id
stringlengths 27
136
| text
stringlengths 4
1.05M
|
---|---|
algebraic-stack_agda0000_doc_13652 | ------------------------------------------------------------------------
-- Parsers containing non-terminals, and grammars using such parsers
------------------------------------------------------------------------
module StructurallyRecursiveDescentParsing.Grammar where
open import Data.Bool
open import Data.Empty
open import Data.Product
open import Relation.Binary.PropositionalEquality
open import Codata.Musical.Notation
open import Level
open import StructurallyRecursiveDescentParsing.Index
import StructurallyRecursiveDescentParsing.Simplified as Simplified
open Simplified hiding (Parser; module Parser; ⟦_⟧)
infixl 10 _!>>=_ _?>>=_
infixl 5 _∣_
-- The parsers are parameterised on a type of nonterminals.
data Parser (NT : NonTerminalType) (Tok : Set) : NonTerminalType where
return : ∀ {R} (x : R) → Parser NT Tok (true ◇ ε) R
fail : ∀ {R} → Parser NT Tok (false ◇ ε) R
token : Parser NT Tok (false ◇ ε) Tok
_∣_ : ∀ {e₁ e₂ c₁ c₂ R}
(p₁ : Parser NT Tok (e₁ ◇ c₁ ) R)
(p₂ : Parser NT Tok ( e₂ ◇ c₂) R) →
Parser NT Tok (e₁ ∨ e₂ ◇ c₁ ∪ c₂) R
_?>>=_ : ∀ {e₂ c₁ c₂ R₁ R₂}
(p₁ : Parser NT Tok (true ◇ c₁ ) R₁)
(p₂ : R₁ → Parser NT Tok (e₂ ◇ c₂) R₂) →
Parser NT Tok (e₂ ◇ c₁ ∪ c₂) R₂
_!>>=_ : ∀ {c₁ R₁ R₂} {i₂ : R₁ → Index}
(p₁ : Parser NT Tok (false ◇ c₁) R₁)
(p₂ : (x : R₁) → ∞ (Parser NT Tok (i₂ x) R₂)) →
Parser NT Tok (false ◇ c₁) R₂
! : ∀ {e c R} (nt : NT (e ◇ c) R) → Parser NT Tok (e ◇ c ∪ ε) R
-- Grammars.
Grammar : NonTerminalType → Set → Set1
Grammar NT Tok = ∀ {i R} → NT i R → Parser NT Tok i R
-- An empty non-terminal type.
EmptyNT : NonTerminalType
EmptyNT _ _ = Lift _ ⊥
-- An empty grammar.
emptyGrammar : ∀ {Tok} → Grammar EmptyNT Tok
emptyGrammar (lift ())
-- The semantics of grammar-based parsers is defined in terms of their
-- translation into "plain" parsers. The translation instantiates all
-- non-terminals corecursively.
⟦_⟧ : ∀ {Tok NT e c R} →
Parser NT Tok (e ◇ c) R → Grammar NT Tok →
Simplified.Parser Tok e R
⟦ return x ⟧ g = return x
⟦ fail ⟧ g = fail
⟦ token ⟧ g = token
⟦ p₁ ∣ p₂ ⟧ g = ⟦ p₁ ⟧ g ∣ ⟦ p₂ ⟧ g
⟦ p₁ ?>>= p₂ ⟧ g = ⟦ p₁ ⟧ g ?>>= λ x → ⟦ p₂ x ⟧ g
⟦ p₁ !>>= p₂ ⟧ g = ⟦ p₁ ⟧ g !>>= λ x → ♯ ⟦ ♭ (p₂ x) ⟧ g
⟦ ! nt ⟧ g = ⟦ g nt ⟧ g
-- Note that some "plain" parsers cannot be directly rewritten using
-- the parser type in this module (although there may be /equivalent/
-- parsers):
private
only-plain : Simplified.Parser Bool false Bool
only-plain = return true ?>>= λ x →
if x then token else token ∣ token
-- The following code does not type-check.
-- doesnt-work : Parser EmptyNT Bool (false ◇ _) Bool
-- doesnt-work = return true ?>>= λ x →
-- if x then token else token ∣ token
-- A map function which can be useful when combining grammars.
mapNT : ∀ {NT₁ NT₂ Tok i R} →
(∀ {i R} → NT₁ i R → NT₂ i R) →
Parser NT₁ Tok i R → Parser NT₂ Tok i R
mapNT f (return x) = return x
mapNT f fail = fail
mapNT f token = token
mapNT f (p₁ ∣ p₂) = mapNT f p₁ ∣ mapNT f p₂
mapNT f (p₁ ?>>= p₂) = mapNT f p₁ ?>>= λ x → mapNT f (p₂ x)
mapNT f (p₁ !>>= p₂) = mapNT f p₁ !>>= λ x → ♯ mapNT f (♭ (p₂ x))
mapNT f (! nt) = ! (f nt)
|
algebraic-stack_agda0000_doc_13653 | {-# OPTIONS --universe-polymorphism #-}
module Categories.Square where
open import Level
open import Function renaming (id to idᶠ; _∘_ to _©_)
open import Categories.Support.PropositionalEquality
open import Categories.Category
import Categories.Morphisms as Mor
open import Relation.Binary hiding (_⇒_)
module GlueSquares {o ℓ e} (C : Category o ℓ e) where
private module C = Category C
open C
open Mor C
module Pulls {X Y Z} {a : Y ⇒ Z} {b : X ⇒ Y} {c : X ⇒ Z} (ab≡c : a ∘ b ≡ c) where
.pullʳ : ∀ {W} {f : Z ⇒ W} → (f ∘ a) ∘ b ≡ f ∘ c
pullʳ {f = f} =
begin
(f ∘ a) ∘ b
↓⟨ assoc ⟩
f ∘ (a ∘ b)
↓⟨ ∘-resp-≡ʳ ab≡c ⟩
f ∘ c
∎
where open HomReasoning
.pullˡ : ∀ {W} {f : W ⇒ X} → a ∘ (b ∘ f) ≡ c ∘ f
pullˡ {f = f} =
begin
a ∘ (b ∘ f)
↑⟨ assoc ⟩
(a ∘ b) ∘ f
↓⟨ ∘-resp-≡ˡ ab≡c ⟩
c ∘ f
∎
where open HomReasoning
open Pulls public
module Pushes {X Y Z} {a : Y ⇒ Z} {b : X ⇒ Y} {c : X ⇒ Z} (c≡ab : c ≡ a ∘ b) where
.pushʳ : ∀ {W} {f : Z ⇒ W} → f ∘ c ≡ (f ∘ a) ∘ b
pushʳ {f = f} =
begin
f ∘ c
↓⟨ ∘-resp-≡ʳ c≡ab ⟩
f ∘ (a ∘ b)
↑⟨ assoc ⟩
(f ∘ a) ∘ b
∎
where open HomReasoning
.pushˡ : ∀ {W} {f : W ⇒ X} → c ∘ f ≡ a ∘ (b ∘ f)
pushˡ {f = f} =
begin
c ∘ f
↓⟨ ∘-resp-≡ˡ c≡ab ⟩
(a ∘ b) ∘ f
↓⟨ assoc ⟩
a ∘ (b ∘ f)
∎
where open HomReasoning
open Pushes public
module IntroElim {X} {a : X ⇒ X} (a≡id : a ≡ id) where
.elimʳ : ∀ {W} {f : X ⇒ W} → (f ∘ a) ≡ f
elimʳ {f = f} =
begin
f ∘ a
↓⟨ ∘-resp-≡ʳ a≡id ⟩
f ∘ id
↓⟨ identityʳ ⟩
f
∎
where
open HomReasoning
.introʳ : ∀ {W} {f : X ⇒ W} → f ≡ f ∘ a
introʳ = Equiv.sym elimʳ
.elimˡ : ∀ {W} {f : W ⇒ X} → (a ∘ f) ≡ f
elimˡ {f = f} =
begin
a ∘ f
↓⟨ ∘-resp-≡ˡ a≡id ⟩
id ∘ f
↓⟨ identityˡ ⟩
f
∎
where
open HomReasoning
.introˡ : ∀ {W} {f : W ⇒ X} → f ≡ a ∘ f
introˡ = Equiv.sym elimˡ
open IntroElim public
module Extends {X Y Z W} {f : X ⇒ Y} {g : X ⇒ Z} {h : Y ⇒ W} {i : Z ⇒ W} (s : CommutativeSquare f g h i) where
.extendˡ : ∀ {A} {a : W ⇒ A} → CommutativeSquare f g (a ∘ h) (a ∘ i)
extendˡ {a = a} =
begin
(a ∘ h) ∘ f
↓⟨ pullʳ s ⟩
a ∘ i ∘ g
↑⟨ assoc ⟩
(a ∘ i) ∘ g
∎
where
open HomReasoning
.extendʳ : ∀ {A} {a : A ⇒ X} → CommutativeSquare (f ∘ a) (g ∘ a) h i
extendʳ {a = a} =
begin
h ∘ (f ∘ a)
↓⟨ pullˡ s ⟩
(i ∘ g) ∘ a
↓⟨ assoc ⟩
i ∘ (g ∘ a)
∎
where
open HomReasoning
.extend² : ∀ {A B} {a : W ⇒ A} {b : B ⇒ X} → CommutativeSquare (f ∘ b) (g ∘ b) (a ∘ h) (a ∘ i)
extend² {a = a} {b} =
begin
(a ∘ h) ∘ (f ∘ b)
↓⟨ pullʳ extendʳ ⟩
a ∘ (i ∘ (g ∘ b))
↑⟨ assoc ⟩
(a ∘ i) ∘ (g ∘ b)
∎
where
open HomReasoning
open Extends public
-- essentially composition in the arrow category
.glue : {X Y Y′ Z Z′ W : Obj} {a : Z ⇒ W} {a′ : Y′ ⇒ Z′} {b : Y ⇒ Z} {b′ : X ⇒ Y′} {c : X ⇒ Y} {c′ : Y′ ⇒ Z} {c″ : Z′ ⇒ W} → CommutativeSquare c′ a′ a c″ → CommutativeSquare c b′ b c′ → CommutativeSquare c (a′ ∘ b′) (a ∘ b) c″
glue {a = a} {a′} {b} {b′} {c} {c′} {c″} sq-a sq-b =
begin
(a ∘ b) ∘ c
↓⟨ pullʳ sq-b ⟩
a ∘ (c′ ∘ b′)
↓⟨ pullˡ sq-a ⟩
(c″ ∘ a′) ∘ b′
↓⟨ assoc ⟩
c″ ∘ (a′ ∘ b′)
∎
where
open HomReasoning
.glue◃◽ : {X Y Y′ Z W : Obj} {a : Z ⇒ W} {b : Y ⇒ Z} {b′ : X ⇒ Y′} {c : X ⇒ Y} {c′ : Y′ ⇒ Z} {c″ : Y′ ⇒ W} → a ∘ c′ ≡ c″ → CommutativeSquare c b′ b c′ → CommutativeSquare c b′ (a ∘ b) c″
glue◃◽ {a = a} {b} {b′} {c} {c′} {c″} tri-a sq-b =
begin
(a ∘ b) ∘ c
↓⟨ pullʳ sq-b ⟩
a ∘ (c′ ∘ b′)
↓⟨ pullˡ tri-a ⟩
c″ ∘ b′
∎
where
open HomReasoning
-- essentially composition in the over category
.glueTrianglesʳ : ∀ {X X′ X″ Y} {a : X ⇒ Y} {b : X′ ⇒ X} {a′ : X′ ⇒ Y} {b′ : X″ ⇒ X′} {a″ : X″ ⇒ Y}
→ a ∘ b ≡ a′ → a′ ∘ b′ ≡ a″ → a ∘ (b ∘ b′) ≡ a″
glueTrianglesʳ {a = a} {b} {a′} {b′} {a″} a∘b≡a′ a′∘b′≡a″ =
begin
a ∘ (b ∘ b′)
↓⟨ pullˡ a∘b≡a′ ⟩
a′ ∘ b′
↓⟨ a′∘b′≡a″ ⟩
a″
∎
where open HomReasoning
-- essentially composition in the under category
.glueTrianglesˡ : ∀ {X Y Y′ Y″} {b : X ⇒ Y} {a : Y ⇒ Y′} {b′ : X ⇒ Y′} {a′ : Y′ ⇒ Y″} {b″ : X ⇒ Y″} → a′ ∘ b′ ≡ b″ → a ∘ b ≡ b′ → (a′ ∘ a) ∘ b ≡ b″
glueTrianglesˡ {b = b} {a} {b′} {a′} {b″} a′∘b′≡b″ a∘b≡b′ =
begin
(a′ ∘ a) ∘ b
↓⟨ pullʳ a∘b≡b′ ⟩
a′ ∘ b′
↓⟨ a′∘b′≡b″ ⟩
b″
∎
where open HomReasoning
module Cancellers {Y Y′ : Obj} {h : Y′ ⇒ Y} {i : Y ⇒ Y′} (inv : h ∘ i ≡ id) where
.cancelRight : ∀ {Z} {f : Y ⇒ Z} → (f ∘ h) ∘ i ≡ f
cancelRight {f = f} =
begin
(f ∘ h) ∘ i
↓⟨ pullʳ inv ⟩
f ∘ id
↓⟨ identityʳ ⟩
f
∎
where open HomReasoning
.cancelLeft : ∀ {X} {f : X ⇒ Y} → h ∘ (i ∘ f) ≡ f
cancelLeft {f = f} =
begin
h ∘ (i ∘ f)
↓⟨ pullˡ inv ⟩
id ∘ f
↓⟨ identityˡ ⟩
f
∎
where open HomReasoning
.cancelInner : ∀ {X Z} {f : Y ⇒ Z} {g : X ⇒ Y} → (f ∘ h) ∘ (i ∘ g) ≡ f ∘ g
cancelInner {f = f} {g} =
begin
(f ∘ h) ∘ (i ∘ g)
↓⟨ pullˡ cancelRight ⟩
f ∘ g
∎
where open HomReasoning
open Cancellers public
module Switch {X Y} (i : X ≅ Y) where
open _≅_ i
.switch-fgˡ : ∀ {W} {h : W ⇒ X} {k : W ⇒ Y} → (f ∘ h ≡ k) → (h ≡ g ∘ k)
switch-fgˡ {h = h} {k} pf =
begin
h
↑⟨ cancelLeft isoˡ ⟩
g ∘ (f ∘ h)
↓⟨ ∘-resp-≡ʳ pf ⟩
g ∘ k
∎
where open HomReasoning
.switch-gfˡ : ∀ {W} {h : W ⇒ Y} {k : W ⇒ X} → (g ∘ h ≡ k) → (h ≡ f ∘ k)
switch-gfˡ {h = h} {k} pf =
begin
h
↑⟨ cancelLeft isoʳ ⟩
f ∘ (g ∘ h)
↓⟨ ∘-resp-≡ʳ pf ⟩
f ∘ k
∎
where open HomReasoning
.switch-fgʳ : ∀ {W} {h : Y ⇒ W} {k : X ⇒ W} → (h ∘ f ≡ k) → (h ≡ k ∘ g)
switch-fgʳ {h = h} {k} pf =
begin
h
↑⟨ cancelRight isoʳ ⟩
(h ∘ f) ∘ g
↓⟨ ∘-resp-≡ˡ pf ⟩
k ∘ g
∎
where open HomReasoning
.switch-gfʳ : ∀ {W} {h : X ⇒ W} {k : Y ⇒ W} → (h ∘ g ≡ k) → (h ≡ k ∘ f)
switch-gfʳ {h = h} {k} pf =
begin
h
↑⟨ cancelRight isoˡ ⟩
(h ∘ g) ∘ f
↓⟨ ∘-resp-≡ˡ pf ⟩
k ∘ f
∎
where open HomReasoning
open Switch public
module Yon-Eda {o ℓ e} (C : Category o ℓ e) where
private module C = Category C
open C
open Equiv
record Yon (X Y : Obj) : Set (o ⊔ ℓ ⊔ e) where
field
arr : X ⇒ Y
fun : ∀ {W} (f : W ⇒ X) → (W ⇒ Y)
.ok : ∀ {W} (f : W ⇒ X) → fun f ≡ arr ∘ f
norm : X ⇒ Y
norm = fun id
.norm≡arr : norm ≡ arr
norm≡arr = trans (ok id) identityʳ
record _≡′_ {X Y : Obj} (f g : Yon X Y) : Set (o ⊔ ℓ ⊔ e) where
constructor yeq
field
arr-≡ : Yon.arr f ≡ Yon.arr g
open _≡′_ public using (arr-≡)
module _ {X Y} where
.Yon-refl : Reflexive (_≡′_ {X} {Y})
Yon-refl = yeq refl
.Yon-sym : Symmetric (_≡′_ {X} {Y})
Yon-sym = yeq © sym © arr-≡
.Yon-trans : Transitive (_≡′_ {X} {Y})
Yon-trans eq eq′ = yeq (trans (arr-≡ eq) (arr-≡ eq′))
Yon-id : ∀ {X} → Yon X X
Yon-id = record
{ arr = id
; fun = idᶠ
; ok = λ _ → sym identityˡ
}
Yon-inject : ∀ {X Y} → (X ⇒ Y) → Yon X Y
Yon-inject f = record { arr = f; fun = _∘_ f; ok = λ _ → refl }
Yon-compose : ∀ {X Y Z} → (Yon Y Z) → (Yon X Y) → (Yon X Z)
Yon-compose g f = record
{ arr = g.fun f.arr
; fun = g.fun © f.fun
; ok = λ h → trans (g.ok (f.fun h)) (trans (∘-resp-≡ʳ (f.ok h)) (trans (sym assoc) (sym (∘-resp-≡ˡ (g.ok f.arr)))))
}
where
module g = Yon g
module f = Yon f
.Yon-assoc : ∀ {X Y Z W} (f : Yon Z W) (g : Yon Y Z) (h : Yon X Y) → Yon-compose f (Yon-compose g h) ≣ Yon-compose (Yon-compose f g) h
Yon-assoc f g h = ≣-refl
.Yon-identityˡ : ∀ {X Y} (f : Yon X Y) → Yon-compose Yon-id f ≣ f
Yon-identityˡ f = ≣-refl
.Yon-identityʳ : ∀ {X Y} (f : Yon X Y) → Yon-compose f Yon-id ≡′ f
Yon-identityʳ f = yeq (Yon.norm≡arr f)
.Yon-compose-resp-≡′ : ∀ {X Y Z} {f f′ : Yon Y Z} {g g′ : Yon X Y}
→ f ≡′ f′ → g ≡′ g′
→ Yon-compose f g ≡′ Yon-compose f′ g′
Yon-compose-resp-≡′ {f = f} {f′} {g} {g′} f≡′f′ g≡′g′
= yeq (trans (Yon.ok f (Yon.arr g))
(trans (∘-resp-≡ (arr-≡ f≡′f′) (arr-≡ g≡′g′))
(sym (Yon.ok f′ (Yon.arr g′)))))
record Eda (X Y : Obj) : Set (o ⊔ ℓ ⊔ e) where
field
yon : Yon X Y
fun : ∀ {Z} (f : Yon Y Z) → Yon X Z
.ok : ∀ {Z} (f : Yon Y Z) → fun f ≡′ Yon-compose f yon
norm : Yon X Y
norm = fun Yon-id
open Yon yon public using (arr)
Eda-id : ∀ {X} → Eda X X
Eda-id = record
{ yon = Yon-id
; fun = idᶠ
; ok = yeq © sym © arr-≡ © Yon-identityʳ
}
Eda-inject : ∀ {X Y} → Yon X Y → Eda X Y
Eda-inject f = record { yon = f; fun = flip Yon-compose f; ok = λ _ → yeq refl }
Eda-compose : ∀ {X Y Z} → (Eda Y Z) → (Eda X Y) → (Eda X Z)
Eda-compose {X} {Y} {Z} g f = record
{ yon = f.fun g.yon
; fun = f.fun © g.fun
; ok = λ {W} h → Yon-trans {X} {W} {f.fun (g.fun h)} (f.ok (g.fun h))
(Yon-trans (Yon-compose-resp-≡′ (g.ok h) (Yon-refl {x = f.yon}))
(Yon-sym (Yon-compose-resp-≡′ (Yon-refl {x = h}) (f.ok g.yon))))
}
where
module g = Eda g
module f = Eda f
.Eda-assoc : ∀ {X Y Z W} (f : Eda Z W) (g : Eda Y Z) (h : Eda X Y) → Eda-compose f (Eda-compose g h) ≣ Eda-compose (Eda-compose f g) h
Eda-assoc f g h = ≣-refl
-- .Eda-identityˡ : ∀ {X Y} (f : Eda X Y) → Eda-compose Eda-id f ≣ f
-- Eda-identityˡ f = {!!}
.Eda-identityʳ : ∀ {X Y} (f : Eda X Y) → Eda-compose f Eda-id ≣ f
Eda-identityʳ f = ≣-refl
record NormReasoning {o ℓ e} (C : Category o ℓ e) (o′ ℓ′ : _) : Set (suc o′ ⊔ o ⊔ ℓ ⊔ e ⊔ suc ℓ′) where
private module C = Category C
field
U : Set o′
T : U -> C.Obj
_#⇒_ : U -> U -> Set ℓ′
eval : ∀ {A B} -> A #⇒ B -> T A C.⇒ T B
norm : ∀ {A B} -> A #⇒ B -> T A C.⇒ T B
.norm≡eval : ∀ {A B} (f : A #⇒ B) -> norm f C.≡ eval f
open C.Equiv
open C
infix 4 _IsRelatedTo_
infix 1 begin_
infixr 2 _≈⟨_⟩_ _↓⟨_⟩_ _↑⟨_⟩_ _↓≡⟨_⟩_ _↑≡⟨_⟩_ _↕_
infix 3 _∎
data _IsRelatedTo_ {X Y} (f g : _#⇒_ X Y) : Set e where
relTo : (f∼g : norm f ≡ norm g) → f IsRelatedTo g
.begin_ : ∀ {X Y} {f g : _#⇒_ X Y} → f IsRelatedTo g → eval f ≡ eval g
begin_ {f = f} {g} (relTo f∼g) = trans (sym (norm≡eval f)) (trans f∼g (norm≡eval g))
._↓⟨_⟩_ : ∀ {X Y} (f : _#⇒_ X Y) {g h} → (norm f ≡ norm g) → g IsRelatedTo h → f IsRelatedTo h
_ ↓⟨ f∼g ⟩ relTo g∼h = relTo (trans f∼g g∼h)
._↑⟨_⟩_ : ∀ {X Y} (f : _#⇒_ X Y) {g h} → (norm g ≡ norm f) → g IsRelatedTo h → f IsRelatedTo h
_ ↑⟨ g∼f ⟩ relTo g∼h = relTo (trans (sym g∼f) g∼h)
-- the syntax of the ancients, for compatibility
._≈⟨_⟩_ : ∀ {X Y} (f : _#⇒_ X Y) {g h} → (norm f ≡ norm g) → g IsRelatedTo h → f IsRelatedTo h
_ ≈⟨ f∼g ⟩ relTo g∼h = relTo (trans f∼g g∼h)
._↓≡⟨_⟩_ : ∀ {X Y} (f : _#⇒_ X Y) {g h} → eval f ≡ eval g → g IsRelatedTo h → f IsRelatedTo h
_↓≡⟨_⟩_ f {g} f∼g (relTo g∼h) = relTo (trans (norm≡eval f) (trans f∼g (trans (sym (norm≡eval g)) g∼h)))
._↑≡⟨_⟩_ : ∀ {X Y} (f : _#⇒_ X Y) {g h} → eval g ≡ eval f → g IsRelatedTo h → f IsRelatedTo h
_↑≡⟨_⟩_ f {g} g∼f (relTo g∼h) = relTo (trans (norm≡eval f) (trans (sym g∼f) (trans (sym (norm≡eval g)) g∼h)))
._↕_ : ∀ {X Y} (f : _#⇒_ X Y) {h} → f IsRelatedTo h → f IsRelatedTo h
_ ↕ f∼h = f∼h
._∎ : ∀ {X Y} (f : _#⇒_ X Y) → f IsRelatedTo f
_∎ _ = relTo refl
.by_ : ∀ {X Y} {f g h : X ⇒ Y} -> ((h ≡ h) -> f ≡ g) -> f ≡ g
by eq = eq refl
.computation : ∀ {X Y} (f g : X #⇒ Y) -> norm f ≡ norm g → eval f ≡ eval g
computation f g eq = begin f ↓⟨ eq ⟩ g ∎
module AUReasoning {o ℓ e} (C : Category o ℓ e) where
private module C = Category C
open C
open Equiv
{-
infix 4 _IsRelatedTo_
infix 2 _∎
infixr 2 _≈⟨_⟩_
infixr 2 _↓⟨_⟩_
infixr 2 _↑⟨_⟩_
infixr 2 _↓≡⟨_⟩_
infixr 2 _↑≡⟨_⟩_
infixr 2 _↕_
infix 1 begin_
-}
infixr 8 _∙_
open Yon-Eda C public
data Climb : Rel Obj (o ⊔ ℓ) where
ID : ∀ {X} → Climb X X
leaf : ∀ {X Y} → (X ⇒ Y) → Climb X Y
_branch_ : ∀ {X Y Z} (l : Climb Y Z) (r : Climb X Y) → Climb X Z
interp : ∀ {p} (P : Rel Obj p)
(f-id : ∀ {X} → P X X)
(f-leaf : ∀ {X Y} → X ⇒ Y → P X Y)
(f-branch : ∀ {X Y Z} → P Y Z → P X Y → P X Z)
→ ∀ {X Y} → Climb X Y → P X Y
interp P f-id f-leaf f-branch ID = f-id
interp P f-id f-leaf f-branch (leaf y) = f-leaf y
interp P f-id f-leaf f-branch (l branch r) = f-branch
(interp P f-id f-leaf f-branch l)
(interp P f-id f-leaf f-branch r)
eval : ∀ {X Y} → Climb X Y → X ⇒ Y
eval = interp _⇒_ id idᶠ _∘_
yeval : ∀ {X Y} → Climb X Y → Yon X Y
yeval = interp Yon Yon-id Yon-inject Yon-compose
.yarr : ∀ {X Y} → (t : Climb X Y) → Yon.arr (yeval t) ≡ eval t
yarr ID = refl
yarr (leaf y) = refl
yarr (t branch t1) = trans (Yon.ok (yeval t) (Yon.arr (yeval t1))) (∘-resp-≡ (yarr t) (yarr t1))
eeval : ∀ {X Y} → Climb X Y → Eda X Y
eeval = interp Eda Eda-id (Eda-inject © Yon-inject) Eda-compose
.eyon : ∀ {X Y} → (t : Climb X Y) → Eda.yon (eeval t) ≡′ yeval t
eyon ID = Yon-refl
eyon (leaf y) = Yon-refl
eyon (t branch t1) = Yon-trans (Eda.ok (eeval t1) (Eda.yon (eeval t)))
(Yon-compose-resp-≡′ (eyon t) (eyon t1))
.earr : ∀ {X Y} → (t : Climb X Y) → Eda.arr (eeval t) ≡ eval t
earr t = trans (arr-≡ (eyon t)) (yarr t)
yyeval : ∀ {X Y} → (t : Climb X Y) → (X ⇒ Y)
yyeval = Eda.arr © eeval
record ClimbBuilder (X Y : Obj) {t} (T : Set t) : Set (o ⊔ ℓ ⊔ t) where
field build : T → Climb X Y
instance
leafBuilder : ∀ {X Y} → ClimbBuilder X Y (X ⇒ Y)
leafBuilder = record { build = leaf }
idBuilder : ∀ {X Y} → ClimbBuilder X Y (Climb X Y)
idBuilder = record { build = idᶠ }
_∙_ : ∀ {X Y Z} {s} {S : Set s} {{Sb : ClimbBuilder Y Z S}} (f : S) {t} {T : Set t} {{Tb : ClimbBuilder X Y T}} (g : T) → Climb X Z
_∙_ {{Sb}} f {{Tb}} g = ClimbBuilder.build Sb f branch ClimbBuilder.build Tb g
aureasoning : NormReasoning C o (ℓ ⊔ o)
aureasoning = record
{ U = Obj
; T = λ A → A
; _#⇒_ = Climb
; eval = eval
; norm = yyeval
; norm≡eval = earr
}
open NormReasoning aureasoning public hiding (eval)
{-
data _IsRelatedTo_ {X Y} (f g : Climb X Y) : Set e where
relTo : (f∼g : yyeval f ≡ yyeval g) → f IsRelatedTo g
.begin_ : ∀ {X Y} {f g : Climb X Y} → f IsRelatedTo g → eval f ≡ eval g
begin_ {f = f} {g} (relTo f∼g) = trans (sym (earr f)) (trans f∼g (earr g))
._↓⟨_⟩_ : ∀ {X Y} (f : Climb X Y) {g h} → (yyeval f ≡ yyeval g) → g IsRelatedTo h → f IsRelatedTo h
_ ↓⟨ f∼g ⟩ relTo g∼h = relTo (trans f∼g g∼h)
._↑⟨_⟩_ : ∀ {X Y} (f : Climb X Y) {g h} → (yyeval g ≡ yyeval f) → g IsRelatedTo h → f IsRelatedTo h
_ ↑⟨ g∼f ⟩ relTo g∼h = relTo (trans (sym g∼f) g∼h)
-- the syntax of the ancients, for compatibility
._≈⟨_⟩_ : ∀ {X Y} (f : Climb X Y) {g h} → (yyeval f ≡ yyeval g) → g IsRelatedTo h → f IsRelatedTo h
_ ≈⟨ f∼g ⟩ relTo g∼h = relTo (trans f∼g g∼h)
._↓≡⟨_⟩_ : ∀ {X Y} (f : Climb X Y) {g h} → eval f ≡ eval g → g IsRelatedTo h → f IsRelatedTo h
_↓≡⟨_⟩_ f {g} f∼g (relTo g∼h) = relTo (trans (earr f) (trans f∼g (trans (sym (earr g)) g∼h)))
._↑≡⟨_⟩_ : ∀ {X Y} (f : Climb X Y) {g h} → eval g ≡ eval f → g IsRelatedTo h → f IsRelatedTo h
_↑≡⟨_⟩_ f {g} g∼f (relTo g∼h) = relTo (trans (earr f) (trans (sym g∼f) (trans (sym (earr g)) g∼h)))
{-
-- XXX i want this to work whenever the Edas are equal -- but that probably
-- requires Climb to be indexed by yyeval! oh, for cheap ornamentation.
._↕_ : ∀ {X Y} (f : Climb X Y) {h} → f IsRelatedTo h → f IsRelatedTo h
_ ↕ f∼h = f∼h
-}
._∎ : ∀ {X Y} (f : Climb X Y) → f IsRelatedTo f
_∎ _ = relTo refl
-}
|
algebraic-stack_agda0000_doc_13654 | -- Andreas, 2016-06-09 issue during refactoring for #1963
-- Shrunk this issue with projection-like functions from std-lib
-- {-# OPTIONS --show-implicit #-}
-- {-# OPTIONS -v tc.proj.like:10 #-}
open import Common.Level
open import Common.Nat renaming ( Nat to ℕ )
data ⊥ : Set where
record ⊤ : Set where
constructor tt
postulate anything : ∀{A : Set} → A
data _≤_ : (m n : ℕ) → Set where
z≤n : ∀ {n} → zero ≤ n
s≤s : ∀ {m n} (m≤n : m ≤ n) → suc m ≤ suc n
≤-refl : ∀{n} → n ≤ n
≤-refl {zero} = z≤n
≤-refl {suc n} = s≤s ≤-refl
≤-trans : ∀{k l m} → k ≤ l → l ≤ m → k ≤ m
≤-trans z≤n q = z≤n
≤-trans (s≤s p) (s≤s q) = s≤s (≤-trans p q)
n≤m+n : ∀ m n → n ≤ (m + n)
n≤m+n zero zero = z≤n
n≤m+n zero (suc n) = s≤s (n≤m+n zero n)
n≤m+n (suc m) zero = z≤n
n≤m+n (suc m) (suc n) = s≤s anything
record Preord c ℓ₁ : Set (lsuc (c ⊔ ℓ₁)) where
infix 4 _∼_
field
Carrier : Set c
_∼_ : (x y : Carrier) → Set ℓ₁ -- The relation.
refl : ∀{x} → x ∼ x
trans : ∀{x y z} → x ∼ y → y ∼ z → x ∼ z
Npreord : Preord _ _
Npreord = record { Carrier = ℕ ; _∼_ = _≤_ ; refl = ≤-refl; trans = ≤-trans }
module Pre {p₁ p₂} (P : Preord p₁ p₂) where
open Preord P
infix 4 _IsRelatedTo_
infix 3 _∎
infixr 2 _≤⟨_⟩_
infix 1 begin_
data _IsRelatedTo_ (x y : Carrier) : Set p₂ where
relTo : (x≤y : x ∼ y) → x IsRelatedTo y
begin_ : ∀ {x y} → x IsRelatedTo y → x ∼ y
begin relTo x≤y = x≤y
_≤⟨_⟩_ : ∀ x {y z} → x ∼ y → y IsRelatedTo z → x IsRelatedTo z
_ ≤⟨ x≤y ⟩ relTo y≤z = relTo (trans x≤y y≤z)
_∎ : ∀ x → x IsRelatedTo x
_∎ _ = relTo refl
-- begin_ : {p₁ p₂ : Level} (P : Preord p₁ p₂)
-- {x y : Preord.Carrier P} →
-- x IsRelatedTo y → (P Preord.∼ x) y
-- is projection like in argument 5 for type ProjectionLike1963.Pre._IsRelatedTo_
-- _∎ : {p₁ p₂ : Level} (P : Preord p₁ p₂) (x : Preord.Carrier P) →
-- x IsRelatedTo x
-- is projection like in argument 2 for type ProjectionLike1963.Preord
open Pre Npreord
_+-mono_ : ∀{m₁ m₂ n₁ n₂} → m₁ ≤ m₂ → n₁ ≤ n₂ → (m₁ + n₁) ≤ (m₂ + n₂)
_+-mono_ {zero} {m₂} {n₁} {n₂} z≤n n₁≤n₂ = begin
n₁ ≤⟨ n₁≤n₂ ⟩
n₂ ≤⟨ n≤m+n m₂ n₂ ⟩
m₂ + n₂ ∎
s≤s m₁≤m₂ +-mono n₁≤n₂ = s≤s (m₁≤m₂ +-mono n₁≤n₂)
ISS : ∀ {n m} (p : n ≤ m) → Set
ISS z≤n = ⊥
ISS (s≤s p) = ⊤
test : ISS ((z≤n {0}) +-mono (s≤s (z≤n {0})))
test = tt
-- Goal display:
-- C-u C-c C-, ISS (z≤n +-mono s≤s z≤n)
-- C-c C-, ISS (begin 1 ≤⟨ s≤s z≤n ⟩ 1 ≤⟨ s≤s z≤n ⟩ 1 ∎)
-- C-u C-u C-c C-, ISS (λ {y} → Pre.begin _)
|
algebraic-stack_agda0000_doc_13655 | open import Level using (_⊔_; suc; Lift; lift)
open import Function using (_$_; _∘_; _⤖_)
open import Relation.Nullary using (¬_)
open import Relation.Nullary.Decidable using (False)
open import Relation.Binary using (Rel; Decidable; Setoid; DecSetoid; IsEquivalence; IsDecEquivalence)
open import Data.Empty using (⊥)
open import Data.Product using (∃-syntax; _,_)
open import Data.Sum using (_⊎_)
module AKS.Algebra.Structures {c ℓ} (C : Set c) (_≈_ : Rel C ℓ) where
open import Data.Unit using (⊤; tt)
open import Agda.Builtin.FromNat using (Number)
open import AKS.Nat using (ℕ; _<_; _≟_)
open import AKS.Fin using (Fin)
open import Algebra.Core using (Op₂; Op₁)
open import Algebra.Structures _≈_ using (IsCommutativeRing; IsAbelianGroup)
infix 4 _≉_
_≉_ : Rel C ℓ
x ≉ y = x ≈ y → ⊥
record IsNonZeroCommutativeRing (_+_ _*_ : Op₂ C) (-_ : Op₁ C) (0# 1# : C) : Set (c ⊔ ℓ) where
field
isCommutativeRing : IsCommutativeRing _+_ _*_ -_ 0# 1#
0#≉1# : 0# ≉ 1#
open IsCommutativeRing isCommutativeRing public
open import Relation.Binary.Reasoning.Setoid setoid
open import Algebra.Properties.Ring (record { isRing = isRing }) using (-‿distribˡ-*; -‿involutive)
1#≉0# : 1# ≉ 0#
1#≉0# = 0#≉1# ∘ sym
0#≉-1# : 0# ≉ - 1#
0#≉-1# 0#≈-1# = 0#≉1# $ begin
0# ≈⟨ sym (zeroʳ 0#) ⟩
0# * 0# ≈⟨ *-cong 0#≈-1# 0#≈-1# ⟩
(- 1#) * (- 1#) ≈⟨ sym (-‿distribˡ-* 1# (- 1#)) ⟩
- (1# * (- 1#)) ≈⟨ -‿cong (*-identityˡ (- 1#)) ⟩
- (- 1#) ≈⟨ -‿involutive 1# ⟩
1# ∎
-1#≉0# : - 1# ≉ 0#
-1#≉0# = 0#≉-1# ∘ sym
C/0 : Set (c ⊔ ℓ)
C/0 = ∃[ x ] (x ≉ 0#)
1#-nonzero : C/0
1#-nonzero = 1# , 1#≉0#
-1#-nonzero : C/0
-1#-nonzero = - 1# , -1#≉0#
fromNat : ℕ → C
fromNat ℕ.zero = 0#
fromNat (ℕ.suc ℕ.zero) = 1#
fromNat (ℕ.suc (ℕ.suc n)) = 1# + fromNat (ℕ.suc n)
instance
C-number : Number C
C-number = record
{ Constraint = λ _ → Lift c ⊤
; fromNat = λ n → fromNat n
}
record IsIntegralDomain (_+_ _*_ : Op₂ C) (-_ : Op₁ C) (0# 1# : C) : Set (c ⊔ ℓ) where
field
isNonZeroCommutativeRing : IsNonZeroCommutativeRing _+_ _*_ -_ 0# 1#
*-cancelˡ : ∀ x {y z} → x ≉ 0# → (x * y) ≈ (x * z) → y ≈ z
open IsNonZeroCommutativeRing isNonZeroCommutativeRing public
open import Relation.Binary.Reasoning.Setoid setoid
*-cancelʳ : ∀ x {y z} → x ≉ 0# → (y * x) ≈ (z * x) → y ≈ z
*-cancelʳ x {y} {z} x≉0 y*x≈z*x = *-cancelˡ x x≉0 $ begin
(x * y) ≈⟨ *-comm x y ⟩
(y * x) ≈⟨ y*x≈z*x ⟩
(z * x) ≈⟨ *-comm z x ⟩
(x * z) ∎
*≉0 : ∀ {c₁ c₂} → c₁ ≉ 0# → c₂ ≉ 0# → c₁ * c₂ ≉ 0#
*≉0 {c₁} {c₂} c₁≉0 c₂≉0 c₁*c₂≈0 = c₂≉0 $ *-cancelˡ c₁ c₁≉0 $ begin
(c₁ * c₂) ≈⟨ c₁*c₂≈0 ⟩
(0#) ≈⟨ sym (zeroʳ c₁) ⟩
(c₁ * 0#) ∎
infixl 7 _*-nonzero_
_*-nonzero_ : C/0 → C/0 → C/0
(c₁ , c₁≉0) *-nonzero (c₂ , c₂≉0) = c₁ * c₂ , *≉0 c₁≉0 c₂≉0
module Divisibility (_*_ : Op₂ C) where
infix 4 _∣_
record _∣_ (d : C) (a : C) : Set (c ⊔ ℓ) where
constructor divides
field
quotient : C
equality : a ≈ (quotient * d)
infix 4 _∤_
_∤_ : C → C → Set (c ⊔ ℓ)
d ∤ a = ¬ (d ∣ a)
record IsGCD (gcd : Op₂ C) : Set (c ⊔ ℓ) where
field
gcd[a,b]∣a : ∀ a b → gcd a b ∣ a
gcd[a,b]∣b : ∀ a b → gcd a b ∣ b
gcd-greatest : ∀ {c a b} → c ∣ a → c ∣ b → c ∣ gcd a b
record IsGCDDomain (_+_ _*_ : Op₂ C) (-_ : Op₁ C) (0# 1# : C) (gcd : Op₂ C) : Set (c ⊔ ℓ) where
open Divisibility _*_ public
field
isIntegralDomain : IsIntegralDomain _+_ _*_ -_ 0# 1#
gcd-isGCD : IsGCD gcd
open IsIntegralDomain isIntegralDomain public
record IsUniqueFactorizationDomain (_+_ _*_ : Op₂ C) (-_ : Op₁ C) (0# 1# : C) (gcd : Op₂ C) : Set (c ⊔ ℓ) where
field
isGCDDomain : IsGCDDomain _+_ _*_ -_ 0# 1# gcd
-- TODO define factorization
open IsGCDDomain isGCDDomain public
module Modulus
(0# : C) (∣_∣ : ∀ n {n≉0 : n ≉ 0#} → ℕ) (_mod_ : ∀ (n m : C) {m≉0 : m ≉ 0#} → C)
where
data Remainder (n : C) (m : C) {m≉0 : m ≉ 0#} : Set (c ⊔ ℓ) where
0≈ : (r≈0 : (n mod m) {m≉0} ≈ 0#) → Remainder n m
0≉ : (r≉0 : (n mod m) {m≉0} ≉ 0#) → ∣ n mod m ∣ {r≉0} < ∣ m ∣ {m≉0} → Remainder n m
module _
(_+_ _*_ : Op₂ C) (-_ : Op₁ C) (0# 1# : C) (∣_∣ : ∀ n {n≉0 : n ≉ 0#} → ℕ)
(_div_ : ∀ (n m : C) {m≉0 : m ≉ 0#} → C) (_mod_ : ∀ (n m : C) {m≉0 : m ≉ 0#} → C)
(gcd : Op₂ C)
where
record IsEuclideanDomain : Set (c ⊔ ℓ) where
open Modulus 0# ∣_∣ _mod_ public
field
isUniqueFactorizationDomain : IsUniqueFactorizationDomain _+_ _*_ -_ 0# 1# gcd
division : ∀ n m {m≉0 : m ≉ 0#} → n ≈ ((m * (n div m) {m≉0}) + (n mod m) {m≉0})
modulus : ∀ n m {m≉0 : m ≉ 0#} → Remainder n m {m≉0}
div-cong : ∀ {x₁ x₂} {y₁ y₂} → x₁ ≈ x₂ → y₁ ≈ y₂ → ∀ {y₁≉0 y₂≉0} → (x₁ div y₁) {y₁≉0} ≈ (x₂ div y₂) {y₂≉0}
mod-cong : ∀ {x₁ x₂} {y₁ y₂} → x₁ ≈ x₂ → y₁ ≈ y₂ → ∀ {y₁≉0 y₂≉0} → (x₁ mod y₁) {y₁≉0} ≈ (x₂ mod y₂) {y₂≉0}
open IsUniqueFactorizationDomain isUniqueFactorizationDomain public
record IsField (_+_ _*_ : Op₂ C) (-_ : Op₁ C) (0# 1# : C) (_/_ : ∀ (n m : C) {m≉0 : m ≉ 0#} → C) (gcd : Op₂ C) : Set (c ⊔ ℓ) where
field
isEuclideanDomain : IsEuclideanDomain _+_ _*_ -_ 0# 1# (λ _ → 0) _/_ (λ _ _ → 0#) gcd
open IsEuclideanDomain isEuclideanDomain public renaming (div-cong to /-cong)
open import Relation.Binary.Reasoning.Setoid setoid
m*[n/m]≈n : ∀ n m {m≉0 : m ≉ 0#} → (m * (n / m) {m≉0}) ≈ n
m*[n/m]≈n n m {m≉0} = begin
(m * (n / m) {m≉0}) ≈⟨ sym (+-identityʳ (m * (n / m) {m≉0})) ⟩
((m * (n / m) {m≉0}) + 0#) ≈⟨ sym (division n m) ⟩
n ∎
[n/m]*m≈n : ∀ n m {m≉0 : m ≉ 0#} → ((n / m) {m≉0} * m) ≈ n
[n/m]*m≈n n m {m≉0} = begin
((n / m) * m) ≈⟨ *-comm (n / m) m ⟩
(m * (n / m)) ≈⟨ m*[n/m]≈n n m ⟩
n ∎
/≉0 : ∀ {c₁ c₂} → c₁ ≉ 0# → (c₂≉0 : c₂ ≉ 0#) → (c₁ / c₂) {c₂≉0} ≉ 0#
/≉0 {c₁} {c₂} c₁≉0 c₂≉0 c₁/c₂≈0 = 0#≉1# $ *-cancelˡ c₂ c₂≉0 $ begin
c₂ * 0# ≈⟨ *-congˡ (sym (zeroˡ ((c₂ / c₁) {c₁≉0}))) ⟩
c₂ * (0# * (c₂ / c₁)) ≈⟨ *-congˡ (*-congʳ (sym (c₁/c₂≈0))) ⟩
c₂ * ((c₁ / c₂) * (c₂ / c₁)) ≈⟨ sym (*-assoc c₂ (c₁ / c₂) (c₂ / c₁)) ⟩
(c₂ * (c₁ / c₂)) * (c₂ / c₁) ≈⟨ *-congʳ (m*[n/m]≈n c₁ c₂) ⟩
c₁ * (c₂ / c₁) ≈⟨ m*[n/m]≈n c₂ c₁ ⟩
c₂ ≈⟨ sym (*-identityʳ c₂) ⟩
c₂ * 1# ∎
infixl 7 _/-nonzero_
_/-nonzero_ : C/0 → C/0 → C/0
(c₁ , c₁≉0) /-nonzero (c₂ , c₂≉0) = (c₁ / c₂) {c₂≉0} , /≉0 c₁≉0 c₂≉0
infix 8 _⁻¹
_⁻¹ : ∀ x {x≉0 : x ≉ 0#} → C
_⁻¹ x {x≉0} = (1# / x) {x≉0}
⁻¹-inverseʳ : ∀ x {x≉0 : x ≉ 0#} → (x * (x ⁻¹) {x≉0}) ≈ 1#
⁻¹-inverseʳ = m*[n/m]≈n 1#
⁻¹-inverseˡ : ∀ x {x≉0 : x ≉ 0#} → ((x ⁻¹) {x≉0} * x) ≈ 1#
⁻¹-inverseˡ = [n/m]*m≈n 1#
x⁻¹≉0 : ∀ x {x≉0 : x ≉ 0#} → (x ⁻¹) {x≉0} ≉ 0#
x⁻¹≉0 x {x≉0} = /≉0 1#≉0# x≉0
-- 0#≉1# $ begin
-- 0# ≈⟨ sym (zeroʳ x) ⟩
-- x * 0# ≈⟨ *-congˡ (sym x⁻¹≈0) ⟩
-- x * (x ⁻¹) {x≉0} ≈⟨ ⁻¹-inverseʳ x ⟩
-- 1# ∎
⁻¹-cong : ∀ {x y} {x≉0 : x ≉ 0#} {y≉0 : y ≉ 0#} → x ≈ y → (x ⁻¹) {x≉0} ≈ (y ⁻¹) {y≉0}
⁻¹-cong {x} {y} {x≉0} {y≉0} x≈y = *-cancelˡ x x≉0 $ begin
(x * (x ⁻¹)) ≈⟨ ⁻¹-inverseʳ x ⟩
1# ≈⟨ sym (⁻¹-inverseʳ y {y≉0}) ⟩
(y * (y ⁻¹)) ≈⟨ *-congʳ (sym x≈y) ⟩
(x * (y ⁻¹)) ∎
record IsDecField
(_≈?_ : Decidable _≈_) (_+_ _*_ : Op₂ C) (-_ : Op₁ C) (0# 1# : C)
(_/_ : ∀ (n m : C) {m≉0 : m ≉ 0#} → C) (gcd : Op₂ C) : Set (c ⊔ ℓ) where
field
isField : IsField _+_ _*_ -_ 0# 1# _/_ gcd
open IsField isField public
isDecEquivalence : IsDecEquivalence _≈_
isDecEquivalence = record
{ isEquivalence = isEquivalence
; _≟_ = _≈?_
}
record IsFiniteField
(_≈?_ : Decidable _≈_) (_+_ _*_ : Op₂ C) (-_ : Op₁ C) (0# 1# : C)
(_/_ : ∀ (n m : C) {m≉0 : m ≉ 0#} → C) (gcd : Op₂ C)
(cardinality : ℕ) : Set (suc c ⊔ ℓ) where
field
isDecField : IsDecField _≈?_ _+_ _*_ -_ 0# 1# _/_ gcd
C↦Fin[cardinality] : C ⤖ Fin cardinality
open IsDecField isDecField public
|
algebraic-stack_agda0000_doc_13656 |
open import Agda.Builtin.Nat
open import Agda.Builtin.Equality
record Eq (A : Set) : Set₁ where
field
_≈_ : A → A → Set
open Eq {{...}} public
record Setoid : Set₁ where
field
∣_∣ : Set
{{eq}} : Eq ∣_∣
open Setoid public
-- instance
-- EqNat : Eq Nat
-- _≈_ {{EqNat}} = _≡_
NatSetoid : Setoid
∣ NatSetoid ∣ = Nat
-- Should give: No instance of type Eq Nat
|
algebraic-stack_agda0000_doc_13657 | open import Data.Bool
module GUIgeneric.GUIExample where
open import GUIgeneric.Prelude renaming (inj₁ to secondBtn; inj₂ to firstBtn; WxColor to Color) hiding (addButton; _>>_)
open import GUIgeneric.GUIDefinitions renaming (add to add'; add' to add)
open import GUIgeneric.GUI
open import GUIgeneric.GUIExampleLib renaming (addButton to addButton')
open import Data.Product
addButton : String → Frame → Frame
addButton str fr = addButton' str fr optimized
addTxtBox : String → Frame → Frame
addTxtBox str fr = addTxtBox' str fr optimized
oneBtnGUI : Frame
oneBtnGUI = addButton "OK" create-frame
twoBtnGUI : Frame
twoBtnGUI = addButton "Cancel" oneBtnGUI
-- Attributes
--
Cols = ℕ
Margin = ℕ
HSpace = ℕ
VSpace = ℕ
oneColumnLayout : Cols × Margin × HSpace × VSpace
oneColumnLayout = (1 , 10 , 2 , 2)
black : Color
black = rgb 0 0 0
propOneBtn : properties oneBtnGUI
propOneBtn = black , oneColumnLayout
propTwoBtn : properties twoBtnGUI
propTwoBtn = black , black , oneColumnLayout
putStr' : {A : Set} → String → (f : IO GuiLev1Interface ∞ A) →
IO GuiLev1Interface ∞ A
putStr' s f = do (putStrLn s) (λ _ → f)
syntax putStr' s f = putStrLn s >> f
keepGUI : {j : Size} → HandlerObject j twoBtnGUI →
IO GuiLev1Interface ∞
(Σ-syntax (returnType twoBtnGUI)
(λ r →
IOObjectˢ GuiLev1Interface handlerInterface j
(nextStateFrame twoBtnGUI r)))
keepGUI = λ obj → return (noChange , obj)
changeGUI : ∀ {j} (g : CompEls frame) {g'} (prop : properties g) obj →
IO GuiLev1Interface ∞ (Σ (returnType g') (\r -> IOObjectˢ GuiLev1Interface handlerInterface j (nextStateFrame g' r)))
changeGUI = λ g prop obj → return (changedGUI g prop , obj)
mutual
objTwoBtnGUI' : ∀ i → HandlerObject i twoBtnGUI
objTwoBtnGUI' i .method {j} (secondBtn bt) =
putStrLn "Cancel Fired! NO GUI Change." >>
keepGUI (objTwoBtnGUI' j)
objTwoBtnGUI' i .method {j} (firstBtn bt) =
putStrLn "OK Fired! Redefining GUI." >>
changeGUI oneBtnGUI propOneBtn (objOneBtnGUI' j)
objOneBtnGUI' : ∀ i → HandlerObject i oneBtnGUI
objOneBtnGUI' i .method {j} bt =
putStrLn "OK Fired! Redefining GUI." >>
changeGUI twoBtnGUI propTwoBtn (objTwoBtnGUI' j)
obj2Btn : ∀ {i} → HandlerObject i twoBtnGUI
obj2Btn .method (firstBtn bt) =
putStrLn "OK fired! Redefining GUI." >>
changeGUI oneBtnGUI propOneBtn obj1Btn
obj2Btn .method (secondBtn bt) =
putStrLn "Cancel fired! No GUI change." >>
keepGUI obj2Btn
obj1Btn : ∀ {i} → HandlerObject i oneBtnGUI
obj1Btn .method bt =
putStrLn "OK fired! Redefining GUI." >>
changeGUI twoBtnGUI propTwoBtn obj2Btn
main : NativeIO Unit
main = compileProgram twoBtnGUI propTwoBtn
(obj2Btn {∞})
|
algebraic-stack_agda0000_doc_13658 | -- {-# OPTIONS -v tc.conv.level:60 #-}
-- {-# OPTIONS -v tc.conv:30 #-}
{- Agda development version: Wed Oct 30 16:30:06 GMT 2013
The last line of code triggers the following error,
but replacing '_' with 'a' typechecks just fine.
Bug.agda:32,8-11
tt != a of type ⊤
when checking that the expression s _ has type P tt → P a
Changing 'Set (q a)' to 'Set' in line 26 suppresses the error.
-}
-- Andreas, 2013-10-31 Fixed by retrying sort comparison after
-- successful type comparison (which might have solve the missing level metas).
module Issue930 where
open import Common.Level
data ⊤ : Set where
tt : ⊤
postulate
q : ⊤ → Level
P : (a : ⊤) → Set (q a)
s : (a : ⊤) → P tt → P a
a : ⊤
g : (P tt → P a) → ⊤
v : ⊤
v = g (s _)
{-
coerce term v = s ?1
from type t1 = P tt → P ?1
to type t2 = P tt → P a
equalSort
Set (q tt ⊔ q ?1) == Set (q a ⊔ q tt)
compareAtom q tt == q a : Level
compareTerm tt == a : ⊤
sort comparison failed -- THIS ERROR IS CAUGHT, BUT RETHROWN AT THE END
compareTerm P tt → P ?1 =< P tt → P a : Set (q tt ⊔ q ?1)
compare function types
t1 = P tt → P ?1
t2 = P tt → P a
equalSort
Set (q ?1) == Set (q a)
compareTerm ?1 == a : ⊤
attempting shortcut ?1 := a
solving _13 := a
-}
|
algebraic-stack_agda0000_doc_13659 | module x01-842Naturals where
-- This is a comment.
{-
This is a multi-line comment
-}
-- Definition of datatype representing natural numbers. ♭
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
-- A couple of definitions using this datatype.
one : ℕ
one = suc zero
two : ℕ
two = suc (suc zero)
-- I could have also said two = suc one.
-- PLFA exercise: write out seven.
-- Pragma to use decimal notation as shorthand.
{-# BUILTIN NATURAL ℕ #-}
-- Some useful imports from the standard library:
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl)
open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _∎)
-- Addition on naturals.
_+_ : ℕ → ℕ → ℕ
zero + n = n
suc m + n = suc {!m + n!}
-- Agda normalization; proof of equality.
_ : 2 + 3 ≡ 5
_ = refl
-- Equational reasoning.
_ : 2 + 3 ≡ 5
_ =
begin
2 + 3
≡⟨⟩ -- is shorthand for
(suc (suc zero)) + (suc (suc (suc zero)))
≡⟨⟩ -- many steps condensed
5
∎
-- PLFA shows longhand and shorthand are interchangeable.
-- PLFA exercise: write out the reduction for 3+4 equationally.
-- Multiplication.
_*_ : ℕ → ℕ → ℕ
m * n = {!!}
_ =
begin
2 * 3
≡⟨⟩ -- many steps condensed
6
∎
-- PLFA exercise: write out 3*4.
-- 842 exercise: Exponentiation (1 point)
-- Define exponentiation (m raised to the power n).
_^_ : ℕ → ℕ → ℕ
m ^ n = {!!}
-- One test for exponentiation (you should write others).
_ : 2 ^ 3 ≡ 8
_ = refl
-- Monus (subtraction for naturals, bottoms out at zero).
_∸_ : ℕ → ℕ → ℕ
m ∸ n = {!!}
_ =
begin
3 ∸ 2
≡⟨⟩ -- many steps condensed
1
∎
_ =
begin
2 ∸ 3
≡⟨⟩ -- many steps condensed
0
∎
-- PLFA exercise: write out 5 ∸ 3 and 3 ∸ 5.
infixl 6 _+_ _∸_
infixl 7 _*_
-- These pragmas will register our operations, if we want,
-- so that they work with decimal notation.
-- {-# BUILTIN NATPLUS _+_ #-}
-- {-# BUILTIN NATTIMES _*_ #-}
-- {-# BUILTIN NATMINUS _∸_ #-}
-- Binary representation.
-- Modified from PLFA exercise (thanks to David Darais).
data Bin-ℕ : Set where
bits : Bin-ℕ
_x0 : Bin-ℕ → Bin-ℕ
_x1 : Bin-ℕ → Bin-ℕ
-- Our representation of zero is different from PLFA.
-- We use the empty sequence of bits (more consistent).
bin-zero : Bin-ℕ
bin-zero = bits
bin-one : Bin-ℕ
bin-one = bits x1 -- 1 in binary
bin-two : Bin-ℕ
bin-two = bits x1 x0 -- 10 in binary
-- 842 exercise: Increment (1 point)
-- Define increment (add one).
inc : Bin-ℕ → Bin-ℕ
inc m = {!!}
-- An example/test of increment (you should create others).
_ : inc (bits x1 x0 x1 x1) ≡ bits x1 x1 x0 x0
_ = refl
-- 842 exercise: To/From (2 points)
-- Define 'tob' and 'fromb' operations
-- to convert between unary (ℕ) and binary (Bin-ℕ) notation.
-- Hint: avoid addition and multiplication,
-- and instead use the provided dbl (double) function.
-- This will make later proofs easier.
-- I've put 'b' on the end of the operations to
-- avoid a name clash in a later file.
-- It also makes the direction clear when using them.
dbl : ℕ → ℕ
dbl zero = zero
dbl (suc m) = suc (suc (dbl m))
tob : ℕ → Bin-ℕ
tob m = {!!}
fromb : Bin-ℕ → ℕ
fromb n = {!!}
-- A couple of examples/tests (you should create others).
_ : tob 6 ≡ bits x1 x1 x0
_ = refl
_ : fromb (bits x1 x1 x0) ≡ 6
_ = refl
-- 842 exercise: BinAdd (2 points)
-- Write the addition function for binary notation.
-- Do NOT use 'to' and 'from'. Work with Bin-ℕ as if ℕ did not exist.
-- Hint: use recursion on both m and n.
_bin-+_ : Bin-ℕ → Bin-ℕ → Bin-ℕ
m bin-+ n = {!!}
-- Tests can use to/from, or write out binary constants as below.
-- Again: write more tests!
_ : (bits x1 x0) bin-+ (bits x1 x1) ≡ (bits x1 x0 x1)
_ = refl
-- That's it for now, but we will return to binary notation later.
-- Many definitions from above are also in the standard library.
-- open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _^_; _∸_)
-- Unicode used in this chapter:
{-
ℕ U+2115 DOUBLE-STRUCK CAPITAL N (\bN)
→ U+2192 RIGHTWARDS ARROW (\to, \r, \->)
∸ U+2238 DOT MINUS (\.-)
≡ U+2261 IDENTICAL TO (\==)
⟨ U+27E8 MATHEMATICAL LEFT ANGLE BRACKET (\<)
⟩ U+27E9 MATHEMATICAL RIGHT ANGLE BRACKET (\>)
∎ U+220E END OF PROOF (\qed)
-}
|
algebraic-stack_agda0000_doc_13660 | -- Andreas, 2018-05-28, issue #3095, fail on attempt to make hidden parent variable visible
data Nat : Set where
suc : {n : Nat} → Nat
data IsSuc : Nat → Set where
isSuc : ∀{n} → IsSuc (suc {n})
test : ∀{m} → IsSuc m → Set
test p = aux p
where
aux : ∀{n} → IsSuc n → Set
aux isSuc = {!.m!} -- Split on .m here
-- Context:
-- p : IsSuc .m
-- .m : Nat
-- .n : Nat
-- Expected error:
-- Cannot split on module parameter .m
-- when checking that the expression ? has type Set
|
algebraic-stack_agda0000_doc_13661 | {-# OPTIONS --without-K --safe #-}
module Categories.Minus2-Category.Properties where
-- All -2-Categories are equivalent to One
open import Level
open import Data.Product using (Σ; _,_; proj₁; proj₂)
open import Data.Unit using (⊤; tt)
open import Categories.Minus2-Category
open import Categories.Category
import Categories.Morphism as M
open import Categories.Category.Monoidal
open import Categories.Category.Instance.One
open import Categories.Category.Equivalence hiding (refl)
open import Categories.NaturalTransformation using (ntHelper)
private
variable
o ℓ e : Level
shrink-them-all : (X : -2-Category {o} {ℓ} {e}) → StrongEquivalence (-2-Category.cat X) (One {o} {ℓ} {e})
shrink-them-all X = record
{ F = record
{ F₀ = λ _ → lift tt
; F₁ = λ _ → lift tt
}
; G = record
{ F₀ = λ _ → proj₁ Obj-Contr
; F₁ = λ _ → M._≅_.from (proj₂ Obj-Contr (proj₁ Obj-Contr))
; identity = Hom-Conn
; homomorphism = Hom-Conn
; F-resp-≈ = λ _ → Hom-Conn
}
; weak-inverse = record
{ F∘G≈id = _
; G∘F≈id = record
{ F⇒G = ntHelper (record
{ η = λ y → M._≅_.from (proj₂ Obj-Contr y)
; commute = λ _ → Hom-Conn
})
; F⇐G = ntHelper (record
{ η = λ y → M._≅_.to (proj₂ Obj-Contr y)
; commute = λ _ → Hom-Conn
})
; iso = λ Z → record
{ isoˡ = M._≅_.isoˡ (proj₂ Obj-Contr Z)
; isoʳ = M._≅_.isoʳ (proj₂ Obj-Contr Z)
}
}
}
}
where
open -2-Category X
open Category cat
|
algebraic-stack_agda0000_doc_13662 | module gc where
open import lib
-- we will model addresses in memory as just natural numbers
Address : Set
Address = ℕ
-- a value of type (Bounded n) is an address a together with a proof that a is less than n
Bounded : Address → Set
Bounded n = Σ Address (λ a → a < n ≡ tt)
-- a (Cell a) models an addressable cell of memory
data Cell(bound : Address) : Set where
Scalar : ℕ → Cell bound -- this represents a cell with no outgoing pointers, just a natural number value
Pointers : ∀ (p1 p2 : Bounded bound) → Cell bound -- this cell has exactly two outgoing pointers
{- a (well-formed) memory is a vector of m cells, where all pointers in those cells are bounded by n.
This is just a way of expressing that the memory does not have any pointers heading off to some
illegal locations (outside the allocated memory). -}
Memory : Address → Set
Memory m = 𝕍 (Cell m) m
-- return a list of natural numbers from n-1 down to 0. [5 points]
nats : ∀(n : ℕ) → 𝕍 ℕ n
nats zero = []
nats (suc n) = n :: (nats n)
-- when the definition of nats is correct, the highlighting will disappear from refl below:
test-nats : nats 3 ≡ 2 :: 1 :: 0 :: []
test-nats = refl
{- (outgoingPointers m mem b) returns the list of outgoing pointers at the location
given by b in the Memory m. This is either empty (for Scalar) or a list of length
two (for Pointers).
Hint: there is already a function in vector.agda in the IAL that can find the Cell
for you from mem and b.
[10 points] -}
outgoingPointers : ∀ (m : Address) → Memory m → Bounded m → 𝕃 (Bounded m)
outgoingPointers n mem (j , k) with (nth𝕍 j k mem)
... | Scalar c = []
... | Pointers x y = x :: y :: []
{- (doMark u unmarked m b) is supposed to return (just v) if the address
given by b is a member of unmarked, and v is the result of removing that
address from unmarked. If the address given by b is not in unmarked,
then return none. This function simulates marking a cell by removing
it (if it is there) from the vector of unmarked cells. Because the
length of the vector decreases, we can recurse in markh on the result
if we need to.
[17 points]
-}
doMark : ∀(u : ℕ)(unmarked : 𝕍 Address (suc u)) → (m : Address) → Bounded m → maybe (𝕍 Address u)
doMark u ( x :: unmarked ) m ( a , b ) with ( a =ℕ x )
... | tt = just unmarked
doMark 0 ( x :: [] ) m ( a , b ) | ff = nothing
doMark ( suc u ) ( x :: x1 :: unmarked ) m ( a , b ) | ff with ( doMark u ( x1 :: unmarked ) m ( a , b ) )
... | nothing = nothing
... | just unmarked1 = just ( x :: unmarked1 )
{- given a list of unmarked addresses and a Memory m, and a worklist of addresses, return the
list of all unmarked addresses that are not reachable in the memory from an address in the
worklist. So this is basically implementing mark and sweep gc, where addresses are considered
marked if they do not appear in unmarked, and you use outgoingPointers to update the worklist
when it is time to recurse.
[18 points]
-}
markh : ∀(u : ℕ)(unmarked : 𝕍 Address u) → (m : Address) → Memory m → (worklist : 𝕃 (Bounded m)) → 𝕃 Address
markh u [] m x worklist = []
markh u unmarked m x [] = 𝕍-to-𝕃 unmarked
markh ( suc u ) unmarked m x ( x1 :: worklist ) with ( doMark u unmarked m x1 )
... | nothing = markh ( suc u ) unmarked m x worklist
... | just something = markh u something m x ( worklist ++ ( outgoingPointers m x x1 ) )
{- the final mark-and-sweep function, which just takes in a memory and list of roots, and
returns the addresses not reachable in that memory from one of the roots. -}
mark : ∀(m : Address) → Memory m → (roots : 𝕃 (Bounded m)) → 𝕃 Address
mark m memory roots = markh m (nats m) m memory roots
----------------------------------------------------------------------
-- a test case:
test-memory : Memory 3
test-memory = Pointers (0 , refl) (2 , refl) :: Pointers (0 , refl) (2 , refl) :: Pointers (0 , refl) (0 , refl) :: []
test-roots : 𝕃 (Bounded 3)
test-roots = [ (0 , refl) ]
-- the addresses not reachable from address 0 by following pointers in test-memory
test-garbage : 𝕃 Address
test-garbage = mark 3 test-memory test-roots
-- if the implementation above is correct, highlighting on refl below will disappear
test-check : test-garbage ≡ 1 :: []
test-check = refl
|
algebraic-stack_agda0000_doc_13663 | {-
In this file we apply the cubical machinery to Martin Hötzel-Escardó's
structure identity principle:
https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/HoTT-UF-Agda.html#sns
-}
{-# OPTIONS --cubical --safe #-}
module Cubical.Foundations.SIP where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Univalence renaming (ua-pathToEquiv to ua-pathToEquiv')
open import Cubical.Foundations.Transport
open import Cubical.Foundations.Path
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.Properties renaming (cong≃ to _⋆_)
open import Cubical.Foundations.HAEquiv
open import Cubical.Data.Prod.Base hiding (_×_) renaming (_×Σ_ to _×_)
open import Cubical.Foundations.Structure public
private
variable
ℓ₁ ℓ₂ ℓ₃ ℓ₄ ℓ₅ : Level
S : Type ℓ₁ → Type ℓ₂
-- For technical reasons we reprove ua-pathToEquiv using the
-- particular proof constructed by iso→HAEquiv. The reason is that we
-- want to later be able to extract
--
-- eq : ua-au (ua e) ≡ cong ua (au-ua e)
--
uaHAEquiv : (A B : Type ℓ₁) → HAEquiv (A ≃ B) (A ≡ B)
uaHAEquiv A B = iso→HAEquiv (iso ua pathToEquiv ua-pathToEquiv' pathToEquiv-ua)
open isHAEquiv
-- We now extract the particular proof constructed from iso→HAEquiv
-- for reasons explained above.
ua-pathToEquiv : {A B : Type ℓ₁} (e : A ≡ B) → ua (pathToEquiv e) ≡ e
ua-pathToEquiv e = uaHAEquiv _ _ .snd .ret e
-- Note that for any equivalence (f , e) : X ≃ Y the type ι (X , s) (Y , t) (f , e) need not to be
-- a proposition. Indeed this type should correspond to the ways s and t can be identified
-- as S-structures. This we call a standard notion of structure or SNS.
-- We will use a different definition, but the two definitions are interchangeable.
SNS-≡ : (S : Type ℓ₁ → Type ℓ₂) (ι : StrIso S ℓ₃) → Type (ℓ-max (ℓ-max (ℓ-suc ℓ₁) ℓ₂) ℓ₃)
SNS-≡ {ℓ₁} S ι = ∀ {X : Type ℓ₁} (s t : S X) → ι (X , s) (X , t) (idEquiv X) ≃ (s ≡ t)
-- We introduce the notation for structure preserving equivalences a
-- bit differently, but this definition doesn't actually change from
-- Escardó's notes.
_≃[_]_ : (A : TypeWithStr ℓ₁ S) (ι : StrIso S ℓ₂) (B : TypeWithStr ℓ₁ S) → Type (ℓ-max ℓ₁ ℓ₂)
A ≃[ ι ] B = Σ[ e ∈ typ A ≃ typ B ] (ι A B e)
-- The following PathP version of SNS-≡ is a bit easier to work with
-- for the proof of the SIP
SNS-PathP : (S : Type ℓ₁ → Type ℓ₂) (ι : StrIso S ℓ₃) → Type (ℓ-max (ℓ-max (ℓ-suc ℓ₁) ℓ₂) ℓ₃)
SNS-PathP {ℓ₁} S ι = {A B : TypeWithStr ℓ₁ S} (e : typ A ≃ typ B)
→ ι A B e ≃ PathP (λ i → S (ua e i)) (str A) (str B)
-- A quick sanity-check that our definition is interchangeable with
-- Escardó's. The direction SNS-≡→SNS-PathP corresponds more or less
-- to a dependent EquivJ formulation of Escardó's homomorphism-lemma.
SNS-PathP→SNS-≡ : (S : Type ℓ₁ → Type ℓ₂) (ι : StrIso S ℓ₃) → SNS-PathP S ι → SNS-≡ S ι
SNS-PathP→SNS-≡ S ι θ {X = X} s t = ι (X , s) (X , t) (idEquiv X) ≃⟨ θ (idEquiv X) ⟩
PathP (λ i → S (ua (idEquiv X) i)) s t ≃⟨ φ ⟩
s ≡ t ■
where
φ = transportEquiv (λ j → PathP (λ i → S (uaIdEquiv {A = X} j i)) s t)
SNS-≡→SNS-PathP : (ι : StrIso S ℓ₃) → SNS-≡ S ι → SNS-PathP S ι
SNS-≡→SNS-PathP {S = S} ι θ {A = A} {B = B} e = EquivJ P C e (str A) (str B)
where
Y = typ B
P : (X : Type _) → X ≃ Y → Type _
P X e' = (s : S X) (t : S Y) → ι (X , s) (Y , t) e' ≃ PathP (λ i → S (ua e' i)) s t
C : (s t : S Y) → ι (Y , s) (Y , t) (idEquiv Y) ≃ PathP (λ i → S (ua (idEquiv Y) i)) s t
C s t = ι (Y , s) (Y , t) (idEquiv Y) ≃⟨ θ s t ⟩
s ≡ t ≃⟨ ψ ⟩
PathP (λ i → S (ua (idEquiv Y) i)) s t ■
where
ψ = transportEquiv λ j → PathP (λ i → S (uaIdEquiv {A = Y} (~ j) i)) s t
-- We can now directly define an invertible function
--
-- sip : A ≃[ ι ] B → A ≡ B
--
sip : (S : Type ℓ₁ → Type ℓ₂) (ι : StrIso S ℓ₃) (θ : SNS-PathP S ι)
(A B : TypeWithStr ℓ₁ S) → A ≃[ ι ] B → A ≡ B
sip S ι θ A B (e , p) i = ua e i , θ e .fst p i
-- The inverse to sip uses the following little lemma
private
lem : (S : Type ℓ₁ → Type ℓ₂) (A B : TypeWithStr ℓ₁ S) (e : typ A ≡ typ B)
→ PathP (λ i → S (ua (pathToEquiv e) i)) (A .snd) (B .snd) ≡
PathP (λ i → S (e i)) (A .snd) (B .snd)
lem S A B e i = PathP (λ j → S (ua-pathToEquiv e i j)) (A .snd) (B .snd)
-- The inverse
sip⁻ : (S : Type ℓ₁ → Type ℓ₂) (ι : StrIso S ℓ₃) (θ : SNS-PathP S ι)
(A B : TypeWithStr ℓ₁ S) → A ≡ B → A ≃[ ι ] B
sip⁻ S ι θ A B r = pathToEquiv p , invEq (θ (pathToEquiv p)) q
where
p : typ A ≡ typ B
p = cong fst r
q : PathP (λ i → S (ua (pathToEquiv p) i)) (A .snd) (B .snd)
q = transport⁻ (lem S A B p) (cong snd r)
-- We can rather directly show that sip and sip⁻ are mutually inverse:
sip-sip⁻ : (S : Type ℓ₁ → Type ℓ₂) (ι : StrIso S ℓ₃) (θ : SNS-PathP S ι)
(A B : TypeWithStr ℓ₁ S) (r : A ≡ B)
→ sip S ι θ A B (sip⁻ S ι θ A B r) ≡ r
sip-sip⁻ S ι θ A B r =
let p : typ A ≡ typ B
p = cong fst r
q : PathP (λ i → S (p i)) (str A) (str B)
q = cong snd r
in sip S ι θ A B (sip⁻ S ι θ A B r)
≡⟨ refl ⟩
(λ i → ( ua (pathToEquiv p) i)
, θ (pathToEquiv p) .fst
(invEq (θ (pathToEquiv p))
(transport⁻ (lem S A B p) q)) i)
≡⟨ (λ i j → ( ua (pathToEquiv p) j
, retEq (θ (pathToEquiv p))
(transport⁻ (lem S A B p) q) i j)) ⟩
(λ i → ( ua (pathToEquiv p) i
, transport⁻ (lem S A B p) q i))
≡⟨ (λ i j → ( ua-pathToEquiv p i j
, transp (λ k → PathP (λ j → S (ua-pathToEquiv p (i ∧ k) j)) (str A) (str B))
(~ i) (transport⁻ (lem S A B p) q) j)) ⟩
(λ i → ( p i
, transport (λ i → lem S A B p i) (transport⁻ (lem S A B p) q) i))
≡⟨ (λ i j → ( p j
, transportTransport⁻ (lem S A B p) q i j)) ⟩
r ∎
-- The trickier direction:
sip⁻-sip : (S : Type ℓ₁ → Type ℓ₂) (ι : StrIso S ℓ₃) (θ : SNS-PathP S ι)
(A B : TypeWithStr ℓ₁ S) (r : A ≃[ ι ] B)
→ sip⁻ S ι θ A B (sip S ι θ A B r) ≡ r
sip⁻-sip S ι θ A B (e , p) =
sip⁻ S ι θ A B (sip S ι θ A B (e , p))
≡⟨ refl ⟩
pathToEquiv (ua e) , invEq (θ (pathToEquiv (ua e))) (f⁺ p')
≡⟨ (λ i → pathToEquiv-ua e i , invEq (θ (pathToEquiv-ua e i)) (pth' i)) ⟩
e , invEq (θ e) (f⁻ (f⁺ p'))
≡⟨ (λ i → e , invEq (θ e) (transportTransport⁻ (lem S A B (ua e)) p' i)) ⟩
e , invEq (θ e) (θ e .fst p)
≡⟨ (λ i → e , (secEq (θ e) p i)) ⟩
e , p ∎
where
p' : PathP (λ i → S (ua e i)) (str A) (str B)
p' = θ e .fst p
f⁺ : PathP (λ i → S (ua e i)) (str A) (str B)
→ PathP (λ i → S (ua (pathToEquiv (ua e)) i)) (str A) (str B)
f⁺ = transport (λ i → PathP (λ j → S (ua-pathToEquiv (ua e) (~ i) j)) (str A) (str B))
f⁻ : PathP (λ i → S (ua (pathToEquiv (ua e)) i)) (str A) (str B)
→ PathP (λ i → S (ua e i)) (str A) (str B)
f⁻ = transport (λ i → PathP (λ j → S (ua-pathToEquiv (ua e) i j)) (str A) (str B))
-- We can prove the following as in sip∘pis-id, but the type is not
-- what we want as it should be "cong ua (pathToEquiv-ua e)"
pth : PathP (λ j → PathP (λ k → S (ua-pathToEquiv (ua e) j k)) (str A) (str B))
(f⁺ p') (f⁻ (f⁺ p'))
pth i = transp (λ k → PathP (λ j → S (ua-pathToEquiv (ua e) (i ∧ k) j)) (str A) (str B))
(~ i) (f⁺ p')
-- So we build an equality that we want to cast the types with
casteq : PathP (λ j → PathP (λ k → S (ua-pathToEquiv (ua e) j k)) (str A) (str B))
(f⁺ p') (f⁻ (f⁺ p'))
≡ PathP (λ j → PathP (λ k → S (cong ua (pathToEquiv-ua e) j k)) (str A) (str B))
(f⁺ p') (f⁻ (f⁺ p'))
casteq i = PathP (λ j → PathP (λ k → S (eq i j k)) (str A) (str B)) (f⁺ p') (f⁻ (f⁺ p'))
where
-- This is where we need the half-adjoint equivalence property
eq : ua-pathToEquiv (ua e) ≡ cong ua (pathToEquiv-ua e)
eq = sym (uaHAEquiv (typ A) (typ B) .snd .com e)
-- We then get a term of the type we need
pth' : PathP (λ j → PathP (λ k → S (cong ua (pathToEquiv-ua e) j k)) (str A) (str B))
(f⁺ p') (f⁻ (f⁺ p'))
pth' = transport (λ i → casteq i) pth
-- Finally package everything up to get the cubical SIP
SIP : (S : Type ℓ₁ → Type ℓ₂) (ι : StrIso S ℓ₃)
(θ : SNS-PathP S ι) (A B : TypeWithStr ℓ₁ S)
→ A ≃[ ι ] B ≃ (A ≡ B)
SIP S ι θ A B = isoToEquiv (iso (sip S ι θ A B) (sip⁻ S ι θ A B)
(sip-sip⁻ S ι θ A B) (sip⁻-sip S ι θ A B))
-- Now, we want to add axioms (i.e. propositions) to our Structure S that don't affect the ι.
-- We use a lemma due to Zesen Qian, which can now be found in Foundations.Prelude:
-- https://github.com/riaqn/cubical/blob/hgroup/Cubical/Data/Group/Properties.agda#L83
add-to-structure : (S : Type ℓ₁ → Type ℓ₂)
(axioms : (X : Type ℓ₁) → S X → Type ℓ₄)
→ Type ℓ₁ → Type (ℓ-max ℓ₂ ℓ₄)
add-to-structure S axioms X = Σ[ s ∈ S X ] (axioms X s)
add-to-iso : (S : Type ℓ₁ → Type ℓ₂) (ι : StrIso S ℓ₃)
(axioms : (X : Type ℓ₁) → S X → Type ℓ₄)
→ StrIso (add-to-structure S axioms) ℓ₃
add-to-iso S ι axioms (X , (s , a)) (Y , (t , b)) f = ι (X , s) (Y , t) f
add-ax-lemma : (S : Type ℓ₁ → Type ℓ₂)
(axioms : (X : Type ℓ₁) → S X → Type ℓ₄)
(axioms-are-Props : (X : Type ℓ₁) (s : S X) → isProp (axioms X s))
{X Y : Type ℓ₁} {s : S X} {t : S Y} {a : axioms X s} {b : axioms Y t}
(f : X ≃ Y)
→ PathP (λ i → S (ua f i)) s t ≃
PathP (λ i → add-to-structure S axioms (ua f i)) (s , a) (t , b)
add-ax-lemma S axioms axioms-are-Props {s = s} {t = t} {a = a} {b = b} f = isoToEquiv (iso φ ψ η ε)
where
φ : PathP (λ i → S (ua f i)) s t → PathP (λ i → add-to-structure S axioms (ua f i)) (s , a) (t , b)
φ p i = p i , isProp→PathP (λ i → axioms-are-Props (ua f i) (p i)) a b i
ψ : PathP (λ i → add-to-structure S axioms (ua f i)) (s , a) (t , b) → PathP (λ i → S (ua f i)) s t
ψ r i = r i .fst
η : section φ ψ
η r i j = r j .fst , isProp→isSet-PathP (λ k → axioms-are-Props (ua f k) (r k .fst)) _ _
(isProp→PathP (λ k → axioms-are-Props (ua f k) (r k .fst)) a b)
(λ k → r k .snd) i j
ε : retract φ ψ
ε p = refl
add-axioms-SNS : (S : Type ℓ₁ → Type ℓ₂)
(ι : (A B : Σ[ X ∈ (Type ℓ₁) ] (S X)) → A .fst ≃ B .fst → Type ℓ₃)
(axioms : (X : Type ℓ₁) → S X → Type ℓ₄)
(axioms-are-Props : (X : Type ℓ₁) (s : S X) → isProp (axioms X s))
(θ : SNS-PathP S ι)
→ SNS-PathP (add-to-structure S axioms) (add-to-iso S ι axioms)
add-axioms-SNS S ι axioms axioms-are-Props θ {X , s , a} {Y , t , b} f =
add-to-iso S ι axioms (X , s , a) (Y , t , b) f ≃⟨ θ f ⟩
PathP (λ i → S (ua f i)) s t ≃⟨ add-ax-lemma S axioms axioms-are-Props f ⟩
PathP (λ i → (add-to-structure S axioms) (ua f i)) (s , a) (t , b) ■
-- Now, we want to join two structures. Together with the adding of
-- axioms this will allow us to prove that a lot of mathematical
-- structures are a standard notion of structure
join-structure : (S₁ : Type ℓ₁ → Type ℓ₂) (S₂ : Type ℓ₁ → Type ℓ₄)
→ Type ℓ₁ → Type (ℓ-max ℓ₂ ℓ₄)
join-structure S₁ S₂ X = S₁ X × S₂ X
join-iso : {S₁ : Type ℓ₁ → Type ℓ₂} (ι₁ : StrIso S₁ ℓ₃)
{S₂ : Type ℓ₁ → Type ℓ₄} (ι₂ : StrIso S₂ ℓ₅)
→ StrIso (join-structure S₁ S₂) (ℓ-max ℓ₃ ℓ₅)
join-iso ι₁ ι₂ (X , s₁ , s₂) (Y , t₁ , t₂) f = (ι₁ (X , s₁) (Y , t₁) f) × (ι₂ (X , s₂) (Y , t₂) f)
join-SNS : (S₁ : Type ℓ₁ → Type ℓ₂) (ι₁ : StrIso S₁ ℓ₃) (θ₁ : SNS-PathP S₁ ι₁)
(S₂ : Type ℓ₁ → Type ℓ₄) (ι₂ : StrIso S₂ ℓ₅) (θ₂ : SNS-PathP S₂ ι₂)
→ SNS-PathP (join-structure S₁ S₂) (join-iso ι₁ ι₂)
join-SNS S₁ ι₁ θ₁ S₂ ι₂ θ₂ {X , s₁ , s₂} {Y , t₁ , t₂} e = isoToEquiv (iso φ ψ η ε)
where
φ : join-iso ι₁ ι₂ (X , s₁ , s₂) (Y , t₁ , t₂) e
→ PathP (λ i → join-structure S₁ S₂ (ua e i)) (s₁ , s₂) (t₁ , t₂)
φ (p , q) i = (θ₁ e .fst p i) , (θ₂ e .fst q i)
ψ : PathP (λ i → join-structure S₁ S₂ (ua e i)) (s₁ , s₂) (t₁ , t₂)
→ join-iso ι₁ ι₂ (X , s₁ , s₂) (Y , t₁ , t₂) e
ψ p = invEq (θ₁ e) (λ i → p i .fst) , invEq (θ₂ e) (λ i → p i .snd)
η : section φ ψ
η p i j = retEq (θ₁ e) (λ k → p k .fst) i j , retEq (θ₂ e) (λ k → p k .snd) i j
ε : retract φ ψ
ε (p , q) i = secEq (θ₁ e) p i , secEq (θ₂ e) q i
|
algebraic-stack_agda0000_doc_3936 | module Record where
module M where
record A
: Set
where
constructor
a
open M
record B
: Set
where
record C
: Set
where
constructor
c
x
: A
x
= a
y
: C
y
= record {}
record D
(E : Set)
: Set
where
record F
: Set₁
where
field
G
: Set
z
: G
|
algebraic-stack_agda0000_doc_3937 | {-# OPTIONS --cubical --safe #-}
module JustBeInjective where
open import Cubical.Core.Everything
open import Cubical.Data.Unit
data maybe (A : Set) : Set where
just : A -> maybe A
nothing : maybe A
variable A : Set
unwrap : A → (a : maybe A) → A
unwrap _ (just x) = x
unwrap a nothing = a
just-injective : ∀ {A : Set} (a b : A) → just a ≡ just b → a ≡ b
just-injective a b p i = unwrap a (p i)
|
algebraic-stack_agda0000_doc_3938 | {-# OPTIONS --cubical #-}
module LaterPrims where
open import Agda.Primitive
open import Agda.Primitive.Cubical renaming (itIsOne to 1=1)
open import Agda.Builtin.Cubical.Path
open import Agda.Builtin.Cubical.Sub renaming (Sub to _[_↦_]; primSubOut to outS)
module Prims where
primitive
primLockUniv : Set₁
open Prims renaming (primLockUniv to LockU) public
private
variable
l : Level
A B : Set l
-- We postulate Tick as it is supposed to be an abstract sort.
postulate
Tick : LockU
▹_ : ∀ {l} → Set l → Set l
▹_ A = (@tick x : Tick) -> A
▸_ : ∀ {l} → ▹ Set l → Set l
▸ A = (@tick x : Tick) → A x
next : A → ▹ A
next x _ = x
_⊛_ : ▹ (A → B) → ▹ A → ▹ B
_⊛_ f x a = f a (x a)
map▹ : (f : A → B) → ▹ A → ▹ B
map▹ f x α = f (x α)
transpLater : ∀ (A : I → ▹ Set) → ▸ (A i0) → ▸ (A i1)
transpLater A u0 a = primTransp (\ i → A i a) i0 (u0 a)
transpLater-prim : (A : I → ▹ Set) → (x : ▸ (A i0)) → ▸ (A i1)
transpLater-prim A x = primTransp (\ i → ▸ (A i)) i0 x
transpLater-test : ∀ (A : I → ▹ Set) → (x : ▸ (A i0)) → transpLater-prim A x ≡ transpLater A x
transpLater-test A x = \ _ → transpLater-prim A x
hcompLater-prim : ∀ (A : ▹ Set) φ (u : I → Partial φ (▸ A)) → (u0 : (▸ A) [ φ ↦ u i0 ]) → ▸ A
hcompLater-prim A φ u u0 a = primHComp (\ { i (φ = i1) → u i 1=1 a }) (outS u0 a)
hcompLater : ∀ (A : ▹ Set) φ (u : I → Partial φ (▸ A)) → (u0 : (▸ A) [ φ ↦ u i0 ]) → ▸ A
hcompLater A φ u u0 = primHComp (\ { i (φ = i1) → u i 1=1 }) (outS u0)
hcompLater-test : ∀ (A : ▹ Set) φ (u : I → Partial φ (▸ A)) → (u0 : (▸ A) [ φ ↦ u i0 ]) → hcompLater A φ u u0 ≡ hcompLater-prim A φ u u0
hcompLater-test A φ u x = \ _ → hcompLater-prim A φ u x
ap : ∀ {A B : Set} (f : A → B) → ∀ {x y} → x ≡ y → f x ≡ f y
ap f eq = \ i → f (eq i)
_$>_ : ∀ {A B : Set} {f g : A → B} → f ≡ g → ∀ x → f x ≡ g x
eq $> x = \ i → eq i x
later-ext : ∀ {A : Set} → {f g : ▹ A} → (▸ \ α → f α ≡ g α) → f ≡ g
later-ext eq = \ i α → eq α i
postulate
dfix : ∀ {l} {A : Set l} → (▹ A → A) → ▹ A
pfix : ∀ {l} {A : Set l} (f : ▹ A → A) → dfix f ≡ (\ _ → f (dfix f))
pfix' : ∀ {l} {A : Set l} (f : ▹ A → A) → ▸ \ α → dfix f α ≡ f (dfix f)
pfix' f α i = pfix f i α
fix : ∀ {l} {A : Set l} → (▹ A → A) → A
fix f = f (dfix f)
data gStream (A : Set) : Set where
cons : (x : A) (xs : ▹ gStream A) → gStream A
repeat : ∀ {A : Set} → A → gStream A
repeat a = fix \ repeat▹ → cons a repeat▹
repeat-eq : ∀ {A : Set} (a : A) → repeat a ≡ cons a (\ α → repeat a)
repeat-eq a = ap (cons a) (pfix (cons a))
map : ∀ {A B : Set} → (A → B) → gStream A → gStream B
map f = fix \ map▹ → \ { (cons a as) → cons (f a) \ α → map▹ α (as α) }
map-eq : ∀ {A B : Set} → (f : A → B) → ∀ a as → map f (cons a as) ≡ cons (f a) (\ α → map f (as α))
map-eq f a b = ap (cons _) (later-ext \ α → pfix' _ α $> b α)
_∙_ : ∀ {A : Set} {x y z : A} → x ≡ y → y ≡ z → x ≡ z
_∙_ {x = x} p q i = primHComp (\ j → \ { (i = i0) → x; (i = i1) → q j}) (p i)
map-repeat : ∀ {A B : Set} → (a : A) → (f : A → B) → map f (repeat a) ≡ repeat (f a)
map-repeat a f = fix \ prf▹ → ap (map f) (repeat-eq a) ∙ (map-eq f a _ ∙ ap (cons (f a)) (later-ext prf▹ ∙ later-ext \ α → \ i → pfix' (cons (f a)) α (primINeg i) ))
|
algebraic-stack_agda0000_doc_3939 | module 120-natural-induction-necessary where
open import 010-false-true
open import 020-equivalence
open import 100-natural
-- We prove that the induction axiom is necessary.
-- Peano axioms without induction.
record NaturalWithoutInduction
{M : Set}
(zero : M)
(suc : M -> M)
(_==_ : M -> M -> Set)
: Set1 where
-- axioms
field
equiv : Equivalence _==_
sucn!=zero : ∀ {r} -> suc r == zero -> False
sucinjective : ∀ {r s} -> suc r == suc s -> r == s
cong : ∀ {r s} -> r == s -> suc r == suc s
not-induction :
((p : M -> Set) -> p zero -> (∀ n -> p n -> p (suc n)) -> ∀ n -> p n)
-> False
open Equivalence equiv public
-- Construct a model, and prove it satisfies NaturalWithoutInduction
-- but not Natural. To do this, we add an extra zero.
data M : Set where
zero1 : M
zero2 : M
suc : M -> M
thm-M-is-natural-without-induction : NaturalWithoutInduction zero1 suc _≡_
thm-M-is-natural-without-induction = record {
equiv = thm-≡-is-equivalence;
sucn!=zero = sucn!=zero;
sucinjective = sucinjective;
cong = cong;
not-induction = not-induction
}
where
sucn!=zero : ∀ {r} -> suc r ≡ zero1 -> False
sucn!=zero ()
sucinjective : ∀ {r s} -> suc r ≡ suc s -> r ≡ s
sucinjective refl = refl
cong : ∀ {r s} -> r ≡ s -> suc r ≡ suc s
cong refl = refl
-- To prove that induction fails, we test the property "is a
-- successor of zero1 but not of zero2". This holds for zero1 (the
-- base case), and it also holds for every successor of n if it
-- holds for n, but it does not hold for zero2 (or for any of its
-- successors).
not-induction :
((p : M -> Set) -> p zero1 -> (∀ n -> p n -> p (suc n)) -> ∀ n -> p n)
-> False
not-induction induction = induction p base hypothesis zero2
where
-- Property "is a successor of zero1 but not a successor of zero2".
p : M -> Set
p zero1 = True -- true for zero1
p zero2 = False -- false (no proof) for zero2
p (suc n) = p n -- true for successor of n if and only if true for n
-- Base case is trivial.
base : p zero1
base = trivial
-- Induction hypothesis follows by application of "p n" itself
-- due to the recursive definition of p.
hypothesis : ∀ n -> p n -> p (suc n)
hypothesis n pn = pn
-- To round this off, we explicitly prove that M is not natural.
thm-M-is-not-natural : (Natural zero1 suc _≡_) -> False
thm-M-is-not-natural nat =
(NaturalWithoutInduction.not-induction thm-M-is-natural-without-induction)
(Natural.induction nat)
|
algebraic-stack_agda0000_doc_3940 |
module Issue468 where
data Unit : Set where
nothing : Unit
data Maybe (A : Set) : Set where
nothing : Maybe A
just : A → Maybe A
data P : (R : Set) → Maybe R → Set₁ where
p : (R : Set) (x : R) → P R (just x)
works : P Unit (just _)
works = p _ nothing
fails : Unit → P Unit (just _)
fails x = p _ nothing
|
algebraic-stack_agda0000_doc_3941 | {-# OPTIONS --safe --warning=error --without-K #-}
open import Setoids.Setoids
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Groups.Definition
open import Groups.Homomorphisms.Definition
module Groups.Isomorphisms.Definition where
record GroupIso {m n o p : _} {A : Set m} {S : Setoid {m} {o} A} {_·A_ : A → A → A} {B : Set n} {T : Setoid {n} {p} B} {_·B_ : B → B → B} (G : Group S _·A_) (H : Group T _·B_) (f : A → B) : Set (m ⊔ n ⊔ o ⊔ p) where
open Setoid S renaming (_∼_ to _∼G_)
open Setoid T renaming (_∼_ to _∼H_)
field
groupHom : GroupHom G H f
bij : SetoidBijection S T f
record GroupsIsomorphic {m n o p : _} {A : Set m} {S : Setoid {m} {o} A} {_·A_ : A → A → A} {B : Set n} {T : Setoid {n} {p} B} {_·B_ : B → B → B} (G : Group S _·A_) (H : Group T _·B_) : Set (m ⊔ n ⊔ o ⊔ p) where
field
isomorphism : A → B
proof : GroupIso G H isomorphism
|
algebraic-stack_agda0000_doc_3942 |
module Lib.Vec where
open import Lib.Prelude
open import Lib.Nat
open import Lib.Fin
infixr 40 _::_ _++_
data Vec (A : Set) : Nat -> Set where
[] : Vec A 0
_::_ : forall {n} -> A -> Vec A n -> Vec A (suc n)
_++_ : {A : Set}{n m : Nat} -> Vec A n -> Vec A m -> Vec A (n + m)
[] ++ ys = ys
(x :: xs) ++ ys = x :: xs ++ ys
_!_ : forall {A n} -> Vec A n -> Fin n -> A
[] ! ()
x :: xs ! zero = x
x :: xs ! suc i = xs ! i
tabulate : forall {A n} -> (Fin n -> A) -> Vec A n
tabulate {n = zero} f = []
tabulate {n = suc n} f = f zero :: tabulate (f ∘ suc)
vec : forall {A n} -> A -> Vec A n
vec x = tabulate (\_ -> x)
infixl 30 _<*>_
_<*>_ : forall {A B n} -> Vec (A -> B) n -> Vec A n -> Vec B n
[] <*> [] = []
f :: fs <*> x :: xs = f x :: (fs <*> xs)
map : forall {A B n} -> (A -> B) -> Vec A n -> Vec B n
map f xs = vec f <*> xs
zip : forall {A B C n} -> (A -> B -> C) -> Vec A n -> Vec B n -> Vec C n
zip f xs ys = vec f <*> xs <*> ys
|
algebraic-stack_agda0000_doc_3943 | {-# OPTIONS --safe #-}
module Cubical.Algebra.CommRing.Instances.Unit where
open import Cubical.Foundations.Prelude
open import Cubical.Data.Unit
open import Cubical.Algebra.Ring
open import Cubical.Algebra.CommRing
private
variable
ℓ : Level
open CommRingStr
UnitCommRing : ∀ {ℓ} → CommRing ℓ
fst UnitCommRing = Unit*
0r (snd UnitCommRing) = tt*
1r (snd UnitCommRing) = tt*
_+_ (snd UnitCommRing) = λ _ _ → tt*
_·_ (snd UnitCommRing) = λ _ _ → tt*
- snd UnitCommRing = λ _ → tt*
isCommRing (snd UnitCommRing) =
makeIsCommRing isSetUnit* (λ _ _ _ → refl) (λ { tt* → refl }) (λ _ → refl)
(λ _ _ → refl) (λ _ _ _ → refl) (λ { tt* → refl })
(λ _ _ _ → refl) (λ _ _ → refl)
|
algebraic-stack_agda0000_doc_3944 | module Prelude.String where
open import Prelude.Bool
open import Prelude.Char
open import Prelude.List
open import Prelude.Nat
postulate
String : Set
nil : String
primStringToNat : String → Nat
charToString : Char -> String
{-# BUILTIN STRING String #-}
primitive
primStringAppend : String → String → String
primStringToList : String → List Char
primStringFromList : List Char → String
primStringEquality : String → String → Bool
{-# COMPILED_EPIC nil () -> String = "" #-}
{-# COMPILED_EPIC primStringToNat (s : String) -> BigInt = foreign BigInt "strToBigInt" (s : String) #-}
-- {-# COMPILED_EPIC charToString (c : Int) -> String = charToString(c) #-}
strEq : (x y : String) -> Bool
strEq = primStringEquality
infixr 30 _+S+_
_+S+_ : (x y : String) -> String
_+S+_ = primStringAppend
fromList : List Char -> String
fromList = primStringFromList
fromString : String -> List Char
fromString = primStringToList
|
algebraic-stack_agda0000_doc_3945 | module Everything where
import Library
import Syntax
import RenamingAndSubstitution
import EquationalTheory
|
algebraic-stack_agda0000_doc_3946 | -- TODO: Unfinished
open import Logic
open import Type
open import Structure.Relator
open import Structure.Setoid
module Geometry.HilbertAxioms
{ℓₚ ℓₗ ℓₚₑ ℓₗₑ ℓₚₗ ℓₚₚₚ}
(Point : Type{ℓₚ}) ⦃ equiv-point : Equiv{ℓₚₑ}(Point) ⦄ -- The type of points on a plane.
(Line : Type{ℓₗ}) ⦃ equiv-line : Equiv{ℓₗₑ}(Line) ⦄ -- The type of lines on a plane.
(Distance : Type{ℓₗ}) ⦃ equiv-distance : Equiv{ℓₗₑ}(Distance) ⦄
(Angle : Type{ℓₗ}) ⦃ equiv-angle : Equiv{ℓₗₑ}(Angle) ⦄
(_∈ₚₗ_ : Point → Line → Stmt{ℓₚₗ}) -- `p ∈ₚₗ l` means that the point `p` lies on the line `l`.
(_―_―_ : Point → Point → Point → Stmt{ℓₚₚₚ}) -- `p₁ ― p₂ ― p₃` means that the second point `p₂` lies between `p₁` and `p₃` in some line.
⦃ incidence-relator : BinaryRelator(_∈ₚₗ_) ⦄
⦃ betweenness-relator : TrinaryRelator(_―_―_) ⦄
where
open import Data.Tuple as Tuple using (_⨯_ ; _,_)
open import Functional
open import Functional.Combinations
import Lvl
open import Logic.Predicate
open import Logic.Propositional
open import Logic.Propositional.Xor
open import Sets.ExtensionalPredicateSet renaming (_≡_ to _≡ₛ_)
open import Structure.Relator.Properties
open import Structure.Setoid.Uniqueness
open import Syntax.Function
private variable p p₁ p₂ p₃ p₄ q q₁ q₂ q₃ q₄ : Point
private variable l l₁ l₂ : Line
module _ where
-- An open line segment.
-- The set of points strictly between two points in a line.
-- Also called:
-- • Open interval in A Minimal Version of Hilbert's Axioms for Plane Geometry by William Richter.
betweens : Point → Point → PredSet(Point)
betweens a b ∋ p = a ― p ― b
PredSet.preserve-equiv (betweens a b) = TrinaryRelator.unary₂ betweenness-relator
extensionPoints : Point → Point → PredSet(Point)
extensionPoints a b ∋ p = a ― b ― p
PredSet.preserve-equiv (extensionPoints a b) = TrinaryRelator.unary₃ betweenness-relator
-- A line segment.
-- The set of points between two points in a line including the endpoints.
segment : Point → Point → PredSet(Point)
segment a b = (• a) ∪ (• b) ∪ (betweens a b)
-- A ray.
-- The set of points between starting from `a` in the direction of `b` in a line.
ray : Point → Point → PredSet(Point)
ray a b = (• a) ∪ (• b) ∪ (extensionPoints a b)
angle : Point → Point → Point → PredSet(PredSet(Point))
angle p₁ p₂ p₃ = (• ray p₁ p₂) ∪ (• ray p₁ p₃)
Distinct₃ : Point → Point → Point → Stmt
Distinct₃ = combine₃Fn₂Op₂(_≢_)(_∧_)
Collinear₃ : Point → Point → Point → Stmt
Collinear₃ p₁ p₂ p₃ = ∃(l ↦ all₃Fn₁Op₂(_∈ₚₗ l)(_∧_) p₁ p₂ p₃)
record Axioms : Type{ℓₚ Lvl.⊔ ℓₗ Lvl.⊔ ℓₚₑ Lvl.⊔ ℓₗₑ Lvl.⊔ ℓₚₗ Lvl.⊔ ℓₚₚₚ} where
field
-- There is an unique line for every unordered distinct pair of points.
-- Also called:
-- • I1 in Hilbert’s Axiom System for Plane Geometry, A Short Introduction by Bjørn Jahren.
-- • I.1 and I.2 in Project Gutenberg’s The Foundations of Geometry by David Hilbert.
-- • I1 in A Minimal Version of Hilbert's Axioms for Plane Geometry by William Richter.
line-construction : (p₁ ≢ p₂) → ∃!(l ↦ (p₁ ∈ₚₗ l) ∧ (p₂ ∈ₚₗ l))
-- There are two distinct points on every line.
-- Also called:
-- • I2 in Hilbert’s Axiom System for Plane Geometry, A Short Introduction by Bjørn Jahren.
-- • I.7 in Project Gutenberg’s The Foundations of Geometry by David Hilbert.
-- • I2 in A Minimal Version of Hilbert's Axioms for Plane Geometry by William Richter.
line-deconstruction : ∃{Obj = Point ⨯ Point}(\{(p₁ , p₂) → (p₁ ≢ p₂) ∧ (p₁ ∈ₚₗ l) ∧ (p₂ ∈ₚₗ l)})
-- There exists three points that constructs a triangle (not all on the same line).
-- • I3 in Hilbert’s Axiom System for Plane Geometry, A Short Introduction by Bjørn Jahren.
-- • I3 in A Minimal Version of Hilbert's Axioms for Plane Geometry by William Richter.
triangle-existence : ∃{Obj = Point ⨯ Point ⨯ Point}(\{(p₁ , p₂ , p₃) → ¬(Collinear₃ p₁ p₂ p₃)})
-- The betweenness relation is strict (pairwise irreflexive).
-- There are no points between a single point.
betweenness-strictness : ¬(p₁ ― p₂ ― p₁)
-- The betweenness relation is symmetric.
-- Also called:
-- • B1 in Hilbert’s Axiom System for Plane Geometry, A Short Introduction by Bjørn Jahren.
-- • II.1 in Project Gutenberg’s The Foundations of Geometry by David Hilbert.
-- • B1 in A Minimal Version of Hilbert's Axioms for Plane Geometry by William Richter.
betweenness-symmetry : (p₁ ― p₂ ― p₃) → (p₃ ― p₂ ― p₁)
-- A line segment can be extended to a third point.
-- • Part of II.2 in Project Gutenberg’s The Foundations of Geometry by David Hilbert.
-- • B2 in Hilbert’s Axiom System for Plane Geometry, A Short Introduction by Bjørn Jahren.
-- • B2 in A Minimal Version of Hilbert's Axioms for Plane Geometry by William Richter.
betweenness-extensionᵣ : (p₁ ≢ p₂) → ∃(p₃ ↦ (p₁ ― p₂ ― p₃))
-- Three points are always between each other in a certain order.
betweenness-antisymmetryₗ : (p₁ ― p₂ ― p₃) → (p₂ ― p₁ ― p₃) → ⊥
-- Three distinct points on a line are always between each other in a certain order.
-- Also called:
-- • Part of B3 in Hilbert’s Axiom System for Plane Geometry, A Short Introduction by Bjørn Jahren.
-- • Part of II.3 in Project Gutenberg’s The Foundations of Geometry by David Hilbert.
-- • Part of B3 in A Minimal Version of Hilbert's Axioms for Plane Geometry by William Richter.
betweenness-cases : (Distinct₃ p₁ p₂ p₃) → (Collinear₃ p₁ p₂ p₃) → (rotate₃Fn₃Op₂(_―_―_)(_∨_) p₁ p₂ p₃)
-- For three points that forms a triangle, and a line not intersecting the triangle's vertices, but intersecting one of its edges. Such a line intersects exactly one of the other edges of the triangle.
-- Also called:
-- • Pasch's axiom
-- • B4 in Hilbert’s Axiom System for Plane Geometry, A Short Introduction by Bjørn Jahren.
-- • II.5 in Project Gutenberg’s The Foundations of Geometry by David Hilbert.
-- • B4 in A Minimal Version of Hilbert's Axioms for Plane Geometry by William Richter.
line-triangle-intersection : ¬(Collinear₃ p₁ p₂ p₃) → (all₃Fn₁Op₂(¬_ ∘ (_∈ₚₗ l))(_∧_) p₁ p₂ p₃) → ((p ∈ₚₗ l) ∧ (p₁ ― p ― p₂)) → (∃(p ↦ (p ∈ₚₗ l) ∧ (p₁ ― p ― p₃)) ⊕ ∃(p ↦ (p ∈ₚₗ l) ∧ (p₂ ― p ― p₃)))
-- TODO: The rest of the axioms are not yet formulated because I am not sure what the best way to express them is
ray-segment : ∃!(p ↦ (p ∈ ray p₁ p₂) ∧ (segment q₁ q₂ ≡ₛ segment p₁ p))
segment-concat : (p₁ ― p₂ ― p₃) → (q₁ ― q₂ ― q₃) → (segment p₁ p₂ ≡ₛ segment q₁ q₂) → (segment p₂ p₃ ≡ₛ segment q₂ q₃) → (segment p₁ p₃ ≡ₛ segment q₁ q₃)
-- A pair of points constructs a line.
line : (a : Point) → (b : Point) → (a ≢ b) → Line
line a b nab = [∃!]-witness(line-construction nab)
-- A line can be deconstructed to two points.
linePoints : Line → (Point ⨯ Point)
linePoints l = [∃]-witness(line-deconstruction{l})
-- The point to the left in the construction of a line is in the line.
line-construction-pointₗ : (np12 : p₁ ≢ p₂) → (p₁ ∈ₚₗ line p₁ p₂ np12)
line-construction-pointₗ np12 = [∧]-elimₗ([∃!]-proof (line-construction np12))
-- The point to the right in the construction of a line is in the line.
line-construction-pointᵣ : (np12 : p₁ ≢ p₂) → (p₂ ∈ₚₗ line p₁ p₂ np12)
line-construction-pointᵣ np12 = [∧]-elimᵣ([∃!]-proof (line-construction np12))
-- Two lines having a pair of common points are the same line..
line-uniqueness : (p₁ ≢ p₂) → (p₁ ∈ₚₗ l₁) → (p₂ ∈ₚₗ l₁) → (p₁ ∈ₚₗ l₂) → (p₂ ∈ₚₗ l₂) → (l₁ ≡ l₂)
line-uniqueness np12 p1l1 p2l1 p1l2 p2l2 = [∃!]-uniqueness (line-construction np12) ([∧]-intro p1l1 p2l1) ([∧]-intro p1l2 p2l2)
-- The deconstructed points of a line are distinct.
linePoints-distinct : let (a , b) = linePoints(l) in (a ≢ b)
linePoints-distinct = [∧]-elimₗ([∧]-elimₗ([∃]-proof(line-deconstruction)))
-- The left deconstructed point of a line is in the line.
linePoints-pointₗ : Tuple.left(linePoints(l)) ∈ₚₗ l
linePoints-pointₗ = [∧]-elimᵣ([∧]-elimₗ([∃]-proof(line-deconstruction)))
-- The right deconstructed point of a line is in the line.
linePoints-pointᵣ : Tuple.right(linePoints(l)) ∈ₚₗ l
linePoints-pointᵣ = [∧]-elimᵣ([∃]-proof(line-deconstruction))
-- The line of the deconstructed points of a line is the same line.
line-linePoints-inverseᵣ : let (a , b) = linePoints(l) in (line a b linePoints-distinct ≡ l)
line-linePoints-inverseᵣ = line-uniqueness
linePoints-distinct (line-construction-pointₗ linePoints-distinct) (line-construction-pointᵣ linePoints-distinct) linePoints-pointₗ linePoints-pointᵣ
betweenness-antisymmetryᵣ : (p₁ ― p₂ ― p₃) → (p₁ ― p₃ ― p₂) → ⊥
betweenness-antisymmetryᵣ p123 p132 = betweenness-antisymmetryₗ (betweenness-symmetry p123) (betweenness-symmetry p132)
betweenness-irreflexivityₗ : ¬(p₁ ― p₁ ― p₂)
betweenness-irreflexivityₗ p112 = betweenness-antisymmetryₗ p112 p112
betweenness-irreflexivityᵣ : ¬(p₁ ― p₂ ― p₂)
betweenness-irreflexivityᵣ p122 = betweenness-irreflexivityₗ (betweenness-symmetry p122)
-- Also called:
-- • B1 in Hilbert’s Axiom System for Plane Geometry, A Short Introduction by Bjørn Jahren.
-- • B1 in A Minimal Version of Hilbert's Axioms for Plane Geometry by William Richter.
betweenness-distinct : (p₁ ― p₂ ― p₃) → (Distinct₃ p₁ p₂ p₃)
Tuple.left (betweenness-distinct p123) p12 = betweenness-irreflexivityₗ(substitute₃-unary₁(_―_―_) p12 p123)
Tuple.left (Tuple.right (betweenness-distinct p123)) p13 = betweenness-strictness(substitute₃-unary₁(_―_―_) p13 p123)
Tuple.right(Tuple.right (betweenness-distinct p123)) p23 = betweenness-irreflexivityᵣ(substitute₃-unary₂(_―_―_) p23 p123)
betweenness-extensionₗ : (p₂ ≢ p₃) → ∃(p₁ ↦ (p₁ ― p₂ ― p₃))
betweenness-extensionₗ np23 = [∃]-map-proof betweenness-symmetry (betweenness-extensionᵣ (np23 ∘ symmetry(_≡_)))
-- Three points are always between each other in a certain order.
-- Also called:
-- • B3 in Hilbert’s Axiom System for Plane Geometry, A Short Introduction by Bjørn Jahren.
-- • II.3 in Project Gutenberg’s The Foundations of Geometry by David Hilbert.
-- • B3 in A Minimal Version of Hilbert's Axioms for Plane Geometry by William Richter.
betweenness-distinct-cases : (Distinct₃ p₁ p₂ p₃) → (Collinear₃ p₁ p₂ p₃) → ((p₁ ― p₂ ― p₃) ⊕₃ (p₂ ― p₃ ― p₁) ⊕₃ (p₃ ― p₁ ― p₂))
betweenness-distinct-cases pd pl with betweenness-cases pd pl
... | [∨]-introₗ p123 = [⊕₃]-intro₁ p123 (betweenness-antisymmetryₗ (betweenness-symmetry p123)) (betweenness-antisymmetryᵣ (betweenness-symmetry p123))
... | [∨]-introᵣ ([∨]-introₗ p231) = [⊕₃]-intro₂ (betweenness-antisymmetryᵣ ((betweenness-symmetry p231))) p231 (betweenness-antisymmetryₗ ((betweenness-symmetry p231)))
... | [∨]-introᵣ ([∨]-introᵣ p312) = [⊕₃]-intro₃ (betweenness-antisymmetryₗ (betweenness-symmetry p312)) (betweenness-antisymmetryᵣ (betweenness-symmetry p312)) p312
--betweenness-between : (p₁ ≢ p₂) → (p₁ ∈ₚₗ l) → (p₂ ∈ₚₗ l) → ∃(p ↦ p₁ ― p ― p₂)
--betweenness-between np12 p1l p2l = {!!}
--betweenness-collinnear : (p₁ ― p₂ ― p₃) → (Collinear₃ p₁ p₂ p₃)
|
algebraic-stack_agda0000_doc_3947 | {-# OPTIONS --sized-types #-}
module GiveSize where
postulate Size : Set
{-# BUILTIN SIZE Size #-}
id : Size → Size
id i = {!i!}
|
algebraic-stack_agda0000_doc_3948 | open import Formalization.PredicateLogic.Signature
module Formalization.PredicateLogic.Syntax.NegativeTranslations (𝔏 : Signature) where
open Signature(𝔏)
open import Data.ListSized
import Lvl
open import Formalization.PredicateLogic.Syntax (𝔏)
open import Functional using (_∘_ ; _∘₂_ ; swap)
open import Numeral.Finite
open import Numeral.Natural
open import Sets.PredicateSet using (PredSet)
open import Type
private variable ℓ : Lvl.Level
private variable args vars : ℕ
-- Also called: Gödel-Gentzen's negative translation.
-- 2.3.3
ggTrans : Formula(vars) → Formula(vars)
ggTrans (P $ x) = ¬¬(P $ x)
ggTrans ⊤ = ⊤
ggTrans ⊥ = ⊥
ggTrans (φ ∧ ψ) = (ggTrans φ) ∧ (ggTrans ψ)
ggTrans (φ ∨ ψ) = ¬(¬(ggTrans φ) ∧ ¬(ggTrans ψ))
ggTrans (φ ⟶ ψ) = (ggTrans φ) ⟶ (ggTrans ψ)
ggTrans (Ɐ φ) = Ɐ(ggTrans φ)
ggTrans (∃ φ) = ¬ Ɐ(¬(ggTrans φ))
-- Also called: Kolmogorov's negative translation.
-- 2.3.7A
koTrans : Formula(vars) → Formula(vars)
koTrans (P $ x) = ¬¬(P $ x)
koTrans ⊤ = ⊤
koTrans ⊥ = ⊥
koTrans (φ ∧ ψ) = ¬¬((koTrans φ) ∧ (koTrans ψ))
koTrans (φ ∨ ψ) = ¬¬((koTrans φ) ∨ (koTrans ψ))
koTrans (φ ⟶ ψ) = ¬¬((koTrans φ) ⟶ (koTrans ψ))
koTrans (Ɐ φ) = ¬¬ Ɐ(koTrans φ)
koTrans (∃ φ) = ¬¬ ∃(koTrans φ)
-- Also called: Kuroda's negative translation.
-- 2.3.7B
kuTrans : Formula(vars) → Formula(vars)
kuTrans (P $ x) = P $ x
kuTrans ⊤ = ⊤
kuTrans ⊥ = ⊥
kuTrans (φ ∧ ψ) = ((koTrans φ) ∧ (koTrans ψ))
kuTrans (φ ∨ ψ) = ((koTrans φ) ∨ (koTrans ψ))
kuTrans (φ ⟶ ψ) = ((koTrans φ) ⟶ (koTrans ψ))
kuTrans (Ɐ φ) = Ɐ(¬¬(koTrans φ))
kuTrans (∃ φ) = ∃(koTrans φ)
|
algebraic-stack_agda0000_doc_3949 | module Lawvere where
open import Library
open import Data.Sum
open import Categories
open import Categories.Sets
open import Categories.Initial
open import Categories.PushOuts
open import Categories.Products hiding (_×_)
open import Categories.CoProducts
open import Categories.Terminal
open import Functors
open import Functors.Fin
record Lawvere {a}{b} : Set (lsuc (a ⊔ b)) where
constructor lawvere
field T : Cat {a}{b}
L : Fun (Nats Op) T
L0 : Term T (Fun.OMap L zero)
LP : ∀ m n → Prod T (Fun.OMap L m) (Fun.OMap L n)
-- it's not the identity, it switches some implicit in fid and fcomp I think
FunOp : ∀{a b c d}{C : Cat {a}{b}}{D : Cat {c}{d}} →
Fun C D → Fun (C Op) (D Op)
FunOp (functor OMap HMap fid fcomp) = functor OMap HMap fid fcomp
LSet : Lawvere
LSet = lawvere
(Sets Op)
(FunOp FinF)
(term (λ ()) (ext λ ()))
λ m n → prod
(Fin m ⊎ Fin n)
inj₁
inj₂
[_,_]′
refl
refl
λ p q → ext (λ{ (inj₁ a) -> fcong a p; (inj₂ b) -> fcong b q})
open import RMonads
open import RMonads.RKleisli
open import RMonads.RKleisli.Functors
lem : RMonad FinF → Lawvere {lzero}{lzero}
lem M = lawvere
(Kl M Op)
(FunOp (RKlL M) )
(term (λ ()) (ext λ ()))
λ m n → prod
(m + n)
(η ∘ extend)
(η ∘ lift m)
(case m)
(ext λ i → trans (fcong (extend i) law2) (lem1 m _ _ i))
(ext λ i → trans (fcong (lift m i) law2) (lem2 m _ _ i))
λ {o} {f} {g} {h} p q → ext (lem3
m
f
g
h
(trans (ext λ i → sym (fcong (extend i) law2)) p)
(trans (ext λ i → sym (fcong (lift m i) law2)) q))
where open RMonad M
lem-1 : Lawvere {lzero}{lzero} → RMonad FinF
lem-1 LT = rmonad
(λ n → Cat.Hom (Lawvere.T LT) (Fun.OMap (Lawvere.L LT) 1) (Fun.OMap (Lawvere.L LT) n))
{!!}
{!!}
{!!}
{!!}
{!!}
open import Categories.Products
record Model {a}{b}{c}{d} (Law : Lawvere {a}{b}) : Set (lsuc (a ⊔ b ⊔ c ⊔ d))
where
open Lawvere Law
field C : Cat {c}{d}
F : Fun T C
F0 : Term C (Fun.OMap F (Fun.OMap L zero))
FP : ∀ m n → Prod C (Fun.OMap F (Fun.OMap L m))
(Fun.OMap F (Fun.OMap L n))
open import RMonads.REM
open import RMonads.CatofRAdj.InitRAdj
open import RMonads.CatofRAdj.TermRAdjObj
open import RMonads.REM.Functors
model : (T : RMonad FinF) → Model (lem T)
model T = record {
C = EM T Op ;
F = FunOp (K' T (EMObj T));
F0 = term (λ{alg} → ralgmorph (RAlg.astr alg {0} (λ ()))
(λ {n}{f} →
sym $ RAlg.alaw2 alg {n}{zero}{f}{λ ()} ))
(λ{alg}{f} → RAlgMorphEq T (ext (λ t → trans
(trans (cong (λ f₁ → RAlg.astr alg f₁ t) (ext (λ ())))
(sym (fcong t (RAlgMorph.ahom f {0}{RMonad.η T}))))
(cong (RAlgMorph.amor f) (fcong t (RMonad.law1 T))))));
FP = λ m n → prod
(Fun.OMap (REML FinF T) (m + n) )
(Fun.HMap (REML FinF T) extend)
(Fun.HMap (REML FinF T) (lift m))
(λ{alg} f g → ralgmorph
(RAlg.astr alg
(case m (RAlgMorph.amor f ∘ RMonad.η T)
(RAlgMorph.amor g ∘ RMonad.η T)))
(sym (RAlg.alaw2 alg)))
(λ {alg}{f}{g} → RAlgMorphEq T (trans
(sym (RAlg.alaw2 alg))
(trans (cong (RAlg.astr alg)
(ext λ i → trans (fcong (extend i) (sym (RAlg.alaw1 alg)))
(lem1 m _ _ i)))
(trans (sym (RAlgMorph.ahom f))
(ext λ i → cong (RAlgMorph.amor f)
(fcong i (RMonad.law1 T)))))))
(λ {alg}{f}{g} → RAlgMorphEq T (trans
(sym (RAlg.alaw2 alg))
(trans (cong (RAlg.astr alg)
(ext λ i → trans (fcong (lift m i) (sym (RAlg.alaw1 alg)))
(lem2 m _ _ i)))
(trans (sym (RAlgMorph.ahom g))
(ext λ i → cong (RAlgMorph.amor g)
(fcong i (RMonad.law1 T)))))))
λ{alg}{f}{g}{h} p q → RAlgMorphEq T (trans
(trans (ext λ i → cong (RAlgMorph.amor h)
(sym (fcong i (RMonad.law1 T))))
(RAlgMorph.ahom h))
(cong (RAlg.astr alg) (ext (lem3
m
(RAlgMorph.amor f ∘ RMonad.η T)
(RAlgMorph.amor g ∘ RMonad.η T)
(RAlgMorph.amor h ∘ RMonad.η T)
(ext λ i → trans
(cong (RAlgMorph.amor h) (sym (fcong i (RMonad.law2 T))))
(fcong (RMonad.η T i) (cong RAlgMorph.amor p)))
(ext λ i → trans
(cong (RAlgMorph.amor h) (sym (fcong i (RMonad.law2 T))))
(fcong (RMonad.η T i) (cong RAlgMorph.amor q)))))))}
|
algebraic-stack_agda0000_doc_3950 |
module UniDB.Subst.Core where
open import UniDB.Spec public
open import UniDB.Morph.Unit
record Ap (T X : STX) : Set₁ where
field
ap : {Ξ : MOR} {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}}
{γ₁ γ₂ : Dom} (ξ : Ξ γ₁ γ₂) (x : X γ₁) → X γ₂
open Ap {{...}} public
record ApVr (T : STX) {{vrT : Vr T}} {{apTT : Ap T T}} : Set₁ where
field
ap-vr :
{Ξ : MOR} {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}}
{γ₁ γ₂ : Dom} (ξ : Ξ γ₁ γ₂) →
(i : Ix γ₁) → ap {T} ξ (vr i) ≡ lk {T} ξ i
open ApVr {{...}} public
record LkCompAp
(T : STX) {{vrT : Vr T}} {{apTT : Ap T T}}
(Ξ : MOR) {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}} {{compΞ : Comp Ξ}} : Set₁ where
field
lk-⊙-ap : {γ₁ γ₂ γ₃ : Dom} (ξ₁ : Ξ γ₁ γ₂) (ξ₂ : Ξ γ₂ γ₃)
(i : Ix γ₁) → lk {T} (ξ₁ ⊙ ξ₂) i ≡ ap {T} ξ₂ (lk ξ₁ i)
open LkCompAp {{...}} public
record ApIdm
(T : STX) {{vrT : Vr T}}
(X : STX) {{apTX : Ap T X}} : Set₁ where
field
ap-idm :
{Ξ : MOR} {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}} {{idmΞ : Idm Ξ}}
{{lkIdmTΞ : LkIdm T Ξ}} {{upIdmΞ : UpIdm Ξ}}
{γ : Dom} (x : X γ) →
ap {T} (idm {Ξ} γ) x ≡ x
open ApIdm {{...}} public
record ApRel
(T : STX) {{vrT : Vr T}}
(X : STX) {{apTX : Ap T X}} : Set₁ where
field
ap-rel≅ :
{Ξ : MOR} {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}}
{Ζ : MOR} {{lkTΖ : Lk T Ζ}} {{upΖ : Up Ζ}}
{γ₁ γ₂ : Dom} {ξ : Ξ γ₁ γ₂} {ζ : Ζ γ₁ γ₂} (hyp : [ T ] ξ ≅ ζ)
(x : X γ₁) → ap {T} ξ x ≡ ap {T} ζ x
ap-rel≃ : {{wkT : Wk T}}
{Ξ : MOR} {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}} {{lkUpTΞ : LkUp T Ξ}}
{Ζ : MOR} {{lkTΖ : Lk T Ζ}} {{upΖ : Up Ζ}} {{lkUpTΖ : LkUp T Ζ}}
{γ₁ γ₂ : Dom} {ξ : Ξ γ₁ γ₂} {ζ : Ζ γ₁ γ₂} (hyp : [ T ] ξ ≃ ζ)
(x : X γ₁) → ap {T} ξ x ≡ ap {T} ζ x
ap-rel≃ hyp = ap-rel≅ (≃-to-≅` (≃-↑ hyp))
open ApRel {{...}} public
module _
(T : STX) {{vrT : Vr T}} {{wkT : Wk T}}
(X : STX) {{wkX : Wk X}} {{apTX : Ap T X}}
where
record ApWkmWk : Set₁ where
field
ap-wkm-wk₁ :
{Ξ : MOR} {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}} {{wkmΞ : Wkm Ξ}}
{{lkUpTΞ : LkUp T Ξ}} {{lkWkmTΞ : LkWkm T Ξ}}
{γ : Dom} (x : X γ) →
ap {T} (wkm {Ξ} 1) x ≡ wk₁ x
ap-wkm-wk :
{Ξ : MOR} {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}} {{wkmΞ : Wkm Ξ}}
{{lkUpTΞ : LkUp T Ξ}} {{lkWkmTΞ : LkWkm T Ξ}}
{γ : Dom} (δ : Dom) (x : X γ) →
ap {T} (wkm {Ξ} δ) x ≡ wk δ x
open ApWkmWk {{...}} public
module _
(T : STX) {{vrT : Vr T}} {{wkT : Wk T}}
(X : STX) {{wkX : Wk X}} {{apTX : Ap T X}}
where
record ApWk : Set₁ where
field
ap-wk₁ :
{Ξ : MOR} {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}}
{{lkUpTΞ : LkUp T Ξ}}
{γ₁ γ₂ : Dom} (ξ : Ξ γ₁ γ₂) (x : X γ₁) →
ap {T} (ξ ↑₁) (wk₁ x) ≡ wk₁ (ap {T} ξ x)
open ApWk {{...}} public
module _
(T : STX) {{vrT : Vr T}} {{wkT : Wk T}} {{apTT : Ap T T}}
(X : STX) {{apTX : Ap T X}}
where
record ApComp : Set₁ where
field
ap-⊙ :
{Ξ : MOR} {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}} {{compΞ : Comp Ξ}}
{{upCompΞ : UpComp Ξ}} {{lkCompTΞ : LkCompAp T Ξ}}
{γ₁ γ₂ γ₃ : Dom} (ξ₁ : Ξ γ₁ γ₂) (ξ₂ : Ξ γ₂ γ₃) →
(x : X γ₁) → ap {T} (ξ₁ ⊙ ξ₂) x ≡ ap {T} ξ₂ (ap {T} ξ₁ x)
open ApComp {{...}} public
instance
iApIx : Ap Ix Ix
ap {{iApIx}} = lk
iApVrIx : ApVr Ix
ap-vr {{iApVrIx}} ξ i = refl
iApIdmIxIx : ApIdm Ix Ix
ap-idm {{iApIdmIxIx}} {Ξ} = lk-idm {Ix} {Ξ}
iApWkmWkIxIx : ApWkmWk Ix Ix
ap-wkm-wk₁ {{iApWkmWkIxIx}} {Ξ} = lk-wkm {Ix} {Ξ} 1
ap-wkm-wk {{iApWkmWkIxIx}} {Ξ} = lk-wkm {Ix} {Ξ}
iApRelIxIx : ApRel Ix Ix
ap-rel≅ {{iApRelIxIx}} = lk≃ ∘ ≅-to-≃
iApWkIxIx : ApWk Ix Ix
ap-wk₁ {{iApWkIxIx}} {Ξ} ξ i = lk-↑₁-suc {Ix} {Ξ} ξ i
-- TODO: Remove
module _
(T : STX) {{vrT : Vr T}} {{apTT : Ap T T}}
(Ξ : MOR) {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}}
(Ζ : MOR) {{lkTΖ : Lk T Ζ}} {{upΖ : Up Ζ}}
(Θ : MOR) {{lkTΘ : Lk T Θ}} {{upΘ : Up Θ}}
{{hcompΞΖΘ : HComp Ξ Ζ Θ}}
where
record LkHCompAp : Set₁ where
field
lk-⊡-ap : {γ₁ γ₂ γ₃ : Dom} (ξ : Ξ γ₁ γ₂) (ζ : Ζ γ₂ γ₃)
(i : Ix γ₁) → lk {T} {Θ} (ξ ⊡ ζ) i ≡ ap {T} ζ (lk ξ i)
open LkHCompAp {{...}} public
-- TODO: Remove
module _
(T : STX) {{vrT : Vr T}} {{wkT : Wk T}} {{apTT : Ap T T}}
(X : STX) {{apTX : Ap T X}}
where
record ApHComp : Set₁ where
field
ap-⊡ :
{Ξ : MOR} {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}}
{Ζ : MOR} {{lkTΖ : Lk T Ζ}} {{upΖ : Up Ζ}}
{Θ : MOR} {{lkTΘ : Lk T Θ}} {{upΘ : Up Θ}}
{{hcompΞΖΘ : HComp Ξ Ζ Θ}} {{upHCompΞ : UpHComp Ξ Ζ Θ}}
{{lkHCompTΞΖΘ : LkHCompAp T Ξ Ζ Θ}}
{γ₁ γ₂ γ₃ : Dom} (ξ : Ξ γ₁ γ₂) (ζ : Ζ γ₂ γ₃) →
(x : X γ₁) → ap {T} {X} {Θ} (ξ ⊡ ζ) x ≡ ap {T} ζ (ap {T} ξ x)
open ApHComp {{...}} public
-- TODO: Move
module _
{T : STX} {{vrT : Vr T}} {{wkT : Wk T}} {{wkVrT : WkVr T}}
{X : STX} {{wkX : Wk X}} {{apTX : Ap T X}} {{apRelTX : ApRel T X}} {{apIdmTX : ApIdm T X}}
{Ξ : MOR} {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}} {{idmΞ : Idm Ξ}} {{lkIdmTΞ : LkIdm T Ξ}}
{{lkUpTΞ : LkUp T Ξ}}
where
ap-idm` : {γ : Dom} (x : X γ) → ap {T} (idm {Ξ} γ) x ≡ x
ap-idm` {γ} x = begin
ap {T} (idm {Ξ} γ) x ≡⟨ ap-rel≃ {T} lem x ⟩
ap {T} (idm {Unit} γ) x ≡⟨ ap-idm {T} x ⟩
x ∎
where
lem : [ T ] idm {Ξ} γ ≃ unit
lk≃ lem = lk-idm {T} {Ξ}
|
algebraic-stack_agda0000_doc_3951 | {-# OPTIONS --allow-unsolved-metas #-}
infixr 6 _∷_
data List (A : Set) : Set where
[] : List A
_∷_ : A -> List A -> List A
postulate
Bool : Set
t : Bool
long : List Bool
long =
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷
[]
meta : Set
meta = _
|
algebraic-stack_agda0000_doc_5280 | ------------------------------------------------------------------------
-- A definitional interpreter
------------------------------------------------------------------------
{-# OPTIONS --cubical --safe #-}
module Lambda.Simplified.Partiality-monad.Inductive.Interpreter where
open import Equality.Propositional.Cubical
open import Prelude hiding (⊥)
open import Bijection equality-with-J using (_↔_)
open import Function-universe equality-with-J hiding (id; _∘_)
open import Monad equality-with-J
open import Univalence-axiom equality-with-J
open import Vec.Function equality-with-J
open import Partiality-monad.Inductive
open import Partiality-monad.Inductive.Fixpoints
open import Partiality-monad.Inductive.Monad
open import Lambda.Simplified.Syntax
open Closure Tm
------------------------------------------------------------------------
-- One interpreter
module Interpreter₁ where
-- This interpreter is defined as the least upper bound of a
-- sequence of increasingly defined interpreters.
infix 10 _∙_
mutual
⟦_⟧′ : ∀ {n} → Tm n → Env n → ℕ → Value ⊥
⟦ var x ⟧′ ρ n = return (ρ x)
⟦ ƛ t ⟧′ ρ n = return (ƛ t ρ)
⟦ t₁ · t₂ ⟧′ ρ n = ⟦ t₁ ⟧′ ρ n >>= λ v₁ →
⟦ t₂ ⟧′ ρ n >>= λ v₂ →
(v₁ ∙ v₂) n
_∙_ : Value → Value → ℕ → Value ⊥
(ƛ t₁ ρ ∙ v₂) zero = never
(ƛ t₁ ρ ∙ v₂) (suc n) = ⟦ t₁ ⟧′ (cons v₂ ρ) n
mutual
⟦⟧′-increasing :
∀ {n} (t : Tm n) ρ n → ⟦ t ⟧′ ρ n ⊑ ⟦ t ⟧′ ρ (suc n)
⟦⟧′-increasing (var x) ρ n = return (ρ x) ■
⟦⟧′-increasing (ƛ t) ρ n = return (ƛ t ρ) ■
⟦⟧′-increasing (t₁ · t₂) ρ n =
⟦⟧′-increasing t₁ ρ n >>=-mono λ v₁ →
⟦⟧′-increasing t₂ ρ n >>=-mono λ v₂ →
∙-increasing v₁ v₂ n
∙-increasing : ∀ v₁ v₂ n → (v₁ ∙ v₂) n ⊑ (v₁ ∙ v₂) (suc n)
∙-increasing (ƛ t₁ ρ) v₂ (suc n) = ⟦⟧′-increasing t₁ (cons v₂ ρ) n
∙-increasing (ƛ t₁ ρ) v₂ zero =
never ⊑⟨ never⊑ _ ⟩■
⟦ t₁ ⟧′ (cons v₂ ρ) 0 ■
⟦_⟧ˢ : ∀ {n} → Tm n → Env n → Increasing-sequence Value
⟦ t ⟧ˢ ρ = ⟦ t ⟧′ ρ , ⟦⟧′-increasing t ρ
⟦_⟧ : ∀ {n} → Tm n → Env n → Value ⊥
⟦ t ⟧ ρ = ⨆ (⟦ t ⟧ˢ ρ)
------------------------------------------------------------------------
-- Another interpreter
module Interpreter₂ where
-- This interpreter is defined using a fixpoint combinator.
M : Type → Type₁
M = Partial (∃ λ n → Tm n × Env n) (λ _ → Value)
infix 10 _∙_
_∙_ : Value → Value → M Value
ƛ t₁ ρ ∙ v₂ = rec (_ , t₁ , cons v₂ ρ)
⟦_⟧′ : ∀ {n} → Tm n → Env n → M Value
⟦ var x ⟧′ ρ = return (ρ x)
⟦ ƛ t ⟧′ ρ = return (ƛ t ρ)
⟦ t₁ · t₂ ⟧′ ρ = ⟦ t₁ ⟧′ ρ >>= λ v₁ →
⟦ t₂ ⟧′ ρ >>= λ v₂ →
v₁ ∙ v₂
evalP : (∃ λ n → Tm n × Env n) → M Value
evalP (_ , t , ρ) = ⟦ t ⟧′ ρ
eval : Trans-⊑ (∃ λ n → Tm n × Env n) (λ _ → Value)
eval = transformer evalP
⟦_⟧ : ∀ {n} → Tm n → Env n → Value ⊥
⟦ t ⟧ ρ = fixP evalP (_ , t , ρ)
------------------------------------------------------------------------
-- The two interpreters are pointwise equal
-- Both interpreters' bodies have the form ⨆ s for some sequences s,
-- and element n in the first interpreter's sequence is equal to
-- element 1 + n in the second interpreter's sequence (when the
-- arguments are equal).
interpreters-equal :
∀ {n} (t : Tm n) ρ →
Interpreter₁.⟦ t ⟧ ρ ≡ Interpreter₂.⟦ t ⟧ ρ
interpreters-equal = λ t ρ →
$⟨ ⟦⟧-lemma t ρ ⟩
(∀ n → Interpreter₁.⟦ t ⟧′ ρ n ≡
app→ Interpreter₂.eval (suc n) (_ , t , ρ)) ↝⟨ cong ⨆ ∘ _↔_.to equality-characterisation-increasing ⟩
⨆ (Interpreter₁.⟦ t ⟧ˢ ρ) ≡
⨆ (tailˢ (at (fix→-sequence Interpreter₂.eval) (_ , t , ρ))) ↝⟨ flip trans (⨆tail≡⨆ _) ⟩
⨆ (Interpreter₁.⟦ t ⟧ˢ ρ) ≡
⨆ (at (fix→-sequence Interpreter₂.eval) (_ , t , ρ)) ↝⟨ id ⟩□
Interpreter₁.⟦ t ⟧ ρ ≡ Interpreter₂.⟦ t ⟧ ρ □
where
open Partial
open Trans-⊑
mutual
⟦⟧-lemma :
∀ {n} (t : Tm n) ρ n →
Interpreter₁.⟦ t ⟧′ ρ n ≡
function (Interpreter₂.⟦ t ⟧′ ρ)
(app→ Interpreter₂.eval n)
⟦⟧-lemma (var x) ρ n = refl
⟦⟧-lemma (ƛ t) ρ n = refl
⟦⟧-lemma (t₁ · t₂) ρ n =
cong₂ _>>=_ (⟦⟧-lemma t₁ ρ n) $ ⟨ext⟩ λ v₁ →
cong₂ _>>=_ (⟦⟧-lemma t₂ ρ n) $ ⟨ext⟩ λ v₂ →
∙-lemma v₁ v₂ n
∙-lemma :
∀ v₁ v₂ n →
(v₁ Interpreter₁.∙ v₂) n ≡
function (v₁ Interpreter₂.∙ v₂)
(app→ Interpreter₂.eval n)
∙-lemma (ƛ t₁ ρ) v₂ zero = refl
∙-lemma (ƛ t₁ ρ) v₂ (suc n) = ⟦⟧-lemma t₁ (cons v₂ ρ) n
------------------------------------------------------------------------
-- An example
-- The semantics of Ω is the non-terminating computation never.
-- A proof for Interpreter₁.
Ω-loops₁ : Interpreter₁.⟦ Ω ⟧ nil ≡ never
Ω-loops₁ =
antisymmetry (least-upper-bound _ _ lemma) (never⊑ _)
where
open Interpreter₁
ω-nil = ƛ (var fzero · var fzero) nil
reduce-twice :
∀ n → ⟦ Ω ⟧′ nil n ≡ (ω-nil ∙ ω-nil) n
reduce-twice n =
⟦ Ω ⟧′ nil n ≡⟨ now->>= ⟩
(⟦ ω ⟧′ nil n >>= λ v₂ → (ω-nil ∙ v₂) n) ≡⟨ now->>= ⟩∎
(ω-nil ∙ ω-nil) n ∎
lemma : ∀ n → ⟦ Ω ⟧′ nil n ⊑ never
lemma zero =
⟦ Ω ⟧′ nil zero ≡⟨ reduce-twice zero ⟩⊑
(ω-nil ∙ ω-nil) zero ⊑⟨⟩
never ■
lemma (suc n) =
⟦ Ω ⟧′ nil (suc n) ≡⟨ reduce-twice (suc n) ⟩⊑
⟦ Ω ⟧′ nil n ⊑⟨ lemma n ⟩■
never ■
-- A direct proof for Interpreter₂.
Ω-loops₂ : Interpreter₂.⟦ Ω ⟧ nil ≡ never
Ω-loops₂ = antisymmetry (least-upper-bound _ _ lemma) (never⊑ _)
module Ω-loops₂ where
open Interpreter₂
open Trans-⊑
open Partial
ω-nil = ƛ (var fzero · var fzero) nil
reduce-twice :
∀ f →
function eval f (_ , Ω , nil) ≡
f (_ , var fzero · var fzero , cons ω-nil nil)
reduce-twice f =
function eval f (_ , Ω , nil) ≡⟨⟩
function (⟦ Ω ⟧′ nil) f ≡⟨ cong {x = function (⟦ Ω ⟧′ nil)} (_$ f) (⟨ext⟩ λ _ → now->>=) ⟩
function (⟦ ω ⟧′ nil >>= λ v₂ → ω-nil ∙ v₂) f ≡⟨ cong {x = function (⟦ ω ⟧′ nil >>= ω-nil ∙_)} (_$ f) (⟨ext⟩ λ _ → now->>=) ⟩
function (ω-nil ∙ ω-nil) f ≡⟨⟩
f (_ , var fzero · var fzero , cons ω-nil nil) ∎
lemma : ∀ n → app→ eval n (_ , Ω , nil) ⊑ never
lemma zero = never⊑ never
lemma (suc zero) =
app→ eval 1 (_ , Ω , nil) ≡⟨ reduce-twice _ ⟩⊑
app→ eval 0 (_ , Ω , nil) ⊑⟨⟩
never ■
lemma (suc (suc n)) =
app→ eval (suc (suc n)) (_ , Ω , nil) ≡⟨ reduce-twice _ ⟩⊑
app→ eval (suc n) (_ , Ω , nil) ⊑⟨ lemma (suc n) ⟩■
never ■
-- Another proof for Interpreter₂. This proof uses Scott induction.
Ω-loops₂′ : Interpreter₂.⟦ Ω ⟧ nil ≡ never
Ω-loops₂′ = antisymmetry lemma (never⊑ _)
where
open Interpreter₂
open Trans-⊑
open Partial
lemma =
⟦ Ω ⟧ nil ⊑⟨⟩
fixP evalP (_ , Ω , nil) ≡⟨ cong (_$ (_ , Ω , nil)) $
fixP-is-fixpoint-combinator evalP ⟩⊑
function eval (fixP evalP) (_ , Ω , nil) ⊑⟨ fixP-induction₁
(λ f → function eval f (_ , Ω , nil) ⊑ never) (
function eval (const never) (_ , Ω , nil) ≡⟨ Ω-loops₂.reduce-twice _ ⟩⊑
never ■)
(λ s hyp →
function eval (⨆ ∘ s) (_ , Ω , nil) ≡⟨ Ω-loops₂.reduce-twice _ ⟩⊑
⨆ (s _) ⊑⟨ least-upper-bound _ _ (λ n →
s _ [ n ] ≡⟨ sym $ Ω-loops₂.reduce-twice _ ⟩⊑
function eval (λ x → s x [ n ]) (_ , Ω , nil) ⊑⟨ hyp n ⟩■
never ■) ⟩
never ■)
evalP
(λ g hyp →
function eval (function eval g) (_ , Ω , nil) ≡⟨ Ω-loops₂.reduce-twice _ ⟩⊑
function eval g (_ , Ω , nil) ⊑⟨ hyp ⟩■
never ■) ⟩■
never ■
------------------------------------------------------------------------
-- Setup
-- Let us use Interpreter₂ as the default interpreter.
open Interpreter₂ public
|
algebraic-stack_agda0000_doc_5281 |
module Elements where
open import OscarPrelude
open import Arity
open import Vector
open import Element
record Elements : Set
where
constructor ⟨_⟩
field
{arity} : Arity
elements : Vector Element arity
open Elements public
instance EqElements : Eq Elements
Eq._==_ EqElements (⟨_⟩ {𝑎₁} εs₁) (⟨_⟩ {𝑎₂} εs₂)
with 𝑎₁ ≟ 𝑎₂
… | no 𝑎₁≢𝑎₂ = no λ {refl → 𝑎₁≢𝑎₂ refl}
… | yes refl
with εs₁ ≟ εs₂
… | yes refl = yes refl
… | no εs₁≢εs₂ = no λ {refl → εs₁≢εs₂ refl}
|
algebraic-stack_agda0000_doc_5282 | {-# OPTIONS --safe --experimental-lossy-unification #-}
module Cubical.Categories.DistLatticeSheaf.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Structure
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Powerset
open import Cubical.Data.Sigma
open import Cubical.Data.Nat using (ℕ)
open import Cubical.Data.Nat.Order
open import Cubical.Data.FinData
open import Cubical.Data.FinData.Order
open import Cubical.Relation.Binary.Poset
open import Cubical.Algebra.Ring
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.Semilattice
open import Cubical.Algebra.Lattice
open import Cubical.Algebra.DistLattice
open import Cubical.Algebra.DistLattice.Basis
open import Cubical.Algebra.DistLattice.BigOps
open import Cubical.Categories.Category
open import Cubical.Categories.Functor
open import Cubical.Categories.NaturalTransformation
open import Cubical.Categories.Limits.Pullback
open import Cubical.Categories.Limits.Terminal
open import Cubical.Categories.Limits.Limits
open import Cubical.Categories.Limits.RightKan
open import Cubical.Categories.Instances.Functors
open import Cubical.Categories.Instances.CommRings
open import Cubical.Categories.Instances.Poset
open import Cubical.Categories.Instances.Semilattice
open import Cubical.Categories.Instances.Lattice
open import Cubical.Categories.Instances.DistLattice
open import Cubical.Categories.DistLatticeSheaf.Diagram
private
variable
ℓ ℓ' ℓ'' : Level
module PreSheafExtension (L : DistLattice ℓ) (C : Category ℓ' ℓ'')
(limitC : Limits {ℓ} {ℓ} C) (L' : ℙ (fst L)) where
open Functor
private
DLCat = DistLatticeCategory L
DLSubCat = ΣPropCat DLCat L'
DLPreSheaf = Functor (DLCat ^op) C
DLSubPreSheaf = Functor (DLSubCat ^op) C
i : Functor DLSubCat DLCat
F-ob i = fst
F-hom i f = f
F-id i = refl
F-seq i _ _ = refl
DLRan : DLSubPreSheaf → DLPreSheaf
DLRan = Ran limitC (i ^opF)
module _ (L : DistLattice ℓ) (C : Category ℓ' ℓ'') (T : Terminal C) where
open Category hiding (_⋆_)
open Functor
open Order (DistLattice→Lattice L)
open DistLatticeStr (snd L)
open JoinSemilattice (Lattice→JoinSemilattice (DistLattice→Lattice L))
open MeetSemilattice (Lattice→MeetSemilattice (DistLattice→Lattice L))
using (∧≤RCancel ; ∧≤LCancel)
open PosetStr (IndPoset .snd) hiding (_≤_)
𝟙 : ob C
𝟙 = terminalOb C T
private
DLCat : Category ℓ ℓ
DLCat = DistLatticeCategory L
open Category DLCat
-- C-valued presheaves on a distributive lattice
DLPreSheaf : Type (ℓ-max (ℓ-max ℓ ℓ') ℓ'')
DLPreSheaf = Functor (DLCat ^op) C
module _ (x y : L .fst)where
hom-∨₁ : DLCat [ x , x ∨l y ]
hom-∨₁ = ∨≤RCancel _ _
hom-∨₂ : DLCat [ y , x ∨l y ]
hom-∨₂ = ∨≤LCancel _ _
hom-∧₁ : DLCat [ x ∧l y , x ]
hom-∧₁ = ≤m→≤j _ _ (∧≤RCancel _ _)
hom-∧₂ : DLCat [ x ∧l y , y ]
hom-∧₂ = ≤m→≤j _ _ (∧≤LCancel _ _)
{-
x ∧ y ----→ x
| |
| sq |
V V
y ----→ x ∨ y
-}
sq : hom-∧₂ ⋆ hom-∨₂ ≡ hom-∧₁ ⋆ hom-∨₁
sq = is-prop-valued (x ∧l y) (x ∨l y) (hom-∧₂ ⋆ hom-∨₂) (hom-∧₁ ⋆ hom-∨₁)
{-
F(x ∨ y) ----→ F(x)
| |
| Fsq |
V V
F(y) ------→ F(x ∧ y)
-}
Fsq : (F : DLPreSheaf)
→ F .F-hom hom-∨₂ ⋆⟨ C ⟩ F .F-hom hom-∧₂ ≡
F .F-hom hom-∨₁ ⋆⟨ C ⟩ F .F-hom hom-∧₁
Fsq F = F-square F sq
isDLSheafPullback : (F : DLPreSheaf) → Type (ℓ-max (ℓ-max ℓ ℓ') ℓ'')
isDLSheafPullback F = (F-ob F 0l ≡ 𝟙)
× ((x y : L .fst) → isPullback C _ _ _ (Fsq x y F))
-- TODO: might be better to define this as a record
DLSheafPullback : Type (ℓ-max (ℓ-max ℓ ℓ') ℓ'')
DLSheafPullback = Σ[ F ∈ DLPreSheaf ] isDLSheafPullback F
-- Now for the proper version using limits of the right kind:
open Join L
isDLSheaf : (F : DLPreSheaf) → Type _
isDLSheaf F = ∀ (n : ℕ) (α : FinVec (fst L) n) → isLimCone _ _ (F-cone F (⋁Cone L α))
--TODO: Equivalence of isDLSheaf and isDLSheafPullback
module SheafOnBasis (L : DistLattice ℓ) (C : Category ℓ' ℓ'') (T : Terminal C)
(L' : ℙ (fst L)) (hB : IsBasis L L') where
open Category
open Functor
open DistLatticeStr ⦃...⦄
open SemilatticeStr ⦃...⦄
open IsBasis hB
private
DLCat = DistLatticeCategory L
BasisCat = ΣPropCat DLCat L'
DLBasisPreSheaf = Functor (BasisCat ^op) C
-- to avoid writing 𝟙 L C T
1c : ob C
1c = terminalOb C T
instance
_ = snd L
_ = snd (Basis→MeetSemilattice L L' hB)
module condSquare (x y : ob BasisCat) (x∨y∈L' : fst x ∨l fst y ∈ L') where
private
x∨y : ob BasisCat -- = Σ[ x ∈ L ] (x ∈ L')
x∨y = fst x ∨l fst y , x∨y∈L'
{-
x ∧ y ----→ x
| |
| sq |
V V
y ----→ x ∨ y
but as a square in BasisCat
-}
Bsq : seq' BasisCat {x = x · y} {y = y} {z = x∨y} (hom-∧₂ L C T (fst x) (fst y))
(hom-∨₂ L C T (fst x) (fst y))
≡ seq' BasisCat {x = x · y} {y = x} {z = x∨y} (hom-∧₁ L C T (fst x) (fst y))
(hom-∨₁ L C T (fst x) (fst y))
Bsq = sq L C T (fst x) (fst y)
{-
F(x ∨ y) ----→ F(x)
| |
| Fsq |
V V
F(y) ------→ F(x ∧ y)
square in C but now F is only presheaf on BasisCat
-}
BFsq : (F : DLBasisPreSheaf)
→ seq' C {x = F .F-ob x∨y} {y = F .F-ob y} {z = F .F-ob (x · y)}
(F .F-hom (hom-∨₂ L C T (fst x) (fst y)))
(F .F-hom (hom-∧₂ L C T (fst x) (fst y)))
≡ seq' C {x = F .F-ob x∨y} {y = F .F-ob x} {z = F .F-ob (x · y)}
(F .F-hom (hom-∨₁ L C T (fst x) (fst y)))
(F .F-hom (hom-∧₁ L C T (fst x) (fst y)))
BFsq F = F-square F Bsq
-- On a basis this is weaker than the definition below!
isDLBasisSheafPullback : DLBasisPreSheaf → Type (ℓ-max (ℓ-max ℓ ℓ') ℓ'')
isDLBasisSheafPullback F = ((0∈L' : 0l ∈ L') → F .F-ob (0l , 0∈L') ≡ 1c)
× ((x y : ob BasisCat) (x∨y∈L' : fst x ∨l fst y ∈ L')
→ isPullback C _ _ _ (BFsq x y x∨y∈L' F))
where open condSquare
DLBasisSheafPullback : Type (ℓ-max (ℓ-max ℓ ℓ') ℓ'')
DLBasisSheafPullback = Σ[ F ∈ DLBasisPreSheaf ] isDLBasisSheafPullback F
-- the correct defintion
open Join L
module condCone {n : ℕ} (α : FinVec (ob BasisCat) n) (⋁α∈L' : ⋁ (λ i → α i .fst) ∈ L') where
open JoinSemilattice (Lattice→JoinSemilattice (DistLattice→Lattice L))
open PosetStr (IndPoset .snd) hiding (_≤_)
open MeetSemilattice (Lattice→MeetSemilattice (DistLattice→Lattice L))
using (∧≤RCancel ; ∧≤LCancel)
open Order (DistLattice→Lattice L)
open Cone
private
α' : FinVec (fst L) n
α' i = α i .fst
⋁α : ob BasisCat
⋁α = ⋁ α' , ⋁α∈L'
BDiag : Functor (DLShfDiag n) (BasisCat ^op)
F-ob BDiag (sing i) = α i
F-ob BDiag (pair i j _) = α i · α j -- α i ∧ α j + basis is closed under ∧
F-hom BDiag idAr = is-refl _
F-hom BDiag singPairL = ≤m→≤j _ _ (∧≤RCancel _ _)
F-hom BDiag singPairR = ≤m→≤j _ _ (∧≤LCancel _ _)
F-id BDiag = is-prop-valued _ _ _ _
F-seq BDiag _ _ = is-prop-valued _ _ _ _
B⋁Cone : Cone BDiag ⋁α
coneOut B⋁Cone (sing i) = ind≤⋁ α' i
coneOut B⋁Cone (pair i _ _) = is-trans _ (α' i) _ (≤m→≤j _ _ (∧≤RCancel _ _)) (ind≤⋁ α' i)
coneOutCommutes B⋁Cone _ = is-prop-valued _ _ _ _
isDLBasisSheaf : DLBasisPreSheaf → Type _
isDLBasisSheaf F = ∀ {n : ℕ} (α : FinVec (ob BasisCat) n) (⋁α∈L' : ⋁ (λ i → α i .fst) ∈ L')
→ isLimCone _ _ (F-cone F (B⋁Cone α ⋁α∈L'))
where open condCone
-- To prove the statement we probably need that C is:
-- 1. univalent
-- 2. has finite limits (or pullbacks and a terminal object)
-- 3. isGroupoid (C .ob)
-- The last point is not strictly necessary, but we have to have some
-- control over the hLevel as we want to write F(x) in terms of its
-- basis cover which is information hidden under a prop truncation...
-- Alternatively we just prove the statement for C = CommRingsCategory
-- TODO: is unique existence expressed like this what we want?
-- statement : (F' : DLBasisSheaf)
-- → ∃![ F ∈ DLSheaf L C T ] ((x : fst L) → (x ∈ L') → CatIso C (F-ob (fst F) x) (F-ob (fst F') x)) -- TODO: if C is univalent the CatIso could be ≡?
-- statement (F' , h1 , hPb) = ?
-- It might be easier to prove all of these if we use the definition
-- in terms of particular limits instead
-- Scrap zone:
-- -- Sublattices: upstream later
-- record isSublattice (L' : ℙ (fst L)) : Type ℓ where
-- field
-- 1l-closed : 1l ∈ L'
-- 0l-closed : 0l ∈ L'
-- ∧l-closed : {x y : fst L} → x ∈ L' → y ∈ L' → x ∧l y ∈ L'
-- ∨l-closed : {x y : fst L} → x ∈ L' → y ∈ L' → x ∨l y ∈ L'
-- open isSublattice
-- Sublattice : Type (ℓ-suc ℓ)
-- Sublattice = Σ[ L' ∈ ℙ (fst L) ] isSublattice L'
-- restrictDLSheaf : DLSheaf → Sublattice → DLSheaf
-- F-ob (fst (restrictDLSheaf F (L' , HL'))) x = {!F-ob (fst F) x!} -- Hmm, not nice...
-- F-hom (fst (restrictDLSheaf F L')) = {!!}
-- F-id (fst (restrictDLSheaf F L')) = {!!}
-- F-seq (fst (restrictDLSheaf F L')) = {!!}
-- snd (restrictDLSheaf F L') = {!!}
|
algebraic-stack_agda0000_doc_5283 | {- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2020, 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
-- This is a selection of useful functions and definitions
-- from the standard library that we tend to use a lot.
module LibraBFT.Prelude where
open import Level
renaming (suc to ℓ+1; zero to ℓ0; _⊔_ to _ℓ⊔_)
public
1ℓ : Level
1ℓ = ℓ+1 0ℓ
open import Agda.Builtin.Unit
public
open import Data.Unit.NonEta
public
open import Data.Empty
public
open import Data.Nat
renaming (_≟_ to _≟ℕ_; _≤?_ to _≤?ℕ_)
public
open import Data.Nat.Properties
hiding (≡-irrelevant)
public
open import Data.List
renaming (map to List-map ; filter to List-filter ; lookup to List-lookup;
tabulate to List-tabulate)
hiding (fromMaybe; [_])
public
open import Data.List.Properties
renaming (≡-dec to List-≡-dec; length-map to List-length-map; map-compose to List-map-compose)
using (∷-injective; length-++; map-++-commute; sum-++-commute; map-tabulate; ++-identityʳ)
public
open import Data.List.Relation.Binary.Subset.Propositional
renaming (_⊆_ to _⊆List_)
public
open import Data.List.Relation.Unary.Any
using (Any; here; there)
renaming (lookup to Any-lookup; map to Any-map; satisfied to Any-satisfied
;index to Any-index; any to Any-any)
public
open import Data.List.Relation.Unary.Any.Properties
using (¬Any[])
renaming ( map⁺ to Any-map⁺
; map⁻ to Any-map⁻
; concat⁺ to Any-concat⁺
; concat⁻ to Any-concat⁻
; ++⁻ to Any-++⁻
; ++⁺ʳ to Any-++ʳ
; ++⁺ˡ to Any-++ˡ
; singleton⁻ to Any-singleton⁻
; tabulate⁺ to Any-tabulate⁺
)
public
open import Data.List.Relation.Unary.All
using (All; []; _∷_)
renaming (head to All-head; tail to All-tail;
lookup to All-lookup; tabulate to All-tabulate;
reduce to All-reduce)
public
open import Data.List.Relation.Unary.All.Properties
renaming ( tabulate⁻ to All-tabulate⁻
; tabulate⁺ to All-tabulate⁺
; map⁺ to All-map⁺
; map⁻ to All-map⁻
)
public
open import Data.List.Membership.Propositional
using (_∈_; _∉_)
public
open import Data.Vec
using (Vec; []; _∷_)
renaming (replicate to Vec-replicate; lookup to Vec-lookup
;map to Vec-map; head to Vec-head; tail to Vec-tail
;updateAt to Vec-updateAt; tabulate to Vec-tabulate
;allFin to Vec-allFin; toList to Vec-toList; fromList to Vec-fromList
;_++_ to _Vec-++_)
public
open import Data.Vec.Relation.Unary.All
using ([]; _∷_)
renaming (All to Vec-All; lookup to Vec-All-lookup)
public
open import Data.Vec.Properties
using ()
renaming (updateAt-minimal to Vec-updateAt-minimal
;[]=⇒lookup to Vec-[]=⇒lookup
;lookup⇒[]= to Vec-lookup⇒[]=
;lookup∘tabulate to Vec-lookup∘tabulate
;≡-dec to Vec-≡-dec)
public
open import Data.List.Relation.Binary.Pointwise
using (decidable-≡)
public
open import Data.Bool
renaming (_≟_ to _≟Bool_)
hiding (_≤?_; _<_; _<?_; _≤_)
public
open import Data.Maybe
renaming (map to Maybe-map; zip to Maybe-zip ; _>>=_ to _Maybe->>=_)
hiding (align; alignWith; zipWith)
public
open import Data.Maybe.Relation.Unary.Any
renaming (Any to Maybe-Any; dec to Maybe-Any-dec)
hiding (map; zip; zipWith; unzip ; unzipWith)
public
maybe-any-⊥ : ∀{a}{A : Set a} → Maybe-Any {A = A} (λ _ → ⊤) nothing → ⊥
maybe-any-⊥ ()
open import Data.Maybe.Properties
using (just-injective)
renaming (≡-dec to Maybe-≡-dec)
public
open import Data.Fin
using (Fin; suc; zero; fromℕ; fromℕ< ; toℕ ; cast)
renaming (_≟_ to _≟Fin_; _≤?_ to _≤?Fin_; _≤_ to _≤Fin_ ; _<_ to _<Fin_;
inject₁ to Fin-inject₁; inject+ to Fin-inject+)
public
fins : (n : ℕ) → List (Fin n)
fins n = Vec-toList (Vec-allFin n)
open import Data.Fin.Properties
using (toℕ-injective)
renaming (<-cmp to Fin-<-cmp; <⇒≢ to <⇒≢Fin)
public
open import Relation.Binary.PropositionalEquality
hiding (decSetoid)
public
open import Relation.Binary.HeterogeneousEquality
using (_≅_)
renaming (cong to ≅-cong; cong₂ to ≅-cong₂)
public
open import Relation.Binary
public
≡-irrelevant : ∀{a}{A : Set a} → Irrelevant {a} {A} _≡_
≡-irrelevant refl refl = refl
to-witness-lemma : ∀{ℓ}{A : Set ℓ}{a : A}{f : Maybe A}(x : Is-just f)
→ to-witness x ≡ a → f ≡ just a
to-witness-lemma (just x) refl = refl
open import Data.Sum
renaming ([_,_] to either; map to ⊎-map)
public
open import Function
using (_∘_; id; case_of_; _on_; typeOf; flip; const)
public
open import Data.Product
renaming (map to ×-map; map₂ to ×-map₂; map₁ to ×-map₁; <_,_> to split; swap to ×-swap)
hiding (zip)
public
open import Data.Product.Properties
public
open import Relation.Nullary
hiding (Irrelevant; proof)
public
open import Relation.Nullary.Decidable
hiding (map)
public
infix 0 if-yes_then_else_
infix 0 if-dec_then_else_
if-yes_then_else_ : {A B : Set} → Dec A → (A → B) → (¬ A → B) → B
if-yes (yes prf) then f else _ = f prf
if-yes (no prf) then _ else g = g prf
if-dec_then_else_ : {A B : Set} → Dec A → B → B → B
if-dec x then f else g = if-yes x then const f else const g
open import Relation.Nullary.Negation
using (contradiction; contraposition)
public
open import Relation.Binary
using (Setoid; IsPreorder)
public
-- Evidence that a function is not injective
NonInjective : ∀{a b c}{A : Set a}{B : Set b}
→ (_≈_ : Rel A c)
→ (A → B) → Set (a ℓ⊔ b ℓ⊔ c)
NonInjective {A = A} _≈_ f
= Σ (A × A) (λ { (x₁ , x₂) → ¬ (x₁ ≈ x₂) × f x₁ ≡ f x₂ })
NonInjective-≡ : ∀{a b}{A : Set a}{B : Set b}
→ (A → B) → Set (a ℓ⊔ b)
NonInjective-≡ = NonInjective _≡_
NonInjective-∘ : ∀{a b c}{A : Set a}{B : Set b}{C : Set c}
→ {f : A → B}(g : B → C)
→ NonInjective-≡ f
→ NonInjective-≡ (g ∘ f)
NonInjective-∘ g ((x0 , x1) , (x0≢x1 , fx0≡fx1))
= ((x0 , x1) , x0≢x1 , (cong g fx0≡fx1))
--------------------------------------------
-- Handy fmap and bind for specific types --
_<M$>_ : ∀{a b}{A : Set a}{B : Set b}
→ (f : A → B)
→ Maybe A → Maybe B
_<M$>_ = Maybe-map
<M$>-univ : ∀{a b}{A : Set a}{B : Set b}
→ (f : A → B)(x : Maybe A)
→ {y : B} → f <M$> x ≡ just y
→ ∃[ x' ] (x ≡ just x' × f x' ≡ y)
<M$>-univ f (just x) refl = x , (refl , refl)
maybe-lift : {A : Set}
→ {mx : Maybe A}{x : A}
→ (P : A → Set)
→ P x → mx ≡ just x
→ maybe {B = const Set} P ⊥ mx
maybe-lift {mx = just .x} {x} P px refl = px
<M$>-nothing : ∀ {a b}{A : Set a}{B : Set b}(f : A → B)
→ f <M$> nothing ≡ nothing
<M$>-nothing _ = refl
_<⊎$>_ : ∀{a b c}{A : Set a}{B : Set b}{C : Set c}
→ (A → B) → C ⊎ A → C ⊎ B
f <⊎$> (inj₁ hb) = inj₁ hb
f <⊎$> (inj₂ x) = inj₂ (f x)
_⊎⟫=_ : ∀{a b c}{A : Set a}{B : Set b}{C : Set c}
→ C ⊎ A → (A → C ⊎ B) → C ⊎ B
(inj₁ x) ⊎⟫= _ = inj₁ x
(inj₂ a) ⊎⟫= f = f a
-- TODO-1: Maybe this belongs somewhere else? It's in a similar
-- category as Optics, so maybe should similarly be in a module that
-- is separate from the main project?
------------------
-- Guard Syntax --
--
-- Example Usage:
--
-- > f : ℕ → ℕ
-- > f x = grd‖ x ≟ℕ 10 ≔ 12
-- > ‖ otherwise≔ 40 + 2
--
--
-- > g : ℕ ⊎ ℕ → ℕ
-- > g x = case x of λ
-- > { (inj₁ x) → grd‖ x ≤? 10 ≔ 2 * x
-- > ‖ otherwise≔ 42
-- > ; (inj₂ y) → y
-- > }
--
-- To type: ‖ --> \Vert
-- ≔ --> \:=
record ToBool {a}(A : Set a) : Set a where
field
toBool : A → Bool
open ToBool {{ ... }} public
instance
ToBool-Bool : ToBool Bool
ToBool-Bool = record { toBool = id }
ToBool-Dec : ∀{a}{A : Set a} → ToBool (Dec A)
ToBool-Dec = record { toBool = ⌊_⌋ }
infix 3 _≔_
data GuardClause {a}(A : Set a) : Set (ℓ+1 a) where
_≔_ : {B : Set a}{{ bb : ToBool B }} → B → A → GuardClause A
infix 3 otherwise≔_
data Guards {a}(A : Set a) : Set (ℓ+1 a) where
otherwise≔_ : A → Guards A
clause : GuardClause A → Guards A → Guards A
infixr 2 _‖_
_‖_ : ∀{a}{A : Set a} → GuardClause A → Guards A → Guards A
_‖_ = clause
infix 1 grd‖_
grd‖_ : ∀{a}{A : Set a} → Guards A → A
grd‖_ (otherwise≔ a) = a
grd‖_ (clause (b ≔ a) g) = if toBool b then a else (grd‖ g)
Any-satisfied-∈ : ∀{a ℓ}{A : Set a}{P : A → Set ℓ}{xs : List A}
→ Any P xs → Σ A (λ x → P x × x ∈ xs)
Any-satisfied-∈ (here px) = _ , (px , here refl)
Any-satisfied-∈ (there p) = let (a , px , prf) = Any-satisfied-∈ p
in (a , px , there prf)
f-sum : ∀{a}{A : Set a} → (A → ℕ) → List A → ℕ
f-sum f = sum ∘ List-map f
open import LibraBFT.Base.Util public
|
algebraic-stack_agda0000_doc_5284 | {-# OPTIONS --without-K --safe #-}
module Math.NumberTheory.Product.Generic where
-- agda-stdlib
open import Algebra
-- agda-misc
open import Math.NumberTheory.Summation.Generic
-- TODO add syntax
module MonoidProduct {c e} (M : Monoid c e) =
MonoidSummation M
renaming
( Σ< to Π<
; Σ≤ to Π≤
; Σ<range to Π<range
; Σ≤range to Π≤range
)
using ()
|
algebraic-stack_agda0000_doc_5285 |
postulate
C : Set
anything : C
record I : Set where
constructor c
field
f : C
data Wrap : (j : I) → Set where
wrap : ∀ {j} → Wrap j
-- The following should not pass.
-- It did before the fix of #142.
issue142 : ∀ {j} → Wrap j → C
issue142 {c _} (wrap {c _}) with anything
issue142 {c _} (wrap .{c anything}) | z = z
|
algebraic-stack_agda0000_doc_5286 | open import Relation.Unary using ( ∅ ; _∪_ )
open import Web.Semantic.DL.Signature using ( Signature ; CN ; RN )
open import Web.Semantic.Util using ( Subset ; ⁅_⁆ )
module Web.Semantic.DL.Role where
data Role (Σ : Signature) : Set where
⟨_⟩ : (r : RN Σ) → Role Σ
⟨_⟩⁻¹ : (r : RN Σ) → Role Σ
inv : ∀ {Σ} → Role Σ → Role Σ
inv ⟨ r ⟩ = ⟨ r ⟩⁻¹
inv ⟨ r ⟩⁻¹ = ⟨ r ⟩
|
algebraic-stack_agda0000_doc_5287 | {- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2020, 2021 Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Prelude
open import LibraBFT.Lemmas
open import LibraBFT.Base.PKCS
open import LibraBFT.Base.Types
import LibraBFT.Yasm.Base as LYB
-- This module provides some definitions and properties that facilitate
-- proofs of properties about a distributed system modeled by Yasm.System
-- paramaterized by some SystemParameters.
module LibraBFT.Yasm.Properties
(ℓ-EC : Level)
(EpochConfig : Set ℓ-EC)
(epochId : EpochConfig → EpochId)
(authorsN : EpochConfig → ℕ)
(parms : LYB.SystemParameters ℓ-EC EpochConfig epochId authorsN)
-- In addition to the parameters used by the rest of the system model, this module
-- needs to relate Members to PKs and PeerIds, so that StepPeerState-AllValidParts
-- can be defined. This enables the application to prove that honest peers sign
-- new messages only for their own public key. The system model does not know that
-- directly.
(senderPKOK : (ec : EpochConfig) → PK → LYB.SystemParameters.PeerId parms → Set)
where
open LYB.SystemParameters parms
open import LibraBFT.Yasm.AvailableEpochs PeerId ℓ-EC EpochConfig epochId authorsN
using (AvailableEpochs) renaming (lookup'' to EC-lookup)
import LibraBFT.Yasm.AvailableEpochs PeerId ℓ-EC EpochConfig epochId authorsN
as AE
open import LibraBFT.Yasm.Base ℓ-EC EpochConfig epochId authorsN
open import LibraBFT.Yasm.System ℓ-EC EpochConfig epochId authorsN parms
open import Util.FunctionOverride PeerId _≟PeerId_
-- A ValidPartForPK collects the assumptions about what a /part/ in the outputs of an honest verifier
-- satisfies: (i) the epoch field is consistent with the existent epochs and (ii) the verifier is
-- a member of the associated epoch config, and (iii) has the given PK in that epoch.
record ValidSenderForPK {e}(𝓔s : AvailableEpochs e)(part : Part)(sender : PeerId)(pk : PK) : Set ℓ-EC where
constructor mkValidSenderForPK
field
vp-epoch : part-epoch part < e
vp-ec : EpochConfig
vp-ec-≡ : AE.lookup'' 𝓔s vp-epoch ≡ vp-ec
vp-sender-ok : senderPKOK vp-ec pk sender
open ValidSenderForPK public
-- A valid part remains valid when new epochs are added
ValidSenderForPK-stable-epoch : ∀{e part α pk}{𝓔s : AvailableEpochs e}(𝓔 : EpochConfigFor e)
→ ValidSenderForPK 𝓔s part α pk
→ ValidSenderForPK (AE.append 𝓔 𝓔s) part α pk
ValidSenderForPK-stable-epoch {pk = pk} {𝓔s = 𝓔s} 𝓔 (mkValidSenderForPK e ec refl vpk) = record
{ vp-epoch = ≤-step e
; vp-ec = ec
; vp-ec-≡ = AE.lookup''-≤-step-lemma 𝓔s 𝓔 e
; vp-sender-ok = vpk
}
-- A valid part remains valid
ValidSenderForPK-stable : ∀{e e' α}{st : SystemState e}{st' : SystemState e'}
→ Step* st st' → ∀{part pk}
→ ValidSenderForPK (availEpochs st) part α pk
→ ValidSenderForPK (availEpochs st') part α pk
ValidSenderForPK-stable step-0 v = v
ValidSenderForPK-stable (step-s st (step-epoch 𝓔)) v
= ValidSenderForPK-stable-epoch 𝓔 (ValidSenderForPK-stable st v)
ValidSenderForPK-stable (step-s st (step-peer _)) v
= ValidSenderForPK-stable st v
sameEpoch⇒sameEC : ∀ {e p1 p2 α1 α2 pk1 pk2}{𝓔s : AvailableEpochs e}
→ (vp1 : ValidSenderForPK 𝓔s p1 α1 pk1)
→ (vp2 : ValidSenderForPK 𝓔s p2 α2 pk2)
→ part-epoch p1 ≡ part-epoch p2
→ vp-ec vp1 ≡ vp-ec vp2
sameEpoch⇒sameEC {𝓔s = 𝓔s} vp1 vp2 parts≡ =
trans (sym (vp-ec-≡ vp1))
(trans (AE.lookup-𝓔s-injective 𝓔s (vp-epoch vp1) (vp-epoch vp2) parts≡)
(vp-ec-≡ vp2))
-- TODO-1 : prove it
postulate
ValidSenderForPK⇒ep≡ : ∀ {e p1 p2 α1 pk} {𝓔s : AvailableEpochs e}
→ WithVerSig pk p1 → WithVerSig pk p2
→ part-epoch p1 ≡ part-epoch p2
→ ValidSenderForPK 𝓔s p1 α1 pk
→ ValidSenderForPK 𝓔s p2 α1 pk
-- We say that an implementation produces only valid parts iff all parts of every message in the
-- output of a 'StepPeerState' are either: (i) a valid new part (i.e., the part is valid and no
-- message with the same signature has been sent previously), or (ii) a message has been sent
-- with the same signature.
StepPeerState-AllValidParts : Set ℓ-EC
StepPeerState-AllValidParts = ∀{e s m part pk initd' outs}{α}{𝓔s : AvailableEpochs e}{st : SystemState e}
→ (r : ReachableSystemState st)
→ Meta-Honest-PK pk
→ StepPeerState α 𝓔s (msgPool st) (initialised st) (peerStates st α) initd' (s , outs)
→ m ∈ outs → part ⊂Msg m → (ver : WithVerSig pk part)
→ (ValidSenderForPK 𝓔s part α pk × ¬ (MsgWithSig∈ pk (ver-signature ver) (msgPool st)))
⊎ MsgWithSig∈ pk (ver-signature ver) (msgPool st)
-- A /part/ was introduced by a specific step when:
IsValidNewPart : ∀{e e'}{pre : SystemState e}{post : SystemState e'} → Signature → PK → Step pre post → Set ℓ-EC
IsValidNewPart _ _ (step-epoch _) = Lift (ℓ-EC) ⊥
-- said step is a /step-peer/ and
IsValidNewPart {pre = pre} sig pk (step-peer {pid = pid} pstep)
-- the part has never been seen before
= ReachableSystemState pre
× ¬ (MsgWithSig∈ pk sig (msgPool pre))
× Σ (MsgWithSig∈ pk sig (msgPool (StepPeer-post pstep)))
(λ m → ValidSenderForPK (availEpochs pre) (msgPart m) (msgSender m) pk)
-- When we can prove that the implementation provided by 'parms' at the
-- top of this module satisfies 'StepPeerState-AllValidParts', we can
-- prove a number of useful structural properties:
-- TODO-2: Refactor into a file (LibraBFT.Yasm.Properties.Structural) later on
-- if this grows too large.
module Structural (sps-avp : StepPeerState-AllValidParts) where
-- We can unwind the state and highlight the step where a part was
-- originally sent. This 'unwind' function combined with Any-Step-elim
-- enables a powerful form of reasoning. The 'honestVoteEpoch' below
-- exemplifies this well.
unwind : ∀{e}{st : SystemState e}(tr : ReachableSystemState st)
→ ∀{p m σ pk} → Meta-Honest-PK pk
→ p ⊂Msg m → (σ , m) ∈ msgPool st → (ver : WithVerSig pk p)
→ Any-Step (IsValidNewPart (ver-signature ver) pk) tr
unwind (step-s tr (step-epoch _)) hpk p⊂m m∈sm sig
= step-there (unwind tr hpk p⊂m m∈sm sig)
unwind (step-s tr (step-peer {pid = β} {outs = outs} {pre = pre} sp)) hpk p⊂m m∈sm sig
with Any-++⁻ (List-map (β ,_) outs) {msgPool pre} m∈sm
...| inj₂ furtherBack = step-there (unwind tr hpk p⊂m furtherBack sig)
...| inj₁ thisStep
with sp
...| step-cheat fm isCheat
with thisStep
...| here refl
with isCheat p⊂m sig
...| inj₁ abs = ⊥-elim (hpk abs)
...| inj₂ sentb4
with unwind tr {p = msgPart sentb4} hpk (msg⊆ sentb4) (msg∈pool sentb4) (msgSigned sentb4)
...| res rewrite msgSameSig sentb4 = step-there res
unwind (step-s tr (step-peer {pid = β} {outs = outs} {pre = pre} sp)) hpk p⊂m m∈sm sig
| inj₁ thisStep
| step-honest x
with Any-satisfied-∈ (Any-map⁻ thisStep)
...| (m , refl , m∈outs)
with sps-avp tr hpk x m∈outs p⊂m sig
...| inj₂ sentb4 with unwind tr {p = msgPart sentb4} hpk (msg⊆ sentb4) (msg∈pool sentb4) (msgSigned sentb4)
...| res rewrite msgSameSig sentb4 = step-there res
unwind (step-s tr (step-peer {pid = β} {outs = outs} {pre = pre} sp)) {p} hpk p⊂m m∈sm sig
| inj₁ thisStep
| step-honest x
| (m , refl , m∈outs)
| inj₁ (valid-part , notBefore) =
step-here tr (tr , notBefore , MsgWithSig∈-++ˡ (mkMsgWithSig∈ _ _ p⊂m β thisStep sig refl)
, valid-part)
-- Unwind is inconvenient to use by itself because we have to do
-- induction on Any-Step-elim. The 'honestPartValid' property below
-- provides a fairly general result conveniently: for every part
-- verifiable with an honest PK, there is a msg with the same
-- signature that is valid for some pid.
honestPartValid : ∀ {e st} → ReachableSystemState {e} st → ∀ {pk nm v sender}
→ Meta-Honest-PK pk
→ v ⊂Msg nm → (sender , nm) ∈ msgPool st → (ver : WithVerSig pk v)
→ Σ (MsgWithSig∈ pk (ver-signature ver) (msgPool st))
(λ msg → (ValidSenderForPK (availEpochs st) (msgPart msg) (msgSender msg) pk))
honestPartValid {e} {st} r {pk = pk} hpk v⊂m m∈pool ver
-- We extract two pieces of important information from the place where the part 'v'
-- was first sent: (a) there is a message with the same signature /in the current pool/
-- and (b) its epoch is less than e.
= Any-Step-elim (λ { {st = step-epoch _} ()
; {st = step-peer {pid = pid} ps} (_ , _ , new , valid) tr
→ MsgWithSig∈-Step* tr new
, ValidSenderForPK-stable tr (subst (λ P → ValidSenderForPK _ P (msgSender (MsgWithSig∈-Step* tr new)) pk)
(MsgWithSig∈-Step*-part tr new)
(subst (λ sndr → ValidSenderForPK _ _ sndr pk)
(MsgWithSig∈-Step*-sender tr new)
valid))
})
(unwind r hpk v⊂m m∈pool ver)
-- Unforgeability is also an important property stating that every part that is
-- verified with an honest public key has either been sent by α or is a replay
-- of another message sent before.
ext-unforgeability'
: ∀{e α m part pk}{st : SystemState e} → ReachableSystemState st
-- If a message m has been sent by α, containing part
→ (α , m) ∈ msgPool st → part ⊂Msg m
-- And the part can be verified with an honest public key,
→ (sig : WithVerSig pk part) → Meta-Honest-PK pk
-- then either the part is a valid part by α (meaning that α can
-- sign the part itself) or a message with the same signature has
-- been sent previously.
→ ValidSenderForPK (availEpochs st) part α pk
⊎ MsgWithSig∈ pk (ver-signature sig) (msgPool st)
ext-unforgeability' (step-s st (step-epoch 𝓔)) m∈sm p⊆m sig hpk
= ⊎-map (ValidSenderForPK-stable-epoch 𝓔) id (ext-unforgeability' st m∈sm p⊆m sig hpk)
ext-unforgeability' {part = part} (step-s st (step-peer {pid = β} {outs = outs} {pre = pre} sp)) m∈sm p⊆m sig hpk
with Any-++⁻ (List-map (β ,_) outs) {msgPool pre} m∈sm
...| inj₂ furtherBack = MsgWithSig∈-++ʳ <⊎$> (ext-unforgeability' st furtherBack p⊆m sig hpk)
...| inj₁ thisStep
with sp
...| step-cheat fm isCheat
with thisStep
...| here refl
with isCheat p⊆m sig
...| inj₁ abs = ⊥-elim (hpk abs)
...| inj₂ sentb4 = inj₂ (MsgWithSig∈-++ʳ sentb4)
ext-unforgeability' {α = α} {m = m} {part = part} (step-s st (step-peer {pid = β} {outs = outs} {pre = pre} sp)) m∈sm p⊆m sig hpk
| inj₁ thisStep
| step-honest x
with Any-satisfied-∈ (Any-map⁻ thisStep)
...| (m , refl , m∈outs) = ⊎-map proj₁ MsgWithSig∈-++ʳ (sps-avp st hpk x m∈outs p⊆m sig)
-- The ext-unforgeability' property can be collapsed in a single clause.
-- TODO-2: so far, ext-unforgeability is used only to get a MsgWithSig∈ that is passed to
-- msgWithSigSentByAuthor, which duplicates some of the reasoning in the proof of
-- ext-unforgeability'; should these properties possibly be combined into one simpler proof?
ext-unforgeability
: ∀{e α₀ m part pk}{st : SystemState e} → ReachableSystemState st
→ (α₀ , m) ∈ msgPool st → part ⊂Msg m
→ (sig : WithVerSig pk part) → Meta-Honest-PK pk
→ MsgWithSig∈ pk (ver-signature sig) (msgPool st)
ext-unforgeability {_} {α₀} {m} {st = st} rst m∈sm p⊂m sig hpk
with ext-unforgeability' rst m∈sm p⊂m sig hpk
...| inj₁ p
= mkMsgWithSig∈ _ _ p⊂m α₀ m∈sm sig refl
...| inj₂ sentb4 = sentb4
¬cheatForgeNew : ∀ {e pid pk vsig mst outs m}{st : SystemState e}
→ (sp : StepPeer st pid mst outs)
→ outs ≡ m ∷ []
→ (ic : isCheat sp)
→ Meta-Honest-PK pk
→ MsgWithSig∈ pk vsig ((pid , m) ∷ msgPool st)
→ MsgWithSig∈ pk vsig (msgPool st)
¬cheatForgeNew sc@(step-cheat fm isCheat) refl _ hpk mws
with msg∈pool mws
...| there m∈pool = mkMsgWithSig∈ (msgWhole mws) (msgPart mws) (msg⊆ mws) (msgSender mws) m∈pool (msgSigned mws) (msgSameSig mws)
...| here m∈pool
with isCheat (subst (msgPart mws ⊂Msg_) (cong proj₂ m∈pool) (msg⊆ mws)) (msgSigned mws)
...| inj₁ dis = ⊥-elim (hpk dis)
...| inj₂ mws' rewrite msgSameSig mws = mws'
msgWithSigSentByAuthor : ∀ {e pk sig}{st : SystemState e}
→ ReachableSystemState st
→ Meta-Honest-PK pk
→ MsgWithSig∈ pk sig (msgPool st)
→ Σ (MsgWithSig∈ pk sig (msgPool st))
λ mws → ValidSenderForPK (availEpochs st) (msgPart mws) (msgSender mws) pk
msgWithSigSentByAuthor step-0 _ ()
msgWithSigSentByAuthor (step-s {pre = pre} preach (step-epoch 𝓔)) hpk mws
rewrite step-epoch-does-not-send pre 𝓔
with msgWithSigSentByAuthor preach hpk mws
...| mws' , vpb = mws' , ValidSenderForPK-stable {st = pre} (step-s step-0 (step-epoch 𝓔)) vpb
msgWithSigSentByAuthor {pk = pk} (step-s {pre = pre} preach (step-peer theStep@(step-cheat fm cheatCons))) hpk mws
with (¬cheatForgeNew theStep refl unit hpk mws)
...| mws'
with msgWithSigSentByAuthor preach hpk mws'
...| mws'' , vpb'' = MsgWithSig∈-++ʳ mws'' , vpb''
msgWithSigSentByAuthor {e} (step-s {pre = pre} preach (step-peer {pid = pid} {outs = outs} (step-honest sps))) hpk mws
with Any-++⁻ (List-map (pid ,_) outs) {msgPool pre} (msg∈pool mws)
...| inj₂ furtherBack
with msgWithSigSentByAuthor preach hpk (MsgWithSig∈-transp mws furtherBack)
...| mws' , vpb' = MsgWithSig∈-++ʳ mws' , vpb'
msgWithSigSentByAuthor {e} (step-s {pre = pre} preach (step-peer {pid = pid} {outs = outs} (step-honest sps))) hpk mws
| inj₁ thisStep
with Any-satisfied-∈ (Any-map⁻ thisStep)
...| (m' , refl , m∈outs)
with sps-avp preach hpk sps m∈outs (msg⊆ mws) (msgSigned mws)
...| inj₁ (vpbα₀ , _) = mws , vpbα₀
...| inj₂ mws'
with msgWithSigSentByAuthor preach hpk mws'
...| mws'' , vpb'' rewrite sym (msgSameSig mws) = MsgWithSig∈-++ʳ mws'' , vpb''
newMsg⊎msgSentB4 : ∀ {e pk v m pid sndr st' outs} {st : SystemState e}
→ (r : ReachableSystemState st)
→ (stP : StepPeer st pid st' outs)
→ Meta-Honest-PK pk → (sig : WithVerSig pk v)
→ v ⊂Msg m → (sndr , m) ∈ msgPool (StepPeer-post stP)
→ (m ∈ outs × ValidSenderForPK (availEpochs st) v pid pk
× ¬ (MsgWithSig∈ pk (ver-signature sig) (msgPool st)))
⊎ MsgWithSig∈ pk (ver-signature sig) (msgPool st)
newMsg⊎msgSentB4 {e} {pk} {v} {m} {pid} {sndr} {_} {outs} {st} r stP pkH sig v⊂m m∈post
with Any-++⁻ (List-map (pid ,_) outs) m∈post
...| inj₂ m∈preSt = inj₂ (mkMsgWithSig∈ m v v⊂m sndr m∈preSt sig refl)
...| inj₁ nm∈outs
with Any-map (cong proj₂) (Any-map⁻ nm∈outs)
...| m∈outs
with stP
...| step-honest stH
with sps-avp r pkH stH m∈outs v⊂m sig
...| inj₁ newVote = inj₁ (m∈outs , newVote)
...| inj₂ msb4 = inj₂ msb4
newMsg⊎msgSentB4 {e} {pk} {v} {m} {pid} {sndr} {_} {outs} {st} r stP pkH sig v⊂m m∈post
| inj₁ nm∈outs
| here refl
| step-cheat fm ic
= let mws = mkMsgWithSig∈ m v v⊂m pid (here refl) sig refl
in inj₂ (¬cheatForgeNew {st = st} (step-cheat fm ic) refl unit pkH mws)
-- This could potentially be more general, for example covering the whole SystemState, rather than
-- just one peer's state. However, this would put more burden on the user and is not required so
-- far.
CarrierProp : Set₁
CarrierProp = Part → PeerState → Set
module _ (P : CarrierProp) where
record PropCarrier (pk : PK) (sig : Signature) {e} (st : SystemState e) : Set (ℓ-EC ℓ⊔ (ℓ+1 0ℓ)) where
constructor mkCarrier
field
carrStReach : ReachableSystemState st -- Enables use of invariants when proving that steps preserve carrProp
carrSent : MsgWithSig∈ pk sig (msgPool st)
carrValid : ValidSenderForPK (availEpochs st) (msgPart carrSent) (msgSender carrSent) pk
carrProp : P (msgPart carrSent) (peerStates st (msgSender carrSent))
open PropCarrier public
PeerStepPreserves : Set (ℓ+1 ℓ0 ℓ⊔ ℓ-EC)
PeerStepPreserves = ∀ {e initd' ps' outs pk sig}{pre : SystemState e}
→ (r : ReachableSystemState pre)
→ (pc : PropCarrier pk sig {e} pre)
→ (sps : StepPeerState {e} (msgSender (carrSent pc))
(availEpochs pre)
(msgPool pre)
(initialised pre)
(peerStates pre (msgSender (carrSent pc)))
initd'
(ps' , outs))
→ P (msgPart (carrSent pc)) ps'
module _ (PSP : PeerStepPreserves) where
Carrier-transp : ∀ {e' e'' pk sig} {pre : SystemState e'}{post : SystemState e''}
→ (theStep : Step pre post)
→ PropCarrier pk sig pre
→ PropCarrier pk sig post
Carrier-transp {pre = pre} {post} (step-epoch ec) (mkCarrier r mws vpk lvr) =
mkCarrier (step-s r (step-epoch ec)) mws (ValidSenderForPK-stable-epoch ec vpk) lvr
Carrier-transp {e' = e'} {pre = pre} {post} theStep@(step-peer {pid = pid} {st'} {pre = .pre} sps) pc@(mkCarrier r mws vpk prop)
with step-s r theStep
...| postReach
with sps
...| step-cheat fm isch = mkCarrier postReach (MsgWithSig∈-++ʳ mws) vpk
(subst (λ ps → P (msgPart mws) (ps (msgSender mws))) (sym (cheatStepDNMPeerStates {pre = pre} (step-cheat fm isch) unit)) prop)
-- PeerStates not changed by cheat steps
...| step-honest {st = st} sps'
with msgSender mws ≟PeerId pid
...| no neq = mkCarrier postReach (MsgWithSig∈-++ʳ mws) vpk
(subst (λ ps → P (msgPart mws) ps) (override-target-≢ {f = peerStates pre} neq) prop)
...| yes refl = mkCarrier postReach (MsgWithSig∈-++ʳ mws) vpk
(subst (λ ps → P (msgPart mws) ps) (sym override-target-≡) (PSP r pc sps'))
|
algebraic-stack_agda0000_doc_5288 | module Issue252 where
data I : Set where
zero : I
data D : I → Set where
c : ∀ i → D i → D i
id : I → I
id i = i
index : ∀ i → D i → I
index i _ = i
foo : ∀ i → D i → D zero
foo .i (c i d) with id i
foo ._ (c i d) | zero = d
bar : ∀ i → D i → D zero
bar .i (c i d) with index i d
bar ._ (c i d) | zero = d
-- In the context of the first goal d has type D i′, in the second it
-- has type D i. Well, not any more.
|
algebraic-stack_agda0000_doc_5289 | module Thesis.SIRelBigStep.Normalization where
open import Thesis.SIRelBigStep.Lang
open import Data.Unit.Base hiding (_≤_)
open import Data.Product
open import Relation.Binary.PropositionalEquality
-- Define logical relation for normalization. Adapted from TAPL Ch. 12.
mutual
normT : ∀ {Γ} τ (t : Term Γ τ) (ρ : ⟦ Γ ⟧Context) → Set
normT τ t ρ = Σ[ v ∈ Val τ ] ρ ⊢ t ↓[ no ] v × normV τ v
normV : ∀ τ (v : Val τ) → Set
normV (σ ⇒ τ) (closure t ρ) = ∀ (v : Val σ) → (vv : normV _ v) → normT τ t (v • ρ)
normV (pair τ1 τ2) (pairV v1 v2) = normV _ v1 × normV _ v2
normV nat (natV n) = ⊤
normρ : ∀ Γ (ρ : ⟦ Γ ⟧Context) → Set
normρ ∅ ∅ = ⊤
normρ (τ • Γ) (v • ρ) = normV τ v × normρ Γ ρ
⟦_⟧VarNorm : ∀ {Γ τ} (x : Var Γ τ) {ρ} →
normρ Γ ρ →
normV τ (⟦ x ⟧Var ρ)
⟦ this ⟧VarNorm {v • ρ} (vv , ρρ) = vv
⟦ that x ⟧VarNorm {v • ρ} (vv , ρρ) = ⟦ x ⟧VarNorm ρρ
-- Prove fundamental property.
normT-fund : ∀ {τ Γ} (t : Term Γ τ) ρ (ρρ : normρ Γ ρ) →
normT τ t ρ
normV-fund-const : ∀ {τ} (c : Const τ) → normV τ (eval-const c)
normV-fund-const (lit n) = tt
normV-fund-sval : ∀ {τ Γ} (sv : SVal Γ τ) ρ (ρρ : normρ Γ ρ) → normV τ (eval sv ρ)
normV-fund-sval (var x) ρ ρρ = ⟦ x ⟧VarNorm ρρ
normV-fund-sval (abs t) ρ ρρ v vv = normT-fund t (v • ρ) (vv , ρρ)
normV-fund-sval (cons sv1 sv2) ρ ρρ = normV-fund-sval sv1 ρ ρρ , normV-fund-sval sv2 ρ ρρ
normV-fund-sval (const c) ρ ρρ = normV-fund-const c
-- Not inlined because it gives the right type ascription to the derivation `val sv`.
normT-fund-sval : ∀ {τ Γ} (sv : SVal Γ τ) ρ (ρρ : normρ Γ ρ) → normT τ (val sv) ρ
normT-fund-sval sv ρ ρρ = eval sv ρ , val sv , normV-fund-sval sv ρ ρρ
normV-fund-primitive : ∀ {σ τ} p →
∀ v → (vv : normV σ v) →
normV τ (eval-primitive p v)
normV-fund-primitive succ (natV n) vv = tt
normV-fund-primitive add (pairV (natV m) (natV n)) vv = tt
open import Data.Nat
normT-fund (val sv) ρ ρρ = normT-fund-sval sv ρ ρρ
normT-fund (primapp p sv) ρ ρρ = eval-primitive p (eval sv ρ) , primapp p sv , normV-fund-primitive p (eval sv ρ) (normV-fund-sval sv ρ ρρ)
normT-fund (app vs vt) ρ ρρ with normT-fund-sval vs ρ ρρ | normT-fund-sval vt ρ ρρ
... | closure t ρ₁ , ↓fv , fvv | av , ↓av , avv with fvv av avv
... | v , ↓v , vv = v , app zero _ ↓fv ↓av ↓v , vv
normT-fund (lett s t) ρ ρρ with normT-fund s ρ ρρ
... | sv , ↓s , svv with normT-fund t (sv • ρ) (svv , ρρ)
... | tv , ↓t , tvv = tv , lett zero zero sv s t ↓s ↓t , tvv
-- Deduce from fundamental property that all terms indeed normalize.
normalize : ∀ {τ} (t : Term ∅ τ) → Σ[ v ∈ Val τ ] ∅ ⊢ t ↓[ no ] v
normalize t with normT-fund t ∅ tt
... | v , ↓ , _ = v , ↓
|
algebraic-stack_agda0000_doc_5290 | module Esterel.Environment where
open import utility
open import Data.Empty
open import Esterel.Variable.Signal as Signal
using (Signal ; _ₛ)
open import Esterel.Variable.Shared as SharedVar
using (SharedVar ; _ₛₕ)
open import Esterel.Variable.Sequential as SeqVar
using (SeqVar ; _ᵥ)
open import Data.Product
import Data.FiniteMap
open import Data.Nat as Nat
using (ℕ)
open import Data.List as List
using (List ; [] ; _∷_)
open import Data.Sum
using (_⊎_ ; inj₁ ; inj₂ ; [_,_])
open import Function
using (_∘_)
open import Relation.Nullary
using (Dec ; yes ; no ; ¬_)
open import Relation.Binary
using (Decidable)
open import Relation.Binary.PropositionalEquality
using (_≡_ ; refl ; cong ; sym ; module ≡-Reasoning ; trans ; subst ; inspect)
open import Data.List.Any
using (Any)
open ≡-Reasoning using (_≡⟨_⟩_ ; _≡⟨⟩_ ; _∎ ; begin_)
module SigMap = Data.FiniteMap Signal.unwrap Signal.wrap Signal.unwrap-injective Signal.bijective
module ShrMap = Data.FiniteMap SharedVar.unwrap SharedVar.wrap SharedVar.unwrap-injective SharedVar.bijective
module VarMap = Data.FiniteMap SeqVar.unwrap SeqVar.wrap SeqVar.unwrap-injective SeqVar.bijective
record Env : Set where
constructor Θ
field
sig : SigMap.Map Signal.Status
shr : ShrMap.Map (SharedVar.Status × ℕ)
var : VarMap.Map ℕ
open Env public
-- A VarList is a three-tuple of lists of unwrapped signals,
-- shared variables and sequential variables.
VarList : Set
VarList = List ℕ × List ℕ × List ℕ
Dom : Env -> VarList
Dom (Θ sig shr var) = (SigMap.keys sig) , (ShrMap.keys shr) , (VarMap.keys var)
[]env = Θ [] [] []
Sig∈ : (S : Signal) →
(e : Env) →
Relation.Nullary.Dec
(Any (SigMap.inj= S)
(SigMap.keys (sig e)))
Sig∈ s e = SigMap.∈Check s (sig e)
Shr∈ : (s : SharedVar) → (e : Env) →
Relation.Nullary.Dec
(Any (ShrMap.inj= s)
(ShrMap.keys (shr e)))
Shr∈ s e = ShrMap.∈Check s (shr e)
Var∈ : (x : SeqVar) → (e : Env) →
Relation.Nullary.Dec
(Any (VarMap.inj= x)
(VarMap.keys (var e)))
Var∈ x e = VarMap.∈Check x (var e)
isSig∈ : (S : Signal) → (e : Env) → Set
isSig∈ S e = (SigMap.∈Dom S (sig e))
isShr∈ : SharedVar → Env → Set
isShr∈ s e = ShrMap.∈Dom s (shr e)
isVar∈ : SeqVar → Env → Set
isVar∈ x e = VarMap.∈Dom x (var e)
SigDomMap : ∀{a}{L : Set a} → (θ : Env) → (f : (S : Signal) → isSig∈ S θ → L) → List L
SigDomMap = SigMap.key-map ∘ sig
ShrDomMap : ∀{a}{L : Set a} → (θ : Env) → (f : (S : SharedVar) → isShr∈ S θ → L) → List L
ShrDomMap = ShrMap.key-map ∘ shr
SigDom : Env → List ℕ
SigDom (Θ sig shr var) = (SigMap.keys sig)
ShrDom : Env → List ℕ
ShrDom (Θ sig shr var) = (ShrMap.keys shr)
VarDom : Env → List ℕ
VarDom (Θ sig shr var) = (VarMap.keys var)
sig-stats : ∀{S} → (θ : Env) → (SigMap.∈Dom S (sig θ)) → Signal.Status
sig-stats{S} θ S∈ = SigMap.lookup{k = S} (sig θ) S∈
shr-stats : ∀{s} → (θ : Env) → (ShrMap.∈Dom s (shr θ)) → SharedVar.Status
shr-stats{s} θ s∈ = proj₁ (ShrMap.lookup{k = s} (shr θ) s∈)
shr-vals : ∀{s} → (θ : Env) → (ShrMap.∈Dom s (shr θ)) → ℕ
shr-vals{s} θ s∈ = proj₂ (ShrMap.lookup{k = s} (shr θ) s∈)
var-vals : ∀{x} → (θ : Env) → (VarMap.∈Dom x (var θ)) → ℕ
var-vals{x} θ x∈ = VarMap.lookup{k = x} (var θ) x∈
set-sig : ∀{S} → (θ : Env) → (SigMap.∈Dom S (sig θ)) → Signal.Status → Env
set-sig{S} (Θ sig shr var) S∈ status =
Θ (SigMap.update sig S status) shr var
set-shr : ∀{s} → (θ : Env) → (ShrMap.∈Dom s (shr θ)) → SharedVar.Status → ℕ → Env
set-shr{s} (Θ sig shr var) s∈ status n =
Θ sig (ShrMap.update shr s (status , n)) var
set-var : ∀{x} → (θ : Env) → (VarMap.∈Dom x (var θ)) → ℕ → Env
set-var{x} (Θ sig shr var) x∈ n =
Θ sig shr (VarMap.update var x n)
_←_ : Env → Env → Env
Θ sig₁ shr₁ seq₁ ← Θ sig₂ shr₂ seq₂ =
Θ (SigMap.union sig₁ sig₂)
(ShrMap.union shr₁ shr₂)
(VarMap.union seq₁ seq₂)
data EnvVar : Set where
vsig : Signal → EnvVar
vshr : SharedVar → EnvVar
vvar : SeqVar → EnvVar
data ∈map : EnvVar → Env → Set where
∈sig : ∀{S θ} → (isSig∈ S θ) → ∈map (vsig S) θ
∈shr : ∀{s θ} → (isShr∈ s θ) → ∈map (vshr s) θ
∈var : ∀{x θ} → (isVar∈ x θ) → ∈map (vvar x) θ
-- thrms
sig-set-mono' : ∀{S S' θ stat} → ∀{S'∈ : (isSig∈ S' θ)} → (isSig∈ S θ) → (isSig∈ S (set-sig{S'} θ S'∈ stat))
sig-set-mono'{S}{S'}{θ}{stat}{S'∈} i = SigMap.insert-mono{_}{k = S}{m = sig θ}{S'}{stat} i
shr-set-mono' : ∀{s s' θ stat n} → ∀{s'∈ : (isShr∈ s' θ)} → (isShr∈ s θ) → (isShr∈ s (set-shr{s'} θ s'∈ stat n))
shr-set-mono'{s}{s'}{θ}{stat}{n}{s'∈} i = ShrMap.insert-mono{_}{k = s}{m = shr θ}{s'}{stat ,′ n} i
seq-set-mono' : ∀{x x' θ n} → ∀{x'∈ : (isVar∈ x' θ)} → (isVar∈ x θ) → (isVar∈ x (set-var{x'} θ x'∈ n))
seq-set-mono'{x}{x'}{θ}{n}{x'∈} i = VarMap.insert-mono{_}{k = x}{m = var θ}{x'}{n} i
sig-set-mono : ∀{V S' θ stat} → ∀{S'∈ : (isSig∈ S' θ)} → ∈map V θ → (∈map V (set-sig{S'} θ S'∈ stat))
sig-set-mono{S' = S'}{θ}{S'∈ = S'∈} (∈sig{S} x) = ∈sig{S} (sig-set-mono'{S = S}{S' = S'}{θ = θ}{S'∈ = S'∈} x)
sig-set-mono (∈shr x) = ∈shr x
sig-set-mono (∈var x₁) = ∈var x₁
shr-set-mono : ∀{V s' θ stat n} → ∀{s'∈ : (isShr∈ s' θ)} → (∈map V θ) → (∈map V (set-shr{s'} θ s'∈ stat n))
shr-set-mono (∈sig x) = ∈sig x
shr-set-mono{s' = s'}{θ}{stat}{n}{s'∈}(∈shr{s} x) = ∈shr{s} (shr-set-mono'{s}{s'}{θ}{stat}{n}{s'∈} x)
shr-set-mono (∈var x₁) = ∈var x₁
seq-set-mono : ∀{V x' θ n} → ∀{x'∈ : (isVar∈ x' θ)} → (∈map V θ) → (∈map V (set-var{x'} θ x'∈ n))
seq-set-mono (∈sig x) = ∈sig x
seq-set-mono (∈shr x) = ∈shr x
seq-set-mono{x' = x'}{θ}{n}{x'∈} (∈var{x} x₁) = ∈var {x} (seq-set-mono'{x}{x'}{θ}{n}{x'∈} x₁)
←-mono : ∀{θ θ' V} → ∈map V θ → ∈map V (θ ← θ')
←-mono{θ}{θ'}{vsig S} (∈sig x) = ∈sig{S}{(θ ← θ')} (SigMap.U-mono{_}{sig θ}{sig θ'}{S} x)
←-mono{θ}{θ'}{vshr s} (∈shr x) = ∈shr{s}{(θ ← θ')} (ShrMap.U-mono{_}{shr θ}{shr θ'}{s} x)
←-mono{θ}{θ'}{vvar x} (∈var x₁) = ∈var{x}{(θ ← θ')} (VarMap.U-mono{_}{var θ}{var θ'}{x} x₁)
←-comm : ∀ θ θ' → distinct (Dom θ) (Dom θ') → (θ ← θ') ≡ (θ' ← θ)
←-comm (Θ Ss ss xs) (Θ Ss' ss' xs') (Ss≠Ss' , ss≠ss' , xs≠xs')
rewrite SigMap.union-comm Ss Ss' Ss≠Ss'
| ShrMap.union-comm ss ss' ss≠ss'
| VarMap.union-comm xs xs' xs≠xs' = refl
←-assoc : ∀ θ θ' θ'' → (θ ← (θ' ← θ'')) ≡ ((θ ← θ') ← θ'')
←-assoc (Θ Ss ss xs) (Θ Ss' ss' xs') (Θ Ss'' ss'' xs'')
rewrite SigMap.union-assoc Ss Ss' Ss''
| ShrMap.union-assoc ss ss' ss''
| VarMap.union-assoc xs xs' xs'' = refl
←-assoc-comm : ∀ θ θ' θ'' → distinct (Dom θ') (Dom θ'') → ((θ ← θ') ← θ'') ≡ ((θ ← θ'') ← θ')
←-assoc-comm θ θ' θ'' Domθ'≠Domθ'' =
(θ ← θ') ← θ''
≡⟨ sym (←-assoc θ θ' θ'') ⟩
θ ← (θ' ← θ'')
≡⟨ cong (θ ←_) (←-comm θ' θ'' Domθ'≠Domθ'') ⟩
θ ← (θ'' ← θ')
≡⟨ ←-assoc θ θ'' θ' ⟩
(θ ← θ'') ← θ' ∎
Dom-←-assoc-comm : ∀ θ θ' θ'' → Dom ((θ ← θ') ← θ'') ≡ Dom ((θ ← θ'') ← θ')
Dom-←-assoc-comm (Θ Ss ss xs) (Θ Ss' ss' xs') (Θ Ss'' ss'' xs'')
rewrite SigMap.keys-assoc-comm Ss Ss' Ss''
| ShrMap.keys-assoc-comm ss ss' ss''
| VarMap.keys-assoc-comm xs xs' xs'' = refl
Dom-←-comm : ∀ θ θ' → Dom (θ ← θ') ≡ Dom (θ' ← θ)
Dom-←-comm θ θ' = Dom-←-assoc-comm []env θ θ'
sig-←-monoʳ : ∀ S θ θ' → isSig∈ S θ → isSig∈ S (θ' ← θ)
sig-←-monoʳ S θ θ' S∈Domθ
rewrite cong proj₁ (Dom-←-comm θ' θ)
= SigMap.U-mono {_} {Env.sig θ} {Env.sig θ'} {S} S∈Domθ
shr-←-monoʳ : ∀ s θ θ' → isShr∈ s θ → isShr∈ s (θ' ← θ)
shr-←-monoʳ s θ θ' s∈Domθ
rewrite cong (proj₁ ∘ proj₂) (Dom-←-comm θ' θ)
= ShrMap.U-mono {_} {Env.shr θ} {Env.shr θ'} {s} s∈Domθ
seq-←-monoʳ : ∀ x θ θ' → isVar∈ x θ → isVar∈ x (θ' ← θ)
seq-←-monoʳ x θ θ' x∈Domθ
rewrite cong (proj₂ ∘ proj₂) (Dom-←-comm θ' θ)
= VarMap.U-mono {_} {var θ} {var θ'} {x} x∈Domθ
sig-←-monoˡ : ∀ S θ θ' → isSig∈ S θ → isSig∈ S (θ ← θ')
sig-←-monoˡ S θ θ' S∈Domθ
= SigMap.U-mono {_} {Env.sig θ} {Env.sig θ'} {S} S∈Domθ
shr-←-monoˡ : ∀ s θ θ' → isShr∈ s θ → isShr∈ s (θ ← θ')
shr-←-monoˡ s θ θ' s∈Domθ
= ShrMap.U-mono {_} {Env.shr θ} {Env.shr θ'} {s} s∈Domθ
seq-←-monoˡ : ∀ x θ θ' → isVar∈ x θ → isVar∈ x (θ ← θ')
seq-←-monoˡ x θ θ' x∈Domθ
= VarMap.U-mono {_} {var θ} {var θ'} {x} x∈Domθ
sig-←⁻ : ∀ {θ₁ θ₂} S → isSig∈ S (θ₁ ← θ₂) → isSig∈ S θ₁ ⊎ isSig∈ S θ₂
sig-←⁻ {θ₁} {θ₂} S = SigMap.U⁻-m {Signal.Status} {sig θ₁} {sig θ₂} {S}
shr-←⁻ : ∀ {θ₁ θ₂} s → isShr∈ s (θ₁ ← θ₂) → isShr∈ s θ₁ ⊎ isShr∈ s θ₂
shr-←⁻ {θ₁} {θ₂} s = ShrMap.U⁻-m {_} {shr θ₁} {shr θ₂} {s}
seq-←⁻ : ∀ {θ₁ θ₂} x → isVar∈ x (θ₁ ← θ₂) → isVar∈ x θ₁ ⊎ isVar∈ x θ₂
seq-←⁻ {θ₁} {θ₂} x = VarMap.U⁻-m {_} {var θ₁} {var θ₂} {x}
sig-↚⁻ : ∀ {θ₁ θ₂} S → ¬ isSig∈ S θ₁ → ¬ isSig∈ S θ₂ → ¬ isSig∈ S (θ₁ ← θ₂)
sig-↚⁻ {θ₁} {θ₂} S S∉Domθ₁ S∉Domθ₂ = [ S∉Domθ₁ , S∉Domθ₂ ] ∘ sig-←⁻ {θ₁} {θ₂} S
sig-stats-∈-irr : ∀{S θ} → (∈1 : (SigMap.∈Dom S (sig θ))) → (∈2 : (SigMap.∈Dom S (sig θ))) → sig-stats{S} θ ∈1 ≡ sig-stats{S} θ ∈2
sig-stats-∈-irr{S} {θ} ∈1 ∈2 = SigMap.lookup-∈-irr{k = S}{m = (sig θ)} ∈1 ∈2
shr-stats-∈-irr : ∀{s θ} → (∈1 : ShrMap.∈Dom s (shr θ)) → (∈2 : ShrMap.∈Dom s (shr θ)) → shr-stats{s} θ ∈1 ≡ shr-stats{s} θ ∈2
shr-stats-∈-irr{s}{θ} ∈1 ∈2 = cong proj₁ (ShrMap.lookup-∈-irr{k = s}{m = (shr θ)} ∈1 ∈2)
shr-vals-∈-irr : ∀{s θ} → (∈1 : ShrMap.∈Dom s (shr θ)) → (∈2 : ShrMap.∈Dom s (shr θ)) → shr-vals{s} θ ∈1 ≡ shr-vals{s} θ ∈2
shr-vals-∈-irr{s}{θ} ∈1 ∈2 = cong proj₂ (ShrMap.lookup-∈-irr{k = s}{m = (shr θ)} ∈1 ∈2)
var-vals-∈-irr : ∀{x θ} → (∈1 : VarMap.∈Dom x (var θ)) → (∈2 : VarMap.∈Dom x (var θ)) → var-vals{x} θ ∈1 ≡ var-vals{x} θ ∈2
var-vals-∈-irr{x} {θ} ∈1 ∈2 = VarMap.lookup-∈-irr{_}{x}{var θ} ∈1 ∈2
sig-←-∉-irr-stats' : ∀ S θ θ' →
(S∈ : isSig∈ S θ) →
(S∉ : ¬ isSig∈ S θ') →
(S∈Dom⟨θ←θ'⟩ : isSig∈ S (θ ← θ')) →
sig-stats {S} θ S∈ ≡ sig-stats {S} (θ ← θ') S∈Dom⟨θ←θ'⟩
sig-←-∉-irr-stats' S θ θ' S∈ S∉ S∈' =
SigMap.U-∉-irr-get-help-m {_} {Env.sig θ} {Env.sig θ'} {S} S∈ S∉ S∈'
sig-←-∉-irr-stats : ∀ S θ θ' →
(S∈ : isSig∈ S θ) →
(S∉ : ¬ isSig∈ S θ') →
∃ λ S∈Dom⟨θ←θ'⟩ →
sig-stats {S} θ S∈ ≡ sig-stats {S} (θ ← θ') S∈Dom⟨θ←θ'⟩
sig-←-∉-irr-stats S θ θ' S∈ S∉ =
SigMap.U-∉-irr-get-m {_} {Env.sig θ} {Env.sig θ'} {S} S∈ S∉
shr-←-∉-irr-stats' : ∀ s θ θ' →
(s∈ : isShr∈ s θ) →
(s∉ : ¬ isShr∈ s θ') →
(s∈Dom⟨θ←θ'⟩ : isShr∈ s (θ ← θ')) →
shr-stats {s} θ s∈ ≡ shr-stats {s} (θ ← θ') s∈Dom⟨θ←θ'⟩
shr-←-∉-irr-stats' s θ θ' s∈ s∉ s∈'
rewrite ShrMap.U-∉-irr-get-help-m {_} {Env.shr θ} {Env.shr θ'} {s} s∈ s∉ s∈'
= refl
shr-←-∉-irr-stats : ∀ s θ θ' →
(s∈ : isShr∈ s θ) →
(s∉ : ¬ isShr∈ s θ') →
∃ λ s∈Dom⟨θ←θ'⟩ →
shr-stats {s} θ s∈ ≡ shr-stats {s} (θ ← θ') s∈Dom⟨θ←θ'⟩
shr-←-∉-irr-stats s θ θ' s∈ s∉
rewrite proj₂ (ShrMap.U-∉-irr-get-m {_} {Env.shr θ} {Env.shr θ'} {s} s∈ s∉)
= (_ , refl)
shr-←-∉-irr-vals' : ∀ s θ θ' →
(s∈ : isShr∈ s θ) →
(s∉ : ¬ isShr∈ s θ') →
(s∈Dom⟨θ←θ'⟩ : isShr∈ s (θ ← θ')) →
shr-vals {s} θ s∈ ≡ shr-vals {s} (θ ← θ') s∈Dom⟨θ←θ'⟩
shr-←-∉-irr-vals' s θ θ' s∈ s∉ s∈'
rewrite ShrMap.U-∉-irr-get-help-m {_} {Env.shr θ} {Env.shr θ'} {s} s∈ s∉ s∈'
= refl
shr-←-∉-irr-vals : ∀ s θ θ' →
(s∈ : isShr∈ s θ) →
(s∉ : ¬ isShr∈ s θ') →
∃ λ s∈Dom⟨θ←θ'⟩ →
shr-vals {s} θ s∈ ≡ shr-vals {s} (θ ← θ') s∈Dom⟨θ←θ'⟩
shr-←-∉-irr-vals s θ θ' s∈ s∉
rewrite proj₂ (ShrMap.U-∉-irr-get-m {_} {Env.shr θ} {Env.shr θ'} {s} s∈ s∉)
= (_ , refl)
var-←-∉-irr-vals' : ∀ x θ θ' →
(x∈ : isVar∈ x θ) →
(x∉ : ¬ isVar∈ x θ') →
(x∈Dom⟨θ←θ'⟩ : isVar∈ x (θ ← θ')) →
var-vals {x} θ x∈ ≡ var-vals {x} (θ ← θ') x∈Dom⟨θ←θ'⟩
var-←-∉-irr-vals' x θ θ' x∈ x∉ x∈' =
VarMap.U-∉-irr-get-help-m {_} {Env.var θ} {Env.var θ'} {x} x∈ x∉ x∈'
var-←-∉-irr-vals : ∀ x θ θ' →
(x∈ : isVar∈ x θ) →
(x∉ : ¬ isVar∈ x θ') →
∃ λ x∈Dom⟨θ←θ'⟩ →
var-vals {x} θ x∈ ≡ var-vals {x} (θ ← θ') x∈Dom⟨θ←θ'⟩
var-←-∉-irr-vals x θ θ' x∈ x∉ =
VarMap.U-∉-irr-get-m {_} {Env.var θ} {Env.var θ'} {x} x∈ x∉
sig-stats-←-right-irr' : ∀ S θ θ' →
(S∈ : isSig∈ S θ') →
(S∈' : isSig∈ S (θ ← θ')) →
sig-stats {S} (θ ← θ') S∈' ≡ sig-stats {S} θ' S∈
sig-stats-←-right-irr' S θ θ' S∈ S∈' =
SigMap.get-U-right-irr-m S (Env.sig θ) (Env.sig θ') S∈' S∈
sig-stats-←-right-irr : ∀ S θ θ' →
(S∈ : isSig∈ S θ') →
∃ λ S∈' →
sig-stats {S} (θ ← θ') S∈' ≡ sig-stats {S} θ' S∈
sig-stats-←-right-irr S θ θ' S∈ =
sig-←-monoʳ S θ' θ S∈ ,
SigMap.get-U-right-irr-m S (Env.sig θ) (Env.sig θ') (sig-←-monoʳ S θ' θ S∈) S∈
shr-stats-←-right-irr' : ∀ s θ θ' →
(s∈ : isShr∈ s θ') →
(s∈' : isShr∈ s (θ ← θ')) →
shr-stats {s} (θ ← θ') s∈' ≡ shr-stats {s} θ' s∈
shr-stats-←-right-irr' s θ θ' s∈ s∈'
rewrite ShrMap.get-U-right-irr-m s (Env.shr θ) (Env.shr θ') s∈' s∈
= refl
shr-stats-←-right-irr : ∀ s θ θ' →
(s∈ : isShr∈ s θ') →
∃ λ s∈' →
shr-stats {s} (θ ← θ') s∈' ≡ shr-stats {s} θ' s∈
shr-stats-←-right-irr s θ θ' s∈ =
shr-←-monoʳ s θ' θ s∈ ,
cong proj₁
(ShrMap.get-U-right-irr-m s (Env.shr θ) (Env.shr θ')
(shr-←-monoʳ s θ' θ s∈) s∈)
shr-vals-←-right-irr' : ∀ s θ θ' →
(s∈ : isShr∈ s θ') →
(s∈' : isShr∈ s (θ ← θ')) →
shr-vals {s} (θ ← θ') s∈' ≡ shr-vals {s} θ' s∈
shr-vals-←-right-irr' s θ θ' s∈ s∈'
rewrite ShrMap.get-U-right-irr-m s (Env.shr θ) (Env.shr θ') s∈' s∈
= refl
shr-vals-←-right-irr : ∀ s θ θ' →
(s∈ : isShr∈ s θ') →
∃ λ s∈' →
shr-vals {s} (θ ← θ') s∈' ≡ shr-vals {s} θ' s∈
shr-vals-←-right-irr s θ θ' s∈ =
shr-←-monoʳ s θ' θ s∈ ,
cong proj₂
(ShrMap.get-U-right-irr-m s (Env.shr θ) (Env.shr θ')
(shr-←-monoʳ s θ' θ s∈) s∈)
var-vals-←-right-irr' : ∀ x θ θ' →
(x∈ : isVar∈ x θ') →
(x∈' : isVar∈ x (θ ← θ')) →
var-vals {x} (θ ← θ') x∈' ≡ var-vals {x} θ' x∈
var-vals-←-right-irr' x θ θ' x∈ x∈' =
VarMap.get-U-right-irr-m x (Env.var θ) (Env.var θ') x∈' x∈
var-vals-←-right-irr : ∀ x θ θ' →
(x∈ : isVar∈ x θ') →
∃ λ x∈' →
var-vals {x} (θ ← θ') x∈' ≡ var-vals {x} θ' x∈
var-vals-←-right-irr x θ θ' x∈ =
seq-←-monoʳ x θ' θ x∈ ,
VarMap.get-U-right-irr-m x (Env.var θ) (Env.var θ') (seq-←-monoʳ x θ' θ x∈) x∈
sig-stats-←-irr' : ∀ S θ θ' θ'' →
(S∈ : isSig∈ S θ'') →
(S∈' : isSig∈ S (θ ← θ'')) →
(S∈'' : isSig∈ S (θ' ← θ'')) →
sig-stats {S} (θ ← θ'') S∈' ≡ sig-stats {S} (θ' ← θ'') S∈''
sig-stats-←-irr' S θ θ' θ'' S∈ S∈' S∈'' =
SigMap.∈-get-U-irr-m S (sig θ) (sig θ') (sig θ'') S∈' S∈'' S∈
sig-stats-←-irr : ∀ S θ θ' θ'' →
(S∈ : isSig∈ S θ'') →
∃ λ S∈' →
∃ λ S∈'' →
sig-stats {S} (θ ← θ'') S∈' ≡ sig-stats {S} (θ' ← θ'') S∈''
sig-stats-←-irr S θ θ' θ'' S∈ =
sig-←-monoʳ S θ'' θ S∈ ,
sig-←-monoʳ S θ'' θ' S∈ ,
SigMap.∈-get-U-irr-m S (sig θ) (sig θ') (sig θ'')
(sig-←-monoʳ S θ'' θ S∈) (sig-←-monoʳ S θ'' θ' S∈) S∈
shr-stats-←-irr' : ∀ s θ θ' θ'' →
(s∈ : isShr∈ s θ'') →
(s∈' : isShr∈ s (θ ← θ'')) →
(s∈'' : isShr∈ s (θ' ← θ'')) →
shr-stats {s} (θ ← θ'') s∈' ≡ shr-stats {s} (θ' ← θ'') s∈''
shr-stats-←-irr' s θ θ' θ'' s∈ s∈' s∈''
rewrite ShrMap.∈-get-U-irr-m s (shr θ) (shr θ') (shr θ'') s∈' s∈'' s∈
= refl
shr-stats-←-irr : ∀ s θ θ' θ'' →
(s∈ : isShr∈ s θ'') →
∃ λ s∈' →
∃ λ s∈'' →
shr-stats {s} (θ ← θ'') s∈' ≡ shr-stats {s} (θ' ← θ'') s∈''
shr-stats-←-irr s θ θ' θ'' s∈ =
shr-←-monoʳ s θ'' θ s∈ ,
shr-←-monoʳ s θ'' θ' s∈ ,
cong proj₁
(ShrMap.∈-get-U-irr-m s (shr θ) (shr θ') (shr θ'')
(shr-←-monoʳ s θ'' θ s∈) (shr-←-monoʳ s θ'' θ' s∈) s∈)
shr-vals-←-irr' : ∀ s θ θ' θ'' →
(s∈ : isShr∈ s θ'') →
(s∈' : isShr∈ s (θ ← θ'')) →
(s∈'' : isShr∈ s (θ' ← θ'')) →
shr-vals {s} (θ ← θ'') s∈' ≡ shr-vals {s} (θ' ← θ'') s∈''
shr-vals-←-irr' s θ θ' θ'' s∈ s∈' s∈''
rewrite ShrMap.∈-get-U-irr-m s (shr θ) (shr θ') (shr θ'') s∈' s∈'' s∈
= refl
shr-vals-←-irr : ∀ s θ θ' θ'' →
(s∈ : isShr∈ s θ'') →
∃ λ s∈' →
∃ λ s∈'' →
shr-vals {s} (θ ← θ'') s∈' ≡ shr-vals {s} (θ' ← θ'') s∈''
shr-vals-←-irr s θ θ' θ'' s∈ =
shr-←-monoʳ s θ'' θ s∈ ,
shr-←-monoʳ s θ'' θ' s∈ ,
cong proj₂
(ShrMap.∈-get-U-irr-m s (shr θ) (shr θ') (shr θ'')
(shr-←-monoʳ s θ'' θ s∈) (shr-←-monoʳ s θ'' θ' s∈) s∈)
var-vals-←-irr' : ∀ x θ θ' θ'' →
(x∈ : isVar∈ x θ'') →
(x∈' : isVar∈ x (θ ← θ'')) →
(x∈'' : isVar∈ x (θ' ← θ'')) →
var-vals {x} (θ ← θ'') x∈' ≡ var-vals {x} (θ' ← θ'') x∈''
var-vals-←-irr' x θ θ' θ'' x∈ x∈' x∈'' =
VarMap.∈-get-U-irr-m x (var θ) (var θ') (var θ'') x∈' x∈'' x∈
var-vals-←-irr : ∀ x θ θ' θ'' →
(x∈ : isVar∈ x θ'') →
∃ λ x∈' →
∃ λ x∈'' →
var-vals {x} (θ ← θ'') x∈' ≡ var-vals {x} (θ' ← θ'') x∈''
var-vals-←-irr x θ θ' θ'' x∈ =
seq-←-monoʳ x θ'' θ x∈ ,
seq-←-monoʳ x θ'' θ' x∈ ,
VarMap.∈-get-U-irr-m x (var θ) (var θ') (var θ'')
(seq-←-monoʳ x θ'' θ x∈) (seq-←-monoʳ x θ'' θ' x∈) x∈
sig-stats-←-both-irr' : ∀ S θ θ' θ'' S∈ S∈' S∈Dom⟨θ←θ''⟩ S∈Dom⟨θ'←θ''⟩ →
sig-stats {S} θ S∈ ≡ sig-stats {S} θ' S∈' →
sig-stats {S} (θ ← θ'') S∈Dom⟨θ←θ''⟩ ≡ sig-stats {S} (θ' ← θ'') S∈Dom⟨θ'←θ''⟩
sig-stats-←-both-irr' S θ θ' θ'' S∈ S∈' S∈Dom⟨θ←θ''⟩ S∈Dom⟨θ'←θ''⟩ θS≡θ'S =
SigMap.get-U-both-irr-m S (Env.sig θ) (Env.sig θ') (Env.sig θ'')
S∈ S∈' S∈Dom⟨θ←θ''⟩ S∈Dom⟨θ'←θ''⟩ θS≡θ'S
sig-stats-←-both-irr : ∀ S θ θ' θ'' S∈ S∈' →
sig-stats {S} θ S∈ ≡ sig-stats {S} θ' S∈' →
∃ λ S∈Dom⟨θ←θ''⟩ → ∃ λ S∈Dom⟨θ'←θ''⟩ →
sig-stats {S} (θ ← θ'') S∈Dom⟨θ←θ''⟩ ≡ sig-stats {S} (θ' ← θ'') S∈Dom⟨θ'←θ''⟩
sig-stats-←-both-irr S θ θ' θ'' S∈ S∈' θS≡θ'S =
S∈Dom⟨θ←θ''⟩ ,
S∈Dom⟨θ'←θ''⟩ ,
SigMap.get-U-both-irr-m S (Env.sig θ) (Env.sig θ') (Env.sig θ'')
S∈ S∈' S∈Dom⟨θ←θ''⟩ S∈Dom⟨θ'←θ''⟩ θS≡θ'S
where S∈Dom⟨θ←θ''⟩ = sig-←-monoˡ S θ θ'' S∈
S∈Dom⟨θ'←θ''⟩ = sig-←-monoˡ S θ' θ'' S∈'
shr-stats-←-both-irr' : ∀ s θ θ' θ'' s∈ s∈' s∈Dom⟨θ←θ''⟩ s∈Dom⟨θ'←θ''⟩ →
shr-stats {s} θ s∈ ≡ shr-stats {s} θ' s∈' →
shr-vals {s} θ s∈ ≡ shr-vals {s} θ' s∈' →
shr-stats {s} (θ ← θ'') s∈Dom⟨θ←θ''⟩ ≡ shr-stats {s} (θ' ← θ'') s∈Dom⟨θ'←θ''⟩
shr-stats-←-both-irr' s θ θ' θ'' s∈ s∈' s∈Dom⟨θ←θ''⟩ s∈Dom⟨θ'←θ''⟩ proj₁θs≡proj₁θ's proj₂θs≡proj₂θ's =
cong proj₁
(ShrMap.get-U-both-irr-m s (Env.shr θ) (Env.shr θ') (Env.shr θ'')
s∈ s∈' s∈Dom⟨θ←θ''⟩ s∈Dom⟨θ'←θ''⟩ (prod-ind proj₁θs≡proj₁θ's proj₂θs≡proj₂θ's))
where prod-ind : {A B : Set} {x,y x',y' : A × B} →
proj₁ x,y ≡ proj₁ x',y' → proj₂ x,y ≡ proj₂ x',y' → x,y ≡ x',y'
prod-ind {_} {_} {x , y} {x' , y'} refl refl = refl
shr-stats-←-both-irr : ∀ s θ θ' θ'' s∈ s∈' →
shr-stats {s} θ s∈ ≡ shr-stats {s} θ' s∈' →
shr-vals {s} θ s∈ ≡ shr-vals {s} θ' s∈' →
∃ λ s∈Dom⟨θ←θ''⟩ → ∃ λ s∈Dom⟨θ'←θ''⟩ →
shr-stats {s} (θ ← θ'') s∈Dom⟨θ←θ''⟩ ≡ shr-stats {s} (θ' ← θ'') s∈Dom⟨θ'←θ''⟩
shr-stats-←-both-irr s θ θ' θ'' s∈ s∈' proj₁θs≡proj₁θ's proj₂θs≡proj₂θ's =
s∈Dom⟨θ←θ''⟩ ,
s∈Dom⟨θ'←θ''⟩ ,
cong proj₁
(ShrMap.get-U-both-irr-m s (Env.shr θ) (Env.shr θ') (Env.shr θ'')
s∈ s∈' s∈Dom⟨θ←θ''⟩ s∈Dom⟨θ'←θ''⟩ (prod-ind proj₁θs≡proj₁θ's proj₂θs≡proj₂θ's))
where s∈Dom⟨θ←θ''⟩ = shr-←-monoˡ s θ θ'' s∈
s∈Dom⟨θ'←θ''⟩ = shr-←-monoˡ s θ' θ'' s∈'
prod-ind : {A B : Set} {x,y x',y' : A × B} →
proj₁ x,y ≡ proj₁ x',y' → proj₂ x,y ≡ proj₂ x',y' → x,y ≡ x',y'
prod-ind {_} {_} {x , y} {x' , y'} refl refl = refl
shr-vals-←-both-irr' : ∀ s θ θ' θ'' s∈ s∈' s∈Dom⟨θ←θ''⟩ s∈Dom⟨θ'←θ''⟩ →
shr-stats {s} θ s∈ ≡ shr-stats {s} θ' s∈' →
shr-vals {s} θ s∈ ≡ shr-vals {s} θ' s∈' →
shr-vals {s} (θ ← θ'') s∈Dom⟨θ←θ''⟩ ≡ shr-vals {s} (θ' ← θ'') s∈Dom⟨θ'←θ''⟩
shr-vals-←-both-irr' s θ θ' θ'' s∈ s∈' s∈Dom⟨θ←θ''⟩ s∈Dom⟨θ'←θ''⟩ proj₁θs≡proj₁θ's proj₂θs≡proj₂θ's =
cong proj₂
(ShrMap.get-U-both-irr-m s (Env.shr θ) (Env.shr θ') (Env.shr θ'')
s∈ s∈' s∈Dom⟨θ←θ''⟩ s∈Dom⟨θ'←θ''⟩ (prod-ind proj₁θs≡proj₁θ's proj₂θs≡proj₂θ's))
where prod-ind : {A B : Set} {x,y x',y' : A × B} →
proj₁ x,y ≡ proj₁ x',y' → proj₂ x,y ≡ proj₂ x',y' → x,y ≡ x',y'
prod-ind {_} {_} {x , y} {x' , y'} refl refl = refl
shr-vals-←-both-irr : ∀ s θ θ' θ'' s∈ s∈' →
shr-stats {s} θ s∈ ≡ shr-stats {s} θ' s∈' →
shr-vals {s} θ s∈ ≡ shr-vals {s} θ' s∈' →
∃ λ s∈Dom⟨θ←θ''⟩ → ∃ λ s∈Dom⟨θ'←θ''⟩ →
shr-vals {s} (θ ← θ'') s∈Dom⟨θ←θ''⟩ ≡ shr-vals {s} (θ' ← θ'') s∈Dom⟨θ'←θ''⟩
shr-vals-←-both-irr s θ θ' θ'' s∈ s∈' proj₁θs≡proj₁θ's proj₂θs≡proj₂θ's =
s∈Dom⟨θ←θ''⟩ ,
s∈Dom⟨θ'←θ''⟩ ,
cong proj₂
(ShrMap.get-U-both-irr-m s (Env.shr θ) (Env.shr θ') (Env.shr θ'')
s∈ s∈' s∈Dom⟨θ←θ''⟩ s∈Dom⟨θ'←θ''⟩ (prod-ind proj₁θs≡proj₁θ's proj₂θs≡proj₂θ's))
where s∈Dom⟨θ←θ''⟩ = shr-←-monoˡ s θ θ'' s∈
s∈Dom⟨θ'←θ''⟩ = shr-←-monoˡ s θ' θ'' s∈'
prod-ind : {A B : Set} {x,y x',y' : A × B} →
proj₁ x,y ≡ proj₁ x',y' → proj₂ x,y ≡ proj₂ x',y' → x,y ≡ x',y'
prod-ind {_} {_} {x , y} {x' , y'} refl refl = refl
var-vals-←-both-irr' : ∀ x θ θ' θ'' x∈ x∈' x∈Dom⟨θ←θ''⟩ x∈Dom⟨θ'←θ''⟩ →
var-vals {x} θ x∈ ≡ var-vals {x} θ' x∈' →
var-vals {x} (θ ← θ'') x∈Dom⟨θ←θ''⟩ ≡ var-vals {x} (θ' ← θ'') x∈Dom⟨θ'←θ''⟩
var-vals-←-both-irr' x θ θ' θ'' x∈ x∈' x∈Dom⟨θ←θ''⟩ x∈Dom⟨θ'←θ''⟩ θx≡θ'x =
VarMap.get-U-both-irr-m x (Env.var θ) (Env.var θ') (Env.var θ'')
x∈ x∈' x∈Dom⟨θ←θ''⟩ x∈Dom⟨θ'←θ''⟩ θx≡θ'x
var-vals-←-both-irr : ∀ x θ θ' θ'' x∈ x∈' →
var-vals {x} θ x∈ ≡ var-vals {x} θ' x∈' →
∃ λ x∈Dom⟨θ←θ''⟩ → ∃ λ x∈Dom⟨θ'←θ''⟩ →
var-vals {x} (θ ← θ'') x∈Dom⟨θ←θ''⟩ ≡ var-vals {x} (θ' ← θ'') x∈Dom⟨θ'←θ''⟩
var-vals-←-both-irr x θ θ' θ'' x∈ x∈' θx≡θ'x =
S∈Dom⟨θ←θ''⟩ ,
S∈Dom⟨θ'←θ''⟩ ,
VarMap.get-U-both-irr-m x (Env.var θ) (Env.var θ') (Env.var θ'')
x∈ x∈' S∈Dom⟨θ←θ''⟩ S∈Dom⟨θ'←θ''⟩ θx≡θ'x
where S∈Dom⟨θ←θ''⟩ = seq-←-monoˡ x θ θ'' x∈
S∈Dom⟨θ'←θ''⟩ = seq-←-monoˡ x θ' θ'' x∈'
sig-putputget : ∀{S S' θ stat1 stat2}
→ ¬ S ≡ S'
→ (∈1 : SigMap.∈Dom S (sig θ))
→ (∈S' : SigMap.∈Dom S' (sig θ))
→ (∈2 : SigMap.∈Dom S (sig (set-sig{S'} θ ∈S' stat2)))
→ sig-stats{S} θ ∈1 ≡ stat1
→ sig-stats{S} (set-sig{S'} θ ∈S' stat2) ∈2 ≡ stat1
sig-putputget {θ = θ} neq ∈1 ∈S' ∈2 eq = SigMap.putputget {m = (sig θ)} neq ∈1 ∈2 eq
sig-putputget/m : ∀{S S' θ stat2}
→ ¬ S ≡ S'
→ (∈1 : SigMap.∈Dom S (sig θ))
→ (∈S' : SigMap.∈Dom S' (sig θ))
→ (∈2 : SigMap.∈Dom S (sig (set-sig{S'} θ ∈S' stat2)))
→ sig-stats{S} (set-sig{S'} θ ∈S' stat2) ∈2 ≡ sig-stats{S} θ ∈1
sig-putputget/m {S}{S'}{θ} neq ∈1 ∈S' ∈2 with sig-stats{S} θ ∈1 | inspect (sig-stats{S} θ) ∈1
sig-putputget/m {S} {S'} {θ} neq ∈1 ∈S' ∈2 | k | Relation.Binary.PropositionalEquality.[ eq ] = SigMap.putputget {m = (sig θ)} neq ∈1 ∈2 eq
shr-putputget : ∀{s s' θ v1l v1r v2l v2r}
→ ¬ s ≡ s'
→ (∈1 : ShrMap.∈Dom s (shr θ))
→ (∈s' : ShrMap.∈Dom s' (shr θ))
→ (∈2 : ShrMap.∈Dom s (shr (set-shr{s'} θ ∈s' v2l v2r)))
→ shr-stats{s} θ ∈1 ≡ v1l
→ shr-vals{s} θ ∈1 ≡ v1r
→ (shr-stats{s} (set-shr{s'} θ ∈s' v2l v2r) ∈2) ≡ v1l × (shr-vals{s} (set-shr{s'} θ ∈s' v2l v2r) ∈2) ≡ v1r
shr-putputget {θ = θ}{v1l}{v1r}{v2l}{v2r} neq ∈1 ∈S' ∈2 refl refl with ShrMap.putputget {m = (shr θ)}{v = (v1l ,′ v1r)}{(v2l ,′ v2r)} neq ∈1 ∈2 refl
... | res = (cong proj₁ res) ,′ (cong proj₂ res)
seq-putputget : ∀{x x' θ v1 v2}
→ ¬ x ≡ x'
→ (∈1 : VarMap.∈Dom x (var θ))
→ (∈x' : VarMap.∈Dom x' (var θ))
→ (∈2 : VarMap.∈Dom x (var (set-var{x'} θ ∈x' v2)))
→ var-vals{x} θ ∈1 ≡ v1
→ var-vals{x} (set-var{x'} θ ∈x' v2) ∈2 ≡ v1
seq-putputget {θ = θ} neq ∈1 ∈x' ∈2 eq = VarMap.putputget {m = (var θ)} neq ∈1 ∈2 eq
sig-getput : ∀ {θ} S →
(S∈ : isSig∈ S θ) →
θ ≡ set-sig {S} θ S∈ (sig-stats {S} θ S∈)
sig-getput {θ} S S∈
rewrite sym (SigMap.getput-m S (Env.sig θ) S∈)
= refl
shr-getput : ∀ {θ} s →
(s∈ : isShr∈ s θ) →
θ ≡
set-shr {s} θ s∈
(shr-stats {s} θ s∈)
(shr-vals {s} θ s∈)
shr-getput {θ} s s∈
rewrite sym (ShrMap.getput-m s (Env.shr θ) s∈)
= refl
var-getput : ∀ {θ} x →
(x∈ : isVar∈ x θ) →
θ ≡ set-var {x} θ x∈ (var-vals {x} θ x∈)
var-getput {θ} x x∈
rewrite sym (VarMap.getput-m x (Env.var θ) x∈)
= refl
sig-putget : ∀{S θ stat}
→ (∈1 : SigMap.∈Dom S (sig θ))
→ (∈2 : SigMap.∈Dom S (sig (set-sig{S} θ ∈1 stat)))
→ (sig-stats{S} (set-sig{S} θ ∈1 stat) ∈2) ≡ stat
sig-putget {S}{θ}{stat} ∈1 ∈2 = SigMap.putget-m{_}{(sig θ)}{S}{stat} ∈2
shr-putget : ∀{s θ stat n}
→ (∈1 : ShrMap.∈Dom s (shr θ))
→ (∈2 : ShrMap.∈Dom s (shr (set-shr{s} θ ∈1 stat n)))
→ (shr-stats{s} (set-shr{s} θ ∈1 stat n) ∈2) ≡ stat × (shr-vals{s} (set-shr{s} θ ∈1 stat n) ∈2) ≡ n
shr-putget {s}{θ}{stat}{n} ∈1 ∈2 with ShrMap.putget-m{_}{(shr θ)}{s}{stat ,′ n} ∈2
... | eq rewrite eq = refl , refl
shr-putput-overwrite : ∀ s θ stat1 n1 stat2 n2
→ (∈1 : (isShr∈ s θ))
→ (∈2 : isShr∈ s (set-shr{s} θ ∈1 stat1 n1))
→ (set-shr{s} (set-shr{s} θ ∈1 stat1 n1) ∈2 stat2 n2)
≡ (set-shr{s} θ ∈1 stat2 n2)
shr-putput-overwrite s θ stat1 n1 stat2 n2 _ _ rewrite
ShrMap.putput-overwrite (shr θ) s (stat1 ,′ n1) (stat2 ,′ n2) = refl
sig-set-←-← : ∀ S v θ θ' →
(S∈Domθ : isSig∈ S θ) →
(S∈Domθ' : isSig∈ S θ') →
θ ← θ' ≡
(set-sig {S} θ S∈Domθ v) ← θ'
sig-set-←-← S v θ θ' S∈Domθ S∈Domθ'
rewrite SigMap.update-union-union S v (Env.sig θ) (Env.sig θ') S∈Domθ S∈Domθ'
= refl
shr-set-←-← : ∀ s v n θ θ' →
(s∈Domθ : isShr∈ s θ) →
(s∈Domθ' : isShr∈ s θ') →
θ ← θ' ≡
(set-shr {s} θ s∈Domθ v n) ← θ'
shr-set-←-← s v n θ θ' s∈Domθ s∈Domθ'
rewrite ShrMap.update-union-union s (v , n) (Env.shr θ) (Env.shr θ') s∈Domθ s∈Domθ'
= refl
var-set-←-← : ∀ x v θ θ' →
(x∈Domθ : isVar∈ x θ) →
(x∈Domθ' : isVar∈ x θ') →
θ ← θ' ≡
(set-var {x} θ x∈Domθ v) ← θ'
var-set-←-← x v θ θ' x∈Domθ x∈Domθ'
rewrite VarMap.update-union-union x v (Env.var θ) (Env.var θ') x∈Domθ x∈Domθ'
= refl
sig∈-eq : ∀{S θ} → (∈1 : SigMap.∈Dom S (sig θ)) → (∈2 : SigMap.∈Dom S (sig θ)) → ∈1 ≡ ∈2
sig∈-eq {S}{θ} ∈1 ∈2 = SigMap.ineq-m{_}{S}{sig θ} ∈1 ∈2
shr∈-eq : ∀{s θ} → (∈1 : ShrMap.∈Dom s (shr θ)) → (∈2 : ShrMap.∈Dom s (shr θ)) → ∈1 ≡ ∈2
shr∈-eq {s}{θ} ∈1 ∈2 = ShrMap.ineq-m{_}{s}{shr θ} ∈1 ∈2
seq∈-eq : ∀{x θ} → (∈1 : VarMap.∈Dom x (var θ)) → (∈2 : VarMap.∈Dom x (var θ)) → ∈1 ≡ ∈2
seq∈-eq {x}{θ} ∈1 ∈2 = VarMap.ineq-m{_}{x}{var θ} ∈1 ∈2
sig∈-eq' : ∀{S θ} → (∈1 : SigMap.∈Dom{Signal.Status} S θ) → (∈2 : SigMap.∈Dom S θ) → ∈1 ≡ ∈2
sig∈-eq' {S}{θ} ∈1 ∈2 = SigMap.ineq-m{_}{S}{θ} ∈1 ∈2
shr∈-eq' : ∀{s θ} → (∈1 : ShrMap.∈Dom{(SharedVar.Status × ℕ)} s θ) → (∈2 : ShrMap.∈Dom s θ) → ∈1 ≡ ∈2
shr∈-eq' {s}{θ} ∈1 ∈2 = ShrMap.ineq-m{_}{s}{θ} ∈1 ∈2
seq∈-eq' : ∀{x : SeqVar} {θ : VarMap.Map ℕ} → (∈1 : VarMap.∈Dom{ℕ} x θ) → (∈2 : VarMap.∈Dom x θ) → ∈1 ≡ ∈2
seq∈-eq' {x}{θ} ∈1 ∈2 = VarMap.ineq-m{_}{x}{θ} ∈1 ∈2
sig-set-comm : ∀{θ S1 S2 stat1 stat2} → (S1∈ : isSig∈ S1 θ) → (S2∈ : isSig∈ S2 θ)
→ ¬ S1 ≡ S2 → ∃ λ S1∈' → ∃ λ S2∈'
→ (set-sig{S2} (set-sig{S1} θ S1∈ stat1) S2∈' stat2) ≡ (set-sig{S1} (set-sig{S2} θ S2∈ stat2) S1∈' stat1)
sig-set-comm{θ}{S1}{S2}{stat1}{stat2} S1∈ S2∈ ¬S1≡S2
rewrite SigMap.put-comm{_}{sig θ}{S1}{S2}{stat1}{stat2} ¬S1≡S2 = sig-set-mono'{S1}{S2}{θ}{stat2}{S2∈} S1∈ , sig-set-mono'{S2}{S1}{θ}{S'∈ = S1∈} S2∈ , refl
shr-set-comm : ∀ θ s1 s2 stat1 n1 stat2 n2 → (s1∈ : isShr∈ s1 θ) → (s2∈ : isShr∈ s2 θ)
→ ¬ s1 ≡ s2 → ∃ λ s1∈' → ∃ λ s2∈'
→ (set-shr{s2} (set-shr{s1} θ s1∈ stat1 n1) s2∈' stat2 n2) ≡ (set-shr{s1} (set-shr{s2} θ s2∈ stat2 n2) s1∈' stat1 n1)
shr-set-comm θ s1 s2 stat1 n1 stat2 n2 s1∈ s2∈ ¬s1≡s2
rewrite ShrMap.put-comm{_}{shr θ}{s1}{s2}{stat1 , n1}{stat2 , n2} ¬s1≡s2 = shr-set-mono'{s1}{s2}{θ}{_}{_}{s2∈} s1∈ , shr-set-mono'{s2}{s1}{θ}{s'∈ = s1∈} s2∈ , refl
seq-set-comm : ∀ θ x1 x2 n1 n2 → (x1∈ : isVar∈ x1 θ) → (x2∈ : isVar∈ x2 θ)
→ ¬ x1 ≡ x2 → ∃ λ x1∈' → ∃ λ x2∈'
→ (set-var{x2} (set-var{x1} θ x1∈ n1) x2∈' n2) ≡ (set-var{x1} (set-var{x2} θ x2∈ n2) x1∈' n1)
seq-set-comm θ x1 x2 n1 n2 x1∈ x2∈ ¬x1≡x2
rewrite VarMap.put-comm{_}{var θ}{x1}{x2}{n1}{n2} ¬x1≡x2 = seq-set-mono'{x1}{x2}{θ}{n2}{x2∈} x1∈ , seq-set-mono'{x2}{x1}{θ}{x'∈ = x1∈} x2∈ , refl
sig-←-irr-get : ∀ {θ₁ θ₂ S} → (S∈Domθ₁ : isSig∈ S θ₁) → ¬ (isSig∈ S θ₂) → ∃ λ S∈Dom⟨θ₁←θ₂⟩ → sig-stats {S} θ₁ S∈Domθ₁ ≡ sig-stats {S} (θ₁ ← θ₂) S∈Dom⟨θ₁←θ₂⟩
sig-←-irr-get {θ₁@(Θ Ss _ _)} {θ₂@(Θ Ss' _ _)} {S} S∈Domθ₁ S∉Domθ₂ with SigMap.U-∉-irr-get-m {_} {Ss} {Ss'} {S} S∈Domθ₁ S∉Domθ₂
... | a , b rewrite b = a , refl
shr-←-irr-get : ∀ {θ₁ θ₂ s} → (s∈Domθ₁ : isShr∈ s θ₁) → ¬ (isShr∈ s θ₂) → ∃ λ s∈Dom⟨θ₁←θ₂⟩ → shr-stats {s} θ₁ s∈Domθ₁ ≡ shr-stats {s} (θ₁ ← θ₂) s∈Dom⟨θ₁←θ₂⟩
shr-←-irr-get {θ₁@(Θ _ ss _)} {θ₂@(Θ _ ss' _)} {s} s∈Domθ₁ s∉Domθ₂ with ShrMap.U-∉-irr-get-m {_} {ss} {ss'} {s} s∈Domθ₁ s∉Domθ₂
... | a , b rewrite b = a , refl
seq-←-irr-get : ∀ {θ₁ θ₂ x} → (x∈Domθ₁ : isVar∈ x θ₁) → ¬ (isVar∈ x θ₂) → ∃ λ x∈Dom⟨θ₁←θ₂⟩ → var-vals {x} θ₁ x∈Domθ₁ ≡ var-vals {x} (θ₁ ← θ₂) x∈Dom⟨θ₁←θ₂⟩
seq-←-irr-get {θ₁@(Θ _ _ xs)} {θ₂@(Θ _ _ xs')} {x} x∈Domθ₁ x∉Domθ₂ with VarMap.U-∉-irr-get-m {_} {xs} {xs'} {x} x∈Domθ₁ x∉Domθ₂
... | a , b rewrite b = a , refl
sig-←-irr-get' : ∀ {θ₁ θ₂ S} → (S∈Domθ₁ : isSig∈ S θ₁) → ¬ (isSig∈ S θ₂) → (S∈Dom⟨θ₁←θ₂⟩ : isSig∈ S (θ₁ ← θ₂)) → sig-stats {S} θ₁ S∈Domθ₁ ≡ sig-stats {S} (θ₁ ← θ₂) S∈Dom⟨θ₁←θ₂⟩
sig-←-irr-get' {θ₁@(Θ Ss _ _)} {θ₂@(Θ Ss' _ _)} {S} S∈Domθ₁ S∉Domθ₂ S∈Dom⟨θ₁←θ₂⟩ with SigMap.U-∉-irr-get-m {_} {Ss} {Ss'} {S} S∈Domθ₁ S∉Domθ₂
... | a , b rewrite b | sig∈-eq{S}{θ₁ ← θ₂} a S∈Dom⟨θ₁←θ₂⟩ = refl
shr-←-irr-get' : ∀ {θ₁ θ₂ s} → (s∈Domθ₁ : isShr∈ s θ₁) → ¬ (isShr∈ s θ₂) → (s∈Dom⟨θ₁←θ₂⟩ : isShr∈ s (θ₁ ← θ₂)) → shr-stats {s} θ₁ s∈Domθ₁ ≡ shr-stats {s} (θ₁ ← θ₂) s∈Dom⟨θ₁←θ₂⟩
shr-←-irr-get' {θ₁@(Θ _ ss _)} {θ₂@(Θ _ ss' _)} {s} s∈Domθ₁ s∉Domθ₂ s∈Dom⟨θ₁←θ₂⟩ with ShrMap.U-∉-irr-get-m {_} {ss} {ss'} {s} s∈Domθ₁ s∉Domθ₂
... | a , b rewrite (cong proj₁ b) | shr∈-eq{s}{θ₁ ← θ₂} a s∈Dom⟨θ₁←θ₂⟩ = refl
shr-←-irr-get/vals' : ∀ {θ₁ θ₂ s} → (s∈Domθ₁ : isShr∈ s θ₁) → ¬ (isShr∈ s θ₂) → (s∈Dom⟨θ₁←θ₂⟩ : isShr∈ s (θ₁ ← θ₂)) → shr-vals {s} θ₁ s∈Domθ₁ ≡ shr-vals {s} (θ₁ ← θ₂) s∈Dom⟨θ₁←θ₂⟩
shr-←-irr-get/vals' {θ₁@(Θ _ ss _)} {θ₂@(Θ _ ss' _)} {s} s∈Domθ₁ s∉Domθ₂ s∈Dom⟨θ₁←θ₂⟩ with ShrMap.U-∉-irr-get-m {_} {ss} {ss'} {s} s∈Domθ₁ s∉Domθ₂
... | a , b rewrite (cong proj₂ b) | shr∈-eq{s}{θ₁ ← θ₂} a s∈Dom⟨θ₁←θ₂⟩ = refl
seq-←-irr-get' : ∀ {θ₁ θ₂ x} → (x∈Domθ₁ : isVar∈ x θ₁) → ¬ (isVar∈ x θ₂) → (x∈Dom⟨θ₁←θ₂⟩ : isVar∈ x (θ₁ ← θ₂)) → var-vals {x} θ₁ x∈Domθ₁ ≡ var-vals {x} (θ₁ ← θ₂) x∈Dom⟨θ₁←θ₂⟩
seq-←-irr-get' {θ₁@(Θ _ _ xs)} {θ₂@(Θ _ _ xs')} {x} x∈Domθ₁ x∉Domθ₂ x∈Dom⟨θ₁←θ₂⟩ with VarMap.U-∉-irr-get-m {_} {xs} {xs'} {x} x∈Domθ₁ x∉Domθ₂
... | a , b rewrite b | seq∈-eq{x}{θ₁ ← θ₂} a x∈Dom⟨θ₁←θ₂⟩ = refl
sig-set-←-comm' : ∀ S v θ θ' →
(S∈ : isSig∈ S θ) →
¬ (isSig∈ S θ') →
(S∈' : isSig∈ S (θ ← θ')) →
(set-sig {S} θ S∈ v) ← θ' ≡
set-sig {S} (θ ← θ') S∈' v
sig-set-←-comm' S v θ θ' S∈ S∉Domθ' S∈'
rewrite SigMap.put-union-comm {_} S v (Env.sig θ) (Env.sig θ') S∉Domθ'
= refl
sig-set-←-comm : ∀ S v θ θ' →
(S∈ : isSig∈ S θ) →
¬ (isSig∈ S θ') →
∃ λ S∈Dom⟨θ←θ'⟩ →
(set-sig {S} θ S∈ v) ← θ' ≡
set-sig {S} (θ ← θ') S∈Dom⟨θ←θ'⟩ v
sig-set-←-comm S v θ θ' S∈ S∉Domθ'
rewrite SigMap.put-union-comm {_} S v (Env.sig θ) (Env.sig θ') S∉Domθ'
= SigMap.U-mono {_} {Env.sig θ} {Env.sig θ'} {S} S∈ , refl
shr-set-←-comm' : ∀ s v n θ θ' →
(s∈ : isShr∈ s θ) →
¬ (isShr∈ s θ') →
(s∈' : isShr∈ s (θ ← θ')) →
(set-shr {s} θ s∈ v n) ← θ' ≡
set-shr {s} (θ ← θ') s∈' v n
shr-set-←-comm' s v n θ θ' s∈ s∉Domθ' s∈'
rewrite ShrMap.put-union-comm {_} s (v , n) (Env.shr θ) (Env.shr θ') s∉Domθ'
= refl
shr-set-←-comm : ∀ s v n θ θ' →
(s∈ : isShr∈ s θ) →
¬ (isShr∈ s θ') →
∃ λ s∈Dom⟨θ←θ'⟩ →
(set-shr {s} θ s∈ v n) ← θ' ≡
set-shr {s} (θ ← θ') s∈Dom⟨θ←θ'⟩ v n
shr-set-←-comm s v n θ θ' s∈ s∉Domθ'
rewrite ShrMap.put-union-comm {_} s (v , n) (Env.shr θ) (Env.shr θ') s∉Domθ'
= ShrMap.U-mono {_} {Env.shr θ} {Env.shr θ'} {s} s∈ , refl
var-set-←-comm' : ∀ x v θ θ' →
(x∈ : isVar∈ x θ) →
¬ (isVar∈ x θ') →
(x∈' : isVar∈ x (θ ← θ')) →
(set-var {x} θ x∈ v) ← θ' ≡
set-var {x} (θ ← θ') x∈' v
var-set-←-comm' x v θ θ' x∈ x∉Domθ' x∈'
rewrite VarMap.put-union-comm {_} x v (Env.var θ) (Env.var θ') x∉Domθ'
= refl
var-set-←-comm : ∀ x v θ θ' →
(x∈ : isVar∈ x θ) →
¬ (isVar∈ x θ') →
∃ λ x∈Dom⟨θ←θ'⟩ →
(set-var {x} θ x∈ v) ← θ' ≡
set-var {x} (θ ← θ') x∈Dom⟨θ←θ'⟩ v
var-set-←-comm x v θ θ' x∈ x∉Domθ'
rewrite VarMap.put-union-comm {_} x v (Env.var θ) (Env.var θ') x∉Domθ'
= VarMap.U-mono {_} {Env.var θ} {Env.var θ'} {x} x∈ , refl
lookup-S-eq : ∀{a b} θ S S∈ S∈₁ → sig-stats{S = S} θ S∈ ≡ a → sig-stats{S = S} θ S∈₁ ≡ b → ¬ a ≡ b → ⊥
lookup-S-eq θ S S∈ S∈' eq1 eq2 neg rewrite sig∈-eq{S}{θ} S∈ S∈' = neg (trans (sym eq1) eq2)
lookup-s-eq : ∀{a b} θ s s∈ s∈₁ → shr-stats{s = s} θ s∈ ≡ a → shr-stats{s = s} θ s∈₁ ≡ b → ¬ a ≡ b → ⊥
lookup-s-eq θ s s∈ s∈' eq1 eq2 neg rewrite shr∈-eq{s}{θ} s∈ s∈' = neg (trans (sym eq1) eq2)
lookup-S-¬eq : ∀{a b} θ S S' S∈ S'∈ → sig-stats{S = S} θ S∈ ≡ a → sig-stats{S = S'} θ S'∈ ≡ b → ¬ a ≡ b → ¬ S ≡ S'
lookup-S-¬eq θ S S' S∈ S'∈ S≡ S'≡ a≠b with S Signal.≟ S'
... | yes refl = ⊥-elim (lookup-S-eq θ S S∈ S'∈ S≡ S'≡ a≠b)
... | no x = x
lookup-s-stat-¬eq : ∀{a b} θ s s' s∈ s'∈ → shr-stats{s = s} θ s∈ ≡ a → shr-stats{s = s'} θ s'∈ ≡ b → ¬ a ≡ b → ¬ s ≡ s'
lookup-s-stat-¬eq θ s s' s∈ s'∈ s≡ s'≡ a≠b with s SharedVar.≟ s'
... | yes refl = ⊥-elim (lookup-s-eq θ s s∈ s'∈ s≡ s'≡ a≠b)
... | no x = x
←-=-irr-S : ∀ θ θ' → (Dom θ) ≡ (Dom θ') → ∀ S → (S∈ : isSig∈ S (θ ← θ')) → (S∈2 : isSig∈ S θ')
→ sig-stats{S} (θ ← θ') S∈ ≡ sig-stats{S} θ' S∈2
←-=-irr-S θ θ' eq = SigMap.union-=-irr (sig θ) (sig θ') (cong proj₁ eq)
←-=-irr-s-stats : ∀ θ θ' → (Dom θ) ≡ (Dom θ') → ∀ s → (s∈ : isShr∈ s (θ ← θ')) → (s∈2 : isShr∈ s θ')
→ shr-stats{s} (θ ← θ') s∈ ≡ shr-stats{s} θ' s∈2
←-=-irr-s-stats θ θ' eq a b = (cong proj₁) ∘ (ShrMap.union-=-irr (shr θ) (shr θ') (cong (proj₁ ∘ proj₂) eq) a b)
←-=-irr-s-vals : ∀ θ θ' → (Dom θ) ≡ (Dom θ') → ∀ s → (s∈ : isShr∈ s (θ ← θ')) → (s∈2 : isShr∈ s θ')
→ shr-vals{s} (θ ← θ') s∈ ≡ shr-vals{s} θ' s∈2
←-=-irr-s-vals θ θ' eq a b = (cong proj₂) ∘ (ShrMap.union-=-irr (shr θ) (shr θ') (cong (proj₁ ∘ proj₂) eq) a b)
←-=-irr-x : ∀ θ θ' → (Dom θ) ≡ (Dom θ') → ∀ x → (x∈ : isVar∈ x (θ ← θ')) → (x∈2 : isVar∈ x θ')
→ var-vals{x} (θ ← θ') x∈ ≡ var-vals{x} θ' x∈2
←-=-irr-x θ θ' eq = (VarMap.union-=-irr (var θ) (var θ') (cong (proj₂ ∘ proj₂) eq))
←-single-overwrite-sig : ∀ S stat θ → isSig∈ S θ → ((Θ SigMap.[ S ↦ stat ] [] []) ← θ) ≡ θ
←-single-overwrite-sig S stat θ k∈ rewrite SigMap.single-val-overwrite S stat (sig θ) k∈ = refl
←-single-overwrite-shr : ∀ s stat v θ → isShr∈ s θ → ((Θ [] ShrMap.[ s ↦ (stat ,′ v) ] []) ← θ) ≡ θ
←-single-overwrite-shr s stat v θ k∈ rewrite ShrMap.single-val-overwrite s (stat ,′ v) (shr θ) k∈ = refl
←-single-overwrite-seq : ∀ x n θ → isVar∈ x θ → ((Θ [] [] VarMap.[ x ↦ n ]) ← θ) ≡ θ
←-single-overwrite-seq x n θ k∈ rewrite VarMap.single-val-overwrite x n (var θ) k∈ = refl
sig-set=← : ∀ θ S stat → (S∈ : isSig∈ S θ) → (set-sig{S = S} θ S∈ stat) ≡ (θ ← (Θ SigMap.[ S ↦ stat ] [] []))
sig-set=← θ S stat S∈
rewrite SigMap.union-insert-eq S stat (sig θ)
| ShrMap.union-comm (shr θ) [] (λ z _ → λ ())
| VarMap.union-comm (var θ) [] (λ z _ → λ ())
= refl
shr-set=← : ∀ θ s stat n → (s∈ : isShr∈ s θ) → (set-shr{s = s} θ s∈ stat n) ≡ (θ ← (Θ [] ShrMap.[ s ↦ (stat ,′ n) ] []))
shr-set=← θ s stat n s∈
rewrite ShrMap.union-insert-eq s (stat ,′ n) (shr θ)
| SigMap.union-comm (sig θ) [] (λ z _ → λ ())
| VarMap.union-comm (var θ) [] (λ z _ → λ ())
= refl
seq-set=← : ∀ θ x n → (x∈ : isVar∈ x θ) → (set-var{x = x} θ x∈ n) ≡ (θ ← (Θ [] [] VarMap.[ x ↦ n ]))
seq-set=← θ x n x∈
rewrite VarMap.union-insert-eq x n (var θ)
| SigMap.union-comm (sig θ) [] (λ z _ → λ ())
| ShrMap.union-comm (shr θ) [] (λ z _ → λ ())
= refl
sig-set-clobber : ∀ S stat θ θi S∈ → isSig∈ S θi → (set-sig{S = S} θ S∈ stat) ← θi ≡ θ ← θi
sig-set-clobber S stat θ θi S∈θ S∈θi
=
(set-sig{S = S} θ S∈θ stat) ← θi
≡⟨ cong (_← θi)(sig-set=← θ S stat S∈θ) ⟩
(θ ← θ2) ← θi
≡⟨ sym (←-assoc θ θ2 θi) ⟩
(θ ← (θ2 ← θi))
≡⟨ cong (θ ←_) (←-single-overwrite-sig S stat θi S∈θi) ⟩
(θ ← θi) ∎
where θ2 = Θ SigMap.[ S ↦ stat ] [] []
shr-set-clobber : ∀ v stat n θ θi v∈ → isShr∈ v θi → (set-shr{s = v} θ v∈ stat n) ← θi ≡ θ ← θi
shr-set-clobber v stat n θ θi v∈θ v∈θi
=
(set-shr{s = v} θ v∈θ stat n) ← θi
≡⟨ cong (_← θi) (shr-set=← θ v stat n v∈θ) ⟩
(θ ← θ2) ← θi
≡⟨ sym (←-assoc θ θ2 θi) ⟩
(θ ← (θ2 ← θi))
≡⟨ cong (θ ←_) (←-single-overwrite-shr v stat n θi v∈θi) ⟩
(θ ← θi) ∎
where θ2 = Θ [] ShrMap.[ v ↦ (stat ,′ n) ] []
seq-set-clobber : ∀ v n θ θi v∈ → isVar∈ v θi → (set-var{x = v} θ v∈ n) ← θi ≡ θ ← θi
seq-set-clobber v n θ θi v∈θ v∈θi
=
(set-var{x = v} θ v∈θ n) ← θi
≡⟨ cong (_← θi) (seq-set=← θ v n v∈θ) ⟩
(θ ← θ2) ← θi
≡⟨ sym (←-assoc θ θ2 θi) ⟩
(θ ← (θ2 ← θi))
≡⟨ cong (θ ←_) (←-single-overwrite-seq v n θi v∈θi) ⟩
(θ ← θi) ∎
where θ2 = Θ [] [] VarMap.[ v ↦ n ]
sig-switch : ∀ S stat θ θi S∈ S∈2 → ¬ isSig∈ S θi → set-sig{S = S} (θ ← θi) S∈2 stat ≡ (set-sig{S = S} θ S∈ stat) ← θi
sig-switch S stat θ θi S∈ S∈2 S∉
= set-sig{S = S} (θ ← θi) S∈2 stat
≡⟨ sig-set=← (θ ← θi) S stat S∈2 ⟩
(θ ← θi) ← θ2
≡⟨ ←-assoc-comm θ θi θ2 ((λ z x x₁ → S∉ (subst (_∈ (SigMap.keys (sig θi))) (∈:: (subst (z ∈_) (SigMap.keys-1map S stat) x₁)) x)) , ((λ x x₁ → λ ()) , (λ x x₁ → λ ()))) ⟩
(θ ← θ2) ← θi
≡⟨ cong (_← θi) (sym (sig-set=← θ S stat S∈ )) ⟩
(set-sig{S = S} θ S∈ stat) ← θi ∎
where θ2 = Θ SigMap.[ S ↦ stat ] [] []
shr-switch : ∀ s stat n θ θi s∈ s∈2 → ¬ isShr∈ s θi → set-shr{s = s} (θ ← θi) s∈2 stat n ≡ (set-shr{s = s} θ s∈ stat n) ← θi
shr-switch s stat n θ θi s∈ s∈2 s∉
= set-shr{s = s} (θ ← θi) s∈2 stat n
≡⟨ shr-set=← (θ ← θi) s stat n s∈2 ⟩
(θ ← θi) ← θ2
≡⟨ ←-assoc-comm θ θi θ2 ((λ x x₁ → λ ()) , ((λ z x x₁ → s∉ (subst (_∈ (ShrMap.keys (shr θi))) (∈:: (subst (z ∈_) (ShrMap.keys-1map s (stat ,′ n)) x₁)) x)) , (λ x x₁ → λ ()))) ⟩
(θ ← θ2) ← θi
≡⟨ cong (_← θi) (sym (shr-set=← θ s stat n s∈ )) ⟩
(set-shr{s = s} θ s∈ stat n) ← θi ∎
where θ2 = Θ [] ShrMap.[ s ↦ (stat ,′ n) ] []
seq-switch : ∀ x n θ θi x∈ x∈2 → ¬ isVar∈ x θi → set-var{x = x} (θ ← θi) x∈2 n ≡ (set-var{x = x} θ x∈ n) ← θi
seq-switch x n θ θi x∈ x∈2 x∉
= set-var{x = x} (θ ← θi) x∈2 n
≡⟨ seq-set=← (θ ← θi) x n x∈2 ⟩
(θ ← θi) ← θ2
≡⟨ ←-assoc-comm θ θi θ2 ((λ x x₁ → λ ()) , ((λ x x₁ → λ ()) , (λ z j x₁ → x∉ (subst (_∈ (VarMap.keys (var θi))) (∈:: (subst (z ∈_) (VarMap.keys-1map x n) x₁)) j)))) ⟩
(θ ← θ2) ← θi
≡⟨ cong (_← θi) (sym (seq-set=← θ x n x∈ )) ⟩
(set-var{x = x} θ x∈ n) ← θi ∎
where θ2 = Θ [] [] VarMap.[ x ↦ n ]
sig-switch-right : ∀ S stat θl θr S∈ S∈2 → (θl ← (set-sig{S} θr S∈ stat)) ≡ (set-sig{S} (θl ← θr) S∈2 stat)
sig-switch-right S stat θl θr S∈ S∈2 =
(θl ← (set-sig{S} θr S∈ stat))
≡⟨ cong (θl ←_) (sig-set=← θr S stat S∈) ⟩
(θl ← (θr ← (Θ SigMap.[ S ↦ stat ] [] [])))
≡⟨ ←-assoc θl θr _ ⟩
((θl ← θr) ← (Θ SigMap.[ S ↦ stat ] [] []))
≡⟨ sym (sig-set=← (θl ← θr) S stat S∈2) ⟩
(set-sig{S} (θl ← θr) S∈2 stat) ∎
shr-switch-right : ∀ s stat n θl θr s∈ s∈2 → (θl ← (set-shr{s} θr s∈ stat n)) ≡ (set-shr{s} (θl ← θr) s∈2 stat n)
shr-switch-right s stat n θl θr s∈ s∈2 =
(θl ← (set-shr{s} θr s∈ stat n))
≡⟨ cong (θl ←_) (shr-set=← θr s stat n s∈) ⟩
(θl ← (θr ← (Θ [] ShrMap.[ s ↦ (stat ,′ n) ] [])))
≡⟨ ←-assoc θl θr _ ⟩
((θl ← θr) ← (Θ [] ShrMap.[ s ↦ (stat ,′ n) ] []))
≡⟨ sym (shr-set=← (θl ← θr) s stat n s∈2) ⟩
(set-shr{s} (θl ← θr) s∈2 stat n) ∎
seq-switch-right : ∀ x n θl θr x∈ x∈2 → (θl ← (set-var{x} θr x∈ n)) ≡ (set-var{x} (θl ← θr) x∈2 n)
seq-switch-right x n θl θr x∈ x∈2 =
(θl ← (set-var{x} θr x∈ n))
≡⟨ cong (θl ←_) (seq-set=← θr x n x∈) ⟩
(θl ← (θr ← (Θ [] [] VarMap.[ x ↦ n ])))
≡⟨ ←-assoc θl θr _ ⟩
((θl ← θr) ← (Θ [] [] VarMap.[ x ↦ n ]))
≡⟨ sym (seq-set=← (θl ← θr) x n x∈2) ⟩
(set-var{x} (θl ← θr) x∈2 n) ∎
sig-set-dom-eq : ∀ S stat θ S∈ → (Dom θ) ≡ (Dom (set-sig{S = S} θ S∈ stat))
sig-set-dom-eq S stat θ S∈ rewrite SigMap.update-domain-eq S stat (sig θ) S∈ = refl
shr-set-dom-eq : ∀ s stat n θ s∈ → (Dom θ) ≡ (Dom (set-shr{s = s} θ s∈ stat n))
shr-set-dom-eq s stat n θ s∈ rewrite ShrMap.update-domain-eq s (stat ,′ n) (shr θ) s∈ = refl
seq-set-dom-eq : ∀ x n θ x∈ → (Dom θ) ≡ (Dom (set-var{x = x} θ x∈ n))
seq-set-dom-eq x n θ x∈ rewrite VarMap.update-domain-eq x n (var θ) x∈ = refl
sig-∉-maint : ∀ S S' stat θ S'∈ → ¬ isSig∈ S θ → ¬ isSig∈ S (set-sig{S = S'} θ S'∈ stat)
sig-∉-maint S S' stat θ S'∈ S∉ x rewrite cong proj₁ (sig-set-dom-eq S' stat θ S'∈) = S∉ x
shr-∉-maint : ∀ s s' stat n θ s'∈ → ¬ isShr∈ s θ → ¬ isShr∈ s (set-shr{s = s'} θ s'∈ stat n)
shr-∉-maint s s' stat n θ s'∈ s∉ x rewrite cong snd (shr-set-dom-eq s' stat n θ s'∈) = s∉ x
sig-∉-single : ∀ S S' stat → ¬ S ≡ S' → ¬ isSig∈ S (Θ SigMap.[ S' ↦ stat ] [] [])
sig-∉-single S S' stat neg x rewrite SigMap.keys-1map S' stat with x
... | Any.here px = (Signal.unwrap-neq neg) px
... | Any.there ()
shr-∉-single : ∀ s s' stat n → ¬ s ≡ s' → ¬ isShr∈ s (Θ [] ShrMap.[ s' ↦ (stat ,′ n) ] [])
shr-∉-single s s' stat n neg x rewrite ShrMap.keys-1map s' (stat ,′ n) with x
... | Any.here px = (SharedVar.unwrap-neq neg) px
... | Any.there ()
sig-∈-single : ∀ S stat → isSig∈ S (Θ SigMap.[ S ↦ stat ] [] [])
sig-∈-single S stat rewrite SigMap.keys-1map S stat = Data.List.Any.here refl
sig-∈-single-right-← : ∀ S stat θ → isSig∈ S (θ ← (Θ SigMap.[ S ↦ stat ] [] []))
sig-∈-single-right-← S stat θ = sig-←-monoʳ S (Θ SigMap.[ S ↦ stat ] [] []) θ (sig-∈-single S stat)
shr-∈-single : ∀ s stat n → isShr∈ s (Θ [] ShrMap.[ s ↦ (stat ,′ n) ] [])
shr-∈-single s stat n rewrite ShrMap.keys-1map s (stat ,′ n) = Data.List.Any.here refl
sig-single-∈-eq : ∀ S S' stat' →
isSig∈ S (Θ SigMap.[ S' ↦ stat' ] [] []) →
Signal.unwrap S ≡ Signal.unwrap S'
sig-single-∈-eq S S' stat' S∈Dom[S'] rewrite SigMap.keys-1map S' stat' = ∈:: S∈Dom[S']
sig-put-mby-overwrite : ∀ S S' θ statneq statput S∈ S'∈ S∈2
→ ¬ statneq ≡ statput
→ ¬ (sig-stats{S} θ S∈ ≡ statneq)
→ ¬ (sig-stats{S} (set-sig{S'} θ S'∈ statput) S∈2 ≡ statneq)
sig-put-mby-overwrite S S' θ statneq statput S∈ S'∈ S∈2 neq≠put ¬ref ref
with S Signal.≟ S'
... | yes refl = lookup-S-eq (set-sig{S} θ S'∈ statput) S S∈2 S∈2 (sig-putget{S}{θ}{statput} S'∈ S∈2) ref (neq≠put ∘ sym)
... | no ¬refl = ¬ref (trans (sym (sig-putputget/m{S}{S'}{θ} ¬refl S∈ S'∈ S∈2)) ref)
sig-stats-1map' : ∀ S status →
(S∈ : isSig∈ S (Θ SigMap.[ S ↦ status ] ShrMap.empty VarMap.empty)) →
sig-stats {S} (Θ SigMap.[ S ↦ status ] ShrMap.empty VarMap.empty) S∈
≡ status
sig-stats-1map' S status S∈ = SigMap.putget-m {_} {SigMap.empty} {S} {status} S∈
sig-stats-1map-right-← : ∀ S status θ →
(S∈ : isSig∈ S (θ ← (Θ SigMap.[ S ↦ status ] [] []))) →
(sig-stats{S} (θ ← (Θ SigMap.[ S ↦ status ] [] [])) S∈ ≡ status)
sig-stats-1map-right-← S stat θ S∈
= trans (sig-stats-←-right-irr' S θ (Θ SigMap.[ S ↦ stat ] [] []) (sig-∈-single S stat) S∈) (sig-stats-1map' S stat (sig-∈-single S stat))
sig-put-1map-overwrite' : ∀ S status status' →
(S∈ : isSig∈ S (Θ SigMap.[ S ↦ status ] ShrMap.empty VarMap.empty)) →
set-sig {S} (Θ SigMap.[ S ↦ status ] ShrMap.empty VarMap.empty) S∈ status'
≡ Θ SigMap.[ S ↦ status' ] ShrMap.empty VarMap.empty
sig-put-1map-overwrite' S status status' S∈
rewrite SigMap.putput-overwrite SigMap.empty S status status'
= refl
-- ←-comm : ∀ θ θ' → distinct (Dom θ) (Dom θ') → (θ ← θ') ≡ (θ' ← θ)
sig-set-inner-clobber : ∀ θ θ' θ'' S stat → isSig∈ S θ''
→ ((θ ← (Θ SigMap.[ S ↦ stat ] [] [])) ← θ') ← θ''
≡
((θ ← θ') ← θ'')
sig-set-inner-clobber θ θ' θ'' S stat S∈θ'' with Sig∈ S θ'
... | yes S∈θ' = (((θ ← (Θ SigMap.[ S ↦ stat ] [] [])) ← θ') ← θ'')
≡⟨ cong (λ x → (x ← θ'')) (sym (←-assoc θ (Θ SigMap.[ S ↦ stat ] [] []) θ')) ⟩
((θ ← ((Θ SigMap.[ S ↦ stat ] [] []) ← θ')) ← θ'')
≡⟨ cong (λ x → (θ ← x) ← θ'' )
(←-single-overwrite-sig S stat (Θ (sig θ') (shr θ') (var θ')) S∈θ') ⟩
((θ ← θ') ← θ'') ∎
... | no S∉θ' = (((θ ← (Θ SigMap.[ S ↦ stat ] [] [])) ← θ') ← θ'')
≡⟨ cong (λ x → (x ← θ'')) (sym (←-assoc θ (Θ SigMap.[ S ↦ stat ] [] []) θ')) ⟩
((θ ← ((Θ SigMap.[ S ↦ stat ] [] []) ← θ')) ← θ'')
≡⟨ cong (λ x → (θ ← x) ← θ'' )
( ←-comm (Θ SigMap.[ S ↦ stat ] [] []) θ' (ds , ((λ z → λ ()) , (λ z → λ ())))) ⟩
((θ ← (θ' ← (Θ SigMap.[ S ↦ stat ] [] []))) ← θ'')
≡⟨ cong (_← θ'') (←-assoc θ θ' (Θ SigMap.[ S ↦ stat ] [] [])) ⟩
(((θ ← θ') ← (Θ SigMap.[ S ↦ stat ] [] [])) ← θ'')
≡⟨ sym (←-assoc (θ ← θ') (Θ SigMap.[ S ↦ stat ] [] []) θ'') ⟩
((θ ← θ') ← ((Θ SigMap.[ S ↦ stat ] [] []) ← θ''))
≡⟨ cong ((θ ← θ') ←_) (←-single-overwrite-sig S stat (Θ (sig θ'') (shr θ'') (var θ''))
S∈θ'') ⟩
((θ ← θ') ← θ'')
∎
where
ds : distinct' (proj₁ (Dom (Θ SigMap.[ S ↦ stat ] [] []))) (proj₁ (Dom θ'))
ds z x y rewrite SigMap.keys-1map S stat with x
... | Any.here refl = ⊥-elim (S∉θ' y)
... | Any.there ()
sig-single-notin-distinct : ∀ S status θ →
Signal.unwrap S ∉ proj₁ (Dom θ) →
distinct (Dom (Θ SigMap.[ S ↦ status ] [] [])) (Dom θ)
sig-single-notin-distinct S status θ S∉Domθ =
(λ S'' S''∈[S] S''∈Domθ →
S∉Domθ
(subst (_∈ proj₁ (Dom θ))
(∈:: (subst (S'' ∈_) (SigMap.keys-1map S status) S''∈[S]))
S''∈Domθ)) ,′
(λ _ ()) ,′
(λ _ ())
-- a special case of sig-single-notin-distinct
sig-single-noteq-distinct : ∀ S status S' status' →
¬ Signal.unwrap S ≡ Signal.unwrap S' →
distinct (Dom (Θ SigMap.[ S ↦ status ] [] [])) (Dom (Θ SigMap.[ S' ↦ status' ] [] []))
sig-single-noteq-distinct S status S' status' S≢S' =
(λ S'' S''∈[S] S''∈[S'] →
S≢S'
(trans
(sym (∈:: (subst (S'' ∈_) (SigMap.keys-1map S status) S''∈[S])))
(∈:: (subst (S'' ∈_) (SigMap.keys-1map S' status') S''∈[S'])))) ,′
(λ _ ()) ,′
(λ _ ())
sig-single-←-←-overwrite : ∀ θ S status status' →
(θ ← Θ SigMap.[ S ↦ status ] [] []) ← Θ SigMap.[ S ↦ status' ] [] [] ≡
θ ← Θ SigMap.[ S ↦ status' ] [] []
sig-single-←-←-overwrite θ S status status'
rewrite sym (←-assoc θ (Θ SigMap.[ S ↦ status ] [] []) (Θ SigMap.[ S ↦ status' ] [] []))
= cong (θ ←_)
(←-single-overwrite-sig S status (Θ SigMap.[ S ↦ status' ] [] [])
(sig-∈-single S status'))
sig-set-clobber-single-as-← : ∀ S status status' θ S∈ → (set-sig{S} (θ ← (Θ SigMap.[ S ↦ status' ] [] [])) S∈ status) ≡ (θ ← (Θ SigMap.[ S ↦ status ] [] []))
sig-set-clobber-single-as-← S status status' θ S∈
=(begin
(set-sig{S} (θ ← θs1) ((sig-∈-single-right-← S status' θ)) status)
≡⟨ sym (sig-switch-right S status θ θs1 ((sig-∈-single S status')) ((sig-∈-single-right-← S status' θ))) ⟩
(θ ← (set-sig{S} θs1 ((sig-∈-single S status')) status))
≡⟨ cong (_←_ θ) (sig-put-1map-overwrite' S status' status ((sig-∈-single S status'))) ⟩
(θ ← θs2) ∎)
where
θs1 = (Θ SigMap.[ S ↦ status' ] [] [])
θs2 = (Θ SigMap.[ S ↦ status ] [] [])
|
algebraic-stack_agda0000_doc_5291 | {-# OPTIONS --safe #-}
module Cubical.Algebra.DistLattice.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.HalfAdjoint
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Transport
open import Cubical.Foundations.SIP
open import Cubical.Data.Sigma
open import Cubical.Displayed.Base
open import Cubical.Displayed.Auto
open import Cubical.Displayed.Record
open import Cubical.Displayed.Universe
open import Cubical.Algebra.Semigroup
open import Cubical.Algebra.Monoid
open import Cubical.Algebra.CommMonoid
open import Cubical.Algebra.Semilattice
open import Cubical.Algebra.Lattice.Base
open Iso
private
variable
ℓ ℓ' : Level
record IsDistLattice {L : Type ℓ}
(0l 1l : L) (_∨l_ _∧l_ : L → L → L) : Type ℓ where
constructor isdistlattice
field
isLattice : IsLattice 0l 1l _∨l_ _∧l_
∨l-dist-∧l : (x y z : L) → (x ∨l (y ∧l z) ≡ (x ∨l y) ∧l (x ∨l z))
× ((y ∧l z) ∨l x ≡ (y ∨l x) ∧l (z ∨l x))
∧l-dist-∨l : (x y z : L) → (x ∧l (y ∨l z) ≡ (x ∧l y) ∨l (x ∧l z))
× ((y ∨l z) ∧l x ≡ (y ∧l x) ∨l (z ∧l x))
open IsLattice isLattice public
∨lLdist∧l : (x y z : L) → x ∨l (y ∧l z) ≡ (x ∨l y) ∧l (x ∨l z)
∨lLdist∧l x y z = ∨l-dist-∧l x y z .fst
∨lRdist∧l : (x y z : L) → (y ∧l z) ∨l x ≡ (y ∨l x) ∧l (z ∨l x)
∨lRdist∧l x y z = ∨l-dist-∧l x y z .snd
∧lLdist∨l : (x y z : L) → x ∧l (y ∨l z) ≡ (x ∧l y) ∨l (x ∧l z)
∧lLdist∨l x y z = ∧l-dist-∨l x y z .fst
∧lRdist∨l : (x y z : L) → (y ∨l z) ∧l x ≡ (y ∧l x) ∨l (z ∧l x)
∧lRdist∨l x y z = ∧l-dist-∨l x y z .snd
record DistLatticeStr (A : Type ℓ) : Type (ℓ-suc ℓ) where
constructor distlatticestr
field
0l : A
1l : A
_∨l_ : A → A → A
_∧l_ : A → A → A
isDistLattice : IsDistLattice 0l 1l _∨l_ _∧l_
infix 7 _∨l_
infix 6 _∧l_
open IsDistLattice isDistLattice public
DistLattice : ∀ ℓ → Type (ℓ-suc ℓ)
DistLattice ℓ = TypeWithStr ℓ DistLatticeStr
isSetDistLattice : (L : DistLattice ℓ) → isSet ⟨ L ⟩
isSetDistLattice L = L .snd .DistLatticeStr.is-set
-- when proving the axioms for a distributive lattice
-- we use the fact that from distributivity and absorption
-- of ∧l over ∨l we can derive distributivity and absorption
-- of ∨l over ∧l and vice versa. We give provide thus two
-- ways of making a distributive lattice...
makeIsDistLattice∧lOver∨l : {L : Type ℓ} {0l 1l : L} {_∨l_ _∧l_ : L → L → L}
(is-setL : isSet L)
(∨l-assoc : (x y z : L) → x ∨l (y ∨l z) ≡ (x ∨l y) ∨l z)
(∨l-rid : (x : L) → x ∨l 0l ≡ x)
(∨l-comm : (x y : L) → x ∨l y ≡ y ∨l x)
(∧l-assoc : (x y z : L) → x ∧l (y ∧l z) ≡ (x ∧l y) ∧l z)
(∧l-rid : (x : L) → x ∧l 1l ≡ x)
(∧l-comm : (x y : L) → x ∧l y ≡ y ∧l x)
(∧l-absorb-∨l : (x y : L) → x ∧l (x ∨l y) ≡ x)
(∧l-ldist-∨l : (x y z : L) → x ∧l (y ∨l z) ≡ (x ∧l y) ∨l (x ∧l z))
→ IsDistLattice 0l 1l _∨l_ _∧l_
makeIsDistLattice∧lOver∨l {_∨l_ = _∨l_} {_∧l_ = _∧l_} is-setL
∨l-assoc ∨l-rid ∨l-comm
∧l-assoc ∧l-rid ∧l-comm
∧l-absorb-∨l ∧l-ldist-∨l =
isdistlattice (makeIsLattice is-setL ∨l-assoc ∨l-rid (λ x → ∨l-comm _ x ∙ ∨l-rid x) ∨l-comm
∧l-assoc ∧l-rid (λ x → ∧l-comm _ x ∙ ∧l-rid x) ∧l-comm
∨l-absorb-∧l ∧l-absorb-∨l)
(λ x y z → ∨l-ldist-∧l _ _ _ , ∨l-rdist-∧l _ _ _)
(λ x y z → ∧l-ldist-∨l _ _ _ , ∧l-rdist-∨l _ _ _)
where
∧l-idem : ∀ x → x ∧l x ≡ x
∧l-idem x = cong (x ∧l_) (sym (∨l-rid _)) ∙ ∧l-absorb-∨l _ _
∨l-absorb-∧l : ∀ x y → x ∨l (x ∧l y) ≡ x
∨l-absorb-∧l x y =
cong (_∨l (x ∧l y)) (sym (∧l-idem _)) ∙∙ sym (∧l-ldist-∨l _ _ _) ∙∙ ∧l-absorb-∨l _ _
∧l-rdist-∨l : ∀ x y z → (y ∨l z) ∧l x ≡ (y ∧l x) ∨l (z ∧l x)
∧l-rdist-∨l _ _ _ = ∧l-comm _ _ ∙∙ ∧l-ldist-∨l _ _ _ ∙∙ cong₂ (_∨l_) (∧l-comm _ _) (∧l-comm _ _)
∨l-ldist-∧l : ∀ x y z → x ∨l (y ∧l z) ≡ (x ∨l y) ∧l (x ∨l z)
∨l-ldist-∧l x y z = x ∨l (y ∧l z)
≡⟨ cong (_∨l (y ∧l z)) (sym (∨l-absorb-∧l _ _)) ⟩
(x ∨l (x ∧l z)) ∨l (y ∧l z)
≡⟨ sym (∨l-assoc _ _ _) ⟩
x ∨l ((x ∧l z) ∨l (y ∧l z))
≡⟨ cong (_∨l ((x ∧l z) ∨l (y ∧l z))) (sym (∧l-comm _ _ ∙ ∧l-absorb-∨l _ _)) ⟩
((x ∨l y) ∧l x) ∨l ((x ∧l z) ∨l (y ∧l z))
≡⟨ cong (((x ∨l y) ∧l x) ∨l_) (sym (∧l-rdist-∨l _ _ _)) ⟩
((x ∨l y) ∧l x) ∨l ((x ∨l y) ∧l z)
≡⟨ sym (∧l-ldist-∨l _ _ _) ⟩
(x ∨l y) ∧l (x ∨l z) ∎
∨l-rdist-∧l : ∀ x y z → (y ∧l z) ∨l x ≡ (y ∨l x) ∧l (z ∨l x)
∨l-rdist-∧l x y z = ∨l-comm _ x ∙∙ ∨l-ldist-∧l _ _ _ ∙∙ cong₂ (_∧l_) (∨l-comm _ _) (∨l-comm _ _)
makeDistLattice∧lOver∨l : {L : Type ℓ} (0l 1l : L) (_∨l_ _∧l_ : L → L → L)
(is-setL : isSet L)
(∨l-assoc : (x y z : L) → x ∨l (y ∨l z) ≡ (x ∨l y) ∨l z)
(∨l-rid : (x : L) → x ∨l 0l ≡ x)
(∨l-comm : (x y : L) → x ∨l y ≡ y ∨l x)
(∧l-assoc : (x y z : L) → x ∧l (y ∧l z) ≡ (x ∧l y) ∧l z)
(∧l-rid : (x : L) → x ∧l 1l ≡ x)
(∧l-comm : (x y : L) → x ∧l y ≡ y ∧l x)
(∧l-absorb-∨l : (x y : L) → x ∧l (x ∨l y) ≡ x)
(∧l-ldist-∨l : (x y z : L) → x ∧l (y ∨l z) ≡ (x ∧l y) ∨l (x ∧l z))
→ DistLattice ℓ
makeDistLattice∧lOver∨l 0l 1l _∨l_ _∧l_ is-setL ∨l-assoc ∨l-rid ∨l-comm
∧l-assoc ∧l-rid ∧l-comm
∧l-absorb-∨l ∧l-ldist-∨l =
_ , distlatticestr _ _ _ _
(makeIsDistLattice∧lOver∨l is-setL ∨l-assoc ∨l-rid ∨l-comm
∧l-assoc ∧l-rid ∧l-comm
∧l-absorb-∨l ∧l-ldist-∨l)
makeIsDistLattice∨lOver∧l : {L : Type ℓ} {0l 1l : L} {_∨l_ _∧l_ : L → L → L}
(is-setL : isSet L)
(∨l-assoc : (x y z : L) → x ∨l (y ∨l z) ≡ (x ∨l y) ∨l z)
(∨l-rid : (x : L) → x ∨l 0l ≡ x)
(∨l-comm : (x y : L) → x ∨l y ≡ y ∨l x)
(∧l-assoc : (x y z : L) → x ∧l (y ∧l z) ≡ (x ∧l y) ∧l z)
(∧l-rid : (x : L) → x ∧l 1l ≡ x)
(∧l-comm : (x y : L) → x ∧l y ≡ y ∧l x)
(∨l-absorb-∧l : (x y : L) → x ∨l (x ∧l y) ≡ x)
(∨l-ldist-∧l : (x y z : L) → x ∨l (y ∧l z) ≡ (x ∨l y) ∧l (x ∨l z))
→ IsDistLattice 0l 1l _∨l_ _∧l_
makeIsDistLattice∨lOver∧l {_∨l_ = _∨l_} {_∧l_ = _∧l_} is-setL
∨l-assoc ∨l-rid ∨l-comm
∧l-assoc ∧l-rid ∧l-comm
∨l-absorb-∧l ∨l-ldist-∧l =
isdistlattice
(makeIsLattice is-setL ∨l-assoc ∨l-rid (λ x → ∨l-comm _ x ∙ ∨l-rid x) ∨l-comm
∧l-assoc ∧l-rid (λ x → ∧l-comm _ x ∙ ∧l-rid x) ∧l-comm
∨l-absorb-∧l ∧l-absorb-∨l)
(λ x y z → ∨l-ldist-∧l _ _ _ , ∨l-rdist-∧l _ _ _)
(λ x y z → ∧l-ldist-∨l _ _ _ , ∧l-rdist-∨l _ _ _)
where
∨l-idem : ∀ x → x ∨l x ≡ x
∨l-idem x = cong (x ∨l_) (sym (∧l-rid _)) ∙ ∨l-absorb-∧l _ _
∧l-absorb-∨l : ∀ x y → x ∧l (x ∨l y) ≡ x
∧l-absorb-∨l x y =
cong (_∧l (x ∨l y)) (sym (∨l-idem _)) ∙∙ sym (∨l-ldist-∧l _ _ _) ∙∙ ∨l-absorb-∧l _ _
∨l-rdist-∧l : ∀ x y z → (y ∧l z) ∨l x ≡ (y ∨l x) ∧l (z ∨l x)
∨l-rdist-∧l _ _ _ = ∨l-comm _ _ ∙∙ ∨l-ldist-∧l _ _ _ ∙∙ cong₂ (_∧l_) (∨l-comm _ _) (∨l-comm _ _)
∧l-ldist-∨l : ∀ x y z → x ∧l (y ∨l z) ≡ (x ∧l y) ∨l (x ∧l z)
∧l-ldist-∨l x y z = x ∧l (y ∨l z)
≡⟨ cong (_∧l (y ∨l z)) (sym (∧l-absorb-∨l _ _)) ⟩
(x ∧l (x ∨l z)) ∧l (y ∨l z)
≡⟨ sym (∧l-assoc _ _ _) ⟩
x ∧l ((x ∨l z) ∧l (y ∨l z))
≡⟨ cong (_∧l ((x ∨l z) ∧l (y ∨l z))) (sym (∨l-comm _ _ ∙ ∨l-absorb-∧l _ _)) ⟩
((x ∧l y) ∨l x) ∧l ((x ∨l z) ∧l (y ∨l z))
≡⟨ cong (((x ∧l y) ∨l x) ∧l_) (sym (∨l-rdist-∧l _ _ _)) ⟩
((x ∧l y) ∨l x) ∧l ((x ∧l y) ∨l z)
≡⟨ sym (∨l-ldist-∧l _ _ _) ⟩
(x ∧l y) ∨l (x ∧l z) ∎
∧l-rdist-∨l : ∀ x y z → (y ∨l z) ∧l x ≡ (y ∧l x) ∨l (z ∧l x)
∧l-rdist-∨l x y z = ∧l-comm _ x ∙∙ ∧l-ldist-∨l _ _ _ ∙∙ cong₂ (_∨l_) (∧l-comm _ _) (∧l-comm _ _)
makeDistLattice∨lOver∧l : {L : Type ℓ} (0l 1l : L) (_∨l_ _∧l_ : L → L → L)
(is-setL : isSet L)
(∨l-assoc : (x y z : L) → x ∨l (y ∨l z) ≡ (x ∨l y) ∨l z)
(∨l-rid : (x : L) → x ∨l 0l ≡ x)
(∨l-comm : (x y : L) → x ∨l y ≡ y ∨l x)
(∧l-assoc : (x y z : L) → x ∧l (y ∧l z) ≡ (x ∧l y) ∧l z)
(∧l-rid : (x : L) → x ∧l 1l ≡ x)
(∧l-comm : (x y : L) → x ∧l y ≡ y ∧l x)
(∨l-absorb-∧l : (x y : L) → x ∨l (x ∧l y) ≡ x)
(∨l-ldist-∧l : (x y z : L) → x ∨l (y ∧l z) ≡ (x ∨l y) ∧l (x ∨l z))
→ DistLattice ℓ
makeDistLattice∨lOver∧l 0l 1l _∨l_ _∧l_ is-setL ∨l-assoc ∨l-rid ∨l-comm
∧l-assoc ∧l-rid ∧l-comm
∨l-absorb-∧l ∨l-ldist-∧l =
_ , distlatticestr _ _ _ _
(makeIsDistLattice∨lOver∧l is-setL ∨l-assoc ∨l-rid ∨l-comm
∧l-assoc ∧l-rid ∧l-comm ∨l-absorb-∧l ∨l-ldist-∧l)
DistLatticeStr→LatticeStr : {A : Type ℓ} → DistLatticeStr A → LatticeStr A
DistLatticeStr→LatticeStr (distlatticestr _ _ _ _ H) =
latticestr _ _ _ _ (IsDistLattice.isLattice H)
DistLattice→Lattice : DistLattice ℓ → Lattice ℓ
DistLattice→Lattice (_ , distlatticestr _ _ _ _ H) =
_ , latticestr _ _ _ _ (IsDistLattice.isLattice H)
DistLatticeHom : (L : DistLattice ℓ) (M : DistLattice ℓ') → Type (ℓ-max ℓ ℓ')
DistLatticeHom L M = LatticeHom (DistLattice→Lattice L) (DistLattice→Lattice M)
IsDistLatticeEquiv : {A : Type ℓ} {B : Type ℓ'}
(L : DistLatticeStr A) (e : A ≃ B) (M : DistLatticeStr B) → Type (ℓ-max ℓ ℓ')
IsDistLatticeEquiv L e M =
IsLatticeHom (DistLatticeStr→LatticeStr L) (e .fst) (DistLatticeStr→LatticeStr M)
DistLatticeEquiv : (L : DistLattice ℓ) (M : DistLattice ℓ') → Type (ℓ-max ℓ ℓ')
DistLatticeEquiv L M = Σ[ e ∈ (L .fst ≃ M .fst) ] IsDistLatticeEquiv (L .snd) e (M .snd)
isPropIsDistLattice : {L : Type ℓ} (0l 1l : L) (_∨l_ _∧l_ : L → L → L)
→ isProp (IsDistLattice 0l 1l _∨l_ _∧l_)
isPropIsDistLattice 0l 1l _∨l_ _∧l_ (isdistlattice LL LD1 LD2) (isdistlattice ML MD1 MD2) =
λ i → isdistlattice (isPropIsLattice _ _ _ _ LL ML i) (isPropDist1 LD1 MD1 i)
(isPropDist2 LD2 MD2 i)
where
isSetL : isSet _
isSetL = LL .IsLattice.joinSemilattice .IsSemilattice.isCommMonoid .IsCommMonoid.isMonoid
.IsMonoid.isSemigroup .IsSemigroup.is-set
isPropDist1 : isProp ((x y z : _) → (x ∨l (y ∧l z) ≡ (x ∨l y) ∧l (x ∨l z))
× ((y ∧l z) ∨l x ≡ (y ∨l x) ∧l (z ∨l x)))
isPropDist1 = isPropΠ3 (λ _ _ _ → isProp× (isSetL _ _) (isSetL _ _))
isPropDist2 : isProp ((x y z : _) → (x ∧l (y ∨l z) ≡ (x ∧l y) ∨l (x ∧l z))
× ((y ∨l z) ∧l x ≡ (y ∧l x) ∨l (z ∧l x)))
isPropDist2 = isPropΠ3 (λ _ _ _ → isProp× (isSetL _ _) (isSetL _ _))
𝒮ᴰ-DistLattice : DUARel (𝒮-Univ ℓ) DistLatticeStr ℓ
𝒮ᴰ-DistLattice =
𝒮ᴰ-Record (𝒮-Univ _) IsDistLatticeEquiv
(fields:
data[ 0l ∣ null ∣ pres0 ]
data[ 1l ∣ null ∣ pres1 ]
data[ _∨l_ ∣ bin ∣ pres∨l ]
data[ _∧l_ ∣ bin ∣ pres∧l ]
prop[ isDistLattice ∣ (λ _ _ → isPropIsDistLattice _ _ _ _) ])
where
open DistLatticeStr
open IsLatticeHom
-- faster with some sharing
null = autoDUARel (𝒮-Univ _) (λ A → A)
bin = autoDUARel (𝒮-Univ _) (λ A → A → A → A)
DistLatticePath : (L M : DistLattice ℓ) → DistLatticeEquiv L M ≃ (L ≡ M)
DistLatticePath = ∫ 𝒮ᴰ-DistLattice .UARel.ua
|
algebraic-stack_agda0000_doc_5292 | {-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Relation.Binary.Raw.Construct.Intersection where
open import Cubical.Core.Everything
open import Cubical.Foundations.Function using (_∘_)
open import Cubical.Data.Prod
open import Cubical.Data.Sum.Base using (_⊎_; inl; inr; rec)
open import Cubical.Relation.Binary.Raw
open import Cubical.Relation.Nullary using (yes; no)
------------------------------------------------------------------------
-- Definition
_∩_ : ∀ {a b ℓ₁ ℓ₂} {A : Type a} {B : Type b} →
RawREL A B ℓ₁ → RawREL A B ℓ₂ → RawREL A B (ℓ-max ℓ₁ ℓ₂)
L ∩ R = λ i j → L i j × R i j
------------------------------------------------------------------------
-- Properties
module _ {a ℓ₁ ℓ₂} {A : Type a} (L : RawRel A ℓ₁) (R : RawRel A ℓ₂) where
reflexive : Reflexive L → Reflexive R → Reflexive (L ∩ R)
reflexive L-refl R-refl = L-refl , R-refl
symmetric : Symmetric L → Symmetric R → Symmetric (L ∩ R)
symmetric L-sym R-sym = map L-sym R-sym
transitive : Transitive L → Transitive R → Transitive (L ∩ R)
transitive L-trans R-trans (xLy , xRy) (yLz , yRz) = L-trans xLy yLz , R-trans xRy yRz
respects : ∀ {p} (P : A → Type p) →
P Respects L ⊎ P Respects R → P Respects (L ∩ R)
respects P resp (Lxy , Rxy) = rec (λ x → x Lxy) (λ x → x Rxy) resp
min : ∀ {⊤} → Minimum L ⊤ → Minimum R ⊤ → Minimum (L ∩ R) ⊤
min L-min R-min = intro L-min R-min
max : ∀ {⊥} → Maximum L ⊥ → Maximum R ⊥ → Maximum (L ∩ R) ⊥
max L-max R-max = intro L-max R-max
toNotEq : ToNotEq L ⊎ ToNotEq R → ToNotEq (L ∩ R)
toNotEq tonoteq (Lxy , Rxy) x≡y = rec (λ x → x Lxy x≡y) (λ y → y Rxy x≡y) tonoteq
irreflexive : Irreflexive L ⊎ Irreflexive R → Irreflexive (L ∩ R)
irreflexive irrefl (xLx , xRx) = rec (λ x → x xLx) (λ y → y xRx) irrefl
antisymmetric : Antisymmetric L ⊎ Antisymmetric R → Antisymmetric (L ∩ R)
antisymmetric (inl L-antisym) (Lxy , _) (Lyx , _) = L-antisym Lxy Lyx
antisymmetric (inr R-antisym) (_ , Rxy) (_ , Ryx) = R-antisym Rxy Ryx
module _ {a b ℓ₁ ℓ₂ ℓ₃} {A : Type a} {B : Type b}
(≈ : RawREL A B ℓ₁) {L : RawREL A B ℓ₂} {R : RawREL A B ℓ₃} where
implies : (≈ ⇒ L) → (≈ ⇒ R) → ≈ ⇒ (L ∩ R)
implies ≈⇒L ≈⇒R = intro ≈⇒L ≈⇒R
module _ {a ℓ₁ ℓ₂ ℓ₃} {A : Type a}
(≈ : RawRel A ℓ₁) (L : RawRel A ℓ₂) (R : RawRel A ℓ₃) where
respectsˡ : L Respectsˡ ≈ → R Respectsˡ ≈ → (L ∩ R) Respectsˡ ≈
respectsˡ L-resp R-resp x≈y = map (L-resp x≈y) (R-resp x≈y)
respectsʳ : L Respectsʳ ≈ → R Respectsʳ ≈ → (L ∩ R) Respectsʳ ≈
respectsʳ L-resp R-resp x≈y = map (L-resp x≈y) (R-resp x≈y)
respects₂ : L Respects₂ ≈ → R Respects₂ ≈ → (L ∩ R) Respects₂ ≈
respects₂ (Lʳ , Lˡ) (Rʳ , Rˡ) = respectsʳ Lʳ Rʳ , respectsˡ Lˡ Rˡ
module _ {a b ℓ₁ ℓ₂} {A : Type a} {B : Type b} {L : RawREL A B ℓ₁} {R : RawREL A B ℓ₂} where
decidable : Decidable L → Decidable R → Decidable (L ∩ R)
decidable L? R? x y = ×-dec (L? x y) (R? x y)
------------------------------------------------------------------------
-- Structures
module _ {a ℓ₁ ℓ₂} {A : Type a} {L : RawRel A ℓ₁} {R : RawRel A ℓ₂} where
isPartialEquivalence : IsPartialEquivalence L → IsPartialEquivalence R → IsPartialEquivalence (L ∩ R)
isPartialEquivalence eqₗ eqᵣ = record
{ symmetric = symmetric L R Eqₗ.symmetric Eqᵣ.symmetric
; transitive = transitive L R Eqₗ.transitive Eqᵣ.transitive
}
where module Eqₗ = IsPartialEquivalence eqₗ; module Eqᵣ = IsPartialEquivalence eqᵣ
isEquivalence : IsEquivalence L → IsEquivalence R → IsEquivalence (L ∩ R)
isEquivalence eqₗ eqᵣ = record
{ isPartialEquivalence = isPartialEquivalence Eqₗ.isPartialEquivalence Eqᵣ.isPartialEquivalence
; reflexive = reflexive L R Eqₗ.reflexive Eqᵣ.reflexive
}
where module Eqₗ = IsEquivalence eqₗ; module Eqᵣ = IsEquivalence eqᵣ
isDecEquivalence : IsDecEquivalence L → IsDecEquivalence R → IsDecEquivalence (L ∩ R)
isDecEquivalence eqₗ eqᵣ = record
{ isEquivalence = isEquivalence Eqₗ.isEquivalence Eqᵣ.isEquivalence
; _≟_ = decidable Eqₗ._≟_ Eqᵣ._≟_
}
where module Eqₗ = IsDecEquivalence eqₗ; module Eqᵣ = IsDecEquivalence eqᵣ
isPreorder : IsPreorder L → IsPreorder R → IsPreorder (L ∩ R)
isPreorder Oₗ Oᵣ = record
{ reflexive = reflexive L R Oₗ.reflexive Oᵣ.reflexive
; transitive = transitive L R Oₗ.transitive Oᵣ.transitive
}
where module Oₗ = IsPreorder Oₗ; module Oᵣ = IsPreorder Oᵣ
isPartialOrderˡ : IsPartialOrder L → IsPreorder R → IsPartialOrder (L ∩ R)
isPartialOrderˡ Oₗ Oᵣ = record
{ isPreorder = isPreorder Oₗ.isPreorder Oᵣ
; antisym = antisymmetric L R (inl Oₗ.antisym)
}
where module Oₗ = IsPartialOrder Oₗ; module Oᵣ = IsPreorder Oᵣ
isPartialOrderʳ : IsPreorder L → IsPartialOrder R → IsPartialOrder (L ∩ R)
isPartialOrderʳ Oₗ Oᵣ = record
{ isPreorder = isPreorder Oₗ Oᵣ.isPreorder
; antisym = antisymmetric L R (inr Oᵣ.antisym)
}
where module Oₗ = IsPreorder Oₗ; module Oᵣ = IsPartialOrder Oᵣ
isStrictPartialOrderˡ : IsStrictPartialOrder L → Transitive R → IsStrictPartialOrder (L ∩ R)
isStrictPartialOrderˡ Oₗ transitiveᵣ = record
{ irrefl = irreflexive L R (inl Oₗ.irrefl)
; transitive = transitive L R Oₗ.transitive transitiveᵣ
}
where module Oₗ = IsStrictPartialOrder Oₗ
isStrictPartialOrderʳ : Transitive L → IsStrictPartialOrder R → IsStrictPartialOrder (L ∩ R)
isStrictPartialOrderʳ transitiveₗ Oᵣ = record
{ irrefl = irreflexive L R (inr Oᵣ.irrefl)
; transitive = transitive L R transitiveₗ Oᵣ.transitive
}
where module Oᵣ = IsStrictPartialOrder Oᵣ
|
algebraic-stack_agda0000_doc_5293 | -- Andreas & Jesper, 2018-05-11, issue #3052 reported by identicalsnowflake
--
-- The problem here was that free variable collection had the standard
-- monoid instance of IntMap, which is just "randomly" picking one variant.
-- Thus, if we have both irrelevant and relevant occurrences of a variable,
-- we get whatever.
-- Now we keep the stronger information (relevant, see maxVarOcc).
{-# OPTIONS --show-irrelevant #-}
-- {-# OPTIONS -v tc.meta.assign:100 -v tc.meta.occurs:45 #-}
-- {-# OPTIONS -v tc.lhs:100 #-}
postulate
A : Set
B : A → Set
record Σ : Set where
constructor _,_
field
proj₁ : A
proj₂ : B proj₁
open Σ public
record Foo : Set where
constructor foo
field
.theFoo : Σ
test : Foo → Foo
test (foo (a , b)) = foo (a , thm a b) -- Error at b
-- Constraint: a, b ⊢ ?0 .a .b a = B a : Set
-- Note the irrelevant occurrence .a and the relevant occurrence a
-- on the lhs of this constraint!
where
-- Meta ?0 : [.a, .b, x] Set
postulate thm : (x : A) (y : _) → B x
-- Underscore should solved by B x
-- thm x y = y -- WAS: Worked only if definition is given (which
-- Should succeed.
|
algebraic-stack_agda0000_doc_5294 | module Ex3Lec where
----------------------------------------------------------------------------
-- EXERCISE 3 -- MONADS FOR HUTTON'S RAZOR
--
-- VALUE: 15%
-- DEADLINE: 5pm, Friday 20 November (week 9)
--
-- DON'T SUBMIT, COMMIT!
--
-- The purpose of this exercise is to introduce you to some useful
-- mathematical structures and build good tools for working with
-- vectors
----------------------------------------------------------------------------
open import CS410-Prelude
open import CS410-Monoid
open import CS410-Nat
open import CS410-Vec
open import CS410-Functor
-- HINT: your tasks are heralded with the eminently searchable tag, "???"
----------------------------------------------------------------------------
-- HUTTON'S RAZOR
----------------------------------------------------------------------------
HVal : Set -- the set of *values* for Hutton's Razor
HVal = Two + Nat -- Booleans or natural numbers
foo : HVal
foo = tt , ff
goo : HVal
goo = ff , 42
data HExp (X : Set) : Set where
var : X -> HExp X -- variables
val : HVal -> HExp X -- values
_+H_ _>=H_ : (e1 e2 : HExp X) -> HExp X -- addition, comparison
ifH_then_else_ : (e1 e2 e3 : HExp X) -> HExp X -- conditional
_>=2_ : Nat -> Nat -> Two
x >=2 zero = tt
zero >=2 suc _ = ff
suc m >=2 suc n = m >=2 n
----------------------------------------------------------------------------
-- ??? 3.1 the HExp syntax-with-substitution monad (score: ? / 2)
----------------------------------------------------------------------------
-- Show that HExp is a monad, where the "bind" operation performs
-- simultaneous substitution (transforming all the variables in a term).
hExpMonad : Monad HExp
hExpMonad = record { return = {!!} ; _>>=_ = {!!} }
----------------------------------------------------------------------------
-- ??? 3.2 the error management monad (score: ? / 1)
----------------------------------------------------------------------------
-- show that "+ E" is monadic, generalising the "Maybe" monad by allowing
-- some sort of error report
errorMonad : (E : Set) -> Monad \ V -> V + E -- "value or error"
errorMonad E = {!!}
----------------------------------------------------------------------------
-- ??? 3.3 the environment monad transformer (score: ? / 1)
----------------------------------------------------------------------------
-- show that "+ E" is monadic, generalising the "Maybe" monad by allowing
-- some sort of error report
envMonad : (G : Set){M : Set -> Set} -> Monad M ->
Monad \ V -> G -> M V -- "computation in an environment"
envMonad G MM = {!!} where
open Monad MM
----------------------------------------------------------------------------
-- ??? 3.4 interpreting Hutton's Razor (score: ? / 3)
----------------------------------------------------------------------------
-- Implement an interpreter for Hutton's Razor.
-- You will need to construct a type to represent possible run-time errors.
-- Ensure that addition and comparison act on numbers, not Booleans.
-- Ensure that the condition in an "if" is a Boolean, not a number.
data InterpretError : Set where
-- helpful things to build
Env : Set -> Set -- an environment for a given set of variables
Env X = X -> HVal
Compute : Set{- variables -} -> Set{- values -} -> Set
Compute X V = Env X -> V + InterpretError -- how to compute a V
computeMonad : {X : Set} -> Monad (Compute X)
computeMonad = {!!} -- build this from the above parts
-- This operation should explain how to get the value of a variable
-- from the environment.
varVal : {X : Set} -> X -> Compute X HVal
varVal x = {!!}
-- These operations should ensure that you get the sort of value
-- that you want, in order to ensure that you don't do bogus
-- computation.
mustBeNat : {X : Set} -> HVal -> Compute X Nat
mustBeNat v = {!!}
mustBeTwo : {X : Set} -> HVal -> Compute X Two
mustBeTwo v = {!!}
-- Now, you're ready to go. Don't introduce the environent explicitly.
-- Use the monad to thread it.
interpret : {X : Set} -> HExp X -> Compute X HVal
interpret {X} = go where
open Monad (envMonad (Env X) (errorMonad InterpretError))
go : HExp X -> Env X -> HVal + InterpretError
go t = {!!}
|
algebraic-stack_agda0000_doc_5295 | {-# OPTIONS --type-in-type #-}
open import Data.Product
data ⊥ : Set where
-- f doesn't type check unless we put the equality type in Set
data _≡_ {ℓ} {A : Set ℓ} (a : A) : A → Set where
refl : a ≡ a
subst : ∀ {ℓ ℓ′} {A : Set ℓ} {a b : A} → (P : A → Set ℓ′) → (p : a ≡ b) → P a → P b
subst _ refl pa = pa
¬_ : ∀ {ℓ} → Set ℓ → Set ℓ
¬ A = A → ⊥
℘ : ∀ {ℓ} → Set ℓ → Set _
℘ {ℓ} S = S → Set
{-# NO_POSITIVITY_CHECK #-}
record Bad : Set₁ where
constructor mkBad
field bad : ℘ (℘ Bad)
f : ℘ Bad → Bad
f p = mkBad (_≡ p)
fInj : ∀ {p q} → f p ≡ f q → p ≡ q
fInj {p} fp≡fq = subst (λ p≡ → p≡ p) (badInj fp≡fq) refl
where
badInj : ∀ {a b} → mkBad a ≡ mkBad b → a ≡ b
badInj refl = refl
-- type-in-type is for here onwards
P₀ : ℘ Bad
P₀ x = Σ[ P ∈ ℘ Bad ] x ≡ f P × ¬ (P x)
x₀ : Bad
x₀ = f P₀
P₀x₀→¬P₀x₀ : P₀ x₀ → ¬ P₀ x₀
P₀x₀→¬P₀x₀ (P , x₀≡fP , ¬Px₀) P₀x₀ = ¬Px₀ (subst (λ P → P x₀) (fInj x₀≡fP) P₀x₀)
¬P₀x₀→P₀x₀ : ¬ P₀ x₀ → P₀ x₀
¬P₀x₀→P₀x₀ ¬P₀x₀ = P₀ , refl , ¬P₀x₀
¬P₀x₀ : ¬ P₀ x₀
¬P₀x₀ P₀x₀ = P₀x₀→¬P₀x₀ P₀x₀ P₀x₀
false : ⊥
false = ¬P₀x₀ (¬P₀x₀→P₀x₀ ¬P₀x₀) |
algebraic-stack_agda0000_doc_4288 | {-# OPTIONS --cubical --safe #-}
-- Counterpoint Exercises
module Exercises where
open import MidiEvent
open import Note
open import Pitch
open import Data.Fin
open import Data.List
open import Data.Nat
-- Exercise 5.4
cantusFirmus : List Pitch
cantusFirmus = a 4 ∷ c 5 ∷ b 4 ∷ c 5 ∷ d 5 ∷ e 5 ∷ c 5 ∷ b 4 ∷ a 4 ∷ []
cfNotes : List Note
cfNotes = Data.List.map (λ p → tone whole p) cantusFirmus
----
instrument : InstrumentNumber-1
instrument = # 0 -- piano
channel : Channel-1
channel = # 0
tempo : ℕ
tempo = 120
cfTrack : List MidiTrack
cfTrack = track "Piano" instrument channel tempo (notes→events defaultVelocity cfNotes) ∷ []
|
algebraic-stack_agda0000_doc_4289 | module examplesPaperJFP.SpaceShipSimpleVar where
open import SizedIO.Base
open import StateSizedIO.GUI.BaseStateDependent
open import Data.Bool.Base
open import Data.List.Base
open import Data.Integer
open import Data.Product hiding (map)
open import SizedIO.Object
open import SizedIO.IOObject
open import NativeIO
open import StateSizedIO.GUI.WxBindingsFFI
open import StateSizedIO.GUI.VariableList
open import StateSizedIO.GUI.WxGraphicsLib
open import StateSized.GUI.BitMaps
VarType = ℤ
varInit : VarType
varInit = (+ 150)
onPaint : ∀{i} → VarType → DC → Rect → IO GuiLev1Interface i VarType
onPaint z dc rect = exec (drawBitmap dc ship (z , (+ 150)) true) λ _ →
return z
moveSpaceShip : ∀{i} → Frame → VarType → IO GuiLev1Interface i VarType
moveSpaceShip fra z = return (z + (+ 20))
callRepaint : ∀{i} → Frame → VarType → IO GuiLev1Interface i VarType
callRepaint fra z = exec (repaint fra) λ _ → return z
buttonHandler : ∀{i} → Frame → List (VarType → IO GuiLev1Interface i VarType)
buttonHandler fra = moveSpaceShip fra ∷ [ callRepaint fra ]
program : ∀{i} → IOˢ GuiLev2Interface i (λ _ → Unit) []
program = execˢ (level1C makeFrame) λ fra →
execˢ (level1C (makeButton fra)) λ bt →
execˢ (level1C (addButton fra bt)) λ _ →
execˢ (createVar varInit) λ _ →
execˢ (setButtonHandler bt (moveSpaceShip fra
∷ [ callRepaint fra ])) λ _ →
execˢ (setOnPaint fra [ onPaint ])
returnˢ
main : NativeIO Unit
main = start (translateLev2 program)
|
algebraic-stack_agda0000_doc_4290 | -- {-# OPTIONS --no-coverage #-}
-- {-# OPTIONS -v tc.cover:20 #-}
open import Common.Bool
open import Common.Equality
_∨_ : Bool → Bool → Bool
a ∨ b = if a then true else b
module Works where
data Term : Bool → Set where
I : Term false
App : ∀ a b c → a ∨ b ≡ c → Term a → Term b → Term c
-- The following clause works for the coverage checker:
test : Term false → Set
test (App false false .false refl I x) = Bool
module Fails where
data Term : Bool -> Set where
I : Term false
App : ∀ a b c → Term a → Term b → a ∨ b ≡ c → Term c
-- If we put the equality proof later in App, it fails:
test : Term false → Set
test (App false false .false I x refl) = Bool
-- The following checks, until you split at p.
-- test (App false false .false I x p) = {!p!}
|
algebraic-stack_agda0000_doc_4291 | {-# OPTIONS --without-K --safe #-}
open import Algebra
module Data.FingerTree.View
{r m}
(ℳ : Monoid r m)
where
open import Level using (_⊔_)
open import Data.Product
open import Function
open import Data.List as List using (List; _∷_; [])
open import Data.FingerTree.Structures ℳ
open import Data.FingerTree.Reasoning ℳ
open import Data.FingerTree.Measures ℳ
open import Data.FingerTree.Cons ℳ
open σ ⦃ ... ⦄
{-# DISPLAY σ.μ _ = μ #-}
{-# DISPLAY μ-tree _ x = μ x #-}
{-# DISPLAY μ-deep _ x = μ x #-}
open Monoid ℳ renaming (Carrier to 𝓡)
infixr 5 _◃_
data Viewₗ {a b} (A : Set a) (Σ : Set b) : Set (a ⊔ b) where
nilₗ : Viewₗ A Σ
_◃_ : A → Σ → Viewₗ A Σ
instance
σ-Viewₗ : ∀ {a b} {A : Set a} {Σ : Set b} ⦃ _ : σ A ⦄ ⦃ _ : σ Σ ⦄ → σ (Viewₗ A Σ)
μ ⦃ σ-Viewₗ ⦄ nilₗ = ε
μ ⦃ σ-Viewₗ ⦄ (x ◃ xs) = μ x ∙ μ xs
viewₗ : ∀ {a} {Σ : Set a} ⦃ _ : σ Σ ⦄ → (xs : Tree Σ) → μ⟨ Viewₗ Σ (Tree Σ) ⟩≈ (μ xs)
viewₗ empty = nilₗ ⇑
viewₗ (single x) = (x ◃ empty) ⇑[ ℳ ↯ ]
viewₗ (deep (𝓂 ↤ (D₂ a b & m & rs) ⇑[ 𝓂≈ ])) = a ◃ deep ⟪ D₁ b & m & rs ⇓⟫ ⇑[ ℳ ↯ ] ≈[ 𝓂≈ ]′
viewₗ (deep (𝓂 ↤ (D₃ a b c & m & rs) ⇑[ 𝓂≈ ])) = a ◃ deep ⟪ D₂ b c & m & rs ⇓⟫ ⇑[ ℳ ↯ ] ≈[ 𝓂≈ ]′
viewₗ (deep (𝓂 ↤ (D₄ a b c d & m & rs) ⇑[ 𝓂≈ ])) = a ◃ deep ⟪ D₃ b c d & m & rs ⇓⟫ ⇑[ ℳ ↯ ] ≈[ 𝓂≈ ]′
viewₗ (deep (𝓂 ↤ (D₁ a & m & rs) ⇑[ 𝓂≈ ])) with viewₗ m
... | (μ⟨y⟩ ↤ N₂ y₁ y₂ ⇑[ yp ]) ◃ ys ⇑[ p ] = a ◃ deep (μ m ∙ μ rs ↤ D₂ y₁ y₂ & ys & rs ⇑[ ℳ ↯ ] ≈[ ≪∙ (≪∙ yp ⍮ p) ]′) ⇑[ 𝓂≈ ]
... | (μ⟨y⟩ ↤ N₃ y₁ y₂ y₃ ⇑[ yp ]) ◃ ys ⇑[ p ] = a ◃ deep (μ m ∙ μ rs ↤ D₃ y₁ y₂ y₃ & ys & rs ⇑[ ℳ ↯ ] ≈[ ≪∙ (≪∙ yp ⍮ p) ]′) ⇑[ 𝓂≈ ]
... | nilₗ ⇑[ p ] = (digitToTree rs [ _ ∙> r ⟿ r ] >>= (λ rs′ → (a ◃ rs′) ⇑)) ≈[ ∙≫ sym (identityˡ _) ⍮ (∙≫ ≪∙ p) ⍮ 𝓂≈ ]
infixl 5 _▹_
data Viewᵣ {a b} (A : Set a) (Σ : Set b) : Set (a ⊔ b) where
nilᵣ : Viewᵣ A Σ
_▹_ : Σ → A → Viewᵣ A Σ
instance
σ-Viewᵣ : ∀ {a b} {A : Set a} {Σ : Set b} ⦃ _ : σ A ⦄ ⦃ _ : σ Σ ⦄ → σ (Viewᵣ A Σ)
μ ⦃ σ-Viewᵣ ⦄ nilᵣ = ε
μ ⦃ σ-Viewᵣ ⦄ (xs ▹ x) = μ xs ∙ μ x
viewᵣ : ∀ {a} {Σ : Set a} ⦃ _ : σ Σ ⦄ → (xs : Tree Σ) → μ⟨ Viewᵣ Σ (Tree Σ) ⟩≈ (μ xs)
viewᵣ empty = nilᵣ ⇑
viewᵣ (single x) = empty ▹ x ⇑[ ℳ ↯ ]
viewᵣ (deep (𝓂 ↤ (ls & m & D₂ a b ) ⇑[ 𝓂≈ ])) = (deep ⟪ ls & m & D₁ a ⇓⟫ ▹ b) ⇑[ ℳ ↯ ] ≈[ 𝓂≈ ]′
viewᵣ (deep (𝓂 ↤ (ls & m & D₃ a b c ) ⇑[ 𝓂≈ ])) = (deep ⟪ ls & m & D₂ a b ⇓⟫ ▹ c) ⇑[ ℳ ↯ ] ≈[ 𝓂≈ ]′
viewᵣ (deep (𝓂 ↤ (ls & m & D₄ a b c d) ⇑[ 𝓂≈ ])) = (deep ⟪ ls & m & D₃ a b c ⇓⟫ ▹ d) ⇑[ ℳ ↯ ] ≈[ 𝓂≈ ]′
viewᵣ (deep (𝓂 ↤ (ls & m & D₁ a) ⇑[ 𝓂≈ ])) with viewᵣ m
... | ys ▹ (μ⟨y⟩ ↤ N₂ y₁ y₂ ⇑[ yp ]) ⇑[ p ] = deep (μ ls ∙ μ m ↤ ls & ys & D₂ y₁ y₂ ⇑[ ℳ ↯ ] ≈[ ∙≫ (∙≫ yp ⍮ p) ]′) ▹ a ⇑[ ℳ ↯ ] ≈[ 𝓂≈ ]′
... | ys ▹ (μ⟨y⟩ ↤ N₃ y₁ y₂ y₃ ⇑[ yp ]) ⇑[ p ] = deep (μ ls ∙ μ m ↤ ls & ys & D₃ y₁ y₂ y₃ ⇑[ ℳ ↯ ] ≈[ ∙≫ (∙≫ yp ⍮ p) ]′) ▹ a ⇑[ ℳ ↯ ] ≈[ 𝓂≈ ]′
... | nilᵣ ⇑[ p ] = (digitToTree ls [ l <∙ _ ⟿ l ] >>= (λ ls′ → (ls′ ▹ a) ⇑)) ≈[ ℳ ↯ ↣ μ ls ∙ (ε ∙ μ a) ] ≈[ ∙≫ ≪∙ p ⍮ 𝓂≈ ]′
deepₗ : ∀ {a} {Σ : Set a} ⦃ _ : σ Σ ⦄ → (l : List Σ) → (m : Tree ⟪ Node Σ ⟫) → (r : Digit Σ) → μ⟨ Tree Σ ⟩≈ (μ l ∙ (μ m ∙ μ r))
deepₗ [] m r with viewₗ m
deepₗ [] m r | nilₗ ⇑[ n≈ ] = digitToTree r ≈[ ℳ ↯ ↣ ε ∙ (ε ∙ μ r) ] ≈[ ∙≫ ≪∙ n≈ ]′
deepₗ [] m r | ((μ⟨y⟩ ↤ N₂ y₁ y₂ ⇑[ yp ]) ◃ ys) ⇑[ ys≈ ] = deep (μ m ∙ μ r ↤ D₂ y₁ y₂ & ys & r ⇑[ ≪∙ yp ⍮ sym (assoc _ _ _) ⍮ ≪∙ ys≈ ]) ⇑[ ℳ ↯ ]
deepₗ [] m r | ((μ⟨y⟩ ↤ N₃ y₁ y₂ y₃ ⇑[ yp ]) ◃ ys) ⇑[ ys≈ ] = deep (μ m ∙ μ r ↤ D₃ y₁ y₂ y₃ & ys & r ⇑[ ≪∙ yp ⍮ sym (assoc _ _ _) ⍮ ≪∙ ys≈ ]) ⇑[ ℳ ↯ ]
deepₗ (l ∷ ls) m r = go l ls m r
where
go : ∀ {a} {Σ : Set a} ⦃ _ : σ Σ ⦄ → (l : Σ) → (ls : List Σ) → (m : Tree ⟪ Node Σ ⟫) → (r : Digit Σ) → μ⟨ Tree Σ ⟩≈ (μ l ∙ μ ls ∙ (μ m ∙ μ r))
go l [] m r = deep ⟪ D₁ l & m & r ⇓⟫ ⇑[ ℳ ↯ ]
go l₁ (l₂ ∷ ls) m r = (go l₂ ls m r [ _ ∙> ls′ ⟿ ls′ ] >>= (l₁ ◂_)) ≈[ ℳ ↯ ]
deepᵣ : ∀ {a} {Σ : Set a} ⦃ _ : σ Σ ⦄ → (l : Digit Σ) → (m : Tree ⟪ Node Σ ⟫) → (r : List Σ) → μ⟨ Tree Σ ⟩≈ (μ l ∙ (μ m ∙ μ r))
deepᵣ l m [] with viewᵣ m
deepᵣ l m [] | nilᵣ ⇑[ p ] = digitToTree l ≈[ sym (identityʳ _) ⍮ ∙≫ (p ⍮ sym (identityʳ _)) ]
deepᵣ l m [] | (ys ▹ (μ⟨y⟩ ↤ N₂ y₁ y₂ ⇑[ μ⟨y⟩≈ ])) ⇑[ p ] = deep (μ l ∙ μ m ↤ l & ys & D₂ y₁ y₂ ⇑[ ∙≫ (∙≫ μ⟨y⟩≈ ⍮ p) ]) ⇑[ ℳ ↯ ]
deepᵣ l m [] | (ys ▹ (μ⟨y⟩ ↤ N₃ y₁ y₂ y₃ ⇑[ μ⟨y⟩≈ ])) ⇑[ p ] = deep (μ l ∙ μ m ↤ l & ys & D₃ y₁ y₂ y₃ ⇑[ ∙≫ (∙≫ μ⟨y⟩≈ ⍮ p) ]) ⇑[ ℳ ↯ ]
deepᵣ l m (r ∷ rs) = go (deep ⟪ l & m & D₁ r ⇓⟫ ⇑) rs ≈[ ℳ ↯ ]
where
go : ∀ {a} {Σ : Set a} ⦃ _ : σ Σ ⦄ → ∀ {xs} → μ⟨ Tree Σ ⟩≈ xs → (rs : List Σ) → μ⟨ Tree Σ ⟩≈ (xs ∙ μ rs)
go xs [] = xs ≈[ sym (identityʳ _) ]
go xs (r ∷ rs) = go (xs [ sz <∙ _ ⟿ sz ] >>= (_▸ r)) rs ≈[ ℳ ↯ ]
|
algebraic-stack_agda0000_doc_4292 | module Logic.Predicate.Multi where
open import Data.Tuple.RaiseTypeᵣ
open import Function.Multi
open import Function.Multi.Functions
open import Numeral.Natural
open import Logic.Predicate
open import Logic
-- Universal quantification of multiple variables.
-- Example:
-- ∀₊(3) P = ∀{x}{y}{z} → P(x)(y)(z)
∀₊ : (n : ℕ) → ∀{ℓ}{ℓ𝓈}{As : Types{n}(ℓ𝓈)} → (As ⇉ Stmt{ℓ}) → Stmt
∀₊(n) = quantifier₊(n) ∀ₗ
-- Existential quantification of multiple variables.
-- Example:
-- ∃₊(3) P = ∃(x ↦ ∃(y ↦ ∃(z ↦ P(x)(y)(z))))
∃₊ : (n : ℕ) → ∀{ℓ}{ℓ𝓈}{As : Types{n}(ℓ𝓈)} → (As ⇉ Stmt{ℓ}) → Stmt
∃₊(n) = quantifier₊(n) ∃
|
algebraic-stack_agda0000_doc_4293 | {-# OPTIONS --cubical --safe --no-sized-types --no-guardedness
--no-subtyping #-}
module Agda.Builtin.Cubical.Glue where
open import Agda.Primitive
open import Agda.Builtin.Sigma
open import Agda.Primitive.Cubical renaming (primINeg to ~_; primIMax to _∨_; primIMin to _∧_;
primHComp to hcomp; primTransp to transp; primComp to comp;
itIsOne to 1=1)
open import Agda.Builtin.Cubical.Path
open import Agda.Builtin.Cubical.Sub renaming (Sub to _[_↦_]; primSubOut to ouc)
import Agda.Builtin.Cubical.HCompU as HCompU
module Helpers = HCompU.Helpers
open Helpers
-- We make this a record so that isEquiv can be proved using
-- copatterns. This is good because copatterns don't get unfolded
-- unless a projection is applied so it should be more efficient.
record isEquiv {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} (f : A → B) : Set (ℓ ⊔ ℓ') where
no-eta-equality
field
equiv-proof : (y : B) → isContr (fiber f y)
open isEquiv public
infix 4 _≃_
_≃_ : ∀ {ℓ ℓ'} (A : Set ℓ) (B : Set ℓ') → Set (ℓ ⊔ ℓ')
A ≃ B = Σ (A → B) \ f → (isEquiv f)
equivFun : ∀ {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} → A ≃ B → A → B
equivFun e = fst e
-- Improved version of equivProof compared to Lemma 5 in CCHM. We put
-- the (φ = i0) face in contr' making it be definitionally c in this
-- case. This makes the computational behavior better, in particular
-- for transp in Glue.
equivProof : ∀ {la lt} (T : Set la) (A : Set lt) → (w : T ≃ A) → (a : A)
→ ∀ ψ → (Partial ψ (fiber (w .fst) a)) → fiber (w .fst) a
equivProof A B w a ψ fb = contr' {A = fiber (w .fst) a} (w .snd .equiv-proof a) ψ fb
where
contr' : ∀ {ℓ} {A : Set ℓ} → isContr A → (φ : I) → (u : Partial φ A) → A
contr' {A = A} (c , p) φ u = hcomp (λ i → λ { (φ = i1) → p (u 1=1) i
; (φ = i0) → c }) c
{-# BUILTIN EQUIV _≃_ #-}
{-# BUILTIN EQUIVFUN equivFun #-}
{-# BUILTIN EQUIVPROOF equivProof #-}
primitive
primGlue : ∀ {ℓ ℓ'} (A : Set ℓ) {φ : I}
→ (T : Partial φ (Set ℓ')) → (e : PartialP φ (λ o → T o ≃ A))
→ Set ℓ'
prim^glue : ∀ {ℓ ℓ'} {A : Set ℓ} {φ : I}
→ {T : Partial φ (Set ℓ')} → {e : PartialP φ (λ o → T o ≃ A)}
→ (t : PartialP φ T) → (a : A) → primGlue A T e
prim^unglue : ∀ {ℓ ℓ'} {A : Set ℓ} {φ : I}
→ {T : Partial φ (Set ℓ')} → {e : PartialP φ (λ o → T o ≃ A)}
→ primGlue A T e → A
-- Needed for transp in Glue.
primFaceForall : (I → I) → I
module _ {ℓ : I → Level} (P : (i : I) → Set (ℓ i)) where
private
E : (i : I) → Set (ℓ i)
E = λ i → P i
~E : (i : I) → Set (ℓ (~ i))
~E = λ i → P (~ i)
A = P i0
B = P i1
f : A → B
f x = transp E i0 x
g : B → A
g y = transp ~E i0 y
u : ∀ i → A → E i
u i x = transp (λ j → E (i ∧ j)) (~ i) x
v : ∀ i → B → E i
v i y = transp (λ j → ~E ( ~ i ∧ j)) i y
fiberPath : (y : B) → (xβ0 xβ1 : fiber f y) → xβ0 ≡ xβ1
fiberPath y (x0 , β0) (x1 , β1) k = ω , λ j → δ (~ j) where
module _ (j : I) where
private
sys : A → ∀ i → PartialP (~ j ∨ j) (λ _ → E (~ i))
sys x i (j = i0) = v (~ i) y
sys x i (j = i1) = u (~ i) x
ω0 = comp ~E (sys x0) ((β0 (~ j)))
ω1 = comp ~E (sys x1) ((β1 (~ j)))
θ0 = fill ~E (sys x0) (inc (β0 (~ j)))
θ1 = fill ~E (sys x1) (inc (β1 (~ j)))
sys = λ {j (k = i0) → ω0 j ; j (k = i1) → ω1 j}
ω = hcomp sys (g y)
θ = hfill sys (inc (g y))
δ = λ (j : I) → comp E
(λ i → λ { (j = i0) → v i y ; (k = i0) → θ0 j (~ i)
; (j = i1) → u i ω ; (k = i1) → θ1 j (~ i) })
(θ j)
γ : (y : B) → y ≡ f (g y)
γ y j = comp E (λ i → λ { (j = i0) → v i y
; (j = i1) → u i (g y) }) (g y)
pathToisEquiv : isEquiv f
pathToisEquiv .equiv-proof y .fst .fst = g y
pathToisEquiv .equiv-proof y .fst .snd = sym (γ y)
pathToisEquiv .equiv-proof y .snd = fiberPath y _
pathToEquiv : A ≃ B
pathToEquiv .fst = f
pathToEquiv .snd = pathToisEquiv
|
algebraic-stack_agda0000_doc_4294 | {-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Algebra.RingSolver.NatAsAlmostRing where
open import Cubical.Foundations.Prelude
open import Cubical.Data.Nat
open import Cubical.Algebra.RingSolver.AlmostRing
open import Cubical.Algebra.Semigroup
open import Cubical.Algebra.Monoid
open import Cubical.Algebra.AbGroup
ℕAsAlmostRing : AlmostRing {ℓ-zero}
ℕAsAlmostRing = almostring ℕ 0 1 _+_ _·_ (λ n → n) (isalmostring
(ismonoid (issemigroup isSetℕ +-assoc) (λ n → (+-zero n) , refl))
(ismonoid (issemigroup isSetℕ ·-assoc) λ n → (·-identityʳ n) , (·-identityˡ n))
+-comm
·-comm
(λ k l n → sym (·-distribˡ k l n) )
(λ k l n → sym (·-distribʳ k l n))
(λ _ _ → refl) (λ _ _ → refl)
(λ _ → refl) λ x → sym (0≡m·0 x))
|
algebraic-stack_agda0000_doc_4295 | open import Nat
open import Prelude
open import core
open import contexts
open import lemmas-consistency
open import type-assignment-unicity
open import binders-disjoint-checks
open import lemmas-subst-ta
module preservation where
-- if d and d' both result from filling the hole in ε with terms of the
-- same type, they too have the same type.
wt-different-fill : ∀{ Δ Γ d ε d1 d2 d' τ τ1 } →
d == ε ⟦ d1 ⟧ →
Δ , Γ ⊢ d :: τ →
Δ , Γ ⊢ d1 :: τ1 →
Δ , Γ ⊢ d2 :: τ1 →
d' == ε ⟦ d2 ⟧ →
Δ , Γ ⊢ d' :: τ
wt-different-fill FHOuter D1 D2 D3 FHOuter
with type-assignment-unicity D1 D2
... | refl = D3
wt-different-fill (FHAp1 eps) (TAAp D1 D2) D3 D4 (FHAp1 D5) = TAAp (wt-different-fill eps D1 D3 D4 D5) D2
wt-different-fill (FHAp2 eps) (TAAp D1 D2) D3 D4 (FHAp2 D5) = TAAp D1 (wt-different-fill eps D2 D3 D4 D5)
wt-different-fill (FHNEHole eps) (TANEHole x D1 x₁) D2 D3 (FHNEHole D4) = TANEHole x (wt-different-fill eps D1 D2 D3 D4) x₁
wt-different-fill (FHCast eps) (TACast D1 x) D2 D3 (FHCast D4) = TACast (wt-different-fill eps D1 D2 D3 D4) x
wt-different-fill (FHFailedCast x) (TAFailedCast y x₁ x₂ x₃) D3 D4 (FHFailedCast eps) = TAFailedCast (wt-different-fill x y D3 D4 eps) x₁ x₂ x₃
-- if a well typed term results from filling the hole in ε, then the term
-- that filled the hole is also well typed
wt-filling : ∀{ ε Δ Γ d τ d' } →
Δ , Γ ⊢ d :: τ →
d == ε ⟦ d' ⟧ →
Σ[ τ' ∈ htyp ] (Δ , Γ ⊢ d' :: τ')
wt-filling TAConst FHOuter = _ , TAConst
wt-filling (TAVar x₁) FHOuter = _ , TAVar x₁
wt-filling (TALam f ta) FHOuter = _ , TALam f ta
wt-filling (TAAp ta ta₁) FHOuter = _ , TAAp ta ta₁
wt-filling (TAAp ta ta₁) (FHAp1 eps) = wt-filling ta eps
wt-filling (TAAp ta ta₁) (FHAp2 eps) = wt-filling ta₁ eps
wt-filling (TAEHole x x₁) FHOuter = _ , TAEHole x x₁
wt-filling (TANEHole x ta x₁) FHOuter = _ , TANEHole x ta x₁
wt-filling (TANEHole x ta x₁) (FHNEHole eps) = wt-filling ta eps
wt-filling (TACast ta x) FHOuter = _ , TACast ta x
wt-filling (TACast ta x) (FHCast eps) = wt-filling ta eps
wt-filling (TAFailedCast x y z w) FHOuter = _ , TAFailedCast x y z w
wt-filling (TAFailedCast x x₁ x₂ x₃) (FHFailedCast y) = wt-filling x y
-- instruction transitions preserve type
preserve-trans : ∀{ Δ Γ d τ d' } →
binders-unique d →
Δ , Γ ⊢ d :: τ →
d →> d' →
Δ , Γ ⊢ d' :: τ
preserve-trans bd TAConst ()
preserve-trans bd (TAVar x₁) ()
preserve-trans bd (TALam _ ta) ()
preserve-trans (BUAp (BULam bd x₁) bd₁ (BDLam x₂ x₃)) (TAAp (TALam apt ta) ta₁) ITLam = lem-subst apt x₂ bd₁ ta ta₁
preserve-trans bd (TAAp (TACast ta TCRefl) ta₁) ITApCast = TACast (TAAp ta (TACast ta₁ TCRefl)) TCRefl
preserve-trans bd (TAAp (TACast ta (TCArr x x₁)) ta₁) ITApCast = TACast (TAAp ta (TACast ta₁ (~sym x))) x₁
preserve-trans bd (TAEHole x x₁) ()
preserve-trans bd (TANEHole x ta x₁) ()
preserve-trans bd (TACast ta x) (ITCastID) = ta
preserve-trans bd (TACast (TACast ta x) x₁) (ITCastSucceed x₂) = ta
preserve-trans bd (TACast ta x) (ITGround (MGArr x₁)) = TACast (TACast ta (TCArr TCHole1 TCHole1)) TCHole1
preserve-trans bd (TACast ta TCHole2) (ITExpand (MGArr x₁)) = TACast (TACast ta TCHole2) (TCArr TCHole2 TCHole2)
preserve-trans bd (TACast (TACast ta x) x₁) (ITCastFail w y z) = TAFailedCast ta w y z
preserve-trans bd (TAFailedCast x y z q) ()
lem-bd-ε1 : ∀{ d ε d0} → d == ε ⟦ d0 ⟧ → binders-unique d → binders-unique d0
lem-bd-ε1 FHOuter bd = bd
lem-bd-ε1 (FHAp1 eps) (BUAp bd bd₁ x) = lem-bd-ε1 eps bd
lem-bd-ε1 (FHAp2 eps) (BUAp bd bd₁ x) = lem-bd-ε1 eps bd₁
lem-bd-ε1 (FHNEHole eps) (BUNEHole bd x) = lem-bd-ε1 eps bd
lem-bd-ε1 (FHCast eps) (BUCast bd) = lem-bd-ε1 eps bd
lem-bd-ε1 (FHFailedCast eps) (BUFailedCast bd) = lem-bd-ε1 eps bd
-- this is the main preservation theorem, gluing together the above
preservation : {Δ : hctx} {d d' : ihexp} {τ : htyp} {Γ : tctx} →
binders-unique d →
Δ , Γ ⊢ d :: τ →
d ↦ d' →
Δ , Γ ⊢ d' :: τ
preservation bd D (Step x x₁ x₂)
with wt-filling D x
... | (_ , wt) = wt-different-fill x D wt (preserve-trans (lem-bd-ε1 x bd) wt x₁) x₂
-- note that the exact statement of preservation in the paper, where Γ is
-- empty indicating that the terms are closed, is an immediate corrolary
-- of the slightly more general statement above.
preservation' : {Δ : hctx} {d d' : ihexp} {τ : htyp} →
binders-unique d →
Δ , ∅ ⊢ d :: τ →
d ↦ d' →
Δ , ∅ ⊢ d' :: τ
preservation' = preservation
|
algebraic-stack_agda0000_doc_4296 | {-# OPTIONS --without-K --safe #-}
module Categories.NaturalTransformation.NaturalIsomorphism.Properties where
open import Level
open import Categories.Category
open import Categories.Category.Instance.Setoids
open import Categories.Functor renaming (id to idF)
open import Categories.Functor.Construction.LiftSetoids
open import Categories.NaturalTransformation.NaturalIsomorphism
open import Categories.NaturalTransformation.Properties
import Categories.Morphism as Mor
import Categories.Morphism.Properties as Morₚ
import Categories.Morphism.Reasoning as MR
private
variable
o ℓ e : Level
C D : Category o ℓ e
module _ {F G : Functor C D} (α : NaturalIsomorphism F G) where
private module C = Category C
open Category D
open Mor D
open Functor F
open Functor G renaming (F₀ to G₀; F₁ to G₁)
open NaturalIsomorphism α
-- We can move equations along natural isomorphism.
module _ {A B} {f g : A C.⇒ B} where
push-eq : F₁ f ≈ F₁ g → G₁ f ≈ G₁ g
push-eq hyp = MR.push-eq D FX≅GX (⇒.commute f) (⇒.commute g) hyp
pull-eq : G₁ f ≈ G₁ g → F₁ f ≈ F₁ g
pull-eq hyp = MR.push-eq D (≅.sym FX≅GX) (⇐.commute f) (⇐.commute g) hyp
-- properties of natural isomorphisms over an endofunctor
module _ {F : Endofunctor C} where
private
module C = Category C
module F = Functor F
module MC = Mor C
module _ (α : F ≃ idF) where
open C
open HomReasoning
open F
open MC
open MR C
open Mor C
open Morₚ C
open NaturalIsomorphism α
F≃id-comm₁ : ∀ {A} → ⇒.η (F₀ A) ≈ F₁ (⇒.η A)
F≃id-comm₁ {A} = begin
⇒.η (F₀ A) ≈⟨ introʳ (F-resp-≈ (iso.isoˡ _) ○ identity) ⟩
⇒.η (F₀ A) ∘ F₁ (⇐.η A ∘ ⇒.η A) ≈⟨ refl⟩∘⟨ homomorphism ⟩
⇒.η (F₀ A) ∘ F₁ (⇐.η A) ∘ F₁ (⇒.η A) ≈⟨ cancelˡ (⇒.commute _ ○ iso.isoˡ _) ⟩
F₁ (⇒.η A) ∎
F≃id-comm₂ : ∀ {A} → ⇐.η (F₀ A) ≈ F₁ (⇐.η A)
F≃id-comm₂ {A} = begin
⇐.η (F₀ A) ≈⟨ introˡ (F-resp-≈ (iso.isoˡ _) ○ identity) ⟩
F₁ (⇐.η A ∘ ⇒.η A) ∘ ⇐.η (F₀ A) ≈⟨ homomorphism ⟩∘⟨refl ⟩
(F₁ (⇐.η A) ∘ F₁ (⇒.η A)) ∘ ⇐.η (F₀ A) ≈⟨ cancelʳ (⟺ (⇐.commute _) ○ iso.isoˡ _) ⟩
F₁ (⇐.η A) ∎
F≃id⇒id : ∀ {A} {f : A ⇒ A} → F₁ f ≈ id → f ≈ id
F≃id⇒id {A} {f} eq = Iso⇒Mono (Iso-swap (iso A)) _ _ helper
where helper : ⇐.η A ∘ f ≈ ⇐.η A ∘ id
helper = begin
⇐.η A ∘ f ≈⟨ ⇐.commute f ⟩
F₁ f ∘ ⇐.η A ≈⟨ eq ⟩∘⟨refl ⟩
id ∘ ⇐.η A ≈˘⟨ id-comm ⟩
⇐.η A ∘ id ∎
-- unlift universe level
module _ {c ℓ ℓ′ e} {F G : Functor C (Setoids c ℓ)} (α : LiftSetoids ℓ′ e ∘F F ≃ LiftSetoids ℓ′ e ∘F G) where
open NaturalIsomorphism α
unlift-≃ : F ≃ G
unlift-≃ = record
{ F⇒G = unlift-nat F⇒G
; F⇐G = unlift-nat F⇐G
; iso = λ X → record
{ isoˡ = λ eq → lower (iso.isoˡ X (lift eq))
; isoʳ = λ eq → lower (iso.isoʳ X (lift eq))
}
}
|
algebraic-stack_agda0000_doc_4297 | {-# OPTIONS --omega-in-omega --no-termination-check --overlapping-instances #-}
module Light.Implementation.Standard where
module Data where
module Empty where open import Light.Implementation.Standard.Data.Empty public
module Unit where open import Light.Implementation.Standard.Data.Unit public
module These where open import Light.Implementation.Standard.Data.These public
module Product where open import Light.Implementation.Standard.Data.Product public
module Relation where
module Decidable where open import Light.Implementation.Standard.Relation.Decidable public
module Sets where open import Light.Implementation.Standard.Relation.Sets public
|
algebraic-stack_agda0000_doc_4298 |
module Oscar.Data where
open import Agda.Builtin.Unit
open import Oscar.Function
open import Oscar.Level
infixr 20 ∷_
infixr 20 _∷_
data NAT : Set where
∅ : NAT
∷_ : NAT → NAT
testNAT : NAT
testNAT = ∷ ∷ ∷ ∅
-- List
data ⟦_⟧ {a} (A : Set a) : Set a where
∅ : ⟦ A ⟧
_∷_ : A → ⟦ A ⟧ → ⟦ A ⟧
-- Nat
⟦⟧ = ⟦ ⊤ ⟧
test⟦⟧ : ⟦⟧
test⟦⟧ = {!(tt ∷_) ∅ !}
infix 21 ¡_
pattern ¡_ ⟦A⟧ = tt ∷ ⟦A⟧
--¡ : ⟦⟧ → ⟦⟧
--¡ ⟦A⟧ = tt ∷ ⟦A⟧
-- Fin (with a payload)
-- n-1 , ... 0
data ⟦_⟧[_] {a} (A : ⟦⟧ → Set a) : ⟦⟧ → Set a where
∅ : ∀ {n} → ⟦ A ⟧[ ¡ n ]
_∷_ : ∀ {n} → A n → ⟦ A ⟧[ n ] → ⟦ A ⟧[ ¡ n ]
⟦⟧[_] = ⟦ const ⊤ ⟧[_]
-- Vec (with an (optional) index)
-- 0 ≤ n, counting down from n to 0
data ⟦_⟧[_₀] {a} (A : ⟦⟧ → Set a) : ⟦⟧ → Set a where
∅ : ⟦ A ⟧[ ∅ ₀]
_∷_ : ∀ {n} → A n → ⟦ A ⟧[ n ₀] → ⟦ A ⟧[ ¡ n ₀]
⟦⟧[_₀] = ⟦ const ⊤ ⟧[_₀]
-- Interval↓
-- Interval⟨_⟩[_↙_)
-- Descenderval
-- m ≤ n, counting down from n-1 to m
data ⟦_⟧[_≤_↓] {a} (A : ⟦⟧ → Set a) (m : ⟦⟧) : ⟦⟧ → Set a where
∅ : ⟦ A ⟧[ m ≤ m ↓]
_∷_ : ∀ {n} → A n → ⟦ A ⟧[ m ≤ n ↓] → ⟦ A ⟧[ m ≤ ¡ n ↓]
⟦⟧[_≤_↓] = ⟦ const ⊤ ⟧[_≤_↓]
-- Fin⟨_⟩ = λ A n → Interval↓ A 0 n
-- Vec n = Descenderval 0 (↑ n)
-- Interval⟨_⟩[_↗_)
-- Ascenderval
-- m ≤ n, counting up from m to n-1
data ⟦_⟧[↑_≤_] {a} (A : ⟦⟧ → Set a) (m : ⟦⟧) : ⟦⟧ → Set a where
∅ : ⟦ A ⟧[↑ m ≤ m ]
_∷_ : ∀ {n} → A m → ⟦ A ⟧[↑ ¡ m ≤ n ] → ⟦ A ⟧[↑ m ≤ n ]
⟦⟧[↑_≤_] = ⟦ const ⊤ ⟧[↑_≤_]
-- Inj (almost)
-- m ≤ n, m-1...0, n-1...n-m
-- Paradescenderval
data ⟦_⟧[↓_≤_↓] {a} (A : ⟦⟧ → ⟦⟧ → Set a) : ⟦⟧ → ⟦⟧ → Set a where
∅ : ∀ {n} → ⟦ A ⟧[↓ ∅ ≤ n ↓]
_∷_ : ∀ {m n} → A m n → ⟦ A ⟧[↓ m ≤ n ↓] → ⟦ A ⟧[↓ ¡ m ≤ ¡ n ↓]
-- Inj = Paradescenderval (λ _ → Fin ∘ ↑_)
⟦⟧[↓_≤_↓] = ⟦ const const ⊤ ⟧[↓_≤_↓]
infix 21 ‼_
pattern ‼_ ⟦A⟧ = tt ∷ ⟦A⟧ -- tricky, works for all above _∷_ constructors only because it is defined afterwards, won't work for any later-defined constructors
{-
Function (B m → B n)
Fin
Term
AList (SubstitutionList) Substilist
Step
List
FinTerm (SubstitutionFunction) Substifunction
SubstitutionFunction.internal
SubstitutionFunction.Morphism
SubstitutionFunction.IsSemigroupoid
SubstitutionFunction.IsCategory
IsSemigroupoid
IsCategory
-}
--Nat = ⟦⟧
--Vec :
-- mutual
-- Terms : Nat → Nat → Set 𝔣
-- Terms N m = Vec (Term m) N
-- data Term (m : Nat) : Set 𝔣 where
-- i : (x : Fin m) → Term m
-- leaf : Term m
-- _fork_ : (s t : Term m) → Term m
-- function : FunctionName → ∀ {N} → Terms N m → Term m
|
algebraic-stack_agda0000_doc_4299 | open import Agda.Builtin.Nat
record R : Set where
field
x : Nat
open R {{...}}
f₁ f₂ : R
-- This is fine.
x ⦃ f₁ ⦄ = 0
-- THIS WORKS BUT MAKES NO SENSE!!!
f₂ ⦃ .x ⦄ = 0
|
algebraic-stack_agda0000_doc_4300 | {-# POLARITY F #-}
|
algebraic-stack_agda0000_doc_4301 | module Imports.Issue1913-M where
data D : Set where
d : D
|
algebraic-stack_agda0000_doc_4302 | {- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021 Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Prelude
open import LibraBFT.Base.PKCS
open import LibraBFT.Base.Types
import LibraBFT.Yasm.Base as LYB
-- This module provides a single import for all Yasm modules
module LibraBFT.Yasm.Yasm
(ℓ-EC : Level)
(EpochConfig : Set ℓ-EC)
(epochId : EpochConfig → EpochId)
(authorsN : EpochConfig → ℕ)
(parms : LYB.SystemParameters ℓ-EC EpochConfig epochId authorsN)
(senderPKOK : (ec : EpochConfig) → PK → LYB.SystemParameters.PeerId parms → Set)
where
open LYB.SystemParameters parms
open import LibraBFT.Yasm.AvailableEpochs PeerId ℓ-EC EpochConfig epochId authorsN
using (AvailableEpochs) renaming (lookup' to EC-lookup; lookup'' to EC-lookup') public
open import LibraBFT.Yasm.Base ℓ-EC EpochConfig epochId authorsN public
open import LibraBFT.Yasm.System ℓ-EC EpochConfig epochId authorsN parms public
open import LibraBFT.Yasm.Properties ℓ-EC EpochConfig epochId authorsN parms senderPKOK public
open import Util.FunctionOverride PeerId _≟PeerId_ public
|
algebraic-stack_agda0000_doc_4303 |
module Vehicle.Data.Tensor where
open import Level using (Level)
open import Data.Empty.Polymorphic using (⊥)
open import Data.Nat.Base using (ℕ; zero; suc)
open import Data.List.Base using (List; []; _∷_)
open import Data.Vec.Functional using (Vector)
private
variable
a : Level
A : Set a
n : ℕ
Tensor : Set a → List ℕ → Set a
Tensor A [] = ⊥
Tensor A (n ∷ []) = Vector A n
Tensor A (m ∷ n ∷ ns) = Vector (Tensor A (n ∷ ns)) m |
algebraic-stack_agda0000_doc_5360 | module GUIgeneric.GUIExampleBankAccount where
open import GUIgeneric.Prelude renaming (inj₁ to firstBtn; inj₂ to secondBtn; WxColor to Color;_∸_ to _-_) hiding (addButton; _>>_ ; show)
open import GUIgeneric.GUIDefinitions renaming (add to add'; add' to add)
open import GUIgeneric.GUI
open import GUIgeneric.GUIExampleLib renaming (addButton to addButton')
open import GUIgeneric.GUIExample hiding (main; changeGUI)
open import Data.Nat.Show
open import heap.libraryNat renaming (_≧ℕb_ to _≧_)
guifullToReturnType : ∀ {i} {g} → GUI {i} → returnType g
guifullToReturnType f = changedGUI (f .defFrame) (f .property)
guifullToReturnType' : ∀ {i} {g} → GUI {i} →
Σ[ r ∈ returnType g ]
(IOObjectˢ GuiLev1Interface handlerInterface i
(nextStateFrame g r))
guifullToReturnType' {i} {g} f = guifullToReturnType f , f .obj
changeGUI : ∀ {i} {g} → GUI {i} →
IO GuiLev1Interface ∞ (Σ[ r ∈ returnType g ]
(IOObjectˢ GuiLev1Interface handlerInterface i
(nextStateFrame g r)))
changeGUI f = return (guifullToReturnType' f)
threeBtnFrame : (s s' s'' : String) → Frame
threeBtnFrame s s' s'' = addButton s (addButton s'
(addButton s'' create-frame))
propThreeBtn : ∀{s s' s''} → properties (threeBtnFrame s s' s'')
propThreeBtn = black , black , black , oneColumnLayout
mutual
atm : ∀{i} → ℕ → GUI {i}
atm n .defFrame =
addButton "Withdraw 10"
(addButton "Withdraw 1"
(addTxtBox (show n) create-frame))
atm n .property =
black , black , black , oneColumnLayout
atm n .obj .method (firstBtn x) =
if n ≧ 10 then changeGUI (atm (n - 10))
else changeGUI (invalid n)
atm n .obj .method (secondBtn b) =
if n ≧ 1 then changeGUI (atm (n - 1))
else changeGUI (invalid n)
invalid : ∀{i} → ℕ → GUI {i}
invalid n .defFrame =
addButton "Not enough money" create-frame
invalid n .property = black , oneColumnLayout
invalid n .obj .method m = changeGUI (atm n)
main : NativeIO Unit
main = compileGUI (atm 55)
|
algebraic-stack_agda0000_doc_5361 | -- {-# OPTIONS -v 100 -v tc.meta.name:100 -v interactive.meta:10 #-}
module Issue526 where
-- Don't just write _49,
-- include the corresponding implicit variable name as well (if any)
postulate
f : {A : Set} → {a : A} → Set1 → {B : Set} → Set
test : Set
test = f Set
test₁ : Set
test₁ = f {A = _} Set
postulate
g : (B : Set) → Set
test₂ : Set
test₂ = g _
test₃ : _ → Set
test₃ ()
|
algebraic-stack_agda0000_doc_5362 | module MLib.Prelude.RelProps where
open import MLib.Prelude.FromStdlib
import Relation.Binary.Indexed as I
open FE using (cong)
import Data.Product.Relation.SigmaPropositional as OverΣ
Σ-bij : ∀ {a b c} {A : Set a} {B : A → Set b} {C : A → Set c} → (∀ x → B x ↔ C x) → Σ A B ↔ Σ A C
Σ-bij pw = record
{ to = ≡.→-to-⟶ (uncurry λ x y → x , Inverse.to (pw x) ⟨$⟩ y)
; from = ≡.→-to-⟶ (uncurry λ x y → x , Inverse.from (pw x) ⟨$⟩ y)
; inverse-of = record
{ left-inverse-of = uncurry λ x y → OverΣ.to-≡ (≡.refl , Inverse.left-inverse-of (pw x) y)
; right-inverse-of = uncurry λ x y → OverΣ.to-≡ (≡.refl , Inverse.right-inverse-of (pw x) y)
}
}
Σ-↞ : ∀ {a b c} {A : Set a} {B : A → Set b} {C : A → Set c} → (∀ x → B x ↞ C x) → Σ A B ↞ Σ A C
Σ-↞ f = record
{ to = ≡.→-to-⟶ (uncurry λ x y → x , LeftInverse.to (f x) ⟨$⟩ y)
; from = ≡.→-to-⟶ (uncurry λ x y → x , LeftInverse.from (f x) ⟨$⟩ y)
; left-inverse-of = uncurry λ x y → OverΣ.to-≡ (≡.refl , LeftInverse.left-inverse-of (f x) y)
}
Σ-↞′ :
∀ {a a′ b β} {A : Set a} {A′ : Set a′} {B-setoid : A → Setoid b β} (f : A ↞ A′)
→ LeftInverse (OverΣ.setoid B-setoid) (OverΣ.setoid (B-setoid ∘ (LeftInverse.from f ⟨$⟩_)))
Σ-↞′ {A = A} {A′} {B-setoid} f = record
{ to = record
{ _⟨$⟩_ = uncurry λ x y → LeftInverse.to f ⟨$⟩ x , ≡.subst B (≡.sym (LeftInverse.left-inverse-of f _)) y
; cong = uncurry λ {≡.refl y → ≡.refl , subst≈ _ _ (≡.sym (LeftInverse.left-inverse-of f _)) y}
}
; from = record
{ _⟨$⟩_ = uncurry λ x y → LeftInverse.from f ⟨$⟩ x , y
; cong = λ { (≡.refl , q) → ≡.refl , q }
}
; left-inverse-of = uncurry λ x y → OverΣ.symmetric sym (OverΣ.subst (≡.sym (LeftInverse.left-inverse-of f _)) refl)
}
where
module B x = Setoid (B-setoid x)
module B′ {x} = Setoid (B-setoid x)
open B using () renaming (Carrier to B)
open B′
subst≈ : ∀ {i j} (x y : B i) (p : i ≡ j) → x ≈ y → ≡.subst B p x ≈ ≡.subst B p y
subst≈ x y ≡.refl q = q
|
algebraic-stack_agda0000_doc_5363 |
module Imports.A where
postulate A : Set
|
algebraic-stack_agda0000_doc_5364 | module _ where
import Issue1168 ; module I = Issue1168
import PrettyInterface ; module P = PrettyInterface
id : {A : Set} → A → A
id {A = A} a = a
|
algebraic-stack_agda0000_doc_5365 | module Dot where
postulate h : Set
f : Set -> Set -> Set
f .n n = h
|
algebraic-stack_agda0000_doc_5366 | {-# OPTIONS --cubical --no-exact-split --safe #-}
module Cubical.Data.Nat.Properties where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Data.Nat.Base
open import Cubical.Data.Empty
open import Cubical.Data.Prod.Base
open import Cubical.Relation.Nullary
open import Cubical.Relation.Nullary.DecidableEq
open import Cubical.Data.Nat.Algebra public
+-zero : ∀ m → m + 0 ≡ m
+-zero zero = refl
+-zero (suc m) = cong suc (+-zero m)
+-suc : ∀ m n → m + suc n ≡ suc (m + n)
+-suc zero n = refl
+-suc (suc m) n = cong suc (+-suc m n)
+-comm : ∀ m n → m + n ≡ n + m
+-comm m zero = +-zero m
+-comm m (suc n) = (+-suc m n) ∙ (cong suc (+-comm m n))
-- Addition is associative
+-assoc : ∀ m n o → m + (n + o) ≡ (m + n) + o
+-assoc zero _ _ = refl
+-assoc (suc m) n o = cong suc (+-assoc m n o)
private
variable
l m n : ℕ
znots : ¬ (0 ≡ suc n)
znots eq = subst (caseNat ℕ ⊥) eq 0
snotz : ¬ (suc n ≡ 0)
snotz eq = subst (caseNat ⊥ ℕ) eq 0
injSuc : suc m ≡ suc n → m ≡ n
injSuc p = cong predℕ p
inj-m+ : m + l ≡ m + n → l ≡ n
inj-m+ {zero} p = p
inj-m+ {suc m} p = inj-m+ (injSuc p)
inj-+m : l + m ≡ n + m → l ≡ n
inj-+m {l} {m} {n} p = inj-m+ ((+-comm m l) ∙ (p ∙ (+-comm n m)))
m+n≡n→m≡0 : m + n ≡ n → m ≡ 0
m+n≡n→m≡0 {n = zero} = λ p → (sym (+-zero _)) ∙ p
m+n≡n→m≡0 {n = suc n} p = m+n≡n→m≡0 (injSuc ((sym (+-suc _ n)) ∙ p))
m+n≡0→m≡0×n≡0 : m + n ≡ 0 → (m ≡ 0) × (n ≡ 0)
m+n≡0→m≡0×n≡0 {zero} = refl ,_
m+n≡0→m≡0×n≡0 {suc m} p = ⊥-elim (snotz p)
discreteℕ : Discrete ℕ
discreteℕ zero zero = yes refl
discreteℕ zero (suc n) = no znots
discreteℕ (suc m) zero = no snotz
discreteℕ (suc m) (suc n) with discreteℕ m n
... | yes p = yes (cong suc p)
... | no p = no (λ x → p (injSuc x))
isSetℕ : isSet ℕ
isSetℕ = Discrete→isSet discreteℕ
0≡m*0 : ∀ m → 0 ≡ m * 0
0≡m*0 zero = refl
0≡m*0 (suc m) = 0≡m*0 m
*-suc : ∀ m n → m * suc n ≡ m + m * n
*-suc zero n = refl
*-suc (suc m) n
= cong suc
( n + m * suc n ≡⟨ cong (n +_) (*-suc m n) ⟩
n + (m + m * n) ≡⟨ +-assoc n m (m * n) ⟩
(n + m) + m * n ≡⟨ cong (_+ m * n) (+-comm n m) ⟩
(m + n) + m * n ≡⟨ sym (+-assoc m n (m * n)) ⟩
m + (n + m * n) ∎
)
*-comm : ∀ m n → m * n ≡ n * m
*-comm zero n = 0≡m*0 n
*-comm (suc m) n = cong (n +_) (*-comm m n) ∙ sym (*-suc n m)
0≡n*sm→0≡n : 0 ≡ n * suc m → 0 ≡ n
0≡n*sm→0≡n {n = zero} p = refl
0≡n*sm→0≡n {n = suc n} p = ⊥-elim (znots p)
inj-*sm : l * suc m ≡ n * suc m → l ≡ n
inj-*sm {zero} {m} {n} p = 0≡n*sm→0≡n p
inj-*sm {l} {m} {zero} p = sym (0≡n*sm→0≡n (sym p))
inj-*sm {suc l} {m} {suc n} p = cong suc (inj-*sm (inj-m+ {m = suc m} p))
inj-sm* : suc m * l ≡ suc m * n → l ≡ n
inj-sm* {m} {l} {n} p = inj-*sm (*-comm l (suc m) ∙ p ∙ *-comm (suc m) n)
|
algebraic-stack_agda0000_doc_5367 | {- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import Haskell.Modules.RWS.RustAnyHow
import LibraBFT.Impl.Consensus.ConsensusTypes.BlockRetrieval as BlockRetrieval
import LibraBFT.Impl.IO.OBM.ObmNeedFetch as ObmNeedFetch
open import LibraBFT.Impl.OBM.Logging.Logging
open import LibraBFT.Impl.OBM.Rust.RustTypes
open import LibraBFT.ImplShared.Consensus.Types
open import LibraBFT.ImplShared.Consensus.Types.EpochIndep
open import LibraBFT.ImplShared.Util.Dijkstra.All
open import Optics.All
import Util.KVMap as Map
open import Util.Prelude
------------------------------------------------------------------------------
import Data.String as String
module LibraBFT.Impl.Consensus.BlockStorage.BlockRetriever where
pickPeer : ℕ → List Author → Either ErrLog (Author × List Author)
-- LBFT-OBM-DIFF : this lives in sync_manager.rs (in this file to isolate IO)
-- TODO-1 PROVE IT TERMINATES
{-# TERMINATING #-}
retrieveBlockForQCM : BlockRetriever → QuorumCert → U64 → LBFT (Either ErrLog (List Block))
retrieveBlockForQCM _retriever qc numBlocks =
loop (qc ^∙ qcCertifiedBlock ∙ biId) 0 (Map.kvm-keys (qc ^∙ qcLedgerInfo ∙ liwsSignatures))
where
doLoop : HashValue → ℕ → List Author → LBFT (Either ErrLog (List Block))
logIt : InfoLog → LBFT Unit
here' : List String.String → List String.String
loop : HashValue → ℕ → List Author → LBFT (Either ErrLog (List Block))
loop blockId attempt = λ where
[] → bail fakeErr -- [ "failed to fetch block, no more peers available"
-- , lsHV blockId, show attempt ]
peers0@(_ ∷ _) → do
mme ← use (lRoundManager ∙ rmObmMe)
maybeSD mme (bail fakeErr) $ λ me → do
nf ← use lObmNeedFetch
eitherS (pickPeer attempt peers0) bail $ λ (peer , peers) → do
let request = BlockRetrievalRequest∙new me blockId numBlocks
logIt fakeInfo -- ["to", lsA peer, lsBRQ request]
let response = ObmNeedFetch.writeRequestReadResponseUNSAFE nf me peer request
-- TODO : sign response and check sig on response
case response ^∙ brpStatus of λ where
BRSSucceeded → do
logIt fakeInfo -- (here [lsBRP response])
vv ← use (lRoundManager ∙ rmEpochState ∙ esVerifier)
-- LBFT-OBM-DIFF/TODO : this should live in a "network" module
case BlockRetrieval.verify response (request ^∙ brqBlockId) (request ^∙ brqNumBlocks) vv of λ where
(Left e) → bail (withErrCtx (here' []) e)
(Right _) → ok (response ^∙ brpBlocks)
BRSIdNotFound → doLoop blockId attempt peers
BRSNotEnoughBlocks → doLoop blockId attempt peers
doLoop blockId attempt peers = do
logIt fakeInfo -- (here' ["trying another peer", lsBRP response])
loop blockId (attempt + 1) peers
here' t = "BlockRetriever" ∷ "retrieveBlockForQCM" ∷ "NeedFetch" ∷ t
logIt l = -- do
logInfo l
-- let x = Unsafe.unsafePerformIO (putStrLn @Text (show l))
-- x `seq` pure x
pickPeer _ = λ where
[] → Left fakeErr -- ["no more peers"]
(p ∷ ps) → pure (p , ps)
|
algebraic-stack_agda0000_doc_5368 | module Data.BitVector.ContainmentOrder where
open import Data.Empty
open import Data.Sum
open import Data.Vec
open import Relation.Nullary
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
open import Data.Nat hiding (_≟_; _≤_; _≤?_) renaming (zero to Nzero; suc to Nsuc)
open import Data.BitVector
infix 4 _⊂_
data _⊂_ : ∀ {n} → BitVector n → BitVector n → Set where
[]⊂[] : [] ⊂ []
0#⊂0# : ∀ {n} {x y : BitVector n} → (x⊂y : x ⊂ y) → (0# ∷ x) ⊂ (0# ∷ y)
b⊂1# : ∀ {n} {x y : BitVector n} {b} → (x⊂y : x ⊂ y) → (b ∷ x) ⊂ (1# ∷ y)
⊂-refl : ∀ {n} → _≡_ ⇒ (_⊂_ {n})
⊂-refl {0} {[]} refl = []⊂[]
⊂-refl {Nsuc n} {0# ∷ xs} refl = 0#⊂0# (⊂-refl refl)
⊂-refl {Nsuc n} {1# ∷ xs} refl = b⊂1# (⊂-refl refl)
⊂-antisym : ∀ {n} → Antisymmetric _≡_ (_⊂_ {n})
⊂-antisym []⊂[] []⊂[] = refl
⊂-antisym (0#⊂0# x⊂y) (0#⊂0# y⊂x) rewrite ⊂-antisym x⊂y y⊂x = refl
⊂-antisym (b⊂1# x⊂y) (b⊂1# y⊂x) rewrite ⊂-antisym x⊂y y⊂x = refl
⊂-trans : ∀ {n} → Transitive (_⊂_ {n})
⊂-trans []⊂[] []⊂[] = []⊂[]
⊂-trans (0#⊂0# x⊂y) (0#⊂0# y⊂z) = 0#⊂0# (⊂-trans x⊂y y⊂z)
⊂-trans (0#⊂0# x⊂y) (b⊂1# y⊂z) = b⊂1# (⊂-trans x⊂y y⊂z)
⊂-trans (b⊂1# x⊂y) (b⊂1# y⊂z) = b⊂1# (⊂-trans x⊂y y⊂z)
_⊂?_ : ∀ {n} → Decidable (_⊂_ {n})
[] ⊂? [] = yes []⊂[]
(x ∷ xs) ⊂? (y ∷ ys) with xs ⊂? ys
(0# ∷ xs) ⊂? (0# ∷ ys) | no xs≢ys = no helper
where helper : ¬ 0# ∷ xs ⊂ 0# ∷ ys
helper (0#⊂0# pf) = xs≢ys pf
(x ∷ xs) ⊂? (1# ∷ ys) | no xs≢ys = no helper
where helper : ¬ x ∷ xs ⊂ 1# ∷ ys
helper (b⊂1# pf) = xs≢ys pf
(1# ∷ xs) ⊂? (0# ∷ ys) | no xs≢ys = no (λ ())
(0# ∷ xs) ⊂? (0# ∷ ys) | yes xs≡ys = yes (0#⊂0# xs≡ys)
(0# ∷ xs) ⊂? (1# ∷ ys) | yes xs≡ys = yes (b⊂1# xs≡ys)
(1# ∷ xs) ⊂? (0# ∷ ys) | yes xs≡ys = no (λ ())
(1# ∷ xs) ⊂? (1# ∷ ys) | yes xs≡ys = yes (b⊂1# xs≡ys)
decPoset : ∀ {n} → DecPoset _ _ _
decPoset {n} = record
{ Carrier = BitVector n
; _≈_ = _≡_
; _≤_ = _⊂_
; isDecPartialOrder = record
{ isPartialOrder = record
{ isPreorder = record
{ isEquivalence = isEquivalence
; reflexive = ⊂-refl
; trans = ⊂-trans
}
; antisym = ⊂-antisym
}
; _≟_ = _≟_
; _≤?_ = _⊂?_
}
} |
algebraic-stack_agda0000_doc_5369 | ------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties of sums (disjoint unions)
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Sum.Properties where
open import Level
open import Data.Sum.Base
open import Function
open import Relation.Binary using (Decidable)
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary using (yes; no)
open import Relation.Nullary.Decidable using (map′)
private
variable
a b c d e f : Level
A : Set a
B : Set b
C : Set c
D : Set d
E : Set e
F : Set f
inj₁-injective : ∀ {x y} → (A ⊎ B ∋ inj₁ x) ≡ inj₁ y → x ≡ y
inj₁-injective refl = refl
inj₂-injective : ∀ {x y} → (A ⊎ B ∋ inj₂ x) ≡ inj₂ y → x ≡ y
inj₂-injective refl = refl
module _ (dec₁ : Decidable {A = A} {B = A} _≡_)
(dec₂ : Decidable {A = B} {B = B} _≡_) where
≡-dec : Decidable {A = A ⊎ B} _≡_
≡-dec (inj₁ x) (inj₁ y) = map′ (cong inj₁) inj₁-injective (dec₁ x y)
≡-dec (inj₁ x) (inj₂ y) = no λ()
≡-dec (inj₂ x) (inj₁ y) = no λ()
≡-dec (inj₂ x) (inj₂ y) = map′ (cong inj₂) inj₂-injective (dec₂ x y)
swap-involutive : swap {A = A} {B = B} ∘ swap ≗ id
swap-involutive = [ (λ _ → refl) , (λ _ → refl) ]
[,]-∘-distr : {f : A → B}
{g : C → A} {h : D → A} →
f ∘ [ g , h ] ≗ [ f ∘ g , f ∘ h ]
[,]-∘-distr (inj₁ _) = refl
[,]-∘-distr (inj₂ _) = refl
[,]-map-commute : {f : A → B} {g : C → D}
{f′ : B → E} {g′ : D → E} →
[ f′ , g′ ] ∘ (map f g) ≗ [ f′ ∘ f , g′ ∘ g ]
[,]-map-commute (inj₁ _) = refl
[,]-map-commute (inj₂ _) = refl
map-commute : {f : A → B} {g : C → D}
{f′ : B → E} {g′ : D → F} →
((map f′ g′) ∘ (map f g)) ≗ map (f′ ∘ f) (g′ ∘ g)
map-commute (inj₁ _) = refl
map-commute (inj₂ _) = refl
|
algebraic-stack_agda0000_doc_5370 | {-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Displayed.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Univalence using (pathToEquiv)
open import Cubical.Functions.FunExtEquiv
open import Cubical.Data.Unit
open import Cubical.Data.Nat
open import Cubical.Data.Sigma
open import Cubical.Relation.Binary
open BinaryRelation
open import Cubical.Displayed.Base
private
variable
ℓ ℓA ℓA' ℓP ℓ≅A ℓ≅A' ℓB ℓB' ℓ≅B ℓ≅B' ℓC ℓ≅C : Level
-- UARel on Σ-type
module _ {A : Type ℓA} {ℓ≅A : Level} {𝒮-A : UARel A ℓ≅A}
{B : A → Type ℓB} {ℓ≅B : Level}
(𝒮ᴰ-B : DUARel 𝒮-A B ℓ≅B)
where
open UARel 𝒮-A
open DUARel 𝒮ᴰ-B
∫ : UARel (Σ A B) (ℓ-max ℓ≅A ℓ≅B)
UARel._≅_ ∫ (a , b) (a' , b') = Σ[ p ∈ a ≅ a' ] (b ≅ᴰ⟨ p ⟩ b')
UARel.ua ∫ (a , b) (a' , b') =
compEquiv
(Σ-cong-equiv (ua a a') (λ p → uaᴰ b p b'))
ΣPath≃PathΣ
-- UARel on Π-type
module _ {A : Type ℓA} (𝒮-A : UARel A ℓ≅A) {B : A → Type ℓB} (𝒮ᴰ-B : DUARel 𝒮-A B ℓ≅B) where
open UARel 𝒮-A
open DUARel 𝒮ᴰ-B
𝒮ᴰ→𝒮-Π : UARel ((a : A) → B a) (ℓ-max ℓA ℓ≅B)
UARel._≅_ 𝒮ᴰ→𝒮-Π f f' = ∀ a → f a ≅ᴰ⟨ ρ a ⟩ f' a
UARel.ua 𝒮ᴰ→𝒮-Π f f' =
compEquiv
(equivΠCod λ a → uaᴰρ (f a) (f' a))
funExtEquiv
-- induction principles
module _ {A : Type ℓA} {ℓ≅A : Level} (𝒮-A : UARel A ℓ≅A) where
open UARel 𝒮-A
𝒮-J : {a : A}
(P : (a' : A) → (p : a ≡ a') → Type ℓ)
(d : P a refl)
{a' : A}
(p : a ≅ a')
→ P a' (≅→≡ p)
𝒮-J {a} P d {a'} p
= J (λ y q → P y q)
d
(≅→≡ p)
𝒮-J-2 : {a : A}
(P : (a' : A) → (p : a ≅ a') → Type ℓ)
(d : P a (ρ a))
{a' : A}
(p : a ≅ a')
→ P a' p
𝒮-J-2 {a = a} P d {a'} p
= subst (λ r → P a' r) (Iso.leftInv (uaIso a a') p) g
where
g : P a' (≡→≅ (≅→≡ p))
g = J (λ y q → P y (≡→≅ q)) d (≅→≡ p)
-- constructors
module _ {A : Type ℓA} {𝒮-A : UARel A ℓ≅A}
{B : A → Type ℓB}
(_≅ᴰ⟨_⟩_ : {a a' : A} → B a → UARel._≅_ 𝒮-A a a' → B a' → Type ℓ≅B)
where
open UARel 𝒮-A
-- constructor that reduces ua to the case where p = ρ a by induction on p
private
𝒮ᴰ-make-aux : (uni : {a : A} (b b' : B a) → b ≅ᴰ⟨ ρ a ⟩ b' ≃ (b ≡ b'))
→ ({a a' : A} (b : B a) (p : a ≅ a') (b' : B a') → (b ≅ᴰ⟨ p ⟩ b') ≃ PathP (λ i → B (≅→≡ p i)) b b')
𝒮ᴰ-make-aux uni {a} {a'} b p
= 𝒮-J-2 𝒮-A
(λ y q → (b' : B y) → (b ≅ᴰ⟨ q ⟩ b') ≃ PathP (λ i → B (≅→≡ q i)) b b')
(λ b' → uni' b')
p
where
g : (b' : B a) → (b ≡ b') ≡ PathP (λ i → B (≅→≡ (ρ a) i)) b b'
g b' = subst (λ r → (b ≡ b') ≡ PathP (λ i → B (r i)) b b')
(sym (Iso.rightInv (uaIso a a) refl))
refl
uni' : (b' : B a) → b ≅ᴰ⟨ ρ a ⟩ b' ≃ PathP (λ i → B (≅→≡ (ρ a) i)) b b'
uni' b' = compEquiv (uni b b') (pathToEquiv (g b'))
𝒮ᴰ-make-1 : (uni : {a : A} (b b' : B a) → b ≅ᴰ⟨ ρ a ⟩ b' ≃ (b ≡ b'))
→ DUARel 𝒮-A B ℓ≅B
DUARel._≅ᴰ⟨_⟩_ (𝒮ᴰ-make-1 uni) = _≅ᴰ⟨_⟩_
DUARel.uaᴰ (𝒮ᴰ-make-1 uni) = 𝒮ᴰ-make-aux uni
-- constructor that reduces univalence further to contractibility of relational singletons
𝒮ᴰ-make-2 : (ρᴰ : {a : A} → isRefl _≅ᴰ⟨ ρ a ⟩_)
(contrTotal : (a : A) → contrRelSingl _≅ᴰ⟨ UARel.ρ 𝒮-A a ⟩_)
→ DUARel 𝒮-A B ℓ≅B
DUARel._≅ᴰ⟨_⟩_ (𝒮ᴰ-make-2 ρᴰ contrTotal) = _≅ᴰ⟨_⟩_
DUARel.uaᴰ (𝒮ᴰ-make-2 ρᴰ contrTotal)
= 𝒮ᴰ-make-aux (contrRelSingl→isUnivalent _ ρᴰ (contrTotal _))
-- lifts
module _ {A : Type ℓA} (𝒮-A : UARel A ℓ≅A)
{B : A → Type ℓB}
{ℓ≅B : Level}
(𝒮ᴰ-B : DUARel 𝒮-A B ℓ≅B)
{C : A → Type ℓC}
(𝒮ᴰ-C : DUARel 𝒮-A C ℓ≅C)
where
open DUARel 𝒮ᴰ-B
Lift-𝒮ᴰ : DUARel (∫ 𝒮ᴰ-C) (λ (a , _) → B a) ℓ≅B
DUARel._≅ᴰ⟨_⟩_ Lift-𝒮ᴰ b p b' = b ≅ᴰ⟨ p .fst ⟩ b'
DUARel.uaᴰ Lift-𝒮ᴰ b p b' = uaᴰ b (p .fst) b'
-- associativity
module _ {A : Type ℓA} (𝒮-A : UARel A ℓ≅A)
{B : A → Type ℓB} {ℓ≅B : Level} (𝒮ᴰ-B : DUARel 𝒮-A B ℓ≅B)
{C : Σ A B → Type ℓC} {ℓ≅C : Level} (𝒮ᴰ-C : DUARel (∫ 𝒮ᴰ-B) C ℓ≅C)
where
open UARel 𝒮-A
open DUARel 𝒮ᴰ-B renaming (_≅ᴰ⟨_⟩_ to _≅B⟨_⟩_ ; uaᴰ to uaB)
open DUARel 𝒮ᴰ-C renaming (_≅ᴰ⟨_⟩_ to _≅C⟨_⟩_ ; uaᴰ to uaC)
splitTotal-𝒮ᴰ : DUARel 𝒮-A (λ a → Σ[ b ∈ B a ] C (a , b)) (ℓ-max ℓ≅B ℓ≅C)
DUARel._≅ᴰ⟨_⟩_ splitTotal-𝒮ᴰ (b , c) p (b' , c') =
Σ[ q ∈ b ≅B⟨ p ⟩ b' ] (c ≅C⟨ p , q ⟩ c')
DUARel.uaᴰ splitTotal-𝒮ᴰ (b , c) p (b' , c') =
compEquiv
(Σ-cong-equiv (uaB b p b') (λ q → uaC c (p , q) c'))
ΣPath≃PathΣ
-- combination
module _ {A : Type ℓA} {𝒮-A : UARel A ℓ≅A}
{B : A → Type ℓB} {ℓ≅B : Level} (𝒮ᴰ-B : DUARel 𝒮-A B ℓ≅B)
{C : A → Type ℓC} {ℓ≅C : Level} (𝒮ᴰ-C : DUARel 𝒮-A C ℓ≅C)
where
_×𝒮ᴰ_ : DUARel 𝒮-A (λ a → B a × C a) (ℓ-max ℓ≅B ℓ≅C)
_×𝒮ᴰ_ = splitTotal-𝒮ᴰ 𝒮-A 𝒮ᴰ-B (Lift-𝒮ᴰ 𝒮-A 𝒮ᴰ-C 𝒮ᴰ-B)
-- constant displayed structure
module _ {A : Type ℓA} (𝒮-A : UARel A ℓ≅A)
{B : Type ℓB} (𝒮-B : UARel B ℓ≅B) where
open UARel 𝒮-B
open DUARel
𝒮ᴰ-const : DUARel 𝒮-A (λ _ → B) ℓ≅B
𝒮ᴰ-const ._≅ᴰ⟨_⟩_ b _ b' = b ≅ b'
𝒮ᴰ-const .uaᴰ b p b' = ua b b'
-- UARel product
_×𝒮_ : UARel (A × B) (ℓ-max ℓ≅A ℓ≅B)
_×𝒮_ = ∫ 𝒮ᴰ-const
-- relational isomorphisms
𝒮-iso→iso : {A : Type ℓA} (𝒮-A : UARel A ℓ≅A)
{B : Type ℓB} (𝒮-B : UARel B ℓ≅B)
(F : RelIso (UARel._≅_ 𝒮-A) (UARel._≅_ 𝒮-B))
→ Iso A B
𝒮-iso→iso 𝒮-A 𝒮-B F
= RelIso→Iso (UARel._≅_ 𝒮-A)
(UARel._≅_ 𝒮-B)
(UARel.≅→≡ 𝒮-A)
(UARel.≅→≡ 𝒮-B)
F
-- fiberwise relational isomorphisms
module _ {A : Type ℓA} {𝒮-A : UARel A ℓ≅A}
{A' : Type ℓA'} {𝒮-A' : UARel A' ℓ≅A'}
(F : Iso A A')
{B : A → Type ℓB} (𝒮ᴰ-B : DUARel 𝒮-A B ℓ≅B)
{B' : A' → Type ℓB'} (𝒮ᴰ-B' : DUARel 𝒮-A' B' ℓ≅B') where
open UARel 𝒮-A
open DUARel 𝒮ᴰ-B renaming (_≅ᴰ⟨_⟩_ to _≅B⟨_⟩_
; uaᴰ to uaB
; fiberRel to fiberRelB
; uaᴰρ to uaᴰρB)
open DUARel 𝒮ᴰ-B' renaming (_≅ᴰ⟨_⟩_ to _≅B'⟨_⟩_
; uaᴰ to uaB'
; fiberRel to fiberRelB'
; uaᴰρ to uaᴰρB')
private
f = Iso.fun F
-- the following can of course be done slightly more generally
-- for fiberwise binary relations
F*fiberRelB' : (a : A) → Rel (B' (f a)) (B' (f a)) ℓ≅B'
F*fiberRelB' a = fiberRelB' (f a)
module _ (G : (a : A) → RelIso (fiberRelB a) (F*fiberRelB' a)) where
private
fiberIsoOver : (a : A) → Iso (B a) (B' (f a))
fiberIsoOver a
= RelIso→Iso (fiberRelB a)
(F*fiberRelB' a)
(equivFun (uaᴰρB _ _))
(equivFun (uaᴰρB' _ _))
(G a)
-- DUARelFiberIsoOver→TotalIso produces an isomorphism of total spaces
-- from a relational isomorphism between B a and (F * B) a
𝒮ᴰ-fiberIsoOver→totalIso : Iso (Σ A B) (Σ A' B')
𝒮ᴰ-fiberIsoOver→totalIso = Σ-cong-iso F fiberIsoOver
-- Special cases:
-- Subtypes
𝒮-type : (A : Type ℓ) → UARel A ℓ
UARel._≅_ (𝒮-type A) = _≡_
UARel.ua (𝒮-type A) a a' = idEquiv (a ≡ a')
module _ {A : Type ℓA} (𝒮-A : UARel A ℓ≅A) where
𝒮ᴰ-subtype : (P : A → hProp ℓP) → DUARel 𝒮-A (λ a → P a .fst) ℓ-zero
𝒮ᴰ-subtype P
= 𝒮ᴰ-make-2 (λ _ _ _ → Unit)
(λ _ → tt)
λ a p → isOfHLevelRespectEquiv 0
(invEquiv (Σ-contractSnd (λ _ → isContrUnit)))
(inhProp→isContr p (P a .snd))
|
algebraic-stack_agda0000_doc_5371 | {-
This file contains:
- the abelianization of groups as a coequalizer of sets as performed
in https://1lab.dev/Algebra.Group.Ab.Free.html
- the proof that this way of defining the abelianization of groups is equivalent to defining
it as a HIT, more precisely that there is a unique isomorphism between the resulting
abelian groups
-}
{-# OPTIONS --safe #-}
module Cubical.Algebra.Group.Abelianization.AbelianizationAsCoeq where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Data.Sigma
open import Cubical.Algebra.Group.Base
open import Cubical.Algebra.Group.Properties
open import Cubical.Algebra.Group.Morphisms
open import Cubical.Algebra.Group.MorphismProperties
using (isPropIsGroupHom; compGroupHom; idGroupHom; compGroupHomAssoc; invGroupIso;
compGroupHomId; GroupIso≡; GroupIso→GroupHom)
open import Cubical.Algebra.AbGroup.Base
open import Cubical.HITs.SetCoequalizer
open import Cubical.Algebra.Group.Abelianization.Base
renaming (Abelianization to HITAbelianization;
η to HITη;
comm to HITcomm;
isset to HITisset)
open import Cubical.Algebra.Group.Abelianization.Properties
hiding (elimProp; elimProp2; elimProp3; elimContr; elimContr2; rec; rec2)
renaming (AbelianizationAbGroup to HITasAbelianGroup;
AbelianizationHom to HITηAsGroupHom)
open Cubical.Algebra.Group.Abelianization.Properties.UniversalProperty
renaming (inducedHom to HITinducedHom;
commutativity to HITcommutativity;
uniqueness to HITuniqueness)
private
variable
ℓ : Level
G : Group ℓ
module AbelianizationAsCoeq (G : Group ℓ) where
open GroupStr {{...}}
open GroupTheory G
private
instance
_ = snd G
G' = fst G
{-
The definition of the abelianization of a group as a coequalizer of sets. The generality
of the coequalized functions will be needed to define the group structure on the
abelianization.
-}
Abelianization : Type ℓ
Abelianization =
SetCoequalizer {A = G' × G' × G'} {B = G'}
(λ (x , y , z) → x · y · z)
(λ (x , y , z) → x · z · y)
-- some convenient relabellings, so it looks more similar to the abelianization as a HIT.
incAb : G' → Abelianization
incAb = inc
comm : (x y z : G') → incAb (x · (y · z)) ≡ incAb (x · (z · y))
comm = λ x y z → coeq (x , y , z)
{-
Definition of the group structure on the abelianization. Here the generality of the
coequalized functions is used.
-}
_·Ab_ : Abelianization → Abelianization → Abelianization
_·Ab_ =
rec2
squash
(λ x y → incAb (x · y))
(λ (a , b , c) d →
incAb ((a · (b · c)) · d) ≡⟨ cong (λ x → incAb (x · d)) (assoc _ _ _) ⟩
incAb (((a · b) · c) · d) ≡⟨ cong incAb (sym (assoc (a · b) c d)) ⟩
incAb ((a · b) · (c · d)) ≡⟨ comm (a · b) c d ⟩
incAb ((a · b) · (d · c)) ≡⟨ cong incAb (sym (assoc _ _ _)) ⟩
incAb (a · (b · (d · c))) ≡⟨ cong (λ x → incAb (a · x)) (assoc _ _ _) ⟩
incAb (a · ((b · d) · c)) ≡⟨ comm a (b · d) c ⟩
incAb (a · (c · (b · d))) ≡⟨ cong (λ x → incAb (a · x)) (assoc _ _ _) ⟩
incAb (a · ((c · b) · d)) ≡⟨ cong incAb (assoc a (c · b) d) ⟩
incAb ((a · (c · b)) · d) ∎)
(λ (b , c , d) a →
incAb (a · (b · (c · d))) ≡⟨ cong incAb (assoc _ _ _) ⟩
incAb ((a · b) · (c · d)) ≡⟨ comm (a · b) c d ⟩
incAb ((a · b) · (d · c)) ≡⟨ cong incAb (sym (assoc _ _ _)) ⟩
incAb (a · (b · (d · c))) ∎)
1Ab : Abelianization
1Ab = incAb 1g
invAb : Abelianization → Abelianization
invAb =
rec
squash
(λ x → incAb (inv x))
(λ (a , b , c) →
incAb (inv (a · (b · c))) ≡⟨ cong incAb (invDistr a (b · c)) ⟩
incAb (inv (b · c) · inv a) ≡⟨ cong (λ x → incAb (x · inv a)) (invDistr b c) ⟩
incAb ((inv c · inv b) · inv a) ≡⟨ cong
incAb
(sym (lid ((inv c · inv b) · inv a))) ⟩
incAb (1g · ((inv c · inv b) · inv a)) ≡⟨ comm 1g (inv c · inv b) (inv a) ⟩
incAb (1g · (inv a · (inv c · inv b))) ≡⟨ cong incAb (lid (inv a · (inv c · inv b))) ⟩
incAb (inv a · (inv c · inv b)) ≡⟨ comm (inv a) (inv c) (inv b) ⟩
incAb (inv a · (inv b · inv c)) ≡⟨ cong
incAb
(sym (lid (inv a · (inv b · inv c)))) ⟩
incAb (1g · (inv a · (inv b · inv c))) ≡⟨ comm 1g (inv a) (inv b · inv c) ⟩
incAb (1g · ((inv b · inv c) · inv a)) ≡⟨ cong incAb (lid ((inv b · inv c) · inv a)) ⟩
incAb ((inv b · inv c) · inv a) ≡⟨ cong
(λ x → incAb (x · inv a))
(sym (invDistr c b)) ⟩
incAb (inv (c · b) · inv a) ≡⟨ cong incAb (sym (invDistr a (c · b))) ⟩
incAb (inv (a · (c · b))) ∎)
assocAb : (x y z : Abelianization) → x ·Ab (y ·Ab z) ≡ (x ·Ab y) ·Ab z
assocAb =
elimProp3
(λ x y z → squash (x ·Ab (y ·Ab z))
((x ·Ab y) ·Ab z))
(λ x y z → cong incAb (assoc x y z))
ridAb : (x : Abelianization) → x ·Ab 1Ab ≡ x
ridAb =
elimProp
(λ x → squash (x ·Ab 1Ab) x)
(λ x → cong incAb (rid x))
rinvAb : (x : Abelianization) → x ·Ab (invAb x) ≡ 1Ab
rinvAb =
elimProp
(λ x → squash (x ·Ab (invAb x)) 1Ab)
(λ x → (incAb x) ·Ab (invAb (incAb x)) ≡⟨ refl ⟩
(incAb x) ·Ab (incAb (inv x)) ≡⟨ refl ⟩
incAb (x · (inv x)) ≡⟨ cong incAb (fst (inverse x)) ⟩
incAb 1g ≡⟨ refl ⟩
1Ab ∎)
commAb : (x y : Abelianization) → x ·Ab y ≡ y ·Ab x
commAb =
elimProp2
(λ x y → squash (x ·Ab y) (y ·Ab x))
(λ x y → (incAb x) ·Ab (incAb y) ≡⟨ refl ⟩
incAb (x · y) ≡⟨ cong incAb (sym (lid (x · y))) ⟩
incAb (1g · (x · y)) ≡⟨ comm 1g x y ⟩
incAb (1g · (y · x)) ≡⟨ cong incAb (lid (y · x)) ⟩
incAb (y · x) ≡⟨ refl ⟩
(incAb y) ·Ab (incAb x) ∎)
-- The proof that the abelianization is in fact an abelian group.
asAbelianGroup : AbGroup ℓ
asAbelianGroup = makeAbGroup 1Ab _·Ab_ invAb squash assocAb ridAb rinvAb commAb
-- The proof that incAb can be seen as a group homomorphism
incAbAsGroupHom : GroupHom G (AbGroup→Group asAbelianGroup)
incAbAsGroupHom = f , fIsHom
where
f = λ x → incAb x
fIsHom : IsGroupHom (snd G) f (snd (AbGroup→Group asAbelianGroup))
IsGroupHom.pres· fIsHom = λ x y → refl
IsGroupHom.pres1 fIsHom = refl
IsGroupHom.presinv fIsHom = λ x → refl
AbelianizationAbGroup : (G : Group ℓ) → AbGroup ℓ
AbelianizationAbGroup G = AbelianizationAsCoeq.asAbelianGroup G
AbelianizationHom : (G : Group ℓ) → GroupHom G (AbGroup→Group (AbelianizationAbGroup G))
AbelianizationHom G = AbelianizationAsCoeq.incAbAsGroupHom G
module UniversalPropertyCoeq (G : Group ℓ) where
open GroupStr {{...}}
open GroupTheory G
open AbelianizationAsCoeq G
private
instance
_ = snd G
G' = fst G
abstract
{- The proof of the universal property of the abelianization.
G -incAb-> Abelianization
\ .
\ .
f ∃! inducedHom
\ .
\ .
H
commuting diagram
-}
inducedHom : (H : AbGroup ℓ)
→ (f : GroupHom G (AbGroup→Group H))
→ AbGroupHom asAbelianGroup H
inducedHom H f = g , gIsHom
where open IsGroupHom
instance
_ : GroupStr (fst H)
_ = snd (AbGroup→Group H)
f' : fst G → fst H
f' = fst f
g : Abelianization → fst H
g = rec
(isSetAbGroup H)
(λ x → (f') x)
(λ (a , b , c) →
f' (a · b · c) ≡⟨ (snd f).pres· a (b · c) ⟩
(f' a) · (f' (b · c)) ≡⟨ cong (λ x → (f' a) · x) ((snd f).pres· b c) ⟩
(f' a) · (f' b) · (f' c) ≡⟨ cong (λ x → (f' a) · x)
((snd H).AbGroupStr.comm (f' b) (f' c)) ⟩
(f' a) · (f' c) · (f' b) ≡⟨ cong (λ x → (f' a) · x)
(sym ((snd f).pres· c b)) ⟩
(f' a) · (f' (c · b)) ≡⟨ sym ((snd f).pres· a (c · b)) ⟩
f' (a · c · b) ∎)
gIsHom : IsGroupHom (snd (AbGroup→Group asAbelianGroup)) g (snd (AbGroup→Group H))
pres· gIsHom =
elimProp2
(λ x y → isSetAbGroup H _ _)
((snd f).pres·)
pres1 gIsHom = (snd f).pres1
presinv gIsHom =
elimProp
(λ x → isSetAbGroup H _ _)
((snd f).presinv)
commutativity : (H : AbGroup ℓ)
→ (f : GroupHom G (AbGroup→Group H))
→ (compGroupHom incAbAsGroupHom (inducedHom H f) ≡ f)
commutativity H f =
Σ≡Prop
(λ _ → isPropIsGroupHom _ _)
(λ i x → q x i)
where q : (x : fst G)
→ fst (compGroupHom incAbAsGroupHom (inducedHom H f)) x ≡ fst f x
q = (λ x → refl)
uniqueness : (H : AbGroup ℓ)
→ (f : GroupHom G (AbGroup→Group H))
→ (g : AbGroupHom asAbelianGroup H)
→ (p : compGroupHom incAbAsGroupHom g ≡ f)
→ (g ≡ inducedHom H f)
uniqueness H f g p =
Σ≡Prop
(λ _ → isPropIsGroupHom _ _)
(λ i x → q x i)
where q : (x : Abelianization)
→ fst g x ≡ fst (inducedHom H f) x
q = elimProp
(λ _ → isSetAbGroup H _ _)
(λ x → fst g (incAb x) ≡⟨ cong (λ f → f x) (cong fst p) ⟩
(fst f) x ≡⟨ refl ⟩
fst (inducedHom H f) (incAb x)∎)
module IsoCoeqHIT (G : Group ℓ) where
open GroupStr {{...}}
open GroupTheory G
open AbelianizationAsCoeq G
open UniversalPropertyCoeq G
private
instance
_ = snd G
G' = fst G
{- The proof that defining the abelianization of groups as a coequalizer of sets is equivalent
to defining it as a HIT, more precisely that there is an isomorphism between the resulting
abelian groups unique with respect to commuting with the constructors η and inc.
G -incAb-> abelianization as coequalizer
\ .
\ .
η ∃! isomorphism
\ .
\ .
abelianization as HIT
commuting diagram
-}
isomorphism : AbGroupIso asAbelianGroup (HITasAbelianGroup G)
isomorphism = h , hIsHomo
where
f = inducedHom (HITasAbelianGroup G) (HITηAsGroupHom G)
g = HITinducedHom G asAbelianGroup incAbAsGroupHom
HITgfcomm : compGroupHom (HITηAsGroupHom G) (compGroupHom g f) ≡ (HITηAsGroupHom G)
HITgfcomm =
compGroupHom (HITηAsGroupHom G) (compGroupHom g f)
≡⟨ sym (compGroupHomAssoc (HITηAsGroupHom G) g f) ⟩
compGroupHom (compGroupHom (HITηAsGroupHom G) g) f
≡⟨ cong (λ x → compGroupHom x f) (HITcommutativity G asAbelianGroup incAbAsGroupHom) ⟩
compGroupHom incAbAsGroupHom f
≡⟨ commutativity (HITasAbelianGroup G) (HITηAsGroupHom G) ⟩
(HITηAsGroupHom G) ∎
HITidcomm : compGroupHom (HITηAsGroupHom G) idGroupHom ≡ HITηAsGroupHom G
HITidcomm = compGroupHomId (HITηAsGroupHom G)
HITidIsInduced : HITinducedHom G (HITasAbelianGroup G) (HITηAsGroupHom G) ≡ idGroupHom
HITidIsInduced = sym (HITuniqueness G
(HITasAbelianGroup G)
(HITηAsGroupHom G)
idGroupHom
HITidcomm)
HITgfIsInduced : HITinducedHom G (HITasAbelianGroup G) (HITηAsGroupHom G) ≡ compGroupHom g f
HITgfIsInduced = sym (HITuniqueness G
(HITasAbelianGroup G)
(HITηAsGroupHom G)
(compGroupHom g f)
HITgfcomm)
i : idGroupHom ≡ compGroupHom g f
i = idGroupHom ≡⟨ sym HITidIsInduced ⟩
HITinducedHom G (HITasAbelianGroup G) (HITηAsGroupHom G) ≡⟨ HITgfIsInduced ⟩
compGroupHom g f ∎
fgcomm : compGroupHom incAbAsGroupHom (compGroupHom f g) ≡ incAbAsGroupHom
fgcomm =
compGroupHom incAbAsGroupHom (compGroupHom f g)
≡⟨ sym (compGroupHomAssoc incAbAsGroupHom f g) ⟩
compGroupHom (compGroupHom incAbAsGroupHom f) g
≡⟨ cong (λ x → compGroupHom x g) (commutativity (HITasAbelianGroup G) (HITηAsGroupHom G)) ⟩
compGroupHom (HITηAsGroupHom G) g
≡⟨ (HITcommutativity G) asAbelianGroup incAbAsGroupHom ⟩
incAbAsGroupHom ∎
idcomm : compGroupHom incAbAsGroupHom idGroupHom ≡ incAbAsGroupHom
idcomm = compGroupHomId incAbAsGroupHom
idIsInduced : inducedHom asAbelianGroup incAbAsGroupHom ≡ idGroupHom
idIsInduced = sym (uniqueness asAbelianGroup incAbAsGroupHom idGroupHom idcomm)
fgIsInduced : inducedHom asAbelianGroup incAbAsGroupHom ≡ compGroupHom f g
fgIsInduced = sym (uniqueness asAbelianGroup incAbAsGroupHom (compGroupHom f g) fgcomm)
j : idGroupHom ≡ compGroupHom f g
j = idGroupHom ≡⟨ sym idIsInduced ⟩
inducedHom asAbelianGroup incAbAsGroupHom ≡⟨ fgIsInduced ⟩
compGroupHom f g ∎
h = iso
(fst f)
(fst g)
(λ b → cong (λ e → e b) (cong fst (sym i)))
(λ a → cong (λ e → e a) (cong fst (sym j)))
hIsHomo = snd f
isomorphismCommutativity : compGroupHom incAbAsGroupHom (GroupIso→GroupHom isomorphism)
≡ (HITηAsGroupHom G)
isomorphismCommutativity = commutativity (HITasAbelianGroup G) (HITηAsGroupHom G)
isomorphismUniqueness : (h : AbGroupIso asAbelianGroup (HITasAbelianGroup G))
→ (hcomm : compGroupHom incAbAsGroupHom (GroupIso→GroupHom h) ≡ (HITηAsGroupHom G))
→ h ≡ isomorphism
isomorphismUniqueness h hcomm = GroupIso≡ p
where
r : (x : fst asAbelianGroup)
→ fst (compGroupHom (GroupIso→GroupHom h) (GroupIso→GroupHom (invGroupIso h))) x ≡ x
r = λ x → (h .fst .Iso.leftInv) x
leftInvGroupHom : (compGroupHom
(GroupIso→GroupHom h)
(GroupIso→GroupHom (invGroupIso h))) ≡ idGroupHom
leftInvGroupHom =
Σ≡Prop
(λ _ → isPropIsGroupHom _ _)
(λ i x → r x i)
q : (g : fst G)
→ fst (compGroupHom
(HITηAsGroupHom G)
(GroupIso→GroupHom (invGroupIso h))) g ≡ fst incAbAsGroupHom g
q = λ g
→ fst (compGroupHom (HITηAsGroupHom G) (GroupIso→GroupHom (invGroupIso h))) g
≡⟨ cong
(λ f → f g)
(cong fst (cong
(λ f → compGroupHom f (GroupIso→GroupHom (invGroupIso h)))
(sym hcomm))) ⟩
fst (compGroupHom
(compGroupHom incAbAsGroupHom (GroupIso→GroupHom h))
(GroupIso→GroupHom (invGroupIso h))) g
≡⟨ cong
(λ f → f g)
(cong fst (compGroupHomAssoc
incAbAsGroupHom
(GroupIso→GroupHom h)
(GroupIso→GroupHom (invGroupIso h)))) ⟩
fst (compGroupHom
incAbAsGroupHom
(compGroupHom (GroupIso→GroupHom h) (GroupIso→GroupHom (invGroupIso h)))) g
≡⟨ cong
(λ f → f g)
(cong fst (cong (λ f → (compGroupHom incAbAsGroupHom f)) leftInvGroupHom)) ⟩
fst incAbAsGroupHom g ∎
isocomm : compGroupHom
(HITηAsGroupHom G)
(GroupIso→GroupHom (invGroupIso h)) ≡ incAbAsGroupHom
isocomm =
Σ≡Prop
(λ _ → isPropIsGroupHom _ _)
(λ i x → q x i)
p : h .fst ≡ isomorphism .fst
p =
Iso≡Set
(isSetAbGroup asAbelianGroup)
(isSetAbGroup (HITasAbelianGroup G))
(h .fst)
(isomorphism .fst)
(λ x → cong
(λ f → f x)
(cong fst (uniqueness
(HITasAbelianGroup G)
(HITηAsGroupHom G)
(GroupIso→GroupHom h)
hcomm)))
(λ x → cong
(λ f → f x)
(cong fst (HITuniqueness G
asAbelianGroup
incAbAsGroupHom
(GroupIso→GroupHom (invGroupIso h))
isocomm)))
AbelianizationComparisonIsomorphism : (G : Group ℓ)
→ AbGroupIso (AbelianizationAbGroup G) (HITasAbelianGroup G)
AbelianizationComparisonIsomorphism G = IsoCoeqHIT.isomorphism G
|
algebraic-stack_agda0000_doc_5372 | module list-to-string where
open import list
open import string
𝕃-to-string : ∀ {ℓ} {A : Set ℓ} → (f : A → string) → (separator : string) → 𝕃 A → string
𝕃-to-string f sep [] = ""
𝕃-to-string f sep (x1 :: (x2 :: xs)) = (f x1) ^ sep ^ (𝕃-to-string f sep (x2 :: xs))
𝕃-to-string f sep (x1 :: []) = (f x1)
|
algebraic-stack_agda0000_doc_5373 |
module AbstractRationals where
open import Algebra
open import Data.Integer.Base using (+0)
open import Data.Maybe.Base using (just; nothing; decToMaybe)
open import Data.Rational.Base as ℚ public hiding (_+_; _*_; _-_)
open import Data.Rational.Properties as ℚ public
using (module ≤-Reasoning; <⇒≤)
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
open import Function.Base
open import Data.Product using (_×_; _,_)
open import Tactic.RingSolver.Core.AlmostCommutativeRing
open import Tactic.RingSolver.NonReflective (fromCommutativeRing ℚ.+-*-commutativeRing (λ x → decToMaybe (0ℚ ℚ.≟ x)))
open import RationalUtils as ℚ public using (2ℚ; 3ℚ)
infixl 7 _*_
infixl 6 _+_ _-_
abstract
_+_ : ℚ → ℚ → ℚ
_+_ = ℚ._+_
_*_ : ℚ → ℚ → ℚ
_*_ = ℚ._*_
_-_ : ℚ → ℚ → ℚ
_-_ = ℚ._-_
+-eq : _+_ ≡ ℚ._+_
+-eq = refl
*-eq : _*_ ≡ ℚ._*_
*-eq = refl
neg-eq : _-_ ≡ ℚ._-_
neg-eq = refl
p+q-p≡q : ∀ p q → p + q - p ≡ q
p+q-p≡q = ℚ.p+q-p≡q
p+q-q≡p : ∀ p q → p + q - q ≡ p
p+q-q≡p = ℚ.p+q-q≡p
p-q+q≡p : ∀ p q → p - q + q ≡ p
p-q+q≡p = ℚ.p-q+q≡p
p-[p+q]≡q : ∀ p q → p - (p + q) ≡ q
p-[p+q]≡q = ℚ.p-[p+q]≡q
∣p-q∣≤∣p∣+∣q∣ : ∀ p q → ∣ p - q ∣ ≤ ∣ p ∣ + ∣ q ∣
∣p-q∣≤∣p∣+∣q∣ = ℚ.∣p-q∣≤∣p∣+∣q∣
∣p∣≤q⇒-q≤p≤q : ∀ p {q} → ∣ p ∣ ≤ q → - q ≤ p × p ≤ q
∣p∣≤q⇒-q≤p≤q p = ℚ.∣p∣≤q⇒-q≤p≤q p
-p<q<p⇒∣q∣<p : ∀ {p q} → - p < q → q < p → ∣ q ∣ < p
-p<q<p⇒∣q∣<p = ℚ.-p<q<p⇒∣q∣<p
2*p≡p+p : ∀ p → 2ℚ * p ≡ p + p
2*p≡p+p = ℚ.2*p≡p+p
+-assoc : Associative _≡_ _+_
+-assoc = ℚ.+-assoc
+-monoˡ-≤ : ∀ r → (_+ r) Preserves _≤_ ⟶ _≤_
+-monoˡ-≤ = ℚ.+-monoˡ-≤
+-monoʳ-≤ : ∀ r → (_+_ r) Preserves _≤_ ⟶ _≤_
+-monoʳ-≤ = ℚ.+-monoʳ-≤
+-mono-≤ : _+_ Preserves₂ _≤_ ⟶ _≤_ ⟶ _≤_
+-mono-≤ = ℚ.+-mono-≤
*-monoʳ-≤ : ∀ r → Positive r → (r *_) Preserves _≤_ ⟶ _≤_
*-monoʳ-≤ = ℚ.*-monoʳ-≤
∣p+q∣≤∣p∣+∣q∣ : ∀ p q → ∣ p + q ∣ ≤ ∣ p ∣ + ∣ q ∣
∣p+q∣≤∣p∣+∣q∣ = ℚ.∣p+q∣≤∣p∣+∣q∣
∣p*q∣≡∣p∣*∣q∣ : ∀ p q → ∣ p * q ∣ ≡ ∣ p ∣ * ∣ q ∣
∣p*q∣≡∣p∣*∣q∣ = ℚ.∣p*q∣≡∣p∣*∣q∣
p<r-q⇒p+q<r : ∀ p q r → p < r - q → p + q < r
p<r-q⇒p+q<r = ℚ.p<r-q⇒p+q<r
2p+p≡3p : ∀ p → 2ℚ * p + p ≡ 3ℚ * p
2p+p≡3p p = begin-equality
2ℚ * p + p ≡⟨ cong (2ℚ * p +_) (sym (ℚ.*-identityˡ p)) ⟩
2ℚ * p + 1ℚ * p ≡⟨ sym (ℚ.*-distribʳ-+ p 2ℚ 1ℚ) ⟩
(2ℚ + 1ℚ) * p ∎
where open ≤-Reasoning
lem1 : ∀ a b c d e f g → a + (b + c) + d + (e + f + f - g) - (e + f + f - g) ≡
c + (a + f + (e + b + d + f)) - g - (f + f + (e - g))
lem1 = solve 7 (λ a b c d e f g → (a ⊕ (b ⊕ c) ⊕ d ⊕ (e ⊕ f ⊕ f ⊕ (⊝ g)) ⊕ (⊝ (e ⊕ f ⊕ f ⊕ (⊝ g))) ,
c ⊕ (a ⊕ f ⊕ (e ⊕ b ⊕ d ⊕ f)) ⊕ (⊝ g) ⊕ (⊝ (f ⊕ f ⊕ (e ⊕ (⊝ g)))))) refl
|
algebraic-stack_agda0000_doc_5374 |
module Issue461 where
data D : Set where
data D : Set where
|
algebraic-stack_agda0000_doc_5375 | {-# OPTIONS --no-auto-inline #-}
module Where where
open import Haskell.Prelude hiding (_+_; _*_; _-_)
open import Agda.Builtin.Nat
postulate
bool2nat : Bool → Nat
-- no outer arguments
ex1 : Nat
ex1 = mult num + bool2nat true
where
num : Nat
num = 42
mult : Nat → Nat
mult = _* 100
-- nested where
ex2 : Nat
ex2 = mult num + bool2nat true
where
num : Nat
num = 42
mult : Nat → Nat
mult = _⊗ 100
where
_⊗_ = _*_
-- with outer arguments
ex3 : Nat → Bool → Nat
ex3 n b = mult num + bool2nat b
where
num = 42 + bool2nat b
mult : Nat → Nat
mult = _* n
-- nested where with outer arguments
ex4 : Bool → Nat
ex4 b = mult 42
where
mult : Nat → Nat
mult n = bump n (bool2nat b)
where
bump : Nat → Nat → Nat
bump x y = x * y + (n - bool2nat b)
ex4' : Bool → Nat
ex4' b = mult (bool2nat b)
where
mult : Nat → Nat
mult n = bump n (bool2nat b)
where
bump : Nat → Nat → Nat
bump x y = go (x * y) (n - bool2nat b)
where
go : Nat → Nat → Nat
go z w = z + x + w + y + n + bool2nat b
-- with pattern matching and multiple clauses
ex5 : List Nat → Nat
ex5 [] = zro
where
zro : Nat
zro = 0
ex5 (n ∷ ns) = mult num + 1
where
num = 42 + ex5 ns
mult : Nat → Nat
mult = _* n
-- mix of patterns + inner multiple clauses + nested where
ex6 : List Nat → Bool → Nat
ex6 [] b = zro
where
zro : Nat
zro = 0
ex6 (n ∷ ns) b = mult (num ∷ 1 ∷ [])
where
mult : List Nat → Nat
mult [] = bump 5 (bool2nat b)
where
bump : Nat → Nat → Nat
bump x y = x * y + n
mult (m ∷ ms) = bump n m
where
bump : Nat → Nat → Nat
bump x y = x * y + (m - n)
num = 42 + ex6 ns true
ex7 : Nat → Nat
ex7 n₀ = go₁ n₀
where
go₁ : Nat → Nat
go₁ n₁ = go₂ (n₀ + n₁)
where
go₂ : Nat → Nat
go₂ n₂ = n₀ + n₁ + n₂
ex7' : Nat → Nat
ex7' n₀ = go₁ n₀
where
go₁ : Nat → Nat
go₁ n₁ = go₂ (n₀ + n₁)
where
go₂ : Nat → Nat
go₂ n₂ = go₃ (n₀ + n₁ + n₂)
where
go₃ : Nat → Nat
go₃ n₃ = n₀ + n₁ + n₂ + n₃
ex8 : Nat
ex8 = n₂
where
n₁ : Nat
n₁ = 1
n₂ = n₁ + 1
{-# COMPILE AGDA2HS bool2nat #-}
{-# COMPILE AGDA2HS ex1 #-}
{-# COMPILE AGDA2HS ex2 #-}
{-# COMPILE AGDA2HS ex3 #-}
{-# COMPILE AGDA2HS ex4 #-}
{-# COMPILE AGDA2HS ex4' #-}
{-# COMPILE AGDA2HS ex5 #-}
{-# COMPILE AGDA2HS ex6 #-}
{-# COMPILE AGDA2HS ex7 #-}
{-# COMPILE AGDA2HS ex7' #-}
{-# COMPILE AGDA2HS ex8 #-}
|
algebraic-stack_agda0000_doc_5296 | open import System.IO using ( _>>_ ; putStr ; commit )
open import Data.Natural using ( show )
open import System.IO.Examples.Four using ( four )
module System.IO.Examples.HelloFour where
main = putStr "Hello, " >> putStr (show four) >> putStr ".\n" >> commit
|
algebraic-stack_agda0000_doc_5297 | {-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Monoids.Definition
module Semirings.Definition where
record Semiring {a : _} {A : Set a} (Zero One : A) (_+_ : A → A → A) (_*_ : A → A → A) : Set a where
field
monoid : Monoid Zero _+_
commutative : (a b : A) → a + b ≡ b + a
multMonoid : Monoid One _*_
productZeroLeft : (a : A) → Zero * a ≡ Zero
productZeroRight : (a : A) → a * Zero ≡ Zero
+DistributesOver* : (a b c : A) → a * (b + c) ≡ (a * b) + (a * c)
+DistributesOver*' : (a b c : A) → (a + b) * c ≡ (a * c) + (b * c)
+Associative = Monoid.associative monoid
*Associative = Monoid.associative multMonoid
productOneLeft = Monoid.idLeft multMonoid
productOneRight = Monoid.idRight multMonoid
sumZeroLeft = Monoid.idLeft monoid
sumZeroRight = Monoid.idRight monoid
+WellDefined : {a b c d : A} → (a ≡ c) → (b ≡ d) → (a + b) ≡ (c + d)
+WellDefined refl refl = refl
-- (b+c)(a+a) == b(a+a) + c(a+a) == ba+ba+ca+ca == (ba+ca) + (ba+ca)
-- (b+c)(a+a) ==? (b+c)a+(b+c)a
|
algebraic-stack_agda0000_doc_5298 | {-# OPTIONS --type-in-type --rewriting #-}
open import Agda.Builtin.Sigma
open import Agda.Builtin.Equality
coe : {A B : Set} → A ≡ B → A → B
coe refl x = x
{-# BUILTIN REWRITE _≡_ #-}
Tel = Set
U = Set
variable
Δ : Tel
A B : Δ → U
δ₀ δ₁ : Δ
postulate
IdTel : (Δ : Tel)(δ₀ δ₁ : Δ) → Tel
Id : (A : Δ → U){δ₀ δ₁ : Δ}(δ₂ : IdTel Δ δ₀ δ₁) → A δ₀ → A δ₁ → U
ap : {A : Δ → U}(a : (δ : Δ) → A δ)
→ {δ₀ δ₁ : Δ}(δ₂ : IdTel Δ δ₀ δ₁) → Id A δ₂ (a δ₀) (a δ₁)
idTel-sigma : {a₀ : A δ₀}{a₁ : A δ₁}
→ IdTel (Σ Δ A) (δ₀ , a₀) (δ₁ , a₁)
≡ Σ (IdTel Δ δ₀ δ₁) (λ δ₂ → Id A δ₂ a₀ a₁)
{-# REWRITE idTel-sigma #-}
id-u : {A₀ A₁ : U}{δ₂ : IdTel Δ δ₀ δ₁}
→ Id {Δ = Δ}(λ _ → U) δ₂ A₀ A₁ ≡ (A₀ → A₁ → U)
{-# REWRITE id-u #-}
id-ap : {δ₂ : IdTel Δ δ₀ δ₁}{a₀ : A δ₀}{a₁ : A δ₁}
→ Id A δ₂ a₀ a₁ ≡ ap {A = λ _ → U} A δ₂ a₀ a₁
ap-sigma : {δ₂ : IdTel Δ δ₀ δ₁}{a₀ : A δ₀}{a₁ : A δ₁}
{B : (δ : Δ) → A δ → U}
{b₀ : B δ₀ a₀}{b₁ : B δ₁ a₁}→
ap {Δ = Δ}{A = λ _ → U} (λ δ → Σ (A δ) (B δ))
δ₂ (a₀ , b₀) (a₁ , b₁) ≡
Σ (Id A δ₂ a₀ a₁) λ a₂ → Id {Δ = Σ Δ A} (λ (δ , a) → B δ a) (δ₂ , a₂) b₀ b₁
{-# REWRITE ap-sigma #-}
{-# REWRITE id-ap #-}
ap-proj₁ : {δ₂ : IdTel Δ δ₀ δ₁}
{B : (δ : Δ) → A δ → U}
{ab : (δ : Δ) → Σ (A δ) (B δ)}
→ ap {Δ = Δ}{A = A}(λ δ → fst (ab δ)) δ₂
≡ fst (ap ab δ₂)
|
algebraic-stack_agda0000_doc_5299 | {-# OPTIONS --cubical-compatible --rewriting --confluence-check #-}
module Issue1719.Spans where
open import Issue1719.Common
record Span : Set₁ where
constructor span
field
A B C : Set
f : C → A
g : C → B
open Span public
|
algebraic-stack_agda0000_doc_5300 | ------------------------------------------------------------------------
-- Products
------------------------------------------------------------------------
module Data.Product where
open import Data.Function
open import Relation.Nullary.Core
infixr 4 _,_
infix 4 ,_
infixr 2 _×_ _-×-_ _-,-_
------------------------------------------------------------------------
-- Definition
data Σ (A : Set) (B : A → Set) : Set where
_,_ : (x : A) (y : B x) → Σ A B
∃ : {A : Set} → (A → Set) → Set
∃ = Σ _
∄ : {A : Set} → (A → Set) → Set
∄ P = ¬ ∃ P
∃₂ : {A : Set} {B : A → Set} (C : (x : A) → B x → Set) → Set
∃₂ C = ∃ λ a → ∃ λ b → C a b
_×_ : (A B : Set) → Set
A × B = Σ A (λ _ → B)
------------------------------------------------------------------------
-- Functions
-- Sometimes the first component can be inferred.
,_ : ∀ {A} {B : A → Set} {x} → B x → ∃ B
, y = _ , y
proj₁ : ∀ {A B} → Σ A B → A
proj₁ (x , y) = x
proj₂ : ∀ {A B} → (p : Σ A B) → B (proj₁ p)
proj₂ (x , y) = y
<_,_> : ∀ {A} {B : A → Set} {C : ∀ {x} → B x → Set}
(f : (x : A) → B x) → ((x : A) → C (f x)) →
((x : A) → Σ (B x) C)
< f , g > x = (f x , g x)
map : ∀ {A B P Q} →
(f : A → B) → (∀ {x} → P x → Q (f x)) →
Σ A P → Σ B Q
map f g = < f ∘ proj₁ , g ∘ proj₂ >
zip : ∀ {A B C P Q R} →
(_∙_ : A → B → C) →
(∀ {x y} → P x → Q y → R (x ∙ y)) →
Σ A P → Σ B Q → Σ C R
zip _∙_ _∘_ p₁ p₂ = (proj₁ p₁ ∙ proj₁ p₂ , proj₂ p₁ ∘ proj₂ p₂)
swap : ∀ {A B} → A × B → B × A
swap = < proj₂ , proj₁ >
_-×-_ : ∀ {A B} → (A → B → Set) → (A → B → Set) → (A → B → Set)
f -×- g = f -[ _×_ ]₁- g
_-,-_ : ∀ {A B C D} → (A → B → C) → (A → B → D) → (A → B → C × D)
f -,- g = f -[ _,_ ]- g
curry : {A : Set} {B : A → Set} {C : Σ A B → Set} →
((p : Σ A B) → C p) →
((x : A) → (y : B x) → C (x , y))
curry f x y = f (x , y)
uncurry : {A : Set} {B : A → Set} {C : Σ A B → Set} →
((x : A) → (y : B x) → C (x , y)) →
((p : Σ A B) → C p)
uncurry f (p₁ , p₂) = f p₁ p₂
|
algebraic-stack_agda0000_doc_5301 | {-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Foundations.Equiv.Base where
open import Cubical.Foundations.Function
open import Cubical.Foundations.Prelude
open import Cubical.Core.Glue public
using ( isEquiv ; equiv-proof ; _≃_ ; equivFun ; equivProof )
fiber : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} (f : A → B) (y : B) → Type (ℓ-max ℓ ℓ')
fiber {A = A} f y = Σ[ x ∈ A ] f x ≡ y
-- The identity equivalence
idIsEquiv : ∀ {ℓ} (A : Type ℓ) → isEquiv (idfun A)
equiv-proof (idIsEquiv A) y =
((y , refl) , λ z i → z .snd (~ i) , λ j → z .snd (~ i ∨ j))
idEquiv : ∀ {ℓ} (A : Type ℓ) → A ≃ A
idEquiv A .fst = idfun A
idEquiv A .snd = idIsEquiv A
|
algebraic-stack_agda0000_doc_5302 | module Prelude.List.Base where
open import Prelude.Nat
open import Prelude.Bool
open import Prelude.Maybe
open import Prelude.Product
open import Prelude.Empty
open import Prelude.Function
open import Prelude.Functor
open import Prelude.Applicative
open import Prelude.Monad
open import Prelude.Decidable
open import Prelude.Equality
open import Prelude.Ord
open import Prelude.Semiring
open import Prelude.Strict
open import Prelude.Variables
open import Agda.Builtin.List public
infixr 5 _++_
pattern [_] x = x ∷ []
singleton : A → List A
singleton x = x ∷ []
map : (A → B) → List A → List B
map f [] = []
map f (x ∷ xs) = f x ∷ map f xs
_++_ : List A → List A → List A
[] ++ ys = ys
(x ∷ xs) ++ ys = x ∷ xs ++ ys
length : List A → Nat
length [] = 0
length (x ∷ xs) = 1 + length xs
foldr : (A → B → B) → B → List A → B
foldr f z [] = z
foldr f z (x ∷ xs) = f x (foldr f z xs)
foldl : (B → A → B) → B → List A → B
foldl f z [] = z
foldl f z (x ∷ xs) = foldl f (f z x) xs
foldl! : (B → A → B) → B → List A → B
foldl! f z [] = z
foldl! f z (x ∷ xs) = force (f z x) λ z′ → foldl! f z′ xs
reverse : List A → List A
reverse xs = foldl (flip _∷_) [] xs
concat : List (List A) → List A
concat = foldr _++_ []
concatMap : (A → List B) → List A → List B
concatMap f = concat ∘ map f
filter : (A → Bool) → List A → List A
filter p [] = []
filter p (x ∷ xs) = if p x then x ∷ filter p xs
else filter p xs
catMaybes : List (Maybe A) → List A
catMaybes [] = []
catMaybes (x ∷ xs) = maybe (catMaybes xs) (_∷ catMaybes xs) x
all? : (A → Bool) → List A → Bool
all? p [] = true
all? p (x ∷ xs) = p x && all? p xs
any? : (A → Bool) → List A → Bool
any? p [] = false
any? p (x ∷ xs) = p x || any? p xs
take : Nat → List A → List A
take zero _ = []
take (suc n) [] = []
take (suc n) (x ∷ xs) = x ∷ take n xs
drop : Nat → List A → List A
drop zero xs = xs
drop (suc n) [] = []
drop (suc n) (x ∷ xs) = drop n xs
takeWhile : (A → Bool) → List A → List A
takeWhile p [] = []
takeWhile p (x ∷ xs) = if p x then x ∷ takeWhile p xs
else []
dropWhile : (A → Bool) → List A → List A
dropWhile p [] = []
dropWhile p (x ∷ xs) = if p x then dropWhile p xs
else x ∷ xs
splitAt : Nat → List A → List A × List A
splitAt zero xs = [] , xs
splitAt (suc n) [] = [] , []
splitAt (suc n) (x ∷ xs) = first (x ∷_) (splitAt n xs)
null : List A → Bool
null [] = true
null (_ ∷ _) = false
elem : ⦃ Eq A ⦄ → A → List A → Bool
elem x xs = not (null (filter (isYes ∘ _==_ x) xs))
lookup : ⦃ Eq A ⦄ → List (A × B) → A → Maybe B
lookup [] _ = nothing
lookup ((x₁ , v) ∷ xs) x = ifYes (x == x₁) then just v else lookup xs x
nub : ⦃ Eq A ⦄ → List A → List A
nub [] = []
nub (x ∷ xs) = x ∷ filter (isNo ∘ (x ==_)) (nub xs)
index : List A → Nat → Maybe A
index [] _ = nothing
index (x ∷ xs) 0 = just x
index (x ∷ xs) (suc i) = index xs i
replicate : Nat → A → List A
replicate zero x = []
replicate (suc n) x = x ∷ replicate n x
zipWith : (A → B → C) → List A → List B → List C
zipWith f [] _ = []
zipWith f _ [] = []
zipWith f (x ∷ xs) (y ∷ ys) = f x y ∷ zipWith f xs ys
zip : List A → List B → List (A × B)
zip = zipWith _,_
punctuate : A → List A → List A
punctuate z [] = []
punctuate z [ x ] = [ x ]
punctuate z (x ∷ xs) = x ∷ z ∷ punctuate z xs
replicateA : ⦃ Applicative F ⦄ → Nat → F A → F (List A)
replicateA zero _ = pure []
replicateA (suc n) x = pure _∷_ <*> x <*> replicateA n x
module _ ⦃ _ : Semiring A ⦄ where
sum : List A → A
sum = foldl! _+_ zro
product : List A → A
product = foldl! _*_ one
sumR : List A → A
sumR = foldr _+_ zro
productR : List A → A
productR = foldr _*_ one
module _ ⦃ _ : Ord A ⦄ where
insert : A → List A → List A
insert x [] = x ∷ []
insert x (y ∷ xs) = if x <? y then x ∷ y ∷ xs else y ∷ insert x xs
sort : List A → List A
sort [] = []
sort (x ∷ xs) = insert x (sort xs)
infix 10 from_for_ from_to_ from_for_step_ from-to-step
from_for_ : Nat → Nat → List Nat
from 0 for 0 = [] -- make strict
from a for 0 = []
from a for suc d = a ∷ from suc a for d
from_for_step_ : Nat → Nat → Nat → List Nat
from 0 for 0 step _ = [] -- make strict
from a for 0 step _ = []
from a for suc c step d = a ∷ from a + d for c step d
from_to_ : Nat → Nat → List Nat
from a to b = from a for (suc b - a)
syntax from-to-step d a b = from a to b step d
from-to-step : (d : Nat) {{_ : NonZero d}} → Nat → Nat → List Nat
from-to-step d a b = from a for 1 + (b - a) div d step d
--- Equality ---
cons-inj-tail : x ∷ xs ≡ y ∷ ys → xs ≡ ys
cons-inj-tail refl = refl
cons-inj-head : x ∷ xs ≡ y ∷ ys → x ≡ y
cons-inj-head refl = refl
private
dec-∷ : Dec (x ≡ y) → Dec (xs ≡ ys) → Dec (x ∷ xs ≡ y ∷ ys)
dec-∷ (yes refl) (yes refl) = yes refl
dec-∷ _ (no neq) = no λ eq → neq (cons-inj-tail eq)
dec-∷ (no neq) _ = no λ eq → neq (cons-inj-head eq)
eqList : ⦃ Eq A ⦄ → (xs ys : List A) → Dec (xs ≡ ys)
eqList [] [] = yes refl
eqList [] (_ ∷ _) = no (λ ())
eqList (_ ∷ _) [] = no (λ ())
eqList (x ∷ xs) (y ∷ ys) = dec-∷ (x == y) (eqList xs ys)
instance
EqList : ⦃ Eq A ⦄ → Eq (List A)
_==_ {{EqList}} = eqList
--- Ord ---
data LessList (_<_ : A → A → Set ℓ) : List A → List A → Set ℓ where
nil<cons : LessList _<_ [] (x ∷ xs)
head< : x < y → LessList _<_ (x ∷ xs) (y ∷ ys)
tail< : LessList _<_ xs ys → LessList _<_ (x ∷ xs) (x ∷ ys)
compareCons : ∀ {_<_ : A → A → Set ℓ} →
Comparison _<_ x y →
Comparison (LessList _<_) xs ys →
Comparison (LessList _<_) (x ∷ xs) (y ∷ ys)
compareCons (less lt) _ = less (head< lt)
compareCons (greater gt) _ = greater (head< gt)
compareCons (equal refl) (less lt) = less (tail< lt)
compareCons (equal refl) (greater gt) = greater (tail< gt)
compareCons (equal refl) (equal refl) = equal refl
compareList : ∀ {_<_ : A → A → Set ℓ} (cmp : ∀ x y → Comparison _<_ x y) (xs ys : List A) →
Comparison (LessList _<_) xs ys
compareList cmp [] [] = equal refl
compareList cmp [] (x ∷ ys) = less nil<cons
compareList cmp (x ∷ xs) [] = greater nil<cons
compareList cmp (x ∷ xs) (y ∷ ys) = compareCons (cmp x y) (compareList cmp xs ys)
instance
OrdList : ⦃ Ord A ⦄ → Ord (List A)
OrdList = defaultOrd (compareList compare)
OrdListLaws : ⦃ Ord/Laws A ⦄ → Ord/Laws (List A)
Ord/Laws.super OrdListLaws = it
less-antirefl {{OrdListLaws {A = A}}} (head< hd) = less-antirefl {A = A} hd
less-antirefl {{OrdListLaws {A = A}}} (tail< tl) = less-antirefl {A = List A} tl
less-trans {{OrdListLaws}} nil<cons (head< hd) = nil<cons
less-trans {{OrdListLaws}} nil<cons (tail< tl) = nil<cons
less-trans {{OrdListLaws {A = A}}} (head< hd) (head< hd₁) = head< (less-trans {A = A} hd hd₁)
less-trans {{OrdListLaws {A = A}}} (head< hd) (tail< tl) = head< hd
less-trans {{OrdListLaws {A = A}}} (tail< tl) (head< hd) = head< hd
less-trans {{OrdListLaws {A = A}}} (tail< tl) (tail< tl₁) = tail< (less-trans {A = List A} tl tl₁)
--- Functor ---
instance
FunctorList : Functor (List {ℓ})
fmap {{FunctorList}} = map
FunctorList′ : Functor′ {ℓ₁} {ℓ₂} List
fmap′ {{FunctorList′}} = map
ApplicativeList : Applicative (List {ℓ})
pure {{ApplicativeList}} x = x ∷ []
_<*>_ {{ApplicativeList}} = monadAp (flip concatMap)
ApplicativeList′ : Applicative′ {ℓ₁} {ℓ₂} List
_<*>′_ {{ApplicativeList′}} = monadAp′ (flip concatMap)
MonadList : Monad (List {ℓ})
_>>=_ {{MonadList}} xs f = concatMap f xs
MonadList′ : Monad′ {ℓ₁} {ℓ₂} List
_>>=′_ {{MonadList′}} xs f = concatMap f xs
--- More functions ---
IsPrefixOf : {A : Set ℓ} → List A → List A → Set ℓ
IsPrefixOf xs ys = ∃ zs , ys ≡ xs ++ zs
isPrefixOf : ⦃ Eq A ⦄ → (xs ys : List A) → Dec (IsPrefixOf xs ys)
isPrefixOf [] ys = yes (ys , refl)
isPrefixOf (x ∷ xs) [] = no λ where (zs , ())
isPrefixOf (x ∷ xs) (y ∷ ys) with y == x | isPrefixOf xs ys
... | yes y=x | yes (zs , xs⊑ys) = yes (zs , (_∷_ $≡ y=x *≡ xs⊑ys))
... | _ | no noprefix = no λ where (zs , eq) → noprefix ((zs , cons-inj-tail eq))
... | no y≠x | _ = no λ where (zs , eq) → y≠x (cons-inj-head eq)
isPrefixOf? : ⦃ Eq A ⦄ → List A → List A → Bool
isPrefixOf? xs ys = isYes (isPrefixOf xs ys)
dropPrefix : ⦃ Eq A ⦄ → List A → List A → Maybe (List A)
dropPrefix xs ys =
case isPrefixOf xs ys of λ where
(yes (tl , _)) → just tl
(no _) → nothing
commonPrefix : ⦃ Eq A ⦄ → (xs ys : List A) → ∃ zs , IsPrefixOf zs xs × IsPrefixOf zs ys
commonPrefix [] ys = [] , (_ , refl) , (_ , refl)
commonPrefix xs [] = [] , (_ , refl) , (_ , refl)
commonPrefix (x ∷ xs) (y ∷ ys) with y == x | commonPrefix xs ys
... | yes y=x | zs , (xs₁ , eqx) , (ys₁ , eqy) = (x ∷ zs) , (xs₁ , (x ∷_ $≡ eqx)) , (ys₁ , (_∷_ $≡ y=x *≡ eqy))
... | no _ | _ = [] , (_ , refl) , (_ , refl)
commonPrefix! : ⦃ Eq A ⦄ → (xs ys : List A) → List A
commonPrefix! xs ys = fst (commonPrefix xs ys)
wordsBy : (A → Bool) → List A → List (List A)
wordsBy {A = A} p = go in-word ∘ dropWhile p
where
data Mode : Set where
in-word in-space : Mode
cons : A → List (List A) → List (List A)
cons x [] = [ x ] ∷ []
cons x (xs ∷ xss) = (x ∷ xs) ∷ xss
go : Mode → List A → List (List A)
go _ [] = []
go mode (x ∷ xs) with p x
go mode (x ∷ xs) | false = cons x (go in-word xs)
go in-word (x ∷ xs) | true = [] ∷ go in-space xs
go in-space (x ∷ xs) | true = go in-space xs
|
algebraic-stack_agda0000_doc_5303 | import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; sym; trans; cong; cong-app)
open Eq.≡-Reasoning
open import Data.Nat using (ℕ; zero; suc; _+_; _*_)
open import Data.Product using (∃; _,_)
+-assoc : ∀ (m n p : ℕ) → m + (n + p) ≡ (m + n) + p
+-assoc zero n p =
begin
zero + (n + p)
≡⟨⟩
n + p
≡⟨⟩
(zero + n) + p
∎
+-assoc (suc m) n p =
begin
suc m + (n + p)
≡⟨⟩
suc (m + (n + p))
≡⟨ cong suc (+-assoc m n p) ⟩
suc ((m + n) + p)
≡⟨⟩
(suc m + n) + p
∎
+-identity : ∀ (m : ℕ) → m + zero ≡ m
+-identity zero =
begin
zero + zero
≡⟨⟩
zero
∎
+-identity (suc m) =
begin
suc m + zero
≡⟨⟩
suc (m + zero)
≡⟨ cong suc (+-identity m) ⟩
suc m
∎
+-suc : ∀ (m n : ℕ) → m + suc n ≡ suc (m + n)
+-suc zero n =
begin
zero + suc n
≡⟨⟩
suc n
≡⟨⟩
suc (zero + n)
∎
+-suc (suc m) n =
begin
suc m + suc n
≡⟨⟩
suc (m + suc n)
≡⟨ cong suc (+-suc m n) ⟩
suc (suc (m + n))
≡⟨⟩
suc (suc m + n)
∎
+-comm : ∀ (m n : ℕ) → m + n ≡ n + m
+-comm m zero =
begin
m + zero
≡⟨ +-identity m ⟩
m
≡⟨⟩
zero + m
∎
+-comm m (suc n) =
begin
m + suc n
≡⟨ +-suc m n ⟩
suc (m + n)
≡⟨ cong suc (+-comm m n) ⟩
suc (n + m)
≡⟨⟩
suc n + m
∎
*-distrib-+ : ∀ (m n p : ℕ) → (m + n) * p ≡ m * p + n * p
*-distrib-+ zero n p =
begin
(zero + n) * p
≡⟨⟩
n * p
≡⟨⟩
zero * p + n * p
∎
*-distrib-+ (suc m) n p =
begin
(suc m + n) * p
≡⟨⟩
p + (m + n) * p
≡⟨ cong (_+_ p) (*-distrib-+ m n p) ⟩
p + (m * p + n * p)
≡⟨ +-assoc p (m * p) (n * p) ⟩
(p + m * p) + n * p
≡⟨⟩
suc m * p + n * p
∎
data even : ℕ → Set where
ev0 : even zero
ev+2 : ∀ {n : ℕ} → even n → even (suc (suc n))
lemma : ∀ (m : ℕ) → 2 * suc m ≡ suc (suc (2 * m))
lemma m =
begin
2 * suc m
≡⟨⟩
suc m + (suc m + zero)
≡⟨⟩
suc (m + (suc (m + zero)))
≡⟨ cong suc (+-suc m (m + zero)) ⟩
suc (suc (m + (m + zero)))
≡⟨⟩
suc (suc (2 * m))
∎
ev-ex : ∀ {n : ℕ} → even n → ∃(λ (m : ℕ) → 2 * m ≡ n)
ev-ex ev0 = (0 , refl)
ev-ex (ev+2 ev) with ev-ex ev
... | (m , refl) = (suc m , lemma m)
ex-ev : ∀ {n : ℕ} → ∃(λ (m : ℕ) → 2 * m ≡ n) → even n
ex-ev (zero , refl) = ev0
ex-ev (suc m , refl) rewrite lemma m = ev+2 (ex-ev (m , refl))
-- I can't see how to avoid using rewrite in the second proof,
-- or how to use rewrite in the first proof!
|
algebraic-stack_agda0000_doc_5304 | module ExportTestAgda where
open import Common.Prelude
itWorksText : String
itWorksText = "It works!"
{-# COMPILED_EXPORT itWorksText itWorksText #-}
|
algebraic-stack_agda0000_doc_5305 | -- There was a bug when unifying things of function type during pattern matching
-- (the T argument to P is unified with D below)
module Issue199 where
data D (A : Set) : Set where
data P {A : Set} : {T : Set → Set} → T A → Set where
p : ∀ d → P {_} {D} d
foo : ∀ {A} {l : D A} → P l → Set₁
foo (p _) = Set
|
algebraic-stack_agda0000_doc_5306 | open import Type
module Relator.Converse {ℓ₁ ℓ₂} {T : Type{ℓ₁}} (_▫_ : T → T → Type{ℓ₂}) where
import Lvl
open import Functional
Converse : T → T → Type{ℓ₂}
Converse = swap(_▫_)
|
algebraic-stack_agda0000_doc_5307 | module Issue4954 where
open import Issue4954.M Set
|
algebraic-stack_agda0000_doc_5308 | module Relator.Ordering.Proofs where
open import Data
import Lvl
open import Functional
open import Lang.Instance
open import Logic
open import Logic.Classical
open import Logic.Propositional
open import Logic.Propositional.Theorems
open import Type
import Relator.Ordering
open import Structure.Relator.Ordering
import Structure.Relator.Names as Names
open import Structure.Relator.Proofs
open import Structure.Relator.Properties
open import Structure.Relator.Properties.Proofs
open import Structure.Relator
open import Structure.Setoid
open import Syntax.Implication
open import Syntax.Transitivity
private variable ℓ ℓ₁ ℓ₂ ℓ₃ ℓₗ ℓₑ ℓₗₑ ℓₗₜ : Lvl.Level
private variable T : Type{ℓ}
module From-[≤] (_≤_ : T → T → Stmt{ℓₗ}) where
open Relator.Ordering.From-[≤] (_≤_)
[≤][>]-not : ∀{a b} → (a ≤ b) → (a > b) → ⊥
[≤][>]-not = apply
[≥][<]-not : ∀{a b} → (a ≥ b) → (a < b) → ⊥
[≥][<]-not = apply
module _ ⦃ _ : Equiv{ℓₑ}(T) ⦄ ⦃ _ : Weak.TotalOrder(_≤_)(_≡_) ⦄ where
[<]-to-[≤] : Names.Subrelation(_<_)(_≤_)
[<]-to-[≤] {a} {b} nba with converseTotal(_≤_){a}{b}
[<]-to-[≤] {a} {b} nba | [∨]-introₗ ab = ab
[<]-to-[≤] {a} {b} nba | [∨]-introᵣ ba = [⊥]-elim(nba ba)
instance
[<][≤]-sub : (_<_) ⊆₂ (_≤_)
_⊆₂_.proof [<][≤]-sub = [<]-to-[≤]
[>]-to-[≥] : Names.Subrelation(_>_)(_≥_)
[>]-to-[≥] = [<]-to-[≤]
[>][≥]-sub : (_>_) ⊆₂ (_≥_)
_⊆₂_.proof [>][≥]-sub = [>]-to-[≥]
instance
[<]-irreflexivity : Irreflexivity(_<_)
Irreflexivity.proof [<]-irreflexivity = [¬¬]-intro(reflexivity(_≤_))
instance
[<]-transitivity : Transitivity(_<_)
Transitivity.proof [<]-transitivity {a} {b} {c} nba ncb ca = [≤][>]-not (transitivity(_≤_) ca ([<]-to-[≤] nba)) ncb
instance
[<]-asymmetry : Asymmetry(_<_) -- TODO: Proof of this property is independent of the model. Actually, many of them here are
[<]-asymmetry = [irreflexivity,transitivity]-to-asymmetry
[<]-strictOrder : Strict.PartialOrder(_<_)
[<]-strictOrder = Strict.intro
{- TODO: Maybe one must assume decidability of (_≡_)?
instance
[<]-total : ConverseTotal(_<_)
ConverseTotal.proof [<]-total {x} {y} with converseTotal(_≤_)
... | [∨]-introₗ x₁ = {!!}
... | [∨]-introᵣ x₁ = {!!}
-}
instance
[<][≤]-subtransitivityₗ : Subtransitivityₗ(_<_)(_≤_)
Subtransitivityₗ.proof [<][≤]-subtransitivityₗ xy yz zx = yz(transitivity(_≤_) zx xy)
instance
[<][≤]-subtransitivityᵣ : Subtransitivityᵣ(_<_)(_≤_)
Subtransitivityᵣ.proof [<][≤]-subtransitivityᵣ xy yz zx = xy(transitivity(_≤_) yz zx)
[≤][≢]-to-[<] : ∀{a b} → (a ≤ b) → (a ≢ b) → (a < b)
[≤][≢]-to-[<] le ne ba = ne(antisymmetry(_≤_)(_≡_) le ba)
[≥][≢]-to-[>] : ∀{a b} → (a ≥ b) → (a ≢ b) → (a > b)
[≥][≢]-to-[>] ge ne = [≤][≢]-to-[<] ge (ne ∘ symmetry(_≡_))
module _ ⦃ _ : (_≡_) ⊆₂ (_≤_) ⦄ where -- TODO: Consider including this in weak orders. Or just assume that (_≤_) is a relation and this will follow
instance
[≤][≡]-subtransitivityₗ : Subtransitivityₗ(_≤_)(_≡_)
[≤][≡]-subtransitivityₗ = subrelation-transitivity-to-subtransitivityₗ
instance
[≤][≡]-subtransitivityᵣ : Subtransitivityᵣ(_≤_)(_≡_)
[≤][≡]-subtransitivityᵣ = subrelation-transitivity-to-subtransitivityᵣ
[≡]-to-[≥] : Names.Subrelation(_≡_)(_≥_)
[≡]-to-[≥] = sub₂(_≡_)(_≤_) ∘ symmetry(_≡_)
instance
[≡][≥]-sub : (_≡_) ⊆₂ (_≥_)
_⊆₂_.proof [≡][≥]-sub = [≡]-to-[≥]
[≡][>]-not : ∀{a b} → (a ≡ b) → (a > b) → ⊥
[≡][>]-not eq gt = [≤][>]-not (sub₂(_≡_)(_≤_) eq) gt
instance
[≡][≯]-sub : (_≡_) ⊆₂ (_≯_)
_⊆₂_.proof [≡][≯]-sub = [≡][>]-not
instance
[>][≢]-sub : (_>_) ⊆₂ (_≢_)
_⊆₂_.proof [>][≢]-sub = swap [≡][>]-not
[≡][<]-not : ∀{a b} → (a ≡ b) → (a < b) → ⊥
[≡][<]-not eq lt = [≤][>]-not ([≡]-to-[≥] eq) lt
instance
[≡][≮]-sub : (_≡_) ⊆₂ (_≮_)
_⊆₂_.proof [≡][≮]-sub = [≡][<]-not
instance
[<][≢]-sub : (_<_) ⊆₂ (_≢_)
_⊆₂_.proof [<][≢]-sub = swap [≡][<]-not
instance
[<][≡]-subtransitivityₗ : Subtransitivityₗ(_<_)(_≡_)
Subtransitivityₗ.proof [<][≡]-subtransitivityₗ xy yz zx = [≡][>]-not xy (subtransitivityᵣ(_<_)(_≤_) yz zx)
instance
[<][≡]-subtransitivityᵣ : Subtransitivityᵣ(_<_)(_≡_)
Subtransitivityᵣ.proof [<][≡]-subtransitivityᵣ xy yz zx = [≡][>]-not yz (subtransitivityₗ(_<_)(_≤_) zx xy)
module _ ⦃ [≡]-classical : Classical₂(_≡_) ⦄ where
[≤]-or-[>] : ∀{a b} → (a ≤ b) ∨ (a > b)
[≤]-or-[>] {a} {b} with converseTotal(_≤_){a}{b}
[≤]-or-[>] {a} {b} | [∨]-introₗ ab = [∨]-introₗ ab
[≤]-or-[>] {a} {b} | [∨]-introᵣ ba with excluded-middle _ ⦃ [≡]-classical {a}{b} ⦄
[≤]-or-[>] {a} {b} | [∨]-introᵣ ba | [∨]-introₗ eqab = [∨]-introₗ (sub₂(_≡_)(_≤_) eqab)
[≤]-or-[>] {a} {b} | [∨]-introᵣ ba | [∨]-introᵣ neqab = [∨]-introᵣ (ab ↦ neqab(antisymmetry(_≤_)(_≡_) ab ba))
instance
[≤]-classical : Classical₂(_≤_)
Classical.excluded-middle [≤]-classical = [≤]-or-[>]
[≥]-or-[<] : ∀{a b} → (a ≥ b) ∨ (a < b)
[≥]-or-[<] = [≤]-or-[>]
[≥]-classical : Classical₂(_≥_)
Classical.excluded-middle [≥]-classical = [≥]-or-[<]
instance
[<]-classical : Classical₂(_<_)
Classical.excluded-middle ([<]-classical {a}{b}) with [≤]-or-[>] {b}{a}
Classical.excluded-middle ([<]-classical {a}{b}) | [∨]-introₗ x = [∨]-introᵣ ([¬¬]-intro x)
Classical.excluded-middle ([<]-classical {a}{b}) | [∨]-introᵣ x = [∨]-introₗ x
[>]-classical : Classical₂(_>_)
[>]-classical = [<]-classical
[≤]-to-[<][≡] : ∀{a b} → (a ≤ b) → ((a < b) ∨ (a ≡ b))
[≤]-to-[<][≡] {a} {b} ab with excluded-middle _ ⦃ [≡]-classical {a}{b} ⦄
[≤]-to-[<][≡] {a} {b} ab | [∨]-introₗ eq = [∨]-introᵣ eq
[≤]-to-[<][≡] {a} {b} ab | [∨]-introᵣ ne = [∨]-introₗ (ba ↦ ne(antisymmetry(_≤_)(_≡_) ab ba))
[≥]-to-[>][≡] : ∀{a b} → (a ≥ b) → ((a > b) ∨ (a ≡ b))
[≥]-to-[>][≡] ab = [∨]-elim2 id (symmetry(_≡_)) ([≤]-to-[<][≡] ab)
module From-[≤][≢] {ℓ₁ ℓ₂ ℓ₃} {T : Type{ℓ₁}} (_≤_ : T → T → Stmt{ℓ₂}) (_≢_ : T → T → Stmt{ℓ₃}) where
open Relator.Ordering.From-[≤][≢] (_≤_)(_≢_)
-- postulate instance [<]-totalOrder : Strict.TotalOrder(_<_)
instance
[<][≤]-sub : (_<_) ⊆₂ (_≤_)
_⊆₂_.proof [<][≤]-sub = [∧]-elimₗ
instance
[>][≥]-sub : (_>_) ⊆₂ (_≥_)
_⊆₂_.proof [>][≥]-sub = sub₂(_<_)(_≤_)
instance
[<][≢]-sub : (_<_) ⊆₂ (_≢_)
_⊆₂_.proof [<][≢]-sub = [∧]-elimᵣ
[>][≢]-sub : ⦃ sym : Symmetry(_≢_) ⦄ → ((_>_) ⊆₂ (_≢_))
_⊆₂_.proof [>][≢]-sub = symmetry(_≢_) ∘ sub₂(_<_)(_≢_)
-- [<]-transitivity : ⦃ [≤]-trans : Transitivity(_≤_) ⦄ → Transitivity(_<_)
-- Transitivity.proof [<]-transitivity ([∧]-intro xy neq-xy) ([∧]-intro yz neq-yz) = [∧]-intro (transitivity(_≤_) xy yz) {!!} xy
{-
instance
[<][≤]-subtransitivityₗ : Subtransitivityₗ(_<_)(_≤_)
left (Subtransitivityₗ.proof [<][≤]-subtransitivityₗ xy ([∧]-intro yz nyz)) = transitivity(_≤_) xy yz
Tuple.right (Subtransitivityₗ.proof [<][≤]-subtransitivityₗ xy yz) xz = {!!}
postulate instance [<][≤]-subtransitivityᵣ : Subtransitivityᵣ(_<_)(_≤_)
postulate instance [≤][≡]-subtransitivityₗ : Subtransitivityₗ(_≤_)(_≡_)
postulate instance [≤][≡]-subtransitivityᵣ : Subtransitivityᵣ(_≤_)(_≡_)
-}
module From-[≤][<]
⦃ equiv : Equiv{ℓₑ}(T) ⦄
(_≤_ : T → T → Stmt{ℓₗₑ}) ⦃ [≤]-relator : BinaryRelator(_≤_) ⦄
(_<_ : T → T → Stmt{ℓₗₜ}) ⦃ [<]-relator : BinaryRelator(_<_) ⦄
where
open Relator.Ordering.From-[≤][<] (_≤_)(_<_)
private variable a b : T
[≤]-def-[<][≡]ₗ-[<]-def-[≤][≢]ᵣ : ((∀{a b} → (a ≤ b) ← ((a < b) ∨ (a ≡ b))) ∧ Irreflexivity(_<_)) ↔ ((∀{a b} → (a < b) → ((a ≤ b) ∧ (a ≢ b))) ∧ Reflexivity(_≤_))
[≤]-def-[<][≡]ₗ-[<]-def-[≤][≢]ᵣ = [↔]-intro (\([∧]-intro p q) → l p ⦃ q ⦄) (\([∧]-intro p q) → r p ⦃ q ⦄) where
l : (∀{a b} → (a < b) → ((a ≤ b) ∧ (a ≢ b))) → ⦃ refl : Reflexivity(_≤_) ⦄ → ((∀{a b} → (a ≤ b) ← ((a < b) ∨ (a ≡ b))) ∧ Irreflexivity(_<_))
l [<]-def-[≤][≢]ᵣ = [∧]-intro
([∨]-elim (lt ↦ [∧]-elimₗ ([<]-def-[≤][≢]ᵣ lt)) (sub₂(_≡_)(_≤_) ⦃ reflexive-binaryRelator-sub ⦄))
(intro(xx ↦ [∧]-elimᵣ ([<]-def-[≤][≢]ᵣ xx) (reflexivity(_≡_))))
r : (∀{a b} → (a ≤ b) ← ((a < b) ∨ (a ≡ b))) → ⦃ irrefl : Irreflexivity(_<_) ⦄ → ((∀{a b} → (a < b) → ((a ≤ b) ∧ (a ≢ b))) ∧ Reflexivity(_≤_))
r [≤]-def-[<][≡]ᵣ = [∧]-intro
(lt ↦ [∧]-intro ([≤]-def-[<][≡]ᵣ ([∨]-introₗ lt)) (eq ↦ empty(irreflexivity(_<_) (substitute₂ₗ(_<_) eq lt))))
(intro ([≤]-def-[<][≡]ᵣ ([∨]-introᵣ (reflexivity(_≡_)))))
module By-[≤] ([<]-def-[≤][≢] : ∀{a b} → (a < b) ↔ ((a ≤ b) ∧ (a ≢ b))) where
instance
[<][≤]-sub : (_<_) ⊆₂ (_≤_)
_⊆₂_.proof [<][≤]-sub = [∧]-elimₗ ∘ [↔]-to-[→] [<]-def-[≤][≢]
instance
[<][≢]-sub : (_<_) ⊆₂ (_≢_)
_⊆₂_.proof [<][≢]-sub = [∧]-elimᵣ ∘ [↔]-to-[→] [<]-def-[≤][≢]
module _ ⦃ [≡]-classical : ∀{a b : T} → Classical(a ≡ b) ⦄ where
[≤]-def-[<][≡]ᵣ-by-classical : (a ≤ b) → ((a < b) ∨ (a ≡ b))
[≤]-def-[<][≡]ᵣ-by-classical {a}{b} le with excluded-middle(a ≡ b)
... | [∨]-introₗ eq = [∨]-introᵣ eq
... | [∨]-introᵣ ne = [∨]-introₗ ([↔]-to-[←] [<]-def-[≤][≢] ([∧]-intro le ne))
module _ ⦃ [<]-tri : ConverseTrichotomy(_<_)(_≡_) ⦄ ⦃ [≤]-antisym : Antisymmetry(_≤_)(_≡_) ⦄ where
[≤]-def-[<][≡]ᵣ-by-tri-antisym : (a ≤ b) → ((a < b) ∨ (a ≡ b))
[≤]-def-[<][≡]ᵣ-by-tri-antisym {a}{b} le with trichotomy(_<_)(_≡_) {a}{b}
... | [∨]-introₗ ([∨]-introₗ lt) = [∨]-introₗ lt
... | [∨]-introₗ ([∨]-introᵣ eq) = [∨]-introᵣ eq
... | [∨]-introᵣ gt = [∨]-introᵣ (antisymmetry(_≤_)(_≡_) le ([∧]-elimₗ ([↔]-to-[→] [<]-def-[≤][≢] gt)))
[<]-asymmetry-by-antisym : ⦃ antisym : Antisymmetry(_≤_)(_≡_) ⦄ → Asymmetry(_<_)
Asymmetry.proof [<]-asymmetry-by-antisym xy yx =
let [∧]-intro xy-le nxy = [↔]-to-[→] [<]-def-[≤][≢] xy
[∧]-intro yx-le nyx = [↔]-to-[→] [<]-def-[≤][≢] yx
in nxy(antisymmetry(_≤_)(_≡_) xy-le yx-le)
instance
[<]-irreflexivity : Irreflexivity(_<_)
Irreflexivity.proof [<]-irreflexivity xx = [∧]-elimᵣ ([↔]-to-[→] [<]-def-[≤][≢] xx) (reflexivity(_≡_))
[<]-transitivity-by-asym-trans : ⦃ antisym : Asymmetry(_<_) ⦄ → ⦃ trans : Transitivity(_≤_) ⦄ → Transitivity(_<_)
Transitivity.proof [<]-transitivity-by-asym-trans xy yz =
let [∧]-intro xy-le nxy = [↔]-to-[→] [<]-def-[≤][≢] xy
[∧]-intro yz-le nyz = [↔]-to-[→] [<]-def-[≤][≢] yz
in [↔]-to-[←] [<]-def-[≤][≢] ([∧]-intro (transitivity(_≤_) xy-le yz-le) (xz ↦ asymmetry(_<_) (substitute₂ₗ(_<_) xz xy) yz))
module By-[<] ([≤]-def-[<][≡] : ∀{a b} → (a ≤ b) ↔ ((a < b) ∨ (a ≡ b))) where
instance
[<][≤]-sub : (_<_) ⊆₂ (_≤_)
_⊆₂_.proof [<][≤]-sub = [↔]-to-[←] [≤]-def-[<][≡] ∘ [∨]-introₗ
instance
[≡][≤]-sub : (_≡_) ⊆₂ (_≤_)
_⊆₂_.proof [≡][≤]-sub = [↔]-to-[←] [≤]-def-[<][≡] ∘ [∨]-introᵣ
instance
[≰][≮]-sub : (_≰_) ⊆₂ (_≮_)
_⊆₂_.proof [≰][≮]-sub = contrapositiveᵣ(sub₂(_<_)(_≤_))
instance
[≰][≢]-sub : (_≰_) ⊆₂ (_≢_)
_⊆₂_.proof [≰][≢]-sub = contrapositiveᵣ(sub₂(_≡_)(_≤_))
instance
[>][≥]-sub : (_>_) ⊆₂ (_≥_)
_⊆₂_.proof [>][≥]-sub = sub₂(_<_)(_≤_)
instance
[≡][≥]-sub : (_≡_) ⊆₂ (_≥_)
_⊆₂_.proof [≡][≥]-sub = sub₂(_≡_)(_≤_) ∘ symmetry(_≡_)
instance
[≱][≯]-sub : (_≱_) ⊆₂ (_≯_)
_⊆₂_.proof [≱][≯]-sub = sub₂(_≰_)(_≮_)
instance
[≱][≢]-sub : (_≱_) ⊆₂ (_≢_)
_⊆₂_.proof [≱][≢]-sub = (_∘ symmetry(_≡_)) ∘ sub₂(_≰_)(_≢_)
[<]-def-[≤][≢]ₗ : (a < b) ← ((a ≤ b) ∧ (a ≢ b))
[<]-def-[≤][≢]ₗ([∧]-intro le ne) = [∨]-elim id ([⊥]-elim ∘ ne) ([↔]-to-[→] [≤]-def-[<][≡] le)
instance
[≤]-reflexivity : Reflexivity(_≤_)
Reflexivity.proof [≤]-reflexivity = [↔]-to-[←] [≤]-def-[<][≡] ([∨]-introᵣ (reflexivity(_≡_)))
[≤]-transitivity-by-trans : ⦃ [<]-trans : Transitivity(_<_) ⦄ → Transitivity(_≤_)
Transitivity.proof [≤]-transitivity-by-trans xy yz with [↔]-to-[→] [≤]-def-[<][≡] xy | [↔]-to-[→] [≤]-def-[<][≡] yz
... | [∨]-introₗ xy-lt | [∨]-introₗ yz-lt = [↔]-to-[←] [≤]-def-[<][≡] ([∨]-introₗ (transitivity(_<_) xy-lt yz-lt))
... | [∨]-introₗ xy-lt | [∨]-introᵣ yz-eq = [↔]-to-[←] [≤]-def-[<][≡] ([∨]-introₗ (substitute₂ᵣ(_<_) yz-eq xy-lt))
... | [∨]-introᵣ xy-eq | [∨]-introₗ yz-lt = [↔]-to-[←] [≤]-def-[<][≡] ([∨]-introₗ (substitute₂ₗ(_<_) (symmetry(_≡_) xy-eq) yz-lt))
... | [∨]-introᵣ xy-eq | [∨]-introᵣ yz-eq = [↔]-to-[←] [≤]-def-[<][≡] ([∨]-introᵣ (transitivity(_≡_) xy-eq yz-eq))
module _ ⦃ asym : Asymmetry(_<_) ⦄ where
[≤]-antisymmetry-by-asym : Antisymmetry(_≤_)(_≡_)
Antisymmetry.proof [≤]-antisymmetry-by-asym le ge with [↔]-to-[→] [≤]-def-[<][≡] le | [↔]-to-[→] [≤]-def-[<][≡] ge
... | [∨]-introₗ lt | [∨]-introₗ gt with () ← asymmetry(_<_) lt gt
... | [∨]-introₗ lt | [∨]-introᵣ eq = symmetry(_≡_) eq
... | [∨]-introᵣ eq | [∨]-introₗ gt = eq
... | [∨]-introᵣ eq₁ | [∨]-introᵣ eq₂ = eq₁
[<]-transitivity-by-asym-trans : ⦃ trans : Transitivity(_≤_) ⦄ → Transitivity(_<_)
Transitivity.proof [<]-transitivity-by-asym-trans {x}{y}{z} xy yz =
• (
• (xy ⇒
(x < y) ⇒-[ [↔]-to-[←] [≤]-def-[<][≡] ∘ [∨]-introₗ ]
(x ≤ y) ⇒-end
)
• (yz ⇒
(y < z) ⇒-[ [↔]-to-[←] [≤]-def-[<][≡] ∘ [∨]-introₗ ]
(y ≤ z) ⇒-end
)
⇒₂-[ transitivity(_≤_) ]
(x ≤ z) ⇒-[ [↔]-to-[→] [≤]-def-[<][≡] ]
(x < z) ∨ (x ≡ z) ⇒-end
)
• (
(\xz →
• (xz ⇒
(x ≡ z) ⇒-[ apply xy ∘ substitute₂ₗ(_<_) ]
(z < y) ⇒-end
)
• (yz ⇒
(y < z) ⇒-end
)
⇒₂-[ asymmetry(_<_) ]
⊥ ⇒-end
) ⇒
(x ≢ z) ⇒-end
)
⇒₂-[ [∨]-not-right ]
(x < z) ⇒-end
[<][≱]-sub-by-asym : ((_<_) ⊆₂ (_≱_))
_⊆₂_.proof [<][≱]-sub-by-asym lt-xy ge-xy = [∨]-elim
(lt-yx ↦ asymmetry(_<_) lt-xy lt-yx)
(eq-yx ↦ irreflexivity(_<_) ⦃ [asymmetry]-to-irreflexivity ⦄ (substitute₂ᵣ(_<_) eq-yx lt-xy))
([↔]-to-[→] [≤]-def-[<][≡] ge-xy)
[>][≰]-sub-by-asym : ((_>_) ⊆₂ (_≰_))
_⊆₂_.proof [>][≰]-sub-by-asym gt le = [∨]-elim
(asymmetry(_<_) gt)
(eq ↦ irreflexivity(_<_) ⦃ [asymmetry]-to-irreflexivity ⦄ (substitute₂ᵣ(_<_) eq gt))
([↔]-to-[→] [≤]-def-[<][≡] le)
module _
⦃ [<]-classical : Classical₂(_<_) ⦄
⦃ [≡]-classical : Classical₂(_≡_) ⦄
where
[≤]-classical-by-classical : Classical₂(_≤_)
Classical.excluded-middle ([≤]-classical-by-classical {x}{y}) with excluded-middle(x < y) | excluded-middle(x ≡ y)
... | [∨]-introₗ lt | _ = [∨]-introₗ (sub₂(_<_)(_≤_) lt)
... | [∨]-introᵣ nlt | [∨]-introₗ eq = [∨]-introₗ (sub₂(_≡_)(_≤_) eq)
... | [∨]-introᵣ nlt | [∨]-introᵣ ne = [∨]-introᵣ (le ↦ nlt ([<]-def-[≤][≢]ₗ ([∧]-intro le ne)))
module _
⦃ [<]-asym : Asymmetry(_<_) ⦄
⦃ [<]-total : ConverseTrichotomy(_<_)(_≡_) ⦄
where
[≤]-classical-by-asym-tri : Classical₂(_≤_)
Classical.excluded-middle ([≤]-classical-by-asym-tri {x} {y}) with trichotomy(_<_)(_≡_) {x}{y}
... | [∨]-introₗ([∨]-introₗ lt) = [∨]-introₗ (sub₂(_<_)(_≤_) lt)
... | [∨]-introₗ([∨]-introᵣ eq) = [∨]-introₗ (sub₂(_≡_)(_≤_) eq)
... | [∨]-introᵣ gt =
let [<]-def-[≤][≢]ᵣ = [∧]-elimₗ ([↔]-to-[→] [≤]-def-[<][≡]ₗ-[<]-def-[≤][≢]ᵣ ([∧]-intro ([↔]-to-[←] [≤]-def-[<][≡]) [asymmetry]-to-irreflexivity))
[∧]-intro ge ne = [<]-def-[≤][≢]ᵣ gt
in [∨]-introᵣ (ne ∘ antisymmetry(_≤_)(_≡_) ⦃ [≤]-antisymmetry-by-asym ⦄ ge)
-- TODO: Move to Structure.Relator.Properties.Proofs
module _
⦃ [<]-asym : Asymmetry(_<_) ⦄
⦃ [<]-total : ConverseTrichotomy(_<_)(_≡_) ⦄
where
[<]-classical-by-asym-tri : Classical₂(_<_)
Classical.excluded-middle ([<]-classical-by-asym-tri {x} {y}) with trichotomy(_<_)(_≡_) {x}{y}
... | [∨]-introₗ([∨]-introₗ lt) = [∨]-introₗ lt
... | [∨]-introₗ([∨]-introᵣ eq) = [∨]-introᵣ (lt ↦ irreflexivity(_<_) ⦃ [asymmetry]-to-irreflexivity ⦄ (substitute₂ₗ(_<_) eq lt))
... | [∨]-introᵣ gt = [∨]-introᵣ (lt ↦ asymmetry(_<_) lt gt)
module ByReflTriSub
⦃ [≤]-refl : Reflexivity(_≤_) ⦄
⦃ [<]-total : ConverseTrichotomy(_<_)(_≡_) ⦄
⦃ [<][≤]-sub : (_<_) ⊆₂ (_≤_) ⦄
where
[≰][≯]-not : (a ≰ b) → (a ≯ b) → ⊥
[≰][≯]-not {a}{b} nle ngt with trichotomy(_<_)(_≡_) {a}{b}
... | [∨]-introₗ([∨]-introₗ lt) = nle (sub₂(_<_)(_≤_) lt)
... | [∨]-introₗ([∨]-introᵣ eq) = substitute₂ₗ(_≰_) ⦃ [¬]-binaryRelator ⦄ eq nle (reflexivity(_≤_))
... | [∨]-introᵣ gt = ngt gt
[≮][≱]-not : (a ≮ b) → (a ≱ b) → ⊥
[≮][≱]-not = swap [≰][≯]-not
module _ ⦃ [<]-classical : Classical₂(_<_) ⦄ where
[≰][>]-sub : (_≰_) ⊆₂ (_>_)
_⊆₂_.proof [≰][>]-sub = [¬¬]-elim ∘ [≰][≯]-not
[≱][<]-sub : (_≱_) ⊆₂ (_<_)
_⊆₂_.proof [≱][<]-sub = _⊆₂_.proof [≰][>]-sub
module _ ⦃ [≤]-classical : Classical₂(_≤_) ⦄ where
[≯][≤]-sub : (_≯_) ⊆₂ (_≤_)
_⊆₂_.proof [≯][≤]-sub = [¬¬]-elim ∘ swap [≰][≯]-not
[≮][≥]-sub : (_≮_) ⊆₂ (_≥_)
_⊆₂_.proof [≮][≥]-sub = _⊆₂_.proof [≯][≤]-sub
module _
⦃ [≤]-classical : Classical₂(_≤_) ⦄
⦃ [<]-classical : Classical₂(_<_) ⦄
where
[≤]-or-[>] : (a ≤ b) ∨ (a > b)
[≤]-or-[>] {a}{b} with excluded-middle(a ≤ b)
... | [∨]-introₗ a≤b = [∨]-introₗ a≤b
... | [∨]-introᵣ a≰b = [∨]-introᵣ (sub₂(_≰_)(_>_) ⦃ [≰][>]-sub ⦄ a≰b)
[≥]-or-[<] : (a ≥ b) ∨ (a < b)
[≥]-or-[<] {a}{b} with excluded-middle(a ≥ b)
... | [∨]-introₗ a≥b = [∨]-introₗ a≥b
... | [∨]-introᵣ a≱b = [∨]-introᵣ (sub₂(_≱_)(_<_) ⦃ [≱][<]-sub ⦄ a≱b)
module ByStrictPartialOrder ([≤]-def-[<][≡] : ∀{a b} → (a ≤ b) ↔ ((a < b) ∨ (a ≡ b))) ⦃ ord : Strict.PartialOrder(_<_) ⦄ where
open By-[<] [≤]-def-[<][≡]
open By-[<] [≤]-def-[<][≡] public
using
( [<][≤]-sub
; [≡][≤]-sub
; [≰][≮]-sub
; [≰][≢]-sub
; [>][≥]-sub
; [≡][≥]-sub
; [≱][≯]-sub
; [≱][≢]-sub
; [<]-def-[≤][≢]ₗ
; [≤]-reflexivity
)
instance
[≤]-transitivity : Transitivity(_≤_)
[≤]-transitivity = [≤]-transitivity-by-trans
instance
[≤]-antisymmetry : Antisymmetry(_≤_)(_≡_)
[≤]-antisymmetry = [≤]-antisymmetry-by-asym
instance
[≤]-weakPartialorder : Weak.PartialOrder(_≤_)(_≡_)
[≤]-weakPartialorder = record{}
instance
[<][≱]-sub : ((_<_) ⊆₂ (_≱_))
[<][≱]-sub = [<][≱]-sub-by-asym
instance
[>][≰]-sub : ((_>_) ⊆₂ (_≰_))
[>][≰]-sub = [>][≰]-sub-by-asym
module ByStrictTotalOrder ([≤]-def-[<][≡] : ∀{a b} → (a ≤ b) ↔ ((a < b) ∨ (a ≡ b))) ⦃ ord : Strict.TotalOrder(_<_)(_≡_) ⦄ where
open By-[<] [≤]-def-[<][≡]
open ByStrictPartialOrder [≤]-def-[<][≡] public
instance
[<]-classical : Classical₂(_<_)
[<]-classical = [<]-classical-by-asym-tri
instance
[≤]-classical : Classical₂(_≤_)
[≤]-classical = [≤]-classical-by-asym-tri
[≰][≯]-not : (a ≰ b) → (a ≯ b) → ⊥
[≰][≯]-not = ByReflTriSub.[≰][≯]-not
[≮][≱]-not : (a ≮ b) → (a ≱ b) → ⊥
[≮][≱]-not = ByReflTriSub.[≮][≱]-not
instance
[≰][>]-sub : (_≰_) ⊆₂ (_>_)
[≰][>]-sub = ByReflTriSub.[≰][>]-sub
instance
[≱][<]-sub : (_≱_) ⊆₂ (_<_)
[≱][<]-sub = ByReflTriSub.[≱][<]-sub
instance
[≯][≤]-sub : (_≯_) ⊆₂ (_≤_)
[≯][≤]-sub = ByReflTriSub.[≯][≤]-sub
instance
[≮][≥]-sub : (_≮_) ⊆₂ (_≥_)
[≮][≥]-sub = ByReflTriSub.[≮][≥]-sub
[≤]-or-[>] : (a ≤ b) ∨ (a > b)
[≤]-or-[>] = ByReflTriSub.[≤]-or-[>]
[≥]-or-[<] : (a ≥ b) ∨ (a < b)
[≥]-or-[<] = ByReflTriSub.[≥]-or-[<]
|
algebraic-stack_agda0000_doc_5309 |
module HasSatisfaction where
open import OscarPrelude
open import Interpretation
record HasSatisfaction (A : Set) : Set₁
where
field
_⊨_ : Interpretation → A → Set
_⊭_ : Interpretation → A → Set
_⊭_ I = ¬_ ∘ I ⊨_
open HasSatisfaction ⦃ … ⦄ public
{-# DISPLAY HasSatisfaction._⊨_ _ = _⊨_ #-}
{-# DISPLAY HasSatisfaction._⊭_ _ = _⊭_ #-}
instance HasSatisfactionList : {A : Set} ⦃ _ : HasSatisfaction A ⦄ → HasSatisfaction $ List A
HasSatisfaction._⊨_ HasSatisfactionList I [] = ⊤
HasSatisfaction._⊨_ HasSatisfactionList I (x ∷ xs) = I ⊨ x × I ⊨ xs
module _ {A} ⦃ _ : HasSatisfaction A ⦄
where
⊨_ : A → Set
⊨ x = (I : Interpretation) → I ⊨ x
⊭_ : A → Set
⊭_ = ¬_ ∘ ⊨_
record HasDecidableValidation (A : Set) ⦃ _ : HasSatisfaction A ⦄ : Set₁
where
field
⊨?_ : (x : A) → Dec $ ⊨ x
open HasDecidableValidation ⦃ … ⦄ public
{-# DISPLAY HasDecidableValidation.⊨?_ _ = ⊨?_ #-}
record HasDecidableSatisfaction (A : Set) ⦃ _ : HasSatisfaction A ⦄ : Set₁
where
field
_⊨?_ : (I : Interpretation) → (x : A) → Dec (I ⊨ x)
open HasDecidableSatisfaction ⦃ … ⦄ public
{-# DISPLAY HasDecidableSatisfaction._⊨?_ _ = _⊨?_ #-}
|
algebraic-stack_agda0000_doc_5310 | {-# OPTIONS --without-K --safe #-}
open import Algebra
open import Relation.Unary
open import Relation.Binary hiding (Decidable)
module Data.FingerTree.Split.Intermediate
{r m}
(ℳ : Monoid r m)
{s}
{ℙ : Pred (Monoid.Carrier ℳ) s}
(ℙ-resp : ℙ Respects (Monoid._≈_ ℳ))
(ℙ? : Decidable ℙ)
where
open import Relation.Nullary using (¬_; yes; no; Dec)
open import Level using (_⊔_)
open import Data.Product
open import Function
open import Data.List as List using (List; _∷_; [])
open import Data.FingerTree.Measures ℳ
open import Data.FingerTree.Structures ℳ
open import Data.FingerTree.Reasoning ℳ
open import Data.FingerTree.View ℳ using (deepₗ; deepᵣ)
open import Data.FingerTree.Cons ℳ using (listToTree)
open import Relation.Nullary using (Dec; yes; no)
open import Relation.Nullary.Decidable using (True; toWitness; False; toWitnessFalse)
open σ ⦃ ... ⦄
open Monoid ℳ renaming (Carrier to 𝓡)
open import Data.FingerTree.Relation.Binary.Reasoning.FasterInference.Setoid setoid
open import Data.FingerTree.Split.Point ℳ ℙ-resp ℙ?
open import Data.FingerTree.Split.StoredPredicate ℳ ℙ-resp ℙ?
open import Data.Empty.Irrelevant using (⊥-elim)
record Split′ (i : 𝓡) {a b} (Σ : Set a) (A : Set b) ⦃ _ : σ Σ ⦄ ⦃ _ : σ A ⦄ : Set (a ⊔ b ⊔ s) where
constructor _∷⟨_⟩∷_[_]
field
left′ : Σ
focus′ : A
right′ : Σ
.proof′ : i ∙ μ left′ ∣ μ focus′
open Split′ public
instance
σ-Split′ : ∀ {a b} {Σ : Set a} {A : Set b} ⦃ _ : σ Σ ⦄ ⦃ _ : σ A ⦄ {i : 𝓡} → σ (Split′ i Σ A)
μ ⦃ σ-Split′ {i = i} ⦄ (l ∷⟨ x ⟩∷ r [ _ ]) = i ∙ (μ l ∙ (μ x ∙ μ r))
infixl 2 _i≈[_]
_i≈[_] : ∀ {a b} {Σ : Set a} {A : Set b} ⦃ _ : σ Σ ⦄ ⦃ _ : σ A ⦄
→ ∀ {i xs}
→ μ⟨ Split′ i Σ A ⟩≈ (i ∙ xs)
→ ∀ {j}
→ i ≈ j → μ⟨ Split′ j Σ A ⟩≈ (j ∙ xs)
xs ∷⟨ x ⟩∷ ys [ p₁ ] ⇑[ p₂ ] i≈[ i≈ ] = xs ∷⟨ x ⟩∷ ys [ p₁ ≈◄⟅ ≪∙ i≈ ⟆ ] ⇑[ ≪∙ sym i≈ ⍮ p₂ ⍮ ≪∙ i≈ ]
{-# INLINE _i≈[_] #-}
|
algebraic-stack_agda0000_doc_5311 | {-# OPTIONS --safe #-}
module Cubical.Algebra.AbGroup.Instances.Unit where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Data.Unit renaming (Unit* to UnitType)
open import Cubical.Algebra.AbGroup
open import Cubical.Algebra.Group.Instances.Unit using (UnitGroup)
open import Cubical.Algebra.Group.Base using (GroupStr)
private
variable
ℓ : Level
open AbGroupStr
open IsAbGroup
UnitAbGroup : AbGroup ℓ
fst UnitAbGroup = UnitType
0g (snd UnitAbGroup) = tt*
_+_ (snd UnitAbGroup) = λ _ _ → tt*
- snd UnitAbGroup = λ _ → tt*
isGroup (isAbGroup (snd UnitAbGroup)) = GroupStr.isGroup (snd UnitGroup)
+Comm (isAbGroup (snd UnitAbGroup)) = λ _ _ → refl
|
algebraic-stack_agda0000_doc_5248 | {-# OPTIONS --universe-polymorphism #-}
module Categories.Profunctor where
open import Level hiding (lift)
open import Categories.Category
open import Categories.Agda
open import Categories.Bifunctor using (Functor; Bifunctor; _∘_)
open import Categories.Functor.Hom
open import Categories.Lan
open import Categories.Yoneda
Profunctor : ∀ {o ℓ e} {o′ ℓ′ e′} → Category o ℓ e → Category o′ ℓ′ e′ → Set _
Profunctor {ℓ = ℓ} {e} {ℓ′ = ℓ′} {e′} C D = Bifunctor (Category.op D) C (ISetoids (ℓ ⊔ ℓ′) (e ⊔ e′))
id : ∀ {o ℓ e} → {C : Category o ℓ e} → Profunctor C C
id {C = C} = Hom[ C ][-,-]
{-
_∘_ : ∀ {o ℓ e} {o′ ℓ′ e′} {o′′ ℓ′′ e′′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} {E : Category o′′ ℓ′′ e′′}
→ Profunctor D E → Profunctor C D → Profunctor C E
F ∘ G = {!!}
-} |
algebraic-stack_agda0000_doc_5249 | {-# OPTIONS --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.Properties.Reduction {{eqrel : EqRelSet}} where
open EqRelSet {{...}}
open import Definition.Untyped
open import Definition.Typed
open import Definition.Typed.Properties
open import Definition.Typed.RedSteps
open import Definition.Typed.Weakening
open import Definition.LogicalRelation
open import Definition.LogicalRelation.Properties.Reflexivity
open import Definition.LogicalRelation.Properties.Transitivity
open import Definition.LogicalRelation.Properties.Symmetry
open import Definition.LogicalRelation.Properties.Escape
open import Definition.LogicalRelation.Properties.Conversion
open import Tools.Product
open import Tools.Empty
import Tools.PropositionalEquality as PE
import Data.Fin as Fin
import Data.Nat as Nat
-- Weak head expansion of reducible types.
redSubst* : ∀ {A B r l Γ}
→ Γ ⊢ A ⇒* B ^ r
→ Γ ⊩⟨ l ⟩ B ^ r
→ ∃ λ ([A] : Γ ⊩⟨ l ⟩ A ^ r)
→ Γ ⊩⟨ l ⟩ A ≡ B ^ r / [A]
redSubst* {A = A} D (Uᵣ′ B .(next l′) rU l′ l< PE.refl [[ ⊢A , ⊢B , D' ]]) =
let ⊢A = redFirst* D
in Uᵣ′ A (next l′) rU l′ l< PE.refl [[ ⊢A , ⊢B , D ⇨* D' ]] , D'
redSubst* D (ℕᵣ [[ ⊢B , ⊢ℕ , D′ ]]) =
let ⊢A = redFirst* D
in ℕᵣ ([[ ⊢A , ⊢ℕ , D ⇨* D′ ]]) , D′
redSubst* D (Emptyᵣ [[ ⊢B , ⊢Empty , D′ ]]) =
let ⊢A = redFirst* D
in Emptyᵣ ([[ ⊢A , ⊢Empty , D ⇨* D′ ]]) , D′
redSubst* D (ne′ K [[ ⊢B , ⊢K , D′ ]] neK K≡K) =
let ⊢A = redFirst* D
in (ne′ K [[ ⊢A , ⊢K , D ⇨* D′ ]] neK K≡K)
, (ne₌ _ [[ ⊢B , ⊢K , D′ ]] neK K≡K)
redSubst* D (Πᵣ′ rF lF lG lF≤ lG≤ F G [[ ⊢B , ⊢ΠFG , D′ ]] ⊢F ⊢G A≡A [F] [G] G-ext) =
let ⊢A = redFirst* D
in (Πᵣ′ rF lF lG lF≤ lG≤ F G [[ ⊢A , ⊢ΠFG , D ⇨* D′ ]] ⊢F ⊢G A≡A [F] [G] G-ext)
, (Π₌ _ _ D′ A≡A (λ ρ ⊢Δ → reflEq ([F] ρ ⊢Δ))
(λ ρ ⊢Δ [a] → reflEq ([G] ρ ⊢Δ [a])))
redSubst* D (∃ᵣ′ F G [[ ⊢B , ⊢ΠFG , D′ ]] ⊢F ⊢G A≡A [F] [G] G-ext) =
let ⊢A = redFirst* D
in (∃ᵣ′ F G [[ ⊢A , ⊢ΠFG , D ⇨* D′ ]] ⊢F ⊢G A≡A [F] [G] G-ext)
, (∃₌ _ _ D′ A≡A (λ ρ ⊢Δ → reflEq ([F] ρ ⊢Δ))
(λ ρ ⊢Δ [a] → reflEq ([G] ρ ⊢Δ [a])))
redSubst* {l = ι ¹} D (emb l< X) with redSubst* D X
redSubst* {l = ι ¹} D (emb l< X) | y , y₁ = emb l< y , y₁
redSubst* {l = ∞} D (emb l< X) with redSubst* D X
redSubst* {l = ∞} D (emb ∞< X) | y , y₁ = emb {l′ = ι ¹} ∞< y , y₁
redSubst*Term⁰ : ∀ {A t u ll Γ} → let l = ι ⁰ in
Γ ⊢ t ⇒* u ∷ A ^ ll
→ ([A] : Γ ⊩⟨ l ⟩ A ^ [ ! , ll ])
→ Γ ⊩⟨ l ⟩ u ∷ A ^ [ ! , ll ] / [A]
→ Γ ⊩⟨ l ⟩ t ∷ A ^ [ ! , ll ] / [A]
× Γ ⊩⟨ l ⟩ t ≡ u ∷ A ^ [ ! , ll ] / [A]
redSubst*Term⁰ t⇒u (ℕᵣ D) (ℕₜ n [[ ⊢u , ⊢n , d ]] n≡n prop) =
let A≡ℕ = subset* (red D)
⊢t = conv (redFirst*Term t⇒u) A≡ℕ
t⇒u′ = conv* t⇒u A≡ℕ
in ℕₜ n [[ ⊢t , ⊢n , t⇒u′ ⇨∷* d ]] n≡n prop
, ℕₜ₌ n n [[ ⊢t , ⊢n , t⇒u′ ⇨∷* d ]] [[ ⊢u , ⊢n , d ]]
n≡n (reflNatural-prop prop)
redSubst*Term⁰ t⇒u (ne′ K D neK K≡K) (neₜ k [[ ⊢t , ⊢u , d ]] (neNfₜ neK₁ ⊢k k≡k)) =
let A≡K = subset* (red D)
[d] = [[ ⊢t , ⊢u , d ]]
[d′] = [[ conv (redFirst*Term t⇒u) A≡K , ⊢u , conv* t⇒u A≡K ⇨∷* d ]]
in neₜ k [d′] (neNfₜ neK₁ ⊢k k≡k) , neₜ₌ k k [d′] [d] (neNfₜ₌ neK₁ neK₁ k≡k)
redSubst*Term⁰ {A} {t} {u} {l} {Γ} t⇒u (Πᵣ′ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(Πₜ f [[ ⊢t , ⊢u , d ]] funcF f≡f [f] [f]₁) =
let A≡ΠFG = subset* (red D)
t⇒u′ = conv* t⇒u A≡ΠFG
[d] = [[ ⊢t , ⊢u , d ]]
[d′] = [[ conv (redFirst*Term t⇒u) A≡ΠFG , ⊢u , conv* t⇒u A≡ΠFG ⇨∷* d ]]
in Πₜ f [d′] funcF f≡f [f] [f]₁
, Πₜ₌ f f [d′] [d] funcF funcF f≡f
(Πₜ f [d′] funcF f≡f [f] [f]₁)
(Πₜ f [d] funcF f≡f [f] [f]₁)
(λ [ρ] ⊢Δ [a] → reflEqTerm ([G] [ρ] ⊢Δ [a]) ([f]₁ [ρ] ⊢Δ [a]))
-- Weak head expansion of reducible terms.
redSubst*Term : ∀ {A t u l ll Γ}
→ Γ ⊢ t ⇒* u ∷ A ^ ll
→ ([A] : Γ ⊩⟨ l ⟩ A ^ [ ! , ll ])
→ Γ ⊩⟨ l ⟩ u ∷ A ^ [ ! , ll ] / [A]
→ Γ ⊩⟨ l ⟩ t ∷ A ^ [ ! , ll ] / [A]
× Γ ⊩⟨ l ⟩ t ≡ u ∷ A ^ [ ! , ll ] / [A]
redSubst*Term {t = t} {l = ι ¹} {Γ = Γ} t⇒u (Uᵣ′ A .(next ⁰) rU ⁰ l< PE.refl D) (Uₜ K [[ ⊢u , ⊢K , d ]] typeA A≡A [u]) =
let
A≡U = subset* (red D)
⊢t = conv (redFirst*Term t⇒u) A≡U
t⇒u′ = conv* t⇒u A≡U
[t] = λ {ρ} {Δ} ([ρ] : ρ ∷ Δ ⊆ Γ) ⊢Δ → proj₁ (redSubst* {l = ι ⁰} (wkRed* [ρ] ⊢Δ (univ* t⇒u′)) ([u] [ρ] ⊢Δ))
[t≡u] = λ {ρ} {Δ} ([ρ] : ρ ∷ Δ ⊆ Γ) ⊢Δ → proj₂ (redSubst* {l = ι ⁰} (wkRed* [ρ] ⊢Δ (univ* t⇒u′)) ([u] [ρ] ⊢Δ))
[[t]] = Uₜ K [[ ⊢t , ⊢K , t⇒u′ ⇨∷* d ]] typeA A≡A [t]
in
([[t]] , Uₜ₌ [[t]] (Uₜ K [[ ⊢u , ⊢K , d ]] typeA A≡A [u]) A≡A [t≡u])
redSubst*Term {t = t} {l = ∞} {Γ = Γ} t⇒u (Uᵣ′ A .(next ¹) rU ¹ l< PE.refl D) (Uₜ K [[ ⊢u , ⊢K , d ]] typeA A≡A [u]) =
let
A≡U = subset* (red D)
⊢t = conv (redFirst*Term t⇒u) A≡U
t⇒u′ = conv* t⇒u A≡U
[t] = λ {ρ} {Δ} ([ρ] : ρ ∷ Δ ⊆ Γ) ⊢Δ → proj₁ (redSubst* {l = ι ¹} (wkRed* [ρ] ⊢Δ (univ* t⇒u′)) ([u] [ρ] ⊢Δ))
[t≡u] = λ {ρ} {Δ} ([ρ] : ρ ∷ Δ ⊆ Γ) ⊢Δ → proj₂ (redSubst* {l = ι ¹} (wkRed* [ρ] ⊢Δ (univ* t⇒u′)) ([u] [ρ] ⊢Δ))
[[t]] = Uₜ K [[ ⊢t , ⊢K , t⇒u′ ⇨∷* d ]] typeA A≡A [t]
in
([[t]] , Uₜ₌ [[t]] (Uₜ K [[ ⊢u , ⊢K , d ]] typeA A≡A [u]) A≡A [t≡u])
redSubst*Term t⇒u (ℕᵣ D) (ℕₜ n [[ ⊢u , ⊢n , d ]] n≡n prop) =
let A≡ℕ = subset* (red D)
⊢t = conv (redFirst*Term t⇒u) A≡ℕ
t⇒u′ = conv* t⇒u A≡ℕ
in ℕₜ n [[ ⊢t , ⊢n , t⇒u′ ⇨∷* d ]] n≡n prop
, ℕₜ₌ n n [[ ⊢t , ⊢n , t⇒u′ ⇨∷* d ]] [[ ⊢u , ⊢n , d ]]
n≡n (reflNatural-prop prop)
redSubst*Term t⇒u (ne′ K D neK K≡K) (neₜ k [[ ⊢t , ⊢u , d ]] (neNfₜ neK₁ ⊢k k≡k)) =
let A≡K = subset* (red D)
[d] = [[ ⊢t , ⊢u , d ]]
[d′] = [[ conv (redFirst*Term t⇒u) A≡K , ⊢u , conv* t⇒u A≡K ⇨∷* d ]]
in neₜ k [d′] (neNfₜ neK₁ ⊢k k≡k) , neₜ₌ k k [d′] [d] (neNfₜ₌ neK₁ neK₁ k≡k)
redSubst*Term {A} {t} {u} {l} {Γ} t⇒u (Πᵣ′ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(Πₜ f [[ ⊢t , ⊢u , d ]] funcF f≡f [f] [f]₁) =
let A≡ΠFG = subset* (red D)
t⇒u′ = conv* t⇒u A≡ΠFG
[d] = [[ ⊢t , ⊢u , d ]]
[d′] = [[ conv (redFirst*Term t⇒u) A≡ΠFG , ⊢u , conv* t⇒u A≡ΠFG ⇨∷* d ]]
in Πₜ f [d′] funcF f≡f [f] [f]₁
, Πₜ₌ f f [d′] [d] funcF funcF f≡f
(Πₜ f [d′] funcF f≡f [f] [f]₁)
(Πₜ f [d] funcF f≡f [f] [f]₁)
(λ [ρ] ⊢Δ [a] → reflEqTerm ([G] [ρ] ⊢Δ [a]) ([f]₁ [ρ] ⊢Δ [a]))
redSubst*Term {l = ι ¹} D (emb l< X) [u] = redSubst*Term D X [u]
redSubst*Term {l = ∞} D (emb l< X) [u] = redSubst*Term D X [u]
-- Weak head expansion of reducible types with single reduction step.
redSubst : ∀ {A B r l Γ}
→ Γ ⊢ A ⇒ B ^ r
→ Γ ⊩⟨ l ⟩ B ^ r
→ ∃ λ ([A] : Γ ⊩⟨ l ⟩ A ^ r)
→ Γ ⊩⟨ l ⟩ A ≡ B ^ r / [A]
redSubst A⇒B [B] = redSubst* (A⇒B ⇨ id (escape [B])) [B]
-- Weak head expansion of reducible terms with single reduction step.
redSubstTerm : ∀ {A t u l ll Γ}
→ Γ ⊢ t ⇒ u ∷ A ^ ll
→ ([A] : Γ ⊩⟨ l ⟩ A ^ [ ! , ll ])
→ Γ ⊩⟨ l ⟩ u ∷ A ^ [ ! , ll ] / [A]
→ Γ ⊩⟨ l ⟩ t ∷ A ^ [ ! , ll ] / [A]
× Γ ⊩⟨ l ⟩ t ≡ u ∷ A ^ [ ! , ll ] / [A]
redSubstTerm t⇒u [A] [u] = redSubst*Term (t⇒u ⇨ id (escapeTerm [A] [u])) [A] [u]
-- Equalities
redSubst*EqTerm : ∀ {A B t t′ u u′ l ll Γ}
→ Γ ⊢ t ⇒* t′ ∷ A ^ ll
→ Γ ⊢ u ⇒* u′ ∷ B ^ ll
→ ([A] : Γ ⊩⟨ l ⟩ A ^ [ ! , ll ])
→ ([B] : Γ ⊩⟨ l ⟩ B ^ [ ! , ll ])
→ Γ ⊩⟨ l ⟩ A ≡ B ^ [ ! , ll ] / [A]
→ Γ ⊩⟨ l ⟩ t′ ∷ A ^ [ ! , ll ] / [A]
→ Γ ⊩⟨ l ⟩ u′ ∷ B ^ [ ! , ll ] / [B]
→ Γ ⊩⟨ l ⟩ t′ ≡ u′ ∷ A ^ [ ! , ll ] / [A]
→ Γ ⊩⟨ l ⟩ t ≡ u ∷ A ^ [ ! , ll ] / [A]
redSubst*EqTerm D D′ [A] [B] [A≡B] [t′] [u′] [t′≡u′] =
let
[t≡t′] = proj₂ (redSubst*Term D [A] [t′])
[u≡u′:B] = proj₂ (redSubst*Term D′ [B] [u′])
[u≡u′] = convEqTerm₂ [A] [B] [A≡B] [u≡u′:B]
in transEqTerm [A] [t≡t′] (transEqTerm [A] [t′≡u′] (symEqTerm [A] [u≡u′]))
|
algebraic-stack_agda0000_doc_5250 | open import Data.String using ( String )
open import Data.List.Primitive using ( #List )
open import Data.Maybe.Primitive using ( #Maybe )
open import Web.URI.Port.Primitive using ( Port? )
open import Web.URI.Scheme.Primitive using ( Scheme? )
module Web.URI.Primitive where
{-# IMPORT Data.Maybe #-}
{-# IMPORT Web.URI.AgdaFFI #-}
data #URI : Set where
#abs : Scheme? → String → Port? → (#List String) → (#Maybe String) → #URI
#rel : (#List String) → (#Maybe String) → #URI
{-# COMPILED_DATA #URI Web.URI.AgdaFFI.URI Web.URI.AgdaFFI.Abs Web.URI.AgdaFFI.Rel #-}
postulate #toString : #URI → String
{-# COMPILED #toString Web.URI.AgdaFFI.toString #-}
postulate #fromString : String → (#Maybe #URI)
{-# COMPILED #fromString Web.URI.AgdaFFI.fromString #-}
|
algebraic-stack_agda0000_doc_5251 |
open import Oscar.Prelude
open import Oscar.Class.IsPrefunctor
open import Oscar.Class.Smap
open import Oscar.Class.Surjection
open import Oscar.Class.Transitivity
module Oscar.Class.Prefunctor where
record Prefunctor 𝔬₁ 𝔯₁ ℓ₁ 𝔬₂ 𝔯₂ ℓ₂ : Ø ↑̂ (𝔬₁ ∙̂ 𝔯₁ ∙̂ ℓ₁ ∙̂ 𝔬₂ ∙̂ 𝔯₂ ∙̂ ℓ₂) where
constructor ∁
field
{𝔒₁} : Ø 𝔬₁
_∼₁_ : 𝔒₁ → 𝔒₁ → Ø 𝔯₁
_∼̇₁_ : ∀ {x y} → x ∼₁ y → x ∼₁ y → Ø ℓ₁
_↦₁_ : Transitivity.type _∼₁_
{𝔒₂} : Ø 𝔬₂
_∼₂_ : 𝔒₂ → 𝔒₂ → Ø 𝔯₂
_∼̇₂_ : ∀ {x y} → x ∼₂ y → x ∼₂ y → Ø ℓ₂
_↦₂_ : Transitivity.type _∼₂_
{μ} : Surjection.type 𝔒₁ 𝔒₂
prefunctor-smap : Smap.type _∼₁_ _∼₂_ μ μ
⦃ `IsPrefunctor ⦄ : IsPrefunctor _∼₁_ _∼̇₁_ _↦₁_ _∼₂_ _∼̇₂_ _↦₂_ prefunctor-smap
|
algebraic-stack_agda0000_doc_5252 | module Negative5 where
data Funny (A : Set) : Set where
funny : A -> Funny (Funny A -> A) -> Funny A
|
algebraic-stack_agda0000_doc_5253 |
module _ where
-- Check that previous clauses reduce in later ones
open import Agda.Builtin.Nat hiding (_==_)
record Σ (A : Set) (B : A → Set) : Set where
field
fst : A
snd : B fst
open Σ
postulate
T : Nat → Set
mkT : ∀ n → T n
t5 : Σ Nat T
fst t5 = 5
snd t5 = mkT 5
-- Also with instance projections --
open import Agda.Builtin.Bool
open import Agda.Builtin.Equality
record Eq (A : Set) : Set where
field
_==_ : A → A → Bool
reflexive : ∀ x → true ≡ (x == x)
open Eq {{...}}
instance
EqNat : Eq Nat
_==_ {{EqNat}} zero zero = true
_==_ {{EqNat}} zero (suc y) = false
_==_ {{EqNat}} (suc x) zero = false
_==_ {{EqNat}} (suc x) (suc y) = x == y
reflexive {{EqNat}} zero = refl
reflexive {{EqNat}} (suc x) rewrite reflexive x = refl
|
algebraic-stack_agda0000_doc_5254 | ------------------------------------------------------------------------
-- The Agda standard library
--
-- Natural numbers represented in binary.
------------------------------------------------------------------------
-- This module aims to create an alternative formulation of ℕ that is
-- still reasonably computationally efficient without having to call out
-- to Haskell.
{-# OPTIONS --without-K --safe #-}
module Data.Nat.Binary.Base where
open import Algebra.Core using (Op₂)
open import Data.Nat.Base as ℕ using (ℕ)
open import Data.Sum.Base using (_⊎_)
open import Function using (_on_)
open import Level using (0ℓ)
open import Relation.Binary using (Rel)
open import Relation.Binary.PropositionalEquality using (_≡_)
open import Relation.Nullary using (¬_)
------------------------------------------------------------------------
-- Definition
data ℕᵇ : Set where
zero : ℕᵇ
2[1+_] : ℕᵇ → ℕᵇ -- n → 2*(1+n) = nonzero even numbers
1+[2_] : ℕᵇ → ℕᵇ -- n → 1 + 2*n = odd numbers
------------------------------------------------------------------------
-- Ordering relations
infix 4 _<_ _>_ _≤_ _≮_ _≯_ _≰_ _≱_
data _<_ : Rel ℕᵇ 0ℓ where
0<even : ∀ {x} → zero < 2[1+ x ]
0<odd : ∀ {x} → zero < 1+[2 x ]
even<even : ∀ {x y} → x < y → 2[1+ x ] < 2[1+ y ]
even<odd : ∀ {x y} → x < y → 2[1+ x ] < 1+[2 y ]
odd<even : ∀ {x y} → x < y ⊎ x ≡ y → 1+[2 x ] < 2[1+ y ]
odd<odd : ∀ {x y} → x < y → 1+[2 x ] < 1+[2 y ]
-- In these constructors "even" stands for nonzero even.
_>_ : Rel ℕᵇ 0ℓ
x > y = y < x
_≤_ : Rel ℕᵇ 0ℓ
x ≤ y = x < y ⊎ x ≡ y
_≥_ : Rel ℕᵇ 0ℓ
x ≥ y = y ≤ x
_≮_ : Rel ℕᵇ 0ℓ
x ≮ y = ¬ (x < y)
_≯_ : Rel ℕᵇ 0ℓ
x ≯ y = ¬ (x > y)
_≰_ : Rel ℕᵇ 0ℓ
x ≰ y = ¬ (x ≤ y)
_≱_ : Rel ℕᵇ 0ℓ
x ≱ y = ¬ (x ≥ y)
------------------------------------------------------------------------
-- Basic operations
double : ℕᵇ → ℕᵇ
double zero = zero
double 2[1+ x ] = 2[1+ 1+[2 x ] ]
double 1+[2 x ] = 2[1+ (double x) ]
suc : ℕᵇ → ℕᵇ
suc zero = 1+[2 zero ]
suc 2[1+ x ] = 1+[2 (suc x) ]
suc 1+[2 x ] = 2[1+ x ]
pred : ℕᵇ → ℕᵇ
pred zero = zero
pred 2[1+ x ] = 1+[2 x ]
pred 1+[2 x ] = double x
------------------------------------------------------------------------
-- Addition, multiplication and certain related functions
infixl 6 _+_
infixl 7 _*_
_+_ : Op₂ ℕᵇ
zero + y = y
x + zero = x
2[1+ x ] + 2[1+ y ] = 2[1+ suc (x + y) ]
2[1+ x ] + 1+[2 y ] = suc 2[1+ (x + y) ]
1+[2 x ] + 2[1+ y ] = suc 2[1+ (x + y) ]
1+[2 x ] + 1+[2 y ] = suc 1+[2 (x + y) ]
_*_ : Op₂ ℕᵇ
zero * _ = zero
_ * zero = zero
2[1+ x ] * 2[1+ y ] = double 2[1+ x + (y + x * y) ]
2[1+ x ] * 1+[2 y ] = 2[1+ x + y * 2[1+ x ] ]
1+[2 x ] * 2[1+ y ] = 2[1+ y + x * 2[1+ y ] ]
1+[2 x ] * 1+[2 y ] = 1+[2 x + y * 1+[2 x ] ]
------------------------------------------------------------------------
-- Conversion between ℕᵇ and ℕ
toℕ : ℕᵇ → ℕ
toℕ zero = 0
toℕ 2[1+ x ] = 2 ℕ.* (ℕ.suc (toℕ x))
toℕ 1+[2 x ] = ℕ.suc (2 ℕ.* (toℕ x))
-- Costs O(n), could be improved using `_/_` and `_%_`
fromℕ : ℕ → ℕᵇ
fromℕ 0 = zero
fromℕ (ℕ.suc n) = suc (fromℕ n)
-- An alternative ordering lifted from ℕ
infix 4 _<ℕ_
_<ℕ_ : Rel ℕᵇ 0ℓ
_<ℕ_ = ℕ._<_ on toℕ
------------------------------------------------------------------------
-- Other functions
-- Useful in some termination proofs.
size : ℕᵇ → ℕ
size zero = 0
size 2[1+ x ] = ℕ.suc (size x)
size 1+[2 x ] = ℕ.suc (size x)
------------------------------------------------------------------------
-- Constants
0ᵇ = zero
1ᵇ = suc 0ᵇ
2ᵇ = suc 1ᵇ
3ᵇ = suc 2ᵇ
4ᵇ = suc 3ᵇ
5ᵇ = suc 4ᵇ
6ᵇ = suc 5ᵇ
7ᵇ = suc 6ᵇ
8ᵇ = suc 7ᵇ
9ᵇ = suc 8ᵇ
|
algebraic-stack_agda0000_doc_5255 | ------------------------------------------------------------------------
-- The Agda standard library
--
-- Convenient syntax for reasoning with a setoid
------------------------------------------------------------------------
-- Example use:
-- n*0≡0 : ∀ n → n * 0 ≡ 0
-- n*0≡0 zero = refl
-- n*0≡0 (suc n) = begin
-- suc n * 0 ≈⟨ refl ⟩
-- n * 0 + 0 ≈⟨ ... ⟩
-- n * 0 ≈⟨ n*0≡0 n ⟩
-- 0 ∎
-- Module `≡-Reasoning` in `Relation.Binary.PropositionalEquality`
-- is recommended for equational reasoning when the underlying equality is
-- `_≡_`.
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary
module Relation.Binary.Reasoning.Setoid {s₁ s₂} (S : Setoid s₁ s₂) where
open Setoid S
------------------------------------------------------------------------
-- Publicly re-export base contents
open import Relation.Binary.Reasoning.Base.Single _≈_ refl trans public
renaming (_∼⟨_⟩_ to _≈⟨_⟩_)
infixr 2 _≈˘⟨_⟩_
_≈˘⟨_⟩_ : ∀ x {y z} → y ≈ x → y IsRelatedTo z → x IsRelatedTo z
x ≈˘⟨ x≈y ⟩ y∼z = x ≈⟨ sym x≈y ⟩ y∼z
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.