₂)
-- (□ : ∀ {m n} → m ► n → m ► n)
-- : Set (𝔞 ⊔ 𝔰 ⊔ ℓ₁ ⊔ 𝔱 ⊔ ℓ₂) where
-- field
-- ⦃ ′semigroup₁ ⦄ : Semigroup _◅_ (λ ⋆ → _◅_ ⋆) _≋₁_
-- ⦃ ′semigroup₂ ⦄ : Semigroup _◅_ _◃_ _≋₂_
-- ⦃ ′extensionality ⦄ : ∀ {m} {t : ▸ m} {n} → Extensionality (_≋₁_ {m} {n}) (λ ⋆ → _≋₂_ {n} ⋆) (_◃ t) (_◃ t)
-- ⦃ ′preservativity ⦄ : Preservativity _►₁_ _◃₁_ _►₂_ _◃₂_ _≋₂_ ◽ □
-- record Semifunctor
-- {𝔞₁} {𝔄₁ : Set 𝔞₁} {𝔰₁} {_►₁_ : 𝔄₁ → 𝔄₁ → Set 𝔰₁}
-- (_◅₁_ : ∀ {m n} → m ►₁ n → ∀ {l} → m ⟨ l ►₁_ ⟩→ n)
-- {𝔱₁} {▸₁ : 𝔄₁ → Set 𝔱₁}
-- (_◃₁_ : ∀ {m n} → m ►₁ n → m ⟨ ▸₁ ⟩→ n)
-- {ℓ₁}
-- (_≋₁_ : ∀ {n} → ▸₁ n → ▸₁ n → Set ℓ₁)
-- {𝔞₂} {𝔄₂ : Set 𝔞₂} {𝔰₂} {_►₂_ : 𝔄₂ → 𝔄₂ → Set 𝔰₂}
-- (_◅₂_ : ∀ {m n} → m ►₂ n → ∀ {l} → m ⟨ l ►₂_ ⟩→ n)
-- {𝔱₂} {▸₂ : 𝔄₂ → Set 𝔱₂}
-- (_◃₂_ : ∀ {m n} → m ►₂ n → m ⟨ ▸₂ ⟩→ n)
-- {ℓ₂}
-- (_≋₂_ : ∀ {n} → ▸₂ n → ▸₂ n → Set ℓ₂)
-- (μ : 𝔄₁ → 𝔄₂)
-- (◽ : ∀ {n} → ▸₁ n → ▸₂ (μ n))
-- (□ : ∀ {m n} → m ►₁ n → μ m ►₂ μ n)
-- : Set (𝔞₁ ⊔ 𝔰₁ ⊔ 𝔱₁ ⊔ ℓ₁ ⊔ 𝔞₂ ⊔ 𝔰₂ ⊔ 𝔱₂ ⊔ ℓ₂) where
-- field
-- ⦃ ′semigroup₁ ⦄ : Semigroup _◅₁_ _◃₁_ _≋₁_
-- ⦃ ′semigroup₂ ⦄ : Semigroup _◅₂_ _◃₂_ _≋₂_
-- ⦃ ′extensionality ⦄ : ∀ {n} → Extensionality (_≋₁_ {n}) (λ ⋆ → _≋₂_ {μ n} ⋆) ◽ ◽
-- ⦃ ′preservativity ⦄ : Preservativity _►₁_ _◃₁_ _►₂_ _◃₂_ _≋₂_ ◽ □
-- open Semifunctor ⦃ … ⦄ public hiding (′semigroup₁; ′semigroup₂; ′extensionality; ′preservativity)
-- instance
-- Semifunctor⋆ : ∀
-- {𝔞₁} {𝔄₁ : Set 𝔞₁} {𝔰₁} {_►₁_ : 𝔄₁ → 𝔄₁ → Set 𝔰₁}
-- {_◅₁_ : ∀ {m n} → m ►₁ n → ∀ {l} → m ⟨ l ►₁_ ⟩→ n}
-- {𝔱₁} {▸₁ : 𝔄₁ → Set 𝔱₁}
-- {_◃₁_ : ∀ {m n} → m ►₁ n → m ⟨ ▸₁ ⟩→ n}
-- {ℓ₁}
-- {_≋₁_ : ∀ {n} → ▸₁ n → ▸₁ n → Set ℓ₁}
-- {𝔞₂} {𝔄₂ : Set 𝔞₂} {𝔰₂} {_►₂_ : 𝔄₂ → 𝔄₂ → Set 𝔰₂}
-- {_◅₂_ : ∀ {m n} → m ►₂ n → ∀ {l} → m ⟨ l ►₂_ ⟩→ n}
-- {𝔱₂} {▸₂ : 𝔄₂ → Set 𝔱₂}
-- {_◃₂_ : ∀ {m n} → m ►₂ n → m ⟨ ▸₂ ⟩→ n}
-- {ℓ₂}
-- {_≋₂_ : ∀ {n} → ▸₂ n → ▸₂ n → Set ℓ₂}
-- {μ : 𝔄₁ → 𝔄₂}
-- {◽ : ∀ {n} → ▸₁ n → ▸₂ (μ n)}
-- {□ : ∀ {m n} → m ►₁ n → μ m ►₂ μ n}
-- ⦃ _ : Semigroup _◅₁_ _◃₁_ _≋₁_ ⦄
-- ⦃ _ : Semigroup _◅₂_ _◃₂_ _≋₂_ ⦄
-- ⦃ _ : ∀ {n} → Extensionality (_≋₁_ {n}) (λ ⋆ → _≋₂_ {μ n} ⋆) ◽ ◽ ⦄
-- ⦃ _ : Preservativity _►₁_ _◃₁_ _►₂_ _◃₂_ _≋₂_ ◽ □ ⦄
-- → Semifunctor _◅₁_ _◃₁_ _≋₁_ _◅₂_ _◃₂_ _≋₂_ μ ◽ □
-- Semifunctor.′semigroup₁ Semifunctor⋆ = it
-- Semifunctor.′semigroup₂ Semifunctor⋆ = it
-- Semifunctor.′extensionality Semifunctor⋆ = it
-- Semifunctor.′preservativity Semifunctor⋆ = it
|
algebraic-stack_agda0000_doc_6127 | module nform where
open import Data.PropFormula (3) public
open import Data.PropFormula.NormalForms 3 public
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
p : PropFormula
p = Var (# 0)
q : PropFormula
q = Var (# 1)
r : PropFormula
r = Var (# 2)
φ : PropFormula
φ = ¬ ((p ∧ (p ⊃ q)) ⊃ q) -- (p ∧ q) ∨ (¬ r)
cnfφ : PropFormula
cnfφ = ¬ q ∧ (p ∧ (¬ p ∨ q))
postulate
p1 : ∅ ⊢ φ
p2 : ∅ ⊢ cnfφ
p2 = cnf-lem p1 -- thm-cnf p1
{-
p3 : cnf φ ≡ cnfφ
p3 = refl
ψ : PropFormula
ψ = (¬ r) ∨ (p ∧ q)
cnfψ : PropFormula
cnfψ = (¬ r ∨ p) ∧ (¬ r ∨ q)
p5 : cnf ψ ≡ cnfψ
p5 = refl
-}
to5 = (¬ p) ∨ ((¬ q) ∨ r)
from5 = (¬ p) ∨ (r ∨ ((¬ q) ∧ p))
test : ⌊ eq (cnf from5) to5 ⌋ ≡ false
test = refl
|
algebraic-stack_agda0000_doc_17152 | open import Nat
open import Prelude
open import contexts
open import core
open import type-assignment-unicity
module canonical-indeterminate-forms where
-- this type gives somewhat nicer syntax for the output of the canonical
-- forms lemma for indeterminates at base type
data cif-base : (Δ : hctx) (d : ihexp) → Set where
CIFBEHole : ∀ {Δ d} →
Σ[ u ∈ Nat ] Σ[ σ ∈ env ] Σ[ Γ ∈ tctx ]
((d == ⦇-⦈⟨ u , σ ⟩) ×
((u :: b [ Γ ]) ∈ Δ) ×
(Δ , ∅ ⊢ σ :s: Γ)
)
→ cif-base Δ d
CIFBNEHole : ∀ {Δ d} →
Σ[ u ∈ Nat ] Σ[ σ ∈ env ] Σ[ Γ ∈ tctx ] Σ[ d' ∈ ihexp ] Σ[ τ' ∈ htyp ]
((d == ⦇⌜ d' ⌟⦈⟨ u , σ ⟩) ×
(Δ , ∅ ⊢ d' :: τ') ×
(d' final) ×
((u :: b [ Γ ]) ∈ Δ) ×
(Δ , ∅ ⊢ σ :s: Γ)
)
→ cif-base Δ d
CIFBAp : ∀ {Δ d} →
Σ[ d1 ∈ ihexp ] Σ[ d2 ∈ ihexp ] Σ[ τ2 ∈ htyp ]
((d == d1 ∘ d2) ×
(Δ , ∅ ⊢ d1 :: τ2 ==> b) ×
(Δ , ∅ ⊢ d2 :: τ2) ×
(d1 indet) ×
(d2 final) ×
((τ3 τ4 τ3' τ4' : htyp) (d1' : ihexp) → d1 ≠ (d1' ⟨ τ3 ==> τ4 ⇒ τ3' ==> τ4' ⟩))
)
→ cif-base Δ d
CIFBCast : ∀ {Δ d} →
Σ[ d' ∈ ihexp ]
((d == d' ⟨ ⦇-⦈ ⇒ b ⟩) ×
(Δ , ∅ ⊢ d' :: ⦇-⦈) ×
(d' indet) ×
((d'' : ihexp) (τ' : htyp) → d' ≠ (d'' ⟨ τ' ⇒ ⦇-⦈ ⟩))
)
→ cif-base Δ d
CIFBFailedCast : ∀ {Δ d} →
Σ[ d' ∈ ihexp ] Σ[ τ' ∈ htyp ]
((d == d' ⟨ τ' ⇒⦇-⦈⇏ b ⟩) ×
(Δ , ∅ ⊢ d' :: τ') ×
(τ' ground) ×
(τ' ≠ b)
)
→ cif-base Δ d
canonical-indeterminate-forms-base : ∀{Δ d} →
Δ , ∅ ⊢ d :: b →
d indet →
cif-base Δ d
canonical-indeterminate-forms-base TAConst ()
canonical-indeterminate-forms-base (TAVar x₁) ()
canonical-indeterminate-forms-base (TAAp wt wt₁) (IAp x ind x₁) = CIFBAp (_ , _ , _ , refl , wt , wt₁ , ind , x₁ , x)
canonical-indeterminate-forms-base (TAEHole x x₁) IEHole = CIFBEHole (_ , _ , _ , refl , x , x₁)
canonical-indeterminate-forms-base (TANEHole x wt x₁) (INEHole x₂) = CIFBNEHole (_ , _ , _ , _ , _ , refl , wt , x₂ , x , x₁)
canonical-indeterminate-forms-base (TACast wt x) (ICastHoleGround x₁ ind x₂) = CIFBCast (_ , refl , wt , ind , x₁)
canonical-indeterminate-forms-base (TAFailedCast x x₁ x₂ x₃) (IFailedCast x₄ x₅ x₆ x₇) = CIFBFailedCast (_ , _ , refl , x , x₅ , x₇)
-- this type gives somewhat nicer syntax for the output of the canonical
-- forms lemma for indeterminates at arrow type
data cif-arr : (Δ : hctx) (d : ihexp) (τ1 τ2 : htyp) → Set where
CIFAEHole : ∀{d Δ τ1 τ2} →
Σ[ u ∈ Nat ] Σ[ σ ∈ env ] Σ[ Γ ∈ tctx ]
((d == ⦇-⦈⟨ u , σ ⟩) ×
((u :: (τ1 ==> τ2) [ Γ ]) ∈ Δ) ×
(Δ , ∅ ⊢ σ :s: Γ)
)
→ cif-arr Δ d τ1 τ2
CIFANEHole : ∀{d Δ τ1 τ2} →
Σ[ u ∈ Nat ] Σ[ σ ∈ env ] Σ[ d' ∈ ihexp ] Σ[ τ' ∈ htyp ] Σ[ Γ ∈ tctx ]
((d == ⦇⌜ d' ⌟⦈⟨ u , σ ⟩) ×
(Δ , ∅ ⊢ d' :: τ') ×
(d' final) ×
((u :: (τ1 ==> τ2) [ Γ ]) ∈ Δ) ×
(Δ , ∅ ⊢ σ :s: Γ)
)
→ cif-arr Δ d τ1 τ2
CIFAAp : ∀{d Δ τ1 τ2} →
Σ[ d1 ∈ ihexp ] Σ[ d2 ∈ ihexp ] Σ[ τ2' ∈ htyp ] Σ[ τ1 ∈ htyp ] Σ[ τ2 ∈ htyp ]
((d == d1 ∘ d2) ×
(Δ , ∅ ⊢ d1 :: τ2' ==> (τ1 ==> τ2)) ×
(Δ , ∅ ⊢ d2 :: τ2') ×
(d1 indet) ×
(d2 final) ×
((τ3 τ4 τ3' τ4' : htyp) (d1' : ihexp) → d1 ≠ (d1' ⟨ τ3 ==> τ4 ⇒ τ3' ==> τ4' ⟩))
)
→ cif-arr Δ d τ1 τ2
CIFACast : ∀{d Δ τ1 τ2} →
Σ[ d' ∈ ihexp ] Σ[ τ1 ∈ htyp ] Σ[ τ2 ∈ htyp ] Σ[ τ1' ∈ htyp ] Σ[ τ2' ∈ htyp ]
((d == d' ⟨ (τ1' ==> τ2') ⇒ (τ1 ==> τ2) ⟩) ×
(Δ , ∅ ⊢ d' :: τ1' ==> τ2') ×
(d' indet) ×
((τ1' ==> τ2') ≠ (τ1 ==> τ2))
)
→ cif-arr Δ d τ1 τ2
CIFACastHole : ∀{d Δ τ1 τ2} →
Σ[ d' ∈ ihexp ]
((d == (d' ⟨ ⦇-⦈ ⇒ ⦇-⦈ ==> ⦇-⦈ ⟩)) ×
(τ1 == ⦇-⦈) ×
(τ2 == ⦇-⦈) ×
(Δ , ∅ ⊢ d' :: ⦇-⦈) ×
(d' indet) ×
((d'' : ihexp) (τ' : htyp) → d' ≠ (d'' ⟨ τ' ⇒ ⦇-⦈ ⟩))
)
→ cif-arr Δ d τ1 τ2
CIFAFailedCast : ∀{d Δ τ1 τ2} →
Σ[ d' ∈ ihexp ] Σ[ τ' ∈ htyp ]
((d == (d' ⟨ τ' ⇒⦇-⦈⇏ ⦇-⦈ ==> ⦇-⦈ ⟩) ) ×
(τ1 == ⦇-⦈) ×
(τ2 == ⦇-⦈) ×
(Δ , ∅ ⊢ d' :: τ') ×
(τ' ground) ×
(τ' ≠ (⦇-⦈ ==> ⦇-⦈))
)
→ cif-arr Δ d τ1 τ2
canonical-indeterminate-forms-arr : ∀{Δ d τ1 τ2 } →
Δ , ∅ ⊢ d :: (τ1 ==> τ2) →
d indet →
cif-arr Δ d τ1 τ2
canonical-indeterminate-forms-arr (TAVar x₁) ()
canonical-indeterminate-forms-arr (TALam _ wt) ()
canonical-indeterminate-forms-arr (TAAp wt wt₁) (IAp x ind x₁) = CIFAAp (_ , _ , _ , _ , _ , refl , wt , wt₁ , ind , x₁ , x)
canonical-indeterminate-forms-arr (TAEHole x x₁) IEHole = CIFAEHole (_ , _ , _ , refl , x , x₁)
canonical-indeterminate-forms-arr (TANEHole x wt x₁) (INEHole x₂) = CIFANEHole (_ , _ , _ , _ , _ , refl , wt , x₂ , x , x₁)
canonical-indeterminate-forms-arr (TACast wt x) (ICastArr x₁ ind) = CIFACast (_ , _ , _ , _ , _ , refl , wt , ind , x₁)
canonical-indeterminate-forms-arr (TACast wt TCHole2) (ICastHoleGround x₁ ind GHole) = CIFACastHole (_ , refl , refl , refl , wt , ind , x₁)
canonical-indeterminate-forms-arr (TAFailedCast x x₁ GHole x₃) (IFailedCast x₄ x₅ GHole x₇) = CIFAFailedCast (_ , _ , refl , refl , refl , x , x₅ , x₇)
-- this type gives somewhat nicer syntax for the output of the canonical
-- forms lemma for indeterminates at hole type
data cif-hole : (Δ : hctx) (d : ihexp) → Set where
CIFHEHole : ∀ {Δ d} →
Σ[ u ∈ Nat ] Σ[ σ ∈ env ] Σ[ Γ ∈ tctx ]
((d == ⦇-⦈⟨ u , σ ⟩) ×
((u :: ⦇-⦈ [ Γ ]) ∈ Δ) ×
(Δ , ∅ ⊢ σ :s: Γ)
)
→ cif-hole Δ d
CIFHNEHole : ∀ {Δ d} →
Σ[ u ∈ Nat ] Σ[ σ ∈ env ] Σ[ d' ∈ ihexp ] Σ[ τ' ∈ htyp ] Σ[ Γ ∈ tctx ]
((d == ⦇⌜ d' ⌟⦈⟨ u , σ ⟩) ×
(Δ , ∅ ⊢ d' :: τ') ×
(d' final) ×
((u :: ⦇-⦈ [ Γ ]) ∈ Δ) ×
(Δ , ∅ ⊢ σ :s: Γ)
)
→ cif-hole Δ d
CIFHAp : ∀ {Δ d} →
Σ[ d1 ∈ ihexp ] Σ[ d2 ∈ ihexp ] Σ[ τ2 ∈ htyp ]
((d == d1 ∘ d2) ×
(Δ , ∅ ⊢ d1 :: (τ2 ==> ⦇-⦈)) ×
(Δ , ∅ ⊢ d2 :: τ2) ×
(d1 indet) ×
(d2 final) ×
((τ3 τ4 τ3' τ4' : htyp) (d1' : ihexp) → d1 ≠ (d1' ⟨ τ3 ==> τ4 ⇒ τ3' ==> τ4' ⟩))
)
→ cif-hole Δ d
CIFHCast : ∀ {Δ d} →
Σ[ d' ∈ ihexp ] Σ[ τ' ∈ htyp ]
((d == d' ⟨ τ' ⇒ ⦇-⦈ ⟩) ×
(Δ , ∅ ⊢ d' :: τ') ×
(τ' ground) ×
(d' indet)
)
→ cif-hole Δ d
canonical-indeterminate-forms-hole : ∀{Δ d} →
Δ , ∅ ⊢ d :: ⦇-⦈ →
d indet →
cif-hole Δ d
canonical-indeterminate-forms-hole (TAVar x₁) ()
canonical-indeterminate-forms-hole (TAAp wt wt₁) (IAp x ind x₁) = CIFHAp (_ , _ , _ , refl , wt , wt₁ , ind , x₁ , x)
canonical-indeterminate-forms-hole (TAEHole x x₁) IEHole = CIFHEHole (_ , _ , _ , refl , x , x₁)
canonical-indeterminate-forms-hole (TANEHole x wt x₁) (INEHole x₂) = CIFHNEHole (_ , _ , _ , _ , _ , refl , wt , x₂ , x , x₁)
canonical-indeterminate-forms-hole (TACast wt x) (ICastGroundHole x₁ ind) = CIFHCast (_ , _ , refl , wt , x₁ , ind)
canonical-indeterminate-forms-hole (TACast wt x) (ICastHoleGround x₁ ind ())
canonical-indeterminate-forms-hole (TAFailedCast x x₁ () x₃) (IFailedCast x₄ x₅ x₆ x₇)
canonical-indeterminate-forms-coverage : ∀{Δ d τ} →
Δ , ∅ ⊢ d :: τ →
d indet →
τ ≠ b →
((τ1 : htyp) (τ2 : htyp) → τ ≠ (τ1 ==> τ2)) →
τ ≠ ⦇-⦈ →
⊥
canonical-indeterminate-forms-coverage TAConst () nb na nh
canonical-indeterminate-forms-coverage (TAVar x₁) () nb na nh
canonical-indeterminate-forms-coverage (TALam _ wt) () nb na nh
canonical-indeterminate-forms-coverage {τ = b} (TAAp wt wt₁) (IAp x ind x₁) nb na nh = nb refl
canonical-indeterminate-forms-coverage {τ = ⦇-⦈} (TAAp wt wt₁) (IAp x ind x₁) nb na nh = nh refl
canonical-indeterminate-forms-coverage {τ = τ ==> τ₁} (TAAp wt wt₁) (IAp x ind x₁) nb na nh = na τ τ₁ refl
canonical-indeterminate-forms-coverage {τ = b} (TAEHole x x₁) IEHole nb na nh = nb refl
canonical-indeterminate-forms-coverage {τ = ⦇-⦈} (TAEHole x x₁) IEHole nb na nh = nh refl
canonical-indeterminate-forms-coverage {τ = τ ==> τ₁} (TAEHole x x₁) IEHole nb na nh = na τ τ₁ refl
canonical-indeterminate-forms-coverage {τ = b} (TANEHole x wt x₁) (INEHole x₂) nb na nh = nb refl
canonical-indeterminate-forms-coverage {τ = ⦇-⦈} (TANEHole x wt x₁) (INEHole x₂) nb na nh = nh refl
canonical-indeterminate-forms-coverage {τ = τ ==> τ₁} (TANEHole x wt x₁) (INEHole x₂) nb na nh = na τ τ₁ refl
canonical-indeterminate-forms-coverage (TACast wt x) (ICastArr x₁ ind) nb na nh = na _ _ refl
canonical-indeterminate-forms-coverage (TACast wt x) (ICastGroundHole x₁ ind) nb na nh = nh refl
canonical-indeterminate-forms-coverage {τ = b} (TACast wt x) (ICastHoleGround x₁ ind x₂) nb na nh = nb refl
canonical-indeterminate-forms-coverage {τ = ⦇-⦈} (TACast wt x) (ICastHoleGround x₁ ind x₂) nb na nh = nh refl
canonical-indeterminate-forms-coverage {τ = τ ==> τ₁} (TACast wt x) (ICastHoleGround x₁ ind x₂) nb na nh = na τ τ₁ refl
canonical-indeterminate-forms-coverage {τ = b} (TAFailedCast x x₁ x₂ x₃) (IFailedCast x₄ x₅ x₆ x₇) = λ z _ _₁ → z refl
canonical-indeterminate-forms-coverage {τ = ⦇-⦈} (TAFailedCast x x₁ x₂ x₃) (IFailedCast x₄ x₅ x₆ x₇) = λ _ _₁ z → z refl
canonical-indeterminate-forms-coverage {τ = τ ==> τ₁} (TAFailedCast x x₁ x₂ x₃) (IFailedCast x₄ x₅ x₆ x₇) = λ _ z _₁ → z τ τ₁ refl
|
algebraic-stack_agda0000_doc_17153 | module Cats.Util.SetoidReasoning where
open import Relation.Binary.SetoidReasoning public
open import Relation.Binary using (Setoid)
open import Relation.Binary.EqReasoning as EqR using (_IsRelatedTo_)
infixr 2 _≡⟨⟩_
_≡⟨⟩_ : ∀ {c l} {S : Setoid c l} → ∀ x {y} → _IsRelatedTo_ S x y → _IsRelatedTo_ S x y
_≡⟨⟩_ {S = S} = EqR._≡⟨⟩_ S
triangle : ∀ {l l′} (S : Setoid l l′) →
let open Setoid S in
∀ m {x y}
→ x ≈ m
→ y ≈ m
→ x ≈ y
triangle S m x≈m y≈m = trans x≈m (sym y≈m)
where
open Setoid S
|
algebraic-stack_agda0000_doc_17154 | {-# OPTIONS --without-K --exact-split --safe #-}
module Fragment.Extensions.CSemigroup.Base where
open import Fragment.Equational.Theory.Bundles
open import Fragment.Algebra.Signature
open import Fragment.Algebra.Free Σ-magma hiding (_~_)
open import Fragment.Algebra.Homomorphism Σ-magma
open import Fragment.Algebra.Algebra Σ-magma
using (Algebra; IsAlgebra; Interpretation; Congruence)
open import Fragment.Equational.FreeExtension Θ-csemigroup
using (FreeExtension; IsFreeExtension)
open import Fragment.Equational.Model Θ-csemigroup
open import Fragment.Extensions.CSemigroup.Monomial
open import Fragment.Setoid.Morphism using (_↝_)
open import Level using (Level; _⊔_)
open import Data.Nat using (ℕ)
open import Data.Fin using (#_)
open import Data.Vec using (Vec; []; _∷_; map)
open import Data.Vec.Relation.Binary.Pointwise.Inductive using ([]; _∷_)
import Relation.Binary.Reasoning.Setoid as Reasoning
open import Relation.Binary using (Setoid; IsEquivalence)
open import Relation.Binary.PropositionalEquality as PE using (_≡_)
private
variable
a ℓ : Level
module _ (A : Model {a} {ℓ}) (n : ℕ) where
private
open module A = Setoid ∥ A ∥/≈
_·_ : ∥ A ∥ → ∥ A ∥ → ∥ A ∥
x · y = A ⟦ • ⟧ (x ∷ y ∷ [])
·-cong : ∀ {x y z w} → x ≈ y → z ≈ w → x · z ≈ y · w
·-cong x≈y z≈w = (A ⟦ • ⟧-cong) (x≈y ∷ z≈w ∷ [])
·-comm : ∀ (x y : ∥ A ∥) → x · y ≈ y · x
·-comm x y = ∥ A ∥ₐ-models comm (env {A = ∥ A ∥ₐ} (x ∷ y ∷ []))
·-assoc : ∀ (x y z : ∥ A ∥) → (x · y) · z ≈ x · (y · z)
·-assoc x y z = ∥ A ∥ₐ-models assoc (env {A = ∥ A ∥ₐ} (x ∷ y ∷ z ∷ []))
data Blob : Set a where
sta : ∥ A ∥ → Blob
dyn : ∥ J' n ∥ → Blob
blob : ∥ J' n ∥ → ∥ A ∥ → Blob
infix 6 _≋_
data _≋_ : Blob → Blob → Set (a ⊔ ℓ) where
sta : ∀ {x y} → x ≈ y → sta x ≋ sta y
dyn : ∀ {xs ys} → xs ≡ ys → dyn xs ≋ dyn ys
blob : ∀ {x y xs ys} → xs ≡ ys → x ≈ y
→ blob xs x ≋ blob ys y
≋-refl : ∀ {x} → x ≋ x
≋-refl {x = sta x} = sta A.refl
≋-refl {x = dyn xs} = dyn PE.refl
≋-refl {x = blob xs x} = blob PE.refl A.refl
≋-sym : ∀ {x y} → x ≋ y → y ≋ x
≋-sym (sta p) = sta (A.sym p)
≋-sym (dyn ps) = dyn (PE.sym ps)
≋-sym (blob ps p) = blob (PE.sym ps) (A.sym p)
≋-trans : ∀ {x y z} → x ≋ y → y ≋ z → x ≋ z
≋-trans (sta p) (sta q) = sta (A.trans p q)
≋-trans (dyn ps) (dyn qs) = dyn (PE.trans ps qs)
≋-trans (blob ps p) (blob qs q) = blob (PE.trans ps qs) (A.trans p q)
≋-isEquivalence : IsEquivalence _≋_
≋-isEquivalence = record { refl = ≋-refl
; sym = ≋-sym
; trans = ≋-trans
}
Blob/≋ : Setoid _ _
Blob/≋ = record { Carrier = Blob
; _≈_ = _≋_
; isEquivalence = ≋-isEquivalence
}
_++_ : Blob → Blob → Blob
sta x ++ sta y = sta (x · y)
dyn xs ++ dyn ys = dyn (xs ⊗ ys)
sta x ++ dyn ys = blob ys x
sta x ++ blob ys y = blob ys (x · y)
dyn xs ++ sta y = blob xs y
dyn xs ++ blob ys y = blob (xs ⊗ ys) y
blob xs x ++ sta y = blob xs (x · y)
blob xs x ++ dyn ys = blob (xs ⊗ ys) x
blob xs x ++ blob ys y = blob (xs ⊗ ys) (x · y)
++-cong : ∀ {x y z w} → x ≋ y → z ≋ w → x ++ z ≋ y ++ w
++-cong (sta p) (sta q) = sta (·-cong p q)
++-cong (dyn ps) (dyn qs) = dyn (⊗-cong ps qs)
++-cong (sta p) (dyn qs) = blob qs p
++-cong (sta p) (blob qs q) = blob qs (·-cong p q)
++-cong (dyn ps) (sta q) = blob ps q
++-cong (dyn ps) (blob qs q) = blob (⊗-cong ps qs) q
++-cong (blob ps p) (sta q) = blob ps (·-cong p q)
++-cong (blob ps p) (dyn qs) = blob (⊗-cong ps qs) p
++-cong (blob ps p) (blob qs q) = blob (⊗-cong ps qs) (·-cong p q)
++-comm : ∀ x y → x ++ y ≋ y ++ x
++-comm (sta x) (sta y) = sta (·-comm x y)
++-comm (dyn xs) (dyn ys) = dyn (⊗-comm xs ys)
++-comm (sta x) (dyn ys) = ≋-refl
++-comm (sta x) (blob ys y) = blob PE.refl (·-comm x y)
++-comm (dyn xs) (sta y) = ≋-refl
++-comm (dyn xs) (blob ys y) = blob (⊗-comm xs ys) A.refl
++-comm (blob xs x) (sta y) = blob PE.refl (·-comm x y)
++-comm (blob xs x) (dyn ys) = blob (⊗-comm xs ys) A.refl
++-comm (blob xs x) (blob ys y) = blob (⊗-comm xs ys) (·-comm x y)
++-assoc : ∀ x y z → (x ++ y) ++ z ≋ x ++ (y ++ z)
++-assoc (sta x) (sta y) (sta z) = sta (·-assoc x y z)
++-assoc (dyn xs) (dyn ys) (dyn zs) = dyn (⊗-assoc xs ys zs)
++-assoc (sta x) (sta y) (dyn zs) = ≋-refl
++-assoc (sta x) (sta y) (blob zs z) = blob PE.refl (·-assoc x y z)
++-assoc (sta x) (dyn ys) (sta z) = ≋-refl
++-assoc (sta x) (dyn ys) (dyn zs) = ≋-refl
++-assoc (sta x) (dyn ys) (blob zs z) = ≋-refl
++-assoc (sta x) (blob ys y) (sta z) = blob PE.refl (·-assoc x y z)
++-assoc (sta x) (blob ys y) (dyn zs) = ≋-refl
++-assoc (sta x) (blob ys y) (blob zs z) = blob PE.refl (·-assoc x y z)
++-assoc (dyn xs) (sta y) (sta z) = ≋-refl
++-assoc (dyn xs) (sta y) (dyn zs) = ≋-refl
++-assoc (dyn xs) (sta y) (blob zs z) = ≋-refl
++-assoc (dyn xs) (dyn ys) (sta z) = ≋-refl
++-assoc (dyn xs) (dyn ys) (blob zs z) = blob (⊗-assoc xs ys zs) A.refl
++-assoc (dyn xs) (blob ys y) (sta z) = ≋-refl
++-assoc (dyn xs) (blob ys y) (dyn zs) = blob (⊗-assoc xs ys zs) A.refl
++-assoc (dyn xs) (blob ys y) (blob zs z) = blob (⊗-assoc xs ys zs) A.refl
++-assoc (blob xs x) (sta y) (sta z) = blob PE.refl (·-assoc x y z)
++-assoc (blob xs x) (sta y) (dyn zs) = ≋-refl
++-assoc (blob xs x) (sta y) (blob zs z) = blob PE.refl (·-assoc x y z)
++-assoc (blob xs x) (dyn ys) (sta z) = ≋-refl
++-assoc (blob xs x) (dyn ys) (dyn zs) = blob (⊗-assoc xs ys zs) A.refl
++-assoc (blob xs x) (dyn ys) (blob zs z) = blob (⊗-assoc xs ys zs) A.refl
++-assoc (blob xs x) (blob ys y) (sta z) = blob PE.refl (·-assoc x y z)
++-assoc (blob xs x) (blob ys y) (dyn zs) = blob (⊗-assoc xs ys zs) A.refl
++-assoc (blob xs x) (blob ys y) (blob zs z) = blob (⊗-assoc xs ys zs) (·-assoc x y z)
Blob⟦_⟧ : Interpretation Blob/≋
Blob⟦ • ⟧ (x ∷ y ∷ []) = x ++ y
Blob⟦_⟧-cong : Congruence Blob/≋ Blob⟦_⟧
Blob⟦ • ⟧-cong (p ∷ q ∷ []) = ++-cong p q
Blob/≋-isAlgebra : IsAlgebra Blob/≋
Blob/≋-isAlgebra = record { ⟦_⟧ = Blob⟦_⟧
; ⟦⟧-cong = Blob⟦_⟧-cong
}
Blob/≋-algebra : Algebra
Blob/≋-algebra =
record { ∥_∥/≈ = Blob/≋
; ∥_∥/≈-isAlgebra = Blob/≋-isAlgebra
}
Blob/≋-models : Models Blob/≋-algebra
Blob/≋-models comm θ = ++-comm (θ (# 0)) (θ (# 1))
Blob/≋-models assoc θ = ++-assoc (θ (# 0)) (θ (# 1)) (θ (# 2))
Blob/≋-isModel : IsModel Blob/≋
Blob/≋-isModel =
record { isAlgebra = Blob/≋-isAlgebra
; models = Blob/≋-models
}
Frex : Model
Frex = record { ∥_∥/≈ = Blob/≋
; isModel = Blob/≋-isModel
}
∣inl∣ : ∥ A ∥ → ∥ Frex ∥
∣inl∣ = sta
∣inl∣-cong : Congruent _≈_ _≋_ ∣inl∣
∣inl∣-cong = sta
∣inl∣⃗ : ∥ A ∥/≈ ↝ ∥ Frex ∥/≈
∣inl∣⃗ = record { ∣_∣ = ∣inl∣
; ∣_∣-cong = ∣inl∣-cong
}
∣inl∣-hom : Homomorphic ∥ A ∥ₐ ∥ Frex ∥ₐ ∣inl∣
∣inl∣-hom • (x ∷ y ∷ []) = ≋-refl
inl : ∥ A ∥ₐ ⟿ ∥ Frex ∥ₐ
inl = record { ∣_∣⃗ = ∣inl∣⃗
; ∣_∣-hom = ∣inl∣-hom
}
∣inr∣ : ∥ J n ∥ → ∥ Frex ∥
∣inr∣ x = dyn (∣ norm ∣ x)
∣inr∣-cong : Congruent ≈[ J n ] _≋_ ∣inr∣
∣inr∣-cong p = dyn (∣ norm ∣-cong p)
∣inr∣⃗ : ∥ J n ∥/≈ ↝ ∥ Frex ∥/≈
∣inr∣⃗ = record { ∣_∣ = ∣inr∣
; ∣_∣-cong = ∣inr∣-cong
}
∣inr∣-hom : Homomorphic ∥ J n ∥ₐ ∥ Frex ∥ₐ ∣inr∣
∣inr∣-hom • (x ∷ y ∷ []) = dyn (∣ norm ∣-hom • (x ∷ y ∷ []))
inr : ∥ J n ∥ₐ ⟿ ∥ Frex ∥ₐ
inr = record { ∣_∣⃗ = ∣inr∣⃗
; ∣_∣-hom = ∣inr∣-hom
}
module _ {b ℓ} (X : Model {b} {ℓ}) where
private
open module X = Setoid ∥ X ∥/≈ renaming (_≈_ to _~_)
_⊕_ : ∥ X ∥ → ∥ X ∥ → ∥ X ∥
x ⊕ y = X ⟦ • ⟧ (x ∷ y ∷ [])
⊕-cong : ∀ {x y z w} → x ~ y → z ~ w → x ⊕ z ~ y ⊕ w
⊕-cong p q = (X ⟦ • ⟧-cong) (p ∷ q ∷ [])
⊕-comm : ∀ (x y : ∥ X ∥) → x ⊕ y ~ y ⊕ x
⊕-comm x y = ∥ X ∥ₐ-models comm (env {A = ∥ X ∥ₐ} (x ∷ y ∷ []))
⊕-assoc : ∀ (x y z : ∥ X ∥) → (x ⊕ y) ⊕ z ~ x ⊕ (y ⊕ z)
⊕-assoc x y z = ∥ X ∥ₐ-models assoc (env {A = ∥ X ∥ₐ} (x ∷ y ∷ z ∷ []))
module _
(f : ∥ A ∥ₐ ⟿ ∥ X ∥ₐ)
(g : ∥ J n ∥ₐ ⟿ ∥ X ∥ₐ)
where
∣resid∣ : ∥ Frex ∥ → ∥ X ∥
∣resid∣ (sta x) = ∣ f ∣ x
∣resid∣ (dyn xs) = ∣ g ∣ (∣ syn ∣ xs)
∣resid∣ (blob xs x) = ∣ g ∣ (∣ syn ∣ xs) ⊕ ∣ f ∣ x
∣resid∣-cong : Congruent _≋_ _~_ ∣resid∣
∣resid∣-cong (sta p) = ∣ f ∣-cong p
∣resid∣-cong (dyn ps) = ∣ g ∣-cong (∣ syn ∣-cong ps)
∣resid∣-cong (blob ps p) =
⊕-cong (∣ g ∣-cong (∣ syn ∣-cong ps)) (∣ f ∣-cong p)
open Reasoning ∥ X ∥/≈
∣resid∣-hom : Homomorphic ∥ Frex ∥ₐ ∥ X ∥ₐ ∣resid∣
∣resid∣-hom • (sta x ∷ sta y ∷ []) = ∣ f ∣-hom • (x ∷ y ∷ [])
∣resid∣-hom • (sta x ∷ dyn ys ∷ []) = ⊕-comm (∣ f ∣ x) _
∣resid∣-hom • (sta x ∷ blob ys y ∷ []) = begin
∣ f ∣ x ⊕ (∣ g ∣ (∣ syn ∣ ys) ⊕ ∣ f ∣ y)
≈⟨ ⊕-cong X.refl (⊕-comm _ (∣ f ∣ y)) ⟩
∣ f ∣ x ⊕ (∣ f ∣ y ⊕ ∣ g ∣ (∣ syn ∣ ys))
≈⟨ X.sym (⊕-assoc (∣ f ∣ x) (∣ f ∣ y) _) ⟩
(∣ f ∣ x ⊕ ∣ f ∣ y) ⊕ ∣ g ∣ (∣ syn ∣ ys)
≈⟨ ⊕-cong (∣ f ∣-hom • (x ∷ y ∷ [])) X.refl ⟩
∣ f ∣ (x · y) ⊕ ∣ g ∣ (∣ syn ∣ ys)
≈⟨ ⊕-comm _ _ ⟩
∣ g ∣ (∣ syn ∣ ys) ⊕ ∣ f ∣ (x · y)
∎
∣resid∣-hom • (dyn xs ∷ sta y ∷ []) = X.refl
∣resid∣-hom • (dyn xs ∷ dyn ys ∷ []) = ∣ g ⊙ syn ∣-hom • (xs ∷ ys ∷ [])
∣resid∣-hom • (dyn xs ∷ blob ys y ∷ []) = begin
∣ g ∣ (∣ syn ∣ xs) ⊕ (∣ g ∣ (∣ syn ∣ ys) ⊕ ∣ f ∣ y)
≈⟨ X.sym (⊕-assoc _ _ (∣ f ∣ y)) ⟩
(∣ g ∣ (∣ syn ∣ xs) ⊕ ∣ g ∣ (∣ syn ∣ ys)) ⊕ ∣ f ∣ y
≈⟨ ⊕-cong (∣ g ⊙ syn ∣-hom • (xs ∷ ys ∷ [])) X.refl ⟩
∣ g ∣ (∣ syn ∣ (xs ⊗ ys)) ⊕ ∣ f ∣ y
∎
∣resid∣-hom • (blob xs x ∷ sta y ∷ []) = begin
(∣ g ∣ (∣ syn ∣ xs) ⊕ ∣ f ∣ x) ⊕ ∣ f ∣ y
≈⟨ ⊕-assoc _ (∣ f ∣ x) (∣ f ∣ y) ⟩
∣ g ∣ (∣ syn ∣ xs) ⊕ (∣ f ∣ x ⊕ ∣ f ∣ y)
≈⟨ ⊕-cong X.refl (∣ f ∣-hom • (x ∷ y ∷ [])) ⟩
∣ g ∣ (∣ syn ∣ xs) ⊕ ∣ f ∣ (x · y)
∎
∣resid∣-hom • (blob xs x ∷ dyn ys ∷ []) = begin
(∣ g ∣ (∣ syn ∣ xs) ⊕ ∣ f ∣ x) ⊕ ∣ g ∣ (∣ syn ∣ ys)
≈⟨ ⊕-assoc _ (∣ f ∣ x) _ ⟩
∣ g ∣ (∣ syn ∣ xs) ⊕ (∣ f ∣ x ⊕ ∣ g ∣ (∣ syn ∣ ys))
≈⟨ ⊕-cong X.refl (⊕-comm (∣ f ∣ x) _) ⟩
∣ g ∣ (∣ syn ∣ xs) ⊕ (∣ g ∣ (∣ syn ∣ ys) ⊕ ∣ f ∣ x)
≈⟨ X.sym (⊕-assoc _ _ (∣ f ∣ x)) ⟩
(∣ g ∣ (∣ syn ∣ xs) ⊕ ∣ g ∣ (∣ syn ∣ ys)) ⊕ ∣ f ∣ x
≈⟨ ⊕-cong (∣ g ⊙ syn ∣-hom • (xs ∷ ys ∷ [])) X.refl ⟩
∣ g ∣ (∣ syn ∣ (xs ⊗ ys)) ⊕ ∣ f ∣ x
∎
∣resid∣-hom • (blob xs x ∷ blob ys y ∷ []) = begin
(∣ g ∣ (∣ syn ∣ xs) ⊕ ∣ f ∣ x) ⊕ (∣ g ∣ (∣ syn ∣ ys) ⊕ ∣ f ∣ y)
≈⟨ ⊕-assoc _ (∣ f ∣ x) _ ⟩
∣ g ∣ (∣ syn ∣ xs) ⊕ (∣ f ∣ x ⊕ (∣ g ∣ (∣ syn ∣ ys) ⊕ ∣ f ∣ y))
≈⟨ ⊕-cong X.refl (X.sym (⊕-assoc (∣ f ∣ x) _ _)) ⟩
∣ g ∣ (∣ syn ∣ xs) ⊕ ((∣ f ∣ x ⊕ ∣ g ∣ (∣ syn ∣ ys)) ⊕ ∣ f ∣ y)
≈⟨ ⊕-cong X.refl (⊕-cong (⊕-comm (∣ f ∣ x) _) X.refl) ⟩
∣ g ∣ (∣ syn ∣ xs) ⊕ ((∣ g ∣ (∣ syn ∣ ys) ⊕ ∣ f ∣ x) ⊕ ∣ f ∣ y)
≈⟨ ⊕-cong X.refl (⊕-assoc _ (∣ f ∣ x) _) ⟩
∣ g ∣ (∣ syn ∣ xs) ⊕ (∣ g ∣ (∣ syn ∣ ys) ⊕ (∣ f ∣ x ⊕ ∣ f ∣ y))
≈⟨ X.sym (⊕-assoc _ _ _) ⟩
(∣ g ∣ (∣ syn ∣ xs) ⊕ ∣ g ∣ (∣ syn ∣ ys)) ⊕ (∣ f ∣ x ⊕ ∣ f ∣ y)
≈⟨ ⊕-cong (∣ g ⊙ syn ∣-hom • (xs ∷ ys ∷ [])) (∣ f ∣-hom • (x ∷ y ∷ [])) ⟩
∣ g ∣ (∣ syn ∣ (xs ⊗ ys)) ⊕ ∣ f ∣ (x · y)
∎
∣resid∣⃗ : ∥ Frex ∥/≈ ↝ ∥ X ∥/≈
∣resid∣⃗ = record { ∣_∣ = ∣resid∣
; ∣_∣-cong = ∣resid∣-cong
}
_[_,_] : ∥ Frex ∥ₐ ⟿ ∥ X ∥ₐ
_[_,_] = record { ∣_∣⃗ = ∣resid∣⃗
; ∣_∣-hom = ∣resid∣-hom
}
module _ {b ℓ} {X : Model {b} {ℓ}} where
private
open module X = Setoid ∥ X ∥/≈ renaming (_≈_ to _~_)
_⊕_ : ∥ X ∥ → ∥ X ∥ → ∥ X ∥
x ⊕ y = X ⟦ • ⟧ (x ∷ y ∷ [])
⊕-cong : ∀ {x y z w} → x ~ y → z ~ w → x ⊕ z ~ y ⊕ w
⊕-cong p q = (X ⟦ • ⟧-cong) (p ∷ q ∷ [])
⊕-comm : ∀ (x y : ∥ X ∥) → x ⊕ y ~ y ⊕ x
⊕-comm x y = ∥ X ∥ₐ-models comm (env {A = ∥ X ∥ₐ} (x ∷ y ∷ []))
⊕-assoc : ∀ (x y z : ∥ X ∥) → (x ⊕ y) ⊕ z ~ x ⊕ (y ⊕ z)
⊕-assoc x y z = ∥ X ∥ₐ-models assoc (env {A = ∥ X ∥ₐ} (x ∷ y ∷ z ∷ []))
module _
{f : ∥ A ∥ₐ ⟿ ∥ X ∥ₐ}
{g : ∥ J n ∥ₐ ⟿ ∥ X ∥ₐ}
where
commute₁ : X [ f , g ] ⊙ inl ≗ f
commute₁ = X.refl
commute₂ : X [ f , g ] ⊙ inr ≗ g
commute₂ {x} = ∣ g ∣-cong (syn⊙norm≗id {x = x})
module _ {h : ∥ Frex ∥ₐ ⟿ ∥ X ∥ₐ}
(c₁ : h ⊙ inl ≗ f)
(c₂ : h ⊙ inr ≗ g)
where
open Reasoning ∥ X ∥/≈
universal : X [ f , g ] ≗ h
universal {sta x} = X.sym c₁
universal {dyn xs} = begin
∣ g ∣ (∣ syn ∣ xs)
≈⟨ X.sym c₂ ⟩
∣ h ∣ (dyn (∣ norm ∣ (∣ syn ∣ xs)))
≈⟨ ∣ h ∣-cong (dyn norm⊙syn≗id) ⟩
∣ h ∣ (dyn xs)
∎
universal {blob xs x} = begin
∣ g ∣ (∣ syn ∣ xs) ⊕ ∣ f ∣ x
≈⟨ ⊕-cong universal universal ⟩
∣ h ∣ (dyn xs) ⊕ ∣ h ∣ (sta x)
≈⟨ ∣ h ∣-hom • (dyn xs ∷ sta x ∷ []) ⟩
∣ h ∣ (blob xs x)
∎
CSemigroupFrex : FreeExtension
CSemigroupFrex = record { _[_] = Frex
; _[_]-isFrex = isFrex
}
where isFrex : IsFreeExtension Frex
isFrex A n =
record { inl = inl A n
; inr = inr A n
; _[_,_] = _[_,_] A n
; commute₁ = λ {_ _ X f g} → commute₁ A n {X = X} {f} {g}
; commute₂ = λ {_ _ X f g} → commute₂ A n {X = X} {f} {g}
; universal = λ {_ _ X f g h} → universal A n {X = X} {f} {g} {h}
}
|
algebraic-stack_agda0000_doc_17155 | {-# OPTIONS --omega-in-omega --no-termination-check --overlapping-instances #-}
open import Light.Library.Data.Natural as ℕ using (ℕ ; predecessor ; zero)
open import Light.Package using (Package)
module Light.Literals.Level ⦃ natural‐package : Package record { ℕ } ⦄ where
open import Light.Literals.Definition.Natural using (FromNatural)
open FromNatural using (convert)
open import Light.Level using (Level ; 0ℓ ; ++_)
open import Light.Library.Relation.Decidable using (if_then_else_)
open import Light.Library.Relation.Binary.Equality using (_≈_)
open import Light.Library.Relation.Binary.Equality.Decidable using (DecidableEquality)
instance from‐natural : FromNatural Level
convert from‐natural n =
if n ≈ zero
then 0ℓ
else ++ convert from‐natural (predecessor n)
|
algebraic-stack_agda0000_doc_17156 | {-# OPTIONS --without-K #-}
open import lib.Basics
open import lib.types.Paths
open import lib.types.Pi
open import lib.types.Unit
module lib.types.Circle where
{-
Idea :
data S¹ : Type₀ where
base : S¹
loop : base == base
I’m using Dan Licata’s trick to have a higher inductive type with definitional
reduction rule for [base]
-}
module _ where
private
data #S¹-aux : Type₀ where
#base : #S¹-aux
data #S¹ : Type₀ where
#s¹ : #S¹-aux → (Unit → Unit) → #S¹
S¹ : Type₀
S¹ = #S¹
base : S¹
base = #s¹ #base _
postulate -- HIT
loop : base == base
module S¹Elim {i} {P : S¹ → Type i} (base* : P base)
(loop* : base* == base* [ P ↓ loop ]) where
f : Π S¹ P
f = f-aux phantom where
f-aux : Phantom loop* → Π S¹ P
f-aux phantom (#s¹ #base _) = base*
postulate -- HIT
loop-β : apd f loop == loop*
open S¹Elim public using () renaming (f to S¹-elim)
module S¹Rec {i} {A : Type i} (base* : A) (loop* : base* == base*) where
private
module M = S¹Elim base* (↓-cst-in loop*)
f : S¹ → A
f = M.f
loop-β : ap f loop == loop*
loop-β = apd=cst-in {f = f} M.loop-β
module S¹RecType {i} (A : Type i) (e : A ≃ A) where
open S¹Rec A (ua e) public
coe-loop-β : (a : A) → coe (ap f loop) a == –> e a
coe-loop-β a =
coe (ap f loop) a =⟨ loop-β |in-ctx (λ u → coe u a) ⟩
coe (ua e) a =⟨ coe-β e a ⟩
–> e a ∎
coe!-loop-β : (a : A) → coe! (ap f loop) a == <– e a
coe!-loop-β a =
coe! (ap f loop) a =⟨ loop-β |in-ctx (λ u → coe! u a) ⟩
coe! (ua e) a =⟨ coe!-β e a ⟩
<– e a ∎
↓-loop-out : {a a' : A} → a == a' [ f ↓ loop ] → –> e a == a'
↓-loop-out {a} {a'} p =
–> e a =⟨ ! (coe-loop-β a) ⟩
coe (ap f loop) a =⟨ to-transp p ⟩
a' ∎
import lib.types.Generic1HIT as Generic1HIT
module S¹G = Generic1HIT Unit Unit (idf _) (idf _)
module P = S¹G.RecType (cst A) (cst e)
private
generic-S¹ : Σ S¹ f == Σ S¹G.T P.f
generic-S¹ = eqv-tot where
module To = S¹Rec (S¹G.cc tt) (S¹G.pp tt)
to = To.f
module From = S¹G.Rec (cst base) (cst loop)
from : S¹G.T → S¹
from = From.f
abstract
to-from : (x : S¹G.T) → to (from x) == x
to-from = S¹G.elim (λ _ → idp) (λ _ → ↓-∘=idf-in to from
(ap to (ap from (S¹G.pp tt)) =⟨ From.pp-β tt |in-ctx ap to ⟩
ap to loop =⟨ To.loop-β ⟩
S¹G.pp tt ∎))
from-to : (x : S¹) → from (to x) == x
from-to = S¹-elim idp (↓-∘=idf-in from to
(ap from (ap to loop) =⟨ To.loop-β |in-ctx ap from ⟩
ap from (S¹G.pp tt) =⟨ From.pp-β tt ⟩
loop ∎))
eqv : S¹ ≃ S¹G.T
eqv = equiv to from to-from from-to
eqv-fib : f == P.f [ (λ X → (X → Type _)) ↓ ua eqv ]
eqv-fib =
↓-app→cst-in (λ {t} p → S¹-elim {P = λ t → f t == P.f (–> eqv t)} idp
(↓-='-in
(ap (P.f ∘ (–> eqv)) loop =⟨ ap-∘ P.f to loop ⟩
ap P.f (ap to loop) =⟨ To.loop-β |in-ctx ap P.f ⟩
ap P.f (S¹G.pp tt) =⟨ P.pp-β tt ⟩
ua e =⟨ ! loop-β ⟩
ap f loop ∎))
t ∙ ap P.f (↓-idf-ua-out eqv p))
eqv-tot : Σ S¹ f == Σ S¹G.T P.f
eqv-tot = ap (uncurry Σ) (pair= (ua eqv) eqv-fib)
import lib.types.Flattening as Flattening
module FlatteningS¹ = Flattening
Unit Unit (idf _) (idf _) (cst A) (cst e)
open FlatteningS¹ public hiding (flattening-equiv; module P)
flattening-S¹ : Σ S¹ f == Wt
flattening-S¹ = generic-S¹ ∙ ua FlatteningS¹.flattening-equiv
|
algebraic-stack_agda0000_doc_17157 | -- Andreas, 2015-06-24
{-# OPTIONS --copatterns #-}
-- {-# OPTIONS -v tc.with.strip:20 #-}
module _ where
open import Common.Equality
open import Common.Product
module SynchronousIO (I O : Set) where
F : Set → Set
F S = I → O × S
record SyncIO : Set₁ where
field
St : Set
tr : St → F St
module Eq (A₁ A₂ : SyncIO) where
open SyncIO A₁ renaming (St to S₁; tr to tr₁)
open SyncIO A₂ renaming (St to S₂; tr to tr₂)
record BiSim (s₁ : S₁) (s₂ : S₂) : Set where
coinductive
field
force : ∀ (i : I) →
let (o₁ , t₁) = tr₁ s₁ i
(o₂ , t₂) = tr₂ s₂ i
in o₁ ≡ o₂ × BiSim t₁ t₂
module Trans (A₁ A₂ A₃ : SyncIO) where
open SyncIO A₁ renaming (St to S₁; tr to tr₁)
open SyncIO A₂ renaming (St to S₂; tr to tr₂)
open SyncIO A₃ renaming (St to S₃; tr to tr₃)
open Eq A₁ A₂ renaming (BiSim to _₁≅₂_; module BiSim to B₁₂)
open Eq A₂ A₃ renaming (BiSim to _₂≅₃_; module BiSim to B₂₃)
open Eq A₁ A₃ renaming (BiSim to _₁≅₃_; module BiSim to B₁₃)
open B₁₂ renaming (force to force₁₂)
open B₂₃ renaming (force to force₂₃)
open B₁₃ renaming (force to force₁₃)
transitivity : ∀{s₁ s₂ s₃} (p : s₁ ₁≅₂ s₂) (p' : s₂ ₂≅₃ s₃) → s₁ ₁≅₃ s₃
force₁₃ (transitivity p p') i with force₁₂ p i | force₂₃ p' i
force₁₃ (transitivity p p') i | (q , r) | (q' , r') = trans q q' , transitivity r r'
-- with-clause stripping failed for projections from module applications
-- should work now
|
algebraic-stack_agda0000_doc_17158 | -- MIT License
-- Copyright (c) 2021 Luca Ciccone and Luca Padovani
-- Permission is hereby granted, free of charge, to any person
-- obtaining a copy of this software and associated documentation
-- files (the "Software"), to deal in the Software without
-- restriction, including without limitation the rights to use,
-- copy, modify, merge, publish, distribute, sublicense, and/or sell
-- copies of the Software, and to permit persons to whom the
-- Software is furnished to do so, subject to the following
-- conditions:
-- The above copyright notice and this permission notice shall be
-- included in all copies or substantial portions of the Software.
-- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
-- EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
-- OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-- NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
-- HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
-- WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
-- FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
-- OTHER DEALINGS IN THE SOFTWARE.
{-# OPTIONS --guardedness --sized-types #-}
open import Data.Empty
open import Data.Product
open import Data.Sum
open import Data.List using ([]; _∷_; _∷ʳ_; _++_)
open import Data.List.Properties using (∷-injective)
open import Relation.Nullary
open import Relation.Nullary.Negation using (contraposition)
open import Relation.Unary using (_∈_; _∉_; _⊆_)
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; subst; subst₂; cong)
open import Relation.Binary.Construct.Closure.ReflexiveTransitive using (ε; _◅_)
open import Function.Base using (case_of_)
open import Common
module Discriminator {ℙ : Set} (message : Message ℙ)
where
open import Trace message
open import SessionType message
open import HasTrace message
open import TraceSet message
open import Transitions message
open import Subtyping message
open import Divergence message
open import Session message
open import Semantics message
make-diverge-backward :
∀{T S α}
(tα : T HasTrace (α ∷ []))
(sα : S HasTrace (α ∷ [])) ->
T ↑ S ->
after tα ↑ after sα ->
DivergeBackward tα sα
make-diverge-backward tα sα divε divα none = divε
make-diverge-backward tα sα divε divα (some none) =
subst₂ (λ u v -> after u ↑ after v) (sym (⊑-has-trace-after tα)) (sym (⊑-has-trace-after sα)) divα
has-trace-after-split :
∀{T φ ψ} ->
(tφ : T HasTrace φ)
(tφψ : T HasTrace (φ ++ ψ)) ->
has-trace-after tφ (split-trace tφ tφψ) ≡ tφψ
has-trace-after-split (_ , tdef , refl) tφψ = refl
has-trace-after-split (_ , tdef , step inp tr) (_ , sdef , step inp sr)
rewrite has-trace-after-split (_ , tdef , tr) (_ , sdef , sr) = refl
has-trace-after-split (T , tdef , step (out fx) tr) (S , sdef , step (out gx) sr)
rewrite has-trace-after-split (_ , tdef , tr) (_ , sdef , sr) =
cong (S ,_) (cong (sdef ,_) (cong (λ z -> step z sr) (cong out (Defined-eq (transitions+defined->defined sr sdef) gx))))
disc-set-has-outputs :
∀{T S φ x} ->
T <: S ->
φ ∈ DiscSet T S ->
T HasTrace (φ ∷ʳ O x) ->
S HasTrace φ ->
φ ∷ʳ O x ∈ DiscSet T S
disc-set-has-outputs {_} {S} {φ} {x} sub (inc tφ sφ div←φ) tφx _ with S HasTrace? (φ ∷ʳ O x)
... | yes sφx =
let tφ/x = split-trace tφ tφx in
let sφ/x = split-trace sφ sφx in
let divφ = subst₂ (λ u v -> after u ↑ after v) (⊑-has-trace-after tφ) (⊑-has-trace-after sφ) (div←φ (⊑-refl φ)) in
let divx = _↑_.divergence divφ {[]} {x} none tφ/x sφ/x in
let divφ←x = make-diverge-backward tφ/x sφ/x divφ divx in
let div←φx = subst₂ DivergeBackward (has-trace-after-split tφ tφx) (has-trace-after-split sφ sφx) (append-diverge-backward tφ sφ tφ/x sφ/x div←φ divφ←x) in
inc tφx sφx div←φx
... | no nsφx = exc refl tφ sφ tφx nsφx div←φ
disc-set-has-outputs sub (exc eq tψ sψ tφ nsφ div←ψ) tφx sφ = ⊥-elim (nsφ sφ)
defined-becomes-nil :
∀{T φ S} ->
Defined T ->
¬ Defined S ->
Transitions T φ S ->
∃[ ψ ] ∃[ x ] (φ ≡ ψ ∷ʳ I x × T HasTrace ψ × ¬ T HasTrace φ)
defined-becomes-nil def ndef refl = ⊥-elim (ndef def)
defined-becomes-nil def ndef (step (inp {_} {x}) refl) =
[] , x , refl , (_ , inp , refl) , inp-has-no-trace λ { (_ , def , refl) → ⊥-elim (ndef def) }
defined-becomes-nil def ndef (step inp tr@(step t _)) with defined-becomes-nil (transition->defined t) ndef tr
... | ψ , x , eq , tψ , ntφ =
I _ ∷ ψ , x , cong (I _ ∷_) eq , inp-has-trace tψ , inp-has-no-trace ntφ
defined-becomes-nil def ndef (step (out fx) tr) with defined-becomes-nil fx ndef tr
... | ψ , x , refl , tψ , ntφ =
O _ ∷ ψ , x , refl , out-has-trace tψ , out-has-no-trace ntφ
sub+diverge->defined : ∀{T S} -> T <: S -> T ↑ S -> Defined T × Defined S
sub+diverge->defined nil<:any div with _↑_.with-trace div
... | _ , def , tr = ⊥-elim (contraposition (transitions+defined->defined tr) (λ ()) def)
sub+diverge->defined (end<:def (inp _) def) _ = inp , def
sub+diverge->defined (end<:def (out _) def) _ = out , def
sub+diverge->defined (inp<:inp _ _) _ = inp , inp
sub+diverge->defined (out<:out _ _ _) _ = out , out
sub+diverge->has-empty-trace : ∀{T S} -> T <: S -> T ↑ S -> DiscSet T S []
sub+diverge->has-empty-trace nil<:any div with _↑_.with-trace div
... | tφ = ⊥-elim (nil-has-no-trace tφ)
sub+diverge->has-empty-trace (end<:def e def) div with _↑_.with-trace div | _↑_.without-trace div
... | tφ | nsφ rewrite end-has-empty-trace e tφ = ⊥-elim (nsφ (defined->has-empty-trace def))
sub+diverge->has-empty-trace (inp<:inp _ _) div = inc (_ , inp , refl) (_ , inp , refl) λ { none → div }
sub+diverge->has-empty-trace (out<:out _ _ _) div = inc (_ , out , refl) (_ , out , refl) λ { none → div }
discriminator : SessionType -> SessionType -> SessionType
discriminator T S = decode (co-semantics (disc-set->semantics T S)) .force
discriminator-disc-set-sub : (T S : SessionType) -> CoSet ⟦ discriminator T S ⟧ ⊆ DiscSet T S
discriminator-disc-set-sub T S rφ =
co-inversion {DiscSet T S} (decode-sub (co-semantics (disc-set->semantics T S)) rφ)
discriminator-disc-set-sup : (T S : SessionType) -> DiscSet T S ⊆ CoSet ⟦ discriminator T S ⟧
discriminator-disc-set-sup T S dφ =
decode-sup (co-semantics (disc-set->semantics T S)) (co-definition {DiscSet T S} dφ)
sub+diverge->discriminator-defined : ∀{T S} -> T <: S -> T ↑ S -> Defined (discriminator T S)
sub+diverge->discriminator-defined {T} {S} sub div =
has-trace->defined (co-set-right->left {DiscSet T S} {⟦ discriminator T S ⟧} (discriminator-disc-set-sup T S) (co-definition {DiscSet T S} {[]} (sub+diverge->has-empty-trace sub div)))
input-does-not-win :
∀{T S φ x} (tφ : T HasTrace φ) -> Transitions T (φ ∷ʳ I x) S -> ¬ Win (after tφ)
input-does-not-win (_ , _ , refl) (step inp _) ()
input-does-not-win (_ , def , step inp tr) (step inp sr) w = input-does-not-win (_ , def , tr) sr w
input-does-not-win (_ , def , step (out _) tr) (step (out _) sr) w = input-does-not-win (_ , def , tr) sr w
ends-with-output->has-trace : ∀{T S φ x} -> Transitions T (φ ∷ʳ O x) S -> T HasTrace (φ ∷ʳ O x)
ends-with-output->has-trace tr = _ , output-transitions->defined tr , tr
co-trace-swap : ∀{φ ψ} -> co-trace φ ≡ ψ -> φ ≡ co-trace ψ
co-trace-swap {φ} eq rewrite sym eq rewrite co-trace-involution φ = refl
co-trace-swap-⊑ : ∀{φ ψ} -> co-trace φ ⊑ ψ -> φ ⊑ co-trace ψ
co-trace-swap-⊑ {[]} none = none
co-trace-swap-⊑ {α ∷ _} (some le) rewrite co-action-involution α = some (co-trace-swap-⊑ le)
co-maximal : ∀{X φ} -> φ ∈ Maximal X -> co-trace φ ∈ Maximal (CoSet X)
co-maximal {X} (maximal xφ F) =
maximal (co-definition {X} xφ) λ le xψ -> let le' = co-trace-swap-⊑ le in
let eq = F le' xψ in
co-trace-swap eq
co-maximal-2 : ∀{X φ} -> co-trace φ ∈ Maximal (CoSet X) -> φ ∈ Maximal X
co-maximal-2 {X} (maximal wit F) =
maximal (co-inversion {X} wit) λ le xψ -> let le' = ⊑-co-trace le in
let eq = F le' (co-definition {X} xψ) in
co-trace-injective eq
co-trace->co-set : ∀{X φ} -> co-trace φ ∈ Maximal X -> φ ∈ Maximal (CoSet X)
co-trace->co-set {_} {φ} cxφ with co-maximal cxφ
... | res rewrite co-trace-involution φ = res
discriminator-after-sync->defined :
∀{R T S T' φ} ->
T <: S ->
(rdef : Defined (discriminator T S))
(rr : Transitions (discriminator T S) (co-trace φ) R)
(tr : Transitions T φ T') ->
Defined R
discriminator-after-sync->defined {R} {T} {S} sub rdef rr tr with Defined? R
... | yes rdef' = rdef'
... | no nrdef' with defined-becomes-nil rdef nrdef' rr
... | ψ , x , eq , rψ , nrφ rewrite eq with input-does-not-win rψ rr
... | nwin with contraposition (decode+maximal->win (co-semantics (disc-set->semantics T S)) rψ) nwin
... | ncψ with decode-sub (co-semantics (disc-set->semantics T S)) rψ
... | dsψ with contraposition (disc-set-maximal-1 dsψ) (contraposition co-trace->co-set ncψ)
... | nnsψ with has-trace-double-negation nnsψ
... | sψ with (let tr' = subst (λ z -> Transitions _ z _) (co-trace-swap eq) tr in
let tr'' = subst (λ z -> Transitions _ z _) (co-trace-++ ψ (I x ∷ [])) tr' in
ends-with-output->has-trace tr'')
... | tψ with disc-set-has-outputs sub dsψ tψ sψ
... | dsφ with decode-sup (co-semantics (disc-set->semantics T S)) (co-definition {DiscSet T S} dsφ)
... | rφ = let rφ' = subst (_ HasTrace_) (co-trace-++ (co-trace ψ) (O x ∷ [])) rφ in
let rφ'' = subst (λ z -> _ HasTrace (z ++ _)) (co-trace-involution ψ) rφ' in
⊥-elim (nrφ rφ'')
after-trace-defined : ∀{T T' φ} -> T HasTrace φ -> Transitions T φ T' -> Defined T'
after-trace-defined (_ , def , refl) refl = def
after-trace-defined (_ , def , step inp tr) (step inp sr) = after-trace-defined (_ , def , tr) sr
after-trace-defined (_ , def , step (out _) tr) (step (out _) sr) = after-trace-defined (_ , def , tr) sr
after-trace-defined-2 : ∀{T φ} (tφ : T HasTrace φ) -> Defined (after tφ)
after-trace-defined-2 (_ , def , _) = def
⊑-after : ∀{φ ψ} -> φ ⊑ ψ -> Trace
⊑-after {_} {ψ} none = ψ
⊑-after (some le) = ⊑-after le
⊑-after-co-trace : ∀{φ ψ} (le : φ ⊑ ψ) -> ⊑-after (⊑-co-trace le) ≡ co-trace (⊑-after le)
⊑-after-co-trace none = refl
⊑-after-co-trace (some le) = ⊑-after-co-trace le
extend-transitions :
∀{T S φ ψ}
(le : φ ⊑ ψ)
(tr : Transitions T φ S)
(tψ : T HasTrace ψ) ->
Transitions S (⊑-after le) (after tψ)
extend-transitions none refl (_ , _ , sr) = sr
extend-transitions (some le) (step inp tr) (_ , sdef , step inp sr) = extend-transitions le tr (_ , sdef , sr)
extend-transitions (some le) (step (out _) tr) (_ , sdef , step (out _) sr) = extend-transitions le tr (_ , sdef , sr)
discriminator-compliant : ∀{T S} -> T <: S -> T ↑ S -> FairComplianceS (discriminator T S # T)
discriminator-compliant {T} {S} sub div {R' # T'} reds with unzip-red* reds
... | φ , rr , tr with sub+diverge->discriminator-defined sub div | sub+diverge->defined sub div
... | rdef | tdef , sdef with discriminator-after-sync->defined sub rdef rr tr
... | rdef' with decode-sub (co-semantics (disc-set->semantics T S)) (_ , rdef' , rr)
... | dsφ rewrite co-trace-involution φ =
case completion sub dsφ of
λ { (inj₁ (ψ , lt , cψ@(maximal dsψ _))) ->
let rψ = decode-sup (co-semantics (disc-set->semantics T S)) (co-definition {DiscSet T S} dsψ) in
let tψ = disc-set-subset dsψ in
let rr' = subst (λ z -> Transitions _ z _) (⊑-after-co-trace (⊏->⊑ lt)) (extend-transitions (⊑-co-trace (⊏->⊑ lt)) rr rψ) in
let tr' = extend-transitions (⊏->⊑ lt) tr tψ in
let winr = decode+maximal->win (co-semantics (disc-set->semantics T S)) rψ (co-maximal cψ) in
let reds' = zip-red* rr' tr' in
_ , reds' , win#def winr (after-trace-defined-2 tψ)
; (inj₂ (cφ , nsφ)) ->
let winr = decode+maximal->win (co-semantics (disc-set->semantics T S)) (_ , rdef' , rr) (co-maximal cφ) in
_ , ε , win#def winr (after-trace-defined (disc-set-subset dsφ) tr) }
discriminator-not-compliant : ∀{T S} -> T <: S -> T ↑ S -> ¬ FairComplianceS (discriminator T S # S)
discriminator-not-compliant {T} {S} sub div comp with comp ε
... | _ , reds , win#def w def with unzip-red* reds
... | φ , rr , sr with decode+win->maximal (co-semantics (disc-set->semantics T S)) (_ , win->defined w , rr) w
... | cφ with co-maximal-2 {DiscSet T S} cφ
... | csφ with disc-set-maximal-2 sub csφ
... | nsφ = nsφ (_ , def , sr) |
algebraic-stack_agda0000_doc_17159 | ------------------------------------------------------------------------
-- A type for values that should be erased at run-time
------------------------------------------------------------------------
-- Most of the definitions in this module are reexported, in one way
-- or another, from Erased.
-- This module imports Function-universe, but not Equivalence.Erased.
{-# OPTIONS --without-K --safe #-}
open import Equality
module Erased.Level-1
{e⁺} (eq-J : ∀ {a p} → Equality-with-J a p e⁺) where
open Derived-definitions-and-properties eq-J
hiding (module Extensionality)
open import Logical-equivalence using (_⇔_)
open import Prelude hiding ([_,_])
open import Bijection eq-J as Bijection using (_↔_; Has-quasi-inverse)
open import Embedding eq-J as Emb using (Embedding; Is-embedding)
open import Equality.Decidable-UIP eq-J
open import Equivalence eq-J as Eq using (_≃_; Is-equivalence)
import Equivalence.Contractible-preimages eq-J as CP
open import Equivalence.Erased.Basics eq-J as EEq
using (_≃ᴱ_; Is-equivalenceᴱ)
open import Equivalence-relation eq-J
open import Function-universe eq-J as F hiding (id; _∘_)
open import H-level eq-J as H-level
open import H-level.Closure eq-J
open import Injection eq-J using (_↣_; Injective)
open import Monad eq-J hiding (map; map-id; map-∘)
open import Preimage eq-J using (_⁻¹_)
open import Surjection eq-J as Surjection using (_↠_; Split-surjective)
open import Univalence-axiom eq-J as U using (≡⇒→; _²/≡)
private
variable
a b c d ℓ ℓ₁ ℓ₂ q r : Level
A B : Type a
eq k k′ p x y : A
P : A → Type p
f g : A → B
n : ℕ
------------------------------------------------------------------------
-- Some basic definitions
open import Erased.Basics public
------------------------------------------------------------------------
-- Stability
mutual
-- A type A is stable if Erased A implies A.
Stable : Type a → Type a
Stable = Stable-[ implication ]
-- A generalisation of Stable.
Stable-[_] : Kind → Type a → Type a
Stable-[ k ] A = Erased A ↝[ k ] A
-- A variant of Stable-[ equivalence ].
Very-stable : Type a → Type a
Very-stable A = Is-equivalence [ A ∣_]→
-- A variant of Stable-[ equivalenceᴱ ].
Very-stableᴱ : Type a → Type a
Very-stableᴱ A = Is-equivalenceᴱ [ A ∣_]→
-- Variants of the definitions above for equality.
Stable-≡ : Type a → Type a
Stable-≡ = For-iterated-equality 1 Stable
Stable-≡-[_] : Kind → Type a → Type a
Stable-≡-[ k ] = For-iterated-equality 1 Stable-[ k ]
Very-stable-≡ : Type a → Type a
Very-stable-≡ = For-iterated-equality 1 Very-stable
Very-stableᴱ-≡ : Type a → Type a
Very-stableᴱ-≡ = For-iterated-equality 1 Very-stableᴱ
------------------------------------------------------------------------
-- Erased is a monad
-- A universe-polymorphic variant of bind.
infixl 5 _>>=′_
_>>=′_ :
{@0 A : Type a} {@0 B : Type b} →
Erased A → (A → Erased B) → Erased B
x >>=′ f = [ erased (f (erased x)) ]
instance
-- Erased is a monad.
raw-monad : Raw-monad (λ (A : Type a) → Erased A)
Raw-monad.return raw-monad = [_]→
Raw-monad._>>=_ raw-monad = _>>=′_
monad : Monad (λ (A : Type a) → Erased A)
Monad.raw-monad monad = raw-monad
Monad.left-identity monad = λ _ _ → refl _
Monad.right-identity monad = λ _ → refl _
Monad.associativity monad = λ _ _ _ → refl _
------------------------------------------------------------------------
-- Erased preserves some kinds of functions
-- Erased is functorial for dependent functions.
map-id : {@0 A : Type a} → map id ≡ id {A = Erased A}
map-id = refl _
map-∘ :
{@0 A : Type a} {@0 P : A → Type b} {@0 Q : {x : A} → P x → Type c}
(@0 f : ∀ {x} (y : P x) → Q y) (@0 g : (x : A) → P x) →
map (f ∘ g) ≡ map f ∘ map g
map-∘ _ _ = refl _
-- Erased preserves logical equivalences.
Erased-cong-⇔ :
{@0 A : Type a} {@0 B : Type b} →
@0 A ⇔ B → Erased A ⇔ Erased B
Erased-cong-⇔ A⇔B = record
{ to = map (_⇔_.to A⇔B)
; from = map (_⇔_.from A⇔B)
}
-- Erased is functorial for logical equivalences.
Erased-cong-⇔-id :
{@0 A : Type a} →
Erased-cong-⇔ F.id ≡ F.id {A = Erased A}
Erased-cong-⇔-id = refl _
Erased-cong-⇔-∘ :
{@0 A : Type a} {@0 B : Type b} {@0 C : Type c}
(@0 f : B ⇔ C) (@0 g : A ⇔ B) →
Erased-cong-⇔ (f F.∘ g) ≡ Erased-cong-⇔ f F.∘ Erased-cong-⇔ g
Erased-cong-⇔-∘ _ _ = refl _
-- Erased preserves equivalences with erased proofs.
Erased-cong-≃ᴱ :
{@0 A : Type a} {@0 B : Type b} →
@0 A ≃ᴱ B → Erased A ≃ᴱ Erased B
Erased-cong-≃ᴱ A≃ᴱB = EEq.↔→≃ᴱ
(map (_≃ᴱ_.to A≃ᴱB))
(map (_≃ᴱ_.from A≃ᴱB))
(cong [_]→ ∘ _≃ᴱ_.right-inverse-of A≃ᴱB ∘ erased)
(cong [_]→ ∘ _≃ᴱ_.left-inverse-of A≃ᴱB ∘ erased)
------------------------------------------------------------------------
-- Some isomorphisms
-- In an erased context Erased A is always isomorphic to A.
Erased↔ : {@0 A : Type a} → Erased (Erased A ↔ A)
Erased↔ = [ record
{ surjection = record
{ logical-equivalence = record
{ to = erased
; from = [_]→
}
; right-inverse-of = λ _ → refl _
}
; left-inverse-of = λ _ → refl _
} ]
-- The following result is based on a result in Mishra-Linger's PhD
-- thesis (see Section 5.4.4).
-- Erased (Erased A) is isomorphic to Erased A.
Erased-Erased↔Erased :
{@0 A : Type a} →
Erased (Erased A) ↔ Erased A
Erased-Erased↔Erased = record
{ surjection = record
{ logical-equivalence = record
{ to = λ x → [ erased (erased x) ]
; from = [_]→
}
; right-inverse-of = λ _ → refl _
}
; left-inverse-of = λ _ → refl _
}
-- Erased ⊤ is isomorphic to ⊤.
Erased-⊤↔⊤ : Erased ⊤ ↔ ⊤
Erased-⊤↔⊤ = record
{ surjection = record
{ logical-equivalence = record
{ to = λ _ → tt
; from = [_]→
}
; right-inverse-of = λ _ → refl _
}
; left-inverse-of = λ _ → refl _
}
-- Erased ⊥ is isomorphic to ⊥.
Erased-⊥↔⊥ : Erased (⊥ {ℓ = ℓ}) ↔ ⊥ {ℓ = ℓ}
Erased-⊥↔⊥ = record
{ surjection = record
{ logical-equivalence = record
{ to = λ { [ () ] }
; from = [_]→
}
; right-inverse-of = λ ()
}
; left-inverse-of = λ { [ () ] }
}
-- Erased commutes with Π A.
Erased-Π↔Π :
{@0 P : A → Type p} →
Erased ((x : A) → P x) ↔ ((x : A) → Erased (P x))
Erased-Π↔Π = record
{ surjection = record
{ logical-equivalence = record
{ to = λ { [ f ] x → [ f x ] }
; from = λ f → [ (λ x → erased (f x)) ]
}
; right-inverse-of = λ _ → refl _
}
; left-inverse-of = λ _ → refl _
}
-- A variant of Erased-Π↔Π.
Erased-Π≃ᴱΠ :
{@0 A : Type a} {@0 P : A → Type p} →
Erased ((x : A) → P x) ≃ᴱ ((x : A) → Erased (P x))
Erased-Π≃ᴱΠ = EEq.[≃]→≃ᴱ (EEq.[proofs] $ from-isomorphism Erased-Π↔Π)
-- Erased commutes with Π.
Erased-Π↔Π-Erased :
{@0 A : Type a} {@0 P : A → Type p} →
Erased ((x : A) → P x) ↔ ((x : Erased A) → Erased (P (erased x)))
Erased-Π↔Π-Erased = record
{ surjection = record
{ logical-equivalence = record
{ to = λ ([ f ]) → map f
; from = λ f → [ (λ x → erased (f [ x ])) ]
}
; right-inverse-of = λ _ → refl _
}
; left-inverse-of = λ _ → refl _
}
-- Erased commutes with Σ.
Erased-Σ↔Σ :
{@0 A : Type a} {@0 P : A → Type p} →
Erased (Σ A P) ↔ Σ (Erased A) (λ x → Erased (P (erased x)))
Erased-Σ↔Σ = record
{ surjection = record
{ logical-equivalence = record
{ to = λ { [ p ] → [ proj₁ p ] , [ proj₂ p ] }
; from = λ { ([ x ] , [ y ]) → [ x , y ] }
}
; right-inverse-of = λ _ → refl _
}
; left-inverse-of = λ _ → refl _
}
-- Erased commutes with ↑ ℓ.
Erased-↑↔↑ :
{@0 A : Type a} →
Erased (↑ ℓ A) ↔ ↑ ℓ (Erased A)
Erased-↑↔↑ = record
{ surjection = record
{ logical-equivalence = record
{ to = λ { [ x ] → lift [ lower x ] }
; from = λ { (lift [ x ]) → [ lift x ] }
}
; right-inverse-of = λ _ → refl _
}
; left-inverse-of = λ _ → refl _
}
-- Erased commutes with ¬_ (assuming extensionality).
Erased-¬↔¬ :
{@0 A : Type a} →
Erased (¬ A) ↝[ a ∣ lzero ] ¬ Erased A
Erased-¬↔¬ {A = A} ext =
Erased (A → ⊥) ↔⟨ Erased-Π↔Π-Erased ⟩
(Erased A → Erased ⊥) ↝⟨ (∀-cong ext λ _ → from-isomorphism Erased-⊥↔⊥) ⟩□
(Erased A → ⊥) □
-- Erased can be dropped under ¬_ (assuming extensionality).
¬-Erased↔¬ :
{A : Type a} →
¬ Erased A ↝[ a ∣ lzero ] ¬ A
¬-Erased↔¬ {a = a} {A = A} =
generalise-ext?-prop
(record
{ to = λ ¬[a] a → ¬[a] [ a ]
; from = λ ¬a ([ a ]) → _↔_.to Erased-⊥↔⊥ [ ¬a a ]
})
¬-propositional
¬-propositional
-- The following three results are inspired by a result in
-- Mishra-Linger's PhD thesis (see Section 5.4.1).
--
-- See also Π-Erased↔Π0[], Π-Erased≃Π0[], Π-Erased↔Π0 and Π-Erased≃Π0
-- in Erased.Cubical and Erased.With-K.
-- There is a logical equivalence between
-- (x : Erased A) → P (erased x) and (@0 x : A) → P x.
Π-Erased⇔Π0 :
{@0 A : Type a} {@0 P : A → Type p} →
((x : Erased A) → P (erased x)) ⇔ ((@0 x : A) → P x)
Π-Erased⇔Π0 = record
{ to = λ f x → f [ x ]
; from = λ f ([ x ]) → f x
}
-- There is an equivalence with erased proofs between
-- (x : Erased A) → P (erased x) and (@0 x : A) → P x.
Π-Erased≃ᴱΠ0 :
{@0 A : Type a} {@0 P : A → Type p} →
((x : Erased A) → P (erased x)) ≃ᴱ ((@0 x : A) → P x)
Π-Erased≃ᴱΠ0 = EEq.↔→≃ᴱ
(_⇔_.to Π-Erased⇔Π0)
(_⇔_.from Π-Erased⇔Π0)
refl
refl
-- There is an equivalence between (x : Erased A) → P (erased x) and
-- (@0 x : A) → P x.
Π-Erased≃Π0 :
{@0 A : Type a} {P : @0 A → Type p} →
((x : Erased A) → P (erased x)) ≃ ((@0 x : A) → P x)
Π-Erased≃Π0 {A = A} {P = P} =
Eq.↔→≃ {B = (@0 x : A) → P x}
(_⇔_.to Π-Erased⇔Π0)
(_⇔_.from Π-Erased⇔Π0)
(λ _ → refl {A = (@0 x : A) → P x} _)
(λ _ → refl _)
-- A variant of Π-Erased≃Π0.
Π-Erased≃Π0[] :
{@0 A : Type a} {P : Erased A → Type p} →
((x : Erased A) → P x) ≃ ((@0 x : A) → P [ x ])
Π-Erased≃Π0[] = Π-Erased≃Π0
-- Erased commutes with W up to logical equivalence.
Erased-W⇔W :
{@0 A : Type a} {@0 P : A → Type p} →
Erased (W A P) ⇔ W (Erased A) (λ x → Erased (P (erased x)))
Erased-W⇔W {A = A} {P = P} = record { to = to; from = from }
where
to : Erased (W A P) → W (Erased A) (λ x → Erased (P (erased x)))
to [ sup x f ] = sup [ x ] (λ ([ y ]) → to [ f y ])
from : W (Erased A) (λ x → Erased (P (erased x))) → Erased (W A P)
from (sup [ x ] f) = [ sup x (λ y → erased (from (f [ y ]))) ]
----------------------------------------------------------------------
-- Erased is a modality
-- Erased is the modal operator of a uniquely eliminating modality
-- with [_]→ as the modal unit.
--
-- The terminology here roughly follows that of "Modalities in
-- Homotopy Type Theory" by Rijke, Shulman and Spitters.
uniquely-eliminating-modality :
{@0 P : Erased A → Type p} →
Is-equivalence
(λ (f : (x : Erased A) → Erased (P x)) → f ∘ [ A ∣_]→)
uniquely-eliminating-modality {A = A} {P = P} =
_≃_.is-equivalence
(((x : Erased A) → Erased (P x)) ↔⟨ inverse Erased-Π↔Π-Erased ⟩
Erased ((x : A) → (P [ x ])) ↔⟨ Erased-Π↔Π ⟩
((x : A) → Erased (P [ x ])) □)
-- Two results that are closely related to
-- uniquely-eliminating-modality.
--
-- These results are based on the Coq source code accompanying
-- "Modalities in Homotopy Type Theory" by Rijke, Shulman and
-- Spitters.
-- Precomposition with [_]→ is injective for functions from Erased A
-- to Erased B.
∘-[]-injective :
{@0 B : Type b} →
Injective (λ (f : Erased A → Erased B) → f ∘ [_]→)
∘-[]-injective = _≃_.injective Eq.⟨ _ , uniquely-eliminating-modality ⟩
-- A rearrangement lemma for ext⁻¹ and ∘-[]-injective.
ext⁻¹-∘-[]-injective :
{@0 B : Type b} {f g : Erased A → Erased B} {p : f ∘ [_]→ ≡ g ∘ [_]→} →
ext⁻¹ (∘-[]-injective {x = f} {y = g} p) [ x ] ≡ ext⁻¹ p x
ext⁻¹-∘-[]-injective {x = x} {f = f} {g = g} {p = p} =
ext⁻¹ (∘-[]-injective p) [ x ] ≡⟨ elim₁
(λ p → ext⁻¹ p [ x ] ≡ ext⁻¹ (_≃_.from equiv p) x) (
ext⁻¹ (refl g) [ x ] ≡⟨ cong-refl (_$ [ x ]) ⟩
refl (g [ x ]) ≡⟨ sym $ cong-refl _ ⟩
ext⁻¹ (refl (g ∘ [_]→)) x ≡⟨ cong (λ p → ext⁻¹ p x) $ sym $ cong-refl _ ⟩∎
ext⁻¹ (_≃_.from equiv (refl g)) x ∎)
(∘-[]-injective p) ⟩
ext⁻¹ (_≃_.from equiv (∘-[]-injective p)) x ≡⟨ cong (flip ext⁻¹ x) $ _≃_.left-inverse-of equiv _ ⟩∎
ext⁻¹ p x ∎
where
equiv = Eq.≃-≡ Eq.⟨ _ , uniquely-eliminating-modality ⟩
----------------------------------------------------------------------
-- Some lemmas related to functions with erased domains
-- A variant of H-level.Π-closure for function spaces with erased
-- explicit domains. Note the type of P.
Πᴱ-closure :
{@0 A : Type a} {P : @0 A → Type p} →
Extensionality a p →
∀ n →
((@0 x : A) → H-level n (P x)) →
H-level n ((@0 x : A) → P x)
Πᴱ-closure {P = P} ext n =
(∀ (@0 x) → H-level n (P x)) →⟨ Eq._≃₀_.from Π-Erased≃Π0 ⟩
(∀ x → H-level n (P (x .erased))) →⟨ Π-closure ext n ⟩
H-level n (∀ x → P (x .erased)) →⟨ H-level-cong {B = ∀ (@0 x) → P x} _ n Π-Erased≃Π0 ⟩□
H-level n (∀ (@0 x) → P x) □
-- A variant of H-level.Π-closure for function spaces with erased
-- implicit domains. Note the type of P.
implicit-Πᴱ-closure :
{@0 A : Type a} {P : @0 A → Type p} →
Extensionality a p →
∀ n →
((@0 x : A) → H-level n (P x)) →
H-level n ({@0 x : A} → P x)
implicit-Πᴱ-closure {A = A} {P = P} ext n =
(∀ (@0 x) → H-level n (P x)) →⟨ Πᴱ-closure ext n ⟩
H-level n (∀ (@0 x) → P x) →⟨ H-level-cong {A = ∀ (@0 x) → P x} {B = ∀ {@0 x} → P x} _ n $
inverse {A = ∀ {@0 x} → P x} {B = ∀ (@0 x) → P x}
Bijection.implicit-Πᴱ↔Πᴱ′ ⟩□
H-level n (∀ {@0 x} → P x) □
-- Extensionality implies extensionality for some functions with
-- erased arguments (note the type of P).
apply-extᴱ :
{@0 A : Type a} {P : @0 A → Type p} {f g : (@0 x : A) → P x} →
Extensionality a p →
((@0 x : A) → f x ≡ g x) →
f ≡ g
apply-extᴱ {A = A} {P = P} {f = f} {g = g} ext =
((@0 x : A) → f x ≡ g x) →⟨ Eq._≃₀_.from Π-Erased≃Π0 ⟩
((x : Erased A) → f (x .erased) ≡ g (x .erased)) →⟨ apply-ext ext ⟩
(λ x → f (x .erased)) ≡ (λ x → g (x .erased)) →⟨ cong {B = (@0 x : A) → P x} (Eq._≃₀_.to Π-Erased≃Π0) ⟩□
f ≡ g □
-- Extensionality implies extensionality for some functions with
-- implicit erased arguments (note the type of P).
implicit-apply-extᴱ :
{@0 A : Type a} {P : @0 A → Type p} {f g : {@0 x : A} → P x} →
Extensionality a p →
((@0 x : A) → f {x = x} ≡ g {x = x}) →
_≡_ {A = {@0 x : A} → P x} f g
implicit-apply-extᴱ {A = A} {P = P} {f = f} {g = g} ext =
((@0 x : A) → f {x = x} ≡ g {x = x}) →⟨ apply-extᴱ ext ⟩
_≡_ {A = (@0 x : A) → P x} (λ x → f {x = x}) (λ x → g {x = x}) →⟨ cong {A = (@0 x : A) → P x} {B = {@0 x : A} → P x} (λ f {x = x} → f x) ⟩□
_≡_ {A = {@0 x : A} → P x} f g □
------------------------------------------------------------------------
-- A variant of Dec ∘ Erased
-- Dec-Erased A means that either we have A (erased), or we have ¬ A
-- (also erased).
Dec-Erased : @0 Type ℓ → Type ℓ
Dec-Erased A = Erased A ⊎ Erased (¬ A)
-- Dec A implies Dec-Erased A.
Dec→Dec-Erased :
{@0 A : Type a} → Dec A → Dec-Erased A
Dec→Dec-Erased (yes a) = yes [ a ]
Dec→Dec-Erased (no ¬a) = no [ ¬a ]
-- In erased contexts Dec-Erased A is equivalent to Dec A.
@0 Dec-Erased≃Dec :
{@0 A : Type a} → Dec-Erased A ≃ Dec A
Dec-Erased≃Dec {A = A} =
Eq.with-other-inverse
(Erased A ⊎ Erased (¬ A) ↔⟨ erased Erased↔ ⊎-cong erased Erased↔ ⟩□
A ⊎ ¬ A □)
Dec→Dec-Erased
Prelude.[ (λ _ → refl _) , (λ _ → refl _) ]
-- Dec-Erased A is isomorphic to Dec (Erased A) (assuming
-- extensionality).
Dec-Erased↔Dec-Erased :
{@0 A : Type a} →
Dec-Erased A ↝[ a ∣ lzero ] Dec (Erased A)
Dec-Erased↔Dec-Erased {A = A} ext =
Erased A ⊎ Erased (¬ A) ↝⟨ F.id ⊎-cong Erased-¬↔¬ ext ⟩□
Erased A ⊎ ¬ Erased A □
-- A map function for Dec-Erased.
Dec-Erased-map :
{@0 A : Type a} {@0 B : Type b} →
@0 A ⇔ B → Dec-Erased A → Dec-Erased B
Dec-Erased-map A⇔B =
⊎-map (map (_⇔_.to A⇔B))
(map (_∘ _⇔_.from A⇔B))
-- Dec-Erased preserves logical equivalences.
Dec-Erased-cong-⇔ :
{@0 A : Type a} {@0 B : Type b} →
@0 A ⇔ B → Dec-Erased A ⇔ Dec-Erased B
Dec-Erased-cong-⇔ A⇔B = record
{ to = Dec-Erased-map A⇔B
; from = Dec-Erased-map (inverse A⇔B)
}
-- If A and B are decided (with erased proofs), then A × B is.
Dec-Erased-× :
{@0 A : Type a} {@0 B : Type b} →
Dec-Erased A → Dec-Erased B → Dec-Erased (A × B)
Dec-Erased-× (no [ ¬a ]) _ = no [ ¬a ∘ proj₁ ]
Dec-Erased-× _ (no [ ¬b ]) = no [ ¬b ∘ proj₂ ]
Dec-Erased-× (yes [ a ]) (yes [ b ]) = yes [ a , b ]
-- If A and B are decided (with erased proofs), then A ⊎ B is.
Dec-Erased-⊎ :
{@0 A : Type a} {@0 B : Type b} →
Dec-Erased A → Dec-Erased B → Dec-Erased (A ⊎ B)
Dec-Erased-⊎ (yes [ a ]) _ = yes [ inj₁ a ]
Dec-Erased-⊎ (no [ ¬a ]) (yes [ b ]) = yes [ inj₂ b ]
Dec-Erased-⊎ (no [ ¬a ]) (no [ ¬b ]) = no [ Prelude.[ ¬a , ¬b ] ]
-- A variant of Equality.Decision-procedures.×.dec⇒dec⇒dec.
dec-erased⇒dec-erased⇒×-dec-erased :
{@0 A : Type a} {@0 B : Type b} {@0 x₁ x₂ : A} {@0 y₁ y₂ : B} →
Dec-Erased (x₁ ≡ x₂) →
Dec-Erased (y₁ ≡ y₂) →
Dec-Erased ((x₁ , y₁) ≡ (x₂ , y₂))
dec-erased⇒dec-erased⇒×-dec-erased = λ where
(no [ x₁≢x₂ ]) _ → no [ x₁≢x₂ ∘ cong proj₁ ]
_ (no [ y₁≢y₂ ]) → no [ y₁≢y₂ ∘ cong proj₂ ]
(yes [ x₁≡x₂ ]) (yes [ y₁≡y₂ ]) → yes [ cong₂ _,_ x₁≡x₂ y₁≡y₂ ]
-- A variant of Equality.Decision-procedures.Σ.set⇒dec⇒dec⇒dec.
--
-- See also set⇒dec-erased⇒dec-erased⇒Σ-dec-erased below.
set⇒dec⇒dec-erased⇒Σ-dec-erased :
{@0 A : Type a} {@0 P : A → Type p}
{@0 x₁ x₂ : A} {@0 y₁ : P x₁} {@0 y₂ : P x₂} →
@0 Is-set A →
Dec (x₁ ≡ x₂) →
(∀ eq → Dec-Erased (subst P eq y₁ ≡ y₂)) →
Dec-Erased ((x₁ , y₁) ≡ (x₂ , y₂))
set⇒dec⇒dec-erased⇒Σ-dec-erased _ (no x₁≢x₂) _ =
no [ x₁≢x₂ ∘ cong proj₁ ]
set⇒dec⇒dec-erased⇒Σ-dec-erased
{P = P} {y₁ = y₁} {y₂ = y₂} set₁ (yes x₁≡x₂) dec₂ =
⊎-map
(map (Σ-≡,≡→≡ x₁≡x₂))
(map λ cast-y₁≢y₂ eq →
$⟨ proj₂ (Σ-≡,≡←≡ eq) ⟩
subst P (proj₁ (Σ-≡,≡←≡ eq)) y₁ ≡ y₂ ↝⟨ subst (λ p → subst _ p _ ≡ _) (set₁ _ _) ⟩
subst P x₁≡x₂ y₁ ≡ y₂ ↝⟨ cast-y₁≢y₂ ⟩□
⊥ □)
(dec₂ x₁≡x₂)
-- A variant of Equality.Decision-procedures.Σ.decidable⇒dec⇒dec.
--
-- See also decidable-erased⇒dec-erased⇒Σ-dec-erased below.
decidable⇒dec-erased⇒Σ-dec-erased :
{@0 A : Type a} {@0 P : A → Type p}
{x₁ x₂ : A} {@0 y₁ : P x₁} {@0 y₂ : P x₂} →
Decidable-equality A →
(∀ eq → Dec-Erased (subst P eq y₁ ≡ y₂)) →
Dec-Erased ((x₁ , y₁) ≡ (x₂ , y₂))
decidable⇒dec-erased⇒Σ-dec-erased dec =
set⇒dec⇒dec-erased⇒Σ-dec-erased
(decidable⇒set dec)
(dec _ _)
------------------------------------------------------------------------
-- Decidable erased equality
-- A variant of Decidable-equality that is defined using Dec-Erased.
Decidable-erased-equality : Type ℓ → Type ℓ
Decidable-erased-equality A = (x y : A) → Dec-Erased (x ≡ y)
-- Decidable equality implies decidable erased equality.
Decidable-equality→Decidable-erased-equality :
{@0 A : Type a} →
Decidable-equality A →
Decidable-erased-equality A
Decidable-equality→Decidable-erased-equality dec x y =
Dec→Dec-Erased (dec x y)
-- In erased contexts Decidable-erased-equality A is equivalent to
-- Decidable-equality A (assuming extensionality).
@0 Decidable-erased-equality≃Decidable-equality :
{A : Type a} →
Decidable-erased-equality A ↝[ a ∣ a ] Decidable-equality A
Decidable-erased-equality≃Decidable-equality {A = A} ext =
((x y : A) → Dec-Erased (x ≡ y)) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → from-equivalence Dec-Erased≃Dec) ⟩□
((x y : A) → Dec (x ≡ y)) □
-- A map function for Decidable-erased-equality.
Decidable-erased-equality-map :
A ↠ B →
Decidable-erased-equality A → Decidable-erased-equality B
Decidable-erased-equality-map A↠B _≟_ x y = $⟨ _↠_.from A↠B x ≟ _↠_.from A↠B y ⟩
Dec-Erased (_↠_.from A↠B x ≡ _↠_.from A↠B y) ↝⟨ Dec-Erased-map (_↠_.logical-equivalence $ Surjection.↠-≡ A↠B) ⟩□
Dec-Erased (x ≡ y) □
-- A variant of Equality.Decision-procedures.×.Dec._≟_.
decidable-erased⇒decidable-erased⇒×-decidable-erased :
{@0 A : Type a} {@0 B : Type b} →
Decidable-erased-equality A →
Decidable-erased-equality B →
Decidable-erased-equality (A × B)
decidable-erased⇒decidable-erased⇒×-decidable-erased decA decB _ _ =
dec-erased⇒dec-erased⇒×-dec-erased (decA _ _) (decB _ _)
-- A variant of Equality.Decision-procedures.Σ.Dec._≟_.
--
-- See also decidable-erased⇒decidable-erased⇒Σ-decidable-erased
-- below.
decidable⇒decidable-erased⇒Σ-decidable-erased :
Decidable-equality A →
({x : A} → Decidable-erased-equality (P x)) →
Decidable-erased-equality (Σ A P)
decidable⇒decidable-erased⇒Σ-decidable-erased
{P = P} decA decP (_ , x₂) (_ , y₂) =
decidable⇒dec-erased⇒Σ-dec-erased
decA
(λ eq → decP (subst P eq x₂) y₂)
------------------------------------------------------------------------
-- Erased binary relations
-- Lifts binary relations from A to Erased A.
Erasedᴾ :
{@0 A : Type a} {@0 B : Type b} →
@0 (A → B → Type r) →
(Erased A → Erased B → Type r)
Erasedᴾ R [ x ] [ y ] = Erased (R x y)
-- Erasedᴾ preserves Is-equivalence-relation.
Erasedᴾ-preserves-Is-equivalence-relation :
{@0 A : Type a} {@0 R : A → A → Type r} →
@0 Is-equivalence-relation R →
Is-equivalence-relation (Erasedᴾ R)
Erasedᴾ-preserves-Is-equivalence-relation equiv = λ where
.Is-equivalence-relation.reflexive →
[ equiv .Is-equivalence-relation.reflexive ]
.Is-equivalence-relation.symmetric →
map (equiv .Is-equivalence-relation.symmetric)
.Is-equivalence-relation.transitive →
zip (equiv .Is-equivalence-relation.transitive)
------------------------------------------------------------------------
-- Some results that hold in erased contexts
-- In an erased context there is an equivalence between equality of
-- "boxed" values and equality of values.
@0 []≡[]≃≡ : ([ x ] ≡ [ y ]) ≃ (x ≡ y)
[]≡[]≃≡ = Eq.↔⇒≃ (record
{ surjection = record
{ logical-equivalence = record
{ to = cong erased
; from = cong [_]→
}
; right-inverse-of = λ eq →
cong erased (cong [_]→ eq) ≡⟨ cong-∘ _ _ _ ⟩
cong id eq ≡⟨ sym $ cong-id _ ⟩∎
eq ∎
}
; left-inverse-of = λ eq →
cong [_]→ (cong erased eq) ≡⟨ cong-∘ _ _ _ ⟩
cong id eq ≡⟨ sym $ cong-id _ ⟩∎
eq ∎
})
-- In an erased context [_]→ is always an embedding.
Erased-Is-embedding-[] :
{@0 A : Type a} → Erased (Is-embedding [ A ∣_]→)
Erased-Is-embedding-[] =
[ (λ x y → _≃_.is-equivalence (
x ≡ y ↝⟨ inverse $ Eq.≃-≡ $ Eq.↔⇒≃ $ inverse $ erased Erased↔ ⟩□
[ x ] ≡ [ y ] □))
]
-- In an erased context [_]→ is always split surjective.
Erased-Split-surjective-[] :
{@0 A : Type a} → Erased (Split-surjective [ A ∣_]→)
Erased-Split-surjective-[] = [ (λ ([ x ]) → x , refl _) ]
------------------------------------------------------------------------
-- []-cong-axiomatisation
-- An axiomatisation for []-cong.
--
-- In addition to the results in this section, see
-- []-cong-axiomatisation-propositional below.
record []-cong-axiomatisation a : Type (lsuc a) where
field
[]-cong :
{@0 A : Type a} {@0 x y : A} →
Erased (x ≡ y) → [ x ] ≡ [ y ]
[]-cong-equivalence :
{@0 A : Type a} {@0 x y : A} →
Is-equivalence ([]-cong {x = x} {y = y})
[]-cong-[refl] :
{@0 A : Type a} {@0 x : A} →
[]-cong [ refl x ] ≡ refl [ x ]
-- The []-cong axioms can be instantiated in erased contexts.
@0 erased-instance-of-[]-cong-axiomatisation :
[]-cong-axiomatisation a
erased-instance-of-[]-cong-axiomatisation
.[]-cong-axiomatisation.[]-cong =
cong [_]→ ∘ erased
erased-instance-of-[]-cong-axiomatisation
.[]-cong-axiomatisation.[]-cong-equivalence {x = x} {y = y} =
_≃_.is-equivalence
(Erased (x ≡ y) ↔⟨ erased Erased↔ ⟩
x ≡ y ↝⟨ inverse []≡[]≃≡ ⟩□
[ x ] ≡ [ y ] □)
erased-instance-of-[]-cong-axiomatisation
.[]-cong-axiomatisation.[]-cong-[refl] {x = x} =
cong [_]→ (erased [ refl x ]) ≡⟨⟩
cong [_]→ (refl x) ≡⟨ cong-refl _ ⟩∎
refl [ x ] ∎
-- If the []-cong axioms can be implemented for a certain universe
-- level, then they can also be implemented for all smaller universe
-- levels.
lower-[]-cong-axiomatisation :
∀ a′ → []-cong-axiomatisation (a ⊔ a′) → []-cong-axiomatisation a
lower-[]-cong-axiomatisation {a = a} a′ ax = λ where
.[]-cong-axiomatisation.[]-cong → []-cong′
.[]-cong-axiomatisation.[]-cong-equivalence → []-cong′-equivalence
.[]-cong-axiomatisation.[]-cong-[refl] → []-cong′-[refl]
where
open []-cong-axiomatisation ax
lemma :
{@0 A : Type a} {@0 x y : A} →
Erased (lift {ℓ = a′} x ≡ lift y) ≃ ([ x ] ≡ [ y ])
lemma {x = x} {y = y} =
Erased (lift {ℓ = a′} x ≡ lift y) ↝⟨ Eq.⟨ _ , []-cong-equivalence ⟩ ⟩
[ lift x ] ≡ [ lift y ] ↝⟨ inverse $ Eq.≃-≡ (Eq.↔→≃ (map lower) (map lift) refl refl) ⟩□
[ x ] ≡ [ y ] □
[]-cong′ :
{@0 A : Type a} {@0 x y : A} →
Erased (x ≡ y) → [ x ] ≡ [ y ]
[]-cong′ {x = x} {y = y} =
Erased (x ≡ y) ↝⟨ map (cong lift) ⟩
Erased (lift {ℓ = a′} x ≡ lift y) ↔⟨ lemma ⟩□
[ x ] ≡ [ y ] □
[]-cong′-equivalence :
{@0 A : Type a} {@0 x y : A} →
Is-equivalence ([]-cong′ {x = x} {y = y})
[]-cong′-equivalence {x = x} {y = y} =
_≃_.is-equivalence
(Erased (x ≡ y) ↝⟨ Eq.↔→≃ (map (cong lift)) (map (cong lower))
(λ ([ eq ]) →
[ cong lift (cong lower eq) ] ≡⟨ []-cong [ cong-∘ _ _ _ ] ⟩
[ cong id eq ] ≡⟨ []-cong [ sym $ cong-id _ ] ⟩∎
[ eq ] ∎)
(λ ([ eq ]) →
[ cong lower (cong lift eq) ] ≡⟨ []-cong′ [ cong-∘ _ _ _ ] ⟩
[ cong id eq ] ≡⟨ []-cong′ [ sym $ cong-id _ ] ⟩∎
[ eq ] ∎) ⟩
Erased (lift {ℓ = a′} x ≡ lift y) ↝⟨ lemma ⟩□
[ x ] ≡ [ y ] □)
[]-cong′-[refl] :
{@0 A : Type a} {@0 x : A} →
[]-cong′ [ refl x ] ≡ refl [ x ]
[]-cong′-[refl] {x = x} =
cong (map lower) ([]-cong [ cong lift (refl x) ]) ≡⟨ cong (cong (map lower) ∘ []-cong) $ []-cong [ cong-refl _ ] ⟩
cong (map lower) ([]-cong [ refl (lift x) ]) ≡⟨ cong (cong (map lower)) []-cong-[refl] ⟩
cong (map lower) (refl [ lift x ]) ≡⟨ cong-refl _ ⟩∎
refl [ x ] ∎
------------------------------------------------------------------------
-- An alternative to []-cong-axiomatisation
-- Stable-≡-Erased-axiomatisation a is the property that equality is
-- stable for Erased A, for every erased type A : Type a, along with a
-- "computation" rule.
Stable-≡-Erased-axiomatisation : (a : Level) → Type (lsuc a)
Stable-≡-Erased-axiomatisation a =
∃ λ (Stable-≡-Erased : {@0 A : Type a} → Stable-≡ (Erased A)) →
{@0 A : Type a} {x : Erased A} →
Stable-≡-Erased x x [ refl x ] ≡ refl x
-- Some lemmas used to implement Extensionality→[]-cong as well as
-- Erased.Stability.[]-cong-axiomatisation≃Stable-≡-Erased-axiomatisation.
module Stable-≡-Erased-axiomatisation→[]-cong-axiomatisation
((Stable-≡-Erased , Stable-≡-Erased-[refl]) :
Stable-≡-Erased-axiomatisation a)
where
-- An implementation of []-cong.
[]-cong :
{@0 A : Type a} {@0 x y : A} →
Erased (x ≡ y) → [ x ] ≡ [ y ]
[]-cong {x = x} {y = y} =
Erased (x ≡ y) ↝⟨ map (cong [_]→) ⟩
Erased ([ x ] ≡ [ y ]) ↝⟨ Stable-≡-Erased _ _ ⟩□
[ x ] ≡ [ y ] □
-- A "computation rule" for []-cong.
[]-cong-[refl] :
{@0 A : Type a} {@0 x : A} →
[]-cong [ refl x ] ≡ refl [ x ]
[]-cong-[refl] {x = x} =
[]-cong [ refl x ] ≡⟨⟩
Stable-≡-Erased _ _ [ cong [_]→ (refl x) ] ≡⟨ cong (Stable-≡-Erased _ _) ([]-cong [ cong-refl _ ]) ⟩
Stable-≡-Erased _ _ [ refl [ x ] ] ≡⟨ Stable-≡-Erased-[refl] ⟩∎
refl [ x ] ∎
-- Equality is very stable for Erased A.
Very-stable-≡-Erased :
{@0 A : Type a} → Very-stable-≡ (Erased A)
Very-stable-≡-Erased x y =
_≃_.is-equivalence (Eq.↔⇒≃ (record
{ surjection = record
{ logical-equivalence = record
{ from = Stable-≡-Erased x y
}
; right-inverse-of = λ ([ eq ]) → []-cong [ lemma eq ]
}
; left-inverse-of = lemma
}))
where
lemma = elim¹
(λ eq → Stable-≡-Erased _ _ [ eq ] ≡ eq)
Stable-≡-Erased-[refl]
-- The following implementations of functions from Erased-cong
-- (below) are restricted to types in Type a (where a is the
-- universe level for which extensionality is assumed to hold).
module _ {@0 A B : Type a} where
Erased-cong-↠ : @0 A ↠ B → Erased A ↠ Erased B
Erased-cong-↠ A↠B = record
{ logical-equivalence = Erased-cong-⇔
(_↠_.logical-equivalence A↠B)
; right-inverse-of = λ { [ x ] →
[]-cong [ _↠_.right-inverse-of A↠B x ] }
}
Erased-cong-↔ : @0 A ↔ B → Erased A ↔ Erased B
Erased-cong-↔ A↔B = record
{ surjection = Erased-cong-↠ (_↔_.surjection A↔B)
; left-inverse-of = λ { [ x ] →
[]-cong [ _↔_.left-inverse-of A↔B x ] }
}
Erased-cong-≃ : @0 A ≃ B → Erased A ≃ Erased B
Erased-cong-≃ A≃B =
from-isomorphism (Erased-cong-↔ (from-isomorphism A≃B))
-- []-cong is an equivalence.
[]-cong-equivalence :
{@0 A : Type a} {@0 x y : A} →
Is-equivalence ([]-cong {x = x} {y = y})
[]-cong-equivalence {x = x} {y = y} = _≃_.is-equivalence (
Erased (x ≡ y) ↝⟨ inverse $ Erased-cong-≃ []≡[]≃≡ ⟩
Erased ([ x ] ≡ [ y ]) ↝⟨ inverse Eq.⟨ _ , Very-stable-≡-Erased _ _ ⟩ ⟩□
[ x ] ≡ [ y ] □)
-- The []-cong axioms can be instantiated.
instance-of-[]-cong-axiomatisation :
[]-cong-axiomatisation a
instance-of-[]-cong-axiomatisation = record
{ []-cong = []-cong
; []-cong-equivalence = []-cong-equivalence
; []-cong-[refl] = []-cong-[refl]
}
------------------------------------------------------------------------
-- In the presence of function extensionality the []-cong axioms can
-- be instantiated
-- Some lemmas used to implement
-- Extensionality→[]-cong-axiomatisation.
module Extensionality→[]-cong-axiomatisation
(ext′ : Extensionality a a)
where
private
ext = Eq.good-ext ext′
-- Equality is stable for Erased A.
--
-- The proof is based on the proof of Lemma 1.25 in "Modalities in
-- Homotopy Type Theory" by Rijke, Shulman and Spitters, and the
-- corresponding Coq source code.
Stable-≡-Erased : {@0 A : Type a} → Stable-≡ (Erased A)
Stable-≡-Erased x y eq =
x ≡⟨ flip ext⁻¹ eq (
(λ (_ : Erased (x ≡ y)) → x) ≡⟨ ∘-[]-injective (
(λ (_ : x ≡ y) → x) ≡⟨ apply-ext ext (λ (eq : x ≡ y) →
x ≡⟨ eq ⟩∎
y ∎) ⟩∎
(λ (_ : x ≡ y) → y) ∎) ⟩∎
(λ (_ : Erased (x ≡ y)) → y) ∎) ⟩∎
y ∎
-- A "computation rule" for Stable-≡-Erased.
Stable-≡-Erased-[refl] :
{@0 A : Type a} {x : Erased A} →
Stable-≡-Erased x x [ refl x ] ≡ refl x
Stable-≡-Erased-[refl] {x = [ x ]} =
Stable-≡-Erased [ x ] [ x ] [ refl [ x ] ] ≡⟨⟩
ext⁻¹ (∘-[]-injective (apply-ext ext id)) [ refl [ x ] ] ≡⟨ ext⁻¹-∘-[]-injective ⟩
ext⁻¹ (apply-ext ext id) (refl [ x ]) ≡⟨ cong (_$ refl _) $ _≃_.left-inverse-of (Eq.extensionality-isomorphism ext′) _ ⟩∎
refl [ x ] ∎
open Stable-≡-Erased-axiomatisation→[]-cong-axiomatisation
(Stable-≡-Erased , Stable-≡-Erased-[refl])
public
-- If we have extensionality, then []-cong can be implemented.
--
-- The idea for this result comes from "Modalities in Homotopy Type
-- Theory" in which Rijke, Shulman and Spitters state that []-cong can
-- be implemented for every modality, and that it is an equivalence
-- for lex modalities (Theorem 3.1 (ix)).
Extensionality→[]-cong-axiomatisation :
Extensionality a a →
[]-cong-axiomatisation a
Extensionality→[]-cong-axiomatisation ext =
instance-of-[]-cong-axiomatisation
where
open Extensionality→[]-cong-axiomatisation ext
------------------------------------------------------------------------
-- A variant of []-cong-axiomatisation
-- A variant of []-cong-axiomatisation where some erased arguments
-- have been replaced with non-erased ones.
record []-cong-axiomatisation′ a : Type (lsuc a) where
field
[]-cong :
{A : Type a} {x y : A} →
Erased (x ≡ y) → [ x ] ≡ [ y ]
[]-cong-equivalence :
Is-equivalence ([]-cong {x = x} {y = y})
[]-cong-[refl] :
[]-cong [ refl x ] ≡ refl [ x ]
-- When implementing the []-cong axioms it suffices to prove "weaker"
-- variants with fewer erased arguments.
--
-- See also
-- Erased.Stability.[]-cong-axiomatisation≃[]-cong-axiomatisation′.
[]-cong-axiomatisation′→[]-cong-axiomatisation :
[]-cong-axiomatisation′ a →
[]-cong-axiomatisation a
[]-cong-axiomatisation′→[]-cong-axiomatisation {a = a} ax = record
{ []-cong = []-cong₀
; []-cong-equivalence = []-cong₀-equivalence
; []-cong-[refl] = []-cong₀-[refl]
}
where
open []-cong-axiomatisation′ ax
[]-cong₀ :
{@0 A : Type a} {@0 x y : A} →
Erased (x ≡ y) → [ x ] ≡ [ y ]
[]-cong₀ {A = A} {x = x} {y = y} =
Erased (x ≡ y) →⟨ map (cong [_]→) ⟩
Erased ([ x ] ≡ [ y ]) →⟨ []-cong ⟩
[ [ x ] ] ≡ [ [ y ] ] →⟨ cong (map erased) ⟩□
[ x ] ≡ [ y ] □
[]-cong₀-[refl] :
{@0 A : Type a} {@0 x : A} →
[]-cong₀ [ refl x ] ≡ refl [ x ]
[]-cong₀-[refl] {x = x} =
cong (map erased) ([]-cong (map (cong [_]→) [ refl x ])) ≡⟨⟩
cong (map erased) ([]-cong [ cong [_]→ (refl x) ]) ≡⟨ cong (cong (map erased) ∘ []-cong) $
[]-cong₀ [ cong-refl _ ] ⟩
cong (map erased) ([]-cong [ refl [ x ] ]) ≡⟨ cong (cong (map erased)) []-cong-[refl] ⟩
cong (map erased) (refl [ [ x ] ]) ≡⟨ cong-refl _ ⟩∎
refl [ x ] ∎
[]-cong₀-equivalence :
{@0 A : Type a} {@0 x y : A} →
Is-equivalence ([]-cong₀ {x = x} {y = y})
[]-cong₀-equivalence =
_≃_.is-equivalence $
Eq.↔→≃
_
(λ [x]≡[y] → [ cong erased [x]≡[y] ])
(λ [x]≡[y] →
cong (map erased)
([]-cong (map (cong [_]→) [ cong erased [x]≡[y] ])) ≡⟨⟩
cong (map erased) ([]-cong [ cong [_]→ (cong erased [x]≡[y]) ]) ≡⟨ cong (cong (map erased) ∘ []-cong) $ []-cong₀
[ trans (cong-∘ _ _ _) $
sym $ cong-id _
] ⟩
cong (map erased) ([]-cong [ [x]≡[y] ]) ≡⟨ elim
(λ x≡y → cong (map erased) ([]-cong [ x≡y ]) ≡ x≡y)
(λ x →
cong (map erased) ([]-cong [ refl x ]) ≡⟨ cong (cong (map erased)) []-cong-[refl] ⟩
cong (map erased) (refl [ x ]) ≡⟨ cong-refl _ ⟩∎
refl x ∎)
_ ⟩
[x]≡[y] ∎)
(λ ([ x≡y ]) →
[ cong erased
(cong (map erased) ([]-cong (map (cong [_]→) [ x≡y ]))) ] ≡⟨⟩
[ cong erased (cong (map erased) ([]-cong [ cong [_]→ x≡y ])) ] ≡⟨ []-cong₀
[ elim
(λ x≡y →
cong erased
(cong (map erased) ([]-cong [ cong [_]→ x≡y ])) ≡
x≡y)
(λ x →
cong erased (cong (map erased) ([]-cong [ cong [_]→ (refl x) ])) ≡⟨ cong (cong erased ∘ cong (map erased) ∘ []-cong) $
[]-cong₀ [ cong-refl _ ] ⟩
cong erased (cong (map erased) ([]-cong [ refl [ x ] ])) ≡⟨ cong (cong erased ∘ cong (map erased)) []-cong-[refl] ⟩
cong erased (cong (map erased) (refl [ [ x ] ])) ≡⟨ trans (cong (cong erased) $ cong-refl _) $
cong-refl _ ⟩∎
refl x ∎)
_
] ⟩∎
[ x≡y ] ∎)
------------------------------------------------------------------------
-- Erased preserves some kinds of functions
-- The following definitions are parametrised by two implementations
-- of the []-cong axioms.
module Erased-cong
(ax₁ : []-cong-axiomatisation ℓ₁)
(ax₂ : []-cong-axiomatisation ℓ₂)
{@0 A : Type ℓ₁} {@0 B : Type ℓ₂}
where
private
module BC₁ = []-cong-axiomatisation ax₁
module BC₂ = []-cong-axiomatisation ax₂
-- Erased preserves split surjections.
Erased-cong-↠ :
@0 A ↠ B → Erased A ↠ Erased B
Erased-cong-↠ A↠B = record
{ logical-equivalence = Erased-cong-⇔
(_↠_.logical-equivalence A↠B)
; right-inverse-of = λ { [ x ] →
BC₂.[]-cong [ _↠_.right-inverse-of A↠B x ] }
}
-- Erased preserves bijections.
Erased-cong-↔ : @0 A ↔ B → Erased A ↔ Erased B
Erased-cong-↔ A↔B = record
{ surjection = Erased-cong-↠ (_↔_.surjection A↔B)
; left-inverse-of = λ { [ x ] →
BC₁.[]-cong [ _↔_.left-inverse-of A↔B x ] }
}
-- Erased preserves equivalences.
Erased-cong-≃ : @0 A ≃ B → Erased A ≃ Erased B
Erased-cong-≃ A≃B =
from-isomorphism (Erased-cong-↔ (from-isomorphism A≃B))
-- A variant of Erased-cong (which is defined in Erased.Level-2).
Erased-cong? :
@0 A ↝[ c ∣ d ] B →
Erased A ↝[ c ∣ d ]ᴱ Erased B
Erased-cong? hyp = generalise-erased-ext?
(Erased-cong-⇔ (hyp _))
(λ ext → Erased-cong-↔ (hyp ext))
------------------------------------------------------------------------
-- Some results that follow if the []-cong axioms hold for a single
-- universe level
module []-cong₁ (ax : []-cong-axiomatisation ℓ) where
open []-cong-axiomatisation ax public
open Erased-cong ax ax
----------------------------------------------------------------------
-- Some definitions directly related to []-cong
-- There is an equivalence between erased equality proofs and
-- equalities between erased values.
Erased-≡≃[]≡[] :
{@0 A : Type ℓ} {@0 x y : A} →
Erased (x ≡ y) ≃ ([ x ] ≡ [ y ])
Erased-≡≃[]≡[] = Eq.⟨ _ , []-cong-equivalence ⟩
-- There is a bijection between erased equality proofs and
-- equalities between erased values.
Erased-≡↔[]≡[] :
{@0 A : Type ℓ} {@0 x y : A} →
Erased (x ≡ y) ↔ [ x ] ≡ [ y ]
Erased-≡↔[]≡[] = _≃_.bijection Erased-≡≃[]≡[]
-- The inverse of []-cong.
[]-cong⁻¹ :
{@0 A : Type ℓ} {@0 x y : A} →
[ x ] ≡ [ y ] → Erased (x ≡ y)
[]-cong⁻¹ = _≃_.from Erased-≡≃[]≡[]
-- Rearrangement lemmas for []-cong and []-cong⁻¹.
[]-cong-[]≡cong-[] :
{A : Type ℓ} {x y : A} {x≡y : x ≡ y} →
[]-cong [ x≡y ] ≡ cong [_]→ x≡y
[]-cong-[]≡cong-[] {x = x} {x≡y = x≡y} = elim¹
(λ x≡y → []-cong [ x≡y ] ≡ cong [_]→ x≡y)
([]-cong [ refl x ] ≡⟨ []-cong-[refl] ⟩
refl [ x ] ≡⟨ sym $ cong-refl _ ⟩∎
cong [_]→ (refl x) ∎)
x≡y
[]-cong⁻¹≡[cong-erased] :
{@0 A : Type ℓ} {@0 x y : A} {@0 x≡y : [ x ] ≡ [ y ]} →
[]-cong⁻¹ x≡y ≡ [ cong erased x≡y ]
[]-cong⁻¹≡[cong-erased] {x≡y = x≡y} = []-cong
[ erased ([]-cong⁻¹ x≡y) ≡⟨ cong erased (_↔_.from (from≡↔≡to Erased-≡≃[]≡[]) lemma) ⟩
erased [ cong erased x≡y ] ≡⟨⟩
cong erased x≡y ∎
]
where
@0 lemma : _
lemma =
x≡y ≡⟨ cong-id _ ⟩
cong id x≡y ≡⟨⟩
cong ([_]→ ∘ erased) x≡y ≡⟨ sym $ cong-∘ _ _ _ ⟩
cong [_]→ (cong erased x≡y) ≡⟨ sym []-cong-[]≡cong-[] ⟩∎
[]-cong [ cong erased x≡y ] ∎
-- A "computation rule" for []-cong⁻¹.
[]-cong⁻¹-refl :
{@0 A : Type ℓ} {@0 x : A} →
[]-cong⁻¹ (refl [ x ]) ≡ [ refl x ]
[]-cong⁻¹-refl {x = x} =
[]-cong⁻¹ (refl [ x ]) ≡⟨ []-cong⁻¹≡[cong-erased] ⟩
[ cong erased (refl [ x ]) ] ≡⟨ []-cong [ cong-refl _ ] ⟩∎
[ refl x ] ∎
-- []-cong and []-cong⁻¹ commute (kind of) with sym.
[]-cong⁻¹-sym :
{@0 A : Type ℓ} {@0 x y : A} {x≡y : [ x ] ≡ [ y ]} →
[]-cong⁻¹ (sym x≡y) ≡ map sym ([]-cong⁻¹ x≡y)
[]-cong⁻¹-sym = elim¹
(λ x≡y → []-cong⁻¹ (sym x≡y) ≡ map sym ([]-cong⁻¹ x≡y))
([]-cong⁻¹ (sym (refl _)) ≡⟨ cong []-cong⁻¹ sym-refl ⟩
[]-cong⁻¹ (refl _) ≡⟨ []-cong⁻¹-refl ⟩
[ refl _ ] ≡⟨ []-cong [ sym sym-refl ] ⟩
[ sym (refl _) ] ≡⟨⟩
map sym [ refl _ ] ≡⟨ cong (map sym) $ sym []-cong⁻¹-refl ⟩∎
map sym ([]-cong⁻¹ (refl _)) ∎)
_
[]-cong-[sym] :
{@0 A : Type ℓ} {@0 x y : A} {@0 x≡y : x ≡ y} →
[]-cong [ sym x≡y ] ≡ sym ([]-cong [ x≡y ])
[]-cong-[sym] {x≡y = x≡y} =
sym $ _↔_.to (from≡↔≡to $ Eq.↔⇒≃ Erased-≡↔[]≡[]) (
[]-cong⁻¹ (sym ([]-cong [ x≡y ])) ≡⟨ []-cong⁻¹-sym ⟩
map sym ([]-cong⁻¹ ([]-cong [ x≡y ])) ≡⟨ cong (map sym) $ _↔_.left-inverse-of Erased-≡↔[]≡[] _ ⟩∎
map sym [ x≡y ] ∎)
-- []-cong and []-cong⁻¹ commute (kind of) with trans.
[]-cong⁻¹-trans :
{@0 A : Type ℓ} {@0 x y z : A}
{x≡y : [ x ] ≡ [ y ]} {y≡z : [ y ] ≡ [ z ]} →
[]-cong⁻¹ (trans x≡y y≡z) ≡
[ trans (erased ([]-cong⁻¹ x≡y)) (erased ([]-cong⁻¹ y≡z)) ]
[]-cong⁻¹-trans {y≡z = y≡z} = elim₁
(λ x≡y → []-cong⁻¹ (trans x≡y y≡z) ≡
[ trans (erased ([]-cong⁻¹ x≡y)) (erased ([]-cong⁻¹ y≡z)) ])
([]-cong⁻¹ (trans (refl _) y≡z) ≡⟨ cong []-cong⁻¹ $ trans-reflˡ _ ⟩
[]-cong⁻¹ y≡z ≡⟨⟩
[ erased ([]-cong⁻¹ y≡z) ] ≡⟨ []-cong [ sym $ trans-reflˡ _ ] ⟩
[ trans (refl _) (erased ([]-cong⁻¹ y≡z)) ] ≡⟨⟩
[ trans (erased [ refl _ ]) (erased ([]-cong⁻¹ y≡z)) ] ≡⟨ []-cong [ cong (flip trans _) $ cong erased $ sym
[]-cong⁻¹-refl ] ⟩∎
[ trans (erased ([]-cong⁻¹ (refl _))) (erased ([]-cong⁻¹ y≡z)) ] ∎)
_
[]-cong-[trans] :
{@0 A : Type ℓ} {@0 x y z : A} {@0 x≡y : x ≡ y} {@0 y≡z : y ≡ z} →
[]-cong [ trans x≡y y≡z ] ≡
trans ([]-cong [ x≡y ]) ([]-cong [ y≡z ])
[]-cong-[trans] {x≡y = x≡y} {y≡z = y≡z} =
sym $ _↔_.to (from≡↔≡to $ Eq.↔⇒≃ Erased-≡↔[]≡[]) (
[]-cong⁻¹ (trans ([]-cong [ x≡y ]) ([]-cong [ y≡z ])) ≡⟨ []-cong⁻¹-trans ⟩
[ trans (erased ([]-cong⁻¹ ([]-cong [ x≡y ])))
(erased ([]-cong⁻¹ ([]-cong [ y≡z ]))) ] ≡⟨ []-cong [ cong₂ (λ p q → trans (erased p) (erased q))
(_↔_.left-inverse-of Erased-≡↔[]≡[] _)
(_↔_.left-inverse-of Erased-≡↔[]≡[] _) ] ⟩∎
[ trans x≡y y≡z ] ∎)
-- In an erased context there is an equivalence between equality of
-- values and equality of "boxed" values.
@0 ≡≃[]≡[] :
{A : Type ℓ} {x y : A} →
(x ≡ y) ≃ ([ x ] ≡ [ y ])
≡≃[]≡[] = Eq.↔⇒≃ (record
{ surjection = record
{ logical-equivalence = record
{ to = []-cong ∘ [_]→
; from = cong erased
}
; right-inverse-of = λ eq →
[]-cong [ cong erased eq ] ≡⟨ []-cong-[]≡cong-[] ⟩
cong [_]→ (cong erased eq) ≡⟨ cong-∘ _ _ _ ⟩
cong id eq ≡⟨ sym $ cong-id _ ⟩∎
eq ∎
}
; left-inverse-of = λ eq →
cong erased ([]-cong [ eq ]) ≡⟨ cong (cong erased) []-cong-[]≡cong-[] ⟩
cong erased (cong [_]→ eq) ≡⟨ cong-∘ _ _ _ ⟩
cong id eq ≡⟨ sym $ cong-id _ ⟩∎
eq ∎
})
-- The left-to-right and right-to-left directions of the equivalence
-- are definitionally equal to certain functions.
_ : _≃_.to (≡≃[]≡[] {x = x} {y = y}) ≡ []-cong ∘ [_]→
_ = refl _
@0 _ : _≃_.from (≡≃[]≡[] {x = x} {y = y}) ≡ cong erased
_ = refl _
----------------------------------------------------------------------
-- Variants of subst, cong and the J rule that take erased equality
-- proofs
-- A variant of subst that takes an erased equality proof.
substᴱ :
{@0 A : Type ℓ} {@0 x y : A}
(P : @0 A → Type p) → @0 x ≡ y → P x → P y
substᴱ P eq = subst (λ ([ x ]) → P x) ([]-cong [ eq ])
-- A variant of elim₁ that takes an erased equality proof.
elim₁ᴱ :
{@0 A : Type ℓ} {@0 x y : A}
(P : {@0 x : A} → @0 x ≡ y → Type p) →
P (refl y) →
(@0 x≡y : x ≡ y) → P x≡y
elim₁ᴱ {x = x} {y = y} P p x≡y =
substᴱ
(λ p → P (proj₂ p))
(proj₂ (singleton-contractible y) (x , x≡y))
p
-- A variant of elim¹ that takes an erased equality proof.
elim¹ᴱ :
{@0 A : Type ℓ} {@0 x y : A}
(P : {@0 y : A} → @0 x ≡ y → Type p) →
P (refl x) →
(@0 x≡y : x ≡ y) → P x≡y
elim¹ᴱ {x = x} {y = y} P p x≡y =
substᴱ
(λ p → P (proj₂ p))
(proj₂ (other-singleton-contractible x) (y , x≡y))
p
-- A variant of elim that takes an erased equality proof.
elimᴱ :
{@0 A : Type ℓ} {@0 x y : A}
(P : {@0 x y : A} → @0 x ≡ y → Type p) →
((@0 x : A) → P (refl x)) →
(@0 x≡y : x ≡ y) → P x≡y
elimᴱ {y = y} P p = elim₁ᴱ P (p y)
-- A variant of cong that takes an erased equality proof.
congᴱ :
{@0 A : Type ℓ} {@0 x y : A}
(f : @0 A → B) → @0 x ≡ y → f x ≡ f y
congᴱ f = elimᴱ (λ {x y} _ → f x ≡ f y) (λ x → refl (f x))
-- A "computation rule" for substᴱ.
substᴱ-refl :
{@0 A : Type ℓ} {@0 x : A} {P : @0 A → Type p} {p : P x} →
substᴱ P (refl x) p ≡ p
substᴱ-refl {P = P} {p = p} =
subst (λ ([ x ]) → P x) ([]-cong [ refl _ ]) p ≡⟨ cong (flip (subst _) _) []-cong-[refl] ⟩
subst (λ ([ x ]) → P x) (refl [ _ ]) p ≡⟨ subst-refl _ _ ⟩∎
p ∎
-- If all arguments are non-erased, then one can replace substᴱ with
-- subst (if the first explicit argument is η-expanded).
substᴱ≡subst :
{P : @0 A → Type p} {p : P x} →
substᴱ P eq p ≡ subst (λ x → P x) eq p
substᴱ≡subst {eq = eq} {P = P} {p = p} = elim¹
(λ eq → substᴱ P eq p ≡ subst (λ x → P x) eq p)
(substᴱ P (refl _) p ≡⟨ substᴱ-refl ⟩
p ≡⟨ sym $ subst-refl _ _ ⟩∎
subst (λ x → P x) (refl _) p ∎)
eq
-- A computation rule for elim₁ᴱ.
elim₁ᴱ-refl :
∀ {@0 A : Type ℓ} {@0 y}
{P : {@0 x : A} → @0 x ≡ y → Type p}
{p : P (refl y)} →
elim₁ᴱ P p (refl y) ≡ p
elim₁ᴱ-refl {y = y} {P = P} {p = p} =
substᴱ
(λ p → P (proj₂ p))
(proj₂ (singleton-contractible y) (y , refl y))
p ≡⟨ congᴱ (λ q → substᴱ (λ p → P (proj₂ p)) q _)
(singleton-contractible-refl _) ⟩
substᴱ (λ p → P (proj₂ p)) (refl (y , refl y)) p ≡⟨ substᴱ-refl ⟩∎
p ∎
-- If all arguments are non-erased, then one can replace elim₁ᴱ with
-- elim₁ (if the first explicit argument is η-expanded).
elim₁ᴱ≡elim₁ :
{P : {@0 x : A} → @0 x ≡ y → Type p} {r : P (refl y)} →
elim₁ᴱ P r eq ≡ elim₁ (λ x → P x) r eq
elim₁ᴱ≡elim₁ {eq = eq} {P = P} {r = r} = elim₁
(λ eq → elim₁ᴱ P r eq ≡ elim₁ (λ x → P x) r eq)
(elim₁ᴱ P r (refl _) ≡⟨ elim₁ᴱ-refl ⟩
r ≡⟨ sym $ elim₁-refl _ _ ⟩∎
elim₁ (λ x → P x) r (refl _) ∎)
eq
-- A computation rule for elim¹ᴱ.
elim¹ᴱ-refl :
∀ {@0 A : Type ℓ} {@0 x}
{P : {@0 y : A} → @0 x ≡ y → Type p}
{p : P (refl x)} →
elim¹ᴱ P p (refl x) ≡ p
elim¹ᴱ-refl {x = x} {P = P} {p = p} =
substᴱ
(λ p → P (proj₂ p))
(proj₂ (other-singleton-contractible x) (x , refl x))
p ≡⟨ congᴱ (λ q → substᴱ (λ p → P (proj₂ p)) q _)
(other-singleton-contractible-refl _) ⟩
substᴱ (λ p → P (proj₂ p)) (refl (x , refl x)) p ≡⟨ substᴱ-refl ⟩∎
p ∎
-- If all arguments are non-erased, then one can replace elim¹ᴱ with
-- elim¹ (if the first explicit argument is η-expanded).
elim¹ᴱ≡elim¹ :
{P : {@0 y : A} → @0 x ≡ y → Type p} {r : P (refl x)} →
elim¹ᴱ P r eq ≡ elim¹ (λ x → P x) r eq
elim¹ᴱ≡elim¹ {eq = eq} {P = P} {r = r} = elim¹
(λ eq → elim¹ᴱ P r eq ≡ elim¹ (λ x → P x) r eq)
(elim¹ᴱ P r (refl _) ≡⟨ elim¹ᴱ-refl ⟩
r ≡⟨ sym $ elim¹-refl _ _ ⟩∎
elim¹ (λ x → P x) r (refl _) ∎)
eq
-- A computation rule for elimᴱ.
elimᴱ-refl :
{@0 A : Type ℓ} {@0 x : A} {P : {@0 x y : A} → @0 x ≡ y → Type p}
(r : (@0 x : A) → P (refl x)) →
elimᴱ P r (refl x) ≡ r x
elimᴱ-refl _ = elim₁ᴱ-refl
-- If all arguments are non-erased, then one can replace elimᴱ with
-- elim (if the first two explicit arguments are η-expanded).
elimᴱ≡elim :
{P : {@0 x y : A} → @0 x ≡ y → Type p}
{r : ∀ (@0 x) → P (refl x)} →
elimᴱ P r eq ≡ elim (λ x → P x) (λ x → r x) eq
elimᴱ≡elim {eq = eq} {P = P} {r = r} = elim
(λ eq → elimᴱ P r eq ≡ elim (λ x → P x) (λ x → r x) eq)
(λ x →
elimᴱ P r (refl _) ≡⟨ elimᴱ-refl r ⟩
r x ≡⟨ sym $ elim-refl _ _ ⟩∎
elim (λ x → P x) (λ x → r x) (refl _) ∎)
eq
-- A "computation rule" for congᴱ.
congᴱ-refl :
{@0 A : Type ℓ} {@0 x : A} {f : @0 A → B} →
congᴱ f (refl x) ≡ refl (f x)
congᴱ-refl {x = x} {f = f} =
elimᴱ (λ {x y} _ → f x ≡ f y) (λ x → refl (f x)) (refl x) ≡⟨ elimᴱ-refl (λ x → refl (f x)) ⟩∎
refl (f x) ∎
-- If all arguments are non-erased, then one can replace congᴱ with
-- cong (if the first explicit argument is η-expanded).
congᴱ≡cong :
{f : @0 A → B} →
congᴱ f eq ≡ cong (λ x → f x) eq
congᴱ≡cong {eq = eq} {f = f} = elim¹
(λ eq → congᴱ f eq ≡ cong (λ x → f x) eq)
(congᴱ f (refl _) ≡⟨ congᴱ-refl ⟩
refl _ ≡⟨ sym $ cong-refl _ ⟩∎
cong (λ x → f x) (refl _) ∎)
eq
----------------------------------------------------------------------
-- Some equalities
-- [_] can be "pushed" through subst.
push-subst-[] :
{@0 P : A → Type ℓ} {@0 p : P x} {x≡y : x ≡ y} →
subst (λ x → Erased (P x)) x≡y [ p ] ≡ [ subst P x≡y p ]
push-subst-[] {P = P} {p = p} = elim¹
(λ x≡y → subst (λ x → Erased (P x)) x≡y [ p ] ≡ [ subst P x≡y p ])
(subst (λ x → Erased (P x)) (refl _) [ p ] ≡⟨ subst-refl _ _ ⟩
[ p ] ≡⟨ []-cong [ sym $ subst-refl _ _ ] ⟩∎
[ subst P (refl _) p ] ∎)
_
-- []-cong kind of commutes with trans.
[]-cong-trans :
{@0 A : Type ℓ} {@0 x y z : A} {@0 p : x ≡ y} {@0 q : y ≡ z} →
[]-cong [ trans p q ] ≡ trans ([]-cong [ p ]) ([]-cong [ q ])
[]-cong-trans =
elim¹ᴱ
(λ p →
∀ (@0 q) →
[]-cong [ trans p q ] ≡ trans ([]-cong [ p ]) ([]-cong [ q ]))
(λ q →
[]-cong [ trans (refl _) q ] ≡⟨ cong []-cong $ []-cong [ trans-reflˡ _ ] ⟩
[]-cong [ q ] ≡⟨ sym $ trans-reflˡ _ ⟩
trans (refl [ _ ]) ([]-cong [ q ]) ≡⟨ cong (flip trans _) $ sym []-cong-[refl] ⟩∎
trans ([]-cong [ refl _ ]) ([]-cong [ q ]) ∎)
_ _
----------------------------------------------------------------------
-- All h-levels are closed under Erased
-- Erased commutes with H-level′ n (assuming extensionality).
Erased-H-level′↔H-level′ :
{@0 A : Type ℓ} →
∀ n → Erased (H-level′ n A) ↝[ ℓ ∣ ℓ ] H-level′ n (Erased A)
Erased-H-level′↔H-level′ {A = A} zero ext =
Erased (H-level′ zero A) ↔⟨⟩
Erased (∃ λ (x : A) → (y : A) → x ≡ y) ↔⟨ Erased-Σ↔Σ ⟩
(∃ λ (x : Erased A) → Erased ((y : A) → erased x ≡ y)) ↔⟨ (∃-cong λ _ → Erased-Π↔Π-Erased) ⟩
(∃ λ (x : Erased A) → (y : Erased A) → Erased (erased x ≡ erased y)) ↝⟨ (∃-cong λ _ → ∀-cong ext λ _ → from-isomorphism Erased-≡↔[]≡[]) ⟩
(∃ λ (x : Erased A) → (y : Erased A) → x ≡ y) ↔⟨⟩
H-level′ zero (Erased A) □
Erased-H-level′↔H-level′ {A = A} (suc n) ext =
Erased (H-level′ (suc n) A) ↔⟨⟩
Erased ((x y : A) → H-level′ n (x ≡ y)) ↔⟨ Erased-Π↔Π-Erased ⟩
((x : Erased A) → Erased ((y : A) → H-level′ n (erased x ≡ y))) ↝⟨ (∀-cong ext λ _ → from-isomorphism Erased-Π↔Π-Erased) ⟩
((x y : Erased A) → Erased (H-level′ n (erased x ≡ erased y))) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → Erased-H-level′↔H-level′ n ext) ⟩
((x y : Erased A) → H-level′ n (Erased (erased x ≡ erased y))) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → H-level′-cong ext n Erased-≡↔[]≡[]) ⟩
((x y : Erased A) → H-level′ n (x ≡ y)) ↔⟨⟩
H-level′ (suc n) (Erased A) □
-- Erased commutes with H-level n (assuming extensionality).
Erased-H-level↔H-level :
{@0 A : Type ℓ} →
∀ n → Erased (H-level n A) ↝[ ℓ ∣ ℓ ] H-level n (Erased A)
Erased-H-level↔H-level {A = A} n ext =
Erased (H-level n A) ↝⟨ Erased-cong? H-level↔H-level′ ext ⟩
Erased (H-level′ n A) ↝⟨ Erased-H-level′↔H-level′ n ext ⟩
H-level′ n (Erased A) ↝⟨ inverse-ext? H-level↔H-level′ ext ⟩□
H-level n (Erased A) □
-- H-level n is closed under Erased.
H-level-Erased :
{@0 A : Type ℓ} →
∀ n → @0 H-level n A → H-level n (Erased A)
H-level-Erased n h = Erased-H-level↔H-level n _ [ h ]
----------------------------------------------------------------------
-- Some closure properties related to Is-proposition
-- If A is a proposition, then Dec-Erased A is a proposition
-- (assuming extensionality).
Is-proposition-Dec-Erased :
{@0 A : Type ℓ} →
Extensionality ℓ lzero →
@0 Is-proposition A →
Is-proposition (Dec-Erased A)
Is-proposition-Dec-Erased {A = A} ext p =
$⟨ Dec-closure-propositional ext (H-level-Erased 1 p) ⟩
Is-proposition (Dec (Erased A)) ↝⟨ H-level-cong _ 1 (inverse $ Dec-Erased↔Dec-Erased {k = equivalence} ext) ⦂ (_ → _) ⟩□
Is-proposition (Dec-Erased A) □
-- If A is a set, then Decidable-erased-equality A is a proposition
-- (assuming extensionality).
Is-proposition-Decidable-erased-equality :
{A : Type ℓ} →
Extensionality ℓ ℓ →
@0 Is-set A →
Is-proposition (Decidable-erased-equality A)
Is-proposition-Decidable-erased-equality ext s =
Π-closure ext 1 λ _ →
Π-closure ext 1 λ _ →
Is-proposition-Dec-Erased (lower-extensionality lzero _ ext) s
-- Erasedᴾ preserves Is-proposition.
Is-proposition-Erasedᴾ :
{@0 A : Type a} {@0 B : Type b} {@0 R : A → B → Type ℓ} →
@0 (∀ {x y} → Is-proposition (R x y)) →
∀ {x y} → Is-proposition (Erasedᴾ R x y)
Is-proposition-Erasedᴾ prop =
H-level-Erased 1 prop
----------------------------------------------------------------------
-- A property related to "Modalities in Homotopy Type Theory" by
-- Rijke, Shulman and Spitters
-- Erased is a lex modality (see Theorem 3.1, case (i) in
-- "Modalities in Homotopy Type Theory" for the definition used
-- here).
lex-modality :
{@0 A : Type ℓ} {@0 x y : A} →
Contractible (Erased A) → Contractible (Erased (x ≡ y))
lex-modality {A = A} {x = x} {y = y} =
Contractible (Erased A) ↝⟨ _⇔_.from (Erased-H-level↔H-level 0 _) ⟩
Erased (Contractible A) ↝⟨ map (⇒≡ 0) ⟩
Erased (Contractible (x ≡ y)) ↝⟨ Erased-H-level↔H-level 0 _ ⟩□
Contractible (Erased (x ≡ y)) □
----------------------------------------------------------------------
-- Erased "commutes" with various things
-- Erased "commutes" with _⁻¹_.
Erased-⁻¹ :
{@0 A : Type a} {@0 B : Type ℓ} {@0 f : A → B} {@0 y : B} →
Erased (f ⁻¹ y) ↔ map f ⁻¹ [ y ]
Erased-⁻¹ {f = f} {y = y} =
Erased (∃ λ x → f x ≡ y) ↝⟨ Erased-Σ↔Σ ⟩
(∃ λ x → Erased (f (erased x) ≡ y)) ↝⟨ (∃-cong λ _ → Erased-≡↔[]≡[]) ⟩□
(∃ λ x → map f x ≡ [ y ]) □
-- Erased "commutes" with Split-surjective.
Erased-Split-surjective↔Split-surjective :
{@0 A : Type a} {@0 B : Type ℓ} {@0 f : A → B} →
Erased (Split-surjective f) ↝[ ℓ ∣ a ⊔ ℓ ]
Split-surjective (map f)
Erased-Split-surjective↔Split-surjective {f = f} ext =
Erased (∀ y → ∃ λ x → f x ≡ y) ↔⟨ Erased-Π↔Π-Erased ⟩
(∀ y → Erased (∃ λ x → f x ≡ erased y)) ↝⟨ (∀-cong ext λ _ → from-isomorphism Erased-Σ↔Σ) ⟩
(∀ y → ∃ λ x → Erased (f (erased x) ≡ erased y)) ↝⟨ (∀-cong ext λ _ → ∃-cong λ _ → from-isomorphism Erased-≡↔[]≡[]) ⟩
(∀ y → ∃ λ x → [ f (erased x) ] ≡ y) ↔⟨⟩
(∀ y → ∃ λ x → map f x ≡ y) □
----------------------------------------------------------------------
-- Some lemmas related to whether [_]→ is injective or an embedding
-- In erased contexts [_]→ is injective.
--
-- See also Erased.With-K.Injective-[].
@0 Injective-[] :
{A : Type ℓ} →
Injective {A = A} [_]→
Injective-[] = erased ∘ []-cong⁻¹
-- If A is a proposition, then [_]→ {A = A} is an embedding.
--
-- See also Erased-Is-embedding-[] and Erased-Split-surjective-[]
-- above as well as Very-stable→Is-embedding-[] and
-- Very-stable→Split-surjective-[] in Erased.Stability and
-- Injective-[] and Is-embedding-[] in Erased.With-K.
Is-proposition→Is-embedding-[] :
{A : Type ℓ} →
Is-proposition A → Is-embedding [ A ∣_]→
Is-proposition→Is-embedding-[] prop =
_⇔_.to (Emb.Injective⇔Is-embedding
set (H-level-Erased 2 set) [_]→)
(λ _ → prop _ _)
where
set = mono₁ 1 prop
----------------------------------------------------------------------
-- Variants of some functions from Equality.Decision-procedures
-- A variant of Equality.Decision-procedures.Σ.set⇒dec⇒dec⇒dec.
set⇒dec-erased⇒dec-erased⇒Σ-dec-erased :
{@0 A : Type ℓ} {@0 P : A → Type p}
{@0 x₁ x₂ : A} {@0 y₁ : P x₁} {@0 y₂ : P x₂} →
@0 Is-set A →
Dec-Erased (x₁ ≡ x₂) →
(∀ (@0 eq) → Dec-Erased (substᴱ (λ x → P x) eq y₁ ≡ y₂)) →
Dec-Erased ((x₁ , y₁) ≡ (x₂ , y₂))
set⇒dec-erased⇒dec-erased⇒Σ-dec-erased _ (no [ x₁≢x₂ ]) _ =
no [ x₁≢x₂ ∘ cong proj₁ ]
set⇒dec-erased⇒dec-erased⇒Σ-dec-erased
{P = P} {y₁ = y₁} {y₂ = y₂} set₁ (yes [ x₁≡x₂ ]) dec₂ =
⊎-map
(map λ cast-y₁≡y₂ →
Σ-≡,≡→≡ x₁≡x₂
(subst (λ x → P x) x₁≡x₂ y₁ ≡⟨ sym substᴱ≡subst ⟩
substᴱ (λ x → P x) x₁≡x₂ y₁ ≡⟨ cast-y₁≡y₂ ⟩∎
y₂ ∎))
(map λ cast-y₁≢y₂ eq → $⟨ proj₂ (Σ-≡,≡←≡ eq) ⟩
subst (λ x → P x) (proj₁ (Σ-≡,≡←≡ eq)) y₁ ≡ y₂ ↝⟨ ≡⇒↝ _ $ cong (_≡ _) $ sym substᴱ≡subst ⟩
substᴱ (λ x → P x) (proj₁ (Σ-≡,≡←≡ eq)) y₁ ≡ y₂ ↝⟨ subst (λ p → substᴱ _ p _ ≡ _) (set₁ _ _) ⟩
substᴱ (λ x → P x) x₁≡x₂ y₁ ≡ y₂ ↝⟨ cast-y₁≢y₂ ⟩□
⊥ □)
(dec₂ x₁≡x₂)
-- A variant of Equality.Decision-procedures.Σ.decidable⇒dec⇒dec.
decidable-erased⇒dec-erased⇒Σ-dec-erased :
{@0 A : Type ℓ} {@0 P : A → Type p}
{x₁ x₂ : A} {@0 y₁ : P x₁} {@0 y₂ : P x₂} →
Decidable-erased-equality A →
(∀ (@0 eq) → Dec-Erased (substᴱ (λ x → P x) eq y₁ ≡ y₂)) →
Dec-Erased ((x₁ , y₁) ≡ (x₂ , y₂))
decidable-erased⇒dec-erased⇒Σ-dec-erased dec =
set⇒dec-erased⇒dec-erased⇒Σ-dec-erased
(decidable⇒set
(Decidable-erased-equality≃Decidable-equality _ dec))
(dec _ _)
-- A variant of Equality.Decision-procedures.Σ.Dec._≟_.
decidable-erased⇒decidable-erased⇒Σ-decidable-erased :
{@0 A : Type ℓ} {P : @0 A → Type p} →
Decidable-erased-equality A →
({x : A} → Decidable-erased-equality (P x)) →
Decidable-erased-equality (Σ A λ x → P x)
decidable-erased⇒decidable-erased⇒Σ-decidable-erased
{P = P} decA decP (_ , x₂) (_ , y₂) =
decidable-erased⇒dec-erased⇒Σ-dec-erased
decA
(λ eq → decP (substᴱ P eq x₂) y₂)
------------------------------------------------------------------------
-- Erased commutes with W
-- Erased commutes with W (assuming extensionality and an
-- implementation of the []-cong axioms).
--
-- See also Erased-W↔W′ and Erased-W↔W below.
Erased-W↔W-[]-cong :
{@0 A : Type a} {@0 P : A → Type p} →
[]-cong-axiomatisation (a ⊔ p) →
Erased (W A P) ↝[ p ∣ a ⊔ p ]
W (Erased A) (λ x → Erased (P (erased x)))
Erased-W↔W-[]-cong {a = a} {p = p} {A = A} {P = P} ax =
generalise-ext?
Erased-W⇔W
(λ ext → to∘from ext , from∘to ext)
where
open []-cong-axiomatisation ax
open _⇔_ Erased-W⇔W
to∘from :
Extensionality p (a ⊔ p) →
(x : W (Erased A) (λ x → Erased (P (erased x)))) →
to (from x) ≡ x
to∘from ext (sup [ x ] f) =
cong (sup [ x ]) $
apply-ext ext λ ([ y ]) →
to∘from ext (f [ y ])
from∘to :
Extensionality p (a ⊔ p) →
(x : Erased (W A P)) → from (to x) ≡ x
from∘to ext [ sup x f ] =
[]-cong
[ (cong (sup x) $
apply-ext ext λ y →
cong erased (from∘to ext [ f y ]))
]
-- Erased commutes with W (assuming extensionality).
--
-- See also Erased-W↔W below: That property is defined assuming that
-- the []-cong axioms can be instantiated, but is stated using
-- _↝[ p ∣ a ⊔ p ]_ instead of _↝[ a ⊔ p ∣ a ⊔ p ]_.
Erased-W↔W′ :
{@0 A : Type a} {@0 P : A → Type p} →
Erased (W A P) ↝[ a ⊔ p ∣ a ⊔ p ]
W (Erased A) (λ x → Erased (P (erased x)))
Erased-W↔W′ {a = a} =
generalise-ext?
Erased-W⇔W
(λ ext →
let bij = Erased-W↔W-[]-cong
(Extensionality→[]-cong-axiomatisation ext)
(lower-extensionality a lzero ext)
in _↔_.right-inverse-of bij , _↔_.left-inverse-of bij)
------------------------------------------------------------------------
-- Some results that follow if the []-cong axioms hold for two
-- universe levels
module []-cong₂
(ax₁ : []-cong-axiomatisation ℓ₁)
(ax₂ : []-cong-axiomatisation ℓ₂)
where
private
module BC₁ = []-cong₁ ax₁
module BC₂ = []-cong₁ ax₂
----------------------------------------------------------------------
-- Some equalities
-- The function map (cong f) can be expressed in terms of
-- cong (map f) (up to pointwise equality).
map-cong≡cong-map :
{@0 A : Type ℓ₁} {@0 B : Type ℓ₂} {@0 x y : A}
{@0 f : A → B} {x≡y : Erased (x ≡ y)} →
map (cong f) x≡y ≡ BC₂.[]-cong⁻¹ (cong (map f) (BC₁.[]-cong x≡y))
map-cong≡cong-map {f = f} {x≡y = [ x≡y ]} =
[ cong f x≡y ] ≡⟨⟩
[ cong (erased ∘ map f ∘ [_]→) x≡y ] ≡⟨ BC₂.[]-cong [ sym $ cong-∘ _ _ _ ] ⟩
[ cong (erased ∘ map f) (cong [_]→ x≡y) ] ≡⟨ BC₂.[]-cong [ cong (cong _) $ sym BC₁.[]-cong-[]≡cong-[] ] ⟩
[ cong (erased ∘ map f) (BC₁.[]-cong [ x≡y ]) ] ≡⟨ BC₂.[]-cong [ sym $ cong-∘ _ _ _ ] ⟩
[ cong erased (cong (map f) (BC₁.[]-cong [ x≡y ])) ] ≡⟨ sym BC₂.[]-cong⁻¹≡[cong-erased] ⟩∎
BC₂.[]-cong⁻¹ (cong (map f) (BC₁.[]-cong [ x≡y ])) ∎
-- []-cong kind of commutes with cong.
[]-cong-cong :
{@0 A : Type ℓ₁} {@0 B : Type ℓ₂}
{@0 f : A → B} {@0 x y : A} {@0 p : x ≡ y} →
BC₂.[]-cong [ cong f p ] ≡ cong (map f) (BC₁.[]-cong [ p ])
[]-cong-cong {f = f} =
BC₁.elim¹ᴱ
(λ p → BC₂.[]-cong [ cong f p ] ≡
cong (map f) (BC₁.[]-cong [ p ]))
(BC₂.[]-cong [ cong f (refl _) ] ≡⟨ cong BC₂.[]-cong (BC₂.[]-cong [ cong-refl _ ]) ⟩
BC₂.[]-cong [ refl _ ] ≡⟨ BC₂.[]-cong-[refl] ⟩
refl _ ≡⟨ sym $ cong-refl _ ⟩
cong (map f) (refl _) ≡⟨ sym $ cong (cong (map f)) BC₁.[]-cong-[refl] ⟩∎
cong (map f) (BC₁.[]-cong [ refl _ ]) ∎)
_
----------------------------------------------------------------------
-- Erased "commutes" with one thing
-- Erased "commutes" with Has-quasi-inverse.
Erased-Has-quasi-inverse↔Has-quasi-inverse :
{@0 A : Type ℓ₁} {@0 B : Type ℓ₂} {@0 f : A → B} →
Erased (Has-quasi-inverse f) ↝[ ℓ₁ ⊔ ℓ₂ ∣ ℓ₁ ⊔ ℓ₂ ]
Has-quasi-inverse (map f)
Erased-Has-quasi-inverse↔Has-quasi-inverse
{A = A} {B = B} {f = f} {k = k} ext =
Erased (∃ λ g → (∀ x → f (g x) ≡ x) × (∀ x → g (f x) ≡ x)) ↔⟨ Erased-Σ↔Σ ⟩
(∃ λ g →
Erased ((∀ x → f (erased g x) ≡ x) × (∀ x → erased g (f x) ≡ x))) ↝⟨ (∃-cong λ _ → from-isomorphism Erased-Σ↔Σ) ⟩
(∃ λ g →
Erased (∀ x → f (erased g x) ≡ x) ×
Erased (∀ x → erased g (f x) ≡ x)) ↝⟨ Σ-cong Erased-Π↔Π-Erased (λ g →
lemma₁ (erased g) ×-cong lemma₂ (erased g)) ⟩□
(∃ λ g → (∀ x → map f (g x) ≡ x) × (∀ x → g (map f x) ≡ x)) □
where
lemma₁ : (@0 g : B → A) → _ ↝[ k ] _
lemma₁ g =
Erased (∀ x → f (g x) ≡ x) ↔⟨ Erased-Π↔Π-Erased ⟩
(∀ x → Erased (f (g (erased x)) ≡ erased x)) ↝⟨ (∀-cong (lower-extensionality? k ℓ₁ ℓ₁ ext) λ _ →
from-isomorphism BC₂.Erased-≡↔[]≡[]) ⟩
(∀ x → [ f (g (erased x)) ] ≡ x) ↔⟨⟩
(∀ x → map (f ∘ g) x ≡ x) □
lemma₂ : (@0 g : B → A) → _ ↝[ k ] _
lemma₂ g =
Erased (∀ x → g (f x) ≡ x) ↔⟨ Erased-Π↔Π-Erased ⟩
(∀ x → Erased (g (f (erased x)) ≡ erased x)) ↝⟨ (∀-cong (lower-extensionality? k ℓ₂ ℓ₂ ext) λ _ →
from-isomorphism BC₁.Erased-≡↔[]≡[]) ⟩
(∀ x → [ g (f (erased x)) ] ≡ x) ↔⟨⟩
(∀ x → map (g ∘ f) x ≡ x) □
------------------------------------------------------------------------
-- Some results that follow if the []-cong axioms hold for the maximum
-- of two universe levels (as well as for the two universe levels)
-- It is possible to instantiate the first two arguments using the
-- third and lower-[]-cong-axiomatisation, but this is not what is
-- done in the module []-cong below.
module []-cong₂-⊔
(ax₁ : []-cong-axiomatisation ℓ₁)
(ax₂ : []-cong-axiomatisation ℓ₂)
(ax : []-cong-axiomatisation (ℓ₁ ⊔ ℓ₂))
where
private
module EC = Erased-cong ax ax
module BC₁ = []-cong₁ ax₁
module BC₂ = []-cong₁ ax₂
module BC = []-cong₁ ax
----------------------------------------------------------------------
-- A property related to "Modalities in Homotopy Type Theory" by
-- Rijke, Shulman and Spitters
-- A function f is Erased-connected in the sense of Rijke et al.
-- exactly when there is an erased proof showing that f is an
-- equivalence (assuming extensionality).
--
-- See also Erased-Is-equivalence↔Is-equivalence below.
Erased-connected↔Erased-Is-equivalence :
{@0 A : Type ℓ₁} {B : Type ℓ₂} {@0 f : A → B} →
(∀ y → Contractible (Erased (f ⁻¹ y))) ↝[ ℓ₁ ⊔ ℓ₂ ∣ ℓ₁ ⊔ ℓ₂ ]
Erased (Is-equivalence f)
Erased-connected↔Erased-Is-equivalence {f = f} {k = k} ext =
(∀ y → Contractible (Erased (f ⁻¹ y))) ↝⟨ (∀-cong (lower-extensionality? k ℓ₁ lzero ext) λ _ →
inverse-ext? (BC.Erased-H-level↔H-level 0) ext) ⟩
(∀ y → Erased (Contractible (f ⁻¹ y))) ↔⟨ inverse Erased-Π↔Π ⟩
Erased (∀ y → Contractible (f ⁻¹ y)) ↔⟨⟩
Erased (CP.Is-equivalence f) ↝⟨ inverse-ext? (λ ext → EC.Erased-cong? Is-equivalence≃Is-equivalence-CP ext) ext ⟩□
Erased (Is-equivalence f) □
----------------------------------------------------------------------
-- Erased "commutes" with various things
-- Erased "commutes" with Is-equivalence.
Erased-Is-equivalence↔Is-equivalence :
{@0 A : Type ℓ₁} {@0 B : Type ℓ₂} {@0 f : A → B} →
Erased (Is-equivalence f) ↝[ ℓ₁ ⊔ ℓ₂ ∣ ℓ₁ ⊔ ℓ₂ ]
Is-equivalence (map f)
Erased-Is-equivalence↔Is-equivalence {f = f} {k = k} ext =
Erased (Is-equivalence f) ↝⟨ EC.Erased-cong? Is-equivalence≃Is-equivalence-CP ext ⟩
Erased (∀ x → Contractible (f ⁻¹ x)) ↔⟨ Erased-Π↔Π-Erased ⟩
(∀ x → Erased (Contractible (f ⁻¹ erased x))) ↝⟨ (∀-cong ext′ λ _ → BC.Erased-H-level↔H-level 0 ext) ⟩
(∀ x → Contractible (Erased (f ⁻¹ erased x))) ↝⟨ (∀-cong ext′ λ _ → H-level-cong ext 0 BC₂.Erased-⁻¹) ⟩
(∀ x → Contractible (map f ⁻¹ x)) ↝⟨ inverse-ext? Is-equivalence≃Is-equivalence-CP ext ⟩□
Is-equivalence (map f) □
where
ext′ = lower-extensionality? k ℓ₁ lzero ext
-- Erased "commutes" with Injective.
Erased-Injective↔Injective :
{@0 A : Type ℓ₁} {@0 B : Type ℓ₂} {@0 f : A → B} →
Erased (Injective f) ↝[ ℓ₁ ⊔ ℓ₂ ∣ ℓ₁ ⊔ ℓ₂ ] Injective (map f)
Erased-Injective↔Injective {f = f} {k = k} ext =
Erased (∀ {x y} → f x ≡ f y → x ≡ y) ↔⟨ EC.Erased-cong-↔ Bijection.implicit-Π↔Π ⟩
Erased (∀ x {y} → f x ≡ f y → x ≡ y) ↝⟨ EC.Erased-cong?
(λ {k} ext →
∀-cong (lower-extensionality? k ℓ₂ lzero ext) λ _ →
from-isomorphism Bijection.implicit-Π↔Π)
ext ⟩
Erased (∀ x y → f x ≡ f y → x ≡ y) ↔⟨ Erased-Π↔Π-Erased ⟩
(∀ x → Erased (∀ y → f (erased x) ≡ f y → erased x ≡ y)) ↝⟨ (∀-cong ext′ λ _ → from-isomorphism Erased-Π↔Π-Erased) ⟩
(∀ x y →
Erased (f (erased x) ≡ f (erased y) → erased x ≡ erased y)) ↝⟨ (∀-cong ext′ λ _ → ∀-cong ext′ λ _ → from-isomorphism Erased-Π↔Π-Erased) ⟩
(∀ x y →
Erased (f (erased x) ≡ f (erased y)) →
Erased (erased x ≡ erased y)) ↝⟨ (∀-cong ext′ λ _ → ∀-cong ext′ λ _ →
generalise-ext?-sym
(λ {k} ext → →-cong (lower-extensionality? ⌊ k ⌋-sym ℓ₁ ℓ₂ ext)
(from-isomorphism BC₂.Erased-≡↔[]≡[])
(from-isomorphism BC₁.Erased-≡↔[]≡[]))
ext) ⟩
(∀ x y → [ f (erased x) ] ≡ [ f (erased y) ] → x ≡ y) ↝⟨ (∀-cong ext′ λ _ → from-isomorphism $ inverse Bijection.implicit-Π↔Π) ⟩
(∀ x {y} → [ f (erased x) ] ≡ [ f (erased y) ] → x ≡ y) ↔⟨ inverse Bijection.implicit-Π↔Π ⟩□
(∀ {x y} → [ f (erased x) ] ≡ [ f (erased y) ] → x ≡ y) □
where
ext′ = lower-extensionality? k ℓ₂ lzero ext
-- Erased "commutes" with Is-embedding.
Erased-Is-embedding↔Is-embedding :
{@0 A : Type ℓ₁} {@0 B : Type ℓ₂} {@0 f : A → B} →
Erased (Is-embedding f) ↝[ ℓ₁ ⊔ ℓ₂ ∣ ℓ₁ ⊔ ℓ₂ ] Is-embedding (map f)
Erased-Is-embedding↔Is-embedding {f = f} {k = k} ext =
Erased (∀ x y → Is-equivalence (cong f)) ↔⟨ Erased-Π↔Π-Erased ⟩
(∀ x → Erased (∀ y → Is-equivalence (cong f))) ↝⟨ (∀-cong ext′ λ _ → from-isomorphism Erased-Π↔Π-Erased) ⟩
(∀ x y → Erased (Is-equivalence (cong f))) ↝⟨ (∀-cong ext′ λ _ → ∀-cong ext′ λ _ →
Erased-Is-equivalence↔Is-equivalence ext) ⟩
(∀ x y → Is-equivalence (map (cong f))) ↝⟨ (∀-cong ext′ λ x → ∀-cong ext′ λ y →
Is-equivalence-cong ext λ _ → []-cong₂.map-cong≡cong-map ax₁ ax₂) ⟩
(∀ x y →
Is-equivalence (BC₂.[]-cong⁻¹ ∘ cong (map f) ∘ BC₁.[]-cong)) ↝⟨ (∀-cong ext′ λ _ → ∀-cong ext′ λ _ →
inverse-ext?
(Is-equivalence≃Is-equivalence-∘ʳ BC₁.[]-cong-equivalence)
ext) ⟩
(∀ x y → Is-equivalence (BC₂.[]-cong⁻¹ ∘ cong (map f))) ↝⟨ (∀-cong ext′ λ _ → ∀-cong ext′ λ _ →
inverse-ext?
(Is-equivalence≃Is-equivalence-∘ˡ
(_≃_.is-equivalence $ from-isomorphism $ inverse
BC₂.Erased-≡↔[]≡[]))
ext) ⟩□
(∀ x y → Is-equivalence (cong (map f))) □
where
ext′ = lower-extensionality? k ℓ₂ lzero ext
----------------------------------------------------------------------
-- Erased commutes with various type formers
-- Erased commutes with W (assuming extensionality).
Erased-W↔W :
{@0 A : Type ℓ₁} {@0 P : A → Type ℓ₂} →
Erased (W A P) ↝[ ℓ₂ ∣ ℓ₁ ⊔ ℓ₂ ]
W (Erased A) (λ x → Erased (P (erased x)))
Erased-W↔W = Erased-W↔W-[]-cong ax
-- Erased commutes with _⇔_.
Erased-⇔↔⇔ :
{@0 A : Type ℓ₁} {@0 B : Type ℓ₂} →
Erased (A ⇔ B) ↔ (Erased A ⇔ Erased B)
Erased-⇔↔⇔ {A = A} {B = B} =
Erased (A ⇔ B) ↝⟨ EC.Erased-cong-↔ ⇔↔→×→ ⟩
Erased ((A → B) × (B → A)) ↝⟨ Erased-Σ↔Σ ⟩
Erased (A → B) × Erased (B → A) ↝⟨ Erased-Π↔Π-Erased ×-cong Erased-Π↔Π-Erased ⟩
(Erased A → Erased B) × (Erased B → Erased A) ↝⟨ inverse ⇔↔→×→ ⟩□
(Erased A ⇔ Erased B) □
-- Erased commutes with _↣_.
Erased-cong-↣ :
{@0 A : Type ℓ₁} {@0 B : Type ℓ₂} →
@0 A ↣ B → Erased A ↣ Erased B
Erased-cong-↣ A↣B = record
{ to = map (_↣_.to A↣B)
; injective = Erased-Injective↔Injective _ [ _↣_.injective A↣B ]
}
------------------------------------------------------------------------
-- Some results that follow if the []-cong axioms hold for all
-- universe levels
module []-cong (ax : ∀ {ℓ} → []-cong-axiomatisation ℓ) where
private
open module EC {ℓ₁ ℓ₂} =
Erased-cong (ax {ℓ = ℓ₁}) (ax {ℓ = ℓ₂})
public
open module BC₁ {ℓ} =
[]-cong₁ (ax {ℓ = ℓ})
public
open module BC₂ {ℓ₁ ℓ₂} = []-cong₂ (ax {ℓ = ℓ₁}) (ax {ℓ = ℓ₂})
public
open module BC₂-⊔ {ℓ₁ ℓ₂} =
[]-cong₂-⊔ (ax {ℓ = ℓ₁}) (ax {ℓ = ℓ₂}) (ax {ℓ = ℓ₁ ⊔ ℓ₂})
public
------------------------------------------------------------------------
-- Some results that were proved assuming extensionality and also that
-- one or more instances of the []-cong axioms can be implemented,
-- reproved without the latter assumptions
module Extensionality where
-- Erased commutes with H-level′ n (assuming extensionality).
Erased-H-level′≃H-level′ :
{@0 A : Type a} →
Extensionality a a →
∀ n → Erased (H-level′ n A) ≃ H-level′ n (Erased A)
Erased-H-level′≃H-level′ ext n =
[]-cong₁.Erased-H-level′↔H-level′
(Extensionality→[]-cong-axiomatisation ext)
n
ext
-- Erased commutes with H-level n (assuming extensionality).
Erased-H-level≃H-level :
{@0 A : Type a} →
Extensionality a a →
∀ n → Erased (H-level n A) ≃ H-level n (Erased A)
Erased-H-level≃H-level ext n =
[]-cong₁.Erased-H-level↔H-level
(Extensionality→[]-cong-axiomatisation ext)
n
ext
-- If A is a set, then Decidable-erased-equality A is a proposition
-- (assuming extensionality).
Is-proposition-Decidable-erased-equality′ :
{A : Type a} →
Extensionality a a →
@0 Is-set A →
Is-proposition (Decidable-erased-equality A)
Is-proposition-Decidable-erased-equality′ ext =
[]-cong₁.Is-proposition-Decidable-erased-equality
(Extensionality→[]-cong-axiomatisation ext)
ext
-- Erased "commutes" with Split-surjective.
Erased-Split-surjective≃Split-surjective :
{@0 A : Type a} {@0 B : Type b} {@0 f : A → B} →
Extensionality b (a ⊔ b) →
Erased (Split-surjective f) ≃ Split-surjective (map f)
Erased-Split-surjective≃Split-surjective {a = a} ext =
[]-cong₁.Erased-Split-surjective↔Split-surjective
(Extensionality→[]-cong-axiomatisation
(lower-extensionality lzero a ext))
ext
-- A function f is Erased-connected in the sense of Rijke et al.
-- exactly when there is an erased proof showing that f is an
-- equivalence (assuming extensionality).
Erased-connected≃Erased-Is-equivalence :
{@0 A : Type a} {B : Type b} {@0 f : A → B} →
Extensionality (a ⊔ b) (a ⊔ b) →
(∀ y → Contractible (Erased (f ⁻¹ y))) ≃ Erased (Is-equivalence f)
Erased-connected≃Erased-Is-equivalence {a = a} {b = b} ext =
[]-cong₂-⊔.Erased-connected↔Erased-Is-equivalence
(Extensionality→[]-cong-axiomatisation
(lower-extensionality b b ext))
(Extensionality→[]-cong-axiomatisation
(lower-extensionality a a ext))
(Extensionality→[]-cong-axiomatisation ext)
ext
-- Erased "commutes" with Is-equivalence (assuming extensionality).
Erased-Is-equivalence≃Is-equivalence :
{@0 A : Type a} {@0 B : Type b} {@0 f : A → B} →
Extensionality (a ⊔ b) (a ⊔ b) →
Erased (Is-equivalence f) ≃ Is-equivalence (map f)
Erased-Is-equivalence≃Is-equivalence {a = a} {b = b} ext =
[]-cong₂-⊔.Erased-Is-equivalence↔Is-equivalence
(Extensionality→[]-cong-axiomatisation
(lower-extensionality b b ext))
(Extensionality→[]-cong-axiomatisation
(lower-extensionality a a ext))
(Extensionality→[]-cong-axiomatisation ext)
ext
-- Erased "commutes" with Has-quasi-inverse (assuming
-- extensionality).
Erased-Has-quasi-inverse≃Has-quasi-inverse :
{@0 A : Type a} {@0 B : Type b} {@0 f : A → B} →
Extensionality (a ⊔ b) (a ⊔ b) →
Erased (Has-quasi-inverse f) ≃ Has-quasi-inverse (map f)
Erased-Has-quasi-inverse≃Has-quasi-inverse {a = a} {b = b} ext =
[]-cong₂.Erased-Has-quasi-inverse↔Has-quasi-inverse
(Extensionality→[]-cong-axiomatisation
(lower-extensionality b b ext))
(Extensionality→[]-cong-axiomatisation
(lower-extensionality a a ext))
ext
-- Erased "commutes" with Injective (assuming extensionality).
Erased-Injective≃Injective :
{@0 A : Type a} {@0 B : Type b} {@0 f : A → B} →
Extensionality (a ⊔ b) (a ⊔ b) →
Erased (Injective f) ≃ Injective (map f)
Erased-Injective≃Injective {a = a} {b = b} ext =
[]-cong₂-⊔.Erased-Injective↔Injective
(Extensionality→[]-cong-axiomatisation
(lower-extensionality b b ext))
(Extensionality→[]-cong-axiomatisation
(lower-extensionality a a ext))
(Extensionality→[]-cong-axiomatisation ext)
ext
-- Erased "commutes" with Is-embedding (assuming extensionality).
Erased-Is-embedding≃Is-embedding :
{@0 A : Type a} {@0 B : Type b} {@0 f : A → B} →
Extensionality (a ⊔ b) (a ⊔ b) →
Erased (Is-embedding f) ≃ Is-embedding (map f)
Erased-Is-embedding≃Is-embedding {a = a} {b = b} ext =
[]-cong₂-⊔.Erased-Is-embedding↔Is-embedding
(Extensionality→[]-cong-axiomatisation
(lower-extensionality b b ext))
(Extensionality→[]-cong-axiomatisation
(lower-extensionality a a ext))
(Extensionality→[]-cong-axiomatisation ext)
ext
------------------------------------------------------------------------
-- Some lemmas related to []-cong-axiomatisation
-- Any two implementations of []-cong are pointwise equal.
[]-cong-unique :
{@0 A : Type a} {@0 x y : A} {x≡y : Erased (x ≡ y)}
(ax₁ ax₂ : []-cong-axiomatisation a) →
[]-cong-axiomatisation.[]-cong ax₁ x≡y ≡
[]-cong-axiomatisation.[]-cong ax₂ x≡y
[]-cong-unique {x = x} ax₁ ax₂ =
BC₁.elim¹ᴱ
(λ x≡y → BC₁.[]-cong [ x≡y ] ≡ BC₂.[]-cong [ x≡y ])
(BC₁.[]-cong [ refl x ] ≡⟨ BC₁.[]-cong-[refl] ⟩
refl [ x ] ≡⟨ sym BC₂.[]-cong-[refl] ⟩∎
BC₂.[]-cong [ refl x ] ∎)
_
where
module BC₁ = []-cong₁ ax₁
module BC₂ = []-cong₁ ax₂
-- The type []-cong-axiomatisation a is propositional (assuming
-- extensionality).
--
-- The proof is based on a proof due to Nicolai Kraus that shows that
-- "J + its computation rule" is contractible, see
-- Equality.Instances-related.Equality-with-J-contractible.
[]-cong-axiomatisation-propositional :
Extensionality (lsuc a) a →
Is-proposition ([]-cong-axiomatisation a)
[]-cong-axiomatisation-propositional {a = a} ext =
[inhabited⇒contractible]⇒propositional λ ax →
let module BC = []-cong₁ ax
module EC = Erased-cong ax ax
in
_⇔_.from contractible⇔↔⊤
([]-cong-axiomatisation a ↔⟨ Eq.↔→≃
(λ (record { []-cong = c
; []-cong-equivalence = e
; []-cong-[refl] = r
})
_ →
(λ ([ _ , _ , x≡y ]) → c [ x≡y ])
, (λ _ → r)
, (λ _ _ → e))
(λ f → record
{ []-cong = λ ([ x≡y ]) →
f _ .proj₁ [ _ , _ , x≡y ]
; []-cong-equivalence = f _ .proj₂ .proj₂ _ _
; []-cong-[refl] = f _ .proj₂ .proj₁ _
})
refl
refl ⟩
((([ A ]) : Erased (Type a)) →
∃ λ (c : ((([ x , y , _ ]) : Erased (A ²/≡)) → [ x ] ≡ [ y ])) →
((([ x ]) : Erased A) → c [ x , x , refl x ] ≡ refl [ x ]) ×
((([ x ]) ([ y ]) : Erased A) →
Is-equivalence {A = Erased (x ≡ y)} {B = [ x ] ≡ [ y ]}
(λ ([ x≡y ]) → c [ x , y , x≡y ]))) ↝⟨ (∀-cong ext λ _ →
Σ-cong
(inverse $
Π-cong ext′ (EC.Erased-cong-↔ (inverse U.-²/≡↔-)) λ _ →
Bijection.id)
λ c →
∃-cong λ r → ∀-cong ext′ λ ([ x ]) → ∀-cong ext′ λ ([ y ]) →
Is-equivalence-cong ext′ λ ([ x≡y ]) →
c [ x , y , x≡y ] ≡⟨ BC.elim¹ᴱ
(λ x≡y → c [ _ , _ , x≡y ] ≡ BC.[]-cong [ x≡y ])
(
c [ x , x , refl x ] ≡⟨ r [ x ] ⟩
refl [ x ] ≡⟨ sym BC.[]-cong-[refl] ⟩∎
BC.[]-cong [ refl x ] ∎)
_ ⟩∎
BC.[]-cong [ x≡y ] ∎) ⟩
((([ A ]) : Erased (Type a)) →
∃ λ (c : ((x : Erased A) → x ≡ x)) →
((x : Erased A) → c x ≡ refl x) ×
((([ x ]) ([ y ]) : Erased A) →
Is-equivalence {A = Erased (x ≡ y)} {B = [ x ] ≡ [ y ]}
(λ ([ x≡y ]) → BC.[]-cong [ x≡y ]))) ↝⟨ (∀-cong ext λ _ → ∃-cong λ _ →
drop-⊤-right λ _ →
_⇔_.to contractible⇔↔⊤ $
propositional⇒inhabited⇒contractible
(Π-closure ext′ 1 λ _ →
Π-closure ext′ 1 λ _ →
Eq.propositional ext′ _)
(λ _ _ → BC.[]-cong-equivalence)) ⟩
((([ A ]) : Erased (Type a)) →
∃ λ (c : ((x : Erased A) → x ≡ x)) →
((x : Erased A) → c x ≡ refl x)) ↝⟨ (∀-cong ext λ _ → inverse
ΠΣ-comm) ⟩
((([ A ]) : Erased (Type a)) (x : Erased A) →
∃ λ (c : x ≡ x) → c ≡ refl x) ↔⟨⟩
((([ A ]) : Erased (Type a)) (x : Erased A) → Singleton (refl x)) ↝⟨ _⇔_.to contractible⇔↔⊤ $
(Π-closure ext 0 λ _ →
Π-closure ext′ 0 λ _ →
singleton-contractible _) ⟩□
⊤ □)
where
ext′ : Extensionality a a
ext′ = lower-extensionality _ lzero ext
-- The type []-cong-axiomatisation a is contractible (assuming
-- extensionality).
[]-cong-axiomatisation-contractible :
Extensionality (lsuc a) a →
Contractible ([]-cong-axiomatisation a)
[]-cong-axiomatisation-contractible {a = a} ext =
propositional⇒inhabited⇒contractible
([]-cong-axiomatisation-propositional ext)
(Extensionality→[]-cong-axiomatisation
(lower-extensionality _ lzero ext))
------------------------------------------------------------------------
-- An alternative to []-cong-axiomatisation
-- An axiomatisation of substᴱ, restricted to a fixed universe, along
-- with its computation rule.
Substᴱ-axiomatisation : (ℓ : Level) → Type (lsuc ℓ)
Substᴱ-axiomatisation ℓ =
∃ λ (substᴱ :
{@0 A : Type ℓ} {@0 x y : A}
(P : @0 A → Type ℓ) → @0 x ≡ y → P x → P y) →
{@0 A : Type ℓ} {@0 x : A} {P : @0 A → Type ℓ} {p : P x} →
substᴱ P (refl x) p ≡ p
private
-- The type []-cong-axiomatisation ℓ is logically equivalent to
-- Substᴱ-axiomatisation ℓ.
[]-cong-axiomatisation⇔Substᴱ-axiomatisation :
[]-cong-axiomatisation ℓ ⇔ Substᴱ-axiomatisation ℓ
[]-cong-axiomatisation⇔Substᴱ-axiomatisation {ℓ = ℓ} =
record { to = to; from = from }
where
to : []-cong-axiomatisation ℓ → Substᴱ-axiomatisation ℓ
to ax = []-cong₁.substᴱ ax , []-cong₁.substᴱ-refl ax
from : Substᴱ-axiomatisation ℓ → []-cong-axiomatisation ℓ
from (substᴱ , substᴱ-refl) = λ where
.[]-cong-axiomatisation.[]-cong →
[]-cong
.[]-cong-axiomatisation.[]-cong-[refl] →
substᴱ-refl
.[]-cong-axiomatisation.[]-cong-equivalence {x = x} →
_≃_.is-equivalence $
Eq.↔→≃
_
(λ [x]≡[y] → [ cong erased [x]≡[y] ])
(elim¹
(λ [x]≡[y] →
substᴱ (λ y → [ x ] ≡ [ y ]) (cong erased [x]≡[y])
(refl [ x ]) ≡
[x]≡[y])
(substᴱ (λ y → [ x ] ≡ [ y ]) (cong erased (refl [ x ]))
(refl [ x ]) ≡⟨ substᴱ
(λ eq →
substᴱ (λ y → [ x ] ≡ [ y ]) eq (refl [ x ]) ≡
substᴱ (λ y → [ x ] ≡ [ y ]) (refl x) (refl [ x ]))
(sym $ cong-refl _)
(refl _) ⟩
substᴱ (λ y → [ x ] ≡ [ y ]) (refl x) (refl [ x ]) ≡⟨ substᴱ-refl ⟩∎
refl [ x ] ∎))
(λ ([ x≡y ]) →
[]-cong
[ elim¹
(λ x≡y → cong erased ([]-cong [ x≡y ]) ≡ x≡y)
(cong erased ([]-cong [ refl _ ]) ≡⟨ cong (cong erased) substᴱ-refl ⟩
cong erased (refl [ _ ]) ≡⟨ cong-refl _ ⟩∎
refl _ ∎)
x≡y
])
where
[]-cong :
{@0 A : Type ℓ} {@0 x y : A} →
Erased (x ≡ y) → [ x ] ≡ [ y ]
[]-cong {x = x} ([ x≡y ]) =
substᴱ (λ y → [ x ] ≡ [ y ]) x≡y (refl [ x ])
-- The type Substᴱ-axiomatisation ℓ is propositional (assuming
-- extensionality).
--
-- The proof is based on a proof due to Nicolai Kraus that shows that
-- "J + its computation rule" is contractible, see
-- Equality.Instances-related.Equality-with-J-contractible.
Substᴱ-axiomatisation-propositional :
Extensionality (lsuc ℓ) (lsuc ℓ) →
Is-proposition (Substᴱ-axiomatisation ℓ)
Substᴱ-axiomatisation-propositional {ℓ = ℓ} ext =
[inhabited⇒contractible]⇒propositional λ ax →
let ax′ = _⇔_.from []-cong-axiomatisation⇔Substᴱ-axiomatisation ax
module EC = Erased-cong ax′ ax′
in
_⇔_.from contractible⇔↔⊤
(Substᴱ-axiomatisation ℓ ↔⟨ Eq.↔→≃
(λ (substᴱ , substᴱ-refl) _ P →
(λ ([ _ , _ , x≡y ]) → substᴱ (λ A → P [ A ]) x≡y)
, (λ _ _ → substᴱ-refl))
(λ hyp →
(λ P x≡y p → hyp _ (λ ([ A ]) → P A) .proj₁ [ _ , _ , x≡y ] p)
, hyp _ _ .proj₂ _ _)
refl
refl ⟩
((([ A ]) : Erased (Type ℓ)) (P : Erased A → Type ℓ) →
∃ λ (s : ((([ x , y , _ ]) : Erased (A ²/≡)) →
P [ x ] → P [ y ])) →
((([ x ]) : Erased A) (p : P [ x ]) →
s [ x , x , refl x ] p ≡ p)) ↝⟨ (∀-cong ext λ _ → ∀-cong ext′ λ _ →
Σ-cong
(inverse $
Π-cong ext″ (EC.Erased-cong-↔ (inverse U.-²/≡↔-)) λ _ →
Bijection.id)
(λ _ → Bijection.id)) ⟩
((([ A ]) : Erased (Type ℓ)) (P : Erased A → Type ℓ) →
∃ λ (s : ((([ x ]) : Erased A) → P [ x ] → P [ x ])) →
((([ x ]) : Erased A) (p : P [ x ]) → s [ x ] p ≡ p)) ↝⟨ (∀-cong ext λ _ → ∀-cong ext′ λ _ → inverse $
ΠΣ-comm F.∘
(∀-cong ext″ λ _ → ΠΣ-comm)) ⟩
((([ A ]) : Erased (Type ℓ)) (P : Erased A → Type ℓ)
(x : Erased A) (p : P x) → ∃ λ (p′ : P x) → p′ ≡ p) ↔⟨⟩
((([ A ]) : Erased (Type ℓ)) (P : Erased A → Type ℓ)
(x : Erased A) (p : P x) → Singleton p) ↝⟨ (_⇔_.to contractible⇔↔⊤ $
Π-closure ext 0 λ _ →
Π-closure ext′ 0 λ _ →
Π-closure ext″ 0 λ _ →
Π-closure ext″ 0 λ _ →
singleton-contractible _) ⟩□
⊤ □)
where
ext′ : Extensionality (lsuc ℓ) ℓ
ext′ = lower-extensionality lzero _ ext
ext″ : Extensionality ℓ ℓ
ext″ = lower-extensionality _ _ ext
-- The type []-cong-axiomatisation ℓ is equivalent to
-- Substᴱ-axiomatisation ℓ (assuming extensionality).
[]-cong-axiomatisation≃Substᴱ-axiomatisation :
[]-cong-axiomatisation ℓ ↝[ lsuc ℓ ∣ lsuc ℓ ] Substᴱ-axiomatisation ℓ
[]-cong-axiomatisation≃Substᴱ-axiomatisation {ℓ = ℓ} =
generalise-ext?-prop
[]-cong-axiomatisation⇔Substᴱ-axiomatisation
([]-cong-axiomatisation-propositional ∘
lower-extensionality lzero _)
Substᴱ-axiomatisation-propositional
------------------------------------------------------------------------
-- Another alternative to []-cong-axiomatisation
-- An axiomatisation of elim¹ᴱ, restricted to a fixed universe, along
-- with its computation rule.
Elimᴱ-axiomatisation : (ℓ : Level) → Type (lsuc ℓ)
Elimᴱ-axiomatisation ℓ =
∃ λ (elimᴱ :
{@0 A : Type ℓ} {@0 x y : A}
(P : {@0 x y : A} → @0 x ≡ y → Type ℓ) →
((@0 x : A) → P (refl x)) →
(@0 x≡y : x ≡ y) → P x≡y) →
{@0 A : Type ℓ} {@0 x : A} {P : {@0 x y : A} → @0 x ≡ y → Type ℓ}
(r : (@0 x : A) → P (refl x)) →
elimᴱ P r (refl x) ≡ r x
private
-- The type Substᴱ-axiomatisation ℓ is logically equivalent to
-- Elimᴱ-axiomatisation ℓ.
Substᴱ-axiomatisation⇔Elimᴱ-axiomatisation :
Substᴱ-axiomatisation ℓ ⇔ Elimᴱ-axiomatisation ℓ
Substᴱ-axiomatisation⇔Elimᴱ-axiomatisation {ℓ = ℓ} =
record { to = to; from = from }
where
to : Substᴱ-axiomatisation ℓ → Elimᴱ-axiomatisation ℓ
to ax = elimᴱ , elimᴱ-refl
where
open
[]-cong₁
(_⇔_.from []-cong-axiomatisation⇔Substᴱ-axiomatisation ax)
from : Elimᴱ-axiomatisation ℓ → Substᴱ-axiomatisation ℓ
from (elimᴱ , elimᴱ-refl) =
(λ P x≡y p →
elimᴱ (λ {x = x} {y = y} _ → P x → P y) (λ _ → id) x≡y p)
, (λ {_ _ _ p} → cong (_$ p) $ elimᴱ-refl _)
-- The type Elimᴱ-axiomatisation ℓ is propositional (assuming
-- extensionality).
--
-- The proof is based on a proof due to Nicolai Kraus that shows that
-- "J + its computation rule" is contractible, see
-- Equality.Instances-related.Equality-with-J-contractible.
Elimᴱ-axiomatisation-propositional :
Extensionality (lsuc ℓ) (lsuc ℓ) →
Is-proposition (Elimᴱ-axiomatisation ℓ)
Elimᴱ-axiomatisation-propositional {ℓ = ℓ} ext =
[inhabited⇒contractible]⇒propositional λ ax →
let ax′ = _⇔_.from []-cong-axiomatisation⇔Substᴱ-axiomatisation $
_⇔_.from Substᴱ-axiomatisation⇔Elimᴱ-axiomatisation ax
module EC = Erased-cong ax′ ax′
in
_⇔_.from contractible⇔↔⊤
(Elimᴱ-axiomatisation ℓ ↔⟨ Eq.↔→≃
(λ (elimᴱ , elimᴱ-refl) _ P r →
(λ ([ _ , _ , x≡y ]) →
elimᴱ (λ x≡y → P [ _ , _ , x≡y ]) (λ x → r [ x ]) x≡y)
, (λ _ → elimᴱ-refl _))
(λ hyp →
(λ P r x≡y →
hyp _ (λ ([ _ , _ , x≡y ]) → P x≡y) (λ ([ x ]) → r x)
.proj₁ [ _ , _ , x≡y ])
, (λ _ → hyp _ _ _ .proj₂ _))
refl
refl ⟩
((([ A ]) : Erased (Type ℓ))
(P : Erased (A ²/≡) → Type ℓ)
(r : (([ x ]) : Erased A) → P [ x , x , refl x ]) →
∃ λ (e : (x : Erased (A ²/≡)) → P x) →
((([ x ]) : Erased A) → e [ x , x , refl x ] ≡ r [ x ])) ↝⟨ (∀-cong ext λ _ →
Π-cong {k₁ = bijection} ext′
(→-cong₁ ext″ (EC.Erased-cong-↔ U.-²/≡↔-)) λ _ →
∀-cong ext‴ λ _ →
Σ-cong
(inverse $
Π-cong ext‴ (EC.Erased-cong-↔ (inverse U.-²/≡↔-)) λ _ →
Bijection.id)
(λ _ → Bijection.id)) ⟩
((([ A ]) : Erased (Type ℓ))
(P : Erased A → Type ℓ)
(r : (x : Erased A) → P x) →
∃ λ (e : (x : Erased A) → P x) →
(x : Erased A) → e x ≡ r x) ↝⟨ (∀-cong ext λ _ → ∀-cong ext′ λ _ → ∀-cong ext‴ λ _ → inverse
ΠΣ-comm) ⟩
((([ A ]) : Erased (Type ℓ))
(P : Erased A → Type ℓ)
(r : (x : Erased A) → P x)
(x : Erased A) →
∃ λ (p : P x) → p ≡ r x) ↝⟨ (_⇔_.to contractible⇔↔⊤ $
Π-closure ext 0 λ _ →
Π-closure ext′ 0 λ _ →
Π-closure ext‴ 0 λ _ →
Π-closure ext‴ 0 λ _ →
singleton-contractible _) ⟩□
⊤ □)
where
ext′ : Extensionality (lsuc ℓ) ℓ
ext′ = lower-extensionality lzero _ ext
ext″ : Extensionality ℓ (lsuc ℓ)
ext″ = lower-extensionality _ lzero ext
ext‴ : Extensionality ℓ ℓ
ext‴ = lower-extensionality _ _ ext
-- The type Substᴱ-axiomatisation ℓ is equivalent to
-- Elimᴱ-axiomatisation ℓ (assuming extensionality).
Substᴱ-axiomatisation≃Elimᴱ-axiomatisation :
Substᴱ-axiomatisation ℓ ↝[ lsuc ℓ ∣ lsuc ℓ ] Elimᴱ-axiomatisation ℓ
Substᴱ-axiomatisation≃Elimᴱ-axiomatisation =
generalise-ext?-prop
Substᴱ-axiomatisation⇔Elimᴱ-axiomatisation
Substᴱ-axiomatisation-propositional
Elimᴱ-axiomatisation-propositional
-- The type []-cong-axiomatisation ℓ is equivalent to
-- Elimᴱ-axiomatisation ℓ (assuming extensionality).
[]-cong-axiomatisation≃Elimᴱ-axiomatisation :
[]-cong-axiomatisation ℓ ↝[ lsuc ℓ ∣ lsuc ℓ ] Elimᴱ-axiomatisation ℓ
[]-cong-axiomatisation≃Elimᴱ-axiomatisation {ℓ = ℓ} ext =
[]-cong-axiomatisation ℓ ↝⟨ []-cong-axiomatisation≃Substᴱ-axiomatisation ext ⟩
Substᴱ-axiomatisation ℓ ↝⟨ Substᴱ-axiomatisation≃Elimᴱ-axiomatisation ext ⟩□
Elimᴱ-axiomatisation ℓ □
|
algebraic-stack_agda0000_doc_17160 | {-# OPTIONS --safe #-}
module Cubical.Categories.Instances.FunctorAlgebras where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism renaming (Iso to _≅_)
open import Cubical.Foundations.Univalence
open import Cubical.Categories.Category
open import Cubical.Categories.Functor
open import Cubical.Categories.NaturalTransformation.Base
open _≅_
private
variable ℓC ℓC' : Level
module _ {C : Category ℓC ℓC'} (F : Functor C C) where
open Category
open Functor
IsAlgebra : ob C → Type ℓC'
IsAlgebra x = C [ F-ob F x , x ]
record Algebra : Type (ℓ-max ℓC ℓC') where
constructor algebra
field
carrier : ob C
str : IsAlgebra carrier
open Algebra
IsAlgebraHom : (algA algB : Algebra) → C [ carrier algA , carrier algB ] → Type ℓC'
IsAlgebraHom algA algB f = (f ∘⟨ C ⟩ str algA) ≡ (str algB ∘⟨ C ⟩ F-hom F f)
record AlgebraHom (algA algB : Algebra) : Type ℓC' where
constructor algebraHom
field
carrierHom : C [ carrier algA , carrier algB ]
strHom : IsAlgebraHom algA algB carrierHom
open AlgebraHom
RepAlgebraHom : (algA algB : Algebra) → Type ℓC'
RepAlgebraHom algA algB = Σ[ f ∈ C [ carrier algA , carrier algB ] ] IsAlgebraHom algA algB f
isoRepAlgebraHom : (algA algB : Algebra) → AlgebraHom algA algB ≅ RepAlgebraHom algA algB
fun (isoRepAlgebraHom algA algB) (algebraHom f isalgF) = f , isalgF
inv (isoRepAlgebraHom algA algB) (f , isalgF) = algebraHom f isalgF
rightInv (isoRepAlgebraHom algA algB) (f , isalgF) = refl
leftInv (isoRepAlgebraHom algA algB) (algebraHom f isalgF)= refl
pathRepAlgebraHom : (algA algB : Algebra) → AlgebraHom algA algB ≡ RepAlgebraHom algA algB
pathRepAlgebraHom algA algB = ua (isoToEquiv (isoRepAlgebraHom algA algB))
AlgebraHom≡ : {algA algB : Algebra} {algF algG : AlgebraHom algA algB}
→ (carrierHom algF ≡ carrierHom algG) → algF ≡ algG
carrierHom (AlgebraHom≡ {algA} {algB} {algF} {algG} p i) = p i
strHom (AlgebraHom≡ {algA} {algB} {algF} {algG} p i) = idfun
(PathP (λ j → (p j ∘⟨ C ⟩ str algA) ≡ (str algB ∘⟨ C ⟩ F-hom F (p j)))
(strHom algF)
(strHom algG)
)
(fst (idfun (isContr _) (isOfHLevelPathP' 0
(isOfHLevelPath' 1 (isSetHom C) _ _)
(strHom algF) (strHom algG))))
i
idAlgebraHom : {algA : Algebra} → AlgebraHom algA algA
carrierHom (idAlgebraHom {algA}) = id C
strHom (idAlgebraHom {algA}) =
⋆IdR C (str algA) ∙∙ sym (⋆IdL C (str algA)) ∙∙ cong (λ φ → φ ⋆⟨ C ⟩ str algA) (sym (F-id F))
seqAlgebraHom : {algA algB algC : Algebra}
(algF : AlgebraHom algA algB) (algG : AlgebraHom algB algC)
→ AlgebraHom algA algC
carrierHom (seqAlgebraHom {algA} {algB} {algC} algF algG) = carrierHom algF ⋆⟨ C ⟩ carrierHom algG
strHom (seqAlgebraHom {algA} {algB} {algC} algF algG) =
str algA ⋆⟨ C ⟩ (carrierHom algF ⋆⟨ C ⟩ carrierHom algG)
≡⟨ sym (⋆Assoc C (str algA) (carrierHom algF) (carrierHom algG)) ⟩
(str algA ⋆⟨ C ⟩ carrierHom algF) ⋆⟨ C ⟩ carrierHom algG
≡⟨ cong (λ φ → φ ⋆⟨ C ⟩ carrierHom algG) (strHom algF) ⟩
(F-hom F (carrierHom algF) ⋆⟨ C ⟩ str algB) ⋆⟨ C ⟩ carrierHom algG
≡⟨ ⋆Assoc C (F-hom F (carrierHom algF)) (str algB) (carrierHom algG) ⟩
F-hom F (carrierHom algF) ⋆⟨ C ⟩ (str algB ⋆⟨ C ⟩ carrierHom algG)
≡⟨ cong (λ φ → F-hom F (carrierHom algF) ⋆⟨ C ⟩ φ) (strHom algG) ⟩
F-hom F (carrierHom algF) ⋆⟨ C ⟩ (F-hom F (carrierHom algG) ⋆⟨ C ⟩ str algC)
≡⟨ sym (⋆Assoc C (F-hom F (carrierHom algF)) (F-hom F (carrierHom algG)) (str algC)) ⟩
(F-hom F (carrierHom algF) ⋆⟨ C ⟩ F-hom F (carrierHom algG)) ⋆⟨ C ⟩ str algC
≡⟨ cong (λ φ → φ ⋆⟨ C ⟩ str algC) (sym (F-seq F (carrierHom algF) (carrierHom algG))) ⟩
F-hom F (carrierHom algF ⋆⟨ C ⟩ carrierHom algG) ⋆⟨ C ⟩ str algC ∎
AlgebrasCategory : Category (ℓ-max ℓC ℓC') ℓC'
ob AlgebrasCategory = Algebra
Hom[_,_] AlgebrasCategory = AlgebraHom
id AlgebrasCategory = idAlgebraHom
_⋆_ AlgebrasCategory = seqAlgebraHom
⋆IdL AlgebrasCategory algF = AlgebraHom≡ (⋆IdL C (carrierHom algF))
⋆IdR AlgebrasCategory algF = AlgebraHom≡ (⋆IdR C (carrierHom algF))
⋆Assoc AlgebrasCategory algF algG algH =
AlgebraHom≡ (⋆Assoc C (carrierHom algF) (carrierHom algG) (carrierHom algH))
isSetHom AlgebrasCategory = subst isSet (sym (pathRepAlgebraHom _ _))
(isSetΣ (isSetHom C) (λ f → isProp→isSet (isSetHom C _ _)))
ForgetAlgebra : Functor AlgebrasCategory C
F-ob ForgetAlgebra = carrier
F-hom ForgetAlgebra = carrierHom
F-id ForgetAlgebra = refl
F-seq ForgetAlgebra algF algG = refl
module _ {C : Category ℓC ℓC'} {F G : Functor C C} (τ : NatTrans F G) where
private
module C = Category C
open Functor
open NatTrans
open AlgebraHom
AlgebrasFunctor : Functor (AlgebrasCategory G) (AlgebrasCategory F)
F-ob AlgebrasFunctor (algebra a α) = algebra a (α C.∘ N-ob τ a)
carrierHom (F-hom AlgebrasFunctor (algebraHom f isalgF)) = f
strHom (F-hom AlgebrasFunctor {algebra a α} {algebra b β} (algebraHom f isalgF)) =
(N-ob τ a C.⋆ α) C.⋆ f
≡⟨ C.⋆Assoc (N-ob τ a) α f ⟩
N-ob τ a C.⋆ (α C.⋆ f)
≡⟨ cong (N-ob τ a C.⋆_) isalgF ⟩
N-ob τ a C.⋆ (F-hom G f C.⋆ β)
≡⟨ sym (C.⋆Assoc _ _ _) ⟩
(N-ob τ a C.⋆ F-hom G f) C.⋆ β
≡⟨ cong (C._⋆ β) (sym (N-hom τ f)) ⟩
(F-hom F f C.⋆ N-ob τ b) C.⋆ β
≡⟨ C.⋆Assoc _ _ _ ⟩
F-hom F f C.⋆ (N-ob τ b C.⋆ β) ∎
F-id AlgebrasFunctor = AlgebraHom≡ F refl
F-seq AlgebrasFunctor algΦ algΨ = AlgebraHom≡ F refl
|
algebraic-stack_agda0000_doc_17161 | module Prelude where
--------------------------------------------------------------------------------
open import Agda.Primitive public
using (Level ; _⊔_)
renaming (lzero to ℓ₀)
id : ∀ {ℓ} → {X : Set ℓ}
→ X → X
id x = x
_◎_ : ∀ {ℓ ℓ′ ℓ″} → {X : Set ℓ} {P : X → Set ℓ′} {Q : ∀ {x} → P x → Set ℓ″}
→ (g : ∀ {x} → (y : P x) → Q y) (f : (x : X) → P x) (x : X)
→ Q (f x)
(g ◎ f) x = g (f x)
const : ∀ {ℓ ℓ′} → {X : Set ℓ} {Y : Set ℓ′}
→ X → Y → X
const x y = x
flip : ∀ {ℓ ℓ′ ℓ″} → {X : Set ℓ} {Y : Set ℓ′} {Z : X → Y → Set ℓ″}
→ (f : (x : X) (y : Y) → Z x y) (y : Y) (x : X)
→ Z x y
flip f y x = f x y
_∘_ : ∀ {ℓ ℓ′ ℓ″} → {X : Set ℓ} {Y : Set ℓ′} {Z : Set ℓ″}
→ (g : Y → Z) (f : X → Y)
→ X → Z
g ∘ f = g ◎ f
_⨾_ : ∀ {ℓ ℓ′ ℓ″} → {X : Set ℓ} {Y : Set ℓ′} {Z : Set ℓ″}
→ (f : X → Y) (g : Y → Z)
→ X → Z
_⨾_ = flip _∘_
--------------------------------------------------------------------------------
open import Agda.Builtin.Equality public
using (_≡_ ; refl)
_⁻¹≡ : ∀ {ℓ} → {X : Set ℓ} {x₁ x₂ : X}
→ x₁ ≡ x₂ → x₂ ≡ x₁
refl ⁻¹≡ = refl
_⦙≡_ : ∀ {ℓ} → {X : Set ℓ} {x₁ x₂ x₃ : X}
→ x₁ ≡ x₂ → x₂ ≡ x₃ → x₁ ≡ x₃
refl ⦙≡ refl = refl
record PER {ℓ}
(X : Set ℓ)
(_≈_ : X → X → Set ℓ)
: Set ℓ where
infix 9 _⁻¹
infixr 4 _⦙_
field
_⁻¹ : ∀ {x₁ x₂} → x₁ ≈ x₂
→ x₂ ≈ x₁
_⦙_ : ∀ {x₁ x₂ x₃} → x₁ ≈ x₂ → x₂ ≈ x₃
→ x₁ ≈ x₃
open PER {{…}} public
instance
per≡ : ∀ {ℓ} {X : Set ℓ} → PER X _≡_
per≡ =
record
{ _⁻¹ = _⁻¹≡
; _⦙_ = _⦙≡_
}
infixl 9 _&_
_&_ : ∀ {ℓ ℓ′} → {X : Set ℓ} {Y : Set ℓ′} {x₁ x₂ : X}
→ (f : X → Y) → x₁ ≡ x₂
→ f x₁ ≡ f x₂
f & refl = refl
infixl 8 _⊗_
_⊗_ : ∀ {ℓ ℓ′} → {X : Set ℓ} {Y : Set ℓ′} {f₁ f₂ : X → Y} {x₁ x₂ : X}
→ f₁ ≡ f₂ → x₁ ≡ x₂
→ f₁ x₁ ≡ f₂ x₂
refl ⊗ refl = refl
case_of_ : ∀ {ℓ ℓ′} → {X : Set ℓ} {Y : Set ℓ′}
→ X → (X → Y) → Y
case x of f = f x
coe : ∀ {ℓ} → {X Y : Set ℓ}
→ X ≡ Y → X → Y
coe refl x = x
postulate
fext! : ∀ {ℓ ℓ′} → {X : Set ℓ} {P : X → Set ℓ′} {f₁ f₂ : (x : X) → P x}
→ ((x : X) → f₁ x ≡ f₂ x)
→ f₁ ≡ f₂
fext¡ : ∀ {ℓ ℓ′} → {X : Set ℓ} {P : X → Set ℓ′} {f₁ f₂ : {x : X} → P x}
→ ({x : X} → f₁ {x} ≡ f₂ {x})
→ (λ {x} → f₁ {x}) ≡ (λ {x} → f₂ {x})
--------------------------------------------------------------------------------
open import Agda.Builtin.Unit public
using (⊤ ; tt)
data ⊥ : Set where
elim⊥ : ∀ {ℓ} → {X : Set ℓ}
→ ⊥ → X
elim⊥ ()
¬_ : ∀ {ℓ} → Set ℓ → Set ℓ
¬ X = X → ⊥
Π : ∀ {ℓ ℓ′} → Set ℓ → Set ℓ′ → Set (ℓ ⊔ ℓ′)
Π X Y = X → Y
infixl 6 _,_
record Σ {ℓ ℓ′}
(X : Set ℓ) (P : X → Set ℓ′)
: Set (ℓ ⊔ ℓ′) where
instance
constructor _,_
field
proj₁ : X
proj₂ : P proj₁
open Σ public
infixl 5 _⁏_
pattern _⁏_ x y = x , y
infixl 2 _×_
_×_ : ∀ {ℓ ℓ′} → Set ℓ → Set ℓ′ → Set (ℓ ⊔ ℓ′)
X × Y = Σ X (λ x → Y)
mapΣ : ∀ {ℓ ℓ′ ℓ″ ℓ‴} → {X : Set ℓ} {Y : Set ℓ′} {P : X → Set ℓ″} {Q : Y → Set ℓ‴}
→ (f : X → Y) (g : ∀ {x} → P x → Q (f x)) → Σ X P
→ Σ Y Q
mapΣ f g (x , y) = f x , g y
caseΣ : ∀ {ℓ ℓ′ ℓ″ ℓ‴} → {X : Set ℓ} {Y : Set ℓ′} {P : X → Set ℓ″} {Q : Y → Set ℓ‴}
→ Σ X P → (f : X → Y) (g : ∀ {x} → P x → Q (f x))
→ Σ Y Q
caseΣ p f g = mapΣ f g p
infixl 1 _⊎_
data _⊎_ {ℓ ℓ′}
(X : Set ℓ) (Y : Set ℓ′)
: Set (ℓ ⊔ ℓ′) where
inj₁ : (x : X) → X ⊎ Y
inj₂ : (y : Y) → X ⊎ Y
elim⊎ : ∀ {ℓ ℓ′ ℓ″} → {X : Set ℓ} {Y : Set ℓ′} {Z : Set ℓ″}
→ X ⊎ Y → (X → Z) → (Y → Z)
→ Z
elim⊎ (inj₁ x) f g = f x
elim⊎ (inj₂ y) f g = g y
map⊎ : ∀ {ℓ ℓ′ ℓ″ ℓ‴} → {X : Set ℓ} {Y : Set ℓ′} {Z₁ : Set ℓ″} {Z₂ : Set ℓ‴}
→ (X → Z₁) → (Y → Z₂) → X ⊎ Y
→ Z₁ ⊎ Z₂
map⊎ f g s = elim⊎ s (inj₁ ∘ f) (inj₂ ∘ g)
case⊎ : ∀ {ℓ ℓ′ ℓ″ ℓ‴} → {X : Set ℓ} {Y : Set ℓ′} {Z₁ : Set ℓ″} {Z₂ : Set ℓ‴}
→ X ⊎ Y → (X → Z₁) → (Y → Z₂)
→ Z₁ ⊎ Z₂
case⊎ s f g = map⊎ f g s
--------------------------------------------------------------------------------
open import Agda.Builtin.Bool public
using (Bool ; false ; true)
if_then_else_ : ∀ {ℓ} → {X : Set ℓ}
→ Bool → X → X
→ X
if_then_else_ true t f = t
if_then_else_ false t f = f
not : Bool → Bool
not true = false
not false = true
and : Bool → Bool → Bool
and true b = b
and false b = false
or : Bool → Bool → Bool
or true b = true
or false b = b
xor : Bool → Bool → Bool
xor true b = not b
xor false b = b
data True : Bool → Set
where
instance
yes : True true
--------------------------------------------------------------------------------
open import Agda.Builtin.Nat public
using (Nat ; zero ; suc)
open import Agda.Builtin.FromNat public
using (Number ; fromNat)
instance
numNat : Number Nat
numNat =
record
{ Constraint = λ n → ⊤
; fromNat = λ n → n
}
_>?_ : Nat → Nat → Bool
zero >? k = false
suc n >? zero = true
suc n >? suc k = n >? k
--------------------------------------------------------------------------------
data Fin : Nat → Set
where
zero : ∀ {n} → Fin (suc n)
suc : ∀ {n} → Fin n
→ Fin (suc n)
Nat→Fin : ∀ {n} → (k : Nat) {{_ : True (n >? k)}}
→ Fin n
Nat→Fin {n = zero} k {{()}}
Nat→Fin {n = suc n} zero {{is-true}} = zero
Nat→Fin {n = suc n} (suc k) {{p}} = suc (Nat→Fin k {{p}})
instance
numFin : ∀ {n} → Number (Fin n)
numFin {n} =
record
{ Constraint = λ k → True (n >? k)
; fromNat = Nat→Fin
}
--------------------------------------------------------------------------------
|
algebraic-stack_agda0000_doc_17162 | -- Andreas, 2013-11-23
-- checking that postulates are allowed in new-style mutual blocks
open import Common.Prelude
-- new style mutual block
even : Nat → Bool
postulate
odd : Nat → Bool
even zero = true
even (suc n) = odd n
-- No error
|
algebraic-stack_agda0000_doc_17163 | module Data.Num.Bijective where
open import Data.Nat
open import Data.Fin as Fin using (Fin; #_; fromℕ≤)
open import Data.Fin.Extra
open import Data.Fin.Properties using (bounded)
open ≤-Reasoning renaming (begin_ to start_; _∎ to _□; _≡⟨_⟩_ to _≈⟨_⟩_)
open import Level using () renaming (suc to lsuc)
open import Function
open import Relation.Nullary.Negation
open import Relation.Nullary.Decidable
open import Relation.Nullary
open import Relation.Binary.PropositionalEquality as PropEq
infixr 5 _∷_
-- For a system to be bijective wrt ℕ:
-- * base ≥ 1
-- * digits = {1 .. base}
data Bij : ℕ → Set where
-- from the terminal object, which represents 0
∙ : ∀ {b} -- base
→ Bij (suc b) -- base ≥ 1
-- successors
_∷_ : ∀ {b}
→ Fin b -- digit = {1 .. b}
→ Bij b → Bij b
infixr 9 _/_
-- syntax sugar for chaining digits with ℕ
_/_ : ∀ {b} → (n : ℕ)
→ {lower-bound : True (suc zero ≤? n)} -- digit ≥ 1
→ {upper-bound : True (n ≤? b)} -- digit ≤ base
→ Bij b → Bij b
_/_ {b} zero {()} {ub} ns
_/_ {b} (suc n) {lb} {ub} ns = (# n) {b} {ub} ∷ ns
module _/_-Examples where
零 : Bij 2
零 = ∙
一 : Bij 2
一 = 1 / ∙
八 : Bij 3
八 = 2 / 2 / ∙
八 : Bij 3
八 = 2 / 2 / ∙
open import Data.Nat.DM
open import Data.Nat.Properties using (≰⇒>)
open import Relation.Binary
-- a digit at its largest
full : ∀ {b} (x : Fin (suc b)) → Dec (Fin.toℕ {suc b} x ≡ b)
full {b} x = Fin.toℕ x ≟ b
-- a digit at its largest (for ℕ)
full-ℕ : ∀ b n → Dec (n ≡ b)
full-ℕ b n = n ≟ b
------------------------------------------------------------------------
-- Digit
------------------------------------------------------------------------
digit-toℕ : ∀ {b} → Fin b → ℕ
digit-toℕ x = suc (Fin.toℕ x)
digit+1-lemma : ∀ a b → a < suc b → a ≢ b → a < b
digit+1-lemma zero zero a<1+b a≢b = contradiction refl a≢b
digit+1-lemma zero (suc b) a<1+b a≢b = s≤s z≤n
digit+1-lemma (suc a) zero (s≤s ()) a≢b
digit+1-lemma (suc a) (suc b) (s≤s a<1+b) a≢b = s≤s (digit+1-lemma a b a<1+b (λ z → a≢b (cong suc z)))
digit+1 : ∀ {b} → (x : Fin (suc b)) → Fin.toℕ x ≢ b → Fin (suc b)
digit+1 {b} x ¬p = fromℕ≤ {digit-toℕ x} (s≤s (digit+1-lemma (Fin.toℕ x) b (bounded x) ¬p))
------------------------------------------------------------------------
-- Bij
------------------------------------------------------------------------
1+ : ∀ {b} → Bij (suc b) → Bij (suc b)
1+ ∙ = Fin.zero ∷ ∙
1+ {b} (x ∷ xs) with full x
1+ {b} (x ∷ xs) | yes p = Fin.zero ∷ 1+ xs
1+ {b} (x ∷ xs) | no ¬p = digit+1 x ¬p ∷ xs
n+ : ∀ {b} → ℕ → Bij (suc b) → Bij (suc b)
n+ zero xs = xs
n+ (suc n) xs = 1+ (n+ n xs)
------------------------------------------------------------------------
-- From and to ℕ
------------------------------------------------------------------------
toℕ : ∀ {b} → Bij b → ℕ
toℕ ∙ = zero
toℕ {b} (x ∷ xs) = digit-toℕ x + (toℕ xs * b)
fromℕ : ∀ {b} → ℕ → Bij (suc b)
fromℕ zero = ∙
fromℕ (suc n) = 1+ (fromℕ n)
------------------------------------------------------------------------
-- Functions on Bij
------------------------------------------------------------------------
-- infixl 6 _⊹_
--
-- _⊹_ : ∀ {b} → Bij b → Bij b → Bij b
-- _⊹_ ∙ ys = ys
-- _⊹_ xs ∙ = xs
-- _⊹_ {zero} (() ∷ xs) (y ∷ ys)
-- _⊹_ {suc b} (x ∷ xs) (y ∷ ys) with (suc (Fin.toℕ x + Fin.toℕ y)) divMod (suc b)
-- _⊹_ {suc b} (x ∷ xs) (y ∷ ys) | result quotient remainder property div-eq mod-eq =
-- remainder ∷ n+ quotient (xs ⊹ ys)
-- old base = suc b
-- new base = suc (suc b)
increase-base : ∀ {b} → Bij (suc b) → Bij (suc (suc b))
increase-base {b} ∙ = ∙
increase-base {b} (x ∷ xs) with fromℕ {suc b} (toℕ (increase-base xs) * suc b)
| inspect (λ ws → fromℕ {suc b} (toℕ ws * suc b)) (increase-base xs)
increase-base {b} (x ∷ xs) | ∙ | [ eq ] = Fin.inject₁ x ∷ ∙
increase-base {b} (x ∷ xs) | y ∷ ys | [ eq ]
with suc (Fin.toℕ x + Fin.toℕ y) divMod (suc (suc b))
increase-base {b} (x ∷ xs) | y ∷ ys | [ eq ]
| result quotient remainder property div-eq mod-eq =
remainder ∷ n+ quotient ys
-- old base = suc (suc b)
-- new base = suc b
decrease-base : ∀ {b} → Bij (suc (suc b)) → Bij (suc b)
decrease-base {b} ∙ = ∙
decrease-base {b} (x ∷ xs) with fromℕ {b} (toℕ (decrease-base xs) * suc (suc b))
| inspect (λ ws → fromℕ {b} (toℕ ws * suc (suc b))) (decrease-base xs)
decrease-base {b} (x ∷ xs) | ∙ | [ eq ] with full x
decrease-base {b} (x ∷ xs) | ∙ | [ eq ] | yes p = Fin.zero ∷ Fin.zero ∷ ∙
decrease-base {b} (x ∷ xs) | ∙ | [ eq ] | no ¬p = inject-1 x ¬p ∷ ∙
decrease-base {b} (x ∷ xs) | y ∷ ys | [ eq ] with (suc (Fin.toℕ x + Fin.toℕ y)) divMod (suc b)
decrease-base (x ∷ xs) | y ∷ ys | [ eq ] | result quotient remainder property div-eq mod-eq
= remainder ∷ n+ quotient ys
|
algebraic-stack_agda0000_doc_17164 | module z-06 where
open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _<?_; _<_; ≤-pred)
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
import Relation.Binary.PropositionalEquality.Core as PE
{-
------------------------------------------------------------------------------
-- 267 p 6.2.2 Shortcuts.
C-c C-l typecheck and highlight the current file
C-c C-, get information about the hole under the cursor
C-c C-. show inferred type for proposed term for a hole
C-c C-space give a solution
C-c C-c case analysis on a variable
C-c C-r refine the hole
C-c C-a automatic fill
C-c C-n which normalizes a term (useful to test computations)
middle click definition of the term
SYMBOLS
∧ \and
⊤ \top
→ \to
∀ \all
Π \Pi
λ \Gl
∨ \or
⊥ \bot
¬ \neg
∃ \ex
Σ \Sigma
≡ \equiv
ℕ \bN
× \times
≤ \le
∈ \in
⊎ \uplus
∷ \::
∎ \qed
x₁ \_1
x¹ \^1
------------------------------------------------------------------------------
-- p 268 6.2.3 The standard library.
default path /usr/share/agda-stdlib
Data.Empty empty type (⊥)
Data.Unit unit type (⊤)
Data.Bool booleans
Data.Nat natural numbers (ℕ)
Data.List lists
Data.Vec vectors (lists of given length)
Data.Fin types with finite number of elements
Data.Integer integers
Data.Float floating point numbers
Data.Bin binary natural numbers
Data.Rational rational numbers
Data.String strings
Data.Maybe option types
Data.AVL balanced binary search trees
Data.Sum sum types (⊎, ∨)
Data.Product product types (×, ∧, ∃, Σ)
Relation.Nullary negation (¬)
Relation.Binary.PropositionalEquality equality (≡)
------------------------------------------------------------------------------
-- p 277 6.3.4 Postulates.
for axioms (no proof)
avoide as much as possible
e.g, to work in classical logic, assume law of excluded middle with
postulate
lem : (A : Set) → ¬ A ⊎ A
postulates do not compute:
- applying 'lem' to type A, will not reduce to ¬ A or A (as expected for a coproduct)
see section 6.5.6
------------------------------------------------------------------------------
-- p 277 6.3.5 Records.
-}
-- implementation of pairs using records
record Pair (A B : Set) : Set where
constructor mkPair
field
fst : A
snd : B
make-pair : {A B : Set} → A → B → Pair A B
make-pair a b = record { fst = a ; snd = b }
make-pair' : {A B : Set} → A → B → Pair A B
make-pair' a b = mkPair a b
proj1 : {A B : Set} → Pair A B → A
proj1 p = Pair.fst p
------------------------------------------------------------------------------
-- p 278 6.4 Inductive types: data
-- p 278 6.4.1 Natural numbers
{-
data ℕ : Set where
zero : ℕ -- base case
suc : ℕ → ℕ -- inductive case
-}
pred : ℕ → ℕ
pred zero = zero
pred (suc n) = n
_+'_ : ℕ → ℕ → ℕ
zero +' n = n
(suc m) +' n = suc (m +' n)
infixl 6 _+'_
_∸'_ : ℕ → ℕ → ℕ
zero ∸' n = zero
suc m ∸' zero = suc m
suc m ∸' suc n = m ∸' n
_*'_ : ℕ → ℕ → ℕ
zero *' n = zero
suc m *' n = (m *' n) + n
{-
_mod'_ : ℕ → ℕ → ℕ
m mod' n with m <? n
m mod' n | yes _ = m
m mod' n | no _ = (m ∸' n) mod' n
-}
-- TODO : what is going on here?
-- mod' : ℕ → ℕ → ℕ
-- mod' m n with m <? n
-- ... | x = {!!}
{-
------------------------------------------------------------------------------
-- p 280 Empty pattern matching.
there is no case to pattern match on elements of this type
use on types with no elements, e.g.,
-}
data ⊥' : Set where
-- given an element of type ⊥ then "produce" anything
-- uses pattern : () -- means that no such pattern can happen
⊥'-elim : {A : Set} → ⊥' → A
⊥'-elim ()
{-
since A is arbitrary, no way, in proof, to exhibit one.
Do not have to.
'()' states no cases to handle, so done
Useful in negation and other less obvious ways of constructing empty inductive types.
E.g., the type zero ≡ suc zero of equalities between 0 and 1 is also an empty inductive type.
-}
{-
------------------------------------------------------------------------------
-- p 281 Anonymous pattern matching.
-}
-- curly brackets before args, cases separated by semicolons:
-- e.g.,
pred' : ℕ → ℕ
pred' = λ { zero → zero ; (suc n) → n }
{-
------------------------------------------------------------------------------
-- p 281 6.4.3 The induction principle.
pattern matching corresponds to the presence of a recurrence or induction principle
e.g.,
f : → A
f zero = t
f (suc n) = u' -- u' might be 'n' or result of recursive call f n
recurrence principle expresses this as
-}
rec : {A : Set} → A → (ℕ → A → A) → ℕ → A
rec t u zero = t
rec t u (suc n) = u n (rec t u n)
-- same with differenct var names
recℕ : {A : Set} → A → (ℕ → A → A) → ℕ → A
recℕ a n→a→a zero = a
recℕ a n→a→a (suc n) = n→a→a n (recℕ a n→a→a n)
{-
Same as "recursor" for including nats to simply typed λ-calculus in section 4.3.6.
Any function of type ℕ → A defined using pattern matching can be redefined using this function.
This recurrence function encapsulates the expressive power of pattern matching.
e.g.,
-}
pred'' : ℕ → ℕ
pred'' = rec zero (λ n _ → n)
_ : pred'' 2 ≡ rec zero (λ n _ → n) 2
_ = refl
_ : rec zero (λ n _ → n) 2 ≡ 1
_ = refl
_ : pred'' 2 ≡ 1
_ = refl
{-
logical : recurrence principle corresponds to elimination rule, so aka "eliminator"
Pattern matching in Agda is more powerful
- can be used to define functions whose return type depends on argument
means must consider functions of the form
f : (n : ℕ) -> P n -- P : ℕ → Set
f zero = t -- : P zero
f (suc n) = u n (f n) -- : P (suc n)
corresponding dependent variant of the recurrence principle is called the induction principle:
-}
rec' : (P : ℕ → Set)
→ P zero
→ ((n : ℕ) → P n → P (suc n))
→ (n : ℕ)
→ P n
rec' P Pz Ps zero = Pz
rec' P Pz Ps (suc n) = Ps n (rec' P Pz Ps n)
{-
reading type as a logical formula, it says the recurrence principle over natural numbers:
P (0) ⇒ (∀n ∈ ℕ.P (n) ⇒ P (n + 1)) ⇒ ∀n ∈ ℕ.P (n)
-}
-- proof using recursion
+-zero' : (n : ℕ) → n + zero ≡ n
+-zero' zero = refl
+-zero' (suc n) = PE.cong suc (+-zero' n)
-- proof using dependent induction principle
+-zero'' : (n : ℕ) → n + zero ≡ n
+-zero'' = rec' (λ n → n + zero ≡ n) refl (λ n p → PE.cong suc p)
_ : +-zero'' 2 ≡ refl
_ = refl
_ : rec' (λ n → n + zero ≡ n) refl (λ n p → PE.cong suc p) ≡
λ n → rec' (λ z → z + zero ≡ z) refl (λ n → PE.cong (λ z → suc z)) n
_ = refl
------------------------------------------------------------------------------
-- p 282 Booleans
data Bool : Set where
false : Bool
true : Bool
-- induction principle for booleans
Bool-rec : (P : Bool → Set) → P false → P true → (b : Bool) → P b
Bool-rec P Pf Pt false = Pf
Bool-rec P Pf Pt true = Pt
------------------------------------------------------------------------------
-- p 283 Lists Data.List
data List (A : Set) : Set where
[] : List A
_∷_ : A → List A → List A
length : {A : Set} → List A → ℕ
length [] = 0
length (_ ∷ xs) = 1 + length xs
_++_ : {A : Set} → List A → List A → List A
[] ++ l = l
(x ∷ xs) ++ l = x ∷ (xs ++ l)
List-rec
: {A : Set}
→ (P : List A → Set)
→ P []
→ ((x : A) → (xs : List A) → P xs → P (x ∷ xs))
→ (xs : List A)
→ P xs
List-rec P Pe Pc [] = Pe
List-rec P Pe Pc (x ∷ xs) = Pc x xs (List-rec P Pe Pc xs)
------------------------------------------------------------------------------
-- p 284 6.4.7 Vectors.
data Vec (A : Set) : ℕ → Set where
[] : Vec A zero
_∷_ : {n : ℕ} → A → Vec A n → Vec A (suc n)
{-
------------------------------------------------------------------------------
-- p 284 Dependent types.
type Vec A n depends on term n : a defining feature of dependent types.
-}
-- also, functions whose result type depends on argument, e.g.,
replicate : {A : Set} → A → (n : ℕ) → Vec A n
replicate x zero = []
replicate x (suc n) = x ∷ replicate x n
------------------------------------------------------------------------------
-- p 285 Dependent pattern matching.
-- since input is type Vec A (suc n), infers never applied to empty
head : {n : ℕ} {A : Set} → Vec A (suc n) → A
head (x ∷ xs) = x
------------------------------------------------------------------------------
-- p 285 Convertibility.
-- Agda is able to compare types up to β-reduction on terms (zero + n reduces to n):
-- - never distinguishes between two β-convertible terms
_++'_ : {m n : ℕ} {A : Set}
→ Vec A m → Vec A n → Vec A (m + n)
[] ++' l = l -- Vec A (zero + n) ≡ Vec A n
(x ∷ xs) ++' l = x ∷ (xs ++' l)
------------------------------------------------------------------------------
-- p 285 Induction principle for Vec-rec
-- induction principle for vectors
Vec-rec : {A : Set}
→ (P : {n : ℕ} → Vec A n → Set)
→ P []
→ ({n : ℕ} → (x : A) → (xs : Vec A n) → P xs → P (x ∷ xs))
→ {n : ℕ}
→ (xs : Vec A n)
→ P xs
Vec-rec P Pe Pc [] = Pe
Vec-rec P Pe Pc (x ∷ xs) = Pc x xs (Vec-rec P Pe Pc xs)
------------------------------------------------------------------------------
-- p 285 Indices instead of parameters.
-- general : can always encode a parameter as an index
-- recommended using parameters whenever possible (Agda handles them more efficiently)
-- use an index for type A (instead of a parameter)
data VecI : Set → ℕ → Set where
[] : {A : Set} → VecI A zero
_∷_ : {A : Set} {n : ℕ} (x : A) (xs : VecI A n) → VecI A (suc n)
-- induction principle for index VecI
VecI-rec : (P : {A : Set} {n : ℕ} → VecI A n → Set)
→ ({A : Set} → P {A} [])
→ ({A : Set} {n : ℕ} (x : A) (xs : VecI A n) → P xs → P (x ∷ xs))
→ {A : Set}
→ {n : ℕ}
→ (xs : VecI A n)
→ P xs
VecI-rec P Pe Pc [] = Pe
VecI-rec P Pe Pc (x ∷ xs) = Pc x xs (VecI-rec P Pe Pc xs)
------------------------------------------------------------------------------
-- p 286 6.4.8 Finite sets.
-- has n elements
data Fin' : ℕ → Set where
fzero' : {n : ℕ} → Fin' (suc n)
fsuc' : {n : ℕ} → Fin' n → Fin' (suc n)
{-
Fin n is collection of ℕ restricted to Fin n = {0,...,n − 1}
above type corresponds to inductive set-theoretic definition:
Fin 0 = ∅
Fin (n + 1) = {0} ∪ {i + 1 | i ∈ Fin n}
-}
finToℕ : {n : ℕ} → Fin' n → ℕ
finToℕ fzero' = zero
finToℕ (fsuc' i) = suc (finToℕ i)
------------------------------------------------------------------------------
-- p 286 Vector lookup using Fin
-- Fin n typically used to index
-- type ensures index in bounds
lookup : {n : ℕ} {A : Set} → Fin' n → Vec A n → A
lookup fzero' (x ∷ xs) = x
lookup (fsuc' i) (x ∷ xs) = lookup i xs
-- where index can be out of bounds
open import Data.Maybe
lookup' : ℕ → {A : Set} {n : ℕ} → Vec A n → Maybe A
lookup' zero [] = nothing
lookup' zero (x ∷ l) = just x
lookup' (suc i) [] = nothing
lookup' (suc i) (x ∷ l) = lookup' i l
-- another option : add proof of i < n
lookupP : {i n : ℕ} {A : Set}
→ i < n
→ Vec A n
→ A
lookupP {i} {.0} () []
lookupP {zero} {.(suc _)} i<n (x ∷ l) = x
lookupP {suc i} {.(suc _)} i<n (x ∷ l) = lookupP (≤-pred i<n) l
{-
------------------------------------------------------------------------------
-- p 287 6.5 Inductive types: logic
Use inductive types to implement types used as logical formulas,
though the Curry-Howard correspondence.
What follows is a dictionary between the two.
------------------------------------------------------------------------------
-- 6.5.1 Implication : corresponds to arrow (→) in types
-}
-- constant function
-- classical formula A ⇒ B ⇒ A proved by
K : {A B : Set} → A → B → A
K x y = x
-- composition
-- classical formula (A ⇒ B ⇒ C) ⇒ (A ⇒ B) ⇒ A ⇒ C proved by
S : {A B C : Set} → (A → B → C) → (A → B) → A → C
S g f x = g x (f x)
{-
------------------------------------------------------------------------------
-- 6.5.2 Product : corresponds to conjunction
defined in Data.Product
-}
data _×_ (A B : Set) : Set where
_,_ : A → B → A × B
-- aka fst
proj₁ : {A B : Set} → A × B → A
proj₁ (a , b) = a
-- aka snd
proj₂ : {A B : Set} → A × B → B
proj₂ (a , b) = b
-- proof of A ∧ B ⇒ B ∧ A (commutativity of conjunction)
×-comm : {A B : Set} → A × B → B × A
×-comm (a , b) = (b , a)
-- proof of curryfication
×-→ : {A B C : Set} → (A × B → C) → (A → B → C)
×-→ f x y = f (x , y)
-- and
→-× : {A B C : Set} → (A → B → C) → (A × B → C)
→-× f (x , y) = f x y
{-
introduction rule for conjunction:
Γ ⊢ A Γ ⊢ B
-------------- (∧I)
Γ ⊢ A ∧ B
general : when logical connectives are defined with inductive types,
- CONSTRUCTORS CORRESPOND TO INTRODUCTION RULES
------------------------------------------------------------------------------
Induction principle : ELIMINATION RULE CORRESPONDS TO THE ASSOCIATED INDUCTION PRINCIPLE
-}
-- for case where P does not depend on its arg
×-rec : {A B : Set}
→ (P : Set)
→ (A → B → P)
→ A × B → P
×-rec P Pp (x , y) = Pp x y
{-
corresponds to elimination rule for conjunction:
Γ, A,B ⊢ P Γ ⊢ A ∧ B
------------------------- (∧E)
Γ ⊢ P
if the premises are true then the conclusion is also true
-}
-- dependent induction principle
-- corresponds to the elimination rule in dependent types
-- see 8.3.3
×-ind : {A B : Set}
→ (P : A × B → Set)
→ ((x : A) → (y : B) → P (x , y))
→ (p : A × B) → P p
×-ind P Pp (x , y) = Pp x y
{-
------------------------------------------------------------------------------
-- p 289 6.5.3 Unit type : corresponds to truth
Data.Unit
-}
data ⊤ : Set where
tt : ⊤ -- constructor is introduction rule
{-
----- (⊤I)
Γ ⊢ ⊤
-}
-- induction principle
⊤-rec
: (P : ⊤ → Set)
→ P tt
→ (t : ⊤)
→ P t
⊤-rec P Ptt tt = Ptt
{-
know from logic there is no elimination rule associated with truth
but can write rule that corresponds to induction principle:
Γ ⊢ P Γ ⊢ ⊤
--------------- (⊤E)
Γ ⊢ P
not interesting from a logical point of view:
if P holds and ⊤ holds
then can deduce that P holds, which was already known
------------------------------------------------------------------------------
-- 6.5.4 Empty type : corresponds to falsity
Data.Empty
-}
data ⊥ : Set where
-- no constructor, so no introduction rule
-- dependent induction principle
⊥-d-elim : (P : ⊥ → Set) → (x : ⊥) → P x
⊥-d-elim P ()
-- non-dependent variant of this principle
⊥-elim : (P : Set) → ⊥ → P
⊥-elim P () -- () is the empty pattern in Agda
-- indicates there are no cases to handle when matching on a value of type
{-
corresponds to explosion principle, which is the associated elimination rule
Γ ⊢ ⊥
---- (⊥E)
Γ ⊢ P
------------------------------------------------------------------------------
6.5.5 Negation
Relation.Nullary
-}
¬ : Set → Set
¬ A = A → ⊥
-- e.g., A ⇒ ¬¬A proved:
nni : {A : Set} → A → ¬ (¬ A)
nni A ¬A = ¬A A
{-
------------------------------------------------------------------------------
p 290 6.5.6 Coproduct : corresponds to disjunction
Data.Sum
-}
data _⊎_ (A : Set) (B : Set) : Set where
inj₁ : A → A ⊎ B -- called injection of A into A ⊎ B
inj₂ : B → A ⊎ B -- ditto B
{-
The two constructors correspond to the two introduction rules
Γ ⊢ A
--------- (∨ᴸI)
Γ ⊢ A ∨ B
Γ ⊢ B
--------- (∨ᴿI)
Γ ⊢ A ∨ B
-}
-- commutativity of disjunction
⊎-comm : (A B : Set) → A ⊎ B → B ⊎ A
⊎-comm A B (inj₁ x) = inj₂ x
⊎-comm A B (inj₂ y) = inj₁ y
{-
-- proof of (A ∨ ¬A) ⇒ ¬¬A ⇒ A
lem-raa : {A : Set}
→ A ⊎ ¬ A
→ ¬ (¬ A)
→ A
lem-raa (inj₁ a) _ = a
lem-raa (inj₂ ¬a) k = ⊥-elim (k ¬a) -- ⊥ !=< Set
-}
-- induction principle
⊎-rec : {A B : Set}
→ (P : A ⊎ B → Set)
→ ((x : A) → P (inj₁ x))
→ ((y : B) → P (inj₂ y))
→ (u : A ⊎ B)
→ P u
⊎-rec P P₁ P₂ (inj₁ x) = P₁ x
⊎-rec P P₁ P₂ (inj₂ y) = P₂ y
{-
non-dependent induction principle corresponds to the elimination rule
Γ, A ⊢ P Γ, B ⊢ P Γ ⊢ A ∨ B
----------------------------- (∨E)
Γ ⊢ P
------------------------------------------------------------------------------
Decidable types : A type A is decidable when it is known whether it is inhabited or not
i.e. a proof of A ∨ ¬A
could define predicate: Dec A is a proof that A is decidable
-}
Dec' : Set → Set
Dec' A = A ⊎ ¬ A -- by definition of the disjunction
{-
Agda convention
write yes/no instead of inj₁/inj₂
because it answers the question: is A provable?
defined in Relation.Nullary as
-- p 291
A type A is decidable when
-}
data Dec (A : Set) : Set where
yes : A → Dec A
no : ¬ A → Dec A
{-
logic of Agda is intuitionistic
therefore A ∨ ¬A not provable for any type A, and not every type is decidable
it can be proved that no type is not decidable (see 2.3.5 and 6.6.8)
-}
nndec : (A : Set) → ¬ (¬ (Dec A))
nndec A n = n (no (λ a → n (yes a)))
{-
------------------------------------------------------------------------------
-- p 291 6.5.7 Π-types : corresponds to universal quantification
dependent types : types that depend on terms
some connectives support dependent generalizations
e.g., generalization of function types
A → B
to dependent function types
(x : A) → B
where x might occur in B.
the type B of the returned value depends on arg x
e.g.,
replicate : {A : Set} → A → (n : ℕ) → Vec A n
Dependent function types are also called Π-types
often written
Π(x : A).B
can be define as (note: there is builtin notation in Agda)
-}
data Π {A : Set} (A : Set) (B : A → Set) : Set where
Λ : ((a : A) → B a) → Π A B
{-
an element of Π A B is a dependent function
(x : A) → B x
bound universal quantification bounded (the type A over which the variable ranges)
corresponds to
∀x ∈ A.B(x)
proof of that formula corresponds to a function which
- to every x in A
- associates a proof of B(x)
why Agda allows the notation
∀ x → B x
for the above type (leaves A implicit)
Exercise 6.5.7.1.
Show that the type
Π Bool (λ { false → A ; true → B })
is isomorphic to
A × B
------------------------------------------------------------------------------
-- p 292 6.5.8 Σ-types : corresponds to bounded existential quantification
Data.Product
-}
-- dependent variant of product types : a : A , b : B a
data Σ (A : Set) (B : A → Set) : Set where
_,_ : (a : A) → B a → Σ A B
-- actual Agda def is done using a record
dproj₁ : {A : Set} {B : A → Set} → Σ A B → A
dproj₁ (a , b) = a
dproj₂ : {A : Set} {B : A → Set} → (s : Σ A B) → B (dproj₁ s)
dproj₂ (a , b) = b
{-
Logical interpretation
type
Σ A B
is bounded existential quantification
∃x ∈ A.B(x)
set theoretic interpretation corresponds to constructing sets by comprehension
{x ∈ A | B(x)}
the set of elements x of A such that B(x) is satisfied
e.g., in set theory
- given a function f : A → B
- its image Im(f) is the subset of B consisting of elements in the image of f.
formally defined
Im(f) = {y ∈ B | ∃x ∈ A.f (x) = y}
translated to with two Σ types
- one for the comprehension
- one for the universal quantification
-}
Im : {A B : Set} (f : A → B) → Set
Im {A} {B} f = Σ B (λ y → Σ A (λ x → f x ≡ y))
-- e.g., can show that every function f : A → B has a right inverse (or section)
-- g : Im(f) → A
sec : {A B : Set} (f : A → B) → Im f → A
sec f (y , (x , p)) = x
{-
------------------------------------------------------------------------------
-- p 293 : the axiom of choice
for every relation R ⊆ A × B satisfying ∀x ∈ A.∃y ∈ B.(x, y) ∈ R
there is a function f : A → B such that ∀x ∈ A.(x, f (x)) ∈ R
section 6.5.9 defined type Rel A B
corresponding to relations between types A and B
using Rel, can prov axiom of choice
-}
-- AC : {A B : Set} (R : Rel A B) -- TODO
-- → ((x : A) → Σ B (λ y → R x y))
-- → Σ (A → B) (λ f → ∀ x → R x (f x))
-- AC R f = (λ x → proj₁ (f x)) , (λ x → proj₂ (f x))
{-
the arg that corresponds to the proof of (6.1), is constructive
a function which to every element x of type A
associates a pair of an element y of B
and a proof that (x, y) belongs to the relation.
By projecting it on the first component,
necessary function f is obtained (associates an element of B to each element of A)
use the second component to prove that it satisfies the required property
the "classical" variant of the axiom of choice
does not have access to the proof of (6.1) -- it only knows its existence.
another description is thus
where the double negation has killed the contents of the proof, see section 2.5.9
postulate CAC : {A B : Set} (R : Rel A B)
→ ¬ ¬ ((x : A) → Σ B (λ y → R x y))
→ ¬ ¬ Σ (A → B) (λ f → ∀ x → R x (f x))
see 9.3.4.
------------------------------------------------------------------------------
-- p 293 : 6.5.9 Predicates
In classical logic, the set Bool of booleans is the set of truth values:
- a predicate on a set A can either be false or true
- modeled as a function A → Bool
In Agda/intuitionistic logic
- not so much interested in truth value of predicate
- but rather in its proofs
- so the role of truth values is now played by Set
predicate P on a type A is term of type
A → Set
which to every element x of A associates the type of proofs of P x
------------------------------------------------------------------------------
-- p 294 Relations
Relation.Binary
In classical mathematics, a relation R on a set A is a subset of A × A (see A.1)
x of A is in relation with an element y when (x, y) ∈ R
relation on A can also be encoded as a function : A × A → 𝔹
or, curryfication, : A → A → 𝔹
in this representation, x is in relation with y when R(x, y) = 1
In Agda/intuitionistic
- relations between types A and B as type Rel A
- obtained by replacing the set 𝔹 of truth values with Set in the above description:
-}
Rel : Set → Set₁
Rel A = A → A → Set
-- e.g.
-- _≤_ : type Rel ℕ
-- _≡_ : type Rel A
{-
------------------------------------------------------------------------------
Inductive predicates (predicates defined by induction)
-}
data isEven : ℕ → Set where
even-z : isEven zero -- 0 is even
even-s : {n : ℕ} → isEven n → isEven (suc (suc n)) -- if n is even then n + 2 is even
{-
corresponds to def of set E ⊆ N of even numbers
as the smallest set of numbers such that
0 ∈ E
and
n ∈ E ⇒ n+2 ∈ E
-}
data _≤_ : ℕ → ℕ → Set where
z≤n : {n : ℕ} → zero ≤ n
s≤s : {m n : ℕ} (m≤n : m ≤ n) → suc m ≤ suc n
{-
smallest relation on ℕ such that
0 ≤ 0
and
m ≤ n implies m+1 ≤ n+1
inductive predicate definitions enable reasoning by induction over those predicates/relations
-}
≤-refl : {n : ℕ} → (n ≤ n)
≤-refl {zero} = z≤n
≤-refl {suc n} = s≤s ≤-refl
-- p 295
≤-trans : {m n p : ℕ} → (m ≤ n) → (n ≤ p) → (m ≤ p)
≤-trans z≤n n≤p = z≤n
≤-trans (s≤s m≤n) (s≤s n≤p) = s≤s (≤-trans m≤n n≤p)
{-
inductive defs good because of Agda's support for
reasoning by induction (and dependent pattern matching)
leading to simpler proofs
other defs possible
-- base on classical equivalence, for m, n ∈ N, m ≤ n ⇔ ∃m' ∈ N.m + m' = n
_≤'_ : ℕ → ℕ → Set
m ≤' n = Σ (λ m' → m + m' ≡eq n)
another:
-}
le : ℕ → ℕ → Bool
le zero n = true
le (suc m) zero = false
le (suc m) (suc n) = le m n
_≤'_ : ℕ → ℕ → Set
m ≤' n = le m n ≡ true
{-
EXERCISE : show reflexivity and transitivity with the alternate formalizations
involved example
implicational fragment of intuitionistic natural deduction is formalized in section 7.2
the relation Γ ⊢ A
between a context Γ and a type A
which is true when the sequent is provable
is defined inductively
------------------------------------------------------------------------------
-- p 295 6.6 Equality
Relation.Binary.PropositionalEquality
-- typed equality : compare elements of same type
data _≡_ {A : Set} (x : A) : A → Set where
refl : x ≡ x -- only way to be equal is to be the same
------------------------------------------------------------------------------
6.6.1 Equality and pattern matching
example proof with equality : successor function on natural numbers is injective
- for every natural numbers m and n
- m + 1 = n + 1 ⇒ m = n
-}
-- p 296
suc-injective : {m n : ℕ} → suc m ≡ suc n → m ≡ n
-- suc-injective {m} {n} p -- Goal: m ≡ n; p : suc m ≡ suc n
-- case split on p : it can ONLY be refl
-- therefore m is equal to n
-- so agda provide .m - not really an arg - something equal to m
suc-injective {m} {.m} refl -- m ≡ m
= refl
{-
------------------------------------------------------------------------------
-- p 296 6.6.2 Main properties of equality: reflexive, congruence, symmetric, transitive
-}
sym : {A : Set} {x y : A}
→ x ≡ y
→ y ≡ x
sym refl = refl
trans : {A : Set} {x y z : A}
→ x ≡ y
→ y ≡ z
→ x ≡ z
trans refl refl = refl
cong : ∀ {A B : Set} (f : A → B) {x y : A}
→ x ≡ y
→ f x ≡ f y
cong f refl = refl
-- substitutivity : enables transporting the elements of a type along an equality
{-
subst : {A : Set} (P : A → Set) → {x y : A}
→ x ≡ y
→ P x
→ P y
subst P refl p = p
-}
-- https://stackoverflow.com/a/27789403
subst : ∀ {a p} {A : Set a} (P : A → Set p) {x y : A}
→ x ≡ y → P x → P y
subst P refl p = p
-- coercion : enables converting an element of type to another equal type
coe : {A B : Set}
→ A ≡ B
→ A
→ B
coe p x = subst (λ A → A) p x
-- see 9.1
{-
------------------------------------------------------------------------------
-- p 296 6.6.3 Half of even numbers : example every even number has a half
using proof strategy from 2.3
traditional notation : show ∀n ∈ N. isEven(n) ⇒ ∃m ∈ ℕ.m + m = n
-}
+-suc : ∀ (m n : ℕ)
→ m + suc n
≡ suc (m + n)
+-suc zero n = refl
+-suc (suc m) n = cong suc (+-suc m n)
-- even-half : {n : ℕ}
-- → isEven n
-- → Σ (λ m → m + m ≡ n) -- TODO (m : ℕ) → Set !=< Set
-- even-half even-z = zero , refl
-- even-half (even-s e) with even-half e
-- even-half (even-s e) | m , p =
-- suc m , cong suc (trans (+-suc m m) (cong suc p))
{-
second case : by induction have m such that m + m = n
need to construct a half for n + 2: m + 1
show that it is a half via
(m + 1) + (m + 1) = (m + (m + 1)) + 1 by definition of addition
= ((m + m) + 1) + 1 by +-suc
= (n + 1) + 1 since m + m = n
implemented using transitivity of equality and
fact that it is a congruence (m + 1 = n + 1 from m = n)
also use auxiliary lemma m + (n + 1) = (m + n) + 1
-}
{-
------------------------------------------------------------------------------
-- p 297 6.6.4 Reasoning
-}
--import Relation.Binary.PropositionalEquality as Eq
--open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; step-≡; _∎)
infix 3 _∎
infixr 2 _≡⟨⟩_ _≡⟨_⟩_
infix 1 begin_
begin_ : ∀ {ℓ} {A : Set ℓ} {x y : A} → x ≡ y → x ≡ y
begin_ x≡y = x≡y
_≡⟨⟩_ : ∀ {ℓ} {A : Set ℓ} (x {y} : A) → x ≡ y → x ≡ y
_ ≡⟨⟩ x≡y = x≡y
_≡⟨_⟩_ : {A : Set} (x {y z} : A) → x ≡ y → y ≡ z → x ≡ z
_ ≡⟨ x≡y ⟩ y≡z = trans x≡y y≡z
_∎ : ∀ {ℓ} {A : Set ℓ} (x : A) → x ≡ x
_∎ _ = refl
+-zero : ∀ (n : ℕ) → n + zero ≡ n
+-zero zero = refl
+-zero (suc n) rewrite +-zero n = refl
+-comm : (m n : ℕ) → m + n ≡ n + m
+-comm m zero = +-zero m
+-comm m (suc n) =
begin
(m + suc n) ≡⟨ +-suc m n ⟩ -- m + (n + 1) = (m + n) + 1 -- by +-suc
suc (m + n) ≡⟨ cong suc (+-comm m n) ⟩ -- = (n + m) + 1 -- by induction hypothesis
suc (n + m)
∎
-- p 297
-- another proof using properties of equality
+-comm' : (m n : ℕ) → m + n ≡ n + m
+-comm' m zero = +-zero m
+-comm' m (suc n) = trans (+-suc m n) (cong suc (+-comm m n))
{-
------------------------------------------------------------------------------
-- p 298 6.6.5 Definitional equality
two terms which are convertible (i.e. re duce to a common term) are considered to be EQUAL.
not ≡, but equality internal to Agda, referred to as definitional equality
- cannot distinguish between two definitionally equal terms
- e.g., zero + n is definitionally equal to n (because addition defined that way)
- definitional equality implies equality by refl:
-}
+-zero''' : (n : ℕ) → zero + n ≡ n
+-zero''' n = refl
-- n + zero and n are not definitionally equal (because def of addition)
-- but can be proved
+-0 : (n : ℕ) → n + zero ≡ n
+-0 zero = refl
+-0 (suc n) = cong suc (+-zero n)
-- implies structure of definitions is important (and an art form)
------------------------------------------------------------------------------
-- p 298 6.6.6 More properties with equality
-- zero is NOT the successor of any NAT
zero-suc : {n : ℕ} → zero ≡ suc n → ⊥
zero-suc ()
+-assoc : (m n o : ℕ) → (m + n) + o ≡ m + (n + o)
+-assoc zero n o = refl
+-assoc (suc m) n o = cong suc (+-assoc m n o)
-- p 299
*-+-dist-r : (m n o : ℕ)
→ (m + n) * o ≡ m * o + n * o
*-+-dist-r zero n o = refl
*-+-dist-r (suc m) n o
rewrite
+-comm n o
| *-+-dist-r m n o
| +-assoc o (m * o) (n * o)
= refl
*-assoc : (m n o : ℕ) → (m * n) * o ≡ m * (n * o)
*-assoc zero n o = refl
*-assoc (suc m) n o
rewrite
*-+-dist-r n (m * n) o
| *-assoc m n o
= refl
------------------------------------------------------------------------------
-- p 299 Lists
++-empty' : {A : Set}
→ (l : List A)
→ [] ++ l ≡ l
++-empty' l = refl
empty-++ : {A : Set}
→ (l : List A)
→ l ++ [] ≡ l
empty-++ [] = refl
empty-++ (x ∷ l) = cong (x ∷_) (empty-++ l)
++-assoc : {A : Set}
→ (l1 l2 l3 : List A)
→ ((l1 ++ l2) ++ l3) ≡ (l1 ++ (l2 ++ l3))
++-assoc [] l2 l3 = refl
++-assoc (x ∷ l1) l2 l3 = cong (x ∷_) (++-assoc l1 l2 l3)
-- TODO DOES NOT COMPILE: Set₁ != Set
-- ++-not-comm : ¬ ({A : Set} → (l1 l2 : List A)
-- → (l1 ++ l2) ≡ (l2 ++ l1))
-- ++-not-comm f with f (1 ∷ []) (2 ∷ [])
-- ... | ()
++-length : {A : Set}
→ (l1 l2 : List A)
→ length (l1 ++ l2) ≡ length l1 + length l2
++-length [] l2 = refl
++-length (x ∷ l1) l2 = cong (1 +_) (++-length l1 l2)
-- p 300
-- adds element to end of list
snoc : {A : Set} → List A → A → List A
snoc [] x = x ∷ []
snoc (y ∷ l) x = y ∷ (snoc l x)
-- reverse a list
rev : {A : Set} → List A → List A
rev [] = []
rev (x ∷ l) = snoc (rev l) x
-- reversing a list with x as the last element will prodice a list with x as the first element
rev-snoc : {A : Set}
→ (l : List A) → (x : A)
→ rev (snoc l x) ≡ x ∷ (rev l)
rev-snoc [] x = refl
rev-snoc (y ∷ l) x = cong (λ l → snoc l y) (rev-snoc l x)
-- reverse twice
rev-rev : {A : Set}
→ (l : List A)
→ rev (rev l) ≡ l
rev-rev [] = refl
rev-rev (x ∷ l) = trans (rev-snoc (rev l) x)
(cong (x ∷_) (rev-rev l))
--------------------------------------------------
-- p 300 6.6.7 The J rule.
-- equality
data _≡'_ {A : Set} : A → A → Set where
refl' : {x : A} → x ≡' x
-- has associated induction principle : J rule:
-- to prove P depending on equality proof p,
-- - prove it when this proof is refl
J : {A : Set} {x y : A}
(p : x ≡' y)
(P : (x y : A) → x ≡' y → Set)
(r : (x : A) → P x x refl')
→ P x y p
J {A} {x} {.x} refl' P r = r x
{-
section 6.6 shows that definition usually taken in Agda is different
(it uses a parameter instead of an index for the first argument of type A),
so that the resulting induction principle is a variant:
-}
J' : {A : Set}
(x : A)
(P : (y : A) → x ≡' y → Set)
(r : P x refl')
(y : A)
(p : x ≡' y)
→ P y p
J' x P r .x refl' = r
{-
--------------------------------------------------
p 301 6.6.8 Decidable equality.
A type A is decidable when either A or ¬A is provable.
Write Dec A for the type of proofs of decidability of A
- yes p, where p is a proof of A, or
- no q, where q is a proof of ¬A
A relation on a type A is decidable when
- the type R x y is decidable
- for every elements x and y of type A.
-}
-- in Relation.Binary
-- term of type Decidable R is proof that relation R is decidable
Decidable : {A : Set} (R : A → A → Set) → Set
Decidable {A} R = (x y : A) → Dec (R x y)
{-
A type A has decidable equality when equality relation _≡_ on A is decidable.
- means there is a function/algorithm able to determine,
given two elements of A,
whether they are equal or not
- return a PROOF (not a boolean)
-}
_≟_ : Decidable {A = Bool} _≡_
false ≟ false = yes refl
true ≟ true = yes refl
false ≟ true = no (λ ())
true ≟ false = no (λ ())
_≟ℕ_ : Decidable {A = ℕ} _≡_
zero ≟ℕ zero = yes refl
zero ≟ℕ suc n = no(λ())
suc m ≟ℕ zero = no(λ())
suc m ≟ℕ suc n with m ≟ℕ n
... | yes refl = yes refl
... | no ¬p = no (λ p → ¬p (suc-injective p))
{-
--------------------------------------------------
p 301 6.6.9 Heterogeneous equality : enables comparing (seemingly) distinct types
due to McBride [McB00]
p 302
e.g., show concatenation of vectors is associative
(l1 ++ l2) ++ l3 ≡ l1 ++ (l2 ++ l3) , where lengths are m, n and o
equality ≡ only used on terms of same type
- but types above are
- left Vec A ((m + n) + o)
- right Vec A (m + (n + o))
the two types are propositionally equal, can prove
Vec A ((m + n) + o) ≡ Vec A (m + (n + o))
by
cong (Vec A) (+-assoc m n o)
but the two types are not definitionally equal (required to compare terms with ≡)
PROOF WITH STANDARD EQUALITY.
To compare vecs, use above propositional equality
and'coe' to cast one of the members to the same type as other.
term
coe (cong (Vec A) (+-assoc m n o))
has type
Vec A ((m + n) + o) → Vec A (m + (n + o))
-}
-- lemma : if l and l’ are propositional equal vectors,
-- up to propositional equality of their types as above,
-- then x : l and x : l’ are also propositionally equal:
∷-cong : {A : Set} → {m n : ℕ} {l1 : Vec A m} {l2 : Vec A n}
→ (x : A)
→ (p : m ≡ n)
→ coe (PE.cong (Vec A) p) l1 ≡ l2
→ coe (PE.cong (Vec A) (PE.cong suc p)) (x ∷ l1) ≡ x ∷ l2
∷-cong x refl refl = refl
-- TODO this needs Vec ++ (only List ++ in scope)
-- ++-assoc' : {A : Set} {m n o : ℕ}
-- → (l1 : Vec A m)
-- → (l2 : Vec A n)
-- → (l3 : Vec A o)
-- → coe (PE.cong (Vec A) (+-assoc m n o))
-- ((l1 ++ l2) ++ l3) ≡ l1 ++ (l2 ++ l3)
-- ++-assoc' [] l2 l3 = refl
-- ++-assoc' {_} {suc m} {n} {o} (x ∷ l1) l2 l3 = ∷-cong x (+-assoc m n o) (++-assoc' l1 l2 l3)
{-
p 303 Proof with heterogeneous equality - TODO
------------------------------------------------------------------------------
p 303 6.7 Proving programs in practice
correctness means it agrees with a specification
correctness properties
- absence of errors : uses funs with args in correct domain (e.g., no divide by zero)
- invariants : properties always satisfied during execution
- functional properties : computes expected output on any given input
p 304 6.7.1 Extrinsic vs intrinsic proofs
extrinsic : first write program then prove properties about it (from "outside") e.g., sort : List ℕ → List ℕ
intrinsic : incorporate properties in types e.g., sort : List ℕ → SortList ℕ
example: length of concat of two lists is sum of their lengths
-}
-- extrinsic proof
++-length' : {A : Set}
→ (l1 l2 : List A)
→ length (l1 ++ l2) ≡ length l1 + length l2
++-length' [] l2 = refl
++-length' (x ∷ l1) l2 = PE.cong suc (++-length' l1 l2)
-- intrinsic
_V++_ : {m n : ℕ} {A : Set} → Vec A m → Vec A n → Vec A (m + n)
[] V++ l = l
(x ∷ l) V++ l' = x ∷ (l V++ l')
------------------------------------------------------------------------------
-- p 305 6.7.2 Insertion sort
|
algebraic-stack_agda0000_doc_17165 | module TrustMe where
open import Data.String
open import Data.String.Unsafe
open import Data.Unit.Polymorphic using (⊤)
open import IO
import IO.Primitive as Prim
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary
-- Check that trustMe works.
testTrustMe : IO ⊤
testTrustMe with "apa" ≟ "apa"
... | yes refl = putStrLn "Yes!"
... | no _ = putStrLn "No."
main : Prim.IO ⊤
main = run testTrustMe
|
algebraic-stack_agda0000_doc_17166 | -- Mapping of Haskell types to Agda Types
module Foreign.Haskell.Types where
open import Prelude
open import Builtin.Float
{-# FOREIGN GHC import qualified GHC.Float #-}
{-# FOREIGN GHC import qualified Data.Text #-}
HSUnit = ⊤
HSBool = Bool
HSInteger = Int
HSList = List
HSChar = Char
HSString = HSList HSChar
HSText = String
postulate
HSFloat : Set
HSFloat=>Float : HSFloat → Float
lossyFloat=>HSFloat : Float → HSFloat
HSInt : Set
HSInt=>Int : HSInt → Int
lossyInt=>HSInt : Int → HSInt
{-# COMPILE GHC HSFloat = type Float #-}
{-# COMPILE GHC HSFloat=>Float = GHC.Float.float2Double #-}
{-# COMPILE GHC lossyFloat=>HSFloat = GHC.Float.double2Float #-}
{-# COMPILE GHC HSInt = type Int #-}
{-# COMPILE GHC HSInt=>Int = toInteger #-}
{-# COMPILE GHC lossyInt=>HSInt = fromInteger #-}
{-# FOREIGN GHC type AgdaTuple a b c d = (c, d) #-}
data HSTuple {a b} (A : Set a) (B : Set b) : Set (a ⊔ b) where
_,_ : A → B → HSTuple A B
{-# COMPILE GHC HSTuple = data MAlonzo.Code.Foreign.Haskell.Types.AgdaTuple ((,)) #-}
|
algebraic-stack_agda0000_doc_17167 | open import Prelude
module Implicits.Resolution.Termination.Lemmas
where
open import Induction.WellFounded
open import Induction.Nat
open import Data.Fin.Substitution
open import Implicits.Syntax
open import Implicits.Syntax.Type.Unification
open import Implicits.Substitutions
open import Implicits.Substitutions.Lemmas
open import Data.Nat hiding (_<_)
open import Data.Nat.Properties
open import Relation.Binary using (module DecTotalOrder)
open DecTotalOrder decTotalOrder using () renaming (refl to ≤-refl)
open import Extensions.Nat
open import Implicits.Resolution.Termination.Lemmas.SizeMeasures public
-- open import Implicits.Resolution.Termination.Lemmas.Stack public
|
algebraic-stack_agda0000_doc_4080 | ------------------------------------------------------------------------
-- The Agda standard library
--
-- The Maybe type
------------------------------------------------------------------------
-- The definitions in this file are reexported by Data.Maybe.
module Data.Maybe.Core where
open import Level
data Maybe {a} (A : Set a) : Set a where
just : (x : A) → Maybe A
nothing : Maybe A
{-# IMPORT Data.FFI #-}
{-# COMPILED_DATA Maybe Data.FFI.AgdaMaybe Just Nothing #-}
|
algebraic-stack_agda0000_doc_4081 | module Type.Identity.Proofs where
import Lvl
open import Structure.Function
open import Structure.Relator.Properties
open import Structure.Relator
open import Structure.Type.Identity
open import Type.Identity
open import Type
private variable ℓ ℓ₁ ℓ₂ ℓₑ ℓₑ₁ ℓₑ₂ ℓₚ : Lvl.Level
private variable T A B : Type{ℓ}
private variable P : T → Type{ℓ}
private variable _▫_ : A → B → Type{ℓ}
instance
Id-reflexivity : Reflexivity(Id{T = T})
Reflexivity.proof Id-reflexivity = intro
instance
Id-identityEliminator : IdentityEliminator{ℓₚ = ℓₚ}(Id{T = T})
IdentityEliminator.elim Id-identityEliminator = elim
instance
Id-identityEliminationOfIntro : IdentityEliminationOfIntro{ℓₘ = ℓ}(Id{T = T})(Id)
IdentityEliminationOfIntro.proof Id-identityEliminationOfIntro P p = intro
instance
Id-identityType : IdentityType(Id)
Id-identityType = intro
{-
open import Logic.Propositional
open import Logic.Propositional.Equiv
open import Relator.Equals.Proofs
open import Structure.Setoid
te : ⦃ equiv-A : Equiv{ℓₑ}(A)⦄ → ∀{f : A → Type{ℓ}} → Function ⦃ equiv-A ⦄ ⦃ [↔]-equiv ⦄ (f)
test : ⦃ equiv-A : Equiv{ℓₑ}(A)⦄ → ∀{P : A → Type{ℓ}} → UnaryRelator ⦃ equiv-A ⦄ (P)
UnaryRelator.substitution test eq p = [↔]-to-[→] (Function.congruence te eq) p
-}
|
algebraic-stack_agda0000_doc_4082 | -- Abstract constructors
module Issue476c where
module M where
data D : Set
abstract
data D where
c : D
x : M.D
x = M.c |
algebraic-stack_agda0000_doc_4083 | module Array.APL where
open import Array.Base
open import Array.Properties
open import Data.Nat
open import Data.Nat.DivMod hiding (_/_)
open import Data.Nat.Properties
open import Data.Fin using (Fin; zero; suc; raise; toℕ; fromℕ≤)
open import Data.Fin.Properties using (toℕ<n)
open import Data.Vec
open import Data.Vec.Properties
open import Data.Product
open import Agda.Builtin.Float
open import Function
open import Relation.Binary.PropositionalEquality hiding (Extensionality)
open import Relation.Nullary
open import Relation.Nullary.Decidable
open import Relation.Nullary.Negation
--open import Relation.Binary
-- Now we start to introduce APL operators trying
-- to maintain syntactic rules and semantics.
-- We won't be able to mimic explicit concatenations
-- like 2 3 4 is a vector [2, 3, 4], as we would have
-- to overload the " " somehow.
-- This relation describes promotion of the scalar element in
-- dyadic operations.
data dy-args : ∀ n m k → (Vec ℕ n) → (Vec ℕ m) → (Vec ℕ k) → Set where
instance
n-n : ∀ {n}{s} → dy-args n n n s s s
n-0 : ∀ {n}{s}{s₁} → dy-args n 0 n s s₁ s
0-n : ∀ {n}{s}{s₁} → dy-args 0 n n s s₁ s₁
dyadic-type : ∀ a → Set a → Set a
dyadic-type a X = ∀ {n m k}{s s₁ s₂}{{c : dy-args n m k s s₁ s₂}}
→ Ar X n s → Ar X m s₁ → Ar X k s₂
lift-binary-op : ∀ {a}{X : Set a} → ∀ (op : X → X → X) → dyadic-type a X
lift-binary-op op ⦃ c = n-n ⦄ (imap f) (imap g) = imap λ iv → op (f iv) (g iv)
lift-binary-op op {s₁ = []} ⦃ c = n-0 ⦄ (imap f) (imap g) = imap λ iv → op (f iv) (g [])
lift-binary-op op {s = [] } ⦃ c = 0-n ⦄ (imap f) (imap g) = imap λ iv → op (f []) (g iv)
lift-unary-op : ∀ {a}{X : Set a} → ∀ (op : X → X)
→ ∀ {n s} → Ar X n s → Ar X n s
lift-unary-op f (imap g) = imap (λ iv → f (g iv))
dyadic-type-c : ∀ a → Set a → Set a
dyadic-type-c a X = ∀ {n m k}{s s₁ s₂}
→ Ar X n s → dy-args n m k s s₁ s₂ → Ar X m s₁ → Ar X k s₂
-- Nat operations
infixr 20 _+ₙ_
infixr 20 _×ₙ_
_+ₙ_ = lift-binary-op _+_
_×ₙ_ = lift-binary-op _*_
_-safe-_ : (a : ℕ) → (b : ℕ) .{≥ : a ≥ b} → ℕ
a -safe- b = a ∸ b
-- FIXME As _-ₙ_ requires a proof, we won't consider yet
-- full dyadic types for _-ₙ_, as it would require us
-- to define dyadic types for ≥a.
infixr 20 _-ₙ_
_-ₙ_ : ∀ {n}{s}
→ (a : Ar ℕ n s) → (b : Ar ℕ n s)
→ .{≥ : a ≥a b}
→ Ar ℕ n s
(imap f -ₙ imap g) {≥} = imap λ iv → (f iv -safe- g iv) {≥ = ≥ iv}
--≢-sym : ∀ {X : Set}{a b : X} → a ≢ b → b ≢ a
--≢-sym pf = pf ∘ sym
infixr 20 _÷ₙ_
_÷ₙ_ : ∀ {n}{s}
→ (a : Ar ℕ n s) → (b : Ar ℕ n s)
→ {≥0 : cst 0 <a b}
→ Ar ℕ n s
_÷ₙ_ (imap f) (imap g) {≥0} = imap λ iv → (f iv div g iv) {≢0 = fromWitnessFalse (≢-sym $ <⇒≢ $ ≥0 iv) }
infixr 20 _+⟨_⟩ₙ_
infixr 20 _×⟨_⟩ₙ_
_+⟨_⟩ₙ_ : dyadic-type-c _ _
a +⟨ c ⟩ₙ b = _+ₙ_ {{c = c}} a b
_×⟨_⟩ₙ_ : dyadic-type-c _ _
a ×⟨ c ⟩ₙ b = _×ₙ_ {{c = c}} a b
-- Float operations
infixr 20 _+ᵣ_
_+ᵣ_ = lift-binary-op primFloatPlus
infixr 20 _-ᵣ_
_-ᵣ_ = lift-binary-op primFloatMinus
infixr 20 _×ᵣ_
_×ᵣ_ = lift-binary-op primFloatTimes
-- XXX we can request the proof that the right argument is not zero.
-- However, the current primFloatDiv has the type Float → Float → Float, so...
infixr 20 _÷ᵣ_
_÷ᵣ_ = lift-binary-op primFloatDiv
infixr 20 _×⟨_⟩ᵣ_
_×⟨_⟩ᵣ_ : dyadic-type-c _ _
a ×⟨ c ⟩ᵣ b = _×ᵣ_ {{c = c}} a b
infixr 20 _+⟨_⟩ᵣ_
_+⟨_⟩ᵣ_ : dyadic-type-c _ _
a +⟨ c ⟩ᵣ b = _+ᵣ_ {{c = c}} a b
infixr 20 _-⟨_⟩ᵣ_
_-⟨_⟩ᵣ_ : dyadic-type-c _ _
a -⟨ c ⟩ᵣ b = _-ᵣ_ {{c = c}} a b
infixr 20 _÷⟨_⟩ᵣ_
_÷⟨_⟩ᵣ_ : dyadic-type-c _ _
a ÷⟨ c ⟩ᵣ b = _÷ᵣ_ {{c = c}} a b
infixr 20 *ᵣ_
*ᵣ_ = lift-unary-op primFloatExp
module xx where
a : Ar ℕ 2 (3 ∷ 3 ∷ [])
a = cst 1
s : Ar ℕ 0 []
s = cst 2
test₁ = a +ₙ a
test₂ = a +ₙ s
test₃ = s +ₙ a
--test = (s +ₙ s)
test₄ = s +⟨ n-n ⟩ₙ s
test₅ : ∀ {n s} → Ar ℕ n s → Ar ℕ 0 [] → Ar ℕ n s
test₅ = _+ₙ_
infixr 20 ρ_
ρ_ : ∀ {ℓ}{X : Set ℓ}{d s} → Ar X d s → Ar ℕ 1 (d ∷ [])
ρ_ {s = s} _ = s→a s
infixr 20 ,_
,_ : ∀ {a}{X : Set a}{n s} → Ar X n s → Ar X 1 (prod s ∷ [])
,_ {s = s} (p) = imap λ iv → unimap p (off→idx s iv)
-- Reshape
infixr 20 _ρ_
_ρ_ : ∀ {a}{X : Set a}{n}{sa}
→ (s : Ar ℕ 1 (n ∷ []))
→ (a : Ar X n sa)
-- if the `sh` is non-empty, `s` must be non-empty as well.
→ {s≢0⇒ρa≢0 : prod (a→s s) ≢ 0 → prod sa ≢ 0}
→ Ar X n (a→s s)
_ρ_ {sa = sa} s a {s≢0⇒ρa≢0} with prod sa ≟ 0 | prod (a→s s) ≟ 0
_ρ_ {sa = sa} s a {s≢0⇒ρa≢0} | _ | yes s≡0 = mkempty (a→s s) s≡0
_ρ_ {sa = sa} s a {s≢0⇒ρa≢0} | yes ρa≡0 | no s≢0 = contradiction ρa≡0 (s≢0⇒ρa≢0 s≢0)
_ρ_ {sa = sa} s a {s≢0⇒ρa≢0} | no ρa≢0 | _ = imap from-flat
where
from-flat : _
from-flat iv = let
off = idx→off (a→s s) iv --{!!} -- (ix-lookup iv zero)
flat = unimap $ , a
ix = (toℕ (ix-lookup off zero) mod prod sa)
{≢0 = fromWitnessFalse ρa≢0}
in
flat (ix ∷ [])
reduce-1d : ∀ {a}{X : Set a}{n} → Ar X 1 (n ∷ []) → (X → X → X) → X → X
reduce-1d {n = zero} (imap p) op neut = neut
reduce-1d {n = suc n} (imap p) op neut = op (p $ zero ∷ [])
(reduce-1d (imap (λ iv → p (suc (ix-lookup iv zero) ∷ []))) op neut)
{-
This goes right to left if we want to
reduce-1d (imap λ iv → p ((raise 1 $ ix-lookup iv zero) ∷ []))
op (op neut (p $ zero ∷ []))
-}
Scal : ∀ {a} → Set a → Set a
Scal X = Ar X 0 []
scal : ∀ {a}{X : Set a} → X → Scal X
scal = cst
unscal : ∀ {a}{X : Set a} → Scal X → X
unscal (imap f) = f []
module true-reduction where
thm : ∀ {a}{X : Set a}{n m} → (s : Vec X (n + m)) → s ≡ take n s ++ drop n s
thm {n = n} s with splitAt n s
thm {n = n} .(xs ++ ys) | xs , ys , refl = refl
thm2 : ∀ {a}{X : Set a} → (v : Vec X 1) → v ≡ head v ∷ []
thm2 (x ∷ []) = refl
-- This is a variant with take
_/⟨_⟩_ : ∀ {a}{X : Set a}{n}{s : Vec ℕ (n + 1)}
→ (X → X → X) → X
→ Ar X (n + 1) s
→ Ar X n (take n s)
_/⟨_⟩_ {n = n} {s} f neut a = let
x = nest {s = take n s} {s₁ = drop n s} $ subst (λ x → Ar _ _ x) (thm {n = n} s) a
in imap λ iv → reduce-1d (subst (λ x → Ar _ _ x) (thm2 (drop n s)) $ unimap x iv) f neut
_/₁⟨_⟩_ : ∀ {a}{X : Set a}{n}{s : Vec ℕ n}{m}
→ (X → X → X) → X
→ Ar X (n + 1) (s ++ (m ∷ []))
→ Ar X n s
_/₁⟨_⟩_ {n = n} {s} f neut a = let
x = nest {s = s} a
in imap λ iv → reduce-1d (unimap x iv) f neut
module test-reduce where
a : Ar ℕ 2 (4 ∷ 4 ∷ [])
a = cst 1
b : Ar ℕ 1 (5 ∷ [])
b = cst 2
test₁ = _/⟨_⟩_ {n = 0} _+_ 0 (, a)
test₂ = _/⟨_⟩_ {n = 0} _+_ 0 b
-- FIXME! This reduction does not implement semantics of APL,
-- as it assumes that we always reduce to scalars!
-- Instead, in APL / reduce on the last axis only,
-- i.e. ⍴ +/3 4 5 ⍴ ⍳1 = 3 4
-- This is mimicing APL's f/ syntax, but with extra neutral
-- element. We can later introduce the variant where certain
-- operations come with pre-defined neutral elements.
_/⟨_⟩_ : ∀ {a}{X : Set a}{n s}
→ (Scal X → Scal X → Scal X) → Scal X → Ar X n s → Scal X
f /⟨ neut ⟩ a = let
op x y = unscal $ f (scal x) (scal y)
a-1d = , a
neut = unscal neut
in
scal $ reduce-1d a-1d op neut
-- XXX I somehow don't understand how to make X to be an arbitrary Set a...
data reduce-neut : {X : Set} → (Scal X → Scal X → Scal X) → Scal X → Set where
instance
plus-nat : reduce-neut _+⟨ n-n ⟩ₙ_ (cst 0)
mult-nat : reduce-neut _×⟨ n-n ⟩ₙ_ (cst 1)
plus-flo : reduce-neut (_+ᵣ_ {{c = n-n}}) (cst 0.0)
mult-flo : reduce-neut (_×ᵣ_ {{c = n-n}}) (cst 1.0)
infixr 20 _/_
_/_ : ∀ {X : Set}{n s neut}
→ (op : Scal X → Scal X → Scal X) → {{c : reduce-neut op neut}}
→ Ar X n s → Scal X
_/_ {neut = neut} f a = f /⟨ neut ⟩ a
module test-reduce where
a = s→a $ 1 ∷ 2 ∷ 3 ∷ 4 ∷ []
test₁ : reduce-1d a _+_ 0 ≡ 10
test₁ = refl
test₂ : _+⟨ n-n ⟩ₙ_ /⟨ scal 0 ⟩ a ≡ scal 10
test₂ = refl
test₃ : _+ₙ_ / a ≡ scal 10
test₃ = refl
-- This is somewhat semi-useful dot-product expressed
-- pretty close to what you'd write in APL.
dotp : ∀ {n s} → Ar ℕ n s → Ar ℕ n s → Scal ℕ
dotp a b = _+ₙ_ / a ×ₙ b
test₄ : dotp a a ≡ scal (1 + 4 + 9 + 16)
test₄ = refl
-- The size of the leading axis.
infixr 20 ≢_
≢_ : ∀ {a}{X : Set a}{n s} → Ar X n s → Scal ℕ
≢_ {n = zero} a = scal 1
≢_ {n = suc n} {s} a = scal $ head s
data iota-type : (d : ℕ) → (n : ℕ) → (Vec ℕ d) → Set where
instance
iota-scal : iota-type 0 1 []
iota-vec : ∀ {n} → iota-type 1 n (n ∷ [])
iota-res-t : ∀ {d n s} → iota-type d n s → (sh : Ar ℕ d s) → Set
iota-res-t {n = n} iota-scal sh = Ar (Σ ℕ λ x → x < unscal sh)
1 (unscal sh ∷ [])
iota-res-t {n = n} iota-vec sh = Ar (Σ (Ar ℕ 1 (n ∷ []))
λ v → v <a sh)
n (a→s sh)
a<b⇒b≡c⇒a<c : ∀ {a b c} → a < b → b ≡ c → a < c
a<b⇒b≡c⇒a<c a<b refl = a<b
infixr 20 ι_
ι_ : ∀ {d n s}{{c : iota-type d n s}}
→ (sh : Ar ℕ d s)
→ iota-res-t c sh
ι_ ⦃ c = iota-scal ⦄ s = (imap λ iv → (toℕ $ ix-lookup iv zero) , toℕ<n (ix-lookup iv zero))
ι_ {n = n} {s = s ∷ []} ⦃ c = iota-vec ⦄ (imap sh) = imap cast-ix→a
where
cast-ix→a : _
cast-ix→a iv = let
ix , pf = ix→a iv
in ix , λ jv → a<b⇒b≡c⇒a<c (pf jv) (s→a∘a→s (imap sh) jv)
-- Zilde and comma
⍬ : ∀ {a}{X : Set a} → Ar X 1 (0 ∷ [])
⍬ = imap λ iv → magic-fin $ ix-lookup iv zero
-- XXX We are going to use _·_ instead of _,_ as the
-- latter is a constructor of dependent sum. Renaming
-- all the occurrences to something else would take
-- a bit of work which we should do later.
infixr 30 _·_
_·_ : ∀ {a}{X : Set a}{n} → X → Ar X 1 (n ∷ []) → Ar X 1 (suc n ∷ [])
x · (imap p) = imap λ iv → case ix-lookup iv zero of λ where
zero → x
(suc j) → p (j ∷ [])
-- Note that two dots in an upper register combined with
-- the underscore form the _̈ symbol. When the symbol is
-- used on its own, it looks like ̈ which is the correct
-- "spelling".
infixr 20 _̈_
_̈_ : ∀ {a}{X Y : Set a}{n s}
→ (X → Y)
→ Ar X n s
→ Ar Y n s
f ̈ imap p = imap λ iv → f $ p iv
-- Take and Drop
ax+sh<s : ∀ {n}
→ (ax sh s : Ar ℕ 1 (n ∷ []))
→ (s≥sh : s ≥a sh)
→ (ax <a (s -ₙ sh) {≥ = s≥sh})
→ (ax +ₙ sh) <a s
ax+sh<s (imap ax) (imap sh) (imap s) s≥sh ax<s-sh iv =
let
ax+sh<s-sh+sh = +-monoˡ-< (sh iv) (ax<s-sh iv)
s-sh+sh≡s = m∸n+n≡m (s≥sh iv)
in a<b⇒b≡c⇒a<c ax+sh<s-sh+sh s-sh+sh≡s
_↑_ : ∀ {a}{X : Set a}{n s}
→ (sh : Ar ℕ 1 (n ∷ []))
→ (a : Ar X n s)
→ {pf : s→a s ≥a sh}
→ Ar X n $ a→s sh
_↑_ {s = s} sh (imap f) {pf} with (prod $ a→s sh) ≟ 0
_↑_ {s = s} sh (imap f) {pf} | yes Πsh≡0 = mkempty _ Πsh≡0
_↑_ {s = s} (imap q) (imap f) {pf} | no Πsh≢0 = imap mtake
where
mtake : _
mtake iv = let
ai , ai< = ix→a iv
ix<q jv = a<b⇒b≡c⇒a<c (ai< jv) (s→a∘a→s (imap q) jv)
ix = a→ix ai (s→a s) λ jv → ≤-trans (ix<q jv) (pf jv)
in f (subst-ix (a→s∘s→a s) ix)
_↓_ : ∀ {a}{X : Set a}{n s}
→ (sh : Ar ℕ 1 (n ∷ []))
→ (a : Ar X n s)
→ {pf : (s→a s) ≥a sh}
→ Ar X n $ a→s $ (s→a s -ₙ sh) {≥ = pf}
_↓_ {s = s} sh (imap x) {pf} with
let p = prod $ a→s $ (s→a s -ₙ sh) {≥ = pf}
in p ≟ 0
_↓_ {s = s} sh (imap f) {pf} | yes Π≡0 = mkempty _ Π≡0
_↓_ {s = s} (imap q) (imap f) {pf} | no Π≢0 = imap mkdrop
where
mkdrop : _
mkdrop iv = let
ai , ai< = ix→a iv
ax = ai +ₙ (imap q)
thmx = ax+sh<s
ai (imap q) (s→a s) pf
λ jv → a<b⇒b≡c⇒a<c (ai< jv)
(s→a∘a→s ((s→a s -ₙ (imap q)) {≥ = pf}) jv)
ix = a→ix ax (s→a s) thmx
in f (subst-ix (a→s∘s→a s) ix)
_̈⟨_⟩_ : ∀ {a}{X Y Z : Set a}{n s}
→ Ar X n s
→ (X → Y → Z)
→ Ar Y n s → Ar Z n s
--(imap p) ̈⟨ f ⟩ (imap p₁) = imap λ iv → f (p iv) (p₁ iv)
p ̈⟨ f ⟩ p₁ = imap λ iv → f (unimap p iv) (unimap p₁ iv)
|
algebraic-stack_agda0000_doc_4084 | module Numeral.Natural.Coprime.Proofs where
open import Functional
open import Logic
open import Logic.Classical
open import Logic.Propositional
open import Logic.Propositional.Theorems
import Lvl
open import Numeral.Finite
open import Numeral.Natural
open import Numeral.Natural.Coprime
open import Numeral.Natural.Decidable
open import Numeral.Natural.Function.GreatestCommonDivisor
open import Numeral.Natural.Relation.Divisibility.Proofs
open import Numeral.Natural.Oper
open import Numeral.Natural.Prime
open import Numeral.Natural.Prime.Proofs
open import Numeral.Natural.Relation.Divisibility
open import Numeral.Natural.Relation.Order
open import Numeral.Natural.Relation.Order.Proofs
open import Relator.Equals
open import Structure.Relator.Properties
open import Type.Properties.Decidable.Proofs
open import Type
private variable n x y d p : ℕ
-- 1 is the only number coprime to itself because it does not have any divisors except for itself.
Coprime-reflexivity-condition : Coprime(n)(n) ↔ (n ≡ 1)
Coprime-reflexivity-condition {n} = [↔]-intro l (r{n}) where
l : Coprime(n)(n) ← (n ≡ 1)
Coprime.proof(l [≡]-intro) {a} a1 _ = [1]-only-divides-[1] (a1)
r : ∀{n} → Coprime(n)(n) → (n ≡ 1)
r {𝟎} (intro z1) = z1 Div𝟎 Div𝟎
r {𝐒(𝟎)} _ = [≡]-intro
r {𝐒(𝐒(n))} (intro ssn1) = ssn1 {𝐒(𝐒(n))} divides-reflexivity divides-reflexivity
instance
Coprime-symmetry : Symmetry(Coprime)
Coprime.proof(Symmetry.proof Coprime-symmetry (intro proof)) {n} nx ny = proof {n} ny nx
-- The only number coprime to 0 is 1 because while all numbers divide 0, only 1 divides 1.
Coprime-of-0-condition : ∀{x} → Coprime(0)(x) → (x ≡ 1)
Coprime-of-0-condition {0} (intro n1) = n1 Div𝟎 Div𝟎
Coprime-of-0-condition {1} (intro n1) = [≡]-intro
Coprime-of-0-condition {𝐒(𝐒(x))} (intro n1) = n1 Div𝟎 divides-reflexivity
-- 1 is coprime to all numbers because only 1 divides 1.
Coprime-of-1 : Coprime(1)(x)
Coprime.proof (Coprime-of-1 {x}) {n} n1 nx = [1]-only-divides-[1] n1
Coprime-of-[+] : Coprime(x)(y) → Coprime(x)(x + y)
Coprime.proof (Coprime-of-[+] {x}{y} (intro proof)) {n} nx nxy = proof {n} nx ([↔]-to-[→] (divides-without-[+] nxy) nx)
-- Coprimality is obviously equivalent to the greatest common divisor being 1 by definition.
Coprime-gcd : Coprime(x)(y) ↔ (gcd(x)(y) ≡ 1)
Coprime-gcd = [↔]-transitivity ([↔]-intro l r) Gcd-gcd-value where
l : Coprime(x)(y) ← Gcd(x)(y) 1
Coprime.proof (l p) nx ny = [1]-only-divides-[1] (Gcd.maximum₂ p nx ny)
r : Coprime(x)(y) → Gcd(x)(y) 1
Gcd.divisor(r (intro coprim)) 𝟎 = [1]-divides
Gcd.divisor(r (intro coprim)) (𝐒 𝟎) = [1]-divides
Gcd.maximum(r (intro coprim)) dv with [≡]-intro ← coprim (dv 𝟎) (dv(𝐒 𝟎)) = [1]-divides
-- A smaller number and a greater prime number is coprime.
-- If the greater number is prime, then no smaller number will divide it except for 1, and greater numbers never divide smaller ones.
-- Examples (y = 7):
-- The prime factors of 7 is only itself (because it is prime).
-- Then the only alternatives for x are:
-- x ∈ {1,2,3,4,5,6}
-- None of them is able to have 7 as a prime factor because it is greater:
-- 1=1, 2=2, 3=3, 4=2⋅2, 5=5, 6=2⋅3
Coprime-of-Prime : (𝐒(x) < y) → Prime(y) → Coprime(𝐒(x))(y)
Coprime.proof (Coprime-of-Prime (succ(succ lt)) prim) nx ny with prime-only-divisors prim ny
Coprime.proof (Coprime-of-Prime (succ(succ lt)) prim) nx ny | [∨]-introₗ n1 = n1
Coprime.proof (Coprime-of-Prime (succ(succ lt)) prim) nx ny | [∨]-introᵣ [≡]-intro with () ← [≤]-to-[≯] lt ([≤]-without-[𝐒] (divides-upper-limit nx))
-- A prime number either divides a number or forms a coprime pair.
-- If a prime number does not divide a number, then it cannot share any divisors because by definition, a prime only has 1 as a divisor.
Prime-to-div-or-coprime : Prime(x) → ((x ∣ y) ∨ Coprime(x)(y))
Prime-to-div-or-coprime {y = y} (intro {x} prim) = [¬→]-disjunctive-formᵣ ⦃ decider-to-classical ⦄ (intro ∘ coprim) where
coprim : (𝐒(𝐒(x)) ∤ y) → ∀{n} → (n ∣ 𝐒(𝐒(x))) → (n ∣ y) → (n ≡ 1)
coprim nxy {𝟎} nx ny with () ← [0]-divides-not nx
coprim nxy {𝐒 n} nx ny with prim nx
... | [∨]-introₗ [≡]-intro = [≡]-intro
... | [∨]-introᵣ [≡]-intro with () ← nxy ny
divides-to-converse-coprime : ∀{x y z} → (x ∣ y) → Coprime(y)(z) → Coprime(x)(z)
divides-to-converse-coprime xy (intro yz) = intro(nx ↦ nz ↦ yz (transitivity(_∣_) nx xy) nz)
|
algebraic-stack_agda0000_doc_4085 | {-# OPTIONS --universe-polymorphism #-}
-- {-# OPTIONS --verbose tc.records.ifs:15 #-}
-- {-# OPTIONS --verbose tc.constr.findInScope:15 #-}
-- {-# OPTIONS --verbose tc.term.args.ifs:15 #-}
-- {-# OPTIONS --verbose cta.record.ifs:15 #-}
-- {-# OPTIONS --verbose tc.section.apply:25 #-}
-- {-# OPTIONS --verbose tc.mod.apply:100 #-}
-- {-# OPTIONS --verbose scope.rec:15 #-}
-- {-# OPTIONS --verbose tc.rec.def:15 #-}
module 04-equality where
record ⊤ : Set where
constructor tt
data Bool : Set where
true : Bool
false : Bool
or : Bool → Bool → Bool
or true _ = true
or _ true = true
or false false = false
and : Bool → Bool → Bool
and false _ = false
and _ false = false
and true true = false
not : Bool → Bool
not true = false
not false = true
id : {A : Set} → A → A
id v = v
primEqBool : Bool → Bool → Bool
primEqBool true = id
primEqBool false = not
record Eq (A : Set) : Set where
field eq : A → A → Bool
eqBool : Eq Bool
eqBool = record { eq = primEqBool }
open Eq {{...}}
neq : {t : Set} → {{eqT : Eq t}} → t → t → Bool
neq a b = not (eq a b)
test = eq false false
-- Instance arguments will also resolve to candidate instances which
-- still require hidden arguments. This allows us to define a
-- reasonable instance for Fin types
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
{-# BUILTIN NATURAL ℕ #-}
data Fin : ℕ → Set where
zero : {n : ℕ} → Fin (suc n)
suc : {n : ℕ} → Fin n → Fin (suc n)
primEqFin : {n : ℕ} → Fin n → Fin n → Bool
primEqFin zero zero = true
primEqFin zero (suc y) = false
primEqFin (suc y) zero = false
primEqFin (suc x) (suc y) = primEqFin x y
eqFin : {n : ℕ} → Eq (Fin n)
eqFin = record { eq = primEqFin }
-- eqFin′ : Eq (Fin 3)
-- eqFin′ = record { eq = primEqFin }
-- eqFinSpecial : {n : ℕ} → Prime n → Eq (Fin n)
-- eqFinSpecial
fin1 : Fin 3
fin1 = zero
fin2 : Fin 3
fin2 = suc (suc zero)
testFin : Bool
testFin = eq fin1 fin2
|
algebraic-stack_agda0000_doc_4086 | ------------------------------------------------------------------------
-- The Agda standard library
--
-- The Stream type and some operations
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe --sized-types #-}
module Codata.Stream where
open import Size
open import Codata.Thunk as Thunk using (Thunk; force)
open import Data.Nat.Base
open import Data.List.Base using (List; []; _∷_)
open import Data.List.NonEmpty using (List⁺; _∷_)
open import Data.Vec using (Vec; []; _∷_)
open import Data.Product as P hiding (map)
open import Function
------------------------------------------------------------------------
-- Definition
data Stream {ℓ} (A : Set ℓ) (i : Size) : Set ℓ where
_∷_ : A → Thunk (Stream A) i → Stream A i
module _ {ℓ} {A : Set ℓ} where
repeat : ∀ {i} → A → Stream A i
repeat a = a ∷ λ where .force → repeat a
head : ∀ {i} → Stream A i → A
head (x ∷ xs) = x
tail : Stream A ∞ → Stream A ∞
tail (x ∷ xs) = xs .force
lookup : ℕ → Stream A ∞ → A
lookup zero xs = head xs
lookup (suc k) xs = lookup k (tail xs)
splitAt : (n : ℕ) → Stream A ∞ → Vec A n × Stream A ∞
splitAt zero xs = [] , xs
splitAt (suc n) (x ∷ xs) = P.map₁ (x ∷_) (splitAt n (xs .force))
take : (n : ℕ) → Stream A ∞ → Vec A n
take n xs = proj₁ (splitAt n xs)
drop : ℕ → Stream A ∞ → Stream A ∞
drop n xs = proj₂ (splitAt n xs)
infixr 5 _++_ _⁺++_
_++_ : ∀ {i} → List A → Stream A i → Stream A i
[] ++ ys = ys
(x ∷ xs) ++ ys = x ∷ λ where .force → xs ++ ys
_⁺++_ : ∀ {i} → List⁺ A → Thunk (Stream A) i → Stream A i
(x ∷ xs) ⁺++ ys = x ∷ λ where .force → xs ++ ys .force
cycle : ∀ {i} → List⁺ A → Stream A i
cycle xs = xs ⁺++ λ where .force → cycle xs
concat : ∀ {i} → Stream (List⁺ A) i → Stream A i
concat (xs ∷ xss) = xs ⁺++ λ where .force → concat (xss .force)
interleave : ∀ {i} → Stream A i → Thunk (Stream A) i → Stream A i
interleave (x ∷ xs) ys = x ∷ λ where .force → interleave (ys .force) xs
chunksOf : (n : ℕ) → Stream A ∞ → Stream (Vec A n) ∞
chunksOf n = chunksOfAcc n id module ChunksOf where
chunksOfAcc : ∀ {i} k (acc : Vec A k → Vec A n) →
Stream A ∞ → Stream (Vec A n) i
chunksOfAcc zero acc xs = acc [] ∷ λ where .force → chunksOfAcc n id xs
chunksOfAcc (suc k) acc (x ∷ xs) = chunksOfAcc k (acc ∘ (x ∷_)) (xs .force)
module _ {ℓ ℓ′} {A : Set ℓ} {B : Set ℓ′} where
map : ∀ {i} → (A → B) → Stream A i → Stream B i
map f (x ∷ xs) = f x ∷ λ where .force → map f (xs .force)
ap : ∀ {i} → Stream (A → B) i → Stream A i → Stream B i
ap (f ∷ fs) (x ∷ xs) = f x ∷ λ where .force → ap (fs .force) (xs .force)
unfold : ∀ {i} → (A → A × B) → A → Stream B i
unfold next seed =
let (seed′ , b) = next seed in
b ∷ λ where .force → unfold next seed′
scanl : ∀ {i} → (B → A → B) → B → Stream A i → Stream B i
scanl c n (x ∷ xs) = n ∷ λ where .force → scanl c (c n x) (xs .force)
module _ {ℓ ℓ₁ ℓ₂} {A : Set ℓ} {B : Set ℓ₁} {C : Set ℓ₂} where
zipWith : ∀ {i} → (A → B → C) → Stream A i → Stream B i → Stream C i
zipWith f (a ∷ as) (b ∷ bs) = f a b ∷ λ where .force → zipWith f (as .force) (bs .force)
module _ {a} {A : Set a} where
iterate : (A → A) → A → Stream A ∞
iterate f = unfold < f , id >
|
algebraic-stack_agda0000_doc_4087 | ------------------------------------------------------------------------------
-- ABP auxiliary lemma
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOT.FOTC.Program.ABP.StrongerInductionPrinciple.LemmaATP where
open import Common.FOL.Relation.Binary.EqReasoning
open import FOTC.Base
open import FOTC.Base.PropertiesI
open import FOTC.Base.List
open import FOTC.Base.List.PropertiesATP
open import FOTC.Base.Loop
open import FOTC.Data.Bool
open import FOTC.Data.Bool.PropertiesATP
open import FOTC.Data.List
open import FOTC.Data.List.PropertiesATP
open import FOTC.Program.ABP.ABP
open import FOTC.Program.ABP.Fair.Type
open import FOTC.Program.ABP.Fair.PropertiesATP
open import FOTC.Program.ABP.PropertiesI
open import FOTC.Program.ABP.Terms
------------------------------------------------------------------------------
-- Helper function for the auxiliary lemma
module Helper where
-- 30 November 2013. If we don't have the following definitions
-- outside the where clause, the ATPs cannot prove the theorems.
as^ : ∀ b i' is' ds → D
as^ b i' is' ds = await b i' is' ds
{-# ATP definition as^ #-}
bs^ : D → D → D → D → D → D
bs^ b i' is' ds os₁^ = corrupt os₁^ · (as^ b i' is' ds)
{-# ATP definition bs^ #-}
cs^ : D → D → D → D → D → D
cs^ b i' is' ds os₁^ = ack b · (bs^ b i' is' ds os₁^)
{-# ATP definition cs^ #-}
ds^ : D → D → D → D → D → D → D
ds^ b i' is' ds os₁^ os₂^ = corrupt os₂^ · cs^ b i' is' ds os₁^
{-# ATP definition ds^ #-}
os₁^ : D → D → D
os₁^ os₁' ft₁^ = ft₁^ ++ os₁'
{-# ATP definition os₁^ #-}
os₂^ : D → D
os₂^ os₂ = tail₁ os₂
{-# ATP definition os₂^ #-}
helper : ∀ {b i' is' os₁ os₂ as bs cs ds js} →
Bit b →
Fair os₂ →
S b (i' ∷ is') os₁ os₂ as bs cs ds js →
∀ ft₁ os₁' → F*T ft₁ → Fair os₁' → os₁ ≡ ft₁ ++ os₁' →
∃[ js' ] js ≡ i' ∷ js'
helper {b} {i'} {is'} {os₁} {os₂} {as} {bs} {cs} {ds} {js} Bb Fos₂
(asS , bsS , csS , dsS , jsS)
.(T ∷ []) os₁' f*tnil Fos₁' os₁-eq = prf
where
postulate prf : ∃[ js' ] js ≡ i' ∷ js'
{-# ATP prove prf #-}
helper {b} {i'} {is'} {os₁} {os₂} {as} {bs} {cs} {ds} {js}
Bb Fos₂ (asS , bsS , csS , dsS , jsS)
.(F ∷ ft₁^) os₁' (f*tcons {ft₁^} FTft₁^) Fos₁' os₁-eq =
helper Bb (tail-Fair Fos₂) ihS ft₁^ os₁' FTft₁^ Fos₁' refl
where
postulate os₁-eq-helper : os₁ ≡ F ∷ os₁^ os₁' ft₁^
{-# ATP prove os₁-eq-helper #-}
postulate as-eq : as ≡ < i' , b > ∷ (as^ b i' is' ds)
{-# ATP prove as-eq #-}
postulate bs-eq : bs ≡ error ∷ (bs^ b i' is' ds (os₁^ os₁' ft₁^))
{-# ATP prove bs-eq os₁-eq-helper as-eq #-}
postulate cs-eq : cs ≡ not b ∷ cs^ b i' is' ds (os₁^ os₁' ft₁^)
{-# ATP prove cs-eq bs-eq #-}
postulate
ds-eq-helper₁ :
os₂ ≡ T ∷ tail₁ os₂ →
ds ≡ ok (not b) ∷ ds^ b i' is' ds (os₁^ os₁' ft₁^) (os₂^ os₂)
{-# ATP prove ds-eq-helper₁ cs-eq #-}
postulate
ds-eq-helper₂ : os₂ ≡ F ∷ tail₁ os₂ →
ds ≡ error ∷ ds^ b i' is' ds (os₁^ os₁' ft₁^) (os₂^ os₂)
{-# ATP prove ds-eq-helper₂ cs-eq #-}
ds-eq : ds ≡ ok (not b) ∷ ds^ b i' is' ds (os₁^ os₁' ft₁^) (os₂^ os₂)
∨ ds ≡ error ∷ ds^ b i' is' ds (os₁^ os₁' ft₁^) (os₂^ os₂)
ds-eq = case (λ h → inj₁ (ds-eq-helper₁ h))
(λ h → inj₂ (ds-eq-helper₂ h))
(head-tail-Fair Fos₂)
postulate
as^-eq-helper₁ :
ds ≡ ok (not b) ∷ ds^ b i' is' ds (os₁^ os₁' ft₁^) (os₂^ os₂) →
as^ b i' is' ds ≡
send b · (i' ∷ is') · ds^ b i' is' ds (os₁^ os₁' ft₁^) (os₂^ os₂)
{-# ATP prove as^-eq-helper₁ x≢not-x #-}
postulate
as^-eq-helper₂ :
ds ≡ error ∷ ds^ b i' is' ds (os₁^ os₁' ft₁^) (os₂^ os₂) →
as^ b i' is' ds ≡
send b · (i' ∷ is') · ds^ b i' is' ds (os₁^ os₁' ft₁^) (os₂^ os₂)
{-# ATP prove as^-eq-helper₂ #-}
as^-eq : as^ b i' is' ds ≡
send b · (i' ∷ is') · ds^ b i' is' ds (os₁^ os₁' ft₁^) (os₂^ os₂)
as^-eq = case as^-eq-helper₁ as^-eq-helper₂ ds-eq
postulate js-eq : js ≡ out b · bs^ b i' is' ds (os₁^ os₁' ft₁^)
{-# ATP prove js-eq bs-eq #-}
ihS : S b
(i' ∷ is')
(os₁^ os₁' ft₁^)
(os₂^ os₂)
(as^ b i' is' ds)
(bs^ b i' is' ds (os₁^ os₁' ft₁^))
(cs^ b i' is' ds (os₁^ os₁' ft₁^))
(ds^ b i' is' ds (os₁^ os₁' ft₁^) (os₂^ os₂))
js
ihS = as^-eq , refl , refl , refl , js-eq
------------------------------------------------------------------------------
-- From Dybjer and Sander's paper: From the assumption that os₁ ∈ Fair
-- and hence by unfolding Fair, we conclude that there are ft₁ : F*T
-- and os₁' : Fair, such that os₁ = ft₁ ++ os₁'.
--
-- We proceed by induction on ft₁ : F*T using helper.
open Helper
lemma : ∀ {b i' is' os₁ os₂ as bs cs ds js} →
Bit b →
Fair os₁ →
Fair os₂ →
S b (i' ∷ is') os₁ os₂ as bs cs ds js →
∃[ js' ] js ≡ i' ∷ js'
lemma Bb Fos₁ Fos₂ s with Fair-out Fos₁
... | ft , os₁' , FTft , prf , Fos₁' = helper Bb Fos₂ s ft os₁' FTft Fos₁' prf
|
algebraic-stack_agda0000_doc_4088 | -- Andreas, 2019-02-24, issue #3457
-- Error messages for illegal as-clause
import Agda.Builtin.Nat Fresh-name as _
-- Previously, this complained about a duplicate module definition
-- with unspeakable name.
-- Expected error:
-- Not in scope: Fresh-name
|
algebraic-stack_agda0000_doc_4089 | module Classes where
open import Agda.Primitive
open import Agda.Builtin.Equality
open import Relation.Binary.PropositionalEquality.Core
open ≡-Reasoning
id : ∀ {ℓ} {A : Set ℓ} → A → A
id x = x
_$_ : ∀ {ℓ} {A B : Set ℓ} → (A → B) → A → B
_$_ = id
_∘_ : ∀ {ℓ} {A B C : Set ℓ} → (B → C) → (A → B) → A → C
f ∘ g = λ x → f (g x)
record Functor {ℓ} (F : Set ℓ → Set ℓ) : Set (lsuc ℓ) where
field
fmap : ∀ {A B} → (A → B) → F A → F B
F-id : ∀ {A} → (a : F A) → fmap id a ≡ a
F-∘ : ∀ {A B C} → (g : B → C) (f : A → B) (a : F A) → fmap (g ∘ f) a ≡ (fmap g ∘ fmap f) a
_<$>_ : ∀ {A B} → (A → B) → F A → F B
_<$>_ = fmap
infixl 20 _<$>_
open Functor {{...}} public
record Applicative (F : Set → Set) : Set₁ where
field
{{funF}} : Functor F
pure : {A : Set} → A → F A
_<*>_ : {A B : Set} → F (A → B) → F A → F B
A-id : ∀ {A} → (v : F A) → pure id <*> v ≡ v
A-∘ : ∀ {A B C} → (u : F (B → C)) (v : F (A → B)) (w : F A) → pure _∘_ <*> u <*> v <*> w ≡ u <*> (v <*> w)
A-hom : ∀ {A B} → (f : A → B) (x : A) → pure f <*> pure x ≡ pure (f x)
A-ic : ∀ {A B} → (u : F (A → B)) (y : A) → u <*> pure y ≡ pure (_$ y) <*> u
infixl 20 _<*>_
open Applicative {{...}} public
postulate
-- this is from parametricity: fmap is universal w.r.t. the functor laws
appFun : ∀ {A B F} {{aF : Applicative F}} → (f : A → B) (x : F A) → pure f <*> x ≡ fmap f x
record Monad (F : Set → Set) : Set₁ where
field
{{appF}} : Applicative F
_>>=_ : ∀ {A B} → F A → (A → F B) → F B
return : ∀ {A} → A → F A
return = pure
_>=>_ : {A B C : Set} → (A → F B) → (B → F C) → A → F C
f >=> g = λ a → f a >>= g
infixl 10 _>>=_
infixr 10 _>=>_
field
left-1 : ∀ {A B} → (a : A) (k : A → F B) → return a >>= k ≡ k a
right-1 : ∀ {A} → (m : F A) → m >>= return ≡ m
assoc : ∀ {A B C D} → (f : A → F B) (g : B → F C) (h : C → F D) (a : A) → (f >=> (g >=> h)) a ≡ ((f >=> g) >=> h) a
open Monad {{...}} public
|
algebraic-stack_agda0000_doc_4090 |
data Bool : Set where
true false : Bool
record Top : Set where
foo : Top
foo with true
... | true = _
... | false = top
where
top = record{ } -- the only purpose of this was to force
-- evaluation of the with function clauses
-- which were in an __IMPOSSIBLE__ state
|
algebraic-stack_agda0000_doc_4091 | open import Prelude
open import Nat
open import dynamics-core
open import contexts
module lemmas-disjointness where
-- disjointness is commutative
##-comm : {A : Set} {Δ1 Δ2 : A ctx} → Δ1 ## Δ2 → Δ2 ## Δ1
##-comm (π1 , π2) = π2 , π1
-- the empty context is disjoint from any context
empty-disj : {A : Set} (Γ : A ctx) → ∅ ## Γ
empty-disj Γ = ed1 , ed2
where
ed1 : {A : Set} (n : Nat) → dom {A} ∅ n → n # Γ
ed1 n (π1 , ())
ed2 : {A : Set} (n : Nat) → dom Γ n → _#_ {A} n ∅
ed2 _ _ = refl
-- two singleton contexts with different indices are disjoint
disjoint-singles : {A : Set} {x y : A} {u1 u2 : Nat} →
u1 ≠ u2 →
(■ (u1 , x)) ## (■ (u2 , y))
disjoint-singles {_} {x} {y} {u1} {u2} neq = ds1 , ds2
where
ds1 : (n : Nat) → dom (■ (u1 , x)) n → n # (■ (u2 , y))
ds1 n d with lem-dom-eq d
ds1 .u1 d | refl with natEQ u2 u1
ds1 .u1 d | refl | Inl xx = abort (neq (! xx))
ds1 .u1 d | refl | Inr x₁ = refl
ds2 : (n : Nat) → dom (■ (u2 , y)) n → n # (■ (u1 , x))
ds2 n d with lem-dom-eq d
ds2 .u2 d | refl with natEQ u1 u2
ds2 .u2 d | refl | Inl x₁ = abort (neq x₁)
ds2 .u2 d | refl | Inr x₁ = refl
apart-noteq : {A : Set} (p r : Nat) (q : A) → p # (■ (r , q)) → p ≠ r
apart-noteq p r q apt with natEQ r p
apart-noteq p .p q apt | Inl refl = abort (somenotnone apt)
apart-noteq p r q apt | Inr x₁ = flip x₁
-- if singleton contexts are disjoint, their indices must be disequal
singles-notequal : {A : Set} {x y : A} {u1 u2 : Nat} →
(■ (u1 , x)) ## (■ (u2 , y)) →
u1 ≠ u2
singles-notequal {A} {x} {y} {u1} {u2} (d1 , d2) = apart-noteq u1 u2 y (d1 u1 (lem-domsingle u1 x))
-- dual of lem2 above; if two indices are disequal, then either is apart
-- from the singleton formed with the other
apart-singleton : {A : Set} → ∀{x y} → {τ : A} →
x ≠ y →
x # (■ (y , τ))
apart-singleton {A} {x} {y} {τ} neq with natEQ y x
apart-singleton neq | Inl x₁ = abort ((flip neq) x₁)
apart-singleton neq | Inr x₁ = refl
-- if an index is apart from two contexts, it's apart from their union as
-- well. used below and in other files, so it's outside the local scope.
apart-parts : {A : Set} (Γ1 Γ2 : A ctx) (n : Nat) → n # Γ1 → n # Γ2 → n # (Γ1 ∪ Γ2)
apart-parts Γ1 Γ2 n apt1 apt2 with Γ1 n
apart-parts _ _ n refl apt2 | .None = apt2
-- this is just for convenience; it shows up a lot.
apart-extend1 : {A : Set} → ∀{x y τ} → (Γ : A ctx) → x ≠ y → x # Γ → x # (Γ ,, (y , τ))
apart-extend1 {A} {x} {y} {τ} Γ neq apt with natEQ y x
... | Inl refl = abort (neq refl)
... | Inr y≠x = apt
-- if an index is in the domain of a union, it's in the domain of one or
-- the other unand
dom-split : {A : Set} → (Γ1 Γ2 : A ctx) (n : Nat) → dom (Γ1 ∪ Γ2) n → dom Γ1 n + dom Γ2 n
dom-split Γ4 Γ5 n (π1 , π2) with Γ4 n
dom-split Γ4 Γ5 n (π1 , π2) | Some x = Inl (x , refl)
dom-split Γ4 Γ5 n (π1 , π2) | None = Inr (π1 , π2)
-- if both parts of a union are disjoint with a target, so is the union
disjoint-parts : {A : Set} {Γ1 Γ2 Γ3 : A ctx} → Γ1 ## Γ3 → Γ2 ## Γ3 → (Γ1 ∪ Γ2) ## Γ3
disjoint-parts {_} {Γ1} {Γ2} {Γ3} D13 D23 = d31 , d32
where
d31 : (n : Nat) → dom (Γ1 ∪ Γ2) n → n # Γ3
d31 n D with dom-split Γ1 Γ2 n D
d31 n D | Inl x = π1 D13 n x
d31 n D | Inr x = π1 D23 n x
d32 : (n : Nat) → dom Γ3 n → n # (Γ1 ∪ Γ2)
d32 n D = apart-parts Γ1 Γ2 n (π2 D13 n D) (π2 D23 n D)
apart-union1 : {A : Set} (Γ1 Γ2 : A ctx) (n : Nat) → n # (Γ1 ∪ Γ2) → n # Γ1
apart-union1 Γ1 Γ2 n aprt with Γ1 n
apart-union1 Γ1 Γ2 n () | Some x
apart-union1 Γ1 Γ2 n aprt | None = refl
apart-union2 : {A : Set} (Γ1 Γ2 : A ctx) (n : Nat) → n # (Γ1 ∪ Γ2) → n # Γ2
apart-union2 Γ1 Γ2 n aprt with Γ1 n
apart-union2 Γ3 Γ4 n () | Some x
apart-union2 Γ3 Γ4 n aprt | None = aprt
-- if a union is disjoint with a target, so is the left unand
disjoint-union1 : {A : Set} {Γ1 Γ2 Δ : A ctx} → (Γ1 ∪ Γ2) ## Δ → Γ1 ## Δ
disjoint-union1 {Γ1 = Γ1} {Γ2 = Γ2} {Δ = Δ} (ud1 , ud2) = du11 , du12
where
dom-union1 : {A : Set} (Γ1 Γ2 : A ctx) (n : Nat) → dom Γ1 n → dom (Γ1 ∪ Γ2) n
dom-union1 Γ1 Γ2 n (π1 , π2) with Γ1 n
dom-union1 Γ1 Γ2 n (π1 , π2) | Some x = x , refl
dom-union1 Γ1 Γ2 n (π1 , ()) | None
du11 : (n : Nat) → dom Γ1 n → n # Δ
du11 n dom = ud1 n (dom-union1 Γ1 Γ2 n dom)
du12 : (n : Nat) → dom Δ n → n # Γ1
du12 n dom = apart-union1 Γ1 Γ2 n (ud2 n dom)
-- if a union is disjoint with a target, so is the right unand
disjoint-union2 : {A : Set} {Γ1 Γ2 Δ : A ctx} → (Γ1 ∪ Γ2) ## Δ → Γ2 ## Δ
disjoint-union2 {Γ1 = Γ1} {Γ2 = Γ2} {Δ = Δ} (ud1 , ud2) = du21 , du22
where
dom-union2 : {A : Set} (Γ1 Γ2 : A ctx) (n : Nat) → dom Γ2 n → dom (Γ1 ∪ Γ2) n
dom-union2 Γ1 Γ2 n (π1 , π2) with Γ1 n
dom-union2 Γ3 Γ4 n (π1 , π2) | Some x = x , refl
dom-union2 Γ3 Γ4 n (π1 , π2) | None = π1 , π2
du21 : (n : Nat) → dom Γ2 n → n # Δ
du21 n dom = ud1 n (dom-union2 Γ1 Γ2 n dom)
du22 : (n : Nat) → dom Δ n → n # Γ2
du22 n dom = apart-union2 Γ1 Γ2 n (ud2 n dom)
-- if x isn't in a context and y is then they can't be equal
lem-dom-apt : {A : Set} {G : A ctx} {x y : Nat} → x # G → dom G y → x ≠ y
lem-dom-apt {x = x} {y = y} apt dom with natEQ x y
lem-dom-apt apt dom | Inl refl = abort (somenotnone (! (π2 dom) · apt))
lem-dom-apt apt dom | Inr x₁ = x₁
|
algebraic-stack_agda0000_doc_4092 | {-# OPTIONS --safe #-}
module Cubical.Algebra.Group.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Structure
open import Cubical.Foundations.GroupoidLaws hiding (assoc)
open import Cubical.Data.Sigma
open import Cubical.Algebra.Semigroup
open import Cubical.Algebra.Monoid.Base
open import Cubical.Algebra.Group.Base
private
variable
ℓ : Level
G : Type ℓ
isPropIsGroup : (1g : G) (_·_ : G → G → G) (inv : G → G)
→ isProp (IsGroup 1g _·_ inv)
isPropIsGroup 1g _·_ inv =
isOfHLevelRetractFromIso 1 IsGroupIsoΣ
(isPropΣ (isPropIsMonoid 1g _·_)
λ mono → isProp× (isPropΠ λ _ → mono .is-set _ _)
(isPropΠ λ _ → mono .is-set _ _))
where
open IsMonoid
module GroupTheory (G : Group ℓ) where
open GroupStr (snd G)
abstract
·CancelL : (a : ⟨ G ⟩) {b c : ⟨ G ⟩} → a · b ≡ a · c → b ≡ c
·CancelL a {b} {c} p =
b ≡⟨ sym (·IdL b) ∙ cong (_· b) (sym (·InvL a)) ∙ sym (·Assoc _ _ _) ⟩
inv a · (a · b) ≡⟨ cong (inv a ·_) p ⟩
inv a · (a · c) ≡⟨ ·Assoc _ _ _ ∙ cong (_· c) (·InvL a) ∙ ·IdL c ⟩
c ∎
·CancelR : {a b : ⟨ G ⟩} (c : ⟨ G ⟩) → a · c ≡ b · c → a ≡ b
·CancelR {a} {b} c p =
a ≡⟨ sym (·IdR a) ∙ cong (a ·_) (sym (·InvR c)) ∙ ·Assoc _ _ _ ⟩
(a · c) · inv c ≡⟨ cong (_· inv c) p ⟩
(b · c) · inv c ≡⟨ sym (·Assoc _ _ _) ∙ cong (b ·_) (·InvR c) ∙ ·IdR b ⟩
b ∎
invInv : (a : ⟨ G ⟩) → inv (inv a) ≡ a
invInv a = ·CancelL (inv a) (·InvR (inv a) ∙ sym (·InvL a))
inv1g : inv 1g ≡ 1g
inv1g = ·CancelL 1g (·InvR 1g ∙ sym (·IdL 1g))
1gUniqueL : {e : ⟨ G ⟩} (x : ⟨ G ⟩) → e · x ≡ x → e ≡ 1g
1gUniqueL {e} x p = ·CancelR x (p ∙ sym (·IdL _))
1gUniqueR : (x : ⟨ G ⟩) {e : ⟨ G ⟩} → x · e ≡ x → e ≡ 1g
1gUniqueR x {e} p = ·CancelL x (p ∙ sym (·IdR _))
invUniqueL : {g h : ⟨ G ⟩} → g · h ≡ 1g → g ≡ inv h
invUniqueL {g} {h} p = ·CancelR h (p ∙ sym (·InvL h))
invUniqueR : {g h : ⟨ G ⟩} → g · h ≡ 1g → h ≡ inv g
invUniqueR {g} {h} p = ·CancelL g (p ∙ sym (·InvR g))
invDistr : (a b : ⟨ G ⟩) → inv (a · b) ≡ inv b · inv a
invDistr a b = sym (invUniqueR γ) where
γ : (a · b) · (inv b · inv a) ≡ 1g
γ = (a · b) · (inv b · inv a)
≡⟨ sym (·Assoc _ _ _) ⟩
a · b · (inv b) · (inv a)
≡⟨ cong (a ·_) (·Assoc _ _ _ ∙ cong (_· (inv a)) (·InvR b)) ⟩
a · (1g · inv a)
≡⟨ cong (a ·_) (·IdL (inv a)) ∙ ·InvR a ⟩
1g ∎
congIdLeft≡congIdRight : (_·G_ : G → G → G) (-G_ : G → G)
(0G : G)
(rUnitG : (x : G) → x ·G 0G ≡ x)
(lUnitG : (x : G) → 0G ·G x ≡ x)
→ (r≡l : rUnitG 0G ≡ lUnitG 0G)
→ (p : 0G ≡ 0G) →
cong (0G ·G_) p ≡ cong (_·G 0G) p
congIdLeft≡congIdRight _·G_ -G_ 0G rUnitG lUnitG r≡l p =
rUnit (cong (0G ·G_) p)
∙∙ ((λ i → (λ j → lUnitG 0G (i ∧ j)) ∙∙ cong (λ x → lUnitG x i) p ∙∙ λ j → lUnitG 0G (i ∧ ~ j))
∙∙ cong₂ (λ x y → x ∙∙ p ∙∙ y) (sym r≡l) (cong sym (sym r≡l))
∙∙ λ i → (λ j → rUnitG 0G (~ i ∧ j)) ∙∙ cong (λ x → rUnitG x (~ i)) p ∙∙ λ j → rUnitG 0G (~ i ∧ ~ j))
∙∙ sym (rUnit (cong (_·G 0G) p))
|
algebraic-stack_agda0000_doc_4093 | {-# OPTIONS --safe #-}
module Cubical.HITs.Cost where
open import Cubical.HITs.Cost.Base
|
algebraic-stack_agda0000_doc_4094 | {- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2020, 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import Level using (0ℓ)
open import Util.Prelude
-- This module incldes various Agda lemmas that are independent of the project's domain
module Util.Lemmas where
cong₃ : ∀{a b c d}{A : Set a}{B : Set b}{C : Set c}{D : Set d}
→ (f : A → B → C → D) → ∀{x y u v m n} → x ≡ y → u ≡ v → m ≡ n
→ f x u m ≡ f y v n
cong₃ f refl refl refl = refl
≡-pi : ∀{a}{A : Set a}{x y : A}(p q : x ≡ y) → p ≡ q
≡-pi refl refl = refl
Unit-pi : {u1 u2 : Unit}
→ u1 ≡ u2
Unit-pi {unit} {unit} = refl
++-inj : ∀{a}{A : Set a}{m n o p : List A}
→ length m ≡ length n → m ++ o ≡ n ++ p
→ m ≡ n × o ≡ p
++-inj {m = []} {x ∷ n} () hip
++-inj {m = x ∷ m} {[]} () hip
++-inj {m = []} {[]} lhip hip
= refl , hip
++-inj {m = m ∷ ms} {n ∷ ns} lhip hip
with ++-inj {m = ms} {ns} (suc-injective lhip) (proj₂ (∷-injective hip))
...| (mn , op) rewrite proj₁ (∷-injective hip)
= cong (n ∷_) mn , op
++-abs : ∀{a}{A : Set a}{n : List A}(m : List A)
→ 1 ≤ length m → [] ≡ m ++ n → ⊥
++-abs [] ()
++-abs (x ∷ m) imp ()
filter-++-[]
: ∀ {a p} {A : Set a} {P : (a : A) → Set p}
→ ∀ xs ys (p : (a : A) → Dec (P a))
→ List-filter p xs ≡ [] → List-filter p ys ≡ []
→ List-filter p (xs ++ ys) ≡ []
filter-++-[] xs ys p pf₁ pf₂ rewrite List-filter-++ p xs ys | pf₁ | pf₂ = refl
filter-∪?-[]₁
: ∀ {a p} {A : Set a} {P Q : (a : A) → Set p}
→ ∀ xs (p : (a : A) → Dec (P a)) (q : (a : A) → Dec (Q a))
→ List-filter (p ∪? q) xs ≡ []
→ List-filter p xs ≡ []
filter-∪?-[]₁ [] p q pf = refl
filter-∪?-[]₁ (x ∷ xs) p q pf
with p x
...| no proof₁
with q x
...| no proof₂ = filter-∪?-[]₁ xs p q pf
filter-∪?-[]₁ (x ∷ xs) p q () | no proof₁ | yes proof₂
filter-∪?-[]₁ (x ∷ xs) p q () | yes proof
filter-∪?-[]₂
: ∀ {a p} {A : Set a} {P Q : (a : A) → Set p}
→ ∀ xs (p : (a : A) → Dec (P a)) (q : (a : A) → Dec (Q a))
→ List-filter (p ∪? q) xs ≡ []
→ List-filter q xs ≡ []
filter-∪?-[]₂ [] p q pf = refl
filter-∪?-[]₂ (x ∷ xs) p q pf
with p x
...| no proof₁
with q x
...| no proof₂ = filter-∪?-[]₂ xs p q pf
filter-∪?-[]₂ (x ∷ xs) p q () | no proof₁ | yes proof₂
filter-∪?-[]₂ (x ∷ xs) p q () | yes proof
noneOfKind⇒¬Any
: ∀ {a p} {A : Set a} {P : A → Set p}
xs (p : (a : A) → Dec (P a))
→ NoneOfKind xs p
→ ¬ Any P xs
noneOfKind⇒¬Any (x ∷ xs) p none ∈xs
with p x
noneOfKind⇒¬Any (x ∷ xs) p none (here px) | no ¬px = ¬px px
noneOfKind⇒¬Any (x ∷ xs) p none (there ∈xs) | no ¬px =
noneOfKind⇒¬Any xs p none ∈xs
noneOfKind⇒All¬
: ∀ {a p} {A : Set a} {P : A → Set p}
xs (p : (a : A) → Dec (P a))
→ NoneOfKind xs p
→ All (¬_ ∘ P) xs
noneOfKind⇒All¬ xs p none = ¬Any⇒All¬ xs (noneOfKind⇒¬Any xs p none)
++-NoneOfKind : ∀ {ℓA} {A : Set ℓA} {ℓ} {P : A → Set ℓ} xs ys (p : (a : A) → Dec (P a))
→ NoneOfKind xs p → NoneOfKind ys p → NoneOfKind (xs ++ ys) p
++-NoneOfKind xs ys p nok₁ nok₂ = filter-++-[] xs ys p nok₁ nok₂
data All-vec {ℓ} {A : Set ℓ} (P : A → Set ℓ) : ∀ {n} → Vec {ℓ} A n → Set (Level.suc ℓ) where
[] : All-vec P []
_∷_ : ∀ {x n} {xs : Vec A n} (px : P x) (pxs : All-vec P xs) → All-vec P (x ∷ xs)
≤-unstep : ∀{m n} → suc m ≤ n → m ≤ n
≤-unstep (s≤s ss) = ≤-step ss
≡⇒≤ : ∀{m n} → m ≡ n → m ≤ n
≡⇒≤ refl = ≤-refl
∈-cong : ∀{a b}{A : Set a}{B : Set b}{x : A}{l : List A}
→ (f : A → B) → x ∈ l → f x ∈ List-map f l
∈-cong f (here px) = here (cong f px)
∈-cong f (there hyp) = there (∈-cong f hyp)
All-self : ∀{a}{A : Set a}{xs : List A} → All (_∈ xs) xs
All-self = All-tabulate (λ x → x)
All-reduce⁺
: ∀{a b}{A : Set a}{B : Set b}{Q : A → Set}{P : B → Set}
→ { xs : List A }
→ (f : ∀{x} → Q x → B)
→ (∀{x} → (prf : Q x) → P (f prf))
→ (all : All Q xs)
→ All P (All-reduce f all)
All-reduce⁺ f hyp [] = []
All-reduce⁺ f hyp (ax ∷ axs) = (hyp ax) ∷ All-reduce⁺ f hyp axs
All-reduce⁻
: ∀{a b}{A : Set a}{B : Set b}
{Q : A → Set}
→ { xs : List A }
→ ∀ {vdq}
→ (f : ∀{x} → Q x → B)
→ (all : All Q xs)
→ vdq ∈ All-reduce f all
→ ∃[ v ] ∃[ v∈xs ] (vdq ≡ f {v} v∈xs)
All-reduce⁻ {Q = Q} {(h ∷ _)} {vdq} f (px ∷ pxs) (here refl) = h , px , refl
All-reduce⁻ {Q = Q} {(_ ∷ t)} {vdq} f (px ∷ pxs) (there vdq∈) = All-reduce⁻ {xs = t} f pxs vdq∈
List-index : ∀ {A : Set} → (_≟A_ : (a₁ a₂ : A) → Dec (a₁ ≡ a₂)) → A → (l : List A) → Maybe (Fin (length l))
List-index _≟A_ x l with break (_≟A x) l
...| not≡ , _ with length not≡ <? length l
...| no _ = nothing
...| yes found = just ( fromℕ< {length not≡} {length l} found)
nats : ℕ → List ℕ
nats 0 = []
nats (suc n) = (nats n) ++ (n ∷ [])
_ : nats 4 ≡ 0 ∷ 1 ∷ 2 ∷ 3 ∷ []
_ = refl
_ : Maybe-map toℕ (List-index _≟_ 2 (nats 4)) ≡ just 2
_ = refl
_ : Maybe-map toℕ (List-index _≟_ 4 (nats 4)) ≡ nothing
_ = refl
allDistinct : ∀ {A : Set} → List A → Set
allDistinct l = ∀ (i j : Fin (length l))
→ i ≡ j ⊎ List-lookup l i ≢ List-lookup l j
postulate -- TODO-1: currently unused; prove it, if needed
allDistinct? : ∀ {A : Set} → {≟A : (a₁ a₂ : A) → Dec (a₁ ≡ a₂)} → (l : List A) → Dec (allDistinct l)
-- Extends an arbitrary relation to work on the head of
-- the supplied list, if any.
data OnHead {A : Set}(P : A → A → Set) (x : A) : List A → Set where
[] : OnHead P x []
on-∷ : ∀{y ys} → P x y → OnHead P x (y ∷ ys)
-- Establishes that a list is sorted according to the supplied
-- relation.
data IsSorted {A : Set}(_<_ : A → A → Set) : List A → Set where
[] : IsSorted _<_ []
_∷_ : ∀{x xs} → OnHead _<_ x xs → IsSorted _<_ xs → IsSorted _<_ (x ∷ xs)
OnHead-prop : ∀{A}(P : A → A → Set)(x : A)(l : List A)
→ Irrelevant P
→ isPropositional (OnHead P x l)
OnHead-prop P x [] hyp [] [] = refl
OnHead-prop P x (x₁ ∷ l) hyp (on-∷ x₂) (on-∷ x₃) = cong on-∷ (hyp x₂ x₃)
IsSorted-prop : ∀{A}(_<_ : A → A → Set)(l : List A)
→ Irrelevant _<_
→ isPropositional (IsSorted _<_ l)
IsSorted-prop _<_ [] hyp [] [] = refl
IsSorted-prop _<_ (x ∷ l) hyp (x₁ ∷ a) (x₂ ∷ b)
= cong₂ _∷_ (OnHead-prop _<_ x l hyp x₁ x₂)
(IsSorted-prop _<_ l hyp a b)
IsSorted-map⁻ : {A : Set}{_≤_ : A → A → Set}
→ {B : Set}(f : B → A)(l : List B)
→ IsSorted (λ x y → f x ≤ f y) l
→ IsSorted _≤_ (List-map f l)
IsSorted-map⁻ f .[] [] = []
IsSorted-map⁻ f .(_ ∷ []) (x ∷ []) = [] ∷ []
IsSorted-map⁻ f .(_ ∷ _ ∷ _) (on-∷ x ∷ (x₁ ∷ is)) = (on-∷ x) ∷ IsSorted-map⁻ f _ (x₁ ∷ is)
transOnHead : ∀ {A} {l : List A} {y x : A} {_<_ : A → A → Set}
→ Transitive _<_
→ OnHead _<_ y l
→ x < y
→ OnHead _<_ x l
transOnHead _ [] _ = []
transOnHead trans (on-∷ y<f) x<y = on-∷ (trans x<y y<f)
++-OnHead : ∀ {A} {xs ys : List A} {y : A} {_<_ : A → A → Set}
→ OnHead _<_ y xs
→ OnHead _<_ y ys
→ OnHead _<_ y (xs ++ ys)
++-OnHead [] y<y₁ = y<y₁
++-OnHead (on-∷ y<x) _ = on-∷ y<x
h∉t : ∀ {A} {t : List A} {h : A} {_<_ : A → A → Set}
→ Irreflexive _<_ _≡_ → Transitive _<_
→ IsSorted _<_ (h ∷ t)
→ h ∉ t
h∉t irfl trans (on-∷ h< ∷ sxs) (here refl) = ⊥-elim (irfl h< refl)
h∉t irfl trans (on-∷ h< ∷ (x₁< ∷ sxs)) (there h∈t)
= h∉t irfl trans ((transOnHead trans x₁< h<) ∷ sxs) h∈t
≤-head : ∀ {A} {l : List A} {x y : A} {_<_ : A → A → Set} {_≤_ : A → A → Set}
→ Reflexive _≤_ → Trans _<_ _≤_ _≤_
→ y ∈ (x ∷ l) → IsSorted _<_ (x ∷ l)
→ _≤_ x y
≤-head ref≤ trans (here refl) _ = ref≤
≤-head ref≤ trans (there y∈) (on-∷ x<x₁ ∷ sl) = trans x<x₁ (≤-head ref≤ trans y∈ sl)
-- TODO-1 : Better name and/or replace with library property
Any-sym : ∀ {a b}{A : Set a}{B : Set b}{tgt : B}{l : List A}{f : A → B}
→ Any (λ x → tgt ≡ f x) l
→ Any (λ x → f x ≡ tgt) l
Any-sym (here x) = here (sym x)
Any-sym (there x) = there (Any-sym x)
Any-lookup-correct : ∀ {a b}{A : Set a}{B : Set b}{tgt : B}{l : List A}{f : A → B}
→ (p : Any (λ x → f x ≡ tgt) l)
→ Any-lookup p ∈ l
Any-lookup-correct (here px) = here refl
Any-lookup-correct (there p) = there (Any-lookup-correct p)
Any-lookup-correctP : ∀ {a}{A : Set a}{l : List A}{P : A → Set}
→ (p : Any P l)
→ Any-lookup p ∈ l
Any-lookup-correctP (here px) = here refl
Any-lookup-correctP (there p) = there (Any-lookup-correctP p)
Any-witness : ∀ {a b} {A : Set a} {l : List A} {P : A → Set b}
→ (p : Any P l) → P (Any-lookup p)
Any-witness (here px) = px
Any-witness (there x) = Any-witness x
-- TODO-1: there is probably a library property for this.
∈⇒Any : ∀ {A : Set}{x : A}
→ {xs : List A}
→ x ∈ xs
→ Any (_≡ x) xs
∈⇒Any {x = x} (here refl) = here refl
∈⇒Any {x = x} {h ∷ t} (there xxxx) = there (∈⇒Any {xs = t} xxxx)
false≢true : false ≢ true
false≢true ()
witness : {A : Set}{P : A → Set}{x : A}{xs : List A}
→ x ∈ xs → All P xs → P x
witness x y = All-lookup y x
maybe-⊥ : ∀{a}{A : Set a}{x : A}{y : Maybe A}
→ y ≡ just x
→ y ≡ nothing
→ ⊥
maybe-⊥ () refl
Maybe-map-cool : ∀ {S S₁ : Set} {f : S → S₁} {x : Maybe S} {z}
→ Maybe-map f x ≡ just z
→ x ≢ nothing
Maybe-map-cool {x = nothing} ()
Maybe-map-cool {x = just y} prf = λ x → ⊥-elim (maybe-⊥ (sym x) refl)
Maybe-map-cool-1 : ∀ {S S₁ : Set} {f : S → S₁} {x : Maybe S} {z}
→ Maybe-map f x ≡ just z
→ Σ S (λ x' → f x' ≡ z)
Maybe-map-cool-1 {x = nothing} ()
Maybe-map-cool-1 {x = just y} {z = z} refl = y , refl
Maybe-map-cool-2 : ∀ {S S₁ : Set} {f : S → S₁} {x : S} {z}
→ f x ≡ z
→ Maybe-map f (just x) ≡ just z
Maybe-map-cool-2 {S}{S₁}{f}{x}{z} prf rewrite prf = refl
T⇒true : ∀ {a : Bool} → T a → a ≡ true
T⇒true {true} _ = refl
isJust : ∀ {A : Set}{aMB : Maybe A}{a : A}
→ aMB ≡ just a
→ Is-just aMB
isJust refl = just tt
to-witness-isJust-≡ : ∀ {A : Set}{aMB : Maybe A}{a prf}
→ to-witness (isJust {aMB = aMB} {a} prf) ≡ a
to-witness-isJust-≡ {aMB = just a'} {a} {prf}
with to-witness-lemma (isJust {aMB = just a'} {a} prf) refl
...| xxx = just-injective (trans (sym xxx) prf)
deMorgan : ∀ {A B : Set} → (¬ A) ⊎ (¬ B) → ¬ (A × B)
deMorgan (inj₁ ¬a) = λ a×b → ¬a (proj₁ a×b)
deMorgan (inj₂ ¬b) = λ a×b → ¬b (proj₂ a×b)
¬subst : ∀ {ℓ₁ ℓ₂} {A : Set ℓ₁} {P : A → Set ℓ₂}
→ {x y : A}
→ ¬ (P x)
→ y ≡ x
→ ¬ (P y)
¬subst px refl = px
∸-suc-≤ : ∀ (x w : ℕ) → suc x ∸ w ≤ suc (x ∸ w)
∸-suc-≤ x zero = ≤-refl
∸-suc-≤ zero (suc w) rewrite 0∸n≡0 w = z≤n
∸-suc-≤ (suc x) (suc w) = ∸-suc-≤ x w
m∸n≤o⇒m∸o≤n : ∀ (x z w : ℕ) → x ∸ z ≤ w → x ∸ w ≤ z
m∸n≤o⇒m∸o≤n x zero w p≤ rewrite m≤n⇒m∸n≡0 p≤ = z≤n
m∸n≤o⇒m∸o≤n zero (suc z) w p≤ rewrite 0∸n≡0 w = z≤n
m∸n≤o⇒m∸o≤n (suc x) (suc z) w p≤ = ≤-trans (∸-suc-≤ x w) (s≤s (m∸n≤o⇒m∸o≤n x z w p≤))
tail-⊆ : ∀ {A : Set} {x} {xs ys : List A}
→ (x ∷ xs) ⊆List ys
→ xs ⊆List ys
tail-⊆ xxs⊆ys x∈xs = xxs⊆ys (there x∈xs)
allDistinctTail : ∀ {A : Set} {x} {xs : List A}
→ allDistinct (x ∷ xs)
→ allDistinct xs
allDistinctTail allDist i j
with allDist (suc i) (suc j)
...| inj₁ refl = inj₁ refl
...| inj₂ lookup≢ = inj₂ lookup≢
∈-Any-Index-elim : ∀ {A : Set} {x y} {ys : List A} (x∈ys : x ∈ ys)
→ x ≢ y → y ∈ ys
→ y ∈ ys ─ Any-index x∈ys
∈-Any-Index-elim (here refl) x≢y (here refl) = ⊥-elim (x≢y refl)
∈-Any-Index-elim (here refl) _ (there y∈ys) = y∈ys
∈-Any-Index-elim (there _) _ (here refl) = here refl
∈-Any-Index-elim (there x∈ys) x≢y (there y∈ys) = there (∈-Any-Index-elim x∈ys x≢y y∈ys)
∉∧⊆List⇒∉ : ∀ {A : Set} {x} {xs ys : List A}
→ x ∉ xs → ys ⊆List xs
→ x ∉ ys
∉∧⊆List⇒∉ x∉xs ys∈xs x∈ys = ⊥-elim (x∉xs (ys∈xs x∈ys))
allDistinctʳʳ : ∀ {A : Set} {x x₁ : A} {xs : List A}
→ allDistinct (x ∷ x₁ ∷ xs)
→ allDistinct (x ∷ xs)
allDistinctʳʳ _ zero zero = inj₁ refl
allDistinctʳʳ allDist zero (suc j)
with allDist zero (suc (suc j))
...| inj₂ x≢lookup
= inj₂ λ x≡lkpxs → ⊥-elim (x≢lookup x≡lkpxs)
allDistinctʳʳ allDist (suc i) zero
with allDist (suc (suc i)) zero
...| inj₂ x≢lookup
= inj₂ λ x≡lkpxs → ⊥-elim (x≢lookup x≡lkpxs)
allDistinctʳʳ allDist (suc i) (suc j)
with allDist (suc (suc i)) (suc (suc j))
...| inj₁ refl = inj₁ refl
...| inj₂ lookup≡ = inj₂ lookup≡
allDistinct⇒∉ : ∀ {A : Set} {x} {xs : List A}
→ allDistinct (x ∷ xs)
→ x ∉ xs
allDistinct⇒∉ allDist (here x≡x₁)
with allDist zero (suc zero)
... | inj₂ x≢x₁ = ⊥-elim (x≢x₁ x≡x₁)
allDistinct⇒∉ allDist (there x∈xs)
= allDistinct⇒∉ (allDistinctʳʳ allDist) x∈xs
sumListMap : ∀ {A : Set} {x} {xs : List A} (f : A → ℕ) → (x∈xs : x ∈ xs)
→ f-sum f xs ≡ f x + f-sum f (xs ─ Any-index x∈xs)
sumListMap _ (here refl) = refl
sumListMap {_} {x} {x₁ ∷ xs} f (there x∈xs)
rewrite sumListMap f x∈xs
| sym (+-assoc (f x) (f x₁) (f-sum f (xs ─ Any-index x∈xs)))
| +-comm (f x) (f x₁)
| +-assoc (f x₁) (f x) (f-sum f (xs ─ Any-index x∈xs)) = refl
lookup⇒Any : ∀ {A : Set} {xs : List A} {P : A → Set} (i : Fin (length xs))
→ P (List-lookup xs i) → Any P xs
lookup⇒Any {_} {_ ∷ _} zero px = here px
lookup⇒Any {_} {_ ∷ _} (suc i) px = there (lookup⇒Any i px)
x∉→AllDistinct : ∀ {A : Set} {x} {xs : List A}
→ allDistinct xs
→ x ∉ xs
→ allDistinct (x ∷ xs)
x∉→AllDistinct _ _ zero zero = inj₁ refl
x∉→AllDistinct _ x∉xs zero (suc j)
= inj₂ λ x≡lkp → x∉xs (lookup⇒Any j x≡lkp)
x∉→AllDistinct _ x∉xs (suc i) (zero)
= inj₂ λ x≡lkp → x∉xs (lookup⇒Any i (sym x≡lkp))
x∉→AllDistinct allDist x∉xs (suc i) (suc j)
with allDist i j
...| inj₁ refl = inj₁ refl
...| inj₂ lkup≢ = inj₂ lkup≢
cast-injective : ∀ {n m} {i j : Fin n} {eq : n ≡ m}
→ cast eq i ≡ cast eq j → i ≡ j
cast-injective {_} {_} {zero} {zero} {refl} _ = refl
cast-injective {_} {_} {suc i} {suc j} {refl} ci≡cj
= cong suc (cast-injective {eq = refl} (Fin-suc-injective ci≡cj))
List-lookup-map : ∀ {A B : Set} (xs : List A) (f : A → B) (α : Fin (length xs))
→ let cα = cast (sym (List-length-map f xs)) α
in f (List-lookup xs α) ≡ List-lookup (List-map f xs) cα
List-lookup-map (x ∷ xs) f zero = refl
List-lookup-map (x ∷ xs) f (suc α) = List-lookup-map xs f α
allDistinct-Map : ∀ {A B : Set} {xs : List A} {α₁ α₂ : Fin (length xs)} (f : A → B)
→ allDistinct (List-map f xs) → α₁ ≢ α₂
→ f (List-lookup xs α₁) ≢ f (List-lookup xs α₂)
allDistinct-Map {_} {_} {xs} {α₁} {α₂} f all≢ α₁≢α₂ flkp≡
with all≢ (cast (sym (List-length-map f xs)) α₁)
(cast (sym (List-length-map f xs)) α₂)
...| inj₁ cα₁≡cα₂ = ⊥-elim (α₁≢α₂ (cast-injective {eq = sym (List-length-map f xs)} cα₁≡cα₂))
...| inj₂ lkpα₁α₂≢ = ⊥-elim (lkpα₁α₂≢ (trans (sym (List-lookup-map xs f α₁))
(trans flkp≡ (List-lookup-map xs f α₂))))
filter⊆ : ∀ {A : Set} {P : A → Set} {P? : (a : A) → Dec (P a)} {xs : List A}
→ List-filter P? xs ⊆List xs
filter⊆ {P? = P?} x∈fxs = Any-filter⁻ P? x∈fxs
⊆⇒filter⊆ : ∀ {A : Set} {P : A → Set} {P? : (a : A) → Dec (P a)} {xs ys : List A}
→ xs ⊆List ys
→ List-filter P? xs ⊆List List-filter P? ys
⊆⇒filter⊆ {P? = P?} {xs = xs} {ys = ys} xs∈ys x∈fxs
with List-∈-filter⁻ P? {xs = xs} x∈fxs
...| x∈xs , px = List-∈-filter⁺ P? (xs∈ys x∈xs) px
map∘filter : ∀ {A B : Set} (xs : List A) (ys : List B) (f : A → B)
{P : B → Set} (P? : (b : B) → Dec (P b))
→ List-map f xs ≡ ys
→ List-map f (List-filter (P? ∘ f) xs) ≡ List-filter P? ys
map∘filter [] [] _ _ _ = refl
map∘filter (x ∷ xs) (.(f x) ∷ .(List-map f xs)) f P? refl
with P? (f x)
...| yes prf = cong (f x ∷_) (map∘filter xs (List-map f xs) f P? refl)
...| no imp = map∘filter xs (List-map f xs) f P? refl
allDistinct-Filter : ∀ {A : Set} {P : A → Set} {P? : (a : A) → Dec (P a)} {xs : List A}
→ allDistinct xs
→ allDistinct (List-filter P? xs)
allDistinct-Filter {P? = P?} {xs = x ∷ xs} all≢ i j
with P? x
...| no imp = allDistinct-Filter {P? = P?} {xs = xs} (allDistinctTail all≢) i j
...| yes prf = let all≢Tail = allDistinct-Filter {P? = P?} {xs = xs} (allDistinctTail all≢)
x∉Tail = allDistinct⇒∉ all≢
in x∉→AllDistinct all≢Tail (∉∧⊆List⇒∉ x∉Tail filter⊆) i j
sum-f∘g : ∀ {A B : Set} (xs : List A) (g : B → ℕ) (f : A → B)
→ f-sum (g ∘ f) xs ≡ f-sum g (List-map f xs)
sum-f∘g xs g f = cong sum (List-map-compose xs)
map-lookup-allFin : ∀ {A : Set} (xs : List A)
→ List-map (List-lookup xs) (allFin (length xs)) ≡ xs
map-lookup-allFin xs = trans (map-tabulate id (List-lookup xs)) (tabulate-lookup xs)
list-index : ∀ {A B : Set} {P : A → B → Set} (_∼_ : Decidable P)
(xs : List A) → B → Maybe (Fin (length xs))
list-index _∼_ [] x = nothing
list-index _∼_ (x ∷ xs) y
with x ∼ y
...| yes x≡y = just zero
...| no x≢y
with list-index _∼_ xs y
...| nothing = nothing
...| just i = just (suc i)
module DecLemmas {A : Set} (_≟D_ : Decidable {A = A} (_≡_)) where
_∈?_ : ∀ (x : A) → (xs : List A) → Dec (Any (x ≡_) xs)
x ∈? xs = Any-any (x ≟D_) xs
y∉xs⇒Allxs≢y : ∀ {xs : List A} {x y}
→ y ∉ (x ∷ xs)
→ x ≢ y × y ∉ xs
y∉xs⇒Allxs≢y {xs} {x} {y} y∉
with y ∈? xs
...| yes y∈xs = ⊥-elim (y∉ (there y∈xs))
...| no y∉xs
with x ≟D y
...| yes x≡y = ⊥-elim (y∉ (here (sym x≡y)))
...| no x≢y = x≢y , y∉xs
⊆List-Elim : ∀ {x} {xs ys : List A} (x∈ys : x ∈ ys)
→ x ∉ xs → xs ⊆List ys
→ xs ⊆List ys ─ Any-index x∈ys
⊆List-Elim (here refl) x∉xs xs∈ys x₂∈xs
with xs∈ys x₂∈xs
...| here refl = ⊥-elim (x∉xs x₂∈xs)
...| there x∈xs = x∈xs
⊆List-Elim (there x∈ys) x∉xs xs∈ys x₂∈xxs
with x₂∈xxs
...| there x₂∈xs
= ⊆List-Elim (there x∈ys) (proj₂ (y∉xs⇒Allxs≢y x∉xs)) (tail-⊆ xs∈ys) x₂∈xs
...| here refl
with xs∈ys x₂∈xxs
...| here refl = here refl
...| there x₂∈ys
= there (∈-Any-Index-elim x∈ys (≢-sym (proj₁ (y∉xs⇒Allxs≢y x∉xs))) x₂∈ys)
sum-⊆-≤ : ∀ {ys} (xs : List A) (f : A → ℕ)
→ allDistinct xs
→ xs ⊆List ys
→ f-sum f xs ≤ f-sum f ys
sum-⊆-≤ [] _ _ _ = z≤n
sum-⊆-≤ (x ∷ xs) f dxs xs⊆ys
rewrite sumListMap f (xs⊆ys (here refl))
= let x∉xs = allDistinct⇒∉ dxs
xs⊆ysT = tail-⊆ xs⊆ys
xs⊆ys-x = ⊆List-Elim (xs⊆ys (here refl)) x∉xs xs⊆ysT
disTail = allDistinctTail dxs
in +-monoʳ-≤ (f x) (sum-⊆-≤ xs f disTail xs⊆ys-x)
⊆-allFin : ∀ {n} {xs : List (Fin n)} → xs ⊆List allFin n
⊆-allFin {x = x} _ = Any-tabulate⁺ x refl
intersect : List A → List A → List A
intersect xs [] = []
intersect xs (y ∷ ys)
with y ∈? xs
...| yes _ = y ∷ intersect xs ys
...| no _ = intersect xs ys
union : List A → List A → List A
union xs [] = xs
union xs (y ∷ ys)
with y ∈? xs
...| yes _ = union xs ys
...| no _ = y ∷ union xs ys
∈-intersect : ∀ (xs ys : List A) {α}
→ α ∈ intersect xs ys
→ α ∈ xs × α ∈ ys
∈-intersect xs (y ∷ ys) α∈int
with y ∈? xs | α∈int
...| no y∉xs | α∈ = ×-map₂ there (∈-intersect xs ys α∈)
...| yes y∈xs | here refl = y∈xs , here refl
...| yes y∈xs | there α∈ = ×-map₂ there (∈-intersect xs ys α∈)
x∉⇒x∉intersect : ∀ {x} {xs ys : List A}
→ x ∉ xs ⊎ x ∉ ys
→ x ∉ intersect xs ys
x∉⇒x∉intersect {x} {xs} {ys} x∉ x∈int
= contraposition (∈-intersect xs ys) (deMorgan x∉) x∈int
intersectDistinct : ∀ (xs ys : List A)
→ allDistinct xs → allDistinct ys
→ allDistinct (intersect xs ys)
intersectDistinct xs (y ∷ ys) dxs dys
with y ∈? xs
...| yes y∈xs = let distTail = allDistinctTail dys
intDTail = intersectDistinct xs ys dxs distTail
y∉intTail = x∉⇒x∉intersect (inj₂ (allDistinct⇒∉ dys))
in x∉→AllDistinct intDTail y∉intTail
...| no y∉xs = intersectDistinct xs ys dxs (allDistinctTail dys)
x∉⇒x∉union : ∀ {x} {xs ys : List A}
→ x ∉ xs × x ∉ ys
→ x ∉ union xs ys
x∉⇒x∉union {_} {_} {[]} (x∉xs , _) x∈∪ = ⊥-elim (x∉xs x∈∪)
x∉⇒x∉union {x} {xs} {y ∷ ys} (x∉xs , x∉ys) x∈union
with y ∈? xs | x∈union
...| yes y∈xs | x∈∪
= ⊥-elim (x∉⇒x∉union (x∉xs , (proj₂ (y∉xs⇒Allxs≢y x∉ys))) x∈∪)
...| no y∉xs | here refl
= ⊥-elim (proj₁ (y∉xs⇒Allxs≢y x∉ys) refl)
...| no y∉xs | there x∈∪
= ⊥-elim (x∉⇒x∉union (x∉xs , (proj₂ (y∉xs⇒Allxs≢y x∉ys))) x∈∪)
unionDistinct : ∀ (xs ys : List A)
→ allDistinct xs → allDistinct ys
→ allDistinct (union xs ys)
unionDistinct xs [] dxs dys = dxs
unionDistinct xs (y ∷ ys) dxs dys
with y ∈? xs
...| yes y∈xs = unionDistinct xs ys dxs (allDistinctTail dys)
...| no y∉xs = let distTail = allDistinctTail dys
uniDTail = unionDistinct xs ys dxs distTail
y∉intTail = x∉⇒x∉union (y∉xs , allDistinct⇒∉ dys)
in x∉→AllDistinct uniDTail y∉intTail
sumIntersect≤ : ∀ (xs ys : List A) (f : A → ℕ)
→ f-sum f (intersect xs ys) ≤ f-sum f (xs ++ ys)
sumIntersect≤ _ [] _ = z≤n
sumIntersect≤ xs (y ∷ ys) f
with y ∈? xs
...| yes y∈xs rewrite map-++-commute f xs (y ∷ ys)
| sum-++-commute (List-map f xs) (List-map f (y ∷ ys))
| sym (+-assoc (f-sum f xs) (f y) (f-sum f ys))
| +-comm (f-sum f xs) (f y)
| +-assoc (f y) (f-sum f xs) (f-sum f ys)
| sym (sum-++-commute (List-map f xs) (List-map f ys))
| sym (map-++-commute f xs ys)
= +-monoʳ-≤ (f y) (sumIntersect≤ xs ys f)
...| no y∉xs rewrite map-++-commute f xs (y ∷ ys)
| sum-++-commute (List-map f xs) (List-map f (y ∷ ys))
| +-comm (f y) (f-sum f ys)
| sym (+-assoc (f-sum f xs) (f-sum f ys) (f y))
| sym (sum-++-commute (List-map f xs) (List-map f ys))
| sym (map-++-commute f xs ys)
= ≤-stepsʳ (f y) (sumIntersect≤ xs ys f)
index∘lookup-id : ∀ {B : Set} (xs : List B) (f : B → A)
→ allDistinct (List-map f xs) → {α : Fin (length xs)}
→ list-index (_≟D_ ∘ f) xs ((f ∘ List-lookup xs) α) ≡ just α
index∘lookup-id (x ∷ xs) f all≢ {zero}
with f x ≟D f x
...| yes fx≡fx = refl
...| no fx≢fx = ⊥-elim (fx≢fx refl)
index∘lookup-id (x ∷ xs) f all≢ {suc α}
with f x ≟D f (List-lookup xs α)
...| yes fx≡lkp = ⊥-elim (allDistinct⇒∉ all≢ (Any-map⁺ (lookup⇒Any α fx≡lkp)))
...| no fx≢lkp
with list-index (_≟D_ ∘ f) xs (f (List-lookup xs α))
| index∘lookup-id xs f (allDistinctTail all≢) {α}
...| just .α | refl = refl
lookup∘index-id : ∀ {B : Set} (xs : List B) (f : B → A)
→ allDistinct (List-map f xs) → {α : Fin (length xs)} {x : A}
→ list-index (_≟D_ ∘ f) xs x ≡ just α
→ (f ∘ List-lookup xs) α ≡ x
lookup∘index-id (x₁ ∷ xs) f all≢ {α} {x} lkp≡α
with f x₁ ≟D x
...| yes fx≡nId rewrite sym (just-injective lkp≡α) = fx≡nId
...| no fx≢nId
with list-index (_≟D_ ∘ f) xs x | inspect (list-index (_≟D_ ∘ f) xs) x
...| just _ | [ eq ] rewrite sym (just-injective lkp≡α)
= lookup∘index-id xs f (allDistinctTail all≢) eq
|
algebraic-stack_agda0000_doc_4095 | module Cats.Category.Setoids.Facts where
open import Cats.Category
open import Cats.Category.Setoids using (Setoids)
open import Cats.Category.Setoids.Facts.Exponentials using (hasExponentials)
open import Cats.Category.Setoids.Facts.Initial using (hasInitial)
open import Cats.Category.Setoids.Facts.Products
using (hasProducts ; hasBinaryProducts)
open import Cats.Category.Setoids.Facts.Terminal using (hasTerminal)
instance
isCCC : ∀ l → IsCCC (Setoids l l)
isCCC l = record { hasFiniteProducts = record {} } -- [1]
-- [1] For no discernible reason, `record {}` doesn't work.
|
algebraic-stack_agda0000_doc_3696 | {- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import Util.Prelude
-- This module defines types used in the specification of a SystemModel.
module Yasm.Types where
-- Actions that can be performed by peers.
--
-- For now, the SystemModel supports only one kind of action: to send a
-- message. Later it might include things like logging, crashes, assertion
-- failures, etc. For example, if an assertion fires, this
-- could "kill the process" and make it not send any messages in the future.
-- We could also then prove that the handlers do not crash, certain
-- messages are logged under certain circumstances, etc.
--
-- Alternatively, certain actions can be kept outside the system model by
-- defining an application-specific PeerState type (see `Yasm.Base`).
-- For example:
--
-- > libraHandle : Msg → Status × Log × LState → Status × LState × List Action
-- > libraHandle _ (Crashed , l , s) = Crashed , s , [] -- i.e., crashed peers never send messages
-- >
-- > handle = filter isSend ∘ libraHandle
data Action (Msg : Set) : Set where
send : (m : Msg) → Action Msg
-- Injectivity of `send`.
action-send-injective : ∀ {Msg}{m m' : Msg} → send m ≡ send m' → m ≡ m'
action-send-injective refl = refl
|
algebraic-stack_agda0000_doc_3697 | {-# OPTIONS --without-K --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.Substitution.Properties {{eqrel : EqRelSet}} where
open EqRelSet {{...}}
open import Definition.Untyped
open import Definition.Untyped.Properties
open import Definition.Typed
open import Definition.Typed.Weakening
open import Definition.LogicalRelation
open import Definition.LogicalRelation.Substitution
open import Definition.LogicalRelation.Substitution.Irrelevance
using (irrelevanceSubst′)
open import Definition.LogicalRelation.Irrelevance
open import Definition.LogicalRelation.Properties
import Definition.LogicalRelation.Weakening as LR
open import Tools.Unit
open import Tools.Product
import Tools.PropositionalEquality as PE
-- Valid substitutions are well-formed
wellformedSubst : ∀ {Γ Δ σ} ([Γ] : ⊩ᵛ Γ) (⊢Δ : ⊢ Δ)
→ Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ
→ Δ ⊢ˢ σ ∷ Γ
wellformedSubst ε′ ⊢Δ [σ] = id
wellformedSubst ([Γ] ∙′ [A]) ⊢Δ ([tailσ] , [headσ]) =
wellformedSubst [Γ] ⊢Δ [tailσ]
, escapeTerm (proj₁ ([A] ⊢Δ [tailσ])) [headσ]
-- Valid substitution equality is well-formed
wellformedSubstEq : ∀ {Γ Δ σ σ′} ([Γ] : ⊩ᵛ Γ) (⊢Δ : ⊢ Δ)
([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ)
→ Δ ⊩ˢ σ ≡ σ′ ∷ Γ / [Γ] / ⊢Δ / [σ]
→ Δ ⊢ˢ σ ≡ σ′ ∷ Γ
wellformedSubstEq ε′ ⊢Δ [σ] [σ≡σ′] = id
wellformedSubstEq ([Γ] ∙′ [A]) ⊢Δ ([tailσ] , [headσ]) ([tailσ≡σ′] , [headσ≡σ′]) =
wellformedSubstEq [Γ] ⊢Δ [tailσ] [tailσ≡σ′]
, ≅ₜ-eq (escapeTermEq (proj₁ ([A] ⊢Δ [tailσ])) [headσ≡σ′])
-- Extend a valid substitution with a term
consSubstS : ∀ {l σ t A Γ Δ} ([Γ] : ⊩ᵛ Γ) (⊢Δ : ⊢ Δ)
([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ)
([A] : Γ ⊩ᵛ⟨ l ⟩ A / [Γ])
([t] : Δ ⊩⟨ l ⟩ t ∷ subst σ A / proj₁ ([A] ⊢Δ [σ]))
→ Δ ⊩ˢ consSubst σ t ∷ Γ ∙ A / [Γ] ∙″ [A] / ⊢Δ
consSubstS [Γ] ⊢Δ [σ] [A] [t] = [σ] , [t]
-- Extend a valid substitution equality with a term
consSubstSEq : ∀ {l σ σ′ t A Γ Δ} ([Γ] : ⊩ᵛ Γ) (⊢Δ : ⊢ Δ)
([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ)
([σ≡σ′] : Δ ⊩ˢ σ ≡ σ′ ∷ Γ / [Γ] / ⊢Δ / [σ])
([A] : Γ ⊩ᵛ⟨ l ⟩ A / [Γ])
([t] : Δ ⊩⟨ l ⟩ t ∷ subst σ A / proj₁ ([A] ⊢Δ [σ]))
→ Δ ⊩ˢ consSubst σ t ≡ consSubst σ′ t ∷ Γ ∙ A / [Γ] ∙″ [A] / ⊢Δ
/ consSubstS {t = t} {A = A} [Γ] ⊢Δ [σ] [A] [t]
consSubstSEq [Γ] ⊢Δ [σ] [σ≡σ′] [A] [t] =
[σ≡σ′] , reflEqTerm (proj₁ ([A] ⊢Δ [σ])) [t]
-- Weakening of valid substitutions
wkSubstS : ∀ {ρ σ Γ Δ Δ′} ([Γ] : ⊩ᵛ Γ) (⊢Δ : ⊢ Δ) (⊢Δ′ : ⊢ Δ′)
([ρ] : ρ ∷ Δ′ ⊆ Δ)
([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ)
→ Δ′ ⊩ˢ ρ •ₛ σ ∷ Γ / [Γ] / ⊢Δ′
wkSubstS ε′ ⊢Δ ⊢Δ′ ρ [σ] = tt
wkSubstS {σ = σ} {Γ = Γ ∙ A} ([Γ] ∙′ x) ⊢Δ ⊢Δ′ ρ [σ] =
let [tailσ] = wkSubstS [Γ] ⊢Δ ⊢Δ′ ρ (proj₁ [σ])
in [tailσ]
, irrelevanceTerm′ (wk-subst A)
(LR.wk ρ ⊢Δ′ (proj₁ (x ⊢Δ (proj₁ [σ]))))
(proj₁ (x ⊢Δ′ [tailσ]))
(LR.wkTerm ρ ⊢Δ′ (proj₁ (x ⊢Δ (proj₁ [σ]))) (proj₂ [σ]))
-- Weakening of valid substitution equality
wkSubstSEq : ∀ {ρ σ σ′ Γ Δ Δ′} ([Γ] : ⊩ᵛ Γ) (⊢Δ : ⊢ Δ) (⊢Δ′ : ⊢ Δ′)
([ρ] : ρ ∷ Δ′ ⊆ Δ)
([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ)
([σ≡σ′] : Δ ⊩ˢ σ ≡ σ′ ∷ Γ / [Γ] / ⊢Δ / [σ])
→ Δ′ ⊩ˢ ρ •ₛ σ ≡ ρ •ₛ σ′ ∷ Γ / [Γ]
/ ⊢Δ′ / wkSubstS [Γ] ⊢Δ ⊢Δ′ [ρ] [σ]
wkSubstSEq ε′ ⊢Δ ⊢Δ′ ρ [σ] [σ≡σ′] = tt
wkSubstSEq {Γ = Γ ∙ A} ([Γ] ∙′ x) ⊢Δ ⊢Δ′ ρ [σ] [σ≡σ′] =
wkSubstSEq [Γ] ⊢Δ ⊢Δ′ ρ (proj₁ [σ]) (proj₁ [σ≡σ′])
, irrelevanceEqTerm′ (wk-subst A) (LR.wk ρ ⊢Δ′ (proj₁ (x ⊢Δ (proj₁ [σ]))))
(proj₁ (x ⊢Δ′ (wkSubstS [Γ] ⊢Δ ⊢Δ′ ρ (proj₁ [σ]))))
(LR.wkEqTerm ρ ⊢Δ′ (proj₁ (x ⊢Δ (proj₁ [σ]))) (proj₂ [σ≡σ′]))
-- Weaken a valid substitution by one type
wk1SubstS : ∀ {F σ Γ Δ} ([Γ] : ⊩ᵛ Γ) (⊢Δ : ⊢ Δ)
(⊢F : Δ ⊢ F)
([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ)
→ (Δ ∙ F) ⊩ˢ wk1Subst σ ∷ Γ / [Γ]
/ (⊢Δ ∙ ⊢F)
wk1SubstS {F} {σ} {Γ} {Δ} [Γ] ⊢Δ ⊢F [σ] =
wkSubstS [Γ] ⊢Δ (⊢Δ ∙ ⊢F) (step id) [σ]
-- Weaken a valid substitution equality by one type
wk1SubstSEq : ∀ {F σ σ′ Γ Δ} ([Γ] : ⊩ᵛ Γ) (⊢Δ : ⊢ Δ)
(⊢F : Δ ⊢ F)
([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ)
([σ≡σ′] : Δ ⊩ˢ σ ≡ σ′ ∷ Γ / [Γ] / ⊢Δ / [σ])
→ (Δ ∙ F) ⊩ˢ wk1Subst σ ≡ wk1Subst σ′ ∷ Γ / [Γ]
/ (⊢Δ ∙ ⊢F) / wk1SubstS [Γ] ⊢Δ ⊢F [σ]
wk1SubstSEq {l} {F} {σ} {Γ} {Δ} [Γ] ⊢Δ ⊢F [σ] [σ≡σ′] =
wkSubstSEq [Γ] ⊢Δ (⊢Δ ∙ ⊢F) (step id) [σ] [σ≡σ′]
-- Lift a valid substitution
liftSubstS : ∀ {l F σ Γ Δ} ([Γ] : ⊩ᵛ Γ) (⊢Δ : ⊢ Δ)
([F] : Γ ⊩ᵛ⟨ l ⟩ F / [Γ])
([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ)
→ (Δ ∙ subst σ F) ⊩ˢ liftSubst σ ∷ Γ ∙ F / [Γ] ∙″ [F]
/ (⊢Δ ∙ escape (proj₁ ([F] ⊢Δ [σ])))
liftSubstS {F = F} {σ = σ} {Δ = Δ} [Γ] ⊢Δ [F] [σ] =
let ⊢F = escape (proj₁ ([F] ⊢Δ [σ]))
[tailσ] = wk1SubstS {F = subst σ F} [Γ] ⊢Δ (escape (proj₁ ([F] ⊢Δ [σ]))) [σ]
var0 = var (⊢Δ ∙ ⊢F) (PE.subst (λ x → 0 ∷ x ∈ (Δ ∙ subst σ F))
(wk-subst F) here)
in [tailσ] , neuTerm (proj₁ ([F] (⊢Δ ∙ ⊢F) [tailσ])) (var 0)
var0 (~-var var0)
-- Lift a valid substitution equality
liftSubstSEq : ∀ {l F σ σ′ Γ Δ} ([Γ] : ⊩ᵛ Γ) (⊢Δ : ⊢ Δ)
([F] : Γ ⊩ᵛ⟨ l ⟩ F / [Γ])
([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ)
([σ≡σ′] : Δ ⊩ˢ σ ≡ σ′ ∷ Γ / [Γ] / ⊢Δ / [σ])
→ (Δ ∙ subst σ F) ⊩ˢ liftSubst σ ≡ liftSubst σ′ ∷ Γ ∙ F / [Γ] ∙″ [F]
/ (⊢Δ ∙ escape (proj₁ ([F] ⊢Δ [σ])))
/ liftSubstS {F = F} [Γ] ⊢Δ [F] [σ]
liftSubstSEq {F = F} {σ = σ} {σ′ = σ′} {Δ = Δ} [Γ] ⊢Δ [F] [σ] [σ≡σ′] =
let ⊢F = escape (proj₁ ([F] ⊢Δ [σ]))
[tailσ] = wk1SubstS {F = subst σ F} [Γ] ⊢Δ (escape (proj₁ ([F] ⊢Δ [σ]))) [σ]
[tailσ≡σ′] = wk1SubstSEq [Γ] ⊢Δ (escape (proj₁ ([F] ⊢Δ [σ]))) [σ] [σ≡σ′]
var0 = var (⊢Δ ∙ ⊢F) (PE.subst (λ x → 0 ∷ x ∈ (Δ ∙ subst σ F)) (wk-subst F) here)
in [tailσ≡σ′] , neuEqTerm (proj₁ ([F] (⊢Δ ∙ ⊢F) [tailσ])) (var 0) (var 0)
var0 var0 (~-var var0)
mutual
-- Valid contexts are well-formed
soundContext : ∀ {Γ} → ⊩ᵛ Γ → ⊢ Γ
soundContext ε′ = ε
soundContext (x ∙′ x₁) =
soundContext x ∙ escape (irrelevance′ (subst-id _)
(proj₁ (x₁ (soundContext x)
(idSubstS x))))
-- From a valid context we can constuct a valid identity substitution
idSubstS : ∀ {Γ} ([Γ] : ⊩ᵛ Γ) → Γ ⊩ˢ idSubst ∷ Γ / [Γ] / soundContext [Γ]
idSubstS ε′ = tt
idSubstS {Γ = Γ ∙ A} ([Γ] ∙′ [A]) =
let ⊢Γ = soundContext [Γ]
⊢Γ∙A = soundContext ([Γ] ∙″ [A])
⊢Γ∙A′ = ⊢Γ ∙ escape (proj₁ ([A] ⊢Γ (idSubstS [Γ])))
[A]′ = wk1SubstS {F = subst idSubst A} [Γ] ⊢Γ
(escape (proj₁ ([A] (soundContext [Γ])
(idSubstS [Γ]))))
(idSubstS [Γ])
[tailσ] = irrelevanceSubst′ (PE.cong (_∙_ Γ) (subst-id A))
[Γ] [Γ] ⊢Γ∙A′ ⊢Γ∙A [A]′
var0 = var ⊢Γ∙A (PE.subst (λ x → 0 ∷ x ∈ (Γ ∙ A))
(wk-subst A)
(PE.subst (λ x → 0 ∷ wk1 (subst idSubst A)
∈ (Γ ∙ x))
(subst-id A) here))
in [tailσ]
, neuTerm (proj₁ ([A] ⊢Γ∙A [tailσ]))
(var 0)
var0 (~-var var0)
-- Reflexivity valid substitutions
reflSubst : ∀ {σ Γ Δ} ([Γ] : ⊩ᵛ Γ) (⊢Δ : ⊢ Δ)
([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ)
→ Δ ⊩ˢ σ ≡ σ ∷ Γ / [Γ] / ⊢Δ / [σ]
reflSubst ε′ ⊢Δ [σ] = tt
reflSubst ([Γ] ∙′ x) ⊢Δ [σ] =
reflSubst [Γ] ⊢Δ (proj₁ [σ]) , reflEqTerm (proj₁ (x ⊢Δ (proj₁ [σ]))) (proj₂ [σ])
-- Reflexivity of valid identity substitution
reflIdSubst : ∀ {Γ} ([Γ] : ⊩ᵛ Γ)
→ Γ ⊩ˢ idSubst ≡ idSubst ∷ Γ / [Γ] / soundContext [Γ] / idSubstS [Γ]
reflIdSubst [Γ] = reflSubst [Γ] (soundContext [Γ]) (idSubstS [Γ])
-- Symmetry of valid substitution
symS : ∀ {σ σ′ Γ Δ} ([Γ] : ⊩ᵛ Γ) (⊢Δ : ⊢ Δ)
([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ)
([σ′] : Δ ⊩ˢ σ′ ∷ Γ / [Γ] / ⊢Δ)
→ Δ ⊩ˢ σ ≡ σ′ ∷ Γ / [Γ] / ⊢Δ / [σ]
→ Δ ⊩ˢ σ′ ≡ σ ∷ Γ / [Γ] / ⊢Δ / [σ′]
symS ε′ ⊢Δ [σ] [σ′] [σ≡σ′] = tt
symS ([Γ] ∙′ x) ⊢Δ [σ] [σ′] [σ≡σ′] =
symS [Γ] ⊢Δ (proj₁ [σ]) (proj₁ [σ′]) (proj₁ [σ≡σ′])
, let [σA] = proj₁ (x ⊢Δ (proj₁ [σ]))
[σ′A] = proj₁ (x ⊢Δ (proj₁ [σ′]))
[σA≡σ′A] = (proj₂ (x ⊢Δ (proj₁ [σ]))) (proj₁ [σ′]) (proj₁ [σ≡σ′])
[headσ′≡headσ] = symEqTerm [σA] (proj₂ [σ≡σ′])
in convEqTerm₁ [σA] [σ′A] [σA≡σ′A] [headσ′≡headσ]
-- Transitivity of valid substitution
transS : ∀ {σ σ′ σ″ Γ Δ} ([Γ] : ⊩ᵛ Γ) (⊢Δ : ⊢ Δ)
([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ)
([σ′] : Δ ⊩ˢ σ′ ∷ Γ / [Γ] / ⊢Δ)
([σ″] : Δ ⊩ˢ σ″ ∷ Γ / [Γ] / ⊢Δ)
→ Δ ⊩ˢ σ ≡ σ′ ∷ Γ / [Γ] / ⊢Δ / [σ]
→ Δ ⊩ˢ σ′ ≡ σ″ ∷ Γ / [Γ] / ⊢Δ / [σ′]
→ Δ ⊩ˢ σ ≡ σ″ ∷ Γ / [Γ] / ⊢Δ / [σ]
transS ε′ ⊢Δ [σ] [σ′] [σ″] [σ≡σ′] [σ′≡σ″] = tt
transS ([Γ] ∙′ x) ⊢Δ [σ] [σ′] [σ″] [σ≡σ′] [σ′≡σ″] =
transS [Γ] ⊢Δ (proj₁ [σ]) (proj₁ [σ′]) (proj₁ [σ″])
(proj₁ [σ≡σ′]) (proj₁ [σ′≡σ″])
, let [σA] = proj₁ (x ⊢Δ (proj₁ [σ]))
[σ′A] = proj₁ (x ⊢Δ (proj₁ [σ′]))
[σ″A] = proj₁ (x ⊢Δ (proj₁ [σ″]))
[σ′≡σ″]′ = convEqTerm₂ [σA] [σ′A]
((proj₂ (x ⊢Δ (proj₁ [σ]))) (proj₁ [σ′])
(proj₁ [σ≡σ′])) (proj₂ [σ′≡σ″])
in transEqTerm [σA] (proj₂ [σ≡σ′]) [σ′≡σ″]′
|
algebraic-stack_agda0000_doc_3698 | module Self where
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; cong; sym)
data B : Set where
T : B
F : B
_&&_ : B -> B -> B
infixl 20 _&&_
T && T = T
T && F = F
F && _ = F
_||_ : B -> B -> B
infixl 15 _||_
T || _ = T
F || T = T
F || F = F
p||p≡p : ∀ (p : B) -> p || p ≡ p
p||p≡p T = refl
p||p≡p F = refl
p&&p≡p : ∀ (p : B) -> p && p ≡ p
p&&p≡p T = refl
p&&p≡p F = refl
-- 交换律
a&&b≡b&&a : ∀ (a b : B) -> a && b ≡ b && a
a&&b≡b&&a T T = refl
a&&b≡b&&a T F = refl
a&&b≡b&&a F T = refl
a&&b≡b&&a F F = refl
a||b≡b||a : ∀ (a b : B) -> a || b ≡ b || a
a||b≡b||a T T = refl
a||b≡b||a T F = refl
a||b≡b||a F T = refl
a||b≡b||a F F = refl
abc||abc : ∀ (a b c : B) -> (a || b) || c ≡ a || (b || c)
abc||abc T b c = refl
abc||abc F T c = refl
abc||abc F F T = refl
abc||abc F F F = refl
abc&&abc : ∀ (a b c : B) -> a && b && c ≡ a && (b && c)
abc&&abc T T T = refl
abc&&abc T T F = refl
abc&&abc T F c = refl
abc&&abc F b c = refl
-- 分配律
a&&b||c≡a&&b||a&&c : ∀ (a b c : B) -> a && (b || c) ≡ a && b || a && c
a&&b||c≡a&&b||a&&c T T c = refl
a&&b||c≡a&&b||a&&c T F T = refl
a&&b||c≡a&&b||a&&c T F F = refl
a&&b||c≡a&&b||a&&c F T c = refl
a&&b||c≡a&&b||a&&c F F c = refl
a||b&&c≡a||b&&a||c : ∀ (a b c : B) -> a || b && c ≡ (a || b) && (a || c)
a||b&&c≡a||b&&a||c T b c = refl
a||b&&c≡a||b&&a||c F T T = refl
a||b&&c≡a||b&&a||c F T F = refl
a||b&&c≡a||b&&a||c F F c = refl
T&&p≡p : ∀ (p : B) -> T && p ≡ p
T&&p≡p T = refl
T&&p≡p F = refl
F||p≡p : ∀ (p : B) -> F || p ≡ p
F||p≡p T = refl
F||p≡p F = refl
¬_ : B -> B
infix 25 ¬_
¬ F = T
¬ T = F
-- 负负得正
¬¬p≡p : ∀ (p : B) -> ¬ (¬ p) ≡ p
¬¬p≡p T = refl
¬¬p≡p F = refl
-- 德·摩根律
¬a&&b≡¬a||¬b : ∀ (a b : B) -> ¬ (a && b) ≡ ¬ a || ¬ b
¬a&&b≡¬a||¬b T T = refl
¬a&&b≡¬a||¬b T F = refl
¬a&&b≡¬a||¬b F T = refl
¬a&&b≡¬a||¬b F F = refl
¬a||b≡¬a&&¬b : ∀ (a b : B) -> ¬ (a || b) ≡ ¬ a && ¬ b
¬a||b≡¬a&&¬b T T = refl
¬a||b≡¬a&&¬b T F = refl
¬a||b≡¬a&&¬b F T = refl
¬a||b≡¬a&&¬b F F = refl
-- 自反律
p&&¬p≡F : ∀ (p : B) -> p && ¬ p ≡ F
p&&¬p≡F T = refl
p&&¬p≡F F = refl
-- 排中律
¬p||p≡T : ∀ (p : B) -> ¬ p || p ≡ T
¬p||p≡T T = refl
¬p||p≡T F = refl
-- 蕴含 如果 .. 就
_to_ : B -> B -> B
infixl 10 _to_
T to F = F
T to T = T
F to _ = T
-- 蕴含等值推演
ptoq≡¬p||q : ∀ (p q : B) -> p to q ≡ ¬ p || q
ptoq≡¬p||q T T = refl
ptoq≡¬p||q T F = refl
ptoq≡¬p||q F q = refl
Ttop≡p : ∀ (p : B) -> T to p ≡ p
Ttop≡p T = refl
Ttop≡p F = refl
Ftop≡T : ∀ (p : B) -> F to p ≡ T
Ftop≡T p = refl
-- 等价
_<>_ : B -> B -> B
infixl 10 _eq_
T <> T = T
F <> T = F
T <> F = F
F <> F = T
-- 等价等值式
p<>q≡ptoq&&qtop : ∀ (p q : B) -> p <> q ≡ (p to q) && (q to p)
p<>q≡ptoq&&qtop T T = refl
p<>q≡ptoq&&qtop T F = refl
p<>q≡ptoq&&qtop F T = refl
p<>q≡ptoq&&qtop F F = refl
-- lemma 01
p||q&&¬q≡p : ∀ (p q : B) -> p || q && ¬ q ≡ p
p||q&&¬q≡p T T = refl
p||q&&¬q≡p T F = refl
p||q&&¬q≡p F q rewrite p&&¬p≡F q = refl
-- proof 01
p&&q||p&&¬q≡p : ∀ (p q : B) -> p && q || p && ¬ q ≡ p
p&&q||p&&¬q≡p T T = refl
p&&q||p&&¬q≡p T F = refl
p&&q||p&&¬q≡p F q = refl
-- proof 02
atob≡¬bto¬a : ∀ (a b : B) -> a to b ≡ ¬ b to ¬ a
atob≡¬bto¬a a b
rewrite ptoq≡¬p||q a b
| ptoq≡¬p||q (¬ b) (¬ a)
| a||b≡b||a (¬ a) b
| ¬¬p≡p b = refl
implies₁ : ∀ (p q r s : B) -> ((p to (q to r)) && (¬ s || p) && q) to (s to r) ≡ T
implies₁ T T T T = refl
implies₁ T T T F = refl
implies₁ T T F s = refl
implies₁ T F T T = refl
implies₁ T F T F = refl
implies₁ T F F T = refl
implies₁ T F F F = refl
implies₁ F T T T = refl
implies₁ F T T F = refl
implies₁ F T F T = refl
implies₁ F T F F = refl
implies₁ F F r T = refl
implies₁ F F r F = refl
|
algebraic-stack_agda0000_doc_3699 | module my-vector where
open import nat
open import bool
open import eq
data 𝕍 {ℓ}(A : Set ℓ) : ℕ → Set ℓ where
[] : 𝕍 A 0
_::_ : {n : ℕ} (x : A) (xs : 𝕍 A n) → 𝕍 A (suc n)
infixr 6 _::_ _++𝕍_
_++𝕍_ : ∀ {ℓ} {A : Set ℓ}{n m : ℕ} →
𝕍 A n → 𝕍 A m → 𝕍 A (n + m)
[] ++𝕍 ys = ys
(x :: xs) ++𝕍 ys = x :: (xs ++𝕍 ys)
test-vector : 𝕍 𝔹 4
test-vector = ff :: tt :: ff :: ff :: []
test-vector-append : 𝕍 𝔹 8
test-vector-append = test-vector ++𝕍 test-vector
head𝕍 : ∀{ℓ}{A : Set ℓ}{n : ℕ} → 𝕍 A (suc n) → A
head𝕍 (x :: _) = x
tail𝕍 : ∀{ℓ}{A : Set ℓ}{n : ℕ} → 𝕍 A n → 𝕍 A (pred n)
tail𝕍 [] = []
tail𝕍 (_ :: xs) = xs
map𝕍 : ∀{ℓ ℓ'}{A : Set ℓ}{B : Set ℓ'}{n : ℕ} →
(A → B) → 𝕍 A n → 𝕍 B n
map𝕍 f [] = []
map𝕍 f (x :: xs) = f x :: map𝕍 f xs
concat𝕍 : ∀{ℓ}{A : Set ℓ}{n m : ℕ} →
𝕍 (𝕍 A n) m → 𝕍 A (m * n)
concat𝕍 [] = []
concat𝕍 (xs :: xs₁) = xs ++𝕍 (concat𝕍 xs₁)
nth𝕍 : ∀{ℓ}{A : Set ℓ}{m : ℕ} →
(n : ℕ) → n < m ≡ tt → 𝕍 A m → A
nth𝕍 zero () []
nth𝕍 zero _ (x :: _) = x
nth𝕍 (suc _) () []
nth𝕍 (suc n₁) p (_ :: xs) = nth𝕍 n₁ p xs
repeat𝕍 : ∀{ℓ}{A : Set ℓ} → (a : A)(n : ℕ) → 𝕍 A n
repeat𝕍 a zero = []
repeat𝕍 a (suc n) = a :: (repeat𝕍 a n)
|
algebraic-stack_agda0000_doc_3700 | -- 2016-01-05, Jesper: In some cases, the new unifier is still too restrictive
-- when --cubical-compatible is enabled because it doesn't do generalization of datatype
-- indices. This should be fixed in the future.
-- 2016-06-23, Jesper: Now fixed.
{-# OPTIONS --cubical-compatible #-}
data _≡_ {a} {A : Set a} (x : A) : A → Set a where
refl : x ≡ x
data Bar : Set₁ where
bar : Bar
baz : (A : Set) → Bar
data Foo : Bar → Set₁ where
foo : Foo bar
test : foo ≡ foo → Set₁
test refl = Set
|
algebraic-stack_agda0000_doc_3701 |
module _ where
module M (A : Set) where
record R : Set where
postulate
B : Set
postulate
A : Set
r : M.R A
module M' = M A
open import Agda.Builtin.Reflection
open import Agda.Builtin.List
postulate
any : {A : Set} → A
macro
m : Term → TC _
m goal =
bindTC (inferType goal) λ goal-type →
bindTC (normalise goal-type) λ goal-type →
bindTC (inferType goal-type) λ _ →
unify goal (def (quote any) [])
g : M'.R.B r
g = m
|
algebraic-stack_agda0000_doc_3702 | {-# OPTIONS --no-positivity-check #-}
module Clowns where
import Equality
import Isomorphism
import Derivative
import ChainRule
open import Sets
open import Functor
open import Zipper
open import Dissect
open Functor.Recursive
open Functor.Semantics
-- Natural numbers
NatF : U
NatF = K [1] + Id
Nat : Set
Nat = μ NatF
zero : Nat
zero = inn (inl <>)
suc : Nat -> Nat
suc n = inn (inr n)
plus : Nat -> Nat -> Nat
plus n m = fold NatF φ n where
φ : ⟦ NatF ⟧ Nat -> Nat
φ (inl <>) = m
φ (inr z) = suc z
-- Lists
ListF : (A : Set) -> U
ListF A = K [1] + K A × Id
List' : (A : Set) -> Set
List' A = μ (ListF A)
nil : {A : Set} -> List' A
nil = inn (inl <>)
cons : {A : Set} -> A -> List' A -> List' A
cons x xs = inn (inr < x , xs >)
sum : List' Nat -> Nat
sum = fold (ListF Nat) φ where
φ : ⟦ ListF Nat ⟧ Nat -> Nat
φ (inl <>) = zero
φ (inr < n , m >) = plus n m
TreeF : U
TreeF = K [1] + Id × Id
Tree : Set
Tree = μ TreeF
leaf : Tree
leaf = inn (inl <>)
node : Tree -> Tree -> Tree
node l r = inn (inr < l , r >)
|
algebraic-stack_agda0000_doc_3703 |
module Numeric.Nat.GCD.Properties where
open import Prelude
open import Numeric.Nat.Properties
open import Numeric.Nat.Divide
open import Numeric.Nat.Divide.Properties
open import Numeric.Nat.GCD
open import Numeric.Nat.GCD.Extended
open import Tactic.Nat
open import Tactic.Cong
gcd-is-gcd : ∀ d a b → gcd! a b ≡ d → IsGCD d a b
gcd-is-gcd d a b refl with gcd a b
... | gcd-res _ isgcd = isgcd
gcd-divides-l : ∀ a b → gcd! a b Divides a
gcd-divides-l a b with gcd a b
... | gcd-res _ i = IsGCD.d|a i
gcd-divides-r : ∀ a b → gcd! a b Divides b
gcd-divides-r a b with gcd a b
... | gcd-res _ i = IsGCD.d|b i
is-gcd-unique : ∀ {a b} d₁ d₂ (g₁ : IsGCD d₁ a b) (g₂ : IsGCD d₂ a b) → d₁ ≡ d₂
is-gcd-unique d d′ (is-gcd d|a d|b gd) (is-gcd d′|a d′|b gd′) =
divides-antisym (gd′ d d|a d|b)
(gd d′ d′|a d′|b)
gcd-unique : ∀ a b d → IsGCD d a b → gcd! a b ≡ d
gcd-unique a b d pd with gcd a b
... | gcd-res d′ pd′ = is-gcd-unique d′ d pd′ pd
is-gcd-commute : ∀ {d a b} → IsGCD d a b → IsGCD d b a
is-gcd-commute (is-gcd d|a d|b g) = is-gcd d|b d|a (flip ∘ g)
gcd-commute : ∀ a b → gcd! a b ≡ gcd! b a
gcd-commute a b with gcd b a
gcd-commute a b | gcd-res d p = gcd-unique a b d (is-gcd-commute p)
gcd-factor-l : ∀ {a b} → a Divides b → gcd! a b ≡ a
gcd-factor-l {a} (factor! b) =
gcd-unique a (b * a) a
(is-gcd divides-refl (divides-mul-r b divides-refl) λ _ k|a _ → k|a)
gcd-factor-r : ∀ {a b} → b Divides a → gcd! a b ≡ b
gcd-factor-r {a} {b} b|a = gcd-commute a b ⟨≡⟩ gcd-factor-l b|a
gcd-idem : ∀ a → gcd! a a ≡ a
gcd-idem a = gcd-factor-l divides-refl
gcd-zero-l : ∀ n → gcd! 0 n ≡ n
gcd-zero-l n = gcd-unique 0 n n (is-gcd (factor! 0) divides-refl λ _ _ k|n → k|n)
gcd-zero-r : ∀ n → gcd! n 0 ≡ n
gcd-zero-r n = gcd-commute n 0 ⟨≡⟩ gcd-zero-l n
zero-is-gcd-l : ∀ {a b} → IsGCD 0 a b → a ≡ 0
zero-is-gcd-l (is-gcd 0|a _ _) = divides-zero 0|a
zero-is-gcd-r : ∀ {a b} → IsGCD 0 a b → b ≡ 0
zero-is-gcd-r (is-gcd _ 0|b _) = divides-zero 0|b
zero-gcd-l : ∀ a b → gcd! a b ≡ 0 → a ≡ 0
zero-gcd-l a b eq with gcd a b
zero-gcd-l a b refl | gcd-res .0 p = zero-is-gcd-l p
zero-gcd-r : ∀ a b → gcd! a b ≡ 0 → b ≡ 0
zero-gcd-r a b eq with gcd a b
zero-gcd-r a b refl | gcd-res .0 p = zero-is-gcd-r p
nonzero-is-gcd-l : ∀ {a b d} {{_ : NonZero a}} → IsGCD d a b → NonZero d
nonzero-is-gcd-l {0} {{}} _
nonzero-is-gcd-l {a@(suc _)} {d = suc _} _ = _
nonzero-is-gcd-l {a@(suc _)} {d = 0} (is-gcd (factor q eq) _ _) = refute eq
nonzero-is-gcd-r : ∀ {a b d} {{_ : NonZero b}} → IsGCD d a b → NonZero d
nonzero-is-gcd-r isgcd = nonzero-is-gcd-l (is-gcd-commute isgcd)
nonzero-gcd-l : ∀ a b {{_ : NonZero a}} → NonZero (gcd! a b)
nonzero-gcd-l a b = nonzero-is-gcd-l (GCD.isGCD (gcd a b))
nonzero-gcd-r : ∀ a b {{_ : NonZero b}} → NonZero (gcd! a b)
nonzero-gcd-r a b = nonzero-is-gcd-r (GCD.isGCD (gcd a b))
private
_|>_ = divides-trans
gcd-assoc : ∀ a b c → gcd! a (gcd! b c) ≡ gcd! (gcd! a b) c
gcd-assoc a b c with gcd a b | gcd b c
... | gcd-res ab (is-gcd ab|a ab|b gab)
| gcd-res bc (is-gcd bc|b bc|c gbc) with gcd ab c
... | gcd-res ab-c (is-gcd abc|ab abc|c gabc) =
gcd-unique a bc ab-c
(is-gcd (abc|ab |> ab|a)
(gbc ab-c (abc|ab |> ab|b) abc|c)
λ k k|a k|bc → gabc k (gab k k|a (k|bc |> bc|b))
(k|bc |> bc|c))
-- Coprimality properties
coprime-sym : ∀ a b → Coprime a b → Coprime b a
coprime-sym a b p = gcd-commute b a ⟨≡⟩ p
coprimeByDivide : ∀ a b → (∀ k → k Divides a → k Divides b → k Divides 1) → Coprime a b
coprimeByDivide a b g = gcd-unique a b 1 (is-gcd one-divides one-divides g)
divide-coprime : ∀ d a b → Coprime a b → d Divides a → d Divides b → d Divides 1
divide-coprime d a b p d|a d|b with gcd a b
divide-coprime d a b refl d|a d|b | gcd-res _ (is-gcd _ _ g) =
g d d|a d|b
mul-coprime-l : ∀ a b c → Coprime a (b * c) → Coprime a b
mul-coprime-l a b c a⊥bc =
coprimeByDivide a b λ k k|a k|b →
divide-coprime k a (b * c) a⊥bc k|a (divides-mul-l c k|b)
mul-coprime-r : ∀ a b c → Coprime a (b * c) → Coprime a c
mul-coprime-r a b c a⊥bc = mul-coprime-l a c b (transport (Coprime a) auto a⊥bc)
is-gcd-factors-coprime : ∀ {a b d} (p : IsGCD d a b) {{_ : NonZero d}} →
Coprime (is-gcd-factor₁ p) (is-gcd-factor₂ p)
is-gcd-factors-coprime {a} {b} {0} _ {{}}
is-gcd-factors-coprime {a} {b} {d@(suc _)} p@(is-gcd (factor qa refl) (factor qb refl) g) with gcd qa qb
... | gcd-res j (is-gcd j|qa j|qb gj) = lem₃ j lem₂
where
lem : IsGCD (j * d) a b
lem = is-gcd (divides-mul-cong-r d j|qa) (divides-mul-cong-r d j|qb) λ k k|a k|b →
divides-mul-r j (g k k|a k|b)
lem₂ : d ≡ j * d
lem₂ = is-gcd-unique d (j * d) p lem
lem₃ : ∀ j → d ≡ j * d → j ≡ 1
lem₃ 0 ()
lem₃ 1 _ = refl
lem₃ (suc (suc n)) eq = refute eq
private
mul-gcd-distr-l' : ∀ a b c ⦃ a>0 : NonZero a ⦄ ⦃ b>0 : NonZero b ⦄ → gcd! (a * b) (a * c) ≡ a * gcd! b c
mul-gcd-distr-l' a b c with gcd b c | gcd (a * b) (a * c)
... | gcd-res d gcd-bc@(is-gcd (factor! b′) (factor! c′) _)
| gcd-res δ gcd-abac@(is-gcd (factor u uδ=ab) (factor v vδ=ac) g) =
let instance _ = nonzero-is-gcd-l gcd-bc
_ : NonZero (d * a)
_ = mul-nonzero d a
in case g (d * a) (factor b′ auto) (factor c′ auto) of λ where
(factor w wda=δ) →
let dab′=dauw =
d * a * b′ ≡⟨ by uδ=ab ⟩
u * δ ≡⟨ u *_ $≡ wda=δ ⟩ʳ
u * (w * (d * a)) ≡⟨ auto ⟩
d * a * (u * w) ∎
dac′=davw =
d * a * c′ ≡⟨ by vδ=ac ⟩
v * δ ≡⟨ v *_ $≡ wda=δ ⟩ʳ
v * (w * (d * a)) ≡⟨ auto ⟩
d * a * (v * w) ∎
uw=b′ : u * w ≡ b′
uw=b′ = sym (mul-inj₂ (d * a) b′ (u * w) dab′=dauw)
vw=c′ : v * w ≡ c′
vw=c′ = sym (mul-inj₂ (d * a) c′ (v * w) dac′=davw)
w=1 : w ≡ 1
w=1 = divides-one (divide-coprime w b′ c′ (is-gcd-factors-coprime gcd-bc)
(factor u uw=b′)
(factor v vw=c′))
in case w=1 of λ where refl → by wda=δ
mul-gcd-distr-l : ∀ a b c → gcd! (a * b) (a * c) ≡ a * gcd! b c
mul-gcd-distr-l zero b c = refl
mul-gcd-distr-l a zero c = (λ z → gcd! z (a * c)) $≡ mul-zero-r a
mul-gcd-distr-l a@(suc _) b@(suc _) c = mul-gcd-distr-l' a b c
mul-gcd-distr-r : ∀ a b c → gcd! (a * c) (b * c) ≡ gcd! a b * c
mul-gcd-distr-r a b c =
gcd! (a * c) (b * c)
≡⟨ gcd! $≡ mul-commute a c *≡ mul-commute b c ⟩
gcd! (c * a) (c * b)
≡⟨ mul-gcd-distr-l c a b ⟩
c * gcd! a b
≡⟨ auto ⟩
gcd! a b * c ∎
-- Divide two numbers by their gcd and return the result, the gcd, and some useful properties.
-- Continuation-passing for efficiency reasons.
gcdReduce' : ∀ {a} {A : Set a} (a b : Nat) ⦃ _ : NonZero b ⦄ →
((a′ b′ d : Nat) → (⦃ _ : NonZero a ⦄ → NonZero a′) →
⦃ nzb : NonZero b′ ⦄ → ⦃ nzd : NonZero d ⦄ →
a′ * d ≡ a → b′ * d ≡ b →
Coprime a′ b′ → A) → A
gcdReduce' a b ret with gcd a b
gcdReduce' a b ret | gcd-res d isgcd@(is-gcd d|a@(factor a′ eqa) d|b@(factor b′ eqb) g)=
let instance _ = nonzero-is-gcd-r isgcd in
ret a′ b′ d (nonzero-factor d|a) ⦃ nonzero-factor d|b ⦄
eqa eqb
(is-gcd-factors-coprime isgcd)
-- Both arguments are non-zero.
gcdReduce : ∀ {a} {A : Set a} (a b : Nat) ⦃ _ : NonZero a ⦄ ⦃ _ : NonZero b ⦄ →
((a′ b′ d : Nat) ⦃ a′>0 : NonZero a′ ⦄ ⦃ b′>0 : NonZero b′ ⦄ ⦃ nzd : NonZero d ⦄ →
a′ * d ≡ a → b′ * d ≡ b → Coprime a′ b′ → A) → A
gcdReduce a b k = gcdReduce' a b λ a′ b′ d a′>0 eq₁ eq₂ a′⊥b′ →
let instance _ = a′>0 in k a′ b′ d eq₁ eq₂ a′⊥b′
-- Only the right argument is guaranteed to be non-zero.
gcdReduce-r : ∀ {a} {A : Set a} (a b : Nat) ⦃ _ : NonZero b ⦄ →
((a′ b′ d : Nat) ⦃ nzb : NonZero b′ ⦄ ⦃ nzd : NonZero d ⦄ →
a′ * d ≡ a → b′ * d ≡ b → Coprime a′ b′ → A) → A
gcdReduce-r a b k = gcdReduce' a b λ a′ b′ d _ eq₁ eq₂ a′⊥b′ →
k a′ b′ d eq₁ eq₂ a′⊥b′
--- Properties ---
coprime-divide-mul-l : ∀ a b c → Coprime a b → a Divides (b * c) → a Divides c
coprime-divide-mul-l a b c p a|bc with extendedGCD a b
coprime-divide-mul-l a b c p a|bc | gcd-res d i e with gcd-unique _ _ _ i ʳ⟨≡⟩ p
coprime-divide-mul-l a b c p (factor q qa=bc) | gcd-res d i (bézoutL x y ax=1+by) | refl =
factor (x * c - y * q) $
(x * c - y * q) * a
≡⟨ auto ⟩
a * x * c - y * (q * a)
≡⟨ by-cong ax=1+by ⟩
suc (b * y) * c - y * (q * a)
≡⟨ by-cong qa=bc ⟩
suc (b * y) * c - y * (b * c)
≡⟨ auto ⟩
c ∎
coprime-divide-mul-l a b c p (factor q qa=bc) | gcd-res d i (bézoutR x y by=1+ax) | refl =
factor (y * q - x * c) $
(y * q - x * c) * a
≡⟨ auto ⟩
y * (q * a) - a * x * c
≡⟨ by-cong qa=bc ⟩
y * (b * c) - a * x * c
≡⟨ auto ⟩
(b * y) * c - a * x * c
≡⟨ by-cong by=1+ax ⟩
suc (a * x) * c - a * x * c
≡⟨ auto ⟩
c ∎
coprime-divide-mul-r : ∀ a b c → Coprime a c → a Divides (b * c) → a Divides b
coprime-divide-mul-r a b c p a|bc =
coprime-divide-mul-l a c b p (transport (a Divides_) auto a|bc)
is-gcd-by-coprime-factors : ∀ d a b (d|a : d Divides a) (d|b : d Divides b) ⦃ nzd : NonZero d ⦄ →
Coprime (get-factor d|a) (get-factor d|b) →
IsGCD d a b
is-gcd-by-coprime-factors d a b d|a@(factor! q) d|b@(factor! r) q⊥r =
is-gcd d|a d|b λ k k|a k|b →
let lem : ∀ j → j Divides q → j Divides r → j ≡ 1
lem j j|q j|r = divides-one (divide-coprime j q r q⊥r j|q j|r)
in
case gcd k d of λ where
(gcd-res g isgcd@(is-gcd (factor k′ k′g=k@refl) (factor d′ d′g=d@refl) sup)) →
let instance g>0 = nonzero-is-gcd-r isgcd
k′⊥d′ : Coprime k′ d′
k′⊥d′ = is-gcd-factors-coprime isgcd
k′|qd′ : k′ Divides (q * d′)
k′|qd′ = cancel-mul-divides-r k′ (q * d′) g
(transport ((k′ * g) Divides_) {x = q * (d′ * g)} {q * d′ * g} auto k|a)
k′|rd′ : k′ Divides (r * d′)
k′|rd′ = cancel-mul-divides-r k′ (r * d′) g
(transport ((k′ * g) Divides_) {x = r * (d′ * g)} {r * d′ * g} auto k|b)
k′|q : k′ Divides q
k′|q = coprime-divide-mul-r k′ q d′ k′⊥d′ k′|qd′
k′|r : k′ Divides r
k′|r = coprime-divide-mul-r k′ r d′ k′⊥d′ k′|rd′
k′=1 = lem k′ k′|q k′|r
k=g : k ≡ g
k=g = case k′=1 of λ where refl → auto
in factor d′ (d′ *_ $≡ k=g ⟨≡⟩ d′g=d)
|
algebraic-stack_agda0000_doc_3704 | {-# OPTIONS --safe #-}
module Cubical.Algebra.CommAlgebra.QuotientAlgebra where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Powerset using (_∈_)
open import Cubical.HITs.SetQuotients hiding (_/_)
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.CommRing.QuotientRing renaming (_/_ to _/Ring_) hiding ([_]/)
open import Cubical.Algebra.CommRing.Ideal hiding (IdealsIn)
open import Cubical.Algebra.CommAlgebra
open import Cubical.Algebra.CommAlgebra.Ideal
open import Cubical.Algebra.Ring
open import Cubical.Algebra.Ring.Ideal using (isIdeal)
private
variable
ℓ : Level
module _ {R : CommRing ℓ} (A : CommAlgebra R ℓ) where
open CommRingStr {{...}} hiding (_-_; -_; dist; ·Lid; ·Rdist+) renaming (_·_ to _·R_; _+_ to _+R_)
open CommAlgebraStr {{...}}
open RingTheory (CommRing→Ring (CommAlgebra→CommRing A)) using (-DistR·)
instance
_ : CommRingStr _
_ = snd R
_ : CommAlgebraStr _ _
_ = snd A
_/_ : (I : IdealsIn A) → CommAlgebra R ℓ
_/_ I = commAlgebraFromCommRing
((CommAlgebra→CommRing A) /Ring I)
(λ r → elim (λ _ → squash/) (λ x → [ r ⋆ x ]) (eq r))
(λ r s → elimProp (λ _ → squash/ _ _)
λ x i → [ ((r ·R s) ⋆ x ≡⟨ ⋆-assoc r s x ⟩
r ⋆ (s ⋆ x) ∎) i ])
(λ r s → elimProp (λ _ → squash/ _ _)
λ x i → [ ((r +R s) ⋆ x ≡⟨ ⋆-ldist r s x ⟩
r ⋆ x + s ⋆ x ∎) i ])
(λ r → elimProp2 (λ _ _ → squash/ _ _)
λ x y i → [ (r ⋆ (x + y) ≡⟨ ⋆-rdist r x y ⟩
r ⋆ x + r ⋆ y ∎) i ])
(elimProp (λ _ → squash/ _ _)
(λ x i → [ (1r ⋆ x ≡⟨ ⋆-lid x ⟩ x ∎) i ]))
λ r → elimProp2 (λ _ _ → squash/ _ _)
λ x y i → [ ((r ⋆ x) · y ≡⟨ ⋆-lassoc r x y ⟩
r ⋆ (x · y) ∎) i ]
where
open CommIdeal using (isCommIdeal)
eq : (r : fst R) (x y : fst A) → x - y ∈ (fst I) → [ r ⋆ x ] ≡ [ r ⋆ y ]
eq r x y x-y∈I = eq/ _ _
(subst (λ u → u ∈ fst I)
((r ⋆ 1a) · (x - y) ≡⟨ ·Rdist+ (r ⋆ 1a) x (- y) ⟩
(r ⋆ 1a) · x + (r ⋆ 1a) · (- y) ≡[ i ]⟨ (r ⋆ 1a) · x + -DistR· (r ⋆ 1a) y i ⟩
(r ⋆ 1a) · x - (r ⋆ 1a) · y ≡[ i ]⟨ ⋆-lassoc r 1a x i
- ⋆-lassoc r 1a y i ⟩
r ⋆ (1a · x) - r ⋆ (1a · y) ≡[ i ]⟨ r ⋆ (·Lid x i) - r ⋆ (·Lid y i) ⟩
r ⋆ x - r ⋆ y ∎ )
(isCommIdeal.·Closed (snd I) _ x-y∈I))
[_]/ : {R : CommRing ℓ} {A : CommAlgebra R ℓ} {I : IdealsIn A}
→ (a : fst A) → fst (A / I)
[ a ]/ = [ a ]
|
algebraic-stack_agda0000_doc_3705 | -- Example by Ian Orton
{-# OPTIONS --rewriting #-}
open import Agda.Builtin.Bool
open import Agda.Builtin.Equality
_∧_ : Bool → Bool → Bool
true ∧ y = y
false ∧ y = false
data ⊥ : Set where
⊥-elim : ∀ {a} {A : Set a} → ⊥ → A
⊥-elim ()
¬_ : ∀ {a} → Set a → Set a
¬ A = A → ⊥
contradiction : ∀ {a b} {A : Set a} {B : Set b} → A → ¬ A → B
contradiction a f = ⊥-elim (f a)
_≢_ : ∀ {a} {A : Set a} (x y : A) → Set a
x ≢ y = ¬ (x ≡ y)
postulate
obvious : (b b' : Bool) (p : b ≢ b') → (b ∧ b') ≡ false
{-# BUILTIN REWRITE _≡_ #-}
{-# REWRITE obvious #-}
oops : (b : Bool) → b ∧ b ≡ false
oops b = refl
true≢false : true ≡ false → ⊥
true≢false ()
bot : ⊥
bot = true≢false (oops true)
|
algebraic-stack_agda0000_doc_3706 | {-# OPTIONS --without-K #-}
open import Base
open import Homotopy.Pushout
open import Homotopy.VanKampen.Guide
{-
This module provides the function code⇒path
for the homotopy equivalence for
van Kampen theorem.
-}
module Homotopy.VanKampen.CodeToPath {i} (d : pushout-diag i)
(l : legend i (pushout-diag.C d)) where
open pushout-diag d
open legend l
open import Homotopy.Truncation
open import Homotopy.PathTruncation
open import Homotopy.VanKampen.Code d l
private
pgl : ∀ n → _≡₀_ {A = P} (left (f $ loc n)) (right (g $ loc n))
pgl n = proj (glue $ loc n)
p!gl : ∀ n → _≡₀_ {A = P} (right (g $ loc n)) (left (f $ loc n))
p!gl n = proj (! (glue $ loc n))
ap₀l : ∀ {a₁ a₂} → a₁ ≡₀ a₂ → _≡₀_ {A = P} (left a₁) (left a₂)
ap₀l p = ap₀ left p
ap₀r : ∀ {b₁ b₂} → b₁ ≡₀ b₂ → _≡₀_ {A = P} (right b₁) (right b₂)
ap₀r p = ap₀ right p
module _ {a₁ : A} where
private
ap⇒path-split : (∀ {a₂} → a-code-a a₁ a₂ → _≡₀_ {A = P} (left a₁) (left a₂))
× (∀ {b₂} → a-code-b a₁ b₂ → _≡₀_ {A = P} (left a₁) (right b₂))
ap⇒path-split = a-code-rec-nondep a₁
(λ a₂ → left a₁ ≡₀ left a₂)
⦃ λ a₂ → π₀-is-set _ ⦄
(λ b₂ → left a₁ ≡₀ right b₂)
⦃ λ b₂ → π₀-is-set _ ⦄
(λ p → ap₀l p)
(λ n pco p → (pco ∘₀ p!gl n) ∘₀ ap₀l p)
(λ n pco p → (pco ∘₀ pgl n) ∘₀ ap₀r p)
(λ n {co} pco →
(((pco ∘₀ pgl n) ∘₀ refl₀) ∘₀ p!gl n) ∘₀ refl₀
≡⟨ refl₀-right-unit _ ⟩
((pco ∘₀ pgl n) ∘₀ refl₀) ∘₀ p!gl n
≡⟨ ap (λ x → x ∘₀ p!gl n)
$ refl₀-right-unit $ pco ∘₀ pgl n ⟩
(pco ∘₀ pgl n) ∘₀ p!gl n
≡⟨ concat₀-assoc pco (pgl n) (p!gl n) ⟩
pco ∘₀ (pgl n ∘₀ p!gl n)
≡⟨ ap (λ x → pco ∘₀ proj x)
$ opposite-right-inverse $ glue $ loc n ⟩
pco ∘₀ refl₀
≡⟨ refl₀-right-unit pco ⟩∎
pco
∎)
(λ n {co} pco →
(((pco ∘₀ p!gl n) ∘₀ refl₀) ∘₀ pgl n) ∘₀ refl₀
≡⟨ refl₀-right-unit _ ⟩
((pco ∘₀ p!gl n) ∘₀ refl₀) ∘₀ pgl n
≡⟨ ap (λ x → x ∘₀ pgl n)
$ refl₀-right-unit $ pco ∘₀ p!gl n ⟩
(pco ∘₀ p!gl n) ∘₀ pgl n
≡⟨ concat₀-assoc pco (p!gl n) (pgl n) ⟩
pco ∘₀ (p!gl n ∘₀ pgl n)
≡⟨ ap (λ x → pco ∘₀ proj x)
$ opposite-left-inverse $ glue $ loc n ⟩
pco ∘₀ refl₀
≡⟨ refl₀-right-unit pco ⟩∎
pco
∎)
(λ n₁ {co} pco n₂ r →
(((pco ∘₀ pgl n₁) ∘₀ ap₀r (ap₀ g r)) ∘₀ p!gl n₂) ∘₀ refl₀
≡⟨ refl₀-right-unit _ ⟩
((pco ∘₀ pgl n₁) ∘₀ ap₀r (ap₀ g r)) ∘₀ p!gl n₂
≡⟨ concat₀-assoc (pco ∘₀ pgl n₁) (ap₀r (ap₀ g r)) (p!gl n₂) ⟩
(pco ∘₀ pgl n₁) ∘₀ (ap₀r (ap₀ g r) ∘₀ p!gl n₂)
≡⟨ ap (λ x → (pco ∘₀ pgl n₁) ∘₀ (x ∘₀ p!gl n₂)) $ ! $ ap₀-compose right g r ⟩
(pco ∘₀ pgl n₁) ∘₀ (ap₀ (right ◯ g) r ∘₀ p!gl n₂)
≡⟨ ap (λ x → (pco ∘₀ pgl n₁) ∘₀ x)
$ homotopy₀-naturality (right ◯ g) (left ◯ f) (proj ◯ (! ◯ glue)) r ⟩
(pco ∘₀ pgl n₁) ∘₀ (p!gl n₁ ∘₀ ap₀ (left ◯ f) r)
≡⟨ ! $ concat₀-assoc (pco ∘₀ pgl n₁) (p!gl n₁) (ap₀ (left ◯ f) r) ⟩
((pco ∘₀ pgl n₁) ∘₀ p!gl n₁) ∘₀ ap₀ (left ◯ f) r
≡⟨ ap (λ x → ((pco ∘₀ pgl n₁) ∘₀ p!gl n₁) ∘₀ x) $ ap₀-compose left f r ⟩
((pco ∘₀ pgl n₁) ∘₀ p!gl n₁) ∘₀ ap₀l (ap₀ f r)
≡⟨ ap (λ x → (x ∘₀ p!gl n₁) ∘₀ ap₀l (ap₀ f r))
$ ! $ refl₀-right-unit $ pco ∘₀ pgl n₁ ⟩∎
(((pco ∘₀ pgl n₁) ∘₀ refl₀) ∘₀ p!gl n₁) ∘₀ ap₀l (ap₀ f r)
∎)
aa⇒path : ∀ {a₂} → a-code-a a₁ a₂ → _≡₀_ {A = P} (left a₁) (left a₂)
aa⇒path = π₁ ap⇒path-split
ab⇒path : ∀ {b₂} → a-code-b a₁ b₂ → _≡₀_ {A = P} (left a₁) (right b₂)
ab⇒path = π₂ ap⇒path-split
ap⇒path : ∀ {p₂ : P} → a-code a₁ p₂ → left a₁ ≡₀ p₂
ap⇒path {p₂} = pushout-rec
(λ p → a-code a₁ p → left a₁ ≡₀ p)
(λ a → aa⇒path {a})
(λ b → ab⇒path {b})
(loc-fiber-rec l
(λ c → transport (λ p → a-code a₁ p → left a₁ ≡₀ p) (glue c) aa⇒path
≡ ab⇒path)
⦃ λ c → →-is-set (π₀-is-set (left a₁ ≡ right (g c))) _ _ ⦄
(λ n → funext λ co →
transport (λ p → a-code a₁ p → left a₁ ≡₀ p) (glue $ loc n) aa⇒path co
≡⟨ trans-→ (a-code a₁) (λ x → left a₁ ≡₀ x) (glue $ loc n) aa⇒path co ⟩
transport (λ p → left a₁ ≡₀ p) (glue $ loc n) (aa⇒path $ transport (a-code a₁) (! (glue $ loc n)) co)
≡⟨ ap (transport (λ p → left a₁ ≡₀ p) (glue $ loc n) ◯ aa⇒path) $ trans-a-code-!glue-loc n co ⟩
transport (λ p → left a₁ ≡₀ p) (glue $ loc n) (aa⇒path $ ab⇒aa n co)
≡⟨ trans-cst≡₀id (glue $ loc n) (aa⇒path $ ab⇒aa n co) ⟩
(aa⇒path $ ab⇒aa n co) ∘₀ pgl n
≡⟨ refl ⟩
((ab⇒path co ∘₀ p!gl n) ∘₀ refl₀) ∘₀ pgl n
≡⟨ ap (λ x → x ∘₀ pgl n) $ refl₀-right-unit $ ab⇒path co ∘₀ p!gl n ⟩
(ab⇒path co ∘₀ p!gl n) ∘₀ pgl n
≡⟨ concat₀-assoc (ab⇒path co) (p!gl n) (pgl n) ⟩
ab⇒path co ∘₀ (p!gl n ∘₀ pgl n)
≡⟨ ap (λ x → ab⇒path co ∘₀ proj x) $ opposite-left-inverse $ glue $ loc n ⟩
ab⇒path co ∘₀ refl₀
≡⟨ refl₀-right-unit $ ab⇒path co ⟩∎
ab⇒path co
∎))
p₂
-- FIXME
-- There is tension between reducing duplicate code and
-- maintaining definitional equality. I could not make
-- the neccessary type conversion definitional, so
-- I just copied and pasted the previous module.
module _ {b₁ : B} where
private
bp⇒path-split : (∀ {b₂} → b-code-b b₁ b₂ → _≡₀_ {A = P} (right b₁) (right b₂))
× (∀ {a₂} → b-code-a b₁ a₂ → _≡₀_ {A = P} (right b₁) (left a₂))
bp⇒path-split = b-code-rec-nondep b₁
(λ b₂ → right b₁ ≡₀ right b₂)
⦃ λ b₂ → π₀-is-set _ ⦄
(λ a₂ → right b₁ ≡₀ left a₂)
⦃ λ a₂ → π₀-is-set _ ⦄
(λ p → ap₀r p)
(λ n pco p → (pco ∘₀ pgl n) ∘₀ ap₀r p)
(λ n pco p → (pco ∘₀ p!gl n) ∘₀ ap₀l p)
(λ n {co} pco →
(((pco ∘₀ p!gl n) ∘₀ refl₀) ∘₀ pgl n) ∘₀ refl₀
≡⟨ refl₀-right-unit _ ⟩
((pco ∘₀ p!gl n) ∘₀ refl₀) ∘₀ pgl n
≡⟨ ap (λ x → x ∘₀ pgl n)
$ refl₀-right-unit $ pco ∘₀ p!gl n ⟩
(pco ∘₀ p!gl n) ∘₀ pgl n
≡⟨ concat₀-assoc pco (p!gl n) (pgl n) ⟩
pco ∘₀ (p!gl n ∘₀ pgl n)
≡⟨ ap (λ x → pco ∘₀ proj x)
$ opposite-left-inverse $ glue $ loc n ⟩
pco ∘₀ refl₀
≡⟨ refl₀-right-unit pco ⟩∎
pco
∎)
(λ n {co} pco →
(((pco ∘₀ pgl n) ∘₀ refl₀) ∘₀ p!gl n) ∘₀ refl₀
≡⟨ refl₀-right-unit _ ⟩
((pco ∘₀ pgl n) ∘₀ refl₀) ∘₀ p!gl n
≡⟨ ap (λ x → x ∘₀ p!gl n)
$ refl₀-right-unit $ pco ∘₀ pgl n ⟩
(pco ∘₀ pgl n) ∘₀ p!gl n
≡⟨ concat₀-assoc pco (pgl n) (p!gl n) ⟩
pco ∘₀ (pgl n ∘₀ p!gl n)
≡⟨ ap (λ x → pco ∘₀ proj x)
$ opposite-right-inverse $ glue $ loc n ⟩
pco ∘₀ refl₀
≡⟨ refl₀-right-unit pco ⟩∎
pco
∎)
(λ n₁ {co} pco n₂ r →
(((pco ∘₀ p!gl n₁) ∘₀ ap₀l (ap₀ f r)) ∘₀ pgl n₂) ∘₀ refl₀
≡⟨ refl₀-right-unit _ ⟩
((pco ∘₀ p!gl n₁) ∘₀ ap₀l (ap₀ f r)) ∘₀ pgl n₂
≡⟨ concat₀-assoc (pco ∘₀ p!gl n₁) (ap₀l (ap₀ f r)) (pgl n₂) ⟩
(pco ∘₀ p!gl n₁) ∘₀ (ap₀l (ap₀ f r) ∘₀ pgl n₂)
≡⟨ ap (λ x → (pco ∘₀ p!gl n₁) ∘₀ (x ∘₀ pgl n₂)) $ ! $ ap₀-compose left f r ⟩
(pco ∘₀ p!gl n₁) ∘₀ (ap₀ (left ◯ f) r ∘₀ pgl n₂)
≡⟨ ap (λ x → (pco ∘₀ p!gl n₁) ∘₀ x)
$ homotopy₀-naturality (left ◯ f) (right ◯ g) (proj ◯ glue) r ⟩
(pco ∘₀ p!gl n₁) ∘₀ (pgl n₁ ∘₀ ap₀ (right ◯ g) r)
≡⟨ ! $ concat₀-assoc (pco ∘₀ p!gl n₁) (pgl n₁) (ap₀ (right ◯ g) r) ⟩
((pco ∘₀ p!gl n₁) ∘₀ pgl n₁) ∘₀ ap₀ (right ◯ g) r
≡⟨ ap (λ x → ((pco ∘₀ p!gl n₁) ∘₀ pgl n₁) ∘₀ x) $ ap₀-compose right g r ⟩
((pco ∘₀ p!gl n₁) ∘₀ pgl n₁) ∘₀ ap₀r (ap₀ g r)
≡⟨ ap (λ x → (x ∘₀ pgl n₁) ∘₀ ap₀r (ap₀ g r))
$ ! $ refl₀-right-unit $ pco ∘₀ p!gl n₁ ⟩∎
(((pco ∘₀ p!gl n₁) ∘₀ refl₀) ∘₀ pgl n₁) ∘₀ ap₀r (ap₀ g r)
∎)
bb⇒path : ∀ {b₂} → b-code-b b₁ b₂ → _≡₀_ {A = P} (right b₁) (right b₂)
bb⇒path = π₁ bp⇒path-split
ba⇒path : ∀ {a₂} → b-code-a b₁ a₂ → _≡₀_ {A = P} (right b₁) (left a₂)
ba⇒path = π₂ bp⇒path-split
bp⇒path : ∀ {p₂ : P} → b-code b₁ p₂ → right b₁ ≡₀ p₂
bp⇒path {p₂} = pushout-rec
(λ p → b-code b₁ p → right b₁ ≡₀ p)
(λ a → ba⇒path {a})
(λ b → bb⇒path {b})
(λ c → loc-fiber-rec l
(λ c → transport (λ p → b-code b₁ p → right b₁ ≡₀ p) (glue c) ba⇒path
≡ bb⇒path)
⦃ λ c → →-is-set (π₀-is-set (right b₁ ≡ right (g c))) _ _ ⦄
(λ n → funext λ co →
transport (λ p → b-code b₁ p → right b₁ ≡₀ p) (glue $ loc n) ba⇒path co
≡⟨ trans-→ (b-code b₁) (λ x → right b₁ ≡₀ x) (glue $ loc n) ba⇒path co ⟩
transport (λ p → right b₁ ≡₀ p) (glue $ loc n) (ba⇒path $ transport (b-code b₁) (! (glue $ loc n)) co)
≡⟨ ap (transport (λ p → right b₁ ≡₀ p) (glue $ loc n) ◯ ba⇒path) $ trans-b-code-!glue-loc n co ⟩
transport (λ p → right b₁ ≡₀ p) (glue $ loc n) (ba⇒path $ bb⇒ba n co)
≡⟨ trans-cst≡₀id (glue $ loc n) (ba⇒path $ bb⇒ba n co) ⟩
(ba⇒path $ bb⇒ba n co) ∘₀ pgl n
≡⟨ refl ⟩
((bb⇒path co ∘₀ p!gl n) ∘₀ refl₀) ∘₀ pgl n
≡⟨ ap (λ x → x ∘₀ pgl n) $ refl₀-right-unit $ bb⇒path co ∘₀ p!gl n ⟩
(bb⇒path co ∘₀ p!gl n) ∘₀ pgl n
≡⟨ concat₀-assoc (bb⇒path co) (p!gl n) (pgl n) ⟩
bb⇒path co ∘₀ (p!gl n ∘₀ pgl n)
≡⟨ ap (λ x → bb⇒path co ∘₀ proj x) $ opposite-left-inverse $ glue $ loc n ⟩
bb⇒path co ∘₀ refl₀
≡⟨ refl₀-right-unit $ bb⇒path co ⟩∎
bb⇒path co
∎)
c)
p₂
module _ where
private
Lbaaa : ∀ n {a₂} → b-code-a (g $ loc n) a₂ → Set i
Lbaaa n co = aa⇒path {f $ loc n} (ba⇒aa n co) ≡ pgl n ∘₀ ba⇒path co
Lbbab : ∀ n {b₂} → b-code-b (g $ loc n) b₂ → Set i
Lbbab n co = ab⇒path {f $ loc n} (bb⇒ab n co) ≡ pgl n ∘₀ bb⇒path co
private
bp⇒ap⇒path-split : ∀ n
→ (∀ {a₂} co → Lbbab n {a₂} co)
× (∀ {b₂} co → Lbaaa n {b₂} co)
abstract
bp⇒ap⇒path-split n = b-code-rec (g $ loc n)
(λ co → ab⇒path {f $ loc n} (bb⇒ab n co) ≡ pgl n ∘₀ bb⇒path co)
⦃ λ _ → ≡-is-set $ π₀-is-set _ ⦄
(λ co → aa⇒path {f $ loc n} (ba⇒aa n co) ≡ pgl n ∘₀ ba⇒path co)
⦃ λ _ → ≡-is-set $ π₀-is-set _ ⦄
(λ p →
ab⇒path (bb⇒ab n (⟧b p))
≡⟨ refl ⟩
(refl₀ ∘₀ pgl n) ∘₀ ap₀r p
≡⟨ ap (λ x → x ∘₀ ap₀r p) $ refl₀-left-unit $ pgl n ⟩
pgl n ∘₀ ap₀r p
≡⟨ refl ⟩∎
pgl n ∘₀ bb⇒path (⟧b p)
∎)
(λ n₁ {co} eq p₁ →
(aa⇒path (ba⇒aa n co) ∘₀ pgl n₁) ∘₀ ap₀r p₁
≡⟨ ap (λ x → (x ∘₀ pgl n₁) ∘₀ ap₀r p₁) eq ⟩
((pgl n ∘₀ ba⇒path co) ∘₀ pgl n₁) ∘₀ ap₀r p₁
≡⟨ ap (λ x → x ∘₀ ap₀r p₁)
$ concat₀-assoc (pgl n) (ba⇒path co) (pgl n₁) ⟩
(pgl n ∘₀ (ba⇒path co ∘₀ pgl n₁)) ∘₀ ap₀r p₁
≡⟨ concat₀-assoc (pgl n) (ba⇒path co ∘₀ pgl n₁) (ap₀r p₁) ⟩∎
pgl n ∘₀ ((ba⇒path co ∘₀ pgl n₁) ∘₀ ap₀r p₁)
∎)
(λ n₁ {co} eq p₁ →
(ab⇒path (bb⇒ab n co) ∘₀ p!gl n₁) ∘₀ ap₀l p₁
≡⟨ ap (λ x → (x ∘₀ p!gl n₁) ∘₀ ap₀l p₁) eq ⟩
((pgl n ∘₀ bb⇒path co) ∘₀ p!gl n₁) ∘₀ ap₀l p₁
≡⟨ ap (λ x → x ∘₀ ap₀l p₁)
$ concat₀-assoc (pgl n) (bb⇒path co) (p!gl n₁) ⟩
(pgl n ∘₀ (bb⇒path co ∘₀ p!gl n₁)) ∘₀ ap₀l p₁
≡⟨ concat₀-assoc (pgl n) (bb⇒path co ∘₀ p!gl n₁) (ap₀l p₁) ⟩∎
pgl n ∘₀ ((bb⇒path co ∘₀ p!gl n₁) ∘₀ ap₀l p₁)
∎)
(λ _ co → prop-has-all-paths (π₀-is-set _ _ _) _ co)
(λ _ co → prop-has-all-paths (π₀-is-set _ _ _) _ co)
(λ _ _ _ _ → prop-has-all-paths (π₀-is-set _ _ _) _ _)
ba⇒aa⇒path : ∀ n {a₂} co → Lbaaa n {a₂} co
ba⇒aa⇒path n = π₂ $ bp⇒ap⇒path-split n
bb⇒ab⇒path : ∀ n {b₂} co → Lbbab n {b₂} co
bb⇒ab⇒path n = π₁ $ bp⇒ap⇒path-split n
private
bp⇒ap⇒path : ∀ n {p₂} (co : b-code (g $ loc n) p₂)
→ ap⇒path {f $ loc n} {p₂} (bp⇒ap n {p₂} co)
≡ pgl n ∘₀ bp⇒path {g $ loc n} {p₂} co
abstract
bp⇒ap⇒path n {p₂} = pushout-rec
(λ x → ∀ (co : b-code (g $ loc n) x)
→ ap⇒path {f $ loc n} {x} (bp⇒ap n {x} co)
≡ pgl n ∘₀ bp⇒path {g $ loc n} {x} co)
(λ a₂ → ba⇒aa⇒path n {a₂})
(λ b₂ → bb⇒ab⇒path n {b₂})
(λ _ → funext λ _ → prop-has-all-paths (π₀-is-set _ _ _) _ _)
p₂
code⇒path : ∀ {p₁ p₂} → code p₁ p₂ → p₁ ≡₀ p₂
code⇒path {p₁} {p₂} = pushout-rec
(λ p₁ → code p₁ p₂ → p₁ ≡₀ p₂)
(λ a → ap⇒path {a} {p₂})
(λ b → bp⇒path {b} {p₂})
(loc-fiber-rec l
(λ c → transport (λ x → code x p₂ → x ≡₀ p₂) (glue c) (ap⇒path {f c} {p₂})
≡ bp⇒path {g c} {p₂})
⦃ λ c → →-is-set (π₀-is-set (right (g c) ≡ p₂)) _ _ ⦄
(λ n → funext λ (co : code (right $ g $ loc n) p₂) →
transport (λ x → code x p₂ → x ≡₀ p₂) (glue $ loc n) (ap⇒path {f $ loc n} {p₂}) co
≡⟨ trans-→ (λ x → code x p₂) (λ x → x ≡₀ p₂) (glue $ loc n) (ap⇒path {f $ loc n} {p₂}) co ⟩
transport (λ x → x ≡₀ p₂) (glue $ loc n) (ap⇒path {f $ loc n} {p₂}
$ transport (λ x → code x p₂) (! (glue $ loc n)) co)
≡⟨ ap (transport (λ x → x ≡₀ p₂) (glue $ loc n) ◯ ap⇒path {f $ loc n} {p₂})
$ trans-!glue-code-loc n {p₂} co ⟩
transport (λ x → x ≡₀ p₂) (glue $ loc n) (ap⇒path {f $ loc n} {p₂} $ bp⇒ap n {p₂} co)
≡⟨ ap (transport (λ x → x ≡₀ p₂) (glue $ loc n)) $ bp⇒ap⇒path n {p₂} co ⟩
transport (λ x → x ≡₀ p₂) (glue $ loc n) (pgl n ∘₀ bp⇒path {g $ loc n} {p₂} co)
≡⟨ trans-id≡₀cst (glue $ loc n) (pgl n ∘₀ bp⇒path {g $ loc n} {p₂} co) ⟩
p!gl n ∘₀ (pgl n ∘₀ bp⇒path {g $ loc n} {p₂} co)
≡⟨ ! $ concat₀-assoc (p!gl n) (pgl n) (bp⇒path {g $ loc n} {p₂} co) ⟩
(p!gl n ∘₀ pgl n) ∘₀ bp⇒path {g $ loc n} {p₂} co
≡⟨ ap (λ x → proj x ∘₀ bp⇒path {g $ loc n} {p₂} co) $ opposite-left-inverse (glue $ loc n) ⟩
refl₀ ∘₀ bp⇒path {g $ loc n} {p₂} co
≡⟨ refl₀-left-unit (bp⇒path {g $ loc n} {p₂} co) ⟩∎
bp⇒path {g $ loc n} {p₂} co
∎))
p₁
|
algebraic-stack_agda0000_doc_3707 | module Example.Test where
open import Data.Maybe using (Is-just)
open import Prelude.Init
open import Prelude.DecEq
open import Prelude.Decidable
_ : (¬ ¬ ((true , true) ≡ (true , true)))
× (8 ≡ 18 ∸ 10)
_ = auto
|
algebraic-stack_agda0000_doc_3708 | -- Export only the experiments that are expected to compile (without
-- any holes)
{-# OPTIONS --cubical --no-import-sorts #-}
module Cubical.Experiments.Everything where
open import Cubical.Experiments.Brunerie public
open import Cubical.Experiments.EscardoSIP public
open import Cubical.Experiments.Generic public
open import Cubical.Experiments.NatMinusTwo
open import Cubical.Experiments.Problem
open import Cubical.Experiments.FunExtFromUA public
open import Cubical.Experiments.HoTT-UF
open import Cubical.Experiments.Rng
|
algebraic-stack_agda0000_doc_3709 | module Web.URI.Port where
open import Web.URI.Port.Primitive public using ( Port? ; :80 ; ε )
|
algebraic-stack_agda0000_doc_3710 | {-# OPTIONS --experimental-irrelevance #-}
-- {-# OPTIONS -v tc:10 #-}
module ExplicitLambdaExperimentalIrrelevance where
postulate
A : Set
T : ..(x : A) -> Set -- shape irrelevant type
test : .(a : A) -> T a -> Set
test a = λ (x : T a) -> A
-- this should type check and not complain about irrelevance of a
module M .(a : A) where
-- should also work with module parameter
test1 : T a -> Set
test1 = λ (x : T a) -> A
|
algebraic-stack_agda0000_doc_3711 | module Numeral.Integer where
open import Data.Tuple
open import Logic
import Lvl
open import Numeral.Natural
open import Numeral.Natural.Oper
open import Relator.Equals
open import Type
open import Type.Quotient
-- Equivalence relation of difference equality.
-- Essentially (if one would already work in the integers):
-- (a₁ , a₂) diff-≡_ (b₁ , b₂)
-- ⇔ a₁ + b₂ ≡ a₂ + b₁
-- ⇔ a₁ − a₂ ≡ b₁ − b₂
_diff-≡_ : (ℕ ⨯ ℕ) → (ℕ ⨯ ℕ) → Stmt{Lvl.𝟎}
(a₁ , a₂) diff-≡ (b₁ , b₂) = (a₁ + b₂ ≡ a₂ + b₁)
ℤ : Type{Lvl.𝟎}
ℤ = (ℕ ⨯ ℕ) / (_diff-≡_)
|
algebraic-stack_agda0000_doc_12480 | ------------------------------------------------------------------------
-- A definitional interpreter
------------------------------------------------------------------------
{-# OPTIONS --sized-types #-}
module Lambda.Delay-monad.Interpreter where
open import Equality.Propositional
open import Prelude
open import Prelude.Size
open import Maybe equality-with-J
open import Monad equality-with-J
open import Vec.Function equality-with-J
open import Delay-monad
open import Delay-monad.Bisimilarity
open import Delay-monad.Monad
open import Lambda.Syntax hiding ([_])
open Closure Tm
------------------------------------------------------------------------
-- An interpreter monad
-- The interpreter monad.
M : ∀ {ℓ} → Size → Type ℓ → Type ℓ
M i = MaybeT (λ A → Delay A i)
-- A variant of the interpreter monad.
M′ : ∀ {ℓ} → Size → Type ℓ → Type ℓ
M′ i = MaybeT (λ A → Delay′ A i)
-- A lifted variant of later.
laterM : ∀ {i a} {A : Type a} → M′ i A → M i A
run (laterM x) = later (run x)
-- A lifted variant of weak bisimilarity.
infix 4 _≈M_
_≈M_ : ∀ {a} {A : Type a} → M ∞ A → M ∞ A → Type a
x ≈M y = run x ≈ run y
------------------------------------------------------------------------
-- The interpreter
infix 10 _∙_
mutual
⟦_⟧ : ∀ {i n} → Tm n → Env n → M i Value
⟦ con i ⟧ ρ = return (con i)
⟦ var x ⟧ ρ = return (ρ x)
⟦ ƛ t ⟧ ρ = return (ƛ t ρ)
⟦ t₁ · t₂ ⟧ ρ = ⟦ t₁ ⟧ ρ >>= λ v₁ →
⟦ t₂ ⟧ ρ >>= λ v₂ →
v₁ ∙ v₂
_∙_ : ∀ {i} → Value → Value → M i Value
con i ∙ v₂ = fail
ƛ t₁ ρ ∙ v₂ = laterM (⟦ t₁ ⟧′ (cons v₂ ρ))
⟦_⟧′ : ∀ {i n} → Tm n → Env n → M′ i Value
force (run (⟦ t ⟧′ ρ)) = run (⟦ t ⟧ ρ)
------------------------------------------------------------------------
-- An example
-- The semantics of Ω is the non-terminating computation never.
Ω-loops : ∀ {i} → [ i ] run (⟦ Ω ⟧ nil) ∼ never
Ω-loops = later λ { .force → Ω-loops }
|
algebraic-stack_agda0000_doc_12481 | {-
This file contains:
Properties of FreeGroupoid:
- Induction principle for the FreeGroupoid on hProps
- ∥freeGroupoid∥₂ is a Group
- FreeGroup A ≡ ∥ FreeGroupoid A ∥₂
-}
{-# OPTIONS --safe #-}
module Cubical.HITs.FreeGroupoid.Properties where
open import Cubical.HITs.FreeGroupoid.Base
open import Cubical.HITs.FreeGroup renaming (elimProp to freeGroupElimProp)
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.BiInvertible
open import Cubical.Foundations.Univalence using (ua)
open import Cubical.HITs.SetTruncation renaming (rec to recTrunc)
open import Cubical.Algebra.Group
open import Cubical.Algebra.Group.Morphisms
open import Cubical.Algebra.Group.MorphismProperties
open import Cubical.Algebra.Monoid.Base
open import Cubical.Algebra.Semigroup.Base
private
variable
ℓ ℓ' : Level
A : Type ℓ
-- The induction principle for the FreeGroupoid for hProps
elimProp : ∀ {B : FreeGroupoid A → Type ℓ'}
→ ((x : FreeGroupoid A) → isProp (B x))
→ ((a : A) → B (η a))
→ ((g1 g2 : FreeGroupoid A) → B g1 → B g2 → B (g1 · g2))
→ (B ε)
→ ((g : FreeGroupoid A) → B g → B (inv g))
→ (x : FreeGroupoid A)
→ B x
elimProp {B = B} Bprop η-ind ·-ind ε-ind inv-ind = induction where
induction : ∀ g → B g
induction (η a) = η-ind a
induction (g1 · g2) = ·-ind g1 g2 (induction g1) (induction g2)
induction ε = ε-ind
induction (inv g) = inv-ind g (induction g)
induction (assoc g1 g2 g3 i) = path i where
p1 : B g1
p1 = induction g1
p2 : B g2
p2 = induction g2
p3 : B g3
p3 = induction g3
path : PathP (λ i → B (assoc g1 g2 g3 i)) (·-ind g1 (g2 · g3) p1 (·-ind g2 g3 p2 p3))
(·-ind (g1 · g2) g3 (·-ind g1 g2 p1 p2) p3)
path = isProp→PathP (λ i → Bprop (assoc g1 g2 g3 i)) (·-ind g1 (g2 · g3) p1 (·-ind g2 g3 p2 p3))
(·-ind (g1 · g2) g3 (·-ind g1 g2 p1 p2) p3)
induction (idr g i) = path i where
p : B g
p = induction g
pε : B ε
pε = induction ε
path : PathP (λ i → B (idr g i)) p (·-ind g ε p pε)
path = isProp→PathP (λ i → Bprop (idr g i)) p (·-ind g ε p pε)
induction (idl g i) = path i where
p : B g
p = induction g
pε : B ε
pε = induction ε
path : PathP (λ i → B (idl g i)) p (·-ind ε g pε p)
path = isProp→PathP (λ i → Bprop (idl g i)) p (·-ind ε g pε p)
induction (invr g i) = path i where
p : B g
p = induction g
pinv : B (inv g)
pinv = inv-ind g p
pε : B ε
pε = induction ε
path : PathP (λ i → B (invr g i)) (·-ind g (inv g) p pinv) pε
path = isProp→PathP (λ i → Bprop (invr g i)) (·-ind g (inv g) p pinv) pε
induction (invl g i) = path i where
p : B g
p = induction g
pinv : B (inv g)
pinv = inv-ind g p
pε : B ε
pε = induction ε
path : PathP (λ i → B (invl g i)) (·-ind (inv g) g pinv p) pε
path = isProp→PathP (λ i → Bprop (invl g i)) (·-ind (inv g) g pinv p) pε
-- The truncation of the FreeGroupoid is a group and is equal to FreeGroup
∥freeGroupoid∥₂IsSet : isSet ∥ FreeGroupoid A ∥₂
∥freeGroupoid∥₂IsSet = squash₂
_∣·∣₂_ : ∥ FreeGroupoid A ∥₂ → ∥ FreeGroupoid A ∥₂ → ∥ FreeGroupoid A ∥₂
_∣·∣₂_ = rec2 ∥freeGroupoid∥₂IsSet (λ g1 g2 → ∣ g1 · g2 ∣₂)
∥freeGroupoid∥₂IsSemiGroup : ∀ {ℓ}{A : Type ℓ} → IsSemigroup _∣·∣₂_
∥freeGroupoid∥₂IsSemiGroup {A = A} = issemigroup ∥freeGroupoid∥₂IsSet |assoc∣₂ where
inuctionBase : ∀ g1 g2 g3 → ∣ g1 ∣₂ ∣·∣₂ (∣ g2 ∣₂ ∣·∣₂ ∣ g3 ∣₂) ≡ (∣ g1 ∣₂ ∣·∣₂ ∣ g2 ∣₂) ∣·∣₂ ∣ g3 ∣₂
inuctionBase g1 g2 g3 = cong (λ x → ∣ x ∣₂) (assoc g1 g2 g3)
Bset : ∀ x y z → isSet (x ∣·∣₂ (y ∣·∣₂ z) ≡ (x ∣·∣₂ y) ∣·∣₂ z)
Bset x y z = isProp→isSet (squash₂ (x ∣·∣₂ (y ∣·∣₂ z)) ((x ∣·∣₂ y) ∣·∣₂ z))
|assoc∣₂ : (x y z : ∥ FreeGroupoid A ∥₂) → x ∣·∣₂ (y ∣·∣₂ z) ≡ (x ∣·∣₂ y) ∣·∣₂ z
|assoc∣₂ = elim3 Bset inuctionBase
∣ε∣₂ : ∥ FreeGroupoid A ∥₂
∣ε∣₂ = ∣ ε ∣₂
∥freeGroupoid∥₂IsMonoid : IsMonoid {A = ∥ FreeGroupoid A ∥₂} ∣ε∣₂ _∣·∣₂_
∥freeGroupoid∥₂IsMonoid = ismonoid ∥freeGroupoid∥₂IsSemiGroup
(λ x → elim (λ g → isProp→isSet (squash₂ (g ∣·∣₂ ∣ε∣₂) g)) (λ g → cong (λ g' → ∣ g' ∣₂) (sym (idr g))) x)
(λ x → elim (λ g → isProp→isSet (squash₂ (∣ε∣₂ ∣·∣₂ g) g)) (λ g → cong (λ g' → ∣ g' ∣₂) (sym (idl g))) x)
∣inv∣₂ : ∥ FreeGroupoid A ∥₂ → ∥ FreeGroupoid A ∥₂
∣inv∣₂ = map inv
∥freeGroupoid∥₂IsGroup : IsGroup {G = ∥ FreeGroupoid A ∥₂} ∣ε∣₂ _∣·∣₂_ ∣inv∣₂
∥freeGroupoid∥₂IsGroup = isgroup ∥freeGroupoid∥₂IsMonoid
(λ x → elim (λ g → isProp→isSet (squash₂ (g ∣·∣₂ (∣inv∣₂ g)) ∣ε∣₂)) (λ g → cong (λ g' → ∣ g' ∣₂) (invr g)) x)
(λ x → elim (λ g → isProp→isSet (squash₂ ((∣inv∣₂ g) ∣·∣₂ g) ∣ε∣₂)) (λ g → cong (λ g' → ∣ g' ∣₂) (invl g)) x)
∥freeGroupoid∥₂GroupStr : GroupStr ∥ FreeGroupoid A ∥₂
∥freeGroupoid∥₂GroupStr = groupstr ∣ε∣₂ _∣·∣₂_ ∣inv∣₂ ∥freeGroupoid∥₂IsGroup
∥freeGroupoid∥₂Group : Type ℓ → Group ℓ
∥freeGroupoid∥₂Group A = ∥ FreeGroupoid A ∥₂ , ∥freeGroupoid∥₂GroupStr
forgetfulHom : GroupHom (freeGroupGroup A) (∥freeGroupoid∥₂Group A)
forgetfulHom = rec (λ a → ∣ η a ∣₂)
forgetfulHom⁻¹ : GroupHom (∥freeGroupoid∥₂Group A) (freeGroupGroup A)
forgetfulHom⁻¹ = invf , isHom where
invf : ∥ FreeGroupoid A ∥₂ → FreeGroup A
invf = recTrunc freeGroupIsSet aux where
aux : FreeGroupoid A → FreeGroup A
aux (η a) = η a
aux (g1 · g2) = (aux g1) · (aux g2)
aux ε = ε
aux (inv g) = inv (aux g)
aux (assoc g1 g2 g3 i) = assoc (aux g1) (aux g2) (aux g3) i
aux (idr g i) = idr (aux g) i
aux (idl g i) = idl (aux g) i
aux (invr g i) = invr (aux g) i
aux (invl g i) = invl (aux g) i
isHom : IsGroupHom {A = ∥ FreeGroupoid A ∥₂} {B = FreeGroup A} ∥freeGroupoid∥₂GroupStr invf freeGroupGroupStr
IsGroupHom.pres· isHom x y = elim2 (λ x y → isProp→isSet (freeGroupIsSet (invf (x ∣·∣₂ y)) ((invf x) · (invf y)))) ind x y where
ind : ∀ g1 g2 → invf (∣ g1 ∣₂ ∣·∣₂ ∣ g2 ∣₂) ≡ (invf ∣ g1 ∣₂) · (invf ∣ g2 ∣₂)
ind g1 g2 = refl
IsGroupHom.pres1 isHom = refl
IsGroupHom.presinv isHom x = elim (λ x → isProp→isSet (freeGroupIsSet (invf (∣inv∣₂ x)) (inv (invf x)))) ind x where
ind : ∀ g → invf (∣inv∣₂ ∣ g ∣₂) ≡ inv (invf ∣ g ∣₂)
ind g = refl
freeGroupTruncIdempotentBiInvEquiv : BiInvEquiv (FreeGroup A) ∥ FreeGroupoid A ∥₂
freeGroupTruncIdempotentBiInvEquiv = biInvEquiv f invf rightInv invf leftInv where
f : FreeGroup A → ∥ FreeGroupoid A ∥₂
f = fst forgetfulHom
invf : ∥ FreeGroupoid A ∥₂ → FreeGroup A
invf = fst forgetfulHom⁻¹
rightInv : ∀ (x : ∥ FreeGroupoid A ∥₂) → f (invf x) ≡ x
rightInv x = elim (λ x → isProp→isSet (squash₂ (f (invf x)) x)) ind x where
ind : ∀ (g : FreeGroupoid A) → f (invf ∣ g ∣₂) ≡ ∣ g ∣₂
ind g = elimProp Bprop η-ind ·-ind ε-ind inv-ind g where
Bprop : ∀ g → isProp (f (invf ∣ g ∣₂) ≡ ∣ g ∣₂)
Bprop g = squash₂ (f (invf ∣ g ∣₂)) ∣ g ∣₂
η-ind : ∀ a → f (invf ∣ η a ∣₂) ≡ ∣ η a ∣₂
η-ind a = refl
·-ind : ∀ g1 g2 → f (invf ∣ g1 ∣₂) ≡ ∣ g1 ∣₂ → f (invf ∣ g2 ∣₂) ≡ ∣ g2 ∣₂ → f (invf ∣ g1 · g2 ∣₂) ≡ ∣ g1 · g2 ∣₂
·-ind g1 g2 ind1 ind2 =
f (invf ∣ g1 · g2 ∣₂)
≡⟨ cong f (IsGroupHom.pres· (snd forgetfulHom⁻¹) ∣ g1 ∣₂ ∣ g2 ∣₂) ⟩
f ((invf ∣ g1 ∣₂) · (invf ∣ g2 ∣₂))
≡⟨ IsGroupHom.pres· (snd forgetfulHom) (invf ∣ g1 ∣₂) (invf ∣ g2 ∣₂) ⟩
(f (invf ∣ g1 ∣₂)) ∣·∣₂ (f (invf ∣ g2 ∣₂))
≡⟨ cong (λ x → x ∣·∣₂ (f (invf ∣ g2 ∣₂))) ind1 ⟩
∣ g1 ∣₂ ∣·∣₂ (f (invf ∣ g2 ∣₂))
≡⟨ cong (λ x → ∣ g1 ∣₂ ∣·∣₂ x) ind2 ⟩
∣ g1 · g2 ∣₂ ∎
ε-ind : f (invf ∣ ε ∣₂) ≡ ∣ ε ∣₂
ε-ind = refl
inv-ind : ∀ g → f (invf ∣ g ∣₂) ≡ ∣ g ∣₂ → f (invf ∣ inv g ∣₂) ≡ ∣ inv g ∣₂
inv-ind g ind =
f (invf ∣ inv g ∣₂)
≡⟨ refl ⟩
f (invf (∣inv∣₂ ∣ g ∣₂))
≡⟨ cong f (IsGroupHom.presinv (snd forgetfulHom⁻¹) ∣ g ∣₂) ⟩
f (inv (invf ∣ g ∣₂))
≡⟨ IsGroupHom.presinv (snd forgetfulHom) (invf ∣ g ∣₂) ⟩
∣inv∣₂ (f (invf ∣ g ∣₂))
≡⟨ cong ∣inv∣₂ ind ⟩
∣inv∣₂ ∣ g ∣₂
≡⟨ refl ⟩
∣ inv g ∣₂ ∎
leftInv : ∀ (g : FreeGroup A) → invf (f g) ≡ g
leftInv g = freeGroupElimProp Bprop η-ind ·-ind ε-ind inv-ind g where
Bprop : ∀ g → isProp (invf (f g) ≡ g)
Bprop g = freeGroupIsSet (invf (f g)) g
η-ind : ∀ a → invf (f (η a)) ≡ (η a)
η-ind a = refl
·-ind : ∀ g1 g2 → invf (f g1) ≡ g1 → invf (f g2) ≡ g2 → invf (f (g1 · g2)) ≡ g1 · g2
·-ind g1 g2 ind1 ind2 =
invf (f (g1 · g2))
≡⟨ cong invf (IsGroupHom.pres· (snd forgetfulHom) g1 g2) ⟩
invf ((f g1) ∣·∣₂ (f g2))
≡⟨ IsGroupHom.pres· (snd forgetfulHom⁻¹) (f g1) (f g2) ⟩
(invf (f g1)) · (invf (f g2))
≡⟨ cong (λ x → x · (invf (f g2))) ind1 ⟩
g1 · (invf (f g2))
≡⟨ cong (λ x → g1 · x) ind2 ⟩
g1 · g2 ∎
ε-ind : invf (f ε) ≡ ε
ε-ind = refl
inv-ind : ∀ g → invf (f g) ≡ g → invf (f (inv g)) ≡ inv g
inv-ind g ind =
invf (f (inv g))
≡⟨ cong invf (IsGroupHom.presinv (snd forgetfulHom) g) ⟩
invf (∣inv∣₂ (f g))
≡⟨ IsGroupHom.presinv (snd forgetfulHom⁻¹) (f g) ⟩
inv (invf (f g))
≡⟨ cong inv ind ⟩
inv g ∎
freeGroupTruncIdempotent≃ : FreeGroup A ≃ ∥ FreeGroupoid A ∥₂
freeGroupTruncIdempotent≃ = biInvEquiv→Equiv-right freeGroupTruncIdempotentBiInvEquiv
freeGroupTruncIdempotent : FreeGroup A ≡ ∥ FreeGroupoid A ∥₂
freeGroupTruncIdempotent = ua freeGroupTruncIdempotent≃
|
algebraic-stack_agda0000_doc_12482 | {- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2020, 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
-- This is a selection of useful functions and definitions
-- from the standard library that we tend to use a lot.
module Util.Prelude where
open import Haskell.Prelude public
open import Dijkstra.All public
open import Level
renaming (suc to ℓ+1; zero to ℓ0; _⊔_ to _ℓ⊔_)
public
1ℓ : Level
1ℓ = ℓ+1 0ℓ
open import Agda.Builtin.Unit
public
open import Function
using (_∘_; _∘′_; case_of_; _on_; _∋_)
public
identity = Function.id
open import Data.Unit.NonEta
public
open import Data.Empty
public
-- NOTE: This function is defined to give extra documentation when discharging
-- absurd cases where Agda can tell by pattern matching that `A` is not
-- inhabited. For example:
-- > absurd (just v ≡ nothing) case impossibleProof of λ ()
infix 0 absurd_case_of_
absurd_case_of_ : ∀ {ℓ₁ ℓ₂} (A : Set ℓ₁) {B : Set ℓ₂} → A → (A → ⊥) → B
absurd A case x of f = ⊥-elim (f x)
open import Data.Nat
renaming (_≟_ to _≟ℕ_; _≤?_ to _≤?ℕ_; _≥?_ to _≥?ℕ_; compare to compareℕ; Ordering to Orderingℕ)
public
max = _⊔_
min = _⊓_
open import Data.Nat.Properties
hiding (≡-irrelevant ; _≟_)
public
open import Data.List
renaming (map to List-map ; filter to List-filter ; lookup to List-lookup;
tabulate to List-tabulate; foldl to List-foldl)
hiding (fromMaybe; [_])
public
open import Data.List.Properties
renaming (≡-dec to List-≡-dec; length-map to List-length-map; map-compose to List-map-compose; filter-++ to List-filter-++; length-filter to List-length-filter)
using (∷-injective; length-++; map-++-commute; sum-++-commute; map-tabulate; tabulate-lookup; ++-identityʳ; ++-identityˡ)
public
open import Data.List.Relation.Binary.Subset.Propositional
renaming (_⊆_ to _⊆List_)
public
open import Data.List.Relation.Unary.Any
using (Any; here; there)
renaming (lookup to Any-lookup; map to Any-map; satisfied to Any-satisfied
;index to Any-index; any to Any-any)
public
open import Data.List.Relation.Unary.Any.Properties
using (¬Any[])
renaming ( map⁺ to Any-map⁺
; map⁻ to Any-map⁻
; concat⁺ to Any-concat⁺
; concat⁻ to Any-concat⁻
; ++⁻ to Any-++⁻
; ++⁺ʳ to Any-++ʳ
; ++⁺ˡ to Any-++ˡ
; singleton⁻ to Any-singleton⁻
; tabulate⁺ to Any-tabulate⁺
; filter⁻ to Any-filter⁻
)
public
open import Data.List.Relation.Unary.All
using (All; []; _∷_)
renaming (head to All-head; tail to All-tail;
lookup to All-lookup; tabulate to All-tabulate;
reduce to All-reduce; map to All-map)
public
open import Data.List.Relation.Unary.All.Properties
hiding (All-map)
renaming ( tabulate⁻ to All-tabulate⁻
; tabulate⁺ to All-tabulate⁺
; map⁺ to All-map⁺
; map⁻ to All-map⁻
; ++⁺ to All-++
)
public
open import Data.List.Membership.Propositional
using (_∈_; _∉_)
public
open import Data.List.Membership.Propositional.Properties
renaming (∈-filter⁺ to List-∈-filter⁺; ∈-filter⁻ to List-∈-filter⁻)
public
open import Data.Vec
using (Vec; []; _∷_)
renaming (replicate to Vec-replicate; lookup to Vec-lookup
;map to Vec-map; head to Vec-head; tail to Vec-tail
;updateAt to Vec-updateAt; tabulate to Vec-tabulate
;allFin to Vec-allFin; toList to Vec-toList; fromList to Vec-fromList
;_++_ to _Vec-++_)
public
open import Data.Vec.Relation.Unary.All
using ([]; _∷_)
renaming (All to Vec-All; lookup to Vec-All-lookup)
public
open import Data.Vec.Properties
using ()
renaming (updateAt-minimal to Vec-updateAt-minimal
;[]=⇒lookup to Vec-[]=⇒lookup
;lookup⇒[]= to Vec-lookup⇒[]=
;lookup∘tabulate to Vec-lookup∘tabulate
;≡-dec to Vec-≡-dec)
public
open import Data.List.Relation.Binary.Pointwise
using (decidable-≡)
public
open import Data.Bool
renaming (_≟_ to _≟Bool_)
hiding (_≤?_; _<_; _<?_; _≤_; not)
public
open import Data.Maybe
renaming (map to Maybe-map; maybe to Maybe-maybe; zip to Maybe-zip ; _>>=_ to _Maybe->>=_)
hiding (align; alignWith; zipWith)
public
-- a non-dependent eliminator
-- note the traditional argument order is "switched", hence the 'S'
maybeS : ∀ {a b} {A : Set a} {B : Set b} →
(x : Maybe A) → B → ((x : A) → B) → B
maybeS {B = B} x f t = Maybe-maybe {B = const B} t f x
-- A Dijkstra version of maybeS, implemented using the version in
-- Dijkstra.Syntax which has traditional argument order
maybeSD : ∀ {ℓ₁ ℓ₂} {M : Set ℓ₁ → Set ℓ₂} ⦃ mmd : MonadMaybeD M ⦄
→ ∀ {A B : Set ℓ₁} → Maybe A → M B → (A → M B) → M B
maybeSD ⦃ mmd ⦄ x y z = maybeD y z x
module _ {Ev Wr St A B : Set} where
maybeSMP-RWS : RWS Ev Wr St (Maybe A)
→ B
→ (A → RWS Ev Wr St B)
→ RWS Ev Wr St B
maybeSMP-RWS x y z = maybeMP-RWS y z x
open import Data.Maybe.Relation.Unary.Any
renaming (Any to Maybe-Any; dec to Maybe-Any-dec)
hiding (map; zip; zipWith; unzip ; unzipWith)
public
maybe-any-⊥ : ∀{a}{A : Set a} → Maybe-Any {A = A} (λ _ → ⊤) nothing → ⊥
maybe-any-⊥ ()
headMay : ∀ {A : Set} → List A → Maybe A
headMay [] = nothing
headMay (x ∷ _) = just x
lastMay : ∀ {A : Set} → List A → Maybe A
lastMay [] = nothing
lastMay (x ∷ []) = just x
lastMay (_ ∷ x ∷ xs) = lastMay (x ∷ xs)
open import Data.Maybe.Properties
using (just-injective)
renaming (≡-dec to Maybe-≡-dec)
public
open import Data.Fin
using (Fin; suc; zero; fromℕ; fromℕ< ; toℕ ; cast)
renaming (_≟_ to _≟Fin_; _≤?_ to _≤?Fin_; _≤_ to _≤Fin_ ; _<_ to _<Fin_;
inject₁ to Fin-inject₁; inject+ to Fin-inject+; inject≤ to Fin-inject≤)
public
fins : (n : ℕ) → List (Fin n)
fins n = Vec-toList (Vec-allFin n)
open import Data.Fin.Properties
using (toℕ-injective; toℕ<n)
renaming (<-cmp to Fin-<-cmp; <⇒≢ to <⇒≢Fin; suc-injective to Fin-suc-injective)
public
open import Relation.Binary.PropositionalEquality
hiding (decSetoid)
public
open import Relation.Binary.HeterogeneousEquality
using (_≅_)
renaming (cong to ≅-cong; cong₂ to ≅-cong₂)
public
open import Relation.Binary
public
≡-irrelevant : ∀{a}{A : Set a} → Irrelevant {a} {A} _≡_
≡-irrelevant refl refl = refl
to-witness-lemma : ∀{ℓ}{A : Set ℓ}{a : A}{f : Maybe A}(x : Is-just f)
→ to-witness x ≡ a → f ≡ just a
to-witness-lemma (just x) refl = refl
open import Relation.Nullary
hiding (Irrelevant; proof)
public
open import Relation.Nullary.Decidable
hiding (map)
public
open import Data.Sum
renaming (map to ⊎-map; map₁ to ⊎-map₁; map₂ to ⊎-map₂)
public
open import Data.Sum.Properties
using (inj₁-injective ; inj₂-injective)
public
⊎-elimˡ : ∀ {ℓ₀ ℓ₁}{A₀ : Set ℓ₀}{A₁ : Set ℓ₁} → ¬ A₀ → A₀ ⊎ A₁ → A₁
⊎-elimˡ ¬a = either (⊥-elim ∘ ¬a) id
⊎-elimʳ : ∀ {ℓ₀ ℓ₁}{A₀ : Set ℓ₀}{A₁ : Set ℓ₁} → ¬ A₁ → A₀ ⊎ A₁ → A₀
⊎-elimʳ ¬a = either id (⊥-elim ∘ ¬a)
open import Data.Product
renaming (map to ×-map; map₂ to ×-map₂; map₁ to ×-map₁; <_,_> to split; swap to ×-swap)
hiding (zip)
public
open import Data.Product.Properties
public
module _ {ℓA} {A : Set ℓA} where
NoneOfKind : ∀ {ℓ} {P : A → Set ℓ} → List A → (p : (a : A) → Dec (P a)) → Set ℓA
NoneOfKind xs p = List-filter p xs ≡ []
postulate -- TODO-1: Replace with or prove using library properties? Move to Lemmas?
NoneOfKind⇒ : ∀ {ℓ} {P : A → Set ℓ} {Q : A → Set ℓ} {xs : List A}
→ (p : (a : A) → Dec (P a))
→ {q : (a : A) → Dec (Q a)}
→ (∀ {a} → P a → Q a) -- TODO-1: Use proper notation (Relation.Unary?)
→ NoneOfKind xs q
→ NoneOfKind xs p
infix 4 _<?ℕ_
_<?ℕ_ : Decidable _<_
m <?ℕ n = suc m ≤?ℕ n
infix 0 if-yes_then_else_
infix 0 if-dec_then_else_
if-yes_then_else_ : ∀ {ℓA ℓB} {A : Set ℓA} {B : Set ℓB} → Dec A → (A → B) → (¬ A → B) → B
if-yes (yes prf) then f else _ = f prf
if-yes (no prf) then _ else g = g prf
if-dec_then_else_ : ∀ {ℓA ℓB} {A : Set ℓA} {B : Set ℓB} → Dec A → B → B → B
if-dec x then f else g = if-yes x then const f else const g
open import Relation.Nullary.Negation
using (contradiction; contraposition)
public
open import Relation.Binary
using (Setoid; IsPreorder)
public
open import Relation.Unary
using (_∪_)
public
open import Relation.Unary.Properties
using (_∪?_)
public
-- Injectivity for a function of two potentially different types (A and B) via functions to a
-- common type (C).
Injective' : ∀ {b c d e}{B : Set b}{C : Set c}{D : Set d} → (hB : B → D) → (hC : C → D) → (_≈_ : B → C → Set e) → Set _
Injective' {C = C} hB hC _≈_ = ∀ {b c} → hB b ≡ hC c → b ≈ c
Injective : ∀ {c d e}{C : Set c}{D : Set d} → (h : C → D) → (_≈_ : Rel C e) → Set _
Injective h _≈_ = Injective' h h _≈_
Injective-≡ : ∀ {c d}{C : Set c}{D : Set d} → (h : C → D) → Set _
Injective-≡ h = Injective h _≡_
Injective-int : ∀{a b c d e}{A : Set a}{B : Set b}{C : Set c}{D : Set d}
→ (_≈_ : A → B → Set e)
→ (h : C → D)
→ (f₁ : A → C)
→ (f₂ : B → C)
→ Set (a ℓ⊔ b ℓ⊔ d ℓ⊔ e)
Injective-int _≈_ h f₁ f₂ = ∀ {a₁} {b₁} → h (f₁ a₁) ≡ h (f₂ b₁) → a₁ ≈ b₁
NonInjective : ∀{a b c}{A : Set a}{B : Set b}
→ (_≈_ : Rel A c)
→ (A → B) → Set (a ℓ⊔ b ℓ⊔ c)
NonInjective {A = A} _≈_ f
= Σ (A × A) (λ { (x₁ , x₂) → ¬ (x₁ ≈ x₂) × f x₁ ≡ f x₂ })
NonInjective-≡ : ∀{a b}{A : Set a}{B : Set b}
→ (A → B) → Set (a ℓ⊔ b)
NonInjective-≡ = NonInjective _≡_
NonInjective-≡-preds : ∀{a b}{A : Set a}{B : Set b}{ℓ₁ ℓ₂ : Level}
→ (A → Set ℓ₁)
→ (A → Set ℓ₂)
→ (A → B) → Set (a ℓ⊔ b ℓ⊔ ℓ₁ ℓ⊔ ℓ₂)
NonInjective-≡-preds Pred1 Pred2 f = Σ (NonInjective _≡_ f) λ { ((a₀ , a₁) , _ , _) → Pred1 a₀ × Pred2 a₁ }
NonInjective-≡-pred : ∀{a b}{A : Set a}{B : Set b}{ℓ : Level}
→ (P : A → Set ℓ)
→ (A → B) → Set (a ℓ⊔ b ℓ⊔ ℓ)
NonInjective-≡-pred Pred = NonInjective-≡-preds Pred Pred
NonInjective-∘ : ∀{a b c}{A : Set a}{B : Set b}{C : Set c}
→ {f : A → B}(g : B → C)
→ NonInjective-≡ f
→ NonInjective-≡ (g ∘ f)
NonInjective-∘ g ((x0 , x1) , (x0≢x1 , fx0≡fx1))
= ((x0 , x1) , x0≢x1 , (cong g fx0≡fx1))
--------------------------------------------
-- Handy fmap and bind for specific types --
_<M$>_ : ∀{a b}{A : Set a}{B : Set b}
→ (f : A → B)
→ Maybe A → Maybe B
_<M$>_ = Maybe-map
<M$>-univ : ∀{a b}{A : Set a}{B : Set b}
→ (f : A → B)(x : Maybe A)
→ {y : B} → f <M$> x ≡ just y
→ ∃[ x' ] (x ≡ just x' × f x' ≡ y)
<M$>-univ f (just x) refl = x , (refl , refl)
maybe-lift : {A : Set}
→ {mx : Maybe A}{x : A}
→ (P : A → Set)
→ P x → mx ≡ just x
→ Maybe-maybe {B = const Set} P ⊥ mx
maybe-lift {mx = just .x} {x} P px refl = px
<M$>-nothing : ∀ {a b}{A : Set a}{B : Set b}(f : A → B)
→ f <M$> nothing ≡ nothing
<M$>-nothing _ = refl
_<⊎$>_ : ∀{a b c}{A : Set a}{B : Set b}{C : Set c}
→ (A → B) → C ⊎ A → C ⊎ B
f <⊎$> (inj₁ hb) = inj₁ hb
f <⊎$> (inj₂ x) = inj₂ (f x)
_⊎⟫=_ : ∀{a b c}{A : Set a}{B : Set b}{C : Set c}
→ C ⊎ A → (A → C ⊎ B) → C ⊎ B
(inj₁ x) ⊎⟫= _ = inj₁ x
(inj₂ a) ⊎⟫= f = f a
-- a non-dependent eliminator
-- note the traditional argument order is "switched", hence the 'S'
eitherS : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c}
(x : Either A B) → ((x : A) → C) → ((x : B) → C) → C
eitherS eab fa fb = case eab of λ where
(Left a) → fa a
(Right b) → fb b
-- A Dijkstra version of eitherS, implemented using the version in
-- Dijkstra.Syntax which has traditional argument order
eitherSD : ∀ {ℓ₁ ℓ₂ ℓ₃} {M : Set ℓ₁ → Set ℓ₂} ⦃ med : MonadEitherD M ⦄
→ ∀ {EL : Set ℓ₁ → Set ℓ₁ → Set ℓ₃} ⦃ _ : EitherLike EL ⦄
→ ∀ {E A B : Set ℓ₁} → EL E A → (E → M B) → (A → M B) → M B
eitherSD ⦃ med ⦄ ⦃ el ⦄ x y z = eitherD y z x
open import Data.String as String
hiding (_==_ ; _≟_ ; concat)
check : Bool → List String → Either String Unit
check b t = if b then inj₂ unit else inj₁ (String.intersperse "; " t)
toWitnessT : ∀{ℓ}{P : Set ℓ}{d : Dec P} → ⌊ d ⌋ ≡ true → P
toWitnessT {d = yes proof} _ = proof
toWitnessF : ∀{ℓ}{P : Set ℓ}{d : Dec P} → ⌊ d ⌋ ≡ false → ¬ P
toWitnessF{d = no proof} _ = proof
Any-satisfied-∈ : ∀{a ℓ}{A : Set a}{P : A → Set ℓ}{xs : List A}
→ Any P xs → Σ A (λ x → P x × x ∈ xs)
Any-satisfied-∈ (here px) = _ , (px , here refl)
Any-satisfied-∈ (there p) = let (a , px , prf) = Any-satisfied-∈ p
in (a , px , there prf)
f-sum : ∀{a}{A : Set a} → (A → ℕ) → List A → ℕ
f-sum f = sum ∘ List-map f
maybeSMP : ∀ {ℓ} {A B : Set} {m : Set → Set ℓ} ⦃ _ : Monad m ⦄ → m (Maybe A) → B → (A → m B) → m B
maybeSMP ma b f = do
x ← ma
case x of λ where
nothing → pure b
(just j) → f j
open import LibraBFT.Base.Util public
-- Like a Haskell list-comprehension for ℕ : [ n | n <- [from .. to] ]
fromToList : ℕ → ℕ → List ℕ
fromToList from to with from ≤′? to
... | no ¬pr = []
... | yes pr = fromToList-le from to pr []
where
fromToList-le : ∀ (from to : ℕ) (klel : from ≤′ to) (acc : List ℕ) → List ℕ
fromToList-le from ._ ≤′-refl acc = from ∷ acc
fromToList-le from (suc to) (≤′-step klel) acc = fromToList-le from to klel (suc to ∷ acc)
_ : fromToList 1 1 ≡ 1 ∷ []
_ = refl
_ : fromToList 1 2 ≡ 1 ∷ 2 ∷ []
_ = refl
_ : fromToList 2 1 ≡ []
_ = refl
|
algebraic-stack_agda0000_doc_12483 | module Data.List.Primitive where
-- In Agda 2.2.10 and below, there's no FFI binding for the stdlib
-- List type, so we have to roll our own. This will change.
data #List (X : Set) : Set where
[] : #List X
_∷_ : X → #List X → #List X
{-# COMPILED_DATA #List [] [] (:) #-}
|
algebraic-stack_agda0000_doc_12484 | {-# OPTIONS --safe --experimental-lossy-unification #-}
-- This file could be proven using the file Sn
-- However the proofs are easier than in Sn
-- And so kept for pedagologic reasons
module Cubical.ZCohomology.CohomologyRings.S1 where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Transport
open import Cubical.Foundations.HLevels
open import Cubical.Data.Unit
open import Cubical.Data.Nat renaming (_+_ to _+n_ ; _·_ to _·n_ ; snotz to nsnotz)
open import Cubical.Data.Int
open import Cubical.Data.Vec
open import Cubical.Data.FinData
open import Cubical.Algebra.Group
open import Cubical.Algebra.Group.Morphisms
open import Cubical.Algebra.Group.MorphismProperties
open import Cubical.Algebra.Group.Instances.Int renaming (ℤGroup to ℤG)
open import Cubical.Algebra.DirectSum.Base
open import Cubical.Algebra.Ring
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.CommRing.FGIdeal
open import Cubical.Algebra.CommRing.QuotientRing
open import Cubical.Algebra.Polynomials.Multivariate.Base renaming (base to baseP)
open import Cubical.Algebra.CommRing.Instances.Int renaming (ℤCommRing to ℤCR)
open import Cubical.Algebra.CommRing.Instances.MultivariatePoly
open import Cubical.Algebra.CommRing.Instances.MultivariatePoly-Quotient
open import Cubical.Algebra.CommRing.Instances.MultivariatePoly-notationZ
open import Cubical.HITs.Truncation
open import Cubical.HITs.SetQuotients as SQ renaming (_/_ to _/sq_)
open import Cubical.HITs.PropositionalTruncation as PT
open import Cubical.HITs.Sn
open import Cubical.ZCohomology.Base
open import Cubical.ZCohomology.GroupStructure
open import Cubical.ZCohomology.RingStructure.CupProduct
open import Cubical.ZCohomology.RingStructure.CohomologyRing
open import Cubical.ZCohomology.Groups.Sn
open Iso
module Equiv-S1-Properties where
-----------------------------------------------------------------------------
-- Definitions
open CommRingStr (snd ℤCR) using ()
renaming
( 0r to 0ℤ
; 1r to 1ℤ
; _+_ to _+ℤ_
; -_ to -ℤ_
; _·_ to _·ℤ_
; +Assoc to +ℤAssoc
; +Identity to +ℤIdentity
; +Lid to +ℤLid
; +Rid to +ℤRid
; +Inv to +ℤInv
; +Linv to +ℤLinv
; +Rinv to +ℤRinv
; +Comm to +ℤComm
; ·Assoc to ·ℤAssoc
; ·Identity to ·ℤIdentity
; ·Lid to ·ℤLid
; ·Rid to ·ℤRid
; ·Rdist+ to ·ℤRdist+
; ·Ldist+ to ·ℤLdist+
; is-set to isSetℤ )
open RingStr (snd (H*R (S₊ 1))) using ()
renaming
( 0r to 0H*
; 1r to 1H*
; _+_ to _+H*_
; -_ to -H*_
; _·_ to _cup_
; +Assoc to +H*Assoc
; +Identity to +H*Identity
; +Lid to +H*Lid
; +Rid to +H*Rid
; +Inv to +H*Inv
; +Linv to +H*Linv
; +Rinv to +H*Rinv
; +Comm to +H*Comm
; ·Assoc to ·H*Assoc
; ·Identity to ·H*Identity
; ·Lid to ·H*Lid
; ·Rid to ·H*Rid
; ·Rdist+ to ·H*Rdist+
; ·Ldist+ to ·H*Ldist+
; is-set to isSetH* )
open CommRingStr (snd ℤ[X]) using ()
renaming
( 0r to 0Pℤ
; 1r to 1Pℤ
; _+_ to _+Pℤ_
; -_ to -Pℤ_
; _·_ to _·Pℤ_
; +Assoc to +PℤAssoc
; +Identity to +PℤIdentity
; +Lid to +PℤLid
; +Rid to +PℤRid
; +Inv to +PℤInv
; +Linv to +PℤLinv
; +Rinv to +PℤRinv
; +Comm to +PℤComm
; ·Assoc to ·PℤAssoc
; ·Identity to ·PℤIdentity
; ·Lid to ·PℤLid
; ·Rid to ·PℤRid
; ·Comm to ·PℤComm
; ·Rdist+ to ·PℤRdist+
; ·Ldist+ to ·PℤLdist+
; is-set to isSetPℤ )
open CommRingStr (snd ℤ[X]/X²) using ()
renaming
( 0r to 0PℤI
; 1r to 1PℤI
; _+_ to _+PℤI_
; -_ to -PℤI_
; _·_ to _·PℤI_
; +Assoc to +PℤIAssoc
; +Identity to +PℤIIdentity
; +Lid to +PℤILid
; +Rid to +PℤIRid
; +Inv to +PℤIInv
; +Linv to +PℤILinv
; +Rinv to +PℤIRinv
; +Comm to +PℤIComm
; ·Assoc to ·PℤIAssoc
; ·Identity to ·PℤIIdentity
; ·Lid to ·PℤILid
; ·Rid to ·PℤIRid
; ·Rdist+ to ·PℤIRdist+
; ·Ldist+ to ·PℤILdist+
; is-set to isSetPℤI )
-----------------------------------------------------------------------------
-- Direct Sens on ℤ[x]
ℤ[x]→H*-S¹ : ℤ[x] → H* (S₊ 1)
ℤ[x]→H*-S¹ = Poly-Rec-Set.f _ _ _ isSetH*
0H*
base-trad
_+H*_
+H*Assoc
+H*Rid
+H*Comm
base-neutral-eq
base-add-eq
where
e : _
e = Hᵐ-Sⁿ
base-trad : _
base-trad (zero ∷ []) a = base 0 (inv (fst (Hᵐ-Sⁿ 0 1)) a)
base-trad (one ∷ []) a = base 1 (inv (fst (Hᵐ-Sⁿ 1 1)) a)
base-trad (suc (suc n) ∷ []) a = 0H*
base-neutral-eq : _
base-neutral-eq (zero ∷ []) = cong (base 0) (IsGroupHom.pres1 (snd (invGroupIso (Hᵐ-Sⁿ 0 1)))) ∙ base-neutral _
base-neutral-eq (one ∷ []) = cong (base 1) (IsGroupHom.pres1 (snd (invGroupIso (Hᵐ-Sⁿ 1 1)))) ∙ base-neutral _
base-neutral-eq (suc (suc n) ∷ []) = refl
base-add-eq : _
base-add-eq (zero ∷ []) a b = (base-add _ _ _) ∙ (cong (base 0) (sym (IsGroupHom.pres· (snd (invGroupIso (Hᵐ-Sⁿ 0 1))) a b)))
base-add-eq (one ∷ []) a b = (base-add _ _ _) ∙ (cong (base 1) (sym (IsGroupHom.pres· (snd (invGroupIso (Hᵐ-Sⁿ 1 1))) a b)))
base-add-eq (suc (suc n) ∷ []) a b = +H*Rid _
-----------------------------------------------------------------------------
-- Morphism on ℤ[x]
ℤ[x]→H*-S¹-pres1Pℤ : ℤ[x]→H*-S¹ (1Pℤ) ≡ 1H*
ℤ[x]→H*-S¹-pres1Pℤ = refl
ℤ[x]→H*-S¹-pres+ : (x y : ℤ[x]) → ℤ[x]→H*-S¹ (x +Pℤ y) ≡ ℤ[x]→H*-S¹ x +H* ℤ[x]→H*-S¹ y
ℤ[x]→H*-S¹-pres+ x y = refl
-- cup product on H⁰ → H⁰ → H⁰
T0 : (z : ℤ) → coHom 0 (S₊ 1)
T0 = λ z → inv (fst (Hᵐ-Sⁿ 0 1)) z
T0g : IsGroupHom (ℤG .snd) (fst (invGroupIso (Hᵐ-Sⁿ 0 1)) .fun) (coHomGr 0 (S₊ (suc 0)) .snd)
T0g = snd (invGroupIso (Hᵐ-Sⁿ 0 1))
-- idea : control of the unfolding + simplification of T0 on the left
pres·-base-case-00 : (a : ℤ) → (b : ℤ) →
T0 (a ·ℤ b) ≡ (T0 a) ⌣ (T0 b)
pres·-base-case-00 (pos zero) b = (IsGroupHom.pres1 T0g)
pres·-base-case-00 (pos (suc n)) b = ((IsGroupHom.pres· T0g b (pos n ·ℤ b)))
∙ (cong (λ X → (T0 b) +ₕ X) (pres·-base-case-00 (pos n) b))
pres·-base-case-00 (negsuc zero) b = IsGroupHom.presinv T0g b
pres·-base-case-00 (negsuc (suc n)) b = cong T0 (+ℤComm (-ℤ b) (negsuc n ·ℤ b)) -- ·ℤ and ·₀ are defined asymetrically !
∙ IsGroupHom.pres· T0g (negsuc n ·ℤ b) (-ℤ b)
∙ cong₂ _+ₕ_ (pres·-base-case-00 (negsuc n) b)
(IsGroupHom.presinv T0g b)
-- cup product on H⁰ → H¹ → H¹
T1 : (z : ℤ) → coHom 1 (S₊ 1)
T1 = λ z → inv (fst (Hᵐ-Sⁿ 1 1)) z
-- idea : control of the unfolding + simplification of T0 on the left
T1g : IsGroupHom (ℤG .snd) (fst (invGroupIso (Hᵐ-Sⁿ 1 1)) .fun) (coHomGr 1 (S₊ 1) .snd)
T1g = snd (invGroupIso (Hᵐ-Sⁿ 1 1))
pres·-base-case-01 : (a : ℤ) → (b : ℤ) →
T1 (a ·ℤ b) ≡ (T0 a) ⌣ (T1 b)
pres·-base-case-01 (pos zero) b = (IsGroupHom.pres1 T1g)
pres·-base-case-01 (pos (suc n)) b = ((IsGroupHom.pres· T1g b (pos n ·ℤ b)))
∙ (cong (λ X → (T1 b) +ₕ X) (pres·-base-case-01 (pos n) b))
pres·-base-case-01 (negsuc zero) b = IsGroupHom.presinv T1g b
pres·-base-case-01 (negsuc (suc n)) b = cong T1 (+ℤComm (-ℤ b) (negsuc n ·ℤ b)) -- ·ℤ and ·₀ are defined asymetrically !
∙ IsGroupHom.pres· T1g (negsuc n ·ℤ b) (-ℤ b)
∙ cong₂ _+ₕ_ (pres·-base-case-01 (negsuc n) b)
(IsGroupHom.presinv T1g b)
-- Nice packaging of the proof
pres·-base-case-int : (n : ℕ) → (a : ℤ) → (m : ℕ) → (b : ℤ) →
ℤ[x]→H*-S¹ (baseP (n ∷ []) a ·Pℤ baseP (m ∷ []) b)
≡ ℤ[x]→H*-S¹ (baseP (n ∷ []) a) cup ℤ[x]→H*-S¹ (baseP (m ∷ []) b)
pres·-base-case-int zero a zero b = cong (base 0) (pres·-base-case-00 a b)
pres·-base-case-int zero a one b = cong (base 1) (pres·-base-case-01 a b)
pres·-base-case-int zero a (suc (suc m)) b = refl
pres·-base-case-int one a zero b = cong ℤ[x]→H*-S¹ (·PℤComm (baseP (1 ∷ []) a) (baseP (zero ∷ []) b))
∙ pres·-base-case-int 0 b 1 a
∙ gradCommRing (S₊ 1) 0 1 (inv (fst (Hᵐ-Sⁿ 0 1)) b) (inv (fst (Hᵐ-Sⁿ 1 1)) a)
pres·-base-case-int one a one b = sym (base-neutral 2) ∙
cong (base 2) (isOfHLevelRetractFromIso 1 (fst (Hⁿ-Sᵐ≅0 1 0 nsnotz)) isPropUnit _ _)
pres·-base-case-int one a (suc (suc m)) b = refl
pres·-base-case-int (suc (suc n)) a m b = refl
pres·-base-case-vec : (v : Vec ℕ 1) → (a : ℤ) → (v' : Vec ℕ 1) → (b : ℤ) →
ℤ[x]→H*-S¹ (baseP v a ·Pℤ baseP v' b)
≡ ℤ[x]→H*-S¹ (baseP v a) cup ℤ[x]→H*-S¹ (baseP v' b)
pres·-base-case-vec (n ∷ []) a (m ∷ []) b = pres·-base-case-int n a m b
-- proof of the morphism
ℤ[x]→H*-S¹-pres· : (x y : ℤ[x]) → ℤ[x]→H*-S¹ (x ·Pℤ y) ≡ ℤ[x]→H*-S¹ x cup ℤ[x]→H*-S¹ y
ℤ[x]→H*-S¹-pres· = Poly-Ind-Prop.f _ _ _
(λ x p q i y j → isSetH* _ _ (p y) (q y) i j)
(λ y → refl)
base-case
λ {U V} ind-U ind-V y → cong₂ _+H*_ (ind-U y) (ind-V y)
where
base-case : _
base-case (n ∷ []) a = Poly-Ind-Prop.f _ _ _ (λ _ → isSetH* _ _)
(sym (RingTheory.0RightAnnihilates (H*R (S₊ 1)) _))
(λ v' b → pres·-base-case-vec (n ∷ []) a v' b)
λ {U V} ind-U ind-V → (cong₂ _+H*_ ind-U ind-V) ∙ sym (·H*Rdist+ _ _ _)
-----------------------------------------------------------------------------
-- Function on ℤ[x]/x + morphism
ℤ[x]→H*-S¹-cancelX : (k : Fin 1) → ℤ[x]→H*-S¹ (<X²> k) ≡ 0H*
ℤ[x]→H*-S¹-cancelX zero = refl
ℤ[X]→H*-S¹ : RingHom (CommRing→Ring ℤ[X]) (H*R (S₊ 1))
fst ℤ[X]→H*-S¹ = ℤ[x]→H*-S¹
snd ℤ[X]→H*-S¹ = makeIsRingHom ℤ[x]→H*-S¹-pres1Pℤ ℤ[x]→H*-S¹-pres+ ℤ[x]→H*-S¹-pres·
ℤ[X]/X²→H*R-S¹ : RingHom (CommRing→Ring ℤ[X]/X²) (H*R (S₊ 1))
ℤ[X]/X²→H*R-S¹ = Quotient-FGideal-CommRing-Ring.f ℤ[X] (H*R (S₊ 1)) ℤ[X]→H*-S¹ <X²> ℤ[x]→H*-S¹-cancelX
ℤ[x]/x²→H*-S¹ : ℤ[x]/x² → H* (S₊ 1)
ℤ[x]/x²→H*-S¹ = fst ℤ[X]/X²→H*R-S¹
-----------------------------------------------------------------------------
-- Converse Sens on ℤ[X] + ℤ[x]/x
H*-S¹→ℤ[x] : H* (S₊ 1) → ℤ[x]
H*-S¹→ℤ[x] = DS-Rec-Set.f _ _ _ _ isSetPℤ
0Pℤ
base-trad
_+Pℤ_
+PℤAssoc
+PℤRid
+PℤComm
base-neutral-eq
base-add-eq
where
base-trad : _
base-trad zero a = baseP (0 ∷ []) (fun (fst (Hᵐ-Sⁿ 0 1)) a)
base-trad one a = baseP (1 ∷ []) (fun (fst (Hᵐ-Sⁿ 1 1)) a)
base-trad (suc (suc n)) a = 0Pℤ
base-neutral-eq : _
base-neutral-eq zero = cong (baseP (0 ∷ [])) (IsGroupHom.pres1 (snd (Hᵐ-Sⁿ 0 1))) ∙ base-0P _
base-neutral-eq one = cong (baseP (1 ∷ [])) (IsGroupHom.pres1 (snd (Hᵐ-Sⁿ 1 1))) ∙ base-0P _
base-neutral-eq (suc (suc n)) = refl
base-add-eq : _
base-add-eq zero a b = (base-poly+ _ _ _) ∙ (cong (baseP (0 ∷ [])) (sym (IsGroupHom.pres· (snd (Hᵐ-Sⁿ 0 1)) a b)))
base-add-eq one a b = (base-poly+ _ _ _) ∙ (cong (baseP (1 ∷ [])) (sym (IsGroupHom.pres· (snd (Hᵐ-Sⁿ 1 1)) a b)))
base-add-eq (suc (suc n)) a b = +PℤRid _
H*-S¹→ℤ[x]-pres+ : (x y : H* (S₊ 1)) → H*-S¹→ℤ[x] ( x +H* y) ≡ H*-S¹→ℤ[x] x +Pℤ H*-S¹→ℤ[x] y
H*-S¹→ℤ[x]-pres+ x y = refl
H*-S¹→ℤ[x]/x² : H* (S₊ 1) → ℤ[x]/x²
H*-S¹→ℤ[x]/x² = [_] ∘ H*-S¹→ℤ[x]
H*-S¹→ℤ[x]/x²-pres+ : (x y : H* (S₊ 1)) → H*-S¹→ℤ[x]/x² (x +H* y) ≡ (H*-S¹→ℤ[x]/x² x) +PℤI (H*-S¹→ℤ[x]/x² y)
H*-S¹→ℤ[x]/x²-pres+ x y = refl
-----------------------------------------------------------------------------
-- Section
e-sect : (x : H* (S₊ 1)) → ℤ[x]/x²→H*-S¹ (H*-S¹→ℤ[x]/x² x) ≡ x
e-sect = DS-Ind-Prop.f _ _ _ _ (λ _ → isSetH* _ _)
refl
base-case
λ {U V} ind-U ind-V → cong₂ _+H*_ ind-U ind-V
where
base-case : _
base-case zero a = cong (base 0) (leftInv (fst (Hᵐ-Sⁿ 0 1)) a)
base-case one a = cong (base 1) (leftInv (fst (Hᵐ-Sⁿ 1 1)) a)
base-case (suc (suc n)) a = (sym (base-neutral (suc (suc n))))
∙ cong (base (suc (suc n))) (isOfHLevelRetractFromIso 1 (fst (Hⁿ-Sᵐ≅0 (suc n) 0 nsnotz)) isPropUnit _ _)
-----------------------------------------------------------------------------
-- Retraction
e-retr : (x : ℤ[x]/x²) → H*-S¹→ℤ[x]/x² (ℤ[x]/x²→H*-S¹ x) ≡ x
e-retr = SQ.elimProp (λ _ → isSetPℤI _ _)
(Poly-Ind-Prop.f _ _ _ (λ _ → isSetPℤI _ _)
refl
base-case
λ {U V} ind-U ind-V → cong₂ _+PℤI_ ind-U ind-V)
where
base-case : _
base-case (zero ∷ []) a = cong [_] (cong (baseP (0 ∷ [])) (rightInv (fst (Hᵐ-Sⁿ 0 1)) a))
base-case (one ∷ []) a = cong [_] (cong (baseP (1 ∷ [])) (rightInv (fst (Hᵐ-Sⁿ 1 1)) a))
base-case (suc (suc n) ∷ []) a = eq/ 0Pℤ (baseP (suc (suc n) ∷ []) a) ∣ ((λ x → baseP (n ∷ []) (-ℤ a)) , helper) ∣₁
where
helper : _
helper = (+PℤLid _) ∙ cong₂ baseP (cong (λ X → X ∷ []) (sym (+-comm n 2))) (sym (·ℤRid _)) ∙ (sym (+PℤRid _))
-----------------------------------------------------------------------------
-- Computation of the Cohomology Ring
module _ where
open Equiv-S1-Properties
S¹-CohomologyRing : RingEquiv (CommRing→Ring ℤ[X]/X²) (H*R (S₊ 1))
fst S¹-CohomologyRing = isoToEquiv is
where
is : Iso ℤ[x]/x² (H* (S₊ 1))
fun is = ℤ[x]/x²→H*-S¹
inv is = H*-S¹→ℤ[x]/x²
rightInv is = e-sect
leftInv is = e-retr
snd S¹-CohomologyRing = snd ℤ[X]/X²→H*R-S¹
CohomologyRing-S¹ : RingEquiv (H*R (S₊ 1)) (CommRing→Ring ℤ[X]/X²)
CohomologyRing-S¹ = RingEquivs.invEquivRing S¹-CohomologyRing
|
algebraic-stack_agda0000_doc_12485 | {-# OPTIONS --type-in-type
--no-termination-check
--no-positivity-check #-}
module IMDesc where
--********************************************
-- Prelude
--********************************************
-- Some preliminary stuffs, to avoid relying on the stdlib
--****************
-- Sigma and friends
--****************
data Sigma (A : Set)(B : A -> Set) : Set where
_,_ : (x : A)(y : B x) -> Sigma A B
_*_ : (A B : Set) -> Set
A * B = Sigma A \_ -> B
fst : {A : Set}{B : A -> Set} -> Sigma A B -> A
fst (a , _) = a
snd : {A : Set}{B : A -> Set} (p : Sigma A B) -> B (fst p)
snd (a , b) = b
data Zero : Set where
record One : Set where
--****************
-- Sum and friends
--****************
data _+_ (A B : Set) : Set where
l : A -> A + B
r : B -> A + B
--****************
-- Prop
--****************
data EProp : Set where
Trivial : EProp
Prf : EProp -> Set
Prf _ = {! !}
--****************
-- Enum
--****************
data EnumU : Set where
data EnumT (E : EnumU) : Set where
Branches : (E : EnumU) -> (P : EnumT E -> Set) -> Set
Branches _ _ = {! !}
switch : (E : EnumU) -> (e : EnumT E) -> (P : EnumT E -> Set) -> Branches E P -> P e
switch = {! !}
--********************************************
-- IMDesc
--********************************************
--****************
-- Code
--****************
data IDesc (I : Set) : Set where
iat : (i : I) -> IDesc I
ipi : (S : Set)(T : S -> IDesc I) -> IDesc I
isigma : (S : Set)(T : S -> IDesc I) -> IDesc I
iprf : (Q : EProp) -> IDesc I
iprod : (D : IDesc I)(D : IDesc I) -> IDesc I
ifsigma : (E : EnumU)(f : Branches E (\ _ -> IDesc I)) -> IDesc I
--****************
-- Interpretation
--****************
desc : (I : Set)(D : IDesc I)(P : I -> Set) -> Set
desc I (iat i) P = P i
desc I (ipi S T) P = (s : S) -> desc I (T s) P
desc I (isigma S T) P = Sigma S (\ s -> desc I (T s) P)
desc I (iprf q) P = Prf q
desc I (iprod D D') P = Sigma (desc I D P) (\ _ -> desc I D' P)
desc I (ifsigma E B) P = Sigma (EnumT E) (\ e -> desc I (switch E e (\ _ -> IDesc I) B) P)
--****************
-- Curried and uncurried interpretations
--****************
curryD : (I : Set)(D : IDesc I)(P : I -> Set)(R : desc I D P -> Set) -> Set
curryD I (iat i) P R = (x : P i) -> R x
curryD I (ipi S T) P R = (f : (s : S) -> desc I (T s) P) -> R f
curryD I (isigma S T) P R = (s : S) -> curryD I (T s) P (\ d -> R (s , d))
curryD I (iprf Q) P R = (x : Prf Q) -> R x
curryD I (iprod D D') P R = curryD I D P (\ d ->
curryD I D' P (\ d' -> R (d , d')))
curryD I (ifsigma E B) P R = Branches E (\e -> curryD I (switch E e (\_ -> IDesc I) B) P (\d -> R (e , d)))
uncurryD : (I : Set)(D : IDesc I)(P : I -> Set)(R : desc I D P -> Set) ->
curryD I D P R -> (xs : desc I D P) -> R xs
uncurryD I (iat i) P R f xs = f xs
uncurryD I (ipi S T) P R F f = F f
uncurryD I (isigma S T) P R f (s , d) = uncurryD I (T s) P (\d -> R (s , d)) (f s) d
uncurryD I (iprf Q) P R f q = f q
uncurryD I (iprod D D') P R f (d , d') = uncurryD I D' P ((\ d' → R (d , d')))
(uncurryD I D P ((\ x → curryD I D' P (\ d0 → R (x , d0)))) f d) d'
uncurryD I (ifsigma E B) P R br (e , d) = uncurryD I (switch E e (\ _ -> IDesc I) B) P
(\ d -> R ( e , d ))
(switch E e ( \ e -> R ( e , d)) br) d
--****************
-- Everywhere
--****************
box : (I : Set)(D : IDesc I)(P : I -> Set) -> desc I D P -> IDesc (Sigma I P)
box I (iat i) P x = iat (i , x)
box I (ipi S T) P f = ipi S (\ s -> box I (T s) P (f s))
box I (isigma S T) P (s , d) = box I (T s) P d
box I (iprf Q) P q = iprf Trivial
box I (iprod D D') P (d , d') = iprod (box I D P d) (box I D' P d')
box I (ifsigma E B) P (e , d) = box I (switch E e (\ _ -> IDesc I) B) P d
mapbox : (I : Set)(D : IDesc I)(Z : I -> Set)(P : Sigma I Z -> Set) ->
((x : Sigma I Z) -> P x) ->
( d : desc I D Z) -> desc (Sigma I Z) (box I D Z d) P
mapbox = {!!}
--****************
-- Fix-point
--****************
data IMu (I : Set)(D : I -> IDesc I)(i : I) : Set where
Con : desc I (D i) (\ j -> IMu I D j) -> IMu I D i
--****************
-- Induction, curried
--****************
inductionC : (I : Set)(D : I -> IDesc I)(i : I)(v : IMu I D i)
(P : Sigma I (IMu I D) -> Set)
(m : (i : I) ->
curryD I (D i) (IMu I D) (\xs ->
curryD (Sigma I (IMu I D))
(box I (D i) (IMu I D) xs)
P
(\ _ -> P (i , Con xs)))) ->
P ( i , v )
inductionC I D i (Con x) P m =
let t = uncurryD I
(D i)
(IMu I D)
(\xs ->
curryD (Sigma I (IMu I D))
(box I (D i) (IMu I D) xs)
P
(\ _ -> P (i , Con xs)))
(m i)
x
in
uncurryD (Sigma I (IMu I D))
( box I (D i) (IMu I D) x)
P
(\ _ -> P ( i , Con x))
t
(mapbox I ( D i) ( IMu I D) P ind x)
where ind : (x' : Sigma I (IMu I D)) -> P x'
ind ( i , x) = inductionC I D i x P m
|
algebraic-stack_agda0000_doc_12486 |
module Lib.Fin where
open import Lib.Nat
open import Lib.Bool
open import Lib.Id
data Fin : Nat -> Set where
zero : {n : Nat} -> Fin (suc n)
suc : {n : Nat} -> Fin n -> Fin (suc n)
fromNat : (n : Nat) -> Fin (suc n)
fromNat zero = zero
fromNat (suc n) = suc (fromNat n)
toNat : {n : Nat} -> Fin n -> Nat
toNat zero = zero
toNat (suc n) = suc (toNat n)
weaken : {n : Nat} -> Fin n -> Fin (suc n)
weaken zero = zero
weaken (suc n) = suc (weaken n)
lem-toNat-weaken : forall {n} (i : Fin n) -> toNat i ≡ toNat (weaken i)
lem-toNat-weaken zero = refl
lem-toNat-weaken (suc i) with toNat i | lem-toNat-weaken i
... | .(toNat (weaken i)) | refl = refl
lem-toNat-fromNat : (n : Nat) -> toNat (fromNat n) ≡ n
lem-toNat-fromNat zero = refl
lem-toNat-fromNat (suc n) with toNat (fromNat n) | lem-toNat-fromNat n
... | .n | refl = refl
finEq : {n : Nat} -> Fin n -> Fin n -> Bool
finEq zero zero = true
finEq zero (suc _) = false
finEq (suc _) zero = false
finEq (suc i) (suc j) = finEq i j
-- A view telling you if a given element is the maximal one.
data MaxView {n : Nat} : Fin (suc n) -> Set where
theMax : MaxView (fromNat n)
notMax : (i : Fin n) -> MaxView (weaken i)
maxView : {n : Nat}(i : Fin (suc n)) -> MaxView i
maxView {zero} zero = theMax
maxView {zero} (suc ())
maxView {suc n} zero = notMax zero
maxView {suc n} (suc i) with maxView i
maxView {suc n} (suc .(fromNat n)) | theMax = theMax
maxView {suc n} (suc .(weaken i)) | notMax i = notMax (suc i)
-- The non zero view
data NonEmptyView : {n : Nat} -> Fin n -> Set where
ne : {n : Nat}{i : Fin (suc n)} -> NonEmptyView i
nonEmpty : {n : Nat}(i : Fin n) -> NonEmptyView i
nonEmpty zero = ne
nonEmpty (suc _) = ne
-- The thinning view
thin : {n : Nat} -> Fin (suc n) -> Fin n -> Fin (suc n)
thin zero j = suc j
thin (suc i) zero = zero
thin (suc i) (suc j) = suc (thin i j)
data EqView : {n : Nat} -> Fin n -> Fin n -> Set where
equal : {n : Nat}{i : Fin n} -> EqView i i
notequal : {n : Nat}{i : Fin (suc n)}(j : Fin n) -> EqView i (thin i j)
compare : {n : Nat}(i j : Fin n) -> EqView i j
compare zero zero = equal
compare zero (suc j) = notequal j
compare (suc i) zero with nonEmpty i
... | ne = notequal zero
compare (suc i) (suc j) with compare i j
compare (suc i) (suc .i) | equal = equal
compare (suc i) (suc .(thin i j)) | notequal j = notequal (suc j) |
algebraic-stack_agda0000_doc_12487 | ------------------------------------------------------------------------
-- Integer division
------------------------------------------------------------------------
module Data.Nat.DivMod where
open import Data.Nat
open import Data.Nat.Properties
open SemiringSolver
open import Data.Fin as Fin using (Fin; zero; suc; toℕ; fromℕ)
import Data.Fin.Props as Fin
open import Induction.Nat
open import Relation.Nullary.Decidable
open import Relation.Binary.PropositionalEquality
open ≡-Reasoning
open import Data.Function
------------------------------------------------------------------------
-- Some boring lemmas
private
lem₁ : ∀ m k → _
lem₁ m k = cong suc $ begin
m
≡⟨ Fin.inject+-lemma m k ⟩
toℕ (Fin.inject+ k (fromℕ m))
≡⟨ solve 1 (λ x → x := x :+ con 0) refl _ ⟩
toℕ (Fin.inject+ k (fromℕ m)) + 0
∎
lem₂ : ∀ n → _
lem₂ = solve 1 (λ n → con 1 :+ n := con 1 :+ (n :+ con 0)) refl
lem₃ : ∀ n k q r eq → _
lem₃ n k q r eq = begin
suc n + k
≡⟨ solve 2 (λ n k → con 1 :+ n :+ k := n :+ (con 1 :+ k))
refl n k ⟩
n + suc k
≡⟨ cong (_+_ n) eq ⟩
n + (toℕ r + q * n)
≡⟨ solve 3 (λ n r q → n :+ (r :+ q :* n) :=
r :+ (con 1 :+ q) :* n)
refl n (toℕ r) q ⟩
toℕ r + suc q * n
∎
------------------------------------------------------------------------
-- Division
-- A specification of integer division.
data DivMod : ℕ → ℕ → Set where
result : {divisor : ℕ} (q : ℕ) (r : Fin divisor) →
DivMod (toℕ r + q * divisor) divisor
-- Sometimes the following type is more usable; functions in indices
-- can be inconvenient.
data DivMod' (dividend divisor : ℕ) : Set where
result : (q : ℕ) (r : Fin divisor)
(eq : dividend ≡ toℕ r + q * divisor) →
DivMod' dividend divisor
-- Integer division with remainder.
-- Note that Induction.Nat.<-rec is used to ensure termination of
-- division. The run-time complexity of this implementation of integer
-- division should be linear in the size of the dividend, assuming
-- that well-founded recursion and the equality type are optimised
-- properly (see "Inductive Families Need Not Store Their Indices"
-- (Brady, McBride, McKinna, TYPES 2003)).
_divMod'_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} →
DivMod' dividend divisor
_divMod'_ m n {≢0} = <-rec Pred dm m n {≢0}
where
Pred : ℕ → Set
Pred dividend = (divisor : ℕ) {≢0 : False (divisor ≟ 0)} →
DivMod' dividend divisor
1+_ : ∀ {k n} → DivMod' (suc k) n → DivMod' (suc n + k) n
1+_ {k} {n} (result q r eq) = result (1 + q) r (lem₃ n k q r eq)
dm : (dividend : ℕ) → <-Rec Pred dividend → Pred dividend
dm m rec zero {≢0 = ()}
dm zero rec (suc n) = result 0 zero refl
dm (suc m) rec (suc n) with compare m n
dm (suc m) rec (suc .(suc m + k)) | less .m k = result 0 r (lem₁ m k)
where r = suc (Fin.inject+ k (fromℕ m))
dm (suc m) rec (suc .m) | equal .m = result 1 zero (lem₂ m)
dm (suc .(suc n + k)) rec (suc n) | greater .n k =
1+ rec (suc k) le (suc n)
where le = s≤′s (s≤′s (n≤′m+n n k))
-- A variant.
_divMod_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} →
DivMod dividend divisor
_divMod_ m n {≢0} with _divMod'_ m n {≢0}
.(toℕ r + q * n) divMod n | result q r refl = result q r
-- Integer division.
_div_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} → ℕ
_div_ m n {≢0} with _divMod_ m n {≢0}
.(toℕ r + q * n) div n | result q r = q
-- The remainder after integer division.
_mod_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} → Fin divisor
_mod_ m n {≢0} with _divMod_ m n {≢0}
.(toℕ r + q * n) mod n | result q r = r
|
algebraic-stack_agda0000_doc_12488 | {-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
-- {-# OPTIONS --without-K #-}
-- [1] Hofmann, Martin and Thomas Streicher (1998). “The groupoid
-- interpretation on type theory”. In: Twenty-five Years of
-- Constructive Type Theory. Ed. by Giovanni Sambin and Jan
-- M. Smith. Oxford University Press. Chap. 6.
module UIP where
data Id (A : Set)(x : A) : A → Set where
refl : Id A x x
K : (A : Set)(x : A)(P : Id A x x → Set) → P refl → (p : Id A x x ) → P p
K A x P pr refl = pr
-- From [1, p. 88].
UIP : (A : Set)(a a' : A)(p p' : Id A a a') → Id (Id A a a') p p'
UIP A a .a refl refl = refl
|
algebraic-stack_agda0000_doc_12489 | -- Jesper, 2019-05-20: When checking confluence of two rewrite rules,
-- we disable all reductions during unification of the left-hand
-- sides. However, we should not disable reductions at the type-level,
-- as shown by this (non-confluent) example.
{-# OPTIONS --rewriting --confluence-check #-}
open import Agda.Builtin.Unit
open import Agda.Builtin.Bool
open import Agda.Builtin.Equality
open import Agda.Builtin.Equality.Rewrite
data Unit : Set where unit : Unit
A : Unit → Set
A unit = ⊤
postulate
a b : (u : Unit) → A u
f : (u : Unit) → A u → Bool
f-a : (u : Unit) → f u (a u) ≡ true
f-b : (u : Unit) → f u (b u) ≡ false
{-# REWRITE f-a #-}
{-# REWRITE f-b #-}
cong-f : (u : Unit) (x y : A u) → x ≡ y → f u x ≡ f u y
cong-f u x y refl = refl
boom : true ≡ false
boom = cong-f unit (a unit) (b unit) refl
|
algebraic-stack_agda0000_doc_12490 |
module UniDB.Morph.Weaken where
open import UniDB.Spec
--------------------------------------------------------------------------------
data Weaken : MOR where
weaken : {γ : Dom} (δ : Dom) → Weaken γ (γ ∪ δ)
instance
iLkWeaken : {T : STX} {{vrT : Vr T}} → Lk T Weaken
lk {{iLkWeaken}} (weaken δ) i = vr (wk δ i)
iWkmWeaken : Wkm Weaken
wkm {{iWkmWeaken}} = weaken
iIdmWeaken : Idm Weaken
idm {{iIdmWeaken}} γ = weaken 0
iWkWeaken : {γ₁ : Dom} → Wk (Weaken γ₁)
wk₁ {{iWkWeaken}} (weaken δ) = weaken (suc δ)
wk {{iWkWeaken}} zero x = x
wk {{iWkWeaken}} (suc δ) x = wk₁ (wk δ x)
wk-zero {{iWkWeaken}} x = refl
wk-suc {{iWkWeaken}} δ x = refl
iLkWkmWeaken : {T : STX} {{vrT : Vr T}} → LkWkm T Weaken
lk-wkm {{iLkWkmWeaken}} δ i = refl
iCompWeaken : Comp Weaken
_⊙_ {{iCompWeaken}} ξ (weaken δ) = wk δ ξ
wk₁-comp : {γ₁ γ₂ γ₃ : Dom} (ξ₁ : Weaken γ₁ γ₂) (ξ₂ : Weaken γ₂ γ₃) →
wk₁ (ξ₁ ⊙ ξ₂) ≡ ξ₁ ⊙ wk₁ ξ₂
wk₁-comp ξ₁ (weaken δ) = refl
wk-comp : {γ₁ γ₂ γ₃ : Dom} (ξ₁ : Weaken γ₁ γ₂) (ξ₂ : Weaken γ₂ γ₃)
(δ : Dom) → wk δ (ξ₁ ⊙ ξ₂) ≡ ξ₁ ⊙ wk δ ξ₂
wk-comp ξ₁ ξ₂ zero = refl
wk-comp ξ₁ ξ₂ (suc δ) =
trans (cong wk₁ (wk-comp ξ₁ ξ₂ δ)) (wk₁-comp ξ₁ (wk δ ξ₂))
module _ (T : STX) {{vrT : Vr T}} where
lk-wk₁-weaken : {{wkT : Wk T}} {{wkVrT : WkVr T}}
{γ₁ γ₂ : Dom} (ξ : Weaken γ₁ γ₂) (i : Ix γ₁) →
lk {T} {Weaken} (wk₁ ξ) i ≡ wk₁ (lk {T} {Weaken} ξ i)
lk-wk₁-weaken (weaken δ) i = sym (wk₁-vr {T} (wk δ i))
lk-wk-weaken : {{wkT : Wk T}} {{wkVrT : WkVr T}}
{γ₁ γ₂ : Dom} (δ : Dom) (ξ : Weaken γ₁ γ₂) (i : Ix γ₁) →
lk {T} {Weaken} (wk δ ξ) i ≡ wk δ (lk {T} {Weaken} ξ i)
lk-wk-weaken zero ξ i = sym (wk-zero (lk {T} {Weaken} ξ i))
lk-wk-weaken (suc δ) ξ i =
trans
(lk-wk₁-weaken (wk δ ξ) i)
(trans
(cong wk₁ (lk-wk-weaken δ ξ i))
(sym (wk-suc {T} δ (lk {T} {Weaken} ξ i)))
)
instance
iLkRenWeaken : {T : STX} {{vrT : Vr T}} → LkRen T Weaken
lk-ren {{iLkRenWeaken}} (weaken δ) i = refl
iLkRenCompWeaken :
{T : STX} {{vrT : Vr T}} {{wkT : Wk T}} {{wkVrT : WkVr T}} →
LkRenComp T Weaken
lk-ren-comp {{iLkRenCompWeaken {T}}} ξ₁ (weaken δ) i = begin
lk {T} {Weaken} (wk δ ξ₁) i ≡⟨ lk-wk-weaken T δ ξ₁ i ⟩
wk δ (lk {T} {Weaken} ξ₁ i) ≡⟨ cong (wk δ) (lk-ren {T} {Weaken} ξ₁ i) ⟩
wk δ (vr {T} (lk {Ix} {Weaken} ξ₁ i)) ≡⟨ wk-vr {T} δ (lk {Ix} {Weaken} ξ₁ i) ⟩
vr {T} (wk δ (lk {Ix} {Weaken} ξ₁ i)) ∎
iCompIdmWeaken : CompIdm Weaken
⊙-idm {{iCompIdmWeaken}} ξ = refl
idm-⊙ {{iCompIdmWeaken}} (weaken zero) = refl
idm-⊙ {{iCompIdmWeaken}} (weaken (suc δ)) =
cong wk₁ (idm-⊙ {Weaken} (weaken δ))
iCompAssocWeaken : CompAssoc Weaken
⊙-assoc {{iCompAssocWeaken}} ξ₁ ξ₂ (weaken δ) = sym (wk-comp ξ₁ ξ₂ δ)
--------------------------------------------------------------------------------
|
algebraic-stack_agda0000_doc_12491 | -- Jesper, 2017-01-23: when instantiating a variable during unification,
-- we should check that the type of the variable is equal to the type
-- of the equation (and not just a subtype of it). See Issue 2407.
open import Agda.Builtin.Equality
open import Agda.Builtin.Size
data D : Size → Set where
J= : ∀ {ℓ} {s : Size} (x₀ : D s)
→ (P : (x : D s) → _≡_ {A = D s} x₀ x → Set ℓ)
→ P x₀ refl → (x : D s) (e : _≡_ {A = D s} x₀ x) → P x e
J= _ P p _ refl = p
J< : ∀ {ℓ} {s : Size} {s' : Size< s} (x₀ : D s)
→ (P : (x : D s) → _≡_ {A = D s} x₀ x → Set ℓ)
→ P x₀ refl → (x : D s') (e : _≡_ {A = D s} x₀ x) → P x e
J< _ P p _ refl = p
J> : ∀ {ℓ} {s : Size} {s' : Size< s} (x₀ : D s')
→ (P : (x : D s) → _≡_ {A = D s} x₀ x → Set ℓ)
→ P x₀ refl → (x : D s) (e : _≡_ {A = D s} x₀ x) → P x e
J> _ P p _ refl = p
J~ : ∀ {ℓ} {s : Size} {s' s'' : Size< s} (x₀ : D s')
→ (P : (x : D s) → _≡_ {A = D s} x₀ x → Set ℓ)
→ P x₀ refl → (x : D s'') (e : _≡_ {A = D s} x₀ x) → P x e
J~ _ P p _ refl = p
|
algebraic-stack_agda0000_doc_12492 | -- WARNING: This file was generated automatically by Vehicle
-- and should not be modified manually!
-- Metadata
-- - Agda version: 2.6.2
-- - AISEC version: 0.1.0.1
-- - Time generated: ???
open import AISEC.Utils
open import Data.Real as ℝ using (ℝ)
open import Data.List
module MyTestModule where
f : Tensor ℝ (1 ∷ []) → Tensor ℝ (1 ∷ [])
f = evaluate record
{ databasePath = DATABASE_PATH
; networkUUID = NETWORK_UUID
}
monotonic : ∀ (x1 : Tensor ℝ (1 ∷ [])) → ∀ (x2 : Tensor ℝ (1 ∷ [])) → let y1 = f (x1)
y2 = f (x2) in x1 0 ℝ.≤ x2 0 → y1 0 ℝ.≤ y2 0
monotonic = checkProperty record
{ databasePath = DATABASE_PATH
; propertyUUID = ????
} |
algebraic-stack_agda0000_doc_12493 | module Numeral.Natural.Oper.Proofs.Structure where
open import Logic.Predicate
open import Numeral.Natural
open import Numeral.Natural.Oper.Proofs
open import Numeral.Natural.Oper
open import Relator.Equals
open import Relator.Equals.Proofs
open import Structure.Operator.Monoid
instance
[+]-monoid : Monoid(_+_)
Monoid.identity-existence [+]-monoid = [∃]-intro(𝟎)
instance
[⋅]-monoid : Monoid(_⋅_)
Monoid.identity-existence [⋅]-monoid = [∃]-intro(𝐒(𝟎))
|
algebraic-stack_agda0000_doc_12494 | {-# OPTIONS --without-K #-}
module Computability.Function where
open import Computability.Prelude
import Function
variable
l₀ l₁ : Level
Injective : {A : Set l₀}{B : Set l₁} → (A → B) → Set _
Injective = Function.Injective _≡_ _≡_
Surjective : {A : Set l₀}{B : Set l₁} → (A → B) → Set _
Surjective {A = A} {B = B} = Function.Surjective {A = A} {B = B} _≡_ _≡_
Bijective : {A : Set l₀}{B : Set l₁} → (A → B) → Set _
Bijective = Function.Bijective _≡_ _≡_
|
algebraic-stack_agda0000_doc_12495 | {-# OPTIONS --safe #-}
module Cubical.HITs.FreeGroup where
open import Cubical.HITs.FreeGroup.Base public
open import Cubical.HITs.FreeGroup.Properties public
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.